1988_Motorola_Linear_and_Interface_Integrated_Circuits 1988 Motorola Linear And Interface Integrated Circuits

User Manual: 1988_Motorola_Linear_and_Interface_Integrated_Circuits

Open the PDF directly: View PDF PDF.
Page Count: 1542

Download1988_Motorola_Linear_and_Interface_Integrated_Circuits 1988 Motorola Linear And Interface Integrated Circuits
Open PDF In BrowserView PDF
Index/Cross Reference
Amplifiers
and Comparators
Power Circuits
Power/Motor
Control Circuits
Voltage References
Data Conversion
Interface Circuits
Communication Circuits
Consumer
Electronic Circuits
Automotive
Electronic Circuits
Other Linear Circuits
Surface Mount
Technology
Packaging Information
Quality and
Reliability Assurance
Applications Literature

II

E
II

II
E

II

II
13
Il

1m

II
IE1
D1

III
1m

MOTOROLA

LINEAR AND INTERFACE
INTEGRATED CIRCUITS

This publication presents technical information for the broad line of Linear and Interface Integrated Circuit products. Complete device specifications are provided in the form of Data Sheets
which are categorized by product type into ten chapters for easy reference. Selector Guides by
product family are provided in the beginning of each Chapter to enable quick comparisons of
performance characteristics. A Cross Reference chapter lists Motorola direct replacement and
functional equivalent part numbers for other industry products.
A chapter is provided to illustrate Package Outline and mounting hardware drawings, and
includes information on Surface Mount Devices (SMD), and Industry Package Cross Reference
Guide.
Additionally, chapters are provided with information on Quality program concepts, highreliability processing, and abstracts of available Technical Literature.
The information in this book has been carefully checked and is believed to be accurate; however,
no responsibility is assumed for inaccuracies.
Motorola reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola and
are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.
Motorola, Inc. general policy does not recommend the use of its components in life support
applications wherein a failure or malfunction of the component may directly threaten life or injury.
Per Motorola Terms and Conditions of Sale, the user of Motorola components in life support
applications assumes all risks of such use and indemnifies Motorola against all damages.

®

Printed in U.S.A.

Series F
©MOTOROLA INC., 1988
Previous Edition ©1985
"All Rights Reserved"

C-QUAM®, Designer's, MDTl, MECl, MECl 10,000, MONOMAX, MOSAIC, MRTl,
MTTl, SENSEFET and Switchmode are trademarks of Motorola Inc,

ii

Index/Cross Reference

In Brief ...
In the Cross Reference Section of this chapter, a
complete interchangeability list linking over 3000
devices is offered by most major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola
device. The "Motorola Direct Replacement" column
lists devices with identical pin connections and package
and the same or better electrical characteristics and
temperature range. The "Motorola Similar Replacement" column provides a device which performs the
same function but with possible differences in package
configurations, pin connections, temperature range or
electrical specifications.

..

Alphanumeric Index
Device
Number

AM26LS31
AM26LS32
CA3054
CA3059
CA3079
DAC-08
LF347
LF351
LF353
LF355,B
LF356,B
LF357,B
LF411C
LF412C
LM11,C,CL
LM101A
LM108,A
LM109
LM111
LM117
LM117L

LM123,A
LM124
LM137
LM139,A
LM140,A
LM148
LM150
LM158
LM193,A
LM201A
LM208,A

Function

Device
Number

Page

Quad EIA-422 Line Driver with
Three-State Output
Quad EIA-422/3 Line Receiver
with Three-State Outputs
Dual Differential Amplifier
Zero Voltage Switch
Zero Voltage Switch
High-Speed 8-Bit Multiplying
D-to-A Converter
Family of BIFET Operational
Amplifiers
Family of BIFET Operational
Amplifiers
Family of BIFET Operational
Amplifiers
Monolithic JFET Operational
Amplifier
Monolithic JFET Operational
Amplifier
Monolithic JFET Operational
Amplifier
Low Offset, Low Drift JFET
Input Operational Amplifier
Low Offset, Low Drift JFET
Input Operational Amplifier
Precision Operational Amplifiers
General Purpose Adjustable
Operational Amplifier
Precision Operational Amplifiers
Positive Voltage Regulator
High Performance Voltage
Comparator
3-Terminal Adjustable Positive
Voltage Regulator
Low-Current 3-Terminal
Adjustable Positive Voltage
Regulator
3-Ampere, 5 Volt Positive
Voltage Regulator
Quad Low-Power Operational
Amplifier
3-Terminal Adjustable Negative
Voltage Regulator
Quad Single-Supply
Comparators
Three-Terminal Positive Fixed
Voltage Regulators
Quad MC1741 Operational
Amplifier
3-Terminal Adjustable Positive
Voltage Regulator
Dual Low-Power Operational
Amplifier
Dual Comparators
General Purpose Adjustable
Operational Amplifier
Precision Operational Amplifiers

LM209
LM211

7-10
7-13
9-7
4-8
4-8

LM217
LM217L

6-5

LM223,A

2-14

LM224

2-14

LM237

2-14

LM239,A

2-16

LM248

2-16

LM250

2-16

LM258

2-26

LM285

2-26
2-29

LM293,A
LM301A

2-36
2-40
3-15

LM307

LM308,A
LM309
LM311

2-45
3-20

LM317
3-28

LM317L

3-36
LM317M
2-51
3-42

LM323,A

2-57

LM324,A

3-49

LM337

2-61

LM337M

3-65
LM339,A
2-67
2-73

LM340,A

2-36
2-40

LM348

Function

Positive Voltage Regulator
High Performance Voltage
Comparator
3-Terminal Adjustable Positive
Voltage Regulator
Low-Current 3-Terminal
Adjustable Positive Voltage
Regulator
3-Ampere, 5 Volt Positive
Voltage Regulator
Quad Low-Power Operational
Amplifiers
3-Terminal Adjustable Negative
Voltage Regulator
Quad Single-Supply
Comparators
Quad MC1741 Operational
Amplifier
3-Terminal Adjustable Positive
Voltage Regulator
Dual Low-Power Operational
Amplifier
Micropower Voltage Reference
Diodes
Dual Comparators
General Purpose Adjustable
Operational Amplifier
Internally Compensated
Monolithic Operational
Amplifier
Precision Operational Amplifiers
Positive Voltage Regulator
High Performance Voltage
Comparator
3-Terminal Adjustable Positive
Voltage Regulator
Low-Current 3-Terminal
Adjustable Positive Voltage
Regulator
Medium-Current 3-Terminal
Adjustable Positive Voltage
Regulator
3-Ampere, 5 Volt Positive
Voltage Regulator
Quad Low-Power Operational
Amplifier
3-Terminal Adjustable Negative
Voltage Regulator
Medium-Current 3-Terminal
Adjustable Negative Voltage
Regulator
Quad Single-Supply
Comparators
Three-Terminal Positive Fixed
Voltage Regulators
Quad MC1741 Operational
Amplifier

MOTOROLA LINEAR/INTERFACE DEVICES
1-2

Page

3-15
2-45
3-20

3-28
3-36
2-51
3-42
2-57
2-61
3-65
2-67
5-4
2-73
2-36

2-78
2-40
3-15
2-45
3-20

3-28

3-73
3-36
2-51
3-4"-

3-81
2-57
3-49
2-61

ALPHANUMERIC INDEX Device
Number

LM350
LM358
LM385
LM393,A
LM833
LM2900
LM2901
LM2902
LM2903
LM2904
LM2931
LM3900
MC8T26A
MC8T28
MC8T95
MC8T96
MC8T97
MC8T98
MC26S10
MC75S110
MC1330
AlP
MC1330
A2P
MC1350
MC1374
MC1377
MC1378
MC1391 P
MC1403,A
MC1404,A
MC1408
MC1411
MC1412
MC1413
MC1414
MC1416
MC1436,C
MC1437
MC1439

CONTINUED

Function

Device
Number

Page

3-Terminal Adjustable Positive
Voltage Regulator
Dual Low-Power Operational
Amplifier
Micropower Voltage Reference
Diodes
Dual Comparators
Dual, Low Noise, Audio
Operational Amplifier
Quad Single-Supply
Operational Amplifier
Quad Single-Supply
Comparators
Quad Low-Power Operational
Amplifier
Dual Comparators
Dual Low-Power Operational
Amplifier
Low Dropout Voltage
Regulators
Quad Single-Supply
Operational Amplifier
Quad Three-State Bus
Transceivel'
Noninverting Bus Transceiver
Hex Three-State Buffer/Inverter
Hex Three-State Buffer/Inverter
Hex Three-State Buffer/Inverter
Hex Three-State Buffer/Inverter
Quad Open-Collector Bus
Transceiver
Dual Line Driver
Low-Level Video Detector

2-67

MC1445
MC1454G
MC1455
MC1456,C

5-4
2-73

MC1458,C
MC1458S

2-82

MC1466L
MC1468

3-65

2-189

MC1472

2-57

MC1488
MC1489,A
MC1490P
MC1494L
MC1495L
MC1496

2-51
2-73
2-67
3-88

MC1503,A

2-189

MC1504

7-16
7-21
7-26
7-26
7-26
7-26

MC1508
MC1514
MC1536

7-48
7-176

MC1537
MC1539

9-9

MC1545
MC1554G
MC1556

Low-Level Video Detector
IF Amplifier
TV Modulator Circuit
Color Television RGB to PAU
NTSC Encoder
Complete Color TV Video
Overlay Synchronizer
TV Horizontal Processor
Precision Low-Voltage
Reference
Precision Low-Drift Voltage
Reference
8-Bit Multiplying Digital-toAnalog Converter
Peripheral Driver Array
Peripheral Driver Array
Peripheral Driver Array
Dual Differential Voltage
Comparator
Peripheral Driver Array
High-Voltage Operational
Amplifier
Dual Operational Amplifier
High-Slew-Rate Operational
Amplifier

9-9
9-15
9-19

MC1558
MC1558S

9-27

MC1568
MC1590G
MC1594L
MC1595L
MC1596

9-31
9-35
5-8
5-12

MC1709,
A,C
MC1723,C

6-15
7-30
7-30
7-30

MC1733,C
MC1741,C

2-88
7-30

MC1741S,
SC
MC1747,C

2-92
2-96

MC1748,C

Function

Wideband Amplifier
1-Watt Power Amplifier
Timing Circuit
High-Performance Operational
Amplifier
Dual Operational Amplifier
High-Slew-Rate Dual
Operational Amplifier
Voltage and Current Regulator
Dual ± 15-Volt Tracking
Regulator
Dual Peripheral Positive NAND
Driver
Quad MDTL Line Driver
Quad MDTL Line Receiver
Wideband Amplifier with AGC
Four-Quadrant Multiplier
Four-Quadrant Multiplier
Balanced ModulatorDemodulator
Precision Low-Voltage
Reference
Precision Low-Drift Voltage
Reference
8-Bit Multiplying Digital-toAnalog Converter
Dual Differential Voltage
Comparator
High-Voltage Operational
Amplifiers
Dual Operational Amplifier
High-Slew-Rate Operational
Amplifier
Wideband Amplifier
1-Watt Power Amplifier
High-Performance Operational
Amplifier
Dual Operational Amplifier
High-Slew-Rate Dual
Operational Amplifier
Dual ± 15-Volt Regulator
Wideband Amplifier with AGC
Four-Quadrant Multiplier
Four-Quadrant Multiplier
Balanced ModulatorDemodulator
General-Purpose Operational
Amplifier
Adjustable Positive or Negative
Voltage Regulator
Differential Video Amplifier
General-Purpose Operational
Amplifier
High-Slew-Rate Operational
Amplifier
Dual MC1741 Operational
Amplifier
General-Purpose Operational
Amplifier

2-100

MOTOROLA LINEAR/INTERFACE DEVICES

'-3

Page

2-108
2-114
11-4
2-118
2-124
2-129
3-95
3-105
7-34
7-37
7-43
2-135
11-11
11-25
8-13
5-8
5-12
6-15
2-88
2-92
2-96
2-100
2-108
2-114
2-118
2-124
2-129
3-105
2-141
11-11
11-25
8-13
2-149
3-111
2-153
2-161
2-166
2-172
2-176

..

ALPHANUMERIC INDEX Device
Number

MC1776,C
MC26S10
MC2831A
MC2833
MC3301
MC3302
MC3303
MC3325
MC3334P
MC3346
MC3356
MC3357
MC3358
MC3359
MC3361
MC3362
MC3363
MC3367
MC3373
MC3397T
MC3399T
MC3401
MC3403
MC3405
MC3417
MC3418
MC3419-1L
MC3419A1L
MC3419C1L
MC3423
MC3425

MC3430
MC3431
MC3432
MC3433
MC3437
MC3440A

CONTINUED

Function

Device
Number

Page

Programmable Operational
Amplifier
Quad Open Collector Bus
Transceiver
Low Power FM Transmitter
System
Low Power FM Transmitter
System
Quad Operational Amplifier
Quad Single-Supply
Comparators
Quad Differential-Input
Operational Amplifier
Automotive Voltage Regulator
High Energy Ignition Circuit
General-Purpose Transistor
Array
Wide band FSK Receiver
Low-Power FM IF
Dual Low-Power Operational
Amplifier
Low-Power Narrow-Band FM IF
Low-VOltage Narrow-Band FM
IF
Low Power Dual Conversion
FM Receiver
Low Power Dual Conversion
FM Receiver
Low Voltage Single Conversion
FM Receiver
Remote Control AmplifierDetector
Transient Suppressor
Automotive High Side Driver
Switch
Quad Operational Amplifier
Quad Differential-Input
Operational Amplifier
Dual Operational Amplifier plus
Dual Voltage Comparator
Continuously-Variable-Slope
Delta Modulator/Demodulator
Continuously-Variable-Slope
Delta Modulator/Demodulator
Telephone Line-Feed Circuit
Telephone Line-Feed Circuit
Telephone Line-Feed Circuit

MC3441A
MC3446A
MC3447

2-180
7-48

MC3448A
8-23
MC3450
MC3452
MC3453
MC3456
MC3458

8-26
2-189
2-57

MC3467
MC3469P
MC3470P,
AP
MC3471P

2-199
10-5
10-9
9-40
8-29
8-35

MC3476
MC3479P
MC3480
MC3481
MC3484S2
MC3484S4
MC3485
MC3486

2-221
8-39
8-45
8-47
8-52

MC3487
8-59
MC3488A
MC3503

9-43
10-13

MC3505
10-16
2-189

MC3517

2-199

MC3518

2-205

MC3523
MC3556
MC3558

*

MC4558,
AC,C
MC4741,C

*
*
*

MC6108
*

Overvoltage Sensing Circuit
Power Supply Supervisory/
Over-Under-Voltage
Protection Circuit
High-Speed Quad Comparator
High-Speed Quad Comparator
High-Speed Quad Comparator
High-Speed Quad Comparator
Hex Unified Bus Receiver
Quad Interface Bus Transceiver

3-117

MC6875,A
MC6880A

3-124

MC6885
MC6886
MC6887
MC6888
MC6889
MC7800
Series

2-213
2-213
2-213
2-213
7-51
7-54

Function

Quad Interface Bus Transceiver
Quad Interface Bus Transceiver
Bidirectional Instrumentation
Bus Transceiver
Quad Three-State Bus
Transceiver
Quad Line Receiver
Quad Line Receiver
Quad Line Driver
Dual Timing Circuit
Dual Low-Power Operational
Amplifier
Triple Preamplifier
Floppy Disk Write Controller
Floppy Disk Read Amplifier
System
Floppy Disk Write Controller/
Head Driver
Programmable Operational
Amplifier
Stepper Motor Driver
Memory Controller Circuit
Quad Single-Ended Line Driver
Integrated Solenoid Driver
Integrated Solenoid Driver
Quad Single-Ended Line Driver
Quad EIA-422/423 Line
Receiver
Quad EIA-422 Line Driver with
Three-State Outputs
Dual EIA-423/232C Driver
Quad Differential-Input
Operational Amplifier
Dual Operational Amplifier plus
Dual Voltage Comparator
Continuously-Variable-Slope
Delta Modulator/Demodulator
Continuously-Variable-Slope
Delta Modulator/Demodulator
Overvoltage SenSing Circuit
Dual Timing Circuit
Dual Low-Power Operational
Amplifier
Dual High-Frequency
Operational Amplifier
Quad MC1741 Operational
Amplifier
8-Bit MPU Bus-Compatible
High Speed A-to-D Converter
M6800 Clock Generator/Driver
Quad Three-State Bus
Transceiver
Hex Three-State Buffer/Inverter
Hex Three-State Buffer/Inverter
Hex Three-State Buffer/Inverter
Hex Three-State Buffer/Inverter
Noninverting Bus Transceiver
3-Terminal Positive Voltage
Regulators

• See Telecommunication Device Data (DL 136).

MOTOROLA LINEAR/INTERFACE DEVICES
1-4

Page

7-54
7-58
7-61
7-67
7-72
7-72
7-79
11-40
2-221
7-83
7-88
7-98
7-112
2-227
4-13
7-123
7-137
10-19
10-19
7-137
7-142
7-145
7-149
2-199
2-205
*
*

3-117
11-40
2-221
2-232
2-236
6-27
7-153
7-16
7-26
7-26
7-26
7-26
7-21
3-132

ALPHANUMERIC INDEX Device
Number

MC78LOOC,
AC Series
MC78MOO
BC Series
MC78TOO
Series
MC7900C
Series
MC7900C,
ACSeries
MC79MOO
Series
MC10318L,
L9,CL6,
CL7
MC10319

CONTINUED

Function

Device
Number

Page

Positive Voltage Regulators

MC33072

3-145
Positive Voltage Regulator
Three-Ampere Positive Voltage
Regulators
Three-Terminal Negative Fixed
Voltage Regulators
Three-Terminal Negative Fixed
Voltage Regulators
Three-Terminal Negative Fixed
Voltage Regulators
High-Speed 8-Bit D/A
Converter

High Speed 8-Bit Analog-toDigital Flash Converter
MC10320
Triple 4-Bit Color Palette Video
DAC
MC10320-1
Triple 4-Bit Color Palette Video
DAC
MC10321
High Speed 7-Bit A-to-D Flash
Converter
MC13001XP Monomax Black-and-White TV
Subsystem
MC13002XP Monomax Black-and-White TV
Subsystem
MC13010P
TV Parallel Sound IF and AFT
MC13014P
Companion AudioNertical
Subsystem
MC13020P
C-QUAM® AM Stereo Decoder
Motorola C-QUAM® AM Stereo
MC13021
Tuning Stabilizer
MC13022
Advanced Medium Voltage AM
Stereo Decoder
MC13023
AM Stereo Front End and
Tuner Stabilizer
MC13024
Low Voltage Motorola
C-QUAM® AM Stereo
Receiver
MC13041
AM Receiver Subsystem
MC13055
Wideband FSK Receiver
MC13060
Mini-Watt Audio Output
MC33030
DC Servo Motor Controller/
Driver
MC33034
DC Brushless Motor Controller
MC33039
Closed Loop Brushless Motor
Adapter
MC33060A Switch mode Pulse Width
Modulation Control Circuits
MC33063
DC to DC Converter Control
Circuits
MC33063A DC to DC Converter Control
Circuits
MC33064
Undervoltage Sensing Circuit
MC33065
High Performance Dual
Channel Current Mode
Controller
MC33071
High Performance Single
Supply Operational Amplifiers

3-151

MC33074

3-159

I MC33078
MC33079

3-168

MC33129

3-177
3-182

MC33160

6-45

MC33171

6-62

MC33172

9-47

MC33174

9-47

MC33181,
2,4
MC33282
MC33284
MC34001

6-80
9-64

MC34002

9-64
9-73

MC34004

9-78
9-84

MC34010
MC34011A
MC34012
Series
MC34013A

9-89
9-91

MC34014

9-95

MC34017
MC34018

9-101
9-104
8-65
9-110

MC34050
MC34051
MC34060

4-21
4-34

MC34060A

4-54

MC34061,A

3-197

MC34062

3-227

MC34063

3-233
3-242

MC34063A
MC34064
MC34065

3-246

Function

Dual High Performance Single
Supply Operational Amplifiers
Quad High Performance Single
Supply Operational Amplifier
Low Noise Operational
Amplifier
Low Noise Operational
Amplifier
High Performance Current
Mode Controller
Microprocessor Voltage
Regulator and Supervisory
Circuit
Low Power, Single Supply
Operational Amplifiers
Low Power, Single Supply
Operational Amplifiers
Low Power, Single Supply
Operational Amplifiers
Low Power JFET Input
Operational Amplifiers
JFET Operational Amplifiers
JFET Operational Amplifiers
JFET-Input Operational
Amplifiers
JFET-Input Operational
Amplifiers
JFET-Input Operational
Amplifiers
Electronic Telephone Circuit
Electronic Telephone Circuit
Telephone Tone Ringer
Speech Network and Tone
Dialer
Telephone Speech Network
with Dialer Interface
Telephone Tone Ringer
Voice Switched Speaker Phone
Circuit
Dual EIA-422/423 Transceiver
Dual EIA-422/423 Transceiver
Switch mode Pulse Width
Modulation Control Circuits
Switchmode Pulse Width
Modulation Control Circuits
Three-Terminal Programmable
Overvoltage Sensing Circuit
Pin-Programmable Overvoltage
Sensing Circuit
DC to DC Converter. Control
Circuits
DC to DC Converter Control
Circuits
Undervoltage Sensing Circuit
High Performance Dual
Channel Current Mode
Controller

2-267

• See Telecommunication Device Data (DL 136).

MOTOROLA LINEAR/INTERFACE DEVICES

1-5

Page

2-267
2-267
2-241
2-241
3-258

3-271
2-250
2-250
2-250
2-294
2-257
2-257
2-260
2-260
2-260

7-164
7-164
3-185
3-197
3-209
3-216
3-227
3-233
3-242

3-246

ALPHANUMERIC INDEX Device
Number

MC34071
MC34072
MC34074
MC34080

MC34081
MC34082
MC34083

MC34084
MC34085

MC34115
MC34119
MC34120
MC34129
MC34160

MC34181,
2,4
MC35001
MC35002
MC35004
MC35060
MC35050A
MC35062
MC35063
MC35063A
MC35071
MC35072
MC35074

CONTINUED

Function

Device
Number

Page

High Performance Single
Supply Operational Amplifiers
Dual High Performance Single
Supply Operational Amplifiers
Quad High Performance Single
Supply Operational Amplifier
High Speed Decompensated
(AvcL ",2) JFET Input
Operational Amplifier
High Speed JFET Input
Operational Amplifier
Dual High Speed JFET Input
Operational Amplifier
Dual High Speed
Decompensated (AvcL ",2)
JFET Input Operational
Amplifier
Quad High Speed JFET Input
Operational Amplifier
Quad High Speed
Decompensated (AvcL ",2)
JFET Input Operational
Amplifier
Continuously Variable Slope
Delta Modulator/Demodulator
Low Power Audio Amplifier
Subscriber Loop Interface
Circuit
High Performance Current
Mode Controller
Microprocessor Voltage
Regulator and Supervisory
Circuit
Low Power JFET Input
Operational Amplifiers
JFET-Input Operational
Amplifiers
JFET-Input Operational
Amplifiers
JFET-Input Operational
Amplifiers
Switch mode Pulse Width
Modulation Control Circuits
Switch mode Pulse Width
Modulation Control Circuits
Pin-Programmable Overvoltage
Sensing Circuit
DC to DC Converter Control
Circuits
DC to DC Converter Control
Circuits
High Performance Single
Supply Operational Amplifiers
Dual High Performance Single
Supply Operational Amplifiers
Quad High Performance Single
Supply Operational Amplifiers

MC35080
2-267
2-267

MC35081

2-267

MC35082
MC35083

2-283
2-283
MC35084
2-283
MC35085

2-283
MC35171
2-283
MC35172
MC35174
2-283

9-114

MC35181,
2,4
MC44301

*

MC44802

*

MC75107
MC75108
MC75S110
MC75125
MC75127
MC75128
MC75129
MCC3334
MCCF3334
NE592
OP-27

3-258

3-271
2-294
2-260

2-260
2-260

SAA1042,A
SE592
SG1525A

3-185
3-197

SG1526
3-216
SG1527A
3-227
SG2525A
3-233
SG2526
2-267
SG2527A
2-267
SG3525A
2-267

Function

High-Speed Decompensated
(AvcL ",2) JFET Input
Operational Amplifier
High-Speed JFET Input
Operational Amplifier
Dual High-Speed JFET Input
Operational Amplifier
Dual High-Speed
Decompensated (AVCL ",2)
JFET Input Operational
Amplifier
Quad High-Speed JFET Input
Operational Amplifier
Quad High-Speed
Decompensated (AVCL ",2)
JFET Input Operational
Amplifier
Low Power, Single Supply
Operational Amplifiers
Low Power, Single Supply
Operational Amplifiers
Low Power, Single Supply
Operational Amplifiers
Low Power JFET Input
Operational Amplifiers
System 4 High Performance
Color TV IF
PLL Tuning Circuit with
1.3 GHz Prescaler
Dual Line Receiver
Dual Line Receiver
Dual Line Driver
Seven-Channel Line Receivers
Seven-Channel Line Receivers
Eight-Channel Line Receivers
Eight-Channel Line Receivers
High Energy Ignition Circuit
High Energy Ignition Circuit
Video Amplifier
Ultra-Low Noise Precision, High
Speed Operational Amplifiers
Stepper Motor Driver
Video Amplifier
Pulse Width Modulator Control
Circuits
Pulse Width Modulation Control
Circuits
Pulse Width Modulator Control
Circuits
Pulse Width Modulator Control
Circuits
Pulse Width Modulation Control
Circuits
Pulse Width Modulator Control
Circuits
Pulse Width Modulator Control
Circuits

- See Telecommunication Device Data (DL 136).

MOTOROLA LINEAR/INTERFACE DEVICES
1-6

Page

2-283
2-283
2-283

2-283
2-283

2-283
2-250
2-250
2-250

2-294
9-123
9-129
7-171
7-171
7-176
7-181
7-181
7-185
7-185
10-9
10-9
2-303
2-308
4-59
2-303
3-279
3-286
3-279
3-279
3-286
3-279
3-279

ALPHANUMERIC INDEX Device
Number

SG3526
SG3527A
SN75172
SN75173
SN75174
SN75175
TBA120C
TCA4500A
TCA5550
TCA5600
TCF6000
TCF7000
TDA1085A
TDA1085C
TDA1185A
TDA1190P
TDA1285A
TDA1524A
TDA3190P
TDA3301
TDA3303
TDA3330
TDA3333
TDA4601,B
TL061
TL062
TL064
TL071
TL072
TL074
TL081
TL082
TL084
TL431
Series

CONTINUED

Function

Device
Number

Page

Pulse Width Modulation Control
Circuits
Pulse Width Modulator Control
Circuits
Quad EIA-485 Line Driver with
Three-State Output
Quad EIA-485 Line Receiver
with Three-State Output
Quad EIA-485 Line Driver with
Three-State Output
Quad EIA-485 Line Receiver
with Three-State Output
FM IF Amplifier, Limiter and
Detector
FM Stereo Demodulator
Stereo Sound Control System
Universal Microprocessor
Power Supply Controlier
Peripheral Clamping Array
Pressure Transducer Amplifier
Universal Motor Speed
Controlier
Universal Motor Speed
Controlier
Triac Phase Angle Controller
TV Sound System
Universal Motor Speed
Controller
Stereo Tone Control System
TV Sound System
TV Color Processor
TV Color Processor
TV Color Processor
TV Color Difference
Demodulator
Flyback Converter Regulator
Control Circuit
Low Power JFET Input
Operational Amplifier
Low Power JFET Input
Operational Amplifier
Low Power JFET Input
Operational Amplifier
Low-Noise JFET Input
Operational Amplifier
Low-Noise JFET Input
Operational Amplifier
Low-Noise JFET Input
Operational Amplifier
JFET Input Operational
Amplifier
JFET Input Operational
Amplifier
JFET Input Operational
Amplifier
Programmable Precision
References

TL494
3-286
TL594
3-279
TL780
7-189
UAA1016B
UAA1041
UC2842A

7-191
7-189

UC2843A
7-191
UC3842A
9-137
9-142
9-149

UC3843A
ULN2001A
ULN2002A
ULN2003A
ULN2004A
ULN2068B
ULN2074B
ULN2801
ULN2802
ULN2803
ULN2804
JLA78S40

3-294
7-196
10-29
4-64
4-71
4-81
9-153
4-88
9-156
9-153
9-161
9-161
9-175

Function

Switchmode Pulse Width
Modulation Control Circuits
Switch mode Pulse Width
Modulation Control Circuits
Three-Terminal Positive Voltage
Regulators
Zero Voltage Controlier
Automotive Direction Indicator
High Performance Current
Mode Controller
High Performance Current
Mode Controller
High Performance Current
Mode Controller
High Performance Current
Mode Controller
Peripheral Driver Array
Peripheral Driver Array
Peripheral Driver Array
Peripheral Driver Array
Quad 1.5 A Darlington Switch
Quad 1.5 A Darlington Switch
Octal Peripheral Driver Array
Octal Peripheral Driver Array
Octal Peripheral Driver Array
Octal Peripheral Driver Array
Universal Switching Regulator
Subsystem

9-183
3-305
2-320
2-320
2-320
2-328
2-328
2-328
2-335
2-335
2-335
5-17

MOTOROLA LINEAR/INTERFACE DEVICES
1-7

Page

3-312
3-323
3-334
4-95
10-31
3-340
3-340
3-340
3-340
7-30
7-30
7-30
7-30
7-200
7-204
7-208
7-208
7-208
7-208
3-53

•

Cross Reference
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

8216
8226
9614DC
9614DM
9615DC

MC8T26AL
MC8T28L
MC75S110L
MC75S110L
MC75108L

7-16
7-21
7-176
7-176
7-171

AD1403AN
AD1408-lD
AD1508-8D
AD6108
AM26LS31CJ

AM26LS31DC

5-8
6-15
6-15
6-27
7-10

9616CDC
9616EDC
9616DM
9617DC
9620DC

MC1488L
MC1488L
MC1488L
MC1489AL
MC75S11OL

7-37
7-37
7-37
7-43
7-176

AM26LS31CN
AM26LS31D
AM26LS31P
AM26LS32ACJ
AM26LS32ACN

AM26LS31PC
AM26LS31D
AM26LS31P
AM26LS32D
AM26LS32APC

7-10
7-10
7-10
7-13
7-13

9620DM
9621DC
9627CDC
962lDM
9636AT

MC75S110L
MC75108L
MC1489AL
MC1489AL

7-176
7-171
7-43
7-43

AM26LS32D
AM26LS32PC

7-149

AM26LS32D
AM26LS32P
AM26LS33DC
AM 26LS33PC
AM26S10DC

MC3486P
MC3487P

7-142
7-145
7-48
7-54
7-48

AM26S1OPC
AM101
AM101A
AM101AD
AM101AF

MC26S10P

7-30
7-30
7-30
7-30
7-30

AM101D
AM101F
AM107
AM10lD
AM107F

9637T
9638T
9640DC
9640NC
9640PC

MC3488AP

MC26S10L
MC3440AP
MC26S10P

9665DC
9665PC
9666DC
9666PC
966lDC

MC1411L

9667PC
9668DC
9668PC
55110DM
75107ADC

MC1413P
MC1416L
MC1416P

75107APC
75107BDC
75107BPC
75108ADC
75108APC

MC1411P

MC1412L
MC1412P
MC1413L

MC75S110L
MC75107L
MC75107P
MC75107L
MC75107P
MC75108L
MC75108P

75108BDC
75108BPC

MC75108L
MC75108P

75110DC

MC75S110L

75110PC
75207DC

MC75S110P

75207PC
75208DC
75208PC
AD DAC-08AD
AD DAC-08CD

AD DAC-08D
AD DAC-08ED
AD DAC-08HD
AD301AL
AD505J
AD505K
AD505S
AD509J
AD509K
AD509S

MC75107L
MC75107P
MC75108L
MC75108P
DAC-08AQ
DAC-08CQ
DAC-08Q
DAC-08EQ
DAC-08HQ
LM301AH
MC1776CG
MC1776CG
MC1776G
LM301AH
lM301AH

LM101AH

AM111D
AM111H
AM201
AM201A
AM201AD

7-30
7-30
7-30
7-176
7-171

AM207F
AM211D
AM211H

7-171
7-171
7-176
7-176
7-171

6-5
6-5
6-5
2-36
2-180
2-180
2-180
2-36
2-36
2-36
2-36
2-36
2-36
11-25
11-25

AD532L
AD580J
AD580K
AD580M
AD580S

MC1595L
MC1403U
MC1403P1
MC1403AP1
MC1503U

11-25
5-8
5-8
5-8
5-8

AD580T
AD589J
AD589K
AD589L
AD589M

MC1503AU
LM385Z-1.2
LM385Z-1.2
LM385Z-1.2
LM385BZ-1.2

AD741CJ
AD741J
AD741K
AD741L
AD741S

MC1741CG
MC1741G
MC1741G
MC1741G
MC1741SG

MC6108

2-161
2-161
2-161
2-161
2-166

LM101AH
LM101AH
LM101AH
LM101AH
LM101AH
LM101AH
LM111J

MC1741G
MC1741G

7-13
7-13
7-142
7-142
7-48
7-48
2-36
2-36
2-36
2-36
2-36
2-36
2-45
2-161
2-161

LM201AN

2-161
2-45
2-36
2-36
2-36

LM201AH
LM201AN
LM201AH
MC1741C
MC1741C

2-36
2-36
2-36
2-161
2-161

MC1741C
MC1741C

2-161
2-161
2-45
2-36
2-36

MC1741G
LM111H

LM201AH
LM201AH

LM211H
LM301AH

AM301A

LM301AH

AM301AD
AM301D
AM311D
AM311H
AM592DC

LM311J-8
LM311H
NE592F

2-36
2-36
2-45
2-45
2-303

AM592DM
AM592HC
AM592HM
AM592PC
AM723DC

SE592F
NE592K
SE592K
NE592N
MC1723CL

2-303
2-303
2-303
2-303
3-111

AM723DM
AM723HC
AM723HM
AM723PC

MC1723L
MC1723CG
MC1723G
MC1723CP

3-111
3-111
3-111
3-111
2-118

LM301AJ
LM301AJ

MC1556G

AM725HM
AM733DC
AM733DM
AM733HC
AM733HM

MC1733CL
MC1733L
MC1733CG
MC1733G

AM741DC
AM741DM
AM741HC
AM741HM
AM747DC

MC1741CG
MC1741G
MC1747CL

AM74lDM
AM747HC
AM747HM
AM748DC
AM748DM

MC1747L
MC1747CG
MC1747G

AM748HC
AM748HM
AM7936PC
AN5150
AN5151

MC1748CG
MC1748G

MOTOROLA LINEAR/INTERFACE DEVICES
1-8

MC3486P

MC26S10L

AM725A31T

5-8
5-4
5-4
5-4
5-4

MC3486L

MC3486L
MC3486P

AM301

7-171
7-171
7-171
6-5
6-5

LM301AH
LM301AH
LM101AH
MC1595L
MC1595L

MC1408L7
MC1508L8

AM201AF
AM201D
AM201F
AM207
AM20lD

7-171
7-171
7-171
7-171
7-171

AD518J
AD518K
AD518S
AD530
AD531

MC1403AU

MC1556G

2-118
2-153
2-153
2-153
2-153

MC1741CU
MC1741U

2-161
2-161
2-161
2-161
2-172

MC1748CU
MC1748U

2-172
2-172
2-172
2-176
2-176

MC34129P
MC13002P
MC13001P

2-176
2-176
3-258
9-64
9-64

CROSS REFERENCE Part Number

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

CA081AE
CA081AS
CA081BE
CA081CS
CA081E

TL081ACP
TL081ACJG
TL081BCP
TL081CJG
TL081CP

2-335
2-335
2-335
2-335
2-335

CA081S
CA082AE
CA082AS
CA082BE
CA082CS

TL081MJG
TL082ACP
TL082ACJG
TL082BCP
TL082CJG

2-335
2-335
2-335
2-335
2-335

CA082E
CA082S
CA084AE
CA084E
CA084S

TL082CP
TL082MJG
TL084ACN
TL084CN
TL082MJ

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

CA3020
CA3020A
CA3021
CA3022
CA3023

MC1554G
MC1454G
MC1590G
MC1590G
MC1590G

2-114
2-114
2-141
2-141
2-141

CA3026
CA3029
CA3029A
CA3030
CA3030A

CA3054
MC1709Pl
MC1709Pl
MC1709Pl
MC1709Pl

9-7
2-149
2-149
2-149
2-149

2-335
2-335
2-335
2-335
2-335

CA3031
CA3032
CA3037
CA3037A
CA3038

MC1733
MC1733
MC1709U
MC1709U
MC1709U

2-153
2-153
2-149
2-149
2-149

CA3038A
CA3044
CA3044Vl
CA3045
CA3045F

MC1709U
MC13010P
MC13010P
MC3346P
MC3346P

2-149
9-73
9-73
9-40
9-40

CA101AT
CA10n
CA107T
CA108AS
CA108AT

LM101AH
LM108AJ-8
LM108AH

2-36
2-36
2-161
2-40
2-40

CA108S
CA108T
CA139AG
CA139G
CA201AT

LM108J-8
LM108H
LM139AJ
LM139J
LM201AH

2-40
2-40
2-57
2-57
2-36

LM101AH
MC1741CG

Part Number

CA3046
CA3048
CA3052
CA3054
CA3056

MC3346P
MC3301P
MC3301P
CA3054
MC1741CG

9-40
2-189
2-189
9-7
2-161

MC13010P

2-161
4-8
4-8
9-73

MC1590G
MCl776G
MCl776G
MCl776CG
MCl776CG

2-141
2-180
2-180
2-180
2-180

CA3059
MCl723G
MC1723G
MC1723L
MC1723G

4-8
3-111
3-111
3-111
3-111

CA3085B
CA3085BF
CA3085BS
CA3085F
CA3085S

MC1723G
MC1723L
MC1723G
MC1723L
MC1723G

3-111
3-111
3-111
3-111
3-111

3-111
2-161
2-161
2-161
2-161

CA3086F
CA3091D
CA3121E
CA3136A
CA3139

MC3346P
MC1594L
TDA3333
MC3346P
MC13010P

9-40
11-11
9-183
9-40
9-73

MC1747CL
MC1747CL
MC1747CG
MC1747L
MC1747L

2-172
2-172
2-172
2-172
2-172

CA3145E
CA3146
CA3151E
CA3201E
CA3210E

TDA3333
MC3346P
TDA3333
TDA3301
MC13001P

9-183
9-40
9-183
9-161
9-64

CA747T
CA748CS
CA748CT
CA748S
CA748T

MC1747G
MC1748CPl
MC1748CG
MC1748U
MC1748G

2-172
2-176
2-176
2-176
2-176

CA3217E
CA3221E
CA3223E
CA3302E
CA3401E

TDA3301
TDA3333
MC13002P

9-161
9-183
9-64
2-57
2-189

CA1391E
CA1458S
CA1458T
CA1558S
CA1558T

MC1391P
MC1458CPl
MC1458G

9-35
2-124
2-124
2-124
2-124

CA6078AS
CA6078AT
CA6741S
CA8741T
CA7607E

MCl776G
MCl776G
MCl776G
MCl776G
MC13010P

2-180
2-180
2-180
2-180
9-73

MC13010P
MC1556G
MC1556P

9-73
2-118
2-118
7-112

MC8T26AL
MC8T28L

7-16
7-21
6-5
6-5
6-5

LM208AH
LM208J-8
LM208H

2-36
2-161
2-40
2-40
2-40

CA3056A
CA3058
CA3059
CA3064

CA239AE
CA239AG
CA239E
CA239G
CA301AT

LM239AN
LM239AJ
LM239N
LM239J
LM301AH

2-57
2-57
2-57
2-57
2-36

CA3076
CA3078AS
CA3078AT
CA3078S
CA3078T

CA308AS
CA308AT
CA308S
CA339AE
CA339AG

LM308N
LM308AH
LM308H
LM339AN
LM339AJ

2-40
2-40
2-40
2-57
2-57

CA3079
CA3085
CA3085A
CA3085AF
CA3085AS

CA339E
CA339G
CA723CE
CA723CT
CA723E

LM339N
LM339J
MC1723CP
MC1723CG
MC1723L

2-57
2-57
3-111
3-111
3-111

CA723T
CA741CS
CA741CT
CA741S
CA741T

MC1723G
MC1741CPl
MC1741CG
MC1741U
MC1741G

CA747CE
CA747CF
CA747CT
CA747E
CA747F

CA20n
CA207T
CA208AT
CA208S
CA208T

LM201AH
MC1741C

MC1558U
MC1558G

CA3008
CA3008A
CA301 0
CA3010A
CA3011

MC1709U
MC1709U
MC1709G
MC1709G
MC1590G

2-149
2-149
2-149
2-149
2-141

CA7611E
CMP-01CJ
CMP-01CP
CS3471

CA3012
CA3015
CA3015A
CA3016
.CA3016A

MC1590G
MC1709G
MC1709G
MC1709U
MC1709U

2-141
2-149
2-149
2-149
2-149

D8216
D8226
DAC-08AQ
DAC-08CN
DAC-08CP

MC1741G
CA3059
CA3059

CA3079

MC3302P
MC3401P

MC3471P

DAC-OBAQ
DAC-08CP
DAC-08CP

MOTOROLA LINEAR/INTERFACE DEVICES
1-9

II

CROSS REFERENCE -

CONTINUED

Motorola
Part Number

DAC-08CQ
DAC-OBEN
DAC-08EP
DAC-08EQ
DAC-08HN

Direct
Replacement

Motorola
Similar
Replacement

DAC-08CQ
DAC-08EP
DAC-08EP
DAC-08EQ
DAC-OSHP

Page

6-5
6-5
6-5
6-5
6-5

DS75108J
DS7510SN
DS75110J
DS75110N
DS75207J

DS7520SJ
DS7520SN
ICBSOOOC
ICBS001C

DAC-08HP
DAC-08HQ
DAC-08Q
DAC0800LCJ
DAC0800LCN

DAC-08HP
DAC-OSHQ
DAC-08Q
DAC-08EQ
DAC-08EP

6-5
6-5
6-5
6-5
6-5

DAC0800LD
DAC0801LCJ
DAC0801LCN
DAC0802LCJ
DAC0802LCN

DAC-08Q
DAC-08CQ
DAC-OSCP
DAC-08HQ
DAC-08HP

6-5
6-5
6-5
6-5
6-5

DAC0802LD
DAC0806LCJ
DAC0806LCN
DAC0807LCJ
DAC0807LCN

DAC-08AQ
MC1408L6
MC1408P6
MC1408L7
MC1408P7

6-5
6-15
6-15
6-15
6-15

DAC0808LCJ
DAC0808LCN
DACOBDBLD
DM7822J
DM7S37J

MC140SLS
MC140SPS

6-15
6-15
6-15
7-43
7-70

MC1508LB

MC1489AL
MC3437L

DMS822J
DMSS22N
DMSS37N
DS26LS31J
DS26LS31N

MC3437P
AM26LS31D
AM26LS31P

7-43
7-43
7-70
7-10
7-10

DS26LS32J
DS26LS32N
DS26S10CJ
DS26S10CN
DS1488J

AM26LS32D
AM26LS32P
MC26S10L
MC26S10P
MC1488L

7-13
7-13
7-48
7-48
7-37

DS1488N
DS1489AJ
DS1489AN

MC1488P
MC1489AL
MC1489AP

OS1489J

MC1489L

DS1489N

MC1489P

7-37
7-43
7-43
7-43
7-43

DS3486J
DS3486N
DS3487J
DS3487N
DS3612H

MC3486L
MC3486P
MC3487L
MC3487P

MC14S9AL
MC14S9AP

MC1472U
MC1472P1

DS3612N

DS3632H
DS3632J
DS3632N
DS3650J

MC1472U
MC1472U
MC1472P1
MC3450L

DS3650N
DS3651J
DS3651N
DS3652J
DS3652N

MC3450P
MC3430L
MC3430P
MC3452L
MC3452P

DS3653J
DS3653N
DS7837J
DS7837W
DS8833J

MC3432L
MC3432P

7-34
7-34
7-34
7-34
7-72

MC8T28P
MC8T26AL

DS8634N

MC8T26AP

DS8835J
DS8835N

MC8T26AL
MC8T26AP

7-21
7-16
7-16
7-16
7-16

MC8T28L
MC8T28P
MC34051

7-51
7-51
7-21
7-21
7-164

DS8923.A
DS55107W
DS55110J
DS75107J
DS75107N

MC3437L
MC3437P

MC34050
MC75107L
MC75S11OL
MC75107L
MC75107P

MC75107L
MC75107P
MC7510SL
MC75108P
LM111J
LM111J

7-171
7-171
7-171
2-45
2-45

ICBS741C
ICH8500ATV
ICHS500TV
ICL 101ALNDP
ICL101ALNFB

MC1741CG
MC1776CG
MC1776CG
LM101AH
LM101AH

2-161
2-180
2-180
2-36
2-36

ICL 101ALNTY
ICL301ALNPA
ICL301ALNTY
ICL741CLNPA
ICL741CLNTY

LM101AH
LM301AH
LM301AH
MC1741CP1
MC1741CP1

2-36
2-36
2-36
2-161
2-161

ICLSOO1CTZ
ICLSOO7CTA
ICL8007MTA
ICLSOOSCPA

LM111J
LM111J
MC1709CG
MC1709CG
LM301AN

2-45
2-45
2-149
2-149
2-36

ICLSOOSCTY
ICLS013A
ICLS013B
ICLS013C
ICLS017CTW

LM301AN
MC1594L
MC1594L
MC1594L
LM301AN

2-36
11-11
11-11
11-11
2-36

ICLS017MTW
ICLS021C
ICLS021M
ICLS022C
ICLS022M

LM301AN
MC1776G
MC1776G
MC1776G
MC1776G

2-36
2-1S0
2-180
2-180
2-180

ICLS043CDE
ICLS043CPE
ICLS043MDE
ICL804SCDE
ICLS04SCPE

MC1776G
MC1776G
MC1776G
MC1776G
MC1776G

2-1S0
2-180
2-180
2-180
2-180

ICL804SDPE
ICLS069CCZR
ICLS069DCZR
IP494ACJ
IP494ACN

MC1776G
LM3858Z-1.2
LM3S58Z-1.2
TL594CN
TL594CN

2-1S0
5-4
5-4
3-323
3-323

TL594MJ
SG1526AJ
SG1526J
SG1527AJ
SG2525AJ

3-323
3-286
3-2S6
3-279
3-279

IP3526J

SG2526J
SG2527AJ
SG3525AJ
SG3525AN
SG3526J

3-286
3-279
3-279
3-279
3-286

IP3526N
IP3527AJ
IP3527AN
IP33063N
IP34060AN

SG3526N
SG3527AJ
SG3527AN
MC33063P1
MC34060AP

3-286
3-279
3-279
3-227
3-197

IP34063N
IP35060AN
IP35063J
ITT652
ITT654

MC34063P1
MC35060AL
MC35063U

3-227
3-197
3-227
7-30
7-30

ITT656
ITT3064
ITT3710
L144AP

MC1413P
MC13010P

L201
L202
L203
L583
LF3478N

MC1411P
MC1412P
MC1413P

IP2526J
IP2527AJ
IP3525AJ
IP3525AN

2-213
2-213
7-51
7-51
7-21

7-164
7-171
7-176
7-171
7-171

MC1411P

MC1412P

MC1391P
LM324N

MC3484S2
LF3478N

MOTOROLA LINEAR/INTERFACE DEVICES
1-10

Page

7-171
7-171
7-176
7-176
7-171

IP494AJ
IP1525AJ
IP1526J
IP1527AJ
IP2525AJ

7-72

Motorola
Similar
Replacement

MC75108L
MC75108P
MC75S110L
MC75S110P

ICLBOO1MTZ

7-72
2-213
2-213
7-72

MC3437L
MC3437L
MC8T28L

MotorOla
Direct
Replacement

DS752Q7N

7-142
7-142
7-145
7-145
7-34

DS8833N
DS8834J

DS8837J
DS8837N
DS8839J
DS8839N
DSS922.A

Part Number

7-30
9-73
9-35
2-51
7-30
7-30
7-30
10-19
2-14

CROSS REFERENCE Part Number

CONTINUED

Motorola
Direct
Replacement

LF347N
LF351AH
LF351AN
LF351BH
LF351BN

LF347N

LF3S1H

MC34001G

LF351N
LF352D
LF353AH
LF353AN

LF351N
MC34002AG
MC34002AP

LF353BH
LF353BN
LF353H
LF353N

MC34002BG
MC34002BP
MC34002G
LF353N

LF355BH

LF355BH

LF355BJ
LF355H
LF355J
LF355JG
LF355L

LF355BJ
LF355H
LF355J

Motorola
Similar
Replacement

MC34004P
MC34001AG
MC34001AP
MC34001BG
MC34001BP

MC34001P
LF355J

MC34002P

LF355J
LF355H

LF356H
LF356J
LF356JG
LF356L
LF356N

LF356H
LF356J

LF356P
LF357BH
LF357BJ
LF357BN
LF357H
LF357J
LF357JG

LM101AJ-14
LM101AJG
LM101AL
LM101D

2-16
2-16
2-16
2-16
2-16

LF357BJ

LF357J
LF357J

LF357N
LF357P

LF357J
LF357J
LF411C
MC34001AG
LF412C
MC34002AG
MC34001AG
MC34001AP
MC1776CG

MCl776G
MC1436G
MC1536G
MC1536G
MCl776G

2-180
2-92
2-92
2-92
2-180

LH101H
LH201H
LH740ACH
LH2101AD
LH2101AF

MC1741G
MC1741G
LF355H
MC1537L
MC1537L

2-161
2-161
2-16
2-96
2-96

LH2201AD
LH2201AF
LH2301AD
LH2301AF
LMllCH

MC1537L
MC1537L
MC1437L
MC1437L
LM11CH

2-96
2-96
2-96
2-96
2-29

LMllCJ
LMllCJ-8
LMllCLH
LMllCLJ
LM11CLJ-8

LMllCJ
LMllCJ-8
LMllCLH
LMllCLJ
LMllCLJ-8

2-29
2-29
2-29
2-29
2-29

LMllCLN
LM11CLN-14
LMllCN
LM11CN-14

LM11CLN
LMllCLN-14
LM11CN
LMllCN-14
LMllH

2-29
2-29
2-29
2-29
2-29

LM101AJ

LM101AJ
LM101AJ

LM101AH
LM101AJ

LM107L

MC1741
MC1741

LM108AF
LM108AH
LM108AJ
LM108AJ-8
LM108H

LM108AF
LM108AH
LM108AJ
LM108AJ-8
LM108H

LM108J
LM108J-8
LM109H
LM109K
LM109LA

LM108J
LM108J-8
LM109H
LM109K
LM109K
LMll1H

LMll1J-8
LM111JG

LM111J-8

2-40
2-40
2-40
2-40
2-40
2-40
2-40
3-15
3-15
3-15

MC1556U
LMl17H
LM117K
LMl17LH

MC1741SG
MC7905CK
MC7912CK

LM120H-15

MC7915CK

LM120K-5.0
LM120K-12

MC7905CK
MC7912CK
MC7915CK
MC1556G
LM123AK
LM123K
LM124J
LM124J
LM124J
MC1568G
MC1568G
MC1568G

2-45
2-45
2-45
2-45
2-45
2-118
3-20
3-20
3-28
2-161
3-168
3-168
3-168
3-168
3-168
3-168
2-118
3-36
3-36
2-51
2-51
2-51
3-105
3-105
3-105

LM140AK-S.O

LM140AK-5.0

3-42
3-42
2-57
2-57
3-49

LM140AK-12
LM140AK-15
LM140K-5.0
LM140K-S.0
LM140K-12

LM140AK-12
LM140AK-15
LM140K-5.0
LM140K-S.0
LM140K-12

3-49
3-49
3-49
3-49
3-49

LM140K-15

LM140K-15

LM137H
LM137K
LM139AJ
LM139J

LM137H
LM137K
LM139AJ
LM139J

LM140LAH-6.0
LM140LAH-S.0
LM140LAH-12

MC7SL05ACG
MC7SL05ACG
MC7SLOSACG
MC7SL12ACG

3-49
3-145
3-145
3-145
3-145

LM140LAH-15
LM140LAH-50
LM140LAH-SO
LM143H
LM145K

MC7SL 15ACG
MC7SL05ACG
MC7SL05ACG
MC1536G
MC7905CK

3-145
3-145
3-145
2-92
3-168

LM140LAH-5.0

LM14SJ
LM149J
LM150K
LM15SAH
LM15SH

LM14SJ
MC4741L
LM150K
LM15SH
LM15SH

MOTOROLA LINEAR/INTERFACE DEVICES
1-11

2-36
2-36
2-36
2-36
2-36

LM108J-8

LM120H-5.0
LM120H-12

LM124AJ
LM124J
LM125H
LM126H
LM128H

2-29
2-29
2-36
2-36
2-36

2-36
2-36
2-36
2-161
2-161

LM111H
LMll1J
LMll1J-8

Page

LM101AJ

LM101AH

LM107H

LM120K-15
LM122H
LM123AK
LM123K
LM124AD

2-26
2-260
2-26
2-260
2-260
2-260
2-180
2-180
2-180
2-180
2-180

LM101AH

LM101AH

LM117H
LM117K
LM117LH
LM118H

2-16
2-16
2-16
2-16
2-16

MC1776CG
MC1776CG
MC1776G
MCl776G

LM101AH
LM101AH

LM101H
LM101J-14

LM111HH
LM111J

Motorola
Similar
Replacement

LMllJ
LMllJ-8

LM101F

2-260
2-260
2-260
2-14
2-16

LM112H

LF3S7H

LM11H

LM101AH

2-16
2-16
2-16
2-16
2-16

LF357H

LHOO04CHH
LHOO04H
LH042CH

LM101AJ

LMll1H

LF357BH
LF357BJ

i..HOOO4CH

2-260
2-14
2-16
2-260
2-260

Motorola
Direct
Replacement

LM101AO
LM101AF

2-16
2-16
2-16
2-16
2-16

LF356J

LHOOOAH

LMllJ
LMllJ-8

LF356J
LF356H
LF356J

LF357L

LF411C
LF411CH
LF412C
LF412CH
LG351AH
LG351AN
LHOOOACD
LHOOOACF
LHOOOACH
LHOOOAD
LHOOOAF

2-14
2-260
2-260
2-260
2-260

LF356J

LF355J
LF355J

LF356BH
LF356BJ

Part Number

2-16
2-16
2-16
2-16
2-16

LF355N
LF355P

LF356BH
LF356BJ
LF356BN

Page

2-61
2-227
3-65
2-61
2-61

..

..

CROSS REFERENCE Part Number

Motorola
Direct
Replacement

LM158J
LM158JG
LM158L
LM163J
LM171H

LM158J

LM193AH

LM193AH
LM193H

LM193H
LM193JG
LM193U
LM201AH

CONTINUED
Motorola
Similar
Replacement

LM158J
LM158H
MC3450L
MC1590G

LM193H
LM193H

LM201AH

LM201AJ
LM201AJG
LM?01AJ-14
LM201AL
LM201AN

LM201AJ

LM201AND
LM201AP
LM201H
LM201J
LM201J-14

LM201AND

LM201AJ
LM201AJ
LM201AH
LM201AN

LM201AN
LM201AH

LM201AJ
LM201AJ

Page

Part Number

2-61
2-61
2-61
7-72
2-141

LM240LAZ-18
LM240LAZ-24
LM243H
LM245K
LM248J

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MC78L 18ACP
MC78L24ACP
MC1536G
MC7905CK

3-145
3-145
2-92
3-168
2-61

MC4741P
MC4741L

2-236
2-236
3-65
2-67
2-67

LM248J

2-73
2-73
2-73
2-73
2-36

LM249J
LM250K
LM258AH
LM258M

2-36
2-36
2-36
2-36
2-36

LM258H
LM258J
LM258N
LM271H
LM285Z-1.2

2-36
2-36
2-36
2-36
2-36

LM285Z-2.5
LM293AH
LM293H
LM293P
LM293U

LM285Z-2.5
LM293AH
LM293H

LM301AM
LM301AH
LM301AJ
LM301AJD
LM301AJDS

LM301AD
LM3Q1AH
LM301AJ
LM301AJD
LM301AJDS

LM249N

Page

LM250K
LM258H
LM258D
LM258H
LM258J
LM258N
MC1590G
LM285Z-1.2

LM293H
LM293H

2-67
2-67
2-67
2-141
2-67
2-67
2-73
2-73
2-73
2-73

LM208AJ
LM20BAJ-B
LM208AN

LM208AJ-8
LM208AN

2-161
2-41
2-41
2-41
2-41

LM208H
LM20BJ
LM208J-8
LM209H
LM209K

LM20BH
LM208J
LM208J-8
LM209H
LM209K

2-41
2-41
2-41
3-15
3-15

LM301AJG
LM301AJS
LM301AL
LM301AN
LM301AND

LM211M
LM211H
LM211J-8
LM211JG
LM212H

LM211D
LM211H
LM211J-8

2-45
2-45
2-45
2-45
2-118

LM301ANDS
LM301ANS
LM301AP
LM30lN
LM307P

LM301ANDS
LM301ANS

LM217H
LM217K

LM217H
LM217K

3-20
3-20
3-20
3-20
3-28

LM308AH
LM308AH-1
LM308AH-2
LM308AJ
LM308AJ-8

LM308AH

LM308AJ
LM308AJ-8

2-40
2-40
2-40
2-40
2-40

LM308AJ-8D
LM308AJ-8DS
LM308AJ-8S
LM308AN
LM308AND

LM308AJ-8D
LM308AJ-8DS
LM308AJ-BS
LM308AN
LM308AND

2-40
2-40
2-40
2-40
2-40

LM308ANDS

LM308ANS
LM308M
LM308H
LM308J

LM3D8ANDS
LM308ANS
LM308D
LM308H
LM308J

2-40
2-40
2-40
2-40
2-40

LM308J-8
LM308J-8D
LM308J-8DS
LM308J-8S
LM308N

LM308J-8
LM308J-8D
LM308J-8DS
LM308J-8S
LM308N

2-40
2-40
2-40
2-40
2-40

LM308ND
LM308NDS
LM308NS
LM309H
LM309K

LM308ND
LM308NDS
LM308NS
LM309H
LM309K

2-40
2-40
2-40
3-15
3-15

LM309KC
LM311M
LM311H
LM311J-8
LM311J-8D

LM31,D
LM311H
LM311J-8
LM311J-8D

LM207H
LM20BAH

MC1741C
LM20BAH

LM208AJ-8

LM211J-8
MC1456U

LM217K
LM217H

LM217KC
LM217KD

LM217LH

LM217LH

LM218J-8
LM21BH
LM220H-5.0
LM220H-12
LM220H-15

MC1741SU
MC1741SG
MC7905CK
MC7912CK
MC7915CK

2-161
2-161
3-168
3-168
3-168

LM220K-S.O
LM220K-12
LM220K-15
LM222H
LM223AK

MC7905CK
MC7912CK
MC7915CK
MC1556G

3-168
3-168
3-168
2-118
3-36

LM223K
LM224AF
LM224AJ
LM224M
LM224J

LM223AK
LM223K
LM224J
LM224J
LM224D
LM224J

3-36
2-51
2-51
2-51
2-51

LM224M
LM225H
LM226H
LM228H
LM237H

LM224N

LM237H

2-51
3-105
3-105
3-105
3-42

LM237K
LM239AJ
LM239AN
LM239M
LM239J

LM237K
LM239AJ
LM239AN
LM239D
LM239J

3-42
2-57
2-57
2-57
2-57

LM239N
LM204LAH-5.0
LM204LAH-8.0
LM240LAH-12
LM240LAH-15

LM239N

LM240LAZ-5.0
LM240LAZ-6.0
LM240LAZ-8.0
LM240LAZ-12
LM240LAZ-15

MC1568G
MC1568G
MC1568G

MC78L05ACG
MC78L08ACG
MC78L12ACG
MC78L15ACG

2-57
3-145
3-145
3-145
3-145

MC78L05ACP
MC78L05ACP
MC78L08ACP
MC78L12ACP
MC78L15ACP

3-145
3-145
3-145
3-145
3-145

LM301AH

2-36
2-36
2-36
2-36
2-36

LM301AN

2-36
2-36
2-36
2-78
2-78

LM301AJ
LM301AJS
LM301AN
LM301ANO

LM307N
LM30lN
LM308AH
LM308AH

LM309K

LM311J-8DS
LM311J-8S
LM311JG
LM311N
LM311N-14

LM311J-8DS
LM311J-8S

LM311ND
LM311NDS
LM311NS
LM311P
LM312H

LM311ND
LM311NDS
LM311NS

MOTOROLA LINEAR/INTERFACE DEVICES
1-12

2-36
2-36
2-36
2-36
2-36

3-15
2-45
2-45
2-45
2-45

LM311J-8
LM311J
LM311J

2-45
2-45
2-45
2-45
2-45

LM311N
MC1456G

2-45
2-45
2-45
2-45
2-118

CROSS REFERENCE Part Number

lM317H
lM317K
lM317KC
LM317KD
LM317LH
LM317LZ
LM317MP
lM317MT
LM317P
LM317T

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

lM317H
lM317K
lM317T
LM317T
LM317LH
LM317LZ

LM317MT
LM317MT

LM317T
LM317T

Page

Part Number

Motorola
Direct
Replacement

3-20
3-20
3-20
3-20
3-28

LM339NDS
LM339NS
LM339P
LM340AK-5.0
LM340AK-12

LM339NDS
LM339NS

3-28
3-20
3-20
3-20
3-20

LM340AK-15

LM340AK-15

LM340AT-5.0
LM340AT-12
LM340AT-15
LM340K-5.0

LM340AT -5.0
LM340AT-12
lM340AT-15
LM340K-5.0

Motorola
Similar
Replacement

LM339N
LM340AK-5.0
LM340AK-12

MC7805CK

Page
2-57
2-57
2-57
3-49
3-49
3-49
3-49
3-49
3-49
3-49

LM320H-12

MC,7912CK

2-161
2-161
2-161
3-168
3-168

LM320H-15
LM320K-5.0
LM320K-12
LM320K-15
LM320lZ-5.0

MC7915CK
MC7905CK
MC7912CK
MC7915CK
MC79L05ACP

3-168
3-168
3-168
3-168
3-177

LM340KC-6.0
LM340KC-8.0
LM340KC-12
LM340KC-15
LM340KC-18

LM320LZ-12
LM320lZ-15
LM320MP-5.0
LM320MP-5.2
LM320MP-6.0

MC79L12ACP

LM340KC-24

MC7905CT
MC7905.2CT
MC7906CT

3-177
3-177
3-168
3-168
3-168

LM340LAH-8.0
LM340LAH-12
LM340LAH-15

MC7824CK
MC78L05ACG
MC78L08ACG
MC78L12ACG
MC78L15ACG

3-132
3-145
3-145
3-145
3-145

LM320MP-8.0
LM320MP-12
LM320MP-15
LM320MP-18
LM320MP-24

MC7908CT
MC7912CT
MC7915CT
MC7918CT
MC7924CT

3-168
3-168
3-168
3-168
3-168

LM340LAZ-5.0
LM340lAZ-6.0
LM340LAZ-8.0
LM340LAZ-12
LM340LAZ-15

MC78L05ACP
MC78L05ACP
MC78L08ACP
MC78L12ACP
MC78L15ACP

3-145
3-145
3-145
3-145
3-145

LM320T-5.0
lM320T-5.2
LM320T-12
LM320T-15
LM322H

MC7905CT
MC7905.2CT
MC7912CT
MC7915CT
MC1455G

3-168
3-168
3-168
3-168
11-4

LM340LAZ-18
LM340LAZ-24
LM340T-5.0
LM340T-6.0
LM340T-8.0

MC78L18ACP
MC78L24ACP
MC7805CT
MC7806CT
MC7808CT

3-145
3-145
3-49
3-49
3-49

MC1455P1

11-4
3-36
3-36
3-36
3-36

LM340T-12
LM340T-15
LM340T-18
LM340T-24
LM341P-5.0

MC7812CT
MC7815CT
MC7818CT
MC7824CT
MC78M05CT

3-49
3-49
3-49
3-49
3-151

LM324J
LM324N

2-51
2-51
2-51
2-51
2-51

LM341P-6.0
LM341P-8.0
LM341P-12
LM341P-15
LM341P-18

MC78M06CT
MC78M08CT
MC78M12CT
MC78M15CT
MC78M18CT

3-151
3-151
3-151
3-151
3-151

MC3403P

2-51
2-51
2-51
2-51
2-51

LM341P-24
LM342P-5.0
LM342P-6.0
LM342P-8.0
LM342P-12

MC78M24CT
MC78M05CT
MC78MOBCT
MC78M08CT
MC78M12CT

3-151
3-151
3-151
3-151
3-151

MC1468l
MC1468G
MC1468L

LM342P-15
LM342P-18
LM342P-24
LM343H
LM345K

MC78M15CT
MC78M18CT
MC78M24CT
MC1436G
MC7905CK

3-151
3-151
3-151
2-92
3-168

LM348M
LM348J
LM348N
LM349J
LM349N

LM348D
LM348J
LM348N
MC4741CL
MC4741CL

2-61
2-61
2-61
2-236
2-236

MC1741SCU
MC1741SCG
MC1741SCP1
MC7905CK

LM318D
LM318H
LM318N
LM320H-5.0

MC79L15ACP

LM322N
LM323AK
LM323AT
LM323K
LM323T

LM323AK
LM323AT
LM323K
LM323T

LM324AJ
LM324AN
LM324M
LM324J
LM324JD

LM324AN
LM324D
LM324J
LM324JD

LM324JDS
LM324JS
LM324N
LM324ND
LM324NDS

LM324JDS
LM324JS
LM324N
LM324ND
LM324NDS

LM324NS
LM325AN
LM325H
LM325N

LM324NS

LM340K-6.0
LM340K-8.0
LM340K-12
LM340K-15
LM340KC-5.0

LM340K-8.0
LM340K-12
LM340K-15 "
LM340T-5.0

LM340LAH-S.O

LM340T-5.0
LM340T-6.0
LM340T-8.0
LM340T-12
LM340T-15
LM340T-18
LM340T-24

LM326H

MC1468G

LM326H
LM326N
lM328AN
LM328H
LM328N

MC1468G
MC1468l
MC1468L
MC1468G
MC1468L

3-105
3-105
3-105
3-105
3-105

LM337MT
LM337T

3-42
3-42
3-42
3-42
3-42

LM350K
LM351T
LM358AH
LM358AN
LM358M

LM350K
lM350T

LM337MT

lM339AM
LM339AJ
LM339AN
LM339M
LM339J

LM339AD
LM339AJ
LM339AN
LM339D
lM339J

2-57
2-57
2-57
2-57
2-57

LM358H
LM358J
LM358JD
LM358JDS
LM358JG

lM358H
LM358J
LM358JD
LM358JDS

LM339JD
LM339JDS
lM339JS
LM339N
LM339ND

LM339JD
LM339JDS
LM339JS
LM339N
LM339ND

2-57
2-57
2-57
2-57
2-57

LM358JS
LM358N
LM358ND
LM358NDS
LM358NS

LM358JS
LM358N
lM358ND
LM356NDS
LM358NS

LM337H
LM337K

MC7806CK
MC7808CK

MC7818CK

3-132
3-132
3-49
3-49
3-132

LM358H
LM358N
LM358D

LM358J

MOTOROLA LlNEARIINTERFACE DEVICES
1-13

3-132
3-49
3-49
3-49
3-49

LM340T-12
lM340T-15

2-51
3-105
3-105
3-105
3-105

LM337H
LM337K
LM337MP
LM337MT
LM337T

MC7806CK
MC7808CK

3-65
3-65
2-61
2-61
2-61
2-61
2-61
2-61
2-61
2-61
2-61
2-61
2-61
2-61
2-61

II

CROSS REFERENCE Pari Number

CONTINUED

Motorola
Direct
Replacement

LM363AJ
LM363AN
LM363J
LM363N
LM371H

Motorola
Similar
Replacement

MC3450L
MC3450P
MC3450L
MC3450P
MC1590G

Page

Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

7-72
7-72
7-72
7-72
2-141

LM1408N8
LM1414J
LM1414N
LM1458H
LM1458J

MC1414L
MC1414P
MC1458G
MC1458U

6-15
2-88
2-88
2-124
2-124

5-4
5-4
5-4
5-4
5-4

LM1458N
LM1488J
LM1488N
LM1489AJ
LM1489AN

MC1458P1
MC14aaL
MC1488P
MC1489AL
MC1489AP

2-124
7-37
7-37
7-43
7-43

5-4

MC1408P

LM385BZ-1.2
LM385M-1.2
LM385Z-1.2
LM385BZ-2.5
LM385M-2.5

LM3858Z-1.2
LM385D-l.2
LM385Z-1.2
LM385BZ-2.5
LM385D-2.5

LM385Z-2.5
LM386N
LM393AH
LM393AN
LM393M

LM385Z-2.5
LM393AH
LM393AN
LM393D

2-73
2-73
2-73

LM1489J
LM1489N
LM1496H
LM1496J
LM1496N

MC1489L
MC1489P
MC1496G
MC1496L
MC149SP

7-43
7-43
8-13
8-13
8-13

LM393H
LM393J
LM393JG
LM393N
LM393ND

LM393H
LM393J
LM393N
LM393ND

2-73
2-73
2-73
2-73
2-73

LM1514J
LM1558H
LM1558J
LM1596H
LM1596J

MC1514L
MC1558G
MC1558U
MC1596G
MC1596L

2-88
2-124
2-124
8-13
8-13

LM393NDS
LM393NS
LM555CH
LM555CN
LM555H

LM393NDS
LM393NS
MC1455G
MC1455Pl
MC1455G

2-73
2-73
11-4
11-4
11-4

LM1822
LM1849A

MC13010P
MC3484S2

LM1889

MC1374P

LM1900D
LM1981

MC3301P
MC13020P

LM556CD
LM556CJ
LM556CN
LM556L
LM703LN
LM709AH
LM709CN

MC3456L
MC3456L
MC3456P
MC3456L

LM2900N
LM2901 M
LM2901N
LM2901ND
LM2901NDS

LM2900N
LM290lD
LM2901N
LM2901ND
LM2901NDS

MC1709CG

11-40
11-40
11-40
11-40
9-15
2-149
2-149

LM709AN-8
LM709H
LM723CD
LM723CH
LM723CJ

MC1709CPl
MC1709G
MC1723CJ
MC1723CG
MC1723CL

2-149
2-149
3-111
3-111
3-111

LM2901NS
LM2902M
LM2902J
LM2902N
LM2903

LM2901NS
LM2902D
LM2902J
LM2902N
LM2903N

2-57
2-51
2-51
2-51
2-73

LM723CN
LM723H
LM723J
LM733CD
LM733CH

MC1723CP
MC1723G
MC1723L
MC1733CL
MC1733CG

3-111
3-111
3-111
2-153
2-153

LM2903M
LM2903JG
LM2903N

LM2903D
LM2903JG
LM2903N

LM2903P

LM2903N

2-73
2-73
2-73
2-73
2-73

LM733CJ
LM733CN
LM733H
LM733J
LM741AH

MC1733CL
MC1733CP
MC1733G
MC1733L
MC1741G

2-153
2-153
2-153
2-153
2-161

LM741CD
LM741CH
LM741CJ-14
LM741CN
LM741EH

LM741CJ
LM741CH
LM741CJ
LM741CN
MC1741CG

2-161
2-161
2-161
2-161
2-161

LM741EJ
LM741EN
LM741H
LM747CD

LM747CH

MC34119P

LM393N

MC1350P
MC1709AG

MC1741CU
MC1741CPl
LM741H
lM747CJ
LM747CH

-

LM2903U

LM2903U

LM2904M
LM2904H
LM2904J
LM2904N
LM2905N

LM2904D
LM2904H
LM2904J
LM2904N

LM2931AT-5.0
LM2931AZ-5.0
LM2931CM
LM2931CT
LM2931T-5.0

LM2931AT-5.0
LM2931AZ-5.0
LM2931CD
LM2931CT
LM2931T-5.0

LM2931Z-5.0
LM3026
LM3045
LM3046N

LM2931Z-5.0

2-161
2-161
2-161

MC3346P

2-172

LM3054

CA3054

LM747CJ
LM747CN
LM747H
LM747J
MC1748CG

2-172
2-172
2-172
2-172
2-176

LM748CJ
LM748CN
LM748H
LM748J
LM833D

MC1748CU
MC1748CPl
MC1748G
MC1748U
LM833D

2-176
2-176
2-176
2-176
2-82

LM1408J6
LM1408J7
LM1408J8
LM1408N6
LM1408N7

MC1455Pl

2-189
2-57
2-57
2-57
2-57

2-67
2-67
2-67
2-67
11-4
3-88
3-88
3-88
3-88
3-88

CA3054
MC3346P

3-88
9-7
9-40
9-40
9-7

2-172

LM747CJ
LM747CN
LM747H
LM747J
LM748CH

LM833N
LM833P
LM837N
LM1035
lM1391N

MC3301P

9-73
10-19
9-19
2-189
9-84

MC33078P
LM833P
MC33079P
TCA5550
MC1391P

MC1408L6
MC1408L7
MC1408L8
MC1408P6
MC1408P7

LM3064N
LM3089
LM3146
LM3146A
LM3189
LM3301N
LM3302
LM3302J
LM3302N
LM3401N
LM3900N
LM3905
LM3905N
LM4250CH

2-241
2-82
2-241
9-149
9-35
6-15
6-15
6-15
6-15
6-15

LM4250CN
LM4250H
LM4500A
LM7805CK
LM7805CT

9-73
8-29
9-40
9-40

MC3356P

8-29
2-189
2-57
2-57
2-57

MC3301P
MC3302P

MC3302L
MC3302P
MC3401P
LM3900N

MC3401P
MC1455Pl
MC1455Pl
MCl776CG
MCl776CPl
MCl776G

TCA4500A
MC7805CK
MC7805CT

MOTOROLA LINEAR/INTERFACE DEVICES
1-14

MC13010P
MC3356P
MC3346P
MC3346P

2-189
2-189
11-4
11-4
2-180
2-180
2-180
9-142
3-132
3-132

CROSS REFERENCE Part Number

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

5-12
5-12
5-12
5-12
7-37

LM7805KC
LM7806KC
LM7808KC
LM7812CK
LM7812CT

MC7805CK
MC7B06CK
MC7B08CK
MC7B12CK
MC7B12CT

3-132
3-132
3-132
3-132
3-132

MP5531CP
MP5531DP
MP5532CP
MP5532DP
NBT15A

LM7812KC
LM7815CK
LM7B15CT
LM7815KC
LM7B18KC

MC7B12CK
MC7815CK
MC7B15CT
MC7815CK
MC7B1BCK

3-132
3-132
3-132
3-132
3-132

NBT15F
N8T16A
N8T26AB
N8T26AE
N8T26AJ

MC8T26AP
MC8T26AL
MC8T26AL

LM7824KC
LM7905CK
LM7905CT
LM7912CK
LM7912CT

MC7824CK
MC7905CK
MC7905CT
MC7912CK
MC7912CT

3-132
3-168
3-168
3-168
3-168

NBT26AN
N8T26B
NBT26J
N8T26N

MCBT26AP
MC8T26AP
MC8T26AL
MC8T26AP

NBT28B

MCBT28P

7-16
7-16
7-16
7-16
7-21

LM7915CK
LM7915CT
LM78L05ACH
LM7BL05ACZ
LM78L05CH

MC7915CK
MC7915CT
MC78L05ACG
MC7BL05ACP
MC78L05CG

3-168
3-168
3-145
3-145
3-145

N8T37A
N8T95B
N8T95F
N8T95N
N8T96B

MC3437P
MC8T95P
MC8T95L
MC8T95P
MCBT96P

7-51
7-26
7-26
7-26
7-26

LM7BL05CZ
LM78L08ACH
LM7BL08ACZ
LM7BL08CH
LM78L08CZ

MC78L05CP
MC7BLOBACG
MC78L08ACP
MC78L08CG
MC7BL08CP

3-145
3-145
3-145
3-145
3-145

N8T96F
N8T96N
N8T97B
N8T97F
N8T97N

MC8T96L
MC8T96P
MC8T97P
MC8T97L
MC8T97P

7-26
7-26
7-26
7-26
7-26

LM78L12ACH
LM78L12ACZ
LM78L12CH
LM78L 12CZ
LM78L15ACH

MC78L12ACG
MC78L12ACP
MC78L12CG
MC7BL12CP
MC78L15ACG

3-145
3-145
3-145
3-145
3-145

NBT98B
N8T98F
N8T98N

MC8T98P
MC8T98L
MC8T98P

7-26
7-26
7-26

LM7BL15ACZ
LM7BL15CH
LM78L15CZ
LM7BL18ACZ
LM78L18CZ

MC7BL15ACP
MC78L15CG
MC78L15CP
MC78L18ACP
MC78L18CP

3-145
3-145
3-145
3-145
3-145

N5556T
N5556V
N5558F
N5558T
N5558V

MC1456G
MC1456P1
MC1458U
MC1458G
MC145BP1

2-118
2-118
2-124
2-124
2-124

LM7BL24ACZ
LM78L24CZ
LM7BM05CP
LM78M12CP
LM7BM15CP

MC78L24ACP
MC78L24CP

N5595A
N5595F
N5596A
N5596K
N5709A

MC1495L
MC1495L
MC1496L
MC1496G

MC78M05CT
MC78M12CT
MC78M15CT

3-145
3-145
3-151
3-151
3-151

11-25
11-25
8-13
8-13
2-149

LM79L05ACZ
LM79L 12ACZ
LM79L15ACZ
LM79M05CP
LM79M12CP

MC79L05ACP
MC79L12ACP
MC79L15ACP
MC79M05CT
MC79M12CT

3-177
3-177
3-177
3-182
3-182

LM79M15CP

LM55109J
LM55110J
LM75107AN
LM75108AJ
LM75108AN
LM75110J
LM75110N
LM75207L
LM75207N
LM75208J
LM7520BN
MB3759
MC1458JG
MC1458L
MC145BP
MC1489N
MC1489N3

MC1545J
MC3446J

MC79M15CT

MC75S110L
MC75SHOL
MC75107P
MC75108L

MC75107L

7-171
7-176
7-176
7-171

MC75107P

7-171

MC7510BL
MC75108P

7-171
7-171
3-312
2-124
2-124

TL494CN
MC1458U
MC1458G
MC145BPl
MC14B9P
MC14B9PDS
MC1545L
MC3446AP
MC3446AP
MC3470P
MC3481L
MC34B1P
MC3485L

MC34B5N
MC34B6J
MC3486N
MC34B7J
MC3487N

MC3485P

MC3486L
MC3486P
MC3487L
MC3487P

3-182
7-176
7-176
7-171

MC3470AP

MC1723CP
MC1723CG
MC1733CG
MC1741CPl

2-149
2-149
2-149
3-111
3-111
2-153
2-161
2-161
2-161
2-172

MC1733CL
MC1733CG

NE531G
NE531T
NE531V
NE533G
NE533T

MC1439G
MC1439G
MC1439P
MCl776CG
MC1776CG

2-100
2-100
2-100
2-180
2-180

NE533V
NE537G
NE537T
NE540L
NE550A

MC1776CG
MC1456G
MC1456G

2-180
2-118
2-118
2-114
3-111

MC1747CL
MC1747CG
MC1748CG

MC1554G

MC1723CP
MC1723CG
MC1455U
MC1455G
MC1455P1
MC1455G
MC1455Pl
MC3456P
MC3456L
NE592A
NE592K

MOTOROLA LINEAR/INTERFACE DEVICES

1-15

7-37
7-43
7-16
7-16
7-16

2-172
2-172
2-176
2-153
2-153

NE555V
NE556A
NE5561
NE592A
NE592K
NE5561FE
NE5561N
OP-01C

7-137
7-142
7-142
7-145
7-145

MC1709CG
MC1709CP1

MC1741CG
MC1741CP1
MC1747CL

NE550L
NE555JG
NE555L
NE555N
NE555T

7-58
7-98
7-137
7-137
7-137

MC1709CP1
MC1709CU

N5741T

N5747F
N5748A
N5748T
NE501A
NE501K

2-124
7-43
7-43
2-108
7-58

MC1488L
MC1488L
MC14B9L

N5723K
N5741A
N5741V
N5747A

7-17 1

MC75108P
MC75S11OL
MC75S110P

MC3446N
MC3470N
MC34B1J
MC3481N
MC34B5J

N5709G
N5709T
N5709V
N5723A
N5723T

MC1404U5
MC1404U5
MCl404Ul0
MC1404Ul0

MC34060L
MC34060P
MC1536

3-111
11-4
11-4
11-4
11-4
11-4
11-40
11-40
2-303
2-303
3-185
3-185
2-92

..

CROSS REFERENCE Part Number

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

OP-01G
OP-01H
OP-01J
OP-01L
OP-01P

MC1536
MC1536
MC1536G
MC1536G
MC1436Pl

2-92
2-92
2-92
2-92
2-92

RC75110DP
REF-01CJ
REF-01CP
REF-01CZ
REF-01DJ

MC75S110P

OP-08
OP-08A
OP-08B
OP-08C
OP-08E

MCl776
MCl776
MCl776
MCl776
MCl776

2-180
2-180
2-180
2-180
2-180

REF-01DP
REF-01DZ
REF-02CJ
REF-02CP
REF-02CZ

MC1404Ul0
MC1404Ul0

OP-27AZ

2-308
2-308
2-308
2-308
2-308

REF-02DJ
REF-02DP
REF-02DZ
RM702T

MC1404U5
MC1404U5

RM7DST

MC1709G

5-12
5-12
5-12
2-153
2-149

2-308
2-308
2-308
2-308
2-308

RM723D
RM723DC
RM723T
RM733D
RM733T

MC1723L
MC1723L
MC1723G
MC1733L
MC1733G

3-111
3-111
3-111
3-111
3-111

2-308
2-308
2-308
2-308
2-308

RM741DP
RM741T
RM747D
RM747T
RM748T

MC1741P
MC1741G
MC1747L
MC1747G
MC1748G

2-161
2-161
2-172
2-172
2-176

RM1514DC
RM1537D
RM4136D
RM4136J
RM4194DC

MC1514L
MC1537L

OP-27AJ
OP-27AZ
OP-27BJ
OP-27BZ
OP-27CJ
OP-27CZ
OP-27EJ
OP-27EP
OP-27EZ
OP-27FJ

OP-27AZ
OP-27BZ
OP-27BZ

OP-27CZ
OP-27CZ
OP-27EZ
OP-27EP
OP-27EZ
OP-27FZ

MC1404Ul0
MC1404Ul0
MC1404Ul0
MC1404Ul0

MC1404U5
MC1404U5
MC1404U5
MC1404U5

MC1733

7-176
5-12
5-12
5-12
5-12
5-12
5-12
5-12
5-12
5-12

OP-27FP
OP-27FZ
OP-27GJ
OP-27GP
OP-27GZ

OP-27FP
OP-27FZ

PWM125AK
PWM125BK
PWM125CK
RC702T
RC709DN

SG1525AJ
SG2525AJ
SG3525AJ
MC1709CPl

3-279
3-279
3-279
2-153
2-149

RC709T
RC723D
RC723DB
RC723DC
RC723T

MC1709CG
MCl723CL
MC1723CP
MC1723CL
MCl723CG

2-149
3-111
3-111
3-111
3-111

RM4195T
RM4558D
RM4558JG
RM4558L
RM4558T

MC4558U
MC4558U
MC4558G
MC4558G

3-105
2-232
2-232
2-232
2-232

RC733D
RC733T
RC741DN
RC741T
RC747D

MC1733CL
MC1733CG
MC1741CPl
MC1741CG
MC1747CL

2-153
2-153
2-161
2-161
2-172

RV3301DB
S5556T
S5558E
S5558T
S5596F

MC3301P
MC1556G
MC1558U
MC1558G
MC1596L

2-189
2-118
2-124
2-124
8-13

RC747T
RC748T
RC1414DC
RC14140P
RC1488DC

MC1747CG
MC1748CG
MC1414L
MC1414P
MC1488L

2-172
2-176
2-88
2-88
7-37

S5596K
S5709G
S5709T
S5723T
S5733K

MC1596G
MC1709U
MC1709G
MCl723G
MC1733G

8-13
2-149
2-149
3-111
2-153

RC1489ADC
RC1489DC
RC1437D
RC1437DP
RC1458DN

MC1489AL
MC1489L
MC1437L
MC1437P
MC1458Pl

7-43
7-43
2-96
2-96
2-124

S5741T
SA555N
SE501K
SE531G
SE531T

MC1741G
MC1455BP1

RC1458T
RC1556T
RC1558T
RC3302DB
RC4131DP

MC1458G
MC1456CG
MC1558G
MC3302P

SE533G
SE533T
SE537G
SE537T
SE550L

OP-27GZ
OP-27GP
OP-27GZ

MC1733C

MC1741SCPl

2-124
2-118
2-124
2-57
2-161

RC4131T
RC4136D
RC4136DP
RC4136J
RC4136N

MC1741SG
MC3403L
MC3403P
MC3403L
MC3403P

2-161
2-199
2-199
2-199
2-199

SE556A
SE592A
SE592K
SE5561FE
SG100T

RC4194DC
RC4195NB
RC4195T
RC4558DN
RC4558JG

MC1468L
MC1468L
MC1468G
MC4558CPl
MC4558CU

3-105
3-105
3-105
2-232
2-232

SG101AD
SG101AT
SG101J
SG10n
SG107J

RC4558L
RC4558P
RC4558T
RC75107AD
RC75107ADP

MC4558CG
MC4558CPl
MC4558CG
MC75107L
MC75107P

2-232
2-232
2-232
7-171
7-171

SG107T
SG108AJ
SG108AT
SG108J
SG108T

RC75108AD
RC75108ADP
RC75109D
RC75109DP
RC75110D

MC75108L
MC75108P

7-171
7-171
7-176
7-176
7-176

SG109K
SG109R
SG109T
SGlllD
SGll1T

MC75S110L
MC75S110P
MC75S110L

MC3503L
MC3503L
MC1568L
MC1568G

2-161
11-4
2-153
2-100
2-100

MC1776G
MC1776G
MC1556G
MC1556G
MC1723G

2-180
2-180
2-118
2-118
3-111

MC35060L
MC1723G

11-40
2-303
2-303
3-185
3-111

LM101AH
LM101AH
LM101AH
LM101AH
MC1741
MC1741
LM108AJ
LM108AH
LM108J
LM108H
LM109K

LM109K

MOTOROLA LINEAR/INTERFACE DEVICES

1-16

MC1733G
MC1539G
MC1539G

MC3556L
SE592L
SE592G

LM109H
LMlllJ
LMlllH

2-88
2-96
2-199
2-199
3-105

2-36
2-36
2-36
2-36
2-161
2-161
2-40
2-40
2-40
2-40
3-15
3-15
3-15
2-45
2-45

CROSS REFERENCE Part Number

SGl17K
SGl17R
SGll7T
SGllBT
SG123K

Motorola
Direct
Replacement

LMl17K
LMl17K
MC1741SG
LM123K
LM124J
LM137K

SG140K-OB
SG140K-12
SG140K-15
SG150K
SG200T

LM140K-B.0
LM140K-12
LM140K-15
LM150K

SG201M
SG201N
SG201T
SG207J
SG207M
SG207N
SG207T
SG20BAJ
SG20BAM
SG20BAT

LM137K
LM137H
LM140K-5.0

MC1723G
LM201AH
LM201AN
LM201AN
LM201AH
LM201AH
LM201AN
LM201AN
LM201AH

MC1741C
MC1741C
MC1741C
MC1741C
LM20BAJ
LM20BAJ-B
LM20BAH

SG20BJ
SG20BM
SG20BT
SG209K
SG209R

LM20BJ
LM20BJ-B
LM20BH
LM209K

SG209T
SG2110
SG211M
SG211T
SG217K

LM209H
LM211J-B
LM211J-B
LM211H
LM217K

SG217R
SG217T
SG21BJ
SG21BM
SG21BT

LM209K

SG237T
SG250K
SG300N
SG300T
SG301AO

LM237H
LM250K

SG301AM
SG301AN
SG301AT
SG307J
SG307M

LM301AN

3-20
3-20
3-20
2-166
2-161

3-20
3-20
3-20
2-166
3-36

SG317P
SG317R
SG317T
SG318J
SG31BM

2-51
3-42
3-42
3-42
3-49

SG318T
SG324J
SG324N
SG337K
SG337P

LM324J
LM324N
LM337K
LM337T

3-49
3-49
3-49
3-65
3-111

SG337R
SG337T
SG340K-05
SG340K-OB
SG340K-12

LM337H
LM340K-,,5.0
LM340K-B.0
LM340K-12

2-36
2-36
2-36
2-36
2-36

SG34OK-24
SG350K
SG501AJ
SG555CM
SG555CT

2-36
2-36
2-36
2-161
2-161

SG556CJ
SG556CN
SG556J
SG556N
SG723CO

2-161
2-161
2-40
2-40
2-40

SG723CJ
SG723CN
SG723CT
SG7230
SG723J

MC1723CL
MC1723CP
MCl723CG

2-40
2-40
2-40
3-15
3-15

SG723T
SG733CO
SG733CN
SG733CT
SG7330

MC1723G
MC1733CP
MC1733CG
MC1733L

SG733N
SG733T
SG741CM
SG741CT
SG741SCM

MC1733G
MC1741CPl
MC1741CG
MC1741SCPl

2-153
2-153
2-161
2-161
2-166

SG741SCT
SG741ST
SG741T
SG747CJ
SG747CN

MC1741SCG
MC1741SG
MC1741G
MC1747CL
MC1747CP2

2-166
2-166
2-161
2-172
2-172

MC1747CG

2-172
2-172
2-172
2-176
2-176

LM317T
LM317T
LM317H
MC1741SCL
MC1741CPl
MC1741CG

2-161
2-51
2-51
3-42
3-42

LM337T

3-42
3-42
3-49
3-49
3-49

LM340K-24
LM350K
MC146BG
MC1455Pl
MC1455G
MC3456L
MC3456P
MC3556L
MC3556L
MC1723CL

MC1723L
MC1723L
MC1733CL

MC1733L

3-49
3-65
3-105
11-4
11-4
11-40
11-40
11-40
11-40
3-111
3-111
3-111
3-111
3-111
3-111
3-111
2-153
2-153
2-153
2-153

LM237K

MC1723CP
MCl723CG
LM301AH

3-42
3-65
3-111
3-111
2-36

SG748CN
SG748CT
SG74BO
SG74BT
SG777CJ

LM308AJ

2-176
2-176
2-176
2-176
2-40

2-36
2-36
2-36
2-7B
2-7B

SG777CM
SG777CN
SG777CT
SG777J
SG777T

LM30BAN
LM30BAN
LM308AH
LM108AJ
LM10BAH

2-40
2-40
2-40
2-40
2-40

2-7B
2-40
2-40
2-40
2-40

SG111BAJ
SG111BAT
SG1118J
SG111BT
SG1217

LM108AJ

2-40
2-40
2-40
2-40
2-161

2-40
2-40
3-15
3-15
3-15

SG1217T
SG1250T
SG1402N
SG1402T
SG1436CT

MC1741SG
MCl776G
MC1594L
MC1594L
MC1436CG

2-166
2-180
11-11
11-11
2-92

3-15
2-45
2-45
2-45
3-20

SG1436M
SG1436T
SG1456CT
SG1456T
SG145BM

MC1436U
MC1436G
MC1456CG
MC1456G
MC145BP1

2-92
2-92
2-11B
2-11B
2-124

LM307N

LM307N
LM30BAJ
LM30BAN
LM30BAH
LM30BJ

LM309H
LM311J
LM311N
LM311H
LM317K

Page

SG747CT
SG747J
SG747T
SG74BCO
SG748CM

LM307N

SG309T
SG3110
SG311M
SG311T
SG317K

Motorola
Similar
Replacement

3-36
2-51
2-51
3-42
3-42

LM301AH

LM30BN
LM30BH
LM309K

Motorola
Direct
Replacement

3-20
3-20
2-166
2-166
2-166

LM301AN

SG30BM
SG30BT
SG309K
SG309P
SG309R

Part Number

MC1741SL
MC1741SL
MC1741SG

LM217K

LM223K
LM224J
LM224N
LM237K

Page

3-15
2-45
2-45
2-45
3-20

LM217H

SG223K
SG224J
SG224N
SG237K
SG237R

SG307N
SG30BAJ
SG30BAM
SG30BAT
SG30BJ

Motorola
Similar
Replacement

LMl17H

SG124J
SG137K
SG137R
SG137T
SG140K-05

SG201AO
SG201AM
SG201AN
SG201AT
SG201J

CONTINUED

LM309K
LM309K

MC1747L
MC1747G
MC1748CPl
MC1748CP1
MC1748CPl
MC1748CG
MC1748G
MC1748G

LM108AH

LM10BJ
L'M108H
MC1741G

MOTOROLA LlNEARIINTERFACE DEVICES
1-17

..

CROSS REFERENCE Part Number

SG1458T
SG1468J
SG1468N
SG1468T
SG1495D
SG1495N
SG1496D
SG1496N
SG1496T
SG1501AD
SG1501AJ
SG1501AT
SG1501J
SG150H
SG1502D
SG1502J
SG1502N
SG1503
SG1503T
SG1503Y

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MC1458G
MC1468l
MC1468l
MC1468G
MC1495l
MC1495L

MC1496l
MC1496l
MC1496G
MC1568l
MC1568l
MC1568G
MC1568l
MC1568G
MC1568L

MC1568l
MC1568L
MC1503U
MC1503U
MC1503U

SG1524J

Page

SG3501AJ
SG3501AN
SG3501AT
SG3501J
SG3501D

11-25
8-13
8-13
8-13
3-105

SG3501N
SG350n
SG3502D
SG3502G
SG3502J

3-105
3-105
3-105
3-105
3-105

SG3502N
SG3503
SG3503M
SG3503T
SG3503Y

MC1403U

3-105
3-105
5-8
5-8
5-8

SG3523Y
SG3524J
SG3525AJ
SG3525AN
SG3526J

SG3525AJ
SG3525AN
SG3526J

SG1525AJ

SG1526J
SG1527AJ
SG1536T

SG1526J
SG1527AJ
MC1536G

3-312
3-279
3-286
3-279
2-92

SG1556T
SG1558T
SG1568J
SG1568T
SG1595D

MC1556G
MC1558G
MC1568l
MC1568G
MC1595l

2-118
2-124
3-105
3-105
11-25

SG1596D
SG1596T
SG1660D
SG1660J
SG1660M

MC1596l
MC1596G
lM301AH
lM308J
lM308N

8-13
8-13
2-36
2-40
2-40

SG1760T
SG2118AJ

lM308H
lM308J
LM308N
lM308H
lM208AJ

2-40
2-40
2-40
2-40
2-40

SG2118AM
SG2118AT
SG2118J
SG2118M
SG2118T

lM208AJ-8
lM208AH
lM208J
lM208J-8
lM208H

2-40
2-40
2-40
2-40
2-40

SG2250T
SG2402N
SG2402T
SG2501AD
SG2501AT

MC1776G
MC1494l
MC1494L
MC146Bl
MC1468G

SG1660T
SG1760J
SG176QM

SG250m
SG2501J
SG2501N
SG250H
SG2502J

MC1468l
MC1468l
MC1468L
MC1468G
MC1468L

SG2502N
SG2503M
SG2503T
SG2503Y
SG2524J
SG2525AJ
SG2526J
SG2527AJ
SG3118AJ
SG3118AM

MC1468l
MC1403AU
MC1403AU
MC1403AU
Tl4941J
SG2525AJ
SG2526J
SG2527AJ
lM308AJ
lM308AN

Motorola
Direct
Replacemenl

2-124
3-105
3-105
3-105
11-25

SG1525AJ

Tl494MJ

Part Number

SG3527AJ
SG3527AN
SG4194CJ
SG4194J
SG4250CM
SG4250CT
SG4250T
SG4501D
SG4501J
SG4501N
SG450n
SG7805ACK
SG7805ACP
SG7B05ACR
SG7805ACT
SG7805AK
SG7B05AR
SG7805AT
SG7805CK
SG7805CP
SG7805CR
SG7805CT
SG7805K
SG7805R
SG7805T
SG7806ACP
SG7806ACR
SG7806ACT
SG7806CK
SG7806CP

2-180
11-11
11-11
3-105
3-105

SG7806CR
SG7806K
SG7806R
SG7806T
SG7808ACP

3-105
3-105
3-105
3-105
3-105

SG7808ACR
SG7808ACT
SG7808CK
SG7808CP
SG7808CR

3-105
5-8
5-8
5-8
3-312

SG7808CT
SG7808K
SG7808R
SG7B08T
SG7812ACK

3-279
3-286
3-279
2-40
2-40

SG3118AT
SG3118J
SG3118M
SG311BT
SG3250T

lM308AH
lM308J
lM308N
lM308H
MC1776G

2-40
2-40
2-40
2-40
2-180

SG3402N
SG3402T
SG3423M
SG3423Y
SG3501AD

MC1494l
MC1494l
MC3423P1
MC3423U
MC1468l

11-11
11-11
3-117
3-117
3-105

SG7812ACP
SG7812ACR
SG7812ACT
SG7812AK
SG7812AR
SG7812AT
SG7812CK
SG7812CP
SG7812CR
SG7812CT

Page

MC1468l
MC1468l
MC1468G
MC1468l
MC1468l

3-105
3-105
3-105
3-105
3-105

MC1468l

3-105
3-105
3-105
3-105
3-105

MC1468G

MC1468l
MC1468G
MC1468L
MC1468l
MC1403U
MC1403U
MC1403U

MC3523U
Tl494CJ

3-105
5-8
5-8
5-8
5-8
3-117
3-312
3-279
3-279
3-286
3-279
3-279

SG3527AJ
SG3527AN
MC1468L
MC1568l
MC1776CP1

MC1776CG
MC1776G
MC1468l
MC1468l
MC1468l
MC1468G
MC7805ACK
MC7805ACT
MC7805ACT
MC7805ACT
MC7805AK
MC7805AK
MC7805AK
MC7805CK
MC7805CT
MC7805CT
MC78M05CG
MC7805K
MC7B05K
MC7805K
MC7B06ACT
MC7806ACT

MC7806ACT
MC7806CK
MC7806CT
MC7806CT
MC7806K
MC7806K
MC7806K
MC7808ACT
MC78MOBACT
MC7808ACT
MC7808CK
MC7808CT
MC7808CT
MC78M18CG
MC7808K
MC7808K
MC7808K
MC7812ACK
MC7812ACT
MC7812ACT
MC7812ACT
MC7812AK
MC7812AK
MC7812AK

MC7812CK
MC7812CT

MOTOROLA LINEAR/INTERFACE DEVICES

1-18

Motorola
Similar
Replacement

MC7812CT
MC78M12CG

3-105

3-105
2-180
2-180
2-180
3-105
3-105
3-105
3-105
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-151
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-151
3-132
3-132
3-132
3-132
3-151
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-132
3-151

CROSS REFERENCE Part Number

SG7812K
SG7815ACK
SG7815ACP
SG7815ACR
SG7815ACT

MC7812K
MC7815ACK
MC7815ACT

SG7815AK
SG7815AR
SG7815AT
SG7815CK
SG7815CP

MC7815AK

SG7815CR
SG7815CT
SG7815K
SG7815R
SG7815T
SG7818ACK
SG7818ACP
SG7818ACR
SG7818ACT
SG7818AK
SG7818AR
SG7818AT
SG7818CK
SG7818CP
SG7818CR
SG7818CT
SG7818K
SG7818R
SG7818T
SG7824ACP
SG7824ACR
SG7824ACT
SG7824CK
SG7824CP
SG7824CR
SG7824K
SG7824R
SG7824T
SG7905ACK
SG7905ACP
SG7905ACR
SG7905ACT
SG7905CK
SG7905CP
SG7905CR
SG7905CT
SG7905.2CP
SG7905.2CR
SG7905.2CT
SG7908CP
SG7908CR
SG7908CT
SG7912ACK
SG7912ACP
SG7912ACR
SG7912ACT
SG7912CK
SG7912CP
SG7912CR
SG7912CT

Motorola
Similar
Replacement

MC7815ACT
MC7815ACT

MC7815AK
MC7815AK
MC7815CK
MC7815CT
MC7815CT
MC78M15CG
MC7815K
MC7815K
MC7815K
MC7818ACK
MC7818ACT
MC7818ACT
MC7818ACT
MC7818AK
MC7818AK
MC7818AK
MC7818CK

MC7818CT
MC7818CT
MC78M18CG
MC7818K
MC7818K
MC7818K
MC7824ACT
MC7824ACT
MC7824ACT
MC7824CK
MC7824CT
MC7824CT
MC7824K
MC7824K
MC7824K
MC7905ACK
MC7905ACT
MC7905ACT
MC7905ACT
MC7905CK
MC7905CT
MC7905CT
MC7905CT
MC7905.2CT
MC7905.2CT
MC7905.2CT
MC7908CT
MC7908CT
MC7908CT
MC7912ACK
MC7912ACT
MC7912ACT

MC7912ACT
MC7912CK
MC7912CT
MC7912CT
MC7912CT

SG7915ACK
SG7915ACP
SG7915ACR
SG7915ACT
SG7915CK

MC7915ACK
MC7915ACT

SG7915CP
SG7915CR
SG7915CT
SG7918CP
SH323SKC

MC7915CT

SH8090FM
SN52101AL
SN52104L
SN52107L
SN52108AL

CONTINUED

Motorola
Direct
Replacement

MC7915ACT
MC7915ACT
MC7915CK

MC7915CT
MC7915CT
MC7918CT
LM323K
MC1508L8
LM101AH
LM101H
MC1741
LM108AH

Page

Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

3-132
3-132
3-132
3-132
3-132

SN52108L
SN52109L
SN52514J
SN75107AJ
SN75107AN

3-132
3-132
3-132
3-132
3-132

SN75107BN
SN75108AJ
SN75108AN
SN75108BJ

3-132
3-151
3-132
3-132
3-132

SN75108BN
SN75110AJ
SN75110AN
SN75121J
SN75121N

3-132
3-132
3-132
3-132
3-132

SN75122J
2N75122N
SN75125J
SN75125N
SN75126J

3-132
3-132
3-132
3-132
3-132

SN75126N
SN75127J
SN75127N
SN75128J
SN75128N

3-151
3-132
3-132
3-132
3-132

SN75129J
SN75129N
SN75150J
SN75150N
SN75154J

3-132
3-132
3-132
3-132
3-132

SN75154N
SN75160J
SN75160N
SN75172J
SN75172NG

SN75172JSN75172NG-

SN75173J
SN75173N
SN75174J
SN75174NG
SN75175J

SN75173J
SN75173N
SN75174JSN75174NGSN75175J

SN75175N
SN75188N
SN75188N3

SN75175N
MC14BBL
MC1488P
MC14BBPDS

7-191
7-37
7-37
7-37

SN75189AJ
SN75189AJ4
SN75189AN
SN75189J
SN75189J4

MC1489AL
MC14B9ALDS
MC1489AP
MC1489L
MC1489LDS

7-43
7-43
7-43
7-43
7-43

SN75189N
SN75189N3
SN75207J
SN75207N
SN75208J

MC1489P
MC1489PDS

SN75107BJ

3-132
3-132
3-132
3-168
3-168
3-168
3-168
3-168
3-168
3-168

SN751BBJ

3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168

SN75208N
SN75251N
SN75466J
SN75466N
SN75467J

3-168
3-168
3-168
3-168
3-168

SN75467N
SN75468J
SN75468N

3-168
3-168
3-168
3-168
3-168

SN75475JG

SN75475P
SN76514L
SN76514N
SN76564N
SN76565N
SN76591P

3-168
3-168
3-168
3-168
3-36

SN76600P
SN76665N
SSS101AL
SSS101AJ
SSS107J
SSS107P
SSS201AJ

6-15
2-36
2-36
2-161
2-40

MC75107L

MC75107P
MC75108L
MC75108P
MC75108L
MC75108P
MC75S110L
MC75S110P
MC3481/5L
MC348115P
MC75125L
MC75125P

MC3481/5L
MC3481/5P
MC75127L
MC75127P
MC75128L
MC75128P
MC75129L
MC75129P
MC1488L
MC1488P
MC1489L
MC1489P
MC3447L
MC3447P/P3

7-171
7-171
7-171
7-171
7-171
7-171
7-176
7-176
7-137
7-137
7-181
7-181
7-181
7-181
7-137
7-137
7-181
7-181
7-185
7-185
7-185
7-185
7-37
7-37
7-43
7-43
7-61
7-61
7-189
7-189
7-191
7-191
7-189
7-1B9

7-191

MC75107L
MC75107P
MC75108L

7-43
7-43
7-171
7-171
7-171

MC1411L
MC1411P
MC1412L

7-171
7-112
7-30
7-30
7-30

MC1412P
MC1413L
MC1413P
MC1472U
MC1472P1

7-30
7-30
7-30
7-34
7-34

MC75108P
MC3471P

MC1496G
MC13010P
MC13010P
MC1391P
MC1350P
MC13010P
LM101AH
LM101AH
MC1741
MC1741
LM201AH

MOTOROLA LINEAR/INTERFACE DEVICES

8-13
B-13

MC1496P

*To be introduced

1-19

2-40
3-15
2-68
7-171
7-171

LM108H
LM109H
MC1514L
MC75107L
MC75107P

9-73
9-73
9-35
9-15
9-73
2-36
2-36
2-161
2-161
2-36

..

CROSS REFERENCE -

CONTINUED

Motorola
Part Number

Direct
Replacement

SSS201AL
SSS201AP
SSS207J
SSS207P
SSS301AJ
SSS301AL
SSS301AP
SSS741BJ
SSS741CJ
SSS741GJ
SSS741GP
SSS741J

2-36
2-36

MC1741C
MC1741C

2-161
2-161
2-36
2-36
2-36

LM301AH
LM301AN

MC1741SG
MC1741G

2-161
2-161
2-166
2-166
2-161

MC1747L
MC1747CG
MC1747CF
MC1747CL
MC1747G

2-172
2-172
2-172
2-172
2-172

MC1747L
MC1747L

2-172
2-172
6-15
6-15
6-15

MC1741G
MC1741CG
MC1741SG

SSS747BP
SSS747CK

Page

LM201AH
LM201AN

LM301AH

SSS747CM
SSS747CP
SSS747GK
SSS747GP
SSS74?P
SSS1408A-6Z
SSS1408A-7Z
SSS1408A-8Z

Motorola
Similar
Replacement

MC1408L6
MC1408L7
MC1408L8

MC78L05ACP
MC78L05CP

2-124
6-15
2-124
3-145
3-145

TA78L012P

MC78L08ACP
MC78L08CP
MC78L12ACP
MC78L 12CP

3-145
3-145
3-145
3-145

TA78L015AP
TA78L015P
TA78L018AP
TA78L018P
TA78L024AP

MC78L15ACP
MC78L15CP
MC78L18ACP
MC78L 18CP
MC78L24ACP

3-145
3-145
3-145
3-145
3-145

MC78L24CP

3-145
3-151
3-151
3-151
3-151

SSS1458J
SSS1508A-8Z
SSS1558J
TA78L005AP
TA78L005P

MC1458G
MC1508L8
MC1558G

TA78L008AP
TA78L008P
TA78L012AP

TA78L024P
TA78M05P
TA78M06P
TA78M08P
TA78M12P
TA78M18P
TA78M20P
TA78M24P
TA79L005P
TA79L012P
TA79L015P
TA79L018P
TA79L024P
TA7179P
TA7502P
TA7504P
TA7506P
TA7555F
TA7555P
TA75071P

MC78M05CT
MC78M06CT

MC78M08CT
MC78M12CT
MC78M18CT
MC78M20CT
MC78M24CT
MC79L05CP
MC79L 12P
MC79L 15P
MC79L18P
MC79L24P
MC1468L
MC1709Pl
MC1741CPl
LM301AN
MCl455D
MC1455P1

MC34001P

Motorola
Oirect
Replacement

Motorola
Similar
Replacement

Page

TA78024AP
TA79005P
TA79006P
TA79008P
TA79012P

MC7824CT
MC7905CT
MC7906CT
MC7908CT
MC7912CT

3-132
3-168
3-168
3-168
3-168

TA79015P

MC7915CT
MC7918CT
MC7924CT

3-168
3-168
3-168
9-137
9-73

TA79018P

TA79024P
TBA120
TBA440
TB920
TBA920S
TBA1440
TD62001 P/AP
TD62002P/AP
TD62003P/AP
TD62004P/AP
TD62477P
TD62479P
TDA1085
TDA1524
TDA2540
TDA2544
TDA4420
TDA4500A
TDA4601
TDA4601B

TBA120C
MC13010P
MC1391P
MC1391P
MC13010P
MC1411P
MC1412P
MC1413P
MC1414P
MC1472P
MC1374P
TDA1085C
TCA5550

9-35
9-35
9-73
7-30
7-30
7-30
2-88
7-34
9-19
4-71
9-149

MC13010P
MC13010P
MC13010P

9-73
9-73
9-73
9-142
3-305
3-305

TDA5600
TDC1048
TL022CJG
TL022CL
TL022CP

MC13010P
MC10319
LM358J
LM358H
LM358N

9-73
6-62
2-67
2-67
2-67

TL022MJG
TL022ML
TL044CJ
TL044CN
TL044MJ

LM158J

2-67
2-67
2-51
2-51
2-51

TCA4500A
TDA4601
TDA4601B

LM158H
LM324J
LM324N
LM124J

TL061ACD
TL061ACP
TL061 BCD
TL061BCP
TL061CD

TL061ACD
TL061ACP
TL061 BCD
TL061BCP
TL061CD

2-320
2-320
2-320
2-320
2-320

3-151
3-151
3-151
3-177
3-177

TL061CP
TL061MJG
TL062ACD
TL062ACP
TL062BCD

TL061CP
TL061MJG
TL062ACD
TL062ACP
TL062BCD

2-320
2-320
2-320
2-320
2-320

3-177
3-177
3-177
3-105
2-149

TL062BCP
TL062CD
TL062CP
TL062MJG
TL064ACD

TL062BCP
TL062CD
TL062CP
TL062MJG
TL064ACD

2-320
2-320
2-320
2-320
2-320

TL064ACN
TL064BCD
TL064BCN
TL064CD
TL064CN

TL064ACN
TL064BCD
TL064BCN
TL064CD
TL064CN

2-320
2-320
2-320
2-320
2-320

TL064MJ
TL071 ACJG
TL071ACP
TL071 BCJG
TL071BCP

TL064MJ
TL071 ACJG
TL071ACP
TL071 BCJG
TL071BCP

2-320
2-328
2-328
2-328
2-328

TL071CJG
TL071CP
TL072ACJG
TL072ACP
TL072BCJG

TL071CJG
TL071CP
TL072ACJG
TL072ACP
TL072BCJG

2-328
2-328
2-328
2-328
2-328

TL072BCP
TL072CJG
TL072CP
TL074ACJ
TL074ACN

TL072BCP
TL072CJG
TL072CP
TL074ACJ
TL074ACN

2-328
2-328
2-328
2-328
2-328

TL074BCJ
TL074BCN
TL074CJ
TL074CN
TL081ACJG

TL074BCJ
TL074BCN
TL074CJ
TL074CN
TL081ACJG

2-328
2-328
2-328
2-328
2-335

2-161
2-36
11-4
11-4
2-260

TA75072P
TA75074F
TA 75339F
TA75339P
TA75358CF

LM339D
LM339N
LM358D

TA75358CP
TA75393F
TA75393P
TA75458F
TA75458P

LM358N
LM393D
LM393N
MC1458D
MC1458CPl

TA75558P
TA75902F
TA75902P
TA76494P
TA78005AP

MC4558CPl
LM324D
LM324N
MC7805CT

2-232
2-51
2-51
3-312
3-132

TA78006AP
TA78008AP
TA78012AP
TA78015AP
TA78018AP

MC7806CT
MC7808CT
MC7812CT
MC7815CT
MC7818CT

3-132
3-132
3-132
3-132
3-132

MC34002P
MC34004P
LM2901D
LM2901N

2-260
2-260
2-57
2-57
2-67

LM2904N
LM2903D
LM2903N

2-67
2-73
2-73
2-124
2-124

LM2902D
LM2902N
TL4941N

Part Number

MOTOROLA LINEAR/INTERFACE DEVICES

1-20

CROSS REFERENCE Part Number

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Motorola
Page

TL081ACP
TL081BCJG
TL081BCP
TL081CJG
TL081CP

TL081ACP
TL081 BCJG
TL081BCP
TL081CJG
TL081CP

2-335
2-335
2-335
2-335
2-335

TL082ACJG
TL082ACP
TL082BCJG
TL082BCP
TL082CJG

TLOB2ACJG
TL082ACP
TL082BCJG
TL082BCP
TLOB2CJG

2-335
2-335
2-335
2-335
2-335

TL082CP
TL084ACJ
TL084ACN
TL084BCJ
TL084BCN

TL082CP
TL084ACJ
TLOB4ACN
TL084BCJ
TLQ84BCN

2-335
2-335
2-335
2-335
2-335

TL084CJ
TL084CN
TL431CJG
TL431CLP
TL431CP

TL084CJ
TL084CN
TL431CJG
TL431CLP
TL431CP

2-335
2-335
5-17
5-17
5-17

TL4311JG
TL4311P

TL4311JG
TL4311P

TL4311LP

TL4311LP

TL431MJG
TL494CJ

TL431MJG
TL494CJ

5-17
5-17
5-17
5-17
3-312

TL494CN
TL4941J
TL4941N
TL494MJ
TL497CJ

TL494CN
TL4941J
TL4941N
TL494MJ
MC34063U

3-312
3-312
3-312
3-312
3-227

TL497CN
TL497MJ
TL514MJ
TL594CN
TL5941N

MC1514L
TL594CN
TL5941N

3-227
3-227
2-88
3-323
3-323

TL594MJ
TL780-05CKC
TL7BO-12CKC
TL780-15CKC
TL7805ACKC

TL594MJ
TL 780-05CKC
TL780-12CKC
TL780-15CKC
MC7805ACT

3-323
3-334
3-334
3-334
3-132

IJCl17K
UC137K
. UC150K
UC217K
UC237K

LMl17K
LM137K
LM150K
LM217K
LM237K

3-20
3-42
3-65
3-20
3-42

UC250K
UC317K
UC317T
UC337K
UC337T

LM250K
LM317K
LM317T
LM337K
LM337T

3-65
3-20
3-20
3-42
3-42

UC350K
UC494ACN
UC494AJ
UC494CN
UC494J

LM350K

3-65
3-323
3-323
3-312
3-312

UC1525AJ
UC1526J
UC1527AJ
UC2525AJ

SG1525AJ
SG1526J
SG1527AJ
SG2525AJ

3-279
3-286
3-279
3-279

UC2526J
UC2526N
UC2527AJ
UC2842D

SG2526J
SG2526N
SG2527AJ
UC2842AD

3-286
3-286
3-279
3-340

UC2842N
UC2843D
UC2843N
UC3525AJ
UC3525AN

UC2842AN
UC2843AD
UC2843AN
SG3525AJ
SG3525AN

3-340
3-340
3-340
3-279
3-279

UC3526J
UC3526N
UC3527AJ
UC3527AN
UC3842D

SG3526J
SG3526N
SG3527AJ
SG3527AN
UC3842AD

3-286
3-286
3-279
3-279
3-340

UC3842N
UC3843D

UC384~AN

UC3843AD

3-340
3-340

MC34063Pl
MC35063U

TL594CN
TL594MJ
TL494CN
TL494MJ

Part Number

Direct
Replacement

Motorola
Similar
Replacement

Page

3-340
7-34
7-30

UC3843N
UDN5712M
ULN2001A

UC3843AN
MC1472Pl
ULN2001A

ULN2001AN
ULN2002A
ULN2002AJ
ULN2002AN
ULN2003A

MC1411P
ULN2002A
MC1412L
MC1412P
ULN2003A

ULN2003AJ
ULN2003AJ4
ULN2003AN
ULN2003AN3
ULN2004A

MC1413L
MC1413LDS
MC1413P
MC1413PDS
ULN2004A

ULN2004AJ
ULN2004AJ4
ULN2004AN
ULN2004AN3
ULN2068B

MC1416L
MC1416LDS
MC1416P
MC1416PDS
ULN2068B

7-30
7-30
7-30
7-30
7-200

ULN2068NE
ULN2074B
ULN2074NE
ULN2139D
ULN2139G

ULN2068B
ULN2074B
ULN2074B
MC1439G
MC1439G

7-200
7-204
7-204
2-100
2-100

ULN2139H
ULN2139M
ULN2151D
ULN2151H
ULN2151M

MC1439P2
MC1439Pl
MC1741CG
MC1741CPl
MC1741CPl

2-100
2-100
2-161
2-161
2-161

ULN2156D
ULN2156G
ULN2156H
ULN2156M
ULN2157K

MC1456G
MC1456G
MC1456G
MC1456G
MC1458G

2-118
2-118
2-118
2-118
2-124

ULN2264A
ULN2741D
ULN2747A
ULN2801A

MC13010P
MC1741CG
MC1747CL
ULN2801A

9-73
2-161
2-172
7-208

ULN2802A
ULN2803A
ULN2804A
ULN8126A
ULN8126R

ULN2802A
ULN2803A
ULN2804A
SG3526N
SG3526J

7-208
7-208
7-208
3-286
3-286

UL08126A
UL08126R
ULS2139D
ULS2139G
ULS2139H

SG2526N
SG2526J

MC1411P

MC1413P

7-30
7-30
7-30
7-30
7-30

MC1416P

7-30
7-30
7-30
7-30
7-30

MC1412P

MC1539G
MC1539G
MC1539L

3-286
3-286
2-100
2-100
2-100

ULS2139M
ULS2151D
ULS2151M
ULS2156D
ULS2156G

MCl439Pl
MC1741G
MC1741CPl
MC1556G
MC1556G

2-100
2-161
2-161
2-118
2-118

ULS2156H
ULS2156M
ULS2157A
ULS2157H
ULS2157K

MC1556G
MC1556G
MC1558U
MC1558U
MC1558G

2-118
2-118
2-124
2-124
2-124

MC34060P
MC10319
MC10319

ULS8126R
ULX8161M
UPD6950C
UVC3101
XR082CN

SG1526J

TL082CJG

3-286
3-185
6-62
6-62
2-335

XA082CP
XA082M
XR084CN
XR084CP
XR084M

TL082CP
TL082MJG
TL084CJ
TL084CN
TL084MJ

2-335
2-335
2-335
2-335
2-335

XR3470A
"A0802DC-l
"A0802DC-2
"A0802DC-3
"AOB02DM-l

MC3470AP
MCl408L
MCl408L
MC1408L
MC1508L

7-98
6-15
6-15
6-15
6-15

"A0802PC-l
"A0802PC-2
"A0802PC-3
"A78GHM
"A78GKC

MC1408P
MC1408P
MC1408P

6-15
6-15
6-15
3-20
3-20

MOTOROLA LINEAR/INTERFACE DEVICES
1-21

LMl17K
LMl17K

•

CROSS REFERENCE Part Number

Motorola
Direct
Replacement

pA78GKM
pA78GUC
pA78GU1C
pA78H05KC
pA 78l05ACJG
MC78l05ACP
MC78l05ACG

pA78l05HC
pA78l05WC
pA78l08ACJG
pA 78l08AClP
pA78l08AWC

MC78l05CG

MC78l05ACP
MC78l05CG
MC78l05CP
MC78l05CP
MC78l08ACG
MC78l08ACP
MC78l08ACP
MC78l08CG
MC78l08CP
MC78L12ACG
MC78L12ACP
MC78l12ACG

pA78L12AWC
pA78L12CJG
p,A78L 12CLP

pA78L12HC
pA78L12WC
pA 78L15ACJG
pA 78l 15AClP
pA78l15AHC
pA78l15AWC
pA78l15CJG

MC78l12ACP
MC78l12CG
MC78L12CP
MC78l12CG
MC78l12CP
MC78l15ACG
MC78L15ACP
MC78l15ACG

MC78L15ACP
MC78l15CG

pA78L15ClP
IJ..A76L 15HC
pA78l15WC
pA78L18AWC
pA78l24AHC

MC78l15CP
MC78l15CG

pA78l24AWC
pA78MGT2C
pA78MGU1C
pA78MGUC
pA78M05CKC

MC78l24ACP

pA78M05CKD
pA78M05ClA
pA78M05HC
pA78M05HM
pA78M05UC
pA78M06CKC
pA78M06CKD
pA78M06UC
pA78M08CKC
pA78M08CKD
pA78M08ClA
pA78M08HC
pA78M08HM
pA78M08UC
pA78M12CKC

MC78L15CP
MC78l18ACP
MC78l24ACG
lM317T
lM317T
lM317MT
MC78M05CT
MC78M05CT
MC78M05CG
MC78M05CG
MC78M05CG
MC78M05CT
MC78M06CT
MC78M06CT
MC78M06CT
MC78MOBCT
MC78M08CT
MC78M08CG
MC78M08CG
MC78M08CG
MC7BMOBCT
MC78M12CT

pA78M12CKD

MC78M12CT

pA78M12HC

MC78M12CG
MC78M12CG

JlA78M12HM
,uA78M12UC

MC78M12CT

p,A78M12CLA

MC7BM12CG

pA78M15CKC
pA7BM15CKD
pA78M15ClA
pA78M15HC
pA78M15HM

MC78M15CT

pA78M15UC
pA78M18HC
pA78M18HM
pA78M18UG
pA78M20CKC

MC78M15CT
MC78M18CG

pA78M20CKD
pA78M20UG
pA78M24CKC
pA78M24CKD
pA78M24UC
pA78S40DC
pA78S40DM
pA78S40PC

Motorol.
Similar
Replacement

lM117K
lM317T
lM317T
MC7805CK
MC78l05ACG

pA 78l05AClP
pA78l05AHC
pA78l05AWC
pA78l05CJG
pA78l05ClP

pA78l08CJG
pA78l08ClP
pA78l12ACJG
pA 78L12AClP
pA78l12AHC

CONTINUED

MC78M15CT
MC78M15CG
MC78M15CG
MC78M15CG

MC78M18CG
MC78M18CT
MC78M20CT

Page

3-20
3-20
3-20
3-132
3-145
3-145
3-145
3-145
3-145
3-145
3-145
3-145
3-145
3-145
3-145

3-145
3-145
3-145
3-145
3-145

pA79l12HC
pA79l12WC
pA79l15AHC
pA79l15AWC
pA79l15HC

MC79L12CG
MC79l12CP
MC79L15ACG
MC79L15ACP
MC79l15CG

3-177
3-177
3-177
3-177
3-177

pA79l15WC
pA79M05AUC

MC79L15CP
MC79M05CT
MC79M05CT

3-177
3-182
3-182
3-168
3-132

pA79M06AUC
pA79M06CKC

MC7906CT
MC7806CT

pA79M06UC
pA79M08AUC
pA79M08CKC
pA79M08UC
pA79M12AUC

MC7906CT
MC7908CT
MC7908CT
MC7908CT
MC79M12CT

pA79M18AUC
p.A79M18UC

MC7918CT
MC7918CT

p.A79M24AUC

MC7924CT
MC7924CT
MC7924CT
lM101AJ
LM101AJ

3-168
3-168
3-168
2-36
2-36

MC79M12CT

pA79M15AUC

MC79M15CT
MC79M15CT

LM101AH

lM101AJ
lM101AJ

.u A1 0 1H
,uAl07H

lM101AH

}lAl0BAD
,uAl0BAF

lM108AJ

p.Al08AH
pA108D

lM108AH
lM10BJ
lM108H

pA109KM
J.lA117KM
pA201AD

MC1741
lM108AH

lM109K
LMl17K
lM201AJ
lM201AJ

p,A201AF

pA201AH

lM201AH

,uA201D
pA201 F
/--IA201H
pA207H
pA208AD

lM201AH

pA208AF
pA208AH
pA208D
pA208H
pA209KM

3-151
3-151
3-151
3-151
3-151

lM201AJ
LM201AJ
MC1741C
lM208AJ

3-151
3-151
3-151
3-151
3-151

2-40
2-40
2-40
2-40
2-40
3-15
3-20
2-36
2-36
2-36
2-36
2·36
2-36
2-161
2-40
2-40
2-40
2-40
2-40
3-15

lM217K
lM301AJ

pA301AD
pA301AH
pA301AT
pA307T

lM301AH
lM301AN
lM307N

3-20
2-36
2-36
2-36
2-78

pA308AD
pA308AH
pA308D
pA308H
pA309KC

lM308AJ
lM308AH
lM308J
LM308H
lM309K

2-40
2-40
2-40
2-40
3-15

J.lA311T
pA317KC
pA317UC

LM311N
lM317K
lM317T
Tl431CP
Tl494CJ

2-45
3-20
3-20
5-17
3-312

pA555HC
pA555TC

Tl494MJ
TL494CN
MC1455G
MC1455P1

3-312
3-312
11-4
11-4

pA556DC
pA556DM

MC3456l
MC3556l

11-40
11-40

,uA431AWC

pA494DC
j.(A494DM
/-iA494PC

MOTOROLA LINEAR/INTERFACE DEVICES

1-22

2-36
2-36
2-36
2-36
2-161

lM208AH
lM208AH
lM20BJ
lM208H
lM209K

,uA217UV

3-151
3-151
3-151
3-151
3-151

3-168
3-168
3-168
3-168
3-182
3-182
3-182
3-182
3-168
3-168

p.A79M12CKC

IlAl0BH

3-151
3-151
3-151
3-151
3-151

3-353
3-353
3-353

3-177
3-177
3-177
3-177
3-177

MA101AH

3-151
3-151
3-151
3-151
3-151

pA78S40DC
pA78S40DM
pA78S40PC

MC78M24CT

MC79l05ACP
MC79l05CG
MC79l05CP
MC79l12ACG
MC79L12ACP

p.Al01D
}-(Al01F

3-151
3-151
3-151
3-151
3-151

MC78M24CT

pA79l05AWC
pA79l05HC
pA79l05WC
pA79L12AHC
pA79L12AWC

,uAl01AF

3-145
3-20
3-20
3-20
3-151

Page
3-353
3-177

pA79M24CKC
pA79M24UC
pA101AD

3-145
3-145
3-145
3-145
3-145

Motorola
Similar

Replacement

pA78S40PV
MC79l05ACG

p.A79M15CKC

3-145
3-145
3-145
3-145
3-145

Motorola
Direct
Replacement

pA78S40PV
pA79l05AHC

p.A79M05CKC

3-145
3-145
3-145
3-145
3-145

3-151
3-151
3-151
3-151
3-151

MC78M20CT
MC78M20CT
MC78M24CT

Part Number

CROSS REFERENCE Part Number

.A556PC
.A702DC
.A702DM

I1A702MJ
~A702ML

IJA709AHM

"A709CP

Motorola
Similar
Replacement

Page

MC1733C
MC1733

11-40
2-153
2-153

MC1733
MC1733C
MC1733
MC1733
MC1733

2-153
2-153
2-153
2-153
2-153

MC3456P

.A702FM
.A702HC
.A702HM

.A709AMJG
.A709AML
"A709CJG
"A709CL

CONTINUED

Motorola
Direct
Replacement

MC1709AG
MC1709AU
MC1709AG
MC1709CU
MC1709CG

2-149
2-149
2-149
2-149
2-149

MC1709CPl

2-149
2-149
2-149
2-149
2-149

pA709HC

MC1709CG

"A709HM
"A709MJG
"A709ML

MC1709G
MC1709U
MC1709G

"A709TC
"A715DC

MC1709CPl
MC1741SCU
MC1741SU
MC1741SCG
MC1741SG

pA715DM

"A715HC
pA715HM

MC1723CL
MC1723CL
MC1723CG
MCl723CP
MC1723CL

3-111
3-111
3-111
3-111
3-111

"A723DM

MC1723L
MC1723L
MC1723CG

3-111
3-111
3-111
3-111
3-111

p.A723F

"A723HC
II.A723HM

MC1723G

"A723MJ

MC1723L

"A723ML
"A723PC
"A725AHM
.A725EHC
.A725HC

MC1723G
MC1723CP
LM108AH
LM308AH
LM308AH

.A733CJ
.A733CL
"A733CN
"A733DC

MC1733CG
MC1733CP
MC1733CL

2-40
2-153
2-153
2-153
2-153

"A733DM
J.lA733FM
"A733HC
"A733HM
"A733MJ

MC1733L
MC1733F
MC1733CG
MC1733G
MC1733L

2-153
2-153
2-153
2-153
2-153

IJA733ML

MC1733G

LM108AH

p.A725HM

MC1733CL

.A734DC
"A734DM
"A734HC
"A734HM

LM311J
LM311J
LM311H
LM311H

"A740HC
"A741ADM
"A741AHM
"A741CJG

LF355H
MC1741L
MC1741G

pA741CL

MC1741CU
MC1741CG

.A741CP
.A741EHC
.A741HM
.A741MJG

MC1741G
MC1741U

.A741ML
.A741RC
.A741RM

MC1741G
MC1741CU
MC1741U

MC1741CPl

p.A7420C

.A747ADM
.A747AHM
.A747CL
.A747CN
.A747DC
.A747DM
.A747EDC
,uA747EHC

.A747HC
.A747HM

MC1741G
MC1741G

MC1741G
CA3059

MC174SCG
MC174SCPl
MC174SCG
MC174SG
MC1748U

2-176
2-176
2-176
2-176
2-176

p.A748ML

MC174SG
MC174SCPl

.A775DC
.A775DM
.A775PC
.A776DC
.A776DM

LM339J
LM339J
LM339N

.A776HC
.A776HM
J.l.A776TC
.A777CJ
.A777CJG

MC1776CG
MC1776G
MC1776CPl

MC1350P
MC1350P
MC1741S

2-176
2-176
9-15
9-15
2-166

MC1776CG
MCl776G

2-57
2-57
2-57
2-1S0
2-1S0

LM30SAJ-S
LM30SAJ-8

2-180
2-180
2-180
2-40
2-40

LM308AH
LM30SAN
LM30SAN
LM30SAJ-S
LM30SAH

2-40
2-40
2-40
2-40
2-40

LM10SAJ-S
LM10SAJ-S
LM10SAH
LM30SAN

.A777MJ
.A777MJG
.A777ML
.A777TC
.A796DC

MC1496L

2-40
2-40
2-40
2-40
8-13

.A796DM
.A796HC
.A796HM
.A79BHC
.A79SHM

MC1596L
MC1496G
MC1596G
MC345SG
MC355SG

8-13
8-13
S-13
2-221
2-221

.A79SRC
.A798RM
.A79STC
.A799HC
.A799HM

MC345SU
MC355SU
MC345SPl

2-221
2-221
2-221
2-161
2-161

MC1741G
MC1741G

.A1391PC
.A145SCHC
.A145SCP
.A145SCRC
.A1458CTC

MC1391P
MC145SCG
MC145SCPl
MC145SCU
MC145SCPl

9-35
2-124
2-124
2-124
2-124

.A1458E
.A145SHC
.A145SP
.A145SRC
.A145STC

MC145SG
MC155SG
MC145SPl
MC145SU
MC145SPl

2-124
2-124
2-124
2-124
2-124

.A155SE

MC1558G
MC1558G

pA1558HM

MC1455U
MC1455P1
CA3054

.A2240DC
.A2240PC
.A3026HM

2-161
2-161
2-161
4-8

2-172
2-172
2-172
2-172
2-172

j.!A748Cl
.A748CP
J,lA748HC
IJ.A748HM
.A74SMJG

MC174SG

I

2-161
2-161
2-161
2-161

MC1747L
MC1747CL
MC1747CG
MC1747CG
MC1747G

MC174SCU

p.A777DC

2-16
2-161
2-161
2-161
2-161

MC1747CG
MC1747CP2
MC1747CL

Pege

2-172
2-172
2-172
2-176
2-176

.A777HC

2-153
2-45
2-45
2-45
2-45

2-172
2-172
2-172
2-172
2-172

MC1747L
MC1747G

Similar

MC1747L
MC1747G
MC1747CP2

.A777CL
.A777CN
.A777CP

3-111
3-111
2-40
2-40
2-40

Motorola
Replacement

.A747MJ
.A747ML
.A747PC
.A74SAHM
.A74SCJG

.A74STC
.A757DC
.A757DM
}J,.A772

2-149
2-166
2-166
2-166
2-166

.A723CF
"A723CJ
.A723CL
"A723CN
"A723DC

Motorola
Direct
Replacement

Part Number

J.lA3045
.A3046DC
.A3054DC
.A3064PC

MC3346P
CA3054P

.A3301P
.A3302P
.A3303P
.A3401P
.A3403D

MC3301P
MC3302P
MC3303P
MC3401P
MC3403L

.A3403P
.A4136DC
.A4136DM

MC3403P

MC3346P

MC13010P

MC455SCG

MOTOROLA LINEAR/INTERFACE DEVICES
1-23

9-40
9-40
9-7
9-73
2-189
2-57
2-199
2-1S9
2-199

MC4741CL
MC4741L
MC4741CP

jlA4136PC

.A455SHC

2-124
2-124
11-4
11-4
9-7

2-199
2-236
2-236
2-236
2-232

Il

CROSS REFERENCE Part Number

CONTINUED

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page

MC4558G
MC4558CP1
MC7805CT
MC7805CK
MC7805K

2-232
2-232
3-132
3-132
3-132

"A7818UC
"A7818UV
"A7824CKC
"A7824KC
"A7824KM

MC7818CT
MC7818BT
MC7824CT
MC7824CK
MC7824K

3-132
3-132
3-132
3-132
3-132

MC7805CT
MC7805BT
MC7806CT
MC7806CK
MC7606K

3-132
3-132
3-132
3-132
3-132

j..I.A7824UC
"A7824UV
"A7905CKC
"A7905KC
"A7905KM

MC7824CT
MC7905CT
MC7905CK

3-132
3-132
3-168
3-168
3-168

pA7808KM

MC7806CT
MC7806BT
MC7808CT
MC7808K
MC7808K

3-132
3-132
3-132
3-132
3-132

"A7905UC
"A79052CKC
"A7906CKC
"A7906UC
"A7908CKC

MC7905CT
MC7905.2CT
MC7906CT
MC7906CT
MC7908CT

"A7808UC
"A7808UV
"A7812CKC
"A7812KC
"A7812KM

MC7808CT
MC7808BT
MC7812CT
MC7812CK
MC7812K

3-132
3-132
3-132
3-132
3-132

"A7908KC
"A7908UC
"A7912CKC
"A7912KC
"A7912KM

MC7912CT
MC7912CK

"A7812UC

3-132
3-132
3-132
3-132
3-132

"A7912UC
"A7915CKC
"A7915KC

MC7912CT
MC7915CT
MC7915CK

"A7815KC
"A7815KM

MC7812CT
MC7812BT
MC7815CT
MC7815CK
MC7815K

"A7915UC

MC7915CT

"A7815UC
"A7815UV
"A7818CKC
"A7818KC
"A7818KM

MC7815CT
MC7815BT
MC7818CT
MC7818CK
MC7818K

3-132
3-132
3-132
3-132
3-132

"A7918CKC
"A7918UC
"A7924CKC
"A7924UC
"PC1373

MC7918CT
MC7918CT
MC7924CT
MC7924CT

.uA4558HM

"A4558TC
"A7805CKC
"A7805KC
"A7805KM
f,iA7805UC

"A7805UV
"A7806CKC
"A7806KC
MA7806KM
"A7806UC
"A7806UV
"A7808CKC
"A7808KC

pA7812UV
,uA7815CKC

MC7824BT

MC7905CK

MC7908CT
MC7908CT

MC7912CK

MC7915CK

IJ.A7915KM

MOTOROLA LINEAR/INTERFACE DEVICES
1-24

3-168
3-168
3-168
3-168
3-168

MC3373P

3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
3-168
9-43

Amplifiers
and Comparators

In Brief ...
For over two decades, Motorola has continually
refined and updated integrated circuit technologies,
analog circuit design techniques and processes in
response to the ever-expanding needs of the market
place. The enhanced performance of present day operational amplifiers and comparators have come into
being through innovative application of these technologies, designs and processes. Some early designs,
though of inferior performance by today's standards,
are still available but are rapidly giving way to the new,
higher performance operational amplifier and comparator circuits. Motorola has pioneered in JFET inputs,
low temperature coefficient input stages, Miller loop
compensation, all NPN output stages, dual-doublet frequency compensation and analog "in-the-package"
trimming of resistors to produce superior high performance operational amplifiers and comparators, operating in many cases from a single supply, with low input
offset, low noise, low power, high output swing, high
slew rate and high gain-bandwidth product at reasonable cost to the customer.
Present day operational amplifiers and comparators
find application in all segments of society to include
motor controls, instrumentation, aerospace, automotive, telecommunication, medical and consumer
products.

Selector Guide
Operational Amplifiers ...........
High Frequency Amplifiers ..... _.
Miscellaneous Amplifiers. . . . . . . ..
Comparators .....................

2-2
2-8
2-9
2-10

Alphanumeric Listing .............. 2-11
Related Application Notes. . . . . . . . .. 2-13
Data Sheets ....................... 2-14

E

fI

Amplifiers and
Comparators

Page
Operational Amplifiers
Single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
High Frequency Amplifiers
AGC ............ " .................. 2-8
Non-AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Miscellaneous Amplifiers
CMOS
Quad Programmable Op Amp .............. 2-9
Quad Programmable Comparator ............ 2-9
Dual Prog. Op Amp/Dual Prog. Compo ........ 2-9
Bipolar
Dual Op Amp-Comp . . . . . . . . . . . . . . . . . . . . . 2-9
Power Amplifiers Variable Gain ............. 2-9
Comparators
Single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Operational Amplifiers
Motorola offers a broad line of bipolar operational
amplifiers to meet a wide range of applications. From
low-cost industry-standard types to high precision circuits, the span encompasses a large range of perfor_
mance capabilities. These linear integrated circuits are
available as single, dual, and quad monolithic devices
in a variety of temperature ranges and package styles.
Most devices may be obtained in unencapsulated
"chip" form as well. For price and delivery information
on chips, please contact your Motorola Sales Representative or Distributor.

Single Operational Amplifiers

Device

lIB
,.A
Max

VIO TCVIO
mV ,.vrc
Typ
Max

110
nA
Max

BW
Avol IAv=1)
VlmV MHz
Min
Typ

SR
IAv=1)
VI,.s
Typ

Supply
Voltage
V
Min Max

Description

Package
Suffix

Noncompensated
Commercial Temperature Range IO"C to + 70"C)
LM301A
LM30B
LM30BA
MC1439
MC1709C
MC174BC

0.25
7.0
7.0
1.0
1.5
0.5

7.5
7.5
0.5
7.5
7.5
S.O

10
15
5.0
15
15
15

50
1.0
1.0
100
500
200

25
25
BO
15
15
20

1.0
1.0
1.0
2.0
1.0
1.0

0.5
0.3
0.3
4.2
0.3
0.5

±3.0
±3.0
±3.0
±S.O
±3.0
±3.0

±1B
±1B
±1B

General Purpose
Precision
Precision

±18

High Slew Rate
General Purpose
General Purpose

±1B
±1B

General Purpose
Precision
Precision

H, N/S2S, J/S93
H, NIS2S
H, NIS2S
G/S01, P1
G/S01, P1, U
G/S01, P1, U

H, N/626, J/693
H, N/626, JIS32, J-B
H, N162S, J/632, J-B

Military Temperature Range 1-55"C to + 12S"C)
LM101A
LM10B
LM10BA
MC1539
MC1709
MC1709A
MC1748

0.075
0.002
0.002
0.5
0.5
0.6

2.0
2.0
0.5
3.0
5.0
3.0

10
3.0
1.0
15
15
5.0

10
0.2
0.2
SO
200
100

50
50
BO
50
25
25

1.0
1.0
1.0
2.0
1.0
1.0

0.5
0.3
0.3
4.2
0.3
0.5

±3.0
±3.0
±3.0
±4.0
±3.0
±3.0

±22
±20
±20
±1B
±18
±18

0.5

5.0

15

200

50

1.0

0.5

±3.0

±22

General Purpose
Precision
Precision
High Slew Rate
General Purpose
High Performance
MC1709
General Purpose

MOTOROLA LINEAR/INTERFACE DEVICES
2-2

H, J/693
H, J, J·B/S93
H, J, J-B/S93
G/S01

G1601, U
GIS01
G/601, U

Device

liB
"A
Max

VIO
mV
Max

TCVIO

"vrc
Typ

110
nA
Max

BW
Avol (A v =1)
V/mV
MHz
Typ
Min

SR
(Av =1)
V/"s
Typ

Supply
Voltage
V
Min Max

Description

Package
Suffix

Internally Compensated
Commercial Temperature Range (O"C to + 70"C)
10
10
5.0
10
5.0
10
5.0
5.0
0.6

10
5.0
5.0
5.0
5.0
5.0
5.0
10
2.0

100 pA
50 pA
20 pA
50 pA
20 pA
50 pA
20 pA
50 pA
10 pA

200 pA

5.0

3.0

25 pA

50

0.25
0.04
0.03
30

7.5
10
10

10
12
12

-

-

50
10
10
5.0 vA

25
70
70
80

0.5
0.5
0.003
0.05

6.0
6.0
6.0
6.0

15
15
15
15

200
200
3.0
25

20
20
100
50

LF351
LF355
LF3558
LF356
LF3568
LF357
LF3578
LF441C
LMllC

200
200
100
200
100
200
100
100
100

LMllCL
LM307
MC1436
MC1456
MC1733C
MC1741C
MC1741SC
MCl776C
MC3476
MC34001
MC34001A
MC34001B
MC34071
MC34071A
MC34080
MC34080A
MC34081
MC34081A
MC34181
OP-27E
OP-27F
OP-27G
TL061AC
TL061BC
TL061C
TL071AC
TL071BC
TL071C
TL081AC
TL081BC
TL081C

pA
pA
pA
pA
pA
pA
pA
pA
pA

200 pA 10
100 pA 2.0
200 pA 5.0
0.50
5.0
500 nA 3.0
200 pA 1.0
200 pA 0.5
200 pA 1.0
200 pA 0.5
0.1 nA 2.0
0.040 0.025
0.055 0.060
0.080 0.100
200 pA 6.0
200 pA 3.0
200 pA 15
200 pA 6.0
200 pA 3.0
200 pA 10
200 pA 6.0
200 pA 3.0
400 pA 15

10
10
10
10
10
10
10
10
10
10
0.2
0.3
0.4
10
10
10
10
10
10
10
10
10

25
50
50
50
50
50
50
25
250

100 pA 25
50 pA
50
100 pA 50
75
25
50
50
100 pA 25
100 pA 50
100 pA 25
100 pA 50
0.05
25
35
1000
50
1000
75
700
100 pA 4.0
100 pA 4.0
200 pA 4.0
50 pA
50
50 pA
50
50 pA
25
100 pA 50
100 pA 50
200 pA 25

13
5.0
5.0
15
12
75
50
6.0
0.3

±5.0

"'18

"'5.0
"'5.0
"'5.0
±5.0
±5.0
±5.0
±5.0

±18

",22
±18
±22
±18
±22
±18

JFET Input
JFET Input
JFET Input
JFET Input
JFET Input
Wide band FET Input
JFET Input
Low Power JFET Input

±3.0

±20

Precision

1.0

0.3

"'3.0

±20

1.0
1.0
1.0
90

0.5
2.0
2.5

-

±3.0 ±18
±15 ±34
±3.0 ±18
±4.0 ±8.0

1.0
1.0
1.0
1.0

0.5
10
0.2
0.2

±3.0
±3.0
±1.2
±1.5

4.0
4.0
4.0
4.5
4.5
16
16
8.0
8.0
4.0
8.0
8.0
8.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0
4.0

13
13
13
10
10
55
55
30
30
10
2.8
2.8
2.8
6.0
6.0
6.0
13
13
13
13
13
13

±5.0
±5.0
±5.0
+3.0
+3.0
±5.0
±5.0
±5.0
±5.0
±2.5
"'4.0
±4.0
±4.0
±2.5
±2.5
±2.5
"'5.0
±5.0
",5.0
±5.0
±5.0
±5.0

4.0
1.0
2.5
2.0
5.0
3.0
20
2.0
1.0

Precision

General Purpose
High Voltage
High Performance
Differential Wideband

Video Amp
±18
General Purpose
±18
High Slew Rate
±18 JLPower, Programmable
±18
Low Cost
"Power, Programmable
±18
JFET Input
±18
JFET Input
:':18
JFET Input
+44
High Performance,
Single Supply
+44
±22
Decompensated
±22
MC34081 for Av"'2
±22 High Speed, JFET Input
±22 High Speed, JFET Input
±18 Low Power JFET Input
",22
Low Noise, Precision
",22
low Noise, Precision
±22
Low Noise, Precision
±18 Low Power JFET Input
±18 Low Power JFET Input
±18 Low Power J FET Input
±18 Low Noise, JFET Input
±18 Low Noise, JFET Input
±18 Low Noise, JFET Input
JFET Input
±18
JFET Input
±18
JFET Input
±18

N/626
H/601, J/693
H/601, J/693
H/601, J/693
H/601, J/693
H/601, J/693
H/601, J/693
N/626
H, N/626, J/632,
J-8/693
H, N/626, J/632,
J-8/693
N/626
G/601, U
G/601, Pl, U
G/601, L, P/646
G/601, Pl, U
G/601, Pl
G/601, Pl, U
G/601, Pl, U
G/601, P/626, U
G/601, P/626, U
G/601, P/626, U
P/626, U
P/626, U
P/626, U
P/626, U
P/626, U
P/626, U
P/626
P/626
P/626
P/626
P/626
P/626
P/626
P/626, JG
P/626, JG
P/626, JG
P/626, JG
P/626, JG
P/626, JG

Low NOise, Precision
Low Noise, Precision
Low Noise, Precision

z
z

High Performance,

P/626, U
P/626, U
P/626

z

Automotive Temperature Range (-40'C to +85'C)
MC33071
0.50
MC33071A 500 nA
MC33171
0.10

5.0
3.0
4.5

10
10
10

75
50
20

25
50
50

4.5
4.5
1.8

10
10
2.1

+3.0
+3.0
+3.0

+44
+44
+44

MC33181
TL061 V

2.0
6.0

10
10

0.05
100 pA

25
4.0

4.0
2.0

10
6.0

±2.5
±2.5

±18
±18

0.1 nA
200 pA

Single Supply
Low Power, Single
Supply
Low Power JFET Input
Low Power JFET Input

MOTOROLA LINEAR/INTERFACE DEVICES
2-3

P/626
P/626

E

Single Operational Amplifiers (continued)
liB
p.A
Max

Device

VIO TCVIO
mV p'vrc
Max
Typ

110
nA
Max

BW
Ayol IAy =1)
V/mV
MHz
Typ
Min

SR
IAy =1)
V/p.s
Typ

Supply
Voltage
V
Min Max

Description

Package
Suffix

Internally Compensated
Military Temperature Range I -SS'C to + 12S'C)
LMll
MC1536
MC1556
MC1733

50 pA
0.02
0.015
0.20

0.3
5.0
4.0
-

1.0
10
10

10 pA
3.0
2.0

-

MC1741
MC1741S
MCl776
MC35001
MC35001A
MC3500H!
MC35071
MC35071A
MC35080
MC35080A
MC35081
MC35081A
MC35171

0.5
0.5
0.0075
100 pA
75 pA
100 pA
0.50
500 nA
200 pA
200 pA
200 pA
200 pA
0.10

5.0
5.0
5.0
10
2.0
5.0
5.0
3.0
1.0
0.5
1.0
0.5
4.5

MC35181
OP-27A
OP-27B
OP-27C
TL061M
TL071M
TL081M

0.1 nA 2.0
0.040 0.025
0.055 0.060
0.080 0.100
200 pA 6.0
200 pA 6.0
200 pA 9.0

1.0
1.0
1.0
90

0.3
2.0
2.5

3.0 p.A

250
100
100
90

-

±3.0
±15
±3.0
±4.0

15
15
15
10
10
10
10
10
10
10
10
10
10

200
200
3.0
100 pA
25 pA
50 pA
75
50
100 pA
100 pA
100 pA
100 pA
20

50
50
200
25
50
50
25
50
25
50
25
50
50

1.0
1.0
1.0
4.0
4.0
4.0
4.5
4.5
16
16
8.0
8.0
1.8

0.5
10
0.2
13
13
13
10
10
55
55
30
30
2.1

±3.0
±3.0
±1.2
±5.0
±5.0
±5.0
+3.0
+3.0
±5.0
±5.0
±5.0
±5.0
+3.0

10
0.2
0.3
0.4
10
10
10

25
0.05
1000
35
50
1000
75
700
100 pA 4.0
50 pA
35
100 pA 25

4.0
8.0
8.0
8.0
2.0
4.0
4.0

10
2.8
2.8
2.8
6.0
13
13

±2.5
±4.0
±4.0
±4.0
±2.5
±5.0
±5.0

Precision

±20
±40
±22
±8.0

H, J/632, J-8/693
G/601, U
G/B01, 693, U
G/603, L

±22
±22

High Voltage
High Performance
Differential Wideband
Video Amp
General Purpose
High Slew Rate

±18

}.LPower, Programmable

G1601, L

±22
±22
±22
+44
+44
±22

JFET Input
JFET Input
JFET Input

G/601, U
G/601, U
G/601. U

High Performance,

U
U
U
U
U
U
U

±22

±22
±22
+44

Single Supply
Decompensated
MC35081 for Av>-2
High Speed, JFET Input
High Speed, JFET Input
Low Power, Single
Supply
Low Power JFET Input

G/601, U
G/601, U

Low Power JFET Input
Low Noise, JFET Input
JFET Input

U
Z
Z
Z
JG
JG
JG

Typ

Supply
Voltage
V
Min Max

Description

Package
Suffix

1.0

0.25

I ± 3.0 I ± 18 I

Dual MC1709

L, P/646

1.0

0.25

I ±3.01

±181

Dual MC1709

±18

JFET Input
Low Power JFET Input
Single Supply
ILowPower
Consumption)
Dual, Low Noise, Audio
Dual MC1741
Dual General Purpose
High Slew Rate
Dual MC1741
Split Supplies
Single Supply

±18
±22
±22
±22
±18

±18
±18

Low NQise, Precision
Low Noise, Precision
Low Noise, Precision

Dual Operational Amplifiers
liB
p.A
Max

Device

VIO
mV
Max

110
nA
Max

TCVIO

p.vrc
Typ

BW
Ayol IAy =1)
V/mV
MHz
Min
Typ

SR
IAy =1)
VII'S

Noncompensated
Commercial Temperature Range 10"<: to + 7O"C)

IMC1437 I

1.5

I 7.5 I

10

I

500

I 15

Military Temperature Range 1-55"<: to +125'C)

IMC1537 I

0.5

I 5.0 I

10

I 200 I 25

Internally Compensated
Commercial Temperature Range IO'C to + 70'C)
LF353
LF442C
LM358

LM833
MC1458
MCI458C
MC1458S
MC1747C
MC3458

200 pA
100 pA
0.25

10
5.0
6.0

10
10
7.0

100 pA
50 pA
50

25
25
25

4.0
2.0
1.0

13
6.0
0.6

±5.0
±5.0
±1.5
+3.0

±18
+36

1.0
0.5
0.70
0.5
0.5
0.5

5.0
6.0
10
6.0
6.0
10

2.0
10
10
10
10
7.0

200
200
300
200
200
50

31.6
20
20
20
25
20

15
1.1
1.1
1.0
1.0
1.0

7.0
0.8
0.8
10
0.5
0.6

±2.5
±3.0
±3.0
±3.0
±3.0
±1.5
+3.0

±18
±18
±18
±18
±18
±18
+36

±18

(Low Crossover

Distortion)

MOTOROLA LINEAR/INTERFACE DEVICES
2-4

N/626
N/626
H, N/626, J/693

P/626
G/601, PI, U
G/601, PI
G/601, PI, U
G/603, L, P2
G/601, PI, U

Dual Operational Amplifiers (continued)

Device

liB
,.,A
Max

VIO
mV
Max

TCVIO
,.,VI"C
Typ

110
nA
Max

BW
Avol (Av =l)
V/mV
MHz
Min
Typ

SR
(Av =l)
V/,.,s
Typ

Supply
Voltage
V
Min Max

Description

Package
Suffix

Commercial Temperature Range (O°C to + 70°C) (continued)
MC4558AC
MC4558C
MC34002
MC34002A
MC340028
MC34072
MC34072A
MC34082
MC34082A
MC34083
MC34083A
MC34182
TL062AC
TL0628C
TL062C
TL072AC
TL0728C
TL072C
TL082AC
TL0828C
TL082C

0.5
0.5
100 pA
75 pA
100 pA
0.50
500 nA
200 pA
200 pA
200 pA
200 pA
0.1 nA
200 pA
200 pA
200 pA
200 pA
200 pA
200 pA
200 pA
200 pA
400 pA

5.0
6.0
10
2.0
5.0
5.0
3.0
3.0
1.0
3.0
1.0
3.0
6.0
3.0
15
6.0
3.0
10
6.0
3.0
15

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

200
200
100 pA
50 pA
70 pA
75
50
100 pA
100 pA
100 pA
100 pA
0.05
100 pA
100 pA
200 pA
50 pA
50 pA
50 pA
100 pA
100 pA
200 pA

50
20
25
50
25
25
50
25
50
25
50
25
4.0
4.0
4.0
50
50
25
50
50
25

2.8
2.8
4.0
4.0
4.0
4.5
4.5
8.0
8.0
16
16
4.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0
4.0

1.6
1.6
13
13
13
10
10
30
30
55
55
10
6.0
6.0
6.0
13
13
13
13
13
13

±3.0
:±3.0

±5.0
±5.0
±5.0
+3.0
+3.0
::1::5.0

±5.0
±5.0
±5.0
±2.5
±2.5
±2.5
±2.5
±5.0

±5.0
±5.0
±5.0
±5.0
±5.0

:±22
::1::18

±18
±18
±18
+44
+44
... 22
.,,22
±22
±22
±18
±18
±18
±18

±18
±18

±18
±18
±18
±18

High Frequency
High Frequency
JFET Input
JFET Input
JFET Input
High Performance,
Single Supply
High Speed, ~FET Input
High Speed, JFET Input
Decompensated
MC34082 for Av"'2
Low Power JFET Input
Low Power JFET Input
Low Power JFET Input
Low Power JFET Input
Low Noise, JFET Input
Low Noise, JFET Input
Low Noise, JFET Input
JFET Input
JFET Input
JFET Input

Pl
G/601, Pl, U
G/601, P/626, U
G/601, P/626, U
G/601, P1626, U

P1626, U
P1626, U
P1626, U
P1626, U
P1626, U
P1626, U
PI626
P/626
P/626

PI626
P1626, JGI693
P1626, JGI693
P1626, JGI693
P1626, JG/693
P/626, JG/693
P1626, JG/693

Industrial Temperature Range (-25°C to +85°C)

Split or Single
Supply Op Amp

H, N1626, J/693

H, N1626, JI693

H, JI693

Automotive Temperature Range (-40°C to +85°C)
LM2904
MC3358

0.25
5.0

MC33072
0.50
MC33072A 500 nA
1.0
MC33077
750 nA
MC33078
MC33172
0.10
MC33182
MC33282
TL062V

8.0

10

75

100
typ
20

5.0
3.0
1.0
2.0
4.5

10
10
2.0
2.0
10

75
50
180
150
20

25
50
150
31.6
50

4.5
4.5
37
16
1.8

10
10
11
7.0
2.1

±1.5
±3.0
±1.5
..,,3.0
+3.0
+3.0
±2.5
±5.0
+3.0

10
5.0
10

0.05
50 pA
100 pA

25
50
4.0

4.0
30
2.0

10
12
6.0

±2.5
±2.5
±2.5

±18
±18
±18

Split or Single
Supply Op Amp
Split Supplies
Single Supply
High Performance,
Single Supply
Dual, Low Noise
Low Noise
Low Power, Single
Supply
Low Power JFET Input
Low Input Oftset JFET
Low Power JFET Input

7.0

0.1 nA 3.0
100 pA 200,.,V
200 pA 6.0

7.0

50

1.0

0.6

1.0

0.6

±13

±26
±18
±36
+44
+44
±18
±18
+44

Pl1626
P/626, U
P1626, U
P/626
N/626

PI626
PI626
PI646
P/626

Military Temperature Range (- 55"<: to + 125°C)
LM158

0.15

5.0

10

30

50

1.0

0.6

±1.5
+3.0

±18
+36

Split Supplies
Single Supply

MC1558
MC1558S
MC1747
MC3558

0.5
0.5
0.5
0.5

5.0
5.0
5.0
5.0

10
10
10
10

200
200
200
50

50
50
50
50

1.1
1.0
1.0
1.0

0.8
10
0.5
0.6

5.0
10
2.0
5.0
5.0
3.0
3.0
1.0

10
10
10
10
10
10
10
10

200
100 pA
25 pA
50 pA
75
50
100 pA
100 pA

I 5025

2.8
4.0
4.0
4.0
4.5
4.5
8.0
8.0

1.6
13
13
13
10
10
30
30

±3.0
±3.0
±3.0
±1.5
+3.0
±3.0
±5.0
±5.0
±5.0
+3.0
+3.0
±5.0
±5.0

±22
±22
±22
±18
+36
±22
±22
±22
±22
+44
+44
±22
±22

Consumption)
Dual MC1741
High Slew Rate
Dual MC1741
Split Supplies
Single Supply
High Frequency
JFET Input
JFET Input
JFET Input
High Performance,
Single Supply
High Speed, JFET Input
High Speed, JFET Input

(Low Power

MC4558
0.5
MC35002
100 pA
MC35002A 75 pA
MC350028 100 pA
0.50
MC35072
MC35072A 500 nA
MC35082
200 pA
MC35082A 200 pA

50
50
25
50
25
50

MOTOROLA LINEAR/INTERFACE DEVICES

2-5

G/601, U

G1601, U
G1601, L
G1601, U
G1601,
G1601,
G1601,
G1601,
U
U
U
U

U
U
U
U

E

fI

Dual Operational Amplifiers (continued)

Device

liB
pA
Max

VIO
mV
Max

TCvIO

,.vrc
TVp

110
nA
Max

BW
Ayol (Ay =1)
V/mV
MHz
Min
Typ

SR
(Ay =1)
V/,.s
Typ

SupplV
Voltage
V
Min Max

Description

Package
Suffix

Militarv Temperature Range (-SS·C to +12S·C)
MC35083
MC35083A
MC35172

200 pA
200 pA
0.10

3.0
1.0
4.5

10
10
10

100 pA
100 pA
20

25
50
50

16
16
1.8

55
55
2.1

±5.0
±5.0
+3.0

±22
±22
+44

MC35182
TL062M
TL072M
TL082M

0.1 nA
200 pA
200 pA
200 pA

3.0
6.0
6.0
6.0

10
10
10
10

0.05
100 pA
50 pA
100 pA

25
4.0
35
25

4.0
2.0
4.0
4.0

10
6.0
13
13

±2.5
±2.5
±5.0
±5.0

±18
±18
±18
±18

U
U
U

Decompensated
MC35082 for Av""2
Low Power, Single
Supply
Low Power JFET Input
Low Power JFET Input
Low Noise, JFET Input
JFET Input

JG
JG
JG

Description

Package
Suffix

U

Quad Operational Amplifiers

Device

liB
,.A
Max

VIO
mV
Max

TCVIO

,.vrc
TVp

110
nA
Max

BW
Ayol (Ay =11
V/mV
MHz
Typ
Min

SR
(Ay =l)
VI,..
Typ

Supply
Voltage
V
Min Max

Internally Compensated
Commercial Temperature Range (O·C to + 70·C)
LF347
LF347B
LF444C
LM324
LM348
MC34011
LM3900
MC3403

200 pA
200 pA
100 pA
0.25

10
5.0
10
6.0

0.20
0.3

6.0

-

0.5

10

7.0

MC4741C
0.5
MC34004
200 pA
MC34004B 200 pA
MC34074
0.50
MC34074A 500 nA
MC34084
200 pA
MC34084A 200 pA
MC34085
200 pA
MC34085A 200 pA
MC34184
0.1 nA
TL064AC
200 pA
TL064BC
200 pA
TL064C
200 pA
TL074AC
200 pA
TL074C
200 pA
TL084AC
200 pA
TL084BC
200 pA
TL084C
400 pA

6.0
10
5.0
5.0
3.0
12
6.0
12
6.0
10
6.0
3.0
15
6.0
10
6.0
3.0
15

10
10
10
7.0

100 pA
100 pA
50 pA
50

25
50
25
25

4.0
4.0
2.0
1.0

13
13
6.0
0.6

-

50

-

-

25
1.0

1.0
5.0

0.5
0.6

50

20

1.0

0.6

15
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

200
100 pA
100 pA
75
50
100 pA
100 pA
100 pA
100 pA
0.05
100 pA
100 pA
200 pA
50 pA
50 pA
100 pA
100 pA
200 pA

20
25
50
25
50
25
50
25
50
25
4.0
4.0
4.0
50
25
50
50
25

1.0
4.0
4.0
4.5
4.5
8.0
8.0
16
16
4.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0

0.5
13
13
10
10
30
30
55
55
10
6.0
6.0
6.0
13
13
13
13
13

±5.0
±5.0
±5.0
±1.5
+3.0
±3.0
±1.5
+3.0
±1.5
+3.0
±3.0
±5.0
±5.0
+3.0
+3.0
±5.0
±5.0
±5.0
±5.0
±2.5
±2.5
±2.5
±2.5
±5.0
±5.0
±5.0
±5.0
±5.0

±18
±18
±18
±16
+32
±18
±18
+36

JFET Input
JFET Input
Low Power JFET Input
Low Power
Consumption
Quad MC1741
Norton Input

N/646
N/646
N/646
J/632, N/646

±1S

No Crossover
Distortion
Quad MC1741
JFET Input
JFET Input
High Performance,
Single Supply
Hi·Speed, JFET Input
Hi·Speed, JFET Input
Decompensated
MC34084 for Av""2
Low Power JFET Input
Low Power JFET Input
Low Power JFET Input
Low Power JFET Input
Low Noise, JFET Input
Low Noise, JFET Input
JFET Input
JFET Input
JFET Input

L, P/646

+36
±18
±18
±18
+44
+44

±22
±22
±22
±22
±18
±18
±18
±18

±18
±18
±18
±18
±18

L, P/646
L, P/646
L, P/646
L, P/646
L, P/646
P/646
P/646
P/646
P/646
P/646
N/646
N/646
N/646
J/632, N/646
J/632, N/646
J/632, N/646
J/632, N/646
J/632, N/646

Split or Single
Supply OP Amp
Quad MC1741

J/632, N/646

Differential
Low Power

N/646

MOTOROLA LlNEAR/)NTERFACE DEVICES
2-6

J/632, N/646
J/632, N/646

J/632, N/646

Quad Operational Amplifiers (continued)

Device

liB
pA
Max

VIO
mV
Max

TCVIO
,.VI"C
Typ

110
nA
Max

BW
Avol (Av =1)
V/mV
MHz
Min
Typ

SR
(Av =1)
V/,.s
Typ

Supply
Voltage
V
Min Max

Description

Package
Suffix

Automotive Temperature Range ( - 40"<: to + 85"<:) (continued)
MC33011

0.3

-

-

-

1.0

4.0

0.6

LM2900
MC3303

0.5

8.0

10

75

20

1.0

0.6

MC33074

0.50

5.0

10

75

25

4.5

3.0
2.5
4.5

10
2.0
10

50
150
20

50
31.6
50

10
5.0
10

0.05
50pA
100 pA

25
50
4.0

MC33074A 500 nA
750 nA
MC33079
MC33174
0.10
MC33184
MC33284
TL064V

0.1 nA
10
100pA 200/LV
200 pA 9.0

10

±2.0
+4.0
±1.5
+3.0
+3.0

±15
+28
±18
+36
+44

4.5
16
1.8

10
7.0
2.1

+3.0
±5.0
+3.0

+44
±18
+44

4.0
30
2.0

10
12
6.0

±2.5
±2.5
±2.5

±18
±.18
±18

Norton Input
Differential
General Purpose
High Performance,
Single Supply
Quad High Performance
Quad Low Noise
Low Power, Single
Supply
Low Power JFET Input
Low Input Offset JFET
Low Power JFET Input

P/646
N/646
P/646

L, P/646
L, P/646
N/646
P/646
P/646
P/646
N/646

Telecommunications Temperature Range (-40"<: to +85"<:)
MC1434J3

1.0 nA

30

-

200 pA 45 dB

0.8

1.5

4.75

12.6

MC143404

1.0 nA

30

-

200 pA 60 dB

0.8

1.0

4.75

12.6

±16
+32
±18
±18
+36
±22
±22
±22
+44

CMOS, Low Power,
Drives Low-Impedance
Loads
CMOS, Very Low Power

L, P/646

L, P/646

Military Temperature Range ( - 55'C to + 125'C)
LM124

0.15

5.0

7.0

30

50

1.0

0.6

LM148
MC3503

0.10
0.5

5.0
5.0

7.0

25
50

50
50

1.0
1.0

0.5
0.6

0.5
100 pA
100 pA
0.50

5.0
10
5.0
5.0

15
10
10
10

200
100 pA
50 pA
75

50
25
50
25

1.0
4.0
4.0
4.5

0.5
13
13
10

±1.5
+3.0
±3.0
±1.5
+3.0
±3.0
±5.0
±5.0
+3.0

MC35074A 500 nA
MC35084
200 pA
MC35084A 200 pA
MC35085
200 pA
MC35085A 200 pA
0.10
MC35174

3.0
12
6.0
12
6.0
4.5

10
10
10
10
10
10

50
100 pA
100 pA
100 pA
100 pA
20

50
25
50
25
50
50

4.5
8.0
8.0
16
16
1.8

10
30
30
55
55
2.1

+3.0
±5.0
±5.0
±5.0
±5.0
+3.0

+44
±22
±22
±22
±22
+44

MC35184
TL064M
TL074M
TL084M

10
9.0
9.0
9.0

10
10
10
10

0.05
100 pA
50 pA
100 pA

25
4.0
35
25

4.0
2.0
4.0
4.0

10
6.0
13
13

±2.5
±2.5
±5.0
±5.0

±18
±18
±18

MC4741
MC35004
MC35004B
MC35074

0.1 nA
200 pA
200 pA
200 pA

±18

Low Power
Consumption
Quad MC1741
General Purpose
Low Power
Quad MC1741
JFET Input
JFET Input
High Performance,
Single Supply
Quad High Performance
High Speed, JFET Input
High Speed, JFET Input
Decompensated
MC35084 for Av'32
Low Power, Single
Supply
Low Power JFET Input
Low Power JFET Input
Low Noise, JFET Input
JFET Input

MOTOROLA LINEAR/INTERFACE DEVICES
2-7

J/632, N/646
J/632

L, P/646
L
L
L
L
L
L
L
L
L
L
L
J/632
J/632
J/632

fI

High Frequency Amplifiers
A variety of high frequency circuits with features ranging from low cost simplicity to multi-function versatility
marks Motorola's line of integrated amplifiers. Devices
described here are intended for industrial and commu-

nications applications. For devices especially dedicated to
consumer products, i.e., TV and entertainment radio, see
the "Consumer Electronics" section.

AGC Amplifiers
MC1590G Family Amplifiers

frequency applications such as video switching, FSK
circuits, multiplexers, etc. Gating circuit is useful for
AGC control.

Wide-Band General Purpose

Non-AGC Amplifiers

The MC1590G, MC1490, MC1350 family are basic
building blocks - AGC (Automatic Gain Controlled) RF/
Video Amplifiers. These parts are recommended for
applications up through 70 MHz. The best high frequency performance may be obtained by using the
physically smaller SOIC version (shorter leads) -MC1350D. There are currently no other RF IC's like
these, because other manufacturers have dropped their
copies. Applications include variable gain video and
instrumentation amplifiers, IF (intermediate Frequency)
amplifiers for radio and TV receivers, and transmitter
power output control. Many uses will be found in medical instrumentation, remote monitoring, video/graphics processing, and a variety of communications equipment. The family of parts using the same basic die
(identical circuit with slightly different test parameters)
is listed in the following table.

SElNE592 Amplifier

Differential Two Stage Video

A monolithic, two stage differential output, wideband
video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400
to 0 with one external resistor. The input stage has been
designed so that with the addition of a few external
reactive elements between the gain select terminals, the
circuit can function as a high pass, low pass, or band
pass filter. This feature makes the circuit ideal for use
as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.

MC1733/MC1733C -

Video Amplifier

Differential input and output amplifier provides three
fixed gain options with bandwidth to 120 MHz. External
resistor permits any gain setting from 10 to 400 VN.
Extremely fast rise time (2.5 ns typ) and propagation
delay time (3.6 ns typ) makes this unit particularly useful
as pulse amplifier in tape, drum, or disc memory read
applications.

MC1545/1445 - Gated 2-Channellnput
Differential input and output amplifier with gated 2channel input for a wide variety of switching purposes.
Typical 50 MHz bandwidth makes it suitable for high

High-Frequency Amplifier Specifications
Operating
Temperature Range

AV
dB

@

Bandwidth
MHz

-55' to + 125'C

- 40' to + 85'C

0' to +1O'C

Min

Max

Case/Suffix

MC1590G

-

-

50
35

10
100

+6.0

+18

601

-

-

MC1350

50
50

45
45

+6.0

+18

626/P,
751/D

-

50
35

10
100

+6.0

+18

6261P

-

MC1490

ITyp)

VCcNEE
Vdc

-

MCl445

19

50

±4.0

±12

603/G,632/L

SE592

NE592

52
40

40
90

±4.0

±8.0

603/H,632/F
646/N

MC1733

-

MC1733C

52
40
20

40
90
120

±4.0

±8.0

603/G,632/L
646/P

MCI545

MOTOROLA LINEAR/INTERFACE DEVICES
2-8

Miscellaneous Amplifiers
devices range from low power CMOS programmable
amplifiers and comparators to variable-gain bipolar
power amplifiers.

Motorola provides several bipolar and CMOS special
purpose amplifiers which fill specific needs. These

CMOS

Bipolar

MC14573: Quad Programmable Operational Amplifier
MC14574: Quad Programmable Comparator
MC14575: Dual Programmable Operational
Amplifier and Dual Programmable
Comparator

MC3505/MC3405: Dual Operational Amplifier
and O"ual Comparator
This device contains two Differential Input Operational Amplifiers and two Comparators each set capable
of single supply operation. This operational amplifiercomparator circuit will find its applications as a general
purpose product for automotive circuits and as an industrial "building block."

These low power devices are designed for applications such as active filters, voltage reference circuits,
function generators, oscillators, and limit set alarms.

Output 1

1

Out 4

Output 4

i'

'OP"" 1

: Inputs 3

Output 2

} 'OP"" 4

'OP"" 1 {

'OP""

Output 3

7

'1

} 'OP"" 3

5

MC14573
MC14574

50 pA

±30

100 pA

1.0

10'

3.0 to 15

On51 F. P/648

± 1.5 to ±7.5

MC14575
4Propagatlon Delay

VOLTAGE GAIN versus FREQUENCY IRL

Power Amplifiers Variable Gain

ro

~

16 OHMS)

35r-'-rrr.G'-.~in~0~~"'io~n'#"'~~Av~'306VwNvnTm--.-rr~rr--'''nTrrn

; 30~+-~~G~.~in~O=Pt~io=n~#~2~ffiF~t?8#VN~lm==*=FF~#==F~~~

MC1554G-TA = - 55° to + 125°C, Case 603C
MC1454G-TA = 0° to + 70°C, Case 603C

~ 2S~~~~G~.min~o~~~;o~n~#~3H+~~,~oFvN~~--+-~~#--+9H~Ern

operation. Typical voltage gain of 10, 18, or 33 VN with

i

w 20r-~rt~~~~fH~~~f+~~-+~~~--~-H~

; 15r-~rtH+~-+-rrH~r-+-rt~~-+-b~~--~-H~
10 r-+rtH+~-+-rrH~r-+-rttt+~-+ Pout = 1.0 WRMS
One-watt Power Amplifier for single or split supply e
RL ~ 16 OHMS

0.4% THO.

5~

vCC
10

100

1.0k 2.0k 5.0kltlk
f, FREQUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-9

~

16 V

lOOk

1.0M

II

Comparators

Description

Single
BIPOLAR
With strobe, will operate
from single supply

Requires only 10 pA from
single-ended supply

Dual
BIPOLAR
LM193
LM193A
LM293
LM293A
LM393
LM393A
LM2903

0.10
0.10
0.25
0.25
0.25
0.25
0.25

5.0
2.0
5.0
2.0
5.0
2.0
7.0

0.025
0.025
0.050
0.050
0.050
0.050
0.050

200K
200K
200K
200K
200K
200K
200K

6.0
6.0
6.0
6.0
6.0
6.0
6.0

1300
1300
1300
1300
1300
1300
1500

MC3405
MC3505

0.5
0.5

10
5.0

0.050
0.050

200K
200K

6.0
6.0

1300
1300

Designed for single or split -55to +125
supply operation, input
-55 to +125
-25 to +85
+3.0 to +36 common mode includes
ground (negative supply)
-25 to +85
o to +70
o to + 70
-40 to +85
±1.5 to

H
H
H
H

±18or

±1.5to
±7.5 or
+3.0 to 15

This device contains two

op amps and two

H, N/626
H, N/626
N/626

o to

+70
U632, P/646
-55to +125
U632

comparators in a single

package

CMOS
MC14575

0.001

30

0.0001

20K

3.0

1000

±1.5to
±7.5 or
+3.0 to 15

This device contains two
op amps and two

-40 to +85

P/648

comparators in a single

package

Quad
BIPOLAR
LM139
LM139A
LM239
LM239A
LM339
LM339A
LM2901
MC3302

0.10
0.10
0.25
0.25
0.25
0.25
0.25
0.50

5.0
2.0
5.0
2.0
5.0
2.0
7.0
20

0.025
0.025
0.050
0.050
0.050
0.050
0.050
0.500

200K
200K
200K
200K
200K
200K
lOOK
30K

6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0

1300
1300
1300
1300
1300
1300
1300
1300

MC3430
MC3431
MC3432
MC3433

40
40
40
40

6.0
10
6.0
10

1.0 Typ
1.0 Typ
1.0 Typ
1.0 Typ

1.2K
1.2K
1.2K
1.2K

16
16
16
16

33
33
40
40

Designed for single or split -55 to +125
±1.5 to
-55 to +125
supply operation, input
±18 or
-25 to +85
+3.0 to +36 common mode includes
ground (negative supply)
-25 to +85
o to +70
o to + 70
-40 to +85
-40 to +85
+5.0,
+5.0,
+5.0,
+5.0,

-5.0 High speed comparatorl
-5.0 sense-amplifier
-5.0
-5.0

CMOS
Externally programmable
power dissipation with one
or two resistors

MOTOROLA LINEAR/INTERFACE DEVICES

2-10

o to

+70
o to + 70
+70
+70

o to
o to

J
J
J,
J,
J,
J,

N/646
N/646
N/646
N/646
N/646
N/646

L,
L,
L,
L,

P
P
P
P

AMPLIFIERS
OPERATIONAL AMPLIFIERS
Device
LF347
LF351
LF353
LF355.B
LF356.B
LF357.B
LF411C
LF412C
LM11.C.CL
LM101A
LM108.A
LM124
LM148
LM158
LM201A
LM208.A
LM224
LM248
LM258
LM301A
LM307
LM308.A
LM324.A
LM348
LM358
LM833
LM2900
LM2902
LM2904
LM3900
MC1436.C
MC1437
MC1439
MC1456.C
MC1458.C
MC1458S
MC1490P
MC1536
MC1537
MC1539
MC1556
MC1558
MC1558S
MC1709.A.C
MC1741.C
MC1741S.SC
MC1747.C
MC1748.C
MC1776.C
MC3301
MC3303
MC3358
MC3401
MC3403
MC3458
MC3476
MC3503
MC3558
MC4558.AC.C
MC4741.C

Function

Family of BIFET Operational Amplifiers ................................ .
Family of BIFET Operational Amplifiers ................................ .
Family of BIFET Operational Amplifiers ................................ .
Monolithic JFET Operational Amplifier ................................ .
Monolithic JFET Operation Amplifier .................................. .
Monolithic JFET Operational Amplifier ................................ .
Low Offset. Low Drift JFET Input Operational Amplifier .................. .
Low Offset, Low Drift JFET Input Operational Amplifier .................. .
Precision Operational Amplifiers ..................................... .
General Purpose Adjustable Operational Amplifier ...................... .
Precision Operational Amplifiers ..................................... .
Quad Low Power Operational Amplifier ............................... .
Quad MC1741 Operational Amplifier .................................. .
Dual Low Power Operational Amplifier ................................ .
General Purpose Adjustable Operational Amplifier ...................... .
Precision Operational Amplifiers ..................................... .
Quad Low Power Operational Amplifiers .............................. .
Quad MC1741 Operational Amplifier .................................. .
Dual Low Power Operational Amplifier ................................ .
General Purpose Adjustable Operational Amplifier ...................... .
Internally Compensated Monolithic Operational Amplifier ................ .
Precision Operational Amplifiers ........................... '.......... .
Quad Low Power Operational Amplifier ............................... .
Quad MC1741 Operational Amplifier .................................. .
Dual Low Power Operational Amplifier ................................ .
Dual. Low Noise, Audio Operational Amplifier .......................... .
Quad Single Supply Operational Amplifier ............................. .
Quad Low Power Operational Amplifier ............................... .
Dual Low Power Operational Amplifier ................................ .
Quad Single Supply Operational Amplifier ............................. .
High Voltage Operational Amplifier ................................... .
Dual Operational Amplifier .......................................... .
High Slew Rate Operational Amplifier ................................. .
High Performance Operational Amplifier .............................. .
Dual Operational Amplifiers ......................................... .
High Slew Rate Dual Operational Amplifier ............................ .
Wideband Amplifier with AGC ... , ................................... .
High Voltage Operational Amplifiers .................................. .
Dual Operational Amplifier .......................................... .
High Slew Rate Operational Amplifier ................................. .
High Performance Operational Amplifier .............................. .
Low Noise Dual Operational Amplifier ................................ .
High Slew Rate Dual Operational Amplifier ............... , ............ .
General Purpose Operational Amplifier ................................ .
General Purpose Operational Amplifier .................... , ........... .
High Slew Rate Operational Amplifier ..................... , ........... .
Dual MC1741 Operational Amplifier ....................... , ........... .
General Purpose Operational Amplifier .................... , ........... .
Programmable Operational Amplifier ................................. .
Quad Operational Amplifier ................ , ...... , ...... , ........... .
Quad Differential Input Operational Amplifier ............. " ........... .
Dual Low Power Operational Amplifier ................................ .
Quad Operational Amplifier .......................................... .
Quad Differential Input Operational Amplifier .............. , ........... .
Dual Low Power Operational Amplifier ................................ .
Programmable Operational Amplifier ..................... , ........... .
Quad Differential Input Operational Amplifier .......................... .
Dual Low Power Operational Amplifier ................................ .
Dual High Frequency Operational Amplifier ............................ .
Quad MC1741 Operational Amplifier .................................. .
MOTOROLA LINEAR/INTERFACE DEVICES
2-11

Page
2-14
2-14
2-14
2-16
2-16
2-16
2-26
2-26
2-29
2-36
2-40
2-51
2-61
2-67
2-36
2-40
2-51
2-61
2-67
2-36
2-78
2-40
2-51
2-61
2-67
2-82
2-189
2-51
2-67
2-189
2-92
2-96
2-100
2-118
2-124
2-129
2-135
2-92
2-96
2-100
2-118
2-124
2-129
2-149
2-161
2-166
2-172
2-176
2-180
2-189
2-199
2-221
2-189
2-199
2-221
2-227
2-199
2-221
2-232
2-236

E

II

AMPLIFIERS
OPERATIONAL AMPLIFIERS (con't)
Device
MC33071
MC33072
MC33074
MC33078
MC33079
MC33171
MC33172
MC33174
MC33181
MC33182
MC33184
MC33282
MC33284
MC34001
MC34002
MC34004
MC34071
MC34072
MC34074
MC34080
MC34081
MC34082
MC34083
MC34084
MC34085
MC34181
MC34182
MC34184
MC35001
MC35002
MC35004
MC35071
MC35072
MC35074
MC35080
MC35081
MC35082
MC35083
MC35084
MC35085
MC35171
MC35172
MC35174
MC35181
MC35182
MC35184
OP-27
TL061
TL062
TL064
TL071
TL072
TL074
TL081
TL082
TL084

Function

High Performance, Single Supply Operational Amplifier ................. .
Dual High Performance, Single Supply Operational Amplifier ............ .
Quad High Performance, Single Supply Operational Amplifier ............ .
Low Noise Operational Amplifier ..................................... .
Low Noise Operational Amplifier ..................................... .
Low Power, Single Supply Operational Amplifier ....................... .
Dual Low Power, Single Supply Operational Amplifier ................... .
Quad Low Power, Single Supply Operational Amplifier .................. .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
JFET Operational Amplifier .......................................... .
JFET Operational Amplifier .......................................... .
JFET Input Operational Amplifiers .................................... .
JFET Input Operational Amplifiers .................................... .
JFET Input Operational Amplifiers .................................... .
High Performance, Single Supply Operational Amplifier ................. .
Dual High Performance, Single Supply Operational Amplifier ............ .
Quad High Performance, Single Supply Operational Amplifier ............ .
High Speed Decompensated (AVCL ? 2) JFET Input Operational
Amplifier ........................................................ .
High Speed JFET Input Operational Amplifier .......................... .
Dual High Speed JFET Input Operational Amplifier ..................... .
Dual High Speed Decompensated (AVCL ? 2) JFET Input
Operational Amplifier ............................................. .
Quad High Speed JFET Input Operational Amplifier ..................... .
Quad High Speed Decompensated (AVCL ? 2) JFET Input
Operational Amplifier ............................................. .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
JFET Input Operational Amplifiers .................................... .
JFET Input Operational Amplifiers .................................... .
JFET Input Operational Amplifiers .................................... .
High Performance, Single Supply Operational Amplifier ................. .
Dual High Performance, Single Supply Operational Amplifier ............ .
Quad High Performance, Single Supply Operational Amplifier ............ .
High Speed Decompensated (AVCL ? 2) JFET Input Operational
Amplifier ........................................................ .
High Speed JFET Input Operational Amplifier .......................... .
Dual High Speed JFET Input Operational Amplifier ..................... .
Dual High Speed Decompensated (AVCL ? 2) JFET Input
Operational Amplifier ............................................. .
Quad High Speed JFET Input Operational Amplifier ..................... .
Quad High Speed Decompensated (AVCL ? 2) JFET Input
Operational Amplifier ............................................. .
Low Power, Single Supply Operational Amplifier ....................... .
Dual Low Power, Single Supply Operational Amplifier ................... .
Quad Low Power, Single Supply Operational Amplifier .................. .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
Ultra Low Noise Precision, High Speed Operational Amplifiers ........... .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
Low Power JFET Input Operational Amplifier .......................... .
Low Noise JFET Input Operational Amplifier ........................... .
Low Noise JFET Input Operational Amplifier ........................... .
Low Noise JFET Input Operational Amplifier ........................... .
JFET Input Operational Amplifier ..................................... .
JFET Input Operational Amplifier ..................................... .
JFET Input Operational Amplifier ..................................... .
MOTOROLA LINEAR/INTERFACE DEVICES

2-12

Page
2-267
2-267
2-267
2-241
2-241
2-250
2-250
2-250
2-294
2-294
2-294
2-257
2-257
2-260
2-260
2-260
2-267
2-267
2-267

2-283
2-283
2-283
2-283
2-283
2-283
2-294
2-294
2-294
2-260
2-260
2-260
2-267
2-267
2-267
2-283
2-283
2-283
2-283
2-283
2-283
2-250
2-250
2-250
2-294
2-294
2-294
2-308
2-320
2-320
2-·320
2-328
2-328
2-328
2-335
2-335
2-335

AMPLIFIERS
HIGH FREQUENCY AMPLIFIERS
Device
MC1350
MC1445
MC1490P
MC1545
MC1590G
MC1733,C
NE592
SE592

~FU~~i;17fier

Cha:t:~e9

.................................................. See
Wideband Amplifier .................................................
Wideband Amplifier with AGC ........................................
Wideband Amplifier .................................................
Wideband Amplifier with AGC ........................................
Differential Video Amplifier ...........................................
Video Amplifier .....................................................
Video Amplifier ................................. : ...................

2-108
2-135
2-108
2-141
2-153
2-303
2-303

MISCELLANEOUS AMPLIFIERS
Device
MC1454G
MC1554G
MC3405
MC3505
TCA0372

Function
1-Watt Power Amplifier ............................................. .
1-Watt Power Amplifier ............................................. .
Dual Operational Amplifier plus Dual Voltage Comparator ............... .
Dual Operational Amplifier plus Dual Voltage Comparator ............... .
Dual Power Operational Amplifier .................................... .

Page
2-114
2-114
2-205
2-205
2-317

COMPARATORS
Device
LM111
LM139,A
LM193,A
LM211
LM239,A
LM293,A
LM311
LM339,A
LM393,A
LM2901
LM2903
MC1414
MC1514
MC3302
MC3405
MC3430
MC3431
MC3432
MC3433
MC3505

Function
High Performance Voltage Comparator .................................
Quad Single Supply Comparators .....................................
Dual Comparators ...................................................
High Performance Voltage Comparator .................................
Quad Single Supply Comparators .....................................
Dual Comparators ...................................................
High Performance Voltage Comparator .................................
Quad Single Supply Comparators .....................................
Dual Comparators ...................................................
Quad Single Supply Comparators .....................................
Dual Comparators ...................................................
Dual Differential Voltage Comparator ..................................
Dual Differential Voltage Comparator ..................................
Quad Single Supply Comparators .....................................
Dual Operational Amplifier plus Dual Voltage Comparator ................
High Speed Quad Comparator ........................................
High Speed Quad Comparator ........................................
High Speed Quad Comparator ........................................
High Speed Quad Comparator ........................................
Dual Operational Amplifier plus Dual Voltage Comparator ................

Page
2-45
2-57
2-73
2-45
2-57
2-73
2-45
2-57
2-73
2-57
2-73
2-88
2-88
2-57
2-205
2-213
2-213
2-213
2-213
2-205

RELATED APPLICATION NOTES
Application
Note
AN926, AR115
AN273A
AN513A
AN587, EB20
EB57

Title
Techniques for Improving the Settling of a DAC and Op.
Amp. Combination ...................................
Getting More Value Out of an Int. Op. Amp. Data Sheet .....
A High Gain Int. Circuit RF-IF Amp. with Wide Range AGC ...
Analysis and Design of the Op. Amp. Current Source .......
An Economical FM Trans. Voice Proc. from a Single
Integrated Circuit .....................................

MOTOROLA LINEAR/INTERFACE DEVICES

2-13

Related
Device
LF357, MC34084,
MC34085, MC34087
MC1439, 1539
MC1490P, MC1590G
MC1741
MC3401

E

II

®

LF347
LF351
LF353

MOTOROLA

FAMILY OF BIFET
OPERATIONAL AMPLIFIERS

JFET INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC
INTEGRATED CIRCUITS

These low cost JFET input operational amplifiers combine two
state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier
has well matched high voltage JFET input devices for low input
offset voltage. The BIFET technology provides wide bandwidths
and fast slew rates with low input bias currents, input offset currents, and supply currents.
These devices are available in single, dual and quad operational
amplifiers which are pin-compatible with the industry standard
MC1741, MC1458, and the MC3403/LM324 bipolar devices.

N SUFFIX
PLASTIC PACKAGE
CASE 626-05
(LF351, LF353 Only)

a.

DSUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8
(LF351, LF353 Only)

• Input Offset Voltage of 5.0 mV Max (LF347B)

1 '

OffsetNulI~' NC

lnvt Input'
Noninvt Input , .

• Low Input Bias Current - 50 pA

VEE

4

,

Vee

ti

Output

•

Offset Null

LF351
(Top View)

• Low Input Noise Voltage - 16 nV/YHz

OutPutA~' VCC

• Wide Gain Bandwidth - 4.0 MHz

Inputs A { , V

• High Slew Rate - 13 V/p,s

--:::-' Output B

'+A
"l'nputs B
EE'
B+'

r

LF353
(Top View)

• Low Supply Current - 1.8 rnA per Amplifier
• High Input Impedance - 10 12

NSUFFIX
PLASTIC PACKAGE
CASE 646-06
(LF347 Only)

n

• High Common-Mode and Supply Voltage Rejection
Ratios - 100 dB

D SUFFIX
PLASTIC PACKAGE
CASE 751A-02
SO-14

MAXIMUM RATINGS
Symbol

Value

Unit

Supply Voltage

Rating

VCC
VEE

+18
-18

V

Differential Input Voltage

VID

+30

V

VIDR

+15

V

ts

Continuous

PD

900

mW

11(JJA

10

mWrC

Input Voltage Range (Note 1)
Output Short Circuit Duration (Note 2)
Power Dissipation at TA = + 25°C
Derate above T A = + 25°C

o to

TA

Operating Junction Temperature Range

TJ

115

°c

Tst!!

-65to +150

°c

Storage Temperature Range

+ 70

°C

Operating Ambient Temperature Range

NOTES;

1. Unless otherwise specified, the absolute maximum negative input voltage is
limited to the negative power supply.

2. Any amplifier output can be shorted to ground indefinitely. However, if more
than one amplifier output is shorted simultaneously, maximum junction temperature
ratings may be exceeded.

(Top View)

ORDERING INFORMATION
Function
Device
Single
Single
Dual
Dual
Quad
Quad
Quad

MOTOROLA LINEAR/INTERFACE DEVICES

2-14

LF351D
LF351N
LF353D
LF353N
LF3470
LF347BN
LF347N

Package

SO-8
Plastic DIP

SO·8
Plastic DIP

SO-14
Plastic DIP
Plastic DIP

lF347,lF351, lF353

E

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25·C unless otherwise noted).
LF347B
Symbol

Characteristic
Input Offset Voltage (RS '" 10 k, VCM = 0)
TA = +25·C
O·C '" TA '" +70·C
Average Temperature Coefficient of Input Offset
Voltage
RS'" 10 k, O·C '" TA '" +70·C

VIO

l1VIO/l1T

Input Offset Current (VCM = 0, Note 3)
TA = +25·C
O·C "" TA "" +70·C

110

Input Bias Current (VCM = 0, Note 3)
TA = +25·C
O·C""TA"" +70·C

liB

Min

LF347, LF351, LF353

Typ

Max

Min

Typ

Max

-

1.0

-

5.0
8.0

-

10

-

-

-

25

-

100
4.0

-

-

-

200
8.0

-

-

Unit

-

5.0

-

10
13

10

-

25

100
4.0

pA
nA

200
8.0

pA
nA

mV

p.V/"C

r;

-

10 12

-

-

10 12

-

n

Common Mode Input Voltage Range

VICR

:tll

+15
-12

-

:tll

+15
-12

-

V

Large-Signal Voltage Gain (VO =

AVOL
50
25

100
-

-

25
15

100

-

:t14

-

:t12

:t14

Input Resistance

V, RL = 2.0 k)
TA = +25·C
O·C""TA"" +70·C
:t 10

50

50

V/mV

Common Mode Rejection Ratio (RS '" 10 k)

CMRR

80

100

-

70

100

-

Supply Voltage Rejection Ratio (RS '" 10 k)

PSRR

80

100

-

70

100

-

Output Voltage Swing (RL = 10 k)

Vo

Supply Current

10
LF347
LF351
LF353

Slew Rate (AV = + 1)

BWp

Equivalent Input Noise Voltage
(RS = 100 n, f = 1000 Hz)

en

Equivalent Input Noise Current (f = 1000 Hz)

in

Channel Separation (LF347, LF353)
1.0 Hz '" f '" 20 kHz (Input Referred)

-

12

-

V
dB
dB
rnA

-

SR

Gain-Bandwidth Product

:t

-

-

-

-

-

7.2

11

-

-

13
4.0
16
0,01
-120

7.2
1.8
3.6

11
3.4
6.5

13

-

nV/YHz

0.01

-

pAlYHz

-120

-

dB

4.0
16

V/p.s
MHz

For Typical Characteristic Performance Curves, refer to MC34001/34002!34004 data sheet.
NOTES: (continued)
3. Input bias currents of JFET input op amps approximately double for every lOoe rise in junction temperature. To maintain junction temperatures as
close to ambient as is possible, pulse techhiques are utilized during test.

MOTOROLA LINEAR/INTERFACE DEVICES
2-15

®

fI

LF355, LF356,
LF357* LF355B,
LF356B, LF357B*

MOTOROLA

Specifications and Applications
Information

MONOLITHIC JFET
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC
INTEGRATED CIRCUITS

MONOLITHIC JFET INPUT
OPERATIONAL AMPLIFIERS
These internally compensated operational amplifiers incorporate
highly matched JFET devices on the same chip with standard
bipolar transistors. The JFET devices enhance the input characteristics of these operational amplifiers by more than an order

HSUFFIX
METAL PACKAGE
CASE 601-04

of magnitude over conventional amplifiers.

NC

This series of op amps combines the low current characteristics
typical of FET amplifiers with the low initial offset voltage and
offset voltage stability of bipolar amplifiers. Also, nulling the offset
voltage does not degrade the drift or common mode rejection.
•

Low Input Bias Current - 30 pA

•

Low I nput Offset Current - 3.0 pA

•

Low Input Offset Voltage - 1.0 mV

•

Temperature Compensation of Input Offset Voltage 3.0 Jl.V/oC

•

Low Input Noise Current - 0.01 pA/y'RZ

•

High Input Impedance - 1012n

•

High Common-Mode Rejection Ratio - 100 dB

•

High DC Voltage Gain - 106 dB

8

'€8a

Offset Null
Invt Input 2
Noninvt Input 3
VEE 4

• LF355/355B -

Low Power Supply Current

• LF356/356B -

Wide Bandwidth

• LF357/357B -

Wider Bandwidth Decompensated (AVmin = 5)

ORDERING INFORMATION

LF355BH,H
LF355BJ,J
LF356BH,H
LF356BJ,J
LF357BH,H
LF357BJ,J

o to
oto
oto

Package

+70'C
+70'C

Metal Can
Ceramic DIP

+70'C

+70OC

Metal Can
Ceramic DIP

oto +70°C
oto + 70°C

Metal Can
Ceramic DIP

o to

-

+

NC
7 Vee
6 Output
5 Offset Null

(Top View)

LF355/355B LF356/356B LF357/357B
1.5p.s_
Fast Settling Time to 0.01%
4.0/Jos
1.5/Jos
Fast Slew Rate
5.0V/IJ.S
12 V//Jos
50 V//Jos
Wide Gain Bandwidth
2.5 MHz
5.0 MHz
20 MHz
Low Input Noise Voltage
20 nV/YHz 12 nV/YHz 12 nV/YHz

Temperature Range

(Top View)

J SUFFIX
CERAMIC PACKAGE
CASE 693-02

SERIES FEATURES

Device

VEE

1

APPLICATIONS

The LF series is suggested for all general
purpose FET input amplifier requirements
where precision and frequency response
flexibility are of prime importance.
Specific applications include:
•
•
•
•
•

Sample and Hold Circuits
High Impedance Buffers
Fast DI A and AID Converters
Precision High Speed Integrators
Wideband, Low Noise, Low Drift Amplifiers

°NOTE: The LF3571357B are designed for wider
bandwidth applications. They are decompensated
(AVmin = 5).

MOTOROLA LINEAR/INTERFACE DEVICES

2-16

LF355,LF356, LF357,LF355B,LF356B, LF357B

E

MAXIMUM RATINGS
Rating
Supply Voltage
Differential Input Voltage

Symbol

LF35581
3568/3578

LF3551356/357

Unit

VCC
VEE

+22
-22

+18
-18

V

VID

±40

±30

V

Input Voltage Range (Note 1)

V, DR

±20

±16

V

Output Short-Circuit Duration

TS

Operating Ambient Temperature Range

TA

Operating Junction Temperature

TJ

115

°C

Tstg

-65 to +150

°C

Storage Temperature Range

Continuous

o to

+70

°C

..

Note 1. Unless otherwise specified, the absolute maximum negative mput voltage IS equal to the negative power supply

voltage.

CIRCUIT SCHEMATIC

Offset Null
~

Vee
7

J3

2 0----+----,
Inv. Input

Input

'C1
"C2

=
=

R2

R3

30

30

5.0 pF on LF357.
2.0 pF on LF357.

MOTOROLA LINEAR/INTERFACE DEVICES

2-17

fI

LF355,LF356,LF357,LF3558,LF3568,LF3578
DC ELECTRICAL CHARACTERISTICS (VCC = 15 to 20 V, VEE = -15 to -20 V for LF355B/356B/357B; VCC = 15 V, VEE =
-15 V for LF355/356/357' TA = O°C to + 70°C unless otherwise noted)
LF355B16B178
Characteristic
Input Offset Voltage (RS
(TA = 25°C)
(Over Temperature)

=

Symbol

500, VCM

= 0)

Change in Average TC with VIO Adjust
(RS = 50 0) (Note 2)
Input Offset Current (VCM
(TJ = 25°C)
(TJ .. 70°C)

Input Resistance (TJ

VIO

-

-

Average Temperature Coefficient of Input Offset
Voltage
(RS = 500)

Input Bias Current (VCM
(TJ = 25°C)
(TJ .. 70°C)

Min

= 0)

= 0)

(Note 3)

= 25°C)

Large Signal Voltage Gain
(VO = ± 10 V, RL = 2.0 k, VCC
VEE = -15V)
(TA = 25°C)
(O°C" TA" +70°C)

Max

3.0

-

5.0
6.5

Max

-

3.0

10
13

5.0

-

5.0

-

aTC/aVIO

-

0.5

-

-

0.5

20
1.0

-

3.0

-

-

100
5.0

-

-

-

-

110

-

3.0

liB

-

-

30

-

-

r;

10 12

",vrc
",vrc
permV

30

50
2.0

pA
nA

200
8.0

pA
nA

-

10 12

0
V/mV

AVOL

=

15 V,

-

25
15

200

±13
±12

-

±12
±10

±13
±12

±11

+15.1
-12.0

-

±10

+15.1
-12.0

-

V

CMRR

85

100

-

80

100

85

100

-

80

100

-

dB

PSRR

±12
±10
VICR

Common-Mode Rejection Ratio
Supply Voltage Rejection Ratio (Note 4)

-

-

-

V

Vo

= 10 kO)
= 2 kO)

Input Common-Mode Voltage Range
(VCC = 15 V, VEE = -15 V)

= 25°C, VCC =

Unit
mV

-

-

200

Supply Current (TA
VEE = -15V)
LF355B/355
LF356B1357B
LF356/357

Typ

aVIQiaT

50
25

Output Voltage Swing
(VCC = 15V, VEE = -15V, RL
(VCC = 15V, VEE = -15V, RL

Min

-

(Note 3)

LF355/617

Typ

15 V,

-

dB
rnA

ID

-

2.0
5.0

-

4.0
7.0

-

-

-

2.0

4.0

-

-

5.0

10

AC ELECTRICAL CHARACTERISTICS (VCC = 15 V, VEE = -15 V, TA = 25°C)
LF3558/355
Characteristic

Symbol

Slew Rate (Note 5)
(Av = 1) LF355/356
(Av = 5) LF357

Min

Typ

Max

LF3568/356
Min

Typ

Max

LF3578/357
Min

Typ

Max

SR

-

GBW

-

Settling Time to 0.01% (Note 6)

ts

-

Equivalent Input Noise Voltage
(RS = 100 n, f = 100 Hz)
(RS = 100 n, f = 1000 Hz)

en

Equivalent Input Noise Current
(f = 100 Hz)
(f = 1000 Hz)

in

Input Capacitance

Ci

Gain-Bandwidth Product

5.0

-

-

7.5

12

-

-

-

2.5

-

-

5.0

4.0

-

-

1.5

-

-

-

30

50

-

1.5

20

-

Unit

V/",s

MHz
",s
nV/YHz

-

25
20

-

-

15
12

-

-

-

-

0.Q1
0.01

-

0.Q1
0.01

3.0

-

-

-

-

-

15
12

-

-

-

0.Q1
0.Q1

-

3.0

-

pA/YHz

3.0

pF

NOTES

tudes increasing or decreasing simultaneously, in accordance with
common practice.
(5) The Min. slew rate limits apply for the LF3568 and the LF357B, but
do not apply for the LF356 or LF357.
(6) Settling time is defined here, for a unity gain inverter connection
using 2.0 k resistors for the LF355/6. It is the time required for the
error voltage (the voltage at the inverting input pin on the amplifier)
to settle to within 0.01% of its final value from the time a 10 V step
input is applied to the inverter. For the LF357, Ay = - 5.0, the feed·
back resistor from output to input is 2.0 k and the output step is 10
V (see settling time test circuit).

(1) Unless otherwise specified, the absolute maximum negative input

voltage is equal to the negative power supply.
(2) The temperature coefficient of the adjusted input offset voltage
changes only a small amount 10.5 J.LVrC typically) for 9ach mV of
adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset
adjustment.
(3) The input bias currents approximately double for every 10°C rise in
junction temperature, TJ. Due to limited test time, the input bias
currents are correlated to junction temperature. Use of a heat sink
is recommended if input bias current is to be kept to a minimum.
(4) Supply yoltage rejection ratio is measured for both supply magni·

MOTOROLA LINEAR/INTERFACE DEVICES
2-18

LF355,LF356,LF357,LF355B,LF356B,LF357B

TYPICAL DC PERFORMANCE CHARACTERISTICS
(Curves are for LF355. LF356. and LF357 series unless otherwise specified)
INPUT BIAS CURRENT versus CASE TEMPERATURE

~

lOOk

~

10k

~

~ lOOk

~

=>

u

'"
m

>-

~

~

~
=>

u

lk

."'''~

100

~

'"

~

~
~

:j

VCC"5V.VEE"-5V

VCC" 10 V. VEE" -10 V.

10

VCC"5V.VEE--5V

LF355

-25

5.0

35

',,0'''$

100

1.0

~

0.1
-55

VCC" 20 V. VEE" -20 V

lk

;;;
VCC" 10 V. VEE" -10 V

10

10k

~

Vcc "20V. VEE" - 20V

1.0

to-

0.1
-55

65 70

LF35617
-25

5.0

AGURE 3 - INPUT BIAS CURRENT
versus INPUT COMMON-MODE VOLTAGE
40

70

r-----

60

r-----

>-

VCC "1+ 15 V
VEE" -15 V
TA" 25 0 C
RL" 50 k

50

~

;;;

40

:;

30

~

20

Free~ i-"'"

I-""

----

III

Free~r

10

o

I-"

-10

0

-5.0

RL"ik

r----- -TA"25 0 C

20

>

~

.......

~

V

... V

10

.;'

6

>

Heat Sink

5.0

V

V

V

o

~ ~;:th-

iI

30

w

'"

;

,;'

~/

-

"'-

~
~

~

LF35617
With Heat Sink

"-:-F355

0.

. . .V

LF35617

........... V'

~

=>

"

65 70

FIGURE 4 - OUTPUT VOLTAGE SWING
versus SUPPLY VOLTAGE (LF355B1356B/357B)

80

~

35

TC. CASE TEMPERATURE (DC)

TC. CASE TEMPERATURE (DC)

~

E

FIGURE 2 - (LF356 AND LF357 SERIES)

FIGURE 1 - (LF355 SERIES)

o
10

o

10

5.0

VIC. COMMON·MOOE INPUT VOLTAGE (VOLTS)

20

15

VCC. VEE. SUPPLY VOLTAGE (±VOLTS)

SUPPLY CURRENT versus SUPPLY VOLTAGE
FIGURE 5 - (LF355 SERIES)

«

FIGURE 6 - (LF356 AND LF357 SERIES)

4.0

«
.§

8.0

~

7.0

3.0

=>

6.0

~

5.0

.§
>-

~

a'"

"~

~

~

E

----

~
~

-

2.0

1.0

o

5.0

Te

= 25 0 C

1-

E

~

4.0
3.0

LF35617

LF355
10

Tc" 25 0 C

t-

15

18

20

25

2.0

o

5.0

10

15

VCC. VEE. SUPPLY VOLTAGE (±VOLTS)

VCC. VEE. SUPPLY VOLTAGE (±VOL TS)

MOTOROLA LINEAR/INTERFACE DEVICES

2-19

20

25

fI

LF355,LF356,LF357,LF355B,LF356B,LF357B

TYPICAL DC PERFORMANCE CHARACTERISTICS (continued)

FIGURE 7 -

NEGATIVE CURRENT LIMIT

...

FIGURE 8 -

~

'"z
~

-15

w

'"

'"

!:;
0
>

-

r-.

~

!;

:!
'"z

~

I
Vee~

+15V f - - VEE ~ -15V
Te ~ 25°e
f---

15

w

~

-10

~

1
.1
Vee ~ +15V_
VEE ~ -15V
Te ~ 25°e
-

~

0

:!

'"'"

"

!:;
0

r'---

0

w

> -5.0
;::

'"z~

>

10

~

,

g

"-

w

>

5.0

1\

1<'

1\

6

>

-5.0

-10

-15

-20

-25

-30

-35

>

-40

10

5.0

ISink. OUTPUT SINK CURRENT (mA)

~

0

~
w

:!
w

~
>

i

~
o

15

~

""S

10

w

>

;::
u;

~
>"

5.0

/'

/'

V

V

20

30

35

40

·20

~

!:;
0
> -15

k-":

V

25

FIGURE 10 - NEGATIVE COMMON·MODE
INPUT VOLTAGE LIMIT

'"'"

ooe '" TA '" 70'C
20

>;

15

ISink. OUTPUT SINK CURRENT (mA)

FIGURE 9 - POSITIVE COMMON·MODE
INPUT VOLTAGE LIMIT

~o

\

;::

u;

6

'"'"

POSITIVE CURRENT LIMIT

~

TC

~

;;;

V

w

0
0

·10

,/'

>;
z

0

" -5.0

8"
w

>

~

~

25'C

~

~

~
10

5.0

15

~

20

;:

°_5.0

-10

FIGURE 11 -

-20

-15

VEE. NEGATIVE SUPPLY VOLTAGE (VOLTS)

VCC. POSITIVE SUPPL Y VOLTAGE (VOLTS)

AGURE 12 - OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

OPEN LOOP VOLTAGE GAIN

10M
RL ' 2k
-=- f-~ RS'50

==

~
~

z

iii
~

VCC'15V

28 -VEE'-15V
TA "'25°C

~

~

1M

24

V ....

~

~

,.,

o

>

~

g

.j

1
TA'25'C

~

20

~
o

16

~

12

...>

lOOk

..:.

j

o

o

~ 8.0

~

4.0

10 k

5.0

10

15

20

I

V
0.1

1.0

10

RL. OUTPUT LOAD RESISTANCE (kOl

VCC. VEE. SUPPLY VOLTAGE (±VOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES

2-20

100

LF355,LF356, LF357,LF355B,LF356B,LF357B

TYPICAL AC PERFORMANCE CHARACTERISTICS

E

GAIN BANDWIDTH PRODUCT
FIGURE 13 -

(LF355 SERIESI

FIGURE 14 -

5.0

LF355

'"~
t;

'"

'\.

4.0

0

~

'"0-0
i<

"

~

I

VCC" 10 V. VEE" -10 V

~

3.0

~

~

"
:;
~
z

VCC" 15 V, VEE" -15 V

~~

;;\

"

8.0

\.

~

~

z

(LF3561357 SERIES)

8.5

2.0

~

z

LF357 Curve. Identical,
But Multiplied bV 4.

7.0

"\.

6.0

~

LF356

"-

VCC" 10 V. VEE" -10 V
VCC" 15 V, VEE" -15 V

"'<

5.0

""" ......

~

'"

"-

~

~

i'---

4.0

1.0
-55

-35

-15

5.0

25

45

65

85

105

-55

125

-35

-15

5.0

TA, AMBIENT TEMPERATURE IOC)

25

45

65

85

TA, AMBIENT TEMPERATURE IOC)

--

105

125

INVERTER SETTLING TIME
FIGURE 15 -

(LF355 SERIES)

~
o

?
>
o

~'"
~

t--t---

5.0

T~" 25 0C

lOmV

VCC"15V
VEE"-15V

«
o

~

~

I mV

t!J

z

~

10mV .......

II

-10

0.1

0.5

0.2

FIGURE 17 -

t---

T~" 250~

I II

I II

VCC"15V
VEE"-15V

I

10mV

I

5.0

~

/J

'/

LF356, Av = - 1
LF357, Av = - 5

~

I mV

i'

1 mV

'":;«

~

~ -5.0

10

(LF356 AND LF357 SERIES)

w

>

6

1/

f----

o
2

i-"'"

'"
:;

>

j

V V

~

"'

,

LF355
10

FIGURE 16 -

:;

o
>
~ -5.0

I mV

:-t....

1-...
2.0

1.0

10mV

0-

"

'"o

~

5.0

I

-10

0.1

10

0,5

0.2

:\

\.\1
2,0

1.0

5.0

',. SETTLING TIME I.,)

FIGURE 18 -

NORMALIZED SLEW RATE

OPEN LOOP FREQUENCY RESPONSE

I

1.8
1.6

VCC"15V
VEE"-15V

"- r---......

1.4
1.2
1.0
0.8

--

~

110

~

90

«
'"

70

z

w

LF35617

:;

~

~
~~

~ I:\..

~""'<

0

>

LF356

0.6

"-

g

50

~

30

VCC" 15 V
VEE"-15V

~,

~

.:.
0

«>

0.2

o

-55

-35

-15

5.0

25

45

65

85

IDS

LF356

LF355 -'" ~"~ t'\..
~
I
~
I

10
0
-10

.....

10

125

."

~
~ l"

0

0.4

LF357

100

Ik

10k

lOOk

1M

10M

f, FREQUENCY 1Hz)

TA, AMBIENT TEMPERATURE IOC)

MOTOROLA LINEAR/INTERFACE DEVICES

2-21

10

LF355,LF356,LF357,LF355B,LF356B,LF357B

TYPICAL AC PERFORMANCE CHARACTERISTICS (continued)

fI

BODE PLOT
FIGURE 19 -

r-

...... ="Gain

Iii -~

r-

!-10
C)

(LF355 SERIES)

FIGURE 22 1000

I I

10
5.0

;;:

OUTPUT IMPEDANCE

I

I

LF355
75

Phase

VCC' 15V
VEE'-15V

~

-zo

r-=

-35

,

~

,-,

,

Z.o

1.0

'"

a..

-75

100

w

u

'-

Z

~

;!!

10

i5NO

1.0

....
~
....

~ 1= Av -100
LF355
Av

Av

15
10
5.0

lk

10k

100 k

0 '---f-- Gain
;;-5.0 ' -

~ -10

-15
-ZO
-Z5
-30
-35

I""""2k

IT'

FIGURE 23 -

125
100

::--..

75
25

~

o

........
N

.

,=, , , , , ,

-40
1.0

25

~

r-\~

I- -,

10

2.0

I",,~

~

~

50
75
-100
-125

-150
100

20

LF356
0.01
lk

100 k

10k

z

'"

10
5.0

~
;;:

r-...

I I
.......... I I

1--,
-20
1.0

VCC = 15 V
VEE=-15V

100
75

......

50

Gain

~~

rr-_

.

25

i"..

.....

2 pF

..........

10

20

Av

~
ffi

"

~

"-

-25 ~
-50 :::t:
-75 c..
-100
-125
-150
-175
100

LF357
0.01
1k

Av

100

o e

"-

,=, '"11
2.0

(LF357 SERIES)

TA 25°C
VCC 15 V
VEE -15 V

LF357

"]'I..

0
-5.0 H~
-10
-15

FIGURE 24 100

Phase

30
25
20
15

t, FREQUENCY (Hzl

(LF357 SERIES)

I I
I I
35

10M

~

e

t, FREQUENCY (MHz)

FIGURE 21 -

1M

(LF356 SERIES)

50 ~

-

r-'_

10M

LF356,
VCC=15V
VEE'-15V

~~J>L

r-

1M

100

Phase

i

1

t, FREQUENCY (Hz)

(LF356 SERIES)

I I
I I
I I

:---...

VCC 15 V
VEE--15V
TA - 25°C

o. 1

-125
100

t. FREQUENCY (MHz)

FIGURE 20 -

10

-100

zo

10

e

-50

"- r--....

, , , ,,

:s

-25 ~

.........

•

_

en
~

o '"

Zlk .,....

-Z5 I-\~
-30

50
25

~@

-15

~~

100

II

(LF355 SERIES)

10 k

t, FREQUENCY (MHz)

~
-

100 k

t, FREQUENCY

MOTOROLA LINEAR/INTERFACE DEVICES

2-22

10

1M
(Hz)

10M

LF355,LF356,LF357,LF355B,LF356B,LF357B

TYPICAL AC PERFORMANCE CHARACTERISTICS (continued)

FIGURE 25 -

"l

~

RL
k
TA" 15°C

a

i=
~

i
w

.........

80
60

~

40

G
~

10

w

16

"

"'~
">
~

I'....
" ,,-""-i'...'h.
LF357

20

~

6
>

"'l"

o
10

100

lk

10 k

100 k

1M

TA 25°C
VCC"15V
VEE" -15 V
RL "1 k
Av'" 1


"'""0...'\

(LF356 AND LF357 SERIES)

60

LF357

I\,.

~

40

t- Negative Supply

_.

10

:;,;g:

0

r+

100

10 M

"-

""'" "-

LF356 '

1k

10k

lOOk

"'

1M

10M

100M

f, FREQUENCY 1Hz)

f, FREQUENCY 1Hz)

EQUIVALENT NOISE VOLTAGE
FIGURE 29 -

@

(LF355/3561357 SERIES)

FIGURE 30 (EXPANDED SCALE)

~ 100

140

-f:

~

120

~

100

."'
">

~w
«
"'
':;

TA" 15°C
VCC" 15 V
VEE"-15V

w

a

",

>
~

60

~

a

z

i

!'...

~
«

LF355

r-

80

LF35617

I

-

If1"Io....

>
:3

::il
of

1111
lk

100

10k

\'\.

40

'\. i\... .........LF355

10

,

.....

LF35617 .......

o

10

500

1k
f, FREQUENCY 1Hz)

f, FREQUENCY 1Hz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-23

50 k

100 k

LF355,LF356,LF357,LF3558,LF3568,LF3578

TYPICAL CIRCUIT CONNECTIONS

FIGURE 31 -

DRIVING CAPACITIVE LOADS

FIGURE 32 -

LARGE POWER BANDWIDTH AMPLIFIER
10 k

5.0 k
*LF35516 R
LF357 R

= 5.0 k
= 1.25 k

V out

+2.0 V

-2.0

r

v-l
C\

10V / \

-IOVV

Due to a unique output stage design these amplifiers have the
ability to drive large capacitive loads and still maintain stability,
CL(max) ~ 0.01 J.LF.

For distortion < 1% and a 20 Vp-p VOut
swing, power bandwidth is: 500 kHz.

Overshoot 0;;;; 20%

Settling time (ts ) "= 5.0 p.s

FIGURE 33 -INPUT OFFSET VOLTAGE ADJUSTMENT

FIGURE 34 -

SETTLING TIME TEST CIRCUIT
2.0 k, 0.1%

Vcc
10VS
o
2k,O.1%
"'400,0.1%

+15 V

5.0 k, 0.1%
"",0 k, 0.1%

Vout

sum:~~:t-

___

5AkV'VO~.I_%________~

1-----,-0 +I 5 V
2N4416

•

V lOis adjusted with a 25 k potentiometer

•

The potentiometer wiper is connected to

•

For

temperature coefficient of 100
ppm/DC or Jess the additional drift with adjust is ~ 0.5 J.lV I
°C/m V of adjustment.

•

Typical overall drift: 5.0 J.LV/oC ±(O.5 /olVfJC/mV
of adjustment.)

potentiometers

Oscilloscope

Vee

with

• FET used to isolate the probe capacitance

• Output = 10 V step
"Ay = -5 fer LF357

FIGURE 36 -

FIGURE 35 - NONINVERTING UNITY GAIN
OPERATION FOR LF357
R2

R1C;;;;'
R1

• Settling time is tested with the LF35516
connected as unity gain inverter and LF357
connected for Ay = - 5

(21r)(~ MHz)

INVERTING UNITY GAIN FOR LF357

R2

R2 + RS

R1C;;;;'
R1

= -----

4

(211'){~ MHz)

= Ri

AV(DC) ~ 1

AV(DC) ~-1

f- 3dB ""'" 5 MHz

f_ 3dB ""'" 5 MHz

MOTOROLA LINEAR/INTERFACE DEVICES
2-24

LF355,LF356,LF357, LF355B,LF356B,LF357B
TYPICAL APPLICATIONS
FIGURE 37 - WIDE BW, LOW NOISE,
LOW DRIFT AMPLIFIER

FIGURE 38 -

ISOLATING LARGE CAPACITIVE LOADS
R2

5.1 k

V out

R1
I

5

IO.5/-lF

=:r-

-2 V

• Power BW: fmax = 21i~p ~ 240 kHz

eL

---.C

+2 OV

Cl :~:
-L

•

Overshoot 6%

•
•

ts == 10ps
When driving large

el.

the V out slew rate is determined by CL

and 'out(rnax):
• Parasitic input capacitance

te1

~

3 pF for LF355, LF356, and LF357 plus any

additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2C2

~

AV out

'out

002

.6.1

CL

0.5

- - = -:::. ~

R1C1.

FIGURE 39 - 8-BIT D/A WITH OUTPUT CURRENT
Vee TO VOLTAGE CONVERSION

FIGURE 40 -

V/Jls= 0.04 V/J,LS (with CL shown)

PRECISION CURRENT MONITOR

13
MSB

R14

14

A1

Vref

A2

15

A3
R15

A4

-=-

MC14OBL-B

A5

R1

Vref;;::: 2.0 V,dc
R14~ R15" 1.0k!l
Ra ~ 5.0 k!l

Vee

Ra

A6
A7

4

AS

Va

LSB
16

•

3

Vo = 5 R1/R2 (V/mA of Is)

•

R1, R2, R3: 0.1% Resistors

•

Use lF355 for..

Theoretical Va

Vref

[Al

A2

A3

A4

A5

A6

A7

T+""4+a+ffi+"i2+"'64+i2s+

VO=R'14(Rol

AS]
256

Adjust Vrsf. R14 or AO so that Va with all digital inputs at high
level is equal to 9.961 volts.

2V

[ 1

Va "'..,..-;(5 k)

1

1

1

1

1

2'"+4"+ '"8+ 16+3'2+ 64+

1
128

+

1]

Low liB

..

Low V,O

..

Low Supply Current

FIGURE 42 - HIGH IMPEDANCE, LOW DRIFT
INSTRUMENTATION AMPLIFIER

256

1 1'" 9.961 v

'" 10 V 255
256

FIGURE 41 -

Common-Mode Range to Supply Range

..

7

LONG INTERVAL RC TIMER

I

A1
lF355
6

R3

R

4

+15 V

A3
2

R2

R

AV

LM30BA
V out

3

+15 V
R3

R5

• Polycarbonate or
PolystYrene Capacitor

Time (t)

= R4CQn (VR/VR-VI),

A3 == R4. A5 = 0.1 A6

If R1 = R2: t = 0.693 A4C

j

-15 V

• Vout "" R31R[2R2IR1 + 1j
tN, VEE + 2 V OliO Vin common-mode EO Vee
• System V,O Adjusted via A2 V,O Adjust
• Trim R3 to Boost up CMRR to 120 dB

Design Example: 100 Second Timer

C = 1}JF

R3"" R4 = 144 M

A5"" 2 k

R1

~,

R2 = 1 k

-15 V

MOTOROLA LINEAR/INTERFACE DEVICES
2-25

II

II

®

LF411C
LF412C

MOTOROLA

rl-----A-d-v-a-n-c-e-I-n-f-o-r-m-a-t-i-o-n-----.
SINGLE/DUAL JFET
OPERATIONAL
AMPLIFIER

LOW OFFSET. LOW DRIFT JFET INPUT
OPERATIONAL AMPLIFIER

SILICON MONOLITHIC
INTEGRATED CIRCUIT

Through innovative design concepts and precision matching
this monolithic high speed JFET input operational amplifier family
offers very low input offset voltage as well as low temperature
coefficient of input offset voltage. The amplifier requires less than
3.4 mA per amplifier of supply current yet exhibits greater than
2.7 MHz of gain bandwidth product and more than 8.0 Vlp.s slew
rate. Through the use of JFET inputs the amplifier has very low
input bias currents and low input offset currents. The amplifier
utilizes industry standard pinouts which afford the user the opportunity to directly upgrade circuit performance without the need
for redesign.
The LF411C and LF412C are available in the industry standard
plastic 8-pin DIP and 50-8 surface mount packages, and specified
over the commercial temperature range.

N SUFFIX
PLASTIC PACKAGE
CASE 626-05

• Low Input Offset Voltage: 2.0 mV Max ,Single)
3.0 mV Max (Dual)
• Low T.C. of Input Offset Voltage: 10

p'vrc

• Low Input Offset Current: 20 pA
• Low Input Bias Current: 60 pA
• Low Input Noise Voltage: 18 nVI\1Hz

D SUFFIX
PLASTIC PACKAGE
CASE 751-02

• Low Input Noise Current: 0.01 pAl\IHz
• Low Total Harmonic Distortion: 0.05%

50-8

• Low Supply Current: 2.5 mA
• High Input Resistance: 1012 n
• Wide Gain Bandwidth: 8.0 MHz
• High Slew Rate: 25 Vlp.s

LF411C

• Fast Settling Time: 1.6 p.s (to within 0.01%1
Offset Null

1

Invt Input

2

7

VCC

Noninvt Input

3

6

Output

5

Offset Null

Single, Top View
ORDERING INFORMATION
DpAmp
Function

Single
Dual

Device

LF412C

Test Temperature
Range

LF411CD
LF411CN

O'C to +70'C

LF412CD
LF412CN

O'C to +70'C

Package

50-8
Plastic DIP

50-8
Plastic DIP

(Dual, Top View)

..

This document contains information on a new product. Specifications and mformatlon herem are
subject to change without notice.

MOTOROLA LINEAR/INTERFACE DEVICES
2-26

LF411C, LF412C
MAXIMUM RATINGS
Symbol

Value

Unit

VCC.IVEEI

+18

Volts
Volts

Rating

Supply Voltages

VI DR

~30

Input Voltage Range (Note 1)

VIR

",15

Volts

Output Short-Circuit Duration (Note 2)

ts

Indefinite

Seconds

Input Differential Voltage Range (Note 1)

Maximum Junction Temperature

TJ

+150

'c

Operating Ambient Temperature Range

TA

a to 70
lOa

'C

LF411CNI412CN
LF41 1CDI412CD

Thermal Resistance

(Junction to Ambient)

RHJA

°CWatt

180

Storage Temperature

Maximum Power Dissipation

T sts.

-60 to + 150

'C

Po

(Note 2)

mW

NOTES:
1. Input voltages should not exceed Vee or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature {T J} is not

exceeded.
3. Measured with

Vee

and

VEe

simultaneously varied.

REPRESENTATIVE CIRCUIT SCHEMATIC
(Each Amplifier)

Output

Inputs

I Vce

~

{~O---+------1r----'

I I
I

I

Bias Circuitry
Common to All
Amplifiers

MOTOROLA LINEAR/INTERFACE DEVICES

2-27

I

II

LF411C, LF412C
DC ELECTRICAL CHARACTERISTICS (VCC

~ + 15 V VEE ~ ·-15 V TA

,

Characteristics

Input Offset Voltage IRS ~ 10 kll, VCM ~ 0 V, Va
lF411
lF412

= 0 V)

Via

Average Temperature Coefficient of Input Offset Voltage
(RS ~ 10 kIt VCM ~ 0 V, Va ~ 0 V)

Input Offset Current IVCM ~ 0 V, Va
lF411 TA ~ 25°C
TA ~ O'C to 70'C
lF412 TA = 25'C
TA ~ O'C to 70'C

= O°C to 70°C

Symbol

':'VIO'·J.T

= 0 V)

110

Input Bias Current (VCM ~ 0 V)
LF411 TA = 25'C
TA ~ O'C to 70'C
LF412 TA ~ 25°C
TA = O'C to 70'C

liB

~

Large Signal Voltage Gain IVa LF411 TA ~ 25"C
TA ~ O"C to 70"C
LF412TA =. 25"C
TA = O'C to 70"C

10 V, RL = 2.0 kll)

-

o V)

-

10

-

20

100
2.0
100
2.0

pA
nA
pA
nA

200
4.0
200
4.0

pA
nA
pA
nA

mV

jJ.v,ec

-

-

-

0.6

-

-

25

0,5

-

VmV

12

12

-

80

_.

-

-

150

13.9
--14.7
14
.. 14

-

' 14
- 14
+15
-12

-11

12

12
V

+ 11
-

.. 11

-

CMR

" 11 V, RS '" 10 k!!)

dB
70
70

90
100

-

PSR

dB
70
70

86
100

-

-

2.5
2.8

3.4
6.8

mA

10

AC ELECTRICAL CHARACTERISTICS (VCC

=• .,.

15 V VEE

. 15 V TA = 25"C unless otherwise noted)
Symbol

Characteristics

10 V to + 10 V, RL = 2.0 kll, AV = + 1.0)

Min

Typ

Max

SR

Gain Bandwidth Product
LF411
LF412
=

2.0
3.0

.,. 11

Power Supply Current IVa = 0 V)
LF411
LF412

Channel Separation (I

0.5
1.0

VICR

Power Supply Rejection (Note 3)
IVCC'VEE .. ·15 V - 15 V to • 5.0 V - 5.0 V)
LF411
LF412

Slew Rate (VIN
LF411
LF412

-

8.0
8.0

25
13

-

2.7
2.7

8.0
4.0

-

1.0 Hz to 20 kHz, LF412)

-

-120

Equivalent Input Voltage Noise (RS
LF411
LF412

~

=

0 V)

-

100 ll, 1= 1.0 kHz)

CS

-

Rin

-

en

10 12

-

30
25

-

0.Q1
0.01

-

dB
kll

pA', Hz

in

-

-

MOTOROLA LINEAR/INTERFACE DEVICES
2-28

-

nV \ Hz

-

Equivalent Input Noise Current If = 1.0 kHz)
LF411
lF412

Unit
V'jJ.s

MHz

GBW

Differential Input Resistance (VCM

Unit

V
VO+
VOVa.,.
VO-

LF412

.

Max

25
15
25
15

lF412

Common Mode Rejection IVCM
LF411
LF412

Typ

AVOL

Output Voltage Swing IVID = c. 1,0 V, RL= 10 kll)
LF411

Common Mode Input Voltage Range IVa LF411

unless otherwise noted)

Min

-

~

®

LMll
LMIIC
LMIICL

MOTOROLA

PRECISION OPERATIONAL AMPLIFIERS

PRECISION
OPERATIONAL AMPLIFIERS

The LM11 is a precision, low drift operational amplifier providing the best features of existing FET and Bipolar op amps. Implementation of super gain transistors allows reduction of input
bias currents by an order of magnitude over earlier devices such
as the LM108A. Offset voltage and drift have also been reduced.
Although bandwidth and slew rate are not as great as FET devices,
input offset voltage, drift and bias current are inherently lower,
particularly over temperature. Power consumption is also much
lower, eliminating warm-up stabilization time in critical applications.
Offset balancing is provided, with the range determined by an
external low resistance potentiometer. Compensation is provided
internally, but external compensation can be added for improved
stability when driving capacitive loads.
The precision characteristics ofthe LM11 make this device ideal
for applications such as charge integrators, analog memories,
electrometers, active filters, light meters and logarithmic amplifiers.
• Low Input Offset Voltage:

100 p.V

• Low Input Bias Current:

17 pA

SILICON MONOLITHIC
INT~GRATED CIRCUIT

N SUFFIX
PLASTIC PACKAGE
CASE 626-04
BalanCE:

1

Inp"1s {

2

J-8 SUFFIX
CERAMIC PACKAGE
CASE 693-02

5

Compensation

(Top View)

• Low Input Offset Current:

0.5 pA

• Low Input Offset Voltage Drift:

1.0 p.VI"C

• Long-Term Stability:

10 p.V/year

• High Common Mode Rejection:

130 dB

H SUFFIX
METAL CAN
CASE 601-04

MAXIMUM RATINGS
Rating

Power Supply Voltage
Diflerentiallnput Current (Note 1)
Output Short-Circuit Duration (Note 2)
Power Dissipation (Note 3)
Operating Junction Temperature

Symbol

Value

Unit

Vcc to VEE

40

Vdc

lID
ts
PD
TJ

±10

rnA

500

rnW

°C
150
85

LM11
LM11C/CL
Storage Temperature Range
Metal and Ceramic Packages
Plastic Package

V,,
(Top View)

Indefinite

Tst9

°C
-65to +150
-55 to + 125

J SUFFIX
CERAMIC PACKAGE
CASE 632-0B

ORDERING INFORMATION
Device

N,C.

Operating Ambient
Temperature Range

N.C.

Package

LM11CLN,CN

o to +70'C

Plastic B-Pin DIP

LM11CW-B, CJ-B

o to + 70'C

Ceramic B-Pin DIP

LMllCW, CJ
LMllCLH, CH

o to + 70'C
o to +70'C

Balance
Inp"ts {

4
Output
9

Ceramic 14-Pin DIP
Metal Can

LMllJ-B

-55to +125'C

Ceramic B-Pin DIP

LMllJ

-55to +125'C

Ceramic 14-Pin DIP

LMllH

-5510 +125'C

Metal Can

(Top View)

*Unused pin (no internal connection) to allow
for input anti-leakage guard ring on printed
circuit board layout.

MOTOROLA LINEAR/INTERFACE DEVICES
2-29

Compensation

II

II

lM11, lM11C, lM11Cl

ELECTRICAL CHARACTERISTICS (TJ

=

25°C unless otherwise noted INote 4])
LM11

LM11C

Symbol

Min

Typ

Max

Input Offset Voltage
Tlow to Thiah

VIO

-

0.1

0.3
0.6

Input Offset Current
Tlow to Thigh

110

Input Bias Current
Tlow to Thiah

liB

Characteristics

-

-

r;

Input Offset Voltage Drift
Tlow to Thiah

Ll.VIO/Ll.T

-

Input Offset Current Drift
Tlow to Thiah
Input Bias Current Drift
Tlow to Thiah

Ll.IIO/Ll.T
Ll.llslLl.T

Large Signal Voltage Gain
Vs = ± 15 V, Vout = ± 12 V,
lout = ±2.0 mA
Tlow to Thigh (Note 5)
Vs = ±15V,Vout = ±12V,
lout = ±0.5 mA
Tlow to Thiah

AVOL

Common Mode Rejection Ratio
Vs = ±15V, -13 V",VCM"',4 V
Vs = ±15V, -12.5 V",VCM""4 V,
Tlow to Thiah

CMRR

Power Supply Rejection Ratio
± 2.5 V",VS'" ± 20 V
Tlow to thiah

PSRR

Power Supply Current
Tlow to Thigh

10

Output Short-Circuit Current
TJ = 150°C, Output Shorted
to Ground

los

0.5

-

-

Input Resistance

-

17

Min

10
30

-

50
150

-

LM11CL

Typ

Max

0.2

0.6
0.8

1.0

17

-

Min

10
20

-

100
150

-

Typ

Max

Unit

0.5

5.0
6.0

mV

25
50

pA

200
300

pA

4.0
17
-

1011

-

-

2.0

5.0

-

10 11

3.0

-

1011

1.0

3.0

-

!,VI"C

n

-

20

-

-

10

-

-

50

-

fArC

0.5

1.5

-

0.8

3.0

-

1.4

-

pArC

100

300

25

300

-

50
250

15
50

-

-

1200

800

-

100

-

-

100

-

110

130

-

110

130

-

100

-

100

-

-

100
96

118

-

100
96

118

-

-

-

-

0.3

-

±10

-

-

-

100

300

50
250

1200

-

0.6
0.8

-

-

-

0.3

±10

-

0.8
1.0

-

V/mV

30

-

m

96

110

-

90

-

-

100

-

0.3

0.8
1.0

mA

±10

-

mA

dB

dB
84
80

-

-

Notes:
1. The inputs are shunted by back-ta-back diodes for over-voltage protection. Excessive current will flow if the input differential voltage is in excess
of 1.0 V if no limiting resistance is used. Additionally, a 2 kfl resistance in each input is suggested to prevent possible latch-up initiated by supply

reversals.
2. The output is current limited when shorted to ground or any voltages less than the supplies. Continuous overloads will require package dissipation
to be considered and heat sinking should be provided when necessary.
3. Devices must be derated based on package thermal resistance (see package outline dimensions).

4. These specifications apply for VEE + 2.0 V"VCM"VCC - 1.0 V (VEE + 2.5 V"VCM"VCC - 1.0 V for Tlow to Thigh) and ± 2.5 V"'VS" ±20 V
Tlow to Thigh: -55"C"TJ" + 125°C for LMll
O"C"TJ"+ 70°C for LMllC and LMllCL
5. Vout = ±11.5 V, all other conditions unchanged.

MOTOROLA LINEAR/INTERFACE DEVICES
2-30

LM11, LM11C, LM11CL

SCHEMATIC DIAGRAM
Balance

II

Compensation

r--,~~~~~----------------~~------t-~----~~--------~---ovcc

7.5 k
17.4 k

17.4 k

}-"""W1/-o Output

+

~---------------4----------~----~----~-4----~-----4----~VEE

FIGURE 2 - INPUT OFFSET CURRENT
versus CASE TEMPERATURE

FIGURE 1 - INPUT BIAS CURRENT
versus CASE TEMPERATURE
50

40

40
~

30

! ~~

r---

'-'

--

r-- -

VCCNE~~ ±201~

-10

i

I'--...

~

~

~

>--

i

~CcNEE ~ ±2.5~ \

~ -20

~-30

I

I

/

>-=>
~

;;;

25

50

75

100

125

10

o

-50

150

.....V
-25

25

MOTOROLA LINEAR/INTERFACE DEVICES
2-31

V

.-""
50

75

TC, CASE TEMPERATURE IOC)

TC. CASE TEMPERATURE 1°C)

I

I

1/

~
-25

1-------1

20

-40
-50
-50

I

Curve 1. VCcNEE ~ ± 20 V
2,VCCIVEE ~ ±2.5V

30

100

125

150

LM11, LM11C,LM11CL

II

FIGURE 3 - TEMPERATURE COEFFICIENT OF
INPUT OFFSET VOLTAGE versus INPUT OFFSET VOLTAGE
24

FIGURE 4 - SPECTRAL NOISE DENSITY
200

V';cNE~=~20VI

I
al = -25 0 to 125"C

./

L

160

'" .......

./'

V

./'

V

./'

V~cNEEAV ~= 10± 15RS=100
J k1n _-

--

40

./
-24
-6.0

-4.0

-2.0

0

2.0

4.0

o

6.0

10

100

1.0 k

FIGURE 5 - COMMON-MODE LIMITS
versus TEMPERATURE

rr I 1"' I 1

~,rf t
w

g

::;

~

120

~

~ 100

8~

T

T

±2.5 VSVSS20 V _
"VI0=10 .V
I

-~

::;
::;

8

r--.-..

~

Q

r-- r-- I--

2.0

FIGURE 6 - COMMON-MODE REJECTION AND
SLEW LIMIT versus FREQUENCY

iD 140

::;
::;

1.0

-50

50

"'"'"'----

60

o
::;

,.

40

~

20

o

1.0

:z
<1

'"w
'"

I

~

0

>
"-

0

I

ISO. 1 Hz
Vsat=1.5 V
RL"=2VS(kn) -

130

120

9

./

z

~

/

0

-' 110

V

-

10

100

'" '"

1.0 k

10 k

::;

Z

o
::;
0,1 ::;

8

d::;

'\

toOk

'-'

0.01
1.0 M

~

§?
z
Q

r--

!;(

-2.0 -

~
(/) +2.0 _

!;(

I
-55 Q C

B.O

~

1.0",
W
o
o

f

~ -1.0

0+1.0

4.0

::;

VCC-""

~

-

0

o

>-

FIGURE 8 - OUTPUT SATURATION
versus LOAD CURRENT

>
100

,.

I, FREQUENCY (Hz)

FIGURE 7 - OPEN LOOP VOLTAGE GAIN
versus SUPPLY VOLTAGE
140

10 ~

'\i '

8

150

~

V6cNEE = ± V
aVIO =100.V -

~~

T, TEMPERATURE (OC)

~

CMSL'\ '\.

CMR~

80

!
,.'-'

100

~

w

I

VEE ---,..

~5

o

I

o

100 k

10 k

I, FREQUENCY (Hz)

VIO, INPUT OFFSET VOLTAGE (mV) @ 25"C

12

16

o
o

20

VEE~
1.0

2,0
IL, LOAD CURRENT (±mA)

VCcNEE' SUPPLY VOLTAGE (± V)

MOTOROLA LINEAR/INTERFACE DEVICES
2-32

3.0

4.0

LM11, LM11C, LM11CL

FIGURE 9 -

~

'"z

0

~
~

':;

~
'"
~

""-

100

~~

80

~

60
40

~

""-

~

~

20

I

VEE

'"

~

~

10

100

1.0 k

10 k

~9

-:/

-

-20

Case Temperature
1 =25"C
2=125"C
3 = -55"C

360

1.0 M

100k

320

V2 V3

/

280

I

240

200

10 M

o

4.0

FREQUENCY (Hz)

12Or-... .......

0
z

~
w

~

o
>

~

.......

'" "

0

",AVOL-

r-

30 0

-0
Curve; 1. Cc
2, CC=1000 pFVCcNEE = ±15 V - 30
RL = 30 kn _

"'

'""

.........

\

.........

.........

.........
100

I'...

>

:-.......
10

1

s

~- 60
90
1....... ./"'\

0

1.0

r-

-;n 100

w

0/

0

-20
0.1

1.0 k

10 k

100 k

\

w

~

120

~

01-

s:.; ~

f-

'"

ffi

1'1 50

10

;:=:

'o;'~

r=

±20 V

20k

X

3.0
10

100

1.0 k

w

u

<3
~
~

,.,..-

V.

,/

V=1000

z

10

/

0-

;,:
05
fr

1.0 k

CC, EXTERNAL COMPENSATION CAPACITOR (pF)

FIGURE 13 - CLOSED LOOP OUTPUT IMPEDANCE
versus FREQUENCY

100

Cc

-

180
1.0 M

'" "'-

-

+

'-

I, FREQUENCY (Hz)

E

20

~

'" ;-- .........

40

16

12

FIGURE 12 - SLEW RATE versus
EXTERNAL COMPENSATION CAPACITOR

=d

'"

8.0

VCcNEE. SUPPLY VOLTAGE (±V)

FIGURE 11 - OPEN LOOP VOLTAGE GAIN AND PHASE
versus FREQUENCY

100

-

I.....:;

0-

Ii'

'"'"

FIGURE 10 - SUPPLY CURRENT versus
SUPPLY VOLTAGE
400

~ 120
0

POWER SUPPLY REJECTION RATIO
versus FREQUENCY

1.0

/

~

~

VccNEE = ±15 V
IOUI = ±1.0 rnA

, / AV=1.0

./

0.1

../

V

100

1.0k

10 k

100 k

1.0 M

10 M

I, FREQUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-33

10 k

II

LM11, LM11C, LM11CL

APPLICATIONS INFORMATION
dual in-line package is available with guard pins (internally
unconnected) adjacent to the inputs for minimal package
leakage effects.
Electrostatic shielding is suggested in high-impedance
circuits.
Error voltages in external circuitry can be generated by
thermocouple effects. Dissimilar metals along with temperature gradients can set up an error voltage ranging in the
hundreds of microvolts. Some of the best thermocouples are
junctions of dissimilar metals made up of Ie package pins
and printed circuit boards. Problems can be avoided by keeping low level circuitry away from heat generating elements.
The lMll is internally compensated, but external compensation can be added to improve stability, particularly
when driving capacitive loads.

Due to the extremely low input bias currents of this
device, it may be tempting to remove the bias current compensation resistor normally associated with a summing
amplifier configuration. Direct connection of the inputs to a
low impedance source or ground should be avoided when
supply voltages greater than approximately 3 volts are used.
The potential problem involves reversal of one supply which
can cause excessive current to flow in the second supply.
Possible destruction of the Ie could result if the second
supply is not current limited to approximately 100 mA or if
bypass capacitors greater than 1.0 "F are used in the supply
bus.
Disconnecting one supply will generally cause reversal
due to loading of the other supply within the Ie and in
external circuitry. Although the problem can usually be
avoided by placing clamp diodes across the power supplies
of each printed circuit board, a careful design will include
sufficient resistance in the input leads to limit the current to
10 mA if the input leads are pulled to either supply by internal
currents. This precaution is not limited to only the lMll.
The LMll is capable of resolving picoampere level signals. Leakage currents external to the Ie can severely impair
the performance ,of the device. It is important that high
quality insulating materials such as teflon be employed.
Proper cleaning to remove fluxes and other residues from
printed circuit boards, sockets and the device package are
necessary to minimize surface leakage.
When operating in high humidity environments or temperatures near ooe, a surface coating is suggeste~ to set up
a moisture barrier.
leakage effects on printed circuit boards can be reduced
by encircling the inputs (both sides of p.c. board) with a
conductive guard ring connected to a low impedance potential nearly the same as that of the inputs.
The suggested printed circuit board layout for input
guarding is shown in Figure 14. Guard ring electrical connections for common operational amplifier configurations
are illustrated in Figure 15. For critical applications, a 14-pin

FIGURE 14 - SUGGESTED PRINTED
CIRCUIT BOARD LAYOUT FOR INPUT GUARDING
USING METAL PACKAGED DEVICE

vee, f)

Balance

Output,

7

8

1

6
Compensation 0

5

4
VEE/
Guard

(Bottom Viewl
The above guard ring, required on both sides of the
board, is connected to a low impedance point of the
same potential as the sensitive inputs to reduce surface
leakage paths. Bulk leakage is reduced less, and
depends more on guard ring width.

FIGURE 15 - GUARD RING ELECTRICAL CONNECTIONS
FOR COMMON AMPLIFIER CONFIGURATIONS
Summing Amp (Inverting)

Voltage Follower

Non~lnverting

R1
R2
Input Q-'V\f'v-....--'\J'A----.,

R1

Output

R2

~O"

Input~

...,

MOTOROLA LINEAR/INTERFACE DEVICES
2-34

~

Input~

Output

LM11, LM11C, LM11CL

FIGURE 16 - INPUT PROTECTION
FOR SUMMING (lNVERTINGI AMPLIFIER

FIGURE 17 - INPUT PROTECTION
FOR A VOLTAGE FOLLOWER

II

R3

Input o--'---''''''~---,

Rl

Output

$
1

Input

-

Output

+

10 k

Current is limited by R1 in the event the input is
connected to a low impedance source outside the
common-mode range of the device. Current is controlled by R2 if one supply reverses. Rl and R2 do not
affect normal operation.

Input current is limited by R1 when the input exceeds
supply voltage, power supply is turned off, or output is
shorted.

FIGURE 18 - CABLE BOOT STRAPPING
AND INPUT SHIELDS

c
Rl
Output
Input

Input

Output

An input shield boot strapped in a voltage follower
reduces input capacitance, leakage, and spurious voltages from cable flexing. A small capacitor from the
input to ground will prevent any instability.

In a summing amplifier the input is at virtual ground.
Therefore the shield can be grounded. A small feedback
capacitor will insure stability.

FIGURE 19 - ADJUSTING INPUT OFFSET
VOLTAGE WITH BALANCE POTENTIOMETER

Minimum
Adjustment Range
(mVI

±OA
± 1.0
±2.0
±5.0

Input offset voltage adjustment range is a function of the Balance
Potentiometer Resistance as indicated by the table above. The
potentiometer is connected between the two "Balance" pins.

MOTOROLA LINEAR/INTERFACE DEVICES
2-35

R

n
1.0 k
3.0 k
10 k
100 k

II

®

LM101A
LM201A
LM301A

MOTOROLA

OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER

A general purpose operational amplifier that allows the user to
choose the compensation capacitor best suited to his needs. With
proper compensation. summing amplifier slew rates to 10 V/,,"s
can be obtained.
• Low Input Offset Current Temperature Range

SILICON MONOLITHIC
INTEGRATED CIRCUIT

20 nA maximum Over
N SUFFIX
PLASTIC PACKAGE
CASE 626-05

• External Frequency Compensation for Flexibility
• Class AB Output Provides Excellent Linearity
• Output Short Circuit Protection

J SUFFIX
CERAMIC PACKAGE
CASE 693-02

(LM201A and LM301A)

• Guaranteed Drift Characteristics

FIGURE 1 - STANDARD COMPENSATION
AND OFFSET BALANCING CIRCUIT

FIGURE 2 - DOUBLE-ENDED LIMIT
DETECTOR

VUT

Inverting
Input

D SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

e----<>--i

8~
1

>---<>--"Vo

Output

Balance

Nonlnverting

Compensation

Input

v,
10Mn

30pF

Inputs

1

VCC
Output
Balance

VEE

5.1MU

>--o--_Vo

+---"""~"VEE
20k
Vl T

(Top View)

Vo ~ 4.SVfor

e----<>---1

VLT <". VI"" VUT
Vo ." -0.4 V
VI'-VLTorVI ,VUT
Pins Not Shown Are Not Connected

H SUFFIX
METAL PACKAGE
CASE 601-04
Compensation

FIGURE 3 - REPRESENTATIVE CIRCUIT SCHEMATIC
Balance

Compensation

'--+_----" Output

(Top View)
ORDERING INFORMATION
Device

250

LM101AH
LM101AJ
LM201AD
LM201AH
LM201AN
LM201AJ
LM301AD
LM301AH
LM301AN
LM301AJ

Balance

MOTOROLA LINEAR/INTERFACE DEVICES
2-36

Temperature
Range

-55'C 10 +125'C
-55"Clo +125"C
-25'C 10 +85'C
- 25"C 10 + 85'C
- 25'C 10 + 85'C
- 25'C to + 85'C
O'CIO +70'C
O"C 10 +70"C

O°Cto +70°C
O'C 10 +70"C

Package
Metal Can
Ceramic DIP
SO-8
Metal Can
Plastic DIP
Ceramic Dip
SO-8
Metal Can
Plastic DIP
Ceramic Dip

LM101A, LM201A, LM301A
MAXIMUM RATINGS
VALUE
Rating
Power Supply Voltage
Input Differential Voltage

Symbol

LM101A

VCC,VEE

±22

VID

Input Common-Mode Range (Note 1)

VICR

Output Short-Circuit Duration

ts

Power Dissipation (Package Limitation)
Metal Can
Derate above TA = + 75"C
(LM201A1
Plastic Dual In-Line Package
301A)
Derate above TA = + 25"C
Ceramic Package
Derate above 25°C

PD

Operating Ambient Temperature Range

TA

Storage Temperature Range

..
.
..
...

I

I

±22

LM301A

Vdc

•
•

+15

•
•

Continuous
500
6.8
625
5.0
750
6.6

-

-

.
.

-55 to + 125

I

Unit

±18

+30

...

Tstg

I
I

LM201A

•

625
5.0

-25 to +85

I

•

o to +70

•

•

65 to +150

Note 1. For supply voltages less than ± 15 V, the absolute maximum Input voltage IS equal to the supply voltage.

Volts
Volts

mW
mWrC
mW
mWrC
mW
mWrC
°c
°c

ELECTRICAL CHARACTERISTICS (TA = + 25°C unless otherwise noted.) Unless otherwise specified, these specifications apply
for supply voltages from ±5.0 V to ±20 V for the LM101A and LM201A, and from ±5.0 V to
± 15 V for the LM301A.
LM101A
LM201A

LM301A

Symbol

Min

Typ

Max

Typ

Max

Unit

Input Offset Voltage (RS "" 50 k!l)

VIO

0.7

2.0

-

2.0

7.5

mV

Input Offset Current

110

-

1.5

10

-

3.0

50

nA

Input Bias Current

liB

-

30

75

-

70

250

nA

Input Resistance

ri

1.5

4.0

-

0.5

2.0

-

Megohms

-

1.8

-

-

3.0

-

-

-

-

-

1.8

3.0

50

160

-

25

160

-

Characteristics

Supply Current
VCCNEE = ±20 V
VcCNEE = ±15V

ICC,IEE

Large Signal Voltage Gain
(VccNEE = ± 15 V, Vo
RL> 2.0 k!l)

AV

=

Min

mA

V/mV

±10 V,

The following specifications apply over the operating temperature range
Input Offset Voltage (RS "" 50 k!l)

VIO

Input Offset Current

110

Average Temperature Coefficient of
Input Offset Voltage
TA(min) "" TA "" TA(max)

8VI0/8T

Average Temperature Coefficient of
Input Offset Current
+ 25°C "" TA "" TA(max)
TA(min) "" TA "" 25°C

8110/8T

-

-

3.0

-

20

-

-

70

nA

3.0

15

-

6.0

30

fLV/oC

0.01
0.02

0.1
0.2

-

-

0.01
0.02

100

-

-

15

-

-

Input Bias Current

liB

Large Signal Voltage Gain
(VccNee = ± 15 V, Vo
RL > 2.0 kn)

AV

25

-

±15

-

± 10V,

Input Voltage Range
VCcNEe = ± 20 V
VCCNEE = ± 15 V

mV

nArC

-

=

10

VI

-

-

-

-

0.3
0.6
300

-

-

-

nA
V/mV

V

Common-Mode Rejection Ratio
Rs""50kO

CMRR

80

96

-

±12
70

90

-

dB

Supply Voltage Rejection Ratio
RS""50kO

PSRR

80

96

-

70

96

-

dB

±12
±10

±14
",,3

-

-

±12
"'10

±14
",13

-

1.2

2.5

Output Voltage Swing
VccNee = ±15 V, RL
RL = 2.0 kG

Vo

=

10 kn,

Supply Currents (TA = TA(max),
VccNee = ",20 VI

Icc,lEe

-

MOTOROLA LINEAR/INTERFACE DEVICES
2-37

-

-

-

V

mA

II

LM101A. LM201A. LM301A
TYPICAL CHARACTERISTICS
(VCC = +15 V, VEE = -15 V, TA = + 25'C unless otherwise noted.)

FIGURE 4 - MINIMUM INPUT VOLTAGE RANGE

FIGURE 5 - MINIMUM OUTPUT VOLTAGE SWING

2Qr---,---,---,---,---,----

~

~ 16 f-----t--~pp""""

16

tI

~ 12~--~----~--4----+--~f---~~~

~ 12f-----t-----f----1----I----+-~,..

~
~

~!<
O~

g 8.0 f----+---I-'lc--Y~-+~~t---_f.lif.
~
1!;
~ 4,0

f-----t----I--"7''T--

°0~--~--~5~.0--~----1~0--~----~15~~

8.0 I----+_4.0 f-----f----f""""--I---+--1----f----

O~

___ L_ _

o

20

94

~

82

__

~

_ __ L_ _

~~

20

2.5

;;;: 2.0

...
88

~

FIGURE 7 - TYPICAL SUPPLY CURRENTS

100

'"~

____

5.0
10
15
Vcc AND 1- VEE), SUPPLY VOLTAGES IVOLTS)

VCC and I-VEE). SUPPLY VOLTAGE IVOlTSI

RGURE 6 - MINIMUM VOLTAGE GAIN

~

E
I!?
z

~

a

'"~

~

~

1.5

1.0

.w

.i

.B

76
70

0

0.5

0

5.0
10
15
VCC AND - VEE, SUPPLY VOLTAGES IVOLTS)

FIGURE 8 - OPEN-LOOP FREQUENCY RESPONSE

TA

0

=

10
15
VCCAND 1- VEE) SUPPLY VOLTAGE IVOLTS)

RGURE 9 - LARGE-SIGNAL FREQUENCY RESPONSE

+180

Single·Pole Cc;~pensation

Single-Pole Compensation

+160

2Q

+140

315

+120

270

~ -+1 5
!<
+1

~~.oo"

c~l"-.

'v

0":'--... '-...
Gain

0

~

1.0

10

100

1.0k
10k
lOOk
f, FREQUENCY IHzl

90 ~

"

'"

1.0M

1\

~

""
45 iE

..........

-2Q

0

135~

../

'-...

0

225$
:±l
180lli

Phase

Cl

o

10M

\

0

1.0k

\

C1

= 3.0pF

\

= 30pF 1\

r-....

11111
10 k

MOTOROLA LINEAR/INTERFACE DEVICES

2-38

\

lOOk
f, FREQUENCY IHzl

1.0M

10M

LM101A, LM201A, LM301A

IVee

TYPICAL CHARACTERISTICS Icontinued)
+ 15 V, VEE ~ -15 V, TA ~ + 25'e unless otherwise noted.)

~

FIGURE 10 - VOLTAGE FOLLOWER PULSE RESPONSE
+,0

Single-Pole Compensation

Feedforward Compensation

+8.0

+,10

~ +6.0

a
~
~ +4.0

t!:l +2.0

~

~

-2.0

:

-4.0

:

1\
\

r I.A
/

Input

f--

+,00 r--

~

V

'\.

m
~+80

~outPut-

225

i'-...
.....

~

"""

5
+40
>

I

-...;

---.....

~+60

..... ~ ~V

"'

:>

-6.0

Gain,

0

-8.0

-'0

,0

10

30

40

50

60

70

80

-10

90

,0

,00

'.0 k

'Ok

I,TIMEI",I

AGURE 12 -

~

~

LARGE-SIGNAL FREQUENCY RESPONSE

+'

Feedforward Compensation

0

'OM

\

I\,

f\.

§?

+6.0

,.,

Or--

2.!.

+4.

'"
~

+2.0

~

0

>-

~ -4.0

i'-

~±4.0

~ -8.0

""""-

'OOk

--

)---

0-6.0

{?

o

Output

-- -+7 f
In;:';,
I
II
II

t-

~ -2.0
g

>-

~

'OOM

Feedforward Compensation

_ +8. 0

~

::1:1 6

~
§? :t8. 0

'.OM

FIGURE 13 - INVERTER PULSE RESPONSE

8

±1 1

'OOk

,

f. FREQUENCY IHzl

+1

'"~

L.

Phase

« +10

;>

±,

II

FIGURE 11 - OPEN-LOOP FREQUENCY RESPONSE
+,40

-,0
'.0

,OM

'.OM

1.0

3.0

f, FREQUENCY IHzl

4.0

5.0

6.0

7.0

8.0

1. TIME 1....1

TYPICAL COMPENSATION CIRCUITS
FIGURE 14 - SINGLE-POLE COMPENSATON

AGURE 15 - FEEDFORWARD COMPENSATION
C2

R2
R2

R'

Rl

>-<>-41--. Vo

>-<>--<-- Vo

Frequency
Compensation

C,

R3

C''''~
R' + R2
Cs

~

Cl
150 pF

30 pF

Balance

1

C2 ~ 21TIOR2
~ 3.0 MHz

10

MOTOROLA LINEAR/INTERFACE DEVICES

2-39

9.0

,80

iii

135

~

90

~

45

~

~

a@

LM108, LM108A
LM208, LM20SA
LM308,LM30SA

MOTOROLA

,-----------------------------------------,
PRECISION OPERATIONAL AMPLIFIERS
The LM108/LM208/LM308 Series operational amplifiers provide
high input impedance, low input offsets and temperature drifts,
and low noise. These characteristics are made possible by use of
a special Super Beta processing technology. This series of amplifiers is particularly useful for applications where high-accuracy
and low-drift performance are essential. In addition high-speed
performance may be improved by employing feed-forward compensation techniques to maximize slew rate without compromising other performance criteria.
The LM108A1LM208A1LM308A Series offers extremely low input
offset voltage and drift specifications allowing usage in even the
most critical applications without external offset nUlling.

SUPER GAIN
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC
INTEGRATED CIRCUIT

H SUFFIX
METAL PACKAGE
CASE 601-04

• Operation From a Wide Range of Power Supply Voltages

COMPEN
B

CO~PEN 1 08

INPUTS

~
?F _o~

• Low Input Bias and Offset Currents
• Low Input Offset Voltage and Guaranteed Offset Voltage Drift
Performance

VCC
OUTPUT

40 50 NC
VEE

(Top View)

• High Input Impedance

J SUFFIX
CERAMIC PACKAGE
CASE 632-08

FREQUENCY COMPENSATION
Modified Compensation

Standard Compensation

l~J

NC
COMPEN A 2

R2
Inverting

Inverting
Input
NonInverting
Input

Input

Rl

..."Nv-+<>-!

Non-

Output

R3

Inverting ~NV---<>-I
Input

'GUARO 3
4
INPUTS
5

_

NC
13 NC
12 COMPEN B
11 VCC
10 OUTPUT

'GUARD 6

9
8

VEE 7

NC
NC

(Top View)

Standard Faedforward

Feedforward Compensations for

Compensation

Decoupllng Load Capacitance

10 k

100 k

5 pF

Input ....Mr.----lf----.

Input ....-"""~~-'"""""'VY-----,

N SUFFIX
PLASTIC PACKAGE
CASE 626-05
(LM208, LM208AI
(LM308, LM308A Only)

500

><,..,"""+- Output
J-B SUFFIX
CERAMIC PACKAGE
CASE 693-02

ORDERING INFORMATION
Temperature Range

Package

LM10BAH, H
LM108AJ, J, AJ-8, J-8

-55to + 125·C
-55 to + 125·C

Metal Can
Ceramic DIP

LM20BAH, H
LM208AJ, J, AJ-8, J-8
LM208AN, N
LM20BAD, D

-25 to
-25 to
-25 to
-25 to

+ 85·C
+85·C
+85·C
+85·C

Metal Can
Ceramic DIP
Plastic DIP
SO-8

LM30BAH, H
LM308AJ, J, AJ-8, J-8
LM308AN, N
LM30BAD, D

o to
o to
o to
o to

+70·C
+70·C
+70·C
+70·C

Metal Can
Ceramic DIP
Plastic DIP
SO-8

Device

D SUFAX
PLASTIC PACKAGE
CASE 751-02
SO-8

18

COMPEN
A
1

INPUTS 2
3
VEE

-t

4

8

COMPEN
B

7 VCC
6 OUTPUT

5NC
(Top View)

*Unused pin (no internal connection) to
allow for input anti-leakage guard ring
on printed circuit board layout.

MOTOROLA LINEAR/INTERFACE DEVICES

2-40

-

LM108, LM108A, LM208, LM208A, LM308, LM308A
MAXIMUM RATINGS (TA

~ + 25°C unless otherwise noted)

Value
Rating
Power Supply Voltage

Symbol

LM108. LM10BA

VCC.VEE

±20

I
I

LM208. LM208A
±20

Input Voltage (See Note 1)

VI

Input Differential Current (See Note 2)

•

If 0

of

+10

Output Short-Circuit Duration

ts

of

Indefinite

Operating Ambient Temperature Range
Storage Temperature Range
Junction Temperature
Metal. Ceramic Package
Plastic Package

LM308. LM308A
±18

I

•

I

-25to +85

o to

•
•
•
+ 70

TJ
+175
+150

Volts
mA

°c

•
••

65 to +150

of
of

Unit
Vdc

+15

-55to +125

TA

TS!!l

I
I

°c
°c

Note 1, For supply voltages less than :t 15 V, the maximum input voltage is equal to the supply voltage.
Note 2. The inputs are shunted with back-ta-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage
in excess of 1.0 V is applied between the inputs unless some limiting resistance is used.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of + 5.0 V ,. VCC ,.
+20 V and -5.0 V '" VEE'" -20 V. TA ~ + 25°C.)
LM108A
LM208A
Symbol

LM108
LM208

Typ

Max

Min

Typ

Max

Unit

Input Offset Voltage

VIO

-

0.3

0.5

0.7

2.0

mV

Input Offset Current

110

-

0.05

0.2

0.005

0.2

nA

Input Bias Current

liB

-

0.8

2.0

-

0.8

2.0

Input Resistance

ri

30

70

-

30

70

-

-

±0.3

Characteristic

Power Supply Currents
VCC ~ +20 V. VEE ~ -20V

Min

ICC.IEE

Large Signal Voltage Gain
VCC ~ IVEEI ~ +15 V. Vo ~ ±10V.
RL'" 10 kO

AVOL

nA
Megohms

-

±0.3

80

300

-

50

300

-

VlmV

1.0

-

3.0

mV

0.4

nA

3.0

15

/LVrC

pArC

±0.6

±0.6

mA

The following specifications apply over the operatong temperature range
Input Offset Voltage

VIO

-

Input Offset Current

110

-

-

0.4

Average Temperature Coefficient of
Input Offset Voltage
TA(min),.TA",TA(max)

6.VIO/6.T

-

1.0

5.0

-

Average Temperature Coefficient of
Input Offset Current

6.IIO/6.T

-

0.5

2.5

-

0.5

2.5

liB

-

-

3.0

-

-

3.0

AVOL

40

-

-

25

-

-

V/mV

VIR

±13.5

-

-

±13.5

-

-

V

Common-Mode Rejection Ratio

CMRR

96

110

-

85

100

-

dB

Power Supply Voltage Rejection Ratio

PSRR

96

100

-

80

96

-

dB

Output Voltage Range
VCC ~ IVEEI ~ + 15 V. RL ~ 10 k!l

VOR

±13

±14

-

±13

±14

-

V

-

±0.15

Input Bias Current
Large Signal Voltage Gain
VCC ~ IVEEI ~ +15 V. Vo ~ ±10 V.
RL ~ 10 kO
Input Voltage Range
VCC ~ IVEEI ~ +15V

Supply Current (TA

~

TA[max])

-

ICC.IEE

±0.15

±0.4

MOTOROLA LINEAR/INTERFACE DEVICES
2-41

±0.4

nA

rnA

II

LM108, LM108A, LM208, LM208A, LM308, LM308A
ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of + 5.0 V '" Vcc '"
+15 V and -5.0V "" VEE"" -15 V, TA = +25°C.) .
LM308A
Characteristic

Symbol

Min

Max

0.3

0.5

0.2

1.0

1.5

Input Offset Voltage

VIO

Input Offset Current

110

Input Bias Current

liB

-

Input Resistance

ri

10

40

ICC,IEE

-

±0.3

AVOL

80

300

Power Supply Currents
VCC = +15 V, VEE = -15V
Large Signal Voltage Gain
VCC = +15 V, VEE = -15 V, Vo
RL"" 10 kG

=

LM308

Typ

Min

Typ

Max

Unit

2.0

7.5

mV

0.2

1.0

nA

1.5

7.0

10

40

-

-

±0.3

25

300

-

V/mV

10

mV

7.0

-

±0.8

-

±10V,

±0.8

nA
Megohms
mA

..

The following specIfIcatIons apply over the operating temperature range

-

0.73

-

1.5

-

1.5

nA

1.0

5.0

-

6.0

30

..vrc

2.0

10

pArC

Average Temperature Coefficient of
Input Offset Voltage
TA(min) '" TA '" TA(max)

ilVloJilT

-

Average Temperature Coefficient of
Input Offset Current

iliIO/ilT

-

2.0

10

-

liB

-

Input Offset Voltage

VIO

Input Offset Current

110

-

-

10

60

-

10

AVOL

-

15

-

-

V/mV

VIR

±14

-

-

±14

-

-

V

Common-Mode Rejection Ratio
RS"'50kO

CMRR

96

110

-

80

100

-

dB

Supply Voltage Rejection Ratio
RS'" 50 kO

PSRR

96

110

-

80

96

-

dB

VOR

±13

±14

-

±13

±14

-

V

Input Bias Current
Large Signal Voltage Gain
VCC+15V,VEE = -15V,VO
RL"" 10 kG
Input Voltage Range
VCC = +15 V, VEE

=

=

nA

±10 V,

-15V

Output Voltage Range
VCC = + 15 V, VEE = -15V,RL

=

10kO

REPRESENTATIVE CIRCUIT SCHEMATIC
COMPENSATION A

COMPENSATION B

Output

+o----+-----+--~--~

MOTOROLA LINEAR/INTERFACE DEVICES
2-42

LM108, LM108A, LM208, LM208A, LM308, LM308A
TYPICAL CHARACTERISTICS

FIGURE 2 - MAXIMUM EQUIVALENT INPUT OFFSET
VOLTAGE ERROR versus INPUT RESISTANCE

FIGURE 1 - INPUT BIAS AND INPUT OFFSET CURRENTS

U

"
"- .....

1.6

" I'-.

11.4

i

a

LM~,LJ30B

~

1.B

1.2

...........

" '"

1.0

~ 0.8
~ 0.6
~ 0.4

0.1

./

-......
t-....
-......

..........

r-

LM10BA, LM10B
LM10BA, LMiOB

r--

110

o
-60 -40 -10

=-_. _._

100

110

"

r--.....

.............

z

~

---

LM30BA, LM30B _
liB
LM10BA, LM10B

I

I

0.15

i'5

0.10

~

f-----

::.:i:j:±t±tlt==±tll±tf~:±2W±±lli

'== LM30B

10

-

~ LMloB, LM20B

u
>-

i--LM30BA

~
z

...... LM1~
liB
0.05 ~

r

0.1 L----1---1--L.LLUll_---1---1--L.LLLllL----1.--l-L.LLillJ
1.0M
10M
100 M
100 k
ri, INPUT RESISTANCE (OHMS)

+20 +40 +60 +80 +100 +110 +140
T, TEMPERATURE (OC)

FIGURE 4 - POWER SUPPLY CURRENTS versus POWER
SUPPLY VOLTAGE

FIGURE 3 - VOLTAGE GAIN versus SUPPLY VOLTAGES

130

500

120

-

TA - O°C
+ 25°C
55°C
+70"C 10+ 115°C V

80

o

--

-

~

+ 70°C
CF = 0
f = 100Hz

o
o

20

~ +60

5.0
10
_15
VCC = IVEEI, SUPPLY VOLTAGES (VOLTS)

~

~+20

'"
~

~F=3.0pF

"- i'-..

~+40

-......

w

~
§Z

100

"'-

B.O

\

\

\

\
\

\

~

1= 30pF
~ ,CF
,

1.0 k
10 k
100 k
f, FREQUENCY (Hz)

12

>-

5

1.0 M

10 M

""

100 M

\ CF = 3.opF

1\.

4.0
CF = 30pF

~

CF = 100 p'0.
10

~ ~1~~

Vec
VEE = -15V
TA = +25°C

+1 16

"'- ..... ""~

20

"

/Ih---,

Output

Input

Cl

Rl R2
Nots: Rl + R 2 must be an impedance.

(1) Used to compensate for large source resistances.

MOTOROLA LINEAR/INTERFACE DEVICES
2-44

®

LMlll
LM211
LM311

MOTOROLA

HIGHLY FLEXIBLE VOLTAGE COMPARATORS
The abilityto operate from a single power supplyof 5.0 t030 volts
or ±15 volt split supplies, as commonly used with operational amplifiers, makes the LM111/LM211/LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system
ground while the output can drive loads referenced either toground,
the VCC or the VEE supply. This flexibility makes it possible to drive
DTL, RTL, TTL, or MOS logic. The output can also switch voltages to
50 volts at currents t050 mAo Thus the LM111/LM211/LM311 can
be used to drive relays, lamps or solenoids.

HIGH PERFORMANCE
VOLTAGE COMPARATORS
SILICON MONOLITHIC
INTEGRATED CIRCUIT

H SUFFIX
METAL PACKAGE
CASE 601-04

vcc

TYPICAL COMPARATOR DESIGN CONFIGURATIONS
Split Power-Supply with
Offset Balance

3.0 k

IJ

Gnd~,~O::I:~ce/Strobe

Single Supply

Inputs

Vee

3 04 0 Balance

VEE
(Top View)

RL
Output

87

Ground- Referred Load

N SUFFIX
PLASTIC PACKAGE
CASE 626-05
(LM311 Only)

Output

J-8 SUFFIX
CERAMIC PACKAGE
CASE 693-02

Load Referred to
Negative Supply

~
1

D SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8
(LM211/LM311 Only)

GndlB ~ ~~::~~e/Strobe
BVCC

Input polarity is reversed when
Gnd pin is used as an output.

Input polarity is reversed when
Gnd pin is used as an output.

Inputs;:

5 Balance

VeE 4

Load Referred to
Positive Supply

(Top View)

ORDERING INFORMATION

Output
Device

Temperature Range

Package

LM111H
LM111J-8

-55°C to +1250(;

Metal Can
Ceramic DIP

LM211D
LM211H
LM211J-B

- 25·C to

+ 85°C

50-8
Metal Can
Ceramic DIP

LM311D
LM311J-B
LM311N

MOTOROLA LINEAR/INTERFACE DEVICES

2-45

QOCto +70°C

50-B
Ceramic DIP
Plastic DIP

II

LM111, LM211, LM311
MAXIMUM RATINGS (TA: +25°e unless otherwise noted.)
Value
Rating
Total Supply Voltage

Symbol

LMlll
LM211

LM311

Unit

Vee +IVEEI

36

36

Vdc

Output to Negative Supply Voltage

VO-VEE

50

40

Vdc

Ground to Negative Supply Voltage

VEE

30

30

Vdc

Input Differential Voltage

VID

±30

±30

Vdc

Input Voltage (Note 2)

Vin

±15

±15

Vdc

Voltage at Strobe Pin

-

Vee toVee-5

Vee toVcc-5

Vdc

Power Dissipation and Thermal Characteristics
Metal Package
Derate above TA : +25°C
Plastic and Ceramic Dual In-line Packages
Derate above TA : +25°C

680
5.5
625
5.0

Po
1118JA
Po
1/8JA

Operating Ambient Temperature Range

°c

-

-

o to +70

Operating Junction Temperature

mW

mW/oe

TA
-55 to +125
-25 to +B5

Storage Temperature Range

mW

mW/oC

TJ(max)

+150

+150

°c

Tstg

-65 to +150

-65 to +150

°c

ELECTRICAL CHARACTERISTICS (VCC: +15 V. VEE: -15 V. TA: +25°C unless otherwise noted [Note 1].)

Symbol

Characteristic
Input Offset Voltage (Note 3)
RS'; 50 kO. TA: +25°C
RS'; 50 kO. Tlow'; TA'; Thigh'

VIO

Input Offset Current (Note 3) TA: +25°e

110

Tlow~TA~Thigh*

Input Bias Current. TA: +25°C

liB

Tlow~TA~Thigh*

Voltage Gain

AV

Response Time (Note 4)
Saturation Voltage

VOL

VID'; -5.0 mV. 10: 50 mA } T : +25 0 C
VID'; -10 mV.lo: 50 mA
A
Vec;P 4.5 V. VEE: O. Tlow'; TA'; Thigh'
VIO'; -6.0 mV. Isink'; B.O mA
VID'; -10 mV. Isink'; 8.0 mA
Strobe "On" Current (Note 5)

IS

Output Leakage Current
VID;;' 5.0 mV. VO: 35 V} TA: +25°C
VID ;;. 10 mV. Vo : 35 V 1st robe : 3.0 mA
VID ;;. 5.0 mV. Vo : 35 V. Tlow'; TA'; Thigh'

LMlll
LM211

LM311

Min

Typ

Max

-

0.7

3.0
4.0

40

200

-

200

-

0.75

Unit

Typ

Max

-

2.0

7.5
10

10
20

-

1.7

-

-

100
150

-

45

-

-

-

40

200

-

V/mV

-

-

200

-

ns

Min

mV

1.7

45

-

-

50
70

nA

250
300

nA

V
1.5

-

-

-

-

-

-

0.75

-

-

-

-

0.23

0.4

-

3.0

0.23

0.4

-

-

-

3.0

-

-

0.2

10

-

-

-

-

1.5

-

mA

-

-

0.2

50

0.1

0.5

-

-

-

nA
nA
JlA

Input Voltage Range (Tlow'; TA'; Thigh')

VIR

-14.5

-14.7to
13.8

13.0

-14.5

-14.7 to
13.8

13.0

V

Positive Supply Current

ICC

+6.0

+7.5

mA

-1.3

-5.0

-

+2.4

lEE

-

+2.4

Negative Supply Current

-1.3

-5.0

mA

NOTES:

T,ow= -55°C for LM111
Thigh = +125°C for LM111
= -25°C for LM211
= +85°C for LM21 1
ooe for LM311
+70o C for LM311
1. Offset voltage, offset current and bias current specifications apply for
a supply voltage range from a single 5.0 volt supply up to ± 15 volt supplies.

3. The offset voltages and offset currents given are the maximum
values required to drive the output within a volt 01 either supply with
a 1.0 mA load. Thus, these parameters define an error band and take
into account the "worst case" effects of voltage gain and input
impedance.

2. This rating applies for ±15 volt supplies. The positive input voltage
limit is 30 volts above the negative supply. The negative input voltage limit isequal tothe negative supplvvoltage or 30 volts below the
positive supply, whichever is less.

4. The response time specified is for a 100 mV input step with 5.0 mV
overdrive.

=

=

5. Do not short the strobe pin to ground; it should be current driven at

3.0 t. 5.0 mAo

MOTOROLA LINEAR/INTERFACE DEVICES
2-46

LM111, LM211, LM311

FIGURE 1 -

CIRCUIT SCHEMATIC

II

8

r-----_.~~~----_._.--_4~--------~~------_.--------------._----oVCC

800

800

Balance
Ba la nce/~,"""N-+-------'
Strobe 6

7
Output

L-__________...

~

G nd

4

3

L-----------4_----~~--~--~--~~----4_----~~--------------~

VEE

TYPICAL PERFORMANCE CHARACTERISTICS
FIGURE 2 -

140

1

-- --

120

55

~

i

100

«
'"

80

FIGURE 3 -

INPUT BIAS CURRENT versus
TEMPERATURE
5.0

Veeo+ 15V
VEEo-15V-

a
~

3.0

"-

-

~

~

Normal/"

j? 1.0

o
-55

-25

+25
+50
+75
TA, TEMPERATURE lOCI

+100

-55

+125

140

I 1

120

Vee ° +15 V· - VEEo-15V- - TA 0 +25°e _

i

+125

COMMON MODE LIMITS versus
TEMPERATURE

Referred to SupplV Voltages

'" -1.0

'"~ -1.5

80

::;

i:;,;lt=t=lIl~ll±~¥J

60

>-=>
~
~

+100

Vee

~ -0.5 1---

--

;:-100
z

+25
+50
+75
TA, TEMPERATURE lOCI

-25

FIGURE 5 -

FIGURE 4 - INPUT BIAS CURRENT versus
DIFFERENTIAL INPUT VOLTAGE

«
'"
as

=---- f..---

2.0

>--

~

-

i'>..

-f,---

S1

o

!

Pins 5 & 6 Tied
to Vee

>--

z

I'-..

.!t> 40

~~F ~i~~-

1 4.0

.....,.
Pins 5 & 6 Tied
to Vee

Normal ..

INPUT OFFSET CURRENT versus
TEMPERATURE

40

~
20

o
-16

-12

-8,0
-4.0
0
4.0
8.0
OIFfERENTIALINPUT VOLTAGE IVI

12

-55

16

-25

MOTOROLA LINEAR/INTERFACE DEVICES
2-47

+25
+50
+75
TA, TEMPERATURE lOCI

+100

+125

•

LM111, LM211, LM311

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 6 -

RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVES

~
w

'"


".

....

1\

4.0

'"
1=

3.0

'"
<=>

~ 1.0
0

~

100

a....
".

t;!liII

/, W' \

2.0

!

~

.... ~ ~

20 mV

/

'n

-

2.0 mV

I I
1

_

50

1

FIGURE 8 -

<=>
".

....
~

15
10

I

0
-5.0

,$>

-10
-15

/1/
i'I (""fU
J V

5.0 mV
./

K

!:i
".

...

4.0

:=

3.0

5

2.0

-+

".

c

0.1

c

FIGURE 9 -

'"


.s
~

50

v~

I
./
I /
I
III

~

V

2.0

v

~~
~~

m<=>
~".

I
I

0.45 ~ ~ 0.45

Sh~rt Circuit Current I--

~~

=;'"

0.30 ~ ~ 0.30
0.15

5.0
10
YO. OUTPUT VOLTAGE (V)

~

0.90

I?;:;0.60 ~ ~ 0.60

o IY
o

j

o

0.75 -0>075

1('\

r--... k-

-

1

0.90

I••

-

VEE

..1

FIGURE 11 - OUTPUT SATURATION VOLTAGE
versus OUTPUT CURRENT

=+25°C

\liS';\~~

VO-

2.0k-

1.0
tTHL. RESPONSE TIME (I's)

150

TA

-

Vee=+J5v
VEE=-15V
TA = +25°e

'" 100
<=>

=

~

I'

-

-

+

\\. I""-..
L\
I""-.. 5.0 mV
\. ./ ~ r-2.0 mV

w

".

0.6

~

Vin

-15

FIGURE 10 - OUTPUT SHORT CIRCUIT CURRENT
CHARACTERISTICS AND POWER DISSIPATION

'\

20 mV

0.5

-

RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVES

\10-

~ 5.0

~
<>

0.2
0.3
0.4
trHL. RESPONSE TIME (~s)

t-- hi.

2.0

1.0
trLH. RESPONSE TIME (~s)

;;

Vee = +15~_
VEE=-15V
TA = +25°e -

-50

;;

Vee=+15V
t-- t-VEE=-15V
TA=+25°e t-- t--

~

\-11-2.0 mV

l\

~

0.6

IVEE 1-

-50
-100

n

Vo

+

~ ~

~ -100

0.5

500

w

<=>

1

.=

IJt

1
20 mV

_

'"


5.0

RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVES

20 mV

5.0

'"
<=>
>

0.2
0.3
0.4
trLH. RESPONSE TIME (~s)

0.1

c

;;



Vee - +15 V
VEE=-15V f-- fTA = +25°e f-- f-

~

!:i

500

RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVES

~

I

1

pE"

Yin

~

~
~

FIGURE 7 -

~~

o
15

"'0.1

5~

V ~

TA = -55°C

...-:: 10""
/ ' ......::

P' J.....::;
TA

f- r- TA -

+25°e

+125°e

0
8.0

16

MOTOROLA LINEAR/INTERFACE DEVICES
2-48

~~

~
24
32
40
10. OUTPUT CURRENT (rnA)

48

56

LM111, LM211, LM311
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

FIGURE 1J - POWER SUPPLY CURRENT
versus SUPPLY VOLTAGE

FIGURE 12 - OUTPUT LEAKAGE CURRENT
versus TEMPERATURE

3.6

100

!>z

-Vee
VEE

10

::::::::::
- =

+15 V
-15 V

.~\
<,\\'1

~

,:,y.\

\\1'1\'.,....

~
>-

ri'S

'I\\~'

a

I
I
I

;:l

~

I

I

I

I
I

I
I

I
I

Positive SupplV - Output low

4

\\,,\~~

~ 1.0

I
+25°C

TA

4' 3.0

Positive aJd NeJative

I

I

I

I

I

I

~ower ISUPPI! -

JutPUI High

-

a: 1.2

>=>
0>- 0.1
=>

~

0

c...

0.6

o ./
o

0.01
25

65

45

85

105

125

5.0

TA. TEMPERATURE IOe)

10
15
20
25
Vee-VEE. POWER SUPPLY VOLTAGE IV)

FIGURE 14 - POWER SUPPLY CURRENT versus
TEMPERATURE

,

3.0

2.6

Postive Supply -

:[

r1'8

~
Output low

Vee=+15V
VEE = -15 V-

""'-

i'...

2

...-

7- r-

/

-........

Positive and Negative Supply - Output High
1.4

"'" "'"

.............

"

............

1.0

-55

-25

+25
+50
+75
TA. TEMPERATURE 1°C)

+100

+125

APPLICATIONS INFORMATION
FIGURE 15 - IMPROVED METHOD OF ADDING
HYSTERESIS WITHOUT APPLYING POSITIVE
FEEDBACK TO THE INPUTS

FIGURE 16 - CONVENTIONAL TECHNIQUE FOR
ADDING HYSTERESIS

r-~~---,--o+15V

J.Ok

+15 V

J.Ok

82

33 k

4.7 k

5.0k
Cl

4.7 k

8

Input

Input 100

2
Rl
I
C2=*
I

I

Rl

5
LMlll

7

7

Output

510k

MOTOROLA LINEAR/INTERFACE DEVICES
2-49

Output

30

II

LM111, LM211, LM311

APPLICATIONS INFORMATION
Techniques for Avoiding Oscillations in Comparator Applications
Since feedback to almost any pin of a comparator can result in
oscillation, the printed-circuit layout should be engineered
thoughtfully. Preferably there should be a groundplane under the
LM111 circuitry (e.g., one side of a double layer printed circuit
board). Ground, positive supply or negative supply foil should
extend between the output and the inputs, to act as a guard. The
foil connectionsforthe inputs should be as small and compact as
possible, and should be essentially surrounded by ground foil on
all sides, to guard against capacitive coupling from any fast highlevel signals(such as the output). If Pins5 and 6 are not used, they
should be shorted together. If they are connected to a trim-pot,
the trim-pot should be located no more than a few inches away
from the LM 111, and a 0.01 I'F capacitor should be installed
across Pins 5 and 6. If this capacitor cannot be used, a shielding
printed-circuit foil may be advisable between Pins 6 and 7. The
power supply bypass capacitors should be located within a
couple inches of the LM111.
A standard procedure is to add hysteresis to a comparator to
prevent oscillation, and to avoid excessive noise on the output.
In the circuit of Figure 16, the feedback resistor of 510 k.o from
the output to the pOSitive input will cause about 3.0 mV of
hysteresis. However, ifR2 is larger than 100n, such as 50 k.o, it
would not be practical to simply increase the value of the positive
feedback resistor proportionally above 510 k.o to maintain the
same amount of hysteresis.
When both inputs of the LM 111 are connected to active signals,
or if a high-impedance Signal is driving the positive input of the
LM111 so that positive feedback would be disruptive, the circuit
of Figure 15 is ideal. The positive feedback is appliedto Pin 5 (one
of the offset adjustment pins). This will be sufficientto cause 1.0
to 2.0 mV hysteresis and sharp transitions with input triangle
waves from a few Hz to hundreds of kHz. The positive-feedback
Signal across the 82 n resistor swings 240 mV below the positive
supply. This signal is centered around the nominal voltage at Pin
5, so this feedback does not add to the offset voltage of the comparator. As much as 8.0 mV of offset voltage can be trimmed out.
using the 5.0 k.o pot and 3.0 kO resistor as shown.

When a high-speed comparator such as the LM111 is used
with high-speed input signals and low source impedances, the
output response will normally be fast and stable, providing the
power supplies have been bypassed (with 0.1 I'F disc capacitors),
and that the output signal is routed well away from the inputs
(Pins 2 and·3) and also away from Pins 5 and 6.
However, when the input signal is a voltage raf1)p or a slow
sine wave, or if the signal source impedance is high (1.0 kO to
100 kll). the comparator may burst into oscillation near the

crossing-point. This is due to the high gain and wide bandwidth
of comparators like the LM 111 series. To avoid oscillation or
instability in such a usage. several precautions are recommended, as shown in Figure 15.
The trim pins(Pins 5 and 6) act as unwanted auxiliary inputs. If
these pins are not connected toa trim-pot. they should be shorted
together. If they are connected to a trim-pot. a 0.01 J.LF capacitor
(C11 between Pins 5 and 6 will minimize the susceptibility to ac
coupling. A smaller capacitor is used if Pin 5 is used for positive
feedback as in Figure 15.
Certain sources will produce a cleaner comparator output
waveform if a 100 pF to 1000 pF capacitor (C2) is connected
directly across the input pins. When the signal source is applied
through a resistive network, R1, it is usually advantageous to
choose R2 of the same value, both for dc and for dynamic (ac)
considerations. Carbon, tin-oxide, and metal-film resistors have
all been used with good results in comparator input circuitry, but
inductive wirewound resistors should be avoided.
When comparator circuits use input resistors (e.g., summing
resistors), their value and placement are particularly important.
In all cases the body of the resistor should be close to the device
or socket. In other words, there should be a very short lead length
or printed-circuit fall run between comparator and resistor to
radiate or pick up signals. The same applies to capacitors, pots,
etc. For example, if R1 = 101<.0, as little as 5 inches of lead between
the resistors and the input pins can result in oscillations that are
very hard to dampen. Twisting these input leads tightly is the
best alternative to placing resistors close to the comparator.

FIGURE 18 -

FIGURE 17 - ZERO-CROSSING DETECTOR DRIVING
CMOS LOGIC

3.0k

RELAY DRIVER WITH STR08E CAPA81L1TY

Vcc; +15 V

UJ

10k
Input

----<>-1

Vcc
>-<>-<~-.

'D1

Output
to CMOS Logic

*Zener Diode 01
protects the comparator
from inductive kickback
TIL
a nd voltage tra nsients
Strobe on the VCC2 supply line.

VEE; -15 V

MOTOROLA LINEAR/INTERFACE DEVICES
2-50

®

LM124, LM224,
LM324, LM324A
LM2902

MOTOROI.A

Specifications and Applications
Information

QUAD DIFFERENTIAL
INPUT
OPERATIONAL AMPLIFIERS

QUAD LOW POWER OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC
INTEGRATED CIRCUIT

The LM124 Series are low-cost, quad operational amplifiers
with true differential inputs. These have several distinct advantages over standard operational amplifier types in single supply
applications. The quad amplifier can operate at supply voltages
as low as 3.0 Volts or as high as 32 Volts with quiescent currents
about one fifth of those associated with the MC1741 (on a per
amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing
components in many applications. The output voltage range also
includes the negative power supply voltage.

,.- ..•
J SUFFIX
CERAMIC PACKAGE
CASE 632-0S

• Short Circuited Protected Outputs
• True Differential Input Stage

~,
14'-='

• Single Supply Operation: 3.0 to 32 Volts
• Low Input Bias Currents: 100 nA Max (LM324A)
• Four Amplifiers Per Package

1

• Internally Compensated

N SUFFIX
PLASTIC PACKAGE
CASE 646-06
(LM224. LM324.
LM2902 Only)

DSUFFIX
PLASTIC PACKAGE
CASE 751A-02
SO-14

• Common Mode Range Extends to Negative Supply
• Industry Standard Pinouts

PIN CONNECTIONS
Out
1

MAXIMUM RATINGS (TA = + 25°C unless otherwise noted)

Symbol

LM124
LM224
LM324,A

LM2902

VCC
VCC,VEE

32
±16

26
±13

Input Differential Voltage Range (1)

VIDR

±32

±26

Vdc

Input Common Mode Voltage Range

-0.3 to 26

Vdc

Rating
Power Supply Voltages
Single Supply
Split Supplies

VICR

-0.3 to 32

Input Forward Current (2)
(VI < -0.3 V)

IIF

50

Output Short Circuit Duration

ts

Junction Temperature
Ceramic Package
Plastic Packages

TJ

Storage Temperature Range
Ceramic Package
Plastic Packages
Operating Ambient Temperature
Range
LM124
LM224
LM324
LM324A
LM2902

In~uts

{

InP2uts

f

Unit
Vdc

-

'O}

5

Inputs
3

9

Out
2

Out
3
ITopView)

ORDERING INFORMATION
°c

175
150

Device

LM124J

Temperature Range

Package

- 55 to + 125°C

Ceramic DIP

-40 to +S5°C

Ceramic DIP

SO-14

LM2902D
°C

Tstg
-65 to + 150
-55 to + 125

LM2902J

Plastic DIP

LM2902N
°c

TA

SO-14

LM224D
LM224J

-

2

mA

Continuous

-55 to + 125
-25 to +S5
o to +70
o to +70

Out
4

-25 to +S5°C

Ceramic DIP

-

LM224N

-

LM324AD

SO-14

LM324AN

Plastic DIP

-40 to +S5

(1) Split Power Supplies.
(2) This input current will only exist when the voltage is negative at any of the input leads.
Normal output states will reestablish when the input voltage returns to a voltage greater
than -0.3 V.

LM324D

Oto +70°C

SO-14

LM324J

Ceramic DIP

LM324N

Plastic DIP

MOTOROLA LINEAR/INTERFACE DEVICES
2-51

Plastic DIP

II
N

Z

~;i

3~

g CD
0"

n

~

II II
0 I

II
I

;.~ n~~g;

05 Q'nnn
~ =is

;-0'0'0~30 ~;:.~;:
o

cc

Q.

ttl

NS::S:::3:

~NN"'"

~ ~ >~!§~

"'~.~
0

-i

0

:0

0
r

~

r

z

m
~

N

U,
N

~~
(iJ ~

rg:

:>":>

~-g

II

0-

+1»++

;!!.

_S::~n

II

II

B~

fR

m en

:T
3_':::10.0

0 CD

m

(")

g g.;

en

m 0'0

m

~?

3

2.0

7.0
9.0

-

2.0

-

-

-

7.0
10

AVlo'AT

-

7.0

-

-

7.0

30

-

7.0

-

-

7.0

-

110

-

3.0

-

5.0

5.0

-

-

50
150

-

-

-

10

300

10

-

-

50
200

10

-

-

-

30
75

5.0

-

30
100

10

-

-

-90 -150
- -300

-

-45

-100
-200

-

-90 -250
- -500

pAre
nA

-

28.3
28

0
0

-

28.3
28

0
0

-

-

Vee

-

-

Vee

-

50
25

100

-

25
15

100

-120

-

-

-

-

28.3
28
Vee

0
0

-

-

24.3
24
Vee

-

-

-

100

-120

-

-

65

70

-

-

25
15

-120

-

-

65

70

-

-

100

-

-

-

-120

-

dB

50

70

-

dB

100

-

65

100

-

65

100

-

50

100

-

dB

0

-

3.3

0

-

3.3

0

-

3.3

0

-

3.3

V

cg:::I 0=?
g5

Output Voltage - High Limit (TA ~ Thigh to Tlow) (Note 1)
Vee ~ 30 V (26 V for LM29021, RL ~ 2.0 k!l
Vee ~ 30 V (26 V for LM29021, RL ~ 10 kO

VOH
26
27

-

-

26
27

28

-

22
23

-

28

-

-

-

-

28

26
27

24

-

VOL

-

5.0

20

-

5.0

20

-

5.0

20

-

5.0

100

< e.

Output Voltage - Low Limit
Vee ~ 5.0 V, RL ~ 10 kO, TA ~ Thi h to Tlow (Note 1)
Output Source Current (VID = + 1.0 V, VCC
TA ~ 25°C
TA ~ Thioh to Tlow (Note 1)

10+
20
10

40
20

-

20
10

40
20

-

20
10

40
20

-

20
10

40
20

-

10
5.0
12

20
8.0
50

-

-

10
5.0
12

20
8.0
50

-

20
8.0
50

-

10
5.0

20
8.0

-

-

".A

-

40

60

-

40

60

-

40

60

-

-

-

10
5.0
12

40

60

mA

-

-

3.0
1.2

-

1.4
0.7

3.0
1.2

-

-

3.0
1.2

-

-

-

3.0
1.2

~~ ~~.
CIIn

g.g:

-0

CD

j

+

~ ~~

:> ~

-

rn CD

;- D"

Common-Mode Rejection Ratio
RS '" 10 k!l

=

15 V)

Output Sink Current
(VID ~ -1.0 V, Vee ~ 15 V
TA ~ 25°C
TA ~ Thigh to Tlow (Note 1)
VID ~ -1.0V, Va ~ 200 mY, TA ~ 25°C

V

a~'~~<

Output Short Circuit to Ground (Note 3)

los

§.;- ~;
a~·
~g:
::::1 ~m
3 '"
. ~

Power Supply Current (TA ~ Thigh to Tlow) (Note 1)
Vee ~ 30 V (26 V for LM2902), Va ~ 0 V, RL ~ 00
Vee ~ 5.0 V, Va ~ 0 V, RL ~ 00

ICC

mV
mA

-

mA

la-

-

mA

-

-

-

~
r-

s:N
CD

N

V
V/mV

-

s:

o

65

!!.n men

;:J

w

V
0
0

s:

nA

VOR

'011:1(0<

g

-90 -250
- -500

r-

~r-

PSRR

~ ~'g S~
I:

-

-

-

~

/LVre

Output Voltage Range
RL ~ 2.0 k!l (RL '" 10 k!l for lM2902)

~~~ ~~
Q)

mV

-

Alia/AT

Unit

Power Supply Rejection Ratio

=.g:

S 1'\,)<
tg.

!! s.

Max

85

S.o

~ia g §

o !!! 3_
;'2

Typ

70

g~~~~
en e. III lit 0

<

Min

eMRR

"'::::1

1'jQ.

(")

~Ci~.

LM2902
MIx

3.0
5.0

liB

Channel Separation
1.0 kHz os;; f os;; 20 kHz, Input Referenced

§

Typ

-

AVOL

~~

CD .....

Min

2.0

large Signal Open-Loop Voltage Gain
RL ~ 2.0 kO, Vee ~ 15 V, For Large Va Swing,
TA ~ Thigh to Tlow (Note 1)

~
N

t

Max

-

VI DR

... CD

Typ

5.0
7.0

Differential Input Voltage Range

i§

Min

-

~ ~ ~~~Q'

~CD;::t

CI

Input Bias Current
TA ~ Thioh to Tlow (Note 1)

Max

2.0

w~. ~5.~~
:<::::J n'nCl

"Tl

m

Average Temperature Coefficient of Input Offset Current
TA ~ Thigh to Tlow (Note 11

Typ

-

VieR

Z
-i

~

Average Temperature Coefficient of Input Offset Voltage
TA ~ Thigh to Tlow (Note 1)

Min

Via

Input Common-Mode Voltage Range (Note 2)
Vee ~ 30 V (26 V for LM2902)
Vee ~ 30 V (26 V for LM2902). TA ~ Thioh to Tlow

:0

:0

~

0:>"

-m

Input Offset Voltage
Vee ~ 5.0 V to 30 V (26 V for LM2902).
VieR ~ OVtoVee -1.7V,VO=1.4V,RS ~ 00
TA ~ 25°C
TA ~ Thioh to Tlow (Note 1)

Input Offset Current
TA ~ Thioh to Tlow (Note 1)

"0

s:

Symbol

Characteristic

LM324

LM324A

LM1241LM224

..

II
I

s:....

(Vee ~ 5.0 V, VEE ~ Gnd, TA ~ 25°C unless otherwise noted)

.=I en

~~.

gS

ELECTRICAL CHARACTERISTICS

r-

LM124, LM224, LM324,A, LM2902

REPRESENTATIVE CIRCUIT SCHEMATIC
(One-Fourth of Circuit Shown)

Output

Bias Circuitry
Common to Four
Amplifiers

.-----------~--------------~--~--------~----------~------Tt----_1~~OVcc
a16

a12

)---4
25

Q25

2.4 k

LARGE SIGNAL VOLTAGE
FOLLOWER RESPONSE

of each consists of differential input devices 020 and
018 with input buffer transistors 021 and 017 and
the differential to single ended converter 03 and 04.
The first stage performs not only the first stage gain
function but also performs the level shifting and trans·
conductance reduction functions. By reducing the trans·
conductance a smaller compensatian capacitor (only 5 pF)
can be employed, thus saving chip area. The transcon·
ductance reduction is accomplished by splitting the col·
lectors of 020 and 018. Another feature of this input
stage is that the input common·mode range can include
the negative supply or ground, in single supply operation,
without saturating either the input devices or the dif·
ferential to single·ended converter. The second stage can·
sists of a standard current source load amplifier stage.
Each amplifier is biased from an internal·voltage regu·
lator which has a low temperature coefficient thus giving
each amplifier good temperature characteristics as well as
excellent power su pply rejection.

II.
Vee"" 15Vdc
RL'" 2 kn
T A"" 25°C

o>

;;

\

/
/

\

r'"'""""

1\.
5.0 J..ts/Div.

CIRCUIT DESCRIPTION

The LM 124 Series is made using four internally com·
pensated, two·stage operational amplifiers. The first stage

: b
tlJ

SINGLE SUPPLY

SPLIT SUPPLIES

CC

v to. VCC(Max.)

4

VEE

MOTOROLA LINEAR/INTERFACE DEVICES
2-53

..=.. 1.5 V to VEE{Max,)

E

LM124, LM224, LM324,A, LM2902
TYPICAL PERFORMANCE CURVES

FIGURE 1-INPUTVOLTAGE RANGE

FIGURE 2 - OPEN LOOP FREQUENCY

±20

12 0

~g= \5J

±18

en
....

e;

0

±16

±14

w ±12

~
~

o

Negative
±lO

::>

~ ±6.a

1./"':"

~ ±4.0

t"-

O

"Positive

.....

0

/
±2.0

t"-

O

I./"': V

±2.0

....... t"-

0

\ V. . . V
....-:.- K

;: ±8.D

±4.0 ±6.0 ±s.a ±lO
±12 ±14
±16
VCCNEE, POWER SUPPLY VOLTAGES (VOLTS)

±18

-2 0
1.0

±20

F:::::j::=F1RJlTTI-TiTTllrTTT-ilTffirr

ti

~
~

§;

Ol---l--+++++I\I--+-+-I-j

1\

~

lOOk

10k

1.0M

(Hz)

550

VCC-30V

V~!:~;~c-

50 0

Wt

~
w
«
'">::;

~~~ : ~5n~

8.0 ~--~+-~++~-'\'-f-+-H GAIN = -100 +-+H++Iftl
RI "" 1 kn
S.O
RF = 100 kn +--+-+-+++II-H

Input

45 0
400

CL = 50 pF

1

J1
Output

o

> 35 0

~ 4.0 f-·--t-+--+-++tttt--+---r~t-tt+tt---t-+-t-+++t-H
1\
g
>

1.0k

FIGURE 4 - SMALL-SIGNAL VOLTAGE FOLLOWER
PULSE RESPONSE
(Non-Inverting)

~l Uill
2 12~--~+-~~~--~-+~++tH+---~+-~++~

~

100

10

t, FREQUENCY

FIGURE 3 - LARGE-SIGNAL FREQUENCY RESPONSE
14

=

0

V. . .
V ... V "

2

VeE - Gnd
TA 250 C

r'"--r-.

,;

~

[

~ 25 0

'IJ

~ 300

2.0 1---t-+--+-++tttt--+-++H;.Ht---t-+-+-+++t-H

II

V

~

200

;
1.0
t, FREQUENCY

2.0

(kHz)

FIGURE 5 - POWER SUPPLY CURRENT versus
POWER SUPPLY VOLTAGE

3.0 4,0 5.0
t, TIME (".

6.0

7.0

8.0

FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE

2,4

«

T1

2,1

=

2JOC

Rl"" 00

I-0

E 1.8

~

::

13
~

-

1.5
1.2

~
"'~

0.6

~

0.3

........

"
0

0.9

o

o

70
5.0

10
15
20
25
VCC, POWER SUPPLY VOLTAGE (VOLTS)

30

35

o

2.0

4.0

6.0

10

12

14

VCC, POWER SUPPLY VOLTAGE (VOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-54

16

18

20

LM124, LMU4, LM324,A, LM2902
APPLICATIONS INFORMATION

FIGIIiR.E 7 - VOLTAGE REFERENCE

FIGURE 8 - WIEN BRIDGE OSCILLATOR

II

50k

Al

10k

Vo

1

Vref
Va'" 2.5 V(1 +

"""'2 Vee

For

:~)

f o ;;;' kHz

R'" 16kn

c

C;;; 0.01 Jl.F

A

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 10 - COMPARATOR WITH HYSTERESIS

1

-R

.1

C

R

"::LBHysteresis

R2

Al
V ref . .-'V'>IY-....-O--j

----<}-;

Vin . .

VOL

1

-A

VinL: VinH

C

.2

Vref
VinL "" R ,R+' R2 (VOL - V,sf) + Vref

A

Vjn~'" R1 :'R2 (VOH eo=C (1 +a+b) ~a2 -e1)

H;;; R1

~1R2 eVOH -

Vref) + Vref

VOLI

FIGURE 11 - BI·QUAD FILTER
A
R

lOOk
R1 "" QR

Al
R2--

R

TBP
100k

R3 - TN R2

Cl - 10C
fa,.. 1 kHz

a

Bandpass

Vref

R3

Output

= 10

Tap"" 1

Rl

TN"'"

R2

Cl

>-O----1E---4 Notch Output

A-160H}
C = 0.001 "F
Al- 1.6 Mil

Vref

T BP "" Canter Frequency Gain

TN'" p ••tband Notch Gain

MOTOROLA LINEAR/INTERFACE DEVICES

2·55

A2 - 1.6 Mil
R3-1.6MIl

II

LM124, LM224, LM324,A, LM2902
APPLICATIONS INFORMATION (continued)
FIGURE 12 - FUNCTION GENERATOR

1

Vref::::

2' Vee

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

R2

Triangle Wave
Output

VCC

300k
Vref

R3

>-<:>-+~7V.5"'k---'---<~ +1/4
R1

LM324

>-0-+_
Square

4

Wave
Output

R3
C

>-,D-
:n
:::,
Z
-i
m

:n

"T1

l>

(')

m
0
m

<

n
m
en

=

-f.5

lee
08

(For All ,Comparators)

50

Av

=15Vdc

Large Signal Response Time

l>

Unit

25

2.0

0.8

2.0

0.8

2.0

0.8

2.0

0.8
'.0

RL=ao,VCC=30Vdc

r

Max

±1.0

Voltage Gain
RL;;.t: 15kfl. Vee

0
r

Ty.

liB

RL:::

:n

Min

V,O

Supply Current

s:

Max

Input Offset Voltage (NOIIl 4)

Input Common-Mode Voltage Range tNote 7)

0
-i
0

3:

MC3302

Ty.

Input Bias Current (Notes 4. 5)
(Output in Linear Range)
Input Offset Current (Note 4)

200

200

200

300

300

300

300

1.3

1.3

'.3

1.3

200

50

25

2.0
2.5

0.8

'00

30

300

300

2.0

I

=

Response Time (Note 6)

VRl

=5.0 Vdc, RL =5.1 kll

Output Sink Current
V, H;;' +1.0Vdc, VI(+) = 0,

6.0

'sink
VO~

6.0

'6

6.0

'6

6.0

'6

'.3

18

6.0

..

'.3
6.0

'6

rnA

I VlmV

VI TTL logic Swing.
V,ef 1.4 Vdc, VRL 5.0 Vdc.
RL=5'kn

=

mA

'6

1.5 Vdc

Saturetion Voltage
VI(-I ~ +1.0 Vdc, VIC+) = 0, 'sink" 4.0 mA

Vsat

130

Output Leakage Current
V~+)$! +1.0 Vdc, VIH= 0, Vo = +5.0 Vdc

10L

0.1

400

'30

400

'30

400

'30·

0.1

0.'

400

130

0.'

400

130

500

mV

0.1

0.'

nA·

lM2901

MC3302
Min I Typ I Max

Unit

PERFORMANCE CHARACTERISTICS (VCC'" +5.0 Vdc. TA llow to Thigh INote 3])
"'0

Symbol

Characteristic

LM'39A
Min I Typ I Max

I

Typ

~

LM,39

lM239A/339A
Min

I Max Min

I

LM239/33a ..

Typ-rMaii:'T.Mlnl Typ I Max

Min ,. Typ I Max

Input Offset Voltage (Note 4)

V,O

±4.0

±4.0

±9.0

+9.0

'±15

±40

mVdc:

Input Bias Current (Notes 4,5)
(Output in linear Rangel

liB

300

400

300

400

500

'000

nA

Input Offset Current (Note 4)

',0

±100

±150

±100

±150

±200

±3CO

nA

o

I

Input Common-Mode Voltage Range

VICR

Vee
-2.0

Vee
-2.0

Vee
-2.0

V

Saturation Voltage
VIH;;;t +.1.0 Vdc. VI(+) = 0, Isink -:0;;: 4.0 rnA-

Vsat

700

700

700

700

700

700

mV

Output Leakage Current
V~+) ~ +1.0 Vdc. VIH:;: 0, Vo '" 30 Vdc

10L

1.0

'.0

1·.0

'.0

'.0

.1.0

.A

Differential Input Voltage
All VI ;;= Vdc iNote 7}

V/D

Vee

Vd.

°

Vee
-2.0

Vee

0

Vee
-2.0

Vee

0

Vec

Vee

0

Vee
-2.0

Vee

0.·

NOTES:
,. The maximum output current may be as high as20 rnA. independent of the magnitude of Vee. Output short circuits to Vee can cause excessive heating and eventual
destruction.
2. This magnitude of input current will only occur if the leads are driven more negative than ground or the negative supply voltage. This is-due to the input PNP collectorbasejunction becoming forward biased, acting as an input clamp diode. There is also a lateral PNP parasitic transistor actfOJ!l wmdlt-cancause the output voltage of
the comparators to go to the Vee vottage level (or ground if overdrive is large) during the time that an input is driven negative. This ~the device when limited
to the max rating and norma~ output states will recover when the Inputs become ~ ground or negative supply.
>

3. LM139/'39A - T,ow = -55'C. Thigh = +' 25'C
3. LM239/239A - T,ow = -25'C. Thigh = +85'C

4.
5.
6.
7.

=

..

r"

ELECTRICA:L CHARACTERISTICS (Vee = +5.0 Vdc, TA = 25°C unless otherwise noted)

LM339/339A - T,ow = C'C. Thi h = +70'C
LM290'/MC3302 - T,ow = -4{)~C. Thigh = +85'C

At the output switch point, Vo 1.4 Vdc, RS :e;;; 1000, 5.0 Vdc ~ Vee :e;;; 30 Vdc, with the inputs over the full common· mode range (0 Vdc to Vee - 1.5 Vdc).
The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.
The responsatime specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.
Positive excursions of input voltage may exceed the power supply level. As long as one of the inputs remain within the common-mode range, the comparator will provide the proper output state.

=
»
....
I:
~

>
....
.w
==

~

..~

.o

3:

ow
2

LM139,A, LM239,A, LM339,A, LM2901, MC3302

FIGURE 3 - NON-INVERTING COMPARATOR WITH
HYSTERESIS

FIGURE 2 -INVERTING COMPARATOR WITH HYSTERESIS

+

+Vcc

vee

R3
10k

Rref

10 k

V,N

Vref

Va

Rref

10k

+vcc

Rl

R2
10k

1M
10 k

Rl

v

1"3

Vref"'"

Vee R1
Rref + Rl

R3~ Rl II

VH ==

R1111R re f + R2

R2»

R2

RrefllR2

Rl//Rref

(V

ref -

1M
~

Vee Rl

Rref + Rl

Rl IIRref

Amount of Hysteresis

-v·j
Omax
Omln

VH =

R2~2R3

VH

(VO max - VO mm )

RrefllRl

TYPICAL CHARACTER ISTICS
(VCC = +15 Vdc, T A = +250 C (each comparator) unless otherwise noted.)
FIGURE 4 -

FIGURE 5 - INPUT BIAS CURRENT

NORMALIZED INPUT OFFSET VOLTAGE

1.4 0

8

V

~ 1.20

~

../'

t;;

*
c

1.0

TA =1_55oe

~--r;;-: +15~

l---- f--f---- ~

-

,/'

N

:::l

«

,/'

0.80

- -

6

,/'

./

0

W

~

42

V

-------

I-

k,---TA

=

+125°C

6.0
0.60

-50

-25

50

25

100

75

o

o

125

4.0

8.0

11

TA, AMBIENT TEMPERATURE (0C)

FIGURE 6 - OUTPUT SINK CURRENT versus
OUTPUT SATURATION VOLTAGE
8. 0

7. 0

]:

I

a

6. 0

TA = }15 o e
TA - -55 o e j

5. 0

V

4. 0

3.

E

2. 0

0

1.

/

/ 1/ /

>-

~

16
Vee (Vdcl

III

/

/
TA=+115°e

/

;,V /

o°1~V
'/

100

200

300

400

500

V,at. OUTPUT SATURATION VOLTAGE (mVI

MOTOROLA LINEAR/INTERFACE DEVICES
2-59

10

14

18

31

LM139,A, LM239,A, LM339,A, LM2901, MC3302

FIGURE 8 - SQUAREWAVE OSCILLATOR

FIGURE 7 - DRIVING LOGIC

fI

Vcc
10 k
100 k

>~t----

(VOLTAGE FOLLOWER)

g +20

IIIII TI III ifll---+-+H+++ll---1\-\+-+-++++!j
4.0 r---+++rH-tttt-rrrrr-t-++-H
II +ttt-+-+-++t+Ht-+---+'I0.. -1 I

;:;; -1 0

I

'"~

~ -7. 0

1

-6. 0
Ig -5. 0
0-4. 0
> -3. 0
-2.0 ~
-1.0
100
200

.1

a...

.±6 v
1

1
1
5.0k7.0k 10k

V

~1 6
'::;1 4
12
10
~ 8. 0 6. 0
> 4. 0
2. 0 -

ci

0

+18 V
+15 V
+12 V

+9.0 V

+6.0 V
+5.0 V
1.0
2.0

3.0
4.0
5.0
6.0
7.0
RL, LOAD RESISTANCE (k!l)

8.0

9.0

MOTOROLA LINEAR/INTERFACE DEVICES
2-63

I
I

±6V

I

II
I
5007001.0k
2.0k
Rl, LOAD RESISTANCE (OHMS)

~1 8 - +21 V

§;
~

±15 V SUPPLIES

I

,

+24 V

0

I II

t/

./

: +30 V Supply

22

I

I

1::24 - +27 V

z

10M

±9 V

FIGURE 5 - OUTPUT VOLTAGE SWING versus
LOAD RESISTANCE (Single Supply Operation)

~

"

1.0 M

±!2V

-9. 0
~ -8. 0

±9V

500 700 1.0 k
2.0 k
Rl, LOAD RESISTANCE (OHMS)

-

-I 3
-I 2

I

~~ ~:~

o

-I 5
-I 4

±12 V

~ 9.0

100 k

FIGURE 4 - NEGATIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

±15 V SUPPLIES

§; 8.0

10 k

~

I. FREQUENCY (Hz)

FIGURE 3 - POSITIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE
15
14
13
12
II

"" ""

10

5.0k 7.0k 10k

LM148, LM248, LM348

FIGURE 7 -

II

FIGURE 6 -

OPEN LOOP VOLTAGE GAIN

versus SUPPLY VOLTAGE

NONINVERTING PULSE RESPONSE
105

,..............

100

1\

I

95

~

90

'""
~

5

i

0

z

~UTPUT

w

\

"

~

.......-

o
>

\
11PUT

L

L

./'

V

5
70

o

2.0

4.0

6.0
8.0
10
12
14
16
Vee, IVEEI, SUPPLY VOLTAGES (VOLTSI

18

20

APPLICATIONS INFORMATION
FIGURE 8 -

VOLTAGE REFERENCE

FIGURE 9 -

WIEN BRIDGE OSCILLATOR
SOk

R1

10k

Vref=t
Va

2.5 V(1 +

Vee

For

fa"" 1 kHz

:~.)

R
C

R

RGURE 10 -

HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER
1
-R
C

.1

FIGURE 11 -

IlF

R

R1
Vref ......,..,..,..........1:>-1

1

Hvsteresil

"lBVOL

-R

VinL : VinH

C

Vref

R

VinL "" R,R+1 R2 (VOL - Vref) + Vref

VinH= A1 :'R2 (VOH - Vref) + Vref
8 0 ~ C (1

= 0,01

COMPARATOR WITH HYSTERESIS

R2

.2

= 16 kO

+ a + b) (e2 - 81)
H = Rl : ' R2 (VOH - VOLI

MOTOROLA LINEAR/INTERFACE DEVICES

LM148, LM248, LM348

FIGURE 12 - HIGH IMPEDANCE INSTRUMENTATION BUFFER/FILTER

II
R2

R3

FIGURE 13 - FUNCTION GENERATOR
Triangle Wave
Output

1

Vref '"

2" Vee

R2

300k

Vref e-----o-j+ 114

R3

LM148~~~~VV~~--~~

1/4
LM148

>-o-+-_

Square Wave
Output

Vref

C

Rf

f=~
4CRf R1

if

R3:.~~

R2 + R1

FIGURE 14 - BI-QUAD FILTER

R

R

100 k
Rl = OR

Vin

C1

R2

C

C

e----jll--_~'INI___~H 1/4

Rl

R2=-

R

TBP

LM 148 >-o-+--Ylf'or-----4--o-i 1 /4

+

100k

R3=T N A2

LM148 ~-o-+-~W'l.----+---o....--~E-----e Notch Output

0.001 I'F

R1 = 1.6 Mfl

Vref =

~

Vee

R2 = 1.6 Mn

Vref

R3 = 1.6 Mn

Where

T BP

= Center

Frequency Gain

TN = Passband Notch Gain

MOTOROLA LINEAR/INTERFACE DEVICES

2-65

LM148, LM248, LM348

FIGURE 15 - ABSOLUTE VALUE DVM FRONT END

II
900 k

100 k

Vee
LM148 Quad Op-Amp
500 k
Bridge Null Adjust

VEE

MOTOROLA LINEAR/INTERFACE DEVICES
2-66

®

LM158, LM258,
LM358, LM2904

MOTOROLA

Specifications and Applications
Information

DUAL DIFFERENTIAL
INPUT
OPERATIONAL AMPLIFIERS

DUAL LOW POWER OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC
INTEGRATED CIRCUIT

Utilizing the circuit designs perfected for recently introduced
Quad Operational Amplifiers. these dual operational amplifiers
feature 1) low power drain. 2) a common mode input voltage range
extending to groundlVEE. 3) Single Supply or Split Supply operation
and 4) pin outs compatible with the popular MC1558 dual operational
amplifier. The LM158 Series is equivalent to one-half of an LM124.

H SUFFIX

Vee

These amplifiers have several distinct advantages over standard
operational amplifier types in single supply applications. They can
operate at supply voltages as low as 3.0 Volts or as high as 32 Volts
with quiescent currents about one-fifth of those associated with the
MC1741 Ion a per amplifier basis). The common mode input range
includes the negative supply. thereby eliminating the necessity for
external biasing components in many applications. The output voltage
range also includes the negative power supply vOltage.
•
•

Short Circuit Protected Outputs
True Differential Input Stage

•
•
•
•

Single Supply Operation: 3.0 to 32 Volts
Low Input Bias Currents
Internally Compensated
Common Mode Range Extends to Negative Supply

VEE/Gnd
(Top View)

•

Single and Split Supply Operation

•

Similar Performance to the Popular MC1558

J SUFFIX
CERAMIC PACKAGE
CASE 693-02

~

N SUFFIX
PLASTIC PACKAGE
CASE 626-05

B

MAXIMUM RATINGS ITA

=

+25 0 e unless othecwise noted)

1

DSUFFIX

Symbol

LM158
LM258
LM358

LM2904

Vee
Vee. VEE

32
·16

26
' 13

Input Differential Voltage Range (1)

VIDR

·32

!26

Vdc

Input Common Mode Voltage Range (2)

VieR

-0.3 to 32

-0.3 to 26

Vdc

IIF

50

Rating
Power Supply Voltages
Single Supply
Spl it Suppl ies

Input Forward Current (3)

METAL PACKAGE
CASE 601-04

Unit

Vdc

PLASTIC PACKAGE
CASE 751-02
SO-8
Output A

1

7 Output B

611"OU"

rnA

IVI < -0.3 V)
Output Short Circuit Duration

ts

Junction Temperature
Ceramic and Metal Packages
Plastic Package

TJ

Storage Temperature Range
Ceramic and Metal Packages
Plastic Package

Tst9

Operating AmbIent Temperature Range
LM158
LM258
LM358
LM2904

°e
115
150

ORDERING INFORMATION
Device

°e

-65 to +150
-55to+125
°e

TA
-55 to +125
-25 to +85
to +70

o

-40 to +85

(1) Spl it Power Suppl ies.
(2) For Supply Voltages less than 32 V for the LM158/258/358 and 26 V for the LM2904,
the absolute maximum input voltage is equal to the supply voltage.
(3) ThiS input current VII II I only exist when the voltage is negative at any of the input leads.
Normal output states will reestablish when the input voltage returns to a voltage greater
than -0.3 V.

Temperature
Range

LMI58J
LM2904D
LM2904H
LM2904J
LM2904N
LM258D
LM258H
LM258J
LM258N
LM358D
LM358H
LM358J
LM358N

Package
Metal Can

LM15BH

MOTOROLA LINEAR/INTERFACE DEVICES

2-67

B

(Top View)

Continuous

-55to + 125°C

-40 to +85°C

Ceramic DIP

50-8
Metal Can
Ceramic DIP

Plastic DIP
50-8
-25 to +85°C

Metal Can
Ceramic DIP

Plastic DIP
50-8

oto

+ lO°C

Metal Can
Ceramic DIP

Plastic DIP

II

II

LM158, LM258, LM358, LM2904
ELECTRICAL CHARACTERISTICS (Vee = 5.0 V. VEE = Gnd. TA = 25 0 e unless otherwise noted)
LM158/LM258

Characteristic

Min

Symbol

Input Offset Voltage

Typ

Max

LM358

Min

Typ

LM2904
Max

Min

Typ

Max

Vee = 5.0 V to 30 V (26 V for LM2904).
Vie = 0 V to Vee - 1.7 V. Vo::o 1.4 V. RS = 0 n
TA = 25 0 e
T A = Thigh to Tlow INote 1)

-

2.0
-

5.0
7.0

-

2.0
-

7.0
9.0

-

2.0
7.0

-

pv/oe

5.0
45

SO
200

nA

10

-

pA/ue
nA

-

7.0
10

Average Temperature Coefficient of Input Offset Voltage
T A = Thigh to Tlow (Note 1)
Input Offset Current
T A = Thigh to Tlow (Note 1)

"VIO/"T

-

7.0

-

-

7.0

-

110

3.0

30
100

-

SO
150

"IIO/"T

10

-

-

5.0

-

Average Temperature Coefficient of Input Offset Current
TA = Thigh to Tlow (Note 1)

-

10

-

-

-

-45
-SO

-150
-300

-

-45
-50

-250
-500

-

-45
-50

-250
-500

a
a

-

2B.3
28

a
a

-

28.3
28

a
a

-

24.3
24

Input Bias Current

liB

TA = Thigh to Tlow (Note 1)
Input Common-Mode Voltage Range (Note 2)

V

VieR

Vee = 30 V (26 V for LM29041
Vee = 30 V (26 V for LM2904). TA = Thigh to Tlow
Differential Input Voltage Ranfje

VIDR

Large Signal Open-Loop Voltage Gain
RL = 2.0 kn, Vee = 15 V. For Large Vo Swi ng,
T A = Thigh to Tlow (Note 11

AVOL

Unit

mV

Via

Vee

-

Vee

Vee

V
V/mV

-

50
25

100

-

25
15

100

-

-

-

100

-

-

-

-

-

-120

-

-

-120

-

-

-120

-

dB

eMRR

70

85

-

65

70

-

50

70

-

dB

Power Supply Rejection Ratio

PSRR

65

100

-

65

100

-

50

100

-

dB

Output Voltage Range
RL = 2 kn (RL;;' 10 kn for LM2904)

VOR

a

-

3.3

a

-

3.3

a

-

3.3

V

Output Voltage High Limit (T A Thigh to TlowliNote 1)
Vee = 30 V (26 V for LM2904). RL = 2 kll
Vee = 30 V (26 V for LM2904). RL = 10 kl1

VOH
26
27

-

-

26
27

-

22
23

-

28

-

-

28

24

-

Output Voltage-Low limit
Vee = 5.0 V. RL = 10 kn. TA = Thigh to Tlow (Note 1)
Output Source Current
VID =+1.0 V. Vee= 15V

VOL

-

5.0

20

-

5.0

20

-

5.0

20

mV

10+

20

40

-

20

40

-

20

40

-

mA

10
12

20
SO

-

10
12

20
SO

-

10

20

-

-

-

mA
pA

-

40

60

-

40

60

-

40

60

mA

-

1.5
0.7

3.0
1.2

-

1.5
0.7

3.0
1.2

1.5
0.7

3.0
1.2

Channel Separation
1.0 kHz';;;; f ~ 20 kHz, Input Referenced
Common-Mode Rejection Ratio

RS" 10 kn

Output Sink Current

V

10-

VID = -1.0 V. Vee = 15 V
VID = -1.0 V. Va = 200 mV
Output Short Circuit to Ground (Note 3)

los

Power Supply Current (T A - Thigh to Tlow)(Note 11

lee

Vee = 30 V (26 V for LM2904). Va = a v. RL = ~
Vee = 5 V. Va = a V. R L = ~

mA

-

-

NOTES:
(1)

Tlow '" ~550C for LM158
== --40°C for LM2904
= - 25°C for LM258
= OoC for LM358

Thigh'" + 125°C for LM158
= +85 0 C for LM2904
and LM258
= + 70De for LM358

(2)

The

voltage

input

common-mode

or

either

input

0.3 V. the upper end of the common-mode voltage range
is Vee - 1.7 V. but either or both inputs can go to + 32 V
without damage (+26 V for LM29Q4).

(3)

II

and

eventual

destruction.

Vee can cause excessive
Destructive

dissipation

can result from simultaneous shorts on all amplifiers.

@Dh5V

SINGLE SUPPLY
3.0 V to Vee (Max)

Short circuits from the output to
heating

signal

voltage should not be allowed to go negative by more than

SPLIT SUPPLIES

Vee

cc

i----l-_=.,

2

-=VEE

VEE/Gnd

MOTOROLA LINEAR/INTERFACE DEVICES
2-68

to VCC(Max)

1.6 V to VEE (Max)

LM158, LM258, LM358, LM2904

Bias Circuitry

REPRESENTATIVE CIRCUIT SCHEMATIC
(One-Half of CirCUit Shown)

Common to Both
Output

Amplifiers

r------~------~~-~----~-----4_---~--_.-~

Vee

0161':'----,

CIRCUIT DESCRIPTION

LARGE SIGNAL VOL TAGE
FOLLOWER RESPONSE

The LM158 Series is made using two internally com-

II

pensated, two-stage operational amplifiers. The first stage
of each consists of differential input devices 020 and
018 with input buffer transistors 021 and 017 and
the differential to single ended converter 03 and 04.
The first stage performs not only the first stage gain
function but al50 performs the level shifting and trans-

Vee =- 15 Vdc
A L '= 2 kH
T A ~ 25°C

>

a

:;

_1
\

/

/

r"'""

conductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF)
can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of 020 and 018. Another feature of this input

stage is that the input common-mode range can include
the negative supply or ground, in single supply operation,
without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.
Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving
each amplifier good temperature characteristics as well as
excellent power supply rejection.

5.0J../s/D;v

MOTOROLA LINEAR/INTERFACE DEVICES
2-69

II

LM158, LM258, LM358, LM2904

TYPICAL PERFORMANCE CURVES

II

FIGURE 2 - OPEN LOOP FREQUENCY

FIGURE 1-INPUTVOLTAGE RANGE

±20

tg ~ J

120

\5
VEPGnd
TA ~ 25°C

±lB
0

iii ±t6

V

....

~ ±14
~ ±t2
~ ±lO
o
;:: ±8.D

\ /.

V

i'o.r-.
r-.

0

r-~

0

Positive

L./:V

'> ±4.0

'"

0

VK

'"~ ±6.0
±2.0

V

Negattve

......

0

V ... V

v-::; V

~

0

./

·2 0

±2.0

±4.0

±6.0

±R.D

±lO

±t2

±14

±tS

±18

100

10

1.0

±20

1:
~

...
lil

10

~

8. 0

g
~

S.0

;:!i

;

~

mt

VCC
VEE

i\

\

4. 0

~
~

450

'"'"

400

...

15 V
Gnd

!3

RI = 1 ku

> 35 0

=

1

100 kn

1\

30

1\

Ir-

0

V

200
10

~

1000

100

1.0

f. FREQUENCY (kHz)

FIGURE 5 - POWER SUPPLY CURRENT versus
POWER SUPPLY VOLTAGE
2. 4

~

T1 2JOC
RL ~-

2. 1

~
~

a~
II:

o.9

6.0

1.0

8.0

I--

.......

-

1.2

D.6

3.0 4.0 5.0
t. TIME (",)

0

1. 5

~"'

2.0

FIGURE 6 -INPUT BIAS CURRENT versus SUPPLY VOLTAGE

8

~

r

I,.-0utput

~ 25 0

............

0
1.0

1 1.

CL~50pF

I

o

2.0

o

>

V~~:~;~C-

Input

;;
E

GAIN~·100

RF

1.0M

VCC~30V

500

1\

o

'"

550

III

12

100 k

10k

FIGURE 4 - SMALL·SIGNAL VOLTAGE FOLLOWER
PULSE RESPONSE
(Non-Inverting)

FIGURE 3 - LARGE·SIGNAL FREQUENCY RESPONSE
14

1.0k
f. FREQUENCY (Hz)

VCCIVEE. POWER SUPPLY VOLTAGES (VOLTS)

""" "
0

~ O.3
150

0
5.0

10
15
20
25
Vcc. POWER SUPPLY VOLTAGE (VOLTS)

30

35

2.0

4.0

6.0

10

12

14

Vcc. POWER SUPPLY VOLTAGE (VOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-70

16

18

20

LM158, LM258, LM358, LM2904
APPLICATIONS INFORMATION
FIGURE 8 - WIEN BRIDGE OSCILLATOR

FIGURE 7 - VOLTAGE REFERENCE

50 k
R1

Vcc
10 k
LM358

~~~

_ V0

2.5 V

1

fo'"

2n-RC

1

Vref

"'"2 Vee

For

2.5V(1+'~2.)

fa·"" 1 kHz

R=-16kn

C

R2

C -= 0.01 pF

R

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 10 - COMPARATOR WITH HYSTERESIS

1

-R

.1

R

C

Hvsteresis

R2

R1

V ref _AA/V-......o-......--,~ Notch Output

R-160kn

C = 0.001 JJ.F
Rl'" 1.6Mn
Vref

T BP '" Center Frequency Gain
TN '" Passband Notch Gain

MOTOROLA LINEAR/INTERFACE DEVICES
2-71

A2=1.6Mn
R3"" 1.6Mn

LM158, LM258, LM358, LM2904
APPLICATIONS INFORMATION (continued)
FIGURE 12 - FUNCTION GENERATOR

R2

Triangle Wave
Output

1

Vref'"

'2 Vee

300 k
Vref

Square

Yo
LM358

Wave
Output

r-o-.-....

Rf
f

oo~l .+ RC

if

4CAfRl

R3 '" ~_~_~~ .
R2tA1

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER
VCC

Vin

t-

E---.Vo
Co

R2

Given

Co

10 C

1

Vref'

:2 Vee

fa'" Center Frequency

A(f o ):: Gain at Center Frequency

Choose Value fa, C

Then
Q

R3=-1f

fa C

R3

Rl = - - -

2 A(f o )

Rl R3

A2=---~

4Q2 Rl -

R3

For less than 10% error trom operational amplifier

0
If

0 fO<0.1
BW

source

Where fa and BW are e)(pressed in Hz.

impedance varies, filter may be preceded with voltage

follower buffer to stabilize filter parameters.

MOTOROLA LINEAR/INTERFACE DEVICES

2-72

®

LM193 LM193A
LM293 LM293A
LM393 LM393A
LM2903

MOTOROLA

SINGLE SUPPLY,LOW POWER, LOW OFFSET VOLTAGE
DUAL COMPARATORS

DUAL COMPARATORS
SILICON MONOLITHIC
INTEGRATED CIRCUIT

The LM193 series are dual independent precision voltage
comparators capable of single-or split-supply operation. These
devices are designed to permit a common mode range-ta-ground
level with single-supply operation. Input offset-voltage
specifications as low as 2.0 mV make this device an excellent
selection for many applications in consumer automotive, and
industrial electronics.
•

Wide Single-Supply Range -

•

Split-Supply Range -

•

Very Low Current Drain Independent of Supply Voltage-O.4 mA

±1.0 Vdc to ±18 Vdc

•

Low Input Bias Current -

•

Low Input Offset Current -

•

Low Input Offset Voltage -

vee

25 nA
5.0 nA
2.0 mV (max) LM193A/293A/393A
- 5.0 mV (max) LM1931293/3"l3

•

Input Common Mode Range to Ground Level

•

Differential Input Voltage Range Equal to Power Supply Voltage

•

Output Voltage Compatible with DTL, ECl, TTL, MOS and CMOS
Logic Levels

+Input

Gnd
(Top View)

~

FIGURE 1 - CIRCUIT SCHEMATIC
(Diagram shown is for 1 comparator)

Vee

H SUFFIX
METAL PACKAGE
CASE 601-04

2.0 Vdc to 36 Vdc

N SUFFIX
PLASTIC PACKAGE
CASE 626-05

I

-Input

D SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

OUlput

ORDERING INFORMATION
Device

LMI93AH,H
LM293AH,H
LM293D

Temperature
Range

Package

-55 to + 125°C

Metal Can

-25 to +85°e

LM393AH,H
LM393D

LM2903N

MOTOROLA LINEAR/INTERFACE DEVICES
2-73

SO-8
Metal Can

Oto +70oe

LM393AN,N
LM2903D

Metal ean

50-8
Plastic DIP

-40 to +85°C

SO-8
Plastic DIP

II

II

LM193, LM193A, LM293, LM293A, LM393, LM393A, LM2903

MAXIMUM RATINGS
Symbol

Value

Unit

Power Supply Voltage

Rating

VCC

+36 or ±18

Vdc

Input Differential Voltage Range

VIDR

36

Vdc

Input Common Mode Voltage Range

VICR

-0.3 to +36

Vdc

lin

50

mA

ISC
Isink

Continuous
20

mA

Po

570
5.7
830
6.64

mW
mW/OC
mW

Input Current (2)
(Vin < - 0.3 Vdc)
Output Short Circuit-to-Ground
Output Sink Current (1)
Power Dissipation @ T A ~ 25°C
Plastic DIP
Derate above 25°C
Metal Can
Derate a bove 25°C

1/ROJA

Po
1/ROJA

Operating Ambient Temperature Range
LM193,193A
LM293,293A
LM393,393A
LM2903

°c
-55 to +125
-25 to +85
o to +70
-40 to +85

Maximum Operating Junction Temperature
LM393, 393A. 2903
LM193,193A,293,293A

°C

TJ(max)
125
150
Tsto

Storage Temperature Range

ELECTRICAL CHARACTERISTICS

Characteristic

-65 to +150

°C

(VCC 0 5 0 Vdc' 'Tlow';; TA';; Thigh unless otherwise stated)
LM293A, LM393A
LM193A
Symbol
Min
Typ
Max
Typ
Min
Max

Input Offset Voltage (3)
TA ~ 25°C
Tlow'" TA '" Thigh
Input Offset Current
TA 0 25°C
Tlow';; TA';; Thioh
Input Bias Current (4)
TA 0 25°C

-

±1.0

-

±3.0

-

25

-

±2.0
4.0

-

±1.0

±25
±100

-

±5.0

-

±2.0
4.0
nA

110

TJow";;; TA ~ Thigh

Response Time (5)
VRL 05.0 Vdc, RL 05.1 kit TA 0 25°C

-

±50
±150

-

100
300

-

25

-

-

250
400

0
0

-

VCC -1.5
VCC -2.0

0
0

-

VCC -1.5
VCC -2.0

Volts

VICR

50

200

-

50

200

-

V/mV

-

300

-

-

300

-

ns

tTLH

-

1.3

-

-

1.3

-

!,s

-

-

-

16

6.0

16

AVOL

-

VID

-

Output Sink Current
Vin-;;' 1.0 Vdc, Vin+ 0 0 Vdc, Va';; 1.5 Vdc
TA 0 25°C

Isink

6.0

Output Saturation Voltage
Vin-;;' 1.0 Vdc, Vin+ 0 0, Isink';; 4.0 mA, TA 0 25°C
Tlow';; TA';; Thigh
Output Leakage Current
Vin- 0 0 V, Vin+;;' 1.0 Vdc, Va 0 5.0 Vdc, TA 0 25°C
Vin- 0 0 V, Vin+;;' 1.0 Vdc, Va 0 30 Vdc,
Tlow';;TA';;Thigh
Supply Current
RL::::: 00 Both Comparators, TA = 25°C
RL 0 00 Both Comparators, VCC 0 30 V

VOL

Input Differential Voltage (7)
All Vin;;' Gnd or V- Supply (if used)

-

nA

lIB

Large Signal Response Time
Vin 0 TIL Logic Swing, Vref 0 1.4 Vdc
VRL 0 5.0 Vdc, RL 05.1 kit TA 0 25°C

Unit

mV

Via

Input Common Mode Voltage Range (5)
TA 0 25°C
Tlow';; TA';; Thioh
Voltage Gain
RL;;' 15 kit VCC o 15 Vdc, TAO 25°C

'LM193/193A LM293/293A LM393/393A LM2903 -

mW/oC

TA

VCC

-

VCC

-

V
rnA

mV

-

150

-

0.1

-

-

1.0

-

0.4
1.0

-

400
700

-

150

400
700

-

-

-

0.1

-

1.0

-

0.4
1.0

1.0
2.5

IOL

-

pA

mA

ICC

1.0
2.5

Tlow 0 -55°C, Thigh 0 +125°C
Tlow 0 -25°C, Thigh 0 +85°C
Tlow: O°C~ Thigh 0 +!O°Co
Tlow - -40 C, Thigh - +85 C

MOTOROLA LINEAR/INTERFACE DEVICES
2-74

-

LM193, LM193A, LM293, LM293A, LM393, LM393A, LM2903

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Input Offset Voltage (3)
TA = 25°e
Tlow'; TA'; Thi~h

Via

Input Offset Current

110

TA = 25°e
Tlow'; TA'; Thioh
Input Bias Current (4)
TA = 25°e
Tlow'; TA'; Thiah
Input Common Mode Voltage
Range (4)
TA = 25°e
Tlow'; TA'; Thiah
Voltage Gain
RL;;;' 15 kll. Vee = 15 Vdc.
TA = 25°e

(Vee = 5.0 Vdc; *Tlow'; TA'; Thigh unless otherwise stated.)

Min

LM193
Typ
Max

LM293. LM393
Min
Typ
Max

±1.0

-

±3.0

-

25

-

-

-

±5.0
9.0

-

±1.0

±25
±100

-

±5.0

100
300

-

25

-

±5.0
9.0

-

±2.0
9.0

±7.0
15

±50
±150

-

±5.0
±50

±50
±200

-

-

250
400

-

25
200

250
500

nA

lIB

-

-

Volts

VieR

200

Vee -1.5
Vee -2.0

0
0

50

-

50

200

-

25

200

-

V/mV

-

300

-

-

300

-

-

300

-

ns

1.3

-

-

1.3

-

-

1.5

-

~s

-

-

-

-

6.0

16

-

0
0
AVOL

Unit

nA

-

Response Time (6)
VRL = 5.0 Vdc. RL = 5.1 kll.
TA = 25°e

tTLH

-

Input Differential Voltage (7)

VID

-

-

Output Sink Current
Vin-;;;' 1.0 Vdc. Vin+ = 0 Vdc.
Va'; 1.5 Vdc TA = 25°e

'sink

6.0

16

-

Output Saturation Voltage

VOL
150

400

-

~

LM2903
Typ
Max

mV

-

Large Signal Response Time
Vin :: TTL Logic Swing,
Vref = 1.4 Vdc
VRL = 5.0 Vdc. RL = 5.1 kll.
TA = 25°e

All Vin

Min

Vee

-

Vee -1.5
Vee -2.0

Vee

0
0

-

Vee -1.5
Vee -2.0

Vee

V

-

rnA

Gnd or V- Supply

(if used)

Output Leakage Current
Vin- = 0 V, Vin+ ~ 1.0 Vdc,

10L

Va = 5.0 Vdc. TA = 25°e
Vin-:: a v, Vin+;;:3 1.0 Vdc,
Va = 30 Vdc.
Tlow'; TA'; Thigh
Supply Current
RL:: :x; Both Comparators,

lee

16

-

150

400

-

700

-

200

-

0.1

mV

-

Vin- ~ 1.0 Vdc, Vin+:: 0,
Isink'; 4.0 rnA. TA = 25°e
Tlow'; TA'; Thigh

6.0

4DO

-

-

700

-

0.1

-

-

-

1000

-

-

1000

-

-

1000

-

0.4

1.0

-

0.4

1.0

-

0.4

1.0

2.5

-

-

2.5

-

-

2.5

-

700
nA

-

0.1

-

-

rnA

TA = 25°e
RL = 00 Both Comparators,

-

-

Vee= 30V
*LM193/193A - Tlow = -55°e. Thigh = +125°e
LM2931293A - Tlow = -25°e. Thigh = +85°e
LM393/393A - Tlow= ooe. Thigh = +70 oe

NOTES:
(1) The max. output current may be as high as 20 rnA, independent of
the magnitude of Vee. output short circuits to Vee can cause excessive heating and eventual destruction.
(2) This magnitude of input current will only occur if the input leads are
driven more negative than ground or the negative supply voltage.
This is due to the input PNP collector base junction becoming forward biased, acting as an input clamp diode. There is also a lateral
PNP parasitic transistor action on the Ie chip. This phenomena can
cause the output voltage of the comparators to go to the Vee voltage
level (or ground if overdrive is large) during the time the input is
driven negative. This will not destroy the device and normal output
states will recover when the inputs become> -0.3 V of ground or
negative supply.
(3) At output switch point, Vo = 1.4 Vdc, RS = 0 n with Vee from 5.0
Vdc to 30 Vdc, and over the full input common-mode range (0 volts

to Vee

~

(4) Due to the PNP transistor inputs, bias current will flow out of the
inputs, this current is essentially constant independent of the output
state, therefore, no loading changes will exist on the input lines.
(5) Input common mode of either input should not be permitted to go
more than 0.3 V negative of ground or minus supply. The upper limit
of common mode range is Vee - 1.5 V but either or both inputs
can be taken to as high as 30 volts without damage.
(6) Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times
are obtainable.
(7) The comparator will exhibit proper output state if one of the inputs
become greater than Vee, the other input must remain within the
common mode range. The low input state must not be less than
-0.3 volts of ground of minus supply.

-1.5 volts)

MOTOROLA LINEAR/INTERFACE DEVICES
2-75

II

LM193, LM193A, LM293, LM293A, LM393, LM393A, LM2903

TYPICAL PERFORMANCE CHARACTERISTICS

II

LM193.A/293.A/393.A

LM2903

FIGURE 2 - INPUT BIAS CURRENT versus
POWER SUPPLY VOLTAGE

FIGURE 5 - INPUT BIAS CURRENT versus
POWER SUPPLY VOLTAGE

SO

SO

70

160

I13

50
TA

40

~

>--

I

60

~
~

50

Tt o'e

«
'"

40

TA

>-=>
~

30

=>
'-'

o'e

0;

+70'e

TA

~T~ -

_

5.0

10

15

20

25

30

35

o

40

o

10

5.0

20

15

FIGURE 3 - OUTPUT SATURATION VOLTAGE
versus OUTPUT SINK CURRENT

FIGURE 6 - OUTPUT SATURATION VOLTAGE
versus OUTPUT SINK CURRENT
10

111
II /I
V tr

Saturation
1.0
TA~+125'e

'"
;"j
0.1

:>

z

o

TA

~
~

~

./

0.01

+25'e

Y

. / v./ V



I

0.01

Out of

~

Saturation
~

1.0
TA - +S5'e

o
>

0.1

is

TA~~5'e

~

V).

i=
~

TA~-55'e

/

I

!

!z

~ 0.6

13

~

0.4

~

u

~ 0.2

I--

-----

1.7'.-9 ~

1 1

~V TA ~ -40'e

0.01

100

10

TA

~

r-

TA

~ ~oe

TA

~

r-

1.3
1.2

TA

~

.§.
>--

+70'e_

I

~

1.0

=>

'"

~

I--.-

O.S

25

'X:

30

35

40

-

--

0.6

0.4
20

==

j.---

~

TA-+125'e

Rl -

---

-.Lf'

<"

+25'e _

I

15

100

~40le

l---'"

_

0.2
10

10

FIGURE 7 - POWER SUPPLY CURRENT versus
POWER SUPPLY VOLTAGE

I

-55°C

-

1.0

0.1

Isink. OUTPUT SINK CURRENT (mA)

....-

5.0

V ~

0.00
1.0

FIGURE 4 - POWER SUPPLY CURRENT versus
POWER SUPPLY VOLTAGE

....--

,../

d f;1"

Isink. OUTPUT SINK CURRENT (mA)

_ O.B

,../V

~)

./" ~ ~TA~o'e

0.01

L

0.1

1.0

40

V~

'"
;"j

~~
V/ ~

/ V

0.001

35

30

Vee. SUPPLY VOLTAGE (Vdc)

ou,'ot / '

o

25

Vee. SUPPLY VOlTAGE (Vdc)

10

~

-

I
I

10

o

I

+25°C

TA - +S5'e

~ 20

+125ie

10

o

I

z

-55'e

;;::

20

!#

~

+25°C

TA

0;

>-- 30
=>
~

;;::

~

TA

40'e

TA

70

:[

o

5.0

10

15

-

MOTOROLA LINEAR/INTERFACE DEVICES

2-76

~

TA

o'e

~ ls5'e-

Rl = 00

20

25

Vee. SUPPLY VOLTAGE (Vdc)

Vee. SUPPLY VOlTAGE (Vdc)

TA

j---- TA ~ +25°e

30

35

40

LM193, LM193A, LM293, LM293A, LM393, LM393A, LM2903

APPLICATIONS INFORMATION
These dual comparators feature high gain, wide bandwidth

It is good design practice to ground all unused pins.
Differential input voltages may be larger than supply voltage
without damaging the comparator's inputs. Voltages more
negative than - 0.3 V should not be used.

characteristics. This gives the device oscillation tendencies if

the outputs are capacitively coupled to the inputs via stray
capacitance. This oscillation manifests itself during output
transitions (VOL to VOH). To alleviate this situation input resistors < 10 kG should be used. The addition of positive feedback « 10 mV) is also recommended.
FIGURE 8 - ZERO CROSSING DETECTOR
(Single Supplyl

FIGURE 9 - ZERO CROSSING DETECTOR
(Split Supplies)

+15 V

VINmin =::0.4 V peak for 1% phase distortion (Ll.B).

+Vcc

10M

15 k

R3

01 prevents input from going negative by more than 0.6

--;-t---t--(~

v.

R1+R2.,.R3
R3 ..:;;

~

for small error in zero crossing

FIGURE 10 - FREE-RUNNING SQUARE·WAVE OSCILLATOR

FIGURE 11 - TIME DELAY GENERATOR
Vee

Vee

1 Mil

--t_

RL

RL

10 k

l_

Vee

O.OOI~F

LM 193

Vee

>-<:>-....-+--.. VO

51 k

' - - - - - - - -.......·+Vref
51 k
51 k

veelrLc

to + A.t
~h=e~e in (~)

"ON" fort

VO

~

Vee

o
--t_

FIGURE 12 -

COMPARATOR WITH HYSTERESIS
Vee

RS

LM193

+
Vrel ...---JINIr-....----vv'v------'
Rt
R2
RS ~ Rl II R2
(Vee - Vrel) Rl
Vtht ~ Vrel + Rl + R2 + RL
V
- V
_ IVrel - Vo Low) Rl
th2 - reI
Rt + R2 + RL

MOTOROLA LINEAR/INTERFACE DEVICES

2-77

V~nbJLf

V~!=+l--n1voe~
tOI ~.f,~

~t-

II

II

®

LM307

MOTOROLA

INTERNALLY COMPENSATED
MONOLITHIC OPERATIONAL AMPLIFIER
A general purpose operational amplifier series well suited for
applications requiring lower input currents than are available with
the popular MC1741. These improved input charaC1eristics permit
greater accuracy in sample and hold circuits and long interval
integrators.

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

• Internally Compensated
• Low Offset Voltage: 7.5 mV max
• Low Input Offset Current: 50 nA max
• Low Input Bias Current: 250 nA max

~

N SUFFIX
PLASTIC PACKAGE
CASE 626-05

1

TYPICAL APPLICATION
HIGH IMPEDANCE BRIDGE AMPLIFIER

NC
Inputs

NC

1

VCC

Output

NC

VEE

(Top View)

ORDERING INFORMATION

CIRCUIT SCHEMATIC
EQUIVALENT CIRCUIT

VEE
4

Pins I, 5, and 8
no connection.

MOTOROLA LINEAR/INTERFACE DEVICES
2-78

LM307

EI

MAXIMUM RATINGS (TA - + 25°C unless otherwise noted)
Rating

Symbol

LM307

Unit

VCC
VEE

+18
-18

Vdc

Differential Input Signal Voltage

VID

:t30

Volts

Common-Mode Input Swing (Note 1)

VICR

:t15

Volts

Power Supply Voltages

Output Short-Circuit Duration

Indefinite

ts

Power Dissipation (Package Limitation) (Note 2)

Po

Operating Temperature Range

TA

Storage Temperature Range

Tstg

500

o to

+ 70

-65 to + 150

mW
°C
°C

ELECTRICAL CHARACTERISTICS (TA = + 25°C unless otherwise noted see Note 3.)
LM307

Characteristics

Symbol

Min

Typ

Max

-

2.0

7.5
10

-

3.0

50
70

-

70

250
300

Unit

Input Offset Voltage
RS'" 50 k!l, TA = + 25°C
RS '" 50 k!l, TA = Tlow to ThiQh

VIO

Input Offset Current
TA = +25°C
TA = Tlow to Thich

110

Input Bias Current
TA = +25°C
TA = Tlow to Thigh

liB

Input Resistance

ri

0.5

2.0

-

Mil

Supply Current
Vs = :t15V, TA

10

-

1.8

3.0

rnA

25
15

160

-

-

-

6.0

30

-

0.Q1
0.02

0.3
0.6

+14
:t13

-

-

.V·

=

mV

-

nA

-

nA

-

+ 25°C

Large-Signal Voltage Gain
Vs = :t15 V, Vo = :t10 V, RL > 2.0 kil, TA
Vs = :t15V, Vo = :t10V, RL" 2.0 kil, TA

=
=

Average Temperature Coefficient of Input Offset Voltage
Tlow'" TA '" Thigh

TCVIO

Average Temperature Coefficient of Input Offset Current
+ 25°C '" TA '" Thigh
Tlow '" TA '" +25°C

TCIIO

Vo

V
:t12
:t10

= Tlow to Thigh)

...vrc
nArC

-

Output Voltage Swing (TA = Tlow to Thigh)
Vs = :t 15 V, RL = 10 kil
RL = 2.0 kil
Input Voltage Range (TA
Vs = :t15V

V/mV

Av
+25°C
Tlow

VICR

:t12

Common-Mode Rejection Ratio (TA
RS'" 50 k!l

= Tlow to Thigh)

CMRR

70

90

-

dB

Supply-Voltage Rejection Ratio (TA
RS'" 50 k!l

= Tlow to Thigh)

PSRR

70

96

-

dB

Symbols conform to JEDEC Engmeerlng BulletIn No.1 when applicable.

for the LM307. The H package is derated based on a thermal
resistance of + 150"CIW, junction to ambient, or + 45"CIW,
junction to case.

Note 1. For supply voltages Jess than ±15 V. the absolute maximum
input voltage is equal to the supply voltage.

Note 3. Unless otherwise noted. these specifications apply for:

Note 2. For operating at elevated temperatures, the device must be
derated based on a maximum junction temperature of lOOoe

± 5.0 V '" VccNee '" ± 15 V, Tlow

MOTOROLA LINEAR/INTERFACE DEVICES
2-79

= DoC,

Thigh = + 70"(

LM307

TYPICAL CHARACTERISTICS
(VCC = +15 V, VEE = -15 V, TA = + 25"C unless otherwise noted.)

II

FIGURE 2 - MINIMUM OUTPUT VOLTAGE SWING

FIGURE 1 - MINIMUM INPUT VOLTAGE RANGE
20

,--

Applies over specified

20

Applies over specified
Operating Temperature
Range

Operating'Temperature

~
§!

Range

/'

/'"
Positive/

"

V
/'"

V
./

/V

'"
~

12

~~

8.0

V

Minimum

V ~imum
I:...:? ~ Rl = 2.0kll

04.0

~

o

o

5.0
10
15
VCC AND 1- Veel. SUPPLY VOLTAGe IVOlTSI

20

o

""«z

88

~

82

'"~

1 2.0 f---+--f--+----+--+----+---l--..j

;a

~

----

,.,,-/

§!

1.5

~ 1.0

f---+--f--+----+--+----+---l--..j
f---+--f--+----+--+----+---l--..j

~
~ 0.5

f---+--f--+----+--+----+---l--..j

~

V

..j 76

.Y

70

20

Applies over specified
Operating Temperature
Range

94

iii

5.0
10
15
VCC AND 1- Veel. SUPPLY VOLTAGeS IVOlTSI

FIGURE 4 - TYPICAL SUPPLY CURRENTS

FIGURE 3 - MINIMUM VOLTAGE GAIN
100

",/' 17

Rl=10kn

~

V

VNegat;ve

o

16

tI

o

5.0
10
15
VCC AND I-Veel. SUPPLY VOLTAGeS IVOlTSI

5.0
10
15
VCC AND 1- Veel. SUPPLY VOLTAGES IVOlTSl

20

20

FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE
+180
+160

g 15 ,.--

+140

§!
+1

~ +120
~ +100
~

I----

"- ..........

+80

~

~ +60

I'-.....

..j +40
+20

~
~

~5.0

~

o

~

,......

-20
1.0

10

100

1.0k
10k
lOOk
f. fREQUeNCY 1Hz!

1.0M

10M

100M

1.0k

\
10k

100 k
f. fReQUeNCY IHzl

MOTOROLA LINEAR/INTERFACE DEVICES
2-80

tOM

10M

LM307

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - VOLTAGE FOLLOWER PULSE RESPONSE

to
+8.0

~ +6.0
~ +4,0

~

f---

r

\

+2.0

~
g

Input

\

I

'\.
'-

0-6.0

!j

/Output

V

\.

-2.0
...~ -4.0

-

I /
I

-8.0

-to

-<

m

~

~

~

~

M

W

00

00

t, TIME 1",,1

MOTOROLA LINEAR/INTERFACE DEVICES
2-81

II

®

LM833

MOTOROLA

DUAL OPERATIONAL
AMPLIFIER

DUAL, LOW NOISE, AUDIO
OPERATIONAL AMPLIFIER

SILICON MONOLITHIC
INTEGRATED CIRCUIT

The LM833 is a standard low-cost monolithic dual generalpurpose operational amplifier employing Bipolar technology with
innovative high-performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers
low voltage noise (4.5 nV/y'RZ), 15 MHz gain bandwidth product,
7.0 V/p.s slew rate, 0.3 mV input offset voltage with 2.0 p'vrc
temperature coefficient of input offset voltage. The LM833 output
stage exhibits no deadband crossover distortion, large output
voltage swing, excellent phase and gain margins, low open-loop
high frequency output impedance and symmetrical source/sink
ac frequency response.
The LM833 is specified over the vehicular temperature range
and is available in the plastic DIP and SO-8 packages (P and D
suffixes). A quad device is available in the MC34079 family.

••
1

P SUFFIX
PLASTIC PACKAGE
CASE 626-05

8.

• Low Voltage Noise: 4.5 nV/y'RZ
• High Gain Bandwidth Product: 15 MHz
• High Slew Rate: 7.0 V/p.s

1

• Low Input Offset Voltage: 0.3 mV
• Low T.C. of Input Offset Voltage: 2.0

p'vrc

o SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

• Low Distortion: 0.002%
• Excellent Frequency Stability
• Dual Supply Operation

PIN ASSIGNMENTS

Output 1

VCC
Output 2

Inputs 1 {

MAXIMUM RATINGS
Rating
Supply Voltage (VCC to VEE)
Input Differential Voltage Range
Input Voltage Range

Svmbol

Value

Unit

Vs

+36

Volts

NOTE 1

Volts

VIDR

30

VIR

±15

NOTE 1

VEE
Dual, Top View

Volts

Output Short-Circuit Duration (NOTE 2)

ts

Indefinite

Seconds

Operating Ambient Temperature Range

TA

-40 to +85

°c

Operating Junction Temperature

TJ

+150

°c

Device

Temperature Range

Tstg

-60 to + 150

°c

LM833P

-40 to +85°C

Plastic DIP

mW

LM833D

-40 to +85°C

SO·8

Storage Temperature
Maximum Power Dissipation (NOTE 2)

PD

500

NOTE 3

ORDERING INFORMATION

NOTES:

,. Either or both input voltages must not exceed the magnitude of Vee or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded (See power dissipation performance, characteristicl.
3. Maximum value at TA "'ii; B5°C.

MOTOROLA LINEAR/INTERFACE DEVICES
2-82

Package

LM833

DC ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V, VEE ~ - 15 V, T A ~ 25'C unless otherwise noted).

Input Offset Voltage (RS

~

Characteristics

Symbol

Min

Typ

Max

~

Via

-

0.3

5.0

mV

2.0

-

p'vrc

10 il, Va

0 V)

Unit

Average Temperature Coefficient of Input Offset Voltage
RS ~ 1011, Va ~ 0 V, TA ~ Tlow to Thigh

~VIO/~T

~

110

-

10

200

nA

liB

-

300

1000

nA

+ 14

+12

V

-

dB

Input Offset Current (VCM
~

Input Bias Current (VCM

0 V, Va

0 V, Va

~

~

0 V)

0 V)

Common Mode Input Voltage Range

VICR

-12
~

large Signal Voltage Gain (Rl
Output Voltage Swing: RL
Rl
Rl
Rl

~
~
~

~

Common Mode Rejection (VIN
Power Supply Rejection (VS
Power Supply Current (Va

~

2.0 kll, Va
~

2.0 kll, VIO
2.0 kil, VIO
10kil,VID
10 kll, VIO
~

~

~
~

~

~

±10 V)

-14

AVOl

90

110

VO+
VOVO+
VO-

10

-

13.7
- 14.1
13.9
-14.7

CMR

80

100

-

PSR

80

115

--

dB

-

4.0

8.0

rnA

1.0 V
1.0 V
1.0V
1.0 V

± 12 V)

15 to 5.0 V, - 15 to -·5.0 V)

0 V, Both Amplifiers)

12

10

-

II

V
V
V
V

-10

-12

dB

AC ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V VEE ~ - 15 V TA ~ 25'C unless otherwise noted)
Characteristics

Symbol

Min

Typ

Max

SR

5.0

7.0

V/p.s

Unit

10

15

-

Unity Gain Frequency (Open loop)

fU

-

9.0

-

MHz

Unity Gain Phase Margin (Open loop)

8m

60
4.5

-

nV/y'Hz

0.5

-

pA/y'Hz

BWP

-

120

-

kHz

THO

-

0.002

-

%

-

-120

-

dB

~

Slew Rate (VIN

Gain Bandwidth Product (f

~

Equivalent Input Noise Current (f
Power Bandwidth (Va
~

~

~

~

~

~

+1.0)

GBW

10011, f

~

1.0 kHz)

en

1.0 kHz)

27 Vp _p , Rl

2.0 kil, f

Channel Separation (f

FIGURE 1 -

~

2.0 kn, AV

100 kHz)

Equivalent Input Noise Voltage (RS

Distortion (Rl

~

- 10 V to + 10 V, Rl

~

in

2.0 kil, THO", 1.0%)

20 Hz to 20 kHz, Va

~

3.0 V rms , AV

~

+1.0)

-

20 Hz to 20 kHz)

FIGURE 2 -

MAXIMUM POWER DISSIPATION
versus TEMPERATURE

800

1000

0

1:>- 800
~

\ ..

:::J
U

r"..

.2

0

50

o

600

~ 400

it
;;;:;

".

.!¥ 200

'\.

50
100
TA, AMBIENT TEMPERATURE I'C)

t---- VCC ~ + 15 V
VEE ~ -15V
~VCM~OV

~

.\

Deg

INPUT BIAS CURRENT versus TEMPERATURE

I

:z

MHz

~

-

o

150

-55

-.

0

•

~

TA, AMBIENT TEMPERATURE I'CI

MOTOROLA LINEAR/INTERFACE DEVICES
2-83

~

100

125

II

LM833

FIGURE 3 -INPUT BIAS CURRENT versus SUPPLY VOLTAGE

..

800
TA

FIGURE 4 10

~125'C

.E 600

1

>-

~

::>

u
~

400

~l:

8.0

z>-

+

13

~

'"i =>

::>

Jli 200

Jl>

;;;;

4.0

10
15
Vcc, !VEE!, SUPPLY VOLTAGE {VOLTS)

FIGURE 5 -

I

/

o

5.0
10
15
Vcc, !VEEI, SUPPLY VOLTAGE IVOLTS)

FIGURE 6 -

T-

'" 105
z



:>

g

-"

V

-

J

RL = 2.0 kll
TA= 25'e 0

--- --0

/

90
-55

-.

0

•

m

~

100

80
5.0

125

120

OPEN-LOOP VOLTAGE GAIN AND PHASE
versus FREQUENCY

10
15
Vcc, IVEE!, SUPPLY VOLTAGE {VOLTS)

0

."~

.... ~

vcc = +15V
~ -15V
f - - r-~EE
RL = 2.0 kI1
TA = 25'C
0

o

1.0

10

100

20
~

~

-

-~ t--

""

1.0K
10K
I, FREQUENCY 1Hz)

'--- r---

t>
15
::>

r-- t---

<>

<>

if

~

lOOK

b
~
z

~,
,~

Vce = +15V
VEE = -15V

z

~ 5.0

I =1100 kHz 1

~

BO

10M

'" o
-55

-.

0

•

m

TA, AMBIENT TEMPERATURE I'C)

MOTOROLA LINEAR/INTERFACE DEVICES

2-84

~~,

10

;a

~1

Rl

1.0M

r--

or

~E-

r-.....

20

FIGURE 8 - GAIN BANDWIDTH PRODUCT
versus TEMPERATURE

........

" ....

----

----

TA, AMBIENT TEMPERATURE I'C)

FIGURE 7 -

20

DC VOLTAGE GAIN versus SUPPLY VOLTAGE

11 0

Vec ~ + 15 V
VEE ~ -15V
RL ~ 2.0kn -

:3

95

-

o

20

DC VOLTAGE GAIN versus TEMPERATURE

110

Vo

VEE / '

2. 0

5.0

RL = x
TA = 25'C- I - -

~



o

:i

Vee

~ 6.0

r--

SUPPLY CURRENT versus SUPPLY VOLTAGE

~

100

125

LM833

FIGURE 9 -

GAIN BANDWIDTH PRODUCT versus
SUPPLY VOLTAGE

30

TA

>'-'

=>

0

g:

10

f~IJkHZ_

~
;:;!
0

FIGURE 10 -

20

~

.,--

~

;:
0

!

z

8.0

~

-15V

I

_RL~2.0k!1

AV

~
~

---

~ 6.0

~

+1.0

FALLING

10

I

JLVIN~VO_

4. 0

'"
:g
OJ

RL

OJ

o

10
15
VCC, IVEEI, SUPPLY VOLTAGE {VOLTSI

5.0

FIGURE 11 -

2.0
-55

20

f-- RL ~ 2.0 k!1
AV ~ +1.0
8.Of--TA ~ 25°C

FIGURE 12 -

I
I

1 =1100

I

~

~

~

125

OUTPUT VOLTAGE versus FREQUENCY

--

v~~I~ ~1,101

,

30

RISt G

VEE ~ -15V
RL ~ 2.0 kll
THD'" 1.0%
TA ~ 25°C

5
0

JLVIN~VO

0

0

35

FALLING

01-'

-~

TAo AMBIENT TEMPERATURE {OCI

SLEW RATE versus SUPPLY VOLTAGE

0

r-----

RIS[NG

;::;;0-

~

z

;a

V~C ~ +1~V

VEE

25°C

SLEW RATE versus TEMPERATURE

5
0

RL

2. 0
5. 0

I

0
5.0

10
15
VCC, IVEEI, SUPPLY VOLTAGE {VOLTSI

0
10

20

FIGURE 13 - MAXIMUM OUTPUT VOLTAGE
versus SUPPLY VOLTAGE

o

I.

5f--RL ~ 10 k!1
TA ~ 25°C

~

0

~
§?

5.0

~

>-

0

=>

5o -5.0
~-1 0
-1 5

-2O

5.0

-

vol
_I---

l---

1.0K
10K
f, FREQUENCY IHzl

FIGURE 14 -

-

1.0M

OUTPUT SATURATION VOLTAGE
versus TEMPERATURE

----

r--+r
4 r - - Vsat

r-

VCC~+15V
VEE~ - 1 5 V -

~

RLe 10 k!11

t-

10
15
VCC, IVEEI, SUPPLY VOLTAGE {VOLTSI

lOOK

10M

5

~

- -r--

100

3
20

0

-~

~

~

TA, AMBIENT TEMPERATURE lOCI

MOTOROLA LINEAR/INTERFACE DEVICES

2-85

~

100

125

II

LM833

FIGURE 15 - POWER SUPPLY REJECTION
versus FREQUENCY

II

140

-

0

r-

i"""'~PSR
+PSR

I

100

~

~

~

25'C

ADM
+

r"~

-=-

........

r--..

20Log (!!.Vo/ADM)
!!.Vec

I III

- PSR

o

~

160

Vec~+15V
VEE ~ -15V

TA

I

FIGURE 16 - COMMON MODE REJECTION
versus FREQUENCY

+PSR

~

c;

0.' f-

u

Z
o

N

8

'"

1.0M

10
100

10M

TOTAL HARMONIC DISTORTION
versus FREQUENCY

:s
w

Vo

~

~

3.0 Vrms

1.0K
t, FREQUENCY 1Hz)

10K

~ 2.0

1.0Vrms

III

/--

S:>

;;::

itO
10

lOOK

1.0K

n~1111

10K

lOOK

FIGURE 20 -INPUT REFERRED NOISE VOLTAGE
versus SOURCE RESISTANCE

~100

~
w

veJ~

+lL
VEE ~ -15V
TA ~ 15'C

1. 0

.......

'"
i"j
0

>

tx

.......

5
z

............

O. 5

*

10

~
~

0.4

~ O. 3
;;::
.E O. 1
10

100

t, FREQUENCY (Hz)

INPUT REFERRED NOISE CURRENT
versus FREQUENCY

~

~

VCC ~ +15V
VEE~ -15V
RS ~ 100 l1

~

~ 1.0

z

5.0

>

0.001

5

10M

r--..

w

'"~

I 111H

O.7

1.0M

~ 10

'"
5
z
Vo

=>

10K
lOOK
t, FREQUENCY (Hz)

o

/--

u
~

1.0K

FIGURE 18 -INPUT REFERRED NOISE VOLTAGE versus
FREQUENCY

VCC ~ +15V
VEE ~ -15V
RL ~ 1.0 kfl
TA ~ 15'C

""g~

I

~

u

30.01

FIGURE 19 -

eMR

!!.VO

~ 80

1l"

100

+

10Log (!!.V
!!.S~ x ADM )

::;; 60

-=

10

-

::;; 40

°11·"

o
~

.1

::;;

1.0
z

'!!.v~f

-

o

~

10K
lOOK
t, FREQUENCY 1Hz)

FIGURE 17 -

-

~ 100

20Log (!!.VO/ADM)
!!.VEE
1.0K

~ 120

o
o

~r-..

I III

z
o

!!.VO

!!.VEE

r-....

vic I~ 1+1JV I
VEE ~ -15V
VCM ~ 0 V
!!.VCM~ :tl.5V
TA ~ 15'C

~ 140 -

f-

ii'
;;::
itO
100

1.0K
t, FREQUENCY (Hzl

10K

lOOK

1.0

10

100
1.0K
10K
RS, SOURCE RESISTANCE (l11

MOTOROLA LINEAR/INTERFACE DEVICES

2-86

lOOK

1.0M

LM833
FIGURE 21 -

INVERTING AMPLIFIER

FIGURE 22 -

NON-INVERTING AMPLIFIER SLEW RATE

t, TIME 12.0 JLs/DIV

t, TIME 12.0 !'.SlDIVi

FIGURE 23 -

NON-INVERTING AMPLIFIER OVERSHOOT

s;-

o

:>
E

=

~

'"~
o

>

I-

::J

~

::J

o
6
>

t, TIME 1200 nSiDIVj

MOTOROLA LINEAR/INTERFACE DEVICES

2-87

II

LM2900, LM3900 For Specifications, See MC3301 Data.
LM2901 For Specifications, See LM139 Data.
LM2902 For Specifications, See LMl24 Data.
LM2903 For Specifications, See LMl93
LM2904 For Specifications, See LMl58

MC1414
MC1514
DUAL
DIFFERENTIAL
COMPARATOR

DUAL DIFFERENTIAL VOLTAGE COMPARATOR
· .. designed for use in level detection, low-level sensing, and
memory applications.

(DUAL MC1710)

• Two Separate Outputs
• Strobe Capability

SILICON MONOLITHIC
INTEGRATED CIRCUIT

• High Output Sink Current
2.8 mA Minimum (Each Comparator) for MC1514
1.6 mA Minimum (Each Comparator) for MC1414
• Differential Input Characteristics
Input Offset Voltage = 1.0 mV for MC1514
= 1.5 mV for MC1414
Offset Voltage Drift = 3.0 /LV/oC for MC1514
= 5.0 /LVrC for MC1414
• Short Propagation Delay Time -

40 ns Typical

• Output Compatible with All Saturating Logic Forms
Vo = + 3.2 V to - 0.5 V Typical
MAXIMUM RATINGS (TA

=

L SUFFIX
CERAMIC PACKAGE
CASE 632-08

25°C unless otherwise noted)
Symbol

Value

Unit

Power Supply Voltages

VCC
VEE

+14
-7.0

Vdc

Differential Mode Input Voltage Range

VIDR

±S.O

Vdc

Common Mode Input Voltage Range

VICR

±7.0

Vdc

Peak Load Current

IL

10

mA

Power Dissipation (Package Limitation)
Ceramic Dual InMLine Package
Derate above TA = 25°C

Po
1000
6.0

mW
mWfC

625
5.0

mW
mW(OC

TA

-55 to + 125
to +75

°c

Tstg

-65 to + 150

°c

Rating

Plastic Dual In-Line Package
Derate above TA = 25°C
Operating Temperature

MC1514
MC1414

Storage Temperature Range

o

P SUFFIX
PLASTIC PACKAGE
CASE 646-06
(MC1414 Only)

CIRCUIT SCHEMATIC
Vee
3

3.7k

Strobe
2
RX

2.8k

Strobe
9

2.8k

10

Vee

3.7k

Output 1

~-~"'H12 ~~~~nvertjng

Non-Inverting
Input

RX

=

low ReSistance Value, usually < 100 n. nol specified.

MOTOROLA L1NEAR/)NTERFACE DEVICES
2-88

MC1414, MC1514
ELECTRICAL CHARACTERISTICS (VCC ~ + 12 Vdc, VEE ~ -60 Vdc, TA ~ 25°C unless otherwise noted) (Each Comparator)
MC1514
Characteristic

Input Offset Voltage
(Va ~ 1.4 Vdc, TA
(Va ~ 1.8 Vdc, TA
(Va ~ 10 Vdc, TA

Symbol

Min

MC1414

Typ

Max

Min

Typ

Max

~

~
~

25°C)
Tlow*)
Thiqh*)

Temperature Coefficient of Input Offset Voltage

L'1VIO/L'1T

Input Offset Current
(Va ~ l.4Vdc, TA ~ 25°C)
(Va ~ 1.8 Vdc, TA ~ Tlow)
(Va ~ 1.0 Vdc, TA ~ Thigh)

110

Input Bias Current
1.4 Vdc, TA ~ 25°C)
(Va
(Va ~ 1.8 Vdc, TA ~ Tlow)
(Va ~ 1.0 Vdc, TA ~ Thigh)

liB

~

Open Loop Voltage Gain
(TA ~ 25°C)
(TA ~ Tlow to Thigh)

-

1.0

2.0
3.0
3.0

-

1.5

-

-

5.0
6.5
6.5

-

3.0

-

-

5.0

-

-

1.0

3.0
7.0
3.0

-

1.0

-

-

5.0
7.5
7.5

20
45
20

-

15
18

-

-

-

-

I-'Adc
12

1250
1000
RO

I-'vrc
I-'Adc

25
40
40

-

Avol

Output Resistance

Unit
mVdc

Via

-

1700

200

-

-

-

2.5

3.2

4.0

-1.0

-0.5

0

-

1000
800

VN

-

1500

-

-

200

-

Ohms

-

-

Vdc

2.5

3.2

4.0

Vdc

-

-

-

-

Differential Voltage Range

VIDR

,,5.0

High Level Output Voltage
(VID ~ 5.0 mY, 0 '" 10 '" 5.0 mAl

VOH

Low Level Output Voltage
(VID ~ - 5.0 mY, lOS ~ 2.8 mAl
(VID ~ -5.0 mY, lOS ~ 1.6 mAl

VOL

-

-

-

-1.0

-0.5

Output Sink Current
(VID ~ -5.0 mY, VOL'" 0.4 V,
TA ~ Tlow to Thigh)

lOS

2.8

3.4

-

1.6

2.5

-

mAde

VICR

,,5.0

-

-

,,5.0

-

-

Vdc

CMRR

80

100

-

70

100

-

dB

Input Common Mode Voltage Range
(VEE ~ -7.0 Vdc)
Common-Mode Rejection Ratio
(VEE ~ -7.0 Vdc, RS '" 200 !l)

,,5.0

Vdc
0

Strobe Low Level Current
(VIL ~ 0)

IlL

-

-

2.5

-

-

2.5

mA

Strobe High Level Current
(VIH ~ 5.0 Vdc)

IIH

-

-

1.0

-

-

1.0

I-'A

Strobe Disable Voltage
(VOL'" 0.4 Vdc)

VIL

-

-

0.4

-

-

0.4

Vdc

Strobe Enable Voltage
(VOH ~ 2.4 Vdc)

VIH

3.5

-

6.0

3.5

-

6.0

Vdc

-

20
40

-

-

20
40

-

ns

-

ns

Propagation Delay Time (Figure 1)
Strobe Response Time (Figure 2)

tpLH
tpHL
tso
tsr

Total Power Supply Current, Both Comparators
(Va" 0)

ICC
lEE

-

Total Power Consumption, 80th Comparators

PD

-

15
6.0

-

-

-

15
6.0

-

12.8
11

18
14

-

12.8
11

18
14

mAde

230

300

-

230

300

mW

*Tlow = -55°C for MC1514, DoC for MC1414
Thigh = + 125°C for MC1514, + 75°C for MC1414

FIGURE 1 -

1~eout
fvn
J
~

Vb

~

~

95 mV - Via

PROPAGATION DELAY TIME

FIGURE 2 -

STROBE RESPONSE TIME
.

Strobe

"'10ns
"'10ns
95 mV+!----l+--100 mV
Input 10%
0V

~

51
V.

~

+

---3.0 V

IStrobe

50%

In

,mm' 0"

,;;,
Output

MOTOROLA LINEAR/INTERFACE DEVICES
2-89

')f '0"

1.4 V

OV

oV

VOL

MC1414, MC1514

TYPICAL CHARACTERISTICS
(Each Comparator)

II

FIGURE 3 - VOLTAGE TRANSFER CHARACTERISTICS
4.0I

3.0

t

-55o
+ 25°C

r

3.0

FIGURE 4 -INPUT OFFSET VOLTAGE versus TEMPERATURE

-'-

1'\\
"- +125°c

\\

0

\'

~414

1\

Ii

0

\\

-1.0

-u -u -u -u

+ 125°C

h

"

-55°C f--"
4.0
6.0

u

0
-55

8.0

100
0255075
TA. AMBIENTTEMPERATURE lOCI

-25

Vin. INPUT VOLTAGE ImVI
FIGURE 5 - INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 6 -

5.0

-;p--r--

V

/

+ 25°C t \ \

125

INPUT BIAS CURRENT versus TEMPERATURE

5

0

"" '"

01\.

'\.

0

5

r..

'" I"'"

0

0
-55

0

'"

~

r--- t--25

b-.,

0
25
50
75
TA. AMBIENTTEMPERATURE lOCI

5. 0
-55

125

FIGURE 7 - GAIN VARIATION WITH POWER SUPPLY
VOLTAGE
3000,----,--,-----,-,---,---r--.--

-25

...........

t-:-...

0
25
50
75
TA. AMBIENT TEMPERATURE lOCI

100

125

FIGURE 8 - VOLTAGE GAIN versus TEMPERATURE
2500

i'~ 20001------11--+--+--;;.-1"'----J;..-""---t______1--

!
:;;:

~

200

0 ___

r-- t-.......

'"w

~ l0001------11-~~~-1-~~-t______1-~

~

!:;

~
11000 1."'~"---"7i'~+-+-+--I--+-___1

r--.

:} 1500

~~0--~--1~1---L--~12~-L--~13~~--~14

-........... ~14

M~

r--

.........

1000
55

VCC. POSITIVE SUPPLY VOLTAGE IVdcl

-25

0
25
50
75
TA. AMBIENT TEMPERATURE lOCI

MOTOROLA LINEAR/INTERFACE DEVICES
2-90

'"

100

125

MC1414, MC1514

FIGURE 9 in
':;

RESPONSE TIME

FIGURE 10 -

4.0

POWER DISSIPATION versus TEMPERATURE

--

300

0

~

w

3.0

«
'"
':;
0

>
>-~
>-::>

~

2.0 r---

§:

~ 5.0 mV Overdrive

E

~~rive- \\

1.0

10 mV Overdrive-

0

6
>

1-\\\
\..\..

:z250
o

--------

~

2.0 mV Overdrive

~

~

is
~

~ 200 - -

nRlJ 1=

6?

I

s

~

m

~

~

100

-

150

1m

25
75
50
TA, AMBIENTTEMPERATURE (OCI

-25

-55

t, TIME (nsl

FIGURE 11 -

RECOMMENDED SERIES RESISTANCE versus
MRTL LOADS

FIGURE 12 -

4. 0

10 0
RS
~
~MRTL

0

3. 0
~

0

'"
~

E

~~

i

mW MRTL

"

-

" "-

Med. Power

2.0 - 1. 0

0.1

0.2

rll

0.5

125

SINK CURRENT versus TEMPERATURE

--

>--

10

5.0

100

~

1.0

2. 0

'"zVi

3

'" "

5.0

2.0

1. 0

0
-50

10

25

-25

50

75

100

125

RS, SERIES RESISTANCE (kfll

FIGURE 13 -

3.0 -

2. 0
0

1. 0
0
-1. 0

-

1. 0
0

eout 1

i

I

\

\.
\.

To Scope

51

+
51

.J

\

2.0

g

CROSSTALKt

I

---

.-- -J'

-

8out2

51

-

Induced output signal in
amplifier #2 due to output
signal at amplifier #1.

TIME, 50 ns/dlv
tWorst case condition shown - no load.

MOTOROLA LINEAR/INTERFACE DEVICES
2-91

51

EI

II

ORDERING INFORMAnON
Device

Temperature Range

MCI436CD
MCI436D
MCI436Pl
MCI436CPl
MCI436G
MCI436U
MCI436CG
MCI436CU
MC1536G
MCI536U

Package

O°Cto +70"C
O°Cto +70"C

50-8
50-8

O°C to +700c
O°C to +700C

Plastic DIP
Plastic DIP
Metal Can

O°Cto +70"C
O°Cto +70"C
O°Cto +70"C
O"Cto +70"C
- 55"<: to + 125°C
-55°C to +125°C

MC1436
MC1436C
MC1536

Ceramic DIP

Metal Can
Ceramic DIP
Metal Can
Ceramic DIP

HIGH VOLTAGE,INTERNALLY COMPENSATED
OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER

.. designed for use as a summing amplifier, integrator, or amplifier
with operating characteristics as a function of the external feedback

SILICON MONOLITHIC;
INTEGRATED CIRCUIT

components.
•
•

•
•
•
•
•
•
•
•

Maximum Supply Voltage - ±40 Vdc (MC1536)
Output Voltage Swing ±30 Vpk(min) (VCC = +36 V, VEE = -36 V) (MC1536)
±22 Vpk(min) (VCC = +28 V, VEE = -28 V)
Input Bias Current _. 20 nA max (MC1536)
Input Offset Current - 3.0 nA max (MC1536)
Fast Slew Rate -- 2.0 V/MS typ
I nternally Compensated
Offset Voltage Null Capability
Input Over·Voltage Protection
AVOL - 500,000 typ
Characteristics Independent of Power Supply Voltages(± 5.0 Vdc to ± 36 Vdc)

G SUFFIX
METAL PACKAGE
CASE 601-04

FIGURE 1 - DIFFERENTIAL AMPLIFIER WITH ±o20 V
COMMON-MODE INPUT VOLTAGE RANGE
A1
lOOk

+2av

••
1

P1 SUFFIX

U SUFFIX

PLASTIC PACKAGE
CASE 626-05

CERAMIC PACKAGE
CASE 693-02

D SUFFIX

PLASTIC PACKAGE
CASE 751-02
SO-8

Vo'" 10 (VB-VA)

- 2BV

A4
Ok

FIGURE 2 - TYPICAL NONINVERnNG X10
VOLTAGE AMPLIFIER
7

+28

FIGURE 3 - LOW-DRIFT SAMPLE AND HOLD
+28

v

v

Vi "4.4 Vp_p

+
Vo" 44 vpo p

SWITCH
MC1536

SAMPLE
COMMAND

MOTOROLA LINEAR/INTERFACE DEVICES
2-92

e,

"Dfllt due to bias ClIrrellt
IstYPlcl'll1vBmV's

9k
Ik

;r-o---+--

-18 V

MC1436, MC1436C, MC1536

MAXIMUM RATINGS (TA

==

+2SoC unless otherwise noted)

I

Symbol

MC1536

Power Supply Voltage

Vee

+40

VEE

-40

Input Olfferentlal Voltage Range

VIDR

Note 3

Input Common-Mode Voltage Range

VieR

Note 3

IS

5.0

Rating

Output Short Circuit Duration (Vee

VEE

28 Vdc, Va" 0)

Power DISSipation (Package Llm,tatlon)

I

-34

Storage Temperature Range

T stg

-5510+125

Volts
Volts

I

mW
mW/oC

o to +70

=

°e

+2SoC unless otherwise noted)
MC1436

MC1S36

Characteristics

Symbol

I nput Bias Current

°e

-65 to +150

28 Vdc, T A

ELECTRICAL CHARACTERISTICS (Vee - +28 Vdc, VEE"

Vdc

+30
-30

680
4.6

Po

TA

Unit

MC1436C

I

+34

Derate above T A'" +2SoC

Operating Ambient Temperature R<1nge

I

MC1436

Min

MC1436C

TV.

M"

Tv.

Ma.

20
35

15

40
55

25

90

3.0
4.5

5.0

10
14

10

25

5.0

12

TV.

M"

B.O

1.0

Min

Min

liB

T A '- Tlow to Thigh (See Note 1)

',0

Input Offset Current
TA - +2SoC

nAdc

TA"" +2SoC to Thigh
T A ~ Tlow to +2S o C

7.0

I nput Offset Voltage

Unit
nAdc

TA~ ~250C

14

Via

mVdc

TA'" t2S0e

2.0

5.0

5,0

7.0

T A'" Tlow to Thigh

10
14

Differential Input Impedance (Open. loop, f <;S.O Hz)

10<

Parallel Input ReSistance

'P

Parallel Input Capacitance

ep

2,0 r

"c

250

Common-Mode Input Impedance If

~S.O

Hz)

Input Common·Mode Voltage Range

(AV;< 100, Rs" 10k ohms,f"'1.0kHz,BW

~

1.0 Hz)

large Signal de Open loop Voltage Galll

AVOl

{TA'" +250 C

80

Meg ohms

±22

! 25

+18

50

110

70

!20

pF

..

50

110

50

70,000 SOO,OOO

50,000

90

dB

50.000 500,000

50,000
200,000

200,000

200,000

BWp

kH,

IAV = 1, RL = 5.0 k ohms. THD~ 5%, Vo "40 Vp'p)
Frequency (open.loop)

Vpk

V!V

100,000 500,00'

TA = TlowlO Thigh

Power Bandwrdth (Voltage Followed

ero~sover

250

nV!(Hz)%

IV o "'±10V,RL'" 10 k ohms, TA =+25 0 C)

Unity Gam

250

50
CMRR

± 10 V, Rl "- 100 k ohms)

-

'0

Cornman-Mode Relectron Ratio (del

(V o -=

• 25

!24

V,CR

Equivalent Input Noise Voltage

10

--

10
2,0

Meg ohms

2.0

23

23

-

23

f,

1.0

10

10

I'vlHz

Phase Margin (open-loop, unity gain)

Om

50

50

50

degrees

Gam Margm

AM

18

18

18

dB

Slew Rate (Unrty Gain)

SR

20

2.0

2.0

V'MS

Output Impedance If ~ 5.0 Hz}
Short-Circuit Output Current
Output Voltage Range IRl '" 5.0 k ohms)

'0

1.0

10

1.0

k ohms

lOS

±17

-!-17

• 19

mAde

VOR

Vpk

VCC = +28 Vdc, VEE = -28 Vdc

'22

+23

VCC = +36 Vde, VEE = -36 Vdc

±30

±32

t.20

,22

• 20

, 22

Power Supply Sensitivity (del
VEE

0

jJVIV

constant. Rs S 10 k ohms

Vee" constant, As

s

10 k ohms

Power Supply Current (See Note 2)

PSSt

15

100

15

100

35
35

200
200

50

PSSICC

22
2,2

4.0

26

5.0

2.6

5.0
50

2.6

4.0

2.6

50

124

224

146

280

146

280

lEE

DC QUIf:scent Power Consumption

Pe

T low' OOC for Me 1436 ,C
-55°C for MC1536
Thigh' +70 o C for MC1436,C
+ 1250 C for Me 1536

Note 2

Vee VE E
Vee - VEE
Vce - VEE

Note 3: Either or both input voltages must not exceed the magnitude of

mAde

mW

IV o " 01

Note 1:

50

~
~

5.0 Vdc to 36 Vdc for MC1536
5.0 Vdc to 30 Vdc for MC1436
5.0 Vdc to 28 Vdc for MC1436C

Vec or VEE

+3.0 volts.

MOTOROLA LINEAR/INTERFACE DEVICES
2-93

MC1436, MC1436C, MC1536

II

FIGURE 4 - POWER BANDWIDTH

FIGURE 5 - PEAK OUTPUT VOLTAGE SWING. .......
POWER SUPPL Y VOL TAGE
35

l2

0
0

,

0
0

.~
2

3

\.

\.

0

'\

0

""

4

~

-28V

~VD

S.O 8.0 10

20

40

SO SO 100

200

30 -TL25 0

-

2:.
'"z

-

~

15

~

10

g~

5.0

~

i

V

25
Rl=5k~V

20

V

w

:;

--

.......

0
4.0

10k

~

1'-

0

~
o

-

7

S

~

-

c

>

V

V
/

o

o

±20

±10

400

HO

±30

VCCNEE, POWER SUPPLY VOLTAGE IVdcl

f. FREQUENCY 1kHz)

FIGURE 6 - OPEN· LOOP FREQUENCY RESPONSE

FIGURE 7 - OUTPUT SHORT-CIRCUIT CURRENT
•• rsus TEMPERATURE

+140

t

+120

I'" '"

~ +100
z
;;: +SO

'"
w

'"'"

~
>

+SO
+40

;:i

> +20

'"

I

10

100

28

l-

'"

~

1.0 k

20

~

16

~

~

10 k

100 k

"

1.0 M

f. FREQUENCY 1Hz!

24

I-

U

·20
1.0

32

~

12

!;

8,0

~

4.0

f----

~ a
10 M

-75

100 M

~

r--...

............
..........

. _ - -_.-

r-r-..........

._--

50

+25

25

2.8

:::;

i r---

2.4
o
~ 2.0

I'....

I-

~
~
i3

........

1.6

"'"

~ 1.2

;;;
I-

~

O.S

...........

r-..

z

~ 0.4
-75

-50

~

r--

r--- -=::: t::-...

+50

+75

TA. AMBIENT TEMPERATURE IDC)

FIGURE 8 -INPUT BIAS CURRENT ••rsus TEMPERATURE
3.2

~

SOURCE

............

-25

+25

+50

+75

+100

+125

MOTOROLA LINEAR/INTERFACE DEVICES

2·94

-

+100

+125

MC1436, MC1436C, MC1536

FIGURE 10 - NON-INVERTING FEEDBACK MODEL

FIGURE 9 - INVERTING FEEDBACK MODEL

IJ
FIGURE 12 - VOLTAGE CONTROLLED CURRENT
SOURCE or TRANSCONDUCTANCE AMPLIFIER
WITH 0 TO 40 V COMPLIANCE

FIGURE 11 - AUDIO AMPLIFIER
lOOk

Vee CURRENT DRAIN,

10'" 100 mAde@
RI ;51H
D" 02. 03'" lN4001
- - - - COMMON
HEAT SINK

+50V

AI
lOOk

-V, ~..w.~I-;;....j

10k
MC1536

O.5,;F

VI

RTe
510
R3
~__________'~OO~k__~ 10

Va" 48 Vp p
Po" 72W(rms)@lRL"411

0---1

1

Po" 36 W(rms)@Rl""811

10k

t Zo '" ~l~2.£~~~_t__~~)_

R4
lOOk

4.7

lOjjF

~.~~~----~~~

1

v;- "ATe '" 2 mAN

0.,"'

R1(RTC

t

A31

R2 R4

VEE" -30Vdc

FIGURE 13 - REPRESENTATIVE CIRCUIT SCHEMATIC

FIGURE 14 - EQUIVALENT CIRCUIT

Vee

INVERTING

OUTPUT

V,

6

Zoo
Rout

22
NON
INVERTING

L~-.J

___ .Jt OFFSET
AOJUST
VEE

MOTOROLA LINEAR/INTERFACE DEVICES

2-95

V,

II

ORDERING INFORMATION
Device
MC1437L
MC1437P
MC1537L

Temperature Range

Package

O°C to +70°C
O°C to +700C
-55°C to +125OC

Ceramic DIP
Plastic DIP
Ceramic DIP

MC1437
MC1537

MATCHED DUAL OPERATIONAL AMPLIFIERS
DUAL MC1709
... designed for use as summing amplifiers, integrators, or amplifiers
with operating characteristics as a function of the external feedback
components. Ideal for chopper stabilized applications where ex·
tremely high gain is required with excellent stability.

OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC
INTEGRATED CIRCUIT

Typical Amplifier Features:
•

High·Performance Open Loop Gain Characteristics AVOL = 45,000 iypical

•

Low Temperature Drift -±3I1V/oC

•

Large Output Voltage Swing ± 14 V typical @± 15 V Supply

-

MAXIMUM RATINGS ITA" +25 0 C)
Rating

Symbol

Value

Unit

Power Supply Voltage

+18

Vdc

-18

Vdc

Differential Input Voltage Range

±5.0

Volts

±VCC

Volts

Common-Mode Input Voltage Range

ts

Output Short Circuit Duration

1

P SUFFIX
PLASTIC PACKAGE
CASE 646-06

5.0

(MC1437P Only)

Power Dissipation (Package limitation)

Ceramic Package
Derate above T A = +25 0 C
Plastic Package

750
6.0
625
5.0

MC1437P

Derate above T A = +2SoC

mW
mW/oC

mW
mW/oC

°c

Operating Ambient Temperature Range

-55 to +125
o to +70

MC1537
MC1437
Storage Temperature Range

T stg

-65 to +150

VCC
Output
Lag B

°c

Output B
I nput Lag B

FIGURE 1 - CIRCUIT SCHEMATIC

Input Lag B

VCC

14

Non Inv.
Input
Non Inv.
Input

Output 1

12

-rl--+-""",'3
Output 1
Inverting Input

e>-''-+,--..,

Lag

VEE
Inverting Input 0-''-+'-,
Non-Inverting 2 6
Input 2
4

Output 2
4---j--oLag
1

~-l:::f==-+-{

Output 2

10 k

Vcc 14

MOTOROLA LINEAR/INTERFACE DEVICES

2-96

LSUFFIX
CERAMIC PACKAGE
CASE 632-08

MC1437, MC1537
ELECTRICAL CHARACTERISTICS

Each Amplilier IVCC = +15 Vdc, VEE = -15 Vdc, TA = +25 0 C unless otherwise noted.)
MC1537

Characteristic

Symbol

Open Loop Voltage Gain

MC1437

Min

Typ

Max

Min

Typ

Max

25,000

45,000

70,000

15,000

45,000

-

Zo

-

30.

-

-

30

-

H

zi

150

400

-

50

150

-

kH

+12

+14

-

±12

±14

-

IRL : 5.0 kH, Va: ± 10 V,

Unit

-

AVOL

TA = Tlow

~

.

g

II

II
2

:>

i

-14

I
10

100

I

II

+10

II
1

- 5.0
10 k

1.0 k

1.0 M

100 k

10

100

~
~

1lJi.U

80

CURVE 1

z

.....



40

II RL" -I

III

2r-...- ~
~

""
i'-...

.:.

0

>

FIGURE 7 - TOTAL POWER CONSUMPTION
versus POWER SUPPLY VOL TAGE

........

........

500

~J
~

300

!

5

200

I
-

-

I

t

100

8

50

'"~

30

J2

20

~

~

........

1r
........

o

/"'"
/'

/

1.0k 2.0k 5.0klOk

100 k

1.0M

V
4.0

I, FREQUENCY 1Hz)

6.0

V

g~s~J~~~iOANO~~~~LNT~~ri~~6~ DRIVING LOW IMPEDANCE LOADS _ _
MUST BE ADDEO TO THE ABOVE
CIURVE I

10
100

,/

VooOVOLT

~

20

10

1.0 M

100 k

I, FREQUENCY 1Hz)

FIGURE 6 - OPEN LOOP VOLTAGE GAIN
versus FREQUENCY

II

10 k

1.0 k

100

f, FREGUENCY!IHzl

II

-

CURVE 4

eo

-12

0.7
5.2

RL" ~I

+60

~ +2.0

-4.0
-6.0
rr. -8.0
~ -10

I

FIGURE 5 - VOLTAGE GAIN versus FREQUENCY

~ +4.0

o

C,lpFI

10 k
10k
10 k
1.0k

~ +6.0

~

R]I!lI

I
10
100
1000

FIGURE 4 - LARGE SIGNAL SWING
versus FREQUENCY

~ +10
~ +8.0

RZIn)

I
1
3
4

6

-a

R,II!)

4

RI

+14

OUTPUT
NOISE

TEST CONOITIONS

CURVE VOLTAGE
GAIN
NO.

8.0

10

I

I

I

12

14

16

VCC and VEE, POWER SUPPL Y IVdcl

MOTOROLA LINEAR/INTERFACE DEVICES
2-98

18

MC1437, MC1537

TYPICAL CHARACTERISTICS (continued)
FIGURE 9 - COMMON INPUT SWING
versus POWER SUPPLY VOLTAGE

FIGURE 8 - VOLTAGE GAIN versus
POWER SUPPLY VOL TAGE

~

100

~
z
~

co

z

~

VICR/"

10

0

80

//

>
w

o
o

8

0
0

"z

z

70

~-"

0

._-

3"
,,-"

o-"

..

/'

co 12

~

a~

/'

14

~

90f----

co

>

16

~

w

o

18

0

>

60L-_ _ _

o

~

_ _ _ __L_ _ _ __L_ _ _
15

10

5.0

v CC and VEE. POWER

11

~

20

",

1
0

----

>+0. 6
w

~ +0 4

.......

'"'"~+o. 1

-

1'---

co

'"C:;
o

0

...........

1'--..

>

*

..

~d:'~bi"her

-.........

1

100

~

0

co

~

10 ~ F=

AV ~ 1000 Cl - 10 pF C2 ~ 3.0 pF R3 - 0

~

0;

>"
-1

" 1'---

~
0

>"

+60

+80

+100

+120

TA. AMBIENT TEMPERATURE (OC)

~

100 Cl ~ 100 pF C2 ~ 3.0 ~:, R3 ~ 1.5 k

III

AV

~

J.Il--

AV-l0 Cl~51OpF C2~20pF R3~1.5':"
1.0 Cl ~ 0.005 _F C2 200 pF R3 ~ 1.5 k
• .-1"
0

\
0.1
100

+140

AV

1.0

0

I
+40

t--- r-

Z
f-

1'-.._.+20

R3

w

P;I,,;IY

0- 0.6
-10

C2 ~ 3.0 pF

w

I'---.

~ -0. 4

-40

Cl ~ 10 pF
OPEN LOOP

:;
S

>

-0.

-0.8
-60

20

15

FIGURE 11 - OUTPUT NOISE VOLTAGE
versus SOURCE RESISTANCE

0

f-

10

5.0

VCC and VEE. POWER SUPPLY VOLTAGE (VOLTS)

FIGURE 10 - INPUT OFFSET VOLTAGE
versus TEMPERATURE

S

~ ........ VICR+
~

--

o

SUPPLY VOLTAGE (VOLTS)

V

'I
1.0 k
10 k
RS. SOURCE RESISTANCE (OHMS)

100 k

FIGURE 12 - INDUCED OUTPUT SIGNAL
(CHANNEL SEPARATION) versuS FREQUENCY

10.00 0

0

/

0

......
10
100

1.0 k

10 k

Induced output signal (p.V of induced output signal in
amplifier 112 per volt of output signal at amplifier 111).

100 k

f. FREQUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-99

II

ORDERING INFORMATION
Device

MC1439G
MC1439P1
MC1539G

Temperature Range

Package

O·C to +70"C
O·C to +70OC
-55·C to +125OC

Metal Can
Plastic DIP
Metal Can

UNCOMPENSATED OPERATIONAL AMPLIFIER

MC1439
MC1539
OPERATIONAL AMPLIFIER

· .. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external
feedback components.
• Low Input Offset Voltage -

3.0 mV max

• Low Input Offset Current -

60 nA max

SILICON MONOLITHIC
INTEGRATED CIRCUIT

• Large Power-Bandwidth - 20 Vp-p Output Swing at 20 kHz min
• Output Short-Circuit Protection
• Input Over-Voltage Protection
• Class AB Output for Excellent Linearity
• High Slew Rate -

G SUFFIX
METAL PACKAGE
CASE 601-04

34 V/fLS typ

FIGURE 1 - HIGH SLEW·RATE INVERTER

Compensation

100 k

(Top View)
+15V-15V

Vee

VEE

FIGURE 2 - OUTPUT NULLING CIRCUIT

P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05
(MC1439 Only)

FIGURE 3 - OUTPUT LIMITING CIRCUIT

::..Ft:.Vz - 2.1 V

750

-0.7 V

+
10 k

(Top View)

MOTOROLA LINEAR/INTERFACE DEVICES
2-100

MC1439, MC1539
ELECTRICAL CHARACTERISTICS IVCC = +15 Vdc, Vee = -15 Vdc, TA = +250 C unless otherwise noted.)
MCI539
Characteristic

Symbol

Input Bias Current

MCI439

Min

TVp

Max

Min

TVp

Max

-

0.20

0.50

.-

0.20

1.0

ITA = +250 C)
ITA = TlowQ))

-

0.23

0.70

-

0.23

1.5

-

150

11101

I nput Offset Current

nA

ITA = Tlow)
ITA = +250 CI

-

-

75

20

60

-

20

100

ITA -ThighQ))

-

-

75

.-

-

150

ITA = +25 0 C)

-

1.0

3.0

-

2.0

7.5

IT A = Tlow, Thigh)

..

IVlol

Input Offset Voltage

mV

-

_.

4.0

!'V/oC

I TCVIO I

Average Temperature Coefficient of Input
Offset Voltage (T A = Tlovv to Thigh)

IRS = 50n)

-

3.0

IRS <10 kn)

-

5.0

-

I nput Impedance

Unit

!,A

liB

5.0

-

100

300

-

tll

t12

..

-

zin

150

300

-

VICR

tIl

+12

-

3.0

kH

II = 20 Hz)
Input Common-Mode Voltage Range
Equivalent Input Noise Voltage
(RS ~ 10 k£!, Noise Bandwidth::= 1.0 Hz,

-

30

80

110

50,000

120,000

25,000

100,000

en

Vpk

30

nV/(Hz)!i2

80

110

dB

-

15,000

100,000

-

15,000

100,000

-

-

1= 1.0kHzl
CMRR

Common-Mode Rejection RatiO

-

1f=1.0kHz)
Open-Loop Voltage Gain (VO'" ± 10 V. RL

lOkll,

R5=~1

(TA

= +25 0 C to

=

AVOL

Thlghl

ITA = Tlowl
Power Bandwidth (Av - 1, THO.5 5%,
Va = 20 Vp'pl

=

-

10

-

20

1.0kll,R5= lOki

kHz

PBW

IRL = 2.0 kll)
IRL

-

50

-

50

Step Response
{ Gain = 1000, no overshoot,

}

R 1 = 1.0 kll, R2 = 1.0 Mll, R3 = 1.0 kll,
R4

= 30 k!!, R5 = 10 k!!, Cl

tpd

= 1000 pF

130

tTHL

}

Rl = 1.0 k!!, R2 = 1.0 Mll, R3 = 1.0 k!!,

tTHL
tpd

. R4=0,R5=10k!!,Cl = 10pF

100

}

6.0

VI!'s

-

100

-

14

VI!'s

tTHL

60

ns

-

100

ns

34

VI!'s

60

Rl = 1.0k!!, R2= lOOk!!, R3= 1.0k!!,

tpd

_.

100

R4=10k!!,R5=10k!!,Cl = 2200pF

SR

-

34

ns

80
-

14

SR

{ Gain = 100, no overshoot,

ns

..

80

-

_.

ns

190

-

6.0

SR

{ Gain = 1000, 15% overshoot,

130

190

-

-

-

tTHL

.-

120

-

120

-

Rl = 1.0 k!!, R2 = 10 k!!, R3 = 1.0 kH,

tpd

-

80

-

80

-

R4 = 1.0 kH. R5 = 10 k!!, Cl = 2200 pF

SR

-

6.25

-

{ Gain

=

10, 15% overshoot,

}

-

6.25

ns

ns
ns
VI!'s

tTHL

-

160

-

-

160

Rl = 10k!!, R2 = 10 kn, R3 = 5.0 kn,

tpd

-

80

-

-

80

-

ns

R4 = 390 n, R5 = 10 kn, Cl = 2200 pF

SR

-

4.2

-

-

4.2

-

VI!'s

Output Impedance
If = 20 Hz)

zo

-

4.0

.-

-

4.0

Output Voltage Swing

Vo

-

-

{ Gain = 1, 15% overshoot,

}

IRL = 2.0 kH, I = 1.0 kHz)

kH

Vpk
-

tID

t13

-

-

-

PSRR+

-

50

150

..

50

200

!'VIV

PSRR-

-

50

150

-

50

200

!'VIV

ICC

-

3.0

5.0

-

3.0

6.7

mAdc

lee

-

3.0

5.0

-

3.0

6.7

IRL = 1.0 kn, I = 1.0 kHz)
Positive Supply Rejection Ratio

ns

±10

±13

(VE E constant, R 5'" 00)
Negative Supply Rejection Ratio
(Vee constant, R5 '" 00)
Power Supply Current

IVa = 01

Q) T 10w '"

aOe for MC1439

- 55°C for MC 1539

Thigh = +700 C for MC1439
+125 0 C for MC1539

MOTOROLA LINEAR/INTERFACE DEVICES
2-101

MC1439, MC1539
MAXIMUM RATINGS (TA = +25o C unless otherwise noted)
Symbol

Value

Unit

Power Supply Voltage

VCC
VEE

+18
+18

Vdc

Differential Input Voltage Range

VIDR

±(VCC + IVEEI)

Vdc

Common-Mode Input Voltage Range

VICR

+VCC,-IVEEI
15

Vdc

Rating

Load Current

IL

Output Short-Circuit Duration

ts

Power Dissipation (Package Limitation)

Po
680
4.6

mW
mW/oC

625
5.0

mW
rnW/oC

-55 to +125
o to +70

°c

Metal Package
Derate above T A = +250 C
Plastic Dual In-Line Packages MC1439
Derate above T A = +250 C

Operating Temperature Range MC1539

TA

MC1439

Storage Temperature Range

rnA

Continuous

°c

Tstg
-65 to +150
-55 to +125

Metal Packages

Plastic Packages

FIGURE 4 - EQUIVALENT CIRCUIT SCHEMATIC

FIGURE 5 - EQUIVALENT CIRCUIT

Vee

INPUT LAG

INVERTING INPUT

40

1k

t---I~+-o OUTPUT
1k

Ro

40

OUTPUT LAG

OUTPUT

LAG

FIGURE 6 - TEST CIRCUIT
R2

r

TYPICAL OUTPUT CHARACTERISTICS
1Vcc'- +15Vdl:.VEE

FIGURE
NO.

7,10,12

CURVE
NO.

-15Vdc.TA

GAIN

R Inl

R tnl

Avol
I

,'".,

,.,
,.,

100.

R4

TEST CONDITIONS (FIGURE 61

VOLTAGE

,..,.

+2S0C

C

lOOk
1.0M

TII

R Inl

.

I.Ok

'"

l

R In!

Rslnl

C,lpF)
2200
2200
2200
1000

'",.,

C,
Rl

,.

'"'
0

o

,.,

'"'
0

1

2200
2200

R3

Rt

2200
1000
10

R5

r

MOTOROLA LINEAR/INTERFACE DEVICES
2-102

C

VEE

MC1439, MC1539
TYPICAL CHARACTERISTICS (continued)
= +15 Vdc, VEE = -15 Vdc, T A = +250 C, unless otherwise

(VCC

FIGURE 8 - OPEN-LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 7 - LARGE·SIGNAL SWING versus FREQUENCY

~

0

;

90

~

80

~

10

8

w

6

~

'"~

11 0

4
2

1:

"

14

§; 2
~ 10

"

\.

5

'\

\

:;
>

\ \
3

Q.

~

4

o
1.0 k

lOOk

il

1.0M

100

10 k

1.0 k

±112

~

10

6
>

5.0

-

-

A~ ~

...... e-;.-'

0
100

200

300

~~~

~

40

~OlT s~ppL~s

r-f.l.

t---..

0

,

-

80

I-

;::

-lil~~f;fr

500 100 1.0 k
2.0 k 3.0 k
RL, LOAO RESISTANCE (OHMS)

1\"'

2

~

I"

180
200

5.0 k 1.0 k 10 k

100

10

1.0 k

lOOk

10 k

1.0 M

f. FREQUENCY 1Hz)

FIGURE 12 - CLOSED-LOOP GAIN versus FREQUENCY

i R4=30kOH~
I· Cl=1000pF

R4~ Jk ~~~~: ~1 = 2doo ~F

~
~ 40

I I:

Q.

g

0-

>

~

0

u

~

«d

10

11

0

....

....J

f---- f--- -t

0

t

::

TIT
III

6

!

lilill

11
I 11111111

1.0 k
•

VCCNEE' POWER SUPPLY VOLTAGE (VOLTS)

I
I

R4

10 k

ACL = Closed-Loop Gain

MOTOROLA LINEAR/INTERFACE DEVICES
2-103

I
I

m :r39~ OIH~~,1 ~~I= 220~ p~

TIT rTf 1

>

I I

111111
I 11111111
I I
!1.11.1I11
I I.
R4 = 1.0 k OHM. Cl = 2200 pF

'"

12

w

:;

"

"'i'-

140

50

~

3

160 f-- -

0

«
'"

5

~ 120

--I

~1~1~20U~~~1

I

w

FIGURE 11 -OUTPUT VOLTAGE SWING
(to clipping) versus SUPPL Y

~

,.,

~\

4

..

~ 100
----

10 M

11111 II III

~

6

60

~
!;:

J.

15

1

1.0M

FIGURE 10 - OPEN·LOOP PHASE-SHIFT versus FREQUENCY

±15 VOLT SUPPLIES

«

100 k

f, FREQUENCY (Hz)

0

20

o

II

3

±18 VOLT SUPPLIES

~

5\
4

o

30

§;

-....:..

10

FIGURE 9 - OUTPUT VOLTAGE
SWING versus LOAD RESISTANCE

'"
:;

\6

~

I":

f. FREQUENCY (Hz)

w

"

"'

0

10k

1111

1111111
II II
RL -2.0 k OHMS

30

II
"TiYI III

-

2.0

........

40

~

6. 0 - RL=1.0kO HM
4. 0

........

0 - ARR OWS INOICATE
UNC OMPENSATEO
50 - POL E LOCATIONS

o

2

6

~ 8. 0

1111111

100

w

\.

o

g

noted.)

11111111

~

R4 = 0.1 I_
Cl = 10 pF

5

"\.

\.
4

"'\\.

I I

100 k
f, FREQUENCY (Hz)

3

\
2
1.0 M

10 M

II

MC1439, MC1539
TYPICAL CHARACTERISTICS (continued)
(Vee = +15 Vdc. VEE

II

= -15 Vdc. TA = +250 C. unle.. otherwise noted.)
FIGURE 14-ACL = 10 RESPONSEversusTEMPERATURE

FIGURE 13 - ACL' = 1 RESPONSE ••nuITEMPERATURE
+20 11....,.,.~~:;;;;;;:::::::::::-"r---TrTlmrllTTTrmn
+15

~ +30r--+~++tH~-l-~~~-~4J~~t--+-+-W~~

~ +10

Z

~ +25~~H-~H+H--i-iH-H+ilI--++-I-W~l--I-H-+++U~

z

...

:;;: +5.0

...'"o

r::rf---ttitfl!t-~l±±~~lO~O;::k
±;l+hijt~~~I-~-~55~·~:!tffi1

~

"

w

~

~

ci""

ein-

~

~ -5.01--+-++++H-H--i-iH-++IilI--++-I+1+Hl--\t-l--W.J..I.I.J1
10

+101--1-1-1--1-1-

10

k~

+501--++++1-

+

-15

10 k

-

;;;

~ 45

o

g

1101
6

8 1121
2200 pF

1:lf+
1.0 k 3 1

-

~

40

"~

-

141

50 -

Z

'",I'~

em

~

'.

+l

20

...'"

65

!

\

i i11

l 5

;::l

1.0 k [ +
~

II

+125O C

35
1.0

10 M

100

10

200

w

'"
o

z 150
>~

~~
=
-

-

nV

-~

-

==

+

R3

~

Rl R2
Rl + RZ
RZ
AV"'Ai
R3

VN

RS- R3

Cl

R4

~

Av 1000
Av - 100

§ tOO

i'-

'">

~
£

10M

10 0

11111'~V=1001111

\

11-

1.0 M

FIGURE 18 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 17 - SPECTRAL NOISE DENSITY

~

1'-_~5dc

f. FREQUENCY IkHzl

f. FREQUENCY IkHzl

250

,,
+25 0 C

50

40

1.0 M

1000 pF
30k

1""'==

55

« 45

IIIII
100

-

~ 60

+25 GC

,\\

~ 30

"" 25

70

0

-55·C

~

75

Z

;;;

131 10k

10

1111<.rl~r'.

80

35

15
1.0

IIII

1.0k

85
ein

+'l;;.'C

FIGURE 16 - ACL = 1000 RESPONSE versus TEMPERATURE

FIGURE 15 - ACL = 100 RESPONSE versus TEMPERATURE

J

~

\

f. FREQUENCY IkHzl

f. FREQUENCY IkHzl

60

2200 PF'il

+25.C

-5.01':.0-:-k-L-L.LiL...l"0-:-k-w~~~1O~0-k-'--'"~...lllU.oLM-LLl.llUl0.uM

-20 ~...l-LL~-':l:--L...LI...w.lJ!-:---1-Ll..il.illJ._.Ll-1llillJ
1.0 k
10M

65

III

~
"

-

50

10

100

0

-

1.0 k

Av- 1O

~ ::::C.
10 k

100 k

f. FREQUENCY IHzl

O. 1
0.1

lv - IIII
l

l

1.0
10
RS. SOURCE RESISTANCE Ik OHMSI

• ACL ; Closed-Loop Gain

MOTOROLA LINEAR/INTERFACE DEVICES

2-104

100

MC1439, MC1539
TYPICAL CHARACTERISTICS

(continued)

(VCC = +15 Vdc, VEE = -15 Vdc, TA = +2So C, unless otherwise noted.)

130

200

I

J

Vo = 0
.15VSUPPLlES-

12 0

L =1.0kl1
THO=5% _ _

0

70

0

i=

O~

i!l

0

w

30

~

20

~

....-

50

i-""

Q

~

~

----

sr

60

-25

+25

+50

+100

+75

E OPERATING ArEA (-55 to +125T

12

10

+125

TA, AMBIENT TEMPERATURE (OC)

14

FIGURE 22 - COMMON-MODE INPUT VOLTAGE
versus SUPPL Y VOLTAGE

~ 18
~

~ +8.0

~

+6.0

:;
'"

'"

+2.0

w

'"

o

Vin
1.0 k

-H-+++++I,-+-+++++IlI

3
1
2 ____
1

-2.0

~

-4.0

'i'

t:;

-6.0

0

-8.0

>

-10
-12
10

COrpENSATlO~

r-NE~ATIVE INP~T LIMIT

14

>

0

5

~
'"
w
:;

0

17 )-----UNltV GAIN
+25 0 C
16

>

:;

~

11

---- ---

cI::. 9. 0

~
1.0 k

1.0 M

100 k

10k

B. 0
12

-- -V

)'-.............-

.........-

V'"

8" 10 V
100

18

16

Vee IVEEI, POWER SUPPLY VOLTAGE (VOLTSI

FIGURE 21 - POWER BANDWIDTH
(LARG E·SIGNAL SWING versus FREQUENCY)

+4.0

Vo = 0
RL =-

10

50
-55

~

~

-

~ 100

.sz

'"z

----

FIGURE 20 - POWER DISSIPATION versus
POWER SUPPLY VOLTAGE

FIGURE 19 - POWER DISSIPATION versus TEMPERATURE

----

~

--

V

POSITIVE INPiT LIMIT -

16
15
14
Vcc. IVEE!. SUPPL V VOLTAGE (VO LTS)

13

t, fREQUENCV (Hz)

~

18

17

FIGURE 24 - COMMON-MODE REJECTION RATIO
versus TEMPERATURE

FIGURE 23 - COMMON·MODE REJECTION RATIO
versus FREQUENCY
~ 130

0

1111

0

..........

11111111

UNITV GAIN COMPENSATION

CMRR = IAvCM - Avoli

=

20 log

em

eM
'0

o

~

0

~ 110~----+-----+-----+-----+-----+-----+---~

t\.

0

AvCM

~ 120

~

11111

(~)

o

:;
~

1\

o

~

100

~----+-----+-----+-----+----

.15 V SUPPLIES

0
~
~

0
10

~ 90L-____~____~____~____~____~____~__~
100

1.0 k
10 k
t, fREClUENCV (Hzl

100 k

-55

1.0 M

-25

+25

+50

+75

TA, AMBIENT TEMPERATURE (OC)

MOTOROLA LINEAR/INTERFACE DEVICES
2-105

+100

+125

II

MC1439, MC1539

FIGURE 25 - VOLTAGE-FOLLOWER PULSE RESPONSE

II

+5.0

-5.0

10

5.0

20

15

TIME IM,I

TYPICAL APPLICATIONS

FIGURE 26 - VOLTAGE FOLLOWER

FIGURE 28 -SUMMING AMPLIFIER

FIGURE 27 - 01 FFERENTIAL AMPLIFIER

390

'I--~vv~r---~VV---l
RI

RF

RI

RF

'2

'I

R2

2200 pF

R2
'3

'2

R3

>0-----..4____ '0

'0
R3
'3

eout '" ein± Via
lin> 40 M OHMS

I II
1 +.-

zaCL '" zaOl

105-

II I

I

1 +0

AOIRi
RF] '" 4 k

RF el + RF
eo'" - --.-- e2 + 1 + -RF
RI
R2
R3

""'0.04 OHM

For R3
"Properly Compensated

~

e3

RB" Parallel Combination of Rl, R2, R3, RF.
eo

= -

RJ.Fl2
Rt + R2

[RJRl el + ~R2~

e2 +

~E
e31
R3

"Properly Compensated

FIGURE 29 - +15 VOLT REGULATOR

1-30 V
2N4921 or Equiv

'20V __-----~~----~-----_+-----,(

lr--~-----Vo'

51

51

O.l/J F

.J

r

0.1 pF
180
005)1F

MC1460G
For detailed mformation see Motorola

Application Note AN·480.

10

6.8 k

L-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ +Sense

L ._ _ _ _---<~-------------------_ -Sense

Return ••

~----------

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _...

MOTOROLA LINEAR/INTERFACE DEVICES

2-106

Vo

Return

MC1439, MC1539

E
TYPICAL APPLICATIONS

(continued)

FIGURE 31 - REGULATOR OUTPUT VOLTAGE

FIGURE 30 - LOAD REGULATION FOR
CIRCUIT OF FIGURE 29

lunde. pulsed load condition)

,,;::,

~

~

-1.0

:>

-1.5
0

50

100

150

00

250

300

)
Horilontal Scale: 200 ttSlDul
Vertical Scale:
1 mV!Div

LOAD CURRENT (MILLIAMPERES)

MOTOROLA LINEAR/INTERFACE DEVICES
2-107

fI

ORDERING INFORMATION
Device

MCl445G
MCl445L
MC1545G
MC1545L

Temperature Range

Package

O°C to +75°C
O°C to +75°C
- 55°C to + 125°C
- 55°C to + 125°C

Metal Can
Ceramic DIP
Metal Can
Ceramic DIP

MC1445
MC1545

GATE CONTROLLED TWO CHANNEL INPUT
WIDEBAND AMPLIFIER

GATE CONTROLLED
TWO CHANNEL INPUT
WIDEBAND AMPLIFIER

... designed for use as a general purpose gated wideband amplifier,
video switch, sense amplifier, multiplexer, modulator, FSK circuit,
limiter, AGC circuit, or pulse amplifier. See Application Notes
AN491 for design details.
• Large Bandwidth; 50 MHz typical

SILICON MONOLITHIC
INTEG RATED CI RCUIT

• Channel·Select Time of 20 ns typical
• Differential Inputs and Differential Output

TYPICAL APPLICATIONS
VIDEO SWITCH OR
DIFFERENTIAL AMPLIFIER WITH AGC

MULTIPLEX OR FSK

GSUFFIX

METAL PACKAGE
CASE 603-04
(Top View)
Signal
Input

Vee
Input

AMPLITUDE MODULATOR

PULSE-WIDTH MODULATOR

lnv. Input A
R F ""h-~>----1
Input

Open

5.0 k-=

-

LSUFFIX

CERAMIC PACKAGE
CASE 632-08

1

BALANCED MODULATOR

ANALOG SWITCH

...,h---o---!

Output

1,1l===::::::ce.==;1141

Non-lnv. Input B

3

Non-! nv. Input A

5

'V

Signal

...,h---o--j

Input

Carrier
Input

51

Ou~ut L:7l======~JL~
(Top View)
5.0 k

Input

Bias Adjust

MOTOROLA LINEAR/INTERFACE DEVICES
2-108

MC1445, MC1545

MAXIMUM RATI NGS ITA = +25 0 C unless otherwise noted I
Rating

Symbol

Value

Unit

VCC
VEE

+12

Vdc

~12

Vdc

VIDR

,5.0

Volts

IL

25

mA

625
5.0

mW
mW/oC

680
4.6

mW
mW/oC

Power Supply Voltage

Input Differential Voltage Range
Load Current

Po

Power DISSipation (Package Limitation)
Ceramic Dual I n-Llne Package

Derate above T A '" +25 0 C
Metal Can

Derate above T A

=

+25 0 C

o to

Operating Ambient Temperature Range MC1445
MC1545

TA

Storage Temperature Range

T stg

+ 75
to + 125

°c

~55

~65

to +150

°c

ElECTR ICAl CHARACTE RISTICS (Vcc ~ +5.0 Vdc, VEE ~ -5.0 Vdc, at TA ~ +25°C, specifications apply to both input channels
unless otherwise noted.)
MC1545
Characteristic

MC1445

Fig. No.

Symbol

Min

Typ

Max

Min

Typ

Max

Stngle-Ended Voltage Gain

1 12

Avs

16

19

21

16

19.5

23

Bandwidth

1,12

BW

40

50

-

I nput Impedance

5,14

zi

4.0

10

-

Output Impedance
11=50kHzI

6,15

Zo

Output Differential Voltage Range
IRL = 1.0 k ohm, 1= 50 kHzI

4,13

VOOR

3.0

Unit

dB

50

-

MHz

10

-

k ohms

II = 50 kHzI
-

1.5

25
2.5

Input Bias Current

16

liB

15

Input Offset Current

16

110

2.0

Input Offset Voltage

17

VIO

QUiescent Output dc Level

17

Vo

Output de Level Change

17

"Vo

9,18

CMRR

-~

-~

1.0
0.1

25

~-

1.5
25
-

5.0
-

, 15

2.5

-

15

-

2.0

-

-

Ohms
-

30

Vp·p
/.lAde

-

jJ.Ade

7.5

mVdc

-

0.1

-

Vdc

-

,15

-

mV

85

-

dB

±2.5

-

Vp

0.4

-

Vdc

(Gate Input Voltage Change +5.0 V to 0 VI
Common-Mode Rejection Ratio

-

85

~

~

II = 50 kHzI
I nput Common-Mode Voltage Range

18

VICR

Gate Characteristics

8

VILIGI

-

OAO

'2.5

-~

0.70

-

0.2

Gate Input Voltage - Low Logic State (Note 1)
Gate Input Voltage - High Logic State (Note 2)
Gate Input Current - Low Logic State

1.5

2.2

1.3

3.0

VIHIGI

-

18

IILlGI

-

2.5

-

-

4.0

mA

18

IIHIGI

-

2.0

-

-

4.0

MA

19

tpLH
tpHL
tTLH
tTHL

-

10
10
15
15

-

-

6.5
6.3
6.5
7.0

10,20

en

-

25

-

11,20

Pc

-

70

110

~-

IVILIGI = 0 VI
Gate Input Current - High Logic State

IVIH(GI = +5.0 VI
Step Response

le,n = 20 mVI

Wideband Input Noise

-

-

6.5
6.3
6.5
7.0

-

25

-

70

-

-

-

ns

-

-

MV(rmsl

15.0 Hz - 10 MHz, RS = 500hmsl
DC Power Consumption
Note 1. VIL(G)

IS

the gate voltage which results in channel A gain of unity or less and channel B gain of 16 dB or greater.

Note 2. VI H(G) is the gate voltage which results in channel B gain of unity or less and channel A gain of 16 dB or greater.

MOTOROLA LINEAR/INTERFACE DEVICES
2-109

150

mW

II

MC1445, MC1545

FIGURE 1 - SINGLE·ENDED
VOLTAGE GAIN versus FREQUENCY

FIGURE 2 - SINGLE·ENDED
VOL TAGE GAIN versus TEMPERATURE
25,-----,----,----~--_r----._--_,--__,

25

~
z

;;:

'"w
'"«
'">
w
'"

,

20

~

z

;;:
w

"

15

'"

10

'"w

5.0

'"z

~

"'"
>

w

~

~
~

15

'"~

oj
in

20

'"
«
'"

\

«

o
0.01

0.1

1.0

100

10

--

10

in

~

«

5.0
1000

-55

f. FREQUENCY (MHz)

25

---

z

w
'"
~w
~

20

f--

V- V-

~

-----

5.0

'"«
~
>

...... r-'

4.0

~

/

~

>-~

6: 3.0

~w

~a:

15

'""

~

~

1.0

./

>'"
t4.0

+5.0

±S.O

t. 7.0

±8.0

t9.0

t.l0

tll

±12

0.1

IIIII
0.5

0.2

VCC, VEE. POWER SUPPLY VOLTAGE (Vdc)

14

~

12

w
u

10

~

7.0

-............ I'-RP

"r-.

6.0

~

"-

~ 4.0

~

;t

~

2.0 -

VI(rms) • 30 mV

I I
1.0

'"
~l>

5.0

5.0

""

8.0

10

200

6.0 :c

~

f--

§

4.0 ~
co

"

-;

3.0 '"
~

~

""

2.0

5.0

10

20

FIGURE 6 - OUTPUT IMPEDANCE versus FREQUENCY

C~

«

1.0

RL, LOAD RESISTANCE (k OHMS)

FIGURE 5 - INPUT Cp AND Rp versus FREQUENCY
(BOTH CHANNELS)

;;;

f·· 50 kHz

----

10

~

/

V

~2:
~'"
c;z
I- « 2.0

in

to

+125

w

«

z

+100

FIGURE 4 - OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

~

'"=-

175

TA, TEMPERATURE (OC)

FIGURE 3 - VOL TAGE GAIN
versus POWER SUPPL Y VOLTAGES

~

+50

'25

-25

::;
2.0 ~

IIIII II III

180

VO(rms) = 20 mV

~ 160

g

140

:i
'"~

120
100

~

80

'"

60

~

40

1.0 ~
.............. 1-50

100

20

om

0.1

1.0
f, FREQUENCY (MHz)

I, FREQUENCY (MHz)

MOTOROLA LINEAR/INTERFACE DEVICES

2-110

10

100

MC1445, MC1545
FIGURE 8 - GATE CHARACTERISTICS

FIGURE 7 - CHANNEL SEPARATION ve,sus FREQUENCY
140

~
z

o
>-

110

1---1---H-H-++fB.....r-+-+++-+---+

~

100

f-t-++++-+-++++-+-+-H'l-d---1-++++-+++t-t-H-l1

~
-10

~

;

80

~

•

z

-10

0

>

~

0

-30

~

60

0

z

~

-40

~

40

'"inz
"

10

'"

50
-60
-70
0.5

10

fin. INPUT FREQUENCY (Hz)

100
90

>-

'~"

80

z

70

0

>-

u

33

..........

1111111I11
Bandwidth

]

..........

;'"

..........

I

40
>'

:5

/
19

0

50

0
0

>
~
~

-

I'---

30

"~

0

~

17

z
>-

~

0>
~

z

10

.f

~.
~

I1I1I1

5.0 HI to 10 MHz

~

I

~

=

31

~
,

60

~

1.5

FIGURE 10- INPUT WIDEBAND NOISE
versus SOURCE RESISTANCE

FIGURE 9 - COMMON MODE
REJECTION RATIO ve,sus FREQUENCY

~

1.0

1.5

VG. GATE VOLTAGE (VOLTS)

15

10

i'i

13
0.01

0.1

10

1.0

100

10k

100

10

10 k

100 k

RS. SOURCE RESISTANCE (OHMS)

f. FREQUENCY (MHz)

FIGURE 12 - SINGLE-ENOED VOLTAGE GAIN ANO
BANDWIDTH TEST CIRCUIT

FIGURE 11 - CIRCUIT SCHEMATIC

A
Input

B
Input

~-+

___+-_-!
Signal

'-

Generator
Vi = 20 mV(rms)

CL = 15 pF and includes jig

and voltmeter capacitance.
Boonton RF Voltmeter
Dr Equivalent

MOTOROLA LINEAR/INTERFACE DEVICES

2-111

MC1445, MC1545

FIGURE 13 - OUTPUT VOLTAGE SWING TEST CIRCUIT

FIGURE 14 - INPUT IMPEDANCE TEST CIRCUIT

II

feo 50kHz
Vi = 50 mV(rms)

To ac
Voltmeter

Voltmeter

FIGURE 15 - OUTPUT IMPEOANCE TEST CIRCUIT

FIGURE 16 - INPUT BIAS CURRENT AND INPUT
OFFSET CURRENT TEST CIRCUIT

-5.0 V

ftL~
~

I

110 is the difference

I

L _____ _

1

Open

current reading

when either 51 or 52
is switched.
+5.0 V

FIGURE 18 - GATE CURRENT (HIGH AND LOW),
COMMON·MOOE REJECTION AND
COMMON·MODE INPUT RANGE TEST CIRCUIT

FIGURE 17 -INPUT OFFSET VOLTAGE AND QUIESCENT
QUTPUT LEVEL TEST CIRCUIT
~5

In

0 V

Adjust Rl until Vl
reads 0 Volts then
read Edc

t-5.0 V

Rl
100 k
10 Turns

-5

av
CMRR = 20

~Vo

1

'" Change in V2 Reading

Switch 51 and readjust Rl for V 1 =O

+5.0 V

MOTOROLA LINEAR/INTERFACE DEVICES

2-112

I09[A"J
Ave

+5.0 V

MC1445, MC1545

FIGURE 19 - PROPAGATION DELAY AND RISE AND
FALL TIMES TEST CIRCUIT
To "A" Channel
of Scope

FIGURE 20 - POWER DISSIPATION AND WIDEBAND
INPUT NOISE TEST CIRCUIT

+5.0 V

-5.0 V

True rms Voltmeter

Tek tronix 567
or equ iv

Pulse

with Bandwidth of

51

Scope -

5_0 Hz to 10 MHz

51

Gen.

51
V

1

=20mV

tTLH = tTHL

<

51

5.0 ns
CL = 15 pF including probe and
jig capacitance
Open

FIGURE 21 - LIMITING CHARACTERISTIC

c-1!J"U70
--u=

tPHL

V I' SINGLE ENDED INPUT VOL TAGE (rnVp p)

MOTOROLA LINEAR/INTERFACE DEVICES
2-113

II

ORDERING INFORMATION
Device

Temperature Range

Package

O"C to +7O"C
-55°C to + 125"C

Metal Can
Metal Can

MC1454G
MC1554G

MC1454G
MC1554G

II

1-WATT
POWER AMPLIFIER
INTEGRATED CIRCUIT

'-WATT POWER AMPLIFIERS

;ti.

... designed to amplify signals to 300-kHz with
I·Watt delivered to a direct coupled or capac·
itively coupled load.

•
•

Low Total Harmonic Distortion - 0.4% (Typ)

1 Watt

@

Low Output Impedance - 0.2 Ohm

'.

\

1,\

~!

SILICON MONOLITHIC
EPITAXIAL PASSIVATED

o~~:~~P€)~t
v~c ~utpu:xt.r".,

Compensation

Bias Re/

1

10 1

• Excellent Gain - Temperature Stability

Vee

External

5

Gain
OPtions

Compen_tion
(top view)

G SUFFIX
METAL PACKAGE
CASE 603C-Ol
VOLTAGE GAIN .ersus FREQUENCY CRL = 16 OHMSI

~

0

Gain Option 11

Av:36VIV

./

I--'

ci.in ' ptionI1

d

18 V/V

~ 2~

~w

./

I--'

ci'i~ ~~tion 13

10V~

z

..

'"!:;
o

20

...... 1--'

1~

>

/1 0

Pout:;; 1.0 W(rms)
RL: 16 OHMS
VCC: 16 V
(~Figr,7)1

5.0

0
10

100

1.0 k

1.0 k

lOOk

10k

~.O k

1.0M

f, FREQUENCY (Hz)

MAXIMUM AVAILABLE OUTPUT POWER
CSINEWAVE)

CIRCUIT SCHEMATIC
Vee

8

"

~

,-,

2

,

~

a}

-{.

OPTIONS

"'~

OUTPUT

5:

II

6

0.5 A PEAK CUI"

<:.
4

EXlfRNM

COMP(NSA110N

12

~

1

ttl

8. 0

"+

&lASHEr

O.75W

0

B 6. 0

"-

4. 0

10
VEE

t

j1.DW

>
&

OINt

O·V~

y
oy

V 1/ '" V
VV
V
V

./

2-114

I

,/

5.0

10

20

Rl.lDAD RESISTANCE (OHMS)

MOTOROLA LINEAR/INTERFACE DEVICES

V

.....
~

~ f2.0

V VI

15:wJ'

50

100

MC1454G, MC1554G
ELECTRICAL CHARACTERISTICS (TC = +25 0 C unless otherwise noted)
Frequency compensation shown in Figures 6 and 7

Characteristic

RL

Gain
Option-

MC1454
(Oto+70OC)

MC1554
(-55 to +125 0 C)

Figure

(Ohms)

Symbol

Min

Typ

Ma.

Min

Typ

Max

Unit

16
16

-

Pout

1.0

-

Po

.-

1.0
0.9

-

-

1.1
0.9

-

Power Dissipation (@Pout = 1.0 W)

1
1

Watt
Watt

Voltage Gain

1

16
16
16

10
18

Av

8.0

10
18
36

-

VIV

36

-

Output Power (foreout<5.0% THO)

1.2

-

10
18

12

-

36

--

-

-

I nput Impedance

1

-

10

zin

7.0

10

10

-

1

-

10

zo

0.2

-

0.4

-

n

Power Bandwidth

2

16
16
16

10
18

BW

-

-

3.0

Output Impedance

270
250
210

-

-

270
250
210

-

kHz

(lor oou,<5.0% THO)

(lor 0;n<0.05% THO, I
'020 kHz)
Pout

= 1.0 Watt

36

2

Total Harmonic Distortion

-

kn

-

%

THO

= 20 Hz

(sinewave)

16
16

10
10

-

0.4
0.5

-

-

-

11

15

-

0.4
0.5

-

11

20

mAde

-

Zero Signal Current Drain

3

00

-

10

-

Output Noise Voltage

3

16

10

-

-

0.3

-

mVcrms

4

16

_.

-

0.3

Output Quiescent Voltage
(Split Supply Operation)

Vn
Vo (de)

±10

±30

-

±10

-

mVdc

Positive Supply Sensitivity

5

00

-

s+

-

-40

-

-

-40

-

mVIV

5

00

-

s-

-

-40

-

-

-40

-

mVIV

Pout = 0.1 Wan (sinewave)

(VEE constant)
Negative Supply Sensitivity
(Vee constant)

-To obtain the voltage gain characteristic deSired, use the following pin connections: Voltage Gain
10
18
36

Characteristic Definitions
(linear Operation)
FIGURE 1

Pin Connection
Pins 2 and 4 open, Pin 5 to ae ground
Pins 2 and 5 open, Pin 4 to ae ground
Pin 2 connected to Pin 5, Pin 4 to ac ground

'
-"--Ch

FIGURE 4

FIGURE 3

+BV

+16V

-!6V

I

,

R,

7

-BV

FIGURE 2

'

.;.~

I

FIGURE 5

""16 V

~
'~I

V,ldd-.!!f"

I

~7

lR:J"

open

._,-~-,v"
12Vpp

VEE

MOTOROLA LINEAR/INTERFACE DEVICES
2-115

~~

II

II

MC1454G, MC1554G

MAXIMUM RATINGS (TC

= +25 0 C unless otherwise noted)

Rating

Value

Symbol
IVCCI + 1Veel

Total Power Supply Voltage

Unit

18

Vdc

Peak Load Current

lout

0.5

Ampere

Audio Output Power

Pout

1.8

Watts

Po

600
4.8

mW
mW/oC

1.8
14.4

mW/oC

Power Dissipation (package limitation)
TA = +250 C
D.erate above 2SoC

1/8JA

Po

= +250 C

TC

Derate above 2SoC

1/8JC

Operating Temperature Range

MC1454
MC1554

Storage Temperature Range

Watts

TA

o to +70
-55 to +125

°c

T stg

-55 to +150

°c

TYPICAL CONNECTIONS
FIGURE 6 - SPLIT SUPPLY OPERATION VOLTAGE
GAIN (Avi = 10, 'lOW ~25 Hz

FIGURE 7 - SINGLE SUPPLY OPERATION VOLTAGE
GAIN (AVI = 10, 'lOW~ 100 Hz
VCC 39 pF

VCC 39 pF

RECOMMENDED OPERATING CONDITIONS
In order to avoid local VHF instability, the following set of rules must be
adhered to:
1. An R·C ~tablljzing network (0.1 ItF in senes with ,10 ohms) should be
placed directly from pin 9 to ground, as shown in Figures 6 and 7, using
short leads, to eliminate local VHF instability caused by lead inductance
to the load.
2. Excessive lead inductance from the Vee supply to pin 10 can cause high
frequency instability. To prevent this, the Veeby·pass capacitor should
be connected with short leads from the Vee pin to ground. If this capacitor is remotely located a series R·C networK (O.l ItF and 10 ohms) should
be used directly from pin 10 to ground as shown in Figures 6 and 7.

3. Lead lengths from the external components to pins 7. 9, and 10 of the
package should be as short as possible to insure good VHF grounding
for these points.
Due to the large bandwidth of the amplifier. coupling must be avoided be·
tween the output and Input leads. This can be assured by either (a) use of
short leads which are well Isolated. (b) narrow· banding the overall amplifier
by placing a capacitor from pin 1 to ground to form a low-pass filter in com·
bination with the source impedance. or (c) use of a shielded input cable. In
applications which require upper band·edge control the input low· pass filter
is recommended.

TYPICAL CHARACTERISTICS
FIGURE 8 - TOTAL HARMONIC DISTORTION
versus lOAD RESISTANCE

t,

FIGURE 9 - TOTAL HARMONIC DISTORTION
versus FREQUENCY

2. 0

3. 0

f'" 1 kHz

Av" 36 V/V

~Il

~

0

~
51'

o
5
0
5.0

HU.lil~"

IA
--lO%MAX POWER OUTPUT
--90% MAX POWER OUTP'UT

f'l

13~~ 11~ !1 I

~

........

lB. 16"

~

-

10, lOU

.5

:::~ 1"7,::-

10

l--

0

r- ::::: :::::;; t--""
"'~~
-.......;:,; ~
t"::::=::,

I III

j..-

18,101"2

]J~~

I~

7.0

I

I

lB V/V

~. ~.

,..,..",...
10 V/V

5

10 1"

20

30

50

70

100

0

10

100

j Illli!I" 1

RL, LOAO RESISTANCE (OHMS)

1.0 k 2.0 k

f, FREQUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-116

Pout'" 1 W(rms)
5.0 k 10k

1001

MC1454G, MC1554G
TYPICAL CHARACTERISTICS (continued)

FIGURE 10 - VOLTAGE GAIN versu.TEMPERATURE

FIGURE 11-0UTPUT VOLTAGE CHANGE

~ +4.0

0

.5

5

~ 40

'"«

A.;36JIV

~
w

~

z

~
w

RL; 16 OHMS
VCC; B Vd.
VEE; -8 Vd.
(See figure 6) _

w

z

3

5V-0

+2. 0

«
'"

!:;
'">

'"~ 25
'"> 0
ell 5

IB V/V

~

10 V/V

....

0

~
~ -2.

0

olL::

,..,- r-

[fl

:;

5.0
0
-55

d

-15

15

50

75

-,;-4. 0

115

100

-55

:E

;;'

·15

15

TA. AMBIENT TEMPERATURE (OC)

50

75

100

115

TA. AMBIENT TEMPERATURE (OC)

FIGURE 12 - VOLTAGE GAIN versus FREQUENCY IRL =00)
5

A.; 36 V/V

O/...

z

IB V/V

5/
10 V/V

:0'
'"
w

10 ......

'"
'"

I5

«

!:;
>

.j

0

RL -

W

Vo = 12 Vp-p

5.0
0
10

VCC;16V
(See Figure 7)
1.0k

100

1.0k

5.0 k

10k

lOOk

f. fREQUENCY (Hz)

FIGURE 13 - MAXIMUM DEVICE DISSIPATION
ISINEWAVE)
.0
.B

.0

ABS LUTE

AXIMUM DEVICE OISSIPATI N

15 _
40 u
60 ~

~r-.

"- 'r-l'

76

~

90 w

U

.7

25 ~
40 ~
60 ~

" 1\.1\

.5

"\ I"\,

1"-

.3

'1\

.1

f\

•1
5.0

10

I
I

1\

SUPPLY VOLTAGE.IVCCI + IVEEI", V

~
(.)
110 ~

I4V
10V
,[I"

10

50

I 2V

100 ~
x

~

115 .;:

....

100

RL. LOAO RESISTANCE (OHMS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-117

:::E.

I.OM

II

II

MC1456
MC1456C
MC1556

ORDERING INFORMATION
Device

Temperature Range

Package

MC1456G,CG
MC1456CP1,P1
MC1556G
MC1556U

O'C to + 70'C
O'C to +70'C
- 55'C to + 125'C
- 55'C to + 125'C

Metal Can
Plastic DIP
Metal Can
Ceramic DIP

OPERATIONAL AMPLIFIER
INTERNALLY COMPENSATED. HIGH PERFORMANCE
OPERATONAL AMPLIFIER

SI LICON MONOLITHIC
INTEGRATED CIRCUIT

· .. designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external
feedback components.
• Low Input Bias Current -

G SUFFIX
METAL PACKAGE
CASE 601-04

15 nA max

• Low Input Offset Current -

2.0 nA max

• Low Input Offset Voltage -

4.0 mV max

N.C.

2.5 VII's typ

• Fast Slew Rate -

• Large Power Bandwidth -

40 kHz typ

• Low Power Consumption -

45 mW max

• Offset Voltage Null Capability
• Output Short-Circuit Protection
• Input Over-Voltage Protection
(Top View)

TYPICAL INPUT BIAS CURRENT AND INPUT
OFFSET CURRENT versus TEMPERATURE for MC1556

----

I-- MCI45'!~-

---~--

MC1456C

I

.......

""" ~~
-

~-

P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05

INPUT BIAS CURRENT

........

l"-I'---- I----

Olhet Null

-25

+25

+50

+75

N C

2

_

7

Vee

Non-Inv.

3

-

6

Output

5

Offset

Input

VEE

-55

8~8

Input

Inv

INPUT 0tFSET CIURRENT

U SUFFIX
CERAMIC PACKAGE
CASE 693-02

+100

4

Null

+125

(Top View)

TA, AMBIENT TEMPERATURE (DC)

REPRESENTATIVE CIRCUIT SCHEMATIC
VOLTAGE·FOLLOWER PULSE RESPONSE

z

o

Vi

>
o

>-

o

>

2j.1S/0IVISION

MOTOROLA LINEAR/INTERFACE DEVICES
2-118

MC1456, MC1456C, MC1556
MAXIMUM RATINGS ITA" +250 C unless otherwise noted)

MCl456

Rating
Power Supply Voltage

Symbol

MC1556

MC1456C

Unit

Vee
VEE

+22

+18

Vdc

-22

-18

Differential I nput Voltage Range

VIDA

:rVCC

Volts

Common· Mode Voltage Range

VieR

±'Vcc

Volts

Load Current

'l

20

mA

Output Short Circuit Duration

'S

Power Dissipation (Package Limitation)

PD

Derate above T A == +2SoC

Operating Temperature Range
Storage Temperature Range

TA
T5t9

ELECTRICAL CHARACTERISTICS (Vee

II

Continuous

-55to+125
-65 to +150

680

mW

4.6

mW/oC

I o to +70

I

°c
°c

-65 to +150

= +15 Vdc, VEE = -15 Vdc, TA == +2SoC unless otherwise noted).

MC1556

Fig.

Characteristic
Input Bias Current

Symbol

Min

TV.

MCl456C

MC1456

Mo.

Min

TV.

Mo.

Min

TV.

Mo.

8.0

TA = +2SoC

15

15

30

15

90

5.0

30

5.0

12

40

30

T A = Tlow to Thigh (See Note 1)
Input Offset Current

nAde

'10
1.0

TA '" +2S0C
T A = +2SoC to Thigh
T A = Tlow to +25 0 C
I nput Offset Voltage
TA = +250 C

Unit
nAde

',8

2.0

5.0

10

3.0

14

5.0

14
mVdc

Via
2.0

4.0

5.0

6.0

T A = Tlow to Thigh

10
1.

Differential Input Impedance (Open-Loop, f - 20 Hz)
Parallel Input Resistance
Parallel Input Capacitance
Common-Mode Input Impedance (f = 20 Hz)
Common-Mode Input Voltage Range

3.0

3.0

6.0

6.0

6.0

pF

"

250

250

250

Megohms

CMRR
~

2.0 k ohms)

±12

4,5,6

+11

±13

±10.5

±12

Vpk

45
80

110

10

45

45

110

110

d8
V!V

AVOL
100,000 2DO,DOC

-

40,000

T A = Tlow to Thigh

BWp

Power Bandwidth

±12

Megohms

nV!(Hz)}/)

'n

Common-Mode Rejection Ratio (f '" 100 Hz)

± 10 V, RL

5.0

VICR

Equivalent I nput Noise Voltage
(AV'" 100, Rs = 10k ohms, f = 1.0kHz, BW = 1.0 Hz)

Open. Loop Voltage Gain, (Va
TA = +250 C

'p
cp

70,000

lDO,OOC

-

25,000

lDO,OOC

40,000

kH,

40

40

40

1.0

1.0

1.0

MH,

10

10

10

degrees

(AV = 1, RL = 2.0 k ohms, THO$5%, Va '"" 20 Vp-p)
Unity Gain Crossover Frequency (open·loop)

BW

Phase Margin (open-loop, unity gain)

5.1

Gain Margin

5,1
SR

Slew Rate (Unity Gainl
Output Impedance (f = 20 Hz)
Short-Circuit Output Current
Output Voltage Swing (RL - 2.0k ohms)

10

18

18

18

d8

2.5

2.5

2.5

V!IlS

1.0

kohms

'0

1.0

lOS

-11, +9.C

VOR

±12

2.0

-

±13

+11

1.0

2.5

-11, +9.C

-

±12

±10

mAdc

Vpk

±12

IlVtv

Power Supply Rejection Ratio
VCC = constant, RS ~ 10k ohms
VEE = constant, RS ~ 10k ohms
Power Supply Current

11

DC Quiescent Power Dissipation

PSRR+
PSAR-

50

100

15

200

50

100

15

200

75

ICC

1.0

1.5

1.3

3.0

1.3

4.0

lEE

1.0

1.5

1.3

3.0

1.3

4.0

PD

30

45

40

90

40

120

IVa = 01
Note 1:

-17,+9.0

Tlow: rfl for MC1456 and MC1456C
_55°C for MC1556
Thigh: +7oDc for MC1456 and MC1456C
+1250 C for MC1556

MOTOROLA LINEAR/INTERFACE DEVICES
2-119

15

mAdc

mW

MC1456, MC1456C, MC1556

(VCC

II

~

24

w

21

'"'"
''""
w
'"'"~

~

. . . .V
./

6.0

...

ii:

3.0

~

0

:;;

'"i5

...'"

/

.......

~ 9.0

:;;
:;;

~
w

./

15

0

8

FIGURE 2 _ SPECTRAL NOISE DENSITY

18

12

w
0
0

_s

300

0

>

TYPICAL CHARACTERISTICS
VEE = -15 Vdc, TA = +25 0 C unless otherwise noted).

FIGURE 1 - INPUT COMMON-MODE SWING
POWER SUPPLY VOLTAGE

0

2-

= +15 Vdc,

'"

100
50
30

1M

~

~.~

«

V

>
'3

fil

V
.......-

~

V

10 10k

f= -

5.0

f-

3.0
±3.0

:>

±6.0

±9.0

±12

±15

±18

±21

-

VM

f-

+

BW= 10Hz

~ -15V

10

±24

'n='0/316

100

FIGURE 4 - OPEN-LOOP VOLTAGE GAIN
versus TEMPERATURE

FIGURE 3 - COMMON·MODE REJECTION
RATIO versus FREQUENCY

~

~

100

'"'"o

g

500 k

-.......,

o

80

?:
>

'"""

o
~ 60

"

2 40
~.

~ 20
100

1.0 k

300 k

/

>

1"'-

10 k

~

'"

lOOk

200 k

-' 100 k
o

------

«>

o
I.OM

10M

-75

100M

-50

-25

+25
TA.AMBIENT

f. FREQUENCY (Hz)

FIGURE 5 - OPEN-LOOP FREQUENCY RESPONSE
+140

400 k

'"<1

'"w
'"

'"~
0

>

""""

+80
+60
+40

-'
0

> +20

'"

-20
1.0

10

100

+50

+75

+100

+125

+150 +175

TEMPERATURE (OC)

FIGURE 6 - OPEN-LOOP VOL TAGE GAIN
versus SUPPLY VOL TAGES

~ 350k
'"~ 300k

+120

~ +100

/

~

i
'\.

./

.......-

o

'"o

10

MC1456C

<1

'"w
'"~

:;;

1.0

~C14561

;; 400k

'\.

~

w

lOOk

10k

1.0 k
f. FREQUENCY (Hz)

VCC. VEE. POWER SUPPLY VOLTAGE (Vdc)

120

""r--.
Vo

w

~ 250 k

~
o

"" I""

~ 200k

o

10k

lOOk

150k

g;

100 k

iii

I""

1.0k

g

o-'

~

I'-

I.OM

10M

100M

.......... f..-

50k

±5.0

±IO

±15

VCC. VEE. SUPPLY VOLTAGES IVdc)

f. FREnUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES

2-120

..20

±25

MC1456, MC1456C, MC1556

TYPICAL CHARACTERISTICS (continued)
FIGURE 7 - OPEN-lOOP PHASE SHIFT

II

FIGURE 8 - OUTPUT SHORT-CIRCUIT CURRENT
versus TEMPERATURE

1'\
~

\

-45

:g

50

1

45

a'"

35

§ 40

1\

ffi

e

~ -90

w

~

5:

~ 30

1'\

c::; 25
~ 20

~ 15

-lBO
1.0k
10k
lOOk
f, FRHlUENCY (Hz)

1.0M

~

"

10M

SO~RCE

10

'"~ 5.0
100M

-15

FIGURE 9 - POWER BANOWIOTH

1\

Q.

~
w

~

2:- 20
w

~e'"

32

~ 24

'">

'">
~t-

12

t-

8.0

6
>

t=~

I--

+

4.0

I-I-- ~

o

I
1.0

+150

+175

9.1 k~

Al

VEE

~

11
±lB V SUPPLIES

L

I-""

±1~ V'su~pL,k~

~

±121V

JuJp~IJsl

16

o:>

'"6

Vo,ut

2k

-15V

+

'='

« 16

:;

t-

+25
+50 +75 +100 +125
TA, AMBIENT TEMPERATURE (OC)

lOOk

to

to

5

-25

40

"?-

~

-50

FIGURE 10 - OUTPUT VOL TAGE SWING versus
LOAO RESISTANCE

2B
24

SINK

~ t--

~

\
100

r-- t:::---

>'-

\

<>-135

10

MC1456C

t-

""

t;:

1.0

~C1456'

"-

~

II IIII
10

V

> B.O

TA = 250C
THD< 5%

~

I'-...

'Ti

I--"
1.0 k

100

100

200

1.0 k

500

f, FRHlUENCY (kHz)

RL, LOAD RESISTANCE (OHMS)

FIGURE 11 - POWER OISSIPATION versus
POWER SUPPl Y VOLTAGE
100
10
50
~ 40
E: 30
z
'" 20

......
J...-I-""

~

iii
C

VO=O

VV

10

7.0
5.0
4.0
~
3.0

'"~

~

2.0

±2.0

Z

2.0 k

±4.0

±6.0

±B.O

±10

±12

±14

±16

±lB

±20

VCC, VEE, POWER SUPPLY VOLTAGE (Vdc)

MOTOROLA LINEAR/INTERFACE DEVICES

2-121

±22

5.0k

10 k

II

MC1456, MC1456C, MC1556
TYPICAL APPLICATIONS
Where values are not given for external components they must be selected by the
designer to fit the requirements of the system.
FIGURE 13 - NONINVERTING FEEDBACK MODEL

FIGURE 12 - INVERTING FEEDBACK MODEL

Rj

10

j

t

lin

If R3« 21

rFAo{w)_.,.,

I ~~-"-~~ I

G

1 + 22/21
lO

=Zo -A o (w)
lO_O

FIGURE 14 - LOW-DRIFT SAMPLE AND HOLD
+15V

SWITCH

>---0-.....- .... Vo

Vj

'Orift due to bias current

is typically 8 mV/s

SAMPLE
COMMANO

-15V

FIGURE 15 - HIGH IMPEDANCE BRIDGE AMPLIFIER

10k

MC1456,C
MC1556

100 k

10k

VO" -IOVI

MC1456,C
MC1556

100 k

MOTOROLA LINEAR/INTERFACE DEVICES

2-122

MC1456, MC1456C, MC1556

II

TYPICAL APPLICATIONS (continued)

FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT

FIGURE 16 - LOGARITHMIC AMPLIFIER

MC1456, C
MC1556

MOTOROLA LINEAR/INTERFACE DEVICES

2·123

II

ORDERING INFORMATION

Device

Temperatura Range

MC1458CD,D
MC1458G,CG
MC1558G
MC1458CU,U
MC1558U
MC1458CP1,P1

O"C to +70°C
O"C to +70°C
- 55°C to + 1250(;
QOCto +70°C
-55°C to +1250(;
O°C to +70°C

MC14S8
MC14S8C
MelSS8

Package

50-8
Metal Can

Metal Can
Ceramic DIP
Ceramic DIP

Plastic DIP

(DUAL MC1741)

(DUAL MC1741)
INTERNALLY COMPENSATED,
HIGH PERFORMANCE
MONOLITHIC OPERATIONAL AMPLIFIERS

DUAL
OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

· .. designed for use as a summing amplifier, integrator, or amplifier
with operating characteristics as a function of the external feedback
components.

•

No Frequency Compensation Required

•

Short-Circuit Protection

•

Wide Common-Mode and Differential Voltage Ranges

•

Low·Power Consumption

•

No Latch Up

G SUFFIX
METAL PACKAGE
CASE 601-04
Vee
8 1

MAXIMUM RATI NGS IT A : +250 C unless otherwise notedl
Rating
Power Supply Voltage

Svmbol

'MC1458

MC1558

Unit

VCC

+18
-18

+22
-22

Vdc
Vdc

Vee
Input Differential Voltage
Input Common Mode Voltage (Note 1)

VID

t30

Volts

VICM

+,15

Volts

Output Short Circuit Duration (Note 2)

ts

Operating Ambient Temperature Range

TA

Storage Temperature Range
Metal and Ceramic Packages
Plastic Package

T stg

Junction Temperature

Continuous

o to +701

175
150

For supply voltages less than :t 15 V. the absolute maximum Input voltage
to the supply voltage.
Supply voltage equal to or less than 15 v.

IS

equal

U SUFFIX
CERAMIC PACKAGE
CASE 693-02

EQUIVALENT CIRCUIT SCHEMATIC
,-~

Pl SUFFIX
PLASTIC PACKAGE
CASE 626-05
(MC1458, MC1458C)

°c

TJ

Plastic Package

Note 2.

uc
°c

55to+125

-65 to +150
-55tot125

Metal and Ceramic Packages

Note 1.

VEE

(Top View)

________~____~__________~__________~~vcc

••
1

15
OUTPUT

o

SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

50

(Top View)

MOTOROLA LINEAR/INTERFACE DEVICES
2-124

MC1458, MC1458C, MC1558
ELECTRICAL CHARACTERISTICS - Note 1 (Vee

~

+ 15 V

VEE ~ -15 V

~ 25°e

TA

unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Unit

5.0

-

2.0

6.0

-

2.0

10

mV

-

20

200

-

20

300

nA

80

500

80

700

nA

0.3

2.0

2.0

1.4
±15

+15

±12

±13

±11

±13

-

MH

-

-

-

Input Offset Voltage
(RS';; 10 k)

VIO

-

1.0

Input Offset Current

110

200

liB

-

20

Input Bias Current

80

500

Input Resistance

rj

0.3

2.0

Cj

1.4

-

+15

-

±13

-

Offset Voltage Adjustment Range

VIOR

-

Common Mode Input Voltage Range

VICR

±12

I nput Capacitance

Large Signal Voltage Gain

MC1458C

MC1458

MC1558

1.4

V

-

-

20

200

75

-

90

-

-

75

90

-

60

dB
~V/v

ro
CMRR

-

75

70

90

--

PSRR

-

30

150

-

30

150

-

30

-

±12

±14

±12
±10

±14
±13

-

±11
±9.0

±14

-

±13

20

-

20

2.3

5.6

2.3

8.0

70

170

-

-

70

240

0.3
15
0.5

-

-

0.3
15
0.5

-

~s

-

%

(VO" ±10 V. RL" 2.0 k)
(VO"±10V.RL" 10k)

Output Resistance

mV
V/mV

Av

Common Mode Rejection Ratio

pF

50

200

-

-

20

200

-

-

70

-

n

(RS';; 10 k)
Supply Voltage Rejection Ratio

(RS';; 10 k)
V

Output Voltage Swing
(RL;' 10 k)
(RL;' 2 k)

Vo

Output Short-Circuit Current

los

-

20

-

Supply Currents (Both Amplifiers)

10

-

2.3

5.0

Power Consumption

Pc

-

70

150

-

tTLH
os
SR

-

0.3
15
0.5

-

-

± 10

Transient Response (Unity Gain)

(VI" 20mV, RL;' 2kH, CL';; 100 pF) Rise Time
IVI "20mV, RL;' 2 kll, CL';; 100 pF) , Overshoot
Slew Rate
(VI" 10V, RL>2 kH. CL';; 100pF)

ELECTRICAL CHARACTERISTICS Note 1 (Vee ~ + 15 V, VEE

±13

~ -15 V,

TA

~

Symbol

Input Offset Voltage
(Rs';; 10 k!!)

VIO

Input Offset Current
(TA" 125°C)
(T A" -55°C)
(T A " OOC to +700 C)

110

Input Bias Current

liB

Min

Max

1.0

6.0

7.0
85

200
500

Min

Typ

Max

Min

Typ

7.5

Unit

12

mV

400
nA

30
300

0

500
1500
1000

800

Common Mode Rejection Ratio

Max

nA

(TA 125°C)
(TA" -55°C)
(T A " OOC to +70°C)
VICR
CMRR

V/~s

MC1458C

MC1458

Typ

300

Common Mode Input Voltage Range

mA
mW

'Thigh to Tlow unless otherwise noted).

MC1558
Characteristic

mA

+12

+13

V

70

90

dB

(RS';; 10 k)
PSRR

Supply Voltage Rejection Ratio

30

~VIV

150

(Rs';; 10 k)

Output Voltage Swing
(RL;' 10 k)
(RL;' 2 k)

Vo

Large Signal Voltage Gain

Av

V
±12
±10

±12

±14
±13

±10

V/mV

(VO" ±10 V, RL" 10 k)

15

Supply Currents (Both Amplifiers)

'Thigh
Trow

~
~

mA

10

4.5
6.0

(TA" 125°C)
(T " -55°C)
Power Consumption

±9.0 ±13

15

25

(VO" ±10V,RL" 2 k)

±14
±13

(TA" 125°C)
(TA" -55°C)

Pc

135
180

mW

125°C for MC1558 and 70°C for MC1458, MC1458C
-55°C for MC1558 and DoC for MCl458, MC1458C

Note 1. Input pins of an unused amplifier must be grounded for split supply operation or biased at least 3.0 V above VEE for single supply operation.

MOTOROLA LINEAR/INTERFACE DEVICES
2-125

II

MC1458, MC1458C, MC1558
FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE

FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE

>_1000'!11~~11~~11'~~~¥a!'1
f

100. . . . . .

II !'00'11111111
BW'" 1.0 Hz

10

IIII

1.0 kHz

-"

~e-

BW -1.0 Hzla 1.0 kHz

Ff

O>
~

z

w101ll. . . .
10tttittmtttinmtttjtimttijtiffitE3~~'1
100
1.0
10k lOOk 1.0M

o.lL

RS.SOURCE RESISTANCE (OHMS(

RS. SOURCE RESISTANCE (OHMS(

FIGURE 4 - SPECTRAL NOISE DENSITY

FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE
14

101!E1. . . .
"
g 1.0
100.
10
~ 01
1.0

12

0
0

E

~

AV - 1UOU

in

~

60

~

40

~

0

W

~ 1~. ~~ ~Ii~~

klZ

0 \ '\

~

z

1\

100

~w

~

c;

IIIIIII

Av

..........
20

0.0110

100

10k

1.0k

100 k 1.0

o

10

M

100

RS. SOURCE RESISTANCE (OHMS)

10k

1.0 k

100

I. FREUUENCY (Hz)

FIGURE 5 - BURST NOISE TEST CIRCUIT
Positive
Threshold

100 k

To Pass/Fail

100 k

I ndieator

1 k

100 k

Operational Amplifier

Under Test

Low Pass
Filter
1.0Hzto1kHz

Negative
Threshold
Voltage

Unlike conventional peak reading or RMS meters, this system was

The test time employed is 10 seconds and the 20 J.1V peak

especially designed to provide the quick response time essential to
burst (popcorn) noise testing.

limit refers to the operational amplifier input thus eliminating
errors in the closed·loop gain factor of the operational amplifier
under test.

MOTOROLA LINEAR/INTERFACE DEVICES
2-126

k

MC1458, MC1458C, MC1558
TYPICAL CHARACTERISTICS
(Vee = +15 Vdc, VEe = -15 Vdc, TA '" +250 C unless othen/\IISe noted).
FIGURE 6 -POWER BANDWIDTH
(LARGE SIGNAL SWING versus FREQUENCY)
+120

c. 14

>10 0

"-

~

10

1\

~

;
0

>

16

0>

>-

12

0>
0

(VOLTAGE FOLLoWERI

6 8.0 t->

11111~Ho/15'1111

4.0

II

11,1111
100

10

'8 0

~

'6 0

I~

; ., 0
~

0

-.

.f

-10
1.0

100 k

10k

.) 0

1.0k

tOO

10

f, FREQUENCY (Hz)

~

10k

100 k

,

-1 5

I

-1
-1 3

-1 1
-1 0

I

0
'"
>- -9

I

~
~

i3

i9 V

t6(

I?-'"

1. e
100

-3. 0

-1. 0
5.0 k 7.0 k 10 k

FIGURE 10 - OUTPUT VOLTAGE SWING versus
LOAO RESISTANCE (Single Supply Operation!

l.l

lV

±9 V

V

-5. 0

./

0- 4.0

>

I
I
1.0 k
500 700 1.0 k
RL, LOAO RESISTANCE (oHMSI

100

-8. 0

~ -7. 0
r:= -6. 0
~

~

±6V

".

I

-1. 0

tOO

500 700 1.0 k
1.0k
RL. LOAD RESISTANCE (OHMS)

100

1
:::: 1
1
~
0

4r- +27 V

100 IJF

1 k

10 k

+24 V

"
~1 8r- +21 V
~

16
~ 14
o
> 11

~ 10
~ 8.0
0 6.0
1.0

Vee

+18 V
200 k
50 k

+15 V

r- +12 V
200 k

+9.0 V

> 4.0

~~~-c>-M

V
r- +6.0
+5.0 V

00

1.0

1.0

3.0
4.0
5.0
6.0
7.0
RL. LOAD RESISTANCE (kill

8.0

9.0

5.0 k 7.0 k 10 k

FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER

: +30 V Supply

~

M

± 15 V SUPPLIES

~ -1 1
o

± 12 V

II'
//

~ to

1.0 M

FIGURE 9 - NEGATIVE OUTPUT VOL TAGE SWING
versus LOAD RESISTANCE

'15VSUPPLlES-

V

~

f, FREQUENCY (Hz)

FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE
5
14
3
1
1
0
0
0
0
0
0
0
0
0

~

>

\

1.0 k

~

~

z

\\

>-

II

FIGURE 7 - OPEN LOOP FREQUENCY RESPONSE

18

10

MOTOROLA LINEAR/INTERFACE DEVICES
2-127

MC1558\

MC1458, MC1458C, MC1558

II

FIGURE 12 - NONINVERTING PULSE RESPONSE

\.

I
.I ,

>

is

;;
o

.n

~UTPUT

"\

,

11

i
i i

pUT

FIGURE 13 - TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 14 - OPEN LOOP VOLTAGE GAIN
versus SUPPLY VOLTAGE

105r-'-'---'---T'
f---t---j1001---+-+~

t

~~-

! 95r--+--+-t--~

7~_--. . --t----+--t-----1

/'

;(

~ 901---+-+-~~~+--4---+-~-+-+~

~ 851----1--7"'-'-1----1---+--+---\--+---+-+---1

V

g

i

801---+-+---1---\--+--4-+-+---1---1
751----I--+---I---I--+---I--r-+---I---1
__
6.0
8.0

70~~_~~

o

2.0

4.0

~_~~_~

10

12

14

__

__
18
20

~~

16

~.

Vee. ,VEE!. SUPPL Y VOL TAGES (VOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-128

ORDERING INFORMATION
Device

remp••ture Range

Pockage

O"C to +70"C

SO-8
Metal Can
Plastic DIP
Ceramic DIP
Metal Can
Ceramic DIP

MC1458SD
MC1458SG
MC1458SPI
MC1458SU
MC1558SG
MCI558SU

QOCIO +7QoC
QOClo +70"C
QOC to +
-55°C 10 + 125"C
-55°C to + 125"C

nrc

MC1458S
MC1558S

DUAL HIGH SLEW RATE INTERNALLYCOMPENSATED OPERATIONAL AMPLIFIERS
The MC1558S is functionally equivalent, pin compatible, and
possesses the same ease of use as the popular MC1558 circuit, yet
offers 20 times higher slew rate and power bandwidth. This device is
ideally suited for DIA converters due to its fast settling time and
high slew rate.
•
•
•
•
•
•
•

DUAL
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC
INTEGRATED CIRCUIT

High Slew Rate - 10 V IllS Guaranteed Minimum (for inverting
unity gain only!
No Frequency Compensation Required
Short·Circuit Protection
Offset Voltage Null Capability
Wide Common-Mode and Differential Voltage Ranges
Low Power Consumption
No Latch·Up

G SUFFIX

METAL PACKAGE
CASE 601-04
8

1

TYPICAL APPLICATION OUTPUT CURRENT TO
VOLTAGE TRANSFORMATION FOR A O-TO-A CONVERTER

Vcc

VCC"5.0V

Inverting
Input A

13
MSB

, Output B

2

6

~~

.~

5

4

Inverting
Input B

Non~lnverting
Input B

VEE

A3 7
A4 8

(Top View!

9

A610
A711
LSB

'

Non-Inverting ,
Input A

A1 5
A2 6

A5

~

Output A

~~

A812

1

c·
Settling time to within 1/2 LSB (±19.5 mV) is approximately 4.0 IJ.s from the time that all bits are switched.

1

P1 SUFFIX

U SUFFIX

PLASTIC PACKAGE
CASE 626-05
(MC1458S Only)

CERAMIC PACKAGE
CASE 693-02

+The value of C may be selected to minimize overshoot
and ringing Ie :::::; 68 pF).

DSUFFIX
Theoretical Va
VO"

Vref

R1

PLASTIC PACKAGE
CASE 751-02
SO:8
(MC1458S Only)

IR OI

Adjust Vref. RT or RO so that

Va

with all digital inputs at high level

is equal to 9.961 volts.
V ref

Output A

= 2.0 Vdc

2 V

VO"'1'"""k (5k)

[1

1

1

1

1

1

1

1

Inverting
Input A

Rl " R2 '" 1.0 kn
RO" 5.0kn

1]

"2+4"+i+""16+32"+6'4'"128+256

7

Non-Inverting 3
Input A

255)
V
=10V [ -"9.961
256

2-129

Inverting
Input B

5

Non~lnvertlng

Input B

(Top View!

MOTOROLA LINEAR/INTERFACE DEVICES

Output B

6

II

II

MC1458S, MC1558S

MC1558S LARGE-SIGNAL TRANSIENT RESPONSE
(Inverting Model

STANDARD MCl558 versus MC1558S RESPONSE COMPAR ISDN
(Inverting Model

~

c"

3>

3>

C!

C!

1.0psJDiv.

lOps/Div.

% REPRESENTATIVE CIRCUIT SCHEMATIC

Vee

Inverting
Input

+---+--<> Output
Noninverting
Input

Offset
Null

50 k

Offset Null

MAXIMUM RATINGS (T A = +25 0 e unless otherwise noted I
Rating

Power Supply Voltage

Symbol

MC1558S

Vee
VEE

+22
-22

I

MC1458S

+18
-18

Unit
Vdc

Input Differential Voltage Range

0)

VIDR

±30

Volts

I nput Common-Mode Voltage Range

($I

VieR

±15

Volts

ts

Continuous

Output Short Circuit Duration
Operating Ambient Temperature Range

TA

-55 to +125

Storage Temperature Range
Junction Temperature Ceramic and Metal Package
Plastic Package

T stg

-65 to +150
175
150

Note 1.
Note 2.

TJ

o to +70
-65 to +150

°e

175
150

°e
De

De

For supply voltages less than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage.
Supply voltage equal to or
than 15 Vdc.

less

MOTOROLA LINEAR/INTERFACE DEVICES
2-130

MC1458S, MC1558S
ELECTRICAL CHARACTERISTICS (Vee ~ +15 Vdc, VEE ~ -15 Vdc, TA = +250 e unless otherwise noted. I
MC14585

Me15585

Characteristic

Min

Symbol

Power Bandwidth (See F .gure 3)

TVp

Max

Min

Tvp

Max

BWp

Unit
kHz

Av'" 1, RL -' 2,0 k!l, THO = 5°'0, Va- 20 Vlpcpl

150

200

150

200

-

10
10

20
12

10
10

20
12

-

V/}.Js

3.0

-

"S

0.25
0.25
0.25
20

-

"s

±45

mA

Large-Signal Transient Response

Slew Rate (Figures lOand 11)

SR

V(-) to VI +\

V(+} to VI-I
Settling Time (Figures 10 and 11)

30

{setlg

-

(to wlth,n 0.1"01
Small,Slgnal TranSient Response
(Gain

1, Em

20 mV, see

Flgur~s

7 and 8)

Rise Time
Propagation Delay Time

tPlH,tPHL
as

Overshoot

Shon-ClrcUlt Output Currents

Open-loop Voltage Gain (R L
Vo ±10 V
Output Impedance (f
20 Hzl
I nput Impedance If

±10

lOS
2.0 knl (See Figure 4)

±10

±45
200.000
75

20,000

100,000
75

-

1.0

0.3

1.0

±12
±10

±14

±12
±10

±14

±13

±13

--

VICR

±12

±13

±12

±13

-

CMRR

70

90

70

90

Va

Input Common·Mode Voltage SWing

20 Hzl

Input E:ilas Current (See Figure 2)

~10

kSl)

Vpk
dB
nA

200

500

30

200

1.0

200

500

-

30

200

50

-

2.0

6.0

70

150

-

70

170

2.0

150

-

2.0

150

10

150

-

10

150

-

nA

iliol

I nput Offset Voltage (RS

H
MH
Vpk

liB

Input Offset Current

0'0

-

0.3

z,

Common-Mode Rejection RatiO {f

"S
"S
_.

zo

20 Hz)

-

AVOL
50,000

Output V.:)ltage Swmg
RL 10 kU
RL 2 0 k!~

n

0.25
025
0.25
20

tTLH
tTHL

Fatl Time

mV

IVIOI

DC Power Consumption (See Figure 9)
{Power Supply
±15 V. Va c O}

Pc

POSitive Voltage Supply Sensitivity
(VEE constant)

PSS+

Negative Voltage Supply Sensitivity
(VCC constant)

PSS-

mW

-

/-lV/V
/-lV/V

-

PlastiC package offered in limited temperature range device only.

ELECTRICAL CHARACTERISTICS (VCC ~ +15Vdc, VEE ~ -15Vdc,TA ~ -55to +125°CforMC1558SandTA ~ Ot070°C
for MC1458S, unless otherwise noted)
MC 15585
Characteristic
Open Loop Voltage Gain

MC 14585
Max

Symbol

Min

AVOL

25.000

15.000

,12
,10

·12

TVp

Min

TVp

Max

Unit

V/V

VO=·,0V
Output Voltage SWing

RL

=

Va

Vpk

10 kl!

RL -= 2 kH
Input Common-Mode Voltage Range

VICR

·12

Commo.l-Mode RejectIOn Ratio If - 20 Hz}

CMRR

70

t nput Bias Current

200
500

800
nA

30

a to 70°C

Input Offset Voltage
~

500
1500

110

T A = 125°C
T A = -55°C

RS

dB
nA

70D C

Input Offset Current

T A'"

Vpk

liB

T A = 125°C
T A c -55°C
T A'" 0 to

'10

200
500
300

Via

6.0

7 .5

Pc

200

mW

PSS+

150

"V/v

PSS-

150

"V/v

mV

10 ki)

DC Power Consumption

Va = 0 V
Positive Power Supply Sensitivity

VEE = -15V
Negative Power Supply Sensitivity

Vce= 15V

MOTOROLA LINEAR/INTERFACE DEVICES

2-131

II

MC1458S, MC1558S

(Vee

II

TYPICAL CHARACTERISTICS
= +15 Vdc, VEE = -15 Vdc, TA;:: +2SoC unless otherwise noted.)
FIGURE 2 -INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 1 - OFFSET ADJUST CIRCUIT

~
~

400
35

'" '~

0

"' 300

~

13
~

--::>-----{)--e

0'
% MC1458S

1nputs

250

"'" r--.....

a;

Output

~ 20 0
~

• Not available with G and

P1 Suffix Packages.

w

150

'"
~

100

'~"

50

i'---

>

0

-50

-75

-25

+25

+50

+75

"""

+100

-125

T, TEMPERATURE (OCI

FIGURE 3 - POWER BANDWIDTH - NONDISTORTED
OUTPUT VOLTAGE v.'sus FREQUENCY
'20

+120

~

+'51--~--+~-+-++H----j--j-++--+-H++-f-~

'10 0

"~

+10f---......

~

..--+__-+-......_--<.............-+_I-+-4__~......j

$
~

FIGtJRE 4 - OPEN· LOOP FREQUENCY RESPONSE

~

+5.01----~-

~

+6 0

'"'"~
">

+4 0

w

w

'"~
"~

+8 0

I

!

~!

~

z

I
I

i

I
,

,

~

"'i;+2 0

-5.0

.£

g -I0f-......---..---T___+_--<____- .............-.L--l-......j
><

~ -151~0-+---:cIO"'0----"--'--"-,,-!:.0-,-k---'--~"IO:-ck-~~"C1O"'0-.,k---'---,J1.·0 M

-20
1.0

I
10

!

,

100

1.0k

3.5

'"~
">w

3.0
2.5
2.0

~

1.5

"....z

1.0

=>

....=>

~

"
Z

10 k

f, FREOUENCY (Hzl

FIGURE 5 - OUTPUT NOISE versus
SOURCE RESISTANCE

.sw

0.5

100 k
RS, SOURCE RESISTANCE (OHMSI

MOTOROLA LINEAR/INTERFACE DEVICES
2-132

~

I

t, FREOUENCY (Hzl

'":;-~

~

I

j

100 k

'"

1.0 M

10 M

MC1458S, MC1558S
TYPICAL CHARACTERISTICS
(Vee:= +15 Vdc, Vee = -15 Vdc. TA = +2SoC unless otherwise noted.l
FIGURE 6 - SMALL-SIGNAL TRANSIENT
RESPONSE DEFINITIONS

FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE

II

20 mV , . . - - - - - - - - - - - - .

Vee
Input

50%

0.1,uF

1:

50%

Gnd

Overshoot

Output

,-,

MC1558S
MC1458S

Input

, '

0_11'F

-15 V

FIGURE 9 -

FIGURE 8 -

1

LARGE-SIGNAL TRANSIENT WAVEFORMS

POWER CONSUMPTION versus POWER
SUPPLY VOLTAGES

100

~

70

Slew Rate

50
40

(Measurement
Period)

Vi+) to Vi-)

,,/

~ 30

ii:

~

10

8
~

~

/

10

/

V

-

VO" 0

./

~
90%

Output

~ 7,0
5.0
4.0
3.0
1.0

/
18
6.0
10
14
Vee and VEE. POWER SUPPLY VOLTAGE iVO lTS)

Settlmg
Time

11

FIGURE 10 - SLEW RATE AND SETTLING TIME TEST CIRCUIT"

Vee = 15 V

+10~

-~~vL
10 k'"
I n put ("I-~"""'---<>-4

~V~

~-1~

Yo

MC1558SV---c>-~-~-+--f<.) Output

10 k
+1%

• Match to within 0.01%.

False
Summing

1N916
or Equivalent

Inputs of Amplifier Not Under
Test Should Be Grounded.

Node

MOTOROLA LINEAR/INTERFACE DEVICES
2-133

II

MC1458S, MC1558S
SETTLING TIME
In order to properly utilize the high slew rate and fast
settling time of an operational amplifier, a number of
system considerations must be observed. Capacitance at
the summing node and at the amplifier output must be
minimal and circuit board layout should be consistent
with common high·frequency considerations. Both power
supply connections should be adequately bypassed as
close as possible to the device pins. In bypassing, both
low and high·frequency components should be con·
sidered to avoid the possibility of excessive ringing. In
order to achieve optimum damping, the selection of a
capacitor in parallel with the feedback resistor may be
necessary. A value too small could resuJt in excessive
ringing while a value too large will degrade slew rate and
settling time.

The solution to these problems is the creation of a
second or "false" summing node. The addition of two
diodes at this node clamps the error voltage to limit the
voltage excursion to the oscilloscope. Because of the
voltage divider effect, only one-half of the actual error
appears at this node. For extremely critical measure·
ments, the capacitance of the diodes and the oscilloscope, .
and the settling time of the oscilloscope must be con·
sidered. The expression
tsetlg =

J x 2 + y2 + z2

can be used to determine the actual amplifier settling
time, where
tsetlg = observed settling time
x = amplifier settling time (to be determined)
y = false summing junction settling time
z = oscilloscope settling time
It should be remembered that to settle within ±0.1 %
requires 7RC time constants.
The ±O.l % factor was chosen for the MC155BS
settling time as it is compatible with the ±1/2 LSB
accuracy of the MC1508L·8 digital·to-analog converter.
This D-to·A converter features ±O.19% maximum error.

SETTLING TIME MEASUREMENT
In order to accurately measure the settling time of an
operational amplifier, it is suggested that the "false"
summing junction approach be taken as shown in

Figure 11. This is necessary since it is difficult to de·
termine when the waveform at the output of the op·
erational amplifier settles to within 0.1 % of it's final
value. Because the output and input voltages are ef·
fectively subtracted from each other at the amplifier
inverting input, this seems like an ideal node for the
measurement. However, the probe capacitance at this
critical node can greatly affect the accuracy of the
actual measurement.

TYPICAL APPLICATION
FIGURE 13 - "12.5-WATT WIDEBAND POWER AMPLIFIER
+15 V

MeL 1304

FIGURE 11 - WAVEFORM AT
FALSE SUMMING NODE

300 pF

or Equivalent
(Current
Limiting
Diode)

>

24k

Q

:;
E
c

:"l

0.33
Input

18 k

FIGURE 12 - EXPANDED WAVEFORM AT
FALSE SUMMING NOOE

0.1""
ERROR

10 k

BAND

Delivers 12.5 watt into 4.0 ohms with less than 1% THO to 100 kHz.
Pins not shown are not connected .
• Bias current adjustment to eliminate Crossover Distortion .

• -Epoxy to power transistor heat sink or case for maximum Thermal Feedback.

MOTOROLA LINEAR/INTERFACE DEVICES
2-134

®

MOTOROLA

MC1490P

RF/IF/AUDIO AMPLIFIER

WIDEBAND AMPLIFIER
WITHAGC

· .. an integrated circuit featuring wide-range AGC for use in RFI
IF amplifiers and audio amplifiers over the temperature range,
- 40 to + 85°C. See Motorola Application Note AN513 for design
details.

SILICON MONOLITHIC
INTEGRATED CIRCUIT

• High Power Gain -

50 dB Typ at 10 MHz
45 dB Typ at 60 MHz
35 dB Typ at 100 MHz

• Wide-Range AGC -

60 dB Min, dc to 60 MHz

• 6.0 to 15 V Operation, Single-Polarity Power Supply

PSUFFIX
PLASTIC PACKAGE
CASE 626-05
MAXIMUM RATINGS (TA ~ + 25°C unless otherwise noted)
Rating

Symbol

Value

Unit

VCC

+18

Vdc

Vo

+18

Vdc

V2(AGC)

VCC

Vdc

Differential Input Voltage

V,

5.0

Vdc

Output

Operating Temperature Range

TA

-40 to +85

°c

(-)

T sta

-65 to + 150

°c

TJ

+150

°c

Power Supply Voltage
Output Supply
AGC Supply

Storage Temperature Range
Junction Temperature

REPRESENTATIVE CIRCUIT SCHEMATIC

Output

(+)

VCC

Substrate
Ground

GND

Non-Inv.
Input

Inv.
Input

AGC
Input

. -______~~~~--~--~2 VCC

SCATTERING PARAMETERS (Vee = +12Vdc.
TA = +25"C, Zo = 5001
f = MHz
Typ

4

(_)~--~-----r-'

Symbol

30

60

Unit

15 111
911

0.95
-7.3

0.93
-16

degrees

Reflection
Coefficient

15 221
B22

0.99
-3.0

0.96
-5.5

degrees

Forward
Transmission
Coefficient

15 211
B21

16.8
128

14.7
64.3

degrees

512
912

0.00048
84.9

0.00092
79.2

degrees

Parameter

Input
Reflection
Coefficient

Output

1.1 k 1.1 k

200

L-~----~----~~~S~u7b~m-ra~te~7-03
Pins 3 and 7 should both be connected to circuit ground.

Reverse
Transmission
Coefficient

MOTOROLA LINEAR/INTERFACE DEVICES
2-135

-

MC1490P

ELECTRICAL CHARACTERISTICS (VCC - 12 Vdc f - 60 MHz BW = 10 MHz TA = 25°C)
Characteristic

II

Figure

Power Supply Current Drain

-

AGe Range (AGC) 5.0 V Min to 7.0 V Max

19

Output Stage Current (Sum of Pins 1 and 8)
Single Ended Power Gain RS
Noise Figure RS

= RL = 50 Ohms

= 50 Ohms

Power Dissipation

Symbol

Typ

Min

-

Max

Unit

17

mA

MAGC

-60

-

-

10

4.0

-

7.5

mA

19

Gp

40

-

NF

6.0

-

Po

-

-

dB

19

168

204

ICC

-

dB

dB
mW

TYPICAL CHARACTERISTICS
(V2 (AGC) ~

o. VCC ~

12 Vdc. TA ~ +2SoC unless otherwise noted)

FIGURE 1 - UNNEUTRALIZED POWER GAIN versus
FREQUENCY (Tuned Amplifier, See Figura 19)

FIGURE 2 - VOLTAGE GAIN versus FREQUENCY
(Video Amplifier, See Figure 21)
0

70

IIIII

r--VCIC : 12 Vdc
60
0

;;: ~ 50

.....

"'ffi~...

~ 0 40
00

0

RL: loon

... w

00

"-

~ ~ 30
~~

~~
=>

~
wz

;5

III II VCC : 12 Vdc

RL'" 1.0kH

........

z _

20

"

10

1\

0

"

\.\
\

0

RL: Ion

o
10

20

50

100

0.1

f, FREQUENCY (MHzl

I"'-~

111

200
1.0

10

100

1000

f. FREQUENCY (MHz)

FIGURE 3 - DYNAMIC RANGE: OUTPUT VOLTAGE versus
INPUT VOLTAGE (Video Amplifier, Sea Figure 21)
10
7. 0

FIGURE 4 - VOLTAGE GAIN versus FREQUENCY
(Video Amplifier, See Figure 21)
0

5. o~

c

1.0

;
w

O. 5

o

O. 2

VCC : 6.3 Vdc
0

~ O. 7

>

5

0.0 I

0.1

IOn

0.5

1.0

loon

\...\

0

~

...r-::

L
0.2

I'

0

loon

0.0 7
0.05

OjO 0.0 2

RL-1.0kn

0

RL -1.0 kll

!; O. 1
~

I !IIII

j::

VCC-12Vdc
r - - t- V2(AGC) - 0 Volu
~
f 1.0 MHz
~ 2.ot---t~

2.0

5.0

10

20

50

100

0
0.3 0.5

1.0

3.0 5.0

'i, INPUT VOLTAGE (mVRMSI

10

30

f. FREQUENCY (MHz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-136

50

100

"

300

MC1490P

FIGURE 6 - TYPICAL GAIN REDUCTION
versus AGC VOLTAGE

FIGURE 5 - VOLTAGE GAIN AND SUPPLY CURRENT versus
SUPPLY VOLTAGE (Video Amplifier, See Figure 211
45 _...

~

40

~

35

'"'"

30

>

25

,

'" !.OMHI
Rl '" 1.0kH

z

f---

c
w
c
z

w
w

~

'"z

'":>
'"

v;:-

/

w

~

--

15
10 I---- - - - - -

o

V

0

0

18

0

- - - I - - 9.0
6.0

--

6.0

~

'"

E
15
12

~C i---f--'-

V

r--- -

4_0

2.0

./

V

I

20

5_0

-

24
21

t--

i
::;

~

z

12

10

14

.........,~

t;

=>

0

~

z

50

~

60

~

80

o

I
5

RAGC

'"" \

~

RAGC

\
RAGC~O"

RAGC

~

~

100 k 6.0

---

~_~_~

U

9.0

I---+--++---+---+-' - - ---- ----.--f-----o

U

-,-

8.0

20r--+--i+--+--r--+--~--4-~
10

~

10

r--~-f+--~-~-~---+--_+-~

I

U

FIGURE 10 -

,---,---.--~-,--,--,--,---,

r--+---t-'--+--+-----j--+----+-----j

30

~'\\..

12 Vdc

VRIAGC), AGC VOLTAGE (VOLTS)

POWER GAIN versus SUPPLY VOLTAGE
(See Test Circuit, Figure 191

~ 40 r--~--+

~

f-- hAG~ :~06~~z

U

160

/+25 0 C

~~

f--- I- VCC

-20

~50r--r--r--t--1I~t:=t==~~
I
__

~

0

-10

~

,ff

+10

ci-

"I"'""""

""DoC

~ ~
+125 0 C""
~~
'\.'\.~

I

~

"- '-.....

L...- -55°C

+75 0 C....

~

~

::--:: ::::s:::

,,,\:: ~y

~+30

70 r--~--+--~-~-~--+--_+-~
,~~o MHz
60

:s

-.;

~ +20

"-

z

80

+40

I
I
1
1
100 < RAGC < 100 k -

0

16

15

20

25

30

MOTOROLA LINEAR/INTERFACE DEVICES
2-137

35 40
50 60 70 80 90 100
f, FREQUENCY (MHz)

150

II

MC1490P

FIGURE 11 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 12 - NOISE FIGURE versus AGC GAIN REDUCTION
40

20

f = 30 MHz

18

Vcc

= 12 Vdc

/'

16
~

w

f

12

u:

10

~

8.0

~

...-

= 105 MHz

...-

...J.+t'
f

w

.,

1/

60 MHz

........-:

6.0

iii

V

~
w

'1.0

MHz

........f

l

25

~ 20

u:

,.",-

w

~

= iOIMHzl-

15
10

5.0

2.0

o

200

400 600
1.0 k
2.0 k
RS. SOURCE RESISTANCE IOhms)

/

~

~

4.0

100

=

30

14

~

::>
to

35 f-BW

4.0 k

,,/'

V

5

-- Providing a Source Resistance

/

.~

-10

I

I

=.

-20

-30
-40
-50
GAIN REDUCTION Id8)

I
1.0 kHl
76J mVpp

Eo'" Peak· to-Peak Envelope of
5

I

Modulated 10.7 MHz

/

Carrier at Pi 5

I
Eo = 2400 mVpp /

5

/

I

/
10

20

/

/

/

/ /

/

/240mvpp

/

./

40
50
30
GAIN REDUCTION IdB)

70

60

80

FIGURE 14 - 10.7 MHz AMPLIFIER
Gain = 55 dB. BW = 100 kHz

36 pF

r--o-+-!t---<> ~ga~

5.6 k

VRIAGC) D---'V'I'v---\--+-o--i
10.7 MHz o.---1f---\--+-o--i
150 n Source) 82 pF

L2

+12 Vdc

0.002

J
L1

l2

150 pF
24 Turns, No. 22 AWG Wire
on a T1244 Micro Metal
Toroid Core (-124 pF)
20 Turns, No. 22 AWG Wire
on a T12-44 Micro Metal
Toroid Core 1-100 pF)

MOTOROLA LINEAR/INTERFACE DEVICES
2-138

-

Optimized for Best Noise Figure.

10k

f '" 10.7 MHz
Modulation" 90% AM, 1m
load at Pin 5 '" 2.0 kH

V

Tilst Circuit Has Tuned Input

FIGURE 13 - HARMONIC DISTORTION versus AGC GAIN
REDUCTION FOR AM CARRIER (Fo, Telrt Circuit, See Figure 14}
0

V

-60

-70

-80

MC1490P

TYPICAL CHARACTERISTICS (continued)

FIGURE 15 - 511 AND 522. INPUT AND OUTPUT
REFLECTION COEFFICIENT

FIGURE 16 - 511 AND 522. INPUT AND OUTPUT
REFLECTION COEFFICIENT

.. ~ .-.i. ....~....

FIGURE 17 -

FIGURE 18 - 512. REVERSE TRANSMISSION
COEFFICIENT (FEEDBACK)

521. FORWARD TRANSMISSION
COEFFICIENT (GAIN)

MOTOROLA LINEAR/INTERFACE DEVICES
2-139

II

MC1490P

TYPICAL APPLICATIONS

II

FIGURE 19 -

60 MHz POWER GAIN TEST CIRCUIT

FIGURE 20 - PROCEDURE FOR SETUP
USING FIGURE 19

C3
C4
C2

Test

ein
2.23 mV (-40 dBm)

V2(AGC)
5-7 V

RAGC(kll)

MAGC
Go

1.0 mV (-47 dBm)

"5.0 V

5.6

NF

1.0 mV (-47 dBm)

"5.0 V

5.6

0

L2

FIGURE 21 -

VIDEO AMPLIAER

Cl

1+---4--...... + 12 Vdc
1.0 "F

VR(AGC)
Ll ~ 7 Turns. #20 AWG Wir•• 5/16" Oi...
518" Long
L2 ~ 6 Turns. #14 AWG Wire. 9/16" Oi •.•
3/4" Long

Cl.C2.C3 ~ (1-30) pF
C4 ~ (1-10) pF

VR(AGC) ...-~""'~
VR(AGC) __---'IIV'~-o-~
ei

0.001 "F
+ 12 Vdc
0.001 "F

AGURE 22 - 30 MHz AMPLIFIER
(Power Gain = 50 dB, BW = 1.0 MHz)

FIGURE 23 Input from
Local Oscillator
(70 MHz)
100

(1-30) pF

100 MHz MIXER

(1-10) pF
(1-30) pF
Q----t~["'4 IF Output

(1-10) pF

(30 MHz)

Signal Input
(100 MHz)

(~g~) -----If-~~-+--<>--i

(1-30) pF

36 pF

+ 12 Vdc

5.6 k
+12Vdc
L1

=

12 Turns #22 AWG Wire on a Toroid Core.
CT37-6 Micro Metal or Equiv)
T1: Primary = 17 Turns #20 AWG Wire on a Toroid Core,
(T44-6)
Secondary = 2 Turns #20 AWG Wire

L1

~

l2

=

5 Turns. #16 AWG Wire. 1/4"10.

518" Long
16 Turns. #20 AWG Wire on a Toroid
Core. (T44-6)

MOTOROLA LINEAR/INTERFACE DEVICES
2-140

®

MC1590G

MOTOROLA

IJ
RF/IF/AUDIO AMPLIFIER

WIDEBAND AMPLIFIER
WITHAGC

· .. an integrated circuit featuring wide-range AGC for use in RF/IF
amplifiers and audio amplifiers over the temperature range, - 55
to + 125°C. See Motorola Application Note AN513 for design
details.
• High Power Gain -

50 dB Typ at 10 MHz
45 dB Typ at 60 MHz
35 dB Typ at 100 MHz

• Wide-Range AGC -

60 dB min, dc to 60 MHz

• Low Reverse Transfer Admittance 60 MHz

SILICON MONOLITHIC
INTEGRATED CIRCUIT

PIN CONNECTIONS

<10 /Lmhos Typ at

c••
Ground

• 6.0 to 15-Volt Operation, Single-Polarity Power Supply

= +25"C

MAXIMUM RATINGS (T A

G SUFFIX
METAL PACKAGE
CASE 601-04

unless otherwise noted)
Symbol *

Value

Unit

Power Supply Voltage

VCC

+18

Vdc

Output Supply

Vo

+18

Vdc

Rating

AGC Supply
Differential Input Voltage

VI

VCC
5.0

Vdc

Operating Temperature Range

TA

-55 to +125

DC

Storage Temperature Range

T stg

-65 to +150

TJ

+175

°c
°c

V2(AGCI

Junction Temperature

Vdc

REPRESENTATIVE CIRCUIT SCHEMATIC
7 VCC

V2(AG C) 70
2
470

f

>k

IL
Y

470

l,

~

1.5k

(+)5

..r::==:::"

Outputs

::~ O-ln-p-u-ts---4_2_.0-66-k~:A-~~j"'I--[-I'-4-kr--:r-'8t=+1=2=4:=1=~l=0=0:;---],. :-"
5.0Y-

L---1f---f---+~r-'
1.1 k 1.1 k

8.4 k

(Polarl

912
b12

-0
-0 $lmhos
-5.0 -10

5.5 k 12.1 k

U

5.0 k

(Pin 1 to Pin 5)

Reverse Transfer
Admittance"

*The value of Reverse Transfer Admittance includes
the feedback admittance of the test circuit used in
the measurement. The total feedback capacitance
(including test circuit) is 0.025 pF and is a more
practical value for design calculations than the internal feedback of the device alone. {See Figure 10.}

r-------~~~--~---;

I
-Fh

ADMITTANCE PARAMETERS (VCC = +12 Vdc,
TA = +25OC)
f=MHz
Typ
Parameter
Symbol
Unit
30
60
0.6
Single-Ended Input
0.4
mmhos
911
Admittance
1.2 -3.0
bll
Single-Ended Outpul
mmho
0.05
0.1
922
Admittance
b22 0.50 1.0
Forward Transfer
175 150 mmhos
Y21
Admittance
-30 -105 degrees
621

~
5.6 k :1.9 k"---K,
200
Case
Substrate 4
8

Pins 4 and 8 should both be connected to circuit ground.

SCATTERING PARAMETERS (Vee = +12 Vd.,
TA = +25OC, ZO = 50 n)
f = MHz
Typ
Pa,amete,
Symbol
Unit
30
60
0.93
Input Reflection Sl1
0.95
-16 degrees
Coefficient
-7.3
611
Output
Reflection
Coefficient

S22
822

0.99
-3.0

0.98
-5.5

degrees

Forward
Transmission
Coefficient

S21
821

16.8
128

14.7
64.3

degrees

Reverse
Transmission
Coefficient

S12
612

MOTOROLA LINEAR/INTERFACE DEVICES
2-141

-

-

0.0000 0.0009
64.9
79.2 degrees

II

MC1590G

ELECTRICAL CHARACTERISTICS (VCC = +12 Vdc, f = 60 MHz, BW = 1.0 MHz, TA = -55'C to + 125'C unless
otherwise noted)
Characteristic
AGC Range
(V2(AGC)
(V2(AGC)

=
=

5.0 V to 7.0 V)
5.0 V to 7.0 V, TA

=

Fig.

Symbol

24

MAGC

25'C)
24
(TA

= 25'C)

(TA

= 25'C)

Output Stage Current
(Sum of Pins 5 and 6)
(TA
Output Current Matching
(Magnitude of Difference of Output Currents)
(TA
(15 - 16)

Gp

24

NF

32

10

= 25'C)
32

601 0

32

ICC

~§
.....
00

~~
~

-

6.0

7.0

dB

-

rnA
3.5
4.0

5.6

8.0
7.5

-

0.7

-

-

-

20
17

""~

rnA
14

mW

-

240
204

168

ffi
0
z

~

'\.

.......
40

30
Rl=100ll

~

20

,\

to

10

10
Rl = lOll

""

o
100

\'

Z

in
U

50

Vcc '12 Vdc

Rl = 1.0 kll

>

""
20

rnA

FIGURE 2 - VOLTAGE GAIN versus FREQUENCY
(Video Amplifier, See Figure 26)

~

20

10

-

to

I"..

~~3
........ 0
iij!ll
z

-

dB

45

W

.....

... w

-

40

-

'"z

-

"'~
w=>

!I: 0 40
00

68

37

50

'12~dc

50

-

Pc

FIGURE 1 - UNNEUTRALIZED POWER GAIN versus FREQUENCY
(Tuned Amplifier, See Figure 24)
-Vclc

Unit
dB

-

-

-

Power Consumption (12 x ICC)
(VI = OV)
(VI = 0 V, TA = 25'C)

0

Max

= 25'C)

Power Supply Current
(VO = OV)
(VO = 0 V, TA = 25'C)

60

Typ

58
60

Single-Ended Power Gain
Noise Figure
(R s optimized for best NF)

Min

0.1

I, FREQUENCY (MHzl

\.~

I III

200
1.0

10

I, FREQUENCY (MHzl

MOTOROLA LINEAR/INTERFACE DEVICES

2-142

100

1000

MC1590G

TYPICAL CHARACTERISTICS
(V2 (AGC)

=

0,

vcc =

12 Vdc, T A = +2So C unless otherwise noted)

IVideo Amplifier. Sea Figure 26)
50

I

~

z

RL -1.0 k"

'"w

'"<~

.......

30

">
w
"
"ffi
~
z

1111

VCC - 6.3 Vdc
~

;;:

100"

20

~

u; 10

<

o

0.01 "--_"--.L.l_LL.>:L.ll-_.-'---'-LL.u:l:.LL___.L.--'-...L..LLl-'-1J
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
iNPUT VOLTAGE (mVRMS)

0.3 0.5

3.0

1.0

'j.

~

40

~

35

'"'"

30

RL

z

-

/

w

~
>

V<

(

25

"
"zw

w

20

:j

'"u;

15

:>

10

z

'"

5.0

V
a

2.0

4.0

6.0

Ac

1

V

V

.§.

z

1

Ii
"

1

9.0 ~

12

10

14

z

~

~

S?

i'-..

~

20

~

30

"

40

~

50

z

~

--

60
70

a

80

a

~

I
100

"'"

I
< RAGC

I
I
< 100 k

=< 60

'"

70

m

'\

\

ai'

RAGC

~

5.6kU

I
3.0

6.0

9.0
12
15
18
21
VR(AGC). AGC VOLTAGE (Vdc)

24

27

30

FIGURE 8 - FIXED TUNED POWER GAIN REDUCTION
versus TEMPERATURE (See Test Circuit. Figure 241

_

~
~
00
~
iAGC AGC CURRENT ("A)

-

.,

+40

~+30

1m

~

,"

~y

/-55 0C
....-OoC

~>-..'\.~

+125oC.....

~ +10

"'- "'-......

:-:::: ~
+75 0C......

z
«
+20
'"'"

........

'\
-20

~

+50

z

80
-40

300

100

RAGC ~ 100 k"

50

RAIGC -

FIGURE 7 - TYPICAL GAIN REDUCTION versus AGC CURRENT

10

2

AAGC

40

Vcc. SUPPLY VOLTAGE IVOL TS)

r--

I

VR(AGC)

30

3.0

16

50

I
............ r-..

20

~

..:

6.0

8.0

30

~ :-.....

10

21

./

10

FIGURE 6 - TYPICAL GAIN REDUCTION
.ersusAGC VOLTAGE

24

r--

= LOMHl
=1.DkE

5.0

f. FREUUENCY (MHz)

FIGURE 5 - VOLTAGE GAIN AND SUPPLY CURRENT versus
SUPPL Y VOLTAGE (Video Amp'ifi.... See Figur. 26)

f

,

~

:>

45

•

FIGURE 4 - VOLTAGE GAIN .ersus FREQUENCY

FIGURE 3 - DYNAMIC RANGE: OUTPUT VOLTAGE vorsus
INPUT VOLTAGE (Video Amplifier, So. Figure 26)

'\.'\.'1 ~+250C

-" ~

,,\."

'\.\.~

~

~~

C!Jc. 0

-10 -20

1~

U

~
~

,-- VCC ~ 12 Vdc
f ~60MHz
- RAGC ~ 5.6 k"

.,

I
U

U

U

U

U

U

U

VA(AGC). AGC VOLTAGE (VOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-143

U

U

~

MC1590G

TYPICAL CHARACTERISTICS (continued)

II

FIGURE 9 - POWER GAIN venus SUPPLY VOLTAGE
ISeo Test Circuit, Figure 241

FIGURE 10 - REVERSE TRANSFER ADMITTANCE versus
FREQUENCY ISee Parameter Table, Page 11

80

f=

$ 60
:!!
Z
50

~O MHz

w

~ -40

:::'"

~

«

=<

'"
~
...
~

0.

'"

-50

Q

]

10

!----

V

40
30

-30

/

~

w

~
~

z

~ -20

t-

w

Ibl~V

~
~

20

~ -10

10

;:

o

2.0

4.0

B.O

8.0

10

12

14

0

16

40 50
f. FREQUENCY (MHz)

Vee, POWER SUPPLY VOLTAGE (Vdc)

18

/"

8.0
7.0

w

5.0

~

-

~

~
~.

z

4.0

./

V

V

~

14

~

12

f~~~iPn~~~~dNF

...

w

--

U)

8.0

~.

6.0

~

2.0

4. 0

1.0

2.0
15

f = 105 MHz

u:: 10

3.0

o

200

25

30

35 40
50
60 70 80 90 100
f, FREQUENCY (MHz)

100

150

200

40

30

5

,/"

V

V

L

V

Test Circuit Has Tuned Input
Providing a Source Resistance OPti:ted for Best Noise Figure.

°v

5. 0

0

-10

-20

-30
-40
-50
GAIN REOUCTION (dB)

60

-10

-80

MOTOROLA LINEAR/INTERFACE DEVICES
2-144

V

f = BOMHzLV

1/

VV-

f/f = 30 MHz

400 BOO
1.0 k
2.0 k
RS. SOURCE RESISTANCE (Ohms)

FIGURE 13 - NOISE FIGURE versus AGC GAIN REDUCTION
f =30 MHz
35 f- BW ='1.0 MHz

wtr
V

o
20

V

Vcc = 12 Vdc

lB

;;;
B.O

ISO

20

9.0

w
~
:>

100

FIGURE 12 - NOISE FIGURE vorsusSOURCE RESISTANCE

10

:!!

m~O

30

20

10

FIGURE 11 - NOISE FIGURE versus FREQUENCY

t""" i-""""

......

N

o

V

L

4.01k

10k

MC1590G

TYPICAL CHARACTERISTICS (continued)

10

ti

E

w
u

"

"
~

1.0

/b11_ -

/

z

1.5

9.0

/

2.0

.5
l-

------

E
z

~

,/

V

~

/
/'
V g2f -

./

;:J 0.5

---

I--- ---

>

20

30

40

/

u

~

~

8.0

.5 7.0

I-

5.0

"=>

4.0

z

3.0

l~

/ / b ll - -

6.0

..........-

;: 1.0

--- f-- ---

1.0

o

80
60
t, FREUUENCY (MHz)

100

150

20

100

load at Pin 5

=

I
co

J

Eo = 2400 mv pp /

1 i
/

5

,/

J

/

0
10

20

FIGURE 17 -10.7 MHz AMPLIFIER
Gain
55 dB. BW
100 kHz

=

36 pF

/

r---(J~+-1t--<> ~ga~

/

j

k_ _+-_+-.o---I
VR(AGCIo-_5",.6vv10.7 MHz cr--1f----1f--+--(J~
(50 n Sourcel 82 pF

w
u

110

.5
z

"
l-

BO

~

40

I-

"'"

0.002

/

I

/

Ll

60

70

,~~Ji

g11

80

L2

i

~ -160

;;;·200
2.0

>

1\

5.0

"

10
20
t, FREUUENCY (MHz)

"'-;
a: ~ 160 f-I-I Y211

r-- g ~

V

I-'"

'"w

-45 ~

.......

1\

140

~ ~

"w

'\

80

-

9 r T'I

II II
II U

o
100

2.0

5.0

10

20
t, FREUUENCY (MHz)

MOTOROLA LINEAR/INTERFACE DEVICES

2·145

g!

0"
~ ~
s:w

-180:5 ~
-22Si

g

1\ '\ -270 w"
~ ~
\ -315 -:,z

_ !NPUT - Pin 1
UT U ~'") ~

20
100

- 135

100

-I-

50

90

r-.

""0

~ ~ 60
>;;;"
a:: 40

\

-120

+45

~ ~ 120

/

0

Y21. FORWARD TRANSFER ADMITTANCE
POLAR FORM

~u

/

z

20 Turns, No. 22 AWG Wire
on a T12-44 Micro Metal
Toroid Core (-100 pFI

'11

180

Ow

r-..

g ·40
·80

0 .002

24 Turns. No. 22 AWG Wire
on a T12-44 Micro Metal

100

~i

1'\
.......

FIGURE 19 -

. Pi~ 1

OUTPUT - Pin 5

~
~

1

so150 pF

Toroid Core (-124 pFI

50
40
30
GAIN REDUCTION (dB)

b21

w

+ 12 Vdc

Ll

/240mVpp

I /

200
160

=

4

FIGURE 18 - V21. FORWARD TRANSFER ADMITTANCE
RECTANGULAR FORM

E

200

100

760mVpp

2.0 ku

Modulated 10.7 MHz
Carrier at Pin 5

0

80

f---t-

1.0 kHl -

Eo" Peak-Ia·Peak Envelope 01

5

60

I

I

------ gr-

---

40

30

/'

t, FREUUENCY (MHz)

0
I" 10.1
7 MHz I
5 Modulation: 90% AM, 1m

/

",/

FIGURE 16 - HARMONIC DISTORTION ve .. us AGC GAIN
REDUCTION FOR AM CARRIER (For Test Circuit. See Figure 171

ti

II

FIGURE 15 - SINGLE·ENDED INPUT ADMITTANCE

FIGURE 14 - SINGLE·ENDED OUTPUT ADMITTANCE
2.5

[\.. -360 :;:
-405

50

100

200

II

MC1590G

TYPICAL CHARACTERISTICS (continuedl

FIGURE 20 - S11 AND S22. INPUT AND OUTPUT
REFLECTION COEFFICIENT

FIGURE 21 - S11 AND S22. INPUT AND OUTPUT
REFLECTION COEFFICIENT

FIGURE 22 - S21. FORWARD TRANSMISSION
COEFFICIENT (GAIN)

FIGURE 23 - S12. REVERSE TRANSMISSION
COEFFICIENT (FEEDBACK)

MOTOROLA LINEAR/INTERFACE DEVICES
2-146

MC1590G

TYPICAL APPLICATIONS

FIGURE 24 -

60 MHz POWER GAIN TEST CIRCUIT

C3

0.001

E1

FIGURE 25 - PROCEDURE FOR SETUP
USING FIGURE 24
Test
MAGC
Gp
NF

C2

Bin
2.23 mV (-40dBm)
1.0mVH7dBm}
1.0 mVH7dBm}

V2IAGC} RAGC(k!l}
5·7 V
0
.. 5.0 V
5.6
.. 5.0 V
5.6

FIGURE 26 - VIDEO AMPLIFIER
Input

(SOU)

Cl
'H!+---+--_+12 Vd,
VRIAGC}
VRIAGC} "'---""""---...
II '" 7 Turns, 120 AWG Wire, 5/1S" Dia.,
5/8" Long
L2 " 6 Turns. 114 AWG Wire. 9/16" Oia.,

Cl,C2,C3 = 11·30} pF
C4 = 11·10} pF

VRIAG C}

"'--"'--"

"'--"IN'.,--6~

'i

3/4" Long

O.OOI"F +12 Vd,

FIGURE 27 - 30 MHz AMPUFIER
(Power Gain = 50 dB, BW = I,D MHz)

FIGURE 28 - 100 MHz MIXER
Input from
local Oscillator
170 MHz}
100

11·10} pF
c;>-;,,--1~IF.IF Output

11·30} pF

130 MHz}

:~~~~)

Signal Input .....--::II+"'-..---t~.()..-I
1100 MHz}

--if-.....-+--+-<:>--i
3B pF

11·30} pF

Ll '" 12 Turn5 1122 AWG Wire ona Toroid Core,

Ll '" 5 Turns. #16 AWG Wire. 1/4" 10,

--1

11·10) pF

T1: Primary Winding:: 15 Turns, #22 AWG Wire, 114" 10 Air Core
Secondary Winding"" 4 Turns,IJ22 AWG Wire,
Coefficient of Coupling,=: 1.0

T2: Primary Winding:: 10Turns,I22 AWG Wire, 1/4" 10 Air Core
Secondary Winding:: 2 Turns, #22 AWG Wir.,
Coefficient of Coupling ~ 1.0

MOTOROLA LINEAR/INTERFACE DEVICES

2-147

+12 Vdc

MC1590G

TYPICAL APPLICATIONS (continued)

II

FIGURE 30 - SPEECH COMPRESSOR

DESCRIPTION OF SPEECH COMPRESSOR
The amplifier drives the base of a PNP MPS6517 operating common-emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point
of this transistor so that varying amounts of signal exceed the level Vr . Diode 01 rectifies the positive peaks
of Q1's output only when these peaks are greater than
Vr = 7.0 Volts. The resulting output is filtered by Cx ,
Rx·
Rx controls the charging time constant or attack time.
Cx is involved in both charge and discharge. R2 (the
150 kO and input resistance of the emitter-follower Q2)
controls the decay time. Making the decay long and
attack short is accomplished by making Rx small and
R2 large. (A Darlington emitter-follower may be needed
if extremely slow decay times are required.)
The emitter-follower Q2 drives the AGC Pin 2 of the
MC1590G and reduces the gain. R3 controls the slope
of signal compression. The following graph (Figure 31)
details performance with R3 set to 15 kO.

TABLE

FIGURE 31 - OUTPUT VOLTAGE ve'.... INPUT VOL TAGE
1.0
_

0.7 ~SEE FIGUAE 30
0.5

100 kn

Al

FREQUENCY

~

Al- 15 kl1

~
w
to

0.2

1=

0.05

~

~
o O. I
>
5 0,0 7

1 - DISTORTION versus FREQUENCY

100 Hz
300 Hz
1.0kHz
10 kHz
100 kHz

I

-

Al- 0

DISTORTION
DISTORTION
10mV 8i 100mV OJ 10 mV OJ loomV_j
3.5%
2%
1.5%
1.5%
1.5%

Notes 1 and 2

::J

Note: (1)

o

0.02
0.0

IV
0.1

/

Measured from 100 Hz to 10 kHz

(2)

for Values of Attack from
3:0'04,Or'lllllll
0.3

0.5

1.0

3.0

12%
10%
8%
8%
8%

5.0

10

(3)

I
30

50

100

'j.INPUT VOLTAGE (mV)

(4)

FIGURE 32 - OUTPUT CURRENT.
CURRENT MATCH AND ICC FIXTURE

MOTOROLA LINEAR/INTERFACE DEVICES
2-148

15%
6%
3%
1%
1%

27%
20%
9%
3%
3%

Notes 3 and 4

Decay = 300 ms
Attack = 20 ms
C x =7.5"F
Rx = 0 (Short)
Decay = 20 ms
Attack = 3 ms
ex = 0.68 "F
Rx =1.5kl1

ORDERING INFORMATION
Device

MC1709CG
MC1709CU
MC1709CPl
MC1709G,AG
MC1709AU

Temperature Range

Package

O°C to +70°C
O°C to + 70°C
O°C to + 70°C
- 55°C to + 125°C
- 55°C to + 125°C

Metal Can
Ceramic DIP
Plastic DIP
Metal Can
Ceramic DIP

MC1709
MC1709A
MC1709C

MONOLITHIC OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

. designed for use as a summing amplifier, integrator, or amplifier
with operating characteristics as a function of the external feed·
back components.
•

High-Performance Open Loop Gain Characteristics
Avol = 45,000 typical

•

Low Temperature Drift - ±3.0 /lV laC typical (MC17091

PIN CONNECTIONS
Input Freq. Compo

•

Large Output Voltage Swing - ±14 V typical @ ±15 V Supply

•

Low Output Impedance - Zo = 150 ohms typical

VEE

(Top Viewl

MAXIMUM RATINGS (TA ~ +25°C unless otherwise noted I
Rating

Symbol

Value

Unit

Power Supply Voltage

VCC
VEE

+18
-18

Vdc

Input Differential Voltage Range

VIDR

±5.0

Volts

Input Common-Mode Range

VICR

±10

Volts

IL

10

mA

Output Short-Circuit Duration

ts

5.0

s

Power Dissipation (Package Limitationl
Metal Can
Derate above TA ~ + 25°C

Po
680
4.6

mWrC

Output Load Current

Plastic Dual In-Line Packages (MC1709C onlyl
Derate above TA ~ +25°C
Ceramic Dual In-Line Package
Derate above TA ~ +25°C
Operating Ambient
Temperature Range

MC1709A, MC1709
MC1709C

Storage Temperature Range
Metal and Ceramic Packages
Plastic Packages

P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05
(MC1709C Only)

mW

625
5.0
750
6.0
TA

G SUFFIX
METAL PACKAGE
CASE 601-04

U SUFFIX
CERAMIC PACKAGE
CASE 693-02

mW

mWrC
mWrC
mWrC

-55 to + 125
o to + 70

.~
.~
1

(Top View)
Input Freq.
Camp.

°C

Input Freq.

Inv, Input

°C

Tstg
-65 to +150
-55 to + 125

Compo

FIGURE 1 - EQUIVALENT CIRCUIT SCHEMATIC
INPUT COMPENSATION

OUTPUT

...----1--+-<> OUTPUT

COMPENSATION

18 k

10k

75

2.4 k

MOTOROLA LINEAR/INTERFACE DEVICES
2-149

II

MC1709, MC1709A, MC1709C
ELECTRICAL CHARACTERISTICS (unless otherwise noted,

+ 9.0 V '" Vee'" 15 V, -.9.0 V '" VEE'" -15 V, TA = 25°e)
MC1709

MC1709A
Characteristic
Input Offset Voltage

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

Via

-

0.6

2.0

-

1.0

5.0

mV

(RS';; 10 knl
I nput Offset Current

110

10

50

50

200

nA

Input Bias Current

liB

100

200

200

500

nA

150

400
150

-

kn

-

Input Resistance

r;

350

700

Output Resistance

'0

-

150

-

ICC,IEE

2.5

3.6

Pc

75

108

-

1.5
30

Power Supply Currents

n
mA

(VCC = 15 V, VEE = -15 VI
Power Consumption

80

165

mW

0.3
10

1.0
30

'"%

(VCC = 15 V, VEE = -15 VI
Transient Response
IVcc = 15 V, VEE = -15 VI See Figure 8
Risetime

tTLH
as

Overshoot

-

-

ELECTRICAL CHARACTERISTICS (unless otherwise noted,

+9.0 V '" Vee'" 15 V, -9.0 V '" VEE'" -15 V, TA = -55°e to + 125°e)
MC1709A

Characteristic
I nput

Offset Voltage

MC1709

Symbol

Min

Typ

Max

Min

Typ

Max

Unit

Via

-

-

3.0

-

-

6.0

mV

-

1.8
1.8

10
10

-

-

-

3.0

-

-

-

-

-

-

(RS';; 10 knl
Average Temperature Coefficient of Input Offset Voltage

(RS
(RS
(RS
(RS
IRS
(RS

= 50
= 50
= 50
= 10
= 10
= 10

~VIO/AT

n. TA = 25 0 e to 1250 el
n. T A = -550 e to 25 0 el
n. TA = -55°C to 1250 CI
kn. TA = 25°C to 1250 CI
kn. TA = -55°C to 25 0 CI
kn, TA = _55°C to 1250 CI

Input Offset Current

"V/UC

-

-

-

-

2.0
4.8

15
25

-

-

-

-

6.0

-

--

40
3.5

250
50

-

100
20

500
200

0.45
0.08

2.8
0.5

-

-

.-

-

lIB

-

300

600

-

500

1500

nA

'i

85

170

-

40

100

-

kn

VICR

.±8.0

.±10

-

±8.0

±10

-

V

CMRR

80

110

-

70

90

-

dB

PSRR

--

40

100

-

25

150

"V/v

AV

25

45

70

25

45

70

V/mV

-

nA

110

(TA = -55°C I
ITA = 1250 CI

-

Average Temperature Coefficient of I nput Offset Current

nA/oC

Alia/AT
.-

(T A = -55°C to 250 CI
(T A = 25°C to 1250 CI
Input Bias Current

-

(TA = -55°C I
Input Resistance

(TA = -55°C I
I "put Common-Mode Voltage Range

(Vec= 15V.VEE=-15VI
Common Mode Rejection Ratio

(RS <;;;10 knJ
Supply Voltage Rejection Ratio

(VCC = 15 V. VEE = -15 V, RS <;;;10 knl
Large Signal Voltage Gain

(VCC = 15 V, VEE = -15 V, RL >2.0 kn,
VO= ±15VI
Output Voltage Range

Power Supply Currents

±12
±10

±14
±13

-

±12
±10

±14
±13

mA

ICC/lEE

(VCC = 15 V. VEE = -15 VI
(TA = -55°C I
(TA = 1250 el
Power Consumption

V

VOR

(VCC = 15 V. VEE = -15 VI
(RL >10 knl
(RL >2.0 knJ

-

2.7
2.1

4.5
3.0

-

-

mW

Pc

(VCC = 15, VEE = -15 VI
ITA = -55°C I
(TA = 1250 CI

-

-

81
63

135
90

MOTOROLA LINEAR/INTERFACE DEVICES

2-150

-

-

-

MC1709, MC1709A, MC1709C
ELECTRICAL CHARACTERISTICS (unless otherwise noted, VCC

=

+15 V, VEE

=

= 25°C)

-15 V, TA

MCI709C
Characteristic

Symbol

Min

Typ

Max

VIO

-

2.0

7.5

mV
nA

t oput Offset Voltage

Unit

(RS" 10 kn, 9.0 V .. 15 V. -9.0 V" VEE" -15 VI

Input Offset Current

110

100

500

I nput Bias Current

118

-

300

1500

nA

ri

50

250

-

kn

Output Resistance

ro

-

150

-

n

Power Consumption

Pc

BO

200

mW

Large Signal Voltage Gain

AV

15

45

-

V/mV

±12
±10

±14

-

±13

-

VICR
CMRR

±B.O

±10

-

65

90

PSRR

-

25

200

I'VIV

trLH

-

0.3
10

-

'"%

In·put Resistance

(RL"2.0kn.VO=±10VI

Output Voltage Range
(RL >10 kn)
(RL >2.0 kHi

V

VOR

Input Common-Mode Voltage Range
Common Mode Rejection Ratio

V
dB

(RS';; 10 kn)
Supply Voltage Rejection Ratio

(RS';;lOknl

Transient Response
See Figure 8
RiseTime

Overshoot

as

ELECTRICAL CHARACTERISTICS (unless otherwise specified, VCC

=

+15 V, VEE

=

-15 V, TA

= DOC to 7DOC)

MCI709C

Symbol

Min

Typ

Max

Unit

Input Offset Voltage
(RS" 10 kn. 9.0 V" VCC" 15 V. -9.0 V" VEE" 15 VI
Input Offset Current

Via

-

-

10

mV

110

-

nA

liB

-

-

750

Input Bias Current

2.0

I'A

Large Signal Voltage Gain

AV

12

-

-

V/mV

ri

35

-

-

Parameter

(RL" 2.0 kn. Vo = ±10 VI
Input Resistance

kn

TYPICAL CHARACTERISTICS
FIGURE 2 - TEST CIRCUIT

(VCC = +15 Vdc.VEE = -15 Vdc. TA = +25 0 CI
A1

Fig.
No.
3

4

5

(urve No.
1
2
3
4
1
2
3
4
1
2

3
4

Test Conditions
R1(Q)
10k
10 k
10 k
1.0k
1.0k
10 k
10k
10k
0
0
0
0

MOTOROLA LINEAR/INTERFACE DEVICES
2-151

~(Q)
10k
100 k
1.0M
1.0M
1.0M
1.0M
100 k
10k

'"
'"
'"

'"

R3 (Q) (I (pF) C2 (pF)
1.5k
1.5 k
1.5 k
0
0
1.5k
1.5k
1.5k
1.5k
1.5k
1.5 k
0

5.0 k
500
100
10
10
100
500
5.0 k
5.0 k
500
100
10

200
20
3.0
3.0
3.0
3.0
20
200
200
20
3.0
3.0

II

II

MC1709, MC1709A, MC1709C
FIGURE 4 - CLOSEO LOOP VOLTAGE
GAIN versus FREQUENCY

FIGURE 3 - LARGE SIGNAL SWING versus FREQUENCY

i

8,,~~~~~~~,~~,~~~

12 0

24~+-~H+~~~H-~~++~~~++-4~~

100

i

t\

II

s

20r-+-~Ht~r-~H-~~~~~+t4+-4-4~

0

~ 16~+-~H+~~~I~r_~+2~~+3~\~4+-4-4-~

. 12

"~

..
w

to

~
o

i

R~ .1

i

60

4

to

r-+-+"Ht~-t-+w--+-+1\\-~+--+f-,\j---+-l~

~

o

1\ 1\
~ 4:~--LJ.,~_.LL};!
11.,--L-'-LI'~...r'---.l....Ln,I'~~l:-:--r::::~
1.0 k

10 k

100 k

1.0 M

r--,

3

I
!

>

:> 20

r-....

2

'"

8.0f--+----++++-lrrl \

100

40

.......

t-....
"r--, .......

I

-20

10 M

100

10 k

1.0 k

f. FREQUENCY 1Hz)

100 k

1.0 M

10 M

f. FREQUENCY 1Hz)

FIGURE 6 - VOLTAGE GAIN versus
POWER SUPPL Y VOLTAGE

FIGURE 5 - OPEN LOOP VOLTAGE
GAIN versus FREQUENCY

120

100
Rll.oo

100

~

0 ......

z

~

w
to

60

........

t--...... i'
J"-.

~ 40

o

>

"

Z

r--,

I'-

r--. r--,

r--, r--,
1

~ 20

~

-2 0

100

10k

1.0 k

90

w
to

......
4

::t
r--,

'"~
"-

I;--

........

> 80
~

0

I'

g

~

........ i'

0

60
10M

o

5.0

VCCNEE

10 k

-

20
5.0

\<

~ 2.0

cE

1.0

0.5

0.2
O. 1

1.0

10

15

FIGURE 8 - TRANSIENT RESPONSE TEST CIRCUIT

+15V

50

~ 10

10

VCC and VEE. POWER SUPPLY VOLTAGE IVOl TS)

FIGURE 7 - SLEW RATE versus CLOSEO LOOP GAIN
USING RECOMMENOEO COMPENSATION NETWORKS
100

V

/'

~

I

:>

1.0 M

100 k

)

70

'"

f. FREQUENCY 1Hz)

~

-

m

100

1000

ClOSEO lOOP GAIN IVOlTS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-152

20

ORDERING INFORMATION
Device

Temp_Btur. Range

Packe,.

- 55°C to + 125°C
- 55°C to + 125°C
O°Cto +70°C
D"Cto +70°C
D"Cto +7D"C

Metal Can

MC1733G
MC1733L
MC1733CG
MC1733CL
MC1733CP

MC1733
MC1733C

Ceramic DIP
Metal Can
Ceramic DIP
Plastic DIP

DIFFERENTIAL VIDEO
WIDEBAND AMPLIFIER

DIFFERENTIAL VIDEO AMPLIFIER

SILICON MONOLITHIC
INTEGRATED CIRCUIT

· .. a wideband amplifier with differential input and differential output. Gain is fixed at 10, 100, or 400 without external components
or, with the addition of one external resistor, gain becomes adjustable
from 10 to 400.

•

Bandwidth - 120 MHz typical

AVd

@

AVd

G SUFFIX
METAL PACKAGE
CASE 603-04

= 10

= 10

•

Rise Time - 2.5 ns typical

•

Propagation Delay Time - 3.6 ns typical @ AVd

@

II

= 10
G'A
GAIN SELECT

FIGURE 1 - BASIC CIRCUIT

FIGURE 2 - VOLTAGE GAIN
ADJUST CIRCUIT

GAIN SELECT

G2A
GAIN SELECT
INPUT'

OUTPUT'

INPUT 2

OUTPUT 2

Rartj

(top view)
OUTPUT 1

INPUT 1

G'B
GAIN SELECT

INPUT
1

ITop View)

INPUT 2
INPUT

1
VEE GZA G2fI

-

GAIN SELECT

FIGURE 3 - EQUIVALENT CIRCUIT SCHEMATIC

•
1

14

LSUFFIX
CERAMIC PACKAGE
CASE 632-08

PSUFFIX
PLASTIC PACKAGE
CASE 646-06

INPUT 2
INPUT I

•

14

OUTPUT I

1

GAIN! GIA
SELECT G2A

50

50

'4

INPUT2

GAIN { G2B
SELECT GIB

590

400

2

'3 NC

G2B GAIN SELECT

3

'2 G2A GAIN SELECT

G'B GAIN SELECT

4

"

VEE

5

10 VCC

NC

6

9 NC

MOTOROLA LINEAR/INTERFACE DEVICES

G'A GAIN SELECT
(top view)

OUTPUT 1

OUTPUT 2

ITopView)

2-153

INPUT'

NC

II

MC1733, MC1733C
MAXIMUM RATINGS (TA = +25o C unless otherwise noted)
Rating

Symbol

Value

Unit

VCC

+8.0
-8.0

Volts

Power Supply Voltage

VEE
Vin

±5.0

Volts

VICM

±6.0

Volts

Output Current

10

10

rnA

Internal Power Dissipation (Note 1)
Metal Can Package

Po
500
500

rnW

TA

to +70
-55 to +125

°c

Tstg

-65 to +150

°c

Differential Input Voltage

Common-Mode I "put Voltage

Ceramic Dual In-Line Package
Operating Temperature Range

MC1733C
MC1733

Storage Temperature Range

ELECTRICAL CHARACTERISTICS IVcc = +6.0 Vdc. VEE

o

= -6.0 Vdc, at TA = +250 C unless otherwise noted.)
MC1733

MC1733C

Symbol

Min

Typ

Max

Min

Typ

Max

AVd

300
90
9.0

400
100
10

500
110
11

250
80
8.0

400
100
10

600
120
12

Gain 1
Gain 2

-

-

-

40
90
120

-

Gain 3

40
90
120
10.5
4.5
2.5

-

-

10.5
4.5
2.5

-

-

7.5
6.0
3.6

-

Characteristic

Gain 2 INote 3)
Gain 3 (Note 4)

Bandwidth

Rise Time

Units
V/V

Differential Voltage Gain
Gain 1 (Note 2)

(R s =50n)

BW

IRs = 50 n, Vo = 1 Vp·p)

Gain 1
Gain 2

MHz

ns

tTLH
tTHL

-

-

Gain 3
Propagation Delay IRs = 50 n, Vo = 1 Vp.p)

Gain 1

-

tpLH
tpHL

10

-

12

ns

-

-

-

7.5
6.0
3.6

10

-

10

-

4.0
30
250

-

4.0
30
250

Cin

-

2.0

-

-

2.0

-

pF

11101

-

0.4

3.0

-

0.4

5.0

/.IA

Input Bias Current (Gain 3)

liB

-

9.0

20

-

9.0

30

/.IA

Input Noise Voltage

Vn

-

12

-

-

12

-

/.IVlrms)

Vin

±1.0

-

-

±1.0

-

-

-

Gain 2
Gain 3

Input Resistance

10

kn

Rin

-

Gain 1
Gain 2
Gain 3
I nput Capacitance

-

20
IGain 2)

Input Offset Current (Gain 3)

(R s =50n,
BW = 1 kHz to 10 MHz

Input Voltage Range IGain 2)
Common-Mode Rejection Ratio
Gain 2
IVCM = ±1 V, f'; 100 kHz)
Gain 2
(VCM =±1 V,f=5MHz)

PSRR

Output Offset Voltage
Gain 1
Gain 2 and Gain 3

VOO

Output Voltage Swing (Gain 2)
Output Sink Current (Gain 2)
Output Resistance
Power Supply Current (Gain 2)

-

CMRR

Supply Voltage Rejection Ratio
Gain 2
I<1Vs = ±0.5 V)

Output Common-Mode Voltage (Gain3)

-

V
dB

60

86

-

60

-

60

-

-

86
60

-

50

70

-

50

70

-

-

0.6
0.35

1.5
1.0

-

0.6
0.35

1.5
1.5

dB
V

2.4

2.9

3.4

2.4

2.9

3.4

V

Vo

3.0

4.0

-

3.0

4.0

-

Vp·p

10

2.5

3.6

3.6

-

mA

-

20

-

2.5

Rout

-

20

-

n

18

24

-

18

24

mA

VCMO

0

MOTOROLA LINEAR/INTERFACE DEVICES

2-154

MC1733, MC1733C
ELECTRICAL CHARACTERISTICS IV CC = +60 Vdc V EE =-60 Vdc at T A-- T high toT low unless otherwise noted)
MC1733

Min

Typ

Max

Min

200
BO
B.O

-

-

600
120
12

250
BO
B.O

Ain

B.O

-

-

B.O

11101

-

-

5.0

-

40

-

Symbol

Characteristic
Differential Voltage Gain
Gain 1 INate 2)
Gain 2 INate 3)
Gain 3 INate 4)

AVd

Input Resistance

It

MC1733C
Typ

Max

Units
VIV

600
120
12

-

-

-

k!l

Gain 2
Input Offset Current (Gain 3)

-

6.0

I'A

40

I'A

-

dB
dB

Vjn

+1.0

-

-

±1.0

Common-Mode Rejection Ratio
IVCM=±1 V,f"';;100kHz)
Gain 2

CMRR

50

-

-

50

-

Supply Voltage Rejection Ratio
IAVs = ±C.5 V)
Gain 2

PSRR

50

-

-

50

-

-

Output Offset Voltage

VOO

-

-

1.5

-

1.2
-

-

1.5
1.5

2.5

27

-

-

Input Bias Current (Gain 3)

liB

Input Voltage Range (Gain 21

Gain 1
Gain 2 and Gain 3

V

V

Output Voltage Swing IGain 2)

Va

2.5

-

Output Sink Current

IGain 2)

If)

2.2

Power Supply Current IGain 2)

ID

-

-

2.5

-

Vp-p

27

mA

mA

*Tlaw = OaC for MC1733C, -55 a C; for MC1733
Thigh = +70o C for MC1733C, +1250 C for MC1733.

FIGURE 4 - MAXIMUM ALLOWABLE POWER DISSIPATION

800

NOTES

0

Note 1:

Derate metal package at 6.5 mW/oC for operation at
ambient temperatures above 75°C and dual in-line package at 9 mW/oC for operation at ambient temperatures
above lOOoe (see Figure 4). If operation at high am-

bient temperatures is required (MC1733) a heatsink
may be necessary to limit maximum junction temperature to 150°C. Thermal resistance, junction-to-case,
for the metal package is 69.4°C per Watt.
Gain Select pins G1A and G18 connected together.
Gain Select pins G2A and G28 connected together.
All Gain Select pins open.

Note 2:
Note 3:
Note 4:

,,

I"' ,

r--

MET:5L~~~oKtGE

_

"'

,
'\

.",

CERAMIC DUALIN·LlNE PACKAGE

9 mW/oC r - -

,,
~~.

o

o

+150

+100

+50

+200

TA, AMBIENTTEMPERATURE lOCI

TYPICAL CHARACTERISTICS

(Vee:=

+6.0 Vdc, VEE = -6.0 Vdc, T A

FIGURE 5 - SUPPLY CURRENT versus TEMPERATURE

FIGURE 6 - SUPPLY CURRENT versus SUPPLY VOLTAGE

20

'"

E

i

B

4

19

,,/'

./

0
1B

...........

//

";

~

9

:= +25 0 e unless otherwise noted.)

1/

.........

~

17

16
-60

-20

+20

+60

V

6

"'"

+100

."./

V
V

2

./
8.0
3.0

+140

T A, AMBIENTTEMPERATURE lOCI

../'
4.0

5.0

6.0

VCC, IVEEI, SUPPLY VOLTAGE IVOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-155

7.0

B.O

II

MC1733, MC1733C
TYPICAL CHARACTERISTICS (continued)
(VCC

=+6.0 Vdc, VEE =-6.0 Vdc, TA =+250 C unless otherwise noted.!
FIGURE 8 - GAIN versus FREQUENCY

FIGURE 7 - GAIN vorus TEMPERATURE
1.15

60

"'-

1.10

"GAIN 1

JJ

0

~ 1.05
1.0

">

0.95

w

>

0

"'-

w

'"~

r--

0

:--..... ~lIN1- r--

0

GAIN 3

'"

g

0.90

"

.......

-10

+10

+60

\.

GAIN 3

'"

\

0

.'\.

0.8 0
-60

GAIN 1

0

"'-

0.8 5

Rt='1.W

-r-

z

+100

+140

10

1.0

T. TEMPERATURE (DC)

100

1.0k

f, FREQUENCY (MHz)

FIGURE 10 - GAIN versus RADJUST

FIGURE 9 - GAIN versus SUPPL Y VOLTAGE
1.4

1000
z

~
w

~

~

">

~

l.!l

g o.

V

I--

---

....- V

./

w

.....-

i-""

r-- r-GAIN 3
~I"""
GAI~

0.8

~

,- r-

1.1
z

~>

~

~

'"

100

!

GAINy

0;

i

6/

O. 4
3.0

......

'"'"

I..............

10
4.0

5.0

B.O

7.0

6.0

10

100

VCC,IVEEI, SUPPLY VOLTAGE (VOLTS)

+60
z

+50

~

'"
~'>"

"w
"zw

~

'"z

IIIII

FIGURE 12 - GAIN versus FREQUENCY
and TEMPERATURE

VCCNEE
+40

RLG"A~~ ~J

I

"''"
z

~ I~ B.~ v'

~
~

±6.0 V

~}olv
10

50

"'"

40

>

30

i

~

+10

-10
1.0

~

~

+30

J

60

R~JJk\,'

fT(

w

\

+10

10k

Radj,(llI

FIGURE 11 - GAIN versus FREQUENCY and
SUPPLY VOLTAGE

~

r----I--

1.0.

II !I

100

TA -

~

10

~
~

~
~

v;

+25 0 C
I II
+75 0 C

10

;
1.0 k

-10
1.0

n1'
5

10

100

t, FREQUENCY (MHz)

f, FREQUENCY (MHz)

MOTOROLA LINEAR/INTERFACE DEVICES
2-156

~550d

" OoC

1.0k

MC1733, MC1733C
TYPICAL CHARACTERISTICS (continued)

= +6.0 Vdc, VEE = -6.0 Vdc, TA = +250 C unless otherwise noted.)

(VCC

FIGURE 13 - PULSE RESPONSE versus GAIN

FIGURE 14 - PULSE RESPONSE versus SUPPLY VOLTAGE

+1.6

+1.6

IGAIN2'_

~

+1.2

GAIN 3

o

2:
w
~

'-...J

+0.8

GAIN 2-/-

~
>
~ +0.4

!j

v--..

RL'" 1.0 kn

~+1.2
o

2:

7

i-I
VI...

'IV

g

l.OL,-

RIL =

-0.4
-15

-10

-5.0

~+O.B

r-GAIN 1

+10

+15

+25

+30

-10

-5.0

+5.0

+1.6

GAIN 2)
RL=1.0kn-

E
w 160

JV-- r-....

)

~

+75 0 C

~

40

c;

-0.4
-15

-10

-5.0

+5.0
t,

+10

+15

+20

+25

+30

o
o

+35

............

GAIN 2

......""

ffi -to

o

t;:

~
~

if

-20
-25

-5 0

~

(

o

I
I
10

20

4.0

V

40

30

50

60

70

80

~ t-....

",

15 0

t;:

GAIN 3

~ -200

\

w

~-25 0

........
.......

.\ 'J,
1\' G~INII

-30 0

GAIN 1

-35 0

2.0

./

/'

-10 0

e-

~

""" ""

-15

w

+35

./

........

~

+30

FIGURE 18 - PHASE SHIFT versus FREQUENCY

~
~

+25

OVERDRIVE RECOVERY TIME Insl

TIME (ns)

FIGURE 17 - PHASE SHI FT versus FREQUENCY

-5.0

V

80

'"

I
i1250CI

.f

0

~

::::::::'+250C

/'

120

>

'tr/ ...........

~

~

0

I//If,.V

>

~ +0. 4

+20

V

GAIN 2

:."''"

71/,

olc

~ +0.8

+15

200

;;:

TA - -55~C_

;o

+10

FIGURE 16 - DIFFERENTIAL OVERDRIVE
RECOVERY TIME

FIGURE 15 - PULSE RESPONSE versus TEMPERATURE

2:

r--

t, TIME (ns)

t, TIME (ns)

~ +1.2

±6.0V_

±3.0V

y

Q

-0.4
-15

+35

\

IV

g
+20

\

'rlf

II
/

>
~+O.4

g

+5.0

±8.0Iv_

:.o

.J/

0

f--~CCNEEI

w

6.0

8.0

10

1.0

10

100

t, FREOUENCY IMHz)

t, FREQUENCY IMHz)

MOTOROLA LINEAR/INTERFACE DEVICES

2-157

1.0 k

MC1733, MC1733C
TYPICAL CHARACTERISTICS (Continued)
!VCC = +6.0 Vdc, vEE

= -6.0 Vdc, T A = +250 C unless otherwise noted.)
FIGURE 20 - INPUT NOISE VOLTAGE

FIGURE 19 - INPUT RESISTANCE ..r .... TEMPERATURE

II

70

0
r--GAIN 2

0

./

0

-

~

>"
.5

./

/'

0

/'
./

0

./
./

0

./

./

10

BWG::~;Jz

60
50

'"
~

40

~

30

<5
'"

~

20

:':

10

'/

1/

I---

o

o
+20

-20

-60

+60

+140

+100

10

1.0

100

1.0k

10k

SOURCE RESISTANCE (n)

TA, AMBIENTTEMPERATURE {DC I

FIGURE 22 - OUTPUT VOLTAGE SWING versus
LOAD RESISTANCE

FIGURE 21 - OUTPUT VOLTAGE SWING and
SINK CURRENT ve.... s SUPPLY VOLTAGE
8.0

7.0
~ 6.0

;::.

0

L-

G'- k::::;
-~\l\.1~
~~~'-111

0

OF-

l-::::

~

5.0

~

4. 0

~

3.0

~

t:- V

>

L---::: b::::: V

~

2.0

g

1.0

o
3.0

4.0

1/

>-

5.0

6.0

7.0

/'

o

8.0

10

100

VCC. SUPPLY VOLTAGE {VOLTSI

7.0

~ 100
o

90

i5

80

~

~

5.0

'"'"

4.0

0

3.0

~

2.0

6
>

1.0

S

;::.

t;
~

~

'"~
>

~

0
1.0

'"
is
~
i5
,.

,.

GIArNI2

.......

70

.......... 1--.

60

'"

50

S

~

~
10

100

10k

FIGURE 24 - COMMON-MODE REJECTION RATIO

FIGURE 23 - OUTPUT VOLTAGE SWING versus FREQUENCY

6.0

1.0 k

RL LOAD RESISTANCE (n)

1.0 k

40

30
10 k

100k

t. FREQUENCY {MHzl

1.0M
t, FREQUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES

2-158

10M

100M

MC1733, MC1733C
APPLICATIONS INFORMATION
FIGURE 26 - OSCILLATOR FREQUENCY FOR
VARIOUS CAPACITOR VALUES

FIGURE 25 - VOLTAGE CONTROLLED OSCILLATOR

II

.,

10

Vee
e
R2

10 6

I'-

10 5

i'>--<>---<.....--<> Output

1k.u

101 610 "
Rl
10

Control

Voltage

Ve

1

By cha.lging the voltage Vc the gain will
vary over a range of 10 to 400. This will
give a frequency variation about the value
set by the capacitor and shown in Figure 26.

100

~

t-<'

>-0

-=-

.J~

i'-

"-

Vee

~8lB

e

OUTPUT

[\

VEE

10 k

100 k

1M

10 M

FREQUENCY (H,I

sign. For purposes of comparison, the M LM301 has
slightly less than a 40 dB open-loop gain at 100 kHz; the
MC1741, a compensated op-amp, has approximately 20 dB
open loopgainat 100 kHz; the MC1733 has approximately
33 dB of gain out to 100 MHz (depending on gain option
and loading).
There are a number of ways to implement the pea~
detector function. However, the simplest and most widely
used method is a passive differentiator that generates "zerocrossings" for each of the data peaks in the Read signal.
The actual circuitry used to differentiate the Read signal varies from a differential LC type in disc systems to a
simple RC type in reel and cassette systems. Either type,
of course, attenuates the signal by an amount depending
on the circuit used and system specifications. A good
approximation of attenuation using the RC type is 20 d8.
Thus, the 2 V signal going into the differentiator is reduced
to 200 mV.
The next block in Figure 27 to be discussed is the
zero-crossing detector. In most cases detection of the zerocrossings is combined with the limiter. These functions
serve to generate a TTL compatible pulse waveform with
"edges" corresponding to zero-crossings. For low transfer
rates, the circuit often used consists of an operational
amplifier with series or shunt limiting. For higher transfer
rates (greater than lOOK B/S) comparators are used.
The method described above is often modified to include threshold sensing. I n Figure 28, the function called
"double-ended, limit-detector" enables the output NAND
gate when either the negative or positive data peaks of the
Read signal exceed a predetermined threshold. This function can be implemented in either of two ways. One
method first rectifies the signal before it is applied to a
comparator with a set threshold. The other method utilizes
two comparators, one comparator for positive-going peaks
and the other for negative-going peaks. These comparator
outputs are then combined in the output logic gates.

TAPE,DRUM OR DISC MEMORY READ AMPLIFIERS

The first of several methods to be discussed is shown in
Figure 27. This block diagram describes a simple Read circuit with no threshold circuitry. Each block represents a
basic function that must be performed by the Read circuit.
The first block, referred to as "amplfiication", increases
the level of the signal available from the Read head to a
level adequate to drive the peak detector. Obviously, these
signal levels will vary depending on factors such as tape
speed, whether the system used is disc or tape, and the
type of head and the circuitry used. For a representative
tape system, levels of 7 to 25 mV for the signal from the
Read head and 2 V for the signal to the peak detector are
typical. These signal levels are "peak-to-peak" unless
otherwise specified. On the basis of the signal levels mentioned above, the overall amplification required is 38 to
49 dB.
How the overall gain requirement is implemented will
depend somewhat on the system used. For instance, a
tape cassette system with variable tape speed may utilize
a first stage for gain and a second stage primarily for gain
control. Thus, a typical circuit would utilize 35 dB in the
first stage and 10 to 15 dB in the second stage.
Devices suitable for use as amplifiers fall into one of
two categories, operational amplifiers or wideband video

amplifiers. Lower speed equipment with low transfer rates
commonly uses low cost operational amplifiers. Examples
ofthese are the MC1741, MC1458, MC1709, and MLM301.
Equipment requiring higher transfer rates, such as disc
systems normally use wideband amplifiers such as the
MC1733. The actual cross-over point where wideband
amplifiers are used exclusively varies with equipment deFIGURE 27 - TYPICAL READ CIRCUIT (METHOD 11
Output

MOTOROLA LINEAR/INTERFACE DEVICES
2-159

II

MC1733, MC1733C

APPLICATIONS INFORMATION (continued)
FIGURE 28 - READ CIRCUIT (METHOD 2)

Another common technique is shown in Figure 29.
The branch labeled rectifiers, peak detector, etc., provides
a clock transition of the 0 flip-flop that corresponds to
the peak of both the positive and negative-going data
peaks. This branch may include threshold circuitry prior to
the peak detector. The detector in the lower path detects
whether the signal peaks are positive or negative and feeds
this data to the flip-flop. This detector can be implemented
using a comparator with pre-set threshold.

may be implemented with two comparators and two
passive differentiators.
Each of the methods shown offer certain intrinsic advantages or disadvantages. The overall decision as to which
method to use however often involves other important
considerations. These cou Id include cost and system requirements or circuitry other than simply the Read circuitry. For instance, if cost is the predominate overall
factor, then approach one may be the only feasible
alternative.
Method four was included as a design example because
it illustrates several unique advantages. First, it uses
threshold sensing to reduce noise peak errors. Second, it
may be implemented using only integrated circuits. Third,
it offers separate, direct threshold sensing for both positive and negative peaks.

FIGURE 29 - READ CIRCUIT (METHOD 3)

FIGURE 30 - READ CIRCUIT (Method 4)

Output

The technique shown in Figure 30 uses separate circuits with threshold provisions for both negative and
positive peaks. The peak detectors and threshold detectors

MOTOROLA LINEAR/INTERFACE DEVICES
2-160

ORDERING INFORMATION
Temperature

Device
MC1741CD
MC1741CG
MC1741CPl
MC1741CU
MC1741G
MC1741U

Range

Alternate

LM741CH, "A741HC
LM741CN, "A741TC

Package

MC1741
MC1741C

50-8

O"C to +70"C
O"C to +70"C
O"C to +70"C
O"C to +70"C
- 55"C to + 125"C
- 55"C to + 125"C

Metal Can

Plastic DIP
Ceramic DIP
Metal Can
Ceramic DIP

INTERNALLY COMPENSATED, HIGH PERFORMANCE
OPERATIONAL AMPLIFIERS

II

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

, , designed for use asa summing amplifier, integrator, or amplifier with
operating characteristics as a function of the external feedback

components.
•

No Frequency Compensation Required

•
•
•
•

Short-Circu it Protection
Offset Voltage Null Capability
Wide Common-Mode and Differential Voltage Ranges
Low-Power Consumption

•

No Latch Up

GSUFFIX
METAL PACKAGE
CASE 601-04
Ne
OfhetNU1@',vee
lnvt Input,
Noninvt Input

5

J

Output

,Offset Null

•

VEE
(Top View)

MAXIMUM RATINGS (TA = + 25°C unless otherwise noted)
Rating

Symbol

MC1741C

I

MC1741

Unit

VCC
VEE

+18
-18

1

+22
-22

Vdc
Vdc

Power Supply Voltage
Input Differential Voltage

VID

Input Common Mode Voltage (Note 1)

VICM

Output Short Circuit Duration (Note 2)

ts

Operating Ambient Temperature Range

TA

Storage Temperature Range
Metal and Ceramic Packages
Plastic Packages

±30

Volts

±15

Volts

•

Pl SUFFIX
PLASTIC PACKAGE
CASE 626-05

USUFFIX
CERAMIC PACKAGE
CASE 693-02

~~

"~I

8

Continuous

o to

+701-55 to +125

1

°c
°c

Tstg

8

-65 to + 150
-55 to +125

Note 1. For supply voltages less than +15 V, the absolute maximum input voltage is equal to

the supply voltage.
Note 2. Supply voltage equal to or less than 15 V.

•

13'

_ 1

Offset Null

tnvt Input

D SUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

1"

I

Noninvt Input , .

5

VEE'

EQUIVALENT CIRCUIT SCHEMATIC

25
OUTPUT

50
OFFSET
NULL

0--+-+-----;

MOTOROLA LINEAR/INTERFACE DEVICES
2-161

Output

; Offset Null

(Top View)

r-~________~~__~__________~~__________r-~VCC

Ne
Vee

MC1741, MC1741C
ELECTRICAL CHARACTERISTICS (Vee

=

+15 V, VEE

=

-15 V, TA

= 25"e unless otherwise

noted).

MC1741
Characteristic

Svmbol

Input Offset Voltage

V,O

MC1741C

Typ

Max

Min

Typ

Max

Unit

-

1.0

5.0

-

2.0

6.0

mV

-

20

200

nA

80

500

nA

0.3

2.0

M,Q

-

-

±.15

mV

Min

IRS';;;lOk)
I nput Offset Current

'10

200

liB

-

20

Input Bias Current

80

500

ri

0.3

2.0

-

Input Resistance

-

1.4

Offset Voltage Adjustment Range

V'OR

-

±.15

Common Mode Input Voltage Range

V'CR
Av

±.12

±.13

50

200

Input Capacitance

Ci

Large Signal Voltage Gain

1.4

pF

±.12

±.13

-

20

200

-

VlmV

V

IVa" ±10 v. RL ;;;'2.0 k)
Output Resistance

ro
CMRR

Common Mode Rejection Ratio

,Q

--

75

-

75

70

90

-

70

90

-

dB

30

150

-

30

150

f.1V N

IRS';;;lO kl
Supply Voltage Rejection Ratio

PSRR

IRS';;; 10 kl
Output Voltage Swing
IRL;;;'10 kl
IRL;;;'2 kl

Va

Output Short-Circuit Current

'os

Supply Current

'D

Power Consumption

Pc

Transient Response (Unity Gain - Non-Inverting)
IV, "20 mY. RL:> 2 k. CL" 100 pFI Rise Time
IV, "20 mY. RL;;' 2 k. CL" 100 pFI Overshoot
IV," 10 V. RL;;.2k.CL"100pFI Slew Rate

ELECTRICAL CHARACTERISTICS (Vee

=

+ 15 V. VEE

Characteristic

±13

-

20

-

1.7

2.8

50

85

0.3
15
0.5

-

.-

_.
-

-15 V, TA

Symbol

Input Offset Voltage

±.14

'TLH
os
SR

=

_.

±'12

,,10

-

= Tlow to Thigh

Min

V'O

V
±.12

±14

-.

±.10

±.13
20
1.7

-

mA

2.8

rnA

50

85

mW

0.3
15
0.5

-

ps

-

Vips

-

-

%

unless otherwise noted).

MC1741
Typ

Max

Min

MC1741C
Typ

Max

Unit

1.0

6.0

-

-

7.5

mV

7.0
85

200
500

_.

-

-

-

-

-.

300

30
300

500
1500

-

-

IRS';;; 10 k,Q)
Input Offset Current

nA

"D

ITA" 1250 CI
ITA" _55°C I
IT A " OoC to + 70 0 CI

~.

_.

Input 8 ias Current

I'B

_.

ITA" 1250 CI
ITA" _55 0 CI
IT A" OoC to +70o CI

-

Common Mode Input Voltage Range

V'CR

_.

nA

-

-

.-

±12

0-.13

_.

10

90

CMRR

Common Mode Rejection Ratio

-

-

-

-

-

800

-

_.

V

--

-

-

dB

30

150

-

-

-

IlVN

±.14
±.13

-

.-

-

-

±10

-

-

15

-

1.5
2.0

2.5
3.3

45
60

75
100

-

-

IRS';;; 10 kl
PSRR

Supply Voltage Rejection Ratio

IRS';;; 10 kl
Output Voltage Swing

V

Va

IRL;;;'lOkl
IRL;;;'2 kl

±.12
±.10

Large Signal Voltage Gain

25

Av

±.13

_.

VlmV

IRL;;;'2k. V out "±.10VI
Supply Currents

mA

'D

-

IT A" 1250 CI
ITA" _55 0 CI

~.

Pc

Power Consumption (T A - +125 0 C)

ITA" -55°C I

-

'Thigh" 125°C for MC1741 and 70°C for MC1741C
T,ow "-55°C for MC1741 and OoC for MC1741C

MOTOROLA LINEAR/INTERFACE DEVICES
2-162

_.

-

mW

MC1741, MC1741C

100

FIGURE 1 - BURST NOISE v...u. SOURCE RESISTANCE

;;1000'.!I.mn~~.
S
~
BW

FIGURE 2 - RMS NOISEv...u. SOURCE RESISTANCE

1.0 Hz to 1.0 kHz

11111

'>

.3

"ow ,'1.iiH~io i.o

]1 0
3

II

!100'1.111111
~ R
~

0

.;110_. . . .

~.~ojj=ttE~,~00;tti±t~1~.0~kttjj~n,0~k±±=t~,~00tkjj=t±E1.0~M.

O.

100

10

10

14.
12.

1000

l.M

0
0
0
0\
0 "
0
0
010

1111111
AV llO. RS =

100 kl!

1\

100
10
1.0

1

lOOk

FIGURE 4 - SPECTRAL NOISE OENSITY

FIGURE 3 - OUTPUT NOISE v... u. SOURCE RESISTANCE

AV •

10 k

1.0 k

RS. SOURCE RESISTANCE IOHMS)

RS. SOURCE RESISTANCE IOHMS)

...........

2.

0.0110

100

1.0 k

10

lOOk

k

1.0M

100

1.0

10

k

k

100

k

f. FREQUENCY 1Hz)

RS.SOURCE RESISTANCE (OHMS)

FIGURE 5 - BURST NOISE TEST CIRCUIT
100 k

Positive
Threshold

To Pass/Fail

100 k

Indicator

, k

100 k

Operational Amplifier
Under Test

Low Pass
Filter
1.0 Hz to 1 kHz

Negative
Threshold
Voltage

Unlike conventional peak reading or RMS meters, this system was

The test time employed is 10 seconds and the 20 J,J.V peak

especially designed to provide the quick response time essential to
burst (popcorn) noise testing.

limit refers to the operational amplifier input thus eliminating
errors in the closed-loop gain factor of the operational amplifier
under test.

MOTOROLA LINEAR/INTERFACE DEVICES
2-163

II

MC1741, MC1741C
TYPICAL CHARACTERISTICS
(Vee = + 15 Vdc, VEe'" -15 Vdc. T A - + 25°C unless otherWise noted)

FIGURE 6 -POWER BANDWIDTH
(LARGE SIGNAL SWING versus FREOUENCY)

FIGURE 7 - OPEN LOOP FREQUENCY RESPONSE
+120
+100

:':

~

~~

~

10r--r~~~---r~~H*--~+4~HfflI\r-+-++~+H

~ +60

~ 12r--+-r++Ht~-1-+41+H*---r-rttH~~rr-~~~
r----

~

-<
~ +4 0
>

r

(VOLTAGE FOLLOWER)

11111 TI III' 1tf----+-HttHft-~\r++++H-H
4.0 t--++++t[
++[H++++I----+[+++++flI--+---+'Id-I+J+j

~ 8.0

~

«

1\

16r--+-r++H+~-1-+14+H*---r-~+H~~\~-+~+H~

a

+8 0

z

~

~ +-2 0

~

-<

[-Ittt-[[[[[

100

10

1.0 k

,10
1.0

lOOk

10 k

t, FREQUENCY 1Hz)

V

~ 9.0

,

I
----

..-

,.

!; 7.0

3,
1,

=

-1 5
-1 4
-1 3
-1 1

>15 V SUPPLIES
-'I

+

14'
./

?-"
a
a .&Y
c

100

<6 IV
' I

I

I
500 700 1.0 k

100

I
5,0 k 7.0 k 10 k

1,0 k

I

~ -1 0
~ -9, 0
;; -8.0
;:: -7. 0
~ -6. 0
f2: -5. 0
/'
0-4.0
> -3. 0
-1, 0 .R'
-1. 0
100
100

.>!1V

/
±9V

C/

HV

I
I

500 700 1.0 k

a'='

1 k

100J,lF

10 k

VCC

8 f - - +11 V
4

> 1
~ 10

~

1,0 k

+18 V
200

+15 V

8.0 r - - +12

ci 6.0

> 4.0

k~

v
200 k

+9.0 v

1,0 r - - +6.0 v
-+5,0 V
a0 1.0 1,0

3,0

4,0

5,0

6,0

7,0

5,0 k 7,0 k 10 k

FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER

1
: +30 V Supply
1
:!:: 14r-- +27 V
2: 1
+24 v
'"z a
w

I

RL. LOAO RESISTANCE (OHMS)

FIGURE 10 - OUTPUT VOLTAGE SWING versus
LOAD RESISTANCE (Single Supply Operationl

~

II

I
I

RL. LOAO RESISTANCE (OHMS)

;j!1 6

10M

>15 V SUPPLIES

>0.. -1 1

>9 V

~ 4. a

0.

1.0M

FIGURE 9 -NEGATIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

>11 V

> 8,0

~ ::~

lOOk

10k

t, FREOUENCY (Hz)

FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE
15
14
13
I?- 12
1
~ 10

1.0 k

100

'0

~

8,0

9,0

10

RL. LOAO RESISTANCE (krt)

MOTOROLA LINEAR/INTERFACE DEVICES

2-164

MC1741

MC1741. MC1741C

FIGURE 12 -

I
I

II

NONINVERTING PULSE RESPONSE

'\.

I

~UTPUT

'\

\
I[PUT

FIGURE 13 - TRANSIENT REPONSE TEST CIRCUIT

.......- ..

>--O~~-

10 s

9S

~

90

z

w

"'"'

:; 8s
o

>

(Output)

FIGURE 14 - OPEN LOOP VOLTAGE GAIN
versus SUPPLY VOLTAGE
.__ .

10 0

~

To Scope

.,....,

.,...., -

~

./'
./
V

~ 80

s
70

o

1.0

4.0

6.0
8.0
10
11
14
16
Vee. IVEE!. SUPPLY VOLTAGES (VOLTS)

18

10

MOTOROLA LINEAR/INTERFACE DEVICES

2-165

II

MC1741S
MC1741SC

ORDERING INFORMATION
Device

Temperature Range

Package

-55"<: 10 + 125"<:
O"C to + 70'C

Motal Can
SO-8

O"CIO +70°C
O"C 10 + 70'C

Plastic DIP

MCt741SG
MC1741SCD
MC1741SCG
MC1741SCPl

Metal Can

HIGH SLEW RATE, INTERNALLY COMPENSATED
OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

The MC1741 S/MC1741 SC is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1741
circuit, yet offers 20 ti mes higher slew rate and power bandwidth.
This device is ideally suited for D-to-A converters due to its fast
settling time and high slew rate.
•

High Slew Rate - 10 V/l1s Guaranteed Minimum (for unity gain only)

•

No Frequency Compensation Required

•

Short-Circuit Protection

•

Offset Voltage Null Capability

•

Wide Common-Mode and Differential Voltage Ranges

•

Low Power Consumption

•

No Latch-Up

G SUFFIX
METAL PACKAGE
CASE 601-04

(Top View)

TYPICAL APPLICATION OF OUTPUT CURRENT TO
VOLTAGE TRANSFORMATION FOR A D-TO-A CONVERTER
VCC,.,5.0V

DSUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

V re f"'20Vdc

A1"'A2~1.0kH

P1 SUFFIX
PLASTIC PACKAGE
CASE 626-05

RO '" 5.0 kU

13
Rl
f--"'o--~"V'--f--"" v ref

MS6

NULL~' NC

A2
A3
A4

15
R2

OFFSET
INVT INPUT

2

NONINVT INPUT

~

VEe

A5

7

Vee

6

OUTPUT

5

OFFSET NULL

(Top View)

A6

A7
LSB

AS

Theoretical Vo
Vref
[A 1 A2 A3 A4 A5 A6 A7 A8]
Vo = RT IRO ) 2' +4' +8' +16 +"32 +64 \28 +256

C'

Pins not shown are not connected.

Adjust Vref. R1 or R0 so that Vo with all digital inputs at high l.v.1
is .qual to 9.961 volts.

Settling time to within 1/2 LSB 1±19.5 mV) is approximately 4.0 p.S from the time that all bits are switched.
*The value of C may be selected to minimize overshoot
and ringing Ie ~ 150 pF).

2V
[1-+-+-+-+-+-+-+-=10V
1 1 1 1 1
1
1]
[255]
vo=-15k)
=9.961V
256
1k
2 4 8 16 32 64 128 256

MC1741S LARGE-SIGNAL TRANSIENT RESPONSE

STANDARD MC1741 versus MC1741S RESPONSE COMPARISON

MOTOROLA LINEAR/INTERFACE DEVICES
2-166

MC1741S, MC1741SC
CIRCUIT SCHEMATIC

II
MAXIMUM RATINGS IT A = i250C unless otherwise noted I
Value

Rating

Symbol

MC1741SC

VCC
VEE

+18
-18

Power Supply Voltage
Differential Input Signal Voltage
Common-Mode Input Voltage Swing (See Note 1)
Output Short-Circuit Duration (See Note 2)
Power Dissipation (Package Limitation)

I

MC1741S

Unit

+22
-22

Vdc

I

VID

±30

Volts

VICR

±15

Volts

ts

Continuous

PD

Metal Package
Derate above T A = +250 C

680
4.6

mW
mW/oC

Plastic Dual In-Line Package
Derate above T A = +250 C

625
5.0

mW/oC

Operating Ambient Temperature Range

TA

Storage Temperature Range

Tst9

o to +75

I -55 to +125

°c
°c

-65 to +150
-55 to +125

Metal Package
Plastic Package

Note 1.
Note 2.

mW

For supply voltages les5 than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage.
Supply voltage equal to or tess than 15 Vdc.

FIGURE 2 -INPUT BIAS CURRENT versus TEMPERATURE
FIGURE 1 - OFFSET ADJUST CIRCUIT

Vee

1

40 0

~ 35 0
~

=>

300

..........

~

u

OUTPUT

INPUTS

:e~i~~1~ .>--0---_

;'i 25 0

~
........

a;

~ 20 0

r-........

~

z
w

15 0

to

~

>

«

 -5. 0

0

'"
~
o
~

~
o

"

~

.~

J

-1 0

-1 5
10

100

1.0 k

10k

100 k

II

FIGURE 4 - OPEN-LOOP FREQUENCY RESPONSE

1.0 M

-20
1.0

10

100

""""

loOk
10k
f. FREQUENCY (Hz)

f. FREQUENCY (Hz)

lOOk

FIGURE 6 - OUTPUT NOISE versus
SOURCE RESISTANCE

FIGURE 5 - NOISE versus FREQUENCY
140,---.,.-,,-m"'-r---l---n-rrrrr--'---"'-TTlTTTT--'-TTTTTm

~ 1201-+++tH1rH--++I+++Hl--H+!~+-++++++jjj
~

'"

1.0 M

10 M

3, 5

I

3, 0

I

Av' ~,OOO

2, 5

V

2, 0

"

,/'

5

...-

1. 0

Ar \.'I00j,

~~v-l

0, 5
,--

0
100

10 k

1.0 k

lOOk

RS.SOURCE RESISTANCE (OHMS)

FIGURE 7 - SMALL·SIGNAL TRANSIENT
,
RESPONSE DEFINITIONS

FIGURE 8 - SMALL-5IGNAL TRANSIENT
RESPONSE TEST CIRCUIT

+15V
01pF

Vee

50"

1

Piosnot shown ale not connected.

OUTPUT
MC1741S

INPUT

,--

OUTPUT

MOTOROLA LINEAR/INTERFACE DEVICES

2-169

MC1741SC

MC1741S, MC1741SC
TYPICAL CHARACTERISTICS
(VCC = +15 Vdc, VEE = -15 Vdc, TA = +250 C unless otherwise noted.1

II

FIGURE 9 - POWER CONSUMPTION versus POWER
SUPPLY VOLTAGES

-+---r--~--r--~----

!

60[---+---+---+--+--- t---- -

z
o

50f----/------j-

ii:

~

-+--j--j---j

.-r--r--+--+---+----~

--

V

40f------f-----t---

__

VVV--r-- . -------

o
oc

30f--------- ---

;t:;~

I /' ------t----t-20 f----+-+V~10 "----1---4-

--- r--

--

0~O--L-'5~.0~~--710'-~--'1?5--L--2~0~~-~25
Vee and iVEEI, SUPPL Y VOL TAG E (Va LTS)

SETTLING TIME
In order to properly utilize the high slew rate and fast
settling time of an operational amplifier, a number of
system considerations must be observed. Capacitance at
the summing node and at the amplifier output must be
minimal and circuit board layout should be consistent
with common high-frequency considerations. Both power
supply connections should be adequately bypassed as
close as possible to the device pins. In bypassing, both
low and high-frequency components should be considered to avoid the possibility of excessive ringing. In
order to achieve optimum damping, the selection of a
capacitor in parallel with the feedback resistor may be
necessary. A value too small could result in excessive
ringing while a value too large will degrade slew rate and
settling time.
SETTLING TIME MEASUREMENT
In order to accurately measure the settling time of an
operational amplifier, it is suggested that the "false"
summing junction approach be taken as shown in
Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1 % of it's final
value. Because the output and input voltages are effectively su btracted from each other at the amplifier
inverting input, this seems like an ideal node for the

FIGURE 10 - LARGE-SIGNAL TRANSIENT WAVEFORMS

~

measurement. However, the probe capacitance at this

critical node can greatly affect the accuracy of the
actual measurement.
The solution to these problems is the creation of a
second or "false" summing node. The addition of two
diodes at this node clamps the error voltage to limit the
voltage excursion to the oscilloscope. Because of the
voltage divider effect, only one-half of the actual error
appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope,
and the settling time of the oscilloscope must be considered. The expression

90%

OUTPUT

FIGURE 11 - SETTLING TIME AND SLEW RATE TEST CIRCUIT

tsetlg

=.J x 2 + y2 + z2

can be used to determine the actual amplifier settling
time, where

tsetlg = observed settling time
x = amplifier settling time Ito be determined)
y = false summing junction settling time
z = oscilloscope settling time
It should be remembered that to settle within ±0.1 %
requires 7RC time constants.
The ±0.1 % factor was chosen for the MC1741S
settling time as it is compatible with the ±1/2 LSB
accuracy of the MC1508L8 digital-to-analog converter.
This D-to-A converter features ±0.19% maximum error.

MOTOROLA LINEAR/INTERFACE DEVICES

2-170

MC1741S, MC1741SC

II
TYPICAL APPLICATION

FIGURE 12 - WAVEFORM AT FALSE SUMMING NOOE

II

II I'
_ - t

=21111

FIGURE 14 - 12.5-WATT WIOEBANO POWER AMPLIFIER
+15V

I

II

U
111 1

If . ,

u'

_.1--1111

1.0 "siDIV
FIGURE 13 - EXPANOEO WAVEFORM AT
FALSE SUMMING NODE

>

e>
E

'"

0.1%
ERROR
BAND
DelJllers 12.5Watts,nlO 4.0 ohmsw,lh less than l%THDto 101lkH,
P,nsilotshownarellol

wnne~led.

'Bias current adlustment lOelimioate Crossover D,Slorlion.
"EPOKV to IIOwer tranSistor heat smk or case tor mBKimum Thermal Feedbatk

MOTOROLA LINEAR/INTERFACE DEVICES

2-171

RL

II

ORDERING INFORMATION
Device
MC1747G
MC1747L
MC1747CD
MC1747CG
MC1747CL
MC1747CP2

Temperature Range

Package

to + 125'C
~ 55'C to + 125'C
D'C to + 7D'C
D'C to + 7D'C

Metal Can
Ceramic DIP
SO-14
Metal Can
Ceramic DIP
Plastic DIP

~ 55'C

aoc to + 70 0 e
D'C to + 7D'C

MC1747
MC1747C

(DUAL MC1741)
INTERNALLY COMPENSATED,
HIGH PERFORMANCE
OPERATIONAL AMPLIFIER

(DUAL MC1741)

DUAL
OPERATIONAL AMPLIFIER

· .. designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external
feedback components. The MC1747L and MC1747CL are functionally and electrically equivalent to the p.,A747 and p.,A747C
respectively.

SILICON MONOLITHIC
INTEGRATED CIRCUIT

G SUFFIX

• No Frequency Compensation Required

METAL PACKAGE
CASE 603-04

• Short-Circuit Protection
• Wide Common-Mode and Differential Voltage Ranges
• Low-Power Consumption

N.C.

• No Latch Up
• Offset Voltage Null Capability

FIGURE 1 - HIGH·IMPEDANCE, HIGH·GAIN
INVERTING AMPLIFIER
Vee
Vee

l

G1

1-'F

EO· -100Em

li2
MC1747,C

DSUFFIX
~
PLASTIC PACKAGE 14 ~_",,:,CASE 751A-02
SO-14

'.1
MC1747,C

lOOk

Terml~als

not shown

ar~

not c(lnnected

1

FIGURE 2 - CIRCUIT SCHEMATIC

Vee

P2 SUFFIX

L SUFFIX

PLASTIC PACKAGE
CASE 646-06

CERAMIC PACKAGE
CASE 632-08

25
OUTPUT

Non Inv
Input
Offset
AdjA

50
OFFSET
NULL

0--+-+---4

Offset
Adj. B

Non Inv
Input
Offset
Circuit diagrams utilizing Motorola products are included as a means of illustrating typical
semiconductor applications; consequentlv. complete information sufficient for construction
purposes is not necessarily given. The information has been carefully checked and is believed
to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore,
such information does not convey to the purchaser of the semiconductor devices described
any license under the patent right of Motorola Inc. or others.

AdjB

VCCA and VCCB are not connected internally.

MOTOROLA LINEAR/INTERFACE DEVICES
2-172

MC1747, MC1747C
MAXIMUM RATINGS ITA'" +2SoC unless otherwise noted.1
Rating
Power Supply Voltages

Symbol

Mel747

VCC

+22

VEE

-22

I

MCI747C

Unit

I

+IB

Vdc

-IB

Differential I nput Signal Voltage

CD

V,O

+30

Volts

Common-Mode Input Swing Voltage

~

V'CR

.±. 15

Volts

'OS

Continuous

Output Short-Circuit Duration

.± 0.5

Voltage (Measurement between Offset Null and VEE'

Operating Ambient Temperature Range

TA

-55 to +125

Storage Temperature Range

T stg

-65 to +150

Junction Temperature
Ceramic and Metal Package
Plastic Package

°c
°c
°c

Oto + 70

I -65 to +150

TJ

175
150

ELECTRICAL CHARACTERISTICS

(Vee'" +15 Vdc, VeE'" -15 Vdc, T A=: +2SoC unless otherwise noted.)

Characteristics

Symbol

Input Bias Current

Min

MC1747
TV.

Ma.

Min

MCI747C
TV.

Ma.

<:!>
(3)

Input Offset Current
T A'" +2SoC

80
30
300

500
500
1500

80
30
30

500
BOO
BOO

20
7.0
B5

200
200
500

20
7.0
7.0

200
300
300

1.0
1.0

5.0
6.0

1.0
1.0

6.0
7.5

nAde

"0

TA '" Thigh
TA"'Tlow
Input Offset Voltage (RS ~ 10 knl
T A"" +250 C

V,O

mVdc

T A"" Tlow to Thigh

.± 15

Offset Voltage Adjustment Range
Differential Input Impedance (Open-loop, f "" 20 Hzl
Parallel Input Resistance
Parallel Input Capacitance
Common-Mode Input Voltage Swing

';
C;

± 15

0.3

2.0
1.4

0.3

2.0
1.4

± 12

± 13

± 12

:t 13

70

90

70

90

mV
Mn
pF
Volts

VICR

Tlow ~ T A ~ Thigh
Common-Mode Rejection Ratio (RS

10knl

CMRR

Tlow ~ T A ~ Thigh
Open-Loop Voltage Gain
TA '" +250 C
}
T _T
T.
(Vo " ±10 V, R l " 2.0 knl
A - low to hlWa
Transient Response (Unity Gain)
(Vin =: 20 mV, Al "" 2.0 kn, Cl ~ 100 pFI
Rise Time
Overshoot Percentage
Slew Rate (Unity Gainl
Output Impedance
Short-Circuit Output Current

dB
Volts

Avol

50.000
5.000

Power Supply Sensitivity (Tlow to Thighl
VEE"" Constant, RS =s;; 10 kfl
Vce" Constant, RS ~ 10 kn
Power Supply Current (each amplifierl
TA ==+250 e

25.000
15,000

200.000

0.3
5.0

0.3
5.0

~s

SR

0.5

0.5

V/lls

Zo

75

75

ohms

'OS

25

25

mAdc

120

120

%

dB

VOR

Vpk

± 12

± 14

± 12

:t

+ 10

+ 13

+ 10

+ 13

14
~VIV

PSS+

PSS-

30
30

150
150

30
30

150
150

1.7
2.0
1.5

2.B
3.3
2.5

1.7
2.0
2.0

2.8
3.3
3.3

50
60
45

85
100
75

50
60
60

85
100
100.

mAdc

'CC,'EE

TA ==Tlow

TA'Th;gh
DC Power Consumption (each amplifier)
TA =:: +250 e
TA ==Tlow

200.000

tPlH

Channel Separation
Output Voltage Swing (Tlow ~ T A ~ Thigh)
Rl == 10kn
AL =:: 2.0 kn

Unit
nAde

"B

TA '" +2SoC
TA' Th;gh
TA"'T/ow

I

II

Volu

Pc

TA"'Thigh

mW

G) For supply voltages of less than ± 15 V, the maximum differential input voltage is equal to ± (VCC + IVeel).
(2) For supply voltages of less than ±15 V, the maxImum input voltage is equal to the supply voltage (+VCC, -IVeel).
@Tlow : O"C for MC1747CL
-55°C for MC1747L
Thigh: + 70"C for MC1747CL
+ 125°C for MC1747L

MOTOROLA LINEAR/INTERFACE DEVICES
2-173

MC1747, MC1747C
FIGURE 3 - TYPICAL FREQUENCY·SHIFT KEYER TONE
GENERATOR TEST CIRCUIT

Vee

II

15 v

Vee

15V

6.2k

FIGURE 4 - TYPICAL FREQUENCY·SHIFT KEYER TONE GENERATOR

1k

--- -_. -_. --_.

r--+-+--+--+~.-.-

Terminals not shown are not connected.

0.5 ms/DlV.

TYPICAL CHARACTERISTICS
(Vee"" +15 Vdc, VEE'" -15 Vdc, T A "" +2SoC unless otherwise noted.)
FIGURE 5 OPEN·LOOP VOLTAGE GAIN
versus POWER-SUPPLY VOL TAGE

FIGURE 6 - OPEN·LOOP FREQUENCY RESPONSE

+120 , - - -

120
~ 115

z
«

110

W
t:I

105

~

100

'"
~

+100

v---:

~

o

g

..-

95

z

w

~

--

~

+80

~

z


~ +20

.t

90

~

"0

-l

85

o

3.0

6.0

9.0

15

12

I

-20

80

18

21

1.0

24

100

10

1.0k

~

FIGURE 7 - POWER BANOWIDTH
(LARGE SIGNAL SWING versus FREQUENCY)

'"

1.0M

100 k

10 k

t, FREQUENCY.lH,J

Vcc and VEE, POWER SUPPLY VOLTAGE (VOLTS)

10M

FIGURE 8 - POWER CONSUMPTION
versus POWER SUPPLY VOLTAGE

28.-'-",nnr--T'''TIT~-''-·rnTIIT--'-''nTm

100
70

~

20~-+~++t~~~-+~+H#-~c~~H+~--+-~~~

~ 16~-+~++~~~-+~+H#-~~~H+~1~\-+-~~~
~

121--

~ S.Or------>

I
(VOLTAGE FOLLOWER}
±15 VOLT SUPPLIES

50

;

40

~

30

" 20
8

/'

V

~

~

~ to

ftt---t-t---t-H1-ttt---I\-+-I+tttt

'_<.J -15_%Lit L. Lt '-! 1.~0'-k

4: 1'::.0--'-'-.J..ioW
I iu..i Ii",ii-:-:
,:

~

/

/

./'

Va" 0

r--

(Each amplifier)

~ 7.0

5.0

--'---'--W-LWO:'..k_i'::..J..
\.J..J..lloJJJ k

I

l

o

4.0
3.0

2.0

t, FREQUENCY (Hz}

10
18
6.0
14
VCC and VEE, POWER SUPPLY VOLTAGE (VOLTS}

MOTOROLA LINEAR/INTERFACE DEVICES

2-174

22

MC1747, MC1747C

TYPICAL CHARACTERISTICS (continuedi
(Vee = +15 Vdc, VEE = -15 Vdc, T A = +250 C unless otherwise
FIGURE 9 - OUTPUT VOLTAGE SWING
versus LOAO RESISTANCE

II
noted.)

FIGURE 10 - OUTPUT NOISE versus SOURCE RESISTANCE

28
24
~ 20

'"~

16

0

>

>=>
~

12

!;
80
6
>
40

100

200

500

1.0 k

2.0 k

5.0k

10k

Rl. LOAO RES1STANCE (OHMS)

RS, SOURCE RESISTANCE (OHMS)

MOTOROLA LINEAR/INTERFACE DEVICES
2-175

II

ORDERING INFORMATION
Device

MC1748G
MC1748U
MC1748CG
MC1748CP1
MC1748CU

Package

Temperature Range

-55·C to
-55·C to
OOC to
OOC to
O·C to

+ 125·C
+ 1250C
+70OC
+70·C
+700C

MC1748
MC1748C

Metal Can
Ceramic DiP
Metal Can
Plastic DIP
Ceramic DIP

HIGH PERFORMANCE
OPERATIONAL AMPliFIER

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

· .. designed for use as a summing amplifier. inte.grator. or amplifier
with operating characteristics as a function of the external feedback
components.
•

Pl SUFFIX
PLASTIC PACKAGE
CASE 626-05
IMC1748C Only)

Noncompensated MC1741

• Single 30 pF Capacitor Compensation Required For Unity Gain
• Short·Circuit Protection

•

• Offset Voltage Null Capability
• Wide Common·Mode and Differential Voltage Ranges
•

Low·Power Consumption

•

No Latch Up

Balance

Inputs

FIGURE 1 - CIRCUIT SCHEMATIC
8

U SUFFIX
CERAMIC PACKAGE
CASE 693-02

1

8 CompensBtion

1'

COMPENSATION

r-~--------~----~----------~----~~--~-Qvcc
7

GSUFFIX
METAL PACKAGE
CASE 601-04

"

Compensation

OUTPUT

50

50
L-~

____

~

__-4____

~~L--4

____

~

__________

VEE
~-Q4

TYPICAL COMPENSATION CIRCUITS
FIGURE 2 - OFFSET ADJUST AND
FREQUENCY COMPENSATION

FIGURE 3 - SINGLE·POLE COMPENSATION

FIGURE 4 - FEEDFORWARD COMPENSATION

C1

R1

RI
-VI
Va

R3
+VI

R1

vi
Va

R1 C,
C1;' R1 + R1
Cs'" 30 pF

MOTOROLA LINEAR/INTERFACE OEVICES

2-176

R3
150 pF

1
C1--211' f oR2
10 = 3.0 MHz

MC1748, MC1748C
MAXIMUM RATINGS (T A ~ +250 C unless otherwise noted)
Rating
Power Supply Voltage

Differential I nput Signal

Common-Mode Input SWing,CD
Output Short Circuit Duration

Symbol

MC1748

MC1748C

Unit

VCC

+22

+18

Vde

VEE

-22

-18

Vin

±30

Volts

VICR

±15

Volts

's

Continuous

Power Dissipation (Package Limitationl
Derate above T A +2SoC

PD

Operatmg Temperature Range

TA

-55 to +125

o to +70

T stg

-65 to +150

-65 to +150

680
4.6

=0

Storage Temperature Range
ELECTRICAL CHARACTERISTICS IVCC

II

mW
mW/oC

°c
°c

+15 Vdc, VEE'" -15 Vdc, T A ;:: +25 0 C unless otherwise noted-l

MC1748
Characteristics
Input Bias Current

Symbol

Min

Typ

Max

0.08

0.5

0.3

1.5

0.02

0.2

0.08

0.5

1.0

5.0

0.08

0.5

J.LAdc

T A'" Tlow to Thigh

Input Offset Voltage (RS

~

10 k H)

Unit

0.8

11101

TA '" +250 C

-i

Min

j..IAdc

@

Input Offset Current

T A'"

MC1748C
Max

liB

TA'" +2SoC
T A'" Tlow to Thigh

Typ

0.02

0.2
0.3

mVdc

IVIOI

25°C

1.0

6.0

T A'" Tlow to Thigh

6.0
7.5

Differential Input Impedance (Open-Loop, f - 20 Hz)

0.3

2.0

0.3

2.0

Parallel Input ReSistance

Rp

Parallel Input Capacitance

Cp

1.4

1.4

pF

Zjn

200

200

Megohms

Common-Mode Input Impedance (f

20HzI

Common-Mode Input Voltage Swing

VICR

±12

±13

±12

±13

Common-Mode Rejection Ratio (f -" 1 00 Hz)

CMRR

70

90

70

90

Open-Loop Voltage Gain, (V o = ± 10 V, RL = 2.0 k ohms)

Vpk
dB

V/V

Avol

TA = +2Soe

50,000

TA

25,000

==

Megohm

Tlow to Thigh

200,00

20,000

200,00

15,000

Step Response (Vin = 20mV,C c = 30pF, RL ==2kH, CL == 100pF)

'r
dVout/dt

0.3
5.0
0.8

Output Impedance (f = 20 Hz)

Zo

75

Short-Circuit Output Current

Ise

Output Voltage Swing (RL "" 10 k ohms)

Vo

Rise Time
Overshoot Percentage
Slew Rate

RL = 2 k ohms (T A'" Tlow to thigh)

0.3
5.0

25

"s
%

0.8

V/Jls

75

ohms

25

mAdc

±12

±14

±12

±14

Vpk

±10

±13

±10

±13
_V/V

Power Supply Sensitivity
VeE'" constant, Rs ~ 10 k ohms
Vec == constant, As "" 10 k ohms
Power Supply Current

S+

150

30

150

30

150

1.67

2.83

1.67

2.83

-

1.67

2.83

1.67

2.83

50

85

50

85

OOC for MC1748C
_55°C for MC1748
+70° for MC1748C
+1250 C for MC1748

MOTOROLA LINEAR/INTERFACE DEVICES

2-177

mAdc

mW

PD



MC174B :"
only'"

I-

~
I-

5

OL-__

~

o

__

~

__

~

__

~

~

__

~~~~~

15

20

VCC AND (-VEEI.SUPPLY VOLTAGES (VOLTS)

FIGURE 7 - MINIMUM VOLTAGE GAIN

FIGURE B - TYPICAL SUPPLY CURRENTS

100

,5

94

,0

BB

,5

-

~

z

'"w

'"
:;
'"

__

5,0

VCC BOd (-VEEI. SUPPLY VOLTAGE (VOLTS)

;(

••

4,0~+=+:=t~N~

-

MC174B

only

B2

0

>

,;

'"

i··-

,5)-- -

76

70

0
5,0

0

10

15

5,0

20

Vee AND (- VEE), SUPPLY VOLTAGE (VOLTS)

10

SINGLE,POLE COMPENSATION

'"~

+16 0
+140

315

+12 0

270~

w

'"
:;

'"

+8 0

~~·.;>o

c~

+60

"'-

V

>

.JOp /: " "

'-...

'"

GAIN

::;;;:;;::

0

,; +40
+2 0

1,0

.-/

10

100

~

35

""'-.,

.......... I'
i'-..

-20

:

1

1,0 k
10k
lOOk
I. FREQUENCY (Hz)

LOM

1-- -

~

25~

1

PHAS~

'"'

80~

2

-

SINGLE,PO :;'

~OMPENSA
TIO N
,

.±15

>

'"

z

~ +100

20

FIGURE 10 - LARGE-5IGNAL FREQUENCY RESPONSE

FIGURE 9 - OPEN-LOOP FREQUENCY RESPONSE
+IB0

~

15

Vee AND (- VEE), SUPPLY VOLTAGE (VOLTS)

±lO

..

,

1\

~ ~

90 -

;

4

<5


I

j

\

30p0

I

I :

1.0 M

lJ ''II

10M

MC1748, MC1748C

II

TYPICAL CHARACTERISTICS Icontinuedl
IVCC" +15 V, VEE" -15 V, TA" +2SOC unless otherwise noted.1
FIGURE 1.1 - VOLTAGE FOLLOWER PULSE RESPONSE

a
+8. a

FIGURE 12 - OPEN·LOOP FREQUENCY RESPONSE

+1

~

SINGLE·POLE COMPENSATION

~ +6. 0

o
'"~ +2. a

o

FEEOFORWARO COMPENSATION

+120

;: +4.

'"~

+140

I--

1\
\

-2 a

> ., 0 -

g5

> -6.0
a'
> -8.0

INPUT

r t:.-1
1.

~

V

t=.- '\.
.-

V

t---

~ +100

"
~

+80

'"~

+60

w

ciUTPUT '----

I

0

+40
+20 !----

..

_- c---.

20

10

30

40

50

60

70

80

10

10k

10 k

100

+1 0

FEEOFoRWARo COMPENSATION

~

0

:'i:

"

6

z

~

,1 2

1\

co

~
0
....>=>

,8. 0

-

gi

o
100 k

a

10M

'"
S

-+7

.-

t-

INPUT

~

-

a



~ +6.

-

lOOk

+8. a

o

t-

,

r--~

FIGURE 14 - INVERTER PULSE RESPQNSE

,1 B

>

'~-;,~
" ,---

t-

I, FREQUENCY IHzl

FIGURE 13 - LARGE·SIGNAL FREQUENCY RESPONSE

f---

PHASE L

~V

·20

90

I, TIME Ips)

....

....,~

--""-

--

f - - ._-

-10

i"---

"'r----.


>

............

~

-4. 0

,

("

I
II
II
--

1---

-6. 0

a'
0-8. a
>
·1
10M

a
1.0

2.0

t. FREQUENCY IHl)

3.0

4.0

t, TIME I#s)

MOTOROLA LINEAR/INTERFACE DEVICES

2-179

5.0

6.0

7.0

8.0

9.0

II

®

MC1776
MC1776C

MOTOROLA

Specifications and Applications
Information

PROGRAMMABLE
OPERATIONAL AMPLIFIER

MONOLITHIC MICROPOWER
PROGRAMMABLE OPERATIONAL AMPLIFIER

SILICON MONOLITHIC
INTEGRATED CIRCUIT

This extremely versatile operational amplifier features low power
consumption and high input impedance. In addition, the quiescent
currents within the device may be programmed by the choice of
an external resistor value or current source applied to the Iset input.
This allows the amplifier's characteristics to be optimized for input
current and power consumption despite wide variations in operating
power supply voltages.
•

GSUFFIX
METAL PACKAGE
CASE 601-04

± 1.2 V to ± 18 V Operation

'set

• Wide Programming Range
• Offset Null Capability
• No Frequency Compensation Required
• Low Input Bias Currents
• Short·Circuit Protection

VEE

RESISTIVE PROGRAMMING (See Figure 1 J

nop

View)

Rsetto NEGATIVE SUPPLY

Rs• t to GROUND

(Recommended for supplv voltage

.~

less than ±6.0 V)

'~

'~

6

0--

0--

~~B
VEE

Rsel

-=-

Iset;

3

~1:

Vee - 0.6
Rsp.!

:.

VEE

6

1

Vee 06 VEE

Isp.!

Vee,VEE

Iset = 1.5 /J.A

'set" 15 f.1A

360 kH

±1.5V
~6.0V

l60kS!
360 kH
750 kH

±15V

lQMH

620kH
750 kH
1.0MH

±3.0V

±12V

6.2 MU
7.5 MU

1.6MH
3.6 MH
7.5 MH

±15 V

20 Mn

2.0 M!l

±6.0V
±10V

I set - 1.5 JlA

'set:= 15 /J.A

~
1

Rsel

3.6 MH

Vee,VEE

U SUFFIX
CERAMIC PACKAGE
CASE 693-02

DSUFFIX
PLASTIC PACKAGE
CASE 751-02
SO-8

Typical R set Values

Tvpical R set Values

Pl SUFFIX
PLASTIC PACKAGE
CASE 626-05
(MCl776C Only)

Non-Inverting Input

ACTIVE PROGRAMMING

Output
Offset Null

FET CURRENT SOURCE

BIPOLAR CURRENT SOURCE
(Top View)

7 Vee

ORDERING INFORMATION
Device

MC1776G
MCl776U

-55 to + 125°C

Package

Metal Can
Ceramic DIP

MCl776CD

SO-8

MC1776CG

Metal Can

MC1776CP1
MC1776CU
Pins not shown are not connected.

MOTOROLA LINEAR/INTERFACE DEVICES
2-180

emperature Range

oto

+70OC

Plastic DIP
Ceramic DIP

MC1776, MC1776C
MAXIMUM RATINGS

ITA" +25 0 e unless otherwise noted.1

Rating
Power Supply Voltages
Differential Input Voltage
Common-Mode Input Voltage

Symbol

Value

Unit

Vee, VEE

±18

Vdc

VID

' 30

Vdc

Vee,VEE

Vdc

II

VICM

Vee and IVEEi < 15 V
VCC and IVEEI;;' 15 V

t 15

Vott-VEE

' 0.5

Vdc

Programming Current

I set

500

~A

Programming Voltage

V set

IVCC-2,0 VI
to

Vdc

ts

Indefinite

Offset Null to VEE Voltage

(Voltage from I set terminal to ground)

VCC
Output Short-Circuit Duration'

Operating Temperature Range
MC1776
MC1776C

Storage Temperature Range

s

°c

TA
-55 to +125

a to +70
°c

T stg

-65 to + 150
-55 to +125

Metal and Ceramic Packages
Plastic Package

Junction Temperature
Metal and Ceramic Packages

°c

TJ
175

Plastic Package

150

*May be to ground or either Supply Voltage. Rating applies up to a case temperature of +125 0 C
or ambient temperature of +70 o C and Iset ";; 30 !lA.
SCHEMATIC DIAGRAM

Iset

r---------------~--------~--_t--_.----~------_.----------~--------oVcc

50

100

OUTPUT

6

50
OFFSET NUll

10k

10k

VEE
L-------~~--+_------~~____~----+_----~~--------+_------04

MOTOROLA LINEAR/INTERFACE DEVICES
2-181

II

MC1776, MC1776C

ELECTRICAL CHARACTERISTICS IVCC = +3.0 V, VEE = -3.0 V, l set = 1.5 ~A, TA = +25 0 C unless otherwise noted.l
MC1776C

MCl776
Symbol

Characteristic
Input Offset Voltage IRS" 10 kn)
TA = +25 0 C
Tlow" ~ TA ~ Thigh*

Min

Typ

Max

Min

Typ

Max

2.0

5.0
6.0

-

2.0

6.0
7.5

-

-

Offset Voltage Adjustment Range

-

-

-

mV

9.0

9.0

VIOR

Input Offset Current

nA

110

-

TA = +25 0 C
TA = Thigh
TA=Tlow
Input Bias Current
TA = +250 C

-

0.7

--

3.0
5.0
10

-

0.7

-

-

7.5
7.5
20

-

2.0

6.0
6.0
10
nA

liB

-

TA = Thigh
TA=Tlow

Input Resistance

ri

Input Capacitance

ci

Input Voltage Range

2.0

-

-

-

-

10
10
20
Mn

50

50
2.0

-

' 1.0

-

-

±

50 k
25 k

200 k

-

±.2.0

±2.4

-

-

2.0

-

1.0

-

-

25 k
25 k

200 k

-

-

±2.0

±2.4

-

5.0

-

3.0

-

-

3.0

-

70

86

-

70

86

-

-

25

150

-

25

200

-

13

20
25

-

13

20
25

-

78

120
150

-

78

-

3.0
0

-

-

-

-

3.0
0

-

c

RL;;' 75 kn, Va = '1.0 V, Tlow" TA" Thigh
Output Voltage Swing
RL;' 75 kn, Tlow" TA .. Thigh
Output Resistance

Output Short-Circuit Current

V/V

AVOL

-

V

Va
ro
los
CMRR

Common-Mode Rejection Ratio
RS" 10 kn, Tlow" TA .. Thigh

kn

5.0

RS" 10 kn, Tlow" T A" Thigh
Supply Current

~V/V
~A

ICC, lEE

TA = +25 0 C
Tlow .;;:; T A " Thigh

Power Dissipation

mA
dB

PSRR

Supply Voltage Rejection Ratio

pF
V

VIO

Tlow';;; TA " Thigh
Large Signal Voltage Gain
RL;;' 75 kn, Va = ± 1.0 V, TA = +25 0

Unit
mV

Via

-

-

~W

Po

TA = +25 0 C
Tlow" T A" Thigh

-

-

120
150

Transient Response (Unity Gain)

Yin = 20 mV, RL '" 5.0 kn, CL

= 100 pF

Rise Time

tTLH

as

Overshoot
Slew Rate IRL '" 5.0 kH)
*Tlow

= -55°C

for MCl776
OoC for MCl776C

SR

0.03

0.03

-

Thigh = + 125°C for MCl776
+70 0 C for MCl776C

TRANSIENT-R ESPONSE
TEST CIRCUIT

VOLTAGE OFFSET
NULL CIRCUIT

Pins not shown are not connected.

MOTOROLA LINEAR/INTERFACE DEVICES
2-182

~s

%
V/~s

MC1776, MC1776C

ELECTRICAL CHARACTERISTICS IVee = +3.0 V, VEE = -3.0 V, I set = 15 ~A, TA = +250 e unless otherwise nated.l
MCl716

Characteristic

Symbol

Input Offset Voltage IRS'; 10 k!11
TA = +2Soe

Typ

Max

Min

Typ

Max

-

2.0

5.0
6.0

-

2.0

6.0
7.5

-

Tlow .. ..;; TA"';; Thigh*

-

rnV

18

nA

110

TA = +2S a C

-

TA "Thigh
TA =Tlaw

-

Input Bias Current

2.0

-

-

-

-

15

15
15
40

-

50
50
120

-

-

-

-

2.0

-

25
25
40
nA

liB

TA = +25 a C
TA = Thigh
=

18

VIOR

Input Offset Current

Unit
rnV

VIO

Offset Voltage Adjustment Range

TA

MCl716C

Min

Tlow

-

15

50
50
100

Input Resistance

ri

-

5.0

Input Capacitance

ci

-

2.0

-

-

5.0
2.0

-

; 1.0

-

-

± 1.0

-

-

50 k
25 k

200 k

-

25 k
25k

200 k

-

-

!2.0

±2.1

-

5.0

-

-

5.0

-

70

86

-

70

86

-

-

25

150

-

25

200

-

130

-

130

-

-

160
180

-

-

170
180

-

780

-

780

-

-

-

-

0.6
5.0

-

~.

-

-

0.35

-

V/~.

Input Voltage Range
Large Signal Voltage Gain

ViV

AVOL

RL"5.0k!1, VO= ;1.0 V, TA =+25 a C
RL :> 5.0 k!1, Vo =, 1.0 V, Tlaw '" TA'; Thigh

Output Voltage Swing

ra
los
CMRR

Common-Mode Rejection Ratio
RS';;; 10 k!2, Tlow"'" TA ~ Thigh

1.9
-

12.1
1.0

kH

1.0

RS" 10 kH, Tlow '" TA" Thigh
Supply Current

~VIV

~A

ICC, lEE

TA = +25 a C
Tlaw .; T A " Thigh
Power Dissipation
TA = +25 a C

rnA
dB

PSRR

Supply Voltage Rejection Ratio

~W

PD

-

Tlaw" T A .. Thigh
Transient Response (Unity Gain)
Vin = 20 rnV, RL ,,5.0 k!1, CL = 100 pF

*Tlaw • -5S a C for MCl716
DoC for MCl776C

-

V
.±

Output Short-Circuit Current

Slew Rate IRL ;. 5.0 k!1)

-

Vo

RL:>5.0kH, Tlaw'" TA '" Thigh
Output Resistance

pF
V

VID

Tlaw .; T A .; Thigh

Rise Time
Overshoot

M!1

tT~H

-

-

OS
SA

-

0.6
5.0
0.35

960
1080

-

Thigh = + 125a C for MCl776
+70 a C for MCl716C

MOTOROLA LINEAR/INTERFACE DEVICES
2-183

1020
1080

-

%

MC1776, MC1776C

II

ELECTRICAL CHARACTERISTICS !VCC" + 15 V. VEE" -15 V. Iset

<

1.5 MA. TA "+25 0 C unless otherwise noted.)
MCI776C

MCI776
Characteristic

Symbol

Input Offset Voltage (RS';; 10 kH)
TA" +25 0 C
Tlow* ~ TA < Thigh*

Min

Typ

Max

Min

Typ

Max

-

2.0

-

2.0

-

6.0
7.5

Offset Voltage Adjustment Range

9.0

6.0
6.0
10

VIOR

Input Offset Current

9.0

-

-

-

0.7

-

-

0.7

-

3.0
5.0
10
7.5
7.5
20

-

2.0

-

-

-

nA

liB

TA" +25 0 C
TA" Thigh
TA" Tlow
I nput Resistance

ri

Input Capacitance

ci

Input Voltage Range

-

2.0

10
10
20

-

-

2.0

-

-

2.0

-

'10

-

-

±10

-

-

200 k
100 k

400 k

-

400 k

-

-

-

50 k
50k

-

-

' 12
± 10

,14

-

14

,10

-

50

MH

50

Tlow .;; T A .;; Thigh

V/V

AVOL

R L ;> 75 kH. Vo " , 10 V. T A " +25°C
RL;> 75 kH. VO"' 10 V. Tlow';; TA';; Thigh
Output Voltage Swing

V

Vo
+25 0 C

RL ;> 75 kH. T A"
RL;> 75 kH. Tlow';; TA';; Thigh
Output Resistance

kH

-

3.0

-

70

90

-

70

90

-

-

25

150

-

25

200

-

20

-

20

-

-

25
30

-

-

30
35

-

-

0.75
0.9

-

-

0.9
1.05

tTLH
OS

-

1.6

-

1.6

-

a

-

SR

-

0.1

RS';; 10 kll. Tlow';; TA';; Thigh
Supply Current

Tlow';; T A " Thigh
Power Dissipation

MV/V
MA

mW

PD

TA" +25 0 C
Tlow .;; T A .;; Thigh
Transient Response (Unity Gain)
Vin" 20 mV. RL;> 5.0 kll. CL" 100 pF
Rise Time

mA
dB

ICC. lEE

TA" +25 0 C

Tlow - -55°C for MCI776
OoC for MCI776C

5.0

.-

PSRR

Supply Voltage Rejection Ratio

Slew Rate (RL;> 5.0 kll)

-

3.0

RS';; 10 kH. Tlow" T A" Thigh

Overshoot

±

-

los
CMRR

Common-Mode Rejection Ratio

-

±12

5.0

ro

Output Short-Circuit Current

pF
V

VID

Large Signal Voltage Gain

mV
nA

TA" +25 0 C
TA "Thigh
TA" Tlow

.

-

5.0
6.0

110

Input Bias Current

Unit

mV

VIO

a

-

Thigh - + 125°C for MCl776
+ 70°C for MCI776C

MOTOROLA LINEAR/INTERFACE DEVICES
2-184

-

-

0.1

MS
%

VIM'

MC1776, MC1776C

ELECTRICAL CHARACTERISTICS

(Vee = +15 V, VEE

C

-15 V, I set = 15 "A, TA

=

+25 a C unless otherwise nated.1

MCI776
Symbol

Characteristic
Input Offset Voltage IRS"; 10 k!!1
TA = +25 a C
Trow· ~ TA ~ Thigh·

MC1776C

Min

Typ

Max

Min

Typ

Max

-

2.0

2.0

-

5.0
6.0

-

-

6,0
7.5

Offset Voltage Adjustment Range

VIDR

Input Offset Current
TA = +25 a C
TA = Thigh
TA = Tlaw

110

-

18

-

2.0

..

..

Input Bias Current

liB

-

18

-

15
15
40

-

2.0

25
25
40

50
50
120

15

5.0
2.0

-

-

-

nA

Input Resistance

ri

.

5.0

..

-

Input Capacitance

ci

-

2.0

-

-

-

-

"0

-

-

100 k
75 k

400 k

-

50 k
50 k

400 k

-

-

±10
,10

±13

± 10
± 10

13

-

-

1.0
12

-

15

TA
TA "'Trow

Input Voltage Range

±

-

50
50
100
M!1

10

-

V

Va

-

12

-

70

90

-

70

90

-

-

25

150

-

25

200

-

160

-

180
200

-

160

-

-

190
200

-

-

5.4
6.0

-

-

5.7
6,0

tTLH
OS

-

0.35
10

-

-

SR

-

0.8

-

-

ra

Output Short-Circuit Current

1.0

los
CMRR

Common-Mode Rejection Ratio

RS"; 10 k!1, Tlaw'; TA .. Thigh

!

-

kil

RS" 10 kil, Tlaw'; TA" Thigh
Supply Current

"vtv

ICC, lEE

= +25 a C

Tlaw" TA .. Thigh
Power Dissipation

mA
dB

PSRR

Supply Voltage Rejection Ratio

pF

V/V

AVOL

= ± 10 V, TA = +25 aC
= ±10 V, Tlaw"; TA'; Thigh

Output Voltage Swing
RL ;;. 5,Ok!1, T A = +25 a C
RL;' 75 kil, Tlaw'; TA'; Thigh
Output Resistance

TA

-

V

Trow ~ T A ~ Thigh

RL ;;'5.0k!1, Vo
RL;;' 75 k!1, Va

-

VID

Large Signal Voltage Gain

mV

nA

= +25 aC
= Thigh

TA

Unit
mV

Via

"A

mW

Po

TA = +25 a C
Trow';;;; TA ,,;;; Thigh
Transient Response (Unity Gain)

Vin

= 20 mY,

RL;;' 5.0 kil, CL

= 100 pF

Rise Time

Overshoot
Slew Rate IRL ;;. 5.0 kill
*Tlaw

= -55 a C for

MCI776
OOC for MCI776C

Thigh

= +125 0 C for

MCI776
+ 70 a C for MCI776C

MOTOROLA LINEAR/INTERFACE DEVICES
2-185

0.35
10
0.8

-

"S%
ViliS

II

MC1776, MC1776C

TYPICAL CHARACTERISTICS
(T A = +2SoC unless otherwise noted.)

II

FIGURE 2 - POSITIVE STANDBY SUPPLY
CURRENT versus SET CURRENT

FIGURE 1 - SET CURRENT versus SET RESISTOR

1000

~

VCC-+15V
VEE" -15 V
Rset to VEE

~+3V~~~;~+18V
./

10M

S

VCC +15 V
VEE"-15V
Rset to GND

Vcc +3 V
VEE- -3V
Rset to VEE

'"ot;

~ 1.0M

~

VCC" +3 V
VEE" -3 V

} lOOk

Rset to GND

/
/'
o. I

10k
0.1

1.0

I",. SET CURRENT I"AI

0.01

100

10

iDo

.0

1.1

Iset. SET CURRENT

I~I

FIGURE 4 -- INPUT BIAS CURRENT versus SET CURRENT

100_1EI
. .

t==:t=t:t:t:ttl:ti--+-+-+++++++

104
0.1

1.0

O. I LJ-L...LJLl.llill-.l.-'--W-i.UJJL-LLJ....LLlillL..Ll....l...Ll.llLU

10

I",. SET CURRENT

0.01

100

1.0

10

100

Iset • SET CURRENT (/.lA)

FIGURE 5 - INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE

0

0.1

I~I

FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBWI
versus SET CURRENT

+~v"v'CC,,+i8V
-3V;,VEE;'-18V

4

""

.......

8

~ 1.0M

r.........

t;

i5

f"-.,
........ r-.,.

2

t-- f-lse'" 1.5"f

-

-40

-20

~

ISe l"'1.5p.A

I'-.......

0
-60

+40

+60

lOOk

=

VCC-+ 15V

Vee'" +3 v
VEE" -3 V

VEE"-15V

o>-

i<
o
z

~

:i
Z
;;:

....... ~
,+20

-

o

+80

+100

'"

+120 +140

T. TEMPERATURE lOCI

10k

1.0k

0.1

10
Iset. SET CURRENT I"AI

1.0

MOTOROLA LINEAR/INTERFACE DEVICES
2-186

100

MC1776, MC1776C

'TYPICAL CHARACTERISTICS (continued)
(TA :::: +2SoC unless otherwise noted.)
7 - OUTPUT VOLTAGE SWING
versus LOAD RESISTANCE

30

-

Vee- +15V
VEE=-15V
lset "15/JA

V
1/

15 0

VEE = -15 V

lset=1.5/JA- f-- I". = 1.5 "A
Vee = +3 V
Vee=+15V
VEE=-15V- f--VEE = -3 V
1
1\
I

1.5/JA.;;;; lset" 15pA

\

--

III

o
10k

II

lOOk

o

-60

1.0M

36

w

1

21-- _1.5 "A'

"'-

24

~

16

g 12
6 8.0

>

4.0

+60

+80

+100

+120 +140

,

Is;.~ 15~A

28

20

+40

versus SET CURRENT

RL = 75 k

'"~'"

+20

10

0

~

-20

i

FIGURE 10 - SLEW RATE

FIGURE 9 - OUTPUT SWING
versus SUPPLY VOL TAGE

'"z

-40

r

T. AMBIENT TEMPERATURE (DC)

RL. LOAD RESISTANCE (OHMSI

~

\

Ise.=15"A- f-Vee=+3V _
I-VEE=-3V

VCC=+lSV

Ilee=+3v
VEE = -3 V

--

1.0 k

I
1.,.= J"A

II

-- -

0

120

VEE = -15 V
lset = 1.5J.1A

-

V

I - - --

I-

~I

V

II

II

FIGURE 8 - SUPPLY CURRENT
versus AMBIENT TEMPERATURE

FIGURE

L

o ./
o 2.0

R
4.0

./
/. / '
.% ~ lset" 1.5/JA

--

h- ~

6.0

:,,;.

8.0

--2:
w

I-

;2

12

O. 1

~

Rl" 5 k

10

1.0

-'0

Ise t=15J1A
RL=5k -

g0.0 1

14

16

18

0.001
0.01

20

~

VCC=+15V
VEE = -15 V

VCC = +3 V
VEE= -3V

/'

IT
0.1

Vec. IVEEI. SUPPLY VOLT AG ES IV)

1.0

10

100

I" •• SET CURRENT ("AI

FIGURE l1-INPUT NOISE VOLTAGE

FIGURE 12 - OPTIMUM SOURCE RESISTANCE
FOR MINIMUM NOISE versus SET CURRENT

versus SET CURRENT
10- 13

100

-

!'!

4

u

z

'"in
5

0

~

f'" 1 kHz
')'f", 1 Hz
+3 V,.;; Vee" +18 V
-3V;;;.VEE;;;.-18V

w

u

'"

,.~

1. 0

,.

6

:>

Ii:
0

10- 17
0.01

O. 1
0.1

10

1.0

100

0.01

1.0

0.1

I .... SET CURRENT (,.A)

lse•• SET CURRENT ("AI

MOTOROLA LINEAR/INTERFACE DEVICES
2-187

10

100

II

MC1776, MC1776C
APPLICATIONS INFORMATION

FIGURE 15 - MULTIPLE FEEDBACK BANDPASS FilTER
FIGURE 13 - WI EN BRIDGE OSCILLATOR

(1.0kHzI

12k
+15 V

INPUT

R5

-i

.C
OUTPUT

R2

10 k

Vo

2M

for a 1.0 kHz filter
with Q= 10
and A (to)" 1

Rl=160k
R2 = 820
R5=300k
C= O.Ol"F

-15V

-15 V

FIGURE 16 - GATED AMPLIFIER
fo

= ~....L_

27r RC
(for 10 = 1.0 kHz)

R =16 k!l
C = O.Ol"F

MCI776.C

OUTPUT

INPUT

FIGURE 14 - MULTIPLE FEEDBACK BANDPASS FilTER

-15 V

10k

-=

270 k

VCC
15 V

2.7M

10 k
GATE

0

VCC

>-o-__ VO
FIGURE 17 - HIGH INPUT IMPEDANCE AMPLIFIER

for agivln:

VEe

50M

to = centerfrequancy

Alto) = Gainatcenterfrequency
0= quality facter
Choose a value for C, then

-=

500k
INPUT

90 k
OUTPUT

500k

RI=JL
2AII,I
R2 =!!l..M.
402 Rl·R5
To obtain leu than 10% error from the operational amplifier:

50M

~"O.I

30M

-=

G8W

where fa and GBW are expreSStld in Hz. GBW is available from
Figure 6 as a function of Set Current, 'set.

MOTOROLA LINEAR/INTERFACE DEVICES
2-188

10k

-15V

®

Me3301 LM2900
MC3401 LM3900

MOTOROLA

Specifications and Applications
Information

QUAD

OPERATIONAL AMPLIFIER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

QUAD SINGLE SUPPLY OPERATIONAL AMPLIFIER
These internally compensated Norton operational amplifiers
are designed specifically for single positive power supply applications found in industrial control systems and automotive electronics. Each device contains four independent amplifiers - making it ideal for applications such as active filters, multi-channel
amplifiers, tachometers, oscillators and other similar usages.

N, P SUFFIX
PLASTIC PACKAGE
CASE 646-06

• Single-Supply Operation
• Internally Compensated
• Wide Unity Gain Bandwidth: 4.0 MHz Typical
• Low Input Bias Current: 50 nA Typical
• High Open-Loop Gain: 1000 VN Minimum

DSUFFIX
PLASTIC PACKAGE
CASE 751A-02
SO-14

• Large Output Voltage Swing: (VCC - 1) V p _p

14~'
1

PIN CONNECTIONS

MAXIMUM RATINGS
Rating
Supply Voltage
Input Currents (lin + or lin -)
Output Current
Power Dissipation (TA = +25·C)
Derate above TA = + 25·C
Operating Ambient
Temperature Range
LM2900

LM2900J
Symbol LM3900 MC3301

MC3401

VCC

+32

+28

+18

V

lin

5.0

5.0

5.0

rnA

10

50

50

50

rnA

PD
1/R9JA

625
5.0

625
5.0

625
5.0

rnW
mWrC

-40 to
+85

o to +70

·C

TA.

-40 to
+85
o to +70

LM3900
Storage Temperature Range

Unit

Tstg

-65 to
+150

-

-

-

-

-65 to
+150

-65 to
+150

NONINV
Input 1

VCC

NONINV
Input 2

NONINV
Input 3

INV
Input 2

NONINV
Input 4

Out
2
Out
1

INV
Input 4
Out
4

INV
Input 1

Out
3
INV
Input 3
(Top View)

·C

ORDERING INFORMATION
Device

Temperature
Range

LM3900D
MC3401D

O·C to +70·C

SO-14

LM3900N
MC3401P
LM2900N
MC3301P

MOTOROLA LINEAR/INTERFACE DEVICES
2-189

Package

-40·C to +85·C

Plastic
DIP

II

II

MC3301, MC3401, LM2900, LM3900

ELECTRICAL CHARACTERISTICS (VCC = + 15 V, TA = + 25'C unless otherwise noted)
LM2900

LM3900

MC3301

MC3401

Symbol Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit

Characteristic
Open-Loop Voltage Gain
f = 100 Hz, RL = 6.0 k
TA = Tlow to Thigh (Notes 1, 2)

AVOL

Input Resistance (Inverting Input)

ri

Output Resistance

ro

Input Bias Current (Inverting Input)
TA = Tlow to Thigh (Note 1)

liB

Slew Rate (CL = 100 pF, RL = 2.0 k)
Positive Output Swing
Negative Output Swing

SR

Unity Gain Bandwidth

BW

- 1.2 2.0 - 1.2 2.0
- - - - - - - - 1.0 - - 1.0 - - 1.0
- B.O - - B.O - B.O
50 200 50 200 50
- - - - - - - - 0.5 - - 0.5 - - 0.5
- 20 - - 20 - - 20
- 4.0 - - 4.0 - - 4.0

VOH
VOL

13.5 14.2
13.5 14.2 13.5 14.2 13.5 14.2 - 0.03 0.2 - 0.03 0.2 - 0.03 0.2 - 0.03 0.2

1.2

Output Voltage Swing (Note 7)
VCC= +15V,RL=2.0k
Vout High (lin - = 0, lin + = 0)
Vout Low (lin - = 10 pA, lin + = 0)
VCC = Maximum Rating, RL = ""
Vout High (lin - = 0, lin + = 0)

2.0

- 1.2 2.0 - O.B - - 0.1 1.0 - - B.O 300 50 300
- - - 500

V/mV

MU
kU
nA

V/p.S

-

-

-

0.5
20

-

-

-

4.0

-

MHz
V

VOH

Output Current
Source
Sink (Note 3)
Low Level Output Current
lin - = 5.0 pA, VOL = 1.0 V

-

-

29.5

-

-

-

29.5

-

-

25.5

-

-

15.5

-

6.0 10
0.5 0.87
- 5.0

-

-

5.0 10
0.5 0.87
5.0
-

-

5.0 10
0.5 0.87
5.0
-

-

-

6.9
7.8

10
14

-

6.9
7.B

10
14

55

-

55

-

Isink
10L

6.0 10
0.5 0.87
- 5.0

Supply Current (All Four Amplifiers)
Noninverting Inputs Open
Noninverting Inputs Grounded

IDO
IDG

-

6.9
7.B

10
14

-

6.9
7.8

10
14

Power Supply Rejection (f = 100 Hz)

PSRR

-

55

-

-

55

-

Isource

Mirror Gain (TA = Tlow to Thigh; Notes 1, 4)
lin+ = 20 pA
lin+ = 200 pA

Ai

!>. Mirror Gain (TA = Tlow to Thigh; Notes 1,4)
20 pA .. lin + .. 200 pA

!>.Ai

-

-

-

mA

-

mA

dB
pA

0.90 1.0
0.90 1.0

-

1.1 0.90 1.0
1.1 0.90 1.0

2.0

5.0

Mirror Current (TA = Tlow to Thigh; Note 1)

-

10

500

Negative Input Current (Note 6)

-

1.0

-

-

1.1 0.90 1.0
1.1 0.90 1.0

2.0

5.0

10

500

1.0

-

-

1.1 0.90 1.0
1.1 0.90 1.0

2.0

5.0

-

10

500

1.0

-

1.1
1.0

2.0

5.0

-

10

500

pA

-

1.0

-

mA

%

NOTES:
I. Tlow

= -4O"C for LM2900, MC3301
= O'C for LM3900, MC3401

Thigh

= + 85'C for LM2900, MC3301
= + 70'C ffor LM3900, MC3401

2. Open·loop voltage gain is defined 8S voltage gain from the inverting input to the output.

3. Sink current is specified for linear operation. When. the device is used as a comparator (non-linear operation) where the inverting input is overdriven,
the sink current (low level output current) capability is typically 5.0 mA.
4. This specification indicates the current gain of the current mirror which is used as the noninverting input.
5. Input Vee match between the noninverting and inverting inputs occurs for a mirror current (noninverting input current) of approximately 10 pA.
6. Clamp transistors are included to prevent the input voltages from swinging below ground more than approximately - 0.3 volts. The negative input
currents that may result from large signal overdrive with capacitive input coupling must be limited externally to values of approximately 1.0 rnA.
Negative input currents in excess of 4.0 mA will cause the output to drop to a low voltage. These values apply for anyone of the input terminals.
If more than one of the input terminals are simultaneously driven negative, maximum currents are reduced. Common-mode biasing can be used
to prevent negative input voltages.
7. When used as a noninverting amplifier, the minimum output voltage is the Vee of the inverting input transistor.

MOTOROLA LINEAR/INTERFACE DEVICES
2-190

MC3301, MC3401, LM2900, LM3900

TYPICAL CHARACTERISTICS
(Vcc = + 15 Vdc, RL = 5.0 kfl, TA = +25'C
[each amplifier] unless otherwise noted.)
FIGURE 1 -

FIGURE 2 - OPEN·LOOP VOLTAGE GAIN
versus SUPPLY VOLTAGE

OPEN-LOOP VOLTAGE GAIN versus FREQUENCY

o

2500

~

"
'"'w"
'"""
~

'"~'"

40

/'

--

............

/

~ 1000

>

a

~

10

"aw

10

~

V
V

1500

~

3D

a
a

~

2000

"

.......

g

Z
~

0
100

10k

1.0 k

100 k

1.0M

500

o
o

10M

3.0

6.0

9.0

FREQUENCY 1Hz)

FIGURE 3 -

12

15

18

21

24

FIGURE 4 -

OUTPUT RESISTANCE versus FREQUENCY

lol

o (NONINVEATING INPUTS GAOUNDEDI.~

--

....V

..v1:.-r-

w
u

~1.0 k
~

~IOO
/ ' V"

'\

~

30

SUPPLY CURRENT versus SUPPLY VOLTAGE

0

10 k

'"

27

SUPPLY VOLTAGE IVde)

J

(NONINVEATING INPUTS OPEN)

,/
, ::..----

f---

~
100
0.5 k 1.0 k

5.0 kID k

500 k 1.0 M

50 kl00 k

o
o

5.0 M

3.0

6.0

FIGURE 5 -

LINEAR SOURCE CURRENT versus
SUPPLY VOLTAGE

FIGURE 6 -

:g

~1 6

~

g;

....-

I2

"..-

~

:::> 8. 0

g

--

V

I-

5~

12

15

18

21

V

VOH

<

....-

1 80

0

I-

~

600

""
~

400

V


u

9.0

SUPPLY VOLTAGE IVde)

FREOUENCY

18

11

24

27

30

SUPPLY VOLTAGE IVde)

SUPPLY VOLTAGE IV de)

MOTOROLA LINEAR/INTERFACE DEVICES
2-191

27

30

II

II

MC3301, MC3401, LM2900, LM3900

OPERATION AND APPLICATIONS
BASIC AMPLIFIER

pled linear operation at the output. The sink current of
the device can be forced to exceed the specified level
by keeping the output dc voltage above = 1.0 volt resulting in an increase in the distortion appearing at the
output. Closed-loop stability is maintained by an on-thechip 3-pF capacitor shown in Figure 10 on the following
page. No external compensation is required.

The basic amplifier is the common emitter stage
shown in Figures 7 and 8. The active load 11 is buffered
from the input transistor by a PNP transistor, 04, and
from the output by an NPN transistor, 02. 02 is biased
Class A by the current source 12' The magnitude of 12
(specified Isink) is a limiting factor in capacitively cou-

RGURE 7 - BLOCK OIAGRAM

Vee ,:')~lJishig(;st~~rV

Operational
Amplifier #3

Operational
3 Amplifier #1

14

7

,",:,<,~"~,

Gn~

'

Multiple emitter fS) transistor -

one emitter connected to each input.

approximately equal to lin + also. In operation this current flows through an external feedback resistor which
generates the output voltage signal. For inverting applications, the noninverting input is often used to set
the dc quiescent level at the output. Techniques for
doing this are discussed in the "Normal Design Procedure" section.

A noninverting input is obtained by adding a current
mirror as shown in Figure 9. Essentially all current which
enters the noninverting input, lin + , flows through the
diode CR1. The voltage drop across CRl corresponds
to this input current magnitude and this same voltage
is applied to a matched device, 03. Thus 03 is biased
to conduct an emitter current equal to lin + . Since the
alpha current gain of 03 = 1, its collector current is

FIGURE 9 - OBTAINING A NONINVERTING INPUT

FIGURE 8 - A BASIC GAIN STAGE

(-)

Inputs
(+)

Output

~
CR1

MOTOROLA LINEAR/INTERFACE DEVICES
2-192

MC3301, MC3401, LM2900, LM3900

OPERATION AND APPLICATIONS

(continued)

BIASING CIRCUITRY
The circuitry common to all four amplifiers is shown
in Figure 11. The purpose of this circuitry is to provide
biasing voltage for the PNP and NPN current sources
used in the amplifiers.
The voltage drops across diodes CR2, CR3 and CR4
are used as references. The voltage across resistor R1
is the sum of the drops across CR4 and CR3 minus the
VBE of 08. The PNP current sources (05, etc.) are set
to the magnitude VBE/R1 by transistor 06. Transistor

07 reduces base current loading. The voltage across
resistor R2 is the sum of the voltage drops across CR2,
CR3 and CR4, minus the VBE drops of transistor 09 and
diode CR5 thus the current set is established by CR5 in
all the NPN current sources (010, etc.). This technique
results in current source magnitudes which are relatively independent of the supply voltage. all (Figure
7) provides circuit protection from signals that are negative with respect to ground.

FIGURE 10 - A BASIC OPERATIONAL AMPLIFIER

FIGURE 11 - BIASING CIRCUITRY

10 k

(-I

I.

' . . . _--+--o Output

II~
R2

CR2

Inputs

CR3

(+1
CR1

CR4

NORMAL DESIGN PROCEDURE
1. Output a-Point Biasing
Choosing the feedback resistor, Rf, to be equal to
V. Rr will now bias the amplifier output dc level

A. A number of techniques may be devised to bias
the quiescent output voltage to an acceptable
level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing; as shown in Figures 12 and 13 (see the first page of this
specification). The high impedance of the collector of the noninverting "current mirror" transistor
helps to achieve the maximum loop gain for any
particular configuration. It is desirable that the
non inverting input current be in the 10 "A to 200
"A range.

to approximately

¥.

This allows the maximum

dyna'mic range of the output voltage.
C. Reference Voltage other than VCC (see Figure 14)
The biasing resistor Rr may be returned to a voltage (V r ) other than VCC' By setting Rf = Rr, (still
keeping lin + between 10 "A and 200 "AI the
output dc level will be equal to Vr' The expression
for determining VOdc is:
V

B. VCC Reference Voltage (see Figures 12 and 131
The noninverting input is normally returned to
the VCC voltage (which should be well filtered)
through a resistor, Rr, allowing the input current,
lin + , to be within the range of 10 "A to 200 "A.

Odc

=

(Ai)(VrHRf)
Rr

+

(1

-

Rf A')
A;
I

"-

'i'

where  is the VBE drop of the input transistors
(approximately 0.6 Vdc @ + 25°C and assumed
equal). Ai is the current mirror gain.

MOTOROLA LINEAR/INTERFACE DEVICES
2-193

•

MC3301, MC3401, LM2900, LM3900

FIGURE 13 - NONINVERTING AMPLIFIER

FIGURE 12 - INVERTING AMPLIFIER

II

Rf
510k

AV =

-~

Rf

Ri

.--_5",1",0...
k_-, AV

=

for...!..
we '" R'I
0.1/LF
Vin "--?'I-'\N'r--o--i
C Ri
51 k

~'t'FVO
AV

+15V

=

10 BW

=

150 kHz

=

5:E;:;r- Vo
110k

The lower corner frequency is determined by the
coupling capacitors to the input and load resistors. The upper corner frequency will usually be
determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB
per decade, bandwidth will typically be 400 kHz
with 20 dB of closed-loop gain or 40 kHz with 40
dB of closed-loop gain. The exception to this occurs at low gains where the input resistor selected
is large. The pole formed by the amplifier input
capacitance, stray capacitance and the input resistor may occur before the closed-loop gain intercepts the open-loop response curve. The inverting input capacity is typically 3.0 pF.

~
Ri

FIGURE 14 - INVERTING AMPLIFIER WITH
ARBITRARY REFERENCE

FIGURE 15 - INVERTING AMPLIFIER WITH
Ay = 100 AND Vr = VCC

Rf

c·

+

510 k

Ri

Vin ~1--1\N1r-_.o..--I
>-D-~_VO

T

0.1 /LF
Vin ~I-JVV'Ir--+--O--!
5.1 k

0.1 /LF

-= 10 k

1.0 M

Rr

Vr

250 kHz

+15V

2. Gain Determination
A. Inverting Amplifier
The amplifier is normally used in the inverting
mode. The input may be capacitively coupled to
avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc
voltage across the load. Note that when the output is capacitively coupled to the load, the value
of Isink becomes a limitation with respect to the
load driving capabilities of the device. The limitation is less severe if the device is direct coupled.
In this configuration, the ac gain is determined
by the ratio of Rf to Ri, in the same manner as for
a conventional operational amplifier:
Av

=

BW
0.1/LF
Vin ~I--">NI._'-O--l
Ri
510 k

(Rf)(Ai)
'" 1
26
Ri + lin + (rnA)

fL = 300 Hz, fH
Ay = 100

'Select for low
frequency response.

MOTOROLA LINEAR/INTERFACE DEVICES

2-194

=

50 kHz
•

VO

MC3301, MC3401, LM2900, LM3900

A

B. Noninverting Amplifier
These devices may be used in the noninverting
mode (see Figure 13). The amplifier gain in this
configuration is subject to the current mirror gain.
In addition, the resistance of the input diode must
be included in the value of the input resistor. This
Iy 'in
26+
.
resistance .IS approximate

0

_
v -

(Rf)(Ai)
26
Ri

+ 'in + (mA)

The bandwidth of the noninverting configuration
for a given Rf value is essentially independent of
the gain chosen. For Rf = 510 kO the bandwidth
will be in excess of 200 kHz for noninverting gains
of 1, 10, or 100. This is a result of the loop gain
remaining constant for these gains since the input
resistor is effectively isolated from the feedback
loop.

h ms, were
h

'in + is input current in milliamperes. The noninverting ac gain expression is given by:

TYPICAL APPLICATIONS

FIGURE 16 - TACHOMETER CIRCUIT
Vcc = +12V
Magnetic Pickup
Hysterisis Amplifier

130

Monostable Multivibrator

Pulse Averaging
~

r-~~10¥0~~r--------1~--------~r---------~~R~1~------------------~0.1 ~F
k

MSD6100
or equiv

100 k

Magnetic
Pickup

4.7 k

100 k

Output

Cl
0,01 ~F

MSD6100
or equiv

10 k

Hysterisis Voltage for Switching
A'R2
VH =
(VCC - 1.6)

Timing Interval: t

= 0.7 Rl

Cl

-t-

Vp_p "

FIGURE 17 - VOLTAGE REGULATOR

Zl

FIGURE 18 -

LOGIC "OR" GATE

+VCC

R2

+ VCC

= + 15 Vdc

150 k
.....--"W'\r---o-'1
75 k

A _-"IN'v....,.-<>-j
75 k

01

B ....-V\A.-

-0--_"0 Q~-~< >--<>--......- Vo Reset Set FIGURE 23 - POSmVE-EOGE OIFFERENTIATOR FIGURE 24 - NEGATIVE-EOGE OIFFERENTIATOR Output Rise Time = 0.22 ms Input Change Time Constant = 1.0 ms O.OOI/LF O.OOI/LF 100 k 100 k flVin flVin h 0.002/LF T - -7 >-C>---<~"'VO 51k ¥I 0.002/LF ...:)f--+o-'VVV--0--4 >--<>-.....- 150 k Vcc = +15Vdc VO(dc) = 7.0 Vdc Output Rise Time = 0.22 ms Input Change Time Constant = 1.0 ms MOTOROLALINEAR/lNTERFACE DEVICES 2-196 Vo MC3301, MC3401, LM2900, LM3900 FIGURE 25 - AMPLIFIER AND DRIVER FOR A SO-OHM LINE 510 k 51 k Vin --11-'VV'.....-H>--l 0.1/LF 10 20/LF ':~TVO 1.2 M oreqUl~ AV ~ 10 Vo ~ 6.0 V(p_p) r u +15V FIGURE 26 - BASIC BANDPASS AND NOTCH FILTER R C 390 k R1 Cx 10 TBP Vin ~1--1"""'vv-"""-o--1::'" R2 TBP ~ Center Frequency Gain TN ~ Passband Notch Gain wO~..2.. R1 ~ RC OR R1 R2~~ R2 TBP R3 ~ TN R2 ~tCh C1 FIGURE 27 - BANDPASS AND NOTCH FILTER 62 k 0.005/LF 0.005/LF 100 k 300 k 4 300 k Vin 9 120 k 100 k VCC I 100 k 62 k 300 k VCC VCC (Pin 14) ~ + 12 Volts Ground - Pin 7 Center Frequency 500 Hz 300 k 11 o.1 /LF O~5 Bandpass Gain 300 k ~ 1 Notch 300 k 12 Bandpass Output ... Pin 4 Notch Output ----+ Pin 10 VCC MOTOROLA LINEAR/INTERFACE DEVICES 2-197 MC3301, MC3401, LM2900, LM3900 II TYPICAL APPLICATIONS (continued) FIGURE 28 - VOLTAGE REGULATOR V 1N3824 4.3 V Z or equiv Vee 10 Yo = YZ + O.6Ydi: NOTE 1: R is used to bias the zener. NOTE 2: If the Zener Te is positive, and equal in magnitude to the negative Te of the input to the operational amplifier (=2.0 mVrC), the output is zeroMTe. A 7.0 Volt Zener will give approximately zero-Teo R FIGURE 29 - ZERO CROSSING DETECTOR Vee=+15V 1.0 M 1.0 M 510 k 510 k Magnetic Pickup 510 k 510 k Input~ Output >-<>-.... Output MOTOROLA LINEAR/INTERFACE DEVICES 2-198 LnJlJ OV OV MC3302 ® For Specifications, See LMl39 Data. MC3403 MC3503 MC3303 MOTOROLA Specifications and Applications Information QUAD LOW POWER OPERATIONAL AMPLIFIERS QUAD DIFFERENTIAL The MC3503 is a low-cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular MC1741. However, the MC3503 has several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one third of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. • Short Circuit Protected Outputs • Class AB Output Stage for Minimal Crossover Distortion INPUT OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUIT ~ :r~(in¥~ • True Differential Input Stage # • Single Supply Operation: 3.0 to 36 Volts • Split Supply Operation: :!: 1.5 to :!: 18 Volts 14 • Low Input Bias Currents: 500 nA Max L SUFFIX CERAMIC PACKAGE CASE 632-08 DSUFFIX ,," 1 PLASTIC PACKAGE CASE 751A-02 SO-14 • Four Amplifiers Per Package • Internally Compensated • Similar Performance to Popular MC1741 • Industry Standard Pinouts Vt~llr--<> 0- &l 14 1 Vee ee ,>-- -<> 2>-- -<> 3>-- -<> ~ 4 ---;4;>--- -<> hVt01BV -=- 1.5 V to 18 V PIN CONNECTIONS Out 1 Out 4 VEE ... VEE, Gnd MAXIMUM RATINGS Symbol Value VCC VCC VEE 36 +18 -18 Input Differential Voltage Range (11 VIDR ±36 Vdc Input Common Mode Voltage Range (1) (2) V,CR ±18 Vdc Storage Temperature Range Ceramic Package Plastic Package Operating Ambient Temperature Range Tstg Rating Inputs Inputs 1 4 Inputs Inputs 2 3 Unit Vdc Power Supplv Voltages Single Supply Split Supplies °c -65 to +150 -55 to +125 (Top View) -55 to +125 o to +70 -40 to +85 ORDERING INFORMATION °c TJ 175 150 (1) Split Power Supplies. (2) For Supply Voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. Type MC3303L MC3303P MC3403D MC3403L MC3403P MC3503L MOTOROLA LINEAR/INTERFACE DEVICES 2-199 Out 3 Out 2 °c TA MC3503 MC3403 MC3303 Junction Temperature Ceramic Package Plastic Package PSUFFIX PLASTIC PACKAGE CASE 646-06 (MC3403 and MC3303 Only) SPLIT SUPPLI ES SINGLE SUPPL Y 3.0 . • Temperature Range Package - 40"C to + 85°C -40"C to +B5°C O°Cto +70°C O°C to +70"C QOC to +70°C - 55°C to + 125°C Ceramic DIP Plastic DIP SO-14 Ceramic DIP Plastic DIP Ceramic DIP MC3403, MC3503, MC3303 ELECTRICAL CHARACTERISTICS (Vee" +15 V. VEe .. ~16 V for MC3603, MC3403: Vee - +14 V. VeE" Gnd for MCC3303. T A .. 2SOC unless otherwiH noted,) MC3&03 II Symbol Input Offset Voltage T A = Thigh to Tlow (1) Input Offset Current T A '" Thigh to Tlow Large Signal Open-loop Voltage Gain VO=±10V,AL=2.0kn. T A = Thigh to Tlow Input Bias Current T A = Thigh to Tlow Output Impedance f = 20 Hz Min Ty. 2.0 MC3403 Mox Ty. 2.0 Min 5.0 6.0 ',0 30 50 200 30 MC3303 Mox Min 10 12 50 200 Ty. 2.0 30 Max Unit 8.0 10 mV 75 V/mV 50 25 ',8 Input Impedance f = 20 Hz 'i nA 250 AVOL 200 -200 -300 75 200 20 15 -500 -1500 -200 20 15 200 -200 -500 -800 -500 nA -1000 75 n 0.3 1.0 0.3 1.0 0.3 1.0 Mn ±12 ±lO :t10 t13.S ±13 ±12 :!:10 ±10 tl3.S ±t3 +12 +10 +10 +12.5 +12 75 v Output Voltage Range RL=10k.!1 RL = 2.0kO Rl = 2.0 kn, T A = Thigh toT,ow Input Common-Mode Voltage Range +13 V -VEE +13.5V-VEE CMRR Common-Mode Rejection Ratio +13 V-VEE +13.5V -VEE 90 2.8 4.0 2.8 7.0 ±to ±30 ±45 ±20 ±45 30 30 150 150 50 30 30 50 10 10 10 8Wp 9.0 9.0 9.0 Small·Signal Bandwidth AV = 1, RL = 10kn,Vo =50mV 8W 1.0 1.0 1.0 Slew Rate AV = 1, Vi = -10V to +10V SA 70 v H2V-VEE +12.5V-VEE 70 90 70 90 ±10 ±30 dB AS'" 10 kO Power Supply Current (Va = 0) Rl=oo Individual Output Short·Circuit Current 121 Positive Power Supply Rejection Ratio PSRR+ Negative Power Supply Rejection Ratio PSAA- Average Temperature Coefficient of Input Offset Current 150 150 2.8 30 -=- 7.0 mA 150 IlVN mA 50 T A = Thigh to Tlow Average Temperature Coefficient of Input Offset Voltage T A = Thigh to Tlow Power Bandwidth AV'" 1, RL = 2.0 kn, Vo = 20 V(p-pl. THO = 5% 0.6 0.6 0.6 AiseTime AV'" 1, RL '" 10 kU, Va'" 50 mV 0.35 0.35 0.35 Fall Time AV = t, AL = 10 kn, Va = 50 mV 0.35 0.35 0.35 kH, V!IlS "' Overshoot OS 20 20 20 % AV= 1,Al = 10 kn, V o = 50mV Phase Margin AV = " RL = 2.0 kn,cL" 200pF Om 60 60 60 Degrees 1.0 1.0 1.0 % Crossover Distortion (Vin = 30mVp·p, V out '" 2.0 Vp·p, f'" 10kHzJ (11 Thigh = 125°C for MC3503, 70°C for MC3403, 85°C for MC3303 Tlow '" _55°C for MC3503, OOC for MC3403, _40°C for MC3303 ELECTRICAL CHARACTERISTICS (VCC = 50 V, VEE = Gnd, T A = 25°C unlets otherwise noted MC3603 Typ Max Max Unit 2.0 5.0 2.0 10 10 mV Input Offset Current 110 30 50 30 50 75 nA Input Bias Current liB -200 -500 -200 -500 -500 AVOL Power Supply Rejection Ratio PSRA Output Voltage Range (3) Al = 10 kn, Vec =5.0V RL = 10kO, S.OV ';;Vee';;30V Power SupplV Current 10 200 3.3 Vee- 2.a Min MC3303 Max VIO large-5ignal Open· Loop Voltage Gain RL=2.0kn Min MC34Q3 Typ Input Offset Voltage Characteristic Symbol I 10 200 3.5 3.3 Vee-1.7 Vee-2.a Min Typ 10 200 3.5 3.3 3.5 Vce-1.7 Vee-2.a Vee- 1.7 150 150 150 ICC IJVIV Vp·p VOA Channel Separation f .. 1.0 kHz to 20 kHz (Input Aeferenced) nA V/mV 2.5 4.0 -120 2.5 7.0 -120 (21 Not to exceed maximum package power dlS1lpatlon. (31 Output will.wing to ground MOTOROLA LINEAR/INTERFACE DEVICES 2-200 2.5 -120 7.0 mA d8 MC3403, MC3503, MC3303 Bias Circuitry Common to Four Amplifiers CIRCUIT SCHEMATIC Vee INVERTER PULSE RESPONSE 20p,s/di ..... CIRCUIT DESCRIPTION the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage_ The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because class AS operation is utilized. Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. The MC3503/3403/3303 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter 03 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Qn. Another feature of this input stage is that the input common-mode range can include MOTOROLA LINEAR/INTERFACE DEVICES 2-201 • MC3403, MC3503, MC3303' TYPICAL PERFORMANCE CURVES lEI FIGURE 1 - SINE WAVE RESPONSE FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE 120 I 0 ,; ~ > ! ...... r-., J tg=115 VEE = -15 V TA=25OC 0 '"ci t"O " 0 " 0 " 0 -2 0 -- 1.0 100 10 ONate Class AB output stage 1.0k 10k 100 k 1.0 M t, FREQUENCY 1Hz) f"Jroduces dlstortlon!css $lne""8ve 50,us/div. FIGURE 3 - POWER BANOWIDTH 0 1 5 o 0 ~ :fi 15 g 10 ~ 5, 0 :; ...~ o 6 > "\ 1111 i~ \, = ~ w FIGURE 4 - OUTPUT SWING versus SUPPLY VOLTAGE 1111111 + -15V ~ rs o L .~ r-oVO L w ~10k '"'"~ '"'" :; / 20 V w V o > I' ~ 10 TA = 25°C 0 1.0 M 100 k V /' ~ > 10 k L ~ o !-- I-- 0 -5. 0 1.0k TA = 25°C 30 ~ 2.0 t, FREQUENCY 1Hz) 4.0 6.0 8.0 10 12 14 16 18 20 VCC AND VEE, POWER SUPPLY VOLTAGES IVOLTS) FIGURE 5 - INPUT BIAS CURRENT versus TEMPERATURE FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE V~C= 15IV._ 300 VEE=-15V TA=250C- -- t-- -- r--- 0 0 " r-., " 0 0 -75 -55 -35 -15 5.0 25 45 65 85 105 150 125 2.0 4.0 6.0 10 12 14 16 VCC AND IVEE), POWER SUPPLY VOLTAGES (VOLTS) T, TEMPERATURE 10C) MOTOROLA LINEAR/INTERFACE DEVICES 2-202 18 20 MC3403, MC3503, MC3303 APPLICATIONS INFORMATION FIGURE 8 - WIEN BRIDGE OSCILLATOR FIGURE 7 - VOLTAGE REFERENCE 50 k VCC 10 k R2 10 k V ref ......-'lM,..-4>--Q-j I>-o-+-"VO f O =21T'RC 10 k 1 Rl Vref ""2 Vee For Rl VO=Rl+R2 fo=lkHz R = 16 kl1. C C'" 0.01 J.LF R 1 Vo ="2VCC FIGURE 9 - HIGH IMPEOANCE OIFFERENTIAL AMPLIFIER FIGURE 10 - COMPARATOR WITH HYSTERESIS 1 -R .1 C R A2 AI Vref "'-'VI{I,-+--O--;+'/4 MC34Q3 Vin . .----o-l 1 -A C .2 VinL A = A 1:' R2 VinH~ (VOL - Vref) + Vref Rl :'R2 (VOH - Vref) + Vref eo = C (1 + a + b) (e2 - e1) H Rl:'R2 (VOH - VOL) = FIGURE 11- BI-OUAD FILTER A A 100k = QR Rl Vin Cl C A2 ----l1t--..--.JVV\"'---'--<>-1 Rl R2=TSp :9-0-+-""",..,..-4-<..., 1/4 100 k MC3403~-o~-"",,"""-4~'-; R3 Cl 1 Vref = 2" Vee = TN R2 = 10 C fo=lkHz Q = Bandpass Output Vref ~3 10 Tap = 1 AI TN"" 1 R2 Cl ----tE-----e Notch Output f>-o.... Vref TBP = Center C = 0.001 /IF AI = 1.6 Ml1. Frequency Gain TN = Passband Notch Gain MOTOROLA LINEAR/INTERFACE DEVICES 2-203 A= 160kl1. A2 A3 = 1.6 Ml1. = 1.6 Ml1. MC3403, MC3503, MC3303 FIGURE 12 - FUNCTION GENERATOR II V,ef =~ Triangle Wave Output VCC R2 300k V ref·--<:>--l+'/4 R3 MC3401:j>-<:>-+--'7"'5"'kv-+--~+ 1/4 R1 MC3403!>-o-....._ Rf f=~1+RC if A3=A2R1 4CRfR1 R2+A1 FIGURE 13 - MULTIPLE FEEOBACK BANDPASS FILTER t. 1 Vi" VCC A3 Cc M~~03 ~Vo Co A2 Co = 10 C 1 Vref == Given '2 Vee fo"" Center Frequency A(f o ) = Gain at Center Frequencv· Choose Value fa. C Then: o R3=-1r fa C A3 2 Alfol R1=--R1 R5 A2=40 2 A1_A5 For less than 10% error from operational amplifier 00fO<0.1 BW Where fa and BW are expressed in Hz. If source impedance varies. filter may be preoeded with voltage follower buffer to stabilize filter parameters. MOTOROLA LINEAR/INTERFACE DEVICES 2-204 Square Wave Output ® MC3405 MC3505 MOTOROLA DUAL OPERATIONAL AMPLIFIER AND DUAL COMPARATOR The MC3405/3505 contains two differential-input operational amplifiers and two comparators, each set capable of single supply operation. This operational amplifier-comparator circuit fulfills its applications as a general purpose product for automotive and consumer circuits as well as an industrial building block. The MC3405 is specified over the commercial operating temperature range of 0 to + 70°C, while the MC3505 is specified over the military operating range of - 55 to + 125°C. II DUAL OPERATIONAL AMPLIFIER AND DUAL VOLTAGE COMPARATOR SILICON MONOLITHIC INTEGRATED CIRCUIT • Operational Amplifiers Equivalent in Performance to MC3403/3503 • Comparators Similar in Performance to LM339/139 • Single Supply Operation: 3.0 to 36 Volts • Split Supply Operation: ± 1.5 to ± 18 Volts • Low Supply Current Drain • Operational Amplifiers Are Internally Frequency Compensated ~ • Comparators TTL and CMOS Compatible li"~~ij : tV'o C] L SUFFIX CERAMIC PACKAGE CASE 632-08 SPLIT SUPPLIES VCC -=- 1.5 V 4 lav to 18 V VEE PIN CONNECTIONS Out 1 ,.,."' Out4 { }".... Vcc P SUFFIX PLASTIC PACKAGE CASE 646-06 VEE/Gnd { }",,", ,."., , ORDERING INFORMATION Device Temperature Range Out2 MC3405L MC3405P (Top View) MC3505L MOTOROLA LINEAR/INTERFACE DEVICES 2-205 o to +70 o C o to +70 o C -55 to +12S o C Package Ceramic DIP Plastic DIP Ceramic DIP MC3405, MC3505 OPERATIONAL AMPLIFIER SECTION MAXIMUM RATINGS Symbol Value Unit VCC VCC,VEE 36 ±18 Vdc Input Differential Voltage Range VIDR ±36 Vdc Input Common Mode Voltage Range VICR ±18 TA -55 to +125 o to +70 Vdc uc T stg -65 to +150 -55 to +125 °c TJ 175 150 °c Rating II Power Supply Voltage-Single Supply Split Supplies Operating Ambient Temperature Range MC3505 MC3405 Storage Temperature Range-Ceramic Package Plastic Package Operating Junction Temperature Range-Ceramic Package Plastic Package ELECTRICAL CHARACTERISTICS IVCC = 5.0 V, VEE = Gnd, TA = 25°C unless otherwise noted I MC3405 MC3505 Symbol Min Typ Max Min Typ Max Unit Input Offset Voltage VIO - 2.0 5.0 2.0 10 rnV Input Offset Current 110 - 30 50 30 50 nA Input Bias Current lIB - -200 -500 - -200 -500 nA AVOL 20 200 - 20 200 - V/rnV Power Supply Rejection Ratio PSRR - - 150 - - 150 Output Voltage Range (Note 1) VOR IlV /V Vp-p Characteristic Large-Signal Open-Loop Voltage Gain IRL = 2.0 knl 3.3 IRL = 10 kn, VCC = 5.0 VI IRL = 10 kn, 5.0 V .;; VCC';; 30 VI Power Supply Current (Notes 2 and 3) Channel Separation Vce- 2.O 3.5 Vee- t .7 - 3.3 3.5 - Vee- 2•O Vee- t .7 - - ICC - 2.5 4.0 - 2.5 7.0 rnA - - -120 - - -120 - dB 2.0 10 12 rnV 15 - IlV / u C - - 50 200 nA -200 -500 -800 nA - - - f = 1.0 kHz to 20 kHz (Input Referenced) ELECTRICAL CHARACTERISTICS IVCC = +15 V VEE = -15 V TA· 25 0 C unless otherWISe noted I Input Offset Voltage 2.0 AVIOl I{\ \ on .; .I .I 120 V V =V ~I +1'5 ~ VEE = -15V TA = 25°e I"-r--. 0 I' 0 \ \ v6e l 0 I' I If' I"~ \ II FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE .' ,lao \ V ,....... , 0 \) ....... , 0 I' ,; 0 ~ ~~~ > E o ....... ~ ~ ~ 1ilio...oi ~ .... -20 1.0 100 10 '"Note Class AS output stage produces distortion less sinewave. on 1.0k 10k I. FREQUENCY (Hz) lOOk 1.0M 50/-tS/div. FIGURE 3 - POWER BANDWIDTH 30 I I 5 ~ ~ 20 \\ 2: w ~ ~ ~ ~ 5 o <3 > 15 5. 0 • ·15 V f--o Vo 10 k ./ ,/ V /' , 100 k 1.0M 2.0 I. FREQUENCY (Hz) I -15 5.0 25 45 8.0 10 12 14 16 18 20 65 85 -.. " 105 " 0 150 -35 6.0 0 -- -55 4.0 FIGURE 6 - INPUT BIAS CURRENT .ersusSUPPLY VOLTAGE -t- -75 ./ 1, Vee = +15V _ VEE = -15 V TA = 25°e - 300 o L' VCC ANO IVEEI POWER SUPPLY VOLTAGES (VOLTS) FIGURE 5 - INPUT BIAS CURRENT versus TEMPERATURE 0 25°C /' =10k - 0 ~ 0 I TA ~ 25°C -5.0 1.0 k TA .1111 .~ : ", 10 FIGURE 4- OUTPUT SWING versus SUPPLY VOLTAGE 1111 125 o 2.0 4.0 6.0 10 12 14 16 VCC AND IVEEI. POWER SUPPLY VOLTAGES (VOLTS) T. TEMPERATURE (OC) MOTOROLA LINEAR/INTERFACE DEVICES 2·209 18 20 MC3405, MC3505 COMPARATOR SECTION TYPICAL PERFORMANCE CURVES FIGURE 8 - INPUT BIAS CURRENT FIGURE 7 - NORMALIZED INPUT OFFSET VOLTAGE II 20 0 1.40 Wu VCC"+15V 1.20 f - - VEe = God ~~ t-N c5 V 0 ./ ~ 1.00 >0 /' ~~ :5 I- L..-- ~ 0 / ~ 0.80 -l- f-- I - - TA" -5':'::- -r- =>0 ~z / 0.60 0.40 -60 0 -40 40 2.0 -20 6.0 7. 0 2.20 -;;( "- ....... _ '"~ ~ t- 5 .......... ~ r--...:. I-- Slope Can Be Either Polarity. 20 -20 40 60 BO 30 t-- r--T ~"-55~C 17 // ........ ' / / / V' \// / TA'S\moc /V V 0 :...~ 100 120 140 / 0 5 . 4.0 3. // 2.0 /, 1/ V / " - - I---- / VCC"+15VV E" Gn r 1- \// V /' 1.0 0 -40 26 .-- TA"25 0 e -I - - /V... 1 VCC" +15 V VEE = Gnd "'" "'" 22 1 i \ 6. 0 3 I'- 0 lB FIGURE 10 - OUTPUT SINK CURRENT versus OUTPUT VOL TAG E FIGURE 9 - NORMALIZED INPUT OFFSET CURRENT 1.BO 14 10 Vce. POSITIVE SUPPLY VOLTAGE IVOLTS) TA. AMBIENT TEMPERATURE laC) 0.2 0 -60 +125 0 C VEE" Gnd / 0 '-- '-- fr; Slope Can Be Either Polarity. / f-- P TA +25 0 C V t-", f-- ~ l- \ \ 200 TA. AMBIENT TEMPERATURE laC) 400 600 VOL. OUTPUT VOLTAGE ImV) 1000 BOO. APPLICATIONS INFORMATION FIGURE 11 - PULSE WIDTH MODULATOR SCHEMATIC AND WAVEFORMS ~1fUi1lh I!! I I . IT~ VT~~_I.~)_~~:i.!~I~.T~r ~:~::Ol V~~t_a_ge l-vc I ! VTL~ - Time C :·~;lli[r 150 k R2 5.0 k VEEJ---------------Lb===L~ . .=L--~========~-­ VEE Pulse Width VTH "'" ~VS(1 + VTL = ~VS(1 R2/R1) + VEE - R2/R1) + V,EE Duty Cycle in % Oscillator Frequency f "'" ~ 4R~~R2 MOTOROLA LINEAR/INTERFACE DEVICES 2-210 Time MC3405, MC3505 FIGURE 12 - WINDOW COMPARATOR • FIGURE 13 - SQUELCH CIRCUIT FOR AM OR FM C3 Vin cf,C2 VCC >-----I R1 High Pass Filter High Pass Filter Rt Given: A o • Q, Wo = 21TfO Choose: C "" Cl Calculate: = C2, A Convenient Value A2 '" w~c + (2Ao R3C4 >5 Tin Ri Squelch Threshold Adj Where: Tin is the period of vin 1) Switched Audio Stage C3=~ Q = Al = = High Frequency Gain Wo = Break Frequency Ao Quality Factor Ao Ao Qw o C(2A o + 1) Gain of Audio Stage Rt Aci = - Ai FIGURE 14 - HIGH/LOW LIMIT ALARM VCC 10 k 10 k R4 VCC 10 k R5 VIL'" Vee Rl VCC 1 k + ~; + R3 VIH = Vee Al ~2;2 ~3 R3 2.0 k Vo~ Oscillator If R4 = RS = R6 vi 2.0 k cra.01 J.lF f = O.72/RfC Vc 1 k As Shown, f = 2.2 kHz Camp 2 R3 Vo Will Oscillate If V IH Limit Detector Vo Will Be Low If VIL < < vi, or V I L vi > vi < VIH FIGURE 15 - ZERO CROSSING DETECTOR WITH TEMPERATURE SENSOR Zero Crossing Detector Vt=(VSEofQl) ( R4R+5 R5) 13 > 2~~E R1 and R2 control the switching voltage Temp R6 ,--'\'IVM"v-...... AS of the zero crossing detector ±Vs"" ±VD Rl;2 R2 Adjust ____ ,..~..."." 10 k Vee +VS_~ -v:=j21 R7 13' / R3 R4 o TA OS., Temperature Sensor MOTOROLA LINEAR/INTERFACE DEVICES 2-211 ~:: II II W~ II Time ~ MC340S, MC3S0S II FIGURE 17 - "NOR" GATE FIGURE 16 - LSTTL to CMOS INTERFACE WITH HYSTERESIS r--~--"""---"---<> Vee + 15 V A B e D 2.4 k 10 k I LSTTL I Level Shift CMOS VIL= 1.17V G= A+B+C+D VIH = 1.80 V *The same configuration may be used with an Op Amp if the 3 k resistor is removed. *The same configuration may be used with an Op Amp if the 3 k resistor is removed. MOTOROLA LINEAR/INTERFACE DEVICES 2-212 ® MC3430 thru MOTOROLA MC3433 QUAD DIFFERENTIAL VOLTAGE COMPARATOR/SENSE AMPLIFIERS The MC3430 thru MC3433 high-speed comparators are ideal for application as sense amplifiers in MOS memory systems. They are specified in a unique way which combines the effects of input offset voltage, input offset current, voltage gain, temperature variations and input common-mode range into a single functional parameter. This parameter, called Input Sensitivity, specifies a minimum differential input voltage which will guarantee a given logic state. Four variations are offered in the comparator series. The MC3430 and MC3431 versions feature a three-state strobe input common to all four channels which can be used to place the four outputs in a high-impedance state. These two devices use active-pull-up MTTL compatible outputs. The MC3432 and MC3433 are open-collector types which permit the implied AND connection. The MC3430 and MC3432 versionsare specified for a ±7.0 mV input sensitivity over the 0 to 70 0 C temperature range, while the MC3431 and MC3433 are specified for .±12 mV. QUAD HIGH SPEED VOLTAGE COMPARATORS SILICON MONOLITHIC INTEGRATED CIRCUITS ,-,L SUFFIX CERAMIC PACKAGE CASE 620-10 P SUFFIX PLASTIC PACKAGE CASE 648-06 CONNECTION DIAGRAM • Propagation Delay Time - 40 ns • Outputs Specified for a Fanout of 10 (MC7400 type loads) • Specified for all conditions of ±5% Power Supply Variations, Operating Temperature Range, Input Common-Mode Voltage Swing from -3.0 V to 3.0 V, and RS';;;; 200 ohms. FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORO BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103TYPE MEMORY OEVICES TRUTH TABLE MC3430 and MC3432 Strobe Output Input VID~7.0mV TA = Oto Off Off Jooe '" 7.0mV TA'" Oto JOoe Off L V,o'-7.0mV Z On Off e TRUTH TABLE MC3431 and MC3433 Strobe Out ut Input vlO ~'2 mV -z Off Off TA=Oto70oC .12 mV E;;.v1O Off MC3430 MC3432 Device MC3431 MC3433 MC3433 MC3431 VID "-12 mV TA'"'Oto70oC H L = Low Logic State H = High Logic Stete 4-k word by 16-bit memory system. MC3432 MC3431 I "' ... 12mV T A ~ 0 to 700C Only four devices are required for a MC3432 MC3430 -7.0mV'VIO T A = Ota 70 0 Device MC3430 On Off MC3433 Z"" Tnlrd (High Imp-.:ience) I .. Indeterminete Stete RS",200n MOTOROLA LINEAR/INTERFACE DEVICES 2-213 1.1 II MC3430 thru MC3433 MAXIMUM RATINGS (TA = 0 to +700C unless otherwise noted I Symbol Value Unit VCC, VEE ±7.0 Vdc Differential Mode Input Signal Voltage Range VIDR :1:6.0 Vdc Common-Mode Input Voltage Range VICR ±S.O Vdc Strobe Input Voltage VIISI 5.5 Vdc +7.0 Vdc Rating Power Supply Voltage Output Voltage (MC3432 - 33 versionsl Vo Junction Temperature Ceramic Package TJ 175 150 °c o to +70 °c -65 to +150 °c Plastic Package Operating Temperature Range TA T stg Storage Temperature Range RECOMMENDED OPERATING CONDITIONS (TA = Oto +700 C unless otherwise noted I Characteristic Symbol Min Typ Max Unit VCC VEE +4.75 -4.75 +5.0 -5.0 +5.25 -5.25 Vdc - Power Supply Voltages 10l - Differential-Mode Input Voltage Range VIDR -5.0 Common-Mode Input Voltage Range VICR -3.0 Input Voltage Range (any input to Ground) VIR -5.0 Output Load Current - 16 mA +5.0 Vdc +3.0 Vdc +3.0 Vdc ELECTRICAL CHARACTERISTICS (Vce ~ +5.0 Vdc, VEE ~ -5.0 Vdc, TA ~ ooe to + 70°C unless otherwise noted.) Typical Values are Measured at TA ~ 25°C MC3430, MC3431 Symbol Characteristic Input Sensitivity (See Discussion on Page 3) Min Typ MC3432, MC3433 Max Min Typ Max (RS .;; 200 Ohmsl (Common Mode Voltage Range = -3.0 V ~Vin ~3.0 V) {MC3430, MC3432 4.75';;VCC';;5.25V TA = 25°C -4.75 ;;>VEE ;;>-5.25 V MC3431, MC3433 Unit mV VIS - - :1:6.0 ±10 - - - :1:6.0 ±10 - - ±7.0 ±12 - - ±7.0 ±12 (Common Mode Voltage Range = -3.0 V ~Vin ~3.0 V) 4.75';; VCC ';;5.25 V T -4.75;;>YEE ;;>-5.25 V A 1 = 0 to 700C MC3430, MC3432 MC3431, MC3433 Input Offset Voltage 2.0 2.0 VIO mV (RS';; 200 Ohmsl Input Bias Current (VCC" 5.25 V, VEE MC3430, MC3432 MC3431, M C3433 VI I nput Offset Current 110 Voltage Gain Avol Strobe Input Voltage (Low State) Strobe Input Voltage (High Statel Strobe Current (Low State) (VCC = 5.25 V, VEE = -5.25 V, Vin = 0.4 VI Vin Vin = 2.4 VI = 5.25 VI Strobe Current (High State) (VCC (VCC = 5.25 = 5.25 V, VEE V, VEE = -4.75 VEE = 4.75 = 4.75 V, VEE = -4.75 V, Vo Output Current Short Circuit (VCC = 5.25 V, VEE - 20 20 40 40 1.0 - .1200 - ~A V/V VILISI VIH(SI - 0.8 - - 0.8 V 2.0 - - 2.0 - V Ill(SI - - -1.6 - - -1.6 mA - - 40 1.0 - - 40 1.0 mA VOH 2.4 - - - - - V VOL - - 0.4 - - 0.4 V ICEX - - - - - 250 ~A los -18 - -70 - - - mA loff - - 40 - - - ~A ICC lEE - 45 -17 60 -30 - 45 -17 60 -30 mA mA ~A = 5.25 VI = -5.25 VI High Logic level Supply Currents (VCC 1.0 1200 - = -5.25 VI Output Disable Leakage Current (VCC = 5.25 V, VEE 40 40 VI Output leakage Current (VCC 20 20 VI Output Voltage (Low State) = 16 mA, VCC = 4.75 V, - IIH(SI = -5.25 V, = -5.25 V, Output Voltage (High State I 110 = -400 ~A, VCC = 4.75 V, VEE 110 ~A 118 = -5.25 = 5.25 V, VEE = -5.25 VI - MOTOROLA LINEAR/INTERFACE DEVICES 2-214 MC3430 thru MC3433 A UNIOUE FUNCTIONAL PARAMETER FOR COMPARATORS 0.4 V). If 2.0 mV are required at the input terminals to induce this change in logic state, the voltage gain \/IIOuld be 1000 V/V. Gain however is not the only factor affecting the logic transition. Normally input offset voltages, that are not externally nulled, can add an appreciable error that drastically overshadows the comparator gain. Therefore, the 2.0 mV for example, required to cause the logic transition is often masked. An input offset voltage of up to 7.5 mV might be required to reach the linear region. A further consideration is the input offset current of up to ±10 JJ.A flowing through the matched 200-0hm source resistors at the input terminals which can create an additional error of ±2.0 mV. In order to determine a worst case input sensitivity, it must be assumed that mini,num specified gain and maximum specified offset voltage and current conditj~ns exist. Also it must be assumed that these three factors are cumulative, requiring a worst case input of: Logic Transition"" 2.0 mV A unique approach is used in specifying the MC3430-33quad comparators. Previously, comparators have been specified as linear devices with common operational amplifier type parameters such as voltage gain (Avol), input offset voltage (VIOl. input offset current (110) and common-mode rejection ratio (eMRRl. This is true despite the fact that most comparators are seldom operated in their linear region because it is difficult to hold a high gain com- parator in this narrow region. Comparators are normally used to "detect" when an unknown voltage level exceeds a given reference voltage. The most desirable comparator parameter is what minimum dif- ferential input voltage is required at the comparator's input terminals to guarantee a given output logic state. This new and important parameter has beef" called input sensitivity (VIS) and is analagous to the input threshold voltage specification on a core memory sense amplifier. The input sensitivity specification includes the effects of voltage gain, input offset voltage and input offset current and eliminates the need for specifying these three parameters. In order to make this parameter as inclusive as possible on the MC3430-33 series quad comparators, the input sensitivity is specified within the following conditions; Commercial Temperature Range - 0 to 700 C Power Supply Variations - ±5% (alt conditions) Input Source Resistance - ~200 Ohms Common-Mode Voltage Range - -3.0 V to +3.0 V Note; Typical values have been included on the omitted parameters for applications where the offset voltages are externally nulled. Voltage gain is defined as the ratio of the resulting Do Vo to a change in the VIOR using conditions at which the V,O and '10 are nulled. Thus, for worst case MTTL logic levels, the required output voltage change is 2.0 V (VOHmin - VOLmax "" 2.4 V - VIO ~ 7.5 mV 110 of ±10 JJ.A thru 200-0hm resistor"" 2.0 mV Therefore,2+7.5+2= 11.5mV. The effects of power supply voltage variations, temperature changes and common-mode input voltage conditions have not ~en considered, as they are not present in the gain and offset specifications on most comparators. Thus, the input sensitivity specification greatly reduces the effort required in determining the worst case differential voltage required by a given comparator type. Table J compares the worst case input sensitivity of three popular comparator types at both room temperature and over the specified commercial temperature range (0 to 700 C). This sensitivity was computed from the specified voltage gain, offset voltage and offset current limits. TABLE I - WORST CASE COMPARISONS TA V,O Avo'* mV V!V Type Number Mox Typ Differential Input Voltage Requrred for 3.0 V Output Change RS = '0 TA = 0 to 700 e 25°C ',0200 n "A Max Error Voltage Generated Into 200 n Source Resistors V,O Avol· mV V!V Total SenSitivity mV MC3430. MC3432 Typ Max Differential Input Voltage Required for 3.0 V Output Change ',0 Error Voltage RS=200n Generated Into 200.n Source ~A Max Resistors Total Sensitivity mV 6.0 MC3431, MC3433 7.0 10 MC1711C 1500 50 75 200 k LM311 12 2.0mV 15 3.0mV 10 5.0 1000 30mV 25 5.0 mV 13 0015 mV 60·· 0.0012 mV 7.516 10 100 k 0.030 mV 70·" 0.014 mV 10.04 "Typical values given, as minimum galO not always speCified '*110 measured in nA FIGURE 3 - GUARANTEED OUTPUT STATE versus INPUT VOLTAGE FIGURE 2 - GUARANTEED OUTPUT STATE versus DIFFERENTIAL INPUT VOLTAGE .5 >~ o ~ - Uncertainty Region MC3430 .0-- _ . MC3432 I I VOH AU deVice types I . 5 - -Uncertainty _ - w I-- .01-- > .5l--Guaranteed MC3431 MC3433 ~o" 1 I- M~~~30 > I- 10nii Only ',,- O. 5 Guaranteed VOL All device types I-I-- -f--- -3.0 V" V'CR <; 3.0 V 4.75 V" VCC" 5.25 V -4.75 V" VEE" ODe 0;:;; ~,5~ T A';;;; JOoe RS"200n -35 -30 -25 -20 -15 -10 -5 10 15 20 DIFFERENTIAL INPUT VOLTAGE ImV) 25 ~ 2. Of----- ~ 1. 0 unde~ermmed Region !Expanded Scale) 30 ~ Of--- I- > f- ~ 1. VOH " > -3. 0 -4. 0 -4.0 L,·. ~''"'''' State 0 iii -2. 0 35 ~...;.?~ Guaranteed o ~,~'- State Vin(B)~ VinlA) Vout RS<;200n - f-- -3.0 V" VICR" 3.0 V ooe~ TA 0;:;; JOoe 4.75 V" VCC" 5.25 V -4.75 V" VEE" -5.25 V 2.0 -1.0 1.0 Vin(Al,INPUT VOLTAGE (VOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 2-215 + +--+=-- Guaranteed VOL k' -3.0 !_,.,,-' ~. ",,,,....l" I ~ MC3432 - I-- M~~4L30 1. 01- MC3432 6 - Guaranteed_ o --I- 3. 0 t 1 Region '"!:;« 0 - Guaranteed 2.0 3.0 4.0 II MC3430 thru MC3433 II SWITCHING CHARACTERISTICS IVee = +5.0 Vdc, VEE = -5.0 Vdc, TA = +25 0 e unless otherwise noted.1 MC3430, MC3431 Characteristic Symbol Fig. High to Low Logic Level Propagation Delay Time (Differential Inputs) 5.0 mV + VIS tPHLIDI 6,8-11 Low to High logic Level Propagation Delay tPLH(DI 6,8-11 Open State to High Logic Level Propagation Delay Time (Strobel tPZH(SI High Logic Level to Open State Propagation Min MC3432, MC3433 Typ Max Min Typ Max Unit 20 45 - 27 50 ns - 33 55 - 40 65 ns 4 - - 35 - - - ns tPHZ(S) 4 - - 35 - - - ns tpZL(S) 4 - - 40 - - - ns Low Logic Level to Open State Propagation Delay Time (Strobe) tPLZ(SI 4 - - 35 - - - ns High Logic to Low Logic Level Propagation Delay Time (Strobe) tPHLISI 5 - - - - - 40 ns Low Logic to High Logic Level Propagation tPLHISI 5 - - - - - 35 ns Time (Differentiallnputsl 5.0 mV + VIS Delay Time (Strobe) Open State to Low Logic Level Propagation Delay Time (Strobe) Delay Time (Strobe) TEST CIRCUITS FIGURE 4 - STROBE PROPAGATION DELAY TIMES tPLZ(S), tPZL(S), tpHZ(S), and tPZH(S) +5.0 V V1 tplZ(S) 100 mV tpZl(S) 100mV tpHZ(S) GNO GND tpZH(S) V2 GND GND 51 52 Closed Closed 15 pF Closed Open 50 pF 100 mV Closed Closed 15 pF 100mV Open Closed 50 pF CL C L includes jig and probe capacitance. Ejn waveform characteristics: tTLH and tTHL ..; 10 ns measured 10% to 90%. PRR'" 1.0 MHz Dutv Cvcle '" 50% Output of Channel B shown under test, other channels are tested similarlv_ tpLZ(S) ~ E;n 3.:: ----- tPHZ(S){ E;n 3.: :-----__- - - " " . 5 V VOH---~rr----~~ { EO ".------T EO ~---!:::::1.5V 3.0V---~ tPZL(S){E;n3'::~ E;n tpZH(S) { 5.0V-VD, EO EO 1.5 V VOL--------~------ -::::.j 50~tPZH '::----J "'"'" 1.5 V OV MOTOROLA LINEAR/INTERFACE DEVICES 2-216 MC3430 thru MC3433 FIGURE 5 - STROBE PROPAGATION DELAY tPLH(SI AND tPHL(SI +5.0 V Em +100 mV ------..--<8 +3DVd:h----So% OV ~~L:_~~--__ tpHL(S) 390 ~>-H----+-4EO EO H>-H-4-5.0 V 15 V VOL 1 15 pF (Tots II E;n waveform characteristics: tTLH and tTHL ~ 10 ns measured 10% to 90%. PRR = 1.0 MHz Duty Cycle = 50% Output of Channel B shown under test, other channels are tested Similarly. FIGURE 6 - DIFFERENTIAL INPUT PROPAGATION DELAY tpLH(DI AND tpHL(DI +5.0 V VREF ______~--o~ Ejn waveform characteristics: tTLH and tTHL '" 10 ns measured 10% to 90%. Output of Channel B shown undef test, other channels are tested similarly Device S1 at" A" for MC3430, MC3431 S1 at "s" for MC3432. MC3433 CL = 50 pF total for MC3430, MC3431 CL = 15 pF total for MC3432, MC3433 PRR '" 1.0 MHz VREF mV MC3430 MC3431 MC3432 MC3433 Duty Cycle ~ 60% 11 15 11 15 FIGURE 7 - CIRCUIT SCHEMATIC (1/4 Circuit Shown) VccO--~--1~--~---<~---~-----~---"-----~- 850 4k 190 850 1.6 k ~--+---~ OUTPUT r---~--_4-,---+----------~~----4--i---- __.-,\ .>. VOL 200 mV IDa mV tTLH ~ 0.5 I"' -20 ::v 10mV \\l\ \n ,~ 100lmV 5.0 ~V 100 mV o 20mV \~\\I\ /' ./I 1/"'-I :> VCC =+5.0 V VEE = -5.0 V TA = 25°C 50 40 17 5mV tTIHL ~ ~ / I 5.0 V 1/ 0/ II 100 mV t-- (/ f- ~ 1/ ,\ · 1'..lOmV_ f-J 7. 1//17 1'.. 5.0mV- I-J/ 20mV- f-- V \ Ik I I II: 1/ , I VCC =+5.0 V VEE = -5.0 V TA = 25°C 10mV- f-- V \ 5mV- I - \.V ·\ \ ,\ V' 1\ J\ \00 ~V \ 1\ · \ K ~o my 1// 1/ Vo L Va L 200 mV 100 mV 100 mV tT\H~~.5"' 0 -10 10 20 TIME I",) 30 40 50 ~ 2. 5 '" -10 10 TIME I"~ 0 ; /' I......... " MC~~W33- r-Md:~~.31 '\. 1 f-- 5 ..... ! ~ 1. i 1. o ";:: 5 ~ --" 5 / VCC=!,OV tPHl VEE = -5.0 V tPHL I--- MC343o·31- MC3432·33 tVref::: 100 mV 5. o t-Overdnve:: 100 mV 0 01- -- O. 5 0 -25 50 ~ r- 20 w I- 40 30 I - -- ", 20 FIGURE 13 - RESPONSE TIME versu, TEMPERATURE 5 3. 5 :;; I -20 60 FIGURE 12 - AVERAGE INPUT OFFSET VOL TAGE versus TEMPERATURE 3. 0 tTHL""'O.5ns 25 50 AMBIENT TEMPERATURE 1°C) 75 0 -20 100 I I 20 40 AMBIENT TEMPERATURE 1°C) MOTOROLA LINEAR/INTERFACE DEVICES 2-218 60 BO MC3430 thru MC3433 II APPLICATIONS INFORMATION FIGURE 14 - 4-BIT PARALLEL AID CONVERTER 22 lN9 14 0' IV equ 51 ~." 2N3904or equiv. ~,Vref 10k ;0= iii. .lo=60mA lEach Compa,.,o, = + 8) Ie + OJ (e + F) (i=I + J) (i< + L) 1/4 of MC3432 22 '" (0 + J) O'J) 2 3 ", Conversion Time ~ =::: 50 n5 ~~s + RhR ~ h-!L RlL ~ R ~ R h-!L RlL ~ R GQ= R R R R ~ P T N h> M L L Lc K R ~ R ~ R '"71- R LfL::: ~ ~ J ~ H ~ F ~ E ~ N) (p + A) IS) 5.0 V J R R (M + 2"1", (8 + OJ IF + J) (C + N) (A) 3.0 V *0.1 JJ.F >-]) l--j) J :--1) 0 ~ C i1 ~ B ~OOB~ --:I A R ,- 3.0 n ± 5% MC30Q4 MOTOROLA LINEAR/INTERFACE DEVICES 2-219 2 70 MC3430 thru MC3433 II FIGURE 16 - TRANSFER CHARACTERISTICS AND EQUATIONS FOR FIGURE 15 FIGURE 15 - LEVEL DETECTOR WITH HYSTERESIS Vref I 3 Vlow iii .... V out ..J Vhigh - 0 ~ 0 > -r-VH 0 R2 3 4 Vin (VOLTS) Vref AS ~ R1 R2 R1 + R2 V' high = Vlow = + R2 [VO(max) - VREFJ V R1 + A2 ref V ref+ R2 [VO(min) - VREFI R1 + R2 Hvsteresis Loop (V h) 2 Vh = Vhigh - Vlow = A1: A2 (VO(max) - VO(min)} FIGURE 11 - DOUBLE ENDED LIMIT DETECTOR FIGURE 18 - VOLTAGE TRANSFER FUNCTION +5.0 V V out 1k +----Ic-.4;) V out -Vin - 4.0V - 3.0 V -I- 2.0 V - 1.0V :::::::::~______to~.~o~v~__~::::::: Vref (low) MOTOROLA LINEAR/INTERFACE DEVICES 2-220 5.0 V ref (high) +Vin ORDERING INFORMATION Device Temperature Range Package -40"C to +85"C D"C to + 70"C O"C to + 7D"C O"C to + 70"C D"C to + 70"C Plastic DIP 50-8 Metal Can Plastic DIP Ceramic DIP MC3358Pl MC3458D MC3458G MC3458Pl MC3458U MC3558G MC3558U - 55°C to + 125"C -55"Cto +125"C MC3458 MC3558 MC3358 Metal Can Ceramic DIP Specifications and Applications Information DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS DUAL LOW POWER OPERATIONAL AMPLIFIERS Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to groundIVEE, 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The MC3558 Series is equivalent to one-half of a MC3503. These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one-fifth of those associated with the MC1741 Ion a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply Voltage. • • • Short Circuit Protected Outputs True Differential Input Stage Single Supply Operation: 3.0 to 36 Volts • • • • Low Input Bias Currents Internally Compensated Common Mode Range Extends to Negative Supply Class AB Output Stage for Minimum Crossover Distortion SILICON MONOLITHIC INTEGRATED CIRCUIT G SUFFIX METAL PACKAGE CASE 601-04 Vee • Single and Split Supply Operations Available • Similar Performance to the Popular MC1558 VEE/Gnd ITopView) MAXIMUM RATINGS Rating Symbol Value VCC VCC VEE V,DR 36 +18 -18 i30 Vdc V,CR :1:15 Vdc "F 50 mA Unit Single Supply Split Supplies Input Differential Voltage Range (1) Input Common Mode Voltage Range 121 Input Forward Current IV, P1 SUFFIX PLASTIC PACKAGE CASE 626-05 (MC3458, MC3358 Only) Vdc Power Supply Voltages < -0.3 VI Junction Temperature °c TJ 175 150 Ceramic and Metal Packages Plastic Package Storage Temperature Range Ceramic and Metal Packages Plastic Package T stg Operating Ambient Temperature Range TA MC3558 MC3458 MC3358 uw_ CERAMIC PACKAGE CASE 693-02 °c -£5 to +150 -55 to +125 " °c -55 to + 125 o to +70 -40 to +85 (1) Split Power Supplies. (2) For Supply Voltages less than ± 15 V, the absolute m.aximum input voltage is equal to the supply voltage. MOTOROLA LINEAR/INTERFACE DEVICES 2-221 8. ~ 8 1 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 II II MC3458, MC3558, MC3358 (For MC3558, MC3458. Vee = +15 V, VEe = -15 V. T A" 2SoC unless otherwise noted'! (For MC3358. Vee" +14 V, Vee = Gnd. ELECTRICAL CHARACTERISTICS TA = 2SoC. unless otherwise noted'! MC3558 CMracteri.tic Symbol Min Input Offset Voltage TA '" Thigh to Tlow (1) Input Offset Current TA" Thigh to Tlow Large Signal Open-Loop Voltage Gain Va'" tID V, RL = 2.0 kCl, Me3458 TV> 2.0 M.. 30 50 200 Min 5.0 6.0 MC3358 TV> 20 M.. 30 50 200 Min 10 12 TV> 2.0 30 8.0 10 75 nA 2SO V/mV AVOl 50 25 TA = Thigh 10 Tlow Input Bias Current mV "B TA '" Thigh 10 Tlo ..... Output Impedance f = 20Hz 200 300 -200 -300 20 0.3 -200 -soo nA -1000 -BOO 75 1.0 200 15 500 -200 75 Input Impedance 20 200 15 -500 -1500 75 n Mn 03 1.0 0.3 1.0 -12 '10 -10 -13 5 !,3 12 10 10 12.5 12 f'" 20 Hz Output Voltage Range v VOR AL=lOkn AL" 2.0kU AL '" 2.0 kfl. T A = Thigh toTlow Input Common-Mode Voltage Range VieR CMRR Common-Mode Rejection RatiO RS 0;;; 10kfl Power SuppiV Current IV o = -12 '135 -10 '13 !'O +13 V VeE +13 5V-VEE 70 90 Q) Rl" "" Individual Output Short-Circuit Current "0 (2) Positive Power Supply ReJection RatiO PSRA+ Negative Power Supply Rejection RatiO PSAR- 70 70 90 16 22 16 3.7 ·30 -45 ~20 ~45 30 30 150 30 30 150 150 ! 10 dB 90 16 3.7 !30 t45 30 150 mA ~VIV ~VIV 150 50 50 so 10 10 10 BWp 9.0 9.0 9.0 BW 10 10 1.0 Average Temperature Coefficient of Input Offset Current T A" Thigh to Tlow Average Temperature Coefficient of Input Ofhet Voltage Power Bandwidth AV" " Rl "2.0 kH. V o " 20 VIp-pI, +13V-VEE +135V-VEE THO = 5% Sma!!-Signat BandWIdth AV = " Al" 10kn, Vo " 50mV Slew Rate AV" ',V, "'-10V to +10V Rise Time AV" I,RL = 10 kH, V o = SOmV Fa!! Time AV ~ I,AL '" 10kn, V o " SOmV Overshoot AV'" " RL '" 10 kH. V o " 50mV Phase Margin AV '" 1, RL '" 2.0 kn, Cl = 200pF Crossover Distortion (Vin ~ 30mVp.p, V oul f'" 10 kHz) SR 06 06 035 035 'THL 0.35 0.35 os 20 20 20 % 60 60 Degrees 1.0 1.0 % 60 .. 10 = V/~s 0.6 0.35 .. 0.35 2.0 Vp·p, (ll Thigh" 125°C for MC35S8, 70°C lor MC345B, BSoC for MC33SB T,ow • -SSoC lor MC35SB, OOC lor MC345B, _40°C for MC3358 ELECTRICAL CHARACTERISTICS IVCC = 5 a v, VEE = Gnd T A = 25°C unless otherWise noted ) MC3458 MC3558 Symbol Min Input Offset Voltage Input Offset Current Input Bias Current large-Signal Open-loop Voltage Gain Rl'" 2.0 kn Power Supply Rejection Ratio Output Voltage Range (31 Al c 10 kG, Vce '" 5.0 V Al"'10kn, S.OV ",VCC",30V Power Supply Current TV> 2.0 30 "B AVOl -200 20 Min 5.0 50 -500 20 200 PSAR MC3358 Mox TV> 2.0 30 Min 10 TV> 2.0 50 -500 -200 200 Unit 10 mV 75 20 200 3~ 3.5 VCC -1.7 V v/mV 1SO 3.3 'cc I4VIV VP'P VOR Channel Separation t '" 1.0 kHz to 20 kHz (Input Referencedl nA -500 lSO 150 M.. 3.5 VCC-1.7 V 2.5 3.3 4.0 -120 3.5 Vee -1.7 2.5 v 7.0 -120 121 Not to exceed maximum package power diSSipation. 131 Output will swing to ground MOTOROLA LINEAR/INTERFACE DEVICES 2-222 2.5 -120 4.0 mA dB. MC3458, MC3558, MC3358 REPRESENTATIVE CIRCUIT SCHEMATIC IV. of Circuit Shown) Output Bias Circuitry Common to Both Amplifiers CIRCUIT DESCRIPTION INVERTER PULSE RESPONSE The MC355B Series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices 024 and 022 with input buffer transistors 025 and 021 and the differential to single ended converter 03 and 04. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pFI can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of 024 and 022_ Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter_ The second stage consists of a standard current source load amplifier stage. The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation_ This is possible because class AS operation is utilized. Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. 20,us/div. MOTOROLA LINEAR/INTERFACE DEVICES 2-223 II MC3458, MC3558, MC3358 TYPICAL PERFORMANCE CURVES II FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE FIGURE 1 - SINE WAVE RESPONSE ~V· "00 120 1/\ 1\ \ \ .I ~I ~ .1 " \. V V rV 0 ........ ~ ~ '-l1li ~ IiIIo.....oI ~ ~ -2 0 1.0 ·Note Class AB output stege produces distortion less sinewave. ~ g ~ 0 \ 15 10 6 I~ : 0. >-OVO 2: /' w '"~ Z ./ ,/ 20 w '"'" :; ./ i!: ::> r-- 0 , '" 0 > -5. 0 10 k 100 k 1.0M 2.0 f. FREOUENCY (Hz) , -35 -15 5.0 25 V ./ 4.0 6.0 B.O 10 12 14 16 18 20 FIGURE 6-INPUT BIAS CURRENT ve,susSUPPLY VOLTAGE ~. VCC = +ISV_ VEE = -ISV TA = 2SoC - 300 -r--- ./ VCC ANO VEE. POWER SUPPLY VOLTAGES (VOLTS) FIGURE 5 - INPUT BIAS CURRENT vo,... TEMPERATURE -55 1.0 M ~ 0 0 TA" 25'C -J5 100 k TA" 25'C > ~ 10 0 1.0 k 10 k "- 30 ~10k -15V + I III i' ~ 5. 0 > 1.0 k f. FREUUENCY (Hz) FIGURE 4 - OUTPUT SWING versus SUPPL Y VOLTAGE 111111 2: '" 100 10 50 J.ls/div. ~ 25 w , 0 FIGURE 3 - I'qWER BANDWIDTH ~ ....... 0 r-.... 0 o , 0 \ 1 +1'5 ~ VEE = -ISV TA = 25°C :--., 0 I l IV - J' ~I' V~CI ~I t"---r--, .... B5 105 ""'" 1'l --- --65 170 ~ -- ""- 45 .~ ~ " 0; ~ 160 ;;!; ~ 150 125 o 2.0 4.0 6.0 10 12 14 16 VCCAND ,VEEI.POWER SUPPLY VOLTAGES (VOLTS) T. TEMPERATURE ('C) MOTOROLA LINEAR/INTERFACE DEVICES 2-224 18 20 MC3458, MC3558, MC3358 APPLICATIONS INFORMATION FIGURE 8 - WIEN BRIDGE OSCILLATOR FIGURE 7 - VOLTAGE REFERENCE VCC 50 k 10 k R2 10 k 10 k 1 R1 Vref "'"'2 Vee For fo" 1 kHz A'· 16 kH R1 VO""Al+A2 C "." O.OlIJ.F R 1 Va "'"2 Vee FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER FIGURE 10 - COMPARATOR WITH HYSTERESIS 1 -R C R Hysteresis "::LEJ- R2 R1 J\I'''''".....-o--1 V ref ... Vin ...----Q--1 1 VOL -R Vinl C ~ VinH Vref Vinl '" R,R+'R2 (VOL -- Vref) + Vref R VinH'"' Rt :'R2 (VOH - Vref) + Vref eo::: C (1 + a + b) (e2 - el) H '" R,R+'R2 (VOH - VOL) FIGURE 11 - BI·QUAD FILTER 1 R fo'= R At C1 21TRC 100 k ~ QA R1 R2'- C R2 R Tap 1 Vref = '2 Vee 100 k fo=lkHz Q,10 Bandpass Output Vref Tap" 1 R1 TN" R2 Cl ---IE------4 Notch Output l>-o.... Vref Where T BP "" Center Frequency Gain TN '" Passband Notch Gain MOTOROLA LINEAR/INTERFACE DEVICES 2-225 R,160kSl C, 0.001 "F Rl,1.6MSl R2' 1.6MSl R3,1.6MSl MC3458, MC3558, MC3358 II APPLICATIONS INFORMATION (continued) FIGURE 12 - FUNCTION GENERATOR Triangle Wave 1 Vref = A2 Output "2 Vee 300 k v ref "'--{)-1+ y:. R3 Me345,~-{)-t-~Ar-1----{)-1 75 k R1 y, Me345si>--o--+-.... e R, f-~~ if 4CAfR1 R3=A2 R1 .. R2+A1 FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER Vee 1 R3 '~C~C I---.....:H- y, MC3458 E---evo Co R2 CO"'10C Given f 0 '" Center Frequencv A(f o ) = Gain at Center Frequency Choose Value fa_ C Then: o R3=--7r fa C R3 A1=--- 2 Alfo) A1 A3 R 2 " -4-Q"2-R:-'~-'-::R:-::3 For less than 10% error from operational amplifier 0 '°<0.1 0 BW Where fa and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. MOTOROLA LINEAR/INTERFACE DEVICES 2-226 Square Wave Output ® MC3476 MOTOROLA LOW COST PROGRAMMABLE OPERATIONAL AMPLIFIER The MC3476 is a low cost selection of the popular, industrystandard MCl776 programmable operational amplifier. This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the Iset input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages. LOW COST PROGRAMMABLE OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT G SUFFIX METAL PACKAGE CASE 601-04 • ±6.0 V to ±18 V Operation • Wide Programming Range • Offset Null Capability 'set • No Frequency Compensation Required • Low Input Bias Currents • Short-Circuit Protection Inverting Input 2 RESISTIVE PROGRAMMING (See Figure 1.1 R set to NEGATIVE SUPPLY Rset to GROUND (Top View) ~ ~- VEE Rset "-1: 4 Vee - 0.6 Iset=~ VEE ±6.0 v ±9.0V ±.12 V ±.15 V 'set = 10 IJA 560 kn 820 kn 1.0Mn 1.5Mn Pl SUFFIX PLASTIC PACKAGE CASE 626-05 :~t Vee -0 6 -VEE 'set"'---Rset Typical Aset Values Typical R set Values Vee. VEE 6 I set = 15 J.lA 360 kn 560 kn 750 kn 1.0Mn Vee. VEE ±'6.0 v ±9.0V ±12 v ±15 v l set = 10 IJA 1.0Mn 1.8Mn 2.2 Mn 2.7 Mn I set == 15p.A 820 kn 1.2Mn 1.5Mn 2.0Mn U SUFFIX CERAMIC PACKAGE CASE 693-02 ~ 1 ACTIVE PROGRAMMING FET CURRENT SOURCE BIPOLAR CURRENT SOURCE Non-Inverting Input 7 Vee 2 0-- (Top View) ORDERING INFORMATION Temperature Range Package MC3476G o to +70 oC Matal Can MC3476Pl o to +70 o C MC3476U a Device Pins not shown are not connected. MOTOROLA LINEAR/INTERFACE DEVICES 2-227 to +70 oC Plastic DIP Ceramic DIP MC3476 MAXIMUM RATINGS (TA = +25 0 e unless otherwise noted.) Symbol Value Unit Vee. VEE ±18 Vdc VIDR ±3O Vdc VieR Voff-VEE Vee. VEE ±0.5 Vdc 'set 200 /lA V set (Vee-0.6 V) to Vdc Output Short-Circuit Duration* ts Indefinite s Operating Ambient Temperature Range TA o to 70 °e Storage Temperature Range Metal and Ceramic Packages Plastic Package Tstg Junction Temperature Metal and Ceramic Packages TJ Rating Power Supply Voltages Input Differential Voltage Range I nput Common-Mode Voltage Range Offset Null to VEE Voltage Programming Current Programming Voltage (Voltage from 'set terminal to ground) Vdc Vee °e -65 to +150 -55 to +125 °e 175 150 Plastic Package *Short-Circuit to ground with 'set'" 15 J.lA. Rating applies up to ambient temperature of +70 o C. EQUIVALENT SeHEMATle DIAGRAM 'set 7 r-------------~--------~--4_--~--_.------_.----------~------OVCC 50 INPUTS 100 OUTPUT 50 OFFSET NUll 10k 10k L-------~----~------~ ____ VEE ~~--~------~--------_4------_o4 MOTOROLA LINEAR/INTERFACE DEVICES 2-228 MC3476 ELECTRICAL CHARACTERISTICS IVCC = +15 V. VEE = -15 V. Iset = 151'A. TA = +25 0 C unless otherwise noted.1 Characteristic Symbol Input Offset Voltage (AS";;; 10 kn) TA = +25 0 C OoC .;;; T A <; 70°C Min Typ Max - 2.0 Offset Voltage Adjustment Range VIOR Input Offset Current - - 6.0 7.5 - 18 - - 2.0 25 25 40 Input Bias Current 15 5.0 - Mn 2.0 - pF V - nA liB Input Resistance ri In put Capac ita nee Ci - VICR ± 10 - - 50 k 25 k 400 k - ±12 ± 12 ±13 TA = +25 0 C TA = 70°C TA = OoC Input Common-Mode Voltage Range mV nA 110 TA =+25 OC TA = 70°C TA = OoC Unit mV VIO - 50 50 100 ooc.;;; TA <; 70°C Large Signal Voltage Gain R L ;;. 10 kn. Vo = ± 10 V. T A = + 25°C R L ;;. 10 kn. V 0 = ± 10 V. OoC <; T A <; 70°C V/V AVOL Output Voltage Range - V VOR +25 0 RL;;' 10 kn. TA = C R L ;;. 10 kn. OoC .;;; T A <; 70°C - Output Resistance ro los - 1.0 Output Short-Circuit Current Common-Mode Rejection Ratio RS <; 10 kn.OoC <; TA';;; 70°C CMRR 70 90 Supply Voltage Rejection Ratio PSRR 12 - kn mA dB 25 200 - 160 200 225 - 4.8 - - I'V/V RS <; 10 kn.OoC';;; TA <; 70°C Supply Current I'A ICC. lEE TA = +25 0 C OOC .;;; T A .;;; 70°C Power Dissipation TA = +25 0 C OOC <; T A <; 70°C - mW PD 6.0 6.75 Transient Response (Unity Gain) Vin = 20 mV. RL;;' 10 kn. CL = 100 pF Rise Time Overshoot Slew Rate IRL;;' 10 knl tTLH OS - 0.35 - 10 SR - 0.8 - TRANSI ENT·R ESPONSE TEST CIRCUIT VOL TAG E OFFSET NULL CIRCUIT VEE Pins not shown are not connected. MOTOROLA LINEAR/INTERFACE DEVICES 2-229 1'5 % VII'S II II MC3476 TYPICAL CHARACTERISTICS (T A = +250 C unless otherwise noted.) FIGURE 2 - POSITIVE STANDBY SUPPLY CURRENT versus SET CURRENT FIGURE 1 - SET CURRENT versus SET RESISTOR "'~ VCC=+15V VEE -15 V Rsetto VEE 10M ~ o 1 -6V;,VEE;'-15V ~ 100 VCC - +15 V VEE--15V ~ Rsel}~ GND t; +6 V"VCC 0;;;;+15 V ~ ~ 1.0M 10 ~ ~ j " ~ lOOk 1.0 > i= u; i< 10k 0.1 10 1.0 100 0.1 0.01 1.0 0.1 'set, SET CU RRENT (JJA) 15e t, SET CURRENT 10 100 (~A) FIGURE 4 - INPUT BIAS CURRENT versus SET CURRENT 100 +6 V" Vee ,,+15 V -6V;, VEE ;'-15 V 0 O. 1 0.1 0.01 10 1.0 100 Iset, SET CURRENT I~) FIGURE 5 - SLEW RATE versus SET CURRENT FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW) .ersus SET CURRENT 0 ~ 1.0M 0 ~ S O. 1 ~ VCC VEE w ffi t; +15 V -15 V ~ = VCC-+15V _ - VEE -15V ~ lOOk b ~ ~ 0.0 1 10k ;;: '" 0.00 1 0.01 0.1 1.0 10 1.0k 0.1 100 1.0 1"1, SET CURRENT I.A) lsel' SET CURRENT MOTOROLA LINEAR/INTERFACE DEVICES 2-230 10 I~) 100 MC3476 II TYPICAL CHARACTERISTICS (continued I (TA = +250 C unless otherwise noted.) FIGURE 8 - OUTPUT SWING versus SUPPLY VOLTAGE FIGURE 7 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE 30 VCC=+15V VEE=-15V lset '" 15J.1.A -- 0 6 / ?: 2 "'z 1il 8 ~ 24 « ~ 20 > 2 ~ 8. 0 > 1.0k 10k lOOk 6 ~ ~ lset = 15J.1A RL=lOk 4.0 RL, LOAD RESISTANCE (OHMS) L...- ....... V ./ ./ o /"" o 2.0 1.0M ,,- V 4.0 6.0 8.0 10 12 14 Vcc.IVEEI. SUPPLY VOLTAGES (VI MOTOROLA LINEAR/INTERFACE DEVICES 2-231 16 18 20 II ® MC4558, MC4558AC,MC4558C MOTOROLA DUAL WIDEBAND OPERATIONAL AMPLIFIER DUAL WIDE BANDWIDTH OPERATIONAL AMPLIFIER The MC4558, MC4558AC, and MC4558C combine all the outstanding features of the MC1458 and, in addition, possess three times the unity gain bandwidth of the industry standard. SILICON MONOLITHIC INTEGRATED CIRCUIT • 2.5 MHz Unity Gain Bandwidth Guaranteed on MC4558 and MC4558AC • 2 MHz Unity Gain Bandwidth Guaranteed on MC4558C G SUFFIX METAL PACKAGE CASE 601-04 • Internally Compensated • Short-Circuit Protection • Gain and Phase Match between Amplifiers • Low Power Consumption VCC MAXIMUM RATINGS ITA = +25 0 C unless otherwise noted) Rating Power Supply Voltage Input Differential Voltage Symbol MC4558 MC455BAC MC4558C Unit VCC +22 +18 Vdc VEE -22 -18 VID Volts Volts Input Common Mode Voltage (Note 1) VICM ±15 Output Short-Circuit Duration (Note 2) IS Continuous Operating Ambient Temperature Range TA See Ordering I nformation Below Storage Temperature Range -6510+150 -5510 +125 Plastic Package Junction Temperature °c T stg Metal and Ceramic Packages Note 1. Note 2. °c TJ 175 150 Metal and Ceramic Packages Plastic Package VEE Vdc ±30 (Top View) ~ P1SUFFIX PLASTIC PACKAGE CASE 626-05 8 U~UFFIX CERAMIC PACKAGE CASE 693-02 ~ 8 1 For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 Short circuit may be to ground or either supply. EQUIVALENT CIRCUIT SCHEMATIC (1/2 of Circuit Shown) ORDERING INFORMATION Input 25 t----io-OOutput Device MC4568G MC455aU -5510 +125'C Package Metal Can Ceramic DIP MC4558CD SO·8 MC4558CG Metal Can MC455aACP1, CPl MC455aCU MOTOROLA LINEAR/INTERFACE DEVICES 2-232 Temperature Range oto +7O'C Plastic DIP Ceramic DIP MC4558, MC4558AC, MC4558C FREQUENCY CHARACTERISTICS (VCC - - +15 V VEE - -15 V TA - 25°C) MC4558C MC4558. MC4558AC Characteristic Unity Gain Bandwidth ELECTRICAL CHARACTERISTICS Symbol Min I Typ I Max Min 1 Typ I Max Unit BW 2.5 I 2.8 I - 2.0 I 2.S I - MHz 6.0 mV nA (VCC = 15 V. VEE = -15 V. TA = 25°C unless otherwise noted.) Input Offset Voltage IRS';; 10 knl - Via 1.0 5.0 - 20 200 80 500 nA 0.3 2.0 - Mn 2.0 Input Offset Current 110 200 liB - 20 Input 8ias Currentt SO 500 Input Resistance ri 0.3 2.0 - 1.4 ±13 - pF ±12 V/mV Input Capacitance - 1.4 ±12 ±13 - 50 200 - 20 200 - 75 - n 70 90 - dB Ci Common Mode Input Voltage Range VICR Large Signal Voltage Gain IVa = ±10 v, RL = 2.0 knl V Av Output Resistance Common Mode Rejection Ratio ro - 75 CMRR 70 90 - PSRR - 30 150 ±12 ±14 ±13 - ±12 ±10 IRS';; 10 kHI Supply Voltage Rejection Ratio 30 150 I'VN ±14 ±13 - V IRS';; 10 kHI Output Voltage Swing Va IRL"10knl IRL"2knl ±lO Output Short-Circuit Current los 10 20 40 10 20 40 mA Supply Currents (Both Amplifiers) 10 - 2.3 5.0 - 2.3 5.6 mA Power Consumption (Both Amplifiers) Pc - 70 150 70 170 mW tTLH as SR - 0.3 15 - - 1.5 1.6 - 1.0 0.3 15 1.6 - % VII's = -15 V, TA 7.5 mV nA Transient Response (Unity Gain) IVI IVI IVI = 20mV, RL" 2kH, CL';; 100pFI Rise Time = 20mV, RL" 2 kH, CL';; 100 pFI Overshoot = 10 V, RL" 2 kn. CL';; 100 pFI Slew Rate ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE Input Offset Voltage Via I'S = 'Thigh to Tlow unless otherwise noted). - 1.0 6.0 - - - 7.0 85 200 500 - - - - 30 300 500 '1500 - IRS';; 10 kill I nput Offset Current 110 (TA = Thigh) ITA = Tlow) ITA = OoC to +700 CI Input Bias Current - Common Mode Input Voltage Range - - - - - - - V 'nA ±12 ±13 - 25 - - 15 - - Vim V CMRR 70 90 - - - - dB PSRR - 30 150 - - - "VN ±12 ±10 ±14 ±13 - .12 ±14 ±13 - V - 4.5 6.0 - - 135 tSO - - - - VICR Large Signal Voltage Gain = '10 V, 300 liB ITA = Thigh) ITA =Tlowl IT A = OoC to + 70 0 CI IVa - - - 800 Av RL = 2 knl Common Mode Rejection Ratio IRS';; 10 kHI Supply Voltage Rejection Ratio IRS';; 10 knl Output Voltage Swing Va IRL;;>10 knl IRL;;> 2 knl Supply Currents (Both Amplifiers) 10 - ITA = Thigh) (TA =Tlow) Power Consumption (Both Amplifiers) - Pc (TA = Thigh) ITA ±10 = Tlow) 'Thigh = 1250 C for MC4558 and 70 0 C for MC4558C and MC4558AC. Tlow = -55°C for MC455S and OoC for MC4558C and MC4558AC. t liB is out of the amplifier due to PNP input transistors. MOTOROLA LINEAR/INTERFACE QEVICES 2-233 5.0 6.7 mA 150 200 mW 11 II MC4558, MC4558AC FIGURE 2 - RMS NOISE .ersus SOURCE RESISTANCE FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE 100 _>I000'llllln~~!1 ~ _jlHEl~ tt-t-it1:: ;:~ .+ + - ff BW-·1.0Hz!o1.0I-..Hz -1+ .'; +- !100'11111111 ~ ~ -r :m~tll c .. i..j z -++ .:.:~ 1.0 c~ 100 10 1 140 120 \ 100 "" 10 - IIII 0 AV ~ 1 0.0 110 1.0 100 1000 100 10 1.0 t~ 10k ~i 100·fhffilf 1.0 FIGURE 4 - SPECTRAL NOISE DENSITY IIIIII IIII ! AV~IO.~~~llltiOk" +'1t " -" ~ - '">-z '"z ~ 10 k k JUOk 80 60 40 20 \ '\ I I :: : II , I ' I! : -+-1-4. I , , i r---.... I;: i : I,i I 100 RS. SOURCE RESISTANCE 10HMS) i !ii 10k l.Ok i i I'., lOOk 1. FREQUENCY IHzl FIGURE 5 - BURST NOISE TEST CIRCUIT 100 k Positive Threshold To Pass/Fai~ I ndicater 100 k 1 k 100 k Operational Amplifier Under Test Low Pass Filter 1.0 Hz to 1 kHz Negative Threshold Voltage Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing. The test time employed is 10 seconds and the 20 J.lV peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test. MOTOROLA LINEAR/INTERFACE DEVICES 2-234 i I ill iii II! 10 1.0M 10M k RS. SOURCE RESISTANCE 10HMS) RS. SOURCE RESISTANCE 10HMS) FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE ,.~ l-+ +1- ~ 1 0 _. . . . c'.:2' +. , C >- ~ " It ~ >- + + +-+- +- +t BW = 1.0 HI tu 1.0 kHI MC4558, MC4558AC, MC4558C FIGURE 7 - PHASE MARGIN versus FREQUENCY FIGURE 6 - OPEN LOOP FREQUENCY RESPONSE - -f-- 160 ~ +120 z ~ +100 « '" '::; +BO f-- r-.... > ~ « +40 ~ - - f--- e z t'-.. ~ « '" i'.. t-- W +20 ~ ....... 10 100 loOk 10k lOOk 100M \ \ 100 I\.. BO UNITY GAIN 60 I\, 40 \ \ o 10M 1.0 10 100 1.0k 10k f. FREOUENCY IHzl /'" --- f-- 13 r- FIGURE 9 - NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE 9.0 ~ 7.0 ~ 6 > ~ ? V ill / '"~ !9V I--- I-- V 3.0 >3 V 10 k 2.0 k 20 k 50 k 100 k I-- ) t; o 5.0 6 > / 1.0 k 9.0 ~ 7.0 ~ r- 500 V > <6V ±15 V SUPPLIES +12 V 11 o ~ 1.0 100 /" ~ 13 W ~ ",'" 5.0 3.0 -:;, '12J 11 '"« ~> 15 ±15 VISUPiLiES ~ ?~ lOOk 100M 10M f. FREOUENCY 1Hz) FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAO RESISTANCE 15 i\ 20 ....... -20 1.0 14 0 ~ 120 I'.. +60 0 -... lBO +140 ~ ±6 V ~ 1.0 100 RL. LOAO RESISTANCE IOHMS) ±9V +3 V 500 1.0 k 2.0 k 10 k 20 k 50k lOOk RL. LOAO RESISTANCE (OHMS) FIGURE 10 - POWER BANDWIDTH FIGURE 11- TRANSIENT RESPONSE TEST CIRCUIT (LARGE SIGNAL SWING versus FREQUENCY) 2B 24 ~ ? To Scope (Input) 20 >-<>--+__......_ ... To Scope W '" ~ > ~ ~ (Output) 16 12 VOLTAGE FOLLOWER B.O 6 > 1IIIIIITillii IIIII 4.0 10 II 111111 100 \ I I' 111111111 1.0k 10k lOOk 1.0 M f FREOUENCY 1Hz) MOTOROLA LINEAR/INTERFACE DEVICES 2-235 II ORDERING INFORMATION Devl.. MC4741L MC4741CD MC4741CL MC4741CP Temperature Range Package -65°C 10 +125"C O"C 10 + 70"C QOC 10 + 70"C QOC 10 + 70"C Ceramic DIP 50-14 Ceramic DIP Plastic DIP MC4741 MC4741C Specifications and Applications Information (QUAD MC1741) DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS (QUAD MC1741) OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUIT The MC4741 series is a true quad MC1741. Integrated on a single monolithic chip are four independent, low-power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance. The MC4741 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers. • L SUFFIX CERAMIC PACKAGE CASE 632-08 Each Amplifier is Functionally Equivalent to the MC1741 DSUFFIX • Class AB Output Stage Eliminates Crossover Distortion PLASTIC PACKAGE CASE 751A-02 • True Differential Inputs • SO-14 Internally Frequency Compensated • Short Circuit Protection • Low Power Supply Current (0.6 mA/Amplifier) PSUFFIX PLASTIC PACKAGE CASE 646-06 • I PIN CONNECTIONS EQUIVALENT CIRCUIT SCHEMATIC (1/4 of Circuit Shown) Vee Out Out 4 I Inputs I Inputt 4 25 VEE OUTPUT Inputs 50 2 Inputs 3 Out 2 Out VEE MOTOROLA LINEAR/INTERFACE DEVICES 2-236 3 (Top View) MC4741, MC4741C MAXIMUM RATINGS (TA • +25 0 C unless otherwise noted I Rating Svmbol Power Supply Voltage MC4741 VCC VEE Input Differential Voltage MC4741C Unit +22 -22 +18 -18 Vdc Vdc VID ±44 ±36 Volts Input Common Mode Voltage VICM ±22 ±18 Volts Output Short Circuit Duration .!S. Operating Ambient Temperature Range Storage Temperature Range Ceramic Package TA T stg Continuous -55 to +125 °c °c -65 to +150 -55 to +125 Plastic Package Junction Temperature Ceramic Package o to +70 °c TJ 175 150 Plastic Package TYPICAL APPLICATION HIGH IMPEDANCE INSTRUMENTATION BUFFER/FIL TER R2 R3 MOTOROLA LINEAR/INTERFACE DEVICES 2-237 II MC4741, MC4741C ELECTRICAL CHARACTERISTICS (VCC = +15 V VEE = -15 V TA = 25°C unless otherwise noted) MC4741 Characteristic MC4741C Symbol Min Typ Max Min Typ Max Unit VIO - 1.0 5.0 - 2.0 6.0 mV I "put Offset Current 110 200 - 20 200 nA liB r· - 20 Input Bias Current SO 500 - 80 500 nA 0.3 2.0 - 0.3 2.0 - Mil - 1.4 ±15 mV - ±'12 ±13 - 20 200 - VimV Input Offset Voltage (Rs~10k) Input Resistance Offset Voltage Adjustment Range VIOR - ±15 Common Mode Input Voltage Range VICR ±'12 ±.13 Large Signal Voltage Gain (Vn=+10V,R ;;>2.0k) Av 50 200 ro CMRR - 75 70 90 PSRR - 30 ±12 ±.10 ±14 ±.13 I "put Capacitance Ci Output Resistance Common Mode Rejection Ratio (RS~10k) Supply Voltage Rejection Ratio (RS~10k) 1.4 150 - 75 90 - dB - 30 150 p.VIV ±12 ±10 ±14 ±13 - 20 - - 3.5 105 7.0 210 0.3 15 0.5 - V/p.s Vo Output Short-Circuit Current los - 20 - Supply Current - (All Amplifiers) 10 - Power Consumption (All Amplifiers) Pc - 2.4 72 4.0 120 tTLH os SR - 0.3 15 0.5 - - - - - - (VI = 10 V, RL;' 2 k, CL'; 100 pF) Slew Rate I nput Offset Voltage il V ELECTRICAL CHARACTERISTICS (V CC= +15V V EE =-15V T A= *TIhiah Characteristic V 70 Output Voltage Swing (RL;;>10 k) (RL;;>2 k) Transient Response (Unity Gain - Non-Inverting) (VI = 20 mV, RL;' 2 k, CL'; 100 pF) Rise Time (VI = 20 mV, RL ;. 2 k, CL .; 100 pF) Overshoot pF - mA mA mW p.s % • to T low un ess ot erwise note d) MC4741C Symbol Min MC4741 Typ Typ Max Unit VIO - 1.0 6.0 - - 7.5 mV - 7.0 85 200 500 - - - - - 500 1500 - Max Min (RS~10knJ Input Offset Current nA 110 (TA = 125°C) (TA = -55°C) (T A = OoC to +700 C) Input Bias Current 300 nA liB - - 300 ±'12 ±13 - - - - V Av 25 - - 15 - - V/mV Common Mode Rejection Ratio (Rs~10k) CMRR 70 90 - - - - dB Supply Voltage Rejection Ratio PSRR - 30 150 - - - P.V!V ±12 ±10 ±14 ±13 - - - - - ±10 ±13 - - 2.4 3.6 3.4 5.0 102 150 - - - - - - (TA = 125°C) (TA = -55°C) ITA = OOc to +700C) Common Mode I nput Voltage Range VICR Large Signal Voltage Gain (RL;;>2 k, V out = ±10 V) 30 - - 800 (RS~lOk) Output Voltage Swing (RL;;>10k) (R ;;>2 k) Vo Supply Currents (TA = 125°C) (TA =-550 C) 10 (AI' Amplifiers) Power Consumption (TA - + 125'C) (TA = -55'C) (All Amplifiers) Pc V mA - 72 108 'Thlgh - 125°C for MC4741 and 700C for MC4741C Tlow = -55°C for MC4741 end OOc for MC4741C MOTOROLA LINEAR/INTERFACE DEVICES 2-238 - - - mW MC4741, MC4741C TYPICAL CHARACTERISTICS (Vee ~ +15Vdc, VEE'" -15 Vdc, TA - +2SoCuntessotherwise noted). FIGURE 1 - POWER BANDWIDTH (LARGE SIGNAL SWING versu, FREQUENCY) lEI FIGURE 2 - OPEN LOOP FREQUENCY RESPONSE +12 0 +100 ~ ~ 20r--+-r~~r--+-rrH~r--r1-~~I~\-r1-rH~ ~ ;~ 1\ IBr--+-r~~r--+-rrH~r--r1-~~~+-\~-rH+~ ;;: ~ +60 ~ 12~-+-r~H#~-+-r~+#~-r4-tH+#~~\4-~~ !:i ~ (VOLTAGE FOLLOWER) > 1111 '" ~ 8.0 ~ '"o r TIIIIIHt--l--+-++++HH-------1\-1\H+tttti 4:,:0~~:~::1:1: 111)il:o~~:~:I:I:I:1':'O:k~~::~:::I:O:k~~::::::'O:O II: ~ +8 0 z ~ +4 0 g+2 0 k -20 1.0 10 ::r::r.rr .,5 V SUPPLIES I -- ',2V '" ~ 4.0 3.0 2.0 ~ I .- V. .9V ;.// '6 V I ~ I I 1.0 100 200 2.0 k 5.0 k7.0 k 10 k 500 700 1.0 k RL, LOAD RESISTANCE (OHMS) ""- 100 k -I 5 -I 4 -I 3 -I 2 ~-1 I ~ -1 0 ~ -9. 0)----·c3 -8. 0 ~ -7. 0 ~ -6. 0 C/ 5 -5. 0 ./ o -4. 0 > -3. 0 -2. -1. 100 200 ~r- I .,5 V SUPPLIES I I -- -'1'2V v .9V I .6V I i II I 500 700 1.0 k 2.0 k RL, LOAD RESISTANCE (OHMS) 5.0 k 7.0 k 10 k FIGURE 6 -INONINVER:rING PULSE RESPONSE ~ 24~ +27 V 2 +24 V 0 ~ to Z ~ B~ w +18 V !; 8. O~ +12 V a 6. 0 _- ._- f--- f--- .~ --- ~ +21 V '"'" 6 ~> 24 ~1 0 .. I II +15 V I 00 r\ ~UTPUT \ 'r +9.0 V > 4. 0 2. 0 - - +6.0 V +5.0 V 1.0 2.0 3.0 4.0 5.0 6.0 7.0 RL, LOAD RESISTANCE (k!"Jl B.O 10M II FIGURE 5 - OUTPUT VOL TAGE SWING versus LOAD RESISTANCE (Single Supply Operation) : +30 V Supply '" 1.0 M' FIGURE 4 - NEGATIVE OUTPUT VOLTAGE SWING versu, LOAD RESISTANCE FIGURE 3 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE - ~ 1.0 k 10 k t, FREQUENCY (Hz) 100 t, FREQUENCY (Hz) 15 14 13 12 1~ I w 10 to 9.0 ~ > 8.0 7.0 ~ I- B.O ::> 5.0 0 ~ 9.0 10 MOTOROLA LINEAR/INTERFACE DEVICES 2-239 \ UT MC4741, MC4741C FIGURE 7 - BI-OUAD FILTER II R R 100 k = OR R1 Vin C1 R2 c C ---11-_~VII\""-~H '/4 R' R2~- R TSp MC474'i>-o-....-'W'v-....-o--l'/4 '00 k MC474'i>--o-.....-'W'v-....- 5 FIGURE 9 - -- /'" to Where T BP = Center Frequency Gain TN = Passband Notch Gain 100 5 TRANSIENT RESPONSE TEST CIRCUIT >-<>-...__....._ _ 5 70 2.0 4.0 6.0 8.0 10 12 14 16 18 20 Vee, IVEEI, SUPPLY VOLTAGES (VOLTS) FIGURE 10 - ABSOLUTE VALUE DVM FRONT END 0.51'F 900 k '00 k To Scope (Output) V :> « 0 o =1 =1 = '2 Vee 105 ~ kHz c, j>-o....---IE------e Notch Output FIGURE 8 - OPEN LOOP VOLTAGE GAIN Yersus SUPPLY VOLTAGE '"z TSp TN , C ~ O.OO'I'F R' R2 R3 R3 Output R' R2 C Q ~'O Bandpass Vref =1 Vee MC4741 Quad Op-Amp 500 k Bridge Null Adjust MOTOROLA LINEAR/INTERFACE DEVICES 2-240 ® MC33078 MC33079 MOTOROLA Advance Information DUAUQUAD OPERATIONAL AMPLIFIERS LOW NOISE OPERATIONAL AMPLIFIER The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative highperformance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source and sink ac frequency performance. The MC33078/9 family offers both dual and quad amplifier versions, tested over the vehicular temperature range and available in the plastic DIP and SOIC packages (P and D suffixes). • Dual Supply Operation: ± 18 V (Max) SILICON MONOLITHIC INTEGRATED CIRCUIT MC33078 ~ - P SUFFIX PLASTIC PACKAGE CASE 626-05 • Low Voltage Noise: 4.5 nV/VHz o SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 • VCC ' Output 2 Output 1 ' • Low Input Offset Voltage: 0.15 mV Inputs 1 { : • Low T.C. of Input Offset Voltage: 2.0 /LVrC .• - • Low Total Harmonic Distortion: 0.002% : } Inputs 2 VEE' • High Gain Bandwidth Product: 16 MHz • High Slew Rate: 7.0 V//Ls MC33079 • High Open-Loop ac Gain: 800 @ 20 kHz • Excellent Frequency Stability • Large Output Voltage Swing: + 14.1 V/-14.6 V ,.# • , EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIERI P SUFFIX PLASTIC PACKAGE CASE 646-06 Output 1 , o SUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 14 Output 4 Inputs 1 { : VCC. " VEE Inputs 2 { : "\ Output 2 , • Output 3 , Inputs 3 (Quad, Top Viewl ORDERING INFORMATION Op Amp Package Device Dual MC33078D MC33078P -40"C to SO-8 +85"C Plastic DIP Quad MC33079D MC33079P -40"C to SO-14 + 85"C Plastic DIP This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 2-241 Test Temp. Range Function II MC33078, MC33079 MAXIMUM RATINGS Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range Input Voltage Range Symbol Value Unit Vs +36 Volts VIDR (Note 1) Volts VIR (Note 1) Volts ts Indefinite Seconds "C Output Short-Circuit Duration (Note 2) Maximum Junction Temperature Storage Temperature Maximum Power Dissipation TJ +150 Tsto -60 to + 150 "C PD (Note 2) mW Notes: 1. Either or both input voltages must not exceed the magnitude of Vee or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (See power dissipation performance characteristic, Figure 1). 3. Measured with Vee and VEE differentially varied simultaneously. DC ELECTRICAL CHARACTERISTICS (VCC ~ +15 V VEE ~ -15 V TA ~ 25"C unless otherwise noted) Characteristics Symbol Input Offset Voltage (RS ~ 10 ll, VCM ~ 0 V, Vo ~ 0 V) MC33078 TA ~ +25"C TA ~ - 40"C to + 85"C MC33079 TA TA ~ ~ Min Typ Max -- 0.15 2.0 3.0 +25"C - 40"C to + 85"C - 0.15 - 2.5 3.5 Average Temperature Coefficient of Input Offset Voltage RS ~ 10 fl, VCM ~ 0 V, Vo ~ 0 V, TA ~ Tlow to Thigh :'VIOI.H - 2.0 - Input Bias Current (VCM ~ 0 V, Va ~ 0 V) TA ~ +25"C TA ~ -40"C to +85"C 118 - 300 750 800 Input Offset Current (VCM ~ 0 V, Vo ~ 0 V) TA ~ +25"C TA ~ -40"C to +85"C 110 Common Mode Input Voltage Range (6.VIO ~ 5.0 mV, Vo ~ 0 V) VICR Large Signal Voltage Gain (VO ~ ±10V,RL ~ 2.0kfll TA ~ +25"C TA ~ -40"C to +85"C AVOL Unit mV IVlol - ,"VloC nA .- - - 25 nA ",3 :t14 150 175 - V dB 90 85 110 - - - Output Voltage Swing (VID ~ ±1.0V) RL ~ 600 fl RL ~ 600 II RL ~ 2.0 kfl RL ~ 2.0 kll RL ~ 10 kfl RL ~ 10 kll VO+ VOVO+ VOVO+ VO- Common Mode Rejection (Vin ~ ±13 V) CMR 80 100 - dB Power Supply Rejection (Note 3) VCCNEE ~ +15VI-15Vto +5.0VI-5.0V PSR 80 105 - dB Output Short Circuit Current (VID ~ 1.0 V, Output to Ground) ISC +15 -20 +29 -37 - - 4.1 - 8.4 - - V Source Sink Power Supply Current (VO ~ a V, All Amplifiers) MC33078 TA ~ +25"C TA ~ - 40"C to + 85"C MC33079 TA TA ~ ~ 13.2 13.5 - 10.7 -11.9 13.8 -13.7 14.1 -14.6 -13.2 -14 mA mA 10 + 25"C -40"C to +85"C MOTOROLA LINEAR/INTERFACE DEVICES 2-242 - 5.0 5.5 10 11 MC33078, MC33079 AC ELECTRICAL CHARACTERISTICS (Vcc ~ + 15 V VEE ~ -15 V TA ~ 25'C unless otherwise noted) Characteristics ~ Slew Rate (Vin ~ -10 V to + 10 V, RL Gain BAndwidth Product (I ~ 2.0 kll, CL ~ 100 pF, AV ~ +1.0) 100 kHz) ~ Phase Margin (RL 2.0 kll) Channel Separation (I ~ 20 Hz to 20 kHz) Power Bandwidth (Va ~ 27 Vp_p, RL Distortion (RL ~ 2.0 kll, I ~ ~ 20 Hz to 20 kHz, Va ~ 0 V, I Differential Input Resistance (VCM ~ 0 V) ~ Differential Input Capacitance (VCM ~ 0 V) Equivalent Input Noise Voltage (RS ~ 100 ll, I ~ CL CL ~ 7.0 CL CL ~ ~ ~ 0 pF 100 pF Am 0 pF 100 pF m 2.0 kll, THD '" 1.0%) Open-Loop Output Impedance (Va Equivalent Input Noise Current (I Typ 5.0 IU 2.0 kll) ~ Min SR GBW Unity Gain Frequency (Open-Loop) Gain Margin (RL Symbol ~ 3.0 V rmS ' AV ~ +1.0) 55 40 - Deg 16 9.0 MHz MHz dB -120 - dB - 120 kHz THD - 0.002 - en 1.0 kHz) -11 -6.0 10 - CS C,N 1.0 kHz) VII's BWp RIN ~ Unit - - ilol 9.0 MHz) Max in 37 175 12 4.5 0.5 % II k!l pF nV/v'FiZ pAlv'Hz TYPICAL CHARACTERISTICS FIGURE 1 - MAXIMUM POWER DISSIPATION versus TEMPERATURE FIGURE 2 -INPUT BIAS CURRENT versus SUPPLY VOLTAGE 2400 800 ~ ~ MCJ3078P 1& MCJ3079P o I i :::> u ~ in ~ w o -55 -40 -20 FIGURE 3 - 1000 1 >- i :::> 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE ('C) ~ 200 ~ 120 140 o 160 I :> ~ '" ~ Av~.!!-- r- '" ~ t;; 400 I-- ~ ·-55 -25 - ......-- UJITI ~ r-- UNIT 2--:= tto - >- '->" ~ -1.0 o 200 o 20 INPUT OFFSET VOLTAGE versus TEMPERATURE Vce - +15V VEE ~ -15V RS ~ 10 II +1.0 VCM ~ OV ~ 600 ~ >- 10 15 VCC, IVE~I, SUPPLY VOLTAGE (VOLTS) +2.0 r---VCC ~ +15V 800 r--- VEE ~ -15V VCM ~ OV ~ 5.0 FIGURE 4 - u in -... z INPUT BIAS CURRENT versus TEMPERATURE I 400 ~ r--. t"---- ~ r---: ~ 400 25'C >- 1600 ,p ~ '[ 600 Ci ,. _VCIM~OV TA I I i' ......... '-' ~300 ~~ r-. 200 -- VCc-O ~ ;:;; VCC -0,5 r--)VCM - -15 - 10 '"~ VCC -1.0 - -- i: : : ~R,nge~ ~ VEE + 0 , 5 i - - - t - - - + - - - t - - - - i - - + - - t - - - - - i z ~ VEE+OL---L--~--~-~--~--L--~ ¥ + 15 I ~ Vee -1.0 - 55 < I 15 VCC - 5,0 VEE = -15V I I !;:i' --J I ~ +1,ot§=j~=j=j~::J~==E~~=E=t::~ $ VEE 1,0 2,0 3,0 RL, LOAD RESISTANCE TO GROUND IkHI FIGURE 9 - +15V 8,0 /~10V +1SV en U .Y +S,OV ~ 30 0 1)5 I- ::> ~ - Source 10 ~ ~ -- - ......... t--- r----. r--. r- 10 -55 -1S o 15 50 75 TA, AMBIENT TEMPERATURE lOCI 100 125 ~"'" .lVCM~aVO '" CMR = 10Log ( ~J~ x ADM) 100 o ~C33078_ /±10V I--.... ::> 0 ~ 120 ~ 80 I-VCC= +15V o VEE = -15V :; ~ 60 I-VCM = OV a' ~ SupplV 10lt,ge,-! - - - -25 U z ::> -55 ~ o a:: ~ I I -'- ......... '-' ::> 125 VCC = +1SVVEE = -1SV RL < 100 H VID = 1,OV r- r--~ ~ 140 iC33079- ~ 6,0 o 40 100 OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE 160 VCM = OV RL = x Vo OV Z '-' 0 25 50 75 TA, AMBIENT TEMPERATURE lOCI FIGURE 10 - COMMON MODE REJECTION versus FREQUENCY +5.0V 2,0 ~ ::> )-- !:: 4,0 I- 8:: 4,0 ::> - 25 50 I- SUPPLY CURRENT versus TEMPERATURE 10 < E I [j,2SoC I E Elm i:::~2 g "" ,~ FIGURE 8 - ~CC ~15V 25°C VOI\age ~ FIGURE 7 - OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO GROUND VL-I- I ~ I +3,OVto +15V VCC VEE = -3,0 to -15V aVIO = 5,0 mV Vo =10 V t '">:i VCC -1,5 - 5,0 0 +5,0 + 10 VCM, COMMON MODE VOLTAGE IVOLTSI _·55°C ~ // / l!J VCC -3.0 I 2: 100 o INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE i3 VC~= SOO continued o 25 50 75 TA, AMBIENT TEMPERATURE lOCI 100 115 aVCM = ±1,5V 40 l-illlll~1 j j 1.OK MOTOROLA LINEAR/INTERFACE DEVICES 2-244 10K lOOK f, FREQUENCY IHzl 1,OM 10M MC33078, MC33079 FIGURE 11 - POWER SUPPLY REJECTION versus FREQUENCY 140 + PSR ~ 120 z o lOD ~ ~VOIADM) 20Log ( ~Vee ~ ri ~ i ~ ~ 30 40 ~ 20 iva ITf ~I~~~~II 100 I k" -J.i I Vee ~ + 15 V f--VEE ~ -15V o ;:, ~10~~~Z TA ~ 25°C - vEE I I II 111'1 60 c2 ~L ~ "Okri_ .lVE~ ~ - PSR I I I LOK 10K lOOK t, FREQUENCY 1Hz} LOM o 5,0 10M 20 ~ t; 15 ----- r--- 15 o go I b ~ 10 z ;;\ VEE z >-- ~ :::l 0 6 > 10 10 111111111111 100 1.OK f-'" I Vee ~ +15V vee ~ -15V RL ~ 2,0 k!! AV ~ +1.0 THD ~ 1.0% TA ~ 25°C 5,0 0 OPEN-LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE - l- 15 10K lOOK t, FREQUENCY (Hzl LOM 20 r- .lVo I'I , 0 f::: VO- r- RL w '" 20 « ~ ~ --..;::: ~ 2.0 k!! f" 10 Hz ~ 23 (Vee - VEE) TA ~ 25°C I I 2.0 kfl 10 15 Vee, IVEEI, SUPPLY VOLTAGE (VOLTS) OUTPUT VOLTAGE versus FREQUENCY 30 ~ RL ~ lOr FIGURE 16 FIGURE 15 - RL ""Vo+ o t.> -10 o ~ """'" > >-- :::l 10k!! -25 I ....... ~p w 100 kHz ~ TA - 25°C 15 r-- 20 10 15 Vee, IVEEI, SUPPLY VOLTAGE (VOLTS) FIGURE 14 - MAXIMUM OUTPUT VOLTAGE versus SUPPLY VOLTAGE FIGURE 13 - GAIN BANDWIDTH PRODUCT versus TEMPERATURE ~ GAIN BANDWIDTH PRODUCT versus SUPPLY VOLTAGE 20Log eVO'ADM) ~D 80 '" ~ - PSR FIGURE 12 - 80 5.0 10M 10 15 Vee, IVEEI, SUPPLY VOLTAGE (V) MOTOROLA LINEAR/INTERFACE DEVICES 2-245 - 20 II II MC3307S, MC33079 TYPICAL CHARACTERISTICS - FIGURE 17 - OPEN·LOOP VOLTAGE GAIN versus TEMPERATURE 110 VCC~ .'" z 105 w '"~ 0 > "0 V ..:. 95 V 0 it 90 -55 t- VCC = t'j z ""0 Ii' ~ ..... ::0 o 100 25 50 75 TA, AMBIENT TEMPERATURE lOCI b: 130 1000 ~ ~ 120 is ./ ~ I 10- llilLJ.J. lllfAr nIII 1.0M 10M TOTAL HARMONIC DISTORTION versus FREQUENCY 100 1.0K f, FREQUENCY IHzl Z 0 '"~ ;:: 0.0 1 ..... ci (~~OA ) :J: ..... OM 0.00 I 10 lOOK t; O. 1 A) FIGURE 22 - -:-- ~ci 0.005 1= 0.00 1 o 1.0 2.0 lOOK SLEW RATE versus SUPPLY VOLTAGE t-- Vin = 2 31VCC - VEE I TA = 25°C lOOJ 8.0 AV' = 100 ~ ? 6.0 I,1RAn~; Vin + 2.0 0.05 0.0 1 10K I.OK 10 ,. I-- !.! 100 t, fREQUENCY IHzl 1.0 VCC= +15V VEE = -15V 0.5 f ~ 20kHz TA = 25°"-~ = 2.0 kll 0 I FIGURE 21 - TOTAL HARMONIC DISTORTION versus OUTPUT VOLTAGE z : O. I 0 u I CS = 20Log "' 10K M'" t-- Va t-- TA 0 ~ 0 ..... I ~ T ............... ...... 60 ~ Gain g Z ~ 40 --- ~ 0 -" 0 =2.0 kl! -25 ............ 80 it 25 50 75 TA AMBIENT TEMPERATURE 1°C) 100 20 o1.0 125 100 10 1.0K 10K t, FREQUENCY [Hz) FIGURE 26 - FIGURE 25 - OPEN-LOOP GAIN MARGIN AND PHASE MARGIN versus LOAD CAPACITANCE 100 j"l.1Yin -..!.hase f------ ...... "" lOOK r-.,. -..... ~ 135 10M 1.0M OVERSHOOT versus OUTPUT LOAD CAPACITANCE c"-"~ 1" 80 I VCC = +15V VEE = -15VRL = 2.0 kfl TA = 25°C 0 r- j"l.1Vin --t ~VO + 2.0 -55 I ............ 100 + 2.0kfl [7 Vo =I CL 1150~~ 25°C / WC- / V 20 f- 1.0K 100 CL, OUTPUT LOAD CAPACITANCE IpF) 10 > N w 30 20 '" §:i 10 ~ i of TOTAL INPUT REFERRED NOISE VOLTAGE versus SOURCE RESISTANCE TA = 25°C Vnltotal) VlinRS)2 + en2 + 4KTRS 100 '" <5 z ........ I 8.0 Voltage - 3.0 2.0 100 1.0K 10K t, FREQUENCY [Hz) 10 >~ i<': J:~t, I +15V 15 V t = 1.0 kHz ~ 0 1.0 10 VCC VEE w « '" > ~ 5.0 >~ i<': ~ +15V VCC 15 V VEE TA = 25°C ~ 50 ~ 10K ~ 1000 100 80 §Z FIGURE 28 - INPUT REFERRED NOISE VOLTAGE AND CURRENT versus FREQUENCY VCC = +15Y VEE = -15 V aYin = 100 mY II I o FIGURE 27 - V 1/ <1. >~ lOOK c > 1.0 10 100 MOTOROLA LINEAR/INTERFACE DEVICES 2-247 1.0K 10K RS, SOURCE RESISTANCE Ifl) lOOK 1.0M MC33078, MC33079 TYPICAL CHARACTERISTICS - II continued FIGURE 29 - PHASE MARGIN AND GAIN MARGIN versus DIFFERENTIAL SOURCE RESISTANCE 70 14 12 ~ '10 z ~ 8.0 ~ 6.0 J 4.0 2.0 11111111111111111111 11111 Jilllilill II 11111111 d;:~ ::rnlTTIIlrrr fTImr ~ + 60 fil 50 ~ e'" Phase 40 z Va a R2 30 VCC ~ +15V VEE ~ -15V RT ~ Rl + R2 AV ~ + 100 Va ~ OV TA ~ 25°C 20 ~ '" w « '" it E 10 ~ 0 10 100 1.0K 10K RT, DIFFERENTIAL SOURCE RESISTANCE Inl FIGURE 30 - INVERTING AMPLIFIER SLEW RATE lOOK FIGURE 31 - NON-INVERTING AMPLIFIER SLEW RATE t, TIME 12.0 jJ.s DlV.1 t, TIME 12.0 p.SiDIV.1 FIGURE 32 - FIGURE 33 - LOW FREQUENCY NOISE VOLTAGE versus TIME NON-INVERTING AMPLIFIER OVERSHOOT t, TIME 1200 nslDlV.1 t, TIME 11.0 SEC,DIV.I MOTOROLA LINEAR/INTERFACE DEVICES 2-248 MC33078, MC33079 FIGURE 34 - VOLTAGE NOISE TEST CIRCUIT (0.1 Hz·TO·l0 HZp.pl 10 !l 1 4.7 IL F Voltage Gain ~ 50,000 24.3 kfl 0.1 ILF Note: All capacitors are non-polarized. MOTOROLA LINEAR/INTERFACE DEVICES 2-249 ® MC33171, MC35171 MC33172, MC35172 MC33174, MC35174 MOTOROLA II LOW POWER, SINGLE SUPPLY OPERATIONAL AMPLIFIERS LOW POWER, SINGLE SUPPLY OPERATIONAL AMPLIFIERS Quality bipolar fabrication with innovative design concepts are employed for the MC33171/2/4, MC35171/2/4 series of monolithic operational amplifiers. This series of operational amplifiers operates at 180 IJ.A per amplifier and offers 1.8 MHz of gain bandwidth product and 2.1 V/lJ.s slew rate without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential (VEE). With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink AC frequency response. The MC33171/2/4, MC35171/2/4 series of devices are specified over the industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic and ceramic DIP as well as the SOIC surface mount packages. P SUFFIX PLASTIC PACKAGE CASE 626-05 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 PIN ASSIGNMENTS ~a NC Offset Null Invt Input, Noninvt Input J VEE 4 _ 7 VCC + 6 Output 5 Offset Null Single, Top View • Low Supply Current: 180 IJ.A (Per Amplifier) • Wide Supply Operating Range: + 3.0 V to +44 V or ± 1.5 V to ±22 V U SUFFIX CERAMIC PACKAGE CASE 693-02 Output 1 1 7 Output 2 • Wide Input Common Mode Range Including Ground (VEE) • Wide Bandwidth: 1.8 MHz • High Slew Rate: 2.1 V/lJ.s Dual, Top View • Low Input Offset Voltage: 2.0 mV • Large Output Voltage Swing: -14.2 V to (with +1-15 V Supplies) + 14.2 V • Large Capacitance Drive Capability: 0 to 500 pF • Low Total Harmonic Distortion: 0.03% • Excellent Phase Margin: 60° P SUFFIX PLASTIC PACKAGE CASE 646-06 • Excellent Gain Margin: 15 dB • Output Short Circuit Protection '4~ ORDERING INFORMATION OpAmp Function Device L SUFFIX CERAMIC PACKAGE CASE 632-08 D SUFFIX PLASTIC PACKAGE CASE 751A-02 50-14 PIN ASSIGNMENTS Temperature Range Package Single MC33171D MC35171U MC33171P -40 to +S5°C -55 to + 125°C -40 to +S5°C SO-S Plastic DIP Ceramic DIP Plastic DIP Dual MC33172D MC35172U MC33172P -40 to +S5°C -55 to + 125°C -40 to +S5°C SO-S Plastic DIP Ceramic DIP Plastic DIP Quad MC33174D MC35174L MC33174P -40 to +S5°C -55 to + 125°C -40 to +S5°C 50-14 Plastic DIP Ceramic DIP Plastic DIP MOTOROLA LINEAR/INTERFACE DEVICES 2-250 MC33171, MC33172, MC33174, MC35171, MC35172, MC35174 MAXIMUM RATINGS Rating Supply Voltage Symbol Value Unit VCCNEE ±22 Volts Volts VIDR (Note 1) Input Voltage Range VIR (Note 1) Volts Output Short Circuit Duration (Note 2) ts Indefinite Seconds Operating Ambient Temperature Range MC35171/MC35172/MC35174 MC33171/MC33172/MC33174 TA Input Differential Voltage Range 'c -55to +125 -40 to +S5 Operating Junction Temperature TJ Storage Temperature Range Ceramic Package Plastic Package 'c 'c +150 Tstg -65to +150 -55 to + 125 Notes: 1. Either or both Input voltages must not exceed the magnitude of Vee or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER) VCC ...-""'.....>-"'II'N-+--o Output RS Inputs +o-----------~----------+_~--~------------J Limit 01 R3 R5 R4 Offset Null (MC33171. MC35171) MOTOROLA LINEAR/INTERFACE DEVICES 2-251 II MC33171, MC33172, MC33174, MC35171, MC35172, MC35174 DC ELECTRICAL CHARACTERISTICS (VCC = + 15 V, VEE = -15 V, RL connected to ground, TA = Tlow to Thigh INote 31 unless otherwise noted.) Symbol Characteristic Input Offset Voltage (VCM = 0 V) VCC= +15V,VEE= -15V,TA= +25°C VCC = +5 V, VEE = 0 V, TA = +25°C VCC = +15 V, VEE = -15 V, TA = Tlow to Thigh VIO Average Temperature Coefficient of Offset Voltage aVIO/aT Input Bias Current (VCM = 0 V) TA = +25°C TA = TlowtoThigh liB Input Offset Current (VCM = 0 V) TA = +25°C TA = Tlow to Thigh 110 Large Signal Voltage Gain (VO = ±10V, RL = 10 k) TA = +25°C TA = Tlow to Thigh AVOL Output Voltage Swing VCC = +5.0 V, VEE = 0 V, RL = 10 k, TA = +25°C VCC = +15V,VEE = -15V.,RL = 10k,TA = +25°C VCC = + 15 V, VEE = -15 V, RL = 10 k, TA = Tlow to Thigh VOH VCC = +5.0 V, VEE = 0 V, RL = 10 k, TA = +25°C VCC = +15V, VEE = -15V, RL = 10 k, TA = +25°C VCC = + 15 V, VEE = -15 V, RL = 10 k, TA = Tlow to Thigh VOL Max - - 2.0 2.5 - - 4.5 5.0 6.5 - 10 - Sink Input Common Mode Voltage Range TA = +25°C 20 100 200 - - - 5.0 - 20 40 50 25 500 - 3.5 13.6 13.3 4.3 14.2 - nA V/mV - V - 0.05 -14.2 - - 3.0 15 5.0 27 0.15 -13.6 -13.3 mA - V VICR VEE to (VCC -1.8) = Tlow to Thigh VEE to (VCC - 2.2) Common Mode Rejection Ratio (RS '" 10 k) CMRR 80 90 Power Supply Rejection Ratio (RS = 100!1) PSRR 80 100 Power VCC VCC VCC p.VFC nA - ISC Source Unit mV - Output Short Circuit Current (TA = + 25°C) Input Overdrive = 1.0 V, Output to Ground TA Typ Min Supply Current (Per Amplifier) = +5.0 V, VEE = 0 V, TA = +25°C = +15V, VEE = -15V, TA = +25°C = + 15 V, VEE = -15 V, TA = Tlow to Thigh Notes; (continued) 3. Tlow = -55°C for MC35171/MC35172/MC35174 = -40°C for MC33171/MC33172/MC33174 - - - 2-252 180 220 - = +125°C for MC3517l1MC35172/MC35174 = + 85°C for MC33171/MC33172/MC33174 MOTOROLA LINEAR/INTERFACE DEVICES dB p.A ID Thigh dB 250 250 300 ~C33171,~C33172,~C33174, ~C35171, ~C35172,~C35174 AC ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V, VEE ~ -15 V, RL connected to ground, TA ~ + 25°C unless otherwise noted) Symbol Characteristic Slew Rate (Vin AV + 1 AV - 1 ~ ·-10Vto +10V, RL ~ 10 k, CL ~ 100 pF) Min Gain Bandwidth Product (I ~ ~ 10 k, Vo 100 kHz) = 20 Vp _p, THD ~ 2.' 2.1 GBW 1.4 1.8 BWp - 35 - 60 45 - - - Gain Margin RL = 10 k RL = 10 k, CL Am MHz kHz = 1.0 kHz) Differential Input Resistance VCM = 0 V Input Capacitance dB en - 32 In - RIN - 300 - Mfl Ci - 0.8 - pF 0.03 - % 120 - dB 100 - fl THD Total Harmonic Distortion AV - + 10, RL - 10 k, 2.0 Vp_p '" Vo '" 20 Vp_p' f - 10 kHz - = 10 kHz) = 1.0 MHz) Degrees 15 5.0 = 100 pF Equivalent Input Noise Voltage RS = 100 n, I = 1.0 kHz Open-Loop Output Impedance (I Unit 5% ¢m Channel Separation (f - - Phase Margin RL ~ 10 k RL - 10 k, CL ~ 100 pF Equivalent Input Noise Current (I Max V/p.s 1.6 Power Bandwidth AV - + 1.0, RL Typ SR 0.2 - Zo - nVI VHz - pAl VHz TYPICAL PERFORMANCE CURVES FIGURE 2 - SPLIT SUPPLY OUTPUT SATURATION versus LOAD CURRENT FIGURE 1 - INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE ~ Vcc- >rVCCNEE ~ (:J z ;ii -0.8 ~ (:J ;5 is -1.6 f--> ~ o - - = +/-1.5Vto +/-22V aVIO = 5.0 mV - ~ ~ -2.4 '" 1---+--1 VEE-+---+t !;! -55 -25 ~ ~> -1.0 I'--. 0 +25 +50 +75 TA, AMBIENT TEMPERATURE (OC) I ---t------1] +100 +125 I VCC --:!'. I I I VCCNEE - +/-5.0Vto +/-22V TA = 25°C -- Source - I z o o ~ .0; II------+-I---+--cc-I ~ ~":Hd' 1.1 IIII I o 1.0 2.0 IL, LOAD CURRENT (± rnA) MOTOROLA LINEAR/INTERFACE DEVICES 2-253 3.0 4.0 II MC33171, MC33172, MC33174, MC35171, MC35172, MC35174 FIGURE 4 - FIGURE 3 - OPEN-LOOP VOLTAGE GAIN AND PHASEveRusFREQUENCY 30 00 ;; 20 .....~ .... I ~ ..... 10 Margin 58° ~ VCCNEE = +1-15V ~ RL = 10k [!; I YOU! = OV g TA = 25°C I ~ -10 1- Phase o 2 - Phase, CL = 100 pF ~-2 3-Gain 4-Gain,CL = 100pF -30 100 k !:; 0 ~aln 1- 1 ~ h =Margin r-- 15dB 1 0 1 0 2 0 , 2 ~ 3 r'd: ~ \ 'J o -r-. ( \ 10 M 200 50 100 CL, LOAD CAPACITANCE IpFI 20 1.2 "" " -- r-- 1.0 ffi Cl 0.9 '" 0.8 1.0 k 500 FIGURE 6 - SMALL AND LARGE SIGNAL TRANSIENT RESPONSE [I 5 ...z 1 o 0.50 !'s/DIV 1.3 1.1 \ 1\ 0 10 FIGURE 5 - NORMALIZED GAIN BANDWIDTH PRODUCT AND SLEW RATE ve"';us TEMPERATURE ~ '" '\ % ....... ~ f, FREQUENCY IHzl ;; AVOL = + 1.0 RL = 10 k dVo = 20 mV p. p TA = 25°C / 220 r. 1.0 M / AV it ::> / = 1.0 iU1 IV11 V ~ u ~ / I AV ~ 40 1. II~v = lool V FIGURE 8 - 200 k I '"'" ~ r- u S' P 2.0 M 1 l-TA 2- TA 3-TA 0.9 0.7 0. ~ 5 0.3 o. 1 o = ~ = SUPPLY CURRENT versus SUPPLY VOLTAGE I ~u!!V- ~ f-- -550C 25°C 125°C ?--...- ~ - ...- i--r-" Dual ~ f-- - _3 I I -1 2_ 3 ......-::: t:: 112 3- Single ,.... 1 ±10 ±5 ±15 VCC/VEE, SUPPLY VOLTAGE IVI MOTOROLA LINEAR/INTERFACE DEVICES 2-254 11 _2 ±20 ±25 MC33171, MC33172, MC33174, MC35171, MC35172, MC35174 APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES Although the bandwidth, slew rate, and settling time of the MC33171172/74 amplifier family is similar to low power op amp products utilizing JFET input devices, these amplifiers offer additional advantages as a result of the PNP transistor differential inputs and an all NPN transistor output stage. Because the input common mode voltage range of this input stage includes the VEE potential, single supply operation is feasible to as low as 3.0 volts with the common mode input voltage at ground potential. The input stage also allows differential input voltages up to ±44 volts, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between VCC and VEE supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the VCC voltage by approximately 3.0 volts and decrease below the VEE voltage by 0.3 volts without causing product damage, although output phase reversal may occur. It is also possible to source up to 5.0 mA of current from VEE through either input's clamping diode without damage or latching, but phase reversal may again occur. If at least one input is within the common mode input voltage range and the other input is within the maximum input voltage range, no phase reversal will occur. If both inputs exceed the upper common mode input voltage limit, the output will be forced to its lowest voltage state. Since the input capacitance associated with the small geometry input device is substantially lower (0.8 pF) than that of a typical JFET (3.0 pFI. the frequency response for a given input source resistance is greatly enhanced. This becomes evident in D-to-A current to voltage conversion applications where the feedback resistance can form a pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DAC's). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 10 kO offeedback resistance, the MC33171/72/74 family can typically settle to within 1/2 LSB of 8 bits in 4.2 /LS, and within 1/2 LSB of 12 bits in 4.8 /LS for a 10 volt step. In a standard inverting unity gain fast settling configuration, the symmetrical slew rate is typically ± 2.1 voltsl/Ls. In the classic noninverting unity gain configuration the typical output positive slew rate is also 2.1 volts//Ls, and the corresponding negative slew rate will usually exceed the positive slew rate as a function of the fall time of the input waveform. The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 kO load resistance can typically swing within 0.8 volt of the positive rail (VccI and negative rail (VEE), providing a 28.4 Vp-p swing from ± 15 volt supplies. This large output swing becomes most noticeable at lower supply voltages. The positive swing is limited by the saturation voltage of the current source transistor 07, the VBE of the NPN pull up transistor 017, and the voltage drop associated with the short circuit resistance, R5. For sink currents less than 0.4 mA, the negative swing is limited by the saturation voltage of the pull-down transistor 015, and the voltage drop across R4 and R5. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of VEE. For sink currents (> 0,4 mAl. diode D3 clamps the voltage across R4. Thus the negative swing is limited by the saturation voltage of 015, plus the forward diode drop of D3 (=VEE + 1.0 V). Therefore an unprecedented peak-to-peak output voltage swing is possible for a given supply voltage as indicated by the output swing specifications. If the load resistance is referenced to VCC instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to VCC during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability. Because the PNP output emitter follower transistor has been eliminated, the MC33171/72/74 family offers a 15 mA minimum current sink capability, typically to an output voltge of (VEE + 1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistorfor high current switching applications. In addition, the all NPN transistor output stage is inherently faster than PNP types, contributing to the bipolar amplifier's improved gain bandwidth products. The associated high frequency low output impedance (200 0 typ Cd 1.0 MHz) allows capacitive drive capability from 0 to 400 pF without oscillation in the noninverting unity gain configuration. The 60° phase margin and 15 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The ac characteristics of the MC33171/72/74 family also allow excellent active filter capability, especially for low voltage single supply applications. Although the single supply specification is defined at 5.0 volts, these amplifiers are functional to at least 3.0 volts@ 25°C. However slight changes in parametrics such as bandwidth, slew rate, and dc gain may occur. If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction. As usual with most high frequency amplifiers, proper lead dress, component placement and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature. The output of anyone amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for ± 15 volt supplies, anyone output can be shorted continuously to ground without exceeding the maximum temperature rating. MOTOROLA LINEAR/INTERFACE DEVICES 2-255 II II MC33171, MC33172, MC33174, MC35171, MC35172, MC35174 FIGURE 9 - AC COUPLED NONINVERTING AMPLIFIER WITH SINGLE +5.0 V SUPPLY 2.2 k ~ 510 k r-"""-~w.--oVec Vo 100 k FIGURE 10 - AC COUPLED INVERTING AMPLIFIER WITH SINGLE + 5.0 V SUPPLY Vee 0~3.6VP-P 100 k '1;.,;1 G~l'Y'OOIl\~""O-k---l r AV = 101 BW (-3.0 dB) Vo "::" AV = 10 BW (-3.0 dB) = 20 kHz ~ Yin ~.~ V~4.2 = Vp-p :T Offset Nulling range is approximately ± 80 mV with a 10k potentiometer, MC3317l1MC35111 only. 200 kHz FIGURE 14 - ACTIVE BANDPASS FILTER 0.2 Vdc R 16 k e R 16 k 2R 32 k 0.047 Rl R3 2.2 k 1.1 k >-+-oVo >---"--oVo e C 0.Q1 2C "::" Vee FIGURE 13 - ACTIVE HIGH-Q NOTCH FILTER 0.02 kHz ~__~R_l_~VO AV= 10 BW (- 3.0 dB) Yin = 200 50 k -l ___ : ;> Vo FIGURE 12 - OFFSET NULLING CIRCUIT 100 k 100 k Yin f Rl ~---'---JVII\r-_~---ovee "::" Co >-+---I~_~O 100 k FIGURE 11 - DC COUPLED INVERTING AMPLIFIER MAXIMUM OUTPUT SWING WITH SINGLE + 5.0 V SUPPLY r;~411\.7~k 0~3.8 Vp-p R2 5.6 k 2e 0.02 fo = 1.0 kHz 1 fo = 4"Re Given fa Vee fo = 30 kHz 0=10 HO = 1.0 0.047 Rl = Center Frequency =-EL 2 Ho R2 Rl R3 402 Rl-R3 AO = Gain at Center Frequency Choose Value fo• a, Ao. C R3 =--0- ..toe Then For less than 10% error from operational amplifier Where fo and GBW are expressed in Hz. MOTOROLA LINEAR/INTERFACE DEVICES 2-256 00fo<0.1 GBW ® MC33282 MC33284 MOTOROLA Advance Information JFET OPERATIONAL AMPLIFIERS LOW INPUT OFFSET, HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUIT The MC33282,4 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar and JFET design concepts. This dual and quad operational amplifier series incorporates JFET inputs along with a patented unique resistor trim element for input offset voltage reduction. The MC33282,4 series of operational amplifiers exhibits low input offset voltage, low input bias current, high gain bandwidth and high slew rate. Dual-doublet frequency compensation is incorporated to produce high quality phase/gain performance. In addition, the MC33282,4 series exhibits moderately low input noise characteristics for JFET input amplifiers. It's all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margin, low open-loop high frequency output impedance with symmetrical source and sink ac frequency performance. The MC33282,4 series is specified over - 40'C to + 85'C and is available in the plastic DIP and SOIC surface mount packages (P and D suffixes). .~ 1 P SUFFIX PLASTIC PACKAGE CASE 626-05 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 • Low Input Offset Voltage: 200 p.V • Low Input Bias Current: 30 pA Output 1 ' • Low Input Offset Current: 6.0 pA , Output 2 Inputs 1 { : • Low Total Harmonic Distortion: 0.003% VEE' • Low Noise: 18 nV/" Hz @ 1.0 kHz • High Gain Bandwidth Product: 30 MHz @ 100 kHz - :} Inputs 2 (Dual, Top Viewl • High Slew Rate: 12 V/p.s • Excellent Frequency Stability • Large Output Voltage Swing: + 14.1 V/-14.6 V '. • Dual Supply Operation: ± 18 V (Max) 1 P SUFFIX PLASTIC PACKAGE CASE 846-06 o SUFFIX PLASTIC PACKAGE CASE 751A-02 50-14 Output 1 , Inputs 1 { : ORDERING INFORMATION OpAmp Function Dual Quad Device Ambient Test Temperature Range MC33282D MC33282P - 40'C to + 85'C MC33284D MC33284P - 40'C to + 85'C " Output 4 VCC' Package SO-8 Plastic DIP Inputs 21 : "I Output 2 , , Output 3 SO-14 Plastic DIP This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 2-257 " VEE • (Quad, Top View) Inputs 3 II MC33282, MC33284 MAXIMUM RATINGS Rating Supply Voltage (Vcc to VEE) Symbol Value Unit Vs -t-36 Volts Volts VIDR (Note 1) Input Voltage Range VIR (Note 1) Volts Output Short Circuit Duration (Note 2) ts Indefinite Seconds Input Differential Voltage Range Maximum Junction Temperature Storage Temperature Maximum Power Dissipation TJ +150 'c TstQ -60 to + 150 'c PD (Note 2) mW NOTES: 1. Either or both input voltages should not exceed Vee or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER) Dl D4 + R16 Q9 Q18 C5 + C6 D5 R17 A B C D Q13 21 MOTOROLA LINEAR/INTERFACE DEVICES 2-258 MC33282, MC33284 ~ -15 V TA ~ 25'C unless otherwise noted) DC ELECTRICAL CHARACTERISTICS (VCC - +15 V VEE Input Offset Voltage (RS TA ~ +25'C TA ~ -40'C to +85'C ~ ~ 10 l1, VCM 0 V, Va ~ 0 V) ~ ~ 0 V, Va ~ Input Offset Current (VCM TA ~ +25'C TA ~ -40'C to +85'C Output Voltage Swing (VID RL ~ 2,0 kl1 RL ~ 2.0 kl1 RL ~ 10 kl1 RL ~ 10 kl1 ~ ~ ~ ± 10 V, RL ~ 5.0 mY, Va ~ ~ 0 V) ~ Power Supply Current (Va TA ~ +25'C TA ~ -40'C to +85'C ~ 2.0 kl1) 0 V, Per Amplifier) ~ ~ ~ 2.0 kl1, CL ~ 2.0 kl1, CL ~ 100 pF, AV ~ +1.0) ~ 20 kHz) 0 pF) ~ -12 14 - V 50 25 200 - VO+ VOVO+ VO- 13.2 13.7 -13.9 14.1 -14.6 CMR 75 95 - dB PSR 75 105 - dB 15 -15 21 -27 - 1.75 2.5 3.0 -11 - - - - 13.5 - 20 Hz to 20 kHz) 27 Vp_p, RL ~ ~ Differential Input Resistance (VCM ~ 0 V, I Differential Input Capacitance (VCM ~ ~ ~ ~ 3.0 V rms ' AV ~ 9.0 MHz) mA mA 12 - Vlp.s - 30 - MHz Ava - 1500 - VN fU - 5.0 - MHz - 8.0 - dB 55 - Deg. -120 - kHz +1.0) 1.0 kHz) 0.003 - % IZol - 37 - 10 12 kl1 5.0 - - 18 - nV/VHz 0.01 - pAlVHz en 1.0 kHz) in and VEE differentially varied simultaneously. MOTOROLA LINEAR/INTERFACE DEVICES 2-259 dB THO CIN ~ - RIN 0 V) 100 l1, I -14 8.0 BWp 0 V) Equivalent Input Noise Voltage (RS Equivalent Input Noise Current (I ~ -13.2 SR cs 2.0 kl1, THO '" 1.0%) 20 Hz to 20 kHz, Va Open-Loop Output Impedance (VO - GBW 4>m ~ ~ 11 V/mV Am 0 pF) ~ Vee pA nA p.VI'C ~ + 15 V VEE ~ - 15 V TA ~ 25'C unless otherwise noted) 2.0 kl1, CL 0 V, f Channel Separation (f NOTE: 3. Measured with 50 2.0 - 10 100 kHz) 2.0 kl1, Va 2.0 kl1, f 6.0 - Power Bandwidth (Va ~ pA nA ISC Unity Gain Frequency (Open-Loop) Distortion (RL 100 4.0 - AVOL 1.0 V, Output to Ground) - 10 V to + 10 V, RL ~ 30 - - Gain Bandwidth Product (f ~ - V AC ELECTRICAL CHARACTERISTICS (VCC Gain Margin (RL 5.0 mV VICR ±11 V) Output Short Circuit Current (VID Source Sink Phase Margin (RL 2.0 4.0 ±1.0 V) Common Mode Rejection (Vin ~ - Unit ,110 Power Supply Rejection (Note 3) VCCNEE ~ +15V/-15Vto +5.0 V/-5.0 V AC Voltage Gain (RL 0.2 - Large Signal Voltage Gain (Va TA ~ +25'C TA ~ -40'C to +85'C ~ - liB 0 V) Common Mode Input Voltage Range (aVIO Slew Rate (Vin Max aVIOlaT 0 V) ~ 0 V, Va Typ IVlol Average Temperature Coefficient of Input Offset Voltage RS ~ 10 l1, VCM ~ 0 V, Va ~ 0 V, TA ~ Tlow to ThiQh Input Bias Current (VCM TA ~ +25'C TA ~ -40'C to +85'C Min Symbol Characteristics 120 l1 pF • ® MC34001, MC35001 MC34002, MC35002 MC34004, MC35004 MOTOROLA JFET INPUT OPERATIONAL AMPLIFIERS JFET INPUT OPERATIONAL AMPLIFIERS These low cost JFET Input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC35001/35002/35004 series are specified over the military operating temperature range of - 55°C to + 125°C and the MC34001/34002/34004 series are specified from O°C to + 70°C. SILICON MONOLITHIC INTEGRATED CIRCUITS G SUFFIX METAL PACKAGE CASE 601-04 4P • Wide Gain Bandwidth • High Slew Rate - 10 pA • Low Supply Current • High Input Impedance - , : • 1 ORDERING INFORMATION Single Dual Quad MC34001AU, BU, U MC35001AG, BG, G MC35001AU, BU, U MC34002AD, BD, 0 MC34002AG, BG, G MC34002AP, BP, P MC34002AU, BU, U MC35002AG, BG, G MC35002AU, BU, U MC34004BD, D MC34004BL, L MC34004BP. P MC35004BL, L o to +70 - 55 to + 125°C o to +70°C -55to +125°C o to +70·C -55to +125°C Ceramic DIP Metal Can Ceramic DIP SO-8 Metal Can Plastic DIP 1 P SUFFIX PLASTIC PACKAGE CASE 646-06 8. 1 vee' DSUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 , Vee e Output • Offset Null outPutA~VCC Inputs A { , v _ ' Output B '+A G}lnputsB EE' B+ ~ Out 1 E: Inputs 1 ~ j;fw: + Inputs MOTOROLA LINEAR/INTERFACE DEVICES 2~ Out2[!: MC3400', MC35001 (Top View) MC34002, MC35002 (Top View) BOut4 ~ Inputs 4 + ~ VCC~ DSUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 2-260 U SUFFIX CERAMIC PACKAGE CASE 693-02 ~ NC Offset Null Invt Input' Noninvt Input , . Ceramic DIP Metal Can Ceramic DIP SO-14 Ceramic DIP Plastic DIP Ceramic DIP ,. 1 P SUFFIX PLASTIC PACKAGE CASE 626-05 Package SO-8 Metal Can Plastic DIP ' 4 . --- • CERAMIC PACKAGE CASE 632-08 MC34002, MC35002 (Top View) _ • Inverting Input 8 ~ ~ • Industry Standard Pinouts Temperature Range Null Noninvertlng , + +, Noninverting Input A V~E Input B 1.8 mA per Amplifier 10 12 n Device MC34001AD, BD, 0 MC34001AG, BG, G MC34001AP, BP, P Output Vee ~-'0,~' 4.0 MHz cc s Offset Inverting' Input vcc • High Common-Mode and Supply Voltage Rejection Ratios 100 dB OpAmp Function 6 Non-, Inverting , _ Input A 13 V/J.Ls 1 :~~:r;ing, B 1 . 40 pA • Low Input Offset Current - -e NC Null • Input Offset Voltage Options of 2.0, 5.0, and 10 mV Maximum • Low Input Bias Current - MC34001, MC35001 (Top View) :!!JVEE ~r1 ~ Inputs 3 :!)Out3 MC34004, MC35004 (Top View) MC34001, MC35001, MC34002, MC35002, MC34004, MC35004 MAXIMUM RATINGS Symbol MC35001 MC35002 MC35004 Supply Voltage VCC VEE +22 -22 +18 -18 V Differential Input Voltage VID ±40 ±30 V VIDR ±20 ±16 V Rating Input Voltage Range Output Short-Circuit Duration ts Operating Ambient Temperature Range TA Operating Junction Temperature TJ II Unit Continuous - 55 to + 125 o to °c +70 °c Metal and Ceramic Packages Plastic Packages Storage Temperature Range Metal and Ceramic Packages Plastic Packages MC34001 MC34002 MC34004 150 - 115 115 -65 to + 150 -65to +150 - 55 to + 125 °c Tstg - ELECTRICAL CHARACTERISTICS (VCC = + 15 V VEE = -15 V TA = 25 unless otherwise noted) 0 Symbol Characteristic Input Offset Voltage (RS ., 10 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X Average Temperature Coefficient of Input Offset Voltage RS" 10 k, TA = Tlow to Thiah (Note 1) VIO AVIO/AT 110 Input Bias Current (VCM = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X' liB ri Common Mode Input Voltage Range VICR Large Signal Voltage Gain (VO = ± 10 V, RL = 2.0 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X AVOL Output Voltage Swing (RL'" 10 k) (RL'" 2.0 k) - Typ Max Min Typ Max - 1.0 3.0 5.0 2.0 5.0 10 1.0 3.0 5.0 2.0 5.0 10 10 - - 10 - - 10 10 25 25 50 100 - 25 25 25 50 100 100 - 40 40 50 75 100 200 - 50 50 50 100 200 200 - CMRR Supply Voltage Rejection Ratio (RS ., 10 k) (Note 3) MC3500XA, MC3400XA MC3500XB. MC3400X8 MC3500X, MC3400X PSRR 10 12 - - 10 12 - fl +15 -12 - ±11 +15 -12 - V 50 50 25 150 150 100 - 50 50 25 150 150 100 - V/mV ±12 ±10' - V ±14 ±13 - 80 80 100 100 - - - 80 80 70 100 100 100 - 80 80 70 100 100 100 - 80 80 70 100 100 100 - 1.4 1.4 1.4 2.5 2.5 2.7 - 1.4 1.4 1.4 2.5 2.5 2.7 13 - 13 - VII's 25 - nV/vHz 0.01 - pAlvHz dB - - dB Slew Rate (Av SR GBW - 4.0 - Equivalent Input Noise Voltage (RS = 100 fl, f = 1000 Hz) en - 25 - - Equivalent Input Noise Current (f = 1000 Hz) in - 0.01 - - mA MOTOROLA LINEAR/INTERFACE DEVICES 2-261 - ±14 ±13 ±12 ±10 - Gain-Bandwidth Product pA ±11 10 1) p.vrc pA Supply Current (Each Amplifier) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X = Unit mV Vo Common Mode Rejection Ratio (RS " 10k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X MC34001134002134004 Min - Input Offset Current (VCM = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X Input Resistance MC35001/35002135004 - - 4.0 MHz II MC34001, MC35001, MC34002, MC35002, MC34004, MC35004 ELECTRICAL CHARACTERISTICS (VCC = +15 V VEE = - 15 V TA= TI ow to Th·IQIh [Note 1]) MC35001/35002/35004 Characteristic Symbol Input Offset Voltage (RS " 10 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X Via Input Offset Current (VCM = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X 110 Input Bias Current (VCM = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X liB Common Mode Input Voltage Range VICR Large Signal (Va = ot 10 V, RL = 2.0 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X AVOL Output Voltage Swing (RL'" 10 k) (RL'" 2.0 k) Max Min Typ Max - - 4.0 7.0 14 - - 4.0 7.0 13 - - 20 40 40 - - 2.0 4.0 4.0 - - 50 50 50 - - - 4.0 8.0 8.0 - ",11 - - ",11 Unit mV nA nA V V/mV 25 25 15 - ",12 ",10 - - 25 25 15 - - - - ot 12 ",10 - - 80 80 70 - - 80 80 70 - - - 80 80 70 - - 80 80 70 - - - - - - 2.8 2.8 3.0 - 2.8 2.8 3.0 - _. V CMRR Supply Voltage Rejection Ratio (RS " 10 k) (Note 3) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X PSRR Supply Current (Each Amplifier) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X 11) Typ Va Common Mode Rejection Ratio (RS " 10 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X NOTES: MC34001/34002/34004 Min Tlow ~ -55"C for MC35001/MC35001A;350018 MC35002/MC35002A;350028 MC35004/350048 " O"C for MC34001/34001Ai34001 8 MC34002/34002Ai340028 MC34004/340048 Thigh - + 125"C for MC35001/MC35001Ai350018 MC35002/MC35002A/350028 MC350041350048 + 70"C for MC34001/34001 Ai34001 8 MC34002/34002Ai340028 MC34004/340048 ID - - - dB - dB - - rnA e (2) The input bias currents approximately double for every 10 rise in junc~ tion temperature, TJ. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heat sink is recommended if input bias current is to be kept to a minimum. 0 (3) Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously. in accordance with common practice. (4) Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply. MOTOROLA LINEAR/INTERFACE DEVICES 2-262 MC34001, MC35001, MC34002, MC35002, MC34004, MC35004 TYPICAL PERFORMANCE CHARACTERISTICS FIGURE 1 - INPUT BIAS CURRENT versus TEMPERATURE 100 + =VCCNEE ~ 15 V ~ 30 ~ 25 i ~ w ::> u '" Inr- I 20 >- ::> I ~ 10 ~01 ::> o II ~5.0 0.0 1 75 50 - 25 0 25 50 75 TA, AMBIENT TEMPERATURE I"CI 100 125 100 6. > ~ ,/' g ./ V >::> 6 10 6 > a ./ a 0.7 1.0 2.0 0.4 RL, LOAD RESISTANCE IkHl 0.2 4.0 7.0 10 FIGURE 5 - OUTPUT VOLTAGE SWING versus TEMPERATURE I '"z V o 2.0 1.B - - I--RL ." 10k ~ 1.6 ~ 1.4 ~ 25 '"~ 20 ~ 1.0 ~ 15 ~ 0.8 5. 10 ~ 0.6 .9 0.4 6 > 5.0 20 SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE -- ---- -I-- u §? - - - r---- VCcNEE ~ '" i5 V §§ 1.2 '-RL ·,2.0k V 5.0 10 15 VccNEE, SUPPLY VOLTAGE I'" VI FIGURE 6 - I '" 35 r--VCCNEE ~ '" 15 V ~ 30 -- /' := / 0.1 10M V w V 1.0 M 2.0k 25°C '" 20 ;! ./"" > := ~ ~ 20 6 5.0 ~ ~ 30 - o 10 k 100 k f, FREQUENCY IHzl I r-RL TA '" '" ':> 10 2.0 k 25°C 1\ 10k 40 :=::> ~ FIGURE 4 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE I I I ~ 30 -VCCNEE ~ "15 V _ TA ~ 25"C z ~ §? 1\ ~ w-tt- ' FIGURE 3 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE '" I RL ITA tU §2 15 >- 5: z ~ ~+15V ~ ~ 1.0 W~W IJWWIT VCCNEE 10 >- II FIGURE 2 - OUTPUT VOLTAGE SWING versus FREQUENCY 0.2 -,50 -25 a 25 50 75 TA, AMBIENT TEMPERATURE lOCI 100 125 -50 -25 a 25 50 75 TA, AMBIENTTEMPERATURE lOCI MOTOROLA LINEAR/INTERFACE DEVICES 2-263 100 125 MC34001, MC35001, MC34002, MC35002, MC34004, MC35004 II FIGURE 7 - LARGE·SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY FIGURE 8 - LARGE·SIGNAL VOLTAGE GAIN versus TEMPERATURE 1000 = + 15 V= Vo +10V RL - 2.0k _ VCCNEE ~-. ........ 1.0 "'- 10 , i'.. 'r-... 100 , ~ ± VCCNEE RL ~ TA ~ 15 V 2.0 k f---25°C _. ~ain ',"r--... 1'\ "'"r--...\ Phase Shift 1.0k 10k lOOk f. FREQUENCY [Hzl 1.0M 1 1 10M -50 FIGURE 9 - NORMALIZED SLEW RATE versus TEMPERATURE FIGURE 10 - I:;; '> 1.15 ;2 ,. 1.05 ~ ~ 1.00 r-- ~O.95 ~ 0.90 -- ---- co -15 ~ 40 ~ 30 o > t-- ~ """- r-........ "- ~ 20 - .. ":i §5 10 8 i 0 0 15 50 75 TA. AMBIENTTEMPERATURE ['CI 100 FIGURE 11 - 115 ~ + - ., 1 ] I. 0.01 0.05 i , z ~ t;; 0 is u Z 0 :;; 0.1 0.05 - VCCNEE AV Vo ~ i 0.1 0.5 1.0 f. FREQUENCY [kHzl 50 100 TOTAL HARMONIC DISTORTION versus FREQUENCY == TA ~ ± ~ 15 Vdc 1.0 6.0 V [RMS) 15'C _. ~ ;J 0.01 ~ 0.005 0.001 0.1 0.5 1.0 5.0 f. FREQUENCY [kHz] 10 MOTOROLA LINEAR/INTERFACE DEVICES 2-264 ~ 10 100 n 25'C I I 0.5 0 ~ . 1.0 Z RS TA 1 ~{ . 125 JJJl~~AV - II lJdl I « 0.85 -50 ~ _ .. 50 100 EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY I ~ 60 ~1.10 -25 0 25 50 75 TA. AMBIENTTEMPERATURE [CCI ·1' 5.0 I i 10 II 50 100 MC34001, MC35001, MC34002, MC35002, MC34004, MC35004 REPRESENTATIVE CIRCUIT SCHEMATIC (Each Amplifier) Output r-------------.-------~----._--------~_.----~~_r----._--~~VCC 2.0 k IMFa~!:l' { 1.S k L-~--~--~-4--+-~~------~----~------------~~---*--~----~--+-~VEE MC3S001 only) i 0--------------------' Bias Circuitry Common to All Amplifiers ! TYPICAL APPLICATIONS FIGURE 12 - OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A 0-TO-A CONVERTER Settling time to within 1/2 LSB (::t 19.5 mV) is approximately 4.0 p.S from the time all bits are switched. 14 MSB Al 5 A2 6 A3 7 A4 8 *The value of C may be selected to minimize overshoot and ring- Rl ~Vref ing Ie 15 R2 _ VCC ~ 15 V ~ 68 pF). Theoretical Vo V,ef [A1 A2 A3 A4 A5 A6 A7 (RO) + - +- + - +- + - + + -A8] R1 2 4 8 16 32 64 128 256 Vo = - AS 9 A610 Adjust Vref, Rl or RO so that level is equal to 9.961 volts. A7 II LSB A8 12 Vo with all digital inputs at high Vref = 2.0 Vdc VEE ~ R1 ~ RO ~ R2 ~ 1.0 k!l 5.0 kll - 15 V 2V [1 1 1 1 1 1 1 1] (5 k) - + - + - + - + - + - + + 1k 2 4 8 16 32 64 128 256 R~ Vo = - C· ~ 255] 10V [ 256 ~ 9961V . MOTOROLA LINEAR/INTERFACE DEVICES 2-265 MC34001, MC35001, MC34002, MC35002, MC34004, MC35004 FIGURE 13 - POSITIVE PEAK DETECTOR II Vout R~ *Polycarbonate capacitor 01 FIGURE 14 - = Hi-speed, low-reverse leakage diode FIGURE 15 - LONG INTERVAL RC TIMER ISOLATING LARGE CAPACITIVE LOADS R1 R4 R6 Clear +2.0 ~---l= Run -2.0 V ~ * Polycarbonate or Polystyrene Capacitor Time It I ~ R4 C/n IVRIVR-VII. R3 If R1 ~ R2: t ~ 0.693 R4C ~ R4, R5 ~ • Overshoot <10% ets =10/.ts • When driving large eL, the Vout slew rate is determined by Cl 0.1 R6 and lout(max): Design Example: laO Second Timer VR ~ 10 v C ~ 1.0 ~F R3 ~ R4 R6 ~ 20 k R5 ~ 2.0 k R1 ~ R2 ~Vout ~ ~ ~ = 144 M 1.0 k lout 0.02 CL = M V/jLS FIGURE 16 - WIDE BW, LOW NOISE, LOW DRIFT AMPLIFIER f max co 240 kHz R1 • Power BW: f max = s, 2'ITVp ~ 240 kHz • Parasitic input capacitance (Cl ~ 3 pF plus any additional layout capacitance) interacts with feedback elements and creates undesirable Alel. high-frequency pole. To compensate add C2 such that: R2C2 = MOTOROLA LINEAR/INTERFACE DEVICES 2-266 = 0.04 V//J-s (with CL shown) ® MC34071,2,4 MC35071,2,4 MC33071,2,4 MOTOROLA HIGH SLEW RATE, WIDE BANDWIDTH, SINGLE SUPPLY OPERATIONAL AMPLIFIERS Quality bipolar fabrication with innovative design concepts are employed for the MC33071/2/4, MC34071/2/4, MC35071/2/4 series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/ILS slew rate and fast settling time without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage range includes ground potential (VEE)' With a Darlington input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no dead band crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response. The MC33071/2/4, MC34071/2/4, MC35071/2/4 series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic, ceramic DIP and SOIC surface mount packages. • Wide Bandwidth: 4.5 MHz HIGH PERFORMANCE SINGLE SUPPLV OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUIT .~ .~ P SUFFIX PLASTIC PACKAGE CASE 626-05 U SUFFIX CERAMIC PACKAGE CASE 693-02 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 I' , Offset Null ' Inputs VCC , Output , VEE' • High Slew Rate: 13 V/ILs , Offset Null '--------' • Fast Settling Time: 1.1 ILS to 0.1% (Single, Top View) • Wide Single Supply Operation: 3.0 V to 44 V Output 1 ' • Wide Input Common Mode Voltage Range: Includes Ground (VEE) • Low Input Offset Voltage: 3.0 mV Maximum (A Suffix) • Large Output Voltage Swing: -14.7 V to Supplies) + 14 V Inputs 1 (with ± 15 V , VCC I' , 3 VEE' - Output 2 ',llnputs 2 '--------' (Dual, Top View) • Large Capacitance Drive Capability: 0 to 10,000 pF • Low Total Harmonic Distortion: 0.02% • Excellent Phase Margin: 60" • Excellent Gain Margin: 12 dB • Output Short Circuit Protection ORDERING INFORMATION OpAmp Function Single Dual Quad Temperature Range Device to to to to to + 70°C +70°C + 70°C + 85°C + 85°C - 40°C to + 85°C MC34071 P, MC34071D. MC34071U. MC33071P. MC33071D. MC33071U. MC35071 U. AP AD AU AP AD AU AU O°C O°C O°C - 40°C - 40°C MC34072P. MC340720 MC34072U. MC33072P. MC33072D MC33072U. MC35072U. AP AD AU AP AD AU AU O°C O°C O°C - 40°C -40°C - 40°C - 55°C + 70°C + 70°C + 70°C + 85°C +85°C + 85°C + 125°C MC34074P. MC34074D. MC34074U. MC33074P, MC33074D, MC33074U, MC35074U, AP AD AU AP AD AU AU - +70°C +70°C + 70°C + 85°C + 85°C + 85°C + 125°C -55°C to +125°C to to to to to to to O°C to O°C to O°C to 40°C to 40°C to 40°C to 55°C to Package P SUFFIX PLASTIC PACKAGE CASE 646-06 L SUFFIX CERAMIC PACKAGE CASE 632-08 Plastic DIP 50-8 Ceramic DIP Plastic DIP DSUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 50-8 Ceramic DIP Ceramic DIP Plastic DIP 50-8 Ceramic DIP Plastic DIP 50-8 Output 1 , 14 Output 4 l' VEE Inputs 1 { : Ceramic DIP Ceramic DIP VCC. 50-14 Inputs 2 { : Ceramic DIP Plastic DIP "I Output 2 , , Output 3 Plastic DIP 50-14 Ceramic DIP Ceramic DIP MOTOROLA LINEAR/INTERFACE DEVICES 2-267 ' (Quad, Top View) Inputs 3 II ~C34071,34072,34074/~C35071,35072,35074/~C33071,33072, 33074 MAXIMUM RATINGS Symbol Value Unit Vs +44 Volts VIDR Note 1 Volts VIR Note 1 Volts Output Short-Circuit Duration (Note 2) ts Indefinite Seconds Operating Junction Temperature Ceramic Package Plastic Package TJ Rating Supply Voltage (from VEE to VCC) Input Differential Voltage Range Input Voltage Range °c +160 +150 Storage Temperature Range °c Tstg Ceramic Package Plastic Package -65 to + 160 -60 to + 150 NOTES: 1. Either or both input voltages should not exceed the magnitude of Vee or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature ITJ} is not exceeded (see Figure 1). EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER) VCC t-'VI.~..-'I.M,_+--o R8 Inputs +o-----------~----------~_+--~----------~ R3 R4 Offset Null (MC33071, MC34071, MC35071 only) MOTOROLA LINEAR/INTERFACE DEVICES 2-268 Output ~C34071,34072,34074/~C35071,35072,35074/~C33071,33072, 33074 DC ELECTRICAL CHARACTERISTICS (VCC = + 15 V, VEE = - 15 V, RL = connected to ground unless otherwise noted. See IN oe t 31 f or TA= T low t 0 T highl A Suffix Symbol Characteristic Input Offset Voltage (RS VCC = + 15 V, VEE = VCC = +5.0 V, VEE = VCC = +15 V, VEE = = 100 n, VCM = 0 V, Vo = 0 VI - 15 V, T A = + 25'C 0 V, TA = +25'C - 15 V, TA = Tlow to Thiah VIO -avIO/aT Average Temperature Coefficient of Input Offset Voltage Min Non-Suffix Typ Max 0.5 0.5 Min Typ Max 1.0 1.5 Unit mV - - 3.0 3.0 5.0 - 10 - - 100 - - 500 700 - 6.0 - - - - - 5.0 5.0 7.0 10 - - - 100 - 500 700 - 6.0 - - 75 300 p,VI"C RS = 10 n, VCM = 0 V, Vo = 0 V, TA = Tlow to Thigh Input Bias Current (VCM = 0 V, Vo = 0 VI TA = +25'C TA = TlowtoThigh liB Input Offset Current (VCM = 0 V, Vo = 0 VI TA = +25'C TA = Tlow to Thigh 110 Input Common Mode Voltage Range TA = +25'C TA = Tlow to Thigh VICR Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 knl TA = +25'C TA = Tlow to Thiah AVOL Output Voltage Swing (VID = VCC = +5.0 V, VEE = 0 V, VCC = +15 V, VEE = -15 VCC = +15 V, VEE = -15 ± 1.0 VI RL = 2.0 kn, TA = +25'C V, RL = 10 kn, TA = +25'C V, RL = 2.0 kn, TA = Tlowto Thigh VOH VCC = +5.0 V, VEE = 0 V, RL = 2.0 kn, TA = +25'C VCC = +15 V, VEE = -15 V, RL = 10 kn, TA = +25'C VCC = +15 V, VEE = -15 V, RL = 2.0 kn, TA = Tlow to Thigh VOL nA nA 50 300 V VEE to (VCC - 1.81 VEE to (VCC - 2.21 Output Short-Circuit Current (VID = 1.0 V, Vo = 0 V, TA = 25'CI V/mV 50 25 100 3.7 13.6 13.4 4.0 14 - - - 25 20 100 - - - 3.7 13.6 13.4 4.0 14 - - - V - - 0.1 0.3 -14.7 -14.3 -13.5 - - 0.1 0.3 -14.7 -14.3 -13.5 - 10 20 30 30 - 97 - dB dB 10 20 30 30 70 Common Mode Rejection RS = 100 kfl, VCM = VICR, TA = 25'C CMR 80 97 - Power Supply Rejection (RS = 100 III 'CCNEE = +16.5V/-16.5Vto +13.5 V/-13.5 V, TA = 25'C PSR 80 97 - 70 97 - - 1.6 1.9 - 1.6 1.9 - - 2.0 2.5 2.8 - - 2.0 2.5 2.8 Sink Power VCC VCC VCC Supply Current (Per Amplifier, No Loadl = +5.0 V, VEE = 0 V, Vo = +2.5 V, TA = +25'C = +15V, VEE = -15V, Vo = OV, TA = +25'C = +15 V, VEE = -15 V, Vo = 0 V, TA = Tlow to Thigh mA ID - NOTES: (continued) 3. Tlow = = = - 55'C for MC35071,2.4.1A -40'C for MC33071,2.4.1A O'C for MC34071,2A.lA Thigh = + 125'C for MC35071,2.4.1A = +B5°C for MC33071,2,4./A = + 70'C for MC34071,2A.lA MOTOROLA LINEAR/INTERFACE DEVICES 2-269 V mA ISC Source VEE to (VCC - 1.81 VEE to (VCC - 2.21 - II II MC34071, 34072, 34074/ MC35071, 35072, 35074/ MC33071, 33072, 33074 ~ + 15 V, VEE ~ -15 V, RL ~ connected to ground, TA ~ + 25°C unless otherWise noted) AC ELECTRICAL CHARACTERISTICS (VCC Non-Suffix A Suffix Characteristic Slew Rate (Vin AV ~ +1.0 AV ~ -1.0 ~ - 10 V to + 10 V, RL ~ Symbol 2.0 kfl, CL ~ 500 pF) Min Gain Bandwidth Product (f Power Bandwidth AV ~ + 1.0, RL ~ Phase Margin RL ~ 2.0 kfl RL ~ 2.0 kfl, CL Gain Margin RL ~ 2.0 kfl RL ~ 2.0 kfl, CL ~ ts 100 kHz) 2.0 kfl, Va ~ 20 Vp_p, THO ~ Max Typ 10 13 - B.O - - 10 13 - - 1.1 2.2 - - 1.1 2.2 - 4.5 - 3.5 4.5 - MHz - 200 - - 200 - kHz - 60 40 - - 60 40 - 12 4.0 - - - - 32 - 12 4.0 - 32 - 0.22 - - 0.22 - 5.0% Deg - dB Equivalent Input Noise Voltage RS ~ 100 fl, f ~ 1.0 kHz en - Equivalent Input Noise Current f ~ 1.0 kHz in - 300 pF Differential Input Capacitance VCM ~ 0 V Total Harmonic Distortion AV ~ + 10, RL ~ 2.0 kfl, 2.0 Vp_p '" Va'" 20 Vp_p, f ~ 3.0 V to 44 V pAl - 150 - - 150 - Mfl CIN - 2.5 - - 2.5 - pF THO - 0.02 - - 0.02 - % - 120 - - 120 30 - - 30 - dB - 10 kHz - 10kHz) ~ 1.0 MHz) IZol POWER SUPPLY CONFIGURATIONS SINGLE SUPPLY pAl v'Hz ,- RIN VCM ~ 0 V FIGURE 1 - - v'Hz Differential Input Resistance ~ I'-S 3.5 - Channel Separation (f - BW 300 pF Open-Loop Output Impedance (f Unit GBW Am ~ Max V/I'-s ~ o -2.0 ;;!; 400 20 40 60 SO 100 120 TA, AMBIENT TEMPERATURE 1°C} -4.0 r-.... 140 160 j VCCNEE ~ FIGURE 6 - I--- <> I--- f.---- e---- ..,~ 1.2 ~ i1§ ~1.1 !z ------- g§ a VCC-2.4 VEE+O.Ol ~ >-~ ~ r ;;!; -25 0 +25 +50 +75 "" +100 +125 i"-- "~ ---.......... o.g -.............. O.B ']'., 0.7 -55 -B 0 B W >-- 1"--- ,...." g§ 1.0 => u -~ t-----., TA, AMBIENT TEMPERATURE 1°C} 1.4 1.2 VEE ~ -15V VCM ~ 0 1.0 NORMALIZED INPUT BIAS CURRENT versus INPUT COMMON MODE VOLTAGE <> :; a: 0 +125 ~ FIGURE 7 - ;J, +100 vcc~I+15V TA, AMBIENT TEMPERATURE 1°C} ~ +75 NORMALIZED INPUT BIAS CURRENT versus TEMPERATURE -~ r::~ +15V -15V 0 r=-==I- > t;; f'. r- 2.0 1----- ~ 0 f'. VEE ~ VCM t:---. '-" S & 14 Pin Plastic Pkg. ilk "I Pkg. t"'1:-- a: 1!i :> .s w S & 14 Pin Ceramic Pkg. o :; VCC~ 4.0 20 25 ~C34071,34072,34074/~C35071,35072,35074/~C33071i33072, 33074 FIGURE 9 - II 1t- Vee !------ Vcc Vce-tO r-.... VCcNEE ~ +5.0V/-5.0Vto +22V/-22V TA ~ 25°C I J VCC I I 1ill1 VccV ,/' Vcc- 2.O I I 11111 ~ ~ Vcc- 4.O VCC ~ +15V RL ~ Gnd TA ~ 25°C ~ ~ --I-. Source Vcc-2.O FIGURE 10 - SINGLE SUPPLY OUTPUT SATURATION versus LOAD RESISTANCE TO GROUND SPLIT SUPPLY OUTPUT SATURATION versus LOAD CURRENT ~ ~ ~ ~ ~ ~ :::,:D4dfttfll :::IIIIIIUIIIIIIIIIIIIIIIIIII~ 5.0 10 20 15 100 1.0K 10K RL, LOAD RESISTANCE TO GROUND (01 IL' LOAD CURRENT ( ± mAl FIGURE 11 - SINGLE SUPPLY OUTPUT SATURATION versus LOAD RESISTANCE TO VCC FIGURE 12 - OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE 60 1::1 ~ ;;!i +2.0 ~ J+1.0 wrlllllllllllllllill I I IIIII "'- I-Gnd - "- I I IIIII VCC ~ +15V RL to VCC TA ~ 250C 50 1 ~ ·40 30 § 20 1.0K 10K ~ +15V -15V RL'" 0.1 0 dVin ~ tOV I 10 -55 0 -~ 50 ~ ~ ;t ~ ~ ~ i' I .J.ittijXlIIIIII ~ I AV ~ 10 ~> IAV ~ 1.0 ,- 20 \ -- -_.- -- ---- f-- - 1---- .. - o 1.0M 10M 3.0K 10K 30K f, FREQUENCY (Hzl lOOK f, FREQUENCY (Hz) MOTOROLA LINEAR/INTERFACE DEVICES 2-272 r- _. --I-- ~ 4.0 I--15V I-I-+1.0 RL ~ 2.0k I-THO", 1.0% TA ~ 25°C .. - 1-- ,- i ~ o \ 16 o lOOK 125 ~C~I~I~15V ~ AV~ 12 ::::l 10K 100 VEE \ 1= 8.0 10 .- \ -c. 24 100 - FIGURE 14 - OUTPUT VOLTAGE SWING versus FREQUENCY 28 ~ ~ VEE~ 1 AV ~ ~ TA, AMBIENT TEMPERATURE (OCI Vcc- +15V VEE ~ -15V VCM ~ 0 Vo ~ 0 .110 ~ ±0.5mA TA ~ 25°C loOK ---......... o lOOK FIGURE 13 - OUTPUT IMPEDANCE versus FREQUENCY AV ~ 100f ~ VCC RL, LOAD RESISTANCE TO VCC (01 50 - ~ -L 111111 I\ I 100 Source aa: lOOK lOOK r-... 1.0M r3.0M ~C34071,34072,34074/~C35071,35072,35074/~C33071,33072, 33074 FIGURE 15 - FIGURE 16 - OUTPUT DISTORTION versus OUTPUT VOLTAGE SWING OUTPUT DISTORTION versus FREQUENCY 0.4 4.0 I 1000 AV ~ z 0.3 0 >= a: ~<:> l- => => 0 ci I- _ AV ~ AV ~1'0 0.1 0 VCC ~ +15V VEE ~ -15V Vo ~ 2.0 Vp•p RL ~ 2.0k TA ~ 25°C 0.2 1'= :J: ~ z 3.0 I is 2.0 l- => => 0 1.0K f, FREQUENCY (Hzl FIGURE 17 - 10K lOOK I~ ~~ 108 §! f- , 4.0 OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE VCC ~ +15V VEE ~ -15V Vout ~ -10Vto +10V RL ~ 10 k f., 10 Hz / FIGURE 18 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY ~ / z :;;: '" '"~ '" 80 ~ c( / "'" '" \ Gain '" ' \ Phase 60 '--. 0 > 0- § 104 0 :Z ~lOO ~ ~ -~ 9 ./ -25 :Z ~ .::. 20 0 it +25 +50 +100 +75 +125 1.0 100 10 ~ z 10 r-- ~ 1 ~ ~ ~~ , 'J r, ~ 0- g ~ -20 ~ <5 -30 ~ -40 ~ l-PhaseRL ~ 2.0k l 2-PhaseRL ~ 2.0k,CL ~ 300pF\ 3-GainRL ~ 2.0k \ 4 - Gain RL ~ 2.0 k, CL ~ 300 pF Vce ~ +15V VEE ~ -15V TA ~ 25°C Vout~OV 1.0 2.0 3.0 5.0 7.0 t 1 ~ VCC~ VEE ~ " ~ 3 " , 4 " \ , 10 20 100M I 100 1 ,, "-" 180 10M 1.15 I I I III. --- 1---' -.. ~ §! -10 " tOM \ FIGURE 20 - NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE Phase ,2 .... Margin = 60° Gain Margin ~ 12 dB ~, ~ lOOK f, FREQUENCY (Hzl FIGURE 19 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY .......::..:,-- .... - 10K ~60" 1 '" 1.0K Phase Margin ""'- Vce ~ +15V VEE ~ -15V Vout ~ 0 V RL ~ 2.0k TA ~ 25°C TA, AMBIENT TEMPERATURE (OCI 20 ~ 40 o 96 -55 20 16 12 8.0 VO, OUTPUT VOLTAGE SWING (Vp-pl 100 112 - 100 ~ AV ~ 10 AV';" 1.0 0 116 iii ~ ~ AV ~ ci 1.0 :J: I- 0 100 1000 1'= AV - 1.0 10 ~ 0 lV> - 100- AV >= a: VCC ~ +15V VEE ~ -15VRL ~ 2.0k TA ~ 25"C "- ~ ... ~ .......,., " ~ .......,., ~ \ 0.85 -55 30 -~ 0 ~ 60 ~ TA, AMBIENT TEMPERATURE (OCI f, FREQUENCY (MHzl MOTOROLA LINEAR/INTERFACE DEVICES 2-273 +15V -15V RL~2.0k ~ 100 125 II II ~C34071,34072,34074/~C35071,35072;35074/~C33071,33072, 33074 FIGURE 22 - PHASE MARGIN versus LOAD CAPACITANCE FIGURE 21 - PERCENT OVERSHOOT versus LOAD CAPACITANCE 100 70 VCC = +15V VEE = -15V 80 RL=2.0k b I- Vo = -10Vto +10V 0 :r: l(! 60 I- TA = 25'C !--t- - + ~ 0 I- :z ~ I '-., V I "- I V I VCC = +15V VEE = -15V AV = +1.0 RL = 2.0kto oo Vo = -10Vto +10V TA = 25'C I-- ! 40 V ll:' I f-- / 20 /' ............ 10 f-- t- o 10 1.0K 100 10 10K FIGURE 24 - FIGURE 23 - GAIN MARGIN versus LOAD CAPACITANCE r'--I' ~ 10 i VCC = +15V VEE = -15V AV= +1.0 RL = 2.0ktooo Vo = -10Vto +10V TA = 25'C I I t"---- z 8.0 '" ~ 6.0 '" .14.0 2.0 10 i1il 60 ............... - r-- z i3 40 ~ :;;; tJl « if 20 E il- 1.0K --- e "I' 100 r-- -55 10K ~ 12 z ~ ~ 8.0 I ~ r---VEE = -15 V I AV= +1.0 RL = 2.0 kto 00 "" Vo = -10Vto +10V z ~ .1 4.0 I "" r--.. t--b -25 - VCC = +15V VEE = -15V AV= +1.0 RL = 2.0ktooo Vo = -10Vto +10V CL = 1,000 pF - -- CL - 10,000 pF I -~ ~ W 100 Th 125 FIGURE 26 - PHASE MARGIN AND GAIN MARGIN versus DIFFERENTIAL SOURCE RESISTANCE 12 I Gain J ~ 8.0 ~ z :;;: CL = 10,000 pF I I 50 ~ 75 TA, AMBIENT TEMPERATURE I'CI + i3 6.0 I 25 ~ z CL~100pF I 70 II' 10 CL = 10 pF CL = 1,000pF o -55 CL = 10 pF ~ --EL= loopF TA, AMBIENT TEMPERATURE I'CI FIGURE 25 - GAIN MARGIN versus TEMPERATURE ~-I --1 r--- - CL, LOAD CAPACITANCE IpFI 16 10K PHASE MARGIN versus TEMPERATURE 80 _ . _ . _ - - 14 12 1.0K 100 CL, LOAD CAPACITANCE IpFI CL, LOAD CAPACITANCE IpFI 100 - R2 VCC = +15V VEE = -15V RT = Rl + R2 AV = +100 Vo = OV TA = 25'C .1111 4.0 '".1 2.0 125 1.0 ~ 1'. Phase I' 10 100 1.0K 10K RT, DIFFERENTIAL SOURCE RESISTANCE lUI MOTOROLA LINEAR/INTERFACE DEVICES 2-274 0 lOOK MC34071, 34072, 34074/ MC35071, 35072, 35074/ MC33071, 33072, 33074 FIGURE 27 - NORMALIZED SLEW RATE FIGURE 28 - OUTPUT SETTLING TIME versus TEMPERATURE 1.15 c ; VCC ~ +15V VEE ~ -15V AV ~ +1.0 1.1 1.05 ~ RL~2.0k ............. o ~ 1.0 CL f'--... ............... ~ ~ 0.95 o .............. 100 75 ............~ "" 1'\ t-- ~ 50 / - ~ -10 o 125 0.5 ........ , 1,\ 1.0 TA, AMBIENT TEMPERATURE lOCI 1.0 mV 1.0mV' ~:t, 10mV 1.5 """, 2.5 2.0 3.5 3.0 Is, SETTLING TIME I/Ls) FIGURE 29 - SMALL SIGNAL TRANSIENT RESPONSE FIGURE 30 - LARGE SIGNAL TRANSIENT RESPONSE ~ .V'-2.0/Ls/OIV 1.0lLSiOlV FIGURE 31 - COMMON MODE REJECTION versus FREQUENCY 100 --..;;: rTA TA 25°C ~ '"''""- 1 rr- aVCM 0.1 0-$--0 + r- CMR ~ I o r1.0 VCC ~ +15V VEE = -15V VCM = OV aVCM = ±1.5V ~ . 20Log I aVO .1 (a:~M x AOM) I 011 10 100 1.0K 10K f, FREQUENCY 1Hz) iii :s z 0 ! ----L 1 80 :OM it :::> Vo 1.0 10 100 VCC ~ +15V VEE = -15V TA ~ 25°C +PSR .............. I """11>Vcc = ± 15 V) 2-275 '\. '"" "'- \ -PSR ~ I1>VEE = ±l-:5V) 1.0K f, FREQUENCY 1Hz) MOTOROLA LINEAR/INTERFACE DEVICES i'-.. 10K lOOK 1.0M 10M II II ~C34071,34072,34074/~C35071,35072,35074/~C33071,33072, 33074 FIGURE 34 - POWER SUPPLY REJECTION versus TEMPERATURE FIGURE 33 - SUPPLY CURRENT versus SUPPLY VOLTAGE 9.0 TA = -55°C ~ 8.0 ...-- f- J.---1 !z ~ § 7.0 /' u i ill 6.0 I V f/ .B 5.0 V / /1-""" V v+-: TA = 25°C f-.1-- ~ TA = 125°C - 105 /"" / - r- 10 15 VCC, IVEEI, SUPPLY VOLTAGE IV) --+- 100 r-vcc= +15V I- VEE = -15V z I- TA = 25°C 0 80 ~ !i ~ - \'r--- ~ !:; 40 0 1\ > III 30 5 >- ~ 20 ,g. 10 20 50 70 30 t, FREQUENCY IkHzl 100 200 1 100 125 300 2,8 I"'~ '. Vcc = +15V VEE = -15V VCM = 0 TA = 25°C I 2.4 2.0 1.6 __ Voltage o 10 dVo '- 10 100 II fl I.OK t, FREQUENCY IHzl ~ !z ~ 0 III 1.2 ~ 5 0.8 ~ ~III ~ 20 (EE """" IIII 6 z 40 - 25 60 ~ '\. "'An. (d~~:~M) - 1= ~ 50 ~ """ 1 FIGURE 36 - INPUT NOISE versus FREQUENCY ~ r-....... Ff. 1 50 75 TA, AMBIENT TEMPERATURE 1°C) 25 20 ~ ~ z z PSR IdVcc = ± 1.5 VI 70 60 III r + PSR = 20Log (dVO/ADM) dVcc - r- -PSR = 20Log 65 -55 -25 FIGURE 35 - CHANNEL SEPARATION versus FREQUENCY 120 I---- V/ / 5.0 V k::::"" / V 4.0 o I Vcc= +15V VEE = -15V -PSR IdVEE = ± 1.5 V) ._2= 0.4 10K lOOK APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES OF THE MC34071 SERIES shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the VCC voltage by approximately 3.0 volts and decrease below the VEE voltage by 0.3 volts without causing product damage, although output phase reversal may occur. It is also possible to source up to approximately 5.0 rnA of current from VEE through either input's clamping diode without damage or latching, although phase reversal may again occur. If one or both inputs exceed the upper common mode voltage limit the amplifier output is readily predictable and may be in a low or high state depending on the existing input bias conditions. Although the bandwidth, slew rate, and settling time of the MC34071 amplifier series are similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage, Since the input common mode voltage range of this input stage includes the VEE potential, single supply operation is feasible to as low as 3.0 volts with the common mode input voltage at ground potential. The input stage also allows differential input voltages up to ±44 volts, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between VEE and VCC supply voltages as MOTOROLA LINEAR/INTERFACE DEVICES 2-276 NtC34071, 34072, 340741 NtC35071, 35072, 350741 NtC33071, 33072, 33074 Since the input capacitance associated with the small geometry input device is substantially lower (2.5 pF) than the typical JFET input gate capacitance (5.0 pF), better frequency response for a given input source resistance can be achieved using the MC34071 series of amplifiers. This performance feature becomes evident, for example, in fast settling O-to-A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current OAC's). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 2.0 kO of feedback resistance, the MC34071 series can settle to within 1/2 LSB of 8 bits in 1.0 JLS, and within 1/2 LSB of 12 bits in 2.2 JLS for a 10 volt step. In a inverting unity gain fast settling configuration, the symmetrical slew rate is ± 13 volts/ JLS. In the classic noninverting unity gain configuration the output positive slew rate is + 10 volts/JLs, and the corresponding negative slew rate will exceed the positive slew rate as a function of the fall time of the input waveform. Since the bipolar input device matching characteristics are superior to that of JFETs, a low untrimmed maximum offset voltage of 3.0 mV prime and 5.0 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low cost precision, high speed quad op amp applications. The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 kO load resistance can swing within 1.0 volt of the positive rail (VCe), and within 0.3 volts of the negative rail (VEE), providing a 28.7 V p _p swing from ± 15 volt supplies. This large output swing becomes most noticable at lower supply voltages. The positive swing is limited by the saturation voltage of the current source transistor 07, and VBE of the NPN pull up transistor 017, and the voltage drop associated with the short circuit resistance, R7. The negative swing is limited by the saturation voltage of the pull-down transistor 016, the voltage drop ILR6, and the voltage drop associated with resistance R7, where IL is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of VEE. For large valued sink currents (>5.0 mAl, diode 03 clamps the voltage across R6, thus limiting the negativ<;l swing to the saturation voltage of 016, plus the forward diode drop of 03 (=VEE + 1.0 V). Thus for a given supply voltage, unprecedented peak-to-peak output voltage swing is possible as indicated by the output swing specifications. If the load resistance is referenced to VCC instead of ground for single supply applications, the maximum possible output swing can be achieved for a given sup- ply voltage. For light load currents, the load resistance will pull the output to VCC during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that ofthe feedback resistance to maximize pull up capability. Because the PNP output emitter-follower transistor has been eliminated, the MC34071 series offers a 20 mA minimum current sink capability, typically to an output voltage of (VEE + 1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications. In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain bandwidth product and fast settling capability. The associated high frequency low output impedance (300 typ @ 1.0 MHz) allows capacitive drive capability from 0 to 10,000 pF without oscillation in the unity closed loop gain configuration. The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the MC34071 series also allow excellent high frequency active filter capability, especially for low voltage single supply applications. Although the single supply specification is defined at 5.0 volts, these amplifiers are functional to 3.0 volts @ 25°C although slight changes in parametrics such as bandwidth, slew rate, and dc gain may occur. If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction. Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die. As usual with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input-output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of !iecoupling capacitors exhibit great impedance changes over temperature. The output of anyone amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for ± 15 volt supplies, anyone output can be shorted continuously to ground without exceeding the maximum temperature rating. MOTOROLA LINEAR/INTERFACE DEVICES 2-277 II II MC34071, 34072, 34074/ MC35071, 35072, 35074/ MC33071, 33072, 33074 TYPIC.AL SINGLE SUPPLY APPLICATIONS VCC FIGURE 37 - = 5.0 VOLTS FIGURE 38 - AC COUPLED NONINVERTING AMPLIFIER AC COUPLED INVERTING AMPLIFIER ~ n- VCC 5.1M Vo 0~3.7Vp.p 20 k I 1.0M Cin Vcc f--+--I+ MC34071 Co 100k 1.0 k 100k ~cin 11~~37-0-m~v~p_-p~~-¥~~ :r, V Co JO BW 1-3.0 dB) = 45 RL ~~K AV = 101 kHz AV = FIGURE 39 - DC COUPLED INVERTING AMPLIFIER MAXIMUM OUTPUT SWING ~ V~ r------.---o 4.75 V p_p I VCC 91 k 5.1 k 5.1 k = 10 BW 1-3.0 dB) FIGURE 40 - 2.63 V vo 10 k = 450 kHz UNITY GAIN BUFFER TTL DRIVER 2.5 V on MC54/74XX MC34071 RL MC34071 TTL Gate >-+-0 Vo 1.0M AV = 10 BW 1-3.0 dB) = 450 kHz FIGURE 41 - ACTIVE HIGH-Q NOTCH FILTER Vin '" 0.2 Vdc FIGURE 42 - MC34071 Vo Vin R1 R R 16 k 16 k 1.1 k R2 5.6 k 0.01 2R to = 1.0 kHz fa 2C 0.02 C 0.047 R3 2.2 k MC34071 Vin + C 32 k ACTIVE BANDPASS FILTER = 1 4-rrRC C 0.047 + VCC fa 60.4 VCC Given fo = Center Frequency Ao = Gain at Center Frequency Choose Value fo, Q, A o • C Q Then R3 = - = ..toC 2C 0.02 For less than 10% error from operational amplifier Ooto < 0.1 GBW Where fo and GBW are expressed in Hz. GBW = 4.5 MHz Typ. MOTOROLA LINEAR/INTERFACE DEVICES 2-278 30 kHz Q = 10 Ho = 1.0 MC34071, 34072, 34074/ MC35071, 35072, 35074/ MC33071, 33072, 33074 FIGURE 44 FIGURE 43 - CF + 5.0 k 10 k 5.0 k 10 k MC34071 5.0 k 10 k ,o,.vol HIGH SPEED LOW VOLTAGE COMPARATOR LOW VOLTAGE FAST D/A CONVERTER I I I I VO: 2.0 k RL _1.0V I I I I t : I _11 __ 0.2 /LS 4.0 V - -:- - ~ Delay 25 VI/Ls 0.1 '==-'=-=-_---.l.___'__ (R-2R) Ladder Network -I 1-- Delay Settling Time 1.0 /Ls (8 Bits, 112 LSB) FIGURE 45 - 1.0/Ls LED DRIVER FIGURE 46 - TRANSISTOR DRIVER VCC VCC "'1/ "ON" -1--" Vin < VRef ~ "ON" VCC MC34071 r -=- VRef ~ Vin (A) PNP > VRef FIGURE 47 - AC/DC GROUND CURRENT MONITOR FIGURE 48 - (B) NPN PHOTOVOLTAIC CELL AMPLIFIER ILoad MC34071 +----1+ >-_~o Ground Current Sense Resistor ICell Vo ! MC34071 >-----<1----0 Vo RS R1 R2 Vo = ILoad RS (1 + iH) VCell = 0 V Vo = ICe II RF VO> 0.1 V For Vo > 0.1 V BW (-3.0 dB) = GBW (R1 ~ R2) MOTOROLA LINEAR/INTERFACE DEVICES 2-279 II MC34071, 34072, 34074/ MC35071, 35072, 35074/ MC33071, 33072, 33074 FIGURE 49 - LOW INPUT VOLTAGE COMPARATOR WITH HYSTERESIS ! ,J-----~~ R2 VRef FIGURE 50 - HIGH COMPLIANCE VOLTAGE TO SINK CURRENT CONVERTER R1 lout VOLb±d.-vin VinL I VinH VRef R1 VinL ~ R1 + R2 (VOL - VRef) + VRef I R1 VinH ~ R1 + R2 (VOH - VRef) + VRef out ~ Yin ± Via --R-- R R1 VH ~ R1 + R (VOH - VOL) FIGURE 51 - HIGH INPUT IMPEDANCE DIFFERENTIAL AMPLIFIER FIGURE 52 - BRIDGE CURRENT AMPLIFIER R2 R1 Vo +V10-----i * +V2O---------~ ~ ~ (Critical to CMRR) Va ~ 1( + ~) (V2 - V1 ~) Ll.R« RF» Ll.R RF Va ~ VRef2R2 R R (Va'" 0.1 V) For (V2 '" V1), V > 0 FIGURE 53 - FIGURE 54 - HIGH FREQUENCY PULSE WIDTH MODULATION LOW VOLTAGE PEAK DETECTOR fOSC '" 0.85 -- ISC +~B + RC Va ~ Yin (pk) o t Base Charge Removal T + Vp 10,000 pF V+ 47 k OSC MOTOROLA LINEAR/INTERFACE DEVICES 2-280 Comparator High Current Output ~C34071,34072,34074/~C35071,35072,35074/~C33071,33072, 33074 GENERAL ADDITIONAL APPLICATIONS INFORMATION Vs FIGURE 55 - SECOND ORDER LOW-PASS ACTIVE FILTER FIGURE 56 - = ± 15 VOLTS SECOND ORDER HIGH-PASS ACTIVE FILTER o---j1~;5;~ R1 560 C1 1.0 II R1 46.1 k R2 10 = 100 Hz Ho = 20 1.1 k fo = 1.0 kHz Ho = 10 Choose: 10 • Ho. C1 Choose: 10 , Ho. C2 Then: C1 V2 R2=-47rloC2 2C2 (H o + 1) = R3=~ Ho + 1 FIGURE 57 - FIGURE 58 - FAST SETTLING INVERTER Vo = R2 = V2 -=2m-'-oC::::1:-(;;'1I::-:H'--0-'+---::;-2) C2 = ~ R2 ! ts = 1.0 I-'S to 1/2 LSB (8 Bits) \ ts Compensated Ho >-_-""T""O Vo R1 Uncompensated Ho + 0.5 m oC1V2 MC34071 + >-------40..-0 Vo = = BASIC INVERTING AMPLIFIER 10 V Step 2.0 k I~ Then: R1 I to Vo = ~ Vin R1 2.21-'s 112 LSB (12 Bits) = BW (-3.0 dB = GBW [ R1 ] R1 + R2 'Optional Compensation FIGURE 59 - FIGURE 60 - BASIC NON INVERTING AMPLIFIER UNITY GAIN BUFFER (AV = + 1.0) Vo o R2 R1 = = Vo Vin BW (-3.0 dB) = (1 +~) R1 = = BWp = 200 kHz Vo = 20 V p_p SR = 10 VII-'s GBW [R1 :1 R2] MOTOROLA LINEAR/INTERFACE DEVICES 2-281 Vo MC34071, 34072, 34074/ MC35071, 35072, 35074/ MC33071,33072, 33074 . FIGURE 61 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER II R R MC34074 >-----0 Va + R MC34074 Example: R Let: R ~ Then: AV + R BW ~ RE ~ ~ 12 k 3.0 1.5 MHz = FIGURE 62 - DUAL VOLTAGE DOUBLER + MC34074 + 100 k 10 +10 r MC34074 220pF 100 k + RL +Vo -Va 18.93 -18.78 10 k 18 -18 5.0 k 15.4 -15.4 + MC34074 10 100 k ' - - - - - 4 - - " - - - 0 - Va MOTOROLA LINEAR/INTERFACE DEVICES 2-282 ® MC34080/MC35080 MOTOROLA thru MC34085/MC35085 HIGH SLEW RATE, WIDE BANDWIDTH, JFET INPUT OPERATIONAL AMPLIFIERS These devices are a new generation of high speed JFET input monolithic operational amplifiers. Innovative design concepts along with JFETtechnology provide wide gain bandwidth product and high slew rate. Well matched JFET input devices and advanced trim techniques ensure low input offset errors and bias currents. The all NPN output stage features large output voltage swing, no dead band crossover distortion, high capacitive drive capability, excellent phase and gain margins, low open-loop output impedance, and symmetrical source/sink ac frequency response. This series of devices are available in standard or prime performance (A suffix) grades, fully compensated or decompensated (AVCL;,,2) and are specified over commercial or Military temperature ranges. They are pin compatible with existing Industry standard operational amplifiers, and allow the designer to easily upgrade the performance of existing designs. • Wide Gain Bandwidth: B.O MHz for Fully Compensated De_ices 16 MHz for Decompensated Devices • High Slew Rate: 25 V/jJ-s for Fully Compensated Devices 50 V/jJ-s for Decompensated Devices • High Input Impedance: 10 12 n HIGH PERFORMANCE JFET INPUT OPERATIONAL AMPLIFIERS .~ .~ , , P SUFFIX PLASTIC PACKAGE CASE 626-05 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 PIN ASSIGNMENTS Offset Null 2 7 VCC Noninvt Input 3 6 Output ' - _ _- - I5- • Large Output Voltage Swing: -14.7 V to + 14 V for VCCNEE ~ ± 15 V n 1 Invt Input • Input Offset Voltage: 0.5 mV Maximum (Single Amplifier) • Low Open-Loop Output Impedance: 30 U SUFFIX CERAMIC PACKAGE CASE 693-02 Offset Null Single, Top View (w 1.0 MHz Output 1 1 • Low THD Distortion: 0.01% 7 • Excellent Phase/Gain Margins: 55'/7.6 dB for Fully Compensated Devices Output 2 Inputs 1 { : Dual. Top View Output 1 " Output 4 1 Outputs 1 { : DWSUFFIX PLASTIC PACKAGE CASE 751G-01 SO-16L Inputs 2 { , Output 2 •• , 7 10 Output 3 P SUFFIX PLASTIC PACKAGE CASE 646-06 ~ ,!"' ,:1iirYtn u L SUFFIX CERAMIC PACKAGE CASE 632-08 PIN ASSIGNMENTS ORDERING INFORMATION DpAmp Function Fully Compensated AVCL"'2 Decompensated Single MC35081 U,AU MC34081 D,AD MC34081P,AP MC35080U,AU MC34080D,AD MC34080P,AP Dual MC34082P,AP MC34083P,AP Quad MC35084L,AL MC34084DW MC34084P,AP MC35085L,AL MC34085DW MC34085P,AP Temperature Range Package -55to +125'C o to + 70'C o to +70'C Ceramic DIP SO-8 Plastic DIP o to Plastic DIP + 70'C -55 to + 125'C o to + 70'C o to + 70'C Ceramic DIP SO-16L Plastic DIP MOTOROLA LINEAR/INTERFACE DEVICES 2-283 MC34080, MC35080 Series MAXIMUM RATINGS Rating Supply Voltage (from VCC to VEE) Input Differential Voltage Range Symbol Value Unit Vs +44 Volts Volts VIDR Note 1 Input Voltage Range VIR Note 1 Volts Output Short-Circuit Duration (Note 2) ts Indefinite Seconds Operating Ambient Temperature Range MC35XXX MC34XXX TA Operating Junction Temperature Ceramic Package Plastic Package TJ °c -55 to + 125 o to +70 °c +165 +125 Storage Temperature Range °C Tstg Ceramic Package Plastic Package -65 to +165 -55to +125 NOTES: 1. Either or both input voltages must not exceed the magnitude of Vee or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER) ----~~------------~~-------~~----~--------~VCC 200 p.A Inputs{: 0----+-----+----' R7 +-_~-~-4_+-+--4-~--~~--4---~~~66-k+-+-_oVEE Null Adjust (MC34080.001) MOTOROLA LINEAR/INTERFACE DEVICES 2-284 MC34080, MC35080 Series DC ELECTRICAL CHARACTERISTICS (VCC = +15 V. VEE = -15 V. TA = Tlow to Thigh [Note 31. unless otherwise noted) A Suffix Symbol Characteristic Input Offset Voltage (Note 4) Single TA = +25°C TA = O°C to + 70°C (MC34080. MC34081) TA = -55°C to + 125°C (MC35080. MC35081) Dual TA = +25°C TA = O°C to + 70°C (MC34082. MC34083i TA = - 55°C to + 125°C (MC35082. MC35083) Quad TA = +25°C TA = O°C to + 70°C (MC34084, MC34085) TA = - 55°C to + 125°C (MC35084, MC35085) Average Temperature Coefficient of Offset Voltage aVIO/aT Input Offset Current (VCM = 0 Note 5) TA = +25°C TA = O°C to +70°C TA = -55°C to +125°C 110 :t = 2.0 k, TA = +25°C = 10 k, TA = +25°C = 10 k, TA = Tlow to Thigh VOL Output Short-Circuit Current (TA = + 25°C) Input Overdrive = 1.0 V, Output to Ground Source Sink ISC Power Supply Rejection Ratio (RS - 0.6 100 n, - 1.0 - 6.0 - 6.0 8.0 9.0 - - - - 12 14 15 - 10 - 10 - p'vrc - 0.06 0.06 - 0.2 4.0 50 nA - - 0.02 0.1 2.0 25 nA - 3.0 = + 25°C) = 25°C) - - 0.2 4.0 50 - - 0.1 2.0 25 - 80 - 80 - 25 15 - 13.2 13.4 13.4 13.7 13.9 - - 0.02 - - - 1.0 3.0 4.0 3.0 5.0 6.0 V/mV - - V - 13.7 13.9 - -14.1 -13.5 -14.7 -14.1 - -14.0 - - -14.1 -14.7 - - 20 20 31 28 -13.5 -14.1 -14.0 mA 20 20 TA 31 28 - - (VEE + 4.0) to (VCC - 2.0) - (VEE + 4.0) to (VCC - 2.0) V dB CMRR 75 90 - 70 90 - PSRR 75 86 - 70 86 - Power Supply Current Single TA = +25°C TA = Tlow to Thigh Dual TA = +25°C TA = Tlow to Thigh Quad TA = +25°C TA = Tlow to Thigh Thigh = - 2.5 - 3.4 4.2 - 2.5 - - 4.9 4.9 - 6.0 7.5 - - - - - 9.7 11 13 - 9.7 - + 125'C for MC35080,A Thigh MC35081.A MC35082.A MC35083.A MC35084.A MC35085.A 4. See application information for typical changes in input offset voltage due to solderability and temperature cycling. 5. Limits at TA = + 25cC are guaranteed by high temperature (Thigh) testing. MOTOROLA LINEAR/INTERFACE DEVICES 2-285 dB rnA 10 Tlow = O'C for MC34080,A MC34081,A MC34082,A MC34083,A MC340B4,A MC34085,A Unit 1.0 3.0 4.0 - VICR = Max 0.5 13.2 13.4 13.4 Common Mode Rejection Ratio (RS '" 10 k, TA Typ - 50 25 Input Common Mode Voltage Range TA = +25°C Min 0.5 2.5 3.5 AVOL VOH NOTES: (CONTINUEDI 3. Tlow = -55'C for MC35080.A MC35081,A MC35082,A MC35083.A MC35084.A MC35085.A 0.3 = 2.0 k) Output Voltage Swing RL = 2.0 k, TA = +25°C RL = 10 k, TA = +25°C RL = 10 k, TA = Tlow to Thigh RL RL RL - - 10 V, RL Non-Suffix Max mV - liB = Typ VIO Input Bias Current (VCM = 0 Note 5) TA = +25°C TA = O°C to + 70°C TA = -55°C to + 125°C Large Signal Voltage Gain (VO TA = +25°C TA = Tlow to Thigh Min = 3.4 4.2 6.0 7.5 11 13 + 70'C for MC34080,A MC34081,A MC34082.A MC34083,A MC34084,A MC34085.A II MC34080, MC35080 Series AC ELECTRICAL CHARACTERISTICS (VCC II = =- + 15 V, VEE 15 V, TA = + 25°C unless otherwise noted) A Suffix Symbol Characteristic Slew Rate (Vin = ··10 V to + 10 V, RL Compensated AV = +1.0 AV = -1.0 Decompensated AV ~ +2.0 AV = -1.0 = 2.0 k, CL = 100 pF) = 200 = ts 20 Vp p' THD = 5.0%) Typ Max Unit V/J1.S - - - - 0.72 1.6 6.0 12 - - 25 30 50 50 - - 0.72 1.6· - 8.0 16 - 6.0 12 8.0 16 - - 400 800 - - 400 800 - - 55 39 - - - 55 39 - 7.6 4.5 - - - 7.6 4.5 30 - - 30 - - - 0.01 - 5.0 - 10 12 - n 0.05 - % 20 40 MS MHz - BWp q,m Gain Margin (Compensated) RL = 2.0 k RL = 2.0 k, CL = 100 pF Am Equivalent Input Noise Voltage RS = 100 ll, f = 1.0 kHz en kHz Degrees - = Min GBW Phase Margin (Compensated) RL = 2.0 k RL = 2.0 k, CL = 100 pF Equivalent Input Noise Current (f Non-Suffix Max 25 30 50 50 20 40 kHz) Power Bandwidth (RL = 2.0 k, Vo Compensated AV = + 1.0 Decompensated AV = -1.0 Typ SR Settling Time (10 V Step, AV = -1.0) To 0.10% (" '/, LSB of 9-Bits) To 0.01% (" 'h LSB of 12-Bits) Gain Bandwidth Product (f Compensated Decompensated Min 1.0 kHz) -- In Input Capacitance Ci Input Resistance 'i THD Total Harmonic Distortion AV = +10, RL = 2.0 k, 2.0 '" Vo '" 20 Vo-o, f = 10 kHz Channel Separation If = 10 kHz) - Open-Loop Output Impedance (f = 1.0 MHz) Zo - 0.01 - 10 12 - - 0.05 - - 5.0 dB nVI v'Hz - pAl v'Hz pF 120 - - 120 - dB 35 - - 35 - n TYPICAL PERFORMANCE CURVES FIGURE 1 - J - ~ IZ ~ +3.0 '" u ::> ~+2.0 U) ~ 100 I- ~ a ::;; ~ ~ +1.0 ~ u a; u "> lEE 0 -55 ./ ~ 1.0K g ~ ~ 10K -25 t o +25 +50 +75 TA, AMBIENT TEMPERATURE 1°C} +100 +125 10 1.0 -55 --- --25 V 0 25 50 75 TA, AMBIENT TEMPERATURE 1°C} MOTOROLA LINEAR/INTERFACE DEVICES 2-286 V V / 100 125 MC34080, MC35080 Series FIGURE 3 - INPUT BIAS CURRENT versus INPUT COMMON-MODE VOLTAGE FIGURE 4 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE 140 50 r-- 110 ! !z ~ VCCNEE = ± 15 V TA = 15°C 100 / / RL Connected to Ground t-TA = 15°C / / ~ ~ RL = 1.0 k d. ~ 60 ~ V ~V RL-l0~ :::> '-' BO &. A /" ./ 40 -' ./ 10 -11 -u FIGURE 5 - VCC 5! "'- ~ FIGURE 6 - OUTPUT SATURATION versus LOAD RESISTANCE TO GROUND 0 .J ~ VCC o ~ -2. 0 Source -2.0 I-- VCCNEE = ± 5.0 V to ± 22 V TA = 25°C o /' .....J I I lilWJ II11111 VCCNEE = I1 = 25°C ~ -4. 0 l"--. ~ V ~ ---r----... ~ ±25 ±5.0 ±10 ±15 ±10 VCCNEE' SUPPLY VOLTAGE (VOLTSI OUTPUT SATURATION versus LOAD CURRENT ~ ;;; -1.0 o o 11 -U 0 U U VIC, INPUT COMMON·MODE VOLTAGE (VOLTSI ± 15 V J 1111111 ~ -3.0 ~":~ 13J 1::':1111111111110 - Sink o B.O 4.0 11 16 300 3.0K 30K RL, LOAD RESISTANCE TO GROUND (01 IL' LOAD CURRENT (± mAl FIGURE 7 - OUTPUT SATURATION versus LOAD RESISTANCE TO VCC FIGURE 8 - ~ ~ '~ """ 5 o I 111111 1'.. o 300 VrE rt V -I] r--: t-Sink- Source t-:=; t::::::..----.... r--=::- r-- ~ B5 VCCNEE = ± 15 V RL "" 0.10 .1Vin = 1.0 V '""" 10 ~ :::> o ~ 1-1- 3.0K 30K RL, LOAD RESISTANCE TO VCC (HI / o VCCNEE = ± 15 V RL to VCC T = 25°C IAIIIIII I I 1'-.. +1.0 OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE 40 LllllfllllllHII i? + 2.0 300K o -55 300K -15 o 15 50 75 TA, AMBIENT TEMPERATURE (OCI MOTOROLA LINEAR/INTERFACE DEVICES 2-287 100 --- 115 MC34080, MC35080 Series II FIGURE 10 - OUTPUT IMPEDANCE versus FREQUENCY FIGURE 9 - 80 80 VCCNEE = ± 15 V VCM = 0 Va = 0 410 = ±0.5 mA TA = 25"C Compensated Units ani w '" z ;3 ~ ;,;; 40 u z ;3 ~ ...-,:::::~ if V :::> 020 S 1.0K 10K lJ.Wl.-1 lOOK t, FREQUENCY (Hz) ~ N 1.0M OUTPUT VOLTAGE SWING versus FREQUENCY ==- ~ '" 20 } - z ~ 16 1- ~ 12 w , ~ . Compensated Units AV = + 1.0 I H H- ~ 8.0 f--- I!: :::> I-- ~ 4.0 f----- o 10K Jlll.--r' lOOK t, FREQUENCY (Hz) V V = 10 i.{v = 2.0 w.w IIIII1 10M 1.OK 10K 1.0M FIGURE 12 - OUTPUT DISTORTION versus FREQUENCY f4 f---+lH-+-++H-IH-I-+-I-++H-ll--+++f+IJ~~N~EI 11 WI = ~ 0.3 1\ o~co~pe}ns~t~~ II "Units AV = -1.0 is ~ 0.2 ~ ""I". -- -- - lOOK ci ;E 0.1 *Compensated AV - 100 tAV 100 FIGURE 13 - OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE 1.08 "'- ~ ~61,04 ~~ """ "- 15 ~ 1.00 ~~ ~ ----- ~'" ~ :E 0.96 -'" ~ VCcNEE = ± 15 V Va = -10Vto +10V RL = 10k t«10Hz "" 0.92 -55 -25 = 10 1.0K t, FREQUENCY (Hz) t, FREQUENCY (Hz) z Units Only II (II H+H-t+tfll--H-+f+++H+-+H--++++flH+-H-H-+Hl 0 '::-0..u...l..J.J.IUJJ,I~.I.,..;L,;,A;:.v_=_l;;;.O;..·u..J..J..I.I.I~J..J.""'.I.U.wI 1 10M 1M Va = 2.0 Vp_p RL = 2.0k TA = 25"C !n I'\. -- -- H = 100 J I I "~IJI VCCNEE ±1 RL=2.0k THO = 1.0% TA = 25"C 1\ c. 24 1--- t- - AV 111lJL.... V o 10M V ~AV = 1000 10 = ~ V o 010 1.0 FIGURE 11 28 40 >- .J1 lWf..-11 AV V = 100 JJ.mJt--: o ~v= /~ AV = 1000 ./ VCCNEE = ± 15 V VCM = 0 Va = 0 410 = ±0.5 mA TA = 25"C Decompensated Units Qnly gw 60 >- '" OUTPUT IMPEDANCE versus FREQUENCY --- 0 +25 +50 +75 TA, AMBIENT TEMPERATURE ("C) +100 +125 MOTOROLA LINEAR/INTERFACE DEVICES 2-288 10K lOOK MC34080, MC35080 Series FIGURE 15 - OPEN·LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY FIGURE 14 - OPEN·LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY 100 ~ 80 « ~ ~ Phase z '" « '"':J 60 0 > I "- -... ~ '" ", ,, ~, ~""~ ~ - ''\: ~, 20 o Solid line Curves - Compensated Units r- Dashed Une Curves - Decompensated Units 10 1.0 100 lOr----F~'~'~~~,t-~-t++---t--t--t~ - 45~;3 _ w " 1.0K 10K lOOK t, FREQUENCY 1Hz) 9 ~ 90 "'\. \ 135 ~ ~ t~ .~ ~" "" 100M 180 .',\ 10M ;;: -10 ~ ~ lW~", ~' ~ Gain f----+--+-.,r-I-"IPII.."t+--rl -j'" VCCNEE = ±15V 't--. Margin 140 Va = ov _'-- Phasl ' ~ = 7.6dB-j- w TA = 25°C I Margin ' ~ 1 160~ ...... = 54° , '" I - Gain, RL = 2.0 k -+--1-t..:,tt+.It-H"""-'....+--t:~---I 1fl 1- Gain, RL = 1.0 k, CL = 100 pF I 180~ ~ ~ 3 - Phase, RL = 2.0 k ~+t+'--'r---'lt----jr--+""'t 4 - Phase, RL = 1.0 k, CL = 100 pF+I+-:-\--f.--t--H 100 Compensated Units Only 1 0 § -10 0 ~ ~ _ 30 ~ _ 40 9 .1.1. 1.0 100M 1.0 3.0 5.0 7.0 50 10 t, FREQUENCY IMHzl FIGURE 16 - OPEN·LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY FIGURE 17 - NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE g,.20 ~ I 00 10 «z '" f----t-'-'..:c'j>:-:--·~,'_.f""t___±:_+t+t_--+-+-H " Gain Margin_ e-- I 20~ '"~ o = 5.5 dB " W ""'" ["'-.. '" I 40~ ...... Phase',l<-t-l',,---+--4..-"k1 1,\ I '""'i. Va = OV -f-t-Margin-,\"1f-",.--+-+-'d--1 60~ TA = 25°C = 430 \ ~ -20 1- Gain, RL = 2.0 k -+-+-r,-F: ,t+-rr-,-\,--+--+-+>-d ~ o 2 - Gain RL = 2.0 k, CL = 100 pF +I+T\4,-t--t-+--I I 80 w-s• 3-PhaseRL = 2.0k 4 - Phase RL = 2.0 k, CL = 100 pF+t+"",,:'\-""";t-"""""1t-+--I 200 _ 40 Decompensated Units Only 1.0 2.0 5.0 7.0 10 3.0 20 30 50 t, FREQUENCY IMHz) ~ -10 VCcNEE = ± 15 V -e-- § i-30 , ot ~ ~ ~1.10 t; :::> o ~ ~ z ;i\ 0.90 z « -55 '" '"0~ >- z ~ 40 V I-- >-- o 10 V~ ;- 50 '"9 40 f- ~mpensated ~ 100 115 z ~ 20 i lO Decompensated " Units AV = + 2.0 o 10 1.0K I" ~ 100 CL, LOAD CAPACITANCE IpFI MOTOROLA LINEAR/INTERFACE DEVICES 2-289 "' " IIIII ~ f"-, :2' VCCNEE= ±15vi I RL = 2.Qk avO = 100 mV p. p Va = -10 Vto + 10 V TA = 25°C J = I± 115 I I RL = 2.0ktooo avO = 100 mV p. p Va = -10Vto +10V TA = 25°C lI- ~ 30 « Units AV = + 1.0 100 CL, LOAD CAPACITANCE IpFI n V~CNE~ 60 r--cotensLI I ~nitsAv = +1.0 V ./ V it' 20 0 & ~ TA, AMBIENTTEMPERATURE lOCI FIGURE 19 - PHASE MARGIN versus LOAD CAPACITANCE V j..- V -& - ""I"" 70 0 0 60 :z: "" "" '" '" ± 1'5 V RL=1.0k ~. 0.80 Units AV = + 1.0 V >- ~ ~ 1.00 D~c~m~e~;a:ed 80 VCCN~E = o FIGURE 18 - PERCENT OVERSHOOT versus LOAD CAPACITANCE 100 II r---.'~~~, ........... ,--',"",+-+--+-+-++++---+---1-+--1100 ! '" ; ~, $z ~ _ Gain is 40 it' 0 20 I VCCNEE = ± 15 V Va = ov RL=2.0k TA = 25°C '\. 1.0K MC34080, MC35080 Series FIGURE 20 - II - GAIN MARGIN versus LOAD CAPACITANCE 10 - 8.0 u --- ~ '"'"z 4.0 ......... r-.... ~ « '-. '" cc 100K ~ 1.0M 10M ~ 20 ~ ~ '\. I"-. \. ""- VEE::t.lVEE 100 10 1.0 1.0K 10K 100K '\. '\. '\. 1.0M 10M FIGURE 31 - NORMALIZED SUPPLY CURRENT versus SUPPLY VOLTAGE Negative.l. I Supply _ VCCNEE = ± 15 V AVS = 3.0V Va = OV f,. 10 Hz ;z Ifl:r - t - r-- I--90 Vee:: .1VCC :::--- -I--Supply cc : ~ Negativ~ -Supply 1.20 '"~ 100 :::; !t ii: Positive Supply f - - t, FREQUENCY 1Hz} FIGURE 30 - POWER SUPPLY REJECTION RATIO versus TEMPERATURE ;;J cc VCcNEE = ± 15 V AVS = 3.0 V Va = OV TA = 25°C ""- r--. ~Vcc Ifl:r'--=- -=- ~ 0 ~ 0,1 110 '"§ -....... "'- ~ 60 ---Compeosated U,," AV " + - : ------DecompensatedUnltsAv - + 20 10 '";;;; '"f, r\\ EE ~'00 ~60 ~ 1f:~- 40 Z ,, Vcc-j,Vcc w 120 I VCCNEE = ± 15 V AVS = 3.0V Va = OV ~ I 60 I 55'C ...... ,TA = 25'C 1rC 80 TA '" o ::;;; TA FIGURE 29 - POWER SUPPLY REJECTION RATIO versus FREQUENCY 80 ~~ ---co~pensated Units AV "" + 1.0 , _ gf v ..- ~v ~ 70 ~ ~ ,,- " -55 1 VWI ------DecompensaledUnitsAv I 25 -25 I 50 I 75 = - c; L-TA 125°C ~ 1.10 ~ '";;0 1.00 TA I- ~ i3 cc 0.90 - ~ 0.80 - ~ :::> Supply Current Normalized to VCCNEE = ± 15 V, TA RL = 00 Va = 0 + 2.0 I 100 0.70 125 o FIGURE 33 - FIGURE 32 - CHANNEL SEPARATION versus FREQUENCY = 25'C TA I ±10 ±15 ±20 VS, SUPPLY VOLTAGE IVOLTS} ±5.0 TA, AMBIENT TEMPERATURE I'C} 120 = 25°C 55'C ±25 SPECTRAL NOISE DENSITY 100 -....... 100 11111 II IIIIII VCCNEE = ± 15'y' VCM = 0 TA = 25'C ~ 80 ~ 80 ......... ;z W ~ '"~ 60 ai §? :i! I- ~ '"~40 60 '\ 40 ...... 5 ;z VCcNEE = ±15V ~ 20 C20 TA = 25'C o 10K ;;0 I I II II lOOK o 1.0M f, FREQUENCY 1Hz} 10 10M 100 MOTOROLA LINEAR/INTERFACE DEVICES 2-292 1.0K f, FREQUENCY 1Hz} 10K lOOK MC34080, MC35080 Series ative rail (VEE). The amplifier remains active ifthe inputs are biased at the positive rail. This may be useful for some applications in that single supply operation is possible with a single negative supply. However, a degradation of offset voltage and voltage gain may result. Phase reversal does not occur if either the inverting or noninverting input (or both) exceeds the positive common mode limit. If either input (or both) exceeds the negative common mode limit, the output will be in the high state. The input stage also allows a differential up to ± 44 volts, provided the maximum input voltage range is not exceeded. The supply voltage operating range is from ± 5.0 V to ± 22 V. For optimum frequency performance and stability careful component placement and printed circuit board layout should be exercised. For example, long unshielded input or output leads may result in unwanted input-output coupling. In order to reduce the input capacitance, resistors connected to the input pins should be physically close to these pins. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick.up" at this node. Supply decoupling with adequate capacitance close to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit large impedance changes over temperature. Primarily due to the JFET inputs of the op amp, the input offset voltage may change due to temperature cycling and board soldering. After 20 temperature cycles (- 55"C to 165"C), the typical standard deviation for input offset voltage is 559 /LV and 473 /LV in the plastic and ceramic packages respectively. With respect to board soldering (260"C, 10 seconds) the typical standard deviation for input offset voltage is 525 /LV and 227 /LV in the plastic and ceramic package respectively. Socketed plastic or ceramic packaged devices should be used over a minimal temperature range for optimum input offset voltage performance. APPLICATIONS INFORMATION The bandwidth and slew rate of the MC340S0 series is nearly double that of currently available general purpose JFET op-amps. This improvement in ac performance is due to the P-channel JFET differential input stage driving a compensated miller integration amplifier in conjunction with an all NPN output stage. The all NPN output stage offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. With a 10 k load resistance, the op-amp can typically swing within 1.0 V of the positive rail (Vccl, and within 0.3 volts of the negative rail (VEE), providing a 2S.7 Vp-p swing from ±15 volt supplies. This large output swing becomes most noticeable at lower supply voltages. If the load resistance is referenced to VCC instead of ground, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to VCC during the positive swing and the NPN output transistor will pull the output very near VEE during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull-up capability. The all NPN transistor output stage is also inherently fast, contributing to the operational amplifier's high gain-bandwidth product and fast settling time. The associated high frequency output impedance is 50 ohms (typical) at S.O MHz. This allows driving capacitive loads from 0 to 300 pF without oscillations over the military temperature range, and over the full range of output swing. The 55" phase margin and 7.6 dB gain margin as well as the general gain and phase characteristics are virtually independent of the sink/source output swing conditions. The high frequency characteristics of the MC340S0 series is especially useful for active filter applications. The common mode input range is from 2.0 volts below the positive rail (VCC) to 4.0 volts above the neg- FIGURE 34 - OFFSET NULLING CIRCUIT Vee MOTOROLA LINEAR/INTERFACE DEVICES 2-293 II II ® MC34181,2,4 MC35181,2,4 MC33181,2,4 MOTOROLA LOW POWER. HIGH SLEW RATE. WIDE BANDWIDTH. JFET INPUT OPERATIONAL AMPLIFIERS Quality bipolar fabrication with innovative design concepts are employed for the MC33181/2/4, MC34181/2/4, MC3518112/4 series of monolithic operational amplifiers. This JFET input series of operational amplifiers operate at 210 p.A per amplifier and offer 4.0 MHz of gain bandwidth product and 10 V/p.s slew rate. Precision matching and an innovative trim technique of the single and dual versions provide low input offset voltages. With a JFET input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no dead band crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response. The MC33181/2/4, MC34181/2/4, MC35181/2/4 series of devices are specified over the commercial, industrial/vehicular or military temperature r<;lnges. The complete series of single, dual and quad operational amplifiers are available in the plastic and ceramic DIP as well as the SOIC surface mount packages. LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUITS P SUFFIX PLASTIC PACKAGE CASE 626-05 U SUFFIX CERAMIC PACKAGE CASE 693-02 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 • Low Supply Current: 210 p.A (Per Amplifier) • Wide Supply Operating Range: ± 1.5 V to ± 18 V • Wide Bandwidth: 4.0 MHz • High Slew Rate: 10 V/p.s Output 1 • Low Input Offset Voltage: 2.0 mV • Large Output Voltage Swing: -14 V to + 14 V (with ± 15 V Supplies) Inputs 1 1 I: VEE' • Large Capacitance Drive Capability: 0 to 500 pF (Dual, Top View) • Low Total Harmonic Distortion: 0.04% • Excellent Phase Margin: 67° • Excellent Gain Margin: 6.7 dB • Output Short Circuit Protection L SUFFIX ORDERING INFORMATION OpAmp Function Device P SUFFIX Test Temperature Range o to o to Package MC34181P MC34181D MC33181P MC33181D MC35181U +70'C +70°C -40 to +85'C -40 to +85'C -55 to + 125°C Plastic DIP SO-8 Plastic DIP SO-8 Ceramic DIP Dual MC34182P MC34182D MC33182P MC33182D MC35182U o to o to -40 to -40 to -55to +70'C + 70'C +85'C +85'C +125°C Plastic DIP SO-8 Plastic DIP SO-8 Ceramic DIP Quad MC34184P MC34184D MC33184P MC33184D MC35184L o to o to +70'C +70'C -40 to +85'C -40 to +85°C -55 to +125'C Plastic DIP SO-14 Plastic DIP SO-14 Ceramic DIP Single PLASTIC PACKAGE CASE 646-06 MOTOROLA LINEAR/INTERFACE DEVICES 2-294 CERAMIC PACKAGE CASE 632-08 D SUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 MC34181,2,4, MC35181,2,4, MC33181,2,4 MAXIMUM RATINGS Rating Symbol Value Unit Vs +36 Volts Volts Supply Voltage (from VCC to VEE) Input Differential Voltage Range VIDR Note 1 Input Voltage Range VIR Note 1 Volts Output Short-Circuit Duration (Note 2) ts Indefinite Seconds Operating Junction Temperature TJ "C Ceramic Package Plastic Package +160 +150 Storage Temperature Range Ceramic Package Plastic Package "C Tstg -65 to + 160 -60 to + 150 NOTES: 1. Either or both input voltages must not exceed the magnitude of Vee or VEE2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1). EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER) C1 + RS 02 t----------1~_ R7 04 03 Vout C2 5 ~ Null Offsets MC3X181 (Single) Only MC3X181 Input Offset Voltage Null Circuit MOTOROLA LINEAR/INTERFACE DEVICES 2-295 II MC34181,2,4, MC35181,2,4, MC33181,2,4 DC ELECTRICAL CHARACTERISTICS (VCC = + 15 V VEE = -15 V TA = 25'C unless otherwise noted) Symbol Characteristic Input Offset Voltage (RS = 50 n. Vo = 0 V) Single TA = +25'C TA = O'Cto +70'C(MC34181) TA = -40'C to +85'C (MC33181) TA = -55'C to + 125'C (MC35181) Dual TA = +25'C TA = O'C to + 70'C (MC34182) TA = -40'C to +85'C (MC33182) TA = -55'C to + 125'C (MC35182) Quad TA = +25'C TA = O'Cto +70'C(MC34184) TA = -40'Cto + 85'C (MC33184) TA = -55'C to + 125'C (MC35184) Min Typ Max - 0.5 - - 2.0 3.0 3.5 4.5 - 1.0 3.0 4.0 4.5 5.5 - 4.0 - 0.001 0.05 1.0 2.0 13 - 0.003 0.1 2.0 4.0 25 - Average Temperature Coefficient of VIO (RS = 50 n. Vo = 0 V) 6,VIO/6,T Input Offset Current (VCM = 0 V. Vo = 0 V) TA = +25'C TA = O'Cto +70'C TA = -40'C to +85'C TA = -55'Cto + 125'C 110 Input Bias Current (VCM = 0 V. Vo = 0 V) TA = +25'C TA = O'Cto +70'C TA = -40'C to +85'C TA = -55'Cto + 125'C liB Large Signal Voltage Gain (RL = 10 kn. Vo = ±10V) TA = +25'C TA = Tlow to Thich Output Voltage Swing (VID = 1.0 V. RL = 10 kn) TA = +25'C AVOL Common Mode Rejection (RS = 50 n. VCM = VICR. Vo = 0 V) CMR Power Supply Rejf1ction (RS = 50 n. VCM = 0 V. Vo = 0 V) PSR Output Short Circuit Current (VID = 1.0 V. Output to Ground) Source Sink ISC Power Supply Current (No Load. Vo = 0 V) Single TA = +25'C TA = Tlow to Thigh Dual TA = +25'C TA = Tlow to Thigh Quad TA = +25'C TA = Tlow to Thich 10 10 10 11 11.5 12.5 - p'vrc - - V VlmV - -13.5 70 86 - 70 84 - - V dB dB rnA - 3.0 8.0 8.0 11 - 210 250 250 - 420 500 500 840 1000 1000 p.A - MOTOROLA LINEAR/INTERFACE DEVICES 60 +14 -14 +13.5 - 2-296 - (VEE + 4.0 V) to (VCC - 2.0 V) 25 15 VO+ VO- - nA VICR - - nA - Input Common Mode Voltage Range Unit mV VIO - MC34181,2,4, MC35181,2,4, MC33181,2,4 AC ELECTRICAL CHARACTERISTICS (Vee = +15'V VEE = -15 V TA = +25°e unless otherwise noted) Characteristic Symbol Slew Rate (Vin = -10 V to +10 V, RL = 10 kll, CL = 100 pF) AV = +1.0 AV = -1.0 SR Settling Time (AV = -1.0, RL = 10 kll, Vo = 0 V to + 10 V Step) To Within 0.10% To Within 0.01% ts Min Typ Max Unit V/!"s 7.0 - - 10 10 !"s - - 1.1 1.5 Gain Bandwidth Product (f = 100 kHz) GBW 3.0 4.0 Power Bandwidth (AV = +1.0, RL = 10'kll, Vo = 20 Vp_p, THD = 5%) BWp - 200 Phase Margin (-10 V < Vo < +10 V) RL = 10 kll RL = 10 kll, CL = 100 pF 121m Gain Margin (-10 V < Vo < +10 V) RL = 10 kll RL = 10 kll, CL = 100 pF Am Equivalent Input Noise Voltage RS = 100 ll, f = 1.0 kHz MHz kHz Degrees - 67 34 - 6.7 3.4 en - 38 - nV/YHz Equivalent Input Noise Current 1= 1.0 kHz in - 0.01 - pAlYHz Differential Input Capacitance ei - 3.0 Ri - 10 12 - pF Differential Input Resistance - dB dB THD Total Harmonic Distortion 0.04 II % AV = 10, RL = 10 kll, 2 Vp_p < Vo < 20 Vp_p, I = 10 kHz Channel Separation (RL = 10 kll, -10 V < Vo < + 10 V, 0 Hz < I < 10 kHz) - - 120 Open-Loop Output Impedance (I = 1.0 MHz) Ilol - 200 FIGURE 1 - MAXIMUM POWER DISSIPATION versus TEMPERATURE FOR PACKAGE VARIATIONS 2400 ~ .s ;z 200o~ o ~ v; 1600 V ~ U) ~ 1200:: ~ ~ 800 ::;; ~ .P 40 0 FIGURE 2 -INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE 0 ~ PI~ CER1MIC P~G. VCC = +3.0Vto +15V .11 I O_VEE = -3.0Vto -15V_ f- VCC IVCM to VCCI t.VIO = 5.0 mV 8 14 k 8 & 14 PIN PLASTIC PKG. 15 '~ ~ r-- I"--r- >- ,0"4~KG/ ;/ SO·8 PKG. 0 -55-40 -20 o • I :::::.... ~ ~ -.....;; W I ~~ r- :::::: ~ ~ :::::;;; 100 ~~ lW ,. II 1~ TA, AMBIENT TEMPERATURE (OCI MOTOROLA LINEAR/INTERFACE DEVICES 2-297 II II II MC34181,2,4, MC35181,2,4, MC33181,2,4 FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE 1000 FIGURE 4 - 20 I r--- VC~ Vec = +15V 10a-vEE = -15V VCM = OV 10 1 !z l!§ a !Q = + IL VEE = -15V I-- TA = 25'C /' 1. a Q5 ':> o. I ~ 0.0 I I..--- V 0.00 I -55 -25 ~ / /' o 125 100 -10 -5.0 0 5.0 VICR, INPUT COMMON-MODE VOLTAGE IVOLTSI FIGURE 6 - 40 ~ -1. 0 .,/" 14 16 o VCC/ -1.0 '"0~ -2.0 15 -3.0 " > ~ +3,0 fIJIIIJIIIII~ F ~ +2.0~ $ I IIIII VCc= +15V VEE = -15 V TA = +25'C +1.: 1.OK 10K lOOK RL, LOAD RESISTANCE TO GROUND Inl I.OM 1.0 2.0 FIGURE 8 - FIGURE 7 - OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO GROUND "'w "h- ~:~am 1,.fTITJ lOy V 4.0 6.0 8.0 10 12 VCC, IVEEI, SUPPLY VOLTAGE IVOLTSI 2.0 I o ,./ , I' Source z // 0 1 \v6c Vcc = +15V ~ -2. O-VEE = -15V ~ g -3, o_TA = +25'C ,./ 10 OUTPUT SATURATION VOLTAGE versus LOAD CURRENT J 1 ~ RL Jonnectedlto GrOunld I - TA = 25'C a / ,,/ 25 50 75 TA, AMBIENT TEMPERATURE I'CI RL = / L FIGURE 5 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE +2.0 1= ::l 0+1.0 ~ ,,~ t--.. VEE 0 I.OK III1111 10K lOOK RL, LOAD RESISTANCE 1m MOTOROLA LINEAR/INTERFACE DEVICES 2-298 VCC = +15V VEE = -15V TA = +25'C I.OM MC34181,2,4, MC35181,2,4, MC33181,2,4 FIGURE 9 - 0 OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE FIGURE 10 - +15~ JCCI~ ~\~~ vcc l = -VEE= -15V RL",0.1!! 0 - VIO = 1.0V 0 -------- 30Of-VEE ~ -15V VCM ~ OV "- Vo ~ OV LloIOUT ~ 10/LA O..-TA ~ 15°C 11111111 ~I- n 15 / 100/ AV ~ 100V 75 100 o 125 100 .,../' 1.0K 10K f, FREQUENCY IHzl TA, AMBIENT TEMPERATURE lOCI FIGURE 11 - OUTPUT VOLTAGE SWING versus FREQUENCY FIGURE 12 - 0 1. 0 VCC = +15V VEE = -15 V RL ~ 10 k!! THO ~ 1% TA ~ 15°C 4 \ 8 1 \ 6 ~ ~ O. 6 \ 10K 100K f, FREQUENCY IHzl 0.4 ~ O. 1 c,- /" ~ 50 !::; o 40 / "'" L .L ~ 3oll o ~ ;; 10 -15 0 ......... 1/ Z -55 100 10 0 w § II 1.0K f, FREQUENCY IHzl 0 "-\ VCC ~ +15V VEE ~ -15VRL ~ 10k!! f'" 10 Hz TA ~ 25°C I o 15 50 75 100 125 TA, AMBIENTTEMPERATURE lOCI 'i' [',. '\ ~ Phase \ " 100 "\ '\ !"\ 1.0K 10K 100K f, FREQUENCY IHzl MOTOROLA LINEAR/INTERFACE DEVICES 2-299 - ~ 10 100K '\ 1\ o 1.0 10K I I VCC ~ +15V_ VEE ~ -15V Vo ~ OV RL ~ 10kfl TA ~ 15°C "Gain 0 1.0 1y OPEN-LOOP VOLTAGE GAIN AND PHASE versus FRE<:J,UENCY 100 ~ ~ 1000 rtrl FIGURE 14 - 0 > V ~ ~ o FIGURE 13 - OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE >E "'z ~~C ~ 11 ~~I~I FE 100M tOM VEE ~ -15V Vo ~ 1.0 Vr- p RL ~ 10 kf TA ~ 25°C AV '"~ 100K OUTPUT DISTORTION versus FREQUENCY z o \ 1.0K 0.8 §i \ o 1.0 / V .... .,../' 50 V 10 / / 0 I-- Source - 15 OUTPUT IMPEDANCE versus FREQUENCY "" ~ 100M \ 1 II 10M 180 100M II II MC34181,2,4, MC35181,2,4, MC33181,2,4 FIGURE 15 - NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE FIGURE 16 - OUTPUT VOLTAGE OVERSHOOT versus LOAD CAPACITANCE 01.3 100 ~ ;i 15 1.1 ~ ~ ~ 1. 1 ~ ~ ~ VCCI = 1+15J I I VEE = -15V 0 Rl = 10 kfl Il.Vin = 100 mV p. p -10V- :;; 0 0 10 Negative supL 100 1.0K t, FREQUENCY (Hzl 10K j 80 -55 100K -25 FIGURE 25 - POWER SUPPLY REJECTION versus FREQUENCY 140 ~ 120 z 0 ~ ~ 125 OJ ~ 20Lo (t.VO!AOM) 9 .l.VEE 1. 1 ~ >- ~ 1.0 :::> u 60 ~ 0.9 ~ 40 - TA ~ 25°C 125°C WC / VCC ~ +15V_ VEE ~ -15V TA ~ 25°C RL ~ x Vo ~ OV 5l ~ 13 0.8 20 0 100 100 i5 co a' ~ 25 50 75 TA < AMBIENT TEMPERATURE (OCI 1.2 ~ PSR ~ 20Log (t.VO!AOM) 1--++-If-H-f+lI--+-f-+H+l4It.VCC 100 r'"==F=t:jmH1t-ok:H-f-mfll- - PSR ~ o FIGURE 26 - NORMALIZED SUPPLY CURRENT versus SUPPLY VOLTAGE ~ 80 5l -- I t.VCC, t.VEE ~ 3.0 V f.;;10Hz - 0 > 1M 100K t, FREQUENCY (Hzl II~~~ ~ 1+115V 0 ~ 20Log (t;:~~ x ADM) . . . . . . r-. o ;;' 60 8 11 II;~~+,~; CMR I-- INPUT NOISE VOLTAGE versus FREQUENCY =s w « t.VCM ~ 3.0 V ~ 100 I--TA ~ 25°C + 10 V o 25 50 75 TA, AMBIENT TEMPERATURE (OCI J 1111~lv z o \ +1.0 10 kO 100 pF -10 V to 10 0 <..0 JCCI COMMON MODE REJECTION versus FREQUENCY ~ 120 I--VEE~ -15V- +15V -25 .FIGURE 23 - ~ 140 7_VEE~-15V a' on ~ FIGURE 22 - 0.7 1M o 5.0 10 15 VCC, IVEE!. SUPPLY VOLTAGE (VOLTSI MOTOROLA LINEAR/INTERFACE DEVICES 2-301 20 II MC34181,2,4, MC35181,2,4, MC33181,2,4 FIGURE 27 - CHANNEL SEPARATION versus FREQUENCY 140 - 120 iil :s! z 100 Q !;( 80 '" 0 ~ FIGURE 28 - TRANSIENT RESPONSE t-.... I'- 0 Vcc = +15V VEE = -15V 0 TA = +25°C 0 10K II lOOK 1.0M f, FREQUENCY (Hzl FIGURE 29 - 10M t, TIME (2.0 I's/DIVI SMALL SIGNAL TRANSIENT RESPONSE t, TIME (0.5I's/DIVI MOTOROLA LINEAR/INTERFACE DEVICES 2-302 ORDERING INFORMATION Device Temperature Range o to o to o to o to -55 to -55 to NE592D NE592N NE592H NE592F SE592H SE592F 70'C 70'C 70'C 70'C + 125'C + 125'C Package NE592 SE592 SO-14 Plastic DIP Metal Can Ceramic DIP IJ Metal Can Ceramic DIP VIDEO AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT DIFFERENTIAL TWO STAGE VIDEO AMPLIFIER The SE/NE592 is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with H SUFFIX METAL PACKAGE CASE 603-04 the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video G1A Gain Select or pulse amplifier in communications, magnetic memories, display and video recorder systems. The 592 is a pin-far-pin replacement for the MC1733. • 90 MHz Bandwidth • Adjustable Gains From 0 to 400 • Adjustable Pass Band • No Frequency Compensation Required Gl B Gain Select (Top View) Pin 5 connected to case ., F SUFFIX CERAMIC PACKAGE CASE 632-10 CIRCUIT SCHEMATIC Vee 14.:~ 1 Input 2 0--+---\--, ... N SUFFIX PLASTIC PACKAGE CASE 646-06 D SUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 Output 1 Input 1 Output 2 Input 1 NC G2B Gain Select G1Bo--+---; 50 3 G2A Gain Select 4 Gain G1A G1B 50 Gain Select Select G2 B Vee 0---+----; Output 400 (Top View) MOTOROLA LINEAR/INTERFACE DEVICES 2-303 II NE592, SE592 MAXIMUM RATINGS ITA = +25 0 C unless otherwise noted I . Rating Symbol Value Unit Power Supply Voltage VCC VEE +8.0 -8.0 Volts Differential I nput Voltages VID ±5.0 Volts Common-Mode I nput Voltage VIC ±6.0 Volts 10 10 mA -55 to +125 o to +70 °c Output Current Operating Ambient Temperature Range TA SE592 NE592 Operating Junction Temperature Range °c TJ Metal and Ceramic Packages 175 150 Plastic Package Storage Temperature Range Metal and Ceramic Packagee Plastic Package T stg °c -65 to +150 -55 to +125 ELECTRICAL CHARACTERISTICS TA = 25°C unless otherwise noted, IVcc = +6.0 V, VEE = -6,0 V, VCM = 01 SE592 Characteristic Symbol Differential Voltage Gain - Figure 3 NE592 Min Typ Max Min Typ 300 90 400 100 500 110 250 80 400 100 - 40 90 - - 40 90 - tTLH tTHL - 10.5 4.5 - 10.5 4,5 - 10 - tpLH tPHL - 7.5 6.0 - .- 10 - 7,5 6.0 10 4.0 30 - - 4.0 30 - Max IRL = 2 kn, eout = 3 Vp-pl IGain 1, Note 11 IGain 2, Note 21 600 120 BW Bandwidth - Figure 3 IGain 1, Note 11 IGain 1, Note 21 Units V/V AVd MHz Rise Time - Figure 3 ns IGain 1, eout = 1 Vp-p, Note 11 IGain 2, eout = 1 Vp-p, Note 21 12 Propagation Delay - Figure 3 ns (Gain 1, eout = 1 Vp-p, Note 11 IGain 2, eout = 1 Vp-p, Note 21 Input Resistance kn Rin - IGain 1, Note 11 IGain 2, Note 21 20 10 I nput Capacitance IGain 2, Note 21 2.0 - 0.4 3.0 liB - 9.0 20 Vn - 12 - - - - ±1.0 Gin Input Offset Current IGain 3, Note 31- Fig. 2 110 Input Bias Current (Gain 3. Note 3)- Fig. 2 Input Noise Voltage (Gain 1 and Gain 2) 2.0 - pF 0.4 5.0 Jl.A 9.0 30 ~A 12 - ~Vlrmsl - - IBW = 1 kHz to 10 MHzl - Figure 1 Input Voltage Range IGain 2, Note 21- Fig, 3 Common-Mode Rejection Ratio - Figure 3 Vin IGain 2, VCM = ±1 V, f< 100 kHzl IGain2,VCM=±1 V,f=5MHzl Supply Voltage Rejection Ratio - Figure 2 - - 86 60 - 50 70 - 50 70 - - 0.35 0.75 - 0.35 0.75 2.4 2.9 3.4 2.4 2,9 3.4 3.0 4.0 3.0 4.0 - - 20 - - 20 - dB V VOO Output Common-Mode Voltage - Figure 2 V VCMO IRL =~, Gain 3, Note 31 Output Voltage Swing - Figure 3 86 60 60 PSRR IGain 3, RL = 00, Note 31 Vp-p Vo IR L = 2k, Gain 2, Note 21 Output Resistance ro Power Supply Current - Figure 2 ID I RL =~, Gain 2, Note 21 Gain select pins G 1A and G 18 connected together. Note 2. Gain select pins G2A and G28 connected together. Note 3. AU gain select pins open. n mA - Note 1. V dB 60 IGain 2, ;~ 47pF eo I I I HP 3400A or Equiv. I Gain 1 en (Differential Noise At Input) :;; 400 6.0 V Battery FIGURE 2 FIGURE 3 0.2 jJF Vin RL V out 0.2 p,F 51 eo J2 51 ~ 1k MOTOROLA LINEAR/INTERFACE DEVICES 2-305 1k V IJ NE592, SE592 FIGURE 4 - GAIN 1 versus FREQUENCY 525 II 450 __ ,! [I I!, , I' , 300 I I Ii .1 :11 ; , 'iI, I 225 I I I' ~i 315 I I i 5 1.0 2.0 3.0 ! II 5.0 1 I I ! i I ! , '1 I\. !I I I i 5 , Ii: j :1 I 11\ I Ii I IIII l'il i 20 30 50 100 200 300 500 I r-0 60 I I' i I ,- .l 5· ! o 1.0 1000 ! 2.0 3.0 1 5.0 I Ii 1.0 1.0 s.o TA '" 25°C RL 0 1.0 k > _.. ~ 5.0 '" -... ~ 4.0 c5 ---- > ~ 5.0 0-" z ;::'" \ I I I i 1 ! I''II I I I II11 I I , I I 10 J! 20 30 50 100 FREUUENCY (MHz) 200 300 500 1000 ~-~ e-~!~ ol,slolJ I VJCNE! TA ::: 25°C --t ~ 3.0 ~ 2.0 ~--- I > ~ 2.0 5 1.0 1.0 o o ------- >- 10 I I I: '" > 5.0 i i ~ 4.0 i'- 3.0 1.0 I FIGURE 7 - OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE V~CNE~ 01,W I s.O 1--- \ I I, I FREUUENCY (MHz) FIGURE 6 - OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY I 1 I , I II i I I I I I I I J t- ,I I I,ll i I 1il , 0 I i ,+ II! r---. L 75 , i III , i •. , 'lll!1 -- ; i IIIII1 90 i I 10 i I -+-+1T I i ! i ! :I i ! i "} 150 o i I II I i I FIGURE 5 - GAIN 2 varsus FREQUENCY 105 50 100 500 1000 V ~. V 50 10 500 100 FREQUENCY (MHz) 5k lk 10k LOAO RESISTANCE (OHMS) FIGURE 8 - VOLTAGE GAIN AS A FUNCTION OF Radj RESISTANCE 1000 VCCNEE ±S.O V f 0100 kHz TA 0 25 0 C O.2/,F ~ 2: 100 l:- ...... ;:= - z ;;' "- '" ~ 10 ~ "- > ~ 1.0 ~ tt: 51 51 "O. I c 1.0k "- loOk 0.0 I 1.0 10 100 lk R.di (OHMS) MOTOROLA LINEAR/INTERFACE DEVICES 2-306 10k lOOk 1M NE592, SE592 FIGURE 9 - DISK/TAPE PHASE MODULATED READBACK SYSTEMS +5.0 V +6.0 V 9 10 r------ 4 8 - II --, - I I Q AMPLITUDE: FREQUENCY: 1-10 mV p.p 1 1-4 MHz I I I I 47 pF -6.0 V I I READ HEAD I DIF FE RENTIATOR/AMPLIF IER ZERO CROSSING DETECTOR FIGURE 10 - DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION +6.0 V 0.2 J.LF 1= -6.0 V FOR FREQUENCY f1 «1/2" (32) C VO a!! 1.4 x 1 04C ~ dt FIGURE 11 - FILTER NETWORKS BASIC CONFIGURATION +6.0 V "0 (s' TRANSFER "1 Is) fUNCTION 2re lA X 104 --L- LQwPais o-~---r~ vo (5) ,..... 1.4 x 104 = 2(5) + 2re V'1TsT 1.4X104 -R- High Pass [.• ~" 1 1 [ • S+""1i"RC 1.4 X 104 -L- _ 1.4x 104 = Z(!I) + 32 L JL "-A;: c ~ VVVyC~ A ~ 1.4 'o"dRo;,,' In the networks above, 'the R value uHd is anumad to include 2 Te , or approximatelv 30 Ohm •. -6.0 V MOTOROLA LINEAR/INTERFACE DEVICES 2-307 x,04- --R- [ 52 + 1/LC 52 + 1/t..C +,/RC 1 II ® OP-27 MOTOROLA ULTRA-LOW NOISE PRECISION, HIGH SPEED OPERATIONAL AMPLIFIER ULTRA-LOW NOISE PRECISION, HIGH SPEED OPERATIONAL AMPLIFIER The OP-27 series of monolithic operational amplifiers combine low-noise, precision de performance and high bandwidth in one device. Advanced Bipolar processing and innovative design techniques are used to produce this low noise precision operational amplifier. This device is trimmed for extremely low initial input offset voltage by utilizing a highly stable and reliable zener zap technique during factory testing which yields guaranteed VIO limits as tight as 25 /JoV. A unique input bias current cancellation scheme maintains low liB and 110 to typically ±20 nA and 15 nA respectively over the full military temperature range. Other sources of input errors are reduced in excess of - 120 dB due to extremely high common-mode and power supply rejection ratios. The OP-27 has a gain bandwidth product of 8.0 MHz and slew rate of 2.8 V//Jos. The precision, low noise and high speed characteristics of this device makes it ideal for amplifying transducer signals, RIAA phono, NAB tape head and microphone preamplifiers, wide band instrumentation amplifiers and high speed signal conditioning for data acquisition systems. • Extremely Low-Noise - P SUFFIX PLASTIC PACKAGE CASE 626-05 3.0 nV/YHz at 1.0 kHz 80 nVp-p, 0.1 Hz to 10 Hz • Low Initial Input Offset Voltage - 10 /JoV • Ultra Stable Input Offset Voltage - 0.2 /JoV/mo. • High Gain Bandwidth Product and High Slew Rate 2.8 V//Jos • High Open-Loop Gain - SIL,CON MONOLITHIC INTEGRATED CIRCUIT 8.0 MHz, Z SUFFIX CERAMIC PACKAGE CASE 693-02 1.8 Million • High Common-Mode Rejection - 126 dB (Top View) Offset Null Invt Input Noninvt Input VEE 8 Offset Null VCC Output N.C. ORDERING INFORMATION Device Slew Rate '" 1.7 VII's VIO '" 25,.V OP-27AZ OP-27EZ OP-27EP VIQ'" 6O/JoV OP-27BZ OP-27FZ OP-27FP VIO'" l00,.V OP-27CZ OP-27GZ OP-27GP Temperature Range - 55 to + 125"<: -25 to +85'C o to +70'C MOTOROLA LINEAR/INTERFACE DEVICES 2-308 Package Ceramic DIP Ceramic DIP Plastic DIP OP-27 MAXIMUM RATINGS Rating Symbol Value Unit Supply Voltage Vee VEE +22 -22 V Input Voltage Range (Note 1) V VIDR ±22 Differential Input Voltage (Note 2) VID :::t::0.7 V Differential Input Current (Note 2) 110 ±25 mA Output Short-Circuit Duration ts Indefinite Power Dissipation and Thermal Characteristics Plastic Package (P Suffix) TA ~ + 36'e Derate above T A ~ + 75'e Po 500 mW 11ROJA 6.7 mwre Po 500 mW 11ROJA 7.1 mwrc Ceramic Package (Z Suffix) TA ~ +75'C Derate above TA ~ +80'C II Operating Ambient Temperature AB and C Grades 'e TA -55 to + 125 E,F and G Grades (Ceramic Package) -25 to +85 EP, FP and GP Grades (Plastic Package) o to Junction Temperature Storage Temperature Range Ceramic Package Plastic Package + 70 +150 TJ 'e 'e T stg -65 to + 150 -65 to + 125 NOTES: 1. For supply voltages less than ::,:::22 V, the absolute maximum input voltage range is equal to the supply voltage. 2. The inputs are protected by back-ta-back diodes. Current limiting resistors are not used in order to achieve low noise. If differentia) input voltage exceeds::,:: 0.7 V, the input current must be limited to 25 mA. ELECTRICAL CHARACTERISTICS (Vec ~ + 15 V, VEE -15 V, TA ~ +25°C unless otherwise noted.) OP-27A/E/EP Characteristic Input Offset Voltage Long Term Input Offset Voltage Stability (Note 3) OP-27BIF/FP OP-27CIG/GP Typ Max Via - 10 25 - 20 60 - 30 100 f,CV VIOlt - 0.2 1.0 - 0.3 1.5 - 0.4 2.0 f,CVlmo nA Symbol Min Typ Max Min Typ Max Min Unit Input Offset Current 110 35 - 9.0 50 - 12 75 liB - 7.0 Input Bias Current ,,10 ,,40 ",12 ,,55 - ,,15 ,,80 nA enp_p - 0.08 0.18 - 0.08 0.18 - 0.09 0.25 flVp_p - 3.5 3.1 3.0 5.5 4.5 3.8 - 3.5 3.1 3.0 5.5 4.5 3.8 - 3.8 3.3 3.2 8.0 5.6 4.5 - 1.7 1.0 0.4 4.0 2.3 0.6 - 1.7 1.0 0.4 4.0 2.3 0.6 1.7 - 1.0 0.4 0.6 1.5 6.0 - 1.2 5.0 - 0.8 4.0 - Mll 3.0 - 2.5 - 2.0 - Gll "11.0 '" 12.3 - '" 12.3 - V Input Noise Voltage 0.1 to 10 Hz (Note 4) Input Noise Voltage Density fo ~ 10 Hz fo ~ 30 Hz fo ~ 1000 Hz (Note 4) en Input Noise Current Density in fo~10Hz fo ~ 30 Hz fo ~ 1000 Hz (Note 4) Input Resistance Mode ~ Differential Input Resistance ~ Common Mode Input Voltage Range ri Rincm VIR nVIYHz - pAlYHz " 11.0 " 12.3 - - ±11.0 _.- (continued) MOTOROLA LINEAR/INTERFACE DEVICES 2-309 II OP-27 ELECTRICAL CHARACTERISTICS (continued) OP-27B/F/FP OP-27A/E/EP Characteristic Symbol Min Typ Max Min Typ Common Mode Rejection Ratio VCM = ±11 V CMRR 114 126 - 106 123 Power Supply Rejection Ratio VCCNEE = ±4.0 V to ± 18 V PSRR 100 120 - 100 Large-Signal Voltage Gain RL '" 2.0 kll, Va ~ ±10 V RL'" 1.0 kll, Va ~ ±10 V RL ~ 600 Il, Va = ± 1.0 V, VCcNEE ~ ±4.0 V to ± 18 V AVOL 1000 800 1800 1500 i - 1000 800 - 700 - ",12 ",10 ±13.8 ±11.5 - SR 1.7 2.8 GBW 5.0 8.0 - Output Voltage Swing RL '" 2.0 k!l RL '" 600 !l Va Slew Rate, RL '" 2.0 kll Gain Bandwidth Product OP-27C/G/GP Min Typ - 100 120 - dB 120 - 94 114 - dB 1800 1500 - 700 - 1500 1500 - 700 - - 500 - ±13.8 - '" 11.5 ±10 '" 13.5 '" 11.5 - 1.7 2.8 - V/tJ.s 5.0 8.0 - MHz II Max Max Unit V/mV - V '" 12 ",10 '" 11.5 1.7 2.8 5.0 8.0 - Open Loop Output Resistance Va ~ 0, 10 ~ 0 ro - 70 - - 70 - - 70 - Power Dissipation Va ~ 0, No Load PD - 90 140 - 90 140 - 100 170 mW - "4.0 - - "'4.0 - - ±4.0 - mV Offset Adjustment Range Rp ~ 10 k!l NOTES (continued) 3. Long term input offset voltage stability for the OP-27 series, refers to the average trend line of VIO versus time over extended periods after the first 30 days of operation. Excluding the first hour of operation, changes in VIO during the first 30 days are typically 2.5 ~V. 4. Sample tested. ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V VEE -15 V, TA ~ Tlow to Thigh INote 5]) OP-27B OP-27A Characteristic Input Offset Voltage Average Input Offset Drift (Note 6) Symbol Min Typ Max Via - 30 60 TCVIO - 0.2 0.6 110 - 15 50 Input Bias Current liB - ±20 ±60 Input Voltage Range VIR ±10.3 ±11.5 Common Mode Rejection Ratio VCM = ±10V CMRR 108 Power Supply Rejection Ratio VCCNEE = ±4.5 V to ± 18 V PSRR Large-Signal Voltage Gain RL '" 2 kll, Va = ± 10 V Input Offset Current Output Voltage Swing RL"'2kll OP-27C Typ Max - 50 200 - 70 300 tJ. V 0.3 1.3 - 0.4 1.8 tJ.vrc - 22 85 - 30 135 nA ",28 ±95 - ±35 ±150 nA Min Typ Max Min ±10.3 ±11.5 - ±10.2 "'·11.5 122 - 100 119 - 94 96 114 - 94 114 - AVOL 600 1200 - 500 1000 Va ±11.5 ±13.5 - ±11.0 "'13.2 116 - dB 86 108 - dB - 300 800 - V/mV - "'10.5 ±13.0 - V MOTOROLA LINEAR/INTERFACE DEVICES 2-310 Unit V OP-27 ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V. VEE ~ -15 V. TA ~ Tlow to Thigh INote 5)) OP-27E1EP Characteristic Input Offset Voltage Typ Max Min Typ Max Min Typ Max 20 50 140 220 /LV 0.6 0.3 1.3 - 55 0.2 - 40 TCVIO - 0.4 1.8 fLVrC 110 - 10 50 14 B5 20 135 nA ±14 ±60 ±IB ±95 ±25 ±150 nA VIO Average Input Offset Drift (Note 6) Input Offset Current OP-27G/GP OP-27F/FP Min Symbol - - - Unit Input Bias Current liB Input Voltage Range VIR ±10.5 ±11.8 - ±10.5 ±11.B - ±10.5 ±11.8 - V Common Mode Rejection Ratio VCM ~ ±10V CMRR 110 124 - 102 121 - 96 118 - dB Power Supply Rejection Ratio VCCNEE ~ ±4.5Vto ±18V PSRR 97 114 - 96 114 - 90 114 - dB Large-Signal Voltage Gain RL '" 2.0 kfl. Vo ~ ± 10 V AVOL 750 1500 - 700 1300 - 450 1000 - V/mV Vo ±11.7 ±13.6 - ±11.4 ±13.5 - ±11 ± 13.3 - V Output Voltage Swing RL'" 2.0 kfl NOTES (continued) 5. Tlow ~ -55°C for OP-27A OP-27B OP-27C -25°C for OP-27E OP-27F OP-27G QOC for OP-27EP OP-27FP OP-27GP Thigh + 125°C for OP~27A OP-27B OP-27C +85°C for OP-27E OP-27F OP-27G +70°C for OP-27EP OP-27FP OP-27GP 6. TCVIO performance is within specifications unnulled or when nulled with a potentiometer Rp == 8.0 kO to 20 kn. ABBREVIATED CIRCUIT SCHEMATIC Offset Null r---A---.. .-------~_+---r~----~--~--~~----_.------_.--~~~~-oVCC R4 R3 Rl' R2' Output NonInverting Input (+ I Inverting Input (-) *Rl & R2 are trimmed at wafer test for minimum offset voltage. ~--------~----~--------~----------~--~--+-~~-oVEE MOTOROLA LINEAR/INTERFACE DEVICES 2-311 II OP-27 TYPICAL CHARACTERISTICS II FIGURE 1 - VOLTAGE NOISE TESTER GAIN versus FREQUENCY FIGURE 2 - VOLTAGE NOISE TEST CIRCUIT (0.1 Hz-TO-10 Hz) 100 0,1 "F 1\ "" r\ Test Time of 10 sec must be used to 0 limit low frequency «0.1 Hz) gain 0 0 300,01 1,0 f, FREQUENCY IHzI 0,1 FIGURE 3 - Note: All capacitor values are for non polarized capacitors only. 100 10 FIGURE 4 -INPUT WIDEBAND VOLTAGE NOISE versus BANDWIDTH (0.1 Hz TO FREQUENCY INDICATED) VOLTAGE NOISE versus FREQUENCY 10 0 ~ ~ ~ '"z 0 ~ '"'~ 0 > TA ~ +25°C VCC ~ +15V VEE ~ -15V 7, 0 5, of'.., 4, 0". . TA VCC VEE ~ ~ + 25°C +15V -15V ~ '" oz '- I"- ~ 1ff Corner - 2.7 Hz ~> o.1 2, 0 0 1.0 - -- ~1, 0 ....... 3, 0 = -- RL=1.0k '[1 0 FIGURE 14 - OPEN LOOP VOLTAGE GAIN versus LOAD RESISTANCE kRL = 1.0 k ~ :: TA = 15'C Of-- VCC = + IS V z ~ 1.Br-- VEE = -15 V ~ 1. 6 f-- f!j ~ ~ ./ 0 ~ 30 10 50 40 / : I I II -" 10 , Vf-'" 1. 4 1.1 z 1. 0 ll: o O. B "" « 0.5 II II 1 O. 6 O. 4 0.1 I i ~ 1.0 10 RL, LOAD RESISTANCE Iknl VCC + VEE, TOTAL SUPPLY VOLTAGE (VI FIGURE 15 - MAXIMUM OUTPUT SWING versus RESISTIVE LOAD FIGURE 16 - 100 POWER SUPPLY REJECTION RATIO versus FREQUENCY 8 6 0 4 2r-- Positive Swing ~ 0 .0 ./"" TA = 25°C 01::::-- Vv 0 KNegative Swing /./ ~ 0 Positive~ V/ 0 TA = 15'C .Of-- VCC = + 15 V Of-- VEE = -15 V I' 1 0 1 FIGURE 17 - COMMON MODE REJECTION RATIO versus FREQUENCY ~ 140 ! : 211 0 t;j 1'. ~ 11 0 w C> I! ~ 10 0 z I o ~ 90 II i N- I ~ 80 '" u 70 100 I I ~ 1 I I 1.0 K I iii 10 K z « , -___6"-0 Output t, TIME {500 nsDIVI AV~ +1.0 TA ~ +2SOC VCC ~ + 15 V Vee VEE~ -15V ~ 15 pf ~ x CL RL FIGURE 21 - LARGE·SIGNAL TRANSIENT RESPONSE NOISE MEASUREMENTS The extremely low noise of these devices can make accurate measurement a difficult task. In order to realize the 80 nV peak·to·peak noise specification ofthe op amp in the 0.1 Hz to 10 Hz frequency range, the following guidelines must be observed: + 5.0 V (1) The device has to be warmed up for at least five minutes. As the op amp warms up, its offset voltage changes typically 4.0 /J-V due to its chip temperature increasing 14 to 20°C from the moment the power supplies are turned on. In the 10 sec measurement interval these temperature·induced effects can easily exceed tens of nanovolts. - 5.0 V t, TIME {2.0 ILsiDIVI +1.0 TA ~ +25°C VCC ~ +15V AV~ (2) For similar reasons, the device has to be well shielded from air currents to eliminate the possibility of thermoelectric effects in excess of several nanovolts. VEE ~ -15V CL ~ 12 pf RL ~ x MOTOROLA LINEAR/INTERFACE DEVICES 2-315 II OP-27 (3) Sudden motion in the vicinity of the device can also "feed-through" to increase the observed noise. (4) The test time to measure 0.1 Hz to 10 Hz noise should not exceed 10 sec. As shown in the noise tester frequency response curve (Figure 1) the 0.1 Hz corner is defined by only one zero. The test time of 10 sec acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz. the op amp and the source resistance of the generator. With RF '" 500 n, the output is capable of handling the current requirements (lL '" 20 mA at 10 V) and the amplifier stays in its active mode and a smooth transition will occur. As with all operational amplifiers when RF > 2.0 kn, a pole will be created with RF and the amplifier's input capacitance (8.0 pF), creating additional phase shift and reducing the phase margin. A small capacitor (20 to 50 pF) in parallel with RF will eliminate this problem. A noise-voltage density test is recommended when measuring noise on a large number of units. A 10 Hz noise-voltage density measurement will correlate well with a 0.1 Hz-to-1O Hz peak-to-peak noise reading since both results are determined by the white noise and the location of the 1/f corner frequency. FIGURE 23 - UNITY GAIN BUFFER APPLICATIONS When RF '" 100 n and the input is driven with a fast, large signal pulse (> 1.0 V), the output waveform will look as shown in Figure 23. During the initial fast input step, the input protection diodes effectively short the output to the input and current limit only by the output short circuit protection of MOTOROLA LINEAR/INTERFACE DEVICES 2-316 PULSED OPERATION ® MOTOROLA TCA0372 II Product Preview DUAL POWER OPERATIONAL AMPLIFIER DUAL POWER OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT The TCA0372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils. • Output Current to 1.0 A • Slew Rate of 1.3 VI/J-s • Wide Bandwidth of 1.1 MHz • Internal Thermal Shutdown DPl SUFFIX PLASTIC PACKAGE CASE 626-05 • Single or Split Supply Operation • Excellent Gain and Phase Margins • Common Mode Input Includes Ground DP2 SUFFIX PLASTIC PACKAGE CASE 620-10 O""",Am'} • Zero Deadband Crossover Distortion Vee 2 7 Output B 3 6 VEE/Gnd 4 } Inpu!sA InpulsB 5 (Top View) Output A 1 Inputs B { 5 Inputs A { 7 - '_ _....r(T0pVIBW) SIMPLIFIED BLOCK DIAGRAM {Top View) SP SUFFIX PLASTIC MEDIUM POWER PACKAGE CASE 762-01 ORDERING INFORMATION Device TCA0372DPI TCA0372DP2 TCA0372SP This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 2-317 Operating Junction Temperature Range TJ -40°C to +125°C ~ Package Plastic DIP Plastic DIP Plastic Power II TCA0372 MAXIMUM RATINGS Rating Symbol Value Unit Vs 40 Volts Supply Voltage (from VCC to VEE) VI DR (Note 1) Volts Input Voltage Range VIR (Note 1) Volts Operating Junction Temperature (Note 2) TJ +125 "C Tsto -55 to + 125 "C 10 1.0 A Imax 1.5 A Input Differential Voltage Range Storage Temperature Range DC Output Current Peak Output Current (Nonrepetitive) DC ELECTRICAL CHARACTERISTICS (VCC = + 15 V, VEE = -15 V, RL connected to ground TJ = Tlow to Thigh (Note 3) unless otherwise noted) Symbol Characteristic Input Offset Voltage (VCM = 0) VCC = +15V, VEE = -15V, TJ = +25"C VCC = + 15 V, VEE = -15 V, TJ = Tlow to Thiah Min Typ Max - 3.0 15 20 Unit mV Via - - aVIO/aT 20 - Input Bias Current (VCM = 0) liB - 100 500 Input Offset Current (VCM = 0) 110 - 10 50 nA Large Signal Voltage Gain Va = ± 10 V, RL = 2.0 k AVOL 30 100 - V/mV Output Voltage Swing (lL = 100 mAl VCC = + 15 V, VEE = -15 V, TJ = +25"C VCC = +15 V, VEE· = -15 V, TJ = Tlow to Thigh VOH 14 13.9 14.2 - Average Temperature Coefficient of Offset Voltage VOL - VCC=+15V,VEE= -15 V, TJ = +25"C VCC = + 15 V, VEE = -15 V, TJ = Tlow to Thiah -14.2 - Output Voltage Swing (lL = 1.0 A) VCC = +24 V, VEE = 0 V, TJ = +25"C VCC = +24 V, VEE = 0 V, TJ = Tlow to Thigh - 22.5 22.5 22.7 - 1.3 VOL -14 -13.9 - - - 1.5 1.5 VICR Common Mode Rejection Ratio (RS = 10k) CMRR 70 90 - Power Supply Rejection Ratio (RS = 100!l) PSRR 70 90 - ID NOTES: 1. Either or both input voltages must not exceed the magnitude of Vee or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. Thigh ~ V VEE to (VCC - 1.0) VEE to (VCC - 1.3) Power Supply Current VCC= +15V,VEE= -15V, TJ = +25"C VCC = +15V,VEE = -15V, TJ = Tlow to Thigh -40'C V - Input Common Mode Voltage Range TJ = +25"C TJ = Tlow to Thigh ~ nA V VOH VCC = +24 V, VEE = 0 V, TJ = +25"C VCC = +24 V, VEE = 0 V, TJ = Tlow to Thigh 3. Tlow p'vrc +125"C MOTOROLA LINEAR/INTERFACE DEVICES 2-318 dB dB mA - 7.0 - 10 14 TCA0372 ~ + 15 V, VEE ~ -15 V, Rl connected to ground, TJ ~ unless otherwise noted) + 25°C AC ELECTRICAL CHARACTERISTICS (VCC Characteristic Slew Rate (Vin ~ -10 V to + 10 V, Rl AV ~ -1.0, TJ ~ Tlowto ThiQh Gain Bandwidth Product (I TJ ~ 25°C TJ ~ Tlow to ThiQh ~ ~ 2.0 k, Cl 100 kHz, Cl ~ ~ Symbol Min Typ 100 pF) SR 1.0 1.4 - ~ GBW 0.9 0.7 1.1 - - Degrees 100 pF, Rl 2.0 k) Max Unit VII''" MHz Phase Margin TJ ~ Tlow to Thigh Rl ~ 2.0 k, Cl ~ 100 pF m - 80 - Gain Margin Rl ~ 2.0 k, Cl Am - 15 - dB en - 22 - nV/YHz THD - 0.02 - % ~ 100 pF Equivalent Input Noise Voltage RS ~ 100 Ohms, 1 ~ 1.0 kHz to 100 kHz Total Harmonic Distortion AV ~ -1.0, Rl ~ 50 Ohms, Vo NOTE: In case VEE IS ~ 0.5 VRMS, 1 disconnected before Vee. ~ 1.0 kHz a diode between VEE and GROUND IS recommended to avoid damaging device. FIGURE 1 - BIDIRECTIONAL DC MOTOR CONTROL WITH MICROPROCESSOR-COMPATIBLE INPUTS VCC "~. .-~ E2 Vs ~ logic Supply Voltage Must Have VCC > Vs El, E2 ~ logic Inputs FIGURE 2 - BIDIRECTIONAL SPEED CONTROL OF DC MOTORS .. .. 2R3· Rl For CircUit stability ensure that Rx > where AM RM = internal resistance of motor. The voltage available at the terminals of the motor is: VM where IRol = 2 (Vl - V2s) + IRol' 1M = 2R3· Rl and 1M is the motor current. Rx Vs Rl R7 10 k R8 10 k R3 10 k 5.011 R2 R5 10 k 10 k MOTOROLA LINEAR/INTERFACE DEVICES 2-319 II II ® TlOG1 TlOG2 Tl064 MOTOROLA LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS LOW POWER JFET INPUT OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUITS These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing. The TL061 device provides for the external null adjustment of input offset voltage. These devices are specified over the commercial, vehicular and military temperature ranges. The commercial and vehicular devices are available in Plastic dual in-line and SOIC packages. The military devices are available in Ceramic dual in-line packages. • Low Supply Current - 200 }LA/Amplifier • Low Input Bias Current • High Gain Bandwidth • High Slew Rate - 5.0 pA P SUFFIX PLASTIC PACKAGE CASE 626-05 o SUFFIX PLASTIC PACKAGE CASE 751-02 SO-S Offset Null ' 2.0 MHz Inputs 6.0 VI}Ls • High Input Impedance - 10 12 !1 • Large Output Voltage Swing - JG SUFFIX CERAMIC PACKAGE CASE 693-02 I' ~ , , NC , VCC , Output VEE' , Offset Null '-------' (Single, Top View) ± 14 V • Output Short Circuit Protection Output 1 ' I' Inputs 1 , , VCC , - :I Output 2 Inputs 2 VEE' ' '-------' (Dual. Top Viewl ORDERING INFORMATION OpAmp Function Tested Device Package Temperature Range o to o to SO-S Plastic DIP SO-S Plastic DIP Ceramic DIP o to o to Single TL061CD, ACD, BCD TL061CP, ACP, BCP TL061VD TL061VP TL061MJG Dual TL062CD, ACD, BCD TL062CP, ACP, BCP TL062VD TL062VP TL062MJG + 70'C + 70'C -40 to +S5'C -40 to +S5'C - 55 to + 125'C SO-S Plastic DIP SO-S Plastic DIP Ceramic DIP TL064CD, ACD, BCD TL064CN, ACN, BCN TL064VD TL064VP TL064MJ o to + 70'C o to + 70'C -40 to +S5'C -40 to +S5'C -55 to + 125'C SO-14 Plastic DIP SO-14 Plastic DIP Ceramic DIP Quad + 70'C +70'C -40 to +S5'C -40 to +S5'C - 55 to + 125'C N SUFFIX PLASTIC PACKAGE CASE 646-06 J SUFFIX CERAMIC PACKAGE CASE 632-0S o SUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 Output 1 , Inputs 1 { : VCC' 14 "\ 2-320 Inputs 4 " " VEE Inputs 2 { : .oj , Inputs 3 Output 2 , , Output 3 (Quad, Top View) MOTOROLA LINEAR/INTERFACE DEVICES Output 4 TL061, TL062, TL064 MAXIMUM RATINGS Rating Symbol Value Unit Vs +36 V VIDR ±30 V Input Voltage Range (Notes 1 and 2) VIR ±15 V Output Short-Circuit Duration (Note 3) ts Indefinite Seconds Operating Junction Temperature (Note 3) Ceramic Package Plastic Package TJ Supply Voltage (from VCC to VEE) Input Differential Voltage Range (Note 1) 'c +160 +150 Storage Temperature Range 'c T8 tg -65 to + 160 -60to i-150 Ceramic Package Plastic Package NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. 2, The magnitude of the input voltage must never exceed the magnitude of the supply or 15 volts, whichever is less. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 1.) EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER) ----~--------------------~--------~----__QVCC Inputs { :O------+---------I----...J + R4 R3 ...-J\,/v\__-"'-"V'V'".--o Output 01 06 Rl - - - - -t-------f..J\,Mr----- "r-- f= o 1'::::: a 20 20 40 60 80 100 TA, AMBIENTTEMPERATURE lOCI 120 140 ,/' 2.0 0 30 0. 0 '" ~ 15 18 ~ 12 I- ::::> I I - 50 - 25 o 0.3Or-- -f'"z ~ w ~ <5 > 5 Jc~1 ~ a 6 6. > I I VCC U)JEIE I ~I JJ 1111 +12V,VEE - , I 12 V 100 a 125 - 15 II I I I RL ~ 10 kll TA ~ 25°C ::::> E ~ z a 100 + 5.0 V, VEE V~~' LUJEIE I l5 1V III I 1.0K I III 0.3 r--VCC o~~EE I--RL '"w a « '"~ a ;;' z LARGE SIGNAL VOLTAGE GAIN versus TEMPERATURE ~ +15V 15V 10 kfl ...... / / I 0 > 0.5 0.7 1.0 2.0 3.0 RL, LOAD RESISTANCE (kll} 100 « 0 - ........... '" a in w 5.0 V VCC 0.2 0.1 ;;;- I- f= or- => o ~5. or- - 10 "" ,,/ FIGURE 6 - ~ a 5.0 7.0 /' 1I FIGURE 5 - OUTPUT VOLTAGE SWING versus FREQUENCY 5 16 / ::::> 0 25 50 75 TA, AMBIENT TEMPERATURE (OC} 14 / f= ~ +15V 5 1O-VCC VEE ~ -15 V 6 0 RL ~ 10k!! > 5. a +151V VEE ~ -15V 24 -TA .~ 25°C ~ w ~ o -- 75 _V~C ~ z 5 ~ 4.0 6.0 8.0 10 12 VCC, IVEEI, SUPPLY VOLTAGE (VOLTSI FIGURE 4 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE 5 ;:: V ... V 0 160 FIGURE 3 - OUTPUT VOLTAGE SWING versus TEMPERATURE ~ V // 6 > 5.0 iO;;:: 0 55 ··40 ",- 0 ::::> .E V 5 w 8 & 14 PIN CERAMIC PKG. '" 400 0 ~ 25°C '"z '"~ '" ~ 10kfl '"~ .::. 0 I I I ~ t--. 10K lOOK f, FREQUENCY (Hzl 1.0M 10M 0 75 50 25 25 50 75 TA, AMBIENT TEMPERATURE (OC} MOTOROLA LINEAR/INTERFACE DEVICES 2-324 100 125 TL061, TL062, TL064 FIGURE 7 - OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY 100 I I Vcc ~ +15VVEE ~ -15V_ RL ~ 10 kD CL ~ 0 pF TA ~ 25'C "' 0 \ '\. \ \ - ,Gain ""- 0 Phase r-.. '\. 0 " \ '\. 0 0,1 1,0 10 100 1,OK 10K t, FREQUENCY (Hzl FIGURE 9 - FIGURE 8 - lOOK 250 200 i 1 ~ ~ ew 45 ~ m 90 \ 150 => u ~ 100 => fj 135 -ec '" 25'C 50 j-- Vo ~ OV j--RL~xD o o SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE I I 2,0 4,0 6,0 8.0 10 12 14 16 VCC, IVEEI, SUPPLY VOLTAGE (VOLTSI 18 20 FIGURE 10 - TOTAL POWER DISSIPATION versus TEMPERATURE 250 25 ~ 1 TL064 .! E 20 I--VCC~ +15V VEE ~ -15V z: 0 I--Vo ~ OV ~ 15 I--RL ~ xl! _ 200 1 >- i ~ TA 13 180 10M 1,OM II SUPPLY CURRENT PER AMPLIFIER versus SUPPLY VOLTAGE 150 1); '"C5 => u ~ TL062 '" 10 ~ It 100 I--VCC ~ +15V '"U I-VEE ~ -15V .£? 50 Vo ~ OV I--RL ~ x D I I o 50 -50 -25 25 75 -75 TA, AMBIENT TEMPERATURE I'CI TLJ61 ;! :=' 5,0 .P 100 o -75 125 FIGURE 11 - COMMON-MODE REJECTION versus TEMPERATURE BB ,I 7_VCC~ _ ~ -........... 80 Cl ~ 60 o '" 2 8'" 1 '" u 100 125 20 o 100 125 4VCM~4VO CMR ~ 20Log (~x ADM) r--..r--, 100 I'--t-- I I 1,OK MOTOROLA LINEAR/INTERFACE DEVICES 2-325 "" 40 ",' 250255075 TA, AMBIENT TEMPERATURE I'CI ~ o ~ 50 -25 25 50 75 TA, AMBIENTTEMPERATURE ('CI 140 vcc ~ +15V ~ 12o-vEE~ -15V tvCM ~ OV z o 4VCM ~ ±1,5V ~100- TA ~ 25'C I I-- !, +15V VEE ~ -15V Vo ~ OV RL ~ 10kD 3 80 -75 -50 FIGURE 12 - COMMON-MODE REJECTION versus FREQUENCY 5 4 I ~ => 10K t, FREQUENCY (Hzl lOOK 1.0M II TL061, TL062, TL064 FIGURE 14 - NORMALIZED GAIN BANDWIDTH PRODUCT, SLEW RATE AND PHASE MARGIN versus TEMPERATURE FIGURE 13 - POWER SUPPLY REJECTION versus FREQUENCY 140 ~ 120 ~ 1--I-+H-l+Hl--I-+-I-t+++lt- + PSR r--=1=+i=l'*1FHf.::"""k-!'--J--j+i-l1l--- - PSR ~ 100 t- z 0 ~ ~ 20L09 ( :. 1, 4 :O:~~M ) I VCC 1, 3 2 20Lo (:'VO/ADM) 9 "VEE 1 5lewRate" 0 60 '"'!< 40 ~ 20 ~ ~. 9 1M lOa 0 Q + 15 V 10 Of--- VEE ~ -15 V 0V ~ ~ ~ r- 0, 1 ~ 0,0 1 0,00 I -55 t'i / in ~ E - 50 - 25 25 ,0 75 TA, AMBIENT TEMPERATURE I'CI 100 a,92 125 1 ~ I, 0 U> ,96 z , 0,94 FIGURE 16 -INPUT NOISE VOLTAGE versus FREQUENCY 0 « ~O .98~o 70 1 VCC VCM ii3 1.0 ~ ,\0 0,6 - 75 FIGURE 15 - INPUT BIAS CURRENT versus TEMPERATURE '" 5: 0, 7 f, FREQUENCY IHzl r- -r--:::::: s,::., , "Phase Margin lOOK '" - 1 .04~ I .02~ B 0 100 ~ r-r--. ........ - ,OB 1 +15V_ I ,06~ -15 V VEE ~ RL ~ 10 kll CL ~ a pF _~GBW 80 ,I, ~ I -25 -- V V- 50 ""-r--1 40 0 > / 25 75 50 TA, AMBIENT TEMPERATURE lOCI FIGURE 17 - i'§ 60 "'isz f- co ~ 20 - 30 ~ j 10 o 100 10 125 SMALL SIGNAL RESPONSE Ivcc _ + 15 V 1-- VEE 15 V RS 100 II r-ITII1IIII C i IIIIIII 100 FIGURE 18 - I,OK f, FREQUENCY IHll LARGE SIGNAL RESPONSE 1, TIME 120 1-" DIVI t, TIME (0.5 I-',!DIVI MOTOROLA LINEAR/INTERFACE DEVICES 2,326 10K lOOK TL061, TL062, TL064 FIGURE 19 - FIGURE 20 - AC AMPLIFIER II HIGH·Q NOTCH FILTER VCC VCC Output Rl In p ut 1.0 Ml1 o-......JVVV......JVVV......-1 C3 Inputs Output 1.5 Ml! o-4-~-----'----~ Cl C2 Cl 50 11 ~ C2 = (;3 2 ~ 110pF 1 10 ~ 2,.,. Rl Cl ~ 1.0 kHz FIGURE 21 - INSTRUMENTATION AMPLIFIER Input A >---------...-......--0 Output Input B FIGURE 22 - 0.5 Hz SQUARE·WAVE OSCILLATOR FIGURE 23 - RF - 100 kl! ~ AUDIO DISTRIBUTION AMPLIFIER 15 V 3.3 kl! TL061 Output A Output 1.0 kl! 1.0 !'F 3.3 k!l Input 0----11--+-.....-1 9.1 kll 1= __1_ _ 2,.,. RF CF Output B 100 kl! 100!,F I Output C MOTOROLA LINEAR/INTERFACE DEVICES 2·327 II ® TL071 TL072 TL074 MOTOROLA Specifications and Applications Information LOW NOISE, JFET INPUT OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUITS LOW NOISE, JFET INPUT OPERATIONAL AMPLIFIERS These low-noise JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. Moreover, the devices exhibit lownoise and low harmonic distortion making them ideal for use in high-fidelity audio amplifier applications. These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products. Devices with an "M" suffix are specified over the military operating temperature range of - 55°C to + 125°C and those with a "C" suffix are specified from O°C to + 70°C. • Low Input Noise Voltage - 18 nV/YHz Typ • Low Harmonic Distortion - 0.01% Typ • Low Input Bias and Offset Currents • High Input Impedance - 1012 n Typ • High Slew Rate - • Low Supply Current - IB' TL071 (Top View) NC , VCC , Output • Offset Null : +A B EE Temperature Range Device TL071ACJG, BCJG, CJG :} + Inputs B TL072 (Top View) +70°C J SUFAX CERAMIC PACKAGE CASE 632-08 (TL074 Only) Ceramic DIP 14~' 1 D SUFFIX PLASTIC PACKAGE CASE 751 A·02 SO-14 SO-8 o to. + 70°C TL072ACP, BCP, CP TL072MJG Ceramic DIP Plastic DIP -55to +125°C TL072ACJG,BCJG,CJG Package N SUFFIX PLASTIC PACKAGE CASE 646-06 (TL074 Only) SO-8 o to TL071ACP, BCP, CP Ceramic DIP Plastic DIP -55 to + 125'C Ceramic DIP TL074ACD, BCD, CD TL074ACJ, BCJ, CJ SO-14 o to +70'C TL074ACN, BCN, CN TL074MJ DSUFFIX . PLASTIC PACKAGE CASE 751-02 SO-8 Offset Null Inv + Input ' Noninvt Input" VEE • V TL072ACD, BCD, CD Quad • 1.4 mA per Amp TL071MJG Dual , 1 4.0 MHz Typ TL071ACD, BCD, CD Single • 8 JG SUFFIX CERAMIC PACKAGE CASE 693-02 Output A~' VCC Inputs A { , - _ ' Output B ORDERING INFORMATION OpAmp Function 1 13 V//Ls Typ • Wide Gain Bandwidth - ~ P SUFFIX PLASTIC PACKAGE CASE 626-05 Ceramic DIP Plastic DIP -55to +125°C Ceramic DIP TL074 (Top View) MOTOROLA LINEAR/INTERFACE DEVICES 2-328 TL071, TL072, TL074 MAXIMUM RATINGS Rating Symbol TLOLM TLOLC TLOLAC TLOLBC VCC VEE +18 -18 +18 -18 V VID ±30 ±30 V VIDR ±15 ±15 V Supply Voltage Differential Input Voltage Input Voltage Range (Note 1) Output Short-Circuit Duration (Note 2) Unit Continuous ts Power Dissipation Plastic Package (N,P) Derate above TA = + 47°C Ceramic Package (J, JG) Derate above TA = + 82°C - Po 1IOJA Po 1i8JA Operating Ambient Temperature Range Storage Temperature Range TA Tsta 680 10 680 10 680 10 o to -55 to +125 mW mWrC mW mWrC + 70 °c -65to +150 -65to +150 °c NOTES: 1. The magnitude of the mput voltage must not exceed the magmtude of the supply voltage or 15 volts, whichever is less. 2. The output may be shorted to ground or either supply. Temperature andlor supply voltages must be limited to ensure that power dissipation ratings are not exceeded. ELECTRICAL CHARACTERISTICS (VCC = + 15 V, VEE = -15 V, TA = + 25° unless otherwise noted). TLOLC TLOLAC TL07 BC TLOLM Symbol Characteristic Input Offset Voltage (RS '" 10 k, VCM 0) TL071 , TL072 TL074 TLOLA TLOLB = Average Temperature Coefficient of Input Offset Voltage RS = 50 n, TA = Tlow to ThiQh (Note 3) Input Offset Current (VCM Input Bias Current (VCM = ll.VIO/ll.T 110 0) (Note 4) TLOL TL07 _ A, TL07 _ B liB Input Resistance ri Common Mode Input Voltage Range = :':10 V, RL;', 2.0 k) TLOL TLOL A, TLOL B Output Voltage Swing (Peak-to-Peak) (RL = 10 k) Max - 3.0 3.0 6.0 9.0 - - - - - 3.0 3.0 3.0 2.0 10 10 6.0 3.0 - 10 - - 10 - - 5.0 50 - - - - 5.0 5.0 50 50 - 30 200 - - 200 200 Va Supply Voltage Rejection Ratio (RS '" 10 k) TLOL TL07_ A, TL07_ B PSRR Supply Current (Each Amplifier) Unity Gain Bandwidth mV jJ-vrc - pA - - 30 30 10 12 - - 10 12 - +15,-12 - +15,-12 +15,-12 - n V - - - ±10 :':11 35 150 - - - 25 50 150 150 24 28 - 24 28 80 100 - - - 70 80 100 100 - 80 100 70 80 100 100 - - 1.4 2.5 mA 4.0 - MHz V/mV - - V dB - dB - - - - 10 - 1.4 2.5 BW - 4.0 SR 10 13 - 100 pF MOTOROLA LINEAR/INTERFACE DEVICES 2-329 Unit pA AVOL CMRR = Typ ±11 Common Mode Rejection Ratio (RS '" 10 k) TLOL TLOL A, TLOL B Slew Rate (See Figure 1) Vin = 10 V, RL = 2.0 k, CL Min VICR TLOL TL07 _ A. TL07 _ B Large-Signal Voltage Gain (Va Max Via 0) (Note 4) TLOL TLOL A, TLOL B = Typ Min 13 V/jJ-s II TL071, TL072, TL074 ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V VEE + 25' unless otherwise noted) ~ - 15 V TA ~ TL07_C TL07_AC TL07_BC TLOLM Symbol Min Typ Rise Time (See Figure 1) tr - 0.1 Overshoot Factor Vin ~ 20 mV, RL - - 10 Equivalent Input Noise Voltage RS ~ lOa n, f ~ 1000 Hz en - 18 - - Equivalent Input Noise Current RS = 100n,1 ~ 1000 Hz in - 0.01 - Total Harmonic Distortion Va (RMS) = 10 V, RS '" 1.0 k RL '" 2.0 k, 1 ~ 1000 Hz THD - 0.01 - 120 Characteristic ~ Max - - ELECTRICAL CHARACTERISTICS (VCC = +15V V EE ~ Symbol Input Offset Voltage (RS '" 10 k, VCM = 0) TL071, TL072 TL074 TLOLA TLOLB Via Input Offset Current (VCM = 0) (Note 4) TLOL TLOL A, TLOL B 110 Input Bias Current (VCM ~ Large-Signal Voltage Gain (Va ~ ± Output Voltage Swing (Peak-to-Peak) (RL'" 10 k) (RL'" 2.0 k) Unit p.s 10 - % 18 - nV/YHz - 0.Q1 - pAlYHz - - 0.01 - % - - 120 - dB TLOLC TLOLAC TL07 BC M Typ Max - - 9.0 15 - 10 V, RL '" 2.0 k) TLOL TLOL A, TLOL B Max - Min - 0) (Note 4) TLOL TL07 _ A, TL07 _ B Typ - 15V TA= ThiQIh to Tlow (Note 3]) TL07 Characteristic - 0.1 2.0 k, CL = lOa pF Channel Separation Av = 100 Min - Typ Max - 13 13 7.5 5.0 - - 2.0 2.0 Min Unit mV - - - - nA - - - - - - - 50 - - 7.0 7.0 20 - - - 15 25 - - - - 24 20 - - 20 - nA liB AVOL Va 24 20 - - V/mV V - - NOTES (Continued): 3. Tlow = -55'C for TL071M, TL072M, TL074M Thigh = + 125'C for TL071 M, TL072M, TL074M = O'C for TL071 C, TL071AC, TL071 BC = +70'C for TL071C, TL071AC, TL071BC TL072C, TL072AC, TL072BC TL072C, TL072AC, TL072BC TL074C, TL074AC TL074C, TL074AC 4. Input Bias currents of JFET input op amps approximately double for every 1Qoe rise in Junction Temperature as shown in Figure 3. To maintain Junction Temperature as close to ambient temperatures as possible, pulse techniques must be used during test. TEST CIRCUITS FIGURE 1 - UNITY GAIN VOLTAGE FOLLOWER FIGURE 2 -INVERTING GAIN OF 10 AMPLIFIER 1.0 k. >--_~OVO + RL ~ 2.0 k CL ~ 100 pF CL MOTOROLA LINEAR/INTERFACE DEVICES 2-330 = lOa pF TL071, TL072, TL074 FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE FIGURE 4 - OUTPUT VOLTAGE SWING versus FREQUENCY 100 Ci +15V =VCCNEE ~ ~ w 20 ~ >- 15 '"~ I],U III II IUl ::0 1= 10 ::0 o t! 5.0 -75 -50 -25 0 25 50 75 TA, AMBIENT TEMPERATURE 1°C) 100 125 ~Ul 30 '" ~ w ~ ~ ~ I- VCCNEE = ± 15 V TA = 25°C r- I- See Figure 2 z V 1/ ~ is o L o 4.0 0.4 0.7 1.0 2.0 RL, LOAD RESISTANCE Ik!l) 7.0 10 I 2. 0 1. 8 I See Figure 2 30 ~ w 25 ~ ~ 5 I!= is VRL o 5.0 10 15 Vcc, IVEEI, SUPPLY VOLTAGE I ±V) = 10k 11.6 l - t-"" ~ 1.4 § 1.2 = 2.0 k u 20 ~ 1.0 15 ~ 0.8 - -t---- t - - -so -25 0 25 50 75 TA, AMBIENTTEMPERATURE 1°C) 100 - ~ r-- ~ 0.6 '" .9 0.4 10 6 > 5.0 20 VccNEE = ± 15 V >- "RL V FIGURE 8 - SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE ",35 I-- VCcNEE = ± 15 V ~ V 10 FIGURE 7 - OUTPUT VOLTAGE SWING versus TEMPERATURE '" z V V V t! 0.2 10M ~ 30 ~ > 0.1 = 2.0 k = 25°C '"~ 20 ./ 10 1.0 M I I-RL TA ~ w 20 ~ V o 6 5.0 10 k 100 k f, FREQUENCY 1Hz) FIGURE 6 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE 40 '" ~ l' 1.0 k 100 FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE ;z 1\ 11111 o 0.0 1 I RL = 2.0k TA = 25°C See Figure 2 VCCNEE = ± 15 V §E 25 II WUll1 111111111111 30 0.2 125 -so -25 0 25 SO 75 TA, AMBIENT TEMPERATURE 1"<:) MOTOROLA LINEAR/INTERFACE DEVICES 2-331 100 125 TL071, TL072, TL074 II FIGURE 9 - LARGE-SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY FIGURE 10 - LARGE-5IGNAL VOLTAGE GAIN versus TEMPERATURE 1000 VCCNEE = ± 15 V RL = 2.0k TA = 25'C 1 - - .... ........ ........ " 0' t;: ........ ~ain :i" 'r-... PhaselShift 45°~ -~~-o Output 3.3 k 68 k 0.033 /-LF Turn-Over Frequency ~ 1.0 kHz Bass Boost/Cut - ± 20 dB at 20 Hz Treble Boost/Cut - ± 19 dB at 20 kHz 0.033 /-LF L -_ _ _ _~~ FIGURE 15 - HIGH Q NOTCH FILTER R R Input TL071 + Cl 1 fo ~ 2"RC ~ 350 Hz R ~ 2Rl ~ Rl 1.5 M C~~~300PF 2 C C MOTOROLA LINEAR/INTERFACE DEVICES 2-334 ® TL081 TL082 TL084 MOTOROLA Specifications and Applications Information JFET INPUT OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUITS JFET INPUT OPERATIONAL AMPLIFIERS These low-cost JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products. Devices with an "M" suffix are specified over the military operating temperature range of - 55"C to + 125"C and those with a "C" suffix are specified from O"C to + 70"C. .~ 1 8.8' P SUFFIX JG SUFFIX PLASTIC PACKAGE CASE 626-05 CERAMIC PACKAGE CASE 693-02 o SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 1 • Input Offset Voltage Options of 3.0, 6.0, and 15 mV Max • Low Input Bias Current - Offset Null Inv+ Input' Noninvt Input" VEE • 30 pA • Low Input Offset Current - 5.0 pA • Wide Gain Bandwidth - 4.0 MHz • High Slew Rate - 13 VIf.Ls • Low Supply Current - 1.4 mA per Amplifier • High Input Impedance - 10 12 {} .~ TL081 NC (Top Viewl , VCC • Output • Offset Null - Output A~' VCC Inputs A { , - _ ' Output B V : +A B EE • Industry Standard Pinouts : +. ~ Inputs B TL082 (Top Viewl ~~ ,!:m nH :!·~iN(nn N SUFFIX ORDERING INFORMATION Temperature Range OpAmp Device Function Single o to +70"C TL082ACJG, BCJG,CJG o to + 70"C Out 1 Ceramic DIP Plastic DIP Inputs 1 -55 to + 125"C Ceramic DIP SO-14 TL084ACD, BCD, CD TL084ACJ, BCJ, CJ TL084ACN, BCN, CN TL084MJ 1 o SUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 SO-8 TL082ACP, BCP, CP TL082MJG Quad ~ 14~~- -55 to + 125"C Ceramic DIP TL082ACD, BCD, CD Dual Ceramic DIP . Plastic DIP TL081ACP, BCP, CP TL081MJG J SUFFIX CERAMIC PACKAGE CASE 632-08 (TL084 Only) SO-8 TL081ACD, BCD, CD TL081ACJG, BCJG, CJG Package PLASTIC PACKAGE CASE 646-06 (TL084 Only) o to + 70"C VCC Ceramic DIP Plastic DIP Inputs 2 -55 to + 125"C Ceramic DIP Out 2 TL084 (Top View) MOTOROLA LINEAR/INTERFACE DEVICES 2-335 TL081, TL082, TL084 MAXIMUM RATINGS II Rating Supply Voltage Differential Input Voltage Input Voltage Range (Note 1) Output Short-Circuit Duration (Note 2) Symbol TLOB_M TLOB_C TL08_AC TLOB_BC VCC VEE +IB -IB +IB -IB V VID ±30 ±30 V VIDR ±15 ±15 V mW mWrC mW mWrC Continuous ts Power Dissipation Plastic Package (N,P) Derate above TA ~ +4]oC Ceramic Package (J,JG) Derate above TA ~ + B2°C Operating Ambient Temperature Range Storage Temperature Range Unit Po 1/8JA Po 1I8JA - 6BO 6BO 6BO TA -55 to + 125 TstQ -65 to + 150 10 10 10 o to +70 'c -65 to + 150 °c NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 volts, whichever is less. 2. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded. ELECTRICAL CHARACTERISTICS (VCC ~ + 15 V VEE ~ -15 V TA ~ + 25°C unless otherwise noted) TLOB_C TL08_AC TL08_BC TL08_M Characteristic Input Offset Voltage (RS .; 10 k, VCM Symbol ~ 0) TLOB1, TLOB2 TLOB4 TLOB_A TLOB_B Average Temperature Coefficient of Input Offset Voltage RS ~ 50 n, TA ~ VIO dVIO/dT Min Typ Max - 3.0 3.0 6.0 9.0 - - - - 10 - Min Typ Max - 5.0 5.0 3.0 2.0 15 15 6.0 3.0 - - 10 - 5.0 100 - - - 5.0 5.0 200 100 30 200 - - - - 30 30 400 200 Unit mV - I'V/'C Tlow to Thigh (Note 3) Input Offset Current (VCM Input Bias Current (VCM ~ ~ 0) (Note 4) TLOB_ TLOB_A, TLOB_B 0) (Note 4) Input Resistance r; Common Mode Input Voltage Range - 10 12 ± 10 V, RL"'2.0 k) TLOB_ TLOB_A. TLOB_B Output Voltage Swing (Peak-to-Peak) RL ~ 10 k 10 12 - - ±11 +15,-12 - ±10 ±11 +15,-12 +15,-12 - - 25 - 150 - - 25 50 150 150 24 2B - 24 28 - Common Mode Rejection Ratio (RS"'10 k) TLOB_ TLOB_A, TLOB_B CMRR BO 100 - - - 70 BO 100 100 - Supply Voltage Rejection Ratio (RS"'10 k) TLOB_ TLOB_A, TLOB_B PSRR BO 100 - 70 BO 100 100 - - - 1.4 2.B mA 4.0 - MHz V dB dB - - Supply Current (Each Amplifier) ID - 1.4 2.B Unity Gain Bandwidth BW - 4.0 - - MOTOROLA LINEAR/INTERFACE DEVICES 2-336 V/mV AVOL Vo n V VICR TLOB_ TLOB_A, TLOB_B ~ pA liB TLOB_ TLOB_A. TLOB_B Large-Signal Voltage Gain (VO pA 110 TL081, TL082, TL084 ELECTRICAL CHARACTERISTICS (VCC = + 15 V VEE = -15 V TA = + 25°C unless otherwise noted) TLOB_C TLOB_AC TLOB_BC TLOB_M Svmbol Min TVp SR B.O 13 - - tr 0.1 - - - 10 - - Equivalent Input Noise Voltage RS = 100 n, f = 1000 Hz en - 25 - Channel Separation AV = 100 - - 120 - Characteristic Slew Rate (See Figure 1) Vin = 10 V, RL = 2.0 k, CL = = 2.0 k, CL Min = - VIpS 0.1 pS 10 - - 25 - nV/\/HZ - 120 - dB = + 15 V VEE = - 15 V TA Characteristic Input Offset Voltage (RS <;10 k, VCM Svmbol = 0) TLOB_C TLOB_AC TLOB_BC = - 0) (Note 4) 110 liB TLOB_ TLOB_A, TLOB_B = TVp Max - - - - - - - 15 - - - 0) (Note 4) TLOB_ TLOB_A, TLOB_B Large-Signal Voltage Gain (Va Min Via TLOB1, TLOB2 TLOB4 TLOB_A TLOB_B Input Bias Current (VCM % = TI ow to Th·II!1h [Note 3]) TLOB_M = Unit 13 100 pF ELECTRICAL CHARACTERISTICS (V CC Input Offset Current (VCM Max TVp 100 pF Rise Time (See Figure 1) Overshoot Factor Vin = 20 mV, RL Max ± 10 V, RL~2.0 k) Output Voltage Swing (Peak-to-Peak) (RL~10 k) (RL~2.0 k) - - 24 20 - Va NOTES (continuedl: 3. Tlow = -55°C for Tl081M, Tl082M, Tl084M = O°C for Tl081C, Tl081AC, Tl081 BC Tl082C, TlOB2AC, Tl082BC Tl084C, TlOB4AC, TlOB4BC Thigh = = - - - - TVp Max mV - 20 20 7.5 5.0 - - - - - 50 - - - 10 7.0 15 25 - - 24 20 - 20 - Unit - nA 5.0 3.0 nA VlmV AVOL TLOB_ TLOB_A, TLOB_B 9.0 15 Min - - V - - - + 125°C for Tl081M, TlOB2M, Tl084M + 70°C for Tl081 C, Tl081AC, Tl081 BC Tl082C, TlOB2AC, TlOB2BC TlOB4C, TlOB4AC, Tl084BC 4. Input Bias currents of JFET input Op Amps approximately double for every 10°C rise in junction temperature as shown in Figure 3. To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during test. TEST CIRCUITS FIGURE 1 - UNITY GAIN VOLTAGE FOLLOWER FIGURE 2 - INVERTING GAIN OF 10 AMPLIFIER 10 k 1.0 k >"""_-0 >-................- 0 Va RL = 2.0 k CL = 100 pF Va CL MOTOROLA LINEAR/INTERFACE DEV)CES 2-337 = 100 pF EI TL081, TL082, TL084 FIGURE 4 - OUTPUT VOLTAGE SWING versus FREQUENCY FIGURE 3 - INPUT BIAS CURRENT versus TEMPERATURE « .s .... 10 F= VCCNEE II II!IIIII II +15V VCCNEE i II]lU ~ 1.0 ,11111 :::> u ~ z ~01 o -50 -25 0 25 50 75 TA, AMBIENT TEMPERATURE lOCI 100 125 '"z 6. > / 6 o 0.2 0.4 0.7 1.0 2.0 RL, LOAD RESISTANCE Ikill 4.0 7.0 10 ~ 20 2.0 1.8 ,/RL = "'RL = o 5.0 10 15 VCC, IVEEI, SUPPLY VOLTAGE I± VI VCCNEE 11.6 10k 2.0 k i 1.4 ~ u 1.2 = ± 20 15 V r- "- ~ 1.0 ~ .... 15 o~ V /' FIGURE 8 - SUPPLY CURRENT PER AMPLIFIER versus TEMPERATURE ~ VC&vEE = 15 V See Figure 2 ~ // 10 6 > '"z 25 V ....:::> 1= FIGURE 7 - OUTPUT VOLTAGE SWING versus TEMPERATURE ~ /' 20 ~ o I: \;- / ~ '"~ > _ = 25°C z /' 0.1 10M ! 2.0 k ;; 30 20 10 RL r-TA C. TA = 25°C See Figure 2 5o V '/ 6 5.0 1.0M FIGURE 6 - OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE VC~NEIE = ~ 15 ~ rr--- 10 k 100 k f, FREQUENCY IHzl 1.Ok 40 c. ~ 30 i' I11111 100 FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE ~ :::> 1\ illill 0.01 ~ UII RL = 2.0k TA = 25°C See Figure 2 !ttl .... ~ ~ 1111 ":~15V ~ 0.8 ~ 0.6 10 - -- r- ~0.4 6 > 5.0 f--50 -25 0 25 50 75 TA, AMBIENTTEMPERATURE I'CI 100 0.2 o 125 -so -25 0 25 SO 75 TA, AMBIENT TEMPERATURE I'CI MOTOROLA LINEAR/INTERFACE DEVICES 2-338 100 125 TL081, TL082, TL084 FIGURE 10 - LARGE-5IGNAL VOLTAGE GAIN versus TEMPERATURE FIGURE 9 - LARGE·SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY 1000 VCCNEE RL TA 1--1- ......... .......... ~ r-... ........ 10 100 I ~ '" '" , Il" t;: :;: ~ain Phase Shift 1.0 = ± 15 V = 2.0k I--= 25"(; 45°~ '"r-... 1.0 k 10 k 100 k t, FREQUENCY 1Hz) 900 if '\. :> ~ 100 z I- ~ ~ '" ~> ..:. 10 ~ 180' 1.0 -so 10 M AGURE 11 - NORMALIZED SLEW RATE versus TEMPERATURE -25 a 25 50 75 TA, AMBIENT TEMPERATURE I'C) ~ ~ iJj ~ 1.00 i 125 JJ~~~AV == 10UJdt 1.10 1.05 100 FIGURE 12 - EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY 1.15 ~ ± 15V= +10V= 2.0k _ 135' '" ,\ 1.0 M VCcNEE Vo RL r-- 0.95 ~ 0.90 -- to- RS TA I\.. r-- r-. = loon = 25'C - ~ ............. 0.85 -50 -25 a 25 50 75 TA, AMBIENT TEMPERATURE I'C) 100 0.05 0.1 125 0.5 1.0 t, FREQUENCY 1kHz) FIGURE 13 - TOTAL HARMONIC DISTORTION versus FREQUENCY ~ 0.5 1.0 ~E~§;IE!~~!I~!!!!II ~ f-VCCNEE = f--- AV = ::~",. . 0.1 §E Vo 50! 0.05 t= TA Q i§ ±15V 1.0 6.0 VIRMS) 25'C ~ !!!!~II~IIIII!I!!!1 0.005 o F 0.01 0.001 ~.L-'---'--L:':.L.LLll~---'----'--'--'....u..LU...--I.-'--'-.J..-'-.L.U"" 0.1 0.5 1.0 5.0 10 50 100 t, FREQUENCY 1kHz) MOTOROLA LINEAR/INTERFACE DEVICES 2-339 5.0 10 50 100 II TL081, TL082, TL084 REPRESENTATIVE CIRCUIT SCHEMATIC (Each Amplifier) Output II ~----------~------~----1-------~~~----~--+----'----~VCC 2.0 k J3 ~---r--~~-r------1----+-r------~Q9 Offset Null (TlOSl only) L-~--~~~+-~--~------~---4----------~~~~~-r----~~-+I-OVEE Bias Circuitry I Common to All' Amplifiers TYPICAL APPLICATIONS FIGURE 14 - OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A D-TO-A CONVERTER VCC = 5.0 V Settling time to within Y2 lSB (± 19.5 mY) is approximately 4.0 ,.. from the time all bits are switched. 13 14 MSBAl 5 A2 6 A3 7 A4 S Rl "The value of C may be selected to minimize overshoot and ringing (C = 68 pF). f--<>---'V\r--~-'" Vref 15 R2 '" VCC= 15V A5 9 A610 A711 lSB AS 12 Theoretical Vo _ ~ Vo - Rl (RO) [~~ ~ ~ ~ ~ A7 AS] 2 + 4 + 8 +16+32+64+128+256 Adjust Vref. Rl or RO so that Vo with all digital inputs at high level is equal to 9.961 volts. Vref = 2.0 Vdc Rl = R2=1.01dl. RO=5.01dl. 2.0 V [1 1 1 1 1 1 1 1] Vo = "i:Oi( (5.0 k) 2+4+8+16+32+64+ 12S + 256 C· = 10 V [~::] = 9.961 V MOTOROLA LINEAR/INTERFACE DEVICES 2-340 TL081, TL082, TL084 FIGURE 15 - POSITIVE PEAK DETECTOR '-----"-" V out v, R~>-_ _ _ _ _ _ _~ FIGURE 16 - LONG INTERVAL RC TIMER *Polycarbonate or Polystyrene Capacitor FIGURE 17 - ISOLATING LARGE CAPACITIVE LOADS R2 5.1 k Rl R4 R6 Clear Run I ~-----------.------~ R5 *Polycarbonate or Polystyrene Capacitor • Overshoot < 10% • ts = 10/loS • When driving large CL. the Vout slew rate is determined by CL and lout(max)' Time (t) = R4 Cfn (VRNR - Vl). R3 = R4. R5 = 0.1 R6 If Rl = R2: t = 0.693 R4C Design Example: 100 Second Timer VR=10V C=1.0p.F R3=R4=144M R6 = 20 k R5 = 2.0 k Rl = R2 = 1.0 k FIGURE 18 - CL o.5p.F 6.V tit 0.02 6.~u = ~~ '" 0:5 VI/loS = 0.04 VI/loS (with CL shown) VOLTAGE CONTROLLED CURRENT SOURCE R3 R5 > .....-'w\r-.....--o lout R4 If Rl through R4 » R5 then lout = V· ifs MOTOROLA LINEAR/INTERFACE DEVICES 2-341 II MOTOROLA LINEAR/INTERFACE DEVICES 2-342 Power Circuits In Brief ... In most electronic systems some form of voltage regulation is required. Yesterday the task of voltage regulator design was tediously accomplished with discrete devices, and the results were quite often complex and costly. Today with bipolar monolithic regulators, this task has been reduced considerably. The designer now has a wide choice of fixed, low Vdiff, adjustable, and tracking series-type regulators. These devices incorporate many built-in protection features making them virtually immune to the catastrophic failures encountered in older discrete designs. The Switching Power Supply continues to increase in popularity and is one of the fastest growing markets in the world of power conversion. They offer the designer several important advantages over that of linear series-pass regulators. These advantages include significant advancements in the areas of size and weight reduction, efficiency, and the ability to perform voltage step-up and voltage-inverting. Motorola offers an ever increasing diverse portfolio of full featured switching regulator control circuits which meet the needs of today's modern compact electronic equipment. Selector Guide Linear Voltage Regulators. . . . . . .. Switching Regulators ............ Special Power Controllers. . . . . . .. Power Supervisory ............... 3-2 3-7 3-9 3-10 Alphanumeric Listing .............. 3-13 Related Application Notes .......... 3-14 Data Sheets ....................... 3-15 11 II Power Circuits Linear Voltage Regulators Fixed Output. . . . . . . . . . . . . . . . . . . . . . . . .. Adjustable Output. . . . . . . . . . . . . . . . . . . . . .. Special. ............................. Switching Regulators Single-Ended Controllers. . . . . . . . . . . . . . . . .. Double-Ended Controllers . . . . . . . . . . . . . . . .. Special Power Supply Controllers High Performance Dual Current-Mode . . . . . . . . . Universal Microprocessor .................. Control IC for Line-Isolated Free Running Flyback Converter. . . . . . . . . . . . . .. Power Supervisory Overvoltage "Crowbar" Sensing Circuit ........ Over-Under Voltage Protection Circuit ......... Undervol!age Sensing Circuit . . . . . . . . . . . .. .. Microprocessor Voltage Regulator and Supervisory Circuit ................. Series Switch Transient Protection Circuit. . . . . .. Linear Voltage Regulators Fixed Output These low-cost monolithic circuits provide positive and/or negative regulation at currents from 100 mA to 3.0 A. They are ideal for on-card regulation employing current limiting and thermal shutdown. Low Vdiff devices are offered for battery powered systems. Although designed primarily as fixed voltage regulators, these devices can be used with extemal components to obtain adjustable voltages and currents. Fixed-Voltage, 3-Terminal Regulators for Positive or Negative Polarity Power Supplies Vout Volts 5 10 Davice Device Negative Output Yin MIniMax LM2931-5.0 - 5.6/40 MC78L05C MC79L05C 6.7/30 Tol.t Volts 'mA Max Positive Output ±0.5 100 ±0.25 Z, T P,G 30 50 Z, T 150 60 P,G 500 MC78M05C MC79M05C 7/35 100 100 1500 LM109 LM309 - ±0.35 MC7805* - 8.0/35 ±0.25 MC7805B# - 8/35 MC7805C MC7905C 7/35 ±0.2 MC7805A* - 7.5/35 MC7805AC MC7905AC ±0.25 LMl40-5* - ±0.2 LMl40A-5* - ±0.25 LM340-5 ±0.2 LM340A-5 TL780-05C ±0.1 ±0.2 1.0 5.6/40 ±0.25 = -400 to + 12S'C 50 60 6.7/30 LM209 ±0.25 30 200 Case Suffix MC79LOSAC - ±0.4 il.Votil.T mVrc Typ MC78L05AC LM2931A-5.0 #TJ - Regload mV Regllne mV 3000 MC78T05C MC78TOSAC - tOutput Voltage Tolerance for Worst Case 100 K,H 0.6 K 1.0 T K, T 10 50 0.6 K 100 K, T 50 50 K 10 25 50 50 10 25 K, T 7.0/35 5.0 25 0.06 KC 7.3/35 25 30 0.1 K, T 10 25 *TJ = -55°to +150'"C MOTOROLA LINEAR/INTERFACE DEVICES 3-2 G,T 1.1 1.0 50 7.0/35 1.0 (continued) 3-2 3-5 3-6 3-7 3-8 3-9 3-9 3-9 3-10 3-10 3-11 3-11 3-12 Fixed Output Voltage Regulators (continued) Vout Volts Tol.t Volts 10 mA Max Device Positive Output 5 ±0.4 3000 LM123* ±0.25 LM323 ±0.2 LM123A - LM223A - LM223 LM323A 5.2 6 ±0.26 1500 - 4VC)l4T mVI"C Typ Case Suffix 7.5/20 25 100 0.1 K T K 15 50 105 - T MC7905.2C 7.2/35 105 1.0 T 500 MC7BM06C - 8/35 100 120 1.0 T MC7B06* - 9/35 60 100 0.7 K MC7B06B# - 120 120 MC7806C MC7906C 8/35 MC7B06AC - B.6/35 11 100 T LM140-6* B/35 60 60 K LM340-6 - ±O.B ±0.4 MC78LOBAC - 500 MC78M08C - 1500 MC7808* 100 MC7BLOBC MC7B08B# T K, T K, T 9.7/30 200 80 - P,G 1.0 G, T 175 - 10/35 100 160 11.5/35 80 100 160 160 K T MC7808C MC7908C 10.5/35 ±0.3 MC780BAC - 10.6/35 13 100 T ±0.4 LM14O-8* 10.5/35 80 80 K 10.4/35 35 30 13.7/35 250 100 - P, G LM34O-8 3000 ±1.2 MC79L12C MC79L12AC 500 MC78M12C MC79M12C 1500 MC7812* r---- ~ ±0.5 r----±0.5 ±0.5 -40 0 to + 125°C 14/35 100 240 1.0 G,T 15.5/35 120 120 1.5 K MC7812B# 240 240 MC7812C MC7912C 14.5/35 MC7812A* - 14.8/35 MC7812AC - 18 50 14.5/35 120 120 - 18 32 - 120 120 18 32 MC78T12C MC78T12AC tOutput Voltage Tolerance for Worst Case K 100 LM340-12 TL7BO-12C 3000 T K, T LM140A-12* LM340A-12 ±0.24 0.16 - LM140-12* r---±0.6 K, T K, T MC78L12C r---±0.5 ±0.6 MC78T08C - MC78L12AC 100 ±0.6 = Ragload mV 1500 ±0.3 #TJ Raglina mV ±0.3 ±0.24 12 Yin MinIMax ±0.35 ±0.3 B Device Negative Output 5.0 14.5/35 45 30 18 25 *TJ "'" _55 0 to + 150°C MOTOROLA LINEAR/INTERFACE DEVICES 3-3 T 1.5 K K, T 0.15 KC 0.24 K, T (continued) E Fixed Output Voltage Regulators (continuedl Vout Volts 15 Tol.t Volts 10 mA Max ±1.5 100 r-- II Device Negative Output Yin MiniMax Regline mV Regload mV 16.7/35 300 150 - P, G 17/35 100 300 1.0 G,T 18.5/35 150 150 1.8 300 300 22 50 K 100 K, T K MC78L15C MC79115C MC78115AC MC79L15A 500 MC78M15C MC79M15C 1500 MC7815* ±0.7S MC7815B# MC7815C ±0.6 - MC7815AC 17.9/35 LM140-15* 150 150 - 22 35 ±0.75 LM340-15 150 LM340A-15 - 150 ±0.6 22 35 TL780-15C 3000 ±1.8 MC78T15C MC78T15AC 100 ±0.9 MC78L18C MC79L18C MC78L18AC MC79L18AC 15 60 0.18 KC 17.5/40 55 30 0.3 K, T 22 25 19.7/35 325 170 - P 500 MC78M18C - 20/35 100 360 1.0 MC7818* - 22/35 180 180 2.3 MC7818B# - 360 360 31 100 T 180 180 T 10 400 1.1 G,T 350 200 - P MC7818C MC7918C MC7818AC - LM340-18 ±0.9 20 ±1.0 500 24 ±2.4 100 ±1.2 MC78M20C 22/40 MC78L24C MC79L24C MC78L24AC MC79L24AC 500 MC78M24C 1500 MC7824* - MC7824B# - MC7824C MC7924C MC7824AC - ±1.2 LM340-24 - tOutputVoltage Tolerance for Worst Case 25.7/40 G,T K T 21/35 - ±1.0 +126"C K, T 1500 ±0.7 = _40° to K K, T LM140A-15* 17.5/35 Case Suffix T 17.5/35 ±0.6 ±0.6 #TJ MC7915C MC7815A* ±0.75 ±0.3 18 - - ±0.75 .1VO/.1T mVrc Typ Device Positive Output K, T 300 26/40 100 480 1.2 28/40 240 240 3.0 480 480 36 100 T 240 240 T *TJ"" -55" to +150"C MOTOROLA LINEAR/INTERFACE DEVICES 3-4 K T K, T 27/40 27.3/40 G, T Adjustable Output Voltage Regulators ing a wide range of output voltages for industrial and communications applications. The three-terminal devices require only two external resistors to set the output voltage. Motorola offers a broad line of adjustable output voltage regulators with a variety of output current capabilities. Adjustable voltage regulators provide users the capability of stocking a single integrated circuit provid- Positive Output Regulators 10 mA Max Device Suffix Min Max Min Max VinVout Oifferential Volts Min 100 LM317L H,Z 1.2 37 5.0 40 3.0 Vout Volts Yin Volts LM217L# LM117L* LM2931C 150 MC1723 T 3.0 24 3.16 CP 2.0 37 9.5 I-- 40 3.0 = Internally Limited LM317 Load 0.04 0.5 0.006 125 0.02 0.3 0.004 150 TJ "C Max Case 29,79 0.003 1.25 - 1.0 2.1 1.5 r-- L 1500 LM317 TC 2S"C = Line TC Vout Typ %J"C = TA 2S"C 0.15 1.0 - 125 0.1 0.3 0.003 150 0.003 314D 646 603C 0.002 I-LM317M = Watts Max '---0.6 CG I--G I--CL 500 Regulation %Vout@ TA 2S"C Max Po 0.003 175 632 0.002 T 1.2 37 5.0 40 3.0 Internally Limited 0.04 0.5 0.0056 125 221A T 1.2 37 5.0 40 3.0 Internally 0.04 0.5 0.006 125 221A Limited H,K 79,1 0.004 LM217# LMl17* 3000 LM350 T LM350 K 1.2 33 5.0 36 3.0 Internally Limited LM250# 0.02 0.3 0.003 150 0.03 0.5 0.008 125 0,01 0.3 0.0057 150 221A 1 LM150* 0.0051 Negative Output Regulators Regulation % Vout@ TA 25"C Max 10 mA Max Device Suffix Min Max Min Max VinVout Oifferential Volts Min Line 500 LM337M T -1.2 -37 5.0 40 3.0 Internally Limited 0.04 T -1.2 -37 5.0 40 3.0 Internally Vout Volts 1500 LM337 LM337 Yin Volts Po Watts Max = I TC = TA 25"C 25"C = = Load TC Vout Typ %l"C TJ "C Max Case 1.0 0.0048 125 221A 0.04 1.0 0.0048 125 221A 0.02 0.5 0.0034 150 Limited H,K LM237# 79,1 LM137* 0.0031 MOTOROLA LINEAR/INTERFACE DEVICES 3-5 II Special Regulators Floating Voltage and Current Regulators Designed for laboratory type power supplies. Voltage is limited only by the break down voltage of associated, external, series-pass transistors. Vout Volts 10 I . Min Max I• 0 mA Max Vaux Device Suffix Min L 21 MC1466 I I .1VrefN ref % Po Volts Max Watts Max Line 30 0.75 0.015 I I Load .l.IL/LL % Max TC Vout %I'C Typ Case 0.015 0.2 0.001 632 *Dependent on characteristics of external series-pass elements. Dual ± 15 V Tracking Regulators Internally, the device is set for ± 15 V, but an external adjustment can change both outputs simultaneously, from B.O V to 20 V. TC Vout Volts Yin Volts 10 Min Max rnA Max 14.8 15.2 ±100 %I"C Po Suffix Watts Max Regline mV Regload mV (Tlow to Thigh) Typ MC1468 G 0.8 10 10 3.0 L 1.0 MC1568 G 0.8 L 1.0 Min Max Device 17 30 TA "C o to + 75 Cas. ~ 632 -5510 +125 - 603C 632 Microprocessor Voltage Regulator/Supervisory Circuit A 5.0 V fixed output with many monitoring functions required in microprocessor-based systems. Vout, Vref Volts Vin Min Max ISINK mA Max 4.75 5.25 100 7.0 2.47 2.73 2.0 5.0 Volts Min Max Regline mVMax Regload rnVMax Device Suffix 40 40 50 MC34160 P 20 30 MC33160 MOTOROLA LINEAR/INTERFACE DEVICES 3-6 TA "C o to +70 -40 to +85 Case 648C Switching Regulators duty cycle are independently adjustable. Most of these devices also include one or two on-chip error amplifiers for voltage or current error signal feedback. Used as a control circuit in PWM, push-pull, bridge and series type Switch mode supplies, the devices include a voltage reference, oscillator, pUlse-width modulator, phase splitter and output drive sections. Frequency and Single-Ended Controllers II These single-ended voltage- and current-mode controllers are designed for use in buck, boost, flyback, and forward converters. They are cost effective in applications that range from 0.1 to 200 watts power output. VCC Volts 10 rnA Max Min Max VII Operating Mode Ref. Volts Max Osc. Freq. (kHz) Device Suffix 250 7.0 40 V 5.0 ± 5.0% 200 MC34060 P TA ·C o to +70 L 500 5.0±1.5% MC35060 L MC34060A D D 632 o to +70 1000 4.2 12 I 1.25±2.0% 300 L MC34129 D 646 751A -55to +125 632 646 o to +70 P MC33129 D 5.0±2.0% 30 500 UC3642A D UC2642A 5.0±1.0% D +70 J 5.0±2.0% UC3843A 5.0:±1.0% UC2843A D 626 o to +70 J 2.5 40 V 1.24±5.2%# 100 JLA78S40 PC MC34063 626 o to + 70 620 -40 to +85 648 DM -55 to +125 620 Pl o to +70 Pl 1.25±2.0% MC34063A U D D 693 o to +70 # Tolerance applies over the specified operating temperature range. MOTOROLA LINEAR/INTERFACE DEVICES 3-7 U 751 626 -40 to +85 751 -55 to + 125 693 Pl MC35063A 626 -55 to + 125 Pl MC33063A 626 693 -40 to +85 U MC35063 648 PV U MC33063 751A 693 DC 1.25 ± 5.6%# 751A 626 -25 to +85 N 1500 751A 693 N D 751A 626 -25 to +85 N 8.2 751A 646 o to N 11 751A 646 -40 to +85 P 11.5 751A -40 to +85 P MC35060A 646 -55 to +125 P MC33060A Case 626 II Double-Ended Controllers These double-ended voltage-mode controllers are designed for use in push-pull, half-bridge, and full-bridge converters. They are cost effective in applications that range from 100 to 2000 watts power output. Vee Volts Max Min Max VII Operating Mode Volts Max Osc. Freq. (kHzl Device Suffix 500 7.0 40 V 5.0±5.0%# 200 TL494 CN 10 mA Ref. TA 'C o to +70 CJ iN 5.0±1.5% ±500 8.0 5.1 ±2.0% 300 400 TL594 SG3525A CN 620 o to +70 -25 to +85 MJ -55 to + 125 o to +70 J SG2525A 5.1±1.0% N J -5510 + 125 SG3527A N 010 +70 SG2527A N 5.0±2.0% 350 J -5510 +125 SG3526 N 010 +125" SG2526 N *Junction Temperature Range #-Tolerance applies over the specified operating temperature range. MOTOROLA LINEAR/INTERFACE DEVICES 3-8 J 648 648 707 726 -2510 +150' J SG1526 648 620 SG1527A J 5.0±1.0% 648 620 -2510 +85 J ±200 620 620 SG1525A J 5.1±1.0% 648 620 -2510 +85 J 5.1±2.0% 648 -55to +125 IN N 648 620 -25 to +85 IJ MJ Case 707 726 -55 to + 150' Special Power Supply Controllers High Performance Dual Current-Mode Controllers Optimized for off-line AC-to-DC power supplies and DC-to-DC converters in the fly back topology. Applications include desktop computers, peripherals, televisions, games, and various consumer appliances. VCC Volts 10 mA Max Min ±1000 11 Max VII Operating Mode Ref. Volts Max Osc. Freq. (kHz) Device Suffix 15.5 I 5.0±2.0% 500 MC34065 OW TA ·C o to +70 P 648 OW MC33065 Case 751G -40 to +85 P 751G 648 Universal Microprocessor Power Supply Controller TCA5600 - T A = - 40° to + 75°C, Case 707 A versatile power supply control circuit for microprocessor-based systems which is mainly intended for automotive applications and battery powered instruments. The device provides a power-on RESET delay and a watchdog feature for orderly microprocessor operation. VCC Volts Output Regulated Outputs mA E2pROM Programmable Output: 24 Volts (Write Mode) 5.0 Volts (Read Mode) 150 peak Fixed Linear Output: 5.0 Volts Key Supervisory Features Min Max Ref. Volts 6.0 35 2.5±3.2% Current MPU Reset and Watchdog Circuit 10 to external buffer transistor Control IC for Line-Isolated Free Running Flyback Converter Regulates and monitors the switching transistor in power supplies based on the free oscillating flyback converter principle. Provides excellent Switchmode performance in Hi-Fi equipment, active loudspeakers, as well as applications in TV receivers and video recorders. VCC Volts 10 mA Max Min Max VII Operating Mode Ref. Volts Max Osc. Freq.lkHz) Device ±1500 12.3 20 V 4.2±5.0% 100 TDA4601 TA Suffix B MOTOROLA LINEAR/INTERFACE DEVICES 3-9 °c Case -15to +85 762 707 II II Power Supervisory A variety of Power Supervisory Circuits are offered. Overvoltage sensing circuits which drive "crowbar" SCR's are provided in several configurations from a low cost three-terminal version to 8-pin devices which provide pin-programmable trip-voltages or additional features such as an indicator output drive and remote activation capability. An overunder-voltage protection circuit is also offered. Overvoltage "Crowbar" Sensing Circuit MC3523U - T A = - 55° to + 125°C. Case 693 MC3423P1,U - TA = 0° to +70°C, Case 626, 693 This device can protect sensitive circuitry from power supply transients or regulator failure when used with an external "Crowbar" SCR. The device senses voltage and compares it to an internal 2.6 V reference. Overvoltage trip is adjustable by means of an external resistive voltage divider. A minimum duration before trip is programmable with an external capacitor. Other features include a 300 mA high current output for driving the gate of a "Crowbar" SCR, an open-collector indicator output and remote activation capability. 4 Current Source Sense' 8 Output 3 Sense 2 5 6 Remote Activation Indicator Output Over-Under Voltage Protection Circuit MC3425P1 - TA = 0° to + 70°C, Case 626 The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor overand under-voltage fault conditions. This device features dedicated over- and under-voltage sensing channels with independently programmable time delays. The over-voltage channel has a high current Drive Output for use in conjunction with an external SCR "Crowbar" for shutdown. The undervoltage channel input comparator has hysteresis which is externally programmable, and an open-collector output for fault indication. Vce 8 O.V. Sense + o--+-~+ 3 U.V. Sense + 4 5 Input Section 2I U.V.O.V. DLY DLY Output Section MOTOROLA LINEAR/INTERFACE DEVICES 3-10 Undervoltage Sensing Circuit MC34064P-5, 0-5 MC33064P-5, 0-5 - TA TA O'to + 70'C, Case 29, 751 - 40' to + 85'C, Case 29, 751 The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset con- troller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA, and operation is guaranteed down to 1.0 volt input with low standby cu rrent. These devices are packaged in 3-pin TO-92 and 8-pin surface mount packages. Appl ications i ncl ude di rect monitoring of the 5.0 volt MPU/ logic power supply used in appli- Inpurt+___________,Reset II 1 (1) Sink Only Positive True Logic Pin numbers adjacent to terminals are for the 3 pin TO-92 package. Pin numbers in parenthesis are for the 0 suffix 50-8 package. ance, automotive, consumer, and industrial equipment. Microprocessor Voltage Regulator and Supervisory Circuit MC34160P MC33160P - TA TA 0° to + 70'C, Case 648C - 40° to + 85'C, Case 648C The MC34160 Series is a voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a 5.0 V, 100 mA Vee Regu latar Output O+-..--+-+-." 14 ~------~------~ 11 Reference Output Chip Disable ~----~~--~----~ 16 regulator with short circuit current limiting, pinned out 2.6 V bandgap reference, low voltage reset comparator, power warning comparator with programmable hysteresis, and an uncommitted comparator ideally suited for microprocessor line synchronization. Additional features include a chip disable input for low standby current, and internal thermal shut-down for over temperature protection. These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction. Power Warning Hysteresis Adjust o+---...,----------<~ Noninverting Input 0+---...,-------,----, Comparator Output MOTOROLA LINEAR/INTERFACE DEVICES 3-11 Series Switch Transient Protection Circuit MC3397T - II TJ = -40° to + 125°C, Case 221A This device acts as a saturated series pass element with a very low voltage drop for load currents in excess of 750 mAo In the event of an over voltage condition (;;,17.5 V typically) or high voltage transient of either positive or negative polarity, the MC3397T instantaneously switches to an open circuit (OFF) state, interrupting power to the load and protecting the load during this potentially destructive condition. The device will immediately recover to an ON state when supply voltages fall within the normal operating range. Input Output* I 50 l! .=.. 12 V + 0. 047 /-lF Cin + 200 V Co Ground NOTE, *Depending on Load Current and Transient Duration, an Output Capacitor (CO) of sufficient value may be used to hold up Output Voltage during the Transient, and absorb Turn-off Delay Voltage Overshoot MOTOROLA LINEAR/INTERFACE DEVICES 3-12 4.7 j.LF 50 V POWER CIRCUITS Linear Voltage Regulators Device LM109 LM117 LM117L LM123,A LM137 LM140,A LM150 LM209 LM217 LM217L LM223,A LM237 LM250 LM309 LM317 LM317L LM317M LM323,A LM337 LM337M LM340,A LM350 LM2931 Series MC1466L MC1468 MC1568 MC1723,C MC7800 Series MC78LOO,A Series MC78MOO Series MC78TOO Series MC7900 Series MC79LOO,A Series MC79MOO Series MC33160 MC34160 TL780 Function Positive Voltage Regulator ............................................ 3-Terminal Adjustable Positive Voltage Regulator ........................ Low-Current 3-Terminal Adjustable Positive Voltage Regulator ............ 3-Ampere, 5 Volt Positive Voltage Regulator ............................ 3-Terminal Adjustable Negative Voltage Regulator ....................... Three-Terminal Positive Fixed Voltage Regulators ....................... 3-Terminal Adjustable Positive Voltage Regulator ........................ Positive Voltage Regulator ............................................ 3-Terminal Adjustable Positive Voltage Regulator ........................ Low-Current 3-Terminal Adjustable Positive Voltage Regulator ............ 3-Ampere, 5 Volt Positive Voltage Regulator ............................ 3-Terminal Adjustable Negative Voltage Regulator ....................... 3-Terminal Adjustable Positive Voltage Regulator ........................ Positive Voltage Regulator ............................................ 3-Terminal Adjustable Positive Voltage Regulator ........................ Low-Current 3-Terminal Adjustable Positive Voltage Regulator ............ Medium-Current 3-Terminal Adjustable Positive Voltage Regulator ......... 3-Ampere, 5 Volt Positive Voltage Regulator ............................ 3-Terminal Adjustable Negative Voltage Regulator ....................... Medium-Current 3-Terminal Adjustable Negative Voltage Regulator ........ Three-Terminal Positive Fixed Voltage Regulators ....................... 3-Terminal Adjustable Positive Voltage Regulator ........................ Low Dropout Voltage Regulators ...................................... Voltage and Current Regulator ........................................ Dual ± 15-Volt Tracking Regulator .................................... Dual ± 15-Volt Regulator ............................................ Adjustable Positive or Negative Voltage Regulator ....................... 3-Terminal Positive Voltage Regulators ................................. Positive Voltage Regulators ........................................... Positive Voltage Regulator ............................................ Three-Ampere Positive Voltage Regulators ............................. Three-Terminal Negative Fixed Voltage Regulators ...................... Three-Terminal Negative Fixed Voltage Regulators ...................... Three-Terminal Negative Fixed Voltage Regulators ....................... Microprocessor Voltage Regulator and Supervisory Circuit ................ Microprocessor Voltage Regulator and Supervisory Circuit ................ Three-Terminal Positive Voltage Regulators ............................. Page 3-15 3-20 3-28 3-36 3-42 3-49 3-65 3-15 3-20 3-28 3-36 3-42 3-65 3-15 3-20 3-28 3-73 3-36 3-42 3-81 3-49 3-65 3-88 3-95 3-105 3-105 3-111 3-132 3-145 3-151 3-159 3-168 3-177 3-182 3-271 3-271 3-334 Switching Regulators Device MC33060A MC33063 MC33063A MC33129 MC34060 MC34060A MC34063 MC34063A MC34129 MC35060 MC35060A MC35063 MC35063A Function Switch mode Pulse Width Modulation Control Circuits ................... . DC-to-DC Converter Control Circuits .................................. . DC-to-DC Converter Control Circuits .................................. . High Performance Current Mode Controller ............................ . Switch mode Pulse Width Modulation Control Circuits ................... . Switch mode Pulse Width Modulation Control Circuits ................... . DC-to-DC Converter Control Circuits .................................. . DC-to-DC Converter Control Circuits .................................. . High Performance Current Mode Controller ............................ . Switch mode Pulse Width Modulation Control Circuits ................... . Switch mode Pulse Width Modulation Control Circuits ................... . DC-to-DC Converter Control Circuits .................................. . DC-to-DC Converter Control Circuits .................................. . MOTOROLA LINEAR/INTERFACE DEVICES 3-13 Page 3-197 3-227 3-233 3-258 3-185 3-197 3-227 3-233 3-258 3-185 3-197 3-227 3-233 II • Switching Regulators (continued) Device SG1525A SG1526 SG1527A SG2525A SG2526 SG2527A SG3525A SG3526 SG3527A TL494 TL594 UC2842A UC2843A UC3842A UC3843A "A78S40 Function Pulse Width Modulator Control Circuits ................................ Pulse Width Modulation Control Circuits ............................... Pulse Width Modulator Control Circuits ................................ Pulse Width Modulator Control Circuits ................................ Pulse Width Modulation Control Circuits ............................... Pulse Width Modulator Control Circuits ................................ Pulse Width Modulator Control Circuits ................................ Pulse Width Modulation Control Circuits ............................... Pulse Width Modulator Control Circuits ................................ Switch mode Pulse Width Modulation Control Circuits .................... Switch mode Pulse Width Modulation Control Circuits .................... High Performance Current Mode Controller ............................. High Performance Current Mode Controller ............................. High Performance Current Mode Controller ............................. High Performance Current Mode Controller ............................. Universal Switching Regulator Subsystem .............................. Page 3-279 3-286 3-279 3-279 3-286 3-279 3-279 3-286 3-279 3-312 3-323 3-340 3-340 3-340 3-340 3-353 Special Power Supply Controllers Device MC33065 MC34065 TCA5600 TDA4601,B Function High Performance Dual Channel Current Mode Controller ................. High Performance Dual Channel Current Mode Controller ................. Universal Microprocessor Power Supply Controller ...................... Flyback Converter Regulator Control Circuit ............................. Page 3-246 3-246 3-294 3-305 Power Supervisory Device MC3397T MC3423 MC3425 MC3523 MC33160 MC34061,A MC34062 MC34064 MC34160 MC35062 Function Page Transient Suppressor ........................................ See Chapter 10 Overvoltage Sensing Circuit .......................................... 3-117 Power Supply SupervisoryIOver-Under-Voltage Protection Circuit .......... 3-124 Overvoltage Sensing Circuit .......................................... 3-117 Microprocessor Voltage Regulator and Supervisory Circuit ................ 3-271 Three-Terminal Programmable Overvoltage Sensing Circuit ............... 3-209 Pin-Programmable Overvoltage Sensing Circuit ......................... 3-216 Pin-Programmable Overvoltage Sensing Circuit ......................... 3-242 Microprocessor Voltage Regulator and Supervisory Circuit ................ 3-271 Pin-Programmable Overvoltage Sensing Circuit ......................... 3-216 RELATED APPLICATION NOTES Application Note AN703 AN920A AN778 AN954 AN976 AN983 ANE002 Related Title Device Designing Digitally-Controlled Power Supplies ............. MC1466, MC1723 Theory and Applications of the MC34063 and JLA78S40 Switching Regulator Control Circuits .................... MC34063, "A78S40 Mounting Techniques for Power Semiconductors ........... LM317, LM337, MC7800, MC78MOO, MC7900, MC79MOO A Unique Converter Configuration ........................ MC34063 A New High Performance Current-Mode Controller Teams Up with Current Sensing Power MOSFETs ............... MC34129 A Simplified Power Supply Design Using the TL494 Control Circuit ....................................... TL494 130 W Ringing Choice Power Supply Using TDA4601 ....... TDA4601,B MOTOROLA LINEAR/INTERFACE DEVICES 3-14 ® LM109 LM209 LM309 MOTOROL.A POSITIVE II VOLTAGE REGULATOR MONOLITHIC POSITIVE THREE-TERMINAL FIXED VOLTAGE REGULATOR A versatile positive fixed + 5.0-volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged. In most applications only one external component, a capacitor, is required in conjunction with the LM109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator. K SUFFIX METAL PACKAGE CASE 1-03 • High Maximum Output Current - Over 1.0 Ampere in TO-204AA type Package - Over 200 mA in TO-205AD type Package. Pins 1 and 2 electrically isolated from case. Case is third electrical connection. I • Minimum External Components Required • Internal Short-Circuit Protection • Internal Thermal Overload Protection • Excellent Line and Load Transient Rejection • Designed for Use with Popular MDTL and MTTL Logic Input uou:ut 1 0 3 Ground (Bottom View) 3 2 0 H SUFFIX METAL PACKAGE CASE 79-05 1 ORDERING INFORMATION Tested Operating Device CIRCUIT SCHEMATIC .....-oINPUT r---._----<~---~~---._- Temperature Range LM109H TJ Package ~ -55'Cta +150"<: Metal Can Metal Power LM109K TJ ~ -55'Cta + 150'C LM209H TJ ~ -25'Cta +150'C Metal Can LM209K TJ ~ -25'Cta +150'C Metal Power LM309H TJ ~ O'Cta +125'C Metal Can LM309K TJ ~ O'Cta +125'C Metal Power TYPICAL APPLICATION 0.3 FIXED 5.0 V REGULATOR OUTPUT Input C • I 1 O.iM* LM109 1 5V Output I C2 Ground 6.3V • Required if regulator is located an appreciable distance from power supply filter. L---~--~--~--~--~--~--~---*~GND Although no output capacitor is needed for stabilitv. it does improve transient response. MOTOROLA LINEAR/INTERFACE DEVICES 3-15 LM109, LM209, LM309 MAXIMUM RATINGS Symbol Value Unit Input Voltage Vin 35 Vdc Power Dissipation PD Junction Temperature Range TJ Rating Internally Limited oC LM109 LM209 LM309 • -55to +150 -2510 +150 010 +125 Storage Temperat!-,re Range T stg -65 to +150 oC TS 300 oC Lead Temperature (soldering, t = 60 s) ELECTRICAL CHARACTERISTICS LM109/LM2091 Characteristic Output Voltage (TJ == Symbol +25 0 C) Va Input Regulation (T J =- +25 0 C) Reglin. Min Typ 4.7 _. LM30s2 Max Min Typ Max Unit 5.05 5.3 4.8 5.05 5.2 Vdc 4.0 50 4.0 50 mV 50 100 50 100 - 7.0~Vin ~25 V mV Regload ~ + 25"C) Case 1-03 5.0 rnA.;:;: 10::S:;: 1.5A Case 79-05 5.0 rnA , ;;;; 10 "" O.5A Load Regulation (TJ 20 Output Voltage Range 4.6 Va 50 - 5.4 20 50 4.75 5.25 Vdc 10 mAde 7.0 V ~Vin ~25 V 5.0mA o 100 100 k 1.0 k 10k t, FREQUENCY 1Hz) 150 --... .......... r---...... ~ = TA"-550C- r-...... -...... I - ...:::::::: t:-- 5.0 1.0 M 4.5 V 10 FIGURE 7 - PEAK OUTPUT CURRENT IH PACKAGE) TA" +25 0C ~ TA" +125 0C TA "+150 oC- I 100 -.. --... ! 3.0 :'! I- ~ ~ a 2.0 I l- ii: I- I/. ::> o If ---- --- -.... r-- --.... '1:\ / ...-' ~ c:: t--... 35 40 TA J-55 0C 45 - TA"~250C ~ .......... ~ ....... TA~+1250C/~ :": t'-... TA ~ -5rC T1 "+150 oC / TA~+250C - r-- -:::: f:::::--. TA" +125 0C ~ IL"200mA - ~VT" 3.0 ~p,p '" ~ ~ TA"+150OC- VO"4.5V 5.0 -- 80 -.... :--- 20 25 30 Vin, INPUT VOLTAGE IV) 15 FIGURE B - RIPPLE REJECTION 4.0 E 1.0 125 0 10 _ ...... ........ 1.0 Vo 10- 2 - --r--.... ~ 2.0 ::> IL~500mA -.... 'f ~ ./ ::> := 10- 1 ~ 75 100 TA, AMBIENT TEMPERATURE 10C) v"'- ~ 3.0 I- ./ I- ...... FIGURE 6 - PEAK OUTPUT CURRENT IK PACKAGE) ::> ~ ,. ........ 50 4.0 c: \ ...... I 0.1 0.1 - 10 I 15 20 30 25 Vin, INPUT VOLTAGE IV) 35 40 20 10 45 100 MOTOROLA LINEAR/INTERFACE DEVICES 3-17 1.0 k 10 k t, FREQUENCY 1Hz) 100 k 1.0M II LM109, LM209, LM309 TYPICAL CHARACTERISTICS (continued) FIGURE 10 - DROPOUT CHARACTERISTIC (K PACKAGE) FIGURE 9 - DROPOUT VOLTAGE 6.0 2.5 :; IL = 1.0 A :::; 2.0 ~ w '" ;:: ~ '" ;o ~ 1.5 ~ >- ~TA >~ >=> 1.0 => o r 0.5 ~ 4.0 -50 -15 +15 +50 +75 +100 +115 TJ, JUNCTION TEMPERATURE lOCI I=+15 0C ff/ o TA = 1500C_/, ~ 4.5 f--TA=+115 0 C ,.:. ~ TA = -550C- ./ > 5.0 C >- 5.5 YII 5.0 +150 +175 FIGURE 11 - OUTPUT VOLTAGE 1// Ill; 'I 6.0 8.0 7.0 Vin. INPUT VOLTAGE IVI 9.0 FIGURE 12 - OUTPUT NOISE VOLTAGE 5.1 1.0 ~ 5.1 I'-.. ....... w ;'" CL = 0 o ;: 5.0 ~ >=> o ~ 4.9 4.8 0.01 -75 -50 -15 +15 +50 +75 +100 +115 TJ, JUNCTION TEMPERATURE lOCI 10 +150 +175 100 FIGURE 13 - QUIESCENT CURRENT 6.5 E >- 1 >- 6.0 I TA =J250C >- 5.5 ~ '-' ffl :; ~ FIGURE 14 - QUIESCENT CURRENT IL=100mA ~ "=>'-' 5.0 4.5 5.0 ~ ...-: TA--550C ,. TA '-- 10 k 6.5 I ~ 1.0 k f, FREQUENCY IHzI 6.0 z w - "" i3 >- 5.5 ~ -1125 0C ~ 5.0 !P I TA +150oC 4.5 10 15 Vin. INPUT VOLTAGE IVI 20 25 -75 -50 -25 0 +25 +50 +75 +100 TJ. JUNCTION TEMPERATURE (OCI MOTOROLA LINEAR/INTERFACE DEVICES 3-18 +125 +150 +175 LM109, LM209, LM309 TYPICAL APPLICATIONS FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR -.--5;; 10 :E= Typ Max Unil 0.01 0.04 'ioN - 5.0 0.1 25 0.5 mV %VO 0.07 - 0.03 0.07 'Io1W Min - Imax Va" 5.0V Va", 5.0 V Thermal Regulation ITA = + 25°C) 20 rns Pulse 3 lAd' - 50 100 - 50 100 ~ 1,2 ~IAdj - 0.2 5.0 - 0.2 5.0 ~ 3 Vref 1.25 1.30 1.20 1.25 1.30 V 1 Regline - 0.02 0.05 - 0.02 0.07 %N load Regulation (Note 3) 10 rnA os;: 10 os;: Imax Va" 5.0 V Va'" 5.0 V 2 Aegload - 20 0.3 50 1.0 - - - 20 0.3 70 1.5 %VO Temperature Stability (Tlow ~ T J ~ Thigh) 3 TS - 0.7 - - 0.7 - %VO Minimum Load Current to Maintain Regulation (VI-Va 3 ILmin - 3.5 5.0 - 3.5 10 3 Imax 1.5 0.5 2.2 0.8 - - 1.5 0.5 2.2 0.8 - 0.25 - 0.15 - 0.4 0.07 - - - Adjustment Pin Current Adjustment Pin Current Change 2.5 V " VI-Va" 40 V 10 rnA os;; IL ".. Imax. Po ".. Pmax Reference Voltage (Note 4) 1.20 3.0 V " VI-Va" 40 V 10 rnA """ 10 :!S; Imax. Po .,,;;; Pmax Line Regulation (Note 3) 3.0 V " VI-Va" 40 V = A VI-YO ~ 40 V, Po " Pm ax, TA ~ 25°C K and T Packages H Package RMS Noise, % of Va ~ - N 4 RR ~ 10 V, I ~ 120 Hz Without CAdj CAd' = 10 I'F Long-Term Stability, TJ = - _. - 0.003 - 0.4 0.07 - 0.003 - - 66 65 80 - 66 65 80 - 0.3 1.0 - 0.3 1.0 - 12 2.3 15 3.0 - 15 3.0 - - 12 2.3 5.0 %VO 25°C, 10Hz" I" 10kHz Ripple Rejection, Va INote 5) TA mA 40 V) Maximum Output Current VI-Va ~ 15 V, Po ~ Pmax K and T Packages H Package TA mV ~ Thigh INote 61 3 S - ReJC dB - 25°C for Endpoint Measurements Thermal Resistance Junction to Case H Package K Package T Package NOTES: 111 Tlow (2) Imax ~ -55°C lor LM117 Thigh ~ -25°C for LM217 = O°C lor LM317 = °elW ~ + 150"C lor LM117 = + 150"C lor LM217 + 125°C lor LM317 1.5 A for K and T Packages = 0.5 A for H Package Pmax = 20 W for K Package = 20 W for T Package = 2.0 W for H Package (3) Load and line regulation are specified at constant junction temperature. Changes in Va due to heating %/1.0 k Hrs. - - effects must be taken into account separately. Pulse testing with low duty cycle is used. (4) Selected devices with tightened tolerance reference voltage available. (5) CADJ, when used, is connected between the adjustment pin and ground. (6) Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot. MOTOROLA LINEAR/INTERFACE DEVICES 3-21 II LM117, LM217, LM317 SCHEMATIC DIAGRAM r--1~--~--------'----'--'--1-------------------------1~------,---~-,--oVjn II 0.1 ~~--~---4--4-~~~~~~~~~~----+-------~-4--------------~---4----0Vout '----------------------------------0 Adjust FIGURE 1 - LINE REGULATION AND alAdj/LiNE TEST CIRCUIT Vee VOH--VOL Line Regulation (%/V) = - - - - - - - X 100 VOL JL JLIH VIL ~OH V out Vin VOL LM117 Adjust Rl el n /r- 0.1 I'F IAdj 240 1% RL + Co ;;[;; II'F R2 t% .. Pulse Testing Required: 1" Dutv Cvcl. is suggested. ~ - MOTOROLA LINEAR/INTERFACE DEVICES 3-22 LM117, LM217, LM317 FIGURE 2 - LOAD REGULATION AND alAdj/LOAD TEST CIRCUIT Load Regulation (mV) "" L.oad Regulation ("Vol Va (min. Load) - V out LM117 Va (max. L.oad) Va (min. Load) - Va (max. Load) X 100 I ;;z ,.vO (min. L.oad) U Va (min. Load) Va (max. Load) IL II AL Adjust O.IItF Al (max. Load) 240 1% AL (min. Load) IAdj A2 1% *'Pulle Testing Required: 1 % Duty Cycle is suggested. FIGURE 3 - STANDARD TEST CIRCUIT V out LM117 240 1% 1 ItF 0.1 "F To Calculate R2: Va = 'SET R2 + , .250 V Assume 'SET'" 5.25 rnA Pulse Tasting Required: 1 % Dutv Cycle is suggested. FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT 24V-" . 14V----V V out Vin Va'" 10 LM117 f=120Hz Adjust 240 Al 1% D," ~~ 1N4002 AL + Cin ;:[:; O.IItF Co -:: ,,+ 1.65 K R2 1% -'- 1 ItF CADJ ;~.::: 10 J.l.F , I " 0, Discharges CADJ If Output IS Shorted to Ground. MOTOROLA LINEAR/INTERFACE DEVICES 3-23 Vo v II LM117, LM217, LM317 FIGURE 6 - CURRENT LIMIT FIGURE 5 - LOAD REGULATION l 0.4 '"z « 0.2 w - ri ..'" w ':; -0.2 > 0 ~Ig -0.4 -0.6 6 :;; I--- TJ • 25°C IL' 0.5 A I--- -- r-. I-- t--. IL·1.5A .......... I-- I-.VI·15V Vo 10V i ~~ t--~~ '" I---- ' TJ =150oC .... I "-~ ........ TJ' -55°C ~ .... "'R.: ..:::...- -0.8 -1.0 -15 -50 -25 0 25 50 75 100 125 TJ. JUNCTION TEMPERATURE lOCI o 150 o 10 20 30 VI - VO.INPUT - OUTPUT VOLTAGE OIFFERENTIAL IVdcl FIGURE 7 - ADJUSTMENT PIN CURRENT « ~ 70~--t----4---4---+---+-----~---~'--~'--~--~ I: l- f-_---._.t-r-----__-l.r---'"_-_-I, __ ..... -_.. ~ ':; 55 0 ".,....,.;- .~ ~r-- r---_ ~ V I -25 25 50 75 100 TJ . JUNCTION TEMPERATURE lOCI 115 >°1.0 -75 150 ~ ,.-- ~ 1.240 - ~ - 1'---..1 > ~ ~200rnA ---- r---.... IL = 20 rnA ~ H 100 18 1~ 4.5 TJ ' -55°C ;;; 4.0 E ........ - , , / TJ '250C ___ ~ 35 :: 3.0 ~ ............. ,~ => ~ 2.5 -- _ 2.0 w :; 1.5 o ~~ 0.5 I i:; 1.230 >" 1.220 -75 T IL • 500 rnA 5.0 ~ I-- I--- ~ :::::: r-:-_ I-- 8 -25 .-- FIGURE 10 - MINIMUM OPERATING CURRENT FIGURE 9 - TEMPERATURE STABILITY ~ 1.250 -50 --- )-- V TJ • JUNCTION TEMPERATURE lOCI 1.260 '> -. .......... f...... => ~ z 35~~--~---L--~--~~--~--~__-L~ -50 1.5 l- 40\--~~--t--__t---+---+---t---t---t--+---I -75 '"-- ~ ~ Il ·I.0A -r---------- - 2.0 ~ : . 45 1----t--7'q---+--+-- ----~---__I--__I-----+--__t----___1 ~H- ,--- IL '15 A )----- ~--. > ~ 50~--~-4~--~~-4.---+--.~---t---t--~--~ .1 \--- --6V O '100rnV--2.5 « z ~ 1 0 _+--+-.-t 0: ~ ~ "iii' ...."....-:: ~ ..,.. T 1 J =150 oC - V _Cal.a -50 -25 25 50 75 100 TJ • JUNCTION TEMPERATURE lOCI 40 FIGURE 8 - DROPOUT VOLTAGE 2: 3.0 1 - fh' 125 o 150 o 10 20 VI - Vo. INPUT - OUTPUT MOTOROLA LINEAR/INTERFACE DEVICES 3-24 30 40 VOlTAGE~DIFFERENTJAL (Vdcl LM117, LM217, LM317 FIGURE 11 - RIPPLE REJECTION versus OUTPUT VOLTAGE 100 FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURRENT 10~F ,I CAOJ 120 ~ is 80 'r-.., g :--- r- 60 WITHOUT CADJ 9 80 ~ 40 f--- "' ~=2F f------ 20 f------ o w S V, -V =5V 'L=50 rnA f'" 120 Hz f--- ~' 60 it a: ~' ___ 40 - 20 r--- V, = 15 V Vo '10V f '120 Hz TJ • 25°C o 15 20 25 VO' OUTPUT VOLTAGE IVI 10 30 FIGURE 14 - OUTPUT IMPEDANCE 10 I [ 80 / z ~ ~ • 500 mA / / -......... 0 60 r--.. V ::l "'-.. w it 40 "':g 20 1·15V " WITHOUT CAOJ I I IK 10K - ~ 100 V, '15V Vo 'IOV 'L "'500 rnA TJ = 25°C 1== r--- °E - f--- I I WITHOUT CADJ [ CADJ • 10 I"F "'-I 2 I '-.1 lOOK CAOJ lO"F [ [ o 10 ~J:2~~~ \ ['\ \ \ '" 10 '0' OUTPUT CURRENT (AI FIGURE 13 - RIPPLE REJECTION versus FREQUENCY ~ II I- WITHOUT CAOJ 0,1 0.01 35 CAOJ = 10.F I III o 100 ~ - ;;J ~ w 100 o ;;J ~ ~ ! 1M 3 10 10M 100 IK 10K lOOK 1M f. FREQUENCY IHzl f. FREQUENCY (Hzl FIGURE 16 - LOAD TRANSIENT RESPONSE FIGURE 15 - LINE TRANSIENT RESPONSE 3 5 5 0 2 I 1/\ Cl ,\.. w -1.5 ~~ ~5 0 I 1/ 2 [A 3 IV \ .;~ I .5 Ii' .0 -J 0.5 .5 t' 10 ~ I CL = I "F; CAQJ ' lO"F ! 1 .I j \ CL = O;WITHOUT CAOJ - ~~ 1.0 :> w 1 JlF; CADJ " 10pF j VO' 10 V ~ =50mA J '" 2SOC « '" = f--- 30 0 40 -', J 1\ l ;-- CL : O;WIT~OU1: CAOJ \/ I t-- V,' 15 V VQ = 10 V ~L '50mA J. 25 OC r--t----:;~ ,I ./ 'i [\,,1 Ll 10 > 25 IlF, CADJ > 10 Il F). Diode DI prevents Co from discharging thru the I.C. during an input short circuit. Diode D2 protects against capacitor CADJ discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents CADJ from discharging through the I.C. during an input short circuit. FIGURE 17 - BASIC CIRCUIT CONFIGURATION Vin LM111 I I v out ! \ Vref Adjust -- + ", 1 V out lAdj Vref = 1.25 V FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES l'PROG R2 TYPICAL 1 0, ,N4002 =LOAD REGULATION The LMI17 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (RI) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. Adjust 0------4>--<1>--' MOTOROLA LINEAR/INTERFACE DEVICES 3-2(i LM117, LM217, LM317 FIGURE 19 - "LABORATORY" POWER SUPPLY WITH AOJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE - lN4002 Y,N _ V out 1 .....-0---<1 Vin2 RSC 10 V out 2 32 to 40 V 0, lN4001 lN4001 Cu"ent 1K II'F °5 240 lN4001 Adjust 2 I Tantalum 5K °2 Limit Adjust 03 °1 2N3822 -=OUTPUT RANGE: °4 -10V 0" Va" 25 V 0" '0" 1.2 A °2 Diodes 0, and 02 and transistor 02 ar. added to allow adjustment of output voltage to 0 volts. 2N5640 06 protects both LM 117'5 dUring an input short circu it. -10 V FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR FIGURE 20 - ADJUSTABLE CURRENT LIMITER Vo _ _ '0 V out 0, 1 '· O I'F lN4001 *. To provide current limiting of 10 100 to the system ground, the source of the F ET must be tied to a negative voltage below -1.25 V. A 2 ;;;,~ °2 Adjust cr-------' lN4001 TTL 720 Control 1 K 2N5640 lOSS Vref R, :: lOmax + lOSS Minimum V out = 1.25 V Vo< BVOSS + 1.25 V+ VSS ILmin - lOSS < '0 < 1.5 A As shown 0 < '0 < 0, protects the device during an input short circuit. 1 A FIGURE 23 - CURRENT REGULATOR FIGURE 22 - SLOW TURN·ON REGULATOR V out LM117 lN4001 Adjust 6-----Jr-~~;1' Adjust ~ I V out I ~ vref lout;;: (R1) 10lolF R, + IAdj '" 1.25V R, 10 mA ~ loutE; 1.5 A MOTOROLA LINEAR/INTERFACE DEVICES 3-27 'out II LMl17L LM217L LM317L MOTOROLA • Specifications and Applications Information THREE·TERMINAL ADJUSTABLE OUTPUT POSmVE VOLTAGE REGULATORS The LM117U217U317L are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 100 rnA over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further. they employ internal current limiting. thermal shutdown and safe area compensation. making them essentially blow-out proof. The LM117L series serves a wide variety of applications including local. on card regulation. This device can also be used to make a programmable output regulator. or by connecting a fixed resistor between the adjustment and output. the LM117L series can be used as a precision current regulator. • • • • • • Output Current in Excess of 100 rnA Output Adjustable Between 1.2 V and 37 V Internal Thermal Overload Protection Internal Short-Circuit Current Limiting Output Transistor Safe-Area Compensation Floating Operation for High Voltage Applications LOW·CURRENT THREE·TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATORS SILICON MONOLITHIC INTEGRATED CIRCUIT Z SUFFIX PLASTIC PACKAGE CASE 29-04 PIN 1. ADJUST 2. VOUT 3. Y,N "2 H SUFFIX METAL PACKAGE CASE 79-05 PIN 1. Y,N 2. ADJUST 3. VOUT • Standard 3-Lead Transistor Packages • Eliminates Stocking Many Fixed Voltages 21 V out LM117L . 'Adil f" .. 240 Adjust ;;: ~ 0::- C'n r- 0.1 "F A * '"" Cin ** - OUTPUT DSUFFIX PLASTIC PACKAGE CASE 751-02 SOP-B' STANDARD APPLICATION "r- ,$i.0 1 0 0 3 CASE IS v'n 3 Co 1 "F ~2 =- (Bottom View) PIN 1. Y,N 2. VOUT 3. VOUT 4. ADJUST 5. N.C. 6. VOUT 7. VOUT 8. N.C. SOP-B is an internally modified 80-8 Package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard 80-8 Package. I, required if regulator is located an appreciable distance from power IUpply filter. Co i. not needed for stability. however it does improve transient respon... .R2 V out = 1.25 V (1 + - ) + 'Adj R2 R1 Sine. IAdj is controlled to I... than 100.IJ.A. the error .ssociated with this term I, ne,lIgible In molt applications ORDERING INFORMATION Tested Operating Device Temperatura Range TJ ~ -55°C 10 +150°C Metal Can LM217LH TJ ~ -25°C 10 +150°C Metal Can SOP-S LM317LD LM317LH TJ ~ O°Clo +125°C additional tests. Contact your local Motorola sales office for information. LM317LBZ# MOTOROLA LINEAR/INTERFACE DEVICES 3-2B Metal Can Plastic LM317LZ #Automotive temperature range selections are available with special test conditions and Package LM117LH TJ ~ -40°C 10 +125"C Plastic LM117L, LM217L, LM317L MAXIMUM RATINGS Rating Input-Output Voltage Differential Symbol Value Unit VI-VO 40 Vdc Po Internally Limited TJ -55to +150 -25to +150 Oto +125 °C Totg -65 to +150 °C Power Dissipation Operating Junction Temperature Range LMl17L LM217L LM317L Storage Temperature Range ELECTRICAL CHARACTERISTICS (VI - Vo = 50 V- 10 = 40 mAo TJ = TI ow to Th''A'h [see Note lJ' Charac:taristic Flgura Imax and Pmax per Note 2' unless otherwise specified) LM117LJ217L LM317L Symbol Min Typ Max Min Typ. Max Unit Line Regulation (Note 3) TA = 25°C, 3.0 V'" VI-VO '" 40 V 1 Regline - 0_01 0.02 - 0.01 0_04 "IoN Load Regulation (Note 3), TA = 25°C 5.0 mA '" 10 '" Imax - LMl17LJ217L 10 mA '" 10 '" Imax - LM317L Vo '" 5_0 V VO" 5.0 V 2 Regload 5.0 0.1 15 0.3 5_0 0.1 25 0.5 mV %VO 3 lAd' - Adjustment Pin Current Change 2.5 V '" VI- Vo '" 40 V, Po '" Pmax 5.0 mA '" 10 '" Imax- LMl17LJ217L 10 mA '" 10 '" Imax- LM317L 1,2 .l.lAdj - Reference Voltage (Note 4) 3.0 V '" VI-VO '" 40 V, Po '" Pmax 5.0 mA '" 10 '" Imax - LMl17LJ217L 10 mA '" 10 '" Imax - LM317L 3 Vref Line Regulation (Note 3) 3.0 V'" VI-VO '" 40 V 1 Regline Load Regulation (Note 3) 5.0 mA '" 10 '" Imax - LMl17LJ217L 10 mA '" 10 '" Imax - LM317L VO'" 5.0 V VO" 5.0 V 2 Regload Temperature Stability (Tlow '" TJ '" Thiah) 3 TS Minimum Load Current to Maintain Regulation (VI- Vo = 40 V) 3 ILmin Maximum Output Current VI-VO '" 20 V, Po '" Pmax, H Package VI- Vo '" 6.25 V, Po '" Pmax, Z Package VI-VO = 40 V, PO'" Pmax, TA = 25°C H Package Z Package 3 Imax RMS Noise, % of Vo TA = 25°C, 10 Hz '" f '" 10 kHz - N Ripple Rejection (Note 5) Vo = 1.25 V, f = 120 Hz CAOJ = 10 IJ.F Vo = 10_0 V 4 RR Long Term Stability, TJ = Thigh (Note 6) TA = 25°C for Endpoint Measurements 3 Thermal Resistance Junction to Case H Package Z Package - Thermal Resistance Junction to Air H Package Z Package - Adjustment Pin Current NOTES: (1) Tlow = -55°C for LM117L -25°C for LM217L O°C for LM317l (2) Imax = 100 mA Pmax = 2 W for H Package = 625 mW for Z Package 1.20 - - 50 100 0.2 5_0 - 1.25 1.30 1.20 0.02 0.05 20 0.3 50 1.0 50 100 p.A 0_2 5.0 p.A 1.25 1.30 V - 0.02 0.07 "IoN - - 20 0.3 70 1.5 mV %VO - 0_7 - %VO 3.5 10 mA - 0.7 - 3.5 5.0 100 100 200 200 - 100 100 200 200 - 50 20 0.003 - 50 20 - - 60 mA - 0.003 - 80 80 - 0.3 1.0 %VO dB S 66 80 - 80 - 0.3 1.0 - %11.0 k Hrs_ 0c/w RruC RruA - 40 - 185 - - - - - 40 83 - - - 185 160 - - - °C/W (3) Load and line regulation are specified at constant junction temperature. Thigh:::: +150°C for LM117l :::: +150oC for LM217l :::: +125°C for LM317L Changes in Va due to heating effects must be taken into account separately. Pulse testing with low duty cvcle is used. (4) Selected devices with tightened tolerance reference voltage available. (5) CADJ. when used, is connected between the adjustment pin and ground. (5) Since Long Term St.ability cannot be measured on each device before shipment. this specification is an engineering estimate of average st8Dil.tv from lot to lot. MOTOROLA LINEAR/INTERFACE DEVICES 3-29 II LM117L, LM217L, LM317L SCHEMATIC DIAGRAM VIN t 1 3DO 300 • ~ (1 ~~" J3k 300 ~ ~ I 'l~ 6.8 V 'l~ 6.8 V 360 18k >- t -1= r130 6.3 V ... ~ 180 't ~ 't t ~ I 180 rrn t.-.-. ~ 8.~:~ ~ 200 k 8 'L 1400 )--. 5.1 ~ 2k I k H ~ ~ 10 pF 6 k 2.5 60 10 PF'i ~ Vo UT 2.4 k 12.8 k 50 Ad just FIGURE 1 - LINE REGULATION AND "IAdj/LINE TEST CIRCUIT Vee .JL VOH--VOl Line Regulation (%/VI "" - - - X 100 VOL ~IH ~OH VIL V out Vin VOL LM117L Adjust Rl el n ;:" 0.1 "f 240 1% RL + Co/r:; I"F IAdj R2 1% * Pul .. Testing Required: 1" DutY Cycle I, suggested. =- MOTOROLA LINEAR/INTERFACE DEVICES 3-30 LM117L, LM217L, LM317L FIGURE 2 - LOAO REGULATION AND AIAdj/LOAD TEST CIRCUIT Vo Load Regulation (mV) ... (min. Load) - Vo (max. Load) Lo.d R_'ot'on "WOI _ Vo Imln. Lo.d) - Vo Imo.. Lo.d) X 100--' ,VO Imln. Lo.d) Vo (min. L.oad) YOU! V,' U Vo (max. LOld) IL LM117L 240 Adjust RL 1" Imln. Lo.d) D.' /IF * Pul .. Tatting Required: 1" Duty Cycle I, suggested. FIGURE 3 - STANDARD TEST CIRCUIT Vout LM117L 240 1" D.' /IF Vo To Calculate R2: Vo = ISET R2 + 1.250 V Allum. ISET ... 5.26 mA Pul .. Testing Required: ,,, Duty CYcle 1. suggested. FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT 14.30 V - " . 4.30V-~-V V out Vln Vo LM117L 1-120 Hz 0,' 240 Adjust R1 ~~ 1N4oo2 1" RL + Cln ::: ..;. D.1/1F Co:::" 1/1F R2 - '.65 K 1" 1+ CAOJ ;*~ 10 "F I I . - 0, Dlscharuel I,.;J\OJ If Output" Shorted to Ground . • ·CAOJ provides an AC Ground to the Adjust Pin. MOTOROLA LINEAR/INTERFACE DEVICES 3-31 = 1.2 5 V- Vo II II LM117L, LM217L, LM317L FIGURE 6 - RIPPLE REJECTION FIGURE 5 - LOAD REGULATION ~ 0.4 ........ Vin~45V I _ ~ 0.2 ~ ~ Vout =5V 'L-5t040mA_ / o t- o ... '-Vin=10V Vout =5V Il = 5to l00mA > ~ -0. 4 g ~ 10 8: "':g -0.6 --- r- r-- ..... ~ ~ !:i -0. 2 80 z 0 IL '" 40 mA f--- t =120 Hz Vo = 10 V 60 f--- Vin 114 to :4 V ~ -0.8 -1.0 50 -50 -25 25 50 15 100 TJ.JUNCTION TEMPERATURE 1°C) 125 -50 150 FIGURE 7 - CURRENT LIMIT ............ !; ~ => o ...... TJ = 150°C o ~ "- r-... 'I'-... - 0.10 o 3D 40 10 20 VI- VO, INPUT - OUTPUT VOLTAGE DIFFERENTIALIVOLTSI 0.5 50 -50 I ::0 TJ '= 550C'--":,,, TJ=250C--TJ = 150°C - - - 5 2.0 ffl :5 1.5 '" !P 1. o ,- O.5 ['..... ........ ............ 'L=100mA ............ r-- r-... -25 ....... 25 50 15 100 TJ,JUNCTION TEMPERATURE 10C} 90 _ 5- _ 150 " 125 150 100 4. 5 ~ 2. 125 FIGURE 10 - RIPPLE REJECTION vorsus FREQUENCY FIGURE 9 - MINIMUM OPERATING CURRENT 5.0 ~ 4.0 100 , ."\. " o 15 -r-- - -;;;;;-- I'-.. ........ 0.20 '" TJ=250C ~ -" ~ '" 0.30 ....'"=> 50 FIGURE 8 - DROPOUT VOL TAGE 2.5 ~OAO 25 TJ,JUNCTtoN TEMPERATURE (OC) 0.50 5 -25 r- ~ ~..... n .... V-- ~ I /' /" .... \ a a \ 1\ a a 10 10 20 30 40 Vl - Vo, INPUT - OUTPUT VOLTAGE OIFFERENTIALIVOLTSI 10 100 lK MOTOROLA LINEAR/INTERFACE DEVICES 3-32 _ - Va = 1.25V \ 10K 100 K 1m t, FREQUENCY 1Hz! I lL=40mA Vin'" 5V ±.1 Vpp LM117L. LM217L. LM317L FIGURE 11 - TEMPERATURE STABILITY FIGURE 12 - ADJUSTMENT PIN CURRENT 1.260 80 l i :> ~ 1.250 '" ~ r / " > ............ 1/ 240 ~1.230 .... -...... .......... v _ 65 f-f-- r-.... 0:: --ll'100mA .~ Vo ::Vref 'L~5mA 0 a< 5 ~ 40 ~ ~ '" '"~ "> ~ V .., 1-::::""- V 5 -25 25 .50 75 100 TJ, JUNCTION TEMPERATURE (OCI 125 150 -50 -25 - - I 125 150 .J .1 Vin",4.25to41.25V Bandwidth 100 Hz to 10 kHz Vo '" Vref 0.2 r - - - 25 50 75 100 TJ, JUNCTION TEMPERATURE (OCI FIGURE 14 - OUTPUT NOISE 'L ~40mA :> 10 .3 w w -0.2 ~ -0.4 ~ . --:; -:;::- FIGURE 13 - LINE REGULATION 0.4 II _---IL~10mA 5 ffi "- -50 w I Vi.' 6.25 V VO=Vref 60 1.220 ~ .~ I _ z Vin = 4.2 V - 70 ~ -0.6 6 ~ -0. 8 '"< ~ - ..-/ w '"<5z ..,......",. 8.0 > 6.0 I.-- ....- /' V V / 4. 0 -1. 0 -50 -25 25 50 75 100 TJ, JUNCTION TEMPERATURE (OCI 125 150 -50 FIGURE 15 - LINE TRANSIENT RESPONSE -25 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (OCI ,... /,J l£ \ 2 Cl = l.u F 1 t - - Cl '" 1 /-IF; CAOJ '" lO,uF } Vo ~ 1/ 1.25 V 1 A Il~20mA TJ·25 0C 2 I" C \ ~ 0 ~~ l I --JI' 10 20 30 150 FIGURE 16 - LOAD TRANSIENT RESPONSE 3 iI\ " 125 .•/ , 1\\ :1' .... \/ -I 1 I I V, ~ 15 V CL·0.3~F;CADJ·1O~F- VO '10V r ,-'l IV / ~ 40 250C c-- I \ 10 t, TIME (~s) t, MOTOROLA LINEAR/INTERFACE DEVICES 3-33 -• ~l~10mA_ 20 TIME 30 I"~ 40 • LM117L, LM217L, LM317L APPLICATIONS INFORMATION \. BASIC CIRCUIT OPERATION The LM 117L is a 3-terminal floating regulator. In operation, the LM117L develops and maintains a nominal 1.25 volt reference (V ref) between its output and adjustment terminals. This reference voltage is converted to a programming current (lPROG) by Rl (see Figure 13), and this constant current flows through R2 to ground. The regulated output voltage is given by: EXTERNAL CAPACITORS A 0.1 p.F disc or 1 p.F tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (CADJ) prevents ripple from being amplified as the output voltage is increased. A 10 p.F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application. Although the LMl17L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (Co) in the form of a 1 p.F tantalum or 25 p.F aluminum electrolytic capacitor on the output swamps this effecfand insures stability. Since the current from the adjustment terminal (lAdj) represents an error term in the equation, the LMl17L was designed to control IAdj to less than 100 p.A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise. Since the LMl17L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with resPect to ground is possible. PROTECTION DIODES When external capacitors are used with an~ I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Figure 14 shows the LMl17L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values (Co> 10 p.F, CADJ > 5 j.(F). Diode 01 prevents Co from discharging thru the I.C. during an input short circuit. Diode 02 protects against capacitor CADJ discharging through the I.C. during an output short circuit. The combination of diodes 01 and 02 prevents CADJ from discharging through the I.C. during an input short circuit. FIGURE 17 - BASIC CIRCUIT CONFIGURATION I LM 117 L -I Vout 11--------<+"'--Rl Vraf Adjust \ FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES llPROG V out R2 1 0, V,fIf = 1.25 V TYPICAL lN4002 LOAD REGULATION The LMl17L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R 1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. 02 TCo Adjust ¢-------4H.....-' lN4002 MOTOROLA LINEAR/INTERFACE DEVICES 3-34 LM117L, LM217L, LM317L FIGURE 19 - ADJUSTABLE CURRENT LIMITER FIGURE 20 - 5 V ELECTRONIC SHUTDOWN REGULATOR II Va _ ' a 12.5 k V out L -_ _ _ _ _ _ R2 01 1N914 500 "To provide current limiting of 10 to the system ground, the source of the current limiting diode must be tied 02 1N914 ,. Vref 2 IDSS 1 OIlF . 0--.....>---' Adjust ~ MPS2222 to a negative voltage below -7.25 V. A I 120 TTL 720 Control 1 K 1N5314 Vref Minimum V out = 1.25 V R, = lOmax + lOSS Va < POV + 1.25 V + VSS ILmin - Ip < 10 < 100 rnA - Ip As shown 0 < to < 95 mAo D, protects the device durmg an Input short circuit. FIGURE 22 - CURRENT REGULATOR FIGURE 21 - SLOW TURN·ON REGULATOR lout 1N4002 loutmax 10 := ~F loutmin = (Vref ) """R"1 +, . ~ 1.~~ (~) + R, + R2 ad] ladj 5mA< lout< 100mA MOTOROLA LINEAR/INTERFACE DEVICES 3-35 ~ V 1.25 V - R, + R2 • LM123, LM123A lM223, LM223A LM323, LM323A MOTOROLA Specifications and Applications Information 3-AMPERE, 5 VOLT POSITIVE VOLTAGE REGULATORS SILICON MONOLITHIC INTEGRATED CIRCUIT POSITIVE VOLTAGE REGULATORS The LM123.AlLM223.AlLM323.A are a family of monolithic integrated circuits which supply a fixed positive 5.0 volt output with a load driving capability in excess of 3.0 amperes. These threeterminal regulators employ internal current limiting. thermal shutdown. and safe-area compensation. An improved series with superior electrical characteristics and a 2% output voltage tolerance is available as A-suffix (LM123A1LM223A1LM323A) device types. These regulators are offered in a hermetic metal power package in three operating temperature ranges. A O°C to + 125°C temperature range version is also available in a low cost plastic power package. Although designed primarily as a fixed voltage regulator. these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series pass transistor to supply up to 15 amperes at 5.0 volts. K SUFFIX METAL PACKAGE CASE 1-03 PIN 1, INPUT 2, OUTPUT CASE GROUND (Bottom View) • Output Current in Excess of 3.0 Amperes • Available with 2% Output Voltage Tolerance T SUFFIX • No external Components Required PLASTIC PACKAGE CASE 221A-04 • Internal Thermal Overload Protection • Internal Short-Circuit Current Limiting • Output Transistor Safe-Area Compensation • Thermal Regulation and Ripple Rejection Have Specified Limits PIN 1. INPUT 2. GROUND 3. OUTPUT MAXIMUM RATINGS Rating Input Voltage Power Dissipation Operating Junction Temperature Range Storage Temperature Range Lead Temperature (Soldering. lOs) LM123. A LM223, A LM323, A Symbol Value Unit Vin 20 Vdc Po TJ Internallv Limited Tstg Tsolder Device LMI23K LMI23AK LM223K LM223AK LM323K LM323AK LM323T LM323AT Tolerance 6% 2% 6% 2% 4% 2% 4% 2% to Pin 2) STANDARD APPLICATION -55 to +150 -25 to +150 Oto +150 °C -65 to +125 300 °C °C In pu t B M 1 2 3 ' A Output ORDERING INFORMATION Output Voltage (Heatsink surface connected Tested Operating Junction Temp. Renga Package -55 to +150°C Metal Power -25 to +150O C Cin* 0.33 ~F CO" A common ground is required between the input and the output voltages. The input voltage must remain typically 2.5 V above the output voltage even during the low point on the input ripple voltage. * = Cin is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for o to +125°C Plastic Power details.) ** = Co is not needed for stability; however. it does improve transient response. MOTOROLA LINEAR/INTERFACE DEVICES 3-36 LM123, LM123A, LM223, LM223A, LM323, LM323A ELECTRICAL CHARACTERISTICS (TJ = Tlow to Thigh [see Note 11 unless otherwise specified.) LMl 23A/LM223A/ LM323A Typ Me. Min LM123/LM223 Min Typ M .. Min LM323 Typ Me. 5.1 4.7 5.0 5.3 4.8 5.0 5.2 V 5.0 5.2 4.6 5.0 5.4 4.75 5.0 5.25 V Regline 1.0 15 1.0 25 1.0 25 mV Regload 10 50 10 100 10 100 mV Regtherm 0.001 0.01 0.002 0.03 0.002 0.03 %VO/W IB 3.5 10 3.5 20 3.5 20 mA Ch.ractari,tic Symbol Output Voltage (Vin = 7.5 V. 0 =:;;; lout:E;;; 3.0 A. TJ =25°C) Vo 4.9 5.0 Output Voltage Vo 4.8 (7.5 V~ Vin~ 15 Unit v.a:;;;; lout~ 3.0 A. P:S;;; Pmax(Note 2)) Line Reg ulation (7.5 V:;;;; Vin:S;;; 15 V. TJ =25°C)(Note 3) load Regulation (Vin= 7.5 V. O~ lout:;;;; 3.0A. TJ= 25°C) (Note 3) Thermal Regulation (Pulse= 10 ms. p= 20W, TA= 25°C) Quiescent Current (7.6 V:e;;; Vi":S;;; 15 V, 0:;;;; lout:S;;; 3.9 AI Output Noise Voltage (10 Hz~ 40 VN f:;;;; 100 kHz. TJ =25°C) Ripple Rejection RR 62 40 75 62 75 62 40 /JVrms 75 dB (B.OV:;;;; Vin::S;;; 18 V.l out = 2.0 A. f= 120 Hz. TJ= 25'C) Short Circuit Current Limit (Vin = 15 V. TJ = 25°C) (Vin = 7.5 V, TJ = 25°C) 4.5 5.5 5 Long Term Stability Thermal Resistance Junction to Case (Note 4) Note 1. Tlow = -55°C for LM123. A = -25°C for LM223. A = OOC for LM323. A A ISC ReJC 4.5 5.5 4.5 5.5 35 35 2.0 35 2.0 2.0 mV °C/W Note 3. Load and line regulation are specified at constant junction temperature. Pulse testing is required With a pulse width ~ 1.0 ms and a duty cycle ~ 5%. Thigh=+150oCfor LM123,A = +150°C for LM223, A = +125°C for LM323. A Note 4. Without a heat sink. the thermal resistance {R8JA is 350C1W for the K package, and 65°C/W for the T package. With a heat sink, the effective thermal resistance can approach the specified values of 2.0°C/W. depending on the efficiency of the heat sink. Note 2. Although power dissipation is internally limited. specifications apply only for P oS; Pmax Pmax = 30 W for K package Pmax = 25 W for T package VOLTAGE REGULATOR PERFORMANCE The performance of a voltage regulator is specified by its immunity to changes in load. input Voltage. power diSSipation, and temperature. Line and load regulation are tested with a pulse of short duration « 100 J.ls) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation. Thermal regulatio.n is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation isa function of. I.e. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 1 0 ms, additional changes in the output voltage are due to the temperature coefficient of the device. Figure 1 shows the line and thermal regulation response of a typical LM 123A 10 a 20 watt input pulse. The varialion of the output voltage due to line regulation is labeled and the thermal regulation component is labeled Figure 2 shows the load and thermal regulation response of a typical LM 123A to a 20 watt load pulse. The output voltage variation due to load reg ulation is labeled and the thermal regulation component is labeled 0. G> MOTOROLA LINEAR/INTERFACE DEVICES 3-37 CD (3). II LM123, LM123A, LM223, LM223A, LM323, LM323A SCHEMATIC DIAGRAM Input .. 026 3.0k 300 13 0.12 200 Output 840 06 1.7k Gnd FIGURE 1 - LINE AND THERMAL REGULATION FIGURE 2 - LOAD AND THERMAL REGULATION 18 V I. TIME 12.0 ms/div.) I. TIME 12.0 ms/div.) lM123A Vo = 5.0 V Yin = 8.0 V -18 V_8.0 V (j) = Regline = 2.4 mV 10UI = 2.0 A = Reg,herm = O.0015%VO/W lM123A Vo =5.0 V .(j) =Reglo,d = 4.4 mV =0 A_2.0 A-O A ,a> = Reg,herm =O.OOI5%VO/W Vin = 15 a> 10UI MOTOROLA LINEAR/INTERFACE DEVICES 3-38 LM123, LM123A, LM223, LM223A, LM323, LM323A FIGURE 4 - OUTPUT IMPEDANCE FIGURE 3 - TEMPERATURE STABILITY 5.10 100 ,Vi~= I~V I lout = 100 mA - - S 10-1 . '-' z 1/ I'--- r-.... ,,/ r--- Vin = 7.S V lout = 1.0 A / ~ / ::> o Eo 10-3 4.90 -90 liD -10 30 70 TJ, JUNCTION TEMPERATURE (OC) -50 150 10-4 1.0 190 iil ~ "'~ 10k lOOk 1.0M 10M 100M - ;;. z 20 1.0 \ Vin JIOV Co = 0 TJ = 2SoC 10 100 ~ '" 10k 60 0.. ~ \ - - ""'" ~ 1.0k - 80 0 ~ 60 I-- - ~ ~ 7 '--- - 150 rnA = I 40 \ lOOk 1.0M 10M 30 0.01 100M I, FREQUENCY (Hz) 4.0 1 3.0 B ... 2.0 TJ = ISOoC i!l \ '5 1.0 o 0.1 1.0 TJ 12Soc ~ TJ = 25°C ~ 3.0 \ a '[ [ '5 o ~ 1.0 v.I=IIO~ "I IS 10 o O.DI 20 Vin, INPUT VOLTAGE (Vd,) I J 0.1 1.0 lout, OUTPUT CURRENT (A) MOTOROLA LINEAR/INTERFACE DEVICES 3-39 [ I 13 I .J. TJ = 150°C ~ 2.0 lout = 2.0 A- r---- ~551c L ...z.§. I S.O 10 I 4.0 !z ~ TJ=-SSoC ~ '" o~ II I TJ 1= « "TJ = ,ISOOC -\ "I 13 1111 S.O TJ - 2SoC ,Jl ; I FIGURE 8 - QUIESCENT CURRENT versus OUTPUT CURRENT TJ = -SsoC ..... /I Vin= 10V Co = 0 1= 120 Hz TJ = 2SoC lout, OUTPUT CURRENT tAl FIGURE 7 - QUIESCENT CURRENT versus INPUT VOLTAGE ~ 1.0k 100 lout lout = 3.0 A 40 100 FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT 100 80 10 I, FREQUENCY (Hz) FIGURE 5 - RIPPLE REJECTION versus FREQUENCY !z ~ II - /' fil Co = 0 ~ 10-2 f--- TJ = 2SoC 10 LM123, LM123A, LM223, LM223A, LM323, LM323A FIGURE 9 - DROPOUT VOLTAGE 2. 5 - IJ lout = 3.0 A "- II r-.. 5 r- !;( !i; r- r- ....... ~ -50 -10 lout = 1.0 A r- '"4.:c- ~ r--- 70 r-- r::::::-- r---. ~c --- t- - a ~ 4.0 t-o o '" ~ %N en 2.0 '" ~ o 110 5.0 190 150 10 15 FIGURE 11 - LINE TRANSIENT RESPONSE 1 4 - ~ o .1 !5~ 0 > ~ i!5-o .1 0 0;::: ~~-O .2 2 ffi '"~ :;; x ~ '" '> '" ~ :;; :Ii ~ ...2i 20 FIGURE 12 - LOAD TRANSIENT RESPONSE lou: = 150 mA_ Co = 0 TJ = 25°C - 6 ...!;i I .3 8 0 TJ=OoCTJ = 25°C 1'TJ=125°C Vin. INPUT VOLTAGE IVdc) TJ. JUNCTION TEMPERATURE 1°C) !: z ------ r-- I"---.. ~g l~ut=IO.5A- 30 6.0 ~ LlVO = 50 mV 0.5 -90 FIGURE 10 - SHORT CIRCUIT CURRENT 8.0 TA. AMBIENT TEMPERATURE 1°C) 50 MOTOROLA LINEAR/INTERFACE DEVICES 3-40 75 TA. AMBIENT TEMPERATURE lOCI 100 125 LM123, LM123A, LM223, LM223A, LM323, LM323A APPLICATIONS INFORMATION Design Considerations In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A O.331lF or larger tantalum, mylar, or other capacitor having low internal impedance at hig~ frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. FIGURE 15 - CURRENT REGULATOR FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR The LM123.A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor IS increased. Input ~,-L_M---,'2r3_._A---,h. 0.33~Fl f Output • ~_ -10 Constant Current to Grounded Load 0.1 ~F 10k The LM123,A regulator can also be used as a current source when connected as above. Resistor R determines the current as follows: 10 = 5.0 V R 4.le + 18 Vo. 8.0 V to 20 V Vin - VO~ 2.5 V 0.7 mA over line, load and temperature changes 18'" 3.5 mA Iii!! The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage. For example, a 2-ampere current source would require R to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7.5 volts. FIGURE 18 - CURRENT BOOSrWITH SHORT-CIRCUIT PROTECTION FIGURE 17 - CURRENT BOOST REGULATOR 2N4398 2N4398 or Equiv or Equiv Input '".".~ '"1' f.:"'""' . . .----<>-'IIvv-.-,( R The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. There· fore, an eight-ampere power transistor is specified. The LM123,A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the Vee of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by the Vee of the pass transistor. MOTOROLA LINEAR/INTERFACE DEVICES 3-41 II • ® LM137 LM237 LM337 MOTOROLA Specifications and Applications Information THREE·TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATORS THREE·TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATORS The LM137/237/337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of -1.2 V to - 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof. The LM137 series serve a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM137 series can be used as a precision current regulator. • Output Current in Excess of 1.5 Ampere in K and T Suffix Packages • Output Current in Excess of 0.5 Ampere in H Suffix Package • Output Adjustable Between -1.2 V and - 37 V • Internal Thermal Overload Protection • Internal Short-Circuit-Current Limiting, Constant with Temperature • Output Transistor Safe-Area Compensation • Floating Operation for High Voltage Applications • Standard 3-Lead Transistor Packages • Eliminates Stocking Many Fixed Voltages SILICON MONOLITHIC INTEGRATED CIRCUIT KSUFFIX METAL PACKAGE CASE 1-03 (Bottom View) CASE IS INPUT Pins. 1 and 2 electrically isolated from case. Case is third electrical connection. T SUFFIX PLASTIC PACKAGE CASE 221A-04 PIN 1. ADJUST 2. Yin 3. Vout Heatsink surface connected to Pin 2 STANDARD APPLICATION H SUFFIX METAL PACKAGE CASE 79-05 Co ** (Bottom View) 1.0/LF CASE IS INPUT PIN 1. ADJUST 2. OUTPUT 3. INPUT Vout H)--.--.........- - - - - < l - Vout ORDERING INFORMATION ·Cin IS required if regulator is located more than 4 Inches from power supply filter. A 1 ,uF solid tantalum or 10 /-IF aluminum electrolytic is recommended. **C o is necessary for stability. A 1 /-iF solid tantalum or 10 /-LF aluminum electrolytic is recommended. #Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information. LM137H LM137K LM237H LM237K LM337H LM337K LM337T LM3378T# MOTOROLA LINEAR/INTERFACE DEVICES 3-42 Tested Operating Temperature Range Device TJ TJ TJ TJ TJ TJ TJ TJ ~ ~ ~ ~ ~ ~ ~ ~ -55°C to + 150°C -55°C to + 150°C -25°C to + 150°C -25°C to + 15D"C DOC to + 125°C DOC to + 125"C DOC to +125"C -4DoC to + 125°C Package Metal Can Metal Power Metal Can Metal Power Metal Can Metal Power Plastic Power Plastic Power LM137, LM237, LM337 MAXIMUM RATINGS Symbol Rating Input-Output Voltage Differential Power Dissipation LM137 LM237 LM337 Operating Junction Temperature Range Tsta Storage Temperature Range Unit Vdc Value 40 Internally Limited -55to +150 -25 to +150 Oto +125 -65 to +150 VI-VO Po TJ °C °C ELECTRICAL CHARACTERISTICS (IVI- Vol = 5.0 V, 10 = 0.5 A for K and T packages; 10 = 0.1 A for H package; TJ = Tlow t 0 Characteristic Line Regulation (Note 3) TA = 25°C, 3.0 V '" lVI-Vol'" 40 V Load Regulation (Note 3) TA = 25°C, 10 mA '" 10 '" Imax IVai'" 5.0 V IVai'" 5.0V Thermal Regulation 10 ms Pulse, TA = 25°C I Thiah (see N0 te 1] Imax and Pmax per Note 2 unless otherw'ISe sPecifed) LM137/237 LM337 Figure Symbol 1 Regline 2 Regload Min Typ Max Min Typ Max Unit - 0,01 0.02 - 0.01 0.04 %N - - 15 0.3 50 1.0 mV %VO 0.003 0.04 %VQIW 65 100 p.A 2.0 5.0 p.A 3 IAdj - Adjustment Pin Current Change 2.5 V '" lVI-Vol'" 40 V 10 rnA '" IL '" Imax, Po '" Pmax, TA = 25°C Reference Voltage (Note 4) TA = + 25°C 3.0 V '" lVI-Vol'" 40 V, 10 rnA '" 10 '" Imax, Po '" Pmax, TJ = Tlow to Thigh Line Regulation (Note 3) 3.0 V '" lVI-Vol'" 40 V Load Regulation (Note 3) 10 mA '" 10 '" Imax IVai'" 5.0 V IVai'" 5.0 V 1,2 dlAdj - 3 Vref 1 Regline 2 Regload Temperature Stability (Tlow '" TJ '" Thigh) Minimum Load Current to Maintain Regulation !lVI-Vol", 10 V) (lVI-Vol'" 40 V) 3 3 Maximum Output Current lVI-Vol'" 15 V, Po '" Pm ax K and T Packages H Package lVI-Vol = 40 V, Po '" Pmax, TJ K and T Packages H Package 3 - Adjustment Pin Current = - 10 V, f 25 0.5 0.002 0.02 65 100 - 2.0 5.0 - -1.225 -1.250 -1.275 -1.213 -1.250 -1.287 -1.20 -1.25 -1.30 -1.20 -1.25 -1.30 - 0.02 0.05 - 20 0.3 50 1.0 TS - 0.6 ILmin - = 120 Hz (Note 5) Long-Term Stability, TJ = Thigh (Note 6) TA = 25°C for Endpoint Measurements Thermal Resistance Junction to Case H Package K Package T Package - 0.02 0.07 %N 20 0.3 70 1.5 mV %VO - 0.6 - %VO - 1.2 2.5 3.0 5.0 - 1.5 2.5 6.0 10 1.5 0.5 2.2 0.8 - 1.5 0.5 2.2 0.8 - 0.24 0.15 0.4 0.2 - 0.15 0.1 0.4 0.2 - 0.003 - - 0.003 - - - 66 60 77 66 60 77 - - 0.3 1.0 - 0.3 1.0 - 12 2.3 15 3.0 - 12 2.3 4.0 15 3.0 mA A Imax - N 4 RR - - 3 S - ROJC V - = 25°C RMS Noise, % of Va TA = 25°C, 10 Hz '" f '" 10 kHz Ripple Rejection, Va Without CAd~ CAdi = lOp. Regtherm 15 0.3 - - - - - %VO dB %11.0 k Hrs. 0c/w - NOTES: (1) Tlow=-55°CforLM137 ::: -25°C for LM237 ooe for lM337 (2) Imax = 1.5 A for K and T Packages = 0.5 A for H Package Pmax = 20 W for K and T Package. = 2 W for H Package Thigh = +150oC for LM137 (5) Cadj' when used. is connected between the adjustment pin and ground. (6) Since Long Term Stabilitv cannot be measured on each device before shipment. this specification is an engineering estimate of average stability from lot to lot. (7) Power dissipation within an I.C. voltage regulator produces a temperature gradient on the die. affecting individuall.C. components on the die. These effects can be minimized bV proper integrated circuit design and layout techniques. Thermal R,egulation is the effect of these temperature gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time. =+150oC for LM237 = +125°C for LM337 (3) Load and line regulation are specified at a constant junction tempera· ture. Pulse testing with a low duty cvcle is used. Change in Va because of heating effects is covered under the Thermal Regulation specifi· cation. (4) Selected devices with tightened tolerance reference voltage available. MOTOROLA LINEAR/INTERFACE DEVICES 3-43 LM137, LM237, LM337 SCHEMATIC DIAGRAM Adjust 60 100 2.0 k 2.5 k 'l II X 810 1k L-+- .-+-...J Vout (1 0 0 10 k 5.0 k ""'I 750 ~ 60k "- ~ 15 pF 100 k 2~ ~ t-.. 18 k 8co ~ .~ 2.0 k III N ho. I ~ (' Co ,..J1 H: 4.0 k Y V ho. }~ V ~ 100 "'" '" N ~~ 5f 'I 100 pF "'o" N .. "'0 " ho. 18 k 2.4 k 15 2.0 pF ~ 5.0 k 1100 k 500 30 k 240 5.0 pF .-1 r, r .....,.,.. H: ho. 1Q H: r< ~«~r-r; 600 6.0k 220 co "Co 500 0 ~ c....- O. 2 15 155 O. 05 FIGURE 1 - LINE REGULATION AND AIAdj/LlNE TEST CIRCUIT R2 1% 1.0/LF Co Rl ·Pulse Testing Required: 1% Duty Cycle is suggested. 1.0 p.F 120 1% Vout -, r- VVIH VOH U ___. VOL VIL Line Regulation (% VOl = IV?J-~VH9HI x 100 MOTOROLA LINEAR/INTERFACE DEVICES 3-44 LM137, LM237, LM337 FIGURE 2 - LOAD REGULATION AND AlAdJ'LOAD TEST CIRCUIT R2 "Pulse Testing required: 1% Duty Cycle is suggested. 1% II Co + 1.0 p.F - VI JL RL (max. Load) 0---0--1 -VO (min. Load) Vo (max. Load) Load Regulation (mV) = Vo (min. Load) - Vo (max. Load) Load Regulation (% VOl = Vo (min. ~Oad) - VO(max. Load) x 100 o (min. Load) FIGURE 3 - STANDARD TEST CIRCUIT R2 Cin 1% 1.0 p.F Co 1.0 p.F Vo Rl 120 To Calculate R2: R2 = (J!lL VRef I)Rl This assumes ladj is negligible. Pulse Testing Required: 1% Duty Cycle is suggested. FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT -b T R2 Cadj 1% ..J .... T 10 p.F I Cin F' 1.0 p.F Adjust Rl Vin + Co; :::1.0 p.F I I LM137 I I 120 01* ~ .. lN4002 RL ~ Vout Vo = -1.25V 14.3V----~ 4.3 V - - - - - - - f = 120 Hz "0, Discharges Cadj if Output is shorted to Ground. MOTOROLA LINEAR/INTERFACE DEVICES 3..45 LM137, LM237, LM337 FIGURE 6 - CURRENT LIMIT FIGURE 5 - LOAD REGULATION 0.2 II TJ'-5~'C ~-- lw - -.... 1..0·2 ~ .004 ~ -0.8 i -0.8 ~ g ...g I-- IL=0.5A - T- and K- Po- TJ.JUNCTION TEMPERATURE ('CI 25 50 - 1.8 ~1.260 ... ~ ...a -.... ~ ~ ~ 1.4 ~ 1.240 '".i' >'! 25 50 75 100 TJ.JUNCTION TEMPERATURE (oCI 125 150 TJ • ISO'C ,.~ .J. ."/ ".. 1.0 0.8 0.4 IFo II o 150 I , -~ 0.2 -25 -.:::::t 125 TJ • -55 C 1.2 :; 0.6 -~ 100 I- TJ = 2S'C -- r .§ w 1.230 -:- C 1.6 .. w 75 FIGURE 10 - MINIMUM OPERATING CURRENT FIGURE 9 - TEMPERATURE STABILITY :: 1.250 <.> z IL=[OOmA TJ• JUNCTION TEMPERATURE ('CI 1.270 ~ o I I L '1.0A ~ "'i i . -- V' ~.~ ~ 10 20 30 40 VI - Va. INPUT - OUTPUT VOLTAGE DIFFERENTIAL (Vd,1 MOTOROLA LINEAR/INTERFACE DEVICES 3-46 -- IL • 1.5A _.. I""-I""rI""rr-- ~ r-.....IL.~!;;A-..., > ... ~ I I Vo = _5 1V ::! .... :l; ~Q 40 FIGURE 8 - DROPOUT VOLTAGE ~ ....~ 45 40 J J ~ -1.2 TJ ' 25'C TJ '150'C LM137, LM237, LM337 FIGURE 11 - RIPPLE REJECTION v.rsUI OUTPUT VOLTAGE FIGURE 12 - RIPPLE REJECTION v_us OUTPUT CURRENT 100 tOO Cadi - 10 pF ~ z w ~ 8: a; :ij' 60 40 . 9 I ~ Without Cadi 8: a; -10 40 :ij' r-- -5 20 -15 II Without Cadi 60 w VI -Vr 5V rl L "50 rnA 20 I - - f-f - 120 Hz TJ" 25°C o0 C'~i} 10~F 80 0 -- I'---.... 0 ~ '"z 80 -20 -25 -30 -35 - VI" -15 V Va --10 V t" 120 Hz TJ" 25°C o -40 FIGURE 13 - RIPPLE REJECTION versus FREQUENCY 10 0.1 10 , OUTPUT CURRENT IAI 0.01 Va, OUTPUf VOLTAGE IVI FIGURE 14 - OUTPUT IMPEDANCE 100 VI" -15 V '" 80 /" z 0 ~ 60 ~ VO" -10 V IL =500mA ....... CL "I"F Cadj::: 10 ~F ........., """'-'\. '" Without Cadi-' w 8: 40 a; :ij' TJ ::: 2SoC '\ VI" -15 V 20 -Va" -10V _IL " 500 rnA TJ" 25°C 0 10 lK 100 '\. ...... ~ 10- 3 10M 10K lOOK 1M t, FREOUENCY IHzl FIGURE 15 - LINE TRANSIENT RESPONSE I-> "',..>!:?.... .8 .4 .2 0 .2 ,4 J .11 If'I , ~ 0:4 ,,'" ~> 0.2 " , Cadj: 10 pF '" ,5 TJ" 25°C Cl" 1 pF .0 10 \ -0.4 ~ .... c~ "'oo -1.0 -' -1.5 :!B 20 30 -0,5 40 I Without Cadi l.L I - V' I \ \ \ VI" -15 V VO"-10V INl-50rnA TJ" 25°C c~ "1 pF I t, MOTOROLA LINEAR/INTERFACE DEVICES / 20 10 t, TIME (,lis) 3-47 ,---V cadi "10pF -0.6 Va" -10V IL:;' 50mA \ ~- -0.2 \ . 2 "w 0 \ I 0.6 ~- 0 Without Cadi 1M lOOK FIGURE 16 - LOAD TRANSIENT RESPONSE w to .6 10K lK t, FREQUENCY IHzl 100 10 TIME Ipsl / J 30 40 II LM137, LM237, LM337 APPLICATIONS INFORMATION BASIC CIRCUIT OPERATION returned near the load ground to provide remote ground sensing and improve load regulation. The LM137 is a 3-terminal floating regulator. In operation, the LM137 develops and maintains a nominal -1.25 volt reference (Vrefl between its output and adjustment terminals. This reference voltage is converted to a programming currant (lPROG) by R1 (see Figure 111. and this constant currant flows through R2 from ground. The ragulated output voltage is given by: Vout = Vref (1 + R2 R1) + EXTERNAL CAPACITORS Al "f tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (Cadj) prevents ripple from being amplified as the output voltage is increased. A 10 "f capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application. An output capacitor (Co) in the form of a 1 "f tantalum or 1 0 "f aluminum electrolytic capacitor is required for stability. ladj R2 Since the current into the adjustment terminal (ladj) reprasents an error term in the equation, the LM137 was designed to control ladj to less than 100 ,.A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase. Since the LM137 is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible. PROTECTION DIODES When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes 10 prevent the capacitors from discharging through low current points into the regulator. figure 18 shows the LM137 with the recommended protection diodes for output voltages in excess of -25 Vor high capacitance values (Co> 25 "f. Cadj > 10 "f). Diode 01 prevents Co from discharging thru the I.C. during an input short circuit. Diode 02 protects against capacitor Cadj discharging through the I.C. during an output short circuit. The combination of diodes 01 and 02 prevents Cadj from discharging through the I.C. during an input short circuit. FIGURE 17 - BASIC CIRCUIT CONFIGURATION + ~ t- ~ R2 ladj Adjust Vin LM137 IpROG ~ Vref Rl I \. + CO \ I VOUI FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION OIOOES - I VOUI Vref = -1.25 V Typically Co LOAD REGULATION 02 The LM137 is capable of providing extremely good load regulalion. but a few precautions are needed to obtain maximum performance. For best performance. the programming resistor (Rl) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference. thereby degrading regulation. The ground end of R2 can be 01 lN4D02 MOTOROLA LINEAR/INTERFACE DEVICES 3-48 Vout ® LMl40,A Series LM340,A Series MOTOROLA Specifications and Applications Information THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS SILICON MONOLITHIC INTEGRATED CIRCUIT THREE-TERMINAL POSITIVE VOLTAGE REGULATORS This family offixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.0 ampere. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a 2% output voltage tolerance, on A-suffix 5.0, 12 and. 15 volt device types. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to boost output current capability at the nominal output voltage. • Output Current in Excess of 1.0 Ampere • No External Components Required • Output Voltage Offered in 2% and 4% Tolerance" • Internal Thermal Overload Protection • Internal Short-Circuit Current Limiting • Output Transistor Safe-Area Compensation KSUFFIX METAL PACKAGE CASE 1-03 ~ PIN 1. INPUT 2. OUTPUT CASE GROUND (Bottom View) TSUFFIX PLASTIC PACKAGE CASE 221A-04 ORDERING INFORMATION Output Voltage Device end Tolerence v LMI40K-5.0 5.0 LMl40AK-5.0 5.0 V ± 2% LMl40K-8.0 8.0 LMl40K-12 12 V ± 4% LMl40AK-12 12 V ± 2% LMl40K-15 15 V::t 4% LMI40AK-15 15 v v ± 4% ± 4% ± 2% LM340K-5.0 5.0 V ± 4% LM340AK-5.0 5.0 V ± 2% LM340T-5.0 5.0V±4% LM340AT-5.0 5.0V±2% LM340T-6.0 6.0V±4% LM340K-8.0 8.0 V ± 4% LM340T-8.0 B.O V ± 4% LM340K-12 12 V ± 4% LM340AK-12 12 V ± 2% LM340T-12 12 V ± 4% LM340AT-12 12 V ± 2% LM340K-15 15 V ± 4% LM340AK-15 15 V ± 2% LM340T-15 15 V ± 4% LM340AT-15 15V ± 2% LM340T-18 18V ± 4% LM340T-24 24V ± 4% *2% regulators are available in 5, 12 and Tested Operating Junction Temp. Range _. 55°C to + 150°C - 55°C to + 150°C - 55°C to + 150°C - 55°C to + 150°C - 55°C to + 150°C - 55°C to + 150°C - 55°C to + 150°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C O°C to + 125°C DOC to + 125°C DOC to + 125°C DOC to + 125°C 15 volt devices Paekege PIN 1. INPUT 2. GROUND 3. OUTPUT Metal Power (Heatsink surface connected to Pin 2) Metal Power Metal Power STANDARD APPLICATION Metal Power Metal Power Metal Power Metal Power Metal Power r-r +'--1'_--3 ,",."T""1 'M'~-"" ~.i~; /LF 0""" Co'" Plastic Power Metal Power A common ground is required between the input and the output voltages. The input voltage must remain typically 1.7 V above the output voltage even during the low point on the input ripple voltage. Plastic Power XX = these two digits of the type number indicate voltage. Plastic Power Metal Power Plastic Power * = Cin is required if regulator is located an appreciable distance from power supply filter. = Co Metal Power Plastic Power Plastic Power Plastic Power MOTOROLA LINEAR/INTERFACE DEVICES 3-49 is not needed for stability; however, it does improve transient response. If needed, use a 0.1 /LF ce- ramic disc. II • LM140,A, LM340,A MAXIMUM RAnNGS (TA = + 25'C unless otherwise noted.) Rating Symbol Value Unit Vin 35 Vdc Input Voltage (5.0 V - 18 V) (24 V) 40 Power Dissipation and Thermal Characteristics Plastic Package TA = +25'C Derate above TA = + 25'C Thermal Resistance, Junction to Air TC = +25'C Derate above TC = + 75'C (See Figure 1) Thermal Resistance, Junction to Case Metal Package TC = +25'C Derate above TA = + 25'C Thermal Resistance, Junction to Air TC = +25'C Derate above TC = + 65'<; (See Figure 2) Thermal Resistance, Junction to Case Po 1/8JA 8JA Internally Limited 15.4 65 Watts mWI'C Po 1I8JC 8JC Internally Limited 200 5.0 Watts mWI'C Po 1/8JA 8JA Internally Limited 22.5 45 Watts mWI'C Po Watts mWI'C 8JC Internally Limited 182 5.5 TstR -65 to + 150 'c 1/8JC Storage Junction Temperature Range Operating Junction Temperature Range 'CIW 'CIW 'CIW °CIW 'C TJ LM140,A LM340,A -55 to + 150 Oto +150 EQUIVALENT SCHEMATIC DIAGRAM 1.0 k Jl.0k 210 Input ~ A L J 6.7 V" r' 16 k V k~ 1= v \J 200 .. 1.0 k r-3.0 k 5.6 k 6.4~ k:: ~ ~ ~ ,04 ~ ,,,' 1" 3.9 k t;l f 6kO~ 1ft: :~ ,6.0 k ... ho 300 0.12 13 50 2.6 k .... V 10 pF "I 620 2.0 k lOO y 1 V 200 Output ~~ 1 1 ~ 2.8k ;.or Gnd MOTOROLA LINEAR/INTERFACE DEVICES 3-50 LM140A LM340,A DEFINITIONS dissipation for which the regulator will operate within specifications. Quiescent Current - That part of the input current that is not delivered to the load. Output Noise Voltage - The rms ae voltage at the output, with constant load and no input ripple, measured over a specified frequency range. Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under condi· tions of low dissipetion or by using pulse techniques such that the average chip temperature is not significantly affected. load Regulation - The change in output voltage for a change in load current at constant chip temperature. Maximum Power Dissipation - The maximum total device LM140/340 - 5.0 ELECTRICAL CHARACTERISTICS (V in Characteristic = 10 V,0= I 500 mA TJ = Tlow toT hiah (Note 1) ' u nless otherwise noted) Symbol Min Max Unit Typ Output Voltage ITJ = + 2S"C) 10 = 5.0 mA to 1.0 A Vo Line Regulation (Note 2) B.O to 20 Vdc 7.0 to 25 Vdc (TJ = + 2S"C) B.O to 12 Vdc, 10 = 1.0 A 7.3 to 20 Vdc, 10 = 1.0 A (TJ = +2S"C) Regline load Regulation (Note 2) 5.0 mA '" 10 '" 1.0A 5.0 mA '" 10 '" 1.5 A (TJ = +2S"C) 250 mA '" 10 '" 750 mA ITJ = +2S"C) Regload 5.0 5.2 - - - - 50 50 25 50 - - - - - Output Voltage lM140 B.O '" Yin '" 20 Vdc, 5.0 rnA '" 10 '" 1.0 A, PD '" 15 W LM340 7.0'" Vin '" 20 Vdc, 5.0 mA '" 10 '" 1.0 A, PD '" 15 W Vo Quiescent Current 10 = 1.0A lMI40 lM340 lMI40 (TJ = + 25"C) lM340 (TJ = + 25"C) IB Quiescent Current Change 8.0 '" Vin '" 25 Vdc, 10 = 7.0'" Vin '" 25 Vdc, 10 = 5.0 mA '" 10 '" 1.0 A, Vin 8.0'" Vin '" 20 Vdc, 10 = 7.5'" Yin '" 20 Vdc, 10 = 4.B mV - mV - 50 50 25 Vdc 4.75 - 5.25 4.75 - 5.25 mA - - - 4.0 4.0 7.0 B.5 6.0 B.O - - O.B 1.0 0.5 O.B 1.0 68 62 - - 68 62 80 80 - - mA AlB 500 mA 500 mA = 10 V 1.0 A 1.0 A lMI40 lM340 lMI40, lM340 lMI40 lM340 - Ripple Rejection lMI40 lM340 10 = 1.0AITJ = +25"C) lMI40 lM340 Vdc RR - dB Output Resistance (f = 1.0 kHz) ro Short Circuit Current Limit (TJ = + 25"C) Isc - Output Noise Voltage (TA = + 25"C) 10Hz"'f'" 100kHz Vn - 40 - TCVO - ±0.6 - mVI"C - 2.4 7.3 - - Vdc Dropout Voltage Vin -VO Average Temperature Coefficient of Output Voltage 10 = 5.0 mA Peak Output Current (TJ = + 2S"C) 10 Input Voltage to Maintain Line Regulation (TJ = +2S"C) 10 = 1.0A = - SS"C for LMI40 Thigh = + Iserc for LMI40 O"C for LM340 = + 12S"C for LM340 2. Load and line regulation are specified at constant junction temperature. Changes in - 1.7 2.0 2.0 Vdc mil mA /JoV A NOTES: I. Tlow Va due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. MOTOROLA LINEAR/INTERFACE DEVICES 3-51 II .. LM140,A, LM340,A LM140Al340A - 5.0 ELECTRICAL CHARACTERISTICS (Vin = 10V.0= t 1) • un ess 0 th erwlse not ed) I lOA TJ = T low t 0 Thigh (N oe Typ Characteristic Symbol Min Max Unit Output Voltage (TJ = + 25"C) 10 = 5.0 mA to 1.0 A Va Line Regulation (Note 2) 7.5 to 20 Vdc. 10 = 500 mA 7.3 to 20 Vdc (TJ = + 25"C) 8.0 to 12 Vdc 8.0 to 12 Vdc (TJ = + 25"C) Regline Load Regulation (Note 2) 5.0 mA '" 10 '" 1.0 A 5.0 mA '" 10 '" 1.5 A (TJ = + 25"C) 250 mA '" 10 '" 750 mA (TJ = + 25"C) Regload 4.9 5.0 5.1 - - 10 10 12 mV 3.0 - - - - Output Voltage 7.5'" Vin '" 20 Vdc. 5.0 mA,'" 10 '" 1.0 A. PD '" 15 W Va 4.8 Quiescent Current 18 - 3.5 Ouiescent Current Change 5.0 mA '" 10'" 1.0 A. Vin = 10 V 8.0 '" Vin '" 25 Vdc. 10 = 500 mA 7.5'" Vin '" 20 Vdc. 10 = 1.0 A (TJ = + 25"C) lolB Ripple Rejection 8.0'" Vin '" 18 Vdc. 1= 120 Hz 10 = 500 mA 10 = 1.0 A (TJ = + 25"C) RR - - 0.5 0.8 0.8 mil mA 40 - - ±0.6 - mVI"C - 2.4 7.3 - - Vdc Output Noise Voltage (T A = + 25"C) 10 Hz '" I '" 100 kHz Vn TCVO 80 Vdc /LV A Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-52 mA - 2.0 Isc NOTES: 1, Tlow ~ -55°C for LM140A Thigh ~ + 150°C for LM140A O"C for LM340A ~ + 125°C for LM340A 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. mA - Short Circuit Current Limit (TJ = + 25"C) 10 6.5 6.0 1.7 - Peak Output Current (TJ = + 25°C) Vdc 2.0 ro Vin - Va Input Voltage to Maintain Line Regulation (TJ = +25"C) 5.2 - Output Resistance (I = 1.0 kHz) Average Temperature Coefficient 01 Output Voltage 10 = 5.0 mA - 25 25 15 dB 68 68 Dropout Voltage 4.0 mV - (TJ = + 25"C) Vdc LM140,A, LM340,A LM1401340 - 6.0 t 1) , un ess 0 th erwlse noted) ELECTRICAL CHARACTERISTICS (V in = 11 V,0= I 500 mATJ = Tlow t 0 Thigh (N oe Unit Symbol Min Typ Max Characteristic Vdc 5.75 6.0 6.25 Output Voltage (TJ = + 25°C) Vo 10 = 5.0 mA to 1.0 A mV Line Regulation (Note 2) 9.0 to 21 Vdc 8.0 to 25 Vdc (TJ = + 25°C) 9.0 to 13 Vdc, 10 = 1.0 A 8.3 to 21 Vdc, 10 = 1.0 A (TJ = + 25°C) Regline Load Regulation (Note 2) 5.0 mA '" 10'" 1.0 A 5.0 mA '" 10'" 1.5 A (TJ = + 25°C) 250 mA '" 10 '" 750 mA (TJ = + 25°C) Regload Vo Quiescent Current 10 = 1.0 A LM140 LM340 LM140 (TJ = + 25°C) LM340 (TJ = + 25°C) 18 60 60 30 60 - - 60 mV - 5.7 - 6.3 5.7 - 6.3 mA - LM140 LM340 LM140, LM340 LM140 LM340 - 4.0 4.0 7.0 8.5 6.0 8.0 - 0.8 1.0 0.5 0.8 1.0 mA - Ripple Rejection LM140 LM340 10 = 1.0A(TJ = + 25°C) LM140 LM340 60 30 Vdc tolB 500 mA 500 mA = 11 V 1.0 A 1.0 A - - - Output Voltage LM140 9.0'" Yin '" 21 Vdc, 5.0 mA '" 10 '" 1.0 A, PD '" 15 W LM340 8.0", Yin '" 21 Vdc, 6.0 mA '" 10 '" 1.0 A, PD" 15 W Quiescent Current Change 9.0 '" Yin '" 25 Vdc, 10 = 8.0 '" Yin '" 25 Vdc, 10 = 5.0 mA '" 10 '" 1.0 A, Yin 9.0'" Yin '" 21 Vdc, 10 = 8.6'" Yin '" 21 Vdc, 10 = - RR dB 65 59 - - - - 65 59 78 78 - 1.7 Output Resistance (I = 1.0 kHz) ro - - 2.0 - Short Circuit Current Limit (TJ = + 25°C) Ise - 1.9 Output Noise Voltage (TA = + 25·C) 10 Hz '" I '" 100 kHz Vn - 45 TCVO - ~O.7 - 2.4 - A 8.3 - - Vdc Dropout Voltage Yin - Vo Average Temperature Coefficient 01 Output Voltage 10 = 5.0 mA Peak Output Current (TJ = t25°C) 10 Input Voltage to Maintain Line Regulation (TJ = + 25°C) 10 = 1.0A - - Vdc mO mA /JoV mV/"C NOTES: I. Tlow = -55·C for LMI40 O·C for LM340 Thigh = + 150·C for LMI40 = + 125·C for LM340 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-53 • II LM140,A, LM340,A LM140/340 - B.O ELECTRICAL CHARACTERISTICS (Vin = 14V·0= t I 500 mATJ = Tlow t 0 Thigh (N oe Characteristic Symbol Min Output Voltage (TJ = + 2S"CI '0 = 5.0 mA to 1.0 A Vo Line Regulation (Note 2) 11 to 23 Vdc 10.5 to 25 Vdc (TJ = +2S"CI 11 to 17 Vdc, 10 =1.0 A 10.5 to 23 Vdc, 10 = 1.0 A (TJ = +2S"CI Regline Load Regulation (Note 21 5.0 mA '" '0 '" 1.0 A 5.0 mA '" '0 '" 1.5 A (TJ = + 25"C) 250 mA '" 10 '" 750 mA (TJ = + 25"CI Regload 1)I un ess ,0th erwrse not ed) Typ Max Unit 7.7 8.0 8.3 Vdc - - - - - - - Output Voltage LM140 11.5'" Yin '" 23 Vdc, 5.0 mA '" '0 '" 1.0 A, Po '" 15 W LM340 10.5'" Yin '" 23 Vdc, 5.0 rnA '" '0'" 1.0 A, PD '" 15 W - mV 80 80 40 80 mV 80 80 40 Vdc Vo Quiescent Current 7.6 - 8.4 7.6 - 8.4 - 4.0 4.0 7.0 8.5 6.0 8.0 - - mA IB 10 = 1.0 A LM140 LM340 LM140 (TJ = +2S"C) LM340 (TJ = +2S"C) Quiescent Current Change 11.5'" Yin '" 25 Vdc, 10 = 500 mA 10.5 '" Yin '" 25 Vdc, 10 = 500 mA 5.0 mA '" '0 '" 1.0 A, Yin = 14 V 11.5'" Yin '" 23 Vdc, 10 = 1.0 A 10.6'" Yin '" 23 Vdc, 10 = 1.0 A liB LM140 LM340 LM140, LM340 LM140 LM340 Ripple Rejection LM140 LM340 10 = 1.0A(TJ = +2S"C) LM140 LM340 mA - - - - 0.8 1.0 0.5 0.8 1.0 62 56 - - 62 56 76 76 Vdc RR dB Yin -yo - 1.7 - Output Resistance (I = 1.0 kHz) ro 2.0 - mll Short Circuit Current Limit (TJ = +2S"C) Ise 1.5 Vn 52 - mA Output Noise Voltage (TA = + 2S'CI 10 Hz '" I '" 100 kHz - TCVO - ±1.0 - mV/"C - 2.4 - Vdc Dropout Voltage Average Temperature Coefficient of Output Voltage 10 = 5.0 mA Peak Output Current (TJ = + 2S'C) 10 Input Voltage to Maintain Line Regulation (TJ = +2S'CI 10 = LOA NOTES: 1. T,ow ~ - SS'C for LM140 O'C for LM340 Thigh ~ ~ 10.5 - ".V A - +IS0'CforLMI40 + 12S'C for LM340 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Vo due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-54 LM140,A, LM340,A LM1401340 - 12 ELECTRICAL CHARACTERISTICS (V in = 19V,O~ I 500 mA TJ Characteristic Output Voltage (TJ ~ + 25°C) 10 ~ 5.0 mA to 1.0 A TI ow to Thialh (Note 1) unless otherwise noted) Typ Unit Symbol Min Max ~ Line Regulation (Note 2) 15 to 27 Vdc 14.6 to 30 Vdc (TJ ~ + 25'C) 16 to 22 Vdc, 10 ~ 1.0 A 14.6 to 27 Vdc, 10 ~ 1.0 A (TJ 12 12.5 - 120 120 60 120 - 120 120 60 11.4 - 12.6 11.4 - 12.6 - 7.0 8.5 6.0 8.0 - ~ - + 25'C) Regload Output Voltage LMl40 15.5'" Vin '" 27 Vdc, 5.0 mA '" 10 '" 1.0 A, PO" 15 W LM340 14.5'" Vin '" 27 Vdc, 5.0 mA" 10 " 1.0 A, PO" 15 W Vo Quiescent Current 10 ~ 1.0A LMl40 LM340 LM140(TJ ~ + 25'C) LM340 (TJ ~ + 25'C) IS Vdc mA - 4.0 4.0 - - :'IS LM140 LM340 LM140, LM340 LM140 LM340 61 55 - 61 55 Vin -VO ~ 1.0 kHz) Short Circuit Current Limit (TJ Output Noise Voltage (TA 10 Hz '" f '" 100 kHz ~ ~ 72 72 Vdc 1.1 - - Average Temperature Coefficient of Output Voltage 10 ~ 5.0 mA Peak Output Current (TJ ~ + 25'C) NOTES: 1. Tlow ~ -55"C for LMl40 Vn 75 - p.V TCVO - ±1.5 - mvrc - 2.4 - A - - Vdc 10 Input Voltage to Maintain Line Regulation (TJ 10 ~ 1.0A Thigh ~ ~ 1.7 2.0 Isc + 25'C) dS - - ro + 25'C) - mA 0.8 1.0 0.5 0.8 1.0 - + 25'C) Oropout Voltage Output Resistance (f - - RR ~ - mV - - quiescent Current Change 15'" Vin '" 30 Vdc, 10 ~ 500 mA 14.5 '" Vin '" 30 Vdc, 10 ~ 500 mA 5.0 mA '" 10'" 1.0 A, Vin ~ 19 V 15 '" Vin '" 27 Vdc, 10 ~ 1.0 A 14.8'" Vin '" 27 Vdc, 10 ~ 1.0 A Vdc mV Regline Load Regulation (Note 2) 5.0 mA '" 10'" 1.0 A 5.0 mA '" 10'" 1.5 A (TJ ~ + 25'C) 250 mA '" 10'" 750 mA (TJ ~ + 25'C) Ripple Rejection LMl40 LM340 10 ~ 1.0A(TJ LMI40 LM340 11.5 Vo + 25'C) 14.6 mfi mA + 150"C for LM140 = + 125'C for LM340 2. Load and line regulation are specified at constant junction temperature. Changes in Va due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. MOTOROLA LINEAR/INTERFACE DEVICES 3-55 • • LM140,A, LM340,A LM140Al340A -12 ELECTRICAL CHARACTERISTICS (V in = 19V·O~ t 1), un ess 0 th erwlse not e d) I 1 OA TJ = Tlow t 0 Thigh (N oe Typ Symbol Min Max Characteristic Output Voltage (TJ = + 25'C) 12 11.75 12.25 Vo 10 = 5.0 mA to Regline Load Regulation (Note 2) 5.0mA"'10"'1.0A 5.0 mA '" 10 '" 1.5 A (TJ ~ + 25'C) 250 mA '" 10 '" 750 mA (TJ ~ + 25'C) Regload Quiescent Current IB = + 25'C) Quiescent Current Change 5.0 mA '" 10 '" 1.0 A. Yin = 19 V 15'" Yin '" 30 Vdc. 10 = 500 mA 14.8" Yin ., 27 Vdc. 10 ~ 1.0 A (TJ 1.0 kHz) Output Noise Voltage (TA 10 Hz" f., 100 kHz ~ + 25'C) + 25'C) = + 25'C) ~ O'C for LM340A 3.5 - - 6.5 6.0 mA - - 0.5 0.8 0.8 72 -- 1.7 Vdc 2.0 - 1.1 - mA Vn - 75 - p.V TCVO - ±1.5 - mVI'C - 2.4 - Vdc 10 Input Voltage to Maintain Line Regulation (TJ = -55'C for LMl40A - - Vdc - Isc Average Temperature Coefficient of Output Voltage 10 = 5.0 mA Peak Output Current (TJ - 12.5 61 61 ro ~ mV 60 32 19 dB Yin - Vo Short Circuit Current Limit (TJ - RR Dropout Voltage = - 18 18 30 9.0 mA = + 25'C) Ripple Rejection 15 '" Yin ., 25 Vdc. f ~ 120 Hz 10 ~ 500 mA 10 ~ 1.0 A. (TJ ~ + 25'C) 4.0 - 11.5 ~IB mV - - - Vo Output Resistance (f - Output Voltage 14.8'" Yin '" 27 Vdc. 5.0 mA '" 10 '" 1.0 A. PD '" 15 W NOTES: 1. Tlow Vdc 1.0 A Line Regulation (Note 2) 14.8 to 27 Vdc. 10 = 500 mA 14.5 to 27 Vdc (TJ ~ + 25'C) 16 to 22 Vdc 16 to 22 Vdc (TJ ~ + 25'C) (TJ Unit Thigh ~ + 25'C) 14.5 - mil A = + 150'C for LMl40A = + 125'C for LM340A 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-56 LM140,A, LM340,A LM140A/340 - 15 ELECTRICAL CHARACTERISTICS (V·m= 23 V 10 = 500 mA TJ = TI ow to Th'IIgrh (Note 1) unless otherwise noted) Characteristic Output Voltage (TJ = + 25'C) 10 = 5.0 mA to 1.0 A Line Regulation (Note 2) 18.5 to 30 Vdc 17.5 to 30 Vdc (TJ = + 25'C) 20 to 26 Vdc. 10 = 1.0 A 17.7 to 30 Vdc. 10 = 1.0 A (TJ Symbol Min Typ Max Unit Vo 14.4 15 15.6 Vdc - - - - 150 150 75 150 - - 150 150 75 mV Regline = +25'C) Load Regulation (Note 2) 5.0 mA '" 10 '" 1.0 A 5.0 mA '" 10'" 1.5 A (TJ = + 25'C) 250 mA '" 10'" 750 mA (TJ = + 25'C) Regload Output Voltage LMI40 18.5'" Vin.'" 30 Vdc. 5.0 mA '" 10 '" 1.0 A. PD '" 15 W LM340 17.5'" Yin '" 30 Vdc. 5.0 mA '" 10 '" 1.0 A. PD '" 15 W Vo Quiescent Current 10 = 1.0A LM140 LM340 LM140 (TJ = + 25'C) LM340 (TJ = + 25'C) IB mV Vdc 14.25 - 15.75 14.25 - 15.75 mA - 4.0 4.0 7.0 8.5 6.0 8.0 - - 0.8 1.0 0.5 0.8 1.0 60 54 - - 60 54 70 70 ro - 2.0 - Isc - 800 - mA Vn - 90 - !'V Average Temperature Coefficient 01 Output Voltage 10 = 5.0 mA TCVO - :!:1.8 - mvrc = 10 - 2.4 - Vdc Quiescent Current Change Ripple Rejection LMI40 LM340 10 = 1.0A (TJ LMI40 LM340 mA .iIS 18.5 '" Yin "" 30 Vdc. 10 = 500 mA 17.5 '" Yin "" 30 Vdc. 10 = 500 mA 5.0 mA '" 10'" 1.0 A. Yin = 23 V 18.5'" Yin '" 30 Vdc. 10 = 1.0 A 17.9"" Yin '" 30 Vdc. 10 = 1.0 A - LM140 LM340 LM140. LM340 LM140 LM340 RR = +25'C) Dropout Voltage Output Resistance (I dB Yin - Vo = 1.0 kHz) Short Circuit Current Limit (TJ Output Noise Voltage (TA 10 Hz '" I '" 100 kHz Peak Output Current (TJ = = + 25'C) + 25'C) + 25'C) Input Voltage to Maintain Line Regulation (TJ 10 = 1.0A = + 25'CI 17.7 1.7 - Vdc mll A NOTES: 1. Tlow = -55'C for LM140 Thigh = + 150'C for LM140 = + 125"C for LM340 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-57 II • LM140,A, LM340,A LM14OA134OA - 15 ELECTRICAL CHARACTERISTICS (V'm= 23 V 10 = lOA TJ = TI ow to Th'1 h (Note 1) unless otherwise noted) Characteri!ltic Output Voltage (TJ = + 25"<:) 10 = 5.0 mA to 1.0 A Symbol Min Typ Max Unit Vo 14.7 15 15.3 Vdc - 22 22 30 10 Line Regulation (Note 2) 17.9 to 30 Vdc. 10 = 500 mA 17.5 to 30 Vdc (TJ = + 25°C) 20 to 26 Vdc. 10 = 1.0 A 20 to 26 Vdc. 10 = 1.0 A (TJ = + 25°C) Regline load Regulation (Note 2) 5.0 mA '" 10'" 1.0A 5.0 mA '" 10" 1.5 A (TJ = + 25°C) 250 mA .. 10" 750 mA (TJ = +25°C) Regload 4.0 - - - Vo Quiescent Current (TJ = +25°C) IB Quiescent Current Change 5.0 mA .. 10" 1.0 A. Vin = 23 V 17.9 .. Vin" 30 Vdc. 10 = 500 mA 17.9 .. Vin .. 30 Vdc. 10 = 1.0 A (TJ AlB 14.4 - - 12 - 75 35 21 15.6 Vdc 6.5 6.0 mA 3.5 - 0.5 0.8 0.8 mA - + 25°C) Ripple Rejection 18.5 .. Vin .. 28.5 Vdc. I = 120 Hz 10 = 500 mA 10 = 1.0 A. (TJ = + 25°C) .mV mV - Output Voltage 17.9" Vin E 30 Vdc. 5.0 mA .. 10" 1.0 A. PO" 15 W = - RR dB 60 60 - - Vin - Vo - 1.7 - roo - 2.0 - Isc - 800 Vn - 90 Average Temperature Coefficient 01 Output Voltage 10 = 5.0 mA TCVO - ±1.8 = 10 - 2.4 Dropout Voltage Output Resistance (I = 1.0 kHz) Short Circuit Current Limit (TJ Output Noise Voltage (TA 10 Hz .. I .. 100 kHz Peak Output Current (TJ = + 25°C) = + 25°C) + 25°C) Input Voltage to Maintain Line Regulation (TJ NOTES: 1. Tlow = -56'C for LM140A O"C for LM340A Thigh = + 25°C) 17.5 70 - - Vdc mil mA p.V mvrc A Vdc = +1S0'C for LM140A = + 12S'C for LM340A 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Vo due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-58 LM140,A, LM340,A LM1401340 - 18 I noted) ELECTRICAL CHARACTERISTICS (V in = 27 V,0= 500 rn A TJ = Tlow to Thiah (Note 1) unless otherw·se I Characteristic Output Voltage (TJ = + 25'C) 10 = 5.0 rnA to 1.0 A Symbol Min Typ Max Unit Vo 17.3 18 18.7 Vdc - - 180 180 90 180 - - 180 180 90 Line Regulation (Note 2) 21.5 to 33 Vdc 21 to 33 Vdc (TJ = +25'C) 24 to 30 Vdc, 10 = 1.0 A 21 to 33 Vdc, 10 = 1.0 A (TJ = + 25'C) Regline Load Regulation (Note 2) 5.0 rnA .;; 10 .;; 1.0 A 5.0 rnA .;; 10 .;; 1.5 A (TJ = + 25'C) 250 rnA.;; 10';; 750 rnA (TJ = + 25'C) Regload Output Voltage LMI40 22", Vin '" 33 Vdc, 5.0 rnA '" 10 '" 1.0 A, PD .;; 15 W LM340 21 '" Vin .;; 33 Vdc, 5.0 rnA.;; 10';; 1.0 A, Po '" 15 W Vdc - 18.9 17.1 - 18.9 rnA 4.0 4.0 - - - - 0.8 1.0 0.5 0.8 1.0 59 53 - - - 59 53 69 69 - Ripple Rejection LM140 LM340 10 = 1.0 A (TJ = + 25'C) LM140 LM340 - 7.0 8.5 6.0 8.0 - RR Dropout Voltage dB Short Circuit Current Limit (TJ = + 25'C) Average Temperature Coefficient 01 Output Voltage 10 = 5.0 rnA = + 25'C) Input Voltage to Maintain Line Regulation (TJ 10 = 1.0 A Thigh + 150'C for lM140 = + 12S'C for lM340 :t2.3 - rnVfC - 2.4 21 - - Vdc 10 = + 25'C) = - TCVO Isc = + 25'C) 110 Vn ro 2. load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. 1.7 2.0 500 Vdc mO rnA f.LV A Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-59 - - - Vin - Vo = 1.0 kHz) Output Noise Voltage (T A 10 Hz '" 1 .;; 100 kHz - mA alB LM140 LM340 LM140, LM340 LM140 LM340 22 .;; Vin '" 33 Vdc, 10 = 500 mA 21 .;; Vin .;; 33 Vdc, 10 = 500 rnA 5.0 rnA '" 10 .;; 1.0 A, Vin = 27 V 22 '" Vin .;; 33 Vdc, 10 = 1.0 A 21 '" Vin '" 33 Vdc, 10 = 1.0 A NOTES: 1. Tlow = -55'C for lM140 O'C for lM340 17.1 IB Quiescent Current Change Peak Output Current (TJ rnV Vo Quiescent Current 10 = 1.0A LMI40 LM340 LM140 (TJ = + 25'C) LM340 (TJ = + 25'C) Output Resistance (f rnV II • LM140,A, LM340,A LM140/340 - 24 ELECTRICAL CHARACTERISTICS (V,In= 33 V 10 = SOO mA TJ = TI ow to Th'II!!Ih (Note 1) unless otherwise noted) Characteristic Symbol Min Typ Max Unit Output Voltage (TJ = + 25'C) 10 = 5.0 mA to 1.0 A Vo Line Regulation (Note 2) 28 to 38 Vdc 27 to 38 Vdc (TJ = + 2S'C) 30 to 36 Vdc. 10 = 1.0 A 27.1 to 38 Vdc. 10 = 1.0 A (TJ Regline = +2S"C) Load Regulation (Note 2) 5.0 mA '" 10 '" 1.0 A 5.0 mA '" 10 '" 1.5 A (TJ = +2S'C) 250 mA '" 10 '" 750 mA (TJ = + 25'C) Regload Output Voltage LM140 28", Yin '" 38 Vdc. 5.0 mA '" 10 '" 1.0 A. PD '" 15 W LM340 27", Yin '" 38 Vdc. 5.0 mA '" 10 '" 1.0 A. PD '" 15 W Quiescent Current 10 = 1.0A LM140 LM340 LM140 (TJ = + 25'C) LM340 (TJ = +2S'C) Vo Quiescent Current Change 28 '" Yin '" 38 Vdc. 10 = 500 mA 27 '" Yin '" 38 Vdc. 10 = 500 mA 5.0 mA '" 10 '" 1.0 A. Yin = 33 V 28'" Yin '" 38 Vdc. 10 = 1.0 A 27.3'" Yin '" 38 Vdc.IO = 1.0 A tllB 23 24 25 - - - 240 240 120 240 - - 240 240 120 Vdc mV mV Vdc 22.8 - 25.2 22.8 - 25.2 mA 18 - - 4.0 4.0 7.0 8.5 6.0 8.0 mA - - - 0.8 1.0 0.5 0.8 1.0 56 50 - - - 56 50 66 66 - 1.7 - Vdc 2.0 - mH 200 - rnA Vn - 170 - p.V Average Temperature Coefficient 01 Output Voltage 10 = S.O mA TCVO - ±3.0 - mV/'C = 10 - 2.4 - A - - Vdc Ripple Rejection LM140 LM340 10 = 1.0 A (TJ LM140 LM340 LM140 LM340 LM140. LM340 LM140 LM340 RR = - +2S"C) Dropout Voltage Output Resistance (I dB Yin -yo = 1.0 kHz) Short Circuit Current Limit (TJ Output Noise Voltage (TA 10 Hz '" I '" 100 kHz Peak Output Current (TJ = = ro +2S"C) Ise + 2S"C) + 2S"C) Input Voltage to Maintain Line Regulation (TJ 10 = 1.0 A = 27.1 + 25"CI NOTES: 1. Tlow = -55'C for LM140 Thigh = + 1S0'C for LM140 O'C for LM340 = + 12S'C for LM340 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-60 LM140,A, LM340,A VOLTAGE REGULATOR PERFORMANCE The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration « 100 /LS) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ins) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation. Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage chang~ per watt. The change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of Ie layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device. Figure 1 shows the line and thermal regulation response of a typical LM140AK-5.0 to a 10 watt input pulse. The variation of the output voltage due to line regulation is labeled CD and the thermal regulation component is labeled ®. Figure 2 shows the load and thermal regulation response of a typical LM140AK-5.0 to a 15 watt load pulse. The output voltage variation due to load regulation is labeled CD and the thermal regulation component is labeled ®. FIGURE 2 - LOAD AND THERMAL REGULATION FIGURE 1 - LINE AND THERMAL REGULATION t. TIME (2.0 '1ls/div.1 LM14OAK-5.0 Vo = 5.0V Yin = 8.0 V.... 18 V.... 8.0 V lout = tOA t TIME 12 0 ms/div I LM14OAK-5.0 Vo = 5.0 V Yin = 15 lout = OA .... 1.5A .... OA '"' ....... TJ = 2~oC f. .§. 0- 3. 0 z olf w 2.0 g~ .... 0 ~~ .... -' 1.5 :>« ~~ :>w ~ ~ 1.0 \ 10 '"J#I 20 Vin. INPUT VOLTAGE IVdc) ---- TJ 20 1 0.1 0.01 10 10 lout. OUTPUT CURRENT IA) FIGURE 10 - in 10 -1.0 A -- PEAK OUTPUT CURRENT 4.0 .!IV out = 100 mV !-- I I o 40 30 I.! I. VirVIO ~ 15.~ VI 10 DROPOUT VOLTAGE r-r-- r-- J. ~ 150°C I I I '3 TJ = -~5°C TJ = 25°C TJ = tSOCC 6!: >0 , .;; ~ Vo = 5.0 V lout = 1.0A FIGURE 9 2.5 '" _ !3 T;" 25°C !;; ~ 3.0 I J o « ..l- ~ i"TJ = 150°C I~ ~55!C I .. 4.0 B 0 10 FIGURE 8 - QUIESCENT CURRENT versus OUTPUT CURRENT FIGURE 7 - QUIESCENT CURRENT versus INPUT VOLTAGE 4. 0 1.0 lout. OUTPUT CURRENT IA) f. FREQUENCY IHzl ~ 30 ::!. 0- _loJ500rnA I --l- 2.0 0- ii: 10 - lOrnA § s- O. 5 1.0 II o -15 -50 -25 25 50 15 TA. AMBIENT TEMPERATURE 10C) 100 0 125 0 10 20 30 Vin-VO. INPUT·OUTPUT VOLTAGE OIFFERENTIALIVOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 3-62 40 LM140,A, LM340,A FIGURE 11 - LINE TRANSIENT RESPONSE 8 FIGURE 12 - LOAD TRANSIENT RESPONSE 3 Vo = 5.0 V o. 6 - lout = 150 mA Co = 0 TJ = 25°C 4 2 - o. 1 0 ~~ g~-o <10 6 -0 2 3" 5 g 5 5 0 0 20 t. TIME '" C5 0: 12 -....... .P 4.0 o " FIGURE 14 - WORST CASE POWER DISSIPATION vefSUS AMBIENT TEMPERATURE jCese 11 HJC = 5°C/W _ HJA = 65°C/W TJlmax) 150°C - - -50 I -+-.. No Heat Sink -25 25 'HS·O '\ 8HS = 5°C/W'\. 50 \ r-.... \. ~ 100 ............. o RflJC· 50CIW R'JA • 65 0CIW '\ r-75 ~ 5 \ ~. 8HS = 15 0 C/1""'- ~ ~ ~ 40 30 I. TlMEI~sl I~s) 8HS _IO°C/W 16 8.0 \ 20 25 !. z :in 1\ 10 20 p " 1\ 40 30 FIGURE 13 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE (Cese 221AI 0 I I 0 10 \ V 0;:: .4 1/\ ( ~ ~ -0. 1 0 .2 ::...'" Vo - 5.0 V Vin=10V Co = 0 TJ = 25°C o. 2 TJ(ma)() ........., -- ~ 150 o-75 ................. 150 0 C r-......... 0 "~ 125 = 'HS' 10 0eIW ~eatSink -50 15 -25 50 MOTOROLA LINEAR/INTERFACE DEVICES 3-63 - ............. r--. 75 TA. AMBIENT TEMPERATURE 10C) lA. AMBIENT TEMPERATURE 1°C) 1\ '\. 100 125 11 • LM140,A, LM340,A APPLICATIONS INFORMATION Design Considerations The LM140 Series of fixed voltage regulators are dewith long wire lengths, or ifthe output load capacitance signed with Thermal Overload Protection that shuts is large. An input bypass capacitor should be selected down the circuit when subjected to an excessive power to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0:33 p.F or overload condition, Internal Short-Circuit Protection larger tantalum, mylar, or other capacitor having low that limits the maximum current the circuit will pass, internal impedance at high frequencies should be choand Output Transistor Safe-Area Compensation that resen. The bypass capacitor should be mounted with the duces the output short-circuit current as the voltage shortest possible leads directly across the regulators across the pass transistor is increased. input terminals. Normally good construction techniques In many low current applications, compensation cashould be used to minimize ground loops and lead repacitors are not required. However, it is recommended sistance drops since the regulator has no external sense that the regulator input be bypassed with a capacitor if the regulator. is connected to the power supply filter lead. FIGURE 15 - CURRENT REGULATOR FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR Output --'0 These regulators can also be used as a current source when connected as above. In order to minimize dissipation the LM140-5.0 is chosen in this application. Resistor R determines the current as follows: 5.0 V 10 = -R- + la 10 k 1 k YO. 7.0 V to 20 V VIN - Vo " 2.0 V la '" 1.5 mA over line and load changes For example, a 1-ampere current source would require R to be a 5-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7.0 volts. The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with thi arrangement is 2.0 volts greater than the regulator voltage. FIGURE 17 - CURRENT BOOST REGULATOR FIGURE 18 - SHORT-CIRCUIT PROTECTION MJ2955 MJ2955 or Equiv. '"'"' TV ~M'~ :r 1 Input. I 1 0m, . 1~" R The LM140 series can beeurrent boosted with a PNPtransistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by VBE of the pass transistor. The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, Psc , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified. MOTOROLA LINEAR/INTERFACE DEVICES 3-64 ® LM1SO LM2S0 LM3S0 MOTOROLA Specifications and Applications Information THREE-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATORS THREE·TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATORS The LM150/250/350 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 3.0 A over an output voltage range of 1.2 V to 33 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof. The LM150 series serve a wide variety of applications including local, on card regulation. This device also makes an especially &imple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM150 series can be used as a precision current SILICON MONOLITHIC INTEGRATED CIRCUIT K SUFFIX METAL PACKAGE CASE 1-03 regulator. • • Guaranteed 3.0 Amps Output Current Output Adjustable between 1.2 V and 33 V • • • • • • • • Load Regulation Typically 0.1 % Line Regulation Typically 0.005%/V Internal Thermal Overload Protection ·Internal Short-Circuit Current Limiting Constant with Temperature Output Transistor Safe-area Compensation Floating Operation for High Voltage Applications Standard 3-lead Transistor Packages Eliminates Stocking Many Fixed Voltages (Bottom View) Pins 1 and 2 electrically isolated from case. Case Is third electrical connection. STANDARD APPLICATION v out V ln LM150 T SUFFIX PLASTIC PACKAGE CASE 221 A-04 > AI . 240 IAdil Adjust .. + C ;;:;: I:F =- C in ~ 0.1 "F /. PIN 1. ADJUST 2. Vout 3. Vin ~2 Heatsink surface connected to Pin 2 --"-- * = Cin is required if regulator is located en appreciable distance from power supply filter. ** .., Co I, not needed for stability, however it does improve transient ORDERING INFORMATION response. V ou , ~ 1.25 V (1 + A2) + IAdj A2 Tested Operating Temperature Range Device Rl Since 'Adj i, controlled to less than 100 JlA, the error associated with this term i. neullglble in most applications #Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information. LM150K LM250K LM350K LM350T LM350BT# MOTOROLA LINEAR/INTERFACE DEVICES 3·65 TJ TJ TJ TJ TJ ~ ~ ~ ~ ~ -55"C 10 +150"C -25"C 10 +150"C O"CIO +125"C O"C to + 125"C -40"C to +125"C Package Metal Power Metal Power Metal Power Plastic Power Plastic Power II II LM150, LM250, LM350 MAXIMUM RATINGS Rating Input-Output Voltage Differential Symbol Power Dissipation lM150 lM250 lM350 Operating Junction Temperature Range VI-VO Value 35 Po Internally Limited TJ -55 to +150 -25 to +150 o to +125 -65 to +150 300 Tstg Storage Temperature Range Soldering Lead Temperature (10 seconds) Unit Vdc °C °C °C ELECTRICAL CHARACTERISTICS (Unless otherwise specified, VI-Va = 5.0 V; IL = 1.5 A; TJ = Tlow to Thigh; Pmax [see Note 1].) LM1501250 LM350 Figure Symbol Min Typ Max Min Typ Max Unit line Regulation (Note 2) TA = 25°C, 3.0 V'" VI-Va'" 35 V 1 Regline - 0.005 0.01 - 0.005 0.03 "IoN Load Regulation (Note 2) TA = 25°C, 10 rnA '" Il'" 3.0 A Va'" 5.0 V Va,. 5.0 V 2 Regload - - 5.0 0.1 15 0.3 - - 5.0 0.1 25 0.5 mV %VO Regtherm - 0.002 - - 0.002 - 50 100 100 poP. 5.0 - 50 0.2 0.2 5.0 poP. 1.25 1.30 1.25 1.30 V - 0.02 0.05 - 0.02 0.07 "IoN - 20 0.3 50 - 1.0 20 0.3 70 1.5 mV %VO 1.0 - %VO 3.5 10 4.5 1.0 - Characteristic Thermal Regulation, Pulse TA = 25°C = 20 ms, Adjustment Pin Current 3 IAdj 1,2 ~IAdj 3 Vref Line Regulation (Note 2) 3.0 V '" VI-Va'" 35 V 1 Regline load Regulation (Note 2) 10 mA '" Il '" 3.0 A Va", 5.0 V Va,. 5.0 V 2 Regload Temperature Stability (Tlow '" TJ '" Thigh) 3 TS - 1.0 - - Minimum Load Current to Maintain Regulation (VI-Va 3 Ilmin - 3.5 5.0 - 3 Imax 3.0 0.3 4.5 .1.0 - - 0.003 Adjustment Pin Current Change 3.0 V '" VI-Va'" 35 V 10 mA '" Il '" 3.0 A, Po '" Pmax Reference Voltage (Note 3) 3.0 V '" VI-Va'" 35 V 10 mA '" IL '" 3.0 A, Po '" Pm ax - = 35 V) Maximum Output Current VI-Va", 10 V, Po '" Pmax VI-Va = 30 V, Po '" Pm ax, TA = 10V,f = 120Hz - N 4 RR 3 Thermal Resistance Junction to Case Peak (Note 6) K Package T Package Average (Note 7) K Package T Package - NOTES: (I) Tlow = -55'C for LM150 - 25'C for LM250 O"C for LM350 - 3.0 0.25 - 0.003 - - mAo %VO dB - - 66 65 80 66 65 80 - 0.3 1.0 - 0.3 1.0 - 2.3 - - 2.3 2.3 - - long-Term Stability, TJ = Thigh (Note 5) TA = 25°C for Endpoint Measurements 1.20 %VOIW A = 25'C RMS Noise, % of Va TA = 25'C, 10 Hz '" f '" 10 kHz Ripple Rejection, Va (Note 4) Without CAd~ CAd' = 10 p. 1.20 - S R9JC - Thigh = + 150'C for LM150 + 150"C for LM250 = + 125'C for LM350 - - - 1.5 - - - %/1.0 k Hrs. °CIW - 1.5 1.5 (5) Since long-Term Stability cannot be measured on each device bafore shipment, this specification is an engineering estimate of average stability from lot to lot. (6) Thermal Resistance evaluated measuring the hottest temperature on the die using an infrared scanner. This method of evaluation yields very accurate thermal resistance values which are conservative when compared to other measurement techniques. (7) The average die temperature is used to derive the value of thermal resistance junction to case (average). Pmax = 30 W for K suffix Pmax = 25 W for T suffix (2) load and line regulation are specified at constant junction temperature. Changes in Va due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. (3) Selected devices with tightened tolerance reference voltage available. (4) CAdi, when used, is connected between the adjustment pin and ground. MOTOROLA LINEAR/INTERFACE DEVICES 3-66 LM150, LM250, LM350 SCHEMATIC DIAGRAM II 0.045 L-~~~--~~~~~~~~~~~~~--~------~-*--------------~--~---oVout L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - o Adjust FIGURE 1 - LINE REGULATION AND .l.IAdj/LiNE TEST CIRCUIT Vcc VOH-VOL Line Regulation (%N) = ~ x 100 Vout LM150 Adjust R1 240 1% 0.1/LF 'Pulse Testing Required: 1% Duty Cycle is suggested. R2 1% MOTOROLA LINEAR/INTERFACE DEVICES 3-67 LM150, LM250, LM350 FIGURE 2 - LOAD REGULATION AND 41AdjILOAD TEST CIRCUIT Load Regulation (% VOl = Vo (min. ~Oad) - Vo (max: Load) x 100 o (min. Load) r - - - - - - , Load Regulation (mV) = Vo (min. Load) - Vo (max. Load) Vo (min. Load) Lr.Vo (max. Load) LMl50 Vout • l-<_-------~--_~- IL RL (max. Load) Adjust RL (min. Load) O.lp.F "Pulse Testing Required: 1% Duty Cycle is suggested. -=FIGURE 3 - STANDARD TEST CIRCUIT Vout LM150 240 1% + O.lp.F 1.0 p.F Vo To Calculate R2: Vo = ISET R2 + 1.250 V Assume ISET = 5.25 mA Pulse Testing Required: 1% Duty Cvcle is suggested. FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT 24V-f'\ 14V---V Vin Vout Vo LM150 f = 120 Hz Adjust 240 1% R1 01" ~~ Cin ;::~ 0.1 p.F RL 1N4002 + Co;::~ 1.0 p.F 1.65 k 1% R2 :+ CAdj ;i::: 10 p.F I I -=- --'-- = 10 V IL "01 Discharges CAdi .If .Output IS Shorted to Ground . MOTOROLA LINEAR/INTERFACE DEVICES 3-68 Vo LM150, LM250, LM350 FIGURE 6 - CURRENT LIMIT FIGURE 5 - LOAD REGULATION l 0.4 ,.. OJ ~ c 0.2 ~ - OJ co ~ -0.2 o > i -0.4 g -0.6 ' - - IL '500mA - r-...... i::::-+- ~ -0.8 -1.0 -15 -50 -25 0 25 50 15 100 125 TJ. JUNCTION TEMPERATURE lOCI o 150 I o ~ a c ~ ::: 2.5 . is .. 60 co z 0: « .... 55 In ::> 50 « 45 J 40 . a ~ ........- ..-- ~ / > 2.0 -50 o 1.5 I .... ~ -25 25 50 15 100 TJ• JUNCTION TEMPERATURE 1°C) 125 I -15 ~ 1.250 co ~ o IL !·3.0A IL' 2.0 A r---... ......... -50 -25 25 50 15 100 TJ• JUNCTION TEMPERATURE 1°C) ~.500mA ~ioomA 125 150. ..-- 4.5 - :i 4.0 r-- .............. -~ "' E TJ ' -55°C 35 ::: 3.0 TJ ' 25 OC- b-'"Y W~ ~ c----- ~ ~ ~ 2.5 ~ 2.0 'I--_~ -- :; 1.5 ~1.230 f:;::= ~ d _CrJ 1.0 > 0.5 -15 r-- I--r-- r--. 5.0 > ~ 1.240 ~ 1.220 "Vo '100 mV FIGURE 10 - MINIMUM OPERATING CURRENT FIGURE 9 - TEMPERATURE STABILITV 1.260 :; 40 .............. ~20mA >° 1.0 150 ..:...:.. ._--- ... 30 10 20 VI - VO.INPUT - OUTPUT VOLTAGE OIFFERENTIAL IVdc) I--- ~ ;!; 35 -15 ' r-- r--. .... ~ .... ::> V "'-, --...:::.. '-, :-r--. i= 65 ,,\: , FIGURE 8 - DROPOUT VOLTAGE > :; 3.0 10 \.' ---- ------r-:: r-:: - -- ---- :g FIGURE 7 - ADJUSTMENT PIN CURRENT < .3 TJ '250C TJ' 1500C li I ~ IL • 3.0 A'" liD 6 I! l' -- I L · D ~ I'"'--.. VI'15 V Vo V ...... _ TJ=-550C rr-- -50 -25 0 25 50 15 100 125 o 150 -;.;,;:; F ~1500C ,/ o 10 20 30 VI - VO.INPUT - OUTPUT VOLTAGE DIFFERENTIAL IVdc) TJ• JUNCTION TEMPERATURE 1°C) MOTOROLA LINEAR/INTERFACE DEVICES 3-69 40 II LM150, LM250, LM350 AGURE 11 - RIPPLE REJECTION versus OUTPUT VOLTAGE 100 80 ~ r-..... z '" 9 60 ~ w 40 ~ t f-f-- 1.0 '"« ~> '" - ·1.5 1.0 ~~ 0.5 ~5 0 i j " 0 OC .0.5 > <1 -1.0 CL =IO;WIT~OUT CtOJ -;;" " -J II 10 20 30 I\ ...... " I I I _!. CAllJ li1 ..... ,CL =I.O;WITHOUT \J IV \. J '" f\ 1 ~ I L = 1 .F;CAOJ = 10.F \ t/ I-- 1 C \ 10 V fVo=SOmA A 25°C I - - -= 1M lOOK lK 10K t, FREQUENCY 1Hz! /-1 CL =1.F;C AOJ =10.F f\ ;:: 9 0.5 =,.~~ ",W 100 FIGURE 16 - LOAD TRANSIENT RESPONSE 1.5 ",- WITHOUT CAOJ 1\.1 CAOJ = 10.F FIGURE 15 - UNE TRANSIENT RESPONSE « 10 FIGURE 14 - OUTPUT IMPEDANCE I 25 p.F, CADJ > 10 p.F). Diode D 1 prevents Co from discharging thru the I.C. during an input short circuit. Diode D2 protects against capacitor CADJ discharging through the I.C. during an output short circuit. The combination of diodes D 1 and D2 prevents CADJ from discharging through the I.C. during an input short circuit. FIGURE 17 - BASIC CIRCUIT CONFIGURATION LM150 I I V out ! \ + Vref Adjust FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES Vref:: 1.25 V TYPICAL 1N4002 LOAD REGULATION The LM150 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R 1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation_ The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation_ R2 MOTOROLA LINEAR/INTERFACE DEVICES 3-71 II LM150, LM250, LM350 FIGURE 19 - "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE -- 11N4002 • V, N _ -<>-_., V out 1 ..... Vin2 ASC '0 Vout2 ~--o-~~------~---eVo 33 V 240 DS D, jlN4001 lN4001 D2 I 10~F Adjust Vref = SK 1K Limit RSC I Adjust 2 lN4001 Current 1 ~F Tantalum -;-'o-m--ax=+-:'-D-S-S Q, 2N3822 1.25 V IOma~ + lOSS D4 ~10V Diodes D, and D2 and transistor 02 are added to allow adjustment of output voltage to 0 volts. Q 2 OUTPUT RANGE: 0';;;; Va ~ 25 V 0';; '0';; 3 A ~4001 2NS640 ~ 06 protects both LM150s during an input short circuit. -10V FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR FIGURE 20 - ADJUSTABLE CURRENT LIMITER V out A, 620 V out D, I lN4001 *~ To provide current limiting of 10 100 to the system ground, the source of the FET must be tied to a negative voltage below ~1.25 R2 '"' I~;~ R, r f loma: : IDSS = D2 lN4001 1.0~F Adjust o---~>---' V. TTL 720 Control 1 K 2N5640 ~inimum Vo c.::: V(BR)DSS + 1.25 V + VSS ILmin ~ lOSS < 10 < 3A AsshownOIAdj/LiNE TEST CIRCUIT Line Regulation (O'o'V) VOH-V OL X 100 VOL I '---~I-----<:}------1 ~OH V out VOL LM317M Adjust 240 1% 0.1 IlF 4 1 I'F Pulse Testing Required: 1 % DutY Cycle is suggested. MOTOROLA LINEAR/INTERFACE DEVICES 3-75 II LM317M FIGURE 2 - LOAD REGULATIDN AND ~IAdj/LOAD TEST CIRCUIT Load Regulation (mV) = Vo (min. Load) - Vo (max. Load) Va (min. Load) - Vo (max, Load) Load Regulation (%Vo) '" Va (min. L.oad) X 100 --u-: V ( 0 min. Load) Va (max, L.old) V out LM317M RL II (max. Load) 240 1% Adjust RL (min. Load) 0.11'F .. Pul" Testing Required: 1 % Dutv Cycle is suggested. FIGURE 3 - STANDARD TEST CIRCUIT V out LM317M 240 1% 0.1 JJ.F Vo To Calculate R2: Va == ISET R2 + 1.250 V Pulse Testing Required: 1 % Duty Cycle is suggested. Assume 'SET"" 5.25 rnA FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT 24V -f"\ 14V---V V out Vin Va'" 10 LM317M f:::: 120 Hz 240 Adjust Rl 1% °1' ~~ lN4002 RL + Cin ; . : 0.1 I'F Co;:r: 1 I'F , 1.65 k R2 1% ~ ,+ ** _.l_ Cadj ' 1 ' 10 ",F , I D, Discharges Cad] If Output IS Shorted to Ground. * ·Cadi provides an AC Ground to the Adiust Pin. MOTOROLA LINEAR/INTERFACE DEVICES 3-76 Vo v LM317M FIGURE 5 - LOAD REGULATION FIGURE 6 - RIPPLE REJECTION 90 l 0.4 '" 0.2 I w z ~w '"«~ o ./ ~ -0.2 W;') Cadi" \O"F I VI '45 V VO" 5V ~ Il "'5to40mA 0 g -0.6 - ---- ~ --l.. -~ 1--- 6 ~ -0.8 r-- I-- ..L z ' - VI" 10V VO' 5 V Il =5to500mA > ~ -0.4 / 80 f--- 70 ~ 0: 0:' - 0: 60 ,-IL"100mA f'" 120 Hz -- r---- - -1.0 VO"IOV VI'" 14 to 24 V 50 -50 -25 25 50 75 100 TJ. JUNCTION TEMPERATURE lOCI 125 -50 150 FIGURE 7 - CURRENT LIMIT 1.0 /r-- t-- ~ 0.80 ~ a:: 0.60 0: a.... 0 25 50 75 100 TJ. JUNCTION TEMPERATURE lOCI ::::::: r- r-- r- "'......... ~ 0.40 - 0.20 10 r---- -- TJ" 25°C '" ~ '" 125°~ ( T r---- -~- 30 20 --- 40 ~ 50 -15 :: 75 100 115 150 FIGURE 10 - RIPPLE REJECTION versus FREQUENCY 1.5 ,1.0 II 0.5 ~v / _ ~ ~ /' .,... ~ L.---::' 8ol-----;;>...."=",,.+~cl--+-- 70 "L------ ...._._ _. ~ :~I---+--f-- ~ 1 - IL"4omA V,=5V±lVpp VO" 1 25V \+--+--_._- _~_f-C-_-__( ~ 401----+--+--+--~1~'-+--1---+---( ~ 3ol---+--+--+--~I~ \.-+--1----+-__( ~ 2o-----·-f----+---r----I---,f---t-·--+-~ ----- 10-------· II 10 f\ t--- -..- .--+1-----1 90 f---f--f---I---I·--+--+I ~ Ll -TJ 250 c ~ 3. 5-TJ = 125°C--4. : ~ 50 15 100,---,--,--,---,--,---,--,--, 4. o c--- TJ. JUNCTION TEMPERATURE lOCI FIGURE 9 - MINIMUM OPERATING CURRENT 3 - -- -50 5. 0 3.0 .. , t-- r---. 0.5 VI- Vo. INPUT - OUTPUT VOLTAGE OIFFERENTIAL (VOL TSI a:: IL" 500mA r-I--- r---. IL" 100 mA "" "" TJ = 6 a 150 FIGURE B - DROPOUT VOLTAGE I'.. => o o o -25 1.5 - ~ 1 • r--- Without Cadj --j/ -r-- ht: ~ 20 30 40 10 100 lK VI- VO.INPUT - OUTPUT VOLTAGE OIFFERENTIALIVOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 3-77 10K 100 K 1m f, FREQUENCY 1Hz) • LM317M FIGURE 12 - ADJUSTMENT PIN CURRENT FIGURE 11 - TEMPERATURE STABILITY 80 1.260 1 ~ a'"z '> ;;; 1.250 ~ ~ "> r-- :---.... /' / ............ t-.... 1'240 .,.1.230 ~ :> 0: .... !z ,I Va "'Vref 65 ! - - --ll"00mA 60 55 ~ a '" ~ 45 IH I~ -50 ~ g - 0.2 1 1 .1 / Bandwidth 100 Hz to 10 kHz = Vref f-- 'l '50mA w ~ ....J "> ~ 150 12 I- V,' 4.2510 41.15 V Va 125 FIGURE 14 - OUTPUT NOISE ,-0.4 - O' 25 50 75 100 TJ. JUNCTION TEMPERATURE lOCI -25 FIGURE 13 - LINE REGULATION ~ --::: k-:::: ~- V 35 H ~ H 100 TJ. JUNCTION TEMPERATURE lOCI V-..... ./' ~ 40 1.220 -25 r---- ll ',0mA ~ 50 V, '4.2V Va'" Vref Il" SmA -50 1 .1 70 I--- I- V,' 6.25 V -0.2 -0.4 f-- 0-0.6 6 ~ -0. 8 - /" V -- I--- 1--60 -I. 0 V V V -~ !-- ....... ~ V 4.0 -50 -15 0 25 50 75 100 TJ.JUNCTION TEMPERATURE lOCI 125 150 -50 3 5 5 0 i/\ Cl '" llJ F J:- ,"-. 5 VO' 1.25 V 0 TJ,25 0C - 2 3 Cl ' 0 I .5 ---JI' 10 20 30 125 150 /,,\ 1-J 1 A .0 0 --- V \ 5 I I 2 ,_ I, I ,I II---- Cl,1"F;C,dj"0"F 1/ IL"20mA 25 50 75 100 TJ. JUNCTION TEMPERATURE lOCI FIGURE 16 - LOAD TRANSIENT RESPONSE FIGURE 15 - LINE TRANSIENT RESPONSE 0 -25 O?' 0 40 ~, '1 1 I I I I I X~ :1' r--- i \I Gl "'O.3j.LF;Cadj~ 10pF - V,' 15 V VO'IOV r-- ~l"0mA C- J = 25°C ! ..... 'l II r\' 1 \1 Y 10 20 t, t, TIME (/-Is) MOTOROLA LlNEAR/INT'ERFACE DEVICES 3-78 ,, /,' TIME (jJs) 30 40 LM317M APPLICATIONS INFORMATION BASIC CIRCUIT OPERATION The LM317M is a 3-terminal floating regulator. In operation, the LM317M develops and maintains a nominal 1.25 volt reference (V ref) between its output and adjustment terminals. This reference voltage is converted to a programming current (lprog) by Rl (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by: Va = EXTERNAL CAPACITORS A 0.1 /LF disc or 1 /LF tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (Cadj) prevents ripple from being amplified as the output voltage is increased. A 10 /LF capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application. Although the LM317M is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (Co) in the form of a 1 /LF tantalum or 25 /LF aluminum electrolytic capacitor on the output swamps this effect and insures stability. R2 Vref (1 + Rl) + ladjR2 Since the current from the adjustment terminal (ladj) represents an error term in the equation, the LM317M was designed to control ladj to less than 100 pA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise. Since the LM317M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible. PROTECTION DIODES When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capcitors from discharging through low current points into the regulator. Figure 18 shows the LM317M with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values (Co> 25 /LF, Cadj > 5.0 /LF). Diode Dl prevents Co from discharging thru the I.C. during an input short circuit. Diode D2 protects against capacitor Cadj discharging through the I.C. during an output short circuit. The combination of diodes 01 and D2 prevents Cadj from discharging through the I.C. during an input short circuit. FIGURE 17 - BASIC CIRCUIT CONFIGURATION Yin LM317M Adjust I J = ! \ + R, Vref ladj Vref Vout llpro9 1 FIGURE 18 - VOLTAGE REGULATOR WITH PROTECTION DIODES Vo R2 - , .25 V Typical D, 1 'N4002 -= T Co D2 Adjust Q--_._ _....--' , N4002 LOAD REGULATION The LM317M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (Rl) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. Cadj MOTOROLA LINEAR/INTERFACE DEVICES 3-79 II II LM317M FIGURE 19 - ADJUSTABLE CURRENT LIMITER Vout A, Va FIGURE 20 - 5 V ELECTRONIC SHUTDOWN REGULATOR _10 2.5 k V out f---o----4o---..... Va °1 120 1N914 ·To provide current limiting of 10 to the system ground, the source of the current limiting diode must be tied °2 Adjust lN914 to a negative voltage below -7.25 V. R TTL 720 Control 1 k ;;Ilo Vref 2 I,·OllF 0---.....---' lOSS R, = Vref lOmax + lOSS Vo < Pav + 1.25 V + VSS ILmin - Ip < 10 < 500mA As shown 0 < 10 < 495 rnA Minimum Ip Vo = 1.25 V 0, protects the device during an input short circuit. FIGURE 21 - SLOW TURN-ON REGULATOR FIGURE 22 - CURRENT REGULATOR 10 V out 1---9----.....- .. Vo 240 Adjust -r----. lN4001 50 K 2l:~ Rl ...", 1.25 V - R, + R2 5 rnA < MOTOROLA LINEAR/INTERFACE DEVICES 3-80 lout < 500 rnA @ MOTOROLA LM337M Specifications and Applications Information MEDIUM-CURRENT THREE-TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATOR THREE-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATOR SILICON MONOLITHIC INTEGRATED CIRCUIT The LM337M is an adjustable 3-terminal negative voltage regulator capable of supplying in excess of 500 mA over an output voltage range of -1.2 V to - 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making it essentially blow-out proof. The LM337M serves a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM337M can be used as a precision current regulator. PIN 1. ADJUST 2. Yin • Output Current in Excess of 500 mA 3. You! • Output Adjustable Between -1.2 V and - 37 V TSUFFIX PLASTIC PACKAGE CASE 221A-04 • Internal Thermal Overload Protection • Internal Short-Circuit-Current Limiting • Output Transistor Safe-Area Compensation • Floating Operation for High Voltage Applications ORDERING INFORMATION • Standard 3-Lead Transistor Packages Tested Operating Device • Eliminates Stocking Many Fixed Voltages TJ LM337MT LM337MBT TJ Temperature Range ~ ~ O"Cto +12S"C -40"Cto +12S"C STANDARD APPLICATION + Co" 1.0J.'F YOU! ~J-~-----4~---------O-VOU! ·Cin is required if regulator is located more than 4 inches from power supply filter. A 1.0 f.LF solid tantalum or 10 J.LF aluminum electrolytic is recommended. **Co is necessary for stability. A '.0 IJ.F solid tantalum or 10 J.LF aluminum electrolytic is recommended. Vout ~ -1.2S V (1 + R2 R1") #Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information. MOTOROLA LINEAR/INTERFACE DEVICES 3-81 Package Plastic Power Plastic Power II II LM337M MAXIMUM RATINGS Rating Input-Output Voltage Differential Power Dissipation Operating Junction Temperature Range Storage Temperature Range Svmbol Value Unit VI-Va 40 Vdc Po Internally limited TJ Oto +125 °C TstQ -65to +150 °C ~ 5.0 V, 10 ~ 0.1; TJ ~ Tlow to Thigh [see Note 11. Pm ax per Note 2, unless otherwise specified.) ELECTRICAL CHARACTERISTICS (lVI-Vol Characteristic Figure Svmbol Line Regulation (Note 3) TA ~ 25°C, 3.0 V '" lVI-Vol'" 40 V 1 Regline Load Regulatibn (Note 3) TA ~ 25°C, 10 mA '" 10 '" 0,5 A IVai'" 5.0 V IVai" 5.0 V 2 Regload Thermal Regulation 10 ms Pulse, TA ~ 25°C - Adjustment Pin Current Regtherm 3 lad' Adjustment Pin Current Change 2.5 V '" lVI-Vol'" 40 V, 10 mA '" IL '" 0.5 A, Po '" Pmax, TA ~ 25°C 1,2 ~Iadj Relerence Voltage (Note 4) 3,0 V '" lVI-Vol'" 40 V, 10 mA '" 10 '" 0.5 A, Po '" Pmax, TA ~ 25°C Tlow to Thigh 3 Vrel line Regulation (Note 3) 3,0 V '" lVI-Vol'" 40 V 1 Regline Load Regulation (Note 3) 10 mA '" 10 '" 0.5 A IVai'" 5.0 V IVai" 5,0 V 2 Regload 15 0,3 50 1,0 mV %VO 0.03 0.04 - 65 100 p.A 2.0 5.0 p.A %VOIW ! V - %,V rnV 1.5 2,5 6.0 10 0,5 0,1 0.9 0.25 - 0.003 - 66 60 - 77 - S - 0,3 1,0 R8JC - 7.0 - RMS Noise, % 01 Va TA ~ 25°C, 10Hz'" I '" 10 kHz - N 4 RR - 0.07 %VO 3 Thermal Resistance Junction to Case 0.02 - Maximum Output Current lVI-Vol'" 15 V, Po '" Pmax lVI-Vol ~ 40 V, Po '" Pmax, TA ~ 25°C 3 -1.287 ·-1.30 , - rnA - Long Term Stability, TJ ~ Thigh (Note 6) T A ~ 25°C lor Endpoint Measurements -1.250 -1.25 0.6 TS NOTES. (1) Tlow to Thigh ~ O°C to - %VO ILmin 120 Hz (Note 5) %N 70 1.5 3 ~ Unit 0.04 20 0.3 3 -10 V, I Max 0.01 -1,213 -1,20 Minimum Load Current to Maintain Regulation (lVI-Vol'" 10 V) (lVI-Vol'" 40 V) ~ TVp - I Temperature Stability (Tlow '" TJ '" Thigh) Ripple Rejection, Va Without Cadj Cad' ~ 10 /LF Min A Imax 0'0 Vo dB 0'0,1.0 k Hrs. °C.W (4) Selected devices With tightened tolerance reference voltage + 125°C available. (2) Pm ax ~ 7.5 W (5) Cadi' when used, is connected between the adjustment pin and ground. (3) Load and line regulation are specified at constant junction temperature. Changes in Va due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. (6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot. MOTOROLA LINEAR/INTERFACE DEVICES 3-82 lM337M SCHEMATIC DIAGRAM 60 Adjust 100 \ 2.5 k ~ 2k 810 j{21k ~ --+-....J 15 pF 5k t....t 750 Y I~ 'f ~ ~ 15'pF lOOk 0 0 18 k ro ~ ~ ho. 2k --r 4k f/ t-.. 6.0k f/ ~ ho. 100 }~;Q k~ N~ -{ 600 220 ,25 pF I ~ t' 0 0 ro f¥ 60k Vout ri 10k 2.9 k rt ~_ ~ !O '1 100pF "" ~O 0 N 4.0 ~~ 500 k ~ ho 18k 15 500 FIGURE 1 - LINE REGULATION AND "Iodj/LINE TEST CIRCUIT 1 1% ~F , I'F R' * Pulse Testing Required: 120 ,% 1 % Duty Cycle is suggested. V out MOTOROLA LINEAR/INTERFACE DEVICES 3-83 2.0 'pF ~ 50k 100k R2 30k >-"Mr 240 5.0 pF f 2.4 k r 155 0 ~ K "----< a2 15 O. • LM337M FIGURE 2 - LOAD REGULATION AND 61adj/LOAD TEST CIRCUIT R2 1% ·Pulse Testing required: 1 % Duty CYcle i, suggested. II RL (max. J1.. Load) Load Regulation (mV) = Va (f'!'in. Load) - Va (max, Load) -Va (min. Load) Va (max, Load) Load Regulation (%Vo) = Va (min. Load) - Va (max. Load) Va (min. Load) X 100 FIGURE 3 - STANDARD TEST CIRCUIT R2 1% 1 )'F 120 To Calcula1e R2: R2° (~ -~ \Vref R1 ') This assumes ladj is negligible. Pulse Testing Required: 1 % Duty Cycle is suggested. FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT Adjust R1 01' 120 1N4002 V out Voo-1.25V 14.3V ____~ 4.3 V - - - - . ___~ ·0, Discharges Cadi if Output is shorted to Ground. f "" 120 Hz MOTOROLA LINEAR/INTERFACE DEVICES 3-84 lM337M FIGURE 6 - CURRENT LIMIT FIGURE 5 - LOAO REGULATION 20 0.2 - ~ co -0.2 z g -0.4 ~ 15 r-_ L ~ z co ; " -0.6 I0 " -0.8 ~ " " ~ ~ 0 0 _0 05 -1.4 -50 -25 25 50 75 100 TJ,JUNCTION TEMPERATURE IOC) 125 150 FIGURE 7 - AOJUSTMENT PIN CURRENT 70 ~ "z 65 0: I'--- r-- 60 ~ z ; « -0 :! Vo ~ z c _5 'V VO~100mV 25 r--- co ; r----- ---------- r---. 20 " 55 ~ ~ " 0 50 15 r "z 45 50 75 100 125 150 -50 -25 >- IL -:-- 25 ~1.260 E ,-z co ; ~ o " r---- "1 IL '" 20 mA .......... r-:::::r 50 ~ I I 75 100 100 125 125 150 T J' JUNCTION TEMPERATURE (DC) ~ ,? "/ ,,- Ji,- 06 a ISO 0 TJ = -55 C TJ " 2S0C TJ = 150°C 10 0.2 75 - 12 W 0.4 50 -- 14 0.8 "d 25 - 16 z ~ 1.240 -25 500 rnA ~ I 18 ;r -50 IL FIGURE 10 - MINIMUM OPERATING CURRENT FIGURE 9 - TEMPERATURE STABILITY il.250 ;;;;--.... Tj< JUNCTION TEMPERATURE (CC) 1.270 1.230 t---. >0 10 40 25 40 0 0 -25 -- 30 > -50 - 30 VO, INPUT - OUTPUT VOLTAGE DIFFERENTIAL (Vdc) " ----- - -- ~ z 20 FIGURE 8 - OROPOUT VOL TAGE 2' 75 r-- '\. 10 VI 80 ~ o ~ t::::::..- I o I o I -1.2 > \ I " VI - -15 V 0- -10 V -10 0 25°e I50°C 0 I I ~ 0 > J_55°e r-- - ---TJ I--TJ - TJ IL -05A It- -- - -- ;7 :;..-- "" II o 10 20 30 40 VI - VO' INPUT - OUTPUT VOLTAGE DIFFERENTIAL (Vdc) MOTOROLA LINEAR/INTERFACE DEVICES 3-85 II .. LM337M RIPPLE REJECTION versus OUTPUT CURRENT FIGURE 12 - RIPPLE REJECTION versus OUTPUT VOLTAGE FIGURE 11 100 Cadj'" lOJ.lF ~ 80 z z ~ ~ -- - ........... a 60 40 ~. Without Cadi ~ w ~ ~ 40 ~+-~+-~-H+H--+-~+-rt++H+--~--~~H1~ IL ::: 50 mA VI" -:15 V f" 120 Hz - 20 u v,-Vr 5V - ~ a >- I Vo ~ ·10 V++++H-++++t+HtI-++-+t-l-HtH f::: 120 Hz T ~ 25°C +i-tttt--+~-+~+ttiit--++-++-t-hHii 20 - TJ " 25°C - ~ o 00 ·5 ·15 ·10 ·20 ·30 ·25 ·40 ·35 I I 0.1 0.01 FIGURE 14 - RIPPLE REJECTION versus FREOUENCY FIGURE 13 - 10 1 '0' OUTPUT CURRENT IAI VO' OUTPUT VOLTAGE IVI OUTPUT IMPEDANCE 100 ~ 80 /' -....... z -L- a ~ = = 60 "- ........... ~ Without Cadj ""\. w ~ ~ 40 '\ ii' ~. V, 20 ~ 10 10- 1 ~ Wlthou' Cadi >~ >- ~ :6 10 - 2 10- 3 FIGURE 15 - FIGURE 16 - /t\ 0 II -- .I /\ r. Without Cadj \ 2 ,,' \ I I '\ '.1 2 Cadi - 10 /-IF 4 I 0 ~ .0 30 20 40 I Without Cadi l~ I:":--- I ~ -0. 5 ~~ -1. 0 ...J -1. 5 '\/ 1\ \ ~ V ·'5 V VO~·10V / INL::: 50mA / TJ::: 25°C C\ ~ 1 "F 1 10 I, TIME (psI MOTOROLA LINEAR/INTERFACE DEVICES 3-86 ~--- I V, >CJ \ LOAD TRANSIENT RESPONSE Cadi" 10.uF ·0.6 Il" 50mA TJ ~ 25°C Cl'" lllF 10 \ ·0.4 VO~·10V .5 1M lOOK f, FREQUENCY (Hz) .8 2 10K lK 100 10 LINE TRANSIENT RESPONSE .6 .4 10 J..IF Cadi 10M 1M lOOK 10K f, FREQUENCY IHzl lK 100 :2': r--- ...... ~ _ I L "500mA TJ" 25°C o ~ ""'-" -lOV IL - 500 mA I"F ~ TJ - 25°C z ~ ·15 V -VO~'10V 15 V Va ~ c, u Cadi" 10 JlF V, . V 20 t, TIME (ps) 30 40 LM337M APPLICATIONS INFORMATION be returned near the load ground to provide remote ground sensing and improve load regulation. BASIC CIRCUIT OPERATION The LM337M is a 3-terminal floating regulator. In operation, the LM337M develops and maintains a nominal -1.25 volt reference (Vref) between its output and adjustment terminals. This reference voltage is converted to a programming current (lpROG) by Rl (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by: Vout = EXTERNAL CAPACITORS A 1.0 /LF tantalum input bypass capacitor (Cin) is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (Cadj) prevents ripple from being amplified as the output voltage is increased. A 10 /LF capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application. An output capacitor (Co) in the form of a 1.0 /LF tantalum or 10 /LF aluminum electrolytic capacitor is required for stability. R2 Vref (1 + Rl) + ladjR2 Since the current into the adjustment terminal (ladj) represents an error term in the equation, the LM337M was designed to control ladj to less than 100 pA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase. Since the LM337M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible. PROTECTION DIODES When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Figure 18 shows the LM337M with the recommended protection diodes for output voltages in excess of - 25 V or high capacitance values (Co> 25 /LF, Cadj > 10 /LF). Diode 01 prevents Co from discharging thru the I.C. during an input short circuit. Diode 02 protects against capacitor Cad; discharging through the I.C. during an output short Circuit. The combination of diodes 01 and 02 prevents Cadj from discharging through the I.C. during an input short circuit. FIGURE 17- BASIC CIRCUIT CONFIGURATION FIGURE 18- VOLTAGE REGULATOR WITH PROTECTION DIODES Vr.f ~ -1.25 V Typically + LOAD REGULATION The LM337M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (Rl) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can Dl lN4002 MOTOROLA LINEAR/INTERFACE DEVICES 3-87 Vout II II ® LM2931 MOTOROLA Series LOW DROPOUT VOLTAGE REGULATORS LOW DROPOUT VOLTAGE REGULATORS The LM2931 series consists of positive fixed and adjustable output voltage regulators that are specifically designed to maintain proper regulation with an extremely low input-to-output voltage differential. These devices are capable of supplying output currents in excess of 100 mA and feature a low bias current of 0.4 mA at 10 mA output. Designed primarily to survive in the harsh automotive environment, these devices will protect all external load circuitry from input fault conditions caused by reverse battery connection, two battery jump starts, and excessive line transients during load dump. This series also includes internal current limiting, thermal shutdown, and additionally, is able to withstand temporary powerup with mirror-image insertion. Due to the low dropout voltage and bias current specifications, the LM2931 series is ideally suited for battery powered industrial and consumer equipment where an extension of useful battery life is desirable. The 'C' suffix adjustable output regulators feature an output inhibit pin which is extremely useful in microprocessorbased systems. SILICON MONOLITHIC INTEGRATED CIRCUITS Z SUFFIX Pin I. o u t p u t / , PLASTIC PACKAGE 2. Ground CASE 29-04 3. Input 1 2 TSUFFIX PLASTIC PACKAGE CASE 221A-04 Pin 1.lnput~ 2. Ground 3. Output 1 2 (Heatsink surface connected to Pin 2) 04 3 3 FIXED N.C. • Input-to-Output Voltage Differential of Less Than 0.6 V at 100 mA Gnd Input • Output Current in Excess of 100 mA 8 N.C. f Gnd 1 Output (Top View) ADJUSTABLE • Low Bias Current ~~ti~~tt04 • 60 V Load Dump Protection } Gnd Gnd • - 50 V Reverse Transient Protection Input • Internal Current Limiting with Thermal Shutdown Adjust 8 1 D SUFFIX PLASTIC PACKAGE CASE 751·02 sop-a Output (Top View) • Temporary Mirror-Image Protection • Ideally Suited for Battery-Powered Equipment ADJUSTABLE T SUFFIX Pin I. Adjust PLASTIC PACKAGE 2. Output Inhibit CASE 3140-01 3. Ground 4. Input 5. Output INTERNAL SCHEMATIC Inputo-~--------------------------~--------------- (Heatsink surface connected to Pin 3) 30 k ORDERING INFORMATION Output Outputo-t--.----------~~+-, 30 k Output Inhibit .>< .>< ~ ~ Adjust o-+-I"---"I"oIV--[" 10 k *Deleted on Adjustable Regulators 5.8 V Device Voltage Tolerance LM2931AO-5.0 5.0 V ±2.5% 751 LM2931AT-5.0 5.0 V ±2.5% 221A-02 LM2931 AZ-5.0 5.0 V ±2.5% 29-02 LM2931 0-5.0 5.0 V ±5.0% 751 LM2931T-5.0 5.0 V ±5.0% 221A-02 29-02 LM2931Z-5.0 5.0 V ±S.O% LM2931ACO Adjustable ±2.5% 751 LM2931ACT Adjustable ±2.5% 3140-01 LM2931CO Adjustable ±S.O% 751 LM2931CT Adjustable ±5.0% 3140-01 MOTOROLA LINEAR/INTERFACE DEVICES 3-88 Package Case Number LM2931 Series MAXIMUM RATINGS Rating Symbol Value Unit Vi" 40 Vdc VinlT) 60 Vpk -Vin(T) -50 Vpk Power Dissipation Case 29·04 (TO-92) TA = 25°C Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case PD 8JA 8JC Internally Limited 178 83 Watts Case 751 ·02 (SOP-8) TA = 25°C Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case Po 8JA 8JC Internally Limited 180 45 Watts Case 221A·03 and 314D·Ol (TO·220 Type) TA = 25°C Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case Po 8JA 8JC Internally Limited 65 5.0 Watts Junction Temperature Range TJ -40 to + 125 °C Storage Temperature Range Tstg -65 to + 150 °C Input Voltage Continuous Transient Input Voltage IT'" 100 ms) Transient Reverse Polarity Input Voltage 1.0% Duty Cycle, T '" 100 ms II °CIW °CIW °CIW °CIW °CIW °CIW = 14 V, 10 = 10 rnA, Co = 100 /iF, CO(ESR) = 0.3 fl, TJ = 25°C, Note 1, unless otherwise noted.) ELECTRICAL CHARACTERISTICS (Vin Characteristic FIXED OUTPUT Output Voltage Yin = 14 V, 10 = 10 rnA, TJ = 25°C Yin = 6.0 V to 26 V, 10 '" 100 rnA, TJ = -40 to 125°C Line Regulation Yin = 9.0 V to 16 V Yin = 6.0 V to 26 V 4.875 4.75 5.0 - 5.125 5.25 4.75 4.50 5.0 - 5.25 5.50 2.0 4.0 10 30 mV Regline = 5.0 Load Regulation (10 Output Impedance 10 = 10 rnA. 11.10 V Vo = rnA to 100 rnA) Regload Zo - 2.0 4.0 - 14 50 - 14 50 mV 200 - - 200 - mfl 5.8 0.4 30 1.0 - - - 5.8 0.4 30 1.0 10 30 - 1.0 rnA, f = 100 Hz to 10 kHz rnA Bias Current Yin = 14 V, 10 = 100 rnA. TJ = 25°C Yin = 6.0 V to 26 V, 10 = 10 rnA, TJ = -40 to 125°C IB Output Noise Voltage (f = 10 Hz to 100 kHz) Vn - 700 - - 700 - f.LVrms S - 20 - - 20 - mV/ kHR 60 90 - 60 90 - dB - 0.015 0.16 0.2 0.6 - 0.015 0.16 0.2 0.6 Long-Term Stability Ripple Rejection (f = 120 Hz) RR - V Dropout Voltage 10 = 10 rnA 10 = 100 rnA Yin-YO Over-Voltage Shutdown Threshold Vth(OV) 26 29.5 40 26 29.5 40 V -yo -0.3 0 - -0.3 0 - V - Output Voltage with Reverse Polarity Input (Vin = -15 V) NOTES: 1) low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. 2) The reference voltage on the adjustable device is measured from the output to the adjust pin across R,. MOTOROLA LINEAR/INTERFACE DEVICES 3-89 .. LM2931 Series ELECTRICAL CHARACTERISTICS (Vin = 14 V, Vo = 3.0 V,IO = 10 rnA, Rl = 27 k, Co TJ = 25°C, Note I, unless otherwise noted.) = 100 /LF, CO(ESR) = 0.3 n, Characteristic ADJUSTABLE OUTPUT Reference Voltage (Note 2, Figure 18) 10 = 10 rnA, TJ = 25°C 10'" 100 rnA, TJ = -40 to 125°C Output Voltage Range Line Regulation (Vin Load Regulation (10 Output Impedance 10 = 10 rnA, tolO VOrange = Vo + 0.6 V to 26 V) = 5.0 rnA to 100 rnA) = 1.0 rnA, f = 10 = 100 rnA 10 = 10 rnA Output Inhibited (Vth(OI) = 1.23 1.26 1.14 1.08 1.20 1.26 1.32 3.0 2.7 to 29.5 24 3.0 2.7 to 29.5 24 V mVN - 0.2 1.5 - 0.2 1.5 0.3 1.0 - 0.3 1.0 Zo - 40 - - 40 - - 6.0 0.4 0.2 - - - 1.0 1.0 - 6.0 0.4 0.2 - - = 2.5 V) 10Hz to 100 kHz) 120 Hz) - 0.2 - - 0.2 140 - - 140 - 0.4 - O/O/kHR - %N - 0.015 0.16 0.2 0.6 40 26 29.5 - -0.3 0 - 0.4 - 0.10 0.003 - - 0.015 0.16 0.2 0.6 26 29.5 -0.3 0 0.10 V 40 V - V V Vth(OII - 2.50 3.25 = 2.5 VI !LA /LVrmsi V 0.003 S RR Vth(OVI -VO Output Inhibit Threshold Current (Vth(OII 1.0 1.0 - Over-Voltage Shutdown Threshold Output Inhibit Threshold Voltages Output "On," TJ = 25°C TJ = -40 to 125°C Output "Off," TJ = 25°C TJ = -40 to 125°C - Vn Vin-VO %N mnN rnA IAdj Dropout Voltage 10 = lOrnA 10 = 100 rnA Output Voltage with Reverse Polarity Input (Vin = -15 VI - - 18 Long-Term Stability = 1.20 10 Hz to 10 kHz Adjustment Pin Current Output Noise Voltage (f 1.17 1.14 Re9l0ad Regline Bias Current Ripple Rejection (f V Vref - Ith(OI) 2.15 2.26 1.90 1.20 - - - 30 50 2.50 3.25 - 2.15 - 1.90 1.20 - - 30 50 2.26 !LA DEFINITIONS Dropout Voltage- The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output decreases 100 mV from nominal value at 14 V input, dropout voltage is affected by junction temperature and load current. Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications. Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected. Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range. Bias Current - That part of the input current that is not delivered to the load. Long-Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices electrical charaeteristics and maximum power dissipation. Load Regulation - The change in output voltage for a change in load current at constant chip temperature. MOTOROLA LINEAR/INTERFACE DEVICES 3-90 LM2931 Series FIGURE 2 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE FIGURE 1 - DROPOUT VOLTAGE versus OUTPUT CURRENT 300 200 I ~ V ~ I- ~VO ~ > / E. « ~ !:; §: I- :::> II ~ :::> ~ 80 :i? o / 6 ~40 -> ~ V ~ 100 ~ 'c -> .,../ o o 20 40 60 10, OUTPUT CURRENT ImAI 80 101~5~ ~ o o 100 25 10 mA 10 100 50 75 TJ, JUNCTION TEMPERATURE lOCI 125 FIGURE 4 - OUTPUT VOLTAGE versus INPUT VOLTAGE FIGURE 3 - PEAK OUTPUT CURRENT versus INPUT VOLTAGE 6.0 350 l v:: ; 250 a I- TJ 5.0 ::.- TJ~ I----: l- I-- ~ 25°C ,.-----'-~J ~ , ~ 150 ..; A 4.0 h ...-:I:?' /V o ;:: 3.0 ~ .......:V 620 6 > 1.0 devices OilY, 5.0 f-VO ~ 5.0 V TA ~ 2SOC ;'3 85°C Dashed lines below Yin = 5.0 V are for Adjustable output o - 2': V :::> :=:::> 50 ~loomA 100 mV ~ 200 / §: i / e-- Yin ~ 14V I .1 >160 '--- f--Vin~14V E. I;.Vo = 100 mV w f- TJ ~ 25°C 120 I 25 10 15 20 Vin, INPUT VOLTAGE IVI o o 30 FIGURE 5 - OUTPUT VOLTAGE versus INPUT VOLTAGE RL ~ 50 n / 10 II 100 mA I I .11 1.0 ~ 4.0 2.0 3.0 Vin, INPUT VOLTAGE IVI FIGURE 6 - LOAD DUMP CHARACTERISTICS 6.0 5.0 I Vo TA 5.0 V ~ 25°C I o -20 ~ RL~500n 1.0 -10 10 20 30 Vin, INPUT VOLTAGE (VI 40 5.0 50 60 t, TIME (50 ms/DIV.1 MOTOROLA LINEAR/INTERFACE DEVICES 3-91 6.0 .. LM2931 Series FIGURE 7 - BIAS CURRENT versus INPUT VOLTAGE 12 ~ 8.0 I' ~ 6.0 RL ~ ~ 4.0 => '-' ~ 4.0 '"sf> 2.0 RL RL o -20 -10 FIGURE 9 - = - 100 n ~oon 40 10 20 30 Vin, INPUT VOLTAGE (VI ~2,O 50 BIAS CURRENT versus JUNCTION TEMPERATURE - 20 FIGURE 10 - /' V 40 60 10, OU [PUT CURRENT (mAl 80 100 OUTPUT IMPEOANCE versus FREQUENCY ~ f- Yin = 14 V Vo = 5.0 V 1.6 r i o = lamA r l>.IO = 1.0 mA Co = 100 JLF '-' ~ 1.2 f- TA = 25'C 10 6.0 = 14 V = 5.0 V 1!0 mA ~ E >- => '-' I-- ..--V /' /' 2.0 1 Vin Vo as~ - o o 60 8.0 < / z>- = 50n -r- => '-' ~ Vin = 14 V Vo = 5.0 V TJ = 25'C r-- 6.0 E >- BIAS CURRENT versus OUTPUT CURRENT 8. 0 I Vo = 5.0V_ TJ = 25'C 10 < FIGURE 8 - L I I '" te 4.0 :;:; ~ 0.8 i 10 sf> 2.0 1= => = 50mA '"e 0.4 10 - 0 mA -25 FIGURE 11 - CO(ESRI = 0.15 Tantalum l. nf- lP o o -55 CO(ESRI = 0.3 n Electrolr\ o 25 50 75 TJ, JUNCTION TEMPERATURE I'CI 10 125 100 1.0 k 10 k 100 k t, FREQUENCY IHzl 100 1.0M 10 M FIGURE 12 - RIPPLE REJECTION versus OUTPUT CURRENT RIPPLE REJECTION versus FREQUENCY 95 95 r--- ~ ~ ~ Yin = 14 V Vo = 5.0 V l>.Vin = 100 mV RL = 500n Co = 100 JLF TA = 2rC \ 1\ CO(ESRI - 0.15 n ,\ irz\V/ N 0.31~- / CO(ESRI = Electrolytic , [------' Yin Vo TA 65 100 1.0 k 10 k 100 k t, FREQUENCY IHzl 1.0M """ - t = 120Hz 55 10 = 14 V = 5.0 V 10M o ........... -- I--- = 25'C 20 40 60 10, OUTPUT CURRENT (mAl MOTOROLA LINEAR/INTERFACE DEVICES 3-92 ~ 80 100 LM2931 Series z 0 FIGURE 13 - !;1 z LINE REGULATION FIGURE 14 - 0 LOAD REGULATION !;1 ti:i Cl :> ~ II 6 > ." ~ w '"'::;« 0 > I- ~ ~ .,. <= ;;- FIGURE 15 - REFERENCE VOLTAGE versus OUTPUT VOLTAGE 1.240 ~ w - LM2~31 C Adiu~l.ble 2,5 ~!0=10mA Vin = Vo + 1,0V -TA = 25°C 2,4 '" 9 0 ~ ..:a; V 1.200 s: -- ::> ~ :> rE 0 '1i; 1,180 ~ 2.1 1.160 o 3,0 6,0 9,0 15 12 VO, OUTPUT VOLTAGE IVI ~ 2.0 18 21 24 OuIPUl 'Off'_ V I- 2,2 1= ::> -- /" 2,3 ~ 15 ~ _I--"' .......- :I: I- '::; ~ 2,6 ~ 10 = 100 mA Vin = Vo + ,,0 v _ TA = 25°C 1,220 I, TIME 110 I'slOIV,1 FIGURE 16 - OUTPUT INHIBIT-THRESHOLDS versus OUTPUT VOLTAGE LM29~'C Ad;u;table_ ~ ~ ..§ I, TIME 110 I'slDIV,1 o 3,0 Oulpul 'Ion'~ 6,0 12 15 90 VO, OUTPUT VOLTAGE IVI 18 21 24 TYPICAL APPLICATIONS FIGURE 17 - FIXED OUTPUT REGULATOR FIGURE 18 - ADJUSTABLE OUTPUT REGULATOR 51 Rl k Cin Co 0.1 I Ie. R2 Switch Position 1 = Outpul 'On: 2 = Output 'Off' Vo = Vref ( 1 + R2) R1, + lAd; R2 MOTOROLA LINEAR/INTERFACE DEVICES 3-93 Gnd 22.5 k '" R1 R2 R1+R2 II LM2931 Series AGURE 19 - 5.0 A LOW DIFFERENTIAL VOLTAGE REGULATOR FIGURE 20 - CURRENT BOOST REGULATOR WITH SHORT-CIRCUIT PROJECTION D45VH7 r---------~--~ Input 6.0 V ~ 68 Output 5.0 V (a 5.0 A R The LM2931 series can be current boosted with a PNP transistor. The D45VH7, on a heatsink, will provide an output current of 5.0 A with an input to output voltage differential of approximately',O V. Resistor R in conjunction with the VSE of the PNP determines when the pass transistor begins conducting. This circuit is not short-circuit proof. The circuit of Figure 19 can be modified ~o provide supply protection against short circuits by adding the current sense resistor Rse and an additional PNP transistor. The current sensing PNP must be capable of handling the short-circuit current of the LM2931. Safe operating area of both transistors must be considered under worst case conditions. FIGURE 22 - OUTPUT NOISE VOLTAGE versus OUTPUT CAPACITOR IMPEDANCE FIGURE 21 - CONSTANT INTENSITY LAMP FLASHER 1001P_~ Input <>----0---1 6.4 to 30 V LM2931C _ _1IiI!! E 2.0 k 1 10 CM #345 :> E 10 w '""" ~ 0 > i:j az I- :=> 33 k ~ 6.2V-1lJl :=> o >-= fase "" 2.2 Hz 0 0.01 10 100 1.0 k 10 k IZol, MAGNITUDE OF CAPACITOR IMPEDANCE Iml1l APPLICATIONS INFORMATION The LM2931 series regulators are designed with many protection features making them essentially blow-out proof. These features include internal current limiting, thermal shutdOWn, overvoltage and reverse polarity input protection, and the capability to withstand temporary power-up with mirror-image insertion. Typical application circuits for the fixed and adjustable output device are shown in Figures 17 and 18. The input bypass capacitor Cin is recommended if the regulator is located an appreciable distance (;;> 4") from the supply input filter. This will reduce the circuit's sensitivity to the input line impedance at high frequencies. This regulator series is not internally compensated and thus requires an external output capacitor for stability. The capacitance value required is dependent upon the load current, output voltage for the adjustable regulator, and the type of capacitor selected. The leaststable condition is encountered at maximum load current and minimum output voltage: Figure 22 shows that for operation in the "Stable" region, under the conditions specified, the magnitude of the output capacitor impedance IZol must not exceed 0.4 n. This limit must be observed over the entire operating temperature range of the regulator circuit. With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around - 30°C, the capacitance will decrease and the equivalent series resistance ESR will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of - 40 to 85°C and - 55 to 105°C are readily available. Solid tantalum capacitors may be a better choice if small size is a requirement, however, the maximum IZollimit over temperature must be observed. Note that in the stable region, the output noise voltage is linearly proportional to IZol. In effect, Co dictates the high frequency roll-off point of the circuit. Operation in the area titled "Marginally Stable" will cause the output of the regulator to exhibit random bursts of oscillation that decay in an under-damped fashion. Continuous oscillation occurs when operating in the area titled "Unstable." It is suggested that oven testing of the entire circuit be performed with maximum load, minimum input voltage, and minimum ambient temperature. MOTOROLA LINEAR/INTERFACE DEVICES 3-94 ® MOTOROLA MC1466L Specifications and Applications Information PRECISION WIDE RANGE VOLTAGE and CURRENT REGULATOR PRECISION WIDE RANGE VOLTAGE AND CURRENT REGULATOR SILICON MONOLITHIC INTEGRATED CIRCUIT This unique "floating" regulator can deliver hundreds of volts - limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance. L SUFFIX • Voltage/Current Regulation with Automatic Crossover CERAMIC PACKAGE CASE 632-08 • Excellent Line Voltage Regulation, 0.03% +3.0 mV (Max) • Excellent Load Voltage Regulation, 0.03% +3.0 mV (Max) • Excellent Current Regulation, 0.2% + 1.0 mA • Short-Circuit Protection • Output Voltage Adjustable to Zero Volts ORDERING INFORMATION • Internal Reference Voltage • Adjustable Internal Current Source Device I MC1466L I Temperature Range OOC to +70° C TYPICAL APPLICATIONS FIGURE 1 - 0·TO·15 VDC, 10·AMPERES REGULATOR I 1 Package Ceramic DIP FIGURE 2 - 0·T0-40 VDC, 0.5·AMPERE REGULATOR +20Vdc +50Vdc 0" r-+-~+-~~~~~--~--~' 1000 ll F PinS 1 and4 no connection J l- FIGURE 3 - 0·TO·250 VDC, O.l·AMPERE REGULATOR FIGURE 4 - REMOTE PROGRAMMING Uk MCl466 240pF 11 lN4IJOl OR EQUIV lOI'F J CR!i 2.5 'L INPUTVp v, 1 l (R- Vp ·20 FORVp<20Vdc, R-O) 0.02 Pins 1,2,3,and4no connection. MOTOROLA LINEAR/INTERFACE DEVICES 3-95 RS 1:- II .. MC1466L MAXIMUM RATINGS (TA ~ + 25°C unless otherwise noted) Rating Symbol Value Auxiliary Voltage Vaux 30 Vdc Power Dissipation (Package Limitation) Derate above TA ~ + 50°C PD 1/8JA 750 6.0 mW Operating Temperature Range TA Storage Temperature Range Tstg o to Unit mWrC +70 -65 to +150 °c °c ELECTRICAL CHARACTERISTICS (TA ~ + 25°C, Vaux ~ +25 Vdc unless otherwise noted) Characteristic Definition la~x 5 J~ "2222~ lOpF 6 MC1466* 12 j'", '1 ,•• "!1,, ",·'55"" co:ok 1.0~FJ i:,''-?! -=50 in '2N2222~ j2s~\ 6 MC1466* .~ 8t~ lV" "" 240pF SI 10 R4 29. R1.212 j'" as5<'" ". LO: R2 ~ 10:rr -=- Uk±m , ill 2N3055 OR EOUIV n I " i:t ! = 50 Vo +Vin 2N2222 OR EOUIV tJdo Symbol Min Auxiliary Voltage (See Notes 1 & 2) (Voltage from pin 14 to pin 7) Vaux 21 Auxiliary Current laux Internal Reference Voltage (Voltage from pin 12 to pin 7) VIR 17.3 Reference Current (See Note 3) Iref - Typ - Max Units 30 Vdc 9.0 12 mAdc 18.2 19.7 Vdc QREOlllV 5~OREOUIV I~ Input Current - Pin 8 Power Dissipation Input Offset Voltage, Voltage Control Amplifier (See Note 4) 0.8 1.0 1.2 mAdc 18 - 6.0 12 "Adc PD - - 360 mW 0 15 40 mVdc Viov - Load Voltage Regulation (See Note 5) dViov dVrefNref - 1.0 0.Q15 3.0 0.03 mV % Line Voltage Regulation (See Note 6) dViov dVrefNref - 1.0 0.Q15 3.0 0.03 mV % TCVo - 0.Q1 Temperature Coefficient of Output Voltage (TA ~ - %f'C 40 mVdc % mAdc 0 to + 75°C) Input Offset Voltage, Current Control Amplifier (See Note 4) (Voltage from pin 10 to pin 11) Vioi 0 15 - 0.2 - - 1.0 10pF of MC1466* " ~ 2N3055 140pF n -= "!" '" jJ:o 0.' of 1~ Characteristic OAeaUIV 'lit. '1 'I rel R2 -:-95k±I'" 6 240pF n t ~,:~"' 2N3055 OREOUIV A, '" Co~RI L.;~ I(lU~ :~i v;-! 2" 2¢.", 8.S5k±1'.18k 500 Load Current Regulation (See Note 7) dlL/IL dlref *Pins 1 and 4 no connection. MOTOROLA LINEAR/INTERFACE DEVICES 3-96 - MC1466L Load Voltage Regulation NOTE 1: The instantaneous input voltage, Vaux , must not exceed the maximum value of 30 volts for the MC1466. The instantaneous value of Vaux must be greater than 21 volts for the MCl466 for proper internal regulation. NOTE 2: The auxiliary supply voltage Vaux • must "float" and be electrically isolated from the unregulated high voltage supply, Vin. NOTE 3: Reference current may be set to any value of current less than 1.2 mAde by applying the relationship: 8.55 aV,elll00%1 Vref I,el ImAI ~ Rl Iknl" IV,el 111 - V,el 12111100%1 ~ aV,s11100%1 V,ellli V,el Line Voltage Regulation zero. "vVref (100%) NOTE 5: Load Voltage Regulation is a function of two additive components,l1Viov and aVref, where AViov is the change in input offset voltage (measured between pins 8 and 9) and .6.V re f is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement pro~ cedure for the test circuit shown is: a. With 51 open (14 = 0) measure the value of Viov (1l and V,ellli = IOV' NOTE 6: Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, .6.Viov and .6.Vre f (see Note 5). The measurement procedure is: a. Set the auxiliary voltage, Vaux , to 22 volts. Read the value 01 Viov 111 and V,el 111· b. Change the Vaux to 28 volts and note the value of Viov (2) and Vref (2)' Then compute Line Voltage Regulation: aViov ~ aViov 111 - Viov 121 % Reference Regulation = NOTE 4: A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to b. Close 51, adjust R4 so that 14 and V,el 121· = + av· ,el + = .6.Viov. NOTE 7: Load Current Regulation is measured by the following procedure: a. With 52 open, adjust R3 for an initial load current, ILO), such that Vo is 8.0 Vdc. b. With 52 closed, adjust RT for Vo = 1.0 Vdc and read Il(2)' Then Load Current Regulation = (lLl21 - ILI1II 1100%1 + I, I ILlll e 500 pA and note Viov (2) where Iref is 1.0 mAde, Load Current Regulation is specified in this manner because Iref passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, Rs. The~ ~~j~ie;c:W~gUlatio~i~V (2) IV,el 111 - V,el (2111100%1 ~ aV,elll00%1 V,ellli V,el FIGURE 5 OUTPUT INTERNAL COMPENSATION -v.., o----+-t====!===~~==j:=+----.J 750 4.3k 196k "k CR3 550 CA2 'S< 2.2k INTERNAL VOLTAGE REGULATOR REFERENCE CURRENT SOURCE VOLTAGE CONTROL AMPLIFIER CURRENT CONTROL AMPLIFIER OR MOTOROLA LINEAR/INTERFACE DEVICES 3-97 OUTPUT AMPLIFIER II MC1466L FIGURE 6 - TYPICAL CIRCUIT CONNECTION CR6 Vin Q1 I, • Uk MC1466 240pF " 10 CURRENT reo -= R3 92 0.1 pF '00 12 LIMIT ADJUST CAS A, 18k AI I'l v, Pins 1and4noconnectioo. C'r A, l NORMAL DESIGN PROCEDURE AND DESIGN CONSIDERATIONS 6. The RC network (10 pF, 240 pF, 1.2 kll.l is used for compensation. The values shown are valid for all applications. How~ ever, the 10 pF capacitor may be omitted if fT of Q1 and Q2 is greater than 0.5 MHz. 7. For remote sense applications, the positive voltage sense ter~ minal (Pin 9) is connected to the positive load terminal through a separate sense lead; and the negative sense terminal (the ground side of R2) is connected to the negative load terminal through a separate sense lead. 8. Co may be selected by using the relationship: Co ~ (100 I'F) IL(maxl' where IL(maxl is the maximum load current in amperes. 9. C2 is necessary for the internal compensation ofthe MCl466. 10. For optimum regulation, current out of Pin 5, 15 should not exceed 0.5 mAdc. Therefore select Q1 and Q2 such that: 1. Constant Voltage: For constant voltage operation, output voltage Va is given by: Vo ~ (lrefl (R21 where R2 is the resistance from pin 8 to ground and 'ref is the output current of pin 3. The recommended value of Iref is 1.0 mAde. Resistor R1 sets the value of I ref: Iref ~ 8.5 R1 where Rl is the resistance between pins 2 and 12. 2. Constant Current: For constant current operation: (al SelectR s for a 250 mV drop at the maximum desired reg- ulated output current, 'max. (b) Adjust potentiometer R3 to set constant current output at desired value between zero and 'max. 3. If Vin is greater than 20 Vdc, CR2, CR3, and CR4 are necessary to protect the MC1466 during short circuit or transient Imax '" 0.5 mAdc 131132 where: Imax = maximum short~circuit load current (mAde) 131 ~ minimum beta of Q1 132 ~ minimum beta of Q2 Although Pin 5 will source up to 1.5 mAdc, 15 > 0.5 mAdc will result in a degradation in regulation. 11. CR6 is recommended when Vo > 150 Vdc and should be rated such that Peak Inverse Voltage> Vo. conditions. 4. In applications where very low output noise is desired, R2 may be bypassed with C1 (0.1 I'F to 2.0 I'FI. When R2 is bypassed, CR1 is necessary for protection during short circuit conditions. 5. CR5 is recommended to protect the MC1466 from simultane~ ous pass transistor failure and output short circuit. 12. In applications where R2 might be rapidly reduced in value, it is recommended that CR3 be replaced by Q2 and R4. 8 9 m R2 C1 0.1 I'F 1 ~ Q2 R2 ~ R4 This design consideration prevents R2 from being destroyed by excessive discharge current from Co. Components Q2 and R4 should be selected such that: R4 ~ ~and 10 VCEO of Q2 "' Vo MOTOROLA LINEAR/INTERFACE DEVICES 3-98 MC1466L OPERATION AND APPLICATIONS This section describes the operation and design of the MCI466 voltage and current regulator and also provides information on useful applications. SUBJECT SE~UENCE II Theory of Operation Applications Transient Failures Voltage/Current Mode Indicator yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage (V B2) is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor RI. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between VB2 and V12, making the ~VBE's very small in percentage. Circuit reference voltage is derived from the product of I Rand RR; if IRis set at I rnA (RI = 8.S kQ), then RR (in kg) =Yo. Other values of current may be used as long as the following restraints are kept in mind: I) package diSSipation will be increased by about II mW/mA and 2) bias current for the voltage control amplifier is 3 /lA, temperature dependent, and is extracted from the reference current. The reference current should THEORY OF OPERATION The schematic of Figure S can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CRI and CRS with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance (VBI = VB2), the output voltage, (V12 - V7), is at a value that is twice the drop across either of the two diode strings: VI2 - V7 = 2 (VCRI + VCR2 + VCR3 + VCR4). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit. The voltage controlled current source (Figure 8) is a PNP-NPN composite which, due to the high NPN beta, FIGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE FIGURE 7 - REFERENCE VOLTAGE REGULATOR 12 14 16 k i vaux Equ;v.lent Regulated Voltage 18V VBl Equivalent Diode VZ""9V T 1 Diode VZ:=::::9 V 18 k Rl 12 T VZ~9V ~>-+---------l MOTOROLA LINEAR/INTERFACE DEVICES 3-99 2 Q3 I'R:::; t VZ-VBE:;::::::S.S5 R1 R1 • MC1466L be at least two orders of magnitude above the largest expected bias current. FIGURE 10 - CURRENT CONTROL CIRCUIT 12 Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, Ras, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of 1/2 milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without Ras, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as: 10 V2 Va 9 This level is further boosted by the outpu t stage such that in the constant voltage mode overall transconductance is about 300 rnA/volt. A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin 10 while the output current is sampled across RS by pin 11. When IL RS is 15 mV below the reference value, voltage VI begins to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of V2/RS. If V2 is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Since the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" (1% +1 rnA, Figure II). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than YR. Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor. (I) where 0.026 r " ' - - and e IE RE = added emitter degenerating resistance. For IE = 0.5 rnA, 1 gm = 1 (2) 1'04 + 30 = 134 = 7.5 rnA/volt. FIGURE 9 - VOLTAGE CONTROL AMPLIFIER 12 6 6 Preragulatad lBV FIGURE 11 - VI CURVE FOR 0- T0-40 V, O.S-AMPERE REGULATOR iii I- 40 a ? 30 -' w " <{ 500 B Reference Voltage 500 I- 20 -' a > >- +7.25 V 9 + Output Sense 10 0.1 VR 0.2 0.3 0.4 0.5 I, CURRENT (AMPERES) MOTOROLA LINEAR/INTERFACE DEVICES 3-100 MC1466L Transistor Q9 and five diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an "OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional stage (Q9) must be included to invert the The analysis thus far does not consider changes in V R due to output current changes. If IL increases by 500 mA the collector current of Q9 decreases by 1.25 mA, causing the collector current of Q5 to increase by 30 /J.A. Accordingly, I R will be decreased by ""0.30 /J.A which will drop the output by 0.03%. This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing IR. Note again, however, that the maximum power rating of the package must be kept in mind. For example if IR = 4 rnA, power disSipation is logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 rnA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source. Note that the negative (substrate) side of the MCI466 is 7.2S volts lower than the output voltage, and the reference regulator guarantees that the positive side is II volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating" above and below Yo. VCE across Q9 is only two or three VBE'S depending on the number of transistors u,ed in the series pass configuration. Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Q12 and Q13) have minimum betas of 20, then the overall regulator transconductance will be: gmT ~ (400) 300 rnA/volt ~ 120 A/vall PD=20V(8mA)+(11 Vx3mA)=193mW. This indicates that the circuit may be safely operated up to 118 0 C using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts, PD = 35 V (8 mAl + 26 V (3 mAl = 358 mW. For a change in current of 500 rnA the output voltage will drop only: FIGURE 12 - Figure 6 shows SIX external diodes (CRI to CR6) added for protective purposes. CRI should be used if the oUlput voltage is less than 20 volts and CR2, CR3 are absent. For Vo higher than 20 volts, CRI should be discarded in favor of CR2 and CR3. Diode CR4 prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of such a transistor failure mode seems remote, CR4 may be deleted. To prevent instantaneous differential and common mode breakdown of the current sense amplifier, CR5 must be placed across the current limit resistor Rs. Load transients occasionally produce a damaging reversal of current flow from output to input Va > ISO volts (which will destroy the IC). Diode CR6 prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes CR 1, CR2, CR3, and CR5 may be general purpose silicon units such as I N400 I or equivalent whereas CR4 and CR6 should have a peak inverse voltage rating equal to Yin or greater. (4) MC1466 OUTPUT STAGE f---------p'e'~~u~ted------- -II .. ..... From Current Control Amplifier (6) which dictates that the maximum operating temperature must be less than 91 °c to keep package dissipation within specified limits. Line voltage regulation is also a function of the voltage change between pins 8 and 9, and the change orv ref. In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in V aux . Note that line voltage regulation is not a function of Yin. Note also that the instantaneous value of Vaux must always be between 20 and 35 volts. (3) 0.5 6 V =--- = 4.2mV. 120 (5) From Voltage Control Amplifier APPLICATIONS Figure 2 shows a typical 0-to-40 volts, O.S-ampere regulator with better than 0.0 I % performance. The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the MC1466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 rnA. vo.--"->( MOTOROLA LINEAR/INTERFACE DEVICES 3-101 II II MC1466l tible with a short circuit current of 100 mAo Yet current foldback allows us to design for a maximum regulated load current of 500 mAo the pertinent design equations are: Figure 1 is a O-to-IS volts, la-ampere regulator with the pass transistor configuration necessary to boost the load current to 10 amperes. Note that Co has been increased to 1000 !.IF following the general rule: Let R2 (kSl) ; VO ";OV¥ [ls~-11 The prime advantage of the MCI466 is its use as a high voltage regulator, as shown in Figure 3. This 0-to-250 volts O.I-ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output RI (kSl); . "-- Vo I -" pass transistors. The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ 413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of lOa mA, with a VCE approximately equal to 260 volts. Thus this point falls on the de line of the safe area curve, insuring that the transistor will not enter secondary breakdown. FIGURE 13 - SAFE AREA CURVE FOR THE MJ413 III this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is short-circuit protected. This is due to the fact that load current is diminished as output voltage drops (VCE increases as Va drops) as seen in Figure 15. By careful design the load current at a short, ISC can be made low enough such that the combined VCE (Vin) and ISC still falls within the de safe operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compa- o. 0 ~L.0'---2L.0,.-l-:4.L.0...l6...J.UO.l.L,0~-::2LO,.-l-4.LO,..u60...l..l.,LOLO:-2:CO!-:O:-'-:40::-0:L'...l':':OlJOO VeE, COLLECTOR-EMITTER VOLTAGE (VOL TS) FIGURE 14 - A 200 V. 0.5·AMPERE REGULATOR WITH CURRENT FOLOBACK MJ421 T OR EQUIV + 1 N4005 OR EQUIV 14 O.I~F MC1466 25 V 1~ 10 RSC 2.5 H/1W 18 k 500 lN4001 OR EQUIV t-~r-----------------------------~----------------~--~ 200 k 1 MOTOROLA LINEAR/INTERFACE DEVICES 3-102 MC1466L the normal ac line often contains bursts of voltage running from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditIOns this energy is dissipated across the internal zener connected between pins 9 and 7. This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7 volt zener (CR I) between pin 9 and pin 7. To prevent this failure mode the use of a shielded power transformer is recommended, as shown in Figure 6. In addition, it is recommended that C I, C3 and C4 be included to aid in transient repression. These capacitors should have good high frequency characteristics. If the possibility of transients on the output exists, the addition of a resistor and zener diode between pins 9 and 7 as shown on Figure 17 should be added. The terms ISC and Ik correspond to the short-circuit current and maximum available load current as shown in Figure 15. FIGURE 15 - TYPICAL FOLDBACK PERFORMANCE ---'----1 --r------,------'--r- 250 ~ r----+-~ +--, 200 ~ o ...J ! i -~f-- II -t--- 150 > j 100/--+---1"- f:0 00 50 > VOLTAGE/CURRENT MODE INDICATOR 10 - OUTPUT CURRENT (mAde) There may be times when it is desirable to know when the MCI466 is in the constant current mode or constant voltage mode. A mode indicator can be easily added to provide this feature. Figure J 8 shows how a PNP transistor has replaced a protection diode between pins 8 and 9 of Figure 2. When the Me 1466 goes from constant voltage mode to constant current mode, Va will drop below Vg and the PNP transistor will tum on. The 1 rnA current"supplied by pin 8 will now be shunted to base of Q2 thereby turning on the indicator device II. Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type of wiring is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops do not destroy the excellent regulation of the MC1466. TRANSIENT FAILURES In industrial areas where electrical machinery is used FIGURE 16 - REMOTE SENSE MJE340 OR EQUIV TO"~F MJ413 1.2 k OR EQUIV 6 240 pF MC1466 25 V 1 11 10 RS 8 18 k 8.55 k All diodes are 1N4001or 10 500 ~F equivalent. Note: All Ground Connections at Load Site. MOTOROLA LINEAR/INTERFACE DEVICES 3-103 II • MC1466L FIGURE 17 - A D-TO-25D VOLT, D_l-AMPERE REGULATOR MJE340 OR EaUIV + 14 5 rO"~F MJ413 OR EaUIV 1.2 k 6 240 pF MCl466 25 V l~100- 15 k 1 k 11 10 8 2.5 18 k Vz=== 8 V 500 All diodes are lN40010r equivalent. 250 k Va Adjust FIGURE 18 - D-TO--4D Vdc, D_5-AMPERE REGULATOR WITH MODE INDICATOR +50 Vdc 0.5 Vc. (CONTROL VOL TAGE TO SCHMITT TRIGGER) ·Select 01 such that VCEO > Vo' MOTOROLA LINEAR/INTERFACE DEVICES 3-104 1 @ MOTOROLA MC1468 MC1568 DUAL ± 1S-VOLT TRACKING REGULATOR DUAL ±1S-VOLT REGULATOR The MC1568/MC1468 is a dual polarity tracking regulator designed to provide balanced positive and negative output voltages at currents to 100 mA. Internally, the device is set for ± 15-volt outputs but an external adjustment can be used to change both outputs simultaneously from 8.0 to 20 volts. Input voltages up to ± 30 volts can be used and there is provision for adjustable current limiting. SILICON MONOLITHIC INTEGRATED CIRCUIT • Internally Set to ± 15 V Tracking Outputs • Output Currents to 100 mA • Outputs Balanced to within 1.0% (MCI568) • Line and Load Regulation of 0.06% o ~ Oo"o~ • 1.0% Maximum Output Variation Due to Temperature Changes o • Standby Current Drain of 3.0 mA • Externally Adjustable Current Limit 0 10 (Bottom View) • Remote Sensing Provisions G SUFFIX METAL PACKAGE CASE 603C-Ol CIRCUIT SCHEMATIC VCC 4(7) 3(5) .-----------..oVo+ .--------~~SENSE .-+-t-+--.. Compen (+)'~(3-)+--+--+--' 2(41 (+) 1 14 f~:::::J 1 (2) Balance J-----+;-:O·Adjust (L package onlyl 7(11) r-N"v-.....----f--'" COMPEN (-) eOMP€NI+1 MC1566 MCl468 sc - .3 15k R1 IN'·UT-I-_I----c>-l V~O - SENS< I-I R4 15k COMPEN(-\ Vo- VEE S + Vzl Rint IVO - - Vzl - Rl Where: Rint = An Internal Resistor = R1 = 1.0 kG ~ Vz ~ 0.68 V 6.6 V Some common design values are listed below: ± VOM R2 TC Vo I%I"CI. 14 12 1.2 k 1.8 k 3.5 k 0.003 0.022 0.025 0.028 10 8.0 MOTOROLA LINEAR/INTERFACE DEVICES 3-107 Ie + ImAI 10 7.2 5.0 2.6 II • MC1468, MC1568 TYPICAL CHARACTERISTICS (Vee = +20 V, VEE = -20 V, Va = ±15 V, TA = + 25°C unless otherwise noted.) FIGURE 5 - FIGURE 6 - LOAD REGULATION 0 RSC l1.01--t-"",!~-d:--+"':::::~""'"-+-_±--+--I----l REGULATOR DROPOUT VOLTAGE 1 = 4.0 OHMS I t.vr '" 10~ mV POSITIVE REGULATOR, ~ 2.01--t--t--+--""""2~=-+ :> ~ 3.01--t--t·--+--+-+~"kc-+,,_±---j1----.j ~ 4·oI--t----t--t--+=±=±=~..""k___1f_'="'"i o ;: 5.0 0 => 5 6.01-___1--+-+-+--1--+--+-+--l----l o 7.0;'0-....L..-+.:--.l..----:4!:-0-...L.--:l60:----.l-+--...L.~100 f-- ...- -- 0_ ~ FIGURE 7 - .s '....." ~ 160 "\ \ I"\. I ac 120 CURVE NUMBER PACKAGE, NO HEATSINK 9 -- 21-- LGPACKAGE, NO HEATSINK _ 3 G PACKAGE, INFINITE HEATSINK ;'" 80 ~ ~ ~ + ~ I I 40 20 40 60 IL, LOAD CURRENT (rnA) -55 3\ 4\ \ "\. \ \ "\. \ o +25 +50 +75 TA, AMBIENT TEMPERATURE 1°C} FIGURE 9 - 100 \ 0 0 0 0 0 0 "\. \ ~ "'- ~ I ~ + 40 + • +100 ~ '\: ~ 1 o CURVE NUMBER f-1 - G PACKAGE, NO HEATSINK f-- 2 - L PACKAGE, NO HEATSINK f-- 3 - G PACKAGE, INFINITE HEATSINK 4 - L PACKAGE, INFINITE HEATSINK o +125 2.0 "" '- 4 3"-.., .......... '-.... .............. ~ -- 12 4.0 6.0 B.O 10 14 IVin,Vol, INPUT·OUTPUT VOLTAGE DIFFERENTIAL (V) FIGURE 10 - ISC versus RSC \ 16 CURRENT-LIMITING CHARACTERISTICS -- 0 TJ = 25°C "\. 0 "'- I'-.... I---RSC = 10 OHMS -t-- ~ r---t- 8.0 12 16 20 24 RSC, SHORT·CIRCUIT RESISTOR (OHMS} RSC 20 OHMS - 20 0 0 4.0 1\ 100 \ 0 \ "\. "\ 100 BO MAXIMUM CURRENT CAPABILITY I\. \ MCI568 -25 FIGURE 8 - 200 \ \ 1--+ MC1468 7----1 o f-- f..- "NEGATIVE REGULATOR 2\ 4- L PACKAGE, INFINITE HEATSINK ~ ~ f..- 0 MAXIMUM CURRENT CAPABILITY Vin-Vo = 3.0 V VCC = IVEEI ~ I-- I--- I---'; IL' LOAD CURRENT (rnA) 200 - 0 z 28 0 -55 32 -25 o +25 +50 +75 TJ, JUNCTION TEMPERATURE lOCI MOTOROLA LINEAR/INTERFACE DEVICES 3-108 +100 +125 MC1468, MC1568 TYPICAL CHARACTERISTICS (continued) (Vee ~ +20 V, VEE ~ -20 V, Vo ~ ± 15 V, TA ~ + 25'e unless otherwise noted.) FIGURE 11 - FIGURE 12 - STANDBY CURRENT DRAIN 5.0 STANDBY CURRENT DRAIN 0 1 Vee ~ IVEEI II 9. 0 4.0 8. 0 0 i10SITIIVE STANDBY CURRENT- I~ ...--:; 5n + 25'e 0 -- I POSITIVE STANDBY CURRENT __ 0 + I 25'e 0 /"" f - - NEGATIVE STANDBY CURRENT o 18 20 22 24 26 16 ± Vin. INPUT VOLTAGE (± VI FIGURE 13 - 55'C + 25-C + 125'C 28 30 V L.---t--' -- :.--r ST~NDB)CURR~T 0 I-- 0---- NEGAflVE 0 o 32 15 17 16 20 19 18 ± VO, OUTPUT VOLTAGE (± VI TEMPERATURE COEFFICIENT OF OUTPUT VOLTAGE FIGURE 14 - LOAD TRANSIENT RESPONSE 0.06 1 1 ,I 0.05 _~ce ~ VEE ~ 30V RSC ~ 4 OHMS > Q E G ~ 0.03 t;:: * -- 0.0 2 0.04 - ~ ,- 1/ ... ~IL ~ RSC ~ 0-10 mA 10 OHMS NEGATIVE REGULATOR % CHANGE IN Vo _ erANGE liN JUN1CTION rMPErUREI 17 16 18 19 20 TIME. 20 /LsJDIV ± VO, OUTPUT VOLTAGE (± VI FIGURE 15 - ~VCCI~ JOVIO L3V :1 I I I I I FIGURE 16 - LINE TRANSIENT RESPONSE ~ ~P=4 -I 0 POSITIVE REGULMOR .1 ~VEE ~ -20Vlo -23V 1 I I I 1/ V -- NEGATIVE REGUe:.0R -2 0 ~ -30 I, I ~Vin ~ + 20 10 + 23 V --, - RSC ~ 10 OHMS -I 1 1 RIPPLE REJECTION -; RSC IL ~ ~ 10 OHMS 10 mA ;7 ~ -40 ~ :::> z -50 V t"' -60 ~ NEGATIVE REGULATOR / & -70 ~ -80 r 12 :;;; TIME, 50 /Ls/DIV - 90 ~ -100 100 7 L---I--" ./ L.--:-' 1.0 k 10 k f. INPUT FREQUENCY (Hz) MOTOROLA LINEAR/INTERFACE DEVICES 3-109 P01TIVE REGULATOR 100 k 1.0 M .. MC1468, MC1568 TYPICAL CHARACTERISTICS (continued) (Vee = +20 V, VEE = -20 V, Vo = ± 15 V, TA = + 25°e unless otherwise noted.) FIGURE 17 - OUTPUT IMPEDANCE 10 RSC 4 OHMS IL - lOrnA NEGATIVE REGULATOR POSITIVE REGULATOR 0.01 100 1.0 k 10 k 100 k 1.0 M f, TEST FREQUENCY (Hz) MOTOROLA LINEAR/INTERFACE DEVICES 3-110 ORDERING INFORMATION Davice MCl723CD MCl723CG MCl723CL MCl723CP MCl723G MCl723L Alternate Temperature Range O°C to O°C to O°Cto O°C to LM723CH, pA723HC LM723CD, pA723DC LM723CN, pA723PC - 55°C to Package MC1723 MC1723C 50-14 +70°C +70"C +70"C + 70°C Metal Can Ceramic DIP Plastic DIP Metal Can Ceramic DIP + 125°C - 55°C to + 125°C VOLTAGE REGULATOR MONOLITHIC VOLTAGE REGULATOR SILICON MONOLITHIC INTEGRATED CIRCUIT The MC1723 is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723 is specified for operation over the military temperature range (-55 0 C to +125 0 C) and the MC1723C over the commercial temperature range (0 to +700 C) • Output Voltage Adjustable from 2 Vdc to 37 Vdc • Output Current to 150 mAde Without External Pass Transistors PSUFAX PLASTIC PACKAGE CASE 646-06 • 0.01% Line and 0.03% Load Regulation • Adjustable Short-Circuit Protection (Bottom FIGURE 1 - CIRCUIT SCHEMATIC Vee r--.___r--'_-?-_-'_ _"T_ _ _.-_...;I_12...;I8~ Vc View):$o o G SUFAX METAL PACKAGE CASE 603-04 7 (11) .0 ° 0 1 2 B.2V LSUFFIX CERAMIC PACKAGE CASE 632-08 DSUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 INVERTING INPUT PIN NUMBERS ADJACENT TO TERMINALS ARE FOR THE METAL PACKAGE; PIN NUMBERS IN PARENTHESIS ARE FOR DUAL IN LINE PACKAGES FIGURE 3 - TYPICAL NPN CURRENT BOOST CONNECTION FIGURE 2 - TYPICAL CIRCUIT CONNECTION RSC"O.J3 ,--------::=:::-150C Ripple Rejection (I - 50 Hz to 10 kHzl Crel = 0 Crel = 5.0 I'F Regload %VO - - dB RR Short Circuit Current Limit (RSC = 10 n, - Vo =01 Long Term Stability (!)TIOW = OOC for MC1723C ::= _55 0 C for MC1723 @Thi9h= +70° C for MC1723C = +125 0 C for MC1723 MOTOROLA LINEAR/INTERFACE DEVICES 3-112 MC1723, MC1723C TYPICAL CHARACTERISTICS (Vin = 12 Vde, Vo = 5.0 Vde, I L = 1.0 mAde, RSC = 0, T A = +25 0 C unless otherwise noted.) FIGURE 4 - MAXIMUM LOAO CURRENT AS A FUNCTION OF INPUT·OUTPUT VOLTAGE DIFFERENTIAL FIGURE 5 - LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING 200 +0.0 5 TJmax'" 150 0 C RTH 150 oC/WPSTANDBY" 60 mW (No heat sink) 0 ~ .s ~ ~ ~ 160 r-r-k 'I\.\~JA 13 '" ~ 80 "'" j+25 C --- '\.1'-.. ~::+125~ I'-... 40 J 0 0 -- TA ~ :;'50C r- 10 r---..:: :--...... ........ "~ -0.05 0 20 -= §::. :"i \, E ........., z '";:: \ \ 120 '" ~ .............. 30 20 40 i ~ l:,- f=::: t:- l-I- TA '" -55°C t-- r- -.::: r-...... r--. -0. 1 :t:f r---+--. TA = +125 DC Rsc=lOn ~-o 15 0 '" ~ "'"w '"g -0 .1 r-- ~~ !'-...., 60 40 - ~ t::--.. 80 ::::1:::::::. 100 ....... -"'.. -0 .2 r--- 1i -0. 2 15 10 20 , ~ ~A=-550C ~~ TA =+250~ TA" +125 DC 20 10. OUTPUT CURRENT {mAl ~ , -'" 1 30 25 ~ \. RSC = 10 il 0.3 -0 .4 5.0 , ~-......;;: ~ ~ 1- Jr" 1\ 80 60 40 10. OUTPUT CURRENT ImAI FIGURE 9 - CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE FIGURE 8 - CURRENT LIMITING CHARACTERISTICS 0.8 1.2 RSC :: 10 H ~ 200 ~ ~ '" 0.7 ~ ~ O. 6 TAi+250C 5 T A = -t5OC ". [T- 40 60 80 100 --8:: "" - t:---- LIMIT CURRENT RSC = 10" 0.4 20 160 LIMITCURRENT ASC= 5" ~ TA" +125 DC va LTAGE ~ / w ,.. SENSE r----. t--... 1"'- > 6 o o -55°C +0 1 5 .,; = FIGURE 7 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING z -0.0 TA 10. OUTPUT CURRENT ImAI o> z '" TA - +25 0 C -0.1 5 +0.0 5 ;:: r- ~ FIGURE 6 - LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING o> ~ ............ ~ -0. 1 V;n-Vo. INPUT OUTPUT VOLTAGE IVOL TSI 0_ - r-- I"- +50 -50 ~ r-- --- MOTOROLA LINEAR/INTERFACE DEVICES 3-113 '"" ;:: :;; 80 ~ +100 TJ.JUNCTION TEMPERATURE lOCI 10. OUTPUT CURRENT {mAl 120 t;:- ::", ~ .s,.. " '"'" G 40 +150 ::::i • IVIC1723, MC1723C TYPICAL CHARACTERiSTICS (continuedl FIGURE 10 - LINE REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL +0.2 ..1V m II FIGURE 11 - LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL 1 ~ +3 V 1 - r- r-- --- t--- ,~olmlto'LJ50") « g -0 1 35 25 4.0 f--- Vo 4' 30 V i:; 0 '"~ ~ 1.0 ~ --...- = lL o >= I----- - I' t--.. 1"- lL j---- 20 TA = - OUTPUT VOLTAGE +125 0C -2.0 -5.0 40 30 .s> o >- o > >- ~ = + 30 .s z 0 >= « ~ ./ I -4 .0 ~ 4' II a 0 3 OUTPUT VOLTAGE -5.0 C, '" I w u 1. a ill 0 a z ~ !'" CI- 1 pF V .1 ~ \ -8 .0 +45 a != Il-50mA f\ +2. a +40 FIGURE 15 - OUTPUT IMPEDANCE AS FUNCTION OF FREQUENCY 40 mA 1\ z '- t. TIME (l1s) + 10 Il LOAD CU RRENT w " ~ \ T A = +25 DC FIGURE 14 - LOAD TRANSIENT RESPONSE "«':; ~ o +2.0 2z Yin, INPUT VOLTAGE (VOLTS) ~ 50 I -55 DC ~ j...-- 10 40 30 INPUT VOL TAGE Vref TA 2.0 I' FIGURE 13 - LINE TRANSIENT RESPONSE I = IL=O ~ ........ Yin VO, INPUT·OUTPUT VOLTAGE (VOLTS) FIGURE 12 - STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE oc r-----.. 20 10 Vin -VO, INPUT-OUTPUT VOLTAGE (VOLTS) u --......... -0. 1 -0. 2 15 5.0 .s >'"oc t--. o ~ 0.0 1 +30 +40 +45 100 10 k 1.0k f, FREQUENCY (Hz} MOTOROLA LINEAR/INTERFACE DEVICES 3-114 lOOk 1M MC1723, MC1723C TYPICAL APPLICATIONS Pin numbers adjacent to terminals are for the metal package; pin numbers in parenthesis are for the dual in-line packages. < Vo < 7 FIGURE 16 - TYPICAL CONNECTION FOR 2 FIGURE 17 - MC1723,C FOLOBACK CONNECTION RSC 6(10) (12) 8 RSC 6(10) (12) 8 Vo +Vin II Vo +Vin (11)7 RA 10(2) Rl MC1723 (MC1723C) Rl MC1723 (MC1723C) R3 (5) 3 (5)3 Cref 100 pF R2 A2 1 113) (7)5 517) ISC" VO OO7[R1R+2R2J Vsens~ ~ o...:§~ RSC at TJ == +250C RA = RSC For best results 10 k < R1 + R2 < 100 k. For minimum drift R3 = R111R2. FIGURE 19 - +5 V, I-AMPERE HIGH EFFICIENCY REGULATOR :I: 0.1 pF lN4001 Equiv Vin2 _ +10 V - Dr 6(10) (6) 4 MC1723 (MC1723C) 2.2k I 112)8 6 (10) 10 +5 V 10(2) MC1723 IMC1723C) 2k 1 (3) 1M lk o. l1lF 0.33' Vo (12) 8 15)3 2 (4) (5) 3 5.1k :t 9(13) 5.1k 17)5 5(7) FIGURE 20 - +15 V, I-AMPERE REGULATOR WITH REMOTE SENSE 6 (10) Vin (12) 8 V"'-+--..>--o--j (11)7 1 (3) MC1723 (MC1723C) 0.1 pF (614 2 (4) ~2 k + Sense Vo ~- +15 V 10 k 1000 pF FIGURE 21 - -15 V NEGATIVE REGULATOR 0.33 .20 Vo Vin 1 +6.5 V ...4 1 - - - - - - - - - = = _ - , ( =lmH Vin +10 V where Vsense ASC '11-0) ISC FIGURE 18 - +5 V, I-AMPERE SWITCHING REGULATOR 100 ~. 10 kn 1-0 Load -Sense -=- Vin:= -20 V MOTOROLA LINEAR/INTERFACE DEVICES 3-115 +5 V MC1723, MC1723C TYPICAL APPLICATIONS (continued) FIGURE 22 - +12 V, I-AMPERE REGULATOR a USING PNP CURRENT BOOST 2N3791 or Equiv Vin +18V----E 0.33 100 10k 100pF 12k ( MOTOROLA LINEAR/INTERFACE DEVICES 3-116 ® MC3423 MC3523 MOTOROLA Specifications and Applications Information II OVERVOLTAGE SENSING CIRCUIT OVERVOLTAGE "CROWBAR" SENSING CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUIT These overvoltage protection circuits (OVPI protect sensitive electronic circuitry from overvoltage transients or regulator failures when used in conjunction with an external "crowbar" SCR. They sense the overvoltage condition and quickly "crowbar" or short Pl SUFFIX PLASTIC PACKAGE CASE 626-05 {MC3423 only) circuit the supply, forcing the supply into current limiting or open- ing the fuse or circuit breaker. The protection voltage threshold is adjustable and the MC34231 3523 can be programmed for minimum duration of overvoltage condition before tripping, thus supplying noise immunity. The MC3423/3523 is essentially a "two terminal" system, therefore it can be used with either positive or negative supplies. U SUFFIX CERAMIC PACKAGE CASE 693-02 MAXIMUM RATINGS Rating Differential Power Supply Voltage """'SeMe-Voltage {1) - - Sense Voltage (2) Output Current Unit 40 Vdc ~?~~~-~ 6.5 6.5 Vdc 7.0 Vdc 300 mA V act 10 I Operating Ambient Temperature Range i Value VS ense 2 Remote Activation Input Voltage I Symbol VCC,VEE TA MC3423 MC3523 Operating Junction Temperature PlastiC Package o to +70 -55 to +125 Vdc 'c PIN CONNECTIONS 'c TJ Drive Output 125 150 Ceramic Package Storage Temperature Range i D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 T stg -65 to +150 oC Indicator Output Remote Activation Current Source (Top View) TYPICAL APPLICATION V out Current Limited ORDERING INFORMATION DC Device Power Temperature Range Package o to + 70 C Plastic DIP SO-8 MC3423D Supply MC3423P1 G MC3423U MC3523U MOTOROLA LINEAR/INTERFACE DEVICES 3-117 Ceramic DIP -55to + 125°C Ceramic DIP • MC3423, MC3523 ELECTRICAL CHARACTERISTICS 15 V " VCC -VEE ,,' 36 V, Tlow < TA < Thigh unless otherwise noted.1 Symbol Min Typ Max Unit VCC-VEE 4.5 - 40 Vdc Va VCC-2.2 VCc-1.8 Indicator Output Voltage 1I0lindi = 1.6 mAl VOLlindl - 0.1 0.4 Sense Trip Voltage ITA = 25 0 CI VSense 1, VSense 2 TCVS1 2.45 2.6 2.75 IIH IlL - ISource 0.1 Characteristic Supply Voltage Range Output Voltage 110 = 100 mAl Temperature Coefficient of VSense 1 Vdc Vdc Vdc %/oC 0.06 IFigure 21 Remote Activation Input Current IVIH = 2.0 V, VCC-VEE = 5.0 VI IVIL = 0.8 V. VCC-VEE = 5.0 VI IlA Source Current Output Current Risetime ITA = 25 0 CI Propagation Delay Time ITA tpd = 25 0 CI Supply Current 40 -180 0.2 0.3 400 tr , 5.0 -120 mA mAills - 0.5 - - 6.0 5.0 10 7.0 IlS mA ID MC3423 MC3523 Tlow = -55°C for MC3523 = OoC for MC3423 Thigh = +125 0 C for MC3523 = + 70°C for MC3423 FIGURE 1 - BLOCK DIAGRAM Vee 4 Current Source Sense 1 Q-1f----t----( '--.....-+-0 Output 8 VEE Sense 2 5 6 Remote Activation Indicator Output FIGURE 2 - SENSE VOLTAGE TEST CIRCUIT Vee Switch 1 (AI ~ VI f' ~ 8 VS ense 1 VS ense 2 Ramp V I until output goes high; this is the VSense threshold. MOTOROLA LINEAR/INTERFACE DEVICES 3-118 " MC3423, MC3523 FIGURE 3 - BASIC CIRCUIT CONFIGURATION Vtrip = Vref (1+~) "'" 2.6 V (1+~) R2";;; 10 kn for minimum drift To Load For minimum value of RG. see Figure 9 • See text for ex planation ( ~ Sense Lead) FIGURE 4 - CIRCUIT CONFIGURATION FOR SUPPLY VOLTAGE ABOVE 36 V (+ Sense Lead) R1 Power Supply ~~ad MC3523 MC3423 RS = (Vs ~ 10) Vtrip = Vref 10,uF kf! (1+~) »;; 2.6 V (1+~) ltR2:S:;;10kf2 15 V Q1: VS";; 50 V; 2N6504 or equivalent Vs ~ 100 V; 2N6505 or equivalent VS';;;; 200 V; 2N6506 or equivalent Vs :;;;;- 400 V; 2N6501 or equivalent Vs .;;;; 600 V; 2N6508 or equivalent Vs :s;;; 800 V; 2N6509 or equivalent FIGURE 5 - BASIC CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP Vee V"iPO~------r-----~--------~~~------~---+Vee Ve R1 V,ef -ot~~~t~--Z== Vo R2 o VIO l--+--I~I-td-=+--'--~1 - 1- - - - - - I td =I Vref xC"" [12 x10 3 ] C (See Figure 10) source MOTOROLA LINEAR/INTERFACE DEVICES 3-119 II II MC3423, MC3523 APPLICATIONS INFORMATION BASIC CIRCUIT CONFIGURATION The basic circuit configuration of the MC3423/3523 OVP is shown in Figure 3 for supply voltages from 4.5 V to 36 V, and in Figure 4 for trip voltages above 36 V. The threshold or trip voltage at which the MC3423/3523 will trigger and supply gate drive to the crowbar SCR, 01, is determined by the selection of R 1 and R2. Their values can be determined by the equation given in Figures 3 and 4, or by the graph shown in Figure 8. The minimum value of the gate current limiting resistor, RG, is given in Figure 9. Using this value of RG, the SCR, 01, will receive the greatest gate current possible without damaging the MC3423/3523. If lower output currents are required, RG can be increased in value. The switch, Sl, shown in Figure 3 may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non current· limited supply is used, a fuse or circuit breaker, Fl, should be used to protect the SCR and/or the load. The circuit configurations shown in Figures 3 and 4 will have a typical propogation delay of 1.0 /lS. If faster operation is desired, pin 3 may be connected to pin 2 with pin 4 left floating. This will result in decreasing the propogation delay to approximately 0.5 /ls at the expense of a slightly increased TC for the trip voltage value. FIGURE 6 - CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOL TAGE CONDITION BEFORE TRIP/WITH IMMEDIATE TRIP AT HIGH OVERVOLTAGES (+ Sense + Lead) ,---- 1 Rl ZI~~ I Power Supply I 2 ~ MC3523 R2 5 lK 4~ ~ 7 T C (- Sense Lead) - ADDITIONAL FEATURES 1. Activation Indication Output An additional output for use as an indicator of OVP activation is provided by the MC3423/3523. This output is an open collector transistor which saturates when the OVP is activated. In addition, it can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR. CONFIGURATION FOR PROGRAMMABLE MINIMUM DURATION OF OVERVOLTAGE CONDITION BEFORE TRIPPING In many instances, the MC3423/3523 OVP will be used in a noise environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423/3523 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 5 is used. In this configuration, a capacitor is connected from pin 3 to VEE. The value of this capacitor determines the minimum duration of the overvoltage condition which is necessary to trip the OVP. The value of C can be found from Figure 10. The circuit operates in the following manner: When VCC rises above the trip point set by Rl and R2, an internal current source (pin 4) begins charging the capacitor, C, connected to pin 3. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate"" 10 times faster than the charging rate, resetting the timing feature until the next overvoltage 2. Remote Activation Input Another feature of the MC3423/3523 is its remote activation input, pin 5. If the volage on this CMOS/TTL compatible input is held below 0.8 V, the MC3423/ 3523 operates normally. However, if it is raised to a voltage above 2.0 V, the OVP output is activated independent of whether or not an overvoltage condition is present. It should be noted that pin 5 has an internal pull-up current source. This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the activation indication output of one MC3423/3523 can be used to activate another MC3423/3523 if a single transistor inverter is used to interface the former's indication output to the latter's remote activation input, as shown· in Figure 7. In this circuit, the indication output (pin 6) of the MC3423 on power supply 1 is used to activate the MC3423 associated with power supply 2. 01 is any small PNP with adequate voltage rating. condition occurs. Occasionally, it is desired that immediate crowbarring of the supply occur when a high overvoltage condition occurs, while retaining the false tripping immunity of Figure 5. In this case, the circuit of Figure 6 can be used. The circuit will operate as previously described for small overvoltages, but will immediately trip if the power supply voltage exceeds VZl + 1.4 V. MOTOROLA LINEAR/INTERFACE DEVICES 3-120 MC3423, MC3523 FIGURE 7 - CIRCUIT CONFIGURATION FOR ACTIVATING ONE MC3523 FROM ANOTHER + FIGURE 8- Rl versus TRIP VOLTAGE 3D ./ Rl ~ 10 k V' 2D V u V' V' V VV VV' z « to ~ '" II ~~ '\...~V I R2 '" 2.7k V-"". V V V /. V-....... ID ~ l'l" .......::: ~ '1jiIP o o 5.0 10 15 2D 3D 25 Vr. TRIP VOL lAGE (VO LlSI Note that both supplies have their negative output leads tied together (i.e., both are positive supplies). If their positive leads are common (two negative supplies) the emitter of 01 would be moved to the positive lead of supply 1 and R 1 would therefore have to be resized to deliver the appropriate drive to 01. FIGURE 9- MINIMUM RG versus SUPPLY VOLTAGE 5 ./' - 3D CROWBAR SCR CONSIDERATIONS Referring to Figure 11, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Couto This capacitance consists of the power supply output caps, the load's decoupiing caps, and in the case of Figure 11A, the supply's input filter caps. This surge current is illustrated in Figure 12, and can cause SCR failure or degradation by anyone of three mechanisms: di/dt, absolute peak surge, or 12t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expen· sive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task. ./ L V ID ./ RGIMi;) = 0 ilV cc 1--- I II I I 6.0 IVCC 15 V !;;: 0.8 2: ~ ~ O.6- VCC - 40V !G ill o.4 w I 2.0 ,/ 0 0.2 1/, I VCC = 5.01V ~ I I > 15.0 '/ 0.6 0.8 1.0 1.2 1.4 VHf a,!)· HYSTERESIS ACTIVATION VOLTAGE IV) ,I - 114.0 VCC = 15 V ....-- 13'" ffi 12.0 ~ '" a -55 1.6 -25 - -- ~ ~ -10 w '" ~ -20 > w Z '" ~ / . -40 ~ " is 10.0 - -55 -r-25 a L +25 +50 +75 TA. AMBIENT TEMPERATURE lOCI MOTOROLA LINEAR/INTERFACE DEVICES 3-126 - T-- ---.. ./ '" '" z 0.01 0.1 1.0 CDlY. DELAY PIN CAPACITANCE II'FI --- . / ........... / FIGURE 5 - OUTPUT DELAY TIME versus DELAY CAPACITANCE 100 V ~ -30 > +100 L >- V +25 +50 +75 TA. AMBIENT TEMPERATURE lOCI L / / ./ 125 VS. nse - 2.500 V VS. nse - 2.600 V P""".. '" Z 100 SENSE TRIP VOLTAGE CHANGE versus TEMPERATURE VSense• - 2.400 V ;;- .s w U.V. Sense = 2.5 V ~ -25 t::::-- 25 50 75 TA. AMBIENT TEMPERATURE l°e) FIGURE 4 - VCC - 5.0 V_ t - - - _I-" 10.0 -55 r-:::: --r-r--- ~ O. 2 t----- VCC = 40 V 13.0 -- ;0 0.4 I VHlact: = Level at which Hystersis Current (lHI is 90% _ of full value. '" FIGURE 3 - HYSTERESIS CURRENT versus TEMPERATURE .:i'11.0 VOlta~e !.o 1.0 )-- VCC = V ~J. i!5 8.0 - ~ VCC=40V 4.0 ai HYSTERESIS ACTIVATION VOLTAGE versus TEMPERATURE +100 +125 MC3425 FIGURE 8 - INDICATOR OUTPUT SATURATION VOLTAGE versus OUTPUT SINK CURRENT FIGURE 7 -DRIVE OUTPUT SATURATION VOLTAGE versus OUTPUT PEAK CURRENT , ~ '" 5.0 ~ ~ 4.0 o _vccl~15V ~ ::> --- -- ~ 3.0 .... 5~ 2.0 ~ c: ~ o ,.~ 1.0 0 o ~ i ::> ~ .... ~ 2.380 "" '" 2.340 I'---.. ~ ~2.300 ~ -55 -25 10 20 30 liND. INDICATOR OUTPUT SINK CURRENT (mA) 4-L A -I / 0 +25 6 +50 +75 ~ 8.0 /- +100 G,d 1 u ~4.0 +125 TA. AMBIENT TEMPERATURE (OC) G~dvee .- A f.- ..- .- ..- f-" ( l - I-B 5.Qi 10 I-- I-- I-- TA 15 20 25 30 VCC. POWER SUPPLY VOLTAGE (V) MOTOROLA LINEAR/INTERFACE DEVICES 3-127 40 POWER SUPPLY CURRENT versus VOLTAGE ~ !!< r--- 1 Vee B 0 -1- .......... II 15V _ TA~25°C 8_~-ense:"~ ~ ~ /' VCC~ FIGURE 10 - / o g;: 00 ;> IDRV(peak) ~ 200 mA 1.0% Duty Cycle @ 300 Hz 0",,- 2.420 ~ 400 I .I. VCC~15V / / DRIVE OUTPUT SATURATION VOLTAGE veo:sus TEMPERATURE 2.50 0 / / ./ 100 200 300 IDRV(peak). DRIVE OUTPUT PEAK CURRENT (mA) ~ ~ 2.46 .- - ~ f--" FIGURE 9 - .§'" I J 1.0% Duty Cycle @ 300 Hz -TA ~ 25°C ~ 25°C- I- 35 40 MC3425 APPLICATIONS INFORMATION FIGURE 12 - OVERVOLTAGE PROTECTION OF 5.0 V SUPPLY WITH LINE LOSS DETECTOR" FIGURE 11 - OVERVOLTAGE PROTECTION AND UNDER VOLTAGE FAULT INDICATION WITH PROGRAMMABLE DELAY II ? AlA Vo = 5.0 V VOltrip) = 6.25 V AlB 1.0 k C~\ 8 + VCC 15 k ~ - IH - ... ~11"""-.!H --+-4~s~~~e ~ U.V. Fault Indicator Power Supply 4.5 to 40 V Sense ~N~ j.:6::....__--+-o MC3425 U.V. 6 IND U.V. O.V. Sense MC3~25 3 Line loss Output 10 k O.V: 1 DAV O.V. Sense 100 O.v. DlY /+ A2A U.V. DlY Gnd t 7 A2B CDlY . U.V. HysteresIs = R1B R2B IH ( -) CDlY U.V. Sense Gn Pin 4 U.V. DlY ----- -----...c.:J.- -- 2.5 V Pin5 ~ L- R1A) VOltrip) = 2.5 V ( 1 + A2A AlB + A2B r\f\/\ ~ -r-T-T-L:J--12.5 V tDlY = 12500 CDlY FIGURE 13 - OVERVOLTAGE AUDIO ALARM CIRCUIT FIGURE 14 - PROGRAMMABLE FREQUENCY SWITCH I r----.------------~~------------O+Vo Input Signal 12 V 5.0 p,F ~0--7 12 k + 12 V Alarm On When VCC +-__....:3=-1 I.V. pop Vb '" 13.6 V O.V. Sense 0 .V. 2.7 k 4 82k U.V. Sense U.V. DlY O.V. DAV MC3425 10 k MC3425 Supply 1 !Iinput) < 25000 COLY Sense Power Output Pulse When VCC 10 k 4 1.0 k U.V. Sense O.V. DlY U.V. DlY Gnd Gnd O.V. DlY 6.8 k CDlY 0.1 "F L---~__~--------------~----~--OGnd O.V. Sense Pin 3 fI f\ /\ /"\ V \ T V V 2.5 V O.V. DlY- ____ ..A. __ A __ 2.5 V Pin 2 O.V.DRV Pin 1 A.A.../ L./ L- ~ MOTOROLA LINEAR/INTERFACE DEVICES 3-128 ON OFF MC3425 CIRCUIT DESCRIPTION is based on the constant current source, IDLY(source), charging the external delay capacitor (CDL Y) to 2.5 volts. The MC3425 is a power supply supervisory circuit containing all the necessary functions required to monitor over- and under-voltage fault conditions. The block diagram is shown below in Figure 15. The OverVoltage (C.V.) and Under-Voltage (U.V.) Input Comparators are both referenced to an internal 2.5 V regulator. The U. V. Input Comparator has a feedback activated 12.5 pA current sink (lH) which is used for programming the input hysteresis voltage (VH). The source resistance feeding this input (RH) determines the amount of hysteresis voltage by VH = IHRH = 12.5 x 10- 6 RH. Separate Delay pins (O.v. DLY, U.v. DLY) are provided for each channel to independently delay the Drive and Indicator outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant current source, IDLY(source), of typically 200 p.A when the non-inverting input voltage is greater than the inverting input level. A capacitor connected from these Delay pins to ground, will establish a predictable delay time (tDLY) for the Drive and Indicator outputs. The Delay pins are internally connected to the non-inverting inputs of the O.V. and U.V. Output Comparators, which are referenced to the internal 2.5 V regulator. Therefore, delay time (tDLY) tDLY = Vref CDLY 2.5 CDLY = --"-=- = 12500 CDLY IDLY(source) 200 p.A Figure 5 provides CDLY values for a wide range of time delays. The Delay pins are pulled low when the respective input comparator's non-inverting input is less than the inverting input. The sink current, IDLY(sink), capability of the Delay pins is? 1.8 mA and is much greater than the typical 200 p.A source current, thus enabling a relatively fast delay capacitor discharge time. The Over-Voltage Drive Output is a current-limited emitter-follower capable of sourcing 300 mA at a turn-on slew rate of 2.0 AI P.s, ideal for driving "Crowbar" SCA's. The Under-Voltage Indicator Output is an open-collector, NPN transistor, capable of sinking 30 mA to provide sufficient drive for LED's, small relays or shut-down circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceeded. The MC3425 has an internal 2.5 V bandgap reference regulator with an accuracy of ± 4,0% for the basic devices and ± 1.0% for the A-suffix device types at 25°C. The reference has a typical temperature coefficient of 30 ppmfOC for A-suffix devices. FIGURE 15 - BLOCK DIAGRAM VCC 8 o.v. Sense 3 '---.....t------';-V'""",,, U.V. Sense 4 INPUT SECTION 5 U,V. O.v. 2 DLY DLY Gnd OUTPUT SECTION Note: All voltages and currents are nominal. MOTOROLA LINEAR/INTERFACE DEVICES 3-129 II • MC3425 CROWBAR SCR CONSIDERATIONS ., Referring to Figure 16, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacita nce, Cout, This capacita nce consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 16A, the supply's input filter capacitors. Thissurge current is illustrated in Figure 17, and can cause SCR failure or degradation by anyone of three mechanisms: di/dt, absQlute peak surge, or 12 t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR a nd circuit elements which result in reliable and effective OVP operation. However, an understanding ofthefactorswhich influence the SCR's di/dt and surge capabilities simplifies this task. gate region, very high current densities can occur in the gate region if high anode currents appear quickly . (di/pt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity of the occasion . The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fasl'<1.0!,s rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 AI !'s, assuming a gate current of five times IGT and< 1.0!,s rise time. If having done this, a di/dt problem is seen to still exist. the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 18. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt. 1. di/dt As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gr.adually spreading. Since the anode current flows through this turned-on FIGURE 16 - TYPICAL CROWBAR CIRCUIT CONFIGURATIONS 16A - SCR ACROSS INPUT OF REGULATOR ------..-----o f-.... VOU! 16B - SCR ACROSS OUTPUT OF REGULATOR 1--~'--411 \.J~....------..-_Cl Vout . "Needed if supply is not current limited MOTOROLA LINEAR/INTERFACE DEVICES 3-130 MC3425 FIGURE 17 - CROWBAR SCR SURGE CURRENT WAVEFORM A WORD ABOUT FUSING Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 16A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire I In order to protect the SCR, the fuse would have to possess an 12 t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available. The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, a nd trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 16B. 2. Surge Current If the peak current and/orthe duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance ~ see Figure 18) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCA This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply. CROWBAR SCR SELECTION GUIDE As an aid in selecting an SCR for crowbar use, the following selection guide is presented. FIGURE 1 B - CIRCUIT ELEMENTS AFFECTING SCR SURGE & dildt ~ ~ ESR ESL 1': I RLead LLead I ~R ) Output Cap L To f MC3425 ----.J DEVICE IRMS IFSM PACKAGE MCR67 Series MCR68 Series 2N 1842 Series 2N6400 Series 2N6504 Series 2N681 Series 2N2573 Series MCR69 Series MCR70 Series MeR71 Series 12A 12A 16A l00A 100A 125A 160A 160A 200A 260A 300A 350A 550 A Metal Stud TO-220 Plastic 16A 25 A 25 A 25 A 25 A 35 A 55A Metal Stud TO-220 Plastic TO-220 Plastic Metal Stud TO-3 Metal Can TO-220 Plastic Metal Stud Metal Stud For a complete and detailed treatment of SeA and fuse selection refer to Motorola Application Note AN789. R & L EMPIRICALLY DETERMINED MOTOROLA LINEAR/INTERFACE DEVICES 3-131 II ® • MC7800 Series MOTOROLA THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS THREE-TERMINAL POSITIVE VOLTAGE REGULATORS These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local. on-card regulation. These regulators employ internal current limiting. thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. • Output Current in Excess of 1.0 Ampere • • • • • No External Components Required Internal Thermal Overload Protection Internal Short-Circuit Current Limiting Output Transistor Safe-Area Compensation Output Voltage Offererl in 2% and 4% Tolerance SILICON MONOLITHIC INTEGRATED CIRCUITS K SUFFIX METAL PACKAGE CASE 1-03 (Bottom VIew) PillS 1 and 2 electrically Isolated from case Case IS third electrical connection REPRESENTATtVE SCHEMATIC DIAGRAM r---~----------~----------~----~--~------~-olnput 100 T SUFFIX PLASTIC PACKAGE CASE 221A-04 500 PIN 1. INPUT 2. GROUND 3. OUTPUT !Heatsink surface connected to Pin 2.l .....---+_o Outpu t .H--------1~~-----+-- 1: STANDARD APPLICATION Inp~tT: MC78XX C in 0,33 /J F ? ±+-______-' c...______ Output CO" 2.7 k A common ground IS required between the Input and the output voltages. The Input volt age must remain typically 2.0 V above the out· put voltage even duriftg the low pOint on the input ripple voltage. XX '" these two digits of the type number indicate voltage. 500 Gnd ORDERING INFORMATION Output Voltage Device Tolerance Cric78XXK MC78XXAK* Tested Operating Junction Temp. Range Package -55to +t50°C Metal Power 4% 2% o to 4% 2% MC78XXCT MC78XXACT 4% Plastic 2% Power MC78XXBT 4% 2% regulators In == Cin is required If regulator is located an appreciable distance from power supply filter. ** == Co is not needed for stability; however, it does improve transient response. XX indIcates nommal voltage + 125"C MC78XXCK MC78XXACK"" . * TYPE NO.NOLTAGE -40 to + 125"C Metal Power packages are available In 5, 12 and 15 volt devices. MC7805 MC7806 MC7808 MC7809 MOTOROLA LINEAR/INTERFACE DEVICES 3-132 5.0 6.0 8.0 9.0 Volts Volts Volts Volts I MC7812 MC7815 MC7818 MC7824 12 15 18 24 Volts Volts Volts Volts MC7800 Series MAXIMUM RATINGS ITA ~ +25"C unless otherwise noted. I Rating Input Voltage 15.0 V - 18 VI 124 VI Symbol Value Unit Vin 35 40 Vdc Po 1/8JA 8JA Internally Limited 15.4 65 Watts mW/"C "CIW Po 1I8JC 8JC Internally Limited 200 5.0 Watts mWrC Po 1/8JA 8JA Internally Limited 22.5 45 Watts mWrC "CIW Po 1/8JC 8JC Internally Limited 182 5.5 Watts mWrC Totg -65 to + 150 "e Power Dissipation and Thermal Characteristics Plastic Package TA ~ +25"C Derate above TA ~ + 25"C Thermal Resistance, Junction to Air TC ~ +25"C Derate above TC = + 75"C (See Figure 11 Thermal Resistance, Junction to Case Metal Package TA ~ +25"C Derate above TA ~ + 25"C Thermal Resistance. Junction to Air TC = H5"C Derate above TC = +65"C (See Figure 21 Thermal Resistance, Junction to Case Storage Junction Temperature Range Operating Junction Temperature Range "elW "C TJ MC7800,A MC7800C,AC MC7800B "CIW -55 to + 150 Oto+150 -40 to +150 DEFINITIONS Line Regulation ._. The change In output voltage for a change In the Input voltage The measurement IS made under conditions of low dissipatIOn or by uSing pulse techniques such that the average chip temperature IS not slgnlflcantty affected Load Regulation - The change In output voltage for a change load current at constant chip temperature QUiescent Current delivered to the load That part of the Input current that is not Output NOise Voltage - The rms ac voltage at the output, with constant load and no Input ripple, measured over a specified frequency range In Long Term Stability -- Outp-ut voltage stability under accelerated life test conditions with the maximum rated voltage listed In the devices' electnca I charactertstlcs and m a XI m um power diSsipation MaXimum Power DISSipation -- The maximum total deVice diSSIpation for which the regulator Will operate within specifications MOTOROLA LINEAR/INTERFACE DEVICES 3-133 • • MC7800 'Saries M.C7805. B. C ELECTRICAL CHARACTERISTICS (Vin = 10 V,IO = 500 mA, TJ = Tlow 10 Thi h (Nole 11 unless olhe'wise nOled) Characteriatic Output Voltage fTJ Symbol =+25°C) Vo Output Voltage (5.0 mA";IO";1.0A, Po"; 15W) 7.0 Vdc~ Vin~ 20Vdc B.O Vdc ~ Yin ~ 20 Vdc Vo line Regulation (TJ = +25°C. Note 2J 7.0 Vdc ~ Yin ~ 25 Vdc 8.0Vdc~ Vin~ 12 Vdc Regline Load Regulation (TJ:: +25°C. Note 2) 5.0 mA,,; 10"; 1.5 A 250 rnA ~ 10 ~ 750 mA Regload MC7B06 MC7805B Min Typ Max Min Typ M •• Min 4.8 5.0 5.2 4.8 5.0 5.2 4.8 MC7805C Typ Ma. 4.75 .1IB RIpple RejectIon 80 Vdc '.::. VIn ~ 18 Vdc, 1:: 120 Hz RR 5.0 5.35 2.0 1.0 4.75 5.0 5.25 50 25 7.0 2.0 100 50 25 8.0 100 25 40 15 100 50 3.2 6.0 4.3 8.0 0.3 0.04 0.8 0.5 5.0 5.25 7.0 2.0 100 50 Vdc 40 15 100 50 4.3 8.0 mV - mA mA 1.3 1.3 0.5 75 68 0.5 68 68 2.0 2.0 2.5 2.0 Output NOise Voltage (TA:: +25 J C) 10 Hz '", f ~ 100 kHz 10 40 10 10 Output Resistance f:: 10kHz 17 17 17 Shon-ClrcUit Current Limit (TA '" +25°C) 35 Vdc 0.2 1.2 0.2 0.2 2.5 3.3 ~~tVoltage(IO:: Unit mV IB Quiescent Current Change 7.0 Vdc ~ Vin -:::;; 25 Vdc 8.0 Vdc -:::;; Vin ~ 25 Vdc 5.0mA-:::;; 10~ 1.0A 5.2 Vdc 4.65 Quiescent Current (TJ = +25°C) 5.0 1.0A, TJ:: ~25°C) dB _ .•"~In:: 1.3 Peak Output Current lTJ:: +25°CI Average Temperature Coefficient 01 Output Voltage :to.6 TCVo 2.2 22 A -1.1 -1.1 mV/ °C .MC7805A, AC ELECTRICAL CHARACTERISTICS (V m :: 10 V 10:: lOA. TJ:: Tlow to Thlah [Note 1] unless otherwise noted) Characteristics Symbol Output Voltage (TJ:: ·25°CI Vo Output Voltage Vo (5.0mA"';; IO~ 1.0A. PO~ 15W) 75 Vdc -s;, Vin ~ 20 Vdc Ltne Regulallon (Note 2) 7.5 Vdc ~ Vm ~ 25 Vdc. '0::: 500 rnA 80 Vdc ~ Vin ~ 12 Vdc 8.0 Vdc ~ Vin ~ 12 Vdc. TJ:: t25°C 7,3 Vdc ~ V ln ~ 20 Vdc, TJ::: +25°C Regline Load Regulation (Nole 2) Regload MC7805A Typ Ma. Min MC7805AC Typ Ma. 4.9 5.0 5.1 4.9 5.0 51 4.8 5.0 52 4.8 5.0 52 2.0 3.0 1.0 2.0 10 10 70 4.0 10 2.0 7.0 50 50 25 50 2.0 20 1.0 1.0 25 25 15 25 25 25 100 100 3.2 5.0 4.0 Min mV '0:;;; 7S0mA, TJ = +25°C 750 rnA mA~ IO~ QUIescent Current IB TJ:: +25°C Quiescent Current Change 8.0 Vdc ~ Vin ~ 25 Vdc. 10 :: 500 rnA 7.5 Vdc ~ Vin ~ 20 Vdc. TJ :: +25°C 5.0mA~lo~ 1.0A .1IB Ripple Rejection 8.0 Vdc ~. Yin ~ 18 Vdc. f = 120 Hz. TJ:: +25°C 8.0 Vdc~ Vin ~ 18 Vdc. f:: 120 Hz. 10 =500 mA RR Dropout Voltage (10 :: 1.0 A. TJ Output Resistance «f 68 - 1 .0 kHz) Short-Circuit Current limit (TA :: +25°C) Vin:: 35 Vdc 50 4.3 6.0 6.0 0.5 0.8 08 0.5 as 0.2 75 75 68 Yin-YO 2.0 2.5 2.0 Vdc Vn 10 40 10 IAV/Vo '0 2.0 17 mll Ise 0.2 1.2 0.2 A 2.5 3.3 2.2 A -1.1 mV/OC Peak Output Current ITJ - +25°C) Imax Average Temperature Coefficient of Output Voltage TCVO 1.3 ±0.6 ~ :~~~:g ::~ ~g~:~~c~ NOTES: 1. Tlow:: ··55°C for MC78XX. A Thigh AC. B 0° for MC78XXC. AC =-40"C fo, MC78XXB 2. Load and line regulation are •.pecified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. = mA dB 68 Output Noise Voltage (TA =+25°C) 10 Hz~ f~ 100kHz 8.0 mA 0.3 0.2 0.04 =+25°C) 10 mV 5.0 mA ~ 10 ~ '.0 A mA~ Vdc Vdc 5.0 rnA:;;; '0:;;; 1.5 A. TJ::: +25°C 250 250 Unit MOTOROLA LINEAR/INTERFACE DEVICES 3-134 MC7800 Series MC7806, B,C ELECTRICAL CHARACTERISTICS IVin ~ 11 V, 10 Characteristic ~ Output Voltage ITJ ~ 500 mA, TJ ~ Tlow to Thi h [Note 1] unless otherwise noted). Symbol + 25"C) Vo Output Voltage MC7806 MC7806B MC7806C Min Typ Ma. Min Typ Ma. Min Typ Ma. 5.75 6.0 6.25 5.75 6.0 6.25 5.75 6.0 6.25 5.7 6.0 6.3 Unit Vde Vo Vde 15.0 mA '" 10" 1.0 A, PO" 15 W) 8.0 Vdc ~ Vin ~ 21 Vdc 9.0 Vdc ~ Vin =s 21 Vdc 5.65 Line Regulation (TJ = + 25°C. Note 2) 8.0 Vdc ~ Vin ..s 25 Vdc 9.0 Vdc ~ Vin "'" 13 Vdc Regline Load Regulation (TJ ~ + 25"C, Note 2) 5.0 rnA ~ 10 .:;; 1.5 A Regload 6.3 60 30 9.0 3.0 120 60 9.0 3.0 120 60 27 9.0 100 30 43 16 120 60 43 16 120 60 3.2 6.0 4.3 8.0 4.3 8.0 0,3 0.04 0.8 0.5 mA mA 1.3 RR 0;;: 6.0 .lIS 5.0 mA " 10 " 1.0 A Ripple Rejection 9.0 Vdc 0;;: Vin 3.0 2.0 5.7 mV IS Quiescent Current Change 8.0 Vdc ~ Vin ~ 25 Vdc 9.0 Vdc ~ Vin ~ 25 Vdc 6.35 mV 250 mA " 10 " 750 mA Quiescent Current (TJ =- + 25"C) 6.0 1.3 0.5 73 65 0,5 65 65 dS 19 Vdc, f '; 120 Hz ~ Dropout Voltage (to ~ 1.0 A, TJ + 25"C) Vin-VO 2.0 2.5 2.0 2.0 Vde Vn 10 40 10 10 p.VI Vo 17 17 mO 0,2 0.2 A Output Noise Voltage (T A =- + 25"C) 10 Hz 0;;: f 0;;: 100 kHz Output Resistance f = 1.0 kHz Short-Circuit Current Limit (TA Vin = 35 Vdc + 25"C) = rO 17 Ise 0.2 1.2 2.5 3.3 Peak Output Current (TJ =- + 25°C) [max Average Temperature Coefficient of Output Voltage TCVO 1.3 ±0.7 MC7B06AC 10 ATJ ELECTRICAL CHARACTERISTICS IV in = 11 V,O~ I Output Voltage ITJ ~ ~ 2.2 A -0.8 mVI "C T low t 0 T hioh IN oe t 11 un ass 0 th erwlsa not ad) Symbol Characteristics 2.2 -0.8 + 25"C) Vo Output Voltage MC7~C Min Typ Max 5.88 6,0 6.12 5,76 6.0 6,24 - 9.0 11 3,0 9.0 60 60 30 60 - 43 43 100 100 Vde Vde Vo 15.0 mA" 10 '" 1.0A, PO" 15W) Unit 8.6 Vdc ~ Vin ~ 21 Vdc Lina Regulation (Note 2) 8.6 Vdc ~ Vin ~ 25 Vde, 10 9.0 Vdc :s;; Vin :s;; 13 Vdc 9.0 Vdc:s;; Vin ~ 13 Vdc, TJ 8.3 Vdc ~ Vin :s;; 21 Vdc, TJ Regline 500 rnA = = + 25"C = + 25"C Load Regulation (Note 2) Regload 5,0 mA" 10 '" 1.5 A, TJ ~ + 25"C 5.0 mA '" 10" 1,OA 250mA" '0" 750mA, TJ ~ + 25"C 250 mA " 10 '" 750 mA Quiescent Current TJ ~ 'B +25"C mV 9.0 Vde " Yin " 25 Vde, 10 ~ 500 mA 8.6 Vde " Yin " 21 Vde, TJ ~ + 25"C 5.0mA" '0" 1.0 A 16 50 - - - 4.3 6,0 6,0 - - 0.8 0,8 0.5 - - - RR 9.0 Vde" Vin" 19 Vde, I 9.0 Vdc " Yin " 19 Vde, I ~ ~ 120 Hz, TJ 120 Hz, 10 1.0 A, TJ Output Noise Voltage ITA ~ ~ ~ ~ +25"C 500 mA + 25"C) dB 65 - Yin-YO - 2,0 Vn - 10 - ro - 0.2 - -0.8 + 25"C) mA mA - Ripple Rejection ~ - - ~IB Quiescent Current Change Dropout Voltage (to mV Vde p.VNO 10 Hz:s;; f:s;; 100 kHz Output Resistance (I ~ 1.0 kHz) Short-Circuit Current Limit (TA Yin ~ = + 25'C) Ise 17 - mO A 35 Vde Peak Output Current ITJ ~ + 25"C) Imax I Average Temperature Coefficient of Output Voltage TCVO 2,2 - A mvrc +' NOTES; 1. Tlow = -55°C for MC78XX Thigh = + 150°C for MC78XX = 0° for MC78XXC, AC = 25°C for MC78XXC, AC, B = - 4O"C for MC78XXB 2. Load and line regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Vo due to heating effects must be taken MOTOROLA LINEAR/INTERFACE DEVICES 3-135 into account .. MC7800 Series MC7• • B.C ELECTRICAL CHARACTERISTICS (Vin = 14V 500 m A, T J I ,O~ Characteristic Symbol Output Voltage (TJ ~ + 25"<:) Vo Output Voltage (5.0 mA '" 10 '" 1.0 A, Po '" 15 W) 10.5 Vdc '" Yin '" 23 Vdc 11.5 Vdc '" Yin '" 23 Vdc Vo Regline Load Regulation (TJ ~ + 25°C, Note 2) 5.0 mA '" 10 '" 1.5A 250 mA '" 10 '" 750 mA Regload IS Quiescent Current Change 10.5 Vdc '" Yin '" 25 Vdc 11.5 Vdc '" Yin '" 25 Vdc 5.0 rnA '" 10 '" 1.0 A eo 0 .!? 1.0 ............. r-::::: ~ -...;: ............. T~=~~ t- 1/' i 6.0 I 12 ~ 3,0 iB 2. 0 ! ~~~J=-400C '--- ::> = 10 rnA .... - -~r- 50 15 75 100 115 40 in a.... 10 FIGURE 6 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE (MC78XX. AI 4.0 ~ r--:-I- TA. AMBIENT TEMPERATURE (OCI FIGURE 5 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE (MC78XXC. AC. BI ffi ~ -15 TJ. JUNCTION TEMPERATURE lOCI ~ .... 10 !500mA ------ 5 o o _ t-- -+-w ....::> ::::::::: ;;:: t:--...... r-- r18 24 TJ ...... .... ::> ~ r-o:::::: r-30 Vin-VO.INPUT-OUTPUTVOLTAGE DlFFERENTIALIVOLTSI ~ =-55°e Ir ~ t'-../ 'I "'~ 1.0 '" ~ ......... TJ =125°C j ~ t:-... ~~ I' 0 TJ = 25°C ;- 10 20 30 Vin-VO. INPUT·OUTPUT VOLTAGE DIFFERENTIAL (VOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 3-142 40 MC7800 Series TYPICAL CHARACTERISTICS (continued) (T A =25°C unless otherwise noted.) FIGURE 7 - RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES (MC78XXC. AC) 3D -l~+.-~r= --- . ~ 60 w ~ It a; ~. 50 PART' Vin _ MC7BOSC 10 V MC7306C 11 V -r-- r-- _.- .- ._- )--- ~ 6.10 ~ ...> ~ 40 '.- r--- ~. .- 10 MC7324C 33 V 6.0 8.0 10 12 14 16 18 Va, OUTPUT VOL TAGE (Val TSI 10 14 11 I - 6.00 -- """"- ~ 5.90 '" 500 ! 300 ~ 200 ~ '!! 100 -- -., ,. f-- '-- == w « ~ o if I ~ to 120Hz )-- 10 ' 500 mA I--ClOO"F 30 I -50 -25 25 50 75 100 125 150 10 4.0 175 8.0 6,0 .!, 3,0 ::> ff! Viln=~ -..... Vo = 5,0 V '0 = 5,0 mA u 8. 0 I--- - - C 4.0 MC78XX. A "' 6,0 ~ o ~ w '" ~ ........ ~ S CI 1.0 -75 -50 -25 25 50 75 100 10=10mA~ 4.0 $ ... 2.0 o MC7~05, A TJ = 25°C I o > :; !P 24 20 FIGURE 12 - DROPOUT CHARACTERISTICS (MC78XX, A) Vin- 1OV )--VO 5.0 V '0 - 20 mA _I MC78XXC, ACj B _ ....!!. 16 12 Va, OUTPUT Val TAGE (Val TSI FIGURE 11 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE (MC78XXC. AC. B) ~ - 50 TJ, JUNCTION TEMPEATURE 1°C) ~ lOOk 20 5.80 15 10k 1000 > -75 1.0k FIGURE 10 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE (MC78XXC, AC) I -- r--. 100 10 t, FREQUENCY (Hz) Vin= 11 V - f--Vo = 6.0 V - f--'0 = 20 mA_ ~ ::> eo Va = 5 V 10 0 20 mA w -~-- 6,20 '""" MC78XXC. AC Vin'" 10 V FIGURE 9 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE (MC78XXC, AC. BI '" ~ I ~ ~ Vin " 8.0 to 18 Vdc VO=5,OV 10 = 1.0 A ~ -.-~- 40 4.0 - -, - :g:~~~:: ~ - :g:::~ ~~ ~ - 01.0 V(RMSI -- t-- ~ r':l io'" 60 10:: 20 rnA ~V'" - MC78XX.A ~ \ i'- 0 80 10 110 Hz _. ---- . 70 , ~ z FIGURE 8 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCV (MC78XXC. AC, A) 125 W ~ ~lo=500'mA 2.0 /7,;' -IO=1.0A o o I I 2,0 4,0 6,0 8,0 10 INPUT VOLTAGE (VOLTS) TJ. JUNCTION TEMPERATURE (OC) MOTOROLA LlNEARilNTERFACE DEVICES 3-143 12 14 16 II • MC7800 Series APPLICATIONS INFORMATION Design Consid••tions The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications. compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected FIGURE 14 - ADJUSTABLE OUTPUT REGULATOR FIGURE 13 - CURRENT REGULATOR '". ,-n ~';.. ~". 0.33~F I TL__~_~-'_ --'0 to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insUre stable operation under alt load conditions. A 0.33 ",F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good constructiontechniques should be used to minimize ground loops and lead resistancedrops since the regulator has no external sense lead. Output constant Current to Grounded Load 0.1 ~F 10 k The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows. VO. 7.0 V to 20 V VIN VO" 2.0 V IQ -: 1.5 rnA over line and load changes For example, a l-ampere current source would require R to be a 5·ohm, 10·W resistor and the output voltage compliance woulrl be the Input voltage less 7 volts. FIGURE 15 - CURR~NT MJ2955 or Equ '"•. --- BOOST REGULATOR FIGURE 16 - SHORT-CIRCUIT PROTECTION InpuT IV MJ2955 or Equlv ......"""-.-.,( '~ MOj" T.:'' ' xx = The addition of an operational amplifier allows adlustment to higher or Intermediate values while retiilOlng regulation character· IstlCS The mlnHllum voltage obtainable with this arrangement Ie; 20 volts greater than the regulator voltage. R 2 digits of type number indicating voltage. xx = 2 digits of type The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VBe of the PNP ciPtermines when the pass transistor begins conauctlng; this cirCUit is not short-circuit proof. Input·output differential yoltage minimum is increased by VBe of the pass transistor. The circuit of Figure 15 can be modified to provide supply protec· tion against short circuits by adding a short-circuit sense resistor, RSC/and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three· terminal regulator. Therefore, a four-ampere plastic power tran· Sistor IS specified. MOTOROLA LINEAR/INTERFACE DEVICES 3-144 number indicating yoltage. ® MC78LOO,A Series MOTOROL.A THREE-TERMINAL LOW CURRENT POSITIVE FIXED VOLTAGE REGULATORS THREE-TERMINAL LOW CURRENT POSITIVE VOLTAGE REGULATORS The MC78LOO Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mAo Like their higher powered MC7800 and MC78MOO Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78LOO devices in many applications. These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced. P SUFFIX CASE 29-04 PIN 1. OUTPUT 2. GROUND 3. INPUT • • • • • • Wide Range of Available, Fixed Output Voltages Low Cost Internal Short Circuit Current Limiting Internal Thermal Overload Protection No External Components Required Complementary Negative Regulators Offered (MC79LOO Series) • Available in Either ± 5% (AC) or ± 10% (C) Selections G SUFFIX CASE 79-05 REPRESENTATIVE CIRCUIT SCHEMATIC Input PIN 1. INPUT 2. OUTPUT 3. GROUND " 15 k 1(:> (Bottom View) (Case Connected To p", 3) 3.0 Output 0-25 k" •• 1 2.B5 k Zl PIN 1. VOUT 2. GND 3. GND 4. NC Ground ORDERING INFORMATION Device MC78LXXACG NC GND GND VIN SOP-8 is an internally modified 50-8 Package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriatelv mounted on a printed circuit board. SOP-B conforms to all external dimensions of the standard 50-8 Package. Metal Can TJ : O°Cto +125°C MC78LXXCD Plastic Power SOP-B MC7BLXXCG Metal Can MC78LXXCP Plastic Power MC78LXXABP# 5. 6. 7. 8. SOP-B MC78LXXACD MC78LXXACP Package Junction Temperature Range D SUFFIX PLASTIC PACKAGE CASE 751-02 SOP-B TJ: -40°C to +125°C Plastic Power XX indicates nominal voltage #Automotive temperature. range selections are available with special test conditions and additional tests in 5, 8, , 2 and 15 volts devices. Contact your local Motorola sales office for information. MOTOROLA LINEAR/INTERFACE DEVICES 3-145 Device No. '10% MC7BL05C MC78LOBC MC78L 12C MC7BL 15C MC78L 18C MC78L24C Device No. ,5% Nominal Voltage MC78L05AC MC7BLOBAC MC78L12AC MC7BL 15AC MC78L 18AC MC78L24AC 5.0 8.0 12 15 18 24 • MC78LOO,A Series MC78LOO Series MAXIMUM RATINGS (TA RIItI"II = + 125'C unless otherwise noted) Symbol Vllue Unit VI 30 Vdc Input Voltage (2.6 V-8.0 V) (12 V-18 V) (24 V) 35 40 Storage Junction Temperature Range Tstg -65 to + 150 'C TJ Oto +150 'C Operating Junction Tem'perature Range MC78L05C. MC78L05AC ELECTRICAL CHARACTERISTICS (VI = 10 V, 10 = 40 mA, CI = 0.33 p.F, Co = 0.1 p.F, O'C < TJ < + 125'C unless otherwise noted) MC78L05AC Characteristic Output Voltage (TJ = + 25"C) Min Typ Max Min Typ Max Unit Vo 4.8 5.0 5.2 4.6 5.0 5.4 Vdc - 55 45 150 100 - 55 45 200 150 - 11 5.0 60 - 11 5.0 60 30 - 5.25 5.25 4.5 4.5 - 5.5 5.5 - 3.8 - 6.0 5.5 - 1.5 0.2 40 - p.V Line Regulation (TJ = +25'C, 10 = 40 mAl 7.0 Vdc '" VI '" 20 Vdc 8.0 Vdc '" VI '" 20 Vdc Regline load Regulation (TJ = + 25'C, 1.0 mA" 10" 100 mAl (TJ = +25'C, 1.0 mA" 10 '" 40 mAl Regload Output Voltage (7.0 Vdc '" VI '" 20 Vdc, 1.0 mA '" 10 '" 40 mAl (VI = 10 V, 1.0 mA '" 10 '" 70 mAl Vo Input Bias Current (TJ = + 25'C) (TJ = + 125'C) liB Output Noise Voltage (TA 100 kHz) = +25'C, 10 Hz '" f '" Ripple Rejection (10 = 40 mA, f = 120 Hz, 8.0 V '" VI '" 18 V, TJ = + 25'C) Dropout Voltage (TJ = +2S'C) mV 30 mV Vdc 4.75 4.75 mA - 3.8 - 6.0 5.5 - - - 1.5 0.1 Vn - 40 - - RR 41 49 - 40 49 - dB VI-VO - 1.7 - - 1.7 - Vdc ~IIB Input Bias Current Change (8.0 Vdc '" VI '" 20 Vdc) (1.0 mA '" 10 '" 40 mAl MC78L05C Symbol mA MC78L08C. MC78LOBAC ELECTRICAL CHARACTERISTICS (VI = 14 V, 10 = 40 mA, CI = 0.33 p.F, Co = 0.1 p.F, O'C < TJ < + 125'C unless otherwise noted) MC78L08AC Characteristic Output Voltage (TJ = + 25'C) line Regulation Min Typ Max Min Typ Max Unit Vo 7.7 8.0 8.3 7.36 8.0 8.64 Vdc Load Regulation (TJ = +2S'C, 1.0 mA '" 10 '" 100 mAl (TJ = +25"C, 1.0 mA '" 10 '" 40 mAl Vo Input Bias Current (TJ = +2e'C) (TJ = + 125"C) liB ~IIB Input Bias Current Change (11 Vdc. '" VI '" 23 Vdc) (1.0 mA '" 10 '" 40 mAl + 25"C, 10 Hz '" f '" Ripple Rejection (10 = 40 mA, f = 120 Hz, 12 V .. VI .. 23 V, TJ = + 25'C) Dropout Voltage (TJ = +2S'C) - 20 12 175 125 - 20 12 200 150 - - 15 8.0 80 40 - - 15 6.0 80 40 7.6 7.6 - - 8.4 8.4 7.2 7.2 - 8.8 8.8 - 3.0 6.0 5.5 - - 3.0 6.0 5.5 - - 1.5 0.1 - - 1.5 0.2 60 - - 52 - p.V - mV Regload Output Voltage (10.5 Vdc '" VI '" 23 Vdc, 1.0 mA '" 10 '" 40 mAl (VI = 14 V, 1.0 mA '" 10 '" 70 mAl = mV Regline (TJ = +25"C, 10 = 40 mAl 10.5 Vdc '" VI '" 23 Vdc 11 Vdc '" VI '" 23 Vdc Output Noise Voltage (TA 100 kHz) MC78LOSC Symbol - Vdc mA - mA Vn - RR 37 57 - 36 55 - dB VI-VO - 1.7 - - 1.7 - Vdc MOTOROLA LINEAR/INTERFACE DEVICES 3-146 MC78LOO,A Series MC78L12C, MC78L12AC ELECTRICAL CHARACTERISTICS IVI ~ 19 V, 10 ~ 40 rnA, CI ~ 0.33 "F, Co ~ 0.1 "F,O°C < TJ < + 125°C unless otherwise noted) MC78l12C MC78l12AC I Symbol Min Typ Max Min Typ Max Unit Output Voltage ITJ ~ +25°CI Vo 11.5 12 12.5 11.1 12 12.9 Vdc Line Regulation ITJ ~ + 25°C, 10 ~ 40 mAl 14.5 Vdc '" VI '" 27 Vdc 16 Vdc '" VI '" 27 Vdc Regline Load Regulation ITJ ~ + 25°C, 1.0 rnA '" 10'" 100 mAl ITJ ~ + 25°C, 1.0 rnA '" 10 '" 40 mAl Regload Characteristic mV - 120 100 250 200 - - 120 100 250 200 - 20 10 100 50 - 20 10 100 50 - 12.6 12.6 - 13.2 13.2 4.2 6.5 6.0 - mV - Output Voltage Vdc Vo 11.4 11.4 114.5 Vdc '" VI '" 27 Vdc, 1.0 rnA '" 10 '" 40 mAl IVI ~ 19 V, 1.0 rnA '" 10 '" 70 mAl Input Bias Current ITJ ~ + 25°CI ITJ ~ + 125°CI - mA liB - Input Bias Current Change 116 Vdc '" VI '" 27 Vdcl 11.0 rnA '" 10 '" 40 mAl Output Noise Voltage (TA 100 kHz I 10.8 10.8 + 25°C, 10 Hz Ripple Rejection 110 ~ 40 rnA, f VI'" 25 V, TJ ~ +25°CI ~ >s f ~ 120Hz, 15V,,; Dropout Voltage ITJ = +25°C) 4.2 - 6.5 6.0 rnA IlIIB = - - - 1.5 0.1 - - 1.5 0.2 Vn - 80 - - 80 - "V RR 37 42 - 36 42 - dB - 1.7 - - 1.7 - Vdc VI-VO - - MC78L15C, MC78L15AC ELECTRICAL CHARACTERISTICS IVI ~ 23 V, 10 ~ 40 rnA. CI ~ 0.33 "F, Co ~ 0.1 "F, O°C < TJ < .... 125°C unless otherwise noted 1 MC78l15AC MC78l15C Symbol Min Typ Max Min Typ Max Unit Output Voltage ITJ ~ +25°CI Va 14.4 15 15,6 13.8 15 16.2 Vdc Line Regulation ITJ ~ + 25°C, 10 ~ 40 mAl 17.5 Vdc '" VI '" 30 Vdc 20 Vdc '" VI '" 30 Vdc Regline Load Regulation ITJ ~ + 25°C, 1.0 rnA '" 10 '" 100 mAl ITJ ~ +25°C, 1.0 rnA '" 10 '" 40 mAl Regload Characteristic Output Voltage 117.5 Vdc '" VI '" 30 Vdc, 1.0 rnA '" 10 '" 40 mAl IVI ~ 23 V, 1.0 rnA '" 10 '" 70 mAl Va Input Bias Current ITJ ~ + 25°CI ITJ ~ + 125°CI liB Input Bias Current Change 120 Vdc '" VI '" 30 Vdcl 11.0 rnA '" 10 '" 40 mAl mV - 130 110 300 250 - - 130 110 300 250 - 25 12 150 75 - 25 12 150 75 - 16.5 16.5 6.5 6,0 mV Vdc 14.25 14.25 - 15.75 15.75 13.5 13.5 rnA - 4.4 - IlIIB 6.5 6.0 - 4.4 - 1.5 0.1 - - - - 90 - - - rnA - 1.5 0.2 - 90 - "V Output Noise Voltage ITA ~ +25°C, 10 Hz "'" f =s 100 kHz) Vn - Ripple Rejection 110 ~ 40 rnA, f '" VI '" 28.5 V, TJ ~ + 25°CI RR 34 39 - 33 39 - dB - 1.7 - - 1.7 - Vdc Dropout Voltage ITJ = +25°C) ~ 120 Hz, 18.5 V VI-VO MOTOROLA LINEAR/INTERFACE DEVICES 3-147 • • MC78LOO,A Series MC78L18C. MC78L 18AC ELECTRICAL CHARACTERISTICS (Vr = 27 V. 10 = 40 mA, CI = 0.33 p.F, Co = 0.1 p.F, DoC < TJ < + 125°C unless otherwise noted) MC78L18AC Characteristic Output Voltage (TJ Line Regulation (TJ = + 25"C, 21.4 Vdc " VI 20.7 Vdc " VI 22 Vdc " VI " 21 Vdc " VI " = + 25"C) Min Typ Max Min Typ Max Unit Vo 17.3 18 18.7 16.6 18 19.4 Vdc - 32 325 - 27 ~75 - 30 15 170 85 16.2 - 19.8 16.2 - 19.8 3.1 - 6.5 6.0 - 1.5 10 = 40 mAl " 33 Vdc " 33 Vdc 33 Vdc 33·Vdc Regload Output Voltage (21.4 Vdc " VI " 33 Vdc, 1.0 mA " 10 " 40 rnA) (20.7 Vdc " VI " 33 Vdc, 1.0 mA" 10 " 40 rnA) (VI = 27 V, 1.0 rnA " 10 " 70 rnA) (VI = 27 V, 1.0 rnA" 10" 70 rnA) Vo Input Bias Current liB = = mV Regline Load Regulation (TJ = + 25"C, 1.0 rnA" 10" 100 rnA) (TJ = +25"C, 1.0 rnA " 10 " 40 rnA) (TJ (TJ MC78L18C Symbol - 45 325 - 35 275 - 30 15 170 85 17.1 - 18.9 17.1 - 18.9 3.1 6.5 6.0 - Input Bias Current Change Output Noise Voltage (T A 100 kHz) - ailB (22 Vdc " VI " 33 Vdc) (21 Vdc " VI = 33 Vdc) (1.0 rnA" 10" 40 rnA) = + 25°C. 10 Hz:!S; f.:;; Ripple Rejection (10 = 40 rnA, f = 120 Hz, 23 V " VI " 33 V, TJ = + 25"C) Dropout Voltage (TJ = + 25"C) mV Vdc rnA - + 25"C) + 125"C) .! - - rnA - - - 1.5 0.1 - - 0.2 Vn - 150 - - 150 - p.V RR 33 48 - 32 46 - dB - 1.7 - - 1.7 - Vdc VI-VO MC78L24C, MC78L24AC ELECTRICAL CHARACTERISTICS (VI = 33 V, 10 = 40 rnA, CI = 0.33 p.F, Co = 0.1 p.F, O°C < TJ < + 125°C unless otherwise noted) MC78L24AC Characteristic Output Voltage (TJ = + 25"C) line Regulation (TJ = + 25"C, 27.5 Vdc " VI 28 Vdc " VI " 27 Vdc " VI " = = Min Typ Max Min Typ Max Unit Vo 23 24 25 22.1 24 25.9 Vdc 10 = 40 rnA) " 38 Vdc 80 Vdc 38 Vdc +25"C, 1.0 rnA" 10" 100 rnA) +25"C, 1.0 rnA" 10" 40 rnA) Input Bias Current liB - 50 60 300 350 - - 40 20 200 100 22.8 - 22.8 - - Input Bias Current Change ailB + 25"C, 10 Hz" Ripple Rejection (10 = 40 rnA, f VI" 35 V, TJ = + 25"C) Dropout Voltage (TJ = + 25"C) = 120 Hz, 29 V " I 35 30 350 300 - - - - 40 20 200 100 21.6 - 26.4 21.6 - 26.4 3.1 6.5 6.0 mV Vdc 25.2 25.2 3.1 - 6.5 6.0 - - - 1.5 0.1 Vn 200 - - RR 31 45 - VI-VO - 1.7 - - - - 1.5 0.2 200 - p.V 30 43 - dB .- 1.7 - Vdc MOTOROLA LINEAR/INTERFACE DEVICES 3-148 - rnA - (28 Vdc " VI " 38 Vdc) (1.0 rnA " 10 " 40 rnA) = I - rnA - + 25"C) + 125"C) . Output Noise Voltage (TA f" 100 kHz) - Vo = = Regload Output Voltage (28 Vdc " VI "38 Vdc, 1.0 rnA" 10 "40 rnA) (27 Vdc" VI " 38 Vdc, 1.0 rnA " 10 "40 rnA) (28 Vdc " VI = 33 V, 1.0 rnA " 10 " 70 rnA) (27 Vdc" VI " 33 V, 1.0 rnA" 10 " 70 rnA) (TJ (TJ mV Regline load Regulation (TJ (TJ MC78L24C Symbol MC78l00,A Series TYPICAL CHARACTERISTICS (T A"" +2SoC unless otherwise noted.) FIGURE 1 - DROPOUT CHARACTERISTICS ~ 80 MC78L05C ~ 0 2: --~ Va" 5 0 V TJ 60 = 25°C '-' ; 0 > e-- FIGURE 2 - DROPDUT VOL TAGE vo,sus JUNCTION TEMPERATURE 2.5 0 I -I 2: '-' ; 70 0 > " e-- z 10 40 w ~ 0 0 e-- " 0 Dropout of Regulation 0.5 -detlnedaswhen 0 0 0L---L---2i.O~~~~~--L---6LU---L---8i.O---i--~ 10 o o 5: T- '" e-- 3.8 z -- tt tt 36 ~~ " U 100 125 INPUT BIAS CURRENT vo'sus INPUT VOLTAGE _r- 1 4.0 r-----I--!-==~ - -L-- 75 5.0 ,------,--,-----.--------,--,-------.--,---, -- 4.U 5 50 FIGURE 4 - ---~l~ ._- - t - - 25 TJ, JUNCTION TEMPERATURE lOCI FIGURE 3 -INPUT BIAS CURRENT versus AMBIENT TEMPERATURE 4.2 IS Va"' 2% of Va 0: VI. INPUT VOLTAGE (VOLTS) • _L 10'" 1.0 rnA "e-" e-"z 2.0 -- j 10 - 40 rnA 1.0 e-- > !-- b:::r 15 10" lOrnA - ----T-+---+--~--+----t-----+--+-----I +-----t----+---- \ - MC78L05C r-----t----+---t- -- - Vo 5.0 v -+----+-------j tt 3.0 f---- f - - - - - - ~ 2.0 c " 34 w e-- z ~ 32 r---- z a5 1.0 3.0 25 50 75 100 125 o ____J_ _ _ _L -_ _ 5.0 10 T A, AMBIENT TEMPERATURE (DC) FIGURE 5 - MAXIMUM AVERAGE POWER DISSIPATION ~ _ _- L_ _ 20 ~ 25 ____ 30 ~ 35 __ ~ 40 FIGURE 6 - MAXIMUM AVERAGE POWER DISSIPATION vorsus AMBIENT TEMPERATURE - TO-39 Typo Package 10,000 ~~~~~~~~!~$~~~~~~~~~~ F f-t-j=t=-~ ~-+--t~-,,-==+==~~j::.:--.-::=+-1-No Heat Sink 15 V" INPUT VOLTAGE IVOL TSI versus AMBIENT TEMPERATURE - TO-92 Type Package 10,000 -t-----t------j t----H---t- OL_~LL 0 TJ e25 0 e ~+---~--_+--r_~ r-----fj---- 0 10 =40 rnA t------tt-----t------j------t- -t- " ----1------f-- Infinite He,tSink 5 -I--- ~ 1,000 ~ f - - No HeatSmk ~ o tt ~ ./ 300 CNJatt Heat Sink " " 100 ~ 102~5-----L---5;';0~--J------;75;---L----:clo::oo---L----:1c'-25;-~---1,tJ50 T A, AMBIENT TEMPERATURE {DC} 10 25 50 75 100 TA, AMBIENT TEMPERATURE 1°C) MOTOROLA LINEAR/INTERFACE DEVICES 3-149 125 150 • MC78LOO,A Series APPLICATIONS INFORMATION Dolgn Considerations The MC78LOO Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection limits the maximum current the circuit will pass. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 p.F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regular has no external sense lead. Bypassing the output is also recommended. FIGURE 8 - ±15 V TRACKING VOLTAGE REGULATOR FIGURE 7 - CURRENT REGULATOR 'nput ~ O,331'F 1 MC78L05 ? h 'fA. Constant Current to ~ Grounded Load The MC78LOO regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows: FIGURE 9 - POSITIVE AND NEGATIVE REGULATOR 5V 'O=R 118 = + liB 0.1 J1F 0.33 J1F 3.8 rnA over line and load changes - v, For example, a 100 rnA current source would require A to be a 50·ohm, 1/2-W resistor and the output voltage compliance would ~ 0331'F be the input voltage less 7 volts. STANDARD APPUCATION ;;:"'-M"'T 0331'FL ~outPut Co" :- A common ground is required between the input and the output voltages. The input volt· age must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage . .. = C, is required if regulator is located an appreciable distance from power .upply filter . •• = Co is not needed for stability; however, it does improve transient response. MOTOROLA LINEAR/INTERFACE DEVICES 3-150 1 MC79LXX L h I. . ._I... O_,_'_I'_F...o _vo ® MC78MOO Series MOTOROLA THREE-TERMINAL MEDIUM CURRENT POSITIVE VOLTAGE REGULATORS THe MC78MOO Series positive voltage regulators are identical to the popular MC7800 Series devices, except that they are specified for only half the output current. Like the MC7800 devices, the MC78MOO three-terminal regulators are intended for local, oncard voltage regulation. Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mAo • No External Components Required II THREE-TERMINAL MEDIUM CURRENT POSITIVE FIXED VOLTAGE REGULATORS I PIN 1. INPUT 2. OUTPUT 3. GROUND A G SUFFIX METAL PACKAGE CASE 79-05 2 10 3 (Case connected to Pin 3) 21 3 (Bottom View) • Internal Thermal Overload Protection • Internal Short-Circuit Current Limiting TSUFFIX PLASTIC PACKAGE CASE 221A-04 • Output Transistor Safe-Area Compensation EQUIVALENT SCHEMATIC DIAGRAM (All 3 Plastic Types) Input PIN 1. INPUT 2. GROUND 3. OUTPUT (Heatsink surface connepted to Pin 21 '" 10 300 pF .,r"-"NV--H 13 0.24 DTSUFFIX PLASTIC PACKAGE CASE 369A-03 DPAK 200 50 Output '------+.-+---jr-o 3 DT-l SUFFIX PLASTIC PACKAGE CASE 369-03 DPAK ! ORDERING INFORMATION Tested Operating Device Junction Temp. Range Package MC7BMXXCG* MC7BMXXCDT** MC7BMXXCDT·l** Metal Can TJ = O°Cto +125°C IOPA"K TJ = -40°C to +125°C Plastic MC78MXXBT# TYPE NONOLTAGE MC78M05B,C 5.0 Volts MC78M06B,C 6.0 Volts MC78M08B,C 8.0 Volts MC78M12B,C 12 Volts MC78M15B,C 15 Volts MC78M18B,C 18 Volts MC78M20B,C 20 Volts MC78M24B,C 24 Volts Power XX Indicates nominal voltage. * Available in 5, 8, 12 and 15 volt devices. ** Available in 5, 12 and' 5 volt devltes. # Automotive temperature range selections are available with special test conditions and additional tests in 5, 8, 12 and 15 volt devices. Contact your local Motorola sales office for information. MOTOROLA LINEAR/INTERFACE DEVICES 3-151 I~ Power MC7BMXXCT .. MC78MOO Series - MAXIMUM RATINGS (TA - + 25°C unless otherwise noted) Rating Input Voltage (5.0 V-18 V) (20 V-24 V) Power Dissipation (Package Limitation) Plastic Package TA ~ 25°C Derate above TA ~ 25°C TC ~ 25°C Derate above TC ~ 110°C , Metal Package TA ~ 25°C Derate above TA ~ 25°C TC ~ 25°C Derate above TC ~ 85°C Symbol Value Unit VI 35 40 Vdc Po °JA Po Internally Limited 70 Internally Limited 5.0 °JC Po OJA Po OJC MC78MXXC MC78MXXB Operating Junction Temperature Range Storage Temperature Range Tstg -65 to + 150 °C Characteristic Load Regulation (TJ ~ + 25°C, 5.0 mA (TJ ~ + 25°C, 5.0 mA Output Voltage (7.0 Vdc <; VI (7.0 Vdc <; VI <; <; <; VI <; 25 Vdc, 10 <; 10 10 <; 500 rnA) 200 mAl < TJ < + 125°C, Po <; <; ~ <; 10 10 <; <; ~ 5.0 W unless otherwise Min Typ Max Unit Vo 4.8 5.0 5.2 Vdc Regline - 3.0 50 mV - 20 10 100 50 - 5.25 Vdc mA 200 rnA) mV Vo 4.75 liB - 3.2 6.0 - - 0.8 0.5 - 40 - 200 mAl 350 rnA) + 25°C) Quiescent Current Change (8.0 Vdc <; VI <; 25 Vdc, 10 (5.0 mA <; 10 <; 350 mAl Output Noise Voltage (TA <; <; Symbol Regload 25 Vdc, 5.0 mA 20 Vdc, 5.0 mA Input Bias Current (TJ ~ °CIW °C + 25°C) Line Regulation (TJ ~ + 25°C, 7.0 Vdc °CIW Oto +150 -40 to +150 ~ 10 V, 10 ~ 350 mA, O°C noted.) ~ °CIW Internally Limited 185 Internally Limited 25 TJ MC78M05 ELECTRICAL CHARACTERISTICS (VI Output Voltage (TJ °CIW mA Ll.IIB ~ 200 rnA) + 25°C, 10Hz <; f <; Ripple Rejection (T, DT and DT-1 suffixes only) (10 ~ 100 rnA, f ~ 120 Hz, 8.0 V <; VI <; 18 V) (10 ~ 300 mA, f ~ 120 Hz, 8.0 <; VI <; 18 V, TJ 100 kHz) Vn RR ~ Short Circuit Current Limit (TJ ~ +25°C, VI ~ 62 62 - - 80 VI-VO - 2.0 - Vdc 25°C) Dropout Voltage (TJ ~ + 25°C) 35 V) Average Temperature Coefficient of Output Voltage (10 ~ 5.0 mAl Peak Output Current (TJ ~ 25°C) lOS - 50 Ll.VO/Ll.T - ±0.2 - mVI'C 10 - 700 - mA MOTOROLA LINEAR/INTERFACE DEVICES 3-152 /LV dB mA MC78MOO Series MC78M06 ELECTRICAL CHARACTERISTICS (VI ~ 11 V, 10 ~ 350 mA, O'C < TJ < + 125'C, PD '" 5.0 W unless otherwise noted.! Characteristic Output Voltage (TJ ~ + 25'C) Symbol Min Typ Max Unit Va 5.75 6.0 6.25 Vdc - 5.0 50 mV - 20 10 120 60 Va 5.7 - 6.3 Vdc liB - 3.2 6.0 mA - - - 0.8 0.5 - 45 - Line Regulation (TJ ~ + 25'C, 8.0 Vdc '" VI '" 25 Vdc, 10 ~ 200 mAl Regline load Regulation (TJ ~ + 25'C, 5.0 mA '" 10 '" 500 mAl (TJ ~ + 25'C, 5.0 mA '" 10 '" 200 mAl Regload Output Voltage (B.O Vdc '" VI '" 25 Vdc, 5.0 mA '" 10 '" 200 mAl (B.O Vdc '" VI '" 21 Vdc, 5.0 mA '" 10 '" 350 mAl Input Bias Current (TJ + 25'C) ~ Quiescent Current Change (9.0 Vdc '" VI '" 25 Vdc, 10 ~ 200 mAl (5.0 mA '" 10 '" 350 mAl Output Noise Voltage (TA ~ Ripple Rejection (T suffix only) (10 ~ 100 mA, f ~ 120 Hz, 9.0 V '" VI '" 19 V) (10 ~ 300 mA, f ~ 120 Hz, 9.0 V '" VI'" 19 V, TJ Vn RR ~ + 25'C, VI ~ 35 V) Average Temperature Coefficient of Output Voltage (10 ~ 5.0 mAl Peak Output Current ITJ ~ 25'C) /LV dB 59 59 BO - VI-Va - 2.0 - lOS - 50 - mA 6.VO/6.T ±0.2 - mV/,C 10 - 700 - mA 25'C) Dropout Voltage (TJ ~ + 25'C) ~ mA 6.IIB + 25'C, 10 Hz '" f '" 100 kHz) Short Circuit Current Limit ITJ mV - Vdc MC78M08 ELECTRICAL CHARACTERISTICS (VI ~ 14 V, 10 ~ 350 mA, O'C < TJ < + 125'C, PD '" 5.0 W unless otherwise noted.) Characteristic Output Voltage (TJ ~ + 25'C) Symbol Min Typ Max Unit Va 7.7 B.O B.3 Vdc - 6.0 50 mV - 25 10 160 BO Va 7.6 - 8.4 Vdc liB - 3.2 6.0 mA - - O.B 0.5 52 - 56 56 BO - VI-Va - 2.0 - lOS - 50 - mA 6.VO/6.T ±0.2 - mV/,C 10 - 700 - mA Line Regulation (TJ ~ + 25'C, 10.5 Vdc '" VI '" 25 Vdc, 10 ~ 200 mAl Regline load Regulation (TJ ~ + 25'C, 5.0 mA '" 10 '" 500 mAl (TJ ~ + 25'C, 5.0 mA '" 10 '" 200 mAl Regload Output Voltage (10.5 Vdc '" VI '" 25 Vdc, 5.0 mA '" 10 '" 200 mAl (10.5 Vdc '" VI '" 23 Vdc, 5.0 mA '" 10 '" 350 mAl Input Bias Current ITJ ~ + 25'C) Quiescent Current Change (10.5 Vdc '" VI '" 25 Vdc, 10 ~ 200 mAl (5.0 mA '" 10 ",350 mAl 6.IIB Output Noise Voltage (TA ~ + 25'C, 10Hz'" f '" 100 kHz) Vn Ripple Rejection (T suffix only) (10 ~ 100 mA. f ~ 120 Hz, 11.5 V '" VI '" 21.5 V) (10 ~ 300 mA, f ~ 120 Hz, 11.5 V '" VI '" 21.5 V, TJ ~ 25'C) RR Dropout Voltage ITJ ~ + 25'C) Short Circuit Current Limit (TJ ~ + 25'C, VI ~ 35 V) Average Temperature Coefficient of Output Voltage (10 ~ 5.0 mAl Peak Output Current (TJ ~ 25'C) MOTOROLA LINEAR/INTERFACE DEVICES 3-153 mV mA - /LV dB Vdc • MC78MOO Series MC78M12 ELECTRICAL CHARACTERISTICS (VI = 19 V, 10 = 350 rnA. O°C < TJ < + 125°C, PD '" 5.0 W unless otherwise noted.) Characteristic Output Voltage (TJ = + 25°C) Line Regulation (TJ = +25°C, 14.5 Vdc '" VI '" 30 Vdc, 10 = = = Unit 12.5 Vdc - 8.0 50 mV - 25 10 240 120 Va 11.4 - 12.6 Vdc liB - 3.2 6.0 rnA - 0.8 0.5 75 - 55 55 - - - 2.0 - - D. 5 0.3 0.2 O. 1 25 0: '""\ 8JC = 5'CN! PD(MAX) = 7.5 W "1 I 50 3: \ 2 ,p \ \. 75 100 125 150 0.5 NO HEAT SINK ::::::-. 0.3 0.2 _ 8JC = 25'CN! - PD(MAX) = 7.5 W 0.1 r--.. ~ ....... 25 75 50 100 MOTOROLA LINEAR/INTERFACE DEVICES 3-156 , ~ t"-,. ~ TA, AMBIENT TEMPERATURE ('CI TA, AMBIENT TEMPERATURE ('C) "\ ,~ 125 150 MC78MOO Series TYPICAL PERFORMANCE CURVES FIGURE 3 - PEAK OUTPUT CURRENT versus DROPOUT VOLTAGE FIGURE 4 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE 1.0 2.5 0.9 u; ffi 0.8 I I If ~ 0.7 5 !z ~ ::> u; ,~ 0.6 0.5 I\. ~ 0.4 50.3 o 9 0.2 f-TJ ~ w '\: ~ !::i 1.5 §; I\. r-... 'I- u !::i 2.0 TJ I~ 25'C ~ 12~ '" >- ~ f'... I'.. r-..."- ......... 0.1 ......... o o 5.0 80 ~ 35 o o 40 r-- 7' 0 10 a ~ ~ 10 = 10mA- I l00mA_ I - 25 50 75 100 125 ISO TJ. JUNCTION TEMPERATURE I'C) 100 0 ~ ~ 50mA 60 \ ~ ~ or Vo ~ 5.0 V VI ~ 10V Co ~ 0 TJ ~ 25'C gi 40 r--- I-- ~ \ 100 40 \ I 10 1.0 k 10 k 100 k f. fREQUENCY IHzl 1.0M 30 0.01 10 M 100 M llilll 0.1 0.5 1.0 10. OUTPUT CURRENT IA) 4.0 ~ \TJ ~ 125'C 0 .0 ./ TJ ~ 25'C VTJ ~ 125'C 5.0 10 llU V T~ 2!5l~ 5. 0 25,C t - - TJ J I Ir Y o o Va = 5.0 V VI = 10V Co = 0 f = 120Hz TJ = 25'C FIGURE 8 - BIAS CURRENT versus OUTPUT CURRENT ,1 4.0 Ir I- f-- l- 1\ FIGURE 7 - BIAS CURRENT versus INPUT VOLTAGE 1.0 10 / " 10 ~ 0.5A z .Ii> I'-. ~ sOOmA_ l - FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT .Il 20 1.0 I'-. 1.0 RIPPLE REJECTION versus FREQUENCY 100 --r-- r- I- 10 l- 0.5 I - - I- avO-I = 100 mVI 10 15 20 25 30 VI-VO. DROPOUT VOLTAGE IVOLTS) FIGURE 5 - ~ ~ ~ o r--- I'-. Vo ~ 5.0 V 10 ~ 0.5 A TJ - 125'C VI-VO I.0 = 5.0 V Ll~n11 10 15 20 25 VI. INPUT VOLTAGE IVdc) 30 35 0 0.01 40 0.1 0.5 1.0 10. OUTPUT CURRENT IA) MOTOROLA LINEAR/INTERFACE DEVICES 3-157 111 10 II II MC78MOO Series APPLICATIONS INFORMATION DESIGN CONSIDERATIONS The MC78MOO Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that r~duces the output short circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supFIGURE 9 - ply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 p.F or 'Iarger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. FIGURE 10 - CURRENT REGULATOR ADJUSTABLE OUTPUT REGULATOR VO, 7.0 V to 20 V VIN VO" 2.0 V Output Constant Current to 0.1 Grounded Load ,.F The MC78MOO regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78M05C is chosen in this application. Resistor R determines the current as follows: 10 ~ 5.0 V R 10 k 1.0 k + liB The addition of an operational amplifier allows adjust· ment to higher or intermediate values while retaining reg· ulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regu· lator voltage. liB ~ 1.5 mA over line and load changes For example, a 500 mA current source would require R to be a 10 ohm, 10 W resistor and the output voltage compliance would be the input voltage less 7.0 volts. FIGURE 11 - CURRENT BOOST REGULATOR FIGURE 12 - CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION '"'"'~' ~MoT'+O"'~ J -;:J 1.0 ,.F XX ~ MJ2955 or Equiv. Input R 0.1 ,.F XX 2 digits of type number indicating voltage. The MC78MOO series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input output differential voltage minimum is increased by VBE of the pass transistor. ~ 2 digits of type 1.0 ,.F number indicating voltage. -;:- 1 The circuit of Figure 7 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, Rsc , and an additional PNP transistor. The current sensing PNP must be able to handle the shortcircuit current of the three-terminal regulator. Theretore, a two-ampere plastic power transistor is specified. MOTOROLA LINEAR/INTERFACE DEVICES 3-158 ® MC78TOO Series MOTOROLA Specifications and Applications Information • THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS THREE-AMPERE POSITIVE VOLTAGE REGULATORS SILICON MONOLITHIC INTEGRATED CIRCUIT This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 3.0 amperes. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a 2% output voltage tolerance, on AC-suffix 5.0, 12 and 15 volt device types. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to supply up to 15 amperes at the nominal output voltage. KSUFFIX METAL PACKAGE CASE 1-03 • Output Current in Excess of 3.0 Amperes • Power Dissipation: 30 W IK-Suffix), 25 WIT-Suffix) (Bottom View) • No External Components Required • Output Voltage Offered in 2% and 4% Tolerance* PIN 1. INPUT 2. OUTPUT CASE GROUNO • Thermal Regulation is Specified • Internal Thermal Overload Protection • Internal Short-Circuit Current Limiting • Output Transistor Safe-Area Compensation TSUFFIX PLASTIC PACKAGE CASE 221A-04 MAXIMUM RATINGS (TA ~ +25°C unless otherwise noted) Rating Input Voltage (5.0 V-12 V) (15V) Power Dissipation and Thermal Characteristics Plastic Package (Note 11 TA ~ +25°C Thermal Resistance, Junction TC ~ +25°C Thermal Resistance, Junction Metal Package (Note 1) TA ~ +25°C Thermal Resistance, Junction TC ~ +25°C Thermal Resistance, Junction Symbol Value Unit Vin 35 40 Vdc Po ROJA Po ROJC Internally Limited 65 Internally Limited 2.5 Po ROJA Po ROJC Internally Limited 35 Internally Limited 2.5 T sta -65to +150 TJ Oto +150 (Heatsink surface to Air to Case to Air to Case Storage Junction Temperature Range Operating Junction Temperature Range MC78TOOC, AC °CIW TYPE NONOLTAGE MC78T12 MC78T15 12 Volts 15 Volts Tested Output °CIW °C °c Voltage Device Tolerance MC7BTXXCK MC7BTXXACK 4% MC7BTXXCT MC7BTXXACT 4% 2%' MC7BTXXBT# MC7BTXXABT # 4% 2%* 2%* Operating Junction Temp. Range Package o to + 125°C Metal Power ~ Power ~40to + 125°C Plastic Power XX Indicates nominal voltage. * 2% regulators are available in 5, 12 and 15 volt devices. #Automotive temperature range selections are available with special test conditions and additional tests. Contact your local Motorola sales office for information. MOTOROLA LINEAR/INTERFACE DEVICES 3-159 Pin 2) ORDERING INFORMATION °CIW 1. Although power dissipation is internally limited, specifications apply only for Po . .; ; Pmax . Pmax = 30 W for K package Pmax = 25 W for T package. 5.0 Volts 8.0 Volts connected to °CIW NOTE: MC78T05 MC78T08 PIN 1. INPUT 2. GROUND 3. OUTPUT • MC78TOO Series MC78T05AC, C ELECTRICAL CHARACTERISTICS (Vin ~ 10 V 10 ~ 30 A O°C '" TJ '" 125°C PO'" Pm ax [Note 1J unless otherwise noted) MC78T05AC Symbol Characteristic Output Voltage (5.0 rnA '" 10 '" 3.0 A, TJ ~ + 25°C) (5.0 rnA '" 10 '" 3.0 A; 5.0 rnA '" 10 '" 2.0 A, 7.3 Vdc '" Yin '" 20 Vdc) Line Regulation (Note 2) (7.2 Vdc '" Yin '" 35 Vdc, 7.2 Vdc '" Yin '" 35 Vdc, 8.0 Vdc '" Yin '" 12 Vdc, 7.5 Vdc '" Yin '" 20 Vdc, Max Min Typ Max 4.9 4.8 5.0 5.0 5.1 5.2 4.8 4.75 5.0 5.0 5.2 5.25 Regline - 3.0 25 - 3.0 25 - - 10 15 30 80 0.002 0.03 Unit Vdc Vo mV 20 W, TA ~ mV Regload - 10 15 30 80 0.001 0.01 - 3.5 4.0 5.0 6.0 - 3.5 4.0 5.0 6.0 t.IB - 0.3 1.0 - 0.3 1.0 rnA RR 62 75 - 62 75 - dB Vin-VO - 2.2 2.5 - 2.2 2.5 Vn - 10 - - 10 - p.VNO - 2.0 - mO 1.5 - A - 5.0 - A 0.2 - mVrC Regtherm ~ Typ 10 ~ 5.0 rnA, TJ ~ + 25°C; 10 ~ 1.0 A, TJ ~ + 25°C; 10 ~ 3.0 A, TJ ~ + 25°C; 10 ~ 1.0 A) Load Regulation (Note 2) (5.0 rnA '" 10 '" 3.0 A, TJ ~ +25°C) (5.0 rnA '" 10 '" 3.0 A) Thermal Regulation (Pulse ~ 10 ms, P MC78T05C Min %VOiW + 25°C) Quiescent Current IB (5.0 rnA '" 10 '" 3.0 A. TJ ~ + 25°C) (5.0 rnA '" 10 '" 3.0 A) Quiescent Current Change rnA (7.2 Vdc '" Yin '" 35 Vdc, 10 ~ 5.0 rnA, TJ ~ + 25°C; 5.0 rnA '" 10 '" 3.0 A. TJ ~ + 25°C; 7.5 Vdc '" Vin '" 20 Vdc, 10 ~ 1.0 A) Ripple Rejection (8.0 Vdc '" Vin '" 18 Vdc, 1 ~ 120 Hz, 10 ~ 2.0 A, TJ ~ 25°C) Dropout Voltage (10 ~ 3.0 A, TJ Output Noise Voltage (10 Hz '" 1 '" 100 kHz, TJ Output Resistance (I ~ ~ ~ + 25°C) +25°C) 1.0 kHz) Short Circuit Current Limit (Vin ~ 35 Vdc, TJ ~ + 25°C) Peak Output Current (TJ ~ Vdc +25°C) Average Temperature Coefficient 01 Output Voltage (10 ~ 5.0 rnA) RO - 2.0 - ISC - 1.5 - Imax - 5.0 - TCVO - 0.2 - NOTES: 1. Although power dissipation is internally limited, specifications apply only for PO"';: Pmax · Pmax "" 30 W for K package Pm ax = 25 W for T package 2. Line and load regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating MOTOROLA LINEAR/INTERFACE DEVICES 3-160 effects must be taken into account MC78TOO Series MC78T08C ELECTRICAL CHARACTERISTICS (Vin ~ 13 V 10 ~ 30 A O°C '" TJ '" 125°C PO'" Pmax INote lJ unless otherwise noted) MC78T08C Symbol Characteristic Output Voltage (5.0 mA '" 10 '" 3.0 A. TJ ~ + 25°C) (5.0 mA '" 10 '" 3.0 A; 5.0 mA '" 10 " 2.0 A, 10.4 Vdc '" Yin '" 23 Vdc) Regline Load Regulation (Note 2) (5.0 mA '" 10 '" 3.0 A, TJ ~ + 25°C) (5.0 mA '" 10 '" 3.0 A) Regload Regtherm ~ 20 W, TA ~ Quiescent Current Change (10.3 Vdc " Yin '" 35 Vdc, 10 ~ 5.0 mA, TJ 5.0 mA '" 10'" 3.0 A, TJ ~ +25°C; 10.7 Vdc '" Yin '" 23 Vdc, 10 ~ 1.0 A) = 3.0 A, T J Output Resistance (f = = ~ ~ ~ 8.3 8.4 - 4.0 35 - 10 15 30 80 0.002 0.03 mV mV %VOIW 3.5 4.0 5.0· 6.0 Il.IB - 0.3 1.0 mA RR 60 71 - dB Yin-YO - 2.2 2.5 Vdc Vn - 10 - ,,"VIVO RO - 2.0 - mil 1.5 - A - 5.0 - mvrc 25°C) + 25°C) + 25°C) Short Circuit Current Limit (Vin ~ 35 Vdc, T J = + 25°C) ~ 8.0 8.0 +25°C; 1.0 kHz) Peak Output Current (TJ 7.7 7.6 Unit mA IB Ripple Rejection (II Vdc '" Yin '" 21 Vdc, f ~ 120 Hz, 10 ~ 2.0 A, TJ Dropout Voltage 110 Max + 25°C) Quiescent Current (5.0 mA '" 10 '" 3.0 A, TJ ~. + 25°C) (5.0 mA '" 10 '" 3.0 A) Output Noise Voltage (10 Hz '" f '" 100 kHz, TJ Typ Vdc Line Regulation (Note 2) (10.3 Vdc '" Yin '" 35 Vdc, 10 ~ 5.0 mA, TJ ~ + 25°C; 10.3 Vdc '" Yin '" 35 Vdc, 10 ~ 1.0 A, TJ ~ + 25°C; 11 Vdc '" Yin '" 17 Vdc, 10 ~ 3.0 A, TJ ~ + 25°C; 10.7 Vdc '" Yin '" 23 Vdc, 10 ~ 1.0 A) Thermal Regulation (Pulse ~ 10 ms, P Min Vo ISC + 25°C) Average Temperature Coefficient of Output Voltage (10 'max = 5.0 mAl TCVO 0.3 A NOTES: 1. Although power dissipation is internally limited, specifications apply only for Po .,;; Pmax . Pmax = 30 W for K package Pmax = 25 W for T package 2. Une and load regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-161 • II MC78TOO Series MC78T12AC, C ELECTRICAL CHARACTERISTICS (Vin ~ 17 V 10 ~ 30 A O°C '" TJ '" 125°C PO'" Pmax [Note 11 unless otherwise noted) MC78Tl2AC Symbol Characteristic Output Voltage (5.0 rnA '" 10 '" 3.0 A. TJ ~ + 25°C) (5.0 rnA '" 10 '" 3.0 A; 5.0 rnA '" 10 '" 2.0 A, 14.5 Vdc '" Yin '" 27 Vdc) Line Regulation (Note 2) (14.5 Vdc '" liin '" 35 Vdc, 10 ~ 5.0 rnA, TJ ~ + 25°C; 14.5 Vdc '" Yin "35 Vdc, 10 ~ 1.0 A, TJ ~ +25°C; 16 Vdc" Vin" 22 Vdc, 10 ~ 3.0 A, TJ ~ + 25°C; 14.9 Vdc '" Yin " 27 Vdc, 10 ~ 1.0 A) Load Regulation (Note 2) (5.0 rnA " 10 " 3.0 A, TJ ~ + 25°C) (5.0 rnA '" 10 " 3.0 A) Thermal Regulation (Pulse ~ 10 ms, P 20 W, TA ~ Typ Max Min Typ Max 11.75 11.5 12 12 12.25 12.5 11.5 11.4 12 12 12.5 12.6 Regline - 6.0 45 - 6.0 45 Regload - Unit Vdc Vo mV mV - 10 15 30 80 - 10 15 30 80 0.001 0.01 - 0.002 0.03 - 3.5 4.0 5.0 6.0 3.5 4.0 5.0 6.0 ~IB - 0.3 1.0 - 0.3 1.0 rnA RR 57 67 - 57 67 - dB Yin-YO - 2.2 2.5 2.5 - - 2.2 10 10 - p.VNO - 2.0 - - 2.0 - mil 1.5 1.5 - A 5.0 - - 5.0 - A 0.5 - - 0.5 - mVrC Regtherm ~ MC78T12C Min %VOIW + 25°C) Quiescent Current (5.0 rnA '" 10 " 3.0 A, TJ ~ + 25°C) (5.0 rnA " 10 '" 3.0 A) Quiescent Current Change rnA IB (14.5 Vdc" Yin "35 Vdc, 10 ~ 5.0 rnA. TJ ~ + 25°C; 5.0 rnA" 10 '" 3.0 A, TJ ~ + 25°C; 14.9 Vdc" Yin '" 27 Vdc, 10 ~ 1.0 A) Ripple Rejection (15 Vdc" Yin " 25 Vdc, I ~ 120 Hz, 10 ~ 2.0 A, TJ ~ 25°C) Dropout Voltage (10 ~ 3.0 A, TJ Output Noise Voltage (10 Hz" I" 100 kHz, TJ Output Resistance (I ~ ~ Vn ~ ~ 35 Vdc, TJ ~ Vdc +25°C) 1.0 kHz) RO Short Circuit Current Limit (Vin + 25°C) ISC + 25°C) Peak Output Current (TJ ~ + 25°C) Imax Average Temperature Coefficient of Output Voltage (10 ~ 5.0 rnA) TCVO - NOTES: 1. Although power dissipation is internally limited, specifications apply only for Po ::s; Pmax . Pmax = 30 W for K package Pmax = 25 W for T package 2. Line and load regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account MOTOROLA LINEAR/INTERFACE DEVICES 3-162 MC78TOO Series MC78T15AC. C ELECTRICAL CHARACTERISTICS (Vin ~ 20 V. 10 ~ 3.0 A. O'C '" TJ '" 125'C, Po '" Pmax [Note 11. unless otherwise noted.) MC78T15AC Characteristic Symbol Output Voltage (5.0 mA '" 10 '" 3.0 A, TJ ~ + 25'C) (5.0 mA '" 10 '" 3.0 A; 5.0 mA '" 10 '" 2.0 A, 17.5 Vdc '" Vin '" 30 Vdc) Regline Load Regulation (Note 2) (5.0 mA '" 10 '" 3.0 A, TJ ~ + 25"C) (5.0 mA '" 10 '" 3.0 A) Regload Regtherm ~ 20 W, TA ~ + 25'C) Quiescent Current Typ Max Min Typ Max 14.7 14.4 15 15 15.3 15.6 14.4 14.25 15 15 15.6 15.75 - 7.5 55 - 7.5 55 - - 10 15 30 80 - - 10 15 30 80 0.001 0,01 - 0.002 0.03 - 3.5 4.0 5.0 6.0 - 3.5 4.0 5.0 6.0 0.3 1.0 mA dB mV mV %VOIW mA IS (5.0 mA '" 10 '" 3.0 A, TJ ~ + 25'C) (5.0 mA '" 10 '" 3.0 A) Unit Vdc Vo Line Regulation (Note 2) (17.6 Vdc '" Vin '" 40 Vdc, 10 ~ 5.0 mA, TJ ~ + 25'C; 17.6 Vdc '" Vin '" 40 Vdc, 10 ~ 1.0 A, TJ ~ + 25"C; 20 Vdc '" Vin '" 26 Vdc, 10 ~ 3.0 A, TJ ~ + 25"C; 18 Vdc '" Vin '" 30 Vdc, 10 ~ 1.0 A) Thermal Regulation (Pulse ~ 10 ms, P MC78T15C Min Quiescent Current Change (17.6 Vdc '" Vin '" 40 Vdc, 10 ~ 5.0 mA, TJ ~ + 25'C; 5.0 mA '" 10 '" 3.0 A, TJ ~ + 25'C; 18 Vdc '" Vin '" 30 Vdc, 10 ~ 1.0 A) alB - 0.3 1.0 - Ripple Rejection (18.5 Vdc '" Vin '" 28.5 Vdc, f ~ 120 Hz, 10 ~ 2.0 A, TJ ~ 25"C) RR 55 65 - 55 65 - Dropout Voltage (10 ~ 3.0 A, TJ ~ + 25"C) Vin-VO - 2.2 2.5 - 2.2 2.5 10 - - 10 - ,.VNO RO - 2.0 - - 2.0 - mil ISC - 1.0 - - 1.0 - A - 5.0 - mVI"C Output Noise Voltage (10 Hz '" f '" 100 kHz, TJ ~ + 25'C) Output Resistance (f ~ 1.0 kHz) Short Circuit Current Limit (Vin ~ 40 Vdc, TJ ~ + 25'C) Vn Peak Output Current (TJ ~ + 25"C) Imax - 5.0 - Average Temperature Coefficient of Output Voltage (10 ~ 5.0 mAl TCVO - 0.6 - 0.6 Vdc A NOTES: 1. Although power dissipation is internally limited, specifications apply only for Po .;;: Pmax . Pmax = 30 W for K package Pmax = 25 W for T package 2. Line and load regulation are specified at constant junction temperature. Changes in separately. Pulse testing with low duty cycle is used. Va due to heating effects must be taken MOTOROLA LINEAR/INTERFACE DEVICES 3-163 into account II • MC78TOO Series SCHEMATIC I;)IAGRAM 1.Ok ~21 J_1.0k 01 Lf 40~ rtQ4 >--t 06 020 022 5.6 k ~ 01. 3.9k tl r? a:~ 6.0k 014 023 300 200 50 rf 1::, I ~ Regline = 2.4 mV ut voltage change per watt. The change in dissipated power can be caused by a change in either the input voltage orthe load current. Thermal regulation is a function of I.C. I'ayout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device. Figure 1 shows the line and thermal regulation response of a typical MC78T05AC to a 20 watt input pulse. The variation of the output voltage due to line regulation is labeled CD and the thermal regulation component is labeled ®. Figure 2 shows the load and therma.! regulation response of a typical MC78T05AC to a 20 watt load pulse. The output voltage variation due to load regulation is labeled CD and the thermal regulation component is labeled ®. FIGURE 2 - LOAD AND THERMAL REGULATION t, TIME (2.0 msidiv.J t, TIME (2.0 msldiv.J CD autp '" Gnd FIGURE 1 - LINE AND THERMAL REGULATION ® = Regtherm = 0.0015%VOIW 0.12 ) ... VOLTAGE REGULATOR PERFORMANCE The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration « 100 /Ls) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation. Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output MC78T05AC Va ~ 5.0 V Yin ~ 8.0V-.18V-.8.0V lout = 2.0 A to 13 8.0-'5V~~~ k~·6.0k 2.0k 026" 027 200 016 ~alO 07 025 10pF 520 .~a. 100 "1 ~ ~6.4k 2.6 024 l.Ok 3.6k a12~ ':J~ 6.7V 16k ~Q9 Inp ut MC78T05AC Va ~ 5.0 V Yin ~ 15 lout ~ OA-.2.0A-.OA MOTOROLA LINEAR/INTERFACE DEVICES 3-164 CD = Regload = 4.4 mV ®= Regtherm = 0.0015%VOIW MC78TOO Series FIGURE 4 - FIGURE 3 - TEMPERATURE STABILITY OUTPUT IMPEDANCE 1.02 .1 ~ 1 _I Vin-VO = 5.0 V lout = 100 rnA '" ~ 0 - Vo = 5.0V > f-- Vin = 7.5 V :::> lout = 1.0 A -Co=O _ TJ = 25°C f-- 1':::>= 1.0 0 ./ 6l ~ I"--~ V /' - / / ~ z 0 0.98 -90 10- 4 -50 FIGURE 5 - -10 30 70 110 TJ, JUNCTION TEMPERATURE lOCI z 0 B '"'" 0: ~ r-20 1.0 ~ 80 z § \ ;;J 0: ~ \ 60 - '"~ \ - I 40 \ 1.0 k 10 k 100 k f, FREQUENCY IHzl 100 1.0M 10M 0.01 100M 0 o L .s f-- ~ 1:5 u ffl 3.0 -I I 10 20 Vin, INPUT VOLTAGE IVdcl 30 40 ,1.1, I Vin-VO = 5.0 V 1.0 ·il Lill o 0.01 I II 0.1 1.0 lout, OUTPUT CURRENT IAI MOTOROLA LINEAR/INTERFACE DEVICES 3-165 I I '5 ~ II ~ = 125lC 2.0 0 TJ = O°C TJ = 25°C TJ = 125°C Ii TJ = 25°C f-- Vo = 5.0 V lout = 2.0 A oo~ I u A 0.1 1.0 lout, OUTPUT CURRENT IAI 5.0 If. U Vo = 5.0V Vin = 10V Co = 0 f = 120Hz TJ = 25°C FIGURE 8 - QUIESCENT CURRENT versus OUTPUT CURRENT TJ = O°C ....... I 0 100M II 30 FIGURE 7 - QUIESCENT CURRENT versus INPUT VOLTAGE 4. 0 10M - 0 \ Vo = 5.0 V Vin=10V -CO = 0 TJ = 25°C 10 1.0M -- 7' ~ I 1.0 k 10 k 100 k f, FREQUENCY IHzl 100 100 ;; r-- - 10 FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT I 60 40 1.0 lout = 50 rnA lout = 3.0 A ~ 190 RIPPLE REJECTION versus FREQUENCY 100 ~ 80 150 10 • MC78TOO Series FIGURE 9 - DROPOUT VOLTAGE 2.5 . . . :g ~ ~ 2.0 !3~ l- 0;::: ~~ 101 ~ l.OAI r- f- 0 2w ..... 1.5 r-- r-- r- r- lout r- -w 0", lout ~61.0 > aVo -90 -50 ~ ~ 70 30 ~ '" ~ ~ ..... 0.SA- I I II 50 mV -10 ~ '" :::> u 1.0A ~ - ~ t- =jj5 0.5 ~ 110 4.0 ........... :::> 0 >< it! ,~ " .E o 150 190 FIGURE 11 - o LINE TRANSIENT RESPONSE 5~ 5~ 0.4 Vo 1= 5.0V )--lout ~ 150 mA -t-Co ~ 0 TJ = 25°C -)--- 0.6 ~!;!; ~~ 0.2 0 '"t3 0.3 ~ 0.2 ~:z :::>0 O. 1 ~~ -0. 1 5~ ~~ -0.2 ~ w -0.2 -0.3 -0.4 5< ~ -0.6 5o..w Q !3 ~ 1.0 ~~ 0.5 .§B « ~~ ~§2 10 20 30 1.5 1.0 0.5 40 \. V Vo ~ 5.0VVin = 10V_ Co ~ 0 TJ = 25°C- I I \ \ 30 40 2 0 Maximum Ambient ~ en 30 30 U) is I 20 ~ ::.::;; 10 ::.::;; '" ~ :::> ::;; ::;; ~ ~ ::;; ;p 20 t, TIME I",) FIGURE 14 - MAXIMUM AVERAGE POWER DISSIPATION FOR MC78TOOCT, ACT !;;; ~ 40 ~ 2 0 :::> - ( 10 ~ 40 ~ O°C J\ o FIGURE 13 - MAXIMUM AVERAGE POWER DISSIPATION FOR MC78TOOCK, ACK ~ ~ = 25°C _ = 125°C 20 10 30 Vin-VO, INPUT·OUTPUT VOLTAGE IVdc) t, TIME I",) Ili TJ TJ TJ FIGURE 12 - LOAD TRANSIENT RESPONSE w 0.8 r-...""" "" -........"'.....-... ~ 2.0 TJ, JUNCTION TEMPERATURE 1°C) ~ !:; §? PEAK OUTPUT CURRENT ~ ..... 6.0 I I ---. ~2i FIGURE 10 - 8.0 ::;; 50 100 75 125 TA, AMBIENT TEMPERATURE 1°C) ~ ;p 50 75 100 TAo AMBIENT TEMPERATURE IOC) MOTOROLA LINEAR/INTERFACE DEVICES 3-166 125 MC78TOO Series APPLICATIONS INFORMATION capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 J.'F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's inputterminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. DESIGN CONSIDERATIONS The MC78TOO,A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a FIGURE 15 - FIGURE 16 - CURRENT REGULATOR ADJUSTABLE OUTPUT REGULATOR Output A Constant Current to 10 Grounded Load 0.1 /-LF The MC78T05 regulator can also be used as a current source when connected as above. In order to minimize dissipation, the MC78TOS is chosen in this application. Aesistor R determines the current as follows: 10 k 1.0 k 10 ~ 5.0 V + IB R l!. IB '" 0.7 mA over line, load and temperature changes IB '" 3.5 mA For example, a 2-ampere current source would require R to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7.5 volts. FIGURE 17 - VO, 8.0 V to 20 V Vin-VO ;;. 2.5 V The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator Voltage. FIGURE 18 - CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION CURRENT BOOST REGULATOR 2N4398 2N4398 or Equiv Input Input~ ~MOI+O~"' 1.0 /-LF::J xx ~ -=- R ::J 0.1 /-L F 2 digits of type number indicating voltage. xx The MC78TOO,A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input·output differential voltage minimum is increased by the VBE of the pass ~ 2 digits of type number indicating voltage. The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the shortcircuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified. transistor. STANDARD APPLICATION A common ground is required between the input and the output voltages. The input voltage must remain typically 2.2 V above the output voltage even during the low point on the input ripple voltage. Input $ C 7 8 T X X Output Cin* 0.33/-LF CO** XX ~ * = .* ~ these two digits of the type number indicate voltage. Cin is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details.) Co is not needed for stability; however, it does improve transient response. MOTOROLA LINEAR/INTERFACE DEVICES 3-167 • .. ® MC7900 Series MOTOROLA THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS The MC7900 Series of fixed output negative voltage regulators are intended as complements to the popular MC7800 Series devices. These negative regulators are available in the same seven-voltage options as the· MC7800 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative MC7900 Series. Available in fixed output voltage options from - 5.0 to - 24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. • • • • • No External Components Required Internal Thermal Overload Protection Internal Short-Circuit Current Limiting Output Transistor Safe-Area Compensation Available in 2% Voltage Tolerance (See Ordering Information) KSUFFIX METAL PACKAGE CASE 1-03 (Bottom View) T SUFFIX PLASTIC PACKAGE CASE 221A-04 SCHEMATIC DIAGRAM PIN 1. GROUND 2. INPUT 3. OUTPUT connected to Pin 21 STANDA·RD APPLICATION ~--+--+-<>Vo In p u t $ C 7 9 X X Output ~i~~ ~F Co" 1.0 J.lF 0.3 '-4----"_ _+-_4-_ _ _ _ _--+----"-+-_ _ _ _ _--+-4-_ _ _--'-_ _-0-0 v, A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple voltage. ORDERING INFORMATION Device Output Voltage Tolerance MC79XXCK MC79XXACK* 4% 2% MC79XXCT MC79XXACT* 4% 2% MC79XXBT# 4% XX == these two digits of the type number indicate voltage. Tested Operating Junction Temp. Range Package Metal Power** TJ ~ DOC!o +t2S0C Plastic Power TJ ~ • = Cin is required if regulator is located an appreciable distance from power supply filter. •• = Co improves stability and transient response. -4DoC to + t2S0C XX indicates nominal voltage. *2% output voltage tolerance available in 5, 12 and 15 volt devices. **Metal power package available in 5, 12 and 15 volt devices. #Automotive temperature range selections are available with special test conditions and additional tests in 5, 12 and 15 volt devices. Contact your local Motorola sales office for information. DEVICE TYPE/NOMINAL OUTPUT VOLTAGE MC790S MC790S.2 MC7906 MC790B MOTOROLA LINEAR/INTERFACE DEVICES 3-168 5.0 Volts 5.2 Volts 6.0 Volts a.OVolts MC7912 MC791S MC791B MC7924 12 15 18 24 Volts Volts Volts Volts MC7900 Series MAXIMUM RATINGS (TA =+25°C unless otherwise noted) Rating Input Voltage (-5.0 V;;' Yo;;' -IB V) (24 V) Power Dissipation Plastic Package TA =+25°C Derate above TA ;:: +25°C Symbol Value Unit VI -35 -40 Vdc Po Internally Limited 15.4 Watts mW/oC 1/ROJC Internally Limited 200 mW/oC 1/ROJA Po TC =+25°C Derate above TC = +95°C (See Figure 1) Metal Package TA =+25°C Derate above TA = +25°C Po Internally limited Watts 1/ROJA 22.2 mW/oC TC =+25°C Derate above TC = +65°C Po 1/ROJC Internally Limited 182 Watts mW/OC Tsto -65 to +150 °c TJ Oto+150 °c Storage Junction Temperature Range Junction Temperature Range II Watts THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance. Junction to Ambient - Plastic Package Metal Package ROJA 65 45 °C/W Thermal Resistance, Junction to Case Plastic Package Metal Package ROJC 5.0 5.5 °C/W - MC7905C ELECTRICAL CHARACTERISTICS (VI =-10 V, 10 =500 mAo DoC < TJ < +125°C unless otherwise noted) Characteristic Output Voltage (TJ Symbol Min Typ Max Unit Vo -4.8 -5.0 -5.2 Vdc =+25°C) Line Regulation (Note 1) (TJ =+25°C.10 = 100 mAl -7.0 Vdc;;' VI;;' -25 Vdc -8.0 Vdc ;;, VI ;;, -12 Vdc mV Regline - (TJ =+25°C. 10 =500 mAl -7.0 Vdc;;' VI;;' -25 Vdc -8.0 Vdc ;;, VI ;;, -12 Vdc Load Regulation (TJ =+25°C)(Note 1) 5.0 mA';; 10 ,;; 1.5 A 250 mA';; 10';; 750 mA - 7.0 2.0 50 25 - 35 8.0 100 50 - 11 4.0 100 50 -- -5.25 Vdc - 4.3 8.0 mA - - 1.3 0.5 mV Regload Output Voltage Vo -4.75 -7.0 Vdc;;' VI ;;, -20 Vdc, 5.0 mA';; 10';; 1.0 A. P';; 15 W Input Bias Current (TJ;:: +25°C) liB Input Bias Current Change -7.0 Vdc;;' VI;;' -25 Vdc 5.0 mA';; 10';; 1.5 A - - eon - 40 - ~V RR - 70 - dB VI-VO - 2.0 - Vdc .lVO/.lT - -1.0 - mV/OC Output Noise Voltage (TA =+25°C. 10Hz';; f';; 100 kHz) Ripple Rejection 110 Dropout Voltage 10 ~ 1.0 A. TJ ~ mA .lIIB =20 mA. f =120 Hz) + 25°C Average Temperature Coefficient of Output Voltage 10' 5.0 mA, DoC';; TJ';; +125°C Note: , . Load and tine regulation are specified at constant junction temperature. Changes in Va due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. MOTOROLA LINEAR/INTERFACE DEVICES 3-169 II MC7900 Series MC7905AC ELECTRICAL CHARACTERISTICS (VI = -10 V 10 = 500 mA DoC < TJ < +125°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Output Voltage (TJ = +25°C) Vo -4,9 -5.0 ,-5.1 Vdc Line Regulation (Note 1) -8.0 Vdc;;' VI;;' -12 Vdc; -8.0 Vdc ;;. VI ;;. -12 Vdc; -7.5 Vdc;;' VI;;' -25 ~c; -7.0 Vdc;;' VI;;' -20 dc; Regline - 2.0 7.0 7.0 6.0 25 50 50 50 - 11 4.0 9.0 .100 50 100 -4.80 - -5,20 Vdc - 4.4 8.0 mA - - 10 = 1.0 A. TJ = 25°C 10 = 1.0 A 10 = 500 mA 10 = 1.0 A. TJ = +25°C Load Regulation (Note 1) 5.0 mA ,,;; 10 ,,;; 1 .5 A. TJ = +25°C 250 mA";; 10";; 750 mA 5.0 mA ,,;; 10 ,,;; 1 .0 A mV - - mV Regload - Output Voltage -7.5 Vdc;;' VI;;' -20Vdc. 5.0 mA";; 10";; 1.0 A. P";; 15 W Vo Input Bias Current liB Input Bias Current Change -7.5 Vdc;;' VI;;' -25 Vdc 5,0 mA";; 10";; 1.0 A 5,0 mA";; 10";; 1 ,5 A. TJ = 25°C .lIIB - - 1.3 0.5 0.5 Output Noise Voltage (TA = +25°C. 10Hz";; f,,;; 100kHz) eon - 40 - ~V Ripple Rejection (10 = 20 mA. f = 120 Hz) RR - 70 VI-VO - 2.0 - Vdc .lVO/.lT - -1.0 - mV/oC Dropout Voltage 10 ~ 1.0 A, TJ ~ +25'C Average Temperature Coefficient of Output Voltage 10 = 5.0 mAo DOC";; TJ";; +125°C mA dB MC7905 2C ELECTRICAL CHARACTERISTICS (VI = -10 V 10 = 500 mA O'C < TJ < +125°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Output Voltage (TJ - +25°C) Vo -5.0 -5.2 -5.4 Vdc Line Regulation (Note 1) (TJ = +25°C. 10 = 100 mAl -7.2 Vdc;;' VI;;' -25 Vdc -8.0 Vdc ;;. VI ;;. -12 Vdc Regline - 8.0 2.2 52 27 37 8.5 105 52 - 12 4.5 105 52 Vo -4.95 - -5.45 Vdc liB - 4.3 8,0 mA - - 1,3 0.5 mV - (TJ = +25°C. 10 = 500 mAl -7.2 Vdc;;' VI;;' -25 Vdc -8.0 Vdc ;;. VI ;;. -12 Vdc - Load Regulation (TJ = +25°C)(Note 1) 5.0 mA ,,;; 10 ,,;; 1.6 A 250 mA ,,;; 10 ,,;; 750 mA mV Regload - Output Voltage -7.2 Vdc;;' VI;;' -20 Vdc. 5.0 mA";; 10";; 1.0 A. P";; 15 W Input Bias Current (TJ = +25°q Input Bias Current Change -7.2 Vdc;;' VI;;' -25 Vdc 5.0 mA';; 10 ,,;; 1 .5 A .lIIB Output NOise Voltage (TA = +25°C. 10Hz";; f";; 100 kHz) eon - 42 Ripple Rejection (10 = 20 mA, f = 120 Hz) RR - 68 - dB VI-VO - 2.0 - Vdc .lVO/.lT - -1.0 - mV/oC Dropout Voltage 10 ~ 1.0 A, TJ ~ +25'C Average Temperature Coefficient of Output Voltage 10 = 5.0 mA, DOC";; TJ";; +125°C mA ~V Note: 1. Load and line regulation are specified at constant junction temperature, Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. MOTOROLA LINEAR/INTERFACE DEVICES 3-170 MC7900 Series MC7906C ELECTRICAL CHARACTERISTICS IV, =-11 Characteristic Output Voltage ITJ V 10 =500 rnA O°C< TJ < +125°C unless otherwise noted) Symbol Min Typ Max Unit Vo -5.75 -6.0 -6.25 Vdc =+25°C) Line Regulation INote 1 ) ITJ =+25°C. 10 = 100 mAl -8.0 Vdc '" VI '" -25 Vdc -9.0Vdc '" VI '" -13 Vdc - - 9.0 3.0 60 30 - 43 10 120 60 - 13 5.0 120 60 Vo -5.7 - -6.3 Vdc liB - 4.3 8.0 rnA - - 1.3 0.5 45 - - 65 - dB VI-VO - 2.0 - Vdc :'VOI:'T - -1.0 - rnVloC ITJ =+25°C. 10 =500 rnA) -8.0 Vdc '" V, '" -25 Vdc -9.0 Vdc '" V, '" -13 Vdc Load Regulation (TJ =+25°C) (Note 1I 5.0 rnA';; '0';; 1.5 A 250 rnA';; 10';; 750 rnA rnV Regload Output Voltage -8.0 Vdc '" VI '" -21 Vdc. 5.0 rnA .;; 10 .; 1 .0 A. P'; 15 W Input Bias Current ITJ =+25°CI Input Bias Current Change rnA :.I,B -8.0 Vdc '" VI '" -25 Vdc 5.0 rnA';; 10'; 1.5 A Output Noise Voltage ITA =+25°C. 10Hz'; f';; 100kHz) Ripple Rejection (10 rnV Regline eon RR =20 rnA. f =120 Hz) Dropout Voltage 10 ~ 1.0 A. TJ ~ +25°C Average Temperature Coefficient of Output Voltage 10 =5.0 rnA. OOC .;; TJ .;; +125°C ~V MC7908C ELECTRICAL CHARACTERISTICS IVI =-14 V 10 =500 rnA O°C < TJ < +125°C unless otherwise noted I Characteristic Symbol Min Typ Max Unit Vo -7.7 -8.0 -8.3 Vdc Output Voltage ITJ =+25°C) Line Regulation (Note 1) rnV Regline ITJ =+25°C.10 =100 mAl -10.5 Vdc '" VI '" -25 Vdc -11 Vdc", VI '" -17 Vdc - 12 5.0 80 40 50 22 160 80 - 26 9.0 160 80 -7.6 - -8.4 'Vde - 4.3 8.0 rnA - - 1.0 0.5 Vdc rnVloC - (TJ =+25°C. 10 =500 rnA) -10.5 Vdc", V, '" -25 Vdc -11 Vdc", V, '" -17 Vdc - Load Regulation (TJ =+25°C) (Note 1I 5.0 rnA';; '0 .;; 1.5 A 250 rnA'; 10';; 750 rnA rnV Regload - Output Voltage -10.5 Vdc '" VI '" -23 Vdc. 5.0 rnA'; '0';; 1.0 A. P'; 15 W Vo Input Bias Current ITJ =+25°CI liB Input Bias Current Change -10.5 Vdc '" V, '" -25 Vdc rnA :",B 5.0 rnA';; 10'; 1.5 A =+25°C. 10Hz';; f .; 100 kHzI =20 rnA. f =120 HzI Output Noise Voltage (TA eon RR - 52 Ripple Rejection (10 V,-VO - 2.0 - :'VOI':\T - -1.0 - Dropout Voltage '0 ~ 1.0 A. TJ ~ +25°C Average Temperature Coefficient of Output Voltage 10 =5.0 rnA. O°C';; TJ';; +125°C ; 62 ~V dB Note: 1 Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. MOTOROLA LINEAR/INTERFACE DEVICES 3-171 II MC7900 Series MC7912C ELECTRICAL CHARACTERISTICS IVI =-19 V 10 =500 mA OOC< TJ< +125°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Output Voltage ITJ =+25°C) -11.5 -12 -12.5 - 13 6.0 120 60 - 55 24 240 120 - 46 - 17 240 120 - -12.6 Vdc - 4.4 8.0 mA - - 1.0 0.5 - 75 - ~V 61 - dB VI-VO - 2.0 - Ydc .lVO/.lT - -1.0 - mV/oC Vo Line Regulation INote 1) ITJ =+25°C, 10 = 100 mAl -14.5 Vdc ~ VI ~ -30 Vdc -16 Vdc ~ VI?- -22 Vdc - ITJ =+25°C, 10 =500 mAl -14.5 Vdc ~ VI ~ -30 Vdc -16 Vdc ~ VI ~ -22 Vdc - Load Regulation ITJ =+25°C)(Note 1) 5.0 mA" 10" 1.5 A 250 mA';;; 10" 750 mA Output Voltage -14.5 Vdc ~ VI mV Regload -11.4 Vo ~ Vdc mV Reg,ine -27 Vdc, 5.0 mA';;; 10" 1.0 A. p" 15 W Input Bias Current ITJ =+25°C) liB Input Bias Current Change -14.5 Vdc ~ VI ~ -30 Vdc 5.0 mA';;; 10';;; 1.5 A Output Noise Voltage ITA 0 mA .l11B +25°C, 10Hz';;; f,;;; 100 kHz) eon RR Ripple Rejection 110 =20 mA, f 0 120 Hz) Dropout Voltage 10 ~ 1.0 A. TJ ~ +25°C Average Temperature Coefficient of Output Voltage '0 = 5.0 rnA. aoc ~ TJ ~ +125°C MC7912AC ELECTRICAL CHARACTERISTICS IVI-- - 19 V 10 - 500 mA OOC < TJ < +125°C unless otherwise noted) Typ Max Unit Min Symbol Characteristic -11.75 -12 -12.25 - 6.0 24 24 13 60 120 120 120 - 46 17 35 150 75 150 -11.5 - -12.5 Vdc - 4.4 8.0 mA - - 0.8 0.5 0.5 eon - 75 - RR - 61 - dB VI-VO - 2.0 - Vdc - -1.0 - mV/oC Output Voltage ITJ = +25'C) Vo Line Regulation (Note') -16 Vdc ~ VI ~ -22 Vdc; 10 = 1.0 A, TJ 0 25'C -16 Vdc ~ VI ~ -22 Vdc; 10 = 1.0 A, -14.8 Vdc ~ VI ~ -30 Vdc; 10 =500 mA -14.5 Vdc ~ VI ~ -27 Vdc; 10 = 1.0 A, TJ = 25°C Regline Load Regulation INote 1) 5.0 rnA';;; 10';;; 1.5 A. TJ 250 mA ,;;; 10 ,;;; 750 mA 5.0 mA" 10';;; 1.0A Regload 0 mV mV 25'C Output Voltage Vdc Vo -14.8 Vdc ~ VI ~ -27 Vdc, 5.0 mA';;; 10';;; 1.0 A, P';;; 15 W Input Bias Current liB Input Bias. Current Change -15 Vdc~ VI ~ -30 Vdc 5.0 mA';;; 10" 1.0 A 5.0 mA';;; 10';;; 1.5 A, TJ =25°C Output Noise Voltage ITA =+25'C, 10 Hz';;; f,;;; Ripple Rejection 110 =20 mA, f 0 mA ..\IIB 100 kHz) 120 Hz) Dropout Voltage 10 ~ 1.0A. TJ ~ + 25'C Average Temperature Coefficient of Output Voltage 10 =5.0 mAo O'C" TJ';;; +125°C "\VO/.lT I I'V Note: 1. Load and line regulation are specified 8,1 constant junction temperature. Changes in Pulse testing with low duty cycle is used. Vo due to heating effects must be taken into account separately. MOTOROLA LINEAR/INTERFACE DEVICES 3-172 MC7900 Series MC7915C ELECTRICAL CHARACTERISTICS (VI ~ -23 V 10 ~ 500 mA O°C < TJ < +125°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Output Voltage (TJ ~ +25°C) -14.4 Vo line Regulation (Note 1 ) (TJ ~ +25°C.IO ~ 100 mAl -17.5 Vdc;;' VI;;' -30 Vdc -20 Vdc;;' VI;;' -26 Vdc load Regulation ITJ ~ +25°C) (Note 1) 5.0 mA';; 10';; 1.5 A 250 mA';; 10';; 750 mA 57 27 300 150 - 68 25 300 150 mV -15.75 Vdc lIB - 4.4 8.0 mA - - 1.0 0.5 eon - 90 - RR - 60 - dB VI-VO - 2.0 - Vdc :'VOI:'T - -1.0 - mV/oC ~ -23 V 10 ~ 500 mA O°C < TJ < +125°C mA :'IIB =120 Hz) Average Temperature Coefficient of Output Voltage 10 = 5.0 rnA. aoc ~ TJ ~ +125°C MC7915AC ELECTRICAL CHARACTERISTICS (VI Characteristic unless otherwise noted) Min Typ Max Unit Vo -14.7 -15 -15.3 Vdc - 27 57 57 57 75 150 150 150 68 25 40 150 75 150 Line Regulation (Note 1) mV Regline -20 Vdc ;;. VI ;;. -26 Vdc; 10 ~ 1.0 A. TJ ~ 25°C -20 Vdc;;' VI;;' -26 Vdc; 10 ~ 1.0 A. -17.9 Vdc;;' VI;;' -30 Vdc; 10 ~ 500 mA -17.5 Vdc;;' VI;;' -30 Vdc; 10 ~ 1.0 A. TJ ~ 25°C load Regulation (Note 1) 5.0 mA';; 10';; 1.5 A. TJ ~ 25°C 250 mA';; 10 ,;; 750 mA 5.0 mA';; 10';; 1.0 A - -14.4 Vo -15.6 Vdc mA 4.4 8.0 - - - 0.8 0.5 0.5 eon - 90 - RR - 60 - dB VI-VO - 2.0 - Vdc 8VO/8T - -1.0 - mV/oC liB Input Bias Current Change -17.5 Vdc ;;. VI ;;. -30 Vdc 5.0 rnA';; 10';; 1.0 A 5.0 mA';; 10';; 1 .5 A. TJ ~ 25°C mA :'IIB +25°C. 10Hz';; f';; 100 kHz) ~ - - Input Bias Current 20 mA. f mV Regload Output Voltage -17.9 Vdc;;' VI;;' -30 Vdc. 5.0 mA';; 10';; 1.0 A. P';; 15 W ~ 120 Hz) Dropout Voltage 10 ~ 1.0 A. TJ ~ + 25°C Average Temperature Coefficient of Output Voltage 10 ~ 5.0 mAo OOC';; TJ';; +t 25°C !'V Symbol ~ +25~c) ~ - - Dropout Voltage 10 ~ 1.0 A. TJ ~ +25°C Ripple Rejection (10 150 75 - Output Noise Voltage ITA ~ +25°C. 10Hz';; f';; 100 kHz) Output Noise Voltage (TA 14 6.0 -14.25 Input Bias Current Change -17.5 Vdc;;' VI;;' -30 Vdc 5.0 mA';; 10';; 1.5 A 20 mAo f Vdc Vo Input Bias Current (TJ = +25°C) Output Voltage (TJ I Regload Output Voltage -17.5 Vdc;;' VI;;' -30 Vdc. 5.0 mA';; 10';; 1.0 A. P';; 15 W ~ -15.6 mV - (TJ ~ +25°C. 10 ~ 500 mAl -17.5 Vdc;;' VI;;' -30 Vdc -20 Vdc ;;. VI ;;. -26 Vdc Ripple Rejection (10 -15 Regline Note: 1. Load and line regulation are specified at constant junction temperature. Changes in Pulse testing with low duty cycle is used. Va due to heating effects must be taken into account separately. MOTOROLA LINEAR/INTERFACE DEVICES 3-173 !'V II .. MC7900 Series MC7918C ELECTRICAL CHARACTERISTICS (VI =-27 V 10 =500 mA O°C< TJ < +125°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Output Voltage (TJ =+25°C) Vo Line Regulation (Note 1) (TJ +25°C. 10 100 mAl -21 Vdc;;' VI:;;' -33 Vdc -24 Vdc ;;. VI ;;. -30 Vdc = = -17.3 -18 -18.7 = Vdc mV RegOne - 25 10 180 90 - 90 50 360 180 - 110 55 360 180 = (TJ +25°C. 10 500 mAl -21 Vdc;;' VI;;' -33 Vdc -24 Vdc ;;. VI ;;. -30 Vdc = Load Regulation (TJ +25°C) (Note 1) 5.0 mA'; 10'; 1.5 A 250 mA.; 10'; 750 mA mV Regload - Output Voltage Vo -17.1 - -18.9 Vdc liB - 4.5 8.0 rnA - - 1.0 0.5 -21 Vdc;;' VI;;' -33 Vdc. 5.0 rnA'; 10'; 1.0 A. P'; 15 W Input Bias Current (TJ - +25°C) Input Bias Current Change -2 I Vdc;;' VI ;, -33 Vdc 5.0 rnA'; 10'; 1.5 A =+25°C. 10Hz'; f'; =20 rnA. f =120 Hz) Output Noise Voltage (TA Ripple Rejection (10 rnA .lIIB eon - 110 - ~V RR - 59 - dB VI-VO - 2.0 - Vdc .lVO/.lT - -1.0 - mV/oC 100 kHz) Dropout Voltage 10 = 1.0 A. TJ = +25'C Average Temperature Coefficient of Output Voltage 10 5.0 rnA. O°C'; TJ'; +1 25°C = MC7924C ELECTRICAL CHARACTERISTICS (VI = -33 V 10 = 500 rnA O°C < TJ < +125°C unless otherwise noted) Characteristic Output Voltage (TJ Symbol Min Typ Max Unit Vo -23 -24 -25 Vdc - 31 14 240 120 - 118 70 480 240 - 150 85 480 240 =+25°C) Line Regulation (Note 1) (TJ +25°C.10 100 rnA) -27 Vdc;;' VI;' -38 Vdc -30 Vdc ;;. VI ;;. -36 Vdc = = rnV Regline = = (TJ +25°C. 10 500 mAl -27 Vdc. ;, VI ;, -38 Vdc -30 Vdc ;;. VI ;, -36 Vdc = Load Regulation (TJ +25°C) (Note 1) 5.0 rnA'; 10 .; 1.5 A 250 mA'; 10'; 750 rnA Output Voltage -27 Vdc;' VI ;, -38 Vdc. 5.0 rnA'; 10'; 1.0 A. P'; 15 W Input Bias Current (TJ rnV Regload Vo =+25°C) Input Bias Current Change -27 Vdc ;, VI ;;. -38 Vdc 5.0 rnA'; 10'; 1.5 A =+25°C. 10Hz'; f'; 100 kHz) =20 mAo f =120 Hz) -22.8 - -25.2 Vdc rnA liB - 4.6 8.0 .lIIB -- - 1.0 0.5 rnA Output Noise Voltage (TA eon - 170 - Ripple Rejection (10 RR - 56 - dB VI-VO - 2.0 - Vdc .lVO/.lT - -1.0 - mV/OC Dropout Voltage 10 = 1.0 A. TJ = MV +25'C Average Temperature Coefficient of Output Voltage 10 5.0 rnA. OOC'; TJ .; +125°C = Note: 1. Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. MOTOROLA LINEAR/INTERFACE DEVICES 3-174 MC7900 Series TYPICAL CHARACTERISTICS n A ~ +25 0 C unless otherwise noted.) FIGURE 1 - WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE 20 ~M' ~ ::~ -8HS ~ 15' CM' 3.0 ~ 2.0 ~i1i 1.0 I -- I is I I "' 0.5 ,e 0.4 0.3 8JC ~ 50 CM' 0.2 0 "r-... - r--..... " '\ 100 4.0 3,0 \ z o ;:: 2.0 :: 1.0 i5 O. 5 O. 4 i1i .\c 75 5.0 ~ "- '\ .\ '" 8JA ~ 65 CM' POIM.x) ~ 15W 0, I 25 50 en ~ ~ ~ \ 8HS l::-- 8HS ~ 15° ~M' INFINITE HEAT SINK ~ 5° c;W-- 150 "' 2. 0 I ~ 1\ 75 z 0 r-... a ...... ~ 1.0 § ,, "''" t 150 Vin=-l1 V 9.0 12 15 lB 21 10 = 20m" f-" 60 I- 24 40 ii: " § O. 5 :::" ......... 27 20 0 10 30 1.0 k f. FREQUENCY 1Hz) 100 IVI-VO!.INPUT·OUTPUT VOLTAGE OIFFERENTIALIVOLTS) FIGURE 5 - RIPPLE REJECTION ASA FUNCTION OF OUTPUT VOL TAG ES 10 k lOOk FIGURE 6 - OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE BO 6.26 ;;; 70 I-:!a z0 "' 125 Ul ~ o ...~Ul 100 BO ; r-... ::1 6.0 '\ FIGURE 4 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY ~ 3.0 I"- H+-Hr+ttffi-++-++-++tHt-++--t+t+tffi- Vo = -6.0 V 1. 5 o o '\ ~ , .......... I"- 100 - II -r- "- ...... ........ TA. AMBIENT TEMPERATURE I'C) FIGURE 3 - PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE ~ r--. o. 3 8JC ~ 5.5° CM' 8JA ~ 45'CM' PaIM.x) ~ 15W O. 125 50 II r- r-..... [""'-.. r-.... NO HEAT SINK TA. AMBIENT TEMPERATURE 1°C) 2. 5 r-~ rP o. 2 \. 125 - -- 10 r-- r- ....... NOHEATS~- ~ ~ 0 INFINITE HEAT SINK .......... 10 t:::t-.J. ~ FIGURE 2 - WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE ~ '\ .......... BO ~ii: - f ~ 120 Hz 10 = 20 mA "Vin = 1.0 VIRMS) - '" 6,18 '" - ~ 6.14 ~ 6.10 4.0 6.0 8.0 10 12 14 16 18 20 L. ~ o "' 2.0 L ~ -......... 22 Va. OUTPUT VOLTAGE IVOLTS) 6.06 -25 ./ ... I I Vin - -11 V Vo ~ -6.0 V 10 ='20 m" _ ........ V -+ I +25 +50 +75 +100 +125 TJ. JUNCTION TEMPERATURE 1°C) MOTOROLA LINEAR/INTERFACE DEVICES 3-175 - - .., .... ~ ~ '" 50 40 6.22 o :r +150 +175 II MC7900 Series TYPICAL CHARACTERISTICS DEFINITIONS FIGURE 7 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE Line Regulation The change In output voltage for a change in the Input voltage, The measurement IS made under conditions of low diSSipation or by uSing pulse techniques such that the average chip temperature IS not significantly affected. 5.2 ~ 5. oi'.. ~ Load Regulation -- The change In output voltage for a change In I'-.. .... load current at constant chip temperature . t-.... 4. 8 MaXimum Power DISSipatIOn ........... ~ ~ « iii 4. 6 r----. ~ The maximum total device dissipation for which the regulator will operate'wlthln speCifications. Vin '" -11 V VO"-6.0V- ........ ~ 4.4 o 50 25 Input Bias Current 10" 20 mA " ;!; 4.2 (continued) 75 "'100 TJ. JUNCTION TEMPERATURE (DC) That part of the mput current that IS not delivered to the load. - Output Noise Voltage The rms ac voltage at the output, With constant load and no Input ripple, measured over a speCified frequency range. 125 Long Term Stability Output voltage stability under accelerated life test conditions With the maximum rated voltage listed In the deVices' electrical characteristics and maximum power dissipation. APPLICA nONS INFORMATION Design Consid .... tions FIGURE 8 - CURRENT REGULATOR The MC7900 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the Clrcu It wl'1en subiected to an excessive power overload condition, Internal Short·Circuit Protection that limits the ma)(lmum current the Clr· cuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. I n many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large An Input bypass capacitor should be selected to prOVide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 ,uF or larger tantalum, mylar, or other capacitor having low Internal impedance at high frequencies should be chosen.IThe bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no e)(ternal sense lead. Bypassing the output is also recommended. 10 = 200 mA The MC7905,r5.O V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows: 10 5.0V -R- +(8 0 The quiescent current for this regulator is typically 4.3 rnA. The 5.0 volt regulator was chosen to minimize dissipation and to to within 6.0 V below the o~rate allow the output voltage to input voltage. FIGURE 10 - OPERATIONAL AMPLIFIER SUPPLY (±15V@1.0A) (-5.0 V@ 4.0 A, with 5.0 A current limiting) I nput ~'.O,uF T+,.O,uF Gnd ••_~+--------_<~O-----•• Gnd FIGURE 9 - CURRENT BOOST REGULATOR -10 V f-o._--'\AI\r-~" Input -5.0 V '-"'-~AA-_~ lr-------...-.... Output + 15 V 0 utput +20 V Inp ut I I + 0.3 3jlF* MC7S15 ~1.0 jlF I I + 1.0 jlF* ~o'r~~ uiv 001 Gnd Gnd + + 1.0 IJF Gnd.-------------_<~----_<~------~.Gnd -20 V • Mounted on common heat sink, Motorola MS·' 0 or equivalent. Input When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/Rse. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator. MC7915 I -1 5V Output The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A -clamp diode shou1d be used at the output of the MC7815 to prevent potentjallatch~up problems whenever the output of the positive regulator (MC7815) is drawn below ground with an output current greater than 200 rnA. MOTOROLA LINEAR/INTERFACE DEVICES 3-176 I I '.O,uF @ MOTOROLA MC79LOO,A Series THREE-TERMINAL LOW CURRENT NEGATIVE FIXED VOLTAGE REGULATORS THREE-TERMINAL LOW CURRENT NEGATIVE VOLTAGE REGULATORS The MC79LOO Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to 100 mA. Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation. The MC79LOO devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach. P SUFFIX PLASTIC PACKAGE CASE 29-04 PIN 1. GROUND 2. INPUT 3. OUTPUT • No External Components Required • Internal Short-Circuit Current Limiting • Internal Thermal Overload Protection • Low Cost • Complementary Positive Regulators Offered IMC78LOO Series) G SUFFIX METAL PACKAGE CASE 79-05 • Available in Either ± 5% lAC) or ± 10% IC) Selections PIN 1. GROUND 2. OUTPUT 3. INPUT (Bottom View) (Case Connected To Pin 3) REPRESENTATIVE CIRCUIT SCHEMATIC R5 D SUFFIX PLASTIC PACKAGE CASE 751-02 SOP-8 R6 R18 04 Rl PIN 1 VOUT 2. VIN 3 VIN 4. NC R7 01 5. 6 7 8. GND VIN VIN NC sop-s IS an internally modified 50-8 Package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and Increases power dissipation capability when approprtately mounted on a printed circuit board. SOP-S conforms to all external dimensions of the standard SO-8 Package. R4 R2 Zl R3 Input ORDERING INFORMATION Device Tested Operating Temperature Range Package Device No. ±10% Device No. ± 5% Nominal Voltage MC79LXXACD' SOP-8 MC79L05C MC79L 12C MC79L15C MC79L18C MC79L24C MC79L05AC MC79L 12AC MC79L15AC MC79L18AC MC79L24AC - 5.0 -12 -15 -18 -24 MC79LXXACG' Metal Can MC79LXXACP TJ ~ O"C to + 125"C MC79LXXCG' MC79LXXCP Plastic Power Metal Can Plastic Power MC79LXXABP# TJ = -40°C to + 125°C #Automotive temperature range selections are available with special test conditions and additional tests in 5, 12 and 15 volt devices. Contact your local Motorola sales office for information. XX indicates nominal voltage *Available in 5, 12 and 15 volt devices MOTOROLA LINEAR/INTERFACE DEVICES 3-177 II • MC79LOO,A Series MAXIMUM RATINGS (T A ~ +25°C unless otherwise noted.1 Rating Svmbol Value Unit VI -30 -35 -40 Vdc Storage Temperature Range Tstg -65 to + 150 °C Junction Temperature Range T Oto +150 °C (-5 VI (-12,-15,-18 VI (-24 VI Input Voltage MC79L05C, AC Series ELECTRICAL CHARACTERISTICS IVI ~ -10 V,IO ~ 40 mA, CI ~ 0.33 ~F, Co aOc < T J < +125 0C unless otherwise MC79LOSC Characteristic Output Voltage (T J = +250 c) 'nput Regulation ~ 0.1 ~F, noted) MC79L05AC Symbol Min Typ Max Min Typ Max Unit Va -4.6 -5.0 -5.4 ~4.8 -5.0 -5.2 Vde mV Regline IT J ~ +250 C) -7.0 Vdc ;;. VI ~ -20 Vdc 200 150 -8.0 Vde ;;, VI ;;, -20 Vde Load Regulation T J '" +250 C, 1.0 rnA ,.,,;; 10 ,,; 100 rnA 1.0 rnA ,.,,;; 10 .;;;; 40 rnA 150 100 mV Regload 60 30 Output Voltage ,60 30 Vde Va -7.0 Vdc ;:;:. VI ;;. -20 Vdc, 1.0mA";;; 10 VI =-10Vdc, LOmA,;;;; 10";;; 70mA < 40 rnA Input Bias Current ITJ ~ +250 C) IT J ~ +125 0 C) -4.5 -4.5 -5.5 -5.5 -4.75 -4.75 -5.25 -5.25 mA liB Input Bias Current Change 6.0 5.5 6.0 5.5 1.5 0.2 1.5 0.1 mA AI18 -8.0 Vdc ;? V I ~ -20 Vdc 1.0 rnA.;;;; 10';;;; 40 rnA Output Noise Voltage IT A ~ +250 C, 10Hz <; f <; 100 kHz) Vn Ripple Rejection RR 40 40 49 41 40 ~V 49 dB 1.7 Vde 1-8.0:> VI;;' 18Vde,f ~ 120 HZ,TJ ~ 25 0 CI Dropout Voltage 10 ~ 40 rnA, TJ ~ +25°C lVI-va I MC79L 12C, AC ELECTRICAL CHARACTERISTICS IVI 1.7 0 -19 V, 10 aOc < T J < ~ 40 mA, CI' 0.33~F, Co MC79L 12C Characteristic Output Voltage (T J - +25 0 c) Input Regulation IT J = 0.1 "F, +125 0C unless otherwise noted} MC79L12AC Symbol Min Typ Max Min Typ Max Unit Va -11.1 -12 -12.9 -11 5 -12 -12.5 Vde mV Re%ne = +25 0 CI -14.5 Vdc;?- VI;;;:: -27 Vdc -16 Vdc:? VI ~ -27 Vdc Load Regulation TJ=+250C, 1.0mA';;; 10';;;; 100mA 1.0 rnA .;;; 10 .;;; 40 rnA Va Input Bias Current liB 100 50 Vde -10.8 -10.8 -1 ~1.2 -13.2 -11.4 -11.4 -12.6 -12.6 rnA 6.5 6.0 6.5 6.0 1.5 0.2 1.5 0.1 mA I\IIB Output Noise Voltage = +25 0 C, 100 50 mV ITJ = +25O CI IT J ~ +125O C) ITA 250 200 Regload Output Voltage -14.5 Vdc ';3 VI ';3 -27 Vdc, 1.0mA';;; 10.::;;40mA VI'" -19 Vdc, 1.0 mA < 10 < 70mA Input Bias Current Change -16 Vdc ';3 VI ';3 -27 Vdc 1.0 rnA < 10 < 40 rnA 250 200 80 Vn 80 ~V 42 dB 1.7 Vde 10 Hz <; f <; 100 kHz) RR Ripple Rejection 1-15 <; VI <; -25 Vde, f 36 42 37 = 120Hz, TJ = +25 0 C) Dropout Voltage 10 ~ 40 rnA, TJ ~ +25°C 1.7 lVI-VOl MOTOROLA LINEAR/INTERFACE DEVICES 3-178 MC79LOO,A Series MC79L15C, AC ELECTRICAL CHARACTERISTICS IVI = -23 V, 10 = 40 mA, CI = 0,33 "F, Co = 0.1 "F, oDe < TJ < +125 0C unless otherwise noted I MC79L 15C Characteristic Output Voltage IT J = +250 C) Input Regulation MC79L15AC Symbol Min Typ Max Min Typ Max Unit Vo -13.8 -15 -16.2 -14.4 -15 -15.6 Vdc - - 300 250 - - - 300 250 - - 150 75 - - 150 75 -13.5 -13.5 - -16.5 -16.5 -14.25 -14.25 - -15.75 -15.75 - - - - 6.5 6.0 - - 6.5 6.0 - 1.5 0.1 90 - "V mV Regline ITJ = +250 C) -17.5 Vdc .. VI" -30 Vdc -20 Vdc .. VI .. -30 Vdc Load Regulation TJ = +250 C, 1.0 mA" 10" 100 mA 1.0 mA " 10 " 40 mA mV Regload Output Voltage -17.5 Vdc .. VI .. -30 Vdc, 1.0 mA "10 ,,40mA VI = -23 Vdc, 1.0 mA" 10" 70rnA Vo Input Bias Current liB Vdc rnA ITJ = +250 CI IT J = +1250 C) Input Bias Current Change -20 Vdc .. VI .. -30 Vdc 1.0 rnA " 10" 40 rnA rnA f.l.1'B Output Noise Voltage - - 1.5 0.2 90 - - 33 39 - 34 39 - dB 1.7 - - 1.7 - Vdc Vn +250 ITA = C,10 Hz" f " 100 kHz) Ripple Rejection (-18.5" VI ,,-28.5 Vdc, f = 120 Hz) Dropout Voltage 10 = 40 mA. TJ = RR lVI-VOl - + 25°C MC79L l8C, AC ELECTRICAL CHARACTERISTICS IVI = -27 V, 10 = 40 rnA, CI = 0.33 "F, Co = 0.1 "F, oDe < T J < +125 0C unless otherwise noted.) MC79L18C Characteristic Output Voltage {T J = +25 0 CI Input Regulation MC79L18AC Symbol Min Typ Max Min Typ Max Unit Vo -16.6 -18 -19.4 -17.3 -18 -18.7 Vdc - - - - 325 275 - - - - - 170 85 - - - -17.1 - -19.8 -19.8 - 6.5 6.0 - 1.5 0.2 150 - 46 - rnV Reg,ine ITJ = +250 CI -20.7 Vdc .. VI" -33 Vdc -21.4 Vdc" VI .. -33 Vdc -22 Vdc .. VI .. -33 Vdc -21 Vdc .. VI .. -33 Vdc - Load Regulation - 325 - - 275 - 170 85 -18.9 -17.1 - - - - - 6.5 6.0 - - 0.1 150 - 48 - rnV Regload TJ = +250 C, 1.0 rnA" 10" 100 rnA 1.0 rnA " 10 " 40 rnA Output Voltage -20.7 Vdc .. VI .. -33 Vdc,1.0 rnA" 10" 40 rnA -21.4 Vdc .. VI" -33 Vdc, 1.0 rnA.;; 10 .;;40rnA VI = -27 Vdc, 1.0rnA ,,10" 70 rnA Input Bias Current - - - Vdc Vo -16.2 -16.2 - rnA liB - {TJ = +250 CI {TJ = +1250 CI Input Bias Current Change -21 Vdc" VI" -33 Vdc -27 Vdc ;,. VI .. -33 Vd~ 1.0 rnA " 10 " 40 rnA rnA I\/,S - Output Noise Voltage Vn -18.9 - - - 1.5 "V ITA= +250 C, 10 Hz" f " 100 kHz I RR Ripple Rejection 32 33 dB 1-23" VI" -33 Vdc, f = 120 Hz, TJ = +25 0 CI Dropout Voltage 10 = 40 rnA, TJ ,I VI-VOl 1.7 = + 25°C MOTOROLA LINEAR/INTERFACE DEVICES 3-179 1.7 Vdc II • MC79LOO,A Series = -33 V,IO =40 mA, MC79L24C. AC ELECTRICAL CHARACTERISTICS (VI CI = 0.33 "F, Co = 0.1 "F, oOe < T J < +125 0C unless otherwise MC79L24C Characteristic Output Voltage IT J = +250 C) Input Regulation (TJ = +250 C) noted.) MC79L24AC Symbol Min Typ Max Min Typ Max Unit Vo -22.1 -24 -25.9 -23 -24 -25 Vdc - - - - 350 350 300 - - - 200 100 - - - - -22.8 -21.4 -21.4 - - -26.4 -26.4 - 200 _. mV Regline -27 Vdc ;;. VI ;;. -38 V -27.5 Vdc;;' VI;;' -38 Vdc -28 Vdc ;;. VI;;' -38 Vdc Load Regulation TJ = +25 0 C,1.0mA';; 10';; 100mA mV Regload I.OmA';;lo.;;40mA Output Voltage -27 Vdc ;;. VI ;;. -38 V, 1.0 mA .;; 10';; 40 mA -28 Vdc;;' VI ;;. -38 Vdc, 1.0mA';; 10.;;40mA VI = -33 Vdc, 1.0mA';; 10';; 70mA Vo Input Bias Current (TJ = +250 C) IT J = +125 0 C) liB Input Bias Current Change -28 Vdc ;;. VI ;;. -38 Vdc 1.0 mA .; 10 .; 40 rnA 300 200 100 - - Vdc -25.2 -22.8 - 6.5 6.0 - - 6.5 6.0 1.5 0.2 - - 1.5 0.1 - 200 - "V - -25.2 mA rnA LlIIB Output Noise Voltage ITA = +250 C, 10 Hz .;; f .; 100 kHz) Vn - Ripple Rejection RR 30 43 - 31 47 - dB lVI-VOl - 1.7 - - 1.7 - Vdc 1-29'; VI .;; -35 Vdc, f Dropout Voltage 10 ~ 40 rnA. TJ ~ - - = 120 Hz, TJ =25°C) + 25'C APPLICATIONS INFORMATION Design Considerations The MC79LOO Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short-Circuit Protection that limits the maximum current the circuit will pass, In many low current applications. compensation capacitors are not required, However. it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths. or if the output load capacitance FIGURE 1 - is large, An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 I'oF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead, Bypassing the output is also recommended. FIGURE 2 - POSmvE AND NEGATIVE REGULATOR STANDARD APPLICATION Input o-~-o-i 1-...----0 + Vo CI * '-----,----' 0,33 JLF 0,33 JLF j..... r- = o o -10 -8.0 ll.Va •. -:-: .....1"-- i 3.B _ ~~~~-4--+--I--4---+ --. _.. 3.6 G _- f---J----+........... ---=l'--..+ f---J---+--+-~ - 1---- 5.0 + .j. ;;: 4.0 +- ~ ~ ;!O 3.2 ~ 3.0 ~ o § "'"' '"u 3.0 ... 2.0 ~ 1.0 ~ a; "'" =40mA 25 50 75 TA, AMBIENT TEMPERATURE lOCI 100 v' o -10 -5.0 Her Sink ! ~ 1,000 1000 ~ ;:: £ ,..... ili i5 is "'~ ~ ~ No Heat Sink ./ ........ "' 300 CIWalt feat Sink 100 "\ ~ RIIJA 200"C/W PO/max) 10 25"C = 625 mW 50 - ili 100 10 25 -40 10,000 No Heat Sink ~ -35 -15 -20 -25 -30 VI, INPUT VOLTAGE IVOl TSI Infinite "' ~ I--- FIGURE 8 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - T0-39 Type PHage 10,000 0 125 100 MC79l05C Vo = -5.0 V 10 =40mA TJ = 25 0 C o 125 FIGURE 7 - MAXIMUM AVERAGE POWER DISSIPATION versus AMBIENT TEMPERATURE - TO-92 Type Package lz - ~ f---J---+---t---I--+--f-----1---+---=,.",.---! ~ MC79l05C f---f---J---+--+-+--+--P..,...j VI=-10V "Vo = -5.0 V +--I--i---+-+-+--+--+-~ o ~ 10 . / I-- .5 i- F:::.: rs: - e---- . - 3.4 f---J---+--+--l----+---- 75 50 25 FIGURE 6 - INPUT BIAS CURRENT versus INPUT VOLTAGE -1=- -+- t--. I TJ. JUNCTION TEMPERATURE lOCI FIGURE 5 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE 4.0 10 = 1.0 mA 2% 01 Va VI. INPUT VOL TAGE IVOl TSI 1 II lo=40mA - _ lo"'100mA _.- 2.0 o • 5 -_..- --. V<-- -_._- - 0 > I---- \ , t w '"« ~> 75 100 TA, AMBIENT TEMPERATURE lOCI 125 150 10 25 \ 50 75 100 TA, AMBIENT TEMPERATURE lOCI MOTOROLA LINEAR/INTERFACE DEVICES 3-181 125 150 • ® MC79MOO Series MOTOROLA THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS The MC79MOO Series of fixed output negative voltage regulators are intended as complements to the popular MC78MOO Series devices. Available in fixed output voltage options of - 5.0, - 12 and -15 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of O.~ ampere. SILICON MONOLITHIC INTEGRATED CIRCUITS • No External Components Required • Internal Thermal Overload Protection • Internal Short-Circuit Current Limiting • Output Transistor Safe-Area Compensation T SUFFIX PLASTIC PACKAGE CASE 221 A-04 PIN 1. INPUT 2. GROUND 3. OUTPUT EQUIVALENT SCHEMATIC DIAGRAM ., (Heatsink surface connected to Pin 2) Gnd 3 DTSUFFIX PLASTIC PACKAGE CASE 369A-03 DPAK "2 :i DT-1 SUFFIX PLASTIC PACKAGE CASE 369-03 DPAK vo STANDARD APPLICATION Input~C79XX Output Cin* O.33p.F~ CO** 1.0p.F 0.3 A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point on the input ripple yoltage. ORDERING INFORMATION Device MC79MOSCDT, CDT-1 MC79MOSCT MC79M12CDT, CDT-1 MC79M12CT MC79M15CDT, CDT-1 MC79M1SCT Output Voltage Tested Operating Junction Temp. Range -S.O Volts -12 Volts -1S Volts O°C to + 12SoC Package XX = these two digits of the type number indicate voltage. Cin is required if regulator is located DPAK PLASTIC POWER DPAK PLASTIC POWER DPAK PLASTIC POWER MOTOROLA LINEAR/INTERFACE DEVICES 3-182 an appreciable distance from power supply filter. Co improves stability and transient response. MC79MOO Series MC79MXX Series MAXIMUM RATINGS (TA ~ + 25'C unless otherwise noted.) Rating Symbol Value Unit VI -35 Vdc Po 1/ROJA Po 1/ROJC Internally Limited 14.2 Internally Limited 200 Watts mW/'C Watts mW/,C Tst\L -65 to + 150 TJ Oto +150 'c 'c Symbol Max Unit R8JA 65 'CIW R8JC 5.0 'CIW Input Voltage Power Dissipation Plastic Package TA ~ +25'C Derate above TA TC ~ +25'C Derate above TC ~ + 25'C ~ + 95'C Storage Junction Temperature Range Junction Temperature Range I • THERMAL CHARACTERISTICS Characteristic i Thermal Resistance, Junction to Ambient I Thermal Resistance, Junction to Case MC79MOSC ELECTRICAL CHARACTERISTICS (VI ~ Characteristic Output Voltage (TJ ~ + 25'C) -10 V, 10 ~ Min Typ Max Unit Va -4.8 -5.0 - 5.2 Vdc 7.0 2.0 50 30 30 100 mV - -5.25 Vdc - 4.3 B.O rnA - - 0.4 0.4 Line Regulation (TJ ~ + 25'CI (Note 11 -7.0 Vdc '" VI '" -25 Vdc -8.0 Vdc ;;, VI '" -18 Vdc Regline Load Regulation (TJ ~ + 25'CI (Note 1) 5.0 mA '" 10 '" 500 mA Regload Output Voltage -7.0 Vdc '" VI'" -25 Vdc, 5.0 mA '" 10 '" 350 mA Input Bias Current (TJ ~ + 25'C) Ripple Rejection (f Dropout Voltage 10 = 500 mA, TJ ~ ~ ~ Va liB Input Bias Current Change - 8.0 Vdc;;, VI '" - 25 Vdc, 10 ~ 350 mA 5.0 mA '" 10 '" 350 rnA, VI ~ -10 V Output Noise Voltage (TA 350 mA, O'C < TJ < + 125'C unless otherwise noted.) Symbol + 25'C, 10Hz'" 1 '" 100 kHz) 120 Hz) ailB - -4.75 mV rnA - Vn - 40 - RR 54 66 - dB VI-Va - 1.1 - Vdc aVO/aT - 0.2 - mV/,C I'V --- +25'C Average Temperature Coefficient 01 Output Voltage 10 ~ 5.0 mA O'C '" TJ '" + 125'C Note: 1. Load and line regulation are specified at constant junction temperature. Changes in Pulse testing with low duty cycle is used. Vo due to heating effects must be taken MOTOROLA LINEAR/INTERFACE DEVICES 3-183 into account separately. MC79MOO Series MC79M12C ELEC'FRICAL CHARACTERISTICS (VI = -19 V, 10 = 350 mA, O"C < TJ < + 125·C unless otherwise noted.) Ch.racteristlc = + 25"C) (TJ = + 25·C) (Note 1) Output Voltage (TJ II Symbol Min Typ Max Unit Vo -11.5 -12 -12.5 Vdc - 5.0 3.0 80 50 - 30 240 mV -12.6 Vdc mA line Regulation -14.5 Vdc '" VI '" -30 Vdc -15 Vdc '" VI'" -25 Vdc Regline Load Regulation (TJ = + 25"C) (Note 1) 5.0 mA '" 10 '" 500 mA Regload Output Voltage -14.5 Vdc '" VI '" - 30 Vdc, 5.0 mA '" 10 '" 350 mA = Input Bias Current (TJ + 25"C) Input Bias Current Change -14.5 Vdc '" VI'" -30 Vdc, 10 = 350 mA 5.0 mA '" 10 "'350mA,VI = -19V Output Noise Voltage (TA Ripple Rejection (f Dropout Voltage 10 = SOD mA, TJ = = +25·C, 10Hz'" f '" 100 kHz) 120 Hz) = Vo -11.4 liB - 4.4 8.0 - - 0.4 0.4 Vn - 75 - RR 54 60 - dB VI-VO - 1.1 - Vdc m - 65 - deg. CMRR 65 90 - dB PSRR - 100 - dB 10- 0.3 0.7 - rnA 10+ -2.0 -4.0 - rnA kHz =0.7 VI Output Source Current (VOIPIO 3] 350 = 2.0 kll) Output Sink Current ~in 3] - = 2.0 kll) Common-Mode Rejection Ratio (VCC =40 V) -. fe 2.0 kll) = 3.5 V_I_______ PWM COMPARATOR SECTION (Test eireu't F'gure 11) ~ In-p-u-tT-h;~-sh-o-'d· VOI~~-g-e-" (Zero Duty Cycle) Input Sink Current (ViP,n 3) = 0.7 V) ~~A_D_-_T_IM_E_C_O __ NT_R_O_L_S_E_CTION (Test Cllcuit F'gure _1 __ 11_ _ _ _ _ _ _, -_ _ ___,----.--~----~--__, Input Bias Current (Pin 4) -2.0 -10 ~A (V IO = 0 to 5 25 V) -- ------- - . - --.--.---------------1-----+---+-----+----1-----1 Maximum Output Duty Cycle (Vin ~ 0 V, CT ~ 0.01 p.F, RT ~ 12 kl!) (Vin ~ 0 V, CT ~ 0.001 p.F, RT ~ 47 kl!) De max % 90 96 92 100 100 2.8 3.3 V Input Threshold Voltage (Ptn 4) (Zero Duty Cycle) (Maximum Duty Cycle) 0 - - - - - - - - - - _ ---'--------"----'-----'---._--'------' OSCILLATOR SECTION Frequency 25 fosc (CT = 0001 MF. RT Standard DeViation of 47 kill kHz . - - - - - - - - +-----+----+--+----+----1 Frequency~ 3.0 % 0.1 % (CT" 0001 MF. RT = 47 kill Frequency Change With Voltage (VCC = 7.0 V to 40 V. TA C 25"C) - -- -- ------+---+ Frequency Change with Temperature ,;fos c(.1T) (dTA ~ Tlow to Thigh) (CT ~ 0.Q1 "F, RT ~ 12 k!l) % 12 _ _ _ _. _ . _ _ . _ _ _ _ _ _ ' - -_ _ _ _ _ _ ~ __ ~_~ _ _ _ _ L_ _ __ ' TOTAL DEVICE Standby Supply C~r;;;t I - - . - --- - ----.-----------------r----,------~----, - rnA lec (Pm 6 at Vref. all other mputs and outputs open) (Vee - 15 VI (Vee = 40 V) --- - -------- --- - 5.5 7.0 ------------ --~------~~--_4-- 7.0 Average Supply Current 10 15 rnA (VIP,n 4] ~ 2 a V. CT ~ 0 001, RT ~ 47 kll) See F'gure 11 --- -- ---- - - - - - - - - - • Standard deViation IS ------~~~==~=-~---~--~ a measure of the statistical distribution about the mean as dertved from the formula. II - N r (X n - xl2 n = 1 N - 1 MOTOROLA LINEAR/INTERFACE DEVICES 3-189 II .. MC34060, MC35060 FIGURE 4 - OPEN LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY FIGURE 3 - OSCILLATOR FREQUENCY versus TIMING RESISTANCE r JOOk -+-+ --+-----+-100k +~ 'gJ VCC r=-::------=t-t-::+_ ~OOOl~F .i:ct~ I-- -+-<- -t--+-----+--+-+--+< 1---+---- -=- ;--~~ k .;:,0,0' ~F ft"-sj;;;jcnW H + .. ~ff# f-::t t-++ + T+~. CT I-- 01 ~F ~ , . ~.i ~R 100 2k 10k 5k 20k 50k 1', ~ a " z ~ 7a ~ 60 _ 50 100. 200k SOak 1M 10 a I i VCC=15 V =0 V u ~ u 60 ~ I, ~ 0 CT-O 0Olll~ 0 I 1 Vee=15 V eT =0001 "'" ~ 40 z u 0 ~ f-t' 1 (1 0 0 I lk 140 160 180 1M 10k o o lOOk f-- f !-- f - "'" "~ 20 01 0 100 120 lOOk 10k RT =47 k ! i', I'll l00a.... "" "" '" "" "" 80 , 0 lk « I cf' ! 2 100 0 "- I I 4 "- 80 100 I 111111 i- V(pIN 41 "" ie 60 FIGURE 6 - PERCENT DUTY CYCLE versus DEAD·TIME CONTROL VOLTAGE FIGURE 5 - PERCENT DEAD·TlME versus OSCILLATOR FREQUENCY 61-- . I FREQUENCY IHzl RT, TIMING RESISTANCE Illi 8 40 "'" AVOL a a a 0 10 20 VCC = 15V 0 .lVO = 3 V RL=2kll - . 20 Or---... 0 1. 0 fJ- F ... 3O 'k ~+-t1 -+ k '1 100 -'~'::fE: - ->---+ +< 10 20 "" ~ 30 35 DEAD-TIME CONTROL VOLTAGE IV) 10, OSCILLATOR FREOUENCY IHzl FIGURE 7 - EMITTER FOLLOWER CONFIGURATION OUTPUT·SATURATION VOLTAGE versus EMITTER CURRENT I T-- 9 '.--~- 8 - VCC = 15 V·I 7 -- . . . 6 5 4 /" ~ r-- ~I--- I-- 1- - I 3 u > 2 ,1 50 100 150 200 0.5'OL---'----:':50---'--"cfoo:-...J--,:,50~-'--;2!;;OO:-...L--:!250 250 'C, COLLECTOR CURRENT ImAI IE, EMITIER CURRENT ImAI MOTOROLA LINEAR/INTERFACE DEVICES 3-190 MC34060, MC35060 FIGURE 9 - STANDBY-SUPPLY CURRENT va'.u. SUPPLY VOLTAGE .0 .0 -- .0 .0 I .0 II .0 .0 0 / ./ II f- / o / 5.0 10 15 20 30 25 35 40 Vee. SUPPLY VOLTAGE IVI FIGURE 11 - DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT FIGURE 10- ERROR AMPLIFIER CHARACTERISTICS Vee = 15 Dead- Test { V ......_ _ _-, 150 n 2W Vee Time Feedback Inputs e RT eT Feedback Terminal (Pin 3) (+) -=- (-) (+) ) Error (-) -=- Output E Ref Out 50 kn Gnd Amplifier FIGURE 13 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM FIGURE 12 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM Output TranSistor Output Transistor MOTOROLA LINEAR/INTERFACE DEVICES 3-191 MC34060, MC35060 FIGURE 14 - Va • ERROR AMPLIFIER SENSING TECHNIQUES To OUlput Voltage of System Vref Amp To Output POSITIVE OUTPUT VOLTAGE NEGATIVE OUTPUT VOLTAGE R) Vo = Vref (1 + FIGURE 15 - Voltage of Vo System R;) DEAD-TIME CONTROL CIRCUIT FIGURE 16 - SOFT-START CIRCUIT Cs Output Output 1 0. 001 Max % On Time '''' 92 - ( ~OR-)) ).- R2 FIGURE 17 - SLAVING TWO OR MORE CONTROL CIRCUITS Vref Master Slave (Additional Cirellitsi MOTOROLA LINEAR/INTERFACE DEVICES 3-192 MC34060, MC35060 FIGURE 18 - STEP-DOWN CONVERTER WITH SOFTSTART AND OUTPUT CURRENT LIMITING 15o."H@2.o.A Vm ;;:8.0 to 4o.V -- TIP 32 Va ut ~ 5.o.V/ 1.o.A 47 4.7 k 10. o.i~1 1 '-------- 75 VCC , 47 k 1\ 2 1.o.M 50. 3 . 14 9 Ct-- Comp "I r 13 4.7 k ~~ MR85o. - 8 - Ef-7 Gnd t - - 12 Vref DT 10.J~ 4.7 k 150. 4.7 k 390. CT :1 T + MC34o.6o. + o.o.li:- RT 6 0.0.0.1 47 k T 0..1 MOTOROLA LINEAR/INTERFACE DEVICES 3-193 10.0.0. 6.3 V II • MC34060, MC35060 FIGURE 19 - STEP-UP CONVERTER 150pH@4.0A 8.0 to 26 V 20pH@' 1.0A .. MR850 -- You ~ 0------<) 28 V 05 A 22 k 10 ~ 0.05 ~t- Vcc , 9 2 C I--- 4.7 k 2.7 M 3 , 14 50/3 5V - 3.9 k 13 Camp '1 MC34060 , - t 12 300 8 Gnd I--- Vref OT 47k CT 4 TIP 111 T 7 I 470 35 V 01 RT 6 470 00:1 47 k 390 TEST T ~- RESULTS ~_~V~-0-.-'4-o-Yo~--j CONOITIONS 10 ~ 0.5 A Line Regulation Yin ~ 8.0 V to 26 V. Load Regulation Yin ~ Output Ripple Vin~12V.IOoO.5A 12 V. 10010 mA to 0.5 A 5.0 mV ,. ~--------+---------- Yin 0 12 V. 10 0 0 5 A Efficiency • Optional CirCUit 75% to minimize output ripple MOTOROLA LINEAR/INTERFACE DEVICES 3-194 0.18% 24mVp-pPAR.D ~. I' 470 35 V MC34060, MC35060 FIGURE 20 - STEP-UP/OOWN VOLTAGE INVERTING CONVERTER WITH SOFT-START AND CURRENT LIMITING 8.0 to 40 V TIP 32C ....... MR851 47 -- Vou 20"H' @1.0A -15 VI 0.2 SA 30 k 10 ~ 0.01 ~t- 2 7.5 k 1.0M 3 + C~ - Camp 50/5 OV 14 0.01-* 13 ,.23- MC34060 11150"H ~ 330/16V @2.0A + + E~ - Gnd Vref 10 k °T + j(------- 4.7 k CT 5 10/16V 4 47 k 75 VCC + ~ RT 6 0.001 47 k 820 3.3 k 1.0 TEST c--_._. Line Regulation Load RegulatIon Output Ripple Short Circuit Current Efficiency CONDITIONS =8.0 V to 40 V. la =250 rnA Vin = 12 V. la = 1 rnA to 250 rnA -Vin = 12 V. la = 250 rnA Vin = 12 V. RL =0.1 !l Vin = 12 V. la = 250 rnA Vin RESULTS 52 rnV 0.35% 47 rnV 0.32% 10 rnV p.p. PAR.a. 330 rnA 86% ·Optional circuit to mimmize output ripple. MOTOROLA LINEAR/INTERFACE DEVICES 3-195 . ~ 33 0/16 V + • I 3 each 0.0047 UL/CSA ~ FIGURE 21 - 33 WAn OFF-LINE FlYBACK CONVERTER WITH SOFT-START AND PRIMARY POWER LIMITING lN4003 31200 Vac lN5824 Ll 5.0V/3.0A lN4934 1210.75 A T ~. lN4001 47125 V Common 22 k 10/35 V 10 Vce lN4742T 1801200 V :s: ~ 0 -I 0 33 k 0.01 :ll 0 r ~ r Z ~ (Q 0) ~I :ll ::::: 3 I 115 Vac ±20% 7.5 k -12/0.75 A C I9 Tl Camp J+ T2 Core: J8 13 Coilcratt 11-464-16, 0,025" gap in each leg ·Optional R F.L Filter 12 8.2 k I z i Bobbin: Coilcralt 37-573 Vrel DT -I Windings: m ~ 200 :ll "~ (") m 0 m Coilcralt W2961 IMPS MC34060 Voutl Pout Primary, 2 each: ~ 47 75 turns #26 Awg Bifilar wound 1.5 k I Feedback: 15 turns #26 Awg I I 51.0 Secondary, 5,0 V: 6 turns #22 Awg Bifilar wound < (") lN4148 m 2.7 k en Secondary, 2 each: 14 turns #24 Awg Bitilar wound L1 TEST CONDITIONS RESULTS Line Regulation 5.0 V Vin 0 95 to 135 Vac, 10 0 3.0 A 20mV 0.40% line Regulation ±12 V Vin 0 95 to 135 Vac, 10 52 mV 0.26% 0 ±0.75 A Load Regulation 5.0 V Vin 0 115 Vac, 10 0 1.0 to 4.0 A 476 mV 9.5% Load Regulation ±12 V Vin 0 115 Vac, 10 0 ±0.4 to ±D.9 A 300 mV 2.5% Output Ripple 5.0 V Vin 0 115 Vac, 10 0 3.0 A 45 mV POp P.A.R.D. Output Ripple ±12 V Vin 0 115 Vac, 10 = ±0.75 A 75 mV Pop PAR.D. Efficiency Vin 0 115 Vac, 105.0 V 0 3.0 A 10±12 o ±0.75A 74% ~ .m Coilcralt Z7156, 15,.H @ 5.0 A L2, L3 Coilcratt Z7157, 25,.H @ 1.0 A ~en c en c ® MC34060A MC35060A MC33060A MOTOROLA PRECISION SWITCH MODE PULSE WIDTH MODULATION CONTROL CIRCUITS PRECISION SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS The MC35060A/MC34060A/MC33060A are low cost fixed frequency, pulse width modulation control circuits designed primarily for single ended SWITCH MODE power supply control. These devices feature: The MC34060A is specified over the commercial operating range of 0' to + 70'C. The MC35060A is specified over the full military range of - 55' to + 125'C. The MC33060A is specified over the vehicular temperature range of -40' to +85'C. SILICON MONOLITHIC INTEGRATED CIRCUITS • Complete Pulse Width Modulation Control Circuitry • On-Chip Oscillator With Master or Slave Operation • On-Chip Error Amplifiers • On-Chip 5.0 Volt Reference, 1.5% Accuracy P SUFFIX • Adjustable Dead Time Control PLASTIC PACKAGE CASE 646-06 • Uncommitted Output Transistor Rated to 500 mA Source or Sink • Undervoltage Lockout • Available in Surface Mount Package D SUFFIX PIN CONNECTIONS Non-Inv Non-Inv 14 Input Input Inv Input PLASTIC PACKAGE CASE 751 A-02 SO-14 Inv 13 Input 2 Compen/PWM Comp Input Vret Dead-Time Control N.C. CT VCC RT C LSUFFIX CERAMIC PACKAGE CASE 632-08 ORDERING INFORMATION Ground 7 (top viewl Device Temperature Range Package MC35060AL - 55' to + 125'C Ceramic DIP MC34060AD MC34060AP MC33060AD MC33060AP MOTOROLA LINEAR/INTERFACE DEVICES 3-197 0' to + 70'C -40'to +85'C SO-14 Plastic DIP Plastic DIP SO-14 Plastic DIP Plastic DIP II • MC34060A, MC35060A, MC33060A FIGURE 1 - BLOCK OIAGRAM 6 12 Reference Regulator Oscillator 5 Ref Out RT Dead-Time 10 L-----4-4-~>- __-OVCC 4 Dead-Time Control J -0.7 mA l 13 Error Amp 1 Feedback P.W.M. Comparator Input 6'4 Error Amp 2 Gnd Ql ~ 4.7 V 8 -= FIGURE 2 - TIMING DIAGRAM Dead-Time Control . / I Output Ql, Emitter Description The MC35060Al34060A/33060A is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure '.) An internallinear sawtooth oscillator is frequency-programmable by two external components, RT and CT. The approximate oscillator frequency is determined by: f Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor CT to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.) = __'_.2_ osc - RT. CT For more information refer to Figure 3. MOTOROLA LINEAR/INTERFACE DEVICES 3-198 MC34060A, MC35060A, MC33060A The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle of 96%. Additional dead time may be imposed on the output by setting the dead timecontrol input to a fixed voltage, ranging between 0 to 3.3 V. The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from - 0.3 V to (VCC - 2.0 Vl. and may be used to sense power supply output voltage and current. The error-amplifer outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop. The MC35060Al34060Al33060A has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of ± 1.5% with a typical thermal drift of less than 50 mV over an operating temperature range of 0° to + 70'C. MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted) Rating Symbol MC35060A MC34060A MC33060A Unit VCC 42 42 42 V Collector Output Voltage Vc 42 42 42 V Collector Output Current (Note 1) IC 500 500 500 mA Power Supply Voltage Amplilier Input Voltage Range VIR Power Dissipation PD (II TA ...., 45°C Operating Junction Temperature -0.3 to +42 -0.3 to +42 -0.3 to +42 1000 1000 1000 150 125 - 125 - -55 to +125 o to 70 -40 to +85 'c TJ Plastic Package Ceramic Package Operating Ambient Temperature Range TA Tstg Storage Temperature Range V mW 'c 'c - 55 to + 125 -55 to + 125 -65 to + 150 Plastic Package Ceramic Package Note 1; Maximum thermal limits must be observed. THERMAL CHARACTERISTICS Symbol Package P Suffix Plastic Package o Suffix Plastic Package Unit ROJA 100 80 120 'CIW TA 50 45 45 'c L Suffix Ceramic Characteristic Thermal Resistance, Junction to Ambient Derating Ambient Temper.::!ure RECOMMENDED OPERATING CONDITIONS MC35060A/MC34060A/MC33060A Symbol Min Typ Max Unit VCC 7.0 15 40 V Collector Output Voltage Vc - 30 40 V Collector Output Current IC - - 200 mA Condition/Value Power Supply Voltage Amplilier Input Voltage Vin Current Into Feedback Terminal lIb -0.3 - VCC- 2 V - 0.3 rnA 10 mA Reference Output Current Irel - Timing Resistor RT 1.8 47 500 kll Timing Capacitor CT 0.0047 0.001 10 25 200 "F kHz - 5.3 V Oscillator Frequency PWM Input Voltage fose (Pins 3 and 4) - 1.0 -0.3 MOTOROLA LINEAR/INTERFACE DEVICES 3-199 II .. MC34060A, MC35060A, MC33060A ELECTRICAL CHARACTERISTICS (VCC ~ 15 V, CT ~ 0.01 /LF, RT ~ 12 kll unless otherwise noted. For typical values TA = 25°C, for min/max values TA is the operating ambient temperature range that applies unless otherwise noted. Characteristic REFERENCE SECTION Reference Voltage (10 ~ 1.0 rnA, TA ~ 25°C) (10 ~ 1.0 rnA) V Vrel 4.925 4.9 5.0 - 5.075 5.1 Line Regulation (VCC ~ 7.0 V to 40 V, 10 ~ 1.0 rnA) Regline - 2.0 25 mV Load Regulation (10 ~ 1.0 rnA to 10 rnA) Regload - 2.0 15 mV 15 35 75 rnA IC(oll) - 2.0 lOa /LA IE(off) - - -- 1.1 1.5 - 1.5 2.5 - 100 lOa 200 200 - 40 40 lOa lOa Short~Circuit (Vrel ~ Output Current ISC a V) OUTPUT SECTION Collector Off-State Current (VCC ~ 40 V, VCE ~ 40 V) Emitter Off-State Current (VCC ~ 40 V, Vc 40 V, VE ~ lOa /LA a V) Collector-Emitter Saturation Volta§e (Note 2) Common-Emitter (VE = a V, IC = 200 rnA) Emitter-Follower (VC = 15 V, IE 200 mAl Vsat(CI VsatiEI Output Voltage Rise Time (T A 25 CI Common-Emitter (See Figure 12) Emitter·Foliower (See Figure 131 tr Output Voltage Fall Time IT A 25 CI Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13) tf V ns - ns Characteristic ERROR AMPLIFIER SECTIONS Input Offset Voltage (VOl Pin 3] ~ 2.5 VI VIO - 2.0 10 mV Input Offset Current (VqPin 3] = 2.5 VI 110 - 5.0 250 nA Input Bias Current 2.5 VI (VOIPin 3] liB - Input Common-Mode Voltage Range (VCC " 40 V) VICR Open Loop Voltage Gain (.lVO ~ 3.0 V, Vo 0.5 to 3.5 V, RL 0 a to VCC Inverting Input Voltage Range = 0.1 2.0 /LA - - V 2.0 VIR(lNV) 0.3 to VCC 2.0 -- - V AVOL 70 95 - dB 2.0 K!l) Note 2: Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible. MOTOROLA LINEAR/INTERFACE DEVICES 3-200 MC34060A, MC35060A, MC33060A ELECTRICAL CHARACTERISTICS (Vcc = 15 V, CT = 0.01 I'F, RT = 12 kll unless otherwise noted. For typical values TA:::: 25°C, for minimax values TA is the operating ambient temperature range that applies unless otherwise noted.) Characteristic ERROR AMPLIFIER SECTIONS (Continued) Unity-Gain Crossover Frequency (Va = 0.5 to 3.5 V, RL = 2.0 kl!) Ic - 600 - kHz Phase Margin at Unity-Gain (Va = 0.5 to 3.5 V, RL ~ 2.0 I;l!) wm - 65 - deg. Common-Mode Rejection Ratio o V to 38 V) (VCC - 40 V, Vin CMRR 65 90 - dB Power Supply Rejection Ratio (t-VCC = 33 V, Va ~ 2.5 V, RL ~ 2.0 kll) PSRR - 100 - dB Output Sink Current (VOIPin 3] ~ 0.7 V) 10 0.3 0.7 - mA Output Source Current (VOIPin 3] 3.5 V) 10+ -2.0 -4.0 - mA 0 PWM COMPARATOR SECTION (Test circuit Figure 11) Input Threshold Voltage (Zero Duty Cycle) VTH - 3.5 4.5 Input Sink Current (VIPin 31 ~ 0.7 V) 11- 0.3 0.7 - - -1.0 -10 96 92 100 - 2.8 3.3 0 - - V mA DEAD-TIME CONTROL SECTION (Test CirCUit Figure 11) Input Bias Current (Pin 4) (Vin ~ 0 to 5.25 V) IIB(DT) Maximum Output Duty Cycle (Vin ~ 0 V, CT ~ 0.01 I'F, RT ~ 12 kl!) (Vin ~ 0 V, CT ~ 0.001 I'F, RT ~ 47 kl!) DC max % 90 Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) I'A V VTH OSCILLATOR SECTION Frequency (CT ~ 0.01 I'F, RT ~ 12 kll) TA ~ 25°C TA ~ Tlow to Thigh (CT ~ 0.001 I'F, RT ~ 47 kl!) kHz fasc 9.7 9.5 10.5 11.3 12.5 - - 25 - (rios e - 1.5 - % Frequency Change with Voltage (VCC = 7.0 V to 40 V) ~fosc(~V) - 0.5 2.0 % Frequency Change with Temperature (t.TA = Tlow to Thigh) (CT ~ 0.01 I'F, RT ~ 12 kl!) ~losc(~T) - 4.0 - - - Standard Deviation of Frequency~ (CT ~ 0.001 I'F, RT ~ 47 kll) % UNDERVOLTAGE LOCKOUT SECTION Turn-On Threshold (VCC increasing, Irel ~ 1.0 mAl Hysteresis TOTAL DEVICE Standby Supply Current mA ICC (Pin 6 at Vref. all other inputs and outputs open) (VCC (VCC ~ 15 V) = 40 V) Average Supply Current (VIPin 4] ~ 2.0 V, CT = 0.001 I'F, RT ~ 47 kll). See Figure 11. IS - 5.5 7.0 10 15 - 7.0 - *Standard deviation is a measure of the statistical distribution about thp. mean as derived from the formula; fT - N l IX n - xl 2 n - 1 N - 1 MOTOROLA LINEAR/INTERFACE DEVICES 3-201 mA II • MC34060A, MC35060A, MC33060A FIGURE 4 - FIGURE 3 - OSCILLATOR FREQUENCY versus TIMING RESISTANCE 500K 120 ~ lOOK iD_~ 15 V VCC O.OOII'F 11 0 0 ::0 0 ~ VCC~15V- .lVO ~ 3.0VRL ~ 2.0kH_ .......... 10K ~ "'" 0 5l o 20 t3 40 ~ AVOL 0 0 O.OII'F CT ~ I 0 1001--- G ~ OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY e (!) 60 c b - 80 ~ 100 if 120~ t--. "'" " 0 £> O.II'F 0 1.0K 500 1.0K 2.0K 5.0K 10K 20K 50K lOOK 200K RT, TIMING RESISTANCE lUI 500K 0 0 1.0 1.0M 10 100 10 0 0 8 0 6 4 2 0 0 500 lOOK fO, OSCILLATOR FREQUENCY 1HZ! 1.0K 500K 10K 1. 7 1.6 1.5 1.4 - ..-- /' - --r-- - - - - l-,:-:- ----- -- ~ 1. 8 0 ~ 1. 6 ._- f---- 3.0 3.5 o > z o -./ /" ,,/ 1. 4 ~ 1. 2 ::0 ~ 1. 0 ~ o. ~ 1. J Ei '-" 2.0 1.0 VOl DEAD·TIME CONTROL VOLTAGE IVI 2. 0 1.8 z a "- FIGURE 8 - COMMON EMITTER CONFIGURATION OUTPUT SATURATION VOLTAGE versus COLLECTOR CURRENT 1.9 f3 §? '" ~ o o FIGURE 7 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT > i'... 0 II II f--f--- ~ O.OII'F .0 ~ ~ 0 2. 0 ~ "'" CT ~ O.OOII'F RT ~ 47k ,/ 0 0 "" v~c~115) I 0 0.001 "F CT lOOK 40~ 1 160 oS 180 1.0M FIGURE 6 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE FIGURE 5 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY ~ 10K 1.0K fO, FREQUENCY IHzl '" Ei > 1. 2 O. :~ .....- ......... ....... .....- -. 0,4 1 100 200 300 IE, EMITTER CURRENT ImAI 400 500 ......... V 200 100 300 IC, COLLECTOR CURRENT ImAI MOTOROLA LINEAR/INTERFACE DEVICES 3-202 400 500 MC34060A, MC35060A, MC33060A FIGURE 10 - UNDERVOLTAGE LOCKOUT THRESHOLDS versus REFERENCE LOAD CURRENT FIGURE 9 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE « ..sr- i'3 ~ ~ 13 10 2': 60 9.0 o ~ 8.0 7.0 If 6.0 5.0 2.0 1.0 o o :0 § g I I 1 4.0 3.0 / 55 r- Turn O!---, 5,0 -----;~ '"'" ~ ~ V- o ~ V- 4.5 ------- II z / :0 5.0 FIGURE 11 - 10 15 20 25 VCC, SUPPLY VOLTAGE (VI 30 35 40 ! 4,0 o 5.0 10 20 15 25 30 35 IL' REFERENCE LOAD CURRENT (rnA) FIGURE 12 - ERROR AMPLIFIER CHARACTERISTICS Test Inputs {V-- DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT 150 II 2W Dead- Vee Time Feedback e RT eT Feedback Terminal {Pin 31 Output (') {-I ) Error {'I {·I Ref Out 50 kll Gnd Amplifier FIGURE 13 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM FIGURE 14 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM Output Transistor Output TranSistor MOTOROLA LINEAR/INTERFACE DEVICES 3-203 40 • MC34060A, MC35060A, MC33060A FIGURE 15 - Vo ERROR AMPLIFIER SENSING TECHNIQUES To Output Vref Voltage of System Vref --+--0----1 To Output POSITIVE OUTPUT VOLTAGE NEGATIVE OUTPUT VOLTAGE Va FIGURE 16 - DEAD·TIME CONTROL CIRCUIT Voltage of System FIGURE 18 - SLAVING TWO OR MORE CONTROL CIRCUITS FIGURE 17 - SOFT·START CIRCUIT Vref Cs Output Master Slave (Additional Circuits) Max%OnTlme=92- ( '60 ) Rl ,.R2 MOTOROLA LINEAR/INTERFACE DEVICES 3-204 MC34060A, MC35060A, MC33060A FIGURE 19 - STEP-DOWN CONVERTER WITH SOFTSTART AND OUTPUT CURRENT LIMITING Vm 0 8.0 to 40 V V out TIP 32 ~--~-----------+------4r----~~ ~~--~ 5.0 VI 1.0 A 47 4.7 k 10 001 ~(-- 1 "----- Vee , 75 2 10M L-~---r----~eomp MC34060A 14 o 0ll- ~ II. MR850 'I' 1000 63V 8 13 E7 Gnd- 47k 10 16 V 4.7 k 4 47k 150 51 6 OOOi 47 k 390 T 01 CONDITIONS TEST Load Regulation Vrn = 12 V, 10 0 1.0 rnA to lOA Output Ripple Vrn = 12 V, 10 0 1.0 A 75 rnV POp P A.R.D 0.' Jl 1.6 A lOA 73°/0 Short CirCUit Current Vrn = 12 V, RL Efficiency V,n c 12 V, 10 =0 0 1.0 A 25 rnV 0.5°/0 Vm 0 8 0 V to 40 V, 10 RESULTS Line Regulation 3.0 rnV MOTOROLA LINEAR/INTERFACE DEVICES 3-205 0.06% II MC34060A, MC35060A, MC33060A FIGURE 20 - STEP-UP CONVERTER 15DpH@4.DA 22 k 10. ~+ VCC t-'V'.f'v-+----j 3 '----+----"-1 C Comp 14 MC34060A t------r--~ + 13 r-- 9 r-- 470./35 V 30.0. 8 E f---....--'V'vv---Th.TIP 111 - 12 7 Gnd r-- '-~--' Vre! DT CT ,:16 I ,- t--H--' 0..1 RT 4.7 k 4 ~'VV'\r-"ODD1 470. 47 k 390. T ,------ -~ TEST CONDITIONS line Regulation Vin 08.0. V to 26 V. 10 0 0..5 A Load Regulation Vi n 0 1 2 V. 10 Output Ripple Vin 0 12 V. 10 0 0..5 A Efficiency Vin 0 12 V. 10 0 0 1.0. mA to 0. 5 A RESULTS 4DmV 0..14% 5.0. mV 0..18% 24 mV p-p PAR.D 0..5 A MOTOROLA LINEAR/INTERFACE DEVICES 3-206 75% r- 470./35 V MC34060A, MC35060A, MC33060A FIGURE 21 - STEP-UP/DOWN VOLTAGE INVERTING CONVERTER WITH SOFT-8TART AND CURRENT UMITING 8.0 to 40 V riP 32e ... MR851 ~ 47 -- You 2OI'H' @ 1.QA -15 VI 0.2 5A 30 k 10 ~ °i~l 47 k 1\ 2 7.5 k 1.0M 3 + 75 Vee + e~ Comp 50/5 OV 14 0.01 ;:h 13 ;~ 330/16 V E~ ~ Vref Gnd Dr Cr 5 10/16V 4 3.3 k 15O 2.0 l'HA - 10k 47 k i@ MC34060A + r2- Rr 6 +j{-- 0.001 4.7 k 47 k 820 1.0 TEST CONDITIONS Line Regulation Yin ~ 8.0 V to 40 V. 10 = 250 mA Load Regulation Yin ~ 12 V. 10 Output Ripple Yin ~ 12 V.IO~ 250 mA ~ 1 mA to 250 mA Short Circuit Current Yin ~ 12 V. RL ~ 0.1 Yin ~ 12 v. 16 Efficiency ~ n RESULTS 52 mV 0.35% 47 mV 0.32% 10 mV p.p. PAR.D. 330 mA 250 mA * Optional circuit to minimize output ripple. MOTOROLA LINEAR/INTERFACE DEVICES 3-207 86% . ~~ 33 0/16V + II I 3 each 0.0047 UL/CSA s: FIGURE 22 - 33 WATT OFF-LINE FLYBACK CONVERTER WITH SOFT-START AND PRIMARY POWER LIMITING lN4003 13~J lN5824 Ll lN4934 ", I lN4~01 I 47125 V 12/0.75A I~' Common 22 k 10/35 V 10 T s: 0 -I 0 ::0 0 r » r Z VCC 1801200 V t '"'' 2.2 M ~ 75 k T1 ~ Camp 115 Vae ±20% CAl '" 0 00 _18 in each leg 12 Gnd 8.2 k m Bobbin: Coileralt 37-573 Windings: 6 ::0 :> 200 I » (") :> 47 Primary, 2 each: 75 turns #26 Awg Bifilar wound Tr 1.5k m < 17 RT .." m T2 Core: Coileralt 11-464-16, 0,025" gap "Optional R.F L Filter Z -I 0 Coileralt W2961 IMPS MC34060A :::, Feedback: 15 turns #26 Awg 7k ~ 11 k I I ~10 Secondary, 5_0 V: 6 turns #22 Awg Bifilar wound (") m lN4148 en Secondary, 2 each: 14 turns #24 Awg Bililar wound 2.7 k L1 CONDITIONS TEST Line Regulation 5.0 V -- Line Regulation ±12 V -- Load Regulation 5.0 V Load Regulation ±12 V Output Ripple 5.0 V Output Ripple ±12 V Efficiency i ~ s: n w U'I e0) ~ s: Cold m » ::0 -12/0.75 A C I9 lN4742 1.0 A T 5.0 V/3.0 A =95 to 135 Vae, 10 =3.0 A Vin = 95 to 135 Vae, 10 =:to.75 A Vin = 115 Vae, 10 = 1.0 to 4.0 A Vin = 115 Vae, 10 = ±OA to ±0.9 A Vin = 115 Vae, 10 =3.0 A Vin = 115 Vae, 10 =±0.75 A Vin = 115 Vae, 10 5.0 V = 3.0 A 10 ±12 = ±0.75 A Vin RESULTS 20 mV 0.40% 52 mV 0.26% 476 mV 9.5% 300 mV 2.5% 45 mV Pop PAR.D. 75 mV POp PAR.D. 74% Coileralt Z7156, 15/lH @ 5,0 A L2, L3 Coileralt Z7157, 25/lH @ 1.0 A o w e ~ ® MC34061 MC34061A MOTOROLA Advance Information THREE-TERMINAL PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT THREE-TERMINAL OVERVOLTAGE "CROWBAR" SENSING CIRCUIT The MC34061.A overvoltage protection (OVP) circuit, in combination with two external programming resistors and a "crowbar" SCR, protects sensitive electronic circuitry from overvoltage damage. It senses an overvoltage condition and quickly "crowbars," or short circuits, the supply. An external capacitor may be used to program a minimum overvoltage duration before tripping, thus providing noise immunity. This three-terminal circuit provides a cost-effective means of protecting either positive or negative power supplies. The unique design of the MC34061.A eliminates trip voltage and temperature drift errors due to SCR gate variations. The basic MC34061.A device offers a ± 2% tolerance on the sense trip voltage. The A-suffix device has a ± 1% sense trip voltage specification and other key parameters have tightened limits. The device is available in a low-cost plastic package and features: age and features: SILICON MONOLITHIC INTEGRATED CIRCUIT PSUFFIX PLASTIC PACKAGE CASE 29-04 " • Unique Three-Terminal Design 3 • SeR Gate Drive Output of 200 mA • Sense Voltage of 2.5 V ± 1% or ± 2% Pin 1. VCC 2. Drive Output 3. Sense • Hysteresis of 250 mV • Wide Supply Range: 4.0 V"" Vee"" 41 V MAXIMUM RATINGS Rating Operating Voltage Sense Voltage Drive Output Current Operating Ambient Temperature Range Operating Junction Temperature Storage Temperature Range Symbol Value Unit VCC-VDRV 40 Vdc VSense 40 Vdc IDRV Internally Limited mA o to °c °c °c TA +70 TJ 150 Tstg -65 to +150 ORDERING INFORMATION FUNCTIONAL BLOCK DIAGRAM r-------------, r------.--------.--+----ovcc Sense 0--..;----+--1 3 Drive L...---.....- - - -..........JL---oOutput L _____________ ...J 2 (DRV) This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-209 • II MC34061, MC34061A ELECTRICAL CHARACTERISTICS (VCC - VDRV = 50 V' TA = TI ow to Th'IIAIh (see Note 11 unless otherwise specified) MC34061A MC34061 Symbol Min Operating Voltage Range Characteristic VCC-VDRV 3.0 Sense Trip Voltage TA = 25'C Tlow to Thiah (Nate 1) VSense Line Regulation, VSense (3.0"" VCC-VDRV "" 40 V) TA = 25'C Tlaw to Thiah (Note 1) Regline Input Bias Current, Sense Pin At Trip Point (Note 2) After Trip (VSense = 3.0 V) liB IDRV(on) Drive Output Current, OFF State VCC - VDRV = 5.0 V 3.0 V "" VCC-VDRV "" 40 V IDRV(off) Drive Output Current Slew Rate TA = 25'C Drive Output VCC Transient Rejection VCC-VDRV = 0 V to 15 V at dV/dt = 200 V/p.s; VSense = 0 V; TA = 25'C Propagation Delay Ti me (TA = 25'C) 500 mV Overdrive Typ Max Unit 3.0 - 40 Vdc 2.5 2.5 2.525 2.55 2.45 2.4 2.5 2.5 2.55 2.6 %N VH Drive Output Current, ON State TJ = 25'C Tlow to Thigh (Note 1) Min 40 - Vdc 2.475 2.45 Hysteresis Voltage, Sense Pin Max Typ - 0.001 0.001 0.005 0.01 - 0.3 0.9 1.0 3.0 - 250 - - 0.001 0.001 0.01 0.02 0.3 0.9 2.0 6.0 250 - pA - mV mA 130 90 200 - 300 350 130 90 200 - 300 350 0.2 0.2 0.6 0.6 1.0 1.5 0.2 0.2 0.6 0.6 1.0 1.5 di/dt - 2.0 - - 2.0 - A/p.s .l.IDRV(trans) - 1.0 - - 1.0 - mA (Peak) tpLH - 500 - - 500 - ns mA NOTES: (1) Tlow to Thigh = Q'C to 7Q'C (2) This specification is an engineering estimate based on design parameters, and is not tested. FIGURE 1 - STANDARD TEST CIRCUIT VSense Vee- VDRV (3.0 V to 40 V) Vee MC34061,A Drive 2 Output 1--o--1lH IDRV * A 1.0 p.Ftantalum or 10 p.F electrolytic capacitor maybe necessarytocompensateforlead inductance when measuring Hysteresis Voltage. When this capacitor is used, it should be placed as close a~ possible to the device package. MOTOROLA LINEAR/INTERFACE DEVICES 3·210 MC34061, MC34061A TYPICAL CHARACTERISTICS FIGURE 3 - SENSE TRIP VOLTAGE versus TEMPERATURE FIGURE 2 - DRIVE CURRENT versus SENSE VOLTAGE 1000 2.510 ~ ~ 100 125°e r=TA TA '"~ -55°e ~ 10 ~ '"> ~ '"'">- I-- TA - 25°e § Vee VORV o. 1 2.1 2.2 2.3 2.4 VS ense . SENSE VOLTAGE IV) ./ / r--.... // 2.490 V ~ 2.480 5.0 V ~ 2.6 2.5 FIGURE 4 - OFF STATE DRIVE CURRENT versus SUPPLY VOLTAGE ., .§. 1.0 0.8 ~ '" ~ -75 2.7 -50 a 25 50 75 TA. AMBIENT TEMPERATURE 1°C) -25 100 125 FIGURE 5 - INPUT BIAS CURRENT versus SENSE VOLTAGE - ., TA 12::s. TA 25°e 10 3, z 0: ~ 1.0 ~5oe - 0.6 13 ~ I 2.495 2.475 2.0 ~ 2.500 a'i cn~ 2.485 1.0 ~ - '" ~ 2.505 ! >=> • 2.515 ~ ~ 0.4 a; i5 w &; c 0.2 ~ ffi 0 j o Vee VORV = 5.0 V 10 20 Vee. SUPPLY VOLTAGE IV) 30 40 2.0 FIGURE 6 - DELAY CAPACITANCE versus DELAY TIME 2.1 2.2 2.4 2.5 2.3 VS ense• SENSE VOLTAGE IV) 2.6 in w u 1.0 E3 60 / ~ O. 1 ~ '"' => 40 'z"' c ::. 0.01 ~c- 20 is 0.001 0.001 '" ~ 0.01 0.1 'OLY. OElAY TIME Im·s) 1.0 10 V 0 o / V / / 10 20 30 Vee. POWER SUPPLY VOLTAGE IVI MOTOROLA LINEAR/INTERFACE DEVICES 3-211 / / '"t;; ~ 5 V !i!! !? 80 z ~ : 2.7 FIGURE 7 - MINIMUM RG versus SUPPLY VOLTAGE 100 '3, t=: 40 MC34061, MC34061A APPLICATIONS INFORMATION FIGURE B - BLOCK DIAGRAM AND TYPICAL APPLICATION • r--------------- I Rl + Sense Power 3 Supply - I I !I I I I ~ R2 ~';~M~'A +ff I , Vout Vee I I ¢V !I I Drive Output I _______________ JI R, + R2 Vtrip = -R-,- (2.5 VI Gnd BASIC CIRCUIT CONFIGURATION The MC34061,A consists of a 2.5 V shunt reference, a comparator with 250 mV hysteresis and a power output transistor. In the typical application of Figure 8, the voltage at the inverting input of the comparator is RVCC RR2 , , + 2 while the voltage at the non-inverting input is VCC - 2.5 V. Thus, given (Rl, R2) voltage divider, the comparator's output state is a function of VCC. The following table applies: Drive Output Vee R, + R2 <--- (2.5 V) OFF State R1 + R2 >--(2.5VI R, ON State R, By making the proper choice of R, and R2, a level detector for any voltage within the device's operating voltage range may be realized. A few precautions are necessary, however. Note that even in the OFF State, a minimum drive output current, equal to the sum of the reference and comparator supply currents, is available. Therefore, a means of shunting this current away from the driven circuit is necessary. In the example of Figure 8, a 100 n resistor (RGKI is used, producing a voltage at the Drive Output of approximately 60 mV in the OFF State. In the ON State the MC34061,A becomes a current source capable of saturating to within 2.0 V of VCC. Therefore, when driving a high impedance load, it may be desirable to clamp the drive output to at least 3.0 V below VCC (VCC - VDRV ;;. 3.0 VI if it is important that the voltage reference continue to regulate. MOTOROLA LINEAR/INTERFACE DEVICES 3-212 MC34061, MC34061A FIGURE 9 - OVERVOLTAGE PROTECTION WITH TIME DELAY CDLy l 1 Rl + Sense Power Supply 3 - I VCC MC34061,A I Vout I I Drive ~r Output 2 RG RGK R2 IGnd PROGRAMMING A MINIMUM OVERVOLTAGE DURATION BEFORE TRIPPING A time delay may be programmed into the operation of the MC34061,A to provide noise immunity. This time delay is implemented by adding a capacitor (COLy) between the VCC and Sense leads as shown in Figure 9. The time delay obtained by this technique is a function of R1, R2 and COLY as well as the nominal supply voltage, VCC(nom), and the overvoltage supply voltage, VCC. The nominal supply voltage determines the initial charge on COLY, while the magnitude of the overvoltage condition determines the rate at which COLY charges to the reference voltage, Vref = 2.5 V. Thus, for a given R1, R2 and COLY, the time delay is reduced as the overvoltage is increased. The expression for the time delay, TOL Y, is: tOL Y = Figure 6 shows the COLY values versus delay time (tOLY) for a typical 5.0 V power supply protection circuit. The figure also shows the change in tOLY with variations in the overvoltage supply, VCC. In this example R, = '.8 k, R2 = 2.7 k, VCC(nom) = 5.0 V, and Vtrip = 6.25 V. THE NEED FOR A GATE RESISTOR For power supplies above 11 V, a gate resistor, RG, in series with the SCR gate is recommended to limit the power dissipated by the IC to approximately 2.0 W. This resistor will protect the MC34061,A in the event of a defective or missing SCR, while allowing the maximum drive output current to the gate of the SCR. Figure 7 shows the minimum recommended gate resistor, RG(min), versus the power supply voltage, VCC. A larger value of RG may be used if less drive current is needed. R1 R2 CpLY In [VCC - VCC(nOml] R1 + R2 VCC - Vtrip where: R1 + R2 Vtrip = -R-,- (2.5 V) MOTOROLA LINEAR/INTERFACE DEVICES 3-213 .. MC34061, MC34061A CROWBAR SCR CONSIDERATIONS Referring to Figure 10, it can be se!;n that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capac ita nee consists of the power supply output capacitors, the loa'd's decoupling capacitors, and in the case of Figure lOA. the supply's input filter capacitors. This surge current is illustrated in Figure 11, and can cause SCR failure or degradation by anyone of three mechanisms: di/dt, absolute peak surge, or 12 t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which infl uence the SCR's di/dt and surge capabilities simplifies this task. gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities -depending on the severity of the occasion. The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving 13 to 5 times IGT) the SCR gate with a fast <1.0 "s rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 AIRMS) rating might be 200 A/"s, assuming a gate current of five times IGT and < 1.0 "s rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCA. as shown in Figure 12. Of course, this reduces the cir.cuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt. 1. di/dt As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on FIGURE 10 - TYPICAL CROWBAR CIRCUIT CONFIGURATIONS 10A - SCR ACROSS INPUT OF REGULATOR 1-+-...- -...- - - - - - 0 10B - Vout SCR ACROSS OUTPUT OF REGULATOR \.)1........- - - - - <...- - - -...-0 *Needed if supply is not current limited MOTOROLA LINEAR/INTERFACE DEVICES 3-214 v out MC34061, MC34061 A FIGURE 11 - CROWBAR SCR SURGE CURRENT WAVEFORM -- - - - - - A WORD ABOUT FUSING Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure lOA. it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire! Ipk Current Limited Supply Voltage The usual nesign compromise then is to use a garden variety fuse 13AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure lOB. 2. Surge Current If the peak current and/orthe duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability olthe SCR is directly proportional to its die area. If the surge current cannot be reduced Iby adding series resistance - see Figure 12) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply. FIGURE 12 - ~ I RLead LLead ESR ~ ~ As an aid in selecting an SCR for crowbar use, the following selection guide is presented. ESL I~R ~ Output Cap L ( ( f CROWBAR SCR SELECTION GUIDE CIRCUIT ELEMENTS AFFECTING SCR SURGE AND di/dt ~ • In order to protect the SCR, the fuse would have to possess an 12 t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available. f To MC34061 , . ; DEVICE IRMS IFSM PACKAGE MCR67 Series MCR68 Senes 2N1842 Series 2N6400 Series 2N6504 Series 2N681 Series 2N2573 Series MCR69 Series MCR70 Series MCR71 Series 12A 12A 16A 16A 25 A 25 A 25 A 25A 35 A 55A 100A 100A 125A 160A 160A 200 A 260A 300 A 350A 550A Metal Stud TO-220 Plastic Metal Stud TO-220 Plastic TO-220 Plastic Metal Stud TO-3 Metal Can TO-220 Plastic Metal Stud Metal Stud I For a complete and detailed treatment of SeR and fuse selection refer to Motorola Application Note AN-789. R & L EMPIRICALLY DETERMINED! MOTOROLA LINEAR/INTERFACE DEVICES 3-215 • ® MC34062 MC3S062 MOTOROLA Advance Information PIN-PROGRAMMABLE OVERVOLTAGE "CROWBAR" SENSING CIRCUIT PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT The MC34062/35062 overvoltage protection (OVP)circuits require only an external "crowbar" SCR to protect sensitive electronic circuitry from overvoltage damage. They sense an overvoltage condition and quickly "crowbar", or short circuit. the supply. An on-chip, tapped resistor network allows the device to be programmed for trip voltages ranging from 3.5 to 40 V. Each of the five programming pins provides one standard overvoltage trip point for nominal power supply voltages of 5.0, 12, 15, 24 or 28 V. Ma ny other trip voltages maybe programmed by interconnecting and grounding various combinations of these programming pins. Tables are provided in the Applications Information which show connection schemes for 120 trip voltages. These circuits provide a cost-effective means of protecting either positive or negative power supplies. In addition, an external capacitor may be used to program a minimum overvoltage duration before tripping, thus providing noise immunity. The unique design of the MC34062/35062 eliminates voltage and temperature drift errors due to SCR gate variations. • Unique Pin-Programmable Trip Voltage from 3.5 to 40 V • One-Pin Programming for 5.0,12,15,24 and 28 V Power Supplies • SCR Gate Drive Output of 200 rnA • Built-In Hysteresis Voltage • Wide Supply Range 4.0 V,;; VCC';; 40 V SILICON MONOLITHIC INTEGRATED CIRCUIT P1 SUFFIX PLASTIC PACKAGE CASE 626-05 (MC34062 on·ly) Pins 4 thru VC C08 Drive Output 2 7 8 are used Sense FUNCTIONAL BLOCK DIAGRAM ~-------------------l I I I I I I I 1 I I 3 I I I 1 Drive I I Output 2 (DRV) 40--...;:-.... I : Nominal 2.72 k Power 8.24 k 70--+:-" I Ground Typical Supply Pin Trip r-V_o_lt_".=9_8+_N_u_m_b_e_r-+_Voltage 5.0 V 4 6.2 V 12 V 5 13.7 V 17.1 V 15 V 7 27.4 V 24 V 28 V 8 31.9 V I I 8 I I I (Top View) r---------J 60--+:-.. I Voltage, U SUFFIX CERAMIC PACKAGE CASE 693-02 :I I 5 Vtrip I 6.0 k 4 VCC I I : I to program the Trip I I 50--+-1I --+ 6 I 2.0 k I I Sense 3 3.6 k I 80--+-:-.J ORDERING INFORMATION Device MC35062U L I __________ .J Temperature Range -55 to +125°C MC34062P1 Package CerafT~ic DIP Plastic DIP Oto+70oC Pins 4 through 8 are used to program the Trip Voltage, Vtrip MC34062U fhls document contaIns information on a new product. Specifications and information herein are subject to change without notice MOTOROLA LINEAR/INTERFACE DEVICES 3-216 Ceramic DIP MC34062, MC35062 MAXIMUM RATINGS Symbol Value Unit Vcc - VDRV 40 Vdc Voltage Across Any Internal Resistor In Network VRN 40 Vdc Current Through Any Resistor In Network IRN 10 mA VS ense 40 Vdc IDRV Internally Limited mA Rating Operating Voltage Sense Voltage Drive Output Current II DC Operating Ambient Temperature MC34062 MC35062 TA Operating Junction Temperature TJ 150 DC T stg -65 to +150 DC DC o to +70 -55 to +125 Storage Temperature Range ELECTRICAL CHARACTERISTICS (Vce = 5.0 V; VDRV = 0 V; TA = Tlow to Thigh unless otherwise specified.) Characteristic Operating Voltage Range Sense Trip Voltage Symbol Min Typ Max Unit Vee - VDRV 3.0 - 40 Vdc 2.425 2.375 2.5 2.5 2.575 2.625 - 0.001 0.001 om 6.01 5.89 6.2 6.2 6.39 6.51 - 0.62 TA = 25 De Tlow to Thigh Line Regulation. VS ense (3.0 V ~ Vee - VORV ~ 40 V) Trip Voltage (Pin 4 = Gnd; VDRV = 0 V) TA = 25°e Tlow to Thigh VH(4) = 0 V) VH(5) rr-rip Voltage (Pin 6 = Gnd; VDRV = 0 V) TA = 25°e - 13.7 13.7 Tlow to Thigh VH(6) Trip Voltage (Pin 7 = Gnd; VDRV = 0 V) TA = 2.5°e 1.37 - Tlow to Thigh VH(7) = a V) 17.1 17.1 Tlow to Thigh Hl'steresis Voltage (Pin 8 = Gnd; VDRV = 0 V) Resistor Network Current at Nominal Power Supply Voltage V 17.6 18.0 - 1.71 - 26.6 26.0 27.4 27.4 28.2 28.8 - 2.74 30.9 30.3 31.9 31.9 V V - V V Vtrip(8) 25°e -- V 16.6 16.2 Vtrip(7) Hysteresis Voltage (Pin 7 = Gnd; VDRV = 0 V) V 14.1 14.4 Vtr ip(6) Hysteresis Voltage (Pin 6 = Gnd; VDRV = 0 V) TA~ - V 13.3 13.0 Tlow to Thigh VDRV V Vtrip(5) Hysteresis Voltage (Pin 5 :::: Gnd; VORV:::: 0 V) = Gnd; 0.02 Vtrip(4) Hysteresis Voltage (Pin 4 = Gnd; VORV:::: 0 V) Trip Voltage (Pin 5 ~ Gnd; .vDRV TA= 25°e %/V Regline TA = 25°e Tlow to Thigh Trip Voltage (pin 8 Vdc VS ense 32.9 33.5 VH(8) - 3.19 IRN 0.5 1.1 2.0 130 90 200 - 300 350 0.2 0.2 0.6 0.6 1.0 1.5 - V mA Vee = 28 V; VDRV = 0 V; Pin 8 = Gnd Drive Output Current. ON State Tlow to Thigh Drive Output Current. OFF State mA IDRV(off) = Vee 5.0 V; VDRV = 0 V 3.0 V';; Vcc - VDRV';; 40 V Drive Output Current Slew Rate ITA = 25°C) Drive Output Vee Transient Rejection = mA IDRV(on) TJ=25 o e di/dt - 2.0 - A/"s Il.I D RV(tra ns) - 1.0 - mA (Peak) tpLH - 500 - ns Vec 0 V to 15 V at dV/dt = 200 V/"s; VDRV = 0 V; VS ense = 0 V; TA 25 DC Propagation Delay Time (TA Tlow = -55°C for MC35062 :::: OOC for MC34062 = =25 o e; 500 mV Overdrive) Thigh +125°C for MC35062 = + 70°C for MC34062 = MOTOROLA LINEAR/INTERFACE DEVICES 3-217 MC34062, MC35062 FIGURE 1 - STANDARD TEST CIRCUIT • VCC-VDRV (3.0 V to 40 V) 3 2 Drive Output IORV *A 1.0 IlF tantalum or 10 ~F electrolytic MC34062 capacitor may be necessary to compensate for lead i nd ucta nee when measuring Hysteresis Voltage. When this capacitor is used. it should be placed as close as possible to the device package. 8 FIGURE 2 - DRIVE CURRENT versus NORMALIZED RESISTOR DIVIDER VOLTAGE (Normalized to Vtrip at TA = 25°C) FIGURE 3 - NORMALIZED TRIP VOLTAGE versus TEMPERATURE (Normalized to TA = 25°C) 1.006 1.004 w to ~ > i - '" 1.002 1.000 0.. i'2 /' 0.998 ;j! 0.996 ~ :ii! 0.994 :...- ~ /V ,V "' 0.992 0.1 0.80 0.990 ~" ~~ ~~ ~~ 1.0 I.~ 1.08 -75 NORMALIZED VOLTAGE ACROSS RESISTOR DIVIDER -50 -25 0 25 50 75 100 FIGURE 4 - OFF STATE DRIVE CURRENT versus SUPPLY VOLTAGE FIGURE 5 - MINIMUM RG versus SUPPLY VOLTAGE 100 TA ~ / 125°C L / TA-25°C TA 125 TA. AMBIENT TEMPERATURE (0G) 55°C / I...- / V / / / Ih 10 20 30 40 Vce SUPPLY VOLTAGE (V) 10 20 Vcc. POWER SUPPLY VOLTAGE (V) MOTOROLA LINEAR/INTERFACE DEVICES 3-218 30 40 MC34062, MC35062 FIGURE 6 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL5.0 V POWER SUPPLY FIGURE 7 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 12 V POWER SUPPLY 10 11.0 .3 1.0 z'-' '-' ;:: - ~.\)-.I z ;:: u :: ;') 0.1 : IVcC >- g T ~ '0-.1 ~, 9 Vee -.lIVIV >- :5 ; I lOO~ 0.1 ;') 5.0Vnom .~~ ~ 0.01 0.001 0.001 -.lIVIV u ~ 3 34062 2 _,: ,,-.1 0.01 -.I~ /] 5 0.1 2 100 i ~ -de 0.01 12Vnom 1.0 0.001 0.001 10 0.01 0.1 1.0 10 tDLY. DELAYTIME Im'l tDLY. DELAY TIME Im'l FIGURE 8 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 15 V POWER SUPPLY FIGURE 9 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 24 V POWER SUPPLY 10 '3 :3 ~ 1.0 g ~ ~ >- z ~-.I ;:: -.I~.,-.I ~ ~. 0.1 U j ~'l. g ~.'0-.1 ~O.Ol ,"IVIV 0.001 0.001 1.0 '-' 9 Vee 1 0.1 100 0.1 t >- Vee g _~~I~ 4~.233 34062 ~, 0.01 15V nom ~ 0.01 . 0.001 0.001 10 1.0 0.01 0.1 tDL y. DELAY TIME Im'l tDLY. DELAY TIME Im'l FIGURE 10 - DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 28 V POWER SUPPLY 10 .3 ~ 1.0 ;:: u ~ j 17' 0.1 ~-.I >- ~. ~ ~ ?Vee 0.01 28V nom ~"ittl -.lIVIV ~2~ '].-.1 ~., 8 100 -.lIVIV 0.001 0.001 0.01 0.1 1.0 tDLY. DELAY TIME Im'l MOTOROLA LINEAR/INTERFACE DEVICES 3-219 24 V nom. 11)~ L..l[ 34062 2 7~ ~OLY.I 10 1.0 56 . 10 II MC34062, MC35062 APPLICATIONS INFORMATION II BASIC CIRCUIT CONFIGURATION The MC34062 and MC35062 each consist of a 2.5 V shunt reference, a comparator with built-in hysteresis, a power output transistor, and an on-chip, tapped resistor network. In the typical application of Figure 11 the volt· .. f h . . VCC R2 age at t h e inverting Input ate comparator IS - - - , R1 + R2 while the voltage atthe non-inverting input isVCC- 2.5 V. Thus, for a given (R1, R2) voltage divider, the comparator's output state is a func.tion ofVCC. The follpwing table applies: VCC < > Drive Output R1 + R2 (2 5 V) R1 . OFF State R1 + R2 -R-1- (2.5 V) ON State FIGURE 11 - By making the proper choice of R1 and R2, a level detector for any voltage from 3.5 to 40 V may be realized. The on-chip resistor network is configured as shown in the Functional Block Diagram on the front page of this data sheet. Each of the five programming pins (4 through 8) provides one standard overvoltage trip point for nominal power supply voltages of 5.0. 12, 15, 24 or 28 V. These standard trip points are implemented by grounding one of the five programming pins. and are· summarized in the following table: Nominal Power Supply Voltage Ground Pin Number Typical Trip Voltage 5.0V 12 V 15 V 24V 28 V 4 5 6 7 8 6.2 V 13.7 V 17.1 V 27.4 V 31.9 V I BLOCK DIAGRAM AND TYPICAL APPLICATION V out 1------------------, I + Power Supply I ________________ J I R, + R2 Vtrip = -R-,- (2.5 V) Gnd Programming Pins Many other trip voltages may be programmed by interconnecting and grou"ding various combinations of the programming pins. Table 1 provides connection schemes for 120 nominal Trip Voltages (Vtrip). Additional Trip Voltages may also be implemented with other pin connections. All of these Trip Voltages will be within ±3.0% of the nominal value at TA = 25°C a nd within ±5.0% over the operating temperature range. The hysteresis built into the comparator is 250 mV a\ the inverting input. This comparator hysteresis voltage is . RPR2. 25VS ense T· . I· dbyt h eratlo---,Justasthe. multiple rip R1 Voltage (VS ense ) is mUltiplied by the same ratio to define the Trip Voltage (Vtrip). Thus, the Hysteresis Voltage (VH) is approximately 10% of the Trip Voltage for anyTrip Voltage. Some precautions are necessary in the operation of the protection circuit shown i"n Figure 11. Note that even in the OFF State, a minimum drive output current, equal to the sum of the reference and comparator supplycurrents, is available. Therefore, a means of shunting this current away from the driven circuit is necessary. In the example of Figure 11; a 100 n resistor (RGK) is used, producing a voltage atthe Drive Output of approximately60 mV in the OFF State. In the ON State the MC34062 becomes a current source capable of saturating to within 2.0 V of VCC. Therefore, when driving a high impedance load, it may be desirable to clamp the drive output to at least 3.0 V below VCC (Vce - VDRV;;" 3.0 V) if it is important that the reference continue to regulate. MOTOROLA LINEAR/INTERFACE DEVICES 3-220 100 MC34062, MC35062 PROGRAM MING AM INIM UM OVERVOl TAGE DURATION BEFORE TRIPPING A time delay may be programmed into the operation of the MC34062/35062 to provide noise Immunity. This time delay is implemented by adding a capacitor (CDLY! between the VCC and Sense leads as shown in Fig ure 12. The time delay obtained by this technique is a function of the internal resistors (R1, R2! and CDLY, as well as the nominal supply voltage, VCC(nom!, and the overvoltaged supply voltage VCe. The nominal supply voltage determines the initial charge on COLY, while the magnitude of the overvoltage condition determines the rate at which CDLY charges to the reference voltage, Vref = 2.5 V. Thus, for a given R" R2 and CDLY, the time delay is reduced as the overvoltage IS increased The expression for the time delay, tDLY is FIGURE 12 - Figures 6 through 10 show the CDLY values versus delay time (tDLY! for nominal 5.0, 12, 15, 24 and 28 V power supply protection circuits, each using a one-pin MC34062/35062 programming scheme. These figures also show the change in tDLY with variations in the overvoltaged supply, VCC. THE NEED FOR A GATE RESISTOR For power supplies above 11 V, a gate resistor, RG, in series with the SCR gate is recommended to limit the power dissipated by the IC to approximately 2.0 W. This resistor will protect the MC34062/35062 in the event of a defective or missing SCR, while allowing the maximum drive output current to the gate of the SCR. Figure 5 shows the minimum recommended gate resistor, RG(min!, versus the power supply voltage, VCe. A larger value of RG may be used if less drive current is needed. OVERVOLTAGE PROTECTION WITH TIME DELAY + Power Supply - "" t V CC "0" ? -Q Vou 1 MC34062 3 Drive ~ )~ Output -0 2 v RG 4thru 8 Q Programming Pins >RGK > Gn d -Q MOTOROLA LINEAR/INTERFACE DEVICES 3-221 • • MC34062, MC35062 TABLE 1 - PIN-PROGRAMMING OF RESISTOR NETWORK FOR NOMINAL TRIP VOLTAGES Vtrip 3.483 3.632 3.758 3.807 3.883 3.923 4.012 4.098 4.130 4.196 4.272 4.353 4.407 4.520 4.598 4.673 4.709 4.845 4.947 4.996 Pin 3 , , , , , , , , , , Pin 4 Gnd Gnd Gnd Gnd Gnd Gnd Gnd Pin 5 , Gnd Pin 6 Gnd , Pin 7 , Gnd Pin 3 Gnd 5.101 t -, 5.222 Gnd Gnd 5.328 5.413 Gnd 5.563 Gnd Gnd 5.673 Gnd Gnd 5.734 Gnd , , , , Vtrip , , , , , , , , , , , , , , Gnd Gnd Pin 8 Gnd Gnd , Gnd Gnd , , , , , , , r 11 , , , • , , • • Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd Gnd , Gnd 5.900 t Gnd 5991 t Gnd 6.200 6.311 Gnd Gnd 6.610 6.703 , , • , Gnd 6.840 Gnd 7.000 Gnd 7.298 ~ 7.347 Gnd 7.132 Pin 6 Gnd Gnd Gnd • Gnd Gnd Gnd r 11 r 11 Gnd Gnd Pin 7 Pin 8 ~ Gnd ~ •, , , ~ Gnd ~ , ~ Gnd ~ , , , r Gnd , Gnd • ~ ~ Gnd Gnd Gnd • --' , , , • , • t .- 11 , , , , , , r , r~ , . Gnd Gnd Gnd Gnd ~ ~ Gnd Gnd Gnd t ~- MOTOROLA LINEAR/INTERFACE DEVICES 3-222 Pin 5 , 5887 Gnd , t Gnd 6.092 , , , , , , Pin 4 Gnd " ~ MC34062, MC35062 TABLE 1 - Vtnp 7.478 7.799 8.106 Pin 3 , , , • , , , 8.220 8.409 , 8.539 , 8.633 8.756 8.870 8.906 9.013 9.178 9.331 9.377 9.385 9.433 9.600 9.826 9.912 10.000 Pin 4 Pin 5 Pin 6 Gnd Gnd Gnd Gnd Gnd Gnd Gnd , , • Vee ,• Gnd , , , Gnd Gnd 10.400 Gnd 11.047 Gnd 11.178 Gnd 11.630 11.937 Gnd Gnd Gnd Gnd Gnd Gnd Gnd , , -' , • ,, Gnd 12.086 , , , L , L , 12.477 12.556 j j , , L W , , Gnd Gnd Gnd Gnd , , , Gnd , Gnd Gnd , , , Gnd Gnd Gnd t Pin 8 Gnd , , Gnd U Gnd , Gnd Vee , Vee , , , Gnd Gnd , • , • L r-f MOTOROLA LINEAR/INTERFACE DEVICES 3-223 Gnd W 15.330 Gnd Gnd Gnd L 13.400 14.500 L Pin 7 , , L -.1 14.233 Gnd Pin 6 Gnd 13.387 13.700 , L -.! 12.732 12.800 Pin 5 , 11.496 Gnd Gnd Pin 4 10.540 11.895 Gnd Pin 3 10.700 Gnd L Vtrip Gnd Gnd W , , • , • , • , , • , • , , -.1 , • , L Pin 8 , Gnd , , , • , , , , •, , Pin 7 (Continued) '- , Gnd Gnd , , Gnd Gnd II MC34062, MC35062 TABLE 1 - (Continued) Vtrip II 15.637 16.200 Pin 3 Pin4 , 16.256 16.465 L W 16.832 17.300 17.900 18.200 18.733 L , L , 21.000 21.600 22.122 Gnd Gnd , Pin 8 , Gnd Gnd , Gnd , , , Gnd Gnd Gnd Gnd , , , , , W • , , L W W , L , L , 24.400 L W 24.800 LW L 25.211 t 30.023 30.694 31.486 31.900 , Vee Pin 7 Pin 8 Gnd vee Gnd Gnd Gnd --' Gnd W , Gnd vee --' Gnd Gnd L W Gnd L t , , , Vee Vee Gnd l--J. , -' Gnd Gnd Gnd Gnd Vee Gnd 33.116 t ~ Gnd 38.182 t Vee , -' Vee 32.233 vee MOTOROLA LINEAR/INTERFACE DEVICES 3-224 --' Gnd Gnd 39.064 , L J Vee Gnd Gnd Vee t 28.500 Pin 6 Gnd 24.283 Gnd --' , 24.000 T L ..J Vee t 28.200 Gnd Pin 5 Vee 23.807 Gnd T , Pin 4 L ..J W Gnd Pin 3 23.700 27.400 Gnd W 22.673 Gnd • , Vtrip 27.333 Gnd 20.232 20.700 Pin 7 , , 19.900 20.300 Pin 6 , 17.087 17.100 , , , , t 16.500 16.532 Pin 5 ,. vee Vee , -' Gnd .1 Gnd .1 Gnd Gnd MC34062, MC35062 Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities - depending on the severity olthe occasion. The value of dildt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive Signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast <1.0 p's rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 AI P.s, assuming a gate current of five times IGT and< 1.0 p's rise time. If having done this, a di/dt problem is seen to still exist. the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCA. as shown in Figure 15. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt. CROWBAR SCR CONSIDERATIONS Referring to Figure 13, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacita nce, Cout. This capacita nce consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 13A, the supply's input filter capacitors. This surge current is illustrated in Figure 14, and can cause SCR failure or degradation by anyone of three mechanisms: di/dt. absolute peak surge, or 12t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an u ndersta nding of the factors wh ich infl ue nce the SCR's di/dtand surge capabilities simplifies this task. 1. di/dt As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and graduallyspreading. FIGURE 13 - TYPICAL CROWBAR CIRCUIT CONFIGURATIONS 13A - SCR ACROSS INPUT OF REGULATOR I-....----~.------o Vout 100 13B - SCR ACROSS OUTPUT OF REGULATOR u .....____----.- Vth. Pin 2 = Gnd, Remaining pins open NOTES: 1. Tlow - 55°C for MC35063 - 40°C for MC33063 O°C for MC34063 Thigh + 125°C for MC35063 + 85°C for MC33063 + 70°C for MC34063 2. Output switch tests are performed under pulsed conditions to minimize power dissipation. MOTOROLA LINEAR/INTERFACE DEVICES 3-228 MC34063, MC35063, MC33063 FIGURE 1 - OUTPUT SWITCH ON-OFF TIME versus OSCILLATOR TIMING CAPACITOR FIGURE 2 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE 3.2 ,--,----,---,---,----,--,---,-------, CT = 0.001 I1F 1 " Ipk(sensel 0 100 i Z 0 '" ~ ~ >- => ~ => 0 ----+--r---t-----+--r-----i VCC ! t1p~in~2~==G~n~d=i~=E=t=~==E~!-:~ <= 2.4 r-f----r---i----- f----+---t----i--- 1.6 '---- -- --- 1-- 10 .BO.B C---- -----t-- ---- t----- j--- ----t----- 0 ~ .9 0~0--75.0~-~10-~f~5-~20~~2~5-~3~0-~35~~40 Vce SUPPLY VOLTAGE ,VOL TSI CT, OSCILLATOR TIMING CAPACITOR InFI FIGURE 3 - EMITTER-FOLLOWER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus EMITTER CURRENT \_ JCC ~ 56v ~ 5f- Pins 1,7,8 01. 20 f- Pins 3,5 w '"~ ~ 1.2 I : => ~ 1. 2 l- to- Gnd V V V ~ 1. 3 o a ~ VCC 1. 4 ~ FIGURE 4 - COMMON-EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus COLLECTOR CURRENT 20 I- w '" ;:: ---- t-- 0.8 I I VCC - 5.0 V 1.0 I- Pin 7 - VCC Pins 2.3.5 . _ I- darhn:ton Gnd f-- I-r- V L ~ o. 6 Forced Beta o i= ;'2 => ~ i,.--- ~ O. 2 0 -!;' k....- f-- u:; 0.4 0.6 O.B 1.0 1.2 0 o 1.4 IE, EMITIER CURRENT (AMPSI 20 ....... 1-" i,.--- f/ 0.4 1 0.2 0.2 0.4 0.6 O.B 1.0 IC, COLLECTOR CURRENT IAMPSI MOTOROLA LINEAR/INTERFACE DEVICES 3-229 ~r--- = r-- f-- a V ~onnlectlO: 1.2 1.4 II MC34063, MC35063, MC33063 AGURE 5 - .. STEP-DOWN CONVERTER 8 7 RSC 0.33 Vin 6 25~ 100~ /LF 11 220 /LH ~ 5 Vout R1 + 5.0 VI500 mA ILF~CO 470 3.6 k 1.2 k Conditions Test Vin ~ 15 to 25 V, 10 Load Regulation Vin ~ 25 V, 10 ~ 50 to 500 mA 5.0 mV Output Ripple Vin ~ 25 V, 10 ~ 500 mA 40 mV p _p Short Circuit Current Vin ~ 25 V, RL Efficiency Vin ~ 25 V, 10 FIGURE 6 - 6A - ~ ~ ~ Results Line Regulation 0.1 15 mV 500 mA n 2.3 A 500 mA 84.7% EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A EXTERNAL NPN SWITCH 6B - EXTERNAL PNP SATURATED SWITCH 8 Vout Vout Rsc Vin 6 Rsc Vin MOTOROLA LINEAR/INTERFACE DEVICES 3-230 MC34063, MC35063, MC33063 FIGURE 7 - STEP-UP CONVERTER 170 /LH II 8 180 Rsc 0.22 lN5819 Vin 6 12 V + 100 1;/LF - 5 ~ ~~ Rl~2-.2-k--~47~k-----------------l~5~O-+~_~28V175mA /IF Test 1=' Co Results Conditions line Regulation Vin ~ 8.0 to 16 V. 10 Load Regulation Vin ~ 12 V, 10 Output Ripple Vin ~ 12 V, 10 ~ 175 mA 150 mV p . p Short Circuit Current Vin ~ 12 V, RL ~ 0.1 !l 2.0 A Efficiency Vin ~ 12 V, 10 ~ 175 mA 93°'0 FIGURE 8 - BA - ~ 175 mA 12 mV 75 to 175 mA 45 mV ~ EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A EXTERNAL NPN SWITCH 8B - Rsc EXTERNAL NPN SATURATED SWITCH Rsc MOTOROLA LINEAR/INTERFACE DEVICES 3-231 MC34063, MC35063, MC33063 FIGURE 9 - DESIGN FORMULA TABLE II Calculation Step-Down Step-Up !2n toft Vgu! + VF Vin(min) - V.at - Vout Vout + VF - Vinlmin) Vin(min) - Vsat (ton + toft)max -1- -1- CT 4 X 10- 5 ton 4X 10- 5 t on )pk(switch) 2)out(m"x) Imin Imin 21.out (max) (~) toft RSC 0.33/Ioklswitch) 0.33/I ok(switch) L(min) (Vinlmin! - Vsat - Vout)t Ipk(switch) on(max) (Vinlmin! - Vsat)t ( ) Ipk(switch) on max Co loklswitch! (ton + toft) 8 Vripple(p-p) = lout ton Vripple Vsat = Saturation voltage of the output sWitch. VF = Forward voltage drop of the ring back rectifier The fOllowing power supply characteristics must be chosen: Vin - Nominal input voltage. If this voltage is not constant, then use Vin(max) for step-down and Vin(min) for stepup converter .. V out - Desired output voltage, Vout = 1.25 (1 + ~). lout - Desired output current. fmin - Minimum desired output switching frequency at the selected values for Yin and 10 , Vripple('p-p) - Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation. Note: For further information refer to application note AN920A. MOTOROLA LINEAR/INTERFACE DEVICES 3-232 @ MC34063A MC35063A MC33063A MOTOROLA Advance Information DC-TO-DC CONVERTER CONTROL CIRCUITS DC-TO-DC CONVERTER CONTROL CIRCUITS The MC34063A Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A and AN954 for additional design information. SILICON MONOLITHIC INTEGRATED CIRCUITS P1 SUFFIX PLASTIC PACKAGE CASE 626-05 • Operation from 3.0 V to 40 V Input D SUFFIX • Low Standby Current PLASTIC PACKAGE CASE 751-02 SO-8 • Current Limiting • Output Switch Current to 1.5 A • Output Voltage Adjustable • Frequency Operation to 100 kHz U SUFFIX • Precision 2% Reference CERAMIC PACKAGE CASE 693-02 FUNCTIONAL BLOCK DIAGRAM PIN CONNECTIONS r-------------------, Drive Collector 8 I I Switch O....::..,r------------, Collector I Switch Switch I Ipk Sense Emitter I I Ipk Sense Driver Collector Collector I I Timing Capacitor I 7, Switch Emitter I I VCC Comparator Inverting Input Gnd I I (Top View) I I I VCC~ Timing Capacitor I I ORDERING INFORMATION I I I Comparator Inverting Input Device I 5: 0-.::.;---------' '----+--<:..> Gnd I _____________________ I L MC35063AU MC33063AD ~ MC33063API MC34063AD MC34063AP1 This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-233 Temperature Range -55to +125°C -40 to +85°C o to + 70°C Package Ceramic DIP Plastic SOIC Plastic DIP Plastic SOIC Plastic DIP II .. MC34063A, MC35063A, MC33063A MAXIMUM RATINGS Symbol Value Unit Power Supply Voltage Rating VCC 40 Vdc Comparator Input Voltage Range VIR -0.3 to +40 Vdc Switch Collector Voltage VC(switch) 40 Vdc Switch Emitter Voltage (VPin 1 = 40 V) VE(switch) 40 Vdc VCE(switch) 40 Vdc Vdc Switch Collector to Emitter Voltage Driver Collector Voltage VC(driver) 40 Driver Collector Current (Note 1) IC(driver) 100 mA Switch Current ISW 1.5 Amps Power Dissipation and Thermal Characteristics Ceramic Package, U Suffix TA = +25°C Thermal Resistance Plastic Package, P Suffix TA = +25°C Po R9JA 1.25 100 °CIW Thermal Resistance Po R9JA 1.25 100 °CIW SOIC Package, 0 Suffix TA = +25°C Thermal Resistance Po R9JA 625 160 °CIW Operating Junction Temperature TJ +150 °C Operating Ambient Temperature Range MC35063A MC33063A MC34063A TA W mW °C -55 to + 125 -40 to +85 o to +70 Storage Temperature Range -65 to +150 Tstg ELECTRICAL CHARACTERISTICS (VCC W = 5.0 V; TA = Tlow to Thigh Characteristic °C [Note 21 unless otherwise specified) I Symbol I Min I Typ I Max Units OSCILLATOR Frequency (VPin 5 = 0 V, CT = 1.0 nF, TA = 25°C) fOSC 24 33 42 kHz Charge Current (VCC = 5.0 V to 40 V, TA = 25°C) Ichg 24 33 42 pA Idischg 140 200 260 pA Discharge to Charge Current Ratio (Pin 7 = VCC, TA = 25°C) Idischg"chg 5.2 6.2 7.5 - Current Limit Sense Voltage (lchg = Idischg, TA = 25°C) Vipk(sense) 250 300 350 mV Discharge Current (VCC = 5.0 V to 40 V, TA = 25°C) NOTES: 1. Maximum package power dissipation limits must be observed. 2. Tlow = =~:g :~~ ~g;~= O°C for MC34063A Thigh = :~;~~cf~~rM~~~~~~ + 70"<; for MC34063A MOTOROLA LINEAR/INTERFACE DEVICES 3-234 MC34063A, MC35063A, MC33063A OUTPUT SWITCH (Note 3) Saturation Voltage, Darlington Connection IIsw = 1.0 A, Pins 1. 8 connected) Saturation Voltage (lsw = 1.0 A, RPin 8 DC Current Gain (lSW = 1.0 A, VCE = 82 n to VCC, Forced f3 = VCE(sat) - 1.0 1.3 V VCE(sa!) - 0.45 0.7 V hFE 50 120 - - - 0.01 100 ,..A 1.25 1.275 1.29 20) = 5.0 V, TA = 25"C) Collector Off-State Current (VCE = 40 V) ICloff) COMPARATOR Threshold Voltage ITA = 25"C) ITA = Tlow to Thigh) V Vth 1.225 1.21 Threshold Voltage Line Regulation (VCC = 3.0 V to 40 V) Input 8ias Current (Vin = 0 V) - Regline - 1.4 5.0 mV liB - -40 -400 nA TOTAL DEVICE Supply Current (VCC = 5.0 V to 40 V, CT = 1.0 nF, Pin 7 = VCC, VPin 5 > Vth, Pin 2 = Gnd, Remaining pins open) TOTAL DEVICE Supply Current (VCC = 5.0 V to 40 V, CT = 1.0 nF, Pin 7 = VCC, VPin 5 > Vth, Pin 2 = Gnd, Remaining pins open) NOTES: 3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible. 4. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (:s;;300 rnA) and high driver currents (~30 mAl. it may take up to (2.0 p,sl to come out of saturation. This condition will shorten the "off" time at frequencies ;;.- 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended: Forced fJ of output switch = Ie, outputl(le, driver - 7.0 rnA*) ~ 10 *The 100 n resistor in the emitter of the driver device requires about 7.0 rnA before the output switch conducts. MOTOROLA LINEAR/INTERFACE DEVICES 3-235 II II MC34063A, MC35063A, MC33063A FIGURE 1 - OUTPUT SWITCH ON-OFF TIME versus . OSCILLATOR TIMING CAPACITOR FIGURE 2 - TIMING CAPACITOR WAVEFORM 1000 ~ 500 - ~ - VCC - Pin 5 = Gnd TA 25"(; ~100 ~ z 5.0V 200 - Pin 7 = VCC o 50 i 0 O~ 5. ton 0 0 toff ~ 2.0 .91.0 0.01 !-0.02 0.05 0.1 0.2 0.5 1.0 2.0 CT, OSCILLATOR TIMING CAPACITOR InFI 5.0 10 FIGURE 4 - COMMON EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus COLLECTOR CURRENT FIGURE 3 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT 1.8 1.0 - ?;1.7 ~ '" 1. 6 ~ g z - 1. 5 o ~ 1.4 :::> I-- ~ '" ~ ~ ~1. 2 ~ 1. 1 0.4 0.6 0.8 1.0 IE, EMITTER CURRENT IAI 1.2 1.4 1.6 FIGURE 5 - CURRENT LIMIT SENSE VOLTAGE versus TEMPERATURE _400 ~ !::: ~ 320 0.4 V ~ 0.6 0.8 1.0 1.2 IC, COLLECTOR CURRENT IAI - 1.4 1.6 4 -- ---- 0 6 r-- 260 ~240 ~220 ~20 0 -55 -----0.2 ~ Forced f3 = 20 ............ 2.8 VCC = 5.0V 0 '" :::; 30 !z 280 ~ u .,../ I-"" J.....-:-:t::: Darlington Connection 3. 2 ~ 36oI- Ichg = Idi,chg lJl340 z VCC = 5.0 V Pin 7 = VCC Pin, 2, 3, 5 = Gnd TA=25°C See Note 3 I--" FIGURE 6 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE ~ ~ 380 f- O. 1 0 0.2 - - an u > o O. 8 O. 7 o > O. 6t-z o ~ O. 5 t-4 ~ O. r---;Jj 3 ~ O. O. 2 VCC = 5.0V Pin, 1, 7, 8 = VCCPin, 3, 5 = Gnd TA = 25°C See Note 3 ~ 1. 3 1. 0 -- I-- f - O. 9 2 CT = 1.0 nF Pin 7 = VCC Pin 2 := Gnd 8 o.4 - 0 -25 +25 +50 +75 TA, AMBIENT TEMPERATURE lOCI +100 +125 5.0 10 MOTOROLA LINEAR/INTERFACE DEVICES 3-236 15 20 25 VCC, SUPPLY VOLTAGE IVI 30 35 40 MC34063A, MC35063A, MC33063A FIGURE 7 - STEP-UP CONVERTER 170 JlH L r----------------, 81 180 11 r--+--+ I I I I II I 71 I Rsc 0.22 1N5819 I I I I 1~i~ o--+_---=6'-l I I I 51 I I L....---;2---------------....I R, V 1.0J,tH out t-2.-2-k --"'47"""k------------+-+--0 28 V/175 rnA ~ Vout 330J 1'°0 CO Optional Filter Test Conditions Results Line Regulation Yin ~ 8.0Vt016V,IO Load Regulation Yin ~ 12 V, 10 ~ 75 to 175 mA Output Ripple Yin = 12V, 10 ~ 175mA 400 mVp-p Efficiency Yin = 12V, 10 ~ 175mA 89.2% Output Ripple With Optional Filter Yin 12 V, 10 ~ 175 mA 40 mVp-p FIGURE 8 - 8A - = ~ 175mA 30 mV ~ ±O.O5% 10 mV ~ ±O.O17% EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A 8B - EXTERNAL NPN SWITCH EXTERNAL NPN SATURATED SWITCH (REFER TO NOTE 4) r----------------, Vout Vout 11 r--+--------::..j 25V + "220 "H 'OOl ,L _____________________ , ~ 1.0 JLH R2 leo + 3.6 k 470 Vout 5.0 VI500 mA ~Vout l'OO Optional Filter Test Results Conditions ~ 12 rnV ~ ±0.12% Line Regulation Vin ~ 15 V to 25 V. 10 Load Regulation Vin ~ 25 V. 10 ~ 50 to 500 rnA 3.0 rnV Output Ripple Vin ~ 25 V. 10 ~ 500 rnA 120 rnVp-p n Short Circuit Current Vin ~ 25 V. RL ~ 0.1 Efficiency Vin ~ 25 V. 10 ~ 500 rnA Output Ripple With Optional Filter Vin ~ 25 V. 10 ~ 500 rnA FIGURE 10 - IDA - 500 rnA ~ ±0.03% 1.lA 82.5% 40 rnVp-p EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A lOB - EXTERNAL NPN SWITCH EXTERNAL PNP SATURATED SWITCH r------------------, 8' '--""1-'-'__... Vout Vout Rse , L ___________________ MOTOROLA LINEAR/INTERFACE DEVICES 3-238 , ~ MC34063A, MC35063A, MC33063A FIGURE 11 - VOLTAGE INVERTING CONVERTER r------------------, 81 I, 1 1 , E 1 1 71 I 1 I ,, 0.24 I 4.5 V ~~n 6.0 V 0----1_6"-11 I I 1 1 I 5' + 1500 1N5819 pF L1 ___________________ __ .J, R, ..------"'95"'3~-------~~--.-.......-O '000 1+ -12 ~f1~~ rnA ~ Vout +I'oO Optional Filter Test Results Conditions 3.0 rnV ~ ±0.012% 10 to 100 rnA 0.022 V ~ ±O.O9% 100 rnA 50 rnVp-p Line Regulation Vin ~ 4.5 V to 6.0 V. 10 Load Regulation Vin ~ 5.0 V. 10 ~ Output Ripple Vin ~ 5.0 V. 10 ~ ~ 100 rnA n Short Circuit Current Yin ~ 5.0 V. RL = 0.1 Efficiency Vin ~ 5.0 V. 10 ~ 100 rnA 64.5% Output Ripple With Optional Filter Yin ~ 5.0 V. 10 ~ 100 rnA 70 rnVp-p FIGURE 12 - 12A - 910 rnA EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A 12B - EXTERNAL NPN SWITCH EXTERNAL PNP SATURATED SWITCH Vout , L ________________ ~----------------~ MOTOROLA LINEAR/INTERFACE DEVICES 3-239 ~ MC34063A, MC35063A, MC33063A FIGURE 13 - PRINTED CIRCUIT BOARD AND COMPONENT LAYOUT (CIRCUITS OF FIGURES 1.9.11) ---------------5.45"---------------·~'"I1 r-I.... II (Top view, copper foil as seen through the board from the component side) *Optional Filter. Top View, Component Side INDUCTOR DATA Inductance (,.H) TurnslWire Step-Up 110 38 Turns of #22 AWG Step-Down 220 48 Turns of #22 AWG Voltage-Inverting 88 28 Turns of #22 AWG Converter All inductors are wound on Magnetics 55117 toroidal core. MOTOROLA LINEAR/INTERFACE DEVICES 3-240 MC34063A, MC35063A, MC33063A FIGURE 14 Calculation ton/toff DESIGN FORMULA TABLE Step-Up Yout + YF - Yin(min) Yin(min) - Ysat Step-Down Yout+YF Yin(min) -Ysat-Yout Voltage-Inverting IYoutl+YF Yin-Ysat (ton + toff) max 1/1min 1/1min 1lfmin CT 4 x 10- 5 ton 4 x 10- 5 ton 4x 10- 5 ton lok(switch) 210ut(max)(ton/toff+ 1) 21 0ut(max) 210ut(max)(ton/toff + 1) RSC 0.3/1 o k(switch) 0.3/Ipk(switch) 0.3/Ipk(switch) L(min) (Yin(min) - Ysat)ton(max) Ipk(switch) (Yin(min) - Ysat- Yout)ton(max) lok(switch) (Yin(min)-Ysat)ton(max) lok(switch) Co = 10uttonN,ipple(p-p) Ipk(switch)(ton +toff) 8 Y,ipple(p-p) = 10uttonN,ipple(p-p) Vsat = Saturation voltage of the output switch. VF == Forward voltage drop of the output rectifier. The following power supply characteristics must be chosen: Vin - Nominal input voltage. . Vout -- Desired output voltage, IVoutl = 1.25 (1 + R2/R1) lout - Desired output current. fmin - Minimum desired output switching frequency at the selected values of Vin and 10. Vripple(p-p) - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. MOTOROLA LINEAR/INTERFACE DEVICES 3-241 II • MC34064 MC33064 MOTOROLA Prod uct Preview UNDERVOLTAGE SENSING CIRCUIT UNDERVOLTAGE SENSING CIRCUIT The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a com· parator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA, and operation is guaranteed down to 1.0 volt input with low standby current. These devices are packaged in 3-pin TO·226AA and B-pin surface mount packages. Applications include direct monitoring of the 5.0 volt MPU/logic power supply used in appliance, automotive, consumer and industrial equipment. • Trimmed-In-Package Temperature Compensated Reference • Precise Comparator Thresholds Guaranteed Over Temperature SILICON MONOLITHIC INTEGRATED CIRCUIT P SUFFIX PLASTIC PACKAGE CASE 29·04 .1 PIN 1. RESET 2. INPUT 3. GROUND 3 • Comparator Hysteresis Prevents Erratic Reset • Reset Output Capable of Sinking in Excess of 10 mA • Internal Clamp Diode for Discharging Delay Capacitor • Guaranteed Reset Operation with 1.0 Volt Input • Low Standby Current • Economical TO·226AA and Surface Mount Packages D SUFFIX PLASTIC PACKAGE CASE 751·02 50-8 PIN 1. RESET 2. INPUT 3. N.C. 4. GROUND REPRESENTATIVE BLOCK DIAGRAM Input 5. 6. 7. 8. N.C. N.C. N.C. N.C. 2 (2) 1 (1) ORDERING INFORMATION Gnd 3 (4) ~ ~ Sink Only = Positive True Logic Pin numbers adjacent to terminals are for the 3-pin TO-226AA package. Pin numbers in parenthesis are for the D suffix 50-8 package. Device MC34064D-5 MC34064p·5 MC33064D-5 MC33064p·5 This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-242 Temperature Range O°C to +70'C - 40°C to + 85°C Package Plastic 50·8 Plastic TO-226M Plastic 50·8 Plastic TO·226M MC34064, MC33064 MAXIMUM RATINGS Rating Symbol Value Power Input Supply Voltage Vin -1.0 to 10 V Reset Output Voltage Vo 10 V ISink Internally Limited mA IF 100 mA Po R6JA 625 200 mW 'CIW Po R6JA 625 200 'CIW Operating Junction Temperature TJ +150 Operating Ambient Temperature MC34064 MC33064 TA Reset Output Sink Current Clamp Diode Forward Current, Pin 1 to 2 (Note 1I Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation (a' TA = 25°C Thermal Resistance, Junction to Air o Suffix, Plastic Package Maximum Power Dissipation (if TA = 25 C Thermal Resistance Junction to Air D Storage Temperature Range Tstg Unit II mW 'C 'C o to +70 -40 to +85 -65 to + 150 'C ELECTRICAL CHARACTERISTICS For typical values TA = 25'C, for minimax values TA is the operating ambient temperature range that applies [Notes 2 and 31. I Characteristic Symbol Min Typ Max VIH VIL VH 4.5 4.5 0.Q1 4.61 4.59 0.02 4.7 4.7 0.05 - 0.46 0.15 1.0 0.4 0.1 Unit COMPARATOR Threshold Voltage High State Output (Vin Increasingl Low State Output (Vin Decreasingl Hysteresis V RESET OUTPUT Output Sink Saturation (Vin = 4.0 V, ISink = 8.0 mAl (Vin = 4.0 V, ISink = 2.0 mAl (Vin = 1.0 V, ISink = 0.1 mAl Output Sink Current (Vin, Reset VOL = 4.0 VI Output Off-State Leakage (Vin, Reset = 5.0 VI Clamp Diode Forward Voltage, Pin 1 to 2 (IF = 10 mAl V - ISink 10 27 60 mA IOH - 0.02 0.5 fJ-A VF 0.6 0.9 1.2 V TOTAL DEVICE Operating Input Voltage Range Quiescent Input Current (Vin = 5.0 VI NOTES: 1. Maximum package power dissipation limits must be observed. 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. 3. Tlow = O'C for MC34064 Thigh = + 70'C for MC34064 = - 40'C for MC33064 = + 85'C for MC33064 MOTOROLA LINEAR/INTERFACE DEVICES 3-243 MC34064, MC33064 FIGURE 1 - RESET OUTPUT VOLTAGE versus INPUT VOLTAGE FIGURE 2 - RESET OUTPUT VOLTAGE versus INPUT VOLTAGE 5.0 r--,---,---,---,----,--.,....--..-----, 10 ----F==l===t==l===1===1 t- RL = 10 k to Vin TA = 25°C .. ~ w 13'" 6.0 ~ .... ~ ::> L _ RL = 10 k to Vin ,---- TA = 25°C 4.0 1--+--4--4---+----J--I--+-------l / 8.0 ./' V 1/ ~ w ~ 3.0 1--+--4--4---+----J--I--+-------l ~ ~ 4.0 2.0 1--+--4--4---+--..:J--I--+-------l o 0 ~ 1.01--+--+---1--+--+--+-+--1 2.0 I o I../t o 4.0 2.0 6.0 8.0 10 4.580 Vin. INPUT VOLTAGE {VI FIGURE 3 - COMPARATOR THRESHOLD VOLTAGE versus TEMPERATURE 4.630 ~ 4.620 4.610 V 0 > 90 ,.-- 4.600 i!' 4.590 ./" 4.580 - 4.570 -55 Lower Thresh00 LowlSt.te Outr -25 25 50 7. IrA U 5 .... i'E 0.6 ~ 0.4 TA = +25°C ~ 75 100 I ~ z 1.5 0 TA = +85°C ~ i/ / ~V/ V ::> ~ en .... 1.0 ~ ::> 0 -" 0 > /' / 0.5 o. / o ~ ITA L25 C J} . VTA = -4O°C- /' Vin='OV TA = +25°C ~ 5 60 ~ '" 40 .... 1 7 ..>f. 30 40 20 o o 17 / V 0.4 0.8 VF. FORWARD VOLTAGE {VI 'Sink. SINK CURRENT {mAl MOTOROLA LINEAR/INTERFACE DEVICES 3-244 V 1/ ~ !? 20 10 80 ::> u t%.- V 10 8.0 FIGURE 6 - CLAMP DIODE FORWARD CURRENT versus VOLTAGE 0 I 6.0 4.0 2.0 Vin. INPUT VOLTAGE {VI FIGURE 5 - RESET OUTPUT SATURATION versus SINK CURRENT Vin = 4.0 V '-WC ~ TA. AMBIENT TEMPERATURE lOCI 2.0 ~ ~::r o o 125 .~ +85°C 0.2 " . , -40°C ::> u .... ::> ~ 'V1 P\7 :( ~ ~ ~ + 85°C TA = +25°C ~ !:l; V 7J A II;! .c :> INPUT CURRENT versus INPUT VOLTAGE 0.8 ....... / :r en 4.640 1.0 Upper Threshold High State Output w 13'" FIGURE 4 - I I RL = 10kl0Vin 4.620 4.600 Vin. INPUT VOLTAGE IVI 1.2 1.6 MC34064, MC33064 FIGURE 7 - LOW VOLTAGE MICROPROCESSOR RESET + Power Supply E A time delayed reset can be accomplished with the addition of CDly. tDl Y ~ R CDlY in ( 1 _ VthlMPUI 1 ) Vin FIGURE 8 - VOLTAGE MONITOR FIGURE 9 - + 1.0 k + Power SOLAR POWERED BATTERY CHARGER 2 (21 Supply 11 (11 I I ___ J FIGURE 10 - Vin ~ 11.5 V to 14.5 V LOW POWER SWITCHING REGULATOR MPSW5,.1_A__-rv--",-v'-- ~ :> E e:: E 2.5 V 2.0 V 1.0 ",S/DiV 1.0 ""IDlV FIGURE 5 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY 100 " , .......... 0", . . . . .dain RL = lOOK TA = 25°C "'- ......... I......... i""-.. 0 '" i""-.. 1.0K FIGURE 7 - 10K lOOK f, FREQUENCY (Hzl I o ~ F .4 ~ '1 ~ II/ ~ O. 31--TA = 25oC ""I 90 ~ w W z '" ~'" I ' irA = 120 ::3 o. 2 JII 15 !z I- TA - 125°'L 1 1'\ Phase \ 150<§. l'.. .\ -20 100 i ew I.......... f-V~C =1 15V 9 o. 5 30 60 nl 0 10 O. 6 ~ - .......... I......... tOM 1\.\1 80 10M REFERENCE VOLTAGE CHANGE a~ O. 1 } 0 r--..... .0 II 'I ........ "1--. 2 6 0 b- 6.0 7.0 REFERENCE SHORT CIRCUIT CURRENT versus TEMPERATURE l 0r----..b.., ....... r---.. .0 2.0 3.0 4.0 5.0 Vo, ERROR AMP OUTPUT VOLTAGE (VI 1.0 FIGURE 8 - V~C = 15V -55°C I I III versus SOURCE CURRENT 0 ........ CURRENT SENSE INPUT THRESHOLD versus ERROR AMP OUTPUT VOLTAGE JCC ='15/ 'Vo = 1.5Vto2.5V_ .......... 0 FIGURE 6 - ~ TA = -55°( TA = 25°C VCc 15V RL'" o.ln- ~ ~ .... ~ ........... TA = 125°C 0 -24 o 20 40 60 80 100 I,ef, REFERENCE SOURCE CURRENT (mAl 120 -25 o 25 50 75 TA, AMBIENT TEMPERATURE (OCI MOTOROLA LlNEA.R/INTERFACE DEVICES 3-249 100 125 II .. nnC34065,nnC33065 FIGURE 9 - REFERENCE LOAD REGULATION FIGURE 10 - ~ REFERENCE LINE REGULATION ~ ~ c ~ E ti '" ~ ~ ~ '"::e z :]I! :I: U U ~ ~ ~ ~ ~ ~ l- I- ~ ::::l ~ ::::l 0 0 ~ 6 :;; 1.0mslOIV 1.0mslDlV FIGURE 11 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT 0 ~ ~ ~ -1.0 ~ ,1!- I r-... z o TA 1 ~ I TA 25'C 55'C L I ::::l ~ U) I- 2.0 TA o 1.0 J 0 OUTPUT WAVEFORM VCC=15V Source Saturation VCc--(Load to Ground) -BO p.s Pulsed Load 120 Hz Rate ~ -2.0 ~ FIGURE 12 - .- I I 55'C I frA = 25'C V I I ......-1' 200 FIGURE 13 - n- Gnd Sink Saturation_ (Load to Vcc) 400 600 10, OUTPUT LOAD CURRENT (rnA) BOO 50 nsiDIV OUTPUT CROSS·CONDUCTION FIGURE 14 - 32 SUPPLY CURRENT versus SUPPLY VOLTAGE B.2~ , -RT'= CT = 3.3 nF 24 -VFB1,2 = OV Current Sense 1,2 = 0 V ~ -TA = 25'C 1 ~ a I I V 16 ~ It iil ~ 8.0 0 4.0 MOTOROLA LINEAR/INTERFACE DEVICES 3·250 B.O 12 Vcc, SUPPLY VOLTAGE (V) 16 20 MC34065, MC33065 OPERATING DESCRIPTION The Error Amp output (Pin 5, 12) is provided for external loop compensation. The output voltage is offset by two diode drops (=1.4 V) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no pulses appear at the Drive Output (Pin 7, 10) when the error amplifier output is at its lowest state (VoU. This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 20, 21). The minimum allowable Error Amp feedback resistance is limited by the amplifier's source current (0.5 mAl and the output voltage (VDH) required to reach the comparator's 0.5 V clamp level with the inverting input at ground. This condition happens during initial system startup or when the sensed output is shorted: The MC34065 series are high performance, fixed frequency, dual channel current mode controllers specifically designed for Off-Line and DC to DC converter applications. These devices offer the designer a cost effective solution with minimal external components where independent regulation of two power converters is required. The Representative Block Diagram is shown in Figure 15. Each channel contains a high gain error amplifier, current sensing comparator, pulse width modulator latch, and totem pole output driver. The oscillator, reference regulator, and undervoltage lockout circuits are common to both channels. Oscillator The unique oscillator configuration employed features precise frequency and duty cycle control. The frequency is programmed by the values selected for the timing components RT and CT. Capacitor CT is charged and discharged by an equal magnitude internal current source and sink, generating a symmetrical 50 percent duty cycle waveform at Pin 2. The oscillator peak and valley thresholds are 3.5 V and 1.6 V respectively. The source/sink current magnitude is controlled by resistor RT. For proper operation over temperature it must be in the range of 4.0 kO to 16 kO as shown in Figure 1. As CT charges and discharges, an internal blanking pulse is generated that alternately drives the center inputs of the upper and lower NOR gates high. This, in conjunction with a precise amount of delay time introduced into each channel, produces well defined nonoverlapping output duty cycles. Output 2 is enabled while CT is charging, and Output 1 is enabled during the discharge. Figure 2 shows the Maximum Output Duty Cycle versus Oscillator Frequency. Note that even at 500 kHz, each output is capable of approximately 44% on-time, making this controller suitable for high frequency power conversion applications. In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal as shown in Figure 17. For reliable locking, the free-running oscillator frequency should be set about 10% less than the clock frequency. Referring to the timing diagram shown in Figure 16, the rising edge of the clock signal applied to the Sync input, terminates charging of CT and Drive Output 2 conduction. By tailoring the clock waveform symmetry, accurate duty cycle clamping of either output can be achieved. A circuit method for this, and multi unit synchronization, is shown in Figure 18. R - 3.0 (0.5 V) + 1.4 V _ 5800 0 f(MIN) 0.5 mA Current Sense Comparator and PWM Latch The MC34065 operates as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by'the Error Amplifier output. Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator-PWM Latch configuration used ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting a groundreferenced sense resistor RS in series with the source of output switch Q1. This voltage is monitored by the Current Sense Input (Pin 6, 11) and compared to a level derived from the Error Amp output. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 5, 12 where: I _ V(Pin 5, 12) - 1.4 V pk 3 RS Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 0.5 V. Therefore the maximum peak switch current is: Ipk(max) = 0.5 V AS When designing a high power switching regulator it may be desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 19. The two external diodes are used to compensate the internal diodes, yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the Ipk(max) clamp voltage. A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RCfilter on the Current Sense input with a time constant that approximates,!tie spike duration will usually eliminate the instability; refer to Figure 24. ~ . Error Amplifier Each channel contains a fully-compensated Error Amplifier with access to the inverting input and output. The amplifier features a typical dc voltage gain of 100 dB, and a unity gain bandwidth of 1.0 MHz with 71 degrees of phase margin (Figure 5). The non-inverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input through a resistor divider. The maximum input bias current is -1.0 IJ.A which will cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance. ./ MOTOROLA LINEAR/INTERFACE DEVICES 3-251 • MC34065, MC33065 FIGURE 15 - REPRESENTATIVE BLOCK DIAGRAM a Current Sense 1 AS Compensation 1 o-If--+-- Drive Output 2 Voltage Feedback 2 13 Current Sense 2 . 12L 0-;-1--,--, ____ = Gnd 8 RS D'~~---- Compensation 2 1d 91 ~ Sink Only ~ = Positive True Logic - FIGURE 16 - TIMING DIAGRAM I I I I I I r--;--,--;---.--,--;--,--;r--r--,--,--, I I I I I UJL Sync Input Capacitor CT Latch 1 "Set" Input Current Sense 1 Latch 1 "Reset" Input Drive Output 1 Drive Output 2 Enable Latch 2 "Set" Input I I I I I I I I I I I I I I I -;:::::::::;;:==~I I I I I I I I I I I I I I I I Compensation 2 ......... Current Sense 2 Drive Output 2 Latch 2 "Reset" Input MOTOROLA LINEAR/INTERFACE DEVICES 3-252 MC34065, MC33065 Undervoltage Lockout Two Undervoltage Lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stages are enabled. The positive power supply terminal (VCC) and the reference output (Vref) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The VCC comparator upper and lower thresholds are 14 V and 10 V respectively. The hysteresis and low start-up current makes these devices ideally suited to off-line converter applications where efficient bootstrap startup techniques are required (Figure 28). The Vref comparator disables the Drive Outputs until the internal circuitry is functional. This comparator has upper and lower thresholds of 3.6 V and 3.4 V. A 17 V zener is connected as a shunt regulator from VCC to ground. Its purpose is to protect the IC and power MOSFET gate from excessive voltage that can occur during system start-up. The guaranteed minimum operating voltage after turn-on is 11 V. A separate Drive Ground pin is provided and, with proper implementation, will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the Ipk(max) clamp level. Figure 23 shows the proper ground connections required for current sensing power MOSFET applications. Drive Output 2 Enable Pin This input is used to enable Drive Output 2. Drive Output 1 can be used to control circuitry that must run continuously such as volatile memory and the system clock, or a remote controlled receiver, while Drive Output 2 controls the high power circuitry that is occasionally turned off. Reference The 5.0 V bandgap reference is trimmed to ± 2.0% tolerance at T J = 25°C. The reference has short circuit protection and is capable of providing in excess of 30 mA for powering any additional control system circuitry. Drive Outputs and Drive Ground Each channel contains a single totem-pole output stage that is specifically designed for direct drive of power MOSFET's. The Drive Outputs are capable of up to ± 10 A peak current and have a typical rise and fall times of 28 ns with a 1.0 nF load. Internal circuitry has been added to keep the outputs in a sinking mode whenever an Undervoltage Lockout is active. This characteristic eliminates the need for an external pull-down resistor. Cross-conduction current in the totem-pole output stage has been minimized for high speed operation, as shown in Figure 13. The average added power due to cross-conduction with VCC = 15 V is only 60 mW at 500 kHz. Although the Drive Outputs were optimized for MOSFETs, they can easily supply the negative base current required by bipolar NPN transistors for enhanced turn-off (Figure 25). The outputs do not contain internal current limiting, therefore an external series resistor may be required to prevent the peak output current from exceeding the ± 1.0 A maximum rating. The sink saturation (VoLl is less than 0.4 V at 100 mAo FIGURE 17 - External Sync Input Design Considerations Do not attempt to construct the converter on wirewrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulsewidth jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with low current signal and high current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors (0.1 J.LF) connected directly to VCC and Vref may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage-divider should be located close to the IC and as far as possible.from the power switch and other noise generating components. FIGURE 18 - EXTERNAL DUTY CYCLE CLAMP AND MULTI UNIT SYNCHRONIZATION EXTERNAL CLOCK SYNCHRONIZATION 220 pF n.....J /....,t-t----='<>i'--t---~....,.'W" .JlJL The external diode clamp is required jf the negative Sync current is greater than - 5.0 rnA. Dmax Drive Output 1 = RA R! RS MOTOROLA LINEAR/INTERFACE DEVICES 3-253 Dmax Drive Output 2 = ~ RA + RS • nnC34065, nnC33065 FIGURE 19 - ADJUSTABLE REDUCTION OF CLAMP LEVEL AGURE 20 - SOFT-START CIRCUIT Vee • RS 1.67 3 ( R,R2 ) VClam p ""-(R2 ) + 0.33 X 10Rl+R2 -+ , t5oft-Start .., 2100 C in p.F R, FIGURE 21 - Where: 0 '" VClamp '" 0.5 V ADJUSTABLE REDUCTION OF CLAMP LEVEL WITH SOFT-START FIGURE 22 - MOSFET PARASITIC OSCILLATIONS Vee RS Where: 0 "" VClamp .. 0.5 V . 1.67 VClamp""-- (~+ FIGURE 23 - 1) Ipk(maX)""~ Series gate resistor Rg may be needed to damp high frequency parasitic oscillations cliused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. Rg . will decrease the MOSFET switching speed. Schottky diode 01 is required if circuit ringing drives the output pin below ground. -(-')~ lSoft-Start - In 1 _ ~ C R, +R2 3VClamp CURRENT SENSING POWER MOSFET FIGURE 24 - CURRENT WAVEFORM SPIKE SUPPRESSION Vee Power Ground: To Input Source Return VPin 6 = • Control Circuitry Ground: To Pin 8 RS lf4W ~;;~:~~I~S If: SENSEFET = MTP10Nl0M RS ... 200 Then: VPin 6 = O.0751pk The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform. Virtually 10ssle88 current sensing can be achieved with the implementation of a SENSEFET power switch. For proper oper- ation during over current conditions. 8 reduction of the r,k~r;;~xi1~lamp level must be implemented. Refer to Figures MOTOROLA LINEAR/INTERFACE DEVICES 3-254 MC34065, MC33065 FIGURE 25 - BIPOLAR TRANSISTOR DRIVE FIGURE 26 - ISOLATED MOSFET DRIVE Vee 11K The totem-pole outputs can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C1. FIGURE 27 - I pk =~(~) 3RS NS DUAL CHARGE PUMP CONVERTER VCC=15V 16 1-47 Output Load Regulation 101mA) +Vo IV) -Vo IV) o 29.8 28.3 27.9 27.5 24.4 - 14.7 - 13.4 - 12.9 - 12.5 -9.5 1.0 5.0 10 50 The capacitor is equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor may be required when using tantalum or other low ESR capacitors. The positive output can provide excellent line and load regulation bV connecting the R2/Rl resistor divider as shown. MOTOROLA LINEAR/INTERFACE DEVICES 3-255 II II ~ C') W ~ 0 G) FIGURE 28 - !J1 125 WATT OFF-LINE CONVERTER ~ 10n Cold C') W W 0 en U'I 56 k ~ 0 -I + '0 k 9.0 V/20D rnA '0 ;;::; 0 9.0 V RTN :JJ 0 r » '00 VI1.0 A r Z m 't' I\) ~ » :JJ -- ~ Z ,~'~ 1 ' 0 '00 V RTN ~ '2 V/1.0 A MURll0 -I m :JJ ;x:::::: "T1 » n +.0 ± 2.4 k '2 V RTN ~-'2VI1.0A m 0 m < n m en Primary: 156 Turns, #34 Primary: 56 Turns, #23 AWG (2 strands) Bifiliar Wound Secondary ::t: 12 V: 4 Turns. #23 AWG (4 strandsl AWG Quadfiliar Wound T1 - 468 ,u.H per section at 2.5 A, Coilcraft E3496A. * T2 1.0 k Primary Feedback: 19 Turns, 10 k -_ -:;:-8 - t£l1 9 - - - P _J "1'470 F #34AWG 0.' Secondary: 17 Turns, #28 AWG Core: TDK H7C1EE22-Z Bobbin: BE22-6H Gap: =0.001" for a primary inductance of 6.8 mH T3 - Secondary 100 V: 32 Turns, #23 AWG (2 strandsl Bifiliar Wound Core: Ferroxcube EEC 4O-3C8 Bobbin: Ferroxcube 4O-1112CP Gap: =0.030" for a primary inductance of 212 JLH L1, L3, L4-25"H at 1.0 A, Coilcraft Z7157. L2 -1 a JLH at 3.0 A, Coilcraft PCV-0-010-03. MC34065, MC33065 PIN FUNCTION DESCRIPTION Pin # Description Function 1 Sync Input A narrow rectangular waveform applied to this input will synchronize the Oscillator. A de voltage 2 eT Timing capacitor CT connects from this pin to ground setting the free-running Oscillator fre- 3 RT Resistor RT connects from this pin to ground precisely setting the charge current for CT. RT must be between 4.0 k and 16 k. 4 Voltage Feedback 1 This pin is the inverting input of Error Amplifier 1. It is normally connected to the switching within the range of 2.4 V to 5.5 V will inhibit the Oscillator. quency range. power supply output through a resistor divider. 5 Compensation 1 This pin is the output of Error Amplifier 1 and is made available for loop compensation. 6 Current Sense 1 A voltage proportional to the inductor current is connected to this input. PWM 1 uses this 7 Drive Output 1 This pin directly drives the gate of a power MOSFET Ql. Peak currents up to 1.0 A are sourced and sinked by this pin. information to terminate conduction of output switch 01. 8 Gnd This pin is the control circuitry ground return and is connected back to the source ground. S Drive Gnd This pin is a separate power ground return that is connected back to the power source. It is 10 Drive Output 2 This pin directly drives the gate of a power MOSFET Q2. Peak currents up to 1.0 A are sourced and sinked by this pin. 11 Current Sense 2 A voltage proportional to inductor current is connected to this input. PWM 2 uses this information to terminate conduction of output switch Q2. 12 Compensation 2 This pin is the output of Error Amplifier 2 and is made available for loop compensation. 13 Voltage Feedback 2 This pin in the inverting input of Error Amplifier 2. It is normally connected to the switching 14 Drive Output 2 Enable A logic low at this input disables Drive Output 2. 15 Vref This is the 5.0 V reference output. It can provide bias for any additional system circuitry. 16 Vee This pin is the positive supply of the control Ie. The minimum operating voltage range after start-up is 11 V to 15.5 V. used to reduce the effects of switching transient noise on the control circui~ry. power supply output through a resistor divider. MOTOROLA LINEAR/INTERFACE DEVICES II II ® MC34129 MC33129 MOTOROLA Advance Information HIGH PERFORMANCE CURRENT MODE CONTROLLER HIGH PERFORMANCE CURRENT MODE CONTROLLER The MC34129 series are high performance current mode switching regulators specifically designed for use in low power digital telephone applications. These integrated circuits feature a unique internal fault timer that provides automatic restart for overload recovery. For enhanced system efficiency, a starVrun comparator is included to implement bootstrapped operation of VCC. Other functions contained are a temperature compensated reference, reference amplifier, fully accessible error amplifier, sawtooth oscillator with sync input, pulse width modulator comparator, and a high current totem pole driver ideally suited for driving a power MOSFET. Also included are protective features consisting of soft-start, undervoltage lockout, cycle-by-cycle current limiting, adjustable dead time, and a latch for single pulse metering. Although these devices are primarily intended for use in digital telephone systems, they can be used cost effectively in many other applications. SILICON MONOLITHIC INTEGRATED CIRCUIT ... P SUFFIX PLASTIC PACKAGE CASE 646-06 DSUFFIX PLASTIC PACKAGE CASE 751A·02 50·14 • Current Mode Operation to 300 kHz • Automatic Feed Forward Compensation • Latching PWM for Cycle-By-Cycle Current Limiting • Continuous Retry after Fault Timeout • Soft-Start with Maximum Peak Switch Current Clamp • Internally Trimmed 2% Bandgap Reference • High Current Totem Pole Driver • Input Undervoltage Lockout PIN CONNECTIONS • Low Start-Up and Operating Current • Direct Interface with Motorola SENSEFET Products Drive Output 1 13 Start/Run Output Drive Ground 2 SIMPLIFIED BLOCK DIAGRAM Ramp Input 3 IStartlRun,Output svnC/II~~~! 4 11 Feedback! PWM Input 10 Error Amp Inverting Input RTICT 5 9 Error Amp Non-Inverting Input 8 Vref1.25V Gnd, '------' (Top Viewl 7 Vref 2.5 V 0-''-----< Non-Inverting Input Inverting Input ORDERING INFORMATION '---:..:0 Feedback! PWM Input Drive Out Device MC34129D Drive Gnd Sync/Inhibit 0-4:......._ _---' Input L..._ _ _ _ _ __"<> Ramp Input MC34129P o to o to +70'C +7O'C Package SO-14 Plastic DIP Plastic DIP MC33129D -40 to +8S'C SO-14 Plastic DIP MC33129P -40 to +8S'C Plastic DIP This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-258 Temperature Range MC34129, MC33129 MAXIMUM RATING Rating Symbol Value Unit IZ(VCC) 50 mA IZ(StartJRun) 50 mA VCC Zener Current StartJRun Output Zener Current - Analog Inputs (Pins 3, 5, 9, 10, 11, 12) -0.3 to 5.5 V V Sync Input Voltage Vsvnc -0.3 to VCC Drive Output Current, Source or Sink IDRV 1.0 A Current, Reference Outputs (Pins 6, B) Iref 20 mA PD ROJA 552 145 mW °CIW PD ROJA BOO 100 mW °CIW Operating Junction Temperature TJ +150 °C Operating Ambient Temperature MC34129 MC33129 TA Power Dissipation and Thermal Characteristics D Suffix Package SO-14 Case 751A·02 Maximum Power Dissipation (aj TA = 70°C Thermal Resistance Junction to Air P Suffix Package Case 646-06 Maximum Power Dissipation (aj TA = 70°C Thermal Resistance Junction to Air II °C o to + 70 -40 to +B5 Storage Temperature Range -65 to + 150 TstQ ELECTRICAL CHARACTERISTICS (VCC = 10 V, TA = °C 25°e (Note II unless otherwise noted) I Characteristic Symbol I Min I Typ Max 1.250 2.500 1.275 2.625 Unit REFERENCE SECTIONS Reference Output Voltage, TA = 25°C 1.25 V Ref., Il = 0 mA 2.50 V Ref., Il = 1.0 mA Vre! Reference Output Voltage, TA = Tlow to Thigh 1.25 V Ref., Il = 0 mA 2.50 V Ref., Il = 1.0 mA Vref V 1.225 2.375 V - 1.200 2.250 line Regulation (Vce = 4.0 V to 12 V) 1.25 V Ref., Il = 0 mA 2.50 V Ref., Il = 1.0 mA Regline load Regulation 1.25 V Ref., Il = -10to+500/-,A 2.50 V Ref., Il = -0.1 to +1.0 mA Regload - 1.300 2.750 - 2.0 10 12 50 - - 1.0 3.0 12 25 - 1.5 - mV mV ERROR AMPLIFIER Input Offset Voltage (Vin = 1.25 V) TA = 25°C TA = Tlow to ThiQh VIO Input Offset Current (Vin = 1.25 V) 110 Input Bias Current (Vin = 1.25 V) TA = 25°C TA = Tlow to Thigh liB - - - 10 - - 25 - 200 0.5 to 5.5 750 - kHz 85 80 - /-,A 1.96 0.1 2.25 0.15 - AVOl 65 87 Gain Bandwidth Product (Va = 1.25 V, f = 100 kHz) GBW 500 Power Supply Rejection Ratio (VCC = 5.0 to 10 V) PSRR 65 ISource 40 VOH VOL 1.75 I)"e for MC34t29 = -40"<: for MC33129 V dB V Output Voltage Swing High State (lSource = O~) low State (lSink = 500~) = nA dB VICR Open-loop Voltage Gain (Va = 1.25 V) Note I. Tlow - nA - Input Common-Mode Voltage Range Output Source Current (Va = 1.5 V) mV 10 Thigh = + 70°C for - MC34129 + 85°C for MC33129 MOTOROLA LINEAR/INTERFACE DEVICES 3-259 II MC34129, MC33129 ELECTRICAL CHARACTERISTICS (VCC ~ 10 V, TA ~ 25°C [Note 11 unless otherwise noted I I Characteristic Symbol I Min I Typ Max Unit PWM COMPARATOR Input Offset Voltage (Vin ~ 1.25 VI 150 275 400 mV -120 -250 I'A tPLH(lN/DRVI - Ichg 0.75 1.2 1.50 I'A VIO - 15 40 mV VOL - 0.15 0.225 V tDLY 200 400 600 I's - mV VIO Input Bias Current liB Propagation Delay, Ramp Input to Drive Output 250 - ns SOFT-START Capacitor Charge Current (Pin 12 ~ 0 VI Buffer Input Offset Voltage (Vin ~ 1.25 VI Buffer Output Voltage (ISink ~ 1OOl'AI FAULT TIMER Restart Delay Time START/RUN COMPARATOR Threshold Voltage (Pin 121 Vth - 2.0 Threshold Hysteresis Voltage (Pin 121 VH - 350 VOL 9.0 10 10.3 V - 0.4 2.0 I'A (VCC + 7.61 - V Output Voltage (lSink ~ 500 I'AI Output Off-State Leakage Current (VOH ~ 15 VI IS/R(leakl Output Zener Voltage (lz ~ 10 mAl Vz V OSCILLATOR Frequency (RT ~ 25.5 kO, CT ~ 390 pFI Capacitor CT Discharge Current (Pin 5 ~ 1.2 VI fOSC 80 100 120 kHz Idischq 240 350 460 I'A 40 15 125 35 32 50 Sync Input Current High State (Vin ~ 2.0 VI Low State (Vin ~ 0.8 VI IIH IlL Sync Input Resistance Rin I'A 12.5 kll --~ DRIVE OUTPUT Output Voltage High State (ISource ~ 200 mAl Low State (lSink ~ 200 mAl V Low State Holding Current Output Voltage Rise Time (CL Output Voltage Fall Time (CL ~ ~ 500 pFI 500 pFI Output Pull-Down Resistance 8.9 1.4 1.8 IH - 225 - I'A tr - 100 - ns tf - 30 - ns 100 225 350 kfl RpD 8.3 UNDERVOLTAGE LOCKOUT Start-Up Threshold Hysteresis TOTAL DEVICE Power Supply Current RT ~ 25.5 kll, CT ~ 390 pF, CL ~ 500 pF Power Supply Zener Voltage (IZ ~ 10 mAl Note 1. Tlow --0 - aoc for MC34129 _. 40°C for MC33129 + 85"C for MC33129 MOTOROLA LINEAR/INTERFACE DEVICES 3-260 - - VOH VOL MC34129, MC33129 AGURE 1 - 11MING RESISTOR versus OSCILLATOR FREQUENCY FIGURE 2 - OUTPUT DEAD-11ME versus OSCILLATOR FREQUENCY 1.0M 100Ir = 10V= 25°C VCC TA 500K ...... '" K' I'... i"-... CT '" "C K ...... ----r-c ~ o 50 50 nF ~ o ~~J=t~l Tf= / 20 >- ...... ~ f--l+ / / / ./ 5°~F2~0Fl00 pF pF P'l' IA" q= / 1 -I i . / ./ >- z K I'... 20K 10 AGURE 3 - ~ '" " f-1.0 n 500 Pfr-2OO 20 50 100 fose, OSCILLATOR FREOUENCY IkHzl t; ~ 0° Pf'OO~~-+200 ........ ~ ~ V 2,0 500 Vee ~ 10 V_ RT ~ 25.5k CT ~ 39{) pF- 8.0 4.0 L V OSCILLATOR FREQUENCY CHANGE versus TEMPERATURE ;z 1. u 5.0 ~ r r CTlm~ r- 2jOn 10 K 5.0 ~ "- 180 10M II .. MC34129, MC33129 FIGURE 8 - RGURE 7 - ERROR AMP OPEN·LOOP DC GAIN versus LOAD RESISTANCE 1. 0 90 ~ z ;;: 80 V '"w '"a~ > ~ it' a v w ~ ~ PinsSto 9. 6to 10 Pins 2. 5. 7 to Gnd . 25°C ~ a ~ w ~ 60 80 ~ o.2 J oV ~ 100 1.0 ~ w '"~ « 0 > ;z 0 FIGURE 10 3.2 I ~ « ~ ~ 0 tj >::> V) I >- J ~ V 0.2 0.8 100 200 300 ISink. OUTPUT SINK CURRENT I/LAI 400 o 500 ~ w ""'- ........... "\. ..;::::-- ~ / 4.0 8.0 VCC. SUPPLY VOLTAGE IVI ...... '" -4.0 ::i' is ~ :::,... TA o ~ w 10V ......... -8.0 -12 ~ VCC Vref 1.25 V. RL ~ '" -~"C\ - "':::...~Joc- - ~ ~ ~ 1\ \ \ 2.0 4.0 6.0 8.0 Iref. REFERENCE OUTPUT SOURCE CURRENT ImAI \ ~ 5 :=::> \ \ -12 TA ........ ~ -4O"C VCC 10 V "\. \ 1\ \ I- 25"C\- 85"C\ e-- \ ~ -16 u ~ \ ~ -8.0 1 -S5°C o 16 12 FIGURE 12 - 2.5 V REFERENCE OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT FIGURE 11-1.25 V REFERENCE OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT ;z ~ f. (/ > o lj - 4.0 ~ 1.6 ~ o 25°C / / >- ~ ~ ~ Vref 2.5 V. RL - 2.5 k 2.4 0 !;;( 0.4 0 TA > 0.6 ::> ::> 8.0 REFERENCE OUTPUT VOLTAGE versus SUPPLY VOLTAGE ~ Pins Sto 9 Pins 2. 5. 7. 10. 12 to Gnd TA ~ 25°C O.S V 2.0 4.0 6.0 ISink. OUTPUT SINK CURRENT (mAl SOFT·START BUFFER OUTPUT SATURATION versus SINK CURRENT VCCI~ lOJ ./ -- 0, 4 RL. OUTPUT LOAD RESISTANCE Iklll FIGURE 9 - / 1/ o TAI~ 25°~ I ~TA ~ ~ VCC ~ 10 V Vo ~ 1.25V RL to 1.25 Vref_ o ~ ::> ~ 50 O.S ~ ~ O.6 I 60 ~vcci ~ 10 v' ~ / I 70 a"- ERROR AMP OUTPUT SATURAllON versus SINK CURRENT z , 10 ~ \ \ \ ~ -20 j-24 0 - ::> ~ o 12 25 50 75 TA, AMBIENT TEMPERATURE I CI 100 Ft 125 Vcc r-- ~ - '" ~> -2.0 Source Saturation (Lold to Gratndl z o ~ -3.0 ~ 3.0 ~_ 2.0 ::> o ~ >' 1.0 o a - !---- I __ -+-- ......... r-- FIGURE 17 10 800 1.0 JLs!DIV SUPPLY CURRENT versus SUPPLY VOLTAGE R~ ~ 1 255 k CT ~ 390 pF 8.0 r---TA - 25'C r--- .E. >- z ~ ~ 6.0 3 ~ ~ ~ 4.0 CL 2.0 JJ 500 pF -,; CL / 15pF o o 4.0 8.0 12 Vee, SUPPLY VOLTAGE (VI MOTOROLA LINEAR/II\lTERFACE DEVICES 3-263 ......... ""- 16 " "'" '\. "'"'\. '\ I DRIVE OUTPUT WAVEFORM ....... 2.625 V i'--. r--.. 75 25 50 TA, AMBIENT TEMPERATURE I CI FIGURE 16 - 600 ~ r----.. 10 V 2.5k RL 25 e *Vref at TA f". Gnd 200 400 10, OUTPUT LOAD CURRENT (mAl "" ..~ Vcc vcc l1OV 25"C TA - Sink Saturation (Load to Vcci '" I - - - .. 25 FIGURE 15 - DRIVE OUTPUT SATURATION versus LOAD CURRENT 0 :;; :;; -1.0 / I ~ V 25'C I 2.500 V ,------'Vref /'" / 7 ~ ~ / ........... ,/' j/ ,9 S; 'Vref ~ I 0 "" '."'-" "'-"" a -25 ........... x I .~ 2.375 ............ ~ ........... /' 'V re! at TA 2.5 V REFERENCE OUTPUT VOLTAGE versus TEMPERATURE .......-·Vref ~ 1.175V /--- "- II u j / FIGURE 14 - 100 \ \ 125 11 .. MC34129, MC33129 PIN FUNCTION DESCRIPTION Pin No. Function Description 1 Drive Output This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sinked by this pin . 2 Drive G rou nd This pin is a separate power ground return that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. 3 Ramp Input A voltage proportional to the inductor current is connected to this input. The PWM uses this information to terminate output switch conduction. 4 Sync/Inhibit Input A rectangular waveform applied to this input will synchronize the Oscillator and limit the maximum Drive Output duty cycle. A dc voltage within the range of 2.0 V to VCC will inhibit the controller. 5 RT/CT The free-running Oscillator frequency and maximum Drive Output duty cycle are programmed by connecting resistor RT to Vref 2.5 V and capacitor CT to Ground. Operation to 300 kHz is possible. 6 Vref 2.50 V This output is derived from Vref 1.25 V. It provides charging current for capacitor CT through resistor RT. 7 Ground This pin is the control circuitry ground return and is connected back to the source ground. S Vref 1.25 V This output furnishes a voltage reference for the Error Amplifier Non-Inverting Input. 9 Error Amp Non-Inverting Input This is the non-inverting input of the Error Amplifier. It is normally connected to the 1.25 V reference. 10 Error Amp Inverting Input This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. 11 FeedbacklPWM Input This pin is available for loop compensation. It is connected to the Error Amplifier and Soft-Start Buffer outputs, and the Pulse Width Modulator input. 12 CSoft-Start A capacitor CSoft-Start is connected from this pin to Ground for a controlled ramp-up of peak inductor current during start-up. 13 Start/Run Output This output controls the state of an external bootstrap transistor. During the start mode, operating bias is supplied by the transistor from Yin. In the run mode, the transistor is switched off and bias is supplied by an auxiliary power transformer winding. 14 VCC This pin is the positive supply of the control IC. The controller is functional over a minimum VCC range of 4.2 V to 12 V. MOTOROLA LINEAR/INTERFACE DEVICES 3-264 MC34129, MC33129 OPERATING DESCRIPTION The MC34129 series are high performance current mode switching regulator controllers specifically designed for use in low power telecommunication applications. Implementation will allow remote digital telephones and terminals to shed their power cords and derive operating power directly from the twisted pair used for data transmission. Although these devices are primarily intended for use in digital telephone systems, they can be used cost effectively in a wide range of converter applications. A representative block diagram is shown in Figure 18. lowest state. This occurs at the beginning of the softstart interval or when the power supply is operating and the load is removed. The peak inductor current under normal operating conditions is controlled by the voltage at Pin 11 where: I _ V(Pin 11) - 0.275 V RS pk Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the voltage at Pin 11 will be internally clamped to 1.95 V by the output of the Soft-Start Buffer. Therefore the maximum peak switch current is: OSCILLATOR The oscillator frequency is programmed by the values selected for the timing components RT and CT. Capacitor CT is charged from the 2.5 V reference through resistor RT to approximately 1.25 V and discharged by an internal current sink to ground. During the discharge of CT, the oscillator generates an internal blanking pulse that holds the lower input of the NOR gate high. This causes the Drive Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows Oscillator Frequency versus RT and Figure 2, Output Deadtime versus Frequency, both for given values of CT. Note that many values of RT and CT will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. In many noise sensitive applications it may be desirable to frequency-lock one or more switching regulators to an external system clock. This can be accomplished by applying the clock signal to the Sync!lnhibit Input. For reliable locking, the free-running oscillator frequency should be about 10% less than the clock frequency. Referring to the timing diagram shown in Figure 19, the rising edge of the clock signal applied to the Sync/Inhibit Input, terminates charging of CT and Drive Output conduction. By tailoring the clock waveform, accurate duty cycle clamping of the Drive Output can be achieved. A circuit method is shown in Figure 20. The Sync/Inhibit Input may also be used as a means for system shutdown by applying a dc voltage that is within the range of 2.0 V to VCC. I _ 1.95 V - 0.275 pk(max) RS = 1.675 V AS When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method which adjusts this voltage in discrete increments is shown in Figure 22. This method is possible because the Ramp Input bias current is always negative (typically - 120 }LA). A positive temperature coefficient equal to that of the diode string will be exhibited by Ipk(max)' An adjustable method that is more precise and temperature stable is shown in Figure 23. Erratic operation due to noise pickup can result if there is an excessive reduction of the clamp voltage. In this situation, high frequency circuit layout techniques are imperative. A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Ramp Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 25. ERROR AMP AND SOFT-START BUFFER A fully-compensated Error Amplifier with access to both inputs and output is provided for maximum design flexibility. The Error Amplifier output is common with that of the Soft-Start Buffer. These outputs are opencollector (sink only) and are ORed together at the inverting input of the PWM Comparator. With this configuration, the amplifier that demands lower peak inductor current dominates control of the loop. Soft-start is mandatory for stable start-up when power is provided through a high source impedance such as the long twisted pair used in telecommunications. It effectively removes the load from the output of the switching power supply upon initial start-up. The Soft-Start Buffer is configured as a unity gain follower with the noninverting input connected to Pin 12. An internal 1.0 }LA PWM COMPARATOR AND LATCH The MC34129 operates as a current mode controller whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches a threshold level established by the output of the Error Amp or Soft-Start Buffer (Pin 11). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The PWM Comparator-Latch configuration used, ensures that only a single pulse appears at the Drive Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground-referenced resistor RS in series with the source of output switch 01. The Ramp Input adds an offset of 275 mV to this voltage to guarantee that no pulses appear at the Drive Output when Pin 11 is at its MOTOROLA LINEAR/INTERFACE DEVICES 3-265 • • MC34129, MC33129 FIGURE 18 - REPRESENTATIVE BLOCK DIAGRAM r-----------------------------------------------------------,Sta~Aun Vin = 20 V Output Vee 12 CSoft-Start 9 Non-Inverting ..-;::f-----1f-O Input 2.5 V Reference 1.25 V 10 Inverting f----f-O Input =-;:-;;,-,--0-+-------,=:---+-0 FeedbacklPWM 11 Input Buffer Latch A Drive Output art---------4 Oscillator I--~.,S -= Ramp Input 32 k Sync/Inhibit Input Drive Gnd AS ~ _ Sink Only ---{;.7" - Positive True Logic FIGURE 19 - TIMING DIAGRAM Sync/Inhibit Input ~ Capacitor CT u----L latch "Set" Input Ramp Input ...... Latch "Reset" Input Drive Output Sta~Aun ~~ J"------'"------'L---L~L--------''_____Ln l _IL / L_ _- ' 'L I - - 20 V.... - - - - - - - - - - - - - , Output -I', L _______________ 14.3 V"" MOTOROLA LINEAR/INTERFACE DEVICES 3-266 J MC34129, MC33129 OPERATING DESCRIPTION (continued) The output off-state is clamped to VCC + 7.6 V by the internal zener and PNP transistor base-emitter junction. current source charges the soft-start capacitor (CSoftStart) to an internally clamped level of 1.95 V. The rate of change of peak inductor current, during start-up, is programmed by the capacitor value selected. Either the Fault Timer or the Undervoltage Lockout can discharge the soft-start capacitor. DRIVE OUTPUT AND DRIVE GROUND The MC34129 contains a single totem-pole output stage that was specifically designed for direct drive of power MOSFETs. It is capable of up to :±: 1.0 A peak drive current and has a typical fall time of 30 ns with a 500 pF load. The totem-pole stage consists of an NPN transistor for turn-on drive and a high speed SCR for turn-off. The SCR design requires less average supply current (ICC) when compared to conventional switching control IC's that use an all NPN totem-pole. The SCR accomplishes this during turn-off of the MOSFET, by utilizing the gate charge as regenerative on-bias. whereas the conventional all transistor design requires continuous base current. Conversion efficiency in low power applications is greatly enhanced with this reduction of ICC. The SCR's low-state holding current (IH) is typically 225 p.A. An internal 225 k!l pull-down resistor is included to shunt the Drive Output off-state leakage to ground when the Undervoltage Lockout is active. A separate Drive Ground is provided to reduce the effects of switching transient noise imposed on the Ramp Input. This feature becomes particularly useful when the Ipk(max) clamp level is reduced. Figure 24 shows the proper implementation of the MC34129 with a current sensing power MOSFET. FAULT TIMER This unique circuit prevents sustained operation in a lockout condition. This can occur with conventional switching control IC's when operating from a power source with a high series impedance. If the power required by the load is greater than that available from the source, the input voltage will collapse, causing the lockout condition. The Fault Timer provides automatic recovery when this condition is detected. Under normal operating conditions, the output of the PWM Comparator will reset the Latch and discharge the internal Fault Timer capacitor on a cycle-by-cycle basis. Under operating conditions where the required power into the load is greater than that available from the source (Vin), the Ramp Input voltage (plus offset) will not reach the comparator threshold level (Pin 11), and the output of the PWM Comparator will remain low. If this condition persists for more than 600 p.s, the Fault Timer will activate, discharging CSoft-Start and initiating a soft-start cycle. The power supply will operate in a skip cycle or hiccup mode until either the load power or source impedance is reduced. The minimum fault timeout is 200 p.s, which limits the useful switching frequency to a minimum of 5.0 kHz. UNDERVOLTAGE LOCKOUT The Undervoltage Lockout comparator holds the Drive Output and CSoft-Start pins in the low state when VCC is less than 3.6 V. This ensures that the MC34129 is fully functional before the output stage is enabled and a soft-start cycle begins. A built-in hysteresis of 350 mV prevents erratic output behavior as Vce crosses the comparator threshold voltage. A 14.3 V zener is connected as a shunt regulator from VCC to ground. Its purpose is to protect the MOSFET gate from excessive drive voltage during system start-up. An external 9.1 V zener is required when driving low threshold MOSFETs. Refer to Figure 21. The minimum operating voltage range of the IC is 4.2 V to 12 V. STARTIRUN COMPARATOR A bootstrap start-up circuit is included to improve system efficiency when operating from a high input voltage. The output of the Start/Run Comparator controls the state of an external transistor. A typical application is shown in Figure 21. While CSoft-Start is charging, start-up bias is supplied to VCC (Pin 14) from Yin through transistor 02. When CSoft-Start reaches the 1.95 V clamp level, the Start-Run output switches low (VCC - 50 mV), turning off 02. Operating bias is now derived from the auxiliary bootstrap winding of the transformer, and all drive power is efficiently converted down from Yin. The start time must be long enough for the power supply output to reach regulation. This will ensure that there is sufficient bias voltage at the auxiliary bootstrap winding for sustained operation. tStart 1.95 V CSoft-Start 1.0 p.A REFERENCES The 1.25 V bandgap reference is trimmed to :±: 2.0% tolerance at TA = 25°C. It is intended to be used in conjunction with the Error Amp. The 2.50 V reference is derived from the 1.25 V reference by an internal op amp with a fixed gain of 2.0. It has an output tolerance of :±: 5.0% at TA = 25°C and its primary purpose is to supply charging current to the oscillator timing capacitor. 1.95 CSoft-Start in p.F The Start/Run Comparator has 350 mV of hysteresis. MOTOROLA LINEAR/INTERFACE DEVICES 3-267 II • ftnC34129,ftnC33129 FIGURE 20 - EXTERNAL DUTY CYCLE CLAMP AND MULn UNIT SYNCHRONIZATION FIGURE 21 - BOOTSTRAP START-UP J Vin 5.0 V To Additional MC34129's f = _ _'_.44 __ IRA + 2RBIC FIGURE 22 - D -~ max - RA The external 9.1 V zener is required when driving low threaholdlMOSFETs. + 2RB DISCRETE STEP REDUcnON OF CLAMP LEVEL FIGURE 23 - ADJUSTABLE REDUcnDN OF CLAMP LEVEL RS ~ -0.275 I _ 1.675 - IVFIDlI + VFID211 pklmax) RS If: RGURE 24 - CURRENT SENSING POWER MOSFET VR R~·2: ~2 ;;;. 1.0 mA RGURE 2S - Then: 'pk(max) "'" (~ + 1) RS CURRENT WAVEFORM SPIKE SUPPRESSION "'" RS· 10k. rpS(gol S rOM (on) + RS If: SENSEFET = MTP10N10M RS "" 200 Then: VRs = 0.075 Ipk Power Ground: To Input Source Return RS 1/4W Control Circuitry Ground: To Pin 1 The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform. _'---+--' Virtually lossless current sensing can be achieved with the implementation of a SENSEFET power switch. MOTOROLA LINEAR/INTERFACE DEVICES 3-268 MC34129, MC33129 AGURE 26 - MOSFET PARASITIC OSCILLATIONS FIGURE 27 - BIPOLAR TRANSISTOR DRIVE 18 Vin '~k= o . II t Base Charge Removal RS The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C1 .. FIGURE 28 - NON-ISOLATED 725 mW FLYBACK REGULATOR Vin '" 20Vto48V lN5819 t---.t--1-o 5 VI125 rnA 0.1 Gnd '--!4-.....-;:__<>Vin ~ T1: Primary'" 35T #32 AWG Feedback = , 2T #32 AWG Secondary :t 5 V = 7T #32 AWG Gap = 0.004" for lp of t80 100i 20 Vto 48 V ~H Core = Ferroxcube 813E187-3C8 Bobbin - Fertoxcube E187PCB'-8 180 II lN5819 T1tilOO :VI380m. 330 • Gnd 100 20' 1N5819 - 5 Vi20 rnA 24' MT' 128kHz Sync Conditions Test MQC5007 Results ~ Line Regulation 5 V Yin = 20 V to 40 V, lout 5 V Load Regulation 5 V Vin = 30 V. lout 5 V = 100 rnA to 380 rnA, lout -5 V Output Ripple 5 V Vin = 30 V.l out 5 V = 380 rnA. lout -5 V = 20 rnA 150 mVp-p Efficiency Vin '" 30 V, lout 5 V := 380 rnA, lout -5 V = 20 rnA 73% = 380 rnA, lout - 5 V = & 20 rnA = 1 mV 20 rnA FIGURE 30 -ISOLATED 3.0 W FLYBACK REGULATOR WITH SECONDARY SIDE SENSING L1 5 V/600 mA 51 0.1 39 12 100 4N26 ..;- 0.1 3.9 Tl431A 2.2 15 k k Return T1: Primary = 22T #1814,WG Secondary = 22T #18 AW!i Lp = 5Op.H Core = Ferroxcube 2616PA1QO-3C8 Bobbin = Ferroxcube 2616Fl0 Ll: Coilcraft Z7156, 15 Test Conditions line Regulation Vin = 8 V to 12 V,lout 600 rnA Results .6. = 1 rnV Load Regulation Vin a 12 V, lout = = 100 rnA to 600 rnA Vin = = 12 V, lout Output Ripple 600 rnA 20 mVp-p Efficiency Vin = 12 V, lout = 600 rnA 81% An economical method of achieving secondary sensing is to combine the TL431A with a 4N26 optocoupler. MOTOROLA LINEAR/INTERFACE DEVICES 3-270 ~ 8 mV ~H ® MC34160 MC33160 MOTOROLA Product Preview MICROPROCESSOR VOLTAGE REGULATORI SUPERVISORY CIRCUIT MICROPROCESSOR VOLTAGE REGULATOR AND SUPERVISORY CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUIT The MC34160 Series is a voltage regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications, offering the designer a cost effective solution with minimal external components. These integrated circuits feature a 5.0 V/100 mA regulator with short circuit current limiting, pinned out 2.6 V bandgap reference, low voltage reset comparator, power warning comparator with programmable hysteresis, and an uncommitted comparator ideally suited for microprocessor line synchronization. Additional features include a chip disable input for low standby current, and internal thermal shutdown for over temperature protection. These devices are contained in a 16 pin dual-in-line heat tab plastic package for improved thermal conduction. PSUFFIX PLASTIC PACKAGE CASE 648C·02 • 5.0 Volt Regulator Output Current in Excess of 100 mA • Internal Short Circuit Current Limiting • Pinned Out 2.6 V Reference • Low Voltage Reset Comparator • Power Warning Comparator with Programmable Hysteresis PIN CONNECTIONS • Uncommitted Comparator • Low Standby Current • Internal Thermal Shutdown Protection Comparator Inverting Input • Heat Tab Power Package Comparator Nonlnverting Input N.C. REPRESENTATIVE BLOCK DIAGRAM Vee r - -:;:- - - - - - - - --, Regulator Output Comparator Output Regulator Output Hysteresis Adjust Power Warning Power Sense (Top View) . 10 Nonlnvertlng Input Invert;ng I Inp~>+-!--+i--~~ . ". I~omp.r.tor ORDERING INFORMATION Output 11! I L=------fi,- - -----' Gnd Device Temperature Range O°C to +70°C Plastic DIP MC331 SOP - 40°C to + 8.5°C Plastic DIP 4,5, 12. 13 This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-271 Package MC341 SOP II .. MC34160, MC33160 MAXIMUM RATING Symbol Value Unit Power Supply Voltage Rating Vcc 40 V Chip Disable Input Voltage (Pin 15, Note 1) VCD -0.3 to VCC V lin -2.0 to +2.0 mA Comparator Input Current (Pin 1, 2, 9) Comparator Output Voltage (Pin 6, 7, S) Vo 40 V Comparator Output Sink Current (Pin 6, 7, 8) ISink 10 mA Power Dissipation and Thermal Characteristics Maximum Power Dissipation @ TA = 70°C Thermal Resistance Junction to Air Thermal Resistance Junction to Case (Pin 4, 5, 12, 13) Po ROJA R9JC 1000 SO 15 °CIW °CIW Operating Junction Temperature TJ +150 Operating Ambient Temperature MC34160 MC33160 TA Storage Temperature Range mW °C o to + 70 -40 to +S5 -65to +150 Tst!! °C °C ELECTRICAL CHARACTERISTICS (VCC = 30 V, 10 = 10 mA, Iref = 100 p,A) For typical values TA = 25°C, for min/max values TA is the operating ambient temperature range that applies [Notes 2 and 3] unless otherwise noted. Characteristic I Symbol I Min I Typ Max I Unit REGULATOR SECTION Vo 4.75 5.0 5.25 V Line Regulation (VCC = 7.0 V to 40 V, TA = 25°C) Regline 40 mV Regload - 5.0 Load Regulation (10 = 1.0 mA to 100 mA, TA = 25°C) 20 50 mV RR 50 65 - dB Vref 2.47 2.6 Total Output Variation (VCC = 7.0 V to 40 V, 10 = 1.0 mA to 100 mA, TA = Tlow to Thigh) Ripple Rejection (VCC = 25 V to 35 V, 10 = 40 mA, f = 120 Hz, TA = 25°C) REFERENCE SECTION Total Output Variation (VCC = 7.0 V to 40 V, 10 = 0.1 mA to 2.0 mA, TA = Tlow to Thi!!h) Line Regulation (VCC = 5.0 V to 40 V, TA = 25°C) Regline Load Regulation (10 = 0.1 mA to 2.0 mA, TA = 25°C) Re9l0ad - 2.73 V 2.0 20 mV 4.0 30 mV (VO-O.ll) (VO-0.1S) 0.07 (VO-0.05) RESET COMPARATOR Threshold Voltage High State Output (Pin 11 Increasing) Low State Output (Pin 11 Decreasing) Hysteresis VIH VIL VH V Output Sink Saturation (VCC = 4.5 V, ISink = 2.0 mAl VOL - - 0.4 V Output Off-State Leakage (VOH = 40 V) 10H - - 4.0 p,A 4.55 0.02 - Notes: 1. The maximum voltage range is - 0.3 V to Vee or + 35 V, whichever is less. 2. Tlow = O°C for MC34160 Thigh = + 70'C for MC34160 = -40'C for MC33160 = + 85'C for MC33160 3. low duty cycle pulse testing techniques are used during test to maintain junction temperature as close to ambient as possible. MOTOROLA LINEAR/INTERFACE DEVICES 3-272 I MC34160, MC33160 ELECTRICAL CHARACTERISTICS - Continued (VCC = 30 V. 10 = 10 mAo Iref = 100/LA) For typical values TA = 25°C. for minimax values TA is the operating ambient temperature range that applies [Notes 2 and 31 unless otherwise noted. I Characteristic I Symbol I Min Typ I Max Unit POWER WARNING COMPARATOR Input Offset Voltage VIO - 1.2 10 mV Input Bias Current (VPin 9 = 3.0 V) liB - - 0.5 !LA Input Hysteresis Current (VPin 9 = Vref - 100 mV) RPin 10 = 24 k RPin 10 = 00 IH 40 4.5 50 7.5 60 11 /LA 0.13 0.4 V 4.0 /LA Output Sink Saturation (lSink = 2.0 mAl VOL - Output Off-State Leakage (VOH = 40 V) 10H - - II UNCOMMITTED COMPARATOR - - 20 mV Input Hysteresis Voltage (Output Transition High to Low) IH 140 200 260 mV Input Bias Current (VPin 1.2 = 2.6 V) lIB - - -1.0 !LA Input Common-Mode Voltage Range VICR 0.6 to 5.0 - Output Sink Saturation (lSink = 2.0 mAl VOL - Output Off-State Leakage (VOH = 40 V) 10H - Chip Disable Threshold Voltage (Pin 15) High State (Chip Disabled) Low State (Chip Enabled) VIH VIL 2.5 Chip Disable Input Current (Pin 15) High State (Vin = 2.5 V) Low State (Vin = 0.8 V) IIH IlL Chip Disable Input Resistance (Pin 15) Rin Operating Voltage Range Vo (Pin 11) Regulated Vref (Pin 16) Regulated VCC Power Supply Current Standby (Chip Disable High State) Operating (Chip Disable Low State) ICC Input Offset Voltage (Output Transition Low to High) VIO - 0.13 V 0.4 V - 4.0 /LA - - - 0.8 - - 100 30 50 100 - - - TOTAL DEVICE FIGURE 1 - w '"«z :t: ~-4.0 ~ §; ~-8.0 "-1\ \ - j- VCC=7.5V - ::;) ~ 2.0 \ h fA o TA i25°C- I - - - IV o 40 80 120 10. REGULATOR OUTPUT SOURCE CURRENT ImA) x . . . 1// vI \ TA = 125°C l:l $'-16 0.18 1.5 REFERENCE AND REGULATOR OUTPUT versus SUPPLY VOLTAGE I t--- ~ ~-12 FIGURE 2 - RL = ::;) ::;) mA - - -r-- k!1 V 7.0 to 40 5.0 to 40 6.0 t--- ~ o '"o - /LA REGULATOR OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT - -- :[ V 160 u o 10 20 vcc. SUPPLY VOLTAGE IV) MOTOROLA LINEAR/INTERFACE DEVICES 3-273 30 40 MC34160, MC33160 FIGURE 4 - POWER WARNING HYSTERESIS CURRENT versus PROGRAMMING RESISTOR RGURE 3 - REFERENCE OUTPUT VOLTAGE CHANGE versus SOURCE CURRENT -- -...r-. • 60 r- I \ -...... r--.... 6 VCC ~ 30V VPin9 ~ 2.5V TA ~ 25°C \ \. " "' _ycc ~ 7.5 V 4r-TA ~ 25°C .......... r- 1 BOO -----------~ ~O 200 -55 B.O 440 0 100 120 -55 125 I _ VCC ~ 6.0 V VPin 1 ~ Vref ~ 0.4 VPin 2,9 ~ 10 k!l to Gnd z a r- Vsat ~ Pins 6, 7, B !i( '" 5 ~ a=> 0.3 o.2 ~o.1 -25 ---- - --- Output Rise _ 0 25 50 75 TA, AMBIENT TEMPERATURE (OC) / _ _ f-"" ~ :,..y TA ~ B5°C..-::: t:::=-: ~ -r;~ -40°C ~:::-- I-'" r-- ff 0 2.0 4.0 ISink, SINK CURRENT (rnA) 6.0 ~ 100 125 FIGURE 8 - THERMAL RESISTANCE AND MAXIMUM POWER DISSIPATION versus P.C.B. COPPER LENGTH ...... V L .....- .....- V TA ~ 25°C 140 ~~ r-- , .' 0.5 ~ I I VCC ~ 30 V -VPin 1 ~ 2.5 V to 2.9 V _VPin2 ~ 2.6V RL ~ 2.4ktoVO Out~~ 120 UNCOMMITTEO COMPARATOR DELAY versus TEMPERATURE - - FIGURE 7 - COMPARATOR OUTPUT SATURATION versus SINK CURRENT gs 60 BO 100 RH, PROGRAMMING RESISTOR (kil) ~ o 25 50 75 TA, AMBIENT TEMPERATURE (OC) -25 FIGURE 6 - ou~~ I 40 20 POWER WARNING COMPARATOR OELAY versus TEMPERATURE Vcc V Yin (Pin 9) ~ 2.5 V to 2.7 V RL ~ 2.4ktoVO r-- t-- o 4.0 6.0 2.0 Iref' REFERENCE OUTPUT SOURCE CURRENT (rnA) FIGURE 5 - r--r--- B.O L, LENGTH OF COPPER (mm) MOTOROLA LINEAR/INTERFACE DEVICES 3-274 MC34160, MC33160 PIN FUNCTION DESCRIPTION Pin No. 1 Description Function Comparator Inverting Input This is the Uncommitted Comparator inverting input. It is typically connected to a resistor divider to monitor a voltage. 2 Comparator Noninverting Input This is the Uncommitted Comparator noninverting input. It is typically connected to a reference voltage. 3 N.C. 4.5,12,13 Gnd No connection. This pin is not internally connected. These pins are the control circuit grounds and are connected to the source and load ground returns. They are part of the IC lead frame and can be used for heatsinking. 6 Comparator Output This is the Uncommitted Comparator output. It is an open collector sink·only output requiring a pull-up resistor. 7 Reset This is the Reset Comparator output. It is an open collector sink-only output requiring a pull-up resistor. 8 Power Warning This is the Power Warning Comparator output. It is an open collector sink-only output requiring a pull-up resistor. 9 Power Sense This is the Power Warning Comparator noninverting input. It is typically connected to a resistor divider to monitor the input power source voltage. 10 Hysteresis Adjust The Power Warning Comparator hysteresis is programmed by a resistor connected from this pin to ground. 11 Regulator Output This is the 5.0 V Regulator output. 14 VCC This pin is the positive supply input of the control IC. 15 Chip Disable This input is used to switch the IC into a standby mode turning off all Vref This is the 2.6 V Reference output. It is intended to be used in outputs. 16 conjunction with the Power Warning and Uncommitted comparators. OPERATING DESCRIPTION The MC34160 Series is a monolithic voltage regulator Regulator The 5.0 V regulator is designed to source in excess of 100 mA output current and is short circuit protected. The output has a guaranteed tolerance of ± 5.0% over line, load, and temperature. Internal thermal shutdown circuitry is included to limit the maximum junction temperature to a safe level. When activated, typically at 170'C, the regulator output turns off. In specific situations a combination of input and output bypass capacitors may be required for regulator and supervisory circuit containing many of the necessary monitoring functions required in microprocessor based systems. It is specifically designed for appliance and industrial applications, offering the designer a cost effective solution with minimal external components. These devices are specified for operation over an input voltage of 7.0 V to 40 V, and with a junction temperature of -40'C to + 150'C. A typical microprocessor application is shown in Figure 9. MOTOROLA LINEAR/INTERFACE DEVICES 3-275 II • MC34160, MC33160 produces hysteresis if Vin is monitored through a series resistor (R1). The comparator thresholds are defined as follows: stability. If the regulator is located an appreciable distance (;;'4") from the supply filter, an input bypass capacitor (Cin) of 0.33 /LF or greater is suggested. Output capacitance values of less than 5.0 nF may cause regulator instability at light load (,,;1.0 mAl and cold temperature. An output bypass capacitor of 0.1/LF or greater is recommended to ensure stability under all load conditions. The capacitors selected must provide good high frequency characteristics. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator does not have external sense inputs. Vth(lower) = V ref (1 + ~!) - liB R1 Vth(upper) = Vref (1 + ~!) + IH R1 The nominal hysteresis current IH equals 1.2 V/RH (Figure 4). The Uncommitted Comparator can be used to synchronize the microprocessor with the ac line signal for timing functions, or for synchronous load switching. It can also be connected as a line loss detector as shown in Figure 10. The comparator contains 200 mV of hysteresis preventing erractic output behavior when crossing the input threshold. The Power Warning and Uncommitted comparators each have a transistor base-emitter connected across their inputs. The base input normally connects to a voltage reference while the emitter input connects to the voltage to be monitored. The. transistor limits the negative excursion on the emitter input to - 0.7 V below the base input by supplying current from VCC. This clamp current will prevent forward biasing the IC substrate. Zener diodes are connected to the comparator inputs to enhance the IC's electrostatic discharge capability. Resistors R1 and Rin must limit the input current to a maximum of ± 2.0 mAo Each comparator output consists of an open collector NPN transistor capable of sinking 2.0 mA with a saturation voltage less than 0.4 V, and standing off 40 V with minimal leakage. Internal bias for the Reset and Power Warning comparators is derived from either VCC or the regulator output to ensure functionality when either is below nominal. Reference The 2.6 V bandgap reference is short circuit protected and has a guaranteed output tolerance of ± 5.0% over line, load, and temperature. It is intended to be used in conjunction with the Power Warning and Uncommitted Comparator. The reference can source in excess of 2.0 mA and sink a maximum of 10 /LA. For additional current sinking capability, an external load resistor to ground must be used. Reference biasing is internally derived from either VCC or VO, allowing proper operation if either drops below nominal. Chip Disable This input is used to switch the IC into a standby mode. When activated, internal biasing for the entire die is removed causing all outputs to turn off. This reduces the power supply current (ICC) to less than 0.3 mA. Comparators Three separate comparators are incorporated for voltage monitoring. Their outputs can provide diagnostic information to the microprocessor, preventing system malfunctions. The Reset comparator inverting input is internally connected to the 2.6 V reference while the non inverting input monitors VO. The Reset output is active low when Vo falls approximately 180 mV below its regulated voltage. To prevent erratic operation when crossing the comparator threshold, 70 mV of hysteresis is provided. The Power Warning comparator is typically used to detect an impending loss of system power. The inverting input is internally connected to the reference, fixing the threshold at 2.6 V. The input power source Vin is monitored by the noninverting input through the R1/R2 divider (Figure 9). This input features an adjustable 10 !LA to 50 /LA current sink IH that is programmed by the value selected for resistor RH. A default current of 6.5 !LA is provided if RH is omitted. When the comparator input falls below 2.6 V, the current sink is activated. This Heat Tab Package The MC34160 is contained in a 16 lead plastic dualin-line package in which the die is mounted on a special Heat Tab copper alloy lead fri\me. This tab consists of the four center ground pins that are specifically designed to improve thermal conduction from the die to the surrounding air. The pictorial in Figure 8 shows a simple but effective method of utilizing the printed circuit board medium as a heat dissipator by soldering these tabs to an adequate area of copper foil. This permits the use of standard board layout and mounting practices while having the ability to more than halve the junction to air thermal resistance. The example and graph are for a symmetrical layout on a single sided board with one ounce per square foot copper. MOTOROLA LINEAR/INTERFACE DEVICES 3-276 MC34160, MC33160 FIGURE 9 - TYPICAL MICROPROCESSOR APPLICATION ~~------~--------~~~~--~Vo D--I-<>-...+-+------o MPU Reset II 1----------+--=----4------+0---.--+----__0 V,ef Chip Jl o----<>-t-~ Disable 15 '-"'=iF"--' +-________---<>-\-__~-----------1r-------t<>-+-4-+----O ~ Power Warning Line Sync. ,,~~~~~~~~----+----1:~~>-----------~6~--~--~~ __ J ~eJlI ~ ~ FIGURE 10 - Sink Only = Positive True Logic LINE LOSS DETECTOR APPLICATION v-l-<>-+-+----~ MPU Reset 1----------+--=----4------+0---.--+----__0 V,ef Chip Jl o----<>-t-~ Disable '-"'=iF"--' RDLY Uncommitted Comparator L~e)1 6 I L---__ Point A ~ CDLY ~ 2.6 V ~ Pin6~2.6V Pin8~ ~ t OLY= = Sink Only Positive True Logic R C in ( OLY OLY Vref MOTOROLA LINEAR/INTERFACE DEVICES 3·277 IH RDLY -- Vo + IH R1 -- Vo + IH ROLY ) • MC34160, MC33160 FIGURE 11 - TIME DELAYED MICROPROCESSOR RESET ---------........., + ~~------~--------~----~--~Vo Chip JL o---<>-t-~ 1----~----*-----t<>-1>-t_.---o Vref '-"'=,.='-' Disable RDLY Uncommitted Comparator +>------~-o-+_+---o ~~~----~~--i/' 6 1 MPU Reset L~ ______ P=______ __ J 3.6 k 14'-5. ~ 12. 13 6.2 k IDLY ~ RDLY CDLY :J;CDLY ~ Sink Only ~:= Positive True Logic MOTOROLA LINEAR/INTERFACE DEVICES 3-278 ® SG1525A/SG1527A SG2525A/SG2527A SG3525A/SG3527A MOTOROLA PULSE WIDTH MODULATOR CONTROL CIRCUITS The SG1525A11527A series of pulse width modulator controlcircuits offer improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip + 5.1 volt reference is trimmed to ± 1% and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. A sync input to the oscillator enables multiple units to be slaved or a single unit to be synchronized to an external system clock. A wide range of dead time can be programmed by a single resistor connected between the CT and Discharge pins. These devices also feature built-in softstart circuitry. requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages. providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. The under voltage lockout inhibits the outputs and the changing of the soft-start capacitor when VCC is below nominal. The output stages are totem-pole design capable of sinking and sourcing in excess of 200 rnA. The output stage of the SG1525A series features NOR Logic resulting in a low output for an off state while the SG1527A series utilizes OR Logic which gives a high output when off. The devices are available in Military, Industrial and Commercial temperature ranges. PULSE WIDTH MODULATOR CONTROL CIRCUITS SILICON MONOLITHIC INTEGRATED CIRCUITS JSUFFIX CERAMIC PACKAGE CASE 620-10 _ 16 1 NSUFFIX PLASTIC PACKAGE CASE 648-06 _ 16 1 PIN CONNECTIONS • 8.0 to 35 Volt Operation • 5.1 Volt ± 1.0% Trimmed Reference • 100 Hz to 400 kHz Oscillator Range INV. Input Vrel N.1. Input Vec • Separate Oscillator Sync Pin • Adjustable Dead Time Control Sync • Input Undervoltage Lockout • Latching PWM to Prevent Multiple Pulses osc. Output • PUlse-by-Pulse Shutdown CT • Dual Source/Sink Outputs: ± 400 mA Peak RT FUNCTIONAL BLOCK DIAGRAM r-Vc'--i I I 13 I 1 OutputA n I Output B CT N.l.lnput CSolI-Start (Top View) 1411-1 RT INV. Input I 1 Sync Compensation 9 Compensation Soft-Start 11~LI I osc Output 0---------, Discharge Discharge O-':-+----J 02~:;;:==~~ ~ ORDERING INFORMATION I Temperature Range Package SG1525AJ SG1527AJ -55 to + 125·C -55to +125·C Ceramic DIP Ceramic DIP SG2525AJ SG2525AN SG2527AJ SG2527AN -25 -25 -25 -25 1 Device 1--T3;--i I L SG1525A Output Stage II Output A II "UI1 I I : I - I Output B I 14LJI I SG1527A I L _ _ ..£.u~'~~ SG3525AJ SG3525AN SG3527AJ SG3527AN MOTOROLA LINEAR/INTERFACE DEVICES 3-279 to to to to +85·C +85·C +85·C +85·C Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP o to o to o to o to +70·C +70·C +70·C +70·C Ceramic DIP Plastic DIP Ceramic DIP Plastic DIP II SG1525A, SG1527A, SG2525A, SG2527A; SG3525A, SG3527A MAXIMUM RATINGS (Note 1) Rating Symbol Value Unit Vcc +40 Vdc Collector Supply Voltage Vc +40 Vdc Logic Inputs - -0.3 to +5.5 V Analog Inputs - -0.3 to VCC V Output Current, Source or Sink 10 ±500 rnA Reference Output Current Iret 50 rnA Oscillator Charging Current - 5.0 rnA Power Dissipation (Plastic & Ceramic Package) TA ~ + 25°C (Note 2) TC ~ + 25°C (Note 3) Po Supply Voltage rnW 1000 2000 Thermal Resistance Junction to Air Plastic a nd Ceramic Package R9JA 100 °C/W Thermal Resistance Junction to Case Plastic and Ceramic Package R9JC 60 °C/W Operating Junction Temperature Storage Temperature Range Ceramic Package Plastic Package Lead Temperature (Soldering, 10 Seconds) TJ +150 °c Tstg -65 to +150 -55 to +125 °c TSolder +300 °C NOTES, ,. Values beyond which damage may occur 2. Derate at 10 mW/oC for ambient temperatures above +50oC 3. Derate at 16 mW/oC for case temperatures above +25°C RECOMMENDED OPERATING CONDITIONS Symbol Min. Max. Unit VCC +8.0 +35 Vdc Collector Supply Voltage Vc +4.5 +35 Vdc Output Sink/Source Current 10 0 0 ±loo ±400 Characteristic Supply Voltage (Steady State) (Peak) rnA Reference Load Current Iret 0 20 rnA Oscillator Frequency Range fose 0.1 400 Oscillator Timing Resistor RT 2.0 150 kHz kn Oscillator Timing Capacitor CT 0.001 0.2 /'F Deadtime Resistor Range RO 0 500 Operating Ambient Temperature Range SG1525A. SG1527A SG2525A, SG2527A SG3525A. SG3527A TA -55 -25 0 MOTOROLA LINEAR/INTERFACE DEVICES 3-280 n °c +125 +85 +70 SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A ELECTRICAL CHARACTERISTICS (VCC ~ +20 Vdc, TA ~ Tlow to Thigh INote 41. unless otherwise specified) SG1525A/2525A SG 1 527 AI 2527 A Characteristic SG3525A SG3527A Symbol Min Typ Max Min Reference Output Voltage (T J:: +25°C) Vref 5.05 5.10 5.15 5.00 Line Regulation (+80 V";; Vee <:;. +35 VI Regl 1ne - 10 20 - Load Regulation (0 mA";; IL";; 20 mAl Regload .- 20 50 - 20 Typ Max Unit 510 520 Vdc 10 20 mV - 20 50 mV - 20 REFERENCE SECTION II ---- Temperature Stability .J.Vref/J.T Total Output Variation Includes Line and Load Regulation over Temperature 5.00 J.Vref - - 520 80 100 495 -~--"--.- Short Clfcuit Current ISC - (Vref ° 0 V. TJ ° +25°C) Output Noise Voltage (10 Hz";;f";; 10kHz.TJo+25°CI 40 .- Vn Long Term Stability (T J ° +125°CI(Note 51 _ . - r- 100 mA - _0 _ _ _ _ - 200 20 40 50 .-~. ,--------------·-----r-···· Initial Accuracy (T J :;: +25°C) -_. 80 - mV Vdc ... _ - - 200 ~Vrms 50 mV khr :,:50 Co f - - - )--- -- S OSCILLATOR SECTION (Note 6, unless otherWise specified) 525 - -,----,---.:':2 a 20 - ._- _.- ---- ----,---,- -50 -20 a -10 --- Frequency Stability with Voltage ...1fosc (+8.0 V";; VCC";; +35 VI '\VCC Frequency Stability with Temperature Minimum Frequency (RT -:t:O 3 ~ 150 kll, CT -. f-----+--- . =3 ...1fosc ~ ~ 0.2 I'FI f~,·';-- f-----------------+-Maximum Frequency (RT = 2.0 kO, CT:;: 1.0 nF) -1 c--.- a 50 - -- 50 Hz --- 400 ---- kHz .- 17 2 2 20 22 mA --_. Clock Amplitude 3.0 35 f-C-IO-Ck-W-id-t-h-(T-J-o-+2-5-0-C-1-----------+--------~03 --0-.-5- 3 a --,--0- -03 I-s-yn-C-T-h-r-e-s-h-ol---d---------------~------+-·--1.-2--i--2.-0-f-· -2-8- ~-­ +---+------ - _ . 10 ---- °0 ---------+-----~ ----~--. 400 f-c-u·r-r-e-nt-M-ir-r-Or-(-IR-T-o-2-0-m-A-)--------+-----f-.~r---2C) Sync Input Current (Sync Voltage :-;: +3 5 V) 0 •3 0 -- .. _ f max ·20 25 ~--~-- 35 05 V -+---+-----"$ 10 20 28 V 10 25 mA -_.- ------ ERROR AMPLIFIER SECTION (VCM 0+5.1 VI I-ln~p_u_t_O_ff_s_e_tV_ol_ta~g~e______________ __ Input alas Current Input Offset Current 1----------------_._-DC Open Loop Gain (RL:;' 10 Mfll 02 Low Level Output Voltage High Level Output Voltage ---_.- 02 3.8 56 3.8 56 CMRR 60 75 50. 75 PSRR 50 60 50 60 f - - - - - - - - - - - - - - - - - . - - , -.. ----+--Common Mode Rejection Ratio 05 ..- VOH 05 V V f dB (+15 V";; VCM";; +5 2 VI 1------=-'--------_._-Power Supply Rejection Ratio (+8.0 V";; VCC";; +35 VI dB '-------'-- - - - ' - - - - - " - - - - ' - - - - - ' - - - - - - _ . PWM COMPARATOR SECTION - - -- Oe m1n - - 0 - - 0 "0 DC max 45 49 - 45 49 - % Input Threshold, Zero Duty Cycle (Note 6) VTH 0.6 0.9 - 06 09 - V Input Threshold, Maximum Duty Cycle (Note 6) VTH - 3.3 36 - 33 36 V liB - 0.05 1.0 - 005 10 "A Minimum Duty Cycle Maximum Duty Cycle Input Bias Current MOTOROLA LINEAR/INTERFACE DEVICES 3-281 II SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A ELECTRICAL CHARACTERISTICS (Continued) Characteristic SOFT-START SECTION =a V) =2.0 V) Shutdown Input Current (Vshutdown = 2.5 V) - Soft-Start Current (Vshutdown Soft-Start Voltage (Vshutdown - 25 50 80 25 50 80 - 0.4 0.6 0.4 0.6 V 0.4 1.0 - 0.4 1.0 rnA - _. 0.2 1.0 0.4 2.0 - 0.2 1.0 0.4 2.0 18 17 19 18 - 18 17 19 18 - J.lA OUTPUT DRIVERS (Each Output, VCC - +20 V) Output Low Level (lsink (lsink V VOL =20 rnA) = 100 rnA) Output High Level =+35 V INote 7) Rise TimelCL =1.0 nF. TJ = 25°C) Fall Time ICL = 1.0 nF. TJ =25°C) Collector Leakage. Vc Shutdown Delay IVso =+3.0 V. Cs =O. TJ =+25'C) Supply Current, (VCC - + 35 V) NOTES: 4. Tlow Thigh = = V VOH (lsource = 20 rnA) (lsource = 100 rnA) Under Voltage Lockout IV8 and V9 = High) - VUL 6.0 7.0 8.0 6.0 7.0 8.0 V IClleak) - - 200 - - 200 J.lA tr - 100 600 - 100 600 ns tf - 50 300 50 300 ns tds - 0.2 0.5 - 0.2 0.5 J.lS ICC - 14 20 - 14 20 rnA -55"C for SG1525A11527A - 25"C for SG2525A12527A O"C for SG3525A13527A :~~;~~~~rs~~~~~~~~~~;t + 70"C for SG3525A13527A 5. Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot. 6. Tested at fosc = 40 kHz IAT = 3.6 kfl. CT = 0.01 J.lF. AO = 0 flI. 7. Applies to SG1S25A12525AJ3525A only, due to polarity of output pulses. APPLICATION INFORMATION SHUTDOWN OPTIONS (See Block Diagram, front page) Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of 100 pA to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins. An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM latch is immediately set providing the fastest turn-off signal to the outputs; and a 150 pA current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release. Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation. MOTOROLA LINEAR/INTERFACE DEVICES 3-282 SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A TYPICAL CHARACTERISTICS FIGURE 1 - SG1525A OSCILLATOR SCHEMATIC FIGURE 2 - OSCILLATOR CHARGE TIME versus RT 20 0 16 VJ 10 0 Rr ;g O-~--r< '< 0 ,c:::;, t;; Cr ~ Of-z '" ~ .f Discharge t'!v~ c' c' c' '< c:;,~ '< <;:) '=:l,y ?Z c' c' 'RO-Oll "= J 6 5 RO''-]=. 5. 0 / 2. 12 r::::;,(;::;, V:J'>::;;:, 0 ;:: Sync W tf&ti~ ~"~ ~-i~ Cp Or- -20 1.0 TRZ 10 luO 1.0 k ......--!4----+-o 1 I, 14 Output I .......... + Or- 2 >:; -RZ-20k ~~q"""'" ~ ~ 100 k loOM 10M 10 k 5.0k I. FREQUENCY (HzI Clock 10k F/F 10k PWM MOTOROLA LINEAR/INTERFACE DEVICES 3-283 - - 1111 50 100 200 50010002UOO 500010.000 CHARGE TIME IMsi II SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A FIGURE 7 - SG1&25A/2&25A13525A OUTPUT SATURATION CHARACTERISTICS • o VCC = +20V 4. r-- TJ = 2SoC +-hH-++-+-+-+-I-I-+-t11+i ~ 351--j-t--If-+-+-H-H+-+-+-+--+-+-tlI-t+t w ~ 3.01--+-+-+++H -+++--1---1I-+-++,,:#lrt1H ~ ~ 2.51-+-+-+-+-H+t-++-+-+-1~-Ib~¥-H-t+t i5 ~ 2.0I---i-t----jr-t-t-Htii,....-:::::::I:=FK""':j74--T-tttti 151---+--+--+-+-++-h.I"Hr--=......"f--Sourc·lat·I(Vf-IV~1) II I ~ ;;!j 1.0 Sink at. VoLi iO~-+-+--h-t~+rt++--r-;--+-Ir-ri+HH > O~~n-~~~~~-L~~~I~II 0.01 0.02 0.03 0.05 O. 0.1 0.2 0.3 0.5 0.7 1. 10. OUTPUT SOURCE OR SINK CURRENT (AMPS) FIGURE 9 - PUSH-PULL CONFIGURATION FIGURE B - SINGLE ENDED SUPPLY +Vsupply +Vsupply Al Al A2 Cl 13 Gnd 12 In conventional push-pull bipolar designs. forward base drive is controlled by Rl-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 For single-ended supplies. the driver outputs are grounded. The Vc terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles. and C2. FIGURE 10 _. DRIVING POWER FETS +Vsupply FIGURE 11 - DRIVING TRANSFORMERS IN A HALF-BRIDGE CONFIGURATION Al Cl C2 Low power tra nsformers can be drive n directly by the SG 1525A. Automatic reset occurs during deadtime, when both ends of t~e primary winding are switched to ground, The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components, MOTOROLA LINEAR/INTERFACE DEVICES 3-284 SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A FIGURE 12 - LAB TEST FIXTURE 16 r---------------~ I Reference Clock II 15 ~Gnd I8 MOTOROLA LINEAR/INTERFACE DEVICES 3-285 - Soft start II ® SG1526 SG2526 SG3526 MOTOROLA PULSE WIDTH MODULATION CONTROL CIRCUIT The SG1526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications. Functions included in this IC are a temperature compensated voltage reference. sawtooth oscillator. error amplifier. pulse width modulator. pulse metering and steering logic. and two high current totem pole outputs ideally suited for driving the capacitance of power FETs at high speeds. Additional protective features include soft start and undervoltage lockout. digital current limiting. double pulse inhibit. adjustable dead time and a data latch for single pulse metering. All digital control ports are TILand B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum flexibility. The versatility of this device enables implementation in single-ended or push-pull switching regulators that are transformerless ortransformer coupled. The SG1526 is specified over the full military junction temperature range of -55°C to +150 oC. The SG2526 is specified over a junction temperature range of -40°C to +150°C while the SG3526 is specified over a range of O°C to +125°C. • B.O to 35 Volt Operation PULSE WIDTH MODULATION CONTROL CIRCUITS SILICON MONOLITHIC INTEGRATED CIRCUITS - P~flN¥Y PLAS~I~U::~~GE 18 1 CASE 707-02 J SUFFIX CERAMIC PACKAGE CASE 726-04 • 5.0 Volt ±1 % Trimmed Reference • 1.0 Hz to 400 kHz Oscillator Range • Dual Source/Sink Current Outputs: ±100 rnA • Digital Current Limiting PIN CONNECTIONS • Programmable Dead Time + Error • Undervoltage Lockout • Single Pulse Metering Vref -Error • Programmable Soft Start Compensation • Wide Current Limit Common Mode Range CSoft-Start • Guaranteed 6 Unit Synchronization Ground Reset -CS BLOCK DIAGRAM Output A Sync +CS Shutdown VCC ROeadtime RT Ground sv;;c"",C-_--, RDeadti~"""..r--l-L____ -+""""1>-_____-f'F.~~rth Top View CT""1""-_ _.J Res~~-I:Sc~~~+-----" CSoft-Start ORDERING INFORMATION Device Junction Temperature Range +c,s. SG1526J -55to +150·C Ceramic DIP -C.S. SG2526J SG2526N -40 to + 150·C Ceramic DIP Plastic DIP + Error -Error Shu~own~-------~ SG3526J SG3526N MOTOROLA LINEAR/INTERFACE DEVICES 3-286 o to +125·C Package Ceramic DIP Plastic DIP 5G1526, 5G2526, 5G3526 MAXIMUM RATINGS (Note 1) Symbol Value Unit VCC +40 Vdc Collector Supply Voltage Vc +40 Vdc Logic Inputs - -0.3 to +5.5 V Analog Inputs - -0.3 to VCC V Output Current, Source or Sink 10 ±200 mA Iref 50 mA Logic Sink Current - 15 Power Dissipation (Plastic and Ceramic Package) PD Rating Supply Voltage Reference Load Current (VCC (Note 3) TA (Note 4) TC ~ ~ ~ 40 V, Note 2) II mA mW 1000 3000 + 25°C + 25°C Thermal Resistance Junction to Air (Plastic and Ceramic Package) RflJA 100 °C/W Thermal Resistance Junction to Case (Plastic and Ceramic Package) RflJC 42 °C/W TJ +150 °C Tstg -65 to +150 °C TSolder ±300 °C Operating Junction Temperature Storage Temperature Range Lead Temperature (Soldering, 10 Seconds) Notes: 1. Values beyond which damage may occur 2. Maximum junction temperature must be observed. 3. Derate at 10 mWf'C for ambient temperatures above + 50°C 4. Derate at 24 for case temperatures above + 25°C mwrc RECOMMENDED OPERATING CONDITIONS Symbol Min Max Unit VCC +8.0 +35 Vdc Collector Supply Voltage Vc +4.5 +35 Vdc Output Sink/Source Current (Each Output) 10 0 ±100 rnA Reference Load Current Iref 0 20 rnA Oscillator Frequency Range fosc 0.001 400 kHz Characteristic Supply Voltage Oscillator Timing Resistor RT 2.0 150 kO Oscillator Timing Capacitor CT 0.001 20 I'F 3.0 50 Available Deadtime Range (40 kHz) Operating Junction Temperature Range SG1526 SG2526 SG3526 -55 -40 0 MOTOROLA LINEAR/INTERFACE DEVICES 3-287 % °C TJ +150 +150 +125 .. 8G1526, 8G2526, 8G3526 ELECTRICAL CHARACTERISTICS (Vcc ~ + 15 Vdc, TJ ~ Tlow to Thigh [Note 5] unless otherwise specified I Characteristic REFERENCE SECTION (Note 61 Reference Output Voltage (TJ = +25°C) Line Regulation (+8.0 V,;;; VCC';;; +35 VI Load Regulation, 0 mA';;; IL';;; 20 mA Temperature Stability Total Reference Output Voltage Variation Vref 4.95 5.00 5.05 5.00 6.10 V Regline - 10 20 4.90 - 10 30 mV Regload - 10 30 50 mV - IS - - 10 <> ] 1 :> 40 !:; >. 6.0 f---j---+----j--+--+--+--+---i 30 1---+---+--++--+--+--\---\---1 ~ 20 1 '" 2.0 f---j---+----jr+---t--+--+--+---i - 100 pFI CComp 1.0 1--+---+---+t--+---1~-+--+---i IIIIIIIIIIIIIIII~ IIIIII 100 10 4.0 I--+----+-~+--t--+--t--+----l 1.0 M 1.0K 10K lOOK I. FREQUENCY (Hz) 25 10 M FIGURE 5 - UNDERVOLTAGE LOCKOUT CHARACTERISTIC ~ ~ ~ 6.0 2.0 f--+--+-++lH-f+-+-+---+---j-+-+H++-+--1 >= ~ 1.5 f--+--+-++H-f+-+-+--+---j-+-+H+f---+--1 ,/ w ~ 4.0 <> 3.0 2.0 1.0 2.5 .--,--rTTTTTT-r-r-,....,--,TT~---r--, z <> ./ ~ 5.0 0: 200 w 7.0 Ii 175 FIGURE 6 - OUTPUT DRIVER SATURATION VOLTAGE AS A FUNCTION OF SINK CURRENT B.O '" ~ 50 75 100 125 150 DIFFERENTIAL INPUT VOLTAGE (mV) i.,..-.. V o o 1.0 !; 05 t--+-+-++H-H--+-+--t--1-t--+~~-t--i t--+-+-++H-H--+-+--t--1H-+R+t--t--i <> \ 1.0 i5 2.0 5.0 3.0 4.0 V",. REFERENCE VOLTAGE (V) 6.0 7.0 B.O >' ~ 0 L-L~Y±~~~~~~~~ 2.0 5.0 10 20 50 OUTPUT ORIVER SINK CURRENT (rnA) MOTOROLA LINEAR/INTERFACE DEVICES 3-290 100 200 SG1526, SG2526, SG3526 FIGURE 8 - SG1526 OSCILLATOR PERIOD FIGURE 7 - Vc SATURATION VOLTAGE AS A FUNCTION OF SINK CURRENT 2.5 ~ 100mll=ft 2.0 ~ '" ~ w to c( , .... '" ~ ~ 1. 5 z i ::> -- - 1.0 ~ ~ D. 5 50 II ~ 20 I-+tttt~ft1IH- I--' to z ~1°1. ~ 5.0 0 2.0 5.0 10 20 50 100 200 Vc SINK CURRENT (mAl FIGURE 9 - SG1526 ERROR AMPLIFIER FIGURE 10 - SG1626 UNDERVOLTAGE LOCKOUT Vcc To Reset To Driver A To Driver B - Error + Error FIGURE 11 - SG1526 PULSE PROCESSING LOGIC Memory F/F sYnc~ Ci SQ PWM A Clock D Ci PWM Metering F/F The metering FLIP-FLOP is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle. The memory FLIP-FLOP prevents double pulsing in a push-pull configuration by remembering which output produced the last pulse. MOTOROLA LINEAR/INTERFACE DEVICES 3-291 .. SG1526, SG2526, SG3526 APPLICATIONS INFORMATION FIGURE 12 - EXTENDING REFERENCE OUTPUT CURRENT CAPABILITY FIGURE 13 - ERROR AMPLIFIER CONNECTIONS Negative c** ,-""""...... Output _ _ _ ..J Vre! ---'l""'------i VCC __~~2~7~~__~I7, Vre! Voltage --'VI,.,.......---; Positive Gnd-----------------.________~-- Gnd L--""""..... Output Gnd Voltage *May be required with some types Vout = Vref (:~) of transistors FIGURE 14 - OSCILLATOR CONNECTIONS FIGURE 15 - FOLDBACK CURRENT LIMITING Output Filter . .1t-.....-y\A;~..----u+ II RS 12 SGI526 RI RD 10 Vout R2 Gnd~~~-------o RT ( 0 1 V + Vout R, ) RI + R2 . Imax FIGURE 16 - SG1526 SOFT-START CIRCUITRY = RS ISC ~ 0tV) (""""AS FIGURE 17 - DRIVING VMOS POWER FETS 'I2Vcr~ Vref __- - - - - - _ _ , 14 + Error Vc A /I - Error SGI526 -R-es-e-t ~5=--_"'_--1 Gnd Lockout l' B GSaft-Start The totem pole output drivers of the SGl 526 are ideally suited for driving the input capacitance of power FETs at high speeds. MOTOROLA LINEAR/INTERFACE DEVICES 3-292 SG1526, SG2526, SG3526 FIGURE 19 - FLYBACK CONVERTER WITH CURRENT LIMITING FIGURE 18 - HALF-BRIDGE CONFIGURATION +V(}--------__--------------~ Supply R1 +Vo.--.-------------~.-------, Supply R1 14 C1 14 D1 Vc A j-:.:13=--....1h Vc A 5 SG1526 B~1~6~~~ R C2 SG1526 Gnd B +CS~------_4--~ S 15 R3 R2 In the above circuit, current limiting is accorn· plished by using the current limit comparator output to reset the soft-start capacitor. FIGURE 21 - PUSH-PULL CONFIGURATION FIGURE 20 - SINGLE-ENDED CONFIGURATION +V S u ppl Y 0.-1110----, +V Supply o--ilo------------------~ To Output R1 Filter C1 R2 14 -r Vc A 1-1;.::3__....-'\I'>I\r..... 14 Vc SG1526 13 A SG1526 B 16 Gnd BI----....-'\I'>I\r~-t' 16 Gnd 15 MOTOROLA LINEAR/INTERFACE DEVICES 3-293 II • ® TCA5600 MOTOROLA Advance Information UNIVERSAL MICROPROCESSOR POWER SUPPLY CONTROLLER UNIVERSAL MICROPROCESSOR POWER SUPPLY CONTROLLER SILICON MONOLITHIC INTEGRATED CIRCUITS The TCA5600 is a versatile power supply control circuit for microprocessor based systems and mainly intended for automotive applications and battery powered instruments. To cover a wide range of applications, the device offers high circuit flexibility with minimum of external components. Functions included in this IC are a temperature compensated voltage reference, on chip dc/dc converter, programmable and remote controlled voltage regulator, fixed 5.0 V supply voltage regulator with external PNP power device, undervoltage detection circuit, power-on RESET delay and watchdog feature for safe and hazard free microprocessor operations. NSUFRX PLASTIC PACKAGE CASE 707-02 • 6.0 to 30 V Operation Range • 2.5 V Reference Voltage Accessible for Other Tasks • Fixed 5.0 V ± 4% Microprocessor Supply Regulator Including Current Limitation, Overvoltage Protection and Undervoltage Monitor PIN CONNECTIONS • Programmable 6.0 to 30 V Voltage Regulator Exhibiting High Peak Current (150 mAl, Current Limiting and Thermal Protection • Two Remote Inputs to Select the Regulator's Operation Mode: OFF, 5.0 V, 5.0 V Standby and Programmable Output Voltage RESET • Self Contained dc/dc Converter Fully Controlled By the Programmable Regulator to Guarantee Safe Operation Under All Working Conditions 1 Delav Voutt Sense 2 loutt Sense • Programmable Power-On RESET Delay Base Drive • Watchdog Select Input • Negative Edge Triggered Watchdog Input VCC2 • Low Current Consumption in the VCCI Standby Mode • All Digital Control Ports are TTL- and MOS-Compatible APPLICATIONS INCLUDE: • Microprocessor Systems with E2PROMs Vout2 Prog 7 Vout2 Output Converter Output 8 Gnd Current Sense 10 • High Voltage Crystal and Plasma Displays Converter Input • Decentralized Power Supplies in Computer and Telecommunication Systems (Top. View) RECOMMENDED OPERATING CONDITIONS Symbol Min Mu Unit 5.0 5.5 30 30 V Collector Current VCCI VCC2 IC - 800 mA Output VolUge Vout2 6.0 30 V Opendlng Junction Tempenture Renge Iret 0 2.0 mA - 40" to + 125"C Ch.racterIatIc Power Supply Voltage Reference Source Current ORDERING INFORMAll0N ThiI: document contelAl Information on 8 new product. SpeciftC8tionl and information herein are IUbjecI to elul. without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-294 TCA5600 MAXIMUM RATINGS (TA ~ + 25'C unless otherwise noted Note 1) Rating Symbol Value Unit VCC1, VCC2 35 Vdc Base Drive Current (Pin 15) IB 20 rnA Collector Current (Pin 10) IC 1.0 A Forward Rectifier Current (Pin 10-Pin 9) IF 1.0 A Logic Inputs INH1, INH2, WDS (Pin 6,11,18) VINP -0.3 V to VCCl Vdc Logic Input Current WDI (Pin 4) IWDI ±O.5 rnA Output Sink Current RESET (Pin 1) IRES - 10 rnA -0.3 to 10 -0.3 to 5.0 V Power Supply Voltage (Pin 3, 14) Analog Inputs (Pin 2) (Pin 7) - Reference Source Current (Pin 5) Iref 5.0 rnA Power Dissipation (Note 2) TA ~ +85'C PD 500 mW Thermal Resistance (Junction to Air) ROJA 100 'CIW Operating Temperature Range TA -40 to +85'C 'c Operating Junction Temperature TJ +125 Storage Temperature Range 'c -65 to + 150 Tstg 'C NOTES: 1. Values beyond which damage may occur. 2. Derate at 10 mW/'C for ambient temperature above + 85'C. FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM Cl ~ !!l ~~ o" " c. u.s ~ N 'E" ~ '>" " C. ,,~ o " uO ~=' ~ 1ii~ - "C. N~ ~Cl "0 o~ " " '" ~ UfIl 0 0> E ~ ~ :; ~~ Cl~ §:~ «:0 " 0 fIl> ::l '" " >0.. N U U > " "~~ "'"'" UfIl " '" ~.!? Inhibit 2 (lNH2) Inhibit 1 (lNH1) >--_..:..:.. PNP Base Drive .............w'-- Q; 0 "'= "'lUi0 :g:;: :g:;: u0 00 !:l- "'"'" :;:~ fIl ~ ~ '" .s" :;:c. '"~li ~ 0> u '" "~ ~ rr MOTOROLA LINEAR/INTERFACE DEVICES 3-295 II TCA5600 ELECTRICAL CHARACTERISTICS (VCCI = VCC2 = 12 V; TJ = 25°C; Iref = 0; loutl = 0 (Note 3); RSC = 0.50; INHI = "High"; INH2 = "High"; WDS = "High"; lout2 = 0 (Note 4); if not otherwise specified) Characteristic I Figura I Symbol I 1 Vref nom 2.42 2.5 2.58 V Vref 2.4 - 2.6 V Regline - 2.0 15 mV ~ - - +/-0.5 mVrC RR 60 70 - dB Zo - 1.0 - Ohm ICCI - 3.0 - rnA Vout1(nom) 4.8 5.0 5.2 V Voutl 4.75 - 5.25 V Min I Typ I Max I Unit REFERENCE SECTION Nominal Reference Voltage Reference Voltage Iref = 0.5 rnA, Tlow '" TJ '" Thigh (Note 5), 6.0 V '" VCCI '" 18 V Line Regulation (6.0 V '" VCC2 '" 18 V) Average Temperature Coefficient Tlow'" TJ '" Thigh (Note 5) 2 Ripple Rejection Ratio f = 1.0 kHz, Vsin = 1.0 Vpp 3 aTJ Output Impedance o '" Iref '" 2.0 rnA Standby Current Consumption VCC2 = Open 4 50 V MICROPROCESSOR VOLTAGE REGULATOR SECTION Nominal Output Voltage Output Voltage 5.0 rnA '" loutl '" 300 rnA, Tlow '" TJ '" Thigh (Note 5) 6.0 V '" VCC2 '" 18 V 5 6 Line Regulation (6.0 V'" VCC2 '" 18 VI Regline - 10 50 mV Load Regulation (5.0 rnA '" loutl '" 300 mAl Regload - 20 100 mV - rnA Base Current Drive (VCC2 = 6.0 V, V15 = 4.0 VI 3 Ripple Rejection Ratio f = 1.0 kHz, Vsin = 1.0 Vpp Undervoltage Detection Level (RSC Current Limitation Threshold (RSC = 5.0 HI = 5.0 HI 7 Average Temperature Coefficient Tlow '" TJ '" Thigh (Note 51 IB 10 15 RR 50 65 Vlow 4.5 0.93 x Voutl VRSC 210 250 290 mV - - ±1.0 mVrC aVoutl I 1.6 I I 3 NC 12 I 1----+- +40 E t;: +20 h... "' a '" ~> -20 RSC 0.511 ./' f-"""" ......... ............. ~...... ,/" ,/" ............ ,,/ V ....... i'-....... V""" ~-40 .., I - 3 NC 12 NC 4 15 17 ... ............ -60 - 50 -25 a 25 50 75 100 TJ, JUNCTION TEMPERATURE I'CI FIGURE 3 70 ~60 050 II 1----+-= &l30 NC 12 15 NC 4 ii! I----+- 3.0 ABV ::> 1/24 V II e '" 0.5 !l + ~ ~ RSC VCC2 6.0 2.0 > 1.0 / / I NC 12 NC 4 VCC2 '" 20V / V 100 200 R5 10 k 300 400 500 10ul1, OUTPUT CURRENT (mAl 600 MOTOROLA LINEAR/INTERFACE DEVICES 3-299 II .. TCA5600 FIGURE 7 - UNDERVOLTAGE LOCKOUT CHARACTERISTICS RSC 0.5 n + / ~5 VCCI NC 12 ~ '"~ o 4 NC 4 I'"~ 32 ~ I~ 15 17 1-.._--+--oVou ! L-N~C~r-T----r~~~ t >1 R5 oI/\. o 10 k 1.0 2.0 3.0 4.U 5.0 6.0 Voull, OUTPUT VOLTAGE (VI 7.0 8.0 FIGURE 8 - OUTPUT CURRENT CAPABILITY OF THE PROGRAMMING REGULATOR 28 RSC 0.5 n + 24 16 I ~ o o Vou! .1 10C4;tF 7 I 40 20 60 80 100 120 IOUI2, OUTPUT CURRENT (mAl 140 TIP 30 + I I rn 4.0 > Ql 15 VCCrr. I ~ 8.0 NC 12 + NC 4 I ~ 12 3 9 I I ~ '"~ 1 I I 2:: 20 Rou t2 5.0 k 160 -=- .,,- -= FIGURE 9 - COLLECTOR CURRENT DETECTION LEVEL RSC 0.5 n 16 15 QI TIP 30 1---+--0 YOU! + o o I,C4 -.L0;tF VI2(HI VI2(LI R5 10 k I00 200 300 400 V12, CURRENT SENSE VOLTAGE (mVI 500 MOTOROLA LINEAR/INTERFACE DEVICES 3-300 TCA5600 FIGURE 10 - POWER SWITCH CHARACTERISTICS 1.8 ~ ~ « 1.6 !:; §?1.4 o + VCCI :z ~ 1.2 :> !;< u> 1.0 ~O.8 _r- > 0.6 10 20 30 l - NC 4 t----.--0 Vou!l 17 NC 50 80 100 200 300 IC10. COLLECTOR CURRENT (mA) 500 800 + FT'C4 101'~ R5 10 k FIGURE 11 - RECTIFIER CHARACTERISTICS 1.8 ~1.6 ~ '"~ 1.4 1 §? ~1.2 ~ NC 12 NC 01 15 TIP 30 4 Vou!l 17 21.0 ~O.8 _f- i- NC 0.6 10 20 30 50 80 100 200 300 IF. RECTIFIER CURRENT (mAl FIGURE 12 - 500 i ~ 20 !:; 5 ~ :> Spec. limits L...:;......:..r---:'T--i-'T--i----I ~a.o ,? 4.0 Vl0 o -40 -30 -20 Vg 1----+--oVout1 High "z" State 12 o l 01 TIP 30 15 §? 16 RSC 0.5ll INH 2 LEAKAGE CURRENT IMMUNITY Vout2 24 C4 aoo 28 ~ 10 I'F -10 0 10 IZ. LEAKAGE CURRENT IJJA) R5 20 30 10 k 40 MOTOROLA LINEAR/INTERFACE DEVICES 3-301 • TCA5600 APPLICATIONS INFORMATION (See Figure 18) FIGURE 14 - VOLTAGE AND CURRENT WAVEFORM ON THE COIL (not to scale) 1. VOLTAGE REFERENCE Vref The voltage reference Vref is based upon a highly stable bandgap voltage reference and is accessible on Pin 5 for additional tasks. This circuit part has its own supply connection on Pin 3 and is therefore able to operate in standby mode. The RC network R3, C6 improves the ripple rejection on both regulators. 2. DC/DC CONVERTER The dc/dc converter performs according to the fly back principle and does not need a time base circuit. The maximum coil current is well defined by means of the current sensing resistor Rl under all working conditions (start-up phase, circuit overload, wide supply voltage range and extreme load current change). Figure 13 shows the simplified converter schematic: FIGURE 13 - SIMPLIFIED CONVERTER SCHEMATIC The time ratio Il for the charging time to dumping time is defined by equation (3): VCC2-~-- I II 300 ,u.H Control Feedback (3) 10 The coil charging time t1 is found using equation (4): t1 = - - (1 + '!). f Il C2 R, 0.680 1o'22/-LF (f : min. oscillation frequency which should be chosen above the audio frequency band (e.g. 20 kHz)) Knowing the dc output current lout2 of the programmable regulator, the peak coil current IL(peak) can now be calculated: A simplified method on "how to calculate the coil inductance" is given below. The operation point at min. supply voltage (VCC2) and max. output current (lout2) for a fixed output voltage (V out 2) determines the coil data. Figure 14 shows the typical voltage and current wave forms on the coil L1 (coil losses neglected). IL(peak) = 2· lout2 . (1 + L1 = _t_1_. VL- = VCC2 - VCE(sat) - V12(H) (5) (6) IL(peak) = Vout2 + tiV(Pin 9 - Pin 8) + VF - VCC2(1) VL - Il) The coil inductance L1 of the nonsaturated coil is given by equation (6): The equations (1) and (2) yield the respective coil voltage VL - and VL + (see Figure 14): VL + (4) (2) The formula (6a) yields the current sensing resister R1 for a defined peak coil current IL(peak): (tiV(Pin 9 - Pin 8F input/output voltage drop of the regulator, 2.5 V typical) R1 = V12(H) IL(peak) (VF, VCE(sat), V12(H): see electrical characteristics) MOTOROLA LINEAR/INTERFACE DEVICES 3-302 (6a) TCA5600 In order to limit the by-pass current through capacitor C7 during the energy dumping phase the value C2> >C7 should be implemented. FIGURE 16 - TYPICAL E2PROMPROGRAMMING SEQUENCE (not to scalel For all other operation conditions, the feedback signal from the programmable voltage regulator controls the activity of the converter. 3. PROGRAMMABLE VOLTAGE REGULATOR This series voltage regulator is programmable by the voltage divider R4, RS for a nominal output voltage 6.0 V .. Vout 2 .. 30 V. R4 = (Vout2 - Vref nom) . RS Vref nom (R5 = 10 k, Vref nom = 2.S V) (7) Programming Voltage Vpp Vout2i • I 5.0 V+I-"-~--! I~~,~",I_"-~_-i "0" I I I INH21 IHigh "z"l l Current limitation and thermal shutdown capability are standard features of this regulator. The voltage drop ~ ~ 0 z " 'S'S u . ij3j GND 6 13 GND Sink Output 7 12 GND Source Output B GND Vee 9 " 10 GND Pins 10 thru 18 are electrical ground and heatsink pins for IC. 9 ~~$> ORDERING INFORMATION Temperature ~ Device TDA4601 TDA46018 This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-305 3 "'_...J-_J Range Package Plastic SIP -15°C to +85°C Plastic DIP TDA4601,8 MAXIMUM RATINGS Rating Symbol Value Unit Vg 20 V V7 V"]"-V8 Oto Vg ±6.0 V V Supply Voltage Sink Output Voltage Reference Output 11 -10 to +1.0 rnA Zero Crossing 12 -3.0 to +3.0 rnA Control Amplifier 13 -3.0 to 0 rnA Collector Current 14 -2.0 to +5.0 rnA Trigger Input 15 -2.0 to +3.0 rnA Sink Output 17 -1.5 A Junction Temperature TJ +150 °C Storage Temperature TstQ -40 to +125 °C Thermal Resistance (Junction to Air) 8JA 70 °CIW Thermal Resistance (Junction to Case) 8JC 15 °CIW ELECTRICAL CHARACTERISTICS (TA ~ + 25°C unless otherwise stated) Range of Operation Min Typ Max Supply Voltage Symbol Vg Fig. No. - 15 18 V Ambient Temperature TA -15 - 85 °C 1.5 2.0 0.5 2.0 3.2 Unit START OPERATION TA ~ 25°C Current V9 ~ Vg ~ Vg ~ Consumption (V1 Not Yet Switched) 3.0 V 5.0 V 10 V 19 1 rnA - Turn-On Point for V1 Vg 1 11.3 11.8 12.3 V V4 Before Start-Up (Vg < 11.8 V) V4 1 6.0 6.7 - V Ig 1 110 55 135 85 160 110 rnA V1 1 4.0 4.0 4.2 4.2 4.5 4.4 V TC1 1 - 100 - ppmFC V4 1 1.8 2.08 2.5 V4 peak 1 4.0 - 4.2 2.4 4.5 3.0 - 3.7 2.5 2.4 2.11 4.0 3.0 2.9 - 1.0 0.4 - - 3.5 4.0 5.0 - - 1.4 1.45 1.57 REGULATION MODE Vg ~ 15 V TA Current Consumption V reg V ren Reference Voltage 11 ~ ~ ~ 25°C -10 V 0 < 0.1 rnA 11 ~ 5.0 rnA Reference Voltage Temperature Coefficient VPin 4 Low Static Voltage VPin 4 Regulation Peak Voltage IPin 3 ~ 5.0 IJ.A IPin 3 ~ 1.3 rnA V3 VPin 3 13 1 VPin 7 Peak High VR ~ 0 V (Full Fold Back) VR ~ - 10 V (Regulation) VR ~ -15 V (Standby) V7 peak 1 VPin 7 Peak Low VR ~ OV V7 peak IPin 3 Regulation IPin 3 Leakage at VPin 3 ~ 1.5 V 1 VR~-10V VR ~ V 1 Full Fold Back IPin 3 ~ 1.3 rnA Fold Back IPin 3 ~ 0.5 rnA Overload Decision IPin 3 ~ 1.0 IJ.A VPin 3 Regulation V MOTOROLA LINEAR/INTERFACE DEVICES 3-306 IJ.A V - -15V V V - - TDA4601,8 ELECTRICAL CHARACTERISTICS (continued) TA = 25°C Symbol I Fig. No.1 IPin 7 Sink Peak VR = -15V 17 peak 1 - IPin S Source Peak VR = -15V IS peak 1 V2 1 Range of Operation REGULATION MODE (continued) V9 = 15 V TA = VPin 2 IPin 2 Unit +0.7 - A - -o.s - A - -0.3 -0.2 +0.7 +O.S - - +3.0 rnA +0.3 mA = 15 V TA Typ V = -3.0 rnA = -0.3 mA PROTECTIVE OPERATION V9 I Max Min 25°C = 25°C Current Consumption (V5 < 1.S V) 19 1 14 20 26 rnA Turn-Off Voltage (V5 < 1.8 V) V7 V4 1 1 1.3 1.S 1.5 2.1 1.8 2.S V External Trigger Input Enable Voltage (V reg = 0 V) Disabled Voltage (V reg = 0 V) Vs 1 - 2.4 2.0 2.2 2.2 Supply Voltage Disabling Vs and Vl V9 1 6.7 7.4 7.S VPin 5 Zener Voltage (Pin 5 Open) Vs 1 6.S 7.3 7.8 = 3.0 V =0V IS 1 - 1.4 -11 - Turn-On Time (Secondary Voltages) ton 2 - 3S0 Voltage Change When S3 = Closed When S2 = Closed tN2 2 IPin S VPin 5 VPin 5 (~P3 (~P2 Switching Frequency During Standby Mode Primary Power Consumption During Standby Mode The heat sink must be optimized. taking the maximum data (TJ. 8JC. TA) into consideration - 450 V V ,.A ms mV - = 19 W) = 15 W) Standby Operation (Minimum Secondary Power: 3.0 Watts) When Sl = Open V - 100 500 500 1000 ~V2 2 - 20 30 f 2 70 75 - kHz Pprim 2 - 10 1S VA V -' CIRCUIT DESCRIPTION The TDA4601 regulates. controls and protects the switching transistor in flyback converter power supplies at starting-up, normal, and overload operation. 2. Activation of the internal reference voltage V1 = 4.0 V. This voltage is suddenly available when Vg reaches 12 V and enables all parts of the Ie to be supplied from the control logic including thermal and overload protection. A. Start-Up Sequence During start-up there are three consecutive operations: 1. An internal reference voltage is created. It supplies the voltage regulator and enables the supply to the coupling electrolytic capacitor and the switching transistor. For a supply voltage (Vg) of 12 V. the current is less than 3.2 rnA. 3. Activation of the control logic. As soon as the reference voltage is available. the control is switched on through an additional stabilization circuit. This start-up sequence is necessary for smoothly driving the switching transistor through the coupli"ng electrolytic capacitor. MOTOROLA LINEAR/INTERFACE DEVICES 3-307 • II TDA4601,8 FIGURE 1 - FIGURE 2 - TEST CONFIGURATION 0 ~ "-n.V t+ O'~+-+--+-I-+--+---lf-I-++-+-_ _-I~p,S 2 Rl 2.2 k{} "j~ R2 1.0 k{} 3 C2 4 r ---VR = -10V - ____ VR = 0 SJ: 9 n G i8 0.68 ~'OOWnr 11 W l_ ncg: R3 20 C3 1.0/loF + 10nF _I -O.S TDA4601 1 TEST DIAGRAM: NORMAL OPERATION R4 10k{} 1N4003 10 /loF Dl D2 ~ 10 /loF + R8 27 -::;-=--=- Vg Va 1~----------"p,S t 6: : I 4 I I _I I I : ~-.y---- 0+-----------------------.. p,S -I -= The comparison of the output level of the regulating amplifier, the overload detection and the collector current simulation drives the control logic. An additional steering control and blocking possibility is offered thru Pin 5. When the voltage applied on Pin 5 falls below 2.2 V then the source output (Pin 8) is blocked. The control logic is set according to the start-up circuit, the zero crossing detection and the trigger enabling. This logic drives the base current amplifier and the base current shutdown. The base current amplifier drives the source output (Pin 8) proportionally to the sa'wtooth voltage (Pin 4). A current feedback is performed by an external shunt inserted between Pin 8 and the base of the switching power transistor. This resistor determines the maximum amplitude of the base current drive, B. Normal Operation Zero crossing detection is sensed on Pin 2 and linked to the control logic. The signal picked up on the feedback winding is applied, after filtering, to Pin 3 (used for input regulation and for overload protection). The regulating section works with an input voltage of about 2.0 V for normal regulation and a current of about 1.4 mA for foldback operation. Together with the collector current simulation Pin 4, the overload recognition defines the operating region of the regulating amplifier depending on the internal reference voltage. The simulation of the collector current is generated by an external RC network at Pin 4 and an internally set voltage level. For a constant line voltage and for a given output power on the load (t on fixed) less than the maximum output power, a decrease of C4 produces an increase of the current sent to the base of the power switching' transistor. So the foldback point is reached earlier. The regulation range starts from a 2.0 Vdc level which is the bottom of a sawtooth waveform; the maximum is limited at 4.0 V (reference voltage). A secondary load of 19 W produces a switching frequency of about 50 kHz at an almost constant duty cycle (approximately 3). Furthermore, when the switch mode power supply delivers approximately 3.0 W, the switching frequency jumps to about 70 kHz at a duty cycle of approximately 11. At the same time, the collector peak current falls below 1.0 A. C. Protective Features The base current shut-down, released by the control logic, clamps the sink output (Pin 7) at 1,6 V, turning off the switching transistor. This feature will be released if the voltage on Pin 9 is less than 7.4 V, or if the applied voltage on Pin 5 is .-ess than 2.2 V. In case of a short circuit of the secondary windings, the TDA4601 continuously monitors the fault condition. In standby operation the circuit is set to a high duty cycle. The total power consumption of the power supply is held below 6.0 to 10 W. MOTOROLA LINEAR/INTERFACE DEVICES 3-308 TDA4601,8 FIGURE 3 - FREQUENCY versus OUTPUT POWER FIGURE 4 - EFFICIENCY versus OUTPUT POWER 100 100 80 B 60 >u "- I'... il'i ::> 40 ~ ........... 0 ff' 20 o o 20 FIGURE 5 - -- I--. -r--. - 100 60 80 OUTPUT POWER IWI ~ 40 7 20 II I o o 120 20 40 60 80 OUTPUT POWER IWI 100 120 FIGURE 6 - OUTPUT VOLTAGE (Vz) versus LINE VOLTAGE 152 ;E . ~160 ~ .~ ,- ;: 100 80 60 " )1) '"~ 150 I- 149 ~. ~ ::> ....;; ~ 148 ~ 100 ----- 0 .J'~ ~ o ~ §? ~. /L, ~. 40 20 151 :§;' ~120 o ./ / OUTPUT VOLTAGE (Vz) versus OUTPUT CURRENT (lqZ) ~140 ~ il'i 60 u 240 220 200 ;E180 5 80 >- u V 147 150 200 300 400 500 600 700 800 900 1000 1100 OUTPUT CURRENT Iq2 (mAl 160 170 180 ..- V ~ 190 200 210 220 LINE VOLTAGE IVael 230 140 250 TEST CIRCUIT AND TYPICAL APPLICATION (See Figure 7) • Short circuit proof and open-loop resistant circuit. In both cases a power of only 6.0 to 10 W is consumed. Linear foldback characteristic at overload. This application circuit shown in Figure 2 represents a blocking converter for color TV sets with 30 W to 120 W of output power and line voltages from 160 to 270V. In spite of regulation on the primary side, good voltage stability of the various secondary voltages is achieved even with large load changes. For line voltage isolation and transformation to the desired secondary voltages, a transformer with ferrite core is used. • Automatic restart after elimination of the overload. • Efficiency of more than 80% at an output power of 40 to 100 W. • Frequency of oscillation between 20 kHz (100 W) and 70 kHz (without load). • Simple RFI suppression • Good regulation of load current and line voltage variations. At a line voltage variation between 170 and 240 V the output voltage of 150 V will change approximately 2.0 V. SPECIAL FEATURES OF THE FLYBACK CONVERTER POWER, SUPPLY USING THE TDA4601 • Direct driving of the power switching transistor • Low starting current, defined starting behavior also at slowly rising line voltage MOTOROLA LINEAR/INTERFACE DEVICES 3-309 TDA4601,8 FIGURE 7 - TYPICAL APPLICATION 1N4006 10 kn 3.0 W 1N4934 o C2 220 2.7 + 270 pF Fuse 1.25 A ~F n Note: P is used to adjust the secondary voltage C2 must be discharged before IC change MOTOROLA LINEAR/INTERFACE DEVICES 3-310 TDA4601,8 FIGURE 8 - A. Thermal Kick Starter 0-/1N4007 Vline 220 Vac PTe { 500 n at 25°C 20 kll at 50°C • ALTERNATIVE START-UP CIRCUIT B. Lossless Start-Up Pump Self- 0.47 p.F 400 V Powering 1N4007 0-/----1 2.0 kn Vline 200 kll 220 Vac 1N4007 Note: For more application information refer to ANE002 MOTOROLA LINEAR/INTERFACE DEVICES 3-311 Sel/Powering TL494 MOTOROLA SWITCH MODE PULSE WIDTH MODULATION CONTROL CIRCUITS SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS The TL494 is a fixed frequency, pulse width modulation control circuit designed primarily for Switch mode power supply control. This device features: • Complete Pulse Width Modulation Control Circuitry SILICON MONOLITHIC INTEGRATED CIRCUITS • On-Chip Oscillator With Master Or Slave Operation • On-Chip Error Amplifiers • On-Chip 5 Volt Reference • Adjustable Dead-Time Control • Uncommitted Output Transistors Rated to 500 mA Source Or Sink • Output Control For Push-Pull Or Single-Ended Operation • Undervoltage Lockout J SUFFIX CERAMIC PACKAGE CASE 620-10 Non-Inv Input Non-Inv Input Inv Inv Input Input Compenl PWM Comp 3 1 - - - -..... Input Dead Control N SUFFIX PLASTIC PACKAGE CASE 648-06 ORDERING INFORMATION (tOP view) Device The TL494C is specified over the commercial operating range of O°C to 70°C. The TL4941 is specified over the industrial range of - 25°C to 85°C. The TL494M is specified over the full military range of - 55°C to 125°C. Package TL494CN 0° to + 70°C Plastic DIP TL494CJ 0" to +70"C Ceramic DIP TL4941N - 25° 10 + 85"C Plastic DIP TL4941J -25" to +85"C Ceramic DIP TL494MJ -55"10 +125°C Ceramic DIP MOTOROLA LINEAR/INTERFACE DEVICES 3-312 Temperature Range TL494 FIGURE 1 - BLOCK DIAGRAM Output Control VCC 13 II RT , Feedback PW.M Error Amp Comparator Input Error Amp Ref. 2 Output FIGURE 2 - TIMING DIAGRAM Capacitor CT FeedbacklP.W.M. Camp. Dead-Time Control Flip-Flop Clock Input Flip-Flop Q Flip-Flop Q Output Q2 Emitter Output Control MOTOROLA LINEAR/INTERFACE DEVICES 3-313 TL494 Description II The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, RT and CT. The approximate oscillator frequency is determined by: f osc =_1_.1_ RTe CT For more information refer to Figure 4. Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor CT to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when. the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Fig, ure 2.) The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V. a The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from -0.3 V to (VCC -2V), and may be used to sense powersupply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop. When capacitor CT is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Ql and Q2. With the output-control connected to the reference line, the pulse-steering flipflop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Ql or Q2, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snUbbing. When higher output-drive currents are required for single-ended operation, Ql and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator. The TL494 has an internal 5 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of ± 1.5% with a typical thermal drift of less than 50 mV over an operating temperature range of 0 to 70°C. FtGURE 3 - FUNCTIONAL TABLE Input Output Control Grounded At Vref 'out = Output Function Single-ended P.W.M. at 01 and 02 Push-pull operation fose 1 0.5 MOTOROLA LINEAR/INTERFACE DEVICES 3-314 TL494 MAXIMUM RATINGS IFull operating ambient temperature range applies unless otherwise noted I Symbol TL494C TL4941 TL494M Unit VCC 42 42 42 V VC1. VC2 42 42 42 V IC1. IC2 500 500 500 mA Amplifier Input Voltage Range VIR -0.3 to 42 -0.3 to 42 -0.3 to 42 V Power Dissipation (0 TA PD 1000 1000 1000 mW 125 150 125 150 150 ·C ·C o to 70 -25 to 85 -55 to 125 ·C -55 to 125 -65 to 150 -55 to 125 -65 to 150 Rating Power Supply Voltage Collector Output Voltage Collector Output Current leach transistorllli :S;; 45°C Operating Junction Temperature Plastic Package Ceramic Package TJ Operating Ambient Temperature Range TA Storage Temperature Range Plastic Package Ceramic Package - ·C Tstg -65to 150 NOTE 1: Maximum thermal limits must be observed. THERMAL CHARACTERISTICS Characteristics Thermal Resistance, Junction to A'mbient Derating Ambient Temperature Symbol N Suffix Plastic Package J Suffix Ceramic Package Unit R"JA 80 100 ·CIW TA 45 50 ·C RECOMMENDED OPERATING CONDITIONS TL494 Symbol ConditionNalue Power Supply Voltage Collector Output Voltage Collector Output Current leach transistorl Min Typ Max Unit VCC 7.0 15 40 VC1. Ve2 - 30 40 V - 200 mA IC1. IC2 Amplifier Input Voltage Vin Current Into Feedback Terminal Ifb -0.3 V - VCC - 2.0 V 0.3 mA Reference Output Current Iref - - 10 mA Timing Resistor RT 1.8 30 500 kH Timing Capacitor CT 0.0047 0.001 10 ",F fosc 1.0 40 200 kHz Oscillator Frequency - ELECTRICAL CHARACTERISTICS (Vce = 15 V. CT = 0.01 ",F. RT = 12 kH unless otherwise noted.1 For typical values TA = 25·C. for min/max values TA is the operating ambient temperature range that applies unless otherwise noted. . Characteristic REFERENCE SECTION Reference Voltage (10 = 1.0 mAl Vref 4.75 5.0 5.25 4.75 5.0 5.25 V Line Regulation (VCC = 7.0 V to 40 VI Regline - 2.0 25 - 2.0 25 mV Load Regulation (10 = 1.0 mA to 10 mAl Regload - 3.0 15 - 3.0 15 mV Short-Circuit Output Current (Vref = 0 VI ISC 15 35 75 15 35 75 mA MOTOROLA LINEAR/INTERFACE DEVICES 3-315 II • TL494 ELECTRICAL CHARACTERISTICS (VCC = 15 V, CT = 0.D1 !LF, RT = 12 kO unless otherwise noted.) For typical values TA = 25°C, for minimax values TA is the operating ambient temperature range that applies unless otherwise noted. Characteristic OUTPUT SECTION 100 - 2.0 -100 - - 1.1 1.3 - - 1.5 2.5 10Cl - 10 lOCH - Output Voltage Rise Time Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14) tr Output Voltage Fall Time tf Collector Off-State Current (VCC = 40 V, VCE = 40 V~ Emitter Off-State Current (VCC = 40 V, Vc = 40 V, VE = a V) Collector-Emitter Saturation Voltage (2) Common-Emitter (VE = a V, IC = 200 mAl Emitter-Follower (VC = 15 V, IE = -200 mAl Output Control Pin Current low State (VOC" 0.4 V) High State (VOC = Vref) IC(off) - 2.0 IE(off) - - VSAT(C) - VSAT(E) 100 !LA -150 !LA 1.1 1.5 V - 1.5 2.5 V - - 10 - !LA 0.2 3.5 - 0.2 3.5 mA - 100 200 - 100 200 ns - 100 200 200 ns 100 - 100 25 25 100 ns - 40 100 - 40 100 ns Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14) Characteristic ERROR AMPLIFIER SECTIONS Input Offset Voltage (VO (Pin 3) = 2.5 V) VIO - 2.0 10 mV Input Offset Current (Va (Pin 3) = 2.5 V) 110 - 5.0 250 nA Input Bias Current (Va (Pin 3) = 2.5 V) liB - -0.1 -1.0 !LA Input Common-Mode Voltage Range (VCC = 40 V, TA = 25°C) VICR -0.3 to VCC-2.0 - - V Open-loop Voltage Gain (aVO = 3.0 V, Vo = 0.5 to 3.5 V, Rl = 2.0 ~1I). AVOl 70 95 - dB fC - 350 - kHz" 0m - 65 - deg. CMRR 65 90 PSRR - lOa, - dB '0.3 0.7 - mA -2.0 -4.0 - mA Unity-Gain Crossov!3r Frequency (Va = 0.5 to 3.5 V, Rl = 2.0 kll) Phase Margin at Unity-Gain (Va = 0.5 to 3.5 V, Rl = 2.0 k!l) Common-Mode Rejection Ratio (VCC = 40 V) Power Supply Rejection Ratio (aVCC = 33 V, Vo = 2.5 V, Rl Output Sink,Current (Va (Pin 3) =0.7 V) Output Source Current (Va (Pin 3) = 3.5 V) :' 0', dB = 2.0k!!) '10, 10+ NOTE 2: Low duty cycle pulse techniques are used during test to maintain ju~ction temperature as close to ambient temperatures as possible. MOTOROLA LINEAR/INTERFACE DEVICES 3-316 TL494 ELECTRICAL CHARACTERISTICS (VCC ~ 15 V, CT ~ 0.01 /LF, RT ~ 12 k!l unless otherwise noted.) For typical values TA ~ 25°C, for minimax values TA is the operating ambient temperature range that applies unless otherwise noted. Characteristic PWM COMPARATOR SECTION (Test Circuit Figure 12) Input Threshold Voltage (Zero duty cycle) VTH - 3.5 4.5 V Input Sink Current (V(Pin 3) ~ 0.7 V) 11- 0.3 0.7 - mA Input Bias Current (Pin 4) (VPin 4) ~ a to 5.25 V) liB (DT) - -2.0 -10 Maximum Duty Cycle, Each Output, Push-Pull Mode (VPin 4 ~ a V, CT ~ 0.Q1 /LF, RT ~ 12 k!l) (VPin 4 ~ a V, CT ~ 0.001 /LF, RT ~ 30 k!l) DC max 45 48 45 50 50 a 2.8 3.3 - - fosc - 40 - kHz crfosc - 3.0 - 0/0 Frequency Change with Voltage (VCC ~ 7.0 V to 40 V, TA ~ 25°C) afosc (aV) - 0.1 - 0/0 Frequency Change with Temperature (aTA ~ Tlow to Thigh) (CT ~ 0.Q1 /LF, RT ~ 12 k!l) Mose (aT) - - 12 0/0 7.0 V DEAD-TIME CONTROL SECTION (Test Corcuit Figure 12) 0/0 - Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) VTH /LA V OSCILLATOR SECTION Frequency (CT ~ 0.001 /LF, RT ~ 30 k!l) Standard Deviation of Frequency* (CT ~ 0.001 /LF, RT ~ 30 k!l) UNDERVOLTAGE LOCKOUT SECTION I Turn-On Threshold (VCC Increasing, Iref ~ 1.0 mAl Vth 6.43 5.5 TOTAL DEVICE Standby Supply Current (Pin 6 at Vref, All Other Inputs and Outputs Open) (VCC ~ 15 V) (VCC ~ 40 V) ICC Average Supply Current (V(Pin 4) ~ 2.0 V) (See Figure 12) (CT ~ 0.01 /LF, RT ~ 12 k!l, VCC ~ 15 V) - mA - * Standard deviation is a measure of the statistical distributIOn about the mean as derived from the formula. (T - 5.5 7.0 10 15 7.0 - N 2: IX n - )(12 n = , ---N - 1 MOTOROLA LINEAR/INTERFACE DEVICES 3-317 mA II • TL494 FIGURE 4 - OSCILlATOR FREQUENCY versus TIMING RESISTANCE FIGURE 5 - 120 110 ~ 100 500K 0; VCC~15V ~ ~ 100K z CT ~ [--i--+- 0.oo1"F ~ 90 ~ ~If ~ BO OPEN-LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY I - VCC ~ 15V , _ t:.VO~3.0V RL ......... 0. 0.01"F o g Z ~ ~ ~ 1.0K 500 1.0K 2.0K 5.0K "" 60 50 40 10K 20K 50K 100K RT, TIMING RESISTANCE 1m 200K 500K 1.0M 10 100 1.0K 10K I. FREQUENCY IHzl III 16 0"~ 1 2 ~ J CT ~ 0.001 "F 14 If V ~ ~ i'.. O.o1"F 4.0 I ! 111_ eIIIII 52.0 o 500 1.0K r---.. -t 10K 100K IOSC, OSCILLATOR FREQUENCY (Hzl .......... o o 500K 1.9 >- 3.5 1.B ~ ~ 1.6 -V -- - ~ 1.5 ~ I-- ~ 1.4 ~ 1.3 ~ -- ~ I--- § o v,., §; 1.4 z o ~ 1.2 ::> ~ 1.0 ~ O.B w ~ 0.6 0.4 100 200 300 IE, EMITTER CURRENT (mAl 400 --- --- V o 100 200 300 IC, COLLECTOR CURRENT (mAl MOTOROLA LINEAR/INTERFACE DEVICES 3-318 V r- ~ 1.2 1.1 3.0 2.0 1.B 1.7 1.0 2.0 VDT, DEAD-TIME CONTROL VOLTAGE (VI FIGURE 9 - COMMON EMITTER CONFIGURATION OUTPUT SATURATION VOLTAGE versus COLLECTOR CURRENT FIGURE 8 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT 1.6 - "'flo,. ~ 6.0 ~ 1BO 1.0M VOC ~ Vrel 11 CT ~ O.o1"F RT ~ 10 kll f-21 CT ~ 0.001 "F RT~30kfl f-- ~ ./ ~ 8,0 w " VCC~15V t- a 100K 50 ~ 10 « if' ~ \11 ~ 12 ~ e FIGURE 7 - PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE 0 ~1 B '" ~ ......... ~ ::B 100 ~ ~ 120 ~ 140 ~ I'... 160 -e. o 1.0 80 q, "- FIGURE 6 - PERCENT DEAD-TIME versus OSCILLATOR FREQUENCY := 15 40 60 30 «~ 20 10 0.1J- 2.0kfl20 Vi §: 70 ~ ~ 10K ~ AVOL 400 TL494 FIGURE 10 - STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE 10 9.0 8.0 r.1 « E 7.0 >- 6.0 z co co 5.0 6 30 ~2.0 1.0 • I I 4.0 ~ o/ o / / I 5.0 10 15 20 25 30 35 40 Vee. SUPPLY VOLTAGE IVI FIGURE 11 - ERROR AMPLIFIER CHARACTERISTICS FIGURE 12 - DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT Vcc = ISV +----.....--, ISO 2W Tes' Inputs Output 1 Dead Time 1 EI Feedback Feedback C2 RT CT Terminal IPin 31 Output 2 E2 1+ll I-I 1+ I (ErrOr I-I Output Control Amplifier SOk Ref Oul Gnd FIGURE 13 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM FIGURE 14 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM IS V IS V RL 68 Each Each Output Output Transistor Vc C CL IS pF CL I'SPF Transistor Gnd MOTOROLA LINEAR/INTERFACE DEVICES 3-319 • TL494 FIGURE 15 - ERROR-AMPLIFIER SENSING TECHNIQUES Vref Vo To Output Voltage of System RI R2 3 Rl NEGATIVE OUTPUT VOLTAGE Vref 2 R2 Vo POSITIVE OUTPUT VOLTAGE Vo ~ Vref (1 +~I To Output Voltage of System FIGURE 16 - FIGURE 17 - DEAD-TIME CONTROL CIRCUIT SOFT-START CIRCUIT Output Control 0-----<0-----, Output Vref o . T RI Vref o utput 4 DT 0--- 0 DT Cs 4 CT RS R2 6 30 k 10.001 Max % on Tim:, Each Output ~ 45 _ ( 80 RI ) 1 + R2 FIGURE 18 - OUTPUT CONNECTIONS FOR SINGLE-ENDED AND PUSH-PULL CONFIGURATIONS CI CI Oc 01 Output Control El E 2.4 V '" VOC '" VREF 500 mA C2 0", VOC '" 0.4 V 02 01 EI Go 250mA Output control C2 02 E2 E2 OE Push-Pull Configuration Single Ended Configuration MOTOROLA LINEAR/INTERFACE DEVICES 3-320 G0250mA TL494 FIGURE 1. - SLAVING TWO OR MORE CONTROL CIRCUITS FIGURE 20 - OPERATION WITH VIN > 40 V USING EXTERNAL ZENER Vret RS VCC Master II Slave (Additional Circuits) FIGURE 21 - +Vin PULSE-WIDTH MODULATED PUSH-PULL CONVERTER = S.O to 20 V L 2 o.dT 1M 33k 3 0.01 I- 15 r--< +VO 12 ..- 8 - t---- Cl TL494 Camp II - C2 ~' 32 OC VREF DT CT 13 141+ ~ RT Gnd El 1 7 6 4.7 k 10 10 k 4.7 k ...... I ~I~ •... t---- -- +; 9J 10 1 r-~~ V L-.< 1 E2 47 lN4934 240 15k 0.001 1 All capacitors in IJ.F L1 - 3.5 mH (i;i 0.3 A T1 - Primary: 20T C.T. #28 AWG Secondary: 120T C.T. #36 AWG Core: Ferroxcube 140SP-LOO-3C8 TEST CONDITIONS Line Regulation Vin Load Regulation Vin Output Ripple Vin Short Circuit Current Vin Efficiency Vin = = = = = RESULTS 10 V to 40 V 14 mV 0.28% = 1 mA to 1 A 28 V, 10 = 1.0 A 28 V, RL = 0.1 n 28 V, 10 = 1 A 3.0 mV 0.06% 28 V, 10 65 mV pop 3-321 P.A.R.D. 1.6 amps MOTOROLA LINEAR/INTERFACE DEVICES 2SV 22 k Ll TIP 50 32 25~ 16 r-- + Tl = '0 = 0.2 A lN4934 47 VCC + 71% 4.7 k + 50 35 V 1 TL494 FIGURE 22 - PULSE-WIDTH MDDULATED STEP-DOWN CONVERTER 1.0mH «i 2A +Vin = 10t040V +VO = 5.0 V TIP 32A ~.L 10 = 47 II 150 47 k 12 S>-;-;[ Cl VCC C2 Comp - 50 OV + + TL494 VREF - O.~t; 1M 3 2 5.1 k 1 500,;;; 15 5 > 0.001 D.T. O.C. Gnd El E2 RT r: 6 14 J,13 7 + ~~ MRS50 10 V 16 CT 5.1 k 14 5.1 k + 1---1 + 91 10 150 47 k - I·l All capacitors in .,.F TEST CONDITIONS Line Regulation Vin Load Regulation Vin Output Ripple Vin Short Circuit Current Vin Efficiency Vin = S.O to 40 V = 12.6 V, 10 = 0.2 to 200 = 12.6 V, 10 = 200 mA = 12.6 V, RL = 0.1 II = 12.6 V, 10 = 200 mA . RESULTS mA 3.0mV 0.01% 5.0 mV 0.02% 40 mV pop MOTOROLA LINEAR/INTERFACE DEVICES 3-322 P.A.R.D. 250 mA 72% 50 10 V 1.0A ® TL594 MOTOROLA Advance Information PRECISION SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUIT PRECISION SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUITS The TL594 is a fixed frequency, pulse width modulation control circuit designed primarily for Switchmode power supply control. This device features: • Complete Pulse Width Modulation Control Circuitry • On-Chip Oscillator With Master Or Slave Operation • On-Chip Error Amplifiers ~ • On-Chip 5 Volt Reference, 1.5% Accuracy • Adjustable Dead-Time Control 16~it)~ ~ • Uncommitted Output Transistors Rated to 500 mA Source Or Sink • Output Control For Push-Pull Or Single-Ended Operation u • Undervoltage Lockout J SUFFIX CERAMIC PACKAGE CASE 620-10 Non-In ... 16 Input Inv Input Inv Input Input Campen! PWM Comp Non-In ... 3 r-----...J ". VAEF Input Dead Output Control 1 Vee N SUFFIX PLASTIC PACKAGE CASE 648-06 Ground 71-------' (top view) ORDERING INFORMATION The TL594C is specified over the commercial operating range of O°C to 70°C. The TL5941 is specified over the industrial range of - 25°C to 85°C. The TL594M is specified over the full military range of - 55°C to 125°C. Device TL594CN Package 0° to +70°C Plastic DIP TL5941N - 25° to + 85°C Plastic DIP TL594MJ -55° to + 125°C Ceramic DIP This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-323 Temperature Range • • TL594 FIGURE 1 - BLOCK DIAGRAM Output Control VCC 13 4 Dead-Time Control 12 VCC 3.5 V ..L 16 14 Error Amp Ref. Output 7 Gnd Feed back P W M Error Amp 1 Comparator Input 2 FIGURE 2 - TIMING DIAGRAM Capacitor CT Feedback P.w.M. Camp Dead- Time Control Flip-Flop Clock Input Flip-Flop o Flip-Flop o Output 01 Emitter Output 02 Emitter Output Control MOTOROLA LINEAR/INTERFACE DEVICES 3-324 TL594 Description The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from - 0.3 V to (VCC - 2 VI, and may be used to sense powersupply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pUlse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop. When capacitor CT is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, 01 and 02. With the output-control connected to the reference line, the pulse-steering flipflop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from 01 or 02, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ring back winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, 01 and 02 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the oscillator. The TL594 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of ± 1.5% with a typical thermal drift of less than 50 mV over an operating temperature range of 0 to 70°C_ The TL594 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, RT and CT. The approximate oscillator frequency is determined by: f osc =_1_.2_ RTe CT For more information refer to Figure 4. Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor CT to either of two control signals. The NOR gates, which drive output transistors 01 and 02, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion 'of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. IRefer to the timing diagram shown in Figure 2.1 The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4°'0 of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of 96°'0 with the output control grounded, and 48°'0 with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V. FIGURE 3 - FUNCTIONAL TABLE Input fout = Output Function Output Control Grounded AtVref fose Single-ended P.W.M. at 01 and 02 Push~pull 1 0.5 operation MOTOROLA LINEAR/INTERFACE DEVICES 3-325 • • TL594 MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted I Rating Power Supply Voltage Collector Output Voltage Collector Output Current (each transistor) (Note 1) Amplifier Input Voltage Range Power Dissipation (0 TA ~ Symbol Tl594C TL5941 TL594M Unit VCC 42 42 42 V VC1, VC2 42 42 42 V IC1,IC2 500 500 500 mA ~0.3 VIR 45°C Po Operating Junction Temperature Plastic Package to 42 ~0.3 to 42 1000 1000 125 125 - - ~0.3 to 42 1000 "C TJ Ceramic Package Operating Ambient Temperature Range Storage Temperature Range Plastic Package Ceramic Package V mW ~ o to 70 TA 150 25 to 85 ~55 to 125 °c "C Tstg ~ 55 to 125 - 55 to 125 - - ~65to 150 NOTE 1: MaXimum thermal limits must be observed. THERMAL CHARACTERISTICS Characteristics Thermal Resistance, Junction to Ambient Derating Ambient Temperature Symbol N Suffix Plastic Package J Suffix Ceramic Package Unit R"JA 80 100 CW TA 45 50 'c RECOMMENDED OPERATING CONDITIONS ,---Tl594 Symbol Condition/Value Power Supply Voltage Collector Output Current (each transistor) Unit Max 7.0 15 40 V VC1, VC2 - 30 40 V IC1,IC2 - VCC Collector Output Voltage Typ Min Amplifier Input Voltage Vin Current Into Feedback Terminal Ifb 03 200 - - - mA 2.0 VCC V 0.3 mA 10 mA Reference Output Current Iref - - Timing Resistor RT 1.8 30 500 kll Timing Capacitor CT 0.0047 0.001 10 J.'F fosc 10 40 200 kHz - 5.3 V Oscillator Frequency PWM Input Voltage (Pins 3, 4 & 131 0.3 - ~ 15 V, CT ~ 0.01 "F, RT 12 kl! unless otherwise noted.1 25 C, for min max values TA is the operating ambient temperature range that applies unless otherwise ELECTRICAL CHARACTERISTICS {VCC For typical values TA noted. G Characteristic REFERENCE SECTION Reference Voltage (10 ~ 1.0 mA, TA (10 ~ 1.0 mAl V Vref ~ 4.925 4.9 25"CI 5.0 - 5.075 5.1 4.925 4.9 5.0 - 5.075 5.1 Line Regulation {VCC ~ 7.0 V to 40 VI Regline - 2.0 25 - 2.0 25 mV Load Regulation (10 ~ 1.0 mA to 10 mAl Regload - 2.0 15 - 2.0 15 mV 15 40 75 15 40 75 mA Short-Circuit Output Current (Vref ~ 0 VI ISC MOTOROLA LINEAR/INTERFACE DEVICES 3-326 TL594 ELECTRICAL CHARACTERISTICS (VCC ~ 15 V, CT ~ 0.Q1 p.F, RT ~ 12 k!l unless otherwise noted.) For typical values TA noted. ~ 25°C, for minimax values TA is the operating ambient temperature range that applies unless otherwise Characteristic OUTPUT SECTION IC(off) - 2.0 100 - 2.0 100 p.A IE(off) - - -100 - - -100 p.A VSAT(C) - 1.1 1.3 - 1.1 1.5 V VSAT(E) - 1,5 2,5 - 1.5 2,5 V 10CL - 0.1 - - 0.1 - p.A lOCH - 2.0 20 - 2,0 20 p.A Output Voltage Rise Time Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14) tr - 100 200 - 100 200 ns - 100 200 - 100 200 ns Output Voltage Fall Time Common-Emitter (See Figure 13) Emitter-Follower (See Figure 14) tf - 40 100 - 40 100 ns - 40 100 - 40 100 ns Collector Off-State Current (VCC ~ 40 V, VCE ~ 40 V) Emitter Off-State Current (VCC ~ 40 V, Vc ~ 40 V, VE ~ a V) Collector-Emitter Saturation Voltage (Note 2) Common-Emitter (VE ~ 0 V, IC ~ 200 mAl Emitter-Follower (VC ~ 15V,IE ~ -200mA) Output Control Pin Current low State (VOC '" 0.4 V) High State (VOC ~ Vref) Characteristic ERROR AMPLIFIER SECTIONS Input Offset Voltage (Va (Pin 3) ~ 2.5 V) Via - 2.0 10 mV Input Offset Current (Va (Pin 3) ~ 2.5 V) 110 - 5,0 250 nA Input Bias Current (Va (Pin 3) ~ 2.5 V) liB - -0.1 -1.0 p.A VICR a to Vec-2.0 - - V VIR(lNV) -0,3 to VCC-2.0 - - V Open-Loop Voltage Gain (dVO ~ 3.0 V, Va ~ 0.5 to 3.5 V, RL ~ 2.0 klll AVOL 70 95 - dB Unity-Gain Crossov~r Frequency (Va ~ 0.5 to 3.5 V, RL ~ 2,0 kll) fC - 700 - kHz Phase Margin at Unity-Gain (Va ~ 0,5 to 3,5 V, RL ~ 2,0 k!l) 0m - 65 - deg, CMRR 65 90 - dB PSRR - 100 - dB Output Sink Current (Va (Pin 3) ~ 0.7 V) 10- 0,3 0,7 - mA Output Source Current (Va (Pin 3) ~ 3.5 V) 10+ -2,0 -4.0 - mA Input Common-Mode Voltage Range (VCC ~ 40 V, TA ~ 25°C) Inverting Input Voltage Range Common-Mode Rejection Ratio (VCC ~ 40 V) Power Supply Rejection Ratio (dVCC ~ 33 V, Va ~ 2,5 V, RL ~ 2,0 kll) NOTE 2: low duty cycle pulse techmques are used durmg test to maintain Junction temperature as close to ambient temperature as possible. MOTOROLA LINEAR/INTERFACE DEVICES 3-327 II TL594 ELECTRICAL CHARACTERISTICS (VCC = 15 V. CT = 0.01 p.F. RT = 12 k!l unless otherwise noted.) For typical values TA noted. = 25°C. for minimax values TA is the operating ambient temperature range that applies unless otherwise Characteristic II PWM COMPARATOR SECTION (Test Circuit Figure 12) Input Threshold Voltage (Zero Duty Cycle) VTH - 3.6 4.5 V Input Sink Current (VPin 3 = 0.7 V) 11- 0.3 0.7 - mA Input Bias Current (Pin 4) (VPin 4 = a to 5.25 V) liB (DT) - -2.0 -10 Maximum Duty Cycle. Each Output •. Push-Pull Mode (VPin 4 = a v. CT = 0.01 flF. RT= 12 klll (VPin 4 = a v. CT = 0.001 flF. RT = 30 k!l) DC max 45 50 - 48 45 - 2.8 3.3 0 - - - 40 10 - DEAD-TIME CONTROL SECTION (Test Circuit Figure 12) Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle) p.A % V VTH OSCILLATOR SECTION Frequency (CT = 0.001 p.F. RT = 30 k!ll (CT = 0.01 p.F. RT = 12 kll. TA = 25°C I (CT = 0.01 p.F. RT = 12 kll. TA = Tlow to Thiohl kHz fasc 9.2 9.0 - (rfosc - 1.5 - % Frequency Change with Voltage (VCC = 7.0 V to 40 V. T A = 25°CI .1fosc (.1VI - 0.2 1.0 % Frequency Change with Temperature .1fosc I.1TI - 4.0 - % 4.0 3.5 5.2 - 6.0 6.5 100 50 150 150 300 300 Standard Deviation of Frequency· (CT = 0.001 p.F. RT = 30 kill (~TA 10.8 12 = Tlow·to Thioh. CT = 0.01 p.F. RT = 12 klll UNDERVOLTAGE LOCKOUT SECTION Turn-On Threshold (VCC Increasing. Iref = 1.0 mAl TA = 25°C T A = Tlow to Thigh Vth Hysteresis VH TL594C.1 TL594M V mV TOTAL DEVICE Standby Supply Current (Pin 6 at Vref. All Other Inputs and Outputs Openl (VCC = 15 V) (VCC = 40 VI ICC Average Supply Current (VPin 4 = 2,0 V. CT = 0.01 p.F. RT = 12 kll. Vec = 15 V. See Figure 121 - mA - 8.0 8.5 15 18 - 11 - N ·Standard deviation is a measure of the statistical distribution about the mean as derived from the formula. fT MOTOROLA LINEAR/INTERFACE DEVICES 3-328 -"'- l IX n - )(1 2 n .:... 1 N - 1 mA TLS94 FIGURE 4 - OSCILLATOR FREQUENCY versus TIMING RESISTANCE FIGURE 5 - OPEN·LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY 120 I :s ~ 0 -" 0 :t VCC~15V,_ r--- t;VO~3.0V RL "'" 70 60 "'" 50 4D '" "'" "'" 30 10 FIGURE 6 - PERCENT DEAD·TIME versus OSCILLATOR FREQUENCY III ~ II o=> .ll l.OK ~ t '"~ 1.6 0 > z 01.5 ~ ? ~ -- 1.4 ~1.3 ~ - --- - ~ ----: - - .- 0; w ? « '" ''i?" f--- f---- 100 ~=> ~ 400 - 1.6 - --- 1.2 1.0 - - - - ro - c--- - ;.> V-- 100 V- -- -- 200 300 Ie COLLECTOR CURRENT ImAI MOTOROLA LINEAR/INTERFACE DEVICES 3-329 3.5 FIGURE 9 - COMMON EMITTER CONFIGURATION OUTPUT SATURATION VOLTAGE versus COLLECTOR CURRENT 14 :Jl 08 ~ 06 - 200 300 IE, EMITTER CURRENT ImAI -- 30 18 -- 0.4 o 1.0 2.0 VDT, DEAD-TIME CONTROL VOLTAGE IVI z 0 --- 1.2 1.1 ...... "-I' o ---- --- "" 10 a 500K VCC 15V f-VOC ~ Vret 11 CT = O.Q1I'F f-RT = 10 kll 21 CT = O.OOlI'F t-RT = 30 kll f-- ~ Z "t' j 1.8 ~ >- 2.0 1.7 ~ >=> C> 1.9 w "'" 0 >- 20 FIGURE 8 - EMITTER FOLLOWER CONFIGURATION OUTPUT SATURATION VOLTAGE versus EMITTER CURRENT ?: ~ ~ [ill 10K lOOK fOSC, OSCILLATOR FREQUENCY IHzl 2 u r- '"',C ][_-- ~1 ~ 30 ~ ./ -- '" 40 or V 2 500 >=> J 4 o lOOK 160 180 1.0M 50 CT - 0.001 I'F 0 1.0K 10K f, FREQUENCY IHzl 80 ~ 100 ~ 120 ~ 140 ~ FIGURE 7 - PERCENT DUTY CYCLE versus DEAD·TIME CONTROL VOLTAGE III 6 100 ~ w 20 1.0 o 20 o 0 2.0kll- 40 @ 60 e 10 8 ~ AVOL V 4D0 -e. II TL594 FIGURE 10 - STANDBY SUPPLY CURRENT FIGURE 11 - versus SUPPLY VOLTAGE 10 ?: 6.0 9.0 g 8.0 II E >- i 6.0 ~ 4.0 :0 U !;:r: r 'i' 7.0 >- ::::> ;2 g 5.0 5.0 J w C? ~ I .B 20 / oIf ......- V v-:: f----"" TURN ON ___ --:!=-- ....--- ...- -- TURN OFF -- o ffi / 4.5 '" z :0 1.0 o - _ 5.5 II 3.0 UNDERVOLTAGE LOCKOUT THRESHOLDS versus REFERENCE LOAD CURRENT 5.0 10 FIGURE 12 - Xc i :t" 40 15 20 25 VCC. SUPPLY VOLTAGE IVI 30 35 o 40 ERROR AMPLIFIER CHARACTERISTICS 5.0 FIGURE 13 - 10 15 20 25 30 IL. REFERENCE LOAD CURRENT ImAI 35 40 DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT 15 V ~----'1>---, Vcc 150 2W Test Inputs Feedback Terminal IP,n 31 Hf---~o Output 1 1 0-----1 Feedback H>---o Output RT CT I'll I-I r---+-....., t • ) \ E"o' )-1 Ref Output Control Amplifier 50 II. 2 E2 Out Gnd FIGURE 15 - EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM FIGURE 14 - COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM 15 V I 15 V RL Ls Each Output Vc Each Output TranSistor CL 15 pF I TranSistor 90''/0 Gnd MOTOROLA LINEAR/INTERFACE DEVICES 3-330 CL '5 PF TL594 FIGURE 16 - ERROR-AMPLIFIER SENSING TECHNIQUES Vo To Output Voltage of System R1 3~rro'r1-=- • R2 Amp 2 NEGATIVE OUTPUT VOLTAGE R2 Vo POSITIVE OUTPUT VOLTAGE Vo FIGURE 17 - ~ Vref 11 RI Vo +~) To Output Voltage of System DEAD-TIME CONTROL CIRCUIT FIGURE 18 - SOFT-START CIRCUIT Output Control R1 Output o DT 0 Cs Output Vref RT RS R2 6 1°. 30 k 001 Max % on Time. Each Output . ~ 45 _ ( 80 Rl) 1 +- A2 FIGURE 19 - OUTPUT CONNECTIONS FOR SINGLE-ENDED AND PUSH-PULL CONFIGURATIONS C1 C1 Oc 01 Output Control 2.4 V " VOC " VAEF E1 E500mA 01 02 ~o 250 mA C2 C2 0" VOC '" 0.4 V E1 Output Control 02 E2 E2 OE Single Ended Configuration Push-Pull Configuration MOTOROLA LINEAR/INTERFACE DEVICES 3-331 G0250mA TL594 FIGURE 20 - FIGURE 21 - SLAVII\IG TWO OR MORE CONTROL CIRCUITS OPERATION WITH VIN > 40 V USING EXTERNAL ZENER Vre! .. RS VCC Master RT Vz lN975A ~ 39 V Slave (Additional Circuits) FIGURE 22 + Yin ~ PULSE-WIDTH MODULATED PUSH-PULL CONVERTER 8.0 to 20 V L 12 1, . - - - - - - - - - - - - ' - - - - - - - - - , VCC Lr'~IN\rl ...TI-P--t--1l Tl C 1r' 1M 33k 3 r: ~f IHo 15 11 ;------ 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in are due to the temperature coefficient of the device. Figure 1 shows the line and thermal regulation response of a typical TL7BO-05C to a 10 watt input pulse. The variation of the output voltage, in addition to changes caused by line and the output voltage due to line regulation is labeled CD and the load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation. Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified thermal regulation component is labeled ®. Figure 2 shows the load and thermal regulation response of a typical TL7BO05C to a 15 watt load pulse. The output voltage variation due to load regulation is labeled Vin-VO = 5.0 V 10 = 5.0mA 1 Vo = 5.0 V Vin = 7.5 V lout = 1.0 A f--CO=O TJ = 25°C t-- r---.. r 0.998 25 ........ r-...... " - 1 / 3 50 75 100 125 TJ, JUNCTION TEMPERATURE (OC) /' 104 1.0 150 10 100 MOTOROLA LINEAR/INTERFACE DEVICES 3-337 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 M 100 M II • TL780 Series FIGURE 6 - RIPPLE REJECTION versus OUTPUT CURRENT FIGURE 5 - RIPPLE REJECTION versus FREQUENCY 100 ~ 80 z a ~ ~ '" - / ~ /' 10U\ = 1.5A 60 ~ cC 100 1- 10U\ = 50 mA Vo = 5.0 V r-Vin = 10V Co = 0 r- TJ = 2S"C 1 40 - 20 1.0 10 ~ z ~ \ ~ ~ \ 60 0: Vo = 5.0 V Vin = 10V = 0 f = 120Hz TJ = WC II III - Co - ~ ~ 40 _\ 1.0 k 10 k 100 k f. FREQUENCY (Hz) 100 80 a ;::: 1.0M 10 M [[ 30 0.01 100 M 0.1 1.0 lou\, OUTPUT CURRENT (A) FIGURE 8 - BIAS CURRENT versus OUTPUT CURRENT FIGURE 7 - BIAS CURRENT versus INPUT VOLTAGE 4.0 5.0 r. ....... TJ = 2S"C IU II II 4.0 1 I""'-TJ = 12S"C TJ t- ~ 3.0 I 1.o I ~ a; 2.0 I .!i> 1,,1 1 Vin'VO = 5.0 V i f 1II 1.0 20 Vin, INPUT VOLTAGE (Vdc) I II o 40 30 0.01 0.1 1.0 lou\, OUTPUT CURRENT (A) FIGURE 9 - DROPOUT VOLTAGE 2.5 ---- -- 4.0 10 L ~ 3.0 ~ 1.0A ~O =1 500mA 5 I-- 0 r----I10 = 10mA t- ia I 2.0 .9 1.0 5 -50 -25 10 FIGURE 10 - PEAK OUTPUT CURRENT AVOU\ = 100 mV 0 ~ 2S"C ~1=112S;C ::> u Vo = 5.0 V 10U\ = 1.0A TJ = ~S"C TJ = 12S"C 0-1= 10 0 -75 10 0 25 50 75 TA, AMBIENT TEMPERATURE ("C) 100 125 r ----.." 1/ V f I TJ = 25"C "~ / " ~........ TJ = 12S"C / ~ ~ t::::,..., 20 10 30 Vin'VO, INPUT·OUTPUT VOLTAGE DIFFERENTIAL (VOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 3-338 40 TL780 Series FIGURE 11 - LINE TRANSIENT RESPONSE 8 FIGURE 12 - Vo ~ 5.0 V lout ~ 150 mA - r-Co ~ 0 -r-TJ ~ 25'C 6 4 2 ~ ~~'" O. !:;Q 2 ~o_O. 2 4 z 1. 5 1. 0 I ~~ O. 5 I !\ \ ~=> -<'u 10 20 30 40 10 t, TIME I/LS) t, FIGURE 13 - WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE 20 in ~ IlHs 16 "" ~ z o ~ 12 gj ~ 8.0 ~ rP iiHs -50 IlHs ~ ~ 5'CfW\ . ~ 15'C~~ r-:.:::.t I --+-No Heat Sink 4.0 o 9JC ~ 5'CfW _ 9JA ~ 62.5'CfW TJlmax) ~ 150'C- ~ O'CfW "" -25 25 50 \. I'--, r\ r--75 100 \. -- ""'" .\. ~ 125 150 TA, AMBIENT TEMPERATURE I'CI MOTOROLA LINEAR/INTERFACE DEVICES 3-339 II ( o~ 5 0 5.0 V Vin~10V Co ~ 0 1 ~~-O, 1 ~ Vo 0 0 0 LOAD TRANSIENT RESPONSE O. 3 O. 2 20 T1MEI/LS1 30 40 .. ® UC3842A,43A UC2842A,43A MOTOROLA Advance Information HIGH PERFORMANCE CURRENT MODE CONTROLLER HIGH PERFORMANCE CURRENT MODE CONTROLLER The UC3842A, UC3843A series are high performance fixed frequency current mode controllers. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. These integrated circuits feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET. Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-bycycle current limiting, programmable output deadtime, and a latch for single pulse metering. These devices are available in B-pin dual-in-line ceramic and plastic packages as well as the 14-pin plastic surface mount (SO-14). The SO-14 package has separate power and ground pins for the totem pole output stage. The UCXB42A has UVLO thresholds of 16 V (on) and 10 V (off), ideally suited for off-line converters. The UCXB43A is tailored for lower voltage applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off). • Trimmed Oscillator Discharge Current for Precise Duty Cycle Control • Current Mode Operation to 500 kHz SILICON MONOLITHIC INTEGRATED CIRCUIT ~ NSUFFIX PLASTIC PACKAGE CASE 626-05 8 ~ 8 JSUF;IX CERAMIC PACKAGE CASE 693-02 1 DSUFFIX PLASTIC PACKAGE CASE 751A-02 50-14 08 PIN CONNECTIONS Compensation Voltage Feedback 2 7 Current Sense 3 RT/CT 4 Vref Vee 6 Output 5 Gnd (Top Viewl • Automatic Feed Forward Compensation • Latching PWM for Cycle-By-Cycle Current Limiting Compensation • Internally Trimmed Reference with Undervoltage Lockout IT 0 NC~ Voltage Feedback ~ • High Current Totem Pole Output NC 4 • Undervoltage Lockout with Hysteresis Current Sense • Low Start-Up and Operating Current :,§ ~ Vref ~ NC ~ VCC 11 Vc Output ~ NC ~ ~8 Gnd RT/CT _7-tL_...J-"' Power Ground • Direct Interface with Motorola SENSEFET Products {Top View} SIMPLIFIED BLOCK DIAGRAM ORDERING INFORMATION Device I Vc UC3842AN Voltage Feedback Compensation 1(1)L _ _ _ _ _ £: Gnd 5(9) Output! Amplifier o to + 70·C '= _ _ ._ _ _ _ _ ...J Pin numbers adjacent to terminals are for the a-pin dual-in-line package. Pin numbers in parenthesis are for the D suffix 50-14 package. Plastic DIP Plastic DIP UC2842AD 50-14 Plastic DIP UC2843AD 50-14 Plastic DIP UC2842AJ UC2843AJ -25 to +85·C Ceramic DIP Ceramic DIP UC2842AN Plastic DIP UC2843AN Plastic DIP This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 3-340 50-14 Plastic DIP UC3843AN Current 3(5) Sense Input Package SO-14 Plastic DIP UC3842AD UC3843AD Input Temperature Range UC3842A, UC3843A, UC2842A, UC2843A MAXIMUM RATING Symbol Value Unit Total Power Supply and Zener Current Rating (lCC+IZ) 30 mA Output Current, Source or Sink (Note 1) 10 1.0 A Output Energy (Capacitive Load per Cycle) W 5.0 Current Sense and Voltage Feedback Inputs Vin -0.3 to +5.5 "J V Error Amp Output Sink Current 10 10 mA Po RaJA 862 145 mW 'CIW Po ROJA 1.25 100 W 'CIW Operating Junction Temperature TJ +150 Operating Ambient Temperature UC3842A, UC3843A UC2842A, UC2843A TA 'c 'c Power Dissipation and Thermal Characteristics o Suffix, Plastic Package Maximum Power Dissipation (aJ TA ~ 25'C Thermal Resistance Junction to Air N Suffix, Plastic Package and J Suffix, Ceramic Package Maximum Power Dissipation Cd) TA ~ 25'C Thermal Resistance Junction to Air Storage Temperature Range o to + 70 -25 to +85 'c -65 to + 150 Tstg • ELECTRICAL CHARACTERISTICS (VCC ~ 15 V INote 21, RT ~ 10 k, CT ~ 3.3 nF, TA ~ Tlow to Thigh INote 31 unless otherwise noted) Characteristic REFERENCE SECTION Reference Output Voltage (10 ~ Line Regulation (VCC Load Regulation (10 ~ ~ 1.0 mA, TJ ~ 25'C) 12 V to 25 V) 1.0 mA to 20 mAl Vref 4.95 5.0 5.05 Regline - 2.0 20 Re9l0ad - 3.0 TS - 0.2 Vref 4.9 - 5.1 - 50 - Temperature Stability Total Output Variation over Line, Load, and Temperature Output Noise Voltage (f ~ 10Hz to 10kHz, TJ ~ Long Term Stability (TA ~ 125'C for 1000 Hours) 25'C) Vn S Output Short Circuit Current ISC -30 5.0 4.9 5.0 5.1 V - 2.0 20 mV 25 - 3.0 25 - - 0.2 - - 4.82 - - 50 5.0 5.18 - -85 -180 -30 -85 -180 52 mV mVrC V "V mV mA OSCILLATOR SECTION Frequency TJ ~ 25'C TA ~ Tlow to Thiah Frequency Change with Voltage (VCC ~ 12 V to 25 V) Frequency Change with Temperature TA ~ Tlow to Thigh Oscillator Voltage Swing (Peak-to-Peak) Discharge Current (VOSC TJ ~ 25'C TA ~ Tlow to Thigh kHz fOSC ~ 2.0 V) 47 46 - 57 60 47 46 52 - 57 60 MOSC/dV - 0.2 1.0 - 0.2 1.0 % dfOSC/dT - 5.0 - - 5.0 - % VOSC - 1.6 - - 1.6 - 7.5 7.2 8.4 - 9.3 9.5 7.5 7.2 8.4 - Notes: 1. Maximum Package power dissipation limits must be observed. 2. Adjust Vee above the Start-Up threshold before setting to 15 V. 3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. Tlow = O°C for UC3842A, UC3843A Thigh = - 25'C for UC2B42A, UC2843A 4. This parameter is measured at the latch trip point with VFB ::: 0 V. 5. Comparator gain is defined as: AV = = + 70°C for = + 85'C for UC3842A, UC3843A UC2B42A, UC2843A tN Output/Compensation t:N Current Sense Input MOTOROLA LINEAR/INTERFACE DEVICES 3-341 V mA Idischg 9.3 9.5 .. UC3842A, UC3843A, UC2842A, UC2843A ELECTRICAL CHARACTERISTICS IVcc ~ 15 V INote 2L RT ~ 10 k, CT ~ 3.3 nF, TA ~ Tlow to Thigh INote 3J unless otherwise notedl Characteristic ERROR AMPLIFIER SECTION Voltage Feedback Input IVO ~ 2.5 VI VFB Input Bias Current IVFB ~ 5.0 VI lIB Open-Loop Voltage Gain IVO ~ 2.0 V to 4.0 VI Unity Gain Bandwidth ITJ ~ 25"CI Power Supply Rejection Ratio IVCC ~ 12 V to 25 VI Output Current Sink IVO ~ 1.1 V, VFB ~ 2.7 VI Source IVO ~ 5.0 V, VFB ~ 2.3 VI 2.45 - 2.5 2.55 -0.1 -1.0 2.42 - 2.5 2.58 V -0.1 -2.0 /LA AVOL 65 90 - 65 90 - dB BW 0.7 1.0 - 0.7 1.0 - MHz PSRR 60 70 - 60 70 - dB rnA 2.0 -0.5 12 -1.0 - VOH VOL 5.0 - 6.2 0.8 Current Sense Input Voltage Gain INotes 4 & 51 AV 2.85 Maximum Current Sense Input Threshold INote 41 Vth 0.9 ISink ISource Output Voltage Swing High State IRL ~ 15 k to ground, VFB ~ 2.3 VI Low State IRL ~ 15 k to Vref, VFB ~ 2.7 VI - 2.0 -0.5 12 -1.0 1.1 5.0 6.2 0.8 1.1 3.0 3.15 2.85 3.0 3.15 1.0 1.1 0.9 1.0 1.1 V 70 - - 70 - dB - V - - CURRENT SENSE SECTION Power Supply Rejection Ratio V CC ~ 12 V to 25 V, Note 4 PSRR VN liB - -2.0 -10 - -2.0 -10 /LA tPLH(lN/OUTI - 150 300 - 150 300 ns VOL - 0.4 2.2 - 13 12 - - 13 12 0.1 1.6 13.5 13.4 0.4 2.2 VOH 0.1 1.6 13.5 13.4 VOLIUVLOI - 0.1 1.1 - 0.1 1.1 V Output Voltage Rise Time ICL = 1.0 nF, T J ~ 25"CI tr 150 - 50 150 ns tf - 50 Output Voltage Fall Time ICL ~ 1.0 nF, TJ ~ 25"CI 50 150 - 50 150 ns 15 7.8 16 8.4 17 9.0 14.5 7.8 16 8.4 17.5 9.0 9.0 7.0 10 7.6 11 8.2 8.5 7.0 10 7.6 11.5 8.2 - 0.5 1.0 - 0.5 1.0 Input Bias Current Propagation Delay ICurrent Sense Input to Outputl OUTPUT SECTION Output Voltage Low State (lSink ~ 20 mAl (lSink = 200 mAl High State (lSource = 20 mAl (lSource ~ 200 mAl V Output Voltage with UVLO Activated VCC ~ 6.0 V, ISink = 1.0 rnA - UNDERVOLTAGE LOCKOUT SECTION Start-Up Threshold UCX842A UCX843A V Vth Minimum Operating Voltage After Turn-On UCX842A UCX843A V VCClminl PWM SECTION Duty Cycle Maximum Minimum TOTAL DEVICE Power Supply Current Start-Up IVCC ~ 6.5 V for UCX843A, 14 V for UCX842AI Operating INote 21 ICC Power Supply Zener Voltage (ICC ~ 25 rnA) Vz rnA - 12 17 - 12 17 30 36 - 30 36 - MOTOROLA LINEAR/INTERFACE DEVICES 3-342 V UC3842A, UC3843A, UC2842A, UC2843A FIGURE 2 - OUTPUT DEAD TIME versus OSCILLATOR FREQUENCY FIGURE 1 - TIMING RESISTOR versus OSCILLATOR FREQUENCY 0 100 0 '- 01'.. 15V -VCC =TA 25°C ~~-t ~t--' I"'~ r-.... - ~ 80 C> ~ r--...... - 90 - E 25 50 75 TA, AMBIENT TEMPERATURE (OC) 100 20K 50K I V /./ 100K 200K 500K 1.0M 125 VCC=15V CT ~ 3.3 nF TA ~ 25°C --".... - ---: V / . / '/ .I' '/ '/ ~ 60 C> o V ./ ~ 70 ::< ~ -25 . / 't' ~~...::~ ,<§:> - l~iSCh9 ~ 7.2 m y ./'" ./ o ::< ;; 50 7.0 -55 ~ L AGURE 4 - MAXIMUM OUTPUT DUTY CYCLE versus TIMING RESISTOR I VCC ~ 15 V VOSC = 2.0V- -- / L IOSC, OSCILLATOR FREQUENCY (kHz) OSCILLATOR DISCHARGE CURRENT versus TEMPERATURE 9.0 ,. V V 1.0 10K 1.0M II ./ 1~ ~~<' "'~ ~~/ ./ 1'\ 1,/ ~ OV SOK AGURE 3 - 4- 1/ ./ ,,,,~ ~'\ r-.... 15 V Or-VCC TA ~ 25°C / 0 f- AiSCh9'~ 9.5 mA 40 J 800 1.0K AGURE5 - ERROR AMP SMALL SIGNAL TRANSIENT RESPONSE 2.0K 3.0K 4.0K RT, TIMING RESISTOR (11) 6.0K FIGURE 6 - ERROR AMP LARGE SIGNAL TRANSIENT RESPONSE 2.S5V 3.0 V 2.5 V 2.5 V 2.45 V 2.0 V 0.51's/DIV MOTOROLA LINEAR/INTERFACE DEVICES 3-343 8.0K II UC3842A, UC3843A, UC2842A, UC2843A FIGURE 7 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY AGURE B - CURRENT SENSE INPUT THRESHOLD versus ERROR AMP OUTPUT VOLTAGE 1.2 iii ~ ~ ~ ~ 801----""''1'-;:--+---+---+ 9 1.0 30 ffi 601---P-<,----'k--+---+---'-'--+---I 60 ll! 5 .....O!:::---+---I 90 :> 401---t---f"'--~,..... ~ ~ o 1 1 ~ ~w ~ iE (I) 20t---t---+----t----'l'o<:__--'k---_i 120 ~ i ot---t---+----t----t----'l'o<~-_i 1;5 150 -<§. 180 -2~~0---~10~0----~1~.0~K----~10~K---l~00~K:---~~~~10M g l!l o.8 ~ i-/ '/ r-- -TA = 125oC') 1/ / I- ~ ;;:; m a'i (I) I- z -// o.6 / / /. o.4 0 / // /// ........... 2.0 ~ ....... ~ ~ ~ -12 ~ ~ r--.... ~ -8.0 "- ~ -16 ~ ~ ;;; -20 TA o r-....... 20 TA I""'.: = 125°C TA -24 = = 25°C I 100 40 80 60 I,of, REFERENCE SOURCE CURRENT (mA) FIGURE 11 - -55°C j - -VCC =I 15V_ I 4.0 8.0 6.0 FIGURE 10 - REFERENCE SHORT CIRCUIT CURRENT versus TEMPERATURE V~c = J5V- ....... '"~ = I Vo, ERROR AMP OUTPUT VOLTAGE (Vo) FIGURE 9 - REFERENCE VOLTAGE CHANGE versus SOURCE CURRENT ~ ........ TA VLL I, FREQUENCY (Hz) ;:;:; -4.0 '/ //. !!i:::> o. 2 u j -- ~ r-- -TA = l125oC _ I VCC = 15V_ RL ';0.1 n ~ " "'-. ~ -55°C c--- ~ r-... ............ 120 REFERENCE LOAD REGULATION -25 o 25 50 75 TA, AMBIENT TEMPERATURE (OC) AGURE 12 - 2.0 mS/DIV REFERENCE LINE REGULATION 2.0 msiDIV MOTOROLA LINEAR/INTERFACE DEVICES 3-344 100 125 UC3842A, UC3843A, UC2842A, UC2843A FIGURE 13 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT 0 FIGURE 14 - OUTPUT WAVEFORM Source Saturation_ VCC ~ 15V _ILoad to Ground) _ BO p.s Pulsed Load TA ~ 25 C I I 120 Hz Rate f - - VCC/ o I 0 90% 0 TA 55'C 'J I 0 0 0 T~ ............ TA r I II II ./ 5~'C ......25'C10% Sink Saturation ILoad to VCC) )---- Gndrr- ./" 200 400 600 10, OUTPUT LOAD CURRENT (rnA) FIGURE 15 - BOO 50 nsiDIV OUTPUT CROSS CONDUCTION FIGURE 16 - SUPPLY CURRENT versus SUPPLY VOLTAGE 5 ""'> C> l'3 « .s >- ~ 5 :::> fr- u ~:::> "" « E C> I 0 10 ,I «II oj s> 5t--- §l 0 RT ~ 10 k CT ~ 3.3 nF VFB ~ OV Current Sense TA ~ 25'C ;'5 ~++- t- tlOil ~I' 11 :::> 10 100 nslDlV 20 VCC, SUPPLY VOLTAGE IV) MOTOROLA LINEAR/INTERFACE DEVICES 3-345 ~ 1 1 30 0V- 40 .. UC3842A, UC3843A, UC2842A, UC2843A PIN FUNCTION DESCRIPTION Pin No. Function Description a-Pin 14-Pin 1 1 Compensation This pin is the Error Amplifier output and is made available for loop compensation. 2 3 Voltage Feedback This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider. 3 5 Current Sense A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction. 4 7 RT/CT The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor RT to Vref and capacitor CT to ground. Operation to 500 kHz is possible. 5 - Gnd This pin is the combined control circuitry and power ground (a-pin package only). 6 10 Output This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sinked by this pin. 7 12 VCC This pin is the positive supply of the control IC. a 14 Vref This is the reference output. It provides charging current for capacitor CT through resistor RT. - a Power Ground This pin is a separate power ground return (14-pin package only) that is connected back to the power source. It is used to reduce the effects of switching transient noise on the control circuitry. - 11 Vc The Output high state (VOH) is set by the voltage applied to this pin (14-pin package only). With a separate power source connection, it can reduce the effects of switching transient noise on the control circuitry. - 9 Gnd This pin is the control circuitry ground return (14-pin package only) and is connected back to the power source ground. - 2,4,6,13 NC No connection (14-pin package only). These pins are not internally connected. MOTOROLA LINEAR/INTERFACE DEVICES 3-346 UC3842A, UC3843A, UC2842A, UC2843A state (VoLl. This occurs when the power supply is operating and the load is removed, or at the beginning of a soft-start interval (Figures 23, 24). The Error Amp minimum feedback resistance is limited by the amplifier's source current (0.5 mAl and the required output voltage (VOH) to reach the comparator's 1.0 V clamp level: OPERATING DESCRIPTION The UC3842A, UC3843A series are high performance, fixed frequency, current mode controllers. They are specifically designed for Off-Line and DC-to-DC converter applications offering the designer a cost effective solution with minimal external components. A representative block diagram is shown in Figure 17. R _3.0(1.0V) + 1.4V - 8800n f(MIN) 0.5 mA - Oscillator The oscillator frequency is programmed by the values selected for the timing components RT and CT. Capacitor CT is charged from the 5.0 V reference through resistor RT to approximately 2.8 V and discharged to 1.2 V by an internal current sink. During the discharge of CT, the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high. This causes the Output to be in a low state, thus producing a controlled amount of output deadtime. Figure 1 shows RT versus Oscillator Frequency and Figure 2, Output Deadtime versus Frequency, both for given values of Cr- Note that many values of RT and CT will give the same oscillator frequency but only one combination will yield a specific output deadtime at a given frequency. The oscillator thresholds are temperature compensated, and the discharge current is trimmed and guaranteed to within ± 10% at TJ = 25°C. These internal circuit refinements minimize variations of oscillator frequency and maximum output duty cycle. The results are shown in Figures 3 and 4. In many noise sensitive applications it may be desirable to frequency-lock the converter to an external system clock. This can be accomplished by applying a clock signal to the circuit shown in Figure 20. For reliable locking, the free-running oscillator frequency should be set about 10% less than the clock frequency. A method for multi unit synchronization is shown in Figure 21. By tailoring the clock waveform, accurate Output duty cycle clamping can be achieved. Current Sense Comparator and PWM Latch The UC3842A, UC3843A operate as a current mode controller, whereby output switch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output/Compensation (Pin 1). Thus the error signal controls the peak inductor current on a cycle-by-cycle basis. The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle. The inductor current is converted to a voltage by inserting the ground referenced sense resistor RS in series with the source of output switch Ql. This voltage is monitored by the Current Sense Input (Pin 3) and compared a level derived from the Error Amp Output. The peak inductor current under normal operating conditions is controlled by the voltage at pin 1 where: I _ V(Pin 1) - 1.4 V pk 3 RS Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost. Under these conditions, the Current Sense Comparator threshold will be internally clamped to 1.0 V. Therefore the maximum peak switch current is: Ipk(max) = Error Amplifier A fully compensated Error Amplifier with access to the inverting input and output is provided. It features a typical DC voltage gain of 90 dB, and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin (Figure 7). The non-inverting input is internally biased at 2.5 V and is not pinned out. The converter output voltage is typically divided down and monitored by the inverting input. The maximum input bias current is -2.0 JJ.A which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance. 1.0V AS When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of RS to a reasonable level. A simple method to adjust this voltage is shown in Figure 22. The two external diodes are used to compensate the internal diodes yielding a constant clamp voltage over temperature. Erratic operation due to noise pickup can result if there is an excessive reduction of the Ipk(max) clamp voltage. A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded. This spike is due to the power transformer interwinding capacitance and output rectifier recovery time. The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability; refer to Figure 26. The Error Amp Output (Pin 1) is provided for external loop compensation (Figure 31). The output voltage is offset by two diode drops (=1.4 V) and divided by three before it connects to the inverting input of the Current Sense Comparator. This guarantees that no drive pulses appear at the Output (Pin 6) when pin 1 is at its lowest MOTOROLA LINEAR/INTERFACE DEVICES 3-347 II • UC3842A, UC3843A, UC2842A, UC2843A FIGURE 17 - REPRESENTATIVE BLOCK DIAGRAM VCC Vee ---, ,-------------....-------h I I 7(12) Vref 1 IVe RT R JUL Oscillator e TT Voltage Input " 4(7)1 1.0 rnA Fe~baCk I 2R R Output! Amplifier Compensation <>-1------' ~~~ 1(1)l _ _ _ _ _ Gnd 5(9) ______ .J ~ ~ 3(5) RS Sink Only = Positive True Logic Pin numbers adjacent to terminals are for the 8 pin dual-in-line package. Pin numbers in parenthesis are for the 0 suffix 50-14 package. FIGURE 18 - TIMING DIAGRAM Capacitor CT Latch "Set" Input ----',--' Output! Compensation ~ Current Sense ~ InputLatch "Reset" Input ...JL_ _--'L_ _---'l_ _- ' L -_ _,'-_-'L-_...JL Output Sma)) RT/Large CT Large RT/Sma)) CT Undervoltage Lockout Two undervoltage lockout comparators have been incorporated to guarantee that the Ie is fully functional before the output stage is enabled. The positive power supply terminal (Vee! and the reference output (Vref) are each monitored by separate comparators. Each has built-in hysteresis to prevent erratic output behavior as their respective thresholds are crossed. The Vee comparator upper and lower thresholds are 16 V/10 V for the UeX842A, and 8.4 V/7.6 V for the UeX843A. The Vref comparator upper and lower thresholds are 3.6 VI 3.4 V. The large hysteresis and low start-up current of the UeX842A makes it ideally suited in off-line converter applications where efficient bootstrap start-up tech- MOTOROLA LlNEARIiNTERFACE DEVICES 3-348 UC3842A, UC3843A, UC2842A, UC2843A niques are required (Figure 33). The UCX843A is intended for lower voltage DC to DC converter applications. A 36 V zener is connected as a shunt regulator from VCC to ground. Its purpose is to protect the IC from excessive voltage that can occur during system start-up. The minimum operating voltage for the UCX842A is 11 V and 8.2 V for the UCX843A. FIGURE 19 - CONTINUOUS CURRENT WAVEFORMS A AI Output These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFET's. It is capable of up to ± 1.0 A peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load. Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active. This characteristic eliminates the need for an external pull-down resistor. The SO-14 surface mount package provides separate pins for Vc (output supply) and Power Ground. Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry. This becomes particularly useful when reducing the Ipk(max) clamp level. The separate Vc supply input allows the designer added flexibility in tailoring the drive voltage independent of VCC. A zener clamp is typically connected to this input when driving power MOSFETs in systems where VCC is greater than 20 V. Figure 25 shows proper power and control ground connections in a current sensing power MOSFET application. ~ II Oscillator Period ---+-- I B Oscillator Period I 14 I~ 16 Current mode converters can exhibit subharmonic oscillations when operating at a duty cycle greater than 50% with continuous inductor current. This instability is independent of the regulators closed loop characteristics and is caused by the simultaneous operating conditions of fixed frequency and peak current detecting. Figure 19A shows the phenomenon graphically. At to, switch conduction begins, causing the inductor current to rise at a slope of m1. This slope is a function of the input voltage divided by the inductance. At t1, the Current Sense Input reaches the threshold established by the control voltage. This causes the switch to turn off and the current to decay at a slope of m2, until the next oscillator cycle. The unstable condition can be shown if a pertubation is added to the control voltage, resulting in a smallll.l (dashed line). With a fixed oscillator period, the current decay time is reduced, and the minimum current at switch turn-on (t2) is increased by Il.I + Il.I m2/m1. The minimum current at the next cycle (t3) decreases to (Il.l + Il.I m2/m1) (m2/m1). This pertubation is multiplied by m2/m1 on each succeeding cycle, alternately increasing and decreasing the inductor current at switch turn-on. Several oscillator cycles may be required before the inductor current reaches zero causing the process to co.mmence again. If m2/m1 is greather than 1, the converter will be unstable. Figure 19B shows that by adding an artificial ramp that is synchronized with the PWM clock to the control voltage, the Il.I pertubation will decrease to zero on succeeding cycles. This compensating ramp (m3) must have a slope equal to or slightly greater than m2/2 for stability. With m2/2 slope compensation, the average inductor current follows the control voltage yielding true current mode operation. The compensating ramp can be derived from the oscillator and added to either the Voltage Feedback or Current Sense inputs (Figure 32). Reference. The 5.0 V bandgap reference is trimmed to ± 1.0% tolerance at TJ = 25"C on the UC284XA, and ± 2.0% on the UC384XA. Its primary purpose is to supply charging current to the oscillator timing capacitor. The reference has short circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry. Design Considerations Do not attempt to construct the converter on wirewrap or plug-in prototype boards. High frequency circuit layout techniques are imperative to prevent pulsewidth jitter. This is usually caused by excessive noise pick-up imposed on the Current Sense or Voltage Feedback inputs. Noise immunity can be improved by lowering circuit impedances at these points. The printed circuit layout should contain a ground plane with lowcurrent signal and high-current switch and output grounds returning on separate paths back to the input filter capacitor. Ceramic bypass capacitors (0.1 ILF) connected directly to VCC, Vc, and Vref may be required depending upon circuit layout. This provides a low impedance path for filtering the high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI. The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise generating components. MOTOROLA LINEAR/INTERFACE DEVICES 3-349 • UC3842A, UC3843A, UC2842A, UC2843A FIGURE 20 - EXTERNAL CLOCK SYNCHRONIZATION FIGURE 21 - EXTERNAL DUTY CYCLE CLAMP AND MULTI UNIT SYNCHRONIZATION ,..-----Vref External Syoo Input r----- I I 1 e---j0(' .I~ l T C .... M t '" 47 ~ = 111IL _ _ _ _ _ 5(9) The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of CT to go more than 300 mV below ground, FIGURE 22 - ADUSTABLE REDUCTION OF CLAMP LEVEL FIGURE 23 - 5(9) To Additional UCX84XA's omax --~ RA + 2RS 1= _ _ ,·44 __ IRA + 2RB)C SOFT-START CIRCUIT .---------- B:g: I ~ c1' 5(9) lS oft.Start "" 3600C in ILF Ipk(maX)""~ 1.67 (~) VClamp = - - - + 0.33 x 10- 3 " 1 + ", ( -"' + 1 ) "1 Where: 0 '" VClamp"""; 1.0 V AGURE 24 - ADJUSTABLE BUFFERED REDUCTION OF CLAMP LEVEL WITH SOFT-START FIGURE 25 - CURRENT SENSING POWER MOSFET Vcc VPin 5 ... R~D~7!n) r~SA~n) If: SENSEFET = MTP10Nl0M RS = 200 -13151 "s "s Control Circuitry Ground: 1/4W To Pin (9) V 1.67 Clamp " " - ( " ) ~+1 ", VClamp Ipklmax)=~ tSOFTSTART= Where: 0 <5; VClamp <5; 1.0 V -In[1-~3VV lc~"""" CLAMP ,+ 2 Virtually losslaSI current sensing can be achieved with the implementation of a SENSEFET power switch. For proper operation during over current conditions, a reduction of the Ipklmaxj clamp level must be Implemented. Refer to Figures 22 and 24. MOTOROLA LINEAR/INTERFACE DEVICES 3-350 UC3842A, UC3843A, UC2842A, UC2843A FIGURE 26 - CURRENT WAVEFORM SPIKE SUPPRESSION FIGURE 27 - MOSFET PARASITIC OSCILLATIONS II Series gate resistor Rg will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance In the gate-source circuit. Tne addition of the RC filter will eliminate Instability caused by the leadmg edge spike on the current waveform. FIGURE 28 - BIPOLAR TRANSISTOR ORIVE FIGURE 29 - ISOLATED MOSFET DRIVE =:-:;----1 Vee 50% DC t = pk ____ J 3(5) 25% DC V(pm 1) - 1.4 3RS RS The totem-pole output can furnish negative base current for enhanced transistor turn-off, with the addition of capacitor C, FIGURE 30 - LATCHED SHUTDOWN FIGURE 31 - 1---- ERROR AMPLIFIER COMPENSATION From Va Ri I 2(3) 2.5V 5(9) Rf ~ 8.8 k Error Amp compensation circuit for stabiliZing any currentmode topology except for boost and flyback converters operating with continuous inductor current. From Va ~~~ 1L .~?iJ ~~~--- 5(9) H1IL _ _ _ 5(9) The MCR101 seA must be selected for a holding of less than 0.5 rnA at TA{min). The simple two transistor circuit can be used in place of the SeR as shown. All resistors are 10 k. Error Amp compensation circuit for stabilizing current-mode boost and fly back topologies operattng with continuous inductor current. MOTOROLA LINEAR/INTERFACE DEVICES 3-351 (~) NS UC3842A, UC3843A, UC2842A, UC2843A FIGURE 32 - II From SLOPE COMPENSATION Vee Vo Ai lll1L I --~ AS 5191 The buffered oscillator ramp can be resistively summed with either the voltage feedback or current sense inputs to provide slope compensation. FIGURE 33 - 27 WATT OFF-LINE FLYBACK REGULATOR 4.7 H .- 5.0 V!4.0 A 115Vac ===----+--05.0 V RTN .-<01-_"""'""'-_-"12 V/O.3 A E=:O----+-O ± 12 V RTN ·'--,-+t-<>__.AJ<.Ar+-O-12 V!O.3 A '8 k 4.7 k 100 pF 1.Ok 111IL _ _ _ _ _ .-.: _ _ _ _ _ _ _ J ~470PF 0.511 5(9} T1 - Primary: 45 Turns #26 AWG Secondary ± 12 V: 9 Turns #30 AWG (2 strands) Bifiliar Wound Secondary 5.0 V: 4 Turns (six strands) #26 Hexfiliar Wound Secondary Feedback: 10 Turns #30 AWG (2 strands) Bifiliar Wound Core: Ferroxcube EC35-3C8 Bobbin: Ferroxcube EC35PCBl Gap: = 0.10"for a primary inductance of 1.0 mH ~ L1 l2, L3 - 15 /-tH at 5.0 A, Coilcraft Z7156. 25 JLH at 1.0 A, Coilcraft Z7157. = Line Regulation: 5.0 V ±12 V Yin Load Regulation: 5.0 V ±12 V Vin = 115 Vac, lout ~ 1.0 A to 4.0 A Yin ~ 115 Vac, lout ~ 100 mA to 300 mA Output Ripple: 5.0 V ±12 V Vin = 115 Vac 40 mV p _p 80 mV p _p Efficiency Yin ~ 115 Vac 70% 95 to 130 Vae do ~ ~ All outputs are at nominal load currents unless otherwise noted. MOTOROLA LINEAR/INTERFACE DEVICES 3-352 ~ ~ ~ ~ 50 mVor ±0.5% 24 mV or ±0.1% 300 mV or ±3.0% 60 mV or ±0.25% ® pA78S40 MOTOROLA Specifications and Applications Information The ILA78S40 is a monolithic-switching regulator subsystem, providing all active functions necessary for a switching regulator system. The device consists of a temperature compensated voltage reference, controlled-duty cycle oscillator with an active current limit circuit, comparator, high-current and high-voltage output switch, capable of 1.5 A and 40 V, pinned-out power diode and an uncommitted operational amplifier, which can be powered up or down independent of the IC supply. The switching output can drive external NPN or PNP transistors when voltages greater than 40 V, or currents in excess of 1.5 A, are required. Some of the features are wide-supply voltage range, low standby current, high efficiency and low drift. The ILA78S40 is available in commercial (DOC to + 70°C), automotive (- 40°C to + 85°C I. and military (- 55°C to + 125°C) temperature ranges. Some of the applications include use in step-up, step-down, and inverting regulators, with extremely good results obtained in battery-operated systems. UNIVERSAL SWITCHING REGULATOR SUBSYSTEM SILICON MONOLITHIC INTEGRATED CIRCUIT ~ P __ -~ _ _ o SUFFIX CERAMIC PACKAGE CASE 620-10 P ~ 16 PsUFFIX PLASTIC PACKAGE CAS E 648-06 16 • Output Adjustable from 1.25 V to 40 V • Peak Output Current of 1.5 A Without External Transistor • 80 dB line and Load Regulation PIN CONNECTIONS • Operation from 2.5 V to 40 V Supply • Low Standby Current Drain • High Gain, High Output Current, Uncommitted Op Amp DIOde Cathode SWitch Collector 1 Diode Driver Collector BLOCK DIAGRAM Ipk Sense Op Amp Output Non-Inv Input Gnd Timing Capacitor VCC Ipk Sense Vee 4 Vee Op Amp Timing 5 Capacitor OpAmp 9 Non.lnv~~~nu~ 6 Comparator Op Amp Inverting Inverting Input 7 Input 9 Comparator Non-Inverting Input (Top View) ORDERING INFORMATION Device 5 Ref Output Inv Input Non-Inv Output VCC Input OpAmp Switch Emitter Diode Anode (Bottom View) Diode Cathode Package /LA78S40PC O°C to + 70°C /LA78S40PV - 40°C to + 85°C /LA78S40DC O°C to + 70°C /LA78S40DM MOTOROLA LINEAR/INTERFACE DEVICES 3-353 Temperature Range - 55°C to + 125 C Q Plastic DIP Plastic DIP Ceramic DIP Ceramic DIP II p.A78S40 MAXIMUM RATINGS Rating Symbol Value Unit VCC 40 V VCC (Op Amp) 40 V Common Mode Input Range (Comparator and Op Amp) VICR -0.3 to VCC V Differential Input Voltage (Note 2) VID ±30 V Output Short-Circuit Duration (Op Amp) - Continuous - Power Supply Voltage Op Amp Power Supply Voltage Reference Output Current Iref 10 mA Voltage from Switch Collectors to Gnd - 40 V Voltage from Switch Emitters to Gnd - 40 V Voltage from Switch Collectors to Emitter - 40 V 40 V Reverse-Power Diode Voltage VDR 40 V Current through Power Switch ISW 1.5 A Current through Power Diode 10 1.5 A Po 1/ReJA Po lIReJA 1500 14 1000 8.0 mW mWrC mW mWrC Tstg -65 to + 150 °c Voltage from Power Diode to Gnd Power Dissipation and Thermal Characteristics Plastic Package - TA = + 25°C Derate above + 25°C (Note 1) Ceramic Package - TA = 25°C Derate above + 25°C (Note 1) Storage Temperature Range Operating Temperature Range I'A78S40M I'A78S40V I'A78S40C °c TA -55 to + 125 -40 to +85 o to + 70 Notes: 1. Tlow = = - Thigh 55°C for "A7BS40DM 40°C for "A7BS40PV = D"C for J,tA78S40DC and = = + 125°C for "A7BS40DM + B5°C for "A7BS40PV = + 70°C for "A7BS40DC and "A78S40PC J,tA78S40PC 2. For supply voltages less than 30 V the maximum differential input voltage (Error Amp and Op Amp) is equal to the supply voltage. ELECTRICAL CHARACTERISTICS IVCC VCC lOp Ampl Characteristic GENERAL Supply Voltage VCC Supply Current (Op Amp VCC Disconnectedl (VCC = 5.0 VI (VCC = 40 V) ICC Supply Current (Op Amp VCC Connected) (VCC = 5.0 V) (VCC = 40 V) ICC - 2.5 40 V mA - 1.8 - 2.3 3.5 5.0 - - 4.0 5.5 mA - REFERENCE Reference Voltage (lref = 1.0 mAl Vref 1.180 1.245 1.310 V Reference Voltage Line Regulation (3.0 V '" VCC '" 40 V, Iref = 1.0 mA, TA = 25°C) Regline - 0.04 0.2 mVN Reference Voltage Load Regulation Re9(oad - 0.2 0.5 mV/mA (1.0 mA '" Iref '" 10 mA, TA = 25°C) MOTOROLA LINEAR/INTERFACE DEVICES 3-354 p,A78S40 ELECTRICAL CHARACTERISTICS (Continued) Min Typ Max 20 20 - 50 70 150 150 - 250 350 Vase - 0.5 - V tcha/tdis - 6.0 - - Output Saturation Voltage 1 (lsw = 1.0 A, Pin 15 tied to Pin 16) Vsat1 - 0.93 1.3 V Output Saturation Voltage 2 (lSW = 1.0 A, 115 = 50 mAl Vsat2 - 0.5 0.7 V hFE - 70 - - 'C(off) - 10 - nA Input Offset Voltage (VCM V,O - 1.5 15 mV Input Bias Current (VCM liB - 35 200 nA ',0 - 5.0 75 nA Characteristic Symbol Unit OSCILLATOR Charging Current (TA (VCC = 5.0 V) (VCC = 40 V) = 25°C) Discharge Current (TA (VCC = 5.0 V) (VCC = 40 V) 'chg = 25°C) Oscillator Voltage Swing (TA (VCC = 5.0 V) Idis = 25°C) Ratio 01 Charge/Discharge Time ,.A !LA CURRENT LIMIT Current-Limit Sense Voltage (TA = 25°C) (VCC - V, k Sense) OUTPUT SWITCH Output Transistor Current Gain (TA (lC = 1.0 A, VCE = 5.0 V) = 25°C) = 25°C) Output Leakage Current (TA (VCE = 40 V) POWER DIODE Forward Voltage Drop (10 1.0 A) = Diode Leakage Current (TA = 25°C) (VDR = 40 V) COMPARATOR = VRel) = VRel) Input Offset Current (VCM = VRel) Common-Mode Voltage Range (TA = 25°C) V,CR 0 - VCC - 2.0 V Power-Supply Rejection Ratio (T A (3.0 '" VCC '" 40 V) 25°C) PSRR 70 96 - dB - 4.0 = OUTPUT OPERATIONAL AMPLIFIER Input Offset Voltage (VCM = 2.5 V) V,O Input Bias Current (VCM 2.5 V) liB = 2.5 V) 15 mV 30 200 nA 5.0 75 Voltage Gain "'; (TA = 25°C) (RL = 2.0 kO to Gnd, 1.0 V", Vo '" 2.5 V) ',0 - AVOL+ 25 250 - V/mV Voltage Gain - (TA = 25°C) (RL = 2.0 kO to VCC (Op Amp), 1.0 V '" Vo '" 2.5 VI AVOL- 25 250 - V/mV = Input Offset Current (VCM nA Cammon-Mode Voltage Range (TA = 25°C) V,CR 0 - VCC - 2.0 V Common-Mode Rejection Ratio (TA (VCM = 0 to 3.0 V) = 25°C) CMRR 76 100 - dB PSRR 76 100 - dB ISource 75 150 - rnA ISink 10 35 - rnA - 0.6 - V/iJ.S - 1.0 V - - V Power-Supply Rejection Ratio (TA (3.0 V '" VCC (Op Amp) '" 40 V) Output Source Current (TA Output Sink Current (TA Slew Rate (TA = = 25°C) = 25°C) = 25°C) 25°C) Output Low Voltage (TA Output High Voltage (TA SR = 25°C, 'L = -5.0 rnA) = 25°C, IL = 50 rnA) VOL VOH VCC (Op Amp) -3.0 MOTOROLA LINEAR/INTERFACE DEVICES 3-355 II pA78S40 FIGURE 1 - OUTPUT SWITCH ON/OFF TIME FIGURE 2 - STANDBY SUPPLY CURRENT . versus SUPPLY VOLTAGE venus OSCILLATOR TIMING CAPACITOR 1000 3.2 = =Vee eT = 0.001 /LF r- ~k(s.n..) = Vee in3 = Gnd 5.0 V ~k(S8nS8) Vee _linl0 = Gnd -Pin9 = Vref 4 II Ion 6 toff 8 J 1.0 0.1 1.0 10 CT. OSCILLATOR TIMING CAPACITOR (nFI 100 0 5.0 FIGURE 3 - EMITTER·FOLLOWER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus EMmER CURRENT 1. 6 5 Pins 14, 15. 16 = Vee Pins la, 12 = Gnd Pin 9 = Vr.! 4 2 I-'" I- .....- ..... f- o Vce = 5.0 V Pin 14 = Vee ~ 0 Pins 3, 10, 12 = Gnd Pin 9 = Vr.! - 8 V r-- I I eo~nectb. oarllngto1n l - f- r- ..- 6 2 0.6 0.8 1.0 IE, EMITTER CURRENT IAMPSI 1.2 ...... 0 1.4 - 0.2 ,/ ...... I-"'" V 0.4 0.6 0.8 1.0 IC. COLLECTOR CURRENT lAMPS) MOTOROLA LINEAR/INTERFACE DEVICES 3-356 ....- ...... Forced Beta - 20,,- ,,- 0.4 40 ,/ V 0.2 35 FIGURE 4 - COMMON·EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus COLLECTOR CURRENT 1 1.0 15 20 25 30 Vee, SUPPLY VOLTAGE (VOLTS) 1. 2 ve~ = 15.0 J 3 10 1.2 1.4 "A78S40 FIGURE 5 - STEP·DOWN CONVERTER 2~~o-~--------------------------------~~~~----~----, .. RSC 100~ 0.33· L----------~1X.""::'_._<> Vout 5.0 V/500 mA Rl *Use ell:ternal rectifier to increase circuit efficlencv FIGURE 6 - STEP·UP CONVERTER 1~~ o-.....--------------------------------,....'IM~t-----~-,7rO.;:-~.;:-H--..------, 100 ~ r--------, +---~~----------------------------------------~~_1~-oVOul 28 V/175 mA R1 ·Use external rectifier to increase circuit efficiency MOTOROLA LINEAR/INTERFACE DEVICES 3-357 ILA78S40 RGURE 7 - INVERTING CONVERTER 1N5822 Vout 1~"v o-_~____________"""''M.--1r-_ _ _-..D45H8'-~_i4-1>---1>--_1-<>5V/500 mA RSC 0.30 100 • R2 18 k FIGURE 8 Calculation Step-Down !2n Vout + VF Vinlmin) - Vsat - Vout toff DESIGN FORMULA TABLE Step-Up Vout - VF Vinlmin) Inverting I -- I -- fmin fmin CT 4 x 10 5 ton 4 x 10 5 ton Ipklswitch) 2loutlmax) RSC 0.33 ---Ipklswitch) Llmin) (Vinlmin)-V5al-VgYI)t ) Ipklswitch) onlmax (ton + toff) max Co 2 loutlmax) VF = Forward I -- fmin 4x 10 Stan (~) toff 2 loutlmax) 0.33 ---Ipklswitch) (Vin(min) - Vsa Ipklswitch) Ipk!5wil~hlltQn + tQff) 8 Vripplelp-p) Vsat "" Saturation voltage of the output switch. VQut + VF Vin(min) - Vsat Vin!minl Vsat t)1 (~) toff 0.33 ---Ipklswitch) (Vinlminl- Vsat)t Ipklswitch) onlmax) onlmax) ~ IQut ton =~ 'ripple 'ripple voltage drop of the ring back rectifier. The fOllowing power supply characteristics must be chosen: Vin - Nominal input voltage. If this voltage is not constant, then use Vinlmax) for step-down and Vin(min) for stepup and inverting convertor. Vout - Desired output voltage, Vout = '.25 (, + ~) for step-down and step-up; Vout ,.2;, R2 for Inverting. = lout - Desired output current. fmin - Minimum desired output ·switching frequency at the selected values for Yin and 10 . Vripple(p-p) - Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation. S•• Application Note AN920A for further information. MOTOROLA LINEAR/INTERFACE DEVICES 3-358 Power/Motor Control Circuits In Brief .. . With the expansion of electronics into more and more mechanical systems there comes an ever increasing demand for simple but intelligent circuits that can blenC\' these two technologies together. In past years, the task of power/motor control was once the domain of discrete devices. But today, increasingly, this task is being per· formed by bipolar Ie technology because of cost, size, and reliability constraints. Motorola offers integrated circuits designed to anticipate the requirements for both simple and sophisticated control systems, while providing cost effective solutions to meet the application. Selector Guide Power Controllers. . . . . . . . . . . . . . . .. 4-2 Motor Controllers . . . . . . . . . . . . . . . .. 4-4 Alphanumeric Listing ............... 4-7 Data Sheets ........................ 4-8 II Power/Motor Control Circuits Power Controllers Zero Voltage Switches . . . . . . . . . . . . . . . . . . . . Zero Voltage Controller. . . . . . . . . . . . . . . . . . . . Integrated Solenoid Driver. . . . . . . . . . . . . . . . . . High-Side Driver Switch .................... 4-2 4-3 4-3 4-3 Motor Controllers DC Servo Motor Controller/Driver . . . . . . . . . . . . . DC Brushless Motor Controller. . . . . . . . . . . . . . . Closed-Loop Brushless Motor Adapter. . . . . . . . . . Stepper Motor Drivers. . . . . . . . . . . . . . . . . . . . . Triac Phase Angle Controller ................ Universal Motor Speed Controllers . . . . . . . . . . . . 4-4 4-4 4-5 4-5 4-5 4-6 Power Controllers II An assortment of battery and ac line-operated control ICs for specific applications are shown. They are designed to enhance system performance and reduce complexity in a wide variety of control applications. Zero Voltage Switches CA3079P/CA3059P T A = - 40° to + 85°C, Case 646 ... designed for thyristor control in a ·variety of ac power switching applications for ac input voltages of 24 V, 120 V, 2081230 V, and 227 V @ 50/60 Hz. Features include: • Limiter-Power Supply - Allows operation directly from an ac line. • Differential On/Off Sensing Amplifier - Tests for condition of external sensors or input command signals. Proportional control capability or hysteresis may be implemented. • Zero-Crossing Detector - Synchronizes the output pulses to the zero voltage point of the ac cycle. Eliminates RFI when used with resistive loads. • Triac Drive - Supplies high-current pulses to the external power controlling thyristor. • Protection Circuit (CA3059 only) - A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive circuit from the external triac. • Inhibit Capability (CA3059 only) - Thyristor firing may be inhibited by the action of an internal diode gate. • High Power DC Comparator Operation (CA3059 only) - Operation in this mode is accomplished by connecting Pin 7 to Pin 12 (thus overriding the action of the zero-crossing detector). CA3079 Gate I I I I I I I _ _ _ _ . _ _ ..J , Inhibit *NTC Sensor NOTE: Shaded Area Not Included With CAJ079. MOTOROLA LINEAR/INTERFACE DEVICES 4-2 6 External Trigger Zero Voltage Controller UAA1016B-TA = -20° to + 100°C, Case 626 · .. designed to drive triacs with the Zero Voltage technique which allows RFI free power regulation of resistive loads. They provide the following features: • Proportional Temperature Control Over an Adjustable Band • Adjustable Burst Frequency (to Comply with Standards) UAA1016B Temp S .. R2 R' VRaf R4 • Sensor Fail-Safe • No dc Current Component Through the Main Line (to Comply with Standards) • Negative Output Current Pulses (Triacs Quadrants 2 and 3) (NTC) • Temp. Sensor R, • Direct ac Line Operation • Low External Components Count Integrated Solenoid Driver MC3484S2,S4 - T J = - 40° to MC3484 + 125°C, Case 314D 400 The MC3484 is an integrated monolithic solenoid driver. Its typical function is to apply full battery voltage to fuel injector(s) for rapid current rise, in order to produce positive injector opening. When load current reaches a preset level (4.0 A in MC3484S4 or 2.4 A in MC3484S2) the injector driver reduces the load current by a 4-to-1 ratio and operates as a constant current supply. This condition holds the injector open and reduces system dissipation. --'out Injector 40 Vz(max) High-Side Driver Switch MC3399T - T J = - 40° to + 150°C, Case Vbat 4.5 V to 24 V fSO V Transient) MC3399T 314D The MC3399T is a High-Side Driver Switch that is designed to drive loads from the positive side of the power supply. The output is controlled by a TTL compatible Enable pin. In the ON state, the device exhibits very low saturation voltages for load currents in excess of 750 mA. The device also protects the load from positive- or negative-going high voltage transients by becoming an open circuit and isolating the transient for its duration from the load. The MC3399T is fabricated on a power BIMOS process which combines the best features of Bipolar and MaS technologies. The mixed technology provides higher gain PNP output devices and results in Power Integrated Circuits with reduced quiescent current. Output'"" Ignition .I1.. Transient Generator 50n =-12 V Ground NOTE: *Depending on Load Current and Transient Duration, an Output Capacitor (COl of sufficient value may be used to hold up Output Voltage during the Transient. and absorb Turn-off Delay Voltage Overshoot. MOTOROLA LINEAR/INTERFACE DEVICES 4-3 Motor Controllers This section contains integrated circuits designed for cost effective control of specific motor-families. Included are controllers for dc servo, stepper, brush less, and universal type motors. MC33030P Motor DC Servo Motor Controller/Driver MC33030P - .. T A = - 40° to + 85°C, Case 648C A monolithic dc servo motor controller providing all active functions necessary for a complete closed loop system. This device consists of an on-chip op amp and window comparator with wide input commonmode range, drive and brake logic with direction memory, power H switch driver capable of 1.0 A, independently programmable over-current monitor and shutdown delay, and over-voltage monitor. This part is ideally suited for almost any servo positioning application that requires sensing of temperature, pressure, light, magnetic flux, or any other means that can be converted to a voltage. MC33034 DC Brushless Motor Controller MC33034P60,P120 - TA = - 40° to + 85°C, Case 724 The MC33034 Series is a high performance monolithic brush less motor controller containing all of the active functions required to implement a full featured openloop three or four phase motor control system. These devices consist of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, fully accessible error amplifier, pulse width modulator comparator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs. MOTOROLA LINEAR/INTERFACE DEVICES 4-4 Closed-Loop Brushless Motor Adapter MC33039P - TA = - MC33039 40° to + 85°C, Case 626 The MC33039P is a high performance closed-loop speed control adapter specifically designed for use in dc brushless motor control systems. Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer. This device contains three input buffers each with hysteresis for noise immunity, th.ree digital edge detectors, a programmable monostable, and an internal shunt regulator. Also included is an inverter output for use in systems that require conversion of sensor phasing. Although this device is primarily intended for use with the MC33034 brushless motor controller, it can be used cost effectively in many other closed-loop speed control applications. Vee A To Rotor ~:~:~r~ { 0'+'+-~¢>+--\f"-'" 080'+.,.,.--111>-.---,,-_, '"'r "-t==:-\t", II MC3479 VM Stepper Motor Drivers r:-:-"""71--.......--oO l1 Clk MC3479P - TA = 0° to + 70°C, Case 648C SAA1042,A-TA = 0° to +70°C,Case721 Stepper Motor Drivers provide up to 500 mA of drive per coil for two phase 6.0 V to 24 V stepper motors. Control logic is provided to accept commands for clockwise, counter clockwise and half or full step operation. MC3479P has added Output Impedance Control (OIC) and Phase A drive state indicator (not available on SAA1042 devices). L.--:..:u"';'::!;:-;+-.Q l2 CW/CCW Vo r'"~r'-"":r:"-'+-9 l3 Full/Half Step Ole Phase A Bias/Set (MC3479P Only) Triac Phase Angle Controller TDA1185A TDA1185A TA = 0° to + 70°C, Case 646 · .. generates controlled triac triggering pulses and allows tacholess speed stabilization of universal motors by an integrated positive feedback function. • Low Cost External Components Count • Optimum Triac Firing (2nd and 3rd Quadrants) • Repetitive Trigger Pulses When Triac Current is Interrupted by Motor Brush Bounce " • Triac Current Sensed to Allow Inductive Loads • Soft Start • Power Failure Detection and General Circuit Reset • Low Power Consumption: 1.0 mA MOTOROLA LINEAR/INTERFACE DEVICES 4-5 'GNO II Universal Motor Speed Controllers TDA 1085A T A = 0° to + 70°C, Case 648 TDA 1085C T A = - 10° to · .. all the necessary functions for the speed control of universal (acldc) motors in an open or closed loop configuration. Facility for defining the initial speed/time characteristic. The circuits provide a phase angle varied trigger pulse to the motor control triac + 120°C, Case 648 Similar to TDA1085A, but designed for commercial washing machine service. TDA1285A TA = 0° to + 70°C, Case 648 Similar to TDA1085A, plus: • Guaranteed Full Wave Triac Drive • Soft Start from Power-up • Repeated Trigger Pulse if Triac Fails to Latch • On-Chip Frequency/voltage Converter and Ramp Generator • Over 65 mA Output Pulse Current • Current Limiting Incorporated • Automatic Adaptation to Inductive or Hall Effect Sensors • Direct Drive from ac Line • Sensor Circuit Continuity Detection TDA1285A Unreg Voltage Input Hall Effect Power Supply .....-j;-,+1-,.<) & Inductive Speed Sense 'Input v. Reg. Output Facultative Ip 14 Prog. Pulse Output ~ .c "0 0 ~ " "~ 1ii Vi '" o ~ ~ 0. 0. --¢8 Inhibit 6 External Trigger 'NTC Sensor NOTE: Shaded Area Not Included With CA3079. TABLE A AC Input Voltage (SO/50 Hz) Input Series Resistor (RSI Dissipation Rating for RS vac kn W 24 2.0 0.5 120 10 2.0 208/230 20 4.0 277 25 5.0 5. Protection Circuit (CA3059 only) - A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive current from the external triac. 6. Inhibit Capability (CA3059 onlyl Thyristor firing may be inhibited by the action of an internal diode gate at Pin 1. 7. High Power DC Comparator Operation (CAJ059 only) - Operation in this mode is accomplished by connecting Pin 7 to Pin 12 (thus overriding the action of the zero-crossing detector). When Pin 13 is positive with respect to Pin 9, current to the thyristor is continuous. MOTOROLA LINEAR/INTERFACE DEVICES 4-8 CA3059, CA3079 MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Symbol Rating DC Supply Voltage Value 12 10 CA3059 CA3079 (Between Pins 2 and 7 DC Supply Voltage Vdc VCC CA3059 CA3079 (Between Pins 2 and 8) Unit Vdc VCC 12 10 Peak Supply Current (Pins 5 and 7) 15,7 ±50 mA Fail·Safe Input Current (Pin 14) 114 2.0 mA Output Pulse Current (Pin 4) lout 150 mA Junction Temperature TJ 150 Operating Temperature Range TA -40 to +85 Tstg -65 to +150 °c °c uc Storage Temperature Range II ELECTRICAL CHARACTERISTICS (Operation@ 120 Vrm" 50-60 Hz, TA = 25 0 C)** Characteristic DC Supply Voltage Test Circuits Symbol Fig.2 Vs Min Typ Max Unit Vdc Inhibit Mode 6.5 6.1 7.0 6.4 6.2 7.0 - - 160 - 6.1 RS=10k,IL=0 RS = 5.0 k, I L = 2.0 mA - Pulse Mode RS=10k,IL=0 RS = 5.0 k, RL = 2.0 mA 6.0 Gate Trigger Current Fig.3 IGT Fig.3 10M - mA (VGT == 1.0 V. Pins 3 and 2 connected) Peak Output Current, Pulsed With Internal Power Supply. VGT = 0 Pin 3 Open Pi ns 3 and 2 Connected With External Power Supply. Pin 3 Open Pi ns 3 and 2 Connected Vee'" 12 V, VGT =0 Total Gate Pulse Duration (CExt Positive dv/dt Negative dv/dt 50 90 125 190 - - 230 300 - V9IV2 0.465 0.485 0.520 tp tn 70 70 100 100 140 140 tPl Inl - 50 - Fig.3 14 0.001 10 pA Fig.7 liB - 1.0 2.0 pA VCMR - 0;15 0.15 1.4t05.0 - Vdc VI V6- V 4 - 1.4 1.6 Vdc 1.4 - Vdc Fig.4 Fig.5 Inhibit Input Ratio (Ratio of Voltage@ Pin 9 to Pin 2) = 0) mA , - Fig.6 Fig.6 Pulse Duration After Zero Crossing - '" p' (CExI = 0, RExt = ~) Positive dv/dt Negative dv/dt Output Leakage Current Inhibit Mode*** Input Bias Current CA3059 CA3079 - Common Mode Input Voltage Range (Pins 9 and 13 Connected) Inhibit Input Voltage CA3059 only Fig.8 External Trigger Voltage CA3059 only - 60 "'Care must be taken, especially when using an external power supply, that total package dissipation is not exceeded. "'*The values given in the Electrical Characteristics Chart at 120 V also apply for operation at input voltages of 24 V, 208/230 V, and 277 V, except for Pulse Duration test. However, the series resistor (RS) must have the indicated value, shown in Table A for the specified input voltage . ... u1 4 out of Pin 4 2 Von Pi.n 1 51 position 2 MOTOROLA LINEAR/INTERFACE DEVICES 4-9 CA3059, CA3079 TEST CIRCUITS (All resistor values are in ohms) FIGURE 3 - PEAK OUTPUT (PULSED) AND GATE TRIGGER CURRENT WITH INTERNAL POWER SUPPLY FIGURE 2 - DC SUPPLY VOLTAGE .. Oscilloscope With High-Gain Input Vs FIGURE 4 - PEAK OUTPUT CURRENT (PULSED) WITH EXTERNAL POWER SUPPL Y FIGURE 5 - INPUT INHIBIT RATIO With High·Gain Input FIGURE 6 - GATE PULSE DURATION TEST CIRCUIT WITH ASSOCIATED WAVEFORM FIGURE 7 - INPUT BIAS CURRENT TEST CIRCUIT V CC =6.0V I I I I r- tP1 l-i ~ tp(,'f:i s 120Vrms 60 Hz +3V Oscilloscope With High-Gain Input MOTOROLA LINEAR/INTERFACE DEVICES 4-10 CA3059, CA3079 TYPICAL CHARACTERISTICS FIGURE 8 - INHIBIT INPUT VOLTAGE TEST 10 k FIGURE 9 - PEAK OUTPUT CURRENT (PULSED) versus EXTERNAL POWER SUPPLY VOLTAGE 9 10 g" w 11 250 4 Pins 2 and 3 Connected ~ ZOO ~ 150 !; ~ 100 '"~ 50 .....- -5.0 ..s -- 120 Vrms, 60 Hz t-- Gate Voltage = 0 B.O 11 6.0 7.0 9.0 10 EXTERNAL POWER SUPPLY VOLTAGE (VOLTS) f12 140 -;;; 130 I- .3 -I-- '" b -I-- ~ ~ r- ~ => 120 120 Vrms, 60 Hz Operation w ~11O '-' ~ '" - 140 ~ => ~ ~ f-f- 120 Vr~s, 610 Hzl 160 § ~ f- Pin 3 Open I- FIGURE 11 - TOTAL PULSE WIDTH versus AMBIENT TEMPERATURE FIGURE 10 - PEAK OUTPUT CURRENT (PULSED) versus AMBIENT TEMPERATURE ;;: --.....- ~ .Id-t: "" ...... glaD 120 120 Vrms, 60 Hz IGat , VO:tag'l~ U f l ~ 100 20 ·20 ·40 I- I 40 60 BO BO ........ 90 100 ·40 AMBIENT TEMPERATURE (OCl ·20 20 40 ...... 60 r---.. BO 100 AMBIENT TEMPERATURE (DC) FIGURE 12 - INTERNAL SUPPLY versus AMBIENT TEMPERATURE FIGURE 13 - INHIBIT VOLTAGE RATIO versus AMBIENT TEMPERATURE t-l~O v~ms, ~O Kzl -I-+-+-+-f-I-+-+-+--1f-+-----1 N 0.52 I-+-+-f-+--+-f-+-+-+-f-+--+-f-+-+-j <: ~ 0.50 I-+-+~f-+--+-f-+-+-+-f-+--+-f-+-+-j ;;; :; " 7.0 ~ 0.48~t:t:~t:t~=tt::t=rt:j:~==tt~ ~ ~ ;< 6.B ~ 6.4 ~ w 6.6 .....- f- '"~ 0.461-+-+-ff-+--+-f-+-+-+-1-+--+-f-+-+-j Inhibit Mode - f- f- > 6.2 V ./ 6.0 ·40 ·20 ~ 0.441-+-+-ff-+--+-f-+-+-+-f-+--+-f-+-+-j ~ 0.421-+-+-ft--+--+-f-+-+-+-ff-+--+-f-+-+-j z ./ 20 40 60 AMBIENT TEMPERATURE (OC) BO 0.40 L-...l40'-.L•..J2':-0--'._L-...L-2J..0-lL-4J..0-L-:':60,-L--::'BO,-.L-,Jl0':-0....l 100 AMBIENT TEMPERATURE (OC) MOTOROLA LINEAR/INTERFACE DEVICES 4-11 • • CA3059, CA3079 FIGURE 14 -CIRCUIT SCHEMATIC Rp Inhibit Input ASensor 13 -----, I I I 15 I I I 3 .....--+-0 ~~~s:nt 25 Ac Line o-"'V'o/'y--O--i---+'V\~ I Input I I I I I I I I 4 30 k I I I I ~~Y'isto, Gate _______ ...J 12 14 To Fail-Safe Input For de Mode or 400 Hz Operation Common Fo, External Trigger NOTE: Current sources are established by an internal reference. Pins 1, 6,12, and 14 are not used with CA3079. APPLICATION INFORMATION Power Supply B. Sensor Resistance (RX) and Rp values should be between 2 kQ and 100 kQ. C. The relationship 0.33 < RX/Rp < .3 must be met over the anticipated temperature range to prevent undesired activation of the circuit. A shunt or series resistor may have to be added. The CA3059 and CAJ079 are self-powered circuits, powered from the ac line through an appropriate dropping resistor (see Table A). The internal supply is designed to power the auxiliary power circuits. In appl ications where more output current hom the internal supply is required, an external power supply of higher voltage should be used. To use an external power supply, connect pin 5 and pin 7 together and apply the synchronizing voltage to pin 12 and the dc supply voltage to pin 2 as shown in Figure 4. External Inhibit Function (CA3059 Only) A priority inihibit command applied to pin 1 will remove current drive from the thyristor. A command of at least + 1.2 V @ 10 /lA is required. A DTL or T2L logic 1 applied to pin 1 will activate the inhibit function. Operation of Protection Circuit (CA3059 Only) DC Gate Current Mode (CA3059 Only) The protection circuit, when connected, will remove current drive from the triac if an open or shorted sensor is detected. This circuit is activated by connecting pin 13 to pin 14 (see Figure 1). The following conditions should be observed when the protection circuit is utilized: A. The internal supply should be used and the external load current must be limited to 2 mA with a 5 kQ dropping resistor. When comparator operation is desired or inductive loads are being switched, pins 7 and 12 should be connected. This connection disables the zero-crossing detector to permit the flow of gate current from the differential sensing amplifier on demand. Care should be exercised to avoid possible overloading of the internal power supply when operating the device in this mode. A resistor should be inserted between pin 4 and the thyristor gate in order to limit the current. MOTOROLA LINEAR/INTERFACE DEVICES 4-12 ® MC3479P MOTOROLA Advance Information STEPPER MOTOR DRIVER STEPPER MOTOR DRIVER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC3479P is designed to drive a two-phase stepper motor in the bipolar mode. The circuit consists of four input sections, a logic decoding/sequencing section, two driver-stages for the motor coils, and an output to indicate the Phase A drive stat8. • Single Supply Operation - • 350 mA/Coil Orive Capability +7.2 to +16.5 Volts • Clamp Oiodes Provided for Back-EMF Suppression • Selectable CW/CCW and M/Half Step Operation • Selectable High/Low Output Impedance (Half Step Mode) • TTL/CMOS Compatible Inputs • Input Hysteresis - • Phase Logic Can Be Initialized to Phase A • Phase A Output Orive State Indication (Open-Collector) l_ 400 mV Minimum P SUFFIX 1 PLASTIC PACKAGE CASE 648C-02 PIN ASSIGNMENT FIGURE 1 - VD BLOCK DIAGRAM r.. Clk ~ff Clock r t---- Driver OIC ?iff ~ OIC Bias/Set Clk CW/CCW L2 OIC FulllHalf Step L3 ~ Driver ~ (~ff Gnd ~ VD , f- F/H Stepr- L4 L1 ~ Logic M/Hal1 Step L3 L1 Gnd ~ CW/CCW ?1n:CW/CCWr- VM L2 t L4 INPUT TRUTH TABLE Input Low Input High ~ Bias/Set GW/CGW Gnd Full/Half Step DIG Glk This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 4-13 GW GGW Full Step Half Step Hi Z LowZ Positive Edge Triggered • • MC3479P MAXIMUM RATINGS Symbol Value Unit Supply Voltage VM +18 Vdc Clamp Diode Cathode Voltage (Pin 1) VD VM + 5.0 Vdc Driver Output Voltage (Pins 2, 3,14,15) VOD VM + 6.0 Vdc Driver Output Current/Coil 100 ±500 mA Input Voltage (Pins 7,8,9,10) Vin -0.5 to +7.0 Vdc Rating Bias/Set Current (Pi n 6) IBS -10 mA Phase A Output Voltage (Pin 11) VOA +18 Vdc J5haSeA Sink Current (Pin 11) lOA 20 mA TJ +150 °C Tstg -65 to +150 °C Junction Temperature Storage Temperature Range RECOMMENDED OPERATING CONDITIONS Characteristic Symbol Min Max Unit Supply Voltage VM +7.2 +16.5 Vdc Clamp Diode Cathode Voltage VD VM VM +4.5 Vdc Driver Output Current (Per Coil) (Note 51 100 - 350 mA Input Voltage (Pins 7,8,9,10) Vin 0 +5.5 Vdc -300 -75 ~A VM Vdc Bias/Set Current (Outputs Active) IBS Phase A Output Voltage VOA - Phase A Sink Current lOA 0 8.0 mA Operating Ambient Temperature TA 0 +70 °C DC ELECTRICAL CHARACTERISTICS (Specifications apply over the recommended supply voltage and temperature ranges unless otherwise noted.) (See Notes 1,2) Characteristic INPUT LOGIC LEVELS Threshold Voltage (Low-to-High) 7,8,9, 10 Threshold Voltage (High-to-Low) Hysteresis Current (VI (VI (VI =0.4 V) =5.5 V) =2.7 V) VTLH - - 2.0 Vdc VTHL 0.8 - - Vdc VHYS 0.4 - - Vdc IlL IIH1 IIH2 -100 - - ~A - +100 +20 DRIVER OUTPUT LEVELS Output High Voltage (IBS -300 ~A) = =-350 mAl =-0.1 mAl 2,3, 14,15 Vdc VOHD VM -2.0 VM -1.2 - - VOLD - - 0.8 Vdc Differential Mode Output Voltage Difference (Note 31 (IBS -300 ~A, 100 350 mAl DVOD - - 0.15 Vdc Common Mode Output Voltage Difference (Note 4) (lBS -300 ~A, 100 -0.1 mAl CVOD - - 0.15 Vdc - +100 +100 Output Low Voltage (lBS -300 ~A, 100 = = = (100 (100 =350 mAl = = Output Leakage - Hi Z State (0"; VOD"; VM, IBS -5.0 ~A) (0"; VOD"; VM, IBS -300 ~A, Pin 9 = = ~A IOZ1 IOZ2 =2.0 V, Pin B =0.8 V) -100 -100 MOTOROLA LINEAR/INTERFACE DEVICES 4-14 MC3479P DC ELECTRICAL CHARACTERISTICS (continued) (Specifications apply over the recommended supply voltage and temperature ranges unless otherwise noted.) (See Notes 1, 2) Characteristic CLAMP DIODES Forward Voltage (10= 350 mAl 1,2,3, 14,15 Leakage Current (Per Diode) (Pin 1 = 21 V; Pins 2, 3,14,15 = 0 V; VOF - 2.5 3.0 Vdc lOR - - 100 ",A VOLA - - 0.4 Vdc 10HA - - 100 ",A IBS = 0 pAl PHASE A OUTPUT Output Low Voltage 11 (lOA=8.0 mAl Off State Leakage Current (VOHA = 16.5 V) POWER SUPPLY Power Supply Current (100 = 0 pA, IBS = -300 pAl 16 (L1 = VOHO, L2 = VOLD, L3 = vOHO, L4 = VOLD) (L1 = VOHO, L2 = VOLD, L3 = Hi Z, L4 = Hi Z) (L1 = VOHO, L2 = VOLD, L3 = VOHO, L4 = VOHO) mA - IMW IMZ IMN - 70 40 75 BIAS/SET CURRENT To Set Phase A 6 IBS -5.0 ",A NOTES; 1 Algebraic convention rather than absolute values is used to designate limit values. 2. Current into a pin is designated as positive. Current out of a pin is designated as negative. 3. DVOD = IVOD1 2 - VOD3 41 where VODl,2 = (VO~Dl - VOL~2i or (VOHD2 - VOLD1i, and VOD3,4 = (VOHD3 - VOLD4i or (VOHD4 - VOLD3i. 4. CVOD =IVOHD1 - VOHD21 orlVOHD3 - VOHD41. 5. See section on Power Dissipation in Application Information. PACKAGE THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Ambient - No Heat Sink AC SWITCHING CHARACTERISTICS (TA = +25°C, VM = 12 V) (See Figures 2, 3, 4) Characteristic Clock Frequency Pins Symbol Min Typ Max Unit 7 fCK a - 50 kHz ",s Clock Pulse Width - High 7 PWCKH 10 - Clock Pulse Width - Low 7 PWCKL 10 - 6 PWBS 10 - 10-7 9-7 Isu 5.0 - - 10-7 9-7 Ih 10 - - ",s ",s Bias/Set Pulse Width Setup Time Hold Time - CW/CCW and F/HS CW/CCW and F/HS Propagation Delay - Clk-to-Driver Output Propagation Delay - Bias/Set-to-Driver Output Propagation Delay - Clk-to-Phase A Low Propagation Delay - Clk-to-Phase A High tpco - 8.0 - tpBSD - 1.0 - 7-11 tpHLA - 12 7-11 tPLHA - 5.0 - MOTOROLA LINEAR/INTERFACE DEVICES 4-15 ",s ",s ",s ",s 1'" ",s • MC3479P FIGURE 2 - AC TEST CIRCUIT +12V VM L2 1.0k· 2 56 k Bias/Set 6 Clk 7 OIC 8 Ll 3 MC3479P a 15 F/HS Bias/Set Input L3 11 CW/CCW FIGURE 3 - L4 14 BIAS/SET TIMING (Rafer to Figure 2) Note: t r • tf (10%-90%) for input signals are ~ 25 ns. o tpBSO Ll-L4 Outputs _ _ _ _ _ _--''-(H_i_9_h_lm_p_ed_a_n_C_e_)...._ _ _ _ _ __ PIN DESCRIPTION Symbol Pin # Description Power Supply VM 16 Power supply pin for both the logic circuit and the motor coil current. Voltage range is +7.2 to +16.5 volts. Ground Gnd 4.5 12.13 Ground pins for the logic circuit and the motor coil current. The physical configuration of the pins aids in dissipating heat from within the Ie package. Clamp Diode Voltage VD 1 This pin is used to protect the outputs where large voltage spikes may occur as the motor coils are switched. Typically a diode is connected between this pin and Pin 16. See Figure 11. L1. L2 L3. L4 2.3 14.15 High current outputs for the motor coils. L1 and L2 are connected to one coil, and L3 and L4 to the other coil. Bias/Set B/S 6 This pin is typically 0.7 volts belowVM. The current out of this pin {through a resistor to ground} determines the maximum output sink current. If the pin is opened (185 < 5.0 ~A) the outputs assume a high impedance condition, while the internal logic presets to a Phase A condition. Clock Clk 7 The positive edge of the clock input switches the outputs to the next position. This input has no effect if Pin 6 is open. F/HS 9 When low (Logic "0"), each clock pulse will cause the motor to rotate one full step. When high, each clock pulse will cause the motor to rotate one-half step. See Figure 7 for sequence. Clockwise/ Counterclockwise CW/CCW 10 This input allows reversing the rotation of the motor. See Figure 7 for sequence. Output Impedance Control OIC B This input is relevant only in the half step mode (Pin 9 > 2.0 V). When low (Logic "0") the two driver outputs of the non-energized coil wilr be in a high impedance condition. When high the same driver outputs will be at a low impedance referenced to VM. See Figure 7. Phase A Ph A 11 This open-collector output indicates (when low) that the driver outputs are in the Phase A condition (L1 L3 VOHD. L2 L4 VOLD). Nama Driver Outputs Full/Half Step = = = = MOTOROLA LINEAR/INTERFACE DEVICES 4-16 MC3479P FIGURE 4 - Clk CLOCK TIMING (Refer to Figure 2) o Ll-L4 Outputs i -,- X ~!;CCW Inputs Note: t r , tf ('0-90%) -3-.0-V_ _ _ _ _ _ _ _,_.s---,v O_ _ _ _ _ _ _ _ _ _ _- J . . _ Phase A for input signals are e;;; r ---------;--- . - ~tPHLA -I _____ Output I'BS SIS lr- • '.5 v\l..._ _ _ _ _ _ _ _ _ _--' FIGURE 5 - (Pin 6) tPLHA----.l 10 ns. OUTPUT STAGES • * : L1 (Pin 3) : (Pin 2) yi~ _~ Current Drivers -J. /;' I L __ ~ Parasitic Diodes and Logic Transistors Inputs APPLICATION INFORMATION GENERAL The MC3479P integrated circuit is designed to drive a stepper positioning motor i" applications such as disk drives and robotics. The outputs can provide up to .350 mA to each of two coils of a two-phase motor. The outputs change state with each low-to-high transition of the clock input, with the new output state depending on the previous state, as well as the input conditions on Pins B, 9, and 10. ure 5), which when connected to a two-phase motor. provide two full-bridge configurations (L3 and L4 are not shown in Figure 5). The polarities applied to the motor coils depend on which transistor IOH or OLl of each output is on, which in turn depends on the inputs and the decoding circuitry. The maximum sink current available at the outputs is a function of the resistor connected between Pin 6 and ground Isee section on Bias/Set operation). Whenever the outputs are to be ill a high impedance state, both transistors (OH and OL of Figure 5) of each output are off. OUTPUTS (Pins 2.3.14.15) The outputs IL1-L4) are high currentoutputs (see Fig- MOTOROLA LINEAR/INTERFACE DEVICES 4-17 MC3479P • VD (Pin 1) BiAS/SET (Pin 6) This pin allows for provision of a current path for the motor coil current during switching, in order to suppress back-EMF voltage spikes. Pin 1 is normally connected to VM (Pin 16) through a diode (zener or regular), a resistor, or directly. The peak instantaneous voltage at the outputs (Pins 2, 3, 14, and 15) must not exceed VM by more than 6 volts. The voltage drop across the internal clamping diodes must be included in this portion of the design (see Figure 6). Note the parasitic diodes (Figure 5) across each QL of each output provide for a complete circuit path for the switched current. This pin can be used for three functions: a) determining the maximum output sink current; b) setting the internal logic to a known state; and c) reducing power consumption. a) The max1mum output sink current is determined by the base drive current supplied to the lower transistors (QL's of Figure 5) of each output, which in turn, is a function of las. The appropriate value of las is determined by: las = 100 x 0.86 where las is in microamps, and 100 is the motor current/ coil in milliamps. The value of Ra (between Pin 6 and ground) is then determined by: FIGURE 6 - CLAMP DIODE CHARACTERISTICS Ra = 3.0 1.0 b) When Pin 6 is opened (raised to VM) such that las is <5.0 p.A. the internal logic is set to the Phase A condition, and the four driver outputs are put into a high impedance state. The Phase A output (Pin 11) goes active (low), and input signals at Pins 7,8,9 and 10 are ignored during this time. Upon re-establishing las, the driver outputs become active, and will be in the Phase A position (Ll = L3 = VOHO, L2 = L4 = YOLO). The circuit will then respond to the inputs at Pins 7, 8, 9 and 10. The Set function (opening Pin 6) can be used as a powerup reset while supply voltages are settling. A CMOS logic gate (powered by VM) can be used to control this pin as shown in Figure 11. c) Whenever the motor is not being stepped, power dissipation in the IC and in the motor may be lowered by reducing las, so as to reduce the output (motor) current. Setting las to 75 p.A will reduce the motor current, but will not reset the internal logic as described above. See Figure 12 for a suggested circuit. ,.... k--': o o ,.,.. --I-'" 100 200 10 (mAl VM-0.7V las V 300 FULL/HALF STEP (Pin 9) When this input is at a Logic "0" «0.8 volts), the outputs change a full step with each clock cycle, with the sequence direction depending on the CW/CCW input (Pin 10). There are four steps (Phase A. a, C, D) for each complete cycle of the sequencing logic. Current flows through both motor coils during each step. See Figure 7. When taken to a Logic "1" (>2.0 volts), the outputs change a half step with each clock cycle, with the sequence direction depending on the CW/CCW input (Pin 10). Eight steps (Phases A-H) result for each complete cycle of the sequencing logic. Phases A. C, E and G correspond (in polarity) to the phases A. a, C, and 0, respectively, of the full step sequence. Phases a, 0, F and H provide current to one motor coil, while de-energizing the other coil. The condition of the outputs of the de-energized coil depends on the OIC input (Pin 8). See Figure 7 for timing diagram. POWER DISSIPATION The power dissipated by the MC3479P must be such that the junction temperature (TJ) does not exceed 150°C. The power dissipated can be expressed as: P = (VM x 1M) + (2 x 100) [(VM - VOHO) + VOLO] where VM = Supply voltage; 1M = Supply current other than 100; 100 = Output current to each motor coil; VOHO = Driver output high voltage; YOLO = Driver output low voltage. The power supply current (1M) is obtained from Figure 8. After the power dissipation is calculated, the junction temperature can be calculated using: OIC(Pin 8) TJ = (P x ROJA) + TA The output· impedance control input determines the output impedance to the de-energized coil when operating in the half-step mode. When the outputs are in Phase 8, 0, F or H (Figure 7) and this input is at a Logic "0" «0.8 V), the two outputs to the de-energized coil are in a high-impedance condition - QL and QH of both outputs (Figure 5) are off. When this input is at a Logic "1" (>2.0 V), a low impedance output is provided to the de-energized coil as both outputs have QH on (QL off). To complete the low impedance path requires connecting Pin 1 (VO) to Pin 16 (VM) as described elsewhere in this data sheet. where ROJA = Junction to ambient thermal resistance; TA = Ambient temperature. For example, assume an application where VM = 12 V, the motor requires 200 mA/coil, operating at room temperature with no heat sink on the IC. las is calculated: las = 200 x 0.a6 las= 172p.A Ra is calculated: Ra = (12 - 0.7) V/l72 p.A Ra = 65.7 kll MOTOROLA LINEAR/INTERFACE DEVICES 4-18 MC3479P FIGURE 7 - OUTPUT SEQUENCE elk Bias/Set-r-l--~---+----+---~---+----~--~---+----~--~--~--~­ eW/eew-:~l,--~,----+---~---1--__L-__~~-t----:---~---+----!---:Phase A B e L1 0 ABe B A I I I I I I I I L3fllll4 L4 VJJJljI [ I I I i I I 1 I C B I I I 1 I I :: : : :: II I, I I r I :: I I 1 1 1 L2VJJJlj1 1 1 L3VJJJlj1 1 1 I I : I pzz*l1 1 1 , I I I I (bl 1 A I I 1 I 1 I H~lf Steip Mode I c ,VI/nUllA, I o 1 1 I : 1 V!IlIfl4 I I / 8 : f/WZIZJ) VWWA I I I 1 1 H G I 1 I • : , Wu//uA 1 pnWI}! I I I = High Impedance = Logic "0" = 0 on 'teare FI HS ole t'lmm/J1 1 I I L--L I I 1 I I I I I I I ,r'--~----+'--~,L Wllll I E: 1 ! : I o C ,Wmztd, L4 VJJJljI , I r'----'-,---;----'-'- - -____1---, :: : : A I 8 : LlVJJJljl WlI2VJ 1 I ~'r-:,' r----l I : (al Full Step Mode I I I- L ~----t:----~--'L---Jr,'--~:----+'--~i Output 0 I'llllr"1 L2 _____ : 7Jlllll = High Impedance CW/CCW= Logic "0" F/HS = Logic "1", OIC = Logie "0" I I : Ll C B I A fZ2'4 o E G A H B o C L2l7mi...J L3W L4 PhaseA I I I I I7JlJJ 1 ~ I 1 I I L I I I r--r- I I II 1 I 1 ,-I_____________ ~~------------------------------~L---J­ ,-------, Output eW/ccw = Logic "0" F/HS = Logic "I" ole = Logic "I" (cl Half Step Mode From Figure 8, 'M (maxI is determined to be 40 mA. From Figure 9, VOlD is 0.46 volts, and from Figure 10, (VMVOHDI is 1.4 volts. FIGURE 8 - POWER SUPPLY CURRENT P = (12 x 0.040) + (2 x 0.2)(1.4 + 0.46) P= 1.22 W TJ = (1.22 W x 45°C/WI + 25°C TJ = 80°C This temperature is well below the maximum limit. If the calculated TJ had been higher than 150 oC, a heat sink such as the Staver Co. V-7 series, Aavid #5802, or Thermalloy #6012 could be used to reduce ROJA- In extreme cases forced air cooling should be considered. The above calculation, and ROJA. assumes that a ground plane is provided under the MC3479P(either or both sides of the PC board) to aid in the heat dissipation. Single nominal width traces leading from the four ground pins should be avoided as this will increase TJ, as well as provide potentially disruptive ground noise and IR drops when switching the motor current. 70 ./ 60 100 = 0 ./ 50 « ..s 40 3 / 30 20 10 V L V /" 50 100 150 200 ISS MOTOROLA LINEAR/INTERFACE DEVICES 4-19 II'AI 250 300 350 MC3479P FIGURE 9 - MAXIMUM SATURATION VOLTAGE DRIVER OUTPUT LOW 0.8 2.0 ./ /' o. 6 ~ /' ~ <=> > 9 0.4 V ~ • FIGURE 10 - MAXIMUM SATURATION VOLTAGE 9RIVER OUTPUT HIGH o. 2 oV /' 1. 5 ~t.O ~ ./ I ~ /' 200 100 (mAl Phase V ".. o 100 FIGURE 11 - TYPICAL APPLICATIONS CIRCUIT +V V 0.5 o 300 V .,/" ~ V V 100 V ./ 300 200 100 (mAl FIGURE 12 - POWER REDUCTION +V MC3479P 6 A Clock Digital{ Inputs r:rNICCW RS FUIT/Half Step OIC>---t~-.:;~~~,.:.::.t---------' Sias/Set Power Operation or equivalent - Suggested value for RBl (VM = 12 VI is 150 kil. - RS calculation (see text) must take into account the current through RS1. MOTOROLA LINEAR/INTERFACE DEVICES 4-20 or equivalent ® MC33030 MOTOROI.A Advance Information DC SERVO MOTOR CONTROLLER/DRIVER DC SERVO MOTOR CONTROLLER/DRIVER The MC33030 is a monolithic dc servo motor controller providing all active functions necessary for a complete closed loop system. This device consists of an on-chip op amp and window comparator with wide input common-mode range, drive and brake logic with direction memory, power H switch driver capable of 1.0 A, independently programmable over-current monitor and shutdown delay, and over-voltage monitor. This part is ideally suited for almost any servo positioning application that requires sensing of temperature, pressure, light. magnetic flux. or any other means that can be converted to a voltage. Although this device is primarily intended for servo applications, it can be used as a switch mode motor controller. • SILICON MONOLITHIC INTEGRATED CIRCUIT - • On-Chip Error Amp for Feedback Monitoring 1 • Window Detector with Deadband and Self Centering Reference Input • Drive/Brake Logic with Direction Memory • 1.0 A Power H Switch P SUFFIX PLASTIC PACKAGE CASE 648C-02 • Programmable Over-Current Detector PIN CONNECTIONS • Programmable Over-Current Shutdown Delay • Over-Voltage Shutdown Reference Over-Current Delay Input ~~~~eF7h:r SIMPLIFIED BLOCK DIAGRAM Vcc 2 Over-Current Reference Error Amp Output Filteri Feedback Input Motor Vee ,. l 11- _ _ _ Gnd{ 4 I I I I Error Amp Output Error Amp Inverting Input Error Amp Non· Inverting Input 7 Drive Output B Error Amp Input Filter I I I I I I Logic I I I Vce I Programmable + I Direction Memorv f-----+\ c~;~:~t Pins 4, 5, 12 and 13 are electrical ground and heat sink pins for Ie I Detector & Latch I Reference Position 1 I I I 15 ~ ROC This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 4-21 MC33030 MAXIMUM RATINGS Rating Symbol Value Unit Power Supply Voltage VCC 36 V Input Voltage Range Op Amp, Comparator, Current Limit Pins 1, 2, 3, 6, 7, 8, 9,15, VIR -0,3 to VCC V Input Differential Voltage Range Op Amp, Comparator. Pins 1,2,3,6,7,8,9, VI DR -0,3 to VCC V IDLy(sink) 20 mA Isource 10 mA Drive Output Voltage Range (Note 1) VDRV - 0,3 to (VCC + VF) V Drive Output Source Current (Note 2) IORV(source) 1,0 A IORV(sink) 1.0 A IF 1,0 A PD RtlJA ReJC 1000 80 15 mW 'CIW 'CIW 'c 'c 'c Delay Pin Sink Current (Pin 16) Output Source Current (Op Amp) • Drive Output Sink Current (Note 2) Brake Diode Forward Current (Note 2) Power Dissipation and Thermal Characteristics Maximum Power Dissipation (ji TA = 70'C Thermal Resistance Junction to Air Thermal Resistance Junction to Case, Pins 4, 5, 12, 13, Operating Junction Temperature TJ +150 Operating Ambient Temperature Range TA -40 to +85 Tst\! -65 to + 150 Storage Temperature Range Notes: 1. The upper voltage level is clamped by the forward drop, VF, of the brake diode. 2. These values are ·for continuous de current. Maximum package power dissipation limits must be observed. ELECTRICAL CHARACTERISTICS (VCC = 14 V, TA Characteristic = 25'C unless otherwise noted) I Symbol I Min Typ Max Unit ERROR AMP Input Offset Voltage (- 4O'C "" T A "" + 85'C) VPin 6 = 7,0 V, RL = 100 k Via - 1,5 10 mV Input Offset Current VPin 6 = 1.0 V, RL 110 - 0,7 - nA = 100 k Input Bias Current VPin 6 = 7.0 V, RL liB - 7,0 - nA = 100 k VICR - Oto(VCC -1,21 - V SR 0.40 - V/p1J 550 - kHz !1lm - 63 deg. CMRR 50 82 - PSRR - 89 - 10+ - 250 Input Common-Mode Voltage Range ~VIO = 20 mV, RL = 100 k Slew Rate, Open Loop (VID = 0.5 V, CL = 15 pFI Unity-Gain Crossover Frequency Ie Unity-Gain Phase Margin Common-Mode Rejection Ratio VPin 6 = 7.0 V, RL = 100 k Power Supply Rejection Ratio VCC = 9.0 to 16 V, VPin 6 = 7.0 V, RL Output Source Current (VPin 6 Outpui Sink Current (VPin 6 Output Voltage Swing (RL = = = = dB dB 100 k 12 V) 1.0 V) 10- 17 k to Ground) VOH VOL 12.5 - 1,8 13.1 0.02 - mA - V V - pA (Continued) MOTOROLA LINEAR/INTERFACE DEVICES 4-22 MC33030 ELECTRICAL CHARACTERISTICS (Continued) Symbol Characteristic Typ Min Max Unit WINDOW DETECTOR VH 25 35 45 mV Input Dead Zone Range (V2 - V4, Figure 17) VIDZ 166 210 254 mV Input Offset Voltage r- .lVIO = 20 mV VCC../' RL = 100 k -\--+----':':---+--+---1 II II ~ - 4OOr----t---\--+--t-----+--+---1 ii -l.0 ~8 -soot~;;~l:::~====~::~~~~::::~~~ RL to Gnd TA = 25'C ~ -2. 0 o '" ~ 11 11 ~ z ~ 55 0 +25 +50 +75 TA, AMBIENT TEMPERATURE I'CI r-....... ,;:' Phas,0,. ~~ o "'- 100 1.0 k Phle 1 '- Margin 63' 100 k 5~ -I I - 55 - 25 0 7.10 Upper Hysteresis ~ l-+- """--~ -1. 0 Vee = 14V Pin 2 = 7.00 V z~ 7.00 + 125 w ~ V3 ~ t::; 7.05 ~ + 100 Sink Saturation RL = VCC TA = 25'C VCC) V2 z· - o ~ ::> ;;; 6.95 ~ Lower Hysteresis ~ 6.90 6.85 -55 0 + 25 + 50 + 75 TA, AMBIENT TEMPERATURE I'CI FIGURE 6 - OUTPUT DRIVE SATURATION versus LOAD CURRENT 7.1 5 ~ I If} Ltll t::f FIGURE 5 - WINDOW DETECTOR FEEDBACK·INPUT THRESHOLDS versus TEMPERATURE w ;::::.....;;; state of drive outputs. f, FREQUENCY IHzl ~ Vc~ Max. Pin 2 VICR so that Pin 3 can change :;; 9 ~ ~1.0M1so 10 k 3.0 k -t0 ~-1, 1 10 ~ ;;2 VCC =14V VOUT=7.0V 0 RL =100 k CL =40 pF TA =2S'C 0 1.0 0 ~-O. 5 w N'ain I'\. Gndt,1 300 1.0 k IL' LOAD CURRENT I ± /tAl 100 FIGURE 4 - WINDOW DETECTOR REFERENCE·INPUT COMMON·MODE VOLTAGE RANGE versus TEMPERATURE 4 \.. .J 0 30 0 r\" RL to VCC TA = 25'C 1. 0 1i; +100 n 'L~I 1.1 In aturatlOn ~ 5 FIGURE 3 - OPEN·LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY 80 II 2. 0 V> I- 1\IJ;E\l 25 Source Saturation z :;; .. F\ VCC :> -25 o Vl ~ !3 V4 o +25 +50 +75 TA, AMBIENT TEMPERATURE I'CI ~ J +100 +125 . I 1. 0 0 I Source Saturation RL to Gnd TA = 25'C I -l---!--200 l---V 400 IL' LOAD CURRENT I ± mAl MOTOROLA LINEAR/INTERFACE DEVICES 4·24 7 I Gnd. 600 BOO MC33030 FIGURE 7 - FIGURE 8 - OUTPUT SOURCE CURRENT-LIMIT versus OVER-CURRENT REFERENCE RESISTANCE BRAKE DIODE FORWARD CURRENT versus FORWARD VOLTAGE 500 r- T1 40 1 ... BO 0 ~ 251c / 0 / z ~ 300 ao ~ i 200 V ~ .;f-l00 ... go ::> / - 0.5 o ~, i'-.. 200 1.3 1.1 o o 1.5 20 VF. FORWARD VOLTAGE (VI - 600 i ::> u w VCC ~ 400 ROC = 27k U '" - ... ~ j 200 BO 60 100 NORMALIZED DELAY PIN SOURCE CURRENT versus TEMPERATURE I- ffi ~ ::> 1.00 u w u /7 a: 5@ N z::; ~~ ~~ 0.92 "'" '/ 0.96 ~~ wZ 0- ROC=6Bk ~ 40 1.04 14 V --r-------- ::> 0 ::> 0 FIGURE 10 - I I ROC~15k r-- r-- ROC. OVER·CURRENT REFERENCE RESISTANCE (kOI FIGURE 9 - OUTPUT SOURCE CURRENT-LIMIT versus TEMPERATURE < .s ... ............ ~ 0.9 0.7 '\.. ::> V o \ 400 ::> .-- ~ u ~ 55 VCC = 14V_ TA = 25'C \ 600 ::> / T .r \ 1... / / VCC = 14 V '5 .9 o -25 - 55 o +25 +50 '75 +100 ,125 0.88 - 55 o - 25 +50 +25 +75 +100 +125 TA. AMBIENT TEMPERATURE (OCI TA. AMBIENTTEMPERATURE ICI FIGURE 11 - NORMALIZED OVER-CURRENT DELAY THRESHOLD VOLTAGE versus TEMPERATURE FIGURE 12 - SUPPLY CURRENT versus SUPPLY VOLTAGE 1B -Pin6to7 ./' ./ ,/ .s 20 ~ 16 ::> u / / ~ U B.O !d VCC = 14 V + 75 T~ = ./ 25°C ./ /' +100 I .... ~7\ 12 i----- :::> / - 25 _ .' ~~fl -I V V Minimum ~Operating Voltage 4.0 >---1~: o 7T'" o +125 TA. AMBIENT TEMPERATURE (OCI R~nge B.O I II !! rr Over· Voltage Shutdown Range 16 24 VCC. SUPPLY VOLTAGE IVI MOTOROLA LINEAR/INTERFACE DEVICES 4-25 I 32 40 • MC33030 FIGURE 13 - NORMALIZED OVER-VOLTAGE SHUTDOWN THRESHOLD versus TEMPERATURE FIGURE 14 - NORMALIZED OVER-VOLTAGE SHUTDOWN HYSTERESIS versus TEMPERATURE 1.4 w u; ............ ~ ti I"--... I"---.. 0 '~§ " z ;;: ~ ~~ wo« "'" "" 8 • 6 + 25 -25 t'.... 1.2 + 75 + 50 w'" ~~ is- +100 '\ +125 ""'" ~ 1.0 ['-..... 1'--.. 0.8 ~~ ~ " ..... 1'-.. ....... r-., o. 6 15 ......... O. 4 -55 :E > -25 TA, AMBIENTTEMPERATURE 1°C} +25 + 50 +75 +ffiO +125 TA, AMBIENT TEMPERAUTRE 1°C} FIGURE 15 - THERMAL RESISTANCE AND MAXIMUM POWER DISSIPATION versus P.C.B. COPPER LENGTH 5.0 0 Printed circuit board neatslnl<.example T~f7. .1~;}}d. --- m K ",RBJA 0 O 0 0 l I--L--I t---.... -- V 10or. --l - 'j ~ 3,O~ <=> '" ~ I-- tI-- r- 2.0~ PDIMAX} for TA ~ 70°C 10 l- 3.0 mm Graphs represenl symmelrical layout ~ 4.0z o i I 1.0 20 30 L, LENGTH OF COPPER Imm} 40 o '"=> '"~ J? 50 OPERATING DESCRIPTION The MC33030 was designed to drive fractional horsepower dc motors and sense actuator position by voltage feedback. A typical servo application and representative internal block.diagram are shown in Figure 16. The system operates by setting a voltage on the reference input of the Window Detector (Pin 1) which appears on (Pin 2). A dc motor then drives a position sensor, usually a potentiometer driven by a gear box, in a corrective fashion so that a voltage proportional to position is present at Pin 3. The servo motor will continue to run until the voltage at Pin 3 falls within the dead zone, which is centered about the reference voltage. The Window Detector is composed of two comparators, A and B, each containing hysteresis. The reference input, common to both comparators, is pre-biased at 1/2 VCC for simple two position servo systems and can easily be overriden by an external voltage divider. The feedback voltage present at Pin 3 is connected to the center of two resistors that are driven by an equal magnitude current source and sink. This generates an offset voltage at the input of each comparator which is centered about Pin 3 that can float virtually from Vce to ground. The sum of the upper and lower offset voltages is defined as the window detector input dead zone range. To increase system flexibility, an on-chip Error Amp is provided. It can be used to buffer andlor gain-up the actuator position voltage which has the effect of narrowing the dead zone range. A PNP differential input stage is provided so that the input common-mode voltage range will include ground. The main design goal of the error amp output stage was to be able to drive the window detector input. It typically can source 1.8 mA and sink 250 pA. Special design considerations must be made if it is to be used for other applications. The Power H-Switch provides a direct means for motor drive and braking with a maximum source, sink, and brake current of 1.0 A continuous. Maximum package power dissipation limits must be observed. Refer to Figure 15 for thermal information. For greater drive current requirements, a method for buffering that maintains all the system features is shown in Figure 29. MOTOROLA LINEAR/INTERFACE DEVICES 4-26 MC33030 FIGURE 16 - REPRESENTATIVE BLOCK DIAGRAM AND TYPICAL SERVO APPLICATION Vee Motor Gearbox and Linkage r--------------------------------------- Vec I f Non- :r.lnput -=- Filter " Inverting I Input-r--4~----------~--------------------------------~~~------~~----_+~----------~, I 20 k Inverting Input Output • 20 k Error Amp Output Filter. Feedback Input I I I Vee I Reference Input 100 k _ _ _ _ _ _ _ _ _ -1I __ _ 20 k Qver- 100 k a Current Latch L--------/o I Reference Input Filter -=Over-Current Window Monitor Detector Over-Current 16 Delay rCDLY Gnd The Over-Current Monitor is designed to distinguish between motor start-up or locked rotor conditions that can occur when the actuator has reached its travel limit. A fraction of the Power H-Switch source current is internally fed into one of the two inverting inputs of the current comparator, while the non-inverting input is driven by a programmable current reference. This reference level is controlled by the resistance value selected for ROC, and must be greater than the required motor run-current with its mechanical load over temperature; refer to Figure 8. Ouring an over-current condition, the comparator will turn off and allow the current source to charge the delay capacitor, COLy. When COLY charges to a level of 7.5 V, the set input of the over-current latch will go high, disabling the drive and brake functions of the Power H-Switch. The programmable time delay is determined by the capacitance value-selected for COLy. tOlY = VrefCOlY = 7. 5C OLY = 1.36COLY in p.F IOL Y{source) 5.5 p.A 15 Roe Over-Current Reference This system allows the Power H-Switch to supply motor start-up current for a predetermined amount of time. If the rotor is locked, the system will time-out and shutdown. This feature eliminates the need for servo endof-travel or limit switches. Care must be taken so as not to select too large of a capacitance value for COlY. An over-current condition for an excessively long time-out period can cause the integrated circuit to overheat and eventually fail. Again, the maximum package power dissipation limits must be observed. The over-current latch is reset upon power-up or by readjusting Vpin 2 as to cause Vpin 3 to enter or pass through the dead zone. This can be achieved by requesting the motor to reverse direction. An Over-Voltage Monitor circuit provides protection for the integrated circuit and motor by disabling the Power H-Switch functions if VCC should exceed 18 V. Resumption of normal operation will commence when VCC falls below 17.4 V. MOTOROLA LINEAR/INTERFACE DEVICES 4-27 MC33030 A timing diagram that depicts the operation of the Drive/Brake Logic section is shown in Figure 17. The waveforms grouped in [1] show a reference voltage that was preset, appearing on Pin 2, which corresponds to the desired actuator position. The true actuator position is represented by the voltage on Pin 3. The points V 1 through V4 represent the input voltage thresholds of comparators A and B that cause a change in their respective output state. They are defined as follows: • V, V2 V3 V4 = Comparator B turn-off threshold = Comparator A turn-on threshold = Comparator A turn-off threshold = Comparator B turn-on threshold V,-V4 = Comparator B input hysteresis voltage V2-V3 = Comparator A input hysteresis voltage V7:"V4 = Window detector input dead zone range 1(V2-Vpin2)-(Vpin2-V4l1 = Window detector input offset voltage It must be remembered that points V 1 through V4 always try to follow and center about the reference voltage setting if it is within the input common-mode voltage range of Pin 3; Figures 4 and 5. Initially consider that the feedback input voltage level is somewhere on the dashed line between V2 and V4 in [1]. This is within the dead zone range as defined above and the motor will be off. Now if the reference voltage is raised so that Vpin 3 is -.!.ess than V4, comparator B will turn-on [3] enabling Q Drive, causing Drive Output A to Sink and B to source motor current [8]. The actuator will move in Direction B until Vpin 3 becomes greater than V,. Comparator B will turn-off, activating the brake enable [4] and Q Brake [6] causing Drive Output A to go high and B to go into a-high impedance state. The inertia of the mechanical system will drive the motor as a generator creating a positive voltage on Pin 10 with respect to Pin 14. The servo system can be stopped quickly, so as not to over-shoot through the dead zone range, by braking. This is accomplished by shorting the motor/generator terminals together. Brake,current will flow into the diode at Drive Output B, through the internal VCC rail, and out the emitter of the sourcing transistor at Drive Output A. The end of the solid line and beginning of the dashed for Vpin 3 [1] indicates the possible resting position of the actuator after braking. If Vpin 3 should continue to rise and become greater than V2, the actuator will have over shot the dead zone range and cause the motor to run in Direction A until Vpin 3 is equal to V3. The Drive/Brake beha~ior for Direction A is identical to that of B. Overshooting the dead zone range in both directions can cause the servo system to continuously hunt or oscillate. Notice that the last motor run-direction is stored in the direction latch. This information is needed to determine whether Q or Q Brake is to be enabled when Vpin 3 enters the dead zone range. The dashed lines in [8,9] indicate the resulting waveforms of an over-current condition that has exceeded the programmed time delay. Notice that both Drive Outputs go into a high impedance state until Vpin 2 is readjusted so that Vpin 3 enters or crosses through the dead zone [7.4]. The inputs of the Error Amp and Window Detector can be susceptible to the noise created by the brushes of the dc motor and cause the servo to hunt. Therefore, each of these inputs are provided with an internal series resistor and are pinned out for an external bypass capacitor. It has been found that placing a capacitor with short leads directly across the brushes will significantly reduce noise problems. Good quality RF bypass capacitors in the range of 0.001 to 0.1 /LF may be required. Many of the more economical motors will generate significant levels of RF energy over a spectrum that extends from dc to beyond 200 MHz. The capacitance value and method of noise filtering must be determined on a system by system basis. Thus far, the operating description has been limited to servo systems in which the motor mechanically drives a potentiometer for position sensing. Figures 18, 19, 26, and 30 show examples that use light, magnetic flux, temperature, and pressure as a means to drive the feedback element. Figures 20, 21 and 22 are examples of two position, open-loop servo systems. In these systems, the motor runs the actuator to each end of its travel limit where the Over-Current Monitor detects a locked rotor condition and shuts down the drive. Figures 31 and 32 show two possible methbds of using the MC33030 as a switching motor controller. In each example a fixed reference voltage is applied to Pin 2. This causes Vpin 3 to be less than V4 and Drive Output A, Pin 14, to be in a low state saturating the TIP42 transistor. In Figure 31, the motor drives a tachometer that generates an ac voltage proportional to RPM. This voltage is rectified, filtered, divided down by the speed set potentiometer, and applied to Pin 8. The motor will accelerate until Vpin 3 is equal to V, at which time Pin 14 will go to a high state and terminate the motor drive. The motor will now coast until Vpin 3 is less than V4 where upon drive is then reapplied. The system operation of Figure 32 identical to that of31 except the signal at Pin 3 is an amplified average of the motors drive and back EMF voltages. Both systems exhibit excellent control of RPM with variations of Vec; however, Figure 31 has somewhat better torque characteristics at low RPM. MOTOROLA LINEAR/INTERFACE DEVICES 4-28 MC33030 FIGURE 17 - TIMING DIAGRAM Comparator A Non Inverting Input Threshold ,- Reference Input Voltage (Desired Actuator........ Positionl Comparator B In~e~~~~~~~~ut WINDOW DETECTOR I ~ ~/ ---..,'-Vl /1 ,- I /,," [ll 1 < , , I i Feedback Input (True Actuator Position)--" Comparator A Output --+_____ ___ Comparator B Output Brake Enable Direction Latch Q Output .~! ---iI [2[ ~ I I [3l -rr-I ----11-r}[5[ I I [4[ I Direction Latch o Output DRIVE BRAKE LOGIC o Brake o Brake Over-Current Latch Aeset Input Source Drive Output A High Z Sink POWER H-SWITCH Source Drive Output B High Z Sink OVER-CURRENT { MONITOR CDLY L I --...;..-_;--1 ~ ~II ~I L~ J I L=i--L I I I t------tr -------\ I/~~75V \ [7l [S[ [9l ----~------~~ Direction B Feedback Input Dead Zone Feedback Input less than V, between V, & V2 Direction A Feedback Input greater than V2 Direction 8 Dead Zone Feedback Input Feedback Input less than V4 between V3 & V4 MOTOROLA LINEAR/INTERFACE DEVICES 4-29 • MC33030 FIGURE 18 - FIGURE 19 - SOLAR TRACKING SERVO SYSTEM MAGNETIC SENSING SERVO SYSTEM R1, R2 - Vcc R3 - Cadium Sulphide Photocell 5M Dark, 3.0 k light resistance 30 k, repositions servo during ..--Jom.---oVcc Linear Hall Effect Sensor .. B/ IL _____-=_ Typical sensitivity with gain set at 3.9 k is 1.5 mY/gauss. Servo motor controls magnetic field about sensor. FIGURE 20 - INFRARED LATCHED MO POSITION SERVO SYSTEM FIGURE 21 - DIGITAL MO POSITION SERVO SYSTEM Vcc ~ Input MRD3056 Latch Drive A 6IL MPS A20 -=1 1- o- Drive B Activates Drive A Activates Drive B Over~Current _I~ monitor (not shown) shuts down servo when end stop is reached. Over-current monitor (not shown) shuts down servo when end stop is reached. FIGURE 22 - 0.25 Hz SQUARE-WAVE SERVO AGITATOR FIGURE 23 - SECOND ORDER LOW-PASS ACTIVE FILTER Vcc R 100 k 100 k -= 100 k 130 k 22j R 6 fUll 21l' f ~ 0.72 RC R .. 20 k @ VC2 Q=-2 MOTOROLA LINEAR/INTERFACE DEVICES 4-30 : R = 1.0M Cl = 1000 pF C2 = 100 pF MC33030 FIGURE 24 - f FIGURE 25 - NOTCH FILTER __ 1_ notch - 27rRC For 60 Hz FIGURE 26 - V' R ~ 53.6 k, C ~ DIFFERENTIAL INPUT AMPLIFIER _V(R3+R4)~_(~ ) A R1 +R2 R3 R3 VB pln6 - 0.05 FIGURE 27 - TEMPERATURE SENSING SERVO SYSTEM VCC BRIDGE AMPLIFIER VRef Cabin Temperature Sensor T R2 Vpin 6 ~ VCC(~ + 1) (R1) R2 + 1 -= VCCI seJ] I Temperature~ ____ VA -V B -V Ref (~) 4R+2<1.R _ R1 In this application the servo motor drives the heat/air conditioner modulator door in a duct system. FIGURE 28 - ~ REMOTE LATCHED SHUTDOWN ~ R3, R2 Vpin6 ~ FIGURE 29 - R4, R1 »R R4 R3 (VA-VBI POWER H-SWITCH BUFFER RE = VF!D11 + VF!D2) - VBE(ON) IMOTOR-IDRV(maxl .-----*-__-, 01 From Drive { Outputs A direction change signal is required at Pins 470 Bo-~------------------~ 2 or 3 to reset the over-current latch. This circuit maintains the brake and over~current features of the MC33030. Set ROC to 15 k for IDRV(max) = 0.5 A. MOTOROLA LINEAR/INTERFACE DEVICES 4-31 • MC33030 FIGURE 30 - ADJUSTABLE PRESSURE DIFFERENTIAL REGULATOR Vee = 12 V 6.2 k ~i~~sure 1.76 k LM324 Quad OpAmp 2.0 k B.06k Offset Adjust • 20 k Gain 1.0 k 4.12 k 2.4 k s+ 2.0 V for Zero 1.0 k Pressure Differential 6.0 V for 100 kPa (14.5 PSI) Pressure Differential Vee = 12V 3 12 V Pressure Differential Reference Set 5.1 k + 5.0 k ~--<>-+--+--""~ O.C. 1.B k 0.01 2 '---------IQ 4,5,12,13 16 0.01 MOTOROLA LINEAR/INTERFACE DEVICES 4-32 15 15 k MC33030 FIGURE 31 - SWITCHING MOTOR CONTROLLER WITH BUFFERED OUTPUT AND TACH FEEDBACK Vee'" 12 V 100 1 II I MZ2361 J 12V Over Current Reset r 4.7k lN753 FIGURE 32 - SWITCHING MOTOR CONTROLLER WITH BUFFERED OUTPUT AND BACK EMF SENSING Vee 100~ 100 Speed Set 1.0 Over Current F lN153 MOTOROLA LINEAR/INTERFACE DEVICES 4-33 = 12 V ® MC33034 MOTOROLA Advance Information BRUSHLESS DC MOTOR CONTROLLER BRUSHLESS DC MOTOR CONTROLLER The MC33034 Series is a high performance monolithic brushless motor controller containing all of the active functions required to implement a full featured open-loop three or four phase motor control system. These devices consist of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, fully accessible error amplifier, pulse width modulator comparator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs. Also included are protective features consisting of undervoltage lockout, cycle-by-cycle current limiting with a selectable time delayed latched shutdown mode, internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems. Typical motor control functions include open-loop speed, forward or reverse direction, run enable, and dynamic braking. The MC33034P60 and MC33034P120 are designed to operate with an electrical sensor phaSing of 60"/300" and 120"/240" respectively. • SILICON MONOLITHIC INTEGRATED CIRCUIT P SUFFIX PLASTIC PACKAGE CASE 724-03 • 10 V to 40 V Operation • Undervoltage Lockout • 6.25 V Reference Capable of Supplying Sensor Power PIN CONNECTIONS • Fully Accessible Error Amplifier for Servo Applications • High Current Totem Pole Bottom Drivers Top Drive • Cycle-By-Cycle Current Limiting Outputs 8T • Internal Thermal Shutdown -,, I I--''--''''-:!. POS "'. DEC A£V~ '" I ENABLE ff" ft, ,~" .. l" • Q EA [ Dr 2~ i ~ f'-"R -r t~ : , +j rS .-r V " r----, r osc ~ I t'" .ss. ~I rP' I~ .1'D-- i i"<~: '. II'~ o ~~ UVLO~ r h.~ .!.1'-· FAULT ,-- ILIM10 P. i '"'" ~:J h=Jl ,'' ' , L ________ I I ' , ,J, MOTOR III Sensor { Inputs :A 4 B 5 Sc 6 Output Enable 7 Reference Output Current Sense Input Oscillator 10 Error Amp Non- Inverting Input .. >:J f.>- 13 Error Amp Out! PWM Input (Top Viewl >- :J 0 ro- r-- 11 Error Amp 12 Inverting Input ORDERING INFORMATION Sensor '--T 1t Package Electrical Phasing Device MC33034P60 60"/300" Plastic DIP MC33034P120 120°/240° Plastic DIP BRAKE Ambient Temperature Range = .- 40"C to + 85°C ~ ThiS document contains Information on a new product. Specifications and information herem are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 4·34 MC33034 MAXIMUM RATINGS Rating Symbol Value Unit VCC 40 V Power Supply Voltage - Digital Inputs (Pins 3, 4, 5, 6, 7, 23) Vrel V 10SC 30 rnA Error Amp Input Voltage Range (Pins II, 12, Note 1) VIR -0.3 to 40 V Error Amp Output Current, Source or Sink (Note 2) lOut 10 rnA V Oscillator Input Current (Source or Sink) VS ense 5.0 VCE(Fault) 20 V ISink(Fault) 20 rnA Top Drive Voltage (Pins I, 2, 24) VCE(top) 45 V Top Drive Sink Current (Pins I, 2, 24) ISink(top) 50 rnA Current Sense Ir.put Voltage Fault Output Voltage ~ault f Output Sink Current Vc 40 V Bottom Drive Output Current, Source or Sink (Pins 19, 20, 21) IDRV 100 rnA Power Dissipation and Thermal Characteristics Maximum Power Dissipation (II TA = 85"C Thermal Resistance Junction to Air PD ROJA 867 75 mW "CIW Bottom Drive Supply Voltage (Pin 18) Operating Junction Temperature TJ + 150 "C Operating Ambient Temperature Range TA -40 to +85 "C TstQ -65 to +150 "C Storage Temperature Range ELECTRICAL CHARACTERISTICS (VCC and Vc ~ 20 V, RT ~ 4.7 k, CT I Characteristic = II 10 nF, TA ~ 25"C unless otherwise noted) Symbol I Min \ Typ \ Max 1 Unit REFERENCE SECTION Reference Output Voltage (lRef TA ~ 25"C TA ~ -40"Cto +85"C ~ 1.0 rnA) V Vref 5.9 5.82 Line Regulation (VCC ~ 10 V to 40 V, Iref Load Regulation (lref = 1.0 rnA to 20 rnA) = 1.0 rnA) Regline Regload - 6.25 - 6.5 6.57 12 30 mV 5.0 30 mV rnA Output Short-Circuit Current (Note 3) ISC 40 60 - Reference Under Voltage Lockout Threshold Vth 4.0 4.5 5.0 V ERROR AMPLIFIER Input Offset Voltage (TA ~ - 40"C to + 85"C) Via - 2.0 10 mV Input Offset Current (TA = -40 to +85"C) 110 - 10 500 nA Input Bias Current (TA = -40"C to +85"C) lIB - -25 -1000 nA Input Common-Mode Voltage Range Open-Loop Voltage Gain (Va ~ (0 V to VCC -2.0 V) VICR 3.0 V, RL ~ 15 k) AVOL V 75 95 - dB Input Common-Mode Rejection Ratio CMRR 55 80 - dB Power Supply Rejection Ratio (VCC and Vc = 10 V to 40 V) PSRR 65 95 - dB Output Voltage Swing High State (RL ~ 15 k to Gnd) Low State (RL = 15 k to Vref) VOH VOL 4.6 5.4 0.7 1.0 - - V Notes: 1. The input common mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V. The upper functional limit of the common mode voltage range is typically Vee - 2.0 V, but either or both inputs can go to 40 V, independent of Vee without device destruction. 2. The compliance voltage must not exceed the range of -0.3 V to Vref. 3. Maximum package power dissipation limits must be observed. MOTOROLA LINEAR/INTERFACE DEVICES 4-35 • MC33034 ELECTRICAL CHARACTERISTICS (VCC and Vc ~ 20 V, RT ~ 4.7 k, CT ~ 10 nF, TA ~ 25°C unless otherwise noted) I Characteristic Symbol I Min I Typ I Max I Unit OSCILLATOR SECTION Oscillator Frequency fOSC 21 23.5 26 kHz .l.fOSC/.l.V - 0.1 5.0 % Sawtooth Peak Voltage VOSC(P) - 4.0 4.2 V Sawtooth Valley Voltage VOSC(V) 1.2 1.5 - V Input Threshold Voltage (Pins 3, 4, 5, 6, 7, 23) High State Low State VIH VIL 2.0 1.4 1.4 0.8 Sensor Inputs (Pins 4, 5, 6) High State Input Current (VIH ~ 5.0 V) Low State Input Current (VIL ~ 0 V) IIH IlL -250 -900 -150 -600 -40 -300 Forward/Reverse and Brake Inputs (Pins 3, 23) High State Input Current (VIH ~ 5.0 V) Low State Input Current (VIL ~ 0 V) IIH IlL -150 -600 -88 -325 -25 -150 Output Enable H'igh State Input Current (VIH ~ 5.0 V) Low State Input Current (VIL ~ 0 V) IIH IlL -70 -80 -40 -40 -10 -20 ~ Frequency Change with Voltage (VCC 10 V to 40 V) LOGIC INPUTS V - p.A p.A p.A CURRENT-LIMIT COMPARATOR Threshold Voltage Input Bias Current (Vin ~ 0 V to 5.0 V) OUTPUTS AND POWER SECTIONS ~ Top Drive Output Sink Saturation (lsink Top Drive Output Off-State Leakage (VCE ~ Top Drive Output Switching Time (CL Rise Time Fall Time 25 rnA) ~ 47 pF, RL - 0.95 1.5 V IDRV(leak) 2.0 100 p.A tr tf - 100 35 300 300 VOH VOL (VC-3.0) (VC-2.4) 1.5 2.0 tr tf - 75 65 200 200 VCE(sat) - 225 500 mV IFLT(leak) - 1.0 100 p.A 8.2 0.1 9.1 0.2 10 0.3 VCE(sat) 40 V) ~ 1.0 k) ns V Bottom Drive Output Voltage High State (lsource ~ 50 rnA) Low State (lsink ~ 50 rnA) Bottom Drive Output Switching Time (CL Rise Time Fall Time Fault Output Sink Saturation (Isink ~ Fault Output Off-State Leakage (VCE ~ 1000 pF) ns 16 rnA) ~ - - 20 V) Under Voltage Lockout Drive Outputs Enabled (VCC or Vc Increasing) Hysteresis V Vth(on) VH rnA Power Supply Current VCC and Vc ~ 20 V VCC Current (Pin 17) Vc Current (Pin 18) ICC IC - MOTOROLA LINEAR/INTERFACE DEVICES 4-36 16 3.0 22 7.0 MC33034 FIGURE 1 - AGURE 2 - OSCILLATOR FREQUENCY versus TIMING RESISTOR OSCILLATOR FREQUENCY CHANGE versus TEMPERATURE 4. 0 100 ~ lw 20 V 20 V 25°C Vee Ve TA '" 2: ""15 " 2. 0 1:.; 15 ::> fil Vee 20V_ Ve ~ 20 V RT~4.7k _ eT ~ 10 nF ~ '-....., e: 0 ~ '" 100 nF CT CT J 1. 0 1.0K FIGURE 3 - I'-.. ~ ~ -2.0 ~ I ~ Vcc ~ 20 V Ve ~ 20 V Va ~ 3.0 V RL ~ 15 k CL ~ 100 pF TA ~ 25'e ~n Pha~e -55 1.0M r\ ~ -2 0 10K lOOK f, FREQUENCY IHzl 1.0M o 25 50 75 TA, AMBIENT TEMPERATURE lOCI -25 FIGURE 4 - 100 125 Vref/ iJi 45 ~ ~ e w ~ -0.8 r-- ':; §2 - Vee ~ 20 V Ve = 20 V sourie Saturaiion_ _ TA ~125oe ILoad to Groundl r-- --..j ~ -1.6 ~ ~ '" '"w 135 4 ~ is I - I 1.6 ~ 180 10M FIGURE 5 - ERROR AMP SMALL-SIGNAL TRANSIENT RESPONSE 0.8 Sink Saturation- L. o o ILoaf to Vrefll _ Gnd" 1.0 2.0 3.0 10, OUTPUT LOAD CURRENT ImAI FIGURE 6 - ERROR AMP LARGE-SIGNAL TRANSIENT RESPONSE 5p.S/DIV MOTOROLA LINEAR/INTERFACE DEVICES 4-37 L-....... I I ~ 1\ ..... ERROR AMP OUTPUT SATURATION versus LOAD CURRENT ~ 90 '" ~ ""I- ....... >- u ~ .., i FIGURE 9 - 2. 0 I '§ 1. 0 r--- 20 10 30 Iref' REFERENCE OUTPUT SOURCE CURRENT (mAl 3. 0 i:E z ~ -32r- Vcc ~ 20 V -- I I :::J o \ -24 Vc ~ 20 V r-TA ~ 25'C I -4a I ' I 5. 0 > >~ 4. 0 \ w u ~ 6. 0 <.:l .......... w o FIGURE 8 - REFERENCE OUTPUT VOLTAGE versus SUPPLY VOLTAGE I I I RL ~ x _ TA ~I 25'C_ > aJ o 40 REFERENCE OUTPUT VOLTAGE versus TEMPERATURE 10 20 30 Vcc, SUPPLY VOLTAGE (VI 40 FIGURE 10 - OUTPUT DUTY CYCLE versus PWM INPUT VOLTAGE 100 r-VC~ ~ 20lV Vc ~ 20 V 80 r-RT ~ 4.7k r-CT ~ 10 nF ~ TA ~ 25'C u G 60 >>- a ./ V /" - - ~ ~ V a ~ -- :::J <=> >- 40 / '" >:::J VCC ~ 20VVc ~ 20V _ RL ~ x +25 +50 +75 TA, AMBIENT TEMPERATURE ('CI +100 20 Vc RL CL TA ~ ~ 1. 0 V) z ~ ~ ~ 1.0 nF 25'C ~ o. B \ 5; -". ~ >:::J ~ ~ O. 2 3' a 1.0 / 5o 0.1a ..... 2.0 3.0 5.0 7.0 ./'" / :::J o. 6 \. ::;; o. 4 ,,/' z ~ 0.20 o ~ ~ 5.0 r- VCC ~ 20 V Vc ~ 20 V r-TA ~ 25'C 20 V ~ x ~ 4.0 030 VC~ ~120V 11.2 2.0 3.0 PWM INPUT VOLTAGE (VI 1.0 FIGURE 12 - FAULT OUTPUT SATURATION versus SINK CURRENT FIGURE 11 - BOnOM DRIVE RESPONSE TIME versus CURRENT SENSE INPUT VOLTAGE 1.4 / / a +125 J V / 0 o o -25 / 1/ / ,/" ,/ ./ 0/ 10 4.0 CURRENT SENSE INPUT VOLTAGE (NORMALIZED TO Vthl 8.0 Isink' SINK CURRENT (mAl MOTOROLA LINEAR/INTERFACE DEVICES 4-38 12 16 MC33034 FIGURE 13 - TOP DRIVE OUTPUT SATURATION versus SINK CURRENT FIGURE 14 - TOP DRIVE OUTPUT WAVEFORM 1. 2 - - !---- 8 ,.- -~ ~ I-- 4 Vee ~ 20'V_ Ve ~ 20 V TA ~ 25'C - 0 10 FIGURE 15 - 20 Isink' SINK CURRENT (mAl 40 30 FIGURE 16 - BOTTOM DRIVE OUTPUT WAVEFORM BOTTOM DRIVE OUTPUT WAVEFORM 100 nsJDIV 100 nsJDiV FIGURE 17 - VCC ~ 20 V_ Vc ~ 20 V TA ~ 25'C - I -1.0 ~ §; -2.0 z r-- o ~ -3. 0 ~ 2. 0 ~ 5o ji 1.0 o o Source Saturation !-- (Load to Groundl - ~ I I I ) --+--"'" 5.0 0 11 6 ~ I--- - Sink Saturation I - (Load to Vcl I-Gnd, I 20 40 60 80 10, OUTPUT LOAD CURRENT (mAl I / '51 2 u ~ ~ 8.0 ""~ ~ 4.0 SJ ICC r >- I I FIGURE 18 - POWER AND BOTTOM DRIVE SUPPLY CURRENT versus SUPPLY VOLTAGE BOTTOM DRIVE OUTPUT SATURATION versus LOAD CURRENT vc/I ~ II 100 nslDlV 17 /I o111 o -- 4 10 3 2 ;;..0- RT ~ 4.7 k CT ~ 10 nF ._ Pins 3-7, 9, 23 ~ Gnd 1 TA ~ 25'C - I 20 SUPPLY VOLTAGE (VI MOTOROLA LINEAR/INTERFACE DEVICES 4-39 - It;..- I--- f--- 30 I 0 40 • MC33034 PIN FUNCTION DESCRIPTION Pin No. Function Description 1,2,24 BT,AT,CT These three open collector Top Drive Outputs are designed to drive the external upper power switch transistors. 3 FWD/REV The Forward/Reverse input is used to change the direction of motor rotation. 4, 5, 6 SA, SB, Sc These three Sensor Inputs control the commutation sequence. 7 Output Enable A logic high at this input causes the motor to run, while a low causes it to coast. 8 Reference Output This output provides charging current for the oscillator timing capacitor CT and a reference for the error amplifier. It can also furnish sensor power. 9 Current Sense Input A 100 mV signal at this input terminates output switch conduction during a given oscillator cycle. 10 Oscillator The Oscillator frequency is programmed by the values selected for timing components RT and CT. 11 Error Amp Non-Inverting Input This input is normally connected to the speed set potentiometer. 12 Error Amp Inverting Input This input is normally connected to the Error Amp Output in open-loop applications. 13 Error Amp OutputlPWM Input· This pin is available for compensation in closed-loop applications. 14 Fault Output This open collector output is active low during one or more of the following conditions: Invalid Sensor Input code, Enable Input at logic 0, Current Sense Input> 100 mY, Undervoltage Lockout activation, and Thermal Shutdown. 15 Ground This pin is the control circuitry ground return and is connected back to the source ground. 16 Drive Ground This pin is a separate power ground return that is connected back to the power source. It reduces the effects of switching transient noise on the control circuitry. 17 VCC This pin is the positive supply of the control IC. The controller is functional over a minimum VCC range of 10 V to 40 V. 18 Vc The high state (VOH) of the Bottom Drive Outputs are set by the voltage applied to this pin. The controller is operational over a minimum Vc range of 10 V to 40 V. 19,20,21 CB, BB,AB These three totem pole Bottom Drive Outputs are designed for direct drive of the external bottom power switch transistors. 22 N.C. No connection. This pin is not internally connected. 23 Brake Input A logic low at this input causes the motor to run, while a high causes rapid deceleration. MOTOROLA LINEAR/INTERFACE DEVICES 4-40 MC33034 INTRODUCTION (for example 100), the enabled top and bottom drive outputs with the same alpha designation are exchanged (AT to AB, CB to CT). In effect the commutation sequence is reversed. Motor on/off control is accomplished by the output enable (Pin 7). When left disconnected, an internal 40/1-A current source enables sequencing of the top an.d bottom drive outputs. When grounded, the top drille outputs turn off and the bottom drives are forced low, causing the motor to coast and activating the fault output. Dynamic motor braking allows an additional margin ?f safety to be designed into the final product. Braking IS accomplished by placing the brake input (Pin 23) in a high state. This causes the top drille outputs to turn off and the bottom drives to turn on, shorting the motorgenerated back EMF. The brake input has unconditional priority over all other inputs. The internal 20 kfl pull-up resistor simplifies interfacing with the system safetyswitch by ensuring brake activation if opened or disconnected. The commutation truth table is shown in Figure 20. A four input AND gate is used to monitor the brake input and the three top drive outputs. Its purpose is to disable braking until the top drive outputs attain a high state. This helps to avoid simultaneous conduction of the top and bottom power switches. In half wave motor drive applications, the top drive outputs are not required and are typically left disconnected. Under these conditions braking will be disabled by the AND gate. If required, it can be enabled by connecting a single pull-up resistor from VCC to the three open collector outputs. Figure 38 shows a pull-up method utilizing the enable input current source. The Motorola MC33034 is a high performance monolithic brushless motor controller containing all of the active functions required to implement a full featured, open-loop, three or four phase motor control system. These integrated circuits are constructed with Bipolar Anaiog technology which offers a high degree of performance and ruggedness in hostile industrial environments. The MC33034 consists of a rotor position decoder for proper commutation sequencing, temperature compensated reference capable of supplying sensor power, frequency programmable sawtooth oscillator, fully accessible error amplifier, pulse width modulator comparator, three open collector top drivers, and three high current totem pole bottom drivers ideally suited for driving power MOSFETs. Also included are protective features consisting of undervoltage lockout, cycle by cycle current limiting with a selectable time delayed latched shutdown mode internal thermal shutdown, and a unique fault output that can be interfaced into microprocessor controlled systems. Typical motor control functions include open-loop speed control, forward or reverse direction, run enable, and dynamic braking. FUNCTIONAL DESCRIPTION A representative internal block diagram and a typical system application are shown in Figures 19 and 36. A discussion of the features and function of each of the internal blocks is given below. Rotor Position Decoder An internal rotor position decoder monitors the three sensor inputs (Pins 4, 5, 6) to provide the proper sequencing of the top and bottom drive outputs. The sensor inputs are designed to interface directly with open collector type Hall effect switches or opto slotted couplers. Internal pull-up resistors are included to minimize the required number of external components. The inputs are TTL compatible, with the thresholds typically at 1.4 volts. The MC33034 Series consists of two device types, each is designed to control three phase motors and operate with two of the four most common conventions of sensor phasing. The MC33034P60 is intended to operate with an electrical sensor phasing of 60" or 300" and the MC33034P120 with 120" or 240". With three sensor inputs there are eight possible input code combinations, six of these are valid rotor positions. The remaining two codes are invalid and are usually caused by an open or shorted sensor line. When an invalid input condition exists, the fault output is activated and the drive outputs are disabled. With six valid input codes, the decoder can resolve the rotor positian to within a window of 60 electrical degrees. Error Amplifier A high performance, fully compensated error amplifier with access to both inputs and output (Pins 11, 12, 13) is provided to facilitate the implementation of closed-loop motor speed control. The amplifier features a typical DC voltage gain of 95 dB, 800 kHz gain bandwidth, and a wide input common mode voltage range that extends from ground to VCC - 2.0 V. In most open-loop speed control applications, the amplifier is configured as a unity gain voltage follower with the noninverting input connected to the speed set voltage source. Additional configurations are shown in Figures 31 through 35. Oscillator The frequency of the internal ramp oscillator is programmed by the values selected for timing components RT and Cr- Capacitor CT is charged from the reference output (Pin 8) through resistor RT and discharged by an internal transistor. The ramp peak and valley voltages are typically 4.0 V and 1.5 V respectively. To provide a good compromise between audible noise and output switching efficiency, an oscillator frequency in the range of 20 kHz to 30 kHz is recommended. Refer to Figure 1 for component selection. The forward/reverse input (Pin 3) is used to change the direction of motor rotation by reversing the voltage across the stator winding. When this input changes state, from high to low with a given sensor input code MOTOROLA LINEAR/INTERFACE DEVICES 4-41 II MC33034 FIGURE 19 - REPRESENTATIVE BLOCK DIAGRAM V,N {' 10K 3 'OK S. Sensor Inpuls "K 5 I Sa 6 Sc Forward Reverse TOP DrIve Outputs V'N • Bottom Drive Outputs 23 FIGURE 20 - THREE PHASE, SIX STEP COMMUTATION TRUTH TABLE Inputs (Note 1) Outputs INote 2) Sensor Electrical 1 1 1 0 0 0 0 1 1 1 0 0 MC33034P120 1200 SA SB Sc 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 Sense AT BT CT AB BB CB Fault 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 Enable Brake 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 X X X X 0 0 X X 1 1 X V X X X V X X X V X X X V X X X V X X X V X X X X X X 0 1 X X 0 1 1 X 0 1 1 1 1 1 1 1 1 Drives Current FIR 1 .1 1 1 1 Bottom Top Drives Phasing MC33034P60 600 SB SA Sc Sink Only Pasllive True LogiC Brake Input 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 Notes: 1. The digital inputs (Pins 3, 4.5,6,7.23) are all TTL compatible. The current sense input (Pin 9) has a laO mV threshold. A logic 0 for this input is defined as < 80 mV. and a logic 1 is > 120 mV. 2. The fault and top drive outputs are open collectors and are active in the low (0) state. 3. V '" anyone of the six valid sensor combinations. X =:= Don't care. MOTOROLA LINEAR/INTERFACE DEVICES 4-42 condition. The dual-latch PWM configuration ensures that only a single output conduction pulse will occur during any given oscillator cycle, whether terminated by the output of the error amp or current limit comparator. Pulse Width Modulator The use of pulse width modulation provides an energy efficient method of controlling the motor speed by varying the average voltage applied to each stator winding during the commutation sequence. As CT discharges, the oscillator sets both latches, allowing conduction of the top and bottom drive outputs. The PWM comparator resets the upper latch, terminating bottom drive output conduction when the positive-going ramp on CT become, greater than the error amplifier output. The pulse width modulator timing diagram is shown in Figure 21. Pulse width modulation for speed control appears only at the bottom drive outputs. Reference The on chip 6.25 V regulator (Pin 81 provides charging current for the oscillator timing capacitor, a reference for the error amplifier, and has a current capability of 40 mA for direct power of the sensors in low voltage applications. In higher voltage applications it may become necessary to transfer the power dissipated by the regulator off the I.C. This is easily accomplished with the addition of an external pass transistor as shown in Figure 22. A 6.25 V reference level was chosen to allow implementation of the simpler NPN circuit, where Vref - VBE exceeds the minimum voltage required by Hall effect sensors over temperature. With proper transistor selection, and adequate heatsinking, up to 1.0 amp of load current can be obtained. Current Limit Continuous operation of a motor that is severely overloaded results in overheating and eventual failure. This destructive condition can best be prevented with the use of cycle-by-cycle current limiting. That is, each on-cycle is treated as a separate problem. This is implemented by monitoring the stator current buildup each time the output switch conducts, and upon sensing an over current condition, immediately turns off the switch and holds it off for the duration of the oscillator ramp-up period. The stator current is converted to a voltage by inserting a ground-referenced sense resistor RS (Figure 361 in series with the three bottom switch transistors (04, 05, 061. This voltage is monitored by the current sense input (Pin 91, and compared to an internal 100 mV reference. If exceeded, the comparator resets the lower latch and terminates output switch conduction. The value for the sense resistor is: RS FIGURE 22 - REFERENCE OUTPUT BUFFERS UVLO The NPN circuit is recommended for powering Halt or opto sensors, where the output voltage temperature coefficient is not critical. The PNP circuit is slightly more complex, but is also more accurate over temperature. Neither circuit has current limiting. 0.1 Istator(maxl The fault output is activated during the over current FIGURE 21 . I CapacItor CT ---. PULSE WIDTH MODULATOR TIMING DIAGRAM I I ~L1V/'1v pWMlnput~~ I I I Error Amp au" CUrrent Sense Input To Control Circuitry and Sensor Power 6.25 V I I /"'1 ./"1 I I V V I I I I I I I I ~ ------------------~ Latch "Set" Inputs I Top Drive Outputs ----------------~~ Bottom Drive Outputs I lIlf Fault Output MOTOROLA LINEAR/INTERFACE DEVICES 4-43 • MC33034 II Undervoltage Lockout A triple Undervoltage Lockout has been incorporated to prevent damage to the control IC and the external power switch transistors. Under low power supply conditions, it guarantees that the IC and sensors are fully functional, and that there is sufficient bottom drive output voltage. The positive power supplies to the IC (VCC) and the bottom drives (VC) are each monitored by separate comparators that have their thresholds at 8.9 V. This level ensures sufficient gate drive for low rOS(on) when interfacing with standard power MOSFETs. When directly powering the Hall sensors from the reference, improper sensor operation can result if the output voltage should fall below 4.5 V. A third comparator is used to detect this condition. If one or more of the comparators detects an undervoltage condition, the fault output is activated, the top drives are turned off and the bottom drive outputs are held in a low state. Each of the comparators contain hysteresis to prevent oscillations when crossing their respective thresholds. Drive Outputs The three top drive outputs (Pins 1, 2, 24) are open collector NPN transistors capable of sinking 50 milliamps with a minimum breakdown of 45 volts. InterfaCing into higher voltage applications is easily accomplished with the circuits shown in Figures 24 and 25. The three totem pole bottom drive outputs (Pins 19, 20,21) are particularly suited for direct drive of 'N'channel MOSFETs or NPN bipolar transistors (Figures 26, 27 and 28). Each output is capable of sourcing and sinking up to 100 mAo Power for the bottom drives is supplied from Vc (Pin 18). This separate supply input allows the designer added flexibility in tailoring the drive voltage, independent of VCC. A zener clamp is typically connected to this input when driving power MOSFETs in systems where VCC is greater than 20 V. A separate drive ground (Pin 16) is included to reduce the effects of switching transient noise imposed on the current sense input. This feature becomes particularly useful when driving current sensing power MOSFETs (Figure 29). Fault Output The open collector fault output (Pin 14) was designed to provide diagnostic information in the event of a system malfunction. It has a sink current capability of 16 mA and can directly drive a light emitting diode for visual indication. Additionally, it is easily interfaced with TTL/CMOS logic for use in a microprocessor controlled system. The fault output is active low when one or more of the following conditions occur: Thermal Shutdown Internal thermal shutdown circuitry is provided to protect the IC in the event that the maximum junction temperature is exceeded. When activated, typically at 170'C, the I.C. acts as though the enable input was grounded. 1) 2) 3) 4) Invalid Sensor Input code. Enable Input at Logic "0." Current Sense Input> 100 mY. Undervoltage Lockout, activation of one or more of the comparators. 5) Thermal Shutdown, maximum junction temperature has been exceeded. FIGURE 23 - TIMED DELAYED LATCHED OVER-CURRENT SHUTDOWN This unique output can also be used to distinguish between motor start-up or sustained operation in an overloaded condition. With the addition of an R/C network between the fault output and the enable input, it is possible to create a time-delayed latched shutdown for overcurrent. The added circuitry shown in Figure 23, makes easy starting of motor systems which have high inertial loads by providing additional starting torque, while still preserving overcurrent protection. This task is accomplished by setting the current limit to a higher than nominal value for a predetermined time. During an excessively long overcurrent condition, capacitor COLY will charge causing the enable input to cross its threshold to a low state. A latch will now be formed by a positive feedback loop from the fault output to the enable input. Once set by the current sense input, it can only be reset by shorting COLY or cycling the power supply. tOLY = ROLY COLY In ( ( ROLY COLY In MOTOROLA LINEAR/INTERFACE DEVICES 4-44 Vref-(lILenable ROLY) Vth enable - (IlL enable ROLY) 6.25-140Xl0-6 ROLY)) 1.4-(40xl0- 6 ROLY) ) MC33034 FIGURE 25 - HIGH VOLTAGE INTERFACE WITH 'N' CHANNEL POWER MOSFETs FIGURE 24 - HIGH VOLTAGE INTERFACE WITH NPN POWER TRANSISTORS POS POS DEC DEC ~}'~'( ~H+-rCj---,'tr-<' J2- +---t---' '>'f 4.7 k 24 >---4'-'-,.'""1't1r' MOC82L04----4'='---1'-"l"oa"'d~ Optocoupler • Transistor Q1 is a common base stage used to level shift from the high motor voltage VM. The collector diode is required if present while VM is low. Vee to Vee is FIGURE 27 - FIGURE 26 - MOSFET DRIVE PRECAUTIONS CURRENT WAVEFORM SPIKE SUPPRESSION Series gate resistor Rg will damp any high frequency oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate-source circuit. Diode D is required if the negative current into the Bottom Drive Outputs exceeds 5.0 mA peak. The addition afthe RC filter will eliminate current-limit instability caused by the leading edge spike on the current waveform. Resistor RS should be a low inductance type. FIGURE 28 - BIPOLAR TRANSISTOR DRIVE FIGURE 29 - CURRENT SENSING POWER MOSFETs SENSEFET Power Ground: To Input Source Return and Drive Ground Pin 16 ,. _4---~-~~----' VPin 9 = Control Cin;:uitry Ground: To Pin 15 The totem-pole output can furnish negative base current for enhanced transistor turn-off. with the addition of capacitor C. Rs • Ipk· rOSlon) rOM(on) + Rs If: SENSEFET = MTP10N10M Rs = 200 Then: Vpin 9 "" O.751p k Virtually lossless current sensing can be achieved with the implementation of SENSEFET power switches. MOTOROLA LINEAR/INTERFACE DEVICES 4-45 • MC33034 FIGURE 30 Vee 0= FIGURE 31 - HIGH VOLTAGE BOOST SUPPLY b DIFFERENTIAL INPUT SPEED CONTROLLER ;;VM+12 12 V lVMt8.o ~ 7 III VM+4.90 20 40 60 Boost Current (rnA) 1.0/200 V • ~ • MC1555 lN5352A VM 1B k = VBoo" + 22 170V V' - V (R3+R4)~_(~V ) pm13 - A R1+R2 R3 R3 B ·MUR11S ~O.OOl This circuit generates Vaoast for Figure 25. FIGURE 33 - FIGURE 32 - DIGITAL SPEED CONTROLLER CONTROLLED ACCELERATION/DECELERATION Enable r~-o+-~-- Inputs BCD f aD 1 Gnd Resistors R1 with capacitor C sets the acceleration time constant while R2 controls the deceleration. The values of Rl and R2 should be at least ten times greater than that of the speed set potentiometer to minimize time constant variations with different speed settings. FIGURE 34 - The SN74LS175 is an open collector BCD to One of Ten decoder. When connected as shown, input codes 0000 through 1001 steps the PWM in increments of approximately 10% from 0 to 90% on-time. Input codes 1010 through 1111 will produce 100% on-time or full motor speed. FIGURE 35 - CLOSED-LOOP SPEED CONTROL CLOSED-LOOP TEMPERATURE CONTROL VB=~ (~+1) To Sensor Input (Pin 4) R3 » A1 R511 R6 00,1 A5 10 k A6 This circuit can control the speed of a cooling fan proportional to the difference between the sensor and set temperatures. The control loop is closed as the forced air cools the NTC thermistor. For controlled heating applications, exchange the positions of Rl and R2. The rotor position sensors can be used as a tachometer. By differentiating the positive-going edges and then integrating them over time, a voltage proportional to speed can be generated. The error amp compares this voltage to that of the speed set to control the PWM. MOTOROLA LINEAR/INTERFACE DEVICES 4-46 MC33034 also aid in spike reduction. Care must be taken in the selection of the bottom power switch transistors so that the current during braking does not exceed the device rating. During braking, the peak current generated is limited only by the series resistance of the conducting bottom switch and winding. SYSTEM APPLICATIONS Three Phase Motor Commutation The three phase application shown in Figure 36 is a full-featured open-loop motor controller with full wave, six step drive. The upper power switch transistors are Darlingtons while the lower devices are power MOSFETs. Each. of these devices contains an internal parasitic catch diodp. that is used to return the stator inductive energy back to the power supply. The outputs are capable of driving a delta or wye connected stator, and a grounded neutral wye if split supplies are used. At any given rotor position, only one top and one bottom power switch (of different totem poles) is enabled. This configuration switches both ends of the stator winding from supply to ground which causes the current flow to be bidirectional or full wave. A leading edge spike is usually present on the current waveform and can cause a current-limit instability. The spike can be eliminated by adding an RC filter in series with the current sense input. Using a low inductance type resistor for RS will FIGURE 36 - Ipeak = VM + EMF Rswitch + Rwinding If the motor is running at maximum speed with no load, the generated back EMF can be as high as the supply voltage, and at the onset of braking the peak current may approach twice the motor stall current. Figure 37 shows the commutation waveforms over two electrical cycles. The first cycle (0° to 360°) depicts motor operation at full speed while the second cycle (360° to 720°) shows a reduced speed with about 50 percent pulse width modulation. The current waveforms reflect a constant torque load and are shown synchronous to the commutation frequency for clarity. THREE PHASE, SIX STEP, FULL WAVE MOTOR CONTROLLER '---<>+--~-------1 POS '---~+-~~----~DEC RT 23 MOTOROLA LINEAR/INTERFACE DEVICES 4-47 II MC33034 FIGURE 37 - THREE PHASE, SIX STEP, FULL WAVE COMMUTATION WAVEFORMS Rotor Electrical Position (Degrees) 60 120 180 240 300 360 1 1 1 420 480 540 600 660 720 1 1 1 1 SA SB Sensor Inputs MC33034P60 a 1 ~ L! Sc 1 1 1 Code 11001110 111 011100110001100 110 111 1011 1 001 1 000 1 1 1 II SA SB Sensor Inputs MC33034P120 Sc ,~ 1 1 1 Code 1100111010101011 001 101110011101010 011 0011101 1 Top Drive Outputs { AT ~ BT II LJ II CT I_lID AB I Bottom Drive Outputs { BB I ~1illI.1 CB .. ~~ 1 I Conducting Power Switch Transistors IQ 1'" I ~IQ2 +Q6102 +04/03 .. Q4 103 I 1 1 I 1 1 + 05101 +05101 I + 0fila2 +0tiIa2'" Q41 0 3 +041 Q3 +05101 +051 1 1 1 1 1 1 I· 1 1 I A Motor Drive Current B 1 + -I C 0I I 1...-- I Full Speed (No PWM) I ----+-1......-- Reduced Speed ( FWD/REV :: 1 MOTOROLA LINEAR/INTERFACE DEVICES 4-48 50"1. PWM) ~I MC33034 FIGURE 38 - THREE PHASE, THREE STEP, HALF WAVE MOTOR CONTROLLER • RT solution is to provide braking until the motor stops and then turn off the bottom drives. This can be accomplished by using the fault output in conjunction with the enable input as an over current timer. Components ROLy and COLyare selected to give the motor sufficient time to stop before latching the enable input and the top drive ANO gate low. To enabling the motor, the PNP transistor along with resistors R1 and R3 are used to reset the latch by discharging COLY upon brake switch closure. The stator flyback voltage is clamped by a single zener and three diodes. Figure 38 shows a three phase, three step, half wave motor controller. This configuration is ideally suited for automotive and other low voltage applications since there is only one power switch voltage drop in series with a given stator winding. Current flow is unidirectional or half wave because only one end of each winding is switched. Continuous braking with the typical half wave arrangement presents a motor overheating problem since stator current is limited only by the winding resistance. This is due to the lack of upper power switch tr?nsistors, as in the full wave circuit, used to disconnect the windings from the supply voltage VM. A unique MOTOROLA LINEAR/INTERFACE DEVICES 4-49 II MC33034 Sensor Phasing Comparison There are four conventions used to establish the relative' phasing of the sensor signals in three phase motors. With six step drive, an input signal change must occur every 60 electrical degrees, however, the relative signal phasing is dependent upon the mechanical sensor placement. A comparison ofthe conventions in electrical degrees is shown in Figure 39(a). From the sensor phasing table, Figure 39(b), note that the order of input codes for 60° phasing is the reverse of 300°. This means that a P60 suffix part will operate with either convention with a resulting change in rotor direction. The same is true for the P120 part operating between 120° and 240° conventions. Further examination of the 60° and 120° columns reveal that either suffix part will operate with any of the sensor conventions with the addition of an FIGURE 39(a) - inverter and the interchanging of 58 and 5C inputs as shown in Figure 40. In this data sheet, the rotor position has always been given in electrical degrees, since the mechanical position is a function of the number of rotating magnetic poles. The relationship between the electrical and mechanical position is: (#Rotor pales) . . Electncal Degrees = Mechanical Degrees 2 An increase in the number of magnetic poles causes more electrical revolutions for a given mechanical revolution. General purpose three phase motors typically contain a four pole rotor which yields two electrical revolutions for one mechanical. SENSOR PHASING COMPARISON FIGURE 40 - Rotor Electric,!' Position (Degrees) 60 120 r From Sensors SA 60° or 300 0 J Electrical Sa 1 Phasing From Sensors 1200 or 240 0 Electrical Phasing l Sc 'A 1'. '< FIGURE 39(b) - SENSOR PHASING TABLE Sensor Electrical Phasing (Degrees) 120" SA Sa 240" Sc SA Sa 300" Sc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 MOTOROLA LINEAR/INTERFACE DEVICES 4-50 SENSOR PHASING CONVERSION MC33034 transistors Q1 through Q8 are Darlington type, each with an internal parasitic catch diode, With four step drive, only two rotor position sensors spaced at 90 electrical degrees are required, The commutation waveforms are shown in Figure 43, Figure 44 shows a four phase, four step, half wave motor controller. It has the same features as the circuit in Figure 38, except for the deletion of braking, Two and Four Phase Motor Commutation The MC33034P60 is also capable of providing a four step output that can be used to drive two or four phase motors. The truth table in Figure 41 shows that by connecting sensor inputs SB and Sc together, it is possible to truncate the number of drive output states from six to four. The output power switches are connected to BT, CT, BB, and CB. Figure 42 shows a four phase, four step, full wave motor control application, Power switch FIGURE 41 - TWO AND FOUR PHASE, FOUR STEP, COMMUTATION TRUTH TABLE MC33034P60 Inputs Sensor Electrical Spacing = 90' SA SB 0 1 1 1 1 0 a a a 1 1 1 1 a a 0 Outputs Top Drives Bottom Drives FIR BT CT BB CB 1 1 1 1 1 1 1 0 1 1 1 a 1 0 1 1 1 1 a a 1 1 1 1 0 a a 0 a a a a 0 a a 0 0 a 1 0 SB connected to Sc FIGURE 42 - FOUR PHASE, FOUR STEP, FULL WAVE MOTOR CONTROLLER MOTOROLA LINEAR/INTERFACE DEVICES 4-51 • .. MC33034 FIGURE 43 - FOUR PHASE. FOUR STEP. FULL WAVE COMMUTATION WAVEFORMS Rotor Electrical Position (Degrees) 90 Sensor Inputs { MC33034P60 Bottom Drive Outputs 360 540 450 630 720 L..! SB I Code Top Drive Outputs 270 180 { { 10 10 01 10 00 11 01 I I 00 I BT CT ~~__~~~~____~~mIm BS I CB ~ I I ______~mmI~______ , I I sl 61 Q, +Q71 ~ I Conducting Power Switch Transistors 03 + as Q4 + 06 Q4+ 0 Q3+ Q I I Q2+Q8 I + A o- B 0- + Motor Drive Current + C 0- + D 0I ~ Full Speed (No PWMj~"""'- Reduced Speed ( 50% PWM) ---..l FWD,REV = 1 LAYOUT CONSIDERATIONS returning on separate paths back to the power supply input filter capacitor VM. Ceramic bypass capacitors (0.1 /-tFI connected close to the integrated circuit at VCC. Vc. Vref and the error amp non-inverting input may be required depending upon circuit layout. This providlls a low impedance path for filtering any high frequency noise. All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EM!. Do not attempt to construct any of the brush less motor control circuits on wire-wrap or plug-in prototype boards. High frequency printed circuit layout techniques are imperative to prevent pulse jitter. This is usually caused by excessive noise pick-up imposed on the current sense or error amp inputs. The printed circuit layout should contain a ground plane with low current signal and high current drive and output buffer grounds MOTOROLA LlNEARIiNTERFACE DEVICES 4-52 MC33034 FIGURE 44 - FOUR PHASE, FOUR STEP, HALF WAVE MOTOR CONTROLLER P~S ~~~~------~DEC • MOTOROLA LlNEARIINTERFACE DEVICES 4-53 .. ® MC33039 MOTOROLA Advance Information CLOSED-LOOP BRUSH LESS MOTOR ADAPTER CLOSED-LOOP BRUSHLESS MOTOR ADAPTER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC33039 is a high performance closed-loop speed control adapter specifically designed for use in brushless dc motor control systems. Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer. This device contains three input buffers each with hysteresis for noise immunity, three digital edge detectors, a programmable monostable, and an internal shunt regulator. Also included is an inverter output for use in systems that require conversion of sensor phasing. Although this device is primarily intended for use with the MC33034 brush less motor controller, it can be used cost effectively in many other closed-loop speed control applications. • Digital Detection of Each Input Transition for Improved Low Speed Motor Operation P SUFFIX PLASTIC PACKAGE CASE 626-05 • TTL Compatible Inputs With Hysteresis • Operation Down to 5.5 V for Direct Powering from MC33034 Reference • Internal Shunt Regulator Allows Operation from a NonRegulated Voltage Source • Inverter Output for Easy Conversion Between 60°/300° and 120°/240° Sensor Phasing Conventions PIN CONNECTIONS REPRESENTATIVE BLOCK DIAGRAM Vcc -.--", ·c ORDERING INFORMATION God Device MC33039P This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 4-54 I Temperature Range I I - 40°C to + 85°C I Package Plastic DIP MC33039 MAXIMUM RATINGS Rating Symbol Value Unit IZ(VCC) 30 mA IIH 5.0 mA Output Current (Pin 4, 5). Sink or Source IDRV 20 mA Power Dissipation and Thermal Characteristics Maximum Power Dissipation @ TA ~ +85'C Thermal Resistance Junction to Air Po R8JA 650 100 mW 'CIW 'c 'c 'c VCC Zener Current Logic Input Current (Pins 1,2,3) Operating Junction Temperature TJ +150 Operating Ambient Temperature Range TA -40 to +85 Tst9 -65 to +150 Storage Temperature Range II ELECTRICAL CHARACTERISTICS (VCC ~ 6.25 V, RT ~ 10 k, CT ~ 22 nF, TA ~ 25'C unless otherwise noted) I Characteristic Symbol I Min I Typ I Max Unit LOGIC INPUTS Input Threshold Voltage High State Low State Hysteresis Input Current High State (VIH t/>A ~ 2.4 VIH VIL VH 5.0 V) 0.4 -40 ~ 0 V) - IlL -300 -0.3 -190 V 1.0 0.9 -60 -0.3 IIH t/>B,t/>C Low State (VIL t/>A t/>B,t/>C 2.1 1.4 0.7 /JoA -80 -5.0 -380 -5.0 - MONOSTABLE AND OUTPUT SECTIONS Output Voltage High State lout (lsource ~ 5.0 mAl t/>A (lsource ~ 2.0 mAl Low State fout (lsink ~ 10 mAl t/>A (lsink ~ 10 mAl V VOH 3.60 4.20 3.95 4.75 4.20 0.25 0.25 0.50 0.50 - VOL - - Capacitor CT Discharge Current Output Pulse Width (Pin 5) Idischa 20 35 60 mA tw 205 225 245 /Jos VCC 5.5 - Vz V ICC 1.8 3.9 5.0 mA Vz 7.5 8.25 9.0 V - 2.0 5.0 n POWER SUPPLY SECTION Power Supply Operating Voltage Range (TA ~ - 40'C to + 85'C) Power Supply Current Zener Voltage (lZ ~ 10 mAl Zener Dynamic Impedance (aiZ ~ 10 mA to 20 mA, I '" 1.0 kHz) IZkal MOTOROLA LINEAR/INTERFACE DEVICES 4-55 • MC33039 FIGURE 1 - TYPICAL THREE PHASE, SIX STEP MOTOR APPUCATION Rotor Electrical Position (Degrees) A 600 Sensor Electrical Phasing Input 0 60 I I 120 I 180 240 300 I I I 360 480 I 600 I 720 I I ~ I I I 8~ ~ I I I I e I I ~ I I ~ A 1200 Sensor Electrical Phasing Input I I I ~ <1>8 I I I I JiI ell I I I fill "A Output I I I Latch "Set" Input I I I I I I I I I rv=v=YV=V=V=V=V=V'vVl I f out Output I I I I I I I I I I Vth ~ 0.67 Vee I I r0nt::Jn n n n n::::J n nUu n Fb9ft V out L-J (AVGI L-J L-J L-J L ...... I I I ~ Constant Motor Speed I I -I" I I I I I I Increasing Motor----i Speed OPERATING DESCRIPTION application using the MC33034 brush less motor controller. Constant speed operation down to 100 RPM is possible with economical three phase four pole motors. The CPA inverter output (Pin 4) is used in systems where the controller and motor sensor phasing conventions are not compatible. A method of converting from either convention to the other is shown in Figure 3. For a more detailed explanation of this subject, refer to the text above Figure 39 on the MC33034 data sheet. The output pulse amplitude VOH is constant with temperature and controlled by the supply voltage on VCC (Pin 8). Operation down to 5.5 V is guaranteed over temperature. For systems without a regulated power supply, an internal 8.25 V shunt regulator is provided. The MC33039 provides an economical method of implementing closed-loop speed control of brush less dc motors by eliminating the need for a magnetic or optical tachometer. Shown in the timing diagram of Figure 1, the three inputs (Pins 1, 2, 3) monitor the brush less motor rotor position sensors. Each sensor signal transition is digitally detected, OR'ed at the Latch 'Set' Input, and causes CT to discharge. A corresponding output pulse is generated at fout (Pin 5) of a defined amplitude, and programmable width determined by the values selected for RT and CT (Pin 6). The average voltage of the output pulse train increases with motor speed. When fed through a low pass filter or integrator, a dc voltage proportional to speed is generated. Figure 2 shows the proper connections for a typical closed loop MOTOROLA lINEARIiNTERFACE DEVICES 4-56 MC33039 FIGURE 2 - TYPICAL CLOSED·LOOP SPEED CONTROL APPLICATION II FIGURE 3 - CONVERSION BETWEEN SENSOR PHASING CONVENTIONS MC33034P120 From sensors{.A SOO or:moe EI.",,;,,I MC33034P60 From Sensors 120" or 240· E""";"" •• Phasing Phasing {.A 0----, •• "" ",,0-+--..../ MC33039P MC33039P MOTOROLA LINEAR/INTERFACE DEVICES 4-57 POS DEC MC33039 FIGURE 5 - fout. PULSE WIDTH CHANGE versus TEMPERATURE FIGURE 4 - fout PULSE WIDTH versus TIMING RESISTOR 100 1.6 ~ Vee 1= TA I I---- Vee 6.25 V 25°C eT RT I--CT 220 nF ~ .J 6.25 V 10 k 22nF ~ ~ .""v V / ~ V 22 nF • V 1 /' 2.2 nF -1.6 -55 0.0 1 20 RT, TIMING RESISTOR Ik!ll 2.0 200 4.0 w OJ V V « . . .,...v w ~ ~ I- :::> 5 -2.0 o 1 -4.0 V ./ V ./ ~ V p! 12 iil /' 8 4.0 TA - 7.5 --- o o 8.5 I I ~ -2.0 ':; ~ ~O I r Vee TAl Source Saturation (Load to Ground) §? is ~:::> ~~e .J -4.0 I I 0.4 0.2 -- o o +- I I 6.25V25°C _ I I ~ - --12 ~ w - '":z:z « ~ TA 2.0 ~ - ~ -~ 125·C TAl 25°f- f - - 4.0 6.0 vec. SUPPLY VOLTAGE IV) 10 8.0 ~ '"U5Z z 10 ~ ~ 5.0 rnA IlSink Saturation -(Load to v e ' V to: V> ;;Z ;;; -8.0 V> l ~ 0.4 « :z: -16 -55 -- . / V /' z /' / .// z 0 . / l1Source Saturation ILoad to Ground) 0.2 o 25 50 75 TA. AMBIENT TEMPERATURE 1°C) '" :::> to: V> t3 '" :::> 0 V> -0.2 /'" -25 u !;1 ./ MOTOROLA LINEAR/INTERFACE DEVICES 4-58 / w OJ 7 f-----~ce ~ 6.25 V :::> 16 J .1 8.0 0 .6 /0 16 u Gld ' \ 4.0 8.0 10, OUTPUT LOAD CURRENT (rnA) -40·e FIGURE 9 - fout. SATURATION CHANGE versus TEMPERATURE "--I I Sinkl Saturatiln (L01 to Vee! ~ ~ ~ FIGURE 8 - fout. SATURATION versus LOAD CURRENT ~ ,I, Connected 16 f--- -together a ~ 8.0 5.5 6.5 Vee, SUPPLY VOLTAGE IV) 4.5 125 £ /' ;;: 100 f--- _"n81,2,3 ,/ ~ H FIGURE 7 - SUPPLY CURRENT versus SUPPLY VOLTAGE 20 -~A ~ 25°~ 2.0 z 5 W ~ TA, AMBIENT TEMPERATURE 1°C) FIGURE 6 - fout PULSE WIDTH CHANGE versus SUPPLY VOLTAGE ~ 0 -~ 100 125 ~ i5 V> l ® SAA1042 SAA1042A MOTOROLA Specifications and Applications Information STEPPER MOTOR DRIVER SILICON MONOLITHIC INTEGRATED CIRCUIT STEPPER MOTOR DRIVER The SAA1042 drives a two-phase stepper motor in the bipolar mode. The device contains: three input stages, a logic section and two output stages. • Drive Stages Designed for Motors: 6.0 V and 12 V: SAA1042 24 V: SAA1042A • 500 mA/Coil Drive Capability • Built-In Clamp Diodes for Overvoltage Suppression • Wide Logic Supply Voltage Range • Accepts Commands for CW/CCW and Half/Full Step Operation • Inputs Compatible with Popular Logic Families: MOS, TTL, DTL • Set Input Defined Output State • Drive Stage Bias Adaptable to Motor Power Dissipation for Optimum Efficiency FIGURE 1 - PLASTIC PACKAGE CASE 721-02 SAA1042 BLOCK DIAGRAM PIN ASSIGNMENT Vo VCC 15 11 2 3 Logic (Top View) 9 Gnd 6 Note: Case heat sink is electrically connected to ground (Pin 9) through the die substrate. Driver Bias RB Set A MOTOROLA LINEAR/INTERFACE DEVICES 4-59 .. • SAA1042, SAA1042A MAXIMUM RATINGS (TA = 25'C unless otherwise stated) Symbol SAA1042 Clamping Voltage (Pins 1,3, 14 & 16) Vclamp 20 Over Voltage (VOV = Vclamp - VM) VOV Supply Voltage VCC Rating SAA1042A Unit 30 V 6.0 20 I V 30 V 1M 500 mA Yin clock Yin Full/Half VinCW/CCW VCC V PO' I/OJA OJA OJC 2.0 20 50 8.0 W mWf'C 'C/W 'C/W TJ -30 to + 125 Tsta -65to +150 'c 'c Switching or Motor Current/Coil Input Voltage (Pins 7, 8 & 10) I I Power Dissipation Derate above TA = 25'C Thermal Resistance, Junction to Air Thermal Resistance, Junction to Case Operating Junction Temperature Range Storage Temperature Range *The power dissipation, PO. of the circuit is given by the supply voltage, VM and Vee. and the motor current, 1M. and can be determined from Figures 3 and 5. Po = Pdrive + Plogic. ELECTRICAL CHARACTERISTICS (TA = + 25'C) Pin Symbol Vee Min Typ Max Unit Supply Current 11 ICC 5.0 V 20 V - - 3.5 8.5 mA Motor Supply Current (I Pin 6 = -400 pA, Pins 1,3, 14, 16 Open) VM = 6.0 V VM = 12 V VM = 24V 15 1M 5.0 V 5.0 V 5.0 V - 25 30 40 5.0 V 10V 15V 20 V 2.0 7.0 10 14 - - - Characteristic Input Voltage - Input Voltage - 7,8,10 High State 7,8,10 Low State Input Reverse Current (Vin = VCC) High State Input Forward Current (Vin = Gnd) Low State 7,8,10 7,8,10 Output Voltage - High State (VM=12V) lout = - 500 mA lout = - 50 mA 1,3,14,16 Output Voltage - 1,3,14,16 Low State lout = 500 mA lout = 50 mA VIH VIL IIR IIF VOH VOL mA 5.0 V 10 V 15 V 20 V 5.0 10 15 20 V V V V 5.0 V 10V 15 V 20 V - - - - - -10 -25 -40 -55 5.0 to 20 V 5.0 to 20 V - VM-2.0 VM-l.2 - 0.7 0.2 -100 1,3,14,16 lOR Clamp Diode Forward Voltage (Drop at 1M = 500 mAl 2 VF Clock Frequency 7 fc 5.0 to 20 V 0 Clock Pulse Width 7 tw 5.0 to 20 V 10 Set Pulse Width 6 ts - 10 6 - - VM High State Low State - MOTOROLA LINEAR/INTERFACE DEVICES 4-60 - 5.0 to 20 V Output Leakage Current (VM = VD = Vclamp max·) Pin 6: Open Set Control Voltage - - - - - - V - - 0.8 1.5 2.5 3.5 V 2.0 2.0 3.0 5.0 pA - pA - V V - - - pA 2.5 3.5 V 50 kHz - - - - 0.5 fJ.S fJ.S V SAA 1042, SAA 1042A INPUT/OUTPUT FUNCTIONS Clock - (Pin 7) This input is active on the positive edge of the clock pulse and accepts Logic '1' input levels dependant on the supply voltage and includes hysteresis for noise immunity. tors are turned off. After elapsing the pulse, the outputs will have defined states. Figure 6 shows the timing diagram. Figure 7 illustrates a typical application in which the SAA 1042 drives a 12 V stepper motor with a current consumption of 200 mAicoil. A bias resistor (RB) of 56 kO is chosen according to Figure 2. The maximum voltage permitted at the output pin is VM + 6.0 V (see the Maximum Ratings), in this application VM = 12 V, therefore the maximum voltage is 18 V. The outputs are protected by the internal diodes and an external zener connected between Pins 2 and 15. From Figure 4, it can be seen that the voltage drop across the internal diodes is about 1.7 V at 200 mAo This results in a zener voltage between Pins 2 and 15 of: CW/CCW - (Pin 10) This input determines the motor's rotational direction. When the input is held low, (OV, see the electrical characteristics) the motor's direction is nominally clockwise (CW). When the input is in the high state, Logic '1,' the motor direction will be nominally counter clockwise (CCW), depending on the motor connections. Full/Half Step - (Pin 8) This input determines the angular rotation of the motor for each clock pulse. In the low state the motor will make a full step for each applied clock pulse, while in the high state, the motor will make half a step. Vz = 6.0V - 1.7V = 4.3V. To allow for production tolerances and a safety margin, a 3.9 V zener has been chosen for this example. The clock is derived from the line frequency which is phase locked by the MC14046B and the MC14024. The voltage on the clock input, is normally low (Logic '0'). The motor steps on the positive going transition of the clock pulse. A Logic '0' applied to the Full/Half input, Pin 8, operates the motor in the Full Step mode. A Logic '1' at this input will result in the Half Step mode. The logic level state on the CW/CCW input, Pin 10, and the connection of the motor coils to the outputs determines the rotational direction of the motor. These two inputs should be biased to a Logic '0' or '1' and not left floating. In the event of non-use, they should be tied to ground or the logic supply line, VCC. The output drivers can be set to a fixed operating point by use of the Set input and a bias resistor RB. A positive pulse to this input turns the drivers off and sets the logic state of the outputs. After the negative going transition of the Set pulse, and until the first positive going transition of the clock, the outputs will be: Vo - (Pin 2) This pin is used to protect the outputs (1, 3, 14, 16) where large positive spikes occur due to switching the motor coils. The maximum allowable voltage on these pins is the clamp voltage (Vcl amp ). Motor performance is improved if a zener diode is connected between Pin 2 and Pin 15 as shown in Figure 1. The following conditions have to be considered when selecting the zener diode: Vcl amp = VM + 6.0 V Vz = Vcl amp - VM - VF* where: VF = clamp diodes forward voltage drop (see Figure 4) Vclamp: '" 20 V for SAA1042 '" 30 V for SAA1042A Pins 2 and 15 can be linked, in this case Vz = 0 V. Set/Bias Input - (Pin 6) This input has two functions: The resistor RB adapts the drivers to the motor current. A pulse via the resistor RB sets the outputs (1, 3, 14, 16) to a defined state. Ll = L3 = high and L2 = L4 = low. (See Figure 6, the timing diagram). The Set input can be driven by a MC14007B or a transistor whose collector resistor is RB. If the input is not used, the 'bottom' of RB must be grounded. The total power dissipation of the circuit can be determined from Figures 3 and 5. PD = 0.9 W + 0.08 W = 0.98 W. This results in a junction to ambient temperature, without a heatsink of: The resistor RB can be determined from the graph of Figure 2 according to the motor current and voltage. Smaller values of RB will increase the power dissipation of the circuit and larger values of RB may increase the saturation voltage of the driver transistors. When the "set" function is not used, terminal A of the resistor RB must be grounded. When the set function is used, terminal A has to be connected to an opencollector (buffer) circuit. Figure 7 shows this configuration. The buffer circuit (off-state) has to sustain the motor voltage VM. When a pulse is applied via the buffer and the bias resistor RB: TJ - TA = 50'ClWxO.98 W = 49'C. or a maximum ambient temperature of 76'C. For operation at elevated temperatures a heatsink is required. During the pulse duration, the motor driver transis- MOTOROLA LINEAR/INTERFACE DEVICES 4-61 • .. SAA 1042, SAA 1042A FIGURE 2 - ~ '" !ji ~ 1liw '" SIAS RESISTOR RS versus MOTOR CURRENT FIGURE 3 - 500 5.0 300 ~z i:~ 200 ,... VM '-< 100 ~ o 24 V VM ~ .......... VM ~6.0V-' 30 20 I II 10 20 ...... 12V f'. I'- 30 40 50 60 80 100 MOTOR CURRENT!COIL (mAl 200 f2 0.7 0.5 '" ~ 0.3 ~ 0.2 ~ 400 E r- ~ 300 "" 200 ::0 U ~ ::2 j 100 o /V o 6.0V- r-I- 300 400 500 V~ "f' /~ 'd /.' ~ 20 30 50 70 100 MOTOR CURRENT/COIL (mAl 200 300 400 500 FIGURE 5 - POWER DISSIPATION versus LOGIC SUPPLY VOLTAGE v / V ~ o. 1 FIGURE 4 - CLAMP DIODE FORWARD CURRENT versus FORWARD VOLTAGE 500 VM / 1.0 '""" I'- 24 V- ~ w r--. ~ 2.0 -VM~12V '"~ 50 ~ VM ~ U5 70 DRIVE STAGE POWER DISSIPATION 500 ~ 300 E 200 z I---- ~ 0 ;= ;t 100 ~ 70 is '" 50 /' ~ / a' .e 30 20 / 10 1.0 2.0 3.0 VF, FORWARD VOLTAGE (VI 4.0 5.0 5.0 FIGURE 6 - 10 15 VCC, SUPPLY VOLTAGE (VI TIMING DIAGRAM Full Step Motor Drive Mode. Full/Half Step Input ~ m Don't Care 0 Clock ~ High Output Impedance ~~~~====~;;;;~==~====~== CW/CCW; Set L1 L2 L3 L4 Half Step Motor Drive Mode. Full/Half Step Input Clock Set CW/CCW L1 ~ L2 DFllJI Wdt VUA ~ 1 W/4 WA w;r- W4 W4 t?lZ2l- l3 &LZa WA W4 t12Ui W4' L4 WWl'A *4 W4I IWYA WA MOTOROLA LINEAR/INTERFACE DEVICES 4-62 20 25 SAA 1042, SAA 1042A FIGURE 7 - TYPICAL APPLICATION SELECTABLE STEP RATES WITH THE TIME BASE DERIVED FROM THE LINE FREQUENCY 12 V 14 16 MCl40468 3 ---------, 220 k 1 220 V 50 Hz 1 4 1 14 VCO 1 _...I 1 II 12 V 7 MCl4024 6 9 11 S.2 I'-F 1 7 12 10 ~ 1400 Hz Set Input u Set MOTOROLA LINEAR/INTERFACE DEVICES 4-63 MCl4007 ® TDA1085A MOTOROLA Specification and Applications Information a UNIVERSAL MOTOR SPEED CONTROLLER SILICON MONOLITHIC INTEGRATED CIRCUIT UNIVERSAL MOTOR SPEED CONTROLLER The TDA1085A has all the necessary functions for the speed control of universal (ae/dc) motors in an open or closed loop configuration_ Additionally it has the facility for defining the initial speed/time characteristic_ The circuit provides a phase angle varied trigger pulse to the motor control triac. - • Guaranteed Full Wave Triac Drive • Soft Start from Powerup • On-Chip FrequencyNoltage Convertor and Ramp Generator 1 • Current Limiting Incorporated PLASTIC PACKAGE CASE 648-06 • Direct Drive from ac Line FIGURE 1 - BLOCK DIAGRAM AND PIN ASSIGNMENT +vee Shunt Regulator } Ballast Resistor -Vee 13 . ,g il:c tn Ii ~0. 1:l tn E ~ 11. i5 il: '" 0. ~ U i~ "0.0." tntn "iiQ) tjtn « ~ .~ :::; 0 u E ~ '"E"" ~ u ~ ~ ::;; ~ u g' ·E ;:: " '"" 0. ~ a:: ~ a:: MOTOROLA LINEAR/INTERFACE DEVICES 4-64 ~ :c ., E c c 0 00 > tn > tn Jl 1:!'" 0 " E ~ > u ;; .~ 'i s 3l U~ u1;;~ ·c ·c 0 " .c tn "5 0 .c ~ ~c --' .B 0 0. 0 0 0 "0 ~ u 11. ! '" ~ ~ " '"'" ~ TDA1085A MAXIMUM RATINGS Parameter Power Supply Voltage Power Supply Current (Pin 10 Open) Symbol Value VPin 9-8 17 V IPin 9 15 mA Unit Peak Power Supply Regulation Current IPin 9 + IPin 10 35 mA Peak ac Synchronization Input Current IPin 1 IPin 2 ±1.0 mA Peak Output Triggering Current (Pulse Width 300 p.s; Duty Cycle", 3%) IPin 13 200 mA Current Drain per Listed Pin 115 13 112 Po 1/ROJA 1.0 -5.0 -3.0, +0.1 mA 625 6.8 mW mwrc Power Dissipation (TA = 25°C) Derate above 25°C Operating Temperature Range TA Storage Temperature Range Tstg a to II °c +70 -55to +125 °c ELECTRICAL CHARACTERISTICS (TA = + 25°C unless otherwise stated) Characteristic Symbol Min Typ Max Unit VCC - 15.5 - V Monitoring Enable Level" VME - Monitoring Disable Level" VMD Internal Current Consumption, Note 1 IPin 9 VOLTAGE REGULATOR Regulated Voltage" (19 + 110 = 10 mAl - 15.1 - V 14.5 - V 4.2 - mA RAMP GENERATOR Reference Input Voltage Range, Note 2 - VPin 5-8 0.08 Reference Input Bias Current IPin 5 - Distribute Low Level Voltage Range VPin 6 a VOL - VPin 6 VDU 1.9 V6 2.0 V6 Distribute - Low Level (Figure 2) Distribute - Upper Level" (Figure 2) (VPin 6 = 950 my) - ICH7 - 400 High Acceleration Charging Current Low Charging Current, Note 3 ICL7 - 5.0 Low-High Acceleration Range (Figure 2) 1!.vDA NOTES: 1. Pins 1, 2, 11, 12, 14and 15 not connected; Pins4, 5, 6 and 7 grounded to Pin 8: Vee = 15.5 V 2. When VPin 5 is :s;;; 80 mV, the internal monitoring circuit interprets it as a true zero, thus minimizing the effects of control amplifier offsets. 3. This value should be accounted for when externally setting the distribute acceleration charging current. MOTOROLA LINEAR/INTERFACE DEVICES 4-65 1.2 13.5 V -20 pA 2.0 V - V 2.1 V6 - V mV mA pA TDA1085A ELECTRICAL CHARACTERISTICS (Continued) Characteristic I Symbol Min Typ Max Unit CURRENT UMITER Stage Current Gain !w - 170 - - IOL7 - 35 - mA 0 - AI3 I Output Discharge Current Swing CONTROL AMPUFIER II Actual Speed Voltage Range VPin 4-8 Actual Speed Input Bias Current IPin 4 Total Input Offset Voltage. Note 4 Voff AlPin 16 ) VPin 4 - VPin 7 Output Current Swing gm -60 IPin 16 - Input Signal Low Voltage. Note 5 VL12 -0.1 Input Signal High Voltage VH12 0.1 IPin 12 - Transconductance ( - 13.5 V -350 nA 20 mV 300 - "AN ±100 - pA. - V FREQUENCYNOLTAGE CONVERTER - 5.0 Conversion Rate. Note 6' KC - 15 - Linearity' (Figure 3) KL - ±4.0 - Voltage Synchronization Levels IPin 2 IPin 1 - ±50 Current Synchronization Levels Input Voltage Swing (for full angle swing) V - Trigger Pulse Width. Note 7 tp t Polarization Current -25 V pA. mY/Hz % TRIGGER PULSE GENERATOR Trigger Pulse Repetition Period Trigger Pulse High Level IIPin 13 = 150 mAl VPin 13 Output Leakage Current (VPin 13 = 0 V) 10Pin 13 ±50 - 11.7 - V - 55 - pos - 215 p.S pA. VCC-4 - - - - 30 4. Vaff is defined as being the voltage difference between Pin 5 and 4 with no current flow on Pin 16. 5. The negative swing is clamped to - 0.3 V. 180 x 103 ) . 6. VPin 4 = k· CPin 11 ·IVee-V.), RPin 4' ( 1 + -R-'-1 ·freq In. Pm 11 Where: 9 < K < 13 & V. = 1.3 V. 7. The timing given is when CPin 14 = 47 nF. * These figures apply for the application shown in Figure 4. MOTOROLA LINEAR/INTERFACE DEVICES 4·66 pA. pA. V I I TDA1085A INPUT/OUTPUT FUNCTIONS (Pins 8, 9,10). This is a parallel type voltage regulator able to sink a large amount of current while offering good regulation characteristics. A resistor between Pins 9 and 10 reduces the internal power dissipation. Under minimal current sink conditions (min. current from the unregulated supply, max. consumption by the circuitry), at least 1.0 mA should flow through this resistor. Under max. sink conditions (max. current from the unregulated supply, min. consumption by the circuitry), the maximum resistor value is chosen so that the voltage at Pin 10 falls towards 3.0 V, but not lower. The above, fixed dynamic range of the regulator must not be exceeded within one line cycle. A power supply failure causes shutdown. For operation from an externally regulated voltage, Pin 10 is not connected. (Pins 4,11,12). Speed sensing can be achieved either digitally (tachogenerator frequency) or analogically (tachogenerator amplitude). For digital sensing, a bipolar signal with respect to ground is applied to Pin 12. During positive excursions CPin 11 is charged. An internal mirror delivers ten times the charge on CPin 11 via Pin 4. However, due to internal circuitry, the charge on Pin 4 can vary in the region of 9 to 13 times the charge on CPin 11. For that reason it is necessary to calibrate the FrequencyNoltage Convertor (FNC) with a variable resistor on Pin 4. Thus the relationship between speed and VPin 4 is defined by RPin 4 and CPin 11· To maintain linearity in the high speed ranges it is important that CPin 11 is fully charged across an equivalent resistor of about 180 kO. It should be borne in mind that the impedance on Pin 11 should be kept as low as possible as CPin 11 has a large influence on the temperature coefficient of the FV/C. The time constant on Pin 4 should also be kept as low as possible. Pin 12 is also an impedance monitoring input; at high impedances VPin 12 increases. Should VPin 12 exceed 5.0 V the triac trigger pulses are inhibited and the circuit resets. A 470 kO resistor from Pin 11 to + VCC significantly reduces the leakage current and reduces the device temperature coefficient to almost zero. FIGURE 2 - RAMP GENERATOR TRANSFER CHARACTERISTIC FIGURE 3 - FREQUENCYNOLTAGE CONVERTER OUTPUT CHARACTERISTIC VOLTAGE REGULATOR - SPEED SENSING - VPin 5 VPin 4 1.0 VOU ~ 2VOL VPin 6 ~ VOL 0.8 I I ~to~ I I High Acceleration The shape of the curve is determined by CRPin 7; where CPin 7 defines the high acceleration slope and RPin 7 defines that of the low acceleration. MOTOROLA LINEAR/INTERFACE DEVICES 4-67 II .. TDA1085A INPUT/OUTPUT FUNCTIONS (continued) This is achieved as follows: The motor current will set up an alternating current, consisting of positive and negative peaks through the shunt resistor (0.05 in Figure 4). The negative peaks of this current are fed through a resistor to Pin 3 where they are compared with a preset current defined by a resistor between Pin 3 and + VCC. An excessive shunt current will try to pull Pin 3 below - Vcc, but the current limiter becomes active at this point and reduces the charge on CPin 7, consequently reducing the motor speed. Thus the value of the shunt and the ratio of the two resistors to Pin 3 fix the level at which the limiter becomes active, while the parallel equivalent of the two resistors determines the magnitude of the discharge current and thus how rapidly the circuit responds to an overcurrent condition. For analog sensing input 12 should be grounded and a positive signal, with respect to ground, Pin 8, applied to Pin 4. n RAMP GENERATOR - (Pins 5, 6, 7) (refer to Figure 2). A preset voltage applied to Pin 5 will initiate the generation of a ramp whose final value is determined by the voltage applied to Pin 5. The voltage applied to Pin 6 will determine how much of the full ramp, shown in Figure 2, is used. The charging current passing through Pin 7 to the ramp generator timing capacitor determines the ramp slope. When Pin 6 is held at -Vcc a charging current of 1.2 mA is delivered to Pin 7, regardless of the voltage of Pin 5. This represents the high acceleration period shown in Figure 2. If the preset voltage applied to Pin 5 is equal to or less than the voltage on Pin 6 the charging current will be 1.2 mA, or high acceieration. If the preset voltage applied to Pin 5 is between VPin 6 and 2 VPin 6 the charging current is 1.2 mA (high acceleration) until the voltage at the reference input of the control amplifier equals VPin 6. At this point the charging current will switch to 5.0 p,A; i.e. low acceleration. If the preset voltage applied to Pin 5 is greater than 2 VPin 6 the charging current will be 1.2 mA (high acceleration) until the control amplifier's reference input reaches VPin 6 when it will switch to 5.0 !LA (low acceleration) until 2 VPin 6 is reached. At this point the charging current will revert to 1.2 mA, high acceleration, until the final value of VPin 5 is reached. Should the preset voltage at Pin 5 fall below 80 mY, the triac trigger pulses are inhibited and the circuit resets. This fact should be borne in mind when switching from one preset value to another. As long as the voltages applied at Pins 5 and 6 are derived from the internal voltage regulator, they and the voltage on Pin 4 are ratioed and thus independent of the voltage regulator spread and temperature coefficient. CONTROL AMPLIFIER - (Pin 16). Connected to this pin is a network which compensates electrically for the mechanical characteristics of the motor and its load to give the circuit optimum closed loop stability and transient response. The component values are best determined empirically by connecting Rand C substitution boxes and looking for the best results. TRIGGER PULSE GENERATOR - (Pins 1, 2, 13, 14, 15). This circuit performs four functions: 1. The conversion of the control amplifier's dc output level to a proportional firing angle positioned to within half a line cycle. 2. The calibration of the pulse width. 3. The repetition of the firing pulse if the triac fails to latch, or if the current is interrupted by brush bounce. 4. To delay the firing pulse until the current crosses zero at wide firing angles. RPin 15 and CPin 14 fix the sawtooth while CPin 14 also determines the pulse width. Pin 13 is the trigger pulse output. A current limiting resistor is essential on this pin. This configuration will drive two thyristors controlling a bridge if the supply for the speed controller is isolated. CURRENT LIMITER - (Pin 3). Safe operation of the motor and triac under all conditions is ensured by reducing the motor speed if a preset current limit is exceeded. MOTOROLA LINEAR/INTERFACE DEVICES 4-68 TDA1085A TYPICAL APPLICATIONS FIGURE 4 - CLOSED LOOP. FULLY PROGRAMMED. MULTI·SPEED SYSTEM WITH CURRENT LIMITING ~S1 6 52R21 ~53A20 6. 54 * A18 56 k * A14 120 k 27k ,. D2 lN4148 * + A17 2.7 k Cll * AIS S.6 k Cl0 1.0 " F 470 ,,~ 820 2 'C0.1 k k k 15 14 ~ I r--- r--- "c ~OO "F' ~OO ".F C6 D3 Ml MT21~ 2N6347 ~, ~A22 MTJ ISO A6 2.2 k " C3 0.1 ".F 680 V C4 ,,' ~",,':~ '"~ ~ ~ * ** ** 200 k '" 1.0 "F nF / J II NOloateM _!~_~~ r-.J A8 1.2 k C7 PH 15 VII 0000 rpm 20V M2 AS 120 100k CS 47"F Cl A4 820 k 5 6 0 7 ~ 13 16 >- 3 12 -H 4 8 II AID Dl lN4005 ~ + 9 10 ., A16 68kC9 + + C8 k A13 lM5 AI 5.6 k A All A12 100 A23 A7+ C2 680 270 470 47 33' A3 820 k *A19 4.7 k A2 270 pF A9 0.05 "F ~ N .. Chosen to suit the speeds required ** Adjust for the highest speed *** Required only with 'A' suffix device Speed Control Resistor Network Equations = given R18 = R17 (15.5V -1) Vw R19 = R17(14.8V -1) Vspin 2 R17 R20 = R17 (14.8 V -1) -R19 Vspin 1 R21 = R17 (14.8 V -1) -R19-R20 k.vW R15 = R ( K.VW ) 21 15.5 V (2.K) R14 = R15(15.5V -1) Vw S1 52 S3 S4 VPin 5 Wash se oe oe oc Vw 0 Distribute oe se oc oc KVW Vw Spin 1 oe oe se oc >KVW 'iv w 2 Spin 2 oe oe oc se »KVW ='iv 2 w VPin6 se = switch closed oc = switch open Note: When changing from one speed to another VPin 5 must not be allowed to fall below 80 mV - otherwise the circuit will reset and restart from zero. The component values given in Figure 4 correspond to: Vw The ratio distribute speed to wash speed can be chosen as: VD Vspin 1 Vspin 2 K MOTOROLA LINEAR/INTERFACE DEVICES 4-69 0.7V 1.13V 5.0 V 1'V '.6 .. TDA1085A FIGURE 5 - OPEN LOOP, SOFT START - WITH PROGRAMMED TIME TO MAX. SPEED (t = CPin 7. 65 x 105 ) FIGURE 6 - OPEN LOOP, SOFT-START/SOFT-STOP, LlGHTINGIINDUCTIVE LOAD CONTROLLER lOOk 100 k 22k 1.0 n P= 270 k 'f 10nFt 22 k rf- P- r:; + 16 15 14 13 12 11 10 1 1 9 16 15 14 13 12 11 10 f L-~~2r-3r-~4~5r-6r-~7~~ I 820 k 4---+-+----" 1 2 + 16V rf' 100/LF 100 ftF + " 3 4 6 5 7 I 820 k 820 k 820 k 4 6V 10 k 5.0W 100 ftF 'i4 .~150 .~150 J/~.1 Load ftF Load MOTOROLA LINEAR/INTERFACE DEVICES 4-70 9 TDA1085A 200 8 TDA 1085A n I 1 ~ 10 ftFF* rd~ 270 k 10 nF 47 nF 200 l ~ -=- 8 J 10 k 5.0W ® TDA1085C MOTOROLA Designer's Data Sheet UNIVERSAL MOTOR SPEED CONTROLLER UNIVERSAL MOTOR SPEED CONTROLLER LINEAR INTEGRATED CIRCUIT The TDA 1085C is a phase angle triac controller having all the necessary functions for universal motor speed control in washing machines. It operates in closed loop configuration and provides two ramps possibilities. • On-Chip Frequency to Voltage Converter • On-Chip Ramps Generator • Soft Start • Load Current Limitation • Tachogenerator Circuit Sensing • Direct Supply from AC Line • Security Functions Performed by Monitor DSUFFIX PLASTIC PACKAGE CASE 648-06 PLASTIC PACKAGE CASE 751 8-03 SO-16 FIGURE 1 - BLOCK DIAGRAM AND PIN ASSIGNMENT + Vee SHUNT REGULATOR} BALLAST RESISTOR 12 . 4 11 w 0: z C I- ~ cw w :l; .... < I- " is <; ~ .. .. < U :! ::> 0 > ... 5 6 .... .... C C ww W w I- 0 i:::; 0: IZ .. < w ::> u '~" I- 0: 0 'z" i >= 0: 0: < :! 0: 0 < 0 0 iii .'" W :! ::> 0: I- ..Ing Z I- . >- :::; I- 0 0 <; ~ U x 0 ~ 0: 0: ::> 0 ~ 60 ....x 0 .... w ;: 9 I- ;ll 0 .... Z I- 0 0 >= < N >= < N I!:::> Z a: ~ Z Z 0 0 l: l: 0: u z ~ w ! !:i'<" 0 :! > < 0: MOTOROLA LINEAR/INTERFACE DEVICES 4-71 . .... 0 ::> 0 w ~ z >- ffi ~ 0: a: ii: ::> 0 ''"" .... II TDA1085C MAXIMUM RATINGS (TA = 25·C Voltages are referred to pin S [Ground]) Symbol Value Unit Power Supply, when externally regulated, VPin9 VCC 15 V Maximum Voltage per listed pin Pin 3 Pin 4-5-6-7-13-14-16 Pin 10 Vpin Maximum Current per listed pin Pin 1 and 2 Pin 3 Pin 9 (VCe! Pin 10 shunt regulator Pin 12 Pin 13 Ipin Rating II V +5.0 Oto+VCC Oto +17 mA -3.0 to +3.0 -1.0 to +0 15 35 -1.0to +1.0 -200 Maximum Power Dissipation Junction to Air Thermal Resistance Operating Junction Temperature Storage Temperature Range ELECTRICAL CHARACTERISTICS (TA = Po 1.0 W RtlJA 65 ·CIW TA -10to +120 ·C Tsta -55to +150 ·C 25·C) Characteristic Symbol Min Typ Max Unit VCC 15 15.3 15.6 V VOLTAGE REGULATOR Internally Regulated Voltage (VPin9) (lPin7 = 0, IPin9 + IPinl0 = 15 mA. IPin13 = 0) VCC Temperature Factor TF - -100 Current Consumption (lPin9) (V9 = 15 V, V12 = Vs = 0,11 all other pins not connected) ICC - 4.5 VCC EN VCC DIS - VCC-0.4 VCC-l.0 = 12 = VCC Monitoring Enabling Level Disable Level 6.0 ppml"C mA 100"A, - V RAMP GENERATOR Reference Speed Input Voltage Range VPin5 O.OS - 13.5 V Reference Input Bias Current -IPin5 0 O.S 1.0 "A Ramp Selection Input Bias Current -IPin6 0 - 1.0 Distribution Starting Level Range (VDS) VPin6 0 - 2.0 "A V VDsNPin6 2.0 2.09 2.2 Distribution Final Level (VDF) VPin6 = 0.75 V High Acceleration Charging Current VPin7 = 0 V VPin7 = 10 V -IPin7 Distribution Charging Current VPin7 = 2.0 Volts -IPin7 mA 1.2 1.7 1.4 4.0 5.0 6.0 MOTOROLA LINEAR/INTERFACE DEVICES 4-72 - 1.0 1.0 "A TDA1085C ELECTRICAL CHARACTERISTICS (continuedl Symbol Min Typ Max Cg 130 180 250 VPin3 TH 50 65 80 mV Input Signal "Low Voltage" Input Signal "High Voltage" Monitoring Reset Voltage V12 L V12 H V12 R -100 +100 5.0 - - - mV mV V Negative Clamping Voltage -V12 CL - 0.6 - V -IPin12 - - I'A Characteristic Unit CURRENT LIMITER Limiter Current Gain (lPin3 ~ -3001'AI IPin7/1Pin3 Detection Threshold Voltage IPin3 ~ -101'A FREQUENCY TO VOLTAGE CONVERTER IPin12 ~ -2001'A Input Bias Current Internal Current Source Gain G ~ t'pin4, VPin4 Pinl1 ~ G.O VPinll ~ ~ ~ 10.5 1.04 1.015 0.965 1.05 1.025 0.975 1.06 1.035 0.985 G/G8.6 8.6 Volts) V4~4.3V V4 10.3 0 Gain Linearity versus Voltage on Pin 4 (G8.6 ~ Gain for VPin4 V4 ~ 0 V 25 10 12 V Gain Temperature Effect (VPin4 ~ 0) TF - 350 - ppm/'C Output Leakage Current (lPinll ~ 0) -IPin4 0 - 100 nA VPin4 0 Voff 0 - T 270 -200 50 CONTROL AMPLIFIER Actual Speed Input Voltage Range Input Offset Voltage VPin5 - VPin4 (lPinl6 ~ 0, VPin16 ~ 3.0 and 8.0 Volts) Amplifier Transconductance (lPinl6/d (V5 - V4) (lPinl6 ~ + and -50 !LA, VPin16 ~ 13.5 V 50 mV 340 400 p.AJV -100 100 -50 200 3.0 Voltsl Output Current Swing Capability Source Sink I'A IPin16 . Output Saturation Voltage V16 sat - IPin2 IPinl - - 0.8 V TRIGGER PULSE GENERATOR !LA Synchronization Level Currents Voltage Line Sensing Triac Sensing Trigger Pulse Duration (CPin14 ~ 47 nF, RPin15 ~ Trigger Pulse Repetition Period, conditions as a.m. Output Pulse Current VPin13 ~ Output Leakage Current VPin13 VCC -4.0 Volts ~ -3.0 Volts Full Angle Conduction Input Voltage Saw Tooth "High" Level Voltage Saw Tooth Discharge CUrrent, IPin15 ~ 100 !LA - ±50 ±50 192 - rnA 30 !LA To - 55 TR - 220 -IPin13 180 270 kO) ±100 ±100 113 L - - V14 - 11.7 - I's I'S V V14H 12 - 12.7 V IPin14 95 - 105 !LA MOTOROLA LINEAR/INTERFACE DEVICES 4-73 II TDA1085C GENERAL DESCRIPTION Pin 12 ,has also a monitoring function: when its voltage is above 5V, the trigger pulses are inhibited and the IC is reset. It also senses the tachogenerator continuity and in case of any circuit aperture, it inhibits pulse, avoiding the motor to run out of control. In the TDA 10B5C, pin 12 is negatively clamped by an internal diode which removes the necessity of the external one used in the formor circuit. The TDA 10B5C triggers a triac accordingly to the speed regulation requirements. Motor speed is digitally sensed by a tachogenerator and then converted into an analog voltage. The speed set is externally fixed and is applied to the internal linear regulation input after having been submitted to programmable acceleration ramps. The overall result consists in a full motor speed range with two acceleration ramps which allow efficient washing machine control (Distribute function). a RAMP GENERATOR - (pins 5-6-7) The true Set Speed value taken in consideration by the regulation is the output of the ramp generator (pin 7). With a given value of speed set input (pin 5), the ramp generator charges an external capacitor Cpin 7 up to the moment Vpin 5 (set speed) equals Vpin 4 (true speed), see fig. 2. The IC has an internal charging currentsource ofl.2mAand delivers it from Oto 12 Vat pin 7. It is the high acceleration ramp (5 seconds typ.) which allows rapid motor speed changes without excessive strains on the mechanics. The TDA 10B5C offers in addition the possibility to break this high acceleration with the introduction of a low acceleration ramp (called Distribution) by reducing the pin 7 source current down to 5 J.LA under pin 6 full control, as shown by following conditions: Additionnally, the TDA 10B5C protects the whole system against AC line stop or variations, overcurrent in the motor and tachogenerator failure. INPUT/OUTPUT FUNCTIONS (Referred to Figures 1 and 8) VOLTAGE REGULATOR - (pins 9 and 10) This is a parallel type regulator able to sink a large amount of current and offering good characteristics. Current flow is provided from AC line by external dropping resistors Rl, R2, and rectifier: This half wave current is used to feed a smoothering capacitor, the voltage of which is checked by the IC. • Presence of high acceleration ramp Vpin 5 > Vpin 4 • Distribution occurs in the Vpin 4 range (true motor speed) defined by Vpin 6 :;; Vpin 4:;; 2Vpin 6 When V cc is reached, the excess of current is derived by another dropping resistor RIO and by pin 10. These three resistors must be determined in order: For two fixed values of Vpin 5 and Vpin 6, the motor speed will have high acceleration, excluding the time for Vpin 4 to go from Vpin 6 to two times this value, high acceleration again, up to the moment the motor has reached the set speed value, at which it will stay, see fig. 3. • to let lmA flow through pin 10 when AC line is minimum and Vcc consumption is maximum (fast ramps and pulses present). • to let V10 reach 3V when AC line provides maximum current and Vcc consumption is minimum (no ramps and no pulses). Should a reset happen (whatever the cause would be), the above mention ned successive ramps will be fully reprocessed from 0 to the max. speed. If Vpin 6 = 0, only the high acceleration ramp occurs. • all along the main line cycle, the pin 10 dynamic range must not be exceeded unless loss of regulation. To get a real zero speed position, pin 5 has been designed in such a way that its vo'itage from 0 to BO mV is interpreted as a true zero. As a consequence, when changing the speed set position, the designer must be sure that any transient zero would not occu~: if any, the entire circuit will be reset. An AC line supply failure would cause shut down. The double capacitive filter built with Rl and R2 gives an efficient Vcc smoothing and helps to remove noise from set speeds. As the voltages applied by pins 5 and 6, are derived from the internal voltage regulator supply and pin 4 voltage is also derived from the same source, motor speed, which is determined by the ratios between above mentioned voltages, is totally independent from Vcc variations and temperature factor. SPEED SENSING - (pins4-"-'2) The IC is compatible with an external analog speed sensing: its output must be applied to pin 4, and pin 12 connected to pin B. In most of the applications it is more convenient to use a digital speed sensing with an unexpensive tachogenerator which doesn't need any tuning. During every positive cycle at pin 12, the capacitor Cpin 11 is charged to almost Vcc and during this time, pin 4 delivers a current which is 10 time the one charging Cpin", The current source gain is called G and is tightly specified, but nevertheless requires an adjustment on Rpin 4. The current into this resistor is proportional to Cpin 11 and to the motor speed; being filtered by a capacitor, Vpin 4 becomes smoothered and represents the "true actual motor speed". CONTROL AMPLIFIER - (pin 1611t amplifies the difference between true speed (pin 4) and set speed (pin 5), through the ramp generator. Its output available at pin 16 is a double sense current source with a max. capability of ± 100 J.LA and a specified transconductance (340 j.LA/v.typ.). Pin 16 drives directly the trigger pulse generator, and must be loaded byan electrical network which compensates the mechanical characteristics of the motor and its load, in order to provide stability in any condition and shortest transient response, see fig. 4. To maintain linearity into the high speed range, it is important to verify that Cpin 11 is fully charged : the internal source on pin 11 has 100 KO impedance. Nevertheless Cpin 11 has to be as high as possible as it has a large influence on FV IC temperature factor. A 470 KO resistor between pins 11 and 9 reduces leakage currents and temperature factor as well, down to negiectable effects. This network must be adjusted experimentally. In case of a periodic torque variations, pin 16 provides directly the phase angle oscillations. MOTOROLA LINEAR/INTERFACE DEVICES 4-74 TDA1085C TRIGGER PULSE GENERATOR - (pins 5 1-2-13-14-15) This circuit performs four functions: in the sense that speed adjustment will stay valid in the entire speed range. • The conversion of the control amplifier DC output level to a proportionnal firing angle at every main line half cycle. • The calibration of pulse duration. • The repetition of the pulse if the triac fail'; to latch on ifthe current has been interrupted by brush bounce. • The delay of firing pulse until the current crosses zero at wide firing angles and inductive loads. POWER SUPPPLY As dropping resistor dissipates noticeable power, it is necessary to reduce the Icc needs down to a minimum. Triggering pulses, if a certain number of repetition is in reserve to cope with motor brush wearing at end of its life, are the largest Icc user. Classical worst case configuration have to be considered to select dropping resistor. In addition the parallel regulator must be always into its dynamic range, i.e. Ipin 10 over 1 rnA and Vpin 10 over 3 volt in any extreme configuraton. The double filtering cell is mandatory. Rpin 15 programs the pin 14 discharging current. Saw-tooth signal is then fully determined by R15 and C14 (usually 47 nF). Firing pulse duration and repetition period are in inverse ratio to the saw-tooth slope. TACHOGENERATOR CIRCUIT The tacho signal voltage is proportional to the motor speed. Stability considerations, in addition, require a RC filter the pole of which must be looked at. The combination of both elements yield a constant amplitude signal on pin 12 in most of the speed range. It is recommended to verify this maximum amplitude to be within 1 volt peak in order to have the largest signal/noise ratio without resetting the integrated circuit (which occurs if Vpin 12 reaches 5.5 V).lt must be also verified that the pin 12 signal is approximately balanced between" High" (over 300 mVI and" Low". A 8 poles tacho is a minimum for lowspeed stability and a 16 poles is even better. Pin 13 is the pulse output and an external limiting resistor is mandatory. Max current capability is 200 rnA. CURRENT LIMITER - (pin 3) Safe operation of the motor and triac under all conditions is ensured by limiting the peak current. The motor current develops an alternative voltage in the shunt resistor (0.05 ohm in fig. 4). The negative half waves are transferred to pin 3 which is positively preset at a voltage determined by resistors R3 and R4. As motor current increases, the dynamical voltage range of pin 3 increases and when pin 3 becomes slightly negative in respect of pin 8 a current starts to circulate in it. This current, amplified typically180times, is then used to discharge pin 7 capacitor and, as a result, reduces firing angle down to a value where an equilibrium is reached. The choice of resistors R3, R4 and shunt determines the magnitude of the discharge current signals on Cpin7. The RC pole of the tacho circuit should be chosen within 30 Hz in order to beasfaras possiblefromthe150 Hzwhichcorresponds tothe AC line 3rd harmonic generated by the motor during starting procedure. In addition, a high value resistor coming from Vcc introduces a positive offset at pin 12, removes noise to be interpreted as a tacho signal. This offset should be designed in order to let pin 12 to reach at least 200 mV (negative voltage) at the lowest motor speed. We remember the necessity of an individual tacho ground connection. Noticethatthe current limiter acts onlyon peak Triac current. APPLICATION NOTES (Referred to Figure 41 FREQUENCY TO VOLTAGE CONVERTER - F VIC Cpin 11 has a recommended value of 820 pF for 8 poles tachos and max. motor rpm of 15000, and Rpin 11 must be always 470 K. PRINTED CIRCUIT LAYOUT RULES In the common applications, where TDA 1085C is used, there is on the same board, presence of high voltage, high currents as well as low voltage signals where millivolts count. It is of first magnitude importance to separate them each other and to respect following rules: • Rpin 4 should be choosen to deliver within 12 volts at maximum motor speed in order to maximizesignal/noise ratio. As the FV/C ratio as well as the Cpin 11 value are dispersed, Rpin 4 must be adjustable and should be .made of a fixed resistor in serie with a trimmer representing 25 % of the total. Adjustment would become easier. Capacitors decoupling pins which are the inputs of the same comparator, must be physically close to the IC, close to each other and grounded in the same point. Once adjusted, for instance at maximum motor speed, the F VIC presents a residual non linearity; the conversion factor .. Ground connexion for tachogenerator must be directly connected to pin 8 and should ground only the tacho. In effect the latter is a first magnitude noise generator dueto its proximity of the motor which induces high d¢/dt signals. (mV per R.P.M.) increases by within 7.7% as speed tends to zero. The guaranteed dispersion of the latter being very narrow, a maximum 1% speed error is guaranteed if during pin 5 network design the small set values are modified, once for ever, according this increase. • The following formulae gives Vpin 4: The ground pattern must be in the "star style", in order to fully eliminate power currents flowing in the ground network devoted to capacitors decoupling sensitive pins: (4-5-7-11-12-14-16). V p in4 = 140 . C p in11 . R4 . f . (1 As an example, fig. 5 presents a PC board pattern which concerns the group of sensitive pins and their associated capacitors into which the a.m. rules have been implemented. Notice the full separation of "Signal World" from "Power" one by line AB and their communication by a unique strip. + 1 in volt per Hertz. 180 k) Rpin11 SPEED SET - (pin 5) Upon designer choice, a set of external resistors apply a serie of various voltages corresponding to the various motor speeds. When switching external resistors, verify that a voltage below 80 mV in never applied to pin 5, if no, a full circuit reset will occur. These rules will lead to much satisfactory volume production MOTOROLA LINEAR/INTERFACE DEVICES 4-75 • II TDA1085C RAMPS GENERATOR - (pin 6) If only a high acceleration ramp is needed, connect pin 6' to ground. bridge, the triac must be protected from commutating dV/dt by a 1 to 2 mH coil in serie with MT2. When a Distribute ramp should occur, pre-set a voltage on pin 6 to which corresponds the motor speed starting ramp point. Distribution (or low ramp) will continue up to the moment the motor speed would have reached twice the starting value. Synchronisation functions are performed by resistors sensing AC line and triac conduction. 820 K values are usual but could be reduced down to 330 K in order to detect the Zeros with accuracy and to reduce the residual DC line component below 20 mAo The ratio of two is imposed by the IC. Nevertheless it could be externally changed downwards (fig. 6) or upwards (fig. 7). CURRENT LIMITATION The current limiter starts to discharge pin 7 capacitor (reference speed) as Motor current reaches the designed threshold level. The loop gain is determined by the resistor connecting pin 3 to the serie shunt. Experience has shown that its optimal value for a lOA rms limitation is within 2 KG. Pin 3 input has a sensitivity in current which is limited to reasonable values and should not react to spikes. The distribution ramp can be shortened by an external resistorfrom Vcc charging Cpin 7"adding its currentto the internal 5 !1A generator. POWER CIRCUITS Triac Triggering pulse amplitude must be determined by Pin 13 resistor according the needs in Quadrant IV. Trigger pulses duration can be disturbed by noise signals, generated by the triac itself, which interfere within pins 14 and 16, precisely those which determine it. While easily visible this effect is harmless. If not used, pin 3 must be connected to a max. positive voltage of 5 V rather to be left ol;len. LOOP STABILITY The pin 16 network is predominant and must be adjusted experimentally during module development. Thevalues indicated in fig. 4 are typical for washing machines applications but accept large modifications from one model to another. R16, it is the sole restriction, should not be below 33 kotherwise slew rate limitation will cause large transient errors for load steps. Triac must be protected from high AC line dV/dt during external disturbances by 100 nF x 100 G network. Shunt resistor must be as non selfic as possible. It can be made locally by Constantan alloy wiring. When the load is a DC fed universal motor through a rectifier FIGURE 2 - ACCELERATION RAMP FIGURE 3 - PROGRAMMABLE DOUBLE ACCELERATION RAMP V Speeds VpinS Vpin 5 fixed set value Ramp High Acceleration VOS o o Vpin6= VOS Vol' = 2VDS MOTOROLA LINEAR/INTERFACE DEVICES 4-76 ~ FIGURE 4 - BASIC APPLICATION CIRCUIT ...a o :I l00fJ :IlOOfA 270 ~ IN4007 680 6.8k "" R7 I500k ,RII 470k RAMPS i:R15 R4 RIO ~ 820pf SPEEDS s: 0 I I 11 15 9 +vcc -I 0 ::0 0 r » c: SPEEDS/RAMPS SELECTOR ifRESISTIVE NETWORK) z m -l" ..... ..... 10 5 47k R2 68k 6 TDA1085C 820k I" » ::0 ~ 7 4 / lOOn 12 14 16 8 3 I" ::0 100 120n JIm 131 C7'"470" z -I m RI ~k 21 R3 2.7k "TI » CI4 m 47n (') 0 m < SHUNT (') 50mA 22k m en '" Current limitation: lOA adjusted by R4 experimentally Motor Speed Range: 0 to 15 000 rpm Ramps Tachogenerator High acceleration: Distribution ramp: Speeds: Wash 800 rpm Distribution 1300 Spin 1: 7500 Spin 2: 15000 3200 rpm per second Pin 5 voltage Set: 609 mV 996 mV 5.912 V 12.000V Including non linearity corrections Including non linearity corrections Including non linearity corrections Adjustment point 8 poles delivering 30 v peak to peak at 6000 rpm, in open circuit 105 from 850 to 1300 rpm FV IC Factor: . 8 mV per rpm (12 v full speed) rriae MAC 15 A-8 15 A Cpinl! = 680 pF 600 v 19t min:::: 90 rnA to cover Quad. IV at -10°C II Vee = 15.3 v I -I g - M FIGURE 5 - PC BOARD PATERN s: 0 --I 0 :Il 0 r ~I 2 m ~ CO » :Il L. IlIce I Z10k m'" - 120 (") ~~~ ~ [",'1 II .31 I \I I '% II 1,,1 ~ 2 --I m :Il " » (') m 0 m < (') m en B TDA1085C FIGURE 6 - DISTRIBUTION SPEED k <2 For k= I.S. R3 =O.S (Rl + R21. R3 C within 4seconds v VCC Spinl (defined byR51R4+R51 b 2VpinS o Distribute and Spin 1 Contact R4 2VpinStCXl pin5 R2 pinS VpinS 0 VpinStCXl R5 FIGURE 7 - DISTRIBUTON SPEED k >2 v Spin 1 So + 51 ......----t--- pinS 2VpinStCXl VpinStCXl k >2 MOTOROLA LINEAR/INTERFACE DEVICES 4-79 II II -I C » ~ o CO en FIGURE 8 - INTERNAL CONFIGURATION (") 10 5 ~I 0 I' .J I I ~ +-<§~ t I (JISI'A _ I MONITORING IF- :D 0 r ~ !::, z + vee 19 m ~ "" 00 0 :D ---~I m 1 - I ..... 1 "ON" .7V 1.2mA :D "Tl ~ () m 0 m < () m (fJ R2 .7V IS -vee 13 15 14 2 16 • (P12 connected) AND 6 (vee OK) AND (VP5>80mV) THEN (11 OFF). (120FF). 114 OFF) AND (IS OFF) 7 5 ® TDAl185A MOTOROLA Specifications and Applications Information TRIAC PHASE ANGLE CONTROLLER TRIAC PHASE ANGLE CONTROLLER SILICON MONOLITHIC The TDA1185A generates controlled triac triggering pulses and allows tacholess speed stabilization of universal motors by an integrated positive feedback function. Typical applications are power hand tools, vacuum cleaners, mixers and other small appliances. INTEGRATED CIRCUIT • Low Cost External Components Count •• • Optimum Triac Firing (2nd and 3rd Quadrants) • Repetitive Trigger Pulses When Triac Current is Interrupted by Motor Brush Bounce • Triac Current Sensed to Allow Inductive Loads 1 • Soft Start • Power Failure Detection and General Circuit Reset PLASTIC PACKAGE CASE 646-06 • Low Power Consumption: 1.0 mA - FIGURE 1 - TYPICAL SYSTEM CONFIGURATION INTERNAL BLOCK DIAGRAM/PIN ASSIGNMENT r-~--------------------------------------~--------------------~--'----o~ 100 + 100 fJ-F Positive Feedback 9 R12 12 Set>-Ot--.-<~-----I + 13 C13 RCompensation + Soft 4 C4 Sawtooth 7 820 k Voltage Synchro Generator 2.0W Start Programming Pin 18 k Main Line Voltage Compensation MOTOROLA LINEAR/INTERFACE DEVICES 4-81 1N4005 R9 0.05 II II TDA1185A MAXIMUM RATINGS (Voltages are referred to Pin 14 (ground) unless otherwise noted) Rating Symbol Maximum Voltage Range per Listed Pin Pins 3-5-11 (not connected) Pins 4-S-13 Pin 2 Maximum Positive Voltage (No minimum value allowed; see current ratings) VPin VPin 12 VPin 1 Value Unit Volt -20 to +20 -VcctoO -3.0 to +3.0 +0 +0.5 Maximum Current per Listed Pin Pin 1 Pins 6 and 7 Pin 9 Pin 10 Pin 12 IPin -500 mA rnA mA I'A I'A Maximum Power Dissipation (at TA = 25°C) Po 250 mW ROJA 100 °CIW ±20 ±2.0 ±0.5 ±300 Maximum Junction to Ambient Thermal Resistance Operating Ambient Temperature Range TA Storage Temperature Range Tstg ELECTRICAL CHARACTERISTICS (TA = o to + 70 °c -55 to + 125 °C 25°C) Voltages are related to Pin 14 (ground) Characteristics Power Supply Zener Regulated Voltage, (VPin I) IPin 1 = 2.0 mA Symbol Min Typ Max Unit -VCC -9.6 -S.6 -7.6 Volt -1.0 Circuit Current Consumption, IPin 1 -ICC -2.0 VPin lEN VPin lOIS VCC + 0.2 VEN + 0.12 Phase Set Control Voltage Static Offset VPin S - VPin 12 Pin 12 Input Bias Current VPin 4 - VPin 12 Residual Offset Voff IPin 12 1.2 -200 Soft Start IPin 13 VPin 1 = -6.0 V, IPin 2 = 0 V Monitoring Enable Supply Voltage (VEN) Monitoring Disable Supply Voltage (VOIS) - - mA VCC +0.5 VEN + 0.3 Volt ISO I.S 0 Volt nA mV -17 -14 -11 I'A IPin 4 IPin 4 VHTH VLTH 67 -10 -2.5 70 73 -1.5 - -1.6 +1.5 /LA mA Volt Volt IPin 9 VPin 10 1 2xlPinl0 1.25 A A ZPin S - - 75 36 120 - kll - SO 4.0 mA tp - ~5 - I's t ISYNC - 420 - - - Capacitor Charging Current RPin 10 = 100 kll, VPin 13 from -VCC to -3.0 Volts Sawtooth Generator Sawtooth Capacitor Discharge Current RIO = 100 kll VPin 4 from - 2.0 to - 6.0 Volts Capacitor Charging Current Sawtooth "High" Voltage (VPin 4) Sawtooth Minimum "Low" Voltage (VPin 4) referred to Pin 1 Positive Feedback Pin 9 Input Bias Current, VPin 9 = 0 Programming Pin Voltage Related to Pin 1 Transfer Function Gain .l.VPin S/.l.VPin 9 RIO = 100 kll, .l.VPin 9 = 50 mV RIO = 270 kH, .l.VPin 9 = 50 mV Pin S Output Internal Impedance Trigger Pulse Generator Output Current (Sink) VPin 2 = 0 V Output Leakage Current VPin 2 = +2.0 V Output Pulse Width Cl = 47 nF RIO = 270 kll Output Pulse Repetition Period Cl' = 47 nF RIO = 270 kll Current Synchronization Threshold Levels IPin 6, IPin 7 IPin 2 60 - -40 MOTOROLA LINEAR/INTERFACE DEVICES 4-82 -1.0 1.5 Volt - +40 ~ /LS I'A TDA1185A CIRCUIT DESCRIPTION The TDAl185A generates trigger pulses for triac control of power into an ac load. The firing angle is determined by generating a ramp voltage synchronized to the ac line half cycle and compared to an external set voltage representing the conduction angle. Gate pulses are negative (sink current) and thus the triac is driven in its most effective quadrants (02-03). If the load is a Universal motor (the speed of which is decreasing as torque increases), the TDA 1185A allows to increase the firing angle proportionally to the motor current, sensed by a low value series resistor. Notice: Perfect motor speed compensation cannot be provided by open-loop systems, since no negative feedback is used. Due to the low cost of tacholess systems, the TDAl185A is the optimum solution for applications tolerating 5% motor speed variations. Nevertheless by accurate circuit design, these variations can be reduced down to 2% from no load to full load conditions. CIRCUIT FUNCTIONS DC POWER SUPPLY - DC power is directly derived from the ac line through a 2.0 watt, 18 kn 'resistor, rectifier and filtering capacitor circuit. The latter being directly connected to the dropping resistor protects the whole IC from any ac line overvoltage. The - VCC voltage is internally regulated by an integrated zener. Referred to Pin 14 (ground) the power supply voltage is negative (- 8.6 volts). The TDA 1185A internal consumption is 1.0 mA. IPin 13 = 0.2 x IPin 10 ± 10% The voltage ramp lasts as long as VPin 13 is lower than VPin 12· VPin 13 reset voltage is - VCC. See Figure 4. Notice. Universal motors do not have any motion effect as long as a minimum conduction angle is not reached. The time the voltage ramp reaches this threshold value is considered as "dead" time and can be eliminated by a series resistor at Pin 13. The voltage drop developed by IPin 13 makes the firing angle immediately reach the threshold value and have the soft start function without dead time. See Figure 5. TRIGGER PULSE GENERATOR - It delivers a 60 mA minimum pulse current (sink) through an internally short-circuit protected output. Pulse width is roughly proportional to RlO • C4 and is repeated every 420 /Ls if triac fails to latch or is switched off by brush bounce. With inductive loads, the current lags in respect of the voltage: Pin 6 delays the triggering pulse up to the moment the triac is off, in order to prevent erratic power control (see Figure 2). The logic structure guarantees full-wave triac operation. POSITIVE CURRENT FEEDBACK - The Universal motor speed drops as load increases. To maintain it as stable as possible, the triac firing angle must be increased. For this purpose the Pin 9 input senses the motor current as a voltage developed in a low resistor value, Rg , amplifies, rectifies and adds it to Pin 12 set voltage. The transfer function IlVPin 8 = f (IlVPin 9) and is represented on Figure 6. The gain in the linear region is dependent on RlO. The voltage transferred to Pin 8 is proportional to the average value of the motor current and is very close to its RMS value (as motor current is not far from a sine wave). This averaging effect is represented in Figure 7. For large amplitude Pin 9 signals, the am function presents a saturation effect which limits the maximum firing angle increase. Figure 8 presents this aspect as well as the total Pin 8 voltage which is: SAWTOOTH GENERATOR - A constant current generator discharges the capacitor C4, the voltage of which is the sawtooth signal synchronized with main line. Pin 4 voltage is reset to -1.6 volt at every ac line zero crossing (see Figure 3). The constant current generator is externally programmable by an external resistor connected to Pin 10: IPin 4 = IPin 10 10 ± 5% _-_V-"C",C,-±_1_.2_5 IPin 10 = RlO MAIN COMPARATOR - Its role is to determine the trigger pulse time which occurs as the sawtooth voltage equals set voltage. Fixed set values lead to a constant triac conduction angle unless positive current feedback is connected or soft start capacitor is not charged. VPin 8 = VPin 12 + f(IVPin 91 Rl0) + offset The offset is the addition of two PN Junctions and is compensated with respect to VPin 4 (sawtooth) by additional diodes within the main comparator (See Figure 10). The effect of positive feedback is described per Figure 9. SOFT START - The TDAl185A allows the user to avoid any abrupt inrush current in the load, for various purposes: motor soft start, protection of high performance bulbs or ac line minimum disturbances. The firing angle is established from zero to the set value according to a voltage ramp generated by a constant current delivered to capacitor C13. The constant current value is: MONITORING - A central logic block performs the following functions: - ENABLE/DISABLE of the IC with respect to power supply voltage. Under DISABLE conditions, Pins 4, 8, 12, and 13 are forced to appropriate voltages to prepare for the next reset (See Figure 10). MOTOROLA LINEAR/INTERFACE DEVICES 4-83 II .. TDA1185A APPLICATION CONSIDERATIONS variation to the load. An external compensation must be used, introducing a VPin 12 decrease as Vmains increases. An inexpensive resistor RCOMP, connected to the rectifier anode and to Pin 12 performs this role and its value depends on VPin 12, Rl0C4, R12· RCOMP can be empirically determined without difficulty under no load conditions. PINS CHARACTERISTICS - Figure 10 describes more details in the internallC layout and defines the pin characteristics. Pin 9 has a low internal impedance and requires a maximum 100 n trimmer on Rg to adjust reaction ratio. Pin 8 must always be connected to - VCC through a filtering capacitor. TEMPERATURE EFFECTS - The TDA1185A has very efficient internal temperature compensation. If positive current feedback is not connected, the RMS power delivered to the load is stabilized within ± 0.2% over a temperature range of + 20 to + 70'C. The positive feedback introduces in the same temperature range, a drift of 250 mV on VPin 8; this slight firing angle increase may be successfully used to compensate a motor ohmic resistance increase with temperature as well. FIRING ANGLE DYNAMIC- With purely resistive loads, the effective RMS applied power to the load is an increasing function of the firing angle (per Figure 11). We notice the fact that a firing angle of 150' provides 97% of the full power corresponding to 180'. With inductive loads, as currents lag with respect to Voltage, 100% power corresponds to a firing angle which is smaller than 180'. These considerations will simplify positive feedback design if maximum firing angle is accepted to be within 150-160'. MAIN LINE VOLTAGE COMPENSATION - As the firing angle is independent of main line voltage, any change in the latter (usually ± 15%) induces a very large power V FIGURE 2 - MULTIPULSE GENERA1l0N DELAYED PULSE The triac failed to latch at the first pulse. Successive pulses are V +-______~--~--------+-~ V+-+-___-+_ _ _ _~_ o generated up to the moment latching oocurs. The triac turned off due to brush bounce, a new pulse is immediately delivered. Approaching full conduction, a pulse would occur when the triac still carries current; the pulse is delayed until the triac turns off. MOTOROLA LINEAR/INTERFACE DEVICES 4-84 TDA1185A FIGURE 4 - SOFT START FIGURE 3 - TRIGGERING PULSE TIMING o V -VCC V II Conduction Angle Set 0'+-4£------4---------~ - - Reset Time FIGURE 6 - TRANSFER FUNCTION FIGURE 5 - SOFT START WITHOUT DEAD TIME aVPin 8 Volts 5 t I aVPin 8 = f(VPin 9) TDA1185 13 R13 I 4 3 R10 = 270 k I 2 Conduction Angle I O.+-~ ________ ~~ _______ o L.._ _ _--.r-_ _ _~aV. .Pin 9 50 MOTOROLA LINEAR/INTERFACE DEVICES 4-85 100 mV a TDA1185A FIGURE 7 - AVERAGING EFFECT OF TRANSFER FUNCTION .1VPin 8 100 mV 2.0 V :\r:i'''O'~' ... 0 tl 1.0V -+0""-----SOr%----10.,0-.;.-.- Duty Cycle ~ t2 !! t2 FIGURE S - TRANSFER FUNCTION (Pin S/Pin 9) (VPin 8- VPin 1) (Volts) Rp10 TA ~ 2S·e RINT(Pin 8) ~ 120 k Typ ~ 100 k lS0 k 220 k 400 k 800 k VPin 12 -300 -200 -100 o (Vp9 - VP14) (mV) 100 FIGURE 9 - POSITIVE FEEDBACK EFFECT offset Voltages have been neglected V 1 0 1 M Motor Current 0+----,''------',''------- A V8 ~ V12 -Vee 10ms! V + WAY. Rl0) -Vec VPin 9 ~ R9 x IAV Motor Fu II Load Conduction Angle No Load Conduction Angle MOTOROLA LINEAR/INTERFACE DEVICES 4-86 200 300 TDA1185A FIGURE 10 - INTERNAL BLOCK DIAGRAM - ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~------~~-1~4~ +Vcc ~>-I~~nH 1f ~--.--t----+~---+-I--+-+-+-......~ I'.... Current Sync 7 Voltage Sync Zero PhaseT 0.7 x Vcc "'6 /£.- - - - - - I - - - - j Zero Phase Set Speed 0-1_2-+-1_-+ 6 Triac Off , 120 k IPin4 10 101 Programming ~........,-~---HIIc"l>(. I Pin ~r I' 13 Capacitor L_Tb_~_C-r__+-_~'-___ -i- A. loll ) Trigger Pulse Output n lfr---+--. N\ 4 Sawtooth +:1c.:O-:-O."H,...Z..------+---------~ Capacitor VCC OK ~.-.L._-_~ I-I~-'-' '---+_+--+--1__-+-+-111. •I ~~ JT 0.7 x Vee Vee Monitoring -Vcc FIGURE 11- EFFECTIVE POWER AS A FUNCTION OF FIRING ANGLE U2 2 ------ U = URMS V2 SIN wt RMS Degrees o 10 9 8 7 6 5 4 3 2 o Firing Angle ms (50 Hz) MOTOROLA LINEAR/INTERFACE DEVICES 4--87 II • @ MOTOROLA TDA1285A MOTOR SPEED CONTROLLER UNIVERSAL MOTOR SPEED CONTROLLER The TDA 1285A has all the necessary functions for the speed control of universal motors in a closed loop configuration. Directly driven from the ac line, the circuits generate a phase angle varied trigger pulse to the control triac. In addition it provides the following features: SILICON MONOLITHIC INTEGRATED CIRCUIT • Full Wave Triac Drive • Repeated Trigger Pulse if Triac Fails to Latch • Over 65 mA Output Pulse Current • Automatic Adaptation to Inductive or Hall Effect Sensors - • Sensor Circuit Continuity Detection • Motor Current Limitation • Controlled Motor Starting Acceleration 1 • Typical 1-2% Motor Speed Variation Within All Temperature and Load Ranges FIGURE 1 - .; c .; c ..: '" Ji :; U >- .r:; 1) 0. 0 0 ~.~ :ii ""g '"~. oai 0 PLASTIC PACKAGE CASE 648-06 BLOCK DIAGRAM AND PIN ASSIGNMENT ."E ::; E ~ U u > I ., ., t: ~ ."." CD ., 0.0. e 4::'" o "'IL " U "'''' ~Cii "'~ .. VRef, and as a result, the comparator is always "on" and the i triac fired (100% max. power) 2) During time t2, VPin 3 is in the proportional band, and the average power delivered to the load is a fraction of maximum power. 3) During time t3, VPin 3 < VRef, and the triac is always "off." When the sensor temperature is above the set value and is slowly decreasing as no heating occurs, VPin 3 - VPin 4 must exceed half the hysteresis value before power is applied again (1). A similar effect occurs in the opposite direction when temperature sensor is below SUGGESTIONS FOR USE The temperature sensor circuit is a Wheatstone bridge including the sensor element. Comparator inputs may be free from power line noise only if the sensor element is purely resistive (NTC resistor). Usage of any P-N junction sensor would drastically reduce noise rejection. Fixed phase sensing of the internal comparator output eliminates parasitic signals. Some loads, even designed to be resistive, have in fact a slight inductive component. A phase shift at Pin 8 can be achieved with external capacitor C3 connected to Pin 8 network (see Figure 9). Suggested maximum source current at Pin 1 is 40 pA, in order to have acceptable sawtooth signal linearity. MOTOROLA LINEAR/INTERFACE DEVICES 4-98 UAA1016B FIGURE 4 - FIGURE 5 - TYPICAL OUTPUT PULSE LENGTH versus SYNCHRONIZATION RESISTOR OUTPUT PULSE WIDTH DEFINITIONS 400 // 350 tP2 / ~ ISO 100 50 FIGURE 6 - EFFECTS OF INPUTS COMPARATOR HYSTERESIS Large Hyster esis "...V..... V 1,.." 2:rr;, "" ... ...'" -- ...---180~220 ISO ",'" ~ 270 RSYNC RESISTOR (knl Low Hysteresis 0 CD Noise VPin 4 I V P i n 3- VPin 4 Pin 2 VPin 3+ Noise UAA1016B "Unco ntrollable Temp erature Band" Voltage Source I CPin 2 -VCC FIGURE 8 - TRIGGER PULSE GENERATION M~~K;d\A ,~"' II t~. I Comparator II Sensed Comparator Output I, ~A U current~ Trigger Pulses t t MOTOROLA LINEAR/INTERFACE DEVICES 4·99 ~ 330 FIGURE 7 - PIN 1 INTERNAL NETWORK Pin 1 VPin 3- ,. tPl ... AV V 6882100 120 ......'" IPy/ / / / ./ / Sin- 1 (27 x 10- 6) Vrms 'v'2 tp1 ~ ---::30=601=-ac--- / / f+-115VI60'Y / Sin- 1 (98 x 10- 6) Vrms 'v'2 tP2 ~ 360lac L // ae Line 390 II UAA10168 APPLICATION CIRCUITS Figure 9 shows a very simple application of the UAA1016B as an electronic rheostat having 100% efficiency. C3 is required only if load has an inductive com- FIGURE 9 - ponent. Figure 10 shows a typical application as a panel heater thermostat with a proportional temperature band of 1°C at 25°C. APPLICATION CIRCUIT - ELECTRONIC RHEOSTAT *"I' 22 nF • 7 82 n 6 50k : - - 4 2 1 5 3 Load + 220 k 47 k 18 k 2.0W "External phase shift, required for Inductive Loads only FIGURE 10 - 220 Vac 1'0.1 p.F r-- 8 .-J 1.0 p.F" '000 ~~ UAA1016B ,+ 100 p.F ~ 1 lN4005 APPLICATION CIRCUIT - ELECTRIC RADIATOR WITH PROPORTIONAL BAND THERMOSTAT, PROPORTIONAL BAND 1"C AT 25'C ;/ 50 k /I , 6.8 k 22 k 3 0.1 p.F 'I' 6 ) )1 V 4 UAA1016B BT162-600 100 n R4 220 Vac 7 1 ~ RT 6.8 k ~ RL + 47 p.F 8.0 V 2 "f' 8 5 + '1' 100 p.F 100 k 18 k RT: NTC R @ 25'C = 22 k ± 10% B = 3700 -"" 2.0W lN4005 I MOTOROLA LINEAR/INTERFACE DEVICES 4-100 Heater 2.0kW Voltage References In Brief . .. Motorola's line of precision voltage references is designed for applications requiring high initial accuracy, low temperature drift, and long term stability. Initial accuracies of ± 1.0%, and ± 2.0% means production line adjustments can be eliminated. Temperature coefficients of 25 ppmrC max (typically 10 ppmrC) provide excellent stability. Uses for the references include 01A converters, AID converters, precision power supplies, voltmeter systems, temperature monitors, and others. Selector Guide Precision Low Voltage References. . . . . . . . . . . . . . . . . . . .. 5-2 Alphanumeric Listing ............... 5-3 Data Sheets ......... . . . . . . . . . . . . . .. 5-4 II II Voltage References Precision Low Voltage References A family of precision low voltage bandgap reference devices designed for applications requiring low temperature drift. Vout Volts Typ 10 mA Max VoutfT ppmrc Max 1.235 ± 12 mV 1.235 ± 25 mV 20 20 Typ 10 -55" to + 125"C -40" to +85"C 0" to 70"C LM385BZ·1.2 LM385Z-1.2 LM285Z-1.2 ( -40" to + 85"C) LM385BZ-2.5 LM385Z-2.5 LM285Z-2.5 (-40" to +85"C) 25 MC1403A MC1503A 40 MC1403 2.5 ± 38 mV 2.5 ± 75 mV 2.5 ± 25 mV Device 55 5.0 ± 50 mV MC1404AU5 40 MC1404U5 100 MC1404AU6 40 MC1404U6 MC1404AU10 40 MCl404Ul0 Micro~Power 29 2.0 (Note 3) 3.0/4.5 (Note 4) 10 (Note 6) 693.751 693 MC1504Ul0 TL431C.AC TL431 I. AI (- 40" to + 85"C) TL431M Notes: 1. Case MC1504U6 25 50 Typ 1.0 (Note 2) MC1504U5 25 55 2.5 to 37 (Note 1) 6.0 (Note 5) 55 10±100mV Regload mVMax MC1503 25 55 6.25 ± 60 mV Regline mVMax Reference Diode Dynamic Impedance IzI " 1.0 n at IR ~ 100 p.A 2.10 p.A" IR " 1.0 mA 3. 20 p.A " IR " 1.0 rnA 4. 4.5 V '=S; Vin ~ 15 VI' 5 V :os; Vin .::.;; 40 V Shunt Reference Dynamic Impedance Z '" 0.5 5. (Vout + 2.5 V) ~ Vin , ;,;:,; 40 V 6.0 rnA :s.; IL .;;; 10 rnA MOTOROLA LINEAR/INTERFACE DEVICES 5-2 29.626 693 693 VOLTAGE REFERENCES Device LM285 LM385 MC1403.A MC1404.A MC1503.A MC1504 TL431.A Function Micropower Voltage Reference Diodes ................................. Micropower Voltage Reference Diode .................................. Precision Low Voltage Reference ...................................... Precision Low Drift Voltage Reference .................................. Precision Low Voltage Reference ...................................... Precision Low Drift Voltage Reference .................................. Programmable Precision References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MOTOROLA LINEAR/INTERFACE DEVICES 5-3 Page 5-4 5-4 5-8 5-12 5-8 5-12 5-17 II ® LM285 LM385 MOTOROLA MICROPOWER VOLTAGE REFERENCE DIODES MICROPOWER VOLTAGE REFERENCE DIODES The LM285/LM385 series are micropower two-terminal bandgap voltage regulator diodes. Designed to operate over a wide current range of 10 pA to 20 mA, these devices feature exceptionally low dynamic impedance, low noise and stable operation over time and temperature. Tight voltage tolerances are achieved by on-chip trimming. The large dynamic operating range enables these devices to be used in applications with widely varying supplies with excellent regulation. Extremely low operating current make these devices ideal for micropower circuitry like portable instrumentation, regulators and other analog circuitry where extended battery life is required. The LM285/LM385 series are packaged in a low cost TO-22SAA plastic case and are available in two voltage versions of 1.235 and 2.500 volts as denoted by the device suffix (see ordering information table). The LM285 is specified over a -40°C to +85°C temperature range while the LM385 is rated from O°C to + 70°C. The LM385 is also available in a surface mount plastic package in voltages of 1.235 and 2.500 volts. II SILICON MONOLITHIC INTEGRATED CIRCUIT ZSUFFIX I PLASTIC PACKAGE CASE 29-04 (Bottom View) 99 c:ID 3 Iffl N.C. 3 CATHODE 2 ANODE 1 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 • Operating Current from 10 pA to 20 mA • 1.0%,1.5%,2.0% and 3.0% Initial Tolerance Grades • Low Temperature Coefficient • 1.0 n Dynamic Impedance STANDARD APPLICATION • Surface Mount Package Available 1.5V Battery 1- + 3.3 k 1.235 V EQUIVALENT CIRCUIT SCHEMATIC LM385-1.2 10 k 360 k Open for 1.235 V ORDERING INFORMATION Reverse 600 k 8.45 k Device Temp. Range LM285Z-1.2 LM285Z-2.5 600 k -40·C to +85·C LM385BZ-1.2 600 500 11 k LM385Z-1.2 LM385D-l.2 LM385BZ-2.5 LM385Z-2.5 LM385D-2.5 MOTOROLA LINEAR/INTERFACE DEVICES 5-4 00Ci0 +70·C Breakdown Voltage Tolerance 1.235 Volts ±1.0% 2.500 Volts ±1.5% 1.235 Volts ±1.0% 1.235 Volts ±2.0% 2.500 Volts ±1.5% 2.500 Volts ±3.0% LM285, LM385 MAXIMUM RATINGS (TA ~ +25"C unless otherwise noted) Rating Symbol Value Unit Reverse Current IR 30 mA Forward Current IF 10 mA Operating Ambient Temperature Range "C TA LM285 LM385 -40 to +85 o to +70 Operating Junction Temperature Storage Temperature Range TJ +150 "C Tstg -65to +150 "C ELECTRICAL CHARACTERISTICS (TA ~ 25"C unless otherwise noted) LM285-1.2 Characteristic Symbol Reverse Breakdown Voltage IRmin " IR " 20 mA LM285-1.2!LM385B-l.2 TA ~ Tlow to Thigh (Note 1) LM385-1.2 TA ~ Tlow to Thigh (Note 1) V(BR)R Minimum Operating Current TA ~ 25"C TA ~ Tlow to Thigh (Note 1) IRmin Typ Max Min Typ Max 1.223 1.200 1.235 1.247 1.270 1.223 1.210 1.205 1.192 1.235 1.247 1.260 1.260 1.273 - - Z - AV(BR)!AT Wide band Noise (RMS) IR ~ 100 p.A, 10 Hz " f " 10 kHz Long Term Stability IR ~ 100 p.A, TA ~ +25"C ± O.l"C Average Temperature Coefficient 10 p.A" IR "20 mA, TA ~ Tlow to Thigh (Note 1) - 1.235 - p.A 8.0 - 8.0 - 10 20 - 1.0 1.5 10 20 - - 0.6 - n S AV(BR)R Reverse Dynamic Impedance IR ~ 100 p.A, TA ~ +25"C Unit V - Reverse Breakdown Voltage Change with Current IRmin" IR" 1.0 mA, TA ~ +25"C T A ~ Tlow to Thigh (Note 1) 1.0 mA" IR ,,20 mA, TA ~ +25"C TA ~ Tlow to Thigh (Note 1) LM385-1.21LM385B-l.2 Min - 15 20 mV - - - 1.0 1.5 20 25 0.6 - n 80 - - 80 - ppmfC - 60 - - 60 - p.V - 20 - - 20 - ppm! kHR - ELECTRICAL CHARACTERISTICS (TA ~ 25"C unless otherwise noted) LM385-2.5/LM385B-2.5 LM285-2.5 Characteristic Symbol Reverse Breakdown Voltage IRmin " IR " 20 mA LM285-2.5!LM385B-2.5 TA ~ Tlow to Thigh (Note 1) LM385-2.5 TA = Tlow to Thigh (Note 1) V(BR)R Minimum Operating Current TA ~ 25"C TA ~ Tlow to Thigh (Note 1) Min Max Min Typ Max Unit V 2.462 2.415 - 2.5 - 2.538 2.585 - 2.462 2.436 2.425 2.400 2.5 2.5 - 2.538 2.564 2.575 2.600 p.A IRmin Reverse Breakdown Voltage Change with Current IRmin " IR" 1.0 mA, TA ~ +25"C TA = Tlow to Thigh (Note 1) 1.0 rnA '" IR" 20 mA, TA ~ +25"C TA ~ Tlow to Thigh (Note 1) Typ AV(BR)R - - - - 13 20 30 - - - 13 - 20 30 mV - - 0.6 - - 2.0 2.5 20 25 Z - 1.0 1.5 10 20 0.6 - n AV(BR)!AT - 80 - - 80 - ppmfC Wideband Noise (RMS) IR ~ 100 p.A, 10 Hz " f " 10 kHz n - 120 - - 120 - p.V Long Term Stability IR = loop.A, TA ~ +25"C ± O.l"C S - 20 - - 20 - ppm! kHR Reverse Dynamic Impedance IR ~ 100 p.A, TA ~ +25"C Average Temperature Coefficient 20 p.A " IR '" 20 mA, TA = Tlow to Thigh (Note 1) Note: 1. Tlow ~ ~ -40"C for LM285-1.2, LM285-2.5 O"C for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5 Thigh ~ ~ - - - + 85"C for LM285-1.2, LM285-2.5 + 70"C for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5 MOTOROLA LINEAR/INTERFACE DEVICES 5-5 - II LM285, LM385 TYPICAL PERFORMANCE CURVES FOR LM285-1.21385-1.21385B-1.2 FIGURE 1 - REVERSE CHARACTERISTICS RGURE 2 - REVERSE CHARACTERISTICS 100 :> .s w 10 to Z « 8.0 :J: + 85'C I-- rTA TA 0.1 II o + 25'C A -- / ~ 6.0 ~ 4.0 ~ +85'C ~ VJ) TA ~ +25'Ct-- §? ~ 2.0 ~ ~~ oX ~ 40'C I-- I-- TA TA w to "/ roy A 0.2 U ~ 0 TA ~ -4O'C IIII -2.0 0.4 0.6 0.8 1.0 VIBR), REVERSE VOLTAGE IV) FIGURE 3 - 1.2 0.01 1.4 0.1 1.0 10 'R, REVERSE CURRENT ImA) 100 FIGURE 4 - TEMPERATURE DRIFT FORWARD CHARACTERISTICS 1.250 'R ~ ~ 1.240 ~ 100 p.A - ~ §? 1--1'-- ~ 1.230 ~ oX ~ 1.220 1.210 0.1 1.0 10 'F, FORWARD CURRENT ImA) -50 100 -25 FIGURE 5 - NOISE VOLTAGE FIGURE 6 - 875 750 1.50 1.25 -" ~ 625 ~1.00 f- ~ 0.75 => ~ 100 125 RESPONSE TIME /'-. 0-Inpul J 100 k ./ 00.50 ~ 500 z 0 25 50 75 TA, AMBIENT TEMPERATURE I'C) \ 0.25 375 DUT'" ~PUI -= t--- ~ i= 250 '\1' 125 ~ 10 ~ 5.0 o ~ 10 100 1.0 K f, FREOUENCY 1Hz) 10 K 100 k 0 0.1 0.2 MOTOROLA LINEAR/INTERFACE DEVICES 5-6 0.3 0.6 0.7 I, TIMElms) 0.8 0.9 1.0 1.1 LM285, LM385 TYPICAL PERFORMANCE CURVES FOR LM28S-2_S/38S-2_S/38S8-2.S FIGURE 7 - REVERSE CHARACTERISTICS FIGURE 8 - REVERSE CHARACTERISTICS 100 :> g 10 ..'" w 1.... 10 :z u i :::> '"~ ...- TA w ~ 1.0 ~TA h + 85°C /' > w 0.1 ~ 0.5 1.0 1.5 2.0 2.5 VI BAl. AEVEASE VOLTAGE IVI 0.01 3.0 ~ -40°C _Llill II 10 100 TEMPERATURE DRIFT 2.520 IA ...:. 0.4 TA l- ~ t@ ~ TA ~ 100 p.A - [--to-, 5> 1-':1---- I-I--f- 0.6 ;:;:; 2.510 ~ 2.500 ~ TA ~ -40o~......, ~ 2.490 ~ ~ :i! 2.480 +85°C "'~ 2.470 -> +25°C 2.460 1111 0.01 0.1 l1500 i-- 2.45 0 1.0 10 IF, FOAWAAD CUAAENT ImAI FIGURE 11 - 100 -50 NOISE VOLTAGE 75a ~ 50a 0 25 50 75 TA, AMBIENT TEMPERATUAE lOCI FIGURE 12 - r-- t-1"- ~ 2.00 ....~ 1.50 100 125 RESPONSE TIME ,... .00- Input J 100 k ~ § 1.00 ~ 1000 5 -25 3.00 2.50 ~ 1250 w TA 1.0 lA, AEVEASE CUARENT (mAl :> §Z 0.8 :z 0.1 FIGURE 10 - 1.2 o ~ Fi='" 0 FORWARD CHARACTERISTICS :> ~ 1.0 0.2 2.0 i"' 40°C V ~ +25°C~ -2.0 a FIGURE 9 - > ~ ~ TA ~ TA 1/ +85°C 4.0 '" '" . / ./ + 25°C ~ 6.0 0 .!F '" ~ TA w u ffi 8.0 :>: 1\ 0.50 DUT~ ~ Output -= ..... t--- l\ \, ~ 10 ~ 5.0 0 .... 25a ~ 0 10 100 1.0 K f, FAEQUENCY IHzl 10 K 0.1 100 K 0.2 MOTOROLA LINEAR/INTERFACE DEVICES 5-7 0.3 0.6 OJ t, TIMElmsl 0.8 0.9 1.0 1.1 II II ® MCl403,A MC1503,A MOTOROLA LOW VOLTAGE REFERENCE PRECISION LOW VOLTAGE REFERENCE A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with Motorola MC150B and MC3510 D/A converters, and MC14433 AID systems. Low temperature drift is a prime design consideration. LASER TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT • Output Voltage: 2.5 V ± 25 mV U SUFFIX CERAMIC PACKAGE CASE 693-02 • Input Voltage Range: 4.5 V to 40 V • Quiescent Current: 1.2 rnA Typ • Output Current: 10 rnA • • Temperature Coefficient: 10 ppml"C Typ • Guaranteed Temperature Drift Specification 8 l' • Equivalent to AD5BO "'"0"° • Standard B-Pin DIP, and B-Pin SDIC Package Typical Applications V out 2 • Voltage Reference for B-12 Bit D/A Converters • High Stability Current Reference 6 NC 4 • Voltmeter System Reference Symbol Value Unit VI 40 -65 to 150 +175 V °c °c MC1503U MCI503AU MCI403D -55 to +125 o to +70 °c °c MCI403U MCI403AU Input Voltage Tstg TJ TA MC1503,A MCI403,A NC 5 NC ORDERING INFORMATION MAXIMUM RATINGS IT A = 25°C unless otherwise noted.) Storage Temperature Junction Temperature Operating Ambient Temeprature Range 7 NC Gnd 3 • Low TC Zener Replacement Rating ~ DSUFFIX _ PLASTIC PACKAGE CASE 751-02 SO-8 Device Temperature Range -5510 + 125°C Package Ceramic DIP Ceramic DIP 80-8 oto +70°C Ceramic DIP Ceramic DIP FIGURE 1 - A REFERENCE FOR MOTOROLA MONOLITHIC D/A CONVERTERS Full· --'I I 1.0 k I I Pin Numbers for +6.0V MCI50811408I3408 Series; device 16 1.2 k R3 I could also be I L ____ _ MC351013410 I __..J mended to provide means for full-scale adjust on the DI A converter. The resistor R3 improves temperature performance by matching the impedance on both inputs of the D/A reference amplifier. The capacitor decouples any noise present on the reference line. It is essential if the D/A converter is located any appreciable distance from the reference. A single MCl403I1503 reference can provide the required current input for up to five ofthe monolithic D/A converters. PROVIDING THE REFERENCE CURRENT FOR MOTOROLA MONOUTHIC D/A CONVERTERS The MC1403/1503 makes an ideal reference for the Motorola monolithic D/A converters. The MC1408/1508, MC3410/3510 and MC3408 D/A converters all require a stable current reference of nominally 2.0 mAo This can be easily obtained from the MCl403/1503 with the addition of a series resistor, Rl. A variable resistor, R2, is recom- MOTOROLA LINEAR/INTERFACE DEVICES 5-8 MC1403,A, MC1503,A ELECTRICAL CHARACTERISTICS (Vin Characteristic Output Voltage = 15 V, TA = 25°C unless otherwise noted.) Symbol Min Typ Max Unit VOUT 2.475 2.50 2.525 V - - 55 25 10 10 40 (iO=OmA) Temperature Coefficient of Output Voltage Output Voltage Change ppm/DC IOVo/IOT MC1503 MC1503A MC1403 MC1403A 25 mV IOVO (over specified temperature range) MC1503 } -55°C to +1250 C MC1503A MC1403 } OOC to + 700 C MC1403A - - - - 25 11 7.0 4.4 - 1.2 0.6 4.5 3.0 - 10 mV 1.2 1.5 mA Line Regulation (10 = 0 mAl (15V"'V,"'40V) (4.5 V '" V, '" 15 V) Regline Load Regu latian Regload - IQ - mV (OmA51.0 75°C 30 9.0 ~ 8.0 ;0 c5 oJ G- r-- -I ~ w ~ 250G :; > 10 I - -- - -.....-- f.-- f.---- 1.0 2.0 r-- OOG- r-- 25 0 G r-- I-- I-- :..--r-o 75 0 G 3.0 Vin' INPUT VOLTAGE (VOLTS) 4.0 5.0 6.0 7.0 8.0 9.0 10 lout, OUTPUT CURRENT ImA) FIGURE 5 - QUIESCENT CURRENT versus TEMPERATURE (Vin = 15 V. lout = 0 mAl FIGURE 6 - CHANGE IN Vout versus TEMPERATURE (NORMALIZED TO Vout@Vin = 15 VI 1.25 Vin=5.0~_ 1. 1.20 2.Vin=15V :;( .§ 1.15 lout= 2 rnA .... iii ~ 1.10 => --- ,..V u ~ 1.05 ~ 1.00 > ~ ............ w .......... i"-.. ::; ~0.95 # ~r-... I~ .} -8.0 -1 ". -I 0 0.90 -I 2 o -75 ~ .....-::::: -2.0 ~ -4. 01/" ~ c..::. -6.0 2 -50 -25 25 50 75 100 125 150 -14 -75 175 -50 ~ -25 TA, TEMPERATURE lOG) FIGURE 7 - CHANGE IN Vout versus TEMPERATURE (NORMALIZED TO TA = 10. Vin = 15 V. lout = 0 mAl 4.0 2.0 ~ ::::--... ~~ ~ -4.0 z ~ -6.0 ~0 ~~ ~ ~ \r- .} -~.O 10 = 0 mA I = 2.0 mA =5.0mA = 8.0 mA ±6% • Wide Input Voltage Range: Vref + 2.5 V to 40 V .~ • Low Quiescent Current: 1.25 mA Typical • Temperature Coefficient: 10 ppmfC Typical • Low Output Noise: 12 /LV p-p Typical • Excellent Ripple Rejection: > 80 dB Typical 1 U SUFFIX CERAMIC PACKAGE CASE 693·02 TYPICAL APPLICATIONS • Voltage Reference for 8 - 12 Bit D/A Converters • Low TC Zener Replacement • High Stability Current Reference • MPU D/A and AID Applications NC NC FIGURE 1 - Voul VOLTAGE OUTPUT 8-81T DAC USING MC1404U10 TRIM +5.0 +15 13 " MSB MC1408 5.0k MC1404U10 15 0.05 5.0k ORDERING INFORMATION -:: PACKAGE Ceramic DIP Device ':' CMOS I Temperature Range 5.0 Volts or TIL Inputs MC1504U5 MCl404U5 MC1404AU5 10 LBB 6.25 Volts ,. " - 55'C to + l25'C O'C to +70'C O'C to +70'C 0 •• +10 Volts MC1504U6 MCl404U6 MC1404AU6 - 55'C to + l25'C O'C to +70'C O"C to +70'C 10 Volts -1. MC1504Ul0 MCl404Ul0 MC1404AU10 MOTOROLA LINEAR/INTERFACE DEVICES 5-12 - 55'C to + l25"C O"C to +70"C O"C to +70'C MC1404,A, MC1504 MAXIMUM RATINGS Rating Symbol Value Input Voltage Vin 40 V Storage Temperature Tstg -65 to +150 °C Junction Temperature TJ +175 °C Operating Ambient Temperature Range TA -55 to +125 o to +70 °C °C MCI504 MCI404.A Unit ELECTRICAL CHARACTERISTICS IVin = 15 Volts. TA = 250 C and Trim Terminal not connected unl ... otherwi.e noted) Characteristic Symbol Output Voltage Ilo=OmA) Min MCI404,A Typ Max Min MCI504 Typ Max MC1404U5. AU5IMCl504U5 MCl404U6, AU6IMC1504U6 MC1404Ul0. AU10/MC1504Ul0 Output Voltage Tolerance Output Trim Range (F igure 10) Unit Volt Va - - 5,00 6,25 10 ±O.1 ± 1.0 - ±O.1 5,05 6,31 10.10 ±1.0 AVTRIM ±6,0 - - ±6,0 - - - 10 10 40 25 - - 55 4,95 6,19 9,90 5,05 6.31 10.10 4,95 6.19 9,90 5,00 6,25 10 % % IRp = 100 kn) Output Voltage Temperature Coefficient, ppm/oC AVo/AT Over Full Temperature Range MCI404. MC1504 MC1404A Maximum Output Voltage Change - mV AVo Over Temperature Range MC1404U5. MC1504U5 MC1404AU5 MCI404U6. MC1S04U6 MC1404AU6 MCI404Ul0. MC1S04Ul0 MC1404AU10 Line Regulation (1) - - - - - - Regline - 2,0 14 9.0 17,S II 28 18 6,0 - - 62 - - 99 - - - 2.0 6.0 mV 10 - 10 mV mA ~ 50 - - IVin = Vout + 2.5 V to 40 V. lout = 0 mAl Load Regulation (1) 10 .. 10 .. 10 mAl Regload Quiescent Current lIo=OmA) 10 - 1.2 1.5 - 1.2 1.5 Short Circuit Current Long Term Stability Ise - 20 30 30 mA - 25 - - - - 25 - ppm/l000 hrs Max Unit - ps Note 1: Includes thermal effects. DYNAMIC CHARACTERISTICS IVin = IS V. TA = 2SoC all voltage ranges unless otherwise noted) MC1404,A Typ Max MCI504 Symbol Min Turn-On Settling Time Ito ±0.01%) ts - 50 - - TVp 50 Output Noise Voltage - P to P (Bandwidth 0.1 to 10 Hz) Vn - 12 - - 12 Small-Signal Output Impedance 120 Hz ro - 0,15 0.2 - - 70 80 - - 0.15 0,2 70 80 Characteristic pV n 500 Hz Power Supply Rejection Ratio Min PSRR - MOTOROLA LINEAR/INTERFACE DEVICES 5-13 - - - dB II MC1404,A MC1504 TYPICAL CHARACTERISTICS FIGURE 3 - LINE REGULATION versus TEMPERATURE FIGURE 2 - SIMPLIFIED DEVICE DIAGRAM 2.5 :> 5 v out .,'" /'" 0 R :5 1.5 w 1.0 "~ 5.0 k TRIM '"3 II R Vo 3.75 k 5.0 V 5.0 k 6.25 V 10V 8.75 k ?J' - 2.0 / ~ ~. '" Yin = V,ef + 2.5Vlo40V loul = OmA 0.5 1.25 k -75 -50 -25 +25 +50 +75 +100 +125 TA. AMBIENT TEMPERATURE IOC) FIGURE 4 - OUTPUT VOLTAGE versus TEMPERATURE MC1404Ul0 FIGURE 5 - LOAD REGULATION versus TEMPERATURE 0.010 § ~ o 10.04 ;( ~ O.OOB 10.02 ~ 0.006 ~ 0 0.004 ,/" 9.98 .... 5 9.96 J 9.94 ., -.... ........... 10.00 > :5 .- ~ ""'" '"g ~ "V -50 FIGURE 6 - POWER SUPPLY REJECTION RATIO vorsusFREQUENCY 1.6 ~i:1 60 ~ It: 50 !Ii 40 ~ ",' '" ~ ---- - ;( 70 ~ '" 1.4 80 z o -25 +25 +50 +75 TA. AMBIENT TEMPERATURE IOC) 51.2 .... ;~~ -. HP2D9A 3V RMS 0 20 0.01 ~ " :: + 12 f1.3V SttNo~lto OUT -""1111 20ValtsAVln~lI-=- 0.1 I-- 1.0 0.8 ~w SOO"F '"" :', 1.0 4 .. 0.6 Vin=15V " lout"'OmA ~ 0.4 •~ HP3400A O. 2 1111 10 100 +100 +125 FIGURE 7 - QUIESCENT CURRENT versus TEMPERATURE 90 o Load Change ato 10 mA 0.002 ~ -50 -25 0 +25 +50 +75 +100 +125 TA. AMBIENT TEMPERATURE IOC) 5 r-- f.-- 1000 -50 -25 +25 +50 +75 +100 +125 TA. AMBIENT TEMPERATURE IOC) f. FREnUENCY 1kHz) MOTOROLA LINEAR/INTERFACE DEVICES 5-14 MC1404,A, MC1504 FIGURE 9 - VTEMP OUTPUT versus TEMPERATURE FIGURE 8 - SHORT CIRCUIT CURRENT versus TEMPERATURE 1.0 40 .- :;? 35 ~ 5 5 30 - ~ ~ 25 ~ Vin ~ 20 c::; 15 w or ~ -~ 0.6 => r-- t-- I- g 0.4 I-- ~ \;: o 0.8 !; 15 V 0 I-- t=.. >- =:: >- - -- f..-- J 1:5 0.2 >> 5.0 -50 -50 -25 +25 +50 +75 +100 +125 TA. AMBIENT TEMPERATURE (oG) FIGURE 10 - OUTPUT TRIM CONFIGURATION -- l -25 +25 +50 +75 TA. AMBIENT TEMPERATURE (oG) +100 +125 FIGURE 11- PRECISION SUPPLY USING MC1404 r-----------~>----oV+ +15 V 12 330 Vin Vo 6 Output MC1404 5 TRIM Rp 100 k 0.01 pF 5.0,6.25, 10 V @ 1/2 Amp Gnd Vin 1 -.l .,.-- 'VTEMP" 10 nA 0. 10 - f- 6 Vor--------*---o MC1404 Output Adjustment Output Power Boosting Gnd The MC14Q4 trim terminal can be used to adjust the output 4 voltage over a ±6% range, For example, the output can be set to 10.000 V or to 10.240 V for binary applications. For trimming, Bourns type 3059, 100 kn or 200 kSl trimpot is recommended, Although Figure 10 illustrates a wide trim range, temperature coefficients may become unpredictable for trim> ±6.0%. The addition of a power transistor, a resistor, and a capacitor converts the MC14Q4 into a precision supply with one ampere current capability. At V+ = 15 V, the MC1404 can carry in excess of 14 mA of load current with good regulation. If the power transistor current gain exceeds 75. a one ampere supply can be realized. FIGURE 12 - ULTRA STABLE REFERENCE FOR MC1723 VOLTAGE 'REGULATOR Supply 8(12) 7(11) MC1723G (MC1723L or P) 3(5) 2(4) '-+--..--v.J'v--.--o V out RO + 4.7 k) V out =5.0V ( ~ lomax 4.7 k MOTOROLA LINEAR/INTERFACE DEVICES 5-15 Jl::$ V °A.:c II MC1404,A, MC1504 FIGURE 13 - 5.0 V, 6.0 AMP, 25 kHz SWITCHING REGULATOR WITH SEPARATE UL TRA-5TABLE REFERENCE +1Qto +30 In 120}JH +5.0 Out _--;o-rY~n.--;o--_--;o--~~ 200 mA to 6.0 Amps (Low ESR) 130 Motorola 11 '2 17 II Pulse Width I-~--t--+-.--(, 18 2.2 k Modulator MC1404U5 100 k TRIM (opt) '0 4 2,2 k FIGURE 14 - HIGH SPEEO a·BIT O/A CONVERTER USING MCI404Ul0 IFS is set to 51.000 mA with Rl V out = , .25 V FS Settling Time, Typically 10 ns Inputs are MECL 10K Compatible 4 11 f-J...-= 0.01 IJ.F Bradley I D.' 115 V (12.5 to 40.0 V max) IJF Type RT 8 Cermet Trimpot or Equivalent MC'404U,O 10 Volt Reference • R2 and A3 are 50 ppm/cC. r' MOTOROLA LINEAR/INTERFACE DEVICES 5-16 ® TL431,A Series MOTOROLA Specifications and Applications Information PROGRAMMABLE PRECISION REFERENCES PROGRAMMABLE PRECISION REFERENCES SILICON MONOLITHIC INTEGRATED CIRCUITS The TL431,A integrated circuits are three-terminal programmable shunt regulator diodes_ These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 volts with two external resistors_ These devices exhibit a wide operating current range of 1_0 to 100 mA with a typical dynamic impedance of 0.22 fl. The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431,A operates as a shunt regulator, it can be used as either a positive or negative voltage reference. PLA~~I~~~~AGE/ CASE 29-04 Pm' Reference 2 Anode 3. Cathode Programmable Output Voltage to 36 Volts Voltage Reference Tolerance: ± 1.0% (TL431,A) Low Dynamic Output Impedance, 0.22 fl Typical Sink Current Capability of 1.0 to 100 mA Equivalent Full-Range Temperature Coefficient of 50 ppm/oC Typical • Temperature Compensated for Operation over Full Rated Operating Temperature Range • Low Output Noise Voltage ~ Cathode Reference (R) (K) 8 1 + : 08 (Top View) Cathode NC NC NC IK) Reference 2 7 NC 3 6 4 5 NC JG SUFFIX CERAM(C PACKAGE CASE 693-02 R e f e r e n c e j - - - - - - - - - - - , Cathode (R) 3 P SUFFIX PLASTIC PACKAGE CASE 626-05 ~~ • • • • • 1 2 Anode ~ 1 I I I Anode IL __________ -1I (A) SYMBOL 1 Anode (A) FUNCTIONAL BLOCK OIAGRAM DSUFFIX PLASTIC PACKAGE CASE 751-02 SOP-S 8~' PIN 1. 2. 3. 4. CATHODE ANODE ANODE N.C. 5. 6. 7. 8. N.C. ANODE ANODE· REFERENCE SOP·8 is an internally modified SO..a Package. Pins 2, 3, 6 and 7 are electrically common to the die Cathode (K) attach flag. This internal lead frame modification decreasea package thermal resistance and increases power dissipation capabilitv when appropriately mounted on a printed circuit board. SOP-8 conforms to aU external dimensions of the Reference standard SO-8 Package. (R) ORDERING INFORMATION " Temp• •ture Devl.. INTERNAL SCHEMATIC Component valu•• are nominal Anode (A) .......,. 010 + 7O"C Plastic TL431 CP,ACP 010 + 7O"C Plastic DIP TL431CD,ACO 010+70"<: SOP-8 TL431CJG 010 + 7O"C Ceramic DIP Plastic TL431ILP,AILP -40 10 +85"<: TL431IP,AIP -40 10 +85"<: Plastic DIP TL431IJG -40 10 +85"<: Ceramic DIP TL431MJG -5510 +125"<: Ceramic DIP MOTOROLA LINEAR/INTERFACE DEVICES 5-17 Rang. TL431CLP,ACLP II TL431,A Series MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.) Rating Cathode To Anode Voltage Cathode Current Range, Continuous Symbol Value VKA 37 Unit V IK -100to +150 mA mA Reference Input Current Range, Continuous Iref -0.05 to + 10 Operating Junction Temperature TJ 150 Operating Ambient Temperature Range TL431M TL431I, TL431AI TL431C, TL431AC TA Storage Temperature Range 'C 'C -55to +125 -40 to +85 o to + 70 -65 to + 150 Tsta Total Power Dissipation @ TA = 25'C Derate above 25'C Ambient Temperature 0, LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package Po Total Power Dissipation @ TC = 25'C Derate above 25'C Case Temperature 0, LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package Po 'C W 0.70 1.10 1.25 W 1.5 3.0 3.3 THERMAL CHARACTERISTICS Symbol 0, LP Suffix Package P Suffix Package JG Suffix package Unit Thermal Resistance. Junction to Ambient ROJA 178 114 100 'CIW Thermal Resistance, Junction to Case ROJC 83 41 38 'CIW Symbol Min Max Unit VKA Vrel 36 V IK 1.0 100 mA Characteristics RECOMMENDED OPERATING CONDITIONS ConditionNalue Cathode To Anode Voltage Cathode Current ELECTRICAL CHARACTERISTICS (Ambient temperature at 25'C unless otherwise noted) TL431 I TL431M Symbol Characteristic Relerence Input Voltage (Figure 1) VKA = Vrel, IK = 10 mA TA = +25'C TA = Tlow to Thiah (Note 1) Min Typ Max Min Typ TL431C Max Min Typ Max Unit V Vrel 2.440 2.495 2.550 2.440 2.495 2.550 2.440 2.495 2.550 2.396 2.594 2.410 2.580 2.423 2.567 Relerence Input Voltage Deviation Over Temperature Range (Figure 1, Note 1,2,4) VKA = Vrel, IK = 10 mA LWrel Ratio 01 Change in Relerence Input Voltage to Change in Cathode to Anode Voltage IK = 10 mA (Figure 2), b.VKA = 10 V to Vrel b.VKA = 36Vto 10V LWrel t:NKA Reference Input Current (Figure 2) IK = 10 mA, R1 = 10 k, R2 = '" TA = +25'C TA = Tlow to Thiah (Note 1) - 15 44 - 7.0 30 - 3.0 17 mVN - -1.4 -2.7 -1.0 -2.0 - -1.4 -2.7 -1.0 -2.0 - -1.4 -2.7 -1.0 -2.0 !iA Irel Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1,4) IK = 10 mA, R1 = 10 k, R2 = '" b.lref - Minimum Cathode Current For Regulation VKA = Vrel (Figure 1) Imin - Off·State Cathode Current (Figure 3) VKA = 36 V, Vrel = 0 V loff Dynamic Impedance (Figure 1, Note 3) VKA = Vrel, b.IK = 1.0 mA to 100 mA I", 1.0 kHz IZkal mV - 1.8 - - 4.0 7.0 1.0 3.0 0.5 1.0 2.6 1000 - 0.22 0.5 - - - 4.0 6.5 - 1.8 - 4.0 5.2 0.8 2.5 - 0.4 1.2 !iA 0.5 1.0 - 0.5 1.0 mA 2.6 1000 - 2.6 1000 nA 0.22 0.5 - 0.22 0.5 n 1.8 MOTOROLA LINEAR/INTERFACE DEVICES 5-18 TL431,A Series ELECTRICAL CHARACTERISTICS (Ambient temperature at 25°C unless otherwise noted) TL431AI Symbol Characteristic Reference Input Voltage (Figure 1) VKA ~ Vref, IK ~ 10 mA TA ~ +25°C TA ~ Tlow to Thigh (Note 4) Typ TL431AC Max Min Typ Max Unit V Vref 2.470 2.495 2.520 2.470 2.495 2.520 2.440 2.550 2.453 2.537 Reference Input Voltage Deviation Over Temperature Range (Figure 1, Note 1,2) VKA ~ Vref, IK ~ 10 mA lNref Ratio of Change ;n Reference Input Voltage to Change in Cathode to Anode Voltage IK ~ 10 mA (Figure 2), 6VKA ~ 10 V to Vref 6VKA ~ 36 Vto 10 V 6Vref 6VKA Reference II(" ~ 10 TA ~ TA ~ Min Input Current (Figure 2) mA, R1 ~ 10 k, R2 ~ x +25°C Tlow to Thiah (Note 1) - 7.0 - 30 3.0 17 mV mVN - - -1.4 -2.7 -1.0 -2.0 - -1.4 -2.7 -1.0 -2.0 pA Iref Reference Input Current Deviation Over Temperature Range (Figure 2, Note 1) IK ~ 10 mA, R1 ~ 10 k, R2 ~ x 61ref - Minimum Cathode Current For Regulation VKA ~ Vref (Figure 1) Imin - 0.5 1.0 - 0.5 1.0 mA Off-State Cathode Current (Figure 3) VKA ~ 36 V, V ref ~ 0 V loff - 2.6 1000 - 2.6 1000 nA Dynamic Impedance (Figure 1, Note 3) VKA ~ Vref, 61K ~ 1.0 mA to 100 mA f'" 1.0 kHz IZkal - 0.22 0.5 - 0.22 0.5 n Note 1: Tlow -55"CforTL431MJG -40"C for TL431AIP, TL431AILP. TL4311P. TL431ILP. TL4311JG O"C for TL431ACP. TL431ACLP, TL431CP. TL431CLP. TL431CJG. TL431CD, TL431ACD ~ Note 2: Thigh = 4.0 6.5 - - 1.8 - 4.0 5.2 0.8 2.5 - 0.4 1.2 pA :~~~~Cf~~~r~~~~~:~L431AILP. TL431IP, TL431ILP, TL4311JG + 70"C fer TL431ACP, TL431ACLP. TL431CP. TL431CLP, TL431CJG. TL431CD, TL431ACD Note 4: This test is not applicable to surface mount (0 suffix) devices. The deviation parameter LWref is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies. FIGURE 1 - TEST CIRCUIT FOR VKA' V,ef Vref M a X Q - - -6V re f= Vref Max VrefMin I -VrefMin : 6TA~T2-Tl InpUlffVKA IK + Tl T2 AMBIENT TEMPERATURE Vref ! " The average temperature coefficient of the reference input volt~ age, 0' V,ef, is defined as: ( ppm a Vref - 1.8 FIGURE 2 - TEST CIRCUIT FOR VKA JX 106 6Vref Vref@ 25°C Input f i [ V K A 0C Rl crVref can be positive or negative depending on whether Vref Min orVref Max occurs at the lower ambient temperature. (Refer to Figure 6) Example: 2.495 V, 6TA ~ - = B.O mV and slope is positive, Vref @ 25°C = Vref 70°C "Vref 0.008 x 106 7012.495),45.8 ppm/oC Note 3: The dynamic impedance Zka is defined as: IZkal tlK 'ref R2 L:~.vref > Vref " VKA~ Vref (1 +~) +Iref· Rl R2 FIGURE 3 - TEST CIRCUIT FOR loff !!.V Input~VKA ~~ ~'~ 61K When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as: MOTOROLA LINEAR/INTERFACE DEVICES 5-19 II • TL431,A Series FIGURE 5 - CATHODE CURRENT versus CATHODE VOLTAGE FIGURE 4 - CATHOOE CURRENT versus CATHOOE VOLTAGE 15 0 -,-- 80 0 VKA::; Vref TA ° 25'C 0 VKA = Vref TAo25'C ""'Er' '-'"" 11K 0 0 z ~ u 0 10 ./ 0 If 10 .s co FIGURE 7 - REFERENCE INPUT VOLTAGE versus AMBIENT TEMPERATURE "'"·W"" "'" ~> >- 25B o K 256 o Veel 254o ! 250 0 ~ 248 0 - ~ 246 0 ~ 2440 I Vref Max = 2550 mV >- -- I I I I - 242 0 ~ 2_0I-------+__ -25 25 >- ~ 1.5f---+-----l-- 1-I ~ ~ 1 .1 ~o24tOmV- 75 50 100 IKo lOrnA 10- InpUI'b¥VKA ~ ~ r--- I -55 z I .~ Veel Typ - 2495 mV _ I 240 0 10 k 05 ~IK Ire! -- OL-____L-__-L__~L---~----+-----L--~ 125 -55 -25 TA. AMBIENT TEMPERATURE (OCI 0 '" --,---- IK IKolOmA ! TA ° 25'C '"".~"" ~ RI I'K u R2 Vref .......... ~ T VKAo36V 100 . 100 I ./ loll '"".~";"" 10 - o o '">- ~ ;5 /" 0 ~ 4 75 nl Vref::; 0 V oc oc ~ " 6 0 25 50 TA. AMBIENT TEMPERATURE 125 FIGURE 9 - OFF-STATE CATHODE CURRENT ve / / VKA. CATHOOE VOLTAGE (Vi FIGURE 6 - [7 ._- -20 0 -I 0 30 20 / f--- '" / -10 -2.0 20 0 0 '">;5 / -10 0 '"""T""f' 40 0 oc Imin, j IK >- /' -5 0 60 0 V / / v' / IV ~-3 2 -...----<> Vout Range *Thermalloy THM 6024 -5.0 V Rx::: Vout • ~ Range MOTOROLA LINEAR/INTERFACE DEVICES 5-23 V+ >Vref =2.0V SIMPLE 400 mW PHONO AMPLIFIER 38 V Tl V out 20 megohm typo °C mW mW/oC < 112 LSB, Full Range Current (VREF= 10.000 V; R14, R15= 5.000 kll, TA= 25°C) Full Range Symmetry IIFR4 - IFR21 - ±10 - 85 - 35 35 - ns ns - +18 -10 1.94 ±1O - - ppm/oC +18 V 1.992 2.000 1.99 2.04 mA ±0.5 ±4.0 - ±1.0 ±8.0 ~A IZS - 0.1 1.0 - 0.2 2.0 IORl IOR2 0 0 - 2.1 4.2 0 0 - 2.1 4.2 VIL VIH - 0.8 - - 2.0 - 0.8 2.0 - IlL IIH - -2.0 0.002 - -2.0 0.002 -10 - IFRS Zero Scale Current CAC-OBA Typ ~A mA Output Current Range V- = -5.0 V V- = -8.0 V to -18 V Logic Input I.evels (VLC - 0 VI Logic '·0·' Logic '·1·' - V I -10 10 10 +lB -10 +13.5 -10 - +13.5 V -1.0 -3.0 - -1.0 -3.0 ~A - 8.0 - - 8.0 - PSSIFS+ PSSIFS- - ±0.0003 ±0.002 ±0.01 ±0.01 - ±0.0003 ±0.002 ±0.01 ±0.01 1+ 11+ 11+ 1- - 3.8 -5.8 3.8 - 2.3 -4.3 2.4 -6.4 2.5 -6.5 3.B -5.8 3.B - 2.3 -4.3 2.4 -6.4 2.5 -6.5 - 33 103 135 Logic Input Swing, V- - -15 V VIS -10 Logic Threshold Range, Vs = ±15 V VTHR -10 Reference Bias Current 115 di/dl - Reference Input Slew Rate Figure 19 (Note 1) Power Supply Sensitivity (IREF = 1.0 mAl V+=4.5Vto 18V V- = -4.5 Vto -18 V ~A Logic Input Current IVLC - 0 VI Logic Input '·0" IVin = -10 V to +0.8 VI Logic Input ·'1·· (Vin = +2.0 V to +18 VI Power Supply Current Vs = ±5.0 V, IREF = 1.0 rnA - +18 V mAills %/% mA Vs = +5.0 V, -15 V, IREF = 2.0 rnA Vs =±15 V, IREF = 2.0 mA Power Dissipation Vs = ±5.0 V, IREF = 1.0 rnA Vs = +5.0 V, -15 V,IREF = 2.0 rnA Vs = ±15 V, IREF = 2.0 mA - -7.8 3.B -7.B - -7.8 3.B -7.B mW Po 48 136 174 Note 1. Parameter IS not 100% tested; guaranteed by deSign. MOTOROLA LINEAR/INTERFACE DEVICES 6-6 - 33 108 135 48 136 174 DAC-08 ELECTRICAL CHARACTERISTICS (VS = -+ 15 V IREF = 20 mA TA = O°C to 70°C DAC-08H Characteristic Resolution Monotonicity Nonlinearity, TA = O°C to + 70°C Settling Time to ± 112 LSB (All Bits Switched On or Off, (TA = 25°C) Figure 24 (Note 1) Propagation Delay, TA Each Bit All Bits Switched = 25"C Min Typ Max Min Typ Max Min Typ Max Unit - 8 8 8 8 8 8 8 8 8 Bits 8 8 8 8 8 8 8 8 8 Bits NL - ±0.1 - - ±0.39 %FS 85 - - - ts - tpLH tpHL - 35 35 - - ±10 TCIFS Output Voltage Compliance Full Scale Current Change < 1/2 LSB, Rout> 20 megohm typo VOC -10 Full Range Current (VREF = 10.000 V; R14, R15 = 5.000 kU) TA = 25°C IFR4 1.984 Full Range Symmetry (lFR4 - IFR2) IFRS Zero Scale Current DAC-OBC Symbol (Note 1) Full Scale Tempco unless otherwise noted) DAC-OBE IZS - - - - ±0.19 85 - - 85 - 35 35 - - - 35 35 - - ±10 - ±10 - ns +18 -10 1.99 2.04 1.94 - ±1.0 ±8.0 - 0.2 2.0 +18 -10 1.992 2.000 1.94 ±0.5 ±4.0 0.1 1.0 - - - - = = V 1.99 2.04 mA ±2.0 ±16.0 p.A 0.2 4.0 = - Logic Threshold Range, Vs - 2.1 4.2 0 0 - 2.1 4.2 0 0 - 2.1 4.2 VIL VIH - - 0.8 - - 0.8 - - 0.8 IlL IIH 15 V = ±15V Power Supply Sensitivity (lREF = 1.0 mAl V+ = 4.5Vto 18V V- = -4.5Vto -18V = +5.0 V, -15 V,IREF Vs = ±15 V,IREF - 2.0 - - 2.0 - 2.0 - - -2.0 - 0.002 10 - +18 -10 +13.5 -10 - -2.0 - 0.002 10 - +18 -10 +13.5 -10 -3.0 - VIS -10 VTHR -10 115 - -1.0 dlldt - 8.0 -10 - -10 -1.0 -3.0 - 8.0 - -2.0 - 0.002 - -1.0 8.0' -10 10 +18 V +13.5 V -3.0 p.A - mA/p.s %1% PSSIFS+ PSSIFS- Power Supply Current Vs = ±5.0 V,IREF = 1.0 mA Vs - p.A Reference Input Slew Rate Figure 19 (Note 1) 1+ 1- = 2.0 mA = 2.0 mA 1+ 11+ 1- Power Dissipation Vs = ±5.0 V,IREF = 1.0 mA Vs = +5.0 V, -15 V, IREF = 2.0 mA Vs = ± 15 V, IREF = 2.0 mA IS 0 0 V Reference Bias Current Note 1. Parameter IOR1 IOR2 = 0 V) Logic Input Current (VLC = 0 V) Logic Input "0" (Vin = - 10 V to +0.8 V) Lo!)ic Input "1" (Vin = +2.0 V to + 18 V) Logic Input Swing, V - p.A mA -5.0 V -8.OVto -18V Logic Input Levels (VLC Logic "0" Logic "1" ppml"C +18 Output Current Range VV- ns Po - - - - - ±0.0003 ±0.Q1 ±0.002 ±0.01 2.3 -4.3 2.4 -6.4 2.5 -6.5 3.8 -5.8 3.8 -7.8 3.8 -7.8 33 108 135 48 136 174 - - - - - ±0.0003 ±0.01 ±0.002 ±0.01 2.3 -4.3 2.4 -6.4 2.5 -6.5 3.8 -25.8 3.8 -7.8 3.8 -7.8 33 108 135 48 136 174 - - ±0.0003 ±0.01 ±0.002 ±0.01 2.3 -4.3 2.4 -6.4 2.5 -6.5 3.8 -5.8 3.8 -7.8 3.8 -7.8 33 108 135 48 136 174 mA mW not 100% tested; guaranteed by deSign. MOTOROLA LINEAR/INTERFACE DEVICES 6-7 - - OAC-08 TYPICAL PERFORMANCE CURVES FIGURE 1 - FULL SCALE CURRENT versus REFERENCE CURRENT FIGURE 2 - REFERENCE AMP COMMON MODE RANGE 3.2 5.0 2.8 ;q 4.0 - .s .... ~ 3.0 ./ ./ 13 .... ::::> := 2.0 5 ~ /' 1.0 V TA = Tmin to Tmax I ./ \ limit tor ./ V- = -15 V ;q 2.4 .s .... 2.0 z '" ....::::> v- = -5.0 V V+=+15V I I IREF = 2.0 rnA 1.2 := "'-limit for ~- = -5 OV i V-=-11 5V 1.6 '" 13 5 ,I, 0.8 V /" r-- AlilBit' "on! ......... TA = tmin 1.ITmax All Bil' "On" I 0.4 1.0 2.0 3.0 IREF, REFERENCE CURRENT ImAI 4.0 -14 5.0 -10 -6.0 -2.0 2.0 6.0 IREF = 1.0 rnA - 1 IREF ='1.2 rnA - 10 14 18 VI5, REFERENCE COMMON MODE VOLTAGE IVI NOTE: Positive Common Mode Range is Always (V+) -1.5 V II FIGURE 3 - REFERENCE INPUT FREQUENCY RESPONSE 6.0 4.0 f-- 2.0 r-- ~ Ril = RI 15 = \ RL<;; 500 Il AiliBits "On" kh ,/ ~ VRI5=OV ~ -2.0 a -4.0 ~ ""~ FIGURE 4 - LSB PROPAGATION DELAY versuslFS 500 -\ 400 ~ ,\ '\ \2 \.1 -6.0 \ -8.0 ~ 200 \ l\ -10 300 i§ ;::: J--ILSB - 61 nA ~ ~ 1\ '- 100 I LSB = 7.8 II " -12 o -14 0.2 0.1 Curve 1 Curve 2 - Cc Cc 0.5 1.0 2.0 f. FREaUENCY (MHzI 5.0 0.005 0.01 10 0.02 2.0 1.6 .... in 1li ~ ", ~ 9 1.2 ;t. 1.0 1.0 ; I I -12 -8.0 -4.0 0.8 0.6 0.4 0.2 I o 1.4 c ~ 4.0 a; 10 -- -- -- 1.8 ;q 3 6.0 u I 5.0 FIGURE 6 - VTH ,VLC versus TEMPERATURE 8.0 '" ....::::> 0.05 0.1 0.2 0.5 1.0 2.0 IFS, OUTPUT FULL SCALE CURRENT (mAl =15 pF, Vin =2.0 V p-p Centered at +1.0 V (Large-Signal) =15 pF. Vin = 50 mV p-p Centered at +200 mV (Small-Signal) FIGURE 5 - LOGIC INPUT CURRENT versus INPUT VOLTAGE '" 13 ~A 4.0 8.0 12 16 20 -50 -25 LOGIC INPUT VOLTAGE (VI MOTOROLA LINEAR/INTERFACE DEVICES 6-8 25 50 TEMPERATURE (OCl 75 100 125 DAC-08 TYPICAL PERFORMANCE CURVES FIGURE 7 - OUTPUT CURRENT versus OUTPUT VOLTAGE (Output Voltage Compliance) FIGURE 8 - OUTPUT VOLTAGE COMPLIANCE versus TEMPERATURE 3.2 20 - 2.8 I I f- All 8its "On" 1 TA:::: Tmin to Tmax ;< 2.4 .S i V-; -15 V 2.0 I I 12 ~ '" '" I I 0- => 1.2 ~ 0=> 0.8 16 IREF ; 2.0 mA V- ; -5.0 V I 1.6 I I ~ I > 0 I 0.4 4.0 IREF .; 2.0 mA For Other V- Dr IREF. See Figure 7. ~ IREF; 1.0 mA- - Shaded Area Indicates Permissable Output Voltage Range lor V- ; -15 V. 0- 0 I 8.0 -4.0 I IREF ; 0.2 mA- -8.0 o -12 -14 -6.0 -10 -2.0 2.0 6.0 10 14 18 -50 -25 25 50 TEMPERATURE (OCI OUTPUT VOlTAGE IV) r- 7.0 IREF ; 2.0 mA ;< .s 0- => ~ ':; 0 - All Bits "Higlh" or .. low" 1- .§. 6.0 81 ;< 1.0 i 125 8.0 1 1.2 100 FIGURE 10 - POWER SUPPLY CURRENT versus V+ FIGURE 9 - BIT TRANSFER CHARACTERISTICS 1.4 75 0.8 ~_ 5.0 >- 4.0 B ~ 0.6 82 ~ 83 ~ 3,0 1+ ~ 0.4 V- 0.2 15 V V )/1 V - 5.0 V 1.0 84 N 1 2.0 o 85 -12-10-8.0-6.0-4.0-2.00 2.04.06.08.0 10 12 14 16 18 LOGIC INPUT VOLTAGE (V) o 2.0 4.0 6.0 8.0 10 12 14 V+. POSITIVE POWER SUPPLY (Vdcl 16 18 20 NOTE: 81-88 have identical transfer characteristics. Bitsarefullyswitched with less than 1 12 LSBerror, at less than ±100 mV from actual threshold. These switching points are guaranteed to lie between 0.8 V and 2.0 V over operating temperature range (VLC = 0 VI. FIGURE 12 - POWER SUPPLY CURRENT verlul TEMPERATURE FIGURE 11 - POWER SUPPLY CURRENT versus V8.0 8.0 Bits May Be "High" or "low" 7.0 .s 0- ~ '" 13 ~ 5.0 '" ~ 2.0 ~ 15 lE => ..., i'" I I I 1- WIth IREF ; 0.2 mA_ ...~ t'- 1+ 1.0 -2.0 • .s ... 1- with IREF ; 1.0 mA 4.0 3.0 ;< 1:1= 6.0 iil All Bits "High" 1- with IREF ; 2.0 mA ;< -4.0 -6.0 -8.0 -10 -12 -14 -16 V-. NEGATIVE POWER SUPPLY (VIIt) -18 7.0 Of "Low" IREF - 2.0 rnA V-;-15V 1- 6.0 5.0 4.0 3.0 V+=+15V 1+ 2.0 1.0 -20 -50 -25 25 50 TEMPERATURE (OC) MOTOROLA LlNEARIiNTERFACE DEVICES 6-9 75 100 125 II OAt-os BASIC CIRCUIT CONFIGURATIONS FIGURE 14 - POSITIVE LOW IMPEDANCE OUTPUT OPERATION FIGURE 13 - RECOMMENDED FULL SCALE ADJUSTMENT CIRCUIT -- Low T.C. 4.5 k +10V 14 IREF~ 39 k OAC·08 ~15 IFR~~ IREF 256 rnA 10 k Pot = 1.0V If complementrv output (Negative Logic DAC) operation IS desired, connect Inverting mput of ap amp to (Pin 2) and ~ iQ ground 10 (Pin 4) FIGURE 15 - NEGATIVE LOW IMPEDANCE OUTPUT OPERATION FIGURE 16 - BASIC POSITIVE REFERENCE OPERATION MSB B2 84 86 LS8 B8 10 )FR = 255 IREF • Lf---'r---r--r' 256 If complementry output (Negative logic DAC) is desired. connect noninverting input of op amp to fQ (Pin 2) and ground 10 (Pin 4) O. 1pF iO 10 + ~ IFR for all logic states FIGURE 17 - BASIC NEGATIVE REFERENCE OPERATION MSB 82 84 2 ... '-----_--/ I V+ +VREF IFR= - - - x RREF VREF = + 10,000 V RREF ~ 5.000 k Rt5=RREF 10 R15 V· r O. 1pF 255 256 For fixed reference. TIL operation. typical values are LSB B6 B8 DAC·08 r 4-10 IQ I 255 I FR~ -VREF --- x-RREF 256 NOTE: RREF sets full scale current IFR; R15 is for bias current cancellation. MOTOROLA LINEAR/INTERFACE DEVICES 6-10 Cc = 0.01 ~ F VLC " 0 V (Ground) DAC-08 BASIC CIRCUIT CONFIGURATIONS FIGURE 18 - ACCOMMODATING BIPOLAR REFERENCES +VREF +VREF IREF. 14 RREF RREF Von ~ 14 Ajn ..,r Von~ DAe-os DAe-DS 15 R15 15 (Optional) RREF= R15 +VREF must be above peak positive swing of Vin IREF ~ Peak Negative Swing of lin FIGURE 19 - PULSED REFERENCE OPERATION +VREF 9 Optional Resistor ~ for Offse' Inpu,s ~ RREF ovJL ' Rin 4-- Rp Typical Values: Rin 5.0 k, +Vin :::: 10 V Req = ~ FIGURE 20 - BASIC UNIPOLAR NEGATIVE OPERATION - IREF 2.000 mA 14 ':\ 104 DAe-OS_ 10 2 EO 5.000 k )E" 0 5.000 k -= , , , , , , , ,, , , , ,, B' Full Range Half Scale +lSB Half Scale Half Scale -LSB Zero Scale + LSB Zero Scale 0 0 0 B2 B3 B4 B5 B6 B7 B8 lornA lornA EO EO 1 1 1.992 0.000 -9.960 -0.000 0 0 0 0 0 0 1.008 0.984 -5.040 -4.920 0 0 0 0 0 0 0 1.000 0.992 -5.000 --4.960 1 1 1 0.992 1.000 -4.960 -5.000 0 0 0 0 0 0 0.008 1.984 -0.040 -9_920 0 0 0 0 0 0 0 0.000 1.992 0.000 -9.960 MOTOROLA LINEAR/INTERFACE DEVICES 6-11 • • DAC-08 BASIC CIRCUIT CONFIGURATIONS FIGURE 21 - BASIC BIPOLAR OUTPUT OPERATION EO 10 4~--o-'VVI,.--, 10.000k IREF 0--_-----:----114 DAC-08 2.000 mA - 2 10 >- _ EO 10.000 k ,,0.000 V Pos Full Range Pos Full Range -LSB Zero Scale +LSB Zero Scale Zero Scale -LSB Neg Full Scale +LSB Neg Full Scale 81 82 83 84 85 86 87 88 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 EO EO -9920 +10.000 -9840 • 9 920 -0.080 '0 160 0.000 '0.080 o 000 '0080 ·9920 -9 840 9 920 ·10000 FIGURE 22 - OFFSET BINARY OPERATION 10k .15V MSB 50 k LSB .15 V 5.000k .10 V i-;;-----4.--'VIIV---1 MC1404Ul0 6 5.0k EO '15V Pos Full Range Zero Scale Neg Full Scale '1 LSB Neg Full Scale 81 1 1 0 0 82 1 0 0 0 -15V 83 84 85 86 B7 BB 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 EO -4960 0.000 -4960 -5.000 MOTOROLA LINEAR/INTERFACE DEVICES 6-12 OAt-os FIGURE 23 - INTERFACING WITH VARIOUS LOGIC FAMILIES 15 V CMOS, HTL, HNIL TTL,OTL VTH ~ 10 V CMOS VTH ~ 5.0 V 7.6 V VTH ~ +1.4 V +10V R To 6.2 k 62 k 5.0 V CMOS VTH ~ 2.8 V 10K ECl VTH ~ -1.29V l lN4148 VLC 0.1 ~F 3.6k 1.3k lN4148 lN4148 10k lN4148 -S.OVto-lOV 3.9k 10 k L---~I---o NOTE Do not exceed negatIve logic Input range of DAC VTH :: VLC + 14 V MOTOROLA LINEAR/INTERFACE DEVICES 6-13 -5.2 V II DAC-08 FIGURE 24 - SETTLING TIME MEASUREMENT CIRCUIT For Turn "On", VL = 2.7 V VL For Turn "Off", VL = 0.7 V +5.0V 0.1 pF Mmlmum 1 kU Capacitance IlOv I I-= MBD501 02 2N2222A Schottky Diodes -----...... VLC 0.7 V 0--__----. 01 2N2222A lkll -= V out 1 x Probe -= 15kll -15V R15 O.OlpF O.lpF Waveforms I atVout ~L+~':V ~ I OV ----'---0.4 V +15V -15V NOTE: Oscilloscope bandwidth for settlmg time measurement ~ 50 MHz MOTOROLA LINEAR/INTERFACE DEVICES 6-14 (Turn "On") (Turn "Off") ® MC1408 MC1508 MOTOROLA Specifications and Applications Information EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage. • • Eight-Bit Accuracy Available in Both Temperature Ranges Relative Accuracy: ±0.19% Error maximum (MC1408L8, MC1408P8, MC1508L8) L SUFFIX CERAMIC PACKAGE CASE 620-10 Seven and Six-Bit Accuracy Available with MC1408 Designated by 7 or 6 Suffix after Package Suffix • Fast Settling Time - 300 ns typical • Noninverting Digital Inputs are MTTL and CMOS Compatible • Output Voltage Swing - +0.4 V to -5.0 V • High·Speed Multiplying Input Slew Rate 4.0 mAills • Standard Supply Voltages: +5.0 V and -5.0 V to -15 V P SUFFIX PLASTIC PACKAGE CASE 648-06 , FIGURE 2 - BLOCK DIAGRAM FIGURE 1 - D·to·A TRANSFER CHARACTERISTICS ~ iii =-iii! i I- Z w a: a: ::J u 1. I::J ~ ::J a - II I!!!!I IC.!!!!I i!!!!l_iii!!! iiil!! i~ lIIIi .' 1. ~ ~-.- (00000000) 1 i:!III ... = !!!! I " 111 + '- III :. f (1111111') NPN Current Source Pair INPUT DIGITAL WORD TYPICAL APPLICATIONS • Tracking A-to-D Converters • Audio Digitizing and Decoding • Successive Approximation A-to-D Converters • Programmable Power Supplies • 2 1/2 Digit Panel Meters and DVM's • Analog·Digital Multiplication • Waveform Sy nthesis • Sample and Hold • • Peak Detector Programmable Gain and Attenuation • • • Digital-Digital Multiplication Analog-Digital Division Digital Addition and Subtraction • CRT Character Generation • • Speech Compression and Expansion Stepping Motor Drive MOTOROLA LINEAR/INTERFACE DEVICES 6-15 II MC1408, MC1508 MAXIMUM RATINGS (TA = +25 0 C unless otherwise noted.) Rating Symbol Value Unit Power Supply Voltage VCC VEE +5.5 -16.5 Vdc Digital Input Voltage V5 thru V12 o to +5.5 Vdc Applied Output Voltage Vo +0.5,-5.2 Vdc Reference Current 114 5.0 mA V14,V15 VCC,VEE Vdc Reference Amplifier Inputs Operating Temperature Range °c TA MC1508 MC140S Series -55 to +125 Oto+75 Storage Temperature Range ELECTRICAL CHARACTERISTICS (VCC = +5.0 Vdc, VEE = -15 Vdc, MC1408L Series: TA = ~5 T stg Vref R14 to +150 °c = 2.0mA, MC150SLS: TA = -55°C to +125 0 C. 0 to +75 0 C unless otherwise noted. All digital inputs at h'lgh logic leveL) Characteristic Relative Accuracy (Error relative to full scale 10) Figure Symbol 4 Er MC150SLS, MC140SLS, MC140SPS MC140SP7, MC140SL7, See Note 1 MC140SP6, MC140SL6, See Note 1 Min Typ Max - ±0.19 ±0.39 ±0.7S Unit % - - Settling Time to within ±1/2 LSS[includes tPLH](TA-+250C)See Note 2 5 ts - 300 - ns Propagation Delay Time 5 tpLH,tpHL - 30 100 ns TCIO - - 20 - PPM/oC VIH VIL 2.0 - - O.S IIH IlL - 0 -0.4 0.04 -O.S - -1.0 -5.0 TA=+25 0 C Output Full Scale Current Drift Digital Input Logic Levels (MSB) High Level, Logic "1" Low Level, Logic "0" 3 Digital Input Current (MSB) 3 High Level, VIH = 5.0 V Low Level, VI L = O.S V Vdc mA Reference Input Bias Current (Pin 15) 3 115 Output Current Range 3 lOR VEE = -5.0 V VEE = -15 V, TA = 25°C Output Current Vrel ~ 3 3 10(min) 3 Vo IlA mA 0 0 2.0 2.0 2.1 4.2 1.9 1.99 2.1 - 0 4.0 - - -0.55, +0.4 -5.0, +0.4 mA 10 2.000 V, R14 = 1000 n Output Current - IlA (All bits low) Output Vol tage Campi iance (E r :5 0.19% at T A ,::; +25 0 C) Pin 1 grounded Pin 1 open, VEE below-10V Reference Current Slew Rate SR Irel - 4.0 - mAillS PSRR(-) - 0.5 2.7 IlAIV 3 ICC lEE - +13.5 -7.5 +22 -13 mA 3 VCCR VEER +4.5 -4.5 +5.0 -15 +5.5 -16.5 Vdc 3 PD 6 Output Current Power Supply Sensitivity Power Supply Current (All bits low) Power Supply Voltage Range (TA = +25 0 C) Power Dissipation All bits low Vdc mW VEE = -5.0 Vdc VEE = -15 Vdc - 105 190 170 305 All bits high VEE = -5.0 Vdc VEE = -15 Vdc - 90 160 - Note 1. Note 2. - All current sWitches are tested to guarantee at least 50% of rated outPUt current. All bits switched. MOTOROLA LINEAR/INTERFACE DEVICES 6-16 MC1408, MC1508 TEST CIRCUITS FIGURE 3 - NOTATION OEFINITIONS TEST CIRCUIT Vee Typical Values: R14 = A1S "" 1 k Vref '" +2.0 V C '14 = 15 pF VI and " apply to inputs A 1 1 4 _ R14 Digital Inputs thru AS ro--'V"f'~....._Vref (+) Al A2 The resistor tied to pin 15 is to temperature compensate the A3 bias current and may not be necessary for all applications. A4 AS 10 Vo f-'-o----""O-_Output A6 A7 A8 ~K{ ~ ~ + + ~ + ~: + ~ + ~ + :ia + ~6 } where K === V re! R14 and AN "" "1" if AN isathigh level AN ~ "0" if AN is at low level FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT MSB Al A2 12-Bit A3 A4 AS ,---0- r---o- D-to-A Converter --0--- A7 +10 V Output 5' r>- AS A9A1QA11 t~ LSB A12 L~ t-J 950 R14 MSB 14 5 50' ~ ~ 0.1 uF V re f==2V 100 a to t±,O.02% error max) A6 ~ ,J Error (1 v'" 1%) 6 7 8 8~Bit Counter MC1408 Series MC150S 9 4 -0-- 10 11 12 LSB '~ 15 lK ~ 11 VEE FIGURE 5 - TRANSIENT RESPONSE and SETTLING TIME 2.4 V 1.4 V 0.4 +2.0 Vdc VF=+------,--F== tPHL = tpLH <,0 ns 0.7 V SETTLING TIME -Intarnal Clamp Lava' • 0 for F igur. S bc>--=:'--~"eo ~:::!I~:n~~me TRANSIENT 0 +--I.!-------+lr--R-l c BO n RESPONSE -100 mV MOTOROLA LINEAR/INTERFACE DEVICES 6-17 turn off tS· 300 n. typical to ±.1/2 LSB (All bits switched low to high) VEE u •• AI,. to GND for ma••uramant (se. pin 4 to GNO te)(t) . MC1408, MC1508 TEST CIRCUITS (continued) FIGURE 6 - REFERENCE CURRENT SLEW RATE MEASUREMENT vee VEE 1 dl II dV RL dt dt ,o:zi\.90% / 0 ~~---2.0mA Slewing Time FIGURE 7 - POSITIVE V,e' Vee A1 f-C''<>---'''O--..-.... (+) A2 V ref.r-t.. A3 A4 AS A6 A7 AS FIGURE 8 - NEGATIVE V,e' Vee 13 R14:::: R15 A1 A14 A2 A3 f-!-"o-~-----=:"" (-J Vref A4 AS A6 A7 AS MOTOROLA LINEAR/INTERFACE DEVICES 6-18 MC1408, MC1508 FIGURE 9 - MCI408, MCI508 SERIES EQUIVALENT CIRCUIT SCHEMATIC DIGITAL INPUTS MSB 5 A1 6 A2 7 A3 8 A4 9 10 A5 A6 11 A7 LSB 12 AS 3k II 1 COMPENSATION Vrefl-I VEE OUTPUT GND RANGE CONTROL CIRCUIT DESCRIPTION The MC1408 consists of a reference current amplifier, an a low impedance termination of equal voltage for all legs of R-2R ladder, and eight high-speed current switches. For many appl ications, only a reference resistor and reference voltage need be added. the ladder. The R·2R ladder divides the reference amplifier current into binarily·related components. which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground. and the maximum output current is 255/256 of the reference amplifier current. or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectty matched. The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holdstha parasitic capacitance of the ladder at a constant voltage during switchiag, and provides MOTOROLA LINEAR/INTERFACE DEVICES 6-19 II MC1408, MC1508 GENERAL INFORMATION Reference Amplifier Drive and Compensation Aefer to the s.ubsequent text section on Settling Time for more details on output loading. If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing. The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, 114, must always flow into pin 14 regardless of the setup method or reference voltage polarity. Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be Output Current Range tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25. The compensation capacitor value must be increased with increases in R14 to maintain proper phase rY1argin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor should be'tied to VEE as this increases negative supply rejection. A negative reference voltage may be used if A 14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to Vee on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0-volts above the Vee supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15. When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0-V logic supply is not recommended as a reference voltage. If a well regulated 5.O-V supply which drives logic is to be used as the reference, R 14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 ~F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground. If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth. The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier. Accuracy Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1408 has a very low full scale current drift with temperature. The MC140S/MC1508 Series is guaranteed accurate to within ± 1/2 LSB at +25 0 C at a full scale output current of 1.992 rnA. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = S.O ~A which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mAo This is an optional step since the MC1408 accuracy is essentially the same between 1.5 and 2.5 rnA. Then the MC1408 circuits' full scale current is trimmed to the same value with R 14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector. Two a-bit D-to-A converters may not be used to construct a l6·bit accurate D-to-A converter. 16-bit accuracy implies a total error of ±1/2 of one part in 65, 536, or ±0.00076%, which is much more accurate than the ±O.19% specification provided by the MC1408x8. Output Voltage Range The voltage on pin 4 is restricted to a range of -0.55 to +0.4 volts at +25 0 C, due to the current switching methods employed in the MC140S. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level. The negative output voltage compliance of the MC1408 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases "worstcase" settling time to 1.21J.s (when all bits are switched on). Multiplying Accuracy The MC140S may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256: 1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.6 ~A extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 ~A to 4.0 mA, the 1.6 ~A contributes an error of 0.1 LSB. This is well within eight-bit accuracy referenced to 4.0mA. A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC140S is monotonic for all values of reference current above 0.5 rnA. The recommended range for operation with a de reference current is 0.5 to 4.0 mAo MOTOROLA LINEAR/INTERFACE DEVICES 6-20 MC1408, MC1508 GENERAL INFORMATION (Continued) Settling Time The "worst case" switching condition occurs when all bits are The test circuit of Figure 5 requires a smatter voltage swingfor the current switches due to internal voltage clamping in the MC1408. A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications. Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 J.lF supply bypassing for low fre· quencies, and minimum scope lead length are all mandatory. switched "on", which corresponds to a low-ta-high transition for atl bits. This time is typically 300 ns for settling to within ±'1/2 LSB, for B-bit accuracy, and 200 ns to 1/2 LSB for 7 and G-bit accuracy. The turn off is typically under 100 ns. These times apply when RL ~500 ohms and Co ~25 pF. The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of tess than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns, while bit A6 turns "on" in 150 ns and "off" in 80 ns. TYPICAL CHARACTERISTICS (VCC = +5.0 V, VEE'" -15 V, TA '" +25 0 C unless otherwise noted.) FIGURE 10 - LOGIC INPUT CURRENT versus INPUT VOL TAGE FIGURE 11 - TRANSFER CHARACTERISTIC versus TEMPERATURE (AS thru AS thresholds lie within range for A 1 thru A4) 1. 0 I « o. 8 6 1\ .5 ~ \ 4 '\. Al.A1 ......... \ 1~ t-!:.. O. 1--+1,150C'~. 0 ~~ O. 6 '"9 0.4 \ 1.0 3.0 4.0 Al 8f-- ~ High L:vel " +0.8 ~ ~","" 52 O. 8 O. 6 O. 4 - 0 -7.0 -6.0 -5.0 pin 1 open VEE ~ -10 Vdc / -4.0 -3.0 A4 II I 1.0 1.0 3.0 4.0 5.0 V -2.0 / "'- f---+--+--+-+-+--+--+---j-----t-- ~ +0.6t=~~?t~~~~~~~~~~~~t==t= !:; '"> I O. 1 I ~ +0.4 u.i ~ +0.2r----;.fr:""'>17"""'4'S~_%>'77-WW71':""'~~ryr-_t-- Vo Range for 8-bit Accuracy 1 ~ 1. 0 A3 +1.0 I A2·A8 @ Low Level 1. 4 !; i I FIGURE 13 - OUTPUT VOL TAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range) 6 ~ II . VI. LOGIC INPUT VOL TAGE (V,c) FIGURE 12 - OUTPUT CURRENT versus OUTPUT VOL TAGE (See text for pin 1 restrictions) 1. 0 A1 o o 5.0 Al 1 O. 2 ~ A4t1.0 I I 1.0 0.8 VI. LOGIC INPUT VOLTAGE (Vdc) '~" / ~ ~ - - r--- rc+250C------+----550C ~ -0.2 f-~1777::v:m ~ -0.4 f----;.4'S-'77'W:.70+S"7'S4'77'j"il'77'j7!7'77'2f<:""''''t----j---j pin 1 grounded -1.0 I I +1.0 ~ -0.6 f----7+7'77';t7'n-:~....-f"'~'t----t----r---t---t--j -0.8 f---"1=--t--t--+-t--t----i---t--t----j -1.0 L--_:-:55L.-L.---':---...L-+-:'5':'O-...L-+-::l0~0:--'--+:-;1-;:50;;-....J +1.0 +3.0 VO. OUTPUT VOLTAGE. PIN 4 (Vdc) T. TEMPERATURE (oC) MOTOROLA LINEAR/INTERFACE DEVICES 6-21 II MC1408, MC1508 (Vee TYPICAL CHARACTERISTICS Icontinued) VeE = -15 V. T A = +25 0 C unless otherwise noted.) = +5.0 V, FIGURE 15 - TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE lall bits low) FIGURE 14 - REFERENCE INPUT FREQUENCY RESPONSE +S. 0 0 +6. 0 I ~ ~ l- ii' I- 8 1/1\ +4. 0 +2. 0 / 8 6 r\ 0 4 \ '"~ -2. 0 > r-- r-- 2 - t-- A ~ -4. 0 ,1\ 0 C'\ ~ -6. 0 -S. 0 1\ -1 0 -1 2 0.1 .0 lEE .0 1\ 1.0 .0 10 -55 +100 +50 +150 T, TEMPERATURE (OC) I, FREQUENCY (MHz) II ICC FIGURE 16 - TYPICAL POWER SUPPLY CURRENT versus VEE (all bits low) Unless otherwise specified: 0 R14= R15 = 1.0kH C'" 15 pF, pin 16 to VEE RL '" 50 n,pin 4 to GND Curve A: large Signal Bandwidth 4 ICC 2 Small Signal Bandwidth Method of Figure 7 RL'" 250 n Vref '" 50 mV(p-p) offset 200 mV above GNO Curve C: ---- 6~- Method of Figure 7 Vref'" 2.0 V{p-p) offset 1.0 V above GNO Curve B: - -- 8 0 0 Large and Small Signal Bandwidth Method of Figure 25 (no op-ampl, RL '" 50 nJ lEE 6. 0 RS=50!1 Vref= 2.0V VS'" 100 mV(p·p) centered at 0 V 4. 0 -2.0 -4.0 -6.0 -8.0 -10 -12 -14 -16 -18 -20 VEE. NEGATIVE POWER SUPPLY (Vdc) APPLICATIONS INFORMATION FIGURE 17 - OUTPUT CURRENT TO VOLTAGE CONVERSION Theoretical Va Vo~ Vref(RO)[~+~+~+~+~+~+ MSB AI R14 A2 A3 A4 A5 A6 2 4 Adjust Vref, R14 or RO so that level is equal to 9.961 volts. Vo . ~ ~ 16 32 64 A7 + AS] 128 256 Va with all digital inputs at high -2V (5 k) ~- + -1 + -1 + -1 + -1 + -1 + - 1 + - 1 ] 1k 2 4 8 16 255 10 V [ 256 ~ 9.961 V MOTOROLA LINEAR/INTERFACE DEVICES 6-22 8 32 64 128 256 MC1408, MC1508 APPLICATIONS INFORMATION (continued) Voltage outputs of a larger magnitude are obtainable with this The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q 1, as shown. circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1408 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable. Note that this configuration results in a positive output voltage only. the .magnitude of which is dependent on the digital input. The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 .us. FIGURE 20 - EXTENDING POSITIVE VOLTAGE RANGE Vee 5k (Resistor and diode optional. see text) Ge FIGURE 18 65 pF 5.1 k The output voltage range f9r this circuit is 0 volts to BVCBO of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (R) to Vee maintains the transistor e,!,itte:r voltage when all bits are "off" and insures fast turn-on of the least significant bit. .11>-<>-+--- Va An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0.us. See Motorola Application Note AN-459 for more details on this concept. Combined Output Amplifier and Voltage Reference For many of its applications the MC1408 requires a reference voltage and an operational amplifil;'r. Normally the operational amplifier is used as a current to voltage converter arid its output need only go positive. With the pOpular MC1723G voltage regulato~ both of these functions are provided in a single package with the added bonus of up to 150 mA of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This all ows use of its output ampl ifier as a classic current-to-voltage converter with the non-inverting input grounded. Since ± 15 V and +5.0 V are normally available in a' combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pull down resistor on the amplifier output is necessary for fast negative transitions. Full scale output may be increased to as much as 32 volts by increasing RO and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. Co may be decreased to maintain the same RaCo product if maximum speed is desired. FIGURE 19 +15 V 35 pF 5 k 'Ok (To pin 4 of MC1508L8) ,>-<>--+-_ Va O.2p.F -15 V MOTOROLA LINEAR/INTERFACE DEVICES 6-23 .. MC1408, MC1508 APPLICATIONS INFORMATION (continued) Programmable Power Supply FIGURE 22 - BIPOLAR OR NEGATIVE OUTPUT VOLTAGE ~IRCUIT The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCO- to-binary converter. The output voltage can be scaled in several ways, including 0 to +25.5 volts in O.1-volt increments, ±O.05 volt; or 0 to 5.1 volts in 20 mV increments, ±10 mV. AO FIGURE 21 - COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT RO 5 k II Co 25 pF Vee +5 V MSB A1 RS=2R14 A15 = R14 -15 V VEE A2 Vo A3 A4 ASj Vref [Al A2 A3 A4 A5 A6 A7 vref VO=--(RO' - + - + - + - + - + - + - + - - - ( R O ' R14 2 4 8 16 32 64 128 256 Rs A5 A6 +15 V 7 A7 I AS LSB I I I I \7.1 V : I I I I I 3.6k 6 1.6 k 0.01 j.tF I FIGURE 23 - BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT A I ~ Al A2 A3A4A5A6A7 A8 RO L ___ -, VeE -15 V RO Vo=Vref=;:;-:;-{A} MC1741G or Equiv Settling time for a 10-volt step§g 1.0 Its For A = 00000000 bit configuration R14 R1S VO'" -Vref For a ±5.0 volt output range; V ref = -5.00 volts -Vref Bipe'.' or Negative Output Voltage The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 8·bit "1 's" complement offset binary. V may be used as this auxiliary reference. Note that AO has been doubled to 10 kilohm. because of the anticipated 20 VIp-pI output range. R14 = R15 = 2.5 kO C = 37 pF (min) RO = 5 kO "Decrease RO to 2.5 k(1 for a 0 to -6.0·volt output range. This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information. ref MOTOROLA LINEAR/INTERFACE DEVICES 6-24 MC1408, MC1508 APPLICATIONS INFORMATION (continued) Polarity Switching Circuit. a-Bit Magnitude Plus Sign O:to-A Converter Panel Mater Readout Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 24 gives 8-bit magnitude plus a sign bit. I n this configuration the operational amplifier is switched The MC140B can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or Vref. between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance. FIGURE 26 - PANEL METER READOUT CIRCUIT FIGURE 24 - POLARITY SWITCHING CIRCUIT (a-Bit Magnitude Plus Sign D-to-A Converter) Digital Word From Counter or Register MSB' R Vo From o-.-vv...-+-<>'.... Output V ref • o-~RNI4\'--o!"4'-l Op-Ampl R15 MC1408 Series MC150B 15 or Equiv P 5k Polarity Observe internal meter resistance (for pin 4 voltage swing). p", 1: Av =-1 Control Bit P"'O: Av=+l Programmable Gain Amplifier or Digital Attenuator FIGURE 27 - OC COUPLEO OIGITAL ATTENUATOR and OIGITAL SUBTRACTION When used in the multiplying mode the MC1408 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if RS = 50 ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14. Vee The best frequency response is obtained by not allowing 114 to reach zero. However, the high impedance node. pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. RS can be set for a'±1.0 mA variation in relation to 114. 114 can never be negative. The output current is always unipolar. The quiescent dc output current level changes with the digital word wh ich makes ac coupling necessary. MC1741G or Equiv I'· FIGURE 25 - PROGRAMMABLE GAIN AMPLIFIER OR OIGITAL ATTENUATOR CIRCUIT RS Vref R14 +'14 When Vs VO= = O. 114"' 2.0 mA [~~ + ~]{A}RO Vee Vee Vref 1 10=101~102"'-­ R141 Digital Subtraction; Let Vref ~ R141 ~!~ R142 Vref 1 V0' -R14, MOTOROLA LINEAR/INTERFACE DEVICES 6-25 {B} I02=~IB le+ 10= 10 1 Programmable Amplifier: Connect Digital Inputs 50 A = e MC1408, MC1508 APPLICATIONS INFORMATION (continued) FIGURE 36 - TWO-DIGIT BCD CONVERSION • Vee Two 8-bit, O-to-A converters can be used to build a two digit 4.0 rnA and 0.4 rnA with the outputs connected to sum the currents. BCD D-to-A or A-to-D converter. If both outputs feed the virtual The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L6 may be used for the least significant word. ground of an operational amplifier. 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of FIGURE :r1 - DIGITAL QUOTIENT OF TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION Reset Clock 4 12 11 10 R14 v,ef R15 14 13 VEE MC1408 Series 9 MCI508 8 7 6 5 The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion. LSB MSB ~ C C:= Vin/RO Vref/R14 MOTOROLA LINEAR/INTERFACE DEVICES 6-26 ® MC6108 MOTOROLA Advance Information 8-BIT MPU BUS-COMPATIBLE HIGH SPEED A-TO-D CONVERTER 8-BIT MPU BUS-COMPATIBLE HIGH SPEED A-TO-D CONVERTER The MC6108 is a microprocessor compatible, 8-bit, high speed analog-to-digital converter. Included are a precision reference, DAC, comparator, SAR, matched scale resistors, 3-state output buffers, and control logic. Conversion can be completed in under 2.0 P.s and input voltage ranges of 0 to + 10 V, 0 to + 5.0 V, and - 5.0 to + 5.0 V can be converted without additional external components. With appropriate external resistors, the converter can accommodate other input voltage ranges. 8-bit linearity and monotonic operation with no missing codes are guaranteed over temperature. Bus compatibility is provided for by the 3-state outputs (latches not required). The MC6108 conversion time is short enough to allow most microprocessors to accept the data immediately after requesting a conversion. Applications include process control systems, servo control systems, waveform storage, signal processing, and others. This device is functionally and pin compatible with the AM6108. SILICON MONOLITHIC INTEGRATED CIRCUIT • 1.8 p.s Conversion Time (Guaranteed) • Microprocessor Compatible - P SUFFIX PLASTIC PACKAGE CASE 710-02 Connect Directly to Data Bus • Trimmed Internal Voltage Reference • 0.1% Nonlinearity (Typ) • low Operating Voltage (+ 5.0 V, - 5.2 V) • Internal Matched Gain, Reference, and Offset Resistors • Pin Programmable Natural Binary or Two's Complement • Conversion Complete Available as Interrupt or on Data Bus • Max Power Dissipation - 415 mW BLOCK DIAGRAM Vref R Ref In 25 24 23 Com pen- A Gnd salion 26 27 Gain 2.5 k Rin Rolf 20 22 2.5 k PIN CONNECTIONS +Comp 19 -Comp 10 18 21 VCC 1.25 k D1 D2 D3 D4 D5 D6 MSB D7 Control Logic CC S 12101511141316 9 IT Clk S Df R CodeSel LSB MSB Sf cs CS 111 R 1 28 17 VCC VEE D Gnd 14L -_ _. J 15- Clk DfSf - This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 6-27 MC6108 ABSOLUTE MAXIMUM RATINGS (Voltages referred to D Gnd except where noted) Parameter Value Units VCC (Pin 1) -0.3, +7.0 V VEE (Pin 2B) +0.3, -7.0 V 12 V -0.5, +6.0 V Max Differential (VCC - VEEI Digital Inputs (Pins 11-16) A. Gnd (Pin 26) ±1.0 V 3.0 mA VCC, VEE V ±12 V -2.5, + 12 V Input Current @ Ref In, Gain R Voltage Voltage «, Gain R at Rin, Roff r,; Voltage @ + Camp, - Camp, Voltage @ DO-D7 (in 3-state mode) -0.5, +6.0 V Junction Temperature -65, +150 'c Devices should not be operated at these values. The "Recommended Operating Limits.. provide for actual device operation. • RECOMMENDED OPERATING LIMITS (Voltages referred to D Gnd except where noted) Svmbol Min Typ Max Units VCC 4.75 5.0 5.25 V VEE -5.46 -5.2 -4.94 V Analog Ground AGnd -0.1 0 0.1 V Vref Current IVref 0 - 5.0 mA Parameter Power Supply Voltage Voltage @ Gain R - 1.25 2.5 5.0 V Ref In Current Iref 0.5 1.0 2.0 mA Voltage @ Rin Vin -B.O V Voff -B.O Clock Frequency fclk 0 - 10 Voltage @ Roff Voltage @ -Comp Digital Input Voltage - Ambient Temperature TA Voltage@ 10 TRANSFER CHARACTERISTICS (VCC ~ 10 V 5.0 MHz 0 0 4.0 V -1.0 0 +5.0 V 0 - 5.25 V +70 'c 0 +5.0 V, ±5.0%, VEE ~ -5.2 V, ±5.0%, 0 < TA < 70'C, Clk ~ 5.0 MHz, Vref connected to Gain R, unless otherwise noted.) Symbol Min Typ Max Units Resolution Res B.O - B.O Bits Monotonicity Mon Parameter GUARANTEED Differential Non Linearity DNL - ±1/4 ±3/4 LSB Integral Nonlinearity (Unipolar) INLU - ±1/4 ±1/2 LSB Integral Non Linearity (Bipolar) INLB - ±1/4 ±3/4 LSB ±2-1/2 LSB ±2-1/2 LSB ±1.0 LSB - - ±2-1I2 LSB BZER - - ±1-1/2 LSB BOFF - - ±2-1/2 LSB Unipolar Gain Error (Vin ~ 0 to + 5.0 V @ Pin 22) UGER Unipolar Gain Error (Vin ~ 0 to + 10 V @ Pin 20) UGER - UOFF - BGER ~ Unipolar Offset Error (D7-DO Bipolar Gain Error (Vin ~ Bipolar Zero Error (D7-DO OOH to 01H) - 5.0 to + 5.0 V @ Pin 20) ~ Bipolar Offset Error (D7-DO 7FH to BOH) ~ OOH to 01H) MOTOROLA LINEAR/INTERFACE DEVICES 6-28 MC6108 TRANSFER CHARACTERISTICS (continued) Parameter = FFH, TA = 25"C) (See Text "OAC") 10 Zero Scale Current (07-00 = FFH, TA = 25"C) (See Text "OAC") 10 Zero Scale Current (07-00 = OOH, TA = 25"C) (See Text "OAC") 10 Full Scale Current (07-00 = OOH, TA = 25"C) (See Text "OAC") 10 Full Scale Current (07-00 OAC Current Gain (See Text "OAC") Vee Gain Sensitivity to Variations (4.75 < VCC < 5.25 V, VEE = - 5.2 = Min Typ Max Units IFS 3.1 3.992 4.9 mA IZS -5.0 - +5.0 p.A IZS 3.0 7.8 13 p.A IFS 3.1 3.984 4.9 mA GOAC 3.92 4.0 4.08 - PSSVCC - ±0.01 ±0.2 %FS PSSVEE - ±0.02 ±0.2 %FS Vrel 2.475 2.5 2.525 V TC - ±20 - ppmrC V) Gain Sensitivity to VEE Variations (- 5.46 < VEE < - 4.94 V, VCC Symbol + 5.0 V) INTERNAL REFERENCE SUPPLY Pin 25 Voltage (lrel = -1.0 rnA, VCC = + 5.0, VEE = -5.2) Temperature Coefficient Load Regulation (-1.0 mA <" Irel < - 5.0 rnA) Regload Line Regulation (4.75 < VCC < 5.25 V) Regline Noise (In = 10 kHz to 1.0 MHz, TA Short Circuit Current (TA - = 25"C) = 25"C) IRSC -30 ±0.05 ±0.2 ±0.02 ±0.2 20 -20 - %Vref II %Vref p.V rms -5 mA rnA POWER SUPPLIES VCC Current (Outputs unloaded) ICC 5.0 20 27 VEE Current (Outputs unloaded) lEE -50 -38 -5 mA Power Oissipation (Outputs unloaded) Po 300 415 mW - ANALOG INPUTS (T A = 25"C) Input Resistance C-.....----. 00-07 6 kn n l' C1 Diodes '" 1N914 or equivalent C1 '" 125 pF (totall Outputs To 3-State From Active Active Outputs TEMPERATURE SPECIFICATIONS (0' < TA < 70' CI Pin Typical Change Units Vref 25 ±20 ppmfC ppm/'C Function OAC Current Gain - ±8.0 10 Dynamic Impedance 21 +1.1 %/oC Reference Input Offset 23-26 ±20 p-VfC 20,22,24 +0.1 %fC Resistance ~l Rin, Roff' Gain R PIN DESCRIPTIONS Symbol Description Pin VCC 1 To be connected to a 5.0 volts (± 5.0%) supply. 00-07 2-9 TTL level data outputs capable of three-state mode. Pin 2 is the lSB, Pin 9 is the MSB. Pin 9 can also indicate conversion status. CC 10 Conversion Complete. TTL level output. High indicates conversion in progress, low indicates conversion complete and valid data at the outputs. This output does not have three-state capability. S 11 Start conversion - TTL Input. Taking S low (with Clock and Chip Select low) resets the SAR. Taking 5 high allows the conversion to start. CS 12 Chip Select - TTL Input. When low, a conversion may be initiated or data read at the outputs. When high, data outputs are in the three-state mode, and other digital inputs are R 13 Read - TTL Input. When low, data may be read at 00-07. When high, 00-07 are in three-state condition. O/ST 14 Data/Status - TTL Input. When high, 00-07 provide normal data. When low, 07 indicates "Conversion Complete" status, while 00-06 are in three-state mode. ClK 15 Clock - CodeSel 16 Code Select - TTL Input. When low, output data is in 2's complement format. When high, output data is straight binary (offset binary when used in the bipolar mode). O.Gnd 17 Digital Ground. Connect to ground associated with digital side of the circuitry. -Camp 18 Negative input of the comparator. Normally grounded, a voltage on this pin will provide an offset of the input voltage range. +Comp 19 Positive input of the comparator. Normally open, this pin may be used for input voltage ranges other than 0-10 volts, or ±5.0 volts. Rin 20 The voltage to be converted to a digital equivalent is normally applied to this pin. A nominal 2.5 k!l resistor is internally connected from this pin to the comparator/OAC output node. 10 21 Current flows into this pin, complementary in value to the OAC's normal current output (10)' Normally grounded, it may be connected to a resistor to ground or a positive voltage source in order to provide an analog output. ignored. TTL Input. 0-5.0 MHz. MOTOROLA LINEAR/INTERFACE DEVICES 6-31 MC6108 PIN DESCRIPTIONS - Symbol continued Description Pin Roff 22 An input for the bipolar offset function. This input can also serve as an alternate voltage input with half the range at Rin. A nominal 1.25 kO resistor is internally connected from this pin to the comparatorlDAC output node. When not used this pin should be grounded. Ref In 23 DAC's reference input. Reference current may be supplied to the DAC through this pin rather than through Pin 24. The DAC's full scale current is 4x the reference current. Source impedance should be less than 10 kil. Gain R 24 Normally 2.5 volts (from pin 25) is applied to this pin to supply the 1.0 mA reference current to the DAC. An internal 2.5 kO resistor connects this pin to the DAC's reference input. Vref 25 Output of the internal precision 2.5 volt reference supply, it can supply up to 5.0 mAo Normally used to supply the DAC's reference current and the bipolar offset current. A.Gnd 26 Analog Ground. Connect to ground associated with the analog side of the circuitry. Compen 27 Compensation for the reference supply regulator. Typically, a 0.01 I'F capacitor is connected from this pin to A. Gnd or to VEE. VEE 28 To be connected to a -5.2 volts (±5.0%) supply. DESIGN GUIDELINES II ANALOG SECTION the signal source have a dynamic impedance less than DAC (Refer to Figures 2 and 3) The DAC generates an output current (10) which is proportional to both the reference current and the digital input presented to it by the Successive Approximation Register (SAR), according to the following formula: I _ Iref x 4 x A I 0256 + zs Vl x Rx 1.6 V (2) where Vl = 112 LSB of the signal voltage, and Rx = Resistance between the signal source and Pin 19 (2.5 kO if using Rin, 1.25 kO if using Roff). (1) Normally Pin 19 is left open, although it may be used as a path for the offset current, or the signal current (to be digitized), with appropriate external resistors. See the Applications Information for more details. Iref flows into the DAC, never out, and should be between 0.5 mA and 2.0 mA to preserve linearity and accuracy. Linearity specified in the Electrical Characteristics is tested (iL Iref of =1.0 mAo The reference input stage is depicted in Figure 4. Normally Iref is supplied by the MC6108's internal 2.5 volt reference (Pin 25) through Gain R (Pin 24). If a separate voltage source is used for the reference current, it must be free of noise, spikes, and ripple since the accuracy of a conversion is directly related to the quality and stability of the reference. where A is the binary digital code (0-255), and Izs is the zero scale current. 10 flows into the DAC, never out. The 4x (± 2.0%) factor is a current gain built into the DAC. For a nominal Iref of 1.0 mA, the maximum 10 (@A = 255) is 3.992 rnA (which includes an Izs of 7.8 !LA). Izs is built in so the first transition occurs when the signal voltage (Vin) is 1/2 LSB above its minimum value. In normal operation, 10 is supplied from the signal voltage that is being converted to a digital code. Therefore, the signal source must be capable of supplying up to 4.0 rnA in the unipolar mode. Iref is the reference current flowing in through either pin 23 or 24. See Figure 2 for the basic unipolar configuration. In the bipolar mode, an offset current of 2.0 mA is supplied to the 10 node (normally through Roff) in order thatVin may be symmetrical about zero volts. The signal source must be capable of sinking 2.0 mA when at the negative extreme, and sourcing 2.0 mA when at the positive extreme. See Figure 3 for the basic bipolar configuration. +Comp (Pin 19) is maintained close to a virtual ground after a conversion as long as -Comp (Pin 18) is at ground. The voltage at + Comp varies (nominally ±0.8 volts) during a conversion as the DAC forces different current values at 10 and will end up close to zero at the end of a conversion. Because of the varying voltage at + Comp, the current from the signal source and the offset source (if used) will vary with each step of the successive approximation sequence, necessitating that SIGNAL VOLTAGE The input signal voltage (to be digitized) is applied to either Rin, Roff' or through an appropriate external resistor to + Comp, such that current from the signal source flows into the DAC's 10 port. The preset ranges, with Vref connected to Gain R are as follows: Input Range Oto +lOV Oto +5.0V -5.0 to +5.0 V MOTOROLA LINEAR/INTERFACE DEVICES 6-32 Connect Rin to Connect Roff to Vin A.Gnd A. Gnd Vin Vref Vin MC6108 FIGURE 2 - BASIC UNIPOLAR CONFIGURATION Gain R A.Gnd 24 Ref In 23 +Comp 20 -Comp 18 Control logic 22 Roff 21 16 14 CodeSel 01 13 Sf 15 R i;" 12 ClK D.Gnd +5.0 Data Bus ClK In Address Bus FIGURE 3 - BASIC BIPOLAR CONFIGURATION - Offset Current A. Gnd 26 -Comp 18 16 CodeSel 14 01 Sf +5.0 MOTOROLA LINEAR/INTERFACE DEVICES 6-33 MC6108 FIGURE 4 - REFERENCE AMPLIFIER ances between the 10 node and the input source and ground. For example, if the signal voltage applied to Rin, and Roff is at ground (+ COMP open). the input range shifts 3 volts for each volt applied to - COMPo Since a portion of the DAC's 10 current will be drawn from the voltage at - COMP, that voltage source must be capable of supplying ± 2.0 mA, and must have a low dynamic impedance. The voltage at - COMP, Rin' and Roft must be kept within the limits listed in the Recommended Operating Conditions. 23 Ref In D - : - - - - - . , 24 Gain R To DAC Current Switches 2.5 k ~ II ~ (Pin 21) is the DAC's complementary current output. The current at this pin changes opposite to that at 10 such that their sum is a constant value [4 x Iretl. Current flow is into the pin. In most applications, this pin is grounded. However, connecting this pin to a resistor to ground permits monitoring the steps of the SAR(see figure 5), or obtaining an analog output representative of the input voltage. The steps in Figure 5 indicate how the circuit finds the value of~, representative of Yin, by successively trying each bit, and leaving each bit on or oft (a conversion always starts with the MSB on). The voltage at ~ will swing negative, and is limited to -1.0 volt (max resistor value is 250 Il). To get a wider voltage swing, a larger resistor may be connected to a pull-up voltage (+ 5.0 volts max). For example, using a 1.25 k!l resistor pulled up to + 5.0 volts results in this pin swinging between ground and + 5.0 volts. The output dynamic impedance of the ~ current source (when ~ is maximum) is = 2.0 Mil for applied voltages of - 1.0 to + 4.0 V, and is =50 kll for applied voltages> + 4.0 V, and tends to increase as the nominal value of ~ decreases. Although the tolerance on the absolute values of the resistors at Gain R, Rin, and Roft is = ± 30%, the ratio of their values is accurately controlled. Due to this fact, when the MC610B is connected for any of the above mentioned ranges, the conversion accuracy is assured. The voltage being digitized must be steady to within ± 1/2 LSB during a conversion cycle in order to get an accurate representation of that voltage. The maximum slew rate during the conversion is defined by: Vrange 2 x 256 x tCONV V range x fCLK 2 x 256 x 9 Vrange x fCLK 460B (3) where Vrange = range of the input voltage; tCONV = conversion time (min. 9 clock cycles); and fCLK = clock frequency. For a typical input range of 10 volts, and a clock frequency of 5.0 MHz, the maximum input slew rate is 0.010B V/p-s. The maximum sine-wave frequency which can be digitized without using a sample-and-hold is: fCLK 460B x FIGURE 5 - SUCCESSIVE APPROXIMATION STEPS AT J;; 0(4) 'IT The above equation assumes the signal's peak-topeak voltage is equal to the input range of the MC610B. If the input signal will change more than 1/2 LSB during a conversion, a sample-and-hold is then needed at the input. With the use of a sample-and-hold, the maximum frequency which can be accurately digitized is 1/2 the conversion frequency, (277.7B kHz with an fCLK of 5.0 MHz). 1/4Vin 112- 3/4 The dynamic impedance requirements of the signal source are discussed in the DAC section. FS- -COMP Pin 1B is normally grounded, resulting in + COMP (Pin 19) being close to a virtual ground at the end of a conversion. However, this pin may be used as an alternate means of offsetting the input range. Applying a positive voltage to - COMP shifts the input voltage range in a positive direction. The amount of the input's shift depends not only on the voltage applied to -COMP, but also on the imped- At the end of a conversion, ~ produces a spike approximately 40 ns wide which starts with the falling edge of CC. The spike's amplitude varies from =1.0 mA (@ Yin = 0) to 0 mA (@ Yin = max). After the spike, ~ remains at the final current value until the start of the next conversion. The current value, once established, is independent of the inputs at Fl, D/ST, CodeSel, and CS. MOTOROLA LINEAR/INTERFACE DEVICES 6-34 MC6108 plete) will change to a high state =25 ns later, indicating the SAR has been reset. A clock low-to-high transition must then occur before or with S switching high, and the conversion begins with the next ClK rising edge (S must precede that one by >25 ns). The conversion then requires seven complete clock cycles. At the end of the conversion, CC will switch low indicating the end of the conversion, and that valid data is available. See Figure 6 for the basic timing sequence. If the S, CS, and ClK inputs appear simultaneously low during a conversion, the conversion sequence will be re-initiated at that point. The following truth table describes the relationship of the six digital inputs (Pins 11-16): REFERENCE SUPPLV The internal bandgap reference produces an output of + 2.500 volts, ± 25 mV ((w V ref, pin 25), and is primarily intended to supply the reference current and the bipolar offset current. The output impedance is typically <0.5 0 for load currents up to 5.0 mA, and increases rapidly at higher currents. Variations in Vref are typically < 0.5 mV as VCC is varied from +4.75 to +5.25 volts, and V ref is independent of VEE variations. The output is designed to source, not sink current. A 0.001 /LF capacitor from Vref to A. Gnd is recommended to reduce noise on this output produced by the digital section. A 0.01 /LF capacitor from the Compensation pin (Pin 27) to A. Gnd, or to VEE, is necessary to stabilize the regulator. Function Logic Inputs POWER SUPPLIES The power supplies are to be + 5.0 volts, ± 5.0% at VCC (Pin 1), and - 5.2 volts, ± 5.0% at VEE (Pin 28). For proper operation, bypassing is required for both supplies at the IC. 10 /LF tantalum in parallel with 0.01 /LF ceramic is recommended for each supply. ICC varies with the chip's different operating conditions, and is a maximum (typically 20 mAl during a conversion (R" = 0, D/ST = 1, CS = 0) with the signal voltage at its minimum value. Minimum ICC (typically 12 mAl occurs during a conversion with the signal voltage at its maximum value. ICC is typically 16 mA when the MC6108 is deselected (CS = 1l. and under all conditions, ICC is independent of clock frequency. lEE is typically 38 mA, and varies <2.0 mA over different operating conditions. lEE is independent of clock frequency. S R O/ST CodeSel 1 X X X X ClK CS X 0 0 X X X Reset SAR ~ X 1 X X X Conversion process (after SAR is reset I X 0 X 1 X X 00-07 @ Hi-Z X 0 1 0 1 1 Read binary or offset binary data at 00-07 after conversion X 0 1 0 1 0 Read 2's complement data at 00-07 after conversion X 0 1 0 0 X Read CC status at 07 (00-06 @ Hi-ZI 0 t DIGITAL SECTION x= SEQUENCE OF OPERATION A conversion is initiated when the S (Start), CS (Chip select), and ClK (Clock) inputs are simultaneously low for a minimum of 50 ns. The three inputs may be taken low in any sequence, including simultaneously. After all three have been brought low, CC (Conversion Com- Chip de·selected, 00-07@Hi-Z Don't care Figure 7 depicts the input configurations in orderto read the various output formats. Any digital input left open is equivalent to a logic "0" - however, good design practice dictates that inputs should never be left open. FIGURE 6 - CONVERSION TIMING DIAGRAM A 2 3 4 5 6 7 A = SAR Reset 8 = Conversion Starts C = Conversion Ends ClK CC DO_07~~____________~3~-S~t~a~te~__________________~ Old Data New Data MOTOROLA LINEAR/INTERFACE DEVICES 6-35 MC61 08 FIGURE 7 - OUTPUT DATA CONTROL ~~~------------------------~,--- COdeS:I~ O/ST /..--::-::-~::--~ r.::-::--:-' " Status@07 00-07 II CLOCK The clock input (Pin 15) is a TTL level input which steps the SAR through the successive approximation conversion process_ There is no minimum required frequency, and the maximum operating frequency is listed in the timing characteristics. The clock duty cycle does not have to be 50%, but the minimum low and high times must be observed. The clock is needed only for the conversion, and may be removed or left applied to the MC6108 between conversions. The operation of CS, O/ST, FI, and CodeSel are not affected by the presence or absence of the clock. low. Alternately CS may be left low during the entire conversion. Whenever the MC6108 is de-selected, a conversion cannot be initiated, and 00-07 are in the highimpedance condition, regardless of the other digital inputs. START 5 (Pin 11) is a TTL level input used to reset the SAR, and initiate a conversion. The SAR is reset when this pin is low simultaneous with the Clock and CS inputs for a minimum of 50 ns. CC output will then change to a high state. A clock rising edge must occur while S is low, or no later than coincident with its riSing edge. There is no maximum time limit for 5 to stay low, but the conversion will not begin until the next rising edge of the Clock input after S goes high. Seven complete clock cycles are then needed to complete the conversion. If the S input is connected to the CC output through a flip-flop (see Figure 8), the MC61 08 will operate at the maximum possible conversion repetition rate, i.e. one conversion each 9 clock cycles. CHIP SELECT Chip Select (Pin 12) is a TTL level input which is normally used by a microprocessor's address decoding to select amI de-select the device. A Logic "0" selects (enables) the MC6108, while a Logic "1" disables it. CS must be low for a conversion to start, and to read data at 00-07 or status at 07 (see O/ST description). CS may be taken high during a conversion, as long as the minimum low time for CS, 5, and ClK is adhered to, and then taken low in order to read the data after CC goes FIGURE 8 - 3-State CONFIGURATION FOR MAXIMUM CONVERSION RATE c L K I - - - - - . . - - - - - - ( .;5.0 MHz +5.0 V 2 CLK MC6108 . 1-_ _-', To Latches 00 • • • 07 ILP Bus or O/ST CodeSell--+---o + 5.0 V RI----< CS REAO I I 3 4 I 5 6 7 9 8 rr I I I BUSy-V.....:-I--------------'- S~~.~========~Cc.o;n~v~e~rt~in~g~==============~ ·LJ ~ DO_07~__------~3~-~St~a~te~--------­ Active MOTOROLA LINEAR/INTERFACE DEVICES 6-36 MC6108 READ Read (Pin 13) is a TTL level input which controls the state of the outputs (DO-D7) between conversions as long as the MC6108 is enabled (CS = 0). A logic "1" forces the 8 outputs to a high impedance condition regardless of the other digital inputs. A logic "0" permits reading the data at DO-D7 after the conversion is complete, or the CC status at D7 (depending on the D/ST input). During a conversion, R is ineffective, except for controlling D7 if D/ST is low. The Read input differs from the CS input in that taking Read high does not prevent a conversion from being initiated in response to the CS, ClK, and 5 inputs (described elsewhere). If desired, the Read input may be kept low at all times in a simple application. CODE SELECT CodeSel (Pin 16) is a TTL level input which controls the format of the binary data presented at DO-D7 at the end of a conversion. When at a logic "1", the data is presented as natural binary or offset binary, depending on whether the analog input is unipolar or bipolar, respectively. When at a logic "0", the output code is in 2's complement form (applicable to bipolar operation only). This pin has no effect on D7 when the D/5T input is low (see section on Data/Status). The following tables illustrate examples of the different codes: UNIPOLAR Input FS-1LSB 3/4 FS 1/2 FS 1/4 FS 0 CONVERSION COMPLETE CC (Pin 10) is a TTL level output which indicates the status of the conversion. After CS, ClK, and 5 are taken low to initiate a conversion, CC will go high =25 ns later. CC will stay high during the conversion, and then go low =15 ns after the rising edge of the clock corresponding to the end of the co·nversion. See Figure 6 and the System Timing Diagram. The CC pin does not have a high impedance capability, and is therefore always active. The CC status is typically monitored through a port, or an interrupt pin. +10 V Range +5.0 V Range Natural Binary 9.961 7.500 5.000 2.500 0.000 V V V V V 4.980 3.750 2.500 1.250 0.000 V V V V V 11111111 11000000 10000000 01000000 00000000 BIPOLAR 2'5 Input +FS -lLSB +1/2 FS MidScale -1/2 FS -FS + lLSB -FS DATA/STATUS D/ST (Pin 14) is a TTL level input which controls the information presented at DO-D7. When at a logic "1", DO-D7 will provide the digital equivalent of the analog input at the end of the conversion (DO-D7 are in a high impedance mode during the conversion). When at a logic "0", DO-D6 are maintained in a high impedance mode, while D7 provides the Conversion Complete status both during and after the conversion (D7 does not go into a high impedance mode). The rising and falling edges of D7, when providing status, follow those of CC (Pin 10) within = 10 ns. ±5.0 V Range Offset Binary 4.961 2.500 0.000 -2.500 -4.961 -5.000 V V V V V V 11111111 11000000 10000000 01000000 00000001 00000000 Complement 01111111 01000000 00000000 11000000 10000001 10000000 If an input voltage range other than those listed above is used, and CodeSel is at a logic "1" (binary format), the code 0000 0000 will correspond to the most negative input voltage, while the code 1111 1111 corresponds to the most positive input voltage (-1 lSB). The 2's complement code is the same as the binary with the MSB (D7) inverted. DATA OUTPUTS The data outputs (Pins 2-9) are TTL level outputs with high impedance capability. Pin 2 is the lSB (DO), while Pin 9 is the MSB (D7). The 8 outputs are in the high impedance mode during a conversion (CC = high), or if CS or R are high. DO-D6 are in the high impedance mode, and D7 is active, anytime that D/ST is low (CS = R = 0). During normal operation, the 8 outputs change from valid data to high impedance within 55 ns after the SAR has been reset (CS = ClK = 5 = 0) at the beginning of a conversion, and back to valid data within 50 ns after the rising edge of the ClK at the end of a conversion. D/ST may be used by the microprocessor as a means of reading the Status and the Data on the bus rather than using a separate port for the CC output (Pin 10). However, since D7 is active during the conversion, the microprocessor cannot be busy with other functions during this time. If the microprocessor is to be busy during the conversion, the status may be checked by periodically switching the D/ST pin, or the CS pin, or by reading the CC pin (Pin 10) through a separate port or interrupt pin. R (Pin 13) must be low to read data or status. MOTOROLA LINEAR/INTERFACE DEVICES 6-37 MC6108 APPLICATIONS INFORMATION II POWER SUPPLIES, GROUNDING The P.C. board layout, the quality of the power supplies and the ground system atthe ICare very important in order to obtain proper operation. Noise,. from any source, coming into the device on VCC, VEE, or ground can cause an incorrect output code due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC610B can cause incorrect operation if that noise does not have a clear path to ac ground. Both the VCC and VEE power supplies must be decoupled to ground at the IC (within 1" max) with a 10 ""F tantalum and a 0.01 ""F ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the VCC and VEE supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present when digital circuits are present) can easily exceed 400 mV peak, and if they get into the analog portion of the IC, the operation can be disrupted. Noise can be reduced by inserting resistors «10 n, metal film) or inductors between the supplies and the IC. If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of 50 - 200 kHz. These spikes are generally more difficult to reduce because of their greater energy content. In FIGURE 9 - extreme cases, 3-terminal regulators (MC7BL05ACP, MC7905.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC610B. ~ri~ew~m~~w~~~=~~~~ their magnitude to exceed. the values in the Recommended Operating Limits. The P.C. board tracks supplying VCC and VEE to the MC610B should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC61 OB should be close to the power supply, or the connector where the supply voltages enter the board. If the VCC and VEE lines are supplying considerable current to other parts of the boards, then it is preferable to have dedicated lines from the supply or connector directly to the MC610B. The MC610B has two ground pins - A. Gnd (Pin 26). and D. Gnd. (Pin 17). VCC and VEE should be referenced to D. Gnd. A. Gnd is mainly a signal ground, and is the return path for the internal 2.5 volt reference, and the DAC's reference amplifier. A. Gnd must be connected to D. Gnd, preferably at one point, and in a manner so as to not pick up noise. The de voltage between A. Gnd and D. Gnd must be <100 mV. Long PC tracks between them should be avoided as the inductance (at 5.0 MHz) can create stability problems. See Figure 9 for a depiction of the major current paths. MAJOR CURRENT PATHS Vee )-_ _---., J, ~ Digital Gnd. ~ ~ Analog Gnd. Vee Vref Gain R -t____+-~--,eomp L-____ ~ Digital 1/0 Tie Together at One Point 00-07 MOTOROLA LINEAR/INTERFACE DEVICES 6-38 -= MC6108 FULL SCALE. ZERO ADJUSTMENTS The unadjusted full scale accuracy (at max. Vin) ofthe MC6108, when the internal resistors are used (Figures 2 and 3), is guaranteed to be within 2-1/2 LSBs. The offset error (at min. Vin) is guaranteed to be less than 1LSB for the unipolar configuration, and 2-1/2 LSBs for the bipolar configuration. If the application requires greater accuracy atthe end points, then adjustments are needed, as shown in Figures 10 and 11. The potentiometers should be 20-turn type, with low T.C. The 50 resistor is added to the Rin pin to ensure that the potentiometers can provide adjustment over the full plus and minus error range. FIGURE 12 - V,ef R,ef 23 Ref In 19 I,ef n FIGURE 10 - UNIPOLAR CONVERSION USING EXTERNAL REFERENCE AND RESISTORS 20 UNIPOLAR ADJUSTMENTS +5.0 -5.2 Zero Adjustment 10 x 256 4 x Iref A FIGURE 11 - 18 -Camp 4 x Vref x Riv Rref A modulation of the input signal (for waveform manipulation or signal processing) may be done by applying the modulating signal to the reference current. Rewriting equation 1 to determine the output code results in: 100 -=- 22 Max Vin 10 k Roff 1--"~1N\,...-<-<10 k MC6108 +Comp Vin x 256 Rin x 4 x Iref (5) BIPOLAR ADJUSTMENTS (The offset term has been omitted to simplify the equation.) As can be seen, the output code varies inversely with the reference. When varying the reference current, its value must be maintained between 0.5 and 2.0 rnA, and the current flow must always be into Pin 23 or 24. Zero Adjustment 50 MC6108 FIGURE 13 - BIPOLAR CONVERSION USING EXTERNAL REFERENCE & RESISTORS V,ef OTHER INPUT RANGES The MC61 08 has internal resistors providing preset input ranges of 0 to + 10 volts, 0 to + 5.0 volts, and - 5.0 to + 5.0 volts (see previous section entitled "Signal Voltage"). The input range. and the offset, are determined by the value of the resistors at Pins 20, 22, and 24. Where input ranges other than those listed above are to be digitized, then external resistors of comparable tolerance and temperature coefficient should be used for the reference (at Pin 23), and for the input signal (at Pin 19), and for the bipolar offset function (also at Pin 19). See Figures 12 and 13. Rin and Roff should be connected to A. Gnd when not used. Due to the tolerances of the absolute value of the internal resistors, they should not be used in conjunction with external resistors. Figure 13 shows the reference current and the offset current supplied from the same reference source, which may be the internal reference (Pin 25). However, separate sources may be used for the two currents if desired. Offset Max Vin V,ef x [R:f - ;J Min Vin MOTOROLA LINEAR/INTERFACE DEVICES 6-39 Riv Vref x Rjv Ro MC61 08 MAXIMUM CONVERSION RATE Although a conversion, once initiated, requires 7 + clock cycles, the maximum conversion repetition rate is once per 9 clock cycles, due to the OAC and SAR reset times. This is easily achieved by connecting CC to S, through a O-type flip-flop, allowing the MC610B to restart itself at the end of each conversion (see Figure 8). In this mode, the data outputs may be connected directly to the microprocessor bus, and the BUSY output used to indicate when valid data is available. Alternately, the data outputs may be connected to latches, which are activated by the BUSY signal, in order that the microprocessor may read the data at its convenience. This configuration may also be used for OMA loading of memory. II is initiated when the active low address decoder switches low, RNV is high, and the port outputs one active low pulse to S. At the end of the conversion, CC goes low, alerting the processor through the port or through an interrupt. The processor can then read the data at its convenience by switching Rand CS low. Figure 15 eliminates the need for an interrupt, and instead periodically checks the conversion status at 07 (O/ST = low) by reading the data bus. When 07 is low, the conversion is complete, and the OIST input is then taken high so as to read the data at 00-07. Figure 16 eliminates the need for an interrupt or a port, but requires the processor to wait during the conversion until it is complete. The conversion is initiated when the address decoder switches low, and RNV goes high - that brings CS low and provides the Start pulse. The processor waits 9 clock cycles, and then reads the data. In the above examples, the timing of the S pulse must be such that it is low for >50 ns concurrently with CS and ClK low, and must include one rising clock edge. If the S pulse timing is synchronized with the other inputs, this is relatively easy to guarantee. If, however, in Figure 16, the CS and elK are not synchronized, then the SN74lS122 must be set for a pulse width that is equal to or greater than one clock cycle. MICROPROCESSOR INTERFACING With the proliferation of microprocessors available today, interfacing schemes can take anyone of several hundred configurations. Figures 14, 15, and 16 indicate some generic interfacing schemes which can be adapted to most any microprocessor. Some of the terminology in the Figures is based on the MC6BOO series of processors - other processors have similar functions by different names. Figure 14 depicts a simple basic interface using a port (such as an MC6B21) andlor an interrupt. A conversion FIGURE 15 - MICROPROCESSOR INTERFACE WITHOUT AN INTERRUPT FIGURE 14 - BASIC MICROPROCESSOR INTERFACE ClK MC6108 ClK Input +5.0 Port (MC6821) Ii D/Sf f-~------I-is Port I--------I""s f - - - - - -........-ili (MC6821) f - - - - - - - - - . j D/Sf f---------...jCodeSel f--------.,CodeSel MC6108 I~~~--------~cc I Orto"P ___ Interrupt 00-07 J 00-07 _ ~~~_ _13~.S~t~at!._ _ _~~~~~~~ Old Data MOTOROLA LINEAR/INTERFACE DEVICES 6-40 MC6108 FIGURE 16 - STAND-ALONE USE Although the MC6108 was designed for use with microprocessors, it can be used in a stand-alone mode. The digital inputs may be controlled by other digital circuitry, or hard-wired in a simple application. Figure 17 shows a simple configuration whereby the MC6108 is permanently enabled, and each S input pulse provides new data at the outputs. Figure 18 shows a circuit whereby the MC6108 is continually self-updating the information into latches. The latches are necessary since in this mode of operation, the MC6108 data outputs are in the 3-state mode the majority of the time. The 430 n resistor and 68 pF capacitor provide a =60 ns delay from CC's falling edge to allow 00-07 to stabilize, and to allow the setup time required by the SN74LS374 latches. The clock high time in this circuit must be ;.100 ns. MICROPROCESSOR INTERFACE WITHOUT USING A PORT OR INTERRUPT MCS108 Clock Input )-----i ClK + 5.0 0-----1 D/ST R Data Format r----lCodeSel I csl S1JI I NEGATIVE VOLTAGE REGULATOR In the cases where a negative power supply is not available - neitherthe - 5.2 volts, nor a higher negative voltage from which to derive the - 5.2 volts -the circuit of Figure 19 can be used to generate the - 5.2 volts from the + 5.0 volts supply. The PC board space required is small (=2.0 in 2), and it can be located physically close to the MC6108. The MC34063 is a switching regulator, and in Figure 19 is configured in an inverting mode of operation. The regulator operating specifications are given in the Figure. DO-D7 Data Bus I conversion---1 DO-D7 ~=~7'77@=i)'"'~!=.~ FIGURE 17 - STAND-ALONE OPERATION (CONTINUOUSLY ENABLEDI 0.01 Campen Raft VEE -Camp MCS108 D.Gnd A. Gnd D7 r;; Clock Start <;5.0 MHz +5.0V MOTOROLA LINEAR/INTERFACE DEVICES 6-41 MC61 08 AGURE 18 - STAND-ALONE OPERATION AT MAXIMUM UPDATE RATE 430 68 PFJ. CP MC6108 k-"",:-<:",",,,:-<:"",,:-<:"",,,,,:-<:",",,,~ a: 0.0 • 74LS374 • ~'>""":"--'o.-"-"-"-"---"-'''''''''-'>....O'''''''''"''-C:''''':'-''-l~ latches 7 Output Data 0 CodeS.1 Ii CSf-.....----------~ II "'~ I' I CC S-U. Converting ~ .. 3~State LT ~_ DO-D7~---="":":::':--WActive FIGURE 19 - -5.2 VOLTAGE REGULATOR Vin 14.75 to 5.25 VI /)-~.'100;!;; I'FJ; 1 .......--, l.lll T 6 7 I 8 ·1 200l'H 2~~ MC34063 L-;:.5_ _...:3;---,::--_4j--' 1 1 ~~ pF 1 I N5819 r-3A,J.0",k.-n4~95Jo,;3r.;.1l:..-_"_~[--,_ _ _...~1-O Vout 1 l 470I'Fj; __ J 1.01'H = T Line Regulation 4.75 V < Vin < 5.25 V (lout Load Regulation Vin = 5.0 V, 20 mA < lout < 50 mA Output Ripple Vin = 5.0 V, lout = 50 mA Short Circuit lout Vin = 5.0 V, Rl = 0.1 0. Efficiency Vin = 5.0 V, lout = 50 mA -5.2V150 mA jl00I'F 0.04% 20 mAl 0.8% 3.0 mV POp MOTOROLA LINEAR/INTERFACE DEVICES 6-42 300mA 57% MC6108 GLOSSARY BANDGAP REFERENCE - A voltage reference circuit based on the predictable base-emitter voltage of a transistor. The silicon bandgap voltage of =1.2 volts is the basis for generating other voltages which are stable with time and temperature. LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage. LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage. BIPOLAR INPUT - A mode of operation whereby the analog input (of an A-D), or output (of a DAC), includes both negative and positive values. Examples are - 5 to +5 V, -2 to +B V, etc. MONOTONICITY - The characteristic of the transfer function whereby increasing the input code (of a DAC), orthe input signal (of an A-D), results in the output never decreasing. BIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the OOH to 01 H transition, where the ideal location is 1/2 LSB above the most negative input voltage. MSB - Most Significant Bit. It is the highest order bit of a binary code. BIPOLAR ZERO ERROR - The error (usually expressed in LSBs) of the input voltage location (of an A-D) of the 7FH to BOH transition. The ideal location is 1/2 LSB below zero volts in the case of an A-D set up for a symmetrical bipolar input (e.g., -5 to +5 V).' NATURAL BINARY CODE - A binary code whose normalized decimal value is defined by: N = An2n + ... + A323 + A222 + A121 + A020 DAC CURRENT GAIN - The intenial gain the DAC applies to the reference current to determine the full scale output current. The actual maximum current out of a DAC is one LSB less than the full scale current. where each "A" coefficient has a value of 1 or O. Typically, all zeroes corresponds to a zero input voltage of an A-D, and all ones corresponds to the most positive input voltage. DIFFERENTIAL NON-LINEARITY - The maximum deviation in the actual step size (one transition level to another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by 2 n (n = number of bits). This error must be within ± 1 LSB for proper operation. OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes corresponds to the most negative input voltage (of an A-D), while all ones corresponds to the most positive input. POWER SUPPLY SENSITIVITY - The change in a data converter's performance with changes in the power supply voltage(s). This parameter is usually expressed in percent of full scale versus av. FULL SCALE CURRENT or RANGE (ACTUAL)- The difference between the actual minimum and maximum end points of the analog input (of an A-D), or output (of a DAC). aUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of ± 1/2 LSB. FULL SCALE RANGE UDEAL)- The difference between the actual minimum and maximum end points of the analog input (of an A-Dl. or output (of a DAC), plus one LSB. GAIN ERROR - The difference between the actual and expected gain (end point to end point) of a data converter, with respect to the device's internal reference. The gain error is usually expressed in LSBs. RESOLUTION - The smallest change which can be discerned by an A-D converter, or produced by a DAC. It is usually expressed as the number of bits, n, where the converter has 2n possible states. INTEGRAL NON-LINEARITY - The maximum error of an A-D, or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningful. This parameter is the best overall indicator of the device's performance. SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an A-D must be no less than 2x the highest frequency (of interest) of the analog signal to be digitized in order to preserve the information of that analog signal. LSB - Least Significant Bit. It is the lowest order bit of a binary code. MOTOROLA LINEAR/INTERFACE DEVICES 6-43 MC61 08 DAC), includes values of a single polarity. Examples are Oto +10V,Oto -5V, +2to +8V.etc. A binary code applicable to bipolar operation, in which the positive and negative codes of the same analog magnitude sum to all zeroes, plus a carry. It is the same as Offset Binary Code. with the MSB inverted. TWO'S COMPLEMENT CODE - UNIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the OOH to 01 H transition. where the ideal location is 1/2 LSB above the most negative input voltage. A mode of operation whereby the analog input range (of an A-D), or output range (of a UNIPOLAR INPUT - II MOTOROLA LINEAR/INTERFACE DEVICES 6-44 ® MC10318L9 MC10318L MC10318CL7 MC10318CL6 MOTOROLA Specifications and Applications Information HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER The MC1031B (Series) is a high-speed D/A converter capable of data conversion rates in excess of 25 MHz. The digital inputs are compatible with MECL 10,000 Series Logic. Complementary current outputs provide up to 56 mA full scale capability. The MC10318 Series is available in 4 accuracy grades (over temperature) to meet the requirements of many applications, including: high-speed instrumentation and test equipment, storage oscilliscopes, display processing, radar systems, and digital video systems (broadcast and receiver applications). • Fast Settling Time • Four - 10 ns (Typ to ± 0.19%) Accuracy Grades 9-Bit Linearity (±0.10%) 8-Bit Linearity (±0.19%) 7-Bit Linearity (±0.39%) 6-Bit Linearity (±0.78%) - L SUFFIX CERAMIC PACKAGE CASE 620-10 MC10318L9 MC10318L MC10318CL7 MC10318CL6 • Inputs MECL 10,000 Compatible • Complementary Current Outputs • Output Compliance: - 1.3 V to + 2.5 V • Single MECL Supply: -5.2 V L SUFFIX CERAMIC PACKAGE CASE 690-13 • Standard 16-Pin Dual-In-Line Package • Evaluation Kit MCK8DA Available BLOCK DIAGRAM PIN CONNECTIONS (TOP VIEW) Digital Inputs I \ (MSBI 07 06 05 04 03 02 01 DO ILSBI 8 7 6 5 4 3 2 1 Gnd LSB r,; 02 I I NC Current Vref+ Switches i Vref- 04 I I 05 VEE 11 Comp VEE 16 Gnd 10 I MSB 07 VEE MOTOROLA LINEAR/INTERFACE DEVICES 6-45 ~C10318L9,~C10318L,~C10318CL7,~C10318CL6 MAXIMUM RATINGS (TA = + 25°C unless otherwise noted.) Symbol Value Unit VEE -6.0 to +0.5 Vdc Digital Input Voltage VI o to VEE Vdc Applied Output Voltage Vo +5.0 to VEE Vdc Ire f(12) 5.0 mA Output Current IFS -75 mA Reference Amplifier Input Range Vref +0.5 to VEE Vdc ±5.0 Vdc Rating Power Supply Voltage Reference Current Reference Amplifier Differential Inputs Vref(D) Operating Temperature Range Storage Temperature Range Thermal Resistance, Junction to Ambient Still Air With 500 LFPM DC CHARACTERISTICS (VEE = - 5.2 V, ± 5% TA II °C TJ + 175 °C RYJA 80 50 °CIW = O°C to + 70°C after thermal equilibrium is reached.) Fig. MC10318L9 MC10318L MC10318CL7 MC10318CL6 = 25°C) Zero Scale Output Current (Pin 14 or 15) ITA 10 Zero Scale Output Current Temperature Drift (Pin 14 or 15) 0< TA < 25°C 25°C < TA < 70°C 10 Full Scale Output Current Temperature Drift (Pin 14 or 15) 0< TA < 25°C 25°C < TA < 70°C Full Scale Symmetry IIFS - 10 Output Resistance (Pin 14 or 15) (TA = 12 25°C) IFSS RO liB Reference Amplifier Bias Current Temperature Drift 0< TA < 25°C IIref = 3.2 mAl 25°C < TA < 70°C - 5.0 50 "A nAf'C - ±17 ±2.0 - -46.00 Typ - - 51.00 -56.00 mA ppmrC - ±50 ±10 - ±0.005 ±0.005 ±0.02 ±0.04 %/% - ±21 ±100 fLA. +2.5 V -1.3 - - - - 69 - kfl ±3.2 - mV - - ±10 ±4.0 - - 4.0 15 - -40 -10 i1IIB/dT Reference Amplifier Common Mode Range = IFS i1VIO/dT Reference Amplifier Bias Current (Pin 10) (lref = 3.2 mAl = - 5.2 V) (TA - IZS VIO Reference Amplifier Offset Voltage Temperature Drift 0< TA < 25°C 25°C < TA < 70°C (VEE Unit %FS - VOC = 25°C) Max ±0.10 ±0.19 ±0.39 ±0.78 - IFSPSS Output Voltage Compliance (Pin 14 or 15) Full Scale Current Change'" % LSB (Specified Nonlinearity) (TA = 25°C) Reference Amplifier Offset Voltage (TA Min -- i1IFSrC I MC10318L,9 MC10318CL6,7 IFS) Symbol IZSIi1T Full Scale Output Current (Pin 14 or 15) (lref = 3.2 mA, Do-D7 = 1) Full Scale Output Sensitivity to Power Supply Variations (Pin 14 or 15) (- 4.94 V < VEE < - 5.46 V) °C -65 to + 150 Characteristics Nonlinearity (Integral) (Pin 14 or 15) (Ca IFS = 51 mA, 25.5 mAl + 70 Tstg Ceramic Package Junction Temperature o to TA ",vrc "A nAf'C VICR - ±1.15 - VICMRR - 58 - dB RIN - 1.0 - Mfl lEE - 90 130 mA V 25°C) Reference Amplifier Common Mode Rejection Ratio (TA = 25°C) IIref = 3.2 mA, VICR = 0 to - 2.0 V, Pins 1-8 = Logic 1) Reference Amplifier Input Impedance (Pin 10) (TA = 25°C) Power Supply Current (Pins 1 thru 8 Open, Iref = 3.2 mA, Includes 10 + 10) MOTOROLA LINEAR/INTERFACE DEVICES 6-46 MC10318L9, MC10318L, MC10318CL7, MC10318CL6 AC CHARACTERISTICS (TA ~ 25'C, VEE ~ - 5.2 V, -... 5%) Feedthrough Current - Characteristics Fig. Svmbol All Bits Off 9 IFC f~10 , f~ Distortion - «ci '0 ) (Sinewave applied to reference amplifier Input, 00-07 ~ Logic 1) C ~ 0.01 .,.F, f ~ C ~ 0.01 .,.F, f ~ C ~ 0.001 .,.F, f ~ C ~ 0.001 .,.F, f ~ C ~ 240 pF, f ~ kHz 100 kHz Min TVp Max - 2.0 18 - % 20 65 340 600 600 kHz kHz kHz kHz kHz Reference Amplifier Slew Rate (Step change at Pin 10, all bits on) THD THD THD THD THD -- 1.0 5.0 1.0 2.0 0.8 - 13 C C C ~ mAl.,.s 0.01 .,.F .,.F 240 pF = 0.001 ~ Unit .,.A POp Settling Time (to ",0.19% of Full Scale) 1,22 ts I LSB Change All Bits Switched Propagation Delay 2 tp Output Glitch Energy (with De-Skewing Capacitors) (Input Change: 01111111 ~ 10000000) Glitch Duration - 0.5 5.0 20 - 7.0 10 - - ns 5.0 - ns 50 - lSB'ns 5.0 - ns VEE (Pin 9) The power supply pin. VEE is nominal - 5.2 V, DIGITAL INPUT VOLTAGE LEVELS ::t5%. Volts (See Note) TA V,Hmax V,HAmin V,LAmaX O'C -0.845 -1.151 -1.516 -1.868 25'C -0.810 -1.105 -1.505 ·-1.850 70'C -0.727 -1.052 -1.480 -1.830 Gnd (Pin 16) The ground pin. This line should be as noise-free as possible in order to obtain a noise·free output. VILmin NOTE: VEE - ··5.2 V, ... 5°'0 Inputs are MECL 10,000 compatible within the temperature and power supply ranges listed. See MECL System Design Handbook for further details. See Fig. 19 in this data sheet. FIGURE 1 - FUNCTIONAL PIN DESCRIPTION SETTLING TIME 00-07 (Pins 1-8) The eight ECl digital inputs compatible with MECL 10,000 series devices. Logic "0" is nominally - 1.8 V, and Logic "1" is nominally - 0.9 V. Vref_ (Pin 10) The high impendance input of the reference amplifier. This input is normally grounded, but may be used for ac applications involving modulation, digitally controlled gain. etc. Normal operating range is from ground to VEE + 2.9 V (nominally - 2.3 V). Vref. (Pin 12) The noninverting input of the reference amplifier. The inverted output of the reference amplifier is internally fed back to this input, thus causing it to track Pin 10. A nominal 3.2 mA is to be supplied to this pin from an external (stable and noise free) voltage source and current setting resistor. FIGURE 2 - 00-07 Compo (Pin 11) A nominal 0.01 .,.F capacitor is connected to this pin and to ground to stabilize the reference amplifier. Lower values of capacitor may be used if a good PC board layout is used, where frequencies higher than 10 kHz are applied to the reference amplifier. Inputs 0.9 V - 1.8 V -' PROPAGATION DELAY 50% o mA-i\ t- 50% i;; (Pins 14,15) The complementary current outputs. Current flow is into the DAC and varies linearily with Iref and the digital input code. lout increases as the digital input increases. Output compliance range is -1.3 V to + 2.5 V. '0 , - -51 rnA ~ I-'-::tp--- MOTOROLA LINEAR/INTERFACE DEVICES 6-47 II MC10318L9, MC10318L, MC10318CL7, MC10318CL6 REFERENCE AMPLIFIER RESPONSE Inverting Input IVr• _) Test Circuit of Fig. 14 Noninverting Input IVref+) Test Circuit of Fig. 11 FIGURE 3 - FREQUENCY RESPONSE FIGURE 6 - FREQUENCY RESPONSE 180 " -2.0 ~-6.0 10 10 K t, FREQUENCY 1Hz) 1K 100 K FIGURE 4 - FREQUENCY RESPONSE 100 K FIGURE 7 - FREQUENCY RESPONSE 180 No.. -1.0 10 Phas", ~ -2.0 ~ -3.0 ~ -4.0 \ gj -5.0 ~ -6.0 ~ -8.0 -50 1K .~.in ~ I=~~ lOOK t, FREQUENCY 1Hz) 1K 1M FIGURE 5 - FREQUENCY RESPONSE ~ I- ~ ~ -2. 0 40 ""- m-- 4.0 80 (i):!:!-S. 0 *~-8.0 10K lOOK t, FREQUENCY 1Hz) Pha~ -30 f-C -36 lOOK 80 ~ Ii: :r 100 ~ = 240 pF - 1i:~-1 2 160:r gj -14 "'u 6 ~~-1 200iE~-1 8 w-2O C = 240pF 240 a:_ 22 -24 \. \. "\ I I 1M t, FREQUENCY 1Hz) 1M 180 ...... 160 I'"\. 1 120~~-1O -18 -24 ~ :s o I"\{ain a Q FIGURE B - FREQUENCY RESPONSE I r\. i-'" -12 Phas~ :s 120 I 10K -6.0 I\, \. 0-14 ~ ~-16 -70 iE -18 -80 ~-20 C = 0.001 ",F -22 -90 -24 \ I I -9.0 160 ~-4.0 -60~ 1 '\ C = 0.001 ",F (i) -.30 ~ ~-6.0 -40 ~ !:-8.0 \ <.:> :5 -7.0 -~O \Gain 0 -2.0 lOOK 10M Pha.. 1 '\. 1 '\. '"\.. \. " 1M t, FREQUENCY 1Hz) MOTOROLA LINEAR/INTERFACE DEVICES 6·48 Gain 60 10M MC10318L9, MC10318L, MC10318CL7, MC10318CL6 TEST CIRCUITS AGURE 9 - FIGURE 10 - FEEDTHROUGH MEASUREMENT ZERO/FULL SCALE CURRENT 10 Logic + 10.56 V for Zero Scale 10 =---="0"7'" 1 for Full Scale to 3.3 k Vtef 20 !l 3.3 k :;;!;0.Q1 "F -= Signal Generator Conditions: 0 to - 1 V p.p Sinewave FIGURE 11 - -= - 5.2 V GAIN/PHASE MEASUREMENT FIGURE 12 - OUTPUT RESISTANCE .10.56 V Vout 3.3 k Vref 1,0 k Vin 20 !l 750 Ie IO,OllJ. F -= - 5.2 V -= Signal Generator Conditions: 0 to 5.2 V -= -Output Ro 3.8 V "0 See Figures 6-8 Reference dB Level: See Text FIGURE 13 - -= 2 V p.p Sinewave FIGURE 14 - REFERENCE AMPLIFIER SLEW RATE -+- Output GAIN/PHASE MEASUREMENT 10.56 V 3.3 k Vref~ 12 3.3 k Vref '---t::---r.;:-r-::-' 20 U 620 I 20 !l 20 I I-= C--5.2 V I-= C-5.2 V -= III Signal Generator Conditions: 0 to - 2 V p.p Sinewave Reference dB Level: See Text. MOTOROLA LINEAR/INTERFACE DEVICES 6-49 See Figures 3-5 MC10318L9, MC10318L, MC10318CL7, MC10318CL6 OPERATIONAL INFORMATION with the digital inputs for applications such as digitally controlled gain of an ac signal, digitally controlled amplitude modulation, and others. Either the positive or negative input of the reference amplifier may be used, depending on the application. There are, however, differences in the manner in which an ac signal is to be applied. 1) When applying a signal to the Vref- (Pin 10) input (See Figure 16), the signal must be kept within the range of 0 to - 2.3 V. The input has a high impedance (typically 1 Megohm). The Vref+ pin (Pin 12) will track this signal, causing Iref to vary, in turn causing 10 and i; to vary. The ac component of 10 (and i;) will be in phase with the applied signal. The ac gain of the circuit shown is: Typical DAC Operation The MC10318 is designed to be operated with an Iref (Pin 12) of 3.2 mA, resulting in a full scale output current (10) of 51 mA when DO through 07 are'at a Logical "1" (-0.9 V). The transfer equation for 10 is therefore: 10 = A Iref X 16 X 256 ("A" is the binary value of the digital input). II Typically Vref .. (Pin 10) is connected to Ground, and Iref is supplied to V ref, (Pin 12) by means of an external supply Vr (see Figure 15). A resistor inserted between Pin 10 and Ground will minimize temperature drift, and should have a value equivalent to that connected to Pin 12. Any noise or ripple present on the reference current will be present on the output current, and the stability of the reference directly affects the output current's stability. The ground connection for Vref- should be chosen with care so as not to pick up noise (digital or otherwise). The complementary outputs (10 and i;) are high impedance current sources having a compliance range of 3.8 V (-1.3 to T 2.5 V). 10 increases with increasing digital input, while i; decreases. Their sum is a constant equal to 15.94 x Iref. Neither output can be left open - an unused output must be connected to ground or a load resistor. Typically both outputs should be loaded similarly for best speed and accuracy performance. A compensation capacitor must be connected between Pin 11 and Ground to stabilize the amplifier. A 0.01 fJ.F ceramic is satisfactory for most applications, and should be located physically close to the device. The ground side of the capacitor should be noise-free. When op. erated as above, the output(s) will be controlled by the digital inputs, and the MC10318 can be used for various functions such as waveform generation, process control, AOC conversion, and others. Applying the above to the test circuit of Figure 14 yields a gain of 0.0966, which is the 0 dB reference level for the curves of Figures 3-5. FIGURE 16 - AC OPERATION. NONINVERTING Vref Vout Rref VrefRref ae Signal 10> Vin > -2.3) FIGURE 15 - TYPICAL OPERATION If the peak values of the applied ac signal cannot be kept within the above mentioned voltage range, an alternate circuit is shown in Figure 17. FIGURE 17 - AC OPERATION, NONINVERTING (ALTERNATE) Digital Input "A" V,of '00 07 \ 10 :r Common Mode Range - AC Operation The reference amplifier inputs (Pins 10 and 12) may be used to control the output current in conjunction 8e C -2y ':' -5.2V Signallp-p " 2 V) MOTOROLA LINEAR/INTERFACE DEVICES 6-50 Vou! MC10318L9, MC10318L, MC10318CL7, MC10318CL6 sign guidelines apply, and should be implemented. Maximum speed response requires careful PC board layout and choice of components. See Motorola's MECl System Design Handbook for a complete explanation of specifications and characteristics. Figure 19 shows a typical ECl interconnection with recommended values for optimum speed performance. Other values of RT and VTT may be used, but at a slight increase in overall propagation delay. Unused inputs should not be left open, but should be connected to a logic 0 ( -1.8 Vl. or a logic 1 (- 0.9 V). Resistors RT should be connected at the receiving end of the interconnection, i.e. physically located adjacent to the MC10318 inputs, for best speed performance. The compensation capacitor (Pin 11) of Figures 16 and 17 is to be nominally 0.01 IJoF for best overall stability. If frequencies higher than 10 kHz are to be applied to the reference input, a smaller value capacitor will be necessary as indicated by Figures 3-5. However, greater care will be necessary in the breadboarding and PC layout to prevent instabilities caused by unintended feedback paths. 2) When applying a signal to the Vref, (Pin 12) input (see Figure 18), the effect is a direct modulation of the reference current supplied by Vref. Pin 12 is a virtual ground, and therefore the current Iref is equal to: Iref V f V' Rref Ri = .-UL + ...J 10 and r;:; will vary with the reference current, but the ac component will be 180' out of phase with the applied signal. The ac gain of the circuit shown is: AV out AVi FIGURE 19 - = -AxRl 16xRi Applying the above to the test circuit of Figure 11 yields a gain of - 0.3188, which is the 0 dB reference level for the curves of Figures 6-8. The reference current Iref must always flow into Pin 12, requiring that the values of Vref, Rref, Ri, and Vi be chosen so as to guarantee this. FIGURE 18 - STANDARD MECllNTERFACE MECL 10,000 Device I-I-::==~;:t:j:~~ AC OPERATION, INVERTING vn Vref Interfacing a TTL system to the MC10318 is easily accomplished by the use of two MC10124 devices (Figure 20). Vout Rref FIGURE 20 Ri R2 sl~nt - R2 ac I I TTL INTERFACE C -= - 5.2 V -= := Ri/IRref The compensation capacitor (Pin 11) of Figure 18 is to be nominally 0.Q1 IJoF for best overall stability. If frequencies higher than 4 kHz are to be applied, a smaller value capacitor will be necessary as indicated by Figures 6-8. However, greater care will be necessary in the breadboarding and PC layout to prevent instabilities caused by unintended feedback paths. DIGITAL INTERFACE OUTPUT CHARACTERISTICS The digital inputs (Pins 1-8) are compatible with MECl 10,000 series devices over the temperature and VEE range listed on page 3. Standard MECl 10,000 de- The MC10318 DAC has been designed specifically for high-speed operation by incorporating ECl structured inputs, bit switching circuits which are small in size and MOTOROLA LINEAR/INTERFACE DEVICES 6-51 .. MC10318L9, MC10318L, MC10318CL7, MC10318CL6 simple in operation, and high-current complementary outputs (which permits current steering rather than onoff switching). In this manner, very short propagation delays and settling times are possible. FIGURE 21 - PRECISION HIGH-SPEED MEASUREMENTS Clock Output Glitch • All DAC's will produce a glitch at the output when various bits are switched in opposite directions, due to differences in transition times of the switching transis· tors. During the switching period, typically the output current will momentarily seek a value other than the desired final value, and then return to and settle at the final value. This glitch can be several LSBs in magnitude, but of a very short duration (5-6 ns). In some instances, the output current may overshoot, and then undershoot before reaching the final value, resulting in a "glitch doublet." The glitch ismost apparent when switching the higher order bits, and in the case of the MC10318, the maximum glitch generally occurs when switching bit D5 and the lower 5 bits (typically 85 LSB·ns). Switching bit D6 and the lower 6 bits produces a similar but slightly reduced glitch. Switching bit D7 and the seven lower bits (major carry transition) results in a glitch of typically 50 LSB·ns, with an amplitude of 17 LSBs. Switching of lower order bits while maintaining the higher ones constant produces glitches typically of less than 1 LSB in magnitUde, and less than 10 ns in duration, and are generally not considered to be of significance. Glitches can be removed from the output by filtering, or by using a sample-and-hold circuit on the output, or by using de-skewing capacitors on the higher order bits. See Fig. 31. Output glitch is generally specified in terms of glitch energy, which is the area under the curve of the waveform. Most glitches appear as a triangle, and so the area is simply '12 x t x lil, where t is the duration of the glitch, and lil is the amplitude normalized in terms of LSBs. In the case of a glitch doublet, having both positive and negative amplitude, the areas are summed algebraically. It is possible, therefore to have a glitch with zero energy, although having amplitudes of several LSB's. In applications where the output glitch is of concern, steps can be taken to minimize its magnitude. The two main factors to consider are: 1) That the 8 bits of data reach the MC10318 simultaneously; and 2) that the PC board layout prevent noise from reaching the MC10318. It is obvious that if the updated 8 bits are not received by the DAC simultaneously, even an ideal DAC will not produce an ideal waveform. Where simultaneous transmission by the sending device(s) cannot be guaranteed (such as two cascaded counters), latches should be used ahead of the MC10318. The latches should then be clocked after their inputs have settled. Suggested latches are the MC10133/MC10153/MC10168 at the ECL level, and the SN74LS273 at the TTL level. Rref NOTE· Use Buffer or FET probe between MSB and Scope Trigger Nonlinearity Integral nonlinearity has been specified, rather than differential nonlinearity, as this is a better indicator of the maximum error to be expected. Integral nonlinearity is measured by comparing the actual output (at each digital value) with the expected ideal value. The expected values lie along a straight line between zero and the full scale output current. The MC10318 series will not differ from the ideal value by more than the specified nonlinearity. PC Board Layout A proper PC board layout is very important in order to obtain the full benefits of the MC10318's high-speed characteristics. Each of the current paths (10,1;;, lEE, Iref, etc.) must be carefully considered to avoid interference, and isolation from other circuits on the board (particularly digital) is essential. By-passing of all supplies is, of course, necessary, and in some cases, by-passing to VEE may be more beneficial than by-passing to Ground. Sockets should be avoided as the extra pin-to-pin capacitance can slow down the ECL edges and/or the output settling time. PC board layout should include the following guidelines: 1) A dedicated ground track from the power supply to Pin 16 (Gnd); 2) A single dedicated ground track from the power supply to the two load resistors associated with 10 and 1;; - this results in a constant dc current in this track; 3) A separate ground for the circuitry associated with Vref+, Vref., and Comp (Pins 10-12). Any noise on this ground will feed through the reference amplifier and show up on the output; 4) The compensation capacitor must be physically adjacent to Pin 11; 5) Bypass VEE (Pin 9) with a 0.1 flF to the ground line feeding the load resistors; 6) Provide proper terminations at the inputs - the suggested values for RTand Vn will provide best speed response; MOTOROLA LINEAR/INTERFACE DEVICES 6-52 ~C10318L9,~C10318L,~C10318CL7,~C10318CL6 7) Bypass VTI to VEE and to Ground with 0.1 ",F capacitors; 8) If the power supplies are not on the same PC board with the MC10318, bypass VEE and VTI to Ground with (minimum) 10 ",F and 0.1 ",F where the supply voltages enter the PC board; 9) Use of a ground plane is mandatory in all high speed applications; 10) Keep all TIL circuitry tracks separate from the MC10318 by means of ground tracks and/or ground planes. is typically 1 volt, then 1 LSB is approximately 4 mY. Since TIL circuitry can easily generate 50 mV noise on the ground line, the need for isolation is apparent. The above points are not the only ones to be considered by the designer, as each application will have its own individual additional requirements. Propagation Delay The propagation delay is measured from the 50% point of the input transition to the 50% point of the output transition. Since the typical propagation delay is on the order of 5 ns, see Figure 21 and the information in Settling Time if this parameter is to be measured. Switching 1 LSB or all of the bits simultaneously produces no significant difference in propagation delay. Many of the above points have to do with isolating the device from all other circuitry, since most applications involve using the MC10318 (which is 50% analogi in a (noisy) digital circuit. If the output voltage swing FIGURE 22 - SETILING TIME MEASUREMENT 1.0 k +2.5 V 1.0 k -1.2925 V 7.5 Scope n -1.3075 V Scope +2.5 V 2.0 k 2.0 k (Rl) +12 V 360 n LM301A NOTES: 1) Pulse generator outputs - 0.9 V to - 1.8 V, tr and tf "" 2 ns. ,. 2) Adjust vref for full scale output at VA = -1.3000 V. 3) Adjust Rl for -1.3075 V at input of lower comparator. 4) Adjust R2 for -1.2925 V at input of upper comparator. 5) Rl, R2 are 20 turn trim pots. 6) Keep all wiring as short, tidy as possible - isolate all digital and analog supplies, grounds, signal lines, etc. 7) Heavily bypass all supplies at each device, and reference (-) inputs to the comparators. 8) Comparators are high-speed devices, such as AM687ADL 9) Account for comparator offset when setting reference values. MOTOROLA LINEAR/INTERFACE DEVICES 6-53 MC10318L9, MC10318L, MC10318CL7, MC10318CL6 Settling Time The settling time is defined as the time from the 50% point of the input transition to the point at which the output enters into and stays within ± V,LSB (the error band) of the final value. Minimum settling time occurs when the output enters the error band at the maximum slew rate. and then settles out within the band. In actuality, however, the output's slew rate will lessen prior to entering the error band, and then may exit and enter the band once or twice as it settles to its final value. The settling time is determined by the last time the output enters the error band. See Figure 1. II When testing for settling time, the measurement technique used will have an effect on the result. Simply connecting scope probes to an input and output is generally not satisfactory due to the capacitive loading (typically 10-20 pF) of the probes. The rise (fall) time of an ECL input can be significantly increased by such a probe, with the result that the inputs of the MC10318 may be skewed from each other, which, in turn, affects the output. However, probes with low input capacitance, on the order of 2 pF or less (such as FET probes), can be used with very little degradation of the waveforms. The overall propagation delay of the probe (from tip to scope input) must be taken into account, as this can be on the order of 10 ns. When attempting to view the output on a scope, sev· eral factors need to be considered. If the output swing is a full scale transition (e.g., 1.0 V), 1 LSB is 3.9 mY. The scope's amplifier must then be set at a sensitive range (5 mV/cm or 10 mV/cm), with the result that the scope's amplifier will be saturated when the MC10318's output is at the initial valu.e. When the device inputs are switched, the output approaches the final value, but the scope's amplifier will require some time .to come out of saturation, and then may overshoot, causing a false indication. In order to overcome this problem, the MC10318 was tested for settling time by connecting the output to a dual high-speed comparator configured as a window detector. The window is 1 LSB wide, centered . about the final value. The outputs' of the comparators are then monitored on a.scope',-as they indicate when the MC10318 output is settled within the error band. Propagation delays of the comparators, scope probes, and cable lengths are taken into account. See Figure 22. This method of monitoring the DAC's output, although indirect, does not cause changes to the output waveform because of probe loading, characteristics of the scope, or noise which the probe (and cable) may pick up. APPLICATIONS Voltage Output There are two methods of converting the current output of the MC10318 to voltage outputs, depending on the voltage swing desired. For a limited range «3.8 V p-p) the circuit of Figure 23 can be used. FIGURE 23 - Vs RL OV 25.5 +2.5 49 +2.5 74.5 +1.0 3' V. Oto-l.3V +2.5 to 0 V +2.5 to -1.3 V +1.010 -1.0V VOLTAGE OUTPUT Yo -1.3VtoOV Oto +2.5V -1.3 to +2.5 V -1.0to +1.0V Vo= - V,t; ~ ~e Rl+Vs Where a larger voltage swing is required, an op amp is required at the output. The choice of op amp will be based on whether accuracy or speed is of primary im· portance. Where repeatable and stable accuracy is required, the op amp characteristics to consider are openloop gain, offset voltage, bias current, and temperature drift. Where speed is paramount, a wideband amplifier should be used. Slew rate, propagation delay, and settling time of the op amp are the primary factors to evaluate. The PC board should be designed for high frequency operation, possibly using Microstrip or Stripline techniques. See Figure 24 for a suggested circuit. FIGURE 24 - r;; VOLTAGE OUTPUT Connecting 10 and as shown in the above figures places a constant dc load (51 mAl on the Vs supply, thus facilitating its design. The Gain Adjust resistor should be a 20 turn trimpot, as this will result in one turn equaling approximately 1 LSB of adjustment (for the recommended values in the figure). All of the resistors should have similar temperature coefficients for best temperature stability. MOTOROLA LINEAR/INTERFACE DEVICES 6-54 MC10318L9, MC10318L, MC10318CL7, MC10318CL6 WAVEFORM GENERATION FIGURE 25 - FIGURE 26 - SAWTOOTH GENERATOR TRIANGLE GENERATOR Clock Ie 200 elk A 74lS93 e ;'I; ;; ~ o FIGURE 28 FIGURE 27 - OUTPUT CONNECTED TO 75 n LINE SINEWAVE GENERATOR +2.0 V -- -- ............. ...... ...... .. ... ..".." 7S0 Rre! oc " "" . . OA "'i>--L...:===I::t.J-J " " " ." ,. " .." . FA Zo must be matched to within 0.4% to keep initial reflection below 112 LSB in magnitude. NOTE: Terminating Resistors and FIGURE 29 - OUTPUT CONNECTED TO 50 n LINE FIGURE 30 - DIGITAL MULTIPLICATION Logic Inputs +V",I 100- -- 07' 500 Vo 500 NOTE: Terminating Resisto,. Ind 20 Vref +10Y ••• 3Il71JO ••.R> mult be motchod to within 0.4% to keep initial reflection below 112 LSI in magnitude. 20 330 20 Vo _ - At x ::,)( xVR'RzXx1"M x Ru _ -K x A1 x A2 (With aUOQHt8d v....... Vo range isOto -1,GV) .3.0 k ReIietor + 100 n Trimpot obtained by monitoring the differential voltage at Pins 14 and 15 (with equal load resistors). 3) When connecting the outputs to transmission lines (See Figures 28 and 29). proper transmission line theory and techniques must be used for optimum performance. NOTES: 1) When generating waveforms at low frequencies, filtering the output is recommended to smooth out the steps. 2) In many applications, bipolar voltage output may be MOTOROLA LINEAR/INTERFACE DEVICES 6-55 II I s: ... n FIGURE 31 - S ... EVALUATION CIRCUIT BOARD CO Voul An,logln 10 JD t ....4f - .....,p' '-~'"~~ril I ---, 'r- 0 -I 0 ______ , ",J,-"""'G~"" NO,,", I "iJMPRI CO .~An'IoCIGround lWIi ~~ s: ...s: S ... n .., l L Sampling Clookln ------- r ________ , s: ... ... n :ll 0 r o w 1-3SpF Each » r I I Z CO n 0,,,,,,'"::.., III, ~ m 'f U'I <» » :ll s: :::, n .... Z -I m :ll ...." -n """'" I » () I I m 0 m < () m ..,~ IL '.......... ,,:to T t:o -•.......... ' " ________ ~__ en S.,,,,. J' -I!lV 0.'-J'J.'OlloF NoM Odd # Only ~.0nIy 1-0.12&10+0.82& +0.510+2.5 -2..6IO-o.s _OPAMPSAREMC34DD2BP P.P VIN 1 2 4 5 ,--10_ RIN = 500 R1 R2 R3 51 51 51 51 51 0 1300 3000 3000 2700 RIN = 750 R1 R2 R3 RIN = 6000 R1 R2 R3 '" 75 0 x 1200 0 1300 100 150 150 1000 750 1000 91 300 100 1200 910 750 150 120 30 1000 1200 300 100 270 30 750 2700 II _ _________ 1 1200 750 300 300 300 RIN R1 1000 2000 2000 3000 1500 = 10000 R2 0 1000 1500 1200 2700 R3 '" 1000. 510 300 300 S .... ~ I; MC10318L9, MC10318L, MC10318CL7, MC10318CL6 EVALUATION BOARD FOR HIGH SPEED TESTING Introduction In order to facilitate evaluation of the MC10318 DAC, a PC board layout has been developed providing the appropriate signal levels and timing requirements. The board is designed to simultaneously evaluate the MC10315 and the MC10317 flash ADC's in conjunction with the MC10318 DAC, and the system is capable of passing video speed signals at sampling rates of up to 15 MHz. However, the MC10318 may be evaluated alone by installing only the appropriate components. The board may be purchased from Motorola (blank). or the user may make his own from the artwork shown on Figures 33 and 34. Board Specifications Power supply requirements: + 15 V «L - 15 V - 5.2 V (ci + 5.0 V Options Input Signal - The p-p voltage level of the analog input signal (when using the ADC converters) is accommodated by selection of the input resistors from the chart (see schematic). ALT IN - The analog signal may be applied directly to the ADC converters (by-passing the on-board amplifier) by applying the input signal to this connector, and relocating the jumper adjacent to the AlT IN connector. The signal source must be capable of driving 2.5 k ohms in parallel with approx. 140 pF. V+ OUT - A pullup voltage (max. +2.5 V) may be applied to this connector in order to increase the output voltage swing. See the APPLICATIONS section of this data sheet. The 20 ohm load resistors may then be changed to other values. The jumper adjacent to the A OUT connector must be relocated. 100 mA. «, 120 mA. 550 mAo «i 300 mA. Evaluating the MC10318 only - Only those components within the dotted line on the schematic are required. The digital inputs (ECl level) are to be applied to a connector strip located in pins 15-22 of the MC10317 position. + 15 V and - 5.2 V supplies are required. The latches transfer the information on the rising edge of the clock. Sampling clock: VIH = - 0.9 V, Vil = -1.8 V (ECl levels) terminated with 50 ohms, 15 MHz max. Analog Input level: Selectable, see chart. Analog Input Impedance: Selectable, see chart. Output level: 0 to - 1.0 V, user alterable. Digital Input levels: (When ADC converters are not included) VIH = - 0.9 V, Vil = -1.8 V (ECl levels). Video Testing The above described printed circuit board has been tested, with a standard video test signal, for differential phase and differential gain (40 IRE sub-carrier on a 100 IRE ramp, sampled at 14.3 MHz) with results of 1% gain error and 20 phase error. The signal was obtained from a Tektronix 147A video test generator, applied to the AlT IN connector. The output (of the MC10318) was configured into a 75 ohm output impedance, and applied to a vector scope. Tests conducted with the Evaluation Board in a video system (video camera and a TV monitor) showed no visible degradation of picture quality (at 8 bits resolution). The board provides an easy means of testing picture quality at reduced number of bits, or for conducting any test on a digitized video signal. Operation The power supplies should be connected as shown in Figure 32. The leads should be short and direct. The ClK Input (necessary if the ADC converters and/ or the latches are used) uses a BNC connector, and is terminated with 50 ohms to ground. The Analog Input level (if the ADC converters are installed) depends on the input resistors selected (see chart). The output ofthe buffer amplifier should produce a maximum 4 V p-p signal, or an amplitude equal to the references (user adjustable). The Analog Output is 0 to - 1.0 V, corresponding to a digital input (to the MC10318) of FF and 00 respectively. Output impedance is normally 20 ohms, but may be varied by the user (see previous text). MOTOROLA LINEAR/INTERFACE DEVICES 6-57 II MC10318L9, MC10318L, MC10318CL7, MC10318CL6 FIGURE 32 - COMPONENT LOCATION AND EXTERNAL CONNECTIONS Alternate Input (See Text) MC10315/MC10317/MC10318 ADC - DAC EVALUATION SYSTEM MOTOROLA PHOENIX, AZ.. Input Signal VRT, MC1'J315 VRS, Me 10315 VRT, MelD317 VRB.MC10317 Output Pullup VoHage (See Teltt) 15 V 15 V 5.2 V 5.0 V Power Supply Power Power Supply Supply Power Supply MOTOROLA LINEAR/INTERFACE DEVICES 6-58 MC10318L9, MC10318L, MC10318CL7, MC10318CL6 FIGURE 33 - COMPONENT SIDE ARTWORK (TOP) (OVERALL SIZE = 6.00" x 8.00") a ·I I ·I ·I · I I I I ·R MOTOROLA LINEAR/INTERFACE DEVICES 6-59 II MC10318L9, MC10318L, MC10318CL7, MC10318CL6 FIGURE 34 - SOLDER SIDE ARTWORK (BOnOM) II MOTOROLA LINEAR/INTERFACE DEVICES 6-60 MC10318l9, MC10318L, MC10318CL7, MC10318CL6 FIGURE 35 8 MC10318 EQUIVALENT CIRCUIT MSB 2ndMSBL r ---- ttL? ?L 7654321 16 - - - - - - - - - - -1I I I I .---+-__ I A I 1 1 r r I I I I 1 1 1 1 1 I I I I A I I I +r +r +r ~ r -i T-~ ~~ut ~1: ir: r:1 r:11 ill-tl~::ut / 1 I I 1 1 I 1 I I 1 1 I 1 Detail A - 8 Times 1- 12o---~---------, 10 lLSB r I-l-II A I A I A I A I I I I 1 I I 1 1 I I I ;1- }rI I 50 k A r cr------.4 11 MOTOROLA LINEAR/INTERFACE DEVICES 6-61 I I 1 I II ® MCI0319 MOTOROLA Specifications and Applications Information HIGH SPEED 8-BIT ANALOG-TO-DIGITAL FLASH CONVERTER HIGH SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC10319 is an 8-bit high speed parallel flash AID converter. The device employs an internal GrAY code structure to eliminate large output errors on fast slewing input signals. It is fully TTL compatible, requiring a + 5.0 V supply and a wide tolerance negative supply of - 3.0 to - 6.0 V. Three-state TTL outputs allow direct drive of a data bus or common I/O memory. The MC10319 contains 256 parallel comparators across a precision input reference network. The comparator outputs are fed to latches and then to an encoder network, to produce an 8-bit data byte plus an overrange bit. The data is latched and converted to 3-state LS-TTL outputs. The overrange bit is always active to allow for either sensing of the overrange condition or ease of interconnecting a pair of devices to produce a 9-bit AID converter. Applications include Video Display and Radar processing, high speed instrumentation and TV Broadcast encoding. II L SUFFIX CERAMIC PACKAGE CASE 623-05 • Internal Grey Code for Speed and Accuracy, Binary Outputs • 8-Bit Resolution/9:Bit Typical Accuracy • Easily Interconnected for 9-Bit Conversion • 3-State LS-TTL Outputs with True and Complement Enable Inputs PIN DIAGRAM • 25 MHz Sampling Rate • Wide Input Range: 1.0-2.0 Vp _p Between ±2.0 V • Low Input Capacitance: 50 pF • Low Power Dissipation: 618 mW • No Sample/Hold Required for Video Bandwidth Signals • Single Clock Cycle Conversion BLOCK DIAGRAM Logic Analog GND Input VEE vee(D) (13) (11.17) r Vin (14) MC10319 VAT (24) Bia-;- r----' I I I I: I I I I :I I I : I I I : I 256 0. I Comparators ; I I I 1 I I: I IL ____ I ~ L.. ___ 1 J r----' I I I I I I : :J I 1 Differential I : (2.12. 16.22) Latch Array I IL_ b,' ~ 01 r---- I C d D' I Output latches T rev I 0 e rans ator I : r I and I Eel-TTL I I~onverters r : I : I __~ I I I L ____ I ~ VEE 05 (6) I I I VIN GND 06 (5) I G Range (3) 07 141 I : : I' Vee(AI Over- I I I IL D4(7J 03 (81 02 (91 01 (10) DO (211 VAS (231 (19) Clock (181 Enable (201 Enable Temperature Range O· to +700C MOTOROLA LINEAR/INTERFACE DEVICES 6-62 MC10319 ABSOLUTE MAXIMUM RATINGS Parameter Supply Voltage Positive Supply Voltage Differential Symbol Value Unit VCC(A),(D) VEE +7.0 -7.0 Vdc VCC(D)VCC(A) -0.3 to +0.3 Vdc Vdc Digital Input Voltage (Pins 18-20) VI(D) -0.5to +7.0 Analog Input Voltage (Pins 1, 14,23,24) VI(A) -2.5 to +2.5 Vdc Reference Voltage Span (Pin 24-Pin 23) 2.3 Vdc Applied Output Voltage (Pins 4-10, 21 in 3-State) - -0.3 to + 7.0 Vdc Junction Temperature TJ +150 °c Storage Temperature Tsta -65 to + 150 °c .. . Devices should not be operated at these values. The Recommended Operating Limits provide gUidelines for actual device operation . RECOMMENDED OPERATING LIMITS Parameter Power Supply Voltage (Pin 15) (Pins 11, 17) Symbol Min Typ Max Unit VCC(A) VCC(D) +4.5 +5.0 +5.5 Vdc Ll.VCC -0.1 0 +0.1 Vdc Power Supply Voltage (Pin 13) VEE -6.0 -5.0 -3.0 Vdc Digital Input Voltages (Pins 18-20) VI(D) 0 - +5.0 Vdc Analog Input (Pin 14) VI(A) -2.1 - +2.1 Vdc Voltage @ VRT (Pin 24) VRT -1.0 - +2.1 Vdc Voltage @ VRB (Pin 23) VRB -2.1 +1.0 Vdc VRT - VRB Ll.VR +1.0 +2.1 Vdc - Vdc 5.5 Vdc VCC(D) - VCC(A) VRB - VEE - Applied Output Voltage (Pins 4-10, 21 in 3-State) Vo 0 - tCKH tCKl 5.0 15 20 20 fClK 0 TA 0 - Clock Pulse Width - High low Clock Frequency Operating Ambient Temperature 1.3 - - ns 25 MHz +70 °c ELECTRICAL CHARACTERISTICS (0° < TA < 70°C, VCC = 5.0 V, VEE = - 5.2 V, VRT = + 1.0 V, VRB = -1.0 V, except where noted.) Parameter TRANSFER CHARACTERISTICS (feKl = Symbol Min N - Typ Max Unit 8.0 Bits ±1.0 lSB 25 MHz) Resolution MON Monotonicity Integral Nonlinearity INl Differential Nonlinearity DNl Differential Phase (See Figure 16) Differential Gain (See Figure 16) - Bits Guaranteed ~ ±1I4 - ±1.0 DP - 1.0 - DG - 1.0 - - - MOTOROLA LINEAR/INTERFACE DEVICES 6-63 % lSBN PSRR Power Supply Rejection Ratio (4.5 V < Vee < 5.5 V, VEE = -5.2 V) (-6.0 V < VEE < -3.0 V, Vee = +5.0 V) lSB Deg. 0.1 0 - II MC10319 continued (0· < TA < 70·C, VCC ~ 5.0 V, VEE ~ - 5.2 V, VRT ~ + 1.0 V, ELECTRICAL CHARACTERISTICS - VRB ~ -1.0 V, except where noted.1 I Parameter Symbol I Min Typ Max Unit ANALOG INPUT (PIN 141 @ Vin ~ VRB (See Figure 51 IINL -100 0 ...,.. poA ~ VRT (See Figure 51 IINH - 60 150 p.A Input Capacitance (VRT - VRB ~ 2.0 V, See Figure 41 Cin - 36 - pF Input Capacitance (VRT - VRB ~ 1.0 V, See Figure 41 Cin 55 - pF 0.1 - LSB 130 156 Input Current Input Current @ Vin Bipolar Offset Error VOS - Rret 104 TC - +0.29 Cret - 25 REFERENCE ~ Ladder Resistance (VRT to VRB, TA 25°CI Temperature Coefficient Ladder Capacitance (Pin 1 openl ENABLE INPUTS (VCC ~ - n %rC pF 5.5 VI (See Figure 61 Input Voltage - High (Pins 19-201 VIHE 2.0 - - V Input Voltage - Low (Pins 19-201 VILE - - 0.8 V 2.7 V IIHE Input Current ~v Input Current (w 0.4 V (CV EN (0 < EN < 5.0 VI 0 20 poA -400 -100 - poA EN (EN ~ 0 VI IIL2 -400 -100 Input Current (ixi 0.4 V (ix, EN (EN ~ 2.0 VI IIL3 -20 -2.0 VIKE -1.5 -1.3 Input Voltage High VIHC 2.0 - - Vdc Input Voltage Low VILC - - 0.8 Vdc Input Current @J 0.4 V (See Figure 71 IILC -400 -80 Input Current @J 2.7 V (See Figure 71 IIHC -100 -20 - poA VIKC -1.5 -1.3 - Vdc VOH 2.4 3.0 - V VOL - 0.35 0.4 ISC - 35 Input Current (w 0.4 V ~ - IILI Input Clamp Voltage (11K CLOCK INPUT (VCC ~ ~ -18 mAl poA poA V 5.5 VI Input Clamp Voltage (11K ~ -18 mAl poA DIGITAL OUTPUTS High Output Voltage (lOH Low Output Voltage (lOL ~ ~ -400 poA. VCC ~ 4.5 V, See Figure 81 4.0 rnA, See Figure 91 Output Short Circuit Current' (VCC ~ 5.5 VI Output Leakage Current (0.4 < Vo < 2.4 V, See Figure 3, VCC ~ 5.5 V, 00-07 in 3-State Model ILK Output Capacitance (00- 07 in 3-State Model *Only one output IS Cout -50 - 9.0 +50 V rnA p.A - pF to be shorted at a time, not to exceed 1 second. POWER SUPPLIES VCC(AI Current (4.5 V < VCC(AI < 5.5 VI (Outputs unloadedl ICC (AI 10 17 25 mA VCC(OI Current (4.5 V < VCC(OI < 5.5 VI (Outputs unloadedl ICC(OI 50 90 133 rnA lEE -14 -10 -6.0 rnA 618 995 mW VEE Current (-6.0 V < VEE < -3.0 VI Power Oissipation (VRT - VRB ~ 2.0 VI (Outputs unloadedl Po - MOTOROLA LINEAR/INTERFACE DEVICES 6-64 MC10319 TIMING CHARACTERISTICS (TA = 25°C, VCC = + 5.0 V, VEE = - 5.2 V, VRT = + 1.0 V, VRB = - 1.0 V, See System Timing Diagram.) Parameter Symbol Min Typ Max Unit INPUTS Min Clock Pulse Width - High tCKH - 5.0 - ns Min Clock Pulse Width - Low tCKL - 15 - ns Max Clock Rise, Fall Time tR,F - 100 - Clock Frequency fCLK 0 30 25 - 19 - ns tAD 4.0 - ns tH - 6.0 - ns Data High to 3-State from Enable Low" tEHZ 27 - ns Data Low to 3-State from Enable Low" tELZ - 1S ns Data High to 3-State from Enable High" tEHZ - 32 - Data Low to 3-State from Enable High" tELZ - 1S - ns tEOV - 15 - ns tEOV - 16 - ns ttr - S.O - ns ns MHz OUTPUTS New Data Valid from Clock Low tCKDV Aperture Delay Hold Time Valid Data from Enable High (Pin 20 Valid Data from Enable Low (Pin 19 = 0 V)" = 5.0 V)" Output Transition Time" (10%-90%) *See Figure 2 for output loading. PIN DESCRIPTIONS Symbol Pin Description VRM 1 The midpoint of the reference resistor ladder. Bypassing can be done at this point to improve performance at high frequencies. GND 2,12 16,22 Power supply and signal ground. The four pins should be connected directly together, and through a low impedance to the power supply. OVR 3 Overrange output. Indicates Vin is more positive than VRT-1/2 LSB. This output does not have 3-state capability. 07-00 4-10, 21 Digital Outputs. 07 (Pin 4) is the MSB, DO (Pin 21) is the LSB. LSTTL compatible with 3-state capability. VCC(D) 11,17 Power supply for the digital section. +5.0 V, ± 10% required. VEE 13 Negative Power supply. Nominally - 5.2 V, it can range from - 3.0 to -6.0 V, and must be more negative than VRB by > 1.3 V. Vin 14 Signal voltage input. This voltage is compared to the reference to generate a digital equivalent. Input impedance is nominally 16-33 k!l in parallel with 36 pF. VCC(A) 15 Power supply for the analog section. + 5.0 V, ± 10% required. CLK 1S Clock input. TTL c'lmpatible. EN 19 Enable input. TTL compatible, a Logic "1" (and Pin 20 a Logic "0") enables the data outputs. A Logic "0" puts the outputs in a 3-state mode. EN 20 Enable input. TTL compatible, a Logic "0" (and Pin 19 a Logic "1") enables the data outputs. A Logic "1" puts the outputs in a 3-state mode. VRB 23 The bottom (most negative point) of the internal reference resistor ladder. VRT 24 The top (most positive point) of the internal reference resistor ladder. MOTOROLA LINEAR/INTERFACE DEVICES 6-65 ns II MC10319 FIGURE 1 - SYSTEM TIMING DIAGRAM tCKH--...t----tCKL----I~ ~-------.:-3.0 1'-1_.5_V_ _ _ _ _ _ _JI 1.5 V Clock V 1.5 V l " - - - - - - - tCKDV and tH measured at output levels of 0.8 and 2.4 volts. ------ --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ------ II EN High Data Output Low Data Output ___.r___ Outputs ___.-j -3-State FIGURE 2 - Active DATA OUTPUT TEST CIRCUIT FIGURE 3 - OUTPUT 3-STATE LEAKAGE CURRENT 200 VCC 1.0 k!1 100 1 J DO-D7 /)--_-_*~ Cl j 3.0 k!1 ;;7 Diodes = 1N914 or equivalent. Cl = 15 pF -200 -1.0 I Pin 19 = 0 V 1.0 MOTOROLA LINEAR/INTERFACE DEVICES 6-66 O°C < TA < WC 2.0 3.0 4.0 APPLIED VOLTAGE (VOLTSI 5.0 ~O. 7.0 MC10319 FIGURE 4 - FIGURE 5 - INPUT CAPACITANCE @ VIN (PIN 141 100 INPUT CURRENT @ VIN (PIN 141 80 I I 25'C_ D'C I ~ I 80 60 \: 40 \: z ~ <3 #- ~I- V \: ~ ~ ~70'C VRT - VRB - VRT - 50 -2.5 "r -- -110 -130 I V I o FIGURE 8 - +2.5 CLOCK INPUT CURRENT -- +20 1 .... ~ I- ~ -20 # ~ a -40 7~ !3 ~ -60 V II / #j ~5'C./ ,,/ ~ -80 J....- ~ -I-- VRT +40 +70'~_ ~-90 VRB AGURE 7 - INPUT CURRENT @ ENABLE, ENABLE Pin 19 Current 2.0V50 MHz, which is more than sufficient for the allowable (Nyquist theory) input frequency of 12.5 MHz. The current into Pin 14 varies linearly from 0 (when Vin = VRB) to =60 /LA (when Vin = VRT). If Vin is taken below VRB or above VRT, the input current will remain at the value corresponding to VRB and VRT respectively (see Figure 5). However, Vin must be maintained within the absolute range of ± 2.5 volts (with respect to ground) - otherwise excessive currents will result at Pin 14, due to internal clamps. The input capacitance at Pin 14 is typically 36 pF if [VRT - VRBI is 2.0 volts, and increases to 55 pF if [VRT - VRBI is reduced to 1.0 volt (see Figure 4). The capacitance is constant as Vin varies from VRT down to =0.1 volt above VRB. Taking Vin to VRB will show an increase in the capacitance of =50%. If Vin is taken above VRT, or below VRB, the capacitance will stay at the values corresponding to VRT and VRB, respectively. The source impedance of the signal voltage should be maintained below 100 0. (at the frequencies of interest) in order to avoid sampling errors. VRT + VRB _ 1/2 LSB 2.0 In most applications, bypassing this pin to ground (0.1 /LF) is sufficient to maintain accuracy. In applications involving very high frequencies, and where linearity is critical, it may be necessary to trim the voltage at the midpoint. A means for accomplishing this is indicated in Figure 18. POWER SUPPLIES VCC(A) (Pin 15) is the positive power supply for the comparators, and VCC(D) (Pins 11, 17) is the positive power supply for the digital portion. Both are to be + 5.0 volts, ± 10%, and the two are to be within 100 millivolts of each other. There is indirect internal coupling between VCC(D) and VCC(A). If they are powered separately, and one supply fails, there will be current flow through the MC10319 to the failed supply. MOTOROLA LINEAR/INTERFACE DEVICES 6-69 • MC10319 The comparator output latches provide the circuit with an effective sample-and-hold function, eliminating the need for an external sample-and-hold. ICC(A) is nominally 17 mAo and does not vary with clock frequency or with Vin. It does vary linearly with VCC(A). ICC(D) is nominally 90 mA. and is independent of clock frequency. It does vary: however. by 6-7 mA as Vin is changed. with the lowest current occuring when Vin = VRT. It varies linearly with VCC(D). VEE is the negative power supply forthe comparators, and is to be within the range - 3.0 to - 6.0 volts. Additionally, VEE must be at least 1.3 volts more negative than VRB.IEE is a nominal -10 mA, and is independent of clock frequency, Vin, and VEE. For proper operation, the supplies must be bypassed at the IC. A 10 /-,F tantalum, in parallel with a 0.1 /-,F ceramic is recommended for each supply to ground. ENABLE INPUTS' The two Enable inputs (Pins 19, 20) are TTL compatible, and are used to change the data outputs (07-00) from active to 3-state. This capability allows cascading two MC10319s into a 9-bit configuration, flip-flopping two MC10319s into a 50 MHz configuration, connecting the outputs directly to a data bus, multiplexing multiple converters, etc. See the Applications Information section for more details. For the outputs to be active, Pin 19 must be a Logic "'," and Pin 20 must be a Logic "0." Changing either input will put the outputs into the high impedance mode. The Enable inputs affect only the state of the outputs - they do not inhibit a conversion. The input current into Pins 19 and 20 is shown in Figure 6, and the input - output timing is shown in Figure 1 and 20. Leaving either pin open is equivalent to a Logic "1," although good design practice dictates that an input should never be left open. The Overrange output (Pin 3) is not affected by the Enable inputs as it does not have 3-state capability. DIGITAL SECTION CLOCK The Clock input (Pin 18) is TTL compatible witl]..a typical frequency range of 0 to 30 MHz. There is no duty cycle limitation, but the minimum' low and high times must be adhered to. See Figure 7 for the input current requirements . The conversion sequence is shown in Figure 19, and is as follows: OUTPUTS • On the rising edge, the data output latches are latched with old data, and the comparator output latches are released to follow the input signal (Vin). The data outputs (Pins 4-10,21) are TTL level outputs with high impedance capability. Pin 4 is the MSB (07), and Pin 21 is the LSB (DO). The eight outputs are active as long as the Enable inputs are true (Pin 19 = high, Pin 20 = low). The timing of the outputs relative to the Clock input and the Enable inputs is shown in Figures 1 and 20. Figures 8 and 9 indicate the output voltage versus load current, while Figure 3 indicates the leakage current when in the high impedance mode. The output code is natural binary, depicted in the table below. The Overrange output (Pin 3) goes high when the input, Vin, is more positive than VRT - 1/2 LSB. This output is always active - it does not have high impedance capability. Besides being used to indicate an input overrange, it is additionally used for cascading two MC10319s to form a 9-bit AID converter (see Figure 27). • During the high time, the comparators track the input signal. The data output latches retain the old data. • On the falling edge, the comparator outputs are latched with the data immediately prior to this edge. The conversion to digital occurs within the device. and the data output latches are released to indicate the new data within 20 ns. • During the clock low time, the comparator outputs remain latched, and the data output latches remain transparent. A summary of the sequence is that data present at Vin just prior to the Clock falling edge is digitized and available at the data outputs immediately after that same falling edge. VRT, VRB (volts) Input >VRT VRT VRT VRT - - 1/2 LSB 1/2 LSB 1 LSB 1-1/2 LSB Midpoint VRB + 112 LSB 2.044 V 2.044 V 2.040 V 2.036 V 1.024 V 4.0 mV 0.9961 V 0.9961 V 0.992 V 0.988 V 0.000 V -0,9961 V <-1,0 V >0.9980 V 0,9980 V 0.9961 V 0.9941 V 0.5000 V 1.95mV 2_4-Q-~"""--' VRB ECl-to-TTl Converter and Latches 3 I 4 ------ D I F I 3 I IS IT IA IT I E I IC I I I R , C F E R E N T Grey I Code to A l Binary Converter l A T C H 5 6 8 9 10 21 L A R R A Y Reference Resistor ladder 130 !1 R 256 0.508 !1 2.12.16.22 19 18 20 Enable Clock 10-25 MHz) Enable ) - - - - - - ' MOTOROLA LINEAR/INTERFACE DEVICES 6-73 D7 D6 05 D4 IY IT VEE 1- 3.0 to - 6.0 V) OR 03 D2 01 DO TTL Outputs II MC10319 J FIGURE 18 - ADJUSTING VRM FOR IMPROVED LINEARITY FIGURE 21 - PRECISION VRT VOLTAGE SOURCE R1 25 MHz Clock VRT 500n ClK OR VRT D7 • • • VRM • •• }o",~ '--F Data • • 0.1~ DO VRB VRB Input Signal Yin VEE I I 12.0 kn 1 1/ 1 L__ GND = 100 n for +5.0 V 620 n for +15V , I 1 1 R1 1.5kl I 2N2222A /1 or 1 L 1 ":.J I kn -= -l to VRT 620 0.1 -5.2 V 10 JLF 2.5 V References II Line Regulation FIGURE 19 - CONVERSION SEQUENCE MC1400G2 MC1403U MC1403AU 1.0mV 0.5mV TC (ppmrC) max 25 40 25 l1Vout for 0-70°C 4.4mV 7.OmV 4.4mV Initial Accuracy ±O.2% ±1% ±1% 0.5mV '------v---./ ~rator Outputs Latched (Valid data available after tCKDV) FIGURE 22 - Latches Comparator Outputs, VRT. VOLTAGE SOURCE +5.0 to - -.......-:--l '-,-":,1~._25_to..... 2._0_0_V_ _ to VRT +40 V v In LM317LZ 'Out Opens Data Output Latches Adj. Data Outputs Latched. Releases Comparator latches 240 510 200 FIGURE 20 - ENABLE TO OUTPUT CRITICAL TIMING LM317LZ Line Regulation EN~ -/ 12 1- -/211;;; DO-D7~ 60 l1Vout for 0-70°C 8.4 mV Initial Accuracy Timing (o. 07-00 measured where waveform starts to change. Indicated time values are typical ((L 25°C. and are in ns. MOTOROLA LINEAR/INTERFACE DEVICES 6-74 1.0 mV TC (ppmrC) max ±4% MC10319 FIGURE 23 - VRB VOLTAGE SOURCES 0.1 I -5.0 to I -40V I R2 ~0.1 R2 ~ ~ 100!l for 620!l for 620!l for 3.0 k!l for -5.0 V -15 V -5.0 V -15 V 100 MC1400G2 LM337MT line Regulation 1.0 mV 1.0 mV TC (ppmrC) max 25 48 il.Vout for 0-70'C 4.4mV 6.7 mV Initial Accuracy ±O.2% ±4% AGURE 24 - I J I I I I I I I - 5.0 to -40 V o-~---------------' Rl In rL-M-3-37-M-T' Out -1.25 to- 2.00 V to -r--VRB 120 ..1.-, n __ 10 /LF t-A_d_i . _ _~ 1.0 /L F COMPOSITE VIDEO WAVEFORM FIGURE 25 - SIN2 X WAVEFORM MOTOROLA LINEAR/INTERFACE DEVICES 6-75 270 MC10319 FIGURE 26 - APPLICATION CIRCUIT FOR DIGITIZING VIDEO +5.0 V 0-------"""-",,,----,-----, 14.3 MHz Clock)-------, EN VCCIA) CLK OR MC10319 07 • • • DO VRM -1.0 V VRB Output Data Vin VEE 1.5 kO II 620 -2.5 V 3.0 kfl GND n 112 W 0.1:;;J; -15VO-~--~-----~--~ 3.0 pF NOTES: 1) MC34080's powered from ± 15 V supplies. MC34083 (Dual) may be used. 2) Bypass capacitors required at power supply pins of ALL Ie's. 3) Ground plane required over all parts of circuit board. 4) Care in layout around MC34080's necessary for good frequency response. 5) A 1 ~ MC34002. 1.0 kfl Video Input ~ ",F 25 n 11 Volt p_p) r---.~_'l/V--_--1 50n MOTOROLA LINEAR/INTERFACE DEVICES 6-76 MC10319 FIGURE 27 - 9-BIT AID CONVERTER GND OR EN 0-25 MHz 0-....- - - - - - - - 1 CL.K 07 Clock +2.0Vo-.....- - - j VRT r MC10319 0.1 VRM VRB • • • • DO EN ,----+-+--i Vin VEE VCe(D) VCC(A) 0.1 500n ~ ClK -2.0 V t 0.1 VEE VCC(D) VCC(A) VRT VRB 08 07 07 • • • • o - _ - - - - - - - j Vin +5.0 V OR MC10319 ClK Vin OR EN VRM DO EN GND MOTOROLA LINEAR/INTERFACE DEVICES 6-77 DO Latches (Optional) .. MC10319 FIGURE 28 - 50 MHz II-BIT AID CONVERTER 50 MHz Clock *"" CK Q D 74F74'~~ GND EN EN OR ClK D7 +1.0V ;.~ q MC10319 (#1) VRT • •• • VRM DO VRB V· In +5.0V VEE VCC(D)' VCC(A) 1$"' $"' 5.2 V EN VEE VCC(D)'VCC(A) ' - - - - VRT ro~ II -1.0V VRM OR OR VRB MC10319 (#2) ClK .- D7 Vin • • • +5.0Vc>-- EN DO Yin 74F32 • GND D7 - = • :: • DO • • • lat;;hes ..l.. (Optional) 50 MHz Clock I r-- Q~ I I I : DO-D7 #1-+(Valid Data>_-_~_ _ _~ DO-D7#2~ I ~>--_ _ ~ FIGURE 29 - -5.0 VOLT REGULATOR Yin (+4.5 to +5.5 V) 100 ILF l 2.20 Line Regulation 4.5 V < Yin < 5.5 V, 'out = 10 rnA 0.16% load Regulation Yin = 5.0 V, 8.0 rnA < 'out < 20 rnA 0.4% Output Ripple Vin Short Circuit lout Vin 5 Efficiency Vin 3.0 kO Vout t--.J"""'':'---........-o-5.0 V/20 rnA 470 ILF l 1.0 ILH l470 ILF MOTOROLA LINEAR/INTERFACE DEVICES 6-78 = 5.0 V, lout = 20 rnA = 5.0 V, Rl = 0.1 0 = 5.0 V, lout = 50 rnA 2 rnV p _p 140 rnA 52% MC10319 GLOSSARY LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage. APERTURE DELAY - The time difference between the sampling signal (typically a clock edge) and the actual analog signal converted. The actual signal converted may occur before or after the sampling signal, depending on the internal configuration of the converter. MONOTONICITY - The characteristic of the transfer function whereby increasing the input code (of a DAC), or the input signal (of an A-D), results in the output never decreasing. BIPOLAR INPUT - A mode of operation whereby the analog input (of an A-D), or output (of a DAC), includes both negative and positive values. Examples are - 1.0 to + 1.0 V, -5.0 to +5.0 V, -2.0 to +S.O V, etc. MSB - Most Significant Bit. It is the highest order bit of a binary code. BIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the OOH to 01 H transition, where the ideal location is 1/2 LSB above the most negative reference voltage. NATURAL BINARY CODE - A binary code defined by: N = An2n + ... + A323 + A222 + A121 + A020 where each "A" coefficient has a value of 1 or O. Typically, all zeroes correspond to a zero input voltage of an A-D, and all ones correspond to the most positive input voltage. BIPOLAR ZERO ERROR - The error (usually expressed in LSBs) of the input voltage location (of an A-D) of the SOH toS1H transition. The ideal location is 1/2 LSB above zero volts in the case of an A-D setup for a symmetrical bipolar input (e.g., -1.0 to + 1.0 V). NYQUIST THEORY - See Sampling Theorem. DIFFERENTIAL NONLINEARITY - The maximum deviation in the actual step size (one transition level to another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by 2 n (n = number of bits). This error must be within ± 1 LSB for proper operation. ECL - OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes correspond to the most negative input voltage (of an A-D), while all ones correspond to the most positive input. POWER SUPPLY SENSITIVITY - The change in a data converter's performance with changes in the power supply voltage(s). This parameter is usually expressed in percent of full scale versus Emitter coupled logic. FULL SCALE RANGE (ACTUAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D). t.v. QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of ±1/2 LSB. FULL SCALE RANGE (lDEALl- The difference between the actual minimum and maximum end points of the analog input (of an A-Dl, plus one LSB. GAIN ERROR - The difference between the actual and expected gain (end point to end point), with respect to the reference, of a data converter. The gain error is usually expressed in LSBs. RESOLUTION - The smallest change which can be discerned by an A-O converter, or produced by a DAC. It is usually expressed as the number of bits, n, where the converter has 2 n possible states. GREY CODE - Also known as reflected binary code, it is a digital code such that each code differs from adjacent codes by only one bit. Since more than one bit is never changed at each transition, race condition errors are eliminated. SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an A-D must be no less than 2x the highest frequency (of interest) of the analog signal to be digitized in order to preserve the information of that analog signal. INTEGRAL NONLINEARITY - The maximum error of an A-D, or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningfull. This parameter is the best overall indicator of the device's performance. UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an A-Dl. or output range (of a DACl, includes values of a signal polarity. Examples are o to +2.0 V, 0 to -5.0 V, +2.0 to +s.o V, etc. LSB - Least Significant Bit. It is the lowest order bit of a binary code. UNIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the OOH to 01 H transition, where the ideal location is 1/2 LSB above the most negative input voltage. LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage. MOTOROLA LINEAR/INTERFACE DEVICES 6-79 ® MC10321 MOTOROLA Specifications and Applications Information HIGH SPEED 7-BIT ANALOG-TO-DIGITAL FLASH CONVERTER a HIGH SPEED 7-BIT ANALOG-TO-DIGITAL FLASH CONVERTER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC10321 is a 7-bit high speed parallel flash AID converter, which employs an internal Grey Code structure to eliminate large output errors on fast slewing input signals. It is fully TTL compatible, requiring a + 5.0 volt supply, and a negative supply between - 3.0 and - 6.0 volts. Three-state TTL outputs allow direct connection to a data bus or common I/O memory. The MC10321 contains 128 parallel comparators wired along a precision input reference network. The comparator outputs are fed to latches, and then to an encoder network which produces a 7-bit data byte, plus an overrange bit. The data is latched and converted to three-state LSTTL levels. Enable inputs permit setting the outputs to a three-state condition. The overrange bit is always active to allow for sensing of the overrange condition, and to ease the interconnection of two MC10321s into an 8-bit configuration. The MC10321 is available in a 20-pin standard plastic and SOIC packages. Applications include Video displays (digital TV, picture-inpicture, special effects), radar processing, high speed instrumentation, and TV broadcast. P SUFFIX PLASTIC PACKAGE CASE 738-03 DWSUFFIX PLASTIC PACKAGE CASE 7510-03 SO-20 PIN CONNECTIONS • Internal Grey Code for Speed and Accuracy (Top View) • 25 MHz Sampling Rate • 7-Bit Resolution with 8-Bit Accuracy • Easily Cascadable into an 8-Bit System • Three-State LSTIL Outputs with True and Complement Enable Inputs D2 D1 • Low Input Capacitance: 25 pF • No Clock Kick-Out Currents on Input or Reference • Wide Input Range: 1.0-2.1 Volts within a ±2.1 Volt Range DO Gnd VCC(D) • No Sample and Hold Required for Video Applications • Edge Triggered Conversion - No Pipeline Delay Clock • True and Complement Enable Inputs for Three-State Control • Standard DIP and Surface Mount Packages Available • Operating Temperature Range: _40° to +85°C EN Over Range VCC(D) Gnd ORDERING INFORMATION Temperature Device MC10321P MC10321DW MOTOROLA LINEAR/INTERFACE DEVICES 6-80 Range _40° to +85°C Package Plastic DIP SO-20 MC10321 BLOCK DIAGRAM VCC(O) (Analog In) Yin VRT Gnd C)--!==:;--;:1=t-------;:t:::t;-----------, r L~ias....J r-I l -, I I I I MC10321 r-l-, r--~u~:--i I ,,~I 1"0 0 I I I I I I ~~i~ I I I _.J I I I (!ll- I I I L ___ ..J Over Range latches and ECl-TTL Converters 06 05 D4 03 I I I 02 01 I I 00 Clock ABSOLUTE MAXIMUM RATINGS Symbol Value Units Supply Voltage VCC(A), VCC(O) VEE +7.0 -7.0 Vdc Positive Supply Voltage Differential Vdc Parameter VCC(O)-VCC(A) -0.3, +0.3 Oigital Input Voltage (Pins 13-15) VI(O) -0.5, +7.0 Vdc Analog Input Voltage (Pins 5, 6, 7) VI(A) -2.5, +2.5 Vdc - +2.3 Vdc Applied Output Voltage (00-06 in 3-State) -0.3, + 7.0 Vdc Junction Temperature TJ +150 Storage Temperature Tsto -65, + 150 °c °c Reference Voltage Span (Pin 7-Pin 5) DeVices should not be operated at these values. The "Recommended Operatmg Limits" provide gUidelines for actual device operation. RECOMMENDED OPERATING LIMITS Parameter Symbol Min Typ Max Units VCC(A) VCC(O) 6.VCC +4.5 +4.5 -0.1 +5.0 +5.0 0 +5.5 +5.5 +0.1 Vdc -5.0 Power Supply Voltage (Pin 9) Power Supply Voltage (Pins 10, 16) VCC(O)-VCC(A) VEE -6.0 Oigitallnput Voltages (Pins 13-15) - 0 Analog Input (Pin 6) Vin -2.1 Voltage @ VRT (Pin 7) @J VRB (Pin 5) VRT-VRB VRB-VEE VRT VRB 6.VR -1.0 -2.1 +1.0 1.3 Power Supply Voltage (Pin 8) - Applied Output Voltage (Pins 00-06 in 3-State) Vo 0 Clock Pulse Width - High -low tCKH tCKl 5.0 15 Clock Frequency fClK 0 TA -40 Operating Ambient Temperature All limits are not necessarily functional concurrently. MOTOROLA LINEAR/INTERFACE DEVICES 6-81 -3.0 Vdc - VCC(O) Vdc +2.1 Vdc - +2.1 +1.0 +2.1 - Vdc VCC(O) Vdc - - - ns 25 MHz +85 °c MC10321 ELECTRICAL CHARACTERISTICS (TA = + 25°C, VCC = 5.0 V, VEE = -5.2 V, VRT = +1.0 V, VRB = -1.0 V, except where noted) Characteristic Symbol Min Typ Max Units 7.0 Bits ±1.0 ±1.0 LSB TRANSFER CHARACTERISTICS (fCKL = 25 MHz) Resolution N Monotonicity MON Integral Nonlinearity Differential Nonlinearity INL DNL Differential Phase (See Figure 11) Differential Gain (See Figure 11) DP OG Power Supply Rejection Ratio (4.5 V < VCC < 5.5 V, VEE = -5.2 V) (-6.0 V < VEE < -3.0 V, VCC = +5.0 V) - Guaranteed Bits - ±1/4 2.0 2.0 - - 0.02 0 - +1.0 +60 VOS - - - PSRR Oeg. % LSBN ANALOG INPUT (Pin 6) Input Current @ Yin @ Yin = VRB = VRT Input Capacitance (1.0 V - 0.1 V (See Figure 4) + 0.1 V (See Figure 4) IINL IINH < (VRT - VRB) < 2.0 V) Cin Bipolar Offset Error II +5.0 +80 p.A 22 - pF 0.1 - LSB 140 175 REFERENCE Rre! 100 Temperature Coefficient Ladder Resistance (VRT to VRB, TA TC - +0.29 Ladder Capacitance (Pin 1 Open) Cre! - Input Voltage - High -Low VIHE VILE 2.0 Input Current @ 2.4 Volts (See Figure 5) @ 0.4 Volts (See Figure 5) IIHE IILE -200 +0.2 -120 Input Clamp Voltage (11K = -18 mAl VIKE -1.5 -1.3 Input Voltage - High -Low VIHC VILC 2.0 Input Current @ 0.4 V (See Figure 6) @ 2.7 V (See Figure 6) IILC IIHC -150 -80 -80 -40 Input Clamp Voltage (11K = -18 mAl VIKC -1.5 High Output Voltage (lOH = -400 p.A @ 06-00, OR, VCC = 4.5 V, See Figure 7) VOH Low Output Voltage (lOL = 4.0 mA @ 06-00, OR, VCC = 4.5 V, See Figure 8) VOL = 25°C) n %f'C 5.0 - - - V 0.8 pF ENABLE INPUTS (VCC = 55 V) CLOCK INPUT (VCC = - 2.0 p.A - V - Vdc 5.5 V) - - 0.8 -1.3 - Vdc 2.4 3.0 - V - 0.3 0.4 V - -35 p.A DIGITAL OUTPUTS Output Short Circuit Current< (06-00, OR, VCC = 5.5 V) ISC Output Leakage Current (0.4 < Vo < 2.4 V, See Figure 3, VCC = 5.5 V, 00-06 in 3-State Mode) ILK Output Capacitance (00-06 in 3-State Mode) Cout -10 - - mA - +10 p.A 5.0 - pF *Only one output to be shorted at a time, not to exceed 1 second. POWER SUPPUES VCC(A) Current (4.5 V < VCC(A) < 5.5 V, Outputs Unloaded) VCC(D) Current (4.5 V < VCC(D) < 5.5 V, Outputs Unloaded) VEE Current ( - 6.0 V < VEE < - 3.0 V) Power Dissipation (VRT - VRB = ICC(A) ICC(D) lEE 2.0 V, Outputs Unloaded) Po 10 40 -16 - MOTOROLA LINEAR/INTERFACE DEVICES 6-82 13 60 -13 16 80 -8.0 mA 459 668 mW MC10321 TIMING CHARACTERISTICS (TA ~ 25"C, VCC ~ +5.0 V, VEE ~ -5.2 V, VRT ~ + 1.0 V, VRB ~ -1.0 V, See System Timing Diagram) Parameter Symbol Typ Min Max Units INPUTS tCKH tCKL - 5.0 15 - Max Clock Rise, Fall Time tR,F - 100 - Clock Frequency fCLK 0 30 25 tCKDV - 22 - ns tAD 3.0 ns tH - 6.0 Data High to 3-State from Enable Low" tEHZ - 22 Data Low to 3-State from Enable Low" tEll 17 Data High to 3-State from ENABLE High" tE'HZ - Data Low to 3-State from ENABLE High" tE'LZ Min Clock Pulse Width - High -Low ns - ns MHz OUTPUTS New Data Valid from Clock Low Aperture Delay Hold Time Valid Data from Enable High (Pin 14 Valid Data from ENABLE Low (Pin 13 ~ 0 V)" ~ 5.0 V)" Output Transition Time (10%-90%)* 19 tEDV - - 13 - ns tE'DV - 20 - ns ttr - 6.0 - ns 27 ns ns ns ns ns *See Figure 2 for output loading. TEMPERATURE CHARACTERISTICS Parameter Typical Value @2SoC Typical Change -40 to +8SoC 73mA -13 mA 140n 0.3 V 3.0 V -100~C ICC (+ 5.0 V Supply Current) lEE (- 5.2 V Supply Current) Ladder Resistance VOL (Output low Voltage @ 4.0 mAl VOH (Output High Voltage @ -400 p.A) Differential Nonlinearity Integral Nonlinearity GND OR Pin PIN DESCRIPTIONS Symbol Description 11,17 Power supply ground. The two pins should be connected directly together, and through a low impedance path to the power supply. 12 +0.29%rC +8.0 p'vrc 2.1 mVrC - 0.0008 lSSrC -0.001 LSBrC 0.25 LSB PIN DESCRIPTIONS Symbol +7.0 p.ArC Overrange output. Indicates Vin is more positive than VRT-1I2 LSB. This output does not have 3-state capability, and therefore is always active. Pin Description VCC(A) 9 Power supply for the analog section. +5.0 V, ±10%required. ClK 15 Clock input, TTL compatible, and can range from dc to 25 MHz. Conversion occurs on the negative edge of the clock. EN 13 Enable input. TTL compatible, a Logic "1" (and Pin 14 a Logic "0") enables the data outputs. A Logic "0" sets the outputs (except Overrange) to a 3-state mode. EN 14 ENABLE input. TTL compatible, a Logic "0" (and Pin 13 a Logic "I") enables the data outputs. A Logic "I" sets the outputs (except Overrange) to a 3-state mode. 06-00 1-4, Digital Outputs. 06 (Pin 4) is the MSB, DO 18-20 (Pin 1B) is the LSB. LSTTl compatible with 3-state capability. VCC(D) 10,16 Power supply for the digital section. + 5.0 V, ± 10% required. VEE B Negative Power supply. Nominally - 5.2 V, it can range from - 3.0 to - 6.0 V, and must be more negative than VRB by >1.3 V. VRB 5 The bottom (most negative point) of the internal reference resistor ladder. The ladder resistance is typically 140 n to VRT. Yin 6 Signal voltage input. This voltage is compared to the reference to generate a digital equivalent. Input impedance is nominally 16-33 kn (See Figure 4) in parallel with 22 pF. VRT 7 The top (most positive point) of the internal reference resistor ladder. Pin assignments are the same for the standard DIP package and the surface mount package. MOTOROLA LINEAR/INTERFACE DEVICES 6-83 MC10321 FIGURE 1 - SYSTEM TIMING DIAGRAM ~KH--~~-----~:KL'----~ Clock 1.5V 06-00, OR tCKDV and tH measured at output levels of 0.8 and 2.4 volts. II EN --'"\.1.2 V 3.0 V +F--------.,;+;;r, 1.2 V tEHZ High Data Output tELZ Low Data Output FIGURE 2 - DATA OUTPUT TEST CIRCUIT VCC 1.0 k ,... DD-D7 ;::: =~1 3.0 k , , , /7.'7 Diodes = lN914 or equivalent, Cl = .15 pF MOTOROLA LlNEARIINTERFACE DEVICES 6-84 MC10321 FIGURE 3 - OUTPUT 3-STATE LEAKAGE CURRENT FIGURE 4 - INPUT CURRENT @ Vin 200 80 I } /' 100 1 50 !z ,/ V g§ a /' If ~ -50 ~ -lOa ./ r -200 -1.0 1.0 FIGURE 5 - 5 I ~ ::> '" u I- .ffi (EN I -90 ..... I?-- - 2.5 ~ I I I I - o ./ ~ ~_1.5 -80 2.0 6.0 V 5ow\i11.0 :i:~ ~'::!::. ,0 tl 0.5 V { 1.0 2.0 3.0 4.0 INPUT VOLTAGE (VOLTS'@ Pin 15 - - ~ 0.3 - 6.0 ~ 0.2 > ~ I~DIVIDUAlLY OJTPUTS LhADED OR SIMULTANEOUSLY +4.5 < VCC< +5.5V ~ /"" 5.0 FIGURE 8 - OUTPUT VOLTAGE versus OUTPUT CURRENT ~ ,..,- I-~ - t--- f.--- f.--- 0. o. 1 > o o /' -100 -1.0 /' 0.4 ~ 5~ ./ .:ffi r- OU~UTS LOiDED INJIVIDUALly g§ ~ ./ ./ ~ :;; -60 'I 1.0 Vin. INPUT VOLTAGE (VOLTS) -40 I- Pin 13 (EN ~ 0) Pin 114 (0 EN <, + 5.0) I I I r- +4.5 < VCC < +5.5 V ~ i:lS / ~ ./ I- '" ::> '" u / ./ 1 -20 / I + 2.5 FIGURE 6 - CLOCK INPUT CURRENT +5.0 V) OR SIMULTANEOUSLY w VRT +20 FIGURE 7 - OUTPUT VOLTAGE versus OUTPUT CURRENT 2.0 VRS Vin. INPUT VOLTAGE (VOLTS) / -70 -130 7.0 / -50 -110 6.0 r -30 ~ :;; I Pin 13 I- z I 5.0 INPUT CURRENT AT ENABLE, ENABLE 10 0 -10 « 2.0 3.0 4.0 APPLIED VOLTAGE (VOLTS) ~ -100 - 200 -300 IOH. OUTPUT CURRENT (/LA) -400 o o 2.0 MOTOROLA LINEAR/INTERFACE DEVICES 6-85 4.0 IOL. OUTPUT CURRENT (mA) 6.0 B.O MC10321 FIGURE 9 - INTEGRAL UNEARITY ERROR IN LSBs versus CODE o ~ FIGURE 10 - DIFFERENTIAL LINEARITY ERROR IN LSBs versus LOWER CODE 1,0 1.0 0,6 0,6 0,2 0,2 IL l!: "\1"--\. 25 - 0,2 V"" -V f-vV -0,6 fClK o ~ ;-0.2 32 48 64 80 96 .i.& I V", d ~..., .".r.,. ,-'" .A ,. V -0,6 112 128 v ~'" 11'1, "V fClK ~ 15 MSPS 25 MSPS -1.0 16 'v l!: ffi -1,0 ...A ,A 11., A. o 16 31 CODE 48 64 80 96 111 128 CODE DESIGN GUIDELINES II (see Figure 4). However, Yin must be maintained within the absolute range of ± 2.5 volts (with respect to ground) - otherwise excessive currents will result at Pin 6. The input capacitance at Pin 6 is tYpically 22 pF, and is constant as Yin varies from VRT to VRB. The source impedance of the signal voltage should be maintained below 1000 (at the frequencies of interest) in order to avoid sampling errors. INTRODUCTION The MC10321 is a high speed, 7-bit parallel ("Flash") type Analog-to-Digital converter containing 128 comparators at the front end. See Figure 12 for a block diagram. The comparators are arranged such that one input of each is referenced to evenly spaced voltages, derived from the reference resistor ladder. The other input of each of the comparators is connected to the input signal (Vin). Some of the. comparator's differential outputs will be "true," while other comparators will have "not true" outputs, depending on their relative position. Their outputs are then latched, and converted to a 7-bit Grey code by the Differential Latch Array. The Grey code ensures that errors caused at the input stage, due to cross talk, feed-thru, or timing disparaties, result in glitches at the output of only a few LSBs, rather than the more traditional 1/2 scale and 1/4 scale glitches. The Grey code is then translated to a 7-bit binary code, and the differential levels are translated to TTL levels before being applied to the output latches. ENABLE inputs (EN and EN) at this final stage permit the TTL outputs (except Overrange) to be put into a high impedance (3-state) condition. REFERENCE The reference resistor ladder is composed of a string of equal value resistors so as to provide 128 equally spaced voltages for the comparators (see Figure 12 for the actual configuration). The voltage difference between adjacent comparators corresponds to 1 LSB of the input range. The first comparator (closest to VRB) is referenced 1/2 LSB above VRB, and the 128th comparator (for the overrange) is referenced 1/ 2 LSB below VRT. The total resistance of the ladder is nominally 140 0, ± 25%, requiring 14.3 mA@ 2.0 volts and 7.14 mA @ 1.0 volt. There is a nominal warm up change of = + 8.0% in the ladder resistance due to the + 0.29%I"C temperature coefficient. The minimum recommended span [VRT - VRBl is 1.0 volt. A lower span will allow offsets and nonlinearities to become significant. The maximum recommended span is 2.1 volts due to power limitations of the resistor ladder. The span may be anywhere within the range of -2.1 to +2.1 volts with respect to ground, and VRB must be at least 1.3 volts more positive than VEE. The reference voltages must be stable and free of noise and spikes, since the accuracy of a conversion is directly related to the quality of the reference. In most applications, the reference voltages will remain fixed. In applications involving a varying reference for modulation or signal scrambling, the modulating signal may be applied to VRT, or VRB, or both. The output will vary inversely with the reference Signal, introducing a nonlinearity into the transfer function. The addition of the modulating signal and the dc level ANALOG SECTION SIGNAL INPUT The signal voltage to be digitized (Vin) is applied simultaneously to one input of each of the 128 comparators through Pin 6. The other inputs of the comparators are connected to 128 evenly spaced voltages derived from the reference ladder. The output code depends on the relative position of the input signal to the reference voltages. The comparators have a bandwidth of >50 MHz, which is more than sufficient for the allowable (Nyquist theory) input frequency of 12.5 MHz. The current into Pin 6 varies linearly from 0 (when Yin = VRB) to =60 pA (when Yin = VRT). If Yin is taken below VRB or above VRT, the input current will remain at the value corresponding to VRB and VRT respectively MOTOROLA LINEAR/INTERFACE DEVICES 6-86 MC10321 applied to the reference must be such that the absolute voltage at VRT and VRB are maintained within the values listed in the Recommended Operating Limits. The RMS value of the span must be maintained .. 2.1 volts. A summary of the sequence is that data present at Yin just prior to the Clock falling edge is digitized and available at the data outputs immediately after that same falling edge. The minimum amount of time the data must be present prior to the clock falling edge (aperture delay) is 2.0-6.0 ns, typically 3.0 ns. The comparator output latches provide the circuit with an effective sample-and-hold function, eliminating the need for an external sample-and-hold. POWER SUPPLIES VCC(A) (Pin 9) is the positive power supply for the comparators, and VCC(D) (Pins 10, 16) is the positive power supply for the digital portion. Both are to be + 5.0 volts, ± 10%, and the two are to be within 100 millivolts of each other. There is indirect internal coupling between VCC(D) and VCC(A). If they are powered separately, and one supply fails, there will be current flow through the MC10321 to the failed supply. ICC(A) is nominally 13 mA, and does not vary with clock frequency or with Yin, but does vary slightly with VCC(A). ICC(D) is nominally 60 mA. and is independent of clock frequency. It does vary, however, by 4-5 mA as Yin is varied from VRT to VRB, and varies directly with VCC(D). VEE is the negative power supply for the comparators, and is to be within the range - 3.0 to - 6.0 volts. Additionally, VEE must be at least 1.3 volts more negative than VRB. lEE is a nominal -13 mA, and is independent of clock frequency, Yin and VEE. For proper operation, the supplies must be bypassed at the IC. A 10 J.LF tantalum, in parallel with a 0.1 J.LF ceramic is recommended for each supply to ground. ENABLE INPUTS The two Enable inputs (Pins 13, 14) are TTL compatible, and are used to change the data outputs (06-00) from active to 3-state. This capability allows cascading two MC10321s into an 8-bit configuration, connecting the outputs directly to a data bus, multiplexing multiple converters, etc. See the Applications Information section for more details. For the outputs to be active, Pin 13 must be Logic "1," and Pin 14 must be a Logic "0." Changing either input will put the outputs into the high impedance mode. The Enable inputs affect only. the state of the outputs - they do not inhibit a conversion. Both pins have a nominal threshold of =1.2 volts, their input currents are shown in Figure 5, and their inputoutput timing is shown in Figure 1 and 14. Leaving either pin open is equivalent to a Logic "1," although good design practice dictates that an input should never be left open. The Overrange output (Pin 12) is not affected by the Enable inputs as it does not have 3-state capability. DIGITAL SECTION CLOCK The Clock input (Pin 15) is TTL compatible with a typical frequency range of 0 to 30 MHz. There is no duty cycle limitation, but the minimum low and high times must be adhered to. See Figure 6 for the input current requirements. The conversion sequence is shown in Figure 13, and is as follows: OUTPUTS The data outputs (Pins 1-4, 12, 18-20) are TTL level outputs with high impedance capability (except Overrange). Pin 4 is the MSB (06), and Pin 18 is the LSB (DO). The seven outputs are active as long as the Enable inputs are true (EN = high, EN = low). The timing of the outputs relative to the Clock input and the Enable inputs is shown in Figures 1 and 14. Figures 7 and 8 indicate the output voltage versus load current, while Figure 3 indicates the leakage current when in the high impedance mode. The output code is natural binary, depicted in Table 1. - On the rising edge, the data output latches are latched with old data, and the comparator output latches are released to follow the input signal (Vin). - During the high time, the comparators track the input signal. The data output latches retain the old data. - On the falling edge, the comparator outputs are latched with the data immediately prior to this edge. The conversion to digital occurs within the device, and the data output latches are released to indicate the new data in =22 ns. - During the clock low time, the comparator outputs remain latched, and the data output latches remain transparent. The Overrange output (Pin 12) goes high when the input, Yin, is more positive than VRT - 1/2 LSB. This output is always active - it does not have high impedance capability. Besides used to indicate an input overrange, it is additionally used for cascading two MCl 0321 s to form an 8-bit AID converter (see Figure 21). TABLE 1 VRT, VRB (Volts) Input >VRT VRT VRT VRT - - 1/2 LSB 1/2 LSB 1 LSB 1 1/2 LSB Midpoint VRB + 112 LSB < VRB + 1/2 LSB 2.048,0 +1.0 V, -1.0V >2.040 V 2.040 V 2.032 V 2.024 V 1.024 V 8.0 mV <8.0 mV >0.9922 0.9922 0.9844 0.9766 0.000 -0.9922 <-0.9922 V V V V V V V Output +1.0 V, 0 V Code Overrange >0.9961 V 0.9961 V 0.9922 V 0.9883 V 0.5000 V 3.9mV <3.9 mV 7FH 7FH 7FH 7EH - 7FH 40H OOH'" 01H OOH 1 0-1 0 0 MOTOROLA LINEAR/INTERFACE DEVICES 6-87 a 0 0 II MC10321 APPLICATIONS INFORMATION POWER SUPPLIES, GROUNDING The PC board layout, and the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device on VCC, VEE, or ground can cause an incorrect output code due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC10321 can cause incorrect operation if that noise does not have a clear path to ac ground. Both the Vce and VEE power supplies must be decoupled to ground at the IC (within 1" max) with a 10 /LF tantalum and a 0.1 /LF ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the VCC and VEE supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present when digital circuits are present) can easily exceed 400 mV peak, and if they get into the analog portion of the IC, the operation can be disrupted. Noise can be reduced by inserting resistors and/or inductors between the supplies and the IC. If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of 50-200 kHz. These spikes are generally more difficult to reduce because of their greater energy content. In extreme cases, 3-terminal regulators (MC78L05ACP, MC7905.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC10321. The ripple content of the supplies should not allow their magnitude to exceed the values in the Recommended Operating Limits. The PC board tracks supplying VCC and VEE to the MC10321 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC10321 should be close to the power supply, or the connector where the supply voltages enter the board. If the VCC and VEE lines are supplying considerable current to other parts of the boards, then it is preferable to have dedicated lines from the supply or connector directly to the MC10321. The two ground pins (11, 17) must be connected directly together. Any long path between them can cause stability problems due to the inductance (@ 25 MHz) of the PC tracks. The ground return for the signal source must be noise free. the temperature range of - 40 to + 85°C, a maximum temperature coefficient of 31 ppmrC is required. The voltage supplies used for digital circuits should preferably not be used as a source for generating VRT and VRB, due to the noise spikes (up to 500 mV) present on the supplies and on their ground lines. Generally ± 15 volts, or ± 12 volts, are available for analog circuits, and are usually clean compared to supplies used for digital circuits, although ripple may be present in varying amounts. Ripple is easier to filter out than spikes, however, and so these supplies are preferred. Figure 15 depicts a circuit which can provide an extremely stable voltage to VRT at the current required (the maximum reference current is 20 mA @ 2.0 volts). The MC1403 series of references have very low temperature coefficients, good noise rejection, and a high initial accuracy, allowing the circuit to be built without an adjustment pot if the VRT voltage is to remain fixed at one value. Using 0.1% wirewound resistors for the divider provides sufficient accuracy and stability in many cases. Alternately, resistor networks provide high ratio accuracies, and close temperature tracking. If the application requires VRT to be changed periodically, the two resistors can be replaced with a 20 turn, cermet potentiometer. Wirewound potentiometers should not be used for this type of application since the pot's slider jumps from winding to winding, and an exact setting can be difficult to obtain. Cermet pots allow for a smooth continuous adjustment. In Figure 15, R1 reduces the power dissipation in the transistor, and can be carbon composition. The 0.1 /LF capacitor in the feedback path provides stability in the unity gain configuration. Recommended op amps are: LM358, MC34001 series, LM308A, LM324, and LM11C. Offset drift is the key parameter to consider in choosing an op amp, and the LM30BA has the lowest drift of those mentioned. Bypass capacitors are not shown in Figure 15, but should always be provided at the input to the 2.5 volt reference, and at the power supply pins of the op amp. Figure 16 shows a simpler and more economical circuit, using the LM317LZ regulator, but with lower initial accuracy and temperature stability. The op amp/current booster is not needed since the LM317LZ can supply the current directly. In a well controlled environment, this circuit will suffice for many applications. Because of the lower initial accuracy, an adjustment pot is a necessity. Figure 17 shows two circuits for providing the voltage to VRB. The circuits are similar to those of Figures 15 and 16, and have similar accuracy and stability. The MC1403 reference is used in conjunction with an op amp configured as an inverter, providing the negative voltage. The output transistor is a PNP in this case since the circuit must sink the reference current. REFERENCE VOLTAGE CIRCUITS Since the accuracy ofthe conversion is directly related to the quality of the references, it is imperative that accurate and stable voltages be provided to VRT and VRB. If the reference span is 2.0 volts, then 112 LSB is only 7.8 millivolts, and it is desireable that VRTand VRB be accurate to within this amount, and furthermore, that they do not drift more than this amount once set. Over MOTOROLA LlNEARflNTERFACE DEVICES 6-88 MC10321 VIDEO APPUCATIONS The MC10321 is suitable for digitizing video signals directly without signal conditioning, although the standard 1.0 volt p-p video signal can be amplified to a 2.0 volt p-p signal for slightly better accuracy. Figure 18 shows the input (top trace) and reconstructed output of a standard NTSC test signal, sampled at 25 MSPS, consisting of a sync pulse, 3.58 MHz color burst, a 3.58 MHz signal in a Sin 2x envelope, a pulse, a white level signal, and a black level signal. Figure 19 shows a Sin 2x pulse that has been digitized and reconstructed at 25 MSPS. The width of the pulse is =225 ns at the base. Figure 20 shows an application circuit for digitizing video. voltage division could occur, resulting in a nonlinear conversion. If the references are to be symmetrical about ground (e.g., ± 1.0 volt or ± 2.0 volts), the adjustment can be eliminated, and the midpoint connected to ground. The use of latches on the outputs is optional, depending on the application. If latches are required, SN74LSl73As are recommended. 50 MHz, 7 BIT AID CONVERTER Figure 22 shows how two MC10321s can be connected together in a flip-flop arrangement in order to have an effective conversion speed of 50 MHz. The 74F74D-type flip-flop provides a 25 MHz clock to each converter, and at the same time, controls the SELECT input to the MC74F257 multiplexers to alternately select the outputs of the two converters. A brief timing diagram is shown in the figure. 8-BIT AID CONVERTER Figure 21 shows how two MC10321s can be connected to form an 8-bit converter. In this configuration, the outputs (06-00) of the two 7-bit converters are paralleled. The outputs of one device are active, while the outputs of other are in the 3-state mode. The selection is made by the OVERRANGE output of the lower MC10321, which controls Enable inputs on the two devices. Additionally, this output provides the 8th bit. The reference ladders are connected in series, providing the 256 steps required for 8 bits. The input voltage range is determined by VRT ofthe upper MC10321, and VRB of the lower device. A minimum of 1.0 volt is required across each converter. The 500 n pot (20 turn cermet) allows for adjustment of the midpoint since the reference resistors of the two MCl 0321 s may not be identical in value. Without the adjustment, a nonequal NEGATIVE VOLTAGE REGULATOR In the cases where a negative power supply is not available - neither the - 3.0 to - 6.0 volts, nor a higher negative voltage from which to derive it - the circuit of Figure 23 can be used to generate - 5.0 volts from the + 5.0 volts supply. The PC board space required is small (=2.0 in 2), and it can be located physically close to the MCl 0321. The MC34063 is a switching regulator, and in Figure 23 is configured in an inverting mode of operation. The regulator operating specifications are given in the figure. GLOSSARY another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by 2n (n = number of bits). This error must be within ± 1 LSB for proper operation. APERTURE DELAY - The time difference between the sampling signal (typically a clock edge) and the actual analog signal converted. The actual signal converted may occur before or after the sampling signal, depending on the internal configuration of the converter. FULL SCALE RANGE (ACTUAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D). BIPOLAR INPUT - A mode of operation whereby the analog input (of an A-Dl. or output (of a DAC), includes both negative and positive values. Examples are -1.0 to + 1.0 V, -5.0 to +5.0 V, -2.0 to +8.0 V, etc. FULL SCALE RANGE (IDEAL) - The difference between the actual minimum and maximum end points of the analog input (of an A-D), plus one LSB. BIPOLAR OFFSET ERROR- The difference between the actual and ideal locations of the OOH to 01 H transition, where the ideal location is 1/2 LSB above the most negative reference voltage. GAIN ERROR - The difference between the actual and expected gain (end point to end point), with respect to the reference of a data converter. The gain error is usually expressed in LSBs. BIPOLAR ZERO ERROR - The error (usually expressed in LSBs) of the input voltage location (of a 7-bit AID) of the 40H to 41 H transition. The ideal location is 112 LSB above zero volts in the case of an AID set up for a symmetrical bipolar input (e.g., -1.0 to + 1.0 V). GREY CODE - Also known as reflected binary code, it is a digital code such that each code differs from adjacent codes by only one bit. Since more than one bit is never changed at each transition, race condition errors are eliminated. DIFFEREN11AL NONUNEARITY - The maximum deviation in the actual step size (one transition level to MOTOROLA LlNEARIINTERFACE DEVICES 6-89 MC10321 INTEGRAL NONLINEARITY - The maximum error of an AID, or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningfull. This parameter is the best overall indicator of the device's performance. OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes corresponds to the most negative input voltage (of an AID), while all ones corresponds to the most positive input. POWER SUPPLY SENSITIVITY - The change in a data converters performance with changes in the power supply voltage(s). This parameter is usually expressed in percent of full scale versus t!N. LSB - Least Significant Bit. It is the lowest order bit of a binary code. LINE REGULATION,- The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage. QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of ±1/2 LSB. LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage. II RESOLUTION - The smallest change which can be discerned by an AID converter, or produced by a DAC. It is usually expressed as the number of bits, n, where the converter has 2n possible states. MONOTONICITY - The characteristic of the transfer function whereby increasing the input code (of a DAC), orthe input signal (of an AID). results in the output never decreasing. SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an AID must be no less than 2x the highest frequency (of interest) of the analog signal to be digitized in order to preserve the information of that analog signal. MSB - Most Significant Bit. It is the highest order bit of a binary code. NATURAL BINARY CODE - A binary code defined by: UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an AID), or output range (of a DAC), includes values of a single polarity. Examples are o to +2.0 V, 0 to -5.0 V, +2.0 to +8.0 V, etc. N = An2n + ... + A323 + A222 + A121 + A020 where each "Au coefficient has a value of 1 or O. Typically, all zeroes corresponds to a zero input voltage of an AID, and all ones corresponds to the most positive input voltage. NYQUIST THEORY - UNIPOLAR OFFSET ERROR - The difference between the actual and ideal locations of the OOH to 01 H transition, where the ideal location is 1/2 LSB above the most negative input voltage. See Sampling Theorem. FIGURE 11 - DIFFERENTIAL PHASE AND GAIN TEST HDS-1250 12 Bit D/A D4 Video Signal (See Below) •• DO Clock----+--------' 1.024 Vp_p to Analyzer = . ". , , . , ,.,.,. . . , -----,tr- VRT 2.0 V ----------------------~--VRB VIDEO INPUT SIGNAL MOTOROLA LINEAR/INTERFACE DEVICES 6-90 -Input waveform: 571,4 mV p-p sine wave @ 3.579545 MHz, dc levels as shown. - MC10321 clock at 14.31B1B MHz (4x) asynchronous to input. - Differential gain: p-p output @ each IRE level compared to that at 0 IRE, - Differential phase: Phase @ each IRE level compared to that @ 0 IRE, '"'~ _ ~ ~~ c ~~ ~ ~ ~ » ~ ~~ < m 10 » VRT~"" , _ , , • ".}_ FIGURE 12 -M.",,, 4 P'OC'OI'",," 1 ,"," R !' '" ----- - - - -1-----' I "I-'00' : ", .. m ,""'"~' , ' i' , " - ',, '' " Z m A , ,,~ " , , , , 'i,, "00" "'~~, ... 'm,,, C m II" • I,. R Reference Resistor i~f" ,,, ~'" ",-,. . -'""'"' Clock (0-25 MHz) II '" '0 m ~{ -~ i I, A ' '\ i' !! IC :' y i' '-~:l~ :,.:.. ,~;:--;4 . Enable ENABLE 00 02 "19 00 ~ s: n e~ MC10321 FIGURE 13 - CONVERSION SEQUENCE Clock '~------~vr------~/ L L....--- Comparator Outputs Latched (Valid Data Available After tCKDV) Latches Comparator Outputs. Opens Data Output Latches Data Outputs Latched, Releases Comparator Latches FIGURE 14 - ENABLE TO OUTPUT CRITICAL TIMING FIGURE 15 - PRECISION VRT VOLTAGE SOURCE +5.0 to +40 V • 1.5 Rl v-\:r-____ ~ 91 afar +5.0V 560 a for +15V --117 Out I. 3-State 0.1 r--, I -=- :I __ Rl 11.5k I I + r-ff~ 1~~LJ I DO-D6 I I or __ 0.1 :L __ JI ------< Timing @ D6-DO measured where waveform starts to change. Indicated time values are typical @ 25°C, and are in ns. FIGURE 16 - +5.0 to +40 V I I 2.0 k, 2.5 V References MC1403U MC1403AU Line Regulation 0.5 mV 0.5 mV TC (ppmf'C) max 40 25 <1Vout for 0-70°C 7.0mV 4.4mV Initial Accuracy ±1.00/0 ±1.0% VRT VOLTAGE SOURCE o--......--i LM317LZ Line Regulation 60 <1V out for 0-70°C 8.4 mV Initial Accuracy ±4.0% MOTOROLA LINEAR/INTERFACE DEVICES 6-92 1.0 mV TC (ppmf'C) max MC10321 FIGURE 17 - VRB VOLTAGE SOURCES +5.0 to +40 V To VRB In Out 0.1 MC1403 Io. 1 Gnd Rl ~ 91 n for - 5.0 V 560 {lfor -15V -5.0 to -15 V Reference MC1403U MC1403AU LM337MT 0.5mV 0.5 mV 1.0 mV TC (ppmFC) max 40 25 48 dVout for 0-70°C 7.0 mV 4.4 mV 6.7 mV Initial Accuracy ±1.0% ±1.0% ±4.0% Line Regulation FIGURE 18 Input Output FIGURE 19 r, - AIU'29.36086~' ./ -~-L--.. __ .L..L.J:-; I _ ---1_ ~ , !., ~: _·4 _ _ , ± ! .~ ! -. ---1 ___ . •• , ~-.--.-:"'-~ ! 11 . _ . __..J--L..L .--.1._ i MOTOROLA LINEAR/INTERFACE DEVICES 6-93 MC10321 FIGURE 20 - APPUCATION CIRCUIT FOR DIGITIZING VIDEO +5.0V 10,16 13 +5.0V 14 -= +1.0V - 15 VCC(D) EN EN ClK OR MC10321 7 06 4 •• VRT Iref •• DO II 12 18 1l Output Data 0.1 5 VRB 7.5 k 6 Vin VEE 8 Gnd 11,17 10 JLF 0.1 -5.2 V 1.0 JLF '--..J\I'''''""~--l Video Input '---.J I----'VI/I.~......~ (1.0 Volt pop) - NOTES: 1) Bypass capacitors required at power supply pins of ALL IC's. 2) Ground plane required over all parts of circuit board. 3) A1 = MC34002. 4) These resistors can be changed to match signal source impedance. .ro son MOTOROLA LINEAR/INTERFACE DEVICES 6-94 MC10321 FIGURE 21 - F - -25 MHz Clock ° ~ ,.. Gnd EN OR ClK 06 VRT • • • • DO MC10321 +2.0 V - 8-BIT AID CONVERTER EN VRB E+5.0V 500 n (Optional See Text) Yin VEE VCC(O) VCC(A) qO.1 >- :n 10/LF "::" £0.1 = 10/LF VEE - VCC(O) VCC(A) ":" VRT 5.2V qO.1 EN OR Clock ~ .---- -2.~V 06 VRB • • • • DO ClK Yin f--<> 06 • ?= • • f--<> DO '---- +5.0Vo- EN 3X 74lS173A latches (Optional) Gnd ...L MOTOROLALINEAR/INTERFACE DEVICES 6-95 OR 07 MC10321 FIGURE 22 - IT 50 M,?CIOCk ~~K Q D74F74~ 50 MHz 7 BIT AID CONVERTER Gnd EN ClK +5.0 V 0- EN ,.. OR D6 D5 D4 D3 02 01 DO MC10321 (#1) VRT +1.0V " VRB -1.0V Vin +5~V o~Q,I _ -5.2~ - II ~ O.l VEE VCC(D) MC74F257 L.-.- - p 11a 11b 11c 11d 1O l'F VEE VCC(O) - OR 06 05 - D4 03 MC10321 (#2) ~ ClK 02 01 DO Vin () Vin lOa lOb 10c 10d 11a 11b 11c 11d L-- - ~ 74F741 Q Q 00-06 #1 00-06 #2 MOTOROLA LINEAR/INTERFACE DEVICES 6-96 05 .. 04 ; 03 ~ r-- 02 0 01 DO S ~ Za Zb Zc Zd MC74F257 Gnd ....,OR C0- 06 S T VRB ~ -- 1 VCC(A) VRT +5.0Vo-- EN EN Za Zb Zc Zd VCC(A) 1OI'F ri - -- lOa lOb 10c 10d - - MC10321 FIGURE 23 - Yin " (+4.5 to + 5.5 V) 1 -5.0 VOLT REGULATOR 100 /L F 2.2 II HI 6 8 7 1 21---<~/LH MC34063 5 .J,. 3.0 kll 1 3 4 L _lL 1 ... 470'pF II . -=J:. 1N5819 1.0 kll -- 470/LFt Line Regulation 4.5 V < Yin < 5.5 V. lout Load Regulation Yin Output Ripple Short Circuit lout Efficiency 1 1.0/LH ~ 5.0 V. 8.0 rnA < lout < 20 rnA Yin ~ 5.0 V. lout Yin ~ 5.0 V. RL Yin ~ 5.0 V. lout ~ 20 rnA 47O /LF 0.16% 10 rnA ~ ~ t Vout -5.0V/20 rnA . 0.4% 2.0 rnV p-p 0.1 II ~ 50 rnA MOTOROLA LINEAR/INTERFACE DEVICES 6-97 140 rnA 52% II MOTOROLA LINEAR/INTERFACE DEVICES 6-98 Interface Circuits • In Brief ... Described in this section is Motorola's line of interface circuits, which provide the means for interfacing microprocessor or digital systems to the external world, or to other systems. Included are devices for reading and writing to a floppy disk or tape drive system, devices which allow a microprocessor to communicate with its own array of memory and peripheral 1/0 circuits. The line drivers, receivers, and transceivers permit communications between systems over cables of several thousand feet in length, and at data rates of up to several megahertz. The common EIA data transmission standards, several European standards, IEEE-488, and IBM 360/370 are addressed by these devices. The peripheral drivers are designed to handle high current loads such as relay coils, lamps, stepper motors, and others. Input levels to these drivers can be TTL, CMOS, High Voltage MOS, or other user defined levels. The display drivers are designed for LCD, LED, incandescent and other types of displays, and provide various forms of decoding. Selector Guide Memory Interface and Control .... Microprocessor Bus Interface..... Single-Ended Bus Transceivers ... Line Receivers ................... Line Drivers ..................... Line Transceivers. . . . . . . . . . . . . . .. Peripheral Drivers ................ 7-2 7-4 7-5 7-5 7-6 7-6 7-7 Alphanumeric Listing .............. 7-8 Related Application Notes. . . . . . . . .. 7-9 Data Sheets ....................... 7-10 • Interface Circuits Memory Interface and Control Motorola's line of circuits in this category have well established industry standards for reading and writing in a floppy disk system. The write circuits are designed for both straddle erase and tunnel erase heads, and provide both the writing and erasing functions. The read circuits include all the circuitry for peak detection, filtering, wave shaping, and guaranteed peak shift specifications. Memory Interface and Control Floppy Disk Write Controllers ................ Floppy Disk Read Amplifier System ............ Magnetic Tape Sense Amplifier ............... Peripheral Clamping Array. . . . . . . . . . . . . . . . . . Microprocessor Bus Interface Address and Control Bus Extenders . . . . . . . . . . . Microprocessor Data Bus Extenders . . . . . . . . . . . Single-Ended Bus Transceivers For Instrumentation Bus . . . . . . . . . . . . . . . . . . . For High-Current Party-Line Bus. . . . . . . . . . . . . . Line Receivers General-Purpose. . . . . . . . . . . . . . . . . . . . . . .. 360/370 I/O Interface . . . . . . . . . . . . . . . . . . . .. EIA Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . Line Drivers General-Purpose. . . . . . . . . . . . . . . . . . . . . . . . 360/370 I/O Interface . . . . . . . . . . . . . . . . . . . . . EIA Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . Line Transceivers. . . . . . . . . . . .. ........... Peripheral Drivers . . . . . . . . . . . . . . . . . . . . . . . . . Floppy Disk Write Controllers Straddle Erase Controller MC3469P - TA = 0° to + 70°C, Case 648 Write r------~ Gate Designed to provide the entire interface between floppy disk heads and the head control and write data signals for straddle-erase heads. Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period and inner/outer track compensation. Erase 0 Erase 1 IRW Select Center Tap 0 Center Tap 1 Head Select RlWl RIW2 Tunnel/Straddle Erase Controller MC3471 P - T A = 0° to + 70°C, Dl Case 738 D2 Provides the entire interface between the write data and head control signals and the heads (write and erase) for either tunnel or straddle-erase floppy disk systems. Has provisions for external adjustment of degauss period, inner/outer track compensation, and the delay from write gate to erase turn-on and turn-off. Erase 0 Erase 1 Center Tap 0 Center Tap 1 Inhibit VAaf IRef Write Head Gate Select MOTOROLA LINEAR/INTERFACE DEVICES 7-2 7-2 7-3 7-3 7-3 7-4 7-4 7-5 7-5 7-5 7-5 7-5 7-6 7-6 7-6 7-6 7-7 5.0 V Floppy Disk Read Amplifier System Gnd 12 V 111 ,- hs - - k - , - - - - - - - I I 17r--L-114 Magnetic Head ~ 1,---,---,---,--. I I Filter I 2 16 L...._ T : oto I o I 0 36 cL MC3470.A - TA = 0° to + 70°C, Case 707 --.J Gain Stage I I I Gain Select Designed as monolithic Read Amplifier System for obtaining digital information from floppy disk storage. These devices accept differential ac signals produced by the magnetic head and provides a digital output pulse that corresponds to each peak of the input signal. A gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output. These devices provide all the active circuitry to perform the floppy disk Read amplifier function, and guarantee to have a maximum peak shift of 5.0%, adjustable to zero, for the MC3470P and 2.0%, adjustable to zero, for the MC3470AP. 15 Detector o 12~ t o 0 L Differentiator Network o Mono 1 RC Peak Shift If; 250 kHz, VIO; 1.0 Vpp) t 9 Mono 2 RC VN % Max Min MC3470 MC3470A 5.0 2.0 80 100 Peripheral Clamping Array MC3467L.P - TCF6000P1.D - 0 sb b Oifferential Input Voltage Gain If; 200 kHz, Input Common VIO = 5.0 mV Mode Range [RMS)) 15% Max THO) Device Number Magnetic Tape Sense Amplifier TA = 0° to + 70°C, Case 726, 707 The MC3467 provides three independent preamplifiers with individual electronic gain control, optimized for use in 9-track magnetic tape memory systems where low noise and low distortion are paramount objectives. The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately 100 VN. Minimum small-signal bandwidth is 10 MHz, and Common-Mode Input Voltage range is 1.5 V min. t. 6b L V I Max Min I Max 130 130 -0.1 I I 1.5 TA = -40° to +85°C, Case 626, 751 · .. designed to protect input/output lines of microprocessor systems against voltage transients. • Optimized for HMOS System • Minimal Component Count • Low Board Space Requirement • No P.C.B. Track Crossovers Required • Applications Areas Include Automotive, Industrial, Telecommunications and Consumer Goods TAPE AMPLIFIER SYSTEM Electronic Gain Control Digital Inputs 1-'W'~-t1I----+t..., I -"M~""'I----+t--t Micro Computer Analog Inpull If -'WO~-H....--+--t R'n MOTOROLA LINEAR/INTERFACE DEVICES 7-3 • Microprocessor Bus Interface Motorola offers a spectrum of line drivers and receivers which provide interfaces to many industry standard specifications. Many of the devices add key operational features, such as hysteresis, short circuit protection, clamp diode protection, or special control functions. Address and Control Bus Extenders are fabricated with Schottky TTL technology for high speed. These devices are designed to extend the drive capabilities oftoday's standard microprocessors. All devices VOLlmax) @48mA VOH(min) @ -S.2mA Propagation Delay Max (ns) Buffers Per Package 0.5 2.4 13 6 MC8T95! MC6885 L1620 P!648 Nonlnverting 0.5 2.4 11 6 MC8T96! MC6886 L1620 P!648 Inverting 0.5 2.4 13 6 MC8T97! MC68S7 L!620 P!648 Nonlnverting 0.5 2.4 11 6 MC8T98! MC6888 L1620 P!648 Inverting Hex 3-State Buffers/Inverters - T A = 0° to Device Package Comments + 75°C MC6888 provide two Enable inputs - one controlling four buffers and the other controlling the remaining two buffers. These devices differ in that the non-inverting MC8T95! MC6885 and inverting MC8T96!MC6886 provide a twoinput Enable which controls all six buffers, while the non inverting MC8T97!MC6887 and inverting MC8T98! #These devices may be ordered by either of the paired numbers. MC8T97!MC6887# - Noninverting MC8T98!MC6888# - Inverting Two Enable inputs, one controlling four buffers and the other controlling the remaining two buffers. MC8T95!MC6885# - Noninverting MC8T96/MC6886# - Inverting Two-input Enable controls all six buffers Oolput F •Add inverter for ~ Add Inverter for MC6888/MC8T98 MC6886/MC8T96 Microprocessor Data Bus Extenders Driver Characteristics Receiver Characteristics Output Current (mA) Propagation Delay Max (ns) Propagation Delay Max (ns) Transceivers Per Package Device Package! Suffix 4B 14 14 4 MC8T26A (MC6880A) P!648 L1620 Inverting Logic 48 17 17 4 MC8T28 (MC6889) P!648 L1620 Nonlnverting Logic Comments MOTOROLA LINEAR/INTERFACE DEVICES 7-4 Single-Ended Bus Transceivers For Instrumentation Bus, Meets GPIB/IEEE Standard 488 Driver Characteristics Receiver Characteristics Output Current (mA) Propagation Delay Max (ns) Propagation Delay Max (ns) Transceivers 48 50 50 4 MC3446A 48 30 50 8 MC3447 48 100 Per Package 25 17 30 4 30 4 Device MC3448A MC3440A Packagel Suffix Comments MOS Compatible, Input Hysteresis P/648 Input Hysteresis, Open Collector, 3-State P3/724 U623 Outputs with Terminations P/648 U620 Outputs with Terminations P/648 Input Hysteresis, Open Collector 3-State Input Hysteresis, Enable for 3 Drivers Common Enable, Input Hysteresis MC3441A For High-Current Party-Line Bus for Industrial and Data Communications Open Collector Outputs, Common Enable 15 Line Receivers General-Purpose Type" Of Output t prop Delay Time Max (ns) D D TP OC D D S S = Single Ended D = Differential PartySupplies tion Strobe Or Enable 25 25 Yes Yes Yes Yes ±5 ±5 MC3450 MC3452 P/648 TP OC 25 25 Yes Yes Yes Yes ±5 ±5 MC75107 MC75108 P/646 TP 30 Yes Yes +5 MC3437 Line Opera- Power (V) Device Packagel Suffix Receivers Per Package Companion Drivers 4 4 MC3453 2 2 MC75S110 Ll632 P/648 6 Ll620 Comments Quad version of MC75107/8 Dual version of MC3450/2 Input Hysteresis Ll620 360/370 1/0 Interface S S TP 30 TP 30 Yes Yes No Yes +5 +5 MC75125 MC75127 P/648 U620 7 MC75128 MC75129 pn38 Ll732 8 MC3481 MC3485 Circuitry Schottky MC3481 MC3485 Active low strobe Active high strobe *OC = Open Collector, TP = Totem-pole output EIA Standard Type" Of Output t prop Delay Time Max (ns) PartyLine Opera- S R S,D S,D S,D S,D = Single Ended D = DifferS ential *R = Power Supplies tion Strobe Or Enable (V) Device 85 No No +5 TP TP 30 30 Yes Yes Yes Yes TP TP 35 35 Yes Yes Yes Yes Resistor Pull-up, TP = Receivers Packagel Suffix Per Package MC1489 MC1489A P/646 U632 4 MC1488 IRS-232) EIA-232-D +5 +5 AM26LS32 MC3486 P/648 Ll620 4 4 AM26LS31 MC3487 IRS·422/423) EIA-422/423 +5 +5 SN75173 SN75175 N/648 J/620 4 4 SN75172 SN75174 EIA-422/423/485 Totem-pole output MOTOROLA LINEAR/INTERFACE DEVICES 7-5 Companion Drivers EIA Standard (RS-422/423/485) • • Line Drivers General Purpose Output Current Capability (mA) t prop Delay Time Max (ns) S = Single Ended 0= Differential PartyLine Opera- 15 15 15 15 tion Strobe Or Enable Power Supplies (V) D Ves Ves ±5 MC3453 PI648 U620 4 MC3450 MC3452 Quad version of MC75S110 D Ves Ves ±5 MC75S110 P/646 U632 2 MC75107 MC75108 Dual version of MC3453 Ves Ves +5 MC3481 P/648 4 MC75125 MC75127 Short Circuit Fault Flag 4 MC75128 MC75129 Short Circuit Fault Flag Device Packagel Suffix Drivers Per package Companion Receivers Comments 360/370 1/0 Interface 60 45 S U620 60 S Ves S = Single Ended 0= Differentlal PartyLine Opera- 45 Ves +5 MC3485 Power Supplies tion Strobe Or Enable (V) Device P/648 U620 EIA Standard Output Current Capability (mA) t prop Delay Time Max (ns) 85 85 35 35 D D Ves Ves Ves Ves +5 +5 SN75172 SN75174 48 20 D Ves Ves +5 MC3487 Packagel Suffix Drivers Per Package N/648 J/620 4 4 SN75173 SN75175 P/648 4 MC3486 4 AM26LS32 (RS-422) EIA-422 with 3-State Outputs 2 MC3486 AM26LS32 (RS-423/232) EIA-423/232-D 4 MC1489 MC1489A (RS-232) EIA-232-D Companion Receivers U620 48 20 D Ves Ves +5 AM26LS31 P/648 20 - S No No ±12 MC3488A (/LA9636A) P1/626 350 S D/620 10 No Ves ±9to ±12 MC1488 U/693 P/646 L/632 EIA Standard (RS-485) EIA-485 Line Transceivers Driver Prop Delay (Max n5) Prop Delay (Max ns) CE = Common Enable DE = Driver Enable RE = Receiver Enable 20 30 DE, RE Receiver Party Line Operation Power Supply (V) Ves +5 Device MC34050 Packagel Suffix Drivers Per Package Receivers Per Package U620 2 2 (RS-422) EIA-422 2 2 (RS-422) EIA-422 P/648 20 30 DE Ves MC34051 +5 U620 P/648 MOTOROLA LINEAR/INTERFACE DEVICES 7-6 EIA Standard Peripheral Drivers Output Capability (mA) Input Capability Propagation Delay Time Max (,..s) Output Clamp Diode Off State Voltage Max (V) 300 TTL, DTL 1.0 Yes 70 500 TTL, CMOS, PMOS 1.0 Yes 500 14 V to 25 V PMOS 1.0 Current Drivers Per Package Packagel Suffix Logic Function MC1472 2 P11626 Ul693 NAND 50 ULN2801 8 Al707 Invert Yes 50 ULN2802 8 Al707 Invert Device 500 TTL, CMOS 1.0 Yes 50 ULN2803 8 Al707 Invert 500 6.0 V to 15 V MOS 1.0 Yes 50 ULN2804 8 Al707 Invert 500 TTL, CMOS PMOS 1.0 Yes 50 MC1411,B 7 PI648 Invert 500 14 V to 25 V PMOS 1.0 Yes 50 MC1412,B 7 P1648 Invert 500 TTL, 5.0 V CMOS 1.0 Yes 50 MC1413,B 7 PI648 Invert 500 8.0 V to 18 V MOS 1.0 Yes 50 MC1416,B 7 PI648 Invert 1500 TTL, 5.0 V CMOS 1.0 Yes 50 ULN20688 4 81648 Invert 1500 TTL, 5.0 V CMOS 1.0 No 50 ULN2074B 4 81648 Collector, Emitter available at Pins MOTOROLA LINEAR/INTERFACE DEVICES 7-7 II II INTERFACE CIRCUITS Memory Interface and Control Device MC3467 MC3469P MC3470P,AP MC3471P MC3480 TCF6000 Function Triple Preamplifier .................................................. Floppy Disk Write Controller .......................................... Floppy Disk Read Amplifier System ................................... , Floppy Disk Write Controller/Head Driver .............................. , Memory Controller Circuit ............................................ Peripheral Clamping Array ........................................... Page 7-83 7-88 7-98 7-112 7-123 7-196 Microprocessor Bus Interface Device MC8T26A MC8T28 MC8T95 MC8T96 MC8T97 MC8T98 MC6875,A MC6880A MC6885 MC6886 MC6887 MC6888 MC6889 Function Quad Three-State Bus Transceiver .................................... , Noninverting Bus Transceiver ......................................... Hex Three-State Buffer/Inverter ....................................... Hex Three-State Buffer/Inverter ....................................... Hex Three-State Buffer/Inverter ....................................... Hex Three-State Buffer/Inverter ....................................... MC6800 Clock Generator/Driver ....................................... Quad Three-State Bus Transceiver .................................... , Hex Three-State Buffer/Inverter ....................................... Hex Three-State Buffer/Inverter ....................................... Hex Three-State Buffer/Inverter ....................................... Hex Three-State Buffer/Inverter ....................................... Noninverting Bus Transceiver ......................................... Page 7-16 7-21 7-26 7-26 7-26 7-26 7-153 7-16 7-26 7-26 7-26 7-26 7-21 Single-Ended Bus Transceivers Device MC26S10 MC3440A MC3441A MC3446A MC3447 MC3448A Function Quad Open-Collector Bus Transceiver .................................. Quad Interface Bus Transceiver ....................................... Quad Interface Bus Transceiver ....................................... Quad Interface Bus Transceiver ....................................... Bidirectional Instrumentation Bus Transceiver ........................... Quad Three-State Bus Transceiver .................................... , Page 7-48 7-54 7-54 7-58 7-61 7-67 Function Quad EIA-422/3 Line Receiver with Three-State Outputs .................. Quad MDTL Line Receiver ............................................ Hex Unified Bus Receiver ............................................ Quad Line Receiver .................................................. Quad Line Receiver .................................................. Quad EIA-422/423 Line Receiver ....................................... Dual Line Receiver .................................................. Dual Line Receiver .................................................. Seven-Channel Line Receivers ........................................ Seven-Channel Line Receivers ........................................ Eight-Channel Line Receivers ......................................... Eight-Channel Line Receivers ......................................... Quad EIA-422A13 Line Receiver with Three-State Output .................. Quad EIA-422A13 Line Receiver with Three-State Output .................. Page 7-13 7-43 7-51 7-72 7-72 7-142 7-171 7-171 7-181 7-181 7-185 7-185 7-191 7-191 line Receivers Device AM26LS32 MC1489.A MC3437 MC3450 MC3452 MC3486 MC75107 MC75108 MC75125 MC75127 MC75128 MC75129 SN75173 SN75175 MOTOROLA LINEAR/INTERFACE DEVICES 7-8 Line Drivers Device AM26LS31 MC1488 MC3453 MC3481 MC3485 MC3487 MC3488A MC75S110 SN75172 SN75174 Function Quad EIA-422 Line with Three-State Output ............................. Quad MDTL Line Driver .............................................. Quad Line Driver .................................................... Quad Single-Ended Line Driver ........................................ Quad Single-Ended Line Driver ........................................ Quad EIA-422 Line Driver with Three-State Outputs ...................... Dual EIA-423/232C Driver ............................................. Dual Line Driver .................................................... Quad EIA-485 Line Driver with Three-State Output ....................... Quad EIA-485 Line Driver with Three-State Output ....................... Page 7-10 7-37 7-79 7-137 7-137 7-145 7-149 7-176 7-189 7-189 Line Transceivers Device MC34050 MC34051 Function Dual EIA-422/423 Transceiver Dual EIA-422/423 Transceiver Page 7-164 7-164 Peripheral Drivers Device MC1411.B MC1412.B MC1413.B MC1416.B MC1472 ULN2068B ULN2074B ULN2801 ULN2802 ULN2803 ULN2804 Function Peripheral Driver Array .............................................. Peripheral Driver Array .............................................. Peripheral Driver Array .............................................. Peripheral Driver Array .............................................. Dual Peripheral Positive NAND Driver .................................. Quad 1.5 A Darlington Switch ......................................... Quad 1.5 A Darlington Switch ......................................... Octal Peripheral Driver Array ......................................... Octal Peripheral Driver Array ......................................... Octal Peripheral Driver Array ......................................... Octal Peripheral Driver Array ......................................... Page 7-30 7-30 7-30 7-30 7-34 7-200 7-204 7-208 7-208 7-208 7-208 RELATED APPLICATION NOTES Application Note AN708A AN781A AN917 Related Title Device Line Driver and Receiver Considerations ........................... MC3486 Revised Data - Interface Standards ............................... MC3488 Reading and Writing in Floppy Disk Systems Using Motorola Integrated Circuits .................................... MC3467 MOTOROLA LINEAR/INTERFACE DEVICES 7-9 II • ® AM26LS31 MOTOROLA QUAD LINE DRIVER WITH NANO ENABLED THREE·STATE OUTPUTS QUAD EIA·422 LINE DRIVER WITH THREE·STATE OUTPUTS SILICON MONOLITHIC INTEGRATED CIRCUIT The Motorola AM26LS31 is a quad differential line driver intended for digital data transmission over balanced lines. It meets all the requirements of EIA·422 Standard and Federal Standard 1020. The AM26LS31 provides an enable/disable function common to all four drivers as opposed to the split enables on the MC3487 EIA·422 driver. The high impedance output state is assured during power down. DSUFFIX CERAMIC PACKAGE CASE 620-10 • Full EIA·422 Standard Compliance • Single + 5.0 V Supply • Meets Full Vo = 6.0 V, VCC = 0 V, 10 < DSUFAX 100 pA Requirement PLASTIC PACKAGE CASE 751B-03 SO-16 • Output Short Circuit Protection • Complementary Outputs for Balanced Line Operation 16 • High Output Drive Capability PSUFAX • Advanced LS Processing PLASTIC PACKAGE CASE 648-06 • PNP Inputs for MOS Compatibility PIN CONNECTIONS DRIVER BLOCK DIAGRAM Input Outputs Inverting -----r--.... Enable Output Controls TRUTH TABLE Control Non-Inverting Output Inputs IE/E) Input ORDERING INFORMATION Device Temperature Range MC26LS31D* Package o to 70"C H/L H/L L/H X Ceramic DIP AM26LS31DC AM26LS31PC H L Inverting Output H L Z L = Low Logic State H = High Logic State X .. Irrelevant Z = Third-5tata IHigh Impedance) Plastic DIP SO·16 *Note that the surface mount MC26lS310 devices use the same die as in the ceramic and plastic DIP AM26LS31 DC devices, but with an Me prefix to prevent confusion with the package suffixes. MOTOROLA LINEAR/INTERFACE DEVICES 7·10 L H Z AM26LS31 ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VCC 8.0 Vdc Input Voltage VI 5.5 Vdc Operating Ambient Temperature Range TA Operating Junction Temperature Range Ceramic Package Plastic Package TJ Power Supply Voltage Storage Tempe"rature Range o to ·C +70 ·C 175 150 Tstg ·C -65 to +150 ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V", VCC '" 5.25 V and O·C '" TA '" 70·C. Typical values measured at VCC Characteristic = 50 V and TA = 25·C) Symbol Min Typ Max 0.8 Unit Vdc - Vdc Input Voltage - low logic State VIL - Input Voltage - High logic State VIH 2.0 - Input Current - low logic State Nil = 0.4 V) III - - -360 Input Current - High logic State (VIH = 2.7 V) (VIH = 7.0 V) IIH - +20 +100 Input Clamp Voltage (11K = -18 rnA) VIK -1.5 V Output Voltage - low logic State (lOl = 20 rnA) VOL - - 0.5 V Output Voltage - High logic State (lOH = -20 rnA) VOH 2.5 - - V Output Short Circuit Current (VIH = 2.0 V) Note 1 lOS -30 - Output Leakage Current - Hi-Z State (VOL = 0.5 V, Vll(E) = 0.8 V, VIH(E) (VOH = 2.5 V, Vll(E) = 0.8 V, VIH(E) 10(Z) = 2.0 V) = 2.0 V) Output Leakage Current - Power OFF (VOH = 6.0 V, VCC = 0 V) (VOL = -0.25 V, VCC = 0 V) Output Offset Voltage Difference, Note 2 10(off) /LA - Output Differential Voltage Difference, Note 2 Power Supply Current (Output Disabled) Note 3 - -20 +20 - +100 -100 - - VOD 2.0 - laVODI - - ICCX - VOS-VOS -150 rnA /LA - Output Differential Voltage, Note 2 pA /LA ±0.4 - V V ±0.4 V 60 80 rnA Typ Max Unit 1. Only one output may be shorted at a time. 2. See EIA Specification EIA-422 for exact test conditions. 3. Circuit in three-state condition. SWITCHING CHARACTERISTICS (VCC = 50 V TA = 25·C unless otherwise noted) Characteristic Symbol Propagation Delay Times High to low Output Low to High Output ns tpHl tplH Output Skew Propagation Delay (Cl = 10 pF, RL = (Cl = 10 pF, Rl = (Cl = 30 pF, RL = (Cl = 30 pF, RL = Control to Output 75 to Gnd) 180 to VCC) 75 to Gnd) 180 to VCC) n n n n Min tPHZ(E) tPlZ(E) tPZH(E) tPZL(E) - - 20 20 - 6.0 - - 30 35 40 45 - MOTOROLA LINEAR/INTERFACE DEVICES 7-11 ns ns - • AM26LS31 FIGURE 1 - THREE-8TATE ENABLE TEST CIRCUIT AND WAVEFORMS 3.0 V or Gnd To Scop, (Input) To Scope Output Input Pulse ganerator characteristics Zo ~ 60 Open for tpZH(E) Test Only n ~+5V PRR <;1.0MHz 180 Enable 50% Dutv Cycle 1TLH. 1THL <; 6 n. Pu'se Generator n 50 RL - See Test Table CL Includes Probe and Jig Capacitance. See Test Table 3.0 V , , - - - - - - 3.0 V Control Input (Enable) 0 Control Input /~.3V (Enable) -------J~~----------O • I-- tpZL(E) - tPHZ(E) ~ Output VOH 1.3V 1\'-------- VOL Output -----+4----- 0 V -- 1.5 V f--, ____ VOH tpZH(E) - J Output Output V13V . ========~~-------OV ------"------VOL OV FIGURE 2 - PROPAGATION DELAY TIMES INPUT TO OUTPUT WAVEFORMS AND TEST CIRCUIT Scope (Output) 5.0 V 'n. Output 200 Pulse Generator Puis. generator characteristics 2 0 " 50 n 3.0 V Enable PRR <; 1.0 MHz 50% Duty Cy.cle CL Includes Probe and Jig Capacitance r - - - " ' \ - - - - - - 3.0 V tTLH. t-rHL '" 6 ns Input '----OV Output Output VOL OV MOTOROLA LINEAR/INTERFACE DEVICES 7-12 ® AM26LS32 MOTOROLA QUAD EIA-4221423 LINE RECEIVER Motorola's Quad EIA-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when Pin 4 is a LogiC "0" and Pin '2 is a LogiC "'." A PNP device buffers each output control pin to assure minimum loading for either Logic "'" or Logic "0" inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of AM26LS32 features include: QUAD EIA-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS SILICON MONOLITHIC INTEGRATED CIRCUIT D SUFFIX CERAMIC PACKAGE CASE 620-10 • Four Independent Receiver Chains • Three-State Outputs • High Impedance Output Control Inputs IPIA Compatible) • Internal Hysteresis - 30 mV (Typ) @ Zero Volts Common Mode • Fast Propagation Times - 25 ns ITyp) D SUFFIX PLASTIC PACKAGE CASE 751B-03 50·16 • • TTL Compatible • Single 5 V Supply Voltage • Fail·Safe Input-Output Relationship. Output Always High When Inputs Are Open, Terminated or Shorted P SUFFIX PLASTIC PACKAGE CASE 648-06 • 6K Minimum Input Impedance PIN CONNECTIONS RECEIVER CHAIN BLOCK OIAGRAM Differential Inputs Three-State Control Inputs Input A Output Outputs A{ 2 3·State B 4 ContrOl Output C 5 L..="'---+lr--·LJ'2 3-5tate Control Output D 11 ORDERING INFORMATION Device Temperature *Note that the surface mount MC26lS32D devices use the same die as in the ceramic and plastic DIP AM26LS32DC devices, but with an Me prefix to prevent confusion with the package suffixes. AM26LS32PC MC26LS32D* MOTOROLA LINEAR/INTERFACE DEVICES 7-13 Package Ceramic DIP AM26LS32DC o to 70°C Plastic DIP SO-16 AM26LS32 ABSOLUTE MAXIMUM RATINGS Symbol Value Unit Power Supply Voltage VCC 7.0 Vdc Input Common Mode Voltage VICM ±25 Vdc VIO ±25 Vdc VI 7.0 Vdc 10 Tstg 50 mA -65 to +150 °c °c Rating Input Differential Voltage Three-State Control Input Voltage Output Sink Current Storage Temperature Operating Junction Temperature TJ Ceramic Package +175 Plastic Package +150 RECOMMENDED OPERATING CONDITIONS Rating Power Supply Voltage Operating Ambient Temperature Symbol Value Unit VCC 4.75 to 5.25 Vdc TA o to + 70 °c Input Common Mode Voltage Range VICR -7.0 to +7.0 Vdc Input Differential Voltage Range VIOR 6.0 Vdc ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for TA = 25°C, Vee = 5.0 V and VIC = O.V. See Note I.) Symbol Min Typ Max Unit Input Voltage - High Logic State (Three-State Control) VIH 2.0 - - V Input Voltage - VIL - - 0.8 V Characteristic • Low Logic State (Three-State Control) Differential Input Threshold Voltage (Note 2) (-7.0 V '" VIC'" 7.0 V, VIH = 2.0 V) (10 = -0.4 rnA, VOH "'.2.7 V) (lQ = 8.0 rnA, VOL'" 0.45 V) - Input Bias Current (VCC = 0 V or 5.25) (Other Inputs at -15 V'; Vin .; +15VI Vin Vin = = - 0.2 -0.2 mA IIB(OI Rin 6.0 K - VOH VOL 10Z 2.7 - - - - 0.45 - - mA ~A +15V -15V Vin .; +15VI level (-7.0V" VIC'; 7.0 V, VIH = 2.0 V, See Note 31 (10 = -0.4 mA, V ID = 0.4 V) (10 = 8.0 mA, VID = -0.4 V) Output Third State Leakage Current (VIIDI = +3.0 V, VIL = 0.8 V, Vo = 0.4 V) (VII D) = -3.0 V, VIL = 0.8 V, Vo = 2.4 VI Output Short Circuit Current (VI(D) = 3.0 V, VIH = 2.0 V, Vo = 0 V, See Note 4) Input Resistance 1-15 V V VTH(O) :s;;;. 2.3 -2.8 - Input Balance and Output ~A lOS -15 - -20 20 -85 Input Current - Low Logic State (Three-State Control) (V IL =0.4V) IlL - - -360 Input Current - High Logic State (Three-State Control) IIH (VIH = 2.7 VI (VIH = 5.5 VI Input Clamp Diode Voltage (Three-State Control) (lIC = -18mAI Power Supply Current (VIL = 0 VI (All Inputs Groundedl Ohms V ~A VIK - - 20 100 -1.5 ICC - - 70 - V mA 1. All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted. 2. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case. 3. Refer to EIA-422J3 for exact conditions. Input balance and guaranteed output levels are done simultaneously for worst case. 4. Only one output at a time should be shorted. MOTOROLA LINEAR/INTERFACE DEVICES 7-14 AM26lS32 SWITCHING CHARACTERISTICS (Unless otherwise noted, VCC = 5.0 V and TA = 25°CI Characteristic Symbol Typ Min Max Unit ns Propagation Delay Time - Differential Inputs to Output (Output High to Lowl (Output Low to High) Propagation Delay Time Three·State Control to Output (Output Low to Third Statel (Output High to Third Statel (Output Third State to Highl (Output Third State to Lowl - tpHL(DI tpLH(D) - 30 30 ns - tpLZ tpHZ tpZH tpZL - - - - 35 35 30 30 SWITCHING TEST CIRCUIT AND WAVE FOR FIGURE 1 • PROPAGATION DELAY DIFFERENTIAL INPUT TO OUTPUT To Scope To Scope (Input I (Output) =1° ~ 7 ~:~~~DI~V +2.5V Differential - - -- Inputs CL 51 = 15 pF (Includes Probe and Stray Capacitance) OV + 2.0 V tpHL(DI VOH 1.3 V 1.3 V VOL Output OV----------- II Input Pulse Characteristics tTLH = tTHL - 6.0 ns (10% to 90% I PRR = 1.0 MHz, 50% Duty Cycle 3·State Control FIGURE 2 - PROPAGATION DELAY THREE·STATE CONTROL INPUT TO OUTPUT To Scope Input Pulse Characteristics (lnputl tTLH = tTHL = 6.0 ns (10% to 90% I PRR = 1.0 MHz, 50% Duty Cycle 3.State Control To Scope (Outputl Pulse Generator SWI 2.0 k +5.0 V + 1.5 V for tpHZ and tpZH -1.5 V for tPLZ and tpZL Differential Inputs CL=15pF (Includes Probe and Stray Capacitance) I All Diodes 1 N916 or Equivalent 5.0 k -= YSW2 Input 3.0V\t;::~ 3'0v~tPLZ 1.5 V oV - - - r- SWI Closed tpLZ Input SW2 Closed '" 1.3 V -----t~ Output VOL --.Z§;.5V Output Output ---1--- ---ov 3.0V Input ~ "'1.3V - - - - - 3.0V tpZH ~'0pen v::~--tp~~Closed ov--- ,::- ~::~;:'- --.:-.:t~ tPHZ ~~ Closed Input - - - - -- 0 V tpZl ~.5V SWI Closed OV - - SW20pen =TG: "'5.0 V - V B E - PZL .OutpIJt 1.5 V VOL - - - - - - --OV 1.5V MOTOROLA LINEAR/INTERFACE DEVICES 7-15 • ® MCST26A MOTOROLA (MC6880A) QUAD THREE-STATE BUS TRANSCEIVER QUAD THREE-STATE BUS TRANSCEIVER This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 rnA driver and -20 rnA receiver outputs are short-circuit protected and employ three-state enabling inputs. The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 IlA at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages. The MC8T26A is identical to the N E8T26A and it operates from a single +5 V supply. • High Impedance Inputs MONOLITHIC SCHOTTKY INTEGRATED CIRCUITS - LSUFAX CERAMIC PACKAGE CASE 620-10 • Single Power Supply • High Speed Schottky Technology 1 PSUFFIX • Three-State Drivers and Receivers • Compatible with M6800 Family Microprocessor PLASTIC PACKAGE CASE 648-06 PIN CONNECTIONS - MC8T26A MICROPROCESSOR BUS EXTENDER APPLICATION (MC6880AI (Clock) GNO+5V 111 tJ>2 Receiver Enable 1 Vee Input Receiver , Output Driver Enable Input 2 14 Receiver Output 4 Driver Bus4 Driver Input Receiver Output 2 AND 5 4 Receiver CONTROL Output 3 BUS Driver Input Bus 3 7 2 Gnd ORDERING INFORMAll0N Alternate MCBT26AL MC6880AL Ceramic DIP MCBT26AP MC6880AP Plastic DIP MOTOROLA LINEAR/INTERFACE DEVICES 7-16 Temperature Range Device Package MC8T26A MAXIMUM RATINGS ITA = 2s"C unless otherwise noted) Symbol Value Unit VCC 8.0 Vdc Input Voltage VI 5.5 Vdc Junction Temperature Ceramic Package Plastic Package TJ Rating Power Supply Voltage °c 175 150 Operating Ambient Temperature Range TA T stg Storage Temperature Range °c uc Oto +75 -65 to+150 ELECTRICAL CHARACTERISTICS 14.75 V .. VCC" 5.25 V and OOC .. TA .. 75°C unless otherwise noted'! Characteristic Symbol Min Typ Max Unit Ill!RE) IILlDE) IllID) IlllBI - - -200 -200 -200 ~A - - - -25 ~A - - 25 25 25 ~A Input Current - low Logic State I Receiver Enable Input, VllIRE) = 0.4 V) IDriver Enable Input, VllIDE) = 0.4 V) IDriver Input, VllID) = 0.4 V) (Bus (Receiverllnput, V'L(BI == 0.4 VI Input Disabled Current - Low Logic State IDriver Input, Vll(D) = 0.4 V) -200 IILlD) DIS Input Current-High Logic State I Receiver Enable Input, VIHIRE) = 5.25 VI IDriver Enable Input, VI HIDE).= 5.25 V) (Driver Input, VI HID) = 5.25 V) IReceiver Input, VIHIB) = 5.25 V) Input Voltage - low Logic State (Receiver Enable Input) (Driver Enable Input (Driver Input) (Receiver Input) IIHlREI II HIDE! IIHID) IIHIB) - VILIREI VllIDE) VILlD) VllIB) - - VIHlRE) VIHIDE) VIH(D) VIHIB) 2.0 2.0 2.0 2.0 - - VOlIB) VOlIR) - - 0.5 0.5 V VDHIB) VOHIR) 2.4 2.4 3.5 3.1 3.1 - V - - - - 100 100 ~A - -100 -100 itA - - -1.0 -1.0 -1.0 V - 100 0.85 0.85 0.85 0.85 V - V Input Voltage - High Logic State (Receiver Enable Input) (Driver Enable Input) (Driver Input) (Receiver Input) Output Voltage - Low logic State IBus Driverl Output, 10l1B) = 48 rnA) (Receiver Output, 'OL(R) = 20 mAl Output Voltage - High Logic State IBus IDriver) Output, 10HIB) = -10 mAl IReceiver Output, 10HIR) = -2.0 rnA) IReceiver Output, 10HIR) = -100 itA, VCC = 5.0 V) Output Disabled Leakage Current - High Logic State 18us Driverl Output, VOHIB) = 2.4 V) IReceiver Output, VDHIR) = 2.4 V) 10HlIB) 10Hl1R) - Output Disabled Leakage Current - Low Logic State IBus Output, VOlIB) = 0.5 vi IReceiver Output, VOlIR) = 0.5 V) 10ll1B) 10ll(R) - Input Clamp Voltage IDriver Enable Input IIOIDE) = -12 rnA) (Receiver Enable Input IIC(RE) = +12 rnA) IDriver Input IICID) = -12 rnA) Output Short Circuit Current, VCC IBus (Driver) Output) IReceiver Output) ~ = 5.25 - - IOS(8) 10SIR) -50 -30 - -150 -75 rnA - ICC - - 87 rnA 5.25 V, Note 1 Power Supply Current IVCC VICIDE) VICIREl VICID) V) Note 1. Only one output may be short-Circuited at a time. MOTOROLA LINEAR/INTERFACE DEVICES 7-17 • MC8T26A SWITCHING CHARACTERISTICS (Unless otherwise noted, specifications apply at TA = 25°C and VCC = 5.0 V) Symbol Figure Min Max Unit Propagation Delay Time from Receiver (Busllnput to High Logic State Receiver Output tPLH(R) 1 - 14 ns Propagation Delay Time from Receiver (Bus) Input to Low Logic State Receiver Output tPHL(R) 1 - 14 ns Propagation Delay Time from Driver I "put to High Logic State Driver (Bus) Output tPLH(D) 2 - 14 ns Propagation Delay Time from Driver I nput to Low Logic State Driver (Busl Output tPHL(D) 2 - 14 ns Propagation Delay Time from Receiver Enable Input to High Impedance (Open) Logic State Receiver Output tpLZ(RE) 3 - 15 ns Propagation Delay Time from Receiver Enable Input to Low Logic Level Receiver Output tpZL(RE) 3 - 20 ns Propagation Delay Time from Driver Enable Input to High Impedance Logic State Driver (Bus) Output tPLZ(DE) 4 - 20 ns Propagation Delay Time from Driver Enable Input to Low Logic State Driver (Bus) Output tPZL(DE) 4 - 25 ns Characteristic FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, tpLH(R) AND tpHL(R) • tTLH <; 5.0 ns tTH L <; 5.0 ns Input ov--,.;;.;;;.;r Input Pulse Frequency"" 10 MHz Duty eye Ie "" 50% tpHL(RI VOH-----. Output VOL------'---------J To Scope (Input) ~r ~ 2.6 V To Scope (Input) Input 92 Receiver OutpUt lN916 or EQuiv. Driver Input Pulse Generator 51 1.3 k 30pF Driver Enable Input MOTOROLA LINEAR/INTERFACE DEVICES 7-18 MC8T26A FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER I OUTPUT, 'PLH(DI AND 'PHL(DI tTHL '" 5.0 os 2.6V----Input ov --"";':;';':"':''1 Input Pulse Frequency"" 10 MHz Duty Cycle == 50% 'PHLIOI VOH-----..., Output VOL _ _ _ _ _ _ ' - _ _ _ _ _ _..J 2.6 V To Scope 2.6 V To Scope Driver Enable Input (Input) (Output) 30 Driver Driver (Bus) Input Output 1N916 or Equiv. Receiver Output 51 300 pF 260 ~ Enabi8 Input II FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, 'PLZ(REI AND 'PZL(REI tTLH '" 5.0 tTHL.o;; 5.0 ns ns 2.6 V ----+-J:,-------=~ Input OV tPLZIREI ~3.5 V r- ----+-:;;...------_. 1.5 V Output 'PZLlREI Input Pulse Frequency == 5.0 MHz Duty Cycle == 50% V O L - - - -..... To Scope (Input) 2.6 V To Scope (Output) ~'Enable Input 5.0 V 2.4 k Receiver Output Pulse 240 51 Generator 5.0 k MOTOROLA LINEAR/INTERFACE DEVICES 7-19 30 pF 1N91S or Equiv. MC8T26A FIGURE 4 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUSJ OUTPUT, tPLZ(DEJ AND tpZL(DEJ tTLH"; 5.0 ns 2.6 V tTHL' 5.0 ns ----+.-J"=,,....------,i. Input Input Pulse Frequency"" 5.0 MHz Duty CYcle"" 50% OV---...:t"1 tpZL(DEJ ~3.5V----.... Output VOL------~-------~ +2.6 V To Scope Driver Enable Input 5.0 V (Output) 2.4 k Driver Input • Driver (Bus) Pulse 51 Generator Output Receiver Output 5.0 k AeCii'iVe"r 300 pF 1N916 or Equiv. ~ Input FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS Receiver Outputs Receiver Outputs Driver Inputs Driver Inputs To Other Drivers/Aeceivers Driver Enable MOTOROLA LINEAR/INTERFACE DEVICES 7-20 Receiver Enable ® MCST2S MOTOROLA (MC6889) NONINVERTING QUAD THREE-STATE BUS TRANSCEIVER This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the - 48 mA driver and - 20 mA receiver outputs are short circuit protected and employ threestate enabling inputs. The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 pA at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages. Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns. The MC8T28 is identical to the NE8T28 and it operates from a single + 5 V supply. • High Impedance Inputs • Single Power Supply • High Speed Schottky Technology • • • Three·State Drivers and Receivers Compatible with M6800 Family Microprocessor Non·lnverting NONINVERTING BUS TRANSCEIVER MONOLITHIC SCHOTTKY INTEGRATED CIRCUITS LSUFAX CERAMIC PACKAGE CASE 620-10 ,. II , P SUFFIX PLASTIC PACKAGE CASE 648-06 MICROPROCESSOR BUS EXTENDER APPLICATION PIN CONNECTIONS - (Clock) GND+5V 1>1 MC8T28 (MC6889) 1>2 Receiver Enable Input Receiver Output , Vee Driver Enable Input 2 14 Receiver Output 4 Bus4 Driver Input 4 Receiver Output 3 Driver Input Bus 3 7 2 Gnd ORDERING INFORMATION Temperature Device Alternate Range Package McaT28L MC6889L o to +75°C Ceramic DIP MC8T28P MC6889P o to +75"<: Plastic DIP MOTOROLA LINEAR/INTERFACE DEVICES 7-21 MC8T28 MAXIMUM RATINGS (TA = 25"C unless otherwise noted I Symbol Value Unit VCC 8.0 Vdc Input Voltage VI 5.5 Vdc Junction Temperature TJ Rating Power Supply Voltage Ceramic Package Plastic Package °c 175 150 Operating Ambient Temperature Range TA T stg Storage Tempera:tu.,e Range o to +75 °c -65 to+150 ~C ELECTRICAL CHARACTERISTICS (4.75 V .. VCC" 5.25 V andOoC .. T A" 75 0 C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit IILlRE) IllIDE) IILlDI IILlBI - - ~A - -200 -200 -200 - - -25 ~A - 25 25 25 ~A Input Current - Low Logic State (Receiver Enable Input, VllIRE)" 0.4 V) IDriver Enable Input, VI lIDE) " 0.4 V) (Oriver Input. VILIOI = 0.4 V) IBus IReceiveri Input, VI liB') " 0.4 VI Input Disabled Current - Low Logic State (Driver Input, Vll(D) = 0.4 VI Input Current-High Logic State (Receiver Enable Input, V'H(RE) • = Ill(D) DIS 5.25 VI IIHIRE) IIHIDE) IIHID) I Driv.er Enable Input, VI HIDE)," 5.25 V) IDriver Input, VI HID) = 5.25 V) I "put Voltage - Low Logic State (Receiver Enable Input) (Driver Enable Input (Driver Input) .' VILlRE) VI LlDE) VILlD) VILlB) (Receiver Input) Input Voltage - High Logic State (Receiver Enable Input) (Driver Enable Input) (Driver Input) (Receiver Input) - - -200 - - - - - - - 0.85 0.85 0.85 0.85 V V VIHIRE) VIHIDE) VIHIDI VIHIB) 2.0 2.0 2.0 2.0 - - - VOl(8) VOllRI - - 0.5 0.5 V VOHIB) VOHIR) 2.4 2.4 3.5 3.1 3.1 V - - - Output Voltage - Low Logic State (Bus Driver) Output, IOLlB) = 48 rnA) (Receiver Output, IDlIR) = 20 rnA) Output Voltage - High Logic State (Bus (Driver) Output, IOH(B) = -10 mAl IReceiver Output, IOH(RI = -2.0 mAl (Receiver Output, IDH(R) = -100/IlA, VCC = 5.0 V) O'utput Disabled Leakage Current - High Logic State (Bus Driverl Output, VOH(B) = 2.4 V) IReceiver Output, VOH(R) = 2.4 V) IDHlIB) IDHLIR) - - 100 100 ~A Output Disabled Leakage Current - Low Logic State (Bus Output, VDl(BI = 0.5 V) (Receiver Output, VOl(R) = 0.5 V) IDll(B) IDllIR) - - -100 -100 ~A Input Clamp Voltage (Driver Enable Input IID(DEI = -12 rnA) (Receivar Enable Input IIC(REI = +12 mAl IDriver Input IIC(D) = -12 mAl VICIDE) VICIREI VIC(D) - - -1.0 -1.0 -1.0 V IDSIB) IDS(R) -50 -30 -150 -75 rnA ICC - - 110 rnA Output Short Circuit Current, VCC - 5.25 V, Note 1 IBus (Driver) Output) (Receiver Output) Power Suppty Current (VCC = 5.25 V) - Note 1. Only one output may be short-Circuited at a time. MOTOROLA LINEAR/INTERFACE DEVICES 7-22 - - MC8T28 SWITCHING CHARACTERISTICS (Unless otherwise noted Vcc = 5.0 V and TA = 250 C) Characteristic Propagation Delay Time-Receiver (CL = 30 pF) Symbol Min Max Unit tPLH(R) - 17 17 ns - 17 17 ns tpZL(R) - 23 ns tpLZ(R) - 18 tpZL(D) tpLZ(D) - 23 tpHL(R) Propagation Delay Time-Driver (el ::: 300 pF) tPLH(D) tpHUD) Propagation Delav Time-Enable (CL - Receiver =30 pF) - Driver Enable (CL 300 pF) 28 FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, tPLH(R) AND tpHL(R) II tTHL.s;:;; 5.0 ns 2.6 V Input Input Pulse Frequency = 10 MHz Duty Cycle VOH----- Output VOL - - - - - ' - - - - - - - - - ' To Scope Receiver To Scope (Input) E;;";bi"; (Input) 2.6 V T Input 92 Receiver Output 1N916 or Equiv. Driver Input Pulse Generator 51 1.3 k Driver 30 pF Enable Input MOTOROLA LINEAR/INTERFACE DEVICES 7-23 = 50% MC8T28 FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVERI OUTPUT, tpLH(DI AND tpHL(DI tTHL ~ 5.0 ns tTLH ~ 5.0 ns 2.6 V----=="\I Input OV----- Input Pulse Frequency"" 10 MHz tPt-lUOJ Duty Cycle;; 50% VOH------ Output VOL _ _ _ _ _ _ ' - _ _ _ _ _ _...J 2.6 V To Scope 2.6 V To Scope Driver (Input) (Output) Enable Input Driver 30 Driver (Bus) lN916 Input Output or Equiv. Receiver Output 51 300pF 260 Receiver "E'ii'8bi"e • Input FIGURE 3 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tpLZ(RE) AND tpZL(RE) tTHL ~ 5.0 ns tTL.H .,;;;; 5.0 ns 2.6 V ---+J<:-:=,.----=::-:i- Input o V _--':"=->11 tPLZ(AE) ~3.5 V r -----+----:,..-------_. tpZL("'R"E) Input Pulse Frequency = 5.0 MHz Duty Cycle"" 50% 1.5 V Output VOL----~ To Scope (Input) OV A scei ver To Scope 'E'ilibTe 5.0 V (Output) Input 2.4 k Receiver 240 Output Puillt 51 Generator lN916 5.0 k MOTOROLA LINEAR/INTERFACE DEVICES 7-24 30 pF or Equiv. MC8T28 FIGURE 4 - TEST CIRCUIT AND WAVEFDRMS FDR PRDPAGATIDN DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tPLZ(DE) AND tpZL(DE) tTHL~5.0ns 2.6 V ---rTn=-----~ Input Input Pulse Frequency"" 5.0 MHz Dutv Cycle = 50% 011--_,,;("1 'PZUDE) ~3.5V----~ Output VOL------~-------~ OV To Scope Driver Enable Input 5.0 V (Output) 70 2.4 k Driver Input Driver (Bus) Pulse 51 Generator Output Receiver Output 5.0 k Receiver Ena'iJie T 300 pF lN916 or Equiv. Input FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS Receiver Outputs A eeeiver Outputs r- u I- ~ 1.0 Max~ ~ 5.0 4.0 7.0 6.0 r-~ 0.5 8.0 7.0 MAXIMUM COLLECTOR CURRENT versus DUTY CYCLE (AND NUMBER OF DRIVERS IN USE) I !z ~ :::> 500 '" ~ 300 ...... -- -- ----...... :----... t---.. ............... .......... u ............ -.......... -...........: ........... .y r-- r-.. r---... -...... ............... r---.:: t:::: 200 100 10 ...... r-.. r-- t"'-- r-t"'-r-t-- ........ t"'-- . . . . r-r--- . . . . r-- ~ r-.............. r---. 1'-t"'-- ~ 8 8.0 9.0 VI. INPUT VOLTAGE (VOLTS) FIGURE 7 - 700 20 30 50 70 100 % DUTY CYCLE MOTOROLA LINEAR/INTERFACE DEVICES 7-32 r- b--::: r-- 1 6.0 5.0 ~ ~ f-Tyj;ical I-- r- VI. INPUT VOLTAGE (VOLTS) 1000 26 2.0 - 3.0 24 « " 1.0 22 s /. V o 20 FIGURE 6- INPUT CHARACTERISTICS - MC1416.B / V V/ 0.5 18 2.5 / V / t6 VI. INPUT VOLTAGE (VOLTS) 2.5 / I 14 VCE(sat). SATURATION VOLTAGE (VOLTS) 2.0 ~ical /V IP' 0.8 0.6 .....- ~ ....-i'" A~ .y200 V ./ Maximum Iff 8 • MC1412.B PIN1, 3 - 700 o =2S 0 C (continued) 10 11 12 MC1411,8, MC1412,8, MC1413,8, MC1416,8 REPRESENTATIVE CIRCUIT SCHEMATICS 1n 1n MC1411,B ""----1M----1t- Pin 9 Pin 9 1 I I L __ * ______ _ • MOTOROLA LINEAR/INTERFACE DEVICES 7-33 ® MC1472 MOTOROLA DUAL PERIPHERAL POSITIVE "NAND" DRIVER DUAL PERIPHERAL-HIGH-VOL TAGE POSITIVE "NAND" DRIVER SILICON MONOLITHIC INTEGRATED CIRCUITS The dual driver consists of a pair of PNP buffered AND gates connected to the bases of a pair of high voltage NPN transistors. They are similar to the MC75452 drivers but with the added advantages of: 1) 70 Volt capability 2) output suppression diodes and 3) PNP buffered inputs for MOS compatibility. These features make the MC1472 ideal for mating MOS logic or microprocessors to lamps, relays, printer hammers and incandescent displays. • 300 mA Output Capability (each transistor) • • 70 Vdc Breakdown Voltage • Internal Output Clamp Diodes • Low Input Loading for MOS Compatibility (PNP buffered) MAXIMUM RATINGS (TA U SUFFIX CERAMIC PACKAGE CASE 693-02 P1SUFFlX PLASTIC PACKAGE CASE 626-05 = 25°C) Rating Value Unit Supply Voltage 7.0 Volts Input Voltage 5.5 Volts Output Voltage 80 Volts Clamp Voltage 80 Volts Output Current (Continuous) 300 mA Operating Junction Temperature Ceramic Package Plastic Package °c +175 +150 Storage Temperature Range -65to+150 °C Positive Logic: Y=AB· RECOMMENDED OPERATING CONDITIONS Rating Symbol Min Max Unit VCC 4.5 5.5 Volts Supply Voltage TRUTH TABLE A B Y Operating Ambient Temperature TA 0 70 °c Output Voltage Vo VCC 70 Volts L L H ("OFF" STATE) Clamp Voltage Vc Vo 70 Volts L H H ("OFF'· STATE) H L H ("0 F F" STATE) H H L ("ON" STATE) ORDERING INFORMATION Device MC1472U MC1472P1 Temperature Range o to o to Package +700C Ceramic DIP +70°C Plastic DIP MOTOROLA LINEAR/INTERFACE DEVICES 7-34 H"" L.oglc One L = Logic Zero MC1472 ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimax limits apply across the O'C to 70'C temperature range with 4.5 V "" VCC "" 5.5 V. All typical values are for TA = 25'C, VCC = 5.0 Volts.) Symbol Min Input Voltage - High Logic State Characteristic VIH 2.0 Input Voltage - low logic State Vll 0 Input Current - low logic State (VIL = 0.4 V) A Input B Input IlL Input Current - High Logic State (VIH = 2.4 V) A Input B Input (VIH = 5.5 V) A Input B Input IIH Input Clamp Voltage (ICC = -12 rnA) VIK Output Leakage Current - High logic State (VO = 70 V, See Test Figure) IOH Output Voltage - low Logic State (lOL = 100 rnA) (lOL = 300 rnA) VOL Output Clamp Diode Leakage Current (VC = 70 V, See Test Figure) IOC Output Clamp Forward Voltage (lFC = 300 rnA. See Test Figure) VFC Power Supply Current (All Inputs at VIH) (All Inputs at VILl ICC Typ - Max Unit 5.5 Vdc 0.8 Vdc rnA - - -0.3 -0.15 p.A - - - 40 - 20 - - - 200 100 - - -1.5 - 100 - - 0.4 0.7 - - 100 - - 1.7 - - 70 15 - V p.A V V V rnA - NOTE: All currents into device pins are shown as positive, out of device pins·as negative. All voltages referenced to ground unless otherwise noted. SWITCHING CHARACTERISTICS Vee =5.0V, TA = 25°C Symbol Min Typ Max Unit tpHL tpLH - - - 1.0 0.75 j3 Output Low to High Output Transition Time Output High to Low Output Low to High tTHL ITLH - - 0.1 0.1 j3 Characteristic Propagation Delay Time Output High to Low MOTOROLA LINEAR/INTERFACE DEVICES 7-35 • f\4C1472 TEST CIRCUITS B VIHIIIVIL Per T~uth 8 Vee ( Teble 2 3 VOH 4 -= IVOL I 8 8 VIH ( -= 2 7 3 6 4 5 Vee -= -: 8 Vee 2 -= ":" -= -: SWITCHING TEST CIRCUIT AND WAVEFORM +60 V ToScopa (Output) To 100 ....-0--+-.....""'.-... + 30 V I Pul .. Ganerator 30pF Include. Probe 8ndStray 3.DV 1.§V../ INPUT ~ OV \ _ .SV ____ ~HL VOH OUTPUT JI-- 90% 50% ~10%~ 'THL _________ ~ MOTOROLA LINEAR/INTERFACE DEVICES 7-36 ® MC1488 MOTOROLA QUAD MDTL LINE DRIVER EIA-232C QUAD LINE DRIVER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. EIA-232C. Features: • Current Limited Output ±1O mA typ • Power·Off Source Impedance 300 Ohms min L SUFFIX . CERAMIC PACKAGE CASE 632-08 • Simple Slew Rate Control with External Capacitor • Flexible Operating Supply Range • Compatible with All Motorola MDTL and MTTL Logic Families PSUFFIX PLASTIC PACKAGE CASE 646-06 o SUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 ~ 14.," 1 PIN CONNECTIONS TYPICAL APPLICATION LINE DRIVER MCl48B INTERCONNECTING LINE RECEIVER CABLE MC1489 J" - - , ' " -Lj __ / Mon LOGIC INPur I INTERCONNECTING I ~~ CABLE ~MOTl LOGIC OUTPUT CIRCUIT SCHEMATIC 11/4 OF CIRCUIT SHOWNI Vee 14 ~ B.2k PINS 4.9,120R2 INPUT INPUT PINS 5,10.13 70 300 OUTPUT PIN S 6,B,l1 OR 3 ~",=3'6k NO 7~ 10k VEE I ~ r 7k 7D MOTOROLA LINEAR/INTERFACE DEVICES 7-37 .. MC1488 MAXIMUM RATINGS (TA = + 25'C unless otherwise noted.) Symbol Value Unit Power Supply Voltage VCC VEE +15 -15 Vdc Input Voltage Range VIR -15'" VIR '" 7.0 Vdc Output Signal Voltage Vo ±15 Vdc Po 1/R(lJA 1000 6.7 mW mWI'C Rating Power Derating IPackage Limitation, Ceramic and Plastic Dual-In-Line Package) Derate above TA = + 25'C Operating Ambient Temperature Range TA Storage Temperature Range Tsta o to 'c +75 -65 to + 175 'c ELECTRICAL CHARACTERISTICS IVCC = +90 + - 1% Vdc VEE = -90 -+1% Vdc, TA = 0 to 75'C unless otherwise noted) Characteristic Input Current Input Current - • = 0) High Logic State IVIH = 5.0 V) Low Logic State IVIL Output Voltage - High Logic State IVIL = 0.8 Vdc, RL = 3.0 kll, VCC IVIL = 0.8 Vdc, RL = 3.0 kll, VCC = = +9.0 Vdc, VEE = -9.0 Vdc) + 13.2 Vdc, VEE = -13.2 Vdc) Output Voltage - Low Logic State IVIH = 1.9 Vdc, RL = 3.0 kll, VCC IVIH = 1.9 Vdc, RL = 3.0 kll, VCC = = + 9.0 Vdc, VEE = - 9.0 Vdc) + 13.2 Vdc, VEE = -13.2 Vdc) Figure Symbol Min Typ Max Unit 1 IlL 1.0 1.6 rnA 1 IIH - - 10 2 VOH 2 +6.0 +9.0 +7.0 +10.5 - -6.0 -9.0 -7.0 -10.5 - - Vdc VOL Positive Output Short-Circuit Current, Note 1 3 10S+ +6.0 +10 +12 Negative Output Short-Circuit Current, Note 1 3 10S- -6.0 -10 -12 = VEE = 0, IVai = Positive Supply Current IRI = 00) IVIH = 1.9 Vdc, VCC = +9.0 Vdc) (VIL = 0.8 Vdc, VCC = + 9.0 Vdc) IVIH = 1.9 Vdc, VCC = +12 Vdc) (VIL = 0.8 Vdc, VCC = + 12 Vdc) IVIH = 1.9 Vdc, VCC = + 15 Vdc) IVIL = 0.8 Vdc, VCC = + 15 Vdc) Negative Supply Current IRL = 00) IVIH = 1.9 Vdc, VEE = -9.0 Vdc) IVIL = 0.8 Vdc, VEE = - 9.0 Vdc) IVIH = 1.9 Vdc, VEE = - 12 Vdc) IVIL = 0.8 Vdc, VEE = -12 Vdc) IVIH = 1.9 Vdc, VEE = -15 Vdc) IVIL = 0.8 Vdc, VEE = -15 Vdc) 4 ro 300 5 ICC Output Resistance IVCC Power Consumption IVcc = 9.0 Vdc, VEE IVCC = 12 Vdc, VEE ± 2.0 V) - = - 9.0 Vdc) = -12 Vdc) rnA Ohms +15 +4.5 +19 +5.5 +20 +6.0 +25 +7.0 +34 +12 - - - -13 -18 - - - - -500 -23 -500 -34 -2.5 - - 333 576 275 350 ns 45 75 ns 110 175 ns 55 100 ns - Pc - - - lEE - rnA rnA - 5 pA Vdc - - -17 rnA ,..A rnA pA rnA rnA mW SWITCHING CHARACTERISTICS IVcc = +90 + - 1% Vdc VEE = -90 + - 1% Vdc, TA = +25'C.) Propagation Delay Time III Fall Time III Propagation Delay Time III Rise Time III = 3.0 k and = 3.0 k and = 3.0 k and = 3.0 k and 15 pF) 6 tpLH 15 pF) 6 tTHL 15 pF) 6 tpHL 15 pF) 6 tTLH Note 1. Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously. MOTOROLA LINEAR/INTERFACE DEVICES 7-38 - MC1488 CHARACTERISTIC DEFINITIONS FIGURE 2 - OUTPUT VOLTAGE FIGURE 1 - INPUT CURRENT +9 V +9 V -9 V FIGURE 3 - OUTPUT SHORT-CIRCUIT CURRENT Vee -9 V FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF) VEE +1.9 V 105+ I Va ±2 Vdc • ±6.6 rnA Max 105- +0.8 V FIGURE 6 - SWITCHING RESPONSE FIGURE 5 - POWER-SUPPLY CURRENTS Vee 'in -D-----I_. .3-k--1....---.va 1 15PF VIL -------0 V Va-----. +0.8 V 'T H L - - ' -_ _ _-'"--ITLH tTHL and tTLH Measured 10% to 90% MOTOROLA LINEAR/INTERFACE DEVICES 7-39 .. MC1488 TYPICAL CHARACTERISTICS =+250 C unless otherwise noted.) (T A FIGURE 7 - FIGURE 8 - TRANSFER CHARACTERISTICS versus POWER-SUPPLY VOLTAGE <" ~ i:5 .1} VCC!VEE-I'12V '90 c; V~C VE~-.9~ ~cc =JEE =,6 V tlO " ii: J0 ;'5 +12 10S+ +6.0 a +3.0 ~ ~~o r-3k lH-_1 I 0.2 • VI -3.0 0.8 V <:; -= '10 :~ ~ ::> ....o ~ ~ -6.0 I o I 0.6 0.8 1.0 1.2 1.4 Vin.INPUT VOLTAGE IVOLTS) 0.4 1.6 1.8 FIGURE 10 - OUTPUT VOLTAGE AND CURRENT-LIMITING CHARACTERISTICS '10 +16 ;;, '12 ~ I-- '\ .§ +8.0 >~ +4.0 a: ~ 100 o ~ w a>~ E~O II IIIII 10 -8.0 1.9 V -12 VI • -16 II 11111 100 1.000 "- ~- -- " lOS 0.8 VI VCC -20 -16 10.000 ~ -4.0 >- 5 9 ~CL 1.0 1.0 -12 =VEE ='9 V -8.0 -4.0 FIGURE 11 - MAXIMUM OPERATING TEMPERATURE versus POWER-SUPPLY VOLTAGE ~ w 16 ......... 14 .. 12 0 10 ~- to :; > ~ 8.0 - f-- a: 6.0 f.- ~ ~ 4.0 tB 14 3 r--.... 3k "", 6 3k 8 3k 11 3 k f-7 > 2.0 tl > ............. I VCC &: ill I-55 ~ " -= 1 I VEE I 1+25 +75 T. TEMPERATURE 10C) +115 MOTOROLA LINEAR/INTERFACE DEVICES 7-40 3k!l/AOLl: - -~ " "\ ,~ ~fvo +4.0 Vo. OUTPUT VOLTAGE IVO LTS) CL. CAPACITANCE IpF) ~0 +125 +25 +75 T. TEMPERATURE 1°C) -55 1.0 ~ 10 - 10S- -12 1000 ~ ~ VEE = 9 V '"~ -9.0 FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE • - +9.0 ::> o~· ,.o ~ SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE +8.0 +12 +16 MC1488 APPLICATIONS INFORMATION FIGURE 13 - POWER·SUPPLY PROTECTION TO MEET POWER·OFF FAULT CONDITIONS The Electronic Industries Association EIA-232C specification -~I--......- - - - - - - - - VCC 14 detail the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MCI488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the EIA-232C defined levels. The EIA-232C require- : r--"~, : 0- i-l __ ~/o__r-<) o-~ .,- --, I' The required driver voltages are defined as between 5 and 15-volts in magnitude and are positive for a Logic "0" and negative for a Logic "1." These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488 meets this voltage requirement by converting a DTUTTL logic level into EIA-232C levels with one stage of 0-,4. __ .... ' inversion. 0-'1- I I 1 : .O-J--o I I --------=-.. . -----------.I - --- would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the ± 25 volt limits specified in the earlier Standard EIA-232B.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above. The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 rnA output current limiting. 100 I- lV'", ~ w ~ ~ 10 f~," nllll 1000 I -1. ___ ' _14--..... 0 100 I 0--'-0 1 ';--r- -' 7~ c}1 1000 10 ~ o-~-,r--...... VEE 1.0 1.0 I I ---"\ 0-,-1. ___ -' FIGURE 12 - SLEW RATE versus CAPACITANCE FOR ISC = 10 rnA C; : 0-+-<> I o-i- J The EIA·232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts ~ 914 rMC1~;-~ .-_...J..._-, ments as applied to drivers are discussed herein. ~ -----...----- 10,000 C, CAPACITANCE (,,) per microsecond. The inherent slew rate ofthe MC1488 is much too fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship C = lOS x !!.TltN from which Figure 12 is derived. Accordingly, a 330 pF capac· itor on each output will guarantee a worst case slew rate of 30 volts per microsecond. The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15 volt, 500 rnA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., VCC '" 9.0V; VEE'" -9.0 V). In some power-supply designs, a loss of system power causes a low impedance on the power·supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300 ohm output resistors to ground. If all four outputs were then shorted to Other Applications The MCI488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility: 1. Output Current Limiting -this enables the circuit designer to define the output voltage levels independent of powersupplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488 used as a DTL to MOS translator where the high level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit. 2. Power Supply Range- as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately - 2.5 volts to the minimum specified -15 volts. The MCI488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving EIA-232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure plus or minus 15 volts, the power dissipation in these resistors 15 shows one such combination. MOTOROLA LINEAR/INTERFACE DEVICES 7-41 MC1488 FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS FIGURE 14 - MOTLlMTTL-TO-MOS TRANSLATOR +12V Mon INPUT MOR Mm INPUT -12V ~12V Mon ~-'-r---... MHn OUTPUT MHn 1>-+-<>---.....- - -.... -0.7 V to 10 V INPUT 010-t-L_/ 12 MOn ,,--,-r----... MOS OUTPUT MMOS ):>-+-<>-1>-""''\--..--.... -10 V to 0 V I NPUT ~134:;::::::;::~,J 10k -12 V +12 V II MOTOROLA LINEAR/INTERFACE DEVICES 7-42 ® MC1489 MC1489A MOTOROLA QUAD MDTL LINE RECEIVERS EIA-232C QUAD LINE RECEIVERS The MC1489 monolithic quad line receivers are designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. EIA-232C. • SILICON MONOLITHIC INTEGRATED CIRCUIT Input Resistance - 3.0 k to 7.0 kilohms • Input Signal Range - ±.30 Volts • Input Threshold Hyste;'esis Built In • Response Control a) Logic Threshold Shifting bl Input Noise Filtering TYPICAL APPLICATION LINE DRIVER LINE RECEIVER MC1488 MC1489 5- -, -1 12 Response ~-_/ Control D Response ) I MOTL LOGIC INPUT Control B I - - l - MOll LOGIC OUTPUT INTERCONNECTING ~ CABLE I I Ground 7 EQUIVALENT CIRCUIT SCHEMATIC (1/4 OF CIRCUIT SHOWN) 14 Vee 9k 1.7k 5k R, 3 OUTPUT RESPONSE CONTROL 2 3.8 k INPUT 1 t--... t-.... t--... 10k IR, MCI.as MCI.S9A 6.7 k!l 1.6 k!l 1 GROUNO MOTOROLA LINEAR/INTERFACE DEVICES 7-43 MC1489. MC1489A MAXIMUM RATINGS (TA = +25°C unless otherwise noted) Symbol Value Unit Power Supply Voltage Rating VCC 10 Vdc Input Voltage Range VIR ±30 Vdc Output Load Current IL 20 mA PD 1/8JA 1000 6.7 mW mwrc Power Dissipation (Package Limitation, Ceramic and Plastic Dual In-Line Package) Derate above T A = + 25°C Dperating Ambient Temperature Range Characteristics Positive Input Current (VIH (VIH Negative Input Current (VIL (VIL Input Turn-On Threshold Voltage (TA = + 25°C, VOL'" 0.45 VI = + 25 Vdc) = + 3.0 Vdcl = - 25 Vdcl = - 3.0 Vdcl = +75 °c -65 to + 175 Tstll ELECTRICAL CHARACTERISTICS (Response control pin is open.) (VCC otherwise noted) +5.0 Vdc ± 10%, TA °c = 0 to + 75°C unless Symbol Min Max Unit IIH 3.6 0.43 - B.3 mA IlL -3.6 -0.43 - -B.3 - Typ - - 1.0 1.75 1.95 0.75 0.75 O.B 1.25 1.25 (VIH = 0.75 V, IL = -0.5 mAl (Input Open Circuit, IL = - 0.5 mAl VOH 2.5 2.5 4.0 4.0 5.0 5.0 Vdc Output Voltage Low (VIL = 3.0 V, IL = 10 rnA) Output Short-Circuit Current VOL - 0.2 0.45 Vdc lOS - -3.0 -4.0 Power Supply Current (All Gates "on," lout = 0 rnA, VIH (VIH Power Consumption SWITCHING CHARACTERISTICS (VCC = = = + 5.0 Vdcl mA ICC - 16 26 + 5.0 Vdcl mA Pc - 80 130 mW 50 Vdc +- 1% TA Propagation Delay Time (RL Rise Time (RL Propagation Delay Time (RL Fall Time (RL = 1.5 2.25 Vdc VIL MC14B9 MC1489A Output Voltage High mA Vdc VIH MC14B9 MCl4B9A Input Turn-Off Threshold Voltage (TA = + 25°C, VOH '" 2.5 V,IL = -0.5 mAl • o to TA Storage Temperature Range - +25°C See Figure 1 I = 3.9 kfi) = 3.9 kfi) = 390 WI = 390 kOI tpLH - 25 B5 ns tTLH - 120 175 ns tPHL - 25 50 ns 10 20 ns tTHL TEST CIRCUITS FIGURE 1 - SWITCHING RESPONSE FIGURE Z - RESPONSE CONTROL NODE t5 Vdc All diodes 1N3064 ~------~--------~----___ Eo C~ , -_ _--, 'JV \5~'" ·. . r 1'4 MC1489A 4-IPLH EO tTHl CL 1.5 V tTlH and ITHL measured TOUJo - 90"/0 ITlH 1.5 V RESPONSE NODE p-------------eVO C, CClpacltor IS lor noise filtermg, R, ,esistor IS for Ihreshold shifting = 15 pF = total parasitic capacitance, which includes probe and wiring capacitances MOTOROLA LINEAR/INTERFACE DEVICES 7-44 MC1489, MC1489A TYPICAL CHARACTERISTICS (Vee = 5.0 Vdc, T A = +250 C unless otherwise noted) FIGURE 3 - INPUT CURRENT FIGURE 4 - MC1489 INPUT THRESHOLD VOLTAGE ADJUSTMENT _ +6.0 §>- +4.0 5.0 ..".. ./' :::> u >- / ~ -2.0 ~ ,.."..... I-"'" -8.0 -10 -25 -15 -10 f-- ff- +5.0 -5.0 f-- Vth o I ··20 r-RT 3. o f--. 5k >- 2. ~ "~ V 4.0 w '" ~ > .,/" ..; -4.0 "~ V V ~ ~ +2.0 -6.0 " 6. 0 +10 +8.0 I I I .;.10 +15 +20 !; o o +5 V f-- RT Vth +5 V > ~ 0 -5 V 5.0 - .'" 3.0 5k ~ 2.0 +5 V 0 1.0 ~ 0 - Vth > - 11k -3.0 -20 0 .J- - - > - ,t---, rVILH - VIHL ~ w I '" ~ 0 > 0 +1.0 I -2.0 -1.0 +1.0 +20 +30 r-- t--- 20 18 16 14 '" ~ t~ r. ;> 02 I 0 -60 +40 T. TEMPERATURE (OCI 0 - I ,60 VIH MC1489A - II r - t - -li l I l I 1MC1~9A 04 ~ w 1.0 I MCI489 VIL 06 '" ~ :lj '">-:J: I MCI489A VIH :J: ~ :g > +3.0 1.0 FIGURE 7 - INPUT THRESHOLD versus POWER-SUPPLY VOLTAGE 50 +2.0 MCI489 VIH 11 VI, INPUT VOLTAGE (VOLTS) 2.0 - >- 0.8 (, -3.0 -f INPUT THRESHOLD VOLTAGE ~ ~ ~Vlh !; - ':'Vth_ r- ,,- -1.0 24 2.1 RT Vth -5 V - RT- versus TEMPERATURE Y RT r-- y= VILH VIHL AGURE 6 - I RT !-!-- I +25 I RT Vth VI, INPUT VOLTAGE (VOLTS) 6.0 4.0 11k 0 o FIGURE 5 - MC1489A INPUT THRESHOLD VOLTAGE ADJUSTMENT ~ r-- RT - ~ Von. INPUT VOLTAGE (VOLTSI ~ w - RT 13 k I I VIH MC1489 VIL MCI489 VIL MC1489A >~ ~ 4.0 8.0 Vcc, POWER SUPPLY VOLTAGE (VOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 7-45 12 VIL I - I t 120 MC1489, MC1489A APPLICATIONS INFORMATION hysteresis for noise rejection. The MC1489 input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV. The MCl489A has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis. Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power supply. Figures 2, 4 and 5 illustrate the input threshold voltage shift possible through this technique. This response node can also be used for the filtering of high-frequency, high energy noise pulses. Figures 8 and 9 show typical noise-pulse rejection for external capacitors of various sizes. These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MCl489 circuits are particularly useful for interfacing between MOS circuits and MDTUMTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 10) The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 11 where two receivers are slaved to the same line that must still meet the EIA-232C impedance requirement. General Information II The Electronic Industries Association (EIA) has released the EIA-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leajs, but also the voltage levels to be used. The M('1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the EIA232C defined levels. The EIA-232C requirements as applied to receivers are discussed herein. The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MCl489 circuits meet these requirements with a maximum open circuit voltage of one VBE. The receiver shall detect a voltage between - 3.0 and - 25 volts as a Logic "1" and inputs between + 3.0 and + 25 volts as a Logic "0." On some interchange leads, an open circuit of power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or Logic "1." For this reason, the input hysteresis thresholds ofthe MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or Logic "1" input. Device Characteristics The MCl489 interface receivers have internal feedback from the second stage to the input stage providing input FIGURE 8 - TYPICAL TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND 10 100 1000 FIGURE 9 - TYPICAL TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND 10.000 10 100 1000 pw. INPUT PULSE WIDTH In.1 PW.INPUT PULSE WIDTH In.1 MOTOROLA LINEAR/INTERFACE DEVICES 7-46 10.000 MC1489, MC1489A APPLICATIONS INFORMATION !contInued) FIGURE 10 - TYPICAL TRANSLATOR APPLICATION MOS TO DTL OR TTL +5 Vdc OTl or TTL FIGURE 11 - TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET EIA-232C VCC RESPONSE·CONTROl PIN r- - - - - - - - - - -r-=-;.::-=.=--=-=; til MCI489 OUTPUT INPUT 8k VCCO-~-----------------, OUTPUT INPUT L__~8~k.r--I>~_____________+-I\II.~-y,..----t-o-" RESPONSE CONTROL PIN MOTOROLA LINEAR/INTERFACE DEVICES 7-47 II • ® MC26S10 MOTOROLA QUAD OPEN-COLLECTOR BUS TRANSCEIVER QUAD OPEN-COLLECTOR BUS TRANSCEIVER This quad transceiver is designed to mate Schottky TTL or NMOS logic to a low impedance bus. The Enable and Driver inputs are PNP buffered to ensure low input loading. The Driver (Bus) output is open-collector and can sink up to 100 mA at 0.8 V, thus the bus can drive impedances as low as 1000. The receiver output is active pull-up and can drive ten Schottky TTL loads. An active-low Enable controls all four drivers allowing the outputs of different device drivers to be connected together for partyline operation. The line can be terminated at both ends and still give considerable noise margin at the receiver. Typical receiver threshold is 2.0 V. Advanced Schottky processing is utilized to assure fast propagation delay times. Two ground pins are provided to improve ground current handling and allow close decoupling between VCC and ground at the package. Both ground pins should be tied to the ground bus external to the package. • Driver Can Sink 100 mA at 0.8 V (Max) • PNP Inputs for Low-Logic Loading • Typical Driver Delay = 10 ns SCHOTTKY SILICON MONOLITHIC INTEGRATED CIRCUIT LSUFFIX - CERAMIC PACKAGE CASE 620-10 1 • Typical Receiver Delay = 10 ns • Schottky Processing for High Speed • Inverting Driver P SUFFIX PLASTIC PACKAGE CASE 648-06 PIN CONNECTIONS TYPICAL APPLICATION 5.0 Er18bTe" v Eri'Eibie 100 100 100 100 Driver Inputs Driver Inputs MC26S10 MC26S10 Driver Input A Driver Input B Output B Receiver Outputs Outputs Driver TRUTH TABLE Oriver Inputs Inputs MC26S10 14 Receiver Qutput.C Receiver Receiver MC26S10 Receiver Receiver Outputs Outputs E'i1'8b'i'8 Receiver Output A 100 100 100 100 5.0 V En'8bi'e Enable Driver Input L L H L H X L H X Y Bus H L y Receiver Output L H y = Low Logic State = High Logic State = Irrelevant = Assumes condition controlled by other elements on the bus MOTOROLA LINEAR/INTERFACE DEVICES 7-48 MC26S10 MAXIMUM RATINGS (TA = 250 e unless otherwise noted) Symbol Value Unit Vee -0.5 to +7.0 Vdc Input Voltage VI -0.5 to +5.5 Vdc Input Current II -3.0 to +5.0 mA Vo (Hi-z) -0.5 to Vee V Output Current Bus 10(B) 200 mA Output Current Receiver Rating Power SupplV Voltage Output Voltage - High Impedance State 10(R) 30 mA Operating Ambient Temperature TA o to +70 °e Storage Temperature Tstg -65 to +150 °e ue Junction Temperature Ceramic Package Plastic Package TJ 175 150 ELECTRICAL CHARACTERISTICS IUnless otherwise noted Vee = 4.75 to 5.25 V and TA = 0 to +700 e. Typical values measured at Vee - 5 0 V and TA "" 25°C) Symbol Min Typ Max Unit Input Voltage - Low Logic State (Driver and Enable Inputs) VIL - - 0.8 V Input Voltage - High Logic State (Driver and Enable Inputs) VIH 2.0 - - V I nput Clamp Voltage (Driver and Enable Inputs) VIK - - -1.2 V Characteristic (11K = -18 mAl Input Current - Low Logic State mA IlL (VIL =O.4V) (Enable Input) (Driver Inputs) - Input Current High Logic State (VIH - 2.7 V) IEnable Input) - -0.36 -0.54 IIH - (Driver Inputs) Input Current - Maximum Voltage IIHI "A - 20 30 - - 100 - 0.33 0.42 0.51 0.5 0.7 0.8 - - 100 -50 "A (VIHI = 5.5 V) (Enable or Driver Inputs) Driver Output Voltage - Low Logic State Driver (Bus) Leakage Current 1010) IVOH = 4.5 V) IVOL = 0.8 V) - Driver (Bus) Leakage Current IVee = 0 V. VOH V VOLIO) 1I0L = 40 rnA) 1I0L = 70mA) 1I0L = l00mA) = 4.5 "A 10110) 100 "A V) Receiver Input High Threshold VTHIR) 2.25 2.0 - V VTLlR) - 2.0 1.75 V 0.5 V 3.4 - V IVIHIE) = 2.4 V) Receiver Input Low Threshold IVIHIE) = 2.4 V) Receiver Output Voltage Low Logic State VOLlR) Receiver Output Voltage - High Logic State VOHIR) 2.7 10S(R) -18 - -60 mA lee - 45 70 rnA 1I0L = 20 rnA) IIOH = -1.0 mAl Receiver Output Short-Circuit Cu~rent (Note 1) Power Supply Current - Output Low State IVIL(E) =0 V) NOTE 1: One output shorted at a time. Duration not to exceed 1.0 second. MOTOROLA LINEAR/INTERFACE DEVICES 7-49 II • MC26S10 SWITCHING CHARACTERISTICS (Vee = 5.0 V, TA = 25'e unless otherwise noted.) Characteristic Symbol Min Typ Max Unit tPLH(D) tPHL(D) - Propagation Delay Time Enable Input to Output tPLH(E) tPHL(E) - 15 15 18 18 ns - 10 10 14 13 Propagation Delay Time Bus to Receiver Output tPLH(R) tPHUR) 15 15 lTLH(D) lTHL(D) 4.0 2.0 10 10 10 4.0 ns - - ns Propagation Delay Time Driver Input to Output Rise and Fall Time of Driver Output - ns SWITCHING WAVEFORMS AND CIRCUITS FIGURE 1 - DATA INPUT TO BUS OUTPUT (DRIVER) Vee 3.0 V To Scope ( Input) Driver Input 50 Driver To Scope (Output) VOH-------+-----+·~~----~~~ 50 pF (Includes probe and jig Driver Output VOL _ _ _ _--'="'! L-~~~ FIGURE 2 - __________ capacitance) ~ ENABLE INPUT TO BUS OUTPUT (DRIVER) Vee 3.0 V - - - - - , . - - - - - _ 50 Enable Input OV To Scope (Output) VOH----+--Driver Output 50 pF (Includes probe and jig VOL _______J capacitance) FIGURE 3 - BUS INPUT TO RECEIVER OUTPUT vee (Output) 1N916 Driver 280 Output (Input) Vee To 'Scope VOH--------,.---------_ Equivalent VOL To Scope Vo H----------"'"\. ~ 15 pF (Total) (Input) Receiver Output J VOL-------------'-----------J 50 pF (Total) MOTOROLA LINEAR/INTERFACE DEVICES 7-50 50 ® MC3437 MOTOROLA HEX BUS HEX BUS RECEIVER WITH INPUT HYSTERESIS RECEIVER These high-speed bus receivers are useful in bus organized data transmission systems employing terminated 120 [2 lines. The receivers feature input hysteresis to obtain improved noise immunity. The receivers low input current requirement allows up to 27 driver/ receiver pairs to share a common bus. A pair of Disable Inputs are provided. These Disable Inputs along with the receiver outputs are MTtL compatible. • • SILICON MONOLITHIC INTEGRATED CIRCUIT Built in receiver hysteresis Receiver input threshold is not affected by temperature • Propagation delay time·- 20 ns (Typ) • .. Direct Replacement for DM8837 L SUFFIX CERAMIC PACKAGE CASE 620-10 FIGURE 1 - TYPICAL APPLICATION +5.0 V +5.0 V 180 L ,~ 120 n Data Bus 390r'~c'------.-----r~l PSUFFIX 1 PLASTIC PACKAGE CASE 648-06 390 PIN CONNECl:IONS To Computer or Pe~jpherals MAXIMUM RATI NGS ITA = 25°C unless otherwise noted.} Symbol Value Unit Vee 7.0 Vdc Input Voltage VI 5.5 Vdc Power Dissipation Derate above 25°C PD 625 3.85 mW mW/oC TA Ot070 °c T stg -65 to +150 °c Rating Supply Voltage Operating Ambient Temperature Range Storage Temperature Range TRUTH TABLE Input Oisable Output 0 L H 0 H L MOTOROLA LINEAR/INTERFACE DEVICES 7-51 L L H L 0= < 1.05 V 1= >2.5 V H = High Logic State L = Low Logic State • MC3437 ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply for O';;;TA';;; 70°C and 475 V ';;;Vee';;;5 25 V) Characteristic Receiver Input Threshold Voltage - High Logic State Symbol Min Typ Max Unit VILH(R) 1.80 2.25 2.50 V VIHL(R) 1.05 1.30 1.55 V - 15 1.0 50 50 VIHIDA) 2.0 - - V VIL(DA) - - 0.8 V VOH 2.4 - - V VOL - 0.25 0.4 V - - 80 2.0 /LA mA IIL(DA) - - -3.2 mA lOS -18 - -55 mA ICC - 45 65 mA VI - -1.0 -1.5 V (VIL(DA) = 0.8 V,IOL = 16 mA, VDL ';;;0.4 V) Receiver Input Threshold Voltage - Low Logic State (VIL(DA) = 0.8 V.IOH = -400/LA, VOH ;;'2.4 V) Receiver Input Current /LA IIIR) IVilR) = 4.0 V, Vee = 5.25 V) (VIIR) = 4.0 V, Vee = 0 V) Disable Input Voltage - High Logic State IVilR) = 0.5 V, VOL ';;;0.4 V,IOL = 16 mAl Disable Input Voltage - Low Logic State (VilR) = 0.5 V, VOH ;;'2.4 V,IOH = -400/LA) Output Voltage - High Logic State (VilR) = 0.5 V, VIL(DAl = 0.8 V, 10H = -400/LA) Output Voltage·- Low Logic State (VIIR)=4.0V,VILIDA)=0.8V,IOL= 16 mAl Disable Input Current - High Logic State IVIHIDA) IVIHIDA) IIHIDA) = 2.4 V) = 5.5V) Disable Input Current - Low Logic State IVIIR) = 4.0 V, VIL(DA) = 0.4 V) Output Short Circuit Current (VilR) = 0.5 V, VIL(DA) = OV, Vee = 5.25 V) Power Supply Current (VIIR) = 0.5 V, VIL(DA) = 0 V) Inp.ut Clamp Diode Voltage (lIIR) = -12 mA, IIiDAl = -12 mA, SWITCHING CHARACTERISTICS (TA = 25°C Vee = 50 V unless otherwise noted) Symbol Min Typ Max Unit Propagation Delay Time from Receiver Input to High Logic State Output tPLH(R) - 20 30 ns Propagation Delay Time from Receiver Input to Low Logic State Output tpHL(R) - 18 30 ns Propagation Delay Time from Disable Input to High Logic State Output tPLH(DAl - 9.0 15 ns Propagation Delay Time from Disable Input to Low Logic State Output tpHL(DA) - 4.0 15 ns Characteristic MOTOROLA LINEAR/INTERFACE DEVICES 7-52 MC3437 FIGURE 2 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS +5.0 V To Scope 3.0 V - - - - , ' - - - - , 390 (Input) 2.3 V Input 1.3 V 1N916 or Equiv OV- 3.0 V - - - + - - - - + - - - - - - , . . . - - - , Oisable IDA) To Scope a V ---+-----t------' (Output) Output Pulse Generator 1.5 V 1.5 V ""I 51 1.5 V 1.5 V VOL To Scope (Disable) FIGURE 3 - TYPICAL HYSTERESIS 5.0 ~ 4.0 • 2- ..'" w 3.0 !:; 0 > ... ~ ::> 2.0 ~ 1.0 1.0 4.0 VIIR), INPUT VOLTAGE (VOLTS) REPRESENTATIVE CIRCUIT SCHEMATIC (1/6 Shown) Vee Rl Input R3 R4 Rl0 R13 o-....-I----+-f Output ......-+....__OOiI8ble 01 L-~----4~--~~ _________ ~-4~ __________ -4~ ___________ MOTOROLA LINEAR/INTERFACE DEVICES 7-53 ~ ___-oGround • ® MC3440A MC3441A MOTOROLA QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVERS QUAD INTERFACE BUS TRANSCEIVERS The MC3440A; MC3441A are quad bus transceivers intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. These transceivers allow the bidirectional flow of digital data and commands between the various instruments. Each of the transceiver versions provides four open-collector drivers and four receivers featuring input hysteresis. The MC3440A version consists of three drivers controlled by a common Enable input and a single driver without an Enable input. Terminations are provided in the device. The MC3441A differs in that all four drivers are controlled by the common Enable input. Again, the terminations are provided. SILICON MONOLITHIC INTEGRATED CIRCUITS - PSUFfIX PLASTIC PACKAGE CASE 648-06 1 • Receiver Input Hysteresis Provides Excellent Noise Rejection • Open-Collector Driver Outputs Permit Wire-OR Connection PIN CONNECTIONS • Tailored to Meet the Standards Set by the IEEE and IEC Committees on Instrument Interface (488-1978) • Terminations comply with IEEE 488-1978; terminations removed when device is un powered Output and Termination • Provides Electrical Compatibility with General-Purpose Interface Bus Bus A Gnd Receiver 14 Receiver Output A Output C Driver Input A TYPICAL APPLICATION - GPIB MEASUREMENT SYSTEM Driver Input B Output B 11 I~~~te~ Bus B 10 ~~~:~~e~ Receiver --- - I Instrument A (with GPIB) I , , I Instrument B (with GPIB) l J Programmable Calculator (with GPIB) I , Logic Gnd Output and Termination 1 Gnd ---- Receiver 14 Receiver Output C Output A I~~~te~ MAXIMUM RATINGS ITA = 25·C unless otherwise noted I (Note 1) Rating Symbol Power Supply Voltage Input Voltage Driver Output Current Power DiSSipation (Package Limitation) Derate above 25·C Operating Ambient Temperature Range Storage Temperature Range Value Unit VCC 7.0 Vdc VI 5.5 Vdc 10(0) 150 mA Po 830 6.7 mW mWf'C TA Tstg o to +70 -65 to +150 I~~i~:~ 5 ~::~~e~ 6 11 Driver Input D 10 Logic Gnd ·C ·C Note 1: Davlc;es should not be operated at these values. The "Electrical Characteristics" prOVide conditions for actual device operation. MOTOROLA LINEAR/INTERFACE DEVICES 7-54 4 - T- = Bus Termination ~=~~e~ MC3440A, MC3441A ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.5 v", Vee'" 5.5 V and 0 '" TA '" 70'e, typical values are at TA = 25'e, Vee = 5.0 V) Characteristic Symbol Min Typ Max Unit DRIVER PORTION Input Voltage - High Logic State VIH(D) 2.0 Input Voltage - Low Logic State VIL(D) - - 0.8 V Input Current - High Logic State (VIH = 2.4 V) IIH(D) - - 40 pA Input Current - Low Logic State (VIL = 0.4 V, VCC = 5.0 V, TA = 25'C) IIL(D) -0.25 rnA Input Clamp Voltage (11K = -12 rnA) VIK(D) - - -1.5 V Output Voltage - High Logic State (VIH(S) = 2.4 V or VIL(D) = 0.8 V) VOHID) 2.5 - - - Output Voltage - Low Logic State (VIH(S) = 2.0 V, VIL(E) = 0.8 V, IOL(D) (VIH(D) = 2.0 V, VIL(E) = 0.8 V, IOL(D) VOL(D) = 48 rnA) = 100 mAl - - V V V 0.5 0.80 RECEIVER PORTION 400 580 - mV Input Threshold Voltage - Low to High Output Logic State (VCC = 5.0 V, TA = 25'C) ViLH(R) 0.8 0.98 - V Input Threshold Voltage - High to Low Output Logic State (VCC = 5.0 V, TA = 25'C) VIHL(R) - 1.56 2.0 V Output Voltage - High Logic State (VIL(R) = 0.8 V, IOHIR) = -400 pA) VOH(R) 2.4 - - V Output Voltage - Low Logic State (VIH(RI = 2.0 V, IOL(R) = 16 mAl VOL(R) - - 0.5 V Output Short-Circuit Current IVIL(R) = 0.8 V) (Only one output may be shorted at a time) IOS(R) - -55 rnA - input Hysteresis -20 BUS TERMINATION PORTION Bus Voltage (VIl(D) = 0.8 V) (lBUS = -12 mAl (No Load) VBUS Bus Current (VIL(D) = 0.8 V, VBUS .. 5.0 V) (VIL(D) = 0.8 V, VBUS '" 5.5 V) (VIL(D) = 0.8 V, VBUS = 0.5 V) (VCC = 0, 0 '" VB US '" 2.75 V) IBUS - - 2.50 - 0.7 - V -1.5 3.70 mA - - - Min Typ Max Unit 13 30 ns 17 30 ns 25 40 ns 25 40 ns -1.3 2.5 -3.2 +0.04 TOTAL DEVICE POWER CONSUMPTION SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25'C) Symbol Characteristic J DRIVER PORTION Propagation Delay Time from Driver Input to Low Logic State Bus Output tPH[JD) Propagation Delay Time from Driver Input to High Logic State Bus Output tPLH(D) Propagation Delay Time from Enable Input to Low Logic State Bus Output tpHLIE} Propagation Delay Time from Enable Input to High Logic State Bus Output tPLH(E) - RECEIVER PORTION Propagation Delay Time from Bus Input to High Logic State Receiver Output Propagation Delay Time from Bus Input to Low Logic State Receiver Output MOTOROLA LINEAR/INTERFACE DEVICES 7-55 • MC3440A, MC3441A GENERAL PURPOSE INTERFACE BUS APPLICATION INSTRUMENT A --,--- MC3441A l I' I' INSTRUMENT B j j j -- -- 0101 0101 I 0102 0102 : 0103 0103 I REN ~ I 0104 (Always I I I MC3441A Enabled) I 0105\ DI04 I 0106 0105 : 0107 0106 I 0108 ) Enabled) I I I II I MC3441A I 0107 EOI 0108 OAV EOI IFC (Always I I I I Enabled) (Always I (Always Enabled) Enabled) I SRO) ATN : DAV) IFC I I I I MC3440A E REN ATN ) : E SRO (Always I I I I I I E 1- - - - - NRFD NRFD NDAC NDAC r, --- -- ~ , ~-- - - ,f 16 Lines Total MC3440A -: }" I 0101 - I I I I SA Q - I +-4- MC3440A I I I ~ 4- ~ I MC3440A 2tI I I 4t I I I E I L -- --- OAV - Data Valid N A F 0 - Not Ready for Data NDAC - Not Data Accepted EOI - End or Identify ATN - Attention IFe - Interface Clear 16 Total Signal Lines MOTOROLA LINEAR/INTERFACE DEVICES 7-56 E MC3440A 3 Data Byte Transfer Control Bus Service Request E I 0108 5 General Interrupt Transfer Control Bus: REN - Remote Enable Instruments gic (Typ ieal) J- GPIB SIGNALS: 8 Line Data Bus: Lo MC3440A, MC3441A FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY 11ME PROM RECEIVER INPUT IBUSI TO OUTPUT To Scope (Outputl +5.0 V Input To Scope OV VOH Output VOL 400 (Input) ~ tPHL(RI 16pF 1.5 V ~---------------~ or~uiY Input Pul.. FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY nME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT IBUSI To Scope +6.0 V 3.0 V t;v ToScopa (Input) (Output) Output VOL '00 BUI I Input ----------~c. F-v 50PF VOH Output VOL FIGURE 3 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS S.O I. r-- f-VCC:S.DV TA"2S"C S 4.0 ; 0 ~ w to « 3.0 ~ 0 ...:>> I!: :> 2.0 0 ~ 1.0 o o D.S 50" 50" 1.0 VI. INPUT VOLTAGE (VOLTSI 1.S 2.0 MOTOROLA LINEAR/INTERFACE DEVICES 7-57 tPHL(EI 1.5 V II • ® MOTOROLA MC3446A QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVER QUAD INTERFACE BUS TRANSCEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC3446A is a quad bus transceiver intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. This transceiver allows the bidirectional flow of digital data and commands between the various instruments. The transceiver provides four open-collector drivers and four receivers featuring hysteresis. • Tailored to Meet the IEEE Standard 488-1978 (Digital Interface for ·Programmable I.nstrumentation) and the Proposed IEC Standard on Instrument Interface • Provides Electrical Compatibility with General-Purpose Interface Bus (GPIB) • MOS Compatible with High Impedance Inputs • Driver Output Guaranteed Off During Power Up/Power Down • Low Power - Average Power Supply Current • Terminations Provided 1 P SUFFix PLASTIC PACKAGE CASE 648-06 = 12 mA PIN CONNECTIONS TYPICAL MEASUREMENT SYSTEM APPLICATION Receiver .... Vee Output A Receiver Output 0 Bus A --- I Instrument A (with GPIB) Driver Input A - I Bus 0 Driver Enable I , I Input 0 ABe Driver Input B , Instrument B (with GPIB) ... I Programmable Calculator (with GPIB) , .~ Driver Inpute Bus B Receiver Output B ... ---- T - :; Bus Termination 16 Lines Total MOTOROLA LINEAR/INTERFACE DEVICES Buse .... Gnd 7-58 Enable 0 ... Receiver Output C MC3446A MAXIMUM RATINGS IT A = 25°C unle.. otherwise noted I Rating Symbol Value Unit VCC 7.0 Vdc VI 5.5 Vdc Driver Output Current 101D) 150 mA Junction Temperature TJ 150 °c Operating Ambient Temperature Range TA T stg o to +70 °c -65 to +150 °c Power Supply Voltage Input Voltage Storage Temperature Range ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 4.5 V "" Vee"" 5.5 V and 0 ~ TA";; 70 D e, typical values are at TA = 25°C, Characteristic Vee = 5.0 V) Symbol Min Typ Input Voltage - High Logic State VIHIDI 2.0 - - V Input Voltage - Low Logic State VI_IDI - - 0.8 V Input Current - High LOllie State IVIH = 2.4 V) IIHID) - 5.0 40 ,.A Input Current - low Logic State IVIL = 0.4 V, VCC = 5.0V. TA = 25°C) Input Clamp Voltage (11K = -12 mAl IILlD) - -0.2 -0.25 mA VIKID) - - VOHID) 2.5 VOUD) IIBID) Max Unit DRIVER PORTION Output Voltage - High Logic State (1) IVIHIS) = 2.4 V or VI HID) = 2.0 V) Output Voltage - Low Logic State (VILIS) = 0.8 V, VIUD) = 0.8 V, IOLID) = 48 mAl Input Breakdown Current (VI(D) = 5.5 V) -1.5 V 3.3 3.7 V - - 0.5 - - 1.0 mA RECEIVER PORTION 400 625 - mV Input Threshold Voltage - Low to High Output Logic State VILH(A) - 1.66 2.0 V Input Threshold Voltage - High to Low Output Logic State VIHLIA) 0.8 1.03 - V Output Voltage - High Logic State VOHIA) 2.4 - - V VOLIA) - - 0.5 V 10SIA) 4.0 - 14 mA (VIH(E) = 2.4 V) "BUS=-12mA) VIBUS) 2.5 3.3 - 3.7 -1.5 V - (VIH(O)- 2.4 V, VBUS;;'5.0 V) IVIHID) = 2.4 V, VB US = 0.5 V) (VBUS';; 5.5 V) IVCC = 0, 0 V.;; VBUS';; 2.75 V) I(BUS) 0.7 -1.3 - mA - - - -3.2 2.5 - 0.04 Input Hysteresis (VIH(A) = 2.0 V, 10H(A) = -400 "A) Output Voltage - Low Logic State (VillA) = 0.8 v. 10LlA) = 8.0 mAl Output Short·Circuit Current (VIH(R) = 2.0 V) (Only one output may be shorted at a time) BUS LOAD CHARACTERISTICS Bus Voltage Bus Current TOTAL DEVICE POWER CONSUMPTION Power Supply Current (All Drivers OFF) (All Drivers ON) SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C) I Characteristic Symbol Min Typ Propagation Delay Time from Driver Input to Low Logic State Bus Output tPHLID) 50 n, tPLHID) - 40 n, Propagation Delay Time from Enable Input to Low Logic State Bus Output tpHLIE) -- 50 n, Propagation Delay Time from Enable Input to High Logic State Bus Output tPLH(E) - - Propagation Delay Time from Driver Input to High Logic State Bus Output - 50 ns Max Unit DRIVER PORTION RECEIVER PORTION Propagation Delay Time from Bus Input to High Logic State Receiver Output Propagation Delay Time from Bus I nput to Low Logic State Receiver Output MOTOROLA LINEAR/INTERFACE DEVICES 7-59 II MC3446A FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT To Scope (Output) +5.0 V Input To Scope ov (Input) tPLH(R) Output VOL Input Pulse FIGURE 2 - TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS) • To Scope +5.0 V (Input) To Scope (Outputl Pulse VOH Output VOL----J Input • Includes Probe and Jig Capacitance FIGURE 4 - TYPICAL BUS LOAD LINE FIGURE 3 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS 5.0 .-----,-----.1-,-,------,-----.---.-----.----, - r - V~~: i~o~ -+--+---+--+---+---1 ~ o 4.0 6.0 4.0 :< 2.0 t---t---'--i--t-r=f::::::::j:=:;-=f::::::::j::::::::::j ...zS cw ~ w 3.0 > ~--1----+--~--~~--+---~---t--~ !; 2.01---+--+---+-++---+--+----'1'--\ ~ :: -2.0 "' -4.0 "' :0 u :0 ~ ~ :0 o g 1.01---+--+---+-++---+--+---+--\ -6.0 -ll.0 10 12 °0~--~-~0~,5~-~-~I~.0~--~---I~.5~--~--~2.0 VI,INPUT VOLTAGE (VOLTS) VBUS, BUS VOLTAGE (VOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 7-60 ® MC3447 MOTOROLA OCTAL BIDIRECTIONAL BUS TRANSCEIVER BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER WITH This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB)_ The required bus termination is internally provided_ Low power consumption has been achieved by trading a minimum of speed for low current drain on non..:ritical channels_ A fast channel is provided for critical ATN and EOI paths_ Each driver/receiver pair forms the complete interface between the bus and an instrument_ Either the driver or the receiver of each channel is enabled by a Send/Receive input with the disabled output of the pair forced to a high impedance state. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications_ • • • • • • • • • • • • TERMINATION NETWORKS SILICON MONOLITHIC INTEGRATED CIRCUIT L SUFFIX CERAMIC PACKAGE CASE 623-05 • P3 SUFFIX PLASTIC PACKAGE CASE 724-03 Low Power - Average Power Supply Current = 30 mA Listening 75 mA Talking Eight Driver/Receiver Pairs Three-State Outputs High Impedance Inputs Receiver Hysteresis - 600 mV (Typ) Fast Propagation Times - 15-20 ns (Typ) TTL Compatible Receiver Outputs Single +5 Volt Supply Open Collector Driver Output with Terminations Power Up/Power Down Protection (No Invalid Information Transmitted to Bus) No Bus Loading When Power is Removed From Device Required Termination Characteristics Provided PIN ASSIGNMENTS LLI--r-[>-r-t---'F--f231 Bus 0 1--.-{>-..-----''F--f221 Bus 1 MAXIMUM RATINGS ITA = 25 0 e unless otherwise noted) Rating Power Supply Voltage Symbol Value Unit Vee 7.0 Vdc VI 5.5 Vdc 101D) 150 rnA Input Voltage Driver Output Current Junction Temperature TJ 150 °e Operating Ambient Temperature Range TA o to +70 °e Storage Temperature Range T stg -65 to +150 °e -- Iinstr~ment ---- (With GPIB) .......... Iln",ument B (With GPIB) I -- -- Bus 4 Bus 5 -4) TYPICAL MEASUREM ENT SYSTEM APPLICATI ON ---I , Programmable Calculator (With GPIB) I Vee ~u, f.D-1 -'f-<) Bus - Indicates - 16 Lines Total Gnd MOTOROLA LINEAR/INTERFACE DEVICES 7-61 ~ Te,m;nat;on, • MC3447 ELECTRICAL CHARACTERISTICS IUnless otherwise noted 4.50 V" VCC" 5 50 V and 0 "TA "70°C; typical values are at TA ~ 25°C, VCC ~ 5.0 V) Characteristic - Note 1 Symbol Min Typ Max VIBu,) VICIBus) 2.5 - 3.7 -1.5 2.5 -3.2 +0.04 Bus Voltage Unit V IBu, Pin Open)(VI(S/R) ~ 0.8 V) IIIBu,) ~ -12 mAl Bus Current - mA IIBu,) - - - 400 600 - VILHIR) VIHLlR) - 1.6 1.0 2.0 0.8 VOHIR) 2.4 VOLlR) 15.0 V " V IBu,) " 5.5 V) IV IBu,) ~ 0.5 V) IVCC ~ 0 V, 0 VIBu,)" 2.75 V) 0.7 -1.3 v" Receiver Input Hysteresis mV IVIIS/R) ~ 0.8 V) V Receiver I nput Threshold IVI(S/R) ~ 0.8 V) Low to High High to Low Receiver Output Voltage - High Logic State - - V - - 0.5 V 10SIR) -4.0 - -20 mA VI HID) 2.0 - - V VILlD) - - 0.8 V 1110) IIBID) -100 - - 40 200 II(S/R) IIBIS/R) -250 - - - 20 100 VICID) - VOHID) 2.5 VOLlD) - - 0.5 ICCl ICCH - 30 75 45 95 15 30 IVIIS/R) ~ 0.8 V, 10HIR) ~ -200 p.A, VIBus) ~ 2.0 V) Receiver Output Voltage - Low Logic State IVI(S/R) ~ 0.8 V, 10LlR) ~ 4.0 mA, IVIBus) ~ 0.8 V Receiver Output Short Circuit Current IVIIS/R) ~ 0.8 V, VIBu,) ~ 2.0 V) Driver Input Voltage - High Logic State IVI(S/R) ~ 2.0 V) Driver Input Voltage - Low Logic State IVIIS/R) ~ 2.0 V) p.A Driver Input Current - Data Pins IVI(S/R) ~ 2.0 V) 10.5" VIIO)" 2.7 V) IVIID) ~ 5.5 V) p.A Input Current - Send/Receive 10.5" VIIS/R)" 2.7 V) IVI(SiR) ~ 5.5 V) Driver Input Clamp Voltage IVIIS/R) ~ 2.0 V, IICID) ~ -18 mAl Driver Output Voltage High Logic State IVIS/R) ~ 2.0 V, VIHID) ~ 2.0 V) Driver Output Voltage - low logic State INate 2) (VII ~ 2.0 V, Vll(D) = 0.8 V, lOll D) = 48 mAl SiR) V V V mA Power Supply Current (Listening Mode - All Receivers On) (Talking Mode - All Drivers On) SWITCHING CHARACTERISTICS IVcc -1.5 ~ 5 0 V TA ~ 25°C unless otherwise noted) ns Propag.ation Delay of Driver (Output Low to High) 10utput High to Low) tPLHID) tPHLlD) - - 7.0 16 Propagation Delay of Receiver (Channels 0 to 5, 7) (Output Low to High) (Output High to Low) tPLHIR) tPHLIR) - 28 15 50 30 Propagation Delay of Receiver (Channel 6, Note 3) (Output Low to High) (Output High to Low) tPLHIR) tPHLlR) - 17 12 30 22 n, ns NOTES: 1. Specified test conditions for Vl(SiR) are 0.8 V (low) and 2.0 V (High). Where Vl(SiRI is specified as a test condition, VI(S/R) uses the opposite logic levels. 2. The IEEE 488-1979 Bus Standard changes ValiD) from 0.4 to 0.5 V maximum to permit the use of Schottky technology. 3. In order to meet the IEEE 488-1978 Standard for total system delay on the ATN and EOI channels, a fast receiver has been provided on Channel 6 (Pins 9 and 16). MOTOROLA LINEAR/INTERFACE DEVICES 7-62 MC3447 SWITCHING CHARACTERISTICS (continued) (Vee 50 V TA = = Characteristic 250 e unless otherwise noted) Symbol Min Typ Max tpHZ(R) tPZH(R) tpLZ(R) tPZL(R) -- 15 15 15 10 30 30 25 25 tpLZ(D) tpZL(D) - 13 30 25 50 Unit ns Propagation Delay Time - Send/Receiver to Data Logic Third Logic Third High to Third State State to Logic High Low to Third State State to Logic Low ns Propagation Delay Time - Send/Receiver to Bus Logic Low to Third State Third State to Logic Low PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS FIGURE 1 - BUS INPUT TD DATA OUTPUT (RECEIVER) -E:: Input (Output) +5.0 ~ 3 .0V 1.5 V To Scope tPHL~R~ tpLH(R) To Scope 1 k )ata (!nput) ,.--------~- - - - V O H Output 1N916 or Equiv. f~ 1.0 MHz tTLH = tTHL:S;; 5.0 ns (10-90) Dutv Cycle"" 50% * Includes Jig and Probe Capacitance Sendl Pulse Generator FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER) 3.0 V To Scope (Output) 3.0 V Sendl Driver Input "--_-+--0---' ReC or Enable 1.5 V 51 Bus Pulse Output C L '130PF f= 1.0MHz '"Includes Jig and Probe Capacitance tTLH = tTHL";; 5.0 ns (10-90l' Duty Cycle = 50% FIGURE 3 - SEND/RECEIVE INPUT TO BUS OUTPUT (DRIVER) To Scope (Output) Bus Data Input Send/Rec To Scope (Input) Pulse Generator Output Low to Open 51 51 3.0 V CL f-= 1.0 MHz = 30 pF (Includes Jig and Probe Capacitance tTLH = t'fHL = "" Duty Cycle = 50% MOTOROLA LINEAR/INTERFACE DEVICES 7-63 5.0 ns (10-90) • MC3447 FIGURE 4 - SEND/iiEcEiVE INPUT TO DATA OUTPUT (RECEIVER) , . - - - - - - - " " - - - - - 3.0 V Input 5.0 V OV 1.2 k Output High to Open Output Low to Open 2.0 V 51 f"" 1.0 MHz CL"" 15 pF (Includes Jig and Probe Capacitance) tTLH "" tTHL == OS;;; 5.0 ns (10-90) Dutv Cycle"" 50% FIGURE 5 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS FIGURE 6 - TYPICAL BUS LOAD LINE 5.0 - ~ 4.0 r- Vee - 5.0 V TA-25 0 e o ~ "' '" 3.0 ~ • o > ~ 2.0 ~ o ~ 1.0 o o 0.5 1.0 1.5 2.0 VBUS. BUS VOLTAGE (VOLTS) VI. INPUT VOLTAGE (VOLTS) FIGURE 7 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT USING MC3447s AND MC68488 10 MC68488 0 o 0 2 MC3447s r -___________A_ _ _ _ _ _ _ _, T~~~,,!,,'":;;,J' i ~"" 1fi 0 0 0 0 0 0 I 0 : 0...... 0 : a 0 0 iB7 0 T/R1 0 0 DAV DAC RFO O-_ _ _ _.J 2 0------//===0 0-- 0 3 0----/',,-----<:> 0-- : 4 0 0 - - - 0108 5 0 I +1J i 0 I I o--~~~ I S/R(5)OS/R(1-4)~ :;~~ a/ : ~~:~O~ ~~---=o---------~~~ o--ATN ". ~ :! ~""" W T ""'' SRQ~ 0 i'fEN 0 i"F'E Gnd IFC Gnd Gnd 0- - - -0 Jumper or second level metal MOTOROLA LINEAR/INTERFACE DEVICES 7-64 Gnd MC3447 FIGURE 8 - SIMPLE SYSTEM CONFIGURATION +5 V r-------, Data T/R2 I 2 MC3447s 00 DB0 T/R1 07 DB7 I I DAV I DAV 0101 IB0 0103 IB2 0105 IB4 R/W R/w RS0 A0 RS2 Address MC6802 or MC6BOO MPU A15 IRO IRO \ 0107 NDAC IB6 DAC EOI EOI IFC TFC MC68488 GPIA SRO fBi IB3 IB5 IB7 NOTE1: Although the MC3447 transceivers are non-inverting, the 488-1978 bus call outs appear inverted with respect to the MC68488 pin designations. This is because the 488-1978 Standard is defined for negative logic, while all M6800 MPU components make use of positive logic format. RFD ATN ATN REN Trig ':" MOTOROLA LINEAR/INTERFACE DEVICES 7-65 MC3447 FIGURE 9 - SUGGESTED pIN DESIGNATIONS FOR USE WITH MC68488 MC68488 Connections A MC68488 Connections MC3447 Pin Designations B A SIR (0) ~ T/R 2 VCC OAV SRO Data 00 2 IB0 m Data 1 3 IB2 183 Data 2 IB4 IB5 B VCC VCC VCC 23 BusD OAV SRO 22 Bus 1 otO 1 0102 4 21 Bus2 0103 0104 Data 3 5 20 Bus3 0105 0106 Bus4 010 7 0108 Bus 5 NOAC NRFO SiR (1-4) T/R 2 T/R 2 ATN > • IB6 iB7 Data 4 6· OAC RFO Data 5 7 Octal 19 GPIB Transceiver 18 T/R 2 T/R 2 SIR (5) 8 17 EOI ATN , Data 6 9 16 Bus 6 EOI iFC REN Data 7 10 15 Bus 7 IFC REN T/R 1 Gnd SIR (6) 11 14 SiR (7) Gnd Gnd Gnd Gnd Logic Gnd 12 13 Bus Gnd Gnd Gnd GPIB Bus MOTOROLA LINEAR/INTERFACE DEVICES 7-66 MC3447 (2) ® MC3448A MOTOROLA BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER QUAD THREE-STATE BUS TRANSCEIVER WITH TERMINATION NETWORKS This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided. Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector(1) or active pull·up configuration. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications. • • • • • • • • • • • Four Independent Driver/Receiver Pairs Three-State Outputs High Impedance Inputs Receiver Hysteresis - 600 mV (Typ) Fast Propagation Times - 15-20 ns (Typ) TTL Compatible Receiver Outputs Single +5 Volt Supply Open Collector Driver Output Option(1) Power Up/Power Down Protection (No Invalid Information Transmitted to Bus) No Bus Loading When Power Is Removed From Device Required Termination Characteristics Provided SILICON MONOLITHIC INTEGRATED CIRCUIT LSUFFIX _ _ CERAMIC PACKAGE CASE 620-10 16 0 SUFFIX 1 PLASTIC PACKAGE , CASE 7518-03 16 SO-16 PSUFFI~ _ PLASTIC PACKAGE CASE 648-06 16 1 (1) Selection of the "Open Collector" configuration, in fact, selects an open collector device with a passive pull-up load/termination which conforms to Figure 7, IEEE 488-1978 Send/Rae. Vee Input A Bus Standard. MAXIMUM RATINGS (TA = 25 0 e unless otherwise noted) Rating Data A Symbol Value Unit Vee 7.0 Vdc Power Supply Voltage VI 5.5 Vdc Driver Output Current 10(0) 150 Junction Temperature TJ 150 mA De Input Voltage Operating Ambient Temperature Range TA Storage Temperature Range T stg Send/Rae. o to +70 -65 to +150 Input 0 Data D Bus 0 Pull-Up Enable Input C-O Input A-B Bus B De De Data B Bus C Send/Rae. Datae Input 8 Send/Rae. I TYPICAL MEASUREMENT SYSTEM APPLICATION Instrument IWithAGPIB) - T- I I I Programmable Calculator (With GPIB) 'nstr~ment Bus Termination I (With GPIB) TRUTH TABLE r--I = Send/Ree. I Enable Info. Flow Comments BUIlo~Dat8 x" Don't Care 16 Lines Total MOTOROLA LINEAR/INTERFACE DEVICES 7-67 Data --+Bul Active Pull-Up Data--+Bus Open Col. • MC3448A ELECTRICAL CHARACTERISTICS (Unless otherwise noted 4.75 v,.;;;; Vee';;;; 5.25 V and 0 < TA ,.;;; 70 o C;Wpical values are at TA = 2SoC, Characteristic Vee = 5.0 V) Symbol Min Typ Max V(BUSI VIC(BUSI 2.75 - - - 3.7 -1.5 0.7 -1.3 - Unit V Bus Voltage (Bus Pin Open)(VI(S/RI =0.8 VI (I(BUSI = -12 mAl Bus Current mA I(BUS) (5.0 V " V (BUSI " 5.5 VI (V(BUSI = 0.5 VI (VCC = 0 V, 0 v" V(BUSI" 2.75 VI Receiver Input Hysteresis (VI(S/RI = 0.8 VI - 2.5 -3.2 +0.04 - - - 400 600 Receiver Input Threshold (VI(S/RI =0.8 V, Low to Highl (VI(S/RI = 0.8 V, High to Lowl VILH(RI VIHLlRI 0.8 1.6 1.0 Receiver Output Voltage - High Logic State VOH(RI 2.7 - - V VOLIRI - - 0.5 V .IOS(RI -15 - -75 mA VIH(DI 2.0 - - V 0.8 V mV V 1.8 (VI(S/RI = 0.8 V, 10H(RI = -800 /lA, V(BUSI = 2.0 VI Receiver Output Voltage - Low Logic State (VI(S/RI = 0.8 V, 10LIRI = 16 mA, V(BUSI = 0.8 VI Receiver Output Short Circuit Current (VI(S/RI = 0.8 V, V(BUSI = 2.0 VI Driver Input Voltage - High Logic State (VI(S/RI = 2.0 VI • Driver Input Voltage - Low Logic State VILIDI (VI(S/RI = 2.0 VI /lA Driver Input Current Data Pins (VI(S/RI = VI(EI = 2.0 VI (0.5" VI(DI" 2.7 VI (VI(DI = 5.5 VI 11(01 IIB(DI -200 - - - II(S/RI IIB(S/RI -100 - - - (0.5" VI('EI" 2.7 VI (VI(EI = 5.5 vi II(EI IIB(EI -200 - Driver Input Clamp Voltage VIC(DI - 20 100 - -1.5 V VOH(DI 2.5 - - V VOLIDI - - 0.5 V 10S(DI -30 - -120 mA ICCL ICCH - 63 106 85 125 tPLH(DI tpHLIDI - - 15 17 tPLH(RI tpHLIRI - - 40 200 /lA Input Current - Send/Receive (0.5" VI(S/RI " 2.7 VI (VI(S/RI = 5.5 VI 20 100 IlA Input Current - Enable (VI(S/RI = 2.0 V, IIC(DI = -18 mAl Driver Output Voltage - High Logic State (VI(S/RI = 2.0 V, VIH(DI = 2.0 V, VIH(EI = 2.0 V, 10H = -5.2 mAl Driver Output Voltage - Low Logic State (Note 1) (VI(S/RI = 2.0 V, 10LIDI = 48 mAl Output Short Circuit Current (VI(S/RI = 2.0 V, VIH(DI = 2.0 V, VIH(EI = 2.0 VI mA Power Supply Current (Listening Mode - All Receivers On) (Talking Mode - All Drivers On) SWITCHING CHARACTERISTICS (VCC = 5.0 V TA = 25 0 C unless otherwise noted I ns Propagation Delay of Driver (Output Low to High) (Output High to Lowl - ns Propagation Delay of Receiver (Output Low to High) (Output High to Lowl 25 23 NOTE 1. A modification of the IEEE 488-1978 Bus Standard changes VOL(DI from 0.4 to 0.5 V maximum to permit the use of Schottky technology. MOTOROLA LINEAR/INTERFACE DEVICES 7-68 MC3448A SWITCHING CHARACTERISTICS (continued) (Vcc = 5.0 V, TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max tPHZ(R) tPZH(R) tPLZ(R) tPZL(R) - - 30 30 30 30 tPHZ(D) tPZHID) tPLZID) tpZUDI - - - - 30 30 30 30 tPOFFIE) tPONIE) - - 30 20 Unit ns Propagation Delay Time - Send/Receive to Data Logic High to Third State Third State to Logic High Logic Low to Third State Third State to Logic Low - - Propagation Delay Time - Send/Receive to Bus ns Logic High to Third State Third State to Logic High Logic Low to Third State Third State to Logic Low - ns Turn-On Time - Enable to Bus Pull-Up Enable to Open Collector Open Collector to Pull-Up Enable PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS FIGURE 1 - BUS INPUT TO DATA OUTPUT (RECEIVER) To Scope (Output) ~ Input 1.5 V To Scope tPHL~R~ tPLHIRI +5.0 V 3'OV 240 (Input) , . . - - - - - - - " " - ---VOH 1.5 V Output 1N916 or Equiv. • tTLH = tTHL'< 5.0 ns (10-90) Dutv Cycle = 50% Pulse Generator '"Includes Jig and Sendl Probe Capacitance Ree FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER) 3.0 V To Scope (Input) L L--.--t----<:,~ To Scope (Output) 2.3 V Sendl 1.5 V Rec 38.3 Bus Pulse Output CL0130PF • Includes Jig and Probe Capacitance f= 1.0 MHz tTLH "" tTHL ~ 5.0 ns (10-90) Pull-Up Enable Duty Cycle 3.0 V = 50% FIGURE 3 - SEND/RECEIVE INPUT TO BUS OUTPUT IDRIVER) 3.0 V To Scope (Output) Input Output High to Open To Scope (Input) Pulse Output Low to Open 51 CL"'" 15 pF (Includes Jig and Probe Capacitance f= 1.0MHz tTLH = fTHL == ~ 5.0 ns (10-90) Duty Cycle = 50% MOTOROLA LINEAR/INTERFACE DEVICES 7-69 MC3448A FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER) , . - - - - - - - , - - - - - 3.0 V Input 5.0 V OV 280 Output High to Open Output Low to Open 51 CL = 15 pF (Includes Jig f= 1.0MHz and Probe Capacitance) tTLH = tTHL =.,;;; 5.0 ns {10-90l Duty Cycle = 50% FIGURE 5 - ENABLE INPUT TO BUS OUTPUT (DRIVER) • To Scope 3.0 V (Output) Enablelnp~t 1.5V 1.5V 3.0V Data Send/Rec tpON(E) To Scope 480 Output (Input) 1= £ 2~O _ _ _..J Pulse Generator 51 ~ OV ctPOF~~E~ V 90% 1.0 V f=1.0MHz CL = 15 pF (Includes Jig and Probe Capacitance tTLH = tTHL = ~ 5.0 ns (10-90) Duty Cycle"" 50% FIGURE 6 - TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS FIGURE 7 - TYPICAL BUS LOAD LINE 5.0 ~ 4.0 - VCC=5.0V -TA=25'C o ? w '" 3.0 :; " o > ~ .... i5 2.0 ~ 1.0 o o 0.5 1.0 1.5 2.0 VI. INPUT VOLTAGE (VOLTS) VBUS. BUS VOLTAGE (VOLTS) MOTOROLA LINEAR/INTERFACE DEVICES 7-70 Vae MC3448A FIGURE 8 - SIMPLE SYSTEM CONFIGURATION +5 V DBJi T/R 1 Dd Data T/R 2 EOi EOI SRO DB7 07 R/iN R/W RS~ All SRO RS2 ~ Address MC6802 OR MC6800 MPU 0 E , • REN . REN ~0 Ill:' A15 IFC IFC ATN ATN IRO l III :J III Ie 01 "...'w" , !.r~ II DAC NRFD RFD DAV DAV .0 Ill]; w !!' IRO MC6B4B8 GPIA t--------~ 0101 I iB1 IB1 IB2 IB3 IB4 NOTE 1: Although the MC3448A transceivers are non-inverting, the 488-1978 bus call outs appear inverted with respect to the MC68488 IB5 pin designations. This is because the 488-1978 IB6 Standard is defined for negative logic, while all M6BOO MPU components make use of positive logic format. IB7 NOTE 2: Unless proper considerations are provided. it is recommended that the pull-up enable pins on the MC3448As be grounded, selecting the open-collector mode. Trig -= MOTOROLA LINEAR/INTERFACE DEVICES 7-71 ® MC3450 MC3452 MOTOROLA Specifications and Applications Information QUAD LINE RECEIVERS WITH COMMON THREE·STATE STROBE INPUT SILICON MONOLITHIC INTEGRATED CIRCUITS QUAD MTTL COMPATIBLE LINE RECEIVERS • The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance state. The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function. The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices. • Receiver Performance Identical to the Popular MC75107/MC75108 Series • Four Independent Receivers with Common Strobe Input • Implied "AND" Capability with Open Collector Outputs • Useful as a Quad 1103 type Memory Sense Amplifier DSUFFIX , PLASTIC PACKAGE CASE 7518-03 16 SO-16 1 JI/ffJ,_ P SUFFIX PLASTIC PACKAGE CASE 648-06 L SUFFIX CERAMIC PACKAGE CASE 620-10 CONNECTION DIAGRAM FIGURE 1 - A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4·K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES DATA BIT #4 TRUTH TABLE INPUT 200 VIC ;;. 200 DATA BIT OUTPUT ><2 18k OUTPUT STROBE MC3450 MC3452 H L H -25 mV" VI0,,+25 mV L I I H Z Off VIO" -25 mV L H L Z Off Z L == Low Logic State H = High Logic State 200 Z "" Third (High Impedance) State Only four MC3450 devices are required for a 4-k word by 1 E)..bit memory system. I "" Indeterminate State MOTOROLA LINEAR/INTERFACE DEVICES 7·72 Off Off +25 mV L MC3450, MC3452 MAXIMUM RATINGS (TA = 0 to +7rf'c unless otherwise noted.1 Rating Symbol Value VCC,VEE ±7.0 Vdc Differential-Mode Input Signal Voltage Range VI DR ±6.0 Vdc Common-Mode Input Voltage Range VICR ±5.0 Vdc Strobe I nput Voltage VI(SI 5.5 Vdc 1000 6.6 mW mW/oC 1000 6.6 mW mWf'C o to +70 °c -65 to +150 °c Power Supply Voltages Power Dissipation (Package Limitation) Ceramic Dual I n-Line Package Unit PD Derate above T A = +250 C Plastic Dual r n-Line Package Derate above T A = +250 C Operating Temperature Range TA T stg Storage Temperature Range RECOMMENDED OPERATING CONDITIONS (TA Characteristic = 0 to +7rf'C unless otherwise noted I Symbol Min Typ Ma. Unit VCC VEE +4.75 -4.75 +5.0 -5.0 +5.25 -5.25 Vdc - - Power Supply Voltages Output Load Current 10L Differential-Mode I nput Voltage Range Common-Mode Input Voltage Range VIDR -5.0 VICR -3.0 VIR -5.0 I nput Voltage Range (any input to Ground) ELECTRICAL CHARACTERISTICS (VCC = +5 0 Vdc VEE = -5 0 Vdc TA = 0 to +700 C 16 rnA +5.0 Vdc +3.0 Vdc +3.0 Vdc unless otherwise noted I MC3450 MC3452 Symbol Fig. Min Typ Ma. Min Typ Ma. Unit High Level Input Current to Receiver Input IIH(l1 7 -10 - "A 8 - 75 IIL(II - 75 Low Level Input Current to Receiver Input - -10 "A High Level I nput Current to Strobe Input VIH(SI = +2.4 V VIH(SI = +5.25 V IIH(SI 5 - - - 40 1.0 mA - - -1.6 rnA - Vdc - 250 0.5 "A Vdc - rnA - 45 60 "A rnA -17 -30 rnA Characteristic - - 40 1.0 IIL(SI 5 - - -1.6 VOH 3 2.4 High Level Output Leakage Current ICEX 3 Low Level Output Voltage VOL 3 - - lOS 6 -18 9 4 - - -70 loff 45 60 -17 -30 Low Level Input Current to Strobe Input VI H(SI = +0.4 V High Level Output Voltage Short~Circuit Output Current Output Disable Leakage Current High Logic Level Supply Current from VCC High Logic Level Supply Current from VEE SWITCHING CHARACTERISTICS (VCC ICCH 4 IEEH =+5 0 Vdc VEE = -5 0 0.5 40 - Vdc TA = +2SoC unless otherwise noted I MC3450 Characteristic IlA MC3452 Symbol Fig. Min Typ Ma. Min Typ Ma. Unit High to Low Logic Level Propagation Delay Time (Differential Inputs) tPHL(OI 10 - - 25 - - 25 ns Low to High Logic Level Propagation Delay Time (Differential Inputs) tPLH(DI 10 - - 25 - - 25 ns Open State to High Logic Level Propagation Delay Time (Strobel tpZH(SI 11 - - 21 - - - ns High Logic Level to Open State Propagation Delay Time (Strobel tPHZ(SI 11 - - 18 - - - ns Open State to Low Logic Level Propagation Delay Ti me (Strobe) tpZL(S) 11 - - 27 - - - ns Low Logic Level to Open State Propagation Delay Time (Strobel tPLZ(SI 11 - - 29 - - - ns High Logic to Low Logic Level Propagation Delay Time (Strobel tPHL(SI 12 - - - - - 25 ns Low Logic to High Logic Level Propagation Delay Time (Strobe) tPLH(SI 12 - - - - - 25 ns MOTOROLA LINEAR/INTERFACE DEVICES 7-73 • MC3450, MC3452 FIGURE 2 - CIRCUIT SCHEMATIC (1/4 Circuit Shown) VccO---~---1~-----t-----1~------~----------~------~--------~-' 850 4k '90 850 1.6 k t--t-------oOUTPUT r---~--~~---r--------~~~----4-_t-----4roGND '--_-'----"STROBE 4 k 4 k Dashed components apply to the MC3450 circuit only. TEST CIRCUITS FIGURE 3 - ICEX. VOH. AND VOL • 1-<""---__ +4.75 V, .....-------'-<:>--1 V V2 .....-------::<>-1 TEST TABLE +0.8 V .....+------"--j VI f-<:""t-l-..... -4.75 V V3 .....~.----"<>-1 V2 V3 V4 MC3450 MC3452 MC345Q MC3452 MC3450 MC3452 MC34S0 MC3452 \1 VOH~·~'·~9'~5~V+----t~~+---_t~~+---_t~.3~.O~V-+--~ V4 .....+-H~.!.o-l ICEX~--_t~~t----t~~+---_t_·3~.O~V-t----t-.3~.O~V-t----~ Vo' ~..:':~"'~~:"5V:"V+..:':~"'~~:"5V:"V+·",2",.9':.::5c.:V+.",2",.9':.::5c.:Vt-::.'::.:-t-"'-=:"+":;;:""'+=':'-1 -16 mA (MC3452) +5.25V~ Channel A shown under test. Other channels are tested similar IV. 'CEX I,~ (MC3450) FIGURE 5 -IIH(S) AND IIL(S) FIGURE 4 - ICCH AND IEEH +3.0 V .....~-------------------, 8>--..... +5.25 V B>-~..... +3.0V +5.25 V 8>-1-+__ -5.25 -5.25 V MOTOROLA LINEAR/INTERFACE DEVICES 7-74 V MC3450, MC3452 TEST CIRCUITS (continued) FIGURE 6 - lOS . FIGURE 7 - IIH !-'-'<0>---4+5.25 V V, ---+-<>-:;.i +25 mV .... +0.8 ~<>--1H--4+3.0 V v -+---+-o-:;.i 1-:<>---4+5.25 V Vl - 2.0 V ....+-...,.--<>-'''1 +3.0 !-'-'<<>-1H--4-5.25 V V-+--+--0-''1 F<>-lH--4-5.25 V Channel A shown under test, other channels are tested similarly. Only one output shorted at a time. Channel A(-) shown under tnt, other chennels are tested Similarly. Device, are tested with V1 from +3.0 V to -3.0 V. FIGURE 8 - IlL FIGUR E 9 - loff ,----"6 V1 - 2.0 V +3.0 V _ -.....--<>-''-j 1'-'<>----4+5.25 V 1:':9---.. +6.26 V V'_+-.--o-::-i +---+--o-''1 +2.0 +3.0 V .... Channel AC-l F<>4-+-- -5.25 V_t--++-<>-,"! r<>-tH-4-5.25 V V shown under test, other channels are tested Output of Channel A shown under test, other outputs are tested similarly for V1 = 0.4 V and +2.4 V. similarly" Devices are tested with Vl from +3.0 V to -3.0 V. FIGURE 10 - RECEIVER PROPAGATION DELAY tpLH(D) AND tpHL(D) +5.0 V --...,.--<>-'-1 +100 mV .... El n 200mV~----50% OV t:~~(_~~____tPHL(OI EO 1.5 V VOL Ein waveform charact.... istic.: tTLH and tTHL::S;;; 10 ns measured 10% to 90% PRR '" 1.0 MHz Output of Channel B shown under test, other channels are tested similarly, Duty Cycle 51 at "A" for MC3452 51 at "B" for MC3450 CL = 15 pF total for MC3452 CL = 50 pF total for MC3450 MOTOROLA LINEAR/INTERFACE DEVICES 7-75 := 500 ns MC3450, MC3452 TEST CIRCUITS (continued) FIGURE 11 - STROBE PROPAGATION DELAY TIMES tpLZ(S)i t~ZL(S) tpHZ(S) and tPZH(S) +5.0 V VI V2 51 52 tpLZ(S) 100mV Closed Closed 15 pF tPZL(S) 100mV GNO GNO Closed Open 50 pF tpHZ(S) GNO GNO 100mV Closed Closed 15 pF 100mV Open Closed 50 pF 81 01 1N916 or equiv 1k tPZH{S) CL CL includesjig and probe capacitance. Ein waveform characteristics: tTLH and tTHL ~10 ns measured 10% to 90%. 82 ! Output of Channel B shown und8f" test, other channels are tested similarly. • tPLZ(S) P'RR=1.0MHz ~::---t"'''' . tPHZ(S)'{"" .-_--~1.5V . Duty Cycle'" 50% EO VOWO.5 V . ""'.5 V tPZL(S){ Ein 3'::~ 3·0V E In tpZH(S) { 5.0V- VD , EO 1.5 V V --+' - T - - - EO VOL--------~--- FIGURE ° VOH _____ . _ l2 - ""OV STROBE PROPAGATION DELAY tPLH(S) AND tpHL(S) +5.0 V Ein +100 mV"'---+-o-!-i +3'OV~----50% OV ~~L:~(~____ tpHL(S) 390 EO R>--jH-e-5.0 V 1.5 V VOL 15 pF J(Totali Eln waveform characteristics: tTLH and tTHL ~ 10 ns measured 10% to 90% PRR "" 1.0 MHz Duty Cvcle = 500 ns Output of Channel B shown under test, other channels are tested similarly. MOTOROLA LINEAR/INTERFACE DEVICES 7-76 MC3450, MC3452 APPLICATIONS INFORMATION FIGURE 13 - IMPLIED "AND" GATING FIGURE 14 - BIDIRECTIONAL DATA TRANSMISSION·. <"Vref 500 ~-+-(>+-1 +5.0 V I -+----+-<>+-I DATA LINES DATA BUS __ +5.0 V I '80 ADOR ESS BUS ----4--+-<>+-1 +5.0 V DATA OUTPUT MC3450 390 '80 390 9. I MC3~0 390 STROBE -+--_-+-<>+-i ---!-o---. CO NT A 0 CONTROL BUS __ * L I 390 -0- I MC3450 1 MC3452 I J=:: MC3450 -------+-<>+:}L-1_ _ _ _ _ _ _ -.J: -T".om,,' of 0"", de Equipment Corp. TO ADDITIONAL RECEIVERS The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applIcations, such as are encountered in minicomputers, the·.eonfiguration shown in Figure 15 can be used. The voltage source, which generates Vref, should be designed so that the Vref voltage is halfway between VOH(min) and VOL(max). The maximum Input overdrive required to guarantee a given logic state is extremely small, 25 mV maximum. This low-input overdrive ennanees differential noise immunity. Also the high·input impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects. Q1 IQ2 03 0" X Al A2 y 1/2 MC4007 CIRCUIT I MOTOROLA LINEAR/INTERFACE DEVICES 7-77 I ::::: MC3450, MC3452 APPLICATIONS INFORMATION (continued) FIGURE 17 - PARTY·LlNE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING ~ROBE ..i>. MC3453 INPUTS STROBE DATA OUTPUTS STROBE ' - - - - ,-L.. ~ DATA DATA MC3453 INPUTS OUTPUTS J> '--- • r--- ~ DATA MC3453 INPUTS OUTPUTS STROB~ r--- ~ OATA INPUTS MC3453 OUTPUTS '~ ~ 'r--- r-- Ql Q2 L.-o ~ ~ 2/3 MC7404 CIRCUIT ro~ ro- 1/2 X MC4007 CIRCUIT r-<;- ~ Al A2 Al MOTOROLA LINEAR/INTERFACE DEVICES 7-78 A2 ® MC3453 MOTOROLA MTTL COMPATIBLE QUAD LINE DRIVER QUAD LINE DRIVER WITH COMMON INHIBIT INPUT SILICON MONOLITHIC INTEGRATED CIRCUIT The MC3453 features four SN75110 type line drivers with a common inhibit input. When the inhibit input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the inhibit is low, all channel outputs are nonconductive (transistors biased to cut-off). This minimizes lo.ading in party-line systems where a large number of drivers share the same line. • Four Independent Drivers with Common Inhibit Input • -3.0 Volts Output Common-Mode Voltage Over Entire Operating Range L SUFFIX CERAMIC PACKAGE CASE 620-10 • Improved Driver Design Exceeds Performance of Popular SN7511 0 FIGURE 1 - PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING P SUFFIX PLASTIC PACKAGE CASE 648-06 CONNECTION DIAGRAM Vee y INPUT B OUTPUT A y Z OATA OUTPUT B '''PUTS Z OUTPUT C Z Z Y OUTPUT 0 Y INPUT 0 O"IA 'NPUT$ TRUTH TABLE (positive logic) INHIBIT INPUT H H On Off On MOTOROLA LINEAR/INTERFACE DEVICES Z Y L H Off H L Off Off L L Off Off L "" Low Logic Level H = High Logic Level 7-79 OUTPUT CURRENT LOGIC INPUT MC3453 MAXIMUM RATINGS (TA = Oto +700 e unless otherwise noted) Power Supply Voltage Symbol Value Unit Vee VEE +7.0 -7.0 Volts Vin 5.5 Volts VOeR -5.0 to +12 Volts 1000 6.6 mW mw/oe Logic and Inhibitor Input Voltages Common~Mode Output Voltage Range PD Power Dissipation (Package Limitation) Plastic and Ceramic Dual In~line Packages Derate above T A = +25 0 C Operating Ambient Temperature Range TA o to +70 ue Storage Temperature Range T stg -65 to +150 °e Plastic and Ceramic Dual In-Line Packages RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2) Characteristic Power Supply Voltages Common-Mode Output Voltage Range Symbol Min Nom Max Unit Vee VEE +4.75 -4.75 +5.0 -5.0 +5.25 -5.25 Volts 0 0 - +10 -3.0 Volts VOeR Positive Negative ,Notes: 1. These voltage values are in respect to the ground terminal. 2. When not using all four channels, unused outputs must be grounded. DEFINITIONS OF INPUT lOGIC lEVELS' Characteristic High-LevellnpUl Voltage (at any input) • Low·Level Input Voltage (at any input) *The algebraic convention, where the most positive limit is designated maximum. is used with Logic Level Input Voltage Levels only. ElECTR ICAl CHARACTERISTICS (T A = 0 to +700 e unless otherwise noted) Symbol Characteristic## High-Level Input Current (Logic Inputs) (Vee = Max, VEE ~ Mbx, VI H L = 2.4 V) (Vee = Max, VEE = Max, VIHL = Vee Max) IIHL Low·Levellnput Current (Logic Inputs) (Vee = Max, VEE = Max, VILL =0.4 V) IILL High-Level Input Current (Inhibit Input) (Vee = Max, VEE = Max, VIHI ~ 2.4 V) (Vee = Max, VEE = Max, VIH ~ Vee Max) IIHI Low·Levellnput Current (Inhibit Input) IILI Min Typ# Max Unn- - - - - 40 1.0 "A mA -1.6 rnA - - - - 40 1.0 "A rnA - - -1.6 mA - 11 11 15 6.5 (Vee = Max, VEE = Max, VI LI = 0.4 V) Output Current ("on" state) (Vee = Max, VEE = Max) (Vee = Min, VEE = Min) 10(on) Output Current ("ott .. state) (Vee = Min, VEE = Min) 10(011) - 5.0 100 "A lee(on) - 35 50 mA 65 90 mA Supply Current from Vec (with driver enabled) rnA - (VILL = 0.4 V, VIHI = 2.0 V) Supply Current fr.om VEE (with driver enabled) (VILL = 0.4 V, VIHI = 2.0 V) IEE(on) Supply Current from Vee (with driver inhibited) lee(off) - 35 50 mA IEE(off) - 25 40 mA (VILL = 0.4 V, VILI = 0.4 V) Supply Current from VEE (with driver inhibited) (VI LL = 0.4 V, VI LI = 0.4 V) #AII typical values are at Vee = +5.0 V, VEE = -5.0 V, TA = +250 e. ##for conditions shown as Min or Max. use the appropriate value specified under recommended operating conditions for the applicable device type. Ground unused inputs and outputs. MOTOROLA LINEAR/INTERFACE DEVICES 7-80 MC3453 SWITCHING CHARACTERISTICS (Vcc ~ +5.0 V, VEE ~ -5.0 V, TA ~ +25 0 C.) Symbol tPLHL tPHLL Characteristic Propagation Delay Time from logic Input to Output Y or Z (RL ~ 50 ohms, CL ~ 40 pF) ~ 50 ohms, CL ~ Max Unit 17 - 9.0 ns 17 16 - 20 25 25 tPLHI tPHLI Propagation Delay Time from Inhibit Input to Output Y or Z (RL Typ 9.0 Min 40 pF) FIGURE 2 - LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS ns FIGURE 3 - INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS 3.0 V INHIBIT INPUT OV .. OUTPUT V OUTPUT Z OV TEST CIRCUITS FIGURE 5 - INHIBIT INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT FIGURE 4 - LOGIC INPUT TO OUTPUT PROPAGATION DELAY TIME TEST CIRCUIT Vee Ejn to Scope = +5.0 Vcc V Output to 50r---1'---<>-1 _-='--, 3 50 Output V SCOT ... I 2 tTHL ~10ns ~ 40 pF (total) 4 Z = t--""N-<~>-i MC3453 ... y .....J to Z Scope 50 50 8 9 VEE Ein tTLH "" tTHL ~10 ... --5.0 V 1k Channel A shown under test, the other channels are tested similarly. Channel A shown under test, the other channels are tested similarly. MOTOROLA LINEAR/INTERFACE DEVICES 7-81 +5.0 V MC3453 FIGURE 6 - CIRCUIT SCHEMATIC (1/4 Circuit Shown I VCCo-----~--------~~--_.------~--~------------_.----~ To Remainder of Quad SINGLE DR IVER Outputs VEE O-----------------------------~--~--_4--_*---------- • VCC COMMON VEE INHIBIT COMMON LEVEL SET VEE MOTOROLA LINEAR/INTERFACE DEVICES 7-82 __ To Remainder of Quad ® MC3467 MOTOROLA TRIPLE MAGNETIC TAPE MEMORY PREAMPLIFIER TRIPLE WIDEBAND PREAMPLIFIER WITH ELECTRONIC GAIN CONTROL (EGC) SILICON MONOLITHIC INTEGRATED CIRCUIT The MC3467 provides three independent preamplifiers with individual electronic gain control in a single 18-pin package, Each preamplifier has differential inputs and outputs allowing operation in completely balanced systems, The device is optimized for use in gtrack magnetic tape memory systems where low noise and low distortion are paramount objectives. The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately 100VIV, PSUFRX PLASTIC PACKAGE 707-02 • Wide Bandwidth - 15 MHz (Typ) • Individual Electronic Gain Control • Differential Input/Output TYPICAL APPLICATION HIGH PERFORMANCE 9·TRACK OPEN REEL TAPE SYSTEM NRZI/t/> VJ(EGC) Input { 2 Select Active Differentiator Input { 4 T A P E Input{ 7 Formatter MC8500 MC850' MC8502 MC8520 MOTOROLA LINEAR/INTERFACE DEVICES 7-83 L SUFFIX CERAMIC PACKAGE CASE 726-04 MC3467 MAXIMUM RATINGS (TA = 25°C unless otherwise noted.l Rating Symbol V.lue Negative Supply Voltage VCC VEE 6.0 -9.0 EGC Voltage. (Pin. I, 6 and 131 Unit Power Supply Voltages V Positive Supply Voltage VI(EGCI -5.0 to Vce V Input Differential Voltage VIO ±5.0 V Input Common-Mode Voltage VIC ±5.0 V Amplifier Output Short Circuit Duration fto Ground) tsc 10 • Operating Ambient Temperature Range TA o to +70 °c Storage Temperature Range T stg -65 to +150 °c TJ +150 °e Junction Temperature ELECTRICAL CHARACTERISTICS (Vee =5.0 V, VeE = -6.0 v, f = Characteristic = 0 to +700 C unless otherwise noted.1 Min Typ Ma. Unit VeCR VEER VI(EGCI 4.75 -5.5 0 5.0 -6.0 5.25 -7.0 - VCC V V V AVO 85 100 120 v/v AVO - 0.5 2.0 V/V Maximum Input Differential Voltage (Balanced I (T A = 25 0 el VIDR 0.2 - - Vpp Output Voltage Swing (Balancedl (Figure 11 (ei = 200 mV p-p) VOR 6.0 8.0 - Vpp Power Supply Voltage Range Positive Supply Voltage Negative Supply Voltage Operating EGC Voltage • 100 kHz, TA Symbol Differential Voltage Gain (Balanced) (VI(EGCI = 0, ei = 25 mVp-pl (See Figure 11 Differential Voltage Gain (VI(EGCI = Vce l VICR ±1.5 ±2.0 - V Differential Output Offset Voltage (TA = 25°C) VOOD - 500 - mV Common-Mode Output Offset Voltage VOOC - 500 - mV Input Common-Mode Range (TA = 25°C) Common Mode Rejection Ratio (Figure 2) VI(EGC) = 0, VCM (f = 100 kHz) (f = 1.0 MHz) eMRR Small-Signal Bandwidth (Figure 1) (-3.0 dB, ei dB = 1.0 Vpp BW 60 40 100 100 - 10 15 - MHz = 1.0 mVp-p, T A = 25°C) Input Bias Current liB - 5.0 15 J1.A Output Sink Current (Figure 5) 10$ 1.0 1.4 - mA en - 3.5 - "VRMS Positive Power SupplV Current (Figure 4) ICC - 30 40 mA Negative Power Supply Current (Figure 4) lEE - -30 -40 mA r; 12 25 - kn ei - 2.0 - pF ro - 30 - Ohm. Differential Noise Voltage Referred to Input (Figure J) (VI(EGC) = 0, RS = 50 n, BW = 10 Hz to Input Resistance I nput Capacitance 1.0 MHz, T A = 250 CI = 25°C) (TA = 25°C) (TA Output Resistance (Unbalanced) (TA = 25 0 el MOTOROLA LINEAR/INTERFACE DEVICES 7-84 MC3467 FIGURE 1 - DIFFERENTIAL VOLTAGE GAIN, BANDWIDTH AND OUTPUT VOLTAGE SWING TEST CIRCUIT ~Chal'lnel A under test, other channels tested similarly) FIGURE 2 - COMMON-MODE REJECTION RATIO (Channel A under test, other amplifiers tested similarlv~ 5.0 V 5.0 V 18 18 ., 17 16 17 1-'~6D-_""'Voo ·2 eo"" e, - e2 MC3467 MC3467 13 CMAA == 20 log \(00 AV VI 13 == 20 log VOO 100 VI 10 10 -6.0 V -6.0 V FIGURE J - DIFFERENTIAL NOISE VOLTAGE REFERRED TO THE INPUT FIGURE 4 - POWER SUPPL Y CURRENT TEST CIRCUIT Vee 5.0 V • KrohnHite 3202 Filter 51 51 hp 3400A Low Pass Filter With BW == 1.0 MHz Assume Uncorrelated Noise Sources -6.0 V en (Differential Noise at Input) == eo .J2/100 FIGURE 6 - TOTAL HARMONIC DISTORTION TEST CIRCUIT (Channel A under test, other channels tested similarly) FIGURE 5 - OUTPUT SINK CURRENT TEST CIRCUIT (Channel A under test. other channels tested similarly) +5.0 V +2.0 V 5.0 V -6.0 V -6.0 V MOTOROLA LINEAR/INTERFACE DEVICES 7-85 • MC3467 TYPICAL CHARACTERISTICS (Vee ~ S.OV. VEE =-6.0 V. TA Z 250 unleH otherwise noted) FIGURE 7 - TOTAL HARMONIC DISTORTION (THDI ...... INPUT VOLTAGE FIGURE 8 - NORMALIZED VOLTAGE GAIN ....... FREQUENCY 10 ~ z 0 ii:0 !!i0 '"'z0 ill . :::! +5.0 .---'-'-'TTTT11r--,-,.."rnnr-'-'-TTnTTI o 8. 0 W N ::; Av '30 VI(EGCl' 1.8 V 11'100 kHz 6. 0 (See Figure 61 ./ 4. 0 ~ b l- 2. 0 e" or I- - ~ r-- V V o 5lJ -5.0 f----+-+++++t+t--+-+-Hitttti'-----''I'<.",.t-1-tTrtH z z -10 f----,+-+-++++ttf--t--+-f+ttttt-t-+I\Tiiiffi ;;' to W to ./ ~ o > ] I-- o ~ o ;; 100 150 200 250 1.0 0.1 FIGURE 9 - NORMALIZED VOL TAGE GAIN versus AMBIENT TEMPERATURE 100 10 I. FREUUENCY (MHz) VI. INPUT VOLTAGE (mVp.pl FIGURE 10 - NORMALIZED POSITIVE POWER SUPPLY CURRENT .ersus POSITIVE POWER SUPPLY VOLTAGE 1.04 VEE' -6.0 VI' 10 mV ...•.• --f---+-1.0;1I-----1--+--t- 11'100 kHz a~ 1.02 > ~o G.w G. N ~~ ffi ~ 1.00 VEE - 6.0 V TA'250C -f"ICC ITI n 'ICC (25 0CI - t - - TEST CIRCUIT· FIGURE 4 3'" 00 G.z w- > ~ 0.98 ~ ~ 0.96 4.75 4.8 4.85 4.9 4.95 5.0 5.05 5.1 5.15 5.2 FIGURE 11 - NORMALIZED NEGATIVE POWER SUPPLY CURRENT versus NEGATIVE POWER SUPPLY VOLTAGE FIGURE 12 - NORMALIZED POWER SUPPLY CURRENTS .ersus AMBIENT TEMPERATURE 1.04 1.02 ~ V- I-8 0.96 -5.0 5.5 -6.0 V I--'"" 1 ..- V ./ 0 VCC' 5.0 V TA'25OC lEE (TI n 'IEE (250CI TEST CIRCUIT' FIGURE 4 9 0.98 6.5 5.25 VCC. POSITIVE POWER SUPPLY VOLTAGE (Vdcl TA. AMBIENT TEMPERATURE (OCI 7.0 7.5 L o V 10 t-- I--VCC' 5.0 V VEE' -6.0 V ICC (TJ lEE (TJ n 'ICC (250CI'IEE (250Cj- L SEE FIGU'RE 4 _ FOt TEST C1IRCUIT 20 30 40 50 TA. AMBIENT TEMPERATURE (OCI VEE. NEGATIVE POWER SUPPLY VOLTAGE (Vdcl MOTOROLA LINEAR/INTERFACE DEVICES 7-86 60 70 80 MC3467 u. FIGURE 13 - DIFFERENTIAL VOLTAGE GAIN ..... ELECTRONIC GAIN CONTROL VOLTAGE (VICEGC)) 100 "' FIGURE 14 - COMMON-MODE REJEC-';'ON RATIO (CMRR) ..nuo FREQUENCY -..... ~ ~ \ \ 0 .. 0 ~ \ '" z 1.0 1.5 - VICM' 1.0 Vp•p " TEST CIRCUIT' FIGURE 2 2.0 8'" --- 2.5 ~. -40 ~ ~ 3.0 3.5 4.0 1.0 0.1 FIGURE 16 - TYPICAL EGC INPUT CURRENT ..,.us EGC INPUT VOLTAGE FIGURE 15 - PHASE SHIFT versus FREQUENCY -- -40 ffic 4.0 :< .§: .... -80 \ ~ -120 \ ~ ~ 3.0 ~ 2.0 V ./ ~ '-' !:I ffi ci '"<> a.. -200 ~ -240 10 1.0 1.0 o 100 /- ' --- .... w -160 -300 0.1 100 10 I, FREQUENCY (MHz) VI(EGC), ELECTRONIC GAIN CONTROL VOLTAGE (VOLTS) ~_ AV'100V/v'40d8 ~ "\ "'-. 0.5 Vo CMRR • 20 IDg AV VICM VCC' 5.0 V VEE' -S.O V "' "" -so t-- TA' 25DC ci > o o r-- ~ -80 \ V ,./ o V V VCC' 5.0 V VEE' -S.OVTA·25 DC -- V 2.0 1.0 /' 4.0 3.0 VI(EGC), EGC INPUT VOLTAGE (Vdc) I, FREQUENCY (MHz) REPRESENTATIVE CIRCUIT SCHEMATIC 1/3 MC3467 r---~~~-~-~~~-~r-~-~-----~-~~r--T----~----~VCC Outputs Inputt o-t---t--{ 01 EGC Rl Input 02 VEEO-------------------~--____~---_4_~---~-----~-~~~~ MOTOROLA LINEAR/INTERFACE DEVICES 7-87 ____ ~~-" 5.0 II ® MC3469P MOTOROLA Specifications and Applications Information FlOPPY DISK WRITE CONTROLLER flOPPY DISK WRITE CONTROLLER The MC3469 is a monolithic WRITE Current Controller designed to provide the entire interface between floppy disk heads and the head control and write data signals for stradle-erase heads. Provisions are made for selecting a ra nge of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period and inner/outer track compensation. • • Head Selection - Current Steering Through Write Head and Erase Coil in Write Mode • Provides High Impedance (Read Data Enable) During Read Mode • Head Current (Write) Guaranteed Using Laser Trimmed Internal Resistor (3.0 mA using Rext ~ 10 kll) • IRW Select Input Provides for Inner/Outer Track Compensation • Degauss Period Externally Adjustable • Specified With ±1 0% LogiC Supply and Head Supply (VSS) from 10.8 V to 26.4 V • Minimizes External Components SILIcON MONOLITHIC INTEGRATED CIRCUIT 1 P SUFFIX PLASTIC PACKAGE CASE 648-06 PIN CONNECTIONS BLOCK DIAGRAM Center Vref R WI R W2 Tap' 'ref VBB 6 Center Gnd 5 Select 4 13 11 IRWS 8 Select Enable 14 Current Select 16 WG Eli El CT0 'Ga'ie Erase j1 Write 'DaiB Coil R/W2 I,ef 11 ErTse1 Vee IRW Select Head CT1 HS MOTOROLA LINEAR/INTERFACE DEVICES 7-88 Gnd R/WI 9 Vref Tap ji1 'Viirite Toggle Select MC3469P ABSOLUTE MAXIMUM RATINGS (TA; 25°e) Symbol Value Unit Power Supply Voltage (Pin 10) Vee 7.0 Vdc Power Supply Voltage (Pin 15) Vaa 30 Vdc VI 5.75 Vdc Tstg -55 to +150 °e TJ 150 °e Rating Input Voltage (Pins 4, 5, 8, 9) Storage Temperature Operating Junction Temperature RECOMMENDED OPERATING CONDITIONS Symbol Value Unit Power Supply Voltage (Pin 10) Rating Vee +4.5 to +5.5 Vdc Power Supply Voltage (Pin 15) Vaa +10.8 to +26.4 Vdc TA o to +70 °e Operating Ambient Temperature Range ELECTRICAL CHARACTERISTICS (TA ;Oto+70oe, Vee;4.5to 5.5 V, Vaa; 10.8t026.4 V unless otherwise noted. Typicalsgiven for Vee; 5.0 V, Vaa; 12 V and TA; 25°e unless otherwise noted.) Characteristics DIGITAL INPUT VOLTAGES Power Supply eurrent - Vee Vaa lee laa - 22 15 50 30 mA High Level Input Voltage (Vee; 4.5 V) 4,8,9 VIH 2.0 - - V Low Level Input Voltage 4,8,9 VIL - - 0.8 V 4,5,8,9 VIK - -0.87 -1.5 V 5 VT(+) 1.5 1.75 2.0 V 5 VT(_) 0.7 0.98 1.3 V 0.2 0.4 - - 0.76 - - 0.1 40 - - -1.6 0.36 0.76 0.46 0.39 - (Vee; 5.5 V) Input elamp Voltage (11K; -12 rnA) Positive Threshold (Vee; 5.0) Negative Threshold (Vee; 5.0) Hysteresis (VT(+) - VT(_)) TA; ooe to +70 oe TA; 25°e V VHTS DIGITAL INPUT CURRENTS High Level Input eurrent (Vee; 5.5 V, Vaa; 26.4 V, VI; 2.4 V) 4,5,8,9 IIH Low Level Input Current 4,5, a, 9 IlL (Vee; 5.5 V, Vaa; 26.4 V, TA; 25°e unless noted below) Vaa; 12 V Vaa; 24 V Vee; 5.0V Vee;5.0V 4 4 5 B,9 mA - MOTOROLA LINEAR/INTERFACE DEVICES 7-89 pA - .. MC3469P i ELECTRICAL CHARACTERISTICS (continued) (TA ° Oto+70oC, Veeo4.5 t05.5 V, VSSo 10.8 to 26.4 V unless otherwise noted. Tvpicals given for Vee 05.0 V, Vse 012 V and TA ° 25°e unless otherwise noted.) Characteristics Symbol CENTER-TAP and ERASE OUTPUTS Output High Voltage (See Figure 9) (IOH ° -100 mA. Vee ~ 4,5 V) VBB ° 10,8 to 26,4 V 14,16 VOH Output Low Voltage (See Figure 9) (IOL ° 1,0 mAl Ves 012 V VSS ° 24 V 14,16 VOL Output High Leakage 11,13 IOH 11,13 VOL V - VBe-1.5 VSS-1.0 - 70 70 150 150 - 0.D1 100 mV I'A (VOH ° 24 V, Vee ° 4,5 V, VSS ° 24 V) Output Low Voltage (See Figure 10) (lOL 090 mA. Vee 04,5 V) Vss ° 12 V VSS ° 24 V V - 0,27 0,27 0,60 0,60 CURRENT SOURCE II Reference Voltage I Vref - 5.7 - V Degauss Voltage (See Text) I VDEG - 1.0 - V (Voltage Pin 1 - Voltage Pin 2) Bias Voltage Write Current Off Leakage 2 VF - 0,7 - 6,7 IOH - 0.03 15 I'A 6,7 Vsat - 0,85 2.7 V 6,7 L'>I/RW2,1 - 15 40 I'A 2,91 2,84 3,0 3,09 3.16 5,64 5,51 5.89 - 6,14 6,28 31.3 30,3 33,3 33.3 35,5 36.6 - 0,003 0.D15 0,023 - - V (VOH o 35V) Saturation Voltage (VBS 012 V) Current Sink Compliance (For V6, 7 ° 4,0 V to 24 V, VWG ° 0.8 V) 6,7 Average Value Write Current (IPin 6 + IPin 7) for Ves ° 10,8 to 26,4 V) ( 2 @ IR/W ° (LOW, R ° 10k mA IR/W(L) TA ° 25°e TA ° to +70oe @ IR/W ° ILOW, R ° 5,0 k TA ° 25°e TA o Oto+70oe @ IR/W ° IHI' R ° 10k (IHI ° ILOW + % ILOW) TA ° 25°e TA ° to +70 oe ° - % .lIH/W(H) ° 6,7 Difference in Write Current dlPin 6 - IPin 71 @ IR/W ° ILOW, Ves; 10,8 V to 26,4 V) R; 10k TA ° 25°e TA ° Oto +70oe R; 5,0 k IR/W.l TA ° 25°e TA ° to +70oe ° mA MOTOROLA LINEAR/INTERFACE DEVICES 7-90 - 0,030 0.046 MC3469P AC SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA =25°C, VaB = 24 V,IRWS = 0.4 a nd IR/W= 3.0 mA unless otherwise noted - refer to Figure 2 a nd Figure 11.) Characteristics (Note 1) fin (Note 3) Typ Max Unit 1 Delay from Head Select going low through 0.8 V to CTO going high through 20 V. HS, Pin 9 - 1.6 4.0 I's 2. Delay from Head Select going low through 0.8 V to eTl going low through 1.0 V. HS, Pin 9 - 2.1 4.0 I'S eTa HS, Pin 9 - 1.7 4.0 I'S 4. Delay from Head Select going high through 2.4 V to CTl going high through 20 V. HS, Pin 9 - 1.4 4.0 I'S 5. Delay from WG going low through 0.8 V to CTO going low through 1.0 V. WG, Pin4 - 1.3 4.0 I'S 6. Delay from WG going low through 0.8 V to CT1 going high through 20 V. WG, Pin4 .- 0.8 4.0 I's 7. Delay from WG going low through 0.8 V to CTO going high through 20 V. WG, Pin4 - 0.75 4.0 I'S 8. Delay from WG going low through 0.8 V to CT1 going low through 1.0 V. WG, Pin4 - 1.2 4.0 I'S 9. After WG goes high, delay from R/Wl turning off through 10% to CTO going high through 20 V. WG, Pin4 20 750 - ns 10. After WG goes high, delay from R/W1 turning off WG, Pin4 20 1200 - ns 11. After WG goes high, delay from R/W2 turning off through 10% to eTa going low through 1.0 V. WG, Pin4 20 1200 - ns 12. After WG goes high, delay from R/W2 turning off through 10% to CT1 going high through 20 V. WG, Pin4 20 600 - ns 13. Delay from WG going low through 0.8 V to EO going low through 1.0 V. WG, Pin4 - 0.085 4.0 I's 14. Delay from WG going low through 0.8 V to E1 going low through 1.0 V. WG, Pin4 - 0.085 4.0 I's 15. Delay from WG going high through 2.0 V to EO going high through 23 V. WG, Pin4 - 0.7 4.0 I'S 16. Delay from WG going high through 2.0 V to E1 going high through 23 V. WG, Pin4 - 0.7 4.0 I's 17. After WG goes low, delay from eTa going low through 1.0 V to R/W1 turning on through 10%. WG, Pin4 20 750 - ns 18. After WG goes low, delay from CT1 going low through 1.0 V to R/W2 turning on through 10%. WG, Pin4 20 750 - ns 3. Delay from Head Select going high through 2.4 V to going low through 1.0 V. Min through 10% to CIl going low through 1.0 V. 19. After WG goes low, fall time (10% to 90%) of R/W1. WG, Pin4 - 5.0 200 20. After WG goes low, fall time (10% to 90%) of R/W2. WG, Pin4 - 5.0 200 21. Setup time, Head Select going low before WG going low. WG, Pin4 4.0 - ns ns - I'S 22. Write Data low Hold Time WD, Pin 5 200 - - ns 23. Write Data high Hold Time WD, Pin 5 500 - 24. Delay from WG going high through 2.0 V to R/W 1 turning off through 10% of on value. WG, Pin4 - I's - 3.9 Notes 1. Test numbers refer to encircled numbers in Figure 2. 2. AC test waveforms applied to the designated pins as follows: Pin fin Amplitude Duty Cycle HS, Pin 9 WG, Pin4 WD, Pin 5 50 kHz 50 kHz 1.0 MHz 0.4 to 2.4 V 50% 50% 50% 0.4 to 2.4 V 0.2 to 2.4 V MOTOROLA LINEAR/INTERFACE DEVICES 7-91 ns II MC3469P AC SWITCHING CHARACTERISTICS (continued) (Vee:: 5.0 V, TA::: 25°C, VBS::: 24 V, WG:: 0.4 unless otherwise noted - Characteristics (Note 3) refer to Figure 3 and Figure 11.) Min Typ Max - Unit 1 Delay from Write Data going low through 0.9 V to R/Wl turning on through 50%. - 85 2. Delay skew, difference of R/Wl turning off and R/W2 turning on through 50% after Write Data going low through 0.9 V. - 1.0 3. Delay from Write Data going low through 0.9 V to R/Wl turning off through 50%. - 80 4. Delay skew, difference of R/Wl turning on and R/W2 turning off 50% after Write Data going low through 0.9 V. - 1.0 ±40 ns 5. Rise time, 10% to 90%, of R/Wl - 1.7 200 ns 6 Rise time, 10% to 90%, of R/\A/2 - 1.7 200 ns 7. Fall time, 90% to 10%, of R/Wl - 12 200 ns 8. Fall time, 90% to 10%, of R/W2 - 12 200 ns ±40 - ns ns ns Note 3. Test numbers refer to encircled numbers in Figure 4. fin = 1.0 MHz, 50% Duty Cycle and Amplitude of 0.2 V to 2.4 V. PIN DESCRIPTION TABLE Symbol Pin Description Head Select HS 9 Head Select input selects between the head I/O pins: center-tap, erase, and read/write. A HIGH selects Head 0 and a LOW selects Head 1 Write Gate WG 4 Write Gate input selects the mode of operation. HIGH selects the read mode, while LOW selects the Write Control mode and forces the write current. Write Data WD 5 Write Data input controls the turn on/off of the write current. The internal divide-by-two flip-flop toggles on the negative going edge of this input to direct the current alternately to the two halves of the head coils. IRW Select IRWS 8 IRW Select input selects the amount of write current to be used. When LOW, the current equals the value found in Figure 5, according to the external resistor. When HIGH, the current equals the low current + 33%. Vref Iref Vref Iref 1 2 A resistor between these pins sets the write current. Laser trimming reliably produces 3 rnA of current for a 10k resistor. A capacitor from Vref to Gnd will adjust the Degauss period. Center-tap 0 CTO 14 Center-tap 0 output is connected to the center tap of Head O. It will be pulled to Gnd orVBB (+12 or EO 13 Erase 0 will be LOW for writing on Head 0, a nd floating for other conditions. CTl 16 Center-tap 1 output is connected tothe center tap of Head 1.lt will be pulled to Gnd or VBB (+12 or +24) depending on mode and head selection. Name -- +24) depending on mode and head selection. Erase ° Center-tap 1 El 11 Erase 1 will be LOW for writing on Head 1, and floating for other conditions. R/W2 R/W2 6 R/W2 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/Wl. It will be connected to one side of the heads. R/Wl R/Wl 7 R/Wl input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W2. It will be connected to on'e side of the heads. VCC 10 +5 V Power VBB 15 + 1 2 V or + 24 V Power Gnd 12 Coil grounds Gnd 3 Reference and logic ground Erase 1 MOTOROLA LINEAR/INTERFACE DEVICES 7-92 MC3469P FIGURE 1 - LOGIC DIAGRAM VBB 15 Vee 10 3 12 1 1 J -!- Write G.te~4~-----------+4-----~--~ Vee >-__"EJ "",""--.._,, 13 >='=--__ El t-----~~ 11 >--1--____-\\_~_,--- ~~1 eT0 14 Head Select~9,.....t-------------------+-----------------------------~ II *External Component oc - open collector FIGURE 2 - AC TIMING DIAGRAM Head 9 Select 2.0V o.sv 2.0V ~~~5--~--_+--~~1 EiiI3------;-;-------------~r_------~~4_~------_+~ Ei 11 _ _ _ ":-~1 R/Wl 7-----.;=~r.,;;:-- 10% -=............"""\ R/W2 6 _ _ _ _ 10% Vref (5.0 V Nom., ~:. ~~It~=~n~-----I -1.65 V Nom. -="""~ ...-------....J-O.86 VNom. MOTOROLA LINEAR/INTERFACE DEVICES 7-93 MC3469P FIGURE 3 - R/WI ANO R/W2 RELATIONSHIP Write Data 5 2.4V 0.9V 0.2V R/W1 ---- 7 ® 10% 50% 90% R/W2 r (i)~ 6 10% 50% :::l@ 90% APPLICATION INFORMATION • The MC3469P serves as a complete interface between the Write Control functional signals (Head Select. Write Data, Write Gate and inner track compensation, IRWS) and the head itself. A typical configuration is shown in Figure 4. LE's are erase coils . IRef' the current flowing in Rext (required only for dissipation calculations) can be worst case using the fact that the differential voltage between Pins 1 and 2 (VRef) shown in Figure 3 never exceeds 5.0 volts. With a low value of Rext = 1.0 k!l, Po = 25 mW. WRITE CURRENT SELECTION WRITECURRENTOAM~NG Although the MC3469P has been specified for 3.0 mA write current (with a 10 k!l external resistor), a range of write current values can be chosen by varying Rext using the plot in Figure 5. This current can also be derived using Referring to Figure 4, resistors RD are used to dampen any ringing that results from applying the relatively fast risetime write current pulse to the inductive head load. Values chosen will be a funciton of head characteristics and the desired damping. Rp serves as a common pullup the relationship IWrite (mA) = R 30(k ) ext n resistor to the head supply VBS. FIGURE 4 - TYPICAL APPLICATION o--":.:...:.--,.-t-----i FIGURE 5 - WRITE CURRENT versus Rext Head 1 1 N ~ O--""=--+-t-t-.,.-{ WG}----{J MC3469P 13 Head o Wo>----~ 0, So .,. 0 i 7. 0 ~ 5. 0 I" ....... I....... 0 ~ 0 IRWS>-t-I--!::J HsH-I--~===~-.J RO 1. 0 2.0 3.0 RO MOTOROLA LINEAR/INTERFACE DEVICES 7-94 '" 7,0 5.0 10 EXTERNAL SET RESISTOR - Rext (k!l) 2 " a MC3469P DEGAUSS PERIOD Degauss of the read/write head can be accomplished at the end of each write operation by attaching a capacitor from pin 1 to ground. The timing relationship that results is shown in Figure 7. A simplified diagram ofthis function is shown in Figure 6. While WG is low, the selected write current flows into pin 6 or pin 7 (R/W1 or R/W2)and is mirrored through the external resistor, Rext . The degauss capacitor, COG, will be charged to approximately 5.7 volts. After WG goes high, the voltage on COG begins to decay toward 0.7 V. When the voltage reaches the comparator threshold of 1.7 V, the comparator output triggers the internal logic to completely turn off the write current. At this point, the pulse amplitude on the R/W1 and R/W2 pins has returned to 10% of its maximum value. Figure 7, Degauss Period shows the relationship be- tween COG and Degauss Period for Rext = 10 kO. This period is equal to the exponential delay time for the voltage as mentioned plus some internal delay times. POWER-UP WRITE CURRENT CONTROL During power-up, under certain conditions (Vee comes up first while WG is low), there can be a write current transient on Pins 6 and 7 (RIW1 and RIW2) of sufficient magnitude to cause writing to occur if the head is loaded. This transient can be eliminated by placing a capacitor from Pin 2 to ground. This also delays the write current when WG goes low and this delay must be accounted for when the capacitor on Pin 2 is used. The delay is 3.0 IJ.S for a 2700 pF capacitor, and Rext = 10 kO. Values up to 7000 pF may be used. FIGURE 6 - SIMPLIFIED DEGAUSS CIRCUIT FIGURE 7 - DEGAUSS PERIOD versus CAPACITANCE (COG) Vaa 1000 / / to Internal Logic ~ 500 g 40 0 :2 :: 30 0 5 20 Pin 2 / / II / / o / Vp2 = 0.7 V 10 ~I/ 10 FIGURE 8 - TURN-ON WRITE PROTECTION Rextrr=l 1 27DDPFr5.0% J MOTOROLA LINEAR/INTERFACE DEVICES 7-95 30 20 DEGAUSS PERIOD 11"1 MC3469P TEST FIGURES FIGURE S - CENTER TAP OUTPUT VOLTAGE (PINS 14 AND 16) CONDITIONS Measure 16t------, 15 14t-----O.. VT 11 NC- SijS2 4.5V ~ 100 mA L -_ _--' Set VT =- 51 52 53 VOH (PI4) On Off P14 VOH (PI6) On Off P16 VOL (PI4) Off On P14 VOL(PI6) Off On P16 V4* t 1.0 mA VS* O.S 2.0 2.0 O.S 2.0 2.0 O.S O.S O.S O.S 2.0 2.0 2.0 O.S O.S 2.0 *Volts FIGURE 10 - ERASE OUTPUT LOW VOLTAGE (PINS 11 AND 13) CONDITIONS Set Measure • VT SI VOL(Pll) Pl1 VOL (PI3) P13 I I I VS.S O.SV 2.0 V FIGURE 11 - TIMING TEST CIRCUIT +5.0 V ±5% +24 V ±5% 100 24 k 24 k 5 Write Data 240 2.0W AC Inputs Head Select ~~-+----~~-+24V 50 IRWSelect See Specification Table and Note 3. 50 Notes: Diodes Type 1 N4934. Resistors (unless otherwise noted) are' /4 W, 5%. MOTOROLA LINEAR/INTERFACE DEVICES 7-96 MC3469P ERASE CURRENT Erase timing is provided internally and isactive during Write Gate low for the selected head. The value of RE, the erase current set resistor, is found by referring to Figure 12 and selecting the desired erase current. Looking althe simplified erase current path in Figure 12, when writing, CTO will be high (VOH(min) = 21 V) and EO will be low (VOL(max) = 0.6 V). If the erase coil resistance is 10 !1 and 40 mA of erase current is desired, then: FIGURE 12 - ERASE CURRENT (RE Selectionl (RE + 10!l) x 40 mA= (21 -0.6) V RE 13 EO or RE = 20.4 V 0.0'4 A - 10 fl Erase Coil MC3469 =500 fl CTO 14 Po = (0.04) (20.4) = 0.816 W or 1.0 W Thisgives the minimum value REfor worst case VOH/VOL conditions. It is also recommended that a diode be used as required for inductive back emf suppression. FIGURE 13 - TYPICAL DUAL HEAD FlOPPY DISK SYSTEM USING FET GATE READ CHANNEl SElECTION AND MC3469/MC3470 MC3470 :: 0:f' r---·--- - - , - -- Digital Read Data r (out) I HO YH-.,....-~--' I I L ________ Read Amp See Data Sheet r------.., L-+---+------il f-----/-+~-~_::L---'= From L _____ HI ~ VBB r I I VCC I RD I r R/WI I I l___{ : Head Select I I Logic : I R/W2 VBB HS 14-------' CTO CTI TrackComp EO E1 MOTOROLA LINEAR/INTERFACE DEVICES 7-97 ..J I I ~ • ® MC3470P MC3470AP MOTOROLA Specifications and Applications Information FLOPPY DISK READ AMPLIFIER SYSTEM FLOPPY DISK READ AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC3470 isa monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peakofthe input Signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output. • Combines All the Active CircuitryTo Perform the Floppy Disk Read Amplifier Function in One Circuit • • Guaranteed Maximum Peak Shift of 2.0% - • Improved (Positive) Gain TC and Tolerance MC3470A • Improved Input Common Mode PSUFFIX PLASTIC PACKAGE CASE 707·{)2 TYPICAL APPLICATION Active Filter Network Differentiator Amplifier Inputs Offset Decoupling Gnd One-Shot Components Mono #1 Analog Inputs Gain Select Mono #1 Mono #2 One-Shot { Components Mono #2 MOTOROLA LINEAR/INTERFACE DEVICES 7-98 B Data 9 Ou'tput MC3470P, MC3470AP ABSOLUTE MAXIMUM RATINGS (TA; 25°C) Symbol Value Unit Power Supply Voltage (Pin 11) Rating VCCI 7.0 Vdc Power Supply Voltage (Pin 18) VCC2 16 Vdc Input Voltage (Pins 1 and 2) VI -0.2 to +7.0 Vdc Output Voltage (Pin 10) Vo -0.2 to +7.0 Vdc Operating Ambient Temperature TA o to +70 °c Tstg -65 to +150 °C TJ 150 °c Symbol Value Unit VCC VCCI + 4.75 to +5.25 VCC2 +10 to +14 Vdc TA o to +70 °c Storage Temperature Operating Junction Temperature Plastic Package RECOMMENDED OPERATING CONDITIONS Rating Power Supply Voltage Operating Ambient Temperature Range ELECTRICAL CHARACTERISTICS (TA; 0 to +70oC. VCCI ; 4.75 to 5.25 V. VCC2 Characteristic MC3470 MC3470A Differential Voltage Gain (f; 200 kHz. ViD = 5.0 mV(RMS) =10 to 14 V unless otherwise noted) Figure Symbol Min Typ Max Unit 2 AVD 80 100 100 110 130 130 V/V liB - -10 -25 p.A viCM -0.1 - 1.5 V viD - - 25 mVp-p voD 3.0 4.0 - Vp-p - 8.0 - mA lOS 2.8 4.0 - mA Small Signal Input Resistance (TA = 25°C) r; 100 250 - k!l Small Signal Output Resistance, Single-Ended ro - 15 - n 3 Input Bias Current Input Common Mode Range Linear Operation (5% maxTHD) Differential Input Voltage Linear Operation (5% maxTHD) Output Voltage Swing Differential 2 Output Source Current, Toggled 10 Output Sink Current, Pins 16 and 17 4 (TA = 25°C. VCCI ; 5.0 V. VCC2 = 12 V) Bandwidth. -3.0 dB (viD = 2.0 mV(RMS). TA; 25°C VCCI = 5.0 V. VCC2 ; 12 V) C~mmon Mode Rejection Ratio (TA = 25°C, f == 100kHz, AVD; 40 dB. Yin = 200 mVp-p. VCCI ; 5.0 V. VCC2 = 12 V) 2.17 BW 10 - - MHz 5 CMRR 50 - - dB VCCI Supply Rejection Ratio (TA; 25°C. VCC2 = 12 V. 4.75';; VCCI ..;; 5.25 V. AVD = 40 dB) - 50 - - dB VCC2 Supply Rejection Ratio (TA = 25°C. VCCI = 5.0 V. lOV';; VCC2';; 14 V. AVD; 40 dB) - 60 - - dB Differential Output Offset (TA = 25°C. viD; vin; 0 V) VDO 0.4 V VCO - - Common Mode Output Offset (viD; Yin = 0 V. 3.0 - V en - 15 - p.V(RMS) ICCI ICC2 - 40 4.8 - Differential and Common Mode) Differential Noise Voltage Referred to Input 22 (BW; 10 Hz to 1.0 MHz. TA = 25°C) Supply Currents (VCCI = 5.25 V. 51 to Pin 12 or Pin 13) (VCC2 = 14 V) 1 mA - MOTOROLA LINEAR/INTERFACE DEVICES 7-99 - II MC3470P, MC3470AP ELECTRICAL CHARACTERISTICS (continued) (TA = 0 to +70·C. VCC1 = 4.75 to 5.25 v. VCC2 = 10 to 14 V unless otherwise noted) Characteristic Typ ACTIVE DIFFERENTIATOR SECTION Differentiator Output Sink Current. Pins 12 and 13 (VOO=VCC11 Peak Shift (f = 250 kHz. viD = 1.0 VP-P. icap = 500 p.A. where PS = 112 tps 1-t pS2 x 100%. tpSl + tPS2 MC3470 VCC1 = 5.0 V. VCC2 = 12 V) MC3470A 6 100 7.8 PS Differentiator Output Resistance, Differential 1.4 - mA % roO - '..riD Differentiator Input Resistance, Differential 1.0 - 5.0 - 2.0 30 - kil 40 - il (TA = 25°C) DIGITAL SECTION II Output Voltage High logic level. Pin 10 (VCCl = 4.75 V. VCC2 = 12 V. IOH = -0.4 mAl 9 VOH 2.7 - - V Output Voltage low logic Level. Pin 10 (VCCl = 4.75 V. VCC2 = 12 V. IOl = 8.0 mAl 10 VOL - - 0.5 V - 20 ns 25 ns 4000 ns 115 % Output Rise Time. Pin 10 11.12 tTLH Output Fall Time. Pin 10 11.12 tTHL - Timing Range Mono #1 (tl A and tl al 13 tlA.a 500 Timing Accuracy Mono #1 (11 = 1.0 P.s = 0.625 R1Cl + 200 nsl (Rl = 6.4 kil. Cl = 200 pFI 12.13 Etl 85 Accuracy guaranteed for R1 in the range .' , 1.5 kil';;; Rl ,;;; 10 kil and Cl in the range 150pF';;; Cl';;; 680pF. Note: To minimize current transients, C1 should be kept as small as is convenient. Timing Range Mono #2 11. 12 12 150 - 1000 ns Timing Accuracy Mono #2 12.13 EtZ 85 - 115 % (t2 = 200 ns = 0.625 R2C21 (R2 = 1.6 kil. C2 = 200 pFI Accuracy guaranteed for 1.5 kil';;; R2';;; 10 kil. 100 pF';;; C2';;; 800 pF MOTOROLA LINEAR/INTERFACE DEVICES 7-100 MC3470P, MC3470AP MC3470 CIRCUIT SCHEMATIC Gain 16 Stage '--+--+--017 40------==------=----' 30---------~ 40 k 4k 1.33 k Active 15 k Differentiator and II 1.33 k 15 k 14o-~--~------_t======~====~----l Peak Detector 15O-~~---~~ 130-------+-... 12 O'--------+--~----__+ 6 9 10 Digital Section Q C~------------------~ '-------\a 0 MOTOROLA LINEAR/INTERFACE DEVICES 7-101 MC3470P, MC3470AP FIGURE 1 - POWER SUPPL V CURRENTS. ICCI AND ICC2 - 18 17 FIGURE 2 - VOLTAGE GAIN. BANDWIDTH. OUTPUT VOLTAGE SWING 18 VCC2 2 17 vo17 3 16 vo16 VCC2 vin N 51 ICC2 3 16 4 15 4 15 14 5 14 6 13 AV 13 6 51 200 pF 12 pF 8 11 9 10 • - pF ICC1 8 11 9 10 1.6 k 6.4 k 6.4 k vin VCC1 FIGURE 4 - AMPLIFIER OUTPUT SINK CURRENT. PINS 16 AND 17 FIGURE 3 - AMPLIFIER INPUT BIAS CURRENT. liB 18 18 A 17 2 17 16 3 16 3 4 15 4 15 5 14 5 14 6 13 13 6 2pOpF 12 12 11 9 vo16 - vo17 12 Vee1 1.6 k 8 = pF 10 8 11 9 10 1.6 k 1.6 k 6.4 k 6.4 k MOTOROLA LINEAR/INTERFACE DEVICES 7-102 MC3470P, MC3470AP FIGURE 5 - AMPLIFIER COMMON MODE REJECTION RATIO, CMRR FIGURE 6 - DIFFERENTIATOR OUTPUT SINK CURRENT, PINS 12 AND 13 18 VCC2 18 17 vo17 17 16 v o 16 16 15 4 CMRR = 20 10910 4 vo16 - v o 17 V CC2 15 100 vin 14 14 f=10QkHz 13 vin = 13 200 mVpp 200 pF 12 12 " Vee1 NOTE: Measurements " 200 pF 10 10 1.6 k 1.6 k 6.4 k 6.4 k may be made with vector voltmeter hp 8405A or equivalent at 1.0 MHz to guarantee 100 kHz performance. FIGURE 7 - PEAK SHIFT, PS FIGURE 8 - PEAK SHIFT, PS See Figure 8 for Output Waveform Yin = 1.0 Vpp f = 250 kHz Test schematic on Figure 7 18 VCC2 17 3 16 4 15 Vout 14 f = 250 kHz 13 iCAP V' - 1 ,,°-l' ~ 12 f---'Vv , k 11 vccl151 av pp IO JClt----+--,---:ps----".R '", =:Ii PS ~ =! 2 10 R2 1.6 k 2.4 k 5V MOTOROLA LINEAR/INTERFACE DEVICES 7-103 tpSl- tpS2 X 100% tpSl+tpS2 • • MC3470P, MC3470AP FIGURE 10 - DATA OUTPUT VOLTAGE LOW. PIN 10 FIGURE 9 - DATA OUTPUT VOLTAGE HIGH. PIN 10 18 2 17 3 16 4 15 5 14 6 13 VCC2 18 2 17 4 15 16 14 6 13 200 pF 200 pF 12 12 11 11 vee1 8 ~8mA 200 pF 200pF 10 9 f-f---<>--o Vout 10 f-f-------~DVout 9 ~400 IJ-A 1.6 k 1.6 k 6.4 k 6.4 k FIGURE 11 - DATA OUTPUT RISE TIME. tTLH DATA OUTPUT FALL TIME. tTHL FIGURE 12 - TIMING ACCURACY. Et1 AND Et2 DATA OUTPUT RISE AND FALL TIMES. tTLH AND tTHL TIMING ACCURACY MONO iKl. Et2 Vin shown on Figure 13 Vin is same as shown on Figure 13, test schematic on Figure 12 18 2.7V Vout Pin 10 ----+_ 17 2 I--- '2 -~H;-----1.5 V 0.5 V _ _ _--lei 3 16 4 15 14 - I--'THL 13 t2 E t 2 "" 200 ns X 100% e1 12 O"~I'F vin 1.0 k 11 8 51 Vee1 10 R2 1.6 k 2.4 k R1 6.4 k 5V MOTOROLA LINEAR/INTERFACE DEVICES 7-104 _ - MC3470P, MC3470AP FIGURE 13 - TIMING ACCURACY MONO #1. E t 1 < 10 ns f:=: 250 kHz 50% Duty Cycle tTLH = tTHL Test Schematic on Figure 12 0.4 V OV V out Pin 10 t1A EtTA = 1000 ns X 100% t1B EtTB = 1000 ns X 100% FIGURE 14 - AMPLIFIER OFFSET DECOUPLING IMPEDANCE. PINS 3 AND 4 Re + re and AV with R ext = 500 n Vin 18 2 R f=25QkHz 17 f------ Vin V outR =5 mV(RMS) • (0) 16 R ext 2.5 "F 4 15 5 14 6 13 AVO V out -2-=~ 200 pF 12 2 AVR - 1 Vee, 11 8 R ext (AVO) '.+ R.~ 200 pF 500 10 n ) V outo 2 ( V outR - 1 1.6 k 6.4 k FIGURE 15 - NORMALIZED POWER SUPPLY CURRENT (ICC/ICC 25°C) vo",us TEMPERATURE FIGURE 16 - NORMALIZED VOLTAGE GAIN (AV/AV 25°C) va,sus TEMPERATURE ~ ~ 1.04 => z ~ ~ ~ 1.00 ~~ -- - « 0.98 ;§ « '" 1.02 '"> t--- ....... ~ 1.00 '"z 0.98 ~ ;§ t--...... Z -;;. « 0.96 ;i 0.96 10 20 30 ............ '=' '"z ~ . . .v w ~ 1.0 2 ~ 1.04 ~ u 40 50 60 70 V --10 80 ...... ~ 30 20 40 50 60 TA. AMBIENT TEMPERATURE (DC) TA. AMBIENT TEMPERATURE (DC) MOTOROLA LINEAR/INTERFACE DEVICES 7-105 70 80 MC3470P, MC3470AP FIGURE 17 - PHASE AND NORMALIZED VOLTAGE GAIN ....... FREQUENCY 2: ;;: --- "" '"w S! 1.0 !3 O.9 N :; o~ II 2 4 , \' 2: ~ 0 ~ 0.8 '" ,. 1.04 Gain ....... I/" I""Ph... '" > ffi FIGURE 18 - NORMALIZED TIME DELAY t1 ..rsus TEMPERATURE 0.7 6 8 1 ~ 0.6 ~ '" ~ 1.02 ;:: ~ ~ 1.00 !-"" ~ g '"z 0.9 8 'f 0.9 6 200 kHz 1.0 MHz 10MHz 60 20 50 30 40 TA. AMBIENT TEMPERATURE (OCI 10 I. FREQUENCY FIGURE 20 - NORMALIZED VOLTAGE GAIN, AVR/AVR 2SOC FIGURE 19 - NORMALIZED OUTPUT PULSE WIDTH, t2/t2 2SoC " b See Figure 14 Switch Position R z 1.04 ;;: jO • '"~ '"> '"~ t; 1.00 " ~ :; r-- ~ 0.98 0.9 8 ~ '"z ~ 1.0 0 :; 5l N i 1.0 2 AVR = 2Vout (RI V" Rext = 500 n w ~ ~ 1.02 ~ 0.96 10 20 30 50 40 60 TA. AMBIENT TEMPERATURE (OCI 70 0.96 10 80 70 80 Krohn-Hita 18 Pin 3 or4 400 30 15w i 60 FIGURE 22 - DIFFERENTIAL NOISE VOLTAGE ~SeeFigure14 z ~ '"~ 50 500 w u ~ 40 30 20 TA. AMBIENT TEMPERATURE (OCI FIGURE 21 - EFFECTIVE EMITTER RESISTANCE DISTRIBUTION, PINS 3 AND 4 _ I 1.04 1= !50 kHz '" w ~o 80 70 > OW:: rw w ~ w w l;;/~- 2 17 3 16 Low Pass Filter with RMS 15 f2 = 1.0 MHz Voltmeter 3.3 k 0.01 /IF 3202 Filter 4 0 14 20 5.0 V ,} 100 6 13 200pF 12 10 20 60 50 TA. AMBIENT TEMPERATURE (OCI 30 40 70 6.4 k BO 8 11 9 10 t----- V CCI 200 pF 1.6 k NOTE: Assume uncorrelated noise sources en (differential noise at input) = 8 o J2/100 MOTOROLA LINEAR/INTERFACE DEVICES 7-106 hp 3400A MC3470P, MC3470AP APPLICATION INFORMATION The MC3470 is designed to accept a differential ac input from the magnetic head of a floppy disk drive and produce a digital output pulse that corresponds to each peak of the ac input. The gain stage amplifies the input waveform and applies it to a filter network (Figure 23a), filter must be greater than Zmin as calculated from Z . _ (EpAVD) max min 2.8 mA where Ep is the peak differential input voltage to the MC3470. FIGURE 238 - BLOCKING CAPACITORS USED TO ISOLATE THE DIFFERENTIATDR TRANSIENT RESPONSE The worst-case transient response of the read channel occurs when dc switching at the amplifier input causes its output to be toggled, The dc voltage changes are a consequence of diode switching that takes place when control is transferred from the write channel to the read channel. If the diode network is balanced, the dc change is a common mode input voltage to the amplifier. The switching of an unbalanced diode network creates a differential input voltage and a corresponding amplified swing in the outputs. The output swing will charge the blocking capacitor resulting in peak shifting in the digital output until the transient has decayed. EI iminating the differential dc changes at the amplifier input by matching the diode network or by coupling the read head to the amplifier via FET switches, as shown in Figure 23b, will minimize the filter transient response, 14 MC347Q Oifferentiator C' 15 enabling the active differentiator and time domain filter to produce the desi red output. FILTER CONSIDERATIONS The filter is used to reduce any high frequency noise present on the desired signal. Its characteristics are dic· tated by the floppy disk system parameters as well as the coupling requirements of the MC3470. The filter design parameters are affected by the read head characteristics, maximum and minimum slew rates, system tranyient response, system delay distortion, filter center frequency, and other system parameters. This design criteria varies between manufacturers; consequently, the filter con· figuration also varies, The coupling requirements of the MC3470 are a result of the output structure of the gain stage and the input structure of the differentiator, and must be adhered to regardless of the filter configuration. The differentiator has an internal biasing network on each input. Therefore, any dc voltage applied to these inputs will perturbate the bias level. Disturbing the bias level does not affect the waveform at the differentiator inputs, but it does cause peak shifting in the digital output (Pin 10). Since the output of the gain stage has an associ· ated dc voltage level, it, as well as any biasing introduced in the filter, must be isolated from the differentiator via series blocking capacitors. The transient response is minimized if the blocking capacitors C and C' are placed before the filter as shown in Figure 23a. The charging and discharging of C and C' is controlled by the filter termina· tion resistor instead of the high input impedance of the differentiator. The filter design must also include the current-sinking capacity of the amplifier output. The current source in the output structure (see circuit schematic - Pins 16 and 17) is guaranteed to'sink a current of 2.8 mAo If the current requirement of the filter exceeds 2.8 mA, the current source will saturate, the output waveform will be distorted, and inaccurate peak detection will occur in the differentiator. Therefore, the total impedance of the FIGURE 23b - FET SWITCHES USED TO COUPLE THE RIW HEAD TO THE MC347D Power 2N5460 ....--...--+----, ...----<1>---, R/W Head 2N5460 Write Two of the advantages F ET switches have over diode switching are: 1. They isolate the read channel from dc voltage changes in the system; therefore, the transient response of the filter does not influence the system transient response, 2. The low voltage drop across the FETs keeps the input signal below the amplifier's internal clamp voltage; whereas, the voltage dropped across a diode switching network adds a dc bias to the input signal which may exceed the clamp voltage, AMPLIFIER GAIN For some floppy systems, it may become necessary to either reduce the gain of the amplifier or reduce the Sae Application Note AN917 for further information, MOTOROLA LINEAR/INTERFACE DEVICES 7-107 .. MC3470P, MC3470AP signal at the input to avoid exceeding the output swing capability of the amplifier. The voltage gain of the ampli· fier can be reduced by putting a resistor in series with the capacitor between Pins 3 and 4 (Figure 14). The relationship between the gain and the external resistor is given by AVR = AVO· 2 (re + Re) crossing detection of the current waveform. Since the capacitor shifts the current 90 0 from the input voltage, the comparator performs peak detection of the input voltage. The following terms will be used in determining the value of C to be used in the differentiator: Ep 1), peak differential voltage applied to MC3470 amplifier input. Ep sin wt 1), voltage waveform applied to MC3470 amplifier input (for purposes of discussion, + Rext where AV61), voltage gain with the external resistor = 0, AVR 1), voltage gain with the external resistor in, Rext 1), the external resistor, and re + Re 1), the resistance looking into Pin 3 or Pin 4. assume a sine wave). AVO 1), differential voltage gain of input amplifier. Vin(t) fl differential voltage waveform applied to the differentiator inputs. Thus, = EpAvosin wt (Note: The filter is assumed to be lossless.) ic!t) fl current through capacitor CO. Ra 1), output resistance of 01 (02) at Pin 12 (13). AVO Rext = 2 ( - - 1) (re + Re). AVR A plot of (re + Re) versus temperature is shown in Figure 21. Figure 20 shows the normalized voltage gain versus temperature with the external resistor equal to 500 ohms. II If vin(t) = EpAVD sin wt, then the current through the capacitor CD is given by ic!t) = CDAVDEpwcoswt ACTIVE OIFFERENTlATOR The active differentiator in the MC3470 (simplified circuit shown in Figure 24), is implemented by coupling and Va(t) = 2RCCDAVDEpwcoswt. Accurate zero crossing detection of VO(t) [peak detection of vin(t)] occurs when the current waveform ic!t) crosses through zero in a minimum amount of time. This condition is satisfied by maximizing current slew rate. For a given value of w, the maximum slew rate occurs for the maximum value of ic or coswt = 1. Therefore, ic = CDAVD Epw FIGURE 24 - ACTIVE DIFFERENTIATOR NETWORK 12 The MC3470 current-sourcing capacity will determine the maximum value ic; therefore, CD must be chosen such that the maximum ic occurs at the maximum AVDEpw product. 1 mA Co = __-=ic:...m_a-:x__ (AVDEpw)max (120)(Epw)max 13 If the peak value specified for ic is exceeded, the current source (fO in Figure 24) will saturate and distort the waveform at Pins 12 and 13. Consequently, the differentiator will not accurately locate the peaks and peak shifting will occur in the digital output. The effective output resistance RO of 01 (02) will create a pole (as shown in Figure 25) at 1/2 ROCD. If this pole is ten times greater than the maximum operating frequency (wmaxl. the phase shift approaches 84 0 . Locating the pole at a frequency much greater than 10 wmax needlessly extends the noise bandwidth thus: the emitters of a differential amplifier with a capacitor reSUlting in a collector current that will be the derivative of the input voltage, 1= Cdv/dt If the output voltage is taken across a resistor through which the collector current is flowing, the resulting voltage will be the derivative of the input voltage. 2RO= Vo = 2Ric = 2RC dvin (t) dt Vo is applied to a comparator which will provide zero 1 CD 10 wmax If RO is not large enough to satisfy this condition, a series MOTOROLA LINEAR/INTERFACE DEVICES 7-108 MC3470P, MC3470AP Using this value for L gives: FIGURE 25 - RESPONSE OF OIFFERENTIATOR USING ONLY Co Solving for R gives: R = =-:c--'-o_ _ 5CD Wmax The total resistance (R) is the effective output resis· tance (RO) plus the resistor added in the differentiator (RD). Values of Ii from 0.3 to 1 produce satisfactory results. 1 wmax2R Co PEAK SHIFT CONSIDERATIONS Peak shift, resuiting from current imbalance in the differentiator, offset voltage in the comparator, etc., can be eliminated by nulling the current in the emitters of the differentiator with a potentiometer as shown in Figure 27. resistor can be added so that R = 2RO + RO = 1 Co 10 wmax To further reduce the noise bandwidth, a second pole can be added (as shown in Figure 26) by putting an FIGURE 27 - PEAK SHIFT COMPENSATION FIGURE 26 - COMPLETE RESPONSE OF OIFFERENTIATOR • The potentiometer across the differentiator components is adjusted until a symmetrical digital output cycle is obtained at Pin 10 for a sinusoidal input with the mini· mum anticipated Epw product. 1 wmax ..jLOCO inductor in series with the resistor and the capacitor. The values of Rand L are determined by choosing the center frequency (wo) and the damping ratio (0) to meet the systems requirements where DESIGN EQUATIONS FOR ONE·SHOTS As shown in Figure 28, the MC3470 input waveform may have distortion at zero crossing, which can result in false triggering of the digital output. The time domain filter in the MC3470 can be used to eliminate the distor· tion by properly setting the period (tl) of the one·shot timing elements on Pins 6 and 7. The following equation will optimize immunity to this signal distortion at zero crossing of the read head signal. The timing equation for the time domain filter's one· shot is: tl = R1C1Kl +To 1 wo=-- .jLcj) Wo= 10wmax =_1_ .jLcj) where CD is chosen for maximum ic as shown previously. Solving for L gives: where K1 = 0.625, To = 200 ns. Actual time will be within ± 15% of 11 due to variations in the MC3470. If t.T is the maximum period of distortion (see Figure L = ----'----:: 100 CD(Wmax)2 MOTOROLA LINEAR/INTERFACE DEVICES 7-109 • MC3470P, MC3470AP FIGURE 28 - WAVEFORMS THROUGH THE READ CIRCUIT Amplifier Input Signal Va (Differential Output Voltage r\ r--./ \ '"" \ (""\ ~ ---\--\J--F'¥-,'--\--\J----:f--='7',7-,--'--~ ~T ~ ~T i I I ; I I I I I I I I I I I I I I I I Comparator Output Output of One-Shot (t1) Time Domain Filter Ouput Digital Output 28), then choose t1 such that the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 29. LH CDl1=: 9f r~ :::!-® MOTOROLA LINEAR/INTERFACE DEVICES 7-117 Inhibit II MC3471P FIGURE 3 Head 9 AC TIMING DIAGRAM 20Vr----------------------------------------- Select ~:~~4-+='1 O.8V 20V eTII en 10% 10% • @ Vref (S.OVNom.) -1.65 V Nom. 1.0 V Nom:: ....::::~-"'-~;___-------1 ~:.!~ ~~It~:~n ~ _ _+-J_O.85 V Nom . intiibit---of-"\ 0.5 V FIGURE 4 - TYPICAL APPLICATION Head 1 Head o WG > - - - - - - - - - i WD>-------I IRWS >----1-+----1 --+--+........ Inhibit . . RD RD MOTOROLA LINEAR/INTERFACE DEVICES 7-118 MC3471P APPLICATION INFORMATION The MC3471 P serves as a complete interface between the Write Control functional signals (Head Select. Write Data. Write Gate and inner track compensation. IRWS) and the head itself. A typical configuration is shown in Figure 4. LE's are erase coils. Figure 7. Degauss Period shows the relationship between COG and Degauss Period for Rext ~ 10 kO. This period is equal to the exponential delay time for the voltage as mentioned plus internal delay times. FIGURE 6 - SIMPLIFIED DEGAUSS CIRCUIT WRITECURRENTSE~cnON VSS Although the MC3471 P has been specified for 3.0 mA write current (with a 10 kO external resistor). a range of write current values can be chosen by varying Rext using the plot in Figure 5. This current can also be derived using the relationship IWrite (mA) ~ __3_0_ Rext(kfl) to Internal Logic IRef, the current flowing in ReX! (required only for dissipation calculations) can be worst case using the fact that the differential voltage between Pins 1 and 2 (VRef) shown in Figure 3 never exceeds 5.0 volts. With a low value of Rext = 1.0 kil, Po = 25 mW. Pin 2 VP2 FIGURE 5 - ~ 0.7 V WRITE CURRENT versus R ext 0",,IRWS low 0 0 0 ~ """ FIGURE 7 - DEGAUSS PERIOD versus CAPACITANCE (COG) 100 0 f'... "- ..... 0 I""" 3 :: 2.0 1.0 2.0 3.0 / "'" 5.0 7.0 10 EXTERNAL SET RESISTOfl - Rext (kn) WRITE CURRENT DAMPING "" 20 0 0 0 Rext~ I 10kll i---- / / 100 o1/ o Referring to Figure 4. resistors RD are used to dampen any ringing that results from applying the relatively fast risetime write current pulse to the inductive head load. Values chosen will be a funciton of head characteristics and the desired damping. Rp serves as a common pullup resistor to the head supply VSB. 10 20 30 DEGAUSS PERIOD II'S) POWER-UP WRITE CURRENT CONTROL During power-up, under certain conditions (VBB comes up first while WG is low), there can be a write current transient on Pins 6 and 7 (R1W1 and R1W2) of sufficient magnitude to cause writing to occur if the head is loaded. This transient can be eliminated by placing a capacitor from Pin 2 to ground. This also delays the write current when WG goes low and this delay must be accounted for when the capacitor on Pin 2 is used. The delay is 3.0 IJ.S for a 2700 pF capacitor, and Rext = 10 kil. Values up to 7000 pF may be used. DEGAUSS PERIOD Degauss of the read/write head can be accomplished at the end of each write operation by attaching a capacitor from Pin 1 to ground. The time relationship that results is shown in Figure 7. A simplified diagram of this function is shown in Figure 6. While WG is low, the selected write current flows into Pin 6 or Pin 7 (R/W1 or R/W2) and is mirrored through the external resistor. Rext. The degauss capacitor. COG. will be charged to approximately 5.7 volts. After WG goes high. the voltage on COG begins to decay toward 0.7 V. When the voltage reaches the comparator threshold of 1.7 V. the comparator output triggers the internal logic to completely turn off the write current. At this point, the pulse amplitude on the R/WI and R/W2 pins has returned to 10% of its maximum value. / / / V ". ,r7lL-____ M_C_3_47_1_ _ _ __ 2700PF~ 5.0% I = See Application Note AN917 for further information. MOTOROLA LINEAR/INTERFACE DEVICES 7-119 II MC3471P ERASE DELAY • The MC3471P can be used with both straddle and tunnel erase heads. When using the tunnel erase heads, it is necessary to delay the erase current in time with respect to WG due to the physical placement of the erase gap behind the RIW gap on the heads. The amount of delay required depends upon the disk rotation velocity, recording density and format. Turn-on delay and turn-off delay must also be independent to guarantee erase is on for the entire block. Nominal delays of 500 p.s turn-on; and 1.0 ms turnoff are available by adjusting the value of Rl, R2 and Cl, C2 shown in Figure 4. These delays are adjustable over a broad range as shown in Figure 9 to achieve any practical delay required. By using 5% capacitors and 1% resistors, total timing accuracy is better than ± 15% over temperature and supply. Timing is shown in Figure 10. In applications using logic or microprocessor controlled delays, the 01 and 02 inputs can be used directly to turn-on and turn-off the erase current. (Controlling outputs should be Open-collector wll 0 k pullup). Figure 11 shows the relative timing involved for the microprocessor and logic controlled applications. In straddle erase systems, the erase delays can be eliminated by pulling 01 and 02 high thru a 10 kO pullup resistor to + 5.0 V. This gives the minimum value RE for worst case VOHI VOL conditions. It is also recommended that a diode be used as indicated for inductive back emf suppression. FIGURE 10 - DELAY INPUT FUNCTION/TIMING WITH RC ELEMENTS WG ~ ,'I--._ _ _ I ~ 01 . - - - Turn-On Delay 02 Turn-Off_ Delay E00r _(Erase) El FIGURE 11 - DELAY INPUT FUNCTION/TIMING WITH LOGIC CONTROL - FIGURE 9 - TYPICAL ~ TO ED, 1 DELAY versus RC 2,0 l.S I--- td ~ kRC ±O,09RC - 01 J' 1,2 ~ ./ k~ 1 V U 1.0 'l' D,S 02 1/ 0.63 VCC _ b~;~~on - 0.63 VCC V 0.2 Turn-Off_ Delay E00 r 0,2 !\ O.S 1.0 1.2 l.S 2.0 _(Erase)_ El - td 30kO<;;R<;;300kO ERASE CURRENT FIGURE 12 - ERASE CURRENT (RE Selection) The value of RE, the erase current set resistor, is found by referring to Figure 12 and selecting the desired erase current. looking at the simplified erase current path in Figure 12, when writing, CT0 will be high (VOH(min) = 22.5 V) and E0 will be low (VOl(max) = 0.6 V). If the erase coil resistance is 10 0 and 40 mA of erase current is desired then: VBB 19 +24V 17 RE E01--{>---JV'v"v----.----, Erase Coil MC3471 (RE + 100) x 40 mA RE = = (22.5 -0.6) V or 21.9 V _ 10 0 0.04 A = CT0r-~o-----------~----~ 537 0 IS Po = (537) (0.04)2 = 0.86 W MOTOROLA LINEAR/INTERFACE DEVICES 7-120 MC3471P FIGURE 13 - TYPICAL DUAL HEAD flOPPY DISK SYSTEM USING FET GATE READ CHANNEL SElECTION AND MC3471/MC3470A MC3470A r---------, : : --- 0: Digital f> Read Data 1 I I L ________ (out) JI Read Amp See Data Sheet r-------, " - - [ - - + - - - - - i' I I From I Head Select 1 logic : L _____ -..J Hl VBB +I RO I I I I Vce RO I I I l~_{ CTO CTl TrackComp EO TI 01 MC3471 02 Function Write 0 Write 1 Read 0 Read 1 CT. ell Ea, El VBB OV OV VBB OV VBB VBB QV On Off Off Off Off On Off Off Erase Delays MOTOROLA LINEAR/INTERFACE DEVICES 7-121 II MC3471P TEST FIGURES FIGURE 14 - CENTER TAP OUTPUT VOLTAGE (PINS 18 AND 20) 10k 20 19 CONDITIONS VT S1 S2 S3 VOH (PI8) On Off P 18 VOH (P20) On Off P20 VOL (PI8) Off On P 18 VOL (P20) Off On P 20 17 VT Sf %52 16 15 14 ~"""'v-...loomy,=:,1 OmA 9 Set Measure 18 30k 11 30 k V4' 2.0 2.0 0.8 2.0 2.0 0.8 0.8 0.8 0.8 2.0 2.0 2.0 0.8 0.8 2.0 10k 'Volts FIGURE 15 20 19 ERASE OUTPUT LOW VOLTAGE (PINS 15 AND 17) 12 V CONDITIONS 18 • V13' 0.8 Set Measure VT 2.0 V 12 V Sl VOL (PI5) P15 VOL (PI7) P17 I I I V13 0.8V 20 V 2.0 V NC 9 12 10 11 r_vv-......-o 4.75 V 30k 30k FIGURE 16 - TIMING TEST CIRCUIT 10k +5.0 V ±5% I! +24 V ±5% 1 0.1 ~F± ~ 14 01 100 Inhibit ~ AC Inputs 30 k 125 k 125 k 30k (01%) (0.1%) ~ Head Select (01%) r l' 8000pF (01%) EO E1 R/W2 11 12 02 01 240 2.0W 240 2.0W Write Gate S3oJ. 4000pF , 20 ~ -T ~~.± ±:~ 1, CT1 Write Data ~ IRW SelectR/WI 52 24 k 18 ~, CTO --0---. 1.2 k 51 24 k Vaa VCC 10 r ~F ~ ~ 19 VRef Gnd IRef 17 -:--l--- 27~ 15 7 2.0W '\/VIr- +24 V Lvv-..- +24 V 270 2.0 W 50 6 ~ 10k(0.1%) ~ 1 r ~ 3 • 16 50 Notes: 200 pF 1% Diodes Type 1N4934 Resistors (unless otherwise noted) are 1/4 W 5% Straddle Erase 51 and 54 Closed 52.53 Open Tunnel Erase 51 and 84 Open 52, 53 Closed MOTOROLA LINEAR/INTERFACE DEVICES 7-122 MC3480 Specifications and Applications Information DYNAMIC MEMORY CONTROLLER MEMORY CONTROLLER FOR 16 PIN 4K, 16K AND 64K DYNAMIC RAMs The memory controller chip is designed to greatly simplify the interface logic required to control the popular 16 pin multiplexed dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the micro· processor, the proper timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in conjunction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data. • Greatly Simplify the MPU·Dynamic Memory Interface • Reduce Package Count and System Access/Cycle Times 30% • Chip Enable for Expansion to Larger Word Capacity • Generate 1 of 4 RAS Signals for an Optimum 16K/64K Memory System • High Input Impedance for Minimum Loading of MPU Bus SCHOTTKY MONOLITHIC INTEGRATED CIRCUIT L SUFFIX CERAMIC PACKAGE CASE 623-05 N.-.". • Schottky TTL Technology for High Performance • Useful with 4K and 16K and Future Expanded Dynamic RAMs !; 24 1 P SUFFIX PLASTIC PACKAGE CASE 649-03 BLOCK DIAGRAM Signals To PIN CONNECTIONS MC3232A/ MC3242A Row Enable Refresh Enable Signals From MPU A12/14 A13/15 Address Decode MPU Interface And Memory Ref Clk Ref Grant RAn RAS2 RAS3 RAS4 Control Logic Refresh Logie Ref Request CAS Ce-~====:!..----I RIW MC------------------~ RIW ---------l-r-r-r-r-r-r.J MC t1 t2 t3 t4 t5 Several methods may be employed to generate the required time delay: 1. 2. 3. One shots High frequency counters High frequency shift registers 4. Delay lines 5. Signals from MPU Clock See Pin Descriptions MOTOROLA LINEAR/INTERFACE DEVICES 7-123 • MC3480 ABSOLUTE MAXIMUM RATINGS Rlting Symbol Vllue Unit VCC 7.0 Vdc Input Voltage VI -0.5 to +7.0 Vdc Output Voltage Vo -0.5 to +7.0 Vdc Operating Ambient Temperature Storage Temperature Operating Junction Temperature TA o to +70 Tsta -65 to +150 °c °c °c Power Supply Voltage TJ Ceram ic Package Plastic Package 175 150 Rating Power Supply Voltage Operating Ambient Temperature Range ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power supply and temperature ranges) Symbol Min Typ Max Unit I nput Voltage - Low Logic State VIL - O.B V Input Voltage - High Logic State VIH 2.0 Input Current - Low Logic State IlL - - IIH - Input Clamp Voltages (iIK=IBmA) VIK Output Voltage - Low Logic State (tOL = 24 rnA for RAS, CAS, and RIW) (tOL = B.O rnA for Row En, Ref En, MC, Ref Req) VOL Output Voltage - High Logic State VOH Characteristic (VIL - V -250 !lA - 40 100 !lA - - -1.5 V - - - - 0.5 0.5 3.0 2.4 2.4 - - - - - - 65 40 -10 - -55 =0.5 V) Input Current - High Logic State tvlH (VIH = 2.7 V) = 5.5V) V V (tOH = -1.0 rnA for RAS, CAS, and RIW)_ (tOH = -0.4 mA for Row En, Ref En, and MC) 10H = -0.2 rnA for Ref Req (Note: Ref Req output has internal 5.0 k resistive pullup to VeC'! Power Supply Current - During R/W or Refresh - During Idle ICC Output Shan-Circuit Current lOS (VOL = 0 V for Row En, Ref En, and MC) mA FIGURE 1 - TYPICAL tpT1 3 and4 (HIGH TO LOW) versus LOAD CAPACITANCE'- RAS, CAS and RIW 40 ~ ,. w >= > 20 to ~ ~ ~ VI-'" V VJ-- V tPT1. - ~ "z ">=« -- RAy 30 V V I-'"tPT3.4 f..-" f..-" " o o V CAS, RNi VCC = 5.0 Volts TA=25 0 C - 10 100 200 300 CL, LOAD CAPACITANCE IpF) 400 , 500 MOTOROLA LINEAR/INTERFACE DEVICES 7-124 rnA MC3480 SWITCHING CHARACTERISTICS (Unle •• otherwise noted, VCC ~ 5.0 V, TA ~ 25°C Characteristic Propagation Delay Times (Full AC Load - Min Typ Max tpLH(MC) tPHL(iIilC) tpTl - 7.0 9.0 26 21 26 22 30 26 42 50 32 46 30 14 17 40 35 45 45 42 40 58 65 48 55 27 43 to Row En (Refresh) '0 Row En (R,w) to Refresh En } '1 to Ref Req (Ref only) Note 1 'PT2 'PT3 'PT4 tpT5C tPT5R tPT5W tpT5ER tpT5E tpT5F 'pca 'PGS 18 16 17 16 22 19 30 30 25 22 10 20 'PTa 22 60 75 tsu(RC) tsu(A) tsu(R,w) tsu(CE) tsu(RG) 35 10 33 20 50 - - th(A) th(CEI th(R,w) th(MC) 15 0 0 30 - .- td(1-2) td.!1-4) td(2-3) td(3-5) 30 33 30 30 - - - - - - tWL(t) tWH(t) tW(MC) 'W(RG) 30 30 30 25 - - - - 17 ns Setup Times (Full AC Load - All Pins) Ref elk before Ref Grant A12, A13 before tl R /W I nput before t4 CE before t1 Ref Grant before t1 - ns Hold Times (Full AC Load - All Pins) A12, A13 after ,5 CE aftertl RIW after t4 Me Rising after t1 Rising Minimum Delay Times (Note 1 - Full AC Load t1 Low to High to t2 Low to High Unit ns MC to MC - Low to High MC to MC - High to Low tl toRAS t2 to Row En t3 to CAS t4 to R,w t5 to CAS toRAS to R,w Ref CI k to Ref Req Ref Grant to Row En to Ref En Symbol All Outputs) ns All Pins) t1 Low to High to t4 Low to High t2 Low to High to t3 Low to High t3 Low to High to t5 Low to High - ns Minimum Pulse Widths Low t1 through t5 High MC Ref Grant - Notes: 1. Ref. Req. has an internal 5.0 kf! pullup to Vee. if faster propagation delay is required (tPTO), then an external register can be added in parallel to the inter.lli!Lone to decrease the propagation delay. The value of resistance needed is a function of the capacitive loaded connection to Ref. Reg. The minimum value of R that can be used is 5.0 V/B.O rnA = 625 n, assuming there are no other dc loads connected to that pin. 2. If delays between t1-t5 are less than the minimum specified, the succeeding outputs may not switch. 3. All outputs can drive larger capacitive loads than those shown with a small decrease in speed. See Figure 1. AC LOADS (Note 3) RIW and CAS Out uts RAS Ou uts Me, Row En, Ref En, and Ref Req Outputs * Includes probe and jig capacitance. MOTOROLA LINEAR/INTERFACE DEVICES 7-125 • MC3480 Name RAS1 RAS2 RAS3 RAS4 CAS . . RM Out· Row Address Strqbe pins which connect to each of the dynamic RAMs to latch in row address on memory chips. Decoded to 1 of 4 during R/W cycle. All 4 go low during refresh cycle. 11 Column Address Strobe pin which connects to each dynamic RAM to latch in column address. 10 This pin signals the dynamic RAM whether the RAM is to be fead from or written into. 9 Ref En Ii RM In Function 16 15 14 13 Row En CE • PIN DESCRIPTION TABLE No. 22 7 A13(A15) A12(A14) 17 18 MC 23 Me 1 t1 t2 t3 t4 t5 2 3 4 5 6 Ref Clk 21 Ref Req 20 Ref Grant 19 Row Enable output which goes to the MC3232A (MC3242A). It signals the Address Multiplexer that the lower half (Row Addresses) or the upper half (Column Addresses) of the address lines are to be multiplexed into the dynamic RAM address inputs. A Logic 1 on this output indicates the Row Addresses, and a Logic 0 indicates Column Addresses. Refresh Enable output. A Logic 1 signals the Address Multiplexer that a refresh cycle is to be done, and a Logic 0 indicates that address multiplexing should be done. Chip Enable Input. A Logic 1 on this pin disables all chip functions, except that of Refresh and the MC output. CE must be low during tl low to high transition to initiate R/W cycle. Once tl is initiated, the cycle is independent of CEo The Read/Write input pin receives information from the M6800 MPU as to the direction of data exchange in the dynamic RAM. It transmits a Logic 0 to the R/W output for a Write Cycle and a Logic 1 for a Read Cycle. Upper Order Address lines from the M6800. These two inputs decode to four signals controlling the four RAS outputs. A14 and A15 apply to 16K RAMs. Memory Clock input from MC6875 clock or other signal source. The rising edge of MC must occur after the rising edge of t1 to avoid aborting the refresh cycle. When MC rises, it resets an internal flag that will terminate refresh at the end of the current cycle. Failure to reset the flag forces the 3480 to refresh every cycle thereafter. MC can be connected to t2 or t3 in noncritical applications. The buffered complement output of MC. It is a buffered output which may be used to drive the circuitry creating the time delays used on inputs t1 through t5. These pins use external timing inputs to sequentia1ly select the outputs to be enabled. They are positive~edge triggered inputs. Assuming a Read/Write cycle is to be executed, a positive edge on t1 forces a logic 0 on one of the four RAS outputs as determined by the A 12/14, A 13/15 inputs. After a delay, a positive edge on t2 causes Row En to go to a Logic 0, providing address-multiplexing information to the MC3232A or MC3242A. t3 enables the CAS output and it goes low. t4 enables the R/W output and it goes low, assuming the RIW input was low. t5 resets all the outputs to a Logic 1 (with the exception of MC, Ref En, and Ref Req). The inputs tl, t2, t3, and t5 are daisy-chained, so they must be sequentially driven to obtain the desired output signals. t4 can be driven at any time after tl. The 32 kHz (64 kHz) Refresh Clock signals this pin that another refresh cycle is required. It is a positive-edge triggered input, and upon triggering, the Ref Req pin goes to a Logic o. The Refresh Request output acts as an input to the MPU system, requesting a refresh cycle. This output has as kn pullup resistor to the VCC supply to allow wire-ORing if desired. Through the Refresh Grant input, the MC6875 initiates a refresh cycle. This input is positive~edge triggered and is enabled only after the Ref Req pin has gone low. This allows the MC3480 to discern between a Refresh Grant or a DMA Grant even though they appear on the same line. When employing both dynamic memory (refresh) and DMA in a microprocessor~based system with a combined Refresh/DMA Request control on the clock, provision must be made for holding off a DMA request during a refresh period (and visa versa). If this provision is not made, clock stretching (cycle stealing) will continue indefinitely and dynamic micrOprocessor data will be lost. The positive edge on Ref Grant causes Row En output to go low and Ref En output to go high. This signals the MC3232A (MC3242A) that a refresh address is required. The refresh cycle occurs with the succeeding pulses on t1 ~t5. A positive edge on t1 causes Ref Aeq to go high and all the RAS outputs to go low. A positive going edge on 12 causes no change in the outputs, since it controls the address multiplexing (Row En) during the AeadlWrite cycles. Th8~ is no output change when t3 and t4 go high because no CAS or RIW signal is needed during refresh. A positive edge ~n t5 resets the RAS and Row En to a Logic 1 state, and Ref En to a Logic 0 state, ready for the next Read/Write cycle. VCC Gnd 24 12 +5.0 V supply. A 0.1 /wlF capacitor is recommended to bypass pin 24 to ground. System Ground. *These outputs are designed to drive the highly capacitive inputs of multiple dynamic RAMs/(150 pF for RAS outputs, and 450 pF for CAS and RIW outputs). Consequently, these outputs have no short-circuit limit and must be handled accordingly. Good high capacitance load driving techniques usually include a 10 n or greater series damping resistor. It is highly recommended that this be done on RAS, CAS and R/W outputs of the MC3480. The effect of these series damping resistors on rise and fall times must be included in timing considerations. NOTE: All other outputs are LS/TTL totem-pole configuration unless otherwise noted. MOTOROLA LINEAR/INTERFACE DEVICES 7-126 MC3480 TIME DELAY INFORMATION TIMING REQUIREMENT CONSTRAINTS At1 Minimum is determined by MPU Address Delay (tAO), plus RAM Row Address Set-Up Time (tASR I, minus MC3480 Propagation Delay !tPT1). At2 - o6t1 Minimum is determined by RAM Row Address Hold Time (tRAH) minus the minimum MC3232A/3242A Row Enable to Output Delay !tOOM IN I. At3 - .6t2 Minimum is determined by RAM Column Address Set-Up Time (lASe minimum I plus maximum MC3232A/3242A Row Enable to Output Delay (t001MAXI. At4 - .6t3 No Minimum 4t5 - 4t3 Minimum is determined by RAM minimum CAS Pulse Width (teAS) or Access Time from CAS IteAC) plus Data Set-Up Time of MPU (tDSR). At5 - o6t4 Minimum is determined by the RAM minimum Write Pulse Width (twp). Note: Also required in computing time delays are the various delays incurred by the particular delay scheme used; i.e .• delays between 4 x fa. 2 x f o • and fa from the MC6875 which are used as inputs or the gate delays of the gates used in Figures 5A through 5C. TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU Note: Numbers in parenthesis indicate part types or values for 16K )( 1 RAMs Power-On Reset t c • I poOR R Xt, X2 a~ 1 Js MPU System Clock Cryst (4 x MPU MC6B75 - fo) MC ~ Ref Grant Raf Req Address Bus A12, A131A14, A15) 7 '" MC ~ ~ ~~ Refresh Enable ~ AO-A11 7IAO-AI3) Memory Control and Timing MC34BO Row Enable f---. "'7 Address Multiplex f-- Data Buffer MC6BBOA and ~ ~ RASi RAS2 Refresh Counter MC3232A IMC3242A) -OE ~ 32 kHz (64 kHz) Oscillator Ref Clk FiAS3 RAS4 CAS R/W Address Bus ----, ,{;'l 4K x8 MCM4027 (16K x B) IMCM66t6) r 00-05 100-06) ~0 4K x 8 116K x BI 1r ~0 4K x 8 (16K x B) ,{7 4K x 8 It6K x B) 1r lr MOTOROLA LINEAR/INTERFACE DEVICES 7-127 RE • C 1 Memory Array • Data Bus (Mem Delay Circuit V- Control Bus Clk) ~ ~ ~ MPU MC6BOO <1>2 Data Bus MC3480 FIGURE 2 - READ/WRITE TIMING CYCLE Ref elk Ref Grant A~ In~---t-------------t--------------------__~---t----~-----------l A12/A14 ~r+,,~rrT7~ (13) (15) Sys elk • AAS ---+---------.. CAS---t--------------------+-------, A/WOu' Row En ---t--------------------+--------------------t..~------_+~~~ ---t----------------------, AM En---t-----------------------------------------------------------l ~ = Don't care. NOTE 4: Although t1 and Ci are shown as don't care after their respective minimum hold times, t1 may rise again after the initial rising edge in a R/W cycle only if CE Is low. Bringing t1 high 8 second time during a cycle when ~ is high will improperly terminate the cycle. MOTOROLA LINEAR/INTERFACE DEVICES 7-128 MC3480 FIGURE 3 - REFRESH TIMING CYCLE I---------------Refresh Cycle----------------i RefClk ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~R ~~~~~~~~~~~~~~~~~~~~~~~~W -~----~------------------------+_-----------------------_i--------t_-- High Low --~----~------------------------------------------------_;--------t_- MOTOROLA LINEAR/INTERFACE DEVICES 7-129 Read MC3480 APPLICATIONS INFORMATION systems, the timing signals required can be directly obtained from those available from the microprocessor. In systems requiring high speed memory/microprocessor cycle times, timing input t-l·t5 can be obtained using delay lines or a range of techniques as shown in Figures 4 thru 8. It is only necessary to maintain the time delay relationships shown under time delay information. GENERAL DESCRIPTION The MC3480 uses five general timing inputs in place of a master clock with on·chip timing generation. This gives the system designer optimum flexibility in interfacing with the various microprocessor families and dynamic memories that are available. In simpler slow speed FIGURE 4 - UNIVERSAL TIME DELAY USING MC6875 READ/WRITE CYCLE • From MC6875 ~ MC ~ f---t1 1--4"- ,2 f--A'2 t3 I--A'3 ,4 1--4'4 t5 f--A'5 N :; MC3480 RAM r-.r-- Row En NOTE: t4 can be tied to t3 instead of 2f o • giving a longer write pulse width. RAM Address Inputs 'Iii '/j//~/ (AO-A6l \ r- A6-A11 ~ (A7-AI3l v--- Read RIW \ '- _____ J Write MOTOROLA LINEAR/INTERFACE DEVICES 7-130 MC3480 FIGURE 5 - ALTERNATE TIME DELAYS USING MC6875 (ReadlW,it. Cyel. Shown) 5A 4fo 2fo MC From MC6875 --"-' o ,1 ~ 0 N 0 ~ MC3480 RAM ,2 ,3 ,4 ,5 RAS Row En Gate MC7400 RAM A6- AT1 Address Inputs IA7 - A13) erAS , ---r--------------------------~--------+r------Aead R/W \' - _ _ _ J Write 58 4fo 2fo --- From MC6875 MC 000 ~N; RAS Row En MC3480 RAM -+------, Gates-MC7400 --+-----------------,. RAM Address Inputs CAS +6 V A6 - All IA7- A13) --+--------------------__ RIW Read \ ______ j Write MOTOROLA LINEAR/INTERFACE DEVICES 7-131 MC3480 FIGURE 5C - ALTERNATE TIME DELAYS USING MC6875 READIWRITE CYCLE 4fo 2fo MC I - From MC6875 ~ U 0 0 ;:Et;;; MC34BO ,'---t1 Llt1 Llt2 t3 Llt3 t4 Llt4 t5 Llt5 r-- RAS , NOTE: Me of MC3480 is delayed by two gate delays after 11 to r-- Row En satisfy Me after t1 Hold Time, th(MC)· RAM Address Inputs //,; WI//////X AO- A5 (AO- A6) A6 - A11 (A7 - A13) R/W r-'--- ,-- CAS I \ ~ • r--- t2 ____ J Read Write MOTOROLA LINEAR/INTERFACE DEVICES 7-132 MC3480 FIGURE 6 - ONE SHOT TIME DELAY METHOD +5 V Me I t1 ~ t2 ~ t3 ~ t4 ~ L MC3480 RAM Controller !.--- ~t1---, k----tlt2 t5 --' k-----~t3 r------~t4 V- l'---~t5 RAS II Row En II RAM Address Inputs 0 W'A AO - A5 A6-A11 ~ (A7 - A13) (AO AS) Memory Clock From MC6875 or Suitable Clock Signal Ii 1L VRead R/W \' - _ _ _ _ .J Write 2 MC9602s NOTE: t4 can be tied to t3 and the 4th 1-shot can be used elsewhere. MOTOROLA LINEAR/INTERFACE DEVICES 7-133 MC3480 FIGURE 7 - DELAY LINE TIME DELAY METHOD READ/WRITE CYCLE L tl--'~4tl~ t2 MC3480 RAM Controller II Row En --t--------"""'\ or Suitable Clock Signal RAM ,.--::-::-~;--'"\ Addres.'0 / /// AO - A5 Inputs /,'LLJ///,,'//.LJJ'//' (AO - A6) I"/,,...... CAS /1', r-t--t-::-::--:-::-:-'"\ A6 - Al1 (A7 - A13) r NOTE: t4 can be tied to t3 and the 4th delay element can be -+---------'"\ eliminated. R/W ---t-------------~-----tr-R •• d 1\..------' Write MOTOROLA LINEAR/INTERFACE DEVICES 7-134 MC3480 FIGURE 8 - DELAY LINE TIME DELAY IAL TERNATE METHOD) READIWRITE CYCLE MC "I " ----,2 - Memory Clock At1 ~ At2 t3 t5 RAM I'--- At4 ~ MC3480 Controller I'--- At3 ,4 From MC6875 or other Suitable Clock Signal I'--- I'--1,--- A,5 1,--1\ r-- Row En NOTE: Me of MC34BO is delayed by RAM Address Inputs 1;, ~/////& AO-A5 IAO-A6) A6- All IA'- A13) two gate delays after t1 to r- satisfy Me after t1 Hold Time, thIMC)· '-rRead R/W I \ _ _ _ _ _ _ ..J REFRESH CONSIDERATIONS The MC3480/MC3232A (MC3242A) memory control system can be used with either cycle steal or transparent refresh methods. Figure 9 shows one transparent tech· nique employing refresh during ",2 low in an M6800 microprocessor·based system. Using this technique requires that the memory be capable of completing a ReadlWrite Cycle and a Refresh Cycle sequentially during the M6800 cycle. The minimum cycle time at the time of printing for dynamic multiplexed RAMs is 320 ns, therefore limiting the microprocessor to 1.56 MHz operation. The D flip· flops of Figure 9 produce a trigger at the beginning of both ",1 and "'2. For a 1.~ MHz system, the tl-t5 inputs should be adjusted for the following delays: Write the four monostables. For the 1.0 MHz system, it would reql1ire either two 5 tap delay lines with 50 ns per tap or a 10 tap line with 50 ns/tap. For use with a 600 kHz system, a delay line Vo(ith 5 taps of 150 ns each could be used. For this case: RAS falls at 150 ns Row En falls at 300 ns CAS, RIW falls at 450 ns t5 rises at 750 ns Figure 10 shows typical refresh oscillator configurations for both 32 kHz(fREFmin for4K) and 64 kHz (fREFmin for 16K). In the case of transparent refresh, if the designer is not concerned with power consumption, the refresh oscillator may be eliminated and the Ref Clk input can· nected to the MC input yielding a refresh every "'1. For DMA operation combined with cycle stealing refresh, care must be taken not to allow a DMA request during a Refresh Request/Grant period and to hold off a refresh during a DMA operation. See comments under pin descriptions, Pin 19. RAS falls at 150 ns (triggered by tl) Row En falls at 250 ns (triggered by t2) CAS, RIW falls at 300 ns (triggered by t3) t5 rises at 500 ns. A delay line could be used to generate tl-t5 in place of MOTOROLA LINEAR/INTERFACE DEVICES 7-135 II MC3480 FIGURE 9 - EXAMPLE OF 2 LOW METHOO OF HIOOEN REFRESH USING MC3480 ANO 4K RAMS A12 A13 RIW CE MC u '8' ~ . ~ , . In ::> :; II A12 AAS 1 A13 RAS 2 A/W In RAS 3 CE MC3480 RAS 4 MC 1~ O, •• m" M_.,,,, CAS Ref Req r L------lf--.---i 0 S #1 c A Q CO L +5 V +5 V -;"C86;;-2 - -.., I I I *This inverter can be eliminated and the clock input of "0" Fllp·Flop #2 connected to Me on the MPU Bus. The Inverter Is used to provide minimum loading of the Me line when multiple connections are made to that line in a large svste~. +5 V MOTOROLA LINEAR/INTERFACE DEVICES 7-136 ® MC3481 MC3485 MOTOROI.A IBM 360/370 QUAD LINE DRIVER QUAD SINGLE-ENDED LINE DRIVER SILICON MONOLITHIC The MC3481 and MC3485 are quad single-ended line drivers specifically designed to meet the IBM 360/370 I/O specification (GA22-6974-3). Output levels are guaranteed over the full range of output load and fault conditions. Compliance with the IBM requirements for fault protection, flagging, and power up/power down protection for the bus make this an ideal line driver for party line operations. • Separate Enable and Fault Flags - • Common Enable and Fault Flag - • Power Up/Down Does Not Disturb Bus • Schottky Circuitry for High-Speed - INTEGRATED CIRCUIT L SUFFIX CERAMIC PACKAGE CASE 620-10 MC3481 MC3485 PNP Inputs • Internal Bootstraps for Faster Rise Times • Driver Output Current Foldback Protection • MC3485 has LS Totem Pole Driver Output P SUFFIX PLASTIC PACKAGE CASE 648-06 1 MC3485 COMMON ENABLE COMMON FAULT FLAG MC3481 DUAL ENABLE INDIVIDUAL FAULT FLAG Driver Output A ~ Fault Flag A Driver Output A Driver Output 0 Driver Output A Driver Output 0 Input A Driver Output 0 Fault Flag 0 Input A Enable AS Vee Input 0 ... Enable ABeD Fault Flag B '" InputC Driver Output B .... Fault Flag C '" Vee ... ~-+-H-+..J Input 0 Input 8 '" Fault Flag (Open Collector) Driver Output B a> Input C Driver Output B .... Driver Output C Enable CD Input B ~ .., Driver Output C TYPICAL APPLICATION 1/4 MC3481 or 1/4 MC3485 r-------, I I I 117 MC7512517 118 MC75128/9 Coaxial Cable r---" I : I I I L ______ j MOTOROLA LINEAR/INTERFACE DEVICES 7-137 Driver Output C II MC3481, MC3485 RECOMMENDED OPERATING CONDITIONS Symbol Min Typ Max Unit Power Supply Voltage Vee 4.5 5.0 5.95 Vdc High Level Output Current 10H - - -59.3 rnA Operating Ambient Temperature Range TA 0 - +70 °e Characteristic ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings Typical values measured at TA:: 25°C and Vee::: +5.0 V) MC3481 Symbol Min High-Level Input Voltage Note 2 VIH 2.0 Low-Level Input Voltage Note 2 Vil High-Level Input Current IIH Characteristic (Vee 0 4.5 V, VIH 0 2.7 V) - Input Enable (Vee 04.5 V, VIH 0 5.5 V) - Input Enable Low-Level Input Current - Typ MC3485 Max Min Typ - -- 2.0 - - 08 - Max 0.8 - Enable Input Clamp Voltage - - 20 40 100 200 - ._. - - - - V - - - - -250 -500 - - - - -250 -1000 - -1.5 - - -1.5 - 3.11 3.9 3.6 - 20 80 100 400 pA . _ . ~-- --- V Vie (Ile o -18 rnA) V pA IlL (Vee 05.95 V, Vil 00.4 V) . Input Unit - V High-Level Driver Output Voltage (Vee 0 4.5 V, VIH 0 2.0 V, 10H 0 -59.3 rnA) (Vee 05.25 V, VIH 0 2.0 V, 10H 0 -41 rnA) VOH(D) VOH(DS) 3.11 3.9 3.6 VOL(D) VOl(DS) - - +015 +0.15 - - - - - 10S(D) 10S(DS) - - - - - - -5.0 -5.0 - - -5.0 -5.0 10Rl IOR2 - - +100 +200 - - +100 +200 2.5 3.0 - - - V Low-Level Dnver Output Voltage (Vee 05.5 V, Vil 0 0.8 V, 10l 0 -240 pA) (Vee 05.95 V, Vil 0 0.8 V, 10l 0 -1.0 mAl +0.15 +0.15 Driver Output Short Circuit Current mA (Vee 05.5 V, VIH 0 2.0 V, VOg.o 0 V) (Vee 05.95 V, VIH 02.0 V, VOS 0 0 V) Driver Output Reverse Leakage Current (Vee 0 4.5 V, Vil 0 0 V, Vo 0 3 11 V) (Vee 0 0 V, Vil 00 V, Vo 0 3.11 V) High-Level Driver Output Voltage pA VOH(D) V (Vee 04.5 V, Vil 0 0.8 V, 10H 0 -400 MAl Low-Level Driver Output Voltage VOl(D) - - - - 0.5 V (Vee 04.5 V, VIH 0 2.0 V, 10l 0 +8.0 rnA) Driver Output Short Circuit Current (VCC'" 5.5 V, VOS::: 0 V, only one output shorted at a time) (VCC'" 5.95 V, VOS::: 0 V, only one output shorted at a time) High-Level Fault Flag Output Voltage mA IOS(5) - - - -15 10S(OS) - - - -15 - VOH(F) 2.5 3.0 - - - - V VOl(F) - - 0.5 - - 0.5 V 10S(F) -15 - -100 - - - 10S(i'S) -15 - -110 - - - 10H(F) - - - - leeH leeHS - 50 70 80 - 55 leel leelS - 35 55 70 - 35 -60 -100 -110 (Vee 0 4.5 V, 10H 0 -400 pAl Low-Level Fault Flag Output Voltage (Vee 0 4.5 V, VIH 0 2.0 V, 10l 0 +8.0 rnA, Driver Output shorted to Ground rnA Fault Flag Output Short Circuit Current (Vee 05.5 V, VOS 0 0 V, only one output shorted at a time) (Vee 05.95 V, Vos 0 0 V, only one output shorted at a time) High-Level Fault Flag Output Current - +100 pA (Vee 05.95 V, VOH 0 5.95 V) High-Level Power Supply Current rnA (Vee 05.5 V, VIH 0 2.0 V, no output loading) (Vee 05.95 V, VIH 0 2.0 V, no output loading) - - 75 85 Low-Level Power Supply Current rnA (Vee 05.5 V, Vil 0 0.8 V, no output loading) (Vee 05.95 V, Vil 0 0.8 V, no output loading) - MOTOROLA LINEAR/INTERFACE DEVICES 7-138 - - 55 70 MC3481, MC3485 MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating Symbol Value Unit VCC +7.0 V Input Voltage VI 10 V Driver Output Voltage Vo 5.5 V PD mW 1/R8JA 1150 962 7.7 mW/oC TA o to +70 °c TJ +175 +150 °c Tstg -65 to +150 °c Power Supply Voltage Power Dissipation (Package limitation) Derate Above TA Ceramic Package Plastic Package =25°C Operating Ambient Temperature Range Junction Temperature Ceramic Package Plastic Package Storage Temperature Range SWITCHING CHARACTERISTICS (See Note 1 Unless otherwise noted, these specifications apply over recommended temperature range. 110 Driver characteristics are guaranteed for Vee = 5.0 V ±1 0% and Select-Out Driver characteris~cs are guaranteed forVCC= 5.25 to 5.95 V. Typical values measured at TA ::: 25°C and Vee::: 5.0 V. See Tables 1 and 2, Figures 1 and 2 for load conditions.) Characteristics Symbol Min Typ Max Propagation Delay Time ns High-to-Low-Level, Driver Output As I/O Driver As Select~Out Driver Low·to-High·Level, Driver Output As 1/ 0 Driver As Select-Out Driver High-to-Low-Level. Driver Output As 1/ 0 Driver As Select-Out Driver Low~to-High-Level, Driver Output As 110 Driver As Select-Out Driver High-to-Low-Level, Fault Flag - MC3481 As 110 Driver As Select-Out Driver Low-to-High-Level, Fault Flag - MC3481 As 110 Driver As Select-Out Driver Ratio of Propagation Delay Times As 1/0 Driver Note 1. Reference IBM Unit specification'GA22~6974-3 tpHL(D) tpHL(DS) - 18 19 - tPLH(D) tpLH(DS) - 20 21 - tPHL(D) tPHL(DS) - 25 26 - tPLH(D) tpLH(DS) - 25 26 - tpHL(F) tPHL(FS) - 45 47 - tPLH(F) tpLH(FS) - 40 42 - tPLH(D) tPHL(D) - 1.0 - - - for test terminology. 2. The fault protection circuitry of the MC3481/85 requires relatively clean input voltage waveforms for current operation. Noise pulses which enter the threshold region (0.8 to 2.0 V) may cause the output to enter the fault protect mode. To exit the protect mode, it is necessary to gate an input of the effected driver to the low logic state. MOTOROLA LINEAR/INTERFACE DEVICES 7-139 II MC3481, MC3485 FIGURE 1 - MC3481 AC TEST CIRCUIT AND WAVEFORMS VIH = 3.0 V \ - . . - -.....- - '.......----------t-<> =!= .. Load Capacitance shown includes Input Amplitude Fault Flag Output CL ~ 15 pF* Fixture and Probe Capacitance :j: Input tTLH ~6 ns 'S;6 ns Input tTHL ~6 ns S;6 ns 50 90 Load Resistance (RLl See Table 2 tTLH tTHL 4.0V-----90% Input 1.3 V OV-----JI 90% PW. 10% 1.3 V 10% tpLH(D) tPLH(DS) tpLH(D) tPLH(DS) Normal Operation Driver Output 0.5 V tpHL(DS)-+---~ 1------1- tpLH(D) tPHL(D) tpLHiDS; Driver Output Driver ] MOTOROLA LINEAR/INTERFACE DEVICES 7-141 Select-Out VOH Short Circuit Operation ® MC3486 MOTOROLA QUAD EIA-422/423 LINE RECEIVER Motorola's Quad EIA-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include: • Four Independent Receiver Chains fI • Three-State Outputs • High Impedance Output Control Inputs (PIA Compatible) QUAD EIA-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS SILICON MONOLITHIC INTEGRATED CIRCUIT L SUFFIX CERAMIC PACKAGE CASE 620-10 D SUFFIX • Internal Hysteresis -30 mV (Typ)@ZeroVoltsCommon Mode PLASTIC PACKAGE CASE 7518-03 SO-16 • Fast Propagation Times -25 ns (Typ) • TTL Compatible • Single 5.0 V Supply Voltage • DS 3486 Provides Second Source PSUFFIX PLASTIC PACKAGE CASE 648-06 PIN CONNECTIONS RECEIVER CHAIN BLOCK DIAGRAM o iffarentlsl Inputs Three-State Control Input Output Inputs A Inputs Output A 3-5tate Control A/C B OutPut B 3-5t8t_ 12 Control BID OutPut C Inputs C Inputs o ORDERING INFORMATION I DEVICE TEMPERATURE RANGE o to +70o C MC3486L o to +70u C MC3486P MOTOROLA LINEAR/INTERFACE DEVICES 7-142 I PACKAGE Ceramic DIP Plastic DIP MC3486 ABSOLUTE MAXIMUM RATINGS Rating Power Supply Voltage Input Common Mode Voltage Input Differential Voltage Three-State Control Input Voltage Output Sink Current Symbol Value Unit VCC VICM VIO VI 8.0 ±15 Vdc Vdc Vdc Vdc rnA 10 T stg Storage Temperature Operating Junction Temperature ±25 8.0 50 -65 to +150 TJ °c uc +175 +150 Ceramic Package Plastic Package RECOMMENDED OPERATING CONDITIONS Rating Power Supply Voltage Operating Ambient Temperature Input Common Mode Voltage Range Input Differential Voltage Range Symbol Value Unit VCC TA 4.75 to 5.25 o to +70 Vdc VICR VIOR -7.0 to +7.0 6.0 Vdc Vdc °c ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for TA = 25°C. VCC = 5.0 V and VIK = a V. See Note 1 ) Characteristic Min Typ VIH 2.0 - - V Input Voltage - Low Logic State (Three-State Control) VIL - - 0.8 V - - 0.2 -0.2 - - -3.25 -1.50 +1.50 +3.25 Differential Input Threshold Voltage, Note 2 (-7.0 V '" VIC'" 7.0 V, VIH = 2.0 V) (10 = -0.4 mA. VOH " 2.7 V) (10 = 8.0 mA, VOL" 0.5 V) VTH(O) Input Bias Current (VCC = 0 V or 5.25) (Other Inputs at 0 V) (VI = -10 V) (VI = -3.0 V) (VI = +3.0 V) (VI = +10 V) IIB(O) Input Balance and Output Level (-7.0 V '" VIC'" 7.0 V. VIH = 2.0 V. Note 3) (10 = - 0.4 rnA. VIO = 0.4 V) (10 = 8.0 rnA. VIO = -0.4 V) Output Third State Leakage Current (VI(O) = + 3.0 V, VIL = 0.8 V. VOL (VI(O) = -3.0 V, VIL = 0.8 V. VOH Output Short-Circuit Current (VI(O) = 3.0 V, VIH = 2.0 V. Vo 10Z = 0.5 V) = 2.7 V) = 0 V, Unit V mA - -- 2.7 - V VOH VOL - - lOS - - 0.5 - -40 pA - -100 rnA - - -100 pA - 20 100 -1.5 V 85 rnA -15 40 Note 4) Input Current - Low Logic State (Three-State Control) (VIL = 0.5 V) IlL Input Current - High Logic State (Three-State Control) (VIH = 2.7 V) (VIH = 5.25 V) IIH Input Clamp Diode Voltage (Three-State Control) (11K = -10 mAl VIK - - ICC - - - Power Supply Current (VIL = 2.0 V) NOTES: 1. 2. 3. 4. Max Symbol Input Voltage - High Logic State (Three-State Control) p,A All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case. Refer to EIA-422/3 for exact conditions. Input balance and guaranteed output levels are done simultaneously for worst case. Only one output at a time should be shorted. MOTOROLA LINEAR/INTERFACE DEVICES 7-143 II MC3486 SWITCHING CHARACTERISTICS (Unl ... otherwise noted VCC = S.O V end TA = 2So C.1 Characteristic Propagation Delay Time - Dlffa,.ntlal Inputs to OutPUt (Output High to Lowl (Output Low to Highl Propagation Delav time - Three·Stata Control to Output (Output Low to Third Statal (Output High to Third Statel (Output Third State to Hlghl (Output Third State to Lowl Symbol Typ Min - tPHL(DI tpLH(DI Max - - Unit ns 35 30 n. - - tPLZ tPHZ tpZH tpZL - 35 35 30 30 FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS Propagation Oelay Differential Input to Output To Scope (Output) To Scope (Input) Inputs VOH -----hr-----, VOLOutput and Stray OV----------- Capacitance) +1.5 V I"put Pulse Characteristics tTLH = tTHL = 6.0 n. (10% to 90%) PRR = 1.0 MHz, 50" Dutv Cycl. +2.0 V FIGURE 2 - PROPAGATION DELAY THREE·STATE CONTROL INPUT TO OUTPUT To Scope Input Pulse Characteristics tTLH = tTHL = 6.0 n. (10% to 90%) PRR = 1.0 MHz, 50% Duty Cycle (Input) 3-State To Scope (Output) Pulse Generator +1.5 V for tpHZ and tpZH -1.5 V for tpLZ and tpZL Differential SW1 2.0 k +5.0 V >--+----~----~--~--~~wv--~~~ All Diodes 1N916 or Inputs CL = 15 pF (Includes Probe and Stray Capacitance) oV 1.6V -., I lSW2 Ein SW1 Closed tpLZ SW2 Closed "'1.3V~ 1.5 VI SW1 Closed v::- ~:::;- .Eout OUtput VOL -= 3.0V 1.6V - - Equivalent 5.0 k tpHZ 3'0v~tPLZ Input I 0.5 V A:l1.3 V=-=-=--_ _ _ _ _ _ 0 V ---l-;p--;;---OV tpZL 3.0 V Input 3'OV~ 1.6 V 1.6 V SW1 Open Input OV~--SW2Closad tpZH "'5.0 V _ VBE VOH 1.5V Output OV--- 1.5 V OV-- _--=='- r- ~ SW1 Closec:t SW20pen tpZL ~ VOL _ _ _ _ _ _ - - O V MOTOROLA LINEAR/INTERFACE DEVICES 7-144 ® MOTOROLA MC3487 QUAD EIA-422 LINE DRIVER WITH THREE-STATE OUTPUTS QUAD LINE DRIVER WITH THREE-STATE OUTPUTS SILICON MONOLITHIC INTEGRATED CIRCUIT Motorola's Quad EIA-422 Driver features four independent driver chains which comply with EIA Standards for the Electrical Characteristics of Balanced Voltage Digital Interface Circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down. A summary of MC3487 features include: L SUFFIX CERAMIC PACKAGE CASE 620-10 DSUFFIX PLASTIC PACKAGE CASE 751 8-03 SO-16 • Four Independent Driver Chains • Three-State Outputs • PNP High Impedance Inputs (PIA Compatible) • Fast Propagation Times (Typ 15 ns) II P SUFFIX • TTL Compatible • Single 5 V Supply Voltage • Output Rise and Fall Times Less Than 20 ns PLASTIC PACKAGE CASE 648-06 • DS 3487 Provides Second Source PIN CONNECTIONS Input A Outputs DRIVER BLOCK DIAGRAM 16 Vee 1 A{~ " Input 0 ::} Outputs 0 AlB Control 4 12 C/O Control Outputs B {: Input B ::} Outputs C 7 • Gnd 8 Input Input C Outputs TRUTH TABLE Inverting Inverting Output Input Non-Inverting Output H H H L L H L H L Z Z Control Input X L = Low Logic State MOTOROLA LINEAR/INTERFACE DEVICES 7-145 H ~ X = Irrelevant Z ~ High Logic State Third-5tate (High Impedance) • MC3487 ABSOLUTE MAXIMUM RATINGS Rlth" Power Supply Voltage Symbol Value Unit VCC 8.0 Vdc Input Voltage VI 5.5 Vdc Operating Ambient Temperature Range TA o to +70 °c Operating Junction Temperature Range TJ DC Ceramic Package Plas~ic Package 175 150 Storage Temperature Range °c -65 to +150 T stg ELECTRICAL CHARACTERISTICS IUnless otherwise noted specifications apply 4.75 V" VCC" 5.25 V and OOC" T A" 700 C. Typical values measured at Ch.racteristic Low Logic State Vee = 5.0 V, and TA = 2SoC.) Symbol Min Typ VIL - - Input Voltage - High Logic State VIH 2.0 Input Current Low Logic State IlL - Input Current - High Logic State IIH - +50 +100 VIK - -1.5 V Output Voltage - Low Logic State IIOL =48 mAl VOL - - 0.5 V Output Voltage - High Logic State IIOH = -20 mAl VOH 2.5 - .- V lOS -40 - -140 - - - ,100 ,,00 Input Voltage Max 0.8 Unit Vdc - - Vdc - -400 "A IVIL = 0.5 V} IVIH = 2.7 V} IVIH = 5.5 V} Input Clamp Voltage 111K=-18 rnA} Output Short-Circuit Current (VIH = "A mA 2.0 V, Note I) Output Leakage Current - Hi-Z State (VIL = 0.5 V, VILlZ) = 0.8 V} (VIH = 2.7 V, VIL(Z) = 0.8 V} 10LIZ} Output Leakage Current - Power OFF 10L(off} (VOH = 6.0 V, VCC =0 V) (VOL = ~.25V, VCC = 0 V) "A "A - Outpul Offset Voltage Difference (Note 2) Output Differential Voltage (Note 2) Output Differential Voltage Difference (Note 2) Vas-Vas - - VOD 2.0 IAVODI - +100 -100 ±0.4 V - V ±0.4 V Power Supply Cu rrent (Control Pins (Control Pins = = mA Gnd, Note 3) 2.0 V) ICCX ICC - - 105 85 Notes: 1, Only one output may be shorted at a time. 2. See EIA Specification EIA-422 for exact test conditions. 3. Circuit in three-state condition. SWITCHING CHARACTERISTICSIVCC = 5 0 V TA = 25 0 C unless otherwise noted} Characteristic Symbol Min Typ Max - - 20 20 Unit ns Propagation Delay Times High to Low Output Low to High Output tpHL tPLH - - - - ns Output Transition Times - Differential High to Low Output tTHL tTLH Low to High Output - - - - - - - - 20 20 ns Propagation Delay - Control to Output (RL = 200 n, CL = 50 pF) (RL = 200 n, CL = 50 pF) (RL = 00, CL = 50 pF) (-RL = 200 n, CL = 50 pF) tPHZ(E} tp'LZ(E} tpZH(E} tPZL(E} MOTOROLA LINEAR/INTERFACE DEVICES 7-146 - 25 25 30 30 MC3487 FIGURE 1 - THREE-IITATE ENABLE TEST CIRCUIT AND WAVEFORMS 3,0 V or Gnd To Scope (I nput) To Scope Output Input Inv Output Pulse generator characteristics Zo;; 50 Open for tPZH(E) Test Onlv n ~.5V PRR" 1.0 MHz Non-Inv Output 50% Duty CYcle 200 l~~ tTLH, tTHL.e;;;; 5 ns n Pulse 50 Generator 1 N3064 pF or Equivalent 1.0 k ~ Jig Capacitance -----,-------3.o V Control Input / Input -0 tPLZIE) Output \ Output VOH - 1.5 V '------VOL -1,. ----------+--+----------0 V "';',5 V tPZHIE)- ~""'5ii ~-------- VOH 5V Output 0.5 V / ==========~--------OV VOL OV FIGURE 2 - PROPAGATION DELAY TIMES INPUT TO OUTPUT WAVEFORMS AND TEST CIRCUIT Scope (Output) Scope 5.0 V Inv Output (Input) 1/4 MC3487 Pulse Generator 51 Non-Inv Output 1N914or Equivalent Pulse generator characteristics 2 0 ;; 50 n PRR"" 1.0 MHz Control 3.0V 50% Duty Cycle CL includes probe tTLH. tTHL ~ 5 ns 3.0 V i,.5 V tpZLIE)- ~~ Test Only -------~'_+-------------o tPHZIEI 0.5 V tpzU'E) r------- Control Output Open for 1 CL Includes Probe and , - - - - - - - . , . - - - - 3.0 V and jig capacitance Input '----OV Output VOL ----+--+------+--+--- 0V Output VOL ----------------------- 0 V MOTOROLA LINEAR/INTERFACE DEVICES 7-147 .. II MC3487 FIGURE 3 - OUTPUT TRANSITION TIMES TEST CIRCUIT AND WAVEFORMS Scope Input Input RL = 10D.(l r--\-3.0V ~:~::t ~ (Diffe,ential) Lov TeL 3.0 V -= CL includes probe and jig capacitance Pu Isa generator characteristics Zo;; 50 n PRR == 1.0 MHz 50% Duty Cycle tTLH. tTHL" 5 ns FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOL TAGE FIGURE 5 - OUTPUT SINK CURRENT versus OUTPUT VOL TAGE 80 80 "~ 70 ".5 ~ .5 60 7LrCC'~25V (Typical) 50 t'<~ 40 ::> 30 ~ 20 0 I o I 1.0 i:l "z ;;; '\ \, \ \ \ TA' 25°C 10 o ~ VCC' 5.0V- ./ vcc' ~.75V_ i'-."'\ :9 ::> ...u ...~ I \.\ L, 2.0 3.0 ~ ..:. E 70 VOH. OUTPUT VOLTAGE (VOLTSI TA:= 25°C (Typical) / 40 V 30 20 10 I - - - r-/ 100 / 200 / 300 400 500 600 VOL. OUTPUT VOLTAGE-LOW (mVI MOTOROLA LINEAR/INTERFACE DEVICES 7-148 I--- I 50 o o 4.0 I VCC·5.0V 60 700 800 ® MC3488A MOTOROLA DUAL EIA-423/EIA-232C DRIVER DUAL EIA-423/EIA-232C LINE DRIVER The MC3488A dual single-ended line driver has been designed to satisfy the requirements of EIA standards EIA-423 and EIA-232C. as well as CCITT X.26. X.28 and Federal Standard FIDS1030. It is suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 ohms. Output slew rates are adjustable from 1.0 JLs to 100 JLS by a single external resistor. Output level and slew rate are insensitive to power supply variations. Input undershoot diodes limittransients below ground and output current limiting is provided in both output states. The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility. • PNP Buffered Inputs to Minimize Input Loading • Short Circuit Protection SILICON MONOLITHIC INTEGRATED CIRCUIT 8 8. ~ 1 8~ • Adjustable Slew Rate Limiting P1SUFFIX PLASTIC PACKAGE CASE 626-05 1 D SUFFIX PLASTIC PACKAGE CAS~~_~1.02 U SUFFIX CERAMIC PACKAGE CASE 693-02 1 • MC3488A Equivalent to 9636A • Output Levels and Slew Rates are Insensitive to Power Supply Voltages PIN CONNECTIONS • No External Blocking Diode Required for VEE Supply Wave Shape • Second Source JLA9636A Input A Input B Gnd TYPICAL APPLICATION Wave Shape Control 4- MC3488A Driver TTL Logic MC3486 Th ree-State Receiver RS-423 Interface ~ i ~ MOTOROLA LINEAR/INTERFACE DEVICES 7-149 • II MC3488A ABSOLUTE MAXIMUM RATINGS (Note 1) Rating Symbol Value Unit VCC VEE +15 -15 V Output Current Source Sink 10+ 10- +150 -150 Power Supply Voltages mA o to Operating Ambient Temperature TA Junction Temperature Range Ceramic Package Plastic Paqkage TJ Storage Temperature Range Tsta ·C + 70 ·C 175 150 ·C -65 to +150 RECOMMENDED OPERATING CONDITIONS Characteristic Symbol Min Typ Max Unit VCC VEE 10.8 -13.2 12 -12 13.2 -10.8 V Power Supply Voltages Operating Temperature Range Wave Shaping Resistor TA 0 25 70 ·C RWS 10 - 1000 kll TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended operating conditions) Symbol Min Typ Max Unit Input Voltage - Low Logic State VIL - - 0.8 V Input Voltage - High Logic State VIH 2.0 - Input Current - Low Logic State (VIL = 0.4 V) IlL -80 - - pA Characteristic Input Current - High Logic State (VIH = 2.4 V) (VIH = 5.5 V) V p.A IIH1 IIH2 Input Clamp Diode Voltage (11K = -15 mAl VIK Output Voltage - Low Logic State (RL = 00) EIA-423 (RL = 3.0 kll) EIA-232C (RL = 450 ll) EIA-423 VOL Output Voltage - High Logic State (RL = 00) EIA-423 (RL = 3.0 kll) EIA-232C (RL = 450 ll) EIA-423 VOH -1.5 5.0 5.0 4.0 RO Output Short-Circuit Current (Note 2) (Vin = Vout = 0 V) (Vin = VIH(Min), Vout = 0 V) 10 100 - -5.0 -5.0 -4.0 - V V -6.0 -6.0 -6.0 Output Resistance (RL" 450 ll) - - - - V - 6.0 6.0 6.0 25 50 II mA 10SH 10SL -150 +15 - -15 +150 Output Leakage Current (Note 3) (VCC = VEE = 0 V, - 6.0 V '" Va '" 6.0 V) lox -100 - 100 p.A Power Supply Currents (RW = 100 kll, RL = 00, VIL '" Vin '" VIH) ICC lEE - +18 mA -18 - - .. Note 1: DeviceS should not be operated at these values. The "Electrical Characteristics" proVide conditions for actual deVice operation . 2: One output shorted at a time. 3: No Vee diode required. MOTOROLA LINEAR/INTERFACE DEVICES 7-150 MC3488A TRANSITION TIMES (Unless otherwise noted, CL = 30 pF, f = 1.0 kHz, VCC = -VEE = 12.0 V ± 10%, TA = 25'C, RL = 450 O. Transition times measured 10% to 90% and 90% to 10%) Characteristic Symbol Transition Time, Low-to-High State Output (RW = 10 kG) (RW = 100 kn) (RW = 500kn) (RW = 1000 kO) tTLH Transition Time, High-to-Low State Output (RW = 10 kn) (RW = 100 kO) (RW = 500 kG) (RW = 1000 kn) tTHL Min Typ Max !'S - 0.8 8.0 40 80 1.4 14 70 140 - !'S - 0.8 8.0 40 80 Unit 1.4 14 70 140 - FIGURE 1 - TEST CIRCUIT AND WAVEFORMS FOR TRANSInON TIMES To Scope (Input) To Scope (Output) VCC RL Pulse Generator CL (Includes Probe and J i9 Capacitance) RWS f=1.0kHz Pw = 5OO!'S = 3.0 V Input OV VOH OV Output VOL VEE f"" Note: Input Rise and Fall Times ~""""- / ~~Jt~ ?f ,..-~- MOTOROLA LINEAR/INTERFACE DEVICES 7~151 ""' • • MC3488A FIGURE 2 - OUTPUT TRANSISTION TIMES versus WAVE SHAPE RESISTOR VALUE FIGURE 3 - INPUT/OUTPUT CHARACTERISTICS versus TEMPERATURE 1000 6.0 U) 4.0 ~ ~ L ~ eL '"~ g 30 pF ~ -2.0 t - t-}-4.0 t - - !3 t---- -6.0 t - 1.0 0.1 1.0 10 100 ooe 25°e 700 e TA 2.0 ~ ~ Vee = 12 V VEE = -12 V RWS = 100 k!l RL = 4500 I I 100r 1.0 Vin, INPUT VOLTAGE (VOLTSI TRANSITION TIMES, trLHItrHL (p.S1 2.0 FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE POWER-ON 50 1 40 I 30 Vin = !z 20 10 ~ 0 ~ ::::> -20 5-10 ::::> 0.08 VIH(~inl 1= 1 0.04 TA=1 25oe I ~ 0.02 Vee = 12V VEE = -12 V Rws = 100 k!l acc -0.020 !3 - 0.04 o 1 I J ~-3O I ..9_40 ~ I J I ~-O.06 I Vin - OV -0.08 I -50 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 VOUI, OUTPUT VOLTAGE (VOLTSI Vee = VEE = Vin = 0 V TA = 25°e (No diode required al VEE Pin.1 0.06 /I I II POWER-OFF 0.10 6.0 8.0 10 -0.10 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 VOU1, OUTPUT VOLTAGE (VOLTSI FIGURE 5 - SUPPLY CURRENT versus TEMPERATURE I 12.0 10.0 8.0 !z 6.0 ~ 4.0 2.0 ~ 0 ~ -2.0 ~ -4.0 11-6.0 -8.0 -10.0 -12.0 Vin 1 ~ OV, V:n = V:H I RISE/FALL TIME versus 1== t-- ICC I r-- 12 V Vee 12 V VEE CL = 30pF I I TA = 0°C,7ooC Rws lIP" ~ 00 OV 25"<: ~ lEE ~ 142' Vin I VIH 10 10 V TA Vin 8.0 100 I Vee - 12 V VEE = -12V Rws = 100 kll, RL = a FIGURE 6 - 6.0 20 30 40 50 50 TAo AMBIENT TEMPERATURE ("<:1 ~ 1~ 10 k 50 100 k RWS, WAVE SHAPING RESISTANCE (Ill MOTOROLA LINEAR/INTERFACE DEVICES 7-152 1M ® MC6875 MC6875A MOTOROLA Specifications and Applications Information M6800 TWO·PHASE CLOCK GENERATOR/DRIVER M6800 CLOCK GENERATOR SCHOTTKY MONOLITHIC INTEGRATED CIRCUIT Intended to supply the non-overlapping tf>1 and tf>2 clock signals required by the microprocessor, this clock generator is compatible with 1.0, 1.5, and 2.0 MHz versions of the MC6800. Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion. Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are requ ired. IfIIIIIIIIIfffJ 16 ~'1V{{lnJ ~ ~ ~ • Typical MPU System with Bus Extenders L SUFFIX CERAMIC PACKAGE CASE 620·10 GND +5V c:::J 4 x fo MPU ~ PIN CONNECTIONS ADDRESS AND CONTROL BUS DATA BUS X1 vee X2 MPU0/>1 Ext In Reset Output 4 x fa MPU 0/>2 Power-On Re,et 2 x fo Memory Ready DMA/Raf Roq Ground Memory Clock ORDERING INFORMATION Device Temperature Rang. MC6875L o to +700 C MC6875AL I -55 to +1250 C MOTOROLA LINEAR/INTERFACE DEVICES 7·153 OMA/Aef Grant BustP2 Peck... Ceramic I DIP • MC6875, MC6875A ABSOLUTE MAXIMUM RATINGS (Unless otherwise noted T A Rating = 250 e.) Symbol Value Unit Vee +7.0 Vdc Input Voltage VI +5.5 Vdc Operating Ambient Temperature Range Me6875L Me6875AL TA o to +70 Power Supply Voltage °e ·55 to +125 Storage Temperature Range NOTE: T stg -65 to +150 °e TJ 175 °e Operation of the MC6875Al over the full military temperature range (to maximum TA) will result in excessive operating junction temperature. Operating Junction Temperature The use ofa clipon 16 pin heatsinksimilartoMVID Engineering, Inc., Model 5007 (RoCA = 18"eIW) is recommended above TA "" 95"C. RECOMMENDED OPERATING CONDITIONS (Contact AAVID Engineering, Inc. 130 Cook Court Rating >Laconia, New Hampshire 03246 ,'reI. (603) 524·4443 Power Supply Voltage Operating Ambient Temperature Range ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power supply and temperature ranges. Typical values measured at Vee = 50 V and T A - 25 0e ) Symbol Min TVp VOHM VOHMK Vee - 0.6 - VOHB VOHBK 2.4 4 x fo Output (Vee = 4.75 V, VIH = 2.0 V, IOH4X = -500 ~A) 2 ~ fa, OMA/Refresh Grant and Memory Clock Outputs (Vee = 4.75 V, IOH = -500 ~A) VOH4X VOH Reset Output Characteristic Max Unit Output Voltage - High Logic State MPU 4>1 and ",2 Outputs (Vee = 4.75 V, IOHM = -200 ~A) (Vee = 5.25 V, IOHMK = +5.0 mAl V , - - Vce+ 1 .O V Bus (/J2 Output (Vee = 4.75 V, IOHB = -10 mAl (Vee = 5.25 V, IOHBK = +5.0 mAl (Vee = 4.75 = 3.3 V, VIH V, IOHR - - - Vee+ 1.0 2.4 2.4 - - V VOHR 2.4 - - V VOLM VOLMK - - 0.4 -1.0 VOLB VOLBK .- - 0.5 -1.0 VOL4X VOL - - 0.5 0.5 V 0.5 V - V = -100 MA) Output Voltage - Low Logic State MPU "'1 and ",2 Outputs (Vee = 4.75 V, IOLM = +200 ~A) (Vee = 4.75 V, IOLMK = -5.0 mAl V Bus ¢2 Output V (Vee = 4.75 V, IOLB = +48 mAl (Vee = 4.75 V, IOLBK = -5.0 mAl 4 x fo Output (Vee = 4.75 V, VIL = 0.8 V, IOL4X = 16 mA) 2 x fa, OMA/Aefresh Grant and Memory Clock Outputs (Vee = 4.75 V, IOL = 16 mAl V Reset Output (Vee - - VOLR = 4.75 V, VIL = 0.8 V, IOLR = 3.2 mAl Input Voltage - High Logic State Ext. In, Memory Ready and DMA/Refresh Request Inputs VIH 2.0 - - Input Voltage - Low Logic State Ext. In, Memory Ready and OMA/Refresh Request Inputs VIL - - 0.8 VILH VIHL - 2.8 3.6 0.8 1.4 - VIK - - -1.0 -1.5 V IIH - - 25 MA IIHR - - 50 MA IlL - - -250 MA IILR - - -250 ~A V V I nput Thresholds Power-On Reset Input (See Figure 2) Output Low to High Output High to Low Input Clamp Voltage (Vee = 4.75 V, lie = -5.0 mA) V Me6875L Me6875AL Input Current - High Logic State Ext. In, Memory Ready and OMA/Refresh Request Inputs (Vee = 4.75 V, VIH = 5.0 V) V, VIHR = 5.0 V) Power-On Reset (Vee = 5.0 Input Current - Low Logic State Ext. In, Memory Ready and OMA/Refresh Request Inputs (Vee = 5.25 Power..()n (Vee V, VIL = 0.5 V) R.set Input' = 5.25 V, VIL = 0.5 V) MOTOROLA LINEAR/INTERFACE DEVICES 7·154 MC6875, MC6875A OPERATING DYNAMIC POWER SUPPLY CURRENT Characteristic Symbol Min Typ Max Unit ICCN - - 150 mA ICCMR - - 135 mA ICCDR - - 135 mA Power Supply Currents (VCC = 5.25 V, lose = 8.0 MHz, VIL = 0 V, VIH = 3.0 V) Normal Operation (Memory Ready and DMA/Reiresh Request I nputs at High Logic State) Memory Ready Stretch Operation (Memory Ready Input at Low Logic State; DMA/Reiresh Request Input at High Logic State) DMA/Refresh Request Stretch Operation (Memory Ready Input at High Logic State; DMA/Refresh Request Input at Low Logic State) SWITCHING CHARACTERISTICS (These specifications apply whether the Internal Oscillator (see Figure 9) or an External Oscillator is used (see Figure 10). Typical values measured at Vee::: 5.0 V, T A ::: 25°C, fa "" 1.0 MHz (see Figure 8), Symbol Min Typ Max Unit Output Period (F igure 3) Pulse Width (Figure 3) (10 = 1.0 MHz) (10 = 1.5 MHz) (to = 2.0 MHz) to tpWM 500 - - ns ns 400 230 180 - - Total Up Time (Figure 3) (to = 1.0 MHz) (10 = 1.5 MHz) (10 = 2.0 MHz) tUPM 900 600 440 - - Characteristic MPU <1>1 AND <1>2 CHARACTERISTICS ns - Delay Time Referenced to Output Complement (Figure 3) Output High to Low State (Clock Overlap at 1.0 V) tPLHM 0 - - ns Delay Times Referenced to 2 x fa (Figure 4 MPU r/J2 only) Output Low to High Logic State Output High to Low Logic State tpLHM2X tPHLM2X - - - 85 70 ns ns - - 25 25 n. ns Transition Times (Figure 3) Output Low to High Logic State Output High to Low Logic State tTLHM tTHLM - - BUS <1>2 CHARACTERISTICS Pulse Width - Low Logic State (Figure 4) (10 = 1.0 MHz) (10 = 1.5 MHz) (to = 2.0 MHz) ns tPWLB Pulse Width - High Logic State (to = 1.0 MHz) (10 = 1.5 MHz) (10 = 2.0 MHz) 430 280 210 - - 450 295 235 - - - 480 ' 320 240 - - ns tpWHB Delay Times - (Referenced to MPU <1>1) (Figure 4) Output Low to High Logic State (10 = 1.0 MHz) (fo = 1.5 MHz) (to = 2.0 MHz) Output High to Low Logic State (CL = 300 pF) (CL = 100 pF) ns tpLHBMl tpHLBMl Delay Times (Referenced to MPU ¢2) (Figure 4) Output Low to High Logic State Output High to Low Logic State Transition Times (Figure 4) Output Low to High Logic State Output High to Low Logic State - - - - 25 - 20 tpLHBM2 tPHLBM2 -30 0 - +25 +40 ns ns tTLHB tTHLB - - 20 20 ns ns MOTOROLA LINEAR/INTERFACE DEVICES 7-155 - • MC6875, MC6875A SWITCHING CHARACTERISTICS (continued) Characteristic Symbol Min Delay Times (Referenced to MPU <1>2) (Figure 4) Output Low to High Logic State Output High to Low Logic State tPLHCM tPHLCM -50 0 Delay Times (Referenced to 2 x fa) (Figure 4) Output Low to High Logic State Output High to Low Logic State tPLHC2X tpHLC2X - - - tTLHC tTHLC tpLH2X tpHL2X Typ Max Unit MEMORY CLOCK CHARACTERISTICS Transition Times (Figure 4) Output Low to High State Output High to Low State - +25 +40 ns ns - 65 85 ns ns - - 25 25 ns ns - - 50 65 ns ns 365 220 - - - 2 x fo CHARACTERISTICS Delay Times (Referenced to 4 x fa) (Figure 4) Output Low to High Logic State Output High to Low Logic State Delay Time (Referenced to MPU <1>1) (Figure 4) Output High to Low Logic State ns tPHL2XMl (fa ~ 1.0 MHz) (fa ~ 1.5 MHz) - Transition Times (Figure 4) - tTLH2X tTHL2X - - tPLH4X tpHL4X - - - - tTLH4X tTHL4X - - tSMRL tSMRH 55 75 - tHMRL 25 25 ns ns 50 30 ns ns 25 25 ns ns - - ns ns 10 - - ns tSDRL tSDRH 65 75 - - ns ns tHDRL 10 - - ns Output Low to High Logic State Output High to Low Logic State tpLHG tpHLG -15 -25 - +25 +15 ns ns Transition Times (Figure 6) Output Low to High Logic State Output High to Low Logic State tTLHG tTHLG - - - - 25 25 ns ns - - - 1000 250 ns ns - - 100 50 ns ns Output Low to High Logic State Output High to Low Logic State 4 x fo CHARACTERISTICS Delay Times (Referenced to Ext. In) (Figure 4) Output Low to High Logic State Output High to Low Logic State Transition Time (Figure 4) Output Low to High Logic State Output High to· Low Logic State - MEMORY READY CHARACTERISTICS Set·Up Times (Figure 5) Low Input Logic State High Input Logic State Hold Time (Figure 5) Low Input Logic State DMA/REFRESH REQUEST CHARACTERISTICS Set·Up Times (Figure 6) Low Input Logic State High Input Logic State Hold Time (Figure 6) Low I nput Logic State DMAlREFRESH GRANT CHARACTERISTICS Delay Time Referenced to Memory Clock (Figure 6) RESET CHARACTERISTICS Delay Time Referenced to Power-On Reset (Figure 7) Output Low to High Logic State Output High to Low Logic State tPLHR tPHLR Transition Times (Figure 7) Output Low to High Logic State Output High to Low Logic State tTLHR tTHLR - - DESCRIPTION OF PIN FUNCTIONS • 4 x fa • 2 x fo - A t .... runnin!! oscilllltOr at four limal the MPU clock reta uteful for a system sync lignal. - A free running osclllator.t two timet the MPU clock rite. - An IJyne!lranoul input ulllKi to freeze the MPU clocks In the !tit high, 1/12 low Stllte for dynamic memory refresh or cycle 5tNi DMA {Direct Memory Access}. • REF GRANT - A synchronous output used to I)'nchronize the refresh or DMA operation to the MPU. • MEMORY READY - An asynchronous input used to freazu the MPU clocks inthe91 low. 1/12 high state for slow memoryin1Brf\lC1l. • MPU.1 - Capeble of driving the 411 and 1/12 inputs on two MC680Os. MPUI/I2 • DMA/REF REO - An output nominallv in phne with MPU 412 having MC8T26A type drive capability. BUS4I2 MEMORY CLOCK - At1 outpU1 nominally in phase with MPU 412 whicll free run5 during ~ refresh request cycle. POWER-ON RESET A Schmitt trigger input which controls Reset. A capaCitor to grouod is required to set the desired time constant. Inter ....1 50 k resistor to Vee- Sse General Design Su\llltitions for Manual Reset Operation. - An output 10 the MPU and IlOdevices. • RESET - Provision to attach a wries re50nanl crywtal or RC network. • Xl,X2 - Allows driving by an external nL signal to synchronize the MPU to an external system. • EXT IN • • • MOTOROLA LINEAR/INTERFACE DEVICES 7-156 MC6875, MC6875A FIGURE 1 - BLOCK DIAGRAM x, X2 In BUS (/)2 '6-=-1'----_+-__--1 Memo'y Reody 0-:- II OM A-I-R-ef-,e-,-h 10'°_1+-_-+__--1 D 0, -------1>-1----1 R~u~ S r Vee 50 k Reset (14) Outputo-.------~ Pin 16 -- +5.0 Volts Pin 8 FIGURE 2 - TYPICAL HYSTERESIS CHARACTERISTIC OF RESET FUNCTION f-- Vee 0 S.O - Gnd FIGURE 3 - TIMING DIAGRAM FOR MPU 1 3.of--+--+--ll--+--+-++--+--+--+--i ~ t PLHM o ~ 2.0 . ---i--i---1f--j--jf--.-r--r--+--+--j "i:;.1 Vee - 0.6 V e- MPU 1>2 ~ o f: --! '.0 V 0.8 V 1.0 DOL---'---,.L0,----'----1,."'"0--"--"'3Lo---'---4.L:---'----;'S.O 0 Vav = 1.0 V = Clock Overlap measurement point VI. INPUT VOLTAGE (VOLTS!. POWER ON RESET PIN MOTOROLA LINEAR/INTERFACE DEVICES 7-157 MC6875, MC6875A FIGURE 4 - TIMING DIAGRAM FOR NON·STRETCHED OPERATION (Memory Ready and DMA/Refresh Request held high continuously) Ext. In Input Voltage: 0 V to 3.0 V, f =8.0 MHz, Duty Cycle = 50%, tTLHEX = tTHLEX = 5.0 ns • OMA/AefreSh_G_'O_n_t_ _ _ _ _ _!:.:L:.:O_w:.:I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ MOTOROLA LINEAR/INTERFACE DEVICES 7-158 MC6875, MC6875A FIGURE 5 - TIMING DIAGRAM FOR MEMORY READY STRETCH OPERATION (Minimum Stretch Shown) Input Volt_: 3.0 to 0 V. tTHLMR ='TLHMR =5.0 ns Memory Readv 0.8 V ~ DMA/Aefresh Request Irrelevent • MPU 1 DMA/Refresh Grant (Low) MOTOROLA LINEAR/INTERFACE DEVICES 7-159 MC6875, MC6875A FIGURE 6 - TIMING DIAGRAM FOR DMA/REFRESH REQUEST STRETCH OPERATION (Minimum Stretch·Shown) Input Voltage: 3.0 to 0 V, tTHLDR = tTLHDR = 5.0 ns Memory Ready • ~ -+----tPwDMA Irrelevant Vee 1.5 = 10----+--2- DMA/Refresh Grant 0.8 V 0.8 V MOTOROLA LINEAR/INTERFACE DEVICES 7-160 MC6875. MC6875A FIGURE 7 - POWER ON RESET Input Voltage: 0 to 5.0 V. f = 100 kHz - Puis. Width = 1.0!J.S. tTLH - tTHL 25 ns S tTLH 5.0 V ------+----'fr----------------___. POwer-On Reset OV _ _ _ _- J 0.8 V 0.8 V FIGURE 8 - LOAO CIRCUITS For MPU q,l and MPU q,2 For Bus $2 +5.0 V +5.0 V RLL RLL= 18 k 68 RO RLH 20 k RLH 240 All diodes are 1 N916 or equivalent All diodes are 1 N916 or equivalent MPU <1>1 CL = 35 pF. RO = 20 n MPU2CL=70pF.RO=15n For 4 )( fo, 2 x fa. Memory Clock and DMA/Refresh Grant CLO 100pF I For Reset Output +5.0 Volts +5.0 V RLL=240 RLL = 1.2 k To ~~~putf4--"""--1r--1'III1-~ RLH RLH=24k 4.7 k All diodes are 1N916 or equivalent • Load capacitance includes fixture and probe capacitance MOTOROLA LINEAR/INTERFACE DEVICES 7-161 All diodes are 1 N916 or equ ivalent • • MC6875, MC6875A APPLICATIONS INFORMATION FIGURE 9 - TYPICAL RC FREQUENCY versus VOLTAGE +8.0 ~ w +6.0 v V '"z V « ~ +4.0 / G z 1+ 2.0 ./ ./ .--- ~ -2.0 4.5 fo~1.0MHz _ @VCC·5.0V TA ~25'C - /'" "1 I 5.5 6.0 Vcc, SUPPLY VOLTAGE (VOLTS) 5.0 r--f--- 6.5 7.0 FIGURE 10 - TYPICAL RC FREQUENCY versus TEMPERATURE / +1.0 1/ / it +0.8 / w '"Z~ / +0.6 1/ >- / ~ +0.4 / o ~ +0.2 / fo~1.0MHz ./ :r V ./ ./ -0.2 10 20 f---- I I I V -10 _ ~ :sc2~~i;0 V_ f - - 30 40 50 60 TA, TEMPERATURE ('1:) 70 80 90 FIGURE 11 - TYPICAL FREQUENCY versus RESISTANCE FOR C VARIABLE 100 100 ~ i"-..... 80 "'- I'-. I'-. ""-... "10 I " "-~ """' "'- "'- "'- "'- I I I I I GENERAL The MC6875 Clock Generator/Driver should be located on the same board and within two inches of the MC6800 MPU. Series damping resistors of 10-30 ohms may be utilized between the MC6875 and the MC6800 on the \'>1 and \,>2 clocks to suppress overshoot and reflections. The VCC pin (pin 16) of the MC6875 should be bypassed to the ground pin (pin 8) at the package with a 0.1 p.F capacitor. Because of the high peak currents associated with driving highly capacitive loads, an adequately large ground strip to pin 8 should be used on the MC6875. Grounds should be carefully routed to minimize coupling of noise to the sensitive oscillator inputs. Unnecessary grounds or ground planes should be avoided near pin 2 or the frequency determining components. These components should be located as near as possible to the respective pins of the MC6875. Stray capacitance near pin 2 or the crystal, can affect the frequency. The can of the crystal should not be grounded. The ground side of the crystal or the C of the R-C oscillator should be connected as directly as possible to pin 8. Unused inputs should be connected to VCC or ground. Memory Ready, DMA/Refresh Request and Power-On Reset should be connected to VCC when not used. The External Input should be connected to ground when not used. OSCILLATOR A tank circuit tuned to the desired crystal frequency connected between terminals X 1 and X2 as shown in Figure 12, is recommended to prevent the oscillator from starting at other than the desired frequency. The 1kn resistor reduces the Q sufficiently to maintain stable crystal control. Crystal manufacturers may recommend a capacitance (CL) to be used in series with the crystal for optimum performance at series resonance. See Figures 9 and 10 for typical oscillator temperature and V CC supply dependence for RoC operation. FIGURE 12 - OSCILLATOR-CRYSTAL OPERATION NOTE: RC Operation not recommended above 4Xfo ·1.0MHz , - (1) ~--.....--..------'1 Xl "'- "'- ......... "'- " '\. i R 5k 4k i 3k 10 1k l----I 7'f= (Trim) • CL C:=J XTAL i~ lk 7 1 __- -__--~--~ X2 oiL' "- MC6875 (2) TA'150C - "'-....""- ~ i'.. '\ ~ "'-~ ~"\ r'\. '\ 1\ ""- l'.." " CT VC~'510V- "- I or 8 9 10 • Required by some Crystal manufacturers 4 x fo, FREQUENCY (MHz) MOTOROLA LINEAR/INTERFACE DEVICES 7-162 (3) Ext In _ - 4 X fo:: Crystal frequency 4X fo~\ _ _ l __ 2'nJLTCT 2.5 I'H " LT " 22 I'H 75 pF " CT " 200 pF AT ~ lkrl MC6875, MC6875A TABLE 1 - OSCILLATOR COMPONENTS TANK CIRCUIT PARAMETERS CTS KNIGHTS 400 REIMANN AVE. SANDWICH,ll 60548 (8151 786·8411 APPROXIMATE CRYSTAL PARAMETERS IT #H CT RS C. Cl f. pF Ohms pF mpF MHz 10 150 15·75 3-6 12 4.0 MP.Q4A 82 8-45 4·7 23 8.0 MP.()80 ·47 pF Inductors may be obtained from: Collcraft, Cary, I L 60013 RC OPERATION (1),-----, EXTERNAL INPUT (1) , - - - - - - , X2 I-=- MC687S C Open (21 131 Ext In MC687S 131 Ext In 51 External Pulse Generator To precisely time a crystal to desired frequency, a variable trimmer capacitor in the range of 7 to 40 pF would typically be used. Note it is not a recommended practice to tune the crystal with a parallel load capaci· tance. The table above shows typical values for CT and LT, typical crystal characteristics, and manufacturers' part numbers for 4.0 and 8.0 megahertz operation. The MC6875 will function as an R-C oscillator when connected as shown in Figure 13. The desired output frequency (M + 0.2 V Diff. < - 0.2 V Diff. Z X H H X L VCC DRlin DR10ut DR10ut DR EN DR2 Out DR2 Out L Z This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 7-164 1 VCC DRlin DR10ut DR10ut DR2 EN 'DR2 Out DR2 Out DR21n RECI In+ REClOut DRI EN REC2 Out 5 REC2In+ 6 REC2In- 7 GND MC34051 MC34050, MC34051 ABSOLUTE MAXIMUM RATINGS Parameter Value Units Power Supply Voltage (VCe! 7.0 Vdc Input Common Mode Voltage (Receivers) ",25 Vdc Input Differential Voltage (Receivers) ",25 Vdc Output Sink Current (Receivers) 50 mA Enable Input Voltage (Drivers and Receivers) 5.5 Vdc Input Voltage (Drivers) 5.5 Vdc Applied Output Voltage (3-State mode) - Receivers -1.0 to + 7.0 Vdc Applied Output Voltage (3-State mode) - Drivers -1.0 to +7.0 Vdc Junction Temperature -65 to +150 Storage Temperature -65to +150 'c 'C Devices should not be operated at these values. The "Recommended Operatmg limits" provide for actual device operation. RECOMMENDED OPERATING LIMITS Min Typ Max Units Power Supply Voltage +4.75 +5.0 +5.25 Vdc Input Common Mode Voltage (Receivers) -7.0 Input Differential Voltage (Receivers) -6.0 Parameter Enable Input Voltage (Drivers and Receivers) 0 - +5.25 Vdc Input Voltage (Drivers) 0 - +5.25 Vdc Ambient Temperature Range 0 - +70 +7.0 Vdc +6.0 Vdc 'c ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply for 4.75 < VCC < 5.25 volts, and 0' < TA < 70'C). Parameter Symbol I Min Typ I Max Units DRIVERS Input Voltage - Low VILD - Vdc High VIHD 2.0 - 0.8 Input Voltage - - Vdc Input Current @ VIL = 0.4 V IILD -360 - - p.A Input Current @ VIH = 2.7 V VIH = 5.25 V IIHD - +20 +100 /LA Input Clamp Voltage (11K = - 18 mAl VIKD -1.5 Output Voltage - Low (lOL = 20 mAl VOLO - Output Voltage - High (lOH = - 20 mAl VOHD 2.5 - Output Offset Voltage Difference (Note 1) VOSD -0.4 - +0.4 Vdc 2.0 - Vdc +0.4 Vdc -30 mA - - Output Differential Voltage Difference (Note 1) VTD -0.4 Short Circuit Current (VCC = 5.25 V) (From High Output, Note 2) 10SD -150 - Output Leakage Current - Hi-Z State (Vout = 0.5 V, DR EN = 0.8 V) (Vout = 2.7 V, DR EN = 0.8 V) 10ZD -100 -100 - +100 +100 Output Leakage - Power Off (Vout = -0.25 V, VCC = 0 V) (Vout = 6.0 V, VCC = 0 V) 10(off) -100 - - Output Differential Voltage (Note 1) VT Vdc \ Vdc /LA p.A - Notes: 1) See EtA Standard EIA-422 and Figure 1 for exact test conditions. 2) Only one output in a package should be shorted at a time, for no tonger than 1 second. MOTOROLA LINEAR/INTERFACE DEVICES 7-165 Vdc 0.5 +100. I • • ~C34050,~C34051 ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply for 4.75 < VCC < 5.25 volts, and O· < TA < 70·C). Symbol Parameter Min Typ Max - - +0.2 - +2.3 Units RECEIVERS Differential Input Threshold Voltage (Note 3) (-7.0 V < VICM < + 7.0, Vout '" 2.7 V) (-7.0 V < VICM < + 7.0, Vout '" 0.45 V) VTHR -0.2 Input Bias Current (0", VCC '" 5.25 V, Yin ~ +15 V) (0", VCC '" 5.25 V, Yin ~ - 15 V) rnA IIBR -2.8 Input Balance and Output Level (-7.0'" VICM '" +7.0 V) (VID ~ +0.4 V, 10 ~ -400"A) (VID = -0.4 V, 10 = 8.0 rnA) Vdc - Vdc 2.7 VOHR VOLR Output Leakage Current - 3-State (Pin 4 (VID = +3.0 V, Vo ~ 0.4 V) (VID ~ -3.0 V, Vo = 2.4 V) ~ 2.0 V, MC34050 only) - 10ZR -100 -100 Output Short Circuit Current (Note 2, VCC = 5.25 V) (VID ~ +3.0 V, MC34050 Pin 4 ~ 0.4 V, Vo ~ 0 V) 10SR -85 - - - 0.45 - +100 +100 - -15 "A rnA ENABLES Input Voltage - Low VILE - Input Voltage - High VIHE 2.0 Input Current @ VIL ~ 0.4 V (Receiver EN) (Driver EN) IlLER IILED -100 -360 Input Current @ VIH VIH ~ 2.7 V 5.25 V IIHE - ~ - Input Clamp Voltage (11K = - 18 rnA) VIKE -1.5 - 0.8 Vdc - - Vdc - p,A +20 +100 p,A - Vdc 80 rnA POWER SUPPLY Power Supply Current @ VCC = 5.25 V Notes: 1) 2) 3) 4) 55 ICC See EIA Standard EIA-422 and Figure 1 for exact test conditions. Only one output in a package should be shorted at a time, for no longer than 1 second. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case. All currents into a device pin are positive, those out of a pin are negative. Voltages are referenced to ground. Algebraic convention rather than magnitude is used to define limits. DRIVER SWITCHING CHARACTERISTICS (VCC ~ 50 V TA ~ 25·C See Figure 2) Parameter Propagation Delay Data Input to Output High-to-Low Data Input to Output Low-to-High Output Skew (ItPHL - tPLHI each driver) Enable Input to Output CL ~ 10 pF, RL ~ 75 {J to Gnd CL = 10 pF, RL ~ 180 {J to VCC CL = 30 pF, RL = 75 {J to Gnd CL = 30 pF, RL = 180 {J to VCC Symbol Min Typ Max tpHLD tpLHD tSKD - - 20 20 8 tpHZD tpLZD tpZHD tpZLD - - - 30 35 40 45 50 - Min Typ Units ns Maximum Data Input Transition Time (10-90%) tTRD ns RECEIVER SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25·C, Figure 3) Symbol Parameter Propagation Delay Differential Input to Output - High-to-Low Differential Input to Output - Low-to-High Enable Input - Output Low to 3-State" Enable Input - Output High to 3-State" Enable Input - Output 3-State to High" Enable Input - Output 3-State to Low" tpHLR tPLHR tpLZR tpHZR tpZHR tPZLR - "MC34050 Only. MOTOROLA LINEAR/INTERFACE DEVICES 7-166 - - Max Units ns 30 30 35 35 30 30 MC34050, MC34051 FIGURE 1 - DRIVER OUTPUT TEST CIRCUIT <2: Vin = 3.0 V Vin'=OV I I son, 1% VOSD Ivos .. VOs,!: VT I i I ::t < son, 1% VODD C IIVTI - IVT'II Vos Circuit per EIA RS~422·A. Dec. 1978 -= FIGURE 2 - DRIVER SWITCHING TEST CIRCUITS Input +3.0 V- r - - - - - - - " ' \ 0 J+1.3V -\-+1.3V ~ 'pLHD I;:: 180 n I -f A 7sn --1 Output 1-'- 'pHLD r= I ""\. . ~~~ -....J LIr-:-:-::-::_+_,._3_V_ tplHD VOH VOL_\+1.3V B Input tpHLD -l +1.3 V r+l,3V +3.0~V+1.3V +1.3V L o 180n.+5.ov 'PZHD O.SV ~ 1;"- r........ +1,3V 'pHZD Output IPLZD VOH f-- t::: ~--------~~ SG: 1.0 MHz, 50% duty cycle, tA. tF "'" 6.0 ns (10-90%) Rl = 75 Q to GND for tpZHD and tpHZD, 180 n to Vee for tpZLD and tpLZO: CL ~ 10 pF lor IpHZD and IpLZD, 30 pF lor 'PZHD and 'PZLD, FIGURE 3 - RECEIVER SWITCHING TEST CIRCUITS Input +3,0 V- r - - - - - - - , J,+1.SV \+I.SV o Output _I tpLHR 1;= ___..Jf. +,1.3 V -i'-'P-H-LR-r='_-_-___ - _-_- VOH \+1.3V 51 To Input 2.0 k Scope s,o k V. Output tPLZR ~ '---------I~ lN916's or equivalent 52 MC34050 Only 5G: 1.0 MHz, 50% duty cycle, tR, tF ~ 6.0 ns (10-90%) Va ~ + 1.5 V lor tpHZ, tpZH: Va ~ -1,5 V lortpLZ, 'PZL, 51,52 closed for tpHZ. tpLZ; 51 open, 52 closed for tpZH: 51 closed, 52 open for tpZL. MOTOROLA LINEAR/INTERFACE DEVICES 7·167 VOL • MC34050, MC34051 AGURE 4 -- DRIVER INPUT CHARACTERISTICS FIGURE 5 -- DRIVER DIFFERENTIAL OUTPUT CHARACTERISTICS 3.8 +30 in ~ ~ ~ -30 j -60 i -90 .... I 13-120 !; ~ -150 -180 -210 V 3.0 - 0.4 f--- " 5 -3.0 -1.0 +1.0 +3.0 INPUT VOLTAGE IVOLTS) I ,I f--- "......... a -14 FIGURE 12 - RECEIVER INPUT CHARACTERISTICS 0.8 Enable V ~ ~10 V 5.25 V Receiver _ -6.0 3"" Typical Ca 25°C -5.0 n -2.0 20 30 40 50 AMBIENT TEMPERATURE lOCI 60 70 10 10 30 40 50 AMBIENT TEMPERATURE lOCI MOTOROLA LINEAR/INTERFACE DEVICES 7-169 60 " 70 • MC34050, MC34051 FIGURE 16 - EIA·422 APPLICATION TTL MC34050J51 FIGURE 17 - EIA-422 APPLICATION RT • Notes; 1) AT must equal characteristic impedance of the cable. 2) Individual receivers may be MC34050, MC34051, MC3486, or AM26LS32. 3) System ground may be made through cable shield as shown, or through chassis ground. Common mode differences and signal quality must be considered when choosing a ground path. MOTOROLA LINEAR/INTERFACE DEVICES 7-170 @ MOTOROLA MC75107 MC75108 DUAL LINE RECEIVERS The MC75107 and MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC75107 circuit features an active pull-up (totem-pole) output. The MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC75108 receivers). Thus a level of logic is implemented without extra delay_ The MC75107 and MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels. o o o o o o o o o High Common-Mode Rejection Ratio High I nput Impedance High I nput Sensitivity Differential Input Common-Mode Voltage Range of ±3.0 V Differential Input Common-Mode Voltage of More Than ± 15 V Using External Attenuator Strobe Inputs for Receiver Selection Gate Inputs for Logic Versatility MTTL or MDTL Drive Capability High DC Noise Margins DUAL LINE RECEIVERS SILICON MONOLITHIC INTEGRATED CIRCUITS ,-'. L SUFFIX CERAMIC PACKAGE CASE 632-08 P SUFFIX PLASTIC PACKAGE CASE 646-06 o MC55107 Available as JM38510/10401 CIRCUIT SCHEMATIC Vcc~~~~~~--~----~~-----1~------~----~ 14 850 850 2.5 k 186 4 k 1.6 k OUTPUT STROBE ,G 2.5 k INPUTS 13 VE E ~+----1~----""'------1~+---+------ , OUTPUT STROBE STROBE " --------' STROBE r-----------t-~ 2G TRUTH TABLE 11 2B <>-+----1----, DIFFERENTIAL INPUTS INPUTS A·B 2A 0-+ 12 STROBES G S OUTPUT Y -25 mV <. V10< 25 mvt----C~i-=-.:;;_:'_j-"N:Co"'."'T::-.R"'M7:':-:N""AT::,1 Lor H Components shown with dashed lines are applicable to the MC751 07 onlv. MOTOROLA LINEAR/INTERFACE DEVICES 7-171 • • MC75107, MC75108 MAXIMUM RATINGS (TA =oOe to +70oe unless otherwise noted I Rating Symbol Value Unit VCC VEE +7.0 -7.0 Vdc Power Supply Voltages Differential-Mode I "put Signal Voltage Range VID +6.0 Vdc Common-Mode Input Voltage Range VICR +5.0 Vdc Strobe Input Voltage VIISI 5.5 Vdc 625 3.85 rnW mW/oC Power Dissipation (Package Limitation) PD Plastic and Ceramic Dual-tn-Une Packages Derate above T A = +2SoC Operating Ambient Temperature Range TA a to +70 °c Storage Temperature Range Tst9 -65 to +150 °c RECOMMENDED OPERATING CONDITIONS Characteristic Symbol Min Typ Max Unit VCC VEE +4.75 -4.75 +5.0 -5.0 +5.25 -5.25 Vdc Power Supply Voltages Output Sink Current -16 rnA -5.0 +5.0 lOS Differential-Mode Input Voltage Range VIDR Common-Mode Input Voltage Range VieR -3.0 +3.0 Vdc Vdc Input Voltage Range, any differential input to ground VIR -5.0 +3.0 Vdc Operating Temperature Range TA 0 +70 °c DEFINITIONS OF INPUT LOGIC LEVELS Symbol Test Fig. Min Max Unit High-Level Input Voltage (between differential Inputsl VIDH 1 0.025 5.0 Vdc Low-Level Input Voltage (between differential inputsl VIDL 1 -S.Ot -0.025 Vdc High·Level Input Voltage (at strobe inputs) VIHISI 3 2.0 5.5 Vdc VILISI 3 0 0.8 Vdc Characteristic Low-Level Input Voltage (at strobe inputs) tThe algebraiC convention, where the most positive limit ELECTRICAL CHARACTERISTICS IS deSignated maXimum, IS used with Low-Level Input Voltage Level (VIOL) (T A = OoC to +70 oC unless otherwise noted I Characteristic Symbol High-Level Input Current to lA or 2A Input Test Fig. Min Typ # 30 IIH Max Unit 75 "A -10 "A 40 1.0 "A rnA (VCC = Max, VEE = Max, VID = 0.5 V, VIC = -3.0 V to +3.0 VI t Low-Level Input Current to lA or 2A Input II L (VCC = Max, VEE = Max, VID= -2.0 V, VIC = -3.0 V to +3.0 VI t High-Level Input Current to lG or 2G Input IIH 4 (VCC = Max, VEE = Max, VIH(SI = 2.4 Vlt IVCC = Max, VEE = Max, VIH(SI = VCC Maxlt Low-Level Input Current to lG or 2G Input IlL 4 rnA -1.6 (VCC = Max, VEE = Max, VILISI = 0.4 Vlt High-Level Input Current to S Input IIH (VCC = Max, VEE = Max, VIH(SI = 2.4 Vlt (VCC = Max, VEE = Max, VIH(SI = VCC Maxlt Low-Level Input Current to S Input IlL 80 2.0 "A rnA -3.2 rnA (VCC,= Max, VEE = Max, VIL(S) = 0.4 VI t High-Level Output Voltage (Vce"" Min, VEE = Min,lload "" -400IJA, V VOH VIC = -3.0 V to +3.0 Vlt Low-Level Output Voltage (VCC = Min, VEE = Min, 'sink = 16 rnA V VOL 0.4 VIC' -3.0 V to +3.0 Vlt High-Level Leakage Current ICEX 3 "A 250 (VCC = Min, VEE = Min, VOH • VCC Maxlt Short-Circuit Output Current # (VCC' Max, VEE = Maxlt # (Vec' Max, VEE = Max, VID' 25 rnV, TA • ICCH+ 6 ICCH- 6 rnA +25 0 CI t High Logic Level Supply Current from VEE (Vce rnA losC High Logic Level Supply Current ~rom Vee 0 18 30 8.4 -15 rnA =Max, VEE = Max, VID = 25 mV, TA =+25 0 CI* :I: For conditions shown as Min or Max, use the appropriate value speCified under recommended operating conditions for the applicable deVice type. NAil typical values are at vec = +5.0 V, VEE = - 5.0 V, T A'" +25 0 C. ·N "Not more than one output should be shorted at a time. MOTOROLA LINEAR/INTERFACE DEVICES 7-172 MC75107, MC75108 SWITCHING CHARACTERISTICS (VCC' +5.0 V. VEE' -5.0 V. TA' +25 0 CI Characteristic Propagation Delay Time, low-ta-high level from Symbol Test Fig. tpLH(D1 7 Min tPHUDI tPLH(SI tPHUSI - - - - 19 25 - 19 - - - 13 ns 25 ns 7 IRL' 390 n. CL" 50 pFI (RL" 390 n. CL' 15 pFI Propagation Delay Time, high-ta-Iow lever, from strobe input G or S to output Unit 7 (RL' 390 n. CL " 50 pFI (RL' 390 n. CL" 15 pFI Propagation Delav Time, low-ta-high level, from strobe input G or S to output Max ns differential inputs A and B to output (RL' 390 n. CL' 50pFI (RL" 390 n. CL' 15 pFI Propagation Delay Time, high-ta-Iow level from differential inputs A and B to output Typ 15 7 (RL' 390 n. CL' 50 pFI (RL' 390 n. CL' 15 pFI - - - 13 20 ,," ns L TEST CIRCUITS FIGURE 1 - VIOH and VIOL FIGURE 2 - IIH and IlL VCC 2G Ii • See ~Note I 2B I v'c I L ___ .t '--.g-;N-;;-- --.J NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair NOTE: When testing one channel, the inputs of the other channel are grounded. are grounded FIGURE 3 - VIH(SI. VIL(SI. VOH. VOL. and IOH lG s 2G TEST TABLE --- MC75107 'sink,ICEX V8 ! r_ 0 I ' load I I I I2 Y 'sink. 'CEX _ Test Tabl. I 2BI V'C I MC7510a I VOH VOH VOH VOL NOTES: 1. VIC I STROBE 1G or 2G STROBE S APPLY ICE X +25 mV VIH(S) VIH(S) ICE X -25 mV VILIS) ICE X -25 mV VIH(S) VIHISl VIL(S) VOL -25 mV VIH(Sl VIH(S) = -3.0 V to +3.0 V. 2. When testing one channel, the inputs of the other channel should be grounded. I !;..-;;-___ J L _____ MOTOROLA LINEAR/INTERFACE DEVICES 7-173 VIO TEST MC75107, MC75108 TEST CIRCUITS (continued) FIGURE 4 - IIH(G). IIL(G).IIH(S). and IIL(S) VIHIS)J lG Se. S Test - Table 2G VILIS) ' IL(S) I OpeN I I I I See Test Table 1 2y OPEN • TEST INPUT lA INPUT 2A STROBE lG STROBE S 'IH at Strobe 1G +25 mV Gnd VIHIS) Gnd STROBE 2G Gnd I, H at Strobe 2G Gnd +25 mV Gnd Gnd VIHIS) Gnd IIH at Strobe S +25 mV +25 mV Gnd VIHIS) IlL at Strobe 1G -25 mV Gnd VILIS) 4.5 V Gnd '\ L at Strobe 2G Gnd -25 mV Gnd 4.5 V VILIS) -25 mV -25 mV 4.5 V VILIS) 4.5 V IlL at Strobe S FIGURE 6 -ICC and lEE FIGURE 5 - lOS Vcc+ Vee ,- 1-2G lA I I ;:Jt~-, ~·Jl,:; Vee - ---1 --, S lG I IIV 1 lA I I 1 1 1 25 mV 25 mV 1 1 2Y I I 2BI L-----X------.J ~GND NOTES: 1. Each channel is tested separately. 2. Not more than one output should be tested at one time. MOTOROLA LINEAR/INTERFACE DEVICES 7-174 MC75107, MC75108 TEST CIRCUITS (continued) FIGURE 7 - PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS DIFFERENTIAL INPUT OUTPUT MC751Q7 50 pF See Note 3 See Note 4 390 lG STROBE INPUT S 2G ~5PF lS.. e-------~~--~VY~---, Not. 3 See Note 2 - __________ 200 mV INPUT~ A 100 mV 100 mV II II I I r-- tpl I~ _ _ _ _- J I OV t--- ---l I I I '\1 ~1.5V -l! OO~"' Y'Ct-,"_I_S_I-l_-JJH STROBE INPUT G orS I I !I tpLH(O) - , I F-+:_'___'5V to-- tpHLIOI I '-______...J. I I d t- tp2 - - -...·011 ._. I ~ 'tv 3V OV .... tpHLISI VOH VOL NOTES: 1. The pulse generators have the following characteristics: tp2 = 1 I-LS, PRR:: 500 kHz. zo"" 50 n. tr"" tf = 10 ±.5 ns, tpl "" 500 ns, PRR = 1 MHz 2. Strobe input pulse is applied to Strobe lG when' nputs 1 A-' B are being tested, to Strobe S when Inputs lA-' B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested. 3. CL includes probe and jig capacitance. 4. All diodes are lN916 or equivalent. MOTOROLA LINEAR/INTERFACE DEVICES 7-175 ® MC75S110 MOTOROLA MONOLITHIC DUAL LINE DRIVER • The MC75S110 dual line driver features independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input.terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally twelve milliamperes. The inhibit feature permits use in party-line or data·bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, IO(off) is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff). All driver outputs have a common-mode voltage range of -3.0 volts to +3.0 volts, allowing common-mode voltage on the line without affecting driver performance. DUAL LINE DRIVERS SILICON MONOLITHIC INTEGRATED CIRCUIT L SUFFIX CERAMIC PACKAGE CASE 632-08 • Insensitive to Supply Variations Ov.er the Entire Operating Range • MTTL Input Compatibility • Current-Mode Output (12 mA Typical) • High Output Impedance • Common-Mode Output Voltage Range ( - 3.0 V to + 3.0 V) P SUFFIX PLASTIC PACKAGE CASE 646-06 • Inhibitor Available for Driver Selection INHIBIT IN~TS OUTPUTS OUTPUTS VCC 1Y 1Z VEE D 2Z 2Y 8 TRUTH TABLE LOGIC INPUTS 4 1A 1B LOGIC INPUTS 1C 2C INHIBIT INPUT B C D Y Z Lor H Lor H L Lor H H Lor H Lor H Lor H L H L Lor H H H H Lor H L H H H H H L L H H H H H L 2B LOGIC INPUTS MOTOROLA LINEAR/INTERFACE DEVICES 7-176 OUTPUTS A low output represents the " on " state. High output represents the "off" state. 5 2A INHIBITOR INPUTS MC755110 MAXIMUM RATINGS (TA = 0 to + 70°C unless otherwise noted) Symbol Value Unit Power Supply Voltages (See Note 1) Ratings VCC VEE +7.0 -7.0 Volts Logic and Inhibitor Input Voltages (See Note 1) Vin 5.5 Volts Common-Mode Output Voltage Range (See Note 1) VOCR -5.0 to +7.0 Volts Power Dissipation (Package Limitation) Po 1000 3.85 mW mWrC Plastic and Ceramic Dual In-Line Packages Derate above TA = + 25°C Operating Temperature Range o to TA Storage Temperature Range +70 -65 to + 150 Tstg °c °c NOTE 1. These voltage values are with respect to the ground termmal. RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2 ) Characteristic Power Supply Voltages Common-Mode Output Voltage Range Symbol Min Nom Max Unit VCC VEE +4.75 -4.75 +5.0 -5.0 +5.25 -5.25 Volts +3.0 Volts VOCR -3.0 .. - NOTE 2. When uSing only one channel of the hne drivers, the other channel should be mhlblted andlor Its outputs grounded . DEFINITIONS OF INPUT LOGIC LEVELS* Symbol Test Figure Min Max Unit High-Level Input Voltage (at any input) VIH 1,2 2.0 5.25 Volts Low-Level Input Voltage (at any input) VIL 1,2 0 0.8 Volts Characteristic * The algebraic conventioii, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only. THERMAL INFORMATION The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation: PD(TA) = TJ(max) - TA R8JA (Typ) Where: PD(TA) = Power Dissipation allowable at a given operatmg ambient temperature. This must be greater than the sum ofthe products ofthe supply volt- ages and supply currents at the worst case operating condition. TJ(max) = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section TA = Maximum Desired Operating Ambient Temperature R8JA (Typ) = Typical Thermal Resistance Junction to Ambient MOTOROLA LINEAR/INTERFACE DEVICES 7-177 MC75S110 ELECTRICAL CHARACTERISTICS (TA = 0 to + 70·e unless otherwise noted.) Symbol Test Figure High-Level Input Current to lA, 1B, 2A or 2B (VCC = Max, VEE = Max, VIHL = 2.4 V)' (VCC = Max, VEE = Max, VIHL = Vce Max) IIHL 1 Low-Level Input Current to lA, 1B, 2A or 26 (VCC = Max, VEE = Max, VILL = 0.4 V) IILL 1 High-Level Input Current into lC or 2C (VCC = Max, VEE = Max, VIHI = 2.4 V) (VCC = Max, VEE = Max, VIHI = VCC Max) IIHI 1 Low-Level Input Current into lC or 2C (VCC = Max, VEE = Max, VILI = 0.4 V) IILI 1 High-Level Input Current into D (VCC = Max, VEE = Max, VIHI (VCC = Max, VEE = Max, VIHI IIHI 1 = 2.4 V) = Vec Max) Low-Level Input Current into D (Vec = Max, VEE = Max, VILI = 0.4 V) Characteristic·· II Min Typ· Max Unit - - - 40 1.0 p.A rnA - - -3.0 rnA - - - 40 1.0 p.A rnA - - -3.0 rnA - - - 80 2.0 p.A rnA - - -6.0 rnA - 12 IILI 1 Output Current ("on" state) (Vec = Max, VEE = Max) (VCC = Min, VEE = Min) 10(on) 2 Output Current ("off" state) IVce = Max, VEE = Max) IVCC = Min, VEE = Min) 1010ff) Supply Current from VCC (with driver enabled) IVILL = 0.4 V, VIHI = 2.0 V) ICClon) 3 - - Supply Current from VEE (with driver enabled) IVILL = 0.4 V, VIHI = 2.0 V) IEE(on) 3 - Supply Current from VCC Iwith driver inhibited) IVILL = 0.4 V, VILI = 0.4 V) ICCloff) 3 Supply Current from VEE (with driver inhibited) (VILL = 0.4 V, VILI = 0.4 V) IEE(off) 3 *AII typical values are at Vee = rnA - 6.5 +5.0 V, VeE = 2 - - 15 p.A 100 100 35 rnA - -50 rnA - - 35 rnA - - -50 rnA Typ Max Unit 15 15 ns - 9.0 9.0 - 16 13 25 25 ns -5.0 V. uFor conditions shown as Min or Max. use the appropriate value specified under recommended operating conditions. " SWITCHING CHARACTERISTICS (Vee = + 50 V VEE = - 50 V TA = + 25·e ) Symbol Test Figure Min Propagation Delay Time from Logic Input A or 6 to Output Y or Z IRL = 50 ohms, CL = 40 pF) tpLHL tpHLL 4 - Propagation Delay Time from Inhibitor Input C or D to Output Y or Z (RL = 50 ohms, CL = 40 pF) tpLHI tPHLI 4 Characteristic MOTOROLA LINEAR/INTERFACE DEVICES 7-178 MC75S110 TEST CIRCUITS FIGURE 1 - Vee ',H. IlL VEE ["J----ll1Y IIH ;~see TEST TABLE Table I-""<>-~-L-----' IlL ~'H TEST AT ANY INPUT See ~ Table "H - [ See ;: ...J-=-=-<>-t--L.-J _ Table IlL ADJACENT INPUTS NOT UNDER TEST IIH GND ',L 4.5 V ~"<>-I---l L __ ~ ___ --.J2Z-= GNDl FIGURE 2 - 10(on) and 10(off) Vee VEE ["J----ll1Y VIH---f See V,L ...--LTable r"<>-~-LJ VIHJT~~~e V,L V,H V,L ...J-="'-<>+--L--l ---f See --lTable r-===-<>-+--LJ L _____ --.J 2Z GNDI Arrows indicate actual direction of current flow. ~ TEST TABLE TEST Ground all output pins not under test. LOGIC INPUTS 1A or 2A 1B or 2B INHIBITOR INPUTS 1C or2C D V'L V'L V'L V,H V'H V,L V'H V,H at output 1Z or 2Z V,H v,H V'H V,H at output 1Y or 2Y V,H V,H V'H V'H V'L V'L V'l V,H V'H V,L V'H V'H Either state Either state V'L V,L V,H V'H V,L 'O(on) at output 1Yor 2Y 'O(on) 'O(off) 10(off) at output 1Z or 2Z 'O(off) at output 1Y.2Y. 1Z. or 2Z MOTOROLA LINEAR/INTERFACE DEVICES 7-179 V,L MC75S110 TEST CIRCUITS (continued) FIGURE 3 Vee leell 1A r ICC and lEE VEE lEE ---- 11 11Y TEST TABLE TEST ALL LOGIC INPUTS ALL INHIBITOR INPUTS 'ee(on) Driver enabled V,L V,H 'EE(on) Driver enabled V,L V,H 'ee(off) Driver inhibited V,L V,L 'EE(off) Driver inhibited V,L V,L FIGURE 4 - PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS VEE ~~ro~~ __~__~___ OUTPUT Y • I I I I I I I TO OTHER lJ CHANNEL -G;Dr-- LOGIC INPUT Aor B '--~~---. OUTPUT Z RL 50 ~ r-v---------3.O V tp1 INHIBIT INPUT Cor D \~---- 0 V ;----I t p2 - - - - - ,....---3.0 V ~------,+------OV tPLH(L) tpHL(lN) ,....-----~---- OUTPUT Y off on ~------------------off OUTPUT Z tPHLIL) ---------------on NOTES: 1. The pulse generators have the following characteristics: Zo = 50 n, tr = tf PRR ~ 500 kHz. 2. CL includes probe and jig capacitance. 3. For simplicity, only one channel and the inhibitor connections are shown. = 10 ::!:: 5.0 ns tp1 = MOTOROLA LINEAR/INTERFACE DEVICES 7-180 500 ns, PRR = 1.0 MHz, tp2 = 1.0 ms, @ MC75125 MC75127 MOTOROLA SEVEN CHANNEL LINE RECEIVERS SEVEN CHANNEL LINE RECEIVERS The MC75125 and MC75127 are seven-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370. Special low-power design and Schottky-diode-clamped tran- "fi#MWt sistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. The MC75125 and MC75127 are characterized for operation from 0 to 70 0 C. _ LSUFFIX CERAMIC PACKAGE CASE 620-10 . 16 1 • Meets IBM 360/370 I/O Specification • Input Resistance - 7 kr! to 20 kr! • Output Compatible with DTL or TTL P SUFFIX PLASTIC PACKAGE CASE 648-06 II • Schottky-Clamped Transistors • Operates from a Single 5 Volt Supply PIN CONNECTIONS • High-Speed - Low Propagation Delay • Ratio Specification - tPLH/tPH L • Seven Channels in One 16-Pin Package 1A 16 1Y Standard VCC and Ground Positioning on MC75127 2A 15 Vee • MC75125 3A 4A TYPICAL APPLICATiONS 4 14 3Y 13 4Y 5A 12 5Y 6A 11 6Y 7A 10 7Y 2Y Gnd Logic Y = A MC75127 1/4 MC3481 or 1/4 MC3485 r - - - - - -, ~ MC7512517 '0",,"' C~~~, l~~~~~~~~ KTlJ U ~ ___ j 1A 16 2A 15 1Y 2Y 3A 3 14 4A 4 13 3Y 12 4Y 5A 6A 11 5Y 7A 10 6Y 7Y Gnd Logic: MOTOROLA LINEAR/INTERFACE DEVICES 7-181 Vee Y=A • MC75125, MC75127 MAXIMUM RATINGS ITA = 25°C unless otherwise noted) Rating Power Supply Voltage Symbol Value Unit Vee +7.0 V VI -2.0 to +7.0 V PD mw/oe °e Input Voltage Power Dissipation (Package Limitation) Derate Above T A = 25°C l/ROJA 1150 960 7.7 Operating Ambient Temperature Range TA o to +70 Junction Temperature TJ Ceramic Package Plastic Package mW °e +175 +150 Ceramic Package Plastic Package Storage Temperature Range -65 to +150 T stg °e RECOMMENDED OPERATING CONDITIONS Symbol Min Typ Max Unit Power Supply Voltage Vee 4.5 5.0 5.5 Vdc High Level Output Current IOH - - -0.4 mA Low Level Output Current IOL - - 16 mA Operating Ambient Temperature Range TA 0 - +70 °e Characteristic ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at TA = 25°C and Vee = +5 0 V) Symbol Min Typ Max Unit High-Level Input Voltage VIH 1.7 - V Low-Level Input Voltage VIL - - 0.7 V High·Level Output Voltage IVee - 4.5 V, V I L - 0.7 V, IOH - -0.4 mAl VOH 2.4 3.1 - V VOL - 0.4 0.5 V IIH 0.2 0.3 0.42 mA Characteristic Low·Level Output Voltage (Vee - 4.5 V, VIH = 1.7 V, IOL = 16 mA) High·Levellnput Current IVee = 5.5 V, VI = 3.11 V) Low·Level Input Current (Vee = 5.5 V, VI = 0.15 V) Short Circuit Output Current* (Vee - 5.5 V, Vo - 0) Input Resistance IVee = 4.5 V, 0 V, or Open, ,;VI - 0.15 V to 4.15 V) IlL - - -0.24 mA lOS -18 - -60 mA ri 7.4 - 20 kn 15 25 mA 28 47 mA Power Supply Current Outputs High-Logic State (Vee = 5.5 V, IOH = -0.4 mA, all inputs at 0.7 V) leeH Power Supply Current leeL Outputs Low-Logic State (Vee = 5.5 - V. IOL = 16 mA, all inputs at 4.0 V) SWITCHING CHARACTERISTICS (Vee = 5.0 V, TA = 25°C, RL = 400 n, eL = 50 pF, unless otherwise noted. See Figure 1) MC75127 MC75125 Characteristic Symbol Min Typ Max Min Typ Max tpLH tpHL 7.0 10 14 18 25 30 7.0 10 14 18 25 30 1.3 Unit ns Propagation Delay Time Low-to-High-Level Output High-to-Low-Level Output Ratio of Propagation Delay Times tpLH/tPHL 0.5 0.8 1.3 0.5 0.8 Transition Time, Low-to-High-Level Output tTLH 1.0 7.0 12 1.0 7.0 12 ns Transition Time, High-to-Low Level Output tTHL 1.0 3.0 12 1.0 3.0 12 ns *No more than one output should be shorted at a time. MOTOROLA LINEAR/INTERFACE DEVICES 7-182 MC75125. MC75127 FIGURE 1 - PARAMETER MEASUREMENT INFORMATION TEST CI RCU IT Vee 10 ns Output 1~~=---------~9~0~%~C~----------------3V Input 0.7 V 10% r 1':..1.:0"'%'-_ _ _ _ _ _ _ °V t----t-tp LH IJ,.,2~V,----- VOH CL=50pF (See Note B) Output ('-=-'-_ _ _ _ _ _'-J---;,---_ _ _ _ _ _ VOL NOTES: A. The pulse generator has the fOllowing characteristics: Zout It:I 50.n. PRR = 5 MHz. B. CL includes probe and jig capacitance. C. All diodes are MMD7000 or equivalent. VOLTAGE WAVEFORMS FIGURE 2 - SCHEMATIC (EACH RECEIVER) 0------.....- , - - - - - - -.....-------,--+-------,-----.... To Other Channels -l I I I I A I Input I 12 kn I Nom I I Gnd I L-------------------~~L__-----_-_-_--~~-_-___ ----___ ------T-O-O-t-h-e'-e~ha-n-n-.el~ Output Y COlT mon Circuit. \ MOTOROLA LINEAR/INTERFACE DEVICES 7-183 MC15125, MC75127 TYPICAL CHARACTERISTICS FIGURE 4 - VOLTAGE TRANSFER CHARACTERISTIC versusSUPPLY VOLTAGE FIGURE 3 - VOLTAGE TRANSFER CHARACTERISTICS .ersus AMBIENT TEMPERATURE 5.0 0 ~ 2: 4.0 '" ~ 3.0 ~ '"> '" ~ r-- Vee = 5.0 V No Load I- ~::::J 4. 0 w w '"> 2.0 ~ r- TA=ooe - ~ 25 0 e - .. '"6 No Load 2.0 5.0V --i 4.5V -r-- I 1.0 1.0 o o 1.0 VI. INPUT VOLTAGE (VI o o 2.0 2.0 1.0 VI. INPUT VOLTAGE (VI FIGURE 6 - LOW-LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT FIGURE 5 - INPUT CURRENT versus INPUT VOLTAGE 0.8 0.4 Vele = 5.0 IV '--TA = 250 e ~ ./ /V No Load / o /' O. 5 0.4 ~ 0.3 ~ O. 21-"'" ..:. .... ..--- ~ O. 1 o 1.0 ---,...-- c ....w / r-- -VI=5.0V TA=25oe !; /' 1 Vee=5.0V 0.6 '" /' 2 O. 7 ~ :; > ~ /' o Vee = 5.5 V --i '">6 700 e _ > TA = 250 e - 3.0 2.0 3.0 5.0 4.0 o 5.0 10 10. OUTPUT CURRENT (mAl VI. INPUT VOLTAGE IVI FIGURE 7 - SUPPLY CURRENT versus SUPPLY VOLTAGE 40 35 « .§ I 13 Seven Channels / 30 f--TA = 25°C No load 25 / II 20 ~ ~ ~ 15 f\ 10 5.0 o -- o AHI~PUts_ f - - @4.0V II,,). 7 / ........ ~Allinputs v - f-@r ~ 1.0 2.0 5.0 4.0 3.0 Vee. SUPPLY VOLTAGE IVI 6.0 MOTOROLA LINEAR/INTERFACE DEVICES 7-184 15 20 ® MC75128 MC75129 MOTOROLA EIGHT-CHANNEL LINE RECEIVERS EIGHT-CHANNEL LINE RECEIVERS The MC75128 and MC75129 are eight-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370. Both devices feature common strobes for each group of four receivers. The MC75128 has an active high strobe; the MC75129 has an active low strobe. Special low-power design and Schottky-diode-clamped transistors allow low supply current requirements while maintaining fast switching speeds and high-current TIL outputs. Both devices are characterized for operation from 0 to 70·C. ......... ~~H _~_~ ~ SUFFIX CERAMIC PACKAGE CASE 732-03 1 ,,""'" ~ ¥]ft,~.~~UFFIX • PLASTIC PACKAGE CASE 738-03 Meets IBM 360/370 I/O Specification • Input Resistance - 7 kQ to 20 kQ· • Output Compatible with DTL or TTL • Schottky·Clamped Transistors • Operates from a Single 5 Volt Supply • H igh·Speed - Low Propagation Delay PIN CONNECTIONS MC75128 20 vee • Ratio Specification - tPLH/tPH L IS • Common Strobe for Each Group of Four Receivers 1A 2 19 1Y • MC75128 Strobe - Active·High MC75129 Strobe - Active·Low 2A 3 18 2Y 3A 4 17 3Y 4A 5 16 4Y 5A 6 15 5Y 14 6Y 6A 7A 8 13 7Y 8A 9 12 8Y GNO 10 11 2S MC75129 TYPICAL APPLICATION Vee IS 19 1Y 1A 1/4 MC3481 or 1/4 MC3485 r - - - - ---, I I I l ~ :~ca~ble L______ J MC75128/9 CoaxIal r - - - :: RT : : L ___ J 2A 3 18 2Y 3A 4 17 3Y 16 4Y 6 15 5Y 14 6Y 4A 5A 6A 7A 8 13 7Y 8A 9 12 BY GNO 10 11 2S MOTOROLA LINEAR/INTERFACE DEVICES 7-185 II MC75128, MC75129 MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating Symbol Value Unit Power Supply Voltage VCC +7.0 V A Input Voltage VIA -0.15 to +7.0 V Strobe Input Voltage VIS +7.0 V Po mW mW/oC °c Power Dissipation (Package Limitation) Ceramic Package Plastic Package Derate Above T A = 2SoC lIR eJA 1150 960 -7.7 Operating Ambient Temperature Range TA o to +70 Junction Temperature TJ °c Ceramic Package +175 +150 Plastic Package Storage Temperature Range T stg -65 to +150 °c RECOMMENDED OPERATING CONDITIONS Symbol Min Typ Max Unit Power Supply Voltage VCC 4.5 5.0 5.5 Vdc High Level Output Current 10H mA 10l 16 mA Operating Ambient Temperature Range TA 0 - -0.4 Low Level Output Current - +70 °c Characteristic ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at TA = 25°C and VCC = +5.0 V) Characteristic II Symbol High-Level Input Voltage A Inputs Sinputs Low-Level Input Voltage A Inputs S Inputs = 4.5 1.7 2.0 - - - - 0.7 0.7 V V VOH 2.4 3.1 - V = 1.7 Val - 0.4 0.5 V - -1.5 V 0.3 0.42 20 mA p.A -0.24 -0.4 mA -60 mA (VCC - 4.5 V, VIH nput Clamp Voltage (VCC 4.5 V, II V, = -0.4 mAl 10l = 16 mA) 18 mA, S Inputs) VIK 5.5 V, VI - 3.11 V, A Inputs) = 5.5 V, VI = 2.7 V, S Inputs) IIH - = 0.15 V, A Inputs) = 0.4 V, S Inputs) IlL - High-Level Input Current (Vec (VCC Low-Level Input Current (VCC - 5.5 V, VI (VCC = 5.5 V, VI - Short Circuit Output Current * (VCC - 5.5 V, Vo - 0) lOS rj VCC - 4.5 V, 0 V, or Open, t!.VI- 0.15 V to 4.15 V) Power Supply Current - Outputs High-Logic State, all inputs at 0.7 V (VCC (VCC = 5.5 = 5.5 = 5.5 = 5.5 -18 - - 7.0 20 V, Strobe at 2.4 V - MC75128) V, Strobe at 0.4 V - MC75129) - 19 19 31 31 - 32 32 53 53 rnA ICCl V, Strobe at 2.4 V - MC75128) V, Strobe at 0.4 V - MC75129) kl1 mA ICCH Outputs Low-Logic State, all inputs at 4.0 V (VCC (VCC Unit V. VI L· 0.7 V, IOH Low-Level Output Voltage Power Supply Current Max - (VCC eSlstance Typ Vil High-Level Output Voltage nput Min VIH SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C, Rl = 400 11, CL = 50 pF, unless otherwise noted, See Figures 1 and 2) Symbol Characteristic Min MC75128 TVp Max Min MC75129 Typ Max Propagation Delay Time - From A Inputs Low-to-High-Level Output High-to-Low-Level Output tPLH(A) tPHl(A) 7.0 10 14 18 25 30 7.0 10 14 18 25 30 Propagation Delay Time From S Inputs Low-to-High-Level Output High-to-Low-Level Output tpLH(S) tPHL(S) - - 26 22 40 35 - 20 16 35 30 Ratio of Propagation Delay Times - A Inputs Unit ns ns tPLH(A)/tPHL(A) 0.5 0.8 1.3 0.5 0.8 1.3 Transition Time, Low-to-High-Level Output tTlH 1.0 7.0 12 1.0 7.0 12 ns Transition Time, High-to-Low-Level Output tTHL 1.0 3.0 12 1.0 3.0 12 ns "'No more than one output should be shorted at a time. MOTOROLA LINEAR/INTERFACE DEVICES 7-186 MC75128, MC75129 FIGURE 1 - PARAMETER MEASUREMENT INFORMATION VOLTAGE WAVEFORMS LOAD CIRCUIT OUTPUT FROM OUTPUT UN DE R TEST INPUT (See Notes A, D, and E) Vee 1f 400 n -::t:'--"""~f--<~.I-1.~I--l.~I--'l J 50 pF (See Note C) -= (See Note B) OUTPUT NOTES: A. Input pulses are supplied by a generator having the following characteristics: 20 = 50 n, PRR = 5 MHz. B. Includes probe and jig capacitance. C. All diodes are MMD7000 or equivalent. D. The strobe inputs of MC75129 are in-phase with the output. = 0.7 V and V re f2 = 1.7 V for testing data (A) I nputs, V ref1 = V ref2 = 1.3 V for strobe inputs. E, V re f1 FIGURE 2 - SCHEMATIC (EACH RECEIVER) r------.--------------~--------~~-----oVee Input A r----------------I I 12 k Nom I I I I 17 k Nom I I ~ I I I ~:.7.:~2.:t I __ MC7512S1 r-I I Input S I I I ~ _______ ~, _ _ _ _ _ _ _J To Three Other Channels To Seven Other Channels MOTOROLA LINEAR/INTERFACE DEVICES 7-187 II MC75128, MC75129 TYPICAL CHARACTERISTICS FIGURE 3 - VOLTAGE TRANSFER CHARACTERISTICS versus AMBI~NT T~MP~RATURE FIGURE 4 - ~ ~~==~~-~--~r~~~~t---t--r-- 4.0 w 3.0 "> ~ ~ ~ ~ TA=OoC __ 2.0 TA" 250C t--- ---+-----+----r---ttt--r-------t---VCC=5.5V- . - - ·--5-.0+V-,------t--tlt-r---r---r---j .tv--_---t--tlt-r---r---r---j ~ 2.0 1------t----t----+---+--4 25 0 C - _ 6 > 70'C- 1.0 3.0 I---- No Load ~ r- ---- -~---- C) = 5.0 V c--- f- VCC No load 6 > -_.- ~ 4.0~=+=+==f:.==+=+==httt w '"~ VOLTAGE TRANSFER CHARACTERISTIC v,rsusSUPPLY VOLTAGE 5.0F=F==F=F==F=F==F;-T-II! 5. 0 1.0 f---j---t_--t_---j-----j---t--ttH-----t----+---I f--t--t-----+--~--~--~H-t__t----r- o o 1.0 °0~---L-~--l..--L..~1.~0--~~t=~===±==?2.0 2.0 VI. INPUT VO LTAGE (VI VI. INPUT VOLTAGE (VI FIGURE 5 - INPUT CURRENT versus INPUT VOLTAGE 0.4 FIGURE 6 O. 8 VCC = 5.0 V t---T A = 25'C No Load ~ ./ w '1 ,/ ~ "> / ~ /' 2 TA = - 25°C O. 5 w / ~ O. 3 ~ O. 2 I--- ,....- - f-- j..-- ,....- .:. :; O. 1 ,/ o Vee = 5.0 v ~ / 1 O. 7 o.61--- t-- VI = 5.0 V g O. 4 /' o LOW-LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT 1.0 2.0 3.0 4.0 5.0 o o 5.0 10 10. OUTPUT CURRENT (mAl VI. INPUT VOLTAGE (VI MOTOROLA LINEAR/INTERFACE DEVICES 7-188 15 20 SN75172 SN75174 @ MOTOROLA Product Preview QUAD EIA-485 LINE DRIVERS WITH THREE-STATE OUTPUTS QUAD LINE DRIVERS WITH NAND ENABLED THREE-STATE OUTPUTS The Motorola SN75172/174 are monolithic quad differential line drivers with three-state outputs. They are designed specifically to meet the requirements of EIA-485, EIA-422A Standards and CCITT recommendations V.ll and X.27. The device is optimized for balanced multipoint bus transmission at rates up to 4 megabits per second. Each driver features wide positive and negative common-mode output voltage ranges making it suitable for party-line applications in noisy environments. The SN75172/174 provides positive- and negative-current limiting and thermal shutdown for protection from line fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately 150°C. These devices offer optimum performance when used with the SN75173 or SN75175 quadruple differential line receivers. SILICON MONOLITHIC INTEGRATED CIRCUIT • Meets EIA-485 Standard for Party-Line Operation J SUFFIX CERAMIC PACKAGE CASE 620-10 • Meets EIA Standard EIA-422A and CCITT Recommendations V.ll and X.27 • Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments • 3-State Outputs 16~ ~mnH~ • Common Mode Output Voltage Range ... -7.0 V to 12 V • Active High and Active Low Enables • Thermal Shutdown Protection • Positive and Negative Current Limiting N SUFFIX • Operates from Single 5.0 Volt Supply PLASTIC PACKAGE CASE 648-06 • Low Power Requirements • Functionally Interchangeable With AM26LS31 (SN75172) MC3487 (SN75174) PIN CONNECTIONS SN75174 SN75172 Input A Input A VCC Input D Outputs A { VCC 2 } Outputs D } Outputs D Enable AlB Control Enable Outputs B { C/D Control Outputs B { 11 } Outputs C } Outputs C Input B Gnd Input D Outputs A { Input B Gnd Input C Input C This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 7-189 SN75172, SN75174 SN75172 SN75174 TRUTH TABLE Input H L X TRUTH TABLE Control Inputs (E/E) Noninverting Output Inverting Output H/L H/L UH H L Z L H Z Input H L X Control Input Noninverting Output Inverting Output H H L H L Z L H Z L = Low Logic State H = High Logic State X = Irrelevant Z = Third-State (High Impedance) L = Low Logic State H = High Logic State X = Irrelevant Z = Third-State (High Impedance) II MOTOROLA LINEAR/INTERFACE DEVICES 7-190 ® SN75173 SN75175 MOTOROLA Advance Information QUAD EIA-485 LINE RECEIVERS WITH THREE-STATE OUTPUTS QUAD EIA-485 LINE RECEIVERS The Motorola SN75173/175 are monolithic quad differential line receivers with three-state outputs. They are designed specifically to meet the requirements of EIA-485, EIA-422A!23A Standards and CCITT recommendations. The devices are optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. They also feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 millivolts over a common mode input voltage range of -12 volts to 12 volts. The SN75173/175 are designed for optimum performance when used with the SN75172 or SN75174 quad differential line drivers. SILICON MONOLITHIC INTEGRATED CIRCUITS • Meets EIA Standards EIA-422A and EIA-423A, EIA-485 • Meets CCITT Recommendations V.10, V.ll, X.26, and X.27 J SUFFIX CERAMIC PACKAGE CASE 620-10 • Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments • 3-State Outputs • Common-Mode Input Voltage Range ... -12 V to 12 V • Input Sensitivity ... ±200 mV - • Input Hysteresis ... 50 mV Typ • High Input Impedance ... 1 EIA-485 Unit Load • Operates from Single 5.0 V Supply 1 • Low Power Requirements • Plug-In Replacement for MC3486 (SN75175) AM26LS32 (SN75173) N SUFFIX PLASTIC PACKAGE CASE 648-06 PIN CONNECTIONS SN75173 In~ts SN75175 1 VCC In~ts { Inputs } InPButs Output A 3-5tate Control Output C Inputs Vee 1 { Output A B Output B 3·State Control A/C 3·State Output B 3·State Output Control e Control Output D Inputs Output D C BID C Inputs Inputs D Gnd D Gnd ORDERING INFORMATION ORDERING INFORMATION Device Temperature Package Device Temperature Package SN75173J o to +70oe o to +70oe Ceramic DIP SN75175J Ceramic DIP Plastic DIP SN75175N o to +70oe o to +70oe SN75173N This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 7-191 Plastic DIP SN75173, SN75175 ABSOLUTE MAXIMUM RATINGS Rating Power Supply Voltage Input Common Mode Voltage Input Differential Voltage Symbol Value VCC 7.0 Vdc VICM ±25 Vdc Unit VID ±25 Vdc Three-State Control Input Voltage VI 7.0 Vdc Output Sink Current 10 50 mA Storage Temperature Tstg -65 to +150 °c TJ +175 +150 °c Operating Junction Temperature - Ceramic Package ~ Plastic Package RECOMMENDED OPERATING CONDITIONS Rating Power Supply Voltage Operating Ambient Temperature Symbol Value Unit VCC 4.75 to 5.25 Vdc TA o to +70 °C Input Common Mode Voltage Range VICM -12to+12 Vdc Input Differential Voltage Range VIDR -12to+12 Vdc -- ELECTRICAL CHARACTERISTICS (Unless otherwise noted, minimum and maximum limits apply over recommended temperature and power supply voltage ranges Typical values are for TA :::25°C Vee::: 5 0 V and VICM::: 0 V) (Note 1) Svmbol Characteristic Min Typ Max Unit ~~-~ Differential Input Threshold Voltage (Note 2) (-12 V';; VICM';; 12 V, VIH = 2.0 V) (10 = -0.4 mA, VOH;;' 2.7 V) (10 = 16 rnA. VOL';; 0.5 VI II V VTH(D) Input Hysteresis VT+ - VT_ Input Line Current (Differential Inputs) (Unmeasured Input at 0 V - Note 3) (VI = +12 V) (VI = -7.0 V) II Input Resistance (Note 4) ri - - .- 50 - mV mA - - - - 1.0 -0.8 - - 1 Unit Load .. - ~-.- -- r-------- -~~-. 1-------V Input Balance and Output Level (Note 3) (-12 V';; VICM';; 12V, VIH= 2.0V) (10 = -0.4 mA, VID = 0.2 V) (10 = 8.0 mA. VID = -0.2 V) (10 = 16 rnA, VID = -0.2 V) VOH VOL VOL 2.7 Input Voltage - High Logic State (Three-State Control) VIH 2.0 Input Voltage - Low LogiC State (Three-State Control) VIL - Input Current - High Logic State (Three-State Control) IIH (VIH = 2.7 V) (VIH = 5.5 V) 0.2 -0.2 - - - - 0.45 0.5 - - - 0.8 V V ~A - - 20 100 IlL - - -100 ~A VIK - - -1.5 V - - - -20 20 - -85 mA 70 rnA ... Input Current "- Low Logic State (Three-State Control) - (VIL = 0.4 V) Input Clamp Diode Voltage (Three-State Control) (11K = -18 rnA) Output Third State Leakage Current ~A 10Z (VI(D) = 3.0 V, VIL = 0.8 V, Va = 0.4 V) (VI(D) = -3.0 V, VIL = 0.8 V, Va = 2.4 V) Output Short-Circuit Current (Note 5) (VI(D) = 3.0 V, VIH = 2.0 V, Va = 0 V) lOS -15 Power Supply Current ICC - - (VIL = 0 V) (All Inputs Grounded) NOTES: 1. All currents into device pins are shown as positive. out of device pins are negative. All voltages referenced to ground unless otherwise noted. 2. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case. 3. Refer to EIA-485 for exact conditions. Input balance and guaranteed output levels are done simultaneously for worst case. 4. Input resistance should be derived from input line current specifications and is shown for reference only. See EIA-485 and input line current specifications for more specific input resistance information. 5. Only one output at a time should be shorted. MOTOROLA LINEAR/INTERFACE DEVICES 7-192 SN75173, SN75175 SWITCHING CHARACTERISTICS (Unless otherwise noted, VCC =5 0 V and TA =25°C) Characteristic Propagation Delay Time - Symbol Typ Max Min Unit Typ Max Differential Inputs to Output ns (Output High to Low) (Output Low to High) Propagation Delay Time - SN75175 SN75173 Min tpHL(D) tPLH(D) - 25 25 35 35 - 25 25 35 35 tpLZ tpHZ tpZH tpZL - 20 20 16 16 40 30 22 25 - 16 19 11 11 35 35 30 30 Three-State Control to Output ns (Output Low to Third State) (Output High to Third State) (Output Third State to High) (Output Third State to Low) SN75173 SN75175 FUNCTION TABLE (EACH RECEIVER) FUNCTION TABLE (EACH RECEIVER) -- Differential Inputs 3-State Differential Inputs VID:;"0.2 V r---' -0.2 V < VID < 0.2 V r----VID';; -0.2 V (------ X Control Output Y 4 12 H X X L H X X L , , H X X L L L L H Z 3-State Control Output Y H H VID:;,,0.2V -0.2 V < VID H H < 0.2 V H ? VID';; -0.2 V H L X L Z H = high level L:: low level X:: irrelevant -- .. ? :: indeterminate Z = high-impedance (off) SWITCHING TEST CIRCUIT AND WAVEFORMS FIGURE 1 - PROPAGATION OELAY, DIFFERENTIAL INPUT TO OUTPUT To Scope (Outputl To Scope (Input) 51 "" " I " CL=15pF (Includes Probe ':'" and Stray Capacitance) 'O~~'" ~' tPL~(~) --- - tPHL(D) VOH----+-,-----~ +1.5 V Input Pulse CharacteristIcs - tTLH = tTHL = 6.0 ns (10% to 90%) PRR = 1.0 MHz, 50% Duty Cycle +2.0 V 3-State Control MOTOROLA LINEAR/INTERFACE DEVICES 7-193 SN75173, SN75175 SWITCHING TEST CIRCUIT AND WAVEFORMS (continued) FIGURE 2 - PROPAGATION DELAY. THREE-STATE CONTROL INPUT TO OUTPUT Input Pulse Characteristics - = = To Scope (Input) tTLH tTHL 6.0 ns (10% to 90%) PRR = 1.0 MHz, 50% Duty Cycle ~ n..:..:Ji , , !, ,II I I r--+--~~ , To Scope I (Output) Pulse Generator SWI >-4I---.--..... -~I---.- +1.5 V for tpHZ and tpZH -1.5 V for tPLZ and tpZL Differential Inputs CL = 15 pF (Includes Probe and Stray Capacitance) I All Diodes 1N916 -=- 3.0 V 0 V ___ -J =1.3 V Output or Equivalent 5.0 k 3.0 V Input 2.0 k __ .,.....-___________ +5.0 V 1.5 V I - t PLZ Ejn SWI Closed SW2 Closed o V ---- 1.5 V VOH~U~P;~ ----U--, ~V L Eout = 1.3 V VOL ____ ~--------OV =5.0V-VBE SW2 Closed - =====-_________ 3.0 V tpZL Input 1.5 V o V ---- Input SWI Closed 0V SW2 Open _~ltPZL Output ~ ~ VOL ______________ 0 V TYPICAL CHARACTERISTICS (80th Device Types. Unless Otherwise Noted) FIGURE 3 - OUTPUT VOLTAGE versus DIFFERENTIAL INPUT VOLTAGE 5.0 Vcc = 5.0 V TA = 25°C 4.0 VCM=-12V VCM=+12V o -140-120-100-80 -60 -40 -20 0 20 40 60 80 100 120140 VID, DIFFERENTIAL INPUT VOLTAGE (mV) MOTOROLA LINEAR/INTERFACE DEVICES 7-1'94 SN75173, SN75175 TYPICAL CHARACTERISTICS (continued) FIGURE 5 - OUTPUT VOLTAGE versus (INVERTED) 3-STATE CONTROL VOLTAGE - SN75173 FIGURE 4 - OUTPUT VOLTAGE versus 3-STATE CONTROL VOLTAGE 5.0 ",4.0 i r-- 1 SN751~3 1 5.25 V Vee =5.0 V ~ 3.0 ' - Vee =4.75 V I El -Vee ~ Vee - 4.75 V 2.0 ~ I 0.5 f I I 1.0 1.5 2.0 2.5 3.0 VI, 3·STATE CONTROL VOLTAGE (VOLTSI I 3.5 o o 4.0 FIGURE 6 - HIGH LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT 05 1.0 1.5 2.0 2.5 3.0 VI, 3-STATE CONTROL VOLTAGE (VOLTSI 0.5 in Vm =+0.2 V TA =25'C '" ~ 4.0 w '"i5 0 3.0 :> ---.: ------- §j 5 ".ffC± """1'-."" Vee 1.0 0 El - ~O.4 FIGURE 8 - :> -35 o -40 o HIGH LEVEL OUTPUT VOLTAGE versus TEMPERATURE Vee = 5.0 V_ '-----TA = 25°C 10 15 20 25 30 IQL. LOW LEVEL OUTPUT CURRENT (mAl 5.0 35 40 FIGURE 9 - LOW LEVEL OUTPUT VOLTAGE versus TEMPERATURE 5.0 0.5 ~ El~4.0 ~ 3.5 ~ o '" 0.4 §; 3.0 :> 0.3 >- ~ ~ 0.2 ~ 2.5 => ~ 2.0 Vee = 5.0 V 10H = 400 p.A- - = = Vee 5.0 V 10L 16 rnA §j ~ 1.5 ~ 1.0 " V ~ Ui 4.5 ~ / ~ o. l -10 -15 -20 -25 -30 10H. HIGH LEVEl OUTPUT CURRENT (mAl V V ~ 0.2 §j =4.75 V'0 t\. L / ~ 5.0 V '0~ -5.0 4.0 / ~ 0.3 '0...'\. o V ~ ~ee =5.25 V ~ ~VCC - 2.0 3.5 FIGURE 7 - LOW LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT 5.0 in ~ Vro =102 V I Load =8.0 kil to Gnd TA = 25°C =2.0 V SN75173 VI to Pin 4. Pin 12 SN75175 VI to Pin 4 or 12 ~l,O o - VI to IPin 12. Pin 4 = 0 V VIO =+0.2 V load = 8.0 IeIl to Gnd TA =25°C :> i5: 40 5.0 V Vee ~ 3.0 >- 5.0 I Vee J5.25 V 1 ~ 0.5 :> 0 o 10 20 30 40 50 60 70 80 TA. FREE AIR TEMPERATURE (OCI 90 10 100 20 30 4U 50 60 70 80 'A. FREE AIR TEMPERATURE (Oel MOTOROLA LINEAR/INTERFACE DEVICES 7-195 90 100 ORDERING INFORMATION Device TCF6000 TCF6000D Temperature Range -40·C to +85·C - 40·C to + 85·C Package Plastic DIP Plastic SO-8 TCF6000 Advance Information PERIPHERAL CLAMPING ARRAY SILICON MONOLITHIC INTEGRATED CIRCUIT PERIPHERAL CLAMPING ARRAY · .. designed to protect input/output lines of microprocessor systems against voltage transients. DSUFAX PLASTIC PACKAGE CASE 751-02 SO-8 • Optimized for HMOS System • Minimal Component Count • Low Board Space Requirement • No P.C.B. Track Crossov.ers Required • Applications Areas Include Automotive, Industrial, Telecommunications and Consumer Goods PLASTIC PACKAGE CASE 626-05 Gnd08 PIN ASSIGNMENT • C~mp FIGURE 1 - Inputs 5 Clamp lI ---..M--++-----t-t4>--1 Micro Computer 1-~'WIr--~ ---+--; Gnd This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 7-196 C~mp Clamp 4 BLOCK DIAGRAM AND TYPICAL APPLICAnON ... vcc 6 Clamp --~~~~------++~ Analog Inputs 7 Clamp 3 Each Cell Digital 2 TCF6000 MAXIMUM RATINGS = (TA 25·C unless otherwise noted, Note 1.) Rating Symbol Value Supply Voltage VCC 6.0 V Supply Current Ii 300 mA Clamping Current 11K ±50 mA Junction Temperature TJ 125 ·C PD 400 mW 8JA 100 .C/W TA -40 to +85 ·C Tstg -55to +150 ·C Power Dissipation (TA = + 85·C) Thermal Resistance (Junction-Ambient) Operating Ambient Temperature Range Storage Temperature Range Unit Note 1: Values beyond which damage may occur. ELECTRICAL CHARACTERISTICS (TA = 25·C, 4.5 "" VCC "" 5.5 V; if not otherwise noted.) Characteristic Symbol Min Max Unit Positive Clamping Voltage (Note 2) (11K = 10 mA, -40"C "" TA "" +85·C) V(lK) - VCC + 1.0 V Positive Peak Clamping Current IIK(P) - 20 mA Negative Peak Clamping Voltage (11K = -10 mA, -40·C "" TA "" +85·C) V(lK) -0.3 - V Negative Peak Clamping Current IIK(P) -20 - mA Output Leakage Current (0 V "" Vin "" Vccl (0 V"" Vin "" VCC, -40·C "" TA "" +85·C) Channel Crosstalk (AcT = p.A 20 log IL"IK) Quiescent Current (Package) IL ILT - 1.0 5.0 AcT 100 dB IB - 2.0 mA Note 2: The device might not give 100% protection in CMOS applications. CIRCUIT DESCRIPTION To ensure the reliable operation of any integrated circuit based electronics system, care has to be taken that voltage transients do not reach the device I/O pins. Most NMOS, HMOS and Bipolar integrated circuits are particularly sensitive to negative voltage peaks which can provoke latch-up or otherwise disturb the normal functioning of the circuit, and in extreme cases may destroy the device. Generally the maximum rating for a negative voltage transients on integral circuits is - 0.3 V over the whole temperature range. Classical protection units have consisted of diode/resistor networks as shown in Figures 2a and 2b. The arrangement in Figure 2a does not, in general, meet the specification and is therefore inadequate. The problem with the solution shown in Figure 2b .lies mainly with the high current drain through the biassing devices R1 and 03. A second problem exists if the input line carries an analog signal. When Vin is close to the ground potential, currents ariSing from leakage and mismatch between 03 and 02 can be sourced into the input line, thus disturbing the reading. FIGURE 2 - CLASSICAL PROTECTION CIRCUITS VCC VCC Rl Vin Rin Vin Rin I I I I I I I Cin * Cin I I D3 I i I a Gnd MOTOROLA LINEAR/INTERFACE DEVICES 7-197 ;;k I I I b Gnd II • TCF6000 AftPllCATIONS INFORMATION Figure 3 shows the clamping characteristics which are common to each ofthe six cells in the Peripheral Clamping Array. As with the classical protection circuits, positive voltage transients are clamped by means of a fast diode to the VCC supply line. Figure 4 depicts a typical application in a microcomputer based automotive ignition system. The TCF6000 is being used not only to protect the system's normal inputs but also the (bidirectional} serial diagnostics port. The value of the input resistors, Rin, is determined by the clamping current and the anticipated value of the spikes. FIGURE 3 - CLAMPING CHARACTERISTICS 11K +10mA~-----------------------t----- Thus: Rin = where V V Ijj( Ohms = Peak volts (Volts) 11K = Clamping current (Amps) -0.3V OV So, taking V VCC = 300 V typically (SAE J1211) 11K = 10 mA (recommended) VCC + 0.75 V Typ gives Rin • Impedance .. High Impedance 30 k Resistors of this value will not usually cause any problems in MOS systems, but their presence needs to be taken into account by the designer. Their effect will normally need to be compensated for in Bipolar systems. -lOrnA Low I = Low Impedance FIGURE 4 - TYPICAL AUTOMOnvE APPUCATION Vee 0:- Gnd T C F 6 0 0 0 I Gnd VBatt VCC IliI'f1 80 De 01 VBatt MC6B05 52 Bl DO B2 6X Rin VSS 3X Cin Gnd Gnd Serial Diagnostics ... Car Ignition Module MOTOROLA LINEAR/INTERFACE DEVICES 7-198 Coil Drive Coil Feedback TCF6000 The use of Cin is not mandatory, and is not recommended where the lines to be protected are used for output orfor both input and output. For digital input lines, the use of a small capacitor in the range of 50 to 220 pF is recommended as this will reduce the rate of rise of voltage seen by the TCF6000 and hence the possibility of overshoot. In the case of the analog inputs, such as that from the pressure sensor, the capacitor Cin is necessary for devices, such as the MC6805S2 shown, which present a low impedance during the sampling period. The maximum value for Cin is determined by the accuracy required, the time taken to sample the input and the input impedance during that time, while the maximum value is determined by the required frequency response and the value of Rin. Thus for a resistive input AID connector where: TS = Sample time (Seconds) RD = Device input resistance (Ohms) Vin = Input voltage (Volts) k = Required accuracy (%) 01 = Charge on capacitor before sampling 02 = Charge on capacitor after sampling ID = Device input current (Amps) Thus: 01-0 2 but and so that and so k.01 = 100 01 = Cin Vin 01-0 2 = ID·TS _ k.Cin-Vin I D TS 100 ID·TS Cin (min) = - Vk. Farad In· . 100.TS Cin (min) = k.RD Farad The calculation for a sample and hold type converter is even simpler: k = Required accuracy (%) CH = Hold capacitor (Farad) .) 100.CH F Cin (min = - - k - arad For the MC6805S2 this comes out at: Cin (min) = 100.25 pF 0.25 10 nF for 1/4% accuracy • MOTOROLA LINEAR/INTERFACE DEVICES 7-199 • ® UlN2068B MOTOROLA QUAD 1.5 A SINKING HIGH CURRENT SWITCH QUAD 1.5 A DARLINGTON SWITCH The ULN20688 is a high-voltage, high-current quad Darlington switch array designed for high current loads, both resistive and reactive, up to 300 watts. It is intended for interfacing between low level (TTL, DTL, LS and 5.0 V CMOS) logic families and peripheral loads such as relays, solenoids, dc and stepping motors, multiplexer LED and incandescent displays, heaters, or other high voltage, high current loads. The Motorola ULN20688 is specified with minimum guaranteed breakdown of 50 V and is 100% tested for safe area using an inductive load. It includes integral transient suppression diodes. Use of a predriver stage reduces input current while still allowing the device to switch 1.5 Amps. It is supplied in an improved 16-Pin plastic DIP package with heat sink contact tabs (Pins 4,5 and 12, 13). A copper alloy lead frame allows maximum power dissipation using standard cooling techniques. The use of the contact tab lead frame facilitates attachment of a DIP heat sink while permitting the use of standard layout and mounting practices. SILICON MONOLITHIC INTEGRATED CIRCUIT B SUFFIX PLASTIC PACKAGE CASE 648C-02 • TTL, DTL, LS, CMOS Compatible Inputs • 1.5 Amp Maximum Output Current • Low Input Current PIN CONNECTIONS • Internal Freewheeling Clamp Diodes • 100% Inductive Load Tested • Heat Tab Copper Alloy Lead Frame for Increased Dissipation MAXIMUM RATINGS (TA ~ 25"C and ratings apply to anyone device in the package unless otherwise noted.) Rating Output Voltage Input Voltage (Note 1) Supply Voltage Symbol Value Unit Vo 50 V VI 15 10 Vs - V V Collector Current (Note 2) IC 1.75 A Input Current (Note 3) II 25 mA Operating Ambient Temperature Range Storage Temperature Range Junction Temperature o to TA + 70 -5510 +150 °c TJ 150 °c C B B Vs Gnd Gnd Gnd Gnd B B NC C C K °c T stg K C Notes: 1. Input voltage referenced to ground. 2. Allowable output conditions shown in Figures 11 and 12. 3. May be limited by max input voltage. Vs r-_--_r-{) ORDERING INFORMATION" C +---II*---t--<>K Device ULN2068B I I Temperature Range O°C to + 70°C I Package I Plastic DIP • Other options of this ULN2060/2070 series are available for volume applications. Contact your local Motorola Sales Representative. MOTOROLA LINEAR/INTERFACE DEVICES 7-200 ULN20688 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Fig. Characteristic Output Leakage Current (VCE = 50 V) (VCE ~ 50 V, TA = 70°C) ICEX 1 I Collector-Emitter Saturation Voltage (lC = 500 mA (lC = 750 mA (lC=1.0A (lC = 1.25 A Symbol VCE(sat) Input Current - On Condition (VI = 2.4 V) (VI = 3.75 V) - Ilion) 4 5 Inductive Load Test (VS = 5.5 V, VCC = 24.5 V, tpw = 4.0ms) 3 Supply Current (lC = 500 mA, Vin = 2.4 V, Vs = 5.5 V) 8 Turn-On Delay Time (50"10 EI to 50"10 EO) - tpHL Turn-Off Delay Time (50"10 EI to 50"10 EO) - tpLH Clamp Diode Leakage Current (VR = 50 V) (VR = 50 V, TA = 70°C) 6 Clamp Diode Forward Voltage (IF = 1.0 A) (IF = 1.5 A) 7 Vllon) AVout Max - - - 1.13 1.25 1.40 1.60 V - - - mA - - 0.25 1.0 - - 2.4 - - 100 - - 6.0 - - 1.0 - - 4.0 - - 50 100 - - 1.75 2.0 V mV mA IS IR VF Unit I1A 100 500 - Input Voltage - On Condition (VCE = 2.0 V, IC = 1.5 A) Typ - - 2 V· = 2.4 V) on Min f1S flS flA V TEST FIGURES FIGURE 2 FIGURE 1 Open Open Vs VeE Open , - - - - - - Q - < l Vee FIGURE 4 FIGURE 3 20 !l -, r- 14m , Vo~L..J~v "'- out2 Jt1 AVout =IVout l -Vou t21 MOTOROLA LINEAR/INTERFACE DEVICES 7-201 x>-.....- - < l Open II • ULN2068B TEST RGURES (CONTINUED) FIGURE 6 FIGURE 5 Open a FIGURE Vs Open FIGURE 7 Ie TYPICAL CHARACTERISTIC CURVES - T A = 25°C FIGURE 9 - FIGURE 10 - INPUT CURRENT versus INPUT VOLTAGE COLLECTOR CURRENT versus INPUT CURRENT 1.6 1.41---l--+--l--.J-.,..o/,"-+---+--+--+---·~ 1.4 1.2 / ~ 1.0 a '3 ~ Vs -- ,-- TA O. 8 ~ ~ 5.0 V 25°C o. 6 V 0 f TA ':!J 0.61----I1---~'---f_- 8 ~04 0 .5 "'- 4.0 5.0 a = 70"C w/o HEAT SINK "" -Number of outputs conducting simultaneously 40 60 DUTY CYCLE 1'11.1 80 5~ r-100 0 V kmberOf outputs conducting simultaneously 20 MOTOROLA LINEAR/INTERFACE DEVICES 7-202 ~ __L-__ L-~ TA = 70°C wlSTAVER HEAT SINK (37.5 °CIW) "- ~'" 0 /4 .......... t-- t-- I-- f-- __ __-L__ ~ 4.0 v-a Device Limit 5 r- ~ 2.0 3.0 II. INPUT CURRENT (mAl FIGURE 12 - ';-- r--.... "'......." t'--r--..... ~ ~ __ 1.0 ........... L 20 .. -- _... --+---I~-"--I / 0.21--+--''+--+-+--+--+---i--+--+-...j r t\. --- Vs ~ 5.0 V __+---I~-+_+- __ TA = 25°C ...- - - .- - f.----.- - - - - - ,j Device Limit f\ .- - - \------ OL-~_-L_-L 3.0 Vin. INPUT VOLTAGE IVI FIGURE 11 - / 0.8 V 2.0 1.0 1.0 /17' ~ Ei /' o. 2 0 I / / o.4 5 V V ~ 1.2 '-..... .......... 4' 1 - ........ rt-.-+-.. t-.... .......... r-- t --r-- I-- f - - 1'---..3 40 60 DUTY CYCLE ('II.) 80 100 ULN2068B FIGURE 13 - f" FIGURE 14- TA = 5O"C w/o HEAT SINK TA = 7O"C w/STAVER V-7 HEAT SINK (27.5"CIW) ~iceLi~n I" " f"... 0 5 L #" ......... ~4 V Number of ........... r-.... ~ --- ~iceLi~it 1 '\ 2 --- ..... rt-. r- t--- " .......... -.......!.r-.. "" " ........... ......... 3 ) -I--L outputs conducting SimutneouS'r 0 FIGURE 15 - 80 TA = 5O"C w/STAVER V-8 HEAT SINK (37.5 'e1W) "" " r-.... 5 L 20 80 100 FIGURE 16-TA = 5O"C wi STAVER V-7 HEAT SINK (27.5"CIW) r-...... ""-..t 10'4 ~berOf ........ ---- -- I"---. I outputs conducting -- 2' ~ I"14'-............ r---.. r-...... r- 1 3 2 / 40 60 DUTY CYCLE 1%1 .......... r- of outputs -~ _ Number conducting _ -- - - ~m"ineousi SimUjneoUS'r 0 - I--= f" Device Limit ........., 0 -- 40 60 DUTY CYCLE 1%1 20 .... Device Limit 5 conducting SimuteousllY 40 60 DUTY CYCLE 1%1 20 / Number of outputs 1 80 1I1O 0 20 MOTOROLA LINEAR/INTERFACE DEVICES 7-203 40 60 DUTY CYCLE 1%1 80 100 • ® ULN2074B MOTOROLA QUAD 1.5 A SINKING HIGH CURRENT SWITCH • QUAD 1.5 A DARLINGTON SWITCH The ULN2074B is a high voltage, high current quad Darlington switch array designed for high current loads, both resistive and reactive, up to 300 watts. It is intended for interfacing between low level (TTL, DTL, LS and 5.0 V CMOS) logic families and peripheral loads such as relays, solenoids, dc and stepping motors, multiplexer LED and incandescent displays, heaters, or other high-voltage, high current loads. The Motorola ULN2074B is specified with minimum guaranteed breakdown of 50 V and is 100% tested for safe area using an inductive load. It is supplied in an improved 16-Pin plastic DIP package with heat sink contact tabs (Pins 4, 5 and 12, 13). A copper alloy lead frame allows maximum power dissipation using standard cooling techniques. The use ofthe contact tab lead frame facilitates attachment of a DIP heat sink while permitting the use of standard layout and mounting practices. SILICON MONOLITHIC INTEGRATED CIRCUIT BSUFFIX PLASTIC PACKAGE CASE 648C-02 • TTL, DTL, LS, CMOS Compatible Inputs • 1.5 Amp maximum Output Current • Low Input Current • 100% Inductive Load Tested • Heat Tab Copper Alloy Lead Frame for Increased Dissipation PIN CONNECTIONS MAXIMUM RATINGS (TA ~ 25°C and ratings apply to anyone device in the package unless otherwise noted). C Rating L...:....----, Symbol Value Unit Output Voltage Vo 50 V B Input Voltage (Note 1) VI 30 V SUB SUB Collector Current (Note 2) IC 1.75 A SUB SUB 25 mA TA o to +70 °c Tstg -55 to +150 °c TJ 150 °C Input Current (Note 3) Operating Ambient Temperature Range Storage Temperature Range Junction Temperature B B B E C C Notes: 1. Input voltage referenced to ground (substrate), 2. Allowable output conditions shown in Figures 8 and 9. 3. May be limited by max input voltage. ORDERING INFORMATION· 3500 Rin BO I f ~ ,"h Partial Schematic Device Temperature Range Package ULN2074B ooC to +70oC Plastic DIP • Other options of this ULN2060/2070 series are available for volume applications. Contact your local Motorola Sales Representative. Substrate MOTOROLA LINEAR/INTERFACE DEVICES 7-204 ULN2074B ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Fig. Characteristic Output Leakage Current (VCE = 50 V) (VCE = 50 V. TA = 70°e) 1 Collector-Emitter Saturation Voltage (lc = 500 rnA, II = 625 ~A) (IC = 750 rnA, 11= 935 ~A) (IC = 1.0 A, II = 1.25 rnA) (IC = 1.25 A, 11= 2.0 rnA) 2 Input Current (VI = 2.4 V) (VI = 3.75 V) 4 Symbol Typ Max - - 100 500 - - 1.13 1.25 1.40 1.60 2.0 4.5 - 4.3 9.6 - - - 2.0 2.5 LlVout - - 100 mV Min Unit ~A ICEX V VCE(sat) On Condition rnA II(on) Input Voltage - On Condition (VCE = 2.0 V, IC = 1.0 A) (VCE = 2.0 V, IC = 1.5 A) 5 Inductive Load Test (VCC = 24.5·V, tpw = 4.0 ~s) 3 Turn-On Delay Time (50% EI to 50% EO) - tpHL - - 1.0 ~s Turn-Off Delay Time (50% EI to 50% EO) - tpLH - - 1.5 ~s V VI(on) TEST FIGURES FIGURE 1 FIGURE 2 ~e V) r------<;>--c ~ vee FIGURE 4 FIGURE 3 IN916 20 n i ,14ms Vo~ Jl1 L.Jrv--cv "-. out2 aVout ~IVoutl -V ou t21 MOTOROLA LINEAR/INTERFACE DEVICES 7-205 .><:>--....- - 0 Open • ULN2074B FIGURE 5 TYPICAL CHARACTERISTIC CURVES FIGURE 7 - COLLECTOR CURRENT versus INPUT CURRENT FIGURE 6 - INPUT CURRENT versus INPUT VOLTAGE 2.0 18 14 112 10 8.0 ~ ,,: Are! al Narmal -~ - TIL 8. 0 Operatian 4.0 ~~ .~ 2.0 1.0 1. 5 I ./ v--- 3.0 V ! / /" / 5.0 r \\ " """"" ...... ........ ............. ~ ",4 5 L ........... Number of autpull conducting limu~-r 0 20 ~ 110 DUlY CYCLE 1%1 "- ............ " -- - ~ 110 ........... .......... ...........3 I ........ ......... ......... ......... ........... r-- ---- r-- simultaneou~ty 0 20 MOTOROLA LINEAR/INTERFACE DEVICES 7-206 -- ---t..... r-- 5~ dmberOf outputs conducting 100 v-a Device Limit 5 "i'- ........... ~ 5.0 4.0 FIGURE 9 - TA = 70 0 Cw/STAVER HEAT SINK (37.5 °C/W) f Device lim. 0 3.0 II. INPUT CURRENT (mA) FIGURE a - TA = 70·C w/o HEAT SINK .......... 2.0 1.0 VI. INPUT VOLTAGE (VOLTS) 5 TA=25°C / ~ 0.5 4.0 - ,,/ ::> :;: 1.0 ..... i--"" ~ / 2. 0 0 g /,r 1 6 !:; /' TA=2S·C 40 110 DUlY CYCLE 1'111 80 100 ULN2074B FIGURE 10 - TA = 70°C w/STAVER V-7 HEAT SINK (27.6 °C/WI 1.5 FIGURE 11 - TA = 50·C w/o HEAT SINK .- r ~vlceli~lt 1"- ............ """ 5 L / ............ ....... --------I I'--. I-.... -.......!. 1>0'4 ............ t-- 5 r Device Limit "- 2 Number of outputs conducting " ---3 -.......!. r- Number of outputs I- conducting r-- -- ,imuitaneou't 100 80 60 40 DUTY CYCLE 1'/01 20 ........... V L SlmUlianeOUSlr 0 ...... 4 ............ 5 I ........... ......... r--,......... 0 20 80 60 40 100 DUTY CYCLE 1%1 FIGURE 12 - TA= 50°Cw/STAVERV-B HEAT SINK (37.6 °C/WI FIGURE 13 - TA = 60°C w/STAVER V-7 HEAT SINK (27.6 °C/WI _., -r Device Limit 5 " 0 5 L ........ '""-.. ...... -- I'-.... .......... "'-.l r--.... ,,4 ~mberOf t-- outputs conducting ------ I Device limit 5 ....... 1""'- ~ I"-... ............ 2""- ......:. 2 3 I"--.. 0 / 5 L 'Imul,aneou'li 0 20 40 60 Number of outputs conducting - - 1.1 r-r-- "muitaneour 80 100 0 20 DUTY CYCLE 1%1 MOTOROLA LINEAR/INTERFACE DEVICES 7-207 60 40 DUTY CYCLE 1%1 80 100 • ® ULN2801 ULN2802 ULN2803 ULN2804 MOTOROLA OCTAL HIGH VOLTAGE. HIGH CURRENT DARLINGTON TRANSISTOR ARRAYS OCTAL PERIPHERAL DRIVER ARRAYS The eight NPN Darlington connected transistors in this family of arrays are ideally suited for interfacing between low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher current/voltage requirements of lamps, relays, printer hammers or other similar loads for a broad range of computer, industrial, and consumer applications. All devices feature opencollector outputs and free wheeling clamp diodes for transient suppression. The ULN2801 is a general purpose device for use with CMOS, PMOS or TIL logic. The ULN2802 contains a zener diode and resistor in series with the input to limit input currents and assure compatibilitywith 14to 25 volt PMOS logic. The ULN2803 is designed to be compatible with standard TIL families while the ULN2804 is optimized for 6 to 15 volt high level CMOS or PMOS . SILICON MONOLITHIC INTEGRATED CIRCUITS MAXIMUM RATINGS (TA = 25°C and rating apply to anyone device· in the package unless otherwise noted.) Rating Symbol Value Unit Output Voltage Vo 50' V Input Voltage IExcept ULN2801) VI 30 V Collector Current - IC 500 rnA IB 25 rnA Base Current - Continuous Continuous Operating Ambient Temperature Range Storage Temperature Range Junction Temperature TA o to +70 °c Tstg -55 to +150 °c TJ 125 °c R8JA ~ 55'e/W Do not exceed maximum current limit per driver. *Higher voltage selection available. See your local representative. ORDERING INFORMATION CHARACTERISTICS DEVICE ULN2801A ULN2802A ULN2803A ULN2804A INPUT COMPATIBILITY General Purpose CMOS, PMOS 14-25 Volt PMOS TTL, 5.0 V CMOS 6- 15 V CMOS, PMOS VCE(MAX)/IC(MAX) 50 V/500 50V/500 50V/500 50V/500 rnA rnA rnA rnA TA o to +70 o C o to +70o C o to +70°C o to +70 o C MOTOROLA LINEAR/INTERFACE DEVICES 7-208 A SUFFIX PLASTIC PACKAGE CASE 707-02 PIN CONNECTIONS ULN2801, ULN2802, ULN2803, ULN2804 ELECTRICAL CHARACTERISTICS (TA; 25°C unless otherwise noted) Characteristic Output Leakage Current «Va; «Va; «Va; «Va; 50 50 50 50 V. V. V. V, TA; TA ; TA; TA; +70°C) +25°C) +70°C, VI; 6.0 V) +70°C, VI; 1.0 V) Input Current - Input Voltage - 2.0 V, 2.0 V, 2.0 V, 2.0 V, 2.0 V, 2.0 V, 2.0 V, 2.0 V, Min 5 IC; 300 IC; 200 IC; 250 IC; 300 IC; 125 IC; 200 IC; 275 IC ; 350 Input Current - rnA) rnA) rnA) rnA) rnA) rnA) rnA) rnA) Off Condition - - - 100 50 500 500 - 1.1 0.95 0.B5 1.6 1.3 1.1 Unit - 0.B2 0.93 0.35 1.25 1.35 0.5 1.0 1.45 - - - - 13 2.4 2.7 3.0 5.0 6.0 7.0 B.O V rnA II(on) - On Condition Max VCE(sat) All Types All Types All Types 4 Typ pA ULN2B02 ULN2B03 ULN2B04 ULN2B04 (VI; 12 V) (VCE; (VCE; (VCE; (VCE; (VCE; (VCE; (VCE; (VCE; ICEX 2 On Condition (VI; 17V) (VI; 3.B5 V) (VI; 5.0 V) Symbol 1 All Types All Types ULN2B02 ULN2B04 Collector-Emitter Saturation Voltage (IC ; 350 rnA, IB ; 500 pA) (IC; 200 rnA. IS; 350 pA) (IC; 100 rnA. IS; 250 pA) Fig. V VI(on) ULN2B02 ULN2B03 ULN2B03 ULN2B03 ULN2B04 ULN2B04 ULN2B04 ULN2B04 All Types 3 II(off) 50 ULN2BOl 2 hFE 1000 - 100 - pA - - (IC ; 500 pA, TA ; +70°C) DC Current Gain - (VCE ; 2.0 V, IC; 350 rnA) - 15 25 pF ton 0.25 1.0 ps toff - 0.25 1.0 ps 6 IR - - 50 100 pA 7 VF - 1.5 2.0 V Input Capacitance CI Turn-On Delay Time (50% EI to 50% EO) Turn-Off Delay Time (50% EI to 50% EO) Clamp Diode Leakage Current (VR; 50 V) TA; +25°C TA; +70 oC Clamp Diode Forward Voltage (IF; 350 rnA) *Higher voltage selections available, contact your local representative. MOTOROLA LINEAR/INTERFACE DEVICES 7-209 ULN2801, ULN2802, ULN2803, ULN2804 TEST FIGURES (SEE FIGURE NUMBERS IN ELECTRICAL CHARACTERISTICS TABLES) FIGURE 2 FIGURE 1 Open Open VeE Open VeE Ie hFE= lin Open FIGURE 4 • x>--___- < l Open FIGURE 6 FIGURE 5 Open FIGURE 7 MOTOROLA LINEAR/INTERFACE DEVICES 7-210 ULN2801, ULN2802, ULN2803, ULN2804 TYPICAL CHARACTERISTIC CURVES - TA = 25°C (unless otherwise noted) OUTPUT CHARACTERISTICS FIGURE 9 - OUTPUT CURRENT versus INPUT CURRENT FIGURE 8 - OUTPUT CURRENT versus SATURATION VOLTAGE 1 600 / !2 ~ ::> u ~ All Types 400 / :::l 0> u 200 / 12 ..-.s / ....z ~ / a '"t; o All Types 400 / 0> ~ 8 200 / 0.5 1.0 1.5 VCE(s't). SATURATION VOLTAGE (VOLTS) . . .V V ,,/ o o 2.0 V / 12 ..... V o 600 200 400 liN. INPUT CURRENT (ILA) 600 800 INPUT CHARACTERISTICS FIGURE 10- ULN2802 INPUT CURRENT versus INPUT VOLTAGE 2.0 2.0 V ./ / ../ ../ V /" V ./ .,/' / /" V ./ o 12 • FIGURE 11 - ULN2803 INPUT CURRENT versus INPUT VOLTAGE o 14 16 18 20 22 VIN. INPUT VOLTAGE (VOLTS) 24 26 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIN. INPUT VOLTAGE (VOLTS) FIGURE 12 - ULN2804 INPUT CURRENT versus INPUT VOLTAGE 2.0 ~ f...-- ........... --o 5.0 6.0 7.0 8.0 9.0 10 11 VIN. INPUT VOLTAGE (VOLTSI 12 MOTOROLA LINEAR/INTERFACE DEVICES 7-211 5.5 6.0 ULN2801, ULN2802, ULN2803, ULN2804 REPRESENTATIVE CIRCUIT SCHEMATICS 1/8 ULN2802 1/8 ULN2801 +--tl--r-<> +--IM--t--O Pin 10 Pin 10 I * I _______ _ L 1/8 ULN2804 1/8 ULN2803 +--III----t-<> +--IM--r-<> Pin 10 I I I L __ * ______ _ • MOTOROLA LINEAR/INTERFACE DEVICES 7-212 Pin 10 Selector Guide RF Communications 8-2 Telecommunications. . . . . . . . . . . .. 8-4 In Brief ... Alphanumeric Listing .............. 8-11 RF Radio communication has greatly expanded its scope in the past several years. Once dominated by public safety radio, the 30 to 1000 MHz spectrum is now packed with personal and low cost business radio systems. The vast majority of this equipment uses FM or FSK modulation and is targeted at short range applications. From mobile phones and VHF marine radios to garage door openers and radio controlled toys, these new systems have become a part of our lifestyle. Motorola linear products has focused on this technology adding a wide array of new products including complete receivers processed in our exclusive 3 GHz MOSAIC 1.5 process. New surface mount packages, for high density assembly, are available for all of these products, as is a growing family of supporting applications notes and development kits. Telephone & Voice/Data Traditionally, an office environment has utilized two distinctly separate wired communications systems - Telecom~ munications and Datacommunications. Each had its individual hardware components complement and each required its own independent transmission line system: twisted wire pairs for Telecom and relatively high priced coax cable for Datacom. But times have changed. Today, Telecom and Datacom coexist comfortably on inexpensive twisted wire pairs and utilize a significant number of components in common. This has led to the development and enhancement of PBX (Private Branch Exchanges) to the paint where the long heralded "office of the future," with simultaneous voice and data communications capability at each station, is no longer of the future at all. The capability is here today! Motorola semiconductor components serve a wide range of requirements for the voice/data marketplace. They encompass both CMOS and linear technologies, each to its best advantage, and upgrade the conventional analog voice systems and establish new capabilities in digital communications. Early products, such as the solid-state single-chip crosspoint switch, the more recent monolithic Subscriber-loop-Interface Circuit (SLlG), a single-chip Codec/Filter (Monocircuit) the latest Universal Digital loop Transceivers (UDlT), and singlechip telephone circuits are just a few examples of Motorola leadership in the voice/data area. Related Application Notes .......... 8-12 Data Sheets ......... . . . . . . . . . . . . .. 8-13 Communication Circuits Il Communication Circuits RF Communications Narrowband Dual Conversion Receivers ......... AM Receiver, Medium/Short Wave . . . . . . . . . . . . Wideband Data Receivers. . . . . . . . . . . . . . . . . . Narrowband IFs . . . . . . . . . . . . . . . . . . . . . . . . . Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . Balanced Modulator/Demodulator . . . . . . . . . . . . . Telecommunications Subscriber Loop Interface . . . . . . . . . . . . . . . . . Electronic Telephone .. . . . . . . . . . . . . . . . . .. Tone Ringers . . . . . . . . . . . . . . . . . . . . . . . . . . Speech Networks. . . . . . . . . . . . . . . . . . . . . . . Speakerphone. . . . . . . . . . . . . . . . . . . . . . . . . Telephone Accessory . . . . . . . . . . . . . . . . . . . . CVSD Modulator/Demodulator . . . . . . . . . . . . . . 8-2 8-2 8-2 8-2 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 8-10 RF Communications Narrowband Dual Conversion Receivers RF Input (Maxi IF1 (MaxI IF2 (limiter inl Type Vee MC3362 2-7 V 3mA <1,.V 180 MHz 10.7 MHz 455 kHz MC3363 2-7 V 4mA <1,.v 180 MHz 10.7 MHz 455 kHz ICC Sensitivity FM/FSK - VHF RSSI Max Data Rate - j 1.2 kb Includes buffered VCO output 24 Pin DIP, SOIC P1724 DW1751E j j 1.2 kb Includes RF amp, mute 28 Pin SOIC DW/751F Mute Notes Package Case Suffix AM Receiver Medium/Short Wave Wideband Data (FM/FSK) Receiver Typa MC3356 Vee ICC Sensitivity 3-9 V 25mA 30,.V Narrowband IF's - IF1 (MaxI 1F2 (limiter inl 200 MHz 10.7 MHz VHF Mute RSSI Max Data Rate j j 500 kb Package Suffix Includes front end 20 Pin mixer/L.a. DIP/PLCC P1738 FN1775 16 Pin DIP/SOIC P/648 D1751B Wideband (FM/FSK) IF MC3357 4-8 V 5mA 5,.V 45 MHz 455 kHz j - - MC3359 4-9 V 7mA 2,.V 45 MHz 455 kHz j - MC3361 2-8 V 6mA 2,.V 60 MHz 455 kHz j - - MC3367 1-5V lmA <1,.V 75 MHz 455 kHz j - 1.2 kb MC3371 2-8 V 6mA 2,.v 60 MHz 455 kHz j j MC13055 3-12V 25mA 20,.V 40 MHz j j Out Battery Check Tone ose Max Mod. Freq. 50 MHz j j -30 dBm 150 MHz to +10dBm - - Transmitters - Case Notes - 18 Pin P1707 DIP/SOIC DW1751C 16 Pin DIP/SOIC P/648 D1751B 28 Pin SOIC DW1751F (3Q88 Introl 16 Pin DIP/SOIC P/648 D1751B Wideband Data IF 16 Pin DIP/SOIC P/648 D1751B Package Suffix 5.0 kHz Includes low battery (xtal ctll checker, tone osc. 16 Pin DIP/SOIC P/648 D1751B 5.0 kHz Includes two frequency (xtal ctll multiplier/amplifier 16 Pin DIP/SOIC P/648 D1751B 2Mb 1 Cell Operation FM/FSK MaxRF Freq. Type Vee ICC MC2831A 3-8Vdc 5mA MC2833 3-8Vdc 3mA Pout -30 dBm Case Notes transistors MOTOROLA LINEAR/INTERFACE DEVICES 8-2 Balanced Modulator/Demodulator Case Type MC1596 MC1496 Vee ICC 5-30 V 5-30 V 10mA 10mA Function Carrier Balance >50 dB General purpose balanced modulator! demodulator for AM, SSB, FM Detection Low Power FM Transmitter System Suffix 10 Pin Metal 14 Pin Ceramic OIL, DIP, SOIC G!603 U632 P!646 Dn51A MOSAIC® 1.5 VHF Narrowband Dual-Conversion Receivers MC2831A-TA = -30° to + 75°C, Case 648, 751 B • • • • • • • Package Complete VHF FM Transmitter/Exciter Mike Preamp with Limiting Tone Generator for CTSS or AFSK Crystal or L-C VCO Operation Buffer/Multiplier Output Stage Low Voltage (internal reference) Warning Circuit Easily Partitioned for Semicustom Applications MC3362/MC3363 • • • • • • • MC2831A T A = - 40°C to + 85°C. Case 724, 751A Operation to 180 MHz 2-8 V dc Supply >1 /LV for 20 dB Quieting Sensitivity Analog and Data Modulation Recovery >60 dB Dynamic Range RSSI Crystal or VCO First L.O. Operation On-Chip RF Amp/MC3363 Data Vee ll~_ _;.:J-~--- Recovered Audio L.. (All capacItors In ,...F unless otherwIse stated. Resistors In ohms. Inductors," Henrles) l RF 45 01'.f' ~~:tH~O'~FU 2pl~ l' ~ 0.71' 0.11.21' U Low Voltage FM Narrowband Receiver MC336? • • • • • • • T A = O°C to + 70°C, 3O'X-f' 44.54SMHz 5 1l 1 27 3 26 4 25 5 24 O$" , Case 751 F '.o~ ep : Single Cell Operation to 0.9 VCC Single Conversion Operation to 75 MHz Current Drain of 1 mA Split I.F. Amplifier for Single or Dual Filters Analog and Data Outputs Sensitivity of 0.7 /LV Typ for 20 dB Quieting Low Battery Voltage Indicator 56kt 18~ p l~---~ Pie.r:a C2 Sound Element II • Complete Telephone Bell Replacement Circuit with Minimum External Components • Push-Pull Output Stage for Greater Output Power Capability (MC34017) • On-Chip Diode Bridge and Transient Protection • Base Frequency Options - • Direct Drive for Piezoelectric Transducers • Base Frequency Options - MC34012-1: 1.0 kHz MC34012-2: 2.0 kHz MC34012-3: 500 Hz MC34017-1: 1.0 kHz MC34017-2: 2.0 kHz MC34017-3: 500 Hz • Input Impedance Signature Meets Bell and EIA Standards • Rejects Rotary Dial Transients MC34017 - TA = -20° to + 60°C, Case 626.751 MOTOROLA LINEAR/INTERFACE DEVICES 8-6 I I I I I I I I I I I I I I I I I I I I I I I I Speech Networks CeramIc Telephone Speech Network and Tone Dialer MC34013A - TA = - 20° to + 60°C, Case 710,776 7 • Linear/1 2L Technology Provides Low 1.4 Volt Operation in Both Speech and Dialing Modes 8 9 C Keypad • Speech Network Provides 2-4 Wire Conversion with Adjustable Sidetone Utilizing an Electret Microphone • DTMF Generator Uses Low-Cost Ceramic Resonator with Accurate Frequency Synthesis Technique • On-Chip Regulator Insures Stable Operation Over Wide Range of Loop Lengths • Dialer Mutes Speech Network with Internal Delay for Click Suppression on DTMF Key Release Speech Network with Dialer Interface MC34014 - TA = -20° to + 60°C, Case 707, 775 The MC34014 is a Telephone Speech Network integrated circuit which incorporates adjustable transmit, receive, and sidetone functions, line interface circuit, dialer interface, and a regulated output voltage for a dialer circuit. It includes an equalization circuit to compensate for various line lengths and the conversion from 2-to-4 wire is accomplished with supply voltages as low as 1.5 volts. T,p • Transmit, Receive, and Sidetone Gains Set By External Resistors • Loop Length Equalization for Transmit, Receive, and Sidetone Functions • Operates Down to 1.5 Volts (V +) in Speech Mode E • Provides Regulated Voltage for CMOS Dialer • Speech Amplifiers Muted During Pulse and Tone Dialing • DTMF Output Level Adjustable with a Single Resistor • Compatible with 2-Terminal Electret Microphones • Compatible with Receiver Impedances of 150 nand Higher Telephone Speech Network with Dialer Interface MC34114-TA = -20° to + 70°C, Case 707, 7510 • Operation Down to 1.2 Volts • Externally Adjustable Transmit, Receive, and Sidetone Gains • Differential Microphone Amplifier Input Minimizes RFI • Transmit, Receive, and Sidetone Equalization on both Voice and DTMF Signals • Regulated 1.7 Volts Output for Biasing Microphone .• Regulated 3.3 Volts Output for Powering External Dialer • Microphone and Receive Amplifiers Muted During Dialing • Differential Receive Amplifier Output Eliminates Coupling CapaCitor • Operates with Receiver Impedances of 150 n and Higher • MC34114 Complies with Bell Telephone and BT Standards MOTOROLA LINEAR/INTERFACE DEVICES 8-7 Speakerphone Voice Switched Speakerphone Circuit MC34018 - TA = -20° to + 60°C, Case 710,776 The MC34018 Speakerphone integrated circuit incorporates the necessary amplifiers, attenuators, and control functions to produce a high quality hands-free speakerphone system. Included are a microphone amplifier, a power audio amplifier for the speaker, transmit and receive attenuators, a monitoring system for background sound level, and an attenuation control system which responds to the relative transmit and receive levels as well as the background level. Also included are all necessary regulated voltages for both internal and external circuitry, allowing linepowered operation (no additional power supplies required). A Chip Select pin allows the chip to be powered down when not in use. A volume cvntrol function may be implemented with an external potentiometer. MC34018 applications include speakerphones for household and business use, intercom systems, automotive telephones, and others. • All Necessary Level Detection and Attenuation Controls for a Hands-Free Telephone in a Single Integrated Circuit • • • • Background Noise Level Monitoring with Long Time Constant Wide Operating Dynamic Range Through Signal Compression On-chip Supply and Reference Voltage Regulation Typical 100 mW Output Power (into 25 0) with Peak Limiting to Minimize Distortion • Chip Select Pin for Active/Standby Operation • Linear Volume Control Function Voice Switched Speakerphone Circuit MC34118 - II TA = -20° to +60°C, Case 710, 751F The MC34118 Voice Switched Speakerphone Circuit incorporates the necessary amplifiers, attenuators, level detectors, and control algorithm to form the heart of a high quality hands-free speakerphone system. Included are a microphone amplifier with adjustable gain and MUTE control, Transmit and Receive attenuators which operate in a complementary manner, level detectors at both input and output of both attenuators, and background noise monitors for both the transmit and receive channels. A Dial Tone Detector prevents the dial tone from being attenuated by the Receive background noise monitor circuit. Also included are two line driver amplifiers which can be used to form a hybrid network in conjunction with an external coupling transformer. A high-pass filter can be used to filter out 60 Hz noise in the receive channel, or for other filtering functions. A Chip Disable pin permits powering down the entire circuit to conserve power on long loops where loop current is at a minimum. The MC34118 may be operated from a power supply, or it can be powered from the telephone line, requiring typically 5.0 mAo The MC34118 can be interfaced directly to Tip and Ring (through a coupling transformer) for stand-alone operation, or it can be used in conjunction with a handset speech network and/or other features of a featurephone. • • • • • • • • • Improved Attenuator Gain Range: 52 dB Between Transmit and Receive Low Voltage Operation for Line-Powered Applications (3.0-6.5 V) 4-Point Signal Sensing for Improved Sensitivity Background Noise Monitors for Both Transmit and Receive Paths Microphone Amplifier Gain Set by External Resistors - Mute Function Included Chip Disable for Active/Standby Operation On Board Filter Pinned-Out for User Defined Function Dial Tone Detector to Inhibit Receive Idle Mode During Dial Tone Presence Compatible with MC34119 Speaker Amplifier MOTOROLA LINEAR/INTERFACE DEVICES 8-8 Telephone Accessory Circuits Audio Amplifier MC34119 - C1 Audio TA = 0° to +70°C, Case 626,751 Input 0.1 >-I A low power audio amplifier circuit intended (primarily) for telephone applications, such as speakerphones. Provides differential speaker outputs to maximize output swing at low supply voltages (2 volt min.). Coupling capacitors to the speaker, and snubbers, are not required. Overall gain is externally adjustable from 0 to 46 dB. A Chip Disable pin permits powering-down to mute the audio signal and reduce power consumption. Ri 6k Rf 150 k VCC • Drives a Wide Range of Speaker Loads (16-100 0) • Output Power Exceeds 250 mW with 32 0 Speaker • Low Distortion (THO = 0.4% Typical) • Wide Operating Supply Voltage (2-16 Volts) Telephone Line Powered Applications. Allows • Low Quiescent Supply Current (2.5 mA Typical) * • Low Power-Down Quiescent Current (60 }LA Typical) = Optional Differential Gain = 2 x m Current Mode Switching Regulator MC34129 - TA = 0° to + 70°C, Case 646, 751A High penormance current mode switching regulator for lowpower digital telephones. Unique internal faun timer provides automatic restart for overload recovery. A start/run comparator is included to implement bootstrapped operation of VCC. AAhough primarily intended for digital telephone systems, these devices can be used cost effectively in many other applications. On-chip functions and features include: VCC C Soft-Start Vref 1.25 V • Current Mode Operation to 300 kHz 9 Non-Inverting • Automatic Feed Forward Compensation ~nput Inverting Input • Latching PWM for Cycle-By-Cycle Current Limiting RT/CT • Latched-Off or Continuous Retry after Fault Timeout L----'"<>~~b~;:..t Sync/Inhibit 4 • Soft-Start with Maximum Peak Switch Current Clamp Input • Internally Trimmed 2% Bandgap Reference Drive Out L .....--~ Drive Gnd ' - - - - - - ' ' 0 Ramp Input • Input Undervoltage Lockout MOTOROLA LlNEAR/fNTERFACE DEV[CES 8-9 Continuously Variable Slope Delta (CVSD) Modulator/Demodulator • Encode and Decode functions on the Same Chip with a Digital Input for Selection • CMOS Compatible Digital Output • Digital Input Threshold Selectable (VCC/2 reference provided on chip) • MC34l7/MC35l7/MC34ll5 has a 3-Bit Algorithm (General Communications) • MC34l8/MC35l8 has a 4-Bit Algorithm (Commercial Telephone) Provides the AlD-D/A function of voice communications by digital transmission. The MC35l71l8 series of CVSDs is designed for military secure communications and commercial telephone applications. A single IC provides both encoding and decoding functions in l6-pin package. MC3417/18 (0 to 70°C) Case 620 Analog Input Analog MC3517/18 (-55 to + 125°C) Case 620 Feedback Digital Data Input Digital Threshold MC34115 (0 to 70°C) Case 648 Digital Output vccf2 Output MOTOROLA LINEAR/INTERFACE DEVICES 8-10 COMMUNICATION CIRCUITS RF Communications Device MC1496 MC1596 MC2831A MC2833 MC3356 MC3357 MC3359 MC3361 MC3362 MC3363 MC3367 MC13041 MC13055 Function Page Balanced Modulator/Demodulator ..................................... 8-13 Balanced Modulator/Demodulator ..................................... 8-13 Low Power FM Transmitter System .................................... 8-23 Low Power FM Transmitter System .................................... 8-26 Wideband FSK Receiver .............................................. 8-29 Low Power FM IF ................................................... 8-35 Low Power Narrowband FM IF ........................................ 8-39 Low Voltage Narrowband FM IF ....................................... 8-45 Low Power Dual Conversion FM Receiver .............................. 8-47 Low Power Dual Conversion FM Receiver .............................. 8-52 Low Voltage FM Narrowband Receiver ................................. 8-59 AM Receiver Subsystem ...................................... See Chapter 9 Wideband FSK Receiver .............................................. 8-65 Telecommunications Device MC3417 MC3418 MC3419-1L MC3517 MC3518 MC33129 MC34010 MC34011A MC34012-1,-2,-3 MC34013A MC34014 MC34017 MC34018 MC34114 MC34115 MC34118 MC34119 MC34120 MC34129 Function Continuously Variable Slope Delta Modulator/Demodulator ............... Continuously Variable Slope Delta Modulator/Demodulator ............... Telephone Line-Feed Circuit .......................................... Continuously Variable Slope Delta Modulator/Demodulator ............... Continuously Variable Slope Delta Modulator/Demodulator ............... High Performance Current Mode Controller ................ See Chapter 3, Electronic Telephone Circuit .......................................... Electronic Telephone Circuit .......................................... Telephone Tone Ringer .............................................. Speech Network and Tone Ringer ..................................... Telephone Speech Network with Dialer Interface ........................ Telephone Tone Ringer .............................................. Voice Switched Speakerphone Circuit .................................. Telephone Speech Network with Dialer Interface ........................ Continuously Variable Slope Delta Modulator/Demodulator ............... Voice Switched Speakerphone Circuit .................................. Low Power Audio Amplifier ................................ See Chapter Subscriber Loop Interface Circuit ...................................... High Performance Current Mode Controller ................ See Chapter 3, *See Telecommunications Device Data (DL136/R1) MOTOROLA LINEAR/INTERFACE DEVICES 8-11 Page * * * * * * * * * * * * * * * * 9 * * E : RELATED APPLICATION NOTES Application Note AN531 AN933 AN937 AN957 AN959 AN960 AN976 AN980 AN1002 ANHK07 Related Device Title MC1596 Balanced Modulator ........................... MC1596 A Variety of Uses for the MC34012/MC34017 Tone Ringers ....................................... MC34012-1,-2,-3, MC34017 A Telephone Ringer which Complies with FCC and EIA Impedance Standards ............................... MC34012, MC34017 Interfacing the Speakerphone to the MC34010/11/13 Speech Networks ..................... MC34010, MC34011A, MC34013A A Speakerphone with Receive Idle Mode ................. MC34018 Equalization of DTMF Signals Using the MC34014 ......... MC34014 A New High Performance Current Mode Controller Teams Up with Current Sensing Power MOSFETs ............................ MC34129 Low Power FM Dual Conversion Receivers ............... MC3362, MC3363 A Handsfree Featurephone Design Using the MC34114 Speech Network and the MC34018 Speakerphone ICs .... MC34018, MC34114 A High Performance, Manual-Tuned AM Stereo Receiver for Automotive Application Using Motorola ICs: MC13021, MC13020 & MC13041 ...................... MC13041 MOTOROLA LINEAR/INTERFACE DEVICES 8-12 ORDERING INFORMATION Device Temperature Range MC1496D ......... 50-14 MC1496 MC1596 Metal Can MCl496G O"Cto +70"C CatamicOIP MC1496L MCl496P PlaaticDIP MC15966 -55·etc + 12S'C MC1596L Metal Can CetamicDIP Specifications and Applications Information BALANCED MODULATOR/DEMODULATOR SILICON MONOLITHIC INTEGRATED CIRCUIT BALANCED MODULATORI DEMODULATOR . designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM ·detection, phase detection, and chopper applications. See Motorola Application Note AN-531 for additional design information. • • • • GSUFFIX METAL PACKAGE CASE 603-04 Excellent Carrier Suppression - 65 dB typ @ 0.5 MHz - 50 dB typ @ 10 MHz Adjustable Gain and Signal Handling Balanced Inputs and Outputs High Common Mode Rejection - 85 dB typ + Carrier Input + Output Bias (Top View) LSUFFIX CERAMIC PACKAGE CASE 632-08 FIGURE 1SUPPRESSED·CARRIE R OUTPUT WAVEFORM DSUFFIX PLASTIC PACKAGE CASE 751A-02 SO-14 P SUFFIX PLASTIC PACKAGE CASE 646-06 + Signal .r-v--, FIGURE 2SUPPRESSED·CAR R I E R SPECTRUM Input ' Gain Adjust ' Gain Adjust , - Signal , Input Bias " " " " VEE NC -Output NC 5 + Output NC ' Carrier Input 10 - : ~CCarrier Input (Top View) FIGURE 4 - AMPLITUDE·MODULATION SPECTRUM FIGURE 3AMPLITUDE·MODULATION OUTPUT WAVEFORM MOTOROLA LINEAR/INTERFACE DEVICES 8-13 MC1496, MC1596 MAXIMUM RATINGS' (TA = + 25°C unless otherwise noted) Rating Symbol Value Unit Applied Voltage (V6 - V7. Vs - Vl. Vg - V7. Vg - VS. V7 - V4. V7 - Vl. Vs - V4. V6 - Vs. V2 - V5. V3 - V5) AV 30 Vdc V7 - Vs V4 - Vl +5.0 ±(5+15Re) Vdc 15 10 rnA 0C/W Differential Input Signal Maximum Bias Current Thermal Resistance, Junction to Air Cerami~ R8JA Dual In-line Package 100 100 160 Plastic Dual In-Line Package Metal Package Operating Temperature Range °c TA Oto +70 -55 to +125 MC1496 MC1596 Storage Temperature Range Tsto -65 to +150 °c ELECTRICAL CHARACTERISTICS' (VCC = +12 Vdc. VEE = -S.O Vdc.15 = 1.0 mAdc. RL = 3.9 k!l. Re = 1.0 k!l. TA = + 25°C unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted) MC1596 Characteristic Carrier Feedthrough Vc == 60 mV(rms) sine wave and offset adjusted to zero Vc = 300 mVp-p square wave: Note Symbol 5 1 VCFT Max - 40 140 -- IC = 1.0 kHz IC = 1.0 kHz - 0.04 20 0.2 100 - 0.04 20 0.4 200 50 65 50 - 40 li5 50 - 8 Signal Gain Vs = 100 mV(rms). 1= 1.0 kHz; IVei = 0.5 Vdc 10 3 Single-Ended Input Impedance. Signal Port. I = 5.0 MHz Parallel Input Resistance Parallel Input Capacitance 6 - Single-ended Output Impedance. I = 10 MHz Parallel Output Resistance Parallel Output Capacitance 6 Input Bias Current 7 2 S BW3dB dB 7 Average Temperature Coefficient of Input Offset Current ITA = -55°C to +1250(;) 7 Output Offset Current (lS-lg) Average Temperature Coefficient of Output Offset Current (TA = -55°C to +125°C) 1.0 kHz 1.0 kHz, - k MHz 300 - - 300 - - SO - - 80 - AVS 2.5 3.5 - 2.5 3.5 - VN rjp cip - - 200 2.0 - - 200 2.0 - k!l pF rop coo - 40 5.0 - - 40 5.0 - k!l pF 12 12 25 25 12 12 30 30 0.7 0.7 7.0 7.0 2.0 - nArC IbS IbC Input Offset Current lioS = 11-14; lioC = 17-18 - - - !z...:!:...!i 2 Unit I'V(rms) mV(rms) VCS - = Typ - Transadmittance Bandwidth (Magnitude) (RL = 50 ohms) Carrier Input Port, Vc = 60 mV{rms) sine wave IS = 1.0 kHz. 300 mV(rms) sine wave Signal Input Port, Vs = 300 mV{rms) sine wave Ivel = 0.5 Vdc = Min - 5 Common-Mode Gain, Signal Port, fS IVei = 0.5 Vdc MC1496 Max 40 140 Carrier Suppression IS = 10 kHz. 300 mV(rms) fC = 500 kHz. 60 mV(rms) sine wave fC == 10 MHz, 60 mV(rms) sine wave Common-Mode Input .Swing, Signal Port, fS Typ - offset not adjusted I 11 + 14 I bS=-2-; bC= Min IC = 1.0 kHz IC = 10 MHz offset adjusted to zero II Fig. - - - #LA Iliosl lioel - - 0.7 0.7 5.0 5.0 - ITCliol - 2.0 - - 7 - 11001 - 14 50 - 14 80 #LA 7 - ITClool - gO - - gO - nArC 9 4 CMV -85 - -S5 - Vp-p ACM - 5.0 - - - 9 - - 8.0 - Vp-p S.O - Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9) 10 - Vout Differential Output Voltage Swing Capability 10 - Vout Power Su~ply Current 16 + Ig 110 7 6 DC Power Dissipation 7 5 - 5.0 S.O S.O - #LA - Vp-p mAdc ICC lEe - 2.0 3.0 3.0 4.0 Po - 33 - * Pin number references pertain to this device when - 2.0 3.0 4.0 5.0 33 - packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. MOTOROLA LINEAR/INTERFACE DEVICES 8-14 dB mW I MC1496, MC1596 GENERAL OPERATING INFORMATION * Note 1 - Carrier Feedthrough base current. Po = 2 IS (VS - V1O) + IS (VS - Vl0) where sub· Carrier feedthrough is defined as the output voltage at carrier frequency with. only the carrier applied (signal voltage:::: 01- Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer (R 1 of Figure 51. Note 2 - Carrier Suppression Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels speci- scripts refer to pin numbers. Note 6 - Design Equations The following is a partial list of design equations needed to operate the circuit with other supply voltages and input condi~ tions. See Note 3 for Re equation. A. Operating Current The internal bias currents are set by the conditions at pin 5. Assume: fied. Carrier suppression is very dependent on carrier input level, as shown in Figure 22. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum car- rier level results in unnecessary device and circuit carrier feed· through, which again degenerates the suppression figure. The MC1596 has been characterized with a 60 mV(rms) sinewave carrier input signal. This revel provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz, and is generally recommended for balanced modulator applications. Carrier feedthrough is independent of signal level, VS. Thus carrier suppression can be maximized by operating with large sig· nal levels. However, a linear operating mode must be maintained in the signal-input transistor pair- or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Note 3 and Figure 20). Note also that an optimum carrier level is recommended in Figure 22 for good carrier suppression and minimum spurious side- ... band generation. At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads. IS« IC for all transistors then: RS=~-soon 15 where: R5 is the resistor between pin 5 and ground rJ> = 0.7S V at T A = +2SoC The MC1596 has been characterized for the condition IS mA and is the generally recommended value. = 1.0 B. Common-Mode Quiescent Output Voltage Vs = Vg = V+ -IS RL Note 7 - Biasing The MC1596 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2 volts collector-base bias on all transistors while not exceeding the voltages given in the $bsolute maximum rating table; Note 3 - Signal Gain and Maximum Input Level 30 Vdc ~ [(Va. Vg) - (V7. Va)] ~ 2 Vdc Signal gain (single-ended) at low frequencies is defined as the voltage gain, 30Vdc 2: [(V7. Va) - (Vl. V4)] ~ 2.7 Vdc 30 Vdc Vo RL 2SmV AVS = Vs = Re + 2re where re = IS (mA) ~ [(Vl. V4) - (VS)] ~ 2.7 Vdc The foregoing conditions are based on the following approximations: A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" (VC = 0.5 Vdc). This in effect forms a cascade differential amplifier. Linear operation requires that the signal input be below a critical value determined by RE and the bias current 15 Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected it external bias dividers are designed to carry 1.0 mA or more. Vs ,. IS RE (VollS peak) Note 8 - Transadmittance Bandwidth Carrier transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by: Note that in the test circuit of Figure 10, Vs corresponds to a maximum value of 1 volt peak. io (each sideband) Note 4 - Common-Mode Swing Y21C - The common-mooe swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen (see Note 6). Vs (SIgnal) I Vo = 0 Signal transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by: V21S = Note 5 - Power Dissipation i (signal) (signal) v~ I V c = O.S Vdc. Va = 0 ·Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. Power dissipation, PD, within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming V9:::: V6, 15:::: 16 = 19 and ignoring MOTOROLA LINEAR/INTERFACE DEVICES 8-15 MC1496, MC1596 Note 12 - Signal Port Stability Note 9 - Coupling and Bypass Capacitors C1 and C2 Under certain values of driving source impedance, oscillation may occur. I n this event, an RC suppression network should be connected directlv to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation. Capacitors C1 and C2 (Figure 5) should be selected for a re- actance of less than 5.0 ohms at the carrier frequency. Note 10 - Output Signal, Va The output signal is taken from pins 6 and 9, either balanced or single-ended. Figure 12 shows the output levels of each of the two output sidebmds resulting from variations in both the carrier and modulating signal inputs with a single-ended .output connection. An alternate method for low-frequency applications is to insert a 1 k-ohm resistor in series with the inputs, pins 1 and 4. I n this case input current drift may cause serious degradation of carrier suppression. Note 11 - Negative Supply. VEE VEE should be de only. The insertion of an RF choke in series with VEE can enhance the stability of the internal current sources, TEST CIRCUITS FIGURE 6 - INPUT·OUTPUT IMPEDANCE FIGURE 5 - CARRIER REJECTION AND SUPPRESSION 1k VCC +12 Vdc 1k Ae'" 1 k R, RL 3.9 k C2 CARRIER O.l.F INPUT Vc ---If-4-------<8 VS~~~--~--~ Zin- MODULATING SIGNAL INPUT 10 k II I-<>---_.+Va -Zout -Va 10 6.B k B.S k NOTE: Shielding of input and output leads may -8Vde -SVdc VEE be needed to properlv perform these tests. FIGURE 7 - BIAS AND OFFSET CURRENTS FIGURE 8 - TRANSCONDUCTANCE BANDWIDTH VCC +12 Vdc 1k 1k CARRIER O.l.F INPUT Vc---lf--''--------<>-;;-j ~ ~ MODULATING SIGNAL INPUT 10 k CARRIER NULL -8 Vdc VEE -8 Vde VEE NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. MOTOROLA LINEAR/INTERFACE DEVICES 8-16 MC1496, MC1596 TEST CIRCUITS (continued) FIGURE 9 - COMMON-MOOE GAIN FIGURE 10 - SIGNAL GAIN AND OUTPUT SWING lk 3.9 k t--c......-+-... +V o ...... -Vo f--o-~ Vs 10 50 6.8 k 50 15= 1 mA t 6.8 k ACM = 20 log IVol Vs -8Vde VEE -8 Vdc VEE NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. TYPICAL CHARACTERISTICS (continued) Typical characteristics were obtained with circuit shown in Figure 5, fC = 500 kHz (sine wave), Vc = 60 mV(rms), fS = 1 kHz, Vs = 300 mV(rms). T A FIGURE 11 - SIDEBAND OUTPUT versus CARRIER LEVELS § 1.0M 2.0 ~ in ~ o z re ~ .... 1.2 ...... ~ -::-- ~ ~ l / V ' / ~I- '" 0.4 '" In 400 mv /1"" 0.8 ;; ~ Z SIGNAL INPUT = 600 mV :::; ~ 500 +rjp i 300 mV ~ w ~ ~ 200 mV ~ ;;'; lOOmV 50 100 \ 100 -tip II 50 '\. '\. 10 5.0 ;it ~ 1.0 0 0 \ ....... w w g '"" 1.6 o in B = +2SoC unless otherwise noted. FIGURE 12 - SIGNAL-PORT PARALLEL-E<.lUIVALENT INPUT RESISTANCE versus FREQUENCY 150 5.0 1.0 200 10 50 100 f, FREQUENCY (MHz) VC, CARRIER LEVEL (mV[rmsl) FIGURE 13 - SIGNAL-PORT PARALLEL-EQUIVALENT INPUT CAPACITANCE versus FREQUENCY 5.0 FIGURE 14 - SINGLE-ENDED OUTPUT IMPEDANCE versus FREQUENCY en 140 1 %120 1 ~ w "~ 1 100 t; in ~ ~ ~ ;;'; 1.0 1.0 5.0 10 10 rop 80 8 !:; ....... 50 0 ~ 20 E! 0 4 "" o 100 I, FREQUENCY (MHz) 1.0 f, FREQUENCY (MHz) MOTOROLA LINEAR/INTERFACE DEVICES 8-17 6 cop 40 10 ........ 2 0 100 MC1496, MC1596 TYPICAL CHARACTERISTICS (continued) Typical characteristics were obtained with circuit shown in Figure 5, fC "" 500 kHz (sine wave), VC"" 60 mV(rms). 1S = 1 kHz, VS= 300 mV(rms). T A:: +250 C unless otherwise noted. FIGURE 15 - SIDEBAND AND SIGNAL PORT TRANSADMITTANCES versus FREOUENCY 1.0 0.9 ~ 1111 r-- SIWMf 0.8 E .s 0.7 z 0.6 w <.> '" "- RT III f-SIOEBANO- ~ lOIn (EACH SIDEBAND) Y21= 0.4 I i o 1.0 0.1 \ 20 ! 30 '"w '"'" ~ 1\ I 11111 II III I 10 MC1596 i---MC1496---< (+70 0 C) 40 ........ 50 "" ~ IVel = 0.5 Vdc .""1'111111 I 10 z > Y21 = lout! v:- Vout = 0 0.1 "- I v Qut-- 0 TRAS~;~~~I;~~~CE 0.2 N I Vi"I'~'I~~t'll I ~ 0.3 l- ;;; :s 0 SIOEBAND TRANSADMITTANCE ~ 0.5 ;;; c r\ i"- 11111111 r--- FIGURE 16 - CARRIER SUPPRESSION versus TEMPERATURE I 111111 100 60 70 1000 -75 fC, CARRIER FREQUENCY (MHz) FIGURE 17 - SIGNAL.pORT FREQUENCY RESPONSE + zo ~ ~ +10 '"w II '"« ~ > " I - i 1rill c "'cffi -10 '"u;z -ZO 1111111 IIIIIII 0.1 -30 0,01 I' ,...,.ZfC sod n I------- i'.. V R,"1k IVCI" 0.5 Vdc ~ '" : I~~I" 1111111 ~ ) ---- fC '1 I ~'''I ~~'II 1.0 AV" +150 +175 ~;:~;o~,l- RL. k R,·Z kl Tes'I CirCU ;') +125 FIGURE 18 - CARRIER SUPPRESSION versus FREQUENCY ts RL " 3,9 k (Standard '- R'I \.. / o +25 +50 +75 +100 TA. AMBIENT TEMPERATURE (OC) -25 -50 - ,..... i'.. RL 10 100 0.05 0,1 - !0.5 1.0 3fC 5.0 - 10 50 fC, CARRIER FREUUENCY IMHz) f. FREQUENCY (MHz) FIGURE 20 - SIDEBAND HARMONIC SUPPRESSION versus INPUT SIGNAL LEVEL FIGURE 19 - CARRIER FEEDTHROUGH versus FREQUENCY 10 ""E :; .sw « '" ':; 1.0 0 /" > I- ::> :=::> c '" 0 0.1 w ~ 0 ~ 5 > 0.01 0.05 o. ./ 0 0,1 0,5 1.0 5.0 10 50 -200 fC. CARRIER FREQUENCY (MHz) f C±3fS,......... r::-::IZfS ~ 400 V ,..... / 600 VS. INPUT SIGNAL AMPLITUDE ImVlrmsl) MOTOROLA LlNEAR/lNTERFACE DEVICES 8-18 800 MC1496, MC1596 TYPICAL CHARACTERISTICS (continued) FIGURE 21 - SUPPRESSION OF CARRIER HARMONIC SIDEBANDS versus CARRIER FREQUENCY FIGURE 22 - CARRIER SUPPRESSION versus CARRI ER INPUT LEVEL 1111 11111 ~ 6 3tm+:::: 10 20 ~ IIII I 2tc± ts ~ 30 '"w 40 5 50 ~ -- 2tC± 2ts r-- ~ > 60 70 70 ~.05 0.1 0.5 1.0 5.0 10 50 tC·l0 MHz- I - - .-1"" 1- ....... -- '" "o 100 ,/ ./' tc - 500 kHz -"': 200 300 400 500 VC, CARRIER INPUT LEVEL (mV[rms]) fC, CARRIER FREQUENCY (MHd OPERATIONS INFORMATION The MC1596/MC1496, a monolithic balanced modulator circuit, is shown in Figure 23. This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled 50 FIGURE 23 - CIRCUIT SCHEMATIC (-)9 . - - I = = = = : ; : = + : = = = = : : : g V o . OUTPUT (+)6 that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of th:e two input signals. Mathematical analysis of linear ae signal multiplication indi- cates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a. balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics. The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output. 4(-) SIGNAL INPUT VS~--------~============t=====~=~ 1 (+) GAIN ADJUST 3 BIAS 50---;---1-----------1 500 VEE 10 o---~----~------------' Signal Levels FIGURE 24 - TYPICAL MODULATOR CIRCUIT The upper quad differential amplifier maY,be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications. For low-level operation at both input ports, the output signal wi" contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes. For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the mooulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output. MC1596G Vs f-6---...... -V, MODULATING SIGNAL INPUT 10 '5 CARRIER NULL S.ak -8 Vdc VEE NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. MOTOROLA LINEAR/INTERFACE DEVICES 8-19 MC1496, MC1596 OPERATIONS INFORMATION (continued) The gain from the modulating signal input port to the output is the Me 1596/MC1496 gain parameter which is most often of interest to the d,esigner. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device. As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC15961 MC1496 for a low-level modulating signal input and the following carrier input conditions: The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions. Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear op· eratian may be approximated from the following expression: 1) Low-level dc V :-(15) (RE}VOI1S peak. 21 High-level de 3) Low-level ac 4) High-level ac This expression may be used to compute the minimum value of RE for a given input voltage amplitude. These gains are summarized in Table 1, along with the frequency components contained in the output signal. FIGURE 25 - TABLE 1 VOLTAGE GAIN AND OUTPUT FREQUENCIES Carrier Input Signal (Vel Low-level dc Approximate Voltage Gain RL Ve 2(RE + 2rel High-level dc Low-level ac High-level ac NOTES: 1. Low-level Mo~ulating Signal, VM, assumed in all cases. Vc is Carrier Input Voltage. 2. When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs, fC + fM and fC - fM' 3. All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two. 4. RL "" Load resistance. 5. RE = Emitter resistance between pins 2 and 3. 6. re "" Transistor dynamic emitter resistance, at +250 C; Output Signal Frequency(s) (~T) RL fM 1M RE + 2re RL Ve(rmsl 2J2(~T) (RE + 2rel 26 mV re"" IS (mAl fe±fM 0.637 R L fe±fM. 3fe±fM. RE + 2re Sfe±fM •. 7. K = Boltzmann's Constant, T = temperature in degrees Kelvin, q = the charge on an electron. gq ~ 26 mV at room temperature APPLICATIONS INFORMATION Double sideband suppressed carrier modulation is the basic application of the MC1596/MC149S. The suggested circuit for this application is shown on the front page of this data sheet. I n some applications, it may be necessary to operate the MC159S/MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator. This proouct detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9 MHz. The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the 0.1 J,lF capacitors on pins 7 and 8 should be increased to 1.01lF. Also, the output filter at pin 9 can be tailored to a specific intermediate frequency and audio amplifier input impedance. As in all applications of the MC159S/MC1496, the emitter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range. This circuit may also be used as an AM detector by introo.ucing carrier signal at the carrier input and an AM signal at the SSB input. The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential amplifiet. If the carrier signal is modulated, a 300 mV(rms) input level is recommended . AM Modulator The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification. All that is required to shift from suppressed carrier to AM operation is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal. However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28. Product Detector The MC159S/MCl49S makes an excellent SSB product detector (see Figure 29). MOTOROLA LINEAR/INTERFACE DEVICES 8-20 MC1496, MC1596 APPLICATIONS INFORMATION (continued) Doubly Balanced Mixer Phase Detection and FM Detection The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and The MC1596/MC1496 will function asa phase detector. Highlevel input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals. An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then proVoide an output which is a function of the input signal frequency. output networks. The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV(rms). F ;gure 30 shows a mixer with a broadband input and a tuned output. Frequency Doubler The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports. Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively. NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. TYPICAL APPLICATIONS FIGURE 26 - BALANCED MODULATOR (+12 Vdc SINGLE SUPPLY) FIGURE 27 - BALANCED MODULATOR-DEMODULATOR Vee 1k 810 +12 Vdc Uk 3k 3k O.l,uF CARRIER INPUT SO mV(rms) _-+:+-+-1!--4-~-'---I DSE MC1596G MC1496G OUTPUT MC1596G MC1496G Vs f-'-<>--+-e- V, MODULATING SIGNAL 10 INPUT 10k CARRIER r-'W~f--' NULL 10 k 50 k ':-:---=---~ VEE -8Vdc 100 L-J,--~::j--4----' FIGURE 29 - PRODUCT DETECTOR (+12 VdcSINGLE SUPPLY) FIGURE 28 - AM MODULATOR CIRCUIT Uk RL Ik 3.9k AF 1.0pF OUTPUT Vs MODULATING L,-------.J~>--_t--t-'V\"1..-j~ SIGNAL INPUT S.Bk MOTOROLA LINEAR/INTERFACE DEVICES 8-21 10 k MC1496, MC1596 TYPICAL APPLICATIONS (continued) FIGURE 30 - DOUBLY BALANCED MIXER (BROADBAND INPUTS. 9.0 MHz TUNED OUTPUT) FIGURE 31 - LOW·FREQUENCY DOUBLER 1k RFe n 100~H 1k G2 9 RF INPUT 9.5/.1H 11 51 5-80pF 6.Bk OUTPUT MC1596G MC1496G 'OOl" 9.0 MHz OUTPUT RL =50!! 90-480pF -=- -=- 10 10k 100 '-"-===+--e_ 8 V(\( Ll =44TUANSAWG NO 2BENAMElEDWIRE,WOUND 6.Bk ON MJCRQMETAlS TYPE 44·6 TOROID CORE '---c:----------1 VEE " -8Vdc FIGURE 32 - 150 to 300 MHz DOUBLER Vee 1k 100 MHz r-L---'--l-!~_I_~'l'_.... 300 OUTPUT II l-lOpF Rl =50n O.OOljlF 150 MHz INPUT . .N~----o_t 1-10pF 100 11 =lTURNAWG NO. 18WIRE,7132"1O DEFINITIONS t ~ , J!' '"'" '"'" + ~ -' ~~ ,FREQUENCY - - - - - i... SALANCED MODULATOR SPECTRUM IC CARRIER FUNDAMENTAL Is MODULATING SIGNAL IC' fS FUNDAMENTAL CARRIER SIDEBANDS fC' nfs FUNDAMENTAL CARRIER SIDEBAND HARMONICS nlc CARRIER HARMONICS nfc' nfs CARRIER HARMONIC SIDEBANDS NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet. MOTOROLA LINEAR/INTERFACE DEVICES 8-22 ® MC2831A MOTOROLA LOW POWER FM TRANSMITTER SYSTEM The MC2B31A is a one-chip FM transmitter subsystem designed for cordless telephone and FM communication equipment. It includes a Microphone Amplifier, Pilot Tone Oscillator, Voltage ,Controlled Oscillator and Battery Monitor. LOW POWER FM TRANSMITTER SYSTEM SILICON MONOLITHIC INTEGRATED CIRCUIT • Wide Range of Operating Supply Voltage (3,0 V-B.O V) • Low Drain Current (4,0 mA Typ Full Operation at VCC = 4.0 V) • Battery Checker (290 jJ.A Typ at VCC = 4,0 V) • Low Number of External Parts Required FIGURE 1 - ~I' 16r' lll'I'n I FUNCTIONAL BLOCK DIAGRAM I! 16 1 RF P SUFFIX PLASTIC PACKAGE CASE 648-06 Osc 15 16~' 1 14 D SUFFIX PLASTIC PACKAGE CASE 7518-03 SO-16 VCC 13 PIN ASSIGNMENTS Variable Reactance Output Decoupling 12 Modulator Input 11 10 7 -- 8 MAXIMUM RATINGS (TA VCC2 MicAmp Input Mic Amp Output Tone Switch Tone Output = 25°C 9 unless otherwise noted) Pin Symbol Value Unit Power Supply Voltage 4,12 VCC 10 Vdc Operating Supply Voltage Range 4,12 VCC 3,0 to B.O Vdc Battery Checker Output Sink Current 10 ILED 25 mA Junction Temperature TJ +150 °c Operating Ambient Temperature Range - TA -30 to +75 °c Storage Temperature Range - Tstg -65 to +150 °c Rating MOTOROLA LINEAR/INTERFACE DEVICES 8-23 MC2831A ELECTRICAL CHARACTERISTICS (VCCl = 4.0 Vdc, VCC2 = 4.0 Vde, TA = 25"C, unless otherwise noted} Symbol Pin Min Typ Max Drain Current ICCl 12 150 290 420 !LA Drain Current ICC2 4 2.2 3.6 6.5 mA VTB 11 1.0 VOSAT 10 - Characteristic Unit BATTERY CHECKER Threshold Voltage (LED Off ~ On} Output Saturation Voltage (Pin 11 = 0 V, Pin 10 Sink Current = 1.2 1.4 Vde 0.15 0.5 Vde 27 30 33 dB 5.0 mA} MIC AMPLIFIER - 5,6 - 6 1.1 1.4 1.7 Vde 6 0.8 1.2 1.6 Vp-p 6 - 0.7 - % - 8 - 50 - mV rms 8 1.4 - Vde Total Harmonic Distortion (fa = 5.0 kHz, VAF = 150 mV rms } - 8 - 1.8 5.0 % Tone Switch Threshold - 7 1.1 1.4 1.7 Vdc VRFO 14 Voltage Gain, Closed Loop (Vin = 1.0 mVrms , fin = 1.0 kHz} Output de Voltage Output Swing (Vin = 30 mV rms, fin = 1.0 kHz} THO Total Harmonic Distortion (VO = 31 mVrms, fin = 1.0 kHz} PILOT TONE OSCILLATOR (250 {l LOADING) Output AF Voltage (fo = 5.0 kHz} Output de Voltage FM MODULATOR '120 {l LOADING) - 14 - 40 - 1.3 - Vde 3,14 6.0 10 18 Hz/mVde Maximum Deviation (Note 11 (Vin = 0 V to +2.0 V} - 3,14 =2.5 =5.0 =12.5 kHz RF Frequency Range - 14 60 MHz Output RF Voltage (fo = 16.6 MHz} Output de Voltage II Modulation Sensitivity (Note 1} (Vin = 1.0 V ± 0.2 V} - .. . - Note 1. Modulation sensitivity and maximum devlat,on are measured at 49.815 MHz. which IS the third harmOniC of the crystal frequency . MOTO.ROLA LINEAR/INTERFACE DEVICES 8-24 mV rms MC2831A FIGURE 2 - - TEST CIRCUIT ~-JV"~-----1D 4.7 ~H 16.605 MHz Mod Out 16 0.0047 Mod In 14 RFOut 116.605 MHz, 12 VCCI 11 Battery Checker In 10 LED 0.01 MC2831A 0.047 VCC2 Ll Toka America 7PA Tvpe 126AN - 6708X 20mH Ose Coil FIGURE 3 - SINGLE CHIP FM VHF TRANSMITTER AT 49.7 MHz 4.7,uH ---+ 16.5667 MHz ~--ID'l----~ NOTES: 51 is a normally closed push button type switch. Battery checker circuit (Pins 10, 11) is not used in this application. The crystal used is fundamental mode, calibrated for parallel resonance with a 32 pF load. The49.7 MHz output is generated in the output buffer, which generates useful harmonics to 60 MHz. All capacitors in microfarads. inductors in Henries and resistors in Ohms, unless otherwise specified. The network on the output at Pin 14 provides output tuning and impedance matching to 50 U at 49.7 MHz. Harmonics are suppressed by more than 25 dB. MOTOROLA LINEAR/INTERFACE DEVICES 8-25 II ® MC2833 MOTOROLA Product Preview LOW POWER FM TRANSMITTER SYSTEM LOW POWER FM TRANSMITTER SYSTEM MC2833 is a one-chip FM transmitter subsystem designed for cordless telephone and FM communication equipment. It includes a microphone amplifier. voltage controlled oscillator and two auxiliary transistors. • Wide Range of Operating Supply Voltage (2.8-9.0 V) • Low Drain Current (ICC = 2.9 mA Typ) • Low Number of External Parts Required • -30 dBm Power Output to 60 MHz Using Direct RF Output • + 10 dBm Power Output Attainable Using On-Chip Transistor Amplifiers II ,. 16# 1 1 P SUFFIX DSUFFIX PLASTIC PACKAGE CASE 648-06 PLASTIC PACKAGE CASE 751B-03 SO-16 FUNCTIONAL BLOCK DIAGRAM PIN ASSIGNMENTS 16 2 15 Variable Reactance Output Decoupling 3 14 4 13 5 12 Modulator Inpu', 6 11 7 10 8 9 RF Output Tr2 Base MicAmp Input Tr 2 Emitter Gnd Tr 1 Base This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 8-26 Osc MicAmp Output Tr 1 Emitter J, } RF Tr2 Collector VCC Tr1 Collector MC2833 MAXIMUM RATINGS Symbol Value Unit Power Supply Voltage Ratings VCC 10 (max) V Operating Supply Voltage Range VCC 2.8-9.0 V TJ +150 °c TA -30 to +75 °c Tsta -65 to + 150 °c Junction Temperature Operating Ambient Temperature Storage Temperature Range ELECTRICAL CHARACTERISTICS (VCC = 4.0 V, TA = 25°C, unless otherwise noted) Characteristics Drain Current (No input signal) FM MODULATOR Output RF Voltage (fo = Vout RF 14 60 90 130 Output DC Voltage (No input signal) 16.6 MHz) Vdc 14 2.2 2.5 2.8 V Modulation Sensitivity (fo = 16.6 MHz) (Vin = 0.8 V to 1.2 V) SEN 3.0 14 7.0 10 15 HzlmVdc - - - Maximum Deviation (fo = 16.6 MHz) (Vin = 0 V to 2.0 V) Fdev 3.0 14 3.0 5.0 - - mVrms 10 kHz 33 dB - MIC AMPLIFIER Closed Loop Voltage Gain (Vin = 3.0 mVrms) (fin = 1.0 kHz) Av 4.0 5.0 Output DC Voltage (No input signal) Vout de Output Swing Voltage (Vin = 30 mVrms) (fin = 1.0 kHz) Vout p-p THD Total Harmonic Distortion (Vin = 3.0 mVrms) (fin = 1.0 kHz) 27 30 - - - 4.0 1.1 1.4 1.7 V 4.0 0.8 1.2 1.6 Vp-p 4.0 - 0.15 2.0 % Max Unit AUXILIARY TRANSISTOR STATIC CHARACTERISTICS Symbol Min Typ 5.0 pA) V(BR)CBO 15 45 = V(BR)CEO 10 15 Collector Substrate Breakdown Voltage (lC V(BR)CSO Emitter Base Breakdown Voltage (IE V(BR)EBO 40 fr Collector Base Capacitance (VCE = 3.0 V) (lC = 0) Collector Substrate Capacitance (VCS = 3.0 V) (lc = 0) Characteristics Collector Base Breakdown Voltage (lC = Collector Emitter Breakdown Voltage (lc 200 pA) = 50 pA) = 50 pA) = 10 V) Collector Base Cut Off Current (VCB (IE = 0) - V - V 6.2 - 200 nA 150 - - - 500 - MHz CCB - 2.0 - pF CCS - 3.3 - pF 'CBO DC Current Gain (lc = 3.0 mAl (VCE = 3.0 V) hFE 70 V V AUXILIARY TRANSISTOR DYNAMIC CHARACTERISTICS Current Gain Bandwidth Product (VCE = 3.0 V) (lc = 3.0 mAl MOTOROLA LINEAR/INTERFACE DEVICES 8-27 II MC2833 - FIGURE 1 - TEST CIRCUIT 16 39 pF Crystal: fo = 16.605 MHz CL = 30 pF Co = 6.1 pF RS = 10n Max b. 15 68 pF'::" 141---0RF Out Mod In MicAmp Out 131----0 Baoe 2 MicAmp In 12 1 - - - - 0 Emitter 2 6.3 k 6 111----0 Collector 2 7 101-_---, '::" Emitter 1 + 47 8 Base 1 -::I:' ':1:',::" 0.01 p.F p.F '::" 91----0 Collector 1 fiGURE 2 - SINGLE CHIP FM VHF TRANSMITTER AT 49.7 MHz 16.5667 MHz .. 3.3 P. ..----.MC2833,..----, 'T 1000 pF '::" td 47 pF RFOutput 49.7 MHz +10 dBm 220 pF 390 k ~470PF VCC = 3.0Vt08.0V NOTES: The crystal used is fundamental mode. calibrated for para"el resonance with a 32 pF load. The 49.7 MHz output is generated in the output buffer, which is being used as a frequency tripler in this application. The networks in the output stages provide frequency selectivity and impedance matching at 49.7 MHz. The RF output is + 10 dBm (10 mW into 50 0 load) at 49.7 MHz, with all harmonics reduced by more than 50 dB. All capacitors in microfarads. inductors in Henries and resistors in Ohms unless otherwise speCified. 0.221'H inductors are Toko B199SN-T1048Z 3.3 ,.H inductor is Toko B199KN-T1055Z MOTOROLA LINEAR/INTERFACE DEVICES 8-28 ® MC33S6 MOTOROLA WIDEBAND FSK WIDEBAND FSK RECEIVER RECEIVER · .. includes Oscillator, Mixer, Limiting IF Amplifier, Quadrature Detector, Audio Buffer, Squelch, Meter Drive, Squelch Status output, and Data Shaper comparator. The MC3356 is designed for use in digital data communications equipment. SILICON MONOLITHIC INTEGRATED CIRCUIT • Data Rates up to 500 kilobaud • Excellent Sensitivity: -3 dB Limiting Sensitivity 30 ,...Vrms @ 100 MHz • Highly versatile, full-function device, yet few external parts are required FN SUFAX PLASTIC PACKAGE CASE 775-02 FIGURE 1 - FIGURE 2 - FUNCTIONAL BLOCK DIAGRAM P SUFFIX PLASTIC PACKAGE CASE 738-03 PIN CONNECTIONS RF vee RF Ground RF Input 1 Ground / I I I I I I I "',..,-=-.,.---1.:.::......- ....-0 Data Data Output + Comparator - Comparator I ---------, Ceramic Filter Squelch Control Buffered Output Demodulator Filter 10 Quad Input Ouadrature Detector r-~-'Tank I I I I Vee IL _____ -lI MOTOROLA LINEAR/INTERFACE DEVICES 8-29 MC3356 MAXIMUM RATINGS Symbol Value Unit VCC(max) 15 Vdc VCC 3.0 to 9.0 Vdc R.F. VCC 3.0 to 12.0 Vdc Junction Temperature TJ 150 ·C Operating Ambient Temperature Range TA -40 to +85 ·C Tstg -65 to +150 ·C Po 1.25 W Rating Power Supply Voltage Operating Power Supply Voltage Range (Pins 6, 10) Operating R.F. Supply Voltage Range (Pin 4) Storage Temperature Range Power Dissipation, Package Rating ELECTRICAL CHARACTERISTICS (VCC = 5.0 Vdc, 10 = 100 MHz, losc = 110.7 MHz, ~I = ±75 kHz, fmod = 1.0 kHz, 50 source, T A = 25·C, test circuit of Figure 3, unless otherwise noted.) Characteristics Min Input for - 3 dB limiting ~ N) Input for 50 dB quieting (S Max Unit 20 25 mAdc 60 - Mixer Input Capacitance, 100 MHz - Mixer/Oscillator Frequency Range (Note 1) - 0.2 to 150 IF/Quadrature Detector Frequency Range (Note 1) - 0.2 to 50 Mixer Input Resistance, 100 MHz 260 5.0 Meter Drive - 7.0 Squelch Threshold - 0.8 AM Rejection (30% AM, RF Vin = 1.0 mVrms) Demodulator Output, Pin 13 - 30 2.5 Mixer Voltage Gain, Pin 20 to Pin 5 II Typ - Drain Current Total, RF VCC and VCC 50 0.5 Note 1: Not taken in Test Circuit of Figure 3; new component values required, FIGURE 3 - TEST CIRCUIT Squelch Status Data Output 47k 47k 130 k Demod Out 3.3 k 18 k 3.0 k 100 MHz R~ __ lnpu_t____' -____O~I'IOh' I y 51 L1-110.7 MHz, 0.4.,.H 7T #22, Form w/slug & can L2-10.7 MHz, 1.5.,.H 20T #30, Form w/slug & can T1-muRata SFE10.7 MA5-Z or KYOCERA KBF10.7MN-MA 10 k 3.3 k ~ r::::-:=-~~---.::-'-':'-~--::-=~--:--=--=----1.!.!.----. 17 16 15 14 13 Campi +) Camp( - ) Squelch Squelch Demod Status Control Out 12 Demod Filter 0/,. 0/,. MOTOROLA LINEAR/INTERFACE DEVICES 8-30 n 11 Quad Input .,.Vrms .,.Vrms n pF MHz MHz dB Vrms .,.AldB Vdc MC3356 FIGURE 4 - OUTPUT COMPONENTS OF SIGNAL. NOISE. AND DISTORTION 10 -10 ~ ;:: -20 ~ 5- 30 s + IN 1d v/' I METER CURRENT versus SIGNAL INPUT -- -50 600 fa = 11001M~z I fm = 1.0 kHz af = ± 75kHz / ~-40 ......... ~ FIGURE 5 - 700 « .E, 500 .... ~ 400 ~ ~ 300 l- ~ 200 t---..... !:Ii: N 0.1 1.0 100 o -60 0.01 i-' a N+ 0 10 0.010 INPUT ImVrmsl 0.1 1.0 10. PIN 20 INPUT ImVrmsl 100 1000 GENERAL DESCRIPTION adjusted by changing the meter load resistor. The comparator( +) input and output are available to permit control of hysteresis. Good positive action can be obtained for IF input signals of above 30 ",Vrms. The 130 kO resistor shown in the test circuit provides a small amount of hysteresis. Its connection between the 3.3 k resistor to ground and the 3.0 k pot. permits adjustment of squelch level without changing the amount of hysteresis. The squelch is internally connected to both the quadrature detector and the data shapero The quadrature detector output. when squelched, goes to a dc level approximately equal to the zero signal level. unsquelched. The squelch causes the data shaper to produce a high (VCC) output. . The data shaper is a complete "floating" comparator. with back to back diodes across its inputs. The output of the quadrature detector can be fed directly to either input ofthis amplifier to produce an output that is either at VCC or VEE. depending upon the received frequency. The impedance of the biasing can be varied to produce an amplifier which "follows" frequency detuning to some degree. to prevent data pulse width changes. When the data shaper is driven directly from the demodulator output. Pin 13. there may be distortion at Pin 13 due to the diodes. but this is not important in the data application. A useful note in relating high/low input frequency to logic state: low IF frequency corresponds to low demodulator output. If the oscillator is above the incoming RF frequency. then high RF frequency will produce a logic low. (Input to (+ )input of Data Shaper as shown in figures 1 and 3.) This device is intended for single and double conversion VHF receiver systems. primarily for FSK data transmission up to 500 K baud (250 kHz). It contains an oscillator. mixer. limiting IF. quadrature detector. signal strength meter drive. and data shaping amplifier. The oscillator is a common base Colpitts type which can be crystal controlled, as shown in Figure 1, or L-C controlled as shown in the other figures. At higher VCC. it has been operated as high as 200 MHz. A mixerl oscillator voltage gain of 2 up to approximately 150 MHz. is readily achievable.\ The mixer functions well from an input signal of 10 ",Vrms. below which the squelch is unpredictable. up to about 10 mVrms. before any evidence of overload. Operation up to 1.0 Vrms input is permitted. but nonlinearity of the meter output is incurred. and some oscillator pulling is suspected. The AM rejection above 10 mVrms is degraded. The limiting IF is a high frequency type. capable of being operated up to 50 MHz. It is expected to be used at 10.7 MHz in most cases. due to the availability of standard ceramic resonators. The quadrature detector is internally coupled to the IF. and a 5.0 pF quadrature capacitor is internally provided. The - 3dB limiting sensitivity of the IF itself is approximately 50 ",V (at Pin 7). and the IF can accept signals up to 1.0 Vrms without distortion or change of detector quiescent dc level. The IF is unusual in that each of the last 5 stages of the 6 state limiter contains a signal strength sensitive. current sinking device. These are parallel connected and buffered to produce a signal strength meter drive which is fairly linearfor IF input signals of 10 ",V to 100 mVrms. (See Figure 5.) A simple squelch arrangement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about 0.8 Vdc above ground. The signal strength at which this occurs can be MOTOROLA LINEAR/INTERFACE DEVICES 8-31 II MC3356 FIGURE 6 - APPUCATION WITH FIXED BIAS ON DATA SHAPER Data Out I Car. Del. Out +5.0 V 18 k Filter Input MC33S6 RF osc ase EM. COL RF Vee Mixer Out Quad Bias 10 Bead +5.0 to +12V ~0.1 82 II APPLICATION NOTES The MC3356 is a high frequency/high gain receiver that requires following certain layout techniques in designing a stable circuit configuration. The objective is to minimize or eliminate, if possible, any unwanted feedback. Pin 1 and then the input and the mixer/oscillator grounds (or RF VCC bypasses) should be connected by a low inductance path to Pin 19. IF and detector sections should also have their bypasses returned by a separate path to Pin 19. VCC and RF VCC can be decoupled to minimize feedback, although the configuration of Figure 3 shows a successful implementation on a common 5.0 supply. Once again, the message is: define a supply node and a ground node and return each section to those nodes by separate, low impedance paths. The test circuit of Figure 3 has a 3 db limiting level of 30 f'oV which can be lowered 6 db by a 1:2 untuned transformer at the input as shown in figures 6 and 7. For applications that require additional sensitivity, an RF amplifier can be added, but with no greater than 20 db gain. This will give a 2.0 to 2.5 f'oV sensitivity and any additional gain will reduce receiver dynamic range without improving its sensitivity. Although the test circuit operates at + 5.0 V, the mixer/oscillator optimum performance is at +8.0 V to 12 V. A minimum of +8.0 V is recommended in high frequency applications (above 150 MHz), or in PLL applications where the oscillator drives a prescaler. Shielding, which includes the placement of input and output components, is important in minimizing electrostatic or electromagnetic coupling. The MC3356 has its pin connections such that the circuit designer can place the critical input and output circuits on opposite ends of the chip. Shielding is normally required for inductors in tuned circuits. The MC3356 has separate VCC's and grounds for the RF and IF sections which allows good external circuit isolation by minimizing common ground paths. Note that the circuits of figures 1 and 3 have RF, oscillator, and IF circuits predominantly referenced to the plus supply rails. Figure 6, on the other hand, shows a suitable means of ground referencing. The two methods produce identical results when carefully executed. It is important to treat Pin 19 as a ground node for either approach. The RF input should be "grounded" to MOTOROLA LINEAR/INTERFACE DEVICES 8-32 MC3356 FIGURE 7 - Data APPLICATION WITH SELF-ADJUSTING BIAS ON DATA SHAPER +5.0 V Car. Det. Out Out OVor4.0V 130k 3.3k 15 k Input f = 10.7 MC3356 150 pF APPLICATION NOTES (continued) Depending on the external circuit, inverted or noninverted data is available at Pin 18. Inverted data makes the higher frequency in the FSK signal a 'one' when the local oscillator is above the incoming RF. Figure 6 schematic shows the comparator with hysteresis. In this circuit the dc reference voltage at Pin 17 is about the same as the demodulated output voltage (Pin 13) when no signal is present. This type circuit is preferred for systems where the data rates can drop to zero. Some systems have a low frequency limit on the data rate, such as systems using the MC3850 ACIA that has a start or stop bit. This defines the low frequency limit that can appear in the data stream. Figure 6 circuit can then be changed to a circuit configuration as shown in Figure 7. In Figure 7 the reference voltage for the comparator is derived from the demodulator output through a low pass circuit where T is much lower than the lowest frequency data rate. This and similar circuits will compensate for small tuning changes (or drift) in the quadrature detector. Squelch status (Pin 15) goes high (squelch off) when the input signal becomes greater than some preset level set by the resistance between Pin 14 and ground. Hysteresis is added to the circuit externally by the resistance from Pin 14 to Pin 15. MOTOROLA LINEAR/INTERFACE DEVICES 8-33 II 3: ow U1 FIGURE 8 - INTERNAL SCHEMATIC . J J ICP 1.0k~~ 1.0 k 3 ~ ;.M1 :v~ ~ 20 1~ :.1 r~ 0 -I 0 5.0 k 6~ 1.0 k ~ z 5.0 k 330 5.0 k 330 20 pF ~ ~ 74 "" 8N 6 m 1.0 k -I 1.0 k 1.0 k 1.0 k 1.0 k 1.0 k 1.0 k 1.0 k 1.0 k 1.0 k 1.0 k ~1 1.0K 1.0 k '"Tl 00 T ~ I -Va2 @ 1.0k ~ J6 r.o; :t> (') 17~20 21W~ m CJ m < m ~ 91 16 11 ---Z (') c 83 ., 10 k 94 00 93 92 84 87 :0 :0 "hf-' tf.!l,-+-t:" ~ M ~2.0 k 2.0 k ~'~~ 85 86 20k~ 15 :t> 0/' w 2.0 k tJ ~"~ ~ n ri 14 12 2.0 k _~ ~67 ~70 1 m '" r--... 73 69 11 r 5.0 k ..... 71"'-J ~ _too 10 k 20k 0 r 20 k 1.0 k :0 :t> 5.0 k en 13f4 15 16 5.0 pF V25 ~ ~32 I~~ 1.0 k 36 '.J~ 3~,/1 ~ 50 k \ 1 en J 50 k r1 H' H 11 r.:r 3~ J.",,29 60 1.0 k 1.0 k 5~ 135 58'-.j 135 57"-J 135 56'-.j 135 ., 55"-1 135 t-@ 28 r27 .., 54 "'-l 135 10 k 10 k 10 k 10 k 53"'-l Filter In f--~""'"-t--<> Audio 0 ut ~0.01I'F r I I Lp= 1.0mH Cp= 100pF Rp: 100 k!.l MOTOROLA LINEAR/INTERFACE DEVICES 8-36 dB pF MC3357 CIRCUIT DESCRIPTION The MC3357 is a low power FM IF circuit designed primarily for use in voice communication scanning both internally directly, and externally through a quadrature coil, to detect the FM. The output at Pin 7 is also used to supply dc feedback to Pin 5. The other side of the first limiter stage is decoupled at Pin 6. The recovered audio is partially filtered, then buffered giving an impedance of around 400 n at Pin 9. The Signal still requires de-emphasis, volume control and further amplification before driving a loudspeaker. A simple inverting op amp is provided with an output at Pin 11 providing dc bias (externally) to the input at Pin 10 which is referred internally to 2.0 V. A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector the filtered audio Signal can be checked for the presence of noise above the normal audio band, or a tone signal. This information is applied to Pin 12. An external positive bias to Pin 12 sets up the squelch trigger circuit such that Pin 13 is low at an impedance level of around 60 kn, and the audio mute (Pin 14) is open circuit. If Pin 12 is pulled down to 0.7 V by the noise or tone detector, Pin 13 will rise to approximately 0.5 Vdc below supply where it can support a load current of around 500 p.A and Pin 14 is internally short-circuited to ground. There is 100 mV of hysteresis at Pin 12 to prevent jitter. Audio muting is accomplished by connecting Pin 14 to a high-impedance ground-reference point in the audio path between Pin 9 and the audio amplifier. receivers. The mixer-oscillator combination converts the input frequency (e.g., 10.7 MHz) down to 455 kHz, where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio. The oscillator is an internally-biased Colpitts type with the collector, base, and emitter connections at Pins 4, 1, and 2 respectively. A crystal can be used in place of the usual coil. The mixer is doubly-balanced to reduce spurious responses. The input impedance at Pin 16 is set by a 3.0 kn internal biasing resistor and has low capacitance, allowing the circuit to be preceded by a crystal filter. The collector output at Pin 3 must be de connected to B +, below which it can swing 0.5 V. After suitable bandpass filtering (ceramic or lC) the signal goes to the input of a five-stage limiter at Pin 5. The output of the limiter at Pin 7 drives a multiplier, MOTOROLA LINEAR/INTERFACE DEVICES 8-37 II 3: 4 3 ~ 10 k 5k ~ s:: 0 -i ; 25 "" !: z m 30 k ~4 k9 r.t 30k 5.0 k 15 k » :0 ~ Z -i 14 ~8 12 22. ~ 50. Cl 13 10 k 15 k 220 k 17 30 k lOOk ~ V16 20 k t-r ~O 15. » .... 50 k 50 k ~ 0 r Col 00 rx~ 11~ 9 ~2 t-; 2CJ J :0 cp 20k 10 3.0 k V8 t... 0 L ~Hl~~>)- V' to. 1 30k 10 k 470 f.i 50 k 15 ?8 m :0 "T1 [3-ni' » C'> m 0 m < C'> 4W 10. 100 k 10 k 10 k 10. 10k 10 k 10 k 10 k 10 k 29 .. 30 .. ri:3l31 .. rd2 35 36 37~40 M~I 10 k y~M 41 ) 1 ,,53 P 28 m en 1- de 42 50 k J4 50. to. 60 9 P-~ 100 k C2 6.2. 33 k 6 33 k 33 k 1=1r.IIRI= ~ _ CIRCLJlT 33 k ~r.:I·n:;:MATIC 10 k 10 k g c.n 120 k 'rr 5f ~ 5~ 7 "-,J 58~ 59 @ MOTOROLA MC3359 HIGH GAIN LOW POWER LOW POWER NARROWBAND FM IF FM IF SILICON MONOLITHIC INTEGRATED CIRCUIT · .. includes oscillator, mixer, limiting amplifier, AFC, quadrature discriminator, opiamp, squelch, scan control, and mute switch. The MC3359 is designed to detect narrowband FM signals using a 455 kHz ceramic filter for use in FM dual conversi08 communications equipment. The MC3359 is similar to the MC3357 except that the MC3359 has an additional limiting IF stage, an AFC output, and an opposite polarity Broadcast Detector. The MC3359 also requires fewer external parts. P SUFFIX PLASTIC PACKAGE CASE 707-02 • Low Drain Current: 3.6 mA (Typi «II VCC = 6.0 Vdc DWSUFFIX, PLASTIC PACKAGE CASE 751D-03 SO-20L • Excellent Sensitivity: Input Limiting Voltage - 3.0 dB = 2.0!"V (Typi • Low Number of External Parts Required FIGURE 2 - PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM RF crVSlal{ , 0" FIGURE 1 - Input II G,d 2 TYPICAL APPLICATION IN A SCANNER RECEIVER Limiter Input Decouplmg 6 Vee -- 60Vdc Q.'Il F DecQupllng L77J-~N":!'~-1 10.7 MHz Input Vee ~ 6.0 Vdc 5" 15 Quadrature 11 Demod Output Input Demodulator Filter 10 Recovered AudiO CASE 707-02 Selin Control MC3359 ~,,,,----,S,,,q''''',,-Ch-,,,,,,P''''' _ _ _ _ _r-~__ $ 50 , 120 13 Output ~ NC- ~~47IlF -=~ • 20 1 c,Ystall Ose. Squelch Sensitivity lN4148 Input , r ---- Mixer I I I Quad I IL ____ Coil JI Output '" 10 Toka limiter Type 1~ RMC-2A6597HM \ -= "\il~ VCC Recovered AudiO u :;> Input 100 pF I- NC 19 RF Input 18 Gnd 17 Audio Mute 16 Scan Control 15 Squelch Input 14 - Decoupling 13 ~ r~~~~ 12 r 11 r- ~~~~~ered Quadrature Input Demodulator Filter 10 CASE 7510-03 MOTOROLA LINEAR/INTERFACE DEVICES 8-39 8~;;ut Decoupling g~~~~ .' II MC3359 MAXIMUM RATINGS (TA = 2S·C, unless otherwise noted) Pin Symbol Value Power Supply Voltage 4 Vcc(max) 12 Vdc Operating Supply' Voltage Range 4 VCC 4to 9 Vdc Input Voltage (VCC" 6.0 Volts) 18 V18 1.0 Vrms Mute Function 16 V16 -0.7 to 12 Vpk Junction Temperature - TJ 150 ·C Operating Ambient Temperature Range - TA -30 to +70 ·C Storage Temperature Range - Tsta -6Sto +150 ·C Rating Unit ELECTRICAL CHARA(fTERISTICS (VCC = 6.0 Vdc, fo = 10,7 MHz, M = ±3,O kHz, fmod = 1.0 kHz, SO!l source, TA = 2S·C test circuit of Figure 3, unless otherwise noted) Characteristics Drain Current (Pins 4 and 8) Min Squelch Off Squelch On Typ Max Units - - 3,6 5,4 6.0 7,0 mA Input for 20 dB Quieting - 8,0 - ",Vrms Input for - 3.0 dB Limiting - 2,0 ",Vrms Mixer Voltage Gain (Pin 18 to Pin 3, Open) - 46 - Mixer Third Order Intercept. SO!l Input - -1,0 - dBm Mixer Input Resistance - 3.6 k!l Mixer Input Capacitance - 2.2 - 450 700 - mVrms Recovered Audio, Pin 10 (Input Signal 1.0 mVrms) pF Detector Center Frequency Slope, Pin 10 - 0,3 - V/kHz AFC Center Slope, Pin II, Unloaded - 12 - V/kHz Filter Gain (test circuit of Figure 3) 40 51 - dB Squelch Threshold, Through 10K to Pin 14 - 0,62 - Vdc Pin 14-High -Low 2,0 0,01 2.4 1,0 ",A rnA Pin 14- High -Low - 5.0 1.5 Scan Control Current, Pi" 15 Mute Switch Impedance Pin 16 to Ground FIGURE 3 - 10 - TEST CIRCUIT 0,1 ~F Input 10.7 MHz 17 Ceramic Filter 2,4 k Audio Gen. 16 muRata 0,7 Vp·p CFU455D or 15 Kvocera KBF455p·20A 14 Squelch Input '0 k 13 Op Amp Output l,OM '2 ~ Op Amp Input 1.0 jJ.F AFC Output " 10 7,5 k .J Audio Output 0.002 jJ.F MOTOROLA LINEAR/INTERFACE DEVICES 8-40 !l M!l MC3359 FIGURE 4 - MIXER VOLTAGE GAIN 400 200 "' E 100 1 VCC 1- 9 ~ji INPUT /0 - 10.7 MHz OUTPUT /0 ~ 455 kHz OUTPUT TAKEN AT PIN 3 WITH fiLTER REMOVED IOPENI - / V . ~.~V 40 >-. ~ 10 0.1 1.0 INPUT. 50 U [mVrm,[ 10 tIINIITII~R ,/ 1 I -30 " 0_ 40 -50 / -60 -90 -80 V -70 / V FIGURE 8 - / -20 ,..- 1.0 -10 o - -10 10 RELATIVE MIXER GAIN -6 -4 -2 2.0 RElATIVE fRE~UENCY [kHz[ ":= ~ -20 II! -40 ' - - - 6.0 8.0 10 OVERALL GAIN. NOISE. AND A.M. REJECTION o=> DERIVED USING OPTIMUM UC OSCILLATOR VALUES AND HOLDING If fREQUENCY AT 455 kHz -20 ~ -30 a:: 111111111 I 1............... ++<.-['-- S+~ ~-10 :5 4.0 10 III -30 ,.-- E /DETECTOR OUTPUT PIN 10 !--'" -8 ~ ~ ....-. ,/" FIGURE 9 - 10 '" _ V ,/ 2.0 3RDI ORDER 1M PRODUCTS -40 -30 INPUT. 50 U [dBm[ Af~ OUTP0T PIN 111 ~ 63.0 II -50 -60 6.0 Vdc ~ ~4.0 / X 100 DETECTOR AND AFC RESPONSES _5.0 / DESIRED PRODUCTS// >-- 10 6.0 I // ~ VCC 7.0 /// OUTPUT TAKEN AT I--- PIN 3 WITH fiLTER REMOVED E ~-'O 1---. VCC - 6.0 Vdc II 1.0 fREOUENCY [MHz[ 8.0 / 10 I - 3i B 1I1MI~ !OOf'V~lllill-n -70 0.1 40 FIGURE 7 - 20 ~ V 1111111 -60 -20 V AVAILABLE ON STANDARD DEVICE. FIGURE 6 - MIXER THIRD ORDER INTERMODULATION PERFORMANCE ~ .-' 1\ I-- TERMINALS NOT f= 6.0 4.0 0.04 I'--- R~SpJNJE +AU~ ~N f- / ILY o If OUTPUT / ./ 20 10 I-- A SPECIAL PROTOTYPE. VCC - 4.0V= ::' LIMITING I.F. FREQUENCY RESPONSE II -U-ll. "" 60 S1 FIGURE 5 - I I ~~I~Hzl ~ -15°C! - - - WC _ ~ VCC - 6.0 Vdc S+~ I I i~~IA~11 -40 N -50 -60 0.1 11111 1.0 10 I -60 100 0.001 0.01 fREQUENCY [MHz/ MOTOROLA LINEAR/INTERFACE DEVICES 8-41 0.1 1.0 INPUT [mVrms/ 10 100 MC3359 FIGURE 11 - AUDIO OUTPUT AND TOTAL CURRENT DRAIN versus SUPPLY VOLTAGE FIGURE 10 - OUTPUT COMPONENTS OF SIGNAL, NOISE, AND DISTORTION +10 in 8.0 ISI1~1~IDI 11111 ~ -10 I I 7.0 II II fa = 10.7 MHz fm = 1kHz I:'f = ±3.0kHz l I TEST CIRCUIT OF FIGURE 3. I '" ~ E. i i3 1 ~ N+D 6.0 ~ .' . J I I'W ~ 2.0 I: i 4.0 ~ 3.0 11111 0 -60 --r::::=r--- 5.0 ~ z -' I AUDIO OUTPUT 1111111 11C, MUTf ON --- ---- ~ ---- b---- I-- r- - 0 -60 0,1 1.0 INPUT ImVrms 0.01 0.001 I II 10 o 0 4.0 100 8.0 6.0 7.0 VCC, SUPPLY VOLTAGE IVdcl 5.0 9 FIGURE 12 - UC OSCILLATOR, TEMPERATURE AND POWER SUPPLY SENSITIVITY ~ 10.704 " 10.702 i ffi 10.698 1f 10.696 a=> 62 ~ r--..." ~C 10.694 20 "'" ~ 40 50 AMBIENT TEMPERATURE I'CI 30 L 300 0-~20 ....... ~ I ~ 60 " UIIIII 10 K 30 1.0M 100 K 10M w I 0.8 C4 C5 • THE OP AMP AS A BANDPASS FILTER I GIVEN/ o Allo) C-- ~ rr- '-' 1.0~ I II R3 R1 R2 0 Tr I I I III jft' OOOl~~~~ I I I I I CENTER FREQUENCY GAIN AT CENTER fREQUENCY 3~K V,n 017 RI ~Tms 18K 60V 13 0OOl11-f 12 ~1 • -=- 750 10 C1 R3 Vre! VOul ~ lA110l R1R3 4QIRl R3 --- is '" 1"'- 0 0 5.0 I "'- 1.0 70 <) 60 a 1 FOR OPEN lOQP GAIN ANDPHASEISQLlDLINES) 1"0 WKE' FIGURE 15 1 1 ~ I-'-- ~,oo ~~ I1111 1.0 K 150 FREOUENCY IHzl . C5 " " 13 USE CIRCUIT ABOVE I WITH CIRCUIT VALUES 10 70 60 12 Vref " III i CLRVES OF, FIG~R~ 3, UC OSCILLATOR RECOMMENDED COMPONENT VALUES 1000 700 500 1 ~OnED _ 0 - JCI FIGURE 14 - <3 ~ 0 ~ 30 [-': ~ GAIN 180 0 O-:Q t-- P~ASE ~ Z 10.692 ;5 10K ~" 60 I'-....... -.......... 20 ~ 60 i'-. TEMP 10.690 OP AMP GAIN AND PHASE RESPONSE 70 r-- .......... ~ 10.700 >- FIGURE 13 - VCC, SUPPLY VOLTAGE IVdcl 60 61 59 58 10.706 ,,; 10 20 30 OSCILLATOR FREOUENCY IMHzl 50 \ 0.2 ~ /' 1 7.0 \ 70 100 2.0 MOTOROLA LINEAR/INTERFACE DEVICES 8-42 5.0 "-.. 10 FREOUENCY IkHzl 20 50 100 ~ ow U1 CD r----------------------------------(--------------------I 30. 120 1301 014 40, ,, ,,, , , 15 s: , 0 -I 0 18 16 :Il 0 r :t> r m 33' :t> ~ 061 014 Z 33k~ 33k 33k~ 33k 3.5k 15 k :Il :::: i OSCILLATOR - MIXER z , , 062 1 '0< 7k OP AMP 'BROADCAST DETECTOR -------------------------------------------~--------~--, -I m I LIMITING IF AMPLIFIER :Il " :t> DETECTOR AND AFC I ,, (") m 0 m 11 < (") 10k 10k 10 k 10 k 10k 10k 10k 10k m en 17 L _________________________________ 6 , ___________________ ~ FIGURE 16 - II CIRCUIT SCHEMATIC ,, ,, ,,, ,, ,, ,, , ' --~ MC3359 has an internal 1.8 k resistor. The IF has a 3 dB limiting sensitivity of approximately 100 p.Vat Pin 5 and a useful frequency range of about 5 MHz as shown in Figure 5. The frequency limitation is due to the high resistance values in the IF, which were necessary to meet tht} low power requirement. The output of the limiter is internafiy connected to the quadrature detector, including the 10 pF quadrature capacitor. Only a parallel UC is needed externally from Pin 8 to Vcc. A shunt resistance Can be added to widen the peak separation of the quadrature detector. The detector output is, amplified and buffered to the audio output, Pin 10, which has an output impedance of approxiPin 9 provides a high impedance (50 k) point in matley 300 the output amplifier for application of a filter or de-emphasis capacitor. Pin 11 is the AFC output, with high gain and high output impedance (1 M). If not needed, it should be grounded, or it can be connected to Pin 9 to double the recovered audio. The detector and AFC responses are shown in Figure 7. Overall performance of the MC3359 from mixer input to audiooutput is shown in Figure 9 and 10. The MC3359 can also be operated in "single conversion" equipment; i.e., the mixer can be used as a 455 kHz amplifier. The oscillator is disabled by connecting Pin 1 to Pin 2. In this mode the overall performance is identical to the 10.7 MHz results of Figure 9. A simple inverting op amp is provided with an output at Pin 13 providing dc bias (externally) to the input at Pin 12, which is referred internally to 2.0 V. A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector, the filtered audio signal can be checked for the presence of either noise above the normal audio, or a tone signal. The open loop response of this op amp is given in Figure 13. Bandpass filter design information is provided in Figure 15. A low bias to Pin 14 sets up the squelch-trigger circuit such that Pin 15 is high, a source of at least 2.0 mA, and the audio mute (Pin 16) is open-circuit. If Pin 14 is raised to 0.7 V by the noise or tone detector, Pin 15 becomes open circuit and Pin 16 is internally short circuited to ground. There is no hysteresis. Audio muting is accomplished by connecting Pin 16 to a highimpedance ground-reference point in the audio path between Pin 10 and the audio amplifier. No dc voltage is needed, in fact it is not desirable because audio "thump" would result during the 'muting function. Signal swing greater than 0.7 V below ground on Pin 16 should be avoided. CIRCUIT DI;SCRIPTION 'The MC3359 is a low-power FM IF circuit designed primarily for use in voice~communieatiQn scanning receivers. It is also finding a place in narrowband data links. In the typical application (Figure 1), the mixer-oscillator combination converts the input frequency (10.7 MHz) down to 455 kHz, where, after external bandpass filtering, most qf the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by' an active filter and a detector. A squelch-trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio. n. APPLICATION The oscillator is an internally biased Colpitts type with the collector, base, and emitter connections at Pin 4, 1, and 2, re- spectively. The crystal is used in fundamental mode, calibrated for parallel resonance at 32 pF load capacitance. In theory this means that the two capacitors in series should be 32 pF, but in fact much larger values do not significantly affect the oscillator frequency, and provide higher oscillator output. The oScill'ator can also be used in the conventional LIC Colpitts configuration without loss of mixer conversion gain. This oscillator is, of course, much more sensitive to voltage and temperature as shown in Figure 12. Guidelines for choosing l and C values are given in Figure 14. The mixer is doubly balanced to reduce spurious responses. The mixer measurements of Figure 4 and 6 were made using an external 50 n source and the internal 1.8 k at Pin 3. Voltage gain curves at several Vee voltages are shown in Figure 4. The Third Order Intercept curves of Figure 6 are shown using the, conventional dBm scales. Measured power gain (with the 50 input) is approximately 18 dB but the useful gain is much higher because the mixer input impedance is over 3 kn. Most applications will use a 330 n 10.7 MHz crystal filter ahead of the mixer. For higher frequencies, the relative mixer gain is given in Figure 8. Following the mixer, a ceramic bandpass filter is recommended. The 455 kHi1vpes come in bandwidths from ± 2 kHz to ± 15 kHz and have input and output impedances of 1.5 k to 2.0 k. For this reason, the Pin 5 input to the 6 stage limiting IF n II MOTOROLA LINEAR/INTERFACE DEVICES 8-44 ® MC3~61 ItIIOTOROLA , Advance Information LOW POWER FMIF LOW POWER NARROWBAND FM IF SILICON MONOLITHIC INTEGRATED CIRCUIT · .. includes Ocillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control, and Mute Switch. The MC3361 is designed for use in FM dual conversion communications equipment. - • Operates From 1.B V to 7.0 V • Low Drain Current 4.0 mA Typ @ VCC = 4.0 Vdc • Excellent Sensitivity: Input Limiting Voltage -3.0 dB = 2.0 !LV Typ 1 P SUFFIX PLASTIC PACKAGE CASE 648-06 • Low Number of External Parts Required ,~ 1 FIGURE 1 - Mixer Input Gnd D SUFFIX PLASTIC PACKAGE CASE 7519-03 SO-16 FUNCTIONAL BLOCK DIAGRAM Mute Scan Squelch Filter Control In QutP"t Filter Recovered Input I Audio I PIN CONNECTIONS RF crvstalj 1 Osc·1 Input Gnd Mixer Output vee 1 Scan Control Limiter Input Decoupling Crystal Osc Mixer Qutput VCC Limiter Decoupl- Decoupl· Ouad ing Coil Input ing Limiter Output Quad Input This document contains Information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 8-45 9 Demodulator Output IJ MC3361 MAXIMUM RATINGS (TA = 25'C, unless otherwise noted) Rating Pin Symbol Value Power Supply Voltage 4 Vcc(max) 8.0 Vdc Operating Supply Voltage Range 4 VCC 1.8 to 7.0 Vdc Unit Detector Input Voltage 8 - 1.0 Vp-p Input Voltage (VCC " 4.0 Volts) 16 V16 1.0 \(RMS 14 V14 -0.5 to 5.0 Vpk TJ 150 'c TA -30to +70 'c Tsta -65 to + 150 'c Mute Function '" Junction Temperature Operating Ambient Temperature Range Storage Temperature Range ELECTRICAL CHARACTERISTICS (VCC - = 4.0 Vdc, 10 = 10.7 MHz, dl = :!:3.0 kHz, Imod = 1.0 kHz, TA = 25'C unless otherwise noted.) Pin Characteristic Min Typ - 4 Drain Current Squelch Off Squelch On - 4.0 6.0 16 - 2.0 Detector Output Voltage 9 - Detector Output Impedance - - 9 - , Input Limitlhg Voltage (- 3.0 dB Limiting) Recovered Audio Output Voltage (Vin = 10 mY) Filter Gain (10 kHz) (Vin = 5.0 mY) Max - Unit rnA p.V - Vdc 400 100 150 - mVrms 40 48 - dB - Vdc 2.0 '. n Filter Output Voltage 11 - 1.5 Trigger Hysteresis - - 50 Mute Function Low 14 - 10 - n Mute Function High 14 - 10 - Mn Scan Function Low (Mute Off) (V12 = 2.0 Vdc) 13 - 0.5 Vdc Scan Function High (Mute On) (V12 = Gnd) 13 3.0 - - Vdc Mixer Conversion Gain 3 - 24 - dB Mixer Input Resistance 16 - 3.3 Mixer Input Capacitance 16 - 2.2 mV - Vcc H'I----.-OMixer Input FIGURE 2 - TEST CIRCUIT 10.7 MHz 1------0 Audio Mute muRata CFU455D2 1---0 Scan Control 1 - - - 0 SQ SW Input ~-"/ij.,-+-IE-o Filter Amp In 1.0 /,F Quad Coil Toko Type 0.1 p.F~ RMC-2A6597HM MOTOROLA LINEAR/INTERFACE DEVICES 8-46 kfi pF @ MOTOROLA MC3362 Advance Information LOW POWER DUAL CONVERSION FM RECEIVER LOW POWER NARROWBAND FM RECEIVER · .. includes dual FM conversion with oscillators, mixers, quadrature detector, and meter drive/carrier detect circuitry. The MC3362 also has buffered first and second local oscillator outputs and a comparator circuit for FSK detection. \ SILICON MONOLITHIC INTEGRATED CIRCUIT • Wide Input Bandwidth: - 200 MHz using Internal local Oscillator - 450 MHz using External local Oscillator ,,- • Complete Dual Conversion Circuitry • low Voltage: VCC = 2.0 to 7.0 Vdc • low Drain Current (3.6 mA (Typ) (/ VCC = 3.0 Vdc) • Excellent Sensitivity: Input 0.7 /lV (Typ) for 12 dB SINAD P SUFFIX 1 • Data Shaping Comparator PLASTIC PACKAGE CASE 724-02 • Received Signal Strength Indicator (RSSI) with 60 dB Dynamic Range • low Number of External Parts Required 24#' • Manufactured in Motorola's MOSAIC Process Technology DWSUFFIX RF Input to 200 MHz FIGURE 1 - PLASTIC PACKAGE CASE 751 E-02 SO-24 TYPICAL APPLICATION IN A PLL FREQUENCY SYNTHESIZED RECEIVER FIGURE 2 - PIN CONNECTIONS AND FuNCTIONAL BLOCK DIAGRAM VCC Detector 1st Mixer Input 1 0.41 ;'-40 -50 ....... ./' First Mixer Input ./' ./ -60 -70 -130 -120 -110 -100 /I' FIGURE 8 - A ~ A :x. --A '0 Second Mixer Input...,/ ~ ;...- ~ -20 h Z ",,1 -20 i/ / !g -30 I Desired Products/ -40 '/ -50 k"" l":: 4.0 VCC IV) '7.0 8.0 . -r--- ~ , ~ 10 k -- S+N3O%AM " N DETECTO'R OUTPUT versus FREQUENCY 3.0 -\ -.... - ~ -;;, 2.0 \ :> 1.0 / I -70 -60 -50 -40 -30 RF INPUT Idam) 6.0 5.0 om+=t:+o. FIGURE 9 - "" "V 200 4.0 / 3rd Order Intermod. Prolducts I 1--""- '/ -70 -80 ~ -100 -90 -80 "" '"' :> 01 -70 -80 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 RF INPUT IdBm) 40-30 I I 4OO.s . S + N, N, AMR versus INPUT· '" -50 MC3362[13 10 k 1ST MIXER 3RD ORDER INTERMODULAnoN -10 3.0 2.0 + ~RF Input to Transformer 10 500 100 -60 60 -50 ~ j) Z -40 "r h ~- 600 S+N ~ -30 L- V 20 -60 iii >- Recovered Audio ~ 300 0 -1 O~ ........:::;/ 90 80 -70 RF INPUT Idam) I' FIGURE 7 - 0 ~-20 a: - --, 4.0 3.0 ./ 700 ~ 10 ~V) .... ~ ICC. Carr. DeI.1High IRFlin ~l~ J,? 4.0 E r-- 5.0 L ,...- Icc,lcar;. Det l Low IRFlin 6.0 ./ / 7.0 6.0 5.0 ;' MC3362 8.0 800 8.0 I r-'~ ;=: A DRAIN CURRENT, RECOVERED AUDIO versus SUPPLY FIGURE 5 - ~4O -20 -10 -30 -20 -10 0 --10 l--I-) 20 RELATIVE INPUT FREQUENCY IkHzl MOTOROLA LINEAR/INTERFACE DEVICES 8-49 30 40 MC3362 CIRCUIT DESCRIPTION Following the first mixer, a 10.7 MHz ceramic bandpass filter is recommended. The 10.7 MHz filtered signal is then fed into one second mixer input pin, the other input pin being connected to Vcc. The MC3362 is a complete FM narrowband receiver from antenna input to audio preamp output. The low voltage dual conversion design yields low power drain, excellent sensitivity and good image rejection in narroWband voice and data link applications. In the typical application (Figure 1), the first mixer amplifies the signal and converts the RF input to 10.7 MHz. This' IF signal is filtered externally and fed into the second mixer, whiCh furth~r amplifies the signal and converts it to a 455 kHz IF signal. After external bandpass filtering, the low IF is fed into the limiting amplifier and detection circuitry. The audio is recovered using a conventional quadrature detector. Twice-IF filtering is provided internally. The input sigrifBl level is monitored by meter drive circuitry which detects the amount of limiting in the limiting amplifier. The voltage at the meter drive pin determines the state of the carrier detect output, which is active low. The 455 kHz IF is typically filtered using a ceramic bandpass filter then fed into the limiter input pin. The limiter has 10 /LV sensitivity for -3.0 dB limiting, flat to 1.0 MHz. The output of the limite'r is internally connected to the quadrature detector, including a quadrature capacitor. A parallel LC tank is needed externally from Pin 12 to Vcc. A 68 kG shunt resistance is included which determines the peak separation of the quadrature detector; a smaller value will increase the spacing and linearity but decrease recovered audio and sensitivity. A data shaping circuit is available and can be coupled to the recovered audio output of Pin 13. The circuit is a comparator which is designed to detect zero crossings of FSK modulation. Data rates of 2000 to 35000 baud are detectable using the circuit of Figure 1. Hysteresis is available by connecting a high-valued resistor from Pin 15 to Pin 14. Values below 120 kG are not recommended as the input signal cannot overcome the hysteresis. The meter drive circuitry detects input signal level by monitoring the limiting of the limiting amplifier stages. Figure 4 shows the unloaded current at Pin 10 versus input pbwer. The meter drive current can be used directly (RSSI) or can be used to trip the carrier detect circuit at a specified input power. To do this, pick an RF trip level in dBm. Read the corresponding current from Figure 4 and pick a resistor such that: APPLICATION The first local oscillator can be run using a freerunning LC tank, as a VCO using PLL synthesis, or driven from an external crystal oscillator. It has been run to 190 MHz.* A buffered output is available at Pin 20. The second local oscillator is a common base Colpitts type which is typically run at 10.245 MHz under crystal control. A buffered output is available at Pin 2. Pins 2 and 3 are interchangeable. The mixers are doubly balanced to reduce spurious responses. The first and second mixers have conversion gains of 18 dB and 22 dB (typical), respectively, as seen in Figure 6. Mixer gain is stable with respect to supply voltage. For both conversions, the mixer impedances and pin layout are designed to allow the user to employ low cost, readily available ceramic filters. Overall sensitivity and AM rejection are shown in Figure 7. The input level for 20 dB (S+N)/N is 0.7 /L)/ using the two-pole post-detection filter pictured. RlO = 0.64 Vdc / 110 Hysteresis is available by connecting a high-valued resistor RH between Pins 10 and 11. The formula is: Hyst. = VCC/(RH x 10 - 7) dB *If the first local oscillator (Pins 21 and/or 22) is driven from a strong external source (100 mVrms), the mixer can be used to over 450 MHz. MOTOROLA LINEAR/INTERFACE DEVICES 8-50 s: (") W w en N FIGURE 10 - 23·, CIRCUIT SCHEMATIC Vee 4 s: 0 -I 0 5 3 :Xl 0 r ~ » r 2 bias ~ $$ ~ $ i l ~ ...~ ~ ~ m cp "j » :Xl 10<>----1~----------1-~~ 12 ~ 2 -I m :Xl -n » (") m 0 m < (") m en 13 ~ l 8 II VEE \" Me3363 MOTOROLA , I Advance Information LOW POWER DUAL CONVERSION FM RECEIVER LOW POWER DUAL CONVERSION ,FM RECEIVER The MC3363 is a single chip narrowband VHF FM radio receiver. It is a dual conversion receiver with RF amplifier transistor, oscillators, mixers, quadrature detector, meter drive/carrier detect and mute circuitry. The MC3363 also hasa buff~ed first local oscillator output for use with frequency synthesizers, and a data slicing 'comparator for FSK detection. SILICON MONOLITHIC INTEGRATED CIRCUIT • Wide Input Bandwidth - 200 MHz Using Internal Local Oscillator , - 459 MHz Using External Local Oscillator RF Amplifier Transistor Muting Operational Amplifier Complete Dual Conversion Low Voltage: VCC = 2.0 V to 7.0 V Low Draln Current: ICC = 3.6 mA (Typ) at VCC = 3.0 V, Excluding RF Amplifier Transistor • Excellent Sensitivity: Input 0.3,."V (Typ), for 12 dB SINAD Using Internal RF Amplifier Transistor • • • • • DWSUFFIX • Data Shaping Comparator • Received Signal Strength Indicator (RSSI) with 60 dB Dynamic Range 'PLASTIC PACKAGE CASE 751 F-02 $0-28 • Low Number of External Parts Required • Manufactured in Motorola's MOSAIC Process Technology • See AN980 For A(lditional Design Information FIGURE 1 - PIN CQNNECTIONS AND FUNCTIONAL BLOCK DIAGRAM 1st Mixer Input 1 1st Mixer Input 27 Varicap Control Emitter 3 2 1st LO Tank 1st LO Tank Collector 4 2nd LO Emitter 5 1st LO Output 1St Mixer Output 2nd LO Base 6 2nd Mixer Output 7 2nd Mixer Input 21 2nd Mixer Input Limiter Input VEE Limiter Decoupling 10 Mute Output Limiter Decoupling 11 18 Comparator Output Meter Drive (RSSI) 1 17 Comparator Input Carrier Detect 1 Quadrature Coil 1 4 Recovered Audio Mute 'Input This document contains information on a new product. Specifications and information herein are subject to ch,nge without notice. MOTOROLA LINEAR/INTERFACE DEVICES 8-52 MC3363 MAXIMUM RATINGS (TA = 25"C unless otherwise noted) Pin Symbol Value Unit Power Supply Voltage Rating 8 VCC(max) 8.0 Vdc Operating Supply Voltage Range (Recommended) 8 VCC 2.0 to 7.0 Vdc 1,28 VI-28 1.0 Vrms Mute Output Voltage 19 V19 -0.7 to 8.0 Vpk Junction Temperature - TJ 150 "C TA -40 to +85 "C Tstg -65to +150 "C Input Voltage (VCC = 5.0 Vdc) Operating Ambient Temperature Range Storage Temperature Range ELECTRICAL CHARACTERISTICS (VCC = 5.0 Vdc, fo = 49.7 MHz, Deviation = ±3.0 kHz, TA = 25"C, Mod 1.0 kHz, Test Circuit of Figure 2 unless otherwise noted) Characteristic Pin 1st Mixer Input Capacitance (Parallel - /LVrms 1.0 - /LVrms 690 - Ohm - 21 9 - 100 4 1.0 1.5 2.5 mAde 16 120 200 - mVrms - 2nd Mixer Conversion Voltage Gain (Avc2, Open Circuit) - 2nd Mixer Input Sensitivity (20 dB SIN) (10.7 MHz i/p) 21 Limiter Input SenSitivity (20 dB SIN) (455 kHz i/p) RF Transistor DC Current Drain = 1.0 mY) 2.0 Unit - 1st Mixer Conversion Voltage Gain (A vc l, Open Circuit) Recovered Audio (RF Signal Level mA 0.7 7.2 - Cp) 8.0 - - Rp) Max 4.5 1,28 -3.0 dB Limiting Sensitivity (RF Amplifier Not Used) 1st Mixer Input Resistance (Parallel - Typ 1,28 8 20 dB SIN Sensitivity (RF Amplifier Not Used) Min - Drain Current (Carrier Detect Low) 18 10 pF dB dB /LVrms /LVrms THO of Recovered Audio (RF Signal 16 - 2% Detector Output Impedance 16 - 400 Data (Comparator) Output Voltage - High -Low 18 18 0.1 0.1 - Data (Comparator) Threshold Voltage Difference 17 70 110 150 mV Meter Drive Slope 12 70 100 135 nAidB Carrier Detect Threshold (Below Vccl 12 0.53 0.64 0.17 Mute Output Impedance - High -Low 19 19 Noise Output Level (RF Signal = 0 mY) = 1.0 mY) 16 MOTOROLA liNEAR/INTERFACE DEVICES 8-53 - - 70 - 10 25 VCC - mVrms % Ohm Vdc Vdc Vdc Mohm Ohm II II s: n w FIGURE 2 - TEST CIRCUIT VCC ~ w 5.0 Vdc gJ 1st Mixer Input 50 MHz 0_---4------1 CRF 1: muRata SFE 10.7 M or Equivalent CRF 2: muRata CFU 4550 or Equivalent s: Ll: Coilcraft UNll0/142 10% Turns 0 LC1: Toko RMC2A6597HM -l 0 :0 0 r From PLL Phase Detector ~ r z m cp ~ ~ :0 To PLL Phase Detector :::: z 10. -l m :0 "~ + 11O~F 1 -= 10 k C") m 0 r:-:----trn < l..I:rn m C") 0 0 , , Mute Output Comparator Output m til >I Ii!! 10 k 5.0 k 'IN. 'No. L~680~H C ~ 180 pF Recovered Audio Output ~~~~ -vv~r---------o Comparator Test Input 0.01 '-----<> Carrier Detect Output 0 L---------O Mute Input MC3363 CIRCUIT DESCRIPTION The MC3363 is a complete FM narrowband receiver from RF amplifier to audio preamp output. The low voltage dual conversion design yields low power drain, excellent sensitivity and good image rejection in narrowband voice and data link applications. In the typical application, the input RF signal is amplified by the RF transistor and then the first mixer amplifies the signal and converts the RF input to 10.7 MHz. This IF signal is filtered externally and fed into the second mixer, which further amplifies the signal and converts it to a 455 kHz IF signal. After external bandpass filtering, the low IF is fed into the Ilmiting amplifier and detection circuitry. The audio is recovered using a conventional quadrature detector. Twice-IF filtering is provided internally. The input signal level is monitored by meter drive circuitry which detects the amount of limiting in the limiting amplifier. The voltage at the meter drive pin determines the state of the carrier detect output, which is active low. The output of the limiter is internally connected to the quadrature detector, including a quadrature capacitor. A parallel lC tank is needed externally from Pin 14 to VCC. A 68 kOhm shunt resistance is included which determines the peak separation ofthe quadrature detector; a smaller value will lower the Q and expand the deviation range and linearity, but decrease recovered audio and sensitivity. A data shaping circuit is available and can be coupled to the recovered audio output of Pin 16. The circuit is a comparator which is designed to detect zero crossings of FSK modulation. Data rates of 2000 to 35000 baud are detectable using the comparator. Best sensitivity is obtained when data rates are limited to 1200 baud maximum. Hysteresis is available by connecting a high-valued resistor from Pin 17 to Pin 18. Values below 120 kOhm are not recommended as the input signal cannot overcome the hysteresis. The meter drive circuitry detects input signal level by monitoring the limiting of the limiting amplifier stages. Figure 5 shows the unloaded current at Pin 12 versus input power. The meter drive current can be used directly (RSSI) or can be used to trip the carrier detect circuit at a specified input power. A muting op amp is provided and can be triggered by the carrier detect output (Pin 13). This provides a carrier level triggered squelch circuit which is activated when the RF input at the desired input frequency falls below a preset level. The level at which this occurs is determined by the resistor placed between the meter drive output (Pin 12) and VCC. Values between 80-130 kOhms are recommended. This type of squelch is pictured in Figures 3 and 4. Hysteresis is available by connecting a high-valued resistor Rh between Pins 12 and 13. The formula is: APPLICATION The first local oscillator is designed to serve as the VCO in a Pll frequency synthesized receiver. The MC3363 can operate together with the MC145166/7 to provide a two-chip ten channel frequency synthesized receiver in the 46/49 cordless telephone band. The MC3363 can also be used with the MC14515X series of CMOS Pll synthesizers and MC120XX series of ECl prescalers in VHF frequency synthesized applications to 200 MHz. For single channel applications the first local oscillator can be crystal controlled. The circuit of Figure 4 has been used successfully up to 60 MHz. For higher frequencies an external oscillator signal can be injected into Pins 25 and/or 26 - a level of approximately 100 mVrms is recommended. The first mixer's transfer characteristic is essentially flat to 450 MHz when this approach is used (keeping a constant 10.7 MHz IF frequency). The second local oscillator is a Colpitts type which is typically run at 10.245 MHz under crystal control. The mixers are doubly balanced to reduce spurious responses. The first and second mixers have conversion gains of 18 dB and 21 dB (typical), respectively. Mixer gain is stable with respect to supply voltage. For both conversions, the mixer impedances and pin layout are designed to allow the user to employ low cost, readily available ceramic filters. Following the first mixer, a 10.7 MHz ceramic bandpass filter is recommended. The 10.7 MHz filtered signal is then fed into the second mixer inpu~ Pin 21, the other input Pin 22 being connected to VCC. The 455 kHz IF is filtered by a ceramic narrow band-. pass filter then fed into the limiter input Pin 9. The limiter has 10 p.V sensitivity for -3.0 dB limiting, flat to 1.0 MHz. Hyst = VCCI (Rh x 10 -7) dB The meter drive can also be used directly to drive a meter or to provide AGC. A current to voltage converter or other linear buffer will be needed for this application. A second possible application of the op amp would be in a noise triggered squelch circuit, similar to that used with the MC3357/MC3359/MC3361 FM 1.F.'s.ln this case the op amp would serve as an active noise filter, the output of which would be rectified and compared to a reference on a squelch gate. The MC3363 does not have a dedicated squelch gate, but the NPN RF input stage or data shaping comparator might be used to provide this function if available. The op amp is a basic type with the inverting input and the output available. This application frees the meter drive to allow it to be used as a linear signal strength monitor. The circuit of Figure 4 is a complete 50 MHz receiver from antenna input to audio preamp output. It uses few components and has good performance. The receiver operates on a single' channel and has input sensitivity of <0.3 p.V for 12 dB SINAD. MOTOROLA LINEAR/INTERFACE DEVICES 8-55 E II os: FIGURE 3 - TYPICAL APPUCATION 1N A PLL FREQUENCY SYNTHESIZED RECEIVER Co) VCC ~ ~ 5.0Vdc CRF1: muRata SFE 10.7M CRF2: muRata CFU 4550 LC1: Toko RMC2A6597HM )f is: 0 -I RF Input 49.670 to 49.970 MHz 0.01 ~I ~ 0 :JJ L._ _ _ _ _ _ _ _~~--....~ From PLL Phase Detector 0 -r ~ To MC14516617 Dual PLL Frequency 3.0 k Synthesizer r Z m 00 cJ, Ol ~ :JJ CR1 10.245 M + ::::: z -I m :JJ 10 k "T1 -= ~ Q _m 4im 0 m .. VCC (Regulated) Data Output IPin 27 < . t Pull-Up Resistor 3.3 k to 20 k (") m en Mute Control I T Cr L 100 k 11 ( 1.0 /LH LC1 .. Recovered Audio Output I Pin 26 L I Pi ... ~ 0.08 /LH r fosc: 200 MHz Ipjn 24 L~680/LH C ~ 180 pF Note: Pull Up resistor is used to run the oscillator above 50 MHz. s:: ow FIGURE 4 - SINGLE CHANNEL CRYSTAL CONTROLLED FM RECEIVER VCC ~ ~ 5.0 Vdc Antenna 49.830 MHz 1.0 k CRF1: muRata SFE 10.7M CRF2: muRata CFU 4550 LC1: Toko RMC2A6597HM 20 k 1.2 J.'H ~ 0 --i 0 ::0 0 r l> r L2 0.35 J.'H I 2TII 300 1+ • = CR2 39.130 MHz ~ z m l> c:p 01 ...... ::0 ---Z CR1 10.245 M --i m ::0 "'Tl l> 10 k () m 0 m 4m < • Data Output • Recovered Audio Output () m en Mute Control 100 k L-J ( ~ C10 1.0 J.'F L~680J.'H C ~ 180 pF II II :s: o ~ FIGURE 5 - CIRCUIT SCHEMATIC 27 6 8 7 23 6~ 5 s: 0 -I 0 ::Il 0 rl » Bias r Z m cp en 00 » ::Il -Z -I m 120 4 ,~ Bias rr I 13 15 14 19 3 ::Il " » (") m 0 m < (") m en 11 17 10 18 20 1 ® MC3367 MOTOROLA Prod uct Preview LOW VOLTAGE SINGLE CONVERSION FM RECEIVER LOW VOLTAGE FM NARROWBAND RECEIVER · .. with single conversion circuitry including oscillator, mixer, IF amplifiers, limiting IF circuitry, and quadrature discriminator. The MC3367 is perfect for narrowband audio and data applications up to 75 MHz which require extremely low power consumption. Battery powered applications down to VCC = 1.1 V are possible. The MC3367 also includes an on-board voltage regulator, low battery detection circuitry, a receiver enable allowing a power down "sleep mode:' two undedicated buffer amplifiers to allow simultaneous audio and data reception, and a comparator for enhancing FSK (Frequency Shift Keyed) data reception. • Low Supply Voltage: VCC SILICON MONOLITHIC INTEGRATED CIRCUIT = 1.1 to 3.0 Vdc • Low Power Consumption: PD = 1.5 to 5.0 mW DWSUFFIX • Input Bandwidth 75 MHz • Excellent Sensitivity: Input Limiting Voltage (-3.0 dB) = 0.2 !-'Vrms - PLASTIC PACKAGE CASE 751F-02 50-28 • Voltage Regulator Available (Source Capability 3.0 mAl • Receiver Enable to Allow Active/Standby Operation • Low Battery Detection Circuitry • Self Biasing Audio Buffer with Nominal Gain AV = PIN CONNECTIONS 4.0 • Data Buffer with Nominal Gain AV = 3.2 • Comparator with> 25 kHz (50 kbaud) Capability • Standard 28-Lead Surface Mount (SOIC) Package FIGURE 1 - Mixer Dcpl. Mixer Out Mixer In Osc. Dcpl. Osc. Base Osc. Emit. Isrc Dcpl. IF Gnd VCC2 Rec. Audio Quad Tank Quad Tank Demod. Gnd Comparator I/P . .a.;...;_ _~ BLOCK DIAGRAM This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOR041- LINEAR/INTERFACE DEVICES 8-59 2nd IF Amp In Data Buffer Out Data Buffer In 1st IF Amp Out VCC3 1st IF Amp In Audio Buffer Out Audio Buffer In Low Battery Det. 1.2 V Select VCC Vreg Receiver Enable Comparator OIP E II MC3367 ABSOLUTE MAXIMUM RATINGS (Voltages referred to Pin 12· TA Parameter ~ 25°C) Pin Value Supply Voltage 18 5.0 Units Vdc RF Input Signal 3 1.0 Vrms Audio Buffer Input 21 1.0 Vrms Data Buffer Input 26 1.0 Vrms Comparator Input 14 1.0 Vrms Junction Temperature - 150 °c Storage Temperature - -65to +150 °c Devices should not be operated at or outside these values. The "Recommended Operating limits" provide for actual device operation. RECOMMENDED OPERATING CONDITIONS Pin Value Units Supply Voltage 18 1.1 to 3.0 Vdc Receiver Enable Voltage 16 o or VCC Vdc 1.2 V Select Voltage 19 VCC Vdc RF Input Signal 3 0.001 to 100 mVrms RF Input Frequency 3 o to 75 MHz Intermediate Frequency (IF) - 455 kHz Audio Buffer Input 21 mVrms Parameter Data Buffer Input 26 o to 75 o to 75 Comparator Input 14 10 to 300 mVrms Ambient Temperature - o to 70 °c mVrms FIGURE 2 - TEST CIRCUIT (All capacitors in ,uF unless otherwise stated. Resistors in ohms. Inductors in Henries.) L 0.1~ RF Input 45 MHz 7r 28* 27 ~ 2 p ~ 0.1 3 26 1.21" ~ 0.7 I" Ll 44.545 MHz ~ ... , 4 25 5 24 ~ 30p;:" 6 5 p:a:: FLl ~ FL2 ~ Taka LFC-455F/I ar muRa ta CFU 455D/E/F T 9 p 1000p CYOFLl >---l~ 0.1 1 2 330 :a:: 0.1 ~ 23 .". 0.1~ Cp ~ 180 P ~--- 56 k* =.r 1.0~ = 1*]1 22 8 21 9 20 10 19 11 18 12 17 $0.1 T~~RMC 2A 6597HM 7 100 k ~ ~1.0 .". ~ 13 14 16 15 ~ MOTOROLA LINEAR/INTERFACE DEVICES 8-60 100 k Vec MC3367 ELECTRICAL CHARACTERISTICS (VCC = 1.3 V, fo = 45 MHz, fmod = 1.0 kHz, Deviation = 3.0 kHz, TA = 25'C, Test Circuit of Figure 2 unless otherwise noted) I Characteristic Pin I Min Typ Max Units - 1.4 0.5 3.0 mA p.A 10 - OVERALL MC3367 PERFORMANCE = VCC = 0 Vdc Recovered Audio (RF Input = 10 mY) Noise Output (RF Input = 0 mY) 10 - Input for - 3.0 dB Limiting 3 - Drain Current - Pill 15 Pin 15 - 13 - mVrms 4.5 - mVrms 0.2 - p.Vrms MIXER Mixer Input Resistance (Rp) Mixer Input Capacitance (Cp) FIRST IF AMPLIFIER I First IF Amp Voltage Gain 25 dB AUDIO BUFFER Voltage Gain - - 4.0 - Input Resistance 21 - 125 Maximum Input for Undistorted Output 21 - 70 Maximum Output Swing 22 - 800 Output Resistance 22 - 680 - Voltage Gain 26 Maximum Input for Undistorted Output 26 Maximum Output Swing 27 Output Resistance 27 - 3.2 Input Resistance VN kO mVrms mVpp 0 DATA BUFFER mVrms 1.5 - 7.0 -, mVrms 8.0 70 600 COMPARATOR Minimum Input for Triggering 14 Maximum Input Frequency (RL Rise Time (10-90%; RL Fall Time (90-10%; RL = 100 kO) = 100 kO) = 100 kO) 14 15 15 - LOW BATTERY DETECTOR Low Battery Trip Point Low Battery Output - VCC -VCC = = 0.9 V 1.3V VOLTAGE REGULATOR Regulated Output (see Figure 6) Source Capability MOTOROLA LINEAR/INTERFACE DEVICES 8-61 25 5.0 0.4 - VN MO mVpp kO kHZ p.s p.s II MC3367 RECOVERED AUDIO versus SUPPLY FIGURE 3 - 80 1400 ~1.0~ 60 V22 50 1000 If 1 ~ I II 800 600 30 20 400 Vg 10 200 o o 0.5 1.0 1.5 FIGURE 5 - 2.0 Vee IVI 2.5 3.0 3.5 o o 4.0 1000 +20 900 -10 -20 -30 -40 -50 -60 :> 5 ~ > R ~e" 6 27 0.1 R=56k!l N - 70 130 22 120 110 100 90 80 3.5 4.0 VREG versus SUPPLY ~ 500 _RL 7330 RL ~ 990 400 200 e=1000pF e~ Output 3.0 600 300 ~ 2.5 I 700 RL = r--,. 2.0 VeelVI I 800 S+N 0::::- 1.5 1.0 FIGURE 6 - +30 0 0.5 S +N, N versus INPUT +10 II v 1200 22 40 DRAIN versus SUPPLY 1600 ~ 70 ~ FIGURE 4 - 100 70. 60 50 40 30 o0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VeelVI CIRCUIT DESCRIPTION APPLICATION The MC3367 is an FM narrowband receiver capable of operation to 75 MHz. The low voltage design yields low power drain and excellent sensitivity in narrowband voice and data link applications. In the typical application the mixer amplifies the incoming RF or IF signal and converts the RF or IF frequency to 455 kHz. This signal is then filtered by a 455 ceramic filter and applied to the first intermediate frequency (IF) amplifier input. This amplifier amplifies the 455 kHz IF before it is filtered by a second ceramic filter. The modulated IF signal is then applied to the limiting IF amplifier and detector circuitry. Audio is recovered by a conventional quadrature detector. Features available include buffers for audio/data amplification and active filtering, on board voltage regulator, low battery detection circuitry with programmable level, and receiver disable circuitry. The MC3.~67 is an FM utility receiver to be used for voice and/or narrowband data reception, especially suitable where eldremely low power consumption and high design flexibility are required. The MC3367 can be used as a high performance FM IF for use in low power dual conversion receivers. Because of the MC3367's extremely good sensitivity (0.6 p.V for 20 dB (S + N)/N, see Figure 5), it can also be used as a stand alone single conversion narrOWband receiver to 75 MHz for applications not sensitive to image frequency interference. The oscillator is a Colpitts type which can be run as an LC oscillator or under crystal control. The crystal in Figure 2 is a 3rd overtone series mode type, and the 1.2 p.H coil (L 1) and 1.0 ko' resistor are needed to ensure proper operation. For fundamental mode crystals, the inductor L 1 can be omitted. The best adjacent channel and sensitivity response occur when two 455 kHz ceramic filters are used, as shown in Figure 2. Either can be niplaced by a 0.1 p.F coupling capacitor to reduce cost, but some degradation in sensitivity and/or stability is suspected. The detector is a quadrature type, with the connection from the limiter output to the detector input provided internally as with the MC3359 and the MC3361. MOTOROLA LINEAR/INTERFACE DEVICES 8-62 s: (') w w 0') ....,. FIGURE 7 - 2 :5:' khlLuru I ti" 11 0 12 0 9 \~kfldJ mI ~, 0 :::c CIRCUIT SCHEMATIC 3 1.~ 4 0 >, r- 6 Z m eo 0, to> l- ~ Z -I m :::c "fi m 0 m < n m 7 ':~~ 180 I:~~~~~~A 91 - ~ 100 1 kl ~ ~ I 8.0 k! I 8.0 k t 3;-\ I C/I, 91 k* 1_19 ~J~' II I IIf 20 16 14 II 15 26 27 21 22 l10k t,;10 10k MC3367 A 455 kHz LC tank circuit must be provided externally. One of the tank pins (Pin 11) must be decoupled using a 0.1 JLF capacitor. The 56 kG damping resistor shown in Figure 2 determines the peak separation (and thus the detector bandwidth) of the detector. Smaller values will increase the separation and bandwidth but decrease recovered audio and sensitivity. The data buffer is a non-inverting amplifier with a nominal voltage gain of 3.2 VN. This buffer needs its dc bias (approx. 250 mV) provided externally or else debiasing will occur. A single-pole RC filter as shown in Figure 5 connecting the recovered audio output to the data buffer input provides the necessary dc bias and some post-detection filtering. The buffer can also be used as an active filter. The audio buffer is a non-inverting amplifier with a nominal voltage gain of 4.0 VN. This buffer is selfbiasing so its input should be ac coupled. The two buffers, when used as active filters, can be used together to allow simultaneous audio and very lowspeed data reception. Another possible configuration is to receive audio only and include a noise-triggered squelch. The comparator is a non-inverting type with an open collector output. Typically the pull-up resistor used between Pin 15 and VCC is 100 kG. With RL = 100 kG the comparator is capable of operation up to 25 kHz. This circuit is self-biasing, so its input should be ac coupled. The regulator is a 0.95 V reference capable of sourcing 3.0 mAo This pin (Pin 17) needs to be decoupled using a 1.0-10 JLF capacitor to maintain stability of the MC3367. All three VCC's on the MC3367 (VCC, VCC2, VCC3) run on the same supply voltage. VCC is typically decoupled using capacitors only. VCC2 and VCC3 should be bypassed using the RC bypasses shown in Figure 2. Eliminating the resistors on the VCC2 and VCC3 bypasses may be possible in some applications, but a reduction in sensitivity and quieting will likely occur. The low battery detection circuit gives an NPN open collector output at Pin 20 which drops low when the MC3367 supply voltage drops below 1.1 V. Typically it would be pulled up via a 100 kG resistor to supply. The 1.2 V Select pin, when connected to the MC3367 supply, programs the low battery detector to trip at VCC < 1.1 V. Leaving this pin open raises the trip voltage on the low battery detector. Pin 16 is a receiver enable, which is connected to VCC for normal operation. Connecting this pin to ground shuts off receiver and reduces current drain to ICC < 0.5 !LA. II MOTOROLA LINEAR/INTERFACE DEVICES 8-64 ® MC13055 MOTOROI.A WIDEBAND FSK RECEIVER WIDEBAND FSK RECEIVER The MC13055 is intended for RF data link systems using carrier frequencies up to 40 MHz and FSK (frequency shift keying) data rates up to 2.0M Baud (1.0 MHz). This design is similar to the MC3356, except that it does not include the oscillator/mixer. The IF bandwidth has been increased and the detector output has been revised to a balanced configuration. The received signal strength metering circuit has been retained, as has the versatile data slicerl comparator. MONOLITHIC SILICON INTEGRATED CIRCUIT • Input Sensitivity 20 !LV (cL 40 MHz • Signal Strength Indicator Linear Over 3 Decades ,,--~. • Available in Surface Mount Package • Easy Application, Few Peripheral Components PLASTIC PACKAGE CASE 648-06 II D SUFFIX PLASTIC PACKAGE CASE 751 B-03 SO-16 FIGURE 1 - Vee BLOCK DIAGRAM AND APPLICATION CIRCUIT 0.01 16 Data Output 15 14 40 MHz IF "--If--..-I 13 100 pF Comparator Ground 12 Squelch Adjust (meter) Comparator Vee IF Ground IF Vee Limiter Input Limiter Bias Limiter Bias 3.9 k Quad Bias L2 MOTOROLA LINEAR/INTERFACE DEVICES 8-65 11 Detector Out MC13055 MAXIMUM RATINGS Rating Symbol Value Unit VCC(max) 15 Vdc V2,V4 3.0 to 12 Vdc Junction Temperature TJ 150 "C Operating Ambient Temperature Range TA -40 to +85 "C TstQ -65 to + 150 "C PD 1.25 W Power Supply Voltage Operating Supply Voltage Range . Storage Temperature Range Power Dissipation, Package Rating ELECTRICAL CHARACTERISTICS (VCC ~ 5.0 Vdc, fa ~ ~ 40 MHz, fmod 1.0 MHz, j.f ~ ± 1.0 MHz, TA ~ 25"C, Test circuit of Figure 2) Typ Max Unit 12 + 14 - 20 25 mA Data Comparator Pull-Down Current 116 - 10 - mA Meter Drive Slope versus Input 112 4.5 7.0 9.0 /LA/dB Carrier Detect Pull-Down Current 113 - 1.3 - mA Carrier Detect flu'll-Up Current 113 - 500 - /LA Carrier Detect Threshold Voltage V12 700 800 900 mV Characteristics Measure Total Drain Current DC Output Currerit Recovered Signal Sensitivity for 20 dB S + NIN, BW S+N/N at Vin Input • ~ ~ 110,111 - 430 - /LA Vl0 - Vl1 - 350 - mVrms VIN - 20 - /LVrms 30 - dB 4.2 4.5 - kll pF 5.0 MHz Vl0 - Vll 50/LV Impedance~' Min 40 MHz Quadrature Coil Loading Rin Cin Pin 5, Ground Rin Pin 9 to 8 - - Cin FIGURE 2 - kll pF Coils - Shielded Coilcralt UNI-l0/142 L1 Gray 8-1/2 Turns, nominal 300 /LH L2 Black 10-1/2 Turns, nominal 380 /LH 100 pF or TOKO Series E526HNA L1 Part No. 100301 Carrier 1-<>-+---1----0 Detect Output L2 Part No. 100079 22 pF Input o----j I-'---....--i-'+---<>-i \-<>-+---1--0 Meter Drive Detector 1-<>-...........-1----0 Output 3.9 k 39 pF r - - TEST CIRCUIT VCCo-~~------4-~ I 7.6 5.2 - -T2--i I L _____ .,J MOTOROLA LINEAR/INTERFACE DEVICES 8-66 MC13055 All curves taken with test conditions of ELECTRICAL CHARACTERISTICS, unless otherwise noted FIGURE 3 - FIGURE 4 - OVERALL GAIN. NOISE. AM REJECTION - ,---_. METER CURRENT versus SIGNAL _. Output fmod ~ 1.0 MHz af ~ 1.0 MHz +--+--1 600 VCC~~ ,/ ~ V/ 12 V 1500 ~ 400 /h /, V 6Y a 300 w '" ti:i /-..... \. IJ'--... -60-·-100 FIGURE 5 - -20 r--- I- 51 -50 '"'zEO -60 "=> >- ;;: ;;; MC13055 -90 -100 10 20 FIGURE 7 - I:2.-50 ~ ~-70 EO " ~-80 30 40 50 60 70 INPUT FREQUENCY (MHzl i .....- V 500 § 400 u ~ 80 90 Quadrature r- ./ / °0~~~~-~3~0-~40~~50r-~6~0-~7~0-~80~~-~ 100 FIGURE 8 - DETECTOR CURRENT AND POWER SUPPLY CURRENT versus SUPPLY VOLTAGE 1200 '"' 39.8 ~ 39.7 ~ !""- 39.68 39.5 ~ :::> 39.4 0 39.3 \/ limiting ~ I- + C) 39.2 I 11 13 .....V f f.-- 1-"110 + 111 -- ~r:14 o / MOTOROLA LINEAR/INTERFACE DEVICES + .....3 2 1 11 VCC (Vdc) 8-67 - -- V o 15 J.- l- - 1 I 7 9 VCC (Vdcl 60 40.2 40.1 1000 40.0 ~ 39.9 ~ ;:: 800 - Sensitivity 1--1---'''"!-<=--+'=>O'~--_f>'_r--''1I'-...=+-=''''I_'''''''c1 INPUT FREQUENCY (MHzl Coil Tuning 40 MHz E 300r---;-___c " 200 ;;; -90 UNTUNED INPUT: METER CURRENT versus FREQUENCY _ 600 LIMITING SENSITIVITY AND DETUNING versus SUPPLY ~ :;: ~-60 -20 -60 40 INPUT SIGNAL (dBml "1 4OJ -40 - 80 FIGURE 6 - 2~ k -- - -- V- I -, / o 8 I-0.l~ -70 -80 I9 7 > -30 I - - I:;: >= -40 r--- I 5 >- ~ o -100 800.--,--,--,--,--,--_-,,--r---,--, 0.\ -10 I--Inputo-) U5 h .b 100 'V 20 // - 200 UNTUNED INPUT: LIMITING SENSITIVITY versus FREQUENCY I j / -60 -40 SIGNAL INPUT (dBml 80 " 13 0 15 MC13055 FIGURE 9 - FIGURE 10 - CARRIER DETECT THRESHOLD versus TEMPERATURE RECOVERED AUDIO versus TEMPERATURE 1000 ...... .0 ~ .0 0 ~ .01-_ 900 -- -- f- .... r--.. r-........ 0 .0 .0 0 0 0 .............. "'" .... ....-;:::; 2 -~ -~ W ~ ~ M AMBIENT TEMPERATURE 1°C} -W FIGURE 11 - ~­ ~ ~ V "..- § 300 u ~ II I-""" '" 200 V ~ ---- --- -- -20 ~~ -30 r--.. -fO -50 60 0 W ~ ~ M AMBIENT TEMPERATURE 1°C} 100 1~ lW INPUT LIMITING versus TEMPERATURE ~ E -60 ~ I'~, ........... r-- ........ ......... ~ '" -70 m , 1'-. ', " ,~, r--~ .... ..... ..... :'~ '"Ez ~ -80 ........ 100 ;.: .... 120 ...... r--. --V cO:> ........ ........ 1--1"- ...... ...v -90 -60 140 -40 -20 o W ~ ~ M AMBIENT TEMPERATURE 1°C} ~ lW ~ t ! l Jr~~~~68~~ 3.9 1.0k -W FIGURE 12 - ~ 20 40 60 80 AMBIENT TEMPERATURE 1°C} -20 -~ -50 100 -60 -40 -~ Inputl~ j 500 --10~ i!1' 400 500 ~ lW METER CURRENT versus TEMPERATURE 600 1 100 39 ~\ • k ____ 5.0 k '"O~~t--o ~~';;~~~rA~~i~:t ~!e3t,J l,\ t,) @~ ~ 0'.':'. 39PFl~ 10-1I2T ~ Carrier 0 ~~~~~j~~~iliI.o~o ~l'Ok' Detect o1(i{<> I "tV 'OrlE-fo '''Il-~:~\~ T !.25 inch \o.o?] <>f{fE-" 0.Q1 ~k' -'. 0 Vcr ~. Ic{I,~i22PF 401npMuHtZCJ~ FIGURE 13 - APPLICATION PRINTED CIRCUIT BOARD (Bottom View, Circuit of Figure 11 IBNC} MOTOROLA LINEAR/INTERFACE DEVICES 8-68 s:(") ..... W o FIGURE 14 - ~ ~i ~ ~ ~~" n~ '"'" ~K J 74 89 I n 69 0 -I H:::67 0 "~rl~ :JJ 0 r » r >---013 ~70 I 83 84 r M a, «> ~. ~r 1 9 4 ---Z 65 :JJ ." » () < 50--6 7 ?8 ~ 46 -I () 14 15 m m 0 m 90"--L /" ~ 87 8 m ;;1 93 M 92 91 Z CO ' ~.---l 76 ~ s:: U'I U'I INTERNAL SCHEMATIC L 25 ~~~~~~~~lt,sr V26' ~~~~ 26 m (f) 5~ M"1"1''1M ~ '-i58 ,.x1 "-157 ,-¥' "'" 56 .K' " 55 ~ 3 II " 54 ~ ~2 ,-"" 36 ~ 37 38 10 27 3~ 29 28 ~ ,.Y' 11 48 4 51 """ ~r""50 49 MC13055 is fairly linear for IF input signals of 20 /LV to'20 mVrms. (See Figure 4.) A simple squelch arra~gement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about O.B Vdc above ground. The Signal strength at which this occurs can be adjusted by changing the meter load resistor. The comparator( +) input and output are available to permit control of hysteresis. Good positive action can be obtained for IF input signals of above 20 /LVrms. A resistor R from Pin 13 to Pin 12 will provide VCC/R of feedback current. This current can be correlated to an amount of signal strength hysteresis by using Figure 4. The squelch is internally connected to the data shapero Squelch causes the data shaper to produce a high (VCC) output. The data shaper is a complete "floating" comparator, with diodes across its inputs. The outputs of the quadrature detector can be fed directly to either or preferably both inputs of the comparator to produce a squared output swinging from VCC to ground in inverted or noninverted form. GENERAL, DESCRIPTION The MC13055 is an extended frequency range FM IF, quadrature detector, signal strength detector and data shapero It is intended primarily for FSK data systems. The design is very similar to MC3356 except that the oscillator/mixer has been rElmoved, and the frequency capability of the IF has been raised about 2: 1. The detector output configuration has been changed to a balanced, open-collector type to permit symmetrical drive of the data shaper (comparator). Meter'drive and squelch features have been retained. The limiting tF is a high frequency type, capable of being operated up to 100 MHz. It is expected to be used at 40 MHz in most cases. The quadrature detector is internally coupled to the IF, and a 2.0 pF quadrature capacitor is internally provided. The 20 dB quieting sensitivity is approximately 20 /LV, tuned input,lmcj, the IF can accept signals up to 220 mVrms without distortion or change of detector quiescent dc level. The If is unusual in that each of the last 5 stages of the 6 stage limiter contains a signal strength sensitive, current sinking device. These are parallel connected and buffered to produce a signal strength meter drive which II MOTOROLA LINEAR/INTERFACE DEVICES 8-70 In Brief ... Selector Guide Entertainment Radio Receiver Circuits. . . . . . . . . . . . . . . . . . . . . . . .. 9·2 Video Circuits .................... 9·3 Remote Control Circuits. . . . . . . . . .. 9·5 ... reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. This tabulation is arranged to simplify firs!: order selection of consumer integrated circuit devices that satisfy the primary functions for home entertainment products, including Television, Hi-Fi Audio and AM/FM Radio. Alphanumeric Index. . . . . . . . . . . . . . . .. 9·6 Related Application Notes. . . . . . . . . .. 9·6 Data Sheets ........................ 9·7 Consumer Electronic Circuits , / J 9-1 Consumer Electronic Circuits Entertainment Radio Receiver Circuits C·OUAM® AM Stereo Decoders . . . FM Stereo Decoder . . . . . . . . . . . Audio Amplifiers. . . . . . . . . . . . . . Audio Attenuators/Controls. . . . . . . Video Circuits Modulators . . . . . . . . . . . . . . . . . Demodulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tuning System Circuits Deflection. . . . . . . . . Sound. . . . . . . . . . . Transistor Arrays . . . . Television Subsystems Video IF Amplifiers. . . Remote Control Circuits. . 9·2 . .. 9·2 . .. 9·2 . .. 9·2 . . . . . . . . . .. 9·3 . . . . . . . . . .. 9·3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9·4 . . .. 9·4 9·4 . . .. 9·4 . . .. 9·4 . . .. 9·4 . . .. 9·5 Entertainment Radio Receiver Circuits C-QUAM® AM Stereo Decoders Function Basic AM Stereo Decoder Features Monaural/Stereo AM Detector, Indicator, 6-10 V Operation Suffix/Case Device P1738 MC13020 Advanced AM Stereo Decoder Medium Voltage 2-8 V, Decoder and IF Amp DW/751F MC13022 AM Front End Tuning Stabilizer for MC13022 P/738 MC13023 AM Stereo Personal Radio Complete Low Voltage AM Stereo Receiver Pn24 MC13024 Tuning Stabilizer Companion for MC13020 for Manual Tuned Receivers P/648 MC13021 AM Broadcast Receiver AM Receiver Subsystem - P1738 MC13041 Ideal Companion for MC13020 FM Stereo Decoder Function Channel Separation dBTyp THD %Typ Stereollndicator Lamp Driver mAMax 62 0.1 100 Po @ rated Watts Vcc Vdc Max 1.0W 400 mW FM Multiplex Stereo Decoder Features Low Signal Blend for Noise Reduction Suffix/Case Device -/648 TCA4500A AUd"10 Ampil rflers Vin Function Mini Watt SOIC Audio Amp Low Power Audio Amp Po mVTyp ID mATyp RL Ohms Suffix/Case Type 35 80 11 16 0/751 MC13060 16 - 2.5 mA 8-100 0/751 P/626 MC34119 Audio Attenuators/Controls VCC Range Vdc THD % Tone Control Range dBTyp Stereo, Volume, Bass, Treble, Balance 8.5-18 0.1 Typ Stereo, Volume, Bass, Treble, Balance 3-18 0.5 Max Function Attenuation Range dB Typ Suffix/Case Device ±14 80 P1707 TCA5550 ±15 80 P1707 TDA1524 MOTOROLA LINEAR/INTERFACE DEVICES 9·2 C-QUAM® A.M. Stereo Broadcast Receiver C·QUAMA.M. STEREO DECODER MC13020 A.M. RECEIVER SYSTEM MCl3041 RF MPF102 J·FET AGC STEREO TONE CONTROL TDA1524 TCA5550 STOP SCAN SYNTHESIZED TUNING SUBSYSTEM MCl45156·1 PLL FREQ. SYN. MCl46605 CMOS MCU Based on the field·proven C-Quam performance, Motorola has developed a low-cost, high performance C-Quam AM Stereo Decoder chip, with fully compati· ble, no-compromise mono performance, as the basis for both broadcast and receiving equipment. Additional IC components from Motorola's inventory offer a single supply source for state-of-the-art radio receiver designs. New products cover virtually every type of receiver - home, auto, and personal portable. When AM stereo broadcasting was sanctioned by the F.C.C. in 1982, there were five different systems vying for user approval. Since then C-QUAM® has become the defacto standard in the U.S.A., as the market and broad· casters recognize its performance advantages. It is the legal standard in Canada, Australia and Brazil where A.M. is the dominant radio medium. C-QUAM is available from nearly 50 automobile radio makers 'lnd a dozen home receiver builders (for as little as $60 in a basic tuner). Radio Circuits (See Communications Section) ~ II Video Circuits Modulators Suffix/Case Device TV Modulator (Hi Ouality) RF Oscillator/Modulator, and FM Sound Oscillator/Modulator P/646 MC1374 Video RGB to PAUNTSC Encoder RGB and Sync Inputs, Composite Video Out Switch Selectable pn38 MC1377 Video Synchronizer Complete Color TV Video Overlay Synchronizer P/711 MC1378 Color Processor PALINTSC Input, RGB Output, also RGB Inputs, Plus Fast Blanking Input. Ideal for Text. Graphics, Overlays pn11 TDA3301 TDA3303 Color Processor PALINTSC Input, RGB Outputs, On·Chip Hue Control P/724 TDA3330 Color Processor PAUNTSC Input, Color Difference Outputs On-Chip Hue Control pn07 TDA3333 Function Features PALINTSC Demodulators MOTOROLA LINEAR/INTERFACE DEVICES 9-3 Tuning System Function Features Remote Control Amplifier Infrared Diode Signal Amplifier Shaper PLL-Tuning Circuit TV Tuning System - Prescaler - M-Bus Control Suffix/Case Device P/626 MC3373 DW/751C MC44802 Deflection r · Horizontal Processor Linear Balanced Phase Detector, Oscillator and Predriver, Adjustable de Loop Gain, Adjustable Duty Cycle Sound Sound IF Detector, dc Volume Control, Preamplifier 30 !'V, 3.0 dB Limiting, Excellent AMR -/646 TBA120C Sound IF, Low Pass Filter, Detector, dc Volume Control. Preamplifier Complete TV Sound System; 100 !'V, 3 dB Limiting Sensitivity; 4 Watts Output; VCC ~ 24 V; RL ~ 16!l P/648C TDA3190 750 mW Output P/648C TDA1190 Stereo Balance, Volume, Bass, Treble Control P1707 TCA5550 Stereo Sound Control System ..- Transistor Arrays Function 'Clmax) rnA VCEO Volts Max VCBO Volts Max VEBO Volts Max Suffix/Case Device 50 15 20 5.0 P/646 D/751 A MC3346 50 15 20 5.0 P/646 CA3054 One Differentially Connected Pair and Three Isolated Transistors Dual Independent Differential Amplifiers with Associated Constant Current Transistors Television Subsystems Function II Features Suffix/Case Device P/710 MC13001X PI710 MC13002X P/648C TDA3190 MONOMAX-l-Chip Black and White TV Subsystem Video IF, Detector, AGC, Video Amplifier, Horizontal Processor, Vertical Processor, and Sync For 525 Line Systems Sound IF, Low Pass Filter, Detector, de Volume Control, Preamplifier, Power Amplifier Complete TV Sound System; 100 !'V, 3 dB Limiting Sensitivity; 4 Watts Output; VCC ~ 24 V; RL ~ 16!l Same as TDA1190Z Except for 750 mW Output P/648C TDA1190 MONOMAX AudioNertical Output High Level 750 mW Audio Output - Vertical Yoke Driver P/648C MC13014 Same as Above Except For 625 Line Systems Video IF Amplifiers Suffix/Case Device P/626 MC1350 Low Level Detection, Low Harmonic Generation, Zero Signal dc Output Voltage of 7.0 to 8.2 V P/626 MC1330A1P Same as MC1330Al Except Zero Signal dc Output Voltage of 7.8 to 9.0 V P/626 MC1330A2P SAW Preamp, IF Amplifier, Detector, AGC, AFC Complete Video IF or Parallel Sound IF System Complete AFT System with Simple Quadrature Detector P/707 MC13010P Advanced Video IF Complete Video/Audio IF System for High Performance Analog TV Receivers DW/751F MC44301 Features Function 1st and 2nd Video IF Amplifier IF Gain 3rd IF, Video Detector, Video Buffer, and AFC Buffer «I 45 MHz ~ 50 dB typ, AGC Range ~ 60 dB min MOTOROLA LINEAR/INTERFACE DEVICES 9-4 Remote Control Circuits MC3373 Amplifier/Detector (Bipolar), Case 626 MC14497 Transmitter (CMOS), Case 707 The MC3373 remote control receiver is specifically designed for infra-red link systems where high sensitivity and good noise immunity are critical. The MC3373 incorporates a high gain detector diode preamp driving an envelope detector and data wave shaper for accurate data recovery. Provision is also made to use an external L-C tank circuit at the carrier frequency, normally 30 to 60 kHz, for extended range low noise systems. Applications include TV remote control, short range data links (up to several hundred feet), door openers and security systems. The MC14497 is an ideal companion transmitter, where a simple D.T.M.F. like key-pad control is desired. The Motorola discrete opto division also has several high sensitivity detectors and emitters which match up well to the MC1373 system. Functional Block Diagram of Remote Control System (21 1N914 ·90 Vdc 1500 IJ.F To Keyboard t Infrared Emining Diodes II LlTRONIX SFH206 Receiver DIode 1N914 TRANSMITTER RECEIVER MOTOROLA LlNEA1VINTERFACE DEVICES i \9-5 5.0 Vdc CONSUMER ELECTRONIC PRODUCTS ENTERTAINMENT RADIO RECEIVER CIRCUITS Device MC13020P MC13021 MC13022 MC13023 MC13024 MC13041 MC13055 MC13060 MC34119 TCA4500A TCA5550 TDA1524A Function Page C-QUAM® AM Stereo Decoder ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-84 Motorola C-QUAM® AM Stereo Tuning Stabilizer ........................ 9-89 Advanced Medium Voltage AM Stereo Decoder ......................... 9-91 C-QUAM® AM Receiver Front End and Tuner Stabilizer ................... 9-95 Low Voltage Motorola C-QUAM® AM Stereo Receiver .................... 9-101 AM Receiver Subsystem ............................................. 9-104 Wideband FSK Receiver ....................................... See Chapter 8 Mini-Watt Audio Output .............................................. 9-110 Low Power Audio Amplifier .......................................... 9-114 FM Stereo Demodulator .............................................. 9-142 Stereo Sound Control System ........................................ 9-149 Stereo Tone Control System .......................................... 9-156 VIDEO CIRCUITS II Device CA3054 MC1330A1P MC1330A2P MC1350 MC1374 MC1377 MC1378 MC1391P MC1733,C MC3346 MC3373 MC10320 MC10320·1 MC13001XP MC13002XP MC13010P MC13014P MC44301 MC44802 NE592 SE592 TBA120C TCA5550 TDA1190P TDA3190P TDA3301 TDA3303 TDA3330 TDA3333 Function Page Dual Differential Amplifier ............................................ 9-7 Low Level Video Detector ............................................ 9-9 Low Level Video Detector ............................................ 9-9 IF Amplifier ............................................ , ............ 9-15 TV Modulator Circuit ........................................... ~ .... 9-19 Color Television RGB to PAUNTSC Encoder ............................ 9-27 Complete Color TV Video Overlay Synchronizer ....... ; ...... : .......... 9-31 TV Horizontal Processor .............................................. 9-35 Differential Audio Amplifier ..............................•.... See Chapter 2 General Purpose Transistor Array ..................................... 9-40 Remote Control Wideband Amplifier-Detector ........................... 9-43 Triple 4-Bit Color Palette Video DAC ................................... 9-47 Triple 4-Bit Color Palette Video DAC ................................... 9-47 Monomax Black and White TV Subsystem ...................... ; ....... 9-64 Monomax Black and White TV Subsystem .............................. 9-64 TV Parallel Sound IF and AFT ......................................... 9-73 Companion AudioNertical Subsystem ................................. 9-78 System 4 High Performance Color TV IF ................................ 9-123 PLL Tuning Circuit with 1.3 GHz Prescaler ................ , ............. 9-129 Video Amplifier ........................................ \,' ..... See Chapter 2 Video Amplifier .............................................. See Chapter 2 FM IF Amplifier, Limiter and Detector .................................. 9-137 Stereo Sound Control System ........................................ 9-149 TV Sound System ................................................... 9-153 TV Sound System ......................................... . . . . . . . . .. 9-153 TV Color Processor ........................ '.......................... 9-161 TV Color Processor .......................................... '........ 9-161 TV Color Processor .................................................. 9-175 TV Color Difference Demodulator ............................ ; ......... 9-183 REMOTE CONTROL CIRCUIT Device MC3373 . Function Page Remote Control Wideband Amplifier-Detector ............. : ............. 9-43 RELATED APPLICATION NOTES Application Note ' AN 545A AN829 AN932 AN879 ANHK07 /' Title Television Video IF Amplifier Using Integrated CirCUits ............. Application of the MC1374 TV Modulator ....... ',' . ~ ...... ~ ..... .. Application of the MC1377 Color Encoder ......................... Monomax-Application of the MC13001 Monochrome TV IC .......... A High Performance, Manual-Tuned AM Stereo Receiver for Automotive Application Using Motorola ICs: MC13020, MC13021 and MC13041 ....................................... MOTOROLA LINEAR/INTERFACE DEVICES 9-6 Related Device MC1350 MC1374 MC1377 MC13001 MC13020,21 MC13041 @ CA3054 MOTOROLA DUAL INDEPENDENT DIFFERENTIAL AMPLIFIER GENERAL PURPOSE TRANSISTOR ARRAY The CA3054 consists of two independent differential ampl ifiers with associated constant-current transistors on a common monolithic SILICON MONOLITHIC INTEGRATED CIRCUIT substrate. The six NPN transistors which comprise the amplifiers are' general purpose devices useful from de to 120 MHz. The monolithic construction of the CA3054 provides close electrical and thermal matching of the amplifiers which makes this device particularly useful in dual channel applications where matched performance of the two channels is required. • Two differential amplifiers on a common substrate • Independently accessible inputs and outputs • Maximum input offset voltage - ±5 mV PSUFFIX PLASTIC PACKAGE CASE 646-06 MAXIMUM RATINGS Symbol Value Unit COllector-Emitter Voltage VCEO 15 Vdc Collector-Base Voltage VCBO 20 Vdc Emitter-Base Voltage VEB 5.0 Vdc Collector-Substrate Voltage VCIO 20 Vdc IC 50 mAde °c uc °c Rating Collector CUrrent - Continuous Junction Temperature TJ 150 Operating Temperature Range TA -40 to +85 T stg -65 to + 150 Storage Temperature Range PIN CONNECTIONS Pin 5 is connected to substrate and must remain at the lowest circuit potential MOTOROLA LINEAR/INTERFACE DEVICES 9-7 CA3054 ELECTRICAL CHARACTERISTICS (TA = 25 0 C, unless otherwise notedl. Characteristic Min Typ Max Unit VIO - - 5.0 mV 110 - 2.0 ~A liB - 24 ~A Symbol STATIC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER Input Offset Voltage (VCB = 3.0 Vdcl I nput Offset Current (VCB = 3.0 Vdcl Input Bias Current (VCB = 3.0 Vdcl STATIC CHARACTERISTICS FOR EACH TRANSISTOR Base-Emitter Voltage (VCB = 3.0 Vdc, (VCB = 3.0 Vdc, (VCB = 3.0 Vdc, (VCB c'3.0 Vdc, IC IC IC IC Collector Cutoff Current (VCB = 10 Vdc, IE - - - - ICBO - 0.70 0.80 0.85 0.90 - 100 nA V(BR)CEO 15 - - Vdc V(BR)CBO 20 - - Vdc V(BR)CIO 20 - - Vdc V(BR)EBO 5.0 - - Vdc = 01 Collector-Emitter Breakdown Voltage (lC Vdc VBE " = 50 ~Al = 1.0 mAl = 3.0 mAl = 10 mAl" = 1,0 mAl Collector-Base Breakdown Voltage (lC = 10~AI COllector-Substrate Breakdown Voltage IIC = 10~AI Emitter-Base Breakdown Voltage ilE=10!'Al II MOTOROLA LINEAR/INTERFACE DEVICES 9-8 MC1330A1P MC1330A2P ORDERING INFORMATION Device Temperature Range Package O'C to +70'C O'Cto +70'C Plastic DIP Plastic DIP MC1330A1P MC1330A2P LOW LEVEL VIDEO DETECTOR LOW LEVEL VIDEO DETECTOR ... an integrated circuit featuring very linear video character· istics and wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and AFC buffer. SILICON MONOLITHIC INTEGRATED CIRCUIT • Conversion Gain - 33 dB (Typ) • Excellent Differential Phase and Gain • High Rejection of I F Carrier Feedthrough • High Video Output - B.O V(p.p) • Fully Balanced Detector • Output Temperature Compensated • • Improved Versions of the MC1330P P SUFFIX CIRCUIT DESCRIPTION The MC1330A video detector is a fully balanced multiplier detec· tor circu it that has linear amplitude and phase characteristics. The si,gnal is divided into two channels, one a linear amplifier and the other a limiting amplifier that provides the switching carrier for the detector. The switching carrier has a buffered output for use in providing the AFT function. The video amplifier output is an improved design that reduces the differential gain and phase distortion associated with previous video' output systems. The output is wide band, > B.O MHz, with normal negative polarity. A separate narrow bandwidth, positive video output is also provided. PLASTIC PACKAGE CASE 626-05 OUTPUT VOLTAGE SELECTION The MC1330A1P is identical to the MC1330A2P with the following exception: ZERO SIGNAL DC OUTPUT VOLTAGE MC1330A1P MC1330A2P FIGURE 1 - CIRCUIT SCHEMATIC R1 4.8k TUNED CIRCUIT 7 IF o--+--t----, INPUT '3 2.0k MOTOROLA LINEAR/INTERFACE DEVICES 9-9 7.0 to 8.2 Vdc 7.8 to 9.0 Vdc II MC1330A1P, MC1330A2P MAXIMUM RATINGS Rating Value Unit Power Supply Voltage, 24 Vde DC Video Output Current 5.0 mAde 2.q mAde DC AFT Output Current Junction Temperature o to Operating Ambient Temperature Range Storage Temp~rature Range + 70 DC -65 to +150 ELECTRICAL CHARACTERISTICS (VCC =+20 Vde. a}~ 40, fe = 45.75 MHz, TA =+25 0 C unless otherwise noted) ~ Characteristic Zero Signal de Output Voltage Supply °c °c +150 Pin Min Typ Max Unit 4 4 7.0 7.8 - 8.2 9.0 Vde Vde 5,6 11 17.5 20 mA 4 - 0 0.5 Vde 65 mVrms 650 mVp·p MC1330A1P MC1330A2P Curren~' Maximum Signal de Output Voltage Conversion Gain for 1.0 (30% Modulation) Vp~p Output AFT Buffer Output at Ca'rrier Frequency 7 25 1 300 36 475 " FIGURE 3 - INPUT ADMITTANCE eOILQ~40 O.B FIGURE 2 - TEST FIXTURE CIRCUIT Vee 12 Vde ~ 0.6 E .5 Vee 11 lf1 ~~ 0.4 I) Vee = 10 Vde gil CARRIER INPUT>-1r--i!-, 0.2 bll 50 AUXILIARY OUTPUT o - 5.0 3.0 10 n1 50 30 100 fREQUENCY (MHz) 10V[J\:=] IOV 'NI I VeC=11Vde 1.0 MC1330A V /' r-- VCC = 10 Vde --- FIGURE 4 - VIDEO DETECTOR OUTPUT RESISTANCE 11 550 AFT OUTPUT ~ 3.9k 50 \ ~ 450 z a: 400 ~. 350 ll, Cl: See General1nformation Number 3, '" u; page 5 of this specification. ti; 300 ~ 250 l=> ~ 200 ~ 150 e> 10 0 \ \ r-... "\. r'-... t-- ... 50 0.1 1.0 3.0 0.5 0.3 VIDEO OUTPUT CURRENT, PIN 4 (mAde) MOTOROLA LINEAR/INTERFACE DEVICES 9-10 5.0 10 MC1330A1P, MC1330A2P DESIGN CHARACTERISTICS (Vee: +20 lide, Q: 40, fe: 45.75 MHz, T A: +25 0 e unle.. otherwise notedl Characteristic Input Resistance Input Capacitance Internal Resistance (Across Tuned Circuitl Internal Capacitance (Across Tuned Circuit) , Negative Video Output Bandwidth (Figure 101 Positive Video Output Bandwidth (Figure 10) Pin TVp Unit 7 7 4.9 1.5 kn 2,3 2,3 4.4 1.0 kn 'pF 4 5 10,B 2.2 MHz MHz 4 7.0 Degrees 4 4.0 % 4 B.O Degrees pF Differential Phase@ 3.5B MHz, 100% Modulated Staircase, 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6 Differential Gain@3.58 MHz, 100% Modulated Staircase. 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6 Differential Phase@3.58 MHz, 100% Modulated Staircase, 3.0 Vp-p Detected Video, R Pin 5 == 4.3 kn Differential Gain @ 3.58 MHz, 100% Modulated Staircase, 3.0 Vp-p Detected Video, R Pin 5 == 4.3 kn 920 kHz Beat Output (dB Below 100% Modulated Video, See Figure 111 45.75 MHz == Reference 42.17 MHz: - 6 dB 41.25 MHz: -20 dB Video Output Resistance @ 1 MHz,2 rnA Vee: Vee: Vee: Vee: Input Overload (Carrier Level at Input to Caused Detector Output, Pin 4, To Go Positive 0.1 Vdc From Ground.) 12 15 20 24 Vde Vdc Vde Vde Power Supply Voltage Range 4 6.0 % 4 -3B dB 4 94 n 7 2.0 2.6 3.6 4.6 Volts 5 10to 24 Volts FIGURE 5 -DIFFERENTIAL PHASE AND GAIN TEST SET UP ADJUST FOR OTO 3 V PEAK AT OUTPUT OF VIDEO DEMODULATOR RF~----------~ 1 50 -= 100mV INTO LOAD BOONTON 910 VIDEO DEMODULATOR TEST FIXTURE RLoad,..,3 kTVP. SIX STEP MODULATED STAIRCASE GENERATOR TEKTRONIX 144 NTSC SUBCARRIER MOTOROLA LINEAR/INTERFACE DEVICES 9-11 II MC1330A1P, MC1330A2P TYPICAL CHARACTERISTICS (Vcc = +20 Vdc. TA = +2SoC Unle.. Otherwise Noted) FIGURE 6 - OUTPUT VOLTAGE TRANSFER FUNCTION :, 8.0 7.9 "CI 7.8 ; 7.7 ~ 0: ~. t PO~ITI~E h i\.t 7.6 ..... , ~ 6.0 > 7.4 "- f'..-. ~ FUNCTION > 3.0 I---- ~ -... 7.1 o 2.0 4.0 6.0 ~ ~ 2.0 "", ou~PUTVdLTAGE 14 16 ~ "" 5.0 ~ f----+~....-+-------- ... ~f=- --- ..-/ __ -/:1 ~uTP/voILTAGE ':; 4.0 0 > - - 24 22 VI a ~~ ---- lB 16 I "i 14 ~ 20 40 .----I----+----+-----j-----i B.o ..... ,..-1-"'" ~ ~ - NEGlTIVE VlbEO z '" 0 !;;: ~ -2. 0 1= -4. 0 "" -6. 0 ~ ;:: A / ..." " -1 a '" I 2.0 6.0 ~ 140 160 ...- 50 ~ j 30 >- 20 ~ 10 1.0 2.0 10 5.0 3.0 20 30 50 100 FIGURE 11 - VIDEO OUTPUT PRODUCTS 6 ~ i= ~- r\ I , I I 41.25 MHz !NPUT _. RElATI~E to 45.75 MHz INPUT 4.5 MHz .5 a.':----:1:70- - - :1:72----:1,4,-----:"16,----7: 1B,-----::20,----17:2-----:146.0 +6.0 ~ Iii 500 3. 0 1----+.._=f--'7"l"'=--+ 0 f-----1"---+------ ~ VCC=15~ "'~ "- ......... "'-... FIGURE 9 - AFT LIMITING '+__ CARRIER INPUT= 50 mV(rmsl 12 f--__+--.A/ ____I-SGPPLY CUR~ENT --+---jl-----i 1 ~ 1. 0 /' CARRIER INPUT = 0 ....=> "" 1000 ~ 0: 6.0 ~=2oVdC CARRIER INPUT VOLTAGE (mV[rmsll _____ ~ ~ ~ ~ 1.0 I-----+----I---~--~I~~~+_--_+----~~~~20 ~ z CARRIER INPUT = 0 t---. ........ ~ Vee a FIGURE 8 - OUTPUT VOLTAGE. SUPPLY CURRENT 10 r---'---~---'----'----r---,----~--,2 9.0 , 1.0 10 B.o 12 CARRIER INPUT VOLTAGE (mV[rm.sll B.O 1-__--+__ ~ ........... ........... ~ 4.0 o , 1.2 7.0 c: 5.0 . ~ ACTUAL TRANSFER FUNCTION I-- LINEAR I-- TRANSFER ~ 7.3 "'" ~ z IDEAL .............. o >- ~ <---SEE FIGURE 6 1.0 OFFSET ~ 7.5 g FIGURE 7 - OUTPUT VOL TAGE TRANSFER FUNCTION B.O ~ ~ ~ 12 14 ~-50r-~~~~~~~~~~~±_~~~--t_--_1 !;;: ~-60r----r~Q-=~60~·--~Q*=~40~-+~-~+--?~~~~~,., -10_~10,--~--~~~2~.6~6~M~HZ~~~~--=--~~~~~ 16 -20 VIDEO OUTPUT RESPONSE (MHzl -30 RELATIVE 41.25 MHz INPUT LEVEL (dBI MOTOROLA LINEAR/INTERFACE DEVICES 9-12 MC1330A1P, MC1330A2P TV-IF Amplifier Information much lower power signal levels than possible with a detector diode. Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some specific features and information on systems design with this device are given below: 1. The device provides excellent linearity of output versus input, as shown in Figures 6 and 7. These graphs also show that video peak-to-peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a given variation of input CW and use the figure as a transfer function.) 2. The dc output level does change linearly with supply voltage shown in Figure 8. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply. 3. The choice of Q for the tuned circu it of pins 2 and 3 is not critical. The higher the Q, the better the rejection of 920 kHz products but the more critical the tuning accuracy required. See Figure 11. Values of Q from 20 to 50 are recommended. (Note the internal resistance.) 4. A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so it must be handled with greater care. If not used, pin 5 may be connected directly to the supply voltage (pin 6).The video response will be altered somewhat. See Figure 10. 5. An AFT output (pinl) provides 460 mV of IF carrier output, sufficient voltage to drive an AFT ratio detector, with only one additional stage. 6. AGC lockout can occur if the input signal presented in the MC 1330A is greater than that shown in the input overload section of the design characteristics shown on Page 3. If these values are exceeded, the turns ratio between the primary and secondary of T 1 should be increased. Another solution to the problem is to use an input clamp diode Dl shown in Figure 14. 7. The total I.F. noise figure at high gain reductions can be improved by reflecting'" 1 k source impedance to the input of the MC1330AP. This will cause some loss in overall IF voltage gain. A very compact high performance IF amplifier constructed as shown in Figure 14 minimizes the number of overall components and alignment adjustments. It can be readily combined with normal tuners and input tuningtrapping circuitry to provide the performance demanded of high quality receivers. This configuration will provide approximately 93 dB voltage gain and can accomodate the usual low impedance input network or, if desired, can take advantage of an impedance step-up from tuner to MC1349P input. The burden of selectivity, formerly found between the third IF and detector, must now be placed at the interstage. The nominal 3 volt peak-to-peak output can be varied from 0 to 7.0 V with excellent linearity and freedom from spurious output products. Alignment is most easily accomplished with an AM generator, set at a carrier frequency of 45.75 MHz, modulated with a video frequency sweep. This provides the proper realistic conditions necessary to operate to low-level detector (LLD). The detector tank is first adjusted for maximum detected dc (with a CW input). next, the video sweep modulation is applied and the interstage and input circuits aligned, step by step, as in a standard IF amplifier. Note: A normal IF sweep generator, essentially an FM generator, will not serve properly without modification. The LLD tank attempts to "follow" the sweep input fre· quency, and results in variations of switching amplitude in the detector. Hence, the apparent overalt response becomes modified by the response of the LLD tank, which a real signal doesn't do. This effect can be prevented by resistively adding a 45.75 MHz CW signal to the output of the sweep generator approximately 3 dB greater than the sweep amplitude. See Figures 12 and 13 below. For a more detailed description of the MC 1330AP see application note AN-545.· MC1330A General Information The MC 1330A offers the designer a new approach to an old problem. Now linear detection can be performed at FIGURE 12 - BANDPASS DISPLAYED BY CONVENTIONAL SWEEP AGURE 13 - BANDPASS DISPLAY WITH THE ADDITION OF CARRIER INJECTION MOTOROLA LINEAR/INTERFACE DEVICES 9-13 • .. MC1330A1P, MC1330A2P FIGURE 14 - TYPICAL APPLICATION OF MC1349P VIDEO IF AMPLIFIER and MC1330A LOW-LEVEL VIDEO DETECTOR CIRCUIT R4 200 +20Vdc VIO:~V L~ A--] AUXILIARY OUTPUT ...,..,J h.Nw - - -- ~-----.'0V PRIMARY VIDEO AND SOUND OUTPUT R771r----] 3.9k~ MC1330A o D1 MBD 101 L,.-~--.--,-J C14 13.QpF .....-l~--I--I.. AFT OUTPUT R6 39k T1 AGe •[ttl b[u J 2 '/ ~__ TURNS,c:..--- -.:.... 3 TURNS All windings 22 AWG tinned nylon acetate wire tuned with Coilcraf! #61 l", tt10 Ll wound with 26 AWG tinned nylon acetate wire tuned by distorting Winding slugs, SIZe 10-32, or equivalent "See Note 1 (page3},and C4,Parts List (paye4) for this specification on theMC1349P Data Sheet .... See Input Overload Section of the Design Characteristics Page 3, and General Information, Page 5, Note 6. FIGURE 16 - PRINTED CIRCUIT BOARD LAYOUT FIGURE 15 - PRINTED CIRCUIT BOARD PARTS LAYOUT Ci ;.~ AGe INPUT R2 e:. ~ C5 G4 _ ---lEe; -1f-: --IE-3- '::II,... . tl ~. ~ ~~"'.:-:.--. .. & 1I!lIliI' .. ' '.:;rm l'!D!Dil. MOTOROLA LINEAR/INTERFACE DEVICES 9-14 • I ® MC1350 MOTOROLA IF AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT MONOLITHIC IF AMPLIFIER · .. an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over the temperature range 0 to + 75°C. The MC1352 is similar in design but has a keyed-AGC amplifier as an integral part of the same chip. • Power Gain - 50 dB Typ at 45 MHz 48 dB Typ at 58 MHz • AGC Range - 60 dB Min. dc to 45 MHz • Nearly Constant Input and Output Admittance Over the Entire AGC Range • Y21 Constant (- 3.0 dB) to 90 MHz • Low Reverse Transfer Admittance -« 1.0 JLmho Typ P SUFFIX PLASTIC PACKAGE CASE 626-05 • 12-Volt Operation. Single-Polarity Power Supply MAXIMUM RATINGS (TA = + 25°C unless otherwise noted) Symbol Valua Unit Power Supply Voltage V+ +18 Vdc Output Supply Voltage VI. V8 +18 Vdc AGC Supply Voltage VAGC V+ Vdc Differential Input Voltage Yin 5.0 Vdo Power Dissipation (Package Limitation) Plastic Package Derate above 25°C Po 625 5.0 mW mWrC Operating Temperature Range TA o to +75 °c Rating DSUFRX PLASTIC PACKAGE CASE 751-02 50-8 II FIGURE 1 - TYPICAL MC1350 VIDEO IF AMPLIFIER AND MC1330 LOW·LEVEL VIDEO DETECTOR CIRCUIT 0.0021'-F 470 + 18 Vdc 220 Vide~8 V [ Auxiliary Output t-----'---- 10 V -A - -] v.J Ivvw - - - Primary Video and Sound Output V] 3.:: : [ MC1330 5 8 AFT Output 5.0 k -= AGC 3.9 k T1 J q 1IT1_ ~;i __ ~ll" "4 Turns:.?Turns All windings #30 AWG tinned nylon acetate wire tuned with Carbonyl E or J slugs. 3" r16l Turns 16 L1 wound with #26 AWG tinned nylon acetate wire tuned by distorting winding. MOTOROLA LINEAR/INTERFACE DEVICES 9-15 I r:lL~ MC1350 ELECTRICAL CHARACTERISTICS (V + + 12 Vdc; T A = + 25°C unless otherwise noted) Characteristic Symbol AGC Range, 45 MHz (5.0 V to 7.0 V) (Figure 1) Min Typ 60 68 Max Unit - dB Power Gain (Pin 5 grounded via a 5.1 k!l resistor) See Figure 6(a) f = 58 MHz, BW = 4.5 MHz f = 45 MHz, BW = 4.5 MHz See Figure 6(a),(b) I = 10.7 MHz, BW = 350 kHz See Figure 7 I = 455 kHz, BW = 20 kHz Ap Maximum Differential Voltage Swing o dB AGC -30 dB AGC Vo Output Stage Current (Pins 1 and 8) 11 + 18 - 5.6 - IS - 14 17 mAdc Po '- 168 204 mW - Power Dissipation + 12 Vdc TA = - dB - 4B . 50 58 62 46 Total Supply Current (Pins 1,2 and 8) DESIGN PARAMETERS, Typical Values (V+ - - 20 8.0 Vp _p mA + 25°C unless otherwise noted) Frequency Parameter Single-Ended Input Admittance Symbol 455 kHz 10.7 MHz 4Ij.MHz 5BMHz Unit 911 b11 0.31 0.022 0.36 0.50 0.39 2.30 0.5 2.75 mmhos - - 60 0 - 922 b22 4.0 3.0 4.4 110 30 390 60 510 / 40 III z FIGURE 3 - NOISE RGURE (Figure 6) ---.... ;;: 60 '" ~ w '"=> 80 5.0 6.0 18 16 '"0: 14 z 10 8.0 6.0 7.0 58MHz~ ~ ./ // ~ 45 MHz ./?' L-"'" y o 10 20 GAIN REDUCTION (dB) MOTOROLA LINEAR/INTERFACE DEVICES 9-16 / / ~ 12 5 IAGC = /0.2 m;::--'" 4.0 , 22 20 "" "'- ,, u / V .§l 7.0 ~ b22 g 3.0 FIGURE 11 - DIFFERENTIAL OUTPUT VOLTAGE 8.0 1 10 40 e ~200 FIGURE 10 - DIFFERENTIAL OUTPUT ADMITTANCE 0 ~ .s 1.0 0.2 LY21 ( 30 dB gain) I II--r:t:::; ~ 50 70 2.0 I:t 1.0 /' o 100 For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain o o 10 20 30 40 50 GAIN REDUCTION (dB) 60 70 80 Contra)," by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968. MOTOROLA LINEAR/INTERFACE DEV)CES 9-18 ® MC1374 MOTOROLA TV MODULATOR CIRCUIT TV MODULATOR CIRCUIT The MC1374 includes an FM audio modulator, sound carrier oscillator, RF oscillator, and RF dual input modulator. It is designed to generate a TV signal from audio and video inputs. The MC1374's wide dynamic range and low distortion audio make it particularly well suited for applications such as video tape recorders, video disc players, T.V. games and subscription decoders. • SILICON MONOLITHIC INTEGRATED CIRCUIT Single Supply, 5 V to 12 V • Channel 3 or 4 Operation • Variable Gain RF Modulator • Wide Dynamic Range • Low Inter modulation Distortion • Positive or Negative Sync • Low Audio Distortion • Few External Components P SUFFIX PLASTIC PACKAGE CASE 646-06 FIGURE 1 - TYPICAL APPLICATION Volts Channel 3 4 + + .+ Rl0 10 k O.OOl:I: -::- II :l~~~::' r . 12 V C9 0.001 :I: C8 Rl 470 VCC~ -=- 01 MPN3404 7 I 6 + Ul MC1374 P---~~~~~~~--~ R9 560 Rll 220 L------- represents one diode drop, or about 0.75 V.) The oscillator Pins 6 and 7 must be biased to a level ofVCC - cf> - 211 RL (or lower) and the input Pins 1 and 11 must always be at least 2cf> below that. It is permissible to operate down to 1.6 V, saturating the current sources, but whenever possible, the minimum should be 3cf> above ground. II FIGURE 3 - AM MODULATOR TRANSFER FUNCTION The oscillator will operate dependably up to about 105 MHz with a broad range of tank circuit components values. It isdesirableto use a small Land a large Cto minimize the dependence on I.C. internal capacitance. An operating 0 between 10 and 20 is recommended. Thevalues of Rl, R2 and R3 are chosen to produce the desired 0 andto set the Pin 6 and 7 d.c. voltage as discussed above. Unbalanced operation; i.e., Pin 6 or 7 bypassed to ground, is not recommended. Although the oscillator will still run, and the modulator will produce a useable signal. this mode causes substantial base-band video feedthrough. Bandswitching, as Figure 1 shows, can still be accomplished economically without using the unbalanced method. The oscillator frequency with respect to temperature in the test circuit shows less than ±20 kHz total shift from O°Cto 50°C as shown in Figure 7. At higher temperatures the slope approaches 2.0 kHz/DC. Improvement in this region would require a temperature compensating tuning capacitor of the N75 family. Crystal control is feasible using the circuit shown in Figure 21. The crystal is a 3rd overtone series type, used in series resonance. The L1, C2 resonance is adjusted well below the crystal frequency and is sufficiently tolerant to permit fixed values. A frequency shift versus temperature of less than 1.0 Hz/oC can be expected from this approach. The resistors Ra and Rb are to suppress parasitic resonances. Coupling of output RF to wiring and components on Pins 1 and 11 can cause as much as 300 kHz shift in carrier (at 67 MHz) over the video input range. A careful layout can keep this shift below 10kHz. Oscillator may also be inadvertently coupled to the RF output, with the undesired effect of preventing a good null when VII = VI. Reasonable care will yield carrier rejection ratios of 36 to 40 dB below sync tip level carrier. Differential Input, Vll-V, (Volts) FIGURE 4 - AM TEST CIRCUIT R2 470 Ll D.' I'H RF I MOTOROLA LINEAR/INTERFACE DEVICES 9-22 11 MC1374 FIGURE 6 - 920 kHz BEAT FIGURE 5 - THE OPERATING WINDOW 12.----,-----r----.-----r----.-----,--~~ 5c 7.0 Inilial Video = 1.0 Vdc -10 I- Chroma (3.58 MHz) =300 mVp-p mVp-p '" -20 I- Sound (4.5 MHz) a)b) =250 w"C =500 mVp-p o I- Gain Resistor RG = 1.0 kn ~ ~ -30 ~ ~ 6.0 f----,:;oi:I~'=-f"""o:-t.,...,¥_It ~ 11 10 w ~ en 9.0 f----+- 0 .... :> c5 8.0 " 0.... ...... z~ :s 5 ..... oz ; 0: ~ 3.0~~~~~j~~~~~~~~~~~~~~ 10~ 5.0 6.0 ~ __ 7.0 ~ ____- L____ 8.0 9.0 ~ __ ~ ____ 11 10 c:c -50 ~g -70 -80 12 o 0.1 0.2 0.3 0.4 0.5 0.6 D,7 0.8 0.9 10 11 1.2 1,3 1.4 DIFFERENTIAL INPUT, (Vlt-VI) [Vdc) FIGURE 7 - RF OSCILLATOR FREQUENCY versus TEMPERATURE ~~ t~ -10 IC~61.25 "« ~ M ~ -20 ~ -30 ~ -40 :il ff: g ~ ~-40 -'" ~ ~-50 +1 ,,<;\ 50 75 b "" ~~ V :\ 25 -60 r- -80 100 o a ~ -10 >- ~ -20 V/; t;'; t!; VI o V/ II; ~ \:!j -40 VI « '"~ -50 II;'; ~ ~ ~ -60 VI '1/ o ~ 1(1 vi V It 1..-1 11 -30 mI1l FIGURE 10 - 920 kHz BEAT 6.0 g'" -20 >- -30 I ~ I Initial Video 10 IVdC I Chroma (3.58 MHz) =300 mVp-p Sound (4.5 MHz) a) =250 mVp-p b)=500 mVp-p RG =2.2 kn -10 ~~ ~ ~~ ~~ ~ ~-40 /. N~ ~ ~ -50 TA=25°C Ic=6125 MHz 1/ -70 5.0 ~ DIFFERENTIAL INPUT (V11-VI) [Vdc) 10 '"~ I~ V :-....... 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 11 1.2 1.3 1.4 FIGURE 9 - RF OSCILLATOR FREQUENCY versus SUPPLY VOLTAGE _1r-7"; - -70 AMBIENT TEMPERATURE (0G) N 1/ NO. "'«0 o Okn 0.0 ~ vA -50 Jideo~0.5IVdC I I In:tial I -10 I- Chroma (3.58 MHz)=150 mVp-p iii" I- Sound (4.5 MHz) a) =125 mVp-p w"E.. -20 b) = 250 mVp-p S w -30 I- RG=1 -60 -70 FIGURE 8 - 920 kHz BEAT 0 JHZ VCC=12 Vdc - - ~~ "'f\lV ~ SUPPLY VOLTAGE, VCC (Vdc) 10 ~V :--.... a -60 +1 V b 1'\ "," 4.0 F----+=-r:1+'*h'-7I7'-T--ht: OL-__- L____ E -40 N'ii ~ 5.0 ~S,...~ z 46 II => ~ ~ 0 ~ ~ 45 5 j~TV 48 45 ) 4.4 ~ I? Vcc 42 ~ ~ ! 4.5 2 - ~ 4.5 1 ~ 4.5 0 4.48 4.0 5.0 25 7.0 60 - t-Pin 14 -- O~;--- --- TA FIGURE 18 - b= 12 V =25°C i112 l ~11 0 ! fA ~ VII 1\ lA! 10 7~ 4.43 30 4.0 50 100 6.0 / ../ ./ --I- I TA=25°C - 5.0 7.0 6.0 MOTOROLA LINEAR/INTERFACE DEVICES 9-25 1--- I 8.0 9.0 Vee. SUPPLY VOLTAGE (Vde) DC INPUT VOLTAGE. PIN 14 (VOLTS) V P1n 14 - 180 k/30 k Oivider L 4.42 4.0 70 V t;7 /" ./' 4.4 5 444 ~ 20 4.4 :.....- I--- Pin 14 Open ~ 4.46 ~ ~ :::j 10.2 1--I--- - >- l// gj 10.4 Pin 14 to 2.6 V Source 4.4 8 fI ~ 108 '"~ 10.6 I 4.4 9 ~ :;; 75 FM SYSTEM FREQUENCY versus VCC 4.5 0 90V,VCC 50V ~~ 50 AMBIENT TEMPERATURE (OC) FIGURE 17 - MODULATOR TRANSFER FUNCTION (10.7 MHz) 11.6 96 180 k/30 k Divider - 4.4 7 30 DC INPUT VOLTAGE. PIN 14 (VOLTS) 9.8 / [...../ 4.4 9 2.0 10 ~ 100 / Pin 14 TO 2'16/ >- W ,,- I ! 45 3 =5.0 V. 9.0 V 41 11.4 , ....--;;. 11 45 41-- Vec=12 V ~ 43 100 FIGURE 16 - FM SYSTEM FREQUENCY versus TEMPERATURE J1 =25 v C 47 75 OEVIATION (kHz) FIGURE 15 - MODULATOR TRANSFER FUNCTION (4.5 MHz) ~ -- -r-- DC INPUT VOLTAGE. PIN 14 (VOLTS) TA / I~ I ../ o 1.0 '/ OPli~um Bias (2.6-2.7 V) /" 1.4 1.3 Vv /' 20 10 o / 1/ TA=25°C Ie =4.5 M~Z ;1'. ~" t::;; ~ 15 ~ OISTORTION versus MOOULATION DEPTH I--- VCC=12 V Vcc = 12 V 2.0 ~ >~ FIGURE 14 - 10 11 12 MC1374 FIGURE 21 - CRYSTAL CONTROLLED RF OSCILLATOR FOR CHANNEL 3,61.25 MHz FIGURE 19 - A CHANNEL4 VESTIGIAL SIDEBAND FILTER Vee VCC RL 75f2 82 F = q 24n 33 pF 33 pF -=- . ~ ,.~ 27 ks~ pF • 470 ::"'\ Output :; n ~oo 75n Clr-I 0.001 C2 56 pF 180 -10 " L1 0.15{JH ~ -50 6 -60 1= - 70 +----,--'----,--L,.-« 61 65 MC1374 73 69 Frequency (MHz) FIGURE 20 - AUDIO PRE-EMPHASIS CIRCUIT II R3 470 -=- iii -20 ; -30 ~ -40 as R2 470 lOOn -=- Close Wound Knife Tuned To Trap Ch. 3 61.25 MHz windings 4T #23 AWG close wound on 1/4" 10 on :~2mp:02~ axis. 3/S" :::n9 ~ pF #23 AWG I/S"1 0 Rl Both transformer ---, o---=.J "Flat" Audio <~ A ~ 6 kn ,=56 kn Input Gnd _1_ 2"Ae 25 CD :!! ~ ;; ~ 20 15 10 0 .~ 2" (r+ AICe ~ ---I- I%: -5 21 210 2100 21 k Frequency (Hz) pre-emphasIs = 75 p.S = rC = 21T(21~O Hz) See Application Note AN829 for further information_ MOTOROLA LINEAR/INTERFACE DEVICES 9-26 Rb 18 @ MC1377 MOTOROLA Advance Information COLOR TELEVISION RGB to PALINTSC ENCODER SILICON MONOLITHIC INTEGRATED CIRCUIT COLOR TELEVISION RGB to PALINTSC ENCODER · .. an integrated circuit used to generate a composite TV signal from baseband red, blue, green and sync inputs. The MC1377 has color subcarrier oscillator, voltage controlled 90° phase shifter, two DSB suppressed carrier chroma modulators, RGB input matrices and blanking level clamps. It can be operated with very few external par:ts, but has the pinouts for a fully implemented, top quality composite signal. It is ideal for encoding signals from color cameras and graphics generators. ~ ~ ~ ~ ~ ~ '''''''' FN SUFFIX • Reference Oscillator Self-Contained Or Externally Driven PLASTIC PACKAGE CASE 775-02 PLCC-20 • Nominal 90° ±3.00 Axes Are Optionally Trimmable ., :LASTIC PACKAGE CASE 738-03 1 1 • Simple PALINTSC Switch • Luminance And Chroma Channels Can Accept Delay Line/Bandpass Elements Or Direct Connection ORDERING INFORMATION • Provides de Reference To Permit Direct Drive To RF Modulator FIGURE 1 - Device Temperature Range Package MC1377P MC1377FN 0-70°C Plastic DIP PLCC-20 BLOCK DIAGRAM AND APPLICATION CIRCUIT -------------, 0.1 r-=:=b'0_'-l°~~47/33 ~) 3-:3kV~ 11 3.58/ 4.43 MHz Composite Video Output 2.5 V p-p 0.001:r 50 k 8.2 V Composite Sync Input + 15 "FT' 6f + + 1i T' 15 "F 6',5 "F 6, 1.0 k R G B "'----.---Inputs: 1.0 V p-p 400 ns Y Delay -= This document contains information on a new product. Specifications and information herein are SUbject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-27 MC1377 MAXIMUM RATINGS Symbol Value Supply Voltage Rating VCC 15 Vdc 8.2 Vdc Regulator Output Current IREG 10 mAde Operating Temperature o to TAMB Unit ·C +70 Storage Temperature Tsta -65to +150 ·C Junction Temperature TJ(max) 150 ·C Po 1.25 10 W mWrC Power Dissipation, package Derate above 25"C RECOMMENDED OPERATING CONDITIONS SupplV Voltage Sync Tip Level Sync, Blanking Level 1,2 ± 1.2 Vdc -0.5 to +1.0 +1.710 +8.2 Vdc 1.0 Vo- o Red, Green, Blue Inputs (Saturated) ELECTRICAL CHARACTERISTICS (Vee = 12 Vdc TA = 25"C Circuit Of Figure 1 Unless Otherwise Noted.) Characteristic II Pin No. Min Typ ,Max Unit Supply Current 14 20 32 40 mAde Oscillator Amplitude 18 0.25 - V(o-o) 17 Subcarrier Input: 17 - 0.5 External Subcarrier Input (Oscillator Components Removed) 5.0 2.0 - k!l pF Resistance Capacitance VRMS Modulation Angle (R-Y) to (B-Y) - 85 90 95 Degrees (R-Y) Angle Adjustment 19 - 0.25 - Deg/.,A R, G, B Input For 100% Color Saturation 3,4,5 1.0 - V(c-o) R, G, B Input: 3,4,5 - 10 2.0 - k!l pF Resistance Capacitance Sync Threshold (See Figure 2e) 2 - 1.7 - V Sync Input Resistance (Input> 1.7 V) 2 10 - k!l Chroma Output Level At 100% Saturation 13 1.0 - V(c-p) Chroma Output Resistance 13 50 Chroma Input Level For 100% Saturation 10 - V(o-o) Chroma Input: 10 - - k!l pF - VIp-pI Resistance Capacitance Composite Output, 100% Saturation (See Figure 2d) }{ Sync Luminance Chroma Burst 9 - Output Impedimce (See Note 1) 9 Luminance Bandwidth (3 dB), Less Delay.Line 9 - Subcarrier Leakage In Output 9 - 0.7 10 2.0 0.6 1.4 1.7 0.6 50 8.0 20 - !l !l MHz mV(a-o) Note 1: Output Impedance can be reduced to less than 100 by uSing a 1500 output load from Pm 9 to ground. Power supply current Will Increase to about 60 rnA. See Application Note AN932 for further information. MOTOROLA LINEAR/INTERFACE DEVICES 9-28 MC1377 FIGURE 2 - SIGNAL VOLTAGES (CIRCUIT VALUES OF FIGURE 11 (a) 1.0 v (p_p) lJL APPLICATION NOTES 100% Green Input (Pin 4) R.G.B. Inputs should be set up to be 1.0 V p-p for fully saturated levels. This is not arbitrary, since sync and burst levels are internally fixed. The large (15 j.LF) input capacitors of Figure 1 are needed for the 50/60 Hz vertical component. (b) 100% Red Input (Pin 3) 1.0 V (p_p) Subcarrier Oscillator. The internal common-collector Colpitts can be free run or it can easily be pulled in by a lightly coupled signal from a "master" into Pin 17. Also, it can be disabled entirely and a 0.25 VRMS signal driven into Pin 17. (c) 100% Blue Input (Pin 5) 1.0 V (p_p) (d) Modulator Phase Angles are quite accurately established internally. Taking (B-V) as 0', burst is at 180', and the angle of (R-V) is 90' ± 3.0'. The (R-V) angle can be "tweaked." For example, 470 k!l from Pin 19 to ground will increase the (R-V) to (B-V) angle about 3.0'. Pulling Pin 19 up will decrease the angle. 5.0 Composite Output (Pin 9) 4.0 Composite Output is dc referenced and can be direct coupled to an RF modulator as shown in Figure 3. In this case, the 8.2 V regulator output of the MC1377 is divided down to 5.8 V to provide the zero carrier reference to Pin 1 of the MC1374. 3.0 (e) 8.2 Max r 1.7 Min I Sync 1.0 Max I I ------11- 0 -0.5 Min (f) Burst Generation is provided by a sync triggered ramp on Pin 1 and two internal level sensors. Since the early part of this ramp is used, it is quite accurate. Fixed R-C values are feasible, as shown in Figure 3; Input (Pin 2) \oj Sync Input can be varied over a wide latitude but neverless must be applied correctly. The typical ac coupled sync signal has very little positive value and will require a pull-up resistor to 8.2 Vdc at the input. The sync input is a 10 k!l/10 k!l divider in the base of a common emitter stage. For PAL operation, the correctly serrated vertical sync interval must be used, in order to continuously trigger the PAL flip-flop. "Block" vertical sync can be used for NTSC. 10.5 Chroma Output (Pin 13) 10.0 9.5 (g) 4.35 Chroma Input (Pin 10) 4.0 (R-V)(B-Y)(-Y) signals are generated to NTSC values (± 5.0%) in the input matrices. They are dc clamped at 3.65 (h) 5.2h 4.3~ ~ 2.6t-! 2. 1 ~ ~ ...,....rL-r-'""" black level by a sync driven clamp. Burst amplitude is internally fixed to correspond to sync level, allowing for 3.0 dB loss in the chroma bandpass filter. If the filter is not used, as shown in Figure 3, a resistor divider should be inserted between Pin 13 and Pin 10 to provide the proper chroma level. When the chroma bandpass is not used, the (-V) delay line should also be removed, but the 1.0 kll.0 k divider from Pin 6 to Pin 8 should be retained. Luminance Output (Pin 6) Luminance Input (Pin 8) MOTOROLA LINEAR/INTERFACE DEVICES 9-29 IJ MC1377 FIGURE 3 - COUPLING THE MC1377 TO THE MC1374 RF MODULATOR Vcc ~ +12 Vdc RF Tank: See MC1374 Data Sheet 8.2 Vdc Reference 16r-~~----~--~ !J2r 30 = Inputs I 8 18 svnc I R \ 4 75 CJ 91-----"i 3 MC1374 MC1377 9 G I I 4 I B Compo~ite I '- 0.001 Video 1.0 k 12 ~ N 19 15 ~ NO.1 0.1 5.1 k 11 10 0.01 q Audio In 0 o------j + 1.0 jJ.F = = FIGURE 5 -100% SATURATED PAL COLOR BARS ON NTSC VECTORSCOPE FIGURE 4 - VECTORSCOPE DISPLAY OF 100% SATURATED NTSC COLOR BARS MOTOROLA LINEAR/INTERFACE DEVICES 9-30 ® MC1378 MOTOROLA Product Preview COLOR TELEVISION COMPOSITE VIDEO OVERLAY SYNCHRONIZER COLOR TELEVISION COMPOSITE VIDEO OVERLAY SYNCHRONIZER SILICON MONOLITHIC INTEGRATED CIRCUIT · .. a bipolar composite video overlay encoder and microcomputer synchronizer. The MC1378 contains the complete encoder function of the MC1377, i.e. quadrature color modulators, RGB matrix, and blanking level clamps, plus a complete complement of synchronizers to lock a microcomputer-based video source to any remote video source. The MC1378 is especially tailored to work with the Motorola RMS (Raster Memory System), but it can be applied to other controllable video sources. It can be used as a local system timing and encoding source, but it is most valuable when used to lock the microcomputer source to a remotely originated video signal. • Contains All Needed Reference Oscillators FN SUFFIX • Can Be Operated in PAL or NTSC Mode, 625 or 525 Line PLASTIC PACKAGE CASE 777-02 PLCC-44 • Wideband, Full-Fidelity Color Encoding • Local or Remote Modes of Operation • Minimal External Components ORDERING INFORMATION • Designed to Operate from 5.0 V Supply • Will Work with Non-standard Video Temperature Range Device MC1378P Package Plastic DIP 0-70°C MC1378FN FIGURE 1 - • PLCC-44 BLOCK DIAGRAM TYPICAL APPLICATION PIN ASSIGNMENTS 36 MHz Master Clock Local/Rem. H Sync 3.58/4.43 MHz Vert/Camp Sync RMS Red MC1378 - H. PLL Filter H. Remote Video veo{ Burst Gate Out PAUNTse Mode Ground 3.58/4.43 In Green Composite r--- Overlayed Video Blue Chroma PLL Filter Chroma { veo Video Enable LocallRemote t f Clock Output Clock"Ground } Clock veo Killer Filter Quad. loop Filter PAlldent. Cap Ground B Input Overlay Enable Chroma In ) PLCC Pin Assignments This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES Compo Vid. Out G Input Lac. Vid. Clamp 9-31 Clock VCC Vee Chroma Out *( V. Out/Sync In Clock PLL Filter B-YClamp -Y Output PAU NTSC Camp. Sync Out R-YClamp R Input 525/60 625/50 H. Sync In Rem. Vid. In ACC Filter -Y Input Rem. Vid. Clamp MC1378 MAXIMUM RATINGS Rating Symbol Value Unit VCC 6.0 Vdc TA Oto+70 ·C Storage Temperature Tsta -65 to +150 ·C Junction Temperature TJ(max) 150 ·C Po 1.25 10 W mWI'C Value Unit Supply Voltage Operating Temperature Power Dissipation (Package) Derate above 25·C RECOMMENDED OPERATING CONDITIONS Condition Pin No. 28,36 Supply Voltage 14,15,16 1.0 Color Oscillator Input Level 8 0.5 Vdc Vp_p VD _D Video Input, Po.sitive 24 1.0 Vo_o RGB Input for 100% Saturation 5.0 :!: 0.25 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, TA = 25·C Circuit of Figure 4 or 5) Characteristic Pin No. Min Typ Max Unit 28,36 - 100 - Video Output, Open Circuit, Positive 27 - 2.0 9.4 Vn-D Modulation Angle (R - V) to (B - V) - 87 90 93 Degrees Supply Current RGB Input Impedance High Low 1 Horizontal Sync Input, Negative Going 10 Remote Local - 4.3 39 - 4.3 5 - 4.3 (TTL) 40 Vertical Sync Output, Negative Going, Remote (TTL) Mode 38 Composite Sync Output, Negative Going (TTL) (TTL) Burst Gate Output, Positive Going - 14,15,16 Local/Remote Switch (TTL) 4.3 mAdc - kG - - - Vn-o Vp_p - Vp_p Vn-n DESCRIPTION OF OPERATION - Refer to Figures 3, 4 II REMOTE MODE LOCAL MODE The incoming remote video signal (Pin 24) supplies all synchronizing information. A discussion of the function of the phase detectors helps to clarify the lockup method: The MC137S and RMS combine to provide a fully synchronized standard signal source. In this case, composite sync must be supplied by the RMS or other time base system. In the MC137S the phase detectors operate as follows: PD1 -locks the internally counted-down 4 MHz horizontal VCO to the incoming horizontal sync. It is fast acting, to follow VCR source fluctuations. PD2 - locks the 36 MHz clock VCO, which is divided down by the RMS, to the divided down horizontal VCO. PD3 -is a gated phase detector which locks the 14 MHz crystal oscillator, divided by 4, to the incoming color burst. PD4 - controls an internal phase shifter to assure that the outgoing color burst is the same phase as incoming burst at PD3. PD5- not used in REMOTE MODE POI -locks the internally counted-down 4 MHz horizontal VCO to a Horizontal Sync signal (at Pin 40) from the RMS (counted down from 36 MHz). PD2 - not used in LOCAL MODE. PD3 - not used in LOCAL MODE. PD4 - active, but providing an arbitrary phase shift setting between the color oscillator and the output burst phase. PD5 - locks the 36 MHz clock VCO (which is divided down by the RMS) to the 14 MHz (crystal) color oscillator. The 14 MHz is, therefore, the system standard in LOCAL MODE, and it is not dc controlled. Vertical lock is obtained by continuously resetting the sync generator in the RMS with separated vertical sync from the MC1378, Pin 38. This signal is TTL level vertical block sync, negative going. The horizontal sync from the RMS to Pin 40 is also TTL level with sync negative going. The local/remote switch, Pin 1, is in local mode when grounded, remote mode when taken to 5.0 V. The overlay control, Pin 25, has an analog characteristic, centered about 1.0 V, which allows fading from local to remote. COMPOSITE VIDEO GENERATION The color encoding at the RGB signals is done exactly as in the MC1377. Composite chroma is looped out at Pins 18 and 20 to allow the designer to choose band shaping. Luminance is similarly brought out (Pins 17 and 22) to permit installation of the appropriate delay. Composite sync output, Pin 39, and burst gate output, Pin 5, are provided for convenience only. MOTOROLA LINEAR/INTERFACE DEVICES 9-32 3: n .... FIGURE 2 - MC1378 INTERNAL BLOCK DIAGRAM w ...... Burst Gate Out +5.0 V r I •• I~u 00 I" - - - - - - - -I- - - - - 1 - 1I 28 ••• • ••••• I 35.81 35.5 MHz s: 0 ~ -I 0 :I) 0 r l> r z I--_ _ _~"'"~ ~ Sync m l> CD W w :I) ::::: Z -I m PAU NTse 0----------+-1 ~Sync Out :I) "l> Locall ~Remote (") m 0 m < Red In o---)~ (") m en I I I I I I I L __ I 18 -y ~I rI 'n Out~ T 19 -=- II ----7T26 25 I Overlay Enable RemoteII Video Video Out In Vee -=- Gnd Compo Sync In MC1378 Overlay Enable Remote +5 Video Master Clock 35.8135.5 MHz Video Vee Out 33 32 31 '" 25 30 24 23 AMS TOI< Dl122401D -1533 orother Local Video Source 1.2 It FIGURE 3 - REMOTE MODE Overlay Enable +5 Video Master Clock 35.8/35.5 MHz Vee Out • 1.0p,F + TDK DL122401D -1533 +10 -B '.2k RMS orother Local Video Source 1---------'--'------,J4.:a~Hz AGURE 4 - LOCAL MODE MOTOROLA LINEAR/INTERFACE DEVICES 9-34 ® MC1391P MOTOROI.A TV HORIZONTAL PROCESSOR TV HORIZONTAL PROCESSOR · .. low-level horizontal sections including phase detector, oscillator and pre-driver - a device designed for use in ali types of television receivers. • SILICON MONOLITHIC INTEGRATED CIRCUIT Internal Shunt Regulator • Preset Hold Control Capabil ity • ±300 Hz Typical Pull-In • Linear Balanced Phase Detector • Variable Output Outy Cycle for Driving Tube or Transistor • Low Thermal Frequency Drift '. • Small Static Phase Error • 1 Adjustable dc Loop Gain • PSUFFIX Positive Flyback Inputs PLASTIC PACKAGE CASE 626-05 Vnonreg FIGURE 1 - TYPICAL APPLICATION CIRCUIT +30 V RA RS 470 470 +150 V CA b'3 k + 100~FI [ Hold AD Rcl;. 27 k 12 k AX Ay 0.0068 AEf 2.4 k_ ~lcs 150 k 0.0051 ~F 8 2.2 k 7 6 4k 10W 3.3 k I ccl: JL fP 1~~ 6 MJ105 or Equiv r---'I-MC1391P 1 2 RZ t 82 k 39 k ~ ~ 1.5 k Y 0 K 0.001 ~F 4iO"~F 3 .E ' - - ""5.3" MAD..., 1140 or Equiv 4·~'"'o:' 1.5 or Equiv 0.003 ~F -=- T -= ~ High Voltage Tripier [:;"0.1 ~F tRz = 6.8 k per 100 V af fly back amplitude. -20 V Sync This circuit has an oscillator pull·in range of ±SOO Hz, a noise bandwidth of 320 Hz, and a damping factor of O.S. MOTOROLA LINEAR/INTERFACE DEVICES 9-35 0.01 I" ~F * 0.2 ~F MC1391P MAXIMUM RATINGS ITA = +250 C unle.. otherwise noted. I Value Unit Supply Current 40 mAde Output Voltage 40 Vdc Output Current 30 mAde Sync Input Voltage IPin 31 5.0 Vlp·pl Flyback Input Voltage IPin 41 5.0 Vip_pi Power Dissipation (Package Limitation) Plastic Package Derate above T A = +25 0 C 625 5.0 rnW rnW/oC Rating o to Operating Temperature Range (Ambient) °c °c +700 -65 to +150 Storage Temperature Range ELECTRICAL CHARACTERISTICS ITA" +25 0 C unless otherwise noted.IISee Test Circuit of Figure 2, all switches in position 1.1 Characteristic Regulated Voltage IPin 61 Supply Current (Pin 6) Min Typ Max Unit 8.0 8.6 - 20 9.4 - mAde Vdc Collector-Emitter Saturation Voltage (Output Transistor Q1 in Figure 6) II Vdc - 0.15 0.25 Voltage IPin 41 - 2.0 - Oscillator PulHn Range (Adjust RH in Figure 2) - ±300 - Hz Oscillator Hold-in Range (Adjust RH in Figure 2) - ±900 - Hz - 0.5 - - ±3.0 - - - ±1.0 Sync Input Voltage (Pin 3) 2.0 - 5.0 Vlp·pl Sawtooth Input Voltage (Pin 4) 1.0 - 3.0 Vlp·pl IIc = 20 rnA, Pin 11 Vdc Static Phase Error Vdc ~s I -- VBE - ~ w ~ 0.01 0,01 --- o 0.7 0.6 :t 0,2 0.1 0.3 0.5 0.7 0.05 0.1 0,5 FIGURE 5 - DC CURRENT GAIN 130 ~ I " ~ 0 3.5 3.0 / hFE z '"'" 110 / '" ./ 50 0.01 I 0.85 0.8 1\ 0.1 ~ 1.5 0,9 \hFE11 Ih FE 2\ hFE210r FIE 0.05 ~ 2.0 0.95 --t 1' ~ 0,5 1.0 5,0 0.75 10 IE, EMITIER CURRENT ImAde) MOTOROLA LINEAR/INTERFACE DEVICES 9-42 0 ;:: 2.5 1.0 90 70 1.0 IE, EMITTER CURRENT ImA) I I ~ 2.0~ ~ ;;: 1.0 :, ;; IC, COLLECTOR CURRENT ImAde) 140 3.0cj > VIO 0.4 0.01 1.0 w '" « ~ z ~ 0.5 > 0.05 4.0~ __ f-"'" ~ 0.02 0,03 ~ --- ~ 0.8 I-" '/ 125 TA, AMBIENTTEMPERATURE 1°C) 0.07 0.03 VCB=10V 0.9 0.1 ~ ~ 5.0 V ~ 50 75 TA,AMBIENT TEMPERATURE 10C) 0.5 0.05 VCB -10-2 o 0.7 ~ Y ./ ,..-: 810- 1 /" I:: :t o V./ VA o 1.0 ~ 15V 0: FIGURE 3 - INPUT OFFSET CHARACTERISTICS FOR Q1and Q2 "~ ,--VCB '" u 0 i ~ 5.0 o 10 ® MC3373 MOTOROLA REMOTE CONTROL WIDEBAND AMPLIFIER WITH DETECTOR SILICON MONOLITHIC INTEGRATED CIRCUIT REMOTE CONTROL AMPLIFIER-DETECTOR The MC3373 is intended for application in infrared remote controls. It provides the high gain and pulse shaping needed to couple the signal from an IR receiver diode to the tuning control system logic. • High Gain Pre-Amp • Envelope Detector for PCM Demodulation • Simple Interface to Microcomputer Remote Control Decoder • May Be Used with Tuned Circuit for Narrow Bandwidth, Lower Noise Operation P SUFFIX PLASTIC PACKAGE CASE 626-05 • Small Package Size • Minimum External Components • Wide Operating Supply Voltage Range Pin Connections • Low Current Drain Output • Improved retrofit for NEC part no. ,...PC1373 VCC Filter Input Tank Filter Peak Hold FIGURE 1 - REMOTE CONTROL APPLICATION +9.0 Vdc 1500 fLF Ground (21 lN914 +12 Vdco-----~---1~--~~-1~ + 455 IN 100 150 k +5.0 Vdc 18 -Irl-+-+-l17 18 k -1r-t-+-+--I 2 -Irl-+-+-l 16 -t--t--t--t--I 14 MC14497 -Irl-+-+-ll I (31 MLE071 Infrared Emitting Diodes 4 56 LlTRONIX SFH206 Receiver Diode lN914 MOTOROLA LINEAR/INTERFACE DEVICES 9-43 MC3373 MAXIMUM RATINGS Rating Symbol Value Unit VCC 15 Vdc TA Oto 75 ·C Tstll -55 to +125 ·C TJ 150 ·C Po 1/6JA 1.25 10 Watts mWrC Supply Voltage Operating Temperature Range Storage Temperature Range Junction Temperature Power Dissipation. Package Rating Darate above 25·C RECOMMENDED OPERATING CONDITIONS Symbol Min Power Supply Voltage (25·C) VCC 4.75 Power Supply Voltage (O"C) VCC 5.0 - fin 30 40 Parameter Input Frequency ELECTRICAL CHARACTERISTICS (TA Typ Unit 15 Vdc 15 Vdc 80 kHz = 25·C. VCC = 5.0 V. fin = 40 kHz. Test circuit of Figure 2) Symbol Min Typ Max Unit Power Supply Cu"ent IcC 1.5 2.5 3.5 mAdc Input Terminal Voltage V(Pin 7) 2.4 2.8 3.0 Vdc Input Voltage Threshold Vin 50 100 I£VP_P Input Amplifier Voltage Gain (VIPin 3] = 500 mVp_p) AV - 60 - dB 80 ill Characteristic 40 60 = 1.0 mVp_p Output Leakage. VCC = VOH = 15 Vdc VOL - IOH Output Voltage. Input Open VOH - - Input Impedance qn Output Voltage. Vin II Max FIGURE 2 - - 0.5 V 2.0 ,.A 5.0 Vdc TEST CIRCUIT VCC 100 k = 5.0 Vdc Output 8 10 fLF + 0.033 7 2 6 3 5 4 h -= 5.0 mH 22 COIL: TOKO INC. CANS-4612Z 150 k MOTOROLA LINEAR/INTERFACE DEVICES 9-44 MC3373 FIGURE 3 - BLOCK DIAGRAM r----------4~--_.--~--------~--------------._-oVcc 1.0 k 100 k +~I1F r;;;;;;;;;-f---WIiRl;--:-;-f-'.""-"---;:::;~'-"""'-oOutput 22 ~~------+ FIGURE 4 - INPUT AMPLIFIER GAIN 5 FIGURE 5 - 100 DETECTOR THRESHOLD 1.0 12 Vdc Vee ...... Vee r--.... ~ 10 Vdc I \ .... 1\ \ \ \.. ......... f=Vee \. '\. 8.5 Vdc ........ '-.. a 1.0 10 lOa PIN 6 RESISTOR (OHMS I 1000 50 r- 512 p,s burst of 30-80 kHz PIN 3 Amplifier Output --1WNtt-------MIIIIt-- Vcc = 500 mVp.p PIN 1 Output ~ W ~ 200 250 The MC3373 is designed to amplify and detect the signal from an infrared receiver diode in a remote con· trol system. The signal is generally in the form of ultra· sonic bursts. ranging in amplitude from 50 fJ.Vp.p to several hundred millivolts. The receiver diode may be directly connected to the MC3373 to save parts; the input is internally compensated by an ABlC (automatic bias level control). However. it is advantageous to ac couple the input. as shown in Figure 1. in order to pro· vide attenuation of the power line frequency IR inputs. which are plentiful in most cases. The input amplifier gain is approximately'equal to the load impedance at Pin 3. divided by the resistor from Pin 6 to ground. Again. the low frequency gain can be reduced by using a small coupling capacitor in series with the Pin 6 resistor. ~2.8V --I 100 150 PIN 4 RESISTOR IKILOHMS) t---t- APPLICATIONS INFORMATION FIGURE 6 - TYPICAL SIGNAL WAVEFORMS PIN 7 Input 50 I1VP.P(min) - """ I"--.. ............... r-VCC ----o.SV w --------------------0 MOTOROLA LINEAR/INTERFACE DEVICES 9·45 E MC3373 FIGURE 7 -INTERNAL SCHEMATIC Vee RI 56 k Input Output Filter r+t-t-------i:;::021 R13 3.3 k RIO 10 k .....- - - - . ........"""'-027 R21 RI5 2.2 k 2.2 k R24 2.2 k Circuit Description (Refer to Figure 7) 01-04 set the bias on the amplifier input at approximately 2.8 V. 06-010 form the input amplifier, which has a gain of about 80 dB when RIPin 6) = o. 05 sinks The load may be resistive, as shown in the application circuit, or tuned, as in the test circuit. The amplifier output is limited by back-to-back clamping diodes, level shifted, buffered and fed to a negative peak detector. The detector threshold is set by the external resistor on Pin 4, and an internal 6.8 k!1 resistor and diode to Vee. The capacitor from Vee to Pin 4 quickly charges during the negative peaks and then settles toward the set-up voltage between signal bursts at a rate roughly determined by the value of the capacitor and the 6.8 k resistor. The external capacitor at Pin 2 filters the ultrasonic carrier from the pulses. input current from the photo diode and keeps the amplifier properly biased. 018-020 level shift and buffer the signal to the negative peak detector, 022 and 023. Output devices 026 and 027 conduct during peaks and pull the output, Pin 1, low. The capacitor on Pin 2 filters out the carrier. MOTOROLA LINEAR/INTERFACE DEVICES 9-46 ® MCI0320 MCI0320-1 MOTOROLA Specifications and Applications Information TRIPLE 4-BIT COLOR PALETTE VIDEO DAC TRIPLE 4-BIT COLOR PALETTE VIDEO DAC SILICON MONOLITHIC INTEGRATED CIRCUIT The MCl 0320 integrates a triple 4-bit digital-to-analog converter and a 16 x 12 color look-up table into a single 28 pin IC for use in a high resolution color graphics display system. The outputs are EIA-343-A compatible red, blue, and green video signals capable of driving single or doubly terminated 50 ohm or 75 ohm cables directly. Complementary outputs are provided for custom displays. Control inputs include BLANK and SYNC to produce the levels required for vertical and horizontal retrace. The color look-up table allows up to 16 color combinations (out of a palette of 4096 possible colors) on the screen at anyone time. The table can be updated as often as required. The lower speed digital inputs (WRITE, DATA, and SYNC) are TTL compatible, whereas the high speed inputs (ADDRESS, PIXEL CLOCK, and BLANK) can be user programmed to either ECL or TTL compatability. The address and blank signals are latched into input registers, facilitating the timing requirements for those signals. Additional registers frame the data as it is presented to the three DACs, ensuring low glitch area and matched response. Innovative level translators permit the MC10320 series to be used in single or dual supply systems, permitting compatability with most any system configuration. The MC10320 series is fabricated with Motorola's MOSAIC process, which provides both low power consumption and high speed. PIN CONNECTIONS (Top View) 00 01 02 • Triple 4-Bit Video DAC with 16 x 12 Color Look-Up Table 03 • 125 MHz Max Pixel Rate (MC10320). 90 MHz Max (MC10320-1) VCC1 SYNC • User Selectable TTL or ECL Compatability on High Speed Inputs VEE1 • Single/Dual Supply Operation (Inputs and/or Outputs May Be Above/Below Ground) RSET • Supply Sensitivity Typically - 34 dB VEE2 • EIA-343-A Compatible Output Levels BLANK VCC2 • Directly Drives 50 or 75 Ohm Cables • Low Power Dissipation - 684 mW Typical • Internal Bandgap Reference TH CTRL VR VEE2 VR • SYNC and BLANK Control Inputs VB VG VB VG ORDERING INFORMATION Maximum Pixel Rate 125 MHz 90 MHz MOTOROLA LINEAR/INTERFACE DEVICES 9-47 Device MC10320L MC10320L-1 E MC10320, MC10320·1 BLOCK DIAGRAM _ VCC1 Data WRITE 3 4 Threshold Control Address 4 4 16 x 12 Bit Color look-Up Table RAM BLANK Pixel Clock Delay SYNC MC10320 MC10320-1 VEE1 ABSOLUTE MAXIMUM RATINGS Parameter Value Units Vdc Supply Voltages VCC1 (Measured to VEE1) VCC2 (Measured to VEE2) VEE1 (Measured to VEE2) VCC2 (Measured to VEE1) -0.5, -0.5, -0.5, -0.5, +7.0 + 7.0 + 7.0 + 7.0 Input Voltages (Address, Data, Wit WG, WB, SYNC, BLANK, PClK, and Threshold Control) RSET (Pin 21) RSET External Resistor VEE1 -0.5, VCC1 +0.5 VEE2- 0.5, VCC2 0,3.0 k Vdc Vdc Outputs (VR, VR, VG, VG, VB, VB Measured to VEE2) +2.5, +8.0 Vdc Junction Temperature -55, +150 "C n "Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The "Recommended Operating limits" provide for actual device operation. RECOMMENDED OPERATING LIMITS Parameter Single Supply - VCC1, VCC2 VEE1, VEE2 or Dual Supply - Typ Max Units 4.5 5.0 0 5.5 Vdc - - VCC1, VCC2 VEE1, VEE2 -4.5 4.5 VCC1 VCC2 VEE1 VEE2 -4.5 RSET (Between VCC2 and Pin 21) ISET (Determined by RSET) . Rl (load Resistance at Each Output) Input Voltages - Min 500 0.55 0 Threshold Control (Pin 11, See Text) TTL High (Pins 1-3, 5-10, 23, 25-28, TTL low Pin 11 connected to VEE1) ECl High (Pins 5-10 only, Pin 11 ECl low connected to VCC1) VEE1 VEE1 +2.0 VEE1 VCC1-1.13 VEE1 Output Compliance (Measured to VCC2) Ambient Temperature -2.0 0 MOTOROLA LINEAR/INTERFACE DEVICES 9-48 0 -5.0 5.0 0 0 -5.0 1.0 k 1.25 - - 0 - -5.72 5.5 - - -5.72 2.0 k 2.8 75 n mA n VCC1 VCC1 VEE1 +0.8 VCC1 VeC1 -1.48 Vdc +2.0 +70 Vdc "C MC10320, MC10320-1 ELECTRICAL CHARACTERISTICS (See Figure 1 TA ~ 25°C) Symbol Min Typ Max Resolution (Each DAC) Res 4.0 4.0 4.0 Bits Palette Colors (Active) (Total Available) - - - 16 4096 Colors Colors Integral Nonlinearity INl -1/4 0 +1/4 lSB Differential Nonlinearity DNl -1/4 0 + 114 lSB Parameter - Monotinicity Output levels Cal VR, VG, VB, relative to VCC2 unless otherwise noted. Ref. White Offset (DAC Input ~ 1111) BLANK, SYNC ~ 1 Units Guaranteed* - lOW VOW 50 -1.9 400 -15 - pA mV lOB VOB 16.1 -682 17.2 -645 18.2 -604 rnA mV Blank level Relative to Ref. Black BLANK ~ 0, SYNC ~ 1 10BK VOBK 1.17 -56.2 1.33 -50 1.5 -43.9 rnA mV Sync level - VG Only, Relative to Blank SYNC, BLANK ~ 0 10SY VOSY 6.71 -320 7.S3 -286 8.54 -251 rnA mV Ref. Black (DAC Input ~ 0000) Relative to Ref. White, BLANK, SYNC ~ 1 Total Error (Each DAC, Ref. White to Ref. Black) GER -S.O 0 +S.O % Gain Tracking Error (Any two DACs Cd! Ref. Black) GTR -3.0 0 +3.0 % Output Impedance @J VR, VG, VB Zo 10 100 Reference Voltage (VCC2 - VRSET, RSET ~ 1.0 kfl) Pin 21 Output DC Resistance (0 rnA < IREF < 3.0 rnA) VREF -1.4 -1.25 3.0 Input Voltage High (Data, WR, WG, WB, SYNC) low (Data, WR, WG, WB, SYNC) VIHA VilA VEEl +2.0 VEEl Input Voltage High (Address, PClK, BLANK) (Threshold Control @ VEEl [TTL Mode)) (Threshold Control @ VCCl [ECl Mode)) VIHB VIHC Input Voltage low (Address, PClK, BLANK) (Threshold Control @J VEEl [TTL Mode)) (Threshold Control @J VCCl [ECl Mode)) Input Current @J 2.4 V (TTL Mode) @ 0.4 V (TTL Mode) Input Current @ VCCl - 0.8 V (ECl Mode) @J VCCl - 1.8 V (ECl Mode) Input Current @ Pin 11 (Pin 11 @ Pin 11 (Pin 11 ~ ~ VCC1) VEE1) kG Vdc G - VCCl VEEl +0.8 Vdc VEEl +2.0 VCC1-1.13 - VCCl VCCl VllB VllC VEEl VEEl - VEEl +0.8 VCC1-l.48 IIHA liLA - - 50 10 150 100 IIHB IllB - 100 70 250 200 0 -0.4 - - (All Input Pins Except Pin 11) -1.1 11TH IITl Signal Feedthrough to Outputs Due to Pixel Clock ((a! 125 MHz for MC10320, BLANK 90 MHz MC10320-1) Data SRR Power Supply Rejection Ratio (All DACs) VCCl @ 1.0 kHz VCCl @ 1.0 MHz VCCl @50MHz VEE2 @ 1.0 kHz VEE2 @ 1.0 MHz VEE2 @ 50 MHz Power Supply Sensitivity" PSRR - -5.0 -1.0 - - - - - - -50 -50 -SO SO 45 30 50 33 12 0.02 - - ",A rnA dB - - 0.12 dB %/% rnA Power Supply Requirements (See Figure 1) VCCl Current (VCCl - VEEl ~ 5.0 V) VEEl Current (VCCl - VEEl ~ 5.0 V) VCC2 Current (VCC2 - VEE2 ~ 5.0 V) VEE2 Current (VCC2 - VEE2 ~ 5.0 V, Includes output currents) Power Dissipation (@ 5.0 volt supplies) ICCl IEEl ICC2 lEE - PD - 50 -50 28 -92 70 -70 45 -120 - S84 894 *Guaranteed by linearity tests. **(VCC1 - VEE1) and (VCC2 - VEE2) are each varied from 4.5 to 5.72 volts, but not simultaneously. MOTOROLA LINEAR/INTERFACE DEVICES 9-49 mW IJ MC10320, MC10320-1 TIMING CHARACTERISTICS (See Timing Diagram - Figure 2) Symbol Parameter READ Cycle (Display Mode) Address, BLANK Setup Time Address, BLANK Hold Time Clock Pulse Width - High Clock Pulse Width - Low Pipeline Delay DAC Prop Delay (PCLK to 50% Point) DAC Prop Delay Difference (DAC to DAC) SYNC Prop Delay Output Settling Time (± 1/2 LSB to ±.1'2 LSB) Output Slew Rate Glitch Area tRSA tRHA tPWH tPWL tplPE tDPD tDPD~ tSPD tDS SR AG Min Typ - 1.5 1.5 3.0 3.0 1.0 9.0 0.5 6.0 3.0 300 20 - 1.0 - - - Max Units 1.0 - ns ns ns ns clk cycle ns ns ns ns V/p.s pV-S - ns WRITE Cycle (RAM Update Mode) Address Setup Time Address Hold Time Clock Setup Time Clock Hold Time Data Setup Time Data Hold Time Write Pulse Width tWSA twHA twsc tWHC tWSD twHD twpw - 1.5 1.5 5.0 10 90 10 90 - - - - TEMPERATURE CHARACTERISTICS (O"C to + 70"C) Typ Units Offset (at Ref. White) ±20 ppm GS/"C DAC Gain ±100 ppm GSI"C Gain Tracking (any 2 DACs @ Ref. Black) ±50 ppm GSI"C Linearity ±100 ppm GSI"C Parameter Note: ppm Gsrc = Parts Per Million of Grey Scalef'C. FIGURE 1 - BLOCK DIAGRAM 24 VCC1 4 25-28 Data 1-3 3 WRITE 19 r-----+---~ Red Output Threshold Control Address 11 tl 4 5-8 16 x 12 Bit i!? '0, 4 " II: ':5 Co Color Look-Up Table RAM E BLANK 10 i!? ~ r-----+--....~ Green Output u; " "a ~ ' 5. 0 Clock SYNC VEE1 >- 9 Delay :J (/l 23 4,22 a.Co MC10320 MC10320-1 Note: Electrical Characteristics are tested with both single and dual supply configurations at the typical supply voltages listed in the "Recommended Operating Limits." Input levels are TTL or EeL, as appropriate. Threshold control input is set at Vee1, or VEE1, as appropriate. Exceptions to these conditions are noted in the Characteristics. MOTOROLA LINEAR/INTERFACE DEVICES 9-50 MC10320, MC10320·1 FIGURE 2 - TIMING DIAGRAM READ CYCLE (PIXEL DISPLAY MODE) PCLK (1) (3) VR,VB (2) ,----., tSPD (7) VG ,".,J Output Notes: (7) 1-----+---+-- Blank~ Level Outputs tos Level Sync -Level measured from:;!:: 1/2 LSB to ± 1/2 LSB. to PO measured to output's 50% point. All PCLK measurements are made to/from the appropriate TTL or Eel threshold of the PCLK. tSPD measured from SYNC threshold to output 50% point. WRITE CYCLE (RAM UPDATE MODE) PCLK Address Data ______ -J'~--------------~'~----~-----------------J ---------4--~r~----------------~~~--------------------fl-- WR,WG, andlor WB ~---------twpw-------~ MOTOROLA LINEAR/INTERFACE DEVICES 9-51 MC10320, MC10320-1 PIN DESCRIPTIONS Symbol WR Pin 1 PIN DESCRIPTIONS Description Symbol Write Enable (Red) - Taking this pin low enables the data (Pins 25-28) to be written into the selected address location for the RED look-up table. The data is latched in the RAM when the pin is high. VG 15 Same as Pin 13. except for the GREEN DAC. The SYNC signal appears at this output. Waveform polarity is "sync down." VG 16 Same as Pin 14. exceptforthe GREEN DAC. The SYNC signal appears at this output. Waveform polarity is "sync up." VR 17 Same as Pin 13. except for the RED DAC. VR 18 Same as Pin 14. except for the RED DAC. VCC2 19 Power supply pin for the circuitry to the right of the supply option translators (See Block Diagram). Its reference is VEE2. and is nominally 5.0 volts more positive than VEE2· VEE2 20 Power supply pin for the circuitry to ths right of the supply option translators (See Block Diagram). This is the reference for VCC2. and is typically 5.0 volts below it. It is internally connected to Pin 12. This pin and Pin 12 must be connected externally. RSET 21 Current setting resistor - A user supplied low inductance resistor is to be connected between VCC2 and this pin to set the DAC's full scale current. An RSET of 1.0 kO. combined with load resistors of 37.50 (at Pins 13.15.17) provides output signals consistent with EIA-343-A. The RSET resistor is to be between 500 0 to 2.0 kO. The voltage at this pin is 1.25 volts below VCC2. VEE1 22 Power supply pin for all circuitry prior to the supply option translators (See Block Diagram). This is the reference for VCC1. and is typically 5.0 volts below it. Internally it is connected to Pin 4. This pin and Pin 4 must be connected externally for proper operation. SYNC 23 A logic low on this input forces the GREEN DAC to increase its output current by 7.6 mA (RSET = 1.0 kO). providing the sync level of 286 mV (RL = 37.50) below blanking. The BLANK input must have been asserted previously. SYNC is independent of PCLK. VCC1 24 Power supply pin for the circuitry to the left of the supply option translators (See Block Diagram). Its reference is VEE1. and is nominally 5.0 volts more positive than VEE1. 00-03 25-28 Data inputs - Information on these pins is written into the color look-up table. at the locations specified by the address lines. by taking the appropriate Write pin low. Pin 28 is DO (LSB). and Pin 25 is 03 (MSB). WG 2 Write Enable (Green) - Same as Pin 1. except for the GREEN table. WB 3 Write Enable (Blue) - Same as Pin 1. except for the BLUE table. VEE1 AO-A3 4 5-8 Power supply pin for all circuitry prior to the supply option translators (See Block Diagram). This is the reference for VCC1. and is typically 5.0 volts below it. Internally it is connected to Pin 22. This pin and Pin 22 must be connected externally for proper operation. Address lines - They are used to select one of sixteen 12-bit words in the color look-up table for both reading and writing. The address is latched on the PCLK rising edge. and presented to the DACs on the following rising edge. Pin 5 is A3 (MSB). and Pin 8 is AO (LSB). PCLK 9 Pixel clock - Address and BLANK signals are latched on the rising edge ofthis clock. The following rising edge presents the data in the look-up table (of the selected address) to the DACs. SYNC is independent from PCLK. BLANK 10 Blank,ing ~ A logic low overrides the color look-up table. and forces the three DACs to the blanking level. The BLANK input is latched. the same as the address lines. ThCntl 11 Threshold Control - When tied to VCC1. the PCLK. AO-A3. and BLANK inputs are at ECL levels with respect to VCC1. When tied to VEE1 (Pin 4 or 22). the same inputs are at TTL levels with respect to VEE1. VEE2 12 Power supply pin for the circuitry to the right of the supply option translators (See Block Diagram). This is the reference for VCC2. and is typically 5.0 volts below it. It is internally connected to Pin 20. This pin and Pin 20 must be connected externally. VB 13 The output of the BLUE 4-bit DAC. Output compliance is ± 2.0 volts with respect to VCC2. and output impedance is typically 100 kO. Designed for a typical load of 37.5 O. the load may be between 0 and 75 O. The output is a current sink. VB 14 The complementary output of the BLUE DAC. This output may be used in conjunction with Pin 13 for twisted pair signal transmission or for custom interface schemes. If unused. it must be tied to VCC2. Pin Description MOTOROLA LINEAR/INTERFACE DEVICES 9-52 MC10320, MC10320-1 FUNCTIONAL DESCRIPTION GENERAL The MC10320 is a triple video DAC, with a 16 location color palette RAM, designed for high resolution graphics systems. The maximum pixel speed capability is 125 MHz for the MC10320, and 90 MHz for the MC10320-1. The input configurations are compatible with TTL or ECl systems, and the outputs are directly compatible with monitors having 50 n or 75 n RGB inputs. Using the external components recommended in this data sheet, the outputs will conform to EIA-343A levels. The output levels are adjustable by means of the RSET resistor. The MC10320 contains three 4-bit DACs whose inputs are fed from a color palette RAM (data is loaded by the user). The RAM contains 16 locations (each 12 bits wide). Each 4-bit nibble of each RAM address can be individually loaded, so that every address location can have anyone of a possible 4096 codes. The DAC output levels are determined by the contents of the selected RAM address (by means of the address inputs). The MC10320 contains an input register to accept the address and Blanking information, and a second register located between the RAM and the DAC inputs. This arrangement ensures that the RAM data is presented to the 3 DACs simultaneously, which ensures the DAC outputs will transition simultaneously. The registers are toggled by the PClK input's rising edge. The BLANK input overrides the RAM data to the DACs, and forces the outputs to the Blanking level. The SYNC input goes directly to the Green DAC, bypassing the RAM and the latches, forcing the green DAC output to shift. The combination of BLANK and SYNC produce the video sync level. Referrin!] to the Block Diagram, the input stage (circuitry to tne left of the Supply Option Translators) and the output stage (to the right of the Translators) can be operated at different supply voltages. The only restriction is that the output stage cannot be more positive than the input stage. VEE1, independent of VCC1. With Pin 11 connected to VCC1, the inputs are fully compatible with the 10KH family of ECl devices, having a nominal threshold of 1.3 volts below VCC1, independent of VEE1. Figure 3 depicts a typical input stage configuration, and Figure 4 indicates the typical input current. Figure 4 applies to both ECl and TTL modes of operation. The inputs should be kept within the range of VEEl to VCC1. If an input is taken more than 0.3 volt below VEE1, or more than 0.5 volts above VCC1, excessive currents will flow through that input, and the DAC output waveforms will be distorted. SYNC The SYNC input goes directly to the green DAC, independent of the clock. When taken to a logic "0", the output current at VG is forced to increase by 6.1 x ISET. For a standard EIA-343-A system, the shift is 7.63 mA. resulting in a 286 mV change in the output voltage. The SYNC input does not override the RAM data, requiring that the BLANK input have been asserted (logic "0") previously in order to obtain a proper video sync level. The SYNC input does not affect the red or blue DACs. The SYNC input is always TTL compatible, with a nominal threshold of 1.5 volts above VEE1, independent ofVCC1· Figure 3 depicts the input stage configuration, and Figure 4 indicates the typical input current. The input should be kept within the range of VEEl to VCC1. If the input is taken more than 0.3 volt below VEE1, or more than 0.5 volts above VCC1, excessive currents will flow through the input, and the DAC output waveforms will be distorted. DATA 11-41, WR, WB, WG The data (DO, Dl, D2, D3), and WRITE inputs are the "low speed" inputs, as they do not have to operate at the same high speed as the above mentioned inputs. These inputs are independent of the PClK, although they are normally used in conjunction with the clock. Pins 25-28 are the data inputs to the color palette RAM, and are used for updating the RAM information. The information is written into the RAM at the address which was previously clocked into the input register, while the appropriate WRITE input is low, and then latched in when the WRITE input is taken high. The required data setup and hold times (mentioned in the Timing Characteristics) are with respect to the rising edge of the WRITE input. Ifthe same data is to be loaded into different nibbles (color sections) of the same address, the appropriate WRITE inputs may be taken low simultaneously, or sequentially. WR, WB, and WG control the loading of data into the red, blue and green nibbles respectively. The data and WRITE inputs are always TTL compatible, with a nominal threshold of 1.5 volts above VEE1, independent of VCC1. INPUTS Address. PCLK. BLANK The Address, PClK (pixel clock), and BLANK inputs are the "high speed" inputs capable of the maximum pixel clock rates mentioned above. The Address and BLANK are latched into the input register on the rising edge of the PClK, as long as the required setup and hold times are adhered to. The data at that RAM address (or the BLANK signal) is then presented to the DAC inputs on the next PClK rising edge. The BLANK input, when taken to a logic "0" and clocked in as described above, will override the RAM data presented to the DACs, and force the 3 DAC outputs to the Blanking level (see Figure 2). These 6 input pins can accept either TTL or ECl signals. With the Threshold Control pin (Pin 11) connected to VEE1, the inputs are TTL compatible with respect to VEE1, having a nominal threshold of 1.5 volts above MOTOROLA LINEAR/INTERFACE DEVICES 9-53 MC10320, MC10320-1 OUTPUTS The six DAC outputs (VB, VB, VG, VG, VR, VR) at Pins 13-18 are high impedance current sink outputs, with the current flow into the pins, never out. VG, VB, and VR provide the conventional video polarity (sync down), while the complementary outputs provide a "sync up" waveform. The output loads must be connected from the outputs to VCC2, or to a pullup voltage, such that the output voltages are within ± 2.0 vol.ts of VCC2. Unused outputs must be connected to VCC2, and not left open. The output current (for the gray scale) at Pins 13, 15, and 17 is related to the digital inputs (of the DACs) and the reference current (lSET at Pin 21, equal to 1.25 VI RSET) by the following equation: In most applications, it will be advantageous to set the Blanking level while updating the RAM. If Blanking is not set, the DAC outputs will change unpredictably while new data is being written into the RAM. Figure 3 depicts a typical input stage configuration, and Figure 4 indicates the typical input current. The inputs should be kept within the range of VEE1 to VCC1. If an input is taken more than 0.3 volt below VEE1, or more than 0.5 volts above VCC1, excessive currents will flow through the input, and the DAC output waveforms will be distorted. FIGURE 3 - TYPICAL INPUT StAGE - .......- - - - - . . . . . . - -......--VCC1 I _ (15-A) x ISET x 14.63 OUT(GS) 16 Out 1.0 k Input >----1f----1~"""I'v--I where A = binary value of the digital input (0-15). A digital input of 1111 (15) produces no output current, and therefore the most positive output voltage, referred to as "Reference White." An input code of 0000 (0) results in the maximum current, and therefore the gray scale's most negative output voltage, referred to as "Reference Black." After the BLANK input is asserted and clocked in as described above, the RAM data to the DACs is overriden, and the output current is set at: Vrel 50 k VEE1 VEE1 IOUT(8LANK) = ISET x 14.864 FIGURE 4 -INPUT CURRENT AT PINS 1-3, 5-10, 23, 25-28 LlIOUT(SYNC) I II 0 1.0 2.0 3.0 4.0 ~ (nominal value) 5.0 'OUT(SYNC) = ISET x 20.97 ./ / VCCI - VEE1 ISET x 6.1 5.0 Volts_ / -200 -400 -1.0 = The four outputs of the red and blue DACs are not affected by SYNC. The current increase at VG results regardless of the digital input to the Green DAC. To obtain the correct (EIA-343-A) sync level, the BLANK output level must have previously been set. Otherwise the green output will simply shift by the above amount from the grey scale level in effect at the time the SYNC input was asserted. If both BLANK and SYNC are asserted, the output current at VG is: 0 0 (nominal value) When the SYNC input is asserted, the output current at VG is increased by: 1000 800 (nominal value) 6.0 (nominal value) INPUT VOLTAGE (VOLTSI The sum of the currents into each pair of outputs is a constant equal to [20.93 x ISETl for the VGNG pair, and [14.824 x ISETl for the VRNR, and VBNB pairs. Table 1 summarizes the above information. THRESHOLD CONTROL The Threshold Control input (Pin 11) is to be connected directly to VCC1 to set Pins 5-10 to ECl compatibility, or directly to VEE1 to set the pins to TTL compatibility. A series resistor should not be used with this input, and it should not be connected to any other voltage as an incorrect threshold will result at Pins 5-10. Bias current at Pin 11 is approximately 400 /LA out of the pin when at VEE1, and 0 /LA when at VeC1. If the pin is taken more than 0.3 volt below VEE1, excessive currents will flow through this input, and the DAC output waveforms will be distorted. The voltage levels generated at the outputs depend on the value of ISET and the load impedance. An RSET of 1.0 kn (lSET = 1.25 mAl, and a load of 37.5 n (doubly terminated 75 n system) at each output will generate the standard EIA-343-A levels. The output voltages must be kept within the range of + 2.0 to - 2.0 volts with respect to VCC2. If any part of the output's waveform is outside this range, its linearity will be affected. MOTOROLA LINEAR/INTERFACE DEVICES 9-54 MC10320, MC10320-1 TABLE 1 Output Current (mAl at: Video level A :=0 -- VR, VB VG VR,VB VG Gray Scale ('15-AI x ISET) 1.09 Same as VB, VR ('AI x ISET + 1.06 I ) 1.09 SET CAl x ISET + 7.17 ISET) 1.09 Blank ISET x 14.824 Same as o mA ISET x 6.1 Sync + Blank ISET x 14.824 o mA o mA VB,VR ISET x 20.93 DAC digital Input (binary value), ISET IS the current Into Pin 21. REFERENCE VOLTAGE (RSET) The reference current for the DACs is supplied from an internal band-gap reference with a typical TC of = ± 50 ppmrC. The voltage at RSET (Pin 21) is a constant 1.25 volts below VCC2, and an external resistor RSET is to be connected from VCC2 to Pin 21. The current ISET is therefore equal to 1.25 V/RSET- Internally, equal reference currents are supplied to the three DACs such that their outputs are matched within ±3.0%. RSET should normally be between 500 nand 2.0 k!1. With values less than 500 fl, the current at Pin 21 approaches an upper limit, resulting in a nonlinear relationship for the MC10320. With values greater than 2.0 kfl, instability and oscillations of the reference amplifier will result. For this reason, current to Pin 21 should not be supplied from a current source. Additionally, the resistor should be noninductive (non-wirewound). Metal film resistors, available with low TCs, are recommended. The resistor should be physically adjacent to the MC10320 to avoid the inductive effects of long PC board tracks. Figure 5 indicates the voltage/current characteristics at Pin 21. FIGURE 5 - ~ System -- N 0:: 1.25 ~ :! 1.24 0.5 l- 0.9 2.1 2.5 VCC2 Gnd +5.0 V VEE2 Gnd Single Supply Gnd -5.0 V Gnd -5.0 V +5.0 V Gnd Gnd -5.0 V TIMING Timing diagrams for the Read (display) mode and the Write (RAM update) mode are shown in Figure 2. In the READ mode, the clock may be any frequency up to 125 MHz for the MC10320, and up to 90 MHz for the MC10320-1. Duty cycle is not important as long as the minimum low and high times are observed. On each clock's rising edge, a new address is clocked in, and the previous address' information is supplied to the DACs from the look-up table. If the BLANK line is taken to a Logic "0", it will override the information to the DACs on the next clock rising edge, and the 3 DACs will be taken to the blanking level. The SYNC input, when taken to a Logic "0", drives the Green DAC directly with only a small internal propagation delay. The output of the Green DAC will then change with respect to the last address input. For this reason, the SYNC input should normally be used only after asserting the BLANK input. In the WRITE mode, the clock is used only to eriter the address where the new data is to be written. The PCLK input may continue to toggle if the address inputs are stable during the write period, or the clock may be stopped while writing. Data is then entered into each of 3 color sections of that address by taking low the appropriate WRITE lines (WR, WG, WB). If the same four bits are to be stored in different color locations of the same address, the appropriate WRITE lines may be taken low simultaneously. If the BLANK input is held low during the Write operation, the DAC outputs will be held in a known state. V re! versus ISET 1.7 ISET ImAI VEE1 +5.0 V The current requirement for the input stage (lCC1) is typically 50 mA. and the majority of that current (+ 0, -4.0 mAl flows out of VEE1. The current requirement for the output stage (ICC2) is typically 28 mAo Out of VEE2 flows that current, plus the current due to the outputs and ISET. In a typical application the output currents total =63 mA, and ISET is =1.25 mA, giving a total IEE2 of =92 mA. The minimum voltage at VCCl for memory retention is =1.5 volts. Proper bypassing of the supplies at the IC is critical due to the high frequencies involved. Further information can be found in the Applications section. I--- 1.3 VCC1 Single Supply Dual Supply 1.26 0 2: z TABLE 2 2.9 POWER SUPPLIES The MCl 0320 may be used in a single or dual supply system, depending on the system logic levels, and/or the output requirements (See the Applications Section). Table 2 indicates permissable configurations. The only restriction is that the output stage (VCC2/VEE2) cannot be more positive than the input stage. The positive supplies may range from + 4.5 to + 5.5 volts, and negative supplies may range from - 4.5 to - 5.72 volts. MOTOROLA LINEAR/INTERFACE DEVICES 9-55 II MC10320, MC10320-1 APPLICATIONS INFORMATION than a few inches), they should be terminated according to transmission line theory. Otherwise reflections back to the signal sources can occur, disrupting their operation. Additionally, the overshoots and undershoots which will occur at the MC10320's input pins can cause its operation to be disrupted, resulting in an incorrect output. Additional information regarding the transmission characteristics of PC board tracks can be found in Motorola's MECl System Design Handbook (HB205R1). POWER SUPPLIES, GROUNDING The PC board layout, and the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device can result in an incorrect output due to interaction with the analog portion of the circuit. At the same time, noise generated within the MC10320 can cause incorrect operation if that noise does not have a clear path to ac ground. The power supply pins at both the input and output sections of the MC10320 must be decoupled to ground at the IC (within 1" max) with a 10 /LF tantalum and a 0.1 /LF ceramic. Tantalum capacitors are recommended since electrolytic capacitors simply have too much inductance at the frequencies of interest. The quality of the VCC and VEE supplies should then be checked at the IC with a high frequency scope. Noise spikes (always present among digital circuits) can easily exceed 400 mV peak, and if they get into the analog po~tion of the IC, the output waveforms can be disrupted. Noise can be reduced by inserting resistors and/or inductors between the supplies and the IC. If switching power supplies are used, there will usually be spikes of 0.5 volts or greater at frequencies of 50-200 kHz. These spikes are generally more difficult to reduce because of their greater energy content. 1n extreme cases, 3-terminal regulators (MC78l05ACP, MC7805.2CT), with appropriate high frequency filtering, should be used and dedicated to the MC10320. The ripple content of the supplies should not allow their magnitude to exceed the values in the Recommended Operating Limits. The PC board tracks supplying VCC and VEE to the MC10320 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The MC10320 should be close to the power supply, or the connector where the supply voltages enter the board. If the VCC and VEE lines are supplying considerable current to other parts of the board, then it is preferable to have dedicated lines from the supply or connector directly to the MC10320. The two VEE 1 pins (4 and 22) must be connected directly together. Likewise, the two VEE2 pins (12 and 20) must be connected directly together. Any long path between them can cause stability problems due to the inductance (@ 125 MHz) of the PC tracks. The ground return for the analog signals must be noise free. Input Configurations The unique configuration of the MC10320's power supply system permits its use in an all TTL, or all ECl, or mixed TTl/ECl environments, with the secondary capability of having the output levels be above or below ground. For standard TTL inputs refer to Figure 7. For systems using "above ground ECl" (ECl circuitry operated between ground and + 5.0 volts, rather than - 5.2 volts), refer to Figure 8. The MC10H350 translators will change the above ground ECl levels to the TTL levels required by the SYNC, Data and WRITE inr,uts, while the Threshold Control will set the thresholds of the Address, Clock and BLANK inputs to the ECl levels. For standard (below ground) ECl levels, refer to Figure 9. Since VCC2 cannot be more positive than VCC1, they are both connected to ground level in this Case. In the case where all inputs are above ground, but the low speed inputs (Data, WRITE, and SYNC) are connected to TTL circuits, while the high speed inputs are connected to above ground ECl circuits, refer to Figure 10. In the case where the low speed inputs are connected to standard TTL, and the high speed inputs are connected to standard (below ground) ECl, refer to Figure 11. Output Configurations The output waveforms may be above or below ground, depending on the choice of supply voltages for VCC2 and VEE2, but the output voltages are always referenced to VCC2. In Figure 12, the outputs are referenced to + 5.0 V, and produce a 1.0 volt p-p waveform when used with a doubly terminated 75 fl load, and an RSET of 1.0 kfl. The + 5.0 volt supply is the "ac ground" in this case. If the outputs must be referenced to system ground rather than the + 5.0 volt supply, the circuit of Figure 13 will provide the required level shifting. Figure 14 provides ground referenced outputs with a range of o to -1.0 volt. In Figure 15, the outputs are pulle·d up to a voltage different from VCC2, providing an offset (+ 1.0 volt offset in the figure). In Figure 15 the complementary outputs should be connected to the + 1.0 volt pullup voltage. The voltage at VR, VG, and VB (and the complementary outputs) must always lie within the range of ± 2.0 volts with respect to VCC2. Figure 6 illustrates the output voltage range, with respect to VCC2 or a pullup voltage, of the six outputs (Rl ~ 37.5 fl, RSET ~ 1.0 kfl): PC Board layout Due to the high frequencies involved, and in particular, the fast edges of the various digital signals, proper PC board layout is imperative. A solid ground plane is necessary in order to have known transmission characteristics, and also to minimize coupling of the digital signals into the analog section. Use of wire wrapped boards should definitely be avoided. Each PC track should be considered a transmission line, and if they are of any considerable length (more MOTOROLA LINEAR/INTERFACE DEVICES 9-56 MC10320, MC10320-1 FIGURE 6 - mV 0 OUTPUT LEVELS VR.VB VG Ref. White Ref. White VR.VB Blank - - t - - S y n c -100 -200 -300 1 1 Grey Scale Grey Scale j j Blank Ref. Black I I -400 -500 -600 -700 -800 -900 -1000 Ref. Black Blank 11 Note: RSET = 1.0 k. RL = 37.5 Ref. Black Blank Grey Scale Sync Ref. White n. above values are typical. AGURE 7 - TTL INPUTS +5.0 V 5.0 SYNC 4 Data 2.0 3 WRITE TTL 0.8 4 Address --. VR MC10320 Red VIDEO DAC w/RAM See --. VG PCLK o Green BLANK VEEl --. VB Threshold Control VEE2 = Blue Note: VCC2NEE2 may be above or below ground. MOTOROLA LINEAR/INTERFACE DEVICES 9-57 Figures 12-15 MC10320, MC10320·1 FIGURE 8 - ABOVE GROUND ECl INPUTS VR ~ MC10320 Above Ground ECl Address Red See Figures - VIDEO DAC 4 12-15 VG w/RAM ~ Green PClK BLANK +5.0 V VB Threshold Control VEEl ~ Blue -=- VEE2 Note: VCC2NEE2 may be above or below ground. FIGURE 9 - II Data WRITE Std. ECl 2X MC10 H350 4 3 -5.2 V -1. 48 8 -1.95~ STANDARD ECl INPUTS MC10320 VIDEO DAC Address-r-..;..4--1 w/RAM PClK----I BLANK ------1 Threshold = -5.2 V MOTOROLA LINEAR/INTERFACE DEVICES 9-58 MC10320, MC10320-1 FIGURE 10 - lOW SPEED INPUTS @ TTL, HIGH SPEED INPUTS @J ABOVE GROUND ECl VCC2 Cl{ 5'O 2.00 TTL Inputs { 0.: 1"0" SYNC 4 Data I WRITE 4'19EJ' "1" { 3.B7 ..... Address r:::l 3.05 ~ BLANK 3.52 --. VG --. VB --. Red Me10320 VIDEO DAC w/RAM Above Ground { ECl VR 3 Green 4 PClK Blue - Threshold +5.0 V See Figures 12-15 VEE2 Note: VCC2NEE2 may be above or below ground. FIGURE 11 - LOW SPEED INPUTS @ TTL, HIGH SPEED INPUTS @ STANDARD ECL -. Red a.Bl LIJ . :.,' :.".:. { "1 ''': Std -1.13 , •..•.• { ECl -1.48 -1.95 VIDEO DAC w/RAM VG -. VB -. Green Address Clock BLANK 2X MC10 H125 -5.2 ....- - - i Blue Threshold Control ~--~----~~~ Note: VCC2NEE2 may be above or below ground. MOTOROLA LINEAR/INTERFACE DEVICES 9-59 See Figures 12-15 MC10320, MC10320-1 FIGURE 12 - SINGLE +5.0 VOLT SUPPLY, OUTPUTS ABOVE GROUND VCC1 SYNC 4 Data Inputs See Figures 7,8,10,11 VR - - - . Red 3 WRITE MC10320 Address 4 VIDEO DAC w/RAM Clock VG "'' NC - - - . Green +4.0 V , ) Output Waveform BLANK VB - - - . Blue Threshold Control - VEE1 -=- FIGURE 13 - SINGLE +5.0 VOLT SUPPLY, OUTPUTS REFERENCED TO GROUND II +5.0 V VCC1 VCC2~~~~~--~~----~----~~, 50n Inputs See Figures 7,8, 10,11 MC10320 VR VIDEO DAC VG w/RAM VB 40n 50 Output Waveform n Ir=;:f===~~----~ Clock BLANK Red VEE2 Threshold Control VEE1 75 n Q1-Q3: 2N3906 or Equivalent Diodes: 1N4004 or Equivalent Resistors: 1/8 W Green 75H 75n 200n Blue MOTOROLA LINEAR/INTERFACE DEVICES 9-60 Outputs MC10320, MC10320-1 FIGURE 14 - SINGLE OR DUAL SUPPLY, OUTPUTS BELOW GROUND VCC1 SYNC 4 Data Inputs See Figures 7-11 VR 3 WRITE -.Red MC10320 4 Address Clock VIDEO DAC w/RAM OV VG t--'-'+.....-t<» - . Green -1.0 V J A."'YJL-\..r BLANK Output Waveform VB Thrsh. Ctrl. - - . Blue VEE1 -5.2 V FIGURE 15 - SINGLE OR DUAL SUPPLY, OUTPUTS ABOVE GROUND, REFERENCED TO GROUND +1.0V VCC1 SYNC Data Inputs See Figures 7-11 WRITE Address 4 3 4 rV:..:.R+.......~» -. Red MC10320 VIDEO DAC w/RAM Clock +1.0VAA rV;..:G+.......~» --. Green J "'Y-\..r OV~L---------~~ BLANK Output Waveform VB Thrsh. Ctrl. - - . Blue VEE1 -5.2 V MOTOROLA LINEAR/INTERFACE DEVICES 9-61 II MC10320, MC10320·1 GLOSSARY INTEGRAL NON-LINEARITY - The maximum error of an AID, or DAC, transfer function from the ideal straight line connecting the analog end points. This parameter is sensitive to dynamics, and test conditions must be specified in order to be meaningful. This parameter is the best overall indicator of the device's performance. BANDGAP REFERENCE - A temperature stable voltage reference circuit based on the predictable base-emitter voltage of a transistor. BIPOLAR INPUT/OUTPUT - A mode of operation whereby the analog input (of an AID), or output (of a DACl. includes both negative and positive values. Examples are - 5.0 to + 5.0 V, - 2.0 to + 8.0 V, etc. LSB - Least Significant Bit. It is the lowest order bit of a binary code. DAC CURRENT GAIN - The internal gain the DAC applied to the reference current to determine the full scale output current. The actual maximum current out of a DAC is one LSB less than the fuli scale current. LINE REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the input to the regulator is varied. The error is typically expressed as a percent of the nominal output voltage. DIFFERENTIAL GAIN - In video systems, differential gain is a component's change in gain as a function of luminance level. In a color picture. saturation will be distorted if the differential gain is not zero. LOAD REGULATION - The ability of a voltage regulator to maintain a certain output voltage as the load current is varied. The error is typically expressed as a percent of the nominal output voltage. DIFFERENTIAL NON-LINEARITY - The maximum deviation in the actual step size (one transition level to another) from the ideal step size. The ideal step size is defined as the Full Scale Range divided by 2n. This error must be within ± 1 LSB for proper operation. MONOTONICITY - The characteristic of the ,ransfer function whereby increasing the input code (of a DAC), or the input Signal (of an AID), results in the output never decreasing. Non-monotonicity occurs if the differential non-linearity exceeds - 1 LSB. DIFFERENTIAL PHASE - In video systems, differential phase is the change in the phase modulation of the chrominance signal as a function ofthe luminance level. The hue in a color picture will be distorted if the differential phase is not zero. MSB - Most Significant Bit. It is the highest order bit of a binary code. ECL - where each "A" coefficient has a value of 1 or O. NATURAL BINARY CODE N Emitter coupled logic. FULL SCALE RANGE (Actual) - The difference between the actual minimum and maximum end points of the analog input (of an AID). or output (of a DAC). A binary code defined by: = An2n + ... + A323 + A222 + A121 + A020 NYQUIST THEORY - See Sampling Theorem. OFFSET BINARY CODE - Applicable only to bipolar input (or output) data converters, it is the same as Natural Binary, except that all zeroes corresponds to the most negative output voltage (of an DAC). while all ones corresponds to the most positive output. FULL SCALE RANGE (Ideal) - The difference between the actual minimum and maximum end points of the analog input (of an AID). or output (of a DAC). plus one LSB. OUTPUT COMPLIANCE - The maximum voltage range to which the DAC outputs can be subjected, and still meet all of the specifications. GAIN ERROR - The difference between the actual and theoretical gain (end point to end point), with respect to the reference, of a data converter. The gain error is usually expressed in LSBs. GLITCH AREA - The energy content of a glitch, specified in volt-seconds. It is the area under the curve of the glitch waveform. POWER SUPPLY REJECTION RATIO - The ability of a device to reject noise andlor ripple on the power supply pins from appearing at the outputs. An ac measurement, this parameter is usually expressed in dB rejection. GREY CODE - Also known as reflected binary code, it is a digital code such that each code differs from adjacent codes by only one bit. Since more than one bit is never changed at each transition, race condition errors are eliminated. POWER SUPPLY SENSITIVITY - The change in a data converters performance with changes in the power supply voltage(s). A dc measurement, this parameter is usually expressed in percent of full scale versus a percent change in the power supply voltage. MOTOROLA LINEAR/INTERFACE DEVICES 9-62 MC10320, MC10320-1 PROPAGATION DELAY - For a video DAC, the time from when the clock input crosses its threshold to when the DAC output(s) reach the 50% point of the transition. interest) of the analog signal to be digitized in order to preserve the information of that analog signal. SETTLING TIME - For a video DAC, the time required for the output to change (and settle in) from an initial ± 1/2 LSB error band to the final ± 1/2 LSB error band. QUANTITIZATION ERROR - Also known as digitization error or uncertainty. It is the inherent error involved in digitizing an analog signal due to the finite number of steps at the digital output versus the infinite number of values at the analog input. This error is a minimum of ± 1/2 LSB. TTL - Transistor-transistor logic. TWO'S COMPLEMENT CODE - A binary code applicable to bipolar operation, in which the positive and negative codes of the same analog magnitude sum to all zeroes, plus a carry. It is the same as Offset Binary Code, with the MSB inverted. RESOLUTION - The smallest change which can be discerned by an AID converter, or produced by a DAC. It is usually expressed as the number of bits, n, where the converter has 2 n possible states. UNIPOLAR INPUT - A mode of operation whereby the analog input range (of an AID), or output range (of a DAC), includes values of a single polarity. Examples are o to + 10 V, 0 to -5.0 V, +2.0 to +8.0 V, etc. SAMPLING THEOREM - Also known as the Nyquist Theorem. It states that the sampling frequency of an AID must be no less than 2x the highest frequency (of MOTOROLA LINEAR/INTERFACE DEVICES 9-63 • MC13001XP MC13002XP @ MOTOROLA Advance Information MONOMAX BLACK AND WHITE TV SUBSYSTEM MONOMAX. BLACK AND WHITE TV SUBSYSTEM The MONOMAX is a single-chip IC that will perform the electronic functions of a monochrome TV receiver, with the exception of the tuner, sound channel, and power output stages. The MC13001XP and MC13002XP will function as drop-in replacements for MC13001P and MC13002P, but some external IF components can be removed for maximum benefit; IF AGC range has been increas~d, video output impedance lowered, and horizontal driver output current capability increased. • Full Performance Monochrome Receiver with Noise and Video Processing - Black Level Clamp, DC Contrast, Beam Limiter • Video IF Dli'tection on Chip - No Coils, No Pins, except Inputs • Noise Filteting on Chip - Minimum Pins and Externals • Oscillator Components on Chip - No Precision Capacitors Required • MC13001XP for 525 Line NTSC and MC13002XP for 625 Line CCIR • Low Dissipation in All Circuit Sections • High-Performance Vertical Countdown • 2-Loop Horizontal System with Low Power Start-Up Mode • Noise Protected Sync and Gated AGC System • Designed to work with TDAl190P or TDA3190P Sound IF and Audio Output Devices • Reverse RF AGC Types are Available: MC13008XP, MC13009XP FIGURE 1 - SILICON MONOLITHIC INTEGRATED CIRCUITS P SUFFIX PLASTIC PACKAGE CASE 710-02 BASIC ELEMENTS OF THE SYSTEM BLACK SOUND VIF IF DECOUPLING • 2 6 IF 28 CLAMP CONTRAST BEAM LIMIT 26 25 27 r---:'~ 24 VIDEO OUT IF IN IFIN 8 AGC FILTER RF AGe 11 RFAGC 10 r--------+-----~~ 23 ~~~~CAL DELAY FLYBACK '50-01----1 HORIZ 7 ( ) o o o 1 i - - - - - - - - i - ' SYNC SEPARATOR 21 VERTICAL FEEDBACK 20 VERTICAL SIZE n.r '3 HORIZ. PHASE DET.' '2 HORtZ. FREQ ,. -------------_ .... HORIZ. PHASE DET.2 This document contains information on 8 new product. Speciflcationa and Information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-64 I I I 17 HORIZONTAL OUT MC13001XP, MC13002XP MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating Power Supply Voltage - Symbol Value VCC +16 Vdc PD 1.0 Watts Pin 18 Power Dissipation Pin 17 Horizontal Driver Current RF AGC Current - Pin 11 Unit IHOR -20 mA IRFAGC 20 mA Video Detector Current - Pin 24 IVID 5.0 mA Vertical Driver Current - Pin 22 IVERT 5.0 mA Pin 19 IREG 35 mA Thermal Resistance Junction-to-Case RruC 60 'CIW 'c Auxiliary Regulator Current - TJ 150 Tsta -65to +150 'C TA 0° to +70 'c Symbol Value Unit IHOR 0;;10 mA IRFAGC 0;;10 mA IREG 0;;20 mA Maximum Junction Temperature Storage Temperature Range Operating Temperature Range RECOMMENDED OPERATING CONDITIONS Rating Horizontal Output Drive Current RF AGC Current Regulator Current ELECTRICAL CHARACTERISTICS (VCC ~ 11.3 V, TA ~ 25'C) Characteristics Symbol Min ICC 44 - 76 mA Pin 19 VREG 7.2 8.2 8.8 Vdc Pin 12 tHOR(NOM) Power Supply Current Pins 18 & 19 Regulator Voltage Typ Max Unit HORIZONTAL SPECIFICATIONS Oscillator Frequency (Nominal) Oscillator Sensitivity Start-Up Frequency (118 ~ 4.0 mAl tHOR Oscillator Temperature Stability (0 0;; TA 0;; 75'C) tHOR Phase Detector 1 (Charge/Discharge Current) (Non Standard Frame) (Standard Frame) 1e/>1 Phase Detector 1 (Output Voltage Limits) Ve/>1 - 13 19 kHz - 230 -10 - +10 % 50 - Hz - - HZ/pA pA :t900 :t400 - 7.5 (Max) 2.5 (Min) - Phase Detector 1 (Leakage Current) Phase Detector 2 (Charge/Discharge Current) 1e/>2 Phase Detector 2 (Output Voltage Limits) Ve/>2 - - Vdc 2.0 pA +1.0 -0.6 mA 7.7 (Max) 1.5 (Min) Vdc - - Phase Detector 2 (Leakage Current) - 3.0 ,.. 18 (Max) 5.0 (Min) Horizontal Delay Range (Sync to Flyback) Horizontal Output Saturation Voltage (117 ~ 15 mAl V17(SAT) Phase Detector 1 (Gain Constant) (Out-at-Lock) (In-Lock) - - - 5.0 10 :t500 Horizontal Pull-In Range MOTOROLA LINEAR/INTERFACE DEVICES 9-65 :t750 pA 0.3 - Vdc pAl,.. Hz MC13001XP, MC13002XP VERTICAL SPECIFICATIONS Symbol Min Output Current Pin 22 122 -0.6 Feedback Leakage Cu rrent Pin 21 121 - Ramp Retrace Current Pin 20 120 500 Ramp Leakage Current Pin 20 Characteristics Typ - - V21 - Regulator Voltage V4 Input Bias Voltage V2,6 Input Resistance Input Capacitance (VAGC Pin a = 4.0 RIN CIN Feedback Maximum Voltage Max Unit - mA 6.0 p.A 900 p.A 0.3 p.A 5.1 - Vdc - 7.5 4.2 - Vdc - IF SPECIFICATIONS V, Sensitivity (V8 = a V, 400 Hz 30% MOD, V28 Vdc kfl 6.0 2.0 pF - 80 - /LVRMS - 75 - MHz - 7.0 - Vdc 1.4 - V - 6 4 - Vdc = 0.8 V pp ) Bandwidth VIDEO SPECIFICATIONS Zero Carrier Voltage (See Figure 5) Pin 28 Output Voltage (See Figure 6) White to Back Porch Pin 24 Differential Gain Differential Phase (IRE Test Method) % Oegrees - 10 - 14:1 V27 - 1.0 - R.F. (Tuner) AGC Output Current (V11 = 5.5 V) 111 5.0 - - mA AGC Delay Bias Current 110 - -10 AGC Feedforward Current 19 - 1.0 - mA Contrast Bias Current Pin 26 126 Contrast Control Range Beam Limiting Voltage Pin 27 p.A AGC & SYNC AGC Threshold (Sync Tip at Pin 28) V28 4.7 - 5.1 Vdc Sync Separator Operating Point V7 - 4.2 17 - 5.0 - Vdc Sync Separator Charge Current FIGURE 2 - MONOMAX AGC CHARACTERISTICS r'\. -10 FIGURE 3 - '\ / ' 4.0 '\ ~ 'i!\,,~ \ -30 \ 20 ;; ,/ -50 o /' ,. / ' "- t'-. 2.0 ~ -1 3.0 ~ - ~ ~ ,SOUND IF OUT [PIN 281 ............ C> 1.0 ~ -2 J ~ ~ -3 ~ """: ~ "\. ~ -4 -5 "I"--. 1.0 ~ '" ~ ,/ -..1...1- z o 3.0 ~ /' /'/' z -- r / VIDEO OUTPUT RESPONSE VIDEO OUT {PIN 241 WITH MAX CONTRAST en ':J /' ~ -20 -40 mA 5.0 z o i p.A o 4.0 5.0 AGe VOLTAGE [PIN 81 -6 o 4.0 2.0 6.0 VIDEO OUTPUT RESPONSE [MHzl MOTOROLA LINEAR/INTERFACE DEVICES 9-66 8.0 '" " 10 MC13001XP, MC13002XP FIGURE 4 - -10 -20 DETECTOR PRODUCTS -30 -40 -50 RELATIVE 41.25 MHz INPUT LEVEL IdBI GENERAL DESCRIPTION limiter and composite blanking. The video signal first passes through the contrast control. This has a range of 14: 1 for a 0 V to 5.0 V change of voltage on Pin 26, which corresponds to a change of video amplitude at Pin 24 of 1.4 V to 0.1 V (black to white level). The beam current limiter operates on the contrast control, reducing the video signal when the beam current exceeds the limit set by external components. As the beam current increases, the voltage at Pin 27 moves negatively from its normal value of 1.5 V, and at 1.0 V operates the contrast control, thus initiating beam limiting action. After the contrast control, the video is passed through a buffer amplifier and dc restored by the black level clamp circuit before being fed to Pin 24 where it is blanked. The black level clamp, which is gated "on" during the second half of the flyback, maintains the video black level at 2.4 V ± 0.1 V under all conditions, including changes in contrast, temperature and power supply. The loop integrating capacitor is at Pin 25 and is normally at a voltage of 3.3 V. The frequency response of the video at Pin 24 is shown in Figure 3 and it is blanked to within 0.5 V of ground. The AGe loop is a gated system, and for all normal variations of the IF input signal maintains the sync tip of a noise filtered video signal at a reference voltage The Video IF Amplifier is a four-stage design with 80 It uses a 6.2 V supply decoupled at Pin 4. The first two stages are gain controlled, and to ensure optimum noise performance, the first stage control is delayed until the second stage has been gain reduced by 15 dB. To bias the amplifier, balanced dc feedback is used which is decoupled at Pins 2 and 6 and then fed to the input Pins 3 and 5 by internal 3.9 k resistors. The nominal bias voltage at these input pins is approximately 4.2 Vdc. The input, because of the high IF gain, should be driven from a balanced differential source. For the same reason, care must be taken with the IF decoupling. The IF output is rectified in a full wave envelope detector and detector nonlinearity is compensated by using a similar nonlinear element in a feedback output buffer amplifier. The detected 1.9 Vp _p video at Pin 28 contains the sound intercarrier signal, and Pin 28 is normally used as the sound takeoff point. The video frequency response, detector to Pin 28, is shown in Figure 3 and the detector intermodulation performance can be seen by reference to Figure 4. Typical Pin 28 video waveforms and voltage levels are shown in Figure 5. The video processing section of Monomax contains a contrast control, black level clamp, a beam current ,.N sensitivity. FIGURE 5 - FIGURE 6 - PIN 28 SOUND OUTPUT '" 'J,-"'%=-------- --~: :::: :::::' 5.1 V J- 3.6 Vi -- PIN 24 - VIDEO OUTPUT Maximum -- Contrast 3.8 Minimum __ Contrast 2.4 AGe Threshold -- Back Porch Maximum Noise Threshold 1.7 - 4 - - - 1 - - - - - - - - - - - - Blanking Level MOTOROLA LINEAR/INTERFACE DEVICES 9-67 II MC13001XP, MC13002XP The components connected to Pin 7 determine the slice and tilt levels of the sync separator. For ideal horizontal sync separation and to ensure correct operation of AGC anti-lockup circuit, a relatively short time constant is required at Pin 7. This time constant is less than optimum for good noise free vertical separation. giving rise to a vertical slice level near sync tip. An additional, longer, time-constant is therefore coupled to the first via a diode. With the correct choice of time constants, the diode is non conducting during the horizontal sync period, but conducts during the longer vertical period. This connects the longer time constant to the sync separator for the vertical period and stops the slice level from moving up to the sync tip. The separated composite sync is integrated internally, and the time constant is such that only the longer period vertical pulses produce a significant output pulse. The output is then fed to the vertical sync separator, which further processes the vertical pulse and provides increased noise protection. The selection of the external components connected to the vertical separator at Pin 23 permits a wide range of performance options. A simple resistor divider from the 8.2 V regulated supply gives adequate performance for most conditions. The addition of an RC network will make the slice level adapt to varying sync amplitude and give improved weak signal performance. A resistor to the AGC voltage on Pin 9 enables the sync slice level to be changed as a function of signal level. This further improves the low signal level separation while at the same time giving increased impulse noise protection on strong signals. (5.1 V Pin 28). The strobe for the AGC error amplifier is formed by gating together the flyback pulse with the separated sync pulse. Integration of the error signal is performed by the capacitor at Pin 8, which forms the dominant AGC time constant. Improved noise performance is obtained by the use of a gated AGC system, noise protected by a dc coupled noise canceling circuit. The false AGC lock conditions, which can result from this combination, are prevented by an anti lockout circuit connected to the sync separator at Pin 7. AGC lockout conditions, which occur due to large rapid changes of signal level are detected at Pin 7 and recovery is ensured under these conditions by changing the AGC into a mean level system. The voltage at Pin 10 sets the point at which tuner AGC takeover occurs and positive going tuner control, suitable for an NPN RF transistor, is available at Pin 11. The maximum output is 5.5 V at 5.0 rnA. A feedcforward output is provided at Pin 9. This enables the AGC control voltage to be ac coupled into the tuner takeover control at Pin 10. The coupling allows additional IF gain reduction during signal transient conditions, thus compensating for variations of AGC loop gain at the tuner AGC takeover point. In this way the AGC system stability and response are not degraded. The previously mentioned noise protection is effected by detecting negative-going noise spikes at the video detector output. A dc coupled detector is used which turns on when a noise spike exceeds the video sync tip by 1.4 V. This pulse is then stretched and used to cancel the noise present on the delayed video at the input to the sync separator. Cancellation is performed by blanking the video to ground. Complete cancellation of the noise spike results from the stretching of the blanking pulse and the delay of the noise spike at the input to the sync separator. Protection of both the horizontal PLL and the AGC stems from the fact that both circuits use the noise cancelled sync for gating. The composite sync is stripped from a delayed and filtered video in a peak detecting type of sync separator. FIGURE 7 - 12 HORIZONTAL OSCILLATOR The horizontal PLL (see Figure 7) is a 2-loop system using a 31.5 kHz oscillator which after a divider stage is locked to the sync pulse using phase detector 1. The control signal derived from this phase detector on Pin 13 is fed via a high-value resistor to the frequencycontrol point on Pin 12. The same divided oscillator HORIZONTAL OSCILLATOR SYSTEMS ,, ,, 13 : 15 '-0 FLYBACK '--_ _ _-' SYNC MOTOROLA LINEAR/INTERFACE DEVICES 9-68 MC13001XP, MC13002XP frequency is also fed to phase detector 2, where the flyback pulse is compared with it and the resulting error used to change a variable slice level on the oscillator ramp waveform. This therefore changes the timing of the output square wave from the slicer and hence the timing of the buffered horizontal output on Pin 17 (see Figure 8). The error on phase detector 2 is reduced until the phasing of the flyback pulse is correct with respect to the divided oscillator waveform, and hence with respect to the sync pulse. To improve the pull-in and noise characteristics of the first PLL, the phase detector current is increased when the vertical lock indicator signals an unlocked condition and is decreased when locked. This increases the loop bandwidth and pull-in range when out of lock and decreases the loop bandwidth when in lock, thus improving the noise performance. In addition, the phase detector current during the vertical period is reduced in order to minimize the disturbance to the horizontal caused by the longer period vertical phase detector pulses. The oscillator itself is a novel design using an on-chip 50 pF silicon nitride capacitor which has a temperature drift of only 70 ppml"C and negligible long term drift. This, in conjunction with an external resistor, gives a drift of horizontal frequency of less than 1Hzl"C - i.e., less than 100 Hz over the full operating temperature range of the chip. The pull-in range of the PLL is about ± 750 Hz, so normally this would eliminate the need for any customer adjustment of the frequency. The second significant feature of this design is the use of a virtual ground at the frequency control point which floats at a potential derived from a divider across the power supply and this is the same divider which determines the end-points of the oscillator ramp. The frequency adjustment which is necessary to take up tolerances in the on-chip capacitor is fed in as a current to this virtual ground and when this adjustment current is derived from an external potentiometer across the same supply there is no frequency variation with supply voltage. Moreover, using the voltage from a potentiometer for the adjustment instead of the simple variable resistor normally used in RC oscillators makes the frequency independent of the value of the potentiometer and hence its temperature coefficient. The frequency control current from the first phase detector is fed into this same virtual ground and as the sensitivity of the control is about 230 HzlpA a high value resistor can be used (680 kO) and this can be directly connected to the phase detector filter without significant loading. This oscillator operates with almost constant frequency to below 4.0 volts and as the total PLL system consumes less than 4.0 mA at this voltage, this gives an ideal start-up characteristic for receivers using deflection-derived power supplies. The flyback gating input is on Pin 15 which is internally clamped to 0.7 V in both directions and requires a negative input current of 0.6 mA to operate the gate circuit. This input can be a raw flyback pulse simply fed via a suitable resistor. FIGURE 8 - J1- -V HORIZONTAL WAVEFORMS 200 mV pip 50 mV pip J ("1-4.5V v---- 0 6.0V @ 12~r @ +0.9V@ OV -0.7 V VERTICAL SYSTEM An output switching signal is taken from the 31.5 kHz oscillator to clock the vertical counter which is used in place of a conventional vertical oscillator circuit. The counter is reset by the vertical sync pulse but the period during which it is permitted to reset is controlled by the window control. Normally, when the counter is running synchronously, the window is narrow to give some protection against spurious noise pulses in the sync signal. If the counter output is not coincident with sync however, after a short period the window opens to give reset over a much wider count range, leading to a fast picture roll towards lock. At weak signal, i.e., less than 200 /LV IF input, the vertical system is forced to narrow mode to give a steadier picture for commonly occurring types of noise. The vertical sync, gated by the counter, then resets a ramp generator on Pin 20 and the 1.5 volt Pop ramp is buffered to Pin 22 by the vertical preamplifier. A differential input to the preamp on Pin 21 compares the signal generated across the resistor in series with the deflection coils with the generated ramp and thus controls shape and amplitude of the coil current. The basic block diagram of the countdown system is shown in Figure 9. The 31.5 kHz (2 FH) clock from the horizontal oscillator drives a 10-stage counter circuit which is normally reset by the ·vertical sync pulse via the sync gate, OR gate and 0 flip-flop. This 0 input is also used to initiate discharge of the ramp capacitor and hence causes picture fly back. The period during which sync can reset the counter and cause flyback is determined by the window control which defines a count range during which the gate is open. One of two ranges is selected according to the condition of the signal. The normal "narrow" range is 514 to 526 counts for a 525 line system and is selected after the coincidence detector indicates that the reset is coincident, twice in succession, with the 525 count from the counter. When the detector indicates noncoincidence 8 times in succession, then the window control switches to the "wide" mode (384 to 544 counts) to achieve rapid re-synchronization. For the 625 line version the counts are 614 to 626 for narrow mode and MOTOROLA LINEAR/INTERFACE DEVICES 9-69 II II MC13001XP, MC13002XP FIGURE 9 - MONOMAX VERTICAL COUNTDOWN BLANKING PULSE BLANKING LATCH CLOCK ~ COUNTER RESET 10-STAGE COUNTER 514-526 384-544 "NARROW" "WIDE" H/4 DELAY 8H/2 DELAY 2H/2 COINC. D FLIP FLOP (DELAY) DELAY VERTICAL SYNC t TO RAMP PULL-DOWN 484 to 644 for wide mode_ Note that the OR gate after the sync gate is used to terminate the count at the end of the respective window if a sync pulse has not appeared. This method accepts non-standard Signals almost in the same way as a conventional triggered RC oscillator and has a similar fast lock-in time. However, the use of a window control on the counter reset ensures that when locked with a normal standard broadcast signal the counter will reject most spurious noise pulses. The blanking output is provided from a latch which is set by the counter reset pulse and terminated by count 20 from the counter chain. POWER SUPPLY The power supply regulator, although of simple design, provides two independent power supplies - one for the horizontal PLL section and the other for the remainder of the chip. The supplies share the same reference voltage but the design of the main regulator is such that it can be switched on independently to give minimum loading on the "bleed" voltage source during start-up phase of a deflection-derived supply system. FIGURE 11 R FIGURE 10 - CLOCK _ VBL - 8 BL - 4 x 10-3 VERTICAL WAVEFORMS POWER SUPPLY CIRCUIT HORIZONTAL MAIN START-UP 12 V SUPPLY BLEED IEXT + VBL ----;;'Wv----,--+~ ...:"~ ......__.,__ 8.2 V TO ... EXTERNAL CIRCUITS 8.2 V TO ""-w.-44_ c~~2U~~N~X~~T HORIZONTAL 2.0 V @ IEXT R6 rnA Ohms OV MOTOROLA LINEAR/INTERFACE DEVICES 9-70 <5 150 20 35 82 68 MC13001XP, MC13002XP FIGURE 12 - TEST CIRCUIT DIAGRAM G) o-----_-[2l--......."""'......" JII VREG @ 470 k 12 V 180 k V21 12 V 12 V VREG SOURCE @ 8.2V 12 V 120 V 82 k 5.0V ~o-------~--~~ MOTOROLA LINEAR/INTERFACE DEVICES 9-71 II MC13001XP, MC13002XP FIGURE 13 - TYPICAL APPLICATION Video Out +8.2Y +120V +8.2 Y 39k High Voltage Winding To TDA1190P "'~ 82k ,~.". ~ Vert Size +120V +120V +12V +24V Vert Vert Sync t. 50 nF 0." ~.~ N,... ' 1M ~ 0 Ula: :;; '" .r 0.05 +8.2Y Vert Drive 22 VCC YREG '9 20 2' Hariz Drive -= M '7 '8 '6 '5 MC'300'X MONOMAX "RF '0 '2 AGC '4 '3 Hariz Phase Hariz Freq Oet.l '.0 "F 8.2V +8.2 V P-= F1 Video IF In r 680 k .:r 1.8M 2.2 k II 23 ~ ~ ~ N ai 2% Metal Film or Metal Oxide . -....--'WIr-_ Pin 9 nF AGC ..>eo Delay 2.7 M 50 RF 470 k Sync Separator Components r-----------, II I I :I I I Tuner I I t Vertical Sync - optional components for extra performeoce with low signal strength I I I I L._=- ___:: __ J See Application Note AN879 for further information. MOTOROLA LINEAR/INTERFACE DEVICES 9-72 Det.2 1,onF ill 0.1 nF Hariz Phase ® MC13010P MOTOROLA TV PARALLEL SOUND IF/AFT TV PARALLEL SOUND IF AND AFT The PSIF is a single-chip IC that enhances the performance of a color TV, audio and video/chroma system. It eliminates bandpass compromises which normally tradeoff 920 kHz video beat with sound performance. The chip also includes a surface wave filter preamplifier and an AFT circuit. SILICON MONOLITHIC INTEGRATED CIRCUIT .- • Low Noise Preamplifier for SAW Filter • Wideband IF Amplification with Mean Level AGC • Intercarrier Detector for Sound Carrier Output • Reduces 920 kHz Beat • AFT Discriminator with Output Polarity Selection 1 • Internal Voltage Regulator 8.2 V PSUFFIX PLASTIC PACKAGE CASE 707-02 • 30 mA Available from 8.2 V Internal Regulator PIN CONNECTIONS FIGURE 1 - BLOCK DIAGRAM • Decouple IF Input { Decouple Ground Preamp { Output Preamp { Input MOTOROLA LINEAR/INTERFACE DEVICES 9-73 Sound Output AGC Filter MC13010P MAXIMUM RATiNGS Rating Symbol Value VCCC 16 Vdc Regulator Output Current Ireg 30 mAde Thermal Resistance R8JA 70 ·CfW Po 1.1 W TJ(max) 150 ·C Tstg -65 to +150 ·C Power Supply Voltage Power Dissipation (Package Limitation) Maximum Junction Temperature Storage Temperature Range Operating Temperature Range o to TA Unit ·C +70 ELECTRICAL CHARACTERISTICS (VCC = 12 V, TA = 25·C, Test Circuit of Figure 2, unless otherwise noted) Static Characteristics Symbol Min Typ Max Unit ICC 30 - 60 mAde Regulator Voltage, Pin 12 Vrea 7.6 8.2 8.8 Vdc RF Supply Voltage, Pin 18 VRF 5.8 6.5 7.2 Vdc 4.0 6.6 7.5 mAde Supply Current Preamplifier Current, Pins 6, 7 Dynamic Characteristics Preamp Gain (Differential Output, 50 n Loads) Av IF Sensitivity, Output 1.5 Vpp Input 45.75 MHz, 30% AM @ 1.0 kHz Differential Pins 2, 3 -3.0 - dB 80 - /LVrms AGC Range, Input CW for Output Change of ± 0.25 Vdc - 48 - Intercarrier Sound Output (Beat), Input 45.75 MHz, 7.0 mV rms ; 41.25 MHz, 2.2 mV rms 100 200 400 - MHz - kn pF - mV rms - dB f max - 80 Preamplifier Input Resistance Preamplifier Input Capacitance Rin Cin - 1.5 11.5 IF Input Resistance IF Input Capacitance Rin Cin - 2.2 4.0 Preamplifier Max Input Signal (Single Ended) Yin IF Max Input Signal (Differential) Vin IF Bandwidth (3.0 dB) .. - - AFT Center-Frequency Slope - AFT Output Max, 1.0 MHz Detuning - Noise Figure IF, Max Gain Noise Figure Preamplifier 50 50 6.0 5.0 4.0 ±300 dB mV rms kn pF - - mV rms !LAJkHz JJA FIGURE 2 - TEST CIRCUIT Vee 0.Q1 J 50 5O 1 IF Vee 17 2} IF 3 Input 4 IF AFT 16 Mode AFT 15 Output 5 Gnd AFTf4 Tuning 13 6} Preamp 7 Output Vreg 12 0.0047 Input 0 I" ) tIJ VRF 18 10k TOKO E502LN-4000034 10k (O.12/,H) f-:J.. ':' 0.1 ':' 8} 9 Output 11 Output Preamp Input fa047 AGe 10 +1.~ MOTOROLA LINEAR/INTERFACE DEVICES 9-74 MC13010P qui ring only one external filter. The general characteristic of the IF gain and gain control are given in Figure 4. The intercarrier sound output (Pin \1) is typically about 200 mV rms , which easily overcomQS a lossy intercarrier filter and meets the input needs'of even the least sensitive FM sound IF ICs. DESCRIPTION The MC13010 TV Parallel Sound IF/AFT is designed to be part of a high performance color television system. Its primary function is to provide a complete separate IF amplifier for sound, leaving the normal IF to be concerned only with video. Secondary functions include an AFT detector and a SAW preamp. In most present day color television receivers, sound and video are processed by the same IF amplifier and, in many cases, the same synchronous or pseudosynchronous detector. This imposes undesirable compromises in video and sound performance. Particularly in the U.S., the avoidance of a color/sound beat product (920 kHz) can only be achieved at the expense of sound quieting and sensitivity. Earlier solutions involved a single IF amplifier driving two detectors, with numerous interstage alignments required. A method of solving these problems is to process the sound and video separately, directly from the tuner output. The MC13010 provides the second complete IF channel, with its own wideband detector and AGC. This permits both video IF and sound IF to be free of tuned elements, except at their inputs. (See Figure 3.) AFT The AFT detector is a quadrature type opel'lting at the picture IF frequency, with only one external L-C to be aligned. The polarity of the AFT output may be changed by taking the mode control (Pin 16) high or' low. If the control pin is left open, the AFT is defeated. ADDITIONAL APPLICATIONS The MC13010 is an ideal part for stand-alone AFT. II contains the entire active system to provide a tuner with "self control". (See Figure 6.) This device performs AM detection at the intercarrier sound output. Therefore, AM modulated digital data may be recovered. This function may be useful in cable systems where digital coding is employed. FIGURE 3 - BLOCK DIAGRAM OFT.V. APPLICATION OF MC13010 Intercarrier Audio Sound Video IF & Del Filler PREAMPLIFIER The preamp is included to compensate for the high insertion loss of a Surface Acoustic Wave filter. This SAW filter may have two outputs with different responses, or it may serve only the video signal path. The preamp is optional if an LC filter is used. In any case, the selectivity ahead of the video IF must provide deep trapping ofthe sound carrier, while the sound bandpass is relatively broad and flat between the picture and sound carriers. I-----i~ E Video FIGURE 4 - GAIN AND AGC CHARACTERISTICS 7.0 30% 'MODULATION 6.0 IIIIII IIIIIII DC OUTPUT VOLTAGE IPIN 111 5.0 11111111 ~ 4.0 !:l ~3.0 THE SOUND IF The overall gain of 80 dB and gain control range of 48 dB equals the video IF's of earlier designs. This allows the full improvement of the system architecture to be realized. The AGC in the MC13010 is a peak-detecting type, driven internally from the sound detector, and re- AGC VdLTW (~\~ll01 ~ V 2.0 o o ~ / 1.0 0.1 1.0 10 CW. SIGNAL INPUT (mVrm,1 MOTOROLA LlNEARIiNTERFACE DEVICES 9-75 100 MC13010P FIGURE 51Al - TYPICAL lV APPUCATION +12 Vdc 0.Q11 33O 0.01 330 18 ,,~n 75 pF To Video IF 2 17 3 16 4 15 5 14 6 13 7 12 8 11 R3 R2 Intercarrier Output 0 Signal 1" From Tuner (ToFM Sound IF) 10 9 FIGURE 5(Bl - TYPICAL APPLICATION Vee = 12 Vdc 18 To Video 820 IF 2 17 3 16 4 15 5 14 6 13 7 12 8 11 9 10 AFT Output to Tuner R3 R2 Intercarrier III Signal From 0 Tuner Si Shown above are two approaches to using the MC13010 in TV designs. The simpler circuit 5(a) offers the lowest cost, but the 12 dB of preamp gain does not overcome the 20 to 25 dB of SAW filter loss. (Bearing in mind that discrete UC approaches also incur some loss at this point, the 51a) circuit is probably about equal in gain.) The transformer T4 in Figure 5(b) takes advantage of the high impedance current source nature of the preamp outputs, Pins 6 and 7, to pick up another 6.0 dB of gain. Even more may be possible with more primary turns. When using the coil information given at the right, note that it is based on very limited experience and is offered only as a general guideline. T2 - Video IF Surface Acoustic Wave (SAW) Filter: muRata, SAF 45MC02Z T3 - Ceramic Intercarrier Output Filter: muRata SFE 4.5 MB T4 - TaKa KANAS-K7060EK L1 - TaKa E502LN-4000034 J.W. Miller 48A147MPC with shield case, tuned to 45.75, L = 0.12 JLH. L2 - Same part as L1, except tuned to 44 MHz and loaded with 270 {} Experimental values for 45 MHz IF: R3 - T1 - R1 and R2 - Primary: TaKa E502LN-4000034 Secondary: TaKa E502LN-7000037 in Shield case Adjust for nominal tuning voltage Chosen for tuning voltage swing required. Note that Pin 15 can source or sink 300 JLA (typ) at the extremes of control range MOTOROLA LINEAR/INTERFACE DEVICES 9-76 MC13010P FIGURE 6 - "STAND-ALONE" AUTOMATIC FINE TUNN'lG (AFT) APPLICATION +24 Vdc 0.01 1 330 18 AFT to Tuner 17 2 R3 16 Rl 4 15 5 14 R2 13 0:- Signal ~~:r 12 7 0-------1.- - - - - - - - - - -41--1 51 8 11 9 10 L1 - Channel 3 Component Values T1 - Made from two coils positioned side by side, without shields, on 0.38" centers. Coils are COILCRAFT part no. T7-142 (violet 7-1/2 tur.ns), each with its own slug, Carbona I E, adjusted to 63 MHz (=0.4 ILH). This should give a slightly overcoupled response. A sheild to surround the coils may be required. COILCRAFT UNI-7/150 (blue 6-1/2 turns) or UNI-10/144 (green 5-1/2 turns) shielded, adjusted to 61.25 MHz (= 0.14 ILH) R1 and R2 R3 - Adjust for nominal tuning voltage Chosen for tuning voltage swing required. Note that Pin 15 can source or sink 300 JLA (typ) at the extremes of control range E MOTOROLA LINEAR/INTERFACE DEVICES 9-77 ® MC13014P MOTOROLA Advance Information MONOMAX® COMPANION AUDIONERTICAL SUBSYSTEM MONOCHROME TELEVISION POWER AUDIONERTICAL COMPANION SUBSYSTEM FOR MONOMAX® The MC13014P is intended to complement the Monomaxfamily by providing the complete output stages for the audio and ~ertical sections. In the typical case, all active elements and many of the passive components of the vertical and audio sections are replaced, thereby enhancing the construction simplicity of the Teceiver. Main features include: • Adaptable to a Variety of Power Supply Configurations • Efficient Operation; Low Device Temperature Rise P SUFFIX PLASTIC PACKAGE CASE 648C-02 • High Breakdown Voltage, 40 V • Can Deliver 600 mA pop Yoke Current • Up to 750 mW of Audio Output • Operates over a Wide Supply Voltage Range, 6-40 Vdc FIGURE 1 - BLOCK DIAGRAM. TYPICAL APPUCATION.MONOCHROME TV RECEIVER .--'W\r-+ 7"-19" B&W Circuit MONOMAX" (MC13001P or MC13001XP Families) Vertical Feedback FM IF MC1358P or TBA120C Audio Horizontal Yoke Vertical = Drive ~rtical 'l t V~~ke L = MC13014 Audio Amplifier and Vertical Driver This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-78 400-600 mA Pop MC13014P MAXIMUM RATINGS Rating Symbol Value Unit VCC, Vboost +40 V Power Supply Voltage, Audio Section (Pin 141 VCC' +35 V Audio Input VIS 1.0 V p-p ReJA 80 °CIW TJ 150 °c Power Supply Voltage (Pins 1,7,161 Thermal Resistance, Junction to Air Junction Temperature Operating Temperature Range Too Storage Temperature Range TstQ o to +70 -65to +150 °c °c AUDIO SECTION (TA ~ 25°C Circuit of Figure 21 ELECTRICAL CHARACTERISTICS Characteristic Symbol Min Typ Max Unit ICC 11 19 mAde Ao - 50 - Distortion at 50 mW Output 1.0 kHz Vout THO - 0.1 1.0 Distortion at 750 mW Output 1.0 kHz Vout THO - 0.5 - % Quiescent Output Voltage, No Signal VPin 10 - 8.0 - Vdc VPin 9, VPin 15 - 0.7 - Vdc RinPin15 - 28 - kn Vout - 0.5 4.0 mVRMS Power Supply Current, No Signal, Pin 14 Gain Input Bias Input Resistance Output Noise (50 Hz-15 kHzllnput 50 II ELECTRICAL CHARACTERISTICS - VIV % VERTICAL SECTION (TA ~ 25°C Circuit of Figure 31 Characteristic Max Unit Symbol Min Typ Iyoke 500 - mApp 75 Power Supply Current ICC - VPin 6 - 30 - mAde Flyback Voltage, Pin 6 Pull-Up Current, Max Height Control VPin 2 - 250 - mApk Output Current, Max Height Control ELECTRICAL CHARACTERISTICS - COMBINATION (TA ~ 25°C, Circuits of Figures 2 and 31 Characteristic Residual Vertical Buzz-In Audio Output. Vertical Set at 400 mA p-p Output FIGURE 2 - TEST CIRCUIT AND TYPICAL APPLICATION, AUDIO SECTION VCC ~ + 16 Vdc 10 ;0 ~+12V ,10 ~ 0 --I 160 +30V~1 0 :0 0 r » +14 V r Z 16 m CD Co w lN4002 » :0 ::::: z MC1Z014P 1.0M --I m +B.OV :0 " » () m 0 m < () m en Li-T, +11 V • +14V +12V Tuner AGe ~+11V +8.0V i 4715W ~ ..... "'..... 1~ + 12ov--"" lOOk I J 1 160 II lN4004 ~~ L---I~*I---11!e-,'-00--- +30 V • I • ® MOTOROLA MC13020P MOTOROLA C-QUAM® AM STEREO DECODER MOTOROLA C-QUAM® AM STEREO DECODER This circuit is a complete one chip, full feature AM stereo decoding and pilot detection system. It employs full-wave envelope signal detection at all times for the L + R signal, and decodes L - R signals oniy in the presence of valid stereo transmission. SILICON MONOLITHIC INTEGRATED CIRCUIT • No Adjustments, No Coils • Few Peripheral Components - • True Full Wave Envelope Detection for L + R • PLL Detection For L - R • 25 Hz Pilot Presence Required To Receive L - R • Pilot Acquisition Time 300 ms For Strong Signals, Time Extended For Noise Conditions To Prevent "Falsing" 1 P SUFFIX PLASTIC PACKAGE CASE 738-03 • Internal Level Detector Can Be Used As AGC Source FIGURE 1 - TYPICAL APPLICATION +8.0 Vdc 0.0033 0.0033 0.0033 Q Detector I Detector 3 0.01 IF Input Osc. Input 4 Level Detector Optional Tuner Grou nd I-"''----+'='+--- Audio L_-.-_J--?"::"'_-'-'<> Outputs Note 1 ~1---O---4-I ~=~~~~~~"\4-l..---+-=---.r-~11 Input h+--+~i--~ Force To Monaural I 16 I II Note 1: Output polarity is defined for receiver front See Text )R2 Rd and Figures I C2 5,6 and 7 L ______ OJ!] II end with l.O. above signal frequency_ chronously detected by conventional means. The I and Q detectors are held at 0' and 90' relative demodulation angles by reference signals from the phase-locked, divided-down VCO. The output of the I DET is 1 + L + R, with the added benefit (over the Env DET) of being able to produce a negative output on strong co-channel or noise interference. This is used to tell the Lock circuit to go to monaural operation. The output of the Q DET is the L - R and pilot information. MOTOROLA C-QUAM® - COMPATIBLE QUADRATURE AM STEREO INTRODUCTION In C-QUAM®, conventional quadrature amplitude modulation has been modified by multiplying each axis by cos II as shown in Figures 2 and 3. The resulting carrier envelope is 1 + L + R, i.e., a correct sum signal for monaural receivers and for stereo receivers operating in monaural mode. A 25 Hz pilot signal is added to the L-R information at a 4% modulation level. THE VCO The VCO operates at 8 times the IF input frequency, which ensures that it is out-of-band, even when a 260 kHz IF frequency is used. Typically a 450 kHz IF frequency is used with synthesized front ends. This places the VCO at 3.6 MHz, which permits economic crystal and ceramic resonators. A crystal VCO is very stable, but cannot be pulled very far to follow front-end mistuning. Pull-in capability of ± 100 Hz at 450 kHz is typical, and de-Q-ing with a resistor (see Figure 7) can increase the range only slightly. Therefore, the crystal approach can only be used with very accurate, stable front-ends. By comparison, ceramic and L - C VCO circuits offer pull-in range in the order of ± 2.5 kHz (at 450 kHz). Ceramic devices accurate enough to avoid trimming adjustment can be obtained with a matched capacitor for Cs (see Figures 1 and 5). THE DECODER The MC13020P takes the output of the AM IF amplifier and performs the complete C-QUAM" decoding function. In the absence of a good stereo signal, it produces an undegraded monaural output. Note in Figure 4 that the L + R information delivered to the output always comes from the envelope detector (Env DET). The MC13020P decodes the stereo information by first converting the C-QUAM" signal to QUAM, and then detecting QUAM. The conversion is accomplished by comparing the output of the Env DET and the I DET in the Err AMP. This provides the 1/cosll correction factor, which is then multiplied by the C-QUAM® incoming signal in the Var Gain block. Thus, the output of the Var Gain block is a QUAM Signal, which can then be syn- MOTOROLA LINEAR/INTERFACE DEVICES 9-86 MC13020P In the PLL filter circuit on Pin 19, C1 is the primary factor in setting a loop corner frequency of 8-10 Hz, inlock. An internally controlled fast pull-in is provided. R2 is selected to slightly overdamp the control loop, and C2 prevents high frequency instability. The Level DET block senses carrier level and provides an optional tuner AGC source. It also operates on the Q AGC block to provide a constant amplitude of 25 Hz pilot at Pin 11, and it delivers information to the pilot decoder regarding signal strength. below the preset threshold. Seven consecutive counts of no pilot will also put the decoder in monaural. In stereo, the co-channel input is disabled, and co-channel or other noise is detected by negative excursions of the I DET, as mentioned earlier. When these excursions reach a level caused by approximately 20% modulation of co-channel, the lock detector puts the system in monaural, even though the PLL may still actually be locked. This higher level of co-channel tolerance provides the hysteresis to prevent chattering in and out of stereo on a marginal signal. When all inputs to the Pilot Decode block are correct, and it has completed its count, it turns on the Switch, sending the L - R to the Matrix, and switches the pilot lamp· pin to a low impedance to ground. PILOT AND CO-CHANNEL FILTERS The Q AGC output drives a low pass filter, made up of 400 0 internal, and 430 0 and 5 p,F external. From this point, an active 25 Hz band-pass filter is coupled to the Pilot Decoder, Pin 14, and another low-pass filter is connected to the Co-channel Input, Pin 12. A 2:1 reduction of 25 Hz pilot level to the Pilot Decode circuit will cause the system to go monaural, with the components shown. Refer to Figure 8 for the formulas governing the active band-pass filter. The co-channel input signal contains any low frequency intercarrier beat notes, and, at the selected level, prevents the Pilot Decode circuit from going into stereo. The co-channel input, Pin 12, gain can be adjusted by changing the external 1.5 k resistor. The values shown set the "trip" level at about 7% modulation. The 25 Hz pilot signal at the output of the active filter is opposite in phase to the pilot signal coming from the second low-pass filter. The 56 k resistor from Pin 14 to Pin 12 causes the pilot to be cancelled at the co-channel input. This allows a more sensitive setting of the co-channel trip level. SUMMARY It should be noted that in C-QUAM", with both channels AM modulated, the noise increase in stereo is a maximum of 3.0 dB, less on program material. Therefore, this is not the major concern in the choice of monaural to stereo switching point as it was in FM, and blend is not needed. Pin 1, 2 - Pin 3 Pin 4 THE PILOT DECODER The Pilot Decoder has two modes of operation. When signal conditions are good, the decoder will switch to stereo after 7 consecutive cycles of the 25 Hz pilot tone. When signal conditions are bad, the detected interference changes the pilot counter so as to require 37 consecutive cycles of pilot to go to stereo. In a frequency synthesized radio, the logic that mutes the audio when tuning can be connected to Pin 9. When this pin is held low it holds the decoder in monaural mode and switches it to the short count. This pin should be held low until the synthesizer and decoder have both locked onto a new station. A 300 ms delay should be sufficient. If the synthesizer logic does not provide sufficient delay, the circuit shown in Figure 9 may be added. Once Pin 9 goes high, the Pilot Decoder starts counting. If no pilot is detected for seven consecutive counts, it is assumed to be a good monaural station and the decoder is switched to the long count. This reduces the possibility of false stereo triggering due to signal level fluctuation or noise. If the PLL goes out of lock, or interference is detected by the co-channel protection circuit before seven cycles are counted, the decoder goes into the long count mode. Each disturbance will reset the counter to zero. The Level Detector will keep the decoder from going into stereo if the IF input level drops 10 dB, but will not change the operation of the pilot counter. Once the decoder has gone into the stereo mode, it will go instantly back to monaural if either the lock detector on Pin 10 goes low, or if the carrier level drops - Pin 5 Pin 6 Pin 7,8 Pin 9 Pin 10 - Pin 11 - Pin 12 - Pin 13 Pin 14 Pin 15 Pin 16 Pin 17 - Pin 18 - Pin 19 Pin 20 - PIN DESCRIPTIONS Detector Filters, Rout = 4.3 k, recommend 0.0033 p,F to VCC to filter 450 kHz components. IF Signal Input Level Detector filter pin, Rout = 8.2 k, 10 p,F to ground sets the AGC time constant. High impedance output, needs buffer. Error Amp compensation to stabilize the Var Gain feedback loop Vce, 6-10 Vdc, suitable for low Vbatt automotive operation, but must be protected from "high line" condition. Left and Right Outputs, NPN emitter followers Forced Monaural, MOS or TTL controllable Lock detector filter, Rout = 27 k, recommend 2.2 p,F to ground. AGC'd Q output, NPN emitter follower with 400 0 from emitter to Pin 11 Co-channel Input, 2.0 k series in and 47 k feedback Pilot Filter Input to op amp, see Figure 8 Pilot Decode Input (op amp output) emitter follower, Rout = 1000 Stereo Lamp, open-collector of an NPN common emitter stage, can sink 50 mA, Vsat = 0.3 V at 5.0 mA Ground Oscillator input, Rin = 10 k, do not dc connect to Pin 18 or ground Oscillator feedback, NPN emitter, Rout = 1000 Phase Detector Output, current source to filter Detector Filter, Rout = 4.3 k, recommend 0.0033 p,F to VCC to filter 450 kHz MOTOROLA LINEAR/INTERFACE DEVICES 9-87 MC13020P FIGURE 6 - FIGURE 5 - CERAMIC VCO 5.5 ~ 05.0 ~ z 0: uI 4.5 ~ i?z r 18 ,,+ .' ~O.OO33 30 ~ o ~ z 0: uI 5.0 4.5 -1 20 19 '~.17 2Ot: :: T~·l jj.F k / I §? 4.0 W 448 448 ~ ~ • VCO -;- 8 FREQUENCY IkHzl ~ ~ / V / /" Uk V 24 ,.......... f-""' ~ ~ /' FIGURE 8 - ACTIVE BAND-PASS FILTER 2.:-;;;~ ~ ....- .......- ~ / ;;!; ~ 3.5 3.0 + / /" /" 448 FIGURE 7 - CRYSTAL VCO 5.5 1/ ~ 3.0 454 I 100 ~ 453 I 19 03.5 448 450 451 452 VCO -;- 8 FREQUENCY IkHzl J 17 ~~~ 1'220 sooG 20 §? 4.0 448 L-C VCO Vref / 449.90 II 449.95 450.00 450.05 veo -;- 8 FREQUENCY IkHzl 450.10 FIGURE 9 - FORCED MONAURAL OPTIONAL DELAY CIRCUIT where, in this application: fo = center frequency = 25 Hz Ao = gain at fo"'25 0",10 TTL Bus 470 k I 10 k 9 I. . I ..... I :.,f!:: Choose values for fo, A o, a, and convenient C, solve for MC13020 resistors 1.0I'F'J C ± 5% Ra ± 5% Rb ± 1% 0.471'F 4.7 k 910 220 k O.331'F 8.2 k 1.3 k 330 k Rc ± 1% Note: Capacitor C should be a good grade, low ESR. MOTOROLA LINEAR/INTERFACE DEVICES 9-88 ® MC13021 MOTOROLA Product Preview MOTOROLA C-QUAM® AM STEREO TUNING STABILIZER AM STEREO TUNING STABILIZER SILICON MONOLITHIC INTEGRATED CIRCUIT AM stereo systems are basically microphonic. They require a high degree of local oscillator stability in the receiver front end, particularly with respect to mechanical vibration in the audible range. Motion of physical components which affect oscillator frequency can generate significant audio output via the L-R or stereo information channel. To date, this has meant that most quality AM stereo implementations were done with PLL synthesized tuners. The MC13021 offers a low cost means of obtaining PLL stability in conventional mechanically tuned radios. 16- r~ y¥~p ~SUFFIX 1 PLASTIC PACKAGE CASE 648-06 • Provides AFC for Tuning Accuracy and Ease • Eliminates Microphonic Responses • Provides Tuning Lock Indication • Uses Existing Mechanical Tuning Elements LevelDet VCC The MC13021 is appropriate at both ends of the cost spectrum, from low priced mechanical auto radios to high end component hi-fi receivers using non-varactor tuning. The oscillator drive comes out at two levels to accommodate inductively or capacilively tuned systems. It is designed to work with the MC13020 C-QUAM decoder and any discrete or IC AM front end, such as the MC13041 (ULN3841). Ground VRef In VCOln La Osc Out VCO Out Hi Osc Out 4> Det Out 2.0 V Ref Window Limiter In Lock Tuned FLL Tuned Lamp FIGURE 1 - TUNING MODE IJ Force Mono FIGURE 2 - TUNED MODE L R 11 14 10 16 7 16 9 4 9 4 8 / LED This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-89 + MC13021 Vee 22 &-:lB2______ ~~2._ k I I OSCCoil of : Receiver I 2.2,uf 3: PVC HVAH109 I I Current >-____'_0+:_-\ From MC13020 Pin 19 I : L ____ _ 47 k From MC13020 Pin 17 veo Reference Voltage Converter I MC13021 15 To MC13020 Pin 10 0.02 To MC13020 Pin 9 To MC13020 Pin 4 "Locked" LED Indicator Vce AM STEREO TUNING STABILIZER II In the Tuning Mode (Figure 1) the loop utilizes the existing tuner oscillator coil as a frequency discriminator to generate a dc voltage which is used to steer a voltage controlled oscillator (VCO). The VCO output is applied to the discriminator to close the loop, forcing the VCO to track the resonant frequency of the tuner oscillator coil. The output of the VCO is used as the receiver local oscillator. In this mode the amount of the noise reduction is limited by the need to track the manual tuning control without producing a delay that is perceptible to the user, and it must be able to follow the rapid tuning changes which are incurred in a push-button tuner. A forced monaural output prevents the stereo decoder from going stereo in this mode. Upon acquiring a usable carrier, the system switches from the Tuning Mode to the Tuned Mode. (See Figure 2.) In this mode the FLL steering voltage is derived from the error voltage line ofthe MC13020 AM stereo decoder PLL, forming what is effectively a classical automatic frequency control. The purchase of the Motorola C-QUAMIIII AM Stereo Decoder does not carry with such purchase any license by implication, estoppel or otherwise, under any patent rights of Motorola or others covering any combination of this decoder with other elements including use in a radio receiver. Upon application by an interested party. licenses are available from Motorola on its patents applicable to AM Stereo radio receivers. MOTOROLA LINEAR/INTERFACE DEVICES 9-90 ® MC13022 MOTOROLA Product Preview C-QUAM® ADVANCED, MEDIUM VOLTAGE AM STEREO DECODER ADVANCED, MEDIUM VOLTAGE AM STEREO DECODER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC13022 is designed for home, portable, and automotive AM stereo radio applications. The circuits and functions included in the design allow implementation of a full-featured C-QUAM AM stereo radio with relatively few, inexpensive external parts. It is available in either 28-lead DIP or EIAJ compatible wide-bodied 28-lead SOIC. • Operation from 4.0 V to 10 V Supply with Current Drain of 18 mA Typ • IF Amplifier with Two Speed AGC • Post Detection Filters with 10 kHz Notch that Allow User or Automatic Adjustable Audio Bandwidth Control P SUFFIX PLASTIC PACKAGE CASE 710-02 • Signal Quality Controlled Stereo Blend and Noise Reduction • Noise and Co-Channel Discriminating Stop-On-Station • Signal Strength Indicator Output for RF AGC and/or Meter Drive 28.", • Signal Strength Controlled IF Bandwidth • Noise Immune Pilot Detector Needs no Precision Filter Components DWSUFFIX PLASTIC PACKAGE CASE 751 F-02 FIGURE 1 - IJ BASIC ELEMENTS OF THE SYSTEM 450 kHz Low-Level IF Left Audio Right Audio 1---+--------.-,., Pilot Lamp Stop-Sensei r----------.-,., RF AGCIMeter Drive Fast AGC Control The purchase of the Motorola C-QUAMfI\, AM Stereo Decoder does not carry with such purchase any license by implication. estoppel or otherwise, under any patent rights of Motorola or others covering any combination of this decoder with other elements including use in a radio receiver. Upon application by an interested party. licenses are available from Motorola on its patents applicable to AM Stereo radio receivers. This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-91 MC13022 MAXIMUM RATINGS Rating Symbol Value VCC 12 Vde 30 mAde Supply Voltage Pilot Lamp Current, Pin 21 Operating Temperature Unit TA -40 to +85 °c Storage Temperature Tsto -65to +150 °c Junction Temperature TJ(max) 150 °c Po 1.25 10 W mWfC Power Dissipation Derate above 25°C ELECTRICAL CHARACTERISTICS Characteristic Min Typ Max Input Signal Level, Unmodulated, Pin 5, for Full Operation -- 5.0 - Audio Output Level, 50% Modulation, L only or R only - 120 - Audio Output Level, 50% Modulation, Monaural - 60 Power Supply Operating Range Supply Line Current Drain, Pin 25 Output THO, 50% Modulation Monaural Stereo Unit 4.0 to 10 - Vde 18 mAde mVrms mVrms - 0.2 0.5 - Channel Separation, L only or R only, 50% Modulation FIGURE 2 - .- mVrms % - 32 dB BLOCK DIAGRAM CC ~ 2.2k 1.0 k 0.001 ;:: " , ~.o; ~,OOl 2.7 k ~ 0.001;:1' :::~7.F .,[. 20p.F ~ I' 0.22 r-lDf-H~ r"""" LED 10P.~ Stereo L R Dot Q Dot Vee Loop Filt Blend G"d lamp 28 27 26 25 24 23 22 21 II II Signal Ouality Detector 0" 0" ,.'" Fb' 20 Dot Input 18 I I I I OArr: "'!. p;:oT p~T Pilot Dot 1.0 .F ~ 17 16 Filter Control 15 Pilot Detector vco Decoder Gain-Controlled L R J Envelope L+R <$}"'" c25 dB 1 PLASTIC PACKAGE CASE 724-03 • Pilot Tone Detector • Combined Tuning and Stereo Indicator • "Blend On" Stereo Mode and lamp Drive • High Accuracy, Fast locking VClO • Controlled Return to Monaural Under Adverse Conditions DWSUFFIX • Minimized "Tweets and Birdies" PLASTIC PACKAGE CASE 751E-02 SO-24 • Minimized Tuning Transients II FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM ~------------~--------------~~~------~------~--------~---c Vee PLL Filter AFe IF Output R Decoder 'T' Audio "=' Outputs Envelope Detector Output Mono/Stereo I-----?r"i+--O Vee LED ~ I L ____ ~o~t~ _ _ _ _ I I I J This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-101 MC13024 GENERAL DESCRIPTION The MC13024 is a complete C-QUAM® AM stereo receiver, from the antenna to low level audio. All that is needed make a complete AM stereo radio is the addition of the appropriate audio output amplifier. The MC13024 is intended for use in most types of manually tuned receivers: pocket portables, "boom boxes," table radios, etc. It will operate from 1.8 Vdc to 8.0 Vdc and requires typically 5.0 mA (not including LED). This broad supply voltage tolerance and low power consumption makes it ideal for portables using as few as 2 battery cells. The radios which can be built using this part can be quite low in cost, while still benefiting from a high degree of functional sophistication. tuning element by the user. A proper level of pilot must be present for several cycles before stereo mode will be enabled. When all conditions are correct, the transition from monaural to stereo is done gradually to prevent a transient "pop." Under aberrated conditions, the audio may either blend to mono or make an immediate change to mono, depending on the detected condition. The LED pin drives a dual purpose indicator: low current for PLL lock, and full current for stereo mode. Again, the switching is done "softly" to prevent transient loading of a weak battery. The IF gain and the mixer RF gain are each reduced, in turn, as signal strength increases, to optimize SIN and prevent overload. The receiver is capable of 20 dB SIN at 2.5 /LV/50 ohm input. At weak signals, the reference oscillator and quadrature divider are shut off to minimize "tweets and birdies." FEATURES • The MC13024 contains a wide dynamic range mixer, IF, AGC, AFC, C-QUAM® decoder, stereo pilot tone detector, and a signal quality detector. The stereo decoding and pilot detection are similar to the wellestablished MC13020, except for reduced peripheral components, and the phase-locked loop used for the L-R detection now is looped around the entire receiver. In other words, the PLL controls the tuner local oscillator (VCLD) rather than a detector loop after the IF. The advantage of this, in manually tuned AM stereo, is significant, because it assures that the signal will always be properly centered in the IF bandpass, which is critical to good channel separation. This architecture also gives the radio an AFC tuning behavior which makes it easy to tune. The PLL has two "speeds," provided by current ratios of 50: 1, which give fast lock and low distortion, respectively. A signal quality detector circuit monitors lock condition, excess in-phase modulation due to interference, pilot presence and amplitude, and the movement of the RADIO CONSTRUCTION Layout is not much more critical than any high performance AM receiver. Care must be taken to provide a good ground plane and short leads on signal paths. Take special care to keep the reference oscillator components close to Pin 22 and protected from coupling from the pilot bandpass output, Pin 24. Also take care with the ever present threat of RF radiation from the audio output back into the antenna. This can be controlled by proper component location and good (close) RF bypass on the amplifier Vec and good snubbers on the audio outputs. Keeping in mind that this is a phasedetecting receiver, it is important to mount coils securely and avoid movable wires in tuned circuits. A lot of individual preference will go into each implementation; the components shown here are only intended to provide a good working start. The purchase of the Motorola C-QUAM® AM Stereo Decoder does not carry with such purchase any license by implication, estoppel or otherwise. under any patent rights of Motorola or others covering any combination of this decoder with other elements including use in a radio receiver. Upon application by an interested party, licenses are available from Motorola on its patents applicable to AM Stereo radio receivers. MOTOROLA LINEAR/INTERFACE DEVICES 9-102 s: FIGURE 2 - n .... APPLICATION CIRCUIT, MANUALLY TUNED HEADPHONE RADIO I J!: :::c 3.0 V 22"F-::r:0.33*, J Power Switch w o Two"AAA" Batteries or Larger 10 +1 0.068 Out 1131 ~ 0 Tun:~~i~a!t~reo, --I 0 Ii' 2.2 NF 1 I ' 1 n TA7376P :0 Stereo 0 r :P Gnd Headphone Jack !: z In 2 m ~ 0 w :P :0 :::: z --I m :0 "'Tl :P C1 22 JLF m 0 m < C1 ~ Loop Antenna ~ [8] Pilot Out 0.068*, Part Numbers for TOKO Tuning Components: m (J) 1.0 V Ref Ground Lock II T1 Input Transformer T2 Local Oscillator T3 Mixer Output T4 IF Input (Ceramic} T5 IF Output T6 Reference Oscillator A7BRS·10952X A7BRS·T1342AIX A7NRES·T1341 ALFC·450E A7NRES·T1340AYN MF291ACCS·3688VL ~ ® MC13041 MOTOROLA Product Preview AM RECEIVER SUBSYSTEM SILICON MONOLITHIC INTEGRATED CIRCUIT AM RECEIVER SUBSYSTEM This circuit is the core of an AM broadcast receiver. The MC13041 is ideal as the front end for AM stereo radios using electronic tuning. The scan detection system operates with both frequency and signal amplitude data for "no false" tuning. - • Electrically Equivalent to ULN3841 • Full AM Receiver Function Including: L.O., Balanced Mixer, IF Amp, AM Detector, Scan Control Detectors, and an Internal Switchable Voltage Regulator 20 1 • Companion Device to MC13020 C-QUAM® AM Stereo Decoder P SUFFIX PLASTIC PACKAGE CASE 738-03 DWSUFFIX PLASTIC PACKAGE CASE 7510-03 SO·20 • Wideband (RF) Delayed AGC • Optional Narrowband FM Output • Tailored to Interlace with Synthesizers in Scanning E.T.R. Applications • Stop Detection Independent of AGC Time Constant IFAGC Mixer Out Mixer In Gnd II Mixer Bias RFAGC In Osc MAXIMUM RATINGS Det.ln Rating Power Supply Voltage Pin 6 Thermal Resistance, Junction to Ambient Operating Ambient Temperature Range Storage Temperature Range Symbol Value Unit VCC 18 Vdc ROJA 75 °CfW TA -40 to +85 °C Tsrn -65 to + 150 °C Osc Gnd L.O. Gnd RF AGC Out AFC Out Stop Out FIGURE 1 - C·QUAM AM STEREO BROADCAST RECEIVER R C-QUAMAM Stereo Decoder MC13020 MC13041 AM Receiver System RF AGC MPF102 JFET L Stereo Tone Control TDA1524A TCA5550 Stop Scan Synthesized Tuning Subsystem MC145156-1 MCl46805 This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LlNEARIINTERFACE DEVICES 9-104 MC13041 ELECTRICAL CHARACTERISTICS (VCC ~ 14.4 Vdc, TA ~ + 25°C, RF Input Frequency ~ 1.0 MHz, IF ~ 450 kHz, FMOD ~ 1.0 kHz, Modulation = 30% Test Circuit of Figure 2 unless otherwise noted) Characteristic Symbol Operating Supply Voltage Range VCC Supply Current ICC Test Condition RF Sensitivity RF In to Pin 18 Usable Sensitivity RF In to Pin 18 Recovered Audio Audio Out at Pin 5 Typ Max 6.5-16.5 No Input Signal - 25 33 mAdc Pin 5 Audio Out Equals 50 mV - 2.6 10 ,uVrms - 5.6 10 ,uVrms 1.0 mV RF In at Pin 18 173 240 346 mVrms 1.0 mV RF In 80% modulation at Pin 5 - 0.5 3.0 % ~ 20 dB - Unit - S+N At Pin 5 -N- THD at Pin 5 Total Harmonic Distortion Min Vdc Osci Ilator Output VOSC RF Out at Pin 14 - 330 - mVrms Stop Voltage VSTOP Pin 11 No Input at Pin 18 4.3 5.2 - Vdc 40 80 Stop Sensitivity VSTP SEN Pin 18 RF Pin 11 Equals 1.5 Vdc 27 Stop Bandwidth VSTOP BW Pin 18 Pin 11 - RF AGC VAGC Pin 12 Overload THD at Pin 5 Audio Out AGC Figure of Merit Pin 5 Audio Drop to 10 dB Below Ref ~ ~ 1.0 mVrms 1.5 Vdc ~ 0 mVrms - - ~ 20 mVrms 0.8 - - - 1.2 - % - 75 - dB RF In at Pin 18 ~ 25 mVrms RF In at Pin 18 dB Below 30 mV TEST CIRCUIT Stop Out __-~---' muRata CFU 450 (Ceramic) Osc. 5:1 T6 Mixer Nl :N2 = 2.63 N1:N3", 11.7 T5 Detector Q Toko 7TAS·Tl078AO = 100 Toka 0.15 Vdc Modulation = 80% V reg Filter kHz RF Pin 16 FIGURE 2 - T3 - RF Pin 16 NOTE: Pin 9 voltage regulator output for local oscillator only. F1 ±4.7 J.1.Vrms 7NAES~T1079EK Toka 7NRES·T1080AAG Ct=100pF MOTOROLA LINEAR/INTERFACE DEVICES 9-105 II MC13041 TAKEN IN TEST CIRCUIT OF FIGURE 2 FIGURE 3 - RECOVERED AUDIO FIGURE 4 - 260 RF INPUT AT AUDIO OUTPUT = 50 mVrms 5.0 RF INPUT = 1.0 mVrms. 30% mod. 4.0 V 220 ~60 V ...... V -45 -30 -15 ~ V 45 60 75 1.0 -60 -45 -30 90 RGURE 6 - .--.. V 2!i ~4'O fi 3,2 « 0 15 30 TEMPERATURE lOCI 45 60 75 90 STOP LEVEL 90 4.4 ~ -15 AM AFC 4.8 !::i 3.6 ,/ ~ 2.0 5.2 ~ f-"" ~ 5.6 <; V 53.0 V 15 30 TEMPERATURE lOCI FIGURE 5 - -- ~ V ...- \ 2.8 \ '-J /' V / / 80 1\ 1\ / 70 ~ 60 ~ '" 8.0 ~ 9.3 - V' V FREQUENCY WINDOW o 15 30 TEMPERATURE lOCI FIGURE 8 - 60 45 /'" 75 90 8.0 10 FREQUENCY WINDOW 8.0 - "'" - 7.0 ~ 6.0 ;;; 5.0 li: ~ 4.0 PINll=1.5V ~ ~ ~ z ~ 3.0 ~ @ 9.2 t;; 2.0 If 1. 0 9.1 -60 .,/ 10 -60 -45 -30 -15 10 9.5 ~ 30 20 2.4 2.0 4.0 6.0 -10 -8.0 -6.0 -4.0 -2.0 DEVIATION FROM IF CENTER FREQUENCY 45 -30 -15 15 30 TEMPERATURE lOCI 45 60 75 o 90 - , .-. :I :/ il \: \\ .~. \ , RF INPUT 70/LVrms .li.ElI'j!'l!.L~1Q,!!lJl,rJ!1~_ - ~I I -10 -8.0 -6.0 -4.0 -2.0 2.0 4.0 6.0 DEVIATION FROM IF CENTER FREQUENCY 2.2J.t F ~ z rri :D 80~~gd? "T1 f) m 0 m < n m CIl Vee, 12-14 Vdc T1, T2 T3 T4 T5 T6 F1 Res RF Osc Ant Det Mix IF Taka RWOS6A7894AO Taka 7TRS-T1078AO Taka 7HN-60064CY Taka 7NRES-T1080AAG Taka 7NRES-T1079EK muRata SFG450F - 6.0 kHz or SFG450E - 7.5 kHz or SFG450D - 10kHz muRata CSA3.60MGF101 • II II +..1 US! )~~ Stereo Audio Out MC13041 FIGURE 11 - RECEIVER GAIN-REDUCTION VOLTAGES FIGURE 12 - RECEIVER RECOVERED AUDIO 2.0 I II 11111 I.B 1.4 ~ 1.2 w ~ ~ O.B ~ ~ PIN 17 - MIXER N-.. 0:: I 11111111 I 1. 0 STEREO OUTPUT 0 ~ 5-1.0 j ~ 1.0 I 11111111 I :E! I II 11111 1.6 u 3.0 iii 2.0 5 -2.0 o PIN20-IF ~ -3,0 u STEREO LOCK ~ II ... -4.0 0.4 0.2 o 10 ~ ~-50 PIN 12-RF Hnl ~ 1.0 k 10 k 100 SIGNAL INPUT TO ANTENNA (I'Vrms) 100 k 11111 .JJJ lUll ::> ~ 0.6 I t?l~f ~F fT~R~~ t~~f / MONAURAL OUTPUT I I 11111 -6.0 -7.0 I WJL 10 100 1.0k 1.0 SIGNAL INPUT TO ANTENNA (I'Vrms) 1IIIllii 1111 10 k II MOTOROLA LINEAR/INTERFACE DEVICES 9-109 ® MC13060 MOTOROLA MINI-WATT AUDIO OUTPUT SILICON MONOLITHIC INTEGRATED CIRCUIT MINI-WATT AUDIO OUTPUT · .. a rugged and versatile power amplifier in a remarkable plastic power package. 8.1~. • Supply Voltages from 6-35 Vdc ~,.", 1' • 2.0 Watts Output «170°C Ambient on PC Board with Good Copper Ground Plane D SUFFIX • Self Protecting Therma.1 Shutdown PLASTIC PACKAGE CASE 751-02 SOP-8 • Easy to Apply, Few Components • Gain Externally Determined • Output is Independent of Supply Voltage Over a Wide Range Power Type Lead Frame Output 1 Gnd 2 Feedback Gnd Gnd • Input Top View FIGURE 1 - Vee ~ FIGURE 2 - THERMAL RESISTANCE AND MAXIMUM POWER DISSIPATION versus P.C. BOARD COPPER TYPICAL APPLICATION 6-35 V Speaker 16/32 n MOTOROLA LINEAR/INTERFACE DEVICES 9-110 MC13060 MAXIMUM RATINGS Rating Power Supply Voltage Symbol Value Unit VCC 35 1.0 V Vp _p Audio Input, Pin 5 Thermal Resistance, Junction to Air R8JA 160 ·C/W Thermal Resistance, Junction to Case R8JC 25 ·CIW Junction Temperature TJ 150 ·C Operating Ambient Temperature Range TA -40 to +85 ·C Tstg -65 to + 150 ·C Storage Temperature Range ELECTRICAL CHARACTERISTICS - AUDIO SECTION (TA ~ 25·C Circuit of Figure 3 unless otherwise noted) Characteristic Power Supply Current, No Signal Symbol Min Typ ICC - 13 Ao 50 - 0.2 1.0 0.5 3.0 Max Distortion at 62.5 mW Output, 1.0 kHz THO Distortion at 900 mW Output, 1.0 kHz THO - Quiescent Output Voltage, No Signal VPin 1 - 8.4 VPin 5, VPin 8 - 0.7 Rin, Pin 5 - 28 - Vout - 0.5 4.0 Gain Input Bias Input Resistance Output Noise (50 Hz-15 kHz) Input 50 II FIGURE 3 - VCC ~ ~ + 1 VN % % Vdc Vdc kll mVrms TEST CIRCUIT + 16 Vdc 4 ICC 1.01'F Audio Input Unit mAdc + + 8 16 II Load 330 50 6.8 DESCRIPTION The amplifier can best be described as a voltage source with about 1.0 A p _p capability. On a good heat sink, it can deliver over 2.0 watts at 70·C ambient. The MC13060 will automatically go into shut-down at a die temperature of about 150·C, effectively protecting itself, even on fairly stiff power supplies. This eliminates the need for decoupling the power supply, which degrades performance and requires extra components. Input Pins 5 and 8 are internally biased at 0.7 Vdc and should not be driven below ground. The MC13060 is a quasi-complementary audio power amplifier, mounted in the SOP 8 (power SOIC package). It is well suited to a variety of 1.0 and 2.0 watt applications in radio, TV, intercoms, and other speaker driving tasks. It requires the usual external components for high frequency stability and for gain adjustment. The output signal voltage and the power supply drain current are very linearly related, as shown in Figure 5. Both are quite constant over wide variation ofthe power supply voltage (above min VCC for clipping, of course). MOTOROLA LINEAR/INTERFACE DEVICES 9-111 II MC13060 ALL CURVES TAKEN IN THE TEST CIRCUIT OF FIGURE 3 UNLESS OTHERWISE NOTED FIGURE 4 - QUIESCENT SUPPLY CURRENT AND OUTPUT VOLTAGE versus SUPPLY VOLTAGE FIGURE 5 - 20 200 18 Signal ~ ~..§. 14 ~§ 12 § 10 ~~ 8.0 §Z >- u ::>~ > « u .!::? - lee I- /' ~ ~ 6.0 180 /" 0 uv 16 ~~ f-.-:;;; 160 L ,.--- V ~ 80 ~ '" 60 /' V / RL ~ 32!l .,.. Vee ~ 32V / " .,.-/ ,.......... k'" . /V .,.....,.. ./ ~ x, RL 20 Vee, SUPPLY VOLTAGE IVde) 30 a 40 a 1.6 II 2.0 :nis I Gain 1.0 1.2 5d ~ 1.0 2.0~ ~ 0.6 0.4 3.0 ~ 0.6 ~ 0.2 I a 10 100 lK ~ 0.4 5.0 F 0.2 a 6.0 10K 2.0 - /V V V,. 11/ V 'I V f/. V ~/..,..... -- 24 V / ..- VCC ~ 32 n LOAD I I I /, /, ~' 10 1.0 2.0 PO, POWER OUTPUT (WATTS I DISSIPATION versus OUTPUT POWER - FIGURE 9 - 16 n LOAD 2.0 32 V 28 V .' ." .'" V V "'" / /' THO ....-- ..- 16 V ~ 2.0 VCC .,..- I. III'f// 20 V 1.0 PO, POWER OUTPUT (WATTSI 1_32 V32!l I -- --- - 0.1 DISSIPATION versus OUTPUT POWER - f-o/-24 V16!l +-+- f. FREQUENCY (Hzl FIGURE 8 - I 24 V321 ! I - j I I ~ 8.0 : I 0.8 4.0 7.0 I I 16V16!l ;'ij Z~ 1.2 1.0~ ~ \ I I I I ~ 1.8 z 400 Hz ~ 1.6 - Signal ~ 1.4 ~r-- ~ 32 V I DISTORTION versus POWER OUTPUT z 0 a:;; 1.0 0.8 2.0 3.0 4.0 5.0 6.0 SINE WAVE OUTPUT VOLTAGE (VOLTS RMSI 2.0 4.0 3.0 I~~~I ~ 11~ v,1 R~ I~ IW!l~ Ols ~ 1.0 FIGURE 7 - DISTORTION AND GAIN versus FREQUENCY ~ Vee I a 10 :sF 1.4 • _HL ~ 16!l Vee ~ 24 V - 0 2.0 ci 100 Va Idel ;: 1.8 F ~ a V /' .B 4a o FIGURE 6 - '"~ ~ 140 120 /' V a ~ !z E. / 4.0 2.0 ~ SUPPLY CURRENT versus OUTPUT 20 V ..- 16 V 9-112 '1;'~O- ..- 1.0 PO, POWER OUTPUT (WATTSI MOTOROLA LINEAR/INTERFACE DEVICES 17 24Vt'? 2.0 MC13060 FIGURE 10 - INTERNAL SCHEMATIC .-----.----.. . . .... ~- ~--._~~._-_o Audio Vee 4 D1 t-----o Audio Output Audio o--_.----.J Input 5 Audio Feedback 0 - - - - - . - - - ' 8 r MOTOROLA LINEAR/INTERFACE DEVICES 9-113 Ground Pins 2,3,5,6 ® MC34119 MOTOROLA Specifications and Applications Information LOW POWER AUDIO AMPLIFIER LOW POWER AUDIO AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT The MC34119 is a low power audio ampiifier iniegraied circuii intended (primarily) for telephone applications, such as in speakerphones. It provides differential speaker outputs to maximize output swing at low supply voltages (2.0 volts minimum). Coupling capacitors to the speaker are not required. Open loop gain is 80 dB, and the closed loop gain is set with two external resistors. A Chip Disable pin permits powering down and/or muting the input signal. The MC34119 is available in a standard 8-pin DIP or a surface mount package. • Wide Operating Supply Voltage Range (2-16 volts) Telephone Line Powered Applications Allows • Low Quiescent Supply Current (2.7 mA Typical) for Battery Powered Applications P SUFFIX PLASTIC PACKAGE CASE 626-05 • Chip Disable Input to Power Down the IC • Low Power-Down Quiescent Current (65 p.A Typical) • Drives a Wide Range of Speaker Loads (8 Ohms and Up) • Output Power Exceeds 250 mW with 32 Ohm Speaker • Low Total Harmonic Distortion (0.5% Typical) • Gain Adjustable from <0 dB to >46 dB for Voice Band II • Requires Few External Components 1 D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 BLOCK DIAGRAM AND TYPICAL APPLICATION CIRCUIT Rf 75 k VCC Ci ------, ,--------+---, Audio 0.1 Input )-l1-'VV'v-"*-'-30 0 - MH - dB +0.35 - - 1.5 55 250 400 - - 1.0 - 0.5 0.5 0.6 50 - - - THD 1.0 kHz) (VCC ~ 6.0 V, RL ~ 32 H, Pout ~ 125 mW) (VCC '" 3.0 V, RL ~ 8.0 H, Pout ~ 20 mW) (VCC'" 12 V, RL ~ 32 H, Pout ~ 200 mW) Power Supply Rejection (VCC ~ 6.0 V, t.VCC (Cl ~ x, C2 ~ 0.01 /LF) (Cl ~ 0.1 /LF, C2 ~ 0, f ~ 1.0 kHz) (Cl ~ 1.0 /LF, C2 ~ 5.0 /LF, f ~ 1.0 kHz) - AVOl1 ~ 6.0 V, 1.0 kHz'" f '" 20 kHz, CD 3.0 V) GMT mW - PSRR 2.0 V) MHz % dB ~ dB 12 52 - >70 1.0 1.15 2.65 5.65 dB AMPLIFIERS (DC CHARACTERISTICS) Output DC Level (jv VOl, V02, VCC ~ 3.0 V, RL ~ 16 H (Rf ~ 75 k) VCC ~ 6.0 V VCC ~ 12 V Output High Level (lout 75 mA, 2.0 V", VCC '" 16 V) Output Low Level (lout - 75 mA, 2.0 V", VCC '" 16 V) VO(3) VO(6) VO(12) VOH VOL Output DC Offset Voltage (V01-V02) (VCC ~ 6.0 V, Rf ~ 75 kH, RL ~ 32 !l) t.VO - -30 VCC-l.0 0.16 1.25 - Vdc Vdc Vdc 0 +30 mV liB - -100 -200 nA 6.0 V) RFCl 100 150 220 kH Equivalent Resistance @ FC2 (VCC - 6.0 V) RFC2 18 25 40 kH ICC3 ICC16 ICeo - 2.7 3.3 65 4.0 5.0 100 mA Input Bias Current @ Vin (VCC - 6.0 V) Equivalent Resistance @ FCl (VCC ~ CHIP DISABLE (Pin 1) Input Voltage Low Input Voltage - High Input Resistance (VCC - VCD - 16 V) POWER SUPPLY Power Supply Current (VCC ~ 3.0 V, RL ~ 00, CD ~ 0.8 V) (VCC ~ 16 V, RL ~ 00, CD ~ 0.8 V) (VCC ~ 3.0 V, RL ~ 00, CD ~ 2.0 V) .. - Note. Currents Into a pm are POSitive, currents out of a pm are negative . MOTOROLA LINEAR/INTERFACE DEVICES 9-115 /LA MC34119 PIN DESCRIPTION Symbol Pin Description CD 1 Chip Disable - Digital input. A Logic "0" «0.8 V) sets normal operation. A Logic "1" (.. 2.0 V) sets the power down mode. Input impedance is nominally 90 kn. FC2 2 A capacitor at this pin increases power supply rejection, and affects turn-on time. This pin can be left open if the capacitor at FCI is sufficient. Fel 3 Analog Ground for the amplifiers. A 1.0 J.LF capacitor at this pin (with a 5.0 J.LF capacitor at Pin 2) provides (typically) 52 dB of power supply rejection. Turn-on time of the circuit is affected by the capacitor on this pin. This pin can be used as an alternate input. Vin 4 Amplifier input. The input capacitor and resistor set low frequency rolloff and input impedance. The feedback resistor is connected to this pin and VOl. VOl 5 Amplifier Output #1. The dc level is Vec GND 6 DC supply voltage (+2.0 to + 16 volts) is applied to this pin. 7 Ground pin for the entire circuit. V02 8 Amplifier Output #2. This signal is equal in amplitude, but 180° out of phase with that at VOl. The dc level is ~ (VCC - 0.7 V)/2. ~ (Vec - 0.7 V)/2. TYPICAL TEMPERATURE PERFORMANCE (- 20° < TA < + 70°C) Function Typical Change Units ±40 pAf'C +0.003 %fDC Input Bias Current W' Vin) Total Harmonic Distortion (Vce = 6.0 V, RL = 32 n, Pout Power Supply Current (Vee = 3.0 V, RL ~ "', eo (Vce = 3.0 V, RL = "', eo = 125 mW, f = 1.0 kHz) J.LAf'C = 0 V) = 2.0 V) -2.5 -0.03 DESIGN GUIDELINES II similar for a particular IC, and therefore nearly cancel each other at the outputs. Amplifier #l's bias current, however, flows out ofVin (Pin 4) and through Rf, forcing Val to shift negative by an amount equal to [Rf x IIB[. V02 is shifted positive an equal amount. The output offset voltage specified in the Electrical Characteristics is measured with the feedback resistor shown in the Typical Application Circuit, and therefore takes into account the bias current as well as internal offset voltages of the amplifiers. The bias current is constant with respect to VCC. GENERAL The MC34119 is a low power audio amplifier capable of low voltage operation (VCC = 2.0 V minimum) such as that encountered in line-powered speakerphones. The circuit provides a differential output (V01-V02) to the speaker to maximize the available voltage swing at low voltages. The differential gain is set by two external resistors. Pins FCl and FC2 allow controlling the amount of power supply and noise rejection, as well as providing alternate inputs to the amplifiers. The CD pin permits powering down the IC for muting purposes and to conserve power. Fe1 and FC2 Power supply rejection is provided by the capacitors (Cl and C2 in the Typical Application Circuit) at FCl and FC2. C2 is somewhat dominant at low frequencies, while Cl is dominant at high frequencies, as shown in the graphs of Figures 4-7. The required values of Cl and C2 depend on the conditions of each application. A line powered speakerphone, for example, will require more filtering than .a circuit powered by a well regulated power supply. The amount of rejection is a function of the capacitors, and the equivalent impedance looking into FCl and FC2 (listed in the Electrical Characteristics as RFCl and RFC2)' In addition to providing filtering, Cl and C2 also affect the turn-on time of the circuit at power-up, since the two capacitors must charge up through the internal 50 k and 125 kO resistors. The graph of Figure 1 indicates the turn-on time upon application of VCC of + 6.0 volts. The turn-on time is =60% longer for Vec = 3.0 volts, and =20% less for VCC = 9.0 volts. Turnoff time is <10!-,s upon removal of Vee. AMPLIFIERS Referring to the block diagram, the internal configuration consists of two identical operational amplifiers. Amplifier #1 has an open loop gain of ;;.80 dB (at f ". 100 Hz), and the closed loop gain is set by external resistors Rf and Ri. The amplifier is unity gain stable, and has a unity gain frequency of approximately 1.5 MHz. In order to adequately cover the telephone voice band (300-3400 Hz)' a maximum closed loop gain of 46 dB is recommended. Amplifier #2 is internally set to a gain of -1.0 (0 dB). The outputs of both amplifiers are capable of sourcing and sinking a peak current of 200· mAo The outputs can typically swing to within =0.4 volts above ground, and to within =1.3 volts below VCC, at the maximum current. See Figures 18 and 19 for VOH and VOL curves. The output dc offset voltage (V01-V02) is primarily a function of the feedback resistor (Rf), and secondarily due to the amplifiers' input offset voltager.. The input offset voltage of the two amplifiers will generally be MOTOROLA LINEAR/INTERFACE DEVICES 9-116 MC34119 power. The maximum power which can safely be dissipated within the MC34119 is found from the following equation: fiGURE 1 - TURN-ON TIME versus C1, C2 AT POWER-ON 300f-_+-t-_+-+--_+....----,::J.-""'F-~-+___+___1 PD = (140·C - TA)/OJA where T A is the ambient temperature; and 0JA is the package thermal resistance (100·CIW for the standard DIP package, and 180·CIW for the surface mount package.) :g 2401--+--=---' --,:-:-':--7'fV--1--t---+--1--f--1 Cl ~ 5.0/Lf / ~ ~ lBOI--+--j,/-7./~-+--t-+-+--t-+./"'""7I The power dissipated within the MC34119, in a given application, is found from the following equation: ~'20~--~b~::t:~t;~E;~:::t::~::~~~=t==~ 0 PD = (VCC x ICel + (lRMS x Vcel - (RL x IRMS2) where ICC is obtained from Figure 15.; and IRMS is the RMS current at the load; and RL is the load resistance. ./ Cl - 1.0/Lf I-V";:'+-+-"":';..-"":';F---f--+-VCC switching from- o~~~-+~~__~I~~__-+~_0~~O_+_6~'01~vo_lt_S·~I-~. U U U U W C2, CAPACITANCE I/Lfl CHIP DISABLE The Chip Disable (Pin 1) can be used to power down the IC to conserve power, or for muting, or both. When at a Logic "0" (0 to 0.8 volts), the MC34119 is enabled for normal operation. When Pin 1 is at a Logic "1" (2.0 to VCC volts), the IC is disabled. If Pin 1 is open, that is equivalentto a Logic "0," although good design practice dictates that an input should never be left open. Input impedance at Pin 1 is a nominal 90 kn. The power supply current (when disabled) is shown in Figure 15. Muting, defined as the change in differential gain from normal operation to muted operation, is in excess of 70 dB. The turn-off time of the audio output, from the application of the CD signal, is <2.0 ,.,.S, and turn on-time is 12-15 ms. Both times are independent of C1, C2, and VCC. When the MC34119 is disabled, the voltages at FC1 and FC2 do not change as they are powered from VCC. The outputs, V01 and V02, change to a high impedance condition, removing the signal from the speaker. If signals from other sources are to be applied to the outputs (while disabled), they must be within the range of VCC and Ground. Figures 8-10, along with Figures 11-13 (distortion curves), and a peak working load current of ± 200 mA. define the operating range for the MC34119. The operating range is further defined in terms of allowable load power in Figure 14 for loads of 8.0 n, 16 n, and 32 n. The left (ascending) portion of each of the three curves is defined by the power level at which 10% distortion occurs. The center flat portion of each curve is defined by the maximum output current capability of the MC34119. The right (descending) portion of each curve is defined by the maximum internal power dissipation of the IC at 25°C. At higher ambient temperatures, the maximum load power must be reduced according to the above equations. Operating the device beyond the current and junction temperature limits will degrade long term reliability. LAYOUT CONSIDERATIONS Normally a snubber is not neeefed at the output of the MC34119, unlike many other audio amplifiers. However, the PC board layout, stray capacitances, and the manner in which the speaker wires are configured, may dictate otherwise. Generally the speaker wires should be twisted tightly, and be not more than a few inches in length. POWER DISSIPATION Figures 8-10 indicate the device dissipation (within the IC) for various combinations of VCC, RL, and load TYPICAL CHARACTERISTICS fiGURE 2 - 100 AMPLIfiER #1 OPEN LOOP GAIN AND PHASE - l plas~ 0 ........ 36 ffi 36 ~ 72 ;;:; iii :s ......... '" 24 Gai.;'- 180~ u 11!,IJk I V AIIII z ;;: , / VRt ~ 75 k, R' ~ 3.0 k ~ / z ffi ...... DiffERENTIAL GAIN versus fREQUENCY '-~f 1'~k~R: 32 144ffi tt Rf 01~ V01 16 Input )-I i5 0 100 ~ '" 108~ 0 o fiGURE 3 - o III ..... 1.0K 10K f, fREQUENCY 1Hz) lOOK o 1.0M 100 1.0K f, fREQUENCY 1Hz) MOTOROLA LINEAR/INTERFACE DEVICES 9-117 ~lvo"' II I II 1111 10K #1 I I 20K I ttt MC34119 POWER SUPPLY REJECTION versus FREQUENCY FIGURE 4 - C2 = 10,.F FIGURE 5 - 0 C2 = 5.0,.F 0 I-Cl ;.1.0/LF e-Cl '" 1.0 /LF - 0 rCl = 0.1 /LF 40 - 50 o-Cl .............. o 0 200 1.0K I- = 0 ............. 10 0 200 20K 10K ......... 0 r0- I--Cl = 0 -Cl~F 0 1.0K FIGURE 6 - FIGURE 7 - C2 ,;, 1.0,.F 0 60 0 ~30 50 Cl = 1.0/LF -Cl = 5.0/L~ ........ % 1/11 ffi .....- I- ....... 0 ~ ............... 1.0K l-I--" -Cl = 1.0/LF 10K o 200 20K f, FREQUENCY 1Hz) rli / 1.0K f, FREQUENCY 1Hz} MOTOROLA LINEAR/INTERFACE DEVICES 9-118 l......-- ......... 1 1 O_Cll=~ Cl = 0 200 ~ _I-' .....- 0 "-20 o C2 = 0 __ v 0 Cl - 0.1 /LF 0 -- 1 1 1 1 Cl = 5.0/LF 0 20K 10K f, FREQUENCY 1Hz} f, FREQUENCY 1Hz) 10K 20K MC34119 FIGURE 8 - FIGURE 9 - DEVICE DISSIPATION DEVICE DISSIPATION 160 LOAD 8.00 LOAD 1000 .s is ~ ~ Vee /vee ~ 12V 800 §:: 1200 V / 600 / L 400 t'j ~ 200 / -- V / vee~~ -.:;::;;:- 800 ~ 600 ~ 3.0 V_ oV o 30 60 90 120 150 FIGURE 10 - 1200 "" ~ 1000 .sz 800 / 600 ~ a V / / I /I Vl i5 ~ 400 200 III 'V..L o :.o V Vee 100 8 2 I I 3.0 V 200 300 400 500 o~ o DISTORTION versus POWER ~ __ Vee ~ Vee I / o ~ 3.0 V, RL 6.0 V, RL ~ I 1/1 I 1 I I RL=32n ~ 100 100 ~ 200 1611 'IV 200 32 n \{ 300 400 500 = II-+- i-Vee ~ /-f-- Vee Vee 32 n ~ 3.0V,RL ~ 16n = 3.0 V, RL = 8.0 n 6.0 V, RL = 32 n -I I I I I / / I J Vee ~ 12 V, RL = 32 {if 400 o o 500 I Vee ~ 16 V, RL = 32 n Limit I I / 300 ~ RL RL=16n \ FIGURE 13 - DISTORTION versus POWER f = 1. 3.0 kHz. AVO 12 dB I Vee = 6.0V,RL ........ L 8.0n 1Vee ~1'6 v, I RL = 32 n limit I / I 8.0 n I I Vee = 16 V,-Vee ~ 6.0 V,_ /-vee ~ 12V_ 16 n ~ J I I 6 oV 3.0 V, RL ~ ~ 32 n I 10 - Vee ~ OUTPUT POWER ImW) f = 3.0 kHz. AVO = 34 dB 10 3.0 V, RL = 16 n Vee = 6.0 V, RL LOAD POWER ImW) FIGURE 12 - ~ __ Vee = 3.0 V, RL 6.0 V ~ ~ = 1.0 kHz. AVO Vee 1- 4 ~ 400 DISTORTION versus POWER 34 dB ~ 6 Vee 100 300 200 0 - ..... LOAD POWER ImW) f ~ 6.0 V r-- FIGURE 11 - V~e ~ Lv- - / o '" ~ DEVICE DISSIPATION 320 LOAD r-- r-Ve~~16V §:: '/ o o LOAD POWER ImW) ~ Vee I l.---IL Vee ~ 3.0 ~ ~ 200 -- / ~ 400 - ./ / I / I I / i5 Vee i"" Vee - 12 V / o ~ ./"I 16 V / §:: .sz f.-- / ~ 1000 I\ \ 100 OUTPUT POWER ImW) Vee RL ... 200 I ~ 6.0 V, _ = 16nlimit J 9-119 ~ Yo 300 OUTPUT POWER ImW) MOTOROLA LINEAR/INTERFACE DEVICES L Vee ~ 12V RL 32 n 400 500 MC34119 FIGURE 14 - MAXIMUM ALLOWABLE LOAD POWER 500 RL \ 400 RL = 16n §< g 300 II i \ 'I III ~ 200 "I'-. I "\ o 8 10 Vee (VOLTS) FIGURE 16 - -- 12 = x I'-..... 14 - 0 ~ r---- < g 2.0 \. "'- TA = 25°e - Derate at higher temperatures o 3.0 \.. ......... POWER SUPPLY CURRENT eo \ 1\ RL = 8.on 17 100 FIGURE 15 - 4. 0 1 RL - 32fl1 J;l 1. 0 - } 0 eo . SMALL SIGNAL RESPONSE -" O.U 4.u" L.O 16 FIGURE 17 - Vee 8.u" 10 Vee (VOLTS) 11 14 16 LARGE SIGNAL RESPONSE ( OUTPUT 20 mVIDiv OUTPUT 1.0 VlDiv \. \. INPUT 1.0 mVIDiv INPUT 80 mVIDiv 20 ",slDlv 10 ",slDlv II FIGURE 18 - FIGURE 19 - VCe-VOH @ V01, V02 versus LOAD CURRENT VOL @ V01, V02 versus LOAD CURRENT 1. 5 1. 4 1.4 1.1-TA = 25°e 3 ./ 1 ./ 1.0 o.9 O.8 ........... o /' ./ 8 ...-'i.OV '" Vee'" 16V- .......- TA ./ 40 160 V - ./ ./ O.4 o. 21--- I I 80 120 LOAD eURRENT (rnA) / - 6 = 25°e_ ./ = 1.0VJ / 1.0 ./ 1 I Vee 200 0 - - -- r40 MOTOROLA LINEAR/INTERFACE DEVICES 9-120 -- I-'" 80 120 LOAD CURRENT (mA) / ..-: Vec = 3.0V ......r ~V I I 160 100 MC34119 FIGURE 20 - FIGURE 21 - INPUT CHARACTERISTICS @ CD (PIN 1) AUDIO AMPLIFIER WITH HIGH INPUT IMPEDANCE 75 k 200 ./ 160 ,,~ 120 0,1 r1~~>-+---i V c .Y /V 80 / / 40 V /' I Valid for VCD " VCC I 50 k 1- o / o 8,0 VCD (VOLTS! 4,0 12 L..:_____ _ 16 Differential Gain '= 34 dB Frequency Response: See Figure 3 Input Impedance"'" 125 kH .7 PSRR - 50 dB FIGURE 22 0,05 AUDIO AMPLIFIER WITH BASS SUPPRESSION 75 k FIGURE 23 - 0,05 ~, .~~+-~ 6 -= 4 FREQUENCY RESPONSE OF AGURE 22 2 0,1 Input >-1 V ,,- 6/ r 5,0/lF 0 0 1.OK 100 10K 20K Il f. FREQUENCY (Hz! FIGURE 24 - AUDIO AMPLIFIER WITH BANDPASS 1000 pF AGURE 25 - FREQUENCY RESPONSE OF FIGURE 24 lOOk 36 100 k 0,05 32 0,05 ~"~~+-~ « -= ~ z: ~ ~ It 0 I 24 '" 0,1 Input>-1 I f-"'" ~ 8,0 o 50 k " 1/ 16 100 1,OK 1- 10K f. FREQUENCY (Hz! L _____ _ 7 MOTOROLA LINEAR/INTERFACE DEVICES 9-121 20K MC34119 FIGURE 26 - SPLIT SUPPLY OPERATION Rf 75 k ------.., VCC (+ 1.0 to +8.0 V) Ci Audio I n put .-------~---. 0.1 >---1 f-''VV"....~O-:-+---i I I 5 VOl I I IL _______ MC34119 , _ _ _ _ '~ 7 _ _ ~ ~ VEE ( _ 1.0 to - 8.0 V) 10k NOTE; If Vee and VEE are not symmetrical about ground then Fe1 must be connected through a capacitor to ground as shown on the front page. VEE MOTOROLA LINEAR/INTERFACE DEVICES 9-122 Chip Disable ® MC44301 MOTOROLA (Formerly MC13011) Product Preview SYSTEM 4 HIGH PERFORMANCE COLOR TV IF SYSTEM 4 HIGH PERFORMANCE COLOR TV IF SILICON MONOLITHIC INTEGRATED CIRCUIT The MC44301 is a single channel TV IF and PLL detector system for all standard transmission systems. This device enables the designer to produce a high quality IF system with white spot inversion, AFT and AGC. The MC44301 was designed with an emphasis on linearity to minimize sound/picture intermodulation. ~ mrnrn ~~~ • Single Coil Adjustment for AFT and PLL PSUFFIX II !LASTIC PACKAGE • VCO at 1/2 IF for Minimum Beats 1 CASE 724-03 • Simple Circuitry for Low System Cost • White Spot Inversion • Symmetrical ± 2.0 MHz Pull-In DWSUFFIX PLASTIC PACKAGE CASE 751 E-02 SO-24 • Detects Positive or Negative Modulation • Auxiliary AM Detector for AM Sound • Simple Alignment Procedure FIGURE 1 - BLOCK DIAGRAM AFT Out AFT 9 Switch --------, / IPLL Filter .-------o---I~ -+-ir '-1s L-- '<0 l I I I I I 24 Sound 1--+--+--+--------0 Output RF AGC 10 AGC Delay 12 AGC Gate 13 1 / L_ RF AGC l' Filter ~ This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-123 &I MC44301 MAXIMUM RATINGS Rating Power Supply Voltage - Symbol Value VCC 7.0 Vdc V13 ±500 mApk Pin 22 Gating Pulse Amplitude Operating Temperature Units TA -40 to +85 "C Storage Temperature Tstg -65to +150 "C Junction Temperature TJ Max 150 "C PD 1.25 10 mWI"C Power Dissipation Derate above 25"C ELECTRICAL CHARACTERISTICS (VCC = 50 Vdc TA = W 25"C unless noted) Typ Max Units Pins Min Operating Supply Voltage Range 22 4.5 - 5.5 Vdc Supply Current 22 - bO - mAdc Characteristic Differential Input Sensitivity for Full Output 6,7 - 120 80 - dB Noise Figure - - ILVrms Bandwidth - 7.0 - dB Lock-Up Time - - 5.0 ms Video Amplitude (100% mod depth) 2,3 - 2.4 10 5.0 - AGC Range 20 MHz Vpp Differential Gain Distortion 2 - - 5.0 % Differential Phase Distortion 2 - - 2.0 degrees 2,3 - 8.0 - MHz 0.1 - V rms Tuner AGC Current Video Bandwidth Sound Subcarrier Output (-20 dB to PIX) 24 13 AGC Gate Pulse (R pin 13 = 5.0 k) Differential Input Impedance 6,7 Rin Cin FIGURE 2 - lJ[:: ~ 3.4 3.0 - Sound Output 24 23 NC Video 2} 3 Outputs ?o -=- 4 22 Mode Switch Pas Mod AFT Output 56 -=- ~3.3 k 1°.Q1 1 01 . : 18 -=- I I I Off RFAGC -=- -=- 17 Digital AFT Output ~ub-carrier 0.11' I I I 21 NC 19 I ForAM I Modulated I Sound VCC 20 RFAGC Adjust kO pF - I Connection ToSyncSep VCC mApk TEST CIRCUIT NC White Spot Inverted ±0.3 mAdc r AFT Switch 0.1 15 10 0.1 11 16 RF AGC Filter Lock Detector Filter ~ Envelope Detector Out 14 3.0 k + 13 12 1: MOTOROLA LINEAR/INTERFACE DEVICES 9-124 AGC Gate Pulse Envelope Detector In MC44301 sistor small signal emitter resistances (re) are corrected by the cross-coupled resistors. This arrangement leads to a simpler design, the ability to adjust the demodulation angle, and lower distortion than is normal at the IF amplifier/demodulator interface. The dynamic emitter resistances, which can give rise to distortion, are now in quadrature with the capacitive reactance and, therefore, contribute very little to the resultant output. CIRCUIT DESCRIPTION Design Aims The MC44301 performs the functions of IF amplification, AGC, AFT and demodulation of a TV IF signal for both positive and negative modulation systems. In this respect it is similar to other circuits already on the market. However, in the means of obtaining these functions the MC44301 is very different compared to traditional designs. A unique approach was needed for several reasons. Tuned circuits associated with the IF amplifier output had to be eliminated to enable the part to be easy to use with the minimum of adjustments and external components. With this approach a high degree of IF stability could be obtained with a reduction in cost. Secondly, new techniques were required to improve performance in certain critical areas (differential phase and gain, etc.). This was especially so in view of the removal of the above mentioned tuned circuits. The basic idea therefore, was to produce an advanced, high performance multistandard IF system which would be economical and easy to use. Such a device can successfully compete with the already established IF amplifiers now available. FIGURE 3 - System Description Despite the extra complications compared to pseudo synchronous demodulation, true synchronous demodulation seemed to be the only way in which enhanced performance could be achieved. The basic system is shown in Figure 1 in block diagram form. The IF amplifier is a four stage, AC coupled design having a sensitivity of about 20 p.V. With a low loss SAW filter and 3.0 to 6.0 dB extra gain in the tuner, there is no need for a SAW preamp. The TV set signal to noise performance is acceptable, while the net savings in cost is considerable. The AGC is a conventional gated system with the usual RF AGC output and RF AGC adjustment. Three stages of the amplifier are gain controlled to give an extended AGC range of 80 dB with improved intermodulation, signal handling, and differential phase and gain performance. The AGC reference is switched when positive modulation is selected, via the mode switch, to ensure the video level remains constant. Under these circumstances the AGC must be gated by a pulse which will sample the back porch, as opposed to negative modulation where fly back can be used. In both cases a positive or negative-going pulse may be used. To ensure that the improvements in performance mentioned above were not lost elsewhere, great care was taken in the design of the video demodulator and video amplifiers. An example of this care is the placing of the phase shift required by the video demodulator on the signal side instead of on the oscillator side ofthe demodulator as is common practice. The 90° phase shift is produced by replacing the usual emitter resistors by capacitors in the differential amplifier (Figure 3) feeding the video demodulator. The output currents are 90° with respect to the input voltage over a wide band of frequencies and the small phase errors caused by the tran- 90° PHASE SHIFT AMPLIAER Following the IF amplifier and preceding the PLL phase detector is a two stage limiter with a gain of 100 and overall dc feedback. This contrasts with the usual single stage of limiting with no dc feedback and a tuned circuit with diodes at it's output. With two stages of limiting, the minimum gain required to remove signal amplitude modulation can be designed-in without the large voltage swings of a single stage with the same gain. Large voltage swings lead to poor differential phase and gain performance, hence the need for a tuned circuit and diodes as used in previous designs. The dc feedback removes the effects of input offsets which are another source of differential phase and gain problems. The combination of low swing per stage and dc feedback removes the need for having a tuned circuit at the output of the limiter and reduces the danger of IF instability and radiation. The only problem in using this technique is the potential for extra static phase shift and resultant errors in the demodulating angles at the video and sound demodulators. However, by putting a similar two stage limiter, with matching phase shift, on the oscillator side of the phase detector, the demodulating angles can be restored to the correct phases (0, 90°). Having processed the signal in this way, the VCO is then phase locked at 90° to the noniimited signal. The only unusual feature of the loop just described is that the VCO runs at half frequency, and is frequency doubled on-chip. This means radiation from the external frequency determining components will be at "half IF" and so will not desensitize the system even if picked up by the amplifier input leads (this could cause what is known as PLL push-off). Running the oscillator at twice IF frequency and dividing down, which is another way of MOTOROLA LINEAR/INTERFACE DEVICES 9-125 E MC44301 solving .this problem has several disadvantages. First and foremost, radiation into the antenna at twice IF produces channel 6 and channel 8 problems in the USA. Secondly, it is easier to produce a stable veo at half IF. After attaining phase lock, demodulation of the video is achieved by multiplying the signal (nonlimited) with the regenerated vision carrier (VeO) in a double balanced multiplier, the phase relationship between the two waveforms being zero degrees. Both positive and negative sync video outputs are produced. FIGURE 4 - PIN 2 VIDEO OUTPUT WITH WHITE SPOT INVERSION Volts --z-- 3.7 -3Q------------J-~ormal 0% 2.5 --- 1.31---- -- --- and 1?0% Carrier Levels --- White Spot Clamp Level FIGURE 5 - PIN 3 VIDEO OUTPUT FOR DRIVE TO A SYNC SEPARATOR Volts 3.7 ------r--- Normal 0% and 100% Carrier Levels 1.3 1.1 --- --- T~e negative sync output is intended to be used as the actual video and is acted upon by the white spot noise inverter. This effectively removes the "whiter than white" noise produced by a true synchronous demodulator and prevents the eRT from being over driven and defocused. The positive sync video output is not acted on by a white spot noise inverter and of course the noise output from a synchronous detector does not contain a dc component. Hence, this drive should be used as the sync separator drive because a simple preseparator low pass noise filter will produce optimum sync performance. Note the sense of the video signals at the outputs remain the same whether positive or negative modulation is being received. Positive or negative modulation is selected externally by the mode switch pin. The sound intercarrier is recovered by another demodulator simiiar to tlie video, except tliat the phase relationship between the signal and the veo is 90° instead of 0°. A consequence of this phase relationship is that video interference of the intercarrier signal at the detector output is minimized by suppression of the lower frequency video components. Should the sound carrier contain amplitude information, as in the French TV system or as in some scrambled cable signals, this information can be recovered by feeding the sound intercarrier output back into the circuit through a bandpass filter if so desired, to the amplitude detector provided on chip. The AFT portion of the circuit is the most unconventional in form. Essentially, AFT is derived by amplifying the error signai driving the veo aiter phase jock, and applying this to the local oscillator in the tuner, thus eliminating a coil and a potential IF instability problem. After acquisition, and when the circuit has settled down, due to the much higher gain in the LO loop, the veo will have moved a small amount (Afv) from it's nominal frequency, and almost all the original error frequency (Ate) between LO and veo will have been corrected by the change in LO frequency (Atl). In this way, provided the PLL can be initially locked to the incoming IF signal, the veo can be used as the frequency reference for the AFT system. It follows from the above therefore, because the system is phase locked, that Ate = (Afl + Atv). The combination of the local veo loop and the loop produced by feedback to the LO forms a double loop PLL. Analysis shows that overall system stability can be assured by treating the veo loop as a stand alone PLL, provided its bandwidth is much wider than the LO loop. The veo loop therefore is a low gain wideband loop which guarantees initial capture, while the LO loop is basically a high gain dc loop used to keep frequency and phase offsets to a minimum. Large phase offsets can also be caused by dc offsets in the phase detector and AFT amplifier. These are removed by the use of commutation on both the phase and AFT outputs. This eliminates the need for external phase adjustment, while at the same time minimizing distortion by maintaining the correct phase angles at the demodulators. The AFT system has been designed to acquire the vision carrier, without false locking to the sound or adjacent sound carriers, with an initial LO frequency error of ± 2.0 MHz, reducing this initial error to 3.0 to 10kHz when locked. This contrasts to the discriminator type of AFT's which have highly asymmetric lock characteristics (- 2.0 MHz + 1.0 MHz), because of the effects of the IF filter, and large frequency errors caused by limited loop gain. To achieve this level of performance without encountering the normal AFT problems associated with high loop gain, a novel approach has been taken to locking up to the PLL. In the absence of an IF signal, the acquisition circuitry examines the state of the video (I) and sound (a) demodulators and detects the lack of a signal. It then clamps the LO drive to a reference dc level and applies a - 2.0 MHz offset to the veo. This is done so that the nominal IF (should a signal appear), and the veo, are sitting in the center of the IF filter passband. Therefore, even if the LO drifts high by + 2.0 MOTOROLA LINEAR/INTERFACE DEVICES 9-126 MC44301 but not to the extent where it would cause any veo tracking problems. This technique allows the acquisition time of the circuit to be considerably shortened while still using a larger than normal time constant in the La loop. To accommodate all types of tuners and La's, positive or negative La drive can be selected externally by operation of the AFT switch. The AFT switch also has a third position which disconnects the drive to the tuner. Under this condition the TV set can be tuned in the normal manner and so appears to have a conventional type of AFT. Other PLL AFT systems cannot be manually tuned in this way having an abrupt capture characteristic when tuned, and because of this, have not gained general acceptance in industry. MHz, the signal will not be s'ignificantly attenuated by the filter. When the acquisition circuit detects the appearance of a signal, beat notes are produced at the output of the demodulators, a sweep generator is switched on, and immediately sweeps the veo an additional - 2.0 MHz from it's out of lock nominal frequency. During this negative sweep, the PLL phase detector is switched off so phase lock cannot be obtained. The veo is then swept positive from - 2.0 MHz to + 2.0 MHz of nominal with the phase detector switched on. The PLL will therefore lock to the first carrier it encounters. This in fact must be the vision carrier because the sound carrier is more negative than - 2.0 MHz from nominal and the adjacent sound carrier is higher than the vision carrier. On achieving phase lock, the AFT clamp is released, the veo offset is slowly removed, the sweep is inhibited and the phase detector remains enabled. With the AFT clamp removed, a large error voltage appears at the AFT output, driving the system back towards the correct frequency. Since the La loop is slow and the veo is fast, the IF changes slowly and the veo tracks it, maintaining phase lock until the final static conditions are reached. For large frequency errors during this period the slew rate of the La loop is increased, FIGURE 6 - ALIGNMENT The alignment is very simple and inexpensive compared to other IF amplifier circuits, especially those using a PLL. With a ew input signal of correct picture carrier frequency, the La side of the 22 k resistor in series with the loop is connected to a dc supply. The dc supply (approximately 2.5 V) is adjusted until the output of the tuner is 45.75 MHz. The veo coil is adjusted until lock is obtained and the voltage across the 22 k resistor THE AFT SYSTEM IN ACTION Typical IF Input Filter Response IF Bandpass Properly Tuned Channel Desired CD I P I I I Asl I I I I I I I Adjacent Nominal Channel with Initial 2.0 MHz Offset Initial nominal offset of VCO and La (AFT). When a beat note is detected, AFT bias is held and VCO is swept another 2.0 MHz low with phase detector inhibited, then the VCO is swept high with the phase detector active. Upon phase lock, the AFT clamp is removed and the initial VCO offset is slowly removed. Capture of desired picture carrier is assured even IF mistuned ± 2.0 MHz. I I - 2.0 MHz Mistuning with Initial 2.0 MHz Offset + 2.0 MHz Mistuning with Initial 2.0 MHz Offset AP MOTOROLA LINEAR/INTERFACE DEVICES 9-127 MC44301 is zero. The dc supply is then removed. A digital AFT up/down output having a ± 30 kHz dead zone is also provided by the circuit. Again, as in the case of the analog output, the digital output polarity can be controlled externally by the AFT switch. Note: Most pins on the Ie have electrostatic protection diodes to Vee and ground. It is therefore imperative that no pin is taken below ground or above Vee by more than one diode drop without current limiting. FIGURE 7 - ALIGNMENT CONFIGURATION c.w. Picture Carrier II MOTOROLA LINEAR/INTERFACE DEVICES 9-128 ® MC44802 MOTOROLA Prod uet Preview PLL TUNING CIRCUIT WITH 1.3 GHz PRESCALER PLL TUNING CIRCUIT WITH 1.3 GHz PRESCALER The MC44802 is a tuning circuit for TV applications. It contains on one chip all the functions required for PLL control of a VCO. This integrated circuit also contains a high frequency prescaler (which can be bypassed by software control) and thus can handle frequencies up to 1.3 GHz. The MC44802 is manufactured on a single silicon chip using Motorola's high density bipolar process, MOSAIC (Motorola Oxide Self Aligned Implanted Circuits). • Complete Single Chip System for MPU Control (IIC Bus) CASE 707·02 PLASTIC PACKAGE • Selectable Divide-by-8 Prescaler Accepts Frequencies >1.0 GHz • 15-Bit Programmable Divider Accepts Input Frequencies >125 MHz • Programmable Reference Divider • Tri-State Phase/Frequency Comparator DWSUFFIX CASE 751C-03 PLASTIC PACKAGE SO-18l • Op Amp for Direct Tuning Voltage Output (33 V) • Seven High Current Output Buffers (10 mAl • Output Options for 62.5 kHz, Reference Frequency and the Programmable Divider • Software Compatible with MC44810 PIN ASSIGNMENT SIMPLIFIED BLOCK DIAGRAM 3 VCCl Progr. Reference In Out 1953 Hz VCC2 PHO VCC1 XTAl HF SOA HF SCl Gnd B7 BO B6 B1 B5 B2 B4 17 Bus Receiver ORDERING INFORMATION Gnd 6 Device MC44802P MC44802DW This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-129 Operating Temperature Range O·C to 70·C Package 18-Pin DIP 18-Pin SOIC E MC44802 MAXIMUM RATINGS (TA = 25·C unless otherwise specified) Ratings Pin Value Power Supply Voltage VCC1 3 6.0 Unit V Band Buffer "OFF" Voltage 7 to 13 15 V Band Buffer "ON" Current 7 to 13 15 mA Op Amp Power Supply Voltage VCC2 2 36 V Op Amp Short Circuit Duration (0 to VCC2) 1 Continuous V -65 to + 150 ·C o to +70 ·C Storage Temperature \0 Operating Temperature Range ELECTRICAL CHARACTERISTICS (VCCl = 50 V VCC2 = 32 V TA = 25·C unless otherwise specified) Characteristic Pin Min Typ Max VCCl Supply Voltage Range 3 4.5 5.0 5.5 V VCCl Supply Current (VCCl = 5.0 V) (Note 1) 3 - 60 90 rnA VCC2 Supply Voltage Range 2 25 30 35 V VCC2 Supply Current (Output Open) 2 - 0.8 2.0 rnA 0.01 1.0 I'A 0.6 1.0 V - 0 I'A 1.0 I'A 1.0 I'A Band Buffer Leakage Current When "OFF" at 12 V 7 to 13 Band Buffer Saturation Voltage When "ON" at 10 rnA 7 to 13 Data/Clock Current at 0 V 14,15 -10 Clock Current at 5.0 V 14 0 Data Current at 5.0 V Acknowledge "OFF" 15 0 Data Saturation Voltage at 15 mA Acknowledge "ON" 15 DatalClock Input Voltage Low 14,15 - Data/Clock Input Voltage High Unit 1.0 V 1.5 V - 14,15 3.0 Clock Frequency Range 14 0 Phase Detector Tri-State Current 17 -15 0 15 nA Phase Detector High-State Source Current (lit 1.5 V) 17 -3.0 -2.2 -1.5 rnA rnA Phase Detector Low-State Sink Current «ii, 3.5 V) 100 V kHz 17 2.0 3.0 4.0 Op Amp Internal Reference Voltage - 2.0 - 3.0 V Op Amp Input Current 18 -15 0 15 nA DC Open Loop Gain - 5000 Phase Margin (RL = 10 k, CL = 20 pF) - 50 - - Gain Bandwidth Product (RL = 10 k, CL = 20 pF) 0.1 0.3 V - V Vout Low, Sinking 50 I'A 1 Vout High, Sourcing 50 I'A, VCC2 1 0.3 -4.0 -3.0 - MHz - Deg. HF CHARACTERISTICS (See Figure 1) - 1.6 HF Voltage Range Prescaler "OFF" 10-150 MHz 5 20 1500 mVrms HF Voltage Range Prescaler "ON" 50-950 MHz 5 30 - 1500 mVrms HF Voltage Range Prescaier "ON" 950-1300 MHz 5 50 - 1000 mVrms 4,5 HF In/Ref DC Bias NOTE 1. When prescaler "OFF:' typical supply current is decreased by 20 rnA. MOTOROLA LINEAR/INTERFACE DEVICES 9-130 - V MC44802 FIGURE 1 - HF SENSITIVITY TEST CIRCUIT 50V "-- Bus I Bus Controller I VCC1 5.0 V - MC44S02 3 HF Generator 4 1.0nF HF Out II 14 15 ~ 50 !l Cable ~ I -::- Device is in test mode: R2 = 1, R3 0 (see Bus Section) sensitivity IS level of HF generator on 50 ohms load 1 5 = 6 4.7k B5 1 1 - - In .1 Counter =f.0 nF -::50 n -'- (without MC44S02 load). FIGURE 2 - PIN 5 INPUT IMPEDANCE (TYP) PIN FUNCTION DESCRIPTION (See Figure 3) Pin Description Function 1 Out Operational amplifier output which provides the tuning voltage 2 VCC2 Operational amplifier positive supply 3 VCCl Positive supply of the circuit (except op amp) 4 5 HFin or HFref HFin or HFref Either of the inputs may be used as reference 6 Gnd Ground 7,S,9, 10, 11, 12, 13 14 BO, Bl,........ B7 Band buffer output can drive up to 10 mA SCl Clock Input (supplied by the microprocessor via IIC bus) 15 SDA Data Input 16 XTAl Crystal Input (4.0 MHz) 17 PHD Phase Comparator Output 1S In Negative Operational Amplifier Input MOTOROLA LINEAR/INTERFACE DEVICES 9-131 MC44802 FIGURE 3 - PIN CIRCUIT SCHEMATIC 47 nF 100 nF Tuning - r - - - - - - - - - - H -......~wv----4---__, Voltage 18 In 22 k 17 (PHD) HFin ----jl---<>------~ 1.0 nF 1---1 6 L __ J Gnd II r----' r------, 7 BO 8 Bl 9 B2 : I I ~,~--~--~I L ____ J L I .r----i :I 13 B7 12 B6 ____ J 11 iL ____ J~,~--~--~ B5 r----' 10 B4 , I iL ____ J~,~--~--~ Vee1! !I I I MOTOROLA LINEAR/INTERFACE DEVICES 9-132 MC44802 FUNCTIONAL DESCRIPTION A representative block diagram and a typical system application are shown in Figures 4 and 5. A discussion of the features and function of each of the internal blocks is given below. FIGURE 4 - BLOCK DIAGRAM 22 k Tuning Voltage FIGURE 5 - TYPICAL TUNER APPLICATION IF Out UHF VHF Bill 5.0 V '--1=:::;::=;;=r:::===~~----4~--'" Clock L-~~~~~~~-------f~--~ICBus Data f asc V Tun AGC 47 nF *Pins 4 and 5 are equivalent 33 V MOTOROLA LlNEARIINTERFACE DEVICES 9·133 MC44802 DATA FORMAT AND BUS RECEIVER Frequency information is preceeded by a Logic "0." If the function bit is Logic "1" the two following bytes contain control and band information where the bits have the following functions: The circuit receives the information for tuning and control via a two-wire bus (Motorola Bus, IIC compatible). The incoming information consisting of a chip address byte followed by two or four data bytes, is treated in the IIC bus receiver. The definition of the permissible bus protocol is shown below: 1_STA 2_STA 3_STA 4__STA STA STO CA CO FM FL BA ; ; ; ; ; ; ; CA CA CA CA CO FM CO FM BA FL BA FL STO STO FM CO FL BA ADDRESS CA RMi Bit RO and R1 Define the reference divider division ratio. Four ratios are available (see Table 1). - Bit R2 and R3 Are used to switch internal signals to the buffer outputs. Pin 10 and 11 (see Table 2). - Bit R2, R6 and T Are used to control the phase comparator output stage (see Table 3). - BitP Switches the prescaler in and out. At Logic "1" the prescaler is bypassed and the power supply of the prescaler is switched off. STO STO Start Condition Stop Condition Chip Address Byte Data Byte for Control Information Data Byte for Frequency Information (MSB' S) Data Byte for Frequency Information (LSB' S) Band Information STA - ACK DATA DATA ACK ACK STO TABLE 1 Figure 6 shows the five bytes of information that are needed for circuit operation: there is the chip address. two bytes of control and band information and two bytes of frequency information. After the chip address, two or four data bytes may be received: if three data bytes are received the third data byte is ignored. If five or more data bytes are received the fifth and following data bytes are ingored and the last acknowledge pulse is sent at the end of the fourth data byte. The first and the third data bytes contain a function bit which allow the IC to distinguish between frequency information and control plus band information. Input Data Reference Divider Ri RO Division Ratio 0 0 2048 0 1 1024 1 0 512 1 1 256 TABLE 2 FIGURE 6 - Input Data DEFINITIClN ClF BYTES o CA_Chip Address 0 0 o 0 ACK CO_Information Test Outputs on Buffers R2 R3 0 0 Pin 10 0 i 62.5 kHz 1 0 Frel 1 1 - - Pin 11 FBY2 - BA_Band Info. FM_Frequency Inlo. FL_Frequency Info. Bit B4 has to be "zero" when Pin 10 is used to output 62.5 kHz. Bit 4 and B5 have to "zero" to output Fret and FBY2. FBY2 is the programmable divider output frequency divided by two. N9 N8 ACK N7 N6 N5 N4 N3 N2 Ni BO ACK MOTOROLA LINEAR/INTERFACE DEVICES 9-134 MC44802 TABLE 3 Output State of the Phase Comparator Input Data R2 R6 T 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Normal Operation Off (High Impedance) High Low Normal Operation Off Normal Operation Off THE BAND BUFFERS BA_Band Information B7 B6 B5 B4 x B2 The band buffers are open collector transistors and are active "low" at Bn = 1. They are designed for 10 mA with a typical on-resistance of 70 ohms. These buffers are designed to withstand relative high output voltage in the off-state. B4 and B5 buffers (Pins 10 and 11) may also be used to output internal IC signals (reference frequency and programmable divider output frequency divided by 2) for tests purposes. Buffer B4 may also be used to output a 62.5 kHz frequency for an intermediate stage of the reference divider. The bit B4 andlor B5 have to be zero if the buffers are used for these additional functions. ~ BO ACK programmable divider is set to a counting ratio of N 256 or higher. = THE PRESCALER The prescaler has a preamplifier which guarantees high input sensitivity. The prescaler may be by-passed (Bit P) and the Signal then passes through preamp 2. THE PHASE COMPARATOR The phase comparator is phase and frequency sensitive and has very low output leakage current in the high impedance state. THE OPERATIONAL AMPLIFIER The operational amplifier is designed for very low noise, low input bias current and high power supply rejection. The positive input is biased internally. The op amp needs 31 V supply (VCC2) as minimum voltage for a guaranteed maximum tuning voltage of 28 V. Figure 1 shows a possible filter arrangement. The component values depend very much on the application (tuner characteristic, reference frequency, etc.); As a starting point for optimization, the components values in Figure 1 may be used for 7.8125 kHz reference frequency in a multi band TV tuner. THE PROGRAMMABLE DIVIDER The programmable divider is a presettable down counter. When it has counted to zero it takes its required division ratio out of the latches B. Latches B are loaded from latches A by means of signal TOI which is synchronous to the programmable divider output signal. Since latches A receive the data asynchronously with the programmable divider, this double latch scheme is needed to assure correct data transfer to the counter. The division ratio definition is given by: N B1 16384 x N14 + 8132 x N13 + ..... + 4 x N2 + 2 x N1 + NO Max Ratio 32767 Min Ratio 17 THE OSCILLATOR The oscillator uses a 4.0 MHz crystal tied to ground or VCC1 through a capacitor, used in the series resonance mode. The voltage at Pin 16, "crystal," has low amplitude and low harmonic distortion. Where NO....... N14 are the different bits for frequency information. The counter may be used for any ratio between 17 and 32767 and reloads correctly as long as its output frequency does not exceed 1.0 MHz. The data transfer between latches A and B (signal TOI) is also initiated by any start condition on the IIC bus. At power-on the whole bus receiver is reset and the SYSTEM APPLICATION Table 4 is a summary of the circuit applications using a 4.0 MHz crystal. MOTOROLA LINEAR/INTERFACE DEVICES 9-135 Il MC44802 TABLE 4 R1 RO Ref. Divider Div. Ratio Reference Frequency Hz (1) 0 0 1 1 0 1 0 1 2048 1024 512 256 1953.125 3906.25 7812.5 15625.0 Input Data (1) With 4.0 MHz Crystal With Int. Prescaler P = 0 Without Prescalsr P = 1 Frequency Steps kHz Max. Input Frequency MHz Frequency Steps kHz Max. Input Frequency MHz 15.625 31.25 62.5 125 512 1024 1300(2) 1300(2) 1.953125 3.90625 7.8125 15.625 64 128 165(3) 165(3) (2) Limit of Presealer (3) Limit of Programmable Divider MOTOROLA LINEAR/INTERFACE DEVICES 9-136 ® TBA120C MOTOROI.A FM IF AMPLIFIER, LIMITER, FM DETECTOR AND AUDIO PREAMPLIFIER FM IF AMPLIFIER, LIMITER AND DETECTOR An integrated circuit specifically designed for use in the sound section of "TV receivers and the FM/IF portion of radio receivers. The TBA120C is pin for pin and function compatible with the proelectron type TBA120S but includes an improved dc volume control, which makes "grouping" or selection unnecessary. • Excellent 3.0 dB Limiting SILICON MONOLITHIC INTEGRATED CIRCUIT • High A.M. Rejection • • Wide Supply Voltage Range • Auxiliary Zener Diode and Transistor • Minimum Number of External Components Required 1 PLASTIC PACKAGE CASE 646-06 CIRCUIT SCHEMATIC 11 ~ Il 312Z1 1.0k 4 Q20 Z2 045 1.0k 6 13 107 MOTOROLA LINEAR/INTERFACE DEVICES 9-137 9 5 TBA120C MAXIMUM RATINGS (TA = +25"<: unless otherwise noted) Value Unit Power Supply Voltage Ratinll +18 Vdc Power Dissipation (Package Limitation) Plastic Package Derate above TA = + 25'C 625 5.0 mW mWrC o to Operating Temperature Range +75 -65 to +150 Storage Temperature Range 'c 'c ELECTRICAL CHARACTERISTICS (TA = + 25'C, VCC = 12 V, R = 20 k, Test circuit: Figure 1) Charac:teristic Typ Min Supply Voltage Range - 6.0 Max Unit 18 Volts Supply Current 10 14 18 Audio Output (to = 5.5 MHz, £1.1 = 50 kHz, 0 = 45) 1.0 - Volts RMS 0.38 - Volts RMS 3.0 dB Limiting (to = 10.7 MHz, £l.t = 75 kHz, 0 = 35) - A.M. Rejec:tion (to = 5.5 MHz, RF Input: 500 ,",V) 45 - - A.M. Rejection (to = 10.7 MHz, RF Input: 500 "V) 40 - - Volume Control Range 65 75 Output Impedance - 2.6 Audio Output (to = 10.7 MHz, £l.t = 75 kHz, 0 = 35) 3.0 dB Limiting (to = 5.5 MHz, £1.1 = 50 kHz, 0 = 45) 30 40 ELECTRICAL CHARACTERISTICS OF AUXILIARY Z DIODE AND TRANSISTOR Q45 (TA Charac:teristic Z-Voltage @ 5.0 mA (Pin 12) - = "VRMS "VRMS dB dB dB kll +25') Min Typ Max Unit 11.2 - 13.2 Volts Z-Resistance (Pin 12) @ 1.0 kHz, 5.0 mA - 045 Breakdown Voltage VCEO 13 - 045 Current Gain @ IC = 1.0 mA, VCE = 5.0 V 40 100 15 MOTOROLA LINEAR/INTERFACE DEVICES 9-138 60 mA - Il Volts - TBA120C FIGURE 1 - TEST CIRCUIT COMPONENT VALUES: Vee 5.5 MHz 6.0 MHz 10.7 MHz L Cl Q 0.55 JLH 0.55 JLH 2.2 JLH 1.5 nF 1.2 nF 100 pF 45 45 35 C2 = 0.022 JLF, together with the integrated resistor of 2.6 k!l (Pin 8) gives the deemphasis and can be reduced if required. For stereo 470 pF should be used to provide H.F. decoupling. FIGURE 2 - AUDIO OUTPUT AND SIN versus INPUT SIGNAL LEVEL AT 5.5 AND 6.0 MHz -10 ;- Output 11111111 II II FIGURE 3 - AUDIO OUTPUT AND SIN versus INPUT SIGNAL LEVEL AT 10.1 MHz I1111 "" -10 OdB=1.oVllii.1S)@Af=5OkHz -20 -20 -30 -30 iii ~-40 :2-40 5 1=-50 5 ~-50 ~ -60 is -60 -70 I -BO 10 ILV 10mV 100 mV "'~JHl ~ 50 I 1.0mV 10mV 100 mV RF INPUT I c = 1.2 nF 60 z a SIN N. lOILV FIGURE 4 - A.M. REJECTION versus INPUT SIGNAL LEVEL AT 5.5 AND 6.0 MHz (30% A.M .. 50 kHz F.M.) BO I1111 I =' 75 kHz i'o. -80 1.0mV RF INPUT 70 11111 II II I- r1l -70 iii "- I- O~t~ut II o dB = 3BO mV (RMS) @ AF FIGURE 5 - A.M. REJECTION versus INPUT SIGNAL LEVEL AT 10.1 MHz (30% A.M .. 15 kHz FM) 80rT~rn~~'-rrrrn~rrTTnmm-rr~Tnrn I~ ~Mtl 70~+-HH~~~~HH~H-++~~~~+Hffi 601-++-++++++ll-++-+++l+1-1H+++H±W-~"i"i~ C = 1.5 nF ~50~4-t+~ffi-t+-HH+H*~F+++~~+-t+~ ;..- ~ o 40~1-~~~++-~H+H*-r~++~~+-~~ ~ 40 ~ 30~4-t+~~++-HH+H*~~++H*~+-t+~ ~30 :;; z 17 18 20 FIGURE 9 - OUTPUT SIGNAL ATTENUATION versus D.C. VOLTAGE AT PIN 5 V 10 a; / 40 :!'1. 80 ~ 20 50 S / 70 40 ~ z / ./ 1/ 80 V 50 60 70 V ,/ 30 z 0 => 7 60 /" 20 V 30 l- II = 10.7 MHz -70 -60 -50 -40 -30 -20 -10 AmNUATION (dB) /' S 50 => 1= => 0 '\ .......... t- 10 FIGURE 8 - OUTPUT SIGNAL ATTENUATION versus VOLUME CONTROL RESISTANCE :!'1. 10 = 5.5 MHz I 6.0 7.0 8.0 9.0 a; \; ~ 3.0 ..,.."'" v oV \ 4.0 w / ~ 0.6 ~ / ~0.7 5.0 /l I fo = 5.5 &6.0 MHz AI = 50kHz 90 200 500 1.0k 2.0k RESISTANCE (OHMS) 5.0k 10k 20k 2.0 1.0 3.0 4.0 DC VOLTAGE (VOLTS) FIGURE 11 - T.H.D. versus OUTPUT VOLTAGE FOR AUDIO PREAMPLIFIER SHOWN IN RGURE 10 FIGURE 10 - AUDIO PREAMPUFIER TEST CIRCUIT 1.0 +12 V Voltage Gain , 0.9 Typ 9.0 dB 0.8 1= 1.0 kHz 0.7 ~0.6 z ~ 0.5 180 k / ~0.4 Q45 / 15 0.3 ./ 0.2 V J-...... 0.1 o o 0.2 0.4 O. O.B 1.0 1.2 OUTPUT VOLTS RMS MOTOROLA LlNEAR/(NTERFACE DEVICES 9-140 1.4 1.6 I.B 2.0 TBA120C FIGURE 12 - TYPICAL APPLICATION FOR 5.5 MHz WITH L·C INPUT FILTER FIGURE 13 - TYPICAL APPLICATION FOR 5.5 MHz WITH CERAMIC INPUT FILTER 10 nF 10 nF.I. FIGURE 14 - TYPICAL APPLICATION FOR 10.7 MHz WITH CERAMIC FILTER +12V +12V I 1.0k FM Tuner Ir Deemphasis mono 22 nF stereo 470 pF 2.2 jLF Audio t-~_-+'"i( TOKO 0 Output r-i'>------'!:--., TKXC.33733BS 1.5 k 11 . ~0 nF 1-++.., L -_ _ _ _...J 10 nF.I MOTOROLA LINEAR/INTERFACE DEVICES 9-141 ® TCA4500A MOTOROLA Advance Information FM STEREO DEMODULATOR FM STEREO DEMODULATOR DESIGNED FOR USE IN HI-FI STEREO RECEIVERS AND CAR RADIOS SILICON MONOLITHIC INTEGRATED CIRCUIT • Wide Supply Range: 8 - 16 Vdc • Excellent Channel Separation Maintained Over Entire Audio Frequency Range (Fixed or Adjustable) • Variable Blend Control • Low Distortion: 0.3% THD at 2.5 Vp·p Composite Input Signal • Excellent Rejection of AR I Subcarrier (57 kHz) • Excellent Rejection of Pilot Tone Harmonics including 114 kHz • Wide Dynamic Range: 0.5 - 2.5 Vp-p Composite Input Signal • Up to 6 dB Gain (Monaural) • Low Output Impedance • Transient·free Mono/Stereo Switching • 50 dB Supply Ripple Rejection • Integrated Stereo/Monaural Switch Capability • Requires No Inductors II PLASTIC PACKAGE CASE 648-06 100 mA Lamp Driving FIGURE 1 - TYPICAL APPLICATION AND TEST CIRCUIT 228kHz Monitor PIN FUNCTIONS Stereo ~ 1 2 3 4 5 6 7 - Input Preamplifier output Left amplifier input Left channel output Right channel output Right amplifier input Stereo Indicator Lamp 8 - Ground 9 - Stereo switch filter 10 - Stereo switch filter 11 - 19 k Hz output/blend , 2 - Modulator input R3 5.1k 13 - Loop filter 14 - Loop filter 15 - Oscillator AC network R6 5.1k 16 - VCC L R Outputs + Vee This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 9-142 TCA4500A MAXIMUM RATINGS ITA = +25 0 e unless otherwise noted) Rating Power Supply Voltage Power Dissipation (Package limitation) Derate above T A = +25 0 C Operating Temperature Range (Ambient) Value Unit 16 Volts 1800 15 mW mW/oe -40 to +85 °e °e Volts -65 to +150 Storage Temperature Range Lamp Drive Voltage (Max. voltage at Pin 7 with lamp "off") 30 Lamp Current 100 mA Blend Control Input Voltage (Pin 11) 10 Volts ELECTRICAL CHARACTERISTICS Unless otherwise noted: Vee = +12 Vdc. TA' 25 0 e. 2.5 Vp·p standard multiplex composite signal with Lor R channel only modulated at 10kHz and with 10% pilot level using circuit of Figure 1 Characteristic Min. Typ. Max. Unit Stereo Channel Separation: Unadjusted Optimised on other channel 1 30 40 - - dB Monaural Voltage Gain 1 0.8 1.0 1.2 - - 0.3 0.2 - - 90 - dB Stereo Switch Level (19 kHz input level for lamp "on") Hysteresis 12 16 6.0 20 mVrms - dB Quiescent Output Voltage Change with Mono/Stereo Switching - 5.0 20 mVdc 0.7 1.7 - V V dB dB THO at 2.5 VPil Composite Input Signal at 1.5 Vp-p Composite Input Signal - % Signal/Noise Ratio dB RMS 20 Hz -15 kHz Ultrasonic Frequency Rejection 19 kHz 38 kHz - Stereo Blend Control Voltage (Pin 11) 3 dB Separation Isee Figure 2) 30 dB Separation Minimum Separation IPin 11 at 0 V) - Monaural Channel Imbalance (pilot tone off) - Operating Supply Voltage 8.0 Current Drain (lamp off) - ARI 57 kHz Pilot Tone Influence on TH02 Sub-carrier Harmonic Rejection 76 kHz 114 kHz 152 kHz Supply Ripple Rejection Input Impedance Output Impedance Blend Control Current Capture Range 31 50 - 1.0 - 0.3 0.5 % 45 50 50 - dB - - dB 100 - Kn n - -300 ~A ±5.0 - % - 16 35 - V mA 50 50 Notes: 1 See Applications Information and Circuit Description 2 ARI Test - Input signal: 1.5 Vp-p standard composite signal, 1 kHz modulation added to a CW 50 mVrms signal at 57.3 kHz. MOTOROLA LINEAR/INTERFACE DEVICES 9-143 TCA4500A TYPICAL CHARACTERISTICS Unless otherwise noted VCC = +12 V, TA = +2SoC, Input Signal is Modulated Lor R with 10% Pilot Level. (See Fig. 16,) - - - : High Loop Gain Circuit - - - : Normal Circuit FIGURE 2 - CHANNEL SEPARATION versus FIGURE 3 - VCOFREE-RUNNING FREQUENCY COMPOSITE INPUT LEVEL versus TEMPERATURE 70 ~ v~o Tunld 0.25 60 ~ ~O.25 z 0 >= ;;;>= 50 ~ ~ 40 z z ~ 0 ~ -- - - - -----: - -- .--f-" -- - - --- ,... 0.5', k.....- I-- f-'"" 30 .... ........-f-" 20 0.5 1.0 1.5 - 1.0', - 2.0", / 0.50 V v- r-........ '\. ~0.75 V -Z- \ 1:; ~- ~ 1.0 ~- ~1.25 it - - ..- \ u..1.50 1.75 2.0 2.5 -60 3.0 -40 ~ -20 COMPOSITE INPUT SIGNAL (Vp·p) g • • 1M 1~ ~ TEMPERATURE (OC) FIGURE 5 - SUPPLY RIPPLE REJECTION versus SUPPLY VOLTAGE FIGURE 4 - STEREO SWITCH LEVEL versus VCO FREE-RUNNING FREQUENCY 65 0 I I f· 200 Hz 55 '"E ;; .5 45 "'~ .... '3 \ I , 35 I 0: II - \ ~ , 25 15 18 -- r-- / 1/,./ ./ '" ::;..40 19 FREQUENCY (kHz) 20 8 FIGURE 6 - THO versus COMPOSITE INPUT LEVEL 16 12 14 SUPPLY VOLTAGE 10 FIGURE 7 - CAPTURE and HOLDING RANGE WITH 20 mV PILOT LEVEL I / 2.0 I , j, 1.'1 Supply' 8V I ., .... " ./ -0 :I: "'~ 1.0 i/ I ~7 o o -- -- 1.0 18.4 II 19'.3 18.7 19'.6 1/ ,I Supply' 12V, // - "y 18 3.0 2.0 COMPOSITE INPUT SIGNAL (Vp-p) 4.0 18.5 19 19.5 5.0 VCO FREE·RUNNING FREQUENCY (kHz) MOTOROLA LINEAR/INTERFACE DEVICES 9-144 20 18 TCA4500A FIGURE 8 - CHANNEL SEPARATION versus FREQUENCY FIGURE 9 - THO versus FREQUENCY 70 IUI Vp .p 60 0.3 ./ .,. " f.l: ~ 50 ~ 40 £ 2~ 30 o >- ........ 'i.... r--- 0.2 -' '" z ~ 20 0.1 ~ 10 o 10 20 50 100 200 lk 2k 10k 20k o 10 50 100 lk 200 2k 10k 20k FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 10 - SYSTEM BLOCK DIAGRAM 19kHz ~ 19 kHz 12700 Oscillator ~ +2 19 kHz~ 19 kHz /180 0 9 IJ r-~~l----6O---O+V 38kHz 38 kHz >---OR ~ .. J ~ MOTOROLA LINEAR/INTERFACE DEVICES 9-145 Regulator !~c TCA4500A CIRCUIT DESCRIPTION blend circuit in which they are partially combined, and hence mutually attenuated, according to the control voltage applied. Matrixing occurs at the inputs of the output amplifiers, where the unmodified composite signal is added to the blended channel difference signals. The stereo separation may be progressively reduced from maximum to zero, dependent on the blending. The control law has been made non-linear, as the major redistribution of sound energy occurs at very low separation levels. For monaural, or very weak stereo signals, the modulator in the decoder section is disactivated by the stereo switch circuit. The variable separation control is thus, also, automatically disabled. INTRODUCTION The TCA4500A is a phase-lock-loop stereo decoder which incorporates a variable separation control, and in which sensitivity to the third harmonics of both the pilot and sub-carrier frequencies has been eliminated by the use of appropriate, digitally generated, waveformslinthe phaselock-loop and decoder sections. The variable separation control may be operated manually, or by a receiver's AGC or S meter signals, to provide smooth transitions between monaural and stereo reception. It operates only during stereo reception: the circuit switches automatically to monaural if the 19 kH7 pilot tone is absent. The elimination of sensitivity to the third harmonic (114 kHz) of the sub-carrier (38 kHz) excludes interference from the 100 kHz (European Spacing) spaced side bands of adjacent transmitters, while elimination of sensitivity to the third harmonic (57 kHz) of the pilot tone (19 kHz) excludes interference from the AR 1* system employed in Europe. FIGURE 11 - DIGITAL WAVEFORM ~ PLL(19kHz) ~ StereoSwitch ~ (19kHz) ~ *Auto Radio Information. Decoder CIRCUIT OPERATION The block diagram of the circuit, shown in Fig. 10, consists of three sections: the phase-lock-loop, including the digital waveform generator: the stereo switch: and the decoder, in which the composite stereo signal is demodulated and matrixed to separate land R channels. In the phase-lock-loop the internal RC oscillator, operating at 228 kHz, feeds a 3 stage Johnson counter, via a binary divider, to generate a series of 19 kHz square waves. By the use of suitably connected NAND and EXCLUSIVE OR gates, the waveforms shown in Fig_ 11, which are used to drive the various modulators in the circuit, are developed. The use of such drive waveforms produces the modulating functions also shown in Fig. 11. The usual squarewaveforms have been replaced in the Pll and decoder sections by 3-level forms which contain no third harmonic (actually no harmonics which are mUltiples of 2 or 3 are present). This eliminates the frequency translation of interference from the&e bands into the low frequency region. Such translation may produce audible components in the decoder section from the sidebands of adjacent channel FM signals, and may produce phase jitter, and consequent intermodulation distortion, in the Pll, from the modulated 57 kHz tones of the ARI system. The TCA 4500A is inherently free from these effects. The stereo switch section is of conventional form (e.g_ MC1310). The decoder section consists of a modulator (driven by the waveforms shown in Fig. 11) whose outputs are the inverted and non-inverted channel difference signals. These signals pass to the output amplifiers via the variable ~ ~ Modulator Drive Waveform (38 kHz) Modulating Functions APPLICATION INFORMATION GAIN AND DE-EMPHASIS The gain and de-emphasis characteristics of the circuit are defined by shunt feedback via the external RC networks (R3, C6, R4, C7 of Fig. 1) around the output amplifiers. The gain is unity when resistors of 5.1 kn are used. Higher gains may be obtained by using networks of the form shown in Fig. 12. The resistors R6, R7 are added to correct the output quiescent voltage levels which are optimized for R3, R4 = 5.1 kn and which would, if uncorrected, become too low with higher value resistors. Suitable network values are as follows: FIGURE 12 - OUTPUT AMPLIFIER FEEDBACK NETWORKS Pin 4 Pin 3 C6 R3 R6 MOTOROLA LINEAR/INTERFACE DEVICES 9-146 Pin 5 ·Pin 6 C7 R4 R7 TCA4500A APPLICATION INFORMATION (continued) Gain (dB) R3,R4 0 5.1kil 10nF 15 nF 3 6.8kil 6.8nF 10nF 47k ±10% 6 10k 4.7 nF 6.8 nF 27k ±10% C6,C7 SOilS VARIABLE SEPARATION (BLEND) CONTROL AND 19 kHz OUTPUT To retain the 16-pin package, the blend control has been combined with the 19 kHz output on pin 11. The internal circuit providing this combination is shown in Fig.14. If pin 11 is left open-circuit, the 19 kHz signal appears at a mean dc level of 4 V. The blend circuit is inoperative at this level and the decoder provides full separation. The 19 kHz signal can be used to tune the internal oscillator. To reduce the separation, the voltage on pin 11 is lowered. At 3.2 V, T2 ceases conduction and the 19 kHz signal disappears. At 2.3 V, the blend circuit comes into operation and the separation decreases according to the curve shown in Fig. 15. R6, R7 751ls The maximum output level is 1 Vrms; consequently the max. input is limited to 1.4 Vp-p if the gain is set to 6 dB. SEPARATION ADJUSTMENT A separation adjustment may be added, as shown below, (Fig. 13), to compensate for the receiver's IF characteristics. FIGURE 13 - NETWORK PROVIDING ADJUSTABLE SEPARATION FIGURE 15 - SEPARATION CONTROL VOLTAGE Pin 2 dB 40 56k 5% Pin 3 30 10k Pin 6 -"""fVv-~ 20 56k 5% 10 '---or-...---,---.-- Volts This network reduces the amplification of the channel sum signal in the decoder, to compensate the attenuation of the channel difference signal in the receiver's IF section. The network shown will compensate for up to 2 dB attenuation at 38 kHz. The decoder gain is, obviously, reduced by an amount equal to the compensation required. When used as described, the adjustment also corrects the inherent separation of the decoder, which may be optimized on one channel. Optimization of both channels is possible if separate potentiometers are used to feed each output amplifier. o 2 FIGURE 16 - OSCILLATOR NETWORK FOR DIRECT FREQUENCY MEASUREMENT Pin 15 'Okil 2% f=% Test Point FIGURE 14 - BLEND CONTROL INPUT CIRCUIT 5kil 1-----'.----0 l'OOil OSCILLATOR TUNING If the variable separation facility is not required, pin 11 is left open-circuit and the 19 kHz signal which then appears may be used to indicate the oscillator frequency. If the variable separation is used, and the drive circuit prevents access to the 19 kHz signal, then the oscillator frequency must be measured directly. A test point should be obtained by modifying the oscillator RC network as shown in Fig. 16. Pin 11 'k 19·kHz 2.~~L.SL MOTOROLA LINEAR/INTERFACE DEVICES 9-147 IJ TCA4500A pin 9 are the following: - Quiescent voltage: +2.3 Vdc Current required to ensure mono operaton (with 100 mVrms pilot level): 10j.lA (from pin 9 to ground) Hysteresis: O.lj.lA - Stereo/mono switching and oscillator killing: less than +SOO mV - Maximum stray capacitance between pin 9 and ground: 100pF The output is a pulse train of approximately 1.S Volts amplitude. Connecting frequency counters of up to 300 pF input capacitance produces less than 0.3% change of the oscillator frequency, which should be set to 228 kHz. HIGH LOOP GAIN COMPONENTS For applications demanding operation under low pilot level (e.g., car radio) the following component changes to Fig.l are recommended. Rl ~ 12k R2 ~ 1.Sk R8 ~ 330 P1 ~ 10k C3 C4 ~ ~ C5~ lS0pF 330 nF lS0nF EXTERNAL COMPONENT FUNCTIONS P1 - 19 kHz frequency adjustment P2 - channel separation adjustment and compensation for IF roll-off. R3, RS- gain fixing resistors. The values shown in the schematic are for unity gain. CS, Cl- de-emphasis capacitors. Value to give: RC ~ SOj.ls. EXTERNAL MONO-STEREO SWITCHING ANO OSCILLATOR KILLING If required, the TeA 4500A can be forced into mono mode simply by grounding pin 9 (see Fig. 1). The 228 kHz oscillator will be automatically killed. The conditions governing Mono/Stereo switching on Values shown in Fig. 1 are recommended for applications with input level higher than 1.0 Vrms. MOTOROLA LINEAR/INTERFACE DEVICES 9-148 ® MOTOROLA TCA5550 STEREO SOUND CONTROL SYSTEM STEREO SOUND CONTROL SYSTEM The TCA5550 is a single chip stereo balance, volume, bass and treble control circuit designed for use in car radios, TV, and audio systems. Simple dc inputs allow the control to be effected by four inexpensive potentiometers or a remote control system. The bass and treble responses are defined by a single capacitor per control per channel. SILICON MONOLITHIC INTEGRATED CIRCUIT • Four High Impedance dc Controls - Vol, Bass, Treble, Balance • A Single External Capacitor Defines Each Tone Control Characteristic • low Distortion, 0.1% at Nominal Input level, Unity Gain with the Tone Controls Flat • Channel Separation Better Than 45 dB • Wide Power Supply Tolerance, 10 to 16 Vdc • ± 14 dB of Tone Control • More Than 75 dB of Volume Control • Wide Dynamic Range: 100 mV to 500 mV rms Input Signal PSUFFIX • low Output Impedance PLASTIC PACKAGE CASE 707-02 II FIGURE 1 - BLOCK DIAGRAM 2 Input 7 Vee 6 Output Volume Balance 14 ~ -:- 3 4 -:- 8 MOTOROLA LINEAR/INTERFACE DEVICES 9-149 Bass Treble Output TCA5550 MAXIMUM RATINGS (TA = +25'C) Value Unit 18 Volts 1250 10 mW mWrC Operating Temperature Range (Ambient) -40 to +85 ·C Storage Temperature Range -65 to +150 ·C Rating Power Supply Voltage Power Dissipation (Package Limitation) Derate above TA = +25·C ELECTRICAL CHARACTERISTICS (TA = 25·C VCC = 12 Vdc) Characterlatic Supply Voltage Supply Current i, ., Max Unit 10 - 16 Vdc - 30 15 - - mA 5 Input Levels Max Gain With Reduced Gain3 12,16 5.0 - - - 3.0 V mA - 100 - mV rms - - 500 12,16 - 100 - Output Impedance 2,8 - 300 - Tone Control Range (at 70 Hz & 10 kHz)2 With Pins 3 & 4 @ 0.5 V With Pins 3 & 4 @ 2.3 V With Pins 3 & 4@ 4.1 V 3,4 Input Impedance Balance Control Range (Constant Power Law) Voltage on Pin 6 for Balanced Gain II Min 13 Min Gain Max Gain Regulated Output Voltage 1 Current Typ Pin Min Gain Max Gain 6 Volume Control Range With Pin 7 @ 0 V With Pin 7 @ 3.1 V With Pin 7 @ VPIN 5 7 Control Input Currents 3,4,6,7 - - -14 0 +14 - -35 +3.0 2.3 - - 80 +10 -20 -70 - - 45 Distortion (at 1.0 kHz) at 300 mV rms Output3 - 0.1 - 70 - 50 - Noise Level 50 Hz to 15 kHz, Min Gain !l d8 dB dB V dB - ±1.0 Channel Separation Signal : Noise Ratio 50 Hz to 15 kHz, 10 dB Gain, Tone Controls Flat k!l p.A dB % dB p;V rms NOTES: 1. The control potentiometers to this point, see Figure 7. 2. These figures are functions of the capacitors on Pins', 9, 10, 11, 17 & 1a. See the application diagram, Figure 7. 3. The input level may be increased to 500 mVrms but the user controls must be adjusted to ensure that the output level does not exceed 300 mVrms· MOTOROLA LINEAR/INTERFACE DEVICES 9-150 TCA5550 PERFORMANCE CHARACTERISTICS, FIGURES 2-7, TAKEN IN CIRCUIT OF FIGURE 8, VCC FIGURE 3 - FIGURE 2 - MIDBAND DISTORTION 2.0 1.8 ~ -20 dB 1.6 " ""- -10 1.4 1.2 0.6 1---1"- lei Volume at -10dB 0.4 ~ 0.2 if. ~ -40 Ibl Volume at Max -50 JJ -70 0.2 0.5 1.0 OUTPUT IV rmsl 2.0 o 5.0 1.0 VCcl =I,~ ~~:III Signal = 100 mV rms Volume 0 dB IIIIII Pin 3 ~ I--- +10 V z ;;;: '" -10 r--. -20 I--- ~1rfffi "- i"Pin 3 2.3 Vde Ililil ./1-" r-t- ~ IIII ~ -iW 10K lK \ =>= '\ 0.1 " ~ k: 0.2 0.5 VCC = 12 Vde t= 50Hz I =>= ..... 2.0 0.1 -10 i'Q ~ -15 r- Volume Max, Others Flat ;;;: 0.2 0.3 0.5 .." 1.0 2.0 OUTPUT IV rmsl Bass Max, Others Flat 5.0 I-- "'\ Channel 1 I -25 I I II I III 3.0 -fCh~nel '" -20 I"- All Controls Flat ....... /' -5. 0 Bass ~ax,1 volu~e Max, Others Flat II I- 1.0 o ........ I I II - I I 1.0 2.0 OUTPUT IVrmsl - -- -- m I r rrr All Controls FIatT './ 5. 0 C> Volume Max, Others Flat j) FIGURE 7 - BALANCE CONTROL CHARACTERISTIC LOW FREQUENCY DISTORTION ~ 3.0 I T TTTT I I I I Ir V o ""- 5.0 4.0 J.T lTTT Max Treble, Max Volume, All Others Flat Max Treble, Others Flat t, FREQUENCY IHzl FIGURE 6 - ,I / f\ f\ 1.0 lOOK I / \ 3.0 ..... 2.0 0.5 Vde 100 I, I ~CGI= lz ~d~f t=20kHz I C> III1 I'illi, 3.0 4.0 5.0 VOLUME CONTROL, PIN 7 IVdel 4.0 Pin 4 2.3 V~e V'/ 2.0 5.0 Ull ./ ~~ 10 I"-. \ FIGURE 5 - HIGH FREQUENCY DISTORTION FIGURE 4 - TONE CONTROL CHARACTERISTICS +20 "" -60 o 0.1 "'- ~ -30 II j:: 0.8 Vin = 100 mV rms -20 i'Q lal All Controls Flat ~1.0 VOLUME CONTROL CHARACTERISTICS ........, +10 VCC = 112 Vd~ t = 1.0 kHz I~I VOlulme ~t = 12 V -30 -35 5.0 I 1.0 2.0 3.0 4.0 5.0 6.0 BALANCE CONTROL, PIN 6, VOLTAGE IVdel MOTOROLA LINEAR/INTERFACE DEVICES 9-151 7.0 TCA5550 FIGURE 8 - APPLICATION CIRCUIT Bass - Balance Treble 100 k lOa k ~ 0 (Bass) -= N sCo S 0 P 0 ~ Ili 10; ~ 0.22 0.1 0.22 3 100 k ~ lOOk 2 lOa k :; :; Volume 4 0.1 5 0.22 1 0.1USS) 0.22 6 7 13 12 TCA5550 14 (Treble) Input 2 Input 1 Vcc = 10-16 V II MOTOROLA LINEAR/INTERFACE DEVICES 9-152 + 4.7 p.F ® TDAl190P TDA3190P MOTOROLA TV SOUND SYSTEM TV SOUND SYSTEM The TDA3190P 4.2-wan sound system is designed for television and related applications. The TDA1190P is a low-power version. Functions performed by these devices include: IF Limiting, IF amplifier, low pass filter, FM detector, DC volume control, audio preamplifier, and audio power amplifier. SILICON MONOLITHIC INTEGRATED CIRCUIT • 4.2 Watts Output Power - TDA3190P (VCC = 24V,RL = 160) • 1.3 Watts Output Power (VCC = 18V, RL = 320) TDA 1190P • Linear Volume Control • High AM Rejection ... • Low Harmonic Distortion • High Sensitivity 1 BLOCK DIAGRAM PSUFAX PLASTIC PACKAGE CASE 648C-02 14 9 15 Deemphasis IF Input 11 DecQupling Ripple Rejection Oecoupling Supply Voltage Ground { 4 } Ground Phase Shift Output Phase Shift DC Volume Control Compensation -"'_ _ -I~ Gain 2 3 6 8 4 5 12 16 13 UfJ ORDERING INFORMATION Temperatura Range MOTOROLA LINEAR/INTERFACE DEVICES 9-153 II II TDA1190P, TDA3190P MAXIMUM RATINGS Rating Supply Voltage Range Output Peak Current (Non repetitive) (Repetitive) Symbol TDA3190P TDA1190P VCC 9.0 to 28 9.0 to 22 V 10 2.0 1.5 1.5 1.0 A Input Signal Voltage VI Operating Temperature Range TA Junction Temperature TJ 1.0 o to V + 75 °c 150 ELECTRICAL CHARACTERISTICS (Vce = 24 V, 10 = 4.5 MHz, III Characteristic = °c +25 kHz, TA = 25°C unless otherwise noted.) Symbol Quiescent Output Voltage (Pin 11) Vce = 24 V Vec = 18V VCC = 12 V TDA3190P TDAl190P Both Quiescent Drain Current (Pl = 22 k!l) Vce = 24 V Vce=18V VCC = 12 V TDA3190P TDA1190P Both Min Typ Max 11 8.0 5.1 12 9.0 6.0 13 11 11 22 22 19 - 10 6.9 mA 10 - 35 35 W Po - TDA3190P TDA3190P TDAl190P TDA1190P 1.0 0.7 4.2 1.5 1.3 0.9 TDA3190P TDA3190P TDA1190P TDAl190P - 3.5 1.4 1.0 0.7 - - 40 60 100 100 Input Limiting Threshold Volts (-3.0 dB) at Pin 1 M = ± 7.5 kHz, 1m = 400 Hz, Set Pl lor 2.0 Vrms on Pin 11 TDA3190P TDAl190P Unit V Vo Output Power (d = 10%, 1m = 400 Hz) Vec = 24 V, RL = 16!l Vec = 12 V, RL = 8.0 !l Vee = 18 V, RL = 32 !l Vce = 12 V, RL = 16!l (d = 2%, 1m = 400 Hz) Vee = 24 V, RL = 16!l Vee = 12 V, RL = 8.0!l Vee = 18 V, RL = 32!l Vee = 12 V, RL = 16!l Distortion (PO = 50 mW, VCC = 24 V, Vec = 18V, VCC = 12V, Unit /LV VI - % 1m RL RL RL = = = = 400 Hz, III = ±7.5 kHz) 16!l 32!l 16!l - TDA3190P TDAl190P Both Frequency Response 01 Audio Amplifier ( - 3.0 dB) (RL = 16!l, ClO = 120 pF, C12 = 470 pF, Pl = 22 k!l) RI=82!l RI = 47 !l - - 0.75 1.0 1.0 - - B Recovered Audio Voltage (Pin 16) (VI'" 1.0 mV, fm = 400 Hz, Ilf = ±7.5 kHz, Pl = 0) Amplitude Modulation Rejection (Vi'" 1.0 mV, 1m = 400 Hz, m = 30%) - Vo - 120 - mV AMR - 55 - dB 50 65 - dB - k!l 5 + N N Signal and Noise to Noise Ratio (VI'" 1.0 mV, Vo = 4.0 V, fm = 400 Hz) Hz 70 to 12 k 70t07.0k Input Resistance (Pin 1) (VI = 1.0 mV) ri - 30 Input Capacitance (Pin 1) (VI = 1.0 mV) ei - 5.0 DC Volume Control Attenuation (Pl = 12 k!l) - - 90 MOTOROLA LINEAR/INTERFACE DEVICES 9-154 - pF dB TDA1190P, TDA3190P TEST CIRCUIT Ll -----. Cl0 r-----------C-9-1~--~---oVCC C14 C12 L = 10l'H 00 = 60 fo = 4.5 MHz 9.0 pF 470 pF 120 pF ~ ~r-------l-00,nF~ ~ 100l'F/35 V 120pF 14 Cll Cl 100 nF 11 'nput ~ f---<....-o-~ AI 50 1000 I'F/16 V n A4 9 4, 5, Volume 12, 13 22 kn B 1.0 15 PI C5 lin. C2 CB 7,5 nF 47 of *RC= 751ls TYPICAL CIRCUIT CONFIGURATION A3 C4 C5 ~ --, 14 r--------------15 I I Cll ~ 'J;C13 A4 - ---4,51£;3 -- 3 R2 T 6 B Ll e3 A/",crs""· ~ C7 ~ MOTOROLA LINEAR/INTERFACE DEVICES 9-155 PI 16 AL ® TDA1524A MOTOROLA STEREO TONE CONTROL STEREO TONE CONTROL SYSTEM The TDA1524A is an active balance, volume, bass and treble control for use in car radios, stereo TV receivers and audio systems. Functions are controlled by four non-critical single potentiometers with excellent channel to channel tracking characteristics. Bass and treble contours are defined by a single capacitor per control per channel. Volume control can be linear across the audio spectrum, or a loudness contour can be used. SILICON MONOLITHIC INTEGRATED CIRCUIT • Low Noise • Low Distortion • High Signal Handling Capability • Wide Supply Range • Popular Multi-Sourced Device P SUFFIX PLASTIC PACKAGE CASE 707-02 FIGURE 1 - SLOCK DIAGRAM AND TYPICAL APPUCATION 2.2 fLF + r-----~--~~--------~+ ~ Left ~ Output 33 k 10 k II + 100/LF 33 k + ~2.2 2.2 ~ /LF /LF + 1 Vol Bass Right Output MOTOROLA LINEAR/INTERFACE DEVICES 9-156 I Off Sal Treble Contour On 2.2 k TDA1524A ~ + 25·C) MAXIMUM RATINGS (TA Rating Value Power Supply Voltage Units 20 V 1250 10 mW mWrC Operating Temperature Range -40 to +85 ·C Storage Temperature Range -65 to +150 ·C Power Dissipation Derate above 25·C DC CHARACTERISTICS (TA ~ 25·C, circuit of Figure 2, SWI at "contour on", VI, V9, VlO, V16 ~ 1.9 V, unless otherwise noted) Min Typ Max Units Supply Voltage, VCC Characteristic Pin 3 - 7.5 - 16.5 Vdc Supply Current 3 8.5 12 15 19 27 35 43 35 mA DC Input Level VCC(Vdc) 4,15 DC Output Level Regulator Output Voltage Regulator Output Voltage, SWI in "Linear" Position - 8.5 12 15 3.8 8,11 8.5 12 15 3.3 17 8.5 12 15 3.5 8.5 17 FIGURE 2 - - - - 4.25 5.9 7.3 4.7 4.25 6.0 7.5 5.2 4.0 - - 3.75 3.8 3.85 3.5 3.75 4.0 - - - - + L~ Left I-'-....--'VW---~.....-"""/Ir--'-I~ Output VCC 0.Q15 q Left~ Input~ + 15 14 13 12 3 11 2 Linear 3.0 k 171-......~I\IIr--O'_ 2.2 p.F Contour TDA1524AP On Right~ 4 Input~ + 10 2.2p.F ~--~---T----T----r---T----~--~---T----T----' 0.056 Volume 10 k 2.2 p.F Balance Bass Treble 33 k 51 2.2 p.F . . . - - -...........WI,.-.......'---'Vvv--......;+.HE-----....o Right + Output -:t' MOTOROLA LINEAR/INTERFACE DEVICES 9-157 Vdc - 2.2 p.F 51 Vdc - TEST CIRCUIT 33 k Vdc - Vdc TDA1524A AC CHARACTERISTICS (VCC = 8.5 Vdc, TA = 25°C, circuit of Figure 2, contour switch (SW1) to "Linear" position, frequency 1.0 kHz, gains expressed as 20 log [voltage ratio] unless otherwise noted) Characteristic Vl V9 Vl0 V16 Measure Pints) Gain at Max Volume Control (Input = 50 mVrms) V17 ~ V17 V17 2 2 2 Distortion at 1.8 Vrms Output (Output signal handling) AC Input Resistance Output to Output Separation, One Input Driven (100 mVrms) Noise Output (20 H... 20 kHz, Inputs are Grounded) 8,11 8,11 4,15 8,11 8,11 Gain at Mid Volume, Left Channel (Input = 100 mVrms) Gain Difference Left to Right V17 V17 V17 V17 8,11 2.1 V17 ~ V17 2 2 2 8,11 70 Hz Gain (Input = 70 Hz Gain (Input = 70 Hz Bass Min Typ Max Units 20 10 60 20 - 24 0.5 - 250 400 dB % kG dB p.Vrms -9.0 -6.0 dB -12 ""2 ""2 ""2 ""2 Difference Output to Output 100 mVrms) at Mid Bass Setting 100 mVrms) Control - Boost -Cut - - V17 0 - - 2.5 - 0 - 10 10 - - - - 0 - 12 12 - 2.5 - - - 35 35 - 3.5 16 kHz Gain at Mid Treble Setting (Input = 100 mVrms) 16 kHz Gain Difference Output to Output 16 kHz Treble Control - Boost -Cut 2.1 ~ V17 V17 2 2 2 Balance Control Range of Right Channel Balance Control Range of Left Channel Output Ripple (No Signal, 200 mVrms @ 120 Hz Added to Vcel Adj" 2.1 V17 V17 Adj" ""2 ""2 V17 8 11 8,11 - 1.6 V17 ~ V17 2 2 2 8,11 - -20 - 75 - 1.0 kHz Gain (Input V17 0 ""2 = 1.8 Vrms) Noise Output (20 Hz-20 kHz, Inputs ac Grounded) Distortion (Input = 1.4 Vrms) (Input Signal Handling) Distortion (Input = 1.8 Vrms) 1.0 kHz Gain (Input 8,11 = 2.0 Vrms) 2.0 1.5 - - dB dB dB dB mVrms - dB p.Vrms % % 120 0.5 0.7 - - 8,11 1.3 V17 V17 V17 - - -40 dB ""2 ""2 ""2 - Gain Difference Output to Output Contour Boost at 70 Hz (Contour Switch in "Contour On" Position) Gain at Minimum Volume 0 (Input 2.0 Vrms) Adj'" - ~ V17 V17 2 /' ~ z « FIGURE 4 - dB / -10 ~ z « '" '"~ -40 / / ,,' / -10 / -30 0 > fa = 1.0 kHz f - VCC = 8.5 Vdc f - - / -40 I -50 ./ 1.0 ,,' w V 0 BALANCE CONTROL CHARACTERISTIC ~ / -10 -60 -70 = 8.5 Vdc, unless otherwise noted) VOLUME CONTROL CHARACTERISTIC 10 > - means vary the control over the full range from V17 to o. FIGURE 3 - '" '"«>::; - - 2 2 (All curves taken in the test circuit of Figure 2, VCC w 8,11 - 6.0 8 1.0 3.0 4.0 VOLUME CONTROL PIN 1 (Vdc) .' .' fa = 1.0 kHz VCC = 8.5 Vdc Left Channel - - - - Right Channel 1 1.0 I' 1 I I '\. '\. '\. '\. 1.0 3.0 BALANCE CONTROL, PIN 16 (Vdc) MOTOROLA LINEAR/[NTERFACE DEVICES 9-158 "" '\. 4.0 TDA1524A FIGURE 5 - BASS CONTROL CHARACTERISTIC FIGURE 6 - TREBLE CONTROL CHARACTERISTIC 20 20 v ,/' 10 10 / ~ z « / ~ z « '" '" ~ « !:; 0 :> / -10 .-V -20 o '" ~ / fa VCC ~ / '" « 40Hz _ 8.5 Vdc ~ !:; V 0 :> -10 / / -20 1.0 2.0 o 4.0 3.0 1.0 BASS CONTROL, PIN S (Vdc} FIGURE 7 - TOTAL HARMONIC DISTORTION versus FREQUENCY 0.4 0.3 0.3 o 0.2 j:= 0.1 ~ 1.~ I o FIGURE 9 - TONE CONTROL RESPONSE WITH SINGLE POLE LOW·PASS FILTER 10 ~ z « '" '"!:;« - ~ 0 :> -10 - ~ I 3.0V .1. 2'i ,"" I.1 V V/ I I I ~" 1.5 10 1 1.j "- Iij " o Vinput ~ ~ Vrms / ' 0.2._ 1.0 .-;;?' ~/ ~ "'" ""'- V-...........,.L- 0.5 ........ 1.0 OUTPUT VOLTAGE (Vrms} V 1.4 2.0 1.5 FIGURE 10 - TONE CONTROL RESPONSE WITH DOUBLE POLE LOW·PASS FILTER 3.0 V ~ 20 vs13 11 I 10 >-- 2,6 2.3 r-- z ~ -10 ~ -20 !:; o :> tl t=:r--. \0 -30 ~ ~.6 r"" ~ V 0 -50 103 FREQUENCY (Hz} 10 103 FREQUENCY (Hz} MOTOROLA LINEAR/INTERFACE DEVICES 9·159 r-..... t:;: ~ -40 0.5 Vl0 3.1 2.6 2.3 H,S 1.4 ~ :\. o.~ -20 1 // 2.4 ~ .1. LIs Vl0 "" ~ -" I 103 FREQUENCY (Hz} Vs .\ 0.5 10 20 ~"\ ~[\. .~ '* 1.2 f=:: 4.0 \ ;; 0.2 j:= I - H·2 1.0 0.1 0.5 I 2.0 3.0 TREBLE CONTROL, PIN 10 (Vdc} '\ r\ Vinpul ~ 0.2Vrms 0.2 -, FIGURE 8 - TOTAL HARMONIC DISTORTION versus OUTPUT 0.4 ~ fa ~ 16kHz Vec ~ 8.5Vdc- 1.li I 1.4 0.6 0 II TDA1524A FIGURE 11 - FIGURE 12 - SINGLE POLE LOW-PASS FILTER DOUBLE POLE LOW-PASS FILTER TDA1524AP 8(11) 8(11) 6(13) Y. Output I I l' :!:...e ~Ii~n~e_s_ VOLUME CONTROL RESPONSE WITH SINGLE POLE LOW-PASS FILTER -20 ~ :> -40 Z ~ w I 1.5 -30 ~ B Linear :> - - - Contour On -50 J 1111111 I -60 II -70 II 11111111 I 103 FREQUENCY 1Hz) 10 II 10 5 w ~ !:; 200 0 :> I- J. ' I / L]2 1S Vdc f--. 100 50 -60 B.S -40 -20 0 ~ - - - Contour On I II 11111 II I I 1111111 I 11 10 103 '1 APPLICATION NOTES The use of dc feedback stabilizes the dc output voltage at approximately VCCl2 and assures large output swing capability without distortion. If this dc feedback is not used, the dc output will vary from part to part and available headroom will be somewhat reduced. The loading of the regulator output, Pin 17 has an abrupt effect on switching the contour function and is not intended to be applied in any intermediate degree. The tests assure that the part is in linear mode for total loading of Pin 17 less than 3.0 k.o., and is in contour mode for a total load on Pin 17 greater than 10 k.o.. ::; 250 Vec Linear -40 FREQUENCY 1Hz) 300 r-- 1.5 -30 -70 ~ 150 I -20 -60 T 350 ~ 2.0 -10 -50 FIGURE 15 - NOISE OUTPUT VOLTAGE (20 Hz to 20 kHzl ::> 0 l- 10 2.0 z -10 VI - 3.5 Vdc 3.0 2 20 2'i m I VOLUME CONTROL RESPONSE WITH DOUBLE POLE LOW-PASS FILTER 30 3.Q :g 0 FIGURE 14 - = 3.5 Vdc 10 ') ~ee~PI=o~ot':...J J VI 33 k + I I Recommended DC Feedback Recommended-DC Feedback 20 '"w '"«!:; I 10k I '1'-= 2.2 p.F -=..L I 2.2p.F 30 « I 10k + L FIGURE 13 - 33 k 10 k ( Output 0.056 20 40 60 VOLTAGE GAIN IdB) MOTOROLA LINEAR/INTERFACE DEVICES 9-160 ® TDA3301 TDA3303 MOTOROI.A TV COLOR PROCESSOR TV COLOR PROCESSOR These devices will accept a PAL or NTSC compositE: video signal and output the three color signals, needing only a simple driver amplifier to interface to the picture tube. The provision of high bandwidth on-screen display inputs makes them suitable for text display, TV games, cameras, etc. The TDA3301 differs from the TDA3303 in its user control laws, and also a phase shift control which operates in PAL, as well as NTSC. • Automatic Black Level Setup SILICON MONOLITHIC INTEGRATED CIRCUIT • Beam Current Limiting ~ PSUFFIX • Uses Inexpensive 4.43/3.58 MHz Crystal • No Oscillator Adjustment Required ... • Three OSD Inputs Plus Fast Blanking Input 40 • Four DC, High Impedance User Controls • • Interfaces with TDA3030B SECAM Adaptor • Single 12 V Supply • Low Dissipation, Typically 600 mW FIGURE 1 - FN SUFFIX PLASTIC PACKAGE CASE 777-02 PLCC-44 PIN ASSIGNMENT Chroma Input Hue Control/NTSC Switch ACC Capacitor +12V Chroma DL Driver, Emitter Ground Chroma DL Driver, Collector 1.0 V Composite Video Input Saturation Control Delayed Luma Input Luma DL Drive and 3.0 Inverted Output Identification Capacitor V Input Luma Emitter Load U Input Luma Collector Load Contrast Control 90° Loop Capacitor Oscillator Loop Filter Black Level Clamp Crystal Drive Brightness Control Peak Beam Limit Adjust Crystal Feedback Ground Frame Pulse Input Sandcastle Pulse Input Blue Output Blue Output Clamp Capacitor OSD Input Green Blue Output Feedback OSD Input Red Green Output OSD Input Blue Green Output Clamp Capacitor OSD Input Fast Blanking Red Output Feedback Green Output Feedback Red Output *( PLASTIC PACKAGE CASE 711-03 1 Red Output Clamp Capacitor ) Plee Pin Assignment MOTOROLA LINEAR/INTERFACE DEVICES 9-161 TDA3301, TDA3303 MAXIMUM RATINGS (TA = +25'C unless otherwise stated) Rating' Supply Voltage Pin Value Unit 39 14 Vdc o to + 70 'c 'c Operating Temperature,Range Storage Temperature Range -65to+150 ELECTRICAL CHARACTERiSTICS (TA = 25'C, VCC = 12 V) Pin Min Typ Max Unit Supply Voltage Supply Current 39 10.8 12 45 13.2 V rnA Composite Vid.80 Input Video Input Resistance Video Gain to Pin 35 Input Window 37 Chroma Input (Burst) Input Resistance ACC Effectiveness 1 1 4 Characteristic OSD OSD OSD OSD Gain - 13 2.7 0.8-3 24,25,26 Input Drive Impedance Frequency Response ( - 3.0 dB) Max Gain Difference Between Any Two Beam Current Ref. Threshold Differential Voltage Beam Current Ref. Input Current Differential Current 16,19,22 Luminance Gain Between Pin 36 and Outputs (depends on R33 and R34) Luminance Bandwidth (- 3.0 dB) Output Resistance Residual Carrier (4.43 Melsi PAL Offset (H/2) Difference in Gain Between Y Input and any RGB olp .14,17,20 U Input Sensitivity for 5.0 V Blue Output 8 Matrix Error 14,17,20 Oscillator Capture Range 10 1.0 18 3.2 0.7-3.2 60 - 23 3.6 - 200 - 100 5.0 1.2 0.5 0.7 - 1.0 180 9.0 - - 7.2 - - 1.7 2.0 - - - - 4.7 9.0 120 - 350 - 3.0 Vp-p kn Vp-p V mVp-p kn dB 15 V n MHz MHz % 2.3 20 V mV + 1.5/-0.5 pA pA - 1.0 - 5.0 - MHz n mVp-p mVp-p % 340 - mVp-p 170 30 - - 300 150 50 10 % - Hz Color Kill Attenuation 14,17,20 50 Contrast Tracking OSDILumalChroma 14,17,20 - OSD Contrast Tracking 14,17,20 - - OSD Enable Slice Level 23 - 0.7 - V Sandcastle Slice Level Burst Gate Line Blanking R Input V27 > 7.0 V V27<7.0V 27 7.2 2.6 5.0 22 8.0 V V Frame Slice Level R Input 28 2.8 15 3.6 4x 129 4.6 x 129 U Ref. Phase Error V Ref. Phase Error ", 6.5 2.0 - Peak eaam Limiter Threshold (129 Min = 250 pAl 2 3.4 x 129 Pin 29 Input Resistance 29 - 5.0 Pin 29 Open Circuit Voltage 29 - 10.6 MOTOROLA LINEAR/INTERFACE DEVICES 9-162 5.0 5.0 - dB - dB ±2.0 3.0 - - dB kG kG V kn kG V TDA3301. TDA3303 INPUT/OUTPUT FUNCTIONS FIGURE 2 - BRILLIANCE CONTROL +2.0 in t::; The brilliance control operates by adding a pedestal to the output signals. The amplitude of the pedestal is controlled by Pin 30. ~ +1.0 w (!1 Z ~ During CRT beam current sampling a standard pedestal is substituted, its value being equivalent to the value given by V30 Nom. Brightness at black level with V30 Nom is given by the sum of three gun currents at the sampling level, i.e. 3 x 20 p.A with 100 k reference resistors on Pins 16, 19, and 22. (.) 5NOM I 5o I -1.0 I II:! ~I~ ~1i:3 > (1- o I I I I 1- During picture blanking the brilliance pedestal is zero; therefore the output voltage during blanking is always the minimum brilliance black level (Note: Signal channels are also gain blanked). ~Ig ol!d! ~I~ 1.0 2.0 3.0 BRILLIANCE CONTROL (VOLTS) V30 4.0 FIGURE 3 - SATURATION CONTROL VOLTAGE V5 (VOLTS) o 1.0 2.0 3.0 4.0 5.0 o FIGURE 4 - CONTRAST CONTROL V32 (VOLTS) 1.0 2.0 3.0 4.0 5.0 2.0 -10 4.Q iii -20 8.0 6.0 :!:! z o ~ ~ _ 10 IXI :!:! 12 -30 z z o ~ -40 ~ 14 ~ z I!! 16 < 18 -50 20 22 24 Pin 5 is automatically pulled to ground with a misidentified PAL signal. Note: Nominal 100% saturation point is given by choice of R2 which sets ACC operating point. Note: Pin 32 is pulled down by the operation of the peak beam limiter. MOTOROLA LINEAR/INTERFACE DEVICES 9-163 II TDA3301, TDA3303 FIGURE 5 - BLOCK DIAGRAM J;6 31 30 34 ~ Black Level Clamp Brilliance Control ~ D.C. Level Shifter 33 ~~ - Luma Contrast Ro- t ~ Beam Limiting t J II Contrast Controller I I 1 H ACC Control >-- H Hue Control I -l HJ I Output Amplifier X3 I Timing logic Counters A & B t I 14 17 20 23 0 27 28 F 13 ~ Burst Gate 4ID Filter Filter Det rrr I Det t,-<}-< V tu U Ref I Delay Line Driver 90".p Shifter I ~ 4 5 ~Det U Det Color Contrast & Saturation 3 15 18 21 I t 40 ~ Color Difference Matrix & Color Killer Color Kill Logic 16 19 22 C.R.T. Beam Current Clamp X3 J:: Blanking Controller TDA3301 TDA3303 1 2 ..- t ~ 20 26 25 O.S.D. Black Level Clamp & Contrast X3 --l 35 >-- - I 4 Y 37 3-Way Splitter I t 39 +12V 38 29 p2 I 6 7 t H/2 Bistable 8 I I I U V Ref 90" .pOet .t H/2 Switch .poet ~ ~ MOTOROLA LINEAR/INTERFACE DEVICES H/2 Switch Switch 4.33MHZ VCO I 9 9-164 ~t Lt12 r 10 TDA3301, TDA3303 AGURE 6 - HUE CONTROL BURST .pLEAO· (3.58 MHz) The hue control acts only during burst gating to give a ±40· phase shift between the burst and chrominance signal. On the TDA3303 Pin 40 is also used to select NTSC when V 40 < 8.0 V and thus the control will operate only in this mode. On the TDA3301 NTSC selection is independent of V40 and the control can be operated in both NTSC and PAL. 5040 30 ~ 20w a: 13 ew 10 ----' VF I FIGURE 8 - VECTOR DIAGRAM FOR REFERENCE REGENERATION The crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. A great deal of care was taken to ensure that the oscillator loop gain and the crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade crystal (crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency. a =0 veo al2 = a 11 . . . , . - - - - - - -.... - - - - ---'"7 / Ix / / / / / / / MOTOROLA LINEAR/INTERFACE DEVICES 9-165 VF 1 TDA3301. TDA3303 is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification. b) The H/2 switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not dc. A commutator at the phase detector output also driven from the PAL bistable converts this ac signal to a dc prior to the loop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error. By referring to Figures 7 and 8 it can be seen that the necessary ±45° phase shift is obtained by variable addition of two currents I, and 12 which are then fed into the load resistance of tbe crystal tuned circuit R,. Feedback is taken from the crystal load capacitance which gives a voltage VF lagging the crystal current by 90°. The RC network in T, collector causes I, to lag the collector current of T, by 45°. For SECAM operation the currents I, and 12 are added together in a fixed ratio giving a frequency close to nominal. When decoding PAL there are two departures from normal chroma reference regeneration practice: a) The loop is locked to the burst entering from the PAL delay line matrix U channel and hence there is no alternating component. A small improvement in signal noise ratio is gained but more important FIGURE 9 - When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC this cannot be considered to be a serious disadvantage. BLOCK DIAGRAM OF REFERENCE SECTION U Axis V Axis Filter U Signal From PAL -----i Delay Line 90° REFERENCE GENERATION To generate the U axis reference a variable all-pass network is utilized in a servo loop. The output of the allpass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the variable all-pass network (see Figure '0). As with the reference loop the oscillator signal is taken after the H/2 phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled. For SECAM operation the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature. The use of a 4.4 MHz oscillator and a servo loop to generate the required 90° reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate 90° which may be easily switched to 0° for decoding AM SECAM generated by the TDA3030B adapter. MOTOROLA LINEAR/INTERFACE DEVICES 9-166 TDA3301, TDA3303 FIGURE 10 - VARIABLE ALL-PASS NETWORK Filter 9 0-.-----1---+__ C Control dc 4.43 MHz From Dsc. --I------~----+--I . , - - - - -..... SECAM Switching FIGURE 11 - ACC AND IDENTIFICATION DETECTORS To R-Y Filter To B-Y Filter 7.0 V 4.0 k 4.0 k 4.0 k 4.0 k +12 V + Burst Gate 1----'\""'-._ Ident Filter ACC Filter MOTOROLA LINEAR/INTERFACE DEVICES 9-167 TDA3301, TDA3303 ACC AND IDENTIFICATION DETECTORS When Vref 2 is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2. As latch 2 turns on latch 1 must turn off. Latch 2 turning on gives extra trigger pulse to bistable to correct identification. The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current injected on Pin 6. If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum. During burst gate time the output components of the U and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored 'and balanced 'against its twin giving push-pull current sources for driving the ACC and the identification filter capacitors. The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by 5% such that the identification detector pulls up on its filter capacitor with zero signal. IDENTIFICATION See Figure 12 for definitions. Monochrome 11>12 PAL ident. OK 11<12 PAL ident. X 11>12 NTSC 13>12 NTSCSWITCH NTSC operation is selected when current (13) is injected into Pin 6. On the TDA3301 this current must be derived externally by connecting Pin 6 to + 12 V via a resistor (as on TDA3300B). On the TDA3303 13 is supplied internally when V40 falls below 8.0 V; For normal PAL operation on both versions Pin 40 should be connected to + 12 V and Pin 6 to the filter capacitor. Only for correctly identified PAL signal is the capacitor voltage held low since 12 is then greater than 11. For monochrome and incorrectly identified PAL signals 11 >12 hence voltage VCC rises with each burst gate pulse. When Vref is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C. Maximum current is limited by R1. FIGURE 12 - IDENTIFICATION CIRCUIT NTSC Switch +12 V II ] - - - - c SECAM Switching Line R2 440 Vref 1 'Supplied externally on TDA3301 1-_--'WI.._-Vre f 2 + Trigger Supplied internally on TDA3303 Burst Gate Latch 2 Inhibit MOTOROLA LINEAR/INTERFACE DEVICES 9-168 TDA3301, TDA3303 The color difference matrixing is performed by 2 differential amplifiers each with one side split to give the correct values of the - (B-Y) and - (R-Y) signals. These are added to give the (G-Y) signal. The 3 color difference signals are then taken to the virtual earths of the video output stages together with luminance signal. COLOR DIFFERENCE MATRIXING, COLOR KILLING, AND CHROMA BLANKING During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply. FIGURE 13 - COLOR DIFFERENCE STAGES Color Kill & Blanking + + + + R R B-Y R·Y R C R R-Y..-----... ~-----I~ SANDCASTLE SELECTION The TDA3301/3303 may be used with a two level sandcastle and a separate frame pulse to Pin 28, or with only a 3 level (super) sandcastle. In the latter case a resistor of 1 M.o. is necessary from + 12 volts to Pin 28 and a 470 pF capacitor from Pin 28 to ground. MOTOROLA LINEAR/INTERFACE DEVICES 9-169 8-Y II ~ - FIGURE 14 - TIMING DIAGRAM o ~ I r-____________~/,~I--------------Frame Pulse F (V281 s:: 0 -i 0 :lI 0 r C Z m !!..., 0 » :lI L -i m I I U I ('") m _ _ _ _ _ _ _ _ _----,1 f < n m 1 I 1 I I i J I 1 I.. CRT Sa~ple Tome Insert Brilliance 1 S Reference Pedestal I S r I I I I" 1--1 I- I L.-:----~;_.-------- Counter B Output 1 I I ------11 I Vl II IU I Counter A Output " » I UI -------------------------f{ 'r'-------------, :lI m 0 I Clock To A ~ z I Sandcastle L (V27) » Si~als Gain Blank All F+L+B+A + B I1 _I I I -I ·1 M TDA3301, TDA3303 ing edge of the frame pulse. In order to provide control signals for: Luma/Chroma blanking, Beam current sampling, On-screen display blanking, Brilliance control. The appropriate flip-flop outputs are matrixed with sandcastle and frame signals by an emitter follower matrix_ TIMING COUNTER FOR SAMPLE CONTROL In order to control the beam current sampling at the beginning of each frame scan two edge triggered flipflops are used. The output A of the fi rst fli p-flop A is used to clock the second flip-flop B. Clocking of A by the burst gate is inhibited by a count of A.B. The count sequence can only by initiated by the trail- FIGURE 15 - TIMING COUNTER + Frame Burst ~-.J\I'.(\r---------"'" Gate }-_ _..... ON-SCREEN DISPLAY INPUTS input coupling capacitor. This ensures that the current in the diversion gate is zero at black level and makes the OSD black level insensitive to contrast control, also the inputs ignore signals below black, e.g. sync, pulses. Each section of the OSD stages consists of a common emitter input stage feeding a diversion gate controlled by the contrast control. During burst gate time a feedback loop is activated which clamps the signal at the FIGURE 16 - OSD STAGE Burst Gate Pulse ~ '"~1 MOTOROLA LINEAR/INTERFACE DEVICES 9-171 TDA3301, TDA3303 FIGURE 17 - VIDEO OUTPUT SECTION A further drive current is used to control the dc operating point; this is derived from the sample and hold stage which samples the beam current after frame flyback. Each video output stage consists of a feedback amplifier in which the input signal is a current drive to the virtual earth from the luminance, color difference and on-screen display stages. DC Control Drive ">---+--..-,. Output + Video Blanking OSD Drive Luminance Drive Color Difference Drive FIGURE 18 - II COMPLETE VIDEO OUTPUT SECTIONS ~+--+----J Signals Ref. I R. Enable Ref. Voltage MOTOROLA LINEAR/INTERFACE DEVICES 9-172 CRT TDA3301, TDA3303 FIGURE 19 - TYPICAL VIDEO OUTPUT STAGE -----e-------.--------------+250V 1.0 nF 12 k 12 k 1.0 k CRT Cathode 22 k IN4148 Gain 22 k Spark Gap Video Drive +12V 1.0 k2 4.7 k To Other Stages 1.5 k 1.5 k Feedback ...---------------------e--------"IIIfIr-------..... 3.3 k *RF is chosen to suit CRT characteristics, typically 120 k. I 33PF FIGURE 20 - CLASS A VIDEO OUTPUT STAGE WITH DIRECT FEEDBACK +250 V 10 k . . .------.. . .'V'v--------. 1.0 k Gain Video Drive _------.JVJ/.Iv-------.------1 2.0 k 2.2 k ..Jr 180 Feedback .........._______________-____ 180 MOTOROLA LINEAR/INTERFACE DEVICES 9-173 CRT Cathode c: o'i'" c. "0> o .~ ~" ~c: ~ o -.- ;;" 16 ".£ '"c: :;;; ..'" -.. ""0 "-C:~ ~c?lC) a: CD - 0; U +12 V .."" o. ~ 8c: 1;; >0 I"; ~ c: ,,-CD r-1.Ok ~ I-fH 1.5 k Vl l.,r 1.0k Q 330 !;( ~ ~ ~ I 1;j ~ ::l. ~ a CW) ~ "fJf.~ Positive Video 1.0Vpp 1.8 k 11 ~ ~ ~ ~ ~ - ~ ~ fa) c W ~ ~ ~ 27 26 Red Feedback ~ 11 c c ~ § 25 24 ~Drive 23 22 W U > w 0 w u « u. ex: w 21 f- Z ::::: TDA3301fTDA3303 2 345 6 7 8 up 9 10 11 ex: 12 13 .43 u~ ~ l.. "If P 47 F r:: la",t8M~ 14 15 16 17 18 19 1'1 I +,"1 eIa1I,a ·'1 ~ ~ -.i 47p.F U ~ ~I~ ~~ 10k 18 k ~ - J.!.2 pF u 20 « w 1 ...J Z G';'","_' [7~,"w V loOk " " ~ 1,0 nF 82 Q I- . 1-8. loOk ''~Jl 0'1 ~1 '0' IT. i~ TOOOF ~ 47 PF"t.. ~ 17St--175 1751 220 k z ~ 751 1.0M 220 k 2.7 k 00 4 PAL Delay Line Blue Feedback rtf! ~ ~--------·----------~C Blue Drive 390 oCW) Note: When not using super sandcastle a positive vertical blanking pulse must be applied to Pin 28. ~ II « ...J aex: afa ~ ""enr- ® TDA3330 MOTOROLA TV COLOR PROCESSOR TV COLOR PROCESSOR This device will accept a PAL or NTSC composite video signal and output the three color signals, needing only a simple driver amplifier to interface to the picture tube. Its simplified approach makes it particularly suitable for low cost CTV systems. • • • • • SILICON MONOLITHIC INTEGRATED CIRCUIT No Oscillator Adjustment Required Four dc High Impedance User Controls Uses Inexpensive 4.43/3.58 MHz Crystals Interfaces With TDA3030B SECAM Adaptor Uses Horizontal Flyback or Super Sandcastle Pulse - • Single 12 V Supply • Low Dissipation 1 PSUFFIX PLASTIC PACKAGE CASE 724-03 FIGURE 1 - PIN ASSIGNMENT Chroma DL Driver, Emitter Chroma DL Driver. Collector Saturation Control 2 ACC Filter Identification Capacitor 3 Chroma Input Hue ControliNTSC Switch V Input 4 U Input 5 +12 V 90· Loop Capacitor 6 Contrast Control Oscillator Loop Filter 7 Brightness Control Crystal Drive 8 Y Input Crystal Feedback 9 dFldt Ground 10 Sandcastle Input DC Ref & Blanking 11 Red Output Blue Output 12 Green Output MOTOROLA LINEAR/INTERFACE DEVICES 9-175 TDA3330 MAXIMUM RATINGS (TA = + 25°C unless otherwise stated) Rating Supply Voltage Pin Value Unit 20 14 Vdc o to Operating Temperature Range Storage Temperature Range °c +70 -65to +150 °c ELECTRICAL CHARACTERISTICS (TA = 25°C VCC = 12 V) Pin Min Typ Max Unit Supply Voltage Supply Current Characteristic 20 10.8 12 13.2 50 V mA Composite Video Input 17 - Vp-p Video Input Resistance On Burst Gate Off Chroma Input (Burst) Input Resistance ACC Effectiveness 22 22 1 Luminance Gain between Pin 17 and Outputs (Contrast max) Luminance Bandwidth (- 3.0 dB) Output Resistance Residual Carrier (4.43 MHz) PAL Offset (H/2) - 1.0 - 5.0 1.5 - - k!l M!l 10 100 5.0 0 200 mVp-p -1.5 - 12,13,14 - dB - 8.0 5.0 170 - ill +1.5 - MHz !l . mVp-p mVp-p - - 200 50 - 340 - - 10 % Oscillator Capture Range 300 500 - Hz U Reference Phase Error - - 5.0 5.0 ° , U Input Sensitivity for 5.0 V Blue Output 5 Matrix Error 12,13,14 V Reference Phase Error mVp-p ° Color Kill Attenuation 12,13,14 50 - - dB Contrast Tracking Luma/Chroma 12,13,14 - 0 2.0 dB - 7.2 1.5 5.0 10 8.0 2.5 V V k!l k!l 15 Sandcastle Slice Level Burst Gate Line Blanking R Input V15 > 7.0 V V15 < 7.0 V 0.5 - - INPUT/OUTPUT FUNCTIONS FIGURE 3 - SATURATION CONTROL VOLTAGE V2 (VOLTS) FIGURE 2 - BRIGHTNESS CONTROL o 1.0 2.0 3.0 4.0 5.0 7.0 -10 iii iii :!:! 6.0 ~ z o ~ 5.0 ::::l -30 o ~ w z {~ ~ -40 z i!:u ....::::l -20 4.0 -50 53.0 o Pin 2 is automatically pulled to ground with a misidentified PAL signal. Note: Nominal 100% saturation point is given by choice of Rpin 23 which sets ACC operating point. 2.0-i-_ _-,-_ _-r-_...L-,-_ _-,-_ o 1.0 2.0 3.0 4.0 BRIGHTNESS CONTROL (VOLTS) V18 MOTOROLA LINEAR/INTERFACE DEVICES 9-176 TDA3330 RGURE 4 - CONTRAST CONTROL V19 (VOLTS) 50 o 1.0 2.0 3.0 4.0 (ij40t-----........ 5.0 ttl 30 ~ 20 e iii ~ 10 10 w Z o ~ 10 li:J 20 ~ 30 FIGURE 5 - HUE CONTROL BURST .pLEAD" (3.58 MHz) t-----+-----~--~\_----~--~~--~~---+-----+~----. 1.0 2.0 5.0 6.0 7.0 V21 I "- 20 ~ 30 a: :J 40 50 Z '" 40+---' The hue control acts only during burst gating to give a ± 40" phase shift between the burst and chrominance signal. Pin 21 is also used to select NTSC when V21 < 8.0 V and thus the control will operate only in this mode. NTSC selection means the PAL phase switching is turned off. Delay-line and filter switching must be implemented externally. FIGURE 6 - BLOCK DIAGRAM Sandcastle Chroma 22 Input ACC 23 Filter . . .I r-----t~===;=+===t- NTSC 21 Hue 11 DC Ref and Blanking Saturation 2 Q------t------------' 24 1 ~ PAL Delay Ident. 3 4V U Input 90· 7 VCO Filter Filter 6 lop!:!t Line MOTOROLA LINEAR/INTERFACE DEVICES 9-177 TDA3330 CIRCUIT OPERATION CHROMINANCE DECODER SECTION FIGURE 7 - VOLTAGE CONTROLLED OSCILLATOR (VCO) The chrominance decoder section of the TDA3330 consists of the following blocks: Phase-locked reference oscillator- Figures 7, 8 and 9 Phll$l!-Iocked 90 degree servo loop - Figures 9 and 10 U and V axis decoders ACC detector and identification detector - Figure 11 Identification circuits and PAL bistable - Figure 12 Color difference filters and matrixes with fast blanking circuits. The major design considerations apart from optimum performance were: - a minimum number of factory adjustments - a minimum number of external components - compatibility with the SECAM adapter TDA3030B - low dissipation - use of a standard 4.433618 MHz crystal rather than a 2.0 fc crystal with divider, (or standard 3.579545 MHz for NTSC). +12V R1 Ix REFERENCE REGENERATION 8 FIGURE 8 - VECTOR DIAGRAM FOR VCO The crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. Much care was taken to ensure that the oscillator loop gain and the crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade crystals ( crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency. By referring to Figures 7 and 8 it can be seen that the necessary ± 45° phase shift is obtained by variable addition of two currents 11 and 12 which are then fed into the load resistance ofthe crystal tuned circuit R1. Feedback is taken from the crystal load capacitance which gives a voltage VF lagging the crystal current by 90°. The RC network in 01 collector causes 11 to lag the collector current of 01 by 45°. For SECAM operation the currents 11 and 12 are added together in a fixed ratio giving a frequency close to nominal. When decoding PAL there are two departures from normal chroma reference regeneration practice: a = 0 al2 11 , . . - - - - - - . , - - --7a - = 1 / / / / / / ICOl / VF b) The H/2 switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not DC. A commutator at the phase detector output also driven from the PAL bistable converts this AC signal to a DC prior to the loop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error. When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC this cannot be considered to be serious disadvantage. a) The loop is locked to the burst entering from the PAL delay line matrix U channel and hence there is no alternating component. A small improvement in signal noise ratio is gained but more important is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification. MOTOROLA LINEAR/INTERFACE DEVICES 9-178 TDA3330 IDENTIFICATION See Figure 12 for definitions. Monochrome 11 > 12 PAL ident. OK 11 < 12 PAL ident. X 11 > 12 NTSC 13> 12 90' REFERENCE GENERATION To generate the U axis reference a variable all-pass network is utilized in a servo loop. The output of the allpass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the variable all-pass network. (See Figure 10.) As with the reference loop the oscillator signal is taken after the H/2 phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled. For SECAM operation with TDA3030B the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature. The use of a 4.4 MHz oscillator and a servo loop to generate the required 90' reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate 90' which may be easily switched to O' for decoding AM SECAM generated by the TDA3030B adapter. FIGURE 9 - Only for correctly identified PAL signal is the capacitor voltage held low since 12 is then greater than 11. FIGURE 10 - VARIABLE ALL-PASS NETWORK +12 V 4.0 k BLOCK DIAGRAM OF REFERENCE SECTION SECAM Switching 1/---- For monochrome and incorrectly identified PAL signals 11 > 12 hence voltage Vc rises with each burst gate pulse. When Vref1 is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C. Maximum current is limited by R1. When Vref2 is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2. As latch 2 turns on latch 1 must turn off. Latch 2 turning on gives extra trigger pulse to bistable to correct identification. The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current (13) injected into Pin 3 by the NTSC switch. This is supplied internally when V21 falls below B.O V. If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum. U Signal From~ PAL Delay Line ACC AND IDENTIFICATION DETECTORS During burst gate time the output components of the U and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push pull current sources for driving the ACC and the identification filter capacitors. The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by 5% such that the identification detector pulls up on its filter capacitor with zero signal. MOTOROLA LINEAR/INTERFACE DEVICES 9-179 TDA3330 FIGURE 11 - ACC AND IDENTIFICATION DETECTORS To B-Y Filter To R-Y Filter 7.0 V 4.0 k 4.0 k 4.0 k 4.0 k +12 V j-----'VVv--_ Ident Filter FIGURE 12 - + Burst Gate ACC Filter IDENTIFICATION CIRCUIT NTSC Switch + +12 V } -_ _.... SECAML~:itching + • + Trigger Burst Gate Latch 2 Inhibit COLOR DIFFERENCE MATR!X!NG. COLOR K!LlING. AND CHROMA BLANKING The color difference matrixing is performed by 2 differential amplifiers each with one side split to give the correct values of the - (S-Y) and - (R-Y) signals. These are added to give the (G-Y) signal. The 3 color difference signals are then taken to the virtual earths of the video output stages together with luminance signal. During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply. MOTOROLA LINEAR/INTERFACE DEVICES 9-180 TDA3330 FIGURE 13 - COLOR DIFFERENCE STAGES Color Kill and Blanking + R-V + + + R R R C R B-V R-V.._--, ~--. B-V Pin 16. This input is used to inhibit the burst gate. This is used if a true Sandcastle is not available; in this case horizontal flyback may be used instead and differen- SANDCASTlE SECTION The input signal is sliced at 2 levels, 1.5 V and 7.2 V. Above 1.5 V is used for blanking, above 7.2 V for burst gating provided level on Pin 16 is belowO.7V.lfa normal Sandcastle is used, it is recommended to ground the tiated flyback applied to the 1.0 kO). "*" pin (input resistance t FIGURE 14 - DC REFERENCE AND BLANKING SECTION + 11 The DC Reference and Blanking section is used to bias the Video output stages. The temperature coefficient is arranged to be a VBe drift less than the Red, Green and Blue outputs. DC Reference >-....--'--'-0 and Blanking DIP = Blanking From Sandcastle MOTOROLA LINEAR/INTERFACE DEVICES 9-181 TDA3330 FIGURE 16 - TYPICAL PAL APPLICAOON +12V ,-----~~Mn~ , - - - _ Brightn... ... 1,OV 4.43 MHz Trap ~:= ~-..,... ,..J'r.v:r'..,...-'WI.-rv:'"\....-,;---+-t--+-, 1.5k f\ ., . -.....---.-:....:.... Honz. Flybeck .2~ +--...,.,I\r---CVert. Ryback G +250 V 3.0W 8.2 k 1.0k 12 Saturatlon_-+_M.-------+-t Blu8 Cathode 44 k 430 l1F Other Output Stagea FIGURE 16 - TYPICAL NTSC APPLlCAnON +12V .-----~Contrast - - - - C Brightness .-+_I-+. ___ Hue ~ ., f\ . -.....- - - - -.. Horiz. Flyback or Blanking Pulse lU~ Vert. Flyback or Blanking Pulse G +250V TDA3330 3.0W 8.2 k 1.0k 44 k 10nF'J;, 8lue Cathode Other Output S...es RO - Should follow the Delay Line manufacturer's recommendations. R1 - Should be selected to give approximately 10-12 V pulse at Pin 15 (approximately 5.0 k internal resistance). R2 - Should be selected to give approximately 4.0 to 5.0 V pulse at Pin 15 (approximately 10 k internal resistance). MOTOROLA LINEAR/INTERFACE DEVICES 9-182 ® TDA3333 MOTOROLA TV COLOR DIFFERENCE DEMODULATOR TV COLOR DIFFERENCE DEMODULATOR This device is designed to demodulate a typical chroma input signal and output the two color difference signals, R - Y and B - Y. • Decodes PAL or NTSC SILICON MONOLITHIC INTEGRATED CIRCUIT • Uses Inexpensive 4.43/3.58 MHz Crystal • No Oscillator Adjustment Required • On-Chip Hue Control for NTSC • Interfaces with TDA3030B SECAM Adaptor • Single 12 V Supply • Low Dissipation P SUFFIX PLASTIC PACKAGE CASE 707-02 FIGURE 1 - PIN ASSIGNMENT Chroma DL DRIVER, Collector ~p Chroma DL Driver, Emitter Satu ration 2 17 Identification Capacitor 3 16 V Input 4 15 PACC Fi Iter PChroma Input PHue ControliNTSC Switch U Input 5 14] +12V Crystal Drive 6 13 J (R - V) Output Crystal Feedback 7 12 (B - V) Output PSandcastie Input [ L-_ 9 10.....POscillator Loop Filter _ 90' Loop Capacitor [ 8 Ground 11 MOTOROLA LINEAR/INTERFACE DEVICES 9-183 II II TDA3333 MAXIMUM RATINGS (TA = +25°C unless otherwise stated) Rating Supply Voltage Pin Value Unit 39 14 Vdc o to Operating Temperature Range °C +70 -65 to +150 Storage Temperature Range °C ELECTRICAL CHARACTERISTICS (TA = 25°C VCC = 12 V) Pin Min Typ Max Supply Voltage 14 10.8 12 13.2 V Chroma Input 16 10 100 200 mVp-p (burst) ACC Effectiveness 1 dB Characteristic Unit - 1.2 3.0 Matrix Error - - 10 % Oscillator Capture Range 350 - Hz U Ref. Phase Error - - 5.0 5.0 ° 70 - mVp-p 4.2 2.4 - Vp-p Vp-p V Ref. Phase Error U Input Sensitivity for 1.0 Vp-p (B-Y) Output 5 Max Output (Limiting) B-Y R-Y 12 13 DC Output B-Y R-Y 12 13 B-Y R-Y 12 13 Output Resistance FIGURE 2 - VCC Gnd Chroma ACC Filter Hue Control M ACC Control 17 ~ . I t ~ I I R-Y J ACC Det Iri Ident Del Filter Delay Line Driver 1 90" Shifter t y 18 1 3 1 Filter 1 4 5 + I I U Det I I 90° Det +U I H/2 1 Switch f H/2 Bistable Chroma Delay Line 1 ~ U Ref • 1 I t Burst Gate 1 <} I +12 Color Difference Matrix & Color Killer Slicer I I B-Y +13 ~.- 2 n n - BLOCK DIAGRAM ," ~ Hue Control Color Contrast & Saturation Sat Control Color Kill Logic V V - 100 80 - Sandcastle P , 14 9.2 10.1 ° V Det 1 I I J L H/2 1 Switch Burst Det • J H/2 1 Switch f 14.43 MHz VCO MOTOROLA LINEAR/INTERFACE DEVICES ~ V Ref I- -I 90° Filter 9-184 1 U I I 8 Ident Filter V U 1 I I i6 h Crystal 10 VCO Filter TDA3333 FIGURE 3 - SATURATION CONTROL VOLTAGE Pin 2 Voltage (V) 2 345 o -10 -20 In the case of a misidentified PAL signal Pin 2 is automatically pulled to ground. -30 Note: Nominal 100% saturation point is given by choice of R17 which sets ACC operating point. -40 -50 FIGURE 4 - HUE CONTROL Burst Lead"(3.58 MHz) 50 .. . e.'" .,. ~ 40 30 20 10 .J::. 0.. 10 1?! 20 OJ 30 " Pin 15 Voltage (V) 2 4 5 6 PAL Mode NTSC Mode 40 50 Burst Lag" Note: Hue control acts only during burst gating with V15<8 Volts. This condition also selects NTSC mode MOTOROLA LINEAR/INTERFACE DEVICES 9-185 TDA3333 CIRCUIT OPERATION CHROMINANCE DECODER SECTION FIGURE 5 - VOLTAGE CONTROLLED OSCILLATOR (VCO) The chrominance decoder consists of the following blocks: Phase-locked reference oscillator - Figures 5, 6, and 7 Phase-locked 90 degree servo loop - Figures 7 and 8 U and V axis decoders ACC detector and identification detector - Figure 9 Identification circuits and PAL bistable - Figure' 0 Color difference filters and matrixes with fast blanking circuits. The major design considerations apart from optimum performance were: - a minimum number of factory adjustments - a minimum number of external components - compatibility with the SECAM adapter TDA3030B - low dissipation - use of a standard 4.4336'8 MHz Crystal rather than a 2.0 fc Crystal with divider. +12V Ix = al2+11 12 (1-a) R1 6 Ix CJ 7 VF 1 DC Bias REFERENCE REGENERATION FIGURE 6 - VECTOR DIAGRAM FOR The Crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. A great deal of care was taken to ensure that the oscillator loop gain and the Crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade Crystals (Crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency. veo al2 a = 0 ..,...-------...... - - - - - - - - - - 7 a = 1 11 // / Ix / / // / / / / / / / I C 0 1 _ - - - . . . J . - - - " " ' - / - - - - - - . VF By referring to Figures 5 and 6 it can be seen that the necessary ±45° phase shift is obtained by variable addition of two currents I, and 12 which are then fed into the load resistance of the Crystal tuned circuit R,. Feedback is taken from the Crystal load capacitance which gives a voltage VF lagging the Crystal current by 90°. is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification. b) The H/2 switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not dc. A commutator at the phase detector output also driven from the PAL bistable converts this ac signal to a dc prior to the !oop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error. When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC, this cannot be considered to be a serious disadvantage. The RC network in T, collector causes I, to lag the collector current of T, by 45°. For SECAM operation the currents I, and 12 are added together in a fixed ratio giving a frequency close to nominal. When decoding PAL there are two departures from normal chroma reference regeneration practice: a) The loop is locked to the burst entering from the PAL delay line matrix U channel and hence there is no alternating component. A small improvement in signallnoise ratio is gained but more important MOTOROLA LINEAR/INTERFACE DEVICES 9-186 TDA3333 90· REFERENCE GENERATION FIGURE 7 - BLOCK DIAGRAM OF REFERENCE SECTION V Axis FIGURE 8 - VARIABLE ALL-PASS NETWORK U Axis 9 Filter C Control dc Filter 4.43 MHz From OSC. H/2 U 90" Signal From PAL SECAM Switching Filter To generate the U axis reference a variable all-pass network is utilized in a servo loop. The output of the allpass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the varible all-pass network (see Figure 8). As with the reference loop the oscillator signal is taken after the H/2 phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled. For SECAM operation the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature. The use of a 4.4 MHz oscillator and a servo loop to generate the required 90" reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate 90" which may be easily switched to 0" for decoding AM SECAM generated by the TDAJ030B Adapter. current sources for driving the ACC and the identification filter capacitors. The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by 5% such that the identification detector pulls up on its filter capacitor with zero signal. IDENTIFICATION Monochrome I, >12 PAL ident. OK I, <12 PAL ident. X 1,>12 NTSC 13>12 Only for correctly identified PAL signal is the capacitor voltage held low since '2 is then greater than I,. For monochrome and incorrectly identified PAL signals 1,>12 hence voltage Vc rises with each burst gate pulse. When Vref is exceeded by 0.7 V latch' is made conducting which increases rate of voltage rise on C. Maximum current is limited by R,. When Vref is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2. As latch 2 turns on latch' must turn off. Latch 2 turning on gives extra trigger pulse to bistable to correct identification. ACC AND IDENTIFICATION DETECTORS During burst gate time the output components of the U and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push-pull MOTOROLA LINEAR/INTERFACE DEVICES 9-187 TDA3333 The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This func· tion allows the SECAM switching line to inhibit the bi· stable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current injected externally on the filter capacitor. If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum. FIGURE 9 - ACC AND IDENTIFICATION DETECTORS To R-Y Filter To B-Y Filter 7.0 V 4.0 k 4.0 k +12 V 4.0k .......~-......- 4.0 k J-~'IM.,-- Ident Filter II + NTSC Switch ACC Filter FIGURE 10 - IDENTIFICATION CIRCUIT +12 V + 11 SECAM Switching Line 12 + 3 13 R2 +Trigger Burst Gate Latch 2 Inhibit NTSC switch operates when V15<8.0 V. MOTOROLA LINEAR/INTERFACE DEVICES 9-188 + Burst Gate TDA3333 COLOR DIFFERENCE MATRIXING. COLOR KILLING. AND CHROMA BLANKING During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply. The R-Y and B-Y demodulators have equal conversion gains. The demodulated signals are therefore fed through differential amplifiers with a gain ratio G (B-Y)/G (R-Y) = 1.78 in order to give correctly proportioned B-Y and R-Y signals at the output. FIGURE 11 - COLOR DIFFERENCE STAGES Color Kill and Blanking + + + + R R C R-Y B-Y R R-Y B-Y 13O""-~·' ,-.>----I~ 12 E MOTOROLA LINEAR/INTERFACE DEVICES 9-189 TDA3333 FIGURE 12 - TYPICAL PAL APPUCAnON v£- +12V *47 22 nF 1.0 k 1.0nF 82 18 k 1.0 J.- / ~ => u V 20 >- ii'i u ~ d s- 10 .....- ~ - .....---- V 5 V 200 ./ t.- I FIGURE 4 - V 400 600 800 1000 IL. LOAD CURRENT {mAl \. MOTOROLA LINEAR/INTERFACE DEVICES 10-15 800 1000 ® MOTOROLA MC3399T Advance Information AUTOMOTIVE HIGH-SIDE DRIVER SWITCH AUTOMOTIVE HIGH-SIDE DRIVER SWITCH SILICON MONOLITHIC INTEGRATED CIRCUIT The MC3399T is a High-Side Driver Switch that is designed to drive loads from the positive side of the power supply. The output is controlled by a TTL compatible Enable pin. In the ON state, the device exhibits very low saturation voltages for load currents in excess of 750 mAo The device also protects the load from positive or negative going high voltage transients by becoming an open circuit and isolating the transient for its duration from the load. The MC3399T is fabricated on a power BIMOS process which combines the best features of Bipolar and MaS technologies. The mixed technology provides higher gain PNP output devices and results in Power Integrated Circuits with reduced quiescent current. The device operates over a wide power supply voltage range and can withstand voltage transients (positive or negative) of ± 100 V. A rugged PNP output stage along with active clamp circuitry, current limit and thermal shutdown permits driving of all types of loads including inductive. The MC3399T is specified over a wide junction temperature of -40'C to + 125'C and is ideally suited for industrial and automotive applications where harsh environments exist. TSUFFIX PLASTIC P A C K A G E , CASE 3140-01 6> Pin 1. 2. 3. 4. 5. Ignition Output Output Ground Input 1 "-~/ . 5 (Heatsink surface connected to Pin 2) BLOCK DIAGRAM • Low Switch Voltage Drop • Load Currents in Excess of 750 mA • Low Quiescent Current • Transient Protection Up to ± 100 V • TTL Compatible Enable Input -X TIMING DIAGRAM • On-Chip Current limit and Thermal Shutdown Circuitry +100 V Line TranSbJ·ent 1.0 ms I I +31 V- MAXIMUM RATINGS I I y-I I -J I Ignition Symbol Value Unit Ignition Input Voltage - Continuous VIGN +25 -12 Vdc +12Vo V_ Ignition Input Voltage - Transient t - 100 ms t = 1.0 ms VIGN V - 100 V- Rating :tao I I+-I 1.0 ms ±100 Input Voltage Vin -0.3 to +7.0 V Output Cu rrent 10 Internally Limited A Po 1/8JA 2.0 16 8JA Po 118JA 8JA 65 25 200 5.0 Watts mWrC 'c/w Watts mWrC 'CIW TJ -40 to +150 'c Tsta -65 to +150 'C Power Dissipation and Thermal Characteristics TA = +25'C Derate above TA = + 25'C Thermal Resistance Junction to Ambient TC = +25'C Derate above TC = + 25'C Thermal Resistance Junction to Case Operating Junction Temperature Range Storage Temperature Range - I I- +5.0 V- r----~{f-(_ _ __ OvJ +31V~ +12V- OV- This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 10-16 Input Output (load Voltage) t--, r-- lJ MC3399T ELECTRICAL CHARACTERISTICS (VIGN = + 12 V IL = 150 mA -4O'C '" TJ Characteristic Operating Voltage Switch Voltage Drop (Saturation) VIGN = 4.5 V 10 = 150 mA TJ 10 = 200 mA TJ 10 = 125 mA TJ VIGN = 12 V 10 = 425 mA TJ 10 = 550 mA TJ VIGN = 16 V 10 = 375 mA TJ Quiescent Current VIGN = 12VI0 10 10 = = = Max Unit VIGN(min) 4.5 - - V 0.2 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.7 0.7 0.7 12 25 10 50 100 50 IGND -40'C 125'C Output Leakage Current VIGN = 12 V, Input = "0" - 1.6 2.5 A ILeak - 10 150 p.A - 0.8 120 20 - 50 - I'-S 5.0 - I'-S Input Current High Logic State (VIH = 5.5 V) Low Logic State (VIL = 0.4 V) IIH IlL Output Turn-Off Delay Time Input = "1" ~ "0," TJ = + 25'C (Figures 1 and 2) tDLY(on) tDLY(off) Over Voltage Shutdown Threshold Output Turn-Off Delay Time (TJ = + 25'C) to Over Voltage Condition, Yin stepped from 12 V to 40 V, V '" 0.9 Vo (Figures 1 and 2) Output Recovery Delay Time (TJ = + 25'C) VIGN stepped from 40 V to 12 V, V", 0.9 Vo (Figures 1 and 2) mA - VIH VIL + 25'C (Figures 1 and 2) - V ISC Input Voltage High Logic State Low Logic State Output Turn-On Delay Time Input = "0" ~ "1," TJ = "1" unless noted)' Typ - Output Current Limit Vo = OV = Min - = 25'C TJ TJ 300 mA TJ V Input VIGN-VO = 25'C = -40'C = 125'C = 25'C = -40'C = 125'C = 150mA = 550 mA = + 125'C Symbol 2.0 - V I'-A Vin(OV) 26 31 36 V tDLY - 2.0 - I'-S tRCVY - 5.0 - I'-S NOTE: *Typical Values Represent Characteristics of Operation at TJ = + 25°C. FIGURE 1 - TRANSIENT RESPONSE TEST CIRCUIT Output' Ignition 50n Ground NOTE: ·Depending on Load Current and Transient Duration. an Output Capacitor (CO) of sufficient value may be used to hold up Output Voltage during the Transient. and absorb Turn-off Delay Voltage Overshoot. MOTOROLA LINEAR/INTERFACE DEVICES 1()-'17 MC3399T +40V-J1 FIGURE 2 - RESPONSE TIME DIAGRAM Ignilion : I 1 1 +12VInpul +5.0 V- O~m V o 1....- - - - - - - - - - I I -----"t-I-----+I---. +3~ ~= ------1k1 1 0. 9Vo I I +12V- o V- I I I I lDLY(OV) lRCVY SWITCH VOLTAGE DROP versus LOAD CURRENT 80 0 I l +14 V VIGN ~ TJ ~ +15'C VIN ~ "1" 0 FIGURE 4 80 l,...-...-' / 0 0 V /'" / t--- V V 1 60 !z ll! a'" 40 !z d QUIESCENT CURRENT versus LOAD CURRENT I I VIGN ~ +14V_ t--TJ ~ +15'C VIN ~ "1" -t--- 10 9 400 600 lDLY(on) ~ '5 ......- /'" 100 lDLY(off) t--- /'" 0 !--l :- -t -.I k- FIGURE 3 - I I 800 1000 - o o 100 -- IL' LOAD CURRENT ImA) 400 --600 IL, LOAD CURRENT ImA) MOTOROLA LINEAR/INTERFACE DEVICES 10-18 BOO V 1000 ® MC3484S2-1 MC3484S4-1 MOTOROLA INTEGRATED SOLENOID DRIVER SOLENOID DRIVER 2.4A-S2 4.0A- S4 The MC3484 is an integrated monolithic solenoid driver. Its typical function is to apply full battery voltage to fuel injector(s) for rapid current rise, in order to produce positive injector opening. When load current reaches a preset level (4.0 A in MC3484S4 or 2.4 A in MC3484S2) the injector driver reduces the load current by a 4-to-l ratio and operates as a constant current supply. This condition holds the injector open and reduces system dissipation. Other solenoid or relay applications could be served by the MC3484. Two high impedance inputs are provided which permit a variety of control options and can be driven by TTL or CMOS logic. SILICON MONOLITHIC INTEGRATED CIRCUIT S SUFFIX PLASTIC PACKAGE CASE 314D • Microprocessor Compatible Inputs • On-Chip Power Device MC3484S2-1 2.4 A Peak MC3484S4-1 4.0 A Peak PIN CONNECTIONS UNFORMED PACKAGE 0.6 A Sustain 1.0 A Sustain • Low Thermal Resistance to Grounded Tab - ROJC ~ Input &~;~~~ : Output 2SC/W • Overvoltage Protection Cutoff • Low Saturation Voltage - VCE(sat) = 1.6 V Typ (a 4.0 A • Fully Functional from Vbat = ORDERING INFORMATION 4.0 V to 24 V • High VCEO(sus) ~ 42 V min (rl ISUSTAIN • Alternate Lead Forms are Available Device FIGURE 1 - It +VCC • Uncompromised Performance - 40"C to + 85°C Junction Temperature Tested Ambient Temperature Range Peak Current MC3484S2-1 2.4 A MC3484S4-1 4.0 A TYPICAL APPLICATION Single Injector with Overvoltage Protection at 30 V (Vb at) 400 Ohms VSuppiy 4 to 24 Vdc 5 ~------------------------------~ I 20 k Ohms ILoad I I 14 I I 1~-'-~loJu-t~~--srOr'ernOr'~d : ~ i V,n I I I OVP In 1.0 k Ohm I iI -=- F -= L __________________________ 3 I I I iI ..J Gnd (Tab) lout (Amps) Vin 4 (Volts) 3 o 1.0 ms/div MOTOROLA LINEAR/INTERFACE DEVICES 10-19 MC3484S2-1, MC3484S4-1 MAXIMUM RATINGS Rating Power Supply Voltage (Vbat) Input (Pin 1) Symbol Value Unit Vbat 24 Volts ~6.0 Yin Control (Pin 2) V eant V V 50 mA - Internal Regulator (Pin 5) to + 24 o to +5.0 Junction Temperature TJ 150 °c Operating Temperature (Tab Temperature) TA ~40 to + 105 °c Storage Temperature T stg ~65 to + 150 Thermal Resistance, Junction to Case °JC ELECTRICAL CHARACTERISTICS (Vbat ~ 12 Vdc, TC ~ 40" to + 85°C, test circuit of Figure 2, unless noted) Symbol Min Typ Max Unit Ipk(sense) 3.6 1.7 4.0 2.4 5.2 2.9 A Isus 0.95 0.50 1.0 0.6 1.3 0.7 A 42 50 - V - 1.2 1.6 - Characteristic Output Peak Current °c 'C/W 2.5 54-1 52-1 Output Sustaining Current - VCEO(sus) Ca 2.0 A Output Voltage in Saturated Mode 52 Ca 1.5 A 54 (a 3.0 A Vout V Internal Regulated Voltage (VCC, Figure 2) V reg - 7.1 - V Input "On" Threshold Voltage Von - 1.4 2.0 V Input "Off" Threshold Voltage Voff 1.3 - Input "On" Current (a VI ~ 2.0 Vdc Ca VI ~ 5.0 Vdc 0.7 V JJ.A lin - 50 220 - Veant - 1.5 - V lin2 - 75 - JJ.A V, Low - 10 - kll ti - 0.5 - JJ.s 2fl. - 60 - JJ.s Control Signal Delay tt - 15 - JJ.s Input Turn Off from Saturated Mode Delay ts - 1.0 - JJ.s Input Turn Off from Sustain Mode Delay td - 0.2 - JJ.s Output Voltage Rise Time tv - 0.4 - JJ.s tf - 0.3 0.6 - JJ.s Control "On" Threshold Voltage (Pin 2) Control "On" Current Control Pin Impedance Input Turn On Delay Ipk sense to Isus delay 2.0 A 4.0 A Output Current FalJ Time FIGURE 2 - 20 k r TEST CIRCUIT --~----------------~~---------------------1~----~ Vba' 400 II 2.0W Overvoltage VCC I 2 RL Control r-------~--------, l'~Je~~or 2.0 mH 1.0 k P- P 10VHz 250 Square O ~ colou MC3484 51 Input Output 41------~ 0~5.0 40 Vll0 W Zener Vdc Wave MOTOROLA LINEAR/INTERFACE DEVICES 10-20 MC3484S2-1, MC3484S4-1 GENERAL INFORMATION FIGURE 3 - OPERATING WAVEFORMS (Max Frequency 250 Hz, Pin 2 Grounded) Inductive actuators such as automotive electronic fuel injectors, relays, solenoids and hammer drivers can be powered more efficiently by providing a high current drive until actuation (pull-in) occurs and then decreasing the drive current to a level which will sustain actuation. Pull-in and especially drop-out times of the actuators are also improved. The fundamental output characteristic of the MC3484 provides a low impedance saturated power switch until the load current reaches a predetermined high-current level and then changes to a current source of lower magnitude until the device is turned off. This output characteristic allows the inductive load to control its actuation time during turn-on while minimizing power and stored energy during the sustain period, thereby promoting a fast turn-off time. Automotive injectors at present come in two types. The large throttle body injectors have an impedance of about 2.0 mH and 1.2 n and require the MC3484S4 driver. The smaller type, popular world-wide, has an impedance of 4.0 mH and 2.4 n and needs about a 2.0 A pulse for good results. Some designs are planned which employ two of the smaller types in parallel. The inductance of an injector is much larger at low current, decreasing due to armature movement and core saturation to the values above at rated current. Operating frequencies range from 5.0 Hz to 250 Hz depending on the injector location and engine type. Duty cycle in some designs reaches 80%. ~~ult Sign: 1._4_V_!f----'IL-_ _---!I::-__...,...,LC_ o Load Current "'I L1d Ipk Output Current 2.0 4.0 ms I I I Ipk(sense) Isus / APPLICATIONS INFORMATION The MC3484 is provided with an input pin (Pin 1) which turns the injector driver "on" and "off." This pin has a nominal trip level of 1.4 V and an input impedance of 20 kll. It is internally protected against negative voltages and is compatible with TTL and most other logic. There is also a control pin (Pin 2) which rpay be used as an overvoltage, load dump, shutdown. When a nominal 1.5 V is applied to Pin 2, via a 20: 1 voltage divider the driver and circuit are set in a safe off state at 30 V (Vbat)· Figure 3 shows the operating waveforms for the simplest mode; i.e., with control Pin 2 grounded. When the driver is turned on, the current ramps up to the peak current sense level, where some overshoot occurs because of internal delay. The MC3484 then reduces its output to Isus. The fall time of the device is very rapid (, 1.0 J.ls), but the decay of the load current takes 150 to 220 J.lS. while dumping the load energy into the protection zener clamp. It is essential that the zener voltage be lowerthan the VCEO(sus), but not so low as to greatly stretch the load current decay time. Without the zener, the discharge of the load energy would be totally into the MC3484, which, for the high current applications, could cause the device to fail. (Se~ SOA, Figure 11.) Also in Figure 3 is the graphically derived instantaneous power dissipation of the MC3484. It shows that, for practical purposes, the worst case dissipation is less than (lsus) (Vbat) (duty cycle). Provided in Figures 3 and 4 are definitions of the switching intervals specified in the Electrical Characteristics. Figure 5 shows that the critical switching parameters stay under control at elevated temperatures. MOTOROLA LINEAR/INTERFACE DEVICES 10-21 MC3484S2-1, MC3484S4-1 FIGURE 4 - SWITCHING WAVEFORMS (Expanded Time Scale) FIGURE 5 - SWITCHING SPEEO versus TEMPERATURE 2.0 1,(S2) -==:-.. . . . ,_--------l ......-: ~ Ipk+-_ _ _ 90% A VI Turn Off 10'0 # ..... o !7 ~ IfIS4) )r ty1S2) vz o 1.0 2.0 3.0 IvIS4) If1S2 "5 -40 -20 20 40 60 80 CASE TEMPERATURE 1°C) TYPICAL CHARACTERISTICS (Unless otherwise noted: Test circuit of Figure 2, Vbat = 12 Vdc, TC 250 Hz square wave input) FIGURE 6 - 5.0 4.0 Ipk(,ense)IS4) II 0 FIGURE 7 - OUTPUT CURRENT versus TEMPERATURE r- -- ---- 2.0 Dy~amiC Ijk IS4) I- 1. 8 '------- - r-- 0 8 100 120 ~ + 85°C, Vee" 3.0 V......... .....~ ".,- Vee I~ J" 7.0V --:::.- o. 2 I,us IS2) 20 40 60 80 CASE TEMPERATURE 1°C) 1125°C -!..-250C .-::;:-:::. .... -- 140 0.4 ]" 12 Vdc -40 -20 0 120 6 I,us IS4) o 0 100 SATURATION VOLTAGE 4 2 - Ipkl,en,e)IS2) TC r- TC - 40° to 16 r-I' Dy~am~(S2) 1.0 Vb.l 1,(S4) ,;;::? V o o 140 1.0 MOTOROLA LINEAR/INTERFACE DEVICES 10-22 2.0 loul lAMPS) 3.0 4.0 MC3484S2-1, MC3484S4-1 TYPICAL CHARACTERISTICS (Unless otherwise noted: Test circuit of Figure 2, Vbat = 12 Vdc, TC 250 Hz square wave input) FIGURE 8 - OUTPUT CURRENT versus SUPPLY VOLTAGE 5. 0 TC 0 25°C -" / / / K 2. oil V "-.i.lpklsensel -- 4.0 ~ Ipk IS21 '"~ -f-- 80 10 5.0 12 14 16 4.0 22 -_ .. 24 Pin 2 (Control Threshold) "'- p- o 40 FIGURE 10 - Pin 1 -"'250 Hz 6.0 BREAKDOWN VOLTAGE versus TEMPERATURE T I--j....-.- 8.0 10 12 FIGURE 11 - r put TeshaT-f-- 14 16 Vbat IVdcl Te 18 20 0 25°e 22 24 70 100 SAFE OPERATING AREA 0 ---I 10/,s 7. 0 5.0 High Limit Device ... 3.0 - 100/,s ...... ... de W 2.0 Tvreal _. . f - - ... Vbat IVdel 0 -- 5.0 Hz 1.0 -- - -- ---- 2.0 20 '250 Hz V 0: 18 7' [ij z 3.0 T Isus IS41 Isus IS21 6.0 W· <{ 10 o \/ 6.0 Ipk(sense) OPERATING VOLTAGES Pin 5 IVeel 7.0 -5THZ ./"1 0 0 FIGURE 9 8.0 Ipk IS41 §; Dr iee ~ 1.0 '" _50.7 0.5 Low Jmit De~jCe 0.3 0.2 1f-TC Ipk - 2.0 A 40 -40 -20 20 40 60 80 Te eASE TEMPERATURE lOCI 100 120 ~ BONDING WIRE LTD THERMALLY LTD f - SECOND BREAKDOWN o. 140 ~ 25"C,TJ(pkl'" 150"C 2.0 3.0 4.05.0 7.0 II 10 20 aut IVOLTSI V MOTOROLA LINEAR/INTERFACE DEVICES 10-23 30 40 50 II s:: o !.... NI FIGURE 12 - INTERNAL SCHEMATIC ~ s:: o !.... ,a::a. I s:: 0 -I ~I 6.8 V 1Z1 Power !; r Z m ~ 0 ,:., .j>. » ~ Z -I m :xl ~ (') m 0 m < c=; m en R39 40k R40 R44 R48 10k 32k 54k Z4 6.8V R41 10k t---~~---tr=------:~4~g~~;:O~'tage Input Z3 6.8V ® TCF7000 MOTOROLA Advance Information PRESSURE TRANSDUCER AMPLIFIER PRESSURE TRANSDUCER AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT This circuit is ideal for automotive and industrial applications and consists of two low power operational amplifiers with identical characteristics except the outputs which have the following configurations: AMPLIFIER A - NPN Transistor driving an on-chip current source AMPLIFIER B - NPN Transistor with pull-up resistor PLASTIC PACKAGE CASE 626-05 • Short Circuit Protected Outputs • True Differential Input Stage • Single Supply Operation 4 to 20 Volts o • low Input Bias Currents SUFFIX PLASTIC PACKAGE CASE 751-02 SO-08 • Internally Compensated • Common Mode Range Extends to Negative Supply s~ , • large Output Voltage Swing from Gnd to VCC • large Current Drive Capability PIN ASSIGNMENTS • Very low Input Offset Voltage • Operating Ambient Temperature Range of -40'C to + 12S'C (Top View) Output A , • VCC , Output B _. :I FIGURE 1 - TYPICAL APPLICATION r---~------~----------------------~r-----~vcc RS Rg OP RT330 R5 NOTE: ±5% Resistor values are determined by the customer for his specific application. This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA LINEAR/INTERFACE DEVICES 10-25 Inputs B TCF7000 ELECTRICAL CHARACTERISTICS (at TA ~ 25°C and VCC ~ 50 V) Characteristic Symbol Min VCC 4.0 Power Supply Output Typ Max Unit 20 V - Short Circuit Duration Continuous Source Current (Amp. A) Sink Current High Voltage at IL ~ -5.0 mA (Amp. A) Low Voltage at IL ~ 5.0 mA Pull Up Resistor (Amp. B) - VOHI VOL - Input Common Mode Voltage Range Offset Voltage Temperature Coefficient of Offset Voltage Offset Current - 5.0 50 VCC-0.12 0.12 2.0 3.0 IL 1.0 - - - 3.0 mA mA V V KOhm VCC-l 3.0 mV - p'vrc - nA nA V/mV kHz dB - 1.0 2.0 3.0 30 100 100 Common Mode Rejection 50 100 - Power Supply Rejection 50 80 - dB Power Supply Current (Outputs High State) - 2.2 - mA Bias Current Large Signal Open Loop Gain Bandwidth Unity Gain FIGURE 2 - OUTPUT CONFIGURATION Outputs VCC ,--- A B 8 ------l I I I I In~ts ~ I 5.0 mA I 2.0 k 16 0-3--i-1-----i B 31 0-----=1-----1 I _ _ _ _ _ _ _ _ _ _ JI I I + 1-_ _.....,1_5_ollnPBuls TCF7000 ~---- 4 Gnd MOTOROLA LINEAR/INTERFACE DEVICES 10-26 ® UAA1041 MOTOROLA AUTOMOTIVE DIRECTION INDICATOR AUTOMOTIVE DIRECTION INDICATOR SILICON MONOLITHIC INTEGRATED CIRCUIT · .. designed for use in conjunction with a relay in automotive applications. It is also applicable for other warning lamps such as "handbr~ke ON," etc. • Defective'Lamp Detection • Overvoltage Protection • Short Circuit Detection and Relay Shutdown to Prevent Risk of Fire • Reverse Battery Connection Protection -VCC +V Bat • Integrated Suppression' Clamp Diode 08' 2 7 RlY Out 3 6 Osc 5 4 FIGURE 1 - TYPICAL AUTOMOTIVE SYSTEM C2 +V -VCC Rs 8 UAA 3 1041 4 T I I --"---V 7 6 Rl .~ 1 5 R2 PSUFFIX PLASTIC PACKAGE CASE 626-05 R3 o SUFFIX L1: 1.2 W warning light handbrake ON Rl = 75 k R2 = 3.3 k R3=220!l L2, l3, l4, l5: 21 W. turn signals Rs=30m!l Cl = 5.61-'F C2 = 0.0471-'F MOTOROLA LINEAR/INTERFACE DEVICES 10-27 PLASTIC PACKAGE CASE 751-02 50-8 Start Fault Det Fault Det On/Off Osc UAA1041 MAXIMUM RATINGS Rating Current: Continuous/Pulse' Pin Value Unit 1 +150/+500 mA -35/-500 2 3 8 +1-350/1900 +1-300/1400 +1-25150 Junction Temperature TJ 150 ·C Operating Ambient Temperature Range TA -40 to +100 ·C Tstg -65 to +150 ·C Storage Temperature Range .One pulse with an exponential decay and With a time constant of 500 ms. ELECTRICAL CHARACTERISTICS (T 1 = 25°C) Characteristics Battery Voltage Range (normal operation) Symbol Min VB 8.0 Typ - Max Unit 18 V Overvoltage Detector Threshold (VPin2- VPinl) Dth(OV) 19 20.2 21.5 V Clamping Voltage (VPin2 - VPin1) VIK 29 31.5 34 V Short Circuit Detector Threshold (VPin2 - VPin7) Dth(SC) 0.63 0.7 0.77 V Output Voltage (lrelay = - 250 mAl (VPin2 - VPin3) Vo - - 1.5 V Starter Resistance Rst = R2 + RLamo Rst - - 3.6 kOt Oscillator Constant (normal operation) Kn 1.4 1.5 1.6 - Temperature Coefficient of Kn kn - - lfC Duty Cycle (normal operation) - Oscillator Constant - KF (1 lamp defect of 21 W) -1.5x10- 3 45 50 55 0.63 0.68 0.73 % - - 35 40 45 % Oscillator Constant Kl K2 K3 0.167 0.25 0.126 0.18 0.27 0.13 0.193 0.29 0.14 - Current Consumption (relay off) Pin 1; at VPin2-VPinl = 8.0 V = 13.5V = 18V ICC -0.9 -1.6 -2.2 -1.0 Current Consumption (relay on) Pin 1; at VPin2-VPin1 = 8.0 V = 13.5V = 18V - Duty Cycle (1 lamp defect of 21 W) mA -2.5 - - . > VPin2- VPin7 VPin2- VPin7 VPin2- VPin7 79 - tSee Note 1 of Application Information MOTOROLA LINEAR/INTERFACE DEVICES 10-28 mA - Defect Lamp Detector Threshold at VPin2 to - VB = 8.0 V and R3 = 2200 = 13.5V = 18V - -3.8 -5.6 -6.9 67. 85.3 100 - - 91 - mV UAA1041 2. CIRCUIT DESCRIPTION The circuit is designed to drive the direction indicator flasher relay. Figure 2 shows the typical system configuration with the external components. It consists of a network (R1, C1) to determine the oscillator frequency, shunt resistor (Rs) to detect defective bulbs and short circuits in the system, and two current limiting resistors (R2/R3) to protect the IC against load dump transients. The circuit can be used either with or without shortcircuit detection. The lightbulbs L2, L3, L4, L5 are the turn signal indicators with the dashboard-light L6. When switch S1 is closed, after a time delay of t1 (in our example t1 = 75 ms), the relay will be actuated. The corresponding lightbulbs L2, L3 (or L4, L5) will flash at the oscillator frequency, independent of the battery voltage of B.O V to 1B V. The flashing cycle stops and the circuit is reset to the initial position when the switch S1 is open. The circuit features overvoltage, defective lamp and short circuit detection. . 1 f f n : Flashing frequency: n = R1 C1Kn 3. fF: Flashing frequency in the case of one defective lightbulb of 21 W f F - _1_ K R1 C1KF n = 22K , F 4. t1: delay at the moment when S1 is closed and first flasht1 = K1R1C 5. t2: defective lightbulb detection delay t2 = K2R1C1 6. t3: short circuit detection delay t3 = K1R1C1 In the case of short circuit: - it is assumed that the voltage VPin2-VPin1 "" B.O V. - The relay will be turned off after delay t3. - The circuit is reset by switching S1 to the off position. 7. The capacitor C2 is not obligatory when the short circuit detector is not used. In this case Pin 6 has to be connected to Pin 2. Overvoltage detection: Senses the battery voltage. When this voltage exceeds 20.2 V (this is the case when two batteries are connected in series), the relay will be turned off to protect the lightbulbs. B. When overvoltage is sensed (VPin2 - VPin1) the relay is turned off to protect the relay and the lightbulbs against excessive currents. C2 Lightbulb defect detector: Senses the current through the shunt resistor Rs. When one of the lightbulbs is defective, the failure is indicated by doubling the flashing frequency. JU·1 ( -VCC 8 T 7 .....L I I 3 Short circuit detector: Detects excessive current (Ish > 25 A) flowing in the shunt resistor Rs. The detection takes place after a time delay of t3 (t3 = 55 ms). In this case, the relay will be turned off. The circuit is reset by switching S1 to the off position. UAA 1041 4 -v 6 5 R2 R1 R3 Operation with short circuit detection: Pin 6 has to be left open and a capacitor C2 has to be connected between Pin 1 and Pin 2. Operation without short circuit detection: Pin 6 has to be connected to Pin 2 and the use of capacitor C2 is not necessary. The circuit can also be used for other warning flashers. In our example, handbrake engaged is signaled by the light L1. APPLICATION INFORMATION FIGURE 2 1. The flashing cycle is started by closing S1. The switch position is sensed across resistor R2 and RLamp by input B. PARTS LIST R1 = 75 kn R2 = 3.3 kn R3=220n Rs = 30mn Rst = R2 + RLamp· The condition for the start is: Rst <3.6 kil For correct operation leakage resistance from Pin B to ground must be greater than 5.6 kil. Wire Resistor C1 = 5.6JLF C2 = 0.047 JLF MOTOROLA LINEAR/INTERFACE DEVICES 10-29 Relay - Coil Resistance Range 60 to 800 n Note: Per text connect jumper JU·1 to bypass short circuit detector. C2 may be deleted also. MOTOROLA LINEAR/INTERFACE DEVICES 10-30 In Brief ... A variety of other analog circuits are provided for special applications with both bipolar and CMOS technologies. These circuits range from the industrystandard analog timing circuits and multipliers. Selector Guide Timing Circuits .................. 11-2 Multipliers ....................... 11-2 Alphanumeric Listing .............. 11-3 Related Application Notes. . . . . . . . .. 11-3 Data Sheets ....................... 11-4 Other Linear Circuits m Other Linear Circuits Timing Circuits These highly stable timers are capable of producing accurate time delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two exter- nal resistors and one capacitor. The output structure can source or sink up to 200 mA or drive TIL circuits. Timing intervals from microseconds through hours can be obtained. The typical timing error for the MC1455 is 1.0%. Singles Duals MC1455G,P1,U TA = 0° to + 700C, Case 601, 626, 693 MC1455BP1 T A = - 40° to + 85°C, Case 626 MC3556L T A = - 55° to + 125°C, Case 632 MC3456L,P TA = 0° to + 70°C, Case 632, 646 Multipliers Linear Four-Quadrant Multipliers MC1595L TA = -55° to + 125°C, Case 632 MC1495L TA = 0° to + 70°C, Case 632 Multipliers are designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square, rootmean-square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control. ... designed for uses where the output is a linear product of two input voltages. Maximum versatility is assured by allowing the user to select the level shift method. Typical applications include: multiply, divide*, square root,* mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control. MC1594L T A = - 55° to + 125°C, Case 620 MC1494L TA = 0° to +70°C, Case 620 m The MC1594/MC1494 is a Variable Transconductance Multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection. *When used with an operational amplifier. MOTOROLA LINEAR/INTERFACE DEVICES 11-2 OTHER LINEAR CIRCUITS TIMING CIRCUITS Device MC1455 MC3456 MC3556 Function Timing Circuit ...................................................... Dual Timing Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Dual Timing Circuit .................................................. Page 11-4 11-40 11-40 MULTIPLIERS Device MC1494L MC1495L MC1496 MC1594L MC1595L MC1596 Function Page Four-Quadrant Multiplier ............................................. 11-11 Four-Quadrant Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-25 Balanced Modulator-Demodulator .............................. See Chapter 8 Four-Quadrant Multiplier ............................................. 11-11 Four-Quadrant Multiplier ............................................. 11-25 Balanced Modulator-Demodulator .............................. See Chapter 8 RELATED APPLICATION NOTES Application Note AN489 AN531 Related Title Device Analysis and Basic Operation of the MC1595 ....................... MC1595L MC1596 Balanced Modulator ..................................... MC1596 m MOTOROLA LINEAR/INTERFACE DEVICES 11-3 ® MC1455 MOTOROLA Specifications and Applications Information TIMING CIRCUIT SILICON MONOLITHIC INTEGRATED CIRCUIT TIMING CIRCUIT The MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the. free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTl circuits. G SUFFIX • Direct Replacement for NE555 Timers METAL PACKAGE CASE 601-04 • Timing From Microseconds Through Hours • Operates in Both Astable and Monostable Modes 1. 2. 3. 4. • Adjustable Duty Cycle • High Current Output Can Source or Sink 200 mA Ground Trigger Output Reset 5. Control Voltage 6. Threshold 7. Discharge 8. VCC • Output Can Drive MTTl • Temperature Stability of 0.005% per ·C • Normally "On" or Normally "Off" Output FIGURE 1 - 22-SECONO SOLID-STATE TIME DELAY RELAY CIRCUIT P1 SUFFIX PLASTIC PACKAGE CASE 626-05 m ~ 0.1 p.F USUFFIX CERAMIC PACKAGE CASE 693-02 8 t ~ 1.1; R,C ~ 22 s Time delay (t) is variable by changing Rand C, (See Figure 16). FIGURE 2 - 1 D SUFFIX BLOCK DIAGRAM PLASTIC PACKAGE CASE 751-02 VCC 8 SO-8 8.1 - 5k Threshold4--t---l /""--p-- Discharge Control....;5+-~H ORDERING INFORMATION Voltage 5k Temperature Output Device MC1455G MCl455Pl MC1455D MC1455U MC1455BPl Trigger ...:201-_+-' 5k Reset MOTOROLA LINEAR/INTERFACE DEVICES 11-4 Alternate NE555V - . Range O"C to O"Cto O"Cto O"Cto - 40°C to Package +70°C Metal Can +70"C Plastic DIP +70"C 50-8 +70°C Ceramic DIP + 85°C Plastic DIP MC1455 MAXIMUM RATINGS (TA = +25·C unless otherwise noted.) Rating Symbol Value Unit Power Supply Voltage FIGURE 3 - GENERAL TEST CIRCUIT VCC +lB Vdc Discharge Current (Pin 7) 17 200 mA Power Dissipation (Package Limitation) Metal Can Derate above TA = + 25·C Plastic Dual In-Line Package Derate above TA = + 25·C Po 6BO 4.6 625 5.0 mW mwrc mW mwrc Operating Temperature Range (Ambient) MC1455B MC1455 TA Storage Temperature Range X + 0.01 ~F Control Voltage Output ·C 1sink Isource -40 to +B5 o to +70 Tstg -65to +150 ·C Test Circuit for Measuring de Parameters: (to set output and measure parameters) a) When Vs "" 2/3 Vee. Vo is low. b) When Vs ,... 113 Vee. Vo is high. c) When Vo is low, pin 7 sinks current. To test for Reset, set VO. high. apply Reset voltage, and test for current flowing into pin 7. When Reset is nol in use, it should be tied to Vee- ELECTRICAL CHARACTERISTICS (TA = + 25·C VCC = + 50 V to + 15 V unless otherwise noted) Symbol Min Typ Max Operating Supply Voltage Range Characteristics VCC 4.5 - 16 Supply Current VCC = 5.0 V, Rl = '" VCC = 15 V, Rl = '" low State, (Note 1) ICC - Timing Error (Note 2) R=1.0kl1tol00kl1 Initial Accuracy C = 0.1 /LF Drift with Temperature Drift with Supply Voltage - Unit V mA 3.0 10 6.0 15 Threshold Voltage Vth Trigger Voltage VCC = 15 V VCC = 5.0 V VT Trigger Current 0.5 Reset Voltage 'T VR - 0.4 0.7 1.0 V Reset Current IR - 0.1 - mA Threshold Current (Note 3) 'th - 0.1 0.25 /LA Discharge leakage Current (Pin 7) Idis - - 100 nA Control Voltage level VCC = 15 V VCC = 5.0 V VCl Output (VCC Isink Isink 'sink 'sink (VCC Isink Isink VOL Voltage low = 15 V) = 10 mA = 50 mA = 100 mA = 200 mA = 5.0 V) = B.O mA = 5.0 mA - 1.0 50 0.1 - 2/3 - 5.0 1.67 VOH Rise Time of Output tOlH Fall Ti me of Output tOHl 10 3.33 11 4.0 - 0.1 0.4 2.0 2.5 0.25 0.75 2.5 - 0.25 V !LA - - 0.35 V 12.5 - 13.3 3.3 - - 100 - ns - 100 - ns - 3. This will determine the maximum value of AA The maximum total R = 20 megohms. Monostable mode MOTOROLA LINEAR/INTERFACE DEVICES 11-5 xVCC V 12.75 2.75 NOTES: 1. Supply current when output is high is typically 1.0 rnA less. 2. TO>ted at Vec = 5.0 V and VCC = 15 V. %Nolt V 9.0 2.6 - Output Voltage High (lsou ree = 200 mAl VCC = 15 V (lsouree = 100 mAl VCC=15V VCC = 5.0 V % PPMrC + RS for 15 V operation. m MC1455 TYPICAL CHARACTERISTICS ITA = +25"C unless otherwise noted.) FIGURE 4 - FIGURE 5 - TRIGGER PULSE WIDTH 12 5 ~ ..s 100 ~ +2J" 8. 0 V- ~ 6. 0 - 5 oo f-- 01-- 5~ 0 SUPPLY CURRENT 0 15 0 u pt ,/ ~ 1~oC IX Vee 'T ~ or g V 1. 2 1. 0 ~ O. 8 ~ O.S 0.4 o 5.0 5V.;"VCC';;;15V r o 1.0 15 10 2.0 +25 0 C 0 1 .0 7 ~ -' " V >" V > .1 20 50 0.0 I 1.0 100 2.0 +25 0 C./ .1 V FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE "~ ::; ~ 1.000 20 50 100 0.0 I 1.0 2.0 FIGURE 12 - 5.0 10 20 ISINK,lmAI \ I-- ~ \ - 1.010 '" ~ 1.005 ::; w 0 '" ;:: 1.00 t- g >- " 0.995 ~ -r- - j 0.99 5 '";? ;? 0.990 15 10 5.0 Vee. SUPPLY VOLTAGE IVdcl 20 t-- -- 0~~7 o 0.99 0 0 0.98 5-75 -50 -25 0 +25 +50 +75 +100 +125 TA, AMBIENT TEMPERATURE loel 0 MOTOROLA LINEAR/INTERFACE DEVICES I ~ -~+250e O +70 C 0.3 0.4 0.1 0.2 VTlminl. MINIMUM TRIGGER VOLTAGE IX Vee Vdcl 0 11-6 100 PROPAGATION DELAY ::; \ 50 versus TRIGGER VOLTAGE 300 1.01 5 1.015 >- 10 FIGURE 11 - DELAY TIME versus TEMPERATURE '" 1.010 ~ >- 5.0 ISINK,lmAI ISINK, (rnA)' '"~" 1.005 100 0 II ./ II 50 FIGURE 9 - LOW OUTPUT VOLTAGE @ Vee = 15 Vdc = 0" I- 10 20 Isource(mA) FIGURE B - LOW OUTPUT VOLTAGE @Vee 10Vdc 1$/ 5.0 10 Vrlcl 0 2.0 5.0 Vce,SUPPLY VOLTAGE IVdcl -' 0.0 I 1.0 1...-1- +25 0 C <:i 1.4 0.2 0 o. I I I I. 8 1.6 ,/ HIGH OUTPUT VOLTAGE U FIGURE 7 - LOW OUTPUT VOLTAGE @ Vee = 5.0 Vdc 0 V !:?2.0 0.3 0.4 VT(mill}. MINIMUM TRIGGER VOLTAGE 0.2 2. 0 ~ 4. 01/' ......,[;:::::: ~ ~ 0.1 V- FIGURE 6 - MC1455 FIGURE 13 - REPRESENTATIVE CIRCUIT SCHEMATIC i r 5 Control Voltage i -F[,P=-hop -''Oi:lT"puTI THRESHOLD - TRIGGeRi Vee 8~__e_O~M_p_A_R_A __ T~O_R__~__~I~I~e_O__ M_p_T~R~H-______~~~4-~--, I I 1 Threshold 6 3 ,, , L ______ .J Trigger 20-----------+----4--[ , I Reset 4 I 4.7k I II 'L _______ ...J Discharge 7 ~ _______ L __ I ~.! GENERAL OPERATION A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pins is low, the The MC1455 is a monolithic timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use. the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other func- tions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital FIGURE 14 - MONOSTABLE CIRCUIT output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage. +Vcc (5 to 15 VI Monostable Mode > tL ,, In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 113 VCC the comparator output triggers the flip-flop so that it's output sets low. This I I turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 VCC the threshold comparator resets the flip-flop. This action dis- Reset Vee 8 4 Discharge 3 7 Output MC1455 charges the timing capacitor and returns the digital output to Trigger the low state. Once the flip-flop has been triggered by an input ;,:RL signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation t = 1.1 RA C. Various combinations of Rand ._'-- C and their associated tim~s are shown in Figure 16. The trigger pulse width must be less than the timing period. MOTOROLA LINEAR/INTERFACE DEVICES 11-7 1 Control 0.01 IlF Voltage II MC1455 GENERAL OPERATION (continued) FIGURE 15 - MONOSTABLE WAVEFORMS FIGURE 16 - TIME DELAY ==:I 100 Inl put l VOI U t age 5_0 V/cm 10 oull tput - . II Capacitor / . • voltagle l 1 5.0 / 1/ 0.01 / 0.00 L .L. .L. / / /' t-~ :/ / / V l/ 1/ lOOps t = 50.uslcm (RA = 10 kf!, e = 0,01 ~F, RL = 1.0 kf!, Vee = 15 V) / !L / L ~ ,c"~ -.~ ~ t-,c,,+~ / I~ / / 1/ V 11/ L L ~ ~ f-'-' 1 ,-/ V/cm '/ / 1/ Voltage 20 V/cm !rill 1/ / / L / / / / 1.0ms 10ms lOOms 10 1.0 100 'd, TIME DELAY Is) FIGURE 17 - ASTABLE CIRCUIT FIGURE 18 - ASTABLE WAVEFORMS +VCC(5 to 15 V) : ~:RL VCC Reset I I I Output Voltaye 10 V/crn 7 Discharge 3 6 Threshold I I I I ! Ch~put 8 4 I 1- MC1455 Trigger ~ .rL ! l ! I ic' ! apitC1to : i i i :::ii r VOlta_ge .~ IIJ:ii !!:Ii :)0 ViCIT1 t,.. 20,usJcm (RA = 5.1 kf!, e = O.OlI'F, RL = 1.0 kf!; RS = 3.9 kf!, Vee = 15 V) Astable Mode In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between 1/3 Vee and 2/3 Vee. See Figure 17. The external capacitor charges to 2/3 m and discharges to 1/3 Vee Vee through RA and RS through AS- By varying the ratio of FIGURE 19 - FREE-RUNNING FREQUENCY these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage. 100"":--......,.....-..,..~-,..--r--""T----, The charge time (output high) is given by: tl = 0.695 (RA+RB) e The discharge time (output low) by: t2 = 0.695 (RB) e Thusthe total period is given by: T = tl + t2 101 p.":---f",-..p..,,,,-1~-+---1f---1 = 0.695 (RA+2RB) e ~ The frequency of oscillation is then: f =.!. = T 3 1.44 (RA+2RB) e ~ :::u and may be easily found as shown in Figure 19. The duty cycle is given by: De =~ 1.0 p.,,"'-1i"<:-;--t""'-;--f""'-z-f"-:--;-+----< ;1; ;3 0.1 f----i"<:--t""'--f""'--f"-:---+',,--j RA+2R S U To obtain the maximum duty cycle RA must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mAt. The minimum value of RA is given by: Vee (Vdc) Vee (Vdc) RA;;'17iAl ;;. -0-.2-- f, FREE·RUNNING FREQUENCY (Hz) MOTOROLA LINEAR/INTERFACE DEVICES 11-8 MC1455 APPLICATIONS INFORMATION Missing Pulse Detector Linear Voltage Ramp In the monostable mode, the resistor can be replaced by a con· stant current source to provide a linear ramp voltage. The capaci· tor still charges from 0 to 2/3 Vee. The linear ramp time is given by t = ~ Vee 3 where I then t = Vee - VB - VBE RE The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequency or a missing pulse allows completion of the timing cycle, causing a change in the output level. If VB is much larger than VSE. can be made independent of Vce. AGURE 20 - LINEAR VOLTAGE SWEEP CIRCUIT FIGURE 22 +Vcc (5 to 15 V) Vee Reset Reset 4 Vee 4 8 Vee r-_--L_ _-L--,Di~charge Rl 3 2N4403 Output Threshold 6 MC1455 5 Input ContrOl Voltage Trigger 2N4403 or Equiv FIGURE 21 IRE LINEAR VOLTAGE RAMP WAVEFORMS = 10 kO.R2 = 100 kO.R1 = 39 kO.C = 0.01 ,.F.VCC = 15 VI FIGURE 23 - MISSING PULSE DETECTOR WAVEFORMS IRA = 2.0 kO. RL = 1.0 kO. C = 0.1 ,.F. VCC = 15 VI III t = 500 1-a/em t = 100J,ls/cm MOTOROLA LINEAR/INTERFACE DEVICES 11-9 MC1455 APPLICATIONS INFORMATION (continued) FIGURE 25 - PULSE WIDTH MODULATION WAVEFORMS (RA = 10 leO, e = 0.02 p,F, Vee = 15 V) Pulse Width Modulation If the timer is triggered with a continuous pulse train in the rnonostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 5. I n this manner. the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage. FIGURE 24 + Vcc (5 to 15 V) RL RA 40 3 7 o utput t ~ ± MC1455 2 5 c lock nput Test Sequences Modulatio Input 1 0.5 ms/cm c 6 Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 rns. The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth. FIGURE 26 Vcc (5 to 15 V) 27 k 9.1 k 8 III 8· ~~ 6 }---<>MC1455 6 >----<>7 r----o-- f----<>O.OOlI'F 2 T MC1455 1 5.0!'F r·O!'F 1 I 18.2 k 4 8 ~~ 1 4 6 >----<>7 >----<>- 3 2 3 7 27 k 9.1 k 4 MC1455 2 roo,", I ~~ 3 f---<>---1 5.01'F Load Load MOTOROLA LINEAR/INTERFACE DEVICES 11-10 Load ® MC1494L MC1594L MOTOROLA Specifications and Applications Information LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT MONOLITHIC FOUR·QUADRANT MULTIPLIER · .. desigQed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control. The MC1594/1494 is a variable transconductance multiplier with internal level·shift circuitry and voltage regulator. Scale factor. input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection. • Operates With ±.15 V Supplies • Excellent Linearity - Maximum Error (X or V): ±. 0.5% (MC15941 ±. 1.0% (MC1494) Wide Input Voltage Range - ±.10 volts Adjustable Scale Factor, K (0.1 nominal) Single·Ended Output Referenced to Ground Simplified Offset Adjust Circuitry Frequency Response (3 dB Small-Signal) - 1.0 MHz Power Supply Sensitivity - 30 mV/v typical • • • • • • SILICON MONOLITHIC EPITAXIAL PASSIVATED ,~- L SUFFIX CERAMIC PACKAGE CASE 620·10 TYPICAL LINEARITY ERROR versus TEMPERATURE FOUR-QUAORANT MULTIPLIER TRANSFER CHARACTERISTIC 10 0 ~ +6.ol-.::----1--~~-1 5 ~ +4.0 f----1----"'~;::--"f"'----t---I w ~ +2.0 t-=oj=:-t--~..... 2't-,,-+-7l's..""f'--- :; i: ~ o > ~ >~ -2.0J-=F---1--:J......'7IL.---t-.."".?.....t:--' -4.0 r---i--;;;;-4'--~"---+--+--+-~.- 050 ::0 >~ ;:--"~f-----1 g -6.0i""--r---7I"----1---i----t ----+----+- 02 5 x ~ -4.0 -2.0 +2.0 - m o +4.0 -55 -25 VX.INPUT VOLTAGE (VOLTSI '25 '50 ')5 TA.AMBIENT TEMPERATURE lOCI CONTENTS Subject Sequence Specification Page No. Subject Sequence Specification Page No. Maximum Ratings 2 AC Operation Electrical Characteristics Test Circuits 2 3 AC Applications 11 Characteristic Curves 4 Definitions 13 Circuit Description 5 General I nformation Index 14 Circuit Schematic 5 6 DC Operation DC Applications MOTOROLA LINEAR/INTERFACE DEVICES 11-11 +100 +125 m MC1494L, MC1594L MAXIMUM RATINGS (TA = + 25°C unless otherwise noted) Symbol Value Unit V+ V- +18 -18 Vdc V9-V6 Vlo-V13 ±16+11 Ryl<30 ±16+11RXI<30 Vdc Common-Mode Input Voltage VCMY = V9 = V6 VCMX = VlO = V13 VCMY VCMX ±11.5 ±11.5 Power Dissipation (Package Limitation) TA = +25°C Derate above TA = + 25°C PD l/eJA 750 5.0 Rating Power Supply Voltage Differential Input Signal Operating Temperature Range Vdc MC1594 MC1494 Storage Temperature Range mW mW/oC TA -55 to + 125 o to +70 °c Tstg -65to +150 °c ELECTRICAL CHARACTERISTICS (v+ = +15 V, V- = -15 V, TA = + 25°C, Rl = 16 kn, RX = 30 kil, Ry = 62 kil, RL - 47 kil unless otherwise noted) MC1594 Characteristic Linearity Output error in Percent of full scale Fig. Symbol 1 ERX or ERY -10V:..t Vy .... 10k 8" Vyoff VI oil 10k 'Ok Vooll FIGURE 6 - COMMON·MOOE FIGURE 5 - FREQUENCV RESPONSE I ...~: vx Vy CMVy (20Hlt ~ '" - 47k " 8" FIGURE 7 - POWER·SUPPL V SENSITIVITV FIGURE 8 - BURN·IN MOTOROLA LINEAR/INTERFACE DEVICES 11-13 m MC1494L, MC1594L TYPICAL CHARACTERISTICS (Unless otherwise noted. v+ = +15 V. V- = -15 V. Rl = 16 k!1. RX = 30 k!1. Ry = 62 k!1. RL = 47 k!1. T A = +250 C) FIGURE 9 - FREQUENCY RESPONSE OF Y INPUT versus LOAD RESISTANCE FIGURE 10 - FREQUENCY RESPONSE OF X INPUT versus LOAD RESISTANCE 1--t-+++I+H+--t-+++I+HII-:::±~CI'm1f-IR l " 33 k!l --ll ·5.0 1--t+tt1+ffi--+-+t-ttHtr-+-H-I'NJItt--=t"'i'"i..titttl ·1 0 Vy" 1 V~rmsl. Vx =: 10 Vdc 104 105 p;'--J....JIIu..J..LLIIIII~II............ Uill";;-----'--'--w.u.w "::--,--,-,...L.J.J..IJIIII"';--I" 6 -20 10 7 106 =: .151--+-+++1 RX " 30 k!l, Ry " 62 k" -1-+++l+"Htt II 11_"_'++1H-+ffl '20L-L-L.u..u.III",-~rl"6.J-.lprI-W..JIII.JJJ.L,IIIII--,-,-,-,~~ 103 f--+-l-ttt++lt-f-++++++!!---+-H+t+i,ff-~---'1-r-wt1~ Vx 1 V{rmsl. Vy 10 Vdc R 47 k' = .15 I--++H-+ RX "30k~!, Ry =62 k~! 103 10 5 104 10 6 f. FREQUENCY t, FREQUENCY IHll FIGURE 11 - LARGE SIGNAL VOLTAGE versus FREOUENCY 10 7 (Hi) FIGURE 12 - LINEARITY versus RX OR Ry WITH K = 1/10 6 CD 0 t'-.... 1\ ~ O. 5 r£'. ~~ T 1'- OA \ z CD With MC1556 Buller Op-Ampl _ Ci) No Op-Ampl., RL '" 47 k!~ 1111111 b § 03 "'ox "' O. 2 w ~ ......... t----.. 1111111 100 10k .. Ok 100 k t, FREQUENCY IHll FIGURE 13 - LINEARITY versus RX OR Ry WITH K = 1 m t-- \ :::; 0 0,4 .1 . 1""- 0.10 1.1 2 Vin = 2 Vpp t'-.... t; ......... f"'-..., I 30 40 50 RX {k~! 40 60 80 100 Ry (k~! 6", K Factor Adjusted for 1110 at 25°C a: 0.10 4 o f'.... 20 FIGURE 14 - SCALE FACTOR IK) versus TEMPERATURE 010 8 RL Adjusted for K:: 1 _ 3 Al Adiusted for K =: 1110 Vin'" 20 Vpp ~ -- w ~ 0.10 2 1\ .... o. 1 I'--- ---..... ~ 0.09 8 -- r-.. 0,09 6 ~ 0.094 0 : 2.0 4.0 6.0 8.0 10 RX Ik!ll 4.0 8.0 12 16 20 Ry Iklfl -55 -35 -15 +5.0 MOTOROLA LINEAR/INTERFACE DEVICES 11-14 +25 +45 +65 +85 TA,AMBIENT TEMPERATURE lOCI +105 +125 +145 MC1494L, MC1594L GEN~RAL 1. INFORMATION CIRCUIT DESCRIPTION 1.1 Introduction with the offset adjust circuits to virtually eliminate sensitivity of the offset voltage nulls to changes in supply voltage. The MC1594 is a monolithic. four-quadrant multiplier that As shown in Figure 15, the MC1594 consists of a multiplier operates on the principle of variable transconductance. It proper and associated peripheral circuitry to provide these features. features a single-ended current output referenced to ground and provides two complementary regulated voltages for use FIGURE 15 --i (Recommended External Circuitry is Depicted With Dotted Lines) 1- ._- -- - - - -- -- -~L~C;D~A~R:M-- ----- - -15 v+ 2 +4.3V +v, 3 ~ 14 " CURRENT AND VOLTAGE REGUlATOR 4 -VR -4.3V ' -_ _ _. ,_ _ _- ' vy FOUR QUADRANT MULTIPLIER 9 1--,--:::----'----1 to '. • DIFFERENTIAl CURRENT '0 (10 - IA - ta) CONVERTER vx 13 12 v- 5~,~5----------~--------7-------------~--~--~------------4-----------' SIMPLIFIED CIRCUIT SCHEMATIC -'A -~: 14 10 vy vx 500 13 15 v' 500 COMPLETE CIRCUIT SCHEMATIC 1 ~ R1~==l==~=:t:~_.. ____________________-+ GNO 3 V, 500 4 v- O-............- ....._-_-_...._-_-_-_-_-_. . ._-_-_.... ..........................----<~L..-_--_-_-_-_ REGULATOR _-_-_---.J.:....-----D-IF-FE.JRENTIAL MULTIPliER MOTOROLA LINEAR/INTERFACE DEVICES 11-15 CURRENT CONVERTER 14 II MC1494L, MC1594L 1.2 Regulator (Figure 151 or The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides 2VXVy two convenient regulated supply voltages which can be used in the offset adjust circuitry. The regulated output voltage 10 = RX Ryll at pin 2 is approximately +4.3 V while the regulated voltage at pin 4 is approximately -4.3 V. For optimum temperature stability of these regulated voltages, it is recommended that The output current can be easily converted to an output voltage by placing a load resistor R L from the output (pin 14) to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by: 1121 = 1141 = 1.0 mA lequivalent load of 8.6 kill. As will be shown later, there will normally be two 20 k-ohm potenti- ometersand one 50 k-ohm potentiometer connected between pins 2 and 4. V The regulator also establishes a constant current reference that controls of the constant current sources in the MC1594. Note that all current sources are related to current 11 which is determined by R 1. For best temperature performance, Rl should be 16 kn so that 11 ~ 0.5 mA for all applications. o 2RL Vx Vy = - - - - = KVXVy RXRyl1 an 1.3 2RL where K (scale factorl :: - - RX Ryl1 Multiplier (Figure 15) The multiplier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and IS discussed in detail in Application Note AN-489, "Analysis and Basic Operation of the MC1595" The result of this analYSIS is that the differential output current of the multiplier is given by: 2. DC OPERATION 2.1 Selection of External Components For low frequency operation the circuit of Figure 16 is recommended. For this CirCUit, RX == 30 kn, Ry:: 62 kn, Rl == 16 kn and hence 11 ~0.5 rnA. Therefore, to set the scale factor, K, equal to 1110, the value of RL can be calculated to be: K Therefore, the output is proportional to the product of the two input voltages. 1.4 1 2RL 10 RXRyl1 = --- = - - - RXRyl1 or Differential Current Converter (Figure 15) This portion of the circuitry converts the differential output current (I A-I B) of the multiplier to a single-ended output current (10): RL = I2iIiOI = 130 kl162 kilOS mAl 20 RL=46.5k Thus, a reasonable accuracy In scale factor can be ach leved by making R L a fixed 47 k~2 resistor. However, if it is desired FIGURE 16 - TYPICAL MUL TlPLIER CONNECTION +15 V -15 v RL vx ~ 50 k 22k 'l P P4 AI R' IO 110 16k 30k lOpf yy II ""I * ,>-o--+_v, R' 110 PI ""ti' 20k ~ -R is not necessarV it inputsilredccoupled. MOTOROLA LINEAR/INTERFACE DEVICES 11-16 O.'"F -15 V Vo" -vx Vy +15V '0 1 -10Vo;;;VX<+10V -10V 0;;; Vy 0;;;+10 V MC1494L, MC1594L offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure). that the scale factor be exact. R L can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to 1/10. This is merely a convenient factor to use if the Vx and Vy input voltages are expected to be large. say ±10 V. Obviously with Vx = Vy = 10 Vand a scale factor of unity. the device could not hope to provide The input offset adjustment potentiometers, P 1 and P2 will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, a 100 V output, so the scale factor is set to 1/10 and provides an output scaled down by a factor of ten. For many applications it may be desirable to set K = 1/2 or K = 1 or even K = 100. This can be accomplished by adjusting AX. Ry and RL appropriately. 22, 24 and 251. 2.5 The adjustment procedure for the circuit of Figure 16 is: A. X Input Offset The selection of R L is arbitrary and can be chosen after resistors RX and Ry are found. Note in Figure 16 that Ry is 62 kn while RX is 30 kfl. The reason for this is that the "Y" side of the multiplier exhibits a second order nonlinearity whereas the "X" side exhibits a simple non-linearity. By making the Ry resistor approximately twice the value of the RX resistor, the linearity on both the "X" and "Y" sides are made equal. The selection of the R X and Ry resistor values is dependent upon the expected amp I itude of Vx and Vy inputs. To maintain a specified linearity, resistors R X and Ry should be selected according to the following equations: RX~ 3 Vx (max) in kH when Vx is in volts ~ 6 Vy (max) in kn when Vy is in volts Ry (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "Y" input (pin 9) (b) connect "X" input (pin 10) to ground (cl adjust X-offset potentiometer, P2 for an ac null at the output B. y Input Offset (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 10) (bl connect "Y" input (pin 9) to ground (c) adjust V-offset potentiometer, P1 for an ac null at the output C. Output Offset (al connect both "X" and "Y" inputs to ground (hi adjust output offset potentiometer,P3, until the output voltage Va' is zero volts dc For example, if the maximum input on the "X" side is ± 1 volt, resistor RX can be selected to be 3 kH. If the max- D. Scale Factor imum input on the "y" side is also ±.1 volt, then resistor Ry can be selected to be 6 kn (6.2 kn nominal value). If a scale factor of K 10 is desired, the load resistor is found to be 47 kn. In this example, the multiplier provides a gain (a) apply +10 Vdc to both the "X" and "Y" inputs (b) adjust P4 to achieve -10.00 V at the output 0:: (c) apply -10 Vdc to both "X" and "Y" inputs and check for Vo " -10.00 V of 20 dB. 2.2 Operational Amplifier Selection E. Repeat steps A th rou gh 0 as necessary. The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor RL to provide a low impedance output voltage from the op-amp!. Since the offset current and bias currents of the op-amp!. will cause errors in the output voltage, particularly with temperature, one with very low bias and offset currents is recommended. The MC1556/MC1456 or MC1741/ MC1741C are excellent choices for this application. The ability to accurately adjust the MC1594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash. Since the MC1594 is capable of operation at much higher frequencies than the op-amp!., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-ampl. 2.3 2.6 Temperature Stability While the MC1594 provides excel/ent performance in itself, overall performance depends to a large degree on the quality of the external components. Previous discussion shows the direct dependence on RX, Ry, and RL and indirect dependence on R 1 (through 11). Any circuit subjected to tempera!ure variations should be evaluated with these effects in mind. Stabil ity The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stray or input capacitance at the multiplier output adds additional phase shift. It may therefore be necessary to add (particularly in the case of internally compensated op-ampls.) a small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with RL should be adequate to insure stabil ity over production and temperature variations, etc. 2.7 Bias Currents The MC1594 multiplier, like most linear IC's, requires a dc bias current into its input terminals. The device cannot be capacitively coupled at the input without regard for this bias current, If inputs Vx and Vy are able to supply the small bias current (~0.5 /JA) resistors, R (Figure 16) can be omitted, If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor R can be any reasonable value up to 100 kS1. For minimum noise and optimum temperature performance, the value of resistor R should be as low as practical. An externally compensated op-amp1. might be employed using slightly heavier compensation than that recommended for unity-gain ·operation. 2.8 2.4 Offset and Scale factor Adjustment Procedure Offset Adjustment Parasitic Oscillation When long leads are used on the inputs, oscillation may occur, In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using short leads. The purpose of the network The non-inverting input of the op-ampl. provides a convenient pointto adjust the output offset voltage. By connecting this point to the wiper arm of a potentiometer (P3), the output MOTOROLA LINEAR/INTERFACE DEVICES 11-17 III MC1494L, MC1594L is to reduce the "0" of the source-tuned circuits which cause "zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the bypassing of RX and Ry at high frequencies. Since the Ay resistor is approximately twice the value of the RX resistor, the zero associated with the "y" input will occur at approximately one octave below the zero associated with the '·x'· input. For RX = 30 kn and Ry = 62 kil, the zeros occur at 1.5 MHz for the "X" input and 700 kHz for the "y" input. These two measured break· points correspond to a shunt capacitance of about 3.5 pF. Thus, for the circuit of Figure 17, the "X" input zero and "y" input zero will be at approximately 15 MHz and 7 MHz respectively. the oscillation. Inability to adjust the circuit to within the specified accuracy may· be "an indication Of oscillation. 3. AC OPERATION 3.1 General For ac operation, such as balanced modulation, frequency doubler, AGe. etc., the op-ampl. will usually be omitted as well as the output offset adjust potentiometer. The output offset adjust potentiometer is omitted since the output will normally be ac-coupled and the de voltage at the output is It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found by means of complex convolution in the frequency (laplace) domain. This means thatif the ·'x'· input does not involve afrequency, it is not necessary to consider the "X" side frequency response in the output product. likewise, for the "y" side. Thus, for applications such as a wideband linear AGC ampli· fier which has a dc voltage as one input, the multiplier fre· quency response has one zero and one pole. For applications which involve an ac voltage on both the "X" and "Y" side. such as a balanced modulator, the product voltage response will have two zeros and one pole, hence. peaking may be present in the output. of no concern providing it is close enough to zero volts that it will not cause clipping jn the Output_waveform. Figure 17 FIGURE 17 - WIDEBAND MULTIPLIER 61k 3k +15 V -15 V From this brief discussion, it is evident that for ac applications; (1) the value of resistors RX, Ry and Rl should be kept as small as possible to achieve maximum frequency response, and (2) it is possible to select a load resistor RL such that the dominant pole (Rl, Co) cancels the input zero (RX. 3.5 pF or Ry. 3.5 pFl to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10. Examination of the frequency characteristics of the "X" and "y" inputs will demonstrate that for wideband amplifier applications, the best tradeoff with frequency response and gain is achieved by using the "Y" input for the ac signal. 'y 1 1 :~ i~" Co " I I 13 51k _"'w A .""". For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recom' mended. For modulator-demodulator applications. the MC1596 may be used up to 100 MHz. For wideband multi· plier applications. the MC1595 (using small collector loads and ac coupling) can be used. 20k K ~ 1 shows a typical ae multiplier circuit with a scale factor K~ 1. Again, resistor RX and Ry are chosen as outlined in the previous section, with Rl chosen to provide the required scale factor. 3.3 The MC1594 multiplier is not slew-rate limited in the ordinary sense that an op-ampl. is. Since all the signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. However, it should be noted that the quiescent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation: The offset voltage then existing at the output will be equal to the offset current times the load resistance. The output off- set current of the MC1594 is typically 17 "A and 35 "A maximum. Thus, the maximum output offset would be about 160 mV. 3.2 Slew-Rate Bandwidth The bandwidth of the MC1594 is primarily determined by Slew·Rate two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the output terminal. For the circuit shown in Figure 17, assuming a kn. the bandwidth would be approximately 340 kHz. at frequencies beyond the breakpoint of the ··zero". The !>.Vo 0.5x 10-3 !>.T 10 x 10- 12 -- = ~~- = 50 V/"s would be approximately 3.4 MHz. If the load resistor were 47 10 aT = C Thus, if Co is 10 pF, the maximum slew-rate would be: total output capacitance (Col of 10 pF. the 3 dB bandwidth Secondly, a "zero" is present in the frequency response characteristic for both the "X" and "Y" inputs which causes the output signal to rise in amplituda at a 6 dB/octave slope tJ.V o This can be improved if necessary by addition of an emitterfollower or other type of buffer. 3.4 Phase-Vector Error All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per sa. The phase-vector "zero" is caused by the parasitiC and substrate capacitance which is relatad to resistors RX and Ry and the transistors aaociated with them. The effect of these transmission MOTOROLA LINEAR/INTERFACE DEVICES 11-18 MC1494l, MC1594l error is best explained by an example. If the "X" input is delcribBd in vector notation _ 4. DC APPLICATIONS 4.1 SqUiring Circuit X=A ~ rJ> If the two inputs are connected together. the resultant function is squaring: and the "V" input is described as Vo= KV2 V=S4rJ> where K is the scale factor (see Figure 19), then the output product wou Id be expected to be Vo = AS I( However, a more careful look at the multiplier's defining equation will provide some useful information. The output voltage, without initial offset adjustments is given by: rJ> lsee Figure 18) However, due to a relative phase shift between the "X" and Vo "Y" channels, the output product will be given by =KIV. + Vio, -V, off) IVy + Vioy - Vyoff) + Voo (See "Definitions" for an explanation of terms). With Vx Notice that the magnitude is correct but the phase angle of the product is in error. The vector. V, associated with this error is the "phase-vector erro,", The startling fact about the phase-vector error is that it OCCU rs and actu mu lates much more rapidly than the amplitude error associated with freQuencv response: In fatt,. relative phase shift of only 0.57° = Vy = V (squaring) and defining ex = Viox - Vx off tfy = Vioy - Vy off The output voltage equation becomes will result in a 1% phase-vector error. For most applications. this error is meaningless. If phase of the output product is not important, then neither is the phase-vector error. If phase is important, such as in the case of double sideband modulation or demodulation, then a 1% phase-vector error will represent a 1% amplitude error at the phase angle of interest. Va = K V~ + KVx (EX + fy) + KExfy + Voo This shows that all error terms can be eliminated with only three adjustment potentiometers, eliminating one of the input offset adjustments. For instance, if the "X" input offset adjustment is eliminated, E"x is determined by the internal offset, Viox, but E"y is adjustable to the extent that the (Ex + E"yl term can be zeroed. Then the output offset adjustment is used to adjust the Voo term and thus zero the remaining error terms. An ac procedure for nulling with three adjustments is: FIGURE 18 - PHASE·VECTOR ERROR A. AC Procedure: 1. Connect OSCillator (1 kHz. 15 Vpp) to input 2. Monitor output at 2 kHz with tuned voltmeter and adjust P4 for desired gain (Be sure to peak response of vol tmeter) 3. Tune voltmeter to 1 kHz and adjust P1 for a minimum output voltage AB!.OO 3.5 Circuit Layout 4. Ground input and adjust P3 (output offset) for zero volts de out If wideband operation is desired. careful circuit layout must be observed. Stray capacitance across RX and Ay should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit!. 5. Repeat steps 1 through 4 as necessary. FIGURE 19 - MC1594 SQUARING CIRCUIT 61k 30k +15 V ·15 V SOk 22k lOpF MCI594L (MC1494U 14 ·v 2 Vo" ~IO ' 'I 510 I 3 6 13 451k. _J....,.~~ 16k 20k INPUT OFFSET P3 -15 V ":" +15V MOTOROLA LINEAR/INTERFACE DEVICES 11-19 m MC1494L, MC1594L B. DC Procedure: 1. Set Vx = Vy = 0 V and adjust P3 (output offset potentiometer) such that Vo = 0.0 Vdc 2. Set Vx = Vy = 1.0 V and adjust Pl (Y input offset potentiometer) such that the output voltage is -0.100 volts 3. Set Vx = Vy = 10 Vdc and adjust P4 (load resistor) such that the output vOltage is -10.00 volts 4. Set Vx = Vy = -10 Vdc and check that Va = -10V Repeat steps 1 through 4 as necessary. 4.2 Should Vx change polarity. the transfer function through the multiplier becomes inverting. the amplifier has positive feedback and latch-up results. The problem resulting from Vx being near zero is a result of the transfer through the multiplier being near zero. The op-amp!. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up. The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated. phase reversal results, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clamcing the output swing of the op-ampl. to approximately ± 10.7 volts. Five-percent tolerance. 1~volt zeners are used to assure adequate output swing but still limit the output voltage of the op-ampl. from exceeding the common-mode input range of the MC1594. S~tting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself. One approach, however, is to break the feedback loop. null out the multiplier circuit, and then close the loop. A simpler approach, since it does not involve breaking the 10t?P (thus making it more practical on a production basis). is: Divide Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21. The characteristic "failure" mode of the divide circuit is latch-up, One way it can occur is if Vx is allowed to go negative or, in some cases, if Vx approaches zero. Figure 20 illustrates why this is so. For Vx > 0 the transfer function through the multiplier is non-inverting. Its output is fed to the inverting input of the op-ampl. Thus, operation is in the negative feedback ·mode and the circuit is dc stable. 1. Set Vz = 0 volts and adjust the output offset potentiometer (P3) until the output voltage (Va) remains at some (not necessarily zero) constant value as Vx is varied between +1.0 volt and +10 volts. FIGURE 20 - BASIC DIVIDE CIRCUIT USING MUL TlPLIER 2. Maintain Vz at 0 volts, set Vx at +10 volts and ad· just the Y input offset potentiometer (PU until Vo = 0 volts. 3. With Vx = VZ, adjust the X input offset potentiometer (P2) until the output voltage remains at some (not necessarily -10 volts) constant value as Vz = Vx is varied between +1.0volt and +10 volts. K VXVy OR 4. Maintain Vx = Vz and adjust the scale factor potentiometer (AL) until the average value of Va is-10voltsas Vz = Vx is varied between +1.0 volt and +10 volts. 5. Aepeat steps 1 through 4 as necessary to achieve optimum performance. ·VZ Vo ~ K Vx Vz ">--4--_v, Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomiFIGURE 21 - PRACTICAL DIVIDE CIRCUIT 3Dk 62k Vz r - -....M~----..,..--+-. <" m MZ91.118 OR EOUlY' lN9618 (1~,5~~~8J ':" OR EQUIV Vx ..., --vx- -IOYZ Vo" +15Y -15Y O--......- ..... V, nator voltage. As a result. if V X is set to 10 volts and 0.5% accuracy is available, then 5% accuracy can be expected when Vx is only 1 volt. In accordance with an earlier statement, Vx may have only one polarity, positive. while Vz may be either polarity. 4.3 Squar. Aoot A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 231 protects against accidental latch-up. This circuit too. may be adjusted in the closed-loop mode: of approximately 20 dB. 1. Set Vz = -0.01 Vdc and adjust P3 (output offset I for Va = 0.316 Vdc. It is AGC'd through a 60 dB dynamic range with the application of an AGC voltage from o Vdc to 1 Vdc. The bandwidth of the amplifier is determined by the load resistor and output stray capacitance. For this reason, an emitter·follower buffer has been added to extend the bandwidth in excess of 1 MHz. 2. Set Vz to -0.9 Vdc and adjust P2 ("X" adjustl for Vo = +3 Vdc. 3. Set Vz to -10 Vdc and adjust P4 19ain adjustl for Vo "" +10 Vdc. 5.2 Balanced Modulator When two·time variant signals are used as inputs, the result- FIGURE 23 - SQUARE ROOT CIRCUIT 30k 61k '1 III P lO 510 15 13 51k P3 20k tl5 V -IOV f6 11 - ITClool 9,10 MCI495 MC1595 ( - - 11 kO p,A ITCliol MC1495 MC1595 MC1495 MC1595 MO p,A - Ilioxi 6 Frequency Response 3.0 dB Bandwidth, RL = 11 kO 3.0 dB Bandwidth, RL = 50 II (Transconductance Bandwidth) 3° Relative Phase Shift Between Vx and Vy 1% Absolute Error Due to Input-Output Phase Shift Common Mode Quiescent Output Voltage - Ibx 30 35 20 35 6 114 - 181 Common Mode Gain (Either Input) Ro 6 I-~I-~ bx2 ,by2 m - RINY 8 Input Bias Current - - 5.0 10 - - MHz MHz kHz kHz - Vdc - - dB - Vdc Vpeak mVN 6.0 7.0 mA 135 170 mW MC1495L, MC1595L MAXIMUM RATINGS (TA = +250 C unless otherwise noted) Svmbol 6V Value 30 Unit V12-V9 V4- V a ±(6+113 RX) ±(6+13 Ry) Vdc Vdc Maximum Bias Current 13 113 10 10 mA Power Dissipation (Package Limitation) Po 750 5.0 mW mW/oC o to +70 °c °c Rating Applied Voltage (V2-V l. V14-Vl. Vl-V9. Vl-V12. Vl- V 4. VI-Va. V12-V7. V9-V7. Va-V7. V4- V 7) Differential Input Signal Ceramic Package Derate above T A = +250 C Operating Temperature Range Vdc TA MC1495 MC1595 -55 to +125 °c -65 to +150 T stg Storage Temperature Range TEST CIRCUITS FIGURE 4 - LINEARITY (USING NULL TECHNIQUE) '-~~-1p---t--------+---1P------"""V+ .. tl!iV 10. 3k 10. MC1741G (MC1741CG} 10' >--0""'''' v, 33. OUTPUT OFFSET ADJUST +------------_I-__________ 1;D.,;.tF ---l~ _ _ _ _ _...... V-,,-15V NOTES' Adjust "Scale FactorAdJust"toranull in VE. Thissch!maticforiliustrallvepurputeSonlynOI sJl8cified for lest conditions FIGURE 5 - LINEARITY (USING X·Y PLOTTER TECHNIQUE) II v, OFFSfTADJUST. (SfEFIGURES 13& 14) I v X PLOTTER X-Y Y·INPUT PLOTTER -15V MOTOROLA LINEAR/INTERFACE DEVICES 11-27 MC1495L, MC1595L TEST CIRCUITS (continued) FIGURE 6 - INPUT AND OUTPUT CURRENT FIGURE 7 - INPUT RESISTANCE +32 V Ry' 15 k RX' 15 k el '" T.OV (rms) 10 Hz +32 V RY'15k RX=15k 1.0 M 4 II 5 9.1 k I I.OM MCI595L {MCI495L) '1 '1 11 -= 13.75k 11k 5.0 k RINX" RrNY "R! FIGURE 8 - OUTPUT RESISTANCE ~ - 21 ~ -= O.I"F~ 0.1 J.iF -15 V FIGURE 9 - BANDWIDTH (RL = 11 kQ) +31 V Ry '15 k RX '15 k 11 11k 7 13 I.OM -15V Ilk 14 +32 V RY'15k RX'15k 9.1 k 9.lk 11k '1 RL '11 k Ilk Ilk 14 'V 0.1 "F 'I 13.7k '* 1.0 V (rms) 20 Hz SCALE FACTOR ADJUST. -15V -15 V FIGURE 10 - BANDWIDTH (RL m = 50 Q) FIGURE 11 - COMMON-MODE GAIN and COMMON·MODE INPUT SWING VT=+15 V Ry· 510 RX' 510 15 k +32 V 15 k II Ik 9.1 k 50 50 Vo ~_ O.I"F K' 40 SCALE FACTOR Teo -=:= - A~JUST. -15 V t 1.0 mA Vo I ACM • 10 log CMVy CL<3.0pF Vo --t-- -15 V MOTOROLA LINEAR/INTERFACE DEVICES 11-28 or 10 log CMVx MC1495L, MC1595L TEST CIRCUITS (continued) FIGURE 12 - POWER SUPPLY SENSITIVITY +32 V 15k FIGURE 13 - OFFSET ADJUST CIRCUIT +32 V 15k v+ 9.1 k 2.0 k Ilk 2.0 k IN753 6.2 V Pot II ~OO~I~S~T ADJ - - - 11k 10 k 10 k 4.3 k 13.1k 2.0 k 10 k s+. I" IVol - Vo211 "v+ -15V s-. I" IVol - • -15V Vo2l! "v- FIGURE 14 - OFFSET ADJUST CIRCUIT {ALTERNATE} V+ 5.1 V 5.1 V 2k -15V II MOTOROLA LINEAR/INTERFACE DEVICES "-29 MC1495L, MC1595L TYPICAL CHARACTERISTICS FIGURE 15 - LINEARITY versus TEMPERATURE FIGURE 16 - SCALE FACTOR versus TEMPERATURE 2. 0 1. 1. ~ 0.11 0 81\. 6"'\,. 1:: ~ 1.4 ~ 1. 1.2 " O~ ~ o. 8 E "'" ~ .............. O. 6 ...- ERY ............ 0.10 '" . ~ ~ -r--- K ADJUSTED TO 0.100 AT +25 0 C 0.10 0 ~ ~ ERX 5~ "-... 0.09 5 O. 4 O. 2 o -55 c o -25 +25 +50 +15 +100 -55 +125 -25 +25 +50 +75 TA. AMBIENT TEMPERATURE lOCI TA. AMBIENTTEMPERATURE lOCI ,= Vy=±10 VMax , Vx ':: Vy:: ±5.0 V Max Vx ~ 0.8 ~ ~ 0.6 ~ ... ~ 0 0.' ~ '" ~ 131= 113= 1.0 mAde 13" 113" 1.0 mAde ~ it 0.2 o 10 \ ~ 6 ~ 12 -- I--18 14 16 RX OR Ry Ik DHMSI \ "" '---....... - o 4.0 20 6.0 8.0 10 RX OR Ry Ik OHMSI FIGURE 19 - MAXIMUM ALLOWABLE INPUT VOLTAGE versus VOLTAGE AT PIN 1 OR PIN 7 14 ID .......... 12 1 10 x 8.0 ." .......... ,;' ~ >= ~ J +125 1.0 1.0 ~ +100 FIGURE 18 - ERROR CONTRiBUTED BY INPUT DIFFERENTIAL AMPLIFIER FIGURE 17 - ERROR CONTRIBUTED BY INPUT DIFFERENTIAL AMPLIFIER w --- .......... MLNIMUM ........ 6.0 ;......-- ...- ..........~ '" 0 X 4.0 ;;,. -- .........--.........--............. 2.0 .................... , ; ' 2.0 4.0 ~ 6.0 ...- ........ .......... ........ ~ 12 14 -- ..--.- ...... ~ .,.. ~ RECtMENDED 8.0 IV11 10 DR 12 1V71 {VOLTSI MOTOROLA LINEAR/INTERFACE DEVICES 11-30 14 16 18 MC1495L, MC1595L OPERATION AND APPLICATIONS INFORMATION 2.1.2 3 dB·Bandwidth and Phase Shift 1. Theory of Operation The MC1595 fMC1495) is a monolithic. four..quadrant multi~ plier which operates on the principle of variable transconductance. The detailed theory of operation is covered in Application Note AN-489. Analysis and Basic Operation of the MC1595. The result of this analysis is that the differential output current of the multiplier is given by where fA and '8 are the currents into pins 14 and 2, respectively. and Vx and Vy are the X and Y input voltages at the multiplier input terminals. 2. Design Considerations Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low val ue load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout. Phase shift in the multiplier circuit results from two sources: phase shift common to both X and Y channels (due to the load resistor-.output capacitance pole mentioned above) and relative phase shift between X and Y channels (due to differences in transadmittance in the X and Y channels). If the input to output phase shift is only 0.60 , the output product of two sine waves will exhibit a vector error of 1%. A 3° relative phase shift between Vx and Vy results in a vector error of 5%. 2.1.3 Maximum Input Voltage 2.1 General The MC1595 (MC1495) permits the designer to tailor the VX(max), VY(maxl maximum input voltages must be such that: multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidthl which may in turn restrict another parameter (e.g. maximum output voltage swingl. Each important parameter is discussed in detail in the following paragraphs. 2.1.1 Linearity, Output Error, ERX or ERY Linearity error is defined as the maximum deviation of out· put voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below!' VX(maxl <113 R y VY(maxl <13 Ry. Exceedingthisvaluewill drive one side of the input amplifier to "cutoff" and cause non·linear operation. Currents 13 and 113are chosen at a convenient value (observ· ing power dissipation limitation) between 0.5 rnA and 2.0 rnA, approximately 1.0 mAo Then RX and Ry can be determined by considering the input signal handling requirements. For VX(maxl = VYlmaxl = 10 volts; RxoRy>~010kJl. 1.0mA ----,11;------:-: + 1 0 2VXVy The equation IA -IB V = RX R y I 3 2VXVy is derived from IA - 18 = 2kT 2kT (RX +Qi131 (Ry + 2kT and R Y q l 13 P. 2kT • q l3 ~ ±1.0%. 2kT 02kT 052,n. Linearity error may be measured by either of the following methods: 1. Using an X - Y plotter with the circuit shown in Figure 5, obtain plots for X and Y similar to the one shown above. 2. Use the circuit of Figure 4. This method nulls the level shifted output of the multiplier with the original input. The peak output of the null operational amplifier will be equal to the error voltage, VE(max). One source of linearity error can arise from large signal non· linearity in the X and Y·input differential amplifiers. To avoid introducing error from this source. the emitter degeneration resistors RX and Ry must be chosen large enough so that non· linear base--emitter voltage variation can be ignored. Figures 17 and 18 show the error expected from this source as a function of the values of R X and Ry with an operating current of 1.0 rnA in each side of the differential amplifiers (i.e., 13 = 113 = 1.0 mAl. ql13 q l 3 Therefore, with RX = Ry = 10 kn the above assumption is valid. Reference to Figure 19 will indicate limitations of VX(maxl or VY(maxl due to V1 and V7. Exceeding these limits will cause saturation or "cutoff" of the input transistors_ See Step 4 of Section 3 (General Design Procedure) for further details. 2.1.4 Maximum Output Voltage Swing The maximum output voltage swing is dependent upon the factors mentioned below and upon the particular circuit being considered. For Figure 20 the maximum output swing is dependent upon V+ for positive swing and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quies~ cent level for transistors 05, 06, Q7. and aS· This potential MOTOROLA LINEAR/INTERFACE DEVICES 11-31 m MC1495l, MC1595l OPERATION AND APPLICATIONS INFORMATION (continued) If an ope'rational amplifier is used for level shift, as shown in Figure 21, the output swing (of the multiplier) is greatly should b8 related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials. reduced. See Section 3 for further details. 3. General Design Procedure Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the X and Y inputs to limit the maximum multiplier input to ±5.0 volts (Vx '"" FIGURE 20 - BASIC MULTIPLIER VY[max~fora ± 1O-vo It input IVX' = VY'[maxJI. (See Figure 211. If an overall scale factar of 1/10 is desired, then V' RX R, Ry Rl v 10 Vx Vy i i 10 10 Therefore, K "'" 4/10 for the multiplier (excluding the divider network). " } v, 14 MC1595L (MC1495l) Step 1. The first step is to select current 13 and current 113· There are no restrictions on the selection of either of these currents except the power dissipation of the device. 13 and 113 will normally be one or two milliamperes. Further, 13 does not have to be equal to 113, and there is normally no need to make them different. For this example, let Vo=KVXVy 2Rl K·-Rx Ryl3 3 '3 = VX' Vy' _12VXI12Vy) = 4/10 VXVy, a Rl t'3 13 '13 To set currents 13 and 113 to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3, V- FIGURE 21 - MULTIPLIER WITH OP-AMPL. LEVEL SHIFT -15V r--~--.,....---~---+---t- R, 3k 0.1 " R, 3k +15V ~F D.lp.F 3k >----e. . . ...-.. MC1741G (MCl141CG) MC1595L (MC1495L) ± IOV 10k 10k 13 12 13k 40k 33k 12k 5k 10k OUTPUT OFFSET SCALE FACTOR ADJUST ADJUST -= Y OFFSET ADJUST X OFFSET ADJUST 10k 15k 15k -15V +15V 10k 2k 2k MOTOROLA LINEAR/INTERFACE DEVICES 11-34 v o :-V_X_,~_y (1) MC1495L, MC1595L OPERATION AND APPLICATIONS INFORMATION (continued) ?j x, 5.2 Squaring Circuit Y and Output Offset Voltages o If the two inputs are tied together, the resultant function is squaring; that is Va = KV2 where K is the scale factor. Note that all error terms can be eliminated with only three adjustment potentiometers, thus eliminating one of the input offset adjust· ments. Procedures for nulling with adjustments are given as follows: Output Offset Vx X Offset --~L+~+---rVy 1. AC Procedure: (a) Connect oscillator 11kHz, 15 Vpp) to input (b) Monitor output at 2 kHz with tuned voltmeter and adjust P3 for desired gain (be sure to peak response of the voltmeter) (e) Tune voltmeter to 1 kHz and adjust P1 for a minimum output voltage (d) Ground input and adjust P4 (output offset I for zero volts dc output lei Repeat steps a through d as necessary. 2. DC Procedure: (a) Set Vx = Vy =' 0 V and adjust P4 (output offset potentiometer) such that Vo '= 0.0 Vdc Y Offset For most de applications, all three offset adjust potentiome- ters (P1. P2. P4) will be necessary. One or more offset adjust potentiometers can be eliminated for ae applications (See Figures 28, 29, 30, 31 lIt well regulated supply voltages are available, the offset adjust circuit of Figure 13·i5 recommended. Otherwise. the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes. 4.2 Scale Factor The scale factor, K, is set by P3(F igu[e 21). P3 varies 13 which inversely controls the scale factor K. It should be noted that current 13 is one-half the current through R 1. R 1 sets the bias level for Q5, 06, 07, and Os (See Figure 3), Therefore, to be sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting P3 over wide voltage ranges (see Section 3, General Design Procedurel. (b) Set Vx ~ Vv ~ 1.0 V and adjust P1 (V ·input offset potentiometer) such that the output voltage is +0.100 volts (c) Set Vx =' Vy =' 10 Vdc and adjust P3 such that the output voltage is + 10.00 volts (dl Set Vx = Vy = -10 Vdc. Repeat steps a through d as necessary. 4.3 Adjustment Procedures FIGURE 24 - BASIC DIVIDE CIRCUIT The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21) 1. X I nput Offset (al Connect oscillator (1 kHz, 5 Vpp sinewavel to the "y" input (pin 41 (bl Connect "x .. input (pin 9) to ground (e) Adjust X offset potentiometer, P2, for an ac null at the output 2. Y Input Offset (a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "x .. input (pin 9) (b) Connect "Y" input (pin 4) to ground Ie) Adjust "v" offset potentiometer, P1,for an ac null at the output 3. Output Offset (a) Connect both "X" and "Y" inputs to ground (b) Adjust output offset potentiometer. P4, until the output voltage Va is zero volts dc 4. Scale Factor (a) Apply +10 Vdc to both the "x" and "Y" inputs (b) Adjust P3 to achieve + 10.00 V at the output. 5. Repeat steps 1 through 4 as necessary. "1 5.3 Divide Circuit Consider the circuit shown in Figure 24 in which the multi· plier is placed in the feedback path of an operational amplifier. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-I input. Assuming that the bias current of the operational amplifier is negligible. then 11 = 12 and The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers P1 through P4. Multi·turn, infinite resolution potentiomet· ers with low·temperature coefficients are recommended. 5. DC Applications KVXVv ~ -VZ The circuit shown in Figure 21 may be used to multiply signals from de to 100 kHz. Input levels to the actual multiplier are 5.0 V (max). With resistive voltage dividers the maxi· mum could be very large - however. for this application two· to-one dividers have been used so that the maximum input level is 10 V. The maximum output level has also been designed for 10 V (max). R2 R1 Solving for Vy, 5.1 Multiply '>---<>-~""Vy If R1 ~ -R1 Vz Vv ~R2 K VX' (1) (2) R2 -VZ VV~-- KVX If R1 ~ -VZ VV~VX ' MOTOROLA LINEAR/INTERFACE DEVICES 11-35 (3) KR2 (4) m MC1495L, MC1595L OPERATION AND APPLICATIONS INFORMATION (continued) Hence, the output voltage is the ratio of Vz to Vx and provides adivide function. Thisanalysis is. of course, the ideal condition. From equation 7, the percentage error is inversely related to voltage Vz (i.e., for increasing values of VZ, the percentage error decreases). A circuit that performs the divide function is shown in Figure 25. If the multiplier error is taken into account, the output voltage is fou nd to be VY~_[~lvz+ 6E 112 K Vx • KVX Two things should be emphasized concerning Figure 25. 1. The input voltage (V'X) must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of Vz. 151 where .o.E is the error voltage at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set. particularly at small values of Vy. For example, assume that R1 = R2, and K == 1/10. Fortheseconditionstheoutput of the divide circuit is given by: -10 Vz 106E Vy=--- +-Vx Vx 2. Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connec· tion shown in Figure 21; necessitated to insure negative feedback around the loop. A Suggested Adjustment Procedure for the Divide Circuit 161 1. Set Vz = 0 volts and adjust the output offset potentiometer (P 4) until the output voltage (Va) remains at some (not necessarily zero) constant value as VX' is varied between +1.0 volt and +10 volts. From equation 6, it is seen that only when Vx = 10 V is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when Vx is small, (0.1 volt) the error voltage of the divide circuit can be expected to be a hundred times the error of the basic multiplier circuit. In terms of percentage error, percentage error =error 2. Keep Vz at 0 volts, set VX' at +10 volts and adjust the Y input offset potentiometer (P1) until Va "" 0 volts. 3. Let VX' "" Vz and adjust the X input offset potentiometer (P2) until the output voltage remains at some (not necessarily - 10 volts) constant value as Vz "" VX' is varied between +1.0 and +10 volts. x 100% actual 4. Keep VX' "" Vz and adjust the scale factor potentiometer (P3) until the average value of Va is -10 volts as Vz '" VX' is varied between +1.0 volt and +10 volts. or from equation (5)' 5. Repeat steps 1 through 4 as necessary to achieve optimum performance. AE P.E·O [1I2]6E =r 111KVX ] Vz =Ai" vz . [R2 K 5.4 Square Root 17) A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function Vx II MOTOROLA LINEAR/INTERFACE DEVICES 11-36 MC1495L, MC1595L OPERATION AND APPLICATIONS INFORMATION (continued) FIGURE 26 - BASIC SQUARE ROOT CIRCUIT 6. AC Applications The applications that follow demonstrate the versatility of the monolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units have circuits that. although they optimize dc multiplication operation. can hinder ac applications'. B.1 Frequency doubling often is done with a diode where the fundamental plus a series of harmonics are generated. However, extensive filtering is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually is small in magnitude and requires amplification. . When a multiplier is used to double frequency the second harmonic is obtained directly, except for a dc term, which can be removed with ac coupling. Vz >---<>-...._V, Vo=J'l en KE2 =: _ (1 + cos 2wt). 2 as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping A potted multiplier can be used to obtain the double frequency component, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted. In a typical doubler circuit, conventional ± 15-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allOWed. The circuit generates wave-forms that are double frequency; less than 1% distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kHz; reducing the scale factor by decreasing the load resistors can further expand the bandwidth. ' A slightly modified version of the MC1595 (MC1495) the MC1596 (MC1496) - has been successfully used as a doubler to obtain 400 MHz. (See Figure 28,) (see Figure 27) protects against accidental latch-up, This circuit also may be adjusted in the closed-loop mode as follows: 1. Set Vz to -0.01 volts and adjust P4 (output offset) for Va = +0.316 volts. being careful to approach the output from the positive side to preclude the effect of the out· put diode clamping. 2. Set Vz to - 0.9 volts and adiust P2 IX adjust) for Vo = +3.0 volts. 3. Set Vz for Va to -10 volts and adjust P3 (scale factor adjust) = +10 volts. 6.2 Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is 1.6 kHz and the carrier is 40 kHz. 4. Steps 1 through 3 may be repeated as necessary to achieve desired accuracy. MOTOROLA LINEAR/INTERFACE DEVICES 11-37 MC1495L, MC1595L OPERATION AND APPLICATIONS INFORMATION (continued) The defining equation for balanced modulation is FIGURE 28 - FREQUENCY DOUBLER Ry RX B.2k B.2k VCC=+15V R, 13.0k Ecoswt 1<5V p_p) R, where we is the carrier frequency, wm is the modulator 23.3k AC couplingat the output eliminates the need for level translation or an operational amplifier; a higher operating frequency results. R, 3.3k 14 A problem common to communications is to extract the 1 c,' 'SElECT 6.ak intelligence from single-sideband received signal. The ssb signal is of the form essb "" A cos (we + wmlt E2 eo "'20COS2W! and if multiplied by the appropriate carrier waveform, cos wet, -15V Whefllwo equal cosine waves are applied 10 X and Y, the result is a wave shape of Iwicelhe inputfreqlleflcy. Forthisexampletheinputwasa 10kHlsignel.olltput was 20 kHz. FIGURE 29 - essbecarrier = BALANCED MODULATOR Ry RX B.H B.2k .Jl~F 11 2AK {cos (2w c + wm)t + cos (Welt]. If the frequency of the band·limited carrier signal, wc, is ascer· tained in advance the designer can insert a low-pass filter and obtain the IAK/2) (cos wct) term with ease. He also can use an operational amplifier for a combination level shift·active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not accessible, so the user must accept the level shifting provided, and still add a low·pass filter. +15V (AI 6.3 Amplitude Modulation '3k ey'" Ecoswmt The multiplier performs amplitude modulation. similar to balanced modulation, when a dc term is added to the modulating signal with the Y offset adjust potentiometer, (See Figure 30,) Rl 23.3k Rl 3.3k OFFSET ADJUST 14 X ·SELECT 6.ak Here, the identity is 1,· Em( 1 + m cos wmt) Ec cos wct "" KEmEccos wct + KEmEcm - - 2 - - [cos(w c + wm h + cos (wc - wm)tJ " where m indicates the degree of modulation. Since m is adjust· able, via potentiometer P1, 100% modulation is possible. With· out extensive tweaking, 96% modulation may be obtained where Wc and wm are the same as in the balanced~modulator example. ·15V III fre~ quencyand K is the multiplier gain constant. OFFSET ADJUST (BI 6.4 Linear Gain Control To obtain linear gain control, the designer can feed to one of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose a 200 kHz sine wave, 1.0 volt peak·to-peak. is the signal to which a gain control will be added. The dynamic range of the control voltage Vc is 0 to +1.0 volt. These must be ascertained and the proper values of RX and Ry can be selected for optimum performance. For the 200·kHz operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency. (See Figure 31.) MOTOROLA LINEAR/INTERFACE DEVICES 11-38 MC1495L, MC1595L OPERATION AND APPLICATIONS INFORMATION (continued) The signal is applied to the unit's Y input. Since the total FIGURE 30 - AMPLITUDE MODULATION input range is limited to 1.0 volt pop, a 2.0-volt swing. a current source of 2.0 mA and an Ry value of 1.0 kilohm is chosen. Ry RX 82k 8.2k This takes best advantage of the dynamic range and insures linear operation in the Y -channel. VCC=+15V 11 , Since the X input varies between 0 and +1.0 volt, the current source selected was 1.0 rnA and the RX value chosen was 2.0 R, J.Ok ey= ECDSwmt kilohms. This also insures linear operation over the X input dynamic range. Choosing RL = 100 assures wide-bandwidth operation. Hence, the scale factor for this configuration is Rll ex = Ecoswmt 2 J.3k %MODUlATION RLl ADJUST 3.3k 14 OFFSET ADJUST "SELECT 68' I 1.0.' ::); C," _ _ _1-,-00 _ _ _ V- 1 (2 kit 1 klt2 x 10+ 3 1 " = -15 V ~ 40 V-1" IBI The 2 in the numerator of the equation is missing in this scalefactor expression because the output is single-ended and ac coupled. To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been used with frequency compensation to allow a gain of 40 at 200 kHz. The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly. FIGURE 31 - LINEAR GAIN CONTROL +12V 2k 1k 10 1.5k r'f 510 IBI (AI 1.25 Vin'" I Vp·p 200kHz m 1.0 O.l/JF MC1595L lMC1495L) l k~ to 100 50j.(F 100 33 E--eVo 14 12 ~ 0.75 > ~ 0.' 0.25 0.33j.lF 00 13 . 11k 3k ~'" -12 1 50 " 0.' 0.6 0.8 1.0 VAGC(VOLTS) NOTE: linear gain control oi a '·volt peak·tD·p~ak signal is performed with a O·!o·1·votl control voltage. If VCis 0.5 volt the outpulwill be 0.5 volt p.p v MOTOROLA LINEAR/INTERFACE DEVICES 11-39 0.2 1.2 ORDERING INFORMATION Temperature Device MC3456D MC3456L MC3456P MC3556L NE556D Alternate Range Package NE556A O°C to +70°C O°C to +70°C O°C to +70°C - 55°C to + 125°C O°C to +70°C SO-14 Ceramic DIP Plastic DIP Ceramic DIP SO-14 MC3456 MC3556 Specifications and Applications Information DUAL TIMING CIRCUIT DUAL TIMING CIRCUIT The MC35561MC3456 dual timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor per timer. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor per timer. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 rnA or drive MTTL circuits. SILICON MONOLITHIC INTEGRATED CIRCUIT L SUFFIX CERAMIC P A C K A G E . CASE 632-08 • Direct Replacement for NE556/SE556 Timers • Tirning From Microseconds Through Hours • Operates in Both Astable and Monostable Modes 14 1 • Adjustable Duty Cycle • High Current Output Can Source or Sink 200 rnA • • • • Output Can Drive MTTL Temperature Stability of 0.005% per °C Normally "On" or Normally "Off" Output Dual Version of the Popular MC1455 Timer FIGURE 1 - Threshold A 2 13 Discharge B Contiol A 3 12 Threshold B Reset A 4 22-SECOND SOUD-STATE TIME DELAY RELAY CIRCUIT Output B Trigger B (Top View) P SUFFIX PLASTIC PACKAGE ,~ffMm O.Ol/LF II Time delay It) is variable by changing Rand C, (See Figure.16). 1 fiGURE Z - ,. 8. D SUFFIX PLASTIC PACKAGE CASE 751-02 SO-8 , 1 BLOCK DIAGRAM (1/2 SHOWN) vee 2 (12) 5.0 k Threshold Control TYPICAL APPLICATIONS 1 (13) Discharge Voltage 3 (11) 5.0 k Output Trigger 6(8) 5.0 k 5 (9) MOTOROLA LINEAR/INTERFACE DEVICES 11-40 • • • • • • • • • Time Delay Generation Sequential Timing Linear Sweep Generation Precision Timing Pulse Generation Pulse Shaping Missing Pulse Detection Pulse Width Modulation Pulse Position Modulation MC3456, MC3556 MAXIMUM RATINGS IT A FIGURE 3 - GENERAL TEST CIRCUIT = +2SoC unless otherwise noted.! Ratmg Power Supply Voltage Discharge Current Power DIssipation (Package Symbol Value Unit Vee +18 Vdc Idis 200 mA 1000 6.6 625 5.0 mW mw/oe mW mw/oe Po Limitation) Ceramic Dual-lnMLine Package Derate above T A = +25 0 C Plastic Dual I n-Line Package Derate above T A = +25 0 C Operating Ambient Temperature Range MC3556 MC3456 TA Storage Temperature Range T stg °c Test CircuIt for MeasurIng de Parameters (to set output and measure parameters) -55 to +125 o to +70 -65 to +150 Vs ... a When b. When VS"" 1/3 2/3 Vee. Vo Vee. Vo IS low. 15 hIgh When Vo IS lOW, pin 7 sinks current. To tesl tor Reset, set VO. hIgh, applv Reset VOltage, and t8St for current °c flowing Into discharge pIn. When Aeset IS not In USB, It should be tied to Vee. ELECTRICAL CHARACTERISTICS IT A" +2Soc Vee'" +50 V to +15 V unless otherWise noted I Symbol Characteristics Supply Voltage Vee upply Current Vee" 5.0 V. RL VCC=-15V.AL ~oo Low State. (Note 1) MC3456 MC35S6 Min TyO '.5 'ce Tlmmg Error (Note 21 Monostable Mode RA = 2.0 krl to 100 kU Initial Accuracy C" a 1 /.IF Dnft with Temperature Drift with Supply Voltage Min Vh VT Trigger Voltage VCC=15V VCC" 5.0 V Trigger Current 'T VR Reset Voltage 0.5 30 1.5 100 0.2 0.75 " %lVolt " 150 0.3 PPM/oC %lVolt 2/3 2/3 xVee V 4.8 5.0 1.67 5.2 1.9 0.' 0.5 0.7 1.0 'R 0.1 -'tn. 0.03 0.1 Vel 10 3.33 10.4 3.8 0.1 0.4 2.0 2.5 0.15 0.5 0.1 0.25 Vee" 5.0 V V mA PPMl"e 50 0.1 2.25 ThreshOld Current INote 3J Output Voltage Low (Vec" 15 VI Isink = 10 mA Isink'" 50 mA Isink '" 100 mA 'sink = 200 mA Unit 0.15 1.45 9.6 2.9 12 30 6.0 20 Control Voltage Level VCC'" 15 V Reset Current M.. t6 10 2. 1.5 90 ThreshOld Voltage TyO '.5 6.0 20 0.15 Astable Mode AA = AB = 2.0 kSl to 100 kH C = 0.01 ,uF Initial Accuracy Drift with Temperature Drift with Supply Voltage M.. 18 5.0 1.67 0.4. 9.0 2.6 0.5 0.7 0.1 1.0 0.03 0.1 10 3.33 11 4.0 0.1 0.4 2.0 2.5 0.25 0.75 0,25 0.35 .A V mA .A V VOL V 2.25 III 2.75 IVee' 5.0 VI I,ink .. 8.0 mA I' • 5.0mA Output Voltage High V VOH tl lOurce " 200 mAl Vec"5V 12.5 tllOurce" 100 mAl VCC" 5V ' = Vee 13 3.0 5.0 V TOQgle Rate (Figures 11. 191 RA = 3,3 kn, RB • 6.8 kn, C = 0.003 .F ,T', 12.75 2.75 I· IOut~t .tou-L .!OttL t Matching Characteristics Between Sections (MonQ1,tablel Initial Timing Accuracy Timing Drift with Temperature Drift with Suoply Vollaae 20 100 20 100 100 1.0 1.0 tl0 0.2 100 100 0.5 :!:10 0.1 NOTES: 1. Supply current IS typically 1.0 mA less for each output which is high. 2. Tested at Vee = 5.0 V and Vce == 15 V. 0.2 3. This will determine the maximum value of RA + RS for 15 V operation. The maximum total R = 20 megohms. MOTOROLA LINEAR/INTERFACE DEVICES 11-41 13.3 3.3 100 100 oischarQe Leakage Current F II Time of Out 12.5 13.3 3.3 kHz tOO 2.0 nA " ppm/oe 0.5 %IV MC3456, MC3556 TYPICAL CHARACTERISTICS (T A = +25 0 C unless otherwise noted.) FIGURE 4 - TRIGGER PULSE WIDTH FIGURE 5 - SUPPLY CURRENT 10 150 125 .~ :c I- !::! 75 ~ 50 it" 25 +2J~ ~ ~ A.~ ~oc ~ 80 ..s 100 ./ r- ~ o o ~ --I- rj: V V I- r- ~ ~ ~ 6.0 ~ ~ ~ 4.0 ~oc f.:::::: ~ ~ kl0°j. \ f-+1f~oe 0.1 ~2.0 r-r- ~ A.~ -55 0 e ~ 2.0 -~50e 1.8 /" 1.6 y 1.4 ~ 1.2 ,; ~ 1.0 ~ 0.8 > 0.6 +25 0 C I-" / I -- +125 0 C 0.4 5 V,.;; Vee';;; 15 V 0.2 o 0.3 0.2 FIGURE 6 - HIGH OUTPUT VOLTAGE 5.0 0.4 o 1.0 15 10 VT(min), MINIMUM TRIGGER VOLTAGE (X Vee Vdcl Vcc, SUPPLY VOLTAGE (Vd,1 FIGURE 7 - LOW OUTPUT VOLTAGE @ Vee = 5.0 Vdc FIGURE B - LOW OUTPUT VOLTAGE @ Vee = 10 Vdc 2.0 5.0 10 II 1 20 50 100 'source{mA) 0 0 0 If! I- N - \ ~ \ l"- f-""" g« 0.995 - '" ;:;: w ";::>- g ;? 0.99 0 5.0 10 2.0 5.0 !250 15 Vee, SUPPLY VOLTAGE (Vdcl 20 -I1.000 - - l- t-- 0.995 -50 -25 0 g 200 ;3 150 ;:: « (!J ~ 100 100 -55 0 e -- ~e.....- I -.......-: ~r ~~ ~+250C oS: r=tOte ]. +25 +50 +75 +100 +125 T A, AMBIENT TEMPERATURE (OCI MOTOROLA LINEAR/INTERFACE DEVICES 11-42 50 /} ";:: ~ 0.990 O.98~75 20 FIGURE 12 - PROPAGATION OELAY versus TRIGGER VOLTAGE 1.010 1.005 10 ISINK, (mAl 300 ~ -55 DC iffiP +125 DC 0.0 1 1.0 100 1.015 « ;? 0.98 50 50 0 \ +250~ o. 1 FIGURE 11 - DELAY TIME versus TEMPERATURE '"~ 1.010 '" " ~ > 20 J 1.-4 ~ -' o ISIN K, (mAl FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE « 1 10 5.0 ISIN K, (mAl a ~50C 1.0 ~50e 0.0 1 1.0 100 -55°C +25 0 C o [t/ o. 1 11 -55 0C--:: q- ~C-f 0 FIGURE 9 - LOW OUTPUT VOLTAGE @ Vee = 15 Vdc i'-+100e 5 0 0.1 0.2 0.3 0.4 VT(minl, MINIMUM TRIGGER VOLTAGE (X Vce 0 Vdcl MC3456, MC3556 FIGURE 13 - 1/2 REPRESENTATIVE CIRCUIT SCHEMATIC Vee Threshold 'I II L _____ Trigger I ---, , RESET Reset I Discharge GND I, ~, ~-----l I I I i: " " o-;-~1-L~______________________________~ "1-[ _____ .J lOO GENERAL OPERATION A reset pin is provided to dischBrge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use. The MC3556 is a dual timing circuit which uses as its timing elements an external resistor - capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. I nternal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage. FIGURE 14 - MONOSTABLE CIRCUIT +Vcc (5 to 15 V) Monostable Mode In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 Vec the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 Vce the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is !::'igh is given by the equation t :::: 1.1 RA C. Various combinations of Rand C and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period. Reset Vee 4 (10) 5 (9) 14 , - - ' - - - - - - ' - - - , 0 ischarge 1 (13) Output 6 (8) 1/2 MC3556 1/2 MC3456 Trigger ~:AL .--:~-- MOTOROLA LINEAR/INTERFACE DEVICES 11-43 0.01 ItF Gnd I Control Voltage II II MC3456, MC3556 GENERAL OPERATION (continued) FIGURE 15 - MONOSTABLE WAVEFORMS FIGURE 17 - ASTABLE CIRCUIT +VCC(5 to 15 V) 14 VCC 4 (101 RL Reset RA 11131 5191 Oischarge Output 0- li2 MC3556 1/2 MC3456 6 (81 R8 Trigger RL Gnd t = 50 #s/cm (RA = 10 kn. e = 0.01 ~F. RL = 1.0 kn • Vee = 15 V) FIGURE 16 - TIME DELAY 100 / 10 -" w u z / / 1.0 ""<3 I- / ;t 0.1 ;'i U 0.01 0.001 ./ / ?L ) ," / / 10,us V lOOps ~ ~" / V lL / ~I-- / / / / -,fL _,~~o/ -!z: / Output Voltage / 10 ./ / -~ / • / / / / 1.0 ms / / / / / / / / / / / FIGURE 18 - ASTABLE WAVEFORMS / 10 ms 100 ms td, TIME DELAY lsi 1.0 100 10 IP! iil'- IRII!1Ii' 'c!apae'tor liii VOlta _g , IISi!!:ii "a t"" 20,...sJcm (RA = 5.1 k!!. C = 0.01 ~F. RL = 1.0 k!!; RB = 3.9 kn. Vce = 15 VI Astable Mode In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between 1/3 Vccand 2/3 VCC. See Figure 17. FIGURE 19 - FREE·RUNNING FREQUENCY The external capacitor charges to 2/3 Vee through AA and RS and discharges to 1/3 Vee through RS' By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage. 100r.:--r.:--,-.;:--,---,----r---r---, 10~-~~--~:--f~--+_---4---4---~ The charge time (output high) is given by: q = 0.695 (RA+RS) C The discharge time (output low) by: t2 = 0.695 (RS) C = tl + t2 The frequency of oscillation is then: f "'" ~ ;:; Thusthe total period is given by: T = 0.695 (RA+2RS) C 1.44 T (RA+2RB) C and may be easily found as shown in Figure 19. The duty cycle is given by: DC ;:; ~ 1.0~-,~~-,_+~~_+~~_f~~_r--4_--~ ;: <3 ;t --+'....-4_--~ ~ O.lt--~~-_+~--+~-_f.... u' ~ RA+2RB 0.011----+----f'.:---f....---.p.,.--4"-----P~~ To obtain the maximum duty cycle RA must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mAl. The minimum value of RA is given by: f, FREE-RUNNING FREQUENCY (Hz) R? VCC (Vdc) ;;. VCC (Vdc) 17 (A) 0.2 MOTOROLA LINEAR/INTERFACE DEVICES 11-44 MC3456, MC3556 APPLICATIONS INFORMATION DUAL ASTABLE MULTIVIBRATOR This dual astable multivibrator provides versatility not available with single timer circuits. The duty cycle can be adjusted from 5% to 95%. The two outputs provide two phase clock signals often required in digital systems. It can also be inhibited by use of either reset terminal. TONE BURST GENERATOR For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse'at Pin 6, The second timer is enabled by the high output of the monostable. It is con· nected as an astable and determines the frequency of the tone. FIGURE 20 - TONE BURST GENERATOR +15 V Reset 4 14 VCC RA 13 Discharge Trigger Trigger 5 Output 0---1--0--1 6 AS Reset 10 1 1/2 MC3556 12 Threshold 1/2 MC3556 Discharge 8 Trigger Control ThresC1.. C2 hold Gnd f= 1,44 (RA + 2RB) C FIGURE 21 - DUAL ASTABLE MUL TlVIBRATOR +15 V Reset R1 4 Threshold 2 14 + 10 k 10 k 1N914 1N914 Reset 10 Thresh· 5 Output R2 old 9 Output II 1/2 MC3556 0.001 6 C1 Control Voltage 8 Trigger Trigger Gnd 11 Output C2 'T' 'T' I I I I Gnd f = (R~'!~2) C for C1 = C2 Duty ,Cycle R 1~2R2 MOTOROLA LINEAR/INTERFACE DEVICES 11-45 MC3456, MC3556 APPLICATIONS INFORMATION (continued) Pulse Width Modulation FIGURE 23 - PULSE WIDTH MODULATION WAVEFORMS (RA = 10 k!1. e = 0.02I'F. Vee = 15 V) If the timer is triggered with a continuous pulse train in the monostabie mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 3. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage. FIGURE 22 + Vee (5 to 15 V) 411~r~ Vee RL Reset Output o utput RA 14 Discharge 5(9) 1(13) 1/2·MCJ556 1/2-MC3456 Control 6(8) C lock I nput 3(11) Gnd 7 0.5 ms/cm C 2(12) Trigger t ± Threshold Modulatio Test Sequences Input Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 24 where the sequence is started by triggering the first timer which runs for 10 ms. The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth. FIGURE 24 Vee (5 to 15 V) 27 k 9.1 k • VCC 0.011'F ~ 1/2-MC3556 ~f-J- 1/2·MC3456 ~ ge I1.0I'F ( Trigger r Threshold ~ ~ 1/2-MC3556 0.0011'F r·OI'F Load ~I~ Output Thrp.shold 0.01# ~ ~ 1/2-MC3556 1/2-MC3456 0.001 IlF ~~I = Output Trigger t--o- I1 Gnd 5 O . I'F Load MOTOROLA LINEAR/INTERFACE DEVICES 11-46 Reset VCC 1/2-MC3456 r 50 k Reset O.01IJ F Trigger Output lCh.. 27 k 9.1 k Reset VCC Threshold = Load In Brief ... Linear and Interface Devices. . . . . . .. 12-2 Surface Mount Technology is now being utilized to offer answers to many problems that have been created in the use of insertion technology. Limitations have been reached with insertion packages and PC board technology. Surface Mount Technology offers the opportunity to continue to advance the State-of-the-Art designs that cannot be accomplished with Insertion Technology. Surface Mount Packages allow more optimum device performance with the smaller Surface Mount configuration. Internal lead lengths, parasitic capacitance and inductance that placed limitations on chip performance has been reduced. The lower profile of Surface Mount Packages allows more boards to be utilized in a given amount of space. They are stacked closer together and utilize less total volume than insertion populated PC boards. Printed circuit costs are lowered with the reduction of the number of board layers required. The elimination or reduction of the number of plated through holes in the board, contribute significantly to lower PC board prices. Surface Mount assembly does not require the preparation of components that are common on insertion technology lines. Surface Mount components are sent directly to the assembly line, eliminating an intermediate step. Automatic placement equipment is available that can place Surface Mount components at the rate of a few thousand per hour to hundreds of thousands of components per hour. Surface Mount Technology is cost effective, allowing the manufacturer the opportunity to produce smaller units and offer increased functions with the same size product. Tape and Reel . . . . . . . . . . . . . . . . . . . .. 12-5 Surface Mount Technology Linear and Interface Devices. . . . . . . . . . . . . . . . . 12-2 Tape and Reel Standard Bipolar Logic, Bipolar Analog and MOS Integrated Circuits . . . . . . . . . . . . . . . . . . 12-5 Surface Mount Technology Linear and Interface the updated EIA-481A is now on line for the industry's largest array of op-amps, regulators, interface, data conversion, consumer, telecom and automotive Linear ICs. All the major bipolar analog fami,lies are now represented in surface mount packaging. Standard SOIC and PLCC packages are augmented by SOP-S and DPAK for Linear regulators. In addition, tape and reel shipping to Device Function Package DAC-08CD,ED LF347D LF351D LF353D LF412CD LF441 CD LF442CD LF444CD LM201AD LM208D,AD High-Speed 8-Bit Multiplying D-to-A Converter Quad BIFET Operational Amplifiers Single BIFET Operational Amplifier Dual BIFET Operational Amplifiers Dual BIFET High Power Operational Amplifiers Single BIFET Low Power Operational Amplifier Dual BIFET Low Power Operational Amplifiers Quad BIFET Low Power Operational Amplifiers General Purpose Adjustable Operational Amplifier Precision Operational Amplifier 50-16 50-14 . 50-8 50-8 50-8 50-8 50-8 50-14 50-8 50-8 LM211D LM224D LM239D,AD LM258D LM293D LM301AD LM308D,AD LM311D LM317LD LM324D,AD High Performance Voltage Comparator Quad Low Power Operational Amplifiers Quad Single Supply Comparators Dual Low Power Operational Amplifiers Dual Comparators General Purpose Adjustable Operational Amplifier Precision Operational Amplifier High Performance Voltage Comparator Positive Adjustable 100 mA Voltage Regulator Quad Low Power Operational Amplifiers 50-8 50-14 50-14 50-8 50-8 50-8 50-8 50-8 SOP-8 50-14 LM339D,AD LM348D LM358D LM385D-1.2 LM385D-2.5 LM393D LM833D LM2901D Quad Single Supply Comparators Quad MC1741 Operational Amplifiers Dual Low Power Operational Amplifiers Micropower Voltage Reference Diodes Micropower Voltage Reference Diodes Dual Comparators Dual Audio Amplifiers Quad Sir;gi" Supply Comparators 50-14 50-14 50-8 50-8 50-8 50-8 50-8 50-14 LM2902D LM2903D LM2904D LM2931AD-5.0,D-5.0 LM2931CD* LM3900D MC1377DW' MC1378FN MC1403D MC1413D MC1436D,CD MC1455D Quad Low Power Operational Amplifiers Dual Comparators Dual Low Power Operational Amplifiers Low Dropout Voltage Regulator Adjustable Low Dropout Voltage Regulator Quad Single Supply Operational Amplifiers Color Television RGB to PAUNTSC Encoder Video Overlay Synchronizer Precision Low Voltage Reference Peripheral Driver Array High Voltage Operational Amplifier Timing Circuit MC1458D,CD MC1458SD MC1488D MC1489D MC1486D MC1723CD MC1733CD MC1741CD MC1741SCD MC1747CD Dual Operational Amplifiers High Slew Rate Dual Operational Amplifiers Quad EIA-232C Drivers Quad EIA-232C Receivers Balanced Modulator-Demodulator Adjustable Positive Or Negative Voltage Regulator Differential Video Amplifier General Purpose Operational Amplifier High Slew Rate Operational Amplifier Dual MC1741 Operational Amplifiers 50-8 50-8 50-14 50-14 50-14 50-14 50-14 50-8 50-8 50-14 MC1776CD MC26LS31D Programmable Operational Amplifier Quad EIA-422/3 Drivers 50-8 50-16 *To Be Introduced. MOTOROLA LINEAR/INTERFACE DEVICES 12-2 50-14 50-8 50-8 SOP-8 SOP-8 50-14 50-20 PLCC-44 50-8 50-16 50-8 50-8 LINEAR AND INTERFACE (continued) Device MC26LS32D MC2831AD MC3346D MC3356FN MC3357D MC3359DW MC3361D MC3362DW MC3363DW* Function Quad EIA-422 Receivers FM Transmitter General Purpose Transistor Array FSK Receiver Low Power FM IF Amplifier Low Power Narrowband FM IF Amplifier Low Voltage Narrowband FM IF Amplifier Dual Conversion Receivers Dual Conversion Receivers Package SO-16 SO-16 SO-14 PLCC-20 SO-16 SO-20 SO-16 SO-28 SO-28 Quad EIA-422/3 Receivers SO-28 SO-16 SO-14 SO-14 SO-8 SO-16 SO-16 SO-16 SO-8 SO-16 MC3487D MC4558CD MC4741CD MC78L05ACD MC78L08ACD MC78L12ACD MC78L15ACD MC7SM05CDT* MC7SM12CDT* MC7SM15CDT* Quad EIA-422 Drivers Dual High Frequency Operational Amplifiers Quad MC1741 Operational Amplifiers Positive Voltage Regulator, 5 V, 100 rnA Positive Voltage Regulator, 8 V, 100 mA Positive Voltage Regulator, 12 V, 100 rnA Positive Voltage Regulator, 15 V, 100 mA Positive Voltage Regulator, 5 V, 500 rnA Positive Voltage Regulator, 12 V, 500 rnA Positive Voltage Regulator, 15 V, 500 rnA SO-16 SO-8 SO-14 SOP-8 SOP-8 SOP-8 SOP-S DPAK DPAK DPAK MC79L05ACD MC79L12ACD MC79L15ACD MC79M05CDT* MC79M12CDT* MC79M15CDT* MC13022DW* MC13024DW* MC13041DW* MC13055D 3-Terminal Negative Fixed Voltage Regulator, -5 V, 100 rnA 3-Terminal Negative Fixed Voltage Regulator, -12 V, 100 rnA 3-Terminal Negative Fixed Voltage Regulator, -15 V, 100 rnA 3-Terminal Negative Fixed Voltage Regulator, -5 V, 500 rnA 3-Terminal Negative Fixed Voltage Regulator, -12 V, 500 rnA 3-Terminal Negative Fixed Voltage Regulator, -15 V, 500 rnA Medium Voltage AM Stereo C-QUAM Decoder Low Voltage C-QUAM Receiver AM Receiver Subsystem VHF LAN Receiver - FSK SOP-S SOP-S SOP-S DPAK DPAK DPAK SO-2S SO-24 SO-20 SO-16 MC13060D MC33077D MC3307SD MC33079D MC331710 MC33172D* MC33174D* MC332S2D* MC33284D* MC34001D,AD,BD 1 Watt Audio Amp Dual, Low Noise High Frequency Operational Amplifiers Dual Audio, Low Noise Operational Amplifiers Low Power, Single Supply Operational Amplifier Single, Low Power, Single Supply Operational Amplifier Dual, Low Power, Single Supply Operational Amplifiers Quad, Low Power, Single Supply Operational Amplifiers Dual Precision Low Input JFET Operational Amplifiers Quad Precision JFET Operational Amplifiers (Trim-in-the-Package) Single JFET Input Operational Amplifier SOP-S SO-S SO-S SO-14 SO-S SO-S SO-14 SO-14 SO-14 SO-S MC34002D,AD,BD MC34004D,BD MC34011AFN MC34012-1D MC34012-2D MC34012-3D MC34013AFN MC34014FN MC34017-1D MC34017-2D Dual JFET Input Operational Amplifiers Quad JFET Input Operational Amplifiers Electronic Telephone Circuit Telephone Tone Ringer Telephone Tone Ringer Telephone Tone Ringer Speech Network and Tone Dialer Telephone Speech Network with Dialer Interface Telephone Tone Dialer Telephone Tone Dialer MC34017-3D MC3401SDW Telephone Tone Dialer Voice Switched Speakerphone Circuit MC3367DW MC33710* MC3401D MC3403D MC3423D MC3448AD MC3450D MC3452D MC3458D MC3486D Low Voltage VHF Receiver Low Voltage FM Receiver with RSSI Quad Operational Amplifiers Quad Differential-Input Operational Amplifiers Overvoltage Sensing Circuit Quad GPIB Transceivers Quad Line Receivers Quad Line Receivers Dual Low Power Operational Amplifiers *To Be Introduced. MOTOROLA LINEAR/INTERFACE DEVICES 12-3 SO-S SO-14 PLCC-44 SO-S SO-S SO-S PLCC-2S PLCC-20 SO-S SO-S SO-S SO-2S LINEAR AND INTERFACE (continued) Device Function Package MC34018FN MC34060AD* MC34063AD MC34071D MC34072D* MC34074D* MC34080D MC34081D MC34114DW MC34118DW Voice Switched Speakerphone Circuit Switchmode Pulse Width Modulation Control Circuit Precision DC-to-DC Converter Control Circuit Single, High Speed, Single Supply Operational Amplifier Dual, High Speed, Single Supply Operational Amplifiers Quad, High Performance, Single Supply Operational Amplifiers High Speed Decompensated (AVCL .. 2) JFET Input Operational Amplifier High Speed JFET Input Operational Amplifier Speech Network II Speakerphone II MC34119D MC34129D MC34181D MC34182D MC34184D MC44301DW*t NE592D TL061CD TL062CD TL064CD Telephone Speaker Amplifier Power Supply Controller Single, Low Power, High Speed JFET Operational Amplifier Dual, Low Power, High Speed JFET Operational Amplifiers Quad, Low Power, High Speed JFET Operational Amplifiers High Performance Video IF Video Amplifier Single BIFET Low Power Operational Amplifier Dual BIFET Low Power Operational Amplifiers Quad BIFET Low Power Operational Amplifiers SO-8 SO-14 SO-8 SO-8 SO-14 SO-28 SO-14 SO-8 SO-8 SO-14 TL071CD,ACD,BCD TL072CD,ACD,BCD TL074CD,ACD,BCD TL081 CD,ACD,BCD TL082CD,ACD,BCD TL084CD,ACD,BCD* TL431CD TYA1350D UAA1041D UC2842AD Single, Low Noise JFET Input Operational Amplifier Dual, Low Noise JFET Input Operational Amplifiers Quad, Low Noise JFET Input Operational Amplifiers Single, JFET Input Operational Amplifier Dual, JFET Input Operational Amplifiers Quad, JFET Input Operational Amplifiers Programmable Precision Reference IF Amplifier (M1350D) Automotive Direction Indicator Off-Line Current Mode PWM Controller SO-8 SO-8 SO-14 SO-8 SO-8 SO-14 SOP-8 SO-8 SO-8 SO-14 UC2843AD UC3842AD UC3843AD Current Mode PWM Controller Off-Line Current Mode PWM Controller Current Mode PWM Controller SO-14 SO-14 SO-14 *To Be Introduced. tFormerly MC1a01'OW II MOTOROLA LINEAR/INTERFACE DEVICES 12-4 PLCC-28 SO-14 SO-8 SO-8 SO-8 SO-14 SO-8 SO-8 SO-18 SO-28 GJ o Tape and Reel Standard Bipolar Logic, Bipolar Analog and MOS Integrated Circuits Motorola has now added the convenience of Tape and Reel packaging for our growing family of standard Integrated Circuit products. Two reel sizes are available, for all but the largest types, to support the requirements of both first and second generation pick-and-place equipment. The packaging fully conforms to the latest EIA'481A specification. The antistatic embossed tape provides a secure cavity, sealed with a peel-back cover tape. Mechanical Polarization SOIC DEVICES PlCC DEVICES TYPICAL TYPICAL I I I I I I J I e-e-e-e-e-e-e-e '[8[8[8 , USER DIRECTION OF FEED USER DIRECTION OF FEED per Reel Reel Size' (inch) Tape III Reel Lot Size(1) (Min) Device Suffix 12 12 750 2,500 7 13 5,000 5,000 R1 R2 50-14 16 16 750 2,500 7 13 5,000 5.000 R1 R2 50-16 16 16 750 2,500 7 13 5,000 5,000 R1 R2 SO-16L (WIDE) 16 16 250 1,000 7 13 5,000 5.000 R1 R2 SO-20L (WIDE) 24 24 250 1,000 7 13 5,000 5.000 R1 R2 SO-24L (WIDE) 24 24 250 1,000 7 13 5,000 5.000 R1 R2 SO-28L (WIDE) 24 24 200 1,000 7 13 3,000 3,000 R1 R2 PLCC-20 16 16 200 1,000 7 13 3,000 3,000 R1 R2 PLCC-28 24 24 200 500 7 13 2,400 2,500 R1 R2 PLCC-44 32 32 200 500 7 13 2,000 2,000 R1 R2 PLCC-52 PLCC-68 PLCC-84 32 44 44 500 250 250 13 13 13 2,000 2,000 2,000 R2 R2 R2 18 1800 13 10,000 RA, RB or RP only Tape Width Device (mm) SO-8,SOP-8 Package TO-226AA(2) .. Notes: 1. Minimum lot size Information applies to OEM customers. Dlstnbutors may break lots or reels at their option, however broken reels may not be returned. 2. Integrated Circuits in TO-226AA packages are available in Styles A and B only, with optional "Ammo Pack" (Suffix API. For ordering information please contact your local Motorola Semiconductor Sales Office. Distribution minimum order quantity is 1 reel. *Reel Size: 7"/178 mm, 13"/330 mm. MOTOROLA LINEAR/INTERFACE DEVICES 12-5 MOTOROLA LINEAR/INTERFACE DEVICES 12-6 Packaging Information IE Case Outline Dimensions The packaging availability for each device type is indicated on the individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section. The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation: P where: PD(TA) = - TJ(max) = TA = = ROJA(Typ) _ TJ(max) - TA D(TA) ROJA(Typ) Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition. Maximum Operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for TJ(max) information. Maximum Desired Operating Ambient Temperature Typical Thermal Resistance Junction to Ambient K SUFFIX CASE '-03 Metal Package ROJA = 450 CIW(Typ) I I L I Ir-'-j~ ~ -w~ f K --I1-02PL ~ ~I <1>0.30(0.012) ~ H t r,-f. V' G V t ®Iwl v® I ItB _Je~ A J K Q S T' V 0j1i~ SECT.A·A rl~ ~ 1 '~ c N MOTOROLA LlNEARIINTERFACE DEVICES 13-2 DIM A B c J ~ 0.97 1.09 0.875 0.450 0.043 - 0.135 1.187 BSC 0.430 BSC 0.215 BSC 0.666 BSC 0.312 0.151 0.161 - 0.525 - 0.188 0.151 0.161 3.43 30.15 BSC 10.92 BSC 5.46BSC 16.89 BSC 7!¥J. 3.84 3.84 4.09 13.34 4.76 4.09 - 0.250 0.038 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI YI4.5M,1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO·204AA OUTLINE SHALL APPLY. H I 6.35 C D E F G G K INCHES MIN MAX 22.23 11.43 - D F L MlJMTERS lIN MAX B H ®Iwl v®I Q ® I _ --.l "/ PlANE ~ ~ F _ 3 SEATING .-~~rr: 2 G 1+1<1>0.25(0.0101 LP, P, Z SUFFIX CASE 29-04 Plastic Package ROJA = 2000 CIW DIM K L N P R S MILLIMETERS MIN MAX 4.32 5.33 4.45 5.20 3.18 4.19 0.41 0.55 0.41 0.46 1.15 1.39 2.54 2.42 2.66 12.70 6.35 2.04 2.66 2.93 3.43 0.39 0.50 INCHES MIN MAX 0.210 0.170 0.175 0.205 0.125 0.165 0.016 0.022 0.019 0.016 0.045 0.055 0.100 0.095 0.105 0.500 0.250 0.060 0.105 0.115 0.135 0.D15 0.020 NOTES: 1. CONTOUR OF PACKAGE BEYOND ZONE "P" IS UNCONTROLLED. 2. DIM "F" APPLIES BElWEEN "H" AND "L". DIM "D" & "S" APPLIES BElWEEN "L" & 12.70mm (0.5"1 FROM SEATING PLANE. LEAD DIM IS UNCONTROLLED IN "H" & BEYOND 12.70mm (0.5"1 FROM SEATING PLANE. 3. CONTROLLING DIM: INCH. G, H SUFFIX CASE 79-05 Metal Package ROJA = 185° C/w(Typ) ti MII.UMEIERS w 3/(r DIM A B C 0 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI YI4.5M.I982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION J MEASURED FROM DIMENSION A MAXIMUM. 4. DIMENSION B SHALL NOT VARY MORE THAN 0.25 10.0101 IN ZONE R. THIS ZONE CONTROLLED FOR AUTOMAnc HANDLING. 5. DIMENSION FAPPLIES BElWEEN DIMENSION P AND L DIMENSION D APPLIES BElWEEN DIMENSION LAND K MINIMUM. LEAD otAMmR IS UNCONTROLLED IN DIMENSION PAND BEYOND DIMENSION K MINIMUM. E It I<1>0.3610.0141 ®IT I A ®I H ®I F G H J K L M p R KC, T SUFFIX CASE 221 A-04 DIM A B C 0 Plastic Package R/IJA = 65° C/w(Typ) T t r ?J F G H J K L N uJ 1 2 3 Q 1· K -----1 v D R S T U V Z loIN MAX 9.02 8.01 4.20 0.44 0.44 0.41 9.29 B.50 4.57 0.53 0.88 0.48 5.I18BSC 0.72 0.86 0.74 1.01 12.70 19.05 6.36 45°asc 1.27 2.54 - MILUMmRS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.84 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.36 0.55 14.27 12.70 1.15 1.39 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 1.27 0.00 1.15 2.04 INCIIfS MIN MAX 0.355 0.366 0.315 0.335 0.165 0.180 0.017 0.021 0.035 0.017 0.016 0.019 0.200 asc 0.034 0.028 0.029 0.040 0.500 0.750 0.250 45°asc - ~ 0.100 INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.014 0.022 0.500 0.562 0.045 0.055 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.050 0.000 0.045 0.080 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI YI4.5M. 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIM Z DERNES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. T SUFFIX CASE 3140-01 Plastic Package Q ROJA = 65° C/w(Typ) DIM A B C D G J I 1 2345 K Q II R T U " -l1.... J MOTOROLA LlNEARIiNTERFACE DEVICES 13-3 MlLUMmRS MIN MAX 15.49 15.87 9.91 10.41 4.32 4.57 0.51 1.01 1.45 1.96 0.38 0.63 12.70 3.53 3.73 0.89 1.39 9.02 9.39 12.70 13.69 INCHES MIN MAX 0.610 0.625 0.390 0.410 0.170 0.180 0.020 0.040 0.057 0.077 0.025 0.G15 0.500 0.139 0.147 0.035 0.055 0.355 0.370 0.500 0.539 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI YI4.5M. 1982. 2. CONTROLLING DIMENSION: INCH. DT-' SUFFIX CASE 369-03 Plastic Package cW~ l f- s-8~ " 3=# ]-!!U 2 3 V DTSUFFIX CASE 369A-03 Plastic Package DPAK 2 "" e D E F G H J K L S U Y W Y MIN MAX 5.97 6.11 6.35 6.13 1.19 1.38 0.88 0.69 0.91 1.06 0.64 0.88 4.58 8SC 2.29 SSC 6.46 0.58 1.89 2.59 0.89 1.21 5.46 5.21 0.51 0.11 1.14 0.84 0.94 4.32 H, GSUFFIX CASE 601-04 Metal Package R8JA = 1600 C/w(Typ) ®I T I V W Y JEj:- MILUMETERS MIN MAX 5.97 6.22 6.35 6.73 2.19 1.38 0.64 0.88 0.97 1.06 2.29 SSC 0.46 0.58 8.89 9.65 0.89 1.27 5.21 5.46 1.14 0.77 0.84 0.94 1.91 2.18 INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.025 0.035 0.038 0.042 0.090 SSC 0.018 0.023 0.350 0.380 0.035 0.050 0.215 0.205 0.030 0.045 0.033 0.037 0.075 0.090 NOTES: 1. SURFACE "T" IS 80TH ADATUM AND A MOUNTING SURFACE. 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1981. 3. CONTROLLING DIMENSION: INCH. -'E 1 l. '{~ll -. w -~_E · t 1 2 3 Q:l.:~-F~ ~I A F K t ~~ J~P ! i 1+1"''''®I''~1E u Y ~~t NOTES: 1. SURFACE 'T' IS BOTH ADATUM AND A MOUNTING SURFACE. 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1981. 3. CONTROLLING DIMENSION: INCH. J:~ MI • SfA_ PlANE 8 1 K l S ~GI- ,~ INCHES MIN MAX 0.235 0.145 0.150 0.165 0.086 0.094 0.027 0.035 0.038 0.042 0.025 0.035 0.180 SSC 0.090 SSC 0.018 0.023 0.102 0.114 0.035 0.050 0.205 0.215 0.020 0.030 0.045 0.033 0.031 0.110 D E G J ~D3PL It I 01310.0051 3 MIllIMEIBIS DIM A 8 e ,.t ~. , DIM A 8 ~ ~~ ~ ~tJ jl-D ol T M 0 G0G ~ ZyJ MOTOROLA LINEAR/INTERFACE DEVICES 13-4 DIM A 8 C D E F G H J K L M N MILUMETERS MIN MAX 8.51 9.40 1.15 8.51 4.19 4.70 0.41 0.48 0.15 1.01 0.15 1.02 5.06 SSC 0.11 0.86 0.74 1.14 12.70 3.05 4.06 45° SSC 2.41 2.67 INCHES MIN MAX 0.335 0.370 0.305 0.335 0.165 0.185 0.016 0.019 0.010 0.040 0.010 0.040 0.200 esc 0.028 0.034 0.029 0.045 0.500 0.120 0.180 45° SSC 0.095 0.105 NOTE: 1. LEADS WITHIN 0.25 mm 10.0101 DIA OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. H, G SUFFIX CASE 603-04 Metal Can ROJA = 1600 CfW DIM A B C D E F G H J K L M P Q R MILUMmRS INCHES MIN MAX MIN MAX 8.51 9.39 0.335 0.370 7.75 8.51 0.305 0.335 4.19 0.165 0.185 4.70 0.407 0.533 0,016 0.021 1.02 0.040 0.406 0.483 0,016 0.019 0.230 BSC 5.84 BSC 0.712 0.884 0.028 0.034 0.737 1.14 0.029 0.045 12.70 - 0.500 6.35 12.70 0.250 0.500 36° BSC JIj" BSC 1.27 0.050 3.56 0.160 4.06 - 0.140 0.010 0.040 0.254 1.02 All JEDfC Dimensions and Notes Apply. NOTt', LEADS WITHIN 0.18 mm 10.007) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. G SUFFIX CASE 603C-01 Metal Can ROJA = 1500 CfW(Typ) DIM A B C D E F G H J K L M P Q R MIUIMETERS MIN MAX 8.51 9.39 7.75 8.51 4.19 6.73 0.407 0.533 1.02 0.406 0.483 5.84 BSC 0.712 0.884 0.737 1.14 12.70 6.35 12.70 36" BSC 1.27 3.56 4.06 0.254 1.02 INCHES MIN MAX 0.335 0.370 0.305 0.335 0.165 0.265 0,016 0.021 - 0.040 0.016 0.019 0.230 BSC 0.028 0.034 0.029 0.045 0.500 0.250 0.500 36° BSC - 0.050 0.140 0.160 0.010 0.040 110 NOTtS: 1. LEADS WITHIN O.lB mm 10.007) RADIUS OF TRUE POSITION TO DIM. "A" & "H" AT SEATING PLANE AT MAXIMUM MATtRIAL CONDITION. 2. LEAD DIA UNCONTROLLED BEYOND DIM "K" MIN. (BOTTOM VIEW) DP2, D, J, N SUFFIX CASE 620-10 NOTtS: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROlLING DIMENSION: INCH. 3. DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIM F MAY NARROW TO 0.7610.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. r- L ~4)L---.J1I\ u __ ~-.K "" ! ~ JLJ16PL 1+10.2510010) M ® MOTOROLA LINEAR/INTERFACE DEVICES 13-5 I T I B@I DIM A B C D E F G J K L M N MILUMETERS MIN MAX 19.05 19.93 6.10 7.49 5.08 0.39 0.50 1.27 BSC 1.40 1.65 2.54 BSC 0.21 0.38 3.18 4.31 7.62 BSC 0° 15° 1.01 0.51 INCHES MIN MAX 0.750 0.785 0.240 0.295 - 0.200 0.015 0.020 0.050 BSC 0.055 0.085 0.100 BSC 0,015 0.008 0.125 0.170 0.300 BSC 0° 15" 0.020 0.040 L SUFFIX CASE 623-05 MIWMETEAS MIN MAX 31.24 32.77 15.49 12.70 4.06 5.59 DIM Ceramic Package A B R6JA = 530 C/w(Typ) C D F G 0.41 0.51 1.27 1.52 2.54 SSC 0.20 0.30 4.06 3.18 15.24 BSC 15' 0' 0.51 1.27 J K L M N INCHES MIN MAX 1.230 1.290 0.500 0.610 0.160 0.220 0.G16 0.020 0.050 0.060 0.10Q SSC 0.008 0.012 0.125 0.160 0.600 BSC 15' 0' 0.020 0.050 NOTES: 1. OIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 2. LEADS WITHIN 0.13 mm (0.0051 RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLELI. DP1, N, P, P1 SUFFIX NOTES: 1. LEAD POSITIONAL TOLERANCE: I t I pO.13 (0.0051 ® IT I A ® 18 ® I 2. DIMENSION LTO CENTER OF LEADS WHEN fORMED PARALLEL. 3. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERSI. 4. DIMENSIONS A AND BARE DATUMS. 5. OIMENSIONING ANO TOLERANCING PER ANSI YI4.5M.1982 . CASE 626-05 Plastic Package R6JA = 1000 C/w(Typ) .~ MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 ~45 0.38 0.51 1.02 1.52 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC 10' 0.76 1.01 DIM A 8 NOTE. C D F G H J K L M N J, F, L SUFFIX CASE 632-08 Ceramic Package R6JA = 1000 C/w(Typ) I" ,..., _ _----<~ "I '.r-=-r---i~\(~=r=~ t:::::::I~ L±l NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI YI4.5M. 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIM FMAY NARROW TO 0.76 (0.0301 WHERE THE LEAD ENTERS THE CERAMIC BODY. ~-- DIM A 8 i I L- i,,, -:J--i JLJ14PL # ~ ---- N C D F G J K L M N f-:I tTl0-.2-5(-0.0-'-'0-1®'O:'M'I-T'IB-c(j)""sI MOTOROLA LINEAR/INTERFACE DEVICES 13-6 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.060 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC 10' 0.030 0.040 MILLIMETERS MIN MAX 19.05 19.94 6.23 7.11 3.94 5.08 0.39 0.50 1.40 1.65 2.54 BSC 0.21 0.38 3.18 4.31 7.62 BSe 0' 15' 0.51 1.01 INCHES MIN MAX 0.750 0.785 0.245 0.290 0.155 0.200 0.015 0.020 0.055 0.065 0.100 BSC 0.008 0.015 0.125 0.170 0.300 BSe 0' 15' 0.020 0.040 N, P, N-14, P2 SUFFIX CASE 646-06 Plastic Package ROJA = 100° C/w(Typ) NOTES: 1. LEADS WITHIN 0.13 mm (0.0051 RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEl. 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH. 4 ROUNDED CORNERS OPTIONAL. DIM A D G M N ,. DIM A B C D , F G H J K L M N ,_, INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.Q15 0.115 0.135 0.300 BSC 0' 10' 0.Q15 0.039 NOTES: 1. LEADS WITHIN 0.13 mm (0.0051 RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEl. 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH. 4. "F" DIMENSION IS FOR FULL LEADS. 5. ROUNDED CORNERS OPTIONAl. N, P SUFFIX CASE 648-06 Plastic Package ROJA = 67° C/w(Typ) P SUFFIX CASE 648C-02 Plastic Package ROJA = 52° e/W MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0' 10' 0.39 1.01 ~~~ =: B ~ ~ IJ ~~ f; ~ 2J J :~' ~ H L 1 ---+j j L~ r--- 1 G D ~~ ~~~ :?262 BSt:3 ~L=J~ 101 ?c N SEAnN/ PlANE . II ~ t-- J M INCHES MIN MAX 0.740 0.840 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.015 0.095 0.008 0.Q15 0.115 0.135 0.300 BSC 0' 10' 0.Q15 0.040 INCHES MIN MAX 0.740 0.840 0.240 0.260 0.185 0.145 0.Q15 0.021 0.040 0.070 0.100 BSC 0.Q15 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0' 10' 0.015 0.040 NO::: 1. LEADS WITHIN 0.13mm (0.0051 RADIUS OF TRUE POSITON AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEl. 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH. \ 4. ROUNDED CORNERS OPTIONAl. ~ 5. EXTERNAL LEAD CONNECTION, BETWEEN 4 AND 5,12 AND 13 AS SHOWN. J MOTOROLA LINEAR/INTERFACE DEVICES 13-7 MILLIMETERS MIN MAX 18.80 21.34 6.10 6.60 DIM A ~~~ : MILLIMETERS MIN MAX 18.80 21.34 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 0.38 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0' 10' 0.39 1.01 P SUFFIX CASE 649-03 Plastic Package ROJA = 90° C/w(Typ) ~i::::::~:::jJ 24 K L M N -1H~ 1 ,,~ G - r:=L==J ~--f ~ L ~l-----+ --IlJl NOTES: 1. LEADS WITHIN 0.13 mm 10.0051 RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. L SUFFIX CASE 690-13 Ceramic Package RIIJA = 100° C/w(Typ) P Q INCHES MIN MAX 1.240 1.265 0.520 0.540 0.185 0.205 0.020 0.015 0.040 0.060 0.100 BSC 0.065 0.085 0.012 0.008 0.115 0.135 0.590 0.610 10' 0.020 0.040 0.005 0.015 0.020 0.030 MILLIMETERS MIN MAX 32.13 31.50 13.21 13.72 4.70 5.21 0.38 0.51 1.52 1.02 2.54 BSC 2.16 1.65 0.20 0.30 2.92 3.43 15.49 14.99 W 0.51 1.02 0.13 0.38 0.76 0.51 DIM A B C D F G H J D M SEATING j\ \--- PlANE E[ 1 NOTES: 1. ·A· AND ·B· ARE DATUMS. 2. ·T·IS SEATING PLANE 3. POSITIONAL TOLERANCE FOR LEADS 101. 0.25(0.0101®I·T·IA®1 5. DIMENSIONING AND TOLERANCING PER ANSI o CASE 762-01 Plastic Medium Power Package SIP9 RWA = 70° C/w(Typ) RWC = 15° C/w(Typ) Y14.5, 1982. 6. CONTROLLING DIMENSION: MILLIMETER. MlWMETERS DIM A B C D E F G H J K M N 0 R S U V W x Y MIN MIN 0.873 0.252 0.135 0.015 0.368 0.055 o.an 0.062 O.l00Bse 0.059 0.067 0.014 0.155 0.165 3O"BSC 0.099 0.106 0.124 0.135 0.535 0.547 0.064 0.076 0.866 0.874 0.021 0.029 0.113 Bse 0.025 0.029 0.106 0.110 oms NOTES: 1. DATUMS ·L·, ·M·, ·N·, AND .p. DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING UNE. 2. DIM 61, TRUE POSTION TO BE MEASURED AT DATUM ·T·, SEATING PlANE. 3. DIM RAND U DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.25 (0.0101 PER SIDE. 4. DIMENSIONING AND TOLERANCING PER ANSI YI4.5M, 1982. 5. CONTROLUNG DIMENSION: INCH. FN SUFFIX CASE nS-02 Plastic Package PLCC-20 RWA = 72° C/w(Typ) (5K SQML) lroo INCHES MAX 0.897 0.260 1.143 0.021 MAX 22.40 23.00 6.40 6.60 3.45 3.66 0.40 0.55 9.35 9.60 1.40 1.60 2.54 BSC 1.51 1.71 0.360 0.400 3.95 4.20 3O"BSC 2.50 2.70 3.15 3.45 13.60 13.90 1.65 1.95 22.00 22.20 0.55 0.75 2.89 Bse 0.65 0.75 2.70 2.80 B YBRK ItI0.1B10.007l® ITI N®-p®ll®-M®1 1--' ultI0.1B10,"',® ITIN®-P®ll®-M®1 ~ DIM A B C E F f G 1--' Gl ItI 0.25 10.0101 ® ITI N®-p®ll®-M®1 ~---~-t-AltI0.1810.007l® ITll®-M®IN®-P®1 "ItI01s/Ooo71® VIEWOoD ITll®-M®IN~P®1 H T L®-M® N@-P® ",01810007l® ... O1S/00071® T N®-P® l®-M® H J K R U V W X Y Z Gl Kl Z1 DETAIL S DETAILS Gl Itl.2SIO.0101® ITll®-M®1 N®-p®1 MOTOROLA LlNEARIINTERFACE DEVICES 13-16 MlLUMETERS MIN MAX 10.03 9.7B 9.7B 10.03 4.57 4.20 2.29 2.79 0.33 0.48 1.27 BSC 0.66 0.81 0.51 0.64 8.89 9.04 8.B9 9.04 1.07 1.21 1.07 1.21 1.07 1.42 0.50 20 10" 7.88 8.38 1.02 10" 20 - - INCHES MIN MAX 0.385 0.395 0.385 0.395 0.155 0.180 0.090 0.110 0.013 0.019 0.050 BSC 0.026 0.032 0.020 0.025 0.350 0.356 0.350 0.356 0.042 0.048 0.042 0.049 0.042 0.056 0.020 0 2 10" 0.310 0.330 0.040 20 100 FN SUFFIX CASE 776-02 Plastic Package PLCC-28 ROJA = 66° C/w(Typ) (5K SQML) l~ NOTES: 1. DUE TO SPACE UMITATION, CASE 776-02 SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN SHOWING ALL 2B LEADS. B 1-+10.18(0.007) ® iTl N@-p®IL®-.",!>1 VIRK 1---- e.- .. r-- u 1.. lo.18(O.0071@) IrIN@-P®IL-MC!>1 2. DATUMS ·L-, -M-, -N-, AND -P- DETERMINED WHERE TOP OF LEAD SHOULDER EXIT PLASTIC BODY AT MOLD PARTING LINE. 3. DIM Gl, TRUE POSITION TO BE MEASURED AT D.ATUM -T-, SEATING PLANE. 4. DIM RAND U 00 NOT INCLUDE MOLO PIIOTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.25 10.010) PER SIDE. 5. DIMENSIONING ~ND TOLERANCING PER ANSI Y14.5M,1982. 6. CONTROLLING DIMENSION: INCH. NOTE • LEADS ACTUAL DIM A B 1---- C E F G H J K R U V W X y 2 G1 Kl 21 1. DUE TO SPACE LlMITA110N, CASE SHALL BE REPRESENTED BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN SHOWING ALL 44 LEADS. m.oz (10K SQML) E-. r- ...... ACTUAL ,.. INCHES MIN MAX 0.485 0.495 0.485 0.495 0.165 0.180 0.090 0.110 0,013 0.019 O.Il5OBSC 0.026 0.032 0.020 0.025 0.450 0.456 0.450 0.456 0.042 0.048 0.042 0.048 0.042 0.056 0.020 2' 10' 0.410 0.430 0.040 1" 10' NOTES: FN SUFFIX CASE 777-02 Plastic Package PLCC-44 R8JA = 55° C/w(Typ) lrrn MlLLIM£TERS MIN MAX 12.32 12.57 12.57 12.32 4.20 4.51 2.29 2.79 0.48 0.33 1.27BSC 0.66 0.81 0.51 0.64 11.43 11.58 11.43 11.58 1.21 1.07 1.07 1.21 1.07 1.42 0.50 1" 10.42 10.92 1.02 2' 10' .1+1.18IO.1I071@I,IN$ J L""0" J 0.080-0.093 MOUNT ON BACK OF CHASSIS NO.6 SHEET METAL SCREW B51564F003 lIm ++-+--;c:-;;;-;-.-.-ch¥'-- 1.00 1.30 BACK TEMPLATE B51087A002 0.500 ± 0.031 @ 0.695 O.06TYP--1 0.13 1.i87 FRONT TEMPLATE 651087AOOl MOTOROLA LINEAR/INTERFACE DEVICES 13-19 ® MOUNTING HARDWARE TO-220AB MOTOROLA PREFERRED ARRANGEMENT ALTERNATE ARRANGEMENT for Isolated or Non-isolated Mounting. Screw is at Semiconductor Case Potential. when Screw must be at 6·32 Hardware is Used. 4-40 Hardware is Used. Choose from Parts Listed Use Parts Listed Below. for Isolated Mount~J,g Heat-Sink Potential. Below. . . •UH"H"D~'. JIjj~ 4-40 HEX HEAD SCREW B094B9A034 B094B9A035 I CASE 221A-04 PLASTIC PACKAGE I i RECTANGULAR STEEL WASHER(I) /NYLON INSULATING BUSHING / 851547F019 ~ B09002AOOI .......... SEMICONDUCTOR """"[)=r::~=::::::::J SEMICONDUCTOR (CASE 221, AB 221A) TO-220 (CASE 221, 221A) I "c=::::::=::=::::::=-____.J / / " > . RECTANGULAR MICA INSULATOR (2) BOBB53AOOI [1'=r==~~==I:==========::J HEATSINK " ~r----' '--~~"" NYLON BUSHING (2) B51547FOO5 " " RECTANGULAR MICA INSULATOR B08853AOOI NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIM Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. HEATSINK "--.. .--~'-----, FLAT WASHER (3) B51567F036 '" L..~_---,c,...Li_L,..; ./ COMPRESSION WASHER B52200FOO5 ./ COMPRESSION 0' L~;2~:~~:R (4),,""~--""":'-'--(7 6-32 HEX NUT............. B09490A006 ............. I' r-(j"---!-;::-'-X----j II 11) (2) (3) (4) B C D F G _ _ _ _ _ _ _ _ _ 4·40 HEX NUT B09490A005 I DIM A H J K L N Q Used with thin chassis andlor large hole. Used when isolation is required. Required when nylon bushing and lock washer are used. Compression washer preferred when plastic insulating material is used. TORQUE REQUIREMENTS Insulated 0.68 N-M (8 in-Ibs) max Noninsulated 0.9 N-M (8 in-Ibs) max MOTOROLA LINEAR/INTERFACE DEVICES 13-20 R S T U V Z MILLIMETERS MIN MAX INCHES MIN MAX 14.48 9.66 4.07 0.64 3,61 2.42 2.80 0.36 12.70 1.15 4.83 2.54 2.04 1.15 5.97 0.00 1.15 0.570 0.380 0,160 0.025 0,142 0.095 0.110 0.014 0.500 0.045 0.190 0.100 0.080 0.045 0.235 0.000 0.045 - 15.75 10.28 4.82 0.88 3.73 2,66 3.93 0.55 14.27 1.39 5.33 3.04 2.79 1.39 6.47 1.27 - 2.04 - 0.620 0.405 0.190 0.035 0.147 0.105 0.155 0.022 0.562 0.055 0.210 0.120 0.110 0.055 0.255 0.050 - 0.080 MOUNTING HARDWARE TO-220AB (DIMENSION _ MILLIMETER) INCH MICA INSULATOR BOB853Aool 3.05-3.28 ~ l,., -'" '~ ··"··. ·W 3"'3 .• ! i i I 8.20·8.46 --1 i ., 13.84-14.10 0.545·0.555 j 1.02-1.40 0.323.0.33:~0.040-0.055 -c=:===s 3.68-3.89 Ll----+---:-:--::-::-:-:-::- 0.36&-0.37~ -c=:===s L ~:~~:~4:J.:: 1.02-1.40 0.040-0.055 STEEL COMPRESSION WASHER B52200F005 STEEL COMPRESSION WASHER 1-_-+_.,....:4,:.:.9,,-7-_6:;:.2=.:3=-,0.196-0_201 21.43-21.17 HEX HEAD SCREW CARBON STEEL CADMIUM-PLATED (See table below.) HEX NUT CARBON STEEL CADMIUM-PLATED 0.046-0.086 ~ 0.0018-0.0034 0.844-0_833 B52200F004 RECTANGULAR STEEL WASHER B09002AOOl ,- NYLON INSULATING BUSHING (See table below.) 00. · " 3.58-3.68 I ...: .... r 0.400-0.410 Iii I~,';~~ 1-.1 I 1.51-1.72i]" 0.0595-0.0680 c DIMENSIONS - MILLIMETER (INCH) NYLON BUSHING PART NO. DIMA DIMB DIMe DIM D DIME B51547F005 9.40-9.65 (0.370-0.380) 3.84-4.09 (0.151-0.161) 2.16-2.41 (0.085-0.095 ) 6.10-6.35 (0.240-0.250) 1.02-1.27 (0.040-0.050) B51547F019 5.59-6.10 (0.220-0.240) 3.05-3.15 (0.120-0.1 24) 1.73-1.91 (0.068-0.075) 3.61-3.68 (0.142-0.145) 0.51-0.64 (0.020-0.025) HEX NUT TYPE PART NO. DIMG DIMH DlMJ DIMK 4-40 B09490A005 6.12-6.35 (0.241-0.250) 6.98-7.34 (0.275-0.289) 2.21 -2.49 (0.087-0.098) 2.84 NOM (0.112 NOM) 6-32 B09490A006 7.67-7.92 (0.302-0.312) 8.74-9.17 (0.344-0.361) 2.59-2.90 (0.102-0.114) 3.50 NOM (0.138 NOM) HEX HEAD SCREW TYPE PART NO. DlMM DIMN DIMP DIMQ DIMR 4-40 B09489A034 0.112-40 1.57 (0.62) 1 .24-1 .52 (0.049-0.060) 5.13 MIN (0.202 MIN) 4.60-4.75 (0.181-0.187) 6.32 B09489A035 0.138-32 1.57 (0.62) 2.03-2.36 (0.080-0.093) 6.91 MIN (0.272 MIN) 6.20-6.35 (0.244-0.250) MOTOROLA LINEAR/INTERFACE DEVICES 13-21 SOIC MINIATURE IC PLASTIC PACKAGE Thermal Information The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation: _T:JJ(..",m.:::a::.!.x)l---_T.:...::A ROJA (Typ) P(DT ) A Where: PD(TA) TJ(max) = power dissipation allowable at a given operating ambient temperature. = Maximum operating junction temperature as listed in the maximum ratings section TA = Desired operating ambient temperature ROJA(Typ) = Typical thermal resistance junction to ambient Maximum Ratings Symbol Value Unit Operating Ambient Temperature Range TA o to +70 -40 to +85 °C °C Operating Junction Temperature TJ 150 °C Tstg -55 to + 150 °C Rating Storage Temperature Range 200 180 160 G"IW 8J A I 140 P.C. BOARD HEATS1NK EXAMPLE I I I 120 I I :~~~:~~N~ 6~~AIL 100 SO-8 SOP-8' MAX DIE SIZE 8K MILS2 SO-14 120 CO/W SO-16 PACKAGE STYLE 'JA '0 DATA TAKEN USING PHILIPS SO TEST BOARD #7322-078, 80873 'SOP-S USING STANDARD 80-8 FOOTPRINT - MIN PAD SIZE 40 TOP Figure 1. Thermal Resistance, Junction-toAmbient ("elW) VIEW 10 20 L- 30 40 50 LENGTH OF COPPER FLAG Figure 2. Thermal Resistance for SOP-8 Package Die 2K mils2 THERMAL RESISTANCE OF SOIC PACKAGES Measurement specimens are solder mounted on a Philips SO test board #7322-078, 80873 in still air. No auxiliary thermal conduction aids are used. As thermal resistance varies inversely with die area, a given package takes thermal resistance values between the max and min curves shown. These curves represent the smallest (2000 square mils) and largest (8000 square mils) die areas expected to be assembled in the sOle package. MOTOROLA LINEAR/INTERFACE DEVICES 13-22 Quality and Reliability Assurance 11'1 11M Quality Concepts ification range for a given characteristic). When Six Sigma is achieved, virtually zero defects are observed in the output of a process/product even allowing for potential process shifts (Figure 1). The word Quality has been used to describe many things, such as fitness for use, customer satisfaction, customer enthusiasm, what the customer says quality is, etc. These descriptions convey important truths, however quality should be described in a way that precipitates immediate action. With that in mind quality can be described as reduction of variability around a target, so that conformance to customer requirements/expectations can be achieved in a cost effective way. This definition provides direction and potential for immediate action for a person desiring to improve quality. Quality Improvement for a task or a process can be quickly described in terms of the target, current status with respect to target (variability), reduction of variability (commitment to never ending improvement), customer requirements (who receives output, what are person's requirements/expectations) and economics (cost of nonconformance; loss function, etc.). The definition of quality as described above can be applied to a task, process or a whole company. If we are to reap the benefits of quality and obtain a competitive advantage, quality must be applied to the whole company. Application of quality to the whole company has come to be known by such names as "Total Quality Control" (TQC); "Company Wide Quality Control" (CWQ(:);" Total Quality Excellence" (TQE); "Total Quality Involvement" (TQI). These names attempt to convey the idea that quality is a process (a way of acting continuously) rather than a program (implying a beginning and an end). Neverthlilless for this process to be successful it must be able to show measurable results. Implementation of quality ideas, company, wide requires a quality plan showing: A philosophy (belief) of operation, measurable goals, training of individuals and methods of communicating this philosophy of operation to the whole organization. Motorola, for example, believes that quality and reliability are the responsibility of every person. Participative Management Program (PMP) is the process by which problem solving and quality improvement are facilitated at all levels of the organization. Continuous, !mprovement for the individual is facilitated by a broad educational program covering on-site, university and college courses. The Mqtorola Training and Education Center (MTEC) provides leadership and administers this educational effort on a company wide basis. Another key belief is that quality excellence is accomplished by people doing things right the first time and committed to never ending improvement. The Six Sigma (6u) challenge is designed to convey and facilitate the idea of continuous improvement at all levels. "Six Sigma is the required capability level to approach the standard. The standard is zero defects. Our goal is to be Best-In-Class in product, sales and service." (For a more detailed explanation, contact your Motorola Representative for a pamphlet of the Six Sigma Challenge.) Quick insight into Six Sigma is obtained if we realize that a Six Sigma process has variability which is one half of the variation allowed (tolerance; spread) by the customer requirements (i.e. natural variation is one half of the customer spec- Mean Six Sigma Capability VlrtuaUy Zero Defects (3.4 ppm) \ FIGURE 1 - A SIX SIGMA PROCESS HAS viRTUAllY ZERO DEFECTS AllOWING FOR 1.5u SHIFT Policies, objectives and five year plans are the mechanisms for communicating the key beliefs and measurable goals to all personnel and continuously keeping them in focus. This is done at the corporate, sector, group, division, and department levels. The Analog Division, for example, evaluates performance to the corporate goals of 10 Fold Improvement by 1969; 100 Fold Improvement by 1991 and achievement of Six Sigma capability by 1992 by utilizing indices such as Outgoing Electrical and Visual Mechanical Quality (AOQ) in terms of PPM (parts per million or sometimes given in 'parts per billion'); % of devices with zero PPB; product quality retums (RMR); number of processes/products with specified capability Indices (cp; cpk); Six Sigma capability roadmaps; failure rates for various reliability tests (operating life, temperature humidity bias, hast, temperature cycling, etc.); on til11& delivery; customer product evaluation and failure analysis turnaround; cost of nonconformance; productivity Improvement and personnel development. Figure 2 shows the improvement in electrical outgoing quality for bipolar analog products oV\lf retent years in a normalized form. Documentation control is an important part of statistical process control. Process flow charting with documentation identified allows visualization and therefore optimization of the process. Figure 4 shows a portion of a flow chart for Wafer Fabrication. Control plans are,· an important part of Statistical Process Control, these plans identify in detail critical points where data for process control is taken, parameters measured, frequency of measurements, type of control device used, measuring equipment, responsibilities and reaction plans. Figure 5 shows a portion of a control plan for wafer fabrication. These flow charts and control plans exist for all product flows. Six Sigma progress is tracked by roadmaps. A portion of a roadmap is shown for example on Figure 6. On Time Delivery is of great importance, with the current emphasis on just-in-time systems. Tracking is done on an overall basis, and at the device level. MOTOROLA LINEAR/INTERFACE DEVICES 14-2 100 .. 90 .. 80 .. 70 .. 60 .. 50 .. 40 .. 30 .. 20 .. 10 .. 80 . 82 81 FIGURE 2 - 83 84 85 OUTGOING ELECTRICAL OUALITY (AOO) TREND/NORMALIZED 1980 0.6 0.26 86 87 = 100% - IOIJIFIMIAIMIJIJIAISIOINIOIJIFIMIAIMIJIJIAlslolNlol ROLLING 13 WEEK ENOING NOV. '87 ZERO PPB lK-99K PPB l00K-499K PPB 500K-999K PPB -+ l000K PPB ~ ~ EZZl k2'Z:22l ~ FIGURE 3 - PERCENT (%) OF DEVICES WITH ZERO PARTS PER BILLION (AOO) MOTOROLA LINEAR/INTERFACE DEVICES 14-3 PROCESS CONTROL PLAN DOCUMENTATION & REFERENCE # OPERATION FLOW SPC IMPLEMENTATION BURIED LAYER OXIDE PREDIFFUSION CLEAN WAFER INSPECTION AFTIER CLEAN 12MSM 45640A 12MSM 53692A BURIED LAYER OXIDE NANOSPECIAFTER DEP. CVPLOTTING CV EVALUATION 12MSM 35443A REF. #1 12MSM 5141BA 12MSM 53B05A 12MRM 4548BA CONTROL PLAN, OXIDE THICKNESS 12MSM 51416A REF. #10 X BAR & R, RESIST THICKNESS BURIED LAYER PHOTO MASK WAFERTRAC PROCESS (SCRUBIBAKEICOATIBAKE) FIGURE 4 - PORTION OF A PROCESS FLOW CHART FROM WAFER FAB, SHOWING DOCUMENTATION CONTROL AND SPC Characteristics: Description VISUAL DEFECTS VISUAL DEFECTS ... MICROSCOPE PARTICLE ... MONITOR FILM THICKNESS Parl/Process Detail Measuremenls Method B.L. OXIDE D OXIDE THICKNESS NANOMETRIC EPI D THICKNESS QA D E QA FIGURE 5 - Rei. No. Description FILM SHEET RESISTANCE REFRACTIVE INDEX CRITICAL DIMENSION CVPLOT Code E. F. G. H. Characteristic Affected Process Location III Code A. B. C. D. Analysis Melhods Frequency Sample Size Reaction Plan: Point out of Lim" (3) (4) CONTROL GRAPH EVERY RUN 3 WFAIRUN IMPOUND LOT 11) ADJUST TIME TO CENTER PROCESS PER SPEC DIGILAB X RCHART EVERY RUN SSITEStWFR IMPOUND LOT (1) NOTIFY ENGR. THICKNESS DlGILAB X RCHART 1WFAISHIFT 5SITEStWFR IMPOUND LOT (2) NOTIFY ENGR. FILM RESISTIVITY 4PTPROBE X RCHART EVERY RUN 5SITEStWFR IMPOUND LOT (1) NOTIFY ENGR. RLM 4PTPROBE X 1WFAISHIFT 5SITEStWFR IMPOUND LOT (2) NOTIFYENGR. EVERY LOT 1 CTRLWFR PER LOT IMPOUND LOT NOTIFYLI'!:)' RCHART "..... PART OF A WAFER FAB CONTROL PLAN, SHOWING STATISTICAL PROCESS CONTROL DETAILS MOTOROLA LINEAR/INTERFACE DEVICES 14-4 ±6uSummary Step 1. Identify critical characteristics • • • • • 2. Determine specified product elements contributing to critical characteristics • • • • 3. For each product element, determine the process step or process choice that affects or controls required performance • • • • • Planned experiments Computer-aided simulation TOP/process engineering studies Multi-vari analysis Comparative experiments 4. Determine maximum (real) allowable tolerance for each and pr • • • • Graphing techniques Engineering handbooks Planned experiments Optimization, especially response surface methodolopv FIGURE 6 - Product description Marketing Industrial Design R&D/Developmental Engineering Actual or potential customers Critical Characteristics Matrix Cause-and-effect and Ishikawa diagrams Success tree/fault tree analysis Component search or other forms of planned experimentation • FMECA (Failure Mode Effects and Critical Analysis) PART OF SIX SIGMA (6u) ROADMAP SHOWING STEPS TO SIX SIGMA CAPABILITY Reliability Concepts fidence level is obtained from the point estimate and the CHI square (X2) distribution. (The X2 is a statistical distribution used to relate the observed and expected frequencies of an event.) In practice, a reliability calculator rule is used which gives the failure rate at the confidence level desired for the number of failures and device hours under question. As the number of device hours increases, our confidence in the estimate increases. In integrated circuits, it is preferred to make estimates on the basis 01 failures per 1,000,000,000 (109 ) device hours (FITS) or more. " such large numbers of device hours are not available for a particular device, then the point estimate is obtained by pooling the data from devices that are similar in process, voltage, construction, design, etc., and for which we expect to see the same failure modes in the field. The environment is specified in terms of the temperature, electric field, relative humidity, etc., by an Eyring type equation of the form: Reliability is the probability that a Linear integrated circuit will perform its specified function in a given environment for a specified period of time. This is the classical definition of reliability applied to Linear integrated circuits. Another way of thinking about reliability is in relationship to quality. While quality is a measure of variability (extending to potential nonconformances-rejects) in the population domain, reliability is a measure of variability (extending to potential nonconformances-failures) in the population, time and environmental conditions domain. In brief reliability can be thought of as quality over time and environmental conditions. The most frequently used reliability measure for integrated circuits is the failure rate expressed in percent per thousand device hours (%/1000 hrs.). If the time interval is small the failure rate is called "Instantaneous Failure Rate" [A (t)] or "Hazard Rate." If the time interval is long (for example total operational time) the failure rate is called "Cumulative Failure Rate." The number of failures observed, taken over the number of device hours accumulated at the end of the observation period and expressed as a percent is called the point estimate failure rate. This however, is a number obtained from observations from a sample of all integrated circuits. If we are to use this number to estimate the failure rate of all integrated circuits (total population), we need to say something about the risk we are taking by using this estimate. A risk statement is provided by the confidence level expressed together with the failure rate. For example, a 0.1% per 1000 device hours failure rate at 90% confidence level can be thought of as 90% of the integrated circuits will have a failure rate below 0.1%/ 1000 hours. Mathematically the failure rate at a given con- A=Ae-!!!... KT B ... e - RH ...e - C E Where A, B, C, '" & K are constants, T is temperature, RH is relative humidity, E is the electric field, etc. The most familiar form of this equation deals with the first exponential which shows an Arrhenlous type relationship of the failure rate versus the junction temperature of integrated circuits, while the causes of failure generally remain the same. Thus, we can test devices near their maximum junction temperatures, analyze the failures to assure that they are the types that are accelerated by temperature and then applying known acceleration factors, estimate the failure rates for lower junction temperatures. Figure 7 shows an MOTOROLA LINEAR/INTERFACE DEVICES 14-5 II example of a curve which gives estimates of typical failure rates versus temperature for integrated circuits. ~ Arrhenious type of equation: ,\ = Ae Where: ,\ = = = = = = A e " K T TJ = TA + Where: TJ TA TC 9JA Failure Rate Constant 2.72 Activation Energy Botzman's Constant Temperature in Degrees Kelvin 9JAPo orTj = TC = = = = 0JC = Po = There are three important regions identified on this curve. In Region A, the failure rate decreases with time and it is generally called Infant mortality or early life failure region. In Region B, the failure rate has reached a relatively constant level and it is called constant failure rate or useful life region. In the third region, the failure rate increases again and it is called wearout region. Modern integrated circuits generally do not reach the wearout portion of the curve when operated under normal use conditions. The wearout portion of the curve can usually be identified by using highly accelerated test conditions. For modem integrated cincuits, even the useful life portion of the curve is characterized by so few failures compared to the accumulated device hours, that the useful life portion of the curve looks like a continuously decreasing failure rate curve (Figure 8, dotted line). The Infant mortality portion of the curve is of most interest to equipment manufacturers because of its impact on customer perception and potential warranty costs. In recent years the infant mortality portion of the curve for integrated circuits, and even equipment, has been drastically reduced (Figure 8, note arrows showing reduction of infant mortality). The reduction was accomplished by improvements in technology, emphasis on statistical process control, reliability modeling in design and reliability in manufacturing (wafer reliability, assembly reliability, etc.). In this respect many integrated circuit families have a continuously decreasing failure rate curve. Does a user still need to consider burn-in? For this question to be answered properly the IC user must consider the target failure rate of the equipment, apportioned to the components used, application environment, maturity of equipment and components (new versus mature technology), the impact of a failure (i.e. safety versus casual entertainment), maintenance costs, etc. Therefore, if the IC user is going through these considerations for the first time, the question of burnin at the component level should be discussed during a uservendor interlace meeting. A frequently asked question is about the reliability differences between plastic versus hermetic packaged integrated circuits. In general, for all bipolar integrated circuits including linear, the field removal rates are the same for normal use environments, with many claims of plastic being better because of their "solid block" structure. The tremendous inc-<;lase in reliability of plastic packages has been accomplished by the continuous improvements in piece parts, materials and processes. Nevertheless differences can still be observed under highly accelerated environmental conditions. For example, if a bimetallic (gold wire and aluminum metallization) system is used in plastic packages and they are placed on a high temperature operating life test (125°C) then failures in the form of opens will be observed after 10,000 hours of continuous operating life at the gold to aluminum interlace. Packages, whether plastic or hermetic, with a monometallic system (aluminum wire to aluminum metallization) will have no opens because of the absence of the gold to aluminum interlace. As a result, a difference in failure rates will be observable. Differences in failure rates between plastics and hermetics could be observed if devices from both packaging systems are placed in an environment of 85°C; 85% RH with bias applied. At some point in time plastic encapsulated ICs should fail since they are considered pervious by moisture, (the failure mechanism being corrosion of the aluminum metallization) while hermetic packages should not fail since they are considered impervious by moisture. The reason the word + 0JC Po Junction Temperature Ambient Temperature Case Temperature Junction to Ambient Thermal Resistance Junction to Case Thermal Resistance Power Dissipation Failure rate curves for equipment and devices can be represented by an idealized graph called the Bathtub Curve (Figure 8). 100 10 , NON-8URNED-IN PRODUCT \ "\ r\ \ , 0.001 500 400 300 200 150 100 50 25 JUNCTION TEMPERATURE ·C FIGURE 7 - TYPICAL FAILURE RATE versus JUNCTION TEMPERATURE - - - Typical Equipment Failure Rate lt L"'.: ;-c~o-n-sta"'n~t" 'F-ai-lu-re-R-a-te-t~ III Infant Mortality or Early Life Region A ••••• .?! Useful We ...... .,/-.. ___ ... Region 8 Region C TIME FIGURE B - FAILURE RATE versus TIME (BATHTUB CURVE) MOTOROLA LINEAR/INTERFACE DEVICES 14-6 "should" was used is because advances in plastic compounds, package piece parts, encapsulation processes and final chip passivation have made plastic integrated circuits capable of operating more than 5000 hours without failures in an 85"C; 85% RH environment. Differences in failure rates due to internal corrosion between plastic and hermetic packages may not be observable until well after 5000 operating hours. The aforementioned two examples had environments substantially more accelerated than normal life so these two issues discussed are not even a factor under normal use conditions. In addition, mechanisms inherent in hermetic packages but absent in plastics were not even considered here. Improved reliability of plastic encapsulated ICs has decreased demand of hermetic packages to the point where many devices are offered only in plastic packages. The user then should feel comfortable in using the present plastic packaging systems. A final question that is asked by the IC users is: how can one be assured that the reliability of standard product does not degrade over time? This is accomplished by our emphasis on statistical process control, in-line reliability assessment and reliability auditing by periodic and strategic sampling and accelerated testing of the various integrated circuit device packaging systems. A description of these audit programs follows below. Punishment Program), and RAP (Reliability Audit Program). Currently, the Bipolar Analog Reliability Audit Program consists of a Weekly Reliability Audit and a Quarterly Reliability Audit. The Weekly Reliability Audit consists of rapid (short time) types of tests used to monitor the production lines on a real time basis. This type of testing is performed at the assemblyltest sites worldwide. It provides data for use as an early warning system for identifying negative trends and triggering investigations for causes and corrective actions. The Quarterly Reliability Audit consists of long term types of tests and is performed at the U.S. Bipolar Analog Division Center. The data obtained from the Quarterly Reliability Audit is used to assure that the correlation between the short term weekly tests and long term quarterly tests has not changed, and a new failure mechanism has not appeared. A large data base is established by combining the results from the Weekly Reliability Audit with the results from the Quarterly Reliability Audit. Such a data base is necessary for estimating long term failure rates and evaluating potential process improvement changes. Also, after a process improvement change has been implemented, the Linear Reliability Audit Program provides a system for monitoring the change and the past history data base for evaluating the affect of the change. Weekly Reliability Audit Linear Reliability Audit Program The Weekly Reliability Audit is performed by each assemblyllest site worldwide. The site must have capability for final electrical and quality assurance testing; reliability testing and first level of failure analysis. The results are reviewed on a continuous basis and corrective action is taken when appropriate. The results are accumulated on a monthly basis and published. The Reliability Audit test plan is as follows: The reliability of a product is a function of design and manufacturing. Inherent reliability is the reliability which a product would have if there were no imperfections in the materials, piece parts and manufacturing processes of the product. The presence of imperfections gives risk to the actual reliability of the product. Motorola uses on-line and off-line reliability monitoring in an attempt to prevent situations which could degrade reliability. On-line reliability monitoring is at the wafer and assembly levels while off-line reliability monitoring involves reliability assessment of the finished product through the use of accelerated environmental tests. Continuous monitoring of the reliability of Linear integrated circuits is accompished by the Linear Reliability Audit Program, which is designed to compare the actual reliability to that specified. This objective is accomplished by periodic and strategic sampling of the various integrated circuit device packaging systems. The samples are tested by subjecting them to accelerated environmental conditions and the results are reviewed for unlavorable trends that would indicate a degradation of the reliability or quality of a particular packaging system. This provides the trigger mechanism for initiating an investigation for cause and corrective action. Concurrently, in order to provide a minimum of interruption of prOC/uct flow and assure that the product is fit for use, a lot by lot sampling or a nondestructive type 100% screen is used to assure that a particular packaging system released for shipment does have the expected reliability. This rigorous surveillance is continued until there is sufficient proof (many consecutive lots) that the problem has been corrected. The Standard Logic and Analog Integrated Circuits Group has used reliability audits since the late sixties. Such programs have been identified by acronyms such as CRP (Consumer Reliability Program), EPIIC (Environmental Package Indicators for Integrated Circuits), LAPP (Linear Accelerated Electrical Measurements: Performed initially and after each reliability test, consists of critical parameters and functional testing at 25"C on a go-no-go basis. High Temperature Operating Life: Performed to detect failure mechanisms that are accelerated by a combination of temperature and electric fields. Procedure and conditions are per the MIL-STD-883, Method 1015 with an ambient temperature of 145"C for 40 hours or equivalent based on a 1 .0eV activation energy and the Arrhenious equation. Approximate Accelerated Factors 145°C 125°C 125"<: sooC 4 1 4000 1000 Temperature CycllnglThermal Shock: Performed to detect mechanisms related to thermal expansion and contraction of dissimilar materials, etc. Procedures and conditions are per MIL-STD-883, Methods 1010 or 1011, with ambient temperatures of -65°C to + 150°C or -40°C to + 125°C (JEDECSTD-22-Al04), minimum of 100 cycles. Pressure Temperature Humidity (Autoclave): Performed to measure the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanisms due to free ionic contaminants that may have entered the package during the manufacturing processes. Conditions are per MOTOROLA LlNEARIINTERFACE DEVICES 14-7 III JEDEC-STD-22, Method 102, a temperature of 121 ·C, steam environment and 15psig. The duration of the test is 48 hours. Pressure Temperature Humidity (Autoclave): Performed to measure the moisture reSistance of plastic encapsulated packages. It detects corrosion type failure mechanism due to free ionic contaminants that may have entered the package during the manufacturing processes. Conditions are per JEDEC-STD-22, Method 102, a temperature of 121 ·C, steam environment and 15psig. The duration of the test is for 96 hours, with a 4B hour interim readout. Analysis Procedure: Devices failing to meet the electrical criteria aller being subjected to an accelerated environment type test are verified and characterized electrically, then submitted for failure analysis. Quarterly Reliability Audit Pressure Temperature Humidity Bias (Biased Autoclave): This test measures the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanism due to free and bounded ionic contaminants that may have entered the package during the manufacturing processes, or they may be bound in the materials of the integrated Circuit packaging system and activated by the moisture and the applied electriC fieldS. Conditions are per JEDECSTD-22, Method 102, with bias applied. Temperature is 121·C, steam environment and 15psig. Duration is for 32 hours, with a 16 hour interim readout. This test detects the same type of failures as the Temperature Humidity Bias (B5·C, 85% RH, with bias) test, only faster. The acceleration factor between PTHB and THB is between 20 and 40 times, depending on the type of corrosion mechanism, electric field and packaging system. The Quarterly Bipolar Analog Reliability Audit Program is performed at the U.S. Bipolar Analog Division Center. This testing is designed to assure that the correlation between the short term weekly tests and the longer quarterly tests has not changed and that no new failure mechanisms have appeared. It also provides additional long term information for a data base for estimating failure rates and evaluation of potential process improvement changes. Electrical Measurements: Performed initially and at interim readouts, consist of all standard dc and functional parameters at 25·C, measured on a go-no-go basis. High Temperature Operating Life Test: Performed to detect failure mechanisms that are accelerated by a combination of temperature and electric fields. Procedure and conditions are per MIL-STD-883, Method 1015, with an ambient temperature of 145·C for 40 and 250 hours or equivalent, based on 1.0eVactivation energy and the Arrhenious equation. Temperature, Humidity and Bias (THB): This test measures the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanisms due to free and bounded ionic contaminants that may have entered the package during the manufacturing processes, or they may be bound in the materials of the integrated circuit packaging system and activated by moisture and the applied electric fields. Conditions are per JEDEC-STD-22, Method 102 (B5°C, B5% RH), with bias applied. The duration is for 100B hours, with a 504 hour interim readout. The acceleration factor between THB (85·C, 85% RH and bias) and the 30·C, 90% RH is typically 40-50 times, depending on the type of corrosion mechanism, electric field and packaging system. Approximate Acceleration Factors 145·C 125·C 12S·C 4 1 SO·C 4000 1000 Temperature CyclinglThermal Shock: Performed to detect mechanisms related to thermal expansion and contraction, mismatch effects, etc. Procedure and conditions are per MILSTD-8B3, Methods 1010 or 1011, with ambienttemperatilres of -65·C to + 150·C or -40·C to + 125°C (JEDEC-STD22-A104) for 100 and 1000 cycles. Temperature Cycling and Thermal Shock are used interchangeably. Analysis Procedure: Devices failing to meet the electrical criteria aller being subjected to an accelerated environment type test are verified and characterized electrically, then submitted for failure analysis. III MOTOROLA LINEAR/INTERFACE DEVICES 14-8 Applications Literature III Applications Literature AN703 Designing Digitally-Controlled Power Supplies The application literature listed in this section has been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the publication number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036. This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in an application. Application Note Abstracts AN708A AN273A This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and application examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for.almost every type of transmission system. Getting More Value Out of an Integrated Operational Amplifier Data Sheet The operational amplifier has become a basic building block in present day solid state electronic systems. The purpose of this application note is to provide a better understanding of the open loop characteristics of the amplifier and their significance to overall circuit operation. Also each parameter is defined and reviewed with respect to closed loop considerations. The importance of loop gain stability and bandwidth is discussed at length. Input qffset voltage and current and resultant drift effects in the circuit are also reviewed with respect to closed loop operation. AN489 AN727 Line Driver and Receiver Considerations Television Horizontal APC/AFC Loops: The Last 10 Percent A discussion of some common problems that may be encountered with the design of Horizontal APC/AFC loops and methods to avoid or overcome them. AN778 Analysis and Basic Operation of the MC1595 Mounting Techniques for Power Semiconductors The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few baSic applications are given to assist the designer in system design. For reliable operation, semiconductors must be properly mounted. Discussed are aspects of preparing the mounting surface, using thermal compounds, insulation techniques, fastening techniques, handling of leads and pins, and evaluation methods for the thermal system. AN513 AN781A A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC Revised Data Interface Standards This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers. This application note provides a brief overview and comparison of communication interface standards EIA-232-C, EIA-422A, EIA-423, EIA-449 and EIA-485 for the hardware designer. A listing of the standard's specifications and appropriate Motorola devices are included. AN531 AN829 MC1596 Balanced Modulator The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators/demodulators for AM, SSB, and suppressed carrier AM; frequency doublers and HFIVHF double balanced mixers. AN879 AN545A Application of the MC1374 TV Modulator The MC1374 was designed for use in applications where separate audio and composite video signals are available, which need converting to a high quality VHF television signal. It's idealy suited as an output device for subscription TV decoders, video disk and video tape players. Television Video IF Amplifier Using Integrated Circuits Monomax - Application of the MC13001 Monochrome Television Integrated Circuit This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, and the MC1330. This application note presents a complete 12" black and white line-operated television receiver, including artwork for the printed circuit board. It is intended to provide a good starting point for the first-time user. Some of the most common pitfalls are overcome, and the significance of component selections and locations are discussed. AN587 AN917 Analysis and DeSign of the Op Amp Current Source A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented. Reading and Writing in Floppy Disk Systems Using Motorola Integrated Circuits The floppy disk system has become a widely used means for storing and retrieving both programs and data. A floppy disk drive requires precision controls to position and load the head as well as defined read/write signals in order to be a viable system. This application note describes the use of the MOTOROLA LINEAR/INTERFACE DEVICES 15-2 APPLICATIONS LITERATURE (continued) MC3469 and MC3471 Write Control ICs and the MC3470 Read Amplifier which provide the necessary head and erase control, timing functions, and filtering. AN920A designs is becoming more pronounced over that of linear regulators. This is primarily due to the need for reductions in size and weight which dictate an ever increasing demand for higher power conversion efficiency from a battery pack. When designing at the board level it sometimes becomes necessary to generate a constant output voltage that is less than that of the battery. The step-down Circuit will perform this function efficiently. However, as the battery discharges, its terminal voltage will eventually fall below the desired output, and in order to utilize the remaining battery energy, the step-up circuit will be required. Theory and Applications of the MC34063 and ,.,.A78S40 Switching Regulator Control Circuits This paper describes in detail the principle of operation of the MC34063 and ILA7BS40 switching regulator subsystems. Several converter design examples and numerous applications circuits with test data are included. AN926 AN957 Techniques for Improving the Settling Time of a DAC & Op Amp Combination Interfacing the MC3401 B speakerphone circuit to the MC34010 series of telephone circuits is described in this application note. The series includes the MC34010, MC34011, MC34013, and the new "A" version of each of those. The interface is applicable to existing designs, as well as to new designs. This application note describes some techniques which were tested for the purpose of optimizing settling time of a DAClop amp combination. The objective of the experimentation was to obtain a settling time of under 1.0 ILS for 12 bit (±0.012%) accuracy. Op amps chosen for this exercise are high speed, yet inexpensive monolithic devices. AN932 AN958 Application of the MC13n Color Encoder AN959 A Variety of Uses for the MC34012 and MC34017 Tone Ringers A Speakerphone with Receive Idle Mode The MC3401 B speakerphone system operates on the principle of comparing the transmit and receive signals to determine which is stronger, and then switching the circuit into that mode. Under conditions where noise from the telephone line (in the receive path) exceeds the background noise in the transmit path, the speakerphone will switch easily, or even lock, into the receive mode. Under these conditions the conversation will sound "dead" to the party at the far-end. It will also be more difficult for the near-end party to activate the transmit channel since the transmit detection is at the output of the transmit attenuator, which will be at maximum attenuation during this time. The addition of a receive idle mode can alleviate this problem by ensuring that the transmit and receive gains will be approximately equal when no voice signals are present. This allows the far-end party to hear ambient noises, and also increases the sensitivity to transmit signals. The MC34012 and MC34017 electronic tone ringers were developed to replace the bulky electromechanical bell assembly of a telephone, while providing the same basic function. When used in conjunction with a piezo ceramic transducer, these circuits will output a warbling sound in response to the applied ringing voltage. With some imagination, however, the circuits can be used in a variety of ways, including non-telephone applications, - wherever an alerting sound or indication is required. Applications include appliance buzzers, burglar alarms, safety alerting functions, special sound effects, visual ringing indicators, and others. The circuits in this application note show how a variety of effects can be obtained. AN937 Transmit Gain Adjustments for the MC34014 Speech Network The MC34014 telephone speech network provides for direct connection to an electret microphone and to Tip and Ring. In between, the circuit provides gain, drive capability, and determination of the ac impedance for compatability with the telephone lines. Since different microphones have different sensitivity levels, different gain levels are required from the microphone to the Tip and Ring lines. This application note will discuss how to change the gain level to suit a particular microphone while not affecting the other circuit parameters. The MCI377 is an economical, high quality, RGB encoder for NTSC or PAL applications. It accepts red, green, blue, and composite sync inputs and delivers IVpp composite NTSC or PAL video output into a 75 ohm load. It can provide its own color oscillator and burst gating, or it can be easily driven from extemal sources. Performance virtually equal to high cost studio equipment is possible with common color receiver components. The following note is intended to explain the operation of the device and guide the prospective user in selecting the optimum circuit for his needs. AN933 Interfacing the Speakerphone to the MC34010/11/13 Speech Networks A Telephone Ringer Which Complies with FCC and EIA Impedance Standards AN960 The MC34012 and MC34017 Tone Ringers are deSigned to replace the bulky bell assembly of a telephone, while providing the same function and performance under a variety of conditions. The operational requirements spelled out by the FCC and the EIA, simply stated, are that a ringer circuit MUST function when a ringing signal is provided, and MUST NOT ring when other signals (speech, dialing signals, noise) are on the line. This application note discusses how the IC's operate, the specific operational requirements to be met, and how they are met. Only "on-hook" requirements are discussed since off-hook operation is not applicable. Equalization of DTMF Signals Using the MC34014 This application note will describe how to obtain equalization (line length compensation) of the DTMF dialing tones using the MC34014 speech network. While the MC34014 does not have an intemal dialer, it has the interface for a dialer so as to provide the means for putting the DTMF tones onto the Tip & Ring lines. The Equalization amplifier, whose gain varies with loop current, was meant primarily to equalize the speech signals. However, by adding one resistor, it can be used to equalize the DTMF signals as well. A Unique Converter Configuration Provides Step-Up/Down Functions AN963 Interfacing the MC6108 AID to a Microprocessor - It's Easier Than You Think! The use of switching regulators in new portable equipment This application note will supplement information in the AN954 MOTOROLA LlNEARIINTERFACE DEVICES 15-3 APPLICATIONS LITERATURE (continued) MC6l08 data sheet by describing the detailed requirements for interfacing the Analog-to-Digital converter to a microprocessor. The hardware requirements, and the programming necessary to execute a conversion and read the data, in several different configurations, will be discussed. The microprocessor used in developing this application note is the MC6802 (operating off a 3.58 MHz crystal), a repres!lntative sample of the MC6800 family. Because of the short conversion time of the MC6108, "Wait" states and "Wait for Interrupt" instructions are generally not needed with most microprocessors. The microprocessor can issue a CONVERT instruction, and immediately thereafter, issue a READ instruction, regardless of whether the MC6l 08 is read through a port (MC682l), or read off the bus directly. AN976 ered featurephone, a line-powered featurephone with a booster (for using the speakerphone on long lines), and one powered from a power supply. The circuits are nearly identical, except for the Tip/Ring interface. Their performance, however, differs noticeably, particularly in the low loop current range. Initially, the discussion will focus on the line-powered circuit. ANE002 The architecture is based on the fly-back mode working in a free switching mode. Frequency range varies between 20 kHz at full load and 70 kHz in the standby condition (also called sleep-mode). Input power is from the line (220 Vac) and is completely isolated from the output. Control and regulation are achieved by the TDA4601. The power supply presents a linear foldback characteristic and is short circuit proof. An undervoltage inhibit provides a protection against low line voltage. The complete system is an excellent compromise between complexity, cost and performance. A New High Performance Current Mode Controller Teams Up with Current Sensing Power MOSFETs A new current mode control IC that interfaces directly with current sensing power MOSFETs is described. Its second generation architecture is shown to provide a variety of advantages in current mode power supplies. The most notable of these advantages is a "loss less" current sensing capability that is provided when used with current sensing MOSFETs. Included in the discussion are subtle factors to watch out for in practical designs, and an applications example. AN980 AN-HK-07 Low Power FM Dual Conversion Receivers MC3362/3/4 Article Reprints A Simplified Power Supply Design Using the TL494 Control Circuit ARl15 A bipolar quad op amp having a JFET-like 4.5 MHz bandwidth resolves common mode input voltages and sinks output current close to the ground rail - even with a single + 5.0 V supply. This describes the operation and characteristics of the TL494 Switchmode'" Voltage Regulator and shows its application in a 400-walt off-line power supply. The TL494 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. AN1002 A High Performance Manually Tuned AM Stereo Receiver for Automotive Application Using MOTOROLA ICs MC13021, MC13020 and MC13041 This application note presents a high performance manually tuned automotive AM stereo receiver design using MOTOROLA AM stereo ICs; MC13021, MC13020 and the MC1304l. It is intended to provide radio design engineers with a good start in automotive AM stereo receiver design. The note consists of two parts; the first describes all relative important principles of a manually tuned AM stereo receiver, and the second part details the AM stereo receiver design for automotive application. Motorola has recently developed a series of low power FM dual conversion receivers in monolithic silicon integrated circuits. The MC336213/4 series is ideal for application in cordless phones, narrowband voice and data receivers, CB and amateur band radios, RF security devices, and other applications through 150 MHz. AN983 130 W Ringing Choke Power Supply Using TDA4601 Engineering Bulletin Abstracts EB20 A Handsfree Featurephone Design Using the MC34114 Speech Network and the MC34018 Speakerphone ICs Multiplier/Op Amp Circuit Detects True RMS Two op amps and two multipliers are used in the circuit described in EB20 to obtain the true rms of an input voltage ranging from 2.0 to 10 Vpk. This application note describes the procedure for combining the MC34114 speech network with the MC34018 speakerphone circuit into a featurephone which includes the following functions: ten number memory pulse/tone dialer, tone ringer, a "Privacy" (Mike Mute) function, and line length compensation for both handset and speakerphone operation. Three circuits are developed in this discussion: a line-pow- EB51 Successive Approximation BCD AID Converter A successive approximation AID converter in which a digital-to-analog converter in a feedback loop produces a BCD digital output from an analog input is described in EB5l. MOTOROLA LINEAR/INTERFACE DEVICES 15-4 I I I I I I I I I I I I I I I I I I I I I I ; I I I I I I I I I I I I I I I I I I I I , I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .. Index/Cross Reference It Amplifiers and Comparators .. Power Circuits II II II •II II 1m II lEI III •II Power/Motor Control Circuits Voltage References Data Conversion Interface Circuits Communication Circuits Consumer Electronic Circuits Automotive Electronic Circuits Other Linear Circuits Surface Mount Technology Packaging Information Quality and Reliability Assurance Applications Literature 16941>-7 4188


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:29 19:41:35-08:00
Modify Date                     : 2017:07:29 20:43:23-07:00
Metadata Date                   : 2017:07:29 20:43:23-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:50bc11ad-d9de-974a-83e5-fdbed6b3d802
Instance ID                     : uuid:bcbff208-589c-8342-af84-ba10d144323d
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1542
EXIF Metadata provided by EXIF.tools

Navigation menu