1988_Motorola_Rectifiers_and_Zener_Diodes_Data 1988 Motorola Rectifiers And Zener Diodes Data

User Manual: 1988_Motorola_Rectifiers_and_Zener_Diodes_Data

Open the PDF directly: View PDF PDF.
Page Count: 508

Download1988_Motorola_Rectifiers_and_Zener_Diodes_Data 1988 Motorola Rectifiers And Zener Diodes Data
Open PDF In BrowserView PDF
~ndex

and Cross-Reference
Selector Guides

Rectifier Data Sheets

Zener Diode Data Sheets

MOTOROLA
RECTIFIERS
AND
ZENER DIODES
DATA BOOK
Prepared by
Technical Information Center

This book presents technical data for the broad line of Motorola Silicon Rectifiers and
Zener Diodes. Complete specifications for the individual devices are provided in the form
of data sheets. In addition, a comprehensive selector guide and industry cross-reference
guide are included to simplify the task of choosing the best set of components required
for a specific application.
The information in this book has been carefully checked and is believed to be accurate;
however, no responsibility is assumed for inaccuracies.
Motorola reserves the right to make changes without further notice to any products
herein to improve reliability, function or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein; neither does
it convey any license under its patent rights nor the rights of others. Motorola products
are not authorized for use as components in life support devices or systems intended for
surgical implant into the body or intended to support or sustain life. Buyer agrees to notify
Motorola of any such intended end use whereupon Motorola shall determine availability
and suitability of its product or products for the use intended. Motorola and f! are registered
trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative
Action Employer.

Printed

In

U.S A.

Series E
©MOTOROLA INC .. 1988
Previous Edition ©1987
"All Rights Reserved"

Designer's, POWERTAP, SUPERBRIDGE, Surmetic, and SWITCH MODE are trademarks of Motorola Inc.

ii

Index and Cross-Reference
Pages
Rectifiers ......... 1-2 to 1-34
Zener Diodes ..... 1-35 to 1-80

1-1

RECTIFIER INDEX CROSS-REFERENCE
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1M353
1N253
1N254
1N255
1N256
1N316,A
1N317,A
1N318,A
1N319,A
1N320,A
1N321,A
1N322,A

1N1204B
1N1200B
1N1202B
1N1204B
1N1206B
1N4001
1N4002
1N4003
1N4004
1N4005
1N4007
1N4007

3-5
3-5
3-5
3-5
3-5
3-33
3-33
3-33
3-33
3-33
3-33
3-33

1N535
1N536
1N537
1N538
1N539
1N540
1N547 .
1N560
1N561
1N562
1N563
1N596

1N4005
1N4001
1N4002
1N4003
1N4004
1N4004
1N4005
1N4006
1N4oo7
MR1128
MR1130
1N4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-200
3-200
3-33

1N323,A
1N324,A
1N325,A
1N326,A
1N327,A
1N328,A
1N329,A
1N332
1N333
1N334
1N335
1N336 .

1N4001
1N4002
1N4003
1N4004
1N4006
1N4007
1N4007
1N1204B
1N1204B
1N1204B
1N1204B
1N1202B

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-5
3-5
3-5
3-5
3-5

1N597
1N598
1N599,A
1N600,A
1N601,A
1N602,A
1N603,A
1N604,A
1N605,A
1N606A,
1N607,A
1N608,A

1N4006
1N4007
1N4001
1N4002
1N4003
1N4003
1N4004
1N4004
1N4005
1N4005
1N1199B
1N12ooB

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-5
3-5

1N337
1N338
1N339
1N340
1N341
1N342
1N343
1N344
1N345
1N346
1N347
1N348

1N1202B
1N1200B
1N1200B
1N1200B
1N1204B
1N1204B
1N1204B
1N1204B
1N1202B
1N1202B
1N1200B
1N1200B

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5

1N609,A
1N610,A
1N611,A
1N612,A
1N613,A
1N614,A
1N1095
1N1096
1N1100
1N1101
1N1102
1N1103

1N1202B
1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
1N4005
1N4005
1N4002
1N4oo3
1N4004
1N4004

3-5
3-5
3-5
3-5
3-5
3-5
3-33
3-33
3-33
3-33
3-33
3-33

1N349
1N350
1N351
1N352
1N354
1N355
1N359,A
1N360,A
1N361,A
1N362,A
1N363,A
1N364,A

1N1200B
1N1200B
1N1202B
1N1204B
1N1206B
1N1206B
1N4001
1N4002
1N4oo3
1N4004
1N4006
1N4007

3-5
3-5
3-5
3-5
3-5
3-5
3-33
3-33
3-33
3-33
3-33
3-33

1N1104
1N1105
1N1115
1N1116
1N1117
1N1118
1N1119
1N1120
1N1124,A
1N1125,A
1N1126,A
1N1127,A

1N4005
1N4006
1N1200B
1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
MR1122
MR1124
MR1124
MR1126

3-33
3-33
3-5
3-5
3-5
3-5
3-5
3-5
3-200
3-200
3-200
3-200

1N365,A
1N440,B
1N441,B
1N442,B
1N443,B
1N444,B
1N445,B
1N530
1N531
1N532
1N533
1N534

1N4007
1N4002
1N4003
1N4004
1N4004
1N4005
1N4005
1N4002
1N4oo3
1N4004
1N4004
1N4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

1N1128,A
1N1169,A
1N1183
1N1183A
1N1184
1N1184A
1N1186
1N1186A
1N1188
1N1188A
1N1190
1N1190A

MR1126
1N4004

3-200
3-33
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2

Note: Reverse polarity has an R suffix.

1-2

1N1183A
1N1183A
1N1184A
1N1184A
1N1186A
1N1186A
1N1188A
1N1188A
1N1190A
1N1190A

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

lNl199
lNl199A
lNl1998
lNl199C
lN1200
lN1200A
lN12008
lN1202
lN1202A
lN12028
lN1204
lN1204A

lNl199
lNl199A
lNl1998

lN12048
lN1206
lN1206A
lN12068
lN1206C
lN1217,A,8
lN1218,A,8
lN1219,A,8
lN1220,A,8
lN1221,A,8
lN1222,A,8
lN1223,A,8

lN12048
lN1206
lN1206A
lN12068

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

3·3
3·4
3·5
3·5
3·3
3·4
3·5
3·3
3·4
3·5
3·3
3·4

lN1434
lN1435
lN1436
lN1437
lN1438
lN1443,A,8
lN1444,A,8
lN1486
lN1487
lN1488
lN1489
lN1490

lNl183A
lNl184A
lNl186A
lN1188A
lNl190A
lN4007
MRl130
lN4005
lN4002
lN4003
lN4004
lN4004

3·2
3·2
3·2
3·2
3·2
3·33
3·200
3·33
3·33
3·33
3·33
3·33

lN12068
lN4001
lN4002
lN4003
lN4003
lN4004
lN4004
lN4005

3·5
3·3
3·4
3·5
3·5
3·33
3·33
3·33
3·33
3·33
3·33
3·33

lN1491
lN1492
lN1537
lN1538
lN1539
lN1540
lN1541
lN1542
lN1543
lN1544
lN1551
lN1552

lN4005
lN4005
lNl1998
lN12008
lN12028
lN12028
lN12048
lN12048
lN12068
lN12068
lN12008
lN12028

3·33
3·33
3·5
3·5
3·5
3·5
3·5
3·5
3·5
3·5
3·5
3·5

lN1224,A,8
lN1225,A,8
lN1226,A,8
lN1227,A,8
lN1228,A,8
lN1229,A,8
lN1230,A,8
lN1231,A,8
lN1232,A,8
lN1233,A,8
lN1234,A,8
lN1235,A,8

lN4005
lN4006
lN4006
lNl1998
lN12008
lN12028
lN12028
lN12048
lN12048
lN12068
lN12068
MR1128

3·33
3·33
3·33
3·5
3·5
3·5
3·5
3·5
3·5
3·5
3·5
3·200

lN1553
lN1554
lN1555
lN1556
lN1557
lN1558
lN1559
lN1560
lN1581
lN1582
lN1583
lN1584

lN12048
lN12048
lN12068
lN4002
lN4003
lN4004
lN4004
lN4005
lN11998
lN12008
lN12028
lN12048

3·5
3·5
3·5
3·33
3·33
3·33
3·33
3·33
3·5
3·5
3·5
3·5

lN1236,A,8
lN1251
lN1252
lN1253
lN1254
lN1255,A
lN1256
lN1257
lN1258
lN1259
lN1260
lN1261

MR1128
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4006
lN4007
lN4007

3·200
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33

lN1585
lN1586
lN1587
lN1612
lN1613
lN1614
lN1615
lN1616
lN1644
lN1645
lN1646
lN1647

lN12048
lN12068
lN12068
lN1199
lN1200
lN1202
lN1204
lN1206
lN4001
lN4003
lN4003
lN4004

3·5
3·5
3·5
3·3
3·3
3·3
3·3
3·3
3·33
3·33
3·33
3·33

lN1301
lN1302
lN1304
lN1306
lN1341,A8
lN1342,A8
lNl343,A8
lN1344,A8
lN1345,A8
lN1346,A8
lN1347,A8
lN1348,A8

lNl183A
lNl184A
lNl186A
lNl188A
lNl1998
lN12008
lN12028
lN12028
lN12048
lN12048
lN12068
lN12068

3·2
3·2
3·2
3·2
3·5
3·5
3·5
3·5
3·5
3·5
3·5
3·5

lN1648
lN1649
lN1650
lN1651
lN1652
lN1653
lN1692
lN1693
lN1694
lN1695
lN1696
lN1697

lN4004
lN4004
lN4004
lN4005
lN4005
lN4005
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005

3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33

lNl1998
lN1200
lN1200A
lN12008
lN1202
lN1202A
lN12028
lN1204
lN1204A

Nole: Reverse polarity has an R suffix.

1-3

,

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

lN1701
lN1702
lN1703
lN1704
lN1705
lN1706
lN1707
lN1708
lN1709
lN1710
lN1711
lN1712

lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

lN2086
lN2103
lN2104
lN2105
lN2106
lN2107
lN2108
lN2116
lN2117
lN2154
lN2155
lN2156

lN4005
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4004
lN4006
lN1183A
lN1184A
lN1186A

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-2
3-2
3-2

lN1763
lN1764
lN1907
lN1908
lN1909
lN1910
lN1911
lN1912
lN1913
lN1914
lN1915
lN1916

lN4004
lN4005
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4006
lN4007

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

lN2157
lN2158
lN2159
lN2160
lN2216
lN2218
lN2220
lN2222,A
lN2224,A
lN2226,A
lN2228,A
lN2230,A

lN1188A
lN1188A
lN1190A
lN1190A
lN1199B
lN1206B
1N1206B
MR1128
MR1130

3-2
3-2
3-2
3-2
3-5
3-5
3-5
3-200
3-200
3-5
3-5

lN2013
lN2014
lN2015
lN2016
lN2017
lN2018
lN2019
lN2020
lN2021
lN2022
lN2023
lN2024

lN4001
lN4002
lN4003
lN4003
lN4004
lN4004
lN4004
lN4004
lN1186A
lN1188A
lN1188A
lN1188A

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-2
3-2
3-2
3-2

lN2232,A
lN2234,A
lN2236,A
lN2238,A
lN2240,A
lN2242,A
lN2244,A
lN2246A
lN2248A
lN2250A
lN2252A
lN2254A

.

lN1199B
lN1200B
lN1202B
lN1204B
lN1204B

3-5
3-5
3-5
3-5
3-200
3-200
3-5
3-5
3-5
3-5
3-5

lN2025
lN2026
lN2027
lN2028
lN2029
lN2030
lN2031
lN2069,A
lN2070,A
lN2071,A
lN2072
lN2073

lN1188A
lN1199B
lN1202B
lN1204B
lN1204B
lN1206B
1N1206B
lN4003
lN4004
lN4005
lN4001
lN4002

3-2
3-5
3-5
3-5
3-5
3-5
3-5
3-33
3-33
3-33
3-33
3-33

lN2256A
lN2258A
lN2260A
lN2262A
lN2266
lN2268
lN2270
lN2282
lN2283
lN2284
lN2285
lN2286

lN1206B
lN1206B
MR1128
MR1130
lN1199B
lN1206B
lN1206B
lN1188A
lN1188A
lN1190A
lN1190A
lN1190A

3-5
3-5
3-200
3-200
3-5
3-5
3-5
3-2
3-2
3-2
3-2
3-2

lN2074
lN2075
lN2076
lN2077
lN2078
lN2079
lN2080
lN2081
lN2082
lN2083
lN2084
lN2085

lN4003
lN4003
lN4004
lN4004
lN4004
lN4005
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

lN2287
lN2348
lN2349
lN2350
lN2446
lN2447
lN2448
lN2449
lN2450
lN2451
lN2452
lN2453

lN1190A
MR1120
MR1121
MR1122
lN1183A
lN1184A
lN1186A
lN1186A
lN1188A
lN1188A
lN1188A
lN1188A

3-2
3-200
3-200
3-200
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2

*These deVices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-4

.

lN1199B
lN1202B
lN1204B
lN1204B
lN1206B
lN1206B
MR1128
MR1130

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement·

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N2454
1N2455
1N2456
1N2457
1N2458
1N2459
1N2460
1N2461
1N2462
1N2463
1N2464
1N2465

1Nl190A
1Nl190A
1Nl190A
1Nl190A
1Nl183A
1Nl184A
1Nl186A
1Nl186A
1Nl188A
1Nl188A
1Nl188A
1Nl188A

3·2
3·2
3·2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2

1N2864,A
1N2865
1N3072
1N3073
1N3074
1N3075
1N3076
1N3077
1N3078
1N3079
1N3080
1N3081

1N5397
1N4007
1N4001
1N4002
1N4003
1N4003
1N4004
1N4004
1N4004
1N4004
1N4005
1N4005

3-41
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

1N2466
1N2467
1N2468
1N2469
1N2482
1N2483
1N2484
1N2485
1N2486
1N2487
1N2488
1N2489

1Nl190A
1Nl190A
1Nl190A
1Nl190A
1N4003
1N4004
1N4005
1N5393
1N5395
1N5395
1N5397
1N5397

3-2
3-2
3-2
3-2
3-33
3-33
3-33
3-41
3-41
3-41
3-41
3-41

1N3082
1N3083
1N3084
1N3106
1N3189
1N3190
1N3191
1N3192
1N3193
1N3194
1N3195
1N3196

1N5393
1N5395
1N5397
1N4006
1N4003
1N4004
1N4005

3-41
3-41
3-41
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

1N2491
1N2492
1N2493
1N2494
1N2495
1N2496
1N2497
1N2501
1N2502
1N2505
1N2506
1N2512

1Nl199B
1N1200B
1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
1N4006
1N4007
1N4006
1N4007
1N1200B

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-33
3-33
3-33
3-33
3-5

1N3208
1N3209
1N3210
1N3211
1N3212
1N3253
1N3254
1N3255
1N3256
1N3486
1N3491
1N3492

1N3208
1N3209
1N3210
1N3211
1N3212

1N2513
1N2514
1N2515
1N2516
1N2517
1N2609
1N2610
1N2611
1N2612
1N2613
1N2614
1N2615

1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
1N4001
1N4002
1N4003
1N4004
1N4004
1N4005
1N4005

3-5
3-5
3-5
3-5
3-5
3-33
3-33
3-33
3-33
3-33
3-33
3-33

1N3493
1N3495
1N3563
1N3569
lN3570
1N3571
1N3572
1N3573
1N3574
1N3611
1N3612
1N3613

1N3493
1N3495

1N2616
1N2617
1N2786
1N2787
1N2788
1N2789
1N2858,A
1N2859,A
1N2860,A
1N2861,A
1N2862,A
1N2863,A

1N4006
1N4007
1Nl186A
1Nl188A
1Nl186A
1Nl188A
1N5391
1N5392
1N5393
1N5395
1N5395
1N5397

3-33
3-33
3-2
3-2
3-2
3-2
3-41
3-41
3-41
3-41
3-41
3-41

1N3614
1N3615
1N3616
1N3617
1N3618
1N3619
1N3620
1N3621
1N3622
1N3623
1N3624
1N3639

.

1N4003
1N4004
1N4005
1N4006

1N4003
1N4004
1N4005
1N4006
1N4007
1N3491
1N3492

'These deVices are manufactured by Motorola but no data sheet available - Consult Factory,
Note: Reverse polarity has an R suffix.

1-5

3-6
3-6
3-6
3-6
3-6
3-33
3-33
3-33
3-33
3-33
3-7
3-7

lN4007
MRl121
MR1122
MRl124
MRl124
MRl126
MRl126
1N4003
1N4004
1N4005

3-7
3-7
3-33
3-200
3-200
3-200
3-200
3-200
3-200
3-33
3-33
3-33

1N4006
MRl120
MRl121
MRl122
MRl122
MRl124
MR1124
MRl126
MR1126
MRl128
MRl130
1N5393

3-33
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-41

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
1N3640
1N3641
1N3642
1N3649
1N3650
1N3659
1N3660
1N3661
1N3663
1N3670,A
1N3671 ,A
1N3672,A
1N3673,A
1N3766
1N3768
1N3866
1N3867
1N3868
1N3869
1N3879
1N3879A
1N3880
1N3880A
1N3881
1N3881 A
1N3883
1N3883A
1N3889
1N3889A
1N3890
1N3890A
1N3891
1N3891 A
1N3893
1N3893A
1N3899
1N3900
1N3901
1N3903
1N3909
1N3910
1N3911
1N3913
1N3924
1N3938
1N3939
1N3940
1N3957
1N3981
1N3982
1N3983
1N3987
1N3989
1N4001
1N4002
1N4003
1N4004
1N4005
1N4006
1N4007

Motorola
Direct
Replacement

Motorola
Similar
Replacement
1N5395
1N5397
1N5398
MR1128
MR1128

1N3659
1N3660
1N3661
1N3663
MR1128
MR1128
MR1130
MR1130
1N1190A
1N1190A
1N4003
1N4004
1N4005
1N4007
1N3879
1N3879
1N3880
1N3880
1N3881
1N3881
1N3883
1N3883
1N3889
1N3889
1N3890
1N3890
1N3891
1N3891
1N3893
1N3893
1N3899
1N3900
1N3901
1N3903
1N3909
1N3910
1N3911
1N3913
MR1130

··
·

1N4007
1N4003
1N4004
1N4005
MR1128
MR1130

1N4001
1N4002
1N4003
1N4004
1N4005
1N4006
1N4007

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

3·41
3·41
3·41
3·200
3·200
3·11
3·11
3·11
3·11
3·200
3·200
3·200

1N4012
1N4013
1N4014
1N4015
1N4139
1N4140
1N4141
1N4142
1N4143
1N4144
1N4145
1N4245

MR1130
MR1130
1N4719
1N4720
1N4721
1N4722
1N4723
1N4724
1N4725
1N4003
1N4004
1N4005

3·200
3·200
3·34
3·34
3·34
3·34
3·34
3·34
3·34
3·33
3·33
3·33

3·200
3·2
3·2
3·33
3·33
3·33
3·33
3·13
3·13
3·13
3·13
3·13

1N4246
1N4247
1N4248
1N4249
1N4383GP
1N4384GP
1N4385GP
1N4585GP
1N4586GP
1N4364
1N4365
1N4366

1N4006
1N4007
1N5393
1N5395
1N5397
1N5398
1N5399
1N4002
1N4003
1N4004
1N4004
1N4005

3·33
3·33
3·41
3·41
3·41
3·41
3·41
3·33
3·33
3·33
3·33
3·33

3·13
3·13
3·13
3·18
3·18
3·18
3·18
3·18
3·18
3·18
3·18
3·23

1N4367
1N4368
1N4369
1N4719
1N4720
1N4721
1N4722
1N4723
1N4724
1N4725
1N4816,GP
1N4817,GP

3·23
3·23
3·23
3·28
3·28
3·28
3·28
3·200
3·33

1N4818,GP
1N4819,GP
1N4820,GP
1N4821,GP
1N4822,GP
1N4933GP
1N4934GP
1N4935GP
1N4936GP
1N4937GP
1N4942
1N4943

3·33
3·33
3·33
3·200
3·200
3·33
3-33
3·33
3·33
3·33
3·33
3·33

1N4944
1N4945
1N4946
1N4948
1N5004
1N5005
1N5006
1N5007
1N5052
1N5053
1N5054
1N5055

-

..

1N4005

1N4719
1N4720
1N4721
1N4722
1N4723
1N4724
1N4725
1N5391
1N5392
1N5393
1N5395
1N5395
1N5396
1N5397

Note: Reverse polarity has an R suffix.

1-6

1N4935
1N4936

3·41
3·41
3·41
3·41
3·41
3·35
3·35
3·35
3·35
3·35
3·35
3·35

1N4936
1N4937
1N4937
MR818
1N5392
1N5393
1N5395
1N5397
1N5398
1N5398
1N5399
1N4934

3·35
3·35
3·35
3·177
3·41
3·41
3·41
3-41
3·41
3·41
3·41
3·35

1N4933
1N4934
1N4935
1N4936
1N4937

'These deVices are manufactured by Motorola but no data sheet available - Consult Factory.

3·33
3·34
3·34
3·34
3·34
3·34
3·34
3·34
3·41
3·41

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

lN5056
lN5057
lN5058
lN5059GP
lN5060GP
lN5061GP
lN5062GP
lN5170
lN5171
lN5172
lN5173
lN5174

lN4935
lN4936
lN4937
MR5060
MR5060
MR5061
MR5061
lN5391
lN5391
lN5392
lN5395
lN5395

3-35
3-35
3-35
3-227
3-227
3-227
3-227
3-41
3-41
3-41
3-41
3-41

lN5615GP
lN5616GP
lN5617GP
lN5618GP
lN5619GP
lN5620GP
lN5621GP
lN5622GP
lN5623GP
lN5624,GP
lN5625,GP
lN5626,GP

lN4935
lN4004
lN4936
lN4005
lN4937
lN4006
MR817
lN4007
MR818
MRS02
MRS04
MRS06

3-3S
3-33
3-35
3-33
3-35
3-33
3-177
3-33
3-177
3-167
3-167
3-167

lN5175
lN5176
lN5177
lN5178
lN5185,GP
lN5186,GP
lN5187,GP
lN5188,GP
lN5189,GP
lN5190,GP
lN5197
lN5198

lN5397
lN5397
lN5398
lN5399
MR850
MR851
MR852
MR854
MR856
MR856
MR500
MR501

3-41
3-41
3-41
3-41
3-192
3-192
3-192
3-192
3-192
3-192
3-167
3-167,

lN5627GP
lN5802
lN5803
lN5804
lN5805
lN5806
lN5807
lN5808
lN5809
1N581 0
lN5811
lN5812

MRS08
MUR405
MUR410
MUR410
MUR415
MUR415
MUR405
MUR410
MUR410
MUR415
MUR415
MUR2505

3-167
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-257

lN5199
lN5200
lN5201
lN5206
lN5391
lN5391GP
lN5392
lN5392GP
lN5393
lN5393GP
lN5394GP
lN5395

MR502
MR504
MR506
lN4936

3-167
3-167
3-167
3-35
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41

lN5813
lN5814
lN5815
lN5816
lN5817
lN5818
lN5819
lN5820
lN5821
lN5822
lN5823
lN5824

MUR2510
MUR2510
MUR2515
MUR2515
lN5817
lN5818
lN5819
lN5820
lN5821
lN5822
lN5823
lN5824

3-257
3-257
3-257
3-257
3-47
3-47
3-47
3-51
3-51
3-S1
3-55
3-55

3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-45
3-45
3-45
3-45

lN5825
lN5826
lN5827
lN5828
lN5829
lN5830
lN5831
lN5832
lN5833
lN5834
lN5898
lN5899

lN5825
lN5826
lN5827
lN5828
lN5829
lN5830
lN5831
lN5832
lN5833
lN5834

3-55
3-60
3-60
3-60
3-64
3-64
3-64
3-69
3-69
3-69
3-34
3-34

3-192
3-192
3-192
3-192
3-192
3-192
3-167
3-167
3-167
3-167
3-167
3-33

lN5900
lN5901
lN5902
lN5903
lN5904
lN6095
lN6096
lN6097
lN6098
lN6304
lN6305
lN6306

lN5395GP
lN5396GP
lN5397
lN5397GP
lN5398
lN5398GP
lN5399
lN5399GP
lN5400
lN5401
lN5402
lN5406
lN5415
lN5416
lN5417
lN5418
lN5419
lN5420
lN5550
lN5551
lN5552
lN5553
lN5554
lN5614GP

lN5391
lN5391
lN5392
lN5392
lN5393
lN5393
lN5395
lN5395
lN5395
lN5397
lN5397
lN5397
lN5398
lN5398
lN5399
lN5399
lN5400
lN5401
lN5402
lN5406
MR850
MR851
MR852
MR854
MR856
MR856
MR502
MR504
MR506
MR508
MR510
lN4003

Note: Reverse polarity has an R suffix.

1-7

lN4719
lN4720
lN4721
lN4722
lN4723
lN4724
lN4725
lN6095
lN6096
lN6097
lN6098
MUR7005
MUR7010
MUR7015

3-34
3-34
3-34
3-34
3-34
3-73
3-73
3-77
3-77
3-266
3-266
3-266

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Motorola
Direct
Replacement

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Motorola
Similar
Replacement

Page #

MBR12045CT
MBR12045CT
MBR12045CT
MBR12045CT
lN4004
MR501
MR502
MR504
MR504
MR506

3·116
3·128
3·138
3·138
3·138
3·138
3·33
3·167
3·167
3·167
3·167
3·167

3BFR4
3BFR6
3CF51 0
3El
3E2
3E4
3E05
3E6
3E8
3El0
3Fl0
3F20

MR854
MR856
lN4007
MR501
MR502
MR504
MR501
MR506
MR508
MR510
MR1121
MRl122

3·192
3·192
3·33
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·200
3·200

MR508
MR510
MR851
MR852
MR854
MR854
MR856

3·167
3·167
3·192
3·192
3·192
3·192
3·192

MRl124
MRl124
MR1126
MRl126
MRl128
MR1130
MR850
MR850

.3·200
3·200
3·200
3·200
3·200
3·200
3·192
3·192

MR501
MR502
MR504

3·167
3·167
3·167

3F30
3F40
3F50
3F60
3F80
3Fl00
3103
3105
3N246
3N247
3N248
3N249

3A05
3A6
3A8
3A15
3A30
3A50
3Al00
3A200
3A300
3A400
3A500
3A600

MR501
MR506
MR508
MR501
MR501
MR501
MR501
MR502
MR504
MR504
MR506
MR506

3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167

3N250
3N251
3N252
3N253
3N254
3N255
3N256
3N257
3N258
3N259
3511
3512

3A800
3Al000
3AFl
3AF2
3AF3
3AF4
3AF6
3AF8
3AF10
3AFRl
3AFR2
3AFR3

MR508
MR510
MR501
MR502
MR504
MR504
MR506
MR508
MR510
MR851
MR852
MR854

3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·192
3·192
3·192

3514
3516
35105
35Fl
35F2
35F4
35MO
35M2
35M4
35M6
35M8
4AF05

MR504
MR506
MR501
MR851
MR852
MR854
MR510
MR502
MR504
MR506
MR508
lN3491

3·167
3·167
3·167
3·192
3·192
3·192
3·167
3·167
3·167
3·167
3·167
3·7

3AFR4
3AFR6
3BFl
3BF2
3BF3
3BF4
3BF6
3BF8
3BF10
3BFRl
3BFR2
3BFR3

MR854
MR856
MR501
MR502
MR504
MR504
MR506
MR508
MR510
MR851
MR852
MR854

3·192
3·192
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·192
3·192
3·192

4AFl
4AF2
4AF4
4AF6
404
406
4FB5
4FB10
4FB20
4FB30
4FB40
4FC

lN3492
lN3493
lN3495

3·7
3·7
3·7
3·7
3·33
3·33
3·35
3·35
3·35
3·35
3·35
3·35

Industry
Part Number
lN6391
lN6392
lN6457
lN6458
lN6459
lN6460

MBR3545
MBR6545

2/A4
2AFl
2AF2
2AF3
2AF4
2AF6
2AF8
2AF10
2AFRl
2AFR2
2AFR3
2AFR4
2AFR6
2KBP08
2KBP10
3Al
3A2
3A4

..

Industry
Part Number

-

···
·
··
··
···
··
·

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-8

-

MR501
MR502

lN3495
lN4004
lN4005
lN4933
lN4934
lN4935
lN4936
lN4936
lN4934

Page #

-

3·167
3·167

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

4FC5
4FC10
4FC20
4FC30
4FC40
5A
5A1
5A2
5A3
5A4
5A5
5A6

1N4933
1N4934
1N4935
1N4936
1N4936
1N4004
1N4002
1N4003
1N4004
1N4004
1N4005
1N4005

3-35
3-35
3-35
3-35
3-35
3-33
3-33
3-33
3-33
3-33
3-33
3-33

6FV10
6FV20
6FV30
6FV40
6FV50
6FV60
8AF05
8AF1
8AF2
8AF4
804
806

5A8
5A10
6A05
6A1
6A2
6A4
6A6
6A6F
6A700
6A800
6A900
6A1000

1N4006
1N4007
MR750
MR751
MR752
MR754
MR756
MR1366
MR1128
MR1128
MR1130
MR1130

3-33
3-33
3-173
3-173
3-173
3-173
3-173
3-13
3-200
3-200
3-200
3-200

6AL1
6AL2
6AL3
6AL4
6AL6
6ALR1
6ALR2
6ALR3
6ALR4
6ALR6
6F5A
6F10A,B

MR751
MR752
MR754
MR754
MR756
MR821
MR822
MR824
MR824
MR826
1N1199B
1N1200B

6F20A,B
6F30A,B
6F40A,B
6F50A,B
6F60A,B
6F70A,B
6F80A,B
6F90A,B
6F100A,B
6FL5
6FL10SXX
6FL20SXX

1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
MR1128
MR1128
MR1130
MR1130
1N3879

6FL30
6FL40SXX
6FL50
6FL60SXX
6FTS
6FT10
6FT20
6FT30
6FT40
6FTSO
6FT60
6FV5

1N3880
1N3881
1N3883
1N3883
MR1366
MR1366
1N3879
1N3880
1N3881
1N3883
1N3883
MR1366
MR1366
1N3879

Motorola
Direct
Replacement

Motorola
Similar
Replacement
1N3880
1N3881
1N3883
1N3883
MR1366
MR1366

Page #

1N4004
1N4005

3-13
3-13
3-13
3-13
3-13
3-13
3-225
3-225
3-225
3-225
3-33
3-33

10B
10B1
10B2
10B3
10B4
10B5
10B6
10B8
10B10
10BR
10C1
10C2

MR1121
1N4002
1N4003
1N4004
1N4004
1N4005
1N4005
1N4006
1N4007
1N3880
1N4002
1N4003

3-200
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-13
3-33
3-33

3-173
3-173
3-173
3-173
3-173
3-183
3-183
3-183
3-183
3-183
3-5
3-5

10C3
10C4
10C5
10C6
10C8
10C10
1001
1002
1003
1004
1005
1006

1N4004
1N4004
1N4005
1N4005
1N4006
1N4007
1N5392
1N5393
1N5395
1N5395
1N5397
1N5397

3-33
3-33
3-33
3-33
3-33
3-33
3-41
3-41
3-41
3-41
3-41
3-41

3-5
3-5
3-5
3-5
3-5
3-200
3-200
3-200
3-200
3-13
3-13
3-13

1008
10010
100L1
100L2
10H3P
10HR3P
10TQ020
10TQ030
10TQ035
10TQ040
10TQ045
11DQ03

1N5398
1N5399
1N4934
1N4935
MR1121
1N3880

3-41
3-41
3-35
3-35
3-200
3-13
3-92
3-92
3-92
3-92
3-92
3-47

3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-13

11DQ04
11DQ05
11DQ06
12A6F
12A8F
12A10F
12A700
12A800
12A900
12A1000
12CTQ030
12CTQ030

MR5005
MR5010
MR5020
MR5040

MBR1035
MBR1035
MBR1035
MBR1045
MBR1045
1N5818
1N5819
MBR150
MBR160
MR1376

..

MR1128
MR1128
MR1130
MR1130
MBR1535CT
MBR1535CT

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity bas an R suffix.

1-9

3-47
3-83
3-83
3-18
3-200
3-200
3-200
3-200
3-98
3-98

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
12CTQ035
12CTQ035
12CTQ040
12CTQ040
12CTQ045
12CTQ045
12F5,A,B
12FIO,A,B
12F15,A,B
12F20,A,B
12F30,A,B
12F40,A,B

Motorola
Direct
Replacement

Motorola
Similar
Replacement
MBR1535CT

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

IN1199B
lNI200B
lNI202B
INI202B
lNI204B
lN1204B

3-98
3-98
3-98
3-98
3-98
3-98
3-5
3-5
3-5
3-5
3-5
3-5

18FB10
18FB20
18FB30
18FB40
18FC5
18FCIO
18FC20
18FC30
18FC40
20M
20A2
20A3

lN4934
lN4935
lN4936
lN4936
IN4933
lN4934
IN4935
1N4936
lN4936
IN4002
1N4003
IN4004

3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-33
3-33
3-33

12F50,A,B
12F60,A,B
12F80B
12Fl00B
12FL5,502
12FL10,502
12FL20,502
12FL30,502
12FL40,502
12FLSO,502
12FL60,502
12FT5

IN1206B
lNI206B
MRm8
MR1130
IN3889
IN3890
1N3891
IN3893
IN3893
MRI376
MRI376
IN3889

3-5
3-5
3-200
3-200
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18

20A4
20A5
20A6
20A6F
20AB
20A8F
20AIO
20A10F
20B
20BR
20CTQ030
20CT0035

IN4004
1N4005
lN4005
MR1386
1N4006

3-33
3-33
3-33
3-23
3-33

lN4007

.

3-33

MR1122
IN3881

3-200
3-13
3-102
3-102

12FT10
12FT20
12FT30
12FT40
12FT50
12FT60
12FV5
12FV10
12FV20
12FV30
12FV40
12FV50

IN3890
lN3891
1N3893
lN3893
MRI376
MRI376
IN3889
IN3890
IN3891
lN3893
IN3893
MR1376

3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-18

20CT0040
20CTQ045
20005
2001
2002
2004
2006
2008
20010
20F10
20F20
20F30

12FV60
16F5
16Fl0
16F15
16F20
16F30
16F40
16F50
16F60
16F80
16Fl00
16MB05W

MR1376
MRmO
MR1121
MRl122
MR1122
MRl124
MR1124
MRI126
MR1126
MRI128
MR1130
MOA2500

3-18
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-155

20F40
20F0020
20FQ030
20FQ035
20FQ040
20F0045
2OH3P
20HR3P
210003
210004
21FQ030
21F0035

16MB10W
16MB20W
16MB40W
16MBSOW
16MB80W
16MBIOOW
18FA5
18FA10
18FA20
18FA30
18FA40
18FB5

MOA2501
MOA2502
MOA2504
MOA2506
MOA3508
MOA3510
IN4933
lN4934
IN4935
IN4936
lN4936
IN4933

3-155
3-155
3-155
3-155
3-159
3-159
3-35
3-35
3-35
3-35
3-35
3-35

21FQ040
21FQ045
25FQOIO
25FQ015
25F0020
25FQ025
25FQ030
25PW5
25PW10
25PW20
25PW30
25PW40

MBRI535CT
MBRI545CT
MBRI545CT
MBRI545CT
MBRI545CT

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity bas an R suffix.

1-10

.

MBR2035CT
MBR2035CT5
MBR2045CT
MBR2045CT
MR500
MR501
MR502
MR504
MR506
MR508
MR510
MR1121
MRII22
MR1124
MR1124
MBR3520
MBR3535
MBR3535
MBR3545
MBR3545
MR1122
IN3881
lN5821
IN5822
MBR3535
MBR3535
MBR3545
MBR3545
lN5829
IN5829
IN5829
IN5830
1N5830
lN3491
1N3492
lN3493
1N3495
lN3495

-

3-102
3-102
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-200
3-200
3-200
3-200
3-116
3-116
3-116
3-116
3-116
3-200
3-13
3-51
3-51
3-116
3-116
3-116
3-116
3-64
3-64
3-64
3-64
3-64
3-7
3-7
3-7
3-7
3-7

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

25PW50
25PW60
26MB05A
26MB10A
26MB20A
26MB40A
26MB60A
26MB80A
26MB100A
28CP0030
28CP0040
30A6F

1N3495
1N3495
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506
MDA3508
MDA3510
MBR3035PT
MBR3045PT
MR1396

30A8F
30A10F
30B
30BR
30C
30CT0030
30CT0035
30CT0040
30CT0045
30DL1
30DL2
30D002

,

300003
300004
30F0030
30F0045
30F030A
30F035A
30F040A
30F045A
30H3P
30HR3P
300HC030
300HC045

,

MR1123
1N3882
1N4004
MBR2535CT
MBR2535CT
MBR2545CT
MBR2545CT
MR851
MR852
1N5820
1N5821
1N5822
MBR3535

,MBR3545
,
,
,
MR1123
,1N3882

,

Page #
3-7
3-7
3-155
3-155
3-155
3-155
3-155
3-159
3-159
3-114
3-114
3-28

Industry
Part Number
40B
40BR
40C
40COO020
40COO030
40COO035
40COO040
40COO045
4001
4002
4004
4006

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MR751
MR752
MR754
MR756

3-200
3-13
3-33
3-110
3-110
3-110
3-110
3-110
3-173
3-173
3-173
3-173

4008
40H3P
40HF5
40HF10
40HF15
40HF20
40HF30
40HF40
40HF50
40HF60
40HFL10SXX
40HFL20SXX

MR756
MR1124
1N1183A
1N1184A
1N1186A
1N1186A
1N1187A
1N1188A
1N1190A
1N1190A
MUR5005
MUR5020

3-173
3-200
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-264
3-264

1N3883
MR851
MR852
MR854
MR850
MR856
MR1125

-

40HR3P
40SL01
40SL02
40SL04
40SL05
40SL06
50H3P
50H0020
50H0030
50H0035
50H0040
50H0045

3-13
3-192
3-192
3-192
3-192
3-192
3-200
3-120
3-124
3-124
3-124
3-124

1N5824
1N5825

3-55
3-55
3-124
3-124
3-124
3-124
3-124
3-120
3-120
3-120
3-120
3-200

3-200
3-13
3-33
3-108
3-108
3-108
3-108
3-192
3-192
3-51

3-51
3-51
3-116
3-116

-

3-200
3-13

-

30S1
30S2
30S3
30S4
30S5
30S6
30S8
30S10
310003
310004
310005
310006

MR501
MR502
MR504
MR504
MR506
MR506
MR508
MR510
1N5821
1N5822
MBR350
MBR360

3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-51
3-51
3-86
3-86

50S0030
50S0040
51 H0045
52H0030
52S0035
52H0040
52H0045
55H0015
55H0020
55H0025
55H0030
60B

35MB5A
35MB10A
35MB20A
35MB40A
35MB60A
35MB80A
35MB100A
40A50
40A100
40A200
40A400
40A600

MOA3500
MOA3501
MOA3502
MOA3504
MOA3506
MOA3508
MOA3510
1N1183A
1N1184A
1N1186A
1N1188A
1N1190A

3-159
3-159
3-159
3-159
3-159
3-159
3-159
3-2
3-2
3-2
3-2
3-2

60BR
60C
60COO020
60COO030
60COO035
60COO040
60COO045
60CR
60H3P
60HF10
60HF20
60HF30

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-11

MR1124
1N3883
1N4004

Page #

MBR3035CT
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT

MBR6020
MBR6035
MBR6035
MBR6045
MBR6045

MBR6035
MBR6035
MBR6035
MBR6045
MBR6045
MBR6015L
MBR6020L
MBR6025L
MBR6030L
MR1126
MR1366
1N4005
MBR3035CT
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
1N4937
MR1126
1N1184A
1N1186A
1N1187A

3-13
3-33
3-110
3-110
3-110
3-110
3-110
3-35
3-200
3-2
3-2
3-2

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

3-2
3-2
3-2
3-13
3-173
3-173
3-173
3-173
3-173
3-173
3-167
3-167

363M
388A
388B
388C
388D
388F
388H
388K
388M
407A
407B
407C

MR856
1N4933
1N4934
1N4935
1N4935
1N4936
1N4936
1N4937
1N4937
1N1199B
1N1200B
1N1202B

3-192
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-5
3-5
3-5

3-134
3-134
3-134
3-134
3-200
3-33
3-200
3-55
3-55
3-55
3-55
3-134

4070
407F
407H
407K
407M
408A
408B
408C
408D
408F
408H
408K

1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
1N1199B
1N1200B
1N1202B
1N1202B
1N1204B
1N1204B
1N1206B

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5

MR1130
1N4007
MR1130
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506
MDA3508

3-134
3-134
3-134
3-200
3-33
3-200
3-155
3-155
3-155
3-155
3-155
3-159

408M
409A
409B
409C
409D
409F
409H
409K
409M
418A
418B
418C

1N1206B
1N1199B
1N1200B
1N1202B
1N1202B
1N1204B
1N1204B
1N1206B
1N1206B
1N1183A
1N1184A
1N1186A

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-2
3-2
3-2

100JB10L
200CNQ020
200CNQ030
200CNQ035
200CNQ040
200CNQ045
201CNQ020
201CNQ030
201CNQ035
201CNQ040
201CNQ045
250JB05L

MDA3510
MBR30035CT
MBR30035CT
MBR30035CT
MBR30045CT
MBR30045CT
MBR20035CT
MBR20035CT
MBR20035CT
MBR20045CT
MBR20045CT
MDA2500

3-159
3-144
3-144
3-144
3-144
3-144
3-142
3-142
3-142
3-142
3-142
3-155

418D
418F
418H
418K
418M
419A
419B
419C
4190
419F
419H
419K

1N1186A
1N1188A
1N1188A
1N1190A
1N1190A
1N1183A
1N1184A
1N1186A
1N1186A
1N1188A
1N1188A
1N1190A

3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2

250JB1L
250JB2L
250JB4L
250JB6L
250JB8L
250JB10L
363A
363B
363D
363F
363H
363K

MDA2501
MDA2502
MDA2504
MDA2506
MDA3508
MDA2510
MR850
MR851
MR852
MR854
MR854
MR856

3-155
3-155
3-155
3-155
3-159
3-155
3-192
3-192
3-192
3-192
3-192
3-192

419M
469-1
469-2
469-3
673-18
673-28
673-38
673-48
673-58
673-68
40108
40109

1N1190A
MDA2501
MDA2502
,MDA2504

3-2
3-155
3-155
3-155

60HF40
60HF50
60HF60
60HR3P
6081
6082
6083
6084
6085
6086
6088
60810

1N1188A
1N1189A
1N1190A
MR1366
MR751
MR752
MR754
MR754
MR756
MR756
MR508
MR510

75HQ030
75HQ035
75HQ040
75HQ045
80B
80C
80H3P
808Q030
808Q035
808Q040
808Q045
85HQ030

MBR8035
MBR8035
MBR8045
MBR8045

85HQ035
85HQ040
85HQ045
100B
100C
100H3P
100JB05L
100JB1L
100JB2L
100JB4L
100JB6L
100JB8L

MBR8035
MBR8045
MBR8045

MR1128
1N4006
MR1128
1N5824
1N5825
1N5825
1N5825
MBR8035

'These devices are manulactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-12

,

,
,
,
,

1N1199B
1N1200B

-

3-5
3-5

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industrv
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

40110
40111
40112
40113
40114
40115
40266
40267
40642
40643
40644
A14A

lN1202B
lN1204B
lN1204B
lN1206B
lN1206B
MRl12B
MR501
MR502
MRB17
MRB17
MRB17
lN4002

3-5
3·5
3-5
3-5
3-5
3-200
3-167
3-167
3-177
3-177
3-177
3-33

A129E
A129M
A139E
A139M
A300
A327A
A327B
A327C
A327F
A500
ABOO
AI 000

MR1376
MR1376
MR13B6
MR13B6
lN4004
MR1121
MR1122
MR1124
MR1120
lN4005
lN4006
lN4007

3-1B
3-1B
3-23
3-23
3-33
3-200
3-200
3-200
3-200
3-33
3-33
3-33

A14B
A14C
A14D
A14E
A14F
A14M
A14N
A14P
A15A
A15B
A15C
A15D

lN4003
lN4004
lN4004
lN4005
lN4001
lN4005
lN4006
lN4007
MR501
MR502
MR504
MR504

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167
3-167
3-167

M50
Ml00
AA200
M300
M400
M500
M600
MBOO
Ml000
AB50
AB100
AB200

lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4007
MR501
MR501
MR502

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167
3-167

A15E
A15F
A15M
A15N
AlBA
A2BA
A2BB
A2BC
A2BD
A28F
A40A
A40B

MR506
MR501
MR506
MR50B
lN3B90
lN3890
lN3B91
lN3B92
lN3893
lN3889

3-167
3-167
3-167
3-167
3-1B
3-1B
3-1B
3-1B
3-18
3-1B
3-6
3-6

AB300
AB400
AB500
AB600
AB800
AB1000
AC50
AC100
AC200
AC300
AC400
AC500

MR504
MR504
MR506
MR506
MR50B
MR510
MR501
MR501
MR502
MR504
MR504
MR506

3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167

lN3492
lN3493
lN3494
lN3495
lN3491
lN4001
lN4002
lN4934
lN4935
lN4936

3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-33
3-33
3-35
3-35
3-35

AC600
ACBOO
ACBBO
AC1000
AR16
AR17
ARIB
AR19
AR20
AR21
AR22
AR23

MR506
MR50B
MR50B
MR510
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006

3-167
3-167
3-167
3-167
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

lN4936
lN4937
lN4933
lN4937
MR817
MR851
MRB52
MRB54
MRB54
MRB56
MRB50
MRB56

3-35
3-35
3-35
3-35
3-177
3-192
3-192
3-192
3-192
3-192
3-192
3-192

AR24
AR25A
AR25B
AR25D
AR25F
AR25G
AR25H
AR25J
AR25K
AR25M
ARS25A
ARS25B

lN4007
MR2500
MR2501
MR2502
MR2504
MR2504
MR2506
MR2506
MR250B
MR251 0
MR2500
MR2501

3-33
3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-217

A40D
A40F
A44A
A44B
A44C
A44D
A44F
A50
Al00
A114A
A114B
A114C
Al14D
Al14E
Al14F
Al14M
Al14N
Al15A
Al15B
Al15C
Al15D
Al15E
Al15F
Al15M

lN3209
lN3210
lN3212
lN320B

Note: Reverse polarity has an R suffix.

1-13

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

ARS2SD
ARS25G
ARS2SJ
ARS2SK
ARS2SM
B50
B100
B200
B300
B400
BSOO
B600

MR2S02
MR2504
MR2S06
MB2S08
MR2510
1N4001
1N4002
1N4003
1N4004
1N4004
1N4005
1N4005

3·217
3·217
3·217
3·217
3·217
3·33
3·33
3·33
3·33
3·33
3·33
3·33

BY107
BY111
BY112
BY113
BY114
BY116
BY117
BY118
BY121
BY123
BY124
BY125

1N5398
1N4001
1N4004
1N4003
1N5398
1N4004
1N5398
1N5398
1N4001
1N4003
1N4004
1N4004

3·41
3·33
3·33
3·33
3·41
3·33
3·41
3·41
3·33
3·33
3·33
3·33

B800
B1000
BASO
BA100
BA200
BA300
BA400
BA500
BA600
BA800
BA1000
BF4·0SL

1N4006
1N4007
1N4001
1N4002
1N4003
1N4004
1N4004
1N4005
1N400S
1N4006
1N4007
1N4001

3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33

BY126
BY128
BY141
BY201
BY202
BY203
BY204
BY205
BY206
BY207
BY208
BY209

1N4006
1N4007
1N4001
MR1120
MR1121
MR1122
MR1124
MR1124
MR1126
MR1126
MR1128
MR1130

3·33
3·33
3·33
3·200
3·200
3-200
3·200
3·200
3·200
3·200
3·200
3·200

BF4·10L
BF4·20L
BF4·40L
BF4·60L
BF4·80L
BF4·100L
BFS·05L
BF5·10L
BFS·20L
BFS·40L
BFS·60L
BfS·80L

1N4002
1N4003
1N4004
1N400S
1N4006
1N4007
MRS01
MR501
MR502
MRS04
MRS06
MRS08

3·33
3·33
3·33
3·33
3·33
3·33
3·167
3·167
3·167
3·167
3·167
3·167

BY211
BY212
BY213
BY214
BY215
BY216
BY217
BY218
BY219
BY229·200
BY229·400
BY229·600

MR1120
MR1121
MR1122
MR1124
MR1124
MR1126
MR1126
MR1128
MR1130
MUR820
MUR840
MUR860

3·200
3·200
3·200
3-200
3·200
3·200
3·200
3·200
3·200
3·241
3·241
3·241

BFS·100L
BF6·0SL
BF6·10L
BF6·20L
BF6·40L
BF6·60L
BF6·80L
BF6·100L
BR251
BR252
BR254
BR256

MR510
MRS01
MRS01
MRS02
MRS04
MRS06
MRS08
MR510
MDA2501
MDA2502
MDA2504
MDA2506

3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·167
3·155
3·155
3·155
3·155

BY229·800
BY239·200
BY239·400
BY239·600
BY239·800
BY239·1000
BY2001
BY2002
BY2101
BY21 02
BY2201
BY2202

MUR880
MR2402
MR2404
,MR2406

3·241
3·207
3·207
3·207

BR351
BR352
BR3S4
BR356
BR3S8
BR2505
BR3505
BR3510
BY18
BY101
BY102
BY106

MDA3S01
MDA3502
MDA3504
MDA3506
MDA3508
MDA2500
MDA3500
MDA3510
1N3882
MR1124
1N4003
1N5398

3·159
3·159
3·159
3·159
3·159
3·155
3·159
3·159
3·13
3·200
3·33
3·41

BYS76
BYS79
BYS80
BYS92·40
BYS92·45
BYS92·50
BYS93·40
BYS93·45
BYS93·50
BYS95·40
BYS95·45
BYS95·S0

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-14

,

MR1130
MR1130
MR1130
MR1130
MR1130
MR1130

,MBR7545

-

-

3·200
3·200
3·200
3·200
3·200
3-200
3·132

-

MBR3045CT
MBR20045CT
MBR20045CT
MBR20050CT
MBR3004SCT
MBR30045CT
MBR30050CT
MBR12045CT
MBR12045CT
MBR12050CT

3·110
3·142
3·142
3·142
3·144
3·144
3·144
3·138
3·138
3·138

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
BYS97·40
BYS97·45
BYS97·50
BYS9B·40
BYS9B·45
BYS9B·50
BYV19·30
BYV19·35
BYV19·40
BYV19·45
BYV27·50
BYV27·100
BYV27·150
BYV2B·50
BYV2B·100
BYV2B·150
BYV32·50
BYV32·100
BYV32·150
BYV32·200
BYV33·30
BYV33·35
BYV33·40
BYV33·45
BYV43·30
BYV43·35
BYV43·40
BYV43·45
BYW29·50
BYW29·100
BYW29·150
BYW29·600
BYW29·700
BYW29·800
BYW30·50
BYW30·100
BYW30·150
BYW31·50
BYW31·100
BYW31·150
BYW51·50
BYW51·100
BYW51·150
BYW77·50
BYW77·100
BYW77·150
BYW7B·50
BYW7B·100
BYW78·150
BYWBO·50
BYWBO·50R
BYWBO·100
BYWBO·100R
BYWBO·150
BY2BO·150R
BYW80·200
BYX21L100
BYX21L200
BYX21L400R
BYX30·200,R

Motorola
Direct
Replacement

Motorola
Similar
Replacement
MBR20045CT
MBR20045CT
MBR20050CT
MBR12045CT
MBR12045CT
MBR12050CT

MBR1035
MBR1035
MBR1045
MBR1045
MUR105
MUR110
MUR115
MUR405
MUR410
MUR415
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MBR2035CT
MBR2035CT
MBR2045CT
MBR2045CT
MBR2535CT
MBR2535CT
MBR2545CT
MBR2545CT
MURB05
MURB10
MURB15
MURB60
MURB70
MURB80

MUR2505
MUR2510
MUR2515
MUR1605CT
MUR1610CT
MUR1615CT

··
·
MUR2505
MUR2510
MUR2515

MUR7005
MUR7010
MUR7015
MURB05
MUR805R
MURB10
MUR810R
MURB15
MURB15R
MUR820
1N3492
1N3493
1N3495R
1N3901

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

3·142
3·142
3·142
3·13B
3·13B
3·13B
3·92
3·92
3·92
3·92
3·229
3·229

BYX30·300,R
BYX30·400,R
BYX30·500,R
BYX30·600,R
BYX3B·300,R
BYX38·600,R
BYX3B·900,R
BYX38·1200,R
BYX42·300,R
BYX42·600,R
BYX42·900,R
BYX42·1200,R

1N3902
1N3903
MR13B6
MR13B6
MR1122
MR1126
MR1130
MR1130
MR1122
MR1124
MR1126
MR1128

3·23
3·23
3·23
3·23
3-200
3·200
3-200
3·200
3·200
3·200
3·200
3·200

3·229
3·234
3·234
3·234
3·252
3·252
3·252
3·252
3·102
3·102
3·102
3·102

BYX48/300
BYX4B/600
BYX48/900
BYX20200R
BYX21100
BYX21200
BYX21200R
BYX36150
BYX36300
BYX36600
BYX216400
BYV20

MR1124
MR1126
MR1130
1N3493R
1N3492
1N3493
1N3493R
1N4003
1N4003
1N4004
1N3495
1N3493R

3·200
3·200
3-200
3·7
3·7
3·7
3·7
3·33
3·33
3·33
3·7
3·7

3·10B
3·108
3·10B
3·10B
3·241
3·241
3·241
3·241
3·241
3·241

BYV20/200
BYV21 1200
BYV31
BYY32
BYY33
BYV34
BYV35
BYV36
BYY37
CER67,A,B,C
CER68,A,B,C
CER69,A,B,C

1N3493R
1N3493R
1N4003
1N4003
1N4004
1N4004
1N5397
1N5399
1N5399
1N4001
1N4002
1N4003

3·7
3·7
3·33
3·33
3·33
3·33
3·41
3·41
3·41
3·33
3·33
3·33

3·257
3·257
3·257
3·252
3·252
3·252
3·257
3·257
3·257
3·266
3·266

CER70,A,B,C
CER71,A,B,C
CER72,A,B,C,0
CER73,A,B,C,0
CER500,A,B,C
050
0100
0300
0500
OBOO
01000
01201A

1N4004
1N4005'
1N4006
1N4007
1N4005
1N4001
1N4002
1N4004
1N4005
1N4006
1N4007
1N4002

3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
3·33
' 3·33
3·33
3·33

3·266
3·241
3·241
3·241
3·241
3·241
3·241
3·241
3·7
3·7
3·7
3·23

01201B
012010
01201F
01201M
01201N
01201P
02201A
02201B
022010
02201F
02201M
02201N

1N4003
1N4004
1N4001
1N4005
1N4006
1N4007
1N4934
1N4935
1N4936
1N4933
1N4937
MRB16

3·33
3·33
3·33
3·33
3·33
3·33
3·35
3·35
3·35
3·35
3·35
3·177

-

-

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-15

Page #

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement
MBR3045PT
lN4001
lN4002
lN4003
lN4004
lN4005
lN4006
lN4007
MR1366
MR1376

02406A
02406B
02406C
024060
02406F
02406M
02412A
02412B
02412C
024120
02412F
02412M

lN3880
lN3881
lN3882
lN3883
lN3879
MR1366
lN3890
lN3891
lN3892
lN3893
lN3889
MR1376

3-13
3-13
3-13
3-13
3-13
3-13
3-18
3-18
3-18
3-18
3-18
3-18

EAS083-4
E031 00
E03101
E031 02
E031 04
E03106
E031 08
E03110
E08307
E08310
EGP10A
EGP10B

02520A
02520B
02520C
025200
02520F
02520M
02540A
02540B
02540C
025400
02540F
02540M

lN3900
lN3901
lN3902
lN3903
lN3899
MR1386
lN3910
lN3911
lN3912
lN3913
lN3909
MR1396

3-23
3-23
3-23
3-23
3-23
3-23
3-28
3-28
3-28
3-28
3-28
3-28

EGP10C
EGP100
EGP20A
EGP20B
EGP20C
EGP200
EGP30A
EGP30B
EGP30C
EGP300
EGP50A
EGP50B

MURl15
MUR120

02601 A
02601B
026010
02601F
02601M
02601N
01-42
01-44
01-46
01-48
01-52
01-54

MR811
MR812
MR814
MR810
MR816
MR818
lN4003
lN4004
lN4005
lN4006
lN4003
lN4004

3-177
3-177
3-177
3-177
3-177
3-177
3-33
3-33
3-33
3-33
3-33
3-33

EGP50C
EGP500
EM501
EM502
EM503
EM504
EM505
EM506
EM508
EM510
ERl
ER2

MUR415
MUR420

01-56
01-58
01-72
01-74
01-76
01-78
01-410
01-510
01-710
OSR1201
OSR1203
OSR1205

lN4005
lN4006
lN4003
lN4004
lN4005
lN4006
lN4007
lN4007
lN4007
MR501
MR504
MR506

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167
3-167

OT230A
OT230F
OT230G
OT230H
El
E2
E2
E3
E4
E6
E8
El0

lN4002
lN4001
lN4003
lN4004
lN4002
lN4003
lN4003
lN4004
lN4004
lN4005
lN4006
lN4007

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

MUR105
MURll0

MUR405
MUR410
MUR415
MUR420
MUR405
MUR410
MUR415
MUR420
MUR405
MUR410

Page #
3-114
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-13
3-18
3-229
3-229
3-229
3-229
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234

lN4002
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4007
lN4001
lN4935

3-234
3-234
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-35

ER4
ER6
ERll
ER21
ER31
ER41
ER51
ER61
ER81
ER181
ER182
ER183

lN4936
lN4937
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4001
lN4002
lN4003

3-35
3-35
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

ER184
ER185
ER186
ER187
ER2000
ER2001
ER2002
ER2003
ER2004
ER2005
ER2006
ERA22

lN4004
lN4005
lN4006
lN4007
MR501
MR501
MR502
MR504
MR504
MR506
MR506

3-33
3-33
3-33
3-33
3-167
3-167
3-167
3-167
- 3-167
3-167
3-167
-

'These devices are manufactured by Motorola but no data sheet available - Consult Factory_
Note: Reverse polarity has an R suffix.

1-16

,

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Motorola
Direct
Replacement

Industry
Part Number

ERA34
ERA38
ERA81
ERA82
ERA83
ERA84
ERA91
ERB06
ERB24C
ERB24D
ERB28
ERB28D
ERB29
ERB35
ERB3B
ERB43
ERB44
ERB81
ERB84
ERB91
ERB93
ERC06
ERC20
ERC24
ERC25
ERC33
ERC35
ERC3B
ERC47
ERC62
ERCBO
ERCBl
ERCB4
ERC90
ERC91
ERD07
ERD27,77
ERD28
ERD29
ERD33
ERD75
ERD80
ERD81
ERE75
EREBI
ERG24,74
ERGB1,A
ESABB2-4
ESAB33
ESAB82
ESAB85
ESAB92
ESAC25
ESAC31
ESAC33
ESAC33
ESAC75
ESACBl
ESACB2
ESACB3

Motorola
Similar
Replacement

,
,

Page #

-

,

lN5819

,
,

3-47
-

3·177
3-229
3-35
3-229
-

,

,
,MR814-16
,
,
,
,MUR120
,
lN4935·7

··
··
·

MUR120

lN4936·7

3-35

,
,

-

·
·
·,

MUR140-160

3-229

MBR1045
MBR745

3·92
3·90

MUR820

3·241
3·234

-

,MUR420
,
,
,

-

·

1N3B99-3901
MBR3045PT
lN5B2B
lN3909·11
lN5834

lN3909-13
MBR6045
MBR1545CT
MUR820

3·23
3-114
3-60
3-2B
3-69
3-2B
3·124
3-9B

,MBR745

3·241
3-90

,MUR820

3-241

MUR1520
MURB20

3-247
3-241

·
·,

,MBR1045

Industry
Part Number

-

3·92
-

ESACB5
ESACB7
ESAC92
ESAC93
ESAD25
ESAD33
ESAD33
ESAD75
ESADBI
ESAD83
ESADB5
ESAD92

Motorola
Direct
Replacement

··
··
·
··
·

Motorola
Similar
Replacement

Page #
-

-

MUR1520
MUR3020PT
MUR3040PT

MBR3045CT

3-247
3-259

3-259
3-110
-

lN4934
lN4935
lN4004
lN4004
lN4937
lN4005
lN4006
lN4007

3-247
3-247
3-247
3·247
3-35
3-35
3-33
3-33
3·35
3·33
3-33
3·33

F12100B
FE1A
FE1B
FE1C
FE1D
FE2A
FE2B
FE2C
FE2D
FE3A
FE3B
FE3C

MR1130
MUR105
MURll0
MUR115
MUR120
MUR405
MUR410
MUR415
MUR420
MUR405
MUR410
MUR415

3·200
3·229
3·229
3·229
3-229
3-234
3-234
3·234
3-234
3-234
3-234
3-234

FE3D
FE5A
FE5B
FE5C
FE5D
FE6A
FE6B
FE6C
FE6D
FEBA
FEBB
FEBC

MUR420
MUR405
MUR410
MUR415
MUR420
MUR405
MUR41 0
MUR415
MUR420

3-234
3-234
3-234
3-234
3-234
3·234
3-234
3·234
3-234
3-241
3-241
3·241

ESM9BO-l00
ESM9BO-200
ESM9BO-300
ESM9BO·400
Fl
F2
F3
F4
F5
F6
FB
FlO

FEBD
FEBF
FEBG
FE16A
FE16B
FE16C
FE16D
FE16F
FE16G
FEP16AT
FEP16BT
FEP16CT

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-17

MUR1510
MUR1520
MUR1530
MUR1540

MURB05
MUR810
MUR815
MURB20
MURB30
MURB40
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR1630CT
MURI640CT
MUR1605CT
MUR1610CT
MUR1615CT

3-241
3-241
3-241
3-252
3-252
3-252
3-252
3-252
3-252
3-252
3-252
3·252

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MBR12050CT
MBR12045CT
MBR20045CT
MBR20050CT

3-241
3-241
3-241
3-241
3-252
3-252
3-252
3-252
3-138
3-138
3-142
3-142

FEP16DT
FEP16FT
FEP16GT
FEP16HT
FEP16JT
FESSAT
FESSBT
FESSCT
FES8DT
FESSFT
FES8GT
FES8HT

MUR1620CT
MUR1640CT
MUR1640CT
MUR1660CT
MUR1660CT
MURS05
MURS10
MURS15
MURS20
MURS40
MURS40
MURS60

3-252
3-252
3-252
3-252
3-252
3-241
3-241
3-241
3-241
3-241
3-241
3-241

FRP805
FRP810
FRP815
FRPS20
FRP1605CC
FRP1610CC
FRP1615CC
FRP1620CC
FST120
FST121
FST160
FST200

FESSJT
FES16AT
FES16BT
FES16CT
FES16DT
FES16FT
FES16GT
FES16HT
FES16JT
FR061
FR061L
FR062

MURS60
MUR1505
MUR1510
MUR1515
MUR1520
MUR1540
MUR1540
MUR1560
MUR1560
1N4933

3-241
3-247
3-247
3-247
3-247
3-247
3-247
3-247
3-247
3-35
3-35
3-35

FST201
FST1240
FST1245
FST1250
FST1540
FST1545
FST1550
FST2040
FST2045
FST3040
FST3045
FST3050

3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35

FST6035
FST6040
FST6045
FST6050
FST16035
FST16040
FST16045
FST16050
FST20035
FST20040
FST20045
FST20050

MBR12035CT
MBR12045CT
MBR12045CT
MBR12050CT
MBR20035CT
MBR20045CT
MBR20045CT
MBR20050CT
MBR20035CT
MBR20045CT
MBR20045CT
MBR20050CT

3-138
3-138
3-138
3-138
3-142
3-142
3-142
3-142
3-142
3-142
3-142
3-142

3-35
3-35
3-35
3-35
3-35
3-192
3-192
3-192
3-192
3-192
3-192
3-192

FST30035
FST30040
FST30045
FST30050
G1
G1A
G1B
G1D
G1G
G1J
G1K
G1M

MBR30035CT
MBR30045CT
MBR30045CT
MBR30050CT
1N4002
1N5391
lN5392
1N5393
lN5395
lN5397
lN5398
lN5399

3-144
3-144
3-144
3-144
3-33
3-41
3-41
3-41
3-41
3-41
3-41
3-41

3-192
3-192
3-192
3-1S3
3-183
3-183
3-183
3-183
3-259
3-259
3-259
3-259

G2A
G2B
G2D
G2G
G2J
G2K
G2M
G3A
G3B
G3D
G3F
G3G

lN5391
lN5392
lN5393
1N5395
lN5397
1N5398
1N5399
MR500
MR501
MR502
MR504
MR504

3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-167
3-167
3-167
3-167
3-167

1N4933
1N4934

FR062L
FR063
FR063L
FR064
FR065
FR065L
FR065L
FR1
FR2
FR3
FR4
FR6

1N4934

FR101
FR102
FR103
FR104
FR105
FR251
FR252
FR253
FR254
FR255
FR301
FR302

1N4933
1N4934
1N4935
1N4936
1N4937

FR303
FR304
FR305
FR601
FR602
FR603
FR604
FR605
FRM3205CC
FRM3210CC
FRM3215CC
FRM3220CC

1N4935
1N4935
1N4936
1N4937
1N4936
1N4937
1N4934
1N4935
1N4936
1N4936
1N4937

MR850
MRS51
MR852
MRS54
MRS56
MRS50
MRS51
MR852
MR854
MRS56
MRS20
MRS21
MRS22
MR824
MR826
MUR3005PT
MUR3010PT
MUR3015PT
MUR3020PT

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-18

MUR805
MUR810
MUR815
MUR820
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT

MBR20045CT
MBR1545CT
MBR1545CT

3-142
3-98
3-98

MBR1545CT
MBR1545CT

3-98
3-98

MBR2045CT
MBR2045CT
MBR2545CT
MBR2545CT

3-102
3-102
3-108
3-108

·
·

-

·

-

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

G3H
G3J
G3K
G3M
G4A
G4B
G4D
G4G
G4J
G4K
G4M
G6

MR506
MR506
MR508
MR510
MR500
MR501
MR502
MR504
MR506
MR508
MR510
1N4005

3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-33

GI910
GI911
GI912
GI914
GI916
GI917
GI918
GI1001
GI1002
GI1003
GI1004
GI1101

G8
G10
G100A
G100B
G100D
G100F
G100G
G100H
G100J
G100K
G100M
GER4001

1N4006
1N4007
1N4001
1N4002
1N4003
1N4004
1N4004
1N4OO5
1N4005
1N4006
1N4OO7
1N4001

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

GI1102
GI1103
GI1104
GI1301
GI1302
GI1303
GI1304
G11401
G11402
G11403
GI1404
GI2401

GER4002
GER4003
GER4004
GER4005
GER4006
GER4007
GI500
GI501
GI502
GI504
GI506
GI50B

1N4002
1N4003
1N4004
1N4005
1N4006
1N4007
MR500
MR501
MR502
MR504
MR506
MR508

3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167
3-167
3-167
3-167
3-167

GI2402
GI2403
GI2404
GI2500
GI2501
G12502
GI2504
GI2506
GI2508
GI2510
GI5823
GI5824

GI510
GI750
GI751
GI752
GI754
GI756
GI75B
GI810
GI811
GI812
GI814
GI816

MR510
MR750
MR751
MR752
MR754
MR756
MR758
MR810
MR811
MR812
MR814
MR816

3-167
3-173
3-173
3-173
3-173
3-173
3-173
3-177
3-177
3-177
3-177
3-177

GI817
GI818
GI820
GI821
GI822
GI824
GI826
G1850
GI851
GI852
GI854
GI856

MR817
MR818
MR820
MR821
MR822
MR824
MR826
MR850
MR851
MR852
MR854
MR856

3-177
3-177
3-183
3-183
3-183
3-183
3-183
3-192
3-192
3-192
3-192
3-192

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MR910
MR911
MR912
MR914
MR916
MR917
MR918

Page #

-

MUR105
MUR110
MUR115
MUR120
MUR405

3-229
3-229
3-229
3-229
3-234

MUR410
MUR415
MUR420
MUR405
MUR410
MUR415
MUR420

3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-241
3-241
3-241
3-241
3-252

MUR805
MUR810
MUR815
MUR820
MUR1605CT

1N5823
1N5824

3-252
3-252
3-252
3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-55
3-55

GI5825
GIB2500
GIB2501
GIB2502
GIB2504
GIB2506
GIB2508
GIB2510
GIB3500
GIB3501
GIB3502
GIB3504

1N5825
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506
MDA3508
MDA3510
MDA3500
MDA3501
MDA3502
MDA3504

3-55
3-155
3-155
3-155
3-155
3-155
3-159
3-159
3-159
3-159
3-159
3-159

GIB3506
GIB3508
GIB351 0
GP10A
GP10B
GP10D
GP10G
GP10J
GP10K
GP10M
GP15A
GP15B

MDA3506
MDA3508
MDA3510
1N4001
1N4002
1N4003
1N4004
1N4005
1N4006
1N4007
1N5391
1N5392

3-159
3-159
3-159
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-41
3-41

Note: Reverse polarity has an R suffix_

1-19

MUR1610CT
MUR1615CT
MUR1620CT
MR2500
MR2501
MR2502
MR2504
MR2506
MR2508
MR2510

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

GP15D
GP15G
GP15J
GP15M
GP20A
GP20B
GP20D
GP20G
GP20J
GP20K
GP20M
GP25A

1N5393
1N5395
1N5397
1N5399
1N5391
1N5392
1N5393
1N5395
1N5397
1N5398
1N5399
MR500

3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-167

HER151
HER152
HER153
HER154
HER155
HER301
HER302
HER303
HER304
HER305
HERB01
HER802

GP25B
GP25D
GP25G
GP25J
GP25K
GP25M
GP30A
GP30B
GP30D
GP30G
GP30J
GP30K

MR501
MR502
MR504
MR506
MR508
MR510
MR500
MR501
MR502
MR504
MR506
MR508

3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167

HER803
HERB04
HER805
HFR-5
HFR-10
HFR-150
HFR-200
HGR-5
HGR-10
HGR-20
HGR-30
HGR-40

MR510

1N4934
1N4935
1N4936
1N4937
1N4006

3-167
3-241
3-241
3-241
3-241
3-241
3-241
3-35
3-35
3-35
3-35
3-33

HGR-60
HR100
HR200
HR400
HR600
HRF100
HRF200
HRF400
HRF600
IRD3899,R
IRD3900,R
IRD3901,R

H1000
HB50
HB100
HB200
HB300
HB400
HB500
HB600
HBBOO
HB1000
HC67
HC68

1N4007
MR501
MR501
MR502
MR504
MR504
MR506
MR506
MR50B
MR510
1N4001
1N4002

3-33
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-33
3-33

IRD3902,R
IRD3903,R
IRD3909,R
IRD3910,R
IRD3911,R
IRD3912,R
IRD3913,R
ITS5B17
ITS5818
ITS5B19
ITS5823
ITS5824

HC69
HC70
HC71
HC72
HC73
HC300
HC500
HER101
HER102
HER103
HER104
HER105

1N4003
1N4004
1N4005
1N4006
1N4007
1N4722
1N4723

3-33
3-33
3-33
3-33
3-33
3-34
3-34
3-229
3-229
3-229
3-229
3-229

ITS5B25
J05
J1
J2
J4
J6
JB
J10
KBC301
KBC302
KBC304
KBC501

GP30M
GP80A
GP80B
GPBOD
GPBOG
GPBOJ
GPBOK
GR1
GR2
GR4
GR6
HBOO

MURB05
MURB10
MUR820
MURB40
MURB60
MUR880

MUR105
MUR110
MUR120
MUR130
MUR140

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-20

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MUR105
MUR110
MUR120
MUR130
MUR140
MUR405
MUR410
MUR420
MUR430
MUR440
MURB05
MUR810
MUR820
MURB30
MUR840
1N4933
1N4934
1N4935
1N4935
1N4001
1N4002
1N4003
1N4004
1N4004
1N4005
1N5401
1N5402
1N5404
1N5406
MR851
MRB52
MR854
MRB56
1N3899,R
1N3900,R
1N3901,R
1N3902,R
1N3903,R
1N3909,R
1N3910,R
1N3911,R
1N3912,R
1N3913,R
1N5B17
1N5818
1N5B19

Page #

3-229
3-229
3-229
3-229
3-229
3-234
3-234
3-234
3-234
3-234
3-241
3-241
3-241
3-241
3-241
3-35
3-35
3-35
3-35
3-33
3-33
3-33
3-33
3-33
3-33
3-45
3-45
3-45
3-45
3-192
3-192
3-192
3-192
3-23
3-23
3-23

1N5B23
1N5824

3-23
3-23
3-2B
3-2B
3-2B
3-28
3-28
3-47
3-47
3-47
3-55
3-55

1N5825
1N5391
1N5392
1N5393
1N5395
1N5397
1N5398
,1N5399

3-55
3-41
3-41 ,
3-41
3-41
3-41
3-41
3-41

,
,

,

-

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

··
··

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

-

MDA2500

3-155

M6S,A,B,C
M69,A,B,C
M70,A,B,C
M71,A,B,C
M72,A,B,C
M73,A,B,C
Ml00A
Ml00B
Ml00D
Ml00F
Ml00G
Ml00H

lN4002
lN4003
lN4004
lN4005
lN4006
lN4007
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

KBPC10-0l
KBPC10-02
KBPC10-04
KBPC10-06
KBPC10-08
KBPC10-l0
KBPC12-005
KBPCI2-01
KBPCI2-02
KBPCI2-04
KBPCI2-06
KBPCI2-0S

MDA2501
MDA2502
MDA2504
MDA2506
MDA350S
MDA3510
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506
MDA350S

3-155
3-155
3-155
3-155
3-159
3-159
3-155
3-155
3-155
3-155
3-155
3-159

Ml00J
Ml00K
Ml00M
M500,A,B,C
MB214
MB215
MB217
MB21S
MB219
MB220
MB221
MB222

lN4005
lN4006
lN4007
lN4005
lN4934
lN4935
lN4936
lN4937
lN4937
MRS17
lN4934
lN4935

3-33
3-33
3-33
3-33
3-35
3-35
3-35
3-35
3-35
3-177
3-35
3-35

KBPCI2-10
KBPC15-005
KBPCI5-01
KBPCI5-02
KBPCI5-04
KBPCI5-06
KBPCI5-0S
KBPCI5-10
KBPC25-005
KBPC25-01
KBPC25-02
KBPC25-04

MDA3510
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506
MDA350S
MDA3510
MDA2500
MDA2501
MDA2502
MDA2504

3-159
3-155
3-155
3-155
3-155
3-155
3-159
3-159
3-155
3-155
3-155
3-155

MB224
MB225
MB226
MB22S
MB229
MB230
MB231
MB232
MB233
MB234
MB235
MB236

lN4936
lN4937
lN4937
MR501
MR502
MR504
MR504
MR506
MR506
MR50S
MR510
lN4002

3-35
3-35
3-35
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-33

KBPC25-06
KBPC25-0S
KBPC25-10
KBPC35-005
KBPC35-01
KBPC35-02
KBPC35-04
KBPC35-06
KBPC35-0S
KBPC35-10
KBU4A
KBU4B

MDA2506
MDA3508
MDA3510
MDA3500
MDA3501
MDA3502
MDA3504
MDA3506
MDA350S
MDA3510

3-155
3-159
3-159
3-159
3-159
3-159
3-159
3-159
3-159
3-159

MB237
MB238
MB239
MB240
MB241
MB242
MB243
MB244
MB245
MB246
MB247
MB24S

lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4007
lN4002
lN4003
lN4004
lN4004
lN4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

MB249
MB250
MB251
MBR030
MBR040
MBR115P
MBR120P
MBR130P
MBR140P
MBR320
MBR320P
MBR330

lN4005
lN4006
lN4007

3-33
3-33
3-33
3-S1
3-S1
3-47
3-47
3-47
3-47
3-86
3-51
3-86

KBC502
KBC504
KBC3005
KBC5001
KBPOO5
KBPOI
KBP02
KBP04
KBP06
KBPOS
KBP10
KBPC10-005

KBU4D
KBU4G
KBU6A
KBU6B
KBU6D
KBU6G
MO
M2
M4
M6
MS
M67,A,B,C

··
···
··

··
·,
·,,
·

lN4007
lN4003
lN4004
lN4005
lN4006
lN4001

-

-

3-33
3-33
3-33
3-33
3-33
3-33

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity bas an R suffix.

1-21

MBR030
MBR040
MBR115P
MBR120P
MBR130P
MBR140P
MBR320
MBR320P
MBR330

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

MBR330P
MBR340
MBR340P
MBR350
MBR360
MBR735
MBR745
MBR1035
MBR1045
MBR1060
MBR1070
MBR10BO

MBR330P
MBR340
MBR340P
MBR350
MBR360
MBR735
MBR745
MBR1035
MBR1045
MBR1060
MBR1070
MBR1080

3-51
3-86
3-51
3-86
3-86
3-90
3-90
3-92
3-92
3-96
3-96
3-96

MDA2508
MDA251 0
MDA3500
MDA3501
MDA3502
MDA3504
MDA3506
MDA3508
MDA3510
MDA4002
MDA4004
MDA4006

MDA2508
MDA2510
MDA3500
MDA3501
MDA3502
MDA3504
MDA3506
MDA3508
MDA3510
MDA4002
MDA4004
MDA4006

MBR1535CT
MBR1545CT
MBR1635
MBR1645
MBR2035CT
MBR2045CT
MBR2060CT
MBR20·,0CT
MBR2080CT
MBR2090CT
MBR2535CT
MBR2545CT

MBR1535CT
MBR1545CT
MBR1635
MBR1645
MBR2035CT
MBR2045CT
MBR2060CT
MBR2070CT
MBR20BOCT
MBR2090CT
MBR2535CT
MBR2545CT

3-98
3-98
3-100
3-100
3-102
3-102
3-106
3-106
3-106
3-106
3-108
3-108

MDA400B
MPR10
MR100
MR200
MR400
MR500
MR501
MR502
MR504
MR506
MR508
MR510

MDA4008

MBR3020CT
MBR3035CT
MBR3035PT
MBR3045CT
MBR3045PT
MBR3520
MBR3535
MBR3545,H,Hl
MBR5825,H,Hl
MBR5831,H,Hl
MBR6035,B
MBR6045,B

MBR3020CT
MBR3035CT
MBR3035PT
MBR3045CT
MBR3045PT
MBR3520
MBR3535
MBR3545,H,H1
MBR5825,H,Hl
MBR5831,H,H1
MBR6035
MBR6045

3-110
3-110
3-114
3-114
3-114
3-116
3-116
3-116
3-55
3-64
3-124
3-124

MR600
MR750
MR751
MR752
MR754
MR756
MR758
MR760
MR800
MR810
MRB11
MR812

MBR6045,H,Hl
MBR6535
MBR6545
MBR7535
MBR7545
MBR8035
MBR8045
MBR10100
MBR12035CT
MBR12045CT
MBR12050CT
MBR12060CT

MBR6045,H,Hl
MBR6535
MBR6545
MBR7535
MBR7545
MBR8035
MBR8045
MBR10100
MBR12035CT
MBR12045CT
MBR12050CT
MBR12060CT

3-124
3-128
3-128
3-132
3-132
3-134
3-134
3-96
3-138
3-138
3-138
3-138

MBR20035CT
MBR20045CT
MBR20050CT
MBR20060CT
MBR20100CT
MBR30035CT
MBR30045CT
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506

MBR20035CT
MBR20045CT
MBR20050CT
MBR20060CT
MBR20100CT
MBR30035CT
MBR30045CT
MDA2500
MDA2501
MDA2502
MDA2504
MDA2506

3-142
3-142
3-142
3-142
3-106
3-144
3-144
3-155
3-155
3-155
3-155
3-155

Motorola
Similar
Replacement

Page #
3-155
3-155
3-159
3-159
3-159
3-159
3-159
3-159
3-159
3-163
3-163
3-163

lN4007
lN5392
lN5393
lN5395
MR500
MR501
MR502
MR504
MR506
MR508
MR510

MR810
MR811
MR812

3-41
3-173
3-173
3-173
3-173
3-173
3-173
3-173
3-41
3-177
3-177
3-177

MR814
MR816
MR8H
MR818
MR820
MR821
MR622
MR824
MR826
MR830
MR831
MR632

MR814
MR816
MR817
MR818
MR820
MR821
MR822
MR824
MR826
MR830
MR831
MR832

3-177
3-177
3-177
3-177
3-183
3-183
3-183
3-183
3-183
3-191
3-191
3-191

MR834
MR836
MR850
MR851
MR852
MR854
MR856
MR860
MR861
MRB62
MR870
MR671

MR834
MR836
MR850
MR851
MR852
MR854
MR856

3-191
3-191
3-192
3-192
3-192
3-192
3-192
3-264
3-264
3-264
3-264
3-264

Note: Reverse polarity bas an R suffix.

1-22

lN5397

'3-163
3-33
3-41
3-41
3-41
3-167
3-167
3-167
3-167
3-167
3-167
3-167

MR750
MR751
MR752
MR754
MR756
MR758
MR760
lN5398

MUR5005
MUR5010
MUR5020
MUR5005
MUR5010

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
MR872
MR1000
MR1120
MRl121
MRl122
MRl123
MRl124
MRl125
MRl126
MRl128
MRl130
MR1366

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MRl120
MRl121
MRl122
MRl123
MR1124
MR112S
MRl126
MR1128
MRl130
MR1366

3-264
3-4
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-13

MUR410
MUR415
MUR420
MUR430
MUR440
MUR450
MUR460
MUR470
MUR480
MUR490
MUR605CT
MUR610CT

MUR410
MUR415
MUR420
MUR430
MUR440
MUR450
MUR460
MUR470
MUR480
MUR490
MUR605CT
MUR61 OCT

3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-234
3-239
3-239

MR1376
MR1386
MR1396
MR2000
MR2001
MR2002
MR2004
MR2006
MR2008
MR2010
MR2400
MR2400F

MR1376
MR1386
MR1396
MR2000
MR2001
MR2002
MR2004
MR2006
MR2008
MR2010
MR2400
MR2400F

3-18
3-23
3-28
3-203
3-203
3-203
3-203
3-203
3-203
3-203
3-207
3-211

MUR615CT
MUR620CT
MUR805
MUR810
MUR815
MUR820
MUR830
MUR840
MUR850
MUR860
MUR870
MUR880

MUR615CT
MUR620CT
MUR805
MUR810
MUR815
MUR820
MUR830
MUR840
MUR850
MUR860
MUR870
MUR880

3-239
3-239
3-241
3-241
3-241
3-241
3-241
3-241
3-241
3-241
3-241
3-241

MR2401
MR2401F
MR2402
MR2402F
MR2404
MR2404F
MR2406
MR2406F
MR2S00
MR2S01
MR2S02
MR2504

MR2401
MR2401F
MR2402
MR2402F
MR2404
MR2404F
MR2406
MR2406F
MR2S00
MR2S01
MR2502
MR2504

3-207
3-211
3-207
3-211
3-207
3-211
3-207
3-211
3-217
3-217
3-217
3-217

MUR890
MURll00
MUR150S
MUR1510
MUR1515
MUR1520
MUR1530
MUR1540
MUR1550
MUR1560
MUR1605CT
MUR1610CT

MUR890
MURll00
MUR1505
MUR1510
MUR1515
MUR1520
MUR1530
MUR1540
MUR1550
MUR1560
MUR1605CT
MUR1610CT

3-241
3-229
3-247
3-247
3-247
3-247
3-247
3-247
3-247
3-247
3-252
3-252

MR2506
MR2508
MR2510
MR2535L
MR2540L
MR5005
MR5010
MR5020
MR5030
MR5040
MR5060
MR5061

MR2506
MR2508
MR2510
MR2535L
MR2540L
MRSOOS
MRS010
MR5020
MRS030
MR5040
MR5060
MR5061

3-217
3-217
3-217
3-223
3-223
3-225
3-225
3-225
3-225
3-225
3-227
3-227

MUR1615CT
MUR1620CT
MUR1630CT
MUR1640CT
MUR1650CT
MUR1660CT
MUR2505
MUR2510
MUR2515
MUR2520
MUR3005PT
MUR3010PT

MUR1615CT
MUR1620CT
MUR1630CT
MUR1640CT
MUR1650CT
MUR1660CT
MUR2505
MUR2510
MUR2515
MUR2520
MUR3005PT
MUR3010PT

3-252
3-252
3-252
3-252
3-252
3-252
3-257
3-257
3-257
3-257
3-259
3-259

MUR105
MURll0
MURl15
MUR120
MUR130
MUR140
MUR150
MUR160
MUR170
MUR180
MUR190
MUR405

MUR105
MURll0
MURl15
MUR120
MUR130
MUR140
MUR150
MUR160
MUR170
MUR180
MUR190
MUR405

3-229
3-229
3-229
3-229
3-229
3-229
3-229
3-229
3-229
3-229
3-229
3-234

MUR3015PT
MUR3020PT
MUR3030PT
MUR3040PT
MUR3050PT
MUR3060PT
MUR4100
MUR5005
MUR5010
MUR5015
MUR5020
MUR7005

MUR3015PT
MUR3020PT
MUR3030PT
MUR3040PT
MUR3050PT
MUR3060PT
MUR4100
MUR5005
MUR5010
MUR5015
MUR5020
MUR700S

3-259
3-259
3-259
3-259
3-259
3-2S9
3-234
3-264
3-264
3-264
3-264
3-266

MUR5020
lN5399

Nole: Reverse polarity has an R suffix_

1-23

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Motorola
Similar
Replacement

Motorola
Direct
Replacement

Industry
Part Number

Motorola
Direct
Replacement

MUR7010
MUR7015
MUR7020
MUR8100
MUR10005CT
MUR1 001 OCT
MUR10015CT
MUR10020CT
MUR20005CT
MUR20010CT
MUR20015CT
MUR20020CT

MUR7010
MUR7015
MUR7020
MUR8100
MUR10005CT
MUR10010CT
MUR10015CT
MUR10020CT
MUR20005CT
MUR20010CT
MUR20015CT
MUR20020CT

3-266
3-266
3-266
3-241
3-269
3-269
3-269
3-269
3-271
3-271
3-271
3-271

NS30004
P100A
P100B
Pl00D
P100G
P100J
P100K
P100M
P300A
P300B
P300D
P300F

1N3913
1N5391
1N5392
1N5393
1N5395
1N5397
1N5398
1N5399
MRSOO
MR501
MR502
MRS04

3-28
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-167
3-167
3-167
3-167

MUR20030CT
MUR20040CT
MURD305
MURD310
MURD315
MURD320
MURD605CT
MURD61 OCT
MURD615CT
MURD620CT
NS500
NS501

MUR20030CT
MUR20040CT
MURD305
MURD310
MURD315
MURD320
MURD605CT
MURD61 OCT
MURD615CT
MURD620CT
1N4933
1N4934

3-273
3-273
3-275
3-275
3-275
3-275
3-278
3-278
3-278
3-278
3-35
3-35

P300G
P300H
P300J
P300K
P300M
P600A
P600B
P600D
P600G
P600J
PA305
PA310

MR504
MR506
MR506
MR508
MR510
MR750
MR751
MR752
MR754
MR756
1N4001
1N4002

3-167
3-167
3-167
3-167
3-167
3-173
3-173
3-173
3-173
3-173
3-33
3-33

NS502
NS504
NS505
NS506
NS1000
NS1001
NS1002
NS1004
NS1005
NS1006
NS2000
NS2001

1N4935
1N4936
1N4937
1N4937
1N4933
1N4934
1N4935
1N4936
1N4937
1N4937
MR8SO
MR851

3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-192
3-192

PA315
PA320
PA325
PA330
PA340
PA350
PA360
PHBR1635
PHBR1640
PHBR1645
PHS2401
PHS2402

1N4003
1N4003
1N4004
1N4004
1N4004
lN4005
1N4005

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-100
3-100
3-100
3-252
3-252

NS2002
NS2003
NS2004
NS2005
NS2006
NS3000
NS3001
NS3002
NS3003
NS3004
NS3005
NS3006

MR852
MR854
MR854
MR856
MR856
MR850
MR851
MR852
MR854
MR854
MR856
MR856

3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192

PHS2403
PHS2404
PS405
PS410
PS415
PS420
PS425
PS430
PS435
PS440
PS450
PS460

NS6000
NS6001
NS6002
NS6003
NS6004
NS6005
NS6006
NS12006
NS30000
NS30001
NS30002
NS30003

1N3879
1N3880
1N3881
1N3882
1N3883
MR1366
MR1366
MR1376
1N3909
1N3910
1N3911
1N3912

3-13
3-13
3-13
3-13
3-13
3-13
3-13
3-18
3-28
3-28
3-28
3-28

PT505
PT51 0
PT515
PT520
PT525
PT530
PT540
PT550
PT560
PT580
PZ-140B
PZ-140D

Industry
Part Number

Page #

Note: Reverse polarity has an R suffix.

1-24

Motorola
Similar
Replacement

MBR1635
MBR1645
MBR1645
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT

Page #

1N4001
1N4002
1N4003
1N4003
lN4004
1N4004
1N4004
1N4004
1N4005
1N4005

3-252
3-252
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

1N4001
1N4002
1N4003
1N4003
1N4004
1N4004
1N4004
1N4005
1N4005
1N4006
1N3493
1N3495

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-7
3-7

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
R200
R400
R600
R710XPT
R711X
R711XPT
R712X
R712XPT
R714X
R714XPT
R800
Rl000

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

lN4006
lN4007

3-33
3-33
3-33
3-281
3-281
3-281
3-281
3-281
3-281
3-281
3-33
3-33

RG2A
RG2B
RG2D
RG2G
RG2J
RG3-A
RG3A
RG3B
RG3D
RG3F
RG3G
RG3H

MR850
MR851
MR852
MR854
MR8S6
MR850
MR8S0
MR851
MR8S2
MR8S4
MR854
MR856

3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192

R302506
R302512
R1420010
R1420110
R1420210
R1420410
R1420610
R3020606
R3020612
R3400006
R3400106
R3400206

MR1366
MR1376
lN4933
lN4934
lN4935
lN4936
lN4937
MR1366
MR1376
MR750
MR751
MR752

3-13
3-18
3-35
3-35
3-35
3-35
3-35
3-13
3-18
3-173
3-173
3-173

RG3J
RG4A
RG4B
RG4D
RG4G
RG4J
RGl122
RG1123
RGM30A
RGM30B
RGM30D
RGM30G

MR8S6
MR8S0
MR851
MR8S2
MR854
MR856
lN4001
lN4002
MUR3005PT
MUR3010PT
MUR3020PT
MUR3040PT

3-192
3-192
3-192
3-192
3-192
3-192
3-33
3-33
3-259
3-259
3-259
3-259

R3400306
R3400406
R3400506
R3400606
R3400706
R3400806
R3400906
R3401006
R4020530
R4020620
R4020630
RA251

MR754
MR754
MR754
MR756
MR756
MR758
MR760
MR760
MR1396
MR1386
MR1396

3-173
3-173
3-173
3-173
3-173
3-173
3-173
3-173
3-28
3-23
3-28
3-217

RGP10A
RGP10B
RGP10D
RGP10F
RGP10G
RGP10H
RGP10J
RGP10K
RGP10M
RGP15A
RGP15B
RGP1SD

lN4933
lN4934
lN4935
lN4936
lN4936
MR818
lN4937
MR817
MR818
MR850
MR851
MR852

3-35
3-35
3-35
3-35
3-35
3-177
3-35
3-177
3-177
3-192
3-192
3-192

lN4933
lN4934
lN4935
lN4936

3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-217
3-35
3-35
3-35
3-35

RGP15G
RGP15J
RGP20A
RGP20B
RGP20D
RGP20G
RGP20J
RGP25A
RGP25B
RGP25D
RGP25F
RGP25G

MR854
MR856
MR850
MR851
MR852
MR854
MR856
MR850
MR851
MR852
MR854
MR854

3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192

lN4937
MR817
MR818
lN4933
lN4934
lN4935
lN4936
lN4936
lN4937
lN4937
MR817
MR818

3-35
3-177
3-177
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-177
3-177

RGP25H
RGP25J
RGP30A
RGP30B
RGP30D
RGP30F
RGP30G
RGP30H
RGP30J
RGP80A
RGP80B
RGP80D

MR856
MR856
MR850
MR851
MR852
MR854
MR854
MR856
MR8S6

3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-241
3-241
3-241

RA252
RA253
RA254
RA255
RA256
RA258
RA2505
RA251 0
RG1-A
RG1-B
RG1-D
RG1-G
RG1-J
RG1-K
RG1-M
RG1A
RG1B
RG1D
RG1F
RG1G
RG1H
RG1J
RG1K
RG1M

lN4003
lN4004
lN4005

Industry
Part Number

R710XPT
R711XPT
R711XPT
R712XPT
R712XPT
R714XPT
R714XPT

MR2501
MR2502
MR2503
MR2504
MR2505
MR2506
MR2508
MR2500
MR2510

Note: Reverse polarity has an R suffix_

1-25

MUR805
MUR810
MUR820

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
RGP80G
RGP80J
RGP80K
RGP5005
RGP5010
RGP5020
RGP5040
RGP5060
RGP5080
RGP5100
RIV020
RIV040
RIV060
RLOO5
RL010
RL020
RL040
RL060
RL061
RL062
RL063
RL064
RL065
RL066
RL067
RL080
RL100
RL151
RL152
RL153
RL154
RL155
RL156
RL157
RL251
RL252
RL253
RL254
RL255
RMCOO5
RMC010
RMC020
RMC040
RMC060
RMC080
RMC100
RP300A
RP300B
RP300D
RP300G
RP300J
RT05
RT10
RT20
RT30
RT40
RT60
RUD810
RUD815
RUD820

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MUR840
MUR860
MUR880
MR810
MR811
MR812
MR814
MR816
MR817
MR818
MR852
MR854
MR856
1N4933
1N4934
1N4935
1N4936
1N4937
1N4001
1N4002
1N4003
1N4004
1N4005
1N4006
1N4007
MR817
MR818
1N5391
1N5392
1N5393
1N5395
1N5397
1N5398
1N5399
1N5400
1N5401
1N5402
1N5404
1N5406
1N4933
1N4934
1N4935
1N4936
1N4937
MR817
MR818
MR850
MR851
MR852
MR854
MR856
1N3889
1N3890
1N3891
1N3892
1N3893
MR1376
MUR1610CT
MUR1615CT
MUR1620CT

Industry
Part Number

Page #
3-241
3-241
3-241
3-177
3-177
3-177
3-177
3-177
3-177
3-177
3-192
3-192

RUR805
RUR810
RUR815
RUR820
RURD805
RURD810
RURD815
RURD820
RURD1610
RURD1615
RURD1620
SOF

3-192
3-35
3-35
3-35
3-35
3-35
3-33
3-33
3-33
3-33
3-33
3-33

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MUR3010PT
MUR3015PT
MUR3020PT
MR818

3-241
3-241
3-241
3-241
3-252
3-252
3-252
3-252
3-259
3-259
3-259
3-177

SOM
S1A1F
S1A2F
S1A3F
S1A4F
S1A5F
S1A10F
S1A12F
S1ABF
S1AGF
S2F
S2M

1N4007
1N4934
1N4935
1N4936
1N4936
1N4937
,MR818

3-33
3-35
3-35
3-35
3-35
3-35
3-177

MR817
1N4937
1N4935
1N4003

3-177
3-35
3-35
3-33

3-33
3-177
3-177
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-45
3-45

S3A1
S3A1F
S3A2
S3A2F
S3A3
S3A3F
S3A4
S3A4F
S3A5
S3A5F
S3A6
S3A6F

1N5401
MR851
1N5402
MR852
1N5403
MR854
1N5404
MR854
1N5405
MR856
1N5406
MR856

3-45
3-192
3-45
3-192
3-45
3-192
3-45
3-192
3-45
3-192
3-45
3-192

3-45
3-45
3-45
3-35
3-35
3-35
3-35
3-35
3-177
3-177
3-192
3-192

S3A7
S3A8
S3A9
S3A10
S3A12F
S3A025
S4F
S4M
S5A1
S5A1F
S5A2
S5A2F

MR508
MR508
MR510
MR510

3-167
3-167
3-167
3-167

1N5400
1N4936
1N4004
MR501
MR821
MR502
MR822

3-45
3-35
3-33
3-167
3-183
3-167
3-183

3-192
3-192
3-192
3-18
3-18
3-18
3-18
3-18
3-18
3-252
3-252
3-252

S5A3
S5A3F
S5A4
S5A4F
S5A5
S5A5F
S5A6
S5A6F
S5A8
S5A10
S5A12F
S5A025

MR504
MR824
MR504
MR824
MR506
MR826
MR506
MR826
MR508
MR510

3-167
3-183
3-167
3-183
3-167
3-183
3-167
3-183
3-167
3-167
3-167

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-26

MUR805
MUR810
MUR815
MUR820
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT

Page #

.

.

MR500

-

-

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Motorola
Direct
Replacement

Industry
Part Number

Page #

86A1
86A2
86A3
86A4
86A5
86A6
86F
86M
88F
88M
825A1
825A3

MR751
MR752
MR754
MR754
MR756
MR756
1N4937
1N4005
MR817
1N4006
1N1184A
1N1187A

3-173
3-173
3-173
3-173
3-173
3-173
3-35
3-33
3-177
3-33
3-2
3-2

8B840
8B845
8B850
8B860
8B880
8B1020
8B1035
8B1040
8B1045
8B1620
8B1630
8B1650

825A4
825A05
825A6
840A1
840A2
840A3
840A4
840A5
840A6
81010
81020
81030

1N1188A
1N1183A
1N1190A
1N1184A
1N1186A
1N1187A
1N1188A
1N1189A
1N1190A
1N4002
1N4003
1N4004

3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-33
3-33
3-33

8B1660
8B1680
8B3020
8B3030
8B3040
8B3045
8BP1030T
8BP1035T
8BP1040T
8BP1045T
8BP1630T
8BP1635T

81040
81050
81060
81070
81080
81090
810100
8-3A1
8-3A2
8-3A3
8-3A4
8-3A5

1N4004
1N4005
1N4005
1N4006
1N4006
1N4007
1N4007
MR501
MRS02
MR504
MR504
MR506

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167
3-167
3-167
3-167

8BP1640T
8BP1645T
8BP1650T
8BP1660T
8BR1040
8BR1045
8BR1640
8BR1645
8BR1650
8BR3540
8BR3545
8BR3550

8-3A6
8-3A8
8-3A10
8-5A1
8-SA2
8-SA3
8-5A4
8-5A5
8-5A6
8B120
8B130
8B140

MR506
MR508
MR510
MR751
MR752
MR754
MR754
MR756
MR756
1N5817
1N5818
1N5819

3-167
3-167
3-167
3-173
3-173
3-173
3-173
3-173
3-173
3-47
3-47
3-47

8BR8040
8BR8045
8BR8050
8B8520T
8B8530T
8B8535T
8B8540T
8B8545T
8B8820T
8B8830T
8B8835T
8B8840T

8B150
8B160
8B320
8B330
8B340
8B350
8B360
8B520
8B530
2B540
8B820
8B830

MBR150
MBR160
MBR320
MBR330
MBR340
MBR350
MBR360
1N5823
1N5824
1N5825
MBR735
MBR735

3-87
3-83
3-86
3-86
3-86
3-86
3-86
3-55
3-55
3-55
3-90
3-90

8B8845T
8B8850T
8B8860T
8B81030T
8B81035T
8B81040T
8B81045T
8B81620T
8B81630T
8B81635T
8B81640T
8B81645T

'These devices are manufactured by Motoiola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-27

Motorola
Similar
Replacement
MBR745
MBR745

Page #

,MBR1060

3-90
3-90
3-96
3-96

MBR1035
MBR1035
MBR1045
MBR1045
MBR1535CT
,MBR1535CT

3-92
3-92
3-92
3-92
3-98
3-98

MBR1060

-

-

,
,
MBR3035CT
MBR3035CT
MBR3045CT
MBR3045CT
MBR1535CT
MBR1535CT
MBR1545CT
MBR1545CT
MBR1535CT
MBR1535CT

3-110
3-110
3-110
3-110
3-98
3-98
3-98
3-98
3-98
3-98

MBR1545CT

3-98
3-98

,MBR1545CT

-

,

MBR1045
MBR1045
MBR1645
,MBR1645

3-92
3-92
3-100
3-100

MBR3545
,MBR3545

3-116
3-116
-

MBR8045

3-134
3-134

-

,MBR8045

-

MBR735
MBR735
MBR735
MBR745
MBR745
MBR735
MBR735
MBR735
MBR745
MBR745
MBR1060
MBR1060
MBR1035
MBR1035
MBR1045
MBR1045
MBR1635
MBR1635
MBR1635
MBR1645
MBR1645

3-90
3-90
3-90
3-90
3-90
3-90
3-90
3-90
3-90
3-90
3-96
3-96
3-92
3-92
3-92
3-92
3-100
3-100
3-100
3-100
3-100

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
SBT3040
SBT3045
SBT3050
SD1
SD2
S04
S005
S06
SDS
S031
S032
S041

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #
3-110
3-110
3-33
3-33
3-33
3-33
3-33
3-33
3-116
3-116
3-73

SEN2100
SEN3100
SES5001
SES5002
SES5003
SES5301
SES5302
SES5303
SES5401
SES5401C
SES5402
SES5402C

1N4001
1N4933
1N4002
1N4934
1N4003
1N4936
1N4004

3-73
3-132
3-132
3-132
3-110
3-33
3-35
3-33
3-35
3-33
3-35
3-33

SEN140
SEN140FR
SEN150
SEN150FR
SEN160
SEN160FR
SEN180
SEN205
SEN205FR
SEN210
SEN210FR
SEN220

1N4004
1N4936
1N4005
1N4937
1N4005
1N4937
1N4006
MR501
MRS50
MR501
MR851
MR502

SEN220FR
SEN230FR
SEN240
SEN240FR
SEN250FR
SEN260
SEN260FR
SEN2S0
SEN300
SEN305
SEN305FR
SEN310
SEN310FR
SEN320
SEN320FR
SEN330FR
SEN340
SEN340FR
SEN350
SEN350FR
SEN360
SEN360FR
SEN3S0
SEN1100

SD51
SD71
SD72
S075
S0241
SEN105
SEN105FR
SEN11 0
SEN110FR
SEN120
SEN120FR
SEN130

MBR3045CT

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement
MR510
MR510
MUR105
MUR110
MUR115
MUR405
MUR410
MUR415

Page #

MUR805
MUR1605CT
MUR810
MUR1610CT

3-167
3-167
3-229
3-229
3-229
3-234
3-234
3-234
3-241
3-252
3-241
3-252

SES5403
SES5403C
SES5404
SES5404C
SES5501
SES5502
SES5503
SES5504
SES5601C
SES5602C
SES5603C
SES5701

MURS15
MUR1615CT
MUR820
MUR1620CT
MUR1505
MUR1510
MUR1515
MUR1520

3-241
3-252
3-241
3-252
3-247
3-247
3-247
3-247

MUR2505

3-257

3-33
3-35
3-33
3-35
3-33
3-35
3-33
3-167
3-192
3-167
3-192
3-167

SES5702
SES5703
SES5S01
SES5802
SES5803
SGR100
SGR200A
SGR400A
SGR600A
SGRSOOA
SGR1000A
SI-1A

MUR2510
MUR2515
MUR5005
MUR5010
MUR5015
1N4002
1N4003
1N4004
1N4005
1N4006
1N4007
MR501

3-257
3-257
3-264
3-264
3-264
3-33
3-33
3-33
3-33
3-33
3-33
3-167

MRS52
MRS54
MR504
MRS54
MRS56
MR506
MRS56
MR508
MR504
MR501
MRS50
MR501

3-192
3-192
3-167
3-192
3-192
3-167
3-192
3-167
3-167
3-167
3-192
3-167

SI-2A
SI-3A
SI-4A
SI-5A
SI-6A
SI-SA
SI-10A
SI-50E
SI-100E
SI-200E
SI-300E
SI-400E

MR502
MR504
MR504
MR506
MR506
MR50S
MR508
1N4001
1N4002
1N4003
1N4004
1N4004

3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-33
3-33
3-33
3-33
3-33

MRS51
MR502
MRS52
MRS54
MR504
MRS54
MR506
MRS56
MR506
MRS56
MR50S
1N4007

3-192
3-167
3-192
3-192
3-167
3-192
3-167
3-192
3-167
3-192
3-167
3-33

SI-500E
SI-600E
SI-800E
SI-1000E
SI1
SI2
SI3
SI4
SI5
SI6
SI7
SIS

1N4005
1N4005
1N4006
1N4007
1N5392
1N5393
1N5394
1N5395
1N5396
1N5397
1N5398
1N5398

3-33
3-33
3-33
3-33
3-41
3-41
3-41
3-41
3-41
3-41
3-41
3-41

,MBR3045CT
1N4002
1N4003
1N4004
1N4001
1N4005
1N4006
MBR3545
MBR3545
SD41
S051
MBR7545
MBR7545
MBR7545
S0241

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix_

1-28

,
,
,

-

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

SI9
SI10
SI31
SI32
SI71
SI72
SI231
SI232
SL3
SL5
SL8
SL10

Motorola
Similar
Replacement
1N5399
1N5399
MBR3535
MBR3545
MBR7545
MBR7540
MBR3045CT
MBR3045CT
MR1123
MR1125
MR1128
MR1130

Industry
Part Number

Page #
3-41
3-41
3-116
3-116
3-132
3-132
3-110
3-110
3-200
3-200
3-200
3-200

SR303
SR304
SR305
SR306
SR710
SR711
SR712
SR713
SR714
SR716
SR716F
SR802

Motorola
Similar
Replacement

Motorola
Direct
Replacement

Page #
3-86
3-86
3-86
3-86

MBR330
MBR340
MBR350
MBR360

,
,
,
,
,

-

MBR735

3-90

MBR735
MBR745

MBR1535CT
MBR1535CT
MBR1545CT
1N4004
1N4002
1N4001

3-90
3-90
3-92
3-92
3-92
3-96
3-98
3-98
3-98
3-33
3-33
3-33

SL50
SL91
SL92
SL93
SL100
SL200
SL300
SL400
SL500
SL600
SL608
SL610

MR1120
1N4002
1N4003
1N4004
MR1121
MR1122
MR1123
MR1124
MR1125
MR1126
1N4006
1N4007

3-200
3-33
3-33
3-33
3-200
3-200
3-200
3-200
3-200
3-200
3-33
3-33

SR803
SR804
SR1002
SR1003
SR1004
SR1006
SR1602
SR1603
SR1604
SR2462
SR3502
SR3512

SL708
SL710
SL800
SL800X
SL1000
SL1000X
SLA5191
SLA5198
SLA5199
SLA5200
SLA5201
SLA-11

1N4006
1N4007
MR1128
MR1128
MR1130
MR1130
MR501
MR501
MR502
MR504
MR506
1N4001

3-33
3-33
3-200
3-200
3-200
3-200
3-167
3-167
3-167
3-167
3-167
3-33

SR3946
SR5005
SR5010
SR5020
SR5030
SR5040
SR6134
SR6323
SR6385
SR6404
SR6560
SR6569

1N4005
MR5005
MR5010
MR5020
MR5030
MR5040
1N4003
1N4001
1N4003
1N4006
1N4002
1N4004

3-33
3-225
3-225
3-225
3-225
3-225
3-33
3-33
3-33
3-33
3-33
3-33

SLA-12
SLA-13
SLA-14
SLA-15
SLA-16
SLA-17
SLA-18
SLA-19
SLA-21
SLA-22
SLA-23
SLA-24

1N4002
1N4003
1N4004
1N4004
1N4005
1N4005
1N4006
1N4007
MR501
MR501
MR502
MR504

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167
3-167
3-167

SR6592
SR6593
SRP100A
SRP100B
SRP100D
SRP100G
SRP100J
SRP300A
SRP300B
SRP300D
SRP300G
SRP300J

1N4006
1N4007
1N4933
1N4934
1N4935
1N4936

3-33
3-33
3-35
3-35
3-35
3-35
3-35
3-192
3-192
3-192
3-192
3-192

SLA-25
SLA-26
SLA-27
SLA-28
SLA-29
SPA25
SPB25
SPC25
SPD25
SR105
SR106
SR302

MR504
MR506
MR506
MR508
MR510
MDA2501
MDA2502
MDA2504
MDA2506

3-167
3-167
3-167
3-167
3-167
3-155
3-155
3-155
3-155
3-83
3-83
3-86

SRP600A
SRP600B
SRP600D
SRP600G
SRP600J
SRS105
SRS110
SRS120
SRS140
SRS160
SRS180
SRS205

MBR150
MBR160
MBR320

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.

Note: Reverse polarity has an R suffix.

1-29

MBR1035
MBR1035
MBR1045
MBR1060

1N4937
MR850
MR851
MR852
MR854
MR856
MR820
MR821
MR822
MR824
MR826
1N4001
1N4002
1N4003
1N4004
1N4005
1N4006
MR501

3-183
3-183
3-183
3-183
3-183
3-33
3-33
3-33
3-33
3-33
3-33
3-167

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

SRS21 0
SRS220
SRS240
SRS260
SRS280
SRS305
SRS31 0
SRS320
SRS360
SRS380
SRSll00
SRS2100

MR501
MR502
MR504
MR506
MR508
MR501
MR501
MR502
MR506
MR508
lN4007
MR510

3-167
3-167
3-167
3·167
3·167
3·167
3·167
3-167
3·167
3-167
3-33
3·167

T1000
T3889
T3890
T3891
T3892
T3893
T3899
T3900
T3901
T3902
T3903
T3909

SRS31 00
SRSFR105
SRSFRll0
SRSFR120
SRSFR140
SRSFR150
SRSFR160
SRSFR180
SRSFR205
SRSFR210
SRSFR220
SRSFR230

MR510
lN4933
lN4934
lN4935
lN4936
lN4937
lN4937
MR817
MR850
MR851
MR852
MR854

3-167
3·35
3·35
3-35
3·35
3·35
3·35
3·177
3-192
3·192
3-192
3·192

T391 0
T3911
T3912
T3913
TA5
TA10
TA20
TA40
TA50
TA60
TA80
TAl 00

,
,

SRSFR240
SRSFR250
SRSFR260
SRSFR305
SRSFR310
SRSFR320
SRSFR330
SRSFR340
SRSFR350
SRSFR360
SRSFRll00
ST2FR10P

MR854
MR856
MR856
MR850
MR851
MR852
MR854
MR854
MR856
MR856
MR818
lN3890

3·192
3·192
3·192
3-192
3·192
3-192
3·192
3-192
3·192
3·192
3-177
3-18

TA200
TA300
TA400
TA500
TA600
TA800
TAl 000
TA9225A
TA92258
TA9225C
TFR105
TFRll0

lN4003
lN4004
lN4004
lN4005
lN4005
lN4006
lN4007

ST2FR20P
ST2FR30P
ST2FR40P
ST2FR60P
ST210E
ST210P
ST220E
ST220P
ST230E
ST230P
ST240E
ST240P

lN3891
lN3892
lN3893
MR1376
lN3209
MR1121
lN3210
MR1122
lN3211
MR1123
lN3212
MR1124

3·18
3·18
3-18
3-18
3·6
3·200
3·6
3·200
3-6
3-200
3·6
3-200

ST260P
ST280P
ST410P
ST420P
ST430P
ST440P
ST450P
ST460P
ST2100P
T12A6F
T20A6F
T30A6F

MR1126
MR1128
lN1184A
lN1186A
lN1187A
lN1188A
lNl189A
lN1190A
,MR1130

3·200
3·200
3-2
3·2
3-2
3·2
3-2
3·2
3·200

,
,

-

,lN4007
,
,

,
,
,
,
,

,
,

,

,
,
lN4001
lN4002
lN4003
lN4004
lN4001
lN4005
lN4006
lN4007

Page #
3-33
-

-

-

3·33
3-33
3·33
3·33
3-33
3·33
3·33
3-33

lN3879
lN3880

3-33
3-33
3·33
3-33
3-33
3-33
3-33
3-247
3-247
3-247
3·13
3-13

TFR120
TFR140
TFR305
TFR310
TFR320
TFR340
TFR605
TFR610
TFR620
TFR640
TFR1205
TFR1210

lN3881
lN3883
lN3879
lN3880
lN3881
lN3883
lN3879
lN3880
lN3881
lN3883
lN3889
lN3890

3-13
3-13
3-13
3-13
3·13
3-13
3·13
3·13
3·13
3·13
3-18
3·18

TFR1220
TFR1240
TG4
TG6
TG8
TG24
TG26
TG28
TG84
TG86
TG88
TG284

lN3891
lN3893

3-18
3-18
3·229
3·229
3-229
3·234
3·234
3-234
3·241
3-241
3·241
3-252

'These devices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-30

MUR1510
MUR1515
MUR1520

MUR140
MUR160
MUR180
MUR440
MUR460
MUR480
MUR840
MUR860
MUR880
MUR1640CT

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
TG286
TIR101A
TIR101B
TIR101C
TIR101D
TIR102A
TIR102B
TIR102C
TIR102D
TIR201A
TIR201B
TIR201C
TIR201D
TIR202A
TIR202B
TIR202C
TIR202D
TK5
TK10
TK11
TK20
TK21
TK30
TK40

Motorola
Direct
Replacement
MUR1660CT

Motorola
Similar
Replacement

···
··
··
·
··
·
··
··
·

Page #
3-252
-

-

-

-

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

TM34
TM37
TM38
TM39
TM41
TM42
TM43
TM44
TM47
TM48
TM49
TM51

1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1204B
1N1206B

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5

1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
1N1206B
MR1128

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-200

1N4001
1N4002
1N4002
1N4003
1N4003
1N4004
1N4004

3-33
3-33
3-33
3-33
3-33
3-33
3-33

TM52
TM53
TM61
TM62
TM63
TM64
TM65
TM66
TM67
TM68
TM69
TM74

TK41
TK50
TK60
TK61
TKF5
TKF10
TKF20
TKF40
TKF50
TKF60
TKF80
TKF100

1N4004
1N4005
1N4005
1N4005
1N4933
1N4934
1N4935
1N4936
1N4937
1N4937
MR817
MR817

3-33
3-33
3-33
3-33
3-35
3-35
3-35
3-35
3-35
3-35
3-177
3-177

TM75
TM76
TM78
TM79
TM84
TM85
TM86
TM88
TM89
TM104
TM105
TM106

MR1128
MR1128
MR1128
MR1128
MR1128
MR1128
MR1128
MR1128
MR1128
MR1130
MR1130
MR1130

3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200
3-200

TM1
TM2
TM3
TM4
TM5
TM7
TM8
TM9
TM11
TM12
TM13
TM17

1N1199B
1N1199B
1N1199B
1N1199B
1N1199B
1N1199B
1N1199B
1N1199B
1N1200B
1N1200B
1N1200B
1N1200B

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5

TR53
TR151
TR153
TR203
TR251
TR252
TR253
TR300
TR301
TR302
TR303
TR351

1N1183A
1N3210
1N1186A
1N1188A
1N3211
1N3211
1N1188A
1N3211
1N3211
1N3211
1N1187
1N3212

3-2
3-6
3-2
3-2
3-6
3-6
3-2
3-6
3-6
3-6
3-6
3-6

TM18
TM19
TM21
TM22
TM23
TM24
TM27
TM28
TM29
TM31
TM32
TM33

1N1200B
1N1200B
1N1202B
1N1202B
1N1202B
1N1202B
1N1202B
1N1202B
1N1202B
1N1204B
1N1204B
1N1204B

3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5
3-5

TR353
TR401
TR403
TR503
TR603
TR1120
TR1121
TR1122
TR1123
TR1124
TR1125
TR1126

1N1188A
1N3212
1N1188A
1N1189
1N1190
MR1120
MR1121
MR1122
MR1123
MR1124
MR1125
MR1126

3-2
3-6
3-2
3-2
3-2
3-200
3-200
3-200
3-200
3-200
3-200
3-200

-

'These deVices are manufactured by Motorola but no data sheet available - Consult Factory.
Note: Reverse polarity has an R suffix.

1-31

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

3-247
3-252
3-252
3-252
3-252
3-259
3-259
3-259
3-259
3-259
3-259
3-229

TRl128
TRl130
TS3
TS5
TS10
TS20
TS40
TS50
TS60
TS80
TS-l
TS-2

MRl128
MR1130
lN4933
lN4933
lN4934
lN4935
lN4936
lN4937
lN4937
MR817
lN4002
lN4003

3-200
3-200
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-177
3-33
3-33

UES1504
UES2401
UES2402
UES2403
UES2404
UES2601
UES2602
UES2603
UES2604
UES2605
UES2606
UF4001

TS-4
TS-05
TS-6
TS-8
TSV
TW5
TWl0
TW20
TW30
TW40
TW50
TW60

lN4004
lN4001
lN4005
lN4006
lN4933
lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005

3-33
3-33
3-33
3-33
3-35
3-33
3-33
3-33
3-33
3-33
3-33
3-33

UF4002
UF4003
UF4004
UF5400
UF5401
UF5402
UF5403
UF5404
USD320C
USD335C
USD345C
USD420

TWBO
TWl00
UES701
UES702
UES703
UES704
UES801
UESB02
UESB03
UES804
UES100l
UES1002

lN4006
lN4007

MUR105
MURll0

3-33
3-33
3-257
3-257
3-257
3-257
3-266
3-266
3-266
3-264
3-229
3-229

USD435
USD445
USD520
USD535
USD545
USD620
USD620C
USD635
USD635C
USD640
USD640C
USD645

MBR8035
MBR8035
MBR8045
MBR735
MBR1535CT
MBR735
MBR1535CT
MBR745
MBR1545CT
MBR745

3-116
3-116
3-134
3-134
3-134
3-90
3-98
3-90
3-98
3-90
3-98
3-90

MURl15
MUR105
MURll0
MURl15
MUR120
MUR130
MUR140
MUR405
MUR410
MUR415
MUR420
MUR430

3-229
3-229
3-229
3-229
3-229
3-229
3-229
3-234
3-234
3-234
3-234
3-234

USD645C
USD720
USD720C
USD735
USD735C
USD740
USD740C
USD745
USD745C
USD820
USD635
USD840

MBR1545CT
MBR1035
MBR1535CT
MBR1035
MBR1535CT
MBR1045
MBR1545CT
MBR1045
MBR1545CT
MBR1635
MBR1635
MBR1645

3-98
3-92
3-98
3-92
3-98
3-92
3-98
3-92
3-98
3-100
3-100
3-100

MUR440

3-234
3-241
3-241
3-241
3-241
3-241
3-241
3-241
3-241
3-247
3-247
3-247

USD845
USD920
USD935
USD940
USD945
UT111
UTl12
UTl13
UTl14
UT115
UT117
UTllB

MBR1645
MBR1635
MBR1635
MBR1645
MBRl645

3-100
3-100
3-100
3-100
3-100
3-33
3-33
3-33
3-33
3-33
3-33
3-33

MUR2505
MUR2510
MUR2515
MUR2520
MUR7005
MUR7010
MUR7015
MUR5020

UES1003
UESll0l
UESll02
UESll03
USEll04
USEll05
USEll06
UES1301
UES1302
UES1303
UES1304
UES1305
UES1306
UES1401
UES1402
UES1403
UES1404
UES1420
UES1421
UES1422
UES1423
UES1501
UES1502
UES1503

MURB05
MURB10
MUR815
MUR820
MURB60
MUR870
MUR8BO
MUR890
MUR1505
MUR1510
MUR1515

Note: Reverse polarity has an R suffix.

1-32

MUR1520

Page #

MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MUR3005PT
MUR3010PT
MUR3015PT
MUR3020PT
MUR3030PT
MUR3040PT
MUR105
MURll0
MUR120
MUR140
MUR405
MUR410
MUR420
MUR430
MUR440
MBR3035CT
MBR3035CT
MBR3045CT
MBR3520
MBR3535
MBR3545

lN4001
lN4002
lN4003
lN4004
lN4004
lN4005
lN4005

3-229
3-229
3-229
3-234
3-234
3-234
3-234
3-234
3-110
3-140
3-140
3-116

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

UT119
UT211
UT212
UT213
UT214
UT215
UT225
UT234
UT235
UT236
UT237
UT242

1N4006
1N4004
1N4004
1N4004
1N4005
1N4005
1N4005
1N4003
1N4004
1N4002
1N4005
1N4003

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33

UTR40
UTR41
UTR42
UTR50
UTR51
UTR52
UTR60
UTR61
UTR62
UTR2305
UTR231 0
UTR2320

1N4936
1N4936
1N4936
1N4937
1N4937
1N4937
1N4937
1N4937
1N4937
MR850
MR851
MR852

3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-192
3-192
3-192

UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT258
UT261
UT262

1N4004
1N4005
1N4005
1N4002
1N4002
1N4003
1N4004
1N4005
1N4005
1N4006
MR501
MR502

3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167

UTR2340
UTR2350
UTR2360
UTR3305
UTR331 0
UTR3320
UTR3340
UTR3350
UTR4305
UTR4310
UTR4320
UTR4340

MR854
MR856
MR856
MR850
MR851
MR852
MR854
MR856
MR850
MR851
MR852
MR854

3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192

MT264
MT265
UT267
UT268
UT338
UT347
UT361
UT362
UT363
UT364
UT2005
UT2010

MR504
MR506
MR506
MR508
1N4005
1N4007
1N4006
1N4006
1N4007
1N4007
MR501
MR501

3-167
3-167
3-167
3-167
3-33
3-33
3-33
3-33
3-33
3-33
3-167
3-167

UTR4350
UTR4360
UTX105
UTX110
UTX115
UTX120
UTX125
UTX205
UTX210
UTX215
UTX220
UTX225

MR856
MR856
1N4933
1N4934
1N4935
1N4935
1N4935
1N4933
1N4934
1N4935
1N4935
1N4935

3-192
3-192
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35

UT2020
UT2040
UT2060
UT3005
UT3010
UT3020
UT3040
UT3060
UT4005
UT4010
UT4020
UT4040

MR502
MR504
MR506
MR501
MR501
MR502
MR504
MR506
MR501
MR501
MR502
MR504

3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167
3-167

UTX3105
UTX3110
UTX3115
UTX3120
UTX4105
UTX4110
UTX4115
UTX4120
V322
V324
V326
V330

MR850
MR851
MR852
MR852
MR850
MR851
MR852
MR852
1N5402
1N5404
1N5406
MR500

3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-192
3-45
3-45
3-45
3-167

UT4060
UTR01
UTR02
UTR10
UTR11
UTR12
UTR20
UTR21
UTR22
UTR30
UTR31
UTR32

MR506
1N4933
1N4933
1N4934
1N4934
1N4934
1N4935
1N4935
1N4935
1N4936
1N4936
1N4936

3-167
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35

V330X
V331
V331X
V332
V332X
V334
V334X
V336
V336X
V338
V342
V344

MR850
MR501
MR851
MRS02
MR852
MRS04
MR8S4
MRS06
MR8S6
MRS08
1NS402
1NS404

3-192
3-167
3-192
3-167
3-192
3-167
3-192
3-167
3-192
3-167
3-4S
3-45

Note: Reverse polarity has an R suffix_

1-33

RECTIFIER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

V346
V350
V350X
V351
V351 X
V352
V352X
V354
V354X
V356
V356X
V358

lN5406
MR500
MR850
MR501
MR851
MR502
MR852
MR504
MR854
MR506
MR856
MR508

3-45
3-167
3-192
3-167
3-192
3-167
3-192
3-167
3-192
3-167
3-192
3-167

VL648
VL848
VL1048
VSK12
VSK13
VSK14
VSK32
VSK41
VSK51
VSK62
VSK63
VSK64

V3310
V351 0
VHE205
VHE210
VHE215
VHE220
VHE605
VHE610
VHE615
VHE620
VHE701
VHE702

MR510
MR510
MUR105
MURll0
MURl15
MUR120
MUR405
MUR410
MUR415
MUR420

3-167
3-167
3-229
3-229
3-229
3-229
3-234
3-234
3-234
3-234
3-257
3-257

VSK72
VSK120
VSK130
VSK140
VSK320
VSK330
VSK340
VSK520
VSK530
VSK540
VSK920
VSK935

3-257
3-257
3-266
3-266
3-266
3-266
3-241
3-241
3-241
3-241
3-252
3-252

VSK945
VSK1020
VSK1035
VSK1045
VSK1520
VSK1530
VSK1540
VSK2003
VSK2004
VSK2020
VSK2035
VSK2045

MBR1035
MBR1035
MBR1045
lN5829
lN5830
lN5831
MBR20045CT
MBR20050CT
MBR2035CT
MBR2035CT
MBR2045CT

3-98
3-92
3-92
3-92
3-64
3-64
3-64
3-142
3-142
3-102
3-102
3-102

3-252
3-252
3-159
3-159
3-159
3-159
3-159
3-159
3-159
3-155
3-155
3-155
3-155

VSK2420
VSK2435
VSK2445
VSK3020S
VSK3020T
VSK3030S
VSK3030T
VSK3040S
VSK3040T
VSK4020
VSK4030
VSK4040

MBR2535CT
MBR2535CT
MBR2545CT
MBR3535
MBR3035CT
MBR3535
MBR3035CT
MBR3545
MBR3045CT
lN5832
lN5833
lN5834

3-108
3-108
3-108
3-116
3-110
3-116
3-110
3-116
3-110
3-69
3-69
3-69

VHE703
VHE704
VHE801
VHE802
VHE803
VHE804
VHE1401
VHE1402
VHE1403
VHE1404
VHE2401
VHE2402
VHE2403
VHE2404
VK048
VK148
VK248
VK448
VK648
VK848
VK1048
VL048
VL148
VL248
VL448

MUR2505
MUR2510
MUR2515
MUR2520
MUR7005
MUR7010
MUR7015
MUR7020
MUR805
MUR810
MUR815
MUR820
MUR1605CT
MUR1610CT
MUR1615CT
MUR1620CT
MDA3500
MDA3501
MDA3502
MDA3604
MDA3506
MDA3508
MDA3510
MDA2500
MDA2501
MDA2502
MDA2504

Note: Reverse polarity has an R sulfix_

1-34

MDA2506
MDA2508
MDA2510
MBR1535CT
MBR1535CT
MBR1545CT
MBR3545
SD41
SD51
MBR735
MBR735
MBR745
MBR7540
lN5817
lN5818
lN5819
MBR320
MBR330
MBR340
lN5823
lN5824
lN5825
MBR1535CT
MBR1535CT
MBR1545CT

3-155
3-155
3-155
3-98
3-98
3-98
3-116
3-73
3-77
3-90
3-90
3-90
3-132
3-47
3-47
3-47
3-86
3-86
3-86
3-55
3-55
3-55
3-98
3-98

ZENER INDEX CROSS-REFERENCE
Industry
Part Number
.25T110
.25T110A
.25T5.6A
AT110
AT110A
AT110B
AT12
AT12A
.4T12B
AT5.6
AT5.6A
AT5.6B

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5272A
1N5272A
1N5272B
1N5242A
1N5242A
1N5242B
1N5232A
1N5232A
1N5232A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1.5KE20A
1.5KE22
1.5KE220
1.5KE220A
1.5KE22A
1.5KE24
1.5KE24A
1.5KE250
1.5KE250A
1.5KE27
1.5KE27A
1.5KE30

1.5KE20A
1.5KE22
1.5KE220
1.5KE220A
1.5KE22A
1.5KE24
1.5KE24A
1.5KE250
1.5KE250A
1.5KE27
1.5KE27A
1.5KE30

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

AT6.S
AT6.SA
AT6.SB
4Z1100
AZ110010
AZ11005
AZ6.S0
AZ6.S010
AZ6.S05
.5M110Z10
.5M110Z5
.5M110ZS

1N5235A
1N5235A
1N5235B
1N5272A
1N5272A
1N5272B
1N5235A
1N5235A
1N5235B
1N5272A
1N5272B
1N5272A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1.5KE30A
1.5KE33
1.5KE33A
1.5KE36
1.5KE36A
1.5KE39
1.5KE39A
1.5KE43
1.5KE43A
1.5KE47
1.5KE47A
1.5KE51

1.5KE30A
1.5KE33
1.5KE33A
1.5KE36
1.5KE36A
1.5KE39
1.5KE39A
1.5KE43
1.5KE43A
1.5KE47
1.5KE47A
1.5KE51

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

.5M2AZS
.5M2AZS10
.5M2AZS5
1.5KE10
1.5KE100
1.5KE100A
1.5KE10A
1.5KE11
1.5KE110
1.5KE110A
1.5KE11A
15KE12

1.5221 A
1N5221A
1N5221B
1.5KE10
1.5KE100
1.5KE100A
1.5KE10A
1.5KE11
1.5KE110
1.5KE110A
1.5KE11A
1.5KE12

4-40
4-40
4-40
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1.5KE51A
1.5KE56
1.5KE56A
1.5KE6.S
1.5KE6.BA
1.5KE62
1.5KE62A
1.5KE6B
1.5KE6SA
1.5KE7.5
1.5KE7.5A
1.5KE75

1.5KE51A
1.5KE56
1.5KE56A
1.5KE6.S
1.5KE6.SA
1.5KE62
1.5KE62A
1.5KE6B
1.5KE6BA
1.5KE7.5
1.5KE7.5A
1.5KE75

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1.5KE120
1.5KE120A
1.5KE12A
1.5KE13
1.5KE130
1.5KE130A
1.5KE13A
1.5KE15
1.5KE150
1.5KE150A
1.5KE15A
1.5KE16

1.5KE120
1.5KE120A
1.5KE12A
1.5KE13
1.5KE130
1.5KE130A
1.5KE13A
1.5KE15
1.5KE150
1.5KE150A
1.5KE15A
1.5KE16

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1.5KE75A
1.5KES.2
1.5KES.2A
1.5KES2
1.5KEB2A
1.5KE9.1
1.5KE9.1A
1.5KE91
1.5KE91A
1.5R200
1.5R200A
1.5R200B

1.5KE75A
1.5KEB.2
1.5KES.2A
1.5KEB2
1.5KES2A
1.5KE9.1
1.5KE9.1A
1.5KE91
1.5KE91A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-65
4-65
4-65

1.5KE160
1.5KE160A
1.5KE16A
1.5KE170
1.5KE170A
1.5KE1S
1.5KE1S0
1.5KE1S0A
1.5KE1SA
1.5KE20
1.5KE200
1.5KE200A

1.5KE160
1.5KE160A
1.5KE16A
1.5KE170
1.5KE170A
1.5KE1S
1.5KE1S0
1.5KE1S0A
1.5KE1SA
1.5KE20
1.5KE200
1.5KE200A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1.5R6.B
1.5R6.BA
1.5R6.SB

1N5272B
1N5272B
1N5232B

1/2R110
1/2R110A
1/2R110B
1/2R6.S
1/2R6.SA
1/2R6.BB
1/4122.20

1/4Ll2.2010
1/4122.205

Note: Reverse polarity has an R suffix.

1-35

1N5956A
1N5956A
1N5956B
1N5921A
1N5921 A
1N5921B
1N5272A
1N5272A
1N5272B
1N5235A
1N5235A
1N5235B
1N5221 A
1N5221 A
1N5221B

4-65
4-65
4-65
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1/4M4.3AZ10
114M4.7AZl 0

114M2.4AZl 0
114M2.7AZl 0
114M24Z1 0
114M3.0AZl 0
1/4M3.3AZ10
1/4M3.6AZ10
114M3.9AZl 0
1/4M4.3AZ10
1/4M4.7AZ10

4-40
4-40
4-40
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2

10PZ2008
10PZ6.8
10PZ6.8A
10PZ6.88
10R200
10R200A
10R2008
10R6.8
10R6.8A
10R6.88
10RZ200
10RZ200A

lN30158
lN3999
lN3999
lN3999A
lN3015A
lN3015A
lN30158
lN3999
lN3999
lN3999A
1N3015A
lN3015A

4·15
4·27
4·27
4·27
4·15
4·15
4·15
4·27
4·27
4·27
4·15
4·15

1/4M5.1AZ10
1/4M5.6AZ10
114M6.2AZl 0
114M6.8Z1 0
1/4M7.5Z10
114M8.2Z1 0
1/4M9.1Z10
1/4Ml0Zl0
1/4MllZl0
1/4M12Z10
1/4M13Z10
1/4M14Z10

1/4M5.1AZ10
1/4M5.6AZ10
1/4M6.2AZ10
1/4M6.8Z10
1/4M7.5Z10
1/4M8.2Z10
1/4M9.1Z10
1/4Ml0Zl0
1/4Ml1Z10
1/4Ml2Z10
1/4M13Z10
1/4M14Z10

4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2

10RZ2008
10RZ6.8
10RZ6.8A
10RZ6.88
10T200
10T200A
10T2008
10T6.8
10T6.8A
10T6.88
10Z200
10Z200A

lN30158
lN3999
lN3999
lN3999A
lN3015A
lN3015A
1N30158
lN3999
1N3999
1N3999A
1N3015A
1N3015A

4·15
4·27
4·27
4·27
4·15
4·15
4·15
4·27
4·27
4·27
4·15
4·15

1/4M15Z10
1/4M16Z10
1/4M17Z10
1/4M18Z10
1/4M19Z10
114M20Z1 0
114M22Z1 0
114M24Z1 0
1/4M25Z10
114M27Z1 0
1/4M30Z10
114M33Z1 0

1/4M15Z10
1/4M16Z10
1/4M18Z10
1/4M19Z10
1/4M20Z10
1/4M22Z1 0
1/4M24Z10
1/4M25Z10
1/4M27Z10
1/4M30Z10
114M33Z1 0

4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2

10Z2008
10Z200D(R)
1OZ200D(R)1 0
10Z200D(R)5
10Z3.9
10Z3.9A
10Z3.98
lN370
lN371
1N372
lN373
1N374

1N30158
lN3015RA
1N3015RA
lN3015RA
lN3993
lN3993
1N3993A
lN52218
lN5221A
lN5225A
lN5227A
lN5229A

4·15
4·15
4·15
4·15
4·27
4·27
4·27
4·40
4·40
4·40
4·40
4·40

1I4M36Z10
114M39Z1 0
1/4M43Z10
1/4M45Z10
1/4M47Z10
1/4M50Z10
1/4M52Z10
114M56Z1 0
114M62Z1 0
1/4M68Z10
1/4M75Z10
1/4M82Z10

114M36Z1 0
114M39Z1 0
114M43Z1 0
114M45Z1 0
114M47Z1 0
114M50Z1 0
114M52Z1 0
114M56Z1 0
1/4M62Z10
114M68Z1 0
114M75Z1 0
114M82Z1 0

4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2

1N375
lN376
1N377
lN378
lN379
lN380
lN381
lN383
lN384
lN385
lN386
lN387

lN5230A
lN5233A
lN5236A
lN5238A
lN5240A
lN5243A
lN5246A
lN5252A
lN5255A
lN5258A
lN5260A
lN5261A

4·40
4·40
4·40
4-40
4-40
4·40
4·40
4·40
4·40
4·40
4·40
4-40

1/4M91Z10
1/4Ml00Zl0
1/4Ml05Z10

1/4M91Z10
1/4Ml OOZl0
1/4Ml 05Z10

4-2
4-2
4-2
4-40
4-40
4-40
4·40
4·40
4·40
4·27
4·15
4·15

lN465
lN465A
lN466
lN466A
lN467
lN467A
lN468
lN468A
lN469
lN469A
1N470
lN470A

lN5223A
lN52238
lN5226A
lN52268
1N52288
1N52288
lN5230A
lN52308
lN52328
lN52328
lN52358
lN52358

4-40
4·40
4·40
4·40
4·40
4·40
4·40
4-40
4·40
4·40
4·40
4·40

1/4LZ6.8D
1/4LZ6.8Dl0
1/4LZ6.8D5
1/4M2.4AZ10
114M2.7AZl 0
114M24Z1 0
114M3.0AZl 0
1/4M3.3AZ10
1/4M3.6AZ10

1I4M3.9AZ10

lN5235A
lN5235A
lN52358

1I4M17Z10

1I4Z110D

lN5272A
lN5272A
lN52728
lN5235A
lN5235A
lN52358

1/4Z110Dl0
1/4Z110D5
1/4Z6.8D
1/4Z6.8Dl0
1/4Z6.8D5

10LZ7.5D5
10PZ200
10PZ200A

lN4000A
lN3015A
lN3015A

Note: Reverse polarity has an R suffix.

1-36

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement
1N5237A
1N5242A
1N52458
1N5248A
1N5251A
1N5254A
1N5266B
1N5271A
1N5276A
1N5230A
1N52348

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

1N755A1JTXV
1N756
1N756A
1N756A1JAN
1N756A1JTX
1N756A1JTXV
1N757
1N757A
1N757A1JAN
1N757A1JTX
1N757A1JTXV
1N758

1N755A1JTXV
1N756A
1N756A
1N756A1JAN
1N756A1JTX
1N756A1JTXV
1N757A
1N757A
1N757A1JAN
1N757A1JTX
1N757A1JTXV
1N758A

4·4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

Page #

1N664
1N665
1N666
1N667
1N668
1N669
1N670
1N671
1N672
1N674
1N675
1N746

1N746

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-4

1N746A
1N746A1JAN
1N746A1JTX
1N746A1JTXV
1N747
1N747A
1N747A1JAN
1N747A1JTX
1N747A1JTXV
1N748
1N748A
1N748A1JAN

1N746A
1N746A1JAN
1N746A1JTX
1N746A1JTXV
1N747
1N747A
1N747A1JAN
1N747A1JTX
1N747A1JTXV
1N748
1N748A
1N748A1JAN

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N758A
1N758A1JAN
1N758A1JTX
1N758A1JTXV
1N759
1N759A
1N759A1JAN
1N759A1JTX
1N759A 1JTXV
1N821
1N821-1JAN
1N821-1JTX

1N758A
1N758A1JAN
1N758A1JTX
1N758A1JTXV
1N759A
1N759A
1N759A1JAN
1N759A1JTX
1N759A1JTXV
1N821
1N821-1JAN
lN821-1JTX

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-10
4-10
4-10

1N748A1JTX
1N748A1JTXV
1N749
1N749A
1N749A1JAN
1N749A1JTX
1N749A1JTXV
1N750
1N750A
1N750A1JAN
1N750A1JTX
1N750A1JTXV

1N748A1JTX
1N748A1JTXV
1N749
1N749A
1N749A1JAN
1N749A1JTX
1N749A 1JTXV
1N750
1N750A
1N750A1JAN
1N750A1JTX
1N750A1JTXV

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N821-1JTXV
1N821A
1N821JAN
1N821JTX
1N821JTXV
1N823
1N823-1JAN
1N823-1JTX
1N823-1 JTXV
1N823A
1N823JAN
1N823JTX

1N821-1JTXV
1N821A
1N821JAN
1N821JTX
1N821JTXV
1N823
1N823-1JAN
1N823-1JTX
1N823-1 JTXV
1N823A
1N823JAN
1N823JTX

4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10

1N751
1N751A
1N751A1JAN
1N751A1JTX
1N751A1JTXV
1N752
1N752A
1N752A1JAN
1N752A1JTX
1N752A1JTXV
1N753
1N753A

1N751A
1N751A
1N751A1JAN
1N751A1JTX
1N751A1JTXV
1N752A
1N752A
1N752A1JAN
1N752A1JTX
1N752A1JTXV
1N753A
1N753A

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N823JTXV
1N824
1N824A
1N825
1N825-1JAN
1N825-1JTX
1N825-1 JTXV
1N825A
1N825JAN
1N825JTX
1N825JTXV
1N826

1N823JTXV
1N823
1N823A
1N825
1N825-1JAN
1N825-1JTX
1N825-1JTXV
1N825A
1N825JAN
1N825JTX
1N825JTXV

4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10

1N753A1JAN
1N753A1JTX
1N753A1JTXV
1N754
1N754A
1N754A1JAN
1N754A1JTX
1N754A1JTXV
1N755
1N755A
1N755A1JAN
1N755A1JTX

1N753A1JAN
1N753A1JTX
1N753A 1JTXV
1N754A
1N754A
1N754A1JAN
1N754A1JTX
1N754A 1JTXV
1N755A
1N755A
1N755A1JAN
1N755A1JTX

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N827
1N827-1JAN
1N827-1JTX
1N827-1JTXV
1N827A
1N827JAN
1N827JTX
1N827JTXV
1N828
1N829
1N829-1JAN
1N829-1JTX

1N827
1N827-1JAN
1N827-1JTX
1N827-1JTXV
1N827A
1N827JAN
1N827JTX
1N827JTXV

Note: Reverse polarity has an R suffix.

1-37

1N825

1N827
1N829
1N829-1JAN
1N829-1JTX

4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-10

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N829-1 JTXV
1N829A
1N829JAN
1N829JTX
1N829JTXV
1N957A
1N957B
1N958A
1N958B
1N959A
1N959B
1N960A

1N829-1JTXV
1N829A
1N829JAN
1N829JTX
1N829JTXV
1N957A
1N957B
1N958A
1N958B
1N959A
1N959B
1N960A

4-10
4-10
4-10
4-10
4-10
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N971A
1N971B
1N971 B1JAN
1N971B1JTX
1N971B1JTXV
1N972A
1N972B
1N972B1JAN
1N972B1JTX
1N972B1 JTXV
1N973A
1N973B

1N971 A
1N971B
1N971B1JAN
1N971B1JTX
1N971 B1JTXV
1N972A
1N972B
1N972B1JAN
1N972B1JTX
1N972B1JTXV
1N973A
1N973B

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N960B
1N961 A
1N961B
1N962A
1N962B
1N962B1JAN
1N962B1JTX
1N962B1JTXV
1N963A
1N963B
1N963B1JAN
1N963B1JTX

1N960B
1N961A
1N961B
1N962A
1N962B
1N962B1JAN
1N962B1JTX
1N962B1JTXV
1N963A
1N963B
1N963B1JAN
1N963B1JTX

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N973B1JAN
1N973B1JTX
1N973B1JTXV
1N974A
1N974B
1N974B1JAN
1N974B1JTX
1N974B1JTXV
1N975A
1N975B
1N975B1JAN
1N975B1JTX

1N973B1JAN
1N973B1JTX
1N973B1JTXV
1N974A
1N974B
1N974B1JAN
1N974B1JTX
1N974B1JTXV
1N975A
1N975B
1N975B1JAN
1N975B1JTX

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N963B1JTXV
1N964A
1N964B
1N964B1JAN
1N964B1JTX
1N964B1 JTXV
1N965A
1N965B
1N965B1JAN
1N965B1JTX
1N965B1JTXV
1N966A

1N963B1JTXV
1N964A
1N964B
1N964B1JAN
1N964B1JTX
1N964B1JTXV
1N965A
1N965B
1N965B1JAN
1N965B1JTX
1N965B1JTXV
1N966A

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N975B1JTXV
1N976A
1N976B
1N976B1JAN
1N976B1JTX
1N976B1 JTXV
1N977A
1N977B
1N977B1JAN
1N977B1JTX
1N977B1 JTXV
1N978A

1N975B1 JTXV
1N976A
1N976B
1N976B1JAN
1N976B1JTX
1N976B1JTXV
1N977A
1N977B
1N977B1JAN
1N977B1JTX
1N977B1JTXV
1N978A

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N966B
1N966B1JAN
1N966B1JTX
1N966B1JTXV
1N967A
1N967B
1N967B1JAN
1N967B1JTX
1N967B1JTXV
1N968A
1N968B
1N968B1JAN

1N966B
1N966B1JAN
1N966B1JTX
1N966B1JTXV
1N967A
1N967B
1N967B1JAN
1N967B1JTX
1N967B1JTXV
1N968A
1N968B
1N968B1JAN

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N978B
1N978B1JAN
1N978B1JTX
1N978B1 JTXV
1N979A
1N979B
1N979B1JAN
1N979B1JTX
1N979B1 JTXV
1N980A
1N980B
1N980B1JAN

1N978B
1N978B1JAN
1N978B1JTX
1N978B1 JTXV
1N979A
1N979B
1N979B1JAN
1N979B1JTX
1N979B1JTXV
1N980A
1N980B
1N980B1JAN

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N968B1JTX
1N968B1JTXV
1N969A
1N969B
1N969B1JAN
1N969B1JTX
1N969B1 JTXV
1N970A
1N970B
1N970B1JAN
1N970B1JTX
1N970B1JTXV

1N968B1JTX
1N968B1JTXV
1N969A
1N969B
1N969B1JAN
1N969B1JTX
1N969B 1JTXV
1N970A
1N970B
1N970B1JAN
1N970B1JTX
1N970B1 JTXV

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N980B1JTX
1N980B 1JTXV
1N981A
1N981B
1N981B1JAN
1N981B1JTX
1N981B1JTXV
1N982A
1N982B
1N982B1JAN
1N982B1JTX
1N982B1JTXV

1N980B1JTX
1N980B1JTXV
1N981A
1N981B
1N981B1JAN
1N981B1JTX
1N981B1JTXV
1N982A
1N982B
1N982B1JAN
1N982B1JTX
1N982B1 JTXV

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

Note: Reverse polarity has an R suffix_

1-38

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

1N983A
1N9838
1N98381JAN
1N98381JTX
1N98381JTXV
1N984A
1N9848
1N98481 JAN
1N98481JTX
1N98481 JTXV
1N985A
1N9858

1N983A
1N9838
1N98381 JAN
1N98381JTX
1N98381JTXV
1N984A
1N9848
1N98481 JAN
1N98481JTX
1N98481 JTXV
1N985A
1N9858

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4

1N1369
1N1369A
1N1370
1N1370A
1N1371
1N1371A
1N1372
1N1372A
1N1373
1N1373A
1N1374
1N1374A

1N2999A
1N29998
1N3000A
1N30008
1N3001A
1N30018
1N3002A
1N30028
1N3003A
1N30038
1N3004A
1N30048

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N986A
1N9868
1N987A
1N9878
1N988A
1N9888
1N989A
1N9898
1N990A
1N9908
1N991A
1N9918

1N986A
1N9868
1N987A
1N9878
1N988A
1N9888
1N989A
1N9898
1N990A
1N9908
1N991A
1N9918

4-4
4-4
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-13

1N1375
1N1375A
1N1416
1N1417
1N1418
1N1419
1N1420
1N1421
1N1422
1N1423
1N1424
1N1425

1N3005A
1N30058
1N29728
1N29768
1N29798
1N29828
1N29858
1N29888
1N30018
1N30058
1N30118
1N4738A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-36

1N992A
1N9928
1N1313
1N1313A
1N1351
1N1351A
1N1352
1N1352A
1N1353
1N1353A
1N1354
1N1356

1N992A
1N9928
1N4102
1N4102
1N2974A
1N29748
1N2975A
1N29758
1N2976A
1N29768
1N2977A
1N2980A

4-13
4-13
4-28
4-28
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1426
1N1427
1N1428
1N1429
1N1430
1N1431
1N1432
1N1482
1N1483
1N1484
1N1485
1N1507

1N4742A
1N4744A
1N4746A
1N4748A
1N4750A
1N4760A
1N4764A
1N3995A
1N3998A
1N4732A
1N4735A
1N4730

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-27
4-27
4-36
4-36
4-36

1N1356A
1N1357
1N1357A
1N1358
1N1358A
1N1359
1N1359A
1N1360A
1N1361
1N1361A
1N1362
1N1362A

1N29808
1N2982A
1N29828
1N2984A
1N29848
1N2985A
1N29858
1N29868
1N2988A
1N29888
1N2989A
1N29898

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1507A
1N1508
1N1508A
1N1509
1N1509A
1N1510
1N1510A
1N1511
1N1511A
1N1512
1N1512A
1N1513

1N4730A
1N4732
1N4732A
1N4734
1N4734A
1N4736
1N4736A
1N4738
1N4738A
1N4740
1N4740A
1N4742

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1363
1N1363A
1N1364
1N1364A
1N1365
1N1365A
1N1366
1N1366A
1N1367
1N1367A
1N1368
1N1368A

1N2990A
1N29908
1N2991A
1N29918
1N2992A
1N29928
1N2993A
1N29938
1N2995A
1N29958
1N2997A
1N29978

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1513A
1N1514
1N1514A
1N1515
1N1515A
1N1516
1N1516A
1N1517
1N1517A
1N1518
1N1518A
1N1519

1N4742A
1N4744
1N4744A
1N4746
1N4746A
1N4748
1N4748A
1N4750
1N4750A
1N4730
1N4730A
1N4732

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

Industry
Part Number

Page #

Note: Reverse polarity has an R suffix.

1-39

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N1519A
1N1520
1N1520A
1N1521
1N1521A
1N1522
1N1522A
1N1523
1N1523A
1N1524
1N1524A
1N1525

1N4732A
1N4734
1N4734A
1N4736
1N4736A
1N4738
1N4738A
1N4740
1N4740A
1N4742
1N4742A
1N4744

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1609
1N1609A
1N1735
1N1743
1N1744
1N1765
1N1765A
1N1766
1N1766A
1N1767
1N1767A
1N1768

1N2988RA
1N2988RB
1N823
1N2974A
1N4740
1N4734
1N4734A
1N4735
1N4735A
1N4736
1N4736A
1N4737

4-15
4-15
4-10
4-15
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1525A
1N1526
1N1526A
1N1527
1N1527A
1N1528
1N1528A
1N1588
1N1588A
1N1589
1N1589A
1N1590

1N4744A
1N4746
1N4746A
1N4748
1N4748A
1N4750
1N4750A
1N3993A
1N3993A
1N3995A
1N3995A
1N3997A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-27
4-27
4-27
4-27
4-27

1N1768A
1N1769
1N1769A
1N1770
1N1770A
1N1771
1N1771A
1N1772
1N1772A
1N1773
1N1773A
1N1774

1N4737A
1N4738
1N4738A
1N4739
1N4739A
1N4740
1N4740A
1N4741
1N4741A
1N4742
1N4742A
1N4743

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1590A
1N1591
1N1591A
1N1592
1N1592A
1N1593
1N1593A
1N1594
1N1594A
1N1595
1N1595A
1N1596

1N3997A
1N2970RA
1N2970RB
1N2972RA
1N2972RB
1N2974RA
1N2974RB
1N2976RA
1N2976RB
1N2979RA
1N2979RB
1N2982RA

4-27
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1774A
1N1775
1N1775A
1N1776
1N1776A
1N1777
1N1777A
1N1778
1N1778A
1N1779
1N1779A
1N1780

1N4743A
1N4744
1N4744A
1N4745
1N4745A
1N4746
1N4746A
1N4747
1N4747A
1N4748
1N4748A
1N4749

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1596A
1N1597A
1N1598
1N1598A
1N1599
1N1599A
1N1600
1N1600A
1N1601
1N1601A
1N1602
1N1602A

1N2982RB
1N2985RB
1N2988RA
1N2988RB
1N3993A
1N3993A
1N3995A
1N3995A
1N3997A
1N3997A
1N2970RA
1N2970RB

4-15
4-15
4-15
4-15
4-27
4-27
4-27
4-27
4-27
4-27
4-15
4-15

1N1780A
1N1781
1N1781A
1N1782
1N1782A
1N1783
1N1783A
1N1784
1N1784A
1N1785
1N1785A
1N1786

1N4749A
1N4750
1N4750A
1N4751
1N4751A
1N4752
1N4752A
1N4753
1N4753A
1N4754
1N4754A
1N4755

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1603
1N1603A
1N1604
1N1604A
1N1605
1N1605A
1N1606
1N1606A
1N1607
1N1607A
1N1608
1N1608A

1N2972RA
1N2972RB
1N2974RA
1N2974RB
1N2976RA
1N2976RB
1N2979RA
1N2979RB
1N2982RA
1N2982RB
1N2985RA
1N2985RB

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1786A
1N1787
1N1787A
1N1788
1N1788A
1N1789
1N1789A
1N1790
1N1790A
1N1791
1N1791A
1N1792

1N4755A
1N4756
1N4756A
1N4757
1N4757A
1N4758
1N4758A
1N4759
1N4759A
1N4760
1N4760A
1N4761

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

Note: Reverse polarity has an R suffix_

1-40

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N1792A
1N1793
1N1793A
1N1794
1N1794A
1N1795
1N1795A
1N1803
1N1803A
1N1804
1N1804A
1N1805

1N4761 A
1N4762
1N4762A
1N4763
1N4763A
1N4764
1N4764A
1N3997RA
1N3997RA
1N3998RA
1N3998RA
1N2970A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-27
4-27
4-27
4-27
4-15

1N1829A
1N1830
1N1830A
1N1831
1N1831A
1N1832
1N1832A
1N1833
1N1833A
1N1834
1N1834A
1N1835

1N29958
1N2997A
1N29978
1N2999A
1N29998
1N3000A
1N30008
1N3001A
1N30018
1N3002A
1N30028
1N3003A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1805A
1N1806
1N1806A
1N1807
1N1807A
1N1808
1N1808A
1N1809
1N1809A
1N1810
1N1810A
1N1811

1N29708
1N2971A
1N29718
1N2972A
1N29728
1N2973A
1N29738
1N3007A
1N30078
1N3008A
1N30088
1N3009A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1835A
1N1836
1N1836A
1N1876
1N1877
1N1878
1N1879
1N1880
1N1881
1N1882
1N1883
1N1884

1N30038
1N3004A
1N30048
1N4740
1N4742
1N4744
1N4746
1N4748
1N4750
1N4752
1N4754
1N4756

4-15
4-15
4-15
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N1811A
1N1812
1N1812A
1N1813
1N1813A
1N1814
1N1814A
1N1815
1N1815A
1N1816
1N1816A
1N1817

1N30098
1N3011A
1N30118
1N3012A
1N30128
1N3014A
1N30148
1N3015A
1N30158
1N2977A
1N29778
1N2979A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1885
1N1886
1N1887
1N1888
1N1891
1N1892
1N1893
1N1894
1N1895
1N1896
1N1897
1N1898

1N4758
1N4760
1N4762
1N4764
1N2972A
1N2974A
1N2976A
1N2979A
1N2982A
1N2985A
1N2988A
1N2990A

4-36
4-36
4-36
4-36
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1817A
1N1818
1N1818A
1N1819
1N1819A
1N1820
1N1820A
1N1821
1N1821A
1N1822
1N1822A
1N1823

1N29798
1N2980A
1N29808
1N2982A
1N29828
1N2984A
1N29848
1N2985A
1N29858
1N2986A
1N29868
1N2988A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1899
1N1900
1N1901
1N1902
1N1903
1N1904
1N1905
1N1906
1N1927
1N1928
1N1929
1N1930

1N2992A
1N2995A
1N2999A
1N3001A
1N3003A
1N3005A
1N3008A
1N3011A
1N5228A
1N5230A
1N5232A
1N5235A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-40
4-40
4-40
4-40

1N1823A
1N1824
1N1824A
1N1825
1N1825A
1N1826
1N1826A
1N1827
1N1827A
1N1828
1N1828A
1N1829

1N29888
1N2989A
1N29898
1N2990A
1N29908
1N2991A
1N29918
1N2992A
1N29928
1N2993A
1N29938
1N2995A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1931
1N1932
1N1933
1N1934
1N1935
1N1936
1N1937
1N1938
1N1939
1N1940
1N1941
1N1942

1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A
1N5254A
1N5257A
1N5259A
1N5261A
1N5263A
1N5266A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

Note: Reverse polarity has an R suffix.

1-41

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N1943
1N1944
1N1945
1N1946
1N1947
1N1954
1N1955
1N1956
1N1957
1N1958
1N1959
1N1960

1N5268A
1N5271A
1N5273A
1N5276A
1N5279A
1N5228A
1N5230A
1N5232A
1N5235A
1N5237A
1N5240A
1N5242A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N2038
1N2039
1N2040
1N2041
1N2042
1N2043
1N2044
1N2045
1N2046
1N2047
1N2048
1N2049

1N4745
1N4747
1N4749
1N3995A
1N3997A
1N2970RA
1N2973RA
1N2974RB
1N2977RA
1N2980RA
1N2983RA
1N2986RA

4-36
4-36
4-36
4-27
4-27
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1961
1N1962
1N1963
1N1964
1N1965
1N1966
1N1967
1N1968
1N1969
1N1970
1N1971
1N1972

1N5245A
1N5248A
1N5251A
1N5254A
1N5257A
1N5259A
1N5261A
1N5263A
1N5266A
1N5268A
1N5271A
1N5273A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N2387
1N2498
1N2498A
1N2499
1N2499A
1N2500
1N2500A
1N2765
1N2765A
1N2783
1N2937
1N2970A

1N4751
1N2974A
1N2974B
1N2975A
1N2975B
1N2976A
1N2976B
1N823A
1N825A
1N3000A
1N2996A
1N2970A

4-36
4-15
4-15
4-15
4-15
4-15
4-15
4-10
4-10
4-15
4-15
4-15

1N1973
1N1974
1N1981
1N1982
1N1983
1N1984
1N1985
1N1986
1N1987
1N1988
1N1989
1N1990

1N5276A
1N5279A
1N5228A
1N5230A
1N5232A
1N5235A
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N2970B
1N2970BJAN
1N2970BJTX
1N2970RA
1N2970RB
1N2971A
1N2971B
1N2971BJAN
1N2971BJTX
1N2971RA
1N2971RB
1N2972A

1N2970B
1N2970BJAN
1N2970BJTX
1N2970RA
1N2970RB
1N2971A
1N2971B
1N2971BJAN
1N2971BJTX
1N2971RA
1N2971RB
1N2972A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N1991
1N1992
1N1993
1N1994
1N1995
1N1996
1N1997
1N1998
1N1999
1N2000
1N2001
1N2008

1N5254A
1N5257A
1N5259A
1N5261A
1N5263A
1N5266A
1N5268A
1N5271A
1N5273A
1N5276A
1N5279A
1N3005A

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-15

1N2972B
1N2972BJAN
1N2972BJTX
1N2972RA
1N2972RB
1N2973A
1N2973B
1N2973BJAN
1N2973BJTX
1N2973RA
1N2973RB
1N2974A

1N2972B
1N2972BJAN
1N2972BJTX
1N2972RA
1N2972RB
1N2973A
1N2973B
1N2973BJAN
1N2973BJTX
1N2973RA
1N2973RB
1N2974A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2009
1N2010
1N2011
1N2012
1N2012A
1N2012AR
1N2032
1N2033
1N2034
1N2035
1N2036
1N2037

1N3007A
1N3008A
1N3009A
1N3011A
1N3011B
1N3011B
1N4732
1N4734
1N4736
1N4739
1N4740
1N4743

4-15
4-15
4-15
4-15
4-15
4-15
4-36
4-36
4-36
4-36
4-36
4-36

1N2974B
1N2974BJAN
1N2974BJTX
1N2974RA
1N2974RB
1N2975A
1N2975B
1N2975BJAN
1N2975BJTX
1N2975RA
1N2975RB
1N2976A

1N2974B
1N2974BJAN
1N2974BJTX
1N2974RA
1N2974RB
1N2975A
1N2975B
1N2975BJAN
1N2975BJTX
1N2975RA
1N2975RB
1N2976A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

Note: Reverse polarity has an R suffix.

1-42

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N2976B
1N2976BJAN
1N2976BJTX
1N2976RA
1N2976RB
1N2977A
1N2977B
1N2977BJAN
1N2977BJTX
1N2977RA
1N2977RB
1N2978A

1N2976B
1N2976BJAN
1N2976BJTX
1N2976RA
1N2976RB
1N2977A
1N2977B
1N2977BJAN
1N2977BJTX
1N2977RA
1N2977RB
1N2978A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2986RB
1N2987A
1N2987B
1N2987RA
1N2988A
1N2988B
1N2988BJAN
1N2988BJTX
1N2988RA
1N2988RB
1N2989A
1N2989B

1N2986RB
1N2987A
1N2987B
1N2987RA
1N2988A
1N2988B
1N2988BJAN
1N2988BJTX
1N2988RA
1N2988RB
1N2989A
1N2989B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2978B
1N2978RA
1N2978RB
1N2979A
1N2979B
1N2979BJAN
1N2979BJTX
1N2979RA
1N2979RB
1N2980A
1N2980B
1N2980BJAN

1N2978B
1N2978RA
1N2978RB
1N2979A
1N2979B
1N2979BJAN
1N2979BJTX
1N2979RA
1N2979RB
1N2980A
1N2980B
1N2980BJAN

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2989BJAN
1N2989BJTX
1N2989RA
1N2989RB
1N2990A
1N2990B
1N2990BJAN
1N2990BJTX
1N2990RA
1N2990RB
1N2991A
1N2991B

1N2989BJAN
1N2989BJTX
1N2989RA
1N2989RB
1N2990A
1N2990B
1N2990BJAN
1N2990BJTX
1N2990RA
1N2990RB
1N2991A
1N2991B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2980BJTX
1N2980RA
1N2980RB
1N2981A
1N2981B
1N2981RA
1N2981RB
1N2982A
1N2982B
1N2982BJAN
1N2982BJTX
1N2982RA

1N2980BJTX
1N2980RA
1N2980RB
1N2981A
1N2981B
1N2981RA
1N2981RB
1N2982A
1N2982B
1N2982BJAN
1N2982BJTX
1N2982RA

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2991BJAN
1N2991BJTX
1N2991RA
1N2991RB
1N2992A
1N2992B
1N2992BJAN
1N2992BJTX
1N2992RA
1N2992RB
1N2993A
1N2993B

1N2991BJAN
1N2991BJTX
1N2991RA
1N2991RB
1N2992A
1N2992B
1N2992BJAN
1N2992BJTX
1N2992RA
1N2992RB
1N2993A
1N2993B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2982RB
1N2983A
1N2983B
1N2983BJAN
1N2983BJTX
1N2983RA
1N2983RB
1N2984A
1N2984B
1N2984BJAN
1N2984BJTX
1N2984RA

1N2982RB
1N2983A
1N2983B
1N2983BJAN
1N2983BJTX
1N2983RA
1N2983RB
1N2984A
1N2984B
1N2984BJAN
1N2984BJTX
1N2984RA

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2993BJAN
1N2993BJTX
1N2993RA
1N2993RB
1N2994A
1N2994B
1N2994RA
1N2995A
1N2995B
1N2995RA
1N2995RB
1N2996A

1N2993BJAN
1N2993BJTX
1N2993RA
1N2993RB
1N2994A
1N2994B
1N2994RA
1N2995A
1N2995B
1N2995RA
1N2995RB
1N2996A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2984RB
1N2985A
1N2985B
1N2985BJAN
1N2985BJTX
1N2985RA
1N2985RB
1N2986A
1N2986B
1N2986BJAN
1N2986BJTX
1N2986RA

1N2984RB
1N2985A
1N2985B
1N2985BJAN
1N2985BJTX
1N2985RA
1N2985RB
1N2986A
1N2986B
1N2986BJAN
1N2986BJTX
1N2986RA

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N2996B
1N2996BJAN
1N2996BJTX
1N2996RA
1N2996RB
1N2997A
1N2997B
1N2997BJAN
1N2997BJTX
1N2997RA
1N2997RB
1N2998A

1N2996B
1N2996BJAN
1N2996BJTX
1N2996RA
1N2996RB
1N2997A
1N2997B
1N2997BJAN
1N2997BJTX
1N2997RA
1N2997RB
1N2998A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

Nole: Reverse polarity has an R suffix_

1-43

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N299BB
1N299BRA
1N299BRB
1N2999A
1N2999B
1N2999BJAN
1N2999BJTX
1N2999RA
1N2999RB
1N3000A
1N3000B
1N3000BJAN

1N299BB
1N299BRA
1N299BRB
1N2999A
1N2999B
1N2999BJAN
1N2999BJTX
1N2999RA
1N2999RB
1N3000A
1N3000B
1N3000BJAN

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N300BRB
1N3009A
1N3009B
1N3009BJAN
1N3009BJTX
1N3009RA
1N3009RB
1N3010A
1N3010B
1N3010RA
1N3010RB
1N3011A

1N300BRB
1N3009A
1N3009B
1N3009BJAN
1N3009BJTX
1N3009RA
1N3009RB
1N3010A
1N3010B
1N3010RA
1N3010RB
1N3011A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3000BJTX
1N3000RA
1N3000RB
1N3001 A
1N3001B
1N3001BJAN
1N3001BJTX
1N3001RA
1N3001RB
1N3002A
1N3002B
1N3002BJAN

1N3000BJTX
1N3000RA
1N3000RB
1N3001A
1N3001B
1N3001BJAN
1N3001BJTX
1N3001RA
1N3001RB
1N3002A
1N3002B
1N3002BJAN

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3011B
1N3011BJAN
1N3011BJTX
1N3011RA
1N3011RB
1N3012A
1N3012B
1N3012BJAN
1N3012BJTX
1N3012RA
1N3012RB
1N3013A

1N3011B
1N3011BJAN
1N3011BJTX
1N3011RA
1N3011RB
1N3012A
1N3012B
1N3012BJAN
1N3012BJTX
1N3012RA
1N3012RB
1N3013A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3002BJTX
1N3002RA
1N3002RB
1N3003A
1N3003B
1N3003BJAN
1N3003BJTX
1N3003RA
1N3003RB
1N3004A
1N3004B
1N3004BJAN

1N3002BJTX
1N3002RA
1N3002RB
1N3003A
1N3003B
1N3003BJAN
1N3003BJTX
1N3003RA
1N3003RB
1N3004A
1N3004B
1N3004BJAN

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3013B
1N3013BJAN
1N3013BJTX
1N3013RA
1N3013RB
1N3014A
1N3014B
1N3014BJAN
1N3014BJTX
1N3014RA
1N3014RB
1N3015A

1N3013B
1N3013BJAN
1N3013BJTX
1N3013RA
1N3013RB
1N3014A
1N3014B
1N3014BJAN
1N3014BJTX
1N3014RA
1N3014RB
1N3015A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3004BJTX
1N3004RA
1N3004RB
1N3005A
1N3005B
1N3005BJAN
1N3005BJTX
1N3005RA
1N3005RB
1N3006A
1N3006B
1N3006RA

1N3004BJTX
1N3004RA
1N3004RB
1N3005A
1N3005B
1N3005BJAN
1N3005BJTX
1N3005RA
1N3005RB
1N3006A
1N3006B
1N3006RA

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3015B
1N3015BJAN
1N3015BJTX
1N3015RA
1N3015RB
1N3016A
1N3016B
1N3016BJAN
1N3016BJTX
1N3017A
1N3017B
1N3017BJAN

1N3015B
1N3015BJAN
1N3015BJTX
1N3015RA
1N3015RB
1N3016A
1N3016B
1N3016BJAN
1N3016BJTX
1N3017A
1N3017B
1N3017BJAN

4-15
4-15
4-15
4-15
4-15
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3006RB
1N3007A
1N3007B
1N3007BJAN
1N3007BJTX
1N3007RA
1N3007RB
1N300BA
1N300BB
1N300BBJAN
1N300BBJTX
1N300BRA

1N3006RB
1N3007A
1N3007B
1N3007BJAN
1N3007BJTX
1N3007RA
1N3007RB
1N300BA
1N300BB
1N300BBJAN
1N300BBJTX
1N300BRA

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N3017BJTX
1N301BA
1N301BB
1N301BBJAN
1N301BBJTX
1N3019A
1N3019B
1N3019BJAN
1N3019BJTX
1N3020A
1N3020B
1N3020BJAN

1N3017BJTX
1N301BA
1N301BB
1N301BBJAN
1N301BBJTX
1N3019A
1N3019B
1N3019BJAN
1N3019BJTX
1N3020A
1N3020B
1N3020BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

Nole: Reverse polarity has an R suffix_

1-44

II

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N3343B
1N3343BJAN
1N3343BJTX
1N3343RA
1N3343RB
1N3344A
1N3344B
1N3344BJAN
1N3344BJTX
1N3344RA
1N3344RB
1N3345A

1N3343B
1N3343BJAN
1N3343BJTX
1N3343RA
1N3343RB
1N3344A
1N3344B
1N3344BJAN
1N3344BJTX
1N3344RA
1N3344RB
1N3345A

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3424
1N3427
1N3428
1N3429
1N3430
1N3431
1N3432
1N3433
1N3434
1N3435
1N3436
1N3437

1N5261A
1N5268A
1N5271 A
1N5273A
1N5276A
1N5279A
1N5281 A
1N4738
1N4740
1N4742
1N4744
1N4746

4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·36
4·36
4·36
4·36
4·36

1N3345B
1N3345BJAN
1N3345BJTX
1N3345RA
1N3345RB
1N3346A
1N3346B
1N3346BJAN
1N3346BJTX
1N3346RA
1N3346RB
1N3347A

1N3345B
1N3345BJAN
1N3345BJTX
1N3345RA
1N3345RB
1N3346A
1N3346B
1N3346BJAN
1N3346BJTX
1N3346RA
1N3346RB
1N3347A

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3438
1N3439
1N3440
1N3441
1N3443
1N3444
1N3445
1N3446
1N3447
1N3448
1N3449
1N3450

1N4748
1N4750
1N4752
1N4754
1N4735
1N4736
1N4738
1N4740
1N4742
1N4744
1N4746
1N4748

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

1N3347B
1N3347BJAN
1N3347BJTX
1N3347RA
1N3347RB
1N3348A
1N3348B
1N3348BJAN
1N3348BJTX
1N3348RA
1N3348RB
1N3349A

1N3347B
1N3347BJAN
1N3347BJTX
1N3347RA
1N3347RB
1N3348A
1N3348B
1N3348BJAN
1N3348BJTX
1N3348RA
1N3348RB
1N3349A

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3451
1N3452
1N3453
1N3454
1N3457
1N3459
1N3477
1N3477A
1N3496
1N3497
1N3498
1N3499

1N4750
1N4751
1N4752
1N4754
1N4760
1N4764
1N5221 A
1N5221B
1N823
1N825
1N827
1N829

4·36
4·36
4·36
4·36
4·36
4·36
4·40
4-40
4·10
4·10
4·10
4·10

1N3349B
1N3349BJAN
1N3349BJTX
1N3349RA
1N3349RB
1N3350A
1N3350B
1N3350BJAN
1N3350BJTX
1N3350RA
1N3350RB
1N3411

1N3349B
1N3349BJAN
1N3349BJTX
1N3349RA
1N3349RB
1N3350A
1N3350B
1N3350BJAN
1N3350BJTX
1N3350RA
1N3350RB
1N5234A

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·40

1N3500
1N3501
1N3502
1N3503
1N3504
1N3506
1N3507
1N3508
1N3509
1N3510
1N3511
1N3512

1N821
MZ640
MZ620
MZ610
MZ605
1N5226B
1N5227B
1N5228B
1N5229B
1N5230B
1N5231B
1N5232B

4·10
4·101
4·101
4·101
4·101
4·40
4·40
4-40
4·40
4·40
4·40
4·40

1N5235A
1N5236A
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A
1N5254A
1N5256A
1N5257A
1N5259A

4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4-40
4·40
4-40

1N3513
1N3514
1N3515
1N3516
1N3517
1N3518
1N3519
1N3520
1N3521
1N3522
1N3523
1N3524

1N5234B
1N5235B
1N5236B
1N5237B
1N5239B
1N5240B
1N5241B
1N5242B
1N5243B
1N5245B
1N5246B
1N5248B

4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40

1N3412
1N3413
1N3414
1N3415
1N3416
1N3417
1N3418
1N3419
1N3420
1N3421
1N3422
1N3423

Note: Reverse polarity has an R suffix.

1-48

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N3321RB
1N3322A
1N3322B
1N3322RA
1N3322RB
1N3323A
1N3323B
1N3323BJAN
1N3323BJTX
1N3323RA
1N3323RB
1N3324A

1N3321RB
1N3322A
1N3322B
1N3322RA
1N3322RB
1N3323A
1N3323B
1N3323BJAN
1N3323BJTX
1N3323RA
1N3323RB
1N3324A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3332RB
1N3333A
1N3333B
1N3333RA
1N3333RB
1N3334A
1N3334B
1N3334BJAN
1N3334BJTX
1N3334RA
1N3334RB
1N3335A

1N3332RB
1N3333A
1N3333B
1N3333RA
1N3333RB
1N3334A
1N3334B
1N3334BJAN
1N3334BJTX
1N3334RA
1N3334RB
1N3335A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3324B
1N3324BJAN
1N3324BJTX
1N3324RA
1N3324RB
1N3325A
1N3325B
1N3325BJAN
1N3325BJTX
1N3325RA
1N3325RB
1N3326A

1N3324B
1N3324BJAN
1N3324BJTX
1N3324RA
1N3324RB
1N3325A
1N3325B
1N3325BJAN
1N3325BJTX
1N3325RA
1N3325RB
1N3326A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3335B
1N3335BJAN
1N3335BJTX
1N3335RA
1N3335RB
1N3336A
1N3336B
1N3336BJAN
1N3336BJTX
1N3336RA
1N3336RB
1N3337A

1N3335B
1N3335BJAN
1N3335BJTX
1N3335RA
1N3335RB
1N3336A
1N3336B
1N3336BJAN
1N3336BJTX
1N3336RA
1N3336RB
1N3337A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3326B
1N3326BJAN
1N3326BJTX
1N3326RA
1N3326RB
1N3327A
1N3327B
1N3327BJAN
1N3327BJTX
1N3327RA
1N3327RB
1N3328A

1N3326B
1N3326BJAN
1N3326BJTX
1N3326RA
1N3326RB
1N3327A
1N3327B
1N3327BJAN
1N3327BJTX
1N3327RA
1N3327RB
1N3328A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3337B
1N3337BJAN
1N3337BJTX
1N3337RA
1N3337RB
1N333BA
1N3338B
1N3338BJAN
1N3338BJTX
1N3338RA
1N3338RB
1N3339A

1N3337B
1N3337BJAN
1N3337BJTX
1N3337RA
1N3337RB
1N3338A
1N3338B
1N3338BJAN
1N3338BJTX
1N3338RA
1N3338RB
1N3339A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3328B
1N3328BJAN
1N3328BJTX
1N332BRA
1N332BRB
1N3329A
1N3329B
1N3329RA
1N3329RB
1N3330A
1N3330B
1N3330BJAN

1N3328B
1N3328BJAN
1N3328BJTX
1N3328RA
1N3328RB
1N3329A
1N3329B
1N3329RA
1N3329RB
1N3330A
1N3330B
1N3330BJAN

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3339B
1N3339BJAN
1N3339BJTX
1N3339RA
1N3339RB
1N3340A
1N3340B
1N3340BJAN
1N3340BJTX
1N3340RA
1N3340RB
1N3341A

1N3339B
1N3339BJAN
1N3339BJTX
1N3339RA
1N3339RB
1N3340A
1N3340B
1N3340BJAN
1N3340BJTX
1N3340RA
1N3340RB
1N3341A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3330BJTX
1N3330RA
1N3330RB
1N3331A
1N3331B
1N3331RA
1N3331RB
1N3332A
1N3332B
1N3332BJAN
1N3332BJTX
1N3332RA

1N3330BJTX
1N3330RA
1N3330RB
1N3331A
1N3331B
1N3331RA
1N3331RB
1N3332A
1N3332B
1N3332BJAN
1N3332BJTX
1N3332RA

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N3341B
1N3341BJAN
1N3341BJTX
1N3341RA
1N3341RB
1N3342A
1N3342B
1N3342BJAN
1N3342BJTX
1N3342RA
1N3342RB
1N3343A

1N3341B
1N3341BJAN
1N3341BJTX
1N3341RA
1N3341RB
1N3342A
1N3342B
1N3342BJAN
1N3342BJTX
1N3342RA
1N3342RB
1N3343A

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

Note: Reverse polarity has an R suffix_

'-47

a

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

II

1N3050BJTX
1N3051A
1N3051B
1N3051BJAN
1N3051BJTX
1N3098
1N3098A
1N3099 w
1N3099A
1N3100
1N3100A
1N3101
1N3101A
1N3102
1N3102A
1N3103
1N3103A
1N3104
1N3104A
1N3105
1N3105A
1N3112
1N3154A
1N3181

Motorola
Direct
Replacement

Motorola
Similar
Replacement

1N3050BJTX
1N3051A
1N3051B
1N3051BJAN
1N3051BJTX
1N3046A
1N3046A
1N3048A
1N3048A
1N3050A
1N3050A
1N3051A
1N3051A
1N3008A
1N3008A
1N3011A
1N3011A
1N3014A
1N3014A
1N3015A
1N3015A
1N4737A
1N2977B
1N5237A

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

4·21
4·21
4·21
4·21
4·21
4·21
4·21
4·21
4·21
4·21
4·21
4·21

1N3310RB
1N3311A
1N3311B
1N3311BJAN
1N3311BJTX
1N3311RA
1N3311RB
1N3312A
1N3312B
1N3312BJAN
1N3312BJTX
1N3312RA

1N3310RB
1N3311A
1N3311B
1N3311BJAN
1N3311BJTX
1N3311RA
1N3311RB
1N3312A
1N3312B
1N3312BJAN
1N3312BJTX
1N3312RA

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

4·21
4·15
4·15
4·15
4·15
4·15
4·15
4·15
4·15
4·36
4·15
4·40

1N3312RB
1N3313A
1N3313B
1N3313RA
1N3313RB
1N3314A
1N3314B
1N3314BJAN
1N3314BJTX
1N3314RA
1N3314RB
1N3315A

1N3312RB
1N3313A
1N3313B
1N3313RA
1N3313RB
1N3314A
1N3314B
1N3314BJAN
1N3314BJTX
1N3314RA
1N3314RB
1N3315A

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3198
1N3305A
1N3305B
1N3305BJAN
1N3305BJTX
1N3305RA
1N3305RB
1N3306A
1N3306B
1N3306BJAN
1N3306BJTX
1N3306RA

1N3305A
1N3305B
1N3305BJAN
1N3305BJTX
1N3305RA
1N3305RB
1N3306A
1N3306B
1N3306BJAN
1N3306BJTX
1N3306RA

4·40
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3315B
1N3315BJAN
1N3315BJTX
1N3315RA
1N3315RB
1N3316A
1N3316B
1N3316RA
1N3316RB
1N3317A
1N3317B
1N3317BJAN

1N3315B
1N3315BJAN
1N3315BJTX
1N3315RA
1N3315RB
1N3316A
1N3316B
1N3316RA
1N3316RB
1N3317A
1N3317B
1N3317BJAN

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3306RB
1N3307A
1N3307B
1N3307BJAN
1N3307BJTX
1N3307RA
1N3307RB
1N3308A
1N3308B
1N3308BJAN
1N3308BJTX
1N3308RA

1N3306RB
1N3307A
1N3307B
1N3307BJAN
1N3307BJTX
1N3307RA
1N3307RB
1N3308A
1N3308B
1N3308BJAN
1N3308BJTX
1N3308RA

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3317BJTX
1N3317RA
1N3317RB
1N3318A
1N3318B
1N3318RA
1N3318RB
1N3319A
1N3319B
1N3319BJAN
1N3319BJTX
1N3319RA

1N3317BJTX
1N3317RA
1N3317RB
1N3318A
1N3318B
1N3318RA
1N3318RB
1N3319A
1N3319B
1N3319BJAN
1N3319BJTX
1N3319RA

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3308RB
1N3309A
1N3309B
1N3309BJAN
1N3309BJTX
1N3309RA
1N3309RB
1N3310A
1N3310B
1N3310BJAN
1N3310BJTX
1N3310RA

1N3308RB
1N3309A
1N3309B
1N3309BJAN
1N3309BJTX
1N3309RA
1N3309RB
1N3310A
1N3310B
1N3310BJAN
1N3310BJTX
1N3310RA

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N3319RB
1N3320A
1N3320B
1N3320BJAN
1N3320BJTX
1N3320RA
1N3320RB
1N3321A
1N3321B
1N3321BJAN
1N3321BJTX
1N3321RA

1N3319RB
1N3320A
1N3320B
1N3320BJAN
1N3320BJTX
1N3320RA
1N3320RB
1N3321A
1N3321B
1N3321BJAN
1N3321BJTX
1N3321RA

4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17
4·17

1N5221B

Note: Reverse polarity has an R suffix.

1-46

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Partlliumber

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N3020BJTX
1N3021A
1N3021B
1N3021BJAN
1N3021BJTX
1N3022A
1N3022B
1N3022BJAN
1N3022BJTX
1N3023A
1N3023B
1N3023BJAN

1N3020BJTX
1N3021A
1N3021B
1N3021BJAN
1N3021BJTX
1N3022A
1N3022B
1N3022BJAN
1N3022BJTX
1N3023A
1N3023B
1N3023BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3035BJTX
1N3036A
1N3036B
1N3036BJAN
1N3036BJTX
1N3037A
1N3037B
1N3037BJAN
1N3037BJTX
1N3038A
1N3038B
1N3038BJAN

1N3035BJTX
1N3036A
1N3036B
1N3036BJAN
1N3036BJTX
1N3037A
1N3037B
1N3037BJAN
1N3037BJTX
1N3038A
1N3038B
1N3038BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3023BJTX
1N3024A
1N3024B
1N3024BJAN
1N3024BJTX
1N3025A
1N3025B
1N3025BJAN
1N3025BJTX
1N3026A
1N3026B
1N3026BJAN

1N3023BJTX
1N3024A
1N3023B
1N3024BJAN
1N3024BJTX
1N3025A
1N3025B
1N3025BJAN
1N3025BJTX
1N3026A
1N3026B
1N3026BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3038BJTX
1N3039A
1N3039B
1N3039BJAN
1N3039BJTX
1N3040A
1N3040B
1N3040BJAN
1N3040BJTX
1N3041A
1N3041B
1N3041BJAN

1N3038BJTX
1N3039A
1N3039B
1N3039BJAN
1N3039BJTX
1N3040A
1N3040B
1N3040BJAN
1N3040BJTX
1N3041A
1N3041 B
1N3041BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3026BJTX
1N3027A
1N3027B
1N3027BJAN
1N3027BJTX
1N3028A
1N3028B
1N3028BJAN
1N3028BJTX
1N3029A
1N3029B
1N3029BJAN

1N3026BJTX
1N3027A
1N3027B
1N3027BJAN
1N3027BJTX
1N3028A
1N3028B
1N3028BJAN
1N3028BJTX
1N3029A
1N3029B
1N3029BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3041BJTX
1N3042A
1N3042B
1N3042BJAN
1N3042BJTX
1N3043A
1N3043B
1N3043BJAN
1N3043BJTX
1N3044A
1N3044B
1N3044BJAN

1N3041BJTX
1N3042A
1N3042B
1N3042BJAN
1N3042BJTX
1N3043A
1N3043B
1N3043BJAN
1N3043BJTX
1N3044A
1N3044B
1N3044BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3029BJTX
1N3030A
1N3030B
1N3030BJAN
1N3030BJTX
1N3031A
1N3031 B
1N3031BJAN
1N3031BJTX
1N3032A
1N3032B
1N3032BJAN

1N3029BJTX
1N3030A
1N3030B
1N3030BJAN
1N3030BJTX
1N3031 A
1N3031B
1N3031BJAN
1N3031 BJTX
1N3032A
1N3032B
1N3032BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3044BJTX
1N3045A
1N3045B
1N3045BJAN
1N3045BJTX
1N3046A
1N3046B
1N3046BJAN
1N3046BJTX
1N3047A
1N3047B
1N3047BJAN

1N3044BJTX
1N3045A
1N3045B
1N3045BJAN
1N3045BJTX
1N3046A
1N3046B
1N3046BJAN
1N3046BJTX
1N3047A
1N3047B
1N3047BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3032BJTX
1N3033A
1N3033B
1N3033BJAN
1N3033BJTX
1N3034A
1N3034B
1N3034BJAN
1N3034BJTX
1N3035A
1N3035B
1N3035BJAN

1N3032BJTX
1N3033A
1N3033B
1N3033BJAN
1N3033BJTX
1N3034A
1N3034B
1N3034BJAN
1N3034BJTX
1N3035A
1N3035B
1N3035BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3047BJTX
1N3048A
1N3048B
1N3048BJAN
1N3048BJTX
1N3049A
1N3049B
1N3049BJAN
1N3049BJTX
1N3050A
1N3050B
1N3050BJAN

1N3047BJTX
1N3048A
1N3048B
1N3048BJAN
1N3048BJTX
1N3049A
1N3049B
1N3049BJAN
1N3049BJTX
1N3050A
1N3050B
1N3050BJAN

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

Note: Reverse polarity has an R suffix_

1-45

a

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
1N3525
1N3526
1N3527
1N3528
1N3529
1N3530
1N3531
1N3532
1N3533
1N3534
lN3553
1N3675
1N3675A
1N3675B
1N3676
1N3676A
1N3676B
1N3677
1N3677A
1N3677B
1N3678
1N3678A
1N3678B
1N3679

Motorola
Direct
Replacement

Motorola
Similar
Replacement
lN5250B
lN5251B
lN5252B
1N5254B
1N5256B
1N5257B
1N5258B
1N5259B
lN5260B
lN5261B
lN821

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4736

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-10
4-36

1N3691 A
1N3691B
1N3692
1N3692A
1N3692B
1N3693
1N3693A
1N3693B
1N3694
1N3694A
1N3694B
1N3695

1N4752
1N4752A
1N4753
1N4753
lN4753A
1N4754
1N4754
1N4754A
1N4755
1N4755
1N4755A
1N4756

4-36
4-36
4-36
4-36
4·36
4-36
4-36
4-36
4·36
4·36
4-36
4·36

1N4736
lN4736A
1N4737
1N4737
1N4737A
1N4738
1N4738
1N4738A
1N4739
1N4739
1N4739A
1N4740

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N3695A
1N3695B
1N3696
1N3696A
1N3696B
1N3697
1N3697A
1N3697B
1N3698
1N3698A
1N3698B
1N3699

1N4756
1N4756A
1N4757
1N4757
1N4757A
1N4758
1N4758
1N4758A
1N4759
1N4759
1N4759A
1N4760

4-36
4-36
4-36
4-36
4-36
4-36
4·36
4-36
4-36
4-36
4-36
4-36

1N3679A
1N3679B
1N3680
1N3680A
1N3680B
1N3681
1N3681A
1N3681B
1N3682
1N3682A
1N3682B
1N3683

1N4740
1N4740A
1N4741
1N4741
1N4741 A
1N4742
1N4742
1N4742A
1N4743
1N4743
lN4743A
1N4744

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N3699A
1N3699B
1N3700
1N3700A
1N3700B
1N3701
1N3701A
1N3701B
lN3702
1N3702A
1N3702B
1N3703

1N4760
1N4760A
1N4761
1N4761
1N4761 A
1N4762
1N4762
lN4762A
1N4763
1N4763
1N4763A
1N4764

4-36
4-36
4-36
4-36
4-36
4-36
4·36
4-36
4-36
4-36
4-36
4-36

1N3683A
1N3683B
1N3684
1N3684A
1N3684B
1N3685
1N3685A
1N3685B
1N3686
1N3686A
1N3686B
1N3687

1N4744
1N4744A
1N4745
1N4745
lN4745A
lN4746
lN4746
1N4746A
1N4747
1N4747
1N4747A
1N474B

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N3703A
1N3703B
1N3779
1N3780
1N3781
lN3782
1N3783
lN3784
1N3821
1N3821 A
1N3821AJAN
1N3821AJTX

1N4764
lN4764A

1N3821
1N3821A
lN3821AJAN
1N3821AJTX

4-36
4-36
4-10
4-10
4·10
4·10
4·10
4-10
4-21
4-21
4·21
4-21

1N3687A
1N3687B
1N3688
lN3688A
1N3688B
1N3689
1N3689A
1N3689B
1N3690
1N3690A
1N3690B
1N3691

1N4748
1N4748A
1N4749
1N4749
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751
1N4751A
1N4752

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N3822
1N3822A
1N3822AJAN
1N3822AJTX
1N3823
1N3823A
lN3823AJAN
1N3823AJTX
1N3824
1N3824A
1N3824AJAN
1N3824AJTX

1N3822
1N3822A
1N3822AJAN
1N3822AJTX
1N3823
lN3823A
1N3823AJAN
lN3823AJTX
1N3824
1N3824A
1N3824AJAN
1N3824AJTX

4-21
4·21
4-21
4·21
4-21
4·21
4-21
4·21
4-21
4·21
4-21
4-21

Note: Reverse polarity has an R suffix.

1-49

1N821A
1N821A
1N823A
1N825A
1N827A
1N829A

ZENER INDEX CROSS-REFERENCE (Continued)
,
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

1N3825
1N3825A
1N3825AJAN
1N3825AJTX
1N3826
1N3826A
1N3826AJAN
1N3826AJTX
1N3827
1N3827A
1N3827AJAN
1N3827AJTX

1N3825
1N3825A
1N3825AJAN
1N3825AJTX
1N3826
1N3826A
1N3826AJAN
1N3826AJTX
1N3827
1N3827A
1N3827AJAN
1N3827AJTX

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3997AJTX
1N3997R
1N3997RA
1N3997R8
1N3998
1N3998A
1N3998AJAN
1N3998AJTX
1N3998R
1N3998RA
1N3998R8
1N3999

1N3828
1N3828A
1N3828AJAN
1N3828AJTX
1N3829
1N3829A
1N3829AJAN
1N3829AJTX
1N3830
1N3830A
1N3830AJAN
1N3830AJTX

1N3828
1N3828A
1N3828AJTX
1N3828AJTX
1N3829
1N3829A
1N3829AJAN
1N3829AJTX
1N3830
1N3830A
1N3830AJAN
1N3830AJTX

4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21
4-21

1N3999A
1N3999AJAN
1N3999AJTX
1N3999R
1N3999RA
1N3999R8
1N4000
1N4000A
1N4000AJAN
1N4000AJTX
1N4000R
1N4000RA

1N3999A
1N3999AJAN
1N3999AJTX
1N3999R
lN3999RA

4-15
4-65
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27

1N4000R8
1N4010
1N4016
1N4016A
1N40168
1N4017
1N4017A
1N40178
1N4018
1N4018A
1N40188
1N4019

1N4000R8

4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27

1N3949
1N3951
1N3984
1N3985
1N3986
1N3993
1N3993A
1N3993AJAN
1N3993AJTX
1N3993R
1N3993RA
1N3993R8

1N29848
1N59348
1N3997A
1N3998A
1N3998A
1N3993
1N3993A
1N3993AJAN
1N3993AJTX
1N3993R
1N3993RA
1N3993RA

1N3994
1N3994A
1N3994AJAN
1N3994AJTX
1N3994R
1N3994RA
1N3994R8
1N3995
1N3995A
1N3995AJAN
1N3995AJTX
1N3995R

1N3994
1N3994A
1N3994AJAN
1N3994AJTX
1N3994R
1N3994RA

1N3995RA
1N3995R8
1N3996
1N3996A
1N3996AJAN
1N3996AJTX
1N3996R
1N3996RA
1N3996R8
1N3997
1N3997A
1N3997AJAN

1N3995RA

1N3993RA
1N3995
1N3995A
1N3995AJAN
1N3995AJTX
1N3995R
1N3995RA
1N3996
1N3996A
1N3996AJAN
1N3996AJTX
1N3996R
1N3996RA
1N3996RA
1N3997
1N3997A
1N3997AJAN

Motorola
Similar
Replacement

1N3997AJTX
1N3997R
1N3997RA
1N3996RA
1N3998
1N3998A
1N3998AJAN
1N3998AJTX
1N3998R
1N3998RA
1N3998RA
1N3999

1N3999RA
1N4000
1N4000A
1N4000AJAN
1N4000AJTX
1N4000R
1N4000RA

Page #
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27
4-27

1N821
1N2972A
1N2972A
1N29728
1N2973A
1N2973A
1N29738
1N2974A
1N2974A
1N29748
1N2975A

4-27
4-10
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4019A
lN40198
1N4020
1N4020A
1N40208
1N4021
1N4021A
1N40218
1N4022
1N4022A
1N40228
1N4023

1N2975A
1N29758
1N2976A
1N2976A
1N29768
1N2977A
1N2977A
1N29778
lN2979A
1N2979A
1N29798
1N2980A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4023A
1N40238
1N4024
1N4024A
1N40248
1N4025
1N4025A
1N40258
1N4026
1N4026A
1N40268
1N4027

1N2980A
1N29808
1N2982A
1N2982A
1N29828
1N2984A
1N2984A
1N29848
1N2985A
1N2985A
1N29858
1N2986A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

Note: Reverse polarity has an R suffix.

1-50

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4027A
1N40278
1N4028
1N4028A
1N40288
1N4029
1N4029A
1N40298
1N4030
1N4030A
1N40308
1N4031

1N2986A
1N29868
1N2988A
1N2988A
1N29888
1N2989A
1N2989A
1N29898
1N2990A
1N2990A
1N29908
1N2991 A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4101-1JTX
1N4101-1JTXV
1N4102
1N4102-1JAN
1N4102-1JTX
1N4102-1JTXV
1N4103
1N41 03-1 JAN
1N4103-1JTX
1N4103-1JTXV
1N4104
1N41 04-1 JAN

1N4101-1JTX
1N4101-1JTXV
1N4102
1N4102-1JAN
1N4102-1JTX
1N4102-1JTXV
1N4103
1N4103-1JAN
1N4103-1JTX
1N4103-1JTXV
1N4104
1N4104-1JAN

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4031 A
1N40318
1N4032
1N4032A
1N40328
1N4033
1N4033A
1N40338
1N4034
1N4034A
1N4034B
1N4035

1N2991A
1N29918
1N2992
1N2992A
1N29928
1N2993A
1N2993A
1N29938
1N2995A
1N2995A
1N2995B
1N2997A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

lN4104-1JTX
lN4104-1JTXV
1N4105
lN4106
lN4107
lN4108
1N4109
lN4110
lN4111
lN4112
1N4113
1N4114

1N4104-1JTX
1N4104-1JTXV
1N4105
1N4106
1N4107
1N4108
1N4109
1N4110
lN4111
1N4112
1N4113
1N4114

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4035A
1N40358
1N4036
1N4036A
1N40368
1N4037
1N4037A
1N40378
1N4038
1N4038A
1N40388
1N4039

1N2997A
1N2997B
1N2999A
1N2999A
1N29998
1N3000A
1N3000A
1N3000B
1N3001A
1N3001A
1N30018
1N3002A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4115
1N4116
1N4117
1N4118
1N4119
lN4120
1N4121
1N4122
1N4123
1N4124
1N4125
1N4126

lN4115
1N4116
1N4117
1N4118
lN4119
lN4120
lN4121
1N4122
lN4123
1N4124
1N4125
lN4126

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4039A
1N40398
1N4040
1N4040A
1N40408
1N4041
1N4041A
1N40418
1N4042
1N4042A
1N40428
1N4095

1N3002A
1N30028
1N3003A
1N3003A
1N30038
1N3004A
1N3004A
1N30048
1N3005A
1N3005A
1N30058
1N5231 A

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-40

1N4127
1N4128
lN4129
lN4130
lN4131
lN4132
lN4133
1N4134
1N4135
1N4158
lN4158A
1N41588

1N4127
lN4128
1N4129
1N4130
1N4131
1N4132
1N4133
lN4134
lN4135
1N4736
1N4736
lN4736A

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-36
4-36
4-36

1N4096
1N4097
1N4099
1N4099-1 JAN
1N4099-1 JTX
1N4099-1 JTXV
1N4100
1N4100-1JAN
1N4100-1JTX
1N4100-1JTXV
1N4101
1N4101-1JAN

1N4763A
1N4764A

4-36
4-36
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4159
lN4159A
1N41598
1N4160
1N4160A
lN41608
1N4161
lN4161A
lN41618
1N4162
lN4162A
1N41628

1N4737
1N4737
1N4737A
1N4738
1N4738
1N4738A
1N4739
lN4739
1N4739A
lN4740
lN4740
1N4740A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4099
1N4099-1 JAN
1N4099-1 JTX
1N4099-1 JTXV
1N4100
1N41 00-1 JAN
1N4100-1 JTX
1N4100-1JTXV
1N4101
1N4101-1JAN

Note: Reverse polarity has an R suffix_

1-51

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4163
1N4163A
1N4163B
1N4164
1N4164A
1N4164B
1N4165
1N4165A
1N4165B
1N4166
1N4166A
1N4166B

1N4741
1N4741
1N4741 A
1N4742
1N4742
1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4183
1N4183A
1N4183B
1N4184
1N4184A
1N4184B
1N4185
1N4185A
1N4185B
1N4186
1N4186A
1N4186B

1N4761
1N4761
1N4761A
1N4762
1N4762
1N4762A
1N4763
1N4763
1N4763A
1N4764
1N4764
1N4764A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4167
1N4167A
1N4167B
1N4168
1N4168A
1N4168B
1N4169
1N4169A
1N4169B
1N4170
1N4170A
1N4170B

1N4745
1N4745
1N4745A
1N4746
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-~6

1N4194
1N4194A
1N4194B
1N4195
1N4195A
1N4195B
1N4196
1N4196A
1N4196B
1N4197
1N4197A
1N4197B

1N2970A
1N2970A
1N2970B
1N2971A
1N2971A
1N2971B
1N2972A
1N2972A
1N2972B
1N2973A
1N2973A
1N2973B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4171
1N4171A
1N4171B
1N4172
1N4172A
1N4172B
1N4173
1N4173A
1N4173B
1N4174
1N4174A
1N4174B

1N4749
1N4749
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751
1N4751A
1N4752
1N4752
1N4752A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4198
1N4198A
1N4198B
1N4199
1N4199A
1N4199B
1N4200
1N4200A
1N4200B
1N4201
1N4201 A
1N4201B

1N2974A
1N2974A
1N2974B
1N2975A
1N2975A
1N2975B
1N2976A
1N2976A
1N2976B
1N2977A
1N2977A
1N2977B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4175
1N4175A
1N4175B
1N4176
1N4176A
1N4176B
1N4177
1N4177A
1N4177B
1N4178
1N4178A
1N41788

1N4753
1N4753
1N4753A
1N4754
1N4754
1N4754A
1N4755
1N4755
1N4755A
1N4756
1N4756
1N4756A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4202
1N4202A
1N4202B
1N4203
1N4203A
1N4203B
1N4204
1N4204A
1N4204B
1N4205
1N4205A
1N4205B

1N2978A
1N2978A
1N2978B
1N2979A
1N2979A
1N2979B
1N2980A
1N2980A
1N2980B
1N2981 A
1N2981A
1N2981B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4179
1N4179A
1N41798
1N4180
1N4180A
1N4180B
1N4181
1N4181A
1N4181B
1N4182
1N4182A
1N4182B

1N4757
1N4757
1N4757A
1N4758
1N4758
1N4758A
1N4759
1N4759
1N4759A
1N4760
1N4760
1N4760A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4206
1N4206A
1N4206B
1N4207
1N4207A
1N4207B
1N4208
1N4208A
1N4208B
1N4209
1N4209A
1N4209B

1N2982A
1N2982A
1N2982B
1N2983A
1N2983A
1N2983B
1N2984A
1N2984A
1N2984B
1N2985A
1N2985A
1N2985B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

Note: Reverse polarity has an R suffix_

1-52

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4210
1N4210A
1N4210B
1N4211
1N4211A
1N4211B
1N4212
1N4212A
1N4212B
1N4213
1N4213A
1N4213B

1N2986A
1N2986A
1N2986B
1N2987A
1N2987A
1N2987B
1N2988A
1N2988A
1N2988B
1N2989A
1N2989A
1N2989B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4230
1N4230A
1N4230B
1N4231
1N4231A
1N4231B
1N4232
1N4232A
1N4232B
1N4233
1N4233A
1N4233B

1N3006A
1N3006A
1N3006B
1N3007A
1N3007A
1N3007B
1N3008A
1N3008A
1N3008B
1N3009A
1N3009A
1N3009B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4214
1N4214A
1N4214B
1N4215
1N4215A
1N4215B
1N4216
1N4216A
1N4216B
1N4217
1N4217A
1N4217B

1N2990A
1N2990A
1N2990B
1N2991A
1N2991A
1N2991B
1N2992A
1N2992A
1N2992B
1N2993A
1N2993A
1N2993B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4234
1N4234A
1N4234B
1N4235
1N4235A
1N4235B
1N4236
1N4236A
1N4236B
1N4237
1N4237A
1N4237B

1N3010A
1N3010A
1N3010B
1N3011A
1N3011A
1N3011B
1N3012A
1N3012A
1N3012B
1N3013A
1N3013A
1N3013B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4218
1N4218A
1N4218B
1N4219
1N4219A
1N4219B
1N4220
1N4220A
1N4220B
1N4221
1N4221A
1N4221B

1N2994A
1N2994A
1N2994B
1N2995A
1N2995A
1N2995B
1N2996A
1N2996A
1N2996B
1N2997A
1N2997A
1N2997B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4238
1N4238A
1N4238B
1N4239
1N4239A
1N4239B
1N4258
1N4258A
1N4258B
1N4259
1N4259A
1N4259B

1N3014A
1N3014A
1N3014B
1N3015A
1N3015A
1N3015B
1N2970A
1N2970A
1N2970B
1N2971 A
1N2971A
1N2971B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4222
1N4222A
1N4222B
1N4223
1N4223A
1N4223B
1N4224
1N4224A
1N4224B
1N4225
1N4225A
1N4225B

1N2998A
1N2998A
1N2998B
1N2999A
1N2999A
1N2999B
1N3000A
1N3000A
1N3000B
1N3001A
1N3001A
1N3001B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4260
1N4260A
1N4260B
1N4261
1N4261A
1N4261B
1N4262
1N4262A
1N4262B
1N4263
1N4263A
1N4263B

1N2972A
1N2972A
1N2972B
1N2973A
1N2973A
1N2973B
1N2974A
1N2974A
1N2974B
1N2975A
1N2975A
1N2975B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4226
1N4226A
1N4226B
1N4227
1N4227A
1N4227B
1N4228
1N4228A
1N4228B
1N4229
1N4229A
1N4229B

1N3002A
1N3002A
1N3002B
1N3003A
1N3003A
1N3003B
1N3004A
1N3004A
1N3004B
1N3005A
1N3005A
1N3005B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4264
1N4264A
1N4264B
1N4265
1N4265A
1N4265B
1N4266
1N4266A
1N4266B
1N4267
1N4267A
1N4267B

1N2976A
1N2976A
1N2976B
1N2977A
1N2977A
1N2977B
1N2979A
1N2979A
1N2979B
1N2980A
1N2980A
1N2980B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

Note: Reverse polarity has an R suffix.

1-53

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4268
1N4268A
1N4268B
1N4269
1N4269A
1N4269B
1N4270
1N4270A
1N4270B
1N4271
1N4272A
1N4272B

1N2982A
1N2982A
1N2982B
1N2984A
1N2984A
1N2984B
1N2985A
1N2985A
1N2985B
1N2986A
1N2988A
1N2988B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4289
1N4289A
1N4289B
1N4290
1N4290A
1N4290B
1N4291
1N4291 A
1N4291B
1N4292
1N4292A
1N4292B

1N3009A
1N3009A
1N3009B
1N3011A
1N3011A
1N3011B
1N3012A
1N3012A
1N3012B
1N3014A
1N3014A
1N3014B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4273
1N4273A
1N4273B
1N4274
1N4274A
1N4274B
1N4275
1N4275A
1N4275B
1N4276
1N4276A
1N4276B

1N2989A
1N2989A
1N2989B
1N2990A
1N2990A
1N2990B
1N2991A
1N2991 A
1N2991B
1N2992A
1N2992A
1N2992B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4293
1N4293A
1N4293B
1N4321
1N4323
1N4323A
1N4323B
1N4324
1N4324A
1N4324B
1N4325
1N4325A

1N3015A
1N3015A
1N3015B
1N5369B
1N4736
1N4736
1N4736A
1N4737
1N4737
1N4737A
1N4738
1N4738

4-15
4-15
4-15
4-51
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4277
1N4277A
1N4277B
1N4278
1N4278A
1N4278B
1N4279
1N4279A
1N4279B
1N4280
1N4280A
1N4280B

1N2993A
1N2993A
1N2993B
1N2995A
1N2995A
1N2995B
1N2997A
1N2997A
1N2997B
1N2999A
1N2999A
1N2999B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4325B
1N4326
1N4326A
1N4326B
1N4327
1N4327A
1N4327B
1N4328
1N4328A
1N4328B
1N4329
1N4329A

1N4738A
1N4739
1N4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741 A
1N4742
1N4742

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4281
1N4281 A
1N4281B
1N42B2
1N4282A
1N42B2B
1N4283
1N4283A
1N42B3B
1N42B4
1N4284A
1N4284B

1N3000A
1N3000A
1N3000B
1N3001A
1N3001A
1N3001B
1N3002A
1N3002A
1N3002B
1N3003A
1N3003A
1N3003B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4329B
1N4330
1N4330A
1N4330B
1N4331
1N4331A
1N4331B
1N4332
1N4332A
1N4332B
1N4333
1N4333A

1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A
1N4745
1N4745
1N4745A
1N4746
1N4746

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4285
1N42B5A
1N4285B
1N4286
1N4286A
1N4286B
1N4287
1N4287A
1N4287B
1N4288
1N4288A
1N4288B

1N3004A
1N3004A
1N3004B
1N3005A
1N3005A
1N3005B
1N3007A
1N3007A
1N3007B
1N3008A
1N3008A
1N3008B

4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-15

1N4333B
1N4334
1N4334A
1N4334B
1N4335
1N4335A
1N4335B
1N4336
1N4336A
1N4336B
1N4337
1N4337A

1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
1N4749
1N4749
1N4749A
1N4750
1N4750

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

Note: Reverse polarity has an R suffix_

1-54

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

lN4337B
lN4338
lN4338A
lN4338B
lN4339
lN4339A
lN4339B
lN4340
lN4340A
lN4340B
lN4341
lN4341A

lN4750A
lN4751
lN4751
lN4751A
1N4752
lN4752
lN4752A
lN4753
1N4753
lN4753A
lN4754
lN4754

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

lN4401
lN4402
lN4403
lN4404
lN4405
lN4406
lN4407
lN4408
lN4409
lN4410
lN4411
lN4412

lN4737
lN4738
lN4739
lN4740
lN4741
lN4742
lN4743
lN4744
1N4745
lN4746
lN4747
lN4748

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

lN4341B
lN4342
lN4342A
lN4342B
lN4343
lN4343A
lN4343B
lN4344
lN4344A
lN4344B
lN4345
lN4345A

lN4754A
lN4755
lN4755
lN4755A
1N4756
lN4756
lN4756A
lN4757
lN4757
lN4757A
lN4758
lN4758

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

lN4413
lN4414
lN4415
lN4416
1N4417
lN4418
lN4419
lN4420
lN4421
1N4422
lN4423
lN4424

lN4749
lN4750
lN4751
lN4752
lN4753
lN4754
lN4755
lN4756
lN4757
lN4758
1N4759
lN4760

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

lN4345B
lN4346
lN4346A
lN4346B
lN4347
lN4347A
1N4347B
lN4348
lN4348A
lN4348B
lN4349
lN4349A

lN4758A
lN4759
lN4759
1N4759A
lN4760
1N4760
lN4760A
lN4761
lN4761
lN4761A
lN4762
lN4762

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

lN4425
1N4426
lN4427
lN4428
lN4460
lN4461
lN4462
lN4463
lN4464
lN4465
lN4466
lN4467

1N4761
lN4762
lN4763
lN4764
1N4735A
lN4736A
lN4737A
lN4738A
lN4739A
lN4740A
lN4741A
lN4742A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

lN4349B
lN4350
lN4350A
lN4350B
lN4351
lN4351A
lN4351B
lN4360
lN4370
lN4370A
lN4370A1JAN
1N4370A 1JTX

lN4762A
lN4763
lN4763
lN4763A
lN4764
1N4764
1N4764A
1N4370A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·4
4-4
4-4
4-4
4·4

lN4468
lN4469
lN4470
lN4471
lN4472
lN4473
lN4474
lN4475
lN4476
1N4477
lN4478
lN4479

lN4743A
lN4744A
lN4745A
lN4746A
lN4747A
lN4748A
lN4749A
lN4750A
lN4751A
lN4752A
lN4753A
lN4754A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

H

lN4480
lN4481
lN4482
lN4483
lN4484
lN4485
lN4486
lN4487
lN4488
lN4489
1N4499
1N4503

lN4755A
lN4756A
lN4757A
lN4758A
lN4759A
lN4760A
1N4761 A
lN4762A
lN4763A
1N4764A
1N4735A
lN4752

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

1N4370A1JTXV
1N4371
lN4371A
lN4371A1JAN
lN4371A1JTX
1N4371 A1JTXV
lN4372
lN4372A
lN4372A1JAN
1N4372A1JTX
1N4372A1JTXV
lN4400

1N4370
lN4370A
1N4370A 1JAN
1N4370A 1JTX
1N4370A 1JTXV
lN4371
lN4371A
lN4371A1JAN
lN4371A1JTX
1N4371 A1JTXV
lN4372
lN4372A
1N4372A 1JAN
1N4372A1JTX
1N4372A lJTXV
lN4736

4·4
4·4
4·4
4·4
4·4
4·4
4-4
4·4
4-4
4·4
4·36

Note: Reverse polarity has an R suffix.

1-55

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4504
1N4549A
1N4549B
1N4549BJAN
1N4549BJTX
1N4549RA
1N4549RB
1N4550A
1N4550B
1N4550BJAN
1N4550BJTX
1N4550RA

1N4549A
1N4549B
1N4549BJAN
1N4549BJTX
1N4549RA
1N4549RB
1N4550A
1N4550B
1N4550BJAN
1N4550BJTX
1N4550RA

4-51
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N4568
1N4568A
1N4568AJAN
1N4568AJTX
1N4568AJTXV
1N4569
1N4569A
1N4569AJAN
1N4569AJTX
1N4569AJTXV
1N4570
1N4570A

1N4568
1N4568A
1N4568AJAN
1N4568AJTX
1N4568AJTXV
1N4569
1N4569A
1N4569AJAN
1N4569AJTX
1N4569AJTXV
1N4570
1N4570A

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32

1N4550RB
1N4551A
1N4551B
1N4551BJAN
1N4551BJTX
1N4551RA
1N4551RB
1N4552A
1N4552B
1N4552BJAN
1N4552BJTX
1N4552RA

1N4550RB
1N4551A
1N4551B
1N4551BJAN
1N4551BJTX
1N4551RA
1N4551RB
1N4552A
1N4552B
1N4552BJAN
1N4552BJTX
1N4552RA

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N4570AJAN
1N4570AJTX
1N4570AJTXV
1N4571
1N4571A
1N4571AJAN
1N4571AJTX
1N4571 AJTXV
1N4572
1N4572A
1N4572AJAN
1N4572AJTX

1N4570AJAN
1N4570AJTX
1N4570AJTXV
1N4571
1N4571A
1N4571AJAN
1N4571AJTX
1N4571 AJTXV
1N4572
1N4572A
1N4572AJAN
1N4572AJTX

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32

1N4552RB
1N4553A
1N4553B
1N4553BJAN
1N4553BJTX
1N4553RA
1N4553RB
1N4554A
1N4554B
1N4554BJAN
1N4554BJTX
1N4554RA

1N4552RB
1N4553A
1N4553B
1N4553BJAN
1N4553BJTX
1N4553RA
1N4553RB
1N4554A
1N4554B
1N4554BJAN
1N4554BJTX
1N4554RA

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17

1N4572AJTXV
1N4573
1N4573A
1N4573AJAN
1N4573AJTX
1N4573AJTXV
1N4574
1N4574A
1N4574AJAN
1N4574AJTX
1N4574AJTXV
1N4575

1N4572AJTXV
1N4573
1N4573A
1N4573AJAN
1N4573AJTX
1N4573AJTXV
1N4574
1N4574A
1N4574AJAN
1N4574AJTX
1N4574AJTXV
1N4575

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32

1N4554RB
1N4555A
1N4555B
1N4555RA
1N4555RB
1N4556A
1N4556B
1N4556RA
1N4556RB
1N4565
1N4565A
1N4565AJAN

1N4554RB
1N4555A
1N4555B
1N4555RA
1N4555RB
1N4556A
1N4556B
1N4556RA
1N4556RB
1N4565
1N4565A
1N4565AJAN

4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-32
4-32
4-32

1N4575A
1N4576
1N4576A
1N4577
1N4577A
1N4578
1N4578A
1N4579
1N4579A
1N4580
1N4580A
1N4581

1N4575A
1N4576
1N4576A
1N4577
1N4577A
1N4578
1N4578A
1N4579
1N4579A
1N4580
1N4580A
1N4581

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32

1N4565AJTX
1N4565AJTXV
1N4566
1N4566A
1N4566AJAN
1N4566AJTX
1N4566AJTXV
1N4567
1N4567A
1N4567AJAN
1N4567AJTX
1N4567AJTXV

1N4565AJTX
1N4565AJTXV
1N4566
1N4566A
1N4566AJAN
1N4566AJTX
1N4566AJTXV
1N4567
1N4567A
1N4567AJAN
1N4567AJTX
1N4567AJTXV

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32

1N4581A
1N4582
1N4582A
1N4583
1N4583A
1N4584
1N4584A
1N4611
1N4611A
1N4611B
1N4611C
1N4612

1N4581A
1N4582
1N4582A
1N4583
1N4583A
1N4584
1N4584A

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-32

1N5388A

Note: Reverse polarity has an R suffix_

1-56

1N4576A
1N4577A
1N4578A
1N4579A
1N4581 A

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part -Number
1N4627-1 JAN
1N4627-1 JTX
1N4627-1JTXV
1N4628
lN4629
1N4630
1N4631
1N4632
1N4633
lN4634
lN4635
lN4636

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4736A
1N4737A
1N4738A
1N4739A
1N4740A
1N4741A
1N4742A
1N4743A
lN4744A

4-28
4-28
4-28
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4637
1N4638
1N4639
1N4640
1N4641
1N4642
1N4643
1N4644
1N4645
1N4646
1N4647
lN4648

1N4745A
lN4746A
1N4747A
1N4748A
1N4749A
1N4750A
1N4751 A
1N4752A
1N4753A
1N4754A
1N4755A
lN4756A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4649
1N4650
1N4651
1N4652
1N4653
1N4654
1N4655
lN4656
1N4657
1N4658
1N4659
1N4660

1N4728A
1N4729A
1N4730A
1N4731 A
1N4732A
1N4733A
1N4734A
1N4735A
1N4736A
lN4737A
lN4738A
lN4739A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4621-1JAN
1N4621-1JTX
1N4621-1 JTXV
1N4622
1N4622-1 JAN
1N4622-1 JTX
1N4622-1 JTXV
1N4623
1N4623-1 JAN
1N4623-1JTX
1N4623-1 JTXV
1N4624

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4661
lN4662
1N4663
1N4664
1N4665
1N4666
lN4667
1N4668
1N4669
1N4670
1N4671
1N4672

1N4740A
1N4741 A
1N4742A
1N4743A
1N4744A
1N4745A
1N4746A
1N4747A
1N4748A
1N4749A
1N4750A
1N4751 A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N4624-1 JAN
1N4624-1 JTX
1N4624-1JTXV
1N4625
1N4625-1 JAN
1N4625-1 JTX
1N4625-1 JTXV
1N4626
1N4626-1 JAN
1N4626-1 JTX
1N4626-1 JTXV
1N4627

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4673
lN4674
1N4675
1N4676
1N4677
lN4678
lN4679
1N4680
1N4681
1N4682
1N4683
1N4684

lN4752A
1N4753A
lN4754A
1N4755A
lN4756A

4-36
4-36
4-36
4-36
4-36
4-34
4-34
4-34
4-34
4-34
4-34
4-34

1N4612A
1N4612B
1N4612C
1N4613
1N4613A
1N4613B
1N4613C
1N4614
1N4614-1JAN
1N4614-1JTX
1N4614-1JTXV
1N4615

1N4614
1N4614-1 JAN
lN4614-1JTX
1N4614-1JTXV
1N4615

4-32
4-32
4-32
4-32
4-32
4-32
4-32
4-28
4-28
4-28
4-28
4-28

1N4615-1JAN
1N4615-1JTX
1N4615-1 JTXV
1N4616
1N4616-1 JAN
1N4616-1 JTX
1N4616-1 JTXV
1N4617
1N4617-1JAN
1N4617-1JTX
lN4617-1JTXV
1N4618

1N4615-1JAN
1N4615-1JTX
1N4615-1JTXV
1N4616
1N4616-1 JAN
1N4616-1JTX
1N4616-1 JTXV
1N4617
1N4617-1JAN
1N4617-1JTX
1N4617-1JTXV
1N4618

4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28
4-28

1N4618-1JAN
1N4618-1 JTX
1N4618-1JTXV
1N4619
1N4619-1JAN
1N4619-1JTX
1N4619-1JTXV
1N4620
1N4620-1 JAN
1N4620-1 JTX
1N4620-1 JTXV
1N4621

1N4618-1JAN
1N4618-1JTX
1N4618-1JTXV
1N4619
1N4619-1JAN
1N4619-1JTX
1N4619-1JTXV
1N4620
1N4620-1 JAN
1N4620-1 JTX
1N4620-1 JTXV
1N4621

1N4621-1 JAN
1N4621-1JTX
1N4621-1 JTXV
1N4622
1N4622-1 JAN
1N4622-1 JTX
1N4622-1 JTXV
1N4623
1N4623-1 JAN
1N4623-1JTX
1N4623-1 JTXV
1N4624
1N4624-1JAN
1N4624-1 JTX
1N4624-1 JTXV
1N4625
1N4625-1 JAN
1N4625-1 JTX
1N4625-1 JTXV
1N4626
1N4626-1JAN
1N4626-1 JTX
1N4626-1 JTXV
1N4627

1N4582A
1N4583A
1N4584A
1N4581A
1N4582A
1N4583A
1N4584A

Note: Reverse polarity has an R suffix_

1-57

1N4627-1 JAN
1N4627-1 JTX
1N4627-1 JTXV

lN4678
1N4679
1N4680
1N4681
1N4682
1N4683
1N4684

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

lN4685
lN4686
lN4687
lN4688
lN4689
lN4690
lN4691
lN4692
lN4693
lN4694
lN4695
lN4696

lN4685
lN4686
lN4687
lN4688
lN4689
lN4690
lN4691
lN4692
lN4693
lN4694
lN4695
lN4696

4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34

1N4741 A
lN4742
lN4742A
lN4743
lN4743A
lN4744
lN4744A
lN4745
lN4745A
lN4746
lN4746A
lN4747

1N4741 A
lN4742
lN4742A
lN4743
lN4743A
lN4744
lN4744A
lN4745
lN4745A
lN4746
lN4746A
lN4747

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4697
lN4698
lN4699
lN4700
lN4701
lN4702
lN4703
lN4704
lN4705
lN4706
lN4707
lN4708

lN4697
lN4698
lN4699
lN4700
lN4701
lN4702
lN4703
lN4704
lN4705
lN4706
lN4707
lN4708

4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34

lN4747A
lN4748
lN4748A
lN4749
lN4749A
lN4750
lN4750A
lN4751
1N4751 A
lN4752
lN4752A
lN4753

lN4747A
lN4748
lN4748A
lN4749
lN4749A
lN4750
lN4750A
lN4751
lN4751A
lN4752
lN4752A
lN4753

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4709
lN4710
lN4711
lN4712
lN4713
lN4714
lN4715
lN4716
lN4717
lN4728
lN4728A
lN4729

lN4709
lN471 0
lN4711
lN4712
lN4713
lN4714
lN4715
lN4716
lN4717
lN4728
lN4728A
lN4729

4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-34
4-36
4-36
4-36

lN4753A
lN4754
lN4754A
lN4755
lN4755A
lN4756
lN4756A
lN4757
lN4757A
lN4758
lN4758A
lN4759

lN4753A
lN4754
lN4754A
lN4755
lN4755A
lN4756
lN4756A
lN4757
lN4757A
lN4758
lN4758A
lN4759

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4729A
lN4730
lN4730A
lN4731
1N4731 A
lN4732
lN4732A
lN4733
lN4733A
lN4734
lN4734A
lN4735

lN4729A
lN4730
lN4730A
lN4731
1N4731 A
lN4732
lN4732A
lN4733
lN4733A
lN4734
lN4734A
lN4735

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4759A
lN4760
lN4760A
lN4761
1N4761 A
lN4762
lN4762A
lN4763
lN4763A
lN4764
lN4764A
1N4831 A

lN4759A
lN4760
lN4760A
lN4761
1N4761 A
lN4762
lN4762A
lN4763
lN4763A
lN4764
lN4764A
lN4739

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4735A
lN4736
lN4736A
lN4737
lN4737A
lN4738
lN4738A
lN4739
lN4739A
lN4740
lN4740A
lN4741

lN4735A
lN4736
lN4736A
lN4737
lN4737A
lN4738
lN4738A
lN4739
lN4739A
lN4740
lN4740A
lN4741

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN4831B
lN4832
lN4832A
lN4832B
lN4833
lN4833A
lN4833B
lN4834
lN4834A
lN4834B
lN4835
1N4835A

lN4739A
lN4740
lN4740
lN4740A
lN4741
lN4741
1N4741 A
lN4742
lN4742
1N4742A
1N4743
1N4743

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

Note: Reverse polarity has an R suffix.

1-58

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N4835B
1N4836
1N4836A
1N4836B
1N4837
1N4837A
1N4837B
1N4838
1N4838A
1N4838B
1N4839
1N4839A

1N4743A
1N4744
1N4744
1N4744A
1N4745
1N4745
1N4745A
1N4746
1N4746
1N4746A
1N4747
1N4747

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

1N4855B
1N4856
1N4856A
1N4856B
1N4881
1N4882
1N4883
1N4884
1N4889
1N4890
1N4890A
1N4891

1N4763A
1N4764
1N4764
1N4764A
1N4747
1N4753
1N4742A
1N4747A
1N3000B
MZ640
MZ640
MZ640

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·15
4·101
4·101
4·101

1N4839B
1N4840
1N4840A
1N4840B
1N4841
1N4841 A
1N4841B
1N4842
1N4842A
1N4842B
1N4843
1N4843A

1N4747A
1N4748
1N4748
1N4748A
1N4749
1N4749
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

1N4891A
1N4892
1N4892A
1N4893
1N4893A
1N4894
1N4894A
1N4895
1N4895A
1N4954
1N4955
1N4956

MZ640
MZ620
MZ620
MZ620
MZ620
MZ610
MZ610
MZ610
MZ610
1N5342B
1N5343B
1N5344B

4·101
4·101
4·101
4·101
4·101
4·101
4·101
4·101
4·101
4·51
4·51
4·51

1N4843B
1N4844
1N4844A
1N4844B
1N4845
1N4845A
1N4845B
1N4846
1N4846A
1N4846B
1N4847
1N4847A

1N4751 A
1N4752
1N4752
1N4752A
1N4753
1N4753
1N4753A
1N4754
1N4754
1N4754A
1N4755
1N4755

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

1N4957
1N4958
1N4959
1N4960
1N4961
1N4962
1N4963
1N4964
1N4965
1N4966
1N4967
1N4968

1N5346B
1N5347B
1N5348B
1N5349B
1N5350B
1N5352B
1N5353B
1N5355B
1N5357B
1N5358B
1N5359B
1N5361B

4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51

1N4847B
1N4848
1N4848A
1N4848B
1N4849
1N4849A
1N4849B
1N4850
1N4850A
1N4850B
1N4851
1N4851 A

1N4755A
1N4756
1N4756
1N4756A
1N4757
1N4757
1N4757A
1N4758
1N4758
1N4758A
1N4759
1N4759

4·36
·436
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

1N4969
1N4970
1N4971
1N4972
1N4973
1N4974
1N4975
1N4976
1N4977
1N4978
1N4979
1N4980

1N5363B
1N5364B
1N5365B
1N5366B
1N5367B
1N5368B
1N5369B
1N5370B
1N5372B
1N5373B
1N5374B
1N5375B

4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51
4·51

1N4851B
1N4852
1N4852A
1N4852B
1N4853
1N4853A
1N4853B
1N4854
1N4854A
1N4854B
1N4855
1N4855A

1N4759A
1N4760
1N4760
1N4760A
1N4761
1N4761
1N4761 A
1N4762
1N4762
1N4762A
1N4763
1N4763

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4-36
4·36
4·36

1N4981
1N4982
1N4983
1N4984
1N4985
1N4986
1N4987
1N4988
1N4989
1N5008
1N5008A
1N5009

1N5377B
1N5378B
1N5379B
1N5380B
1N5381B
1N5383B
1N5384B
1N5386B
1N5388B
1N4728
1N4728A
1N4729

4·51
4·51
4·51
4·51
4-51
4·51
4·51
4·51
4·51
4·36
4·36
4·36

Note: Reverse polarity has an R suffix.

1-59

ZENER INDEX CROSS·REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1NS009A
lNS010
lNS010A
lN5011
lNSOllA
lNS012
1NSOl2A
lNS013
1NS013A
1NS014
1NS014A
lN501S

lN4729A
lN4730
lN4730A
lN4731
1N4731 A
lN4732
lN4732A
lN4733
lN4733A
lN4734
lN4734A
lN473S

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1NS045A
lN5046
1NS046A
lN5047
lN5047A
lN504B
lN504BA
lN5049
lN5049A
lN5050
lN5050A
lN5051

lN475BA
lN4759
lN4759A
lN4760
lN4760A
lN4761
lN4761A
lN4762
lN4762A
lN4763
lN4763A
lN4764

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1NS01SA
lNS016
1NS016A
lNS017
lN5017A
lNS01B
lN501BA
lN5019
lN5019A
lN5020
lN5020A
lN5021

lN473SA
lN4736
lN4736A
lN4737
lN4737A
lN473B
lN473BA
lN4739
lN4739A
lN4740
lN4740A
lN4741

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1NSOS1A
lN5063
lN5064
lN5065
lN5066
lN5067
lN506B
lN5069
lN5070
1NS071
lN5072
lN5073

lN4764A
lN4736A
lN4737A
lN473BA
lN4739A
lN4740A
1N4741 A
lN4743A
lN4743A
lN4744A
lN4745A
lN4746A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1N5021 A
lN5022
lN5022A
lN5023
1NS023A
1NS025
1NS02SA
lN5026
lN5026A
lN502B
lN502BA
lN5030

1N4741 A
lN4742
lN4742A
lN4743
lN4743A
lN4744
lN4744A
lN4745
lN4745A
lN4746
lN4746A
lN4747

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1NS074
1NS075
lN5076
lN5077
lN507B
lN5079
lN50BO
lN5082
lN5084
lN5086
lN5087
lN5089

lN474BA
lN4749A
lN4750A
1N4751 A
lN4752A
lN4753A
lN4754A
lN4755A
lN4756A
lN4757A
lN4758A
lN4759A

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN5030A
lN5031
1N5031 A
lN5032
lN5032A
lN5034
1NS034A
lN5035
lN5035A
1NS036
lN5036A
lN5037

lN4747A
lN474B
lN474BA
lN4749
lN4749A
lN4750
lN47S0A
lN47S1
lN4751A
lN47S2
lN4752A
lN4753

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

1NS090
1NS092
1NS094
1NS095
lN5118
lN5122
lN5126
lNS127
1NS12B
1NS221
1N5221 A
lN5221B

lN4760A
1N4761 A
lN4762A
lN4763A
lN5341B
lN5371B
lN5382B
1N5385B
lN5387B
1N5221 A
1N5221 A
lNS221B

4-36
4-36
4-36
4-36
4-51
4-51
4-51
4-S1
4-51
4-40
4-40
4-40

lN5037A
lN503B
1NS03BA
1NS039
1NS039A
lN5041
1NS041 A
lN5042
1NS043
lN5043A
lN5044
lN5045

lN4753A
lN4754
lN4754A
lN47S5
lN47S5A
lN47S6
lN47S6A
lN4757A
lN47S7
lN47S7A
lN47S7A
lN475B

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

lN5222
1N5222A
lN5222B
lN5223
1NS223A
lN5223B
lN5224
lN5224A
lN5224B
1NS225
lN5225A
lN5225B

lN5222A
lN5222A
lN5222B
lN5223A
lN5223A
lN5223B
lN5224A
lN5224A
lN5224B
lN5225A
lN5225A
lN5225B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

Note: Reverse polarity has an R suffix_

1-60

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5226
1N5226A
1N5226B
1N5227
1N5227A
1N5227B
1N5228
1N5228A
1N5228B
1N5229
1N5229A
1N5229B

1N5226A
1N5226A
1N5226B
1N5227A
1N5227A
1N5227B
1N5228A
1N5228A
1N5228B
1N5229A
1N5229A
1N5229B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5246
1N5246A
1N5246B
1N5247
1N5247A
1N5247B
1N5248
1N5248A
1N5248B
1N5249
1N5249A
1N5249B

1N5246A
1N5246A
1N4246B
1N5247A
1N5247A
1N5247B
1N5248A
1N5248A
1N5248B
1N5249A
1N5249A
1N5249B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5230
1N5230A
1N5230B
1N5231
1N5231A
1N5231B
1N5232
1N5232A
1N5232B
1N5233
1N5233A
1N5233B

1N5230A
1N5230A
1N5230B
1N5231A
1N5231A
1N5231B
1N5232A
1N5232A
1N5232B
1N5233A
1N5233A
1N5233B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5250
1N5250A
1N5250B
1N5251
1N5251A
1N5251B
1N5252
1N5252A
1N5252B
1N5253
1N5253A
1N5253B

1N5250A
1N5250A
1N5250B
1N5251A
1N5251A
1N5251B
1N5252A
1N5252A
1N5252B
1N5253A
1N5253A
1N5253B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5234
1N5234A
1N5234B
1N5235
1N5235A
1N5235B
1N5236
1N5236A
1N5236B
1N5237
1N5237A
1N5237B

1N5234A
1N5234A
1N5234B
1N5235A
1N5235A
1N5235B
1N5236A
1N5236A
1N5236B
1N5237A
1N5237A
1N5237B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5254
1N5254A
1N5254B
1N5255
1N5255A
1N5255B
1N5256
1N5256A
1N5256B
1N5257
1N5257A
1N5257B

1N5254A
1N5254A
1N5254B
1N5255A
1N5255A
1N5255B
1N5256A
1N5256A
1N5256B
1N5257A
1N5257A
1N5257B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5238
1N5238A
1N5238B
1N5239
1N5239A
1N5239B
1N5240
1N5240A
1N5240B
1N5241
1N5241A
1N5241B

1N5238A
1N5238A
1N5238B
1N5239A
1N5239A
1N5239B
1N5240A
1N5240A
1N5240B
1N5241A
1N5241A
1N5241B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5258
1N5258A
1N5258B
1N5259
1N5259A
1N5259B
lN5260
1N5260A
1N5260B
1N5261
1N5261 A
1N5261B

1N5258A
1N5258A
1N5258B
1N5259A
1N5259A
1N5259B
lN5260A
1N5260A
1N5260B
1N5261A
1N5261A
1N5261B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5242
1N5242A
1N5242B
1N5243
1N5243A
1N5243B
1N5244
1N5244A
1N5244B
1N5245
1N5245A
1N5245B

1N5242A
1N5242A
1N5242B
1N5243A
1N5243A
1N5243B
1N5244A
1N5244A
1N5244B
1N5245A
1N5245A
1N5245B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

lN56262
lN5262A
1N5262B
1N5263
1N5263A
1N5263B
1N5264
1N5264A
1N5264B
1N5265
1N5265A
1N5265B

1N5262A
1N5262A
1N5262B
1N5263A
1N5263A
1N5263B
1N5264A
1N5264A
1N5264B
1N5265A
1N5265A
1N5265B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

Note: Reverse polarity has an R suffix_

1-61

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5266
1N5266A
1N5266B
1N5267
1N5267A
1N5267B
1N5268
1N5268A
1N5268B
1N5269
1N5269A
1N5269B

1N5266A
1N5266A
1N5266B
1N5267A
1N5267A
1N5267B
1N5268A
1N5268A
1N5268B
1N5269A
1N5269A
1N5269B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5286
1N5286JAN
1N5286JTX
1N5286JTXV
1N5287
1N5287JAN
1N5287JTX
1N5287JTXV
1N5288
1N5288JAN
1N5288JTX
1N5288JTXV

1N5286
1N5286JAN
1N5286JTX
1N5286JTXV
1N5287
1N5287JAN
1N5287JTX
1N5287JTXV
1N5288
1N5288JAN
1N5288JTX
1N5288JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5270
1N5270A
1N5270B
1N5271
1N5271 A
1N5271B
1N5272
1N5272A
1N5272B
1N5273
1N5273A
1N5273B

1N5270A
1N5270A
1N5270B
1N5271A
1N5271A
1N5271B
1N5272A
1N5272A
1N5272B
1N5273A
1N5273A
1N5273B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5289
1N5289JAN
1N5289JTX
1N5289JTXV
1N5290
1N5290JAN
1N5290JTX
1N5290JTXV
1N5291
1N5291 JAN
1N5291JTX
1N5291JTXV

1N5289
1N5289JAN
1N5289JTX
1N5289JTXV
1N5290
1N5290JAN
1N5290JTX
1N5290JTXV
1N5291
1N5291JAN
1N5291JTX
1N5291JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5274
1N5274A
1N5274B
1N5275
1N5275A
1N5275B
1N5276
1N5276A
1N5276B
1N5277
1N5277A
1N5277B

1N5274A
1N5274A
1N5274B
1N5275A
1N5275A
1N5275B
1N5276A
1N5276A
1N5276B
1N5277A
1N5277A
1N5277B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5292
1N5292JAN
1N5292JTX
1N5292JTXV
1N5293
1N5293JAN
1N5293JTX
1N5293JTXV
1N5294
1N5294JAN
1N5294JTX
1N5294JTXV

1N5292
1N5292JAN
1N5292JTX
1N5292JTXV
1N5293
1N5293JAN
1N5293JTX
1N5293JTXV
1N5294
1N5294JAN
1N5294JTX
1N5294JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5278
1N5278A
1N5278B
1N5279
1N5279A
1N5279B
1N5280
1N5280A
1N5280B
1N5281
1N5281A
1N5281B

1N5278A
1N5278A
1N5278B
1N5279A
1N5279A
1N5279B
1N5280A
1N5280A
1N5280B
1N5281 A
1N5281A
1N5281B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5295
1N5295JAN
1N5295JTX
1N5295JTXV
1N5296
1N5296JAN
1N5296JTX
1N5296JTXV
1N5297
1N5297JAN
1N5297JTX
1N5297JTXV

1N5295
1N5295JAN
1N5295JTX
1N5295JTXV
1N5296
1N5296JAN
1N5296JTX
1N5296JTXV
1N5297
1N5297JAN
1N5297JTX
1N5297JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5283
1N5283JAN
1N5283JTX
1N5283JTXV
1N5284
1N5284JAN
1N5284JTX
1N5284JTXV
1N5285
1N5285JAN
1N5285JTX
1N5285JTXV

1N5283
1N5283JAN
1N5283JTX
1N5283JTXV
1N5284
1N5284JAN
1N5284JTX
1N5284JTXV
1N5285
1N5285JAN
1N5285JTX
1N5285JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5298
1N5298JAN
1N5298JTX
1N5298JTXV
1N5299
1N5299JAN
1N5299JTX
1N5299JTXV
1N5300
1N5300JAN
1N5300JTX
1N530OJTXV

1N5298
1N5298JAN
1N5298JTX
1N5298JTXV
1N5299
1N5299JAN
1N5299JTX
1N5299JTXV
1N5300
1N5300JAN
1N5300JTX
1N5300JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

Nole: Reverse polarity has an R suffix_

1-62

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1NS301
1NS301JAN
1NS301JTX
1NS301JTXV
1NS302
1NS302JAN
1NS302JTX
1NS302JTXV
1NS303
1NS303JAN
1N5303JTX
1N5303JTXV

1NS301
1NS301JAN
1NS301JTX
1NS301JTXV
1NS302
1NS302JAN
1NS302JTX
1NS302JTXV
1NS303
1N5303JAN
1N5303JTX
1N5303JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5333D
1N5334
1N5334A
1N53348
1N5334C
1N5334D
1N5335
1N5335A
1N53358
1N5335C
1N5335D
1N5336

1NS333D
1N5334A
1NS334A
1NS3348
1N5334C
1N5334D
1N5335A
1N5335A
1N53358
1N5335C
1N5335D
1N5336A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5304
1NS304JAN
1NS304JTX
1NS304JTXV
1N530S
1NS30SJAN
1NS30SJTX
1N5305JTXV
1NS306
1NS306JAN
1N5306JTX
1N5306JTXV

1N5304
1N5304JAN
1N5304JTX
1N5304JTXV
1N530S
1N530SJAN
1NS30SJTX
1N5305JTXV
1N5306
1N5306JAN
1N5306JTX
1N5306JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5336A
1N53368
1N5336C
1N5336D
1N5337
1N5337A
1N5337B
1N5337C
1N5337D
1N533B
1N533BA
1N533B8

1N5336A
1N53368
1N5336C
1N5336D
1N5337A
1N5337A
1N53378
1N5337C
1N5337D
1N533BA
1NS33BA
1N533B8

4-51
4-51
4-51
4-51
4-S1
4-51
4-51
4-S1
4-51
4-51
4-51
4-51

1NS307
1N5307JAN
1N5307JTX
1NS307JTXV
1N530B
1N530BJAN
1N530BJTX
1N530BJTXV
1N5309
1N5309JAN
1N5309JTX
1N5309JTXV

1N5307
1N5307JAN
1N5307JTX
1N5307JTXV
1N530B
1N530BJAN
1N530BJTX
1NS30BJTXV
1NS309
1N5309JAN
1N5309JTX
1N5309JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-4B
4-47
4-47
4-47
4-47
4-47

1N533BC
1N533BD
1N5339
1N5339A
1N53398
1N5339C
1N5339D
1N5340A
1N53408
1N5340C
1N5340D
1N5341

1N533BC
1N533BD
1N5339A
1NS339A
1N5339B
1N5339C
1N5339D
1N5340A
1N5340B
1N5340C
1N5340D
1N5341A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5310
1NS310JAN
1NS310JTX
1NS310JTXV
1NS311
1N5311JAN
1N5311JTX
1N5311JTXV
1N5312
1N5312JAN
1N5312JTX
1N5312JTXV

1N5310
1N5310JAN
1N5310JTX
1N5310JTXV
1N5311
1N5311JAN
1N5311JTX
1N5311JTXV
1N5312
1N5312JAN
1N5312JTX
1N5312JTXV

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47

1N5341A
1N53418
1N5341C
1N5341D
1N5342
1N5342A
1N5342B
1N5342C
1N5342D
1N5343
1N5343A
1N53438

1N5341 A
1N5341B
1N5341C
1N5341 0
1N5342A
1N5342A
1N53428
1N5342C
1N5342D
1N5343A
1NS343A
1NS3438

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-S1
4-S1
4-S1
4-S1

1N5313
1N5313JAN
1N5313JTX
1N5313JTXV
1N5314
1N5314JAN
1N5314JTX
1N5314JTXV
1N5333
1N5333A
1N53338
1N5333C

1N5313
1N5313JAN
1N5313JTX
1N5313JTXV
1N5314
1N5314JAN
1N5314JTX
1N5314JTXV
1N5333A
1N5333A
1N5333B
1N5333C

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-S1
4-51
4-S1
4-S1

1N5343C
1NS343D
1N5344
1N5344A
1N53448
1N5344C
1NS344D
1N534S
1NS345A
1N53458
1N5345C
1N5345D

1N5343C
1N5343D
1N5344A
1N5344A
1N53448
1NS344C
1NS344D
1N5345A
1N5345A
1N53458
1N5345C
1NS34SD

4-51
4-51
4-S1
4-S1
4-S1
4-51
4-S1
4-S1
4-51
4-S1
4-S1
4-S1

Note: Reverse polarity has an R suffix_

1-63

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5346
1N5346A
1N5346B
1N5346C
1N5346D
1N5347
1N5347A
1N5347B
1N5347C
1N5347D
1N5348
1N5348A

1N5346A
1N5346A
1N5346B
1N5346C
1N5346D
1N5347A
1N5347A
1N5347B
1N5347C
1N5347D
1N5348A
1N5348A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5358
1N5358A
1N5358B
1N5358C
1N5358D
1N5359
1N5359A
1N5359B
1N5359C
1N5359D
1N5360
1N5360A

1N5358A
1N5358A
1N5358B
1N5358C
1N5358D
1N5359A
1N5359A
1N5359B
1N5359C
1N5359D
1N5360A
1N5360A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5348B
1N5348C
1N5348D
1N5349
1N5349A
1N5349B
1N5349C
1N5349D
1N5350
1N5350A
1N5350B
1N5350C

1N5348B
1N5348C
1N5348D
1N5349A
1N5349A
1N5349B
1N5349C
1N5349D
1N5350A
1N5350A
1N5350B
1N5350C

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5360B
1N5360C
1N5360D
1N5361
1N5361A
1N5361B
1N5361C
1N53610
1N5362
1N5362A
1N5362B
1N5362C

1N5360B
1N5360C
1N5360D
1N5361A
1N5361A
1N5361B
1N5361C
1N5361D
1N5362A
1N5362A
1N5362B
1N5362C

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5350D
1N5351
1N5351A
1N5351B
1N5351C
1N5351D
1N5352
1N5352A
1N5352B
1N5352C
1N5352D
1N5353

1N5350D
1N5351 A
1N5351 A
1N5351B
1N5351C
1N53510
1N5352A
1N5352A
1N5352B
1N5352C
1N5352D
1N5353A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5362D
1N5363
1N5363A
1N5363B
1N5363C
1N5363D
1N5364
1N5364A
1N5364B
1N5364C
1N5364D
1N5365

1N5362D
1N5363A
1N5363A
1N5363B
1N5363C
1N5363D
1N5364A
1N5364A
1N5364B
1N5364C
1N5364D
1N5365A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5353A
1N5353B
1N5353C
1N5353D
1N5354
1N5354A
1N5354B
1N5354C
1N5354D
1N5355
1N5355A
1N5355B

1N5353A
1N5353B
1N5353C
1N5353D
1N5354A
1N5354A
1N5354B
1N5354C
1N5354D
1N5355A
1N5355A
1N5355B

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5365A
1N5365B
1N5365C
1N5365D
1N5366
1N5366A
1N5366B
1N5366C
1N5366D
1N5367
1N5367A
1N5367B

1N5365A
1N5365B
1N5365C
1N5365D
1N5366A
1N5366A
1N5366B
1N5366C
1N5366D
1N5367A
1N5367A
1N5367B

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5355C
1N5355D
1N5356
1N5356A
1N5356B
1N5356C
1N5356D
1N5357
1N5357A
1N5357B
1N5357C
1N5357D

1N5355C
1N5355D
1N5356A
1N5356A
1N5356B
1N5356C
1N5356D
1N5357A
1N5357A
1N5357B
1N5357C
1N5357D

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5367C
1N5367D
1N5368
1N5368A
1N5368B
1N5368C
1N5368D
1N5369
1N5369A
1N5369B
1N5369C
1N5369D

1N5367C
1N5367D
1N5368A
1N5368A
1N5368B
1N5368C
1N5368D
1N5369A
1N5369A
1N5369B
1N5369C
1N5369D

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

Note: Reverse polarity has an R suffix.

1-64

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5370
1N5370A
1N5370B
1N5370C
1N5370D
1N5371
1N5371A
1N5371B
1N5371C
1N5371D
1N5372
1N5372A

1N5370A
1N5370A
1N5370B
1N5370C
1N5370D
1N5371A
1N5371A
1N5371B
1N5371C
1N5371D
1N5372A
1N5372A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5382
1N5382A
1N5382B
1N5382C
1N5382D
1N5383
1N5383A
1N5383B
1N5383C
1N5383D
1N5384
1N5384A

1N5382A
1N5382A
1N5382B
1N5382C
1N5382D
1N5383A
1N5383A
1N5383B
1N5383C
1N5383D
1N5384A
1N5384A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5372B
1N5372C
1N5372D
1N5373
1N5373A
1N5373B
1N5373C
1N5373D
1N5374
1N5374A
1N5374B
1N5374C

1N5372B
1N5372C
1N5372D
1N5373A
1N5373A
1N5373B
1N5373C
1N5373D
1N5374A
1N5374A
1N5374B
1N5374C

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5384B
1N5384C
1N5384D
1N5385
1N5385A
1N5385B
1N5385C
1N5385D
1N5386
1N5386A
1N5386B
1N5386C

1N5384B
1N5384C
1N5384D
1N5385A
1N5385A
1N5385B
1N5385C
1N5385D
1N5386A
1N5386A
1N5386B
1N5386C

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5374D
1N5375
1N5375A
1N5375B
1N5375C
1N5375D
1N5376
1N5376A
1N5376B
1N5376C
1N5376D
1N5377

1N5374D
1N5375A
1N5375A
1N5375B
1N5375C
1N5375D
1N5376A
1N5376A
1N5376B
1N5376C
1N5376D
1N5377A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5386D
1N5387
1N5387A
1N5387B
1N5387C
1N5387D
1N5388
1N5388A
1N5388B
1N5388C
1N5388D
1N5518A

1N5386D
1N5387A
1N5387A
1N5387B
1N5387C
1N5387D
1N5388A
1N5388A
1N5388B
1N5388C
1N5388D
1N5518A

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-55

1N5377A
1N5377B
1N5377C
1N5377D
1N5378
1N5378A
1N5378B
1N5378C
1N5378D
1N5379
1N5379A
1N5379B

1N5377A
1N5377B
1N5377C
1N5377D
1N5378A
1N5378A
1N5378B
1N5378C
1N5378D
1N5379A
1N5379A
1N5379B

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5518B
1N5518B-1JTX
1N5518B-1JTXV
1N5518B1JTX
1N5519A
1N5519B
1N5519B-1JTX
1N5519B-1JTXV
1N5519B1JTX
1N5520A
1N5520B
1N5520B 1JTX

1N5518B
1N5518B-1JTX
1N5518B-1 JTXV
1N5518B1JTX
1N5519A
1N5519B
1N5519B-1JTX
1N5519B-1JTXV
1N5519B1JTX
1N5520A
1N5520B
1N5520B1JTX

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

1N5379C
1N5379D
1N5380
1N5380A
1N5380B
1N5380C
1N5380D
1N5381
1N5381A
1N5381B
1N5381C
1N5381D

1N5379C
1N5379D
1N5380A
1N5380A
1N5380B
1N5380C
1N5380D
1N5381A
1N5381A
1N5381B
1N5381C
1N5381D

4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51

1N5521A
1N5521B
1N5521B1JTX
1N5522A
1N5522B
1N5522B 1JTX
1N5523A
1N5523B
1N5523B 1JTX
1N5524A
1N5524B
1N5524B1JTX

1N5521A
1N5521B
1N5521B1JTX
1N5522A
1N5522B
1N5522B1JTX
1N5523A
1N5523B
1N5523B 1JTX
1N5524A
1N5524B
1N5524B1 JTX

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

Note: Reverse polarity has an R suffix_

1-65

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

1N5525A
1N5525B
1N5525B1 JTX
lN5526A
1N5526B
1N5526B1JTX
lN5527A
1N5527B
1N5527B1JTX
1N5528A
1N5528B
1N5528B 1JTX

Motorola
Similar
Replacement

Page #

Industry
Part Number

1N5525A
1N5525B
1N5525B1JTX
1N5526A
1N5526B
1N5526Bl JTX
1N5527A
1N5527B
1N5527B 1JTX
1N5528A
lN5528B
1N5528B1JTX

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

1N5545A
1N5545B
1N5545B 1JTX
1N5546A
1N5546B
1N5546B 1JTX
1N5555
1N5556
1N5557
1N5558
1N5629
1N5629A

lN5529A
lN5529B
lN5529B1JTX
1N5530A
lN5530B
1N5530B 1JTX
lN5531A
lN5531B
1N5531B1JTX
lN5532A
1N5532B
1N5532B1JTX

lN5529A
lN5529B
1N5529B1 JTX
lN5530A
1N5530B
1N5530B1 JTX
1N5531A
1N5531B
1N5531B1JTX
lN5532A
lN5532B
lN5532B1JTX

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

}N5533A
N5533B
1N5533B 1JTX
lN5534A
1N5534B
1N5534B1JTX
lN5535A
lN5535B
1N5535B1JTX
1N5536A
1N5536B
lN5536B1JTX

lN5533A
1N5533B
1N5533B1JTX
1N5534A
1N5534B
1N5534BlJTX
lN5535A
lN5535B
1N5535B1JTX
lN5536A
lN5536B
1N5536B 1JTX

1N5537A
1N5537B
1N5537B1JTX
1N5538A
1N5538B
1N5538B1JTX
1N5539A
1N5539B
1N5539B1JTX
1N5540A
1N5540B
1N5540B1 JTX
1N5541 A
1N5541B
1N5541B1JTX
1N5542A
1N5542B
1N5542B1JTX
1N5543A
1N5543B
1N5543B 1JTX
1N5544A
1N5544B
1N5544B1JTX

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N6283
1N6283A
1N6289A
1N6303A
1N6267
1N6267A

4-55
4-55
4-55
4-55
4-55
4-55
4-59
4-59
4-59
4-59
4-59
4-59

1N5630
1N5630A
1N5631
1N5631A
1N5632
lN5632A
lN5633
lN5633A
1N5634
1N5634A
1N5635
lN5635A

1N6268
1N6268A
1N6269
1N6269A
lN6270
lN6270A
1N6271
1N6271A
lN6272
1N6272A
lN6273
lN6273A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

1N5636
1N5636A
1N5637
1N5637A
1N5638
lN5638A
1N5639
1N5639A
lN5640
1N5640A
1N5641
lN5641A

lN6274
lN6274A
lN6275
lN6275A
lN6276
lN6276A
1N6277
lN6277A
1N6278
lN6278A
lN6279
lN6279A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1N5537A
1N5537B
1N5537B1JTX
1N5538A
1N5538B
1N5538B1 JTX
1N5539A
1N5539B
1N5539B1JTX
1N5540A
1N5540B
1N5540B1 JTX

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

1N5642
lN5642A
1N5643
lN5643A
lN5644
lN5644A
lN5645
1N5645A
1N5646
1N5646A
1N5651
1N5652

1N6280
lN6280A
1N6281
1N6281A
1N6282
1N6282A
lN6283
lN6283A
lN6284
lN6284A
1N6289A
1N6290

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1N5541A
1N5541B
1N5541B1JTX
1N5542A
1N5542B
1N5542B 1JTX
1N5543A
1N5543B
1N5543B1JTX
1N5544A
1N5544B
1N5544B1JTX

4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

1N5652A
1N5653
1N5653A
1N5654
1N5654A
1N5655
1N5655A
1N5656
1N5656A
1N5657
1N5657A
1N5658

lN6290A
1N6291
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

Note: Reverse polarity has an R suffix_

1-66

1N5545A
1N5545B
1N5545B 1JTX
1N5546A
1N5546B
1N5546B 1JTX

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5658A
1N5659
1N5659A
1N5660
1N5660A
1N5661
1N5661 A
1N5662
1N5662A
1N5663
1N5663A
1N5664

1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1N5857
1N5858
1N5859
1N5860
1N5861
1N5862
1N5863
1N5864
1N5865
1N5866
1N5867
1N5868

1N5241A
1N759
1N964A
1N5244A
1N965A
1N966A
1N5247A
1N967A
1N5249A
1N968A
1N969A
1N970A

4-40
4-4
4-4
4-40
4-4
4-4
4-40
4-4
4-40
4-4
4-4
4-4

1N5664A
1N5665
1N5665A
1N5728
1N5729
1N5730
1N5731
1N5732B
1N5733B
1N5734B
1N5735B
1N5736B

1N6302A
1N6303
1N6303A
1N5230B
1N5231B
1N5232B
1N5234B
1N5235B
1N5236B
1N5237B
1N5239B
1N5240B

4-59
4-59
4-59
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5869
1N5870
1N5871
1N5872
1N5873
1N5874
1N5875
1N5876
1N5877
1N5878
1N5879
1N5880

1N5253A
1N971A
1N5255A
1N972A
1N973A
1N974A
1N975A
1N976A
1N977A
1N978A
1N979A
1N5264A

4-40
4-4
4-40
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-40

1N5738B
1N5739B
1N5740B
1N5741B
1N5742B
1N5743B
1N5744B
1N5745B
1N5746B
1N5747B
1N5748B
1N5749

1N5242B
1N5243B
1N5245B
1N5246B
1N5248B
1N5250B
1N5251B
1N5252B
1N5254B
1N5256B
1N5257B
1N5258B

4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40
4-40

1N5881
1N5882
1N5883
1N5884
1N5885
1N5886
1N5887
1N5888
1N5889
1N5890
1N5891
1N5892

1N980A
1N981A
1N982A
1N983A
1N5269A
1N984A
1N985A
1N986A
1N987A
1N988A
1N5275A
1N989A

4-4
4-4
4-4
4-4
4-40
4-4
4-4
4-4
4-4
4-4
4-40
4-4

1N5750
1N5751
1N5752
1N5753
1N5837
1N5838
1N5839
1N5840
1N5841
1N5842
1N5843
1N5844

1N5259B
1N5260B
1N5261B
1N5262B
1N4370
1N5222A
1N4371
1N5224A
1N4372
1N746
1N747
1N748

4-40
4-40
4-40
4-40
4-4
4-40
4-4
4-40
4-4
4-4
4-4
4-4

1N5893
1N5894
1N5895
1N5896
1N5897
1N5908
1N5913
1N5913A
1N5913B
1N5914
1N5914A
1N5914B

1N990A
1N5278A
1N991A
1N5280A
1N992A
1N5908
1N5913A
1N5913A
1N5913B
1N5914A
1N5914A
1N5914B

4-4
4-40
4-4
4-40
4-4
4-59
4-65
4-65
4-65
4-65
4-65
4-65

1N5845
1N5846
1N5847
1N5848
1N5849
1N5850
1N5851
1N5852
1N5853
1N5854
1N5855
1N5856

1N749
1N750
1N751
1N752
1N5233A
1N753
1N754
1N755
1N756
1N5238A
1N757
1N758

4-4
4-4
4-4
4-4
4-40
4-4
4-4
4-4
4-4
4-40
4-4
4-4

1N5915
1N5915A
1N5915B
1N5916
1N5916A
1N5916B
1N5917
1N5917A
1N5917B
1N5918
1N5918A
1N5918B

1N5915A
1N5915A
1N5915B
1N5916A
1N5916A
1N5916B
1N5917A
1N5917A
1N5917B
1N5918A
1N5918A
1N5918B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

Note: Reverse polarity has an R suffix.

1-67

ZENER INDEX CROSS·REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5919
1N5919A
1N5919B
1N5920
1N5920A
1N5920B
1N5921
1N5921 A
1N5921B
1N5922
1N5922A
1N5922B

1N5919A
1N5919A
1N5919B
1N5920A
1N5920A
1N5920B
1N5921 A
1N5921A
1N5921B
1N5922A
1N5922A
1N5922B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5939
1N5939A
1N5939B
1N5940
1N5940A
1N5940B
1N5941
1N5941A
1N5941B
1N5942
1N5942A
1N5942B

1N5939A
1N5939A
1N5939B
1N5940A
1N5940A
1N5940B
1N5941A
1N5941 A
1N5941B
1N5942A
1N5942A
1N5942B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5923
1N5923A
1N5923B
1N5924
1N5924A
1N5924B
1N5925
1N5925A
1N5925B
1N5926
1N5926A
1N5926B

1N5923A
1N5923A
1N5923B
1N5924A
1N5924A
1N5924B
1N5925A
1N5925A
1N5925B
1N5926A
1N5926A
1N5926B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5943
1N5943A
1N5943B
1N5944
1N5944A
1N5944B
1N5945
1N5945A
1N5945B
1N5946
1N5946A
1N5946B

1N5943A
1N5943A
1N5943B
1N5944A
1N5944A
1N5944B
1N5945A
1N5945A
1N5945B
1N5946A
1N5946A
1N5946B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5927
1N5927A
1N5927B
1N5928
1N5928A
1N5928B
1N5929
1N5929A
1N5929B
1N5930
1N5930A
1N5930B

1N5927A
1N5927A
1N5927B
1N5928A
1N5928A
1N59288
1N5929A
1N5929A
1N5929B
1N5930A
1N5930A
1N5930B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5947
1N5947A
1N5947B
1N5948
1N5948A
1N5948B
1N5949
1N5949A
1N5949B
1N5950
1N5950A
1N5950B

1N5947A
1N5947A
1N5947B
1N5948A
1N5948A
1N5948B
1N5949A
1N5949A
1N5949B
1N5950A
1N5950A
1N5950B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5931
1N5931A
1N5931B
1N5932
1N5932A
1N5932B
1N5933
1N5933A
1N5933B
1N5934
1N5934A
1N5934B

1N5931A
1N5931A
1N5931B
1N5932A
1N5932A
1N5932B
1N5933A
1N5933A
1N5933B
1N5934A
1N5934A
1N5934B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5951
1N5951A
1N5951B
1N5952
1N5952A
1N5952B
1N5953
1N5953A
1N5953B
1N5954
1N5954A
1N5954B

1N5951A
1N5951 A
1N5951B
1N5952A
1N5952A
1N59528
1N5953A
1N5953A
1N5953B
1N5954A
1N5954A
1N5954B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5935
1N5935A
1N5935B
1N5936
1N5936A
1N5936B
1N5937
1N5937A
1N5937B
1N5938
1N5938A
1N5938B

1N5935A
1N5935A
1N5935B
1N5936A
1N5936A
1N5936B
1N5937A
1N5937A
1N5937B
1N5938A
1N5938A
1N5938B

4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65
4-65

1N5955
1N5955A
1N5955B
1N5956
1N5956A
1N5956B
1N5985A
1N5985B
1N5986A
1N5986B
1N5987A
1N5987B

1N5955A
1N5955A
1N5955B
1N5956A
1N5956A
1N5956B
1N5985A
1N5985B
1N5986A
1N5986B
1N5987A
1N5987B

4-65
4-65
4-65
4-65
4-65
4-65
4-68
4-68
4-68
4-68
4-68
4-68

Note: Reverse polarity has an R suffix.

1-68

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N5988A
1N5988B
1N5989A
1N5989B
1N5990A
1N5990B
1N5991A
1N5991B
1N5992A
1N5992B
1N5993A
1N5993B

1N5988A
1N5988B
1N5989A
1N5989B
1N5990A
1N5990B
1N5991A
1N5991B
1N5992A
1N5992B
1N5993A
1N5993B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N6018
1N6018A
1N6018B
1N6019
1N6019A
1N6019B
1N6020
1N6020A
1N6020B
1N6021
1N6021A
1N6021B

1N6018A
1N6018A
1N6018B
1N6019A
1N6019A
1N6019B
1N6020A
1N6020A
1N6020B
1N6021 A
1N6021 A
1N6021B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N5994A
1N5994B
1N5995A
1N5995B
1N5996A
1N5996B
1N5997A
1N5997B
1N5998A
1N5998B
1N5999A
1N5999B

1N5994A
1N5994B
1N5995A
1N5995B
1N5996A
1N5996B
1N5997A
1N5997B
1N5998A
1N5998B
1N5999A
1N5999B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N6022
1N6022A
1N6022B
1N6023
1N6023A
1N6023B
1N6024
1N6024A
1N6024B
1N6025
1N6025A
1N6025B

1N6022A
1N6022A
1N6022B
1N6023A
1N6023A
1N6023B
1N6024A
1N6024A
1N6024B
1N6025A
1N6025A
1N6025B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N6000A
1N6000B
1N6001A
1N6001B
1N6002A
1N6002B
1N6003A
1N6003B
1N6004A
1N6004B
1N6005A
1N6005B

1N6000A
1N6000B
1N6001A
1N6001B
1N6002A
1N6002B
1N6003A
1N6003B
1N6004A
1N6004B
1N6005A
1N6005B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
1N6270
1N6270A
1N6271
1N6271 A
1N6272
1N6272A

1N6267
1N6267A
1N6268
1N6268A
1N6269
1N6269A
1N6270
1N6270A
1N6271
1N6271A
1N6272
1N6272A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1N6006A
1N6006B
1N6007A
1N6007B
1N6008A
1N6008B
1N6009A
1N6009B
1N6010A
1N6010B
1N6011A
1N6011B

1N6006A
1N6006B
1N6007A
1N6007B
1N6008A
1N6008B
1N6009A
1N6009B
1N6010A
1N6010B
1N6011A
1N6011B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N6273
1N6273A
1N6274
1N6274A
1N6275
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A

1N6273
1N6273A
1N6274
1N6274A
1N6275
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1N6012A
1N6012B
1N6013A
1N6013B
1N6014A
1N6014B
1N6015A
1N6015B
1N6016A
1N6016B
1N6017A
1N6017B

1N6012A
1N6012B
1N6013A
1N6013B
1N6014A
1N6014B
1N6015A
1N6015B
1N6016A
1N6016B
1N6017A
1N6017B

4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68
4-68

1N6279
1N6279A
1N6280
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A

1N6279
1N6279A
1N6280
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A:

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

Nole: Reverse polarity has an R suffix_

1-69

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N6285
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6290A

1N6285
1N6285A1N6286
1N6286A
1N6287
1N6287A
1N6288
1N6288A
1N6289
1N6289A
1N6290
1N6290A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

m.6
3EZ3.9D5
3EZ4.3D5
3EZ4.7D5
3EZS.1D5
3EZ5.6D5
3EZS.2D5
3EZ6.8D5

3EZ3.9D5
3EZ4.3D5
3EZ4.7D5
3EZ5.1D5
3EZ5.6D5
3EZ6.2D5
3EZ6.8D5

4-40
4-36
4-36
4-71
4-71
4-71
4-71
4-71
4-71
4-71

1N6291
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296
1N6296A

1N6291
1N6291A
1N6292
1N6292A
1N6293
1N6293A
1N6294
1N6294A
1N6295
1N6295A
1N6296
1N6296A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

3EZ7.5D5
3EZ8.2D5
3EZ9.1D5
3EZ10D5
3EZ11D5
3EZ12D5
3EZ13D5
3EZ14D5
3EZ15D5
3EZ16D5
3EZ17D5
3EZ18D5

3EZ7.5D5
3EZS.2D5
3EZ9.1D5
3EZ10D5
3EZ11D5
3EZ12D5
3EZ13D5
3EZ14D5
3EZ15D5
3EZ16D5
3EZ17D5
3EZ18D5

4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71

1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
1N6302A

1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
1N6301
1N6301A
1N6302
1N6302A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

3EZ19D5
3EZ20D5
3EZ22D5
3EZ24D5
3EZ27D5
3EZ28D5
3EZ30D5
3EZ33D5
3EZ36D5
3EZ39D5
3EZ43D5
3EZ47D5

3EZ19D5
3EZ20D5
3EZ22D5
3EZ24D5
3EZ27D5
3EZ28D5
3EZ30D5
3EZ33D5
3EZ36D5
3EZ39D5
3EZ43D5
3EZ47D5

4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71

1N6303
1N6303A
1N6373
1N6374
1N6375
1N6376
1N6377
1N6378
1N6379
1N6380
1N6381
1N6382

1N6303
1N6303A
1N6373
1N6374
1N6375
1N6376
1N6377
1N6378
1N6379
1N6380
1N6381
1N6382

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

3EZ51D5
3EZ56D5
3EZ62D5
3EZ68D5
3EZ75D5
3EZ82D5
3EZ91D5
3EZ100D5
3EZ110D5
3EZ120D5
3EZ130D5
3EZ140D5

3EZ51D5
3EZ56D5
3EZ62D5
3EZ68D5
3EZ75D5
3EZ82D5
3EZ91D5
3EZ100D5
3EZ110D5
3EZ120D5
3EZ130D5
3EZ140D5

4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71
4-71

1N6383
1N6384
1N6385
1N6386
1N6387
1N6388
1N6389
182030
182030A
182160
182160A
187030

1N6383
1N6384
1N6385
1N6386
1N6387
1N6388
1N6389
1N5226A
1N5226B
1N5246A
1N5246B
1N5913A

4-59
4-59
4-59
4-59
4-59
4-59
4-59

3EZ150D5
3EZ160D5
3EZ170D5
3EZ180D5
3EZ190D5
3EZ200D5
5Z5338
5Z5364
BZX84C3V3
BZX84C4V3
COD16041
COD16042

3EZ150D5
3EZ160D5
3EZ170D5
3EZ180D5
3EZ190D5
3EZ200D5
1N5338A
1N5364A

4-71
4-71
4-71
4-71
4-71
4-71
4-51
4-51
4-98
4-98
4-104
4-104

187030A
187160
187160A

moo

HO

4-40
4-40
4-40
4-65

Note: Reverse polanty has an R suffix.

1-70

4-65

1N5913B
1N5246A
1N5246B

HO
1N4764
1N4734

MMBZ5226B
MMBZ5229B
MZ2360
MZ2361

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number
COD16045
COD16046
COD16049
COD16050
CD3100001
CD31 00025
CD3112016
CD3112032
CD3168
CD3174
CL1020
CL1520

Motorola
Direct
Replacement

Motorola
Similar
Replacement

1N5297
1N5302

4-104
4-104
4-104
4-104
4-36
4-36
4-36
4-36
4-40
4-40
4-47
4-47

MC6403
MC6404
MC6405
MC6406
MC6407
MC6424
MC6425
MCL1300
MCL1301
MCL1302
MCL1303
MCL1304

CL221 0
CL2220
CL331 0
CL3320
CL471 0
CL4720
CL681 0
ICT-5
ICT-8
ICT-10
ICT-12
ICT-15

1N5283
1N5306
1N5287
1N5310
1N5290
1N5314
1N5293
ICTE-5
ICTE-8
ICTE-10
ICTE-12
ICTE-15

4-47
4-47
4-47
4-47
4-47
4-47
4-47
4-59
4-59
4-59
4-59
4-59

MCT821
MCT821A
MLL746
MLL746A
MLL747
MLL747A
MLL748
MLL748A
MLL749
MLL749A
MLL750
MLL750A

ICT-18
ICT-22
ICT-36
ICT-45
ICTE-5
ICTE-8
ICTE-10
ICTE-12
ICTE-15
ICTE-18
ICTE-22
ICTE-36

ICTE-18
ICTE-22
ICTE-36
ICTE-45

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

1N5521 A
1N5521B
1N5521C
1N5521D
1N5530A
1N5530B
1N5530C
1N5530D
1N5521A
1N5521B
1N5521C
1N5521D
1N5530A
1N5530B
1N5530C
1N5530D
1N746
1N759
1N957A
1N977A
1N821
1N821
1N823

ICTE-45
LVA43
LVA43A
LVA43B
LVA43C
LVA100
LVA100A
LVA100B
LVA100C
LVA343
LVA343A
LVA343B
LVA343C
LVA3100
LVA3100A
LVA3100B
LVA3100C
MC6007
MC6007A
MC6030
MC6030A
MC6400
MC6401
MC6402

MZ2360
MZ2361
MZ2360
MZ2361
1N4728
1N4753
1N4736
1N4752

Page-#

Industry
Part Number

1N5262A
1N5268A

ICTE-5
ICTE-8
ICTE-10
ICTE-12
ICTE-15
ICTE-18
ICTE-22
ICTE-36
ICTE-45

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

1N823
1N825
1N825
1N827
1N827
1N829
1N829

4-10
4-10
4-10
4-10
4-10
4-10
4-10
4-75
4-75
4-75
4-75
4-75

1N821
1N821A
MLL746
MLL746A
MLL747
MLL747A
MLL748
MLL748A
MLL749
MLL749A
MLL750
MLL750A

4-10
4-10
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

MLL751
MLL751A
MLL752
MLL752A
MLL753
MLL753A
MLL754
MLL754A
MLL755
MLL755A
MLL756
MLL756A

MLL751
MLL751A
MLL752
MLL752A
MLL753
MLL753A
MLL754
MLL754A
MLL755
MLL755A
MLL756
MLL756A

4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

4-59
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55
4-55

MLL757
MLL757A
MLL758
MLL758A
MLL759
MLL759A
MLL957A
MLL957B
MLL958A
MLL958B
MLL959A
MLL959B

MLL757
MLL757A
MLL758
MLL758A
MLL759
MLL759A
MLL957A
MLL957B
MLL958A
MLL958B
MLL959A
MLL959B

4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

4-55
4-55
4-55
4-55
4-55
4-4
4-4
4-4
4-4
4-10
4-10
4-10

MLL960A
MLL960B
MLL961A
MLL961B
MLL962A
MLL962B
MLL963A
MLL963B
MLL964A
MLL964B
MLL965A
MLL965B

MLL960A
MLL960B
MLL961A
MLL961B
MLL962A
MLL962B
MLL963A
MLL963B
MLL964A
MLL964B
MLL965A
MLL965B

4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

Nole: Reverse polarity has an R suffix.

1-71

MCL1300
MCL1301
MCL1302
MCL1303
MCL1304

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MLL966A
MLL966B
MLL967A
MLL967B
MLL968A
MLL968B
MLL969A
MLL969B
MLL970A
MLL970B
MLL971A
MLL971B

MLL966A
MLL966B
MLL967A
MLL967B
MLL968A
MLL968B
MLL969A
MLL969B
MLL970A
MLL970B
MLL971A
MLL971B

4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

MLL4117
MLL4118
MLL4119
MLL4120
MLL4121
MLL4122
MLL4123
MLL4124
MLL4125
MLL4126
MLL4127
MLL4128

MLL4117
MLL4118
MLL4119
MLL4120
MLL4121
MLL4122
MLL4123
MLL4124
MLL4125
MLL4126
MLL4127
MLL4128

4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81

MLL972A
MLL972B
MLL973A
MLL973B
MLL974A
MLL974B
MLL975A
MLL975B
MLL976A
MLL976B
MLL977A
MLL977B

MLL972A
MLL972B
MLL973A
MLL973B
MLL974A
MLL974B
MLL975A
MLL975B
MLL976A
MLL976B
MLL977A
MLL977B

4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

MLL4129
MLL4130
MLL4131
MLL4132
MLL4133
MLL4134
MLL4135
MLL4370
MLL4370A
MLL4371
MLL4371A
MLL4372

MLL4129
MLL4130
MLL4131
MLL4132
MLL4133
MLL4134
MLL4135
MLL4370A
MLL4370A
MLL4371A
MLL4371A
MLL4372A

4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-76
4-76
4-76
4-76
4-76

MLL978A
MLL978B
MLL979A
MLL979B
MLL980A
MLL980B
MLL981A
MLL981B
MLL982A
MLL982B
MLL983A
MLL983B

MLL978A
MLL978B
MLL979A
MLL979B
MLL980A
MLL980B
MLL981A
MLL981B
MLL982A
MLL982B
MLL983A
MLL983B

4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76
4-76

MLL4372A
MLL4614
MLL4615
MLL4616
MLL4617
MLL4618
MLL4619
MLL4620
MLL4621
MLL4622
MLL4623
MLL4624

MLL4372A
MLL4614
MLL4615
MLL4616
MLL4617
MLL4618
MLL4619
MLL4620
MLL4621
MLL4622
MLL4623
MLL4624

4-76
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81

MLL984A
MLL984B
MLL985A
MLL985B
MLL986A
MLL986B
MLL4099
MLL4100
MLL4101
MLL4102
MLL4103
MLL4104

MLL984A
MLL984B
MLL985A
MLL985B
MLL986A
MLL986B
MLL4099
MLL4100
MLL4101
MLL4102
MLL4103
MLL4104

4-76
4-76
4-76
4-76
4-76
4-76
4-81
4-81
4-81
4-81
4-81
4-81

MLL4625
MLL4626
MLL4627
MLL4678
MLL4679
MLL4680
MLL4681
MLL4682
MLL4683
MLL4684
MLL4685
MLL4686

MLL4625
MLL4626
MLL4627
MLL4678
MLL4679
MLL4680
MLL4681
MLL4682
MLL4683
MLL4684
MLL4685
MLL4686

4-81
4-81
4-81
4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85

MLL4105
MLL4106
MLL4107
MLL4108
MLL4109
MLL411 0
MLL4111
MLL4112
MLL4113
MLL4114
MLL4115
MLL4116

MLL4105
MLL4106
MLL41 07
MLL4108
MLL4109
MLL4110
MLL4111
MLL4112
MLL4113
MLL4114
MLL4115
MLL4116

4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81
4-81

MLL4687
MLL4688
MLL4689
MLL4690
MLL4691
MLL4692
MLL4693
MLL4694
MLL4695
MLL4696
MLL4697
MLL4698

MLL4687
MLL4688
MLL4689
MLL4690
MLL4691
MLL4692
MLL4693
MLL4694
MLL4695
MLL4696
MLL4697
MLL4698

4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85
4-85

Note: Reverse polarity has an R suffix.

1-72

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MLL4699
MLL4700
MLL4701
MLL4702
MLL4703
MLL4704
MLL470S
MLL4706
MLL4707
MLL4708
MLL4709
MLL4710

MLL4699
MLL4700
MLL4701
MLL4702
MLL4703
MLL4704
MLL470S
MLL4706
MLL4707
MLL4708
MLL4709
MLL4710

4-8S
4-8S
4-8S
4-8S
4-8S
4-8S
4-8S
4-8S
4-8S
4-8S
4-8S
4-8S

MLL4748A
MLL4749
MLL4749A
MLL4750
MLL47S0A
MLL4751
MLL4751A
MLL4752
MLL47S2A
MLL4753
MLL4753A
MLL4754

MLL4748A
MLL4749
MLL4749A
MLL47S0
MLL47S0A
MLL47S1
MLL4751A
MLL4752
MLL4752A
MLL4753
MLL47S3A
MLL4754

4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87

MLL4711
MLL4712
MLL4713
MLL4714
MLL471S
MLL4716
MLL4717
MLL4728
MLL4728A
MLL4729
MLL4729A
MLL4730

MLL4711
MLL4712
MLL4713
MLL4714
MLL4715
MLL4716
MLL4717
MLL4728
MLL4728A
MLL4729
MLL4729A
MLL4730

4-8S
4-8S
4-8S
4-8S
4-8S
4-85
4-85
4-87
4-87
4-87
4-87
4-87

MLL4754A
MLL475S
MLL4755A
MLL4756
MLL47S6A
MLL4757
MLL4757A
MLL47S8
MLL47S8A
MLL47S9
MLL47S9A
MLL4760

MLL4754A
MLL47SS
MLL4755A
MLL4756
MLL4756A
MLL4757
MLL4757A
MLL47S8
MLL4758A
MLL47S9
MLL4759A
MLL4760

4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87

MLL4730A
MLL4731
MLL4731A
MLL4732
MLL4732A
MLL4733
MLL4733A
MLL4734
MLL4734A
MLL4735
MLL4735A
MLL4736

MLL4730A
MLL4731
MLL4731A
MLL4732
MLL4732A
MLL4733
MLL4733A
MLL4734
MLL4734A
MLL4735
MLL4735A
MLL4736

4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87

MLL4760A
MLL4761
MLL4761A
MLL4762
MLL4762A
MLL4763
MLL4763A
MLL4764
MLL4764A
MLLS221
MLL5221A
MLL5221B

MLL4760A
MLL4761
MLL4761A
MLL4762
MLL4762A
MLL4763
MLL4763A
MLL4764
MLL4764A
MLLS221A
MLLS221A
MLL5221B

4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-92
4-92
4-92

MLL4736A
MLL4737
MLL4737A
MLL4738
MLL4738A
MLL4739
MLL4739A
MLL4740
MLL4740A
MLL4741
MLL4741A
MLL4742

MLL4736A
MLL4737
MLL4737A
MLL4738
MLL4738A
MLL4739
MLL4739A
MLL4740
MLL4740A
MLL4741
MLL4741A
MLL4742

4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87

MLL5222
MLLS222A
MLL5222B
MLLS223
MLL5223A
MLL5223B
MLL5224
MLL5224A
MLL5224B
MLL5225
MLL522SA
MLL5225B

MLLS222A
MLL5222A
MLLS222B
MLL5223A
MLLS223A
MLL5223B
MLL5224A
MLL5224A
MLL5224B
MLLS225A
MLLS22SA
MLL5225B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL4742A
MLL4743
MLL4743A
MLL4744
MLL4744A
MLL474S
MLL4745A
MLL4746
MLL4746A
MLL4747
MLL4747A
MLL4748

MLL4742A
MLL4743
MLL4743A
MLL4744
MLL4744A
MLL4745
MLL4745A
MLL4746
MLL4746A
MLL4747
MLL4747A
MLL4748

4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87
4-87

MLLS226
MLL5226A
MLL5226B
MLL5227
MLLS227A
MLL5227B
MLL5228
MLL5228A
MLL5228B
MLL5229
MLL5229A
MLL5229B

MLLS226A
MLL5226A
MLL5226B
MLL5227A
MLL5227A
MLLS227B
MLL5228A
MLL5228A
MLL5228B
MLL5229A
MLL5229A
MLL5229B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

Note: Reverse polarity has an R suffix_

1-73

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MLL5230
MLL5230A
MLL5230B
MLL5231
MLL5231A
MLL5231B
MLL5232
MLL5232A
MLL5232B
MLL5233
MLL5233A
MLL5233B

MLL5230A
MLL5230A
MLL5230B
MLL5231A
MLL5231A
MLL5231B
MLL5232A
MLL5232A
MLL5232B
MLL5233A
MLL5233A
MLL5233B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5249
MLL5249A
MLL5249B
MLL5250
MLL5250A
MLL5250B
MLL5251
MLL5251A
MLL5251B
MLL5252
MLL5252A
MLL5252B

MLL5249A
MLL5249A
MLL5249B
MLL5250A
MLL5250A
MLL5250B
MLL5251A
MLL5251A
MLL5251B
MLL5252A
MLL5252A
MLL5252B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5234
MLL5234A
MLL5234B
MLL5235
MLL5235A
MLL5235B
MLL5236
MLL5236A
MLL5236B
MLL5237
MLL5237A
MLL5237B

MLL5234A
MLL5234A
MLL5234B
MLL5235A
MLL5235A
MLL5235B
MLL5236A
MLL5236A
MLL5236B
MLL5237A
MLL5237A
MLL5237B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5253
MLL5253A
MLL5253B
MLL5254
MLL5254A
MLL5254B
MLL5255
MLL5255A
MLL5255B
MLL5256
MLL5256A
MLL5256B

MLL5253A
MLL5253A
MLL5253B
MLL5254A
MLL5254A
MLL5254B
MLL5255A
MLL5255A
MLL5255B
MLL5256A
MLL5256A
MLL5256B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5238
MLL5238A
MLL5238B
MLL5239
MLL5239A
MLL5239B
MLL5240
MLL5240A
MLL5240B
MLL5241
MLL5241A
MLL5241B

MLL5238A
MLL5238A
MLL5238B
MLL5239A
MLL5239A
MLL5239B
MLL5240A
MLL5240A
MLL5240B
MLL5241A
MLL5241A
MLL5241B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5257
MLL5257A
MLL5257B
MLL5258
MLL5258A
MLL525BB
MLL5259
MLL5259A
MLL5259B
MLL5260
MLL5260A
MLL5260B

MLL5257A
MLL5257A
MLL5257B
MLL5258A
MLL525BA
MLL525BB
MLL5259A
MLL5259A
MLL5259B
MLL5260A
MLL5260A
MLL5260B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5241
MLL5241A
MLL5241B
MLL5242
MLL5242A
MLL5242B
MLL5243
MLL5243A
MLL5243B
MLL5244
MLL5244A
MLL5244B

MLL5241A
MLL5241A
MLL5241B
MLL5242A
MLL5242A
MLL5242B
MLL5243A
MLL5243A
MLL5243B
MLL5244A
MLL5244A
MLL5244B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5261
MLL5261A
MLL5261B
MLL5262
MLL5262A
MLL5262B
MLL5263
MLL5263A
MLL5263B
MLL5264
MLL5264A
MLL5264B

MLL5261A
MLL5261A
MLL5261B
MLL5262A
MLL5262A
MLL5262B
MLL5263A
MLL5263A
MLL5263B
MLL5264A
MLL5264A
MLL5264B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5245
MLL5245A
MLL5245B
MLL5246
MLL5246A
MLL5246B
MLL5247
MLL5247A
MLL5247B
MLL5248
MLL5248A
MLL5248B

MLL5245A
MLL5245A
MLL5245B
MLL5246A
MLL5246A
MLL5246B
MLL5247A
MLL5247A
MLL5247B
MLL5248A
MLL5248A
MLL5248B

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

MLL5265
MLL5265A
MLL5265B
MLL5266
MLL5266A
MLL5266B
MLL5267
MLL5267A
MLL5267B
MLL5268
MLL5268A
MLL526BB

MLL5265A
MLL5265A
MLL5265B
MLL5266A
MLL5266A
MLL5266B
MLL5267A
MLL5267A
MLL5267B
MLL526BA
MLL526BA
MLL526BB

4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92
4-92

Note: Reverse polarity has an R suffix_

1-74

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

MLL5269
MLL5269A
MLL5269B
MLL5270
MLL5270A
MLL5270B
MLV746A
MLV747A
MLV748A
MLV749A
MLV750A
MLV751A

Motorola
Direct
Replacement

Motorola
Similar
Replacement

MLL5269A
MLL5269A
MLL5269B
MLL5270A
MLL5270A
MLL5270B
1N746A
1N747A
1N748A
1N749A
1N750A
1N751A

Industry
Part Number

Page #

Motorola
Direc!
Replacement

Motorola
Similar
Replacement

Page #

4-92
4-92
4-92
4-92
4-92
4-92
4-4
4-4
4-4
4-4
4-4
4-4

MMBZ5244B
MMBZ5245
MMBZ5245B
MMBZ5246
MMBZ5246B
MMBZ5247
MMBZ5247B
MMBZ5248
MMBZ5248B
MMBZ5249
MMBZ5249B
MMBZ5250

MMBZ5244B
MMBZ5245B
MMBZ5245B
MMBZ5246B
MMBZ5246B
MMBZ5247B
MMBZ5247B
MMBZ5248B
MMBZ5248B
MMBZ5249B
MMBZ5249B
MMBZ5250B

4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98

MMBZ5250B
MMBZ5251
MMBZ5251B
MMBZ5252
MMBZ5252B
MMBZ5253
MMBZ5253B
MMBZ5254
MMBZ5254B
MMBZ5255
MMBZ5255B
MMBZ5256

MMBZ5250B
MMBZ5251B
MMBZ5251B
MMBZ5252B
MMBZ5252B
MMBZ5253B
MMBZ5253B
MMBZ5254B
MMBZ5254B
MMBZ5255B
MMBZ5255B
MMBZ5256B

4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59

MLV752A
MLV753A
MLV754A
MLV755A
MLV756A
MLV757A
MLV758A
MLV759A
MLV4370A
MLV4371A
MLV4372A
MMBZ5226

MMBZ5226B

4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-4
4-98

MMBZ5226B
MMBZ5227
MMBZ5227B
MMBZ5228
MMBZ5228B
MMBZ5229
MMBZ5229B
MMBZ5230
MMBZ5230B
MMBZ5231
MMBZ5231B
MMBZ5232

MMBZ5226B
MMBZ5227B
MMBZ5227B
MMBZ5228B
MMBZ5228B
MMBZ5229B
MMBZ5229B
MMBZ5230B
MMBZ5230B
MMBZ5231B
MMBZ5231B
MMBZ5232B

4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98

MMBZ5256B
MMBZ5257
MMBZ5257B
MPH
MPH
MPT-10
MPT-12
MPT-15
MPT-18
MPT-22
MPT-36
MPT-45

MMBZ5256B
MMBZ5257B
MMBZ5257B

MMBZ5232B
MMBZ5233
MMBZ5233B
MMBZ5234
MMBZ5234B
MMBZ5235
MMBZ5235B
MMBZ5236
MMBZ5236B
MMBZ5237
MMBZ5237B
MMBZ5238

MMBZ5232B
MMBZ5233B
MMBZ5233B
MMBZ5234B
MMBZ5234B
MMBZ5235B
MMBZ5235B
MMBZ5236B
MMBZ5236B
MMBZ5237B
MMBZ5237B
MMBZ5238B

4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98

MPTE-5
MPTE-8
MPTE-10
MPTE-12
MPTE-15
MPTE-18
MPTE-22
MPTE-36
MPTE-45
MPZ5-16A
MPZ5-16B
MPZ5-32A

MPTE-5
MPTE-8
MPTE-10
MPTE-12
MPTE-15
MPTE-18
MPTE-22
MPTE-36
MPTE-45
MPZ5-16A
MPZ5-16B
MPZ5-32A

4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-59
4-99
4-99
4-99

MMBZ5238B
MMBZ5239
MMBZ5239B
MMBZ5240
MMBZ5240B
MMBZ5241
MMBZ5241B
MMBZ5242
MMBZ5242B
MMBZ5243
MMBZ5243B
MMBZ5244

MMBZ5238B
MMBZ5239B
MMBZ5239B
MMBZ5240B
MMBZ5240B
MMBZ5241B
MMBZ5241B
MMBZ5242B
MMBZ5242B
MMBZ5243B
MMBZ5243B
MMBZ5244B

4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98
4-98

MPZ5-32B
MPZ5-32C
MPZ5-180A
MPZ5-180B
MPZ5-180C
MR2520L
MR2525L
MR2535L
MR2540
MR2540L
MTZ607
MTZ607A

MPZ5-32B
MPZ5-32C
MPZ5-180A
MPZ5-180B
MPZ5-180C
MR2535L
MR2535L
MR2535L
MR2540
MR2540L
1N746
1N759

4-99
4-99
4-99
4-99
4-99
3-233
3-233
3-233
3-233
3-233
4-4
4-4

1N752A
1N753A
1N754A
1N755A
1N756A
1N757A
1N758A
1N759A
1N4370A
1N4371 A
1N4372A

Note: Reverse polarity has an R suffix_

1-75

MPTE-5
MPTE-8
MPTE-10
MPTE-12
MPTE-15
MPTE-18
MPTE-22
MPTE-36
MPTE-45

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

MTZ630
MTZ630A
MZ92·2.7
MZ92·3.0
MZ92·3.3
MZ92·3.6
MZ92·3.9
MZ92·4.3
MZ92·4.7
MZ92·5.1
MZ92·5.6
MZ92·6.2

Motorola
Direct
Replacement

Motorola
Similar
Replacement

1N957
1N977A

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

1N4371
1N4372
1N746
1N747
1N748
1N749
1N750
1N751
1N752
1N753

4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4

MZ500·14
MZ500·15
MZ500·16
MZ500·17
MZ500·18
MZ500·19
MZ500·20
MZ500·21
MZ500·22
MZ500·23
MZ500·24
MZ500·25

1N5237A
1N5239A
1N5240A
1N5241A
1N5242A
1N5243A
1N5245A
1N5246A
1N5248A
1N5250A
1N5251A
1N5252A

MZ92·6.8
MZ92·7.5
MZ92·8.2
MZ92·9.1
MZ92·10
MZ92·12
MZ92·13
MZ92·15
MZ92·16
MZ92·18
MZ92·20
MZ92·22

1N754
1N755
1N756
1N757
1N758
1N759
1N964A
1N965A
1N966A
1N967A
1N968A
1N969A

4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4

MZ500·26
MZ500·27
MZ500·28
MZ500·29
MZ500·30
MZ500·31
MZ500·32
MZ500·33
MZ500·34
MZ500·35
MZ500·36
MZ500·37

1N5254A
1N5256A
1N5257A
1N5258A
1N5259A
1N5260A
1N5261A
1N5262A
1N5263A
1N5265A
1N5266A
1N5267A

MZ92·24
MZ92·27
MZ92·30
MZ92·33
MZ92·36
MZ92·39
MZ92·43
MZ92·47
MZ92·51
MZ92·56
MZ92·62
MZ92·68

1N970A
1N971A
1N972A
1N973A
1N974A
1N975A
1N976A
1N977A
1N978A
1N979A
1N980A
1N981A

4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4
4·4

MZ500·38
MZ500·39
MZ500·40
MZ605
MZ610
MZ620
MZ623·12
MZ623·12A
MZ623·12B
MZ623·14
MZ623·14A
MZ623·14B

1N5268A
1N5270A
1N5271A

MZ92·75
MZ92·82
MZ92·91
MZ92·100
MZ92·110
MZ92·120
MZ92·130
MZ92·150
MZ92·160
MZ92·180
MZ92·200
MZ500·1

1N982A
1N983A
1N984A
1N985A
1N986A
1N987A
1N988A
1N989A
1N990A
1N991A
1N992A
1N5221A

4·4
4·4
4·4
4·4
4·4
4·13
4·13
4·13
4·13
4·13
4·13
4·40

MZ623·18
MZ623·18A
MZ623·18B
MZ623·25
MZ623·25A
MZ623·25B
MZ623·9
MZ623·9A
MZ623·9B
MZ640
MZ1000·1
MZ1000·2

MZ500·2
MZ500·3
MZ500·4
MZ500·5
MZ500·6
MZ500·7
MZ500·8
MZ500·9
MZ500·10
MZ500·11
MZ500·12
MZ500·13

1N5223A
1N5225A
1N5226A
1N5227A
1N5228A
1N5229A
1N5230A
1N5231A
1N5232A
1N5234A
1N5235A
1N5236A

4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40

MZ1000·3
MZ1000·4
MZ1000·5
MZ1000·6
MZ1000·7
MZ1000·8
MZ1000·9
MZ1000·10
MZ1000·11
MZ1000·12
MZ1000·13
MZ1000·14

Note: Reverse polarity has an R suffix.

1-76

MZ605
MZ610
MZ620
1N4745A
1N4745A
1N4745A
1N4746A
1N4746A
1N4746A
1N4749A
1N4749A
1N4749A
1N4755A
1N4755A
1N4755A
1N4743A
1N4743A
1N4743A

Page #

4·40
4·40
4·40
4·40

4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40

4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·40
4·101
4·101

4·101
4·36
4·36
4·36
4·36
4·36
4·36

1N4728
1N4729

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·101
4·36
4·36

1N4730
1N4731
1N4732
1N4733
1N4734
1N4735
1N4736
1N4737
1N4738
1N4739
1N4740
1N4740

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

MZ640

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

MZ1000-15
MZ1000-16
MZ1000-17
MZ1000-18
MZ1000-19
MZ1000-20
MZ1000-21
MZ1000-22
MZ1000-23
MZ1000-24
MZ1000-25
MZ1000-26

1N4742
1N4743
1N4744
1N4745
1N4746
1N4747
1N4748
1N4749
1N4750
1N4751
1N4752
1N4753

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36

P6KE30A
P6KE33
P6KE33A
P6KE36
P6KE36A
P6KE39
P6KE39A
P6KE43
P6KE43A
P6KE47
P6KE47A
P6KE51

P6KE30A
P6KE33
P6KE33A
P6KE36
P6KE36A
P6KE39
P6KE39A
P6KE43
P6KE43A
P6KE47
P6KE47A
P6KE51

4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106

MZ1000-27
MZ1000-28
MZ1000-29
MZ1000-30
MZ100o-31
MZ1000-32
MZ1000-33
MZ1000-34
MZ1000-35
MZ1000-36
MZ1000-37
MZ2360

1N4754
1N4755
1N4756
1N4757
1N4758
1N4759
1N4760
1N4761
1N4763
1N4763
1N4764

4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-36
4-104

P6KE51A
P6KE56
P6KE56A
P6KE62
P6KE62A
P6KE68
P6KE68A
P6KE75
P6KE75A
P6KE82
P6KE82A
P6KE91

P6KE51A
P6KE56
P6KE56A
P6KE62
P6KE62A
P6KE68
P6KE68A
P6KE75
P6KE75A
P6KE82
P6KE82A
P6KE91

4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106

P6KE91A
P6KE100
P6KE100A
P6KE110
P6KE110A
P6KE120
P6KE120A
P6KE130
P6KE130A
P6KE150
P6KE150A
P6KE160

P6KE91A
P6KE100
P6KE100A
P6KE110
P6KE110A
P6KE120
P6KE120A
P6KE130
P6KE130A
P6KE150
P6KE150A
P6KE160

4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106

P6KE160A
P6KE170
P6KE170A
P6KE180
P6KE180A
P6KE200
P6KE200A

4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-4
4-4
4-4
4-4
4-4

MZ2360

MZ2361
MZ5555
MZ5556
MZ5557
MZ5558
P6KE6.8
P6KE6.8A
P6KE7.5
P6KE7.5A
P6KE8.2
P6KE8.2A
P6KE9.1

P6KE6.8
P6KE6.8A
P6KE7.5
P6KE7.5A
P6KE8.2
P6KE8.2A
P6KE9.1

4-104
4-59
4-59
4-59
4-59
4-106
4-106
4-106
4-106
4-106
4-106
4-106

P6KE9.1A
P6KE10
P6KE10A
P6KE11
P6KE11A
P6KE12
P6KEl2A
PGKE13
P6KE13A
P6KE15
P6KE15A
P6KE16

P6KE9.1A
P6KE10
P6KE10A
P6KE11
P6KE11A
P6KE12
P6KEl2A
P6KE13
P6KE13A
P6KE15
P6KE15A
P6KE16

4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106

P6KE160A
P6KE170
P6KE170A
P6KE180
P6KE180A
P6KE200
P6KE200A
PD6000
PD6000A
PD6020
PD6020A
PD6041

P6KE16A
P6KE18
P6KE18A
P6KE20
P6KE20A
P6KE22
P6KE22A
P6KE24
P6KE24A
P6KE27
P6KE27A
P6KE30

P6KE16A
P6KE18
P6KE18A
P6KE20
P6KE20A
P6KE22
P6KE22A
P6KE24
P6KE24A
P6KE27
P6KE27A
P6KE30

4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106
4-106

PD6041A
PD6061
PD6061A
PD6201
PD6201A
PD6201B
PD6201C
PD6210
PD6210A
PD6210B
PD6210C
PR6105

MZ2361
1N6283A
1N6287A
1N6289A
1N6303A

Note: Reverse polarity has an R suffix_

1-77

1N746
1N759
1N957A
1N968A
1N746
1N759
1N957A
1N968A
1N5221A
1N5221B
1N5221C
1N5221D
1N5530A
1N5530B
1N5530C
1N5530D
1N825

4-4
4-4
4-4
4-40
4-40
4-40
4-40
4-55
4-55
4-55
4-55
4-10

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Industry
Part Number

Page #

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

PR6105A
PR6450
PR6450A
PRD105
PRDll0
PRDl20
PRDl40
PRD160
PS3535
PS3539
PS3546
PS3549

lNB27
lNB25
lNB27
MZ605
MZ61 0
MZ620
MZ640
MZ640
lN4570A
lN4573A
lN4565A
lN456BA

4-10
4-10
4-10
4-101
4-101
4-101
4-101
4-101
4-32
4-32
4-32
4-32

SA40
SMOA
SM3
SA43A
SM5
SM5A
SA4B
SA4BA
SA5.0
SA5.0A
SA51
SA51 A

SMO
SMOA
SM3
SM3A
SA45
SA45A
SA48
SA48A
SA5.0
SA5.0A
SA51
SA51 A

4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SAl 0
SAl 00
SA100A
SA10A
SAll
SAll0
SAll0A
SAllA
SA12
SA120
SA120A
SA12A

SA10
SA100
SA100A
SA10A
SAll
SAll0
SAll0A
SAllA
SA12
SA120
SA120A
SA12A

4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SA54
SA54A
SA6.0
SA6.0A
SA6.5
SAG.5A
SAGO
SA60A
SAG4
SA64A
SA7.0
SA7.0A

SA54
SA54A
SA6.0
SA6.0A
SA6.5
SA6.5A
SA60
SA60A
SA64
SA64A
SA7.0
SA7.0A

4-1 to
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SA13
SA130
SA130A
SA13A
SA14
SA14A
SA15
SA150
SA150A
SA15A
SA16
SA160

SA13
SA130
SA130A
SA13A
SA14
SA14A
SA15
SA150
SA150A
SA15A
SA16
SA160

4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SA7.5
SA7.5A
SA70
SA70A
SA75
SA75A
SA78
SA7BA
SAB.O
SAB.OA
SAB.5
SAB.5A

SA7.5
SA7.5A
SA70
SA70A
SA75
SA75A
SA7B
SA7BA
SAB.O
SAB.OA
SAB.5
SA8.5A

4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SAl60A
SA16A
SA17
SA170
SA170A
SA17A
SA1B
SA18A
SA20
SA20A
SA22
SA22A

SA160A
SA16A
SA17
SA170
SA170A
SA17A
SA1S
SA18A
SA20
SA20A
SA22
SA22A

4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SAB5
SA85A
SA9.0
SA9.0A
SA90
SA90A
SG1910
SG1911
SG1912
SG1920
SG1922
SSI

SAB5
SAB5A
SA9.0
SA9.0A
SA90
SA90A
MZ2360
MZ2360
MZ2360
MZ2361
MZ2361
MZ2360

4-110
4-110
4-110
4-110
4-110
4-110
4-104
4-104
4-104
4-104
4-104
4-104

SA24
SA24A
SA26
SA26A
SA28
SA2BA
SA30
SA30A
SA33
SA33A
SA36
SA36A

SA24
SA24A
SA26
SA26A
SA2S
SA2BA
SA30
SA30A
SA33
SA33A
SA36
SA36A

4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110
4-110

SSI-2
STB567
SV7401
UZ3016
UZ3016A
UZ3016B
UZ3051
UZ3051A
UZ3051B
UZ3235
UZ3235A
UZ3235B

MZ2361
MZ2361
MZ605
lN3016
lN3016A
lN3016B
lN3051
1N3051 A
lN3051B
lN5235
lN5235A
lN5235B

4-104
4-104
4-101
4-21
4-21
4-21
4-21
4-21
4-21
4-40
4-40
4-40

Note: Reverse polarity has an R suffix_

1-78

ZENER INDEX CROSS-REFERENCE (Continued)
Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

Industry
Part Number

Motorola
Direct
Replacement

Motorola
Similar
Replacement

Page #

UZ3281
UZ3281A
UZ3281B
UZ3470
UZ3470A
UZ3470B
UZ3515
UZ3515A
UZ3515B
UZ4116
UZ4116A
UZ4116B

1N5281
1N5281 A
1N5281B
1N2970
1N2970A
1N2970B
1N3015
1N3015A
1N3015B
1N5384A
1N5384A
1N5384B

4·40
4·40
4·40
4·15
4·15
4·15
4·15
4·15
4·15
4·51
4·51
4·51

UZ4747
UZ4747A
UZ4748
UZ4748A
UZ4749
UZ4749A
UZ4750
UZ4750A
UZ4751
UZ4751A
UZ4752
UZ4752A

1N4747
1N4747A
1N4748
1N4748A
1N4749
1N4749A
1N4750
1N4750A
1N4751
1N4751A
1N4752
1N4752A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

UZ4706
UZ4706A
UZ4706B
UZ4736
UZ4736A
UZ4737
UZ4737A
UZ4738
UZ4738A
UZ4739
UZ4739A
UZ4740

1N5342A
1N5342A
1N5342B
1N4736
1N4736A
1N4737
1N4737A
1N4738
1N4738A
1N4739
1N4739A
1N4740

4·51
4·51
4·51
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

UZ4753
UZ4753A
UZ4754
UZ4754A
UZ4755
UZ4755A
UZ4756
UZ4756A
UZ4757
UZ4757A
UZ4758
UZ4758A

1N4753
1N4753A
1N4754
1N4754A
1N4755
1N4755A
1N4756
1N4756A
1N4757
1N4757A
1N4758
1N4758A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

UZ4740A
UZ4741
UZ4741A
UZ4742
UZ4742A
UZ4743
UZ4743A
UZ4744
UZ4744A
UZ4745
UZ4745A
UZ4746
UZ4746A

1N4740A
1N4741
1N4741 A
1N4742
1N4742A
1N4743
1N4743A
1N4744
1N4744A
1N4745
1N4745A
1N4746
1N4746A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4-36

UZ4759
UZ4759A
UZ4760
UZ4760A
UZ4761
JZ4761A
UZ4762
UZ4762A
UZ4763
UZ4763A
UZ4764
UZ4764A

1N4759
1N4759A
1N4760
1N4760A
1N4761
1N4761 A
1N4762
1N4762A
1N4763
1N4763A
1N4764
1N4764A

4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36
4·36

Note: Reverse polarity has an R suffix.

1-79

1-80

RECTIFIERS

Contents
Page

Motorola is the world's leading supplier of rectifiers, including those for use in switching power
supplies. Wafer fabrication technology has constantly improved, leading to the product offering
outlined in this selector guide. Today's Motorola
rectifiers embody the same precision technology
as the most advanced ICs, and are capable of
passing stringent environmental testing, including under the hood of an automobile.
In addition to improved quality, rectifier product trends are toward higher operating temperature, faster switching times, plastic packages
(translate lower cost) and use of dual rectifier
modules.

Schottky
(High-Speed, Low Voltage).

2-2

Ultrafast Recovery . .

2-6

Fast Recovery . . . .

2-8

General-Purpose . . .

2-10

Bridges. . . . . . . . .

2-12

Selector Guides

ZENER DIODES
Motorola's standard Zeners and Avalanche
Regulator diodes comprise the largest inventoried line in the industry. Continuous development of improved manufacturing techniques
have resulted in computerized diffusion and test,
as well as critical process controls learned from
surface-sensitive MOS fabrication. Resultant
high yields lower factory costs. Check the following features for application to your specific
requirements:
o Wide selection of package materials and
styles:
Plastic (Surmetic) for low cost, mechanical
ruggedness
Glass for highest reliability, lowest cost
Metal for highest power
• Power ratings from 0.25 to 50 Watts
• Breakdown voltages from 1.8 to 200 V in approximately 10% steps
• Available tolerances from 10% (low cost) to
as tight as 1% (critical applications) with off-theshelf delivery
• Special selection of electrical characteristics
available at low cost due to high-volume lines
(check your Motorola sales representative for
special quotations)
• JAN/JANTX(V) availability
• Special glass now used in DO-35 type packages is compatible with low temperature alloy
processes, yielding sharper breakdown and low
leakage.

2-1

Zener and Avalanche Regulator
Diodes General Purpose. . .

2-13

Voltage Reference Diodes
Temperature Compensated
Reference Devices . . . . ..

2-16

Special Purpose Regulators
Field-Effect Current Regulator
Diodes. . . . . . . . . . . . . ..
Low Voltage Regulators. . . ..

2-17
2-17

Transient Suppressors
General Purpose. . .
Automotive . . . . . .

2-18
2-21

Lead Tape Packaging
Standards for Axial-Lead
Components . . . . . . . . . ..

2-22

Surface Mount
Tape and Reel. . . . . . . . ..

2-23

Schottky Rectifiers
SWITCHMODE Schottky Power Rectifiers with the high
speed and low forward voltage drop characteristic of Schottky's metal/silicon lunctlons are produced with ruggedness
and temperature performance comparable to silicon-junction
rectifiers. Ideal for use in low voltage, high frequency power
supplies and as very fast clamping diodes, these devices
feature switching times less than 10 ns, and are offered In
current ranges from 0.5 to 300 amperes, and reverse voltages
to 60 volts.
In some current ranges, devices are available with Junction

temperature specifications of 125'C, 150'C, 175'C. DeVices
with higher TJ ratings can have significantly lower leakage
currents, but higher forward-voltage speCificatIOns. These
parameter tradeoffs should be considered when selecting
devices for applications that can be satisfied by more than
one device type number.
All deVices are connected cathode to case or cathode to
heatsink, where applicable. Reverse polarity may be available on some deVices upon speCial request. Contact your
Motorola representative for more information.

-10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)

o.s
299-02
(DO-204AH)
Glass

1.0
59·04
Plastic

//

VRRM
(Volta)

3.0
362B·01
MLL41
Glass
Leadless

5.0

267-03

369A-04

60-01

Plastic

Plastic

Metal

~

/ •I

ct;

15

MBR115P

20

1N5817

MBRL120

1N5820

MBR320

MBRD320

1N5823

MBR030

1N5818

MBRL130

1N5821

MBR330

MBRD330

1N5824

MBR040

1N5819

MBRL140

1N5822

MBR340

MBRD340

1N5825

25
30
35

40
45

50

MBR150tt

MBR350

MBRD350

60

MBR160tt

MBR360

MBRD360

80

75

70
60
90

100
IFSM

5.0

(Amps)

25

20

60

fTC @ Rated 10
("CI
tTL @ Rated 10
("C)
TJ (Max)
("CI
MaxVF@
IfM =10

500

125
75

90

75

80

95

150

125

150

125

150

150

126

0.65

'0.50
TL ~ 25'C

'0.625
TL = 25'C

"'0.740
Tl ~ 25'C

0.45
Tc ~ 125'C

'0.38

TL ~ 25'C

'0.69
Tt = 25'C

o

TC ~ 25'C

TX versions available
Values are for the 4o-Volt Units The lower voltage parts provide lower limits and higher voltage umts proVide slightly higher limits
** 10 IS total deVice output
Values are for 60 volt unIts The lower voltages parts ...,;:40 volts provide lower limits
t Must be derated for reverse power diSSipation See Data Sheet

tt

TJ (Max)

=

150°C

2-2

There are many other standard features In Motorola
Schottky rectifiers that give added performance and reliability.

2 MOLYBDENUM DISCS on both Sides of the die mlmmlze
fatigue from power cycling In all metal product. The plastiC
TO-220 deVices have a speCial solder formulation for the
same pu rpose

1. GUARDRINGS are Included In all Schottky die for reverse
voltage stress protection from high rates of dvldt to Virtually
eliminate the need for snubber networks. The guardrlng also
operates like a zener and avalanches when sublected to
voltage transients.

3 QUALITY CONTROL momtors all cntlcal fabncatlon operations and performs selected stress tests to assure constant
processes

,
"10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)
6.0

10

7.5 :
221B-Ol
(TO-220AC)
PlastiC

369A-04
PlastiC

15
221A-04
(TO-220AB)
PlastiC

::r-:~

:J-~

I
!
•

MBRD620CT

56-03
(DO-203M)
(DO-4)
Metal

"

16
221B-Ol
(TO-220AC)
PlastiC

20

25

221A-04
(TO-22DAB)
PlastiC

56-03
(DO-203M)
(DO-4)
Metal

I ,r P
:r

lN5826

lN5829

~

lN5827

MBRD630CT
MBR735

MBR1035

MBR1535CT

MBR745

MBR1045

MBR1545CT

MBR1635

MBR2035CT

MBR1645

MBR2045CT

lN5828

MBRD640CT

lN5830

lN6095

lN5831

lN6096

MBRD650CT
MBR1060

MBRD660CT

**

MBR2060CT

MBR1070

MBR2070CT

MBR10eo

MBR20eOCT

MBR1090

MBR2090CT

MBR10l00

MBR20100CT

150

150

150

500

150

150

800

400

105

135

105

85

125

135

85

70

150

150

150

125

150

150

125

125

0.57
Te = 125"0

0.57
TC = 125"C

0.72@ l5A
Te = 125"C

0.67

0.72 (0' 20A
Te = 125'C

'0.48
TC ~ 25'C

0.86@78.5A
Te = 70"0

TC

'0.50
= 25'C

Values are for the 4D-Volt unIts The lower voltage parts prOVide lower hmlts
10 IS total deVice output

2-3

TC ~ 125"0

SCHOTTKY RECTIFIERS (continued)

"'\0. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)
35

30
11-03
(TO-204AA)
Metal

:J--o

VRRM
(Volts)

221A-04
(TO-220AB)
Plastic

=,

340-02
(TO-218AC)
Plastic

40

56-03
(DO-203AA)
Metal

50
257-01
(DO-203AB)
Metal

(40 Mil Pins)

p IS

MBR3020CT

MBR3520

~

..."

r--

.~

15

20

lN5832

25
lN5833

lN6097

lN5834

lN6098

600

600

600

90

75

70

30

35
40
45

MBR3035CT

MBR2535CT

MBR3035PT

MBR3535

SD241
MBR3045CT

MBR2545CT

MBR3045PT

SD41
MBR3545,H,Hl'"

400

300

400

105

125

105

50

60

'FSM

(Amps)
tTc @ Rated 10

fe)

.

tTL @ Rated 10
("C)
TJ (Max)
("C)

150

150

150

.150

125

125

MaxVF@
IFM 10

0.72@ 30A
Te = 125"C

0.73@30A
Te # 125'0

0.72 (it 30 A
Te ~ 125"C

0.55
Te = 25'C

'0.59

0.86@·IS7A
Te = 70'e

=

Values are for the 40-Volt umts The lower voltage parts provide lower limits
.. 10 IS total deVice output
H & H1 verSions are HI-Rei Processed Parts (Non JAN, JTX)
Must be derated for reverse power diSSipation SeB Data Sheet

2·4

TC = 25"C

"10. AVERAGE RECTIFIEO FORWARD CURRENT (Amperes)

65

60

75

80

120

200

300

357C-Ol

257-01
DO-203AB
Metal

,

Plastic
TAP

POWER

C

~

MBR6015L

MBR20015CTL

MBR6020L

MBR20020CTL

MBR6025L

MBR20025CTL

MBR6030L

MBR20030CTL
MBR6535

MBR6035

MBR7535

MBRB035

MBR12035CT MBR20035CT

MBR30035CT

MBRB045

MBR12045CT MBR20045CT

MBR30045CT

MBR7540
S051
MBR6045,H,H1···

MBR12050CT MBR20050CT

MBR30050CT

MBR12060CT MBR20060CT

MBR30060CT

1000

800

1000

1000

1500

1500

1500

2500

90

120

120

90

120

140

140

140

140

150

175

150

175

175

175

175

175

0.68
TC = 125'C

0.71
TC = 125'C

0.48«'
TC = 150'C

0.64
TC = 125'C

150

10

MBR7545

800

·0.6
TC ~ 125'C
**

MBR6545

IS

0.38 (1/
0.62
060
0.59
TC = 150'C TC = 150'C TC = 125'C TC ~ 150'C

total device output

H & H1 versions are HI·Rel Processed Parts (Non JAN, JTX)

2-5

Ultrafast Recovery Rectifiers
EXPANDING the SWITCHMODE Rectifier family are these
ultrafast devices with reverse recovery times of 25 to 100
nanoseconds They complement the broad Schottky'offering
for use In the higher voltage outputs and Internal circUitry of
switching power supplies as operating frequencies Increase
from 20 kHz to 250 kHz Additional package styles and operating current levels are planned

All devices are connected cathode to case or cathode to
heatsmk, where applicable, Reverse polarity may be available on some devices upon special request. Contact your
Motorola representative for more Information

"10. AVERAGE REcnFIED FORWARD CURRENT (Amperes)

VRRM

(VoIIS)

-

,1.0

3.0

4.0

59-04
(DO·41)
Plastic

369A·04

267-03

369A·04

Plastic

Plastic

Plastic

/

:J-~

~

MUR405

MURD605CT

MUR605CT

MUR805

MUR1505

MURll0

MURD310

MUR410

MURD61 OCT

MUR610CT

MUR810

MUR1510

150

MUR115

MURD315

MUR415

MURD615CT

MUR615CT

MUR815

MUR1515

200

MUR120

MURD320

MUR420

MURD620CT

MUR620CT

MUR820

MUR1520

300

MUR130

MUR430

MUR830

MUR1530

400

MUR140

MUR440

MUR840

MUR1540

500

MUR150

MUR450

MUR850

MUR1550

600

MUR160

MUR460

MUR860

MUR1560

700

MUR170

MUR470

MUR870

800

MUR180

MUR480

MUR880

900

MUR190

MUR490

MUR890

1000

MURll00

MUR4100

MUR8100

MUR105

100

TA@RalediO

rc)

35

TJ(Max)

75

50

TC'@ Rated 10
("C)

125

63

75

100

200

145

130

150

150

80
158

rc)

175

175

175

175

175

175

175

Irr

25150175

35

25150175

35

35

351601100

35160

ns
10

• I •7

15
2218·01
(TO-220AC)
Plastic

221A-04
(T0-220A8)
Plastic

MURD305

50

'FSM
(Amps)

**

a.O

6.0

IS

total deVice output

2-6

"10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)
16

25

30

221A-04
(TO-220AB)
PlastiC

56-03
(DO-203AA)

340-02
(TO-218AC)
PlastiC

'l P

50

70

::r",

100

200
357C-Ol

257-01
(DO-203AB)
Metal

::r,
PlastiC
POWER TAP

IS

MUR1605CT

MUR2505

R710XPT

MUR3005PT

MUR5005

MUR7005

MUR10005CT

MUR20005CT

MUR1610CT

MUR2510

R711XPT

MUR3010PT

MUR5010

MUR7010

MURI 001 OCT

MUR20010CT

MUR1615CT

MUR2515

MUR3015PT

MUR5015

MUR7015

MUR10015CT

MUR20015CT

MUR1620CT

MUR2520

MUR3020PT

MUR5020

MUR7020

MUR10020CT

MUR20020CT

R712XPT

MUR1630CT
R714XPT

MUR1640CT

MUR3030PT

MUR20030CT

MUR3040PT

MUR20040CT

MUR1650CT

MUR3050PT

MUR1660CT

MUR3060PT

**

100

500

150

400

600

1000

400

800

150

145

100

150

125

125

140

95

175

175

150

175

175

175

175

175

35

50

100

35

50

50

50

50

10 IS total deVice output

2-7

Fast Recovery Rectifiers
. available for designs reqUiring a power rectifier having
maximum sWitching limes ranging from 200 ns to 750 ns
These devices are offered In current ranges of 1.0 to 50
amperes and In voltages to 1000 volts

All deVices are connected cathode to case or cathode to
heatslnk, where applicable. Reverse polarity may be available on some deVices upon special request. Contact your
Molorola representative for more Information

'0. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)
1.0
59-04
PlasM

60-01
Metal

3.0

5.0

267-02
Plastic

194-04
Plastic

/ I I I

VRRM
(Volts)
50

tlN4933

MR810

MR830

MR850

MR820

100

tlN4934

MR811

MR831

MR851

MR821

200

tlN4935

MR812

MR832

MR852

MR822

400

tlN4936

MR814

MR834

MR854

MR824

600

tlN4937

MR816

MR836

MR856

MR826

100

100

300

'90

'55

800

MR817

1000

MR818

'FSM
(Amps)

30

30

TA@RatedIO
("C)

75

75

TC@Ratsdlo
(OC)

100

100

TJ(Max)
("C)

150

150

150

175

175

Ifr
(ps)

0.2

0.75

0.2

0.2

0.2

Must be derated for reverse power diSSipation See Data Sheet
Package Size 0 120" Max Diameter by 0 260" Max Length

2-8

10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)
6.0

12
245A-02
(DO-203AA)
Metal

p

VRRM
(VOlts)

20

24

30

42A-Ol
(DO-203AB)
Metal

339-02
Plaslle
Note 1

42A-Ol
(DO-203AB)
Metat

11

jJ if

P

50

lN3879

lN3889

lN3899

MR2400F

lN3909

100

lN3880

lN3890

lN3900

MR2401F

lN3910

200

lN3881

lN3891

lN3901

MR2402F

lN3911

400

lN3883

lN3893

lN3903

MR2404F

lN3913

600

MR1366

MR1376

MR1386

MR2406F

MR1396

150

200

250

300

300

Tc@Raledlo
('C)

100

100

100

125

100

TJ (max)
(,C)

150

150

150

175

150

Irr
p.s

0.2

0.2

0.2

0.2

0.2

BOO
1000

IFSM
(Amps)
TA@Raledlo
('C)

o

TX versions available
Note 1. Meets mounting configuration of TO-220 outline

2-9

General-Purpose Rectifiers
Motorola offers a wide vanety of low-cost devices, packaged to meet diverse mounting requirements Avalanche
capability IS available In the aXial lead 1 5, 3 and 6 amp
packages shown below to provide protection from transients.

All devices are connected cathode to case or cathode to
heatslnk, where applicable Reverse polanty may be available on some devices upon special request Contact your
Motorola representative for more information

10. AVERAGE RECTIFIED FORWARD CURRENT (AlIIJIlI"'s)

VRRM

(Volts)

1.6

1.5

59-03
(00-41)
Plastic

59-04
Plastic

/

3.0
60·01
Metal

267·03

/ I 7

6.0
267·02
Plastic

194·04
Plastic

-

50

t1N4001

"1N5391

lN4719

"MR500

lN5400

MR750

100

tlN4002

"lN5392

lN4720

"MR501

lN5401

MR751

200

tlN4003

lN5393
'MR5059

lN4721

"MR502

lN5402

MR752

400

tlN4004

lN5395
'MR5060

lN4722

"MR504

lN5404

MR754

600

t1N4005

lN5397
'MR5061

1N4723

"MR506

lN5406

MR756

800

t1N4006

lN5398

1N4724

MR508

MR758

1000

t1N4007

lN5399

1N4725

MR510

MR760

30

50

300

100

75

Tl = 70

75

95

175

175

175

175

IFSM
(Amps)

TA@Ratedto
("C)

Tl

200

400

~

60

105

TC@Rated'O
("C)
TJ (Max)

("C)

Package Size a 120" Max Diameter by a 260" Max Length
1 N5059 senes eqUivalent Avalanche Rectifiers

.. Avalanche verSions available, consult factory

2-10

175

' 175

10. AVERAGE RECTIFIED FORWARD CURRENT (Amperes)
20

12

245A-02
(DO-203M)
Metal

24

25

339-02

193-04

p1

VRRM
(Volts)

Plastic
Note 1

30
43-02
(00-21)
Metal

Plastic
Note 2

40
42A-Ol
(DO-203AB)
Metal

9

Ji

~

50
43-04
Metal

P

50

MRl120
lN1199,A,B

MR2000

MR2400

MR2500

lN3491

lN3659

lN1183A

MR5005

100

MR1121
lN1200,A,B

MR2001

MR2401

MR2501

lN3492

lN3660

lNl184A

MR5010

200

MRl122
lN1202,A,B

MR2002

MR2402

MR2502

lN3493

lN3661

lNl186A

MR5020

400

MRl124
lN1204,A,B

MR2004

MR2404

MR2504

lN3495

lN3663

lNl188A

MR5040

600

MRl126
lN1206,A,B

MR2006

MR2406

MR2506

Note 3

lNl190A

Note 3

MR2008

MR2508

NOle 3

Note 3

Nole 3

MR2010

MR2510

Nole 3

Note 3

Nole 3

800
1000
IFSM
(Amps)

MRl128
MR1130

300

400

400

400

300

400

800

600

150

150

125

150

130

100

150

150

190

175

175

175

176

175

190

195

TA@Ratedlo
eC)
TC@Ratedlo

('C)
TJ (Max)

(OC)

Note 1. Meets mounting configuration of TO-220 outline
Note 2. Request Data Sheet for Mounting Information
Note 3. Available on special order

2-11

Rectifier Bridges
10. DC OUTPUT CURRENT (Amperes)

Motorola SUPERBRIDGES offer cost effectiveness and
reliability In single phase applicallons Assemblies combine
pretested "button" rectifier cells for low assembly cost and
high Yields. Performance of four Individual diodes IS achieved
With reliability of the whole assembly comparable to that of
a single unit. Assemblies feature versatile slip-on/solder/wlre
wrap terminals.

35

25
309A-03

40
309A-02

••

,. ' _':?';
'1"

sa~

VRRM
(Volts)

~

,

v

'y

1-3/8"

sa ~~

so

MDA2500

MDA3500

100

MDA2501

MDA3501

200

MDA2502

MDA3502

MDA4002

400

MDA2504

MDA3504

MDA4004

600

MDA2506

MDA3506

MDA4006

BOO

MDA250B

MDA350B

MDA400B

1000

MDA2510

MDA3510

IFSM

400

400

800

55

55

35

175

175

175

(Ampe)
TA (il Rated 10
("C)
TC @ Rated

("C)
TJ (Max)
("C)

10

UL
RECOGNIZED E61980

DimenSions given are nominal

2-12

Zener and Avalanche Regulator Diodes
General-Purpose Regulator Diodes
Nominal
Zener

Voltage
('Note II

250mW

250mW

250mW

Law Noist

law leyel
Calhode ::::

low HOlse
Cathode =
Polarity MiUIi

Polarity Mark

400mW
Low Noise
towuallaga
Cathode =
Polarity Mark

{'Note 2)

I'Notas 513)

('Nale3)

Catbode ""

pofarity Mali
("Notes 2.11)

Polanty Mark
("Note 2)

X
299-02

(()

Glass

1.8
2.0
22
2.4
25
2.7
2.8
30
33
3.6
3.9
4.3
4.7
5.1
5.6
6.0
6.2
6.8

350mW

250mW
Low Level
Cathode =
Polarity-Marie

Glass
Case 362-01
MLL4614
Mll4678
MLL4679
MLL46BO
MLL4681

MLL4615
MLL4616

DO-204AH

(00-351

lN467B
lN4679

lN4614
lN4615

Cathode =

~

('Note 8)

('Note 9)

%
299-02

Case 318-05
Slyle B
SOT-23
(TO-236AN

Glass
DO-204AH

(00-351

ASI

lN46BO

1N4616

MLl4617

lN4681

lN4S17

1N4370

lN5221A

MLL46B2

MLL4618

IN4682

lN4618

lN4371

lN5223A

Mll46B3
Mll46B4
MLL46B5
MlL4686
MLL4687
Mll46B8
Mll46B9
MLl4690

Mll46t9
MLL46Z0
MlL4621
MlL4622
Mll4623
MLL4624
MLl4625
Mll4626

tN4683
lN46S4
lN4685
lN4686
lN46B7
lN468a
lN46B9
lN4690

lN4619
lN4620
lN4621
lN4622
lN4623
tN4624
lN4625
lN4626

lN4372
lN746
lN747
tN748
lN749

lN5225A
tN5226A
lN5227A
lN5228A
lN5229A
lN5230A
lN5231A
1NS232A

tN5987A
lN5988A
lN59B9A
lN5990A
lN5991A
lN5992A
1NS993A
lN5994A

MlL4691
MlL4692

MLL4627
MLL4099

lN4691
lN4692

lN4627
lN4Q99

MMBZ5235B

lN5S25A
lN5526A

lN7S3
lN754
lN957A

lN5234A
tN5235A

1NS995A
lN5996A

1N5985A
tN59B6A

MMBZ5226B
MMBZ5227B
MMBZ5228B
MMBZS229B
MMBZ5230B
MMBZ5231B
MMBZ5232B
MMBZ5233B
MMBZ52348

tN55tBA
lN5519A
lN5520A
lN5221A
lNS522A
lN5523A
lN5S24A

lN750
lN751
lN152

7.5

MLl4693

MLL4100

lN4693

lN4100

MMBZ52368

lN5527A

lN75S
lN9S8A

1N5236A

lN5997A

MLL4694

Mll4101

lN4694

lN4101

MMBZ5237B

lN522BA

lN7S6
1N959A

lN5237A

lN5998A

8.7
9.1

MLl4695
MLL4696

MLl4102
Mll41Q3

lN4695
lN4696

lN4102
lN4103

MMBZ5238B
MMBZ52398

lN5529A

lN757
lN960A

lN5238A
tN5239A

lN5999A

10

MlL4697

Mll4104

lN4697

1N4f04

MM8Z524OB

1N5530A

tN758
1N96tA

tN5240A

lN6000A

11

Mll4698
MLL4699

MLl4105
MLl4106

1N4698
lN4699

tN4105
1N4106

MM8Z52418
MMBZ52428

1N5531A

lNS241A
lN5242A

lN6001A
lN6002A

MlL4700
MLL4701
MlL4702
MLL4703
MLL4704
MLL4705
MLL4706
MLL4707
MLl470B
MlL4709
MLL4710
MLL4711
Mll4712
MLl4713
MLL4714
MlL4715
MlL4716
MLl4717

MLL4107
MLl4108
MLl4109
Mll4tl0
MLl4111
MlL4112
MLl4113
MlL4114
MLL4115
Mll4116
MLL4117
MlL4118
MLl4119
MlL4120
MlL4121
MlL4122
MLl4123
MLL4124
MLL4125
MLL4126
MLl4127
MLl4128
MlL4129
MlL4130
MLL4131
MLl4132
MLL4133
MLL4134
MLL4135

lN4700
lN4701
lN4702
lN4703
lN4704
lN4705
lN4706
lN4707
1N470B
lN4709
lN4710
lN4711
lN4712
lN4713
lN4714
lN4715
lN4716
lN4717

1N4107
lN410B
fN41l:)9
lN4ftO
lN4111
lN4112
1N4113
lN4114
lN4115
lN4116
lN4117
lN4118
lN41t9
lN4120
lN4121
lN4122
lN4123
lN4124
lN4125
1N4126
lN4127

MMBZ5243B
MMBZ5244B
MMBZ5245B
MMBZfi246B
MMBZ5247B
MMBZ5248B

lN962A
lN759
1N963A
IN964A

lN5243A
lN5244A
tN5245A
1 NS246A
1 NS247A
lN5248A
1 NS249A
tN5250A
1N5251A
lN5252A
lN5253A
lN5254A
lN5255A
lN5256A
lN5257A
lN5258A
1NS259A
lN5260A
lN5261A
1N5262A
lN5263A
lN5264A
lN5265A
lN5266A
1 NS267A
lN5268A
lNS269A
lN527QA
lN5271A
lN5272A
tlN5273A
tlN5274A
tlN5275A
tlN5276A
tlN5277A
tlN5278A
tlN5279A
tlN5281A

lN6003A

1~

16
,9
20

22
24

25
27
28
30

33
36

39

43
47
51
SG

••

82
68
75
82
87
91
100
110

MMBZ5249B

~~ml~

MMBZ52558
MMBZ52568
MM8Z52578

lN5532A

1N5533A
lN5334A
lN5335A

1N5336A
lN5:l37A
1N5338A
lN5539A
lN5540A

lN5541 A

1N5542A
lN5543A

lN965A
lN966A
1N9G7A
1N968A
lN969A

lN970A
1N97tA

lN5544A
1N5545A
lNSfi46A

1N972A
tN973A
lN974A

1N975A
tN97GA
1N9nA
1N978A
1N979A

lN412B

1N4129
lN4130
1N4131
lN4132
1N4133

1N980A
tN981A
1N982A
lN983A

lN4134
lN4t35

lN9B4A

1N9SSA
lN980A

lN981A

1~

lN988A

140 .
1SO

tN989A
lN990A

160
170
180

lN991A
lN992A

200

t

Caillade = Polarity Mall
('Nole 41

8.2

13
14
15
16
17

o

50DmW

JAN JANTX(V) ava,lable. ± 5% only
lN5273A-1N52B1A supphed ,n 00-7 glass package

·See Notes -

2-13

page 2-15

lN6004A
lN6005A
lN6006A
lN6007A
lN6008A
lN6009A
lN6010A
lN6011A
lN6012A
lN6013A
lN6014A
lN6015A
lN6016A
lN6017A
lN6018A
lN6019A
lN6020A
1N6021A
lN6022A
lN6023A
lN6024A
lN602SA

General-Purpose Regulator Diodes (continued)

-=
1 Will

liOIImw

~

--~

. I'oIaIflyMatk
("Notes 4,11)
("lii0i.. 9,11)

~
Glass
Case 362-01

I'oIaIflyM.",
("N_S,12j
("NOleS)

L

Case 59·04
(00-41)

~
Glass

:I.'
2.5
:1.7

MlL4371

Mll746

311

Mll747

MLL4225A
MLL5226A
MlL5227A

MLl748

MLl522SA

511
6.0

6.2
U

7.5
8.2
8.7
1.1

:4 L
('N0Ie11

. PoJarifJ_
('t/ote8)

PoIlOliIYllalll
(,tIotIIS)

I

(00-13)

1.,.e30
Case 59-03
(00·41)

Case 17-02

MlL5224A
MLL4372

3.3
4.3
4.7
$.'

sWan
CIIIlGie =

MLL5221A
MLL5222A
MLL5223A

2.8
3.0

3.9

c·

MLL4370

uWan

Clthode =

Case 52-03

Case 3628-01

',8

2.0
ILl!

1 Wan

-CI1I1od•
til CIs.

MLL749
MLL750

MlL751
MLL7S2
MLL753
MLl754
MLL957A
Mll755
MLL958A
MLL756
MLL959A

MLL5229A
MLl5230A
MlL5231A
MLL5232A
MLL5233A
MLl5234A
MLl5235A

lN4728
lN4729
lN4730
lN4731

MLL4728
MLL4729

Mll4730
MLl4731
MLl4732

lN4732
lN4733
lN4734

MLl4/33
MLL4734

lN4735

MLL4735

1N3B21
lN3B22
1N3823
1N3824

lN3825
1N3B26
1N3B27

lN5913A
lNS914A
lN5915A
lNS916A
lN5917A
lN5918A
lN5919A

1NS333A
lN5334A
lN5335A
lN5336A
lN5337A

lN5920A

lN5341A

lN533BA
lN5339A

lN4736

MLL4736

1N3B2S
1N3B29
1N3016A

lN5921A

lN5342A

MLL5236A

lN4737

MLL4737

'N3830

lN5922A

lN5343A

MLL5237A

lN4738

MLL4738

lN30,SA

lN5923A

lN3017A

MLL5238A

lN5344A
lN5345A

MLL757
MLL960A

MLL5239A

lN4739

MLL4739

lN3019A

lN5924A

lN5346A

10

MLL758
MLL961A

MLL5240A

lN4740

MLL4740

lN3020A

lN5925A

lN5347A

11
12

MLL962A

MLL5241A

lN4741

MLL4741

1N3021A

lN5926A

lN5348A

MlL759
MLL963A

MLL5242A

lN4742

MLL4742

lN3022A

lN5927A

tN5349A

13
14

MLL964A

MLL5243A
MLL5244A
MLL5245A
MLL5246A
MlL5247A
MLL5248A

lN4743

MLL4743

'fN3023A

lN5928A

·,5

MLL965A
MLL966A

I.

MLL967A

, 1~

tN4744
lN4745

MLL4744
MLL4745

lN3024A
tN3025A

lN5929A
lN5930A

lN4746

MLL4746

lN3026A

lN5931A

lN5350A
lN5351A
lN5352A
lN5353A
lN5354A
lN5355A

lN4747
lN4748
lN4749

MLl4747
MLL4748
MlL4749

lN3027A
lN3028A
lN3029A

lN5932A
lN5933A
lN5934A

lN5356A
lN5357A
lN5358A
lN5359A

lN4750

MLL4750

,N3<)3OA

lN5935A

lN5361A

lN4751
lN4752
lN4753
lN4754
lN4755

MLL4751
MlL4752
MLL4753
MLL4754
MLL4755

lN3031A

lN5362A
lN5363A
lN5364A
lN5365A
lN5366A
lN5367A

MLL5261A
MLL5262A
MLL5263A
MLL5264A
MLL5265A
MLL5266A

lN4756
lN4757
lN4758

MLL4756
MLL4751
MLL4758

lN3032A
,N3033A
I_A
,N303SA
lN30S6A
1NS037A
lN3038A

lN5936A
lN5937A
lN5938A
lN5939A
lN5940A

lN4759
lN4760

MLL4759
MLL4760

IN3039A
1N304OA

lN5944A
lN5945A

MLL5267A
MLL5268A
MLL5269A
MLL5270A

lN4761
lN4762

MLl4761
MLL4762

lN$041A

lN5946A
lN5947A

lN4763
lN4764

MLL4763
MLL4764

1N3043A

lN5958A
1N5949A
lN5950A

MLL971A

MLL5249A
MLL5250A
MLL5251A
MLL5252A
MLL5253A
MLL5254A

28
30
33
36
39
43

MLL972A
MLL973A
MLL974A
MLL975A
MLL976A

MLL5255A
MLL5256A
MLL5257A
MLL5258A
MLL5259A
MlL5260A

'"

MLL977A
MLL978A
MlL979A

62

MLL980A
MLL981A

75

MLL982A
MLL983A

"

·20
12
24.

MLL968A
MLL969A
MLL970A

27 ..

25

51

5&

60

sa
82

87
111

100

110

MLL984A
MLL985A
MLL986A

1:10

150

-

1N3044A

1N3045A
'N3046A
1N3047A
lN304QA

120
160

lN3049A

1711
180
175

*See Notes - page

lN3042A

IN3050A

tN3051A
2~15

2-14

1 Nb360A

1N5941 A
lN5942A
tN5943A

lN5368A
lN5369A
lN5370A
lN5371A
lN5372A
lN5373A
lN5374A
lN5375A
lN5376A
lN5377A
lN5378A
1N5379A

lN5951A
lN5952A
1N5953A
1N5954A

lN5380A
lN5831A
lN53B3A
1N5384A
lN5385A

1N5955A
1N5956A

lN5386A
lN53B8A

NOTES

Nominal

Zener

Voltage
(*Note t)

10w,n
Cathode 10 Case
= lH3993 05 MZT2970 Series
Anode to Case

= lN2970 Senes

(ONOlesS.tO)

If

Case 56-03
00·203M

18
2.0
2.2
2.4
25
2.7
2.8
3.0
3.3
3.6
3.9
43
4.7
5.1
5.6
6.0
62
6.8
1.5

Anode to Case

= lH4557A Series
('Notes 9.10)

'Ii

o suffix

1N3993&R

1N4549A&RA

1N3994&R
lN3995&A

1N4550A&RA

lN3996&R

lN4551A&RA
lN4552A&AA

lN3997&R

1N4553A&RA

lN3998&R

1N4554A&RA

lN3999&A
lN2970A&AA

lN4555A&RA
lN3305A&AA

lN4000&R

lN4556A&AA
lN3306A&AA

lN2974A&AA
lN2975A&AA

lN3310A&RA

12
13
14
15

lN2976A&AA

lN3311A&RA

lN2977A&AA
lN2878A&RA

22

24
2S
27
28
30

33

36
39
43
47
50
51
52

56

60
62
68
75
62
87
91

'00

105
110
120
130
140

150

160
170
175
180
200

= 1%

A Suffix = ± 1 0% with guaranteed limits
on VZ. VF. and IR only
B suffix = ±5%
C suffix:::: ±2%
suffix = ±1%

11

"

Tolerances

No suffix = ::!: 5%
C suffix = 2%

lN2971A&RA

18
19
20

IZT~lDmA

Case 58-01
(00·5 Type)

8.2
8.7
91
1.

1.

The Zener Voltage IS measured at approxImately 1/4 the rated power, with the follOWing exceptions the 1 N4678-4717 IS
measured with IZT =
50 /-LAdc.
the 1 N4614/1 N4099 IS measured with In
250 I'Ade. the 1N437011 N746
and the lN5221-S242 are measured with
IZT ~ 20 mAde. the lN5985A-6012A '5
measured with IZT :::: 5 0 rnA,
1N6013A-6023A IS measured with In ::::
20 rnA, 1N6024-6025 IS measured with

SO Wan
Cathode to Case
= MZT4S49 Senes

lN2972A&AA

tN3307A&RA

lN2973A&AA

lN3308A&AA

1N3309A&RA

lN2982A&RA

lN3312A&RA
lN3313A&RA
lN3314A&AA
lN331SA&RA
1N3316A&AA
lN3317A&AA

1N2963A&RA
lN2984A&RA
lN298SA&RA
lN2986A&RA

1N331BA&RA
lN331gA&AA
lN3320A&RA
lN3321A&RA

lN29BBA&AA

lN3323A&AA

lN2989A&RA
lN2990A&RA
1N2991A&RA
1N2992A&RA
lN2993A&AA

lN3324A&RA
lN332SMftA
lN3326A&AA
1N3327A&RA
1N3328A&AA

lN2996A&RA

lN33330A&AA

1N2997A&RA

1N333ZA&RA
lN3334A&RA

lN2979A&RA
tN2980A&RA

lN3322A&AA

o

MLL4370/1 N4370/1 N746 senes
No suffiX = ::!: 10%
A suffix:::: ::!:5%
C suffix:::: 2%
o suffiX == 1%
MLL957/1 N957 senes
A suffiX = ± 10%
B suffiX = ::!:5%
C suffiX =: 2%1
suffix:::: 1%

o

M,lItary parts ,n 1 N43701746/962/4099/46141
5518 series supplied In 00-7 MIlitary parts In
t N4370/746/962/4099/4614 ' 5518 are also
available In the cost effective DO-204AH (0035) package as the -1 version ThiS verSion can
be ordered by inserting a 1 between the part
number and the JAN, JTX or JTXV SUffiX, I e
1N746A1JAN MIL·STD 19500/111 and 127
state the ·1 versIon IS a direct substitute for the
non -1 versIon The -1 versions appear on MILSTD 701 as the preferred parts for new
deSigns

5

B suffiX = ±5%
No suffiX == ::!: 10%
A suffix:::: ±5%
C suffiX = 2%
o suffix:::: 1%

lN2999A&AA
lN3335A&AA
1N3000A&RA
lN3001A&RA

lN3336A&AA

lN3002A&AA
1N3003A&RA

lN3337A&RA
lN3338A&RA

1N3004A&RA
lN3005A&AA

1N3339A&RA
lN3340A&RA

1N3007A&RA

lN334ZA&RA

lN3008A&RA

lN3343A&RA
lN3344A&.RA
lN3345A&RA
lN3346A&RA
lN3347A&AA

lN3009A&RA
lN3011A&AA
lN3012A&RA
lN3014A&RA

lN3015A&RA

No suffix:::: ::!: 10%
A suffix:::: ±5%

A suffix::::

A suffiX == ±10%
B suffiX :::: :!:5%

C suffiX:::: ±2%
D suffix:::: ±1%

:!: 10%
B suffix:::: :!:5%

Exception

1 N3993-1 N4000

No suffiX :::: ± 10%
A suffiX == :t5%

10

RA and AS == Reverse Polarity Types
Available

11

Available In 8 mm Tape and Reel
Tl Cathode FaCing Sprocket Holes
T2 Anode FaCing Sprocket Holes

12

AvaIlable In 12 mm Tape and Reel
T1 Cathode FaCing Sprocket Holes
T2 Anode FaCing Sprocket Holes

13

Available In 8 mm tape and reel, both T1
and T2 options

1N3349A&AA

2-15

1N3821 series

1N3016 senes

A suffIX == ±10%
B suffiX == ::!..5%

lN335OA&RA

o JAN JANTX (V) ava,lable. ± 5% only

No suffiX == ::!: 10% with guaranteed limits
on VZ, VF and IR only
A suffiX == ± 10%

.

/:~

Voltage Reference Diodes
Temperature Compensated
Reference Devices
For applications where output voltage must remain within
narrow limits during changes in Input voltage. load resistance
and temperature. Motorola guarantees all References Devices to fall within the specified maximum voltage vanations.
tJ.VZ. at the specifically indicated test temperatures and test

Glass

Glass

CASE 51.02
DO-204AA
(DO-7)

CASE 299-02
DO-204AH
(DO-35)

current (JEDEC Standard #5). Temperature Coefficient is
also specified but should be considered as a reference only
- not a maximum rating.
Devices in this table are hermetically sealed structures.
Includes JAN. JANTX and JTXV Devices.

AVERAGE TEMPERATURE COEFFICIENT OVER THE OPERATING RANGE
0.111 %i"C
0.005 %i"C
0.002 %i"C
0.001 %i"C
o.ooos %I'C

Vz

AVz

AVZ

AVz

CUrr8nt

Tut

Tut"
Temp

DevIce

Max

DevIce

Type

VoltS

Volts

Device
Type

DevIce

PoIntAI

OevIce
Type

Max

mAde

Volts

Type

Volts

75
7.5

A
A

lN821
lN821A

0.096
0096

lN823
lN823A

0.048
0.048

lN825
lN825A

0019
0019

lN827
lN827A

0009
0009

'. Type
lN829
lN829A

OOOS
0005

05
0.5
1.0
1.0
2.0
20
40
40

B
A
B
A
B
A
B
A

lN4565
lN4565A
lN4570
lN4570A
lN4575
lN4575A
lN4580
lN4550A

0018
0099
0048
0099
0048
0.099
0048
0.099

lN4566
lN4565A
lN4571
lN4571A
lN4576
lN4576A
lN4581
lN4581A

0024
0050
0024
OOSO
0024
0.025
0024
O.OSO

lN4567
lN4557A
lN4572
lN4572A
lN4577
lN4577A
lN4582
lN4582A

0010
0020
0010
0020
0010
0020
0.010
0.020

lN4568
lN4568A
lN4573
lN4573A
lN4578
lN4578A
lN4583
lN4583A

0005
0010
0005
0010
0005
0010
0005
0010

lN4569
lN4559A
lN4574
lN4574A
lN4579
lN4579A
lN4584
lN4584A

0002
0005
0002
OOOS
0002
0.005
0002
0.005

Volts

:*
6.4

Max

Max

AVz

AVz

M8lI
Volts

Cate
299-02
DO-204AH
(00-35)

& Non..ufflX - Zzr ~ 15. "A" SuffiX - Zzr ~ 10
0-1 and non·l JAN/JANTX(V) avrulable. ±5% only. MIlitary parts In the lN821.·1 and lN4565. -1 senes and supplied In the 00-7 package.
'Test Temperature Points OC: A ~ - 55. O. + 25. + 75. + 100 B ~ O. + 25. + 75 C ~ - 55. O. + 25. + 75. + 100. + ISO
Precision Reference Diodes (CASE 51-02, DO-204AA)
Designed. manufactured and tested for ultra-high stability of voltage with time and temperature change. Use of special
measurement equipment and voltage standards provide calibration directly traceable to the National Bureau of Standards.

CERTIFIED VOLTAGE TIME STABfUTY OVER 1000 HOURS OF OPEIlATIOfI
Temperature
(PertslMlll1oII Change)

SIabIdty

<5 PPM!1ooo NIl
Reference

Tut

Voltage

CIImIIIt

Volts
6.2",1\%

mA
7.lfi'

Change

<20 PPMI1000 NIl

,.V
Max

Type

,.V
Max

DevIce

Range'C

Device
Type

DevIce

A. VZ(mV)
2.5

26.75.100

MZ605

30

MZ610

eo

MZ620

OPTemp

I

<10 PPMilooo HII
Change

2-16

Type

Chellge
,.V

Max
120

<40 PPM!1ooo NIl
Change
OevIce
,.V
Type
M8lI
I/I2'B4O
240

Special Purpose Regulators
Field-Effect
Current Regulator Diodes

low-Voltage Regulators

High Impedance diodes whose "constant current source"
characteristic complements the "constant voltage" of the zener line Currents are available from 0 22 to 4 7 mA, with
usable voltage range from a minimum limit of 1.0 to 2 5 V,
up to a voltage compliance of 100 V, for the 1N5283 senes,
or 70 V, for the MCl1300 senes

------

~

~

..

High-conductance Silicon diodes designed as stable
forward-reference sources for transistor amplifier blasmg and
similar applications Available In high reliability glass construction or economic plastiC packagmg.

Glass
Case 51-02
DO-204M
(00-7)

Reg. Current
Ip
@VT = 25V
mA
Nom

Knee Imp
ZK
&,VK
6.0 V
Mil
Min

Device
Type

0.22
0.24
0.27
0.30

lN5283
lN5284
lN5285
lN5286

275
235
195

0.33
0.39
0.43
0.47

lN5287
lN5288
lN5289
lN5290

135
100
0870
0750

105
105

0.56
0.62
0.68
0.75

lN5291
lN5292
lN5293
lN5294

0560
0470
0400
0335

110
113
1 15
120

0_82
0.91
1.00
1.10

lN5295
lN5296
lN5297
lN5298

0290
0240
0205
0180

125
129
135
140

1.20
1.30
1.40
1.50

lN5299
lN5300
lN5301
lN5302

0155
0135
0115
0105

145
150
155
160

1_60
1.80
2.00
2.20

lN5303
lN5304
lN5305
lN5306

0092
0074
0061
0052

165
175
185
195

2.40
2.70
3.00
3.30

lN5307
lN5308
lN5309
lN5310

0044

200
215
225
335

3.60
3.90
4.30
4.70

lN5311
lN5312
lN5313
lN5314

0.5:1:.03
1.0:1:0.6
2.0:1:0.6
3.0:1:0.6

MCL1300
MCL1301
MCL1302
MCL1303

0200
0100
0050

100
150
200
200

4.0:1:0.6

MCL1304

0025

250

=

160

0035

0029
0024

(n

Limiting
Voltage
IL
O.Slp
Volts
Max

=

250

0500

(T A

~

25°C unless otherwise noted)

Forward
Reference
Voltage

105

260

CASE 59-03
DO-41
Surmetie 30

ELECTRICAL CHARACTERISTICS

100

0020

0012

/

100
100
100
100

0017
0014

/

•

Leakage
Current
IR O. VR

Min

Max

IF
Test
Current
rnA

0.63

0.71

10

10

50

MZ2360

1.24

1.38

10

10

50

MZ2361

p.A

Volts

Device
Type

Case

59-04
Surmetlc
59-03
Surmetlc

275
290

o JANIJANTX (V) avaliability

2-17

Transient Suppressors
General-Purpose
Transient suppressors are designed for applications requinng protection of voltage sensitive electromc devices In
danger of destruction by high energy voltage transients. Select from standard factory available types or design the suppressor to meet specific needs by paralleling cells. For speCific options, I.e , non-standard voltage, higher power
capacity, and package configurations, consult factory.

IRSM~

PEAK POWER DISSIPATION @ 1.0 ms = 500 WATTS IRSM
Max Reverse
SurgeCllmmt
Amps

VeR
Volts

"

'R~ML~

CASE 59-04
VRSM
Nlax Reve....
Voltage @ "'SM
Volts'

Max,.
DevIce

Min

Non 6'AH

HAU

Non ~~A"

'''A''

Non "A"

SA50,A

64

7.3

7

52

543

96

92

SA6,O,A

667

815

737

439

485

114

103

SA65.A

722

882

798

407

447

123

112

SA70,A

778

951

86

378

417

133

12

SA75,A

833

102

921

35

388

143

129

I'A"

SA80,A

889

109

93

333

367

15

136

SA85,A

944

115

lOA

314

347

159

144

SA90,A

10

122

111

295

325

169

154

SA10,A

111

136

123

266

294

188

17

SAll,A

122

149

135

249

274

201

182

SA12.A

133

163

147

227

251

22

199

SA13,A

144

176

159

21

232

238

215

SA14,A

156

191

172

194

215

258

232

SA15,A

167

204

185

188

206

269

244

SA16,A

178

218

197

176

192

288

26

SA17,A

189

231

209

164

181

305

276

SA18,A

20

244

221

155

172

322

292

SA20,A

222

271

245

139

154

358

324

SA22,A

244

298

269

127

141

394

355

SA24,A

267

326

295

116

128

43

389

SA26,A

289

353

319

107

119

266

421

SA28,A

311

38

344

99

11

50

454

SA30,A

333

407

368

93

103

535

484

SA33,A

367

449

406

8S

94

59

533

SA36,A

40

489

442

78

86

643

581

SA40,A

444

543

491

7

78

714

645

SA43,A

478

584

528

65

72

767

694

SA45,A

50

611

553

62

69

803

727

SA4B,A

533

651

589

58

65

855

774

SA51 ,A

567

693

627

55

61

911

824

SA54,A

60

733

663

52

57

963

871

SA60,A

667

815

737

47

52

107

968

SA64,A

711

86.9

786

44

49

114

103
(continued)

2-18

o

10

20

30

Tlme~

40

50

(ms)

Surge Current Characteristics

60

PEAK POWER DISSIPATION @ 1.0 ms = 500 WATTS -

-

CASE 59-04

continued
'RSM
Max Reverse
Surge Current
Amps

VBR
Volts

VRSM
Max Reverse
Voltage @ 'RSM
Volts

Max
Device

Min

Non "A"

"A"

Non "A"

"A"

Non "A'"

uA u

SA70,A

778

951

86

4

44

125

113

SA75,A

833

102

921

37

41

134

121

SA78,A

867

106

958

36

4

139

126

SA85,A

944

115

104

33

36

151

137

SA90,A

100

122

111

31

34

160

146

SA100,A

111

136

123

28

31

179

162

SAll0,A

122

149

135

26

28

196

177

SA120,A

133

163

147

23

26

214

193

SA130,A

144

176

159

22

24

231

209
243

SA150,A

167

204

185

19

21

268

SA160,A

178

218

197

17

19

287

259

SA170,A

189

231

209

16

18

304

275

PEAK POWER DISSIPAT!ON @ 1.0 ms = 600 WATTS
Breakdown Voltage
Y/,BR)
oUs
Nom

6.8
7,5

8.2
9.1

10
11
12

13
15

16
18
20

22

24
27

30
33
36
39
43

47
51
56
62
68
75
82
91

100
110
120
130
150

160
170
180
200

@IT
mA
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

.

VRSM
Maximum Reverse
Voltage @ IRSM

Device Typa

IRSM
Maximum Reverse
Surge CUrrent
Amp

P6KE68
P6KE75
P6KE82
P6KE91
P6KE10
P6KEll
P6KE12
P6KE13
P6KE15
P6KE16
P6KE1B
P6KE20
P6KE22
P6KE24
P6KE27
P6KE30
P6KE33
P6KE36
P6KE39
P6KE43
P6KE47
P6KE51
P6KE56
P6KE62
P6KE68
P6KE75
P6KE82
P6KE91
P6KE100
P6KE110
P6KE120
P6KE130
P6KE150
P6KE160
P6KE170
P6KE180
P6KE200

56
51
48
44
40
37
35
32
27
26
23
21
19
17
15
14
126
116
106
96
89
82
74
68
61
55
51
48
42
38
35
32
28
26
25
23
21

108
117
125
138
15
162
173
19
22
235
265
291
319
347
391
435
477
52
564
619
678
735
805
89
98
108
118
131
144
158
173
187
215
230
244
258
287

.

VOHs

/

CASE 17-02

" r e , P6KES SA Clipper (back to back) verSions are available by
Breakdown Voltage for Standard IS ± 10 Vo Tolerance, ± 5 Yo version IS available by adding " A.
ordering with a "e" or "CA" SUffiX, I e P6KE6 Be or P6KE6 eGA
I

2-19

TRANSIENT SUPPRESSORS (continued)

~

PEAK POWER DISSIPATION @ 1.0 rns - 1500 WATTS
Breakdown Voltage

~BR)
oils
Nom

@IT

6.0

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

6.8
7.5
8.2

9.1
10
11

12
13
15
16
18

20
22
24
27
30
33

36
39

43
47
51
56

62
68
75

82
91
100
110
120
130
150
160
170
180
200
220
250

mA

Device Type
1N5908
1N6267
1N6268
1N6269
1N6270
1N6271
1N6272
1N6273
1N6274
1N6275
1N6276
1N6277
1N6278
1N6279
1N6280
1N6281
1N6282
1N6283
1N6284
1N6285
1N6286
1N6287
1N6288
1N6289
1N6290
1N6291
1N6292
1N6293
1N6294
1N6295
1N6296
1N6297
1N6298
1N6299
1N6300
1N6301
1N6302
1N6303

IRSM
Maximum Reverse
Surge CUrrsnt
Amp

VRSM
Maximum Reverse
Voltage (a IRSM
Volts

120
139
128
120
109
100
93
87
79
68
64
565
515
470
430
385
345
315
290
265
24
222
204
186
169
153
139
127
114
104
95
87
80
70
65
62
58
52
43
50

85
108
117
125
138
150
162
173
190
220
235
265
291
319
347
391
435
477
52
564
619
678
735
805
89
98
108
118
131
144
158
173
187
215
230
244
258
287
344
360

1 5KE68
1 5KE75
1 5KE82
15KE91
15KE1O
15KE11
15KE12
15KE13
15KE15
15KE16
15KE18
15KE20
15KE22
15KE24
15KE27
15KE30
15KE33
15KE36
15KE39
15KE43
15KE47
15KE51
15KE56
15KE62
15KE6S
15KE75
15KE82
15KE91
1 5KE100
15KE110
15KE120
1 5KE130
15KE150
15KE160
1 5KE170
1 5KE180
15KE200
15KE220
15KE250

Case
41-11

Breakdown Voltage for Standard IS ± 10% Tolerance, ±S% version IS available by adding "A", Ie, 1 N6267A, 1 5KE6 SA Clipper (back to back) verSions are
available by ordering the 1 5KE series with a "e" or "CA" suffiX. Ie, 1 5KE6 Be or 1 5KE6 SGA

2-20

PEAK POWER DISSIPATION @ 1.0 ms
VRWM
Working Peak
Reverse Voltage
(Blocking or
Stand-Off Voltage)

-

Device Type
1N6373 I ICTE-5 I
lN6374/1CTE-8 I
lN6375/1CTE-l0 I
lN6376/1CTE-12 I
1N6377 I ICTE-15 I
lN6378 IICTE-18 I
1N6379 I ICTE-22 I
1N6380 I ICTE-36 I
1N6381 I ICTE-45 I

5.0
8.0
10
12
15
18
22
36
45

PEAK POWER DISSIPATION @ 1.0 ms
VR
Operating Voltage

~

1500 WATTS

MPTE·5
MPTE-8
MPTE-l0
MPTE-12
MPTE-15
MPTE-18
MPTE-22
MPTE-36
MPTE-45

~
CASE 119-01

Clipper
(Back
To Back)
Version

IRSM
Maximum Reverse
Surge Current
Amp

VRSM
Maximum Reverse
Voltage (jt' IRSM
Volts

iCTE-5C
lN6382
lN6383
lN6384
lN6385
lN6386
lN6387
lN6388
lN6389

160
100
90
70
60
50
40
23
19

94
15
167
212
25
30
375
652
789

Case
41-11

= 8000 WATTS
IR
Reverse
Current

Nom
Vdc

V(RMS)

Device Type

p.A

14
14
28
28
28
165
165
165

10
10
20
20
20
117
117
117

MPZ5-16A
MPZ5-16B
MPZ5-32A
MPZ5-32B
MPZ5-32C
MPZ5-180A
MPZ5-180B
MPZ5-180C

50

A. Vz
Breakdown Voltage
Min
Volts (r
16
16
32
32
32
180
180
180

Vc
Clamping Voltage

Izr
mA

Max
Volts

04
04
02
02
02
003
003
003

24
20
50
45
40
250
225
205

«.

Ipp
Amp
200
200
100
100
100
20
20
20

VF
Forward Voltage

Volts ("
15

IF
Amp

Case

10

119-01

Automotive Transient Suppressors
Automotive TranSient Suppressors are deSigned for protectton against over-voltage conditions In the auto electrical system
including the "LOAD DUMP" phenomenon that occurs when the battery open CirCUits while the car IS running
AUTOMOTIVE TRANSIENT SUPPRESSOR
CASE 194-01
MR2535L

CASE 194-04
MR2540L

VRRM (Volts)

20

20

'0 (Amp)

35

50

V(BR) (Volts)

24-32

24-32

IRSM'
(Amp)

110

150

TC@Ratedlo
("C)

150

150

175

175

T

('C)

* Time Constant = 10 ms, Duty Cycle,;;;; 1 0%, TC

= 25°C

2-21

'------/_'~I

Lead Tape Packaging Standards for Axial-Lead Components
1.0 SCOPE - This document covers packaging requirements for
the following rooat-Iead components' use In automatic testing and
assembly eqUIpment Motorola Case 51 (00-7). Case 52 (00·13).
Case 59 (00-41). Case 267, Case 299 (00·35), Case 59-04 and
Case 17 Packaging, as covered In thiS document, shall consist of
axial-lead components mounted by their leads on pressure-sensitive
tape, wound onto a reel

3.3.4 - 50 Ib Kraft paper IS wound between layers of components
as far as necessary for component protection Width of paper IS
o 062 Inch to 0 750 Inch less than "C"' dimenSion of reel See
Figure 3
3.3.5 - Components shall be centered between tapes such that
the difference between 01 and 02 does not exceed 0 055
3.3.6 - Staple shall not be used for splicing No more than 4
layers of tape shall be used In any splice area and no tape shall
be offset from another by more than 0 031 Inch noncumulative
Tape splices shall overlap at least 6 Inches for butt JOints and at
least 3 Inches for lap JOints, and shall not be weaker than unspllced
tape

2.0 PURPOSE - ThiS document establishes Motorola standard
practices for lead·tape packaging ofaxlaHead components and
meets the requirements of EIA Standard RS-296·0 ··Lead·taplng of
components on axial lead configuration for automatic Insertion,"' level

1

3.3.7 - Quantity per reel shall be as Indicated In Table 1 Orders
for tape and reeled product wlil only be processed and shipped In
full reel Increments Scheduled orders must be In releases of full
reel Increments or multiples thereof High volume orders and
releases may be reeled on 14 00 Inch reels at Motorola's option,
therefore making the quantity per reel twice that shown for the
10 50 Inch reefs

3.0 REQUIREMENTS
3.1 Component Leads
3.1.1 - Component leads shall not be bent beyond dimenSion E
from their nominal posilion See Figure 2

3.3.8 - A maximum of a 25% of the components per reel quantity
may be missing Without consecutive missing per level 1 of RS·
296·0

3.1.2 - The "C"' dimenSion shall be governed by the overall length
of the reel packaged component The distance between flanges
shall be 0 059 Inch to 0 315 Inch greater than the overall com·
ponent length See Figures 2 and 3

3.3.9 - The Single face roll pad shall be placed around the flmshed
reel and taped securely Each reel shall then be placed In an
appropnate contamer

3.1.3 - Cumulative dimenSion "A"' tolerance shall not exceed
0059 over 5 In consecutive components

3.3.2 - Components leads shall be positioned perpendicularly
between pairs of 0 250 Inch tape See Figure 2

3.4 MARKING - M,mmum reel and carton marking shall consist of
the follOWing See Figure 3
Part number
Purchase order number
Quantity
Date of reeling (when applicable)
Manufacturer's name
Electrical value (when applicable)
Date codes (when applicable, see note 33 1)
Tape (when applicable)

3.3.3 - A mlmmum 1 Inch leader of tape shall be provided before
the first and last component on the reel

4.0 - ReqUIrements differing from thiS Motorola standard shall be
negollated With the factory

ORIENTATION - All polarized components must be oriented In one
direction. The cathode lead tape shall be blue, and the anode tape
shall be white See Figure 1
3.3 Reeling
3.3.1 - Components on any reel shall not represent more than
two date codes when date code Identification IS reqUIred

The packages indicated In the follOWing table are SUitable for lead tape packaging The table indicates the specific deVices
(recMers andlor zeners) that can be obtained from Motorola In reel packaging, and prOVides the appropriate packaging
specification.
TABLE 1 -

PACKAGING DETAILS (ALL DIMENSIONS IN fNCHES)

Quantity

Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case

Per Reel
(Item 3.3,1)

Component

C8seType

Product
category

51-02 (00-7)
299-02 (00·35)
17-02
59-03 (00-41)
59-01 (00-41)
59-01 (00-41)
59-04
52-03 (00-13)
267-02
41-11
194-01
194-04

All
Zeners
Zeners
Zeners
Zeners
Rectifiers
Rectifiers
Zeners
Rectifiers
Zeners
Rectifiers
Rectifiers

3000
3000
2000
3000
3000
6000
5000
1500
1500
1250
900
900

0200 ± 0020
0200 ± 0020
0200 ± 0 015
0200±0015
0200±0015
0200 ± 0020
0200 ± 0020
0400 ± 0020
0400 ± 0020
0200 ± 0020
0500 ± 0020
0400 ± 0020

SpacIng A

2-22

Tape
Speclng B
2.062
2.062
2.062
2.062
2.062
2062
2062
2500
2062
2.062
1.875
1875

± 059
± 059
± .059
± 059
± .059
± 059
± .059
± .059
± 059
± 059
± .059
± 059

Reel
Dimensions -

Max Off
Alignment

C

D(msxl

E

300
300
3.00
3.00
300
3.00
300
381
300
300
300
300

14.00
14.00
1400
14.00
1400
1400
14.00
1400
1400
14.00
1400
1400

0047

Item
Number
1
2
3
4
5
6
7

8
9
10
11
12

LEAD TAPE PACKAGING STANDARDS FOR AXIAL·LEAD COMPONENTS (continued)
FIGURE 1 -

REEL PACKING

~m:~~

Roll Pad
Item311
Max Off

Q>,.~-

AllgnEment

.r::::..... Container
Tape. Blue
Item 3 2
(Cathode)

COMPONENT SPACING

Overall LG

KraftPa~~r
,_~ _Reel
--~

'
JI

FIGURE 2 -

item 335
Both Sides

Tape. While
Item 3 2
(Anode)

FIGURE 3 -

,

L

__

1 Dl 1-

D2

I--

0250
0031 Item 3.32
Item335

REEL DIMENSIONS

35E~

1188

item 3 4

~c~

SURFACE MOUNT TAPE AND REEL
In conjunction with the industry trend to use automatic
placement eqUipment for microminiature components. Motorola offers MLL34 and 80T-23 deVices In the Industry accepted 8 mm tape and reel format MLL41 deVices are offered
In 12 mm tape. The current packaging method IS plastiC tape
with embossed cavities. whtch serve as a pocket for the Individual deVice A sealing tape IS then applied to retain the
deVice.

• DeVice Onentatlon: Either In Tl (Option 1) or T2
(Option 2) configuratIOn
• Quantity Per 7" Reel: 2,000 devices for MLL34.
1,000 devices for MLL41.
3,000 devices for 80T-23.
• MInimum Order Quantity 1 reel.
For ordering Information. please contact your local Motorola representative (8ee listing on back cover.)
Tape & Reel Options

Tape & Reel Options
MLL34. MLL41
OptIOn 1

Polanly band

Opbon 1

Tape Feed

~0

Option 2

Option 1
Option 2

50T-23

Indlcat~s

Option 2

EIA Std RS481

cathode

= T1 DeSignator. Cathode FaCing Sprocket Holes
= T2 DeSignator. Anode FaCing Sprocket Holes

to

Option 1 = Tl DeSignator
Opbon 2 = T2 DeSignator

2·23

Tape Feed

2-24

Rectifier Data Sheets

3-1

II

lNl183A

MOTOROLA

-

I

thru

SEMICONDUCTOR

TECHNICAL DATA

lNl190A
20-AMP

MEDIUM-CURRENT RECTIFIERS

RECTIFIERS

· .. for applications requiring low forward voltage drop and
rugged construction.

SILICON
DIFFUSED-JUNCTION

• High Surge Handling Ability
• Rugged Construction
• Reverse Polarity Available; Eliminates Need for Insulating
Hardware in Many Cases
• Hermetically Sealed

-MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Symbol

lN1183A

lNII84A

lN1186A

lN1188A

lN1190A

Unit

VRRM
VRWM
VR

50

100

200

400

600

Volts

10

40

40

40

40

40

Amp

IFSM

800

800

800

800

800

Amp

Average Half-Wave Rectified Forward Current
With Resistive Load @ TA = 150'C
Peak One Cycle Surge Current
(60 Hz and 150'C Case Temperature)
Operating Junction Temperature
Storage Temperature

TJ

-65 to +200

'C

Tstg

-65 to +200

'C

-ELECTRICAL CHARACTERISTICS (All Types) at 25'C Case Temperature
Characteristic

Symbol

Value

Unit

Maximum Forward Voltage at 100 Amp
DC Forward Current

VF

1.1

Volts

Maximum Reverse Current at Rated DC
Reverse Voltage

IR

5.0

mAde

THERMAL CIiARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"Indicates JEDEC

regi~tered

data.

DIM
A
8
C
D

E
MECHANICAL CHARACTERISTICS

F

CASE: Welded, hermetically sealed construction
FINISH: All external surfaces corrosion-resIstant and the terminal lead is readily
solderable
WEIGHT: 25 grams (approx.)
POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix
R, i.e.: lN3212R)
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max

3-2

J
K
L

P
Q

R

S

INCHES
MIWMETERS
MIN
MAX
MIN
MAX
- 2007 - 0790
0687
1694
1745 0669
1143
- 0450
0375
953
0200
292
508
0115
203
OOSO
1072
0422
0453
" 51
100
1905
2540
0750
396
0156
0249
559
632
0220
356
445
0140
0175
- 1694 - 0567
0089
2.26
CASE 42A-Ol
DO-203AB
METAL

-

lNl199

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

lN1206
MEDIUM-CURRENT
SILICON RECTIFIERS

MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS
12 AMPERES

Silicon rectlfters for medium-current applications requlrtng

DIFFUSED JUNCTION

• High Current Surge 240 Amperes @ TJ = 190°C
• Peak Performance at Elevated Temperature 12 Amperes @ TC = 150°C

·MAXIMUM RATINGS
Characteristic

Symbol

Peak Repetilive Reverse Voltage
Work 109 Peak Reverse Voltage
DC BlockIOg Voltage

VRRM
VRWM
VR

Average Rectified Forward Current
(SlOg Ie phase, resistIVe load,

IN
IN
IN
IN
IN
Unit
'199 1200 1202 1204 1206
Volts
50

100

200

400

600
Amp

10
12

60 Hz, TC = 150°C)
Non-Repetitive Peak Surge Current
(Surge applied at rated load

Amp

IFSM

I--- 240 (for 1 cycle) -

conditIOns, half wave,

slOg Ie phase, 60 Hz)
Operating Junction
Temperature Range

TJ

65to+190-

°c

·THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

'ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage
(IF = 40 A, TC = 25°C)
Maximum Instantaneous Reverse Current
(Rated voltage, T C = 150°C)

Symbol

Max

Unit

vF

1B

Volts

'R

10

rnA

STYLE 1
PIN 1 CATHODE
2 ANODE

STYLE 2
PIN 1 ANODE
2. CATHODE

NOTES
1 DIMENSIONING AND TOLERANCING PER ANSI
YI4.5M, 1982.
2. CONTROLLING DIMENSION INCH.

"Indicates JEDEC reg,stered data
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed construction
FINISH: All exlernal surfaces are corrosion-resistant and the terminal lead IS readily
solderable
POLARITY: Cathode to case (reverse polarity units are available and denoted by an
"R" suffix, i.e" 1N1202R)
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 IO-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275"C for
10 seconds at 3 kg tension,
WEIGHT: 6 grams (approx.)

3-3

DIM
A

C
0
E

F
J
K

MILLIMETERS
MIN
MAX
1075
1112
10.28
407
469
191
444
229
241
10.72
11.50
18.80
2032

INCHES
MIN
MAX
0.423
0.438
0.405
0.160
0185
0075
0175
0.090
0.095
0.422
0.453
0740
0800

-

CASE 245A-II2
D0-203AA
METAL

•

lNl199A

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

lN1206A

MEDIUM-CURRENT SILICON RECTIFIERS

MEDIUM-CURRENT
SILICON RECTIFIERS

Silicon rectifiers for medium-current applications requirmg:
•

High Current Surge 240 Amperes @ TJ ~ 200°C

•

Peak Performance at Elevated Temperature 12 Amperes @ TC 150°C

50-600 VOLTS
12 AMPERES
DIFFUSED JUNCTION

=

"MAXIMUM RATINGS
Characteristic

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Non-Repetitive Peak Reverse
Voltage (Hallwave. s,"gle
phase. 60 Hz peak)

VRSM

Average Rect,l,ed Forward Current
(S,"gle phase. resistive load.
60 Hz. TC = 150°C)

10

Non-Repetitive Peak Surge Current
(Surge applied at rated load
conditIOns. half wave,
single phase. 60 Hz)

IFSM

Operating and Storage Juncllon
Temperature Range

IN

IN

IN

IN

1N

"99A 1Z00A 1202A 1204A 120&A

Unit
Volts

50

100

200

400

600

100

200

350

600

BOO

Volts

Amp
12
Amp

I-"- 240 (lor 1 cycle)_
TJ. Tstg

-65to+200-

°C

"THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

"ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage
/IF = 40 A. TC= 25°C)
Maximum Average Reverse Current at

Rated Conditions
lNl199A
lN1200A
lN1202A
lN1204A
lN1206A

Symbol

Max

Unit

vF

135

Volts
mA

IRO
30
2.5
2.0
1.5
1.0

"Indicates JEDEC registered data
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed construction
RNISH: All external surfaces are corrosion-resistant and the terminal lead is readily
solderable
POLARITY: Cathode to case (reverse polarity units are available and denoted by an
"R" suffix. i.e .• lN1202RA)
MOUNTING POSmON: Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275·C lor
10 seconds at 3 kg tension.
WEIGHT: 6 grams (approx.)

3-4

STYLE 1:
PIN 1. CATHODE
2. ANODE

STYLE 2.
PIN 1. ANODE
2 CATHODE

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M. 1982.
2. CONTROLLING DIMENSION' INCH.

DIM
A
C
D
E
F
J
K

MILILIMETERS
MIN
MAX
10.75
1112
10.28
4.07
4.69
1.91
4.44
2.29
2.41
10.72
11.50
18.80
20.32

INCHES
MIN
MAX
0.423
0.438
0.405
0.160
0185
0.175
0.075
0.095
0.090
0.422
0.453
0.800
0.740

CASE 245A-02
DO-203AA
METAL

•

INl199B

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

IN1206B

MEDIUM-CURRENT SILICON RECTIFIERS

MEDIUM-CURRENT
SILICON RECTIFIERS

Compact, highly efficient silicon rectifiers for medium-current
applications requiring:
ct High Current Surge -

50-600 VOLTS
12 AMPERES

250 Amperes @ TJ = 200°C

o

Peak Performance at Elevated Temperature 12 Amperes @ TC = 150°C

DIFFUSED JUNCTION

"MAXIMUM RATINGS
Characteristic

Symbol

Peak Repelilive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Non-Repetitive Peak Reverse
Voltage IHalfwave, single
phase, 60 Hz peak)

VRSM

Average Rectified Forward Current

IN

IN

IN

IN

IN

1199B 12008 12028 12048 12068

Unit
Volts

50

100

200

400

600

100

200

350

600

800

Volts

Amp

10

ISmgle phase_ reSistive load.
60 Hz, TC= 150°C)

12

Non-Repetitive Peak Surge Current
ISurge applied at rated load

Amp

IFSM
1---250 Ifor 1 cyclel_

conditions. half wave,

Single phase. 60 Hz)
Operating and Storage Junction

TJ, Tstg

°C

65 to +200

Temperature Range

"THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

"ELECTRICAL CHARACTERISTICS
Symbol

Max

Unit

vF

12

Volts

IA

10

rnA

Maximum Average Reverse Current at
Rated Conditions

IRO

09

mA

DC Forward Voltage
(IF = 12 A. TC = 25°C)

VF

11

Volts

Reverse Aecovery Time IIFM = 40 A.
dl/dt = 25 AIl's to IFM = 0,
tp;;;' 4 aI'S, 60 pulses/second. 25°C)

trr

50

/ls

Characteristic and Conditions
Maximum Instantaneous Forward Voltage

IIF = 40 A, TC = 25°C)
Maximum Reverse Current

IRated de voltage, TC = 150°C)

'Indicates JEDEC registered data
MECHANICAL CHARACTERISTICS
CASE: Metal, hermetically sealed construction
FINISH: All external surfaces are corrosion-resistant and the terminal lead is readily
solderable
POLARITY: Cathode to case Ireverse polarity units are available and denoted by an
"A" suffix, i.e., 1N 1202RB)
MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275"C for
10 seconds at 3 kg tension.
WEIGHT: 6 grams lapprox.)

3-5

STYLE 1
PIN 1. CATHODE
2. ANODE

STYLE 2'
PIN 1. ANODE
2. CATHODE

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION' INCH.

DIM
A
C
D
E
F
J
K

MILUMETERS
MIN
MAX
1075
11.12
10.28
4.07
469
1.91
4.44
2.29
241
10.72
11.50
1880
20.32

-

INCHES
MIN
MAX
0423
0.438
0.405
0.160
0185
0175
0.075
0090
0.095
0422
0.453
0.740
0800

CASE 245A-02
DO-203AA
METAL

•

lN3208

MOTOROLA

-

SEMICONDUCTOR

lN3212
15-AMP

MEDIUM-CURRENT RECTIFIERS

RECTIFIERS

. for applications requIring low forward voltage drop and
rugged constructIOn.
•

•

thru

TECHNICAL DATA

SILICON
DIFFUSED·JUNCTION

High Surge Handling Ability

•

Rugged Construction

•

Reverse Polarity Available; Eliminates Need for Insulating
Hardware In Many Cases

•

Hermetically Sealed

"MAXIMUM RATINGS
Symbol

1 N320B
lN320BR

lN3209
lN3209R

lN3210
lN3210R

1 N3211
lN3211R

1 N3212
1 N3212R

Unit

DC Blocking Voltage

VR

50

100

200

300

400

Volts

RMS Reverse Voltage

VR(RMS)

35

70

t40

210

280

Volts

10

15

15

15

15

15

Amp

250

250

250

250

250

Amp

Rating

Average Half-Wave Rectified Forward Current
With Resistive Load @ TC = 150'C
Peak One Cycle Surge Current
(60 Hz and 25·C Case Temperature)

IFSM

Operating Junction Temperature

•

TJ

Storage Temperature

-65 to +175

..

Tstg

.

-65 to +175

"ELECTRICAL CHARACTERISTICS (All Types) at 25·C Case Temperature
Characteristic

MaXimum Forward Voltage at 40 Amp

Symbol

Value

Unit

VF

15

Volts

IR

10

mAdc

DC Forward Current

MaXimum Reverse Current at Rated DC
Reverse Voltage

r;:I:C:

THERMAL CHARACTERISTICS

TERMINAl 1

Characteristic

r.~

K

Thermal ReSistance. Junction to Case

Q

-X
--1..

r:;--- =
= __
~~J
r-L

5

"Indicates JEDEC registered data.

E

p

TERMINAL 2

-

--- -

DIM

MILUMETERS
MIN
MAX

A
B

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed construction
FINISH: All external surfaces corrosion-resistant and the terminal lead is readily
selderable
WEIGHT: 25 grams (approx.)
POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix
R. i.e.: lN3212R)
MOUNTING POSmON: Any
MOUNTING TORQUE: 25 in-Ib max

3-6

C
D
E
F
J
K

2007
1694

1745

-

1143
953
508
203
1151
2540

292

-

Q

1072
1905
396
559
356

R

-

L
P
S

INCHES
MIN
MAX

632
445
1694
226

0669
0115

-

0.422
0750
0156
0220
0140

CASE 42A-Ol
DO-203AB
METAL

0790
0687
0450
0375
0200
0080
0453
100
0.249
0175
0667
0089

·C
·C

lN3491

MOTOROLA

-

SEMICONDUCTOR

•

thru

TECHNICAL DATA

lN3495

Designers Data Sheet

SILICON RECTIFIERS
25 AMPERE

MEDIUM-CURRENT SILICON RECTIFIERS

50-400 VOLTS
DIFFUSED JUNCTION

... compact, highly efficient silicon rectifiers.

Designer's Data for UWorst Case" Conditions
The Designers Data Sheet permIts the design of most CircUits
entIrely from the Information presented Limit curves - representmg device characteristIcs boundaries "worst case" design.

are given to faclhtate

'MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
RMS Reverse Voltage

Symbol

lN3491

lN3492

lN3493

lN3494

lN3495

Unit

VRRM
VRWM
VR

50

100

200

300

400

Volts

VR(RMS)

35

70

140

210

280

Volts

Average Rectified Forward Current
(Single phase, resistive load, 60 Hz,
see Figure 3) TC = 100'C
Nonrepetltive Peak Surge Current
(surge applied at rated load
conditions, see Figure 5)
Operating and Storage Junction
Temperature Range

10

25

Amp

IFSM

300 (for 112 cycle)

Amp

TJ, Tstg

-65to +175

'c

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed construcllon
FINISH: All external surfaces corrOSlon·resistant and the terminal lead IS readily

solderable
POLARITY: CATHODE TO CASE (reverse polarity unlls are available upon reque'tand
are designated by an "R" suffix I e MR327R or 1N3491 R)
MOUNTING POSITIONS: Any
DOl
A

-... . ...
MAX

,,. "
.""
• ,'"
"93 ,
, 2'"
..6'"" "., """"'
"
,
- .500 "40
12

C

F

H
J

~

.

DC"~

02

3

'10

CASE 43·02
DO·208AA
METAL

"Indicates JEDEC registered data for 1 N3491-1 N3495

3-7

02~

1077

1N3491 thru 1N3495
"ELECTRICAL CHARACTERISTICS
Characteristic and Conditions

Instantaneous Forward Voltage Drop (IF; 57 Amps. TJ; 25°C)
Full Cvcle Average Reverse Current (18 Amp AV and Vr • single phase.
60 Hz. TC; 150°C)
lN3491
lN3492
lN3493
lN3494
lN3495

Symbol

Max

Unit

VF

17

Volts
mA

IR{AV)
10
10
80
60
40

DC Reverse Current

mA

IR

(Rated VR. Tc; 25°C)

10

FIGURE 1 - MAXIMUM FORWARD VOlTAGE DROP
600
400
200

l::7

100
!i:
::E

:$

!
Ifa
~

z
z

~

~
;;5

,.

60
40

t-- -

TJ = J75"C

.......

-'

....- i====""'

/

I

/

20

t~ TJ -25°C

10
60
40

I

I

20

FIGURE 2 - MAXIMUM FORWARD POWER DISSIPATION

10
06

70

/ /

0.4

f02

TJ:= J75ic

60

I

01
04

os

12

16

20

V,. MAXIMUM FORWARD VOLTAGE DROP IVOlTSl

24

~
~

z

50

~

40

~

I

I--

r-

120" CONDUCTION
13 PHASE. HALF WAVE OR
FUll WAVE. OR
6 PHASE WITH
INTERPHASE)

~

20

j~ V

.E

1/

L

'1:--/ !I /
/ 1// 1/
"-

/ II
'iJ /
II V) "-

30

~

""~

7 :1LV/

If. V /

c

I

V /

/

60" CONDUCTION
16 PHASE STARI
I
1

L

DC. CONTINUOUS

/
ISO" CONDUCTION

II PHASE. HALF WAVE -

r--

OR FUll WAVEI

~V

10

~V

/
10

20

30

40

IFlAV ). AVERAGE FORWARD CURRENT lAMP)

3-8

50

60

1N3491 thru 1N3495
FIGURE 3- MAXIMUM CURRENT RATINGS
40
0::

'"

:$

f5

35

~

~B

30
25

i

1-

20
15
10

J

D~. CONTlN~OUS

AI

...........

1 PHASE
IHAlF WAVE OR FUll WAVfJ
180· CONDUCTION

I---'

I-I--

r--

c

i

I---'
I--

;;;

~

r-I---'

rr-

3 PHASE
IHAlF WAVE OR FULL WAVEI
120· CONDUCTION

I-I-I-I-I--

6 PHASE STAR
60· CONDUCTION

F=

'--

100

60 IHz.

----

--.......
/'
/'

........

RESI~TIVE OR I~DUCTIVEI LOAD - I---

35
30

"- ......

.............

.............

25

..........

..........

20

............. ...........
I""'--

140

130

120

110

"-

40

I

I
I

-

""" -........::::-,

15

.......... i""--...

..........
-..........: t-...."

---

r----...

150

10

""'"

~

"-

I'-..

170

160

Te. CASE TEMPERATURE I·CI

"

180

o

FIGURE 4 - MAXIMUM EFFECTIVE TP.ANSIENT THERMAL IMPEDANCE

II II

24
22

I

.' _, I I , , ,
TJ - Te = OJClt) PAY

-

-- -

-

i--

6\1>

--r

20
1.8

I

16

1\1>+3\1>

~

;:;;;-

14

~

12

-~

~

>-....

10
08
06
04

02

0.2

0
01

02

10

05

20

50

20

10

100

50

200

500

1000

t. TIME Im,l

FIGURE 5- MAXIMUM ALLOWABLE SURGE CURRENT
500

~

:$

§

~
~

300

200

'inz"'

-

t--

i'-.....

~

~

~

100

500

~

1 70 I-

l-

I
I
I
SURGE APPliED AT RATED
LOAD CONDITIONS

--

r-- I t-- r--

(\

(\

(\

I
300

V.... I.. " APPliED AFTER SURGE
NON REPETITIVE IMAX 500 SURGES DURING DEVICE lIFETIMfJ

r-t-

,/ ~ REPETITIVE IUNlIMITED NUMBER OF SURGES. TJ

t-- t-t---- I--

k

f-- l- I-

200

< lWC BEFORE SURGE APPliEDI

t- t--

100

I-I CYCLE-I
70

1

50

50
10

20

5.0

10

50

20
CYCLES AT 60 Hz

3-9

100

200

500

1000

1 N3491 thru 1 N3495
TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 6 - RECTIFICATION EFFICIENCY
100

FIGURE 7- REVERSE RECOVERY TIME

.... -:::-

~,

30
~;

20

--I"-

70

"'\ , l'\
~

.....

~

~u
iii

~

so

TJ ~ 17S'C

I

~

\

30

~
ill

1 1
10

20

30

!J
i\

\
10

20

30

SO

:>..

50

"-

3A'"
IA"
30

1,

~O;lLT
_I t"

I,
70 100

01

..........

j

10
02

,

.........

'"

....."

~

....."

f'.- '-

1-

03

OS 07

10

20

....."

SO 70

30

10

1,/1" RATIO OF REVERSE TO FORWARD CURRENT

FIGURE 8 - JUNCTION CAPACITANCE

FIGURE 9 - FORWARD RECOVERY TIME

1000
700

10

-'-

"-

300

J"-...

~200

07

,

~

TJ ~ 2S'C

:IE

:V'~
'-

OS

-

1_ 4, _I

-

-

~

~ 100
~ 70

ill

f

0

~.:i- V-

50

----

L--

20
01

10
10

20

30

SO

70

10

20

30

SO

70 100

V" REVERSE VOLTAGE IVOlTSI

TYPJCAlTHERMAl
IIESISTNCE
CASE
TO SINK Res 02°C/W /
SHOUlDER RING

..L

~

iii
~ ~

~

-I

...
OIA

J- NOM
-1o!
~

W"

_I

NOM

:!.,./

~[ATSINKi»»A

I-

0449'ODOIIl\A

HfAT SlNllIOUrmllC
ADDITIONAl.

'''''~HEATSINl(P\.ATE
INTIMATE
COffTACTMrA

~

ctII'lEtE 1UlIRt. .............. THI"
COftTACTMtl
CIMSSIS

---

10

~

V

20

.../
VI,~

IV

-

___ r-"'"

02

30

I
/

v.

/
03

TJ~25'C

/

;:::

~

j

.........

I,~SA

REPETITION RECOVERY IkHzl

SOO

TJ ~ 25'C

70

20

1\

SO 70

'-.,

'0

1\

J J II I

, "

10

~

\

-ru1 ---

f'.- ...... "'.........

;:::

>

\

- f\J\; ---

20

:IE

\

CURRENT INPUT WAVEFORM

~

~

TJ ~ 2S'C

i'--

V

vfr=2V

-

-

I I
30

50

70

10

I" FORWARD PULSE CURRENT IAMPSI

MOUNTING PROCEDURES
MR327-MR331 and IN349t·lN3495 rectifiers are designed to be press-fitted in a heat sink 1ft
order to aUam full device ratlDgs Recommended procedures for thiS type of mountmg are as follows.
1. Drill a hole in the heat Sink 0.499 :: .001 inch In diameter.
2. Break the hole edge as shown to prevent shearl",!: off the knurled edge of the rectifier when it IS
pressed into the hole.
3. The depth and Width of the break should be 0.010 Inch maximum to retain maximum heat Sink
surface contact.
4. To prevent damage to the rectifier during preSS-In, .he pressing force should be apphed only on
the shoulder nna of the rectifier case as shown In the figure.
!I. The pressing force should be applied evenly about the shoulder nng to aVOid tt1ting or cantina:
of the rectifier case In the hole dunna the preSS-In operation. Also, the use of a light mdustnal
lubricant will be of considerable aid.

THIII'WSIS 1I0UrmItC

3-10

IN3659

MOTOROLA

-

SEMICONDUCTOR

•

thru

TECHNICAL DATA

IN3663
30-AMP

LOW COST RECTIFIERS FOR MEDIUM CURRENT
INDUSTRIAL AND COMMERCIAL APPLICATIONS

RECTIFIERS
SILICON
DIFFUSED-JUNCTION

• High Surge Handling Ability
• Rugged Construction
• Reverse Polarity Available
• Hermetically Sealed

'MAXIMUM RATINGS (TC = 25°C unless otherwise noted)
Rating

Symbol

1N3669
1N3659R

1N3660
1N3660R

1N3661
1N3661R

1N3662
1 N3662R

1 N3663
1 N3663R

Unit

100

200

300

400

Volts

70

140

210

280

Volts

DC Blocking Voltage

VRRM
VR

50

RMS Reverse Voltage

VR(RMSI

35

Peak Repetitive Reverse Voltage

Average Half-Wave Rectified Forward Current
with Resistive Load @ 100°C case
@ 150°C case

..
.

10

Peak One Cycle Surge Current (150°C case temp,
60 Hz)
Operating Junction Temperature

IFSM

400

.

TJ

Storage Temperature

30
25

-65 to +175

.

Tstg

...
.

Amp
Amp

•

°c

Amp

..

65 to +200

°c

'ELECTRICAL CHARACTERISTICS
Symbol

1N3659
1N3669R

1 N3660
1 N3660R

1 N3661
1 N3661 R

1N3662
1 N3662R

1 N3663
1 N3663R

Unit

MaXimum Forward Voltage at 25 Amp
DC Forward Current

VF

12

12

12

12

12

Volts

Instantaneous Forward Voltage Drop

vF

Characteristic

14

Volts

(IF = 78 5 Amps, TJ = 25°C)
MaXimum Full Cycle Average Reverse Current
@ Rated PIV and Current (as half-wave
rectifier, resistive load. 150°C)

45

50

IR(AVI

40

35

30

rnA

'THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance. Junction to Case

I
I

Symbol
R8JC

I
I

Value
12

I
I

Unit
°C/W

'Indicates JEOEC registered data

,OTES
1 SOTPISTlIAIGHTKNURL
2 POLARITY,INK MAAKED ON PACKAGE

MECHANICAL CHARACTERISTICS
CASE: Welded hermetically sealed construction
FINISH: All external surfaces corrosion resistant, terminals readily solderable

WEIGHT: 9 grams (approx )
POLARITY: Cathode connected to case (reverse polarity available denoted by SuffiX R,
Ie: 1 N3660R)
MOUNTING POSITION: Any

-----.1

-11- 0

n:-'
~

+-r l.llII~1~~i
TlJ
"'",.", ~.~

t

._-

M""'''''''
, ."
•

D"
C

15494
12725
SOB

D

11~3

E
F
H
J

2032

,

4572

MAX
16256
12827
635

OlIO

4~'

0
0060

"46

1077

''''

3556
1270

0540
0505

0160

02~

0140

"'''' -

CASE 43-02
DO-208AA
METAL

3-11

02~

0

0160
0424

t

1N3659 thru 1N3663
40

30

~

35

r

I

.........

1500 C
2S0

C

\

-... -5S C

\

O

\

J

o

o

0.2

0.4

V~ VJ

0.6

0.8

1.0

\

1.2

1.4

1.6

1.8

o

2.0

\

o

50

V•• FORWARD VOLTAGE (VOLTS)

100

150

200

Teo CASE TEMPERATURE (OC)

lN3659-1N3663 rectifiers are designed for press-fitted mounting in a heat sink. Recommended
procedures for this type of mounting are as follows:
1. Drill a hole in the heat sink 0.499 ± .001 inch in diameter.
2. Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is pressed into the hole.
3. The depth of the break should be 0.010 inch maximum to retain maximum heat sink surface contact
with the knurled rectifier surface.
4. Width of the break should be 0.010 inch as shown.
These procedures will allow proper entry of the rectifier knurled surface, provide good rectifier- heat
sink surface contact, and assure reliable rectifier operation. If the break is made too deep, thereby reducing contact area for heat transfer, reliability of operation will be impaired.
These devices can be mounted in a thin chassis by inserting the rectifier through an additional heat sink
plate which is mounted in intimate contact with the upper side of the chassis. This provides additional contact area for the rectifier knurled edge, as well as additional heat sink capacity.

TYPICAL THERMAL
RESISTANCE, CASE
TO SINK, lies

= 0 2'C/W

RIVET

ADDITIONAL
HEAT SINK PLATE

COMPLETE
KNURL CONTACT
AREA

INTIMATE
CONTACT AREA

THIN CHASSIS

THIN-CHASSIS MOUNTING

3-12

MOTOROLA

-

lN3879 thru lN3883
MR1366

SEMICONDUCTOR

TECHNICAL DATA

Designers

Data Sheet
FAST RECOVERY
POWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
6 AMPERES

... designed for special applicatIons such as dc power supplies, inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplIes and freewheeling dIodes. A complete line of fast recovery rectIfiers
having typical recovery tIme of 150 nanoseconds provIding hIgh effIciency
at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most CirCUits entirely from the
Information presented. Limit curves - representing boundaries on device characterIstiCS - are given to faCIlitate "worst case" deSign.

®-X
STYLE 1:

~

Svmbol

lN3879

lN3880

1N3BB1

VRAM
VRWM

50

100

200

300

400

600

VRSM

75

150

250

350

450

650

VRIRMS)

35

70

140

210

260

Rat'"'
Peak Repetitive Reverse Voltage
Workmg Peak Reverse Voltage
DC Blocking Voltage

lN3B82 1N3883 MR1366

Unit

Volts

VR

Non Repetitive Peak Reverse Voltage
Average Rectified Forward Current
(Smgle phase, reSistIVe load,
Te"' 100°C)

10

Non-AepeutlVe Peak Surge Current
(surge applIed at rated load
continuous)

'FSM

OperatIng Junction Temperature Range
Storage Temperature Range

60

..

T stg

..
..

150

.

TJ

.

420

(onecvcle)

-65 to +150

-65 to +175

Thermal ReSistance, Junction to case

Amps

°c
°c

Motorola guarantees the hsted value, elthough parts haVing higher values of th9fmal resIstance will meel the current rating
Thermal resistance IS not reqUired by the JEDEC regIstratIon

"ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage
IIF "" 19 Amp, TJ = l5O"C)
Forward Voltage
(IF'" 6 a Amp, TC" 25°C)
Ravene Current (rated de voltage) T c = 25 C
TC = 100°C

Moo

Ty.

M..

12

15

Umt

Reverse Recovery Time
·UFM = 1 a Amp to VR = 30 Vac, Figure 161
UFM = 36 Amp, dl/dt = 25 A//J.s, Figure 171
Reverse Recovery Current
·(IF = 1 0 Amp to VR = 30 Vdc, Figure 161

2

---r
J

+

DIM
A
C
D
E
F
J
K

MILLIMETERS
MIN
MAX
1075
11.12
10.28
4.07
469
191
4.44
2.29
2.41
10.72
11.50
18.80
20.32

-

INCHES
MIN
MAX
0423
0438
0.405
0.160
0.185
0.075
0.175
0090
0.095
0422
0453
0.740
0800

CASE 245A'02
OO·203AA

METAL

Volts

VF

'R

10

14

10
05

15
10

.A
mA

Ty.

M..

Unit

150
200

200

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetlcallv sealed
FINISH: All external surfaces corrosion
reSistant and readily solderable

REVERSE RECOVERY CHARACTERISTICS
Charactenstlc

t

NOTES.
1. DIMENSIONING AND TOLERANCING PER ANSI
YI4.5M, 1982
2. CONTROLLING DIMENSION INCH.

Volts

'F

L.:t=

Amps

ROJC

Symbol

Kl

to-3WNF-2A

Volts

Symbol

Characteristic

~

Volts

THERMAL CHARACTERISTICS
CharacterIStIC

STYLE 2.
PIN 1. ANODE
2. CATHODE

lor

!

t

PIN 1 CATHODE
2. ANODE C

"MAXIMUM RATINGS

AMS Reverse Voltage

F

Symbol

Moo

POLARITY:

I"

Am.

IRMIRECI
20

-I ndlcates JEDEC Registered Data for 1 N3879 Series

3-13

Cathode to Case

WEIGHT: 56 Grams lapproxlmatelyl

400

MOUNTING TORQUE: 15 in·lbs max.

•

1N3879 thru 1N3883, MR1366

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY

200

iOO

;"'"

90

V

l"'-

I I II
I
I I
I I
Prior to surge, the rectifier
I I
Lsoperated such that TJ: 1S0 a C,
VRRM mav be apphed between

r-t--

10 0
Tp 25'C
0

each cVcleof surge

I'N.L

0

/
I

0

/'

II

0

V

0

f

0

A

Of-Ot--

V

0

III . . . .

~'1500C- f--

V

50

t:::

1\

A

I-----Ll CYCLE

i

lilll
11111

o

20

10

30

50) 0

10

20

30

50

70 100

NUMBER OF CYCLES AT 60 Hz

0
0

NOTE 1

I

II

0

RI[
PPk

Ppk

_I p _

0

I

I

0

TodetermlllerndlllmUrlllllllctloolernperdtureol th&dlodellldljlVenSrlUdllon
The fallOWing procedure rsrecommended

!

The temperdture III Il'le cdseshould he med;ured uSlllgdlhermncnupleplaced
Oil the ra~ at lhe I~mperalure relere"ce pOint (see Note 3) Th~ thermal mass
connected to the case IS normally Idrge enough so thaI ,I will (1U1 significantly
respond 10 heal surges generated mthedmdeasa result oi pulsed ope ratIOn once
steady!;l-

:! 70

/ RESISTIVE lOAD

~
........

u

~

30

ffi

10

>



H c---I----- 'IO -----

~O--------

-

10

'FIAV). AVERAGE FORWARD CURRENT lAMP)

.-------- ~ ~ ~

~~

'\



10

-

_TJ'250C

20

~

FIGURE 11 - JUNCTlbN CAPACITANCE
100

5


~_

,I,5OA
lOA

~AMP

100

1/

-3
w

~

'"'"

g

5

./

/

.~

1

50

10

IFM '4 A

./

<'

'"
'"w

1

~_

~

50~

/'

3-16

...< . /

A=-

10 A

00 5
00 1

100

/'

~ "k f>< 'io
/AI::'-

50

100

5

01

,/

50

~AMPfjJs}

c::I

'"~

20

10

FIGURE 15 - T J = 150°C

I0

.....: V".

~

~ ::;..-f-""

I II
10

50

W

10 A

20

20

0

IF~. 20lA

V

10 A

I.:!fe ~f-""
dr/dl.

40 A

5

0
10

= 100°C

0

2

lOA
50A

ps)

FIGURE 14 - T J

0

50

V

5

00 2

20

'"

~ ~ i'"

1
00

o'"

J

10
dr dt

10 .

./ V

./ V"': V

02

w

10 A

00

00 2

5

'"w

/::~

10

40 A

g

Vi-"

'"w
~

IFM1'201

0

40 A

5

10

~
20

lOA

V
50

20

50

100

1 N3879 thru 1 N3883, MR1366

FIGURE 16 -

JEDEC REVERSE RECOVERY CIRCUIT
RI

AI = SO Ohms
R2" 25D Ohms

01 ~
02"
03 ~
SCRI ~

IN4723
IN4001
IN4933
MCR72910

<

CI

1 2 0 v J : ) c IT21
60 Hz

CI~051050"F

C2

L1
d,/d. AOJUST

T1

4000"F

II

OUT

02

L1~10-27"H

T1 "Variac Adjusts ItPKl and dr/dt
T2 ~ I I
T3 = 11 (to trigger CIrCUit)

I (PKI AOJUST

01
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time IS the penod which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passes thru zero gomg negatIVely untIl the reverse current
recovers to a pomt which IS less than 10% peak reverse current
Reverse recovery time IS a direct function of the forward

dl/dt

current prior to the application of reverse voltage
ent

For any given rectifier. recovery time IS very CirCUIt dependTYPical and maximum recovery time of all Motorola fast

recovery power rectifiers are rated under a fixed set of rondr tlons
uSing IF = 1.0 A, VR = 30 V In order to cover all CLrcuLt
condLtlons, curves are grven for typIcal recovered stored charge
versus commutation dddt for vanous levels of forward current
and for JunctIon temperatures of 25°C, 750 C, 1000 C, and
15o"C
To use these curves, It IS necessary to know the forward
current level Just before commutatIon, the cIrcuit commutatIon
dl/dt, and the operating JunctIon temperature The reverse recovery test current waveform for all Motorola fast recovery
rectifiers IS shown

'RM(RECI+-----'~

From stored charge curves versus dr/dt, recovery time (trr)
and peak reverse recovery current (I RMIREC)) can be closely
approximated uSLng the followrng formulas
OR 11/2

1rr
IRM(RECI

3-17

0:

1 41

x [ dr/dr]

= 1 41 x [OR x d./dtJll2

IN3889 th11l1N3893
MR1376

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Designer!-ii

Data Sheet
FAST RECOVERY
POWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VO L1S
12 AMPERES

... desIgned for specIal applications such as dc power supploes, onverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheelong diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providong high efficiency
at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most CircuIts entirely from the
information presented Limit curves - representing boundanes on device characterIstiCS - are given to faCilitate "worst case" desIgn

'MAXIMUM RATINGS
1N38S9

lN3890

1N3891

lN3892

VRWM

50

100

200

300

400

600

VASM

75

150

250

350

450

650

Volts

VRIRMS)

35

70

140

210

280

420

Volts

Symbol

Rating

Peak Repetitive Reverse

Volta~

VR

Non-Repetitive Peak Reverse
Voltage
RMS Reverse Voltage

1N3893 MR1376 Unit

Volts

VRRM

Workmg Peak Reverse Voltage
DC Blocking Voltage

Average Rectified Forward
Current (Smgle phase, resistive
load, T C = 100Ge)
Non-Repetitive Peak Surge

Amps

10

12
Amp

IFSM

200

Current ISurge applied at
rated load conditions'

lone cycle}

TJ

-65 to +150

DC

T".

-65 to +115

DC

Operating Junction Temperature
Range
Storage Temperature Range

STYLE l'
PIN 1. CATHODE
2 ANODE C

t

STYLE 2
PIN 1. ANODE
2 CATHODE

10·32UNF·ZA

NOTES
1 DIMENSIONING AND TOLERANCING PER ANSI
Y145M,1982
2. CONTROLLING DIMENSION. INCH

THERMAL CHARACTERISTICS
Characteristics
Thermal ReSistance, Junction to Case
Motorola guarantees the listed value, although parts haVing higher values of thermal reSistance
will meet the current rating Thermal 'Ulstanee IS not reqUired by the JEDEC registration

'ELECTRICAL CHARACTERISTICS
O1aracterlstlc

Symbol

Forward Voltage
(IF"" 12 Amp. TC = 250 C'
Reverse Current (rated de voltage)

Moo

YF

Instantaneous Forward Voltage
(iF = 38 Amp, T J = 1500Cl

Typ

Ma.

12

15

10
10
05

14
25
30

Unit
Volts
Volts

VF
TC - 25°C
TC = l00"C

'R

"A
rnA

·REVERSE RECOVERY CHARACTERISTICS
Characteristic

Symbol

Reverse Recovery Time
11 F "" 1 0 Amp to VR .. 30 Vdc. Figure 16l
IIFM - 36 Amprdl/dt .. 25 Alps, Figure 17l

t"

Reverse Recovery Current
(IF - 1.0 Amp to VR - 30 Vdc. Figure 16)

IRMIREC)

MIn

L
t

.L.....t=

Tvp

Ma.

-

150
200

200
400

-

-

20

URit

n.
Amp

-Indicates JEOEC Registered Data for 1 N3889 Series.

3-18

DIM
A
C
D
E
F

J
K

INCHES
MILLIMETERS
MAX
MAX
MIN
MIN
11.12
0.423
0438
1075
0405
1028
0160
0185
407
469
444
0075
0175
191
2.41
0.090
0.095
2.29
0.422
0.453
11.50
10.72
0740
0800
1880
2032
CASE 24SA-02
DO-203AA
METAL

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case
WEIGHT: 5.6 grams (approximatelyl
MOUNTING TORQUE: 15 in-Ib max

•

1N3889 thru 1 N3893, MR1376

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY

300

100

20 0

-

....- .......
TJ=25';'" ,/'

~

100

TJ=150oC

0

r-

~'"

/.
'/

0

::

u

I[

0

10

~~
~ if

./

0

80

~

tw
-'"

I

i"

II.

each cycle otsurge

60

.........

50

....

40
30

I

IS operated such that TJ ::; 150 oC.

r-- 1\ 1\

20 I--

~

10

{\

I-------L-l CYC LE

"

II

o
10

20

50

30

10

20

30

50

100

NUMBER OF CYCLES AT 60 Hz

II

0

~lOrl~Sllrgl•• ,t )ecl"~er I

VRRM may be applied between

~

J

NOTE 1

0

FUL
PPk

0

I

Ppk

tp_

II

0

I

DUTY CYCLE, 0" Ip/ll
PEAK POWER,Ppk,lspellkof In
equiyalent square power pulse

TIME

1----'1----<

To determme maximum Junction temperature of the dIOde In it gIVen SituatIOn,

0

the tollowlng procedure IS recommended

The temperatura 01 Ihe case should be measured u$lng a therrnocoupleplaced
on the case at the temperature reference pOint (see Note 31 The thermal mass
connected to the casa IS normally lalli' enough so that II will nol srgnr"canU.,.
respondtoheatsurgesgenBrated mthedlodeasa resull of pulsed operalion once
steady state candilionsareachievad USing the measured value 01 Te, Ihe lunctlon
tampelaturemay bedetermmed by
TJ=TC+ 6 TJC
whel1l C TJC IS the Increase In ,unction tempetature above the case temperature
It may be determined by
6. TJC = Ppk ROJC 10 + (I - 01 rill + tpl + rllpl - r!tlll
where
r(II " normalized value of framlenl thermal resistance al lime, I, from Figure

0

7
5

o3
04

......... 1-0"

90

'"'"~

0812

16202.428

3.2

3,11

r (II +Ipl

vF.INSTANTANEOUS FORWARD VOLTAGE (VOLTSI

~normahzedyalueoflransllntthermalreslstanclattlm'll+tp

FIGURE 3 - THERMAL RESPONSE
10

~

05

1-:::;

~:i 03

"''''
~~

02

",,,,

1-'"

i-'"

::~ 0,1
1-1-

~~

$ ~O,05
...::~
-Ei
0.03

~002

0.0 1
0001 0.002

O.OOS

0.01

002

0.05

0.1

0.2

05

1.0

2.0

50

I,TIME(m.)

3-19

10

20

50

1110

..

laO

500

1000

2000

5000 IG,UOO

1N3889 thru 1N3893, MR1376

SQUARE WAVE INPUT

SINE WAVE INPUT

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - FORWARD POWER DISSIPATION
0

20

- clPAciT,vJ Lolos
r- IIPK) '20
IIAV)

2

1.10
5.0

0

V

--j

V

--

RESISTIVE-_
INOUCTIVE
LOAO

"--.,

/ / "/
X / /. k'

oL.,.oll 1'1"

20

1---;--.

10
1
20·50_

L

0

/

/

/

V

./

./

/

/

~~

/ / [..;.:: ~

o JI' ~
14

10
12
60
8.0
4.0
IFIAV). AVERAGE FORWARO CURRENT lAMP)

/

Vdc

,/

'/

./~ ~

0

~~

!/

J

2

) / ~ ,/
~~

0

clpAciT,vJ LO)OS
I(PKI' 20
IIAVI,
______

6 r--- I--

k:.iii ~P'"

20

FIGURE 6 - CURRENT DERATING

80
10
40
60
12
IFIAVI. AVERAGE FORWARD CURRENT IAMPI

14

FIGURE 7 - CURRENT DERATING

4-

-,

-

"\. de

-

I'<

-I

........
......... ........
I'..

0=

0=
0=
000,....

.........

CAPACITIVE LOADS
IIPKI. 5.0 r - IIAVI
I-10 I--~

," ,
r-....

0

r-

.........
p.:;;: ~

r-....

20

0

f- CAPACITIVE LOAD?'
f-- - IIPK). 2.0.5 0
f-- -I(AVI

/

"\.

"

"\.

1"- ......
~

.......

~

~
./'

"\.

?>...

.>.., "\.

~." \.
&\.

140

1IIo.\.

20.....-

I

0
80

150

FIGURE 8 - TYPICAL REVERSE CURRENT

,

"-

0

"

,

.........

0

"100
110
120
130
TC. CASE TEMPERATURE lOCI

........

10

~,

-.....;: ~

90

..

0

I--

~

80

""

2

RESISTIVE LOAO

90

100
110
120
130
TC. CASE TEMPERATURE (OC)

140

150

FIGURE 9 - NORMALIZED REVERSE CURRENT
101

=

VR -100 V

.".

0

L

1

2

.,/

1Q- 3

20

YR. REVERSE VOLTAGE (VOLTSI

3-20

30

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE (OC)

1N3889 thru 1 N3893, MR1376

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
100

0

:g
~

I-

ffi

>
c

~

7.0 = = =
5
0:===

t::::=:: I=TJ' 25 C
D

TJ' 25D C

VIr

!.tlr

3O -

Il

2.0

~
~

03

~

VIr-II V

~

........ f.....

""r-.

30

5

ti

20

.,..... I--'"

~ 0

2~
o1
10

f.....

~ 50
w
u

,/
10
O.7
O. 5

~

V~

20

50
10
20
IF. FORWARD CURRENT (AMP)

50

10
10

100

2.0

50
10
20
VR. REVERSE VOLTAGE (VOLTS)

50

100

TYPICAL RECOVERED STORED CHARGE DATA
(Se. Not. 2)

FIGURE 12 - T J. 25°C
10

FIGURE 13 - T J = 75°C
0

IFM-20A

~

IFMI, 20

40A

5

w

~

./

«

13
w

~~

'"C
t; o. 1

5

",..

/

2

c

:;..--

//

./V

2

~

c

w

'"~ 00 5

~

:%~

~

goo
00

:~ ~
10

"" ......
50

20

1

IOA=

"

'\

IDA

l°i

~

50

002
10

100

5
~
c

in

20

~k

1

~

2
10

VI.-'
V

j...-I--

....

'(OA

20

50

10

20

5

5

/
02

~
>

1

'"

100

50

100

t.Y
/

..

w

50

FIGURE 15 - T J = 150°C

40 A

2

IDA

~~

0

IF~' 20lA

~

t>

?
50A

FIGURE 14 - TJ = 100°C

31
0
w

/'

50 A

20

0

1

40 A

~~
20

50

20

50

100

1 N3889 thru 1 N3893, MR1376

FIGURE 16 -

JEDEC REVERSE RECOVERY CIRCUIT

RI
LI

RI = 50 Ohms
R2 = 250 Ohms
01 = IN4723
02 = IN4001
03 = IN4933
SCRI = MCR129-10

drldt AOJUST
TI

120V~C
60 Hz

CI=05tD50~F

C2 ~ 4000.F

03

TI11
11

Cl

IIPKI AOJUST

OUT

01

LI =I 0 - 27.H
T1 ::: Vanac Adjusts I(PK) and dl/dt
T2 = I I
T3::: 1.1 (to tnggerclrcutt)

01

CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time IS the penod which elapses from the
time that the current, thru a previously forward biased rectifier

dl/dt

diode, passes thru zero going negatIvely until the reverse current
recovers to 8 POint which IS less than 10% peak reverse current

Reverse recovery time IS a direct functIon of the forward
current prior to the application of reverse voltage.
For any gIven rectifier, recovery time is very CirCUit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed setaf conditions
uSing IF = 1.0 A, VR = 30 V. In order to cover all CirCUit

condItions, curves are given for typical recovered stored charge
versus commutation dl/dt for vanous levels of forward current
and for junction temperatures of 2SoC. 7SoC. 100"C. and
1So"C.
To use these curves. it IS necessary to know the forward
current level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse recovery tast current waveform for all Motorola fast recovery
rectifiers is shown.

IRM{RECI+----'IL

From stored charge curves versus dl/dt, recovery time h rr )
and peak raverse recovery current liRMIREC)) can be closely
approxlrnated using the following formulas
0 ] 112
trr= 1.41 x [ -.!L
dlldt
IRMIREC) = 1.41 x [OR x dlld~ 1/2

3-22

MOTOROLA

-

lN3899 thl1l lN3903
MR1386

SEMICONDUCTOR

TECHNICAL DATA

.

Designers Data Sheet

FAST RECOVERY
POWER RECTIFIERS
50-600 VOLTS
20 AMPERES

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as de power supplies, inverters,
converters, ultrasonic systems, choppers, low R F interference, sonar power
supplies and freewheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providing high efficiency
at frequencies to 250 kHz.

Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit CUNas - representing boundaries on deVice characteristics - are given to facilitate "worst case" design.

STYLE 1
TERM 1
2

"MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC BloclClng Voltage
Non-Aapat,tlve Peak Reverse
Voltage

VRRM

AMS Reverse Voltage

1N3899 1N3900

1N3901

1N3902

1N3903 MR1386 Unat
Volts

K

VRWM
VR

50

100

200

300

400

600

VRSM

75

150

250

350

450

650

Volts

VRIRMs)

35

70

140

210

280

420

Volts

Average Rectified Forward
Current (Single phase. resistive
load, TC" 100o C)
Non-Repetitive Peak Surge
Current Isurge applied at
rated load conditions)
Operating Junction iemperature
Range

'FSM

Storage Temperature Range

Tug

CATHOOE
ANOOEr;:t:CTERM'NAL'

Amps

10

20

E

r.;---,-------

C
DC

-65 to +175

DIM
A
B

C

0
E
F

'THERMAL CHARACTERISTICS

J

Character'stlc

K
L

Thermal ReSistance. JunctLon to Case

P
Q

"ELECTRICAL CHARACTERISTICS
CharacteristiC

R

Symbol

M,"

TV.

Ma.

Unit
Volts

vF

12
VF

11
10
0.5

IR

TC"OO"C

15

I.
50

60

Volts

---...!..

p

"'3"Nm
TERMINAL Z

Symbol

'rr

M,"

TV.

Ma.

150

200
400

200

'RMIRECI

Unit

Amp

30

3-23

S

MIWMmRs
MIN
MAX
2007
1694
1745
1143
953
292
508
203
1072
1151
1905
2540
396
559
632
356
445
1694
226

INCHES
MIN
0669

0115

0422
0750
0156
0220
0140

MAX

0790
0687
0450
0375
0200
0080
0453
100

02.9
0175
0667
0089

CASE 42A-Ol
DO-203AB
METAL

.A
mA

"REVERSE RECOVERY CHARACTERISTICS
Characteristic
Heverse Recovery Time
(IF = 1.0 Amp to VR '" 30 Vdc, Figure 161
(lFM '" 36 Amp. dl/dt '" 25 A/lJs. Figure 17)
R8V8rse Recovery Current
(IF to 1 DAmp to VR "" 30 Vdc. Figure 16)
·'ndlcates JEDEC Revlstered Data for 1N3B99 Serl5S

=
=

Amps

250
lone cycle)
-65 to +150

TJ

Instantaneous Forward Voltage
(iF'" 63 Amp. TJ '" 1500Cl
Forward Voltage
{IF'" 20 Amp. TC" 250 Cl
Reverse Current (rated dcvottagel TC '" 25 C

~c 1Q

L---r

mn~:~D
S

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case
WEIGHT: 17 grams (approximately)
MOUNTING TORQUE: 25 in-Ib max

•

1 N3899 thru 1 N3903, MR1386

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY

500

V

TJ=250C

200

/"

/

100

..

S

-

L

300

a:

100

/ ' '" ...../

~500C

'"

0
0

~

r"-

"N.J

III"

0

Of--

f'\

f'\

Of--

1-------1-1 CYCLE

0

U

30

~

IIIII
2.0

1.0

3.0

fil

50

70 100

NOTE 1

I

F[SI

10

Pk

z

Ppk

DUTY CYCLE. 0 = Ipltl
PEAK POWER. Ppk, IS peak of an
,qUlvalentsquarepowerpulse

tp

;!: 7.0
z

i

50 70 10
20
3D
NUMBER OF CYCLES AT 60 Hz

20

~
~
~

t--

f'\

11111

0

o

B

.

1111
I I I I I 1
Pnorto surge, the rectlher I I
IS operated such that TJ = 150 oe,
VRRM may be apphad between
each cycla O. surge

0

....
0:

i"

0

70
50

""

I--tl--....j

50

"ME

To determmemaxlmum lunctlOn temperature of the diode In a given situation,
the followmg procedure IS recommended

.~

30

The temperature of the casa should be measured uSing a thermocouple placed

on the case at the temperature reference pomt (see Note 31 The thermal mass
connected to the case IS normallv1arge enough sa that It will notslgmflcantlV
r'qlondtoheetsurgesglmerated mthedlodeasaresultofpulsedoperauononce
steady state condltlOnsareadlieved USIIIgihe measured vatue of TC. the Junction
temperature may be determined by
TJ'"TC+ 6 TJC
where 6 TJC IS the mcrease 10 Junction temperature aboV81he case temperature
ttmaybedetermmedby
II TJC· Ppk 'ROJC [D + (1- DJ rill + tpJ + rllpJ - rlq))
where
rft) = normalized vatue of tranSlentthermat resistance at time, t, from Fig ure

2.0

1.0
07
05

o

04

08

1.2

16

2.0

24

2.8

32

36

3,Ie

40

r Itl + 1pl" normalized vatue of tranSIent thlfmaJ reSistance at time tl+lp

'F, INSTANTANEOUS FORWARO VOLTAGE {VOLTSI

FIGURE 3 - THERMAL RESPONSE
1.0

5

---

2
~

1

{SeeNOIe 11

5
3 -"
2

0.0 1
0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

t, TIME Imsl

3-24

100

200

500

1000

2000

5000

10,000

1N3899 thru 1N3903, MR1386

SQUARE WAVE INPUT

SINE WAVE INPUT

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - FORWARD POWER DISSIPATION
32
8

/

,L

I
41--- I---IIPKI. 20
IIAVI
10
0
I
5.0
6

2

/

I
/
/

./

/
./ ' /

V
V

V

0

/

0

V

0

O~

-

20

16

4.0

FIGURE 6 - CURRENT DERATING

20 r l

....'"

::;
~
a:

'"'"
~

5., " "

F

10 ........

12 r-

'j

F=
80

~

r-

IIPKI =20
I- r-IIAVI

H

-

~

0

o

I J r--.....

r-CAPtCITIVEI LOADS

~ 4.0 --I

g

'"'"

~

I
80

90

I
I

100

li:

~

rl

1'-..."'-

~

~

~
I'--..:: ~~

"'-'

"'

~:;c

,

~

120

130

140

~

150

'"""

H

16

I-

20+5 ;;---.
I

12 H

lO

f-

IIPKI = ~o
l - I - - IIAVI

80 r-

I
20

16

'\.. de

'\.

""'" ,-'"

'\

..........

""

f- f- I--CAP'iCITIVE ~OADS

f\.

~
~

4.0 H

H
0 '-

o

80

100

90

110

120

130

'::: ~

",

140

150

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 8 - TYPICAL REVERSE CURRENT
10I

==

125°C

VR -100 V

./

0

3
100°C
75°C

2

t= 1=

I

T

TC, CASE TEMPERATURE lOCI

:::TJ -150°C

;:=:

IIAVI- 2 0

12

,

H

H

TC, CASE TEMPERATURE lOCI

-

~L

80

20 r-'

~

~

~~

110

de

FIGURE 7 - CURRENT DERATING

RESISTIVE·INDUCTIVE
LOAD
-

r-

16

i

~

1"-

H

/'

IFIAVI, AVERAGE FORWARD CURRENT IAMPI

IFIAVI, AVERAGE FORWARD CURRENT IAMPI

ii:

~ Iiiii!""

/

~ ""'"

0
12

17

V

V ~ -::/: c..V.,... r;;,,::::::;:: :;..-\.

0

8.0

7
./

50.,

(jI!iP'
4.0

/
V

V ' / t>:: V

./. ~ ~

0

LOAD~

CAP1ClTlvJ
I
IIPKI = 20
IIAVI
10

.,/

v:: ~

/

0

V

./

I

50°C
2

V

!== != 25°C
100

o

100

200
300
400
500
VR, REVERSE VOLTAGE IVOLTSI

600

700

3-25

10-3
20

30

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ, JUNCTION TEMPERATURE (OCI

1N3899 thru 1N3903, MR1386

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
20 0

10

I

70

V~

~ 50 I

...

t---

~

30 f---

ffi

20

j..'lr

====

~TJ=25DC-

VIr

~
~

~

~

10
7
5
03
2 __

.....

§ 0

o1

10

20

0

Vlr= 11 V

-

-

01---1-

II

,/

>

TJ = 25 DC

0

r---

0

20
50
10
IF, FORWARD CURRENT (AMP)

50

20
10

100

20

50

10

20

50

100

VR, REVERSE VOLTAGE (VOLTS)

TYPICAL RECOVERED STORED CHARGE DATA
(See Not. 2)
FIGURE 12 - T J = 25°C

FIGURE 13 - T J = 75°C

10

10
IFM =20A

.5

.3
w

40 A

~ 05

g

«~

~ 02

o

in 0 1

...o

/"

40 A
05

/' V

~
~

/ ' V V- i-'"

02

~

o

g 002

1~

~ ~I--"
Y

20

'"w

10';-

.,...

~

10

5

f.'

IFJ = 201

10

w

'"~ 0 05

00

'"'"

V

./

~

50A

\

1

_ 005

10

20

50

002
10

100

vi-'"
10 A

5 0 ~--r-t~

10,

50

t> V-r-...,
IDA

III!fe ~

I
50

20

dt/dt (AMP/.us)

10
do/d., (AMP/",)

20

50

100

STORED CHARGE DATA
FIGURE 15 - T J = 150°C

FIGURE 14 - T J. 100°C
0

IF~ = 20lA

31 0
w

'"'"
5'"
~o

in

.3
w

40 A

V

/ ' V.

2

~V

w

1

V

V

o

V

'"

..

~ 00 5

~

I--"~

~>
~

002
10

~ :;..- .....
20

I,

50

..

50 ~

~~

5

./

w

lOA

o

I

50

100

Ii

3-26

./

~ ./

~ ~ ><

1

iDA

lOA
005

IDA

L.b~

002

20

./

02

o

1'0 A
10
do/d., (AMP/",)

//

IFM=4L

10

~

g

5

o

w
'"
>
8

20

10

~r
20

I
50

10
do/d. (AMP/",)

20

50

100

1N3899 thru 1 N3903, MR1386

FIGURE 16 -

JEDEC REVERSE RECOVERY CIRCUIT
Al

RI = 50 Ohms
T1
R2 = 250 Ohms
01 = IN4723
02 - IN4001
120 VJ:]C TI21
03 = IN4933
60 Hz
SCRI = MCR72910
CI=05to50"F
II
C2 ~ 4000"F
L1 = I 0 - 27"H
T1 = Vanac AdJusts I(PK) and d,Jdt
T2 = I I
T3'" 11 (to trigger CIrCUIt)

L1
d,/dl AOJUST

CI

03

C2

+

'IPKI AOJUST

OUT

02
R2

01
CURRENT
VIEWING

RESISTOR

NOTE 2
Reverse recovery time IS the penod which elapses from the
time that the current, thru a prevlousiV forward biased rectifier
diode, passes thru zero gOing negatively untl' the reverse current
recovers to a point which IS less than 10% peak reverse current
Reverse recovery time

IS

dl/dt

a direct function of the forward

current prior to the application of reverse voltage
For any given rectifier. recovery time IS very Circuit dependent

TYPical and maximum recovery time of all Motorola fast

recovery power rectifiers are rated under a f,xed set of conditions
uSing IF = 1.0 A, VR = 30 V In order to cover all Circuit
oondltlons, curves are given for tYPical recovered stored charge
versus commutation dl/dt for various levels of forward current
and for Junction temperatures of 2SoC, 7So C, l000C, and
1So"C
To use these curves, It IS necessary to know the forward
current level just before commutation, the ClfCUlt commutation
dildt, and the operatmg junction temperature The reverse recovery test current waveform for all Motorola fast recovery
rectifiers IS shown.

'RMIRECI+-----'IL

From stored charge curves versus dl/dt, recovery time h rr )
and peak reverse recovery current ORM(REC)) can be closely
approximated usmg the following formulas'

3-27

trr

= 1 41

OR 11/2
[
x dl/dtJ

iRMIREC) = 1 41 x [OR x dl/dtJ 1/2

lN3909 thru lN3913
MR1396
•

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Designers Data Sheet
FAST RECOVERY
POWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
30 AMPERES

... designed for special applications such as dc power suppltes, Inverters,
converters, ultrasonic systems, choppers, low RF interference, sonar power
supplies and free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 150 nanoseconds providing high efficiency
at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most Circuits entirely from the
information presented Limit curves - representing boundanes on device characterIstiCS -- are given to facilitate "worst case" desIgn

~'
~
l~t
A

'MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Workmg Peak Reverse Voltage
DC Blocking Voltage

VRAM

Non-Repetitive Peak Reverse
Voltage
AMS Reverse Voltage

1N3909

1N3910

VRWM
VA

50

100

200

VASM

15

150

250

VR(RMSl

Average Rectified Forward

1N3911

1N3912

1N3913 MR1396

Unit

Volts

35

10

140

300

400

600

350

450

650

210

280

420

Volts

H4f.
Sl

30

Current (Smgle phase.

Amp

IFSM

300
TJ

-65 to +150

°c

T stg

-65 to +175

°c

THERMAL CHARACTERISTICS
CharacterIstIc

t

DIM
A
B
C
D
J

'ELECTRICAL CHARACTERISTICS
CharacterIStiC
Instentaneous Forward Voltage
(iF· 93 Amp. TJ = 1500 Cl
Forward Voltage
(IF· 30 Amp. TC III 250 CI
Reverie Current (rated de voltege) TC - 260 C
TC· OO"C
'

Symbol

vF

12

,.

Volts

VF

11

14

Volts

'A

10
05

25
10

.A
mA

MI"

TVp

MIX

Unit

I

SEAnNG PlANE ~ _

E
F

Thermal ReSIstance. JunctIon to Case

'

0

-

IQ
---.

r,;--= p--.i

reSIStive/Dad. Tc '" 1000Cl

Non-RepetItIve Peak Surge
Currant (surge applied at r~ted
load condItIons)
Operating JunctIon Temperature
Range
Storege Temperature Range

-IDe

L
,

K

Volts
Amps

10

L~~jF

r-I-

STYLE 1
TERM I CATHODE
2 ANODE

K
L
P
Q

R
S

=

MILLIMETERS
MIN
MAX
2007
1694
1145
1143
953
292
508
203
1072
1151
1905
2540
396
559
632
356
445
1694
226

114-28 UNF 2A.
TERMINAL 2

INCHES
MIN
MAX
0190
0669
0687
0450
0375
0115
0200
0080
0422
0453
0750
100
0156
0220
0249
0140
0175
0567
0089

CASE 42A-01
DO-203AB
METAL

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
'REVERSE RECOVERY CHARACTERISTICS
CharecterlnlC
Reverse Recoverv Time
(IF·1 0 Amp to VR" 30 Vdc, Figure 16)
(lFM "" 36 Amp, dl/dt - 25 A/IlS, Figure 171
Reverse Recovery Current
IIF - 1 0 Amp to VR = 30 Vdc, Figure 161

Symbol
t"

IRM(RECI

MI"

TV'

Max

Unit

150
200
15

200
400
20

Amp

FINISH: All external surfaces corrosion
resistant and readily solderable
POLARITY: Cathode to Case
WEIGHT: 17 Grams IApproximatelyl
MOUNTING TORQUE: 25ln·lbs max.

·Indll:ates JEOEC RegIstered Data for lN3909 Senes

3-28

1N3909 thru 1 N3913, MR1396

FIGURE 1 - FORWARD VOLTAGE
500

TJ" 25 0(;

V

30 0

/

'/

L

10 0
0

.,/" f-"""

FIGURE 2 - MAXIMUM SURGE CAPABILITY
100

V

..........

0

150°C

~

0

~

III'

0

A

0-

0

0

0

I

0

A l l""1::::

A

J

~ICYCLE
lillL

0'--

III

II

IS operated such thatTJ '" 150 0 C,
VRRM may be applied between
each Cycle of Surge

t"-

0

V

;":"':"'9'\h,:ec':t,,;

r-~

0

./"
./

20 0

Y

r-

11111

o

20

10

50

30

70

10

20

30

50

70 100

NUMBER OF CYCLES AT 60 Hz

0

NOTE 1

FUL

0

Ppk

Pk

0

OUTY CYCLE, 0 = !p/tl
PEAK POWER, Ppk. IS peak of an

tp _

0

1---11-----1

eQulVaJentsquarepowerpulsll

TIME

To determmema)umum lunelloR temperature of tile diode In a given StlUalfon,
the follawmg prD[edure IS recommended

0

The temperature of the tase should be measured usmg a thermocouple plated
on the case al the temperature reference pomt (Ule Note 31 The thermal mass

0

connected to the case IS normally large enough so that It Will not Significantly

respond to heatsurgesgeneraled Inthedlodeasa result of pulsed 0peratlOnonce
SleadySlatecondltlonsareachleved USing the measured value a! TC, thejuncllOn
temperature may be determmed by
TJ=TC+ 1TJC
where I'>. TJC IS the mcrease In Junction temperature above the case temperature
It may bedetermmed by
6 TJC = Ppk ROJC 10 + (1- 01 r(tt + tpl + rhpl - r(qll
where
rltl = normalized value a! tran$lentthermal resistance at time, t, from Figure
3,le
r(t,-t-tpl=normahzedvalueoftranSlentthermalreSlstallceattlme1t+tp

0
7
5
04

08

12

16

20

24

28

32

36

40

VF. INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

FIGURE 3 - THERMAL RESPONSE
0

--

5
3

2

V

1

ISEE NOTE 1)

5
3 ,../"

2
00 1
01

02

05

10

20

50

10

20

50

'. TIME 1m,}

3-29

100

200

500

1000

2000

5000

10.000

1N3909 thru 1N3913, MR1396

SINE WAVE INPUT

SQUARE WAVE INPUT
FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - FORWARD POWER DISSIPATION
50

50

I---bAPACIT!VE LOAhs

CAPACITIVE LOADS
IIPKI.' 20
IIAVI
10

t-t--

V

I---',IIPKI = 2~
IIAVI
10

V

' / /'"
/'"

/

50

I - - - I-- 50

/. V~ V

,"

~~

o
o

40

80

/

RESISTIVE INDUCTIVE LOAD

~
12

16

20

24

28

32

-1

~

~
a
c

i

i"..

24

50
10

16

«
:;;

«

~

.........

~"

90

100

110

r:::;
f-J

,,-"-' ~

I--

-..........:: ~

120

80

12

130

16

,24

20

28

32

"'de

~

t::

140

TC. CASE TEMPERATURE lOCI

CAPACITIVE
I-f--LOAOS
IIPKI. 2 0 5 0
f- IIAVI
10

'\

"- ~

'"

""- -...."-.: ~

""-" ~

""

10

\
~

h

'"

a ,...,11
80

V~ ~

F=i

~~

o

/'~

/ /

1//1/ ~

FIGURE 7 - CURRENT DERATING

-

........... ~ .......... ~

80

/"
de

./

/

IFIAVI. AVERAGE FORWARD CURRENT IAMPI

~OAD

IIPKI. 20 ............. 1'--..'
IIAVI
CAPACITIVE LOADS

~

w
to

~>

REJISTIVE

I"

-

I-

7

7

p

40

FIGURE 6 - !=URRENT DERATING
32

/

/

~V

IFIAVI. AVERAGE FORWARD CURRENT lAMP I

a:

[7

/

/

20

/ / V/
// ~V

7

/
/

~

;;
«

~

0

150

o:-<

90

80

100

110

120

130

~

140

'\

150

TC, CASE TEMPERATURE lOCI

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 8 - TYPICAL REVERSE CURRENT
10 1
=TJ -150°C

-

moc

=

100°C

-

1/

0

3

75°C

2

VR=100V

/'

1

f= l= 50°C

2

1

V

F F 25°C
10 0

o

I
100

200
300
400
500
VR. REVERSE VOLTAGE IVOLTSI

600

10- 3
20

700

3-30

I
30

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE lOCI

1N3909 thru 1N3913, MR1396

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
10 0

10
01
=
of::==:
"~
f-t/r Pfr
0-

I=TJ

--

25 0 C

0

1I

0

TJ -l5OC

0

.........

V-

0
7

-

5

3

0

0

I-"

2~
I

10

20

50

50
10
20
IF. FORWARD CURRENT lAMP)

10
10

100

20

10
50
20
VR. REVERSE VOLTAGE IVOl TS)

TYPICAL RECOVERED STORED CHARGE DATA
(SEE NOTE 2)
FIGURE 13 10

tFM

,

g
"

./

02

~~

~

">w
"

1

r

IFM

0

IV

~

V
V

~

g002

~ rY....:/'"

00

1~

10

50

20

/./

=

~ t> "' .....
V-

I

lOA

50A

5

'" 1 0 A

I

002
50

20

10

100

0"/
~ ::::::..""20

lOA

50

10
dl/dl

;F~

w

co

~
"w
">w
"

/

2

w

v...-

§

"'"

V

l...-

00 2
10

1'0 A

~ :;...20

50

10

20

5

~

02

"

V

~
~

50A--j+

~v

~
"

./

I
50

r/

i)OA -

10 A
00 5

10

3-31

~

~ ty P<

1

00 2
100

dl/dt. (AMP/ps!

...-

/

/

~

lOA

~ 00 5

IFM"4L

0
~

~k

I

100

co

V

~

~

20lA

0

5

~

50

0

40 A -

~

20

~AMP/J.ls)

FIGURE 15 - T J = 150°C

FIGURE 14 - T J = 100°C

31 0

7

./V

2

50A

0

20 A

5

;:.....-

10 A

10

~

40 A

~

05

100

T1

20 A

40 A

05

50

T J = 75°C

0

,-

f------co

r-....
......... i"-

Vir - 11 V

1/
/.

lOA

~~
20

50

20

50

100

1 N3909 thru 1 N3913, MR1396

FIGURE 16 -

JEDEC REVERSE RECOVERY CIRCUIT
Al

LI

TIII

AI- 50 Ohms
T1
A2 -250 Ohms
01 -IN4723
02-IN4001
03 - IN4933
120 VAC
60 Hz
SCAI - MCA729·10
CI-05to50MF
C2 ~ 4000.F
L1 -I 0 - 27.H
T1::= Variac Adjusts I(PK) and dlfdt
T2 -I I
T3:: 11 (to tnggerClrcUlt)

Mdt ADJUST

T2

CI

03

II

IIPK)

A~JUST

OUT

02

01
CUAAENT
VIEWING
AESISTOA

NOTE 3

Reverse recovery time IS the penod which elapses from the
time that the current. thru a previously forward biased rectifier
diode, passes thru zero gOing negatively until the reverse current
recovers to a point which IS less than 10% peak reverse current
Reverse recovery time

IS

d./dt

a direct function of the forward

current prior to the apphcatlon of reverse voltage
For any given rectifier. recovery tune IS very CirCUIt depend·
ent. TYPical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
uSing IF = 1.0 A, VA = 30 V In order to cover all CirCUit
conditions, curves are given for typical recovered stored charge
versus commutation dl/dt for various levels of forward current
and for lunction temperatures of 250 C, 75°C, l000C, and

IRMIRECI+-----'OL

From stored charge curves versus dl/dt. recovery time (trrl
and peak reverse recovery current ORM(REC)1 can be closely
approximated usmg the following formulas

15o"C.
To use these curves, It IS necessary to know the forward
current level just before commutation, the circuit commutation
dl/dt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

3-32

OJ 1/2
[dl/dt

trr

= 1 41

x _R_

IRMIREC)

= 1 41

x [OR' dl/dt] 112

lN4001

MOTOROLA

-

thru

SEMICONDUCTOR

TECHNICAL DATA

lN4007

GENERAL-PURPOSE RECTIFIERS

LEAD MOUNTED
SILICON RECTIFIERS
50-1000 VOLTS

..• subminiature size, axial lead mounted rectifiers for generalpurpose low-power applications.

'MAXIMUM RATINGS

..
0

"'

:::

:::

.. ....
::: :::

DIFFUSED JUNCTION

Symbol

:::

:::

'"~
:::

VRRM
VRWM

50

100

200

400

600

800

1000

Volts

VRSM

60

120

240

480

720

1000 1200

Volts

VRIRMSI

35

70

140

280

420

560

Volts

N

Q
~

Ratmg
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

~

0

0

~

0

~

~

0
0

Umt

~

VR

Non.Repetltlve Peak Reverse Voltage
thalfwave. Single phase, 60 Hz)
RMS Reverse Voltage

Average Rectlfred Forward Current
(single phase, reSistive load,
60 Hz, see Figure 8, T A = 7SoCI

'0

Non·Repetltlve Peak Surge Current
(surge applied at rated load

IFSM

conditions. see Figure 2)
Operating and Storage Junction

TJ,Tstg

Temperature Range

.
.

10

..

30 (for 1 cycle)

700

.
.

-I@1.-8

Amp

I
K

Amp

if -il!

DC

-65 to +175

"ELECTRICAL CHARACTERISTICS
Characterrstlc and Conditions

Symbol

TVp

Max

Unit

vF

093

11

Volts

VF(AVI

-

O.S

Volts

005
1.0

10
50

-

30

MaXimum I nstantaneous Forward Voltage Drop
(IF == 1 0 Amp. T J = 25°C) Figure 1
MaXimum Full-Cvcle Average Forward Voltage Drop
(10 = 1 0 Amp. TL '" 75 0 C. 1 lOch leads)
MaXimum Reverse Current (rated dc voltage)

'R

TJ' 25 DC
TJ'100DC
MaXimum Full-Cycle Average Reverse Current
(10 = 1 0 Amp. TL = 7SoC, 1 lOch leads

'R(AVI

' fF

K

~

"A

"A

-Indicates JEDEC Registered Data

... I--D

NOTES:
1 ALL RULES AND NOTES ASSOCIATED WITH
JEDEC 0041 OUTLINE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3 LEAD DIAMETER NOT CONTROLLED WITHIN "F"
DIMENSION

MECHANICAL CHARACTERISTICS
CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from
case for 10 seconds at 5 Ibs. tension
FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

DIM
A
B
D
F
K

MILUMETERS
MIN
MAX
4.07
520
2.04
271
071
0.86
127
2794

INCHES
MIN
MAX
0160 0.205
0080
0.107
0.02B 0034
0.050.
1100

POLARITY: Cathode indicated by color band
WEIGHT: 0.40 Grams (approximately)

CASE 59-03
00-41
PLASTIC

3-33

•

lN4719

MOTOROLA

-

thru

SEMICONDUCTOR

TECHNICAL DATA

I

lN4725
SILICON RECTIFIERS
3.0 AMPERES
50-1000 VOLTS
DIFFUSED JUNCTION

LEAD MOUNTED POWER RECTIFIERS

having low forward voltage drop and hermetic metal packages
High surge current capability and good thermal charactenstlcs
prOVide reliable operation
• ROJA = 30'CMI

'MAXIMUM RATINGS IBoth Package Typesl TA = 25°C unless otherwise noted
Rating
Peak RepetitIve Reverse Voltage
Workmg Peak Reverse Voltage

DC Blocking Voltage
Nonrepetltlve Peak Reverse Voltage
{one half-wave, smgle phase,

Symbol

1N4719

1N4720

1N4721

1 N4722

1N4723

1N4724

1N4725

VRRM
VRWM
VR

50

100

200

400

600

800

1000

Volts

VRSM

100

200

300

500

720

1000

1200

Volts

VR(RMSI

35

70

140

280

420

560

700

Unrt

60 cycle peakl
RMS Reverse Voltage

Average Rectified Forward Current
(~lngle pha~e, resistIve load. 60 Hz.

30

10

Nonrepetltlve Peak Surge Current
(superimposed on rated current
at rated voltage, TA = 75°C)

'FSM

..

Operating and Case Temperature

TJ. Tstg

.

TA

=75°C)

..
.
.

300 (for 112 cyclel

-65 to +175

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Max Limit

Unit

*Instantaneous Forward Voltage
(IF = 3.0 A, TJ = 75'C, Half Wave Rectifier)

vF

10

Volts

IR(AV)

1.5

rnA

IR

0.5

rnA

"Full Cycle Average Reverse Current
(10 = 3.0 Amps and Rated VR, TA
Half Wave Rectifier)

= 75'C,

DC Reverse Current
(Rated VR, TA = 25'C)
*Indlcates JEDEC Registered Data

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed construction
FINISH: All external surfaces corrOSion-resistant and leads readily solderable

DIM
A

POLARITY. CATHODE TO CASE
MOUNTING POSITIONS. Any

B

C
D
K

MILUMETERS
MIN
MAX
1143
BB9
762
t17
142
24B9

tNCHES
MIN
MAX
0450
0350
0300
0046 0056
0980

CASE 60-01
METAL

3-34

Volts

Amp

Amp

°C

lN4933

MOTOROLA

-

Designers

•

thru

SEMICONDUCTOR

TECHNICAL DATA

lN4937

Data Sheet
FAST RECOVERY
RECTIFIERS

AXIAL-LEAD, FAST-RECOVERY RECTIFIERS

50-600 VOLTS
1 AMPERE

. . . designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery
rectifiers havmg typical recovery time of 150 nanoseconds providing
high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" Conditions
The DeSigners Data Sheet permits the deSign of most circuits entirely from the
information presented Limit curves - representmg deVice charactenstlcs boundarlesare given to facdltate "worst case" design

"MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage

Symbol

1N4933

1N4934

1N4935

1N4936

1N4937

Umt

VRAM

50

100

200

400

600

Volts

75
35

150
70

250
140

450
280

650
420

Volts
Volts

VRWM

DC Blocking Voltage

Nonrepetltlve Peak Reverse Voltage
RMS Reverse Voltage

VA
VRSM

VAIAMSI
10

10

Amp

Nonrepelltlve Peak Surge Current
(Surge applied at rated load
condltlonsl

IFSM

30

Amps

Operating Junction Temperature Range
Storage Temperature Aange

TJ
T stg

Average Rectified Forward Current
(Single phase, reSistive load,
TA'" 7SoCl

NOTES
, All RULES AND NOTES ASSOCIATED WITH JEDEC
0041 OUTUNE SHALL APPLY
1 POLARITY DENOTED BY CATHODE BAND
l LEAD DIAMETER NOT CONTROLLED WITHIN "f"
DIMENSION

DIM

"THERMAL CHARACTERISTICS

..----

-65to+150
-65 to + 175 - - - -...

°c
°c

Characteristic

A
B
D
K

MILLIMETERS
MIN
MAX
597
660
279
l05
016
086
219.

INCHES
MIN
MAX
0135
0160
0120
0110
0030
003'

1100

-

CASE 59-04
00-41
PLASTIC

Thermal AeSlstance, Junction to Ambient
(TYPical Printed CirCUit-Board Mounting)

'ELECTRICAL CHARACTERISTICS
CharacteristiC
-Instantaneous Forward Voltage
(IF = 3 14 Amp, T J = 150°C)
Forward Voltage
(IF = 10 Amp. TA = 2So CI
-Reverse Current IAated dc Voltage) T A - 25°C
TA=1000 C

Symbol
vF

Moo

TV.
10

Max
12

Volts

VF

10

12

Volts

IA

10
50

50
100

"A

Unit

MECHANICAL CHARACTERISTICS

FINISH: External leads are readily solderable

"REVERSE RECOVERY CHARACTERISTICS
Characteristic
Reverse Recoverv Time
(IF" 1 0 Amp to VA = 30 Vdc) IFlgure 211
IIFM = 15 Amp. d./dt;; 10A/ps IFlgure 221
Reverse Recovery Current
!IF • 1 0 Amp to VR "" 30 VdcllFlgure :21)

CASE: Transfer Molded PlastiC
POLARITY: Cathode Indicated by

Symbol

Moo

TV.

Max

Umt

polarity band
WEIGHT: 0.4 Gram (approximately)

t"

150
175

200
300

IAM(RECI

10

20

-Indicates JEOEC Reglltered Data

3-35

Amp

1N4933 thru 1N4937

FIGURE 2 - MAXIMUM SURGE
CAPABILITY

FIGURE 1 - FORWARD VOLTAGE
0

I I

3D

.....

V

I I

100

............

0

/ ' I-'

/
,,/

I - _TJ=25OC

V

1/

20

TYPICAL

/

I

Ii-u
III'

0

VV

0

i'

0

MAXIMUM

0

01-

I

IIIII

0

II

0

IIIII

o

2.0

1.0

30

'I

0
7
5

O.3

I

.s

...'"

o.2

~

8

1
0.07

08

1.2
16
2.0
2.4
2.8
,!,.INSTANTANEOUS FORWARO VOLTAGE IVOLTS)

3.2

-05
-10
-15
-20
-25
005

SINE WAVE INPUT
FIGURE 4 - FORWARD POWER DISSIPATION
32

IIP~) I

IIAV) =204

// ~

2

4

l- /' /

INOUC7IVE LOAD)

.J/

01

02
05
10
20
50
10
20
IF. INSTANTANEOUS FORWARO CURRENT IAMPJ

4~

1.6
20
0.8
1.2
IFIAV). AVERAGE CURRENT lAMP)

20

/. ~

V

/

L~

2
8

24

IIPK).I, {,O
IIAV)
.,

/

6

O. 4
28

~~

o ..... ~
04
o

VA ~
~~ V
~V

~ ;r / '

V

de

./
TJ ~ 1500C

"

08

12

16

2.0

IFIAV). AVERAGE FORWARO CURRENT IAMPJ

3-36

50

SQUARE WAVE INPUT
FIGURE 5 - FORWARD POWER
DISSIPATION

0

~""

0.4

'1

4
1500 C

/

A

B

~~

O~P'

TYPICAL RANGE

~~ESIJTlvJI

/

TJ~

0

.Y

V5• /
r

/ / /V
I :/ ~ /

0
6

70 100

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
45
40
35
30
~ 25
:> 20
1.5
ffi 10
;:; 05

0.05
0.4

50

50 70 10
20
30
NUMBER OF CYCLES AT 60 Hz

I
II

0

r--

1----1..1 CYCLE

0

0

r"-r--

1\ 1\

f\.

01-

0

III
I
I I I I
Prior tD surge. th. netlfler I I
IS operated such that TJ = lS0 0 e.
VRRM may be applied between
IIch cyde of surge

24

28

1N4933 thru 1N4937

MAXIMUM CURRENT RATINGS
SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 6 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD
8
4

-;;.,

I
"

.......

BOTH LEADS TO HEAT_
SINK WITH LENGTHS _
ASSHOWN

.......

6~3J?- ......... r--..
........
2r-L.1?

r-.

~

-.......

8

r--..
r--..

70

80

90

........

............

100

.........

5/8"- ..........

........

"""
...........
-.....;:

110

120

~

140

o

150

50

FIGURE S - lIS" LEAD LENGTH. VARIOUS LOADS
28

;

24

,,
""""

60

70

-

~ 20

~

I""--...

~ 1.6

~

~

2

'"

ffi

8

""

4

w

~
10

-. ~

........

~

r--...........
.......
.........

~

"""" .~
"-

~

60

70

BO
90
100
110 120
Tt. LEAD TEMPERATURE (DCI

130

"

150

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS
14

,

1.2 ........

0
8
6
4

..........

I

,

-

O.2

50

I
60

70

130

"

140

150

........ de

,

"

........

I'.

:-.......

........

~

."-....:

0
50

60

70

80
90
100 110
120
TL. LEAD TEMPERATURE(DCI

130

~

140

'"

150

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS

I

~......
....... ....::::-.....

CAPACITIVE LOAD
I(PKI. 50 I(AVI 10
20

o

~~

RESISTIVE·INOUCTIVE
LOAD

r--.. K

-r-.

....... t'--.""

4

~
140

:--.....::

~~

8

"

........

....... -0.. ""'1'--........ ~

2
~,

0
50

.........

6:---I(AVI

>

if

10"'1--.,

:---1 (PKI • 20

-.......

"

I

........

. . . . -X0

o -.......

..............

........

80
90
100
110 120
TL. LEAD TEMPERATURE (DCI

.......... 20'0

4

~ .......
...........

" "'-"'

FIGURE 9 - l/S" LEAD LENGTHS. VARIOUS LOADS
8,

I(PKI." (RESISTIVE/INOUCTIVEI
I(AVI

......

...........

r-...

............

TL. LEAD TEMPERATURE (DCI

..

.......

-....... .......

5

"""

130

--

i'-..
..................... r-...

5 ;;:;;::::f--3/B"

.......

LEAJS TO HIEAT _ r - SINK WITH LENGTHS
AS SHOWN

.......

..... J

~

60

~~

~ ........

4
0
50

80T~

-I " ........

0

"-

r--....

~

5~L~

I

RESISTI~g~~~UCTIVE_

.........

0-1~

I

FIGURE 7 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

..........
..........
0--

---

0JA'65D /W-

-

~

...,.

~~
~

......... ~

80
90
100 110 120
TA.AM8IENTTEMPERATURE (DCI

-....;;: ~

...,.
........

130

140

~~0--~60~~70~~80~-9~0--~1~00~-1~10--~12-0--~13~0--~14~0-~~150

150

TA. AMBIENT TEMPERATURE (DCI

3-37

1N4933 thru 1N4937

FIGURE 12 - THERMAL RESPONSE

FIGURE 13 -THERMAL RESISTANCE
80

10
6 07

70 -JOTH LJDS TD HIEAT SINk.

~ 05
:::;

~ 0.3

~~

~~

02

I
MAXI~UM/ .........

V

01

~~~ 0.01
:g~ 0 05
...

V

"..,

/' V

;li0.03

...'"~Q02

L

(SEE NOTE 1)

V

V

/'

EQUAL LENGTH

LEAD LENGTH' 1/4"

/:

V

".......

TYPICAL

................. ",....,

./

10

00 1
005010204

102040

102040

o
o

100 200400100020005000

114

1/8

t.TIME(ms)

3/8

F[fl
Ppk

lp

1---••--1

3/4

7/8

NOTE 2

NOTE 1

Pk'

5/8

1/2

LEAD LENGTH (INCH ESI

Data shown for thermal reSIStance Junctton-to-amblent (9JA) for the
mountmgs shawn IS to be used as typal gUideline values tOf prellminarv
engineering or In case the tIe pornt temperature canoot be measured

DUTY CYCLE, 0,. Ipll1
PEAK POWER. Ppk,lspealc of an
eqUivalent square power pulse

TYPICAL VALUES FOR {JJA IN STILL AIR

f.ME

To determine maXimum Junction temperature of the dlDlte In a gillen sltuatlDn,
the following procedure

IS

recommended

The temperature of the CIse should be measured usmg a thermocouple placed
on the tase at the temperature reference pomt (sae NOle 3) The thermal mass
connecttd to the case IS normally large enough so that It Will not s'!Imflcantly
respond to heat surgesgenel1lted In thed.ode nil result of pulsed operation once
steady-state condltlonsar'lchlhed Usmg the measured valueDt TC. the Junction
temperature may be determmed by

MOUNTING METHOD 1

H t::'=i
ezt;:i""Jh=ia

TJ=TCi-ll.TJC

when! 6. TJC IS the Increase In Junction temperature above the case temperature
Itmaybedetermmedby
6TJC"'Ppk R9JCIO.f-(1-0)

MOUNTING METHOD 2

MOUNTING METHOD 3

P. C 80m! WI1h

rr

1-1/2" x 1-1/2" copper surface

~'J3/8"

~~_II~

rlq.f-tp)+r(tp)-r(qll

whor,
r(tl '" normalized value of transient thermal resistance at time, t, from Figure
3,18

r tt1 + tpl '" normalized value of transrent thermal reStStance at time t,+tp

Vector pm mounting

Board Ground

-:

Plane

FIGURE 14 - THERMAL CIRCUIT MOOEL
(For Heat Conduction Through The Leads)

T A .. Ambient Temperature Res'" Thermal ReSistance, Heat Sink to Ambient
TL = lead Temperature
Rel': Thermal Reslstance,lead to HeatSlnk
TC '" Case Temperature
ReJ = Thermal Reslstance,JunctlOn to ease
T J .. JunctIOn Temperature Po = Power DISSipation
(Subscflpts A and K refer to anode and cathode Sides respectively I
Values for thermal resistance components are
RSl'" l1:z'lCIW/IN TYpically and 12aDCIW/IN MaXimum
AU ., 1aDCIW TYPI(:ally and xPCIW MaXimum
The maximum lead temperature may be calculated as follows
Tl == 1500 -6TJL
6TJL can be calculated as shown In NOTE 1 or It may be apprOXimated
• follows_
.o.TJL :::::: ASJL • PF, PF may be formulated for sme-wave operation from
Figure 3 or from F tgure 4 for square-wave operation

Use 01 the above model permltslunctlon to lead thermal reSIstance 10r any
mountmgconftguratlon to be found For a given total lead length, lowest values
occur when one Side of the rectifier 1$ brought as dose as poSSible to the heat
stnk Terms In the model slgmfy

3-38

1N4933 thru 1N4937

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE IS - FORWARD RECOVERY
TIME
05

j

~
;=

ffi

I

FIGURE 16 - JUNCTION CAPACITANCE
0

I

"Ii 20

03 I--v!r=I.L

w

I - TJ=250 C

'"z

g

./

02

,./

>

~

~

C$

005
01

TJJSOC

r-- ....

10

~

70

:;
tl

50

z

~ 0I

'"
~O.07

........

z

V

lil

----....

.......

./'
0.2

0.5

20

10

50

3.0
1.0

10

2.0

50
10
20
VR. REVERSE VOLTAGE (VOLTS)

IF. FORWARD CURRENT (AMPI

50

100

TYPICAL RECOVERED STORED CHARGED DATA
FIGURE 11 - TJ

= 2SoC

FIGURE 18 - TJ

10

IFM = 20 A

'U

,!;

w

IFM1=101

0

05

'"
'"~

\
/

~ 02

'"to

~~

I

5

V-

~ 005
/.~

g002

00

I~

10

'\

~ I'?:,..-

p--

20

10
50

10

f"-

i

50

001
10

100

lOA

~~
10

I II
50

dl!dt (AMP/,us)

10
d,/dl. (AMP/",)

FIGURE 20 - T J
0

.3
w

'"'"

5

Q
W

'"~

01

~>

I

:..--::

~

8

~ 00 5
cO

'" 001

10

V".,..

<

~;..-'

10

50

10

~

05

~
t:;

02

100

= IS00C

'FM 10A

~

lOA

~~

I

lOA

005

lOA

cO

'"
50

100

h

002
10

d,/dl. (AMP/",)

3-39

".,..

IY . / i-'

w

'"w

I\A
10

50

1a

Q

".,..

SOA

~ ~".,..

10

10

IF~ = 10lA

.3, 0
w
'"'"

.....

50A

5

~

10

--

".,..

lO A

SO A

\

W t>V

I

IDA

~

V. V

1

~

5'"

= 1SoC

0

~r
10

50

10
d,/dl (AMP/",)

10

50

100

1N4933 thru 1 N4937

FIGURE 21 -

JEDEC REVERSE RECOVERY CIRCUIT
RI

so

L1
Mdt ADJUST

TI

R1 =
Ohms
R2 =250 Ohms

120V~C

01" lN41Z3
02' INOOOI

03 -IN09l<

60 Hz

SCRI = MCR729 10

Cl

03

TI11

A~JUST

1\PKI

OUT

CI =0510 50",F

11

C2 :>::400011F
11" 1 0-27 pH

01

11 '" Vanae Ad/usts '(PKI and Mdt
T2 = 1 T
T3= 11 (to tnggerclrcUlt)

01

CURRENT
VIEWING
RESISTOR

NOTE 3
Reverse recovery time is the period which elapses from the
tIme that the current, thru a previously forward biased rectifier
diode. passesthru zero going negativelv until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time IS a direct function of the forward
current prior to the apphcatlon of reverse voltage

dl/dt

For any given rectlf.er. recovery tmlC IS very CirCUit depend-

ent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed setof oondltlons
uSing IF = 1.0 A, VR = 30 V. In order to cover all Circuit
oondltlons, curves are given for tvPical recovered stored charge
versus commutation dl/dt for various levels of forward current
and for Junction temperatures of 2SoC, 7So C, 1000C, and
1So"C.
To use these curves, It IS necessary to know the forward
, current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse ra-coverv test current waveform for all Motorola fast recovery
rectifiers is shown.

'RM\RECI+---''''

From stored charge curves versus dl/dt, recovery time hrrl
and peak reverse recovery current (lRMtRECII can be closely
approximated using the following formulas

trr

= 1 41

x[~
d./d,]

112

IRMIRECI = 1 41 x [QR' d./dtJ1/2

FIGURE 22 - TYPICAL
REVERSE LEAKAGE

FIGURE 23 -

NORMALIZED REVERSE CURRENT

10 3

Tr 1500 C

l - I--

I

2

./

0

TJ=100oC
I

VR - 400 V

TJ-150 C

./
1

0

Tr15 0 C

V
10- 2
10

1
100

100

300

400

500

600

100

VR. REVERSE VOLTAGE IVOLTS)

30

40

50

60

70

80

9{)

100 110 120 130 140 150 160

TJ. JUNCTION TEMPERATURE lOCI

3-40

lN5391
thru
lN5399

MOTOROLA

-

SEMDCONDUCTOR

TECHNICAL DATA

ro' "

;.

'

"-

'

p~sig:nrers

Data Sheet

"SURMETIC" RECTIFIERS
LEAD·MOUNTED
SILICON RECTIFIERS

... submintature size, axial lead·mounted rectIfiers for generalpurpose, low·power applications.

50-1000 VOLTS
DIFFUSED JUNCTION

Designers Data for ''Worst Case" Conditions
The Designers Data Sheets permit the design of most CirCUits entirely
from the information presented. Limits curves-representing boundanes on
device characteristics-are given to facilitate "worst-case" design.

*MAXIMUM RATINGS

Rating

DC Blocking Voltage

Nonrepetltlve Peak Reverse Voltage
(Halfwave, Smgle Phase, 60 Hz)
RMS Reverse Voltage

N
0>

III

'"
0>
M

'"~ '"~

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

Gi

III

III

Z

....
III
III

III

III
III
~

l!!
M

81

M
III

III

~

Z

Z

VRRM
VRWM
VR

50 100 200 400 600 800 1000

Unit
Volts

VRSM

100 200 300 525 800 1000 1200

Volts

.

VR(RMS) 35

Average Rectified Forward Current
(Single Phase, Resistive Load,
60 Hz, TL = 70 0 e,
1/2" From Body)

10

~

~

~

70 140 280 420 560

700

1.5

Nonrepetltlve Peak Surge Current
(Surge Applied at Rated Load
Conditions, See Figure 2)

IFSM

_

Storage Temperature Range

T stg

_-65to+175

Operating Temperature Range

TL

_ _ -65 to +170

DC Blocking Voltage Temperature

TL

..

Volts
Amp

50 (for 1 c y c l e ) - Amp

.

..
.

150

f=o
L=3

°e
°e
°e

*ELECTRICAL CHARACTERISTICS
Symbol

Typ

Max

Unit

Maximum Instantaneous Forward Voltage Drop
(IF = 4.7 Amp Peak, TL ~ 170o e,
1/2 Inch Leads)

vF

-

1.4

Volts

Maximum Reverse Current (Rated dc Voltage)
(TL = 1500 e)

IR

250

300

/lA

IR(AV)

-

300

/lA

Characteristic and Conditions

Maximum Full-Cycle Average Reverse Current (1)
(10 = 1.5 Amp, TL = 700 e, 1/2 Inch Leads)

I
~
K

*Indlcates JEDEC Registered Data.
NOTE 1· Measured," a smgle-phase, halfwave CirCUit such as shown In Figure 6.25 of EIA
RS-2B2, November 1963. Operated at rated load conditions 10 = 1.5 A. Vr = VRWM,
TL = 700 e.

NOTES
1 ALL RULES AND NOTES ASSOCIATED WIn! JEDEC
D().41 OURINE SHALL APPLY
2 POlARITY DENOTED BY CAn!ODf BAND
3 LEAD DIAMETER NOT CONTROLLED WIlHIN "F"
DIMENSION

MECHANICAL CHARACTERISTICS
CASE: Transfer molded plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 240°C,
1/S" from case for 10 seconds at Sibs. tension

DIM
A
B
D
K

MIWMETERS
MIN
MAX
597
660
279
305
076
086
2794

-

INCHES
MIN
MAX
0235
0260
0120
0110
0030
0034
1100
-

FINISH: All external surfaces are corrosion-resistant, leads are readily
solderable
CASE 59·04
PLASTIC

POLARITY: eathode Indicated by color band
WEIGHT: 0.40 grams (approxImately)

3-41

-

1N5391 thru 1N5399

FIGURE 2 - MAXIMUM NONREPETITIVE SURGE CURRENT

FIGURE 1 - FORWARO VOL TAGE

0
0

TJ

0

-

.....

= 25°C

~

i--'"

......

./

100

0

./

0
0
0

t---.

-

I

0

TYPI CALI

0

MAXIMUM

0

I

0
7

-

......

r-- r-......

VRSM APPLIED AFTER SURGE
SURGE APPLIED AT RATED
LOAD CONDITIONS
TJ' Il0oC, f· 60 Hz

10
10

5

r---

~
1----4-1 CYCLE

10
10
50
NUMBER OF CYCLES

10

3

100

50

2

FIGURE 3 - FORWARD VOL TAGE
TEMPERATURE COEFFICIENT

I

7

5
0
5
~ 0
.E
5
I~
0
Li
5
0
8 5
~
0
~-o 5
~-l 0
~-l 5
I-2 0
-1 5
0001

5

"

3
2

00 I

I

~

000 7
0005

YPICAL RANGE

"'

000 3
0002

I

000 I

04

08

12

20

16

24

18

32

36

40

'F, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

000500100200501 02
IF

0510 20

50 10

20

50

INSTANTANEOUS fORWARD CURRENT lAMP)

FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE
100 _

~
~

C;;;~

-

~~ 30
~

ii

nPpk

~II

L
TIME

DUlY CYCLE 0

~ IpllI

PEAKPO\"IERPpk!5PUkol~n

L

eqUlv"ltnl squalt power putS!

-

_b.TJl= Ppk IRnJU"" 0+11-0) R/lJL 'tl + IpJ + R!lJUtpl-RnJUI1IJ
~,ell.TJL = 'ntltasr tn]unct.onlfmperalure abClve.he Ind temperature

20 _

~z

RIIJLt!l$valueolllanslen'lhtrmalrtsl$lante~'lrnet Ie

~~
o ~

nPpk

70=~
------l

50 - '

~Rf/Jl(ll+'pl=ValuroIRnJl!t)illllmelt+lp
10 t:::

~ ~ 70 ~

R,JJlIlp) = nlulol AI/JUt) at end ot pulsrwldth Ip
RflJl!ql = value at RnJLW at Ilmr IT

I"

LI 11/32" r - - -

~~

t; ~ 50
z'"

~~ 30r--r-r-r~-rr---r~~~~~~~~r-r-~-r~---r--r---r--r-r-r~-rr---r--r---r--r-+-~-rr+---r--r-~
~

20r--r-r-r+1~~~F--r---rr-r-~rt-r~---t--r---r--r-t-r~rr~--~-r---t--r-+-ri-rrt---+--~-1

I,

The temperature of the 'lead should be measured uSIOg a thermocouple placed
on the lead as close as possIble to the tIe POlOt The thermal mass connected to
the tIe pomt IS normally large enough so that It Will not slgmflcantly respond to
heat surges generated 10 the diode as a result of pulsed operation once steady,

TiME Im.1

stale conditIOns are achIeved USing the measured value of TLo the Junction
temperature may be determmed by,
TJ

3-42

= TL + 6TJL,

1N5391 thru 1N5399

FIGURE 6 - EFFECT OF LEAD LENGTHS, RESISTIVE LOAD

FIGURE 5 - FORWARD POWER DISSIPATION
70

",2 8

II
/

I
1/

/i-'::

~~

o

~

~~

o

O~

1/

-I

"./

r- i -

i-t-- r-

~

12

w

'<

40

3~

- f<

r--;::: I:--.

8

r-.! .........
~
~~

"
....
~

16

a

~ 12

"
~

o

I

""- ........ .... IIPKI/IIAVI =. LOADS
""- k"
/ ~O CAPACITIVE r-..
I'-.. ""- ~.20 LOADS
I
r-.. <) ~
.........

-- --

~

---

04

!o
30

~O

--

t---: t---: !:--..

i""..
I\, l\. 1""= ~ t-:::: ~
":.;;::::
~ :::::::: ~
l\.~~I8"
i::::::i ::5=:: :s::: I"::
1\.\3/4"

'"

..... ::::;;:: ~"-

~~

~o

30

'"'"....
~

r-

20

f--

16

"

'"

~

~ 04

~~

;;;

"

~
1~0

~

170

.........

.......

1---

'"

::::::: ~

~

z

K
.........
I/,
-.. ......... r-....
..... ~
r--

r-. ~

ROJA ~ 6~aC/W
- IS~E NOTE II
30

~
MAXIMUM

tz

~

~

40

z

"I;; V
~

20

--'

~"

i=

.:.

J

V

t......- v

0
0

118

~

./'"

t......-

-

I-:E~:G

1/2
~/8
L, LEAD LENGTH (lNCHESI

318

..::::: :-...
-::: :::::;: ~

~~
1~0

11121

81

91

101

40

H ~
~
10

.. ...

3-43

~

°efW
°efW

MOUNTING METHOD 3
PC BoardWdh
1·112"xl·1/2"ooppersurface
L = 3/8"

"~, "~"' ~

718

.I

lEAD LENGTH, L UN!

MOUNTING METHOD I

3/4

-.;::::

1181114
314IReJA
165128292
IW

I

114

"'-

70
90
110
130
TA, AMBIENT TEMPERATURE laCI

~o

I.
I--'""

'--

CAPACITIVE
LOADS

TYPICAL VALUES FOR 8JA IN STILL AIR

./'

~

170

I

Data shown for thermal rnrstance lunt1lOn-to-amblent (9JA) for the
mounlmgs shown IS to be used as typal guideline values lor prehmmillY
engmftnng or In case, the be pOint temperature cannot be measured '

/'"

o

~O

20

NOTE 1

80

60

~ESlJTIVdflND~CTI~E _

--- --

........

~ 12

;:
o
~ 08

o

~

/ IIPKI/IIAVI =. LOADS

a

-......::: f:S: ~

;

1~0

110
130
90
1[, LEAD TEMPERATURE laCI

70

FIGURE 9 - STEADY-STATE THERMAL RESISTANCE

~

,

I
I

~

::::--

110
130
70
90
TL, LEAD TEMPERATURE laCI

r-...

_

FIGURE 8 - PRINTED CIRCUIT BOARD
MOUNTING, VARIOUS LOADS

AJSIST\VE/!NOU~Tlvi _

I--

~ 08

'";i!i
~

.........
.........

I--..

'-718"

FIGURE 7 -1/2" LEAD LENGTH, VARIOUS LOADS
20

~~NHGEt:SS~~~:~TH

/112"

IFIAVI, AVERAGE FORWARD CURRENT IAMPI

~

RESISTIVEflNOUCTIVE _
LOADS BOTH LEADS _

L=11I8 "
3/8"

")C

"S- 04
Eo

20 I

30

16

'"
~>

I I

1~ ~ CAPACITIVE
LOADS

20

~

~

i

~~~~T1VE _ f- f-

r><

10

~

/
IIFMI/IIAVI -.

r-...

24

B2 01"'I"'----.--.

/

1/ /
~ V";

i=

/

/

I
1/

TJ'" 1700 e

~

V

/

]

~,!9.=
Plane

'-

170

1N5391 thru 1N5399

FIGURE 10 - FORWARD RECOVERY TIME

FIGURE 11 - REVERSE RECOVERY TIME

20

20

-:8

j
w

'"

;:: 10

i:;

I

L-

t
'1,

j

Vfr '" 2 OV

TJ = 2SoC

w

'"

;::

~
>

w

>

~ 07

~

~~

~

E

03
02

'-- ~
n1

02

03

~w

---~~r/r

lNS398/9

~ 05

I-

i.-'

.....

'"
'"w

~
;;

I-"""

I-

20 30
05 07 10
IF. FORWARD CURRENT lAMP)

50 70

10

~

70
50

r---- --

30
~

w
u

20

z

<

I-

G

§
..;

~t"

I,

lN53911;'

TJ = 25°C
01 

§
70

I'" 60 Hz

200

-.......

~

TYPICA
50

~

=>

"/

~

=>

/

30

'- ~

u

~

"

~

I

j

/

JV\.JL

r----r-

H'

,

CYCLE

100
90

BO
70
60

-----

50

1/

40
10

20

50

30

70

10

20

30

50

70

100

NUMBER OF CYCLES

FIGURE 3 - CURRENT DERATING VARIOUS LEAD LENGTHS
0

0

0

K

I"-

0

--

0
0
0

I"- t:-,.,

eo

0

>
«

20

~

10

g

3

~

o2
04

OB

12

16

24

20

2B

~

r---- 1/2" "" f'- ~

-.......

f""-..

1\
""'I"-" i"'- h\

~

f":~

o

40

32

"~

114"

I"-

i'- t--,

7
5

RES:ST)V~

LOIAD.J
BOTH LEADS TO HEAT
SINK WITH LENGTHS
AS SHOWN

f"

r----

0

1/32"

60

80

lL

VF. INST ANTANEOUS FORWARD VOL TAGE (VOLTS)

100

120

140

160

180

LEAD TEMPERATURE (DC)

NOTE 1 - AMBIENT MOUNTING DATA
FIGUR~
Oata shown for thermal resIstance ),mer,On to ",",bIen! (AOJA)
for the mountmgs shown 1$ to be used as typIcal gUIdeline values
for preliminary engineering or In C

Charactenstlc

Svmbol

Maximum Instantaneous Forward
Forward Voltage (11

ITL = 25 0 CI
ITL = lOOoCI

0.0.0.

"'00

~"''''

~rta:

D

0.

K

0

::!

'"Z "'''''''
:E:E:E :E
'"

INCHES
MIN
MAX

597
279
076
2794

0235
0110
0030
1100

660
305
086

0260
0120
0034

CASE 59-04
PLASTIC

0:

~

MllUMETERS
MIN
MAX

Umt

V
MECHANICAL CHARACTERISTICS
0320
0450
0750

Maximum Instantaneous Reverse
Current@ Rated de Voltage (1)

~

~

00

vF

(oF =0 1 AI
IIF = 1 OAI
IIF = 3 0 AI

(1) Pulse Test Pulse Width

~

IX>

0

L=3

(Surge applied at rated load

60 Hz, TL = 70 0 CI
Operatmg and Storage Junction
Temperature Range

-

0330
0550
0875

0340
0600
0900

0350
0550
0850

0350
0600
0900

CASE

10
10

10
10

10
10

10
10

300 /-lS, Duty Cycle;: 2 0%
(2) Lead Temperature reference IS cathode lead 1/32" from case
·Indlcates JEDEC Registered Data for 1 N5817~19
=

10
10

All external surfaces

corrosIOn-resistant and the terminal
leads are readily solder able

rnA

;R

Transfer molded plastic

FINISH.

POLARITY

.. ,

polanty band

MOUNTING POSITIONS
SOLDERING

3-47

Cathode indIcated by
Any
nooc 1116" from
case for ten seconds

•

1N5817, 1N5818, 1N5819, MBR115P, MBR120p, MBR130P, MBR140P

NOTE 1 - DETERMINING MAXIMUM RATINGS
Reverse power diSSipation and the pOSSlb,ht\l of thermal
runaway must be considered when operating this rectifier at

slope In the VICinity of 11SoC The data of Figures 1, 2. and 3 IS
based upon dc conditions. For use In common rectifier cirCUits,
Table 1 indicates suggested factors for an equivalent dc voltage
to use for conservative deSign, that IS

reverse voltages above 0.1 VRWM- Proper deratmg may be accom·
pllshed by use of equation (11

TA(max) = TJ(max) - ReJAPF(AV) - ReJAPR(AV)
where TAlmax) = Maximum allowable ambient temperature
T J(max)

(4)

VR(eqUlv) = V,n(PK) X F

(1)

The factor F IS denved by considering the properties of the vanous

= Maximum allowable Junction temperature

rectifier CirCUits and the reverse characteristics of Schottky diodes.

(125°C or the temperature at which thermal

EXAMPLE FlndTA(max) for lN5818 operated In a 12-volt

runaway occurs, whichever IS lowest)
PF(AV) = Average forward power diSSipation
PR(AV):: Average reverse power diSSipation
ROJA == Junctlon-ta-amblent thermal reSistance

dc supply USing a bridge CirCUit with capacitive filter such that

IDC = 0.4 A IIF(AV) = 05 A), I(FM)II(AV) = 10, Input Voltage
= 10 V(rms), ReJA ~ 80 0 CIW.
Step 1 Find VRlequlV). Read F = 0 65 from Table 1,
:,VRlequlv) = 11.41)(10)(0.65) =9.2 V.

Figures 1,2, and 3 permit easier use of equatIon (1) by takmg
reverse power diSSipation and thermal runaway Into consideration
The figures solve for a reference temperature as determined by

Step 2. Find TR from Figure 2 Read TR;:: 1090C
@ VR = 9.2 V and ROJA = 80 0 CIW
Step 3 Find PF(AV) from Figure 4 "Read PF IAV) = 0.5 W

equation (2)
(2)

TR = TJ(max) - ReJAPR(AV)

IIFM)

@ I(AV) =

Substituting equation (2) Into equation (1) Yields

(31

TAlmax) = TR - ReJAPF(AV)

10 and IFIAV) =0.5 A

Step 4. Find TAlmax) from equation (3)

T A(max) = 109 - (80) (0 5) = 6g0C.

Inspection of equations (2) and (3) reveals that TR IS the
ambient temperature at which thermal runaway occurs or where
TJ"" 12S o C, when forward power IS zero. The tranSition from one
boundary condition to the other IS eVident on the curves of

""Values given are for the 1N5818. Power IS slightly lower for the
lN5817 because of Its lower forward voltage, and higher for the
lN5819. Vanatlons Will be Similar for the MBR-preflx deVices,
usmg PF{AV) from FIgure 7.

Figures 1,2, and 3 as a difference m the rate of change of the

TABLE 1 - VALUES FOR FACTOR F
Full Wave,

CircUit

Half Wave
Load

Resistive

ReSistive

I

Capacitive

Resistive

I

Capacitive

Sine Wave

05

I

13

05

I

065

10

I

13

Square Wave

075

I

1.5

075

L

075

1.5

I

1.5

I Capacltlve*

. . Note that VRIPK)'<::::: 2 0 Vm(PKl

tUSI;! line to center tap voltage for V ln

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE
lN5817IMBRl15PIMBR120P

-

125

'-'

0

11 5

~

,...=>

~

~
,...
w
'-'

i'"

r-....

105

':7'-J
-<~ .......

,

80

" ,"""""" ."""

SO

""

,...

5
30

40
50
70
10
15
VR. DC REVERSE VOLTAGE IVOLTS)
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
lN58191MBR140P
125
40
r---;:
b
I::""'

~ 115 :-.::: :-.::::: t::::- :-.1- ~ / .
w

:--... r-.... r-.

~

,...=>

~

105

R,jA I'CIW) = 110
80

~
,...
w

'-'

~

,....r

95

60

V

X""-

I"
1"-.

""- ~

"""

85

75
40

V

r--...""'-...( ~
~~~

50

70

.......

,'r-...
',
"

.........

10
15
20
VR, DC REVERSE VOLTAGE IVOLTS)

t--. -..

'-

r-

~

ROjA('CIW) = liD

f-""~

t---"-.

vV

30

40

50

~

90

c

80

-

f- BOT)lEAOS

60
z
~ 50
l:j'
z 40

~

30

r.......
I'. ~

:i

20

30

40

....

30

~O

MAXIMUM

/""

~

l'-..

~

20

HEAT tNK,
EQUAL ~ENGTH

t;

r.......

"'"

VR. DC REVERSE VOLTAGE IVOLTS)
FIGURE 4 - STEAOY'STATE THERMAL RESISTANCE

c

r--..

15

10

70

~ 70

.......

"-

I'-.....

5

z

""-

./

r...................
r.......""- :'-... i""-

""

5

~

23

K ' ""- .'-... ['..
"'-...
"-. I'-..... 1""t'-.. r--.....,

80
60

5

}O

)0

I--~) ~...<

.........
.........

20

30
23

- -r----

5

)< " "

5

LO

5

-...>...."'-

)

R,jAI'CIW) - 110
5

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE
lN58181MBR130P
12 5

40 30 23

t--,

r-.. ~ ~ r--: r--...........
r-.. r-...: r-....

w

Full Wave,
Center Tapped*t

Bridge

/ ' /'"

V
f-"'"'

V

,/"

V
",...,...-

V

,/"

/

...- ~PICAL

/""....... ",...,...-

~

1=
...

~

3-48

10

0

1/8

114

3/8

liZ

5/8

L, LEAD LENGTH (INCHES)

3/4

7/8

1.0

1N5817, 1N5818, 1N5819, MBR115p, MBR120p, MBR130P, MBR140P
THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE

" TIME 1m,)
NOTE 2 - MOUNTING DATA
Data shown for thermal reSistance Junctlon-ta-amblent (R8JAI
for the mountings shown IS to be used as typical gUideline values
for prellmlnarv engmeerlng, or In case the tie pOint temperature

cannot be measured
FIGURE 6 - FORWARD POWER DISSIPATION
lN5817·19

i ::

r-- Sm, Wa" J. ..I..~
i---IIFM)

I ReslS~v,' Load)
5

=•

~

20 i---IIA~)----j

~~

10

o

07

~

a:w

Capacitive Loads

. / ~/
.b' . /

I'

10

/~ A

de=

20

SquareWave-

=

./#
h ~ ~ ./
/ . / '#"

Lead Length, L lin)

Mounting
Method

1/8

1/4

1

52

65

2

67

80

3

~-

/.

TJ ~ 125°C

I
I
I

1/2
72

87

I
I
I

3/4

ROJA

85

°C/W

100

°C/W
°C/W

50

Mountmg Method 1
P C Board With
1-1/2" X 1-1/2"
copper surface

05

03
co
« 02
~
>

~

TYPICAL VALUES FOR ROJA IN STILL AIR

/9
./

Mounting Method 3
P C Board With
1-1/2" X 1-1/2"
copper surface

1~ /

0
::; 0 07
005

:t

Mounting Method 2

04

02

06

OB

10

40

20

Board Ground

IFIAV), AVERAGE FORWARD CURRENT lAMP)

Plane

Vector Pin Mounting

NOTE 3 - THERMAL CIRCUIT MODEL
(For heat conduction through the leads)

FIGURE 7 - FORWARD POWER DISSIPATION
MBRl15p·140P

-

50

~

30

I(FM) = rr (ResistIVe Load)

~

20

IIAV)

~

10

S
ill
C
~

w

~w
co

ffi
:'.(

SmeWave

~

~
//

~V

Capa"',,, Load, \ 1
20

03

V

Square Wave

07
05

02

/. ~

1-0'

==

Use of the above model permits JunctIOn to lead thermal
resistance for any mounting configuration to be found For a given
total lead length, lowest values occur when one Side of the rectifier
15 brought as close as pOSSible to the heat Sink Terms In the model
Signify
TA = Ambient Temperature
TC = Case Temperature
TL = Lead Temperature
T J = Junction Temperature

de

./ V

/"/" v::;:;. ~ V

t/
TJ~

125°C

/. h

-:/"'h V

:;; 01
::; 007
~ 005
02

03

Res = Thermal
04 05
07
10
20
IFlAV), AVERAGE FORWARD CURRENT lAMP)

30

40

ReSistance, Heat Sink to Ambient
RO L :: Thermal ReSistance, Lead to Heat Sink
ROJ = Thermal ReSistance, Junction to Case
Po :: Power DISSipation

(SubSCripts A and K refer to anode and cathode Sides, respect/vely.) Values for thermal resistance components are
ROL:: 1000 C/Whn typically and 1200 C/Wltn maximum
ROJ = 3SoC/W typically and 460 C/W maximum

3-49

1N5817, 1N5818, 1N5819, MBR115P, MBR120P, MBR130P, MBR140P

FIGURE S - TYPICAL FORWARD VOLTAGE

0

v: V

0

7. 0

S. 0

FIGURE 9 - MAXIMUM NON-REPETITIVE SURGE CURRENT
30

V

0

hi
~

L

0

0

/

0
Surge Apphed at

~2S0e

~

ratej load fondtor

t-

~ !--

0

I Cycle

i'-r-.

0

/

3. 0

-..J

T~=:tf = 60 Hz

l-

t-- t--TC = loooe c:::

J\A
I--

f"""-. I"-..

30
10

20

30

SO

70

10

20

30

SO

70 100

NUMBER OF CYCLES
.7
S

I L

FIGURE 10 - TYPICAL REVERSE CURRENT

I I

3

30
2Ot--

II

2

1/

I

00S
003

~ +.,-- ~-

0
0
0

- ...- -- ----- -- - --1000C

~

""

0

00 7

75°C

Sr----o-- t7"
3
25°C
2

I

I

01

02

03
04
OS
06
07
OB
09
10
vF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

II

I-

~

00 S
003

o

40

-

-

~-

~

00211

-

TJ -12Soe

0

80

12

16

20

-

24

INS817/MBR115P 120P
INS818/MBRI30P
IN5819/MBRI40P
32
28
36 40

VR. REVERSE VOLTAGE (VOLTS)

-

FIGURE 11 - TYPICAL CAPACITANCE

200

f"""-. I" !>

10 0

ot0

NOTE 4 - HIGH FREQUENCY OPERATION

SlOce current flow

I NS8171MBRllSp·120P
INS818/M8RI30P
I'NSB19/MBRI40P £

0

a Schottky rectifier ,s the result of

parallel with a vanable capacitance (See Figure 11.1
RectificatIOn effiCiency measurements show that operation will
be satisfactory up to several megahertz For example, relative
waveform rectificatIOn effiCiency IS approximately 70 per cent at
20 MHz, e 9 , the ratio of de power to RMS power In the load IS
0.28 at thiS frequency. whereas perfect rectification would Yield
0.406 for Sine wave Inputs However, 10 contrast to ordinary
Junction diodes, the loss In waveform effICIency IS not Indicative
of power loss Lt IS simply a result of reverse current flow through
the diode capactlance, which lowers the de output voltage

'"

i".. I.......

TJ ~ 2SdC
f = I 0 MHz

I'.

0

""-"'"

"

I0

04060810

In

majority carner conductIOn, It IS not subject to )ucntlOn diode
forward and reverse recovery tranSIents due to minority carner
Injection and stored charge Satisfactory CircUIt analysIs work
may be performed by uSIng a model consisting of an Ideal diode In

20
40 60 80 10
VR. REVERSE VOLTAGE (VOLTS)

20

40

(For 50 V and 60 V. see MBR150. 160 Data Sheet)

3-50

lN5820 MBR320P
lN5821 MBR330P.
lN5822 MBR340P

MOTOROLA

_ SEMICONDUCTOR
TECHNICAL DATA

,Designers Data Sheet
SCHOTTKY BARRIER
RECTIFIERS

AXIAL LEAD RECTIFIERS
· .. emploYing the Schottky Barner principle In a large area metal-to·sillcon

power diode. State-of-the-art geometry features epitaxial construction with

3.0 AMPERES
20, 30, 40 VOLTS

oXide paSSivation and metal overlap contact. Ideally sUited for use as rectifiers
In

low-voltage, high-frequency Inverters, free wheeling diodes, and polarity

protection diodes.
•

•

•

Extremely Low vF
Low Power Loss/High Efficiency

Low Stored Charge, Majority

Carrier Conduction

Designer's Data for Worst-Case ConditIons
The Designers Data sheets permit the design of most Circuits entirely from the Information presented Limit curves-representing boundanes on device characteristics-are given
to facIlitate worst-case design
"MAXIMUM RATINGS
RatlOg

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Btocklng Voltage

Non-Repetitive Peak Reverse Voltage

lN5820
lN5821
lN5822
MBR320P MBR330P MBR340P

VRRM
VRWM
VR

20

30

40

Umt
V

VRSM

24

36

48

V

14

21

28

Symbol

.

RMS Reverse Voltage
Average Rectified Forward Current (21
VR(equlV) .;; 0 2 VRldc}, TL = 95°C
IROJA = 28 o C/W, P C 80ard
Mounting, see Note 2)

VR(RMS}

Ambient Temperature
Rated VR(dc}, PF(AV} = 0
ROJA = 28°C/W
Non-Repetitive Peak Surge Current
ISurge applied at rated load condltlons, half wave, single phase 60 Hz,
TL = 75°C)
Operating and Storage Junction
Temperature Range (Reverse
Voltage applied)

TA

90

IFSM

~80

Peak Operating Junction Temperature
(Forward Current Applied)

10

30

85

.

--W- D

V
A

80

r~

°c

(for one cyclel_____.

A

-65to+125 ______

Uc

TJ, Tstg

TJ(pk}

.

.

150

I
I

CharacteristiC

I Thermal Resistance, Junction to Ambient
"ELECTRICAL CHARACTERISTICS (TL

MaXimum Instantaneous
Reverse Current @ Rated
dc Voltage (1)
TL = 25°C
TL = 100°C

Symbol

STYlE 1
PIN 1 CATHODE
2 ANODE

LOz
~

NOTES
1 DIMENSIONING & TOLERANCING PER
ANSI Y145, 1982
2 CONTROLLING DIMENSION INCH

°c
DIM
A
B
0
K

"THERMAL CHARACTERISTICS (Note 2)

Characteristic
Maximum Instantaneous
Forward Voltage (1)
(IF = 1 0 Amp)
(IF = 3 0 Amp)
(IF = 9 4 Amp)

ejB

Symbol
ROJA

I
I

Max
28

I
I

Unit
°C/W

I
I

= 25°C unless otherwISe noted) (2)

lN5820

lN5821

lN5822

MBR .. -P

0370
0475
0850

0380
0500
0900

0390
0525
0.950

0400
0550
0950

VF

20
20

20
20

2.0
20

20
20

(1) Pulse Test Pulse Width = 300 }lS, Duty Cycle = 2 0%
(2) Lead Temperature reference IS cathode lead 1/32" from case
*Indlcates JEDEC Registered Data for 1 N5820-22

INCHES
MIN
MAX

940
483
122
2540

0370
0190
0048
1000

965
533
132

0380
0210
0052

CASE 267-03
PLASTIC

Unit
V

MECHANICAL CHARACTERISTICS

Transfer molded plastic

CASE
mA

;R

MILUMETERS
MAX
MIN

FINISH.

.. All external surfaces
corrOSion-reSistant and the terminal
leads are readily solderable

POLARITY

. Cathode Indicated by
polarity band

MOUNTING POSITIONS . . . . ..
SOLDERING.

3-51

. .. Any

. 2200 C 1/16" from case
for ten seconds

1 N5820, 1 N5821, 1 N5822, MBR320p, MBR330P, MBR340P
NOTE 1 - DETERMINING MAXIMUM RATINGS

Reverse power diSSipation and the possibllrty of thermal
runaway must be considered when operating this rectifier at
reverse voltages above 0.1 VRWM. Proper derating may be accomplished by use of equation (1 I.

slope In the VICinity of 115°C. The data of Figures 1. 2. and 3 IS
based upon dc conditions. For use In common rectifier circuits.
Table 1 IndIcates suggested factors for an equivalent de voltage
to use for conservative design. that IS:

TA(max) = TJ(max) - ROJAPF(AV) - ROJAPR(AV)
where T A(max) "" Maximum allowable ambient temperature
T J(max) = Maximum allowable Junction temperature

The factor F IS derived by considering the properties of the various
rectifier CirCUits and the reverse characteristics of Schottky diodes

(125°C or the temperature at which thermal
runaway occurs. whichever IS lowest)
PF(AVI == Average forward power diSSipation

EXAMPLE. Fmd TA(max) for lN5821 operated m a 12·volt
dc supply uSing a bridge Circuit With capacitIve ftlter such that
IDC = 2.0 A ()F(AV) = 1.0 A).
= 10 V(rms), ROJA = 40 0 CIW.

PR (A V I == Average reverse power diSSipatIon
ROJA "" Junctlon-to-amblent thermal resistance

equation (2).

=TJ(max)

(2)

- ROJAPR(AV)

I(FM)

@ I(AV) = 10 and IF(AV) = 1.0 A.

Substituting equation (2) Into equation (1) Yields'
TA(max)

=TR

= 10, Input Voltage

I(FM)iI(AV)

Step 1. Fmd VRlequlv). Read F = 0 65 from Table 1,
:. VR(equiv) = (1.41)(10)(0.65) = 9.2 V.
Step 2. Find TR from Figure 2. Read TR = 108°C
@ VR = 9.2 V and ROJA = 400 CIW.
Step 3. Find PF(AV) from Figure 6. **Read PF(AV) = 0.85 W

FIgures 1,2, and 3 permit easier use of equation (1) by taking

reverse power diSSipation and thermal runaway Into consideratIOn.
The figures solve for a reference temperature as determined by
TR

(4)

VR(equlv) = V(FM) X F

(1)

Step 4 Find TA(max) from equation (3).

(3)

- ROJAPF(AV)

TA(max)

InspectIon of equations (2) and (3) reveals that TA IS the
ambient temperature at whIch thermal runaway occurs or where
T J == 125 0 C. when forward power IS zero The tranSition from one
boundary condition to the other IS eVident on the curves of
Figures 1,2, and 3 as a difference In the rate of change of the

= 108 -

(0.85) (40)

= 74°C.

**Values gIVen are for the 1 N5821 Power IS slightly lower for the
1N5820 because of ItS lower forward voltage. and higher for the
1 N5822. Variations will be SImilar for the MBA-prefIx deVices.
USing PF(AV) from Figure 7.

TABLE 1 - VALUES FOR FACTOR F

Full Wave,
Bridge

CirCUit
HalfWavs

Load

Resistive

Resistive

I

Capacitive

Resistive

SlOe Wave

05

I

13

05

I

0.65

1.0

Square Wave

075

I

1.5

0.75

I

075

15

*Note that VR(PKI

~

I Capacitlve*

20

15

/
t::::-r-... c..... -..1""
~ --so
........
........ ........ ~
I-.......~ ~
........
~
~~
ROJA IOelW) - 70 ~
50

V

>'X

40~

5

"-

~I'

;<..

r-...

18

40
50
70
10
VR. REVERSE VOLTAGE (VOLTS)

30

10

"""- ,,-""
"""-""
""- , ,,,,,"""
""-

""
""

~"""-

5

75

15

~

5~ t5"

-=:::t- ~

t' t--..
........

.......

.........

/

ROJA IOelW) =70

i'"

X.

4C

""

...............

~

1:\
ew
u

~

75

70

>- V

"-

ROJA IOelW) = 7n4=;
50/

I><

40/
5
28/
5

40

50

15

80

....................~ -.........:::<--.

70

:--........."

-......x

"" :-..,.....

~

.........

1"-."""'" '-.""
,'-."" "-

<'" ,,'" "'-'"

""""- "'"""- ""-'" """-

'"

15

10

10

t'-.

30

FIGURE 4 - STEADY·STATE THERMAL RESISTANCE

0

MA~IMUM_ I ---- TYPICAL

I---.!....

5

~

"-

JI

"-

30

~

0
8

~

5

~ ........

'\.. "- i"-

20
VR, REVERSE VOLTAGE IVOLTS)
10

105

10

I\. I\.

50

-........:~

1/15,10+

..;; K:-A 1:-...<'10

or.
e-

10

"""" 1"'""" '"

;("
28

40

.....,

=>

15

r--.....'
," 1">-..
""-" ""- "'K""1 i"-..1'
50

/20

F:~Rt-':11 5

20

r-.. i'."< :") ~

'>.. i"r-...

5

15

VR, REVERSE VOLTAGE IVOLTS)

r--....~ ~

r....

13

I

5!§

w

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
lN58221MBR340P

12

Capacitive

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE
lN5821/MBR330P

12

-.. ....:::: -...::::: ~

5-

I
I

2 0 VIn(PK)- tUse Ime to center tap voltage for V IO "

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE
lN5820/MBR320P

12 5

5

Full Wave,
Conte' Tapped"1

0

""

5

......... V
_
........
f.-- ....
_
....
V

°v........
0

3-52

........

V

....
.... ....
~

Both Leads to Heat Stnk,_
Equal Length

0

1"\40

~

I
118

2/8

3/8
4/8
5/8
6/8
L,LEAO LENGTH IINCHES)

I
7/8

10

1N5820, 1N5821, 1N5822, MBR320p, MBR330P, MBR340P

FIGURE 5 - THERMAL RESPONSE
10

~PPk

Ppk

5~~
~tl---1

3r-

LEAD LENGTH, 114"

DUTY CYCLE, Ipl!)

PEAK POWER. Ppk, IS peak of an
TIME equivalent square power pulse

......
I 111111

i-"""

21- =
;t

30

~

Sine Wave

'/(AVI
fMl

~ 20

=

17

Q

~

.I
I
Capacitive
Loads

10

~w
'"
~>

7
5
3

«
:;
«

~

V-.

2

./

./ ./'

(ReSistive Load)

~ r'.
'>'
./ '/./

V../.: ~ ~

50
110

squarekave

20·

TJ> 125 DC

rh

~

J 1

'l: 0 V

0 I01

de

20
30
05 07 10
02 03
IF(AVI. AVERAGE fORWARD CURRENT (AMPI

50

70

10

FIGURE 7 - FORWARD POWER DISSIPATION
MBR320P·340P

~

~

10

70

~

50

i=

30

<:>

;t
~
Q

t----

20

SmeWave \ '(FM). r.(Aeslstlve Load)
(I(AVI

eapaclt"; Loads ll(fMI , 5'
/I(AVI

I7/. W~-;.t

~

w

10

~w

07

'"

05

~
>

«

Square Wave

TL~TJ(max)- 125 DC

/V~ ~ /

01

~

/~~

:; 02

E

":.::: 'hi /

~O I !Ol_ V/ ~A
I
'7 '/.

Use of the above model permits Junction to lead thermal
resistance for any mounting configuration to be found For a gIVen
total lead length, lowest values occur when one SIde of the rectifier
IS brought as close as possible to the heat Sink Terms In the model
signify
TA = Ambient Temperature
TC = Case Temperature
TL = Lead Temperature
TJ = Junction Temperature
ROS = Thermal ReSistance, Heat Smk to Ambient
ROl = Thermal ReSistance, Lead to Heat Sink
ROJ = Thermal ReSistance, Junction to Case
Po = Total Power Dlss.patlon = PF + PR
PF = Forward Power DISSipatIon
PR = Reverse Power DIssipation
(SubSCripts (AI and (Kl refer to anode and cathode Sides, respectively ) Values for thermal resIstance components are
RO L= 42 o C/W/ln typically and 4S o C/W/1n maximum
ROJ = 1OOC/W tYPically and 16o C/W maxImum
The maximum lead temperature may be found as follows

02

01

·1
05 07

03

10

1
20

30

50 70

10
Mountmg Method 1

IfIAV). AVERAGE fORWARD CURRENT (AMP)

P C Board

where

available copper surface
IssmaU

NOTE 2 - MOUNTING DATA

Data shown for thermal resistance Junctlon·to·amblent (ROJAI
for the mountings shown IS to be used as typical gUideline values
for preliminary engineering, or In case the tIe pOint temperature
cannot be measured.

I

I/B
50
58

Lead Lensth, L IInl
112
1/"
51
53
61
59
28

3/"
55
63

r-r
~ JII~
L~1/2"

Mounting Method 2

~:~~~~:I~·~.~;

TYPICAL VALUES FOR RaJA IN STILL AIR

Mounting
Method

Mounting Method 3
P C Board With
With 2-1/2" X 2-1/2"
copper surface

RaJA

~

°elW
°elW
°elW

3-53

Board Ground Plane

1N5820, 1N5821, 1N5822, MBR320P, MBR330p, MBR340P

FIGURE 9 - MAXIMUM NON·REPETITIVE SURGE CURRENT
100

FIGURE 8 - TYPICAL FORWARO VOLTAGE

50

/

30
10

t--- I--TJ = 100°C

- -

~

~

,

0

0

I

0

$

~
a

V'/

r--..

50

w

>
<

;;

30

~
~

<

"'"
~

f-

\

20

10

f-- ~150C

10

20

30

50

70 100

FIGURE 10 - TYPICAL REVERSE CURRENT

50

11

TJ - 125°C

I

10

I

--

100°C

I

- - --- - - 1--

,......

- ---

-

15°C

5
0000101030405060108091011121314
vF.INSTANTANEOUS FORWARO VOLTAGE {VOLTS)

-

...

005

00 I

--

FIGURE 11 - TYPICAL CAPACITANCE

500

I I

.....

r-.....

~ 300
~ 200
TJ = 25°C
f = 10 MHz

" f'

lN5821/MBR330P

",; 100

r>-

"'" "

V

01

10

f' i'-

5 0 7 0 10
VR. REVERSE VOL~AGE {VOLTS)
20

30

20

12
16
20
28
24
VR. REVERSE VOLTAGE {VOLTS)

32

36

40

NOTE 4 - HIGH FREQUENCY OPERATION
10

a Schottky rectifier

IS

the result of

majority carner conduction, It IS not slJbJect to Junction diode
forward and reverse recovery tranSients due to minority carner
Injection and stored charge Satisfactory Circuit analysIs work
may be performed by uSing a model consisting of an Ideal diode
10 parallel with a variable capacitance (See Figure 11 .)

lN5~221~BR34f~

70

80

Since current flow

r--.....

w

-

I

1N5~20/MBR320P

.....

40

-

I N5820/MBR320P
_ _ lN5821/MBR330P
- IN58121MBR340P

,..-

o

~-

--- --

-- - --

I ==25 0C

002

05

.!.
IlrdCot'tlrs

NUMBER OF CYCLES

1

~

i'r-.

.ID!..~ I,!.

50 10

30

001

;::

.J

surgi A~r,el atlRj'et

20

U

........

r\ r\

I.!,

\

........

100

5

1

~

r\

~~ICV'I'

20

10

7

3

TL = 15°C
f=60Hz

~

1\

I

........

10

t--

/

,#

!.
'{

0

V

~

/

30

3-54

lN5823, lN5824
lN5825
MBR5825,H,Hl

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Designers Data Sheet
SCHOTTKY BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIERS

· . emploYing the Schottky Barner principle In a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial
construction with oXide passivatIOn and metal overlap contact.
Ideally sUited for use as rectifiers In low-voltage. high-frequency
Inverters. free-wheeling diodes. and polarity-protection diodes .

•

•

•

Extremely Low vF

•

Low Stored Charge. Majority
Carner Conduction
Low Power Loss/ High Efficiency

5 AMPERE

20.30.40 VOLTS

"H" & "Hl" Version Available
Similar to TX
Processing

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most Circuits entirely from
the mformatlon presented Limit curves - representmg boundaries on
device characteristics - are given to faCIlitate "worst case" design

*MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage

Symbol

1N5823

1N5824

1N5825
MBR5825H. H1

Unit

VRRM
VRWM
VR

20

30

40

Volts

Non-Repetitive Peak Reverse Voltage

VRSM

24

36

48

Volts

RMS Reverse Voltage

VR(RMS)

14

21

28

Volts

Average Rectified Forward Current

10

...

VR(eqUlv)"; 0 2 VR (dc). TC' 75°C
VR(eqUlv)"; 0 2 VR (de). TL' 80°C
ROJA ' 25°C/W. P C Board
Mounting. See Note 3)
Ambient Temperature

.•

15
50

°C

TA
65

Rated VR (de). PF(AV)' 0
ROJA' 25°C/W
Non-Repetltlvel Peak Surge Current
(Surge apphed at rated load conditions.

IFSM

.

TJ. Tstg

.

halfwave. single phase 60 Hz)
Operating and Storage Junctron Temperature Range

(Reverse Voltage applied)
Peak Operatmg Junction Temperature

Amp

60

55

500 (for 1 cycle)

-65 to +125

.
.

150

TJ(pk)

Amp

°C
°C

(Forward Current Applied)
*THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

Max

Unit

30

°C/W

"ELECTRICAL CHARACTERISTICS (TC' 25°C unless otherWise noted)

Characteristic
Maximum Instantaneous Forward Voltage (1)

Symbol

1N5825
MBR5B25H. H1

Unit

Volts
0330
0360
0.470

0340
0.370
0.490

0350
0.380
0520

10
100

10
125

10
150

rnA

iR

@ rated dc Voltage
TC' 25°C
TC'100°C

(1) Pulse Test Pulse Width' 300 "s. Duty Cycle' 2.0%

1N5824

vF

\IF' 3 o Arnp)
\IF' 50Amp)
\IF' 157 Amp)
Maximum Instantaneous Reverse Current

1N5823

*Indlcates JEDEC Registered Data for 1N5823-1 N5825

3-55

•

1N5823, 1N5824, 1N5825, MBR5825H, H1

NOTE 1. OETERMINING MAXIMUM RATINGS
3 as a difference In the rate of change of the slope In the VICinity
of 1150 C The data of Figures 1, 2 and 3 IS based upon dc conditions For use In common rectifier CirCUitS. Table I indicates SUggested factors for an eqUivalent dc voltage to use for conservative
deSign. I e

Reverse power diSSipation and the POSSibility of thermal runaway
must be considered when operating this rectifier at reverse voltages

above 0' VRWM Proper derating may be accomplished by use
of equatIon (11
TA(ma.l" TJ(ma.l- ROJA PF(AVI- ROJA PR(AVI
(11
where

VR(equlv) " VIN(PKI • F
T Almax)

TJlmax)

Maximum allowable amb,ent temperature

=:

(41

The Factor F IS derived by consld;mng the properties of the vanous
rectifier Circuits and the reverse characteristics of Schottky diodes

= Maxlmumallowable Junction temperature

(12SoC or the temperature at which ther·

E.ample

mal runaway occurs, whichever IS lowestl.

FInd TA(ma.1 for 1N5825 operated

In

a 12·Volt de

=

supply uSing a bridge CirCUIt With capacitIve fdter such that 'DC

PFIAV) = Average forward power diSSipation

10 A (IF(AVI " 5 AI. I(PKliI(AVI "10, Input Voltage" 10
V(rmsl, ROJA" 100 C/W

PAIAVI = Average reverse power diSSipation

Step 1

R8JA = Junctlon-to-amblent thermal reSistance

Figures 1, 2 and 3 permit easier use of equation 111 by taking
reverse power diSSipation and thermal runaway Into consideration

Step 2

The figures solve for a reference temperature as determined by
equation (2)
(21
TR = T J(ma.1 - ROJA PR(AVI

Step 3

Substituting equation (21 Into equation 111 Yields

TA(ma.1 " TR - ROJA PF(AVI

(31

Step 4

Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature at which thermal runaway occurs or where T J = 125°C,
when forward power IS zero. The tranSition from one boundary
condition to the other IS eVident on the curves of Figures 1, 2 and

Fond VR(equlvl

Read F = OS5from Table

I:.

VR(equlvl" (1.411(101(0651"92 V
Fond TR from F,gure 3. Read TR " 1130C@ VR "
9.2 V & ROJA" 100 C/W.
Fond PF(AVI from F,gure 4 "Read PF(AVI = 55 W
@1(PKI. 10 & IHAVI" 5 A
I(AVI
FondTA(ma.lfromequatlon(31 TA(ma.l" 113·(101
(5.51 = 58°C.

·"Value given are for the 1N5825. Power IS slightly lower for the
other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F
HalfWa.e

CirCUit

Load

ReSistive

Sine Wave
Square Wave

05
0.75

ReSistIVe

I

Capacitive

ResIStive

I

13
1.5

05

I

I

065
075

10
15

I

075

I

.....

..
i=
~

...ill
~

~

~t""'i::: ~.E30
r--...... r-.. I"'-- ::--... r--... .......
......... .......... .........
.........
........
....... :--- :--......... r--... I '
.......
~ C""-

-

~~5~4iJ

r-..

,

~

105
95
85

.......

ROJA IOCIW) = 70 ~
60
50
40

r-.....

KD

./r-..... IX" r-..o('t'l

75

L

30 25 /
l'"
20 11510 ....

~ 65

.l

55

20

30

I

~ 1!5

....

,
:C-.r....
"'..x." ........ ,
",
, .............'",~""
:-......
.........

........
..........
".,......,.

E
70 s 0 -:--!-125~3E~~~~~~~~~~~;:~~~~~==~
illls """';::::

...

..

..
~" 105

-

~ 105

ffi

!

...

95

~ 85

..~

~

:::--;:; t-..;;
t---..

75

~

~ t---,:i"

RSJA (OCIWI =70
60
50
40

~ 65
55
4.0

r-..:"-... !'.... .....

......... r-.. . . . . . ,

40

30

i".........................., . . . . .

50

,40 30

I........ ,......

........ "I'-..

l"......

.........

............

~......... ~.........

.........."-2< i:'~. 1<'-.... f"..
~.

~ I'..

./"2'
K' IX
/'
:'0 1'..<".I '
.3~2520"" ~ ~...... l:'-.: -"'~

.,

10
15
20
VR. REVERSE VOLTAGE (VOLTSI

50

70

....... 1'

..........

r-.:

~ ~
30

REV~RSE

10
15
VOLTAGE (VOLTSI

20

FIGURE 4 - FORWARD POWER DISSIPATION

l'<:'i('"

.......
7.0

~D<..

~~~K

................. ............

-"""",:r-..

40

20

,7~~
" ", .

15 10'"

50

:---

VR,

......... .........

....................

r---

........ ~.......

........

15

~~
Il":
~

~
..................

r-

~~

~r--~

........
........
................
................ ........

J

:c- r--C"-................

~

.7'...X

40
50
70
10
VR. REVERSE VOLTAGE (VOLTSI

~~-~
::::--;;
i:""-

13
15

I

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE -IN5824

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE
1N5825 AND MBR5825H, H1

lZ5

*t

CapacitIVe

t Use hne to center tap voltage for V In

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - lN5823
125

~ r--;;

Center Tapped

Capacltive*

"Note that VR(PKI""2 V,n(PKI

~115

Full Wa.e,

Full Wave. Bridge

I

40

3-56

30

1N5823, 1 N5824, 1 N5825, MBR5825H, H1

THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE
w

u

z

~
~

03ri-HHH---H-t--+-~+-rt++r--t-1---r-t-t+-HHH-~r-+--j~~~+++t~+-4-~r-+-~-HHH--~-t--+-~i

~B 02ri~HH---r-t--+-~i-rt++r--t-1---r-t-ti-HHHb~~t~--+-~i-rt+++-~~JC~I~t)_·_R~'J~C-'Tr_I')ri-HHH--~-t--+-~i

..:w
"'~

~i 0'~1~8~!II~~~ml~~

J1:JL

ffi

~

003

ATJC=Ppk

DUTY CYCLE, D " 'pill
PEAK POWER, Ppk, IS peak 01 an
equivalent square power pulse

TIME

RI1JcIOt(1-0J

r(t]tlpJtdtpl-dfJl!

where

Il TJC ':" the Increase

I-

~

-

'-11-1

~ 005

en

Ppk

Pk

'p

:: ~ 007

In junctIOn

temperature above the case temperature

rltl • "ormal".d "Iu. of fra",,,",.herma' re,,,"",, a",m.,', from F'gure 5,"

002

dl1 + tpl = normallzeci value of tranSient thermal reSistance al t,me, t1 + tp

OO~~5~~~I~O--~2~0~~~7570~~I~O--~~2~O--~~5~0~~~IO=0--~2~OO~~~~50~0~~170~k~~2~O~k--~~570~k---I~O~k--~2=O~k--~~5~Ok
" TIME 1m,)

NOTE 2 - FINDING JUNCTION TEMPERATURE

RJL
Pk

NOTE 3 - MOUNTING DATA
Data shown for thermal resistance /unctlon-to-amblent
1ROJA) for the mountings shown IS to be used as tYPical
gUldf'llne values for prellmlnarv englneerang

Ppk

Ip _

TIME

1---,.-1

DUTY CYCLE 0 ~ Ip 11
PEAK POWER Ppk .s peak ill an
eQ(ltvalem SQU3repower pulse

TYPICAL VALUES FOR ROJA IN STILL AIR
LEAD LENGTH, L I.NI
MOUNTING

To delermme maJr,'mum JunctIOn temperature of Ille diode In a !l,ven Sllualmn
the follOWing procedure ,s'ecommended

The tempelalUl1! 01 the case should be measUied uSing a tllermo~Quple placed
an tile case at the temperature reterence pOint (~ee Note 3) TIlelhelmal mass
connected to the C35f IS rlormally large ~llOugh so Ihalll 1',1111 riot slqrllhCdlllly
respond to heal surges generated In thedlodeaSd rewlt 01 pulsed 0 peralmnunce
steady Slaletondllmnsareachleved USlnglhemeasuredvahleol Te IhelunCliOlJ
lemperaturemay bedeterffi'ned by
TJ ~ Te·

rill

+-

tpl

+-

rUpl

,,'

t

t

°C/W

2

65

70

°C/W
°C/W

25

MOUNTING METHOD 3
2112":

2c1~~,a~~:;;;~ >Urface

7
g:
~

r!qll

Ipl ' normahzed vdlue 01 "dlHrent !hermal resl~lance at

ROJA

60

~

where
rill

1

55

MOUNTING METHOD 1

TJC

rill = normalized value 01 tranSlentlllermalreslslanceattrme

1/4

1

3

where TJC ISlherncleaseU'lunctlontemperalurfdbovetll"caSflemper.l\ure
It may be delfrmlned bV

ATJC ~ Ppk ROJC (0 til· OJ

METHOD

IromF,gure

time I,' I"

Board Ground
Plane

Vector pin mounting

-=-

FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL
ROCA
70 0 C/W
ROLA
A (;I SA

40 0 C/W/IN

ROLK

ROSK

40 0 C/WIIN

Use of the above model permits calculation of average
Junction temperature for any mounting Situation Lowest
values of thermal resistance Will occur when the cathode
lead IS brought as close as pOSSible to a heat dlSslpato-:, as
heat conduction through the anode lead IS small Terms
In the model are defined as follows

• Case temperature reference
IS at cathode and

TEMPERATURES
TA
T AA
T AK
T LA
TLK
TJ

= Ambient

= Anode Heat Sink Ambient
== Cathode Heat Smk Ambient
= Anode Lead
"" Cathode Lead
== Junction

THERMAL RESISTANCES
ReCA ""
AeSA ::::;
ReSK ""
R6LA""

Case to Ambient
Anode Lead Heat Sink to Ambient
Cathode Lead Heat Sink to Ambient
Anode Lead
RO LK:= Cathode Lead
ReCL = Case to Cathode Lead
ROJC :::: Junction to Case
R6JA
Junction to Anode Lead (S bend)

=

3-57

1N5823, 1N5824, 1N5825, MBR5825H, H1

FIGURE 7 - TYPICAL FORWARD VOLTAGE

FIGURE 8 - MAXIMUM SURGE CAPABILITY

200

1000
...............

TC • 250 C........

V

10 0
70

1/

50

V

V I-"

~

100°C

Pnor to surge, the recllfler IS operated such
that TJ '" lOoDe. VRRM may be applied be
tween each cycle of surge
f· 60 Hz

JOO
500

-.............

B

i""'-- .......

w

>
<: 300

""
""><

1/

.....

~

J.V

30

"'"5

:to

1/

r-.....

200

""~

...........

j

II

100
10

50

20

10

b:"

..... 1'

20

50

100

NUMBER Of CYCLES
0

I

FIGURE 9 - TYPICAL REVERSE CURRENT

I

200

~~

50

;;
E.

/'

I

20
10

....

~

75°C

r--

25 DC

-

""",-

w 50

7

-=

~

'"w
~

5

20

.

75
40

""
"
'"
~

50

70

10

~

,

, ""'-

40

50

70

'\. I'\. \.
1"'\
"\\
'2~ "\.
30"\..
'\. \.
"'\ :'\ \.
""
ID'
,,15\

10

'"

'"
""'''i""\..

15

20

30

FIGURE 4 - FORWARD POWER DISSIPATION

~

I'\.,. :'-..

\.

2~

"'\.

"
30
R.JA {Ocml = 50' ' "

85

I-

~

"'\. I~ \. \ \

..."'-l..5

I'-.

85

r--..

Jo-

K'lX.
~ "'\. \.

}~ii

-......

w

'"

t-...

~......

~ ~K
50
~ r-..,........... ..><.·"1...... 70

...........

al
I-

for Vin.

VR. REVERSE VOLTAGE (VOLTSI

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - 1N5828
125
25

~

i"-

R.JA {OCml =50'

VR. REVERSE VOLTAGE {VOL TSI

u

voltag~

"

1"--. '\.:'-..

'"

1.3
1.5

I

r-. r- r-.;r-- ::::-........--.....: ~50

............ ...........
........

"\.

3iJ'. 21 "\.. "\.

70

I

1.0
1.5

~'\

'\!,O

,~

~

I

I Capacitive

Resistive

0.65
0.75

-,-

~KO

,

1 Capacitive

I

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5827
125
25
35

~L50

~

"

Center Tapped· t

*tUse line to center tap

·Note that VRIPKI ""2 VlnlPKI
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5826
125
25

r.::::: :- t:-....: ::::::: ::--:
r--... ....... r-............ ........ ........ r-..

Full Wave.

Full Wave, Bridge

Half Wave

15

\

'\ \ \ \
"'\ '\ 1"'\ \. \

'''\. r\.

20

20~__~~~~~~+-~

\.
30

°0~~=2~0--~4~0--~6.0----8~O----ILO----IL2----IL4--~16

40

VR. REVERSE VOLTAGE {VOLTSI

IF{AV). AVERAGE FORWARD CURRENT {AMPI

·No external heat SInk.

3-61

1N5826, 1N5827, 1N5828

FIGURE 6 - MAXIMUM SURGE CAPABILITY

FIGURE 5 - TYPICAL FORWARD VOL TAGE

v ....

200
TC = 25 0 C/

V

t,.....- ~

100
0

1/

a

1000

::;;;;

~
a

100DC

"'-....

......... i"-....

>

;;:
""

300

""'"
""

200

....
~

r-..

~

100
10

50

20

a

10

,

............

20

50

100

NUMBER OF CYCLES

a

I

FIGURE 7 - CURRENT DERATING

I

a

6

.....

0

SQUARE
WAVE

f"":::~

t--

a

~ ~ESISTly

SINE WAVE

/
~

r--......

~axIOC=234A)

"

10 ......

5

SINEWAVt;Kt- f....
CAPACITIVE LOADS I(AV) - 20

3

0

II

CURVES APPLY
04
02
06
08
10
12
VF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

0
75

14

LOA,_

OC CONTINUOUS

r- r- ?o

0

7

2

........

~

/,

a

500

w

1/

a

thatTJ = lOQoe, VRRM may be apphed between each cvcle of surge
f= 60 Hz

>--

/'
'/

a

Prior to surge, the rectifier IS operated such

'"'"

:5- 700

~

\

1" ....
"

r-....... ~ l\
...........
~~

WH~N RE~ERSE POWER IS NEGLIGIBLE
95

85

105
TC, CASE TEMPERATURE (DC)

~

115

125

FIGURE 8 - THERMAL RESPONSE
0
7

5
3

-:Ft:J1
i-'"'

2

........

.....

1
7

OUTY CYCLE, D = 'pltl

Pk

Ip

1--'1---'

5

Z'JC(.) = R'JC • rlt)

PEAK POWER, Ppk. 15 peak of an

TIME

equIValent square power pulse

-

6 TJC = Ppk • RBJC [0 + (1- 0)' r(lj + 'p) + r('p)-r(lj))

where
l::. TJC = the Increase In Junction temperature above the case temperature

2
0.0 1
005

r(t) =

01

02

05

10

20

50

10

20

I, TIME(md

3-62

normalized value of transient thermal resistance at time, t, from Figure 8, I e
r(tl + tpl :: normalized value of tranSient thermal resistance at time, 11 + tp
50

100

200

500

=
::

:

10k

20k

-

50k

1N5826, 1N5827, 1N5828

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 10 - TYPICAL REVERSE CURRENT

50

§

30 -VR

N

::;

20

0

~

10

I-

07

..

~

~

/'

=VRWM
./

./

"

03

~

oc

02

.§.

j

~

01

w

B

......
..... ,.....

.."

w

"

TJ"

- -- --

moc

100
;;0 50

as

B
w

200

~

20
10

- ...-- 1===
r--- lOoDe
.....75 0C

50

.....

oc
w

~

'"

~ 007

20

r--10

~50C

V

-----

.- - --

05
02

45

65
85
TC. CASE TEMPERATURE (OC)

105

o

125

-- -

40

80

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)

lN5826 20V
IN5817 - 30 V
lN5828 40 V

32

36

40

FIGURE 11 - CAPACITANCE
NOTE 2 - HIGH FREQUENCY OPERATION
Since current flow In a Schottky rectlfmr IS the result of majority
carner conduction, It IS not subject to Junction diode forward and
reverse recovery tranSients due to minority carner injection and
stored charge Satisfactory circuit analysIs work may be performed
by usmg a model consisting of an Ideal diode In parallel with a
vanable capacitance (See Figure 11)
Rectification effiCiency measurements show that operation will

be satisfactory up to several megahertz

For example, relative

waveform rectification effiCiency IS approximately 70 per cent at
20 MHz, e 9 • the ratio of dc power to RMS power In the load IS
028 at thiS frequency, whereas perfect rectification would Yield
0406 for sine wave Inputs
However, In contrast to ordmary
Junction diodes, the loss In waveform effiCiency IS not indIcative of
power loss, It IS sImply a result of reverse current flow through the
diode capaCitance, which lowers the dc output voltage
VR. REVERSE VOLTAGE (VOLTS)

3-63

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

1N5829
1N5830
1N5831
MBR5831H,
H1

Designer's Data Sheet

Hot Carrier Power Rectifiers
• •• employing the Schottky Barrier principle in a large area metal-to-silicon power
diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage,
high-frequency inverters, free wheeling diodes, and polarity protection diodes.
• Extremely Low vF
• Low Power Loss/High
• Low Stored Charge, Majority
Efficiency
Carrier Conduction
• High Surge Capacity
• High Reliability Processing Similar to JAN,JTX Processing Available (See Note 3)

25 AMPERE

20, 3D, 40 VOLTS

MAXIMUM RATINGS
Rating

Symbol

"1N5829

"1N5830

"1N5831
MBR5831H,H1

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

20

30

40

Volts

24

36

48

Nonrepetitive Peak Reverse Voltage

VRSM

Average Rectified Forward Current
VR(equiv) ,.; 0.2 VR(dc),
TC = 85'C

10

Ambient Temperature
Rated VR(dc), PF(AV)
R8JA = 3.5'CfW

TA

=

Volts

25

90

Amps

85

CASE 56-03
DO-203AA
METAL

·C

80

0,
IFSM

800 (for 1 cycle)

Amps

TJ, Tstg

-65 to +125

·C

TJ(pk)

150

·C

Nonrepetitive Peak Surge Current
(surge applied at rated load
conditions, halfwave, single
phase, 60 Hz)
Operating and Storage Junction
Temperature Range
(Reverse voltage applied)
Peak Operating Junction
Temperature
(Foward Current Applied)

MECHANICAL
CHARACTERISTICS
CASE: Welded, hermetically
sealed
FINISH: All external surfaces
corrosion resistant and

terminal leads are readily
solderable.
POLARITY: Cathode to Case
MOUNTING PosmON: Any
MOUNTING TORQUE:
15 in-Ib max

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal Resistance, Junction to Case

1.75

ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted)
Characteristic

Symbol

Maximum Instantaneous Forward Voltage(l)
(iF = 10 Amps)
(iF = 25 Amps)
(iF = 78.5 Amps)

vF

Maximum Instantaneous Reverse Current @ Rated dc
Voltage(l) (TC = 100'C)

iR

"1N5829

"1N5830

"1N5831
MBR5831H,H1

0.360
0.440
0.720

0.370
0.460
0.770

0.380
0.480
0.820

20
150

20
150

20
150

Unit
Volts

mA

"Indicates JEDEC Registered Dala.
(1) Pulse Test: Pulse Width = 300,.., Duty Cycle = 2%.
Daslgner'. Dele for "Worst Ca.... Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented.
Limit curves -

representing boundaries on device characteristics - are given to facilitate "worst case" design.

3-64

1 N5829, 1 N5830, 1N583i, MBR5831 H, Hi

NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal
runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM' Proper derating
may be accomplished by use of equation (1):
TA(max) = TJ(max) - ROJA PF(AV) - RIIJA PR(AV) (1)
where
Maximum allowable ambient
TA(max)
temperature
Maximum allowable junction
TJ(max)
temperature (125°C or the temperature
at which thermal runaway occurs,
whichever is lowest).
Average forward power dissipation
PF(AV)
Average reverse power dissipation
PR(AV)
Junction-to-ambient thermal resistance
RIIJC

The data of Figures 1,2 and 3 is based upon dc conditions.
For use in common rectifier circuits, Table 1 indicates
suggested factors for an equivalent dc voltage to use for
conservatJve design; i.e.:
VR(equiv) = Vin(PK) x F

(4)

The Factor F is derived by considering the properties of
the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find TA(max) for 1N5831 operated in a 12-Volt
dc supply using a bridge circuit with capacitive filter such
that IDC = 16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input
Voltage = 10 V(rms), RIIJA = 5°CIW.
Step 1: Find VR(equiv)' Read F = 0.65 from Table 1
VR(equiv) = (1.41)(10)(0.65) = 9.18 V
Step 2: Find TR from Figure 3. Read TR = 113°C @ VR
= 9.18 & ROJA = 5°CIW
Step 3: Find PF(AV) from Figure 4.** Read PF(AV) = 12.8

Figures 1, 2 and 3 permit easier use of equation (1) by
taking reverse power dissipation and thermal runaway
into consideration. The figures solve for a reference temperature as determined by equation (2):
TR = TJ(max) - ROJA PR(AV)
(2)
Substituting equation (2) into equation 91) yields:

W @.!.J..EKL = 20 & IF(AV) = 8 A
I(AV)
Step 4: Find T A(max) from equation (3). TA(max) = 113(5) (12.8) = 49°C

TA(max) = TR - RIIJA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR is the
ambient temperature at which thermal runaway occurs
or where TJ = 125°C, when forward power is zero. The
transition from one boundary condition to the other is
evident on the curves of Figures 1, 2 and 3 as a difference
in the rate of change of the slope in the vicinity of 115°C.

**Value given are for the 1N5828. Power is slightly lower
for the other units because of their lower forward
voltage.

Table 1. Values for Factor F
Half Wave

Circuit
Load

Resistive

Capacitivet

Resistive

Capacitive

Resistive

Sine Wave

0.5

1.3

0.5

0.65

1

1.3

Square Wave

0.75

1.5

0.75

0.75

1.5

1.5

tNote that VR(PK)

= 2 Vin(PK)
125

e 115 t-..

r-- r- r-: r::::::: t--. ....... .:::::: t-5::::-

r--....
J.
~ ~.75I'--r--...
I'-... ........
...... '""",:XS"-.. .""I'-.. I'-... ~ ........... "'- "

""'

5

~

5

75
2

"-

20'.

"-

5~

~

::::>

3Or......

r--..7
10

"

~
~

"\..

a:

a:

I'..

I'-."\.. "

ReJA (OCIWI =, 50ttt ""
5
7
10
VR, REVERSE VOLTAGE (VOLTS I

15

-..:

a:

,,"'- ,,,'"
, !'.-;s. ,,"
"
r-- " "
"''' ""

i'-.. ~ 0-

.........

-

-

:-:::::-r-- r::.: ~
1.75
r--....... ........ ...... ' ..............
! /" "~
~
~ ~
5
~ 1'..'\.\

TC. CASE TEMPERATURE lOCI

Figure 5. Typical Forward Voltage

I

'~

SINE WAVE
IL
CAPACITIVE ~ = 20 10
41-LOADS I(AV)

o. 5

o. 3

.'"

""

~
125

1N5829, 1N5830, 1N5831, MBR5831H, H1

1
0.70
0.50

~ ~ 0.30

~~

i!= i 1! 0.20
..... 0
i'5 ~0.10
~ ~ 0.07
~ ~ 0.05
:g ~ 0.03

I----:

= R8JC· rill



",

-

125'C
-I-

t-

./

a:

TJ

200
_ 100
«
oS 50

I III
02

0406

1

2

4 6

VR, REVERSE VOLTAGE IVOLTSI

Figure 11. Capacitance

3-67

10

20

40

1N5829, 1N5830, 1N5831, MBR5831H, H1

NOTE 2 - HIGH FREQUENCY OPERATION

wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicate of
power loss; it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output voltage.

Since current flow in a Schottky rectifier is the result
of majority carrier conduction, it is not subject to function
diode forward and reverse recovery transients due to
minority carrier injection and stored charge. Satisfactory
circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 11.)
Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine

NOTE 3 - HI-REL PROGRAM OPTIONS
The 1N5831 IS also available with two levels of extra
testing similar to "TX" screening and Including Group
A and Group 8 inspection programs. Both the
MBR5831H and MBR5831Hl go through 100% screenIng consisting of high temperature storage, temperature cycling. constant acceleration and hermetiC seal
testing prior to a sample being submitted to Group A

PRODUCTION PROCESS:
1. Raw Matenal

2. Factory Processing

100% PROCESS CONDITIONING
1.
2.
3.
4.

HIGH TEMPERATURE STORAGE
TEMPERATURE CYCLING
CONSTANT ACCELERATION
HERMATIC SEAL (FINE AND GROSSI

and 8 inspection. After completion of Group B inspection. the MBR5831H is available without additional

screening. MBR5831H1 devices are further processed
through a high temper.ture reverse bias IHTRBI and
forward burn-in. Consult factory for details.

100% POWER CONDITIONING
1.
2
3.
4.
5.

ELECTRICAL TEST
HTRB (160 HRS MIN.I
ELECTRICAL TEST (PDA ~ 101
DC FORWARD BURN-IN (24 HRS. MINI
ELECTRICAL TEST (PDA ~ 101

OUTLINE DIMENSIONS

= ~p
GAJ-l
LL ; ----!! .~--i
R

Q

.----'F=:;:~'-":iFci"'-")__H_

FJ

CASE 56-03
DO-203AA
METAL

r:A I

.0.3> UNf.2A

Z

J

t

SEAlING

PlANE

STYLE 2:
TERM 1. ANODE
2. CATHODE

MILUMETERS

MIN

MAX

MIN

MAX

A

1077

1282
11,09
1028
635
444
1150
20.32
480
241
1076

0424
-

0505
0437
0405
0250
0175
0.453
0800
0189
0,095
0424

D

N~~~L

RULES AND NOTES ASSOCIATED WITH
REFERENCED 00-4 OUTliNE SHALL APPLY,
2 DIMENSIONING AND TOLERANCING PER ANSI
YI4.5M, 1982.
3 CONTROLLING DIMENSION. INCH,

3-68

INCHES

DIM

K
Q

1.53
191
10.72
1524
414
1.53
674

0.060
0075
0422
0600
0163
0,060
0265

IN5832
IN5833
IN5834

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Desig'ners Data Sheet

SCHOTTKY
BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIER

40 AMPERE
20,30,40 VOLTS

emplOYing the Schottky Barner prinCiple In a large area metal-ta-silicon power
diode State of the art geometry features epitaxial construction With OXide passivation and metal overlap contact Ideally sUIted for use as rectifiers In low-voltage,
high-frequency Inverters. free wheeling diodes, and polarity protectIOn diodes
•

Extremely Low vF

•

Low Power Loss/High Efficiency

•

Low Stored Charge, Majority
Carner Conduction

•

HIgh Surge Capacity

Designer's Data for "Worst Case" Conditions
The Designers

Data sheets permit the design of most Circuits entirely from

Ii

I

the Information presented limit curves - representmg boundaries on device characteristics - are IJlven to facilitate "worst case" design

*MAXIMUM RATINGS
Rating

Symbol

1NS832

1NS833

1NS834

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

20

30

40

Volts

Non-Repetitive Peak Reverse Voltage

VRSM

36

48

Average Rectified Forward Current
VR(eqUlv),,;02 VR(dc),TC = 7SoC

10

Ambient Temperature
Rated VR(dcl, PFIAV) = 0,
ROJA = 2.0 0 C/W
Non-Repetitive Peak Surge Current
(surge applied at rated load conditions
halfwave, smgle phase, 60 Hz)

.

24

40

100

TA

9S

.

Volts
Amp

°c

90

IFSM
_

Operatmg and Storage Junction
Temperature Range (Reverse
voltage applied)

TJ,Tstg

Peak OperatIng Junction Temperature
IForward Current Applied)

TJlpk)

800 Ifor 1 cycle)_

Amp

___ -65to+12S_

°c

_lS0

°c

c-

*THERMAL CHARACTERISTICS

STYLE 1
TERM 1 CATHODE
NOTES
2 ANODE ICASEI
1 DIM "P" IS DIA
2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
HEXAGONAL BASE IS OPTIONAL
3 ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS DPTIONAL
4 THREADS ARE PLATED
5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5,
1973

Characteristic
Thermal Resistance, Junction to Case

*ELECTRICAL CHARACTERISTICS ITC= 2SoC unless otherwise noted)
Characteristic

Symbol

Maximum Instantaneous Forward
Voltagell)
(IF = 10 Amp)
IIF = 40 Amp)
(iF = 125 Amp)

vF

Maximum Instantaneous Reverse
Current@ rated de Voltage (1)
TC= 1000C

;R

1NSB32

lNSB33

lN5B34

Unrt
Volts

0.360
0.S20
0.980

0370
OSSO
1.080

0380
0.590
1180

20
ISO

20
ISO

20
ISO

DIM
A
B
C
D
E

F
J
K
L

P
Q

rnA

R
S

MILUMETfRS
MIN
MAX
1694
1745
1694
1143
953
292
508
203
1072
1151
2540
386
632
559
356
445
2016
226
-

CASE 251-01
DO-203AB

METAL

·Indlcates JEDEC RegIstered Data.
(1) Puis. Test. Puis. Width = 300 "S, Duty Cycle = 2.0%

3-69

•

INCHES
MIN
MAX
0669
0687
0667
0450
0375
0115
0200
0080
0422
0453
1000
0156
0220
0249
0140
0175
0794
0089
-

-

I

1N5832, 1N5833, 1N5834
NOTE 1: DETERMINING MAXIMUM RATINGS

3 as a difference in the rate of change of the slope In the vicinity
of 1150 C. The data of Figures I, 2 and 3 IS based upon de condi-

Reverse power dissipation and the possibllrty of thermal runavvay
must be considered when operating th is rectifier at reverse voltages
above 0.2 VRWM. Proper derating may be accomplished by use

of equation 111'
TAl max) = TJlmax) -R8JA PFIAV) - R8JA PRIAV)

tions. For use In common rectifier circuits, Table I Indicates suggested factors for an equivalent dc voltage to use for conservative
deSign; i.e.·

II)

VR(equiv) = 'VmIPK) x F

where
TJ(max) == Maximum allowable junction temperature 112SoC
or the temperature at which thermal runaway
occurs, whichever IS lowest),

Example

:=

Find TAlmax) for 1 N5834 operated m a 12-Volt de

a bridge

supply using

circuit with capacitive frlter such that IDe

=

30 A IIFIAV) = 15 A), IIPK)/IIAV) = 10, Input Voltage = 10
Vlrms), R6JA = 3 0 CIW.

PF(AV} == Average forward power diSSipation
PR(AV)

(4)

The Factor F IS derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.

T A(max) == Maximum allowable ambient temperature

Average reverse power diSSipation

ROJC = Junctlon-to-amblent thermal resistance
Figures 1, 2 and 3 permit easier use of equation 11) by taking
reverse power disSipation and thermal runaway Into consideration.
The figures solve for a reference temperature as determined by

Step 1

equation 121.
TR =TJlmax)-R8JA PRIAV)

Step 3:

Find VRlequlv)' Read F = 0 S5from Table I:.
VRleqUlv) = 110)(1.41)(0.65) = 9.18 V
FmdTR from Figure 3. Read TR = 1180 C@ VR = 918 V
& R8JA = 3 0 CIW
Find PFIAV) from Figure 4 tRead PFIAV) = 20 W

Step 2:

(2)

@IIPK)= 10 & IFIAV) = 15 A
IIAV)
Find T Almax) from equation (3). T Almax) = 118-(3)(20)
= 580 C

Substituting equation (21 Into equation (1) Yields

TAlmax) = TR - R8JA PFIAV)
(3)
Inspection of equations (2) and (3) reveals that TR IS the ambient

Step 4

temperature at which thermal runaway occurs or where TJ = 1250 C,

tValues given are for the 1N5834
Power is slightly lower for the
other units because of their lower forward voltage.

when forward power IS zero. The transition from one boundary
condition to the other is eVident on the curves of Figures 1, 2 and

TABLE I - VALUES FOR FACTOR F
Half Wave

Circuit
Load

Resistive

Sine Wave
Square Wave

0.5
0.75

I Capacitive (1)
I 1.3

Resistive

0.5
0.75

1.5

I

5t-=

«

10 5

"

11j
I-

w
u

~

'"

I,

"-

5

"'-

.",

" '"

5

",

'r....."'"'"'"I'"

30

~ 115

10

=>

~

"-)
"'\

11j

~O

w

~

1.0
1.5

u

z

w
~
w
~
w

50\

~

'"

10

~

r-..

=>

~

~105

iii

I-

,
-----

............ ...........

...........

w
u

~

'"

r--.
-,

95
5

I-

"'"

i"- i'r--... .........
I'-

"
"'-

i'

t"-...

r-,'"

", "........

"

r---.. r-.......

95

85

t'-..,

50

r-,'"

f' "70

15

30 ' "

10

'" "i-.
15 '\..10 '\.

"-

ReJA IOCIW) • 40''''''

40

"'" ,"N!

10

'--~ ~ ~

" '"

10

'\ \

"'-'" ~'\.. "-'\I'Z°
" "-'""'- ",,,,,"\ "\
r-, '"
~~

50

70

'\..30 "
10

50

20"'.!5
15
20

30

f

I(AV)

0

I'\,

0

'\

0
40

VR, REVERSE VOLTAGE (VOLTS)

/

/

f-l0

/

/

/
/

RESISTIVE LOAO

/

I

0

l'\

SI~E WAJ~:-::-

---+:,"SIN~
WAvJ
CAPACITIVE LOAO I
'IPKl' 1

1'\,30:'\,.

30

FIGURE 4 - FORWARD POWER DISSIPATION
50

0

:-........
~ ~ "- 10

"-

........

~~
............

VR. REVERSE VOLTAGE IVOLTS)

"""'~~
'"
" '" '"

r--.""'-

i'

:-.........

.....

75
30

20

............

" "-'"I'- r-.....~~
'" " ~;~O
" r--. o '\.
R8JA(Ci)'

75
40

r-.--""";;;::: ~

1.3
1.5

I

'"

I-

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - lN5834
115
u

I

...........

VR. REVERSE VOLTAGE (VOLTS)

~115

1 Capacitive

r--:::-- --.:

I"- r-........
105

I-

~

"- r-,I'\. 15
R8JA (OC/w) • 40'" 30,
~o'\,.'"
40
50
70
10

75

Resistive

0.65
0.75

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - lN5833
125

............ ........ ~

"'" " ""- , " "........

I-

10

~~

.......

r-.. ~

i'-. i'- ~ ......... .......
....... r--.... " ........ ........... .........,

I-

~

- " --"

Capacitive

(2)Use Ime to center tap voltage for V ln

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE -1N5832
11 5

~11

I
I
I

I1lNote that VRIPK) ~2 VmIPK)

£'

Full Wave,
Center Tapped (1).(2)

Full Wave, Bridge

/

~
/

/

/

V

v= V

/ ....--::: V
/' V
....0 ......

........:: ~ ::::..--

~

/

50

/

3-70

/

AaUARE
WAVE

,../

~

TJ"" 125°C

~~

80

16

14

31

IFIAV). AVERAGE FORWARO CURRENT lAMP)

• No external heat sink.

-/-

40

1N5832, 1N5833, 1N5834

FIGURE 6 - MAXIMUM SURGE CAPABILITY

FIGURE 5 - TYPICAL FORWARO VOLTAGE
30 0

1000

./"

200

/'

100

TJ - 25DC

V
V

V
.....

;;:

'"

:!

~
1:l

."...

100DC

0

............

'"

~

'/I'

~ 200

~

/

IS

r--.

operated sue

that TJ::: 1000 e, VRRM may be apphed
between each cycle of surge

100
10

20

50

I /

0

............

Prior to surge, the rectifier

~'"

/1

0

r-..

w

;/

0

.......

500

> 300

/.

0

.......

lO0

rrrn

I

10
20
NUMBER OF CYCLES

50

100

0

FIGURE 7 - CURRENT DERATING

0

0
20

;;: 40~~~--r---.---.---~~~~~~~~,---~

'"

:!

~ 32r---t---t---~~~--+---+-~t

I

1:l
~ 24r---t---t---t-~~~t-~~~+-~~

~

10

~
~

7

ffi

16~~~~t---t---t-~~~t-~~~~~~--~

>

5

SINE WAVE,
CAPACITIVE

'" B 0

~

03

o

04

02

06

OB

12

10

LO~OS,

!

IIPKI
= 20

--t-"::::'l="-_f'>~~A--I

10-50-

II~VI ,---+---t---t---t---"'!~~

~ o,~_CU_R~V_E_S,A~PP_L_Y_W~H_EN__RE~V~E_R~SE~P~O~W~E~R~1S~N~E~G~LI~G~IB~L;E__~~~

14

75

B5

'F, INSTANTANEOUS FORWARO VOLTAGE IVOLTSI

95
105
Te, CASE TEMPERATURE IDCI

FIGURE 8 - THERMAL RESPONSE
w

u

10
07

"

05

W
or_

03

'"

I;;
~"
",w

~~ 01

..... 1--

w'"

"':;

1-",
1-0

..-

.....

02

rrn

I--

tp

007

0;

"~

003

:g

002
001
01

q---'

Pk
TIME

DUTY CYCLE, 0 = tplll
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse

6 TJC = Ppk ' ROJC [0 + 11- 01, ,Iq + tpl + 'It,l- 'Itlll
where
6 TJC ::: the Increase In Junction temperature above the case temperature

r5~ 005

I-

-

I----

~ I III
1.1.
ZOJCltI = ROJC. 'ItI

r(t)::: normalized value 01 tranSient thermal resistance at time, t, from FigureS, I e
(lt1 + tp)::: normahzed value of tranSient thermal resistance at time, 11 + tp

02

05

10

20

.

50

10

50
t, TIME Im.1

20

3-71

'"''

100

,,

200

, ,
500

'"''

10k

, ,
20k

, 'II
50k

10k

1N5832, 1N5833, 1N5834

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 10 - TYPICAL REVERSE CURRENT

5.0

500

ffi ot-VR =VRWM

/

V-

N

~

2. 0

'"
Q

OS

0

~

5

;(

E
>-

3

O.
O. 2

1:;

O. I
007
005

,~

100
01==

I or--w

~w

'"IE

./
/

...... 1"'"

"

"'w
'"
~

V"

~

0

100 0 e

-

r----

25 0 e

5
45

25

65
85
TC. CASE TEMPERATURE (OC)

105

40

125

80

-

-

V

,

0

-- - -

-

r-

-

750 e

L:.

0
0

- -

-- - -

r-

200

7

~

TJ = 125 0 e

--12

16

20

IN5832 20V IN5833 - 30 V ~
- - IN5834 40 V_::::::

24

28

32

36

40

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 11- CAPACITANCE
800 0
6000

,......

400O

r-

~3000

t-

Since current flow in a Schottky rectifier IS the result of majority

"'"

carTier conduction, it IS not subject to junction diode forward and

reverse recovery transients due to minority carrier injection and

~ 1"-1'-

z 2000

g150

Tr 25 0 C

I...... ~

w
u

;t

NOTE 2: HIGH FREQUENCY OPERATION

r-.

~

0

""~.1000

]/<

IN5~3

1~832

t'-- 1/

80 0
600

IN5834

400
0040.0601

I III
02

0406 10

20

4060

VR. REVERSE VOLTAGE (VOLTS)

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
ANISH: All external surfaces corrosion
resistant and terminal lead is
readily so(derable.
POLARITY: Cathode to Case
MOUNTING POSmON: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: See Note 3

10

20

40

stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode In parallel With a
variable cepacitance. (See Figure 11).
RectifIcation effiCiency measurements show that operation Will
be satisfactory up to several megahertz. For example, relative
waveform rectIfication effICiency IS approximately 70 per cent at
2.0 MHz, e 9 , the ratio of dc power to RMS power In the load IS
028 at thiS frequency. whereas perfect rectification would Yield
0406 for sme wave Inputs. However. in contrast to ordinary
Junction diodes, the loss to waveform effiCiency IS not indicative of
power loss. It IS simply a result of reverse current flow through the
diode capacitance, whIch lowers the de output voltage.

NOTE 3: SOLDER HEAT

The excellent heat transfer property of the heavy duty copper
anode termmal which transmits heat away from the die requires
that caution be used when attaching wires. Motorola suggests a
heat sink be clamped between the eyelet and the body during any
soldering operation.

3-72

lN6095
lN6096

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

SD41

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS

25 and 30 AMPERES
30 to 45 VOLTS

uSing the Schottky Barner pnnclple with a platinum barner metal
These state-of-the-art devices have the following features
CD Guardnng for Stress Protection
«:)

Low Forward Voltage

o
o

Guaranteed Reverse Avalanche

150°C Operating Junction Temperature Capability

CASE 5S-03
DO-203AA
METAL

MAXIMUM RATINGS
1 NS09S*

S041

Unit

30

40

45
35
45

Volts

10

25
TC = 70°C

25
TC = 70°C

TC

105

105

Nonrepetltlve Peak 5 urge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)

IFSM

400

400

600

Amp

Peak Repetitive Reverse Surge Current
(2 0 I'S, 10kHz) See Figure 10 (1)

IRRM

20

20

20

Amps

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blockmg Voltage
Average Rectified Forward Current
(Rated VR)
Case Temperature
IRated VR)

Symbol
VRRM
VRWM
VR

1 NS095*

30
TC= 105°C

-

Amps
°c

TJ, Tstg

-65 to + 125

-65 to + 125

-55 to + 150°C

°C

Peak Operating Junction Temperature
(Forward Current Applred)

TJ(pk)

150

150

150

°c

Voltage Rate of Change
(Rated VR)

dv/dt

VII'S

Operatmg and Storage Junction Temperature Range

-

-

700

1 N609S*

1NS09S*

S041

THERMAL CHARACTERISTICS

Characteristic
Maximum Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Maximum Instantaneous Forward VQltage (2)
(IF = 30 Amp, TC = 125°C)
(IF = 78 5 Amp, TC = 70°C)

vF

Maximum Instantaneous Reverse Current (21
(Rated de Voltage, TC = 125°C)

Capacitance

-

-

086

086

-

"R

250

250

125
@VR = 35V

mA

Ct

6000
VR = 1 OV

6000
VR = 1 OV

2000
VR = 5 0 V

pF

(100 kHz;;' f;;. 1 0 MHz)
*lndlCates JEDEC Registered Data
(1) Not JEDEC reqUirement. but a Motorola product capability

(2) Pulse Test Pulse Width

Unit
Volts

=300 pS, Duty Cycle~ 2 0%

3-73

055

1N6095, 1N6096, 5041

FIGURE 2 -

FIGURE 1 - TYPICAL FORWARD VOLTAGE

v

200

V

100

/

V

TJ

in
0..

I-- t--

TJ = 150°C

I

20

a

70

c:
~

50

'"=>

2~
00 1
10

I

53
z

30

20

FIGURE 3 -

I

«
....z 30
«
....
;!;
'"

1

50

40

VR. REVERSE VOlTAGE (VOLTS)

li'!
«

;:

/

I /

10

,..-

75°C

II /

II II 25°C

....

I----

100 0e

10

a

/

::!.

~

~

/

-

~ 1500~
125°C

.5.....

50

::;;

100

;;;

70

30

TYPICAL REVERSE CURRENT

1000

I

~

"-

::;;

20

::!. 400

~
c:
~

07
05

~
04

06

08

10

12

"-

"- -.......

"

80
60
10

14

"-

100

~

02

i'--

1N6095/6

'"
~

o

cvcle of surge

i'.

200

'"
03

applied between each

8041

a
,.«
~
«

10

I I I

I _I
,I
I I I
TJ = 125°C. VRRM may be

'" "-'" "'-'"

....

!f.

02

MAXIMUM SURGE CAPABILITY

600

20

30

50 70

10

........
20

-...
50

30

70 100

NUMBER OF CYCLES AT 60 Hz

VF. INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

FIGURE 4 - CAPACITANCE

HIGH FREQUENCY OPERATION
Since currentflow In a Schottky rectifier IS the result of majority
carner conduction, It IS not subject to Junction diode forward and
reverse recovery tranSients due to minority carner injection and
stored charge Satisfactory CirCUit analysIs work may be performed by uSing a model consisting of an Ideal diode In parallel
with a variable capacitance (See Figure 4 )
RectifICatIOn efficiency measurements show that operation will
be satisfactory up to several megahertz For example, relative
waveform rectification efficiency IS approximately 70 per cent at
2 a MHz. e g.• the ratio of dc power to RMS power In the load IS
28 at this frequency. whereas perfect rectification would Yield
0.406 for sme wave Inputs However, In contrast to ordinary
Junction diodes. the loss In waveform efflcleny IS not indicative of
power loss, It IS simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage

a

3000
2000

.............
i'-

~

~
~

u

::i

5

1000
900

~ ~~~
~

600
500

'"

400

'\
"I\.

300
05

01

02

05

10

20

50

VR. REVERSE VOLTAGE (VOLTS)

3-74

10

20

50

1N6095, 1N6096, 5041

FIGURE S - 1 NS095/S CURRENT DERATING

FIGURE 5 - SD41 CURRENT DERATING
v.; 40r---,---,---,---,---,---.----,---,---r----,

~
5-

i

>-

30r---~---r---+---+~~~.-+

:::J

'-'

~

i

20r---~---r---+---+--~~~~~~--~--_+--~

..'"

10

~
w

ffi

:;'<

~

if"
80

100

120

140

80

160

TC. CASE TEMPERATURE 1°C)

120
100
TC. CASE TEMPERATURE 1°C)

140

160

FIGURE 7 - FORWARD POWER DISSIPATION

-

ICapaCitlVe lDad)

Ipk

I

I

= 20-10- 5

/
/ / V/
1// / V
/ r// ' / /
/ /V/ / '
AV

/

/

/. 0- :/"
&, ~

Sme Wave and
Square Wave

de

TJ = 125°C- I - - )

~~

~
10

20

40

30

IFIAV). AVERAGE FORWARD CURRENT lAMPS)

FIGURE 8 - THERMAL RESPONSE
10
o7

5

-~

3

2
o1
-

00 1
001

TIME

Duty Cyel •• 0 • tp/t,
Peak Power, Ppk. IS peak of an
equivalent square power pulse

a TJC = Pr ROJC [0 + (' - 01 r(t, +tpl + «'pl- r(t, II

00 3

00 2

Pk

where .6. JC:;: the Increase

In Junction temperature above the case temperature
~t) :;: normahzed value of tranSient thermal resistance at time. t.
for example. r (11 + t p) :;: normalized value of tranSient
thermal resistance at time 11 + tp

:t:

>-

_

---

I--"

--01

10

10
t. TlMElms)

3-75

100

1000

1N6095, 1N6096, 5041

FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

Alloy 52
Barner Metal
Steel

)~E;~::~~~-T--- OXide PaSSivation
Moly Disk

Copper Base

Guardrmg

Motorola bUilds Quality and reliability Into Its Schottky Rectifiers
First IS the ChiP, which has an Interface metal between the
platinum-barrier metal and nickel-gold ohmic-contact metal to

These two features give the Unit the capability of pasSing

stringent thermal fatigue tests for 5,000 cycles The top copper
lead provides a low resistance to current and therefore does not
contribute to deVice heating, a heat sink should be used when
attaching VJlros

eliminate any possible interaction ....·"Ith the barner The indicated

guardrlng prevents dvldt problems, so snubbers are not required

Third IS the redundant electrical testing The deVice IS tested
before assembly In "sandwich" form, with the chip between the
moly disks It IS tested again after assembly As part of the final
electrical test, deVices are 100% tested for dvldt at 1,600 V I"s
and reverse avalanche

The guardrmg also operates like a zener to absorb over-voltage
tranSients

Second IS the package There are molybdenum disks which
closely match the thermal coefficient of expansIOn of sIlicon on
each side of the chip The top copper lead

IS

VIEW A-A

also stress-rellefed

FIGURE 10 - TEST CIRCUIT FOR dv/dt AND
REVERSE SURGE CURRENT

VCC

12Vdc
STYLE 2'
TERM 1 ANODE
2. CATHODE

nl_2V
~

-1
--I

MOUNTING TORQUE: 15 in-Ib max

100
2N2222

NOTES.
1 ALL RULES AND NOTES ASSOCIATED WITH
REFERENCED 00-4 OUnlNE SHALL APPLY
2 DIMENSIONING AND TOLERANCING PER ANSI

I-- 20l's

10kHz
Current
Amplitude
Adjust
0-10 Amps

Y14.5M, 1982.
3 CONTROLLING DIMENSION INCH

100 n
Carbon

DIM
A

B
C
D

lN5B17

E
F
J
K

P
Q

R

MILUMETERS
MIN
MAX
1282
1077 1109
1028
635
1.53
191
444
1072 1150
1524 20.32
414
480
153
241
674 1076

INCHES
MIN
MAX
0505
0424 0437
0405
0250
0060
0.075 0175
0422 0453
0.600 0800
0163 0189
0060 0095
0265 0424

CASE 56-03
DO-203AA
METAL

3-76

lN6097
lN6098
5D51

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SWITCH MODE POWER RECTIFIERS

SCHOTTKY BARRIER
RECTIFIERS

.. uSing a platinum barner metal In a large area metal-to-silicon
power diode State-of-the-art geometry features epitaxial construction with oXide paSSivatIOn and metal overlap contact Ideally SUited
for use as recuflers In low-voltage. high-frequency Inverters, freewheeling diodes, and polanty-protectlon diodes
•

Guaranteed Reverse Avalanche

•

Extremely Low vF

o

Low Stored Charge, MaJonty Carner Conduction

GO!

Guardrlng for Stress Protection

60 AMPERES
20 to 45 VOLTS

CASE 257-01
00-203AB
METAL

It Low Power Loss/High EffiCiency

o

150 D C Operating Junction Temperature Capability

Ii)

High Surge Capacity

•

MAXIMUM RATINGS
Symbol

lN6097*

lN609S*

5051

Unit

VRRM
VRWM
VR

30

40

45
35
45

Volts

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz)

IFRM

-

-

120
TC = 90DC

Amps

Average Rectified Forward Current

10

50
TC = 70 DC

50
TC = 70 DC

-

Amps

TC

115

115

-

DC

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage

(Rated VR)
Case Temperature
(Rated VRI
Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditions
hallwave, smgle phase, 60 Hz)

IFSM

•

800

•

Amps

Peak Repetitive Reverse Surge Currend21
(20 "s, 1 0 kHz) See Figure 10

IRRM

•

20

•

Amps

Operating Junction Temperature Range
(Reverse Voltage Applied)
Storage Temperature Range

Voltage Rate 01 Change
(Rated VR)

DC

TJ

-65 to +125

-65 to +125

-65 to +150

Tstg

-65 to +125

-65 to +125

-65 to +165

DC

dvldt

-

-

700

V/"s

1 N6097*

lN609S'

5051

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junctlon-to-Case

ELECTRICAL CHARACTERISTICS (TC = 25 DC unless otherwise noted)

Characteristic

Symbol

MaXimum Instantaneous Forward Voltage (2)
(IF = 157 Amp, TC = 70DC)
(IF= 60 Amp)
(IF = 60 Amp, TC = 125DC)
(IF = 120 Amp, TC = 125DC)

vF

MaXimum Instantaneous Reverse Current (2)
(Rated Voltage, TC = 125DC)
(Rated Voltage, TC = 25 DC)

'R

-

DC Reverse Current
(Rated Voltage, TC = 115DC)

IR

250

MaXimum Capacitance
(100 kHz';; I';; 10 MHz)

Ct

7000
VR = 1.0Vdc

·Indlcates JEDEC Registered DatB
(11 Not 8 JEOEC reqUirement, but of Motorola product capabIlity.
(2) Pulse Test Pulse Width 300 J,&s, Duty Cycle = 2 0%

=

3-77

Unit
Volts

-

086

086

-

-

070
060
084

250

-

200
50
@VR = 35V

rnA

250

250

-

rnA

7000
VR = 1 0 Vdc

4000
VR=50Vdc

pF

1N6097, 1N6098, 5051

FIGURE 1 -

FIGURE 2 -

TYPICAL FORWARD VOLTAGE

20 0

I

/
10 0

/'

TYPICAL REVERSE CURRENT

1000

,/

V-

I--

<"

r--

-

TJ - 150°C

100

125°C

-

§.

100°C

I-

0

is

10

'"

0

'"
:>
u
w

/ /

V

0

TJ = 1500C/
0

II
/

0

75°C

'"
'"

10

~

/

'"IE:

01

-

I-"

25°C

V

/

25°C

001

o

10

40

20
30
VR. REVERSE VOLTAGE (VOLTS)

50

0
0

0
0

I

FIGURE 3 -

I

TYPICAL SURGE CAPABILITY

1000

II

in 700

~

"'-

::!.
I-

500

is
:>
u

~ 300

7

I"

"""

'"
'"

0

.......

Rated Load
f = 60 HZ

r--t--,

:>

5

'"
'"
~

3

!

2

02
04
06
DB
10
12
vF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

:-----. ........

200

100

14

10

20

30

50 70

FIGURE 4 -

HIGH FREQUENCY OPERATION

Rectification effiCiency measurements show that operation will
be satisfactory up to several megahertz For example, relattve
waveform rectification effiCiency IS approximately 70 per cent at

20 MHz, e 9 • the ratio of dc power to RMS power on the load is
028 at this frequency, whereas perfect rectification would Yield
o 406 for sine wave Inputs. However, In contrast to ordinary
Junction diodes, the loss

In

30

50

70 100

CAPACITANCE

.Wl
.1 .1
11Jol~HZ;;');;': 0 M~z-f-

1

5000

Sonce current flow on a Schottky rectlfoer IS the result of majority

stored charge Satisfactory CirCUit analysIs work may be performed by usong a model conslstong of an Ideal diode on parallel
with a variable capacitance (See Figure 4 )

20

-

NUMBER OF CYCLES

NOTE 1

carrier conduction, It IS not subJectto Junction diode forward and
reverse recovery tranSients due to minority carner Injection and

10

r-

~ 3000
~

g
u

t'-.. ~.x

"""r:::~ I-....
Typ

2000

.....

:l':
OJ

"'

.....
...........

u

1000

waveform effiCiency IS not indICative

........

.........
........

700

of power loss. It IS simply a result of reverse currentflowthrough
the diode capacitance, which lowers the dc output voltage.

05

10

20

30

50 70

10

VR. REVERSE VOLTAGE (VOLTS)

3-78

20

I"-.

30

50

1N6097, 1N6098, 5051

FIGURE 6 - CURRENT DERATING
(1 N6097/1 N609BI

FIGURE 5 - CURRENT DERATING
(SD51)
~

801r---~----'----.r----r----'----T----'----­

":E

::!.
>-

15
a: 60f---+---+--f-a:
=>
u
c
a:

~

4011--+-+_~.....---1--+-Y

~
w

'"ffi

'"

2011--+-+--+-I---=7l""'~~N.....+~+----l

(Capacitive Loadl _llpk = 20. 10. 5 ~--l---==Sl:~.....*::"'-----l
AV
°SO

160

90
TC. CASE TEMPERATURE (OCI

TC. CASE TEMPERATURE (0C)

FIGURE 7 - POWER DISSIPATION
0

D

(CapacItive Loadl

~

r--

IAV

0

0
0

/ 1/

/

V/ /
I // /
LL L£V
S)Y

//

=2D-

//~

V/' " " :Pk

AV

~V

NOTE 2

FUI
Pk

Square Wave
SO% Duty Cycle
dc

=

7r

I

~II--------<

(ResIStIVe Loadl_

TJ = 12SoC

20

40

60

TIME

DUTY CYCLE, 0 '" tp/q
PEAK POWER, Ppk, IS peak of an
eqUivalent square power pulse

To determine maximum Junchon temperature of the diode In a gIven
SItuatIon, the following procedure IS recommended
The temperature of the case should be measured uSing a thermocouple
placed on the case The thermal mass connected to the case IS normally large
enough so that It will not Significantly respond to heal surges generated In
the diode as a result of pulsed operation once steady-state conditIOns are
achieved USing the measured value of TC' the Junction temperature may be
determined by
TJ=TC+.l TJC
where .l. T C IS the Increase In Junction temperature above the case
temperature It may be determined by

~~

0'

Ppk

Ip_

/

10.

130

.l TJC= PpkoROJcl0+(1-0Iortt1 +tpl + rttpl - rt(1)] where
rttl = normalized value of tranSient thermal resistance at time, t, from
Figure 8, Ie
rlt1 + tpl == normalized value of transient thermal resistance at time 11 + tp

80

IF(AVI' AVERAGE FORWARD CURRENT (AMPSI

FIGURE 8 - THERMAL RESPONSE

@

0

N

:::l

«

illc

5

'-'
Z

2

~

1

~
w

~

--

ReJc(tl = ReJC + r(tl
(Note 21

~

«

~

:c

00 5

>z>-

;;j 00
z
«

.....-

V ...

I!: 00 1

""

001

002

0.05

0.1

0.2

OS

10

20
t. TIME (msi

3-79

50

10

20

so

100

200

SOO

1000

1N6097, 1N6098, 8051
FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

VIEW A-A

Copper Base

Moly Disk

Guardnng

feature which protects the die dunng assembly These two
features give the Unit the capablhty of passmg stringent thermal
fatigue tests for 5,000 cycles Thetop copper lead provides a low

Motorola builds quahty and rehab,hty mto Its Schottky Rectifiers
First IS the chip, which has an Interface metal between the
platinum-barner metal and nickel-gold ohmic-contact metal to
ehmmate any possible mteractlon with the barner The mdlcated
guardrmg prevents dv/dt problems, so snubbers are not mandatory The guardnng also operates like a zener to absorb over-

reSistance to current and therefore does not contnbute to device

heatmg, a heat smk should be used when attachmg wires
Third IS the redundant electrical testmg The device IS tested
before assembly m "sandwich" form, with the chip between the
moly disks It IS tested agam after assembly As part of the fmal
electncal test, devices are 100% tested for dv/dt at 1,600 VI P.s
and reverse avalanche

voltage tranSients

Second IS the package. There are molybdenum disks which
closely match the thermal coefficient of expansion of slhcon on
each Side of the chip. The top copper lead has a stress rehef

~ -1
I~B~
IJ:=R

r~'i-

n
---l

2V

I--

100

t-.,.2N2222

20 P.s
10kHz
Current
Amphtude

Adjust

!'"' J""
...... 2N6277

lOOn ''''

DIM
A
B

C
1 0 Carbon
"

.L

0

~! 1
K

I

Jj

NOTES
1 DIM "P" IS DIA
2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
HEXAGONAL BASE IS OPTIONAL
3 ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAL
4 THREADS ARE PLATED
5 DIMENSIONING AND TOlERANCING PER ANSI Y14 5,
1973

Carbon

0-10 Amps

'---;;::1 Ii
;t-Q
t-~rr

S E

STYlE
TERM 1 CATHODE
2 ANODE ICASE)

20kn

12Vdc

TERM

IT1

FIGURE 10 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT

VCC

VIEW A-A

D
E
F

J
K

1N5817

l

p

a
R
S

MllUMETERS
MIN
MAX
16.94
1745
1694
11.43
953
SOB
292
203
1151
1072
2540
386
5.59
632
356
445
20.16
226
-

INCHES
MIN
MAX
0687
0669
0667
0450
0.375
0200
0.115
0080
0422
0453
1000
0156
0220
0249
0.175
0.140
0794
0089
-

CASE 257-01
DO-203AB
METAL

3-80

MECHANICAL CHARACTERI5nCS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant end terminal lead IS readily
solderable.
POLARITY: Cathode to Case

MOUNTING POSITION: Any
MOUNTING TORQUE: 25 m-Ib max
SOLDER HEAT: The excellent heat transfer property of the heavy duty copper
anode terminal which transmits heat
away from the die requires that caution
be used when attachmg wires. Motorola
suggests a heatslnk be clamped between
the eyelet and the body dUring any solderlng operation

MOTOROLA

-

MBR030
MBR040

SEMICONDUCTOR

TECHNICAL DATA

Advance Information
SCHOTTKY
RECTIFIERS
SWITCHMODE RECTIFIERS
0.5 AMPERE
36-40 VOLTS
... designed for use in switching power supplies, inverters, and
as free wheeling diodes, these devices have the following features:

o Low Forward Voltage
o Low Leakage Current
o 00-204AH (00-35) Glass Package

MAXIMUM RATINGS
Symbol

MBR030

MBR040

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Rating

VRRM
VRWM
VR

30

40

Volts

Average Rectified Forward Current
(Rated VR)
TL = 90'C, L = %"
TA = 50'C, L = %", (Mt. Method #1)

IF(AV)

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)

IFSM

Operating Junction and Storage
Temperature

Amps

I--- 0.5 _ _
~O.5 _ _

Characteristic

= %'

ELECTRICAL CHARACTERISTICS
Characteristic

INCHES
MIN
MAX
0120
0200
0060
0090
0018
0022
0050
1000
1500

NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B
HEAT SLUGS, IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER, BUT NOT SUBJECT TO
THE MINIMUM LIMIT OF B
2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO
ALLOW FOR fLASH, LEAD fiNISH BUILDUP AND
MINOR IRREGULARITIES OTHER THAN HEAT
SLUGS
3 POLARITY DENOTED BY CATHODE BAND
4. DIMENSIONING AND TOlERANCING PER
ANSI Y145, 1973

-65 to +150

TJ, Tstg

MIWMETERS
MIN
MAX
305
508
152
229
046
056
127
3810
2540

All JEDEC dimenSions and notes apply

i-"--15.0 - - Amps

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Lead

DIM
A
B
D
F
K

MECHANICAL CHARACTERISTICS
Symbol

Instantaneous Foward Voltage (1)
(iF = 0.1 A, TJ = 25'C)
(iF = 0.5 A, TJ = 25'C)

vF

Reverse Current
(Rated dc Voltage, TJ = 150'C)
(Rated dc Voltage, TJ = 25'C)

iR

Typ

Max

0.460
0.610

0.500
0.750

0.6
0.003

1.0
0.001

Unit
Volts

FINISH: External leads are plated and are
readily solderable
mA

III Pulse Test: Pulse Width = 3001'5, Duty Cycle" 2 0%.
ThiS document contains information on a new product Specifications and Information herem are
subject to change Without notice

3-81

CASE: Glass

POLARITY: Cathod indicated by polarity band,
WEIGHT: 0.2 Gram (approximately).
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230'C, Va' from case for 10
seconds.

•

MBR030, MBR040
RGURE 2 - CURRENT DERATING, PRINTED
CIRCUIT BOARD MOUNTING

RGURE 1 - TYPICAL FORWARD VOLTAGE

if

0

.8

i

.0
.0
.0

.1

~

a

v

\.;'"

/'

1.0

I~

125} (725°

.4

y 40°C

/

.1 f0.4
0.6
0.8
1.0
vF. INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

1.2

t----

Ipk
I

t- ~ K r-...AV

I

= 1T IResistlve Load)_ I -

:-1

t- = 5.
AV

40

10. 20 ICapacilive Load)

f"ll

100
60
80
120
TA. AMBIENT TEMPERATURE 1°C)

'"

140

RGURE 4 - CURRENT DERATING, LEAD TEMPERATURE

1

......

6

50

L - %" VI'

5

Va"

~ ~ i'-,

4

I~ ~

Res"llve Loa~s

3

20

"" ~ ~

Bo!h wldS tal HealSmk
21-Witr Lei9ths is Shiwn .
1

100

10

20
30
VR. REVERSE VOLTAGE IVOLTS)

40

0

50

20

40

60
80
100
120
TL. LEAD TEMPERATURE lOCI

i\

140

NOTE 1

FIGURE 5 - FORWARD POWER DISSIPATION

o.5
~
Ipk
~
~ o.4 -ICapacltive Load) -

~

IAV

r'I
w

160

8

I:
u

020

........

r- I-- r--.... ~ --......
I-I k / f / '7
-r-. :::: ~ §

I--

2

FIGURE 3 - TYPICAL CAPACITANCE

~

t---t-

.31"- f--

::i!
!2:

100
90
80
1o
60

R~A ~ 25~CiW I

6 ........

/'

.5r-.

.5
.3f-- TJ
'" O.2
::::>
S o. 1
0.05
~ 0.03
~ 0.02
!f. 0.0 1
0.2

R~led JR

3

O. 2

« O. 1

= 20

/ /

'/j

/

/ /

/10

./

/

/

/

/ )J.,L

/X ,." ~
y: V..,..-:: ~ V

k{? ~ r;:::.-} O~ pO

/

O.tl shown tor thermal fgslane, Junction to ambtent (OJA) for the
mountings shown IS to be used as tYPlcalgutdehne valulS tor preliminary
engmeerlng or In caR the til POlRt temperature cannot be measured

./

TYPICAL VALUES FOR 8JA IN STILL AIR
MOUNTlNG
METHOD

/'

,

,

//

V:
0-- V ~a~

150

3

MOUNTING METHOD 1

~

V

.2
0.3
0.4
0.1
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

1" I 1141311
22. ,,.
21.
'35
'50

200

mHM

0.5

"CIW
"C/W
"CIW

MOUNTING METHOD 3

~

MOUNTING METHOD 2

......

P. C. Boord wllh
1·1/2" x 11/2" copper .. rf ...

~L -3/8"
]-

~:
Vector pU"I mounting

II~

BUild Ground

Plane

3-82

rr
"::"

160

MBR115P MBR120P
MBR130P MBRl40P
See Page 3·47
_

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBR150
MBR160

Axial Lead Rectifiers
· .. employing the Schottky Barrier principle in a large area metal-to-silicon power diode.
State-of-the-art geometry features epitaxial construction with oXide passivation and
metal overlap contact. Ideally sUited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, and polarity protection diodes.

SCHOTTKY BARRIER
RECTIFIERS
1 AMPERE
50,60 VOLTS

• Low Reverse Current
• Low Stored Charge, Majority Carrier Conduction
o Low Power Loss/High Efficiency
• Highly Stable Oxide Passivated Junction
Mechanical Characteristics:

/

Case: Void free, transfer molded
Finish: All external surfaces corrosion-resistant and the terminal leads are readily
solderable
Polarity: Cathode indicated by polarity band
Mounting Positions: Any
Soldering: 220°C 1/16" from case for ten seconds

CASE 59-04
PLASTIC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
RMS Reverse Voltage
Average Recllfled Forward Current (2)
(VR(equiv) '" 0.2 VR(dc), TL = 90°C, ROJA = BO°CIW, P.C. Board Mounting,
see Note 3, TA = 55°C)

Symbol

MBR150

MBR160

Unit

VRRM
VRWM
VR

50

60

Volts

VR(RMS)

35

42

Volts

10

1

Amp

Nonrepetitlve Peak Surge Current
(Surge applied at rated load conditions, half-wave,
sIOgle phase, 60 Hz, TL = 70°C)

IFSM

25 (for one cycle)

Amps

Operating and Storage Junction Temperature Range
(Reverse Voltage applied)

TJ, Tstg

-65 to +150

°c

TJ(pk)

150

°C

Peak Operating Junction Temperature
(Forward Current applied)
THERMAL CHARACTERISTICS (Notes 3 and 4)

Max

Characteristic
Thermal Resistance, Junction to Ambient

BO

ELECTRICAL CHARACTERISTICS (Tl = 25°C unless otherwise noted) (2)
Characteristic

Symbol

Maximum Instantaneous Forward Voltage (1)
(iF = 0.1 A)
(iF = 1 A)
(iF = 3A)

vF

Maximum Instantaneous Reverse Current @ Rated de Voltage (1)
(TL = 25°C)
(TL = 100°C)

'R

(11 Pulse Test Pulse Width

=

Max

Unit
Volt

0.550
0.750
1.000

300 p.s, Duty Cycle os;: 2%
IS cathode lead 1132" from case.

(2) lead Temperature reference

3-83

mA
0.5
5

MBR150, MBR160

10

7

5

150'C

TJ

0

125'C-

--

TJ

150'~

-

/100"C

/

J

V

/

/ /

II 1/ /

1

/

V

V

25'C f-- r--

w

~

1
05

l00'C=

02
o1

75"~=

0.05

~

002
g. 001
0005

/

25'S=

0002
0.00 1

o

0.7

10

I

05

grouping Typical reverse current for lower voltage selections can be

jJ J
II

70

*The curves shown aretyprcal forthe highest voltage deVice In the voltage

I

0.2

60

Figure 2. Typical Reverse Current*

II

0.3

20
40
30
50
VR. REVERSE VOLTAGE IVOLTSI

estimated from these same curves If VR IS sufficiently below rated VA'

II

'~QUAR~

0.1

0.07

//

0.05

1r

I-!f!> ~"-1~
I-IAV

0.03
0.02

0.4

0.2

06
08
1
1.2
VF.INSTANTANEOUS VOLTAGE IVOLTSI

\

~ /'

~~

f\. ~~ ~

1

o

\

/. Vdc

/t. ~ ~

~P"'"

1.4

1.6

1
2
4
IFIAVI. AVERAGE FORWARD CURRENT IAMPSI

Figure 3. Forward Power Dissipation

Figure 1. Typical Forward Voltage

THERMAL CHARACTERISTICS
B

~

1

~ o. 7
_

o

~

~
~

O. 5
O.3

-I--

O. 2

1--11

~

0.07
~ 0.05
:J::

:: 0.03
~ 0.02
~

0.1

DUTY CYCLE. D = 1t:l
PEAK POWER. P k. I PEAK OF AN
TIME EQUIVALENT Sd'UARE POWER PULSE.

<1TJL Ppk'R8JL[D + 11 - DI·,ltl + tpl + 'Itpl- 'Itll1
WHERE
<1TJL = THE INCREASE IN JUNCTION TEMPERATURE ABOVE THE LEAD TEMPERATURE
,(tl = NORMALIZED VALUE OF TRANSIENT THERMAL RESISTANCE AT TIME. t. FROM FIGURE 4. I e.:
,(tl + tpl = NORMALIZED VALUE OFTRANSIENTTHERMAL RESISTANCE AT TIME. tl + tp.

,....-

~

~ 00 t

= Z9JL' ,It)

~k
P

...... f-'"'

mo. 1

Z9JLlt)

0.2

0.5

10

20
50
TIME (m,1

100

~

Figure 4. Thermal Response

3-84

200

500

lk

2k

5k

10 k

MBR150, MBR160

~

200

90

ot-- t-- BOT~ LEADS ~O HEAT ~INK,
EOUAL ILENGTH

./

0
0

MA~IMUM
V
/'

0

0
0.........0""'-

V
V

1/8

/

/

V

.-/

V

V

TJ ~ 25°C
f ~ 1 MHz

01\

V

~ 10

80

t'j

z 70
~ 0
;t 0

/vPICAL

~

V

\

\

40

"'- ""-

0

1/4

318

112

518

20

7/8

3/4

o

10

L, LEAD LENGTH (INCHES)

Figure 5. Steady-State Thermal Resistance

-

80

90

100

Figure 6. Typical Capacitance

NOTE 3 - MOUNTING DATA:
Data shown for thermal resistance Junct,on-to-amb,ent (R8JA)
for the mounting shown IS to be used as a tYPical guideline

Mounting Method 1
PC. Board With
1-112" x 1-1/2"
copper surface.

values for preliminary engineering or in case the tie pomt temperature cannot be measured.

1/8

1/4

1/2

3/4

1

52

65

72

85

°CIW

2

67

80

87

100

°CIW

L ~ 318"

~

Lead Length, L (inl

Mounting
Method

Mounting Method 3
PC. Board With
1-112" x 1-1/2"
copper surface

~~

Typical Values for R/lJA in Still Air

3

............

30
40
50
60
70
VR, REVERSE VOLTAGE IVOLTSI

20

R/lJA

~JII~

Mounting Method 2

BOARD GROUND
PLANE

-

°CIW

50

VECTOR PIN MOUNTING

NOTE 4 - THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)
ISubscripts A and K refer to anode and cathode Sides, respectively.) Values for thermal resistance components are

R8SIA)

R8L
R8J

~
~

100°ClWlin tYPically and 120°ClWlin maximum.
36°CIW tYPically and 46°CIW maximum.

NOTE 5 - HIGH FREQUENCY OPERATION:
Since current flow In a Schottky rectifier is the result of maJOrity carrier conduction, It IS not subject to junction diode for-

ward and reverse recovery tranSIents due to minority carner
injection and stored charge. Satisfactory cirCUit analysis work

may be performed by uSing a model consisting of an ideal diode
In parallel With a variable capacitance. (See Figure S.I

Use of the above model permits junction to lead thermal resistance for any mountmg configuration to be found. For a given

RectifIcatIon efficiency measurements show that operation

total lead length, lowest values occur when one Side of the rectifier IS brought as close as possible to the heat sink. Terms In
the model Signify:
TA ~ Ambient Temperature
TC ~ Case Temperature
TL ~ Lead Temperature
TJ ~ Junction Temperature
R8S ~ Thermal Resistance, Heat Sink to Ambient
R8L ~ Thermal Resistance, Lead to Heat Sink
R8J ~ Thermal Resistance, Junction to Case
Po ~ Power DiSSipation

Will be satisfactory up to several megahertz. For example, relative waveform rectification effiCiency is approximatley 70 percent at 2 MHz, e g., the ratio of dc power to RMS power in the
load IS 0.28 at thiS frequency, whereas perfect rectification would
Yield 0 406 for sine wave Inputs. However, In contrast to ordinary
Junction diodes, the loss 10 waveform efficiency is not indicative

of powe'r loss: It IS Simply a result of reverse current flow through
the diode capacitance, which lowers the dc oulput voltage.

OUTLINE DIMENSIONS
NOTES
1 ALL RULES AND NOTES ASSOCIATED WITH JEDEC
00-41 OUTLINE SHALL APPLY
2 POlARITY DENOTED 8Y CATHODE BAND
3 LEAD DIAMETER NOT CONTROLLED WITHIN "F"'
DIMENSION

DIM

A
B
D
K

CASE 59-04
PLASTIC

3-85

MIWM£TERS
MIN
MAX

INCHES
MIN
MAX

597
279
076
2794

0235
0110
0030
1100

660
305
086

-

0260
0120

0034

-

MBR320 MBR340
MBR330 MBR350
MBR360

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SCHOTTKY BARRIER
RECTIFIERS

AXIAL LEAD RECTIFIERS
· .. employing the Schottky Barrier principle in a large area metal-to-silicon
power diode. State-of-the-art geometry features epitaxial construction with
oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and
polarity protection diodes.

3.0 AMPERES
20,30,40,50, 60 VOLTS

• Extremely Low vF
• Low Power Loss/High Efficiency
• Highly Stable Oxide Passivated Junction
• Low Stored Charge, Majority
Carrier Conduction

CASE 267-03
PLASTIC

MAXIMUM RATINGS
Rating
Peak RepetItive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
TA = 65·C
(R8JA = 28·CIW, P.C. Board Mounting,
see Note 3)
Nonrepetitive Peak Surge Current (2)
(Surge apphed at rated load conditions, half wave.
single phase 60 Hz. Tl = 75·C)
Operating and Storage Junction
Temperature Range (Reverse Voltage applied)
Peak Operating Junction Temperature
(Forward Current Applied)

Symbol

MBR320

MBR330

MBR340

MBR350

MBR360

Unit

VRRM
VRWM
VR

20

30

40

50

60

V

10

3.0

A

IFSM

80

A

TJ. Tstg

-65 to 150·C

·C

TJ(pk)

150

·C

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient. (see Note 3. Mounting Method 3)
ELECTRICAL CHARACTERISTICS (Tl = 25·C unless otherwise noted )(2)
Characteristic

Symbol

Maximum Instantaneous
Forward Voltage (1)
(iF = 1.0 Amp)
(iF = 3.0 Amp)
(IF = 9.4 Amp)

vF

Maximum Instantaneous
Reverse Current @ Rated
dc Voltage (1)
Tl = 25·C
Tl = 100·C

'R

(1) Pulse Test. Pulse W,dth

MBR320

I

I

MBR340

I

MBR360

Unit

0.600
0.740
1.080
mA

0.60
20
IS

MBR350

V
0.500
0.600
0.850

= 300 I's. Duty Cycle = 2.0%

(2) Lead Temperature reference

MBR330

cathode lead 1/32" from case

3-86

•

MBR320, MBR330, IVIBR340, MBR350, MBR360

MBR320. 330 AND 340
FIGURE 2 - TYPICAL REVERSE CURRENT·

FIGURE 1 - TYPICAL FORWARD VOLTAGE
20

:/

'/.V

/

10
7.0

V

100
40
20
10

V

1
~:~ ( !Z 1.0

/

/

5.0

g§

0.4
0.2
w
0.1
0.04
~ 0.02
.iF 0.01
0.004
0.002
0.001 0

a

/

/

/

3.0

i

TJ -

LI It/2S;C
1S0·C
1OO·C

r

I

~ 1.0

100·C
I--

1r
~

20
30
40
VR REVERSE VOLTAGE (VOLTS)
'The curves shown are tYPical for the highest voltage
device in the voltage groupmg. Typical reverse current
for lower voltage selections can be estimated from
these same curves if VR is sufficlenlly below rated VR.

I

I I

0.3

LL

@

~ 0.2
z

FIGURE 3 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 3)

I I I

10

/ ,/

~

 0.20
u
en 0.1 0
0.05

I-

ill /

[I

3.0

I-

Z

1.0

7S'C-

~

!

!JV
(I

~ 2.0
~
S

lOO'C=

,g

/

5.0

'"
~

150'C

«

7.0

~
a:
=>
u
a:

TJ

$

'The curves shown are typical for the highest voltage
device in the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these same curves if VR is suffiCiently below rated VR.

0.02
0.01
0.005

2S'C=

0.002
0

20
30
40
50
VR. REVERSE VOLTAGE (VOLTS)

10

O.7

80

60

a:

f2 O. 5

FIGURE 8 - CURRENT DERATING AMBIENT
(MOUNTING METHOD #3 PER NOTE 31

'"
=>
fil
z

~

~

5.0

0.3

'\

Rated VR
R8JA = 2S"CN,

'\.

O. 2

"\

.~

"-

0
O·,H=ftmmtm

0.07~
r-+-1r~-+-1--~+-~~-+-4~+-~~
0.05 t-+--+-t+-1--+--+--+-f--+--+--+-f-+---I

\dc

Square
~eve

0
0

II/++--+-t-+-+-+-+-+--+-+-+---l

'\
\

TJ = IS0'C

0.031--t--ft

0.02 OL-.1-'-::0l!:.2-..11--'0J..,.4-L-O~.6:-L-~0.::-8-L---,IJ,..0--1-,:l:.2,--L-...J
,.4

:\

\:

~

vF. INSTANTANEOUS VOLTAGE (VOLTS)

300\

1~'C

200

160

\

I

\

TJ

= 2S'C

'\

/""
/"" V
....... V ...... .......Square
Wav-

/' /'

140

FIGURE 10 - TYPICAL CAPACITANCE

FIGURE 9 - POWER DISSIPATION

TJ =

\.

100
120
80
60
TA. AMBIENT TEMPERATURE ('C)

20

de

.......

0

..........- V

...........

r--

~I--"

L.:::::: P""
1.0

2.0

3.0

4.0

5.0

10

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

3-88

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

50

MBR320, MBR330, MBR340, MBR350, MBR360

OUTLINE DIMENSIONS

NOTE 3 - MOUNTING DATA

Data shown for thermal resistance junction-toambient (ROJA) for the mountings shown is to be used
as typical guideline values for preliminary engineering,
or in case the tie pointtemperature cannot be measured.
TYPICAL VALUES FOR RflJA IN STILL AIR

Method

A

Lead Length, L (in)

Mounting
1/8

1/4

112

3/4

RflJA

1

50

51

53

55

'CIW

2

58

59

61

63

'c/w

3

28

LOz

'CIW

Mounting Method 1

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

p.e Board where
available copper surface
IS

STYLE 1:
PIN 1. CATHODE
2. ANODE

tK

small.

DIM
A
B

D
K
Mounting Method 2

MILLIMETERS
MIN
MAX
9.40
9.65
4.83
5.33
1.22
1.32
25.40
-

INCHES
MIN
MAX
0.370
0.380
0.190
0.210
0.052
0.048
1.000

-

CASE 267-03
PLASTIC

Vector Push-In

Terminals T-28

MECHANICAL CHARACTERISTICS
Mounting Method 3
P.C. Board With
2·1/2" x 2-112"

CASE . . . . . . . Void free, transfer molded
FINISH . . . . . . . . . . .AII external surfaces
corrosion-resistant and the terminal
leads are readily solderable
POLARITY . . . . . . . . Cathode Indicated by
polarity band
MOUNTING POSITIONS . . . . . . . . . . Any
SOLDERING . . . . . . 220'C 1/16" from case
for ten seconds

copper surface

~~g:

3-89

MBR320P MBR330P
MBR340P
•
See Page 3·51

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBR735
MBR745

SWITCHMODE POWER RECTIFIERS
usong the Schottky Barner principle with a platon um barner metal
These state-of-the-art devices have the followong features
•

Guardrong for Stress Protection

•

Low Forward Voltage

•

150°C Operatong Junction Temperature

•

Guaranteed Reverse Avalanche

•

Epoxy Meets UL94, VO at 1/8"

SCHOTTKY BARRIER
RECTIFIERS
7.5 AMPERES

35 and 45 VOLTS

CASE 2218-01
TO-220AC

PLASTIC
MAXIMUM RATINGS

Rating

Symbol

MBR735

MBR745

Umt

Peak Repetitive Reverse Voltage
Workrng Peak Reverse Voltage
DC Blockmg Voltage

VRRM
VRWM
VR

35

45

Volts

Average Recufled Forward Current (Rated VR)
TC = 105°C

IF(AVI

75

75

Amps

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHzl TC = 105°C

'FRM

15

15

Amps

Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditIOns halfwave.
Single phase, 60 Hz)

'FSM

150

150

Amps

Peak Repetitive Reverse Surge Current
12 01'5, 10kHz)

'RRM

10

10

Amps
°c

TJ

-65 to +150

-65 to +150

Tstg

-65 to +175

-65 to +175

°c

dv/dt

1000

1000

V/J..I.s

Maximum Thermal Resistance. Junction to Case

30

30

Maximum Thermal Resistance, Junction to Ambient

60

60

057
072
084

057
072
084

15
01

15
01

Operating Junction Temperature
Storage Temperature

Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(IF ~ 7 5 Amp, TC ~ 125°C)
(IF = 15 Amp, TC ~ 125°C)
(IF ~ 15 Amp, TC = 25°C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125°C)
(Rated de Voltage, TC ~ 25°C)

IR

(1) Pulse Test Pulse Width

=300 ~s. Duty Cycle::::;; 20%

3-90

Volts

mA

MBR735, MBR745

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
;;;- 50

100

~

,.-

5- 30

!i<
~ 20

iJ =

12~Oe

'"
=>

/.........-

.......

V/

/": Y

~ 10
~ 70

---

:

/'

'-'

z

;::

75°e

=>

/ V/

20

01

~

25°C

~ 001

II

I-"

07

!£. 05
02

0001
06
04
10
08
'f. INSTANTANEOUS fORWARD VOLTAGE (VOLTS)

12

o

10

FIGURE 3 - CURRENT DERATING. CASE
0..

70

..........

~ 60

"-

"'-

~
w

'"

"~
~e

180 0 Square

30

wav~

"-

:;;- 10
c(

110

;;;....
!;;:
~ 70

"

50

R

"-

#

30

~

f
~

w

~

20

'"

Eli

.

c(

'\

140

'>
if:'

150

'"""

~

- - - ROJA = 60 0 C/W
(No Heat Smk)

-

~

"-- - -"\ ~ :--.......
~
-- - --- -- ~
-- ---- ~ ::::.,.

'---180° Square wave \.
de
l

:>

10

---

20

40
60
80
100
120
TA. AMBIENTTEMPERATURE (0C)

140

STYLE 1

II"

/'

=lrEJ

18'
f--W

180 0F b de- C--

/,.

40

'"
;;:
'"
fe 20

'>

30

c(

//

co

0..

........

40

~

1800~-

v;

c(

- - ROJA = 16°C/W

"-

FIGURE 5 - POWER DISSIPATION

~

'"
ff1
:>

50

'"
'"
fe

~

120
130
Te. CASE TEMPERATURE (0C)

;::: 60

~

'"
a

de

;;:

2:

c(

60

c(

~

co

3:'"

....52:
Q

0
100

70

~

~

::t

0..

::;;

ROJC = 30 e/W

ffi 20

C
'"

50

Rated Voltage Applied

;;;-

0

'"

40

c(

i?

40

20
30
VR. REVERSE VOLTAGE (VOLTS)

FIGURE 4 - CURRENT DERATING. AMBIENT

Rated Voltage Applied

r-.......

=>

'-' 50
~

fe

V

80

;;;- 80

!....

-

ffi

25°C

/

;:: I 0

~

100°C
10

~

z

.......

125°C

~

75°C

fe 50
~ 30
~

,..-

TJ=1500e
10

W

./

J

/'

./

.........-

~R
I-J

1'/

10

~

~

20

F-C~'A

PIN 1 CATHODE

~~
Ii

2 N/A
3 ANODE
4 CATHODE

+4

F

~

'-' ~
LA !
H

o--ji~L '

DIM
A
8

e
0
f
G

18

20

3-91

POLARITY: CATHODE-TO-CASE

'"
064
361

.83

089
373
533
330

J '"
'"
'14

H

036

K
L
Q

R
S
T
U

40 60
80
10
12
14
16
If(AV). AVERAGE fORWARO CURRENT (AMPS)

MILLIMETERS
MAX
M"
lSI! 1575
1029
406
482

1210

'54
'04
11.
'97
076

1427
117

304

'"
'"
'"
127

INCHES

MAX
M"
0595 0620
0380 0405
01S0 0190
0025 0035
0142 0147
0190 0210
0110 0130
0014 0022
0500 0562
0045 0050
0100 020
0080 0110
004' 0055
0235 0255

003

005

CASE 221 B-01

160

MOTOROLA

-

•

MBR1035
MBR1045

SEMICONDUCTOR

TECHNICAL DATA

SCHOTTKY BARRIER
RECTIFIERS

SWITCH MODE POWER RECTIFIERS

10 AMPERES
20 to 45 VOLTS

uSing the Schottky Barner principle with a platinum barner metal
These state-of-the-art devices have the follOWing features.

• Guardnng for Stress Protection
• Low Forward Voltage
•

150°C Operating Junction Temperature

• Guaranteed Reverse Avalanche
• Epoxy Meets UL94. VO at 1IS"
CASE 2218-01
TO-220AC
PLASTIC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Average Rectified Forward Current (Rated VRI

Symbol

MBR1035

MBR1045

Umt

VRRM
VRWM
VR

35

45

Volts

IF{AV)

10

10

Amps

IFRM

20

20

Amps

IFSM

150

150

Amps

IRRM

10

10

Amps

TC=135°C
Peak RepetitIve Forward Current

(Rated VR. Square Wave. 20 kHz) TC = 135°C
Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditIOns halfwave,

single phase. 60 Hz)
Peak Repetitive Reverse Surge Current

(2 0 p.s. 10kHz) See Figure 12
Operating JunctIon Temperature
Storage Temperature

Voltage Rate of Change (Rated VR)

TJ

-65 to + 150

-65 to + 150

°c

Tstg

-65 to +175

-65 to +175

°c

dvldt

1000

1000

Vlp.s

Symbol

M8R1035

MBR1045

THERMAL CHARACTERISTICS
Characteristic
Maximum Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Characteristic
Maximum Instantaneous Forward Voltage (1)

(IF= 10A. TC= 125°C)
{IF = 20 A. TC = 125°q
(IF = 20 A. TC = 25°C)
Maximum Instantaneous Reverse Current (1)
(Rated de Voltage. TC = 125°C)
(Rated de Voltage. TC = 25°C)

057
072
084

057
072
084

15
01

15
01

mA

'R

(1) Pulse Test Pulse Width = 300 ,,5, Duty Cvcle" 2 0%

3-92

Unit

Volts

vF

MBR1035, MBR1045

FIGURE 1 -MAXIMUM FORWARD VOLTAGE

FIGURE 2 -TYPICAL FORWARD VOLTAGE
100

100
70

.K
/

50
TJ = 150°C

/

30
20

...u;-::;;

10

...a'i

70

a

50

//

/

~

/

70

V

/jOOOC,/

,/

TJ = 150°C

./

/

~

::>
20
:il
z

en

II

10

~

!f-

...co:z
...co:

'"
~
!f-

07
05

I

03
02

01

I
<"

0.4
06
OB
10
12
VF.INSTANTANEOUS VOLTAGE (VOlTS)

...

01

10

ffi

I

II
0.4
06
08
10
12
vF. INSTANTANEOUS VOLTAGE (VOLTS)

FIGURE 4 -

MAXIMUM SURGE CAPABILITY

200

u;-

...5-a'i

1000C

a:
a:

100

~

70

~

50

\

a

1.0
75°C

co:

01


u

/

rl

07

FIGURE 3 - MAXIMUM REVERSE CURRENT
100

f/II

10

02

II
02

/ '/

30

03

/

V /

, I.

05

I

.7

/'

'II

::>
'" 20
:il
z

I

;:!:

...zco:

s:

a:
~

/j 'I

en

70
50

.

1/

30

~

::>

a:
'-'
c
a:

'!

a:
a:
~

...

"lOOoc . /

;;V

u;~ 10
5-

I

/. V

/~ V25 0C
VI /

20

5-

c

/

30

V;5°C

I. I;

a:
a:

1//

50

r-- I--

20
10

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

10

50

3-93

20

30

50 70 10
20 30
NUMBER OF CYCLES AT 60 Hz

50

70 100

MBR1035, MBR1045

FIGURE 5 - CURRENT DERATING. INFINITE HEATSINK

;;; 20
~

""'-

....

15
a: 15
a:
=>
'-'
c
a:

10 -

~
~

I
I
IpK
I = 1T IReslStlVe load)
AV I
I
Square Wave

"'" "-

IpK "ICapaclllve load) IAV = 5

w

~ 50
S

o

110

120

~

130

~

141---+--t---+--+-----j'---+--f----l

ffi
a:

121---+--,.....,,-t----ir-

a
c

101---4......;;::""f-..;;;::--+-"""'-.dir--+--+--t-----\

i

80

a:

a:

"< :\

~~

10
20

'"

.iF

~

Rated Voltage Applied

":;

.
.
..

FIGURE 6 - CURRENT DERATING. ROJA = 16° C/W

16r---,---,----,---,---,,---,---,---,

~==~===+~~~~t-~~c-~----t---l

~ 601===I==*==-;;t''''''"-..iIt-~~--''-t

.
'"

~ 401---t--+--+-~~'7'".....::'I'~~:+--""t----\

l\C

l20

~

140

O~--~--~--~----~--~--~--~~~~

150

o

160

20

40

TC. CASE TEMPERATURE lOCI

g
~

~

~

50

~

~

20

~
~

~

~

.iF
60

40

80

u

~ 20~==~~~~~~~~--~;>~i----+---1
'"
ffi

~~

20

Rated Voltage Apphea, RnJA = 60 oC/W

401---/--+""",......1---+--+--t---/---I

i

~

00

160

~ 30l===l::::;;~J---l---=:~,I-.:.'+--t----\---l

///'g

"-

140

a:
a:

h /
W V

.#v
h '//,V

i :~

ffi 10

~

ReSIstIve load

~/

r===!~"",:-I---~

!1:

Wave -

ICapaclllve load) :PK = 5
60 f--'10 AV /

120

;;;50,--.,.--.,.---..---..--.,.--,.--....,.---,

~ : ~ ~====~=====:====:-s-m-.-w-l'!-av-e--+VSquare
d~
ill
/ V
~

100

80

FIGURE 8 - CURRENT DERATING. FREE AIR

FIGURE 7 - FORWARD POWER DISSIPATION
10r---'---~---'----'---'----'-I--~IC-~~

7 0 f---

60

TA. AMBIENTTEMPERATURE lOCI

10

12

14

I 0 1---+--+--I--?"1'lR,...2'~__-t--"rl---I
IpK
ICapacltlv, load) IAV = 20.
0'--__-'-__....1..__--'-____' - -__..1.-__- - " ' ' ' - - - ' - - ' ' - - '

o

16

20

IFIAV). AVERAGE FORWARD CURRENT lAMPS)

40

60

80

100

120

140

160

TA. AMBIENTTEMPERATURE 1°C)

FIGURE 9 - THERMAL RESPONSE

§'

~

:;
a:

'"
~

.

~

z

....
'"
iii

I0
07
05

d=LJL

03
02

....- ...-

a:

01
.. 007

Ip

r---q---j

~

~

005

f5

003

i=

u; 002

...~
-' 001 ....~

001

""'
01

Outy Cycl •. 0
Pk

TIME

=Ip/t1

Peak Power, Ppk.

IS

peak of an

eqUivalent square power pulse

"TJL =Ppk R9JLIO + 11 - 01 . r(l1 + tpl + rltpl- rltlll
where 11TJl = the Increase In Junction temperature above the lead temperature
r(tl =normalIzed value of tranSIent thermal resistance at time, t,
for example, r(t1 + tpl =normahzed value of tranSient
thermal reSistance at time, t1 + tp

.........
I-'"

_

10

10
I,

TIME Imsl

3-94

100

1000

MBR1035, MBR1045
FIGURE 10 - CAPACITANCE

HIGH FREQUENCY OPERATION
Sonce current flow on a SChottky rectif,er IS the result of majority
carner conductIon, It IS not subject to JunctIon dIode forward and
reverse recovery transients due to minority carner injection and
stored charge Satisfactory CirCUit analysIs work may be performed by usong a model consistong of an Ideal dIode In parallel
wIth a variable capacItance. (See Figure 10.)
RectIfIcatIon eff,c,ency measurements show that operatIon WIll
be satIsfactory up to several megahertz For example, relatIve
waveform rectIfIcatIon eff,c,ency IS approxImately 70 per cent at
2 MHz, e g , the ratIo of dc power to RMS power on the load IS
a 28 at thIS frequency, whereas perfect rectlfocatlon would YIeld
0.406 for Sine wave Inputs However. In contrast to ordinary
Junction diodes. the loss In waveform efflcleny IS not rndlcatlve of
power loss, It IS simply a result of reverse current flow through the
dIode capacnance, whIch lowers the dc output voltage

a

1500
1000

'"

700

""-

~

'-'

z



'IV 1/

I

'/

==

100°C

/

TJ = 25°C

II I

175°C

@

125°C

I

/

/

z

25°C

~0.5

o

0.1

0.2
0.3
0.4
0.5
06
0.7
08
Vr. INSTANTANEOUS VOLTAGE IVOLTSI

0.9

40
60
80
100
VR. REVERSE VOLTAGE IVOLTSI

Figure 1. Typical Forward Voltage
10

~

1\

\

~
I-

i5
a:

SOUARE
WAVE

0

~

a:

f2

~

de\

",.
\

ROJC

120

~~

130
140
TC. CASE TEMPERATURE lOCI

\ '

20

40

IPKIIAV

= 20

V

T-r

= PI-

~

V~ ~ ~

./: V....-:: ~ ~ ......

~e

180

\

A

~-J,

".;;-.-

F~

, ,

"

'\...- / "

A

\

.-l

A

jmu

SO. rAVE

teA
-I-J

~

£, ~ ~ v
~~

D-=iI G1_

Polarity: Cathode-To-Case
3
4
5
7
IF IAVI. AVERAGE CURRENT IAMPSI

10,

Figure 5. Forward Power Dissipation

3-97

CASE 2218·01
TO-220AC
PLASTIC

STYLE 1
PIN 1
2
3
4

!

F=:'-±'-r

tl W~lplL
11

//

/' ~

',1\

Figure 4. Current Derating. Ambient

IPKIIAV

= 10

\
, \

60
80
100
120 140 160
TA. AMBIENT TEMPERATURE lOCI

~r-fC

IPKIIAV

,

'\

160

150

=5

.... de \

SQUARE WAVE\

= 25°C

IPKIIAV

\

,

~

\
\
\

\

RATED VOLTAGE APPLlED-

de

-- .\.

Figure 3. Current Derating, Case

TA

--IHEATSINKI R8JA = 16°CfW
- -INO HEATSINKI ROJA = 60°CfW

= 2°CfW

\

"..

110

"-

\ 9

'\

\

\

a:

RATkD VOLtAGE
APPLIED

\

::;;

::>
u

Figure 2. Typical Reverse Current
10

\

120

H

CATHODE
NA
ANODE
CATHODE

MlLUMETERS

H

'83
279

MAX
1575
1029
482
089
373
533
330

K

036
1270

"6
1427

DIM
A

•

e
0

F
G

J
L

Q

R
S
T
U

MIN
1511
965

'06
064
361

"'

254
204
114
591
076

INCHES
MAX
MIN
0595
0620

0380
01'"

0."
0190

0025
0142

0035

0190

0210

0110
0014

0130
0022

0562

648

0500
0045
0100
0080
0045
0235

",

OOJO

127
304
279
139

0147

0050
0120
01'0

0055
0255
0050

200

MOTOROLA

-

MBR1535CT
MBR1545CT

SEMICONDUCTOR

TeCHNICAL DATA

SWITCHMOOE POWER RECTIFIERS

SCHOTTKY BARRIER
RECTIFIERS

uSing the Schottky Barrier pnnclple with a platinum barrier metal
These state-of-the-art devices have the following features
•

Center-Tap Configuration

•

Guardnng for Stress ProtectIOn

•

Low Forward Voltage

•

150°C Operating Junction Temperature

•

Guaranteed Reverse Avalanche

•

Epoxy Meets UL94,

va

•

15 AMPERES
35 and 45 VOLTS

at 1/8"

CASE 221A-04
TO-22DAB
PLASTIC

MAXIMUM RATINGS

Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR1535CT

MBR1545CT

Unit

Volts

VAAM
VAWM
VA

35

45

IF(AV)

75
15

75
15

Amps

Peak Repetitive Forward Current. Te = 105°C
(Aated VA, Square Wave, 20 kHz) Per Diode

IFAM

15

15

Amps

Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditions halfwave.
Single phase, 60 Hz)

IFSM

150

150

Amps

Peak Repetitive Reverse Surge Current
(2 0 ~s, 10kHz)

IAAM

10

10

Amps
°c

Average Rectified Forward Current
TC = 105°C (Aated VA)

Per Diode
Per Device

TJ

-65 to +150

-65 to +150

T stg

-65 to +175

-65 to +175

°c

dvldt

1000

1000

V/~s

Maximum Thermal Resistance, JunctIon to Case

30

30

Maximum Thermal Resistance, Junction to Ambient

60

60

057
072
084

057
072
OB4

15
01

15
01

Operating Junction Temperature

Storage Temperature
Voltage Aate of Change (Aated VA)
THERMAL CHARACTERISTICS PER DIODE

ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage (1)
(IF =7 5 Amp, TC =125°C)
(IF =15 Amp, TC 125°C)
(IF =15 Amp, T C 25°C)

vF

MaXimum Instantaneous Reverse Current (1)
(Rated de Voltage, TC 125°C)
(Aated de Voltage, TC 25°C)

'R

=
=

=
=

(1) Pulse Test Pulse Width = 300 lIS, Duty Cycle

~

2 0%

3-98

Volts

rnA

MBR1535CT, MBR1545CT

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
'" 50

~

+J =

20

B

~

12~oC

V...........//

~

10

c

..--,/

~ 30

i

.,/

'/'"

TJ-150°C
10
125°C
;;(

100°C

75°C

70
5a

E

/~

~ 30
~
z 20

/

~

:

10

~
B

01

75°C

a:
'"

25°C

~ 001
0001

05 02

04
06
08
10
'F. INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

12

25°C

o

10

I"

"'"

12

~ 10

"

~

«

i;§
~
w

80

",
'"
~

60
40

S:-

20

~

'"
S
~

FIGURE 5 -

IAV

a:

i

60

A

~

#' ./

~ 40
«
'"
ffi 20

;;:

1

~

P""/

;
00

~

~L7r

en
i@ 10
80

~
B
~

"'-

~

"~

~

de

"-

'\

".......

10

80

~ 60

'"
ffi
;;:
150

"'"

~

-- -

40

--

0

o

20

=16°C/W

ROJA =60 0 C/W
(No Heat Smk) r - -

"" ""
~

~ 1~o~quare wavi \

-'- 2 0

j

- - ROJA

12

w

~

140

Rated Voltage Applied
14

"" "'"

~
--\-- -- ... r-_
--- - ~-~
40

60
aD
100
120
TA. AMBIENT TEMPERATURE (OC)

~

140

(ReSistIVe Load)

12

~

~

POWER DISSIPATION

14

c

a.
c

~

120
130
TC. CASE TEMPERATURE (0C)

110

z

~

in

ROJC = 30 0 C/W

""

~ o
100

Rated Voltage Applied

" i'....

180° Square Wave

'"
ffi
;;:

50

16

14

~

40

20
30
VR. REVERSE VOLTAGE (VOLTS)

FIGURE 4 - CURRENT DERATING. AMBIENT

FIGURE 3 - CURRENT DERATING. CASE

in 16
~
~
>-

--

:>

II

~ 10
;;: 07
!f-

'/

/

-

100

l laoOC
[--Square
//
Wave

.........
;.r

/7

/'

de

-I--

/'

"...........- V

IL/
20

40

60

80

10

12

14

16

18

STYLES
PIN 1 ANODE
2 CATHODE
3 ANODf
4 CATHODE

20

IFIAV). AVERAGE FORWARD CURRENT lAMPS)

NOTES
1 DIMENSIONING AND TOLERANCING PER ANSI
Y145M,1982
2 CONTROLLING DIMENSION INCH
3 DIM ZDEFINfSAZONE WHERE All BODY AND
LEAD IRREGUlARITIES ARE ALLOWED

DIM
A
B

e

D

F
G
H
J
K
L

•

Q

R
S

T

CASE 221A-04
TO-220AB
PLASTIC

3-99

U
V

Z

MIWMET£RS
MAX
M"

1575
'44' 10"
'"407 482

064
36'
242

'"'"

1270

'15

483

25'
204

'597
15

M"

INCHES
MAX
0620

0570
0380
01'"

088
313

0025
0142

'"393,

0110

1427
139

'33

304
279

'39

000

647
127

"'

204

0(195
0014
0500
004'
0190
0100
0080
004'
0235
0000
004'

0190
""
003'
0147

0105
0155
0022

"62
0055
0210

0120
0\10
0055
o~,

00;0

"""

160

•

MOTOROLA

•

MBR1635
MBR1645

SEMICONDUCTOR

TECHNICAL DATA

SCHOTTKY BARRIER
RECTIFIERS
SWITCH MODE POWER RECTIFIERS
16 AMPERES

usong the Schottky Barner principle with a platonum barner metal
These state-of-the-art devices have the following features
•

Guardrong for Stress Protection

•

Low Forward Voltage

•

150a C Operatong Junction Temperature

•

Guaranteed Reverse Avalanche

35 and 45 VOLTS

CASE 2218-01
TO-220AC
PLASTIC

MAXIMUM RATINGS

Ratmg

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Average RectifIed Forward Current(Rated VR)

MBR1635

MBR1645

Unit

Volts

VARM
VRWM
VR

35

45

IF(AV)

16

16

Amps

IFRM

32

32

Amps

IFSM

150

150

Amps

IRRM

10

10

Amps
°C

TC=125°C
Peak Repetitive Forward Current

(Aated VR, Square Wave, 20 kHzl TC = 125°C
Nonrepeutlve Peak Surge Current
(Surge applied at rated load conditions halfwave,

Single phase, 60 Hz)
Peak Repetitive Reverse Surge Current

(2 0 !'s, 10kHz)
Operating Junction Temperature

Storage Temperature

Voltage Rate of Change (Aated VA)

TJ

-65 to +150

-65 to +150

Tstg

-65 to +175

-65 to +175

°C

dvldt

1000

1000

V/!'s

THERMAL CHARACTERISTICS
Maximum Thermal Reslsta nce, Junction to Case

15

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)

Volts

vF

(IF = 16 Amp, TC = 125°C)
(IF = 16 Amp, TC = 25°C)
Maximum Instantaneous Reverse Current(1)

057
063

057
063

40
02

40
02

mA

'A

(Aated de Voltage, TC = 125°C)
(Rated de Voltage, TC = 25°CI
(1) Pulse Test Pulse WIdth'" 300 /-lS. Duty Cycle ~ 2 0%

3-100

MBR1635, MBR1645

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE

200
100
;;; 40 f-TJ= 150°C
.§. 20
125°C

~100
::!E

-'">-

70
50

a:

~

30

G

20

'"a:

'"a:

;:

./'

TJ= 125°C
i'v"
100°C
25°C-,.(

v:::::
~
Y

:;;...-

~

a: 40

10

~ 10

~ 70
=> 50

02

E: 01

z

/

30
>z

004
002
001

III
I
/I I

20

>f. 1 0

75°C

a';a: 04

'"
@

'"
'"'">;;;

100°C

a 20

V/

o

0004
0002

02
04
06
08
vF. INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

10

o

~

1"-

14

G

a:
~ 80
~

ffi
'"
:>

60

'\

r----

Rated Voltage Appl"d
ReJC = 1 5°C/W

40

110

120

FIGURE 5 -

'">->-

;=
'"

12

130
140
TC. CASE TEMPERATURE

~ 60

'"

ffi

1\

'\..

~20
o

16

'\

'\

"-

'"

~

o

160

lOCi

'"ffi'"

""'I'-....
de

20

40

t-JmJ P.C~AA

:>

R

'"if;- 2 0
18

r

1
ff---f

F

3-101

140

160

lOCi

PIN I CATHODE

~ ~~AOOE

B

~

=

4 CATHODE
MILLIMETERS

DIM
A

'0-' ~
H

•

e
0
F

G

11 ,
G

CATHODE COMMON TO TAB

20

~- ~

120

STYLE 1

:>

40
60
80
10
12
14
16
IFIAVI' AVERAGE FORWARD CURRENT IAMPSI

"" ""

~

60
80
100
TA. AMBIENT TEMPERATURE

-I1-, o--jF'~'
-I

40

I

ReJA = 16°C/W
- - IW,th TO·220 Heat Smkl
___ ROJA = 60 oC/W
INa Heat Smkl

-- -----

--

=lrjJ
r-{

60

E

50

I

Ap~"ed

"'"
--- -- '" "'-"'"

FORWARD POWER DISSIPATION

a: 80

3:
'""-w

40

i'.....

Square Wave--

~O

10

a

40

;;- 20

\

150

-----

'"'"

« 14
~
z

"-

Square Wav;-'

~ 80

\

' " de

10

~

'\
'\..

"

~ 12

a

"-

Square Wav~

«
;: 10

Rated VR

14

a:

' " de

"'-

12

~

P

FIGURE 4 - CURRENT DERATING. AMBIENT

:0.

16

>-

fij
a:
a:

20
30
VR. REVERSE VOLTAGE IVOlTSl

10

in 16

~ 18

:0.

-

25°C

FIGURE 3 - CURRENT DERATING. CASE
20

in

~

-I--

10

H
K

l

n
R
S

T
U

MIN
1511

965
406
064
361
483
279
036
1270
/1,
15'
204
/14
591
076

MAX
1515
1029
482
089
373
533
330
056
1427
127
04
279
139

64'
12

INCHES
MIN

MAX

0595
0380

0620

0160
0025
0142

0190

0190
0110
0014
0500
IJ045
0100
0080

0045
0235

03

CASE 221B-01
TO-220AC
PLASTIC

0405
OOJ5
0147
0210
0130
0022
0562
0050
0120
0110
0055

0255
000

MBR2035CT
MBR2045CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

SCHOTTKY BARRIER
RECTIFIERS
20 AMPERES

SWITCHMODE POWER RECTIFIERS

35 and 45 VOLTS

uSing the Schottky Barner principle with a platinum barner metal
These state-of-the-art devices have the following features
•

Guardnng for Stress Protection

•

Low Forward Voltage

•

150°C Operating Junction Temperature

•

Guaranteed Reverse Avalanche

•

Epoxy Meets UL94, VO at 1/8"

CASE 221A-04
TO-220AB

PLASTIC

MAXIMUM RATINGS
Symbol

MBR2035CT

MBR2045CT

Unit

VRRM
VRWM
VR

35

45

Volts

Average Rectified Forward Current (Rated VRI
TC= 135°C

IF(AV)

20

20

Amps

Peak Repetrtlve Forward Current Per Diode Leg
(Rated VR, Square Wave, 20 kHz) TC = 135°C

IFRM

20

20

Amps

Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditions halfwave,

IFSM

150

150

Amps

IRRM

10

10

Amps

TJ
Tstg

-65 to +150
-65 to +175

-65 to +150
-65 to +175

°C
°C

dv/dt

1000

1000

V/!'s

057
072
084

057
072
084

15
01

15
01

Ratmg
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

single phase, 60 Hz)

Peak Repetitive Reverse Surge Current
(20 !'s, 10kHz) See Figure 11
Operating Junction Temperature
Storage Temperature
Voltage Rate of Change (Rated VR)
THERMAL CHARACTERISTICS
MaXimum Thermal ReSistance, Junction to Case
ELECTRICAL CHARACTERISTICS
MaXImum Instantaneous Forward Voltage (1)
(IF= 10Amp, TC= 125°C)
(IF = 20 Amp, TC = 125°C)
IIF = 20 Amp, TC = 25°C)

vF

MaXImum Instantaneous Reverse Current (1)
(Rated de Voltage, T C = 125°C)
(Rated de Voltage, T C = 25°C)

'R

(1) Pulse Test Pulse W,dth

=300 ,us, Duty Cycle ~ 20%

3-102

Volts

mA

MBR2035CT, MBR2045CT

FIGURE 2 -TYPICAL FORWARD VOLTAGE

FIGURE 1 -MAXIMUM FORWARD VOLTAGE
100

100

A

70

1/

50
TJ = 150°C
30

V;

20

~

/

~

>-

.......

//
/
/'
/

~

TJ=150oe

~5OC

~
::;

'"
5::
z

10

""

07

05

J

05

03

I

03

I

02

02

II
II

01

01
02

'II

'/11

20

~

I

04
06
10
12
08
VF INSTANTANEOUS VOLTAGE (VOLTS)

/
I

I

I

III

=TJ

10

150°C

in

125°C

:'!.

~

>-

a;

75°C

100

~

70

'"'
~

~

~

25°C

:...r-

.!t 001
0001

~

o

-

'"'

I
I

1\

B

10

01

14

FIGURE 4 - MAXIMUM SURGE CAPABILITY

100°C

>-

ffi

06
08
10
12
vF INSTANTANEOUS VOLTAGE IVOLTS)

200

E-

iB

04

02

FIGURE 3 - MAXIMUM REVERSE CURRENT

«

I

I

14

100
I

V25 0 C

/ '/

30

z

~

/

/

III

~

/'/

./

70
50

-

~

B

1//

50

70

z

'"

70

./

/100 0 C.......

! V/

10

::;

Y

"-

"-

50

I"-

:r

""

~

~

r--......

30

r-- I--t-

20
10

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

10

50

3-103

20

30

50 70 10
20
30
NUMBER OF CYCLES AT 60 Hz

50

70 100

MBR2035CT, MBR2045CT

FIGURE 6 - CURRENT DERATING. ROJA = 16 0 C/W

FIGURE 5 - CURRENT DERATING. INFINITE HEATSINK

v;
"::;;

....~
~
'"
::::>
u
c

40

25
20 I---

w

15

'"ffi«
:>

ICapaCltlve loadl

IpK ~
IAV
=5

F

I

'"
'"
B
c

IpK

I

::

IReslstlve load)

AV I

""

~ I\.

~

I
7r

50
110

120

20r----4~~~~--+_~~~--_+----1_----t_--_1

~

Square Wave

~
w

'"
ffi


130
140
TC. CASE TEMPERATURE lOCi

80~---+-----r----+_~~~~~~~~~__t_--_+

~ 40

~

o

24~---+----~~--+_--~r_

'"

v;

"'" ""-

30

«
'"
;;

'"
~

Rated Voltage Apphed
35

iF

150

160

20

+- // /'

14
12

-

IpK

'20 10

80

40

:>

~
32

I

"'
"
~""
~

a

o

~

IpK
IAV

L~

~~

0

ICapacltJlJe load)

I

:-::;:: ~

IpK
IAV

=20/1 0

I
~

I

tAeslsllve load) -

I

~L

I

Square Wave -

v"-

5',;r::: ~
~

120
40
60
80
100
TA. AMBIENT TEMPERATURE lOCI

20

-

~'
"\

"

140

160

FIGURE 9 - THERMAL RESPONSE

I--"""

03
02

J=tJ1'k

I, _

....... .......

01

'"

5l

//

;z

~

/

/

'/

1

iii:z

/
O.D1~TJ

-;L 0.5
-

100°C

25'C- r--

TJ

r/

f2

125'C

--/'00'C~ t=:==::::

0

0.1

0.9

0.2

03
04
05
06
0.7
08
vF. INSTANTANEOUS VOLTAGE (VOLTS)

~

~

"-

8
6

114
=>
u
CJ

I

2

0

'"

RATED VOLTAGE_
APPLIED

'\.

"-

'"

SQ.'\.
WAVE '\.

I'\.

2'cm

6

'" '"

2
0

150

160

Figure 3. Current Derating. Case
20

~~
a:

IPKIIAV
TA

~

25°C
IPKIIAV

14
12

IPKIIAV

~ 10
f;:

~

Y /.

ffi

~ ~ ;...---

2

o[~
o

~

~~

5,

"'"

-- ""- i'..
--r.o...
de

60
80
100
120 140
TA. AMBIENT TEMPERATURE (OC)

/'

~ /"

/~ ::?'....... V

'SQ WAVE

14~

C
D
F
G
H

180

de

l

N
Q

R
S

16

18

20

Polarity: Cathode·To·Case

242
280
0"

NOTES
1 DIMENS\ONING AND TOtEAANCING PER ANSI
Y!(5M,I!I82
2 CONTROLLING DIMENSION INCH
3 DlMZDEFINESAZONEWHEREAlLBOOYAND

Figure 5. Average Power Dissipation and
Average Current

LEAD IRREGULARlTIES ARE ALLOWED

3-107

115
'83
254
204
115

2~

393

055
1427

2

.AX
0620

,,~

01
0035

0025

000
115

-

0095
0110
0014
0500

'"

O~5

533

,,~

3~

0100
"80

279

, "7 '"
"7

U
V

INCHES
M~

0570
0380

'" '" ""

, ''''
J

;:::0-'

6
8
10
12
14
AVERAGE CURRENT (AMPS)

M!l.UMETERS
MAl
1575
1028
9~
.07
..2
054
0"

,, ""

OM

~C

""

160

STYlES
PIN! ANODE
2CATHODt
3 ANODE
4 CATHODE

r../

'> V
/' /~
/':: ~ ::,.....-

~

--

A-." f'l'"

10

20

w

"'

~

SQ. WAVE'-....
40

de

........

-- ~
20

RATEb
(HEATSINK) ROJA ~ 16'CM'
(NO HEATSINK) ROJA ~ 60°Cm

Figure 4. Current Derating, Ambient

PI

16

"'- ,

0
8

130
140
TC. CASE TEMPERATURE (OC)

120

110

ROJC ~

'\.

'\

o

""'- i"..

2

'\.

j

- - - -

4

~dC

120

VOLT~GE AplplIE~±--

8
6

I\.

10

18

40
60
80
100
VR. REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current Per Diode

Figure 1. Typical Forward Voltage Per Diode
20

25°C

20

."
204

O~5

0147

0105
015
0022
0562

ooss

0210
,,~

OlIO

0~5

,,~

0235
0""
0045

,,~
,,~

- "''''

CASE 221A-04
TO·220AB
PLASTIC

200

MOTOROLA

-

MBR2535CT
MBR2545CT

SEMICONDUCTOR

TECHNICAL DATA

•

SCHOTTKY BARRIER
RECTIFIERS
SWITCHMODE POWER RECTIFIERS

30 AMPERES

35 and 45 VOLTS

uSing the Schottky Barner pnnclple with a platinum barner metal
These state-of-the-art devices have the follOWing features
•

Guardnng for Stress ProtectIOn

•

Low Forward Voltage

•

150°C Operating Junction Temperature

•

Guaranteed Reverse Avalanche

CASE 221A-04
TO-220AB
PL~ST!C

MAXIMUM RATINGS
Symbol

MBR2535CT

MBR2545CT

Unit

VRRM
VRWM
VR

35

45

VailS

Average Rectified Forward Current (Rated VR)
TC= 130°C

IF{AVI

30

30

Amps

Peak Repetitive Forward Current Per Diode Leg

IFRM

30

30

Amps

Nonrepetitive Peak Surge Current per Diode Leg
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)

IFSM

150

150

Amps

Peak Repetitive Reverse Surge Current

IRRM

10

10

Amps

TJ
Tstg

-65 to + 150
-65 to +175

-65 to + 150
-65 to +175

°c
°c

dvldt

1000

1000

Vips

ROJC

15

15

°C/W

073
OB2

073
OB2

40
02

40
02

Ratmg
Peak Repetitive Reverse Voltage
Worktng Peak Reverse Voltage

DC Blocking Voltage

{Rated VR. Square Wave. 20 kHzl TC

~

130°C

{2 0 pS. 1 0 kHzl
Operating Junction Temperature
Storage Temperature

Voltage Rate of Change (Rated VRI
THERMAL CHARACTERISTICS PER DIODE LEG
Maximum Thermal Resistance, Junctton to Case

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)

Maximum Instantaneous Reverse Current (1)

"R

(Rated de Voltage. TC = 125°C)
(Rated dc Voltage. TC =25°C)
(1) Pulse Test Pulse Width

Volts

vF

(IF = 30 Amp. TC = 125°C)
(IF = 30 Amp. TC = 25°C)

=300 ~s. Duty Cycle ~ 20%

3-108

mA

MBR2535CT, MBR2545CT

FIGURE 1 - TYPICAL FORWARD VOLTAGE

-

'"~
0:

a
c

FIGURE 2 - TYPICAL REVERSE CURRENT

200
100

~IOO
::;;
« 70
>- 50

-

30
TJ=125°C
r........100°C
25°C-,.(

20

0:

«

~~
:;./

V/

~ 10

5: 70

'"
=>

til 50
z
« 30
.,«>t;; 2 0
;;!:
~

10

/

I II
I
1/ I

o

II

0002

02
04
06
06
vF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 3 -

I0

::;;

'"

>-

~ 24
20

i

16

5:
w 12

'"ffi

~

80

I - Rated Voltage Applied

ROJC = I 5°C~W
1

~

\

;; 4 0

120

I'\.

~

24

a
c

20

\

~

1\

130
140
TC. CASE TEMPERATURE (OC)

ffi>

«

z
'"

24r_~--_r--~

~

201---+---+----r---+--~--~~~~--1-~~---1

w

'"ffi«

16
121---1-~-r~~~~~--~~-+--~--1-~

f-

0

40

80
12
16
20
24
28
32
IF. AVERAGE FORWARD CURRENT (AMPSI

36

de

r-- r-

40

I

Rated VR APr"ed
ROJA = 16°C/W
- - (With TO-220 Heat Sink)
___ ROJA = 60°C/W
(No Heat Sink)

'" """I'-..""'"
-- '"
--

r- __

~
~

...

'"

~-

60
60
100
120
TA. AMBIENT TEMPERATURE (0C)

I-

.-1--0

__ N __
NOTES
1 DIMENSIONING AND TOlERANCING PER ANSI
V14SM,1982
2 CONTROLLINGDIMENSIQN INCH
3 DIM Z DEFINES A ZONE WHERE ALL BODY AND
LEAD IRREGULARITIES ARE ALLOWED

..,::::..J__- '__- '__-'-__-'-__-L_--L-_--'-_-'------'

o

" "'-

1'--

80

G-

80

~40r_~~~~T-~--_+--1_--t_~--_r~

~

50

~

140

160

,~~' 'tl~~ ;:)~ '_
j}~j r fL !l! :!l!~ l~
:~ X: l ':: :: iil i:

~

"-

f- __

20

is

~-

Square Wa~

Square Wav~ .....

i 26r_~--_r--~--+_--t_~r__+--_r--~~
0:

r--..

150

40

l

......... de

0:

5: 12

f-'

CURRENT DERATING. AMBIENT

~h

0:

FIGURE 5 - FORWARD POWER DISSIPATION
'" 32r---,---.----.---r---,----r---,---.----.---"

~

28

«
:;: 16

\

-

32

0:

'\ \
\ \

«
~ 0
110

>-

\

Square wave,\

~

5-

~e

~

20
30
VR REVERSE VOLTAGE IVOLTSI

10

FIGURE 4 -

'""-

~ 28

a

o

CURRENT DERATING. CASE

in 32

5-

---

40 -TJ - 150°C
20
I- 125°C
10 40
100°C
20
I0
75°C
04
02
~ 0 I
004
002
25°C
00 I
0004

;;.--

,./

40

3-109

~

~~

~~ ~~~ ~~~

11S

139

~

~~

~~~

V
Z

115

S

0045

0055

~:

~~~

0045
204

CASE 221A-04
TO-220AB
PLASTIC

08'

•

MBR3020CT
MBR3035CT
MBR3045CT
5D241

MOTOROLA

SEMICONDUCTOR
TECHNICAL DATA

•

SCHOTTKY BARRIER
RECTIFIERS
SWITCH MODE POWER RECTIFIERS
30 AMPERES
20 to 45 VOLTS

uSing the Schottky Barner principle with a platinum barner metal

These state-of-the-art devices have the following features

•
•
•
•
•

Dual Diode Construction
Guardnng for Stress Protection
Low Forward Voltage

~

150°C Operating Junction Temperature
Guaranteed Reverse Avalanche

:r

CASE 11-03
TO-204AA
METAL

MAXIMUM RATINGS
Rating

Symbol

MBR3020CT

MBR3035CT

MBR3045CT

SD241

Umt

VRRM
VRWM
VR

20

35

45

45

Volts

10

30
15

30
15

30
15

30
15

Amps

Peak Repetitive Forward Current, Per Diode
(Rated VR, Square Wave, 20 kHz)

IFRM

30

30

30

30

Amps

Nonrepetltlve Peak Surge Current
(Surge apphed at rated load conditions
halfwave, single phase. 60 Hz)

IFSM

400

400

400

400

Amps

Peak Repetitive Reverse Current. Per Diode
(20 !'s, 10kHz) See Figure 8

IRRM

20

20

20

20

Amps
°c

Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC = 105°C

Per Device
Per Diode

TJ

-65 to + 150

-65 to+ 150

-65 to + 150

-65 to +150

Tstg

-65 to +1 75

-65 to +175

-65 to +175

-65 to +1 75

°C

Peak Surge Junction Temperature
(Forward Current Applred)

TJ(pk)

175

175

175

175

°c

Voltage Rate of Change (Rated VR)

dvldt

1000

1000

1000

1000

VI!'s

Operating Junction Temperature
Storage Temperature

THERMAL CHARACTERISTICS PER DIODE
Maximum Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage (1)
(IF~ 10Amp, TC= 125°q
(IF ~ 20 Amp, TC = 125°C)
(IF ~ 30 Amp, TC = 125°C)
(IF ~ 30 Amp, TC ~ 25°q

vF

Maximum Instantaneous Reverse Current! 1)
(Rated de Voltage, TC = 125°q
(Rated de Voltage, TC = 25°q

'R

Capacitance

Ct

Volts

-

-

060
072
076

060
072
076

060
072
076

60
10

60
10

60
10

100
VR = 35 V

2000

2000

2000

2000

-

047
060

-

mA

(1) Pulse Test Pulse WIdth = 300 P.s, Duty Cycle ~ 20%

3-110

pF

MBR3020CT, MBR3035CT, MBR3045CT, S0241

FIGURE 2 - TYPICAL R":VERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
100
70
50

20

:;;

~

l-

ia

~

/V

TJ=150 o C;,

;:

10

150°C

TJ
;<

1/ V

30

in
0..

100

./

r-

10

125°C

-I----

I."

g;

Y'

VI

~

75°C

-

25°C

e----

100°C

'"
'-'
w

10

il1

01

'"
'"

I---

_r-

.!t001

70

I
I

50

10

20
30
VR, REVERSE VOLTAGE (VOLTS)

~

40

50

~

'"

:;: 3 0

'"~
'"
'"

/

20

FIGURE 3 - MAXIMUM SURGE CAPABILITY

25°C

II

2

."

500

'"

I."

'"t;;

'\.

10

~

!f- 07
05

"- r--...

I

I
I

03

,~

",

"

1 1 1

TJ = 125°C, VRRM may
be applied between each
cycle of surge

~

02

01

50

o

02
04
06
08
10
12
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

10

14

FIGURE 4 - CURRENT DERATING

in

40

~

~

I

30

"-

'"
'"
'-'
Q

~

~

I
IpK
1 = " (ResIStive Load)
AV/

I-

"\

..........
20

~

'"~
z

<::>

I

\

(Capacitive Load) 1 = 20, 10. 5

I

70 100

40.---,----,---,----,---,----,----,---,
Sine Wave --t----I
ReSIstive load

~ 30~--~---4~~+,~-+~~~__~---4~--~

....... Square Wave

"
IPKI~A.. &;

I

I

80

100
120
TC, CASE TEMPERATURE (0C)

tV

50

<;;

'~ ~\

-

5 0 7 0 10
20
30
NUMBER OF CYCLES AT 60 Hz

'"
2S
'"

~ 20~--~--~~~+,~-+7S~~~~---4~--~

,,\( \

~

30

FIGURE 5 - FORWARD POWER DISSIPATION

in

~

20

I

......

0..
Q

:;:
'"'"
'"
~

de

~

w

'"
IE
:'i:

~

140

160

S

~

0..

3-111

10
20
30
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

40

MBR3020CT, MBR3035CT, MBR3045CT, 80241

FIGURE 6 - THERMAL RESPONSE PER DIODE LEG
C

10

~

07

IS

05

:;;

..-

~
~

u

03

ffi

02
01

~

a:

002
001
001

IpKILpk
_

......

005
003

~

f---11--J

DUly Cycle, 0 =Iplll
Peak Power, Ppk. IS peak of an

TIME

eqUivalent square power pulse

"TJL =Ppk R8JLID + 11 - 01 . ,Ill + Ipl + 

«
160

10
20
30
IFIAV). AVERAGE FORWARD CURRENT (AMPS)

S
~

Q.

FIGURE 6 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT

FIGURE 5 - CAPACITANCE
3000
2000

..............

i'-

1000

~ :~~
~

~

s-G

"'r-..

~

:i

--l

2V

lOa

I-- 20"'
10kHz

700

600

Current
Amplitude

"-

500

"-

400
300
05

01

02

50

~

\

...,..., ~'} ~\

-

40

FIGURE 4 - FORWARD POWER DISSIPATION
PER LEG

FIGURE 3 - CURRENT DERATING PER LEG

I
= Tr jReslstlve load}
AV/
I
I

20
30
VR. REVERSE VOLTAGE (VOLTS)

05
10
20
50
VR. REVERSE VOLTAGE (VOLTS)

10

20

AdJust

Carbon

0-10 Amps

~

1 OCarbon

50

3-115

, N5817

40

MBR3520
MBR3535
MBR3545, H, HI

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SWITCH MODE POWER RECTIFIERS

SCHOTTKY BARRIER
RECTIFIERS

uSing a platinum barrier metal In a large area metal-to-silicon
power diode State-of-the-art geometry features epitaxial constructIOn with oXide passivation and metal overlap contact Ideally sUited
for use as rectifiers In low-voltage, high-frequency Inverters, freewheeling diodes, and polarity-protection diodes

35 AMPERES
20 to 45 VOLTS

•

Guardrlng for dv/dt Stress Protection

•

Guaranteed Reverse Surge Current/Avalanche

•

150°C Operating Junction Temperature
CASE 56-03
DO-203AA

METAL
MAXIMUM RATINGS
Hating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage

Symbol

MBR3520

MBR3535

MBR3545, H, Hl'

Umt

VRRM
VRWM
VA

20

35

45

Volts

Average Rectified Forward Current
(Rated VR. TC = 110'C)

IF(AV)

Peak Repetitive Reverse Surge Current

IARM

•
•
•

IFSM

•

TJ

•

Peak Repebbve Forward Current
(Rated VA, Square Wave. 20 kHz. TC

= 110'C)

IFRM

1201's. 10kHz) See Figure 8
Nonrepetltlve Peak Surge Current
(Surge applied at rated load cond,tions
halfwave, single phase. 60 Hz)
Operating Junction Temperature

Tstg

Storage Temperature

Voltage Rate of Change
IRated VR)

dv/dt

70

•

Amps

35

•

Amps

20

t

Amps

600

•

Amps

•

°c

•

VII'S

-65 to + 150

•
..

•

-65 to +1 75
1000

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junctlon·to-Case

Typ

Max

13

15

Typ

Max

ELECTRICAL CHARACTERISTICS PER DIODE

Characteristic

Symbol

Instantaneous Forward Voltage 11)
(IF = 35 Amp. TC = 125°C)
(oF = 35 Amp. TC = 25°C)
(oF=70Amp, TC· 125°C)

vF

Instantaneous Reverse Current (1)

'R

IRa ted Voltage. TC = 125°C)
IRated Voltage. TC = 25°C)
CapaCitance (VA = I 0 Vdc, 100 kHz> f> I .0 MHz. TC = 25°C)

Ct

"H and H1 devices Include extra testing See Figure 10
(1) Pulse Test Pulse Width = 300 #ls. Duty Cycle = 2 0%

3-116

Unit

Volts
049
055
060

055
063
069

60
01

100
03

3000

3700

mA

pF

•

MBR3520, MBR3535, MBR3545, H, H1

FIGURE 2 -

FIGURE 1 -MAXIMUM FORWARD VOLTAGE
200

1000

v

V

100

I--I---

/

;;

TJ = 150°C

100

125°C

::::::

.§.

100°C

>-

Ii3

70

1/

50

/

30
TJ = 150°C /

;;;

~ 20

10
75°C

~

'"
~

II /
I

10

-cO

01

I

10

/

001

25°C

1--

25°C

o

10

20
30
VR. REVERSE VOLTAGE (VOLTS)

~

-

-

:l1

IllL

~
>-

ii3

t==

MAXIMUM REVERSE CURRENT

40

50



~
>~

I

FIGURE 3 - MAXIMUM SURGE CAPABILITY

I
I

30

600

;;;

~

20

400

~
>-

~

15
a:

1\

\

a:

10

i3

200

~

a:
'"
=>
'"
'"~

07
05

Rated Load
f = 60 Hz

[\

1"-

"-

03
02

", ,

::E 100
~ 80

o

06
08
10
12
02
04
VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

60
10

14

,,~

0
(Capaeillve Load)

0
60

80

= =

'1/'
Square Wave
V -IReslSllve Load)

,y':'

50

70 100

'"

'"
!;i
"-

0;

) ~~
~ 1/ V' ~ ~\
IAV = 20.10.5
~~
100

30

t::
:;E

.1

~~e
I
'\ 1\.'
..... ~.

"

0

20
5 0 70 10
NUMBER OF CYCLES

;;; 40

,,~ ~

0

30

FIGURE 5 - POWER DISSIPATION

FIGURE 4 - CURRENT DERATING
0
VR @ Raled Vollage

20

120

TC. CASE TEMPERATURE (oC)

~

'"a:i3

~ 20

'""~

'"

'"

~

~

"

140

:>


'JI I I

~

VI II

IJ 17
if/,

0

z

I

/I

TJ = 150°C __

'"

~

.sF
0.1

,r---25°C

0.01

I

L

~

10
W
VR, REVERSE VOLTAGE IVOLTSI

Figure 2. Typical Reverse Current*

I

*The curves shown are tVPlcal for the highest voltage device In
the voltage grouping. TYPical reverse current for lower voltage
selections can be estimated from these same curves if VR IS sut·

I I

I III u
~

o

I

II

1

150°C~

1//1

fleienlly below rated VR-

20,00a

u

u

u

u

u

u

I

U

lOJkHz~f~ l'MHz

vF, INSTANTANEOUS VOLTAGE IVOLTSI

Figure 1. Typical Forward Voltage

.........

......

.........

~

N

r-..... .......

TYP
2,00a

....... .......r-....,

r--- .......
1,000
0.5 0.7

1

2
3
5 7 10
VR, REVERSE VOLTAGE IVOLTS}

20

30

Figure 3. Capacitance

NOTE 1
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result
of majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 4.)
Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative
of power loss; it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output voltage.

3-121

+ 150 V, 10 mAde~
2kO
VCC

4 JLF

+

12Vde

12 h>--"11\,10",0_of

-l

~

lOUT

j-2JLS

1 kHz

CURRENT
AMPLITUDE
ADJUST
0-10 AMPS

1 CARBON
lN5817

Figure 4, Test Circuit for dv/dt
and Reverse Surge Current

~

50

MBR6015L, MBR6020L, MBR6025L, MBR6030L

100

i

90

15
~

::::>

'-'

I

VR

80
70
60

12

:i!(

30
20

j

0
5

50 r-- -Ip/lve
40

~

5

= RATED VOLTAGE

X

I\.

5

"i

10

'"

....... ~\.

10

o

80

60

~

100
120
TC, CASE TEMPERATURE lOCI

SINE WAVE

5
Ip

Or-- I--

\.
"- \.\

20

SQUARE WAVE-- ~

0

SQUARE AND
\SINE WAVE
I\de

\

.\

0

\

\
140

iAV

5

= 20

"/ IY

~ :/'"' ....... de

V / V .....-::: ;:::::- ........ .......~ ~ ~ ~ ~ .....

~ ~~

5
P'
0l.,,,0iii ~
5 10 15

160

10

/,5

;::;..-

20 25 30 35 40 45 50 55
IFIAVI, AVERAGE FORWARD CURRENT

60

65

70

Figure 6, Power Dissipation

Figure 5. Forward Current Derating

NOTE 2
DUTY CYCLE, D = tpnl
PEAK POWER, Ppk, IS PEAK OF AN
EQUIVALENT SQUARE POWER PULSE,

To determine maximum junction temperature of the
diode in a given situation. the following procedure is
recommended:
The temperature of the case should be measured using
a thermocouple placed on the case. The thermal mass
connected to the case is normally large enough so that
it will not significantly respond to heat surges generated

in the diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured value
of TC. the junction temperature may be determined by:
TJ = TC + .:lTJC
where .:l TC is the increase in junction temperature
above the case temperature. It may be determined by:
.:lTJC = Ppk"ROJC[D+(1-D)"r(t1 +tp )+r(t p)-r(t1))
where
r(t) = normalized value of transient thermal resistance
at time, t. from Figure 7. i.e.:
r(t1 - t p ) = normalized value of transient thermal resistance at time t1 +tp.

0

~

~

:;;

a:

0,5

w
'-'
z

0,2

0
~

j5
en

~
~
ffi

....... .......
ReJCltl = RruC + rltl

0,1

INOTE 21

0,05

i!:

!Z

~ 0.02

:i

.......

.......- f-'""

1= 0.Q1
~

0.Q1

0,02

0,05

0.1

0,2

0,5

10
t, TIME Imsl

Figure 7. Thermal Response

3-122

20

50

100

200

500

1000

MBR6015L, MBR6020L, MBR6025L, MBR6030L

BARRIER METAL

\~!~~~~§d~--OXIOE PASSIVATION
MOLY DISK

VIEW A-A

VIEW A-A
Motorola builds quality and reliability into its Schottky
Rectifiers.
First is the chip, which has an interface metal between
the platinum-barrier metal and nickel-gold ohmic-contact
metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so
snubbers are not mandatory. The guardring also operates
like a zener to absorb overvoltage transients.
Second is the package. There are molybdenum disks
which closely match the thermal coefficient of expansion
of silicon on each side of the chip. The top copper lead

has a stress relief feature which protects the die during
assembly. These two features give the unit the capability
of passing stringent thermal fatique tests for 5,000 cycles.
The top copper lead provides a low resistance to current
and therefore does not contribute to device heating; a
heat sink should be used when attaching wires.
Third is the redundant electrical testing. The device is
tested before assembly in "sandwich" form, with the chip
between the moly disks. It is tested again after assembly.
As part of the final electrical test, devices are 100% tested
for dv/dt at 1,600 V//Ls and reverse avalanche.

Figure 8. Schottky Rectifier

OUTLINE DIMENSIONS

~.

MILLIMETERS
MIN
MAX
1694
1745
1694

~:~

DIM
A
B
C

IL

E

292

F
J
K

1072

TERM 1---;;J

D

~l
I

r TfJ

L

P

a
R
S

t J _~~~2'UNF'2A
LJ=

1143

D

TERM 2

CASE 257·01
DO·203AB
METAL

386
559
3.56

953
508
203
1151
2540

632
445
2016
226

INCHES
MIN
MAX
0669
0.687
0667
0.460
0375
0115
0200
0080
0422
0453
1000
0156
0220
0249
0140
0175
0794
0059

STYLE 2.
TERM.l. ANOOE
2. CATHODE (CASEI

NOTES.
1 DIM "P" IS DIA.
2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENOS OF
HEXAGONAL BASE IS OPTIONAL
3 ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAL
4 THREADS ARE PLATED
5 DIMENSIONING AND TOlERANCING PER ANSI Y14 5,
1973

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion resistant and
terminal lead is readily solderable
POLARITY: Cathode-to-Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat transfer property of
the heavy duty copper anode terminal which transmits
heat away from the die requires that caution be used
when attaching wires. Motorola suggests a heat sink
be clamped between the eyelet and the body during
any soldering operation.

3-123

MOTOROLA

-

MBR6035
MBR6045, H, HI

SEMICONDUCTOR

TECHNICAL DATA

SCHOTTKY RECTIFIERS
SWITCH MODE POWER RECTIFIERS

60 AMPERES

35 AND 45 VOLTS
uSing a platinum barner metal In a large area metal-to-slilcon
power dIode State-of-the-art geometry features epItaxIal construction wIth oXIde passIvation and metal overlap contact Ideally sUIted
for use as rectIfIers In low-voltage. hIgh-frequency Inverters. freewheeling dIodes. and polaroty-protection dIodes

• Guaranteed Reverse Avalanche
•

Guardrong for dv/dt Stress ProtectIon

•

150D C OperatIng JunctIon Temperature

•

Low Forward Voltage

CASE 257-01
DO-203AB
METAL

MAXIMUM RATINGS

Rating

Symbol

Peak Repetitive Reverse Voltage
Workmg Peak Reverse Voltage
DC Blockong Voltage

VRRM
VRWM
VR

MBR6035
MBR6035B

MBR6045. H. Ht*
MBR6045B

Unit

35

45

Volts

IFRM

I

120

t

Amps

10

I

60

•

Amps

Peak Repetitive Reverse Surge Current
(20l's. 10kHz) See FIgure 7

IRRM.

I

20

t

Amps

Nonrepetltlve Peak Surge Current
(Surge applied at rated load condItions
halfwavs. single phase, 60 Hz)

IFSM

I

800

,

Amps

DC

Peak Repetitive Forward Current
(Rated VR. Square Wave. 20 kHz) TC = 100DC
Average Rectified Forward Current
(Rated VR) TC = lOODC

TJ

I

65to+ 150

t

Storage Temperature

Ts1g

I

65 to +175

10

DC

Voltage Rate of Change
(Rated VR)

dvldt

I

1000

10

VI!'s

Operating Junction Temperature

THERMAL CHARACTERISTICS

Characteristic

Typ

Max

Thermal Resistance, Junctlon·to·Case

085

10

Typ

Max

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

Instantaneous Forward Voltage (1)
(IF = 60 Amp. TC = 25 D C)
(IF = 60 Amp. TC = 125 D C)
(IF= 120Amp. TC= 125DC)

vF

Instantaneous Reverse Current (1)
(Rated Voltage. TC = 25 D C)
(Rated Voltage. TC = 125 D C)

'R

Capacitance
(VR = 1 0 Vdc. 100 kHz .. I 0 MHz)

Ct

"H and H1 devices Include extra testing
(1) Pulse Test Pulse Width = 300 #tS, Duty Cycle

=2 0%

3-124

Unit
Volts

065
057
0.70

070
060
076

01
55

03
100

3000

3700

mA

pF

-

MBR6035, MBR6045, H, H1,

FIGURE 1 -

TYPICAL FORWARD VOLTAGE

200

/

V /V

100

/'

AGURE 2 -

TYPICAL REVERSE CURRENT

-

1000

V

I--

100

;;

r-- TJ - 150°C
125°C

-

§.

....
i'i5
g;

70
50

a

I /
II

0
TJ=150°C/
20

!I
/

0

100°C

10

75°C

w
en

ffi I 0

~

/

.EF 01

r-

2SoC

i!z5°C
001

/

o

10

20

40

30

50

VR. REVERSE VOLTAGE (VOLTS)

0
0
0
0

I

FIGURE 3 - MAXIMUM SURGE CAPABILITY

J

1000

I

in 700

~

::!.

....

ia

0

500

~ 300

7

=>

'\..

" "'" "'

Rated Load
f = 60 HZ

......

........... ........

en

5

'"

3

~

~

200

2

10
04
08
06
12
VF. INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

02

100
I0

14

-

r-I-

~

20

30

50 70

10

20

30

50

70 100

NUMBER OF CYCLES

FIGURE 4 - CAPACITANCE

NOTE 1
Since current flow In a Schottky rectifier IS the result of majority
carner conduction, It IS not subject to Junction diode forward and
reverse recovery tranSIBnts due to minority carner injectIOn and

stored charge SatIsfactory CirCUIt analysIs work may be performed by uSing a model consIsting of an Ideal dIode In parallel
wIth a variable capacitance (See FIgure 4 )
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz For example, relative
waveform rectificatIOn effiCiency IS approxImately 70 per cent at

2 0 MHz. e g • the ratIo of dc power to RMS power

In

I III

SOOO

HIGH FREQUENCY OPERATION

the load IS

~

fl rio)JHz ..

I
"-.. Max
.................1'--

3000

w

u

~ 2000

TYt;'-

u

':t

......... r-....I'-

5

t'-- i'-...

u

o 28 at this frequency. whereas perfect rect,f,catIOn would YIeld

0406 for sine wave mputs However, In contrast to ordinary
Junction diodes, the loss In waveform efficiency IS not indicative
of power loss; It IS sImply a result of reverse current flowthrough
the dIode capacItance, whIch lowers the dc output voltage.

1000

........

700

os

1.0

20

30

SO 70

10

VR, REVERSE VOLTAGE (VOLTS)

3-125

I

i.. l 0 M~z-f--

20

r-...

30

......

so

MBR6035, MBR6045, H, H1,

FIGURE 5 - FORWARD CURRENT DERATING

FIGURE 6 - POWER DISSIPATION

0
VR

@

50

Rated Vonage

70

40

60

~e

'" 0

50

~

40
30

20
10 rlCapaeit.ve loadl
I
o
80
100
90

~
IAV

~ =

=20_
e---- .!e!<
IAV
I

Square Wave _
IReSistlVe loadl

7r

ylAV

~
/

= 20 10 5
•.

110

120

130

TC. CASE TEMPERATURE lOCI

/ / /' , /
'/'L
/
/
"/
5
/Y / / i'--. ~ =
AV

20

~~

10

"

140

150

// :;..'
0

~

7r

IReSistlVe loadl-

TJ = 125°C

~~

~

160

1/ /

/' de50% Duty Cvele
//

10.

30

I m~

I

Square Wave

/ 1/

ICapaClt.ve loadl

20

40

60

80

IFIAVI' AVERAGE FORWARO CURRENT IAMPSI

FIGURE 7 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT

NOTE2

"-'UIPkPpk

j-.P-

l--.t--1

TIME

r~'i2 Ok!!

QUTY CYCLE. 0 = tp/ll
PEAK POWER. Ppk. IS peak of an
equivalent square power pulse

VCC

To determine maximum Junction temperature of the diode In a gIVen
situation, the following procedure IS recommended
The temperature of the case should be measured uSing a thermocouple
placed on the ctlS8 The thermal mass connected to the case IS normally large
enough so that 11 will not significantly respond to heat surges generated In
the diode as a result of pulsed operation once steady-state conditIOns are
achieved USing the measured value of T C. the Junction temperature may be
determined by

12Vdc

TJ"'TC+.lTJC

1
!

D UT

I I ~2V 100
L.:
I---- 2 0 ~ s

.J
---I

2N2222

+

I40~F

10kHz

where .l T C IS the Increase In Junction temperature above the case

temperature It may be determined by

Current
Amplitude
Adjust
0-10 Amps

~ TJC ==

Ppk-ROJCIO+ 11- OI_rlt, +tpl + rltpl-rlt,IJ where
r(l) =normalized value of tranSient thermal reSistance at time, t, from
Figure 8. Ii!
r(t, + tpl = normalized value of tranSient thermal resistance at time t1 + tp

100 !!
Carbon
1 0 Carbon

lN5817

FIGURE 8 - THERMAL RESPONSE

c

0

'"::;;a::o

5

~

-

~

..,w
Z

~
iii
a::

2
I

-' -'

RoJCIII = ROJC + rltl
INote 21

~

!'" 005
:>:
....
....
z

~ 00 2
z

'"e: 00 1
""

-

0 01

.........

0.02

0.05

01

02

05

10

20
t. TIMElmsl

3-126

50

10

20

50

100

200

500

1000

MBR6035, MBR6045, H, H1,

FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

VIEW A-A

Moly Disk

Copper Base

VIEW A-A

Guardrlng
Motorola bUlldsquahty and rehablhty Into Its Schottky Rectifiers
First IS the chip. which has an Interface metal between the

feature which protects the die during assembly These two

features give the Unit the capablhty of passmg stringent thermal
fallgue tests for 5.000 cycles Thetop copper lead provides a low
resistance to current and therefore does not contribute to device
heating, a heat Sink should be used when attaching wires

platlnum-barner metal and nickel-gold ohmic-contact metal to

eliminate any possible interaction with the barrier The indicated
guardrmg prevents dvldt problems. so snubbers are not mandatory The guardrtng also operates like a zener to absorb overvoltage tranSients

Third

IS

the redundant electrical teslln9 The device

IS

tested

before assembly m "sandwich" form. With the chip between the
moly disks It IS tested again after assembly As part of the fmal
electrical test. devices are 100% tested for dvldt at 1.600 V/!'s
and reverse avalanche

Second IS the package There are molybdenum disks which
closely match the thermal coeffiCient of expanSion of SIlicon on

each side of the chip The top copper lead has a stress rehef

HI-REL PROGRAM OPTIONS
The MBR6045 IS also available With two levels of extra testing
similar to "TX" screening and including Group A and B inspection
programs Both the MBR6045H and MBR6045Hl go through
100% screemng consisting of high temperature storage, temperature cycling, constant acceleration and hermetic seal testing

prior to a sample being submitted to Group A and B inspectIOn
After completion of Group B Inspection. the MBR6045H IS
available Without additional screening MBR6045H 1 devices are
further processed through a high temperature reverse bias
(HTRB) and forward burn-In Consult factory for details

NOTES.
1. DIM "P" IS DIA.
1. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
HEXAGONAL BASE IS OPTIONAl.
3. ANGUlAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAl.
4. THREADS ARE PLATED.
5. DIMENSIONING AND TOlERANCING PER ANSI Y14.5.
1973

DIM
A
B

C
D
E
F
J
K
L
P

MIWMETERS
MIN
MAX
1).45
16.94

-

1.91

-

1071

-

Q

3.86
5.59
3.56

R
S

-

-

1694
11.43
9.53
5.08
1.03
1151
15.40

-

6.31
4.45
10.16
2.26

INCHES
MIN
MAX
0.669

-

-

-

0.115

-

0411

-

0.156
0.120
0.140

-

3-127

0.687
0.667
0.450
0.375
0100
0.080
0453
1.000

-

0.249
0.175
0.794
0.089

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FlNtsH All external surfaces corrosion resistant and terminal lead IS readllv solderable

POLARITY' Cathode-to-Case

MOUNTING POSmON: Any
MOUNTING TORQUE: 25 In-Ib max
SOLDER HEAT The excellent heat transfer
property of the heavy duty copper anode terminal whIch transmIts heat away from the d,e
requires that caution be used when attaching
wires Motorola suggests a heat Sink be
clamped between eyelet and the body during
any soldenng operation.

CASE 257-01
DO-203AB
METAL

-

MOTOROLA

MBR6535
MBR6545

SEMICONDUCTOR

TECHNICAL DATA

HIGH TEMPERATURE
SCHOTTKY RECTIFIERS

SWITCH MODE POWER RECTIFIERS
uSing a platinum barner metal In a large area metal-to-sillcon
power diode State-of-the-art geometry features epitaxial construction with oXide passivation and metal overlap contact. Ideally sUited
for use as rectifiers on low-voltage, high frequency Inverters,
free-wheeling diodes, and polarity-protection diodes
•

Guaranteed Reverse Avalanche

•

Guardrlng for dv/dt Stress Protection

•

175°C Operating Junction Temperature

•

65 AMPERES
35 and 45 VOLTS

., Low Forward Voltage

CASE 257-01
DO-203AB
METAL

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage

Symbol

MBR6535

MBR6545

Unit

Volts

VRRM
VRWM
VR

35

45

IFRM

130

130

Amps

10

65

65

Amps

IRRM

20

20

Amps

IFSM

BOO

BOO

Amps

TJ, Tstg

-65 to +175

-65 to +175

°C

dv/dt

1000

1000

V/~s

o 7B

o 7B

062
073

062
073

007
125

007
125

3700

3700

Peak Repetitive Forward Current

(Rated VR, Square Wave, 20 kHz) TC = 120°C
Average Rectified Forward Current

IRated VR) TC = 120°C
Peak Repetitive Reverse Surge Current

(2 0

~s,

10kHz) See Figure 7

Nonrepetltlve Peak Surge Current
(Surge applied at rated load conchtlons halfwave,

single phase, 60 Hz)
Operating Junction Temperature and
Storage Temperature

Voltage Rate of Change
(Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)

vF

(IF = 65 Amp, TC = 25°C)
(IF = 65 Amp, TC = 150°C)
(If= 130 Amp, TC= 150°C)
Maximum Instantaneous Reverse Current (1)

Volts

mA

'R

(Rated Voltage, TC = 25°C)
(Rated Voltage, TC = IS00C)
Capaclta nce

Ct

(VR= 1 OVdc,l00kHz.;f'; 1 0 MHz)
(11 Pulse Test Pulse Width = 300 IlS, Duty Cycle ~ 2 0%

3-128

pF

MBR6535, MBR6545

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE

200

/ If
TJ

100

~ 1500~ / )OO~V
/

50

...:::;

....z~

/

~

/

/ /

/

30

/ il/

20

/ /

~

a:
=>
'-'

V

25°C f---

70

in

100
40
20
10
<
~ 40
....z 20
10
~
=> 04
'-'
02
w
'" 01
ill
a::
a: 004
.!# 002
001
0004
0002
0001

/ / II

10

-

TJ - 150 D C

100 D C

-

-

r-

25°C

o

10

20

30

40

50

VR. REVERSE VOLTAGE (VOLTS)

«

~ 70
~

=>
'"

50

53
z

«
....
z
~
~

-

30

I I

I

/ /

I

/

20

FIGURE 3 - MAXIMUM SURGE CAPABILITY

1000

II

I

in 700

~

500

0-

i13

I

10

I

03
02

o

I

1"'-

Raled Load

"--..

f= 60 Hz

r--.......

~

I

['."

300

'"
'"'"
'"
'"

07
05

"-

:'£

200

t'--

~
02

04

06

vF. INSTANTANEOUS VOLTAGE (VOLTS)

OB

100

10

10

20

30

50 70

10

20

t'--

-

30

50

70 100

NUMBER OF CYCLES

FIGURE 4 - CAPACITANCE

NOTE 1
Since current flow In a Schottky rectifier IS the result of majority
carner conduction. It IS not subject to Junction diode forward and
reverse recovery tranSients due to minority carner injection and
stored charge Satisfactory CirCUit analysIs work may be performed by uSing a model consisting of an Ideal diode In parallel

with a variable capacitance (See Figure 4 )
Rectification efficiency measurements show that operation will

~

g

f".. ........

;;a:

U

approximately 70 per cent at

Typ

2000

waveform rectification efficiency

'-'

0406 for sine wave Inputs However, In contrast to ordinary
Junction diodes, the loss In waveform efficiency IS not Indicative
of power loss, It IS simply a result of reverse current flow through
the diode capacitance, which lowers the dc output voltage

r-...... ~

1000

........

700
05

10

20

30

50 70

10

VR. REVERSE VOLTAGE (VOLTS)

3-129

--

"'-'::::t'-- I'...

w

«

20 MHz. e 9 . the ratio of dc power to RMS power In the load IS
o 28 at this frequency, whereas perfect rectification would Yield

3000

I I

11~ri ~HZ';;~';; \ 0 M~z

i'-.. ~ax

'-'

be satisfactory up to several megahertz For example, relative
IS

I II

5000

HIGH FREQUENCY OPERATION

20

t-...

.......

30

i"
50

MBR6535, MBR6545

FIGURE 5 - FORWARD CURRENT DERATING

FIGURE 6 - POWER DISSIPATION

80

~
::;; 70
:5>-

z

60

=>

50

~

u

de

I.........

~

50

a:
~ 30

10

.......

"

« 40
;;=

.........

r-....

'"ffi

20

«

~

~

IAi

i'-..
N:
.......

~

SlI;Iare Wave

~

~

,

""~

130
140
150
160
TC. CASE TEMPERATURE 1°C)

~
~

20

:>

10

ffi

«

"

170

71'

/

/

/ / ./

IpK
30 _ICapaCltlve loads) - = 50
IAV ./.: / /

~

"~ t'-..~ "'-

I I I I
120

110

~
<;;
'"Ca:

Square Wave. Sme Wave

t'-..

IpK
- = 20 ICapaCltlve load)

10

IpK
IReslStNe load) - ~
IAV

0

~

:>

u;- 50
>!;;:
~
z 40

Rated Voltage Applied

>
«

u:-

0..

/~

,

1/ ~

V

/

/'

2}:VpV
/h ~

~~

180

10

20
30
40
50
60
70
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

80

FIGURE 7 - TEST CIRCUIT FOR dv/dt
AND REVERSE SURGE CURRENT

NOTE2

J=Ul
',Pk

I-------"~

~ +150 V. 10 mAde

Ppk

LTiME

o
~ 20 kn

DUTY CYCLE, 0" Ip/ll
PEAK POWER, Ppt. IS peak 01 an
eqUlvalenl square power pulse

VCC

n2V

To determine maximum Junction temperature of the diode In a given
situation, the following procedure IS recommended
The temperature of the case should be measured uSing a thermocouple
placed on the case The thprmal mass connected to the case IS normally large
enough so that It will not significantly respond to heat surges generated In
the diode as a result of pulsed operation once steady-state conditIOns afe
achieved USing the measured value of T C. the Junction temperature may be
determined by
TJ"'TC+j,TJC
where .l T C IS the Increase In lunctlon temperature above the case
temperature It may be determined by

--l

I--

12 Vde

100

2N2222

!

J40~F

20~s
10kHz
Current
Amplitude
Adlust
0-10 Amps

j, TJC '" PpkeROJCID + (T - Oler(t, + tpl + rll p ' - rlfTI( where
rill == normalized value of transient thermal resistance at time, t, from
Figure 8, Ie
rU, + tpl == normalized value of tranSient thermal resistance at lime t, + tp

lOon
Carbon
10 Carbon
1N5817

FIGURE 8 - THERMAL RESPONSE
0
5
u

z

2

~

1

::
'"

.....

-

R8JClt) = R8JC + rlt)
INote 2)

>-

.............

z

~ 00 2
z

«

e:

~
.".

.......-

00 1
001

002

005

01

02

05

10

20
t. TIME Ims)

3-130

50

10

20

50

100

200

500

1000

MBR6535, MBR6545

FIGURE 9 - SCHOTTKY RECTIFIER
Copper Lead

VIEW A-A
Guardnng

Motorola bUilds quality and reliability Into Its Schottky Rectifiers
FITst IS the chip. which has an Interface metal between the
platlnum-barner metal and nickel-gold ohmic-contact metal to
eliminate any possible interaction with the barner The indicated
guardrmg prevents dv/dt problems, so snubbers are not mandatory The guardrmg also operates like a zener to absorb overvoltage tranSients
Second IS the package There are molybdenum disks which
closely match the thermal coeffiCient of expansion of silicon on
each side of the chip The top copper lead has a stress relief

VIEW A-A

feature which protects the die dUring assembly These two
features give the Unit the capability of passing stringent thermal
fatigue tests for 5.000 cycles The top copper lead provides a low
resistance to current and therefore does no. contnbute to device
heating, a heat Sink should be used when attaching wires
Third IS the redundant electrrcal testmg The device IS tested
before assembly In "sandWich" form, with the chip between the
moly disks It IS tested again after assembly As part of the final
electncal test. devices are 100% tested for dv/dt at 1.600 V/~s
and reverse avalanche

NOTES
1. DIM "P"IS DlA.
2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
HEXAGONAL BASE IS OPTIONAL
3. ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAL
4. THREADS ARE PLATED.
5. DIMENSIONING AND TOLERANCING PER ANSI YI4.5.
1973

DIM
A
B
C
D
E
F

J
K
L
P
Q

R
S
STYLE 2'
TERM 1. ANODE
2. CATHDDE (CASEI

CASE 257-01
DO-203AB
METAL

MILUMETERS
MIN
MAX
16.94
17.45
16.94
11.43
9.53
292
5.08
2.03
1072
1151
25.40
3.86
6.32
559
445
3.56
2016
2.26
-

-

INCHES
MIN
MAX
0669
0.687
0667
0450
0.375
0200
0.115
0.080
0.453
0422
1.000
0.156
0220
0.249
0.140
0.175
0794
0.089
-

-

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion resistant and terminal
lead is readily solderable.
POLARITY: Cathode-to-Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-Ib max
SOLDER HEAT: The excellent heat transfer property of the heavy
duty copper anode terminal which transmits heat away from the
die requires that caution be used when attaching wires. Motorola
suggests a heat sink be clamped between the eyelet and the
body during any soldering operation.

3-131

•

MBR7535 MBR7540
MBR7545

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

SCHOTTKY BARRIER
RECTIFIERS

SWITCHMODE POWER RECTIFIERS

75 AMPERES
20 to 45 VOLT5

· .. employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
Ideally suited for use as rectifiers in low-voltage. high-frequency
inverters. free-wheeling diodes, and polarity-protection diodes .
•

• Low Power Loss/
High Efficiency

Extremely Low vF

• Low Stored Charge, Majority
Carrier Conduction

• High Surge Capacity

FIGURE 1 - TYPICAL FORWARD VOLTAGE
500

!

I

30 0

I

TJ • 150DC

15~C

VV V

100

}

1

V-

30

STYlE 1
TERM 1 ANODE
1 CATHODE (CASE)

I I

j

10

~~428UNF'2A

~~1ERM2

I

50

V II

NOTES
1 DIM "P" IS DIA
1 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
HEXAGONAL BASE IS OPTIONAL
3 ANGULAR ORIENTATION AND CONTOUR OF
TERMINAL ONE IS OPTIONAL
4 THREADS ARE PLATED
5 DIMENSIONING AND TOlERANCING PER ANSI Y14 5.
1973

50
30

DIM

10

o

01

04

06

08

10

11

14

VF.1NSTANTANEOUS FORWARD VOLTAGE (VOLTS)

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
FINISH: All external surfacee corrosionresistant and terminal lead is
readily solderable.

Q

POLARITY: Cathode to Case
MOUNTING POSITIONS: Any
MOUNTING TORQUE: 25 in-Ib max

3-132

MILLIMETERS
MIN
MAX
1694
1745
1694
1143
953
191
508
2.03
1071
1151
2540
386
559
632
356
445
10 16
216

INCHES
MIN
MAX
0669
0687
0667
0450
0375
0115
0100
0080
0422
0453
1000
0156
0120
0149
0140
0175
0794
0089

CASE 257-01
DO-203AB
METAL

•

MBR7535, MBR7540, MBR7545
MAXIMUM RATINGS
Rating

Symbol

MBR7535

MBR7540

MBR7545

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

V RRM
VRWM
VR

35

40

45

Volts

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz)

IFRM

150
TC =90'C

Amp

Average Rectified Forward Current
(Rated VR)

10

70
TC =90'C

Amp

IFSM

1000

Amp

TJ , Tstg

-65 to +150

'c

TJ(pk)

175

'c

dvldt

1000

vlp.s

Non-repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
Operating and Storage Junction Temperature Range

Peak Operating Junction Temperature
(Forward Current Applied)
Voltage Rate of Change
(Rated VR)

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25'C unless otherwise noted)
Symbol

Characteristic
Maximum Instantaneous Forward Voltage (1)
(iF = 60 Amp, TC = 125'C)
(iF = 220 Amp, TC = 125'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125'C)

iR

Capacitance
(V R = 5.0 Vdc, 100 kHz'" f '" 1.0 MHz)

Ct

(1) Pulse Test: Pulse Width

120

"\
VR· RATEO

80

~

w

>

;::
40

I---

'"
~

~

Unit

150

I

200

250

I

mA

4000

pF

= 300 p.s, Duty Cycle = 2 0%

FIGURE 3 - TYPICAL REVERSE OPERATION

'\ '\

!z

~

MBR7545

1000

":;:
~

I

Volts

FIGURE 2 - CURRENT DERATING

"'"

MBR7540
0.60
0.90

~160

~

I

MBR7535

SiUARE ~AVE ~PERA1'0N

°60

80

r--

" \ VR· 0

100

125 0 e

--

01--1
I--IOOOe

\. f\.
\. \.

I--

I - - 15 0 e

0

'" '"
120

\ \
140

-

1l== 250 e

1\ \.

I· 20 kHz

-

OF TJ • 150 0 e

160

TC. CASE TEMPERATURE (OCI

00 1

o

10

20

30

VR. REVERSE VOLTAGE (VOLTSI

3-133

40

50

•

MBR8035
MBR8045

MOTOROLA

SEMICONDUCTOR
TECHNICAL DATA

•

SCHOTTKY RECTIFIERS
80 AMPERES

SWITCHMODE POWER RECTIFIERS

35 and 45 VOLTS

uSing a platinum barner metal In a large area metal-to-silicon
power diode State-of-the-art geometry features epitaxial construction with oXide passivatIOn and metal overlap contact Ideallysulted
for use as rectifiers In low-voltage, high frequency Inverters, freewheeling diodes, and polarity-protection diodes
•

Guaranteed Reverse Avalanche

•

Guardrlng for dv/dt Stress ProtectIOn

• 175°C Operating Junction Temperature
•

Low Forward Voltage

CASE 257~01
DO-203AB
METAL

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Reverse Voltage
Workl n9 Peak Reverse Voltage

DC Blocking Voltage
Peak Repetitive Forward Current

(Rated VR, Square Wave, 20 kHz) TC

=120a C

Average Rectified Forward Current

(Rated VR) TC

=120a C

Peak Repetrtlve Reverse Surge Current

(2

a ~S, 10kHz) See Figure 7

Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditions halfwave.

MBR8035

MBR8045

Unit
Volts

VRRM
VRWM
VR

35

45

IFRM

160

160

Amps

10

80

80

Amps

IRRM

20

20

Amps

IFSM

1000

1000

Amps

TJ, Tstg

-65 to +175

-65 to +175

ac

dv/dt

1000

1000

V/~s

080

aBO

072
059
067

072
059
067

10
150

10
150

5000

5000

single phase, 60 Hz)
Operating Junction Temperature and
Storage Temperature

Voltage Rate 01 Cha nge (Rated VR)
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)

Maximum Instantaneous Reverse Current (1)

(Rated Voltage, TC = 25 a C)
(Rated Voltage, TC = 150a C)
Capacitance

(VR = 1

a Vdc, 100 kHz';; I';; 1 a MHz)

Volts

vF

(IF = 80 Amp, TC = 25 a C)
(IF = 80 Amp, TC = 150a C)
(IF = 160 Amp, TC = 150a C)
'R

Ct

(1) Pulse Test Pulse Width = 300 ~s, Duty Cvcle ~ 2 0%

3-134

mA

pF

MBR8035, MBR8045

FIGURE 2 - TYPICAL REVERSE CURRENT

FIGURE 1 - TYPICAL FORWARD VOLTAGE
200

100

/ / V

/ /

/

100

/

I I

I

30

Vi

~ 20
~

/ II

....
i'O

'"
'"

::0
U

~

«

~

70

'"

50

5:

/

10

«

5l

TJ = 150°C /

«
S;;; 30
«
t;;
;;;: 20
!f.

J

I

I 0

10

/

if!

/

01

w

/ II

~

001

25°C

!!'

/

0001

o

40

30
20
VR. REVERSE VOLTAGE (VOLTS)

10

50

FIGURE 3 - MAXIMUM SURGE CAPABILITY
/

1000

/IOooCI
L25°C

....

I

f!

~

"

700

" "I'-..

500

w

~

5l
".

I"300

~

I

~

I

............

Ra;ed~ad
200

........

r--....
I-

f = 60 Hz

I

03

-

'"
ffi

07
05

-

100°C

~

....

L

::0

;z

02

TJ= 150 a C

10

70
50

=

100

o

0I

02

03
04
05
06
07
08
'F. INSTANTANEOUS VOLTAGE (VOLTS)

09

I0

10

20

30

5 0 70 10
20
NUMBER OF CYCLES

30

50

70 100

FIGURE 4 - CAPACITANCE

NOTE 1

7000

HIGH FREQUENCY OPERATION
Smce current flow In a Schottky rectifier IS the result of maJorrty
carner conduction, It IS not subject to Junction diode forward and
reverse recovery tranSients due to mmorrty carner injection and
stored charge Satisfactory Circuit analysIs work may be performed by uSing a model consisting of an Ideal diode In parallel
with a vanable capacitance {See Figure 4 }
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz For example, relative
waveform rectificatIOn efficiency IS approximately 70 per cent at
20 MHz, e 9 . the ratio of dc power to RMS power In the load IS
28 at this frequency, whereas perfect rectification would Yield
406 for sine wave Inputs However, In contrast to ordinary
Junction diodes, the loss In waveform efficiency IS not ind,cat,ve
of power loss, It IS simply a result of reverse current flow through
the diode capacitance, which lowers the dc output voltage

a
a

5000

2'-..

" ::::: t'....... ~x

~ 3000

~

~ r"t---

2000

5
j

r....

c(

100IkH'I';;f~ 1 0IMHI,

u 1000

'"" ~ ::::----

700
05

3-135

10

20 30
50 70 10
VR. REVERSE VOLTAGE (VOLTS)

20

30

50

MBR8035, MBR8045

FIGURE 5 - FORWARD CURRENT DERATING
100

FIGURE 6 - POWER DISSIPATION

VR @ Rated Voltage

in 90

i

in

!i§

::!. 80
.....
~ 70

a

"'-

60

~ 50

~
E

40

~

30

ffi;:c

20

Nie

r....."
~

IpK
"

IAV

-

I
(Capa"t,ve load) ..ilL

10 ~O100

_L

I
110

120

IAV

160

~
u;

50

'"
C

40

~

30

(ReSlst,ve load)
IpK I

'"I'"
170

ffi

180

10

~

0

2

LO~V~
~
~ rf=:-:;,=-=,,-:::01'' "®"I"'
'1 T'""'",""'®'"'B=®I
I

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR12035CT
MBR12045CT
MBR12050CT
MBR120S0CT

Symbol

Max

Unit

VRRM

35
45
50
SO

Volts

VRWM
VR

Average Rectified Forward Current Per DeVice
Per Leg
(Rated VR) TC = 140'C

IF(AV)

120
SO

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 140'C

IFRM

120

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, SO Hz)

IFSM

800

Amps

Peak Repetitive Reverse Current, Per Leg
(2.0 p.s, 1.0 kHz) See Figure 6

IRRM

2.0

Amps

TJ,Tsta

-S5 to + 175

'c

dv/dt

1000

V/p.s

Rruc

0.85

'C/W

Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)

DIM
A
B
C
E
F
G

H

THERMAL CHARACTERISTICS PER LEG

I Thermal ReSistance, Junction to Case

NOTES.
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14 SM, 1982.
2. CONTROLLING DIMENSION INCH.

N
Q

R
U
V
W

MILLIMETERS
MIN
MAX
87.63
92.20
1778 20.57
1563
1600
3.05
330
11 05
11.30
34.80
35.05
018
068
1I4-20UNC·2B
686
723
80.01 BSC
15.24
1600
8.39
9.52
432
4.82

INCHES
MIN
MAX
3450
3630
0.700
0.810
0615
0630
0.120
0.130
0.435
0.445
1.370
1.380
0.007
0.027
1I4·20UNC·2B
0.270
0285
3.150 asc
0.800
0.630
0330
0.375
0.170
0190

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
!IF = SO Amp, TJ = 125'C)
(iF = 120 Amp, TJ = 175'C)
(iF = 120 Amp, TJ = 125'C)
!IF = 120 Amp, TJ = 25'C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125'C)
(Rated dc Voltage, TJ = 25'C)

iR

Volts
0.590
0.S20
0.S80
0.830
mA
25
0.25

11) Pulse Test. Pulse Width = 300 p.O, Duty Cycle'" 2 0%

3-138

CASE 357C-Ol
POWER TAP
Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:'

0.280 max
25-40 in-Ib max
30-40 in-Ib max

'Center Hole Must be
Torqued Fir~

8-10 In-Ib max

•

MBR12035CT, MBR12045CT, MBR12050CT, MBR12060CT

FIGURE 1 - TYPICAL FORWARD VOLTAGE PER LEG

200

A

....
g§ 100

:z

13
CI

~

-

:z

10

~
«

10 F==.150°C

50

30
20

=>
@

Fr;~~~~~~!~~~~~~~~~~~
lWC
_

100
~~ TJ

25°C

TJ - 175°C/ /'25°C

1
40 f---'125°C __
.... 2.0 t--r--ir--i--j--j--j---+---+--j-----i

70



10

7SoC-

SO°C~

S
z

j5

1000V2SOV

II

~

a::

/

/

150°C

~

a::
a::

a

I

V

~TJ

1000
SOD

~

I

2So~==

O.S

!F 0.2

O.S

0.1
0.2
0.3
0.4
vF.INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

5
W
g
m
~
vR.INSTANTANEOUS REVERSE VOLTAGE !VOLTSI

o

3S

~

*The curves shown are tYPical for the highest voltage device

In

the

voltage grouping. TYPical reverse current for lower voltage selections
can be estimated from these same curves If VR IS suffiCiently below

Figure 1. Typical Forward Voltage

rated VR.

Figure 2. Typical Instantaneous Reverse
Current, Per Leg*
~ 100
~

90

~

80
70

g§

a
'"
~

~
~

~

~
if:

\

100

\

\
\
SQUARE WAVE

\ D.C.

30
20

\

RA~ED VOLTAGE

\
\
\

40

SQLARE ~AVE I
oI- RATED VOLTAGE
I- APPLIED. RESISTIVE
I- LOAD. SO% DUTY
CYCLE
0

'\

60
50

\

60

0

80

WO

1m

MO

160

o

~~

20

0

Figure 3. Forward Current Derating, Per Leg

10 k

~
~

z

7000

3000

/./

V/

n 2 V 100

"

2p.s --.l
1kHz-I

SOOO

S

./,....../
./V/, D.C.

VCC
12 Vdc

l~oUzll f "" 11 MH~

" j'....

1_

r--

CURRENT
AMPLITUDE ~_--{
ADJUST
loon
0-10 AMPS CARBON

.......

2000

1

S 7 10
20
30
VR. REVERSE VOLTAGE IVOLTSI

50

70

100

Figure 6. Test Circuit For Repetitive
Reverse Current

Figure 5. Typical Capacitance, Per Leg

3-141

./

./

Figure 4. Power Dissipation Per Leg

j5

!iii

~

II II

'"

./

40
60
80 100 120 140 160
IFIAVI. AVERAGE FORWARD CURRENT IAMPSI

TC. CASE TEMPERATURE lOCI

20 k

./

V/

0

10

\

o

TJ = lS0°C

0

APPLIED. SO% DUTY
CYCLE

\

10

/'

0

TJ = lS0°C

180

200

MBR2003SCT
MBR2004SCT
MBR200S0CT
MBR20060CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SCHOTTKY BARRIER
RECTIFIERS
200 AMPERES
35 to 60 VOLTS

SWITCHMODE POWER RECTIFIERS
· .. using the Schottky Barrier principle with a platinum barrier
metal. These state-of-the-art devices have the following features:

II

• Dual Diode Construction Current Output

May Be Paralleled For Higher

• Guardring For Stress Protection
• Low Forward Voltage
• 17S C Operating Junction Temperature
D

3

• Guaranteed Reverse Avalanche

r;:::--, . ,.;...... ,"'., .•'
~.

~
-8-

+

+

....

Q"

MAXIMUM RATINGS
Rating

Symbol

Max

Unit

VRRM
VRWM
VR

35
45
50
60

Volts

Average Rectified Forward Current Per Device
Per Leg
(Rated VR) TC = 140·C

IFIAVI

200
100

Amps

Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 140·C

IFRM

200

Amps

Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)

IFSM

1500

Amps

Peak Repetitive Reverse Current, Per Leg
(2.0 JJ.S, 1.0 kHz) See Figure 6

IRRM

2.0

Amps

TJ,TstQ

-65 to +175

DC

dv/dt

1000

V/JJ.S

Rruc

0.5

DC/W

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

MBR20035CT
MBR20045CT
MBR20050CT
MBR20060CT

Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VR)

THERMAL CHARACTERISTICS PER LEG

I Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 200 Amp, TJ = 175·C)
(iF = 200 Amp, TJ = 125·C)
(iF = 100 Amp, TJ = 125DC)
(iF = 100 Amp, TJ = 25·C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TJ = 125DC)
(Rated dc Voltage, TJ = 25·C)

iR

(1) Pulse Test: Pulse Width

Volts
0.650
0.825
0.710
0.800

~ i'r-

!~
~~t1e
"

~SLl.1IIIGfUIIE

NOTES'
1 DIMENSIONING AND TOLERANCING PER ANSI
Y145M, 1982.
2. CONTROLLING DIMENSION. INCH.

DIM
A
B
C
E
F

G
H
N
Q
R
U
V
W

MILLIMETERS
MIN
MAX
87.63
92.20
17.78
20.57
1563
1600
3.05
3.30
11.05
11.30
3480
3505
0.18
0.68
1/4·20UNC·2B
6.86
7.23
8001 BSC
15.24
16.00
839
9.52
4.32
4.82

CASE 357C-Ol

Terminal Penetration:
Terminal Torque:
Mounting TorqueOutSide Holes:"
'Center Hole Must be
Torqued First:

= 300 p.S, Duty Cvcle '" 2.0%.

3-142

INCHES
MIN
MAX
3.450
3630
0700
0.810
0615
0.630
0.120
0.130
0435
0445
1.370
1380
0.007
0.027
114-20UNC·2B
0270
0.285
3.150 BSC
0.600
0.630
0.330
0.375
0.170
0190

PoWER TAP

mA
50
0.5

1...1<,IJ02SIOO101@ITIA®la®1

0.280 mx
25-40 in-Ib max
30-40 m-Ib max
8-10 m-Ib max

-

MBR20035CT, MBR20045CT, MBR20050CT, MBR20060CT

FIGURE 1 - TYPICAL FORWARO VOLTAGE. PER LEG
0

FIGURE 2 - TYPICAL REVERSE CURRENT. PER LEG
100
40 '--- TJ = 150°C
20
10
40
r-l00oC
20
10

1//

/V

0

1

1

0
0

TJ = 175°C

-

/

0
0

/

/

1/ I

0

04
02
o1

125°C

0
0

2
1=
~25°C
000 4 000 2
000 1
10

L

I

0

02
04
06
08
VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

10

140

100

80

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

0

"

Rated Voltage Applied
" Square Wave. 50% Duty Cycle

"

" '\. "'\
"

40

"

100

Square Wave. ResistIVe load

-'"
140

120

I/"

50% Duty Cycl'

/.

TJ= 125~ V
0

J
180

160

..,"

TC. CASE TEMPERATURE (0C)

~
20

....::~

~

~

175°C

~

40
60
80
100
120
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

FIGURE 6 - TEST CIRCUIT FOR REPETITIVE
REVERSE CURRENT

FIGURE 5 - CAPACITANCE. PER LEG
20.000

100 kHl~ t:::;;;; 1 0 MHz

Vee

12Vdc

10.000

n

~7.00 0
~

~

5

5.00 0

.........

.......

.........
""Max

--I

-...,J,t--

3,00 0

....... ......

2.00 0

10

20

30

50 70

10

20

100

I-- 20._
Current
Amplitude

"-

AdjUSt

0-10 Amps

I""--r-.
1.00 0
0507

2V

10kHz

......... ~

Typ

'l

I/.V

0

150o~ -175~C~ t - \.

~

Ratid voltag,'APPI!ed '

"

\.

TJ=125°C~ -

20

r-01--

""

'"

60

5

50

FIGURE 4 - POWER DISSIPATION. PER LEG

FIGURE 3 - FORWARD CURRENT DERATING. PER LEG

120

~

30

1

50

o Carbon

lN5817

VR. REVERSE VOLTAGE (VOLTS)

3-143

140

MOTOROLA

-

SEMICONDUCTOR - - - - - - - - - - - - - -

TECHNICAL DATA

MBR30035CT
MBR30045CT
MBR30050CT
MBR30060CT

POWER TAP

Switch mode Power Rectifiers
• .. using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:
•
•
•
•
•

Dual Diode Construction - May Be Paralleled For Higher Current Output
Guardring For Stress Protection
Low Forward Voltage
175°C Operating Junction Temperature
Guaranteed Reverse Avalanche

SCHOTTKY BARRIER
RECTIFIERS
300 AMPERES
35 TO 60 VOLTS

,
1

...
""

e
3

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Workmg Peak Reverse Voltage
DC Blocking Voltage

MBR30035CT
MBR30045CT
MBR30050CT
MBR30060CT

Average Rectified Forward Current Per Device
(Rated VRI TC = 140'C
Per Leg

Symbol

Max

Unit

VRRM
VRWM
VR

35
45
50
60

Volts

IF(AVI

300
150

Amps

[~]~~r"
. . .. ••"•• "' .•'•• '

Peak Repetitive Forward Current, Peg Leg
(Rated VR, Square Wave, 20 kHz!. TC = 140'C

IFRM

300

Amps

Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions
halfwave, single phase, 60 Hzl

IFSM

2500

Amps

Peak Repetitive Reverse Current, Per Leg
(2 /J-S, 1 kHzl See Figure 6

IRRM

2

TJ, Tstg

-65to+175

'c

dvldt

1000

Vlp.s

Operating Junction and Storage Temperature
Voltage Rate of Change (Rated VRI

Amps

Instantaneous Forward Voltage (11
(iF = 150 Amps, TC = 175'CI
(iF = 150 Amps, TC = 125'CI
(iF = 150 Amps, TC = 25'C)
(iF = 300 Amps, TC = 125'C)
(iF = 300 Amps, TC = 25'CI

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125'C)
(Rated dc Voltage, TC = 25'CI

'R

Volts
057
0.64
0.74
0.78
082

l!I_oISM,,~~ITI.@II!l1

.J

T,CD--

NOTES
1 DIMENSIONING AND TOLERANCING PER
ANSI Y14 SM, 1982
2 CONTROlliNG DIMENSION INCH

B

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS PER LEG

= 300

~
'-1~.e

DIM
A

THERMAL CHARACTERISTICS PER LEG

(1) Pulse Test. Pulse Width

OUTLINE DIMENSIONS

C
E
F
G
H
N
0
R
U
V
W

MIWMETERS
Mill
MAX
8763 9220
1778 2057
1563 1600
305
330
1105 11.30
3480 3505
018
068
1/4-20UNC·2B
723
686
8001 BSC
1524 1600
839
952
482
432

INCHES
MIN
MAX
3450 3630
0700 0810
0615 0630
0120 0130
0435 0445
1370 1.380
0007 0027
1/4-20UNC·2B
0270 0285
3150BSC
0600 0630
0330 0375
0170
0190

mA
75
0.8

CASE 357C-Ol

POWERTAP

/-LS, Duty Cycle:!!i> 2%

Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:"

0.280 max
25-40 in-Ib max
30-40 in-Ib max

"Center Hole Must be
8-10 in-Ib max
Torqued Fi";;;-

3-144

MBR30035CT, MBR30045CT, MBR30050CT, MBR30060CT

~300

!Z
~

100

a

70
0
5
0

~
a:
~

'"
:::>
~

I
~

.~

1000

I

V
/
I I

~ 200

400
200
100
0
!Z 0
!!§ 0
4
2
I
O. 4
5- O. 2
O. 1
0.04
0.02
I
MO

1

I

7
5

I

3

0.2
0.4
0.6
O.S
VF,INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

160

-'00

~

a:

1\

120

a 100

I
~
w

~
:;;:

150'C

60
60

40

~20
g
D

RATED VOLTAGE

A~PLlJD

I

SQ~AR~ WA~E, 50r' DU~ CiCLE

40

60

1\

so

0

~

iii

15

175'C,\

,

1\

\

~
:z

1\
\

1\

1\
TJ = 125'C\

100
120
140
TC, CASE TEMPERATURE ('C)

~

0

a:

\

~

\
160

0

~

/

ISO

1#

L

'"ffi . /
:;;: o
20
~
iE

V

I'l'

40
0

/'"
L

TJ.= 125'C/ V175'C

o

40

k:2'"

60

SO

100

120

140

160

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 4. Power Dissipation (Per Leg)

+ 150 V, 10mAdC~

20,000

2kfi

4JLF

10,000 f'

+~

7,000
lOUT

I"""--. f"......

~ 5,000

o

;::

-=

r-.,MAX

;j 3,000
100 kHz", f '" I MHz
2,000

1,000
0.5

50

~OLTAGi APPLlE~

RATED
SQUARE WAVE, RESISTIVE LOAD
50% DUTY CYCLE

0

w

Figure 3. Current Derating (Per Leg)

~
~

150'C

40

W
30
VR. REVERSE VOLTAGE (VOLTS)

ffi

\

1\

~

-The curves shown are typical fortha highest yoltagedevlce in the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these same curves If VR IS sufficiently below rated VR.

~

!Z
~

-

25'C

W

~

Figure 2. Typical Reverse Current (Per Leg)·

Figure 1. Typical Forward Voltage (Per Leg)

~ 140

=

!Ii
~

TJ = 175'CV j125'C /25'C

10

175'C

a

/

0

-

125'C
TJ

-

V

TVPr.::::: j:::::-

I
0.7

I

2
7 10
20
VR, REVERSE VOLTAGE (VOLTS)

" l'

30

50

Figure 5. Capacitance (Per Leg)

I kHz

loon

CURRENT
AMPLITUDE
ADJUST
D-IOAMPS

CARBON

I CARBON
lN5817

Figure 6. Test Circuit For Repetitive Reverse Current

3-145

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBRD320
MBRD330
MBRD340
MBRD350
MBRD360

Switch mode Power Rectifiers
DPAK Surface Mount Package
· .. designed for use as output rectifiers, free wheeling, protection and steering diodes in
switching power supplies, inverters and other inductive switching circuits. These stateof-the-art devices have the following features:
•
•
•
•

Extremely Fast Switching
Extremely Low Forward Drop
Platinum Barrier with Avalanche Guardrings
Guaranteed Reverse Avalanche

SCHOTTKY BARRIER
RECTIFIERS
3 AMPERES
20 TO 60 VOLTS

Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Lead and Mounting Surface Temperature for Soldering
Purposes 260·C Max. for 10 Seconds
~I

ATHODE

_
ANODE

CA;~gg~(;
CASE 369A-04

PLASTIC

MAXIMUM RATINGS
MBRD

Symbol

Rating

320

330

340

350

360

20

30

40

50

60

Unit
Volts

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current (TC = + 125'C, Rated VR)

IF(AV)

3

Amps

Peak Repetitive Forward Current, TC = + 125'C
(Rated VR, Square Wave, 20 kHz)

IFRM

6

Amps

Nonrepetitlve Peak Surge Current
(Surge applied at rated lead conditions halfwave, sIOgle phase, 60 Hz)

IFSM

75

Amps

Peak Repetitive Reverse Surge Current (2 fLS, 1 kHz)

IRRM

1

Amp

TJ

-65 to + 150

·C

Storage Temperature

Tstg

-65to +175

·C

Voltage Rate of Change (Rated VR)

dv/dl

1000

VlfLS

Operating Junction Temperature

THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction 10 Case

6

Maximum Thermal Resistance, Junction to Ambient (1)

80

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (2)
iF = 3 Amps, TC = +25'C
iF = 3 Amps, TC = +125'C
iF = 6 Amps, TC = +25·C
iF = 6 Amps, TC = +125'C

vF

Maximum Instantaneous Reverse Current (2)
(Rated de Voltage, TC = +25'C)
(Rated de Voltage, TC = +125'C)

iR

Volts
0.6
0.45
0.7
0.625
mA
0.2
20

(1) Rating applies when surface mounted on the minimum pad size recommended.
12) Puis. Test: Puis. Width = 300 fLS, Outy Cycl. '" 2%.

3-146

MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

TYPICAL CHARACTERISTICS

40
20
10

«

.s
i'5

~
:::>

75°C

2~oC

_ 0.02

.sF 0.0 1

0.004
0002
0.001 0

// I

'(//

// V/
~/y

r10

20
30
40
50
VR, REVERSE VOLTAGE IVOLTSI

rl/ /

0

...... 7SoC

9

SINE

WA~

TJ = 1S0°C

8

6

LJI

S

I

4

J

3
2

02

I 0.3

0.4
O.S
0.6
0.7
0.8
0.9
vF, INSTANTANEOUS VOLTAGE IVOLTSI

/10

90

100

110

"'-\

R8JC = 6°00

I-

120

"'-\

130

\V
/SQUARE
WAVE-

'"

10

~
ac

"-.,..

.........
2.5

~

I\de

~
w

~
~

\

1.S

---de
........

---r---I'...

TJ = 1S0°C-..... 1-- ..........

1

"

~ O.S

160

I'-...

TJ = 125°C

Eo
1S0

R8JA = 80°CNV
SURFACE MOUNTED ON MIN.PAD SIZE RECOMMENDED

TJ =11S0°C

~ 3.5

a:

140

de

Figure 3. Average Power Dissipation

TJ = 1S0°C

\

Y

234S678
IFIAVI, AVERAGE FORWARD CURRENT IAMPSI

~

\

//

~~ ~

11

RATED VOLTAGE APPLIED

I"

/

I / / ~ V
,/
/
/ .#
J ./ /~ ........
la ~ V

Figure 1. Typical Forward Voltage

SIN[\.\
WAVE
OR
SQUARE
WAVE

V

IpK!IAV = 20

~

/ /(

I/S

7

0.1

70

Figure 2. Typical Reverse Current

I

I

60

*The curves shown are tYPical for the highest voltage deVice In the voltage
grouping TYPical reverse current for lower voltage selections can be
estimated from these curves If VR IS suffiCient below rated VR

1tC. . . fy1 If I'TJ = 2SOC
1

100°C

~ 0.04

~~

h

125°C

04
0.2
O. 1

u

~

125°C'f.-J

1S0°C

TJ

4
2
1

I-

o1

-

100

100

o

20

40

60

"'-

- - - SQUARE WAVEOR
SINE WAVE
VR = 2SV

"I'-.

"-

...
...,

...
80

100

120

"

TA, AMBIENT TEMPERATURE lOCI

TC, CASE TEMPERATURE lOCI

Figure 4. Current Derating. Case

Figure 5. Current Derating. Ambient

3-147

'\

140

160

II

MBR0320, MBR0330, MBR0340, MBR0350, MBR0360

MINIMUM PAD SIZES
RECOMMENDED FOR
SURFACE MOUNTED
APPLICATIONS

1K
700
500

\.

u: 300
~ 200

TJ

~

67
0.265

25'C

I

r-.....

u

z

«

l - t--

ti

100
70
~ 50

~

30
0
10

o

10

20

~

30

40
50
VR, REVERSE VOLTAGE (VOLTSI

60

:E

70

-r- -+ -1"0 0:3

~-

1

23

Figure 6. Typical Capacitance

2.3

0090 0090

OUTLINE DIMENSIONS

,-~u
I · t +i
~~-r1U
t
A

,23

K

"'''''~'~1.E
STYLE 3
PIN 1. ANODE
2 CATHODE
3 ANODE
4. CATHODE

F

lE:
l' I~ ~~
I u
I~

,--ICI
CASE 369A-04
PLASTIC

3-148

z

-

t

DIM
A

B
C
D
E

F
G
H

J
K
L
S
U

V
W
Y
Z

MILUMmRS
MAX
MIN
597
622
6.73
635
2.38
2.19
069
088
1.06
0.97
064
0.88
4.58 RSC
229 SSC
0.58
6.46
2.59
2.69
1.27
069
5.46
5.21
0.51
1.14
077
0.94
0.84
4.32
3.69

-

INCHES
MIN
MAX
0.235
0.245
0.250
0.265
0.086
0.094
0.027
0.035
0038
0.042
0.025
0035
0180 SSC
0.090 SSC
0018
0.023
0.102
0.114
0.050
0.035
0.205
0.215
0.020
0.030
0045
0.033
0037
0.170
0.145

NOTES
1. SURFACE 'T' IS SOTH A DATUM AND A
MOUNTING SURFACE.
2. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M,1982.
3 CONTROLLING DIMENSION' INCH

MOTOROLA

IlBl

SIEM UC\O) N [)!UJ ~~ [F)(IJ)Wer
DPAIl( SlLJIirlface

IiYilOILJlII'D'Il:

MBRD620CT
MBRD630CT
MBRD640CT
MBRD650CT
MBRD660CT

ReCC1IBfoers

Package

... in switching power supplies, inverters and as free wheeling diodes, these state-ofthe-art devices have the following features:
G Extremely Fast Switching
o Extremely Low Forward Drop
o Platinum Barrier with Avalanche Guardrings
o Guaranteed Reverse Avalanche
Mechanical Characteristics
o Case: Epoxy, Molded
o Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
o Lead Formed for Surface Mount
o Available in 16 mm Tape and Reel or PlastiC Rails
o Compact Size
o Lead and Mounting Surface Temperature for Soldering
Purposes 260°C Max. for 10 Seconds

SCHOTTKY BARRIER
RECTIFIERS
6 AMPERES
20 TO 60 VOLTS

CATHODE
ANODE •
CATHODE
ANODEC
CASE 369A-04
PLASTIC

MAXIMUM RATINGS
MBRD

Rating

Svmbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
TC = 130°C IRated VR)

VRRM
VRWM
VR
Per Diode
Per Device

620CT 630CT 640CT 650CT 660CT
20

30

40

50

60

Unit
Volts

IFIAV)

3
6

Amps

Peak Repetitive Forward Current, TC = 130°C
IRated VR, Square Wave, 20 kHz) Per Diode

IFRM

6

Amps

Nonrepetltlve Peak Surge Current
ISurge applied at rated load conditions halfwave, single phase, 60 Hz)

IFSM

75

Amps

Peak Repetitive Reverse Surge Current 12 fLs, 1 kHz)

IRRM

1

Amp

TJ

-65 to +150

°c

Tstg
dv/dt

-65to +175

°c

1000

V/fLS

Operating Junction Temperature
Storage Temperature

Voltage Rate of Change IRated VR)

THERMAL CHARACTERISTICS PER DIODE
Maximum Thermal Resistance, Junction to Case

6

Maximum Thermal Resistance, Junction to Ambient 11)

80

ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage 12)
iF = 3 Amps, TC = 25°C
iF = 3 Amps, TC = 125°e
iF = 6 Amps, TC = 25°e
iF = 6 Amps, TC = 125°e

vF

Maximum Instantaneous Reverse Current 12)
IRated dc Voltage, TC = 25°e)
(Rated de Voltage, Te = 125°C)

'R

Volts
0.7
0.65
0.9
0.85

(1) Rating apphes when surface mounted on the minimum pad size recommended.

121 Pulse Tesl: Pulse Width = 300 !,S, Duly Cycle" 2%

3-149

mA
0.1
15

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
TYPICAL CHARACTERISTICS
100

100

1

0
50

125°C

15

a:
a:

a

30

1

w

7SoC

en

ffi

~

0

a:

~
A

",

0.0 1
I-"

o

20

10

Figure 2. Typical Reverse Current, * Per Leg

f/I/

!J'II

1

0.7

j')Io.,

15WC ..... J

o. 1
o

I

I
I
0.2

0.4
0.6
0.8
1.2
VF, INSTANTANEOUS VOLTAGE IVOLTS)

1.4

/

I

/

/.
"'dc' f - /
. / / ./
'/ / / ./
/
/
/ h
/ / V~ V ,,TJ = lS0°C/

/

/

/

/

.....-: 17" V

I

~~

I

Figure 3. Average Power Dissipation, Per Leg

TJ

I

= lS0°C

I

""SIN~~
WAVE
OR
SQUARE

3
2

WAy

1
80

90

100

TJ

= 150°C

-..............

'\.de

'\.\

'\.I\.
i\.\.

110
120
130
140
TC, CASE TEMPERATURE 1°C)

lS0

I

10

VOL~AGE

~

I

IFIAV), AVERAGE FORWARD CURRENT lAMPS)

RAtED
APpLED_
R8JC = 6°CfW

5

P=

V ~QUARE
/ V WA'!7
1'/

/

6"- F-

Figure 1. Typical Forward Voltage, Per Leg

8

llJ
20

I

9
8
7
6
5
4
3
2

25°C

WAVE/

5

o-iPK/IAV =

,... /"--TC =
II/
'-75lC

o. 2

SIINE-

3
2
1

I

12~oC_

o. 3

o

70

60

30
40
SO
VR, REVERSE VQLTAGE IVOLTS)

*The cUlVes shown are typical for the highest voltage device In the voltage
grouping. Typical reverse current for lower voltage selections can be
estimated from these curves If VR IS suffiCient below rated VR

II ~

2

2SoC

0.00 1

~

~W

3

O. 1

Ji:

,,-

'.6
W; ~

o. 5

TJ - 150°C
10

5

160

0

............

;'--r-- .........
........
~O
- --- -.
VR

= 25 V

VR

=

R~A

= 860 CfW
SURFACE MOUNTED ON
MINIMUM PAD SIZE
RECOMMENDED
de

- - - - SQUARE WAVE
OR
SINE WAVE

.........

'" i'-..

~

V

20

40

.... ~ ...
...........

"

60
80
100
120
TA, AMBIENT TEMPERATURE 1°C)

'" \
140

Figure 5. Current Derating, Ambient, Per Leg

Figure 4. Current Derating, Case, Per Leg

3-150

160

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

MINIMUM PAD SIZES
RECOMMENDED FOR
SURFACE MOUNTED
APPLICATIONS

K

67
0.265

\.
0

I

r-.....

TJ - 25'C

~=

M

10

o

10

20
40
50
30
VR, REVERSE VOLTAGE IVOLTS)

60

_

<0>

80

-f- -+ _hl0~3

~-

23

Figure 6. Typical Capacitance, Per Leg

23

0090 0090

OUTLINE DIMENSIONS

,-rtju lE: l' I.
~

~~

y
· f I iF l
u
A

~~-F~
,23

K

t

)~

"''"''''®'''~~I~E ,~D
~~

STYLE 3
PIN 1 ANODE
2 CATHODE
3 ANODE
4 CATHODE

-r

DIM
A
B
C
D
E

F

G

H

J
K

l
S
U
y

W
y

MIWMETERS
MIN
MAX
597
622
635
673
219
238
069
086
097
106
064
088
458 BSC
229 BSC
058
646
289
259
127
089
546
521
0.51
077
114
094
064
432

INCHES
MIN
MAX
0235
0245
0250
0265
0086
0094
0027
0035
0038
0042
0035
0025
0180 BSC
0090 Bse
0018
0023
0102
0114
0035
0050
0205
0215
0020
0030
0033
0170

~

H

CASE 369A·04
PLASTIC

3-151

NOTES
1 SURFACE 'T' IS BOTH A DATUM AND A
MOUNTING SURFACE.
2 DIMENSIONING AND TOLERANCING PER ANSI
YI45M,I982
3 CONTROLLING DIMENSION INCH

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MBRL120
MBRL130
MBRL140

Switch mode Rectifiers
· .. designed for use in sWitching power supplies, Inverters,
and as free wheeling diodes, these devices have the following features:
• Low Forward Voltage

LEAD LESS
SCHOTTKY RECTIFIERS
1 AMPERE
20-40 VOLTS

• Low Leakage Current
• Leadless Package for Surface Mount Technology
Mechanical Characteristics:
Case: Glass
Finish: End caps are plated and are readily solderable

O.....---I~DII--_-O

Polarity: Cathode indicated by polarity band
Maximum Lead Temperature For Soldering Purposes:
230'C, @ end cap for 10 seconds.

CASE 362B-01

MAXIMUM RATINGS
MBRl
Rating

Symbol

Unit

120

130

140

20

30

40

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current (Rated VR)
TC = 75'C, TA = 50'C, Mounting Per Note 1

IF(AV)

1

Amp

Nonrepetit,ve Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)

IFSM

20

Amps

TJ, Tstg

-65 to +150

'c

Operating

J~nction

and Storage Temperature

Volts

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to End Cap

Typ

Max

40

65

ELECTRICAL CHARACTERISTICS
Symbol

Characteristic
Instantaneous Forward Voltage (1)
(iF = 1 A, TJ = 25'C)
hF = 1 A, TJ = 125'C)

vF

Reverse Current
(Rated de Voltage. TJ = 125'C)
(Rated dc Voltage. TJ = 25'C)

'R

Max

Unit
Volts

0.690
0.650

(1) Pulse Test: Pulse Width = 300 I-LS, Duty Cycle,.;;; 2%.

3-152

mA
10
0.1

MBRl120, MBRl130, MBRl140

10 k

20
TJ = 150~
10

k
k
k

V /' ~

'1

VI
JV

!.

!§
!Q

'125°C

/

V

~g.

VV

25"C

10

jll

o. 1
o

0.2

~

I---20
30
VR. REVERSE VOLTAGE (VOLTS)

40

50

Figure 2. Typical Reverse Current*

I

o. 2

1=

*The curves shown are typical forthe highest voltage deVice In the voltage
grouping. TYPical reverse current for lower voltage selections can be
estimated from these same curves If VR IS suffiCiently below rated VR.

I II

o.3

125°C

4
2
1

o2
o.1 0

7
5

150°C

75°C f - -

o.4

I

rl II

1

-

400
;::: 200
~ 100
40
u
20
10

25°C=

TJ

III I
iii I
/ II

200

0.4

08

0.6

12

1.4

VF. INSTANTANEOUS VOLTAGE IVOLTS)

0

Figure 1. Typical Forward Voltage
0

\

\

0

"r-... ......

30
20

o

10

TJ

= 25°C

~

-r--

1

30
20
VR. REVERSE VOLTAGE (VOLTS)

40

50

Figure 3. Typical Capacitance

5

1

1

1

1

I,

1

V

1

4 f- (CAPACITIVE LOAD) !fK = 20
tIAV
3

2

1

/
I

V

2

L

I

..L.

4

V

.J:; ~
V L
~
~
1/V V ,::::; ....... ~
/. V / V ~ F'S.

~ ~ ~ r:;.-

t--

.2

~

/

L~AO- t--

RESlhlVE
MOUNTING PER
NOTE 1

6

191

/

I

8

-

'SO. WAVE

1

"

.8
.6

4
2

0
2.8
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

0

20

40

[\.

'\

"

f\...

60
80
100 120 140
TA. AMBIENT TEMPERATURE

160

Figure 5. Current Derating. Printed Circuit
Board Mounting

Figure 4. Forward Power Dissipation

3-153

MBRl120, MBRl130, MBRl140

Tape & Reel Options
12 mm Tape
MLL41

Note 1: Data shown for thermal resistance Junctlon·to-amblent (8JA) for
the mountmg shown IS to be used as a typical gUIdeline values
for prehmlnary engmeerlng or In case the tie pomt temperature
cannot be measured

OPTION 1

Typical Values for 6JA in Still Air = 118'CIW
PC Board with 1/4" x 1/4"
Copper Mounting Pads

OPTION 2

TAPE FEED

~0

POLARITY BAND INDICATES CATHODE.
OPTION 1 = T1 DESIGNATOR
OPTION 2 = T2 DESIGNATOR

Leadless Diode Construction

HEADED DUMET
BUMPED
DIE

GlASS SLEEVE

OUTLINE DIMENSIONS

Ilt.l
A
B
R
U

MLL41
CASE 3628-01

3-154

MlWMEIElIS
MAX
MIN
480
520
239
259
368
454
030
055

INCHES
MIN
MAX
0189
0205
0102
0094
0145
0179
0012
0022

MOTOROLA

-

MDA2500 Series

SEMICONDUCTOR

TECHNICAL DATA

RECTIFIER ASSEMBLY
utiliZing individual vOid-free molded rectifiers, Interconnected
and mounted on an electrically Isolated aluminum heat sink by
a high thermal-conductive epoxy resin.
•

400 Ampere Surge Capability

•

Electrically Isolated Base

•

UL Recognized

•

1800 Volt Heat Sink Isolation

SINGLE·PHASE
FULL·WAVE BRIDGE

25 AMPERES
50-600 VOLTS

MAXIMUM RATINGS
MDA
Rating IPer Diode)

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

DC Output Voltage
Resistive Load
CapaCitive load
Sine Wave RMS Input Voltage

2500 2501 2502 2504 2506 2508 2510

Unit

50

100

200

400

600

800 1000 Volts

30
50

62
100

124
200

250
400

3BO
600

500 620
600 1000

35

70

140

280

420

560

Vdc

VRIRMS)

Volts

Volts

700

10

25

Amp

IFSM

400

Amp

TJ, Tstg

-65 to +175

'c

Average Rectified Forward
Current
(Single phase bridge resistive
load, 60 Hz, TC ~ 55'C)
Nonrepetltlve Peak Surge

Current
(Surge applied at rated load
condltlonsl
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Typ

Symbol

Thermal Resistance, Junction to Case

Max

4.5
2.0

Each Ole
Total Bndge

ELECTRICAL CHARACTER)STlCS ITC

=

Umt

°C/W

ROJC
60
2.8

25°C unless otherwISe noted)

Characteristic

Symbol

Min

Typ

Max

Umt

',,\stantaneous Forward Voltage (Per Diode)
!IF ~ 40 A)'

VF

-

095

105

Volts

Reverse Current (Per Diode)

'R

-

-

10

!LA

IRated VR)

NOTES
1 DIMENSION "Q" SHALL BE MEASURED ON
HEATSINK SIDE OF PACKAGE
2 DIMENSIONS "F" AND "G" SHALL BE MEASURED
AT THE REFERENCE PLANE.

MECHANICAL CHARACTERISTICS
CASE: Plastic case with an electrically isolated aluminum base.
POLARITY: Terminal designation embossed on case:
+DC output
-DC output
AC not marked
MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished
through the surface opposite the terminals. Use silicone heat sink compound on

mounting surface for maximum heat transfer.
WEIGHT: 25 grams (approx.)
TERMINALS: SUitable for fast-on connections. Readily solderable, corrosion
resistant. Soldering recommended for applications greater than 15 amperes.
MOUNTING TORQUE: 20 in-Ib max
*Pulse Width == 100 ms, Duty Cycle

~

2%

3-155

DIM

A
C
D
F

G
J
K
L
P

0

MILLlMffiRS
MIN
MAX
2565
2616
1244
1397
610
660
1001
1049
1999
2101
071
086
952
1143
152
206
279
292
442
467

INCHES
MIN
MAX
1010
1030
0490
0550
0240
0260
0394
0413
0787
0827
0034
0028
0375
0450
0060
0081
0110
0115
0174
0194

CASE 309A-03

•

MDA2500 Series

FIGURE 2 - NON REPETITIVE SURGE CURRENT

FIGURE 1 - FORWARD VOLTAGE
10 0

.-

5001--- TJ = 25"C

f-- PW =

30o
10 0

600

..........

;: 40 0
~
30 0

..........

ii:

'"'"

~ po

7

B
~

Maximum

1""-

/

I--- I-'TY~'Cal

""

./

100 ms

DC=2%

100

:::;;

~

200

~

150

'"
:i\

0

Q...

0

;

I

I

0

10

I

...........

r-.~

I'---t--.

......... t--

fYY\

o=~ ..L 10 Cvcle
0
10

20

30

50

10

20

\0

30

50

10 100

NUMBER OF CYCLES AT 60 Hz

II

1/

0

r---.. I'--- ~C

f"'--.t--.

60

I

0

IsTJ pnor to surge

TJ = 115°C

>

/

J

each cvcle of surge. The TJ noted

1'- ......

w

/ 1/

V RRM may be apphed between

r---...

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

0

+05

0

0
'-'

~ -os
E
u

0

10

--

-15

,
08

10

11

14

16

ZZ

ZO

18

14

-20
02

16

.- f.-"

I,...o~

:3

5

01
06

.- I--"

$ -10

1

03

t,..'l
TYPIcal Rang. ,

05

10

20

50

10

20

50

100

200

IF. INSTANTANEOUS FORWARD CURRENT (AMPi

vF,lNSTANTANEOUS FORWARD VOLTAGE (VOLTSI

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - CURRENT DERATING
8

41-- h.

J: ! ,T ~r
NOTE (PKIIAV Rat,o
........

0

........

I

......

~tngle p'Od~

f...-

Loads

-

-.....;: 1--........

2

I--+-t--t~ :rr(Reslsllveand
a:

~

~~ ...

0

~E50

'" '"

~ ~

;;

f--

60

80

100

I

20

_

/./

1/ / Y
~:..... ' /
'/'

/V'l'

~ ~ 20!f--+-+--+-7'~'/:~~~t--+-t--l- TJ = moc-+--!--«

~

"'I~

140

r---.

I

g~ 3 0 / ~

po ~ ~

120

~

I

'7

Indl!ct~~ loadS!I-t-+-l-/~l-/'7'~-I

_
CapaCitIVe \ 5 0 , =
40 - , . . . - Loads
10,

~;::

'<: ~

ClrltlVj LOBi

F(~V)

0

g

,~

IPKIIAV =20

0
40

f-f--

'PKI'AV =.
- f-Resistive/Inductive _ f--

~

6

Refers t(l 8

"'"

160

180

TC. CASE TEMPERATURE (OC)

f--+-+-7II~h'F~~I-+- NOTE

O''--+--::.I,...&if' '-+--+-+T

-"""

50

10

15

TheIFMII(AVi ratio "Iersto a
smgle diode. PDT(AV) refers to
the package dISSipatIon

20

25

10, AVERAGE LOAD CURRENT (AMPi

3-156

30

35

MDA2500 Series

FIGURE 6 - TYPICAL THERMAL RESPONSE
10

./

--

I

NOTE:
ROJCIIi = rill ROJC
TJlpk) - TC - Plpkl R8JCltl

---

- -

- ==

=

V
00 1
01

10

05

10

50

10

50

10

100

10k

500

100

10k

10k

50k

10k

I. TIME (rml

NOTE 1

:R:SL

FIGURE 7 - CAPACITANCE
500

,Ppk

k

p

Ip

I I lL

t---

DUTY CYCLE, 0 = Iplll
PEAK POWER, Ppk, IS peak 01 an
TIME eqUivalent square power pulse.

I'--

TJ ~ 25°C

300

r--....

\--11---1

i'...

~ 200
cedure IS recommended.
The temperature of the case should be measured usmg a thermocouple placed on the case at the
temperature reference pomt (see the outline drawing on page 11. The thermal mass connected to the ;t
case IS normally large enough so that It Will not significantly respond to heat surges generated In the
diode as a result of pulsed operation once steady state conditions are achieved. USing the measured ~
U 100
value of Te. the Junction temperature may be determined by
To determine maximum Junction temperature of the diode

In

a given srtuatlon, the follOWing pro-

g

TJ = TC + t; TJC
where 6. TJC IS the Increase In Junction temperature above the case temperature. It may be determined

"'-

70

by'

.

50

t; TJC = Ppk 0 ROJC [0 + [1 - 010 rltt + Ipl + ~'pl - rltll1

tJ

where

1

05

02

r(t) = normalized value of tranSient thermal resistance at time, t, from Figure 6, I e.,
rltt + lp) = normalized value of transient thermal resistance at time t1 +tp

.
]

10

TJ ~ 25°C

07

vF

w

;:: 05

[\;b
I

I-'fr-l

§
>

~

C>

~ 03
c

'"
<

1

~

~
0.1

---

1.0

~

I-"" "'r~ 1 OV

--

~

..

]; 10

-

w

t--- ........ ...........

i

50

IF

,...-

30

'"j
10
0.1

3-157

~

r--.

IDA
I

0~lro251R

........

........ IDA
~ >-... ..............
50A.... . . . 1" .......
~

~

......

f-trr

2y
10

I

IF

~ 20

70

TJ ~ 15°C

~

~

2.0
3.0
5.0
IF. FORWARD CURRENT IAMPI

II

r-....

§

-

100

i= 70

--- ------

/

~ 02

...-

50

FIGURE 9 - REVERSE RECOVERY TIME

FIGURE 8 - FORWARD RECOVERY TIME
10

10
H
50
10
20
VR, REVERSE VOLTAGE IVOLTS)

1 I

I I I

02 03
05 0.7 10
20
50
IR/IF, RATIO OF REVERSE TO FORWARD CURRENT

70

10

MDA2500 Series

AMBIENT TEMPERATURE DERATING INFORMATION
FIGURE lOB - IERC HEAT SINK UP3

FIGURE IDA - THERMALLOV HEAT SINK 6005B
Q::

.....Iflfv)·" (R""'''''"i lldUt've 'O.dS)_

I..........

.......
.......

. . .v

r-.... i'-,

r-. ....... ........ i'-,

-- "'"

10
/ ' /20

~

I

Cap.",,,.
Loads

f- ROJA·

j' I

o
40

-

100

r---. "-

~ 40

..... ~

~
"

~

:;-

if

160

140

180

= RB1 PDl + RB2KB2PD2 + RB3KB3P03 + RB4KB4PD4

10

~

I CapacltlVe_ I--

I Loads

~

-..-

_ ReJA ~ 16 C/W

I I
40

I
120
140
100
80
TA. AMBIENT TEMPERATURE (OC)

60

"I,

160

180

Bndge rectifiers are used In two baSIC confIguratIons as shown
by Circuits A and B of Figure 11 The current derating data of
FIgure 4 applies to the standard bndge Circuit (A) where IA = IS'
For Circuit B where IA = 'B, derating information can be calculated
as follows

IS the change In Junction temperature of diode 1,

4
4
4

the thermal resistance of diodes 1 through 4,
the power diSSipated Tn diodes 1 through 4,
IS the thermal couplmg between dIOde 1, and

(6) TR(max) = TJlmax) -'::'TJl

IS

IS

diodes 2 th rough 4

An effective package thermal resistance can be defmed as

Where TRlmax) IS the reference temperature (either case
or ambient) . .::l. T J1 can be calculated usmg equatIon (3) In Note 2
For example, to determine TC(max) for the MDA2500 With
the following capacitive load conditions'

follows_

I A = 20 A average With a peak of 60 A,
'S = 10 A average WIth a peak of 70 A,

(2) RO(EFF) = .::.TJ1/PDT
IS

I I I

...... 10
/20

NOTE 3: SPLIT LOAD DERATING INFORMATION

In multiple chip devices where there IS coupling of heat between die, the Junction temperature can be calculated as follows

where PDT

,~

I":: ~

>

NOTE 2: THERMAL COUPLING AND
EFFECTIVE THERMAL RESISTANCE

(1) .::.T Jl

::: rr (ReSistIVe and Inductive loads)

1/

........ ........

.......... ~ ~

TA.AMBIENT TEMPERATURE (OC)

where ~TJ1
RO 1 through
POl through
K02 through

'~([AMJ)

........

;

~~

120

~

~ 30

I

80

"...

~ 20

aoc/W

60

....... ~ ..........

a

....... ~ ~ ,/

0

50

the total package power diSSipation

Assuming equal thermal reSIstance for each dIe, equatIon (1)

sImplifIes to
(3) '::'TJl

= RB1(POl + Ke2P02 + KB3PD3 + KB4PD4)

For the condItIons where POl = P02 = P03 = P04. PDT =
4 P01, equation (3) can be further simplified and bv substituting
Into equation (2) results In
(4) RB(EFF) = RBI (1 + KB2

+ KB3 + KB4)/4

When the case IS used as a reference pOint, coupling between
opposite die IS negligible for the MDA2500, and coupling between
adjacent die IS approximately 6%.

fIrst calculate the peak to average ratio for IA I(PKl/l(AV) =
60/10 = 60 (Note that the peak to average rat to IS on a per dIode
baSIS and each diode provIdes 10 A average.)
From Figure 5, for an average current of 20 A and an I(PK)I
'(AV) = 60, read POT(AV) = 40 watts or 10 wattsld,ode Thus
POI = PD3 = 10 watts
Simllariv. for a load current IS of 10 A, dIode #2 and dIode
#4 each see 50 A average resulting In an I(PK)/I(AV) = 14
Thus, the package power diSSipation for 10 A IS 20 watts or
50 wattsld,ode Therefore, P02 = PD4 = 50 watts
The maximum Junction temperature occurs tn diodes #1 and
#3. From equatIon ~3) for diode #1,
.::.TJl = 10! 10 + 0(5)

+ 0.06(10) + 006(5)J

'::'TJl ~ 109°C.
Thus, TC(max)

= 175 -109 = SSoC

The total package diSSipatIon In thiS example IS
PDT(AV) = 2 x 10 + 2 x 50= 30 watts,

which must be consIdered when selectmg a heat smk.
FIGURE 11 - BASIC CIRCUIT USES FOR
BRIDGE RECTIFIERS
Load 1

]1

JII

Load

Load 2

CirCUit B

Circuit A

3-158

MOTOROLA

-

MDA3500 Series

SEMICONDUCTOR

TECHNICAL DATA

RECTIFIER ASSEMBLY
utilizing individual void-free molded MR2500 Series rectifiers.
interconnected and mounted on an electrically isolated aluminum
heat sink by a high thermal-conductive epoxy resin_

SINGLE-PHASE
FULL-WAVE BRIDGE

400 Ampere Surge Capability


70
50

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE THE TJ
NOTED IS TJ PRIR TO SURGE

I'--

a

-T~ICAL / / '
/ /

-

.........

~ 300

MAXIMUM

./

.........

600

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
+05

50

~

:i

30

~

20

In

~
TYPICAL RANGE"

....,..- ....

10
7

--

05
-1.5
03

J

02

06

08

10

12

14

16

18

20

22

24

26

-20
02

05

OF. INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

,.
§

35

F(AV)

30

~ 25

......

c
a:

~

~
"'

to

ffi>

20

.-- 5.0

......

15
10

20_

0

~ r"..
~

40

60

100
80
120
140
TC. CASE TEMPERATURE IOC)

~~

0

"""Il1o

"

160

0

Ih: (Y
~

~ II"'"

200

3-160

I

50

./ /'
/ '. /

V

r-,
/ '/IY'
~
'/

y

/
~

~

-

TJ~ 175 0C
I-NOTE The IFM/I(AV) ratio refers to a
Single diode, POT(AV) refers to
the package diSsipation.

J J

0 ........

lBO

r-.

V
/1/':

",,'

i""'lIiI

o

I

Inductwe
-;,;, Load.)

0

1'-Capacitive

........!O!
Load,
20 1 - - -

5.0

I

I

IFI~ V)

- ~pa:;=: { ~O1~: r0-

/

...... r-...: -....-:

1'.1.

.!iEMl. '" 'II" (ReSistive and
0

InductIVe Loads)

........ ~ <........ ~

«

~

r.....

10
2.0
50
10
20
50
100
IF. INSTANTANEOUS fORWARD CURRENT lAMP)

70

I'~ I I I I
~ "'n(ReslStlVeand

~

""

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - CURRENT OERATING
~

./'

-:I.;

L L J

25
10
15
20
10, AVERAGE LOAD CUR RENT lAMP)

30

35

MDA3500 Series

FIGURE 6 - TVPICAL THERMAL RESPONSE
10

/

--

1

NOTE 3
ROJclt1 • tit) ROJC
TJ(pk)- TC' P(pk ROJCI.)

....-

V
00 I
02

10

05

50

20

10

100

50

20

500

200

10k

20k

10 k

50k

20 k

'. TIME 1m,)

NOTE 1

FLIT
Pk

FIGURE 7 - CAPACITANCE
500

Ppk

1
P

1---•• - I

TIME

I--

DUTY CYCLE, D 

~

I

TJ' 25°C

05

02

FIGURE B - FORWARD RECOVERV TIME
10

,

300

To determine maximum Junction temperature of the diode In a given Situation, the follOWing
protedurl IJ recommended
The temperature of the caS8 should be measured uSIng a thermocouple placed on the case at
thitemperaturerelerencepOlnt(see the outline drawing on page I) The tharmal mass connected
to the case IS normally large enough so thai It will not51gmflcant1v fespond tohealsufgls
gllnerated In the dlodeasa result of puisedopetahon orn:esteady state condillons are achl aved
USing the measured value 01 ie, the Junction temperature may be determmed by
TJ=TC-tll.TJC
where 6 TJC IS the Intrease In luncllon temperature above the case temperature II may be
determlnedby
Ll.TJccPpk 0 ROJCIO+!1-0J 0 r(11+lp)+r(lp) -r(tlll
where
ritl=normallzedvalueoftranslentlhermalreSlstancealllme,t,fromFIgure6, Le,
r{t1 +tp) = normalLzed valu8 ollranSlentthermalreslstanceattlmel 1+lp

II II

TJ' 2~OC

IF

IF' 10 A
I •

0~Lro251R

........
~

lOA

~ ~ ........ r-50A/

"

j'-.... 1"-1"-

I"-

fo'rr
1.0
01

I I

I I I

50 7.0
0.50710
20
02 03
IRilF. RATIO OF REVERSE TO FORWARD CURRENT

10

MDA3500 Series

AMBIENT TEMPERATURE DERATING INFORMATION

FIGURE 10B - IERC HEATSINK UP3 AND NO HEATSINK

FIGURE 10A - THERMALLOV HEATSINK 6005B

i
~

~

.

iL:' 50

10 ..... ,
80.........

I"'-...

. . . . r-....t"'- . . . "

Mf:re) .• IReslStlve .nd Inductive Loads) I---

.

I

I

I

'"

...... :-.....

r..... l'- .....
1~(rAMJ) (Resistive and Inductive Loads)
o
r-...: ........ ~ I".? I I I I
r-...
!,... 10 Capa"",,_
r--.. ......... ["-. r-.... ......... t--- :5<
J ) I-~ 30
r....:
t-..:
::-....
~ ?' 1~20 Lo.ds
../
~

r"
~

I-

"

-......;

o

~ 2.0

~>

r- Top
3 Curves
RSJA 15 5 CNI
~

'If

"" :::::: i:.

~ ~ T"";: ~
-....;

Lower 3 Curves Are For No HeatSmk and

~ 0
100

120

140

160

180

40

In multiple chip devices where there IS coupling of heat
between die, the Junction temperature can be calculated as follows'
III 6TJl =ROI PDl +R02K02P02+R03K03P03
+ R04 K04 P04
Where tJ. T J 1 IS the change In Junction temperature of diode 1

60

(2) ROIEFF) = 6TJ1/POT
IS

the total package power dIssipation

Assuming equal thermal resistance for each die, equation 11)
simplifies to
13) 6TJl = RO 1 IPOI + K02P02 + K03P03 + K04P04)
For the eondlltons where POI = P02 = P03 = P04. POT = 4 POI.
equation (3) can be further simplified and bV substituting Into
equation (2) results in
(4) ROIEFF) = ROI II

~""

120
100
140
80
TA. AM81ENTTEMPERATURE 10C)

"'

160

180

NOTE 3: SPLIT LOAD DERATING INFORMATION
Bndge rectifiers are usetf in two baSIC configurations as shown
by Circuits A and B of Figure11. The current derating data of

Figure 4 applies to the standard bndge Circuit (AI where IA = lB'
For circuit B where IA = IS. derating information can be calcu~
lated as follows:
(6) TRIMax) = TJIMax) - 6TJl

R91 thru 4 IS the thermal resistance of diodes 1 through 4
P01 thru 4 IS the power dissipated 10 diodes 1 through 4
K82 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.
An effective package thermal reSistance can be defmed as
follows'
Where PDT

'"'ii;

RS(A ~ 12locr

TA. AM81ENT TEMPERATU RE 1°C)

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL
RESISTANCE

~~

""'=~ ~

0

.. 10

~

I

+ K02 + K03 + K04)/4

Where TR(Max) is the reference temperature (either case or
ambient)
l~rTJ1 can be calculated uSing equation (3) In Note 2.
For example, to determine TCIMaxl for the MDA3500 with
the follOWing capacitive load condlltons.
I A = 20 A average with a peak of 60 A
18 = 10 A average wIth a peak of 70 A
Forst calculate the peak to average ratIo for IA' IIPK)/IIAV) =
60/10 = 6 O. (Note that the peak to average ratio IS on a per
diode baSIS and each diode provides 10 A average).
From Figure 5, for an average current of 20 A and an I (PK)/
IIAV) = 6.0 read POTIAV) = 40 watts or 10 watts/d,ode. Thus
POI = P03 = 10 watts.
Similarly, for a load current Ie of 10 A. diode #2 and diode
#4 each see 5.0 A average re5ultong on an IIPK)/IIAV) = 14.

Thus, the package power diSSipation for 10 A IS 20 watts or

When the case IS used as a reference point, coupling between
die IS negleglble for the MDA3500. When the bridge IS used without
a heatstnk, coupling between die is approximately 70% and
ROI IS 300 C/W,
:.ROIEFFI- 30 [1 + 13) 1.7))/4= 230 C/W

5.0 watts/d,ode :. P02 = P04 = 5.0 watts.

The maximum junction temperature occurs In diode #1 and #3.
From equation (3) for dIode #1

6TJl = 17.5) 110), SInce

coupling is negligible.
6TJl ""75°C
Thus TCIMax) = 175 -75 = l000 C

The total package diSSipation in thiS example IS:
POTIAV) = 2 x 10 + 2 x 5.0 = 30 watts. whIch must be
considered when selecting a heat sink.
FIGURE 11- BASIC CIRCUIT USES FOR
BRIDGE RECTIFIERS
Load 1

Circuit A
CirCUit B

3-162

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

Rect&fier Assembly
· .. utilizing individual void-free molded rectifiers, interconnected and mounted on an
electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.
a
•
•
o

MDA4002
MDA4004
MDA4006
MDA4008

Surge and Overload Capability of 525 A
Electrically Isolated Base
High Current, Low vF
2500 V Isolation

Mechanical Characteristics
CASE: Plastic case with an electrically isolated aluminum base.
POLARITY: Terminal-designation embossed on case
+DC output
-DC output
AC not marked
MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished
through the surface opposite the terminals. Use silicon grease
on mounting surface for maximum heat transfer.
WEIGHT: 40 grams (approx.)
TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant.
Soldering recommended for applications greater than
15 Amperes.
MOUNTING TORQUE: 20 in-Ib max

SINGLE-PHASE
FULL-WAVE BRIDGE
40 AMPERES
200-800 VOLTS

OUTLINE DIMENSIONS
MAXIMUM RATINGS
MDA
Rating (Per Diode)
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
DC Output Voltage - Resistive Load
- Capacitive Load
Sine Wave RMS Input Voltage
Average Rectified Forward Current
(Single phase bridge resistive load,
60 Hz, TC = 35°C)
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)
Operating and Storage Junction
Temperature Range

Symbol

4002 4004 4006 4008

Unit

VRRM
VRWM
VR

200

400

600

800

Volts

Vdc

124
200

250
400

375
600

500
800

Volts

VR(RMS)

140

280

420

560

Volts

10

40

Amps

IFSM

525

Amps

TJ, Tstg

-65to +175

°c

THERMAL CHARACTERISTICS (Total Bridge)

1 DIMENSION "0" SHALL BE MEASURED ON
HEATSINK SlOE Of PACKAGE
2 DIMENSIONS FAND G SHALL BE MEASURED AT
THE REFERENCE PLANE

M1LUME1E11S

DOl
A
C

Characteristic

0
F

Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC

NOrrs

G
J

= 25°C unless otherwise noted).
Symbol

Min

Typ

Max

Unit

•

Instantaneous Forward Voltage (IF = 40 A)*

vF

-

0.95

1.05

Volts

Q

Reverse Current (Per Diode) (Rated VR)

IR

-

-

10

/LA

Characteristic

*300 p,s < 2% DC

3-163

L

P

MI.

3480
12 ..

610
1397

2800
071
'52
152
279

.32

MAX

"18
1397
680
"80
2900
086
1143
206
292
483

INCIIES
MAX
"85

MI.

""

0490
02<0
0580
1100
0028

0550
0280
0571

ooro

1142
0034
0450
0061

0110

0115

01"

0190

0375

CASE 30BA-02

MDA4002, MDA4004, MDA4006, MDA4008

700
500

I I
TJ

./

... V

TYPICY

200

Vy
/. ~

100

-

1000

V

= 25'C

~ BOO

V

5
~ 600
g§ 500
::::>

~ 1.0 CYCLE

TJ

r--- I--..
.........
r-.r-.
TJ = 17::C--- r--r.........

~

~

~ 200

/,

1/

I

. . . . r-.

JEWE~~

_ VRRM MAY BE APPLIED
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE

::E

~

1//

= 25'C

--

r---. i'r-.

ii[
;;: 300

70

"

I""""-

I""--r--.

~ 400

MAXIMUM

r--..

100

10

1

20

40

60

100

NUMBER OF CYCLES

b

Figure 2. Non-Repetitive Surge Current

+0.5

V'l

IT

3;-05
$

!Z
0-1
~
o

1

07

-~

u

-2

oB

1
1.2
1.4
1.6
vF. INSTANTANEOUS VOLTAGE IVOLTS)

......-

os

02
0.2
06

....--'".......

l..L

....-

-1.5

0.5

V

TYPICAL RANGE

10

20

100

SO

200

'F. INSTANTANEOUS FORWARD CURRENT lAMP)

1.B

Figure 3. Forward Voltage Temperature Coefficient

Figure 1. Forward Voltage

so

70

"'-45

~40

!Z

g§

35

I

30

a

..!lEML =
............

--.......

25

lC 20

i

I
IReslstlve and
Inductive Loads)

y

I':.<'
~ ./" X- 2O
C?< ..... 1'-..

Loads _

20

-....;:

40

60

BO
100
120
TC. CASE TEMPERATURE I'C)

"- 'f-...

r--.. ~ if' .L

140

/

/

'AV
L.

~

o i..-"
180

Figure 4. Current Derating

o

:...-

/
./

;'

/h

160

/

/

/

r--::: ~

ii[

/

i"--- I

-

...... ~ Io!...""""

Lfi 5

/

150
CapaCitive 10
Loads
20

~5.01 Capacitive
.!. ,- -

,..--10

.......

17

IFIAVE)

~

15
ii[ 10

lFO

~

./
/

.L

.• 1

:/

TJ = 17S'C -

.....

.!lEML

=

17

ReSistIVe and

''I" , '"1-:-~

NOTE: The IFMIIIAV) ratio refers to a
Single diode; PDTIAVE) refers to
the package dISSipatIOn.

15
20
25
30
10
10. AVERAGE LOAD CURRENT lAMP)

Figure 5. Forward Power Dissipation

3-164

3S

40

MDA4002, MDA4004, MDA4006, MDA4008

w

0.5

~
ill

/'

'" _ 0.2

f---

-,0
«~

1-R9JCltl = rttl R9JC
TJlpkl TC Plpkl R9JCItll==F

_f- f-""

~~
01.
~:;

....
.... '"
0

1l'i ~ 0.05

~

~

0.02

I-"""

0.01
0.2

10

0.5

20

50

200

100

500

1.0 k

5.0 k

2.0 k

10 k

20 k

t, T1MElmsl

Figure 6. Typical Thermal Response

Note 1

HJL
'.
PPk

500

Ppk

1-,,--1

DUTY CYCLE, 0 = tpltl
PEAK POWER, Ppk. IS peak of an

TIME

300

equivalent square power pulse

-

I I II
TJ = 25'C

" '"

~200
t'l

To determine maximum Junction temperatura of the diode In a given Situation, the
following procedure IS recommended
The temperature of the case should be measured uSing a thermocouple placed on

;Z

the case at the temperature reference pOint (see the outline draWing on page lJ The
thermal mass connected to the case IS normally large enough so that ,t will nol slg·

~100

nlflcantly respond to heat surges generated In the diode as a result of pulsed operation

once steady state condItions are achieved USing the measured value ciTe. the Junction
temperature mey be determIned by
TJ = Te + ~TJC
where ~ TJC IS the mcrease m lunctlon temperature above the case temperature II
may be determIned by
4TJC = Ppk. R8JC ID + '1 - D). rlt1 + tpl + rltpl - rlt1)]
where
rltl = normahzed value of transient thermal resistance at time. t. from FIgure 8. Ie.
r (t, ... tpl = normalized value of tranSient thermal resistance at time I, + tp

"'"

<..5

70
50

01

0.2

05

1
2
5
10
VR, REVERSE VOLTAGE (VOLTSI

20

50

100

Figure 7. Capacitance

20

r~

:1 0.7 rVf
w

~ 0.5

1::

~

I-tfr-J

~

~ 0.3

i

0.2

V
.........

V
~
1

--

)--

Vfr = 1 V

-IF

lOA

5

-

ii

.......

~ r-... ~

f-"

~f-'"'"

lr
0.1

25"<:

TJ

IF

3
2

~

o IRJ

br'

t

TJ = 25'C

'"

, r- i'-.
CapaClllv~ (. 10/ ~ ~ ~

--......:

.l-z&/

Loads

4

T

I
60

~
~
~
~

~~

~~

2
- R/IJA =

r"1"--["'--"

5 ..... r--..

0:
1T

~

rclw

~

I'

j

I

120
140
100
SO
TA. AMBIENT TEMPERATURE (OCI

160

1S0

4

I........

~

i'-.

IFI~ ~

7T

(ReSlsllve ~nd Inductive Loadsl

~~

i:'-

1 R8JA = 15 5"CIW

o
40

,'o-++-+--+---I

"'~l'- /.
'/ I CapaCillve_
r--.. ~ ~ R R'
doql-+L_oa-+dS--+---j
-.......::~~-....:::~
Top 3 Curves
-....;;:~I(~

3 ......... ;---...

2

!JEMl.

-..::::

Lower 3 Curves Are For No Heal Smk and
R8JA = 23°CI'N
60

~~

-l-+~-I-~""'I~.-I---1
....::::

140
80
100
120
TA. AMBIENT TEMPERATURE lOCI

160

1BO

Figure 10B. IERC Heatsink UP3 and No Heatsink

Figure 10A. Thermalloy Heatsink 6005B
Note 2: Thermal Coupling and Effective Thermal Resistance

Note 3: Split Load Derating Information

In multiple chip devices where there IS coupling of heat between die,
the Junction temperature can be calculated as follows
(11 ~TJ1 = R91 PD1 + R92 K92 P02 + R1J3 K1J3 P03

Bridge rectifiers are used In two basic confIgurations as shown by
CircUItS A and 8 of Figure 11. The current derating data of Figure 4
applies to the standard bridge Circuit (A) where IA = lB. For Circuit B
where IA = lB. derating information c<:!n be calculated as follows:

+R94 K94 PD4
Where .6.TJ1Is the change In JunctIon temperature of diode 1

=

R(11 thru 4 IS the the thermal resistance of diodes 1 through 4

POl thru 4 IS the power diSSipated 10 diodes 1 through 4
K92 thru 4 IS the thermal coupling between diode 1 and diodes 2
through 4.

An effective package thermal reSistance can be defmed as follows:

(21 RIJiEFFI = ~TJ1/POT
Where PDT IS the total package power diSSipation
Assuming equal thermal resistance for Bach die, equation (1) simplifies to
(31 ~TJ1 = R91 IP01 + K92P02 + KIJ3P03 + K94PD41
For the condlliOns where P01

= P02 = P03 = P04. PDT = 4 P01.

equation (3) can be further simplified and by substituting mto equation
(21 results In

(41 R8(EFFI

= R91 (1 + K92 + K83 +

K941/4

When the case IS used as a reference pOint, coupling between die IS
negligible for the M0A3500 When the bridge IS used without a heatslnk,
coupling between die IS approxImately 70% and R61 IS 30oelW,

R81EFFI

= 30 11 + 1311 711/4 =

23°CIW

(61 TRIMaxl
TJIMaxl - ~TJI
Where TRIMax) IS the reference temperature (erther case or ambient)
ATJl can be calculated usmg equation (3) In Note 2
For example. to determine T CIMax) for the MOA3500 WIth the follOWing capacitive load conditions.
IA = 20 A average With a peak of 60 A
18 = 10 A average With a peak of 70 A
First calculate the peak to average ratio for IA I(PKl"(AVI = 60/10 =
6 O. (Note that the peak to average ratio IS on a per diode baSIS and
each diode prOVides 10 A average)
From Figure 5. for an average current of 20 A and an I(PK)"(AV) =
6.0 read POT(AVI

= 40 watts or 10 wattsldlode

Thus POI

= P03 = 10

watts.
Similarly, for a load current 18 of 10 A, diode #2 and diode #4 each
see 5.0 A average resulting In an 'IPKY'IAV) = 14.
Thus, the package power diSSipation for 10 A IS 20 watts or 5 0 watts!
diode. P02 = PD4 = 5.0 watts.
The maximum junction temperature occurs In diode #1 and #3 From
equation (3)for diode #1 .1.TJl
(7.5) (10), since coupling IS negligible

=

< ~ ~

Ir'

I

+4.0

.5

~ENGTHS

g

·10

""IiI~

60

04

180

~c

I'-<

30

1/8" LEAD LENGTH

CA~ACITIVE ~OAOf :~:~: • 5.0'

10

o

r-...-

........

~«

"

100
120
140
80
Tl. lEAD TEMPERATURE (DC)

60

Z

RESISTIV'E lO'AO
80TH lEAOS TO HEAT
SINK WITH lENGTHS
AS SHOWN

""

o

ffi

J

r--

5.0

'"
:::>

180

3-169

·2.0 I0.2

0.5

-

I...-":

1.0
20
5.0
10
20
50
100
IF. INSTANTANEOUS FORWARO CURRENT (AMP)

200

MR500, MR501, MR502, MR504, MR506, MR508, MR510

FIGURE 8 - FORWARD POWER DISSIPATION

FIGURE 9 - TYPICAL REVERSE CURRENT

100
0
Q

i5

"';I:
C
~z
wC

~S
~~
•

70

0

6.0

0

~C

./

Y

./

50
0

4.0

Q

....~i

VR· 100% RATED VOLTAGE
50% RATED VOLTAGE
20% RATED VOLTAGE ....

0

-

0

3.0

5

20

./

2

10

o1

./

w

o

~

./

DO

IFIAV). AVERAGE FORWARD CURRENT lAMP)

DO

~

m

~

~

~

~

TJ.JUNCTION TEMPERATURE I'C)

THERMAL CHARACTERISTICS
FIGURE 10 - THERMAL RESPONSE

10

~Ppk

.... e

""w
~ ~
w""
j:~

ffi~
U;~

0.3
0.2

o.

~:i 0.0

I-.!ii
:g ~

r-

t-

r-

-

DUTY CYCLE =tp/tl
PEAK POWER, Ppk, "peak ,f an
TIME equivalent square power pulse

Ppk

5~ ~
11--/

I---'

<1TJL =Ppk. ROJL 10 + 11- D) • rltl + tp) + rltp) - rltlll

r-whera
ll:::: IlTJL '" the mcrease In ,unctIOn temperature above the

l---~

1= lead temperature

surges generated 1M the dIOde as a result of pulsed
operatIon once steady-state conditions are achieved
Usmg the measured value of TL. the lunctlon tern• r·~tn ~~y b. det.nnined by
I I I II

003 ~ ,rl tl + tp) normalized value of
translentthermalreslstan~
002r- at tlmet1+ tp •
II:

.!!:-r

~I

I III

III II rJL+~TJLI

I

10

0.5

" "III

The temperature of the lead should be m8lUUred
USing a thermocouple placed on the lead as close 8S
possible to the tie point The thermal mass con·

nected to the tl8 pomt It normally large enough
so that It Will not slgmflcantlv respond to heat

t= rlt) =normalized value of transient thermal reSistance
5r-attlme,t,le

0.0 I
02

LEAD LENGTH - 114" _

20

10

50

50

20

100

200

500

10k

20k

I11111
10 k

5.0k

l-

E
f=

1=
II-

l20 k

t,TIMElm.)
NOTE 2 - AMBIENT MOUNTING DATA
Data .hown for thermal re"stance Junctlon-to-amblent 1A6JAI
for the mounting••hown " to be used a. tyj:Jlcal gUideline valuu
for prellm,nary engineering or In CaM the t •• point tem~rilltur.
cannot be m.asured

FIGURE 11- STEADY·STATE THERMAL RESISTANCE

50

0

SINGLE LEAD TO HEAT SINK
INSIGNIFICANT HEAT FLOW
THROUGH OTHER LEAD ~

/'

0

...... V
0/

./

,;'

...... ,; ~
0

.... .... I-

~

X

.'" ,;
.

V
,/
.,;'"

.'"

--

- ' ---.,e ....

--

TYPICAL VALUES FOR ROJAIN STILL AIR

,;

MOUNTING
METHOD

.,;'"
--MAXIMUM
- - - TYPICAL"':::

....

~
.... ....

BOTH LEADSTO
HEAT SINK, EQUAL
LENGTH

1/4

3IB
1/2
5/8
L, LEAD LENGTH IINCHESI

3/4

'/2

3{'

51

53

55

28

ReJA
°C/W

C/W

MOUNTING METHOD 1

~

P C Board Whar. Av.'labie Copp.r
Surface ar.a IS small

jl!~)

I--

MOUNTING METHOD 2
Vector Push-In Terminal. T·28

0
118

1/,

50

3

'(

-

LEAD LENGTH L UN)

1/8

718

3-170

MOUNTING METHOD 3
P C Board With
1-1/2" x 1-1/2" Copper Surface

MR500, MR501, MR502, MR504, MR506, MR508, MR510

FIGURE 12 - APPROXIMATE THERMAL CIRCUIT MODEL

THERMAL CIRCUIT MODEL
(For Hlat Conduction Through the Leads)

T A .. Amblant Tamperatur.
TL" Lead TamJM,atur.

RSSK

TAK

TC" Ca.. Tampera'loIre

-=-

T J .. Junction Tamperatur.

RilS .. Therma' R••IIUlnc., Heat
Sink to Amblant
R/fL" Thermal R•• /lunu, Leed
to H .. tSlnk
R8J" Therma' Rul,'anee, Junction to Ca••
PO" Total Power Ollllp.,ion ..
PF + PR
PF" Forward Power DIUlpatlon
PR .. Reverse Powe, Olilipation

(SublCt/p,s A and Ie ,.far to anode and cathode lid•• rnpectlve'y )
V.h.... tor thermel feslltence components ere
R6L.46 o C/W/IN Typically and 48 o C/W/IN MaXimum
R6J • 10o C/W Typicallv end 1SoC/W Maximum
The mexlmum lead temperatufe may be found

reetifla, II brought as cia.... pctlllbl. to tha h ••• link
tha mode' lignify.

as follows

TL-TJlmllx)-ATJL

U .. of the above mode' perml •• Junction to Iud tharme'
,nlstanca for any mounting configuration to be found For ..
gil"en total '.ad 'angth, Iowan valu .. occur when one IIde of the

ATJL ~ R9JL

where

Term. In

TYPICAL DYNAMIC CHARACTERISTICS

(TJ = 25°C)
FIGURE 13 - FORWARD RECOVERY TIME

FIGURE 14 - REVERSE RECOVERY TIME

1.0~t--~~~Emm
]

0.71-- V,

~

I--

-

i= 0.5 t-- tfr

~

~

I " 1t---11-t-.......
-Iv
- bl-9+t+l

I--

0.31---4-+---1I-+-+-v,.= 2.0 ';'..---:h:..-+"""+-l--4-++1-H

-

o

'"~

Vfr

20

Jw

'";=
ffi
>

~

0.21---4-+---1--1+-+-H+i+-+-+-+--+-++Hti

'"w

(Overshoot not slgmflcant below

If= 200mA)

0.3

05 0.7 1 0
2.0 30
'F. FORWARD CURRENT (AMP)

50

70

10

30 I0
20 l-

I1.0
01

.......

o.7

-

'"~

0.5

I TTf!'"
~MEAS~RJO ~A~!

:l:
~

i:i
c:;

0.3

itw
,; 0.2

-o.hl
NbRMALIZED TbS
10kHz VALUE

--

I j' I I III
02

03

05 07 10
20 30
IRilF. DRIVE CURRENT RATIO

50 70

10

FIGURE 16 - JUNCTION CAPACITANCE

0

.......

...........

1'\

0

I"-

I-V\IV
IJ1J1---2.0

"'" ~r--.

IR

Or-.,

~URRENT INPUtW~VE~O~J

0.1
1.0

r-....."b.
r-;-t). r-........

tvI-trrJ

FIGURE 15 - RECTIFICATION WAVEFORM EFFICIENCY
0

'F - 200mA

5.0

1;';

t

O.l.,:---,--+.:--~.........,t.-',*'-Y:;;--I....*---:!';;-'--;';;-Lfn'-.l..!.
02

"::::-..

10
70

w

~

~

o1

...............

3.0
5.0 70 10
20
30
REPETITION FREIIUENCY (kHzl

0

~~

"'10

50

70

100

3-171

7. 0
0.1

0.2

0.5

"-"

1.0
20
50
10
20
VR. REVERSE VOLTAGE (VOLTS)

50

100

MR500, MR501, MR502, MR504, MR506, MR508, MR510

RECTIFIER EFFICIENCY NOTE
FIGURE 17 - SINGLE·PHASE HALF-WAVE
RECTIFIER CIRCUIT

The rectification efficiency factor a shown in Figure 15 was
calculated using the formula

For a square wave mput of
amplitude V m. the efficiency

factor becomes.

V'o(de)
P(de)
RL
a=--=---·100%=
p(rms)

V'o(rms)

V'o(de)
V'o(ae)

+ V'o(de)

(A full wave Cifelilt has tWice these efficiencies)
As the frequency of the mput signal IS Increased, the reverse re·

RL

covary time of the diode (Figure 14) becomes significant, resulting
In

an mcreasmg ae voltage component across RL which

In

polarity to the forward current, thereby redUCing the value of

IS

OPPosite

t"e efficiency fector a, as she-Nn on Figure 15.

V2m

,,'RL
4
= - - . 100% = V2m

2RL
a(square) = V'm . 100% = 50% (3)

RL

'100% (1)

For a slOe wave mput Vm Sin Iwt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:

a(sone)

v'm

• 100% = 40.6%

It should be emphasized that Figure 15 shows waveform efficiency only; it does not provide a measure of diode losses Data was
obtained by measunng the ac component of Vo with a true rms ac
voltmeter and the dc component with a dc voltmeter. The data was
used In Equation 1 to obtam pomts for the figure.

(2)

1f2

4RL

OUTLINE DIMENSIONS

i iD

J

STYLE 1.
PIN 1. CATHODE
2 ANODE

LO.

NOTES:
1. DlMENSION)NG & TOLERANC)NG PER
ANS) YI4.5, 1982.
2. CONTROLLING DlMENS)ON: INCH

DIM
A
B
D
K

MILUMETERS
MIN
MAX
9.40
9.65
4.83
5.33
1.22
1.32
25.40

-

INCHES
MIN
MAX
0.370
0.380
0.210
0.190
0.048
0.052
1.000
-

CASE 267-03

PLASTIC

3-172

MR750
MR751 MR752
MR754 MR756
MR758 MR760

MOTOROLA

-

SEMnCONDUCTOR

TECHNICAL DATA

'~";

" Designers Data Sheet
HIGH CURRENT
LEAD MOUNTED
SILICON RECTIFIERS
50-1000 VOLTS
DIFFUSED JUNCTION

HIGH CURRENT LEAD MOUNTED RECTIFIERS

o

Current Capacity Comparable To ChassIs Mounted Rectifiers

'" Very High Surge Capacity

o

Insulated Case

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most Circuits entirely from
the information presented Limit curves - representing boundaries on
device characteristics - are gIVen to facllnate "worst case" design

'MAXIMUM RATINGS
Symbol

MR750

MR751

MR752

MR754

MR756

MR758

MR760

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

200

400

600

800

1000

Volts

Non-Repetitive Peak Reverse Voltage
Ihalfwave, single phase, 60 Hz peak)

VRSM

60

120

240

4BO

720

960

1200

Volts

VRIRMS)

35

70

140

280

420

580

700

Volts

Characteristic

RMS Reverse Voltage
Average Rectified Forward Current
Isingle phase, resistive load, 60 Hz)
See Figures 5 and 6
Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions)
Operating and Storage Junction
Temperature Range

10

IFSM

22 (TL = 60·C, 1/8" Lead Lengths)
6.0 ITA = 60·C, P.C. Board mounting)

Amp

400 Ifor 1 cycle)

Amp

•

TJ, Tstg

·C

65 to +175

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions

Symbol

Max

Unit

Maximum Instantaneous Forward Voltage
Drop liF = 100 Amp, TJ = 25·C)

vF

1.25

Volts

Maximum Forward Voltage Drop
\IF = 6.0 Amp, TA = 25·C, 3/8" leads)

VF

0.90

Volts

IR

25
1.0

mA

Maximum Reverse Current
Irated de voltage)

TJ
TJ

= 25·C
= 100·C

p.A
STYLE I
PIN 1 CATHODE
2 ANODE

MECHANICAL CHARACTERISTICS

NOTE
I CATHODE SYMBOL ON PKG

CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/S"
from case for 10 seconds at 5 0 Ibs. tension
FINISH: All external surfaces are corrOSion-resistant, leads are readily solderable
POLARITY: Indicated by diode symbol
WEIGHT: 2 5 Grams lapprox)

DIM
A
B

D
K

MlLUMETERS
MIN
MAX
843
594
127
2515

869
625
135
2565

INCHES
MIN
MAX
0332
0234
0050
0990

CASE 194-04
PLASTIC

3-173

0342
0246
0053
1010

•

MR750. MR751. MR752. MR754. MR756. MR758. MR760

FIGURE 2 - MAXIMUM SURGE CAPABILITY

FIGURE 1 - FORWARD VOLTAGE

700

600

...........

ii:

500 r-TJ - 25°C

./

300

/

200

r-- r-TYPICAL

1/

/

I

100

V

~ 400

"~ 300 ............... I\IOI\l'I/~

MAXIMUM

V

N

'"

..-

~

~ r--Di

............. I

~~
r--..

1-

~ 200

~
~

;;?

'"
<

0

r--.l..Jrl Vf

.............

a

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE THE TJ
NOTED IS Ti PRIOR T01SURGE

25°C

.............

~ 100

0

~

I

I

0

J
25°C

........

r--........ .......

80
60
10

I

20

10

50

1/

100

50

20

NUMBER OF CYCLES AT 60 Hz

I

0

FIGURE 3 - FORWARD VOL TAGE
TEMPERATURE COEFFICIENT

0
+05

0
0

L

u

0

3;

~

.§. -05

>-

i'ii

10

=

~

i
I

~

~ 100

5 70
50

07

_V'[

1_1,,_1

05

c-

50

70

10

30

02

20

30

50

70 100

V,. REVERSE VOLTAGE IVOLTS)

r-

-

50 70

10

TJ~25'C

~

/

t

/

v"

/'"
..........-

03

01
30

20

10

I

('\

20
10

I

-

-

.d

30

20

05 07

FIGURE 12 - FORWARO RECOVERY TIME

500

10

i"-- :--.,

I,IIF. RATIO OF REVERSE TO FORWARD CURRENT

10

a

" " """- ,
"'- ",

.........

~oJiJ(L

FIGURE 11 - JUNCTION CAPACITANCE

~200

:>.

10

1000
700

'" i"'-..

TJ ~ 25'C

1,~5A

REPETITION FREQUENCY IkHzI

300

i"'--

3A-:
IA

\ \

I I I I

""

50

1\

50 7.0

10

~

~

\

\

rrv'v - -1JL ---

20

"">=

\ . TJ~25'C

CURRENT INPUT WAVEFORM

30

i'-

.,.

~ ~

~

20

...-/

l--

----

V-

vfr=lV

---

V

10

20

30

__ Iv,,~2V

II

50

-r,
70

10

IF. FORWARO PULSE CURRENTIAMPI

FIGURE 13 - SINGLE·PHASE HALF-WAVE
RECTIFIER CIRCUIT
,,2RL

Ulsmel

4

=---;;;-.100% =;;2

100% = 40 6%

121

m

For a square wave mput of
amplitude V m • the effiCiency
factor becomes:
The rectification effiCiency factor a shown
calculated uSing the formula:

In

Figure 9 was

V'o(dc)
P(dc)

RL

u=--=---·100%=

Plrmsl

V 2o (rms)

V20ldcl
V2 0 lacl + V2 o (dc)

·100%(1)

RL

for a sine wave Input Vm sm (wt) to the diode, assumed loss less,
the maximum theoretical efficiency factor becomes:

3-176

2RL
U(square) = V2m . 100% =50% 131

RL
(A full wave ClfCU It has tWice these efficiencIes)
As the frequency of the Input signal IS increased, the reverse recovery time of the diode (Figure 10) becomes Significant, resulting
In an Increilslng ac voltage component across R L which IS opposite
In polarity to the forward current, thereby redUCing the value of
the effiCiency factor G, as shown on Figure 9
I t should be emphasized that Figure 9 shows waveform efficiency only; It does not provide a measure of diode losses Data was
obtained by measunng the ae component of
with a true rms ac
voltmeter and the dc component with a dc voltmeter. The data was
used In Equatlon.1 to obtain pomts for Figure 9.

Va

MR810 thru MR814
MR816 thru MR818 •

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

De~ig;llel'~

Data Sheet
FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-1000 VOLTS
1 AMPERE

... designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free-wheeling diodes. A complete line of fast recovery
rectifiers having tYPical recovery time of 350 nanoseconds providing
high efficiency at frequencies to 100 kHz.

n

DESIGNER'S DATA FOR "WORST CASE" CONDITIONS
The Designers Data Sheet permits the design of most circuits entirely from the

information presented. Limit curves - representing device charactenstic boundaries are given to facilitate "worst case" design.
MAXIMUM RATINGS
_Symbol

Rat!~

Peak Repetltivi Reverse
Voltage

VRnM

WorktngPeak Reverse

VRWM

Voltage
DC Blocking Voltage

VR

Non-Repetitive Peak
nlverse Voltage
RMS Reverse Voltage
Average Rectified
Forward Current !Single
phase, resistive load,
T = 7So CI
Non·Repetltlve Peak 9.Jrge
Current (surge applied at
rated loed conditIOns)

MR810

MRS11

MR812

MR813

MR814

MR8l7

MRB18

Unit

Volts

50

100

200

300

400

600

BOO

1000

VRSM

100

200

300

400

500

BOO

1000

1200

Volts

VRIRMSI

35

70

140

210

280

420

560

700

Volts

i
~
K

10

Amps

30

Operating Junction
Temperature Range

TJ

-65 to +150

Storage Temperature
Range

Tstg

-65 to +175

'" 7S0 C)

°c

0

DIM
A
B

Thermal Resistance, Junction 10 Amblttnt
(TVPlcal Prlmted Circuit Board Mounting)

D
K
ELECTRICAL CHARACTERISTICS
CharacteristiC

Symbol

Instantaneous Forward Voltage
(iI: '" 3 14 Amp, T .. 1sOOC)

'F

Forward Voltage
(II: = I OAmo, T

VF

M,.

M,.

It

12

10
10
50

12
10
lOa

...

T••

Mo.

Unit

350
15

750
30

REVERSE RECOVERY CHARACTERISTICS
Char8Ctarllt.c

Symbol

t"

Rev.... Recovery Current
Iii:" 1 DAmp to VA" 30 VdcllFlgure 211

INCHES
MIN
MAX
0.235
0.260
0.120
0.110
0.030
0.034
1.100
-

Unit

Volts

IR

Rlllersl Recovery Time
IIF -1.DAmp to VR" 30 VdcllFlgure211
IIF" 20mA,IR - 2 OmA, TektroniX S-Plug-ln)IFlgura22)

MILUMETERS
MIN
MAX
5.97
6.60
2.79
3.05
0.76
0.86
27.94
-

Volts

= 25°C)

Revarse Cumnt (rated de voltagel T A OJ 25°C
T "'ODoe

T••

CASE 59-04
PLASTIC

NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC
00·41 OUTLINE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN "F"
DIMENSION.

THERMAL CHARACTERISTICS
CharllCterlstlc

-10 1-B

1-0

LI J=3

Ii

Am.

10

IFSM

IT

MRB16

r=

Mo.

.'"'

Am.

IRMIREC)

30

3-177

MECHANICAL CHARACTERISTICS
CASE: Transler Molded PlastiC
FINISH: External leads are plated
and are readily solderable
POLARITY: Cathode indicated by
Polarity band
WEIGHT: 0.4 Grams (Approximatelyl

MR810 thru MR814, MR816 thru MR818

FIGURE 1 - FORWARD VOLTAGE

FIGURE 2 - MAXIMUM SURGE CAPABILITY
100

50

V

J

....... 1-""

V

30
TJ' 25'C
20

j

V

V

T~PlCal
10

i""

'"

LV

"'"
~

[tl.u

0

1111"

0

jVMaXlmum

Or-Or-0

I

0

o

1\

1\

1-...--...-1., CYCLE

I

1111
20

30

50

70

=>

~

5
0
5
0
5
20

10

I0

;0

z 07

~

I

~

I I

;!; 05

~

03

50

70 100

11

I
IL

E 15

2

TYPICAL RANGE

/

IA

i3 0 5

..l

0
-0 5
-I 0
-I 5
-2 0

*

8
I
007

-2 5
005

00 5,
12
1620
2.4
vF. INSTANTANEOUS VOLTAGE (VOLTS)

DB

2.B

3.2

FIGURE 4 - FORWARD POWER DISSIPATION
2

I{P~)

B

I

-'20I{AV)

4

Itti' ~O/
//

04

02
05
10
20
50
10
20
'F. INSTANTANEOUS FORWARD CURRENT (AMP)

I{PK)'L
I{AV)

6

~~ ESliTlvJ,

2

INDUCTIVE LOAD)

B

-

Af:::"

6

".

B
4

16

20

24

2B

L

20

L

L.L V

~

V

de

,/
Tp=150oC

~ :.......~ ~i"'"

O~ ~
04

IF{AV). AVERAGE FORWARD CURRENT (AMP)

l4'dfV

~10

~~ V

2

12

50

/1/:: V LL

4

TJ~150oC-

~~
DB

01

0

V~

P ~

k::::::: I-

FIGURE 5 - FORWARD POWER DISSIPATION

J 1/ ~ V

2

L.

~

0

Y

V II 1/V

0
6

O~

30

FIGURE 3 - TEMPERATURE COEFFICIENT

~ 10
z

4

20

10

NUMBER OF CYCLES AT 60 Hz

II

U>

8

r-

II I

~

04

I""

1\

lill

1

10

I /

20

I"-

0

II

130

IS operated such that TJ = 1500C,
yAAM may be applied baMeen
each 'ycle of surge.

0

;;: 7.0

~ 50

~Jl~.'t: SUrg,: the ~ct:h~ I I

0[""'-.

....... 1'"

DB

12

1.6

2.0

IF(AV). AVERAGE FORWARD CURRENT (AMP)

3-178

24

2B

MR810 thru MR814, MR816 thru MR818

MAXIMUM CURRENT RATINGS
(SEE NOTES 1 and 21

SINE WAVE INPUT

SQUARE WAVE INPUT

FIGURE 6 - EFFECT OF LEAO LENGTHS.
RESISTIVE LOAO
28

~

5

....

r--...

24

ffi

g§ 20
~ 16

~
~
w

ffi'"

"

.......... ~
~ r-...
........... 10 r-....
...........
~

I2

08

>

~

........

1--.
..........

............ .......

~

~

.......

.......

~

90

100

110

120

130

140

TL. LEAD TEMPERATURE (OCI

.........
~
~

~

~

"'

~

0
50

150

60

70

80

90

100

110

120

130

140

TL.LEAO TEMPERATUREloCI

5~L~

~

16

1

"'"
r--...

08

'S"

04

RESISTI~~~~~UCTlVE_

~

-

......

............

AS SHOWN

>

~ o

50

60

70

80

90

100

-

110

c--........ -.......

5/B':---0

.......

.......

['...

...... J

"" "'-

"

~ t'-...

r---...: ~

LEAJS TO HIEAT _
SINK WITH LENGTHS
AS SHOWN

t".....

5~S

-

.......

.........

BOT~

-I ...... '"

O~ ~

~~TKH~I~~OCE~~~~~T -

r-...

r-- 3/'?- ........ ........... r-.... "

1 2 h =l;';::::

'"ffi

.......

r-.

"

120

130

""""

'"'"
r--. :--...::
.......

0
50

150

60

70

80

150

t--

t--.
........
................. r----..: t"....."

5

140

"

+----

~~
90

100

110

120

t--.."
~~

130

TL.LEAO TEMPERATURE (OCI

TL.LEAD TEMPERATURE lOCI

'"

140

150

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS
~

"

r-....~

28

a
~

~

r-...."'-' ~

FIGURE 9 - 118" LEAD LENGTH. VARIOUS LOADS

......
20 I-l~
:-.

w

['....

FIGURE 8 - 1/8" LEAO LENGTH. VARIOUS LOADS

-~
§~ 24
~

.......

4

~
80

":-.....

......

8

~

70

de

10""'j-...,

2

r--0 ~

60

"

~O

~
r---IIPKI =20
6'---I(AVI

04
0
50

r-..

o ............

>

~

I"
" ' " 2 0 to

4

--

r-..

13

8 ..........

I:~G -rr (RESISTIVE/INDUCTIVEI

.......

f'....

FIGURE 7 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

14,--,---r--'---'---'--'-1--'--''--'--'

~

~

14

~
....

12

r-....

I""--..: I'--..

~

B 10 r-.
c

'"

~

CAPACITIVE LOAD

8JA = 650 C/W- I---

"">< "

-.....; ~

IIPKI =20t050
IIAVI
10'
20

04

&...
~

-----

:--.
~~
~

~
~

o
50

3-179

""

........ ~

-'- 0 2

TA. AMBIENT TEMPERATURE lOCI

~ r-- de

--......;:,.....,
......... :--.....;

::c

j

""

..........:: .......

.............

8

o
::; 0 6
co

'"ffi

i'..

SO

70

80
90
100
110
120
TA.AMBIENT TEMPERATURE lOCI

130

140

150

MR810 thru MR814, MR816 thru MR818

FIGURE 12 - THERMAL RESPONSE

FIGURE 13 - THERMAL RESISTANCE

10

0

E 0.1
~ 0.5
::;

i

~~

0

V

o. I

(SEE NOTE 1I

....

~003

...~OO2

t-- r-

0

°vL

/'

10

0.0 1
005010204

102040

102040

100200400100020005000

o
o

V
V
V ~ ......
118

114

Pk

Ppk

I

1---'1_

TYPICAL

3/8

112

5/8

3/4

118

LEAD LENGTH (lNCHESI

NOTE 1

•

/

V

',TlME (m.1

J=tI[

k::'

V

......- ~

./

::Jij 001

~~005

SIN~,

I
MAXI~UM/ V'

0.3

§~ 02
~u

o r--JOTH LElos TO )EAT
EQUAL LENGTH

LEAD LENGTH' 1/4"

NOTE 2

Data shown for thermal reSistance Junction 1008mb lent (8JA) for the
mountings shown IS to be used as typlcalgumellnB values for preliminary
engineering or In case the tie pOint temperature canoot be measured

DUTY CYCLE, 0 c 'p/'l
PEAK POWER, Ppk, II peak alan

equivalent square power pulse

TIME

TVPICAL VALUES FOR OJA IN STILL AIR

To determmemaxlmum JunctIon temperature of the dIOde 10 a gIven Situation,
the following procedure IS recommended

The temperature of the case should be measured uSing a thermocouple placed
on the case as close as possible to the 118 pOint. The thermal mass connected to

40

the tie pomt IS normally large enough so that It will not slgmflcantly respond 10

MOUNTING METHOD 1

heat surges generated In tilt' diode as a result of pulsed operation once steady·
state conditions are achieved. Using the measured value of Te, the Junction
temperature may be determined by

H~
~

TJ"TC+"TJC
where f:J. TJC IS the Increase m Junction temperature above the case temperature
It may be determmed b~

MOUNTING METHOD 2

~

/I TJC • Ppk • R8JQO + (1- 01 "('1 + 'pl + '('pl- '('11]
where
r(t) '" normalized value of tranSient thermal resistance at time. t, from Figure
12, i.e .•
r (t1 + tp) '" normalized value of transient thermal resistance at time t1+ tp

Vectorpmmountll1g

°CIW

MOUNTING METHOD 3
P C Board with
1·112" x 1-1/2"copper surface

~51q
Board Ground
Plane

FIGURE 14 - THERMAL CIRCUIT MOOEL

TA'" Ambient Temperature ROS = Thermal ReSistance. HeatSlnk to Ambient
TL "leadTemperature
ROL =Thermal ReSistance. Lead to HeatSlnk
Tc"CaseTemperature
ROJ = Thermal ReSlstance.Junctlonto Case
TJ - Junctton Temperature PO'" Power DISSipation
(SUbscriptS A and K refer to anode and cathode Sides respectively I
Values for thermal resistance components are
ROl- 11"2lCIW/IN TYPically and 12r/JCNlIIN MaXimum
ROJ - lSOCIW TYPically and 300CIW MaXimum
The maximum lead temperature may be calculated as follows'
TL"'1SOO-.o.TJL
.o.TJL can be calculated assf10wn In NOTE 1 or It may beapproxlmated
as follows
AT JL ItS R8JL. PF. PF may be formulated for sme·W8va operation from
Figure 3 or from Figure 4 for square-wave operabon

Use of the above model permits Junction to lead thermal reSIStance for
any mounting comlguratton to be found. For a given total lead length,
lowest values occur when one Side of the rectlfllr IS brought as close a.
pomble to the helt Sink. Terms In the model Signify

3-180

MR810 thru MR814, MR816 thru MR818

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 15 - FORWARD RECOVERY TIME

FIGURE 16 - JUNCTION CAPACITANCE

os

~

30

I---vt. .Iv

z

V

>

~

g

./

'"

~

0

007

.1soc

10

"Ei

70

=:j

50

z

1

*

TJ

i'- ...... ~

z

V

~

r--.....

u

02

"'"

20

w

r - Tp2S oC

";::
ffi

~

1.

0.3

........

.,/

DOS
01

02

OS

So

20

10

3.0
10

10

20

IF. FORWARO CURRENT (AMP)

SO
10
20
VR. REVERSE VOLTAGE (VOLTSi

50

100

TYPICAL RECOVERED STORED CHARGE DATA
(SEE NOTE 31
FIGURE 18 - T J = 75°C

FIGURE 17 - T J = 25°C
10

20

IFM' 20A

3-

.3
w

~ 05

g
~

02

in

I

~

?

::;.--

5

i-"':

10,1=

005

~ 002

00

/.~

1[/
10

20

50

V

~

02

~

I

~_

005

>

SO A

~ '1--'
~
10

50

002
10

100

/. V

~ 5

g

S

V":

2

V
V",

"
'"
~
w
"
'"w

I

~

IDA

~ 005

10

50

20

IY / '

h-lYr

1

10 A
00 5

IDA

h
00 1

10

IFM < 20A

02

I0A

~ ~I-""
20

_

50~

~V

5

w

~ k' ....

8

'"'" 002

10

co

'"

50

100

10

~ P'
10

I
50

10

dlldt IAMPI",)

dlldt. (AMPI"'i

3-181

20

MR810 thru MR814, MR816 thru MR818

FIGURE 21 - JEDEC REVERSE RECOVERY CIRCUIT
Rl

L1
dl/d' ADJUST

T1

RI = 50 Ohms
R2 = 250 Ohms

120~VC

01 = IN4723
02'" lN4001

03 -lN4934

60 H,

SeAl = MeR729 10
Cl =05to501-lF

T,2,

Cl

03

I(PK) ADJUST

11

C2o::4000",F
II = I 0 -27 p.H
TI = Vanac Adjusts IIPKI and dl/dl
T2" 1 1
T3 = 11 tto tnggerclrcUlt)

OUT

02

01
CURRENT
VIEWING
RESISTOR

NOTE 3
Reverse recovery time

IS

the period which elapses from the

time that the current, thru a previously forward biased rectifier

diode, passes thru zero going negatively until the reverse current
recover!; to a PO'"! whICh is less than 10% pOOlk reverse current.
Reverse recovery time IS a direct function of the forward
current prior to the apphcatlon of reverse voltage
For any given rectifier, recovery tune IS very Circuit dependent. TYPical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
uSing IF = 1.0 A, VA = 30 V. In order to cover all circuit
oonditlons, curves are given for typical recovered stored charge
versus commutation dl/dt for vanous levels of forward current
and for Junction temperatures of 2So C, 7So C, 100«>C, and

From stored charge curves versus dl/dt, recovery time (t rr )
and peak reverse recovery current OAM(REC)I can be closely
approximated uSing the follOWing formulas

1So"C.
To use these curves, It IS necessary to know the forward
current level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

Q

j

trr::: 1 41 x [ _R_
do/dl

1/2

IRM(REC) = 1 41 x [QR' dl/dl] 1/2

FIGURE 22 - TYPICAL REVERSE LEAKAGE

FIGURE 23 - TYPICAL REVERSE LEAKAGE

104

l...

.a

l - t- j-VR - 400 V

103
TJc 15rC

~

10Z

~
~

10 1

IE

100

L
V

0

l00"C

IL

75"C

1

25"C
10- 1

o

~

m

m

~

~

~

~

~

~

~

VR. REVERSE VOLTAGE (VOLTS)

3-182

10- 2
2D

3D

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE ("C)

MR820
MR821 MR822
MR824 MR826

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA
"

...

•

~

e

Designers pata S;tleet
FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50·600 VOLTS
5.0 AMPERES

designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interfer·
ence and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 150 nanoseconds providing
high efficiency at frequencies to 250 kHz.

Designer's Data for "Worst Case" ConditIons

II

The Designers Data sheets permit the design of most Circuits entirely from the m~
formation presented Limit curvp.s - representing boundanes on device characteristiCS - are gIven to facIlitate "worst case" design

MAXIMUM RATINGS
Rating

Symbol

MR820

MR821

MR822

MR824

MR826

Peak Repetitive Reverse Voltage

VRRM
VRWM
VR

50

100

200

400

600

VRSM

75

150

250

450

650

Volts

VR(RMSI

35

70

140

280

420

Volts

Working Peak Reverse Voltage

DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
RMS Reverse Voltage

Average Rectified Forward
Current
{Single phase, resistive load,
TA=550CI!II

10

Non-Repetitive Peak Surge
Current
(Surge applied at rated load
condltlonsl

IFSM

Operating and Storage Junction
Temperature Range (2)

TJ,Tstg

Unit

Volts

.

.

50

.

.

300

.

Amp

Amp

DIM
A

Charac1e"stic
Thermal Resistance, Junction to Ambient
(Recommended Pnnted CircUit Board
Mountmg, See Note 6 )

Symbol

Ma.

R8JA

25

Unit

vF

!IF = 157 Amp, TJ '" lS00CI
Forward Voltage
(IF'" 5 DAmp. TJ '" 2So C)

VF

Maximum Reverse Current, lrated de voltage) T J - 25°C
TJ = 1000C

'R

Moo

Typ

Ma.

843
594
127
25.15

0332
0.234
0050
0990

869
6.25
1.35
2565

0342
0246
0053
1OlD

-

075

105

-

0.9

1.1

50
04

25
10

mA

Min

Typ

Ma.

Unit

150

200
300

Unit

Volts
Volts

MECHANICAL CHARACTERISTICS

,.A

CASE: Transfer Molded Plastic
FINISH: External Surfaces are Cor·
rosion Resistant
POLARITY: Indicated by Diode
Symbol
WEIGHT: 2.5 Grams (Approximately)
MAXIMUM LEAD TEMPERATURE
FOR SOLDERING PURPOSES:
350 0 C, 3/8" from case for lOs
at 5.0 lb. tension.

REVERSE RECOVERY CHARACTERISTICS
Symbol

Reverse Recovery Time
(IF"" 1 0 Amp to VR = 30 Vdc. Figure 25)
('FM = 15 Amp, d,/dt = 25 A/#s. Figure 26)

150

Amp

'RM(RECI

(IF - 1 0 Amp to VA:: 30 Vdc, Figure 251

20

(11 Must be darated for reverH power diSSipatIon See Nota 3
(2)

INCHES
MIN
MAX

PLASTIC

Symbol

Instantaneous Forward Voltage

Reverse Recovery Current

B
0
K

MILLIMETERS
MIN
MAX

CASE 194·04

ELECTRICAL CHARACTERISTICS

Characteristic

NOTE.
1. CATHODE SYMBOL ON PKG

°c

-65 to +175

THERMAL CHARACTERISTICS

Characteristic

STYLE 1
PIN 1 CATHOOE
2. ANODE

aerate as shown In Figura 1

3-183

MR820, MR821, MR822, MR824, MR826

MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION
TEMPERATURE
180

"w
'"=>

160

~

140

"

120

0

"'- r-- i'-

I'...

, ,
r--~""""""'"
,

...........

......

I-

~0

0

~

"'-...

1il
I-

,"'-

............... -..........:

...........

t;

~

;:5

0

:::--- t"-- ~ I'-....
,

t----

~

~? ~
~

JOOC/w

40 0 C/W

80
60

80

100

When operating this rectifier at Junction temperatures
over approximately 8SoC, reverse power dissipation
and the possibility of thermal runaway must be considered. The data of Figure 1 is based upon worst case
reverse power and should be used to derate T J(max)
from its maximum value of 175°C. See Note 3 for
additional information on derating for reverse power

N
i'--- 10 C/W I'-.....
........
r-- 20~ r--

25 0 C/W
100

NOTE 1
MAXIMUM JUNCTION TEMPERATURE DERATING

ROJA" 50 0 C/W

200

When current ratings are computed from T Jtmaxl and
reverse power dissipation is also included, ratrngs vary

...........

with reverse voltage as shown on Figures 2 thru 5 .

...........

400

JOO

dissipation.

,"
600

VR• PEAK REVERSE VOLTAGE (VOLTSI

RESISTIVE LOAD RATINGS
PRINTED CIRCUIT BOARD MOU!\JT!!\JG - SEE t-JOTE 6

FIGURE 3 - SQUARE WAVE INPUT

FIGURE 2 - SINE WAVE INPUT

I
~

0

" b..
"'- I'.

R9JA" 25 0 C/W I--

t-.;:

,,

-....; ~

"'-

....... 1'-

0 - 400 V

I--

~

I'

Ksor v
I I
so

N'r-.t'-...

200 V

40

80

"

"-

"'-

t--

I"'-

"- I'\.
100

.......

60

r--

"

50

"'-

~

~

'~OV

0

I"'--

'"
~

~ 40

}OV

r-...:-....

70

I

VR " 10 V (PKI

0

a::

r-...:

"

20

i-

«

....... t-,.

140

"" "
160

:; 10

~ o

200 V

40

TA. AMBIENT TEMPERATURE (OCI

~

ffi

'"

~ 30

.......

~

"-

60

80

.......

50 V

i"'-. ~V

"'<:="

100 V

./

......

r-...
100

120

'" "I'.I" t-.: r--.. ~

!'" ,
t"-...

r-....

20

I:>r--

~

ffi

:: to
0
20

~

20j;-K
400 V'"

r>

D

SOD V
40

60

, t'-..

"..(

I"'--

~

i"'-

"

80

r--.: t'--

~ 30

.......

100

~

~

i"'-

ffi

~ 1.0

........ I'-......

r-....

20

~

~ t-...

120

~
~

~

100 V

.......,

180

R9JA = 400 C/W
40

1'l
50 V

I"'- ~

ISO

50

'"

V~"'~V(~KI

I" ::-...

140

FIGURE 5 - SQUARE WAVE INPUT

a::

R9JA "400 C/W

........

~

.....

srirfv

"'-

S
40

1''"l

-

.......

VR "10 V (PKI

i'-:b..

TA. AMBIENT TEMPERATURE (OCI

FIGURE 4 - SINE WAVE INPUT
50

:--.

"-

I-- R40ri~

20

180

,

.I'

I'.

:>

.......

"-

I'.r--

w

'"~

r'>2'

120

r--

.....

30

ROJA = 250 C/W_

:--.

140

"- .......
ISO

:;:

180

~

TA. AMBIENT TEMPERATURE (OCI

r--.. ['..
r--..

VR "10V(PKI

~ I:'--

,
,

I'-...... t'-., / ~

20J~

I>....

50 V

-.....: ~

100 V

I"- ~
l"- V

I'...

itoo(1)- " ........ l"- I'-... f' I'.... i"'-

0
20

BOO V
40
60

80

100

120

,.....
140

TA. AMBIENT TEMPE RATU RE (Otl

3-184

.......

"'-

"

160

180

MR820, MR821, MR822, MR824, MR826

MAXIMUM CURRENT RATINGS
NOTE 2
Current derating data IS based upon the thermal response data of Figura 29 and the forward power dissipation data of Figures 19 and 20.
Since reverse power diSSipation IS not conSidered In Figures 6 thru 11, additional derating for reverse voltage and for Junction to ambient thermal resistance must be applied. See Note 3

SQUARE WAVE INPUT

SINE WAVE INPUT
FIGURE 6 - EFFECT OF LEAO LENGTHS,
RESISTIVE LOAO
~

0

20

RESISTlVE,INOUCTIVE
LOADS
BOTH LEAOSTO HEAT
SINK WITH LENGTHS
AS SHOWN

,...~
~

................

16

~
~

'"

'"~

::t

12

r-

r-BO

....

~1 6~ L 01J8"

40

---~

........... .......

0
75

85

95

1'l
~

1)4"

105

115

125

12'---.

~

135

145

155

.............

40

~

0

;;

~

165

~

n

175

r---. I--..

1~

16

" r--....... ...........,

12

~

BO

L

r--- ~ /

t-- ' -

clpAC'TliVE- r--LOADS

---- --....::::- "- V./ lO

r--

'---.

'">

';;" 40

'" 5

>.L'r-.: ~
~O

75

85

95

105

115

125

135

I
~

16

1~

lH

r-""== ~

1~

m

1~

In

~

.........

'"
'"

~

~ 40

~

145

155

165

175

E

'" ~
............ . . . .:'< ;<:;

75

85

0

ROJA

"'....... :"I"

-...;

--

0--

.....

......

I(PK)I

. / ..... 10

I(AV)

0 ........
0

"< X/,O

...... ..z

I""' t:"= ~

0 .........

I ' ::"

-r-. r-- :::-:: ~

o ROJA =400C~h
°
--I(PK)

5?,...

-

1~/

-'I(AV)

~

or

50

./'

'"

~ R:: ioi::: :::::,.
'./ 17

~

95

105

60

'"'"

145

155

"

165

175

1 1 1

'<::/

.........

,'(['..,.

.......

:--.....

:--- :-....

_I(PKI

L\ 1

20-5
10 _
'/20

1

1(PK)
I(AV)

~~

:::- ..;;:::

140

160

180

20-50

'**"'
-tf
o

-1(AVr

:""1111

120

135

K.

...... ,;::-;

,;:::: ~

~

'" -.;;: :s:::; 'l1!li

~~ ~

""l;l IIliiil\1!

100

125

de

::s:.

/'
80

115

ROJA = 25 0CNI

......... ~

o

\ 20
1
40

~

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS

1 1
1 1

=250 CNI

~

TL, LEAD TEMPERATURE (DC)

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS

0-...,

,(0

-y.:. ~ i'-.de
....... .......::: 8S: t-....
.........

0

lL. LEAD TEMPERATURE (OC)

0

:"'-1~( LIGHT CAPACITIVE LOADS

BOTH LEADS TO HEAT SINK

;;

I'.

5

~

r-.....

~

1&_

I(PK) = 2 (R!SISTIJE/INDJCTIVE
I(AV)
LARGE CAPACITIVE LOADS)

/

Y

~

r--

12

~ 80

BOTH LEADS TO HEAT SINK

~

-- ----

:5

I(PK) = 0 (RESISTIVEIINOUCTIVE LOADS)
I(AV)

...... ~

=>

~

Ig

~

u

'"
;:;'"

"'-...

r-- -:::- t::-:::: ~

FIGURE 9 -118" LEAD LENGTH, VARIOUS LOADS

::;

'"'"

~

i--

20

20

:5
,...

c

- --

I-- r--

%

~

fl. LEAD TEMPERATURE (DC)

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

~

t'-..

:--

r--

lL. LEAD TFMPERATURE (OC)

;;:

.......

-

'";:;
~

HEA~-

SINK ~~T~H~~~GTHS _

1/4"

c
3/8"
::; 8 O~
"""- 5/8"

..........

r---. ........
r::::- t-:' ,,"-......

180TH (EADS +0

..........

..........

~

;;
;.

-~

(RESISTlVEIiNDUCTIVE ~NO,_
LARGE CAPACATIVE LOADS)

~

::;

:5

~/8"

1'l
~

FIGURE 7 - EFFECT OF LEAO LENGTHS,
RESISTIVE LOAO

20

40

10"

/'
/'

;:"II

""'"

20

I

60

80

100

120

TA. AMBIENT TEMPERATURE (DC)

TA. AMBIENT TEMPERATURE (DC)

3-185

140

...:!

......

160

180

II

MR820, MR821, MR822, MR824, MR826

REVERSE POWER DISSIPATION AND CURRENT
lent when Vp IS the line to line voltage across the rectifiers For
loads, It IS recommended that the de case on Figure 13
be used, regardless of Input waveform, for brtdge CircUits For
capacltlVely loaded full wave center-tapped Clrcu ItS, the 20 1
data of Flqure 12 should be used for sine wave Inputs and the
capacitive load data of Figure 13 should be used for square wave
tnputs regardless of Ilpkl/l(avl For these two cases, Vp IS the
voltage across one leg of the transformer
EXAMPLE

NOTE 3
DERATING FOR ReVERSE poweR DISSIPATION

capacl~lve

In thIS rectifier, power loss due to reverse current IS generally not
negligible For reliable CirCUit design, the maJumum Junction
temperature must be limited to either 17So e or the temperature
which results In thermal runaway Proper derating may be accomplished by use of equation 1 or equaHon 2
Equation 1
Where

TA '" Tl - \175 - TJlmaxl) - PR ROJA
T, = MaXimum Allowable AIT'blent Temperature
neglecting reverse power diSSipation (from Figures
100r 111

Find MaXimum Ambient Temperature for IAV '" 2 A, CapacItive
Load of IpK/IAV '" 20, Input Voltage = 120 V (rmsl SlOe Wave,
ROJA" 25 0 CIW, Hdlf Wave CirCUit

T J(maxl = MaXimum Allowable Junction Tempera
ture to prevent thermal runaway or 17So e, which
ever IS lower lSee Figure 11

Find Vp, Vp '" .f2 Vln .. 169 V VR{pkl = 338 V
Fmd TJlmax) from Figure 1 Read T Jlmaxl '" 1190 e
FlndPRImaxifromFIgure12 ReadPR=770mW@1400C
Find IR normahzed from Figure 14 Read IR(norml = 04
Correct PR to T J{maxl PR = 'R(norml X PR (Figure 121
PR = 04 X 710 =310 mW
Step 6 Find PF from Figure 19 Read PF '" 2 4 W

Step 1
Step 2
Step3
Step4
Step S

PR = Reverse Power DISSipation (From Figure 12
or 13, adlusted for TJlmax) as shown below)
R(;lJA

=

Thermal ReSistance, Junction to Ambient

When thermal resistance. Junction to ambient. IS over 2ooC/W,
the effect of thermal response 15 negligIble Satisfactory deratmg
may be found by uSlOg
Equation 2

T A = T J(maxj - (PR

-I-

Step 7 Compute T A from T A = T J(maxl - (PR + PFI ROJA
TA= 119-(031+241(251
TA '" 51°C

PF) R09JA

PF '" Forward Power DISSIpatIon (See Figures 19 & 20)
Other terms defmed above
The reverse power gl\len on Figures 12 and 13 IS calculated for
T J = 1S0oC When TJ IS lower, PR Will decrease. Its valuecen be
found by multiplYing PR by the normalized reverse current from
Figure 14 at the temperature of mterest
The reverse POWI." data IS calculated for half wave rectification
CirCUits

Solution 2
Steps 1 thru S are as above
StepS FmdTA =T1 from Frgure 10 ReadTA = 11So C
Step7 ComputeTAfromTA",T,-1175-(TJ(maxll PR R8JA
TA = 115 - (17S -119) - 10 311125)
TA = S1 0 c
At trmes, a dIscrepancy between methods WIll occur because
thermal response 15 factored Into Solution 2

For fuU wave rectifiCatiOn uSing either a bndge or a

center tapped transformer. the data for resistive loads IS eqUlVa-

FIGURE 13 - SQUARE WAVE INPUT DISSIPATION

FIGURE 12 - SINE WAVE INPUT DISSIPATION
1000

~

~
~~
~;;:

1000
700
500

WE

I-~APACITIVE

/

~tK)-50
IIAV)

Kn
I-- 10

...

~

.'.

V V

~u;

~a 100

Vp

___ J

70
50
30
20

==

TJ-1400~~

MAXIMUM
TYPICAL

o

200

100

300

400

500

CAPACITIVE
200 O - r-- LOADS

600

~;
~~
««

700
50 0

..-

7'

~~

~~ 300
c 20D

<.

~

i

10 0
70
50

700

V

./

i'-.. V l,...-:::

~~lOO 0

Jlllb--'-;y,, ,::=

...-

~

3000 _

W

.... RESISTIVE LOAO~_

~o

~~ 200

~

-

IO

N

~;300

5000

~

de-

V

Tr 14j'C

T/

....

.... y

V

-

-

jrG:f~~}

MAXIMUM
TYPICAL

o

100

200

300

500

400

600

700

Vp, PEAK APPLIED VOLTAGE (VOLTS)

Vp, PEAK APPLIED VOLTAGE (VOLTS)

FIGURE 15 - TYPICAL REVERSE CURRENT

FIGURE 14 - NORMALIZED REVERSE CURRENT
101

10 5
TJ -175°C

./'
./'

150°C

,,-

-VR 400 V
It---

125°C
3

100°C

./

75°C
2
50°C

/
/

I

25°C

)/
100

o

100

200

300

400

500

VR, REVERSE VOLTAGE (VOLTS)

TJ, JUNCTION TEMPERATURE (OC)

3-186

600

700

MR820, MR821, MR822, MR824, MR826

STATIC CHARACTERISTICS

FIGURE 16 - FORWARD VOLTAGE

FIGURE 17 - MAXIMUM SURGE CAPABILITY

........ ...... .......,. ~NON.REPETITIVE

400

20 0

,~
Maximum
---TVPlcal

10 0

/

~/

/

;;:

~ 30 0

........

...z

V

w

0

a
w

1/

0

/

0

V

III

o

25°C

>

lli

1/

~

10

......... I'-T~25IC
........
I'-

~ 100

'"'"
~

V

~

!--.

I

'"~
I

40

20

10

r--

...... 25~C

BO f-- REPETITIVE

:i 60
~

1 /
1 /

'/

0

Y

/

TJ= 150 c C/

0

/

,
,

........
r-............
........ ...... r--....

::: 200

VRRM MAY BE APPLIED I
BETWEEN EACH CYCLE OF
SURGE. THE TJ NOTED IS
TJ priOR
SURGE

r---

30

50

70

20

10

30

50

70 100

NUMBER OF CYCLES AT 60 Hz

0
0

I.

1/

0

I~
lL

0

+2 5
+2 0

+1 5

I /

/'

0

/

I
1

FIGURE 18 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

I

~+1 0

"/

.s... +0 5
ffi

TYPICAL RANG~

7

G

5

u-1 0

~-o 5

t.

:.1

o

04

1/

'I

06

V

-1 5

V

--

-2 0
-2 5

12

10

OB

16

14

VF, INSTANTANEOUS FORWARD VOL TAGE

03 05

1B

(VOlTS~

10

2030 50

10

20 30

50

100

200300

'F. INSTANTANEOUS FORWARO CURRENT lAMP)

MAXIMUM FORWARD POWER DISSIPATION
FIGURE 20 - SQUARE WAVE INPUT

FIGURE 19 - SINE WAVE INPUT

20
~

lJ

10

w

~

70

~~5 0

~~ 30

0-

020

%;

~~
~~

:;0

g

TJ"" 150 0 C

~

~

10
07

02
02

~

liPK) -20
IIAV)
10

0

2 Oto 50

0

Y

Vh

~
de

TJ"" 150 0 C

~ I"""

0
7
5

05
03

./

IV
0
0

'/:M

~z

u..

v.

.

I'PKi11°
IIAV)
10
20

0

h

~

3

.."J'
03

05

07

10

20

30

50 70

10

o2

20

02

IFIAV). AVERAGE FORWARO CURRENT lAMP)

V
03

05 07

10

20

30

50 70

IFIAV). AVERAGE FORWARD CURRENT lAMP)

3-187

10

20

MR820, MR821, MR822, MR824, MR826

TYPICAL RECOVERED STORED CHARGE DATA
(See Note 41

FIGURE 22 - TJ = 7SoC
10

0
..3w

g

I--':

lOA

2

50A~

I

10

g!

lFM-20A,

~ V-

lFM = 20 A

5

c

L

"'o"'

~V

c

w

"'"'

5

~

:~ V

_ 00 5

10 A

00

10

20

50

10

I

~

I'.

""">--'

20

50

00 1
10

100

5~
20

50

;11

"'~

.3.
w
~

I

10 A

V

"

V':""Vv

~K

V

~ 005


20

FIGURE 24 - T J = 150°C

FIGURE 23 - T J = iOOOC

2

10
dl/dl, !AMP/,u:s)

0

"''"c
t;;

,/

IDA

~ ~V

d,/dl!AMP//Js)

'"
i3

~ ./

10 A

2

t;;

10

50

10

50

002
10

100

U

I

~f'"

~

20

20

50

NOTE 4

Reverse recovery time IS the penod which elapses from the
time that the current, thru a previously forward bIased rectifier
dIode, passes thru zero gOing negatively until the reverse current
recovers to a POint which IS less than 10% peak reverse current
Reverse recovery time

IS

dl/dt

a direct function of the forward

current prior to the application of reverse voltage
For any gIVen rectifier, recovery time IS very CirCUit dependent. Typical and maximum recovery time of all Motorola fast

recovery power rectifiers are rated under a f,xed set of conditions
uSing IF ~ 1.0 A, VR = 30 V. In order to cover all CircUit
conditions, curves are given for tVplcal recovered stored charge
versus commutation d,/dt for vanous levels of forward current
and for Junction temperatures of 2SoC, 7SoC, 1000C, and
15o"C.
To use these curves, It IS necessary to know the forward
current level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifien is shown.

'RMIREC)+---"L
From stored charge curves versus dl/dt, recovery time tl rr }
and peak reverse recovery current URMtREC}} can be closely
approximated uSing the following formulas'
trr = 1.41
IRMIREC)

3-188

= 1.41

X

a 11/2
[_R_
d,/dt

x [OR x dlldt] 1/2

MR820, MR821, MR822, MR824, MR826

DYNAMIC CHARACTERISTICS

FIGURE 25 - JEDEC REVERSE RECOVERY CIRCUIT
RI

RI = 50 Ohms
11
R2 =250 Ohms
01 = IN47Z3
02 = IN4001
1VC
2 0 : t ) TI21
03 = IN4933
60 Hz
SCRI • MCR729·10
CI =0.51D 50~F
II
C2 ~ 4000~F
L1 =I 0 - 27 ~H
T1 ::z Vanac Adjusts I(PKI and dl/dt
T2 = I I
T3:: 1.1 (to tngger circuIt)

L1
do/dl ADJUST

CI

I (PK) ADJUST

OUT

02

01
CURRENT
VIEWING
RESISTOR

FIGURE 26 10

~

=r===
r - - "~ ===
-

70 ~
50

w

'">=

FORWARD RECOVERY TIME

30

!-II,

~

..---

1.0

2.0

'"

I-

..... .....10

20

.............

'-

z

Ia
50

50

TJ 25°C

w
'-'

~

1.0
07
0.5

01

70

1If,

:>

~ 03
~ 02

-

100
TJ=250C
VI, = II V

E 20
~c
"'"~

FIGURE 27 - JUNCTION CAPACITANCE

50

100

30
20

10
10

20

50

10

20

VR. REVERSE VOLTAGE (VOLTS)

IF. FORWARD CURRENT (AMP)

3-189

50

100

MR820, MR821, MR822, MR824, MR826

THERMAL CHARACTERISTICS
FIGURE 28 0
7

I

5

THERMAL RESPONSE

L---'-L~
' - - HEATSINK::::o;II

3

V

I

2

L-1/4"

V

I

7
5

3

I-

2

V

00 I
02

20

10

05

50

10

20

100

50

200

500

1000

2000

5000

10,000

20,000

t,TIMElms)

NOTE 6

NOTE 5
To determine maximum lunctlon temperature of the diode
In ;; glvGn situl;ttiun, Tne followtn,., procedure IS recommended
The temperature of the lead should be measured uSing a

thermocouple placed on the lead as close as possible to the tl8
point. The thermal mass connected to the tl8 pornt is normally
large enough so that It will not significantly respond to heat
surges generated

In

the diode as a result of pulsed operation once

steady-state conditions are achieved. USing the measured value
of TL. the Junction temperature may be determined by
TJ==TL+6 T JL
where

.0.

T JL

IS

the mcrease

In

Junction temperature above the

Use of the above model permits Junction to lead thermal
resistance for any mounting configuration to be found. Lowest
values occur when one Side of the rectifier IS brought as close as
possible to the heat Sink as shown below. Terms in the model
signify'
T A = Ambient Temperature

lead temperature. It may be determined by

A TJL

:=

T L = Lead Temperature

Ppk • R8JL (0 + (I - 0) • r(t1 + t p ) + r(t p ) - r(t1)]

where r(tl = normalized value of tranSient thermal resistance at
time t from Figure 29, i e.:

TC

=Case Temperature

r(t1 + t p ) = normalized value of transient thermal resistance at
time t1 + tp.

TJ

= Junction

FIGURE 29 -

Lead
Junc·
PF +

PR

DUTY CYCLE' tp/li
PEAK POWER, Ppk, IS peak of an
TIME equIValent square power pulse

~tl-l

Temperature

Heat

PF = Forward Power DISSipation
PR "" Reverse Power Dissipation

r.::l Ppk n Ppk
tp l::..-J
L

-::J

R9S = Thermal Resistance,
sink to Ambient
= Thermal Resistance,
to Heat Sink
R9J = Thermal Resistance.
tlon to Case
Po = Power DISSipation =

R9L

(Subscripts A and K refer to anode and cathode Sides respectively)
Values for thermal resistance components are.
R9L = 40 0 C/W/IN. Typically and 44 0 C/W/IN Maximum.
R8J = 2 0 C/W TYPically and 4 0 C/W MaXimum.
Since ReJ is so low, measurements of the case temperature.
T C. will be approximately equal to junction temperature in prac·
tical lead mounted applications. When used as a 60 Hz rectifier.
the slow thermal response holds T J(PK) close to T J(AVI. There-

STEADY-STATE THERMAL RESISTANCE

fore maximum lead temperature may be found as follows:
TL

= T J(max)

- AT JL

where
.6.T JL

can be approximated as follows'

ATJL R:: R8JL • PO. Po IS the sum of forward and
reverse power diSSipation shown In Figures 12 & 19 for
sine wave operation and Figures 13 & 20 for square
wave operation
The recommended method of mounting to a P .C. board IS
shown on the sketch. where R8JA Is approximately 250 C/W for
a 1-1/2" x 1-1/2" copper surface area Values of 40 0 C/W are
typical for mounting to terminal striPS or P .C. boards where avail·
able surface area IS small.

1/4

3/8

112

L, LEAD LENGTH (INCHES)

3-190

MR830 MR831
MR832 MR834
MR836

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

HERMETICALLY SEALED, AXIAL LEAD
MOUNTED FAST RECOVERY POWER
RECTIFIERS

FAST RECOVERY
POWER RECTIFIERS
50-600 VOLTS
3 AMPERES

. . . designed for special applications such as dc power suppl ies,
inverters, converters, ultrasonic systems, choppers, low R F interference and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 150 nanoseconds providing
high efficiency'at frequencies to 250 kHz.

r=
L

MAXIMUM RATINGS
Rating

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

OC Blockmg Voltage

Symbol

MRB30

MRB31

MRB32

MRB34

MRBle

50

100

200

400

600

Average Aectlfled Forward Current

Amps

10

C

30

ISlngle phase. resistive load,

r

TC '"10QoC)

Non·Repetltlve Peak Surge Current

Amps

IFSM

100

(surge applied at rated load

conditions)
TJ

-65 to +150

DC

Tstg

-65 to +175

DC

Operating Junction Temperature

L

ELECTRICAL CHARACTERISTICS
Charact8l'lStlc

Forward Voltage

Moo

Symbol

Max

Unit

VF

(IF = 30 Adc, TA = 250 Cl
Reverse Current (rated DC VOltage)

TA" 2SoC

'R

DIM

-

Volts

C

-

rnA

D
K

1.17
24.89

0.5

2

MILUMETERS
MIN
MAX

A
B

1.1

STYLE 1:
PIN 1. CATHODE
2. ANODE

K

Range
Storage Temperature Range

0

K

Volts

VRRM
VRWM
VR

Unit

1143
8.89
7.62
142

-

INCHES
MIN
MAX

-

0046
0980

0.450
0350
0.300
0.056

-

CASE 60-01

1.5

METAL

REVERSE RECOVERY CHARACTERISTICS
Characteristic

Reverse Recovery Time
(IF" 1.0Ampto VR '" 30 Vdc)

Symbol

'rr

'IFM" 15 Amp, dlJdt '" 25 Ahn)

Reverse Recovery Current
(IF'" 1 OAmpto VR '" 30 Vdc)

'RMIRECI

MIn

TV.

Max

-

150

200

n.

150

300

n.

-

-

Unit

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed

Amp

2.0

FINISH: All external surfaces corrosion
resistant and leads readily solderable
POLARITY: Cathode to Case
WEIGHT: 2.4 Gram. (Approximately)

3-191

•

MR850
MR851 MR852
MR854 MR856

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

De!-ii ~'Il PI·S Data Sheet
FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
3 AMPERE

designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 150 nanoseconds providing
high efficiency at frequencies to 250 kHz_

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most CirCUits entirely from the information presented Limit curves - representing boundanes on device characteristiCS - are given to faclhtate "worst case" design.

MAXIMUM RATINGS
Rating

MRS56

SvmbOl

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

MR852

MRS5'

MRB54

Umt

MR856

Volts

VRRM

DC Blocking Voltage

Non·Repetltlve Peak Reverse Voltage

AMS Reverse Voltage

VRWM
VR

50

100

200

400

600

VRSM

75

150

250

450

650

Volts

35

70

140
30

280

420

Volts

.

VRIRMSI

Average Rectified Forward Current
ISmgle phase resistive load,

10

..

TA -90"Cllll
Non-Repetitive Peak Surge Current

IFSM

(surge applied at rated load

Operating and Storage Junction
Temperature Range(2)

TJ,Tstg

.
.

100
lone cycle)

..

conditions)

STYLE 1:
PIN 1. CATHODE
2. ANODE

Amp

-65 to +175

Amp

°c

NOTES:
1. DIMENSIONING & TOLERANCING PER
ANSI Y14.5, 1982.
2. CONTROLLING DIMENSION: INCH.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(Recommended Printed Circuit Board Moutlng.
See Note 6, Page B)

Symbol

Ma.

Unit

R8JA

28

°elW

ELECTRICAL CHARACTERISTICS
Symbol

Min

T••

Max

Untt

Instantaneous Forward Voltage
I'F" 9.4 Amp, T .. 175°C)

vF

0.9

11

Volu

Forward Voltaga
(IF =3.0 Amp, TJ:< 250 C)

VF

-

1.04

1.25

Volts

R8Ya'Se Current (rated de voltage) T J .. 25°C

'R

"A.

CharacteristJc

MR851
rR~
T J - 100"C MR852
MR854
MR856

-

-

10
150

60

-

150

100

200
250
300

Min

Typ

Mo.

-

150
200

200
300
20

-

2.0

ChI~ic

Symbol

trr

UF" 1.0 Amp to VR" 30 Vdc,Frgure 251
(I.

-16Amp.dildt -10Af... Fogure 261

Reverse Recovery Cumnt
(IF • 1.0 Amp to VR .. 30 Vdc, FlllUre 251
t11 Must bed....tC for rev.rse pa~rdlalp.tlOn.
121 D ••t • •s ahown In Figura 1

IRMIREC)

Unit

n.

-

s.. No~2. P• • 4

3-192

MILlIMffiRS
MAX
MIN

INCHES
MIN
MAX

9.39
635
1.32

0,370
0250
0,052

-

122
2540

-

0048
1.000

CASE 261-02
PLASTIC

MECHANICAL CHARACTERISTICS

REVERSE RECOVERY CHARACTERISTICS
Reverse Recovery Tlrne

DIM
A
B
D
K

Amp

Case: Transfer Molded Plastic
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Cathode Indicated by Polarity Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:
300o C, 1/8" from case for 10 s
at 5.0 lb. tension

•

MR850, MR851, MR852, MR854, MR856

MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION TEMPERATURE

180
<3

"w

I'-..

170

I'-..

=
:::> 160

I"

....

~

ili
....
z

c

t;
z

=l
;j

.......... I R8~A .lo.c~- -

"" "

'"

20'CiW'

NOTE 1
MAXIMUM JUNCTION TEMPERATURE DERATING

I"-

""" r-.."""" " , r-.. "
i"-..
""" >-. """ r-..",

150

When operating this rectifier at junction temperatures
over 1200C, reverse power dissipation and the possibilIty of thermal runaway must be considered. The data
of Figure 1 IS based upon worst case reverse power and

.,/

28oC/W ....

140

.......

120
110

300
200
400
100
VR,PEAK REVERSE VOLTAGE (VOLTS)

80

60

should be used to derate T J(max) from Its maximum
value of 17SoC. See Note 2 for additional information

" "....... ,

50'C/W

130

on derating for reverse power diSsipation.
When current ratings are computed from T J(max) and

reverse power dissipation is also included, ratings vary
with reverse voltage as shown on Figures 2 thru 5.

600

RESISTIVE LOAD RATINGS
Pnnted Circuit Board Mounting - See Note 6, Page 8
FIGURE 3 - SQUARE WAVE INPUT

FIGURE 2 - SINE WAVE INPUT

~
~

....

I
iil

40
35
30

t---...
........

25

~

20

~

15

ffi

1.0

~

:<

4,0

,

1

"

, h(

::>-

~

~

'""r-..

60~V/

~ o

75

~ 3.5

....
~

:---... V IDOV
........... """" ~ :x,.200V
;-...:

400V/

s: 05

ii:

/VR· 0 -10 V(PK)

..........

"

1

ROJA • 28 oC/W-

85

95

105

'""

~ 25

"
""

t---.

.......

.......

125

135

~

'" ""'-

145

155

20

~
w 15
co
~ 10

........

.......

r--.. ~

115

.......

iil
~

165

~

175

--.....:::

'>..

400V/

"'-

600V/

0
75

85

95

~

18
1.B

~

...........

~

1.4

~

1.2

~

r-....
08

.......

!'.....
1.0

~

0.6

~

04

" "
"
"r--..

R8Jl.50.J/W-

~

...... .........

""'h.

600 V"

.........

i\. I'\..
85

95

105

115

1.6

~

1.2i"'-...

i

.......

......

400 V

18

~

I'-..

'\

135

145

155

165

1.0

~
w
co

0.8

ffi

06

~

0.4

~

0.:

;;

\.

\.

125

,

~

"" "I'" '"
~ ..........

105

115

125

135

~165~175

145

155

175

TA, AMBIENT TEMPERATURE (DC)

75

" """"'-

~

""'-

N

f"..,.

1'-..100 V

I~

........

.b..
""'-200V

"'

600 V"\..

85

R8J~ • 50oclw_

~VR·0-l0V(PK)

........

B 1.4

100V """

"" "" "1""''
"
'" " "

, 1'-.........

I

i"-..

~

....

',200V .......

J0:
75

ii:

~R ·O-IOV(PK)

...........

f'....

20

ffi

K

FIGURE 5 - SQUARE WAVE INPUT

FIGURE 4 - SINE WAVE INPUT

::;

./

/200V

TA,AMBIENT TEMPERATURE (DC)

20
~

i

r........' i'.......

..............

TA, AM81ENT TEMPERATURE I'C)

B

./IOOV

...........

'"""

;; 0.5

R8JA • 28oe/W

/VR·O -IOV(PK)

..............

~

~

,
,

::-......
........

3.0

95

"J".,.

i'..400 V

105

"'l
115

I...........

"

f"..,.
l"-

"'\
125

135

......

""'- i'..

""

145

TA, AMBIENT TEMPERATURE (DC)

3-193

155

"'\
165

175

MR8S0, MR8S1, MR8S2, MR8S4, MR8S6

MAXIMUM CURRENT RATINGS
Current derating data IS based upon the thermal response data of Figure 29 and the forward power d .n'pation data of Ftgurel 19 and 20. Since reverse power diSSipation is not considered In Figures 6 thru 11, additional derating for revers. voltage and for Junction to ambient thermal resistance must be applied. See Note 2

SINE WAVE INPUTS

SQUARE WAVE INPUTS
FIGURE 7 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

FIGURE 6 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

~-

~

7.0
6.0

70

~ "'-!;.= 1/8"

RESISTIVL~~gSUCTIVE _

=

........

~ ~4"
~
.......
a ......... 3/B"
.........
.........
~ 4.0
r-. 5/8" .......
~
_

~

--

w

~

BOTH LEADS TO HEAT
SINK WITH LENGTHS
AS SHOWN
-

5.0

3.0

............

........
........ ........
....... .......

~~

ffi

~~

85

95

105

115

125

135

145

155

~

~
.......

5.0

3/8"

r-

I'.....

.........
~

165

"""

r-.... .......

ia

....... '<
......... "".........
.......
4.0

_ 5.0

~

~~

.......

-

30

w

to

ffi

J1<

85

95

>

1

75

85

95

105

115

125

135

145

155

~ 5.0

::>

'-'

~~

30

"'
!i

2.0 f--

~

1.0

ffi

175

5
~

fL. LEAD TEMPERATURE (DC)

4.0

!JE!Q. _

Ii::

'" I--t--t-I(AV) -w - - - - ~ p....~"""<
~ :::-....

,~

f-0

75

.,

~

BOTH LEADS

"'~

TO HIEAT SI~K

~

'85

95

105

115

125

135

145

TL. LEAD TEMPERATURE IDC)

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS

!!:

115

r-....

~ 40

~
~

165

r--..

ffi

:" ~

0

.........

......... .........

I-

~

r--....." ~
~

r--..

~ 60

J--.< ....... ........t-....

« 1.0

..........

Ii::

....... ;x ~

BOTH LEADS
-TotEAT~INK

105

~
~~

FIGURE 9 - 1IS" LEAD LENGTH. VARIOUS LOADS
7.0

J

20 -

........
~~

TL. LEAD TEMPERATURE (DC)

1
....... 51
1 CAPACITIVE- f-.....10
LOADS f--K'.. .... 20

-..

........

..............
~ ........

"""""'

75

175

~)=~ (RESI!TIVE/IINoUC~IVE Lo~oS)- f--

............

Ii::

!!: 6.0

-..

-.........:

FIGURE 8 - 1/8" LEAD LENGTH. VARIOUS LOADS

..

........

20

TL. LEAD TEMPERATURE (DC)

7.0

,......... r-.....
r-.... r-....

........

5/B"

30

=

~

11:

~~

75

RESISTIVL~~gSUCTIVE _
BOTH LEADS TO HEAT
SINK WITH LENGTHS
AS SHOWN
-

:;c

-.........: ~

1.0

~ ~/8'

w
to

"-

r-.......

~ o

~_

60

~ 40

r-....
-.. ........ .......

2.0

~...

a

,

:;c

5

Ii::

145

TA. AMBIENT TEMPERATURE (DC)

3-194

155

165

""

175

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS

MR850, MR851, MR852, MR854, MR85S
REVERSE POWER DISSIPATION AND CURRENT
NOTE 2
DERATING FOR REVERSE POWER DISSIPATION

capacltlvely loaded full wave center-tapped CircUits, the 20 1
data of Flqure 12 should be used for sine wave Inputs and the
capacitive load data of Figure 13 should be used for square wave
mputs regardless of l(pkI/Ifav) For these two cases, Vp IS the
voltage across one leg of the transformer
Example 1 Find maximum ambient temperature for IAV == 2 A,
capacitive load of IpK/lAV == 20. Input Voltage =
60 V Irms!, SLne wave, AOJA = 2SoC/W, half wave
CircUit

In this rectlflor. power loss due to reverse current IS generally not
negilglble
For reliable CircUit design, the maximum Junction

temperature must be limited to either 175°C or the temperature
which results In thermal runaway Proper derating may be accomplished by use of equation 1 or equation 2

Equation 1

T A;; Tl - (175 - TJlmax)) - PR ROJA
T, '" Maximum Allowable Ambient Temperature

Where

Solution 1

lusmg Equation 11

T J(maxl '" Maximum Allowable Junction Tempera-

Step 1
Step 2

~~;~CT J(max) from Figure 1

ture to prevent thermal runaway or 175°C. which
ever IS lower. (See Figure 1)

Step 3

~~d:'~b~txl from Figure 12

Step 4

Find IA normalized from Figure 14 Read IA(norm!
= 15

Step 5

Correct PA to TJlmaxl. PR == IA(norm! x PA
IFlgure 121 PA = 1 5 x 360 == 540 mW

neglecting reverse power diSSipation (from Figures

100r 111

Find Vp, Vp = J2 VIn

=

85 V, VA(pkl = 170

Aead T J(max) '"
Read PR

=

360

PR ;; Reverse Power DISSipation (From Figure 12
or 13, adjusted for T J(maxl as shown below)
ROJA = Thermal Resistance, Junction to Ambient

When thermal resistance, Junction to ambient, IS over 200 CIW,
the effect of thermal response IS negligible Satisfactory derating
may be found by uSing
Equation 2

Step 6

Fmd TA = T, from Figure 10

Step 7

Compute T A from T A = T 1 - (175 - T J(maxl - PA AOJA

T A == T JlmaxJ - (PA + PFJ ROJA
PF == Forward Power DIssipation (See Figures 19 & 201
Solution 2

Other terms defined above.

Step 6

Compute T A from T A = T Jlmaxl - (PR +PFJ AOJA
TA = 157 - /054+ 3128
TA = 580 e
The dIscrepancy occurs because thermal response IS factored Into
solution 1. and advantage IS taken of the coolmg time after the
power pulse and before reverse lIoltage achieves Its maximum
61 0 C IS a satisfactory ambient temperature

'"

~;

I.

..

"'0
w>,

100
~
70
"'in
w~
50

0> ..

~o

~

i

o

~~

I

TJ=150C_ ~VP
MAXIMUM
-1- - , - TYPICAL I

20
10

~

wE
>
Wz

200

100

300

400

..

",0

==
JI/q:JJ =
-

.."

30

FIGURE 13 - REVERSE POWER DISSIPATION, SQUARE WAVE
5000
3000
de LOADS ....
2000 f--CAPACITIVE
I-- LOADS ~
:!>1000

'"~

~

... ...

w>'
0>"
~

500
300
200

50
30
20

~

I

I
600

,,-

50

...

o

RESISTIVE LOADS

TJ -150"C ---MAXIMUM
- - - - - TYPICAL =

10

700

...

...

~

IV 1/, :;"

100

"'in
~c
w~

i

500

Fmd PF from Figure 19 Read PF = 3 0 W

Step 7

FIGURE 12 - REVERSE POWER DISSIPATION, SINE WAVE
1000
CAPACITIVE LOADS
700
I(PK) _
500 IIAV) -10 - 20
RESISTIVE
LOAO
I"'.
300
=5
~?£
200
wE

~r"
~/

(using Equation 21

Steps 1 thru 5 are as SolutIon 1

The reverse power given on FI!J.Ires 12 and 13 IS calculated for
T J == 150 0 C When T J IS lower, PA will decrease, ItS value can be
found by multiplYing PR by the normalized reverse current from
Figure 14 at the temperature of Interest
The reverse powl'r data IS calculated for half wave rectification
CirCUits For full wave rectification uSln9 either d bridge or a
center-tapped transformer, the data for resistive loads IS equivalent when Vp IS the line to line voltage across the rectifiers For
capaCitive loads, It IS recommended that the dc case on Figure 13
be used, regardless of .nput waveform. for bridge CirCUits For

X

Read T, = 940 C

T A = 94 - (175 - 157) - (0 541128)
TA = 6l o C

~JI/q:J:}:=
Vp::t:=::::t:::::

100

200

300

400

500

600

700

Vp. PEAK APPLIED VOLTAGE IVOLTS)

Vp. PEAK APPLIED VOLTAGE (VOLTS)

FIGURE 15 - TYPICAL REVERSE CURRENT

FIGURE 14 - NORMALIZED REVERSE CURRENT

125"
10

; 100"

:~

10 1

,
2

100
20

40

60

80

100

120

140

160

180

200

TJ. JUNCTION TEMPERATURE ('C)

1110

200

300

400

500

VR. REVERSE VOLTAGE (VOLTS)

3-195

600

70

MR850, MR851, MR852, MR854, MR856

STATIC CHARACTERISTICS
FIGURE 11 - MAXIMUM SURGE CAPABILITY

FIGURE 16 - FORWARD VOLTAGE
200

1/

V

J

TJ I=25 C
lOB

150 PO::"--r--r--r--r-r"""'""T"!-.---.-.---r--.-r~"""'''''

,/

-"""i'-t-..,.
1.l1 ..I.l1. VRRM
MAYEACH
BE APPLIED
) ......
BETWEEN
CYCLE
~IOB~~ts~~E:~~T~'~25~.:C--~~:JIOtF~SU~R~G~E.~T~J~NO~T~ED::IS~
....
J
---!-TJPRIORTOSURGE

5~

V

~

0

TYPICAL

1/ MAXIMUM
I

~ 20

...

ffi

~

I"--.

20

.........

....... 1'---.
15~-L~~~~~~~~~~~~~~~~
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100

II II

10

~ ....-?'NON.REPETITIVE

115°C

~

I J

:!

'"~

I

...........
""

~ ~~ITIVE~P ~~ --h!-""""
~ 4o~-+~~~-+~+4~~~~~-+~-+~~~
~'" 3D 1--I-+-.........
-+-~..pjo..~l17~;.IC ......... r-..--r-..

/

II I

0

a'"o'"

80............

~ 60

0

NUMBER OF CYCLES AT 60 Hz

1.0

~ 5.0

FIGURE 18 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

I I

'"=>

! I!

~
~ 3.0
z

...

<
t; 2 0
!!!

G

.Ji.

3;

.s

E

0

U

7

~

8

5

,;
.,

3

O.2

o

04

0.8

12

1.6

20

24

28

4.0
3.5
3.0
2.5
2.0
1. 5
1.0
O. 5
0
-0 5
-1 0
-1 5
-2 0
-2 5
-3.0
02

IT

./

TYPICAL RANGE

~

V
I-'"

I-05

1.0

2.0

50

10

20

50

SQUARE WAVE INPUT

SINE WAVE INPUT

FIGURE 20 - FORWARD POWER DISSIPATION

FIGURE 19 - FORWARD POWER DISSIPATION
10

'" B.O
~
0
~CiS

"'~ 60

~<
,,,is

~~

~:
w'"

4.0

S

2.0

>52

<0

:!

It:
10

20

3.0

40

5.0

100

'F. INSTANTANEOUS FORWARD CURRENT (AMP)

VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTSI

6.0

7.0

B.O
IF(AV). AVERAGE FORWARD CURRENT (AMP)

IF(AV). AVERAGE FORWARD CURRENT (AMP)

3-196

200

MR850, MR851, MR852, MR854, MR856

TYPICAL RECOVERED STORED CHARAGE DATA
(See Note 3)

FIGURE 21 - T J = 25 0 C

1.0

~
w

3w

05

~

,.

IFM - 2JA,

""5

lOA

~ 02

50A~

o

t; 01

~

5

;..-

00

I~

10

V-

~

02

~

I

~_

005

:>

r-...

/.

~~

IFM' 20 A

05

~

'"~ 005

~

10

~

:il

~002

FIGURE 22 - TJ = 75°C
20

'lOA

~~

50

20

10

50

002
10

100

I-'"
I-'"

)

~

o

20

V

50A

"'

P""

v: V

lOA

lOA

L.e :;.20

50

d,/d.IAMP/p,)

10
d,/dt.IAMP/p')

20

50

100

FIGURE 23 - TJ = 1000 C
20

20

III

3- 10
w

~

~ 05

I

~

"'"

w

'"

V

1

V

VI.;

~k

o

w

....,

lOA

~ 02

V

:>

~ 0 05

"'

50

~

03

20

IFM,20A
lOA

1

~

07

_

"'

~~

005

100

~

lOA

I

l

I
10

05

o

~ 1/
20

5
w

lOA
1/.[;.0"

002
10

10

~

I.;
50A

S
o

.3

~ 0.7

IFM'20A

~F'

002
10

I
10

50

20

d,/dt.IAMP/p,1

20

50

d,/dt IAMP/p')

NOTE 3
Reverse recovery time 15 the penod which elapses from the
time that the current, thru a previously forward biased rectifier
diode, passesthru zerogoang negatively untIl the reverse current
recovers to a point which IS less than 10% peak reverse current.
Reverse recovery time IS a direct function of the forward
current prior to the application of reverse voltage
For any gIven rectifier, recovery time IS very Circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
uSing IF = 1.0 A, VR = 30 V. In order to coverall Circuit
oondltlons. curves are given for tYPical recovered stored charge
versus commutation dl/dt for vanous levels of forward current
and for Junction temperatures of 250 C. 750 C, 1000C. and

15oDc.

dl/dt

I R MI R Ee) -t-----'L

From stored charge curves versus dl/dt, recovery time (trr)
and peak reverse recovery current (I RM(REC)) can be closely
approximated USing the following formulas:

To use these curves, It IS necessary to know the forward
current level JUst before commutation. the Circuit commutation
dildt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

3-197

0

~

trr= 1.41 x [ _R_

1/2

dl/dt

IRMIREC)

= 1.41

x [OR x

dl/d~

112

100

MR850, MR851, MR852, MR854, MR856

DYNAMIC CHARACTERISTICS
FIGURE 25 - JEDEC REVERSE RECOVERY CIRCUIT

Al

R1 "'50 Ohms
R2 =250 Ohms

L1

01 - lN4723
02 -IN4DOI
03 -IN4934

dIIdtADJUST

Tl
120 v 1 : ) c TI21
60Hz

Cl

03

llPKI ADJUST

SCAI • MCR729 10
Cl =05Io5DpF
C2""'4000",F
11 = 1 0-27 p.H

OUT

T1:= Vanac AdjUsts I{PK) and Mdt

11

01

T2-11
T3= 1.1 (to tnggerclrcUlt)

01
CURRENT

VIEWING
RESISTOR

FIGURE 26 -

FORWARD RECOVERY TIME

FIGURE 27 - JUNCTION CAPACITANCE
100

5

-

]
~

;:
>

"'

~

_TJ= 25&C
Vfr= 1.1 V
W

o.2

~

z

i:!:
~

t;
~

v~
tfr-J--l

I....,..
02

0.3

0.5 0.1

~

.....

c

o. 1

0.05
0.1

..........

5z 30

/

§ DO

50

u

V

V
./

"'o

i

TJ=250 C

oS

!rl
"'

70

~

O.3

1.0

·1

J

2.0

3.0

,I'J [
50 7.0

20

...............

oJ

10

...... i"- .....
10
1.0

2.0

3.0

IF. FORWARD CURRENT (AMP)

FIGURE 28 - THERMAL RESPONSE
1.0

!_

0.5

~

0.3

ffi

.... N

Ii; ~ 0.2
~~
zo

~ ~

.... w

./

,./

~~

0

t;

~ 0.05

~

i3

*

T~

./

0.03

,/

-.,'"

0.02

"'"

2 3

57

100

2 3 51

101

2 3 57

2 3

102

30

50

70

100

57

103

2 3

o

o

57

104

--- --

114

~-

~

3-198

.. --'

t--

3/8

112

BOTH LEADS TO HEAT
SINK. E~UAL LE7GTli -

5/8

L. LEAD LENGTH (INCHES)

t.TIME(ms)

-

---MAXIMUM
- - - - - TYPICAL

k:""

.....

.",.

1/8

V ,. ,,"
,.

V

~"
. / ,. ,

,.' ""
~

",,'

WOO

0.0 1

~INK

SINGLE LEAD
HEAT
INSIGNIFICANT HEAT FLOW","
0 THROUGH OTHER LEAD . /

./

0.1

20

10

FIGURE 29 - STEADY·STATE THERMAL RESISTANCE
50

11 II
II L1IIJLI
LEA o LENGTH = 1/4"

50 70

VR. REVERSE VOLTAGE (VOLTS)

3/4

7/8

MR850, MR851, MR852, MR854, MR856

NOTE 4
where rid .. no'm.h~ad welue of tun"enl thermll ,ellSlanea at
t,metf'omF'gu'129,'a

To determine maximum Junction temperatura of tha diode
In III given situation, the followrng procedure IS recommended

,(11 + tpl .. norml"~ad velul of I'en"anl Itterma' '1lIlIanca al
I,met,+t p

Th. temperatura of tna lead should be measured uSing III

thermocouple placed on the lead as close as possible to the tlB
pornt The thermal mass connected to the tie pOint IS normally
large enough so that It will not slgnlflcantlv respond to heat
surges generated

In

the diode as III rMult of pulsed operation ance

steady-state conditions are achulV&d

USing the measured value

of T L • the Junction temperature may be determined bV

PPk

~

r-Il---j

TJ = TL. ... ll.TJL

where l!. T JL IS the Increne In Junction temperature above tha
lead temperature It may be determined by
A TJL .. Ppk • AOJL (0 ... (I - D) • r(t1'" tpl

+

Ppk
DUTY CYCLE = tp/ll

tp

PEAK POWER, Ppk, IS peak of an
equivalent square power pulse
TIME

r(fp) - r(t1}1

NOTE 6

NOTE 5

Data shown for thermal reSistance Junctlon·tO·ambient (ROJA)
for the mountings shown IS to be used as tVPlcal gUideline vahJes
for preliminary englneerm9 or In case the tIe pomt temperature
cannot be measured

Use of the above model permllS Junction to lead thermal
resistance for any mounting configuration to be found For a
91ven total lead length, lowest values occur when one Side of the
rectifier IS brought as close as possible to the heat Sink Terms m
the model signtfy
T A .. Ambient Temperature
TL = Lead Temperature
TC = Case Temperature
T J .. Junction Temperature

TYPICAL VALUES FOR ROJAIN STILL AIR

ROS = Thermal ResIStance, Heat
Sink to Ambumt
ROL" Thermal Resistance, Lead
to HeatSmk
ROJ'" Thermal ReSistance, Junc·
tlon to Case
Po = Total Power DISSipation ~
PF + PR
PF '" Forward Power DISSipation
PR .. Reverse Power DISSipation

MOUNTING
METHOD

LEAD LENGTH, L (IN)

,

1/S

1/4

1/2

3/4

50

58

5'
59

53
6

55

2
3

PC Board Where Available Copper

Surface area lS small

t'-j

ROL = 4S o C/W/IN TYPically and 48°c../WIIN Maximum
ROJ = 10o C/W Typically and 16 0 C/W MaXimum

r-':j

JI~1d

The maXimum lead temperature may be found as follows
TL=TJlmax)-bTJI.
where

MOUNTING METHOD 2
tl.TJL can be approximated as follows

Vector Pin Mounttng

liT JL :::::: ROJL • PO' Po IS the Sum of forward
and reverse power dISSipation shown m Figures
2 and 4 for sme wave operation and Figures 3
and 5 for square wave operetlon

~

THERMAL CIRCUIT MODEL

(For Heat Conduction Through the leads)

Vector Push·ln Terminals T·28

MOUNTING METHOD 3

ROSK

PC Board With
1-1/2" X 1-112" Coppar Surface

JIIc;J:
Board Ground Plane

3-199

°C/W
W

C/W

28

MOUNTING METHOD 1

(SubSCripts A and K refer to anode and cathode Sides respectively)
Values for thermal resistance components are

RoJA

MRl120
Ihm
MRl126
MRl128 MRl130

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

MEDIUM-CURRENT
SILICON RECTIFIERS
50-1000 VOLTS
12 AMPERES

MEDIUM-CURRENT SILICON RECTIFIER
Medium-current silicon rectIfiers feature hIgh surge current
capacity, and low forward voltage drop.

MAXIMUM RATINGS
Symbol

MR
1120

MR
1121

MR
1122

MR
1123

MR
1124

MR
1125

MR
1126

MR
1128

MR
1130

Unit

Peak RepetItIve Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

200

300

400

500

600

800

1000

Volts

Non-RepetItIve Peak Reverse Voltage
(one half-wave, sIngle phase,
60 cycle peak)

VRSM

100

200

300

400

500

600

720

100

1200

Volts

VR(RMS}

35

70

140

210

280

350

420

560

700

Volts

Rating

RMS Reverse Voltage
Average Rectified Forward Current
(song Ie phase, resIstIve load, 60 Hz,
TC = 150°C)
Peak RepetitIVe Forward Current

10

IFRM

(TC = 150°C)
Non-Repetitive Peak Surge Current
(superimposed on rated current at
rated voltage, TC = 150°C)

12t Ratmg (non-repetItIve,
1 ms=
g~

~~
~L

!2:~
~

z

~ffi
<0..
e:~
~;i!
~'"

!des

50
45

I I
TJ

40

- --

6'11

-!-""

-- - -

35

K

30

l-

1'11+ 3'11

25

~

20

tb~ 15

I-

DC

I-- f--

i~
u<.> 10

'"<£0~

-

Te -8Jeltl PAVE

0.5
001

002

005

02

01

05

01

10

05

02

t. TIME ISECONDSI

..
ii:

CURRENT DERATING DATA
14

:$

§

12

~
c

10

~

I

I
~

'"~
'"

~

8.0
6.0
4.0

2.0

~
CONDITIONS
3" 3 X I~b copper heat sink
fin I ~ 0 9 and mounted parallel
JUl How 180" conduction
PHASE DATA,
For J phase ratmgs mulliply
current scale by 0 90
For 6 phase ratmgs multIply
current scale by 0 63

10

..........

~

"'-~

I

~

~

t<

1000 lFM
500 lFM

~ "'FREE CONVECTION ~
~

-.....:: ~

I

I

I

20

40

60

~

80

100

120

TA• AMBIENT TEMPERATURE lOCI

3-202

140

160

~

180

200

MOTOROLA

-

SEMICONDUCTOR - - - -_ _

TECHNICAL DATA

MR1366 See
MR1376 See
MR1386 See
MR1396 See

Page 3·13
Page 3·18
Page 3·23
Page 3·28

MR2000
Series

MEDIUM-CURRENT SILICON RECTIFIERS
... compact, highly efficient silrcon rectifiers for medium-current
applications requiring:
• High Current Surge -

400 Amperes

<5' TJ = 175°C

o Peak Performance 0- Elevated Temperature 20 Amperes @ TC = 150°C

MEDIUM-CURRENT
SILICON RECTIFIERS

o Low Cost

50·1000 VOLTS
20 AMPERES
DIFFUSED JUNCTION

o Compact, Molded Package- For Optimum EffiCiency in a Small
Case Configuration

J

p

MAXIMUM RATINGS
CharacteristIc
Peak Repet)tlve Reverse Voltage
Workmg Peak Reverse Voltage

DC Blockmg Voltage

Non-Repelltlve Peak Reverse

MR

MR

2000

2001

2002 2004 2006

MR

MR

2008

2010

VRRM
VRWM
VR

50

100

200

400

600

800

1000

VRSM

60

120

240

480

720

960

1200

MR

MR

MR

Symbol

Volts

Voltage (halfwave. smgle phase,
60 Hz peak)

RMS Forward Current

Average Recllfled Forward Current
(Smgle phase, reSistive load.
60 Hz. TC = 15o"CI
Non-Repetitive Peak Surge Cur-

'IRMSI
10

40

IFSM

400 !for 1 cycte)

TJ.T stg

-65 to +175

Volts

..
.

20

rent (surge applied @ rated load
conditions, half wave, smgle
phase. 60 Hz)
Operating and Storage Junction

Umt

Amp
Amp

Amp

STYLE 1:
PIN 1. CATHODE
2. ANODE

F

•

Temperature Range

°c

t

THERMAL CHARACTERISTICS

~ Symbol

Characteristic
Thermal ReSistance. Junction to Case

ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage
!oF

= 63 Amp. T C =

I

Ma. ~
13

°CfW

Symbol

Ma.

Unit

vF

11

Volts

'R

100

!JA

250 CI

MaXimum Reverse Current (rated de voltage) T C - 2S o C
TC

= 100°C

500

MECHANICAL CHARACTERISTICS
CASE: Void Free, Transfer Molded.
FINISH: All External Surfaces are Corrosion-Resistanl and the Terminal lead IS
Readily Solderable.
POLARITY: Calhode to Case (Reverse Polarity Units are Available and Designated
by an "R" Suffix i.e., MR2000SR).
MOUNTING POSITIONS: Any
MOUNTING TORQUE: 15 in-Ib max
MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275°C for
10 Seconds @ 3 Kg Tension.
WEIGHT: 6 Grams (ApproXimately).

3-203

L.fLl

10·32UNF·2A

t

A

!

~~
_D
~
J·

K

cL

Unit

ReJC

(@)
JOr
12

---

J

l

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM
A
C
D

E

F
J

K

MILLIMETERS
MIN
MAX
10.75
11.12
10.28
4.07
4.69
1.91
4.44
2.29
2.41
10.72
11.50
18.80
20.32

-

INCHES
MIN
MAX
0.423
0.438
0.405
0.160
0.185
0075
0.175
0.090
0.095
0.422
0.453
0.740
0.800

-

CASE 245A·02
DO-203AA
METAL

-

MR2000 Series

FIGURE 2 - NDN·REPETITIVE SURGE CURRENT

FIGURE 1 - FORWARO VOLTAGE
700
50 or--TJ = 25 DC

---- V

/'

/

300

/

20 0

0

0

r---....

r---

'"

25 DC

r-..

'-...... t--....

r-!\.J\
I-,,,,,,~

/

0

t--

r-..

TJ = 1l5DC
I

/

J

VRRM MAY BE APPLlEO BETWEEN
EACH CYCLE OF SURGE THE TJ
NOTEO IS TJ PRIOR TO SURGE
f= 60 Hz

i'-D --.........

MAXIMUM

/'

-...........

-I-

'/ ;7

I--- f-TYPICAL
100

--

600

......

0

"

II

I

60
50

20

10

/I
I

0

10

100

50

20

NUMBER OF CYCLES

FIGURE 3 - FORWARD VOL TAGE TEMPERATURE
COEFFICIENT

0

+0 5

0
0

0

0

V/'

5

17

TYPICAL RANGE,
0

I\.

7

.-""

-~

5
·15
,

06

08

10

11

14

16

18

20

22

14

·20
02

16

05

VF.INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

.....

~=20

I(FM)
I
I
I(AV) =2 (SQUAREWAVE'r

I-....

.

........

10

-

20

TJ ~ 1l5DC

,/

r-.....

r-- r- CAJACITIVELOADS

i'-..:
........ "'-

50

-

r

• (SINEWAVE RESISTIVE LOAD)

r-.....

~~

~AC,ITIVE ~OAOS
135

140

145

150

155

V~

"" ~

160

165

I(FM) = 20
I(AV) /

r--

~~
..:::: ~

200

110

C?c'_

"./<:V

~K

;'0 ~ y
'M V

I'-SQUARE WAVE

"-SINkwAV~_

RESISTIVE
LOAD
,-

~

~

f"...

130

I0
20
50
10
20
50
100
IF. INSTANTANEOUS FORWARO CURRENT (AMP)

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - CURRENT DERATING

"'ldC

I--'

r--

3

o1

-'

1/

175

40

80

12

16

20

24

28

32

IF(AV). AVERAGE FORWARD CURRENT (AMP)

TC. CASE TEMPERATURE (DC)

3-204

36

40

MR2000 Series

FIGURE 6 - THERMAL RESPONSE

~ 10
~ 07
~ 05
~
~

i-'"

~
fa° 1

I..-

ROJCIII" ROJC • ,III
INOTE 11

~oo 7
~OO5

ffi

"

~oo 3:..----

ffioo 2
~oo 1
:= 10

-

-

03

w
~ 02

20

50

3.0

70

10

20

30

50

70

:j

100
I, TIME

200

300

500 700

500

TJ = 25°C

..........
~

~ ZOO

To determme maximum lunctlon temperature of the diode In a given SllUatlon, Ihe fonowlng
procedure IS recommended
The temperature of the case should be measured usmg a therrnocouplo placed on the case al
the temperature reference pomtlsee Ihe Duthne drawHl9 on page 1) The thermal mass connected
to the case IS Ilormally large enough so Ihallt WllIllot Significantly respond to heat surges
generated In the dlodeasaresuJtol pulsedoperallon once steady state cDndlllon sareachleved
USing Ihe measured value of T C. the "mellOn temperature may be determllled by
TJ=TC tllTJC
where t. TJC IS the In£Tease In JunCllon temperature above the case temperature II may be
delermuledby
l'.TJC = Ppk • ROJc!D + (1- m • rltl ~ Ipl + r(lp) - dill)
where
r(l) = normallzl!dllalul! of translentlhermal resistance at lime, t,iromF1!lure6, II!,
r(tl + tpl = normalized value of trans.ent thermal resisfance at tlmetl +tp

...u'"
:t

--ALLOEVICES
---ALL DEVICES EXCEPT MR2 000 " ' -

;3
U 100

70
50
01

/

V

t

....-

/

I----

~i-'"

~

!If," 1 OV

100

--

~ r-.... r--......

f-2r
70

II I

........

0

50
20
30
IF, FORWARO CURRENT IAMPI

50

FIGURE 9 - REVERSE RECOVERY TIME

10
0,1

10

3-205

TJ= 15°C

.......

0

-

50
10
20
10
20
VR, REVERSE VOLTAGE IVOLTS)

0

TJ" 25°C I-

7=V F

05

02

FIGURE 8 - FORWARO RECOVERY TIME

10

N

5 Ok 7 Ok 10k

I

r-

300

I-Ifr-J

30k

FIGURE 7 - CAPACITANCE

NOTE 1

5

2 Ok

10k

Im~

IF

IF" 10 A
I I

0~~025IR
I

,r-Irr

~

r-... ........
r-.....,:; ~
50'A/

't
.......... !--- .......

r-...

I I I

01 03
0 5 07 1 0
20
50
IR/IF, RATIO OF REVERSE TO FORWARD CURRENT

70

10

MR2000 Series

RECTIFICATION EFFICIENCY NOTE

FIGURE 10- RECTIFICATION WAVEFORM EFFICIENCV
60

I

'"t;

T~=J50~

~

40

FIGURE 11 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT

r-- ~ ~

0

CURRENT INPUT WAVEFORM

~

> 20
'-'

ffi

I-

<:;

$.

J\fvtflJU ----

f\

1\

The rectification efficIency factor a shown in Figure 10 was
calculated using the formula

V201dc)

10

a=~=~

80

Prm ,
20

30

5.0 70 10
20
f, FREQUENCY 1kHz)

30

50

70

V201rm')

.100%=

V201dc)
.100%
V201ac) + V201dc)

(1)

RL

100

For a slOe wave Input Vm Sin (wt) to the diode, assume lossless,
the maximum theoretical efficiency factor becomes

V 2m
n 2RL

4
a(,me) = V2m • 100% =-;;2 • 100% = 406%

(2)

4RL
for a square wave Input of amplitude V m , the efficiency fector

becomes'
V2m
a(square) =

2RL
V2m • 100% = 50%

13)

RL
fA full wave CirCUit has twice these efficiencies)
As the frequency of the Input signal IS Increased, the reverse
recovery tIme of the diode (figure 9) becomes sigmflcant, resultIng 10 an increasing ae voltage component across R L which is

OPPosite In polarity to the forward current, thereby reducing the
value of the effiCiency factor a, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
effiCiency only; It does not provIde a measure of diode losses.
Data was obtained by measunng the ae component of Va with a
true rms ae voltmeter and the dc component with a de voltmeter.
The data was used In Equation 1 to obtain pOints for Figure 10.

3-206

MOTOROLA

-

SEMICONDUCTOR

____.IMR2400 thru M~_

TECHNICAL DATA

MEDIUM-CURRENT
SILICON RECTIFIERS

TAB-MOUNTED MEDIUM-CURRENT
SILICON RECTIFIERS

50-600 VOLTS
24 AMPERES

... compact, highly efficient Silicon rectifiers for medium current
applications reqUiring'

o

High Current Surge -

400 Amperes @ TJ = 175°C

II Peak Performance @ Elevated Temperature TC= 150°C
•

Low Cost

•

Same Mounting as a TO-220AB

24 Amperes @

CASE 339-02
PLASTIC

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Nonrepetltlve Peak Reverse Voltage
(half wave, single phase, 60 Hz peak)
Average Rectified Forward Current

MR2402

MR2404

MR2406

Unit
Volts

100

200

400

600

VRSM

60

120

240

480

720

Volts

IFSM

.

400 (for 1 cycle)

.-

TJ, Tstg

.

65to +175

.

10

haif wave, single phase, 60 Hz)
Operating and Storage Junction
Temperature Range

MR2401

50

(Single phase, reSIstive load, 60 Hz, TC = 150°C)
Nonrepetltlve Peak Surge Current
(surge applied @ rated load conditions.

MR2400

VRRM
VRWM
VR

24

Amp
Amp

°c

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal ReSistance, Junction to Case

ROJC

08

°C/W

Thermal ReSistance, Junction to Air PC Board Mount, Perpendicular to Surface

ROJA

55

°C/W

Characteristic

ELECTRICAL CHARACTERISTICS
Symbol

Max

Unit

MaXimum Instantaneous Forward Voltage (IF = 75 4 Amp, TC = 25°C)

vF

118

Volts

MaXimum Reverse Current (rated de voltage)

IR

25

pA
mA

ChDrDctoriotico and Conditions

TC = 25°C
TC= lOO°C

1.0

MECHANICAL CHARACTERISTICS
CASE: PlastiC encapsulated, metal tabs.
FINISH: All external surfaces are corrOSion resistant and the leads are readily solderable.
POLARITY: Cathode to tab with hole, Reverse polarity available by adding "R" SUffiX, MR2402R
MOUNTING TORQUE: 8 In-Ib max
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds.
WEIGHT: 36 Grams (ApprOXimately).

3-207

MR2400 thru MR2406

FIGURE 1 - FORWARD VOL TAGE
500

r--- TJ = 25 0 C

--- V

./

./

300

/

200

1/ , /

t-- I-TYPICAL

,,

0
0

600

~

~

i"-

c::::::"

r-----

TJ=1750 C

200

'" r-f'LJ\
I-,,,,,,~
'"~'" 100
-'

I'r...... i"-

0:

~

25°C

-............. b..,

I

~

80

~

60

I

10

~~

20

50

1/

10

50

20

100

NUMBER OF CYCLES

I

0

VRRM MAY 8E APPLIED 8ETWEEN
EACH CYCLE OF SURGE THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz

........

fl

'"~

I I

0

~ t--,..

~ 300

I

0

:.......

400

~

MAXIMUM

V

...........

~

/

L

100

FIGURE 2 - NON REPETITIVE SURGE CURRENT

--

700

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

0
+05

0
0

l3

0

~ -05

V2

ffi
U

1.0

_P'<

o

u

05

-15

~

03
02
06

II
08

10

12

14

16

18

20

22

24

26

-2 0
02

0.5

VF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 4 - CURRENT DERATING
0::-

50

l"'-!!.e

:;

~

I-

i'l'i
a:

:::>

a:

~

Or-.

......

a:

..'".
~

.....

Or--

a:

!::!

~

i?

...........

" ...... r---../ rx '~i

l"- t---..

130

135

/

140

10
20

CAPACITIVE
LOADS

SINEWAVE
CAPACITIVE I-I(FM) =2, 1- 10
lIAV)
LOADS

145

"
-r-: "'
:::::::::

r--

0

............... ~ ~

150

155

~ I'-..
~~

160

TC. CASE TEMPERATURE (OC)

165

200

0

"

170 175

3-208

o~

/

~5 / ttL'

V
V

L

/'
de

J .I h
/ 1/ V.I V~ VSIlUARE_ r-WAVE
~ /
~V
/ / ~ V """ SINE~AVf
RESISTIVE LOAD //. ~ r

0

~~

r-- r-.. Y

0
0
125

/

10
20
50
10
20
50
100
IF. INSTANTANEOUS FORWARD CURRENT lAMP)

FIGURE 5 - FORWARD POWER DISSIPATION

~ = .. (SINE WAVE RESISTIVE LOAD)

K
...... l'-....
t...... ..........
f"'....

a:

...
CI

'"

4Or--...

I-"""
,- I-"""

~

f"...

~ -1 0

7

V

TYPICAL RANGE,

/~ P'

~

"..

10
20
30
40
IFIAV). AVERAGE FORWARD CURRENT (AMP)

50

MR2400 thru MR2406

FIGURE 6 - THERMAL RESPONSE

~

1.0
~ 07
~ 05
o

~ 03

u

z O.Z
«
l;;

~f-'

~

01
:;;: 007

ROJC(t) = ROJC· rlt!
NOTE 1

ffi 005
x

tt-

003

~ 002
z
«
~ 00 1
0.05 007

;:;;

./

,.

:g

01

OZ

03

05

07

Z0

10

30
50
!.TIME (m,)

70

10

ZO

30

50

70

zoo

100

300

500

NOTE 1

n

nL

P
rpk

P DUTY CYCLE. 0 = tplt1
rpk PEAK POWER. Ppk. IS peak of an
'="QUlvalent square power pulse

Jtp~

I--tl-1

TIme

FIGURE 7 - CAPACITANCE
50 0

To determme maximum Junction temperature of the
diode In a given situation, the following procedure IS
recommended
The temperature of the case should be measureed usIng a thermocouple placed on the case at the temperature
reference pomt The thermal mass connected to the case

t30 O

the dIode as a result

«
t-

of pulsed operation once steady-state conditions Bre
achIeved USing the measured value of TC. the JunctIon

;t
;3

temperature may be determined by

U 10 0

In

=

2ioc

'" r-..,

~ 200

z

IS normally large enough so that II will not slgntflcantly
respond to heat surges generated

TJ

o;
--ALLOEVICES
~
- - - ALL DEVICES EXCEPT MR2400

TJ=TC+ATJC
0

where aTJC IS the Increase In JunctIOn temperature

above the case temperature It may be determined by

50
01

ATJC = PpkoROJC [0 + (1 - O)or(tl + t p ) + r(t p) - r(tl)]
where
r(l) = normalized value of tranSient thermal resistance

02

05

10
ZO
50
10
ZO
VR. REVERSE VOLTAGE (VOLTS)

50

100

at tIme, t, from F,gure 3, I e
r(t 1 + t p) :;; normalized val ue of transient thermal resIs-

tance at tIme 11 + tp

FIGURE 9 - REVERSE RECOVERY TIME

FIGURE 8 - FORWARO RECOVERY TIME
10

.].

07

w

I--TJ

Z50C

I--v~

~ 05 _

I-!fr-l

ffi

>
o
~ 03

:i:

~

'"~

"Ir

./"'"

."...-

...- V

---

J.--tvfr =1 OV

...,-/
./

Z

1----1-10

-

ZO
30
50
IF. FORWARO CURRENT (AMP)

ZOV

70

10

1~~1--J--0~Z--~0~3~~0~.5~0~7~1~0~~ZLO~--~3~0~~5-0~70-LU10
IR/IF. RATIO OF REVERSE TO FORWARD CURRENT

3-209

MR2400 thru MR2406

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60

-

40

-

'"0....

:t'"

t

~

TJ

=250 C

50

70

,

~ foo..

'r'\

20

"\

U

~.;

CURRENT INPUT WAVEFORM

JV'vI ~-~-~ II

10
80
60
10

20

30

50 70 10
20
f, FREQUENCY IkHzI

30

100
STYLE 1

RECTIFICATION EFFICIENCY NOTE

The rectification efficiency factor a shown
calculated uSing the formula

In

1 CATHODE
2 ANODE

Figure 10 was

V20ldCl
Pdc

a

RL

= Prms = V20lrmsl

V20ldcl

.100%=

.100%

V20lacl + V20ldcl

III

DIM
A
B
C

D
F
G
H
J

K
L
N
P

RL

Q

For a

oSlOe

wave Input Vm

Sin

(wt)

to the diode, assume lossless,

the maximum theoretical effiCiency factor becomes

c

406%

121

4RL
For a square wave Input of amplrtude V m • the efficiency factor
beocomes

V2m
2RL .,00% 050%

O(square) = V 2

INCHES

MIN
0560
0380
0284
0.025
0060
0.170
0080
0023

-

0230
0100
0139

-

MAX
0625
0420
0310
0045
0090
0210
0.115
0029
0562
1187
0270
0120
0147
0200

CASE 339-02
PLASTIC
IMeets TO-220AB except dimension "C")

V2m
;2RL
4
alsmel = V2m • 100%=-;;2. 100%

R

MIlliMETERS
MIN
MAX
1422
1588
1067
965
787
721
114
064
152
2.29
432
533
292
203
074
058
14.27
- 3015
686
584
305
254
353
373
508

131

m

RL
(A full wave CircUIt has tWice these efficiencies)
As the frequency of the Input signal

IS

Increased. the reverse

recovery time of the diode (Figure 9) becomes significant, resultIng In an increasing ae voltage component across A L which IS
OPPosite 10 polarity to the forward current, thereby reducing the
value of the effiCiency factor 0, as shown on Figure 10
It should be emphasized that Figure 10 shows waveform
effiCiency only, It does not provide a measure of diode losses
Data was obtained by measuring the ae component of Va with a
true rms ae voltmeter and the dc component with a de voltmeter
The data was used In Equation 1 to obtam pomts for Figure 10

3-210

MR2400F
thru
MR2406F

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

FAST RECOVERY
TAB-MOUNTED FAST RECOVERY
POWER RECTIFIERS

POWER RECTIFIERS
50-600 VOLTS
24 AMPERES

designed for special applicatIOns such as dc power supplies,
Inverters, converters, ultrasonic systems, choppers, low RF mterference, sonar power supplies and free wheeling diodes A complete
line of fast recovery rectifiers havmg tYPical recovery time of 150
nanoseconds provldmg high efficiency at frequencies to 250 kHz

o
o
o
o

~~

Same Mountmg as a TO-220AB
Cost Effective m Low Current Applications

r~

Lead or ChassIs Mounted
High Surge Current Capability

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Nonrepetltlve Peak Reverse Voltage

RMS Reverse Voltage

100

200

400

VRSM

75

150

250

450

650

VR(RMS)

35

70

140

280

420

10

(Single phase, resistive load, TC = 125°C)
IFSM

Operating Junction Temperature Range

TJ
Tstg

Storage Temperature Range

Unit

Volts
50

Average Rectified Forward Current
Nonrepetltlve Peak Surge Current
(surge applied @ rated load conditIOns)

MR2400F MR2401F MR2402F MR2404F MR2406F

VRRM
VRWM
VR

.

600

24

.
.
..

300 (for 1 cycle)

.
..

Volts

.

°c

..

-65 to+150
-65 to +175

Volts
Amp
Amp

°c

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ReJC

08

°C/W

Thermal Resistance, Junction to Air, PC Board Mount, Perpendicular to Surface

ReJA

55

°C/W

ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneous Forward Voltage (IF = 75 Amp, TJ = 150°C)
Forward Voltage (IF

=24 Amp, TC =25°C)

Reverse Current (rated de voltage) TC = 25°C
TC= 100°C
TC=150·C

Symbol

Min

Typ

Max

Unit

vF

-

115

1.29

Volts

VF

-

1.00

1.15

Volts

IR

-

-

10
0.5
7.0

25
10
10

!'A
mA
mA

Min

TVp

Max

Unit

-

150
200

200
300

REVERSE RECOVERY CHARACTERISTICS
Symbol

Characteristic
Reverse Recover Time -

Soft Recovery

Irr

(IFI = 1 0 Amp 10 VR = 30 Vdc, Figure 19)
(lFM = 36 Amp, dl/dt = 25 A/!,s, Figure 20)
Reverse Recovery Current

IRM(REC)

(IF = 1 0 Amp to VR = 30 Vdc, Figure 19)

3-211

n.

Amp

-

-

4.6

MR2400F thru MR2406F

FIGURE 2 - MAXIMUM SURGE CAPABILITY

FIGURE 1 - MAXIMUM FORWARD VOLTAGE
100

300

"- ...... r-,.

90
200

100

/

50

TJ

= I 50 0 C/

iL
:::E

...
i

V

20

::::I

CI

/

a:

II

~

:a'"z
::::I

C::::I

~'"

60

7

TJ

~~

= 25°C f-- I--

ffi en
<>..

/

3.0

10

«

;;
w
z

'"'

«

30 507010
20
NUMBER OF CYCLES AT 60 Hz

L

P DUTY CYCLE. D = tp/t1
pk PEAK POWER. Ppk. IS peak of an
eqUivalent square power pulse
Time

To determine maximum Junction temperature of the
diode In a given SituatIOn, the following procedure IS

recommended
The temperature of the case should be measureed usIng a thermocouple placed on the case at the temperature
reference POlOt The thermal mass connected to the case
IS normally large enough so that It will not significantly
respond to heat surges generated In the diode as a result
of pulsed operation once steady-state conditions are
achieved USing the measured value of TC. the Junction
temperature may be determined by
TJ=TC+t.TJC

1

0.6

50 70100

nL

P
"'pk

I--t1~

I

I

30

NOTE 1

1.0
1.2
1.4
0.8
VF. INSTANTANEOUS VOLTAGE (VOLTS)

where .:1TJC IS the Increase In Junction temperature
above the caSe temperature It may be determined by

1.8

16

t.TJC = Ppk.R8JC [0 + (1 - D).r(t1 + t p ) + r(t p ) - r(t1)]
where
r(t) :;; normalized value of tranSient thermal resistance
at time. t. from Figure 3. I e
r(t1 + t p ) = normalized value oftranslentthermal resIstance at time t1 + tp

FIGURE 3 - THERMAL RESPONSE. CHASSIS MOUNTED
0
7

5

t..-~

3
02
~

l;;

i1i
'"~

20

/

/ /

0.4

'"o

IIII

o

I

0.3

.............

IIII

10

I

/

...........

~

20

I

I

0.5

:::;

1\

~ICYCLE

30

0.7

:E

II

1\

40

n

1.0

~

~

... =

/

II
is operated such that TJ = 150°C;
VRRM may be apphed between
each cycle of surge

;-..

..1"tp~

2.0

N

i'-.

70

7.0

~

.!:?

/

10

j! 5.0
z
~

Ui

-!;g

V

:$. 30

a:
a:

l:;

~ ~ 50

70

...ffi

80

13

P
/' ~

II
Prior to surge, the rectifier

V

1

ROJCltl ROJC. ,It)
NOTE 1

00 7

ffi 005
:%:

...... 003

./

~ 002
z
«

in

~ 00 1
~
0.05 007

01

02

03

05

07

10

20

3D
50
t.TIMElms)

3-212

70

10

20

3D

50

70

100

200

300

500

MR2400F thru MR2406F
CHASSIS MOUNT RATING DATA
Sine Wave Input

Square Wave Input

FIGURE 4 - FORWARD POWER DISSIPATION

FIGURE 5 - FORWARD POWER DISSIPATION

~ 40r----r----r---,----,----~--~--~r_~,

~ 40

i§ 35
;::

i§ 35 I-I(PK)
;::
-=50
;;: 30 r_I(AV)
en
10

;!;

'"
'"Q

~~

30

~ 25

t--..

20

~

7/

Q

~ 15r----r---4~~~~-+----+_--~----r_--~

~ 15

a:
~ 101_--+~~~~+_--_+----+_--_+----r_--~

a:

~

~

'"

~501___~~_1----+_--_+----+_--_+----r_--~
O~

$....

0

__

~

__L __ _

~

-L__

_ _~ _ _

~

__

~

~ 0

___ J

80
12
16
20
24
28
IF(AVI. AVERAGE FORWARO CURRENT (AMP)

40

/

~ 10

ffi'" 50

32

~

...

/
0

120

125
130
135
140
TC. CASE TEMPERATURE (OC)

145

7
/" V
/' %

~V
/. ~

IY

r--

v~ ~

~~

TJ=150OC

~

40

80
12
16
20
24
28
IF(AV). AVERAGE FORWARO CURRENT (AMP)

32

FIGURE 7 - CURRENT DERATING

FIGURE 6 - CURRENT DERATING
40r---,----,----,----,----,----,----,---,

115

'I--..

t-....

~ 20

1_--+--_1~~9_:;,c._-,.j''7''''--+

Q

~

f-...

.,

25r----r---4~~~~-~~~~~~----r_--~
20

CAP~CITIVE L6AOS

150

115

120

125
130
135
140
TC. CASE TEMPERATURE (OC)

145

150

PRINTED CIRCUIT BOARD RATING DATA
FIGURE 9 - CURRENT DERATING
40r---.----,----,----,----,----.----,---,

FIGURE 8 - FORWARD POWER DISSIPATION

iii

~ 40r---,---.----r---.----,---"r-"r-~

~

SINE AND SQUARE WAVE
CAPACITIVE LOAD

c

I(PK) = 20 ..d----+--~L-+f7<:.-,.+__7'9

z

~
en
'"
Q
a:

~

30

----r_~'+_~<-j"L---7"t

1iAvi

2.0 1----+-----r'--"---"'......dYy~"f__,~'_+----+_--_j

I

~ 101----+---~~~~'--_4----+_--_+----+_--_j

ROJA = 55°C/W
UNIT MOUNTEO UPRIGHT IN A
PRINTED CIRCUIT BDARD
_+---+---" >;:i!'lIIII..-i-----i
BYTHE LEADS
OL-__
__ ONLY
__ __-L__-L__-L__

~

'"
~
~

~

...

O~~~__~~__~__~____~__~____L-__~
0

10
2.0
3.0
IF(AV). AVERAGE FORWARD CURRENT (AMP)

40

3-213

o

~

~

20

40
60
80
100
120
TA. AMBIENT TEMPERATURE (OC)

~

-L~~

140

160

II

MR2400F thru MR2406F

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 11 - JUNCTION CAPACITANCE

FIGURE 10 - FORWARD RECOVERY TIME
10

7 O~

]

-

w

~

3O -

ffi

20

~

r--

"lli-

5Or--

\-Itr

200
TJ' 25 0C

Ufr

~
o

10
7

'"~

0

~

03

:?

0

II

~

100

z

«

V-

>

o

~

il

~

U

70

;;

50

~

Vfr,ll V

o

5

--

-

'-

TJ,250C

r---

t-

t;

2~
o1
10

~

...... ~
20

;J
50

50
10
20
IF. FORWARO CURRENT (AMPI

20
10

100

SO

20

10

20

50

100

VR, REVERSE VOLTAGE (VOLTSI

FIGURE 13 - NORMALIZED REVERSE CURRENT

FIGURE 12 - TYPICAL REVERSE CURRENT

10 1

F'TJ'150 0C

f=

I-- f--1250C

VR'100V

./

1000C

t::::::

75 0C

2

~

=

c:: 50 0C

1

O

/'

1

7'

r== r= 25'C
100

o

I

I
100

200

300

400

500

600

I

10- 3
20

700

30

40

VR, REVERSE VOLTAGE (VOLTSI

50

60 70 80 90 100 110 120 130 140 150 160
TJ, JUNCTION TEMPERATURE (OCI

TYPICAL MOUNTING DATA
FIGURE 14 - CURRENT DERATING

""-de
""- IX
~

10

!ii5- 90
~

80

"

~
70
=>

~

'"
ffi
::c

50

40

"-

v5,~!~

FIgure 14 shows the current carrYing capabIlity of a
deVIce mounted on a pronted CirCUIt board wIth a typIcal
TO-220 type heatslnk haVing a slnk-to-alr thermal resIstance of 12°C/W AllOWing another 2°C/W for ROJC plus
ROCS (case-to-slnk) puts the total at 14°C/W as indIcated
The unIt and heats Ink were mounted perpendIcular to the
pronted Circuit board for thIS data

20 I(AV)

...... ~ ~

30

t - - t- ROJA = 14°C/W
I
I

20

}10

SINE AND SQUARE WAVE
CAPACITIVE LOADS

10/....-A'./
~"'"
~'"
""'......." ~"
~

"""-.. ~
........

~ 60

'"
'"
~

NOTE 2

RESISTIVE·INDUCTIVE LOADS

~~

...... ~

o

o

20

100
120
40
80
60
TA, AMBIENT TEMPERATURE (DC)

~~
140

160

3-214

MR2400F thru MR2406F

TYPICAL RECOVERED STORED CHARGE DATA
(See Note 3)
FIGURE 15 - TJ = 25°C

FIGURE 16 - TJ = 75°C

0

0

I I

IFM ' 20 A

Y

GL

~ ~ V-

I
5

-,

~E:::='

:~

~ i""' i--"
~

10

~
">w
"
"'w
~

10 A

~

50A

~

\ I OA

"'"

I

50

20

20

10

50

IFM ' 20 A

10

:i'

g

VI--

/

2

00

3.
w

40 A

5

100

40 A
5

/v

/

I

"...

50A

I%"
00 1
10

lOA

~ P,:::: "...
20

I

50

20

10

50

100

dr/d •. IAMP/",!

FIGURE 18 - TJ = 150°C

FIGURE 17 - TJ = 100°C
0

IF~' 20lA

0

I-'
lOA

00 5

dlldt (AMPI.usJ

0

/"':

-0 ? "'"'-/ "

2

Y

I/V

'FM '4J A

0

40 A

5

5

V

~

~

L

2

~~

1

/

v

1

V

I

,/

L

...< /

~Y

f---'IO A
5

L

00 2
10

1\0 A

~~
20

50

10

20

5

'lOA

lOA

/...::;

I
50

I-'

10 A

50 A

1<::2~

><

~ F'

00 1

10

100

dr/dt. IAMP/",!

20

50

20

10

50

dr/d. IAMP/"$)

NOTE 3
Reverse recovery time

IS

the penod which elapses from the

time that the current, thru a previously forward biased rectifier

diode, passes thru zero gOing negatively until the reverse current
recovers to a pomt which IS less than 10% peak reverse current
Reverse recovery time IS a direct function of the forward
current pnor to the application of reverse voltage
For any gIVen rectifier. recovery time IS very CirCUit dependent TYPical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of rondl tlons
usmg IF = lOA. VA = 30 V In order to cover all Circuit
conditions. curves are given for tYPical recovered stored charge
versus commutation dl/dt for vanous levels of forward current

and for Junct,on temperatures of 250 C. 750 C. 100"C. and
15o"C.

'RMIRECI+----'....- -

From stored charge curves versus dl/dt. recovery time h rr )
and peak reverse recovery current UAM(REC)) can be closely
approximated uSing the follOWing formulas

To use these curves. It IS necessary to know the forward
current level Just before commutation. the Circuit commutation
di/dt. and the operating ,unction temperature The reverse recovery test current waveform for all Motorola fast recovery
rectlfittrs IS shown.

3-215

Q

~

trr= 141 x [ -1L
d,/dt

1/2

1/2
JRM(RECI = 1 41 x [ QR x d,/dt]

100

MR2400F thru MR2406F

FIGURE 19 - JEDEC REVERSE RECOVERY CIRCUIT
RI
L1
do/dl ADJUST
T1

II
Rl =50 Ohms
R2 = 250 Ohms
01 = lN4723
02 = IN4001
03 = IN4933
SCRI = MCR729·10
Cl=051050pF
C2 ~ 4000 pF
L1=10-27pH

CI

03

1 2 0 : r J a c TI21
60 Hz
C2

IIPK} ADJUST

+

OUT

02
R2

CATHODE
ANODE

01

L-_+.-.....----<~.....- - 4......-_+....,M....+__...J
CURRENT
VIEWING
RESISTOR

DIM

A

T1 = Variac Adjusts I(PKI and dl/dl

B

T2

C

=I

I

TJ = 1.1 (to trigger Circuit)

D

FIGURE 20 - REVERSE RECOVERY CHARACTERISTIC

F
G
H
J
K
L

N
P

---+

Time

Q

R

MILLIMETERS
MIN
MAX
1422
1588
1067
965
787
721
114
064
152
229
4.32
533
2.92
203
058
074
- 1427
- 3015
5.84
686
2.64
305
373
3.53
508

INCHES
MIN
MAX
0560
0625
0420
0380
0310
0284
0025
0045
0090
0060
0.210
0170
0080
0115
0023
0029
0562
1187
0270
0230
0120
0100
0139
0147
0200

CASE 339-02
PLASl1C
(Meets TO-220AB except dimension "C"I
SOFT RECOVERY

MECHANICAL CHARACTERISTICS
CASE: Plastic Encapsulated, Metal Tabs.
FINISH: All external surfaces are corrosion resistant and are readily solderable.
POLARITY: Cathode to Tab with hole; Reverse polarity available by adding "R" Suffix, MR2402FR.
WEIGHT: 3.6 Grams (Approxlmatelyl.
MOUNTING TORQUE: 8 in-Ibs max.
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 350·C, 3/8" from case for 10 seconds.

3-216

MR2500

MOTOROLA

-

SEMICONDUCTOR

•

Series

TECHNICAL DATA

MEDIUM·CURRENT SILICON RECTIFIERS
MEDIUM-CURRENT
· .. compact, highly efficient silicon rectifiers for medium-current
applications requiring:
•

High Current Surge - 400 Amperes @ T J = 1750 C

•

Peak Performance @ Elevated Temperature - 25 Amperes @
TC= 1500 C

•
•

Low Cost
Compact, Molded Package - For Optimum Efficiency
Case Configuration

In

SILICON RECTIFIERS
50 - 1000 VOLTS
25 AMPERES
DIFFUSED JUNCTION

a Small

• Available With a Single Lead Attached
MAXIMUM RATINGS
MR
CharacteristiC

Peak Repetitive Reverse Voltage

MR

MR

MR

Symbol 2500 2501 2502 250

MR MR MR
2501 2501 2510

Unit

Volts

VAAM
VAWM
VA

50

100

200

400

600

800

1000

Non-Repetitive Peak Reverse
VoJtage (halfwave. single phase,
60 Hz peakl

VASM

60

120

240

480

720

960

1200 Volts

Average Rectified Forward Cu[ren
(Single phase, reSistive load,
60 Hz. TC' 1500 CI

10

Working Peak Reverse Voltage
DC Blockmg Voltage

Non-Repetitive Peak Surge

.

IFSM

..

TJ,Tstg

....

Current (surge applled@rated

..

25

400 (for 1 cycle)

load conditions, half wave,

Single phase, 60 Hz)

Operating and Storage Junction
Temperature Range

-65 to +175

.
..

Amp

Amp

°c

THERMAL CHARACTERISTICS
CharacteristiC

M

Thermal Resistance, Junction to Case
(Smgle Side Cooled)

ELECTRICAL CHARACTERISTICS
Characteristics and Conditions
Maximum Instantaneous Forward Voltage

Symbol

Max

Unit

vF

118

Volts

B

250 C

TC'
TC' lOO oC

F

'"---c=:==r::::: ==t~

"F' 785 Amp. Tr' 250 CI
Maximum Reverse Current (rated de voltage)

l;-h~D----,t----.,::::t+

)JA

'A

100
500

DIM
A

MECHANICAL CHARACTERISTICS
CASE: Transfer Molded PlastIC

B

FINISH: All External Surfaces are Corrosion Resistant and the Contact Areas Readily

D
F
M

Solderable.

POLARITY: Indicated by dot on Cathode SIde
MOUNTING POSITIONS: Any
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 2500 C
WEIGHT: 1.8 Grams (Approximately I

3-217

MILUMETERS
MIN
MAX
8.43
8.69
4.19
4.45
5.54
5.64
5.94
6.25
5° NOM
CASE 193-04
PLASTIC

INCHES
MIN
MAX
0.332
0.342
0.165
0.175
0.218
0.222
0.234
0.246
5° NOM

MR2500 Series

FIGURE 2 - NON-REPETITIVE SURGE CURRENT

FIGURE 1 - FORWARD VOLTAGE
700
~TJ

500

25 0C

V

./

300

~

g;

r---.

~ 200

50

"
I-

30

~

20

~

'"
'"

~

I
10

20

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
+05

50

30
u

20

~ -05

//

~
;:;

0)

~ -1 0

05

8

TYPICAL RANGE,

....".~

..........
-15

02
05

08

10

12

14

15

18

20

22

24

25

05

....

~

Ot'--...

a:

.............

a
...........
" Or-

~~
w

0:---

~

ffi

;; 10

~

:IFM)

I~ I/IAV)

=.

- --

't

130

SINEWAVE
CAPACITIVE I-:(FM) =
IIAV)
LOADS

I
I
CAPACITIVE
LOADS

N.2~"'"

r-t,L -......... ~
r-c- ~ t'::- 0...

- -......::"

-

135

/

2/ -j L5 /

/ / V

~

o
125

/

ISINE WAVE RESISTIVE LOAD)-

:"-..h'I'~~
.......
..... r-... 7'~
j

10
20
50
10
20
50
100
'F, INSTANTANEOUS FORWARD CURRENT (AMP)

140
145
150
155
160
TC, CASE TEMPERATURE IOC)

200

FIGURE 5 - FORWARD POWER DISSIPAT)ON

FIGURE 4 - CURRENT DERATING
0

,/

r-

-20
02

'F, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

~

100

50

I

03

5

20

10

10

1i'a:i

10

50

NUMBER OF CYCLES

~ )0

t;

r"-I'......... 1"-

l--"",,~

LL

~

z

f\..J\

60

I

"

IZ

25 DC

LI

=>

'"=>
~

~

............... .........

I

r--

I

u

'"~

r............
=1750C

TJ

70

5

VRRM MAY BE APPLlEO BETWEEN
EACH CYCLE OF SURGE THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz

......

...............

300

=>

J /

100

-.........

u

i/ . /

I - - - r-TYP1CAL

.............

0:

5 400

MAXIMUM

V

/

200

,.

--

./'

600

........

~

165

,
-

170

175

3-218

/

~

/ / ~V
1// V~ V
-

~

~

~ "'"

/

h

,

V/

~V

"

V
/'

/
de

S~~~~E_ -

~AVE

SINE
__
RESISTIVE LOAD

"""

10
20
30
40
IFIAV), AVERAGE FORWARD CURRENT (AMP)

50

MR2500 Series

FIGURE 6 - THERMAL RESPONSE

~:::;

0
7
5

""o~

~

;'

3

"'u
Z

2

~

I

~

~
ROJCltl = ROJC • ,1.1
NOTE 1

~ 00 7

ffi 005
'" 0 03

I-I--

/'"

~ 002

~

""

~ 00 1
~
005

007

01

02

03

07

10

20

30
50
t.TIMElm,1

70

500

RSI
Pk

05

Ppk
OUTYCYCLE,D~(pltl

t

II

PEAK POWER Ppk. IS peak 01 on

TIME

1---,,-1

300

e~1llv3lentsquarepowerpulse

To determrul! m~J(lmlll1J {ullctwn temperdlllmell tIp

.--

100

70

ATJe: Ppk • ROJC 10' (1

".....

10

FIGURE 7 - CAPACITANCE

--

;'l

detennilledby

3

50

30

I--

The lemperatl.lrl! 01 the Cdse should be medsured uSlIlg d thermocouple p/deed on the case at
the lemperdlure relerclltepOlill (see Ihe outllnedJdwlI1g 011 pdge 1) The thermdl md~~ ~oni1ected
to the Ldse IS nornldliy large el10llgh ~o thdl It 1'0'111 not slglllflcantly respond to heat surges
generolled 111 the lllode~sd re5ul1 of pulsed opera1l0llllilcesteddy stdlecol1dlllOnsareddlieved
Usuig Ihe me,tSlHed vJhle 01 TC the jUllltlUIl lemper0

-

TJ =250 C

,

~ .....

:t
~ 20

'i\
\

iii
;:;

~.;

CURRENT INPUT WAVEFORM
10
80
60
10

J\/'vI ~-;-; II
20

30

50

7.0 10
20
I, FREQUENCY 1kHz)

30

50

70

100

RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE·PHASE HALF·WAVE RECTIFIER CIRCUIT

The rectification efficiency factor a shown In Figure 10 was
calculated U510g the formula

For a square wave Input of amplitude V m • the efficiency factor

bPComes
V2m

V201dc)
Pdc

RL

a = Prms = V20lrms)

el00%=

V201dc)
el00%
V20 1ac ) + V201dc)

2RL
alsquare) = V2m e 100% = 50%

11)

RL

RL

(A full wave

CirCUit

has tWice these efficienCies)

As the frequency of the Input signal IS Increased, the reverse
recovery time of the diode (Figure 91 becomes signitrcant, resultIng In an increaSing ae voltage component across R L which 15
OPPosite In polarrty to the forward current, thereby reducing the
value of the efficiency factor 0, as shown on Figure 10

For a sine wave mput Vm sin (wt) to the diode, assume lossless,
the maXimum theoretical effIciency factor becomes

V2m
n 2 RL
4
alslne)= V2m el00%=-;;2 el00%=406%

13)

It should be emphasIzed that Figure 10 shows waveform
efficiency only; It does not provide a measure of diode losses
Data was obtained by measuring the ae component of Va with a
true rms ac voltmeter and the dc component with a dc voltmeter
The data was used In Equation 1 to obtalO POlOtS for Figure 10

(2)

3-220

MR2500 Series

ASSEMBLY AND SOLDERING INFORMATION

Exceeding these recommended maximums can result In
electrical degradation of the device.

There are two basic areas of consideration for successful
ImplementatIOn of button rectifiers:
1. Mounting and Handling
2. Soldering
each should be carefully examined before attempting a
finished assembly or mounting operation.

SOLDERING
The button rectifier is basically a semiconductor chip
bonded between two nickel-plated copper heat sinks with
an encapsulating material of thermal-setting silicone. The
exposed metal areas are also tin piated to enhance
solderability.
In the soldering process It IS Important that the temperature not exceed 2500 C if device damage is to be
aVOided. Various solder alloys can be used for this operation but two types are recommended for best results:
1. 96.5% tin, 3.5% silver; Melting pomt IS 221 0 C (this
particular eutetlc is used by Motorola for ItS button
rectifier assemblies).
2. 63% tm, 37% lead; Meltmg POint 183 0 C (eutetlc).
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a
flux to assure good wetting of the solder. The type of
flux used depends upon the degree of cleaning to be
accomplished and is a function of the metals involved.
These fluxes range from a mild rosin to a strong acid; e.g.,
Nickel plating OXides are best removed by an aCid base
flux while an activated rosin flux may be sufficient
for tin plated parts.
Smce the button IS relatively light-weight, there IS a
tendency for it to float when the solder becomes liquid.
To prevent bad jomts and misalignment It IS suggested
that a weighting or spring loaded fixture be employed. It
is also Important that severe thermal shock (either heating
or cooling) be avoided as It may lead to damage of the die
or encapsulant of the part.

MOUNTING AND HANDLING
The button rectifier lends Itself to a multitude of
assembly arrangements but one key consideration must
a/ways be included:
One Side of the Connections to
the Button Must Be Flexible!
Strain Relief Terminal
for Button Rectifier

This stress relief to the button ~Copper
should also be chosen for maxl....~
Terminal
mum contact area to afford the
Button
best heat transfer - but not at
- /
the expense of flexibility. For an
'""" ~~~:t
annealed copper terminal a thick·
Sink
ness of 0.015" IS suggested.
Matedal)
The base heat sink may be of vanous materials whose
shape and size are a function of the Individual application
and the heat transfer requirements.
Common
Materials
Advantages and Disadvantages
Steel
Low Cost; relatively low heat conductiVity
Copper
High Cost; high heat conductiVity
Aluminum Medium Cost; medium heat conductivity
Relatively expensive to plate and not all
platers can process aluminum.
Handling of the button dUring assembly must be
relatively gentle to minimize sharp Impact shocks and
aVOid nicking of the plastic. Improperly designed automatic
handling equipment IS the worst source of unnecessary
shocks. Techniques for vacuum handling and spring loadIng should be investigated.
The mechanical stress limits for the button diode are
as follows:
Compression 321bs.
1423 Newton
TenSion
321bs.
142.3 Newton
Torsion
6-lnch Ibs. 0.68 Newton-meters
Shear
551bs.
244.7 Newton

Button holding fixtures for use dUring soldering may be
of various materials. Stainless steel has a longer use life
while black anodized alum mum IS less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will mfluence the choice of materials. Fixture
dimenSion tolerances for locatmg the button must allow
for expansion dUring soldering as well as allowmg for
button clearance.
HEATING TECHNIQUES
The following four heating methods have their advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt Furnaces readily handle large or small volumes
and are adaptable to establishment of "on-line"
assembly smce a van able belt speed sets the run
rate. IndiVidual furnace zone controls make ·excellent
temperature control pOSSible.

MECHANICAL STRESS
Compression

J!ff

;;

2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the heatsmk is indexed to various loading-heating-coolingunloadmg positions. This is the most economical
labor method of soldering large volumes. Flame
soldering offers good temperature control but requires sophisticated temperature monitOring systems
such as infrared.

Shear

3-221

MR2500 Series

ASSEMBLY AND SOLDERING INFORMATION (continued I

1. Peeling or plating separatIon IS generally seen when
a button IS broken away for solder inspectIon. If
heatsonk or terminal base metal IS present the
platong IS poor and must be corrected.
2. Th,n plating allows the solder to penetrate through
to the base metal and can gIve a poor connectIon.
A suggested minomum platong th Ickness IS 300
mlcrolnches.
3. Contamonated soldenng surfaces may out·gas and
cause non,wettlng resultong on VOIds on the solder
connectIon. The exact cause IS not al ways readIly
apparent and can be because of
(a) Improper platong
(b) mishandling of parts
(c) Improper and/or excesSIve storage tIme

3. Ovens are good for batch soldering and are produc·
tion limited. There are handling problems because
of slow cooling. Response time IS load dependent,
being a function of the watt rating of the oven and
the mass of parts. Large ovens may not give an
acceptable temperature gradient. Capital cost IS low
compared to belt. furnaces and flame soldenng.
4. Hot Plates are good for soldenng small quantities of
prototype devices. Temperature control IS fair With
overshoot common because of the exposed heating
surface. Solder flow and positioning can be cor·
rected dunng soldering since the assembly IS exposed.
Investment cost is very low.
Regardless of the heating method used, a soldenng
profile giving the tlme·temperature relationship of the
particular method must be determined to assure proper
soldering. Profiling must be performed on a scheduled
basis to minImize poor soldenng. The time-temperature
relatIonship WIll change depending on the heating meth·
od used.

SOLDER PROCESS EVALUATION
CharacteristIcs to look for when setting up the solder·
Ing process:
I Overtemperature is indIcated by anyone or all three
of the foil oWing observatIons.
1. Remelting of the solder Inside the button rectIfier
shows the temperature has exceeded 285 0 C and IS
noted by "islands" of shinY solder and solder
dewettlng when a unot IS broken apart.
2. Cracked dIe inSIde the button may be observed by a
moving reverse OSCIlloscope trace when pressure is
applIed to the unot.
3. Cracked plastic may be caused by thermal shock as
well as overtemperature so cooling rate should
also be checked.
" Cold soldering gives a graIny appearance and solder
build·up without a smooth continuous solder fillet. The
temperature must be adjusted until the proper solder
fIllet is obtained WIthin the maximum temperature
lImits.
III Incomplete solder fillets result from insufficient solder
or parts not makIng proper contact.
IV Tilted buttons can cause a void in the solder between
the heatsink and button rectifier whIch will result In
poor heat transfer during operation. An eight degree
tilt is a suggested maximum value.
V Plating problems require a knowledge of platIng
operations for complete understanding of observed
deficiencies.

SOLDER PROCESS MONITORING
Continuous monotonng of the soldenng process must
be established to minomlze potentIal problems All parts
used on the soldenng operatIon should be sampled on a lot
by lot baSIS by assembly of a controlled sample. Evaluate
the control sample bv break·apart tests to view the solder
conneCtions, by phySIcal strength tests and by dl menSlonal
characteristics for part mating
A shear test IS a suggested way of testong the solder
bond strength.

POST SOLDERING OPERATION CONSIDERATIONS
After soldenng, the completed assembly must be un·
loaded, washed and onspected.
Unloading must be done carefully to aVOId unnecessary
stress. Assembly fixtures should be cooled to room
temperature so solder profiles are not affected.
Washing IS mandatory If an aCid flux is used because
of ItS IOniC and corrOSIve nature. Wash the assembl,es
on agitated hot water and detergent for three to five
monutes. After washing; nnse, blow off excessive water
and bake 30 minutes at 1 50 0 C to remove trapped
mOIsture.

Inspection should be both electncal and phYSIcal. Any
rejects can be reworked as reqUired.
SUMMARY
The Button Rectifier IS an excellent buildong block for
specialized applicatIons. The prime example of ItS use is
the output bridge of the automative alternator where
millions are used each year. Although the matenal pre·
sented here is not all inclusive, primary conSIderations for
use are presented. For further information, contact the
nearest Motorola Sales Office or franchISed dlstnbutor.

3-222

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MR2535L
MR2540L

Advance Information

Overvoltage
Transient Suppressors
· .. designed for applications requiring a low voltage rectifier with reverse avalanche
characteristics for use as reverse power transient suppressors. Developed to suppress
transients in the automotive system, these devices operate 10 the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic
equipment from overvoltage conditions.
•
o
•
•
o

Avalanche Voltage 24 to 32 Volts
High Power Capability
Economical
Increased Capacity by Parallel Operation
Replaces MR2520U2525L

MECHANICAL CHARACTERISTICS:
CASE: Transfer Molded Plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350"C 3/8" from case
for 10 seconds at 5 Ibs. tension
FINISH: All external surfaces are corrosion-reSistant, leads are readily solderable
POLARITY: Indicated by diode symbol or cathode band
WEIGHT: 2.5 Grams (approx.)

MEDIUM CURRENT
OVERVOLTAGE
TRANSIENT
SUPPRESSORS

/
CASE 194-01
MR2540L
CASE 194-04
MR2535L

MAXIMUM RATINGS
Rating
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Repetitive Peak Reverse Surge Current
MR2535L
MR2540L
(Time Constant = 10 ms, Duty Cycle'" 1%, TC = 25"C) (See Figure 1)

Symbol

Value

Unit

VRRM
VRWM
VR

20

Volts

Amps

IRSM
110
150

Average Rectified Forward Current
(Single Phase, ReSistive Load, 60 Hz, TC = 150"C)
MR2535L
MR2540L

Amps

10
35
50

Non-Repetitive Peak Surge Current
Surge Supplied at Rated Load Conditions
Hallwave, Smgle Phase
MR2535L
MR2540L

Amps

IFSM
600
800

Operating and Storage Junction Temperature Range

TJ, Tstg

-65to +175

Symbol

Max

Unit

R9JL

7.5
10
13

"CIW

R9JC

08'

"CIW

"C

THERMAL CHARACTERISTICS
Lead
Length

Characteristic
Thermal ReSistance, Junction to Lead (jV Both Leads to Heat Smk,
Equal Length
Thermal ReSistance Junction to Case

1/4"
3/8"
112"

*Typlcal
This document contams mformatlon on a new product SpecIfIcatIons and information herem are subject to change without notice

3-223

MR2535L, MR2540L

ELECTRICAL CHARACTERISTICS
Symbol

Min

Max

Unit

Instantaneous Forward Voltage (1)
(IF = lOa Amps, TC = 25'C)

Characteristic

vF

-

1.1

Volts

Reverse Current
(VR = 20 Vdc, TC = 25'C)

IR

-

200

nAdc

Breakdown Voltage (1)
(lR = lOa mAdc, TC = 25'C)

V(BR)

24

32

Volts

Breakdown Voltage (1) MR2535L only
(lR = 90 Amp, TC = 150'C, PW = 80 /Ls)

V(BR)

-

40

Volts

Breakdown Voltage Temperature Coefficient

V(BR)TC

-

0096*

%/OC

VFTC

-

2*

mVI'C

Forward Voltage Temperature Coefficient @ IF = 10 mA
(1) Pulse Test' Pulse WIdth

:!E;;

300 IJ.S, Duty Cycle ,:s:; 2%

* Typical

IRRM(EXP)~
IRRM(EXPI

2

__
I
I
I

10

20

30

I
40

50

60

(TIME IN msl

Figure 1. Surge Current Characteristics

OUTLINE DIMENSIONS

DIM
A
B
D
K

MILLIMETERS
MIN
MAX
1003
1029
594
625
127
135
2515
2565

INCHES
MIN
MAX
0395
0405
0234
0246
0050
0053
0990
1010

CASE 194-01
MR2540L

DIM
A
B

D

K
STYLE 1
PIN 1 CATHODE
2 ANODE
NOTE
1 CATHODE SYMBOL ON PKG

3-224

MILLIMETERS
MIN
MAX
B43
B69
594
625
127
135
2515
2565

INCHES
MIN
MAX
0332
0342
0234
0246
0050
0053
0990
1010

CASE 194-04
MR2535L

MR500S MRSOIO
MR5020 MR5030.
MR5040

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

INDUSTRIAL PRESSFIT
SILICON POWER RECTIFIERS

SILICON
POWER RECTIFIERS

designed for use In all medlum·current applications or for higher
current Industnal alternators and chassIs mounted power supply
rectifiers.

50·400 VOLTS
50 AMPERE

= 150 0 C

•

50 Amp @TC

•

600 Amp Surge Capability

•

Reverse Polarity Available

•

Rugged Construction

MAXIMUM RATINGS
Rating

MR5005 MR5010 MRS020 MR5030 MR5040

Svmbol

Pf'ak Repet1tlvP Reverse Voltagp
Working Peak Reverse Voltage
DC 8lm.klng Voltage

VRRM

Non RppetltlVE' Peak Reverse Voltage
R MS R ev(!rsc Voltage

50

toO

200

VRSM

75

150

VAIAMS

35

70

Ivolts

250

400

450

Volts

140

2to

280

Volts

VR

10

(Single phase, reSIStive load,
-=

400

VAWM

Average Rectified Forward Current

TC

Unit

300

150°C

Nan·R epetltlve Peak Surge Current

'FSM

(Surge applied at rated load
conditions)

Operatmg and Storage
Junction Temperature Range

.
.

.

50

.
.

bOO

TJ,T stg

Amp

-65 to +195

Amp

°c
STYLE 2:
TERM 1. ANODE
2. CATHODE

THERMAL CHARACTERISTICS

I

Characteristic

Thermal ReSistance, Junction to Case

I

Symbol

Max

I

08

Min

Typ

ROJC

I

I

UnIt

°cm

ELECTRICAL CHARACTERISTICS

Characteristic

Symbol

I nstantaneous Forward Voltage
('F = 157 Amp, TJ = 25°C)
('F = 50 Arnp, T = 25°C)

vF

Reverse Current (rated de voltage)

IR

(TC
(TC

= 25 0 CI
= 1500 CI

Max

lInlt
Volts

-

110
095

1.18
100

-

005
10

02
2.0

rnA

-

NOTES
1 50 TP) STRAIGHT KNURL
2 POLARITY, INK MARKED ON PACKAGE.

MECHANICAL CHARACTERISTICS
CASE

Welded

her~etlcally

sealed construction

FINISH: All external surfaces corrOSion reSistant, termmals readily solerable
WEIGHT: 9 grams (approx.1

POLAR lTV: Cathode connected to case (reverse polarity available denoted
by SuffiX R. I.e

MR5030R)

DIM
A
8
C
D
E

H

MOUNTING POSITION: Any

J
K

MILUMETERS
MIN
MAX
1549
1626
1273
1283
508
6.35

246

262

203
508

483
635
3.56
1524

-

INCHES
MIN
MAX
0610
0640
0501
0505
0200
0250
0097
0103
0.080
0190
0250
0200
0140
0600
-

CASE 43-04
METAL

3-225

MR5005, MR5010, MR5020, MR5030, MR5040

FIGURE 1 - CURRENT DERATING
ii:

80

~

"

/IIPK)IIAY) orr

'...."

5 70
362
60 I---

50

ao 50

0

10

~ 30

20

~

>
«

a:

LOADS

I

~ 50
~

""'r\.

180

'"~

w

40

~
>

30

to

.;;
.
E

30
40
50
20
60
IF(AV), AVERAGE FORWARD CURRENT (AMP)

600
",.,.- ~

ii:

# v

300

" 400
~

~

200

100

J'1

"~

~

0
0

TJ - 175°th 25°C

~;:

a:

~
~

~

«
....
z
«
i;;

--

04

06

08

TJ

'"

30 0

20 0

-' 15 0
«

'"
'"
~

I I

0

I I

I"

~

I

0

0
'" 7
~ 50
02

a

I

0

'"

~

10

12

14

16

18

70

20

22

1000=

=

I

195°C

II

VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
OF SURGE

I.........

'I"-

i'-.,

nI· nI

......

i'-. .........

1 CYCLE

I II

60
10

20

50 70 10
20
30
NUMBER OF CYCLES AT 60 Hz

30

VF,INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

50

FIGURE 5 - THERMAL RESPONSE

10
07
5

Recommended procedures for mounting are as follows

I
7

Drill a hole

Break the hole edge as shown to provide

3

ZeJCltI" ReJC r(t!

2

In

the heat sink 0499

The depth and Width of the break should be 0 010 lOch
malelmum to retam maIClmum heat Sink surface contact

4

To prevent damage to tha rectifier durtng press In, tha
pressing force should be applied only on the shoulder rmg
of the rectifier case as shown
5 The pressing force should be applied evenly about the
shoulder ring to avoid tilting or cantmg of the rectifier case
In the hole during the press In operation Also, the use of a
thermallubncant such as D C 340 Will be of considerable aid

,/

~

TYPICAL THERMAL
RESISTANCE CASE

roSINK~c~=02C/W

00 1
02

05 1 0

20

50

± 0001 mch In diameter
a gUide IOta the

1
2

hole and prevent sheanngoff the knurled side of the rect.fun

V

3

10 20
50 100 200
t,TIMElms)

80

FIGURE 4 - MAXIMUM NON· REPETITIVE SURGE CAPABILITY

500

ao

a:

20

200

FIGURE 3 - MAXIMUM FORWARD VOLTAGE

a:-

50

~ 60

~~

140
160
TC, CASE TEMPERATURE 1°C)

+--+---

..

I

120

IIPK)·. 11"RESISTIVELOAOj
IIAV) 36213" RESISTIVE LOAD)
5,10,20 (CAPACITIVE LOAOS)_

80

~ 70
~

~ ~~

20

100

~

!;;: 90
l!;.

d.,

."
-

51~} CAPACITIVE

~ 0

I

...........

0

5-1
0«

I

"'......" ~ ~:\.

«

ffi

I'\.

I

:IPK) • rr (I., RESISTIVE LOAD)
IAV)
362
RESISTIVE LOAD)

,~ '\

a:

~

J

FIGURE 2 - FORWARD POWER DISSIPATION

_ 100

500 10k 20 k

SHOULOERRING

/

1-

I

5~1

Y

OINOM

NOM

_'=7::H,,'-'1:":5"'' ' ' ;&=''

-I

1-

049S± 0001 DIA

HEAT SINK MOUNTING

3-226

-11~

505,/'

=~ OIA
;4

_I

I

~

70

100

-

MRS060
MRS061

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

AVALANCHE RECTIFIERS
LEAD-MOUNTED
AVALANCHE RECTIFIERS

subminiature size. aXial lead-mounted recuf,ers for generalpurpose. low-power applications requiring avalanche protection
• Avalanche power capability
-

200-400-600 VOLTS

1000 Watts at 20 I-'s
450 Watts at 100 I-'S

1.5 AMPS

It Low Forward Voltage

•

Low Cost

MAXIMUM RATINGS
Symbol

MRS060

MRS061

Untt

Peak Repetltlve Reverc;e Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

400

600

Volts

Nonrepetltlve Peak Reverse Voltage
(Hallwave. Single Phase. 60 Hz)

VRSM

525

800

Volts

VR(RMS)

280

420

Volts

Ratmg

RMS Reverse Voltage
Average Rectified Forward Current
(Single Phase. Resistive Load,
60 Hz. TL 0 70 o e.
112" From Body)

10

15

Nonrepetltlve Peak Surge Current

'FSM

50 (for 1 cycle)

Amp

TJ. Tstg

-65 to +175

°e

PRM

1000

Watts

Amp

(Surge Applied at Rated Load
Conditions)
Junction & Storage
Temperature Range
Nonrepetltlve Peak
Reverse Surge Power
(t 0 20 I-'s)

K

L='i

i
K

ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Instantaneous Forward Voltage

(11

0

1 5 Amp. TJ

0

Reverse Current
(Rated de Voltage)

o

Symbol

Typ

Max

Unit

VF

093

104

Volts

'R

250
30

300
50

/lA

Symbol

Typ

Max

25°C)
TJ= 150°C
TJ = 25°C

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Lead
114"
1/2"

Unit

NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC
0041 OUTliNE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN "F"
D)MENSION.

°C/W

ROJL
21
31

38
50

MECHANICAL CHARACTERISTICS
CASE: VOid free, transfer molded plastiC
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES.
240°C, 1/8" from case for 10 seconds at 5 Ibs tenSion
FINISH. All external surfaces are corroslOn·reslstant, leads are readily
solderable
POLARITY Cathode indicated by color band
WEIGHT.
40 grams (approximately)

a

3-227

DIM
A
B
D
K

MILUMETERS
MIN
MAX
5.97
660
2.79
305
0.76
0.86
27.94
-

INCHES
MIN
MAX
0.235
0.260
0.110
0.120
0030
0.034
1.100

-

CASE 59-04
PLASTIC
DimenSions Within JEDEC 00·15 Outline

MR5060, MR5061

FIGURE 2 - MAXIMUM NON-REPETITIVE
AVALANCHE SURGE POWER

FIGURE 1 - FORWARD VOLTAGE
0

V

0

1m
5110

0
0
0

/ Maximum
TVPlCal

0
5

3
TJ = 25°C

2
I

1
7

5

5
3

3
0.6

0.7

0.8

0.9

1.0

1.1

12

1.3

2

15

14

00'

FIGURE 3 - POWER DISSIPATION
0

/

0

V

Capacitive Loads

--~=5

o

IAV

1~"-

20)

V

/

/'

L
V

./

V

~ 20

Resistive load_

c
~ 16

il'

"''"
>

TJ=170oC

25

20

15

r-...
~

r--...

....... .....

I L ,IIIB "
~3/B"
'"'S
1/2"
/'

-<

-...(.,

"-

.....

t'\..;J :::--. i::"-- :::..... :::-.....
'\. ,\. I"'" ~ :--:::::

'"5; 0 4
'" o
~

...........

"

.........

"-

--..;;:: ;:;. .:::::; I::-...

,\.\5/B"
\.~ 3/4"
"71B"

08

30

RESISTIVEilNDUCTIVE _
LOADS BOTH LEADS _
TO HEAT SINK WITH
LENGTHS SHOWN

.........

r--::: :::--. ::t- :--

~ 12

~

10

2B

:l!

;: 24

~

'pk= rr- r-'AV

/ / [,0V

O~ ~05

0:

/'

/'

fV V V

//. ~ V

FIGURE 4 - EFFECT OF LEAD LENGTHS. RESISTIVE LOAD

/

/

/ /
1/ / V

)0

10
0
I. HALF·SINEWAVE PULSE OURATION (m,)

vF. INSTANTANEOUS FORWARD VOLTAGE (VOLTSI

"'"

~ ~ ~ ........
~ ~t'-~

"""'"

70
90
110
130
TL. LEAD TEMPERATURE lOCI

50

'FIAV). AVERAGE FORWARO CURRENT lAMPS)

I"IIlI.

150

NOTE 1
FIGURE 5 - PRINTED CIRCUIT BOARD
MOUNTING. VARIOUS LOADS

u;;

0

~ESIJTlVE~'NO~CTI~E _ r--

~

'";:::z

16

~

'"
...,

:0

c

12

'"

'"
~
~ 08

ffi'"
:it

04

Data shown for thermdl re~sldllce JUIiLtlUlllu ambient (OJA) for the
mountmgs shown IS 10 be used as typIcal gUIdeline values tor prel,minary
engineering or In case the tie pOint temperature cannot be measured
TYPICAL VALUES FOR 0JA IN STILL AIR

/ I(PKlilIAVI'" LOADS

.........

r-.....
I'-.......
I'--

I-- I -

....... ~
...........

~O

!

14

CAPACITIVE
LOADS

90

110

MOUNTING METHOD 1

~

~

~

"""~ I!!!!t..

130

11121

1'1
81

40

r-:::: i::::;: 8:::

R9JA ~ 55 0 C/W
~ '- ISEE NOTE 11
§'
o ~J L
50
70
30

1181114
65

r-..... ........ I/, 20
I'-- ......~ t:-.....
r- ......... ?"-- ....... R t--..

- ...........

LEAD LENGTH L UNI

M~EUT~~~G

150

,
170

TL. LEAO TEMPERATURE lOCI

3-228

314

R8JA

82

92'

91

101

erw
°etw
°e/W

MOUNTING METHOD 3
PC Boardwnh
11/2"xl112"coppersurface
L' 3/8"

'""~'""""""' ~ ]

~

• ._.S:I=
Plane

170

•

MURI0S
MUR110
MUR115
MUR120
MUR130
MUR140

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

GI

~I

0

MUR150
MUR160
MUR170
MUR180
MUR190
MURII00

ULTRAFAST
RECTIFIERS

SWITCHMODE POWER RECTIFIERS
... designed for use in switching power supplies. inverters and
as free wheeling diodes. these state-of-the-art devices have the
following features:

1.0 AMPERE
50-1000 VOLTS

o Ultrafast 25. 50 and 75 Nanosecond Recovery Times
" 175°C Operating Junction Temperature
" Low Forward Voltage
" Low Leakage Current
" High Temperature Glass Passivated Junction
" Reverse Voltage to 1000 Volts

CASE 59-04
PLASTIC

MAXIMUM RATINGS
MUR
Symbol

105 110 115 120 130 140 150 160 170 180 190 1100 Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

Average Rectified Forward Current (Square Wave
Mounting Method #3 Per Note 1)

IF(AV)

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions. halfwave.
single phase. 60 Hz)

'FSM

Rating

Operating Junction Temperature and
Storage Temperature

100 150 200 300 400 500 600 700 800 900 1000 Volts

1.0@TA=
130"C

1.0@TA = 120"C

1.0 @TA = 95°C

35

-65 to

TJ. Tstg

Amps
Amps

+ 175

·C

THERMAL CHARACTERISTICS
Maximum Thermal Resistance. Junction to Ambient

.C/W

See Note 1

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (1)
(iF=1.0Amp. TJ=150·C)
(iF=1.0 Amp. TJ=25·C)

vF

Maximum Instantsneous Reverse Current (1)
(Rated de Voltage. TJ=150·C)
(Rated de Voltage. TJ = 25°C)

iR

Maximum Reverse Recovery TIme
(IF= 1.0 Amp. dildt=50 Amp/j.

c

I

'"

:::>

5l
z

!?

~

50

~
~ 4.0
~ 3.0

I

I

I

0.01
0.3

~

I

j

0.7

0.9
1,1
1.3
1.5
1.7
1.9
vF INSTANTANEOUS VOLTAGE (VOLTS)

FIGURE 9 -

~

2.1

Squar......
Wive r--.."""

1.0

o

o

23

50

~

"

100
150
TA. AMBIENT TEMPERATURE

FIGURE 10 -

POWER DISSIPATION

TJ

~

175'C

200

250

TYPICAL CAPACITANCE

\

o

~

10
9.0

)0----.3. 0

~_ 2.o-

w

~ 0

............ .........de

20

~
:z 4. 0

~

"""

~

5.0

1.0

............
I-- ..........

~ 20

II I
0.5

f-:-

~

I

II

0.02

~:il:

Rated V~
ROJA ~ 50'C/W

,

~

0.03

~

800

:::>

0.05

ii)

600

FIGURE 8 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)

I

II I

~
:z 0.1
~
~ 0.07

-

--

/ /I

0.2

17 25'

I

I

0.3

~~

100'C=

4.0 for lower voltage selectiOns can be estImated Irom ;......
2.0 these same curves If VR IS suffiCiently below r!!V
:::>
1.0
u
w
0.4
a:
'"
0.2
V
0.1
.sF 0.04
0.02
0.008
0.004
100
200
300
400
500
o
VR. REVERSE VOLTAGE (VOLTS)

0.7

S

175'C.::

TJ

deVlcemthevoltagegroupmg TYPical reverse current

I-

I II I

1.0

TYPICAL REVERSE CURRENT"

400
200
100
40
20
10 ·ThecuNes shown are typical orthehrgheslvollage

10

./'

./ V . /
0/1/ V ~ V

IpK
(CapacItive Load) I

~

20

~

;:;:; 7.0
~ 6.0
5.0

de

0.5
1.0
1.5
2.0
IF(AV). AVERAGE FORWARD CURRENT (AMPS)

"-

5
~

./. ~ ~ p
~~~
~p
o

~ 251c

~8.0

'if>.",,~\e

.,/""

TJ

'-

40

<.i 3.0

"

........

r--....

--I-

2.5

3-231

o

-

I-- t--

2.0

10

20
30
VR. REVERSE VOLTAGE IVOLTS)

40

50

MUR105 Series

FIGURE 11 - TYPICAL FORWARD VOLTAGE

FIGURE 12 - TYPICAL REVERSE CURRENT'

10
/

800
400

/

'1

/

/

!Z
~

~ I-l00'C
V V-- 1--25'C

~

~

1/1 /
I

a:

u

~ 7.0

ffi

I

I I

9.0

~

r

L L

L

FIGURE 4 -

0:

=

FIGURE 3 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)

I I

0.2

~

25°C=

VR. REVERSE VOLTAGE (VOLTS)

I
I

!?

a

w

;::: S.O
z

0.7

S

//

TJ = 175°C_

'" 1.0
@

O. 1
0.2

=

I II

0:

~

loo°C=
*Thecurves shown are typical for the highest voltage

II I /

~

i

175°C-

d8V1celOthevoltagegroupmg TYPlcalrever58CUrrent
for lower voltage selections can be esllmated ftom
these same curves If VR IS sufficiently below rated VR

L

5.0

a

TJ

1 ~:~

30

15g§

TYPICAL REVERSE CURRENT·

I'--.

<>30

20
8.0

3-235

o

10

r--

25!C

-

20
30
VR. REVERSE VOLTAGE (VOLTS)

40

50

MUR405 Series

MUR420, 430, 440, 450 AND 460

FIGURE 7 - TYPICAL REVERSE CURRENT·

FIGURE 6 - TYPICAL FORWARD VOLTAGE

20

/; '/

10
7.0

I

S.O

TJ = 175°C
2.0

::;;

:$
I-

~
0:

-,

1.0

h'
/ /
rT7 7

2SOC

~

'The curves shown are typical for the highest voltage

~

l00"C

2SoC-=

~rvlr:~r'~~~~g~r:~g~gc!~:':=:i:~~

./

these same curves If VR IS suffiCiently below raled VR

-1"

0

100

200

300

400

SOO

60

80

VR. REVERSE VOLTAGE VOLTS

::>
c..>

0.7

Q

0:

~

o.S

!2

FIGURE 8 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 11

I IT -,

'"

I

I

::>

@ 0.3
:z

;5
z

;5 0.2

10

I I

le

II

~

~

I I

'"~
!f-

0.1

O.OS
0.03
0.02

Rated VR
R8JA = 2SoCIW

~ 8,0
::>

~ 6.0
0:

~

0.07

0:

~ 4.0

-

I--f-

w

~~

I I

I II

t--....

i"1~

Squar.... ~

2.0

lfO

0.7

0.91.113

lS

o

17192123

SO

FIGURE 9 -

~~

30

Q

~
~

ICapacitive

./

./ . /
./

./

/
7
AV// r7 V

Load)~ = 20

w

~

~

~

~ ~

5; 2.0

if

de

0~

~

~ 10
U S.O

"7

~

U

'"

~

g

",

~

o u

M

M

~

2S0

\

~ 20

/ / r.// . /

4.0

200

:\

./

./
10

B.O
6.0

./

~O

~ 10

~

40

SquareWav~

12

is

"

lS0

FIGURE 10 - TYPICAL CAPACITANCE

POWER DISSIPATION

14

100

TA. AMBIENT TEMPERATURE (oC)

vF. INSTANTANEOUS VOLTAGE (VOLTS)

-

~

fave

~

I I

0.30.S

...

175°C:::l

100"/:=

~

7

II I

-TJ

1

I

7 '--

3.0

~

400
200
80
40
20
S.O
I4.0
2.0
::>
c..> 0.80
w
0.40
'"0: 0.20
O.OS
$ 0.04
0.02
O.OOS
0.004

//,

~

~

w

IFIAV). AVERAGE FORWARD CURRENT

3-236

7.0
6.0
S.O
4.0

o

10

TJ = 2SoC

"'-"-

I--

20

30

VR. REVERSE VOLTAGE (VOLTS)

40

50

MUR405 Series
MUR470, 480, 490, 4100
FIGURE 11 - TYPICAL FORWARD VOLTAGE

20

~

TJ = 17S'C
10

,,; 7-

r

FIGURE 12 - TYPICAL REVERSE CURRENT"

1000

2S'C

400

200
100

l00'C
~

7.0
S.O

I

3.0

II

~

1.0

a'"

0.7

I

u

0.1
..,0.04
- 0.02
O.OOS
0.004
0.002
0.001 0

LL

o.S

'The curves shown are typical for the highest voltage-

device In the voltage groupmg TYPical reverse eurrent::
for lower YOltage selectJons can beestlmatedfromthese:'"
samB curves If VR "sufficiently below raled VR

100

I I

~ 0.3
:i'l
z
~ 0.2

~

II
I II I
I I

~
;;;

!? O. 1

'"

~
~

'"
~

~

6.0

4.0

----- ...... ,
..........

2.0

SO

0.20.40.60.81.01.21.4161820
vF, INSTANTANEOUS VOLTAGE (VOLTS)

70
60
50

TJ - 17S'C

~
_
~ 4.0
~ 3.0
~ 2.0
1.0

1

(capacitive) ~ = 20
Load
IAV . / .......::: / '

....-:: ~ ~ ::,.....-~~ ~

0~

o

V

~

2.0
3.0
4.0
IF(AV), AVERAGE FORWARD CURRENT

20

~

~
200

2S0

5.0

3-237

10
9.0
8.0
7.0

TJ = 2S'C

"'-"

U

V

~

1.0

........

100
150
TA, AMBIENT TEMPERATURE

\\

g

10

'" S.o

~

\

~ 30

./' 0~
~
/. V V ,.- ~

~ 6.0

s::

~40

S

~ 7.0

de

FIGURE 15 - TYPICAL CAPACITANCE

RGURE 14 - POWER DISSIPATION

9.0

i'.....

Squ;;o--...
W,ve

j

I

~ 8.0
~

900 1000

Rated VR
R8JA = 28'em

~

10

~

800

10

~ 8.0

O.OS

o

300 400 SOO 600 700
VR, REVERSE VOLTAGE (VOLTS)

~

0.07

0.03

200

FIGURE 13 - CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)

L L

!2

0.02

2S'C

~

/ /

i

100'C

10

1.0
~ 0.4
~ 0.2

I

/, /

2.0

17S'C

g§ 4.0
=> 2.0

I

I

TJ

o

10

I'--.

--

roo-

20
30
VR, REVERSE VOLTAGE (VOLTS)

......
40

50

MUR405 Series

NOTE 1 -

AMBIENT MOUNTING DATA
MECHANICAL CHARACTERISTICS
Case: Transfer Molded Plastic
Finish: External Leads are Plated, Leads are
readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
MaXimum Lead Temperature for Soldering
Purposes:
300'C, 1/8" from case for 10 s

Data shown for thermal resistance junctlon-toambient (RflJA) for the mountings shown is to be used
as typical guideline values for preliminary engineering
or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR RWA IN STILL AIR
MOUNTING
METHOD

~RflJA

LEAD LENGTH, L (IN)
1/8

1/4

1/2

3/4

UNITS

50
58

51

53
61

55

'elW

63

'CIW
'CIW

59
28

OUTLINE DIMENSIONS

MOUNTING METHOD 1
P.C. Board Where Available Copper
Surface area is small.

MOUNTING METHOD 2
Vector Push-In Terminals T-28
STYLE 1
PIN 1 CATHODE
1 ANODE
NOTES.
1 DIMENSIONING & TOlERANCING PER
ANSI Y14 5, 1981
1 CONTROLLING DIMENSION. INCH

MOUNTING METHOD 3
P.C. Board with
1-1/2" x 1-112" Copper Surface

(kL=

DIM
A
B
0
K

1/2"

~]IY:

MILUMETERS
MIN
MAX
940
965
483
533
122
132
2540
-

INCHES
MIN
MAX
0370 0380
0190 0210
0048
0052

'000

CASE 267-03
PLASTIC

Board Ground Plane

3-238

MUR60SCT
MUR610CT
MUR61SCT
MUR620CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

ULTRAFAST
RECTIFIERS
6 AMPERES
50-200 VOLTS

SWITCHMODE POWER RECTIFIERS
... designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
o Ultrafast 35 Nanosecond Recovery Time

o 175°C Operating Junction Temperature
o Popular TO-220 Package

CASE 221A-04
TO-220AB
PLASTIC

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR) TC
130'C

Per Diode
Total Device

Symbol

MUR605CT

MUR610CT

MUR615CT

MUR620CT

Unit

VRRM
VRWM
VR

50

100

150

200

Volts

IF(AV)

Peak Repetitive Forward Current Per Diode Leg
(Rated VR. Square Wave, 20 kHz) TC = 130'C

IFRM

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)

IFSM

Operating Junction Temperature and
Storage Temperature

3.0
6.0

Amps

6.0

Amps

~

Amps
75

TJ, TSf9

-65 to

'C

+ 175

THERMAL CHARACTERISTICS PER DIODE LEG
Rating
Thermal Resistance, Junction to Case

Typical

Maximum

5.0-6.0

7.0

0.80
0.94

0.895
0.975

2.0-10
0.01-3.0

250
5.0

20-30

35

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Instantaneous Forward Voltage (1)
(iF = 3.0 Amp, TC = 150'C)
!IF = 3.0 Amp, TC = 25'C)

vF

Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 150'C)
(Rated de Voltage, TC = 25'C)

'R

Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/,,")

trr

(1) Pulse Test Pulse Width

=

Volts

jJA

300 ~s. Duty Cycle os;; 2.0%.

3-239

ns

MUR605CT, MUR610CT, MUR615CT, MUR620
FIGURE 1 - TYPICAL FORWARD VOLTAGE

RGURE 2 - TYPICAL REVERSE CURRENT

~ 10

100
40
20
10
4.0
.... 2.0

~ 1.0

'Z

5.0

~

3.0

~

r'
u

V/

/

/

I

~ 03

TJ = 115°C II

t; 0.2

I
150°C+ ~/

~

... 0.1

/

02

0.4

17

II
O.B

1.0

100°C

"'.. 002
JF 0.01
0.004
0.002
0.001 0

/25°C

100°C
0.6

150°C

1.0
§ 04
~ 02
~ 0.1
~ 0,04

I

/ /

1.2

~

40

~

K'

Raled VR Applied

:;;

1.0

~

'Z

~ 6.0

:; 5.0

Square Wave

l2
~

3.0

i

"~

~

~

~ 20

S:

g1.0

o

120

100

I

140
TC. CASE TEMPERATURE (OC)

160

V

~

~

~

4--R6JA = 16°CiW w,lh
a typical TO·220 heal slnk"de

""-'\.

Square Wave

ao

~

(...-

00
00 ~ m ~
VR. REVERSE VOLTAGE (VOLTS)

6.0

lie 5.0

~

~ 4.0
'"

7.0

ffi

~ "de

:::>

-

RGURE 4 - TOTAL DEVICE CURRENT DERATING, AMBIENT

FIGURE 3 - TOTAL DEVICE CURRENT DERATING, CASE
:;;

25°C

-

OF. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

ie 8.0

115°C

ifi

0.5

z

TJ

1

/ / 1/ 1/

O

f2 1.0
gp.1

S

/

~

,

w

'"~
~

4.0
3.0

-- -- ...

'\.
'\.

de

...
2.0 r- Square Wale

S: 1.0

~

--

'"

- -R8JA = 6O'CiW

r - - i--ifree air. no heal sink)

I
~

180

40

"
'\.

...... ......

-

...

'\.\.
~
~

00
80
m m ~
T,. AMBIENTTEMPERATURE (OC)

I\.

I'-~

~

~.~

RGURE 5 - POWER DISSIPATION

_ B.O

i

/

1.0
z
~ 6.0

SquareWavV

/ V//

~ 5.0
o

V/ V

~ 4.0
~

3.0

~

2.0

~

S: 1.0
~

~

0

./

./de

//V

P
l /1.0

// V

V

2.0
3.0
4.0
5.0
6.0
IF(AV). AVG FORWARD CURRENT (AMPS)

7.0

B.O

smES.
~N

1 ANODE
, e.THODE
3 ANODE
.... 4 CAnlODE

NOTES
1 DIMENSIONING AND TOLERANCING PER ANSI
Y145M,1982
2 CONTROWNG DIMENSION INCH
3 DIM ZDERNES AZONE WHERE All BODY AND
LEAD IRREGUlARITIES ARE AllOWED

CASE 221A-04
TO-220AB
PLASTIC

3-240

DIM
A
B

e

0
F
G
H
J
K
L
N
Q

R
S
T
U

v
Z

MlLUMernos
MIN
MAX
1448 1515
966 1028
407
482
088
064
361
3J3
242
266
393
280
036
1270

115
483
254
204
115
597
000
115

055
14V
139

533
304
279
139
647
127

204

INCIIES
MAX

MIN
0570

'380
0160

0025

0142
0095
0110
0014

0500
0045
0190
0100
01l8O
004'
0235
0000
0045

.620

.""
0190
003'

0147
0105
0155
0022
0662
0055
0210
0120

0',0
0055
0255
0050
0060

MUR80S
MUR810
MUR8lS
MUR820
MUR830
MUR840

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

.1

•

•

SWITCHMODE POWER RECTIFIERS

MUR8S0
MUR860
MUR870
MUR880
MUR890
MUR8100

ULTRAFAST
RECTIFIERS

· .. designed for use in switching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:

8 AMPERES
50-1000 VOLTS

• Ultrafast 25, 50 ijnd 75 Nanosecond Recovery Time
• 175°C Operating Junction Temperature
o Popular TO-220 Package
o Epoxy meets UL94, Vo @ Va"
o Low Forward Voltage
o Low Leakage Current
o High Temperature Glass Passivated Junction
o Reverse Voltage to 1000 Volts

CASE 2218-01
TO-220AC
PLASTIC

MAXIMUM RATINGS
MUR
Rating

Svmbol

805

810

815

820

830

840

850

860

870

880

890

8100

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

150

200

300

400

500

600

700

800

900

1000

Volts

Average Rectified Forward Current
Total Device. (Rated VR). TC ~ 150°C

IFIAV)

80

Amps

IFM

16

Amps

IFSM

100

Amps

TJ. T stg

- 65 to + 175

°c

Peak Repetitive Forward Current
(Rated VR. Square Wave. 20 kHz),
TC ~ 150°C
Nonrepetltlve Peak Surge Current
(Surge applied at rated load conditions
halfwave. single phase. 60 Hz)
Operating Junction Temperature and
Storage Temperature

THERMAL CHARACTERISTICS
20

30

MaXimum Thermal ReSistance, Junction
to Case

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward
Voltage (1)
(IF ~ 8.0 Amp. TC ~ 150°C)
(IF ~ 8.0 Amp. TC ~ 25°C)

VF

MaXimum Instantaneous Reverse
Current (1)
(Rated de Voltage. TC ~ 150°C)
(Rated de Voltage. TC ~ 25°C)

'R

Maximum Reverse Recovery Time
(IF ~ 1.0 Amp. d,ldt ~ 50 Ampl!'s)
(IF ~ 0.5 Amp. 'R ~ 1.0 Amp.
IREC = 0.25 Amp)

trr

(1) Pulse Test Pulse Width

=<

300

~s.

Duty Cycle

~

Volts
0895
0975

100
130

120
150

15
1.8

250
50

500
10

500
10

500
25

pA

ns
35

60

100

25

50

75

2 0%.

3-241

•

MUR805 Series
MUR805, 810 AND 815
FIGURE 1 -

FIGURE 2 -

TYPICAL FORWARD VOLTAGE

TYPICAL REVERSE CURRENT"

100
'The curves shown are typical for the highest voltage
device In the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from:
these same curves if VR is sufficiently below rated VR.

70
1.0K

50

400

30

ie

5

I-

5.0

~

3.0

/

/

llO

.!f-

ffi

a:;

a:
$

I

/

/

2.0

/ I

z
~
z

~

w

en

TJ="75'C /

/ 100'C / 25'C

I

0.1

ie

90
80

0.2

0.4

0.6

20

40

SO

I

~

40

'"

30

w

i

~

ia

10

. so

~ 80

~

0.8

1.0

~

I

'"
ffi

40

>

-- --

"" ""-""'-

Square Wave

I
20

40

"'-

200

t'--.""'-

~

20
10
140

in

i
z

c
;:::

in
en
C
a:

150
ISO
TC. CASE TEMPERATURE ('C)

~

~

90

ffi;;:

~
~

SO
50

~

~

180 200

3-242

0

./

V.,-i-"

20

SID

ISO

180

V ./
Square Wave /' /"
V /" de
V V

~ 40

SO
80 100 120 140
TA. AMBIENT TEMPERATURE ('C)

"

TJ= 175'C

80

'" 30

....

170

10

w

I'::

--- -:: -- - """" """
-- -de

"': 20 t - - Square Wave

Io o

""

180

FIGURE 5 - POWER DISSIPATION

1._I -

I - _SquareWa~ ~

~

ISO

''''''-de

;:: 70

""

140

CURRENT DERATING. CASE

50

1.2

-ROJA" 16'C/W
- - - RRJA" SO°C/w- l INo Heat Sink) . - I -

'"

120

./

l'-.."

FIGURE 4 - CURRENT DERATING. AMBIENT

~

100

.,-

J;;

14

~
5 12 I - ~

80

I--'

nated VA Applied

VF.INSTANTANEOUS VOLTAGE (VOLTS)

in

60

,""-.,

70

:::>
u

c

I

/

25'C

o

5
~
a:
a:

/ I
I 1
II I

-

-

0.4
0.2
0.1
0.04
0.02

FIGURE 3 -

0.7

0.2

100'C

10

I-

0.3

-

I=TJ 175'C

I

I

::;

/

=

VR. REVERSE VOLTAGE (VOLTS)

1.0

0.5

200
100
40
20
10
4.0
2.0
1.0

om

/ !/ 7



Z

l:i:::>

/ / /

10

~
a:
a:
:::>
u
a:
~

I-

7/ 7
17;
r7

20

::;

1

v/ V

~

p-

"'/'

/~

o

10

20 30 40
50 SO 70 80
IFlAV). AVERAGE FORWARD CURRENT (AMPS)

90

10

MUR805 Series

MUR820. 830 AND 840
FIGURE 6 - TYPICAL FORWARD VOLTAGE

FIGURE 7 - TYPICAL REVERSE CURRENT'

100
'The curves shown are typICal for the highest voltage
deVICe In the voltage grouping. Typical reverse current
for lower voltage selections can be estimated from
these curves If VR IS suffiCiently below rated VR.

70
10K
400
200
100
>40
20
:>
10
u

50

,/

./

20

ie

:E

j

./

30

/

V

/

V/

10

V

V

w

ffi

/v

~

15

7.0

:>
u

50

~

3.0

IE

a:

f2

/

'"@

:>

z
;:0;
z
;:0;

'"
~
!f-

:1

20

L

0.02
001

V

~

~

c

/

/ :/
/ / /
I

0.2

0.1

0.6

0.4

70

~

50

f2

40

j
1.0

1.2

1.4

16

~

a:
u
ca:

==

10

~
~

10

150
160
TC, CASE TEMPERATURE ('C)

'"ffi

4.0 ~
::-:- ~c.

-

~

~

jj::

'- Square
Wave

o

r-....

-Square
) - - - Wave

o

0

w

~

"u;

9.0
80

I'-..
........

........

6.0

~

50

w

-- -- -- ";;.,.-- 0...
--...
m m
50

~

V
Square
wavy

./

4.0

./

'"

j

~

~

"

180

/
TJ=175'C

;';!; 3.0
~ 2.0

"-':

50

~

a:

.......

,--

-

2.0

z

10

~ 7.0

l"--..
"1--.. I'-..

6.0

w

«

~~

~dc

~

B.O

170

FIGURE 10 - POWER DISSIPATION

R~A=16JCNI ____ RtlJA=60'CNI(No Heat Sink) -

~
a:
f2

~

Square Wave

CURRENT DERATING. AMBIENT

12

:>

~

"" '""- "- r--,."\.

140

I

>-

~

",,"\

60

~ 20

O.B

~

"-de

~ 30

ie

:E

~

Rated VR Apphed

1""-.

w

14
!5

~

90

80

vF, INSTANTANEOUS VOLTAGE (VOLTS)

FIGURE 9 -

~

FIGURE 8 - CURRENT DERATING. CASE

~
a:
:>
u

/

0.3

~

",...

10

!z

I

m

50

. / 25'C t---

VR, REVERSE VOLTAGE (VOLTS)

0.7
0.5

o

100'CI 25'C

/

/ :/

1.0

0.04

/

/

V

TJ-175'j

-

0.2
01

1/

/

c

loo'C,_

-

4.0
2.0
10

.5 0.4

!5
>-

TJ 175'C
150'C-

i

~

~

1.0

/ ' ::.----

~

..,pF"'"
u

/

/

3-243

/

7~

:/

V

w

u

~

M

MUM

IF{AV), AVERAGE FORWARD CURRENT (AMPS)

TA, AMBIENT TEMPERATURE ('C)

/
/

M

W

MUR805 Series
MUR850 AND 860
FIGURE 12 - TYPICAL REVERSE CURRENT"

FIGURE 11 - TYPICAL FORWARD VOLTAGE
100

I-- f- deVice In the voltage grouping. TYPical reverse current f--

for lower voltage selections can be estimated from
F= 1=
t these same curves If VR IS suffICiently below rated VR. 1==

1.0K

50
TJ=I50'C
0

100'C

V

/ /

0

1 ~~
~
'"
a

0

/

V

/

II

200

I

fe

~

Z

~

I

0.2

:::>
'"
u
'"

I I

0

I

/ V

1:/

90

Rated VA Appl,.d

80

"-

/

0.8

1.0

1.2

1.6

1.4

1.8

w

...'"ffi

30

~

10

.i?

"'" ~
'"

Square Walle

20

140

150

vF INSTANTANEOUS VOLTAGE (VOLTS)

~
'"

:::>

~

'"~
'"f2
~

9.0

~c

7.0

6.0
5.0

Square
e

- - wr

3.0

--

dc

--:=1-7""-

-Squa;;-

) - - I- Wi"

a
o

~

M

"
.........

4.0

iii

I R~A=16lcw_
--__ RBJA = SO'CW
(No Heat Sink) -

I

,""'"'h.

8.0

~ 2.0
~ 1.0
B='

~

60

Ii:

~

z

Q

~
~
i5

..........

-- "-60

160
TCo CASE TEMPERATURE ('CI

14
13
12
11

~

w

""".. '-......
m

~

~

'"

180

B.O

./

W

~

./

5.0

/'

o u

/"

....-

TJ= 175'C

....-::::~

u

u

u

~

M

~

IF(AV). AVERAGE FORWARD CURRENT (AMPS)

3-244

/"

/dc-

7'

/'

_ 1.0
~ 0 ~

TA. AMBIENT TEMPERATURE ('C)

-'

//

~ 3.0
~ 2.0

~

,/

"7

I

~ 4.0

~

170

Square
Wave/,

10
9.0

~ 6.0

..........
............ ['...
:::.

~

1

ffi 7.0

:::

~'"~

FIGURE 15 - POWER DISSIPATION

FIGURE 14 - CURRENT DERATING, AMBIENT
10

,,,
~,

50
40

~

0.6

70
60

~

f2

I

I

O. 1
0.4

600

500

300
MO
VR. REVERSE VOLTAGE (VOLTS)

I-

I

25'C

FIGURE 13 - CURRENT DERATING. CASE

0.7

0.3

-

I--

10

.!!-

0.5

.-

i.--

J

II /
/ J

l00'C

~ 2.0
'" 1.0
~ 0.4
0.2
0.1
0.04
0.02
0.01
100

25'C

/

V

/ /

0

-

10

-

l5O'C

TJ

40
~

m 4.0

0

/

~

~

MO

t? :5

V V v-' /'
4v /

0

~
~
I-

r==

~ f:: 'The curves shown are typical for the highest voltage

0

1
M

~

M

W

MUR805 Series

MUR870, 880, 890 AND 8100
FIGURE 16 - TYPICAL FORWARD VOLTAGE

FIGURE 17 - TYPICAL REVERSE CURRENT"

100

=
== ~

F
-

t- 'The curves shown are tYPical for the highest voltage

-

70.0
lK
400
200
100

50.0
30.0

,/

20.0

V
/

/

10.0

V

/

J

30

a:

TJ = 17S'C
20

1/ 100,cV

II

:::>
'"

'"
~

",.

200

ac 60
a:

i

~

II /

I

0.2

/

II

I
II

i?

40

16

18

B.O

70

........

ac 60 t-- t---..

150

140

~
~

'"~

~

5.0

t--

3.0

20

=

dc

Square

~
~1.
0- ware

o
o

20

8i

40

L

ffi 70

~ 6.0

t'--...

~

---- - ---- f-_

V
Square /
Wave,L

90

]'.,

L

~ 50

;;: 2.0
:$ 10

-=--.. . ~

60
80
100
120 140 160
TA, AMBIENT TEMPERATURE I'C)

/'

40
~ 30

~

~

180

200

3-245

0

180

L

B 8.0

t'--..."-

"

170

POWER DISSIPATION

~ 10

f'...
I"-..

4.0

160
TC, CASE TEMPERATURE I'C)

~

S

r-....

Square .............
Wave

'\

'"

o

FIGURE 20 -

--ROJA = 60'C,wINo Heal Sink) -

dc

r--

'\.. ['-..

u> 14
13
~ 12
15 11

~OJA 116'~-

~ 90

g§

lK

~

FIGURE 19 - CURRENT DERATING, AMBIENT
~ 10

s:

~

Square"
Wave

50

30
;:;: 20
;;;
10

0.8
10
1.2
1.4
'F INSTANTANEOUS VOLTAGE IVOLTS)

06

800

Raled VR
Apphed'-

"- ~dc

~

/ /

0.4

400
600
VR, REVERSE VOLTAGE IVOLTS)

~

70

I

I

25'C

10

~a:1- B.O

03

0.1

--

-t'"

~
::E 90
:$

0.7
0.5

~

FIGURE 18 - CURRENT DERATING, CASE

_

z

;"!

100'C
~

o

V

/

-

t"""

150'C

I--"'

25'Cj

v

5

175'C

..--

i~

a

V

I

II

I

fil

z

;"! 1.0

for lower voltage selections can be estimated from
Ihese same curves If VR is sufficiently below raled VR.

TJ

10
40
2.0
~ 10
g;! 0.40
~ 020
E: 0 10
004
002
0.0 1

1/

V

:::>

ifi'

~a:

J

/

50

!!§
u
c

1

/

/

i'L 7.0
::E
:$

....
z

V

~ deVIce," Ihe vollage grouping. TYPical reverse currenl

/'

L

/
/'

l-":

Ldc

j..<'"
TJ

= 17S·C

-

",.,-

~

#"

/"
o 10

20 30
40
5.0 60 7.0
80
IFIAV), AVERAGE FORWARD CURRENT lAMPS)

9.0

10

MUR805 Series

c

~

'i'

FIGURE 21 - THERMAL RESPONSE

0
D

:;;

gj 0 5

0.5

~

~

10.1

;'!: 02

l$l

f.-- I-

:l' 0 1

;;t
:;;
ffi 005
....<=
z

~ 002

z

~oo1
~

--

~

~

I-- '::::

--I-"

v

V

tnn..

0.01
V

V

V

0.01

0.05

0.1

IITT

II II

II II
0.02

pulse tram shown

-~1f-1
read lime al T1
12-'
Duty Cycle, D = 11n2 TJlpkl - TC = Plpkl ZruclII

~ingle Pulse

V

ZruCIII = rill RruC
RruC = 1.5 'CIW Max
Dcurve, apply for power

Plpkl

0.2

0.5

2.0

1.0

t. TIME Im,l

10

5.0

20

50

100

500

200

FIGURE 22 - TYPICAL CAPACITANCE

1.0K

300

-

I-

1"--

l"- i--

- - - - -MUR820 Ihru MUR860
MUR805 thru MUR815
MUR870 thru MUR8100
TJ = Z5'C

-

- ...........

10L-~-L~~~~LU~-L-L

1.0

10

__L-L-LL~~
100

VR, REVERSE VOLTAGE (VOlTSj

FIGURE 23 - OUTLINE DIMENSIONS

STYLE 1
PIN 1. CATHODE
2. NIA
3 ANODE
4 CATHODE

DIM
A
C

o
G
K
Q

CASE 221 B·01
TO·220AC
PLASTIC

3-246

R
S

T
U

MILLIMETERS
MIN
MAX
15 II
1575
965
10 29
4.06
482
0.64
089
361
373
483
533
279
330
036
0.56
1270
1427
1.14
127
2.54
304
2.04
279
114
139
597
6.48
0.76
127

INCHES

MIN
0595
0380
0160
a025
0142
0.190
OlIO
0014
0.500
0045
0100
0080
0045
0.235
0030

MAX
0620
0.405
0.190
0035
0.147
0210
0130
0022
0562
0050
0120
0110
0.055
0255
0.050

lK

MUR1505
MUR1510
MUR1515
MUR1520

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR1530
MUR1540
MUR1550
MUR1560

•

•
ULTRAFAST
RECTIFIERS
SWITCHMODE POWER RECTIFIERS
15 AMPERES
50-600 VOLTS

... designed for use in sWitching power supplies, inverters and
as free wheeling diodes, these state-of-the-art devices have the
following features:
o Ultrafast 35 and 60 Nanosecond Recovery Time
o 175'C Operating Junction Temperature
.. Popular TO-220 Package
.. High Voltage Capability to 600 Volts
o Low Forward Drop
o Low Leakage Specified @ 150'C Case Temperature
o Current Derating Specified @ Both Case and Ambient
Temperatures

CASE 221 B-Ol
TO·220AC
PLASTIC

MAXIMUM RATINGS
MUR
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current (Rated VR)

Symbol
VRRM
VRWM
VR
IF(AV)

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz)

IFRM

Nonrepetitlve Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)

IFSM

Operating Junction Temperature and
Storage Temperature

1505

1510

1515

1520

1530

1540

1550

1560

Unit

50

100

150

200

300

400

500

600

Volts

15
@TC= 150'C

15
@TC = 145'C

30
@TC = 150'C

Amps
30
@TC = 145'C

200

TJ, Tstg

150

Amps

Amps

-65to +175

'c

1.5

'crw

THERMAL CHARACTERISTICS
Maximum Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS
MaXimum Instantaneous Forward Voltage (1)
(iF = 15 Amp, TC = 150'C)
(IF = 15 Amp, TC = 25'C)

vF

MaXimum Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 150'C)
(Rated de Voltage, TC = 25'C)

'R

MaXimum Reverse Recovery Time
!IF = 1.0 Amp, d,/dt = 50 Amp//LS)

trr

(1) Pulse Test Pulse Width

=

Volts
0.85
105

I

1.12
1.25

1.20
1.50

JJA

500
10

1000
10

35

60

I

300 JLS. Duty Cycle!$: 20%

3-247

ns

MUR1505 thru MUR1560
MUR1505. 1510. and 1515

FIGURE 1 -

FIGURE 2 - TYPICAL REVERSE CURRENT"

TYPICAL FORWARD VOLTAGE

100

100
1500C

TJ

/ . /l00"~t
25'C

1/

50

J

30

20

J

II

J

II

V /

J/

2.0
1.0
:Jl
0.5
0:
<.>

~

II

$

o. 5

0.05
0.02
001

I

...~

1/

~

I

~

w
<.:>

~
>

I

/ I

I

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T2
10
8.0

~

60

~

40

;;:

100

120

140

160

12

"'-l'(

10

Square wave"'80

",\

50

"\

40

Rated Voltage Apploed

~

"\

150

160

170

TC. CASE TEMPERATURE 1°C)

FIGURE 5 - POWER DISSIPATION

. .~
. . ....--+_---j,,,.. . ReJA = T5°C/W As Obtaln'~_
SquareW~.,..."'
.......... ........
From A Small TO·220 _
........ "'<
He .. Sink
'-.f:"o
t----+-de.+---+-__I---ft-..:,:,,0.~,---+---+-__I___1
..... ~

~~

/'.

........100.

~ 20 r--ReJA _ 80 0 C/W....
IF O~-L
f-- As __
Obtllnld In Frll Air. No Ho .. SInk 1-----='F"''''.l...
'Ir
......- l - - l
~~__~__~~__L-~I~~u-~

o

20

40

60

200

~ '\de

I-- ..... d•

Squlr~ WI..

180

I,

14

13
51

3l

80

........

140

FIGURE 4 - CURRENT DERATING. AMBIENT

iiiac

60

........

...
;;- 20
;

VF.INSTANTANEOUS VOLTAGE IVOLTS)

~

40

FIGURE 3 - CURRENT DERATING. CASE

u;- 16
~ 14

:i!

I I

20

VR. REVERSE VOLTAGE IVOLTS)

I...

II

O.1 /
0.2

...~

o

*The curves shown are typical for the highest voltage deVice In the
voltage grouping TYPical reverse current for lower voltage selections
can be estimated from these same curves If VR IS suffiCiently below
rated VR

I I

o. 3

o.2

0.2
01

/

I II

===

:::>

II III

0

25'C

g§

I

I

t=

z

V /

I
0

100'C

1... 5.010

II 'I /

20

150'C~

TJ

50

80

TOO

120

140

160

180 200

TA. AMBIENT TEMPERATURE 1°C)

IFIAV). AVERAGE FORWARO CURRENT (AMPS I

3-248

180

MUR1505 thru MUR1560
MUR1520, 1530, 1540

FIGURE 6 - TYPICAL FORWARD VOLTAGE

FIGURE 7 - TYPICAL REVERSE CURRENT'

100

100

'1

50
TJ = 150'C

30

II II

~

t:l

0.2
O. I
- 0.05

/

0.02
0.0 1

o

I I

::::>
'"
@

1.0

II

II II
II

03

o. 2

I

o1
0.2

I II

~

~

~

~

/

!

I
a

I

,"
" ","

14

......

12

squar.w••~

~

II

~

......
~

6.0

'\

~ 4.0

0.6
0.8
1.0
1.2
YF. INSTANTANEOUS VOLTAGE IVOLTS)

1.4

1.6

Rated Voltage Applied

S;;

FIGURE 9 - CURRENT DERATING. AMBIENT

150

160

a'"

B.O

~

6.0

c

de
.........
J-Square Waye I"--. .........

"

RflJA = 16'CIW
as obtamed from

/

.

'"'"
~

'"

180

FIGURE 10 - POWER DISSIPATION
'" 16 r---,--.--r----.---,---~=::;o;_-_,

Square Way
RflJA = 6O'CIW

~
s;; 0 As obtained m free air. no heat smk

w

~

~ 12
~

t--

_

~ 10r--~--r---hf_~f_~~~~~-~-~

I--

ffi 8.0 J--+---jrr-t'-t--r--,.!'----",f<---t--+---t

......

de

~

_ t-_

c

..........

4.0

2. 0

VI ~:~~:n:O.220

.........,.

f2
~

170

~ 14t----i----r---t---~--_r~_j~

~ 12
::;;
:5
10

~

0
140

14

~

~

"" L'" [\.'\

10

'"

~ 80

TC CASE TEMPERATURE 1°C)

I-

~

de

~ 20

0.4

~

FIGURE 8 - CURRENT DERATING, CASE
~ 16

I

I

~

rated VR.

I

... 0.5

~

-The CUNes shown are typical for the highest voltage device In the
voltage grouping. TYPical reverse current for lower voltage selections
can be estimated from these same curves if VR is sufficiently be/ow

J

II

II

50

VR. REVERSE VOLTAGE IVOLTS)

I

~ 20

25'~

 1.0
u


~

""f'..."-

'<

:; 6.0

i

5.0

f2 4.0

:!I
i'i! 3.0
~ 2.0
~1.0
1>-

o

RJ. = le2cw Illobtai~ -

de

~

~

SquareWava "';:>$

ReJA=N

~
~

""'-"

t:---.

~

~

~

r-...."\,.

'"

t::.-....

"'"'"m

~

~

~

~

~

"

~~

~

~

~

0
140

...........

~

~

...........

" ,"

Square

'{
wav~" "-

"\ ~

'0

Rated Voltage Appliad

150
1~
Tc;. CASE TEMPERATURE ('C)

~

TAo AMBIENT TEMPERATURE ('C)

3-250

,

~

170

RGURE 15 - POWER DISSIPAnON

-

fnlm 1"",11 JO.220
Heat Sink
-

Aa obtained in Iree lir, no hilt sink
~

8.0

! 4.0

10

if
~
~ 9.0

10

~ 6.0

0.8
0.8
1.0
1.2
1.4
Yf' INSTANTANEOUS VOLTAGE (VOLTS)

OA

14

Q

II

~

16

i

II

I I

~

FIGURE 13 - CURRENT DERATING. CASE

I

0.3

~

rated VR.

1

I I

~

-The curves shown are typical for the highest voltage deVice In the
voltage grouping. TVPlcal reverse current for lower voltage selections
can be estimated from these eame curves If VA IS suffiCiently below

1/

I

0.5

~

VR. REVERSE VOLTAGE (VOLTS)

// /
! I II
.~

2S'C

~

/

1/ /

100'C

~

1

/

lSO'C

i

t/ Krc

V 14
/v V /
V

TJ

160

MUR1505 thru MUR1560

c

FIGURE 16 -

~

10

~

0.5

~
;;;.

D

tl
~ 0.2

~
~

ffi 0.05

i=

I;Z

m0.02 V,......

~OO 1

'E

-

0.5

001

--

.,.,...-

f-';..

f.to5
001

::::P(pkl

tJUl

005

01

zruc(t) '" r(I)Rrue

Awe = 15 bCfN Max
o curves spplV for power

jWlsalramsl'lown
read time atT,

~~

Sln9/' ~ulse

IJil
0.02

---

----V -

0.',

,......

0.1

THERMAL RESPONSE

DutyCycle,D = '1112

II Jl
0.2

1020

05

5.0

10

TJ(pU - TC '" P(pklZ6JC(t)

I I
20

IIII
50

100

200

I. TIMElmsl

FIGURE 11- TYPICAL CAPACITANCE

lK

500

:--0

-

TJ

25°C

I""- I--

0

0

1~':-D-'--2""D-.J.......-'-5""D...':-.1...w..J..1D-.J.......J,2D--'--"-J,5D-'--J,...L..1UOD
VR. REVERSE VOLTAGE IVOLTSI

FIGURE 18 -

OUTL1NE DIMENSIONS

DIM
STYLE 1
PIN 1
2
3
4

A
CATHODE
N/A
ANODE
CATHODE

C
D
G
H

K

a
R
CASE 2218-01
TO-220AC
PLASTIC

3-251

T

u

MILUMETERS
MIN
MAX
1511
1575
965
1029
406
482
064
089
361
373
483
533
279
330
036
056
1270
1427
114
127
254
304
204
279
114
139
597
648
076
127

INCHES

MIN
MAX
0595
0620
0380
0405
01600190
0025
0035
0.147
0142
0190
0210
0130
0110
0014
0022
0500
0562
0045
0050
0.100
0120
0080
0110
0045
0055
0.235
0255
0030
0.050

500

lK

MUR160SCT
MUR1610CT
MUR161SCT
MUR1620CT

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

~I

MUR1630CT
MURl640CT
MUR16S0CT
MUR1660CT

•
ULTRAFAST
RECTIFIERS
BAMPERES
50-600 VOLTS

SWITCHMODE POWER RECTIFIERS
· •• designed for use in switching power supplies, inverlers and
as free wheeling diodes, these state-of-the-arl devices have the
following features:
• Ultrafast 35 and 60 Nanosecond Recovery Times
• 175'C Operating Junction Temperature
• Popular TO-220 Package
• Epoxy meets UL94, Vo @

'Is"

• High Temperature Glass Passivated Junction
• High Voltage Capability to 600 Volts
• Low Leakage Specified @ 150'C Case Temperature
• Current Derating @ Both Case and Ambient Temperatures
CASE 221A-04
TO-22DAB
PLASTIC

MAXIMUM RATINGS
MUR
Rating

Symbol 1605CT 1610CT 1615CT 1620CT 1630CT 1640CT 1650CT 1660CT Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
Total Device, (Rated VR), TC = 150'C

VRRM
VRWM
VR
Per Leg
Total Device

50

100

150

200

300

400

500

600

Volts

IF(AV)

B.O
16

Amps

Peak Repetitive Forward Current
Per DIode Leg
(Rated VR, Square Wave, 20 kHz), TC = 150'C

IFM

16

Amps

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions hallwave,
single phase, 60 Hz)

IFSM

100

Amps

Operating Junction Temperature and
Storage Temperature

-65 to

TJ, Tstg

+ 175

'c

THERMAL CHARACTERISTICS, PER DIODE LEG
Maximum Thermal Resistance, Junction to Case

3.0

'cm

2.0

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)
(iF=8.0 Amp, TC= 150'C)
liF=8.0 Amp, TC=25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage, TC= 150'C)
(Rated dc Voltage, TC=25'C)

iR

Maximum Reverse Recovery TIme
(IF= 1.0 Amp, di/dt=50 Amp/,..)
(IF=0.5 Amp, iR=I.0 Amp,IREc=0.25 Amp)

trr

Volts
0.895
0.975

1.00
1.30

1.20
1.50

250
5.0

500
10

500
10

pA

ns
35
25

11IPuIse Test: Pulse W,dth =300 ,.., Duty Cycle "'2.0%

3-252

60
50

•

MUR1605CT thru MUR1660CT

MUR1605CT, 1610CT AND 1615CT
FIGURE 2 - TYPICAL REVERSE CURRENT. PER LEG'

FIGURE 1 - TYPICAL FORWARD VOLTAGE. PER LEG
100

'The curves shown are typical for the highest voltage
device in the voltage grouping. Tvpical reverse current
for lower voltage selections can be estimated from
these same curves if VR is sufflcientlv below rated VR.

70
1.0K

50

400

20

~

::;;

5
I-

1

V/ /

30

1/

// /

40
20
10

/;

~

~

/ / /

10

0:

:::>
u

I

5.0

0:

3.0

:::>
'"
53

2.0

'"~

1.0

1.0

-

25'C

o

~

I
/100'C /

@90

25'C

~

/

L /

i""'-

0.4

0.2

60

40

w

30

~

I

0.6

!i:

'"~
~

I I

/

Square Wave

~

"': 1 0
0.8

5

14

I-

~
0:

- r---..

1.0

1.2

-

10

=>
'-'
co 80
0:

'"~

~

~

140

150
160
TC. CASE TEMPERATURE (DC)

FIGURE 5 -

.........

"'" I'-..

f-- -SquareW~

fi? 6.0

~ 40

de

- -- --

~

"': 20 I - -

~

Square Wave

"'"

o

20

40

<
3::

90

;;; 80

.-.......
-.......i'..

0:

50

Square Wave

~

40

V
,,/

ffi
:it

~
~

180

200

E 0 ./
o 10

3-253

/de

V

~

20

~ I0

~

.... ..

,,/

V /'"
/'

/ ....... V

w

'" 30

160

180

V

~ 70

!i:

60
80
100 120 140
TA. AMBIENT TEMPERATURE IOC)

"

TJ = 175'C

co

co

SF 0

170

POWER DISSIPATION, PER LEG

iii 60

-:: -- - -- -"....

~

~ 10

-

ROJA 16O C)W---ROJA = 60°C/W(No H.atslnk)
-

~

i',,"-

20

FIGURE 4 - CURRENT DERATING. AMBIENT. PER LEG

12

~

,,,
"""'" ""'''

VF. INSTANTANEOUS VOLTAGE (VOLTS)

~

W

",",e

0:

I

~

Rated VR Appll.d

80

is 50

/

II

0.2

~

10

~

I

m m

M

FIGURE 3 - CURRENT DERATING CASE. PER LEG

I

co 70

0.3

./

VR. REVERSE VOLTAGE (VOLTS)

'"~z

0.5

:;

~

40

.....

-

l00'C

2.0

0.04
0.02
0.01

/

0.7

0.1

4.0

I

I
TJ=175'C /

!f-

I

/

175'C

r-

0.2
0.1

II / II

~
0:
l2

z
~
z
~

I

/

C

-

1== f=TJ

Ji:. 0.4

7.0

~
0:

~:

=

~

~

2 0 30 40
50
60
70 80
IFIAV). AVERAGE FORWARD CURRENT (AMPS)

90

10

MUR1605CT thru MUR1660CT

MUR1620CT, 1630CT AND 1640CT
FIGURE 7 - TYPICAL REVERSE CURRENT, PER LEG"

FIGURE 6 - TYPICAL FORWARD VOLTAGE, PER LEG
100

'The curves shown are typical for the highest voltage
devrce in the voltage grouprng. Typrcal reverse current
for lower voltage selectrons can be estrmated from =
these curves rf VR is sufficiently below rated VR.

70
1.0K
400

50

....

30
20

V

/

ie
::;;

V
l/ ./
/

/

10

1 ~~~

..../
,/

I-

7.0

:::>
u

5.0

~

~

TJ = 175''1



.~ R~A = 16'cm
---- ROJA = 6O'CIW

I

12

~

~

20

FIGURE 9 - CURRENT DERATING, AMBIENT, PER LEG

ie
::;;

",,,
Square Wave

vF, INSTANTANEOUS VOLTAGE (VOLTS)

14

500

Rated VR Applred

70

~;;;

~

0.6

450

Nc

~ 40

/ / /

0.1

400

CURRENT DERATING, CASE:PER LEG

90

""

I

I

ISO 200 250 300 350
VR, REVERSE VOLTAGE (VOLTS)

100

~ 80

I

0.3

.....

10

z

0.5

50

FIGURE 8 -

/

/ II

1.0

-

U,01

:::>

2.0
5l
z

25'C

=

1# 0.4

/

/

II

3.0

10
4.0

~ ~:~

/V

/

0

a;

i3
w
~

~

l!!a;

TJ 175'C
15O'C-

I-

~
_ 40
20

~

TA, AMBIENT TEMPERATURE ('C)

0

TJ

=

175'C

I'
Square -,
Wav"/"

./ / '
./
./' :/"

~

/

/

V

~4

/'

V

~
1.0

2.0

3.0

40

50

60

70

8.0

IFIAVI, AVERAGE FORWARD CURRENT (AMPS)

3-254

/

V

9.0

10

MUR1605CT thru MUR1660CT

MUR1650CT AND 1660CT
FIGURE 12 - TYPICAL REVERSE CURRENT, PER LEG"

FIGURE 11 - TYPICAL FORWARD VOLTAGE, PER LEG

100

~ ~ 'The curves shown are typical lor the highest voltage I - I - - e- deVICe In the voltage grouping. Typical reverse current I - Flor lower voltage selections can be estimated Irom=
1.0K
~
400 f--- ~ these same curves if VR is suffICiently below rated VR. f-100
100
Iz
TJ 15O"C
40
~ 20
:l
10
u
w
100'C
 30

I

u

~

/

a: 03
$02
01
005

I

'"0..:;;

II /

/

I

--

30
25

_

I

60

~

I

~ 20

~ 15

ffi
::c

10

06

08

10

~

12

vF. INSTANTANEOUS VOLTAGE (VOLTSI

Square'''''::::
wavi
Rated ~oltage
APPlied

;;- 5 0

04

100

120

140

160

180

200

r---... '-.!Ie

to

IV /

80

35

1

I

I I

40

FIGURE 3 - CURRENT DERATING. CASE

5-

02

20

voltage grouping TYPical reverse current for lower voltage selections
can be estimated from these same curves.f VR IS sufficiently below
rated VR

07

o1

o

*The curves shown are typical for the hIghest voltage device," the

I

II

2

25°C

VR. REVERSE VOLTAGE (VOLTSI

I
I

II

3

.-

1

I

05

20
10

~ 05

I

U

100 0 C

~ 10
~ 50

'i25° C

II

TJ - 150°C

~ ~g

/

/ /125°C

30

500
300
200
100
50

t"'"
~ :--...

~

0
140

150

160

1"'-

170

180

TC. CASE TEMPERATURE (OCI
FIGURE 5 - TYPICAL CAPACITANCE

FIGURE 4 - POWER DISSIPATION
_

28

1000

~

~

Square

~

20

'"
~
c

16

in
is

CapaCitIVe
Load
10

0..

w

... 40

.....

~

0

IAV

/'

r- ;..-wj"e

,-

./

A~ 9
~ P'"

40

u

z

5

~= 5 ~ -

/' L ./
20 / . / / ' / '
: / /.",
TJ = 17~oC f-y:

12

~ 80

E

700
500

24

z

c

I

20
10

24

28

20

10

30

50 70

100

200 300

500 700 1000

VR. REVERSE VOLTAGE (VOLTSI

IF(AVI' AVERAGE FORWARD CURRENT (AMPSI
FIGURE 6 - THERMAL RESPONSE

§"

10

~

07
05

ic

;;:. 03

~

02

'"
~

01

i!
a:

l-:"

"" ....

-

.....

Single Pulse

ZoJC(tl = ,(II IViJC

;;! 0 07
~ 005

....~ 003
iii 002

..
z
'"

1=

~

001
001

002

005

01

02

05

10

20

t. TIME (msl

3-258

50

10

20

50

100

200

500

1000

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR3005PT
thru
MUR3060PT

Swntchmode Power Rectifiers
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
o
•
•
o
o
o
o
o
o

Ultrafast 35 and 60 Nanosecond Recovery Time
175'C Operating Junction Temperature
Popular TO-218 Package
High Voltage Capability to 600 Volts
Low Forward Drop
Low Leakage Specified @ 150'C Case Temperature
Current Derating Specified @ Both Case and Ambient Temperatures
Epoxy Meets UL94, Vo @ 1/8"
High Temperature Glass Passivated Junction

ULTRAFAST RECTIFIERS
30 AMPERES
50-600 VOLTS

::r.

I

I

'-TO-218AC
PLASTIC

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blockmg Voltage

VRRM
VRWM
VR

Average Rectified Forward Current (Rated VR)
Per Leg
Per DeVice

IF(AV)

Peak Repetitive Forward Current, Per Leg
(Rated VR. Square Wave. 20 kHz). TC = 150'C

IFRM

Nonrepetitlve Peak Surge Current
(Surge applied at rated load conditions halfwave.
single phase, 60 Hz) Per Leg

IFSM

Operating Junction Temperature and
Storage Temperature

MUR

300SPT 301 OPT 301SPT 3020PT 3030PT 3040PT 3OS0PT 3060PT
50

100

150

200

15
TC
30

300

=

400

500

600

15 TC =
30 145'C

150'C

30
@TC

=

30
150'C

@TC

200

=

Volts

Amps

Amps
145'C

150

TJ, Tstg

Unit

Amps

-65 to +175

'c

1.5
40

'CIW
'CIW

THERMAL CHARACTERISTICS PER DIODE LEG
Maximum Thermal Resistance, Junction to Case
Junction to Ambient

ELECTRICAL CHARACTERISTICS PER DIODE LEG
Maximum Instantaneous Forward Voltage (1)
(iF = 15 Amps, TC = 150'C)
(iF = 15 Amps, TC = 25'C)

vF

Maximum Instantaneous Reverse Current (1)
(Rated dc Voltage. TC = 150'C)
(Rated dc Voltage. TC = 25'C)

iR

MaXimum Reverse Recovery Time
(IF = 1 Amp. dildt = 50 Amps/I-'s)

trr

Volts
0.85
1.05

I

1.12
1.25

1.2
1.5

p.A
500
10
35

(1) Pulse Test: Pulse Width = 300 I's. Duty Cycle'" 2%.

3-259

1000
10

I

60

ns

MUR300SPT thru MUR3060PT
MUR3005PT, 3010PT, and 3015PT

100

100
150'C

TJ

1/

50

/

20

/ /
/ II

10

5
r:r::
r:r::

25'C

1

u

~
r:r::

w

~

~

'"5l

II

0,05
002
0.01
o

z
z>'!

SQUARE WAVE'"'\

l\.'\
'\

I

I I

I

11 /

II

0.2

0.4

RATED VOLTAGE APPLIED
0

0.6
0.8
1
1.2
vF, INSTANTANEOUS VOLTAGE (VOLTS)

1.4

0
140

1.6

~
I-

14
12

zw

a::
a::

a
0

a::

~
a::
12
w

~

~
~
.l!=

10

-

-......:d~
1"'-..
i"""o...1

SQUAREWA~
I

d~

I
-

~

""<

--= -

'\

150

160

170

150

Figure 3. Current Derating, Case (Per Leg)

I

-

HEAT SINK.

" ,,"

in

16

~

14

0

12

III

10

!;i

~

~8JA ~ 15'6w AS ciBTAIN~D-

z

~

(RESISTIVE LOAD) tK
AV
(CAPACITIVE LOAD) :PK
AV

0

ffi

.........

SQUARE WAVE~
~
R8JA - 4O'CIW'"
-AS OBTAINED IN FREE AIR
o WITH NO HEAT SINK.
o
~
50
50
~

w

I

-.I USING A SMALL FINNED

K

~

Te, CASE TEMPERATURE ('C)

Figure 1, Typical Forward Voltage (Per Leg)

in
....

de

I I

0,2

200

"'- -"'-

I I

0,3

180

'\.

.......

.!f-

O.

60
80
100 120 140
160
VR, REVERSE VOLTAGE (VOLTS)

" ,""-

~

D,S

40

rated VR· Figure 2. Typical Reverse Current (Per Leg)*

I II

~

20

·The curves shown are tYPical for the highest voltage deVice In the
voltage grouping TYPical reverse current for lower voltage selectIons
can be estimated from these same curves If VA IS suffiCiently below

/

:::>

25'C ~

0.2
Jt. 0.1

II II II

12

1
0.5

u

/ I L

0

1==

10

::!
§

I

:::>

100'C

!z

L

I

!z
w

./

150'C§

TJ

50
20

loo~t

/

V L
VII /

30

ie
:::;;

./

i5
....
w

i:'..
'"
::::--.

~

~

:it

~
~
~

m

~

--

~

IoOlIiI...

~

~

~

....ir

TAo AMBIENT TEMPERATURE ('C)

4

6

10

12

14

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 4. Current Derating, Ambient (Per Leg)

Figure 5. Power Dissipation (Per Leg)

3-260

16

MUR3005PT thru MUR3060PT
MUR3020PT,3030PT, and 3040PT

100

100

~

50
20
50
100'C f--I-/ 25'C

TJ = 15O's,..

30

l/V V

20

/

10

1

loo'C=

10
5

25'C=

1

m 0,5

1/ 1/ /
II /

ffi

~ 0.2

./

ci: 0.1
- 0.05

002
00 1

II

o

/ /

50

100

150 200 250 300 350
VR. REVERSE VOLTAGE IVOLTSI

rated VA

/

in

16

~

14

~

~

a:
:::>
u
0
a:

L
03

I

........

"-

2

w

~

l!=

0.6
08
1.0
12
VF.INSTANTANEOUS VOLTAGE IVOLTS)

14

16

RATED VOLTAGE APPLIED
2.0

o

140

1'...
SQUARE WAf'

""<

I

6

in 16

!;ii

~ 15'dw 6BTAIN~D-

"-"

d~
.......

""
t-..

..; 1R8JA
AS
"/ USING A SMALL FINNED
HEAT SINK.

=

........

""'-

,
180

WO
1M
TC. CASE TEMPERATURE ('CI

~

~

~

~
15

14

I
(RESISTIVE·INDUCTIVE LOADI IPK
AV

12 (CAPACITIVE LOADI

::~

=
"0

10

ffi

r--...

~

r-...."'l,

SQUARE WAVE ~
R8JA = 40'CIW ~ ~ AS OBTAINED IN FREE AIR
o WITH NO HEAT SINK.
20
40
60
80
100

150

~

Figure 8. Current Derating, Case (Per Leg)

I

r--~dle

",\

~

'"ffi«

I

or--~I

de

SQUARE WAVE"'....."

Figure 6. Typical Forward Voltage (Per Leg)

4

"

"

10

:i(

J0.4J

500

I-..." ."'-

a:

I I

0.1
02

12

~
f2

I

1/

02

450

Figure 7. Typical Reverse Current (Per Leg)*

I-

I II
1 II

400

·The curves shown are tYPical for the highest voltage device In the
voltage grouping TVPlcal reverse current for lower voltage selectIons
can be estimated from these same curves If VR IS sufficiently below

I II /
/ II

1 I
II II

TJ_~

:::--.

'"

-

i

:i(

~
~ !-..~

120

140

~
160 180

~

200

~

TA. AMBIENT TEMPERATURE ('CI

4
6
8
10
U
IF(AVI. AVERAGE FORWARD CURRENT (AMPSI

Figure 9. Current Derating, Ambient (Per Leg)

Figure 10. Power Dissipation (Per Leg)

3-261

M

16

MUR3005PT thru MUR3060PT
MUR3050PT and MUR3060PT

100

200
100

50

50
20
10

1

TJ =.....'50·e
30

V
V V'

20

/V V

10

a:

u

Ae

~
a:

0.5

~

I

0.05
002
150

/

f

a:
:::>
u
c
a:

f

'":::>
z

!

II I
04

..........

'"

~e

,""\.

"- \.

~

~
~

0.6
0.8
1
1.2
1.4
vF, INSTANTANEOUS VOLTAGE (VOLTS)

RATED VOLTAGE APPLIED

~

I.S

~

~o

140

150
160
Te, CASE TEMPERATURE ('CI

170

'\

Figure 13. Current Derating, Case

en
0..

S

I-

ffi

a:
a:

:::>

10

---,-....

de

- k "- ~
SQUARE WAV"F:"<

u

c

""f'...

~
a:

~

w

ffi

:;c

1

=

16

J

'" 14
S
~

IS!CJW
OBTAiNED f---FROM A SMALL TO·220
f---HEAT SINK

z

0

SQUAREWAV~ t--

:""-

~

~ !'-

t--

a:

~

40

..:;c'"
w

r--.." ~

"

ffi

I:::---.. ~

t--:::
ROJA = 6o'CJW
o AS OBTAINED IN FREE AIR, NO HEAT SINK
20

12

!:;:
0..
en 10

1',,'

fi:

'".

ROJl

650

SQUAREWAV~...... ,

w

Figure 11. Typical Forward Voltage

:::;;

600

.........

fi:

I
II

I I

O. 1
0.2

u

/

I

o. 2

~ 10

II

11

I

O. 3

14

a:

J J

550

16

~
~

~ 12

I

O. 5

300 350 400 450 500
VR, REVERSE VOLTAGE (VOLTS)

Figure 12. Typical Reverse Current*

V)

g
!f.

250

rated VR

II II

53
z

200

-The curves shown are typical for the highest voltage deVice In the
voltage grouping TYPical reverse current for lower voltage selections
can be estimated from these same curves If VA IS sufficiently below

V

// /
/ / if

~
fi:

a:

''""

f

If if

25'C

02

I-

ffi
a:

l00'e

:::>

~

:::;;
S

150'e

~
a:

-::: ~lre
/

TJ

~
;r

~~

60
80
100 120 140 160
TA, AMBIENT TEMPERATURE ('CI

0..

180

200

Figure 15. Power Dissipation

Figure 14. Current Derating, Ambient

.J

3-262

180

MUR3005PT thru MUR3060PT

Ei
~

;j!

1

D

:E

g:j 0. 5

05

-

~

~

~ O. 2

0.11

in

I--I-

~ O. 1

;;t

~ 0.0 5

-

~
00 2"""z
«
f= 00 1

~

io5

i.-- :-V

~ f:.--

tJUL

001

-trJ

IA'"
L..-'

V

SIIN~Lk PULSE

'2
DUTY CYCLE, 0

11111
0.02

005

ZeJCltl = rltl ReJC
ReJC = 1.5 "CN! MAX
DCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME All,

, Plpkl

V

0()1

:E

lZ

.-

= t,n2 - TJlpkl - TC -- PIpkl Zrucltl

II II

II II

01

02

05

2

20

10

50

100

200

t. TIME {m,1

Figure 16. Thermal Response

K
500

t--

100

~

0

~

TJ

25"C

t-h

~ 20 0

~

-

l- t--

u

<..i

0
10

1

5

10

20

50

100

VR, REVERSE VOLTAGE {VOLTSI

Figure 17. Typical Capacitance (Per Leg)

OUTLINE DIMENSIONS
NOTES
1 OIMENSIONING AND TOLERANCING PER ANSI
Y145M,1982
2 CONTROLLING DIMENSION INCH

CASE 340·02
TO-21BAC
PLASTIC

3-263

DIM
A
8
C
D
E
G
H
J
K
L
N
Q

MILLIMETERS
MIN
MAX
2032
2108
1549
1590
419
50B
102
165
135
165
521
572
265
294
038
064
1270
1549
1568
1651
1219
1270
404
422

INCHES

MIN

MAX

0800
0610
0165
0040
0053
0205
0104
0015
0500
0625
0480
0159

0830
0626
0200
0065
0065
0225
0116
0025
0610
0650
0500
0166

500

lK

MURSOOS
MURSOIO
MURSOIS
MURS020

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

•

•

•

ULTRAFAST
RECTIFIERS
50 AMPERES
50 to 200 VOLTS

SWITCHMODE POWER RECTIFIERS
. designed for use on sWitching power supplies, Inverters and as
free wheeling diodes, these state-of-the-art devices have the following features'
• Ultrafast 50 Nanosecond Recovery Time
•

Low Forward Voltage Drop

•

Hermetically Sealed Metal DO-203AB Package

MAXIMUM RATINGS

Rating

Symbol

Peak Repetitive Reverse Voltage
Workmg Peak Reverse Voltage

DC Blocking Voltage
Nonrepetltlve Peak Reverse

MUR

Unit

5005

5010

5015

5020

VRRM
VRWM
VR

50

100

150

200

Volts

VRSM

55

110

165

220

Volts

Voltage
Average Forward Current

IF(AV)

50

Amps

IFSM

600

Amps

TC = 125°C
Nonrepetltlve Peak Surge

Forward Current (half cvcle,
60 Hz, Sinusoidal Waveform)
Operating Junction and Storage
Temperature

NOTES
1 DfM"P"ISDIA
2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
HEXAGONAl BASE JS OPTIONAl
3 ANGULAR ORIENTATION AND CONTOUR OF
Tt:RMINAL ONE IS OPTIONAL
4 THREADS AJlE PlATED
5 OIMENS\mlING ANO TOlERANClNG PER ANSI Y14 5,
1973

B

TJ, Tstg

-55 to +175

°c

C
D
E

F
J

P

Q

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop

(oF =50 Amp, TJ =25°C)
(IF =50 Amp, TJ =125°C)
(IF =100 Amp, TJ =125°C)

Volts

vF
115
095
110

Maximum Reverse Current @ DC Voltage

(TJ =25°C)
(TJ =125°C)

=

1151
2540

550
35.

...

INCHES
MAX

''''- ''''
''''
,,~

'375
0115
0422

0156
"20
0140

2016

Thermal Resistance, Junction to Case

=

'"

l

Rating

TJ =25°C)

MAX

"45
1694
"43
'92 51"
-

1694

, lOn- '"
'"
, - ...'"
'76
•

THERMAL CHARACTERISTICS

Maximum Reverse Recoverv Time
(IF 1 0 Amp, d,/dt 50 AmplP.s, VR

...

MIWMETERS

DOl
A

=30 V,

IR

trr

10
10

p.A
mA

50

ns

3-264

'200

'''''
"50

'"
,,,.
0175

''''
'089

CASE 257-01
DO-203AB
METAL

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surface corrosion
resistant and terminal leads are
readily solderable
POLARITY: Cathode to Case
MOUNTING POSITIONS: Any
MOUNTING TORQUE: 25 in-Ib max

MUR5005, MUR5010, MUR5015, MUR5020
FIGURE 1 - TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT'

1000
500
300
200
« 100
3 50
I30

100
TJ = 150°C /

IL
1';25°C

/ V

j

VI
~

10

j

l-

i13
:il

II

'"
ii;

~

I

I

/

10

25°C

20

40

SO
80 100 120 140
VR. REVERSE VOLTAGE IVOLTS)

lSo

180

200

·The curves shown are typical for the highest voltage deVice 10 the
voltage grouping Typical reverse current for lower voltage selections
can be estimated from these same curves If VR IS sufficiently below
rated VR

II

III

z

;;!;

L

/

'"

~
~
~

I

l°i

10
50
~ 30
!l! 20
- 10
Eo 05
03
02
aI

VI II

in

20

a

V250 C

/.

:E

~

TJ = 150°C

FIGURE 3 - CURRENT DERATING. CASE

70

/

~

1--"""

I

II

Square

ILI

/

Wave

1

Rat~d voltage Applied

I

,/

04

02

/

10
aS
08
'F. INSTANTANEOUS VOLTAGE IVOLTS)

100

FIGURE 4 - POWER DISSIPATION

SO

1

ResIStIVe ~
~
load - quare a~
Capacitive
load
I
10

40

~

30

'"ffi
:;;

20

20

w

fa ...

./

./

~

.....-........

----

IAV
/

/
/

......

/

/~

F-

....-

~=50
......

180

300

/

'-'

t--

z

...... de

5£f 10070

f-""
f-""

5

TJ = 175°C

----

"

170

~200

1);

'"is
'"

130
140
150
lS0
TC. CASE TEMPERATURE 1°C)

FIGURE 5 - TYPICAL CAPACITANCE

!;i

~ 50

120

1000
700
500

1

15

-'"' ~

1 1
1 1

12

in 70
~

de

.........

-

50

TJ

30

25°C

20
\

10

10
20
30
40
IFIAV). AVERAGE FORWARO CURRENT lAMPS)

50

10

20

30

50 70 100
200 300
VR. REVERSE VOLTAGE IVOLTS)

500 700 1000

FIGURE 6 - THERMAL RESPONSE

S

10

..
~

05

~

03

'"z

02

!:l

§ 01

.

......
........
&ngle Pulse

/'

Z6JClt) - 'It) R6JC

::;;

~ 005

:: 003
z
~ 002

z
;i!

I-

:g

001
001

002

005

01

02

05

10

20
50
t. TIME 1m,)

3-265

10

20

50

100

200

500

10011

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR7005
MUR7010
MUR7015
MUR7020

Switch mode
Power Rectifiers
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:
• Ultrafast 50 Nanosecond Recovery Time
• Low Forward Voltage Drop
• Hermetically Sealed Metal 00-203AB (00-5) Package

ULTRAFAST
RECTIFIERS
70 AMPERES
50 TO 200 VOLTS

Mechanical Characteristics
Case: Welded, hermetically sealed
Finish: All external surface corrosion resistant and terminal leads are readily solderable
Polarity: Cathode to Case
Mounting Positions: Any
Mounting Torque: 25 in-Ib max

~I

•
DO-203AB

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Nonrepetitive Peak Reverse Voltage
Average Forward Current TC

=

125·C

Nonrepetitive Peak Surge
Forward Current (half cycle,
60 Hz, Sinusoidal Waveform)
Operating Junction and Storage Temperature

MUR
7005

7010

7015

7020

VRRM
VRWM
VR

50

100

150

200

VRSM

55

110

165

220

Unit
Volts

Volts

IF(AV)

70

Amps

IFSM

1000

Amps

TJ, Tstg

-55to +175

·C

THERMAL CHARACTERISTICS
All Devices

Rating

0.8

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop
(iF = 70 Amps, TJ = 25·C)
(iF = 70 Amps, TJ = 150·C)

vF

Maximum Reverse Current @ DC Voltage
(TJ = 25·C)
(TJ = 150"C)

IR

Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 AmpsilLs,
VR = 30 V, TJ = 25·C)

trr

(IF = 0.5 Amp, iR = 1 Amp,
IREC = 0.25 A, VR = 30 V, TJ

Volts
0.975
0.840
25
30

ns
60

= 25·C)

50

3-266

pA
mA

MUR7005, MUR7010, MUR7015, MUR7020

100

2000

1000
70

//

50

/

/

/ /

30

II

II

20

I

1/

u

5
3
2
1

,oooC /25°C

I

I

40

W

60
60
~
lW ~
VR. REVERSE VOLTAGE (VOLTSI

/

~

70

i

60

,,;

I

""

0.1
02

/

u

I

c

~

if:

90

100

Figure 1. Typical Forward Voltage

100

1000

~ 80
z
o
~ 70

700
600
500

u; 60
o
a:

SINE WAVE
OR
SQUAREWA,. f-'"

50

~

40

W

30

~~

,.,-

20

,.,

~ 10
~ 0

o

~

P""

10

~-

,.,,.,-

,/

,.,-

"....- f-"'"

~

120

130
140
150
TC. CASE TEMPERATURE lOCI

~

"

~

160

170

180

Figure 3. Current Derating. Case

S 90
!!l

de

VE

"'. 10
12

i"'""-

APPLIED

r '"

~

04
06
08
vF. INSTANTANEOUS VOLTAGE IVOLTSI

~~

SQUARE
AND
SINE

~ 20

I

RAT~D VOLT1GE_

~

~ 40
fi' 30

I

I

I
/

02

200

80

1

g5 50

I

160

·The curves shown are tYPical for the highest voltage deVice In
the voltage groupmg TYPical reverse current for lower voltage
selections can be estimated from these same curves If VR IS suf·
f,c/ently below rated VA

I

03

~

Figure 2. Typical Reverse Current*

J

/

I

25°C

05
03
02 0

/ /

/

125°C

~~

I

I

175°C
150°C

20
10

::>

/

/ /
TJ = 150°C/

1

/

TJ

500
300
200
'00

/

,.,,.,-

V

% 400 ...............
~

~

~

de

300

--

t--

u 200
TJ

= 175°C
100

15 20 25 30 35 40 45 50 55 60
IFIAVI. AVERAGE FORWARD CURRENT IAMPSI

10

65 70

Figure 4. Average Power Dissipation

20
30
40
50
VR. REVERSE VOLTAGE (VOLTSI

60 70 80 90 100

Figure 5. Typical Capacitance

3-267

MUR7005, MUR7010, MUR7015, MUR7020

I ~~

;; 0.3

~

0.2

;5

/'

~ 0.1
:;t 0.07
~ 0.05

E0.03

15
u;

0.02

'€!

0.01
0.01

g

-

~ SINGLE PULSE

U>

rltl RruC

ZruClt)

/
0.02 0.03

0 05

0.1

0.2

0.3

0.5

2
3
t, TIME Imol

10

20

30

50

Figure 6. Thermal Response

OUTLINE DIMENSIONS

NOTES
1 OIM"~'ISDIA
2 CHAMFER OR UNDERCUT ON ONE OR eOTH ENDS OF
HEXAGONAl BASE IS OPTIONAl
3 ANGULAR ORIENTATION ANO CONTOUR OF
TERMiNAl ONE IS OpnONAl
4 THREADS ARE PlATED
5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5.
1973

DIM
A
B

C
D

E
f

J
K
L
P

CASE 257-01
DO-203AB
(DO-51

Q

R
S

3-268

MILUMETERS
MAX
1745
1694
1143
953
5118
292
203
1151
1072
2540
386
632
559
356
445
2016
226

INCHES

MIN

MIN

MAX

1694

0669

0687
0687
04511
0375
02l1li
0080
0453
1lIII0

-

0115

-

0422
0156
0220
0140

0249
0175
0794
0089

100

200 300

500

1000

•

MUR1000SCT
MUR10010CT
MUR1001SCT
MUR10020CT

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

Advance Information
ULTRAFAST
RECTIFIERS

ULTRAFAST
SWITCHMODE POWER RECTIFIERS

100 AMPERES
50 TO 200 VOLTS

... designed for use in switching power supplies, inverters, and
as free wheeling diodes. These state-of-the-art devices have the
following features:
o Dual Diode Construction
o Low Leakage Current
o Low Forward Voltage
o 175°C Operating Junction Temperature
o Labor Saving POWERTAP" Package

MAXIMUM RATINGS
Roting

MUR
Symbol 1000SCT 10010CT 10015CT 10020CT Unit

Peak Repetitive Reverse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage

50

100

150

200

Volts

VRRM
VRWM
VR

l-t~~",_"",·,,·,
t--=
+

Average Rectified Forward
Current, (Rated VR),
TC = 140°C
Per Device
Per Leg

IF(AV)

Amps

Peak Repetitive Forward
Current, Per Leg, (Rated VR,
Square Wave, 20 kHz),
TC = 140°C

IFRM

100

Amps

Nonrepetitive Peak Surge
Current Per Leg
(Surge applied at rated
load conditions
hallwave, single
phase, 60 Hz)

IFSM

400

Amps

+

+

I"'+I;C::"'D~"'IDD"".'-';""'IT""I"'"',,"'I"".
. ""'I

100
50
NOTES
1. DIMENSIONING AND TOLERANCING PER ANSI
YI4.5M,I9B2
2. CONTROLUNG DIMENSION. INCH

DIM
A
B

C
E

Operating Junction and
Storage Temperature

+

TJ,Tstg

-65 to +175

°c

F
G
H
N

THERMAL CHARACTERISTICS PER LEG

Q

Rating

R
U
V

Thermal Resistance, Junction to Case

W

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 50 Amp, TC = 25°C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25"C)

iR

Maximum Reverse Recovery Time
(IF = 1.0 Amps, di/dt = 50 Amps/",,)

trr

1.10

Volts

pA
250
25
50

ns

MIWMETERS
MIN
MAX
8763
9220
1778
2057
1563
1600
305
330
1105
1130
3480
3505
018
068
114-20UNC·2B
686
723
8001 BSC
1524
1600
839
952
432
482

CASE 357C-01
POWER TAP
Terminal Penetration:
Terminal Torque:
Mounting TorqueOutside Holes:"
"Center Hole Must be
Torqued First:

(1) Pulse Test: Pulse Width = 300 p.O, Duty Cycle'" 2.0%.
This document contains information on a new product Specifications and information herem
are subject to change without notice

3-269

INCHES
MIN
MAX
3450
3630
0700
0810
0615
0630
0120
0130
0435
0445
1370
1380
0007
0.027
114-20UNC-2B
0270
0285
3150 SSC
0600
0630
0330
0375
0170
0190

0.280 max
25-40 in-Ib max
30-40 in-Ib max
8-10 In-Ib max

•

MUR1000SCT, MUR10010CT, MUR1001SCT, MUR10020CT
FIGURE 1 -

FORWARD VOLTAGE

FIGURE Z - TYPICAL REVERSE CURRENT'

lK
700
_

1.

500

....

~

300

/V/

200

if
::;
....~
1ii
'"
:::>
'"

70

'"

50

c

~

/

100

u

~
~

~
~
~

/
V II

.!E:

10K
SK
3K
2K
lK
SOO
300
200
100
SO
30
20
10
S.O
30
2.0

12S'C ~
2S0 C r -

o

~

60
80
100 120 140 160 180 200
VR. REVERSE VOLTAGE IVOLTS)
'The curves shown are typical for the highest voltage device in the voltage
grouping. TYPICal reverse current for lower voltage selections can be
estimated from these same curves. If VR IS suffICiently below rated VR.

I I

I II

;'S 20
z
;'S

/

I

'";;:;

TJ = 17S0 C/

!f-

lO

1/125OC

t;;;;;;;;

lS0°C r -

1.0

I

:::> 30
'"
S
z

17S'C

TJ

20

40

FIGURE 3 - CURRENT DERATING (PER LEG)
~ 80

2S'C

~

70

7.0
I

5.0

I I

3.0

l\.
Rated Voltage Apphed
I--Square Wave. 50%
Duty Cycle

II II

2.0

1.0

II

J J

J

o

0.2

0.4
0.6
0.8
1.0
VF.INSTANTANEOUS VOLTAGE IVOLTS)

RGURE 4 -

1/

W~,. ./
Rated Voltage Applied
Resistive Load

t-- TJ

'= lJSOC

..... ~

1/

w

60

~

~

80

175°C\

\

100
120
1~
TC. CASE TEMPERATURE IOC)

1\
160

180

FIGURE 5 - CAPACITANCE (PER LEG)
70 0
50 0

OC

30 0

~20 0

1/ 1/

1/ V

u

z

610 0

~V

ro
30
~
50
00
IFIAV). AVERAGE FORWARD CURRENT lAMPS)

1\

100 0

V /
/

150'C

~

1.4

POWER DISSIPATION (PER LEG)

Square

f--

1.2

1\

~

\

TJ = 125'~\

I

J I

~

\

1\

~

<'l

u

70
50

TJ

0
0
70

3-270

25°C

I

0

10

20

30

50 70 100
200 300
VR. REVERSE VOLTAGE IVOlTSI

500 700 1000

MUR2000SCT
MUR20010CT
MUR20015CT
MUR20020CT

MOTOROLA

.. SEMICONDUCTOR
TECHNICAL DATA

Advance Information
ULTRAFAST
RECTIFIERS

ULTRAFAST
SWITCHMODE POWER RECTIFIERS

200 AMPERES
50 TO 200 VOLTS

•.. designed for use in switching power supplies, inverters, and
as free wheeling diodes. These state-of-the-art devices have the
following features:

o Dual Diode Construction
o Low Leakage Current

o Low Forward Voltage
o 175°C Operating Junction Temperature
o Labor Saving POWERTAp® Package

MAXIMUM RATINGS
Rating

MUR
Symbol 20005CT 2001 OCT 20015CT 20020CT Unit

Peak RepetItive Reverse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage
Average RectIfIed Forward
Current, (Rated VR),
TC = 95°C

50

150

200

Volts

VRWM
VR
Amps

IF(AV)

~ i'l

200
100

Per DeVice

Per Leg
Peak RepetItIve Forward
Current, Per Leg, (Rated VR,
Square Wave, 20 kHz),
TC = 95°C

IFRM

Nonrepetitive Peak Surge
Current Per Leg
(Surge applied at rated
load conditions
hallwave, single
phase, 60 Hz)

IFSM

Operating Junction and
Storage Temperature

100

VRRM

Amps

200

:jJ1P
NorES

Amps

800

1 DIMENSIONING AND TOLERANCING PER ANSI
YI45M,I9112
2 CONTROLLING DIMENSION INCH

DIM
A
B

TJ,Tstg

-65 to +175

°c

THERMAL CHARACTERISTICS PER LEG
Rating

C
E
F
G
H
N
Q

Thermal ReSIstance, JunctIon to Case
ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(iF = 100 Amp, TC = 25°C)

vF

Instantaneous Reverse Current (1)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25'C)

'R

Maximum Reverse Recovery Time
(IF = 1.0 Amps, dildt = 50 Amps/l'S)

trr

1.25

Volts
pA.

500
50
50

(t) Pulse Test. Pulse W,dth .= 300 /AS, Duty Cycle" 2 0%
This document contains information on a new product Specifications and mforma\JOn herem
are subject to change Without notice

3-271

ns

R
U
V
W

MIWMmRS
MIN
MAX
8763 9220
1778
2057
1563
1600
305
330
1105 1130
3480
3505
018
068
1I4-20UNC·2B
686
723
8001 BSC
1524 1600
839
952
432
482

INCHES
MIN
MAX
3450 3630
0700
0810
0615
0630
0120 0130
0435 0445
1370 1380
0007
0027
1I4-20UNC·2B
0270 0285
3150BSC
0600
0630
0330 0375
0170 0190

CASE 357C-01
POWER TAP
Terminal Penetration:
Termonal Torque:
Mounting TorqueOutside Holes:'
'Center Hole Must be
Torqued First:

0.280 max
25-40 In-Ib max
30-40 on-Ib max
8-10 in-Ib max

•

MUR2000SCT, MUR20010CT, MUR2001SCT, MUR20020CT

FIGURE 1 -

FIGURE 2 - TYPICAL REVERSE CURRENT"

TYPICAL FORWARD VOLTAGE (PER LEG)

lK
50a

1000
700

17Soc§

TJ

200

500

1 10a0

lS0°C=

g§ 2a

7S~

~ 5.a

2SO~

!'5

300
TJ

200

= 175°51

/

V

~1 0

/

/

~ 2.0
,g: 1. a
O. S

12S0C-J- -

I

I1soc

r-

O. 2

0

o. 1

/

I II

0

o

I

V

/ /
/,

0

/

60
80 100 120 140
VR, REVERSE VOLTAGE IVOLTS!

lS0

180

200

VR·

/

FIGURE 3 - CURRENT DERATING (PER LEG)

~ 140

II / II

0

40

*The curves shown are typical for the highest voltage deVice In the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these curves, if VR is suffiCiently below rated

/

/I

20

~

~ 12a

a=

7.0

I
I

S.a

I II

~

a=

I

II

3.a

~ 100

I

u

oa=

II

2.0

II

0.2

0.4

-

::; 40 -

I I

0

0

~
a=

I

Squar~ ~

Wave

0

:::>

I
O.S

I

-

~

a

~

0
40

~

0.8

1.0

1.2

1.4

E'

80

VF, INSTANTANEOUS VOLTAGE IVOLTS!·

I - - Hpl(IlAV = 20/

L.

0

V
10 . / . / VL /. V

10

~

/de

~

,/"

/ / V~ ;.;~ P""

400

~ 30a
c.S 20

TJ

100
120
140
TC, CASE TEMPERATURE 1°C!

" ,

= 17SoC-

20
30
40
SO
60
70
80
IF(AV!, AVERAGE FORWARD CURRENT lAMPS)

"

180

SOO

1K

lS0

......
.......

<5

/. ,/

~ .......

O~

~SOa

/'

S.O

'I

70a

way

0

~

1000

I
S~uare

0

I~

FIGURE 5 - CAPACITANCE (PER LEG)

FIGURE 4 - POWER DISSIPATION (PER LEG)

a

."'- .........
........

Rated Voltage Applied
50% Duty Cyele
TJ = 17SoC

I
I I
so

de

I
I
90

100

a

10O

o

TJ = 2SOC

t-

fII11·~MHf

1111\
2.0 3.0 S.O

10

20 30 SO

100

200

VR, REVERSE VOLTAGE IVOLTS!

3-272

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MUR20030CT
MUR20040CT

Ultrafast
Switch mode Power Rectifiers
· .. designed for use in switching power supplies, inverters, and as freewheeling diodes.
These state-of-the-art devices have the following features:
•
•
•
•
•

ULmAFAST
RECTIFIERS
200 AMPERES
300 and 400 VOLTS

Dual Diode Construction - May Be Paralleled For Higher Current Output
Low Leakage Current
Low Forward Voltage
175'C Operating Junction Temperature
Labor Saving POWERTAP Package

CASE 357C-01
POWERTAP

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current, (Rated VR), TC
Per Device
Per Leg

= 95'C

Symbol

MUR20030CT

MUR20040CT

Unit

VRRM
VRWM
VR

300

400

Volts

Amps

IF(AV)
200
100

Peak Repetitive Forward Current, Per Leg,
(Rated VR, Square Wave, 20 kHz), TC = 95'C

IFRM

200

Amps

Nonrepetitive Peak Surge Current Per Leg
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)

IFSM

800

Amps

TJ, Tstg

-65 to +175

'c

Operating Junction and Storage Temperature

THERMAL CHARACTERISTICS PER LEG
Rating

Max

Thermal Resistance, Junction to Case

0.75

ELECTRICAL CHARACTERISTICS PER LEG
Instantaneous Forward Voltage (1)
(IF = 100 Amp, TC = 25'C)
(IF = 100 Amp, TC = 125'C)

vF

Instantaneous Reverse Current (1)
(Rated de Voltage, TC = 125'C)
(Rated dc Voltage, TC = 25'C)

iR

Maximum Reverse Recovery Time
(IF = 1 Amp, d,ldt = 50 Amps/!'s)

trr

(1 I Pulse Test. Pulse Width

=

Volts
1.35
1.25
!'A
500
50

300 p.s. Duty Cycle ~ 2%.

3-273

75

ns

MUR20030CT, MUR20040CT

ie

:.

50 0

~

200
100

5 150

1

!§

~

u

'"

a:

~
~

a:
'"

'"=> O~ f=175°C
;::
:z

1--125°C

~

~

25°C

/

b<..

Jt.

/

25°C

2
1

a:

/

1OooS= ~

0
0
5

:::l

U

w

lil
z

125°c'~ E

50

g§

./. W'

100

175°S~ ~

o5

o. 2

~

/ /
!? 10
0.20.40608
1
12141.618
vF, INSTANTANEOUS VOLTAGE (VOLTSI

O. 1
100

22

200
300
VR, REVERSE VOLTAGE (VOLTSI

~

'"a:~

400

Figure 2. Typical Reverse Current

Figure 1. Typical Forward Voltage

~

120

150
SQUARE

135

100

SriUA~ I'-. f'... DC

~
>-

WAVE

~ 80

a:

:::l

u

~ 60

"

120

~

f2 40

"

90

~

75 -lpKIIAV ~ 20

w

GO

~

45
30

I~

40

60

80
100
120
140
TC, CASE TEMPERATURE (OCI

160

IpKllAV ~ 10/,

180

/'

/'
/. , /

/ / /'....-: V
./ /-~
'b .4 ~

I

--r:c

,/""

,."..-

/

-

~ ~"

15

1\

I.
W~
~ 3.14-

IpKllAV ~ 5

~

~

~

20

1

I..
IpKllAV

l2!
105
~

"-

ifa:

~:l(

=~

o

o

...

10

20

30

40
50
60
70
AVERAGE CURRENT (AMPSI

80

90

Figure 4. Average Power Dissipation and
Average Current

Figure 3. Current Derating (Per Leg)
1000

OUTLINE DIMENSIONS
700

~tm~I""".I'I'.".'

~ 500

~400

~

~

1',

300

.8-

+

•

•

+

+

N

+

~
r..;:j:"'O"'25"'IOO=lO"'®;;-I'
l -,TCIA"'®"'17,=®1

I--.

u 200

.J

Till
E aA1WGPlANE

100

o

10

100
200
VR, REVERSE VOLTAGE (VOLTSI

500

1000

NOlES
1 DIMENSIONINGANDTOLERANCINGPERANSI

YI45M,I982

OM

,•,,
,
G
H
N
Q

2 CONTROLLING DIMENSION INCH

"

u

Figure 5. Capacitance (Per Leg)

Terminal Penetration:
Terminal Torque
Mounting TorqueOutside Holes:*

0.280 max
25-40 In-Ib max

30-40 In·lb max

·Center Hole Must be

TorquedFi~

3-274

8-10 In-Ib max

y

w

CASE 357C-01

PowERTAP

100

MOTOROLA

-

SEMDCONDUCTOR

TECHNICAL DATA

Sw6tchmode Power Rectiiners
IJ)!PAII< 51l1riace MOlUllnl'1i: !Package
· .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:

MURD305
MURD310
MURD315
MlUJRID320

• Ultrafast 35 Nanosecond Recovery Time
• Low Forward Voltage Drop
o Low Leakage

ULTRAFAST
RECTIFIERS
3 AMPERES
50 TO 200 VOLTS

Mechanical Characteristics
o Case: Epoxy, Molded
o Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
o Lead Formed for Surface Mount
o Available in 16 mm Tape and Reel or Plastic Rails
o Compact Size
o Lead and Mounting Surface Temperature for Soldering Purpose 260"C Max. for 10
Seconds

CASE 369A-04

---1C>*1

0-0

PLASTIC

----0

MAXIMUM RATINGS
Rating

MURD

Symbol
305

310

315

320

50

100

150

200

Unit

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

Average Rectified Forward Current (TC = 158"C, Rated VR)

IF(AV)

3

Amps

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz, TC = 158"C)

IFRM

6

Amps

Nonrepetltive Peak Surge Current
(Surge applied at rated load conditions, halfwave, 60 Hz)

IFSM

75

Amps

TJ, Tstg

-65to +175

"C

Operating Junction and Storage Temperature

Volts

THERMAL CHARACTERISTICS
6

Thermal Resistance, Junction to Case
Junction to Ambient (1)

80

ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop (2)
(IF = 3 Amps, TJ = 25"C)
(iF = 3 Amps, TJ = 125"C)

vF

MaXimum Instantaneous Reverse Current (2)
(TJ = 25"C, Rated de Voltage)
(TJ = 125"C, Rated de Voltage)

'R

Maximum Reverse Recovery Time
(IF = 1 Amp, d,/dt = 50 Ampslp.s, VR = 30 V, TJ = 25"C)
(IF = 0.5 Amp, iR = 1 Amp, IREC = 0.25 A, VR = 30 V, TJ

trr

Volts
0.95
0.75
p.A
5
500

= 25"C)

'1 I Rating applies when surface mounted on the minimum pad sizes recommended.
(21 Pulse Test Pulse Width = 300 1'5, Duty Cycle" 2%

3-275

ns
35
25

MURD305, MURD310, MURD315, MURD320
TYPICAL CHARACTERISTICS

100

1

100
0
0
0

I-

lE

0

a:
a:
::>
u

0

en

2
1
O.
4
a:
O. 2
~ O. 1
a:
.~ 0.04
0.02
0.0 1
0.004
0.002
1
0.000
w

0

~~

~

0

~7

r/ 7

'(I

VIII

2

175°C ....
1S0°C .....

1

o. 5

N

J

V-.J

l

1/

20

--25°C

60
SO 100 120 140
VR, REVERSE VOLTAGE IVOLTSI

160

1S0

200

Figure 2. Typical Reverse Current*

!-100°C

4
SINE WAVE- ~
3
SQUARE WAVE--;, 4../
2
/
1
/5
./ ./
0
,/
dc~
9
/10 /
/
/'
S f - I--lpK/lAV = 20
V.,
/'
7
./V
/ / /
6
.,V ......./ 1/
5
/' V/, . /
4
TJ =1175°C f ./ 0- /
3
::.h:;:: ~
/
2

I

i"""'-

o.2

0.2

0.4
0.6
0.8
VF, INSTANTANEOUS VOLTAGE IVOLTSI

~~

1~

1.4

1.2

2345678
IFIAVI, AVERAGE FORWARD CURRENT IAMPSI

Figure 1. Typical Forward Voltage

6

4

"

3
TJ = 175°C
2
1
110

120

RATEb VOLT1GE AJPLlED
ROJA I= SoofiW I

5
3_

"-

SINEWAV'0..
OR
SQUARE WAVE

'"""""

5

JOUNT~D

I"-

~~

2

wt;;i. t{c
,

SINE
OR
11--- f----- SrUARE jAVE

5

!'\.~c

~

130
140
150
160
TC, CASE TEMPERATURE lOCI

10

Figure 3. Average Power Dissipation

RATED VOtTAGE A~PLlED
RruC = 6°C/W-

0
100

40

=

!o-- TJ = 25°C

o. 3

o

100°C

-,-

*The curves shown are typical for the highest voltage deVice In the voltage
grouping. TYPical reverse current for lower voltage selections can be
estimated from these curves If VR is suffiCient below rated VR.

I. 'III

3

o.1

-

1500C

/. /

5

175°C

TJ

~

170

5
0

1S0

20

40

SURFACE
ON I
MIN. PAD SIIZE REC1OMMENDEDTJ = 175°C

~

, r-.....

~ b..

60
SO
100 120 140
TA, AMBIENTTEMPERATURE lOCI

160

Figure 5. Current Derating. Ambient

Figure 4. Current Derating. Case

3-276

lao

200

MURD305, MURD310, MURD315, MURD320

MINIMUM PAD SIZES
RECOMMENDED FOR
SURFACE MOUNTED
APPLICATIONS

lK
500

I

TJ = 25'C- -

w

u

z
"" 100

~

6.7
0.265

I~

300

~ 200

50

r--

30
20
10

o

~'"-

M

10

20

30

40

50

60

70

80

90

100

_

VR, REVERSE VOLTAGE (VOLTS)

Figure 6, Typical Capacitance
0090 0.090

OUTLINE DIMENSIONS

·£11 lE:1'1.
· t*Y
~~~~Kt
A

,

2

F

3

't' ' ' ' -;1.f

~II~ ~

STYLE 3
PIN 1 ANOOE
2 CATHODE
3 ANODE
4 CATHODE

z

u

--

t

,--ICf

DIM
A
B
C

D
E
F
G

H

J
K
NOTES.
1. SURFACE "T" IS BOTH A DATUM AND A
MOUNTING SURFACE
2. DIMENSIONING AND TOlERANCING PER ANSI
Y14 5M, 1982.
3 CONTROLLING DIMENSION' INCH

L
S
U

CASE 389A·04
PLASTIC

3-277

V
W
y
Z

MILUMETERS
MIN
MAX

MIN

597
622
~)3
6.35
2.19
238
069
088
0.97
106
0.88
084
4.58 BSC
2.29BSC
6.4S
0.58
2.89
2.59
127
0.89
5.21
545
0.51
1.14
0.77
084
094
4.32
3.69

0245
0235
0250
0265
0066
0094
0.027
0035
0042
0038
0.025
0035
0.160 BSC
0.090 Bse
0.023
0.018
0.114
0.102
0035
0050
0205
0215
0.020
0030
0045
003)
0033
0.170
0.145

INCHES

MAX

•

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

Switch mode Power Rectifiers
DPAK Surface Mount Package
• .. designed for use in switching power supplies, inverters and as free wheeling diodes,
these state-of-the-art devices have the following features:

MURD605CT
MURD61 OCT
MURD615CT
MURD620CT

• Ultrafast 35 Nanosecond Recovery Time
• Low Forward Voltage Drop
• Low Leakage

ULTRAFAST
RECTIFIERS
6 AMPERES
50 TO 200 VOLTS

Mechanical Characteristics
• Case: Epoxy, Molded
• Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily
Solderable
• Lead Formed for Surface Mount
• Available in 16 mm Tape and Reel or Plastic Rails
• Compact Size
• Dual Rectifier Single Chip Construction
• Lead Temperature for Soldering Purpose: 260°C for 10 Seconds

ATliODE
_
ANODE
CATHODE,...
ANODE v
CASE 369A-G4
PLAS11e

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Voltage
(TC = 145°C, Rated VR)

VRRM
VRWM
VR
Per Diode
Per Device

Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz, TC = 145°C)

MURD

Symbol

Unit

605CT

610CT

615CT

620CT

50

100

150

200

Volts

IF(AV)

3
6

Amps

IF

6

Amps

IFSM

63

Amps

TJ, Tstg

-65 to + 175

°c

Per Diode

Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, 60 Hz)
Operating Junction and Storage Temperature
THERMAL CHARACTERISTICS PER DIODE
Thermal Resistance, Junction to Case
Junction to Ambient (1)

9
80

ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage Drop (2)
iF = 3 Amps, TC = 25°C
iF = 3 Amps, TC = 125°C
iF = 6 Amps, TC = 25°C
iF = 6 Amps, TC = 125°C

vF

Maximum Instantaneous Reverse Current (2)
(TJ = 25°C, Rated de Voltage)
(TJ = 125°C, Rated de Voltage)

iR

Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Amps/p.s, VR = 30 V, TJ = 25°C)
(IF = 0.5 Amp, iR = 1 Amp, IREC : 0.25 A. VR = 30 V, TJ

trr

Volts
1
0.95
1.2
1.1
p.A
5
250

= 25°C)

(1) Ratmg applies when surface mounted on the minImum pad size recommended.
(2) Pulse Test: Pulse Width ~ 300 p.O, Duty Cvcle '" 2%.

3-278

ns
35
25

MURD605CT, MURD610CT, MURD615CT, MURD620CT

100

100
0

TJ - 175°C

~

~

10

i

0

150°C

a:

=>
w

'"
ffi

/.

0

tf:v

0.00 1

f

II'/'

o

1:1

5

20

40

60
SO
100 120 140
VR, REVERSE VOLTAGE (VOLTS)

//11

'/1 I

3

1/1 / /

1

14

~

~ 12

Q

J

150°C_

-I-

O. 3

,,, ,

u;

i5
'"
a:

...-- TJ

/

~

"

~

lW

MO

~O

1~

S

10

1.5

~

1

~

«
iF

~

170

ISO

TC, CASE TEMPERATURE (OC)

I
MIN. PAD SIZE RECiMMEiDED-

.........

o

20

40

60

TJ

de

SINEWAVE ....:::::::
OR
SQUARE WAVE

0.5

0

= SO°CIW

SUR~ACE M~UNTEb ON

............

-...... :::-----

~
~

~
~O

-

2.5

~

..... ~

110

ROJA

>-

iD
a:

ac

1

6

RATED VOLTAGE1APPLIEb

~ 3.5

de

'"'-

I
4

~

a:

""" ~

= 175°C f--

Figure 3. Average Power Dissipation (Per Leg)

R8JC = 9°CIW
TJ = 175°C_ f - -

SINEWAV0
OR
SQUARE WAVE

TJ

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

RATED VOL'rAGE AP~LlED

""'-..

V'

'/" ./'

2

Figure 1. Typical Forward Voltage (Per Leg)

~

L

Vdc

/.

;E 04fll'

1.4

1.2

/'

WAVE;

/.~ P"

'i

0.4
0.6
O.S
1
vF, INSTANTANEOUS VOLTAGE (VOLTS)

WA~
/

/ / .// / '
1 / 1// ~L
J
/ ~
V/ V~ V

~

II

0.2

/

/

w

= 25°C

L

/

/

S

~

10rC

J

= 20

0-

..-

O. 1

Ip/lAV

10 -

!;;:

J
175°C_

200

5/ SINE-. ~SQUARE

J

10,

z

7
5

ISO

Figure 2. Typical Leakage Current* (Per Leg)

/

/'

160

*The curves shown are tYPical far the highest voltage deVice In the voltage
groupmg. TYPical reverse current for lower voltage selections can be
estimated from these curves If VR is sufficient below rated VR.

1/ /11

2

0
100

V

0.0 1

2~oC _

-

Ji:

L

7

o

f-

~ o. 1

0

-

100°C

1

u

0

t-............

~

~

= lWC

~

SO
100
120
140 160
TA, AMBIENT TEMPERATURE (OCI

ISO

Figure 5. Current Derating. Ambient (Per Leg)

Figure 4. Current Derating. Case (Per Leg)

3-279

200

MURD605CT, MURD610CT, MURD615CT, MURD620CT

0

o\
0
7

TJ

MINIMUM PAD SIZES
RECOMMENDED FOR
SURFACE MOUNTED
APPLICATIONS

= 25°C

\

67
0.265

\

I

~I

3

I

10

20

30
40
50
60
70
VR. REVERSE VOLTAGE (VOLTSI

80

90

100

Figure 6. Typical Capacitance (Per Leg)

.l!.I

I-.. --l

1- -I

00631

2.3

i-l!1 0063

23

0.090 0090

OUTLINE DIMENSIONS

STYLE 3
PIN 1 ANODE
2 CATHODE
3 ANODE
4 CATHODE

DIM
A
B
C

D
E
F

G
H
J

U

4.58 BSC
229BSC
6.46
058
259
2.89
089
1.27
521
5.46
0.51

o.n

1.14

W
Y
Z

0.84
4.32
369

0.94
-

K

NOTES
1. SURFACE "T" IS BOTH A DATUM AND A
MOUNTING SURFACE
2 DIMENSIONING AND TOLERANCING PER ANSI
Y14 SM. 1982
3 CONTROLLING DIMENSION. INCH

d·,

i

L
S

v
CASE 369A-04
PLASTIC

3-280

MIWMETERS
MIN
MAX
5.97
6.22
635
6.73
2.19
238
069
088
0.97
106
064
0.88

INCHES
MIN
MAX
0235
0245
0.250 0.265
0086 0.094
0.027
0035
0038 0042
0.025 0.035
0.180 Bse

0090 BSC
0023
0.114
0.050
0215
0020
0.030 0.045
0.033
0.037
0170
0.145
0018
0102
0035
0205

SD41 See Page 3·73
SD51 See Page 3·77
SD241 See Page 3·110

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

R710lPT R712XPT
R7111PT R714XPT
SWITCHMODE POWER RECTIFIERS

ULTRAFAST RECOVERY
RECTIFIERS
... designed for special applications such as dc power supplies,
Inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete
line of fast recovery rectifiers having typical recovery time of 150
nanoseconds providing high efficiency at frequencies to 50 kHz.

o

Dual Diode ConstructIOn

o

1500 C Operating Junction Temperature

30 AMPERES
50 to 400 VOLTS

MAXIMUM RATINGS
Symbol

Maximum

Unit

VARM
VRWM
VA

50
100
200
400

Volts

10

30
15

Amps

IFRM

50

Amps

Nonrepetitive Peak Surge Current Per Diode
(Surge applied at rated load conditions
hallwave, single phase, 60 Hz)

IFSM

150

Amps

Operatmg Junction and Storage Temperature

TJ, Tstg

-65 to +150

°C

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
Average Rectified Forward Current

IRated VRI TC = 100°C

R710XPT
R711XPT
R712XPT
R714XPT
Per Device
Per Diode

Peak Repetitive Forward Current. Per Diode

STYLE 1:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. CATHODE

(1 Second at 60 Hz. TC = 1000 Cl

THERMAL CHARACTERISTICS PER DIODE
Symbol

Maximum

Unit

Thermal Resistance, Junction to Case

ROJC

15

°C/W

Thermal Resistance. Junction to Ambient

ROJA

40

°C/W

Characteristic

ELECTRICAL CHARACTERISTICS PER DIODE
Characteristic
Instantaneous Forward Voltage (1)
(IF

=15 Amp. TC = 25°C I

Instantaneous Reverse Current (1)

Maximum

Unit

vF

130

Volts

'R

(Rated de Voltage, TC = 1OO°CI
(Rated de Voltage, TC =25°C)
Reverse Recovery Time

(IF

Symbol

trr

rnA

= 1 0 Ampere to VR =30 Vdcl

(1) Pulse Test Pulse Width = 300

~s.

Duty Cycle

~

20%

3-281

DIM
A
B
C
D
E
G
H
J
K
L
N
Q

10
0015
100

NOTES
1 OIMENSIONING ANO TOLERANCING PER ANSI
Y145M,1982
2. CONTROLLING DIMENSION INCH

ns

MIWMETERS
MIN
MAX
2032
2108
1549
1590
419
508
102
165
135
165
521
572
265
294
038
064
1270
1549
1588
1651
1219
1270
404
422

INCHES
MIN
MAX
0800 0830
0610 0626
0165
0200
0040 0065
0053 0005
0205 0225
0104 0116
0015 0025
0500 0610
0625 0650
0480 0500
0159 0166

CASE 340-02
T0-218AC
PLASTIC

•

R710XPT,R711XPT, R712XPT, R714XPT
FIGURE 1 - TYPICAL FORWARD VOLTAGE

FIGURE 2 - TYPICAL REVERSE CURRENT

~IOOO

HI4

:;

FTr IS00C

~

50

!i:

~

..

~

30

a

TJ = 150°C

20

!

10

Ii:

~

70

ffi

50

z

~

30

~

20

"/

.......:

I

III

1

06

F

1000 C

f= f:: SOoC
F r= 2SoC

/25°C

1

/
04

12SDe

7S oC

1/

/

!£. 10

./

r--

/

125°C

/

~

-::?

.....

I

100
08

10

12

o

14

400
200
300
SOD
VR. REVERSE VOLTAGE (VOLTS)

100

Yf. INSTANTANEOUS fORWARD VOLTAGE (VOLTSI

700

600

FIGURE 4 - TYPICAL CAPACITANCE
FIGURE 3 - CURRENT DERATING - TOTAL UNIT
500

1k I
I
I
IP = 1T (Re..st,y. Loadl f AV
I

~

'-'

~v

r\

z
;5

Squa;. Way.

13

r", \ /

" ~ N" ,\
\
I- (CapaClt,Ye Loadl
I

::t[".::
~

~Pk = 2{. o. ~ {'
IAV

1

I

120

100

~ ..\

70

140

160

r-.... ......

...........

't--.

200

de

"'" ~

I

100

80

;t
;3
u

300

, r--.

50
10

20

30

FIGURE 5 - POWER DISSIPATION - TOTAL UNIT

'00
90

z

c

ii; 80

..ii:

'"§

10

i

60

'"
~

f-w
d30 f--

;;; 30

'"
is

~ 40

~

10

'"ffi
20

25

70 100

IIchcycllofsurge

H-u

III'

1\ 1\

f\

20

30

35

40

'f(AVI' AVERAGE fORWARD CURRENT (AMPSI

3-282

o
'0

t--

1-----1-, CYCLE

r"'- ....

IIII

0

>

15

50

VRRM may be applied betwten

.....

~ 50

~ 20
~

10

30

I
I I I
, ,
1111
Pnor to surge, thl rlCtlh"
I I
IS Opt,atld such that TJ '" 150 0 C.

~

!;i

~

'"SE'"

20

FIGURE 6 - MAXIMUM SURGE CAPABILITY

~ 40r----r--~r---.---_.----.---_.----r_--,

w

10

VR. REVERSE VOLTAGE (VOLTSI

TC. CASE TEMPERATURE (OCI

~

50 70

r-.....

1111
20

30

SO 70 10
20
30
NUMBER OF CYCLES AT 50 Hz

50

70 'DO

Zener Diode Data Sheets

4-1

1/4M2.4AZIO

thru

MOTOROLA

-

SEMICONDUCTOR

1/4MI05Z10

TECHNICAL DATA

1/4 WATT

SILICON ZENER DIODES
2.4-105 VOLTS

114 WATT SILICON ZENER DIODES

HermetIcally sealed, all-glass case wIth all external surfaces corrosion resIstant. Cathode end, indicated by color ba nd, WIll be posItive
with respect to anode end when operated In the zenerregion. These
devices are rn the same 400 mW glass package as the 1 N746 and
1 N957 Serres, but designated 114 Watt to allow characterrzatlon
at a dIfferent test current level

NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN A
AND B HEAT SLUGS, IF ANV, SHALL BE
INCLUDED WITHIN THIS CYliNDER, Bur

MAXIMUM RATINGS

Junction anp Storage Temperature -65°C to +175°C

NOT SUBJECT TO THE MINIMUM LIMIT

A'"

DC Power DISSIpatIon 1/4 Watt (Derate 1 67 mW/oC Above 25°C)

2 LEAD DIAMETER NOT CONTROLLED IN
ZONE F TO ALLOW FOR FLASH, LEAD

The type numbers speCIfIed have a standard voltage (Vz) tolera nee of ±1 0%
For closer tolerances, add suffIX "5" for ±5%, (3%, 2%, 1% tolerances also
avaIlable)

FINISH BUllDUPAND MINOR IRREGU
LARITIES OTHER THAN HEAT SLUGS
3 POLARITV DENOTED BY CATHODE BAND
4 DIMENSIONING AND TOlERANCING PER

ANSIY145,1913
MILLIMETERS

aIM MI.
A

INCHES

MAX MI.

MAX

0120
0060
0018

0200
0090
0022

'08
1\1
229
•0 '0'
046
05.
-

-

121
F
K 2540 3810 1000 1500
All JEDEC dlm..Slonsand notes apply

ELECTRICAL CHARACTERISTICS ITA

CASE 299-02
DO-204AH
GLASS

=25°C, VF =1 5 V max @ 100 rnA)
Maximum
Test
Current
(IZT)mA

Zener
Impedance
(ZZT)@IZT
Ohms

Maximum

Type No.

Nominal
Zener
Voltage @ IZT
(VZ) Volts

DC Zaner
Current
(IZM)mA

IR Max
(IlA)

1/4M2.4AZ10
114M2.7AZI 0
1/4M3.0AZ10
1I4M3.3AZ10
114M3.6AZI 0

2.4
2.7
30
33
3.6

10
10
10
10
10

60
60
55
55
50

70
65
60
55
52

75
75
50
50
50

*VR1 - Test Voltage for 5% Tolerance DeVice

Reverse Leakage Current
Test Voltage Vdc'
VR1
VR2
1
1
1
1
1

1
1
1
1
1

VR2 - Test Voltage for 10% Tolerance DeVice

4-2

•

1/4M2.4AZ10 thru 1/4M105Z10

ELECTRICAL CHARACTERISTICS ITA = 25°C. VF = 1.5 V max @ 100 mAl

Maximum

Type No.

Nominal
Zener
Voltage @ IZT
IVzl Volts

Test
Current
(lZTlmA

1/4M3.9AZ10
1 14M4.3AZI 0
1/4M4.7AZ10
1/4M5.1AZ10\
1/4M5.6AZ10

3.9
4.3
47
5.1
56

10
10

1/4M6.2AZ10
1/4M68Z10
1/4M75Z10
1/4M82Z10
1/4M9.1Z10

62
68
7.5
8.2
91

Zener
Impedance
IZZTI@IZT
Ohms

Maximum
DC Zener
Current
(lZMlmA

Reverse Leakage Current
IR Max
II'AI

Test Voltage Vdc·
VRl
VR2

10
10

50
45
35
25
20

49
46
42
39
36

25
25
10
5
5

1
1.5
15
1.5
1.5

1
15
15
15
15

10
92
83
7.6
69

15
70
8.0
90
10

33
33
30
26
24

5
150
75
50
25

3.5
52
57
62
6.9

3.5
4.9
54
59
66

10
5
5
5
5

76
84
9.1
99
10.6

72
80
8.6
94
101

10

1/4Ml0Zl0
1/4MllZl0
1/4M12Z10
1/4M13Z10
1/4M14Z10

10
11
12
13
14

63
57
52
48
45

11
13
15
18
20

21
19
18
16
15

1/4M15Z10
1/4M16Z10
1/4M17Z10
1/4M18Z10
1/4M19Z10

15
16
17
18
19

4.2
3.9
37
35
33

22
24
26
28
30

14
13
125
115
11.0

5
5
5
5
5

114
122
130
13.7
144

108
115
122
130
137

1/4M20Z10
1/4M22Z10
1/4M24Z10
1/4M25Z10
1/4M27Z10

20
22
24
25
27

31
28
26
25
23

33
40
46
50
58

105
95
90
80
7.5

5
5
5
5
5

152
167
182
190
206

144
158
173
180
194

1/4M30Z1O
1/4M33Z10
1/4M36Z10
1/4M39Z10
1/4M43Z10

30
33
36
39
43

21
19
17
16
15

70
85
100
120
140

70
65
60
50
48

5
5
5
5
5

228
251
274
297
32.7

216
238
259
281
310

114M45Z1 0
1/4M47Z10
1/4M50Z10
1/4M52Z10
1/4M56Z10

45
47
50
52
56

14
13
12
12
11

150
160
180
200
230

45
4.3
41
40
38

5
5
5
5
5

342
358
380
395
426

324
33.8
360
374
403

1/4M62Z10
1/4M68Z1 0
1/4M75Z10
1/4M82Z10
1/4M91Z10

62
68
75
82
91

10
092
083
0.76
0.69

290
350
450
550
700

33
3.0
28
25
2.3

5
5
5
5
5

471
51.7
56.0
62.2
692

446
490
54.0
590
65.5

100
105

063
060

900
1000

20
1.9

5
5

76.0
79.8

720
756

1/4Ml00Z10
1/4Ml05Z10

"VR 1 - Test Voltage for 5% Tolerance DeVice

VR2 - Test Voltage for 10% Tolerance DeVice

SPECIAL SELECTIONS AVAILABLE INCLUDE
1 - Nommal zener voltages between those shown
2 - Matches sets (Standard Tolerances are ±5 0%, ±3 0%, ±2 0%, ±1 0%) dependmg on voltage per deVice.
s Two or more Units for serres connection with specified tolerance on total voltage. Senes matched sets make possible higher zener voltages and
provide lower temperature coefficients, lower dynamiC Impedance and greater power handling ablhty

b Two or more Units matched to one another with any specified tolerance

3 - Tight voltage tolerances 1 0%. 20%. 30%.

4-3

MOTOROLA

-

1.5KE6.8, A thm 1.5KE250, A
See Page 4·59

SEMICONDUCTOR

TECHNICAL DATA

Designers Data Sheet

lN746 thru lN759
lN957A thru lN986A
lN4370 thru lN4372

500-MI LLiWATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES
• Complete Voltage Range - 2.4 to 110 Volts
• 00-35 Package - Smaller than ConventIonal 00-7 Package
• Double Slug Type Construction
• MetallurgIcally Bonded Construction
• Oxide Passivated Die
Designer's Data for "Worst Case" Conditions
The Designer's Data sheets permit the design of most circuits
entirely from the informatIon presented. Limit curves - representing
boundanes on devIce characterIStICS - are given to facilitate
"worst case" design.

GLASS ZENER DIODES
500 MILLIWATTS
2.4-110 VOLTS

MAXIMUM RATINGS
Symbol

Rating
DC Power OISSlpatlon @ TL

or;:;;;

50 oC,

Lead Length· 3/S"
*JEDEC Registration

·Derate above TL

= sooe

Motorola DeVice Ratings

Derate above T L =

Unit

Value

Po

sooe

Operating and Storage Junction
Temperature Range
*JEOEC Registration

400

mW

3.2

mW/oC

500

mW

333

mW/oC

°c

TJ, Tstg

-65 to +175
-65 to +200

Motorola DeVice Ratings

*Indlcates JEDEC Registered Data.

MECHANICAL CHARACTERISTICS
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:
from case for 10 seconds

230°C. 1/16"

FINISH: All external surfaces are corrosion resistant With readIly solderable leads.
In zener mode, cathode
will be POSItIve WIth respect to anode.

POLARITY: Cathode IndIcated by color band. When operated

NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN A
AND B HEAT SLUGS, IF ANY, SHALL BE
INCLUDED WITHIN THIS CYLINDER, BUT
NOT SUBJECTTD THE MINIMUM LIMIT

MOUNTING POSITION: Any
STEADY STATE POWER DERATING

~

07

J

-MOTOROLA
z
DEVICES
<>
i= 05

~

0;

04

~

~
;5
x

5

./'"

>- +8
0

:ii

V ~V

U

u:

lJ-- ....... V

+6 0

w

8
w

'">-=>

g
~>-

./

+4 0

0

/ ' V ....... k'

+2 0

/ V
OI"- l--" '/

N -2 0 ...........
1

~

-4 0
20

~V

0

~ ::;;..-'1'

........-:: :::::;..---

0

VZ@IZT

~

40

30

50
60
70
BO
90
VZ. ZENER VOLTAGE (VOLTS)

10

11

12

20
30
50
Vz. ZENER VOLTAGE (VOLTS)

u

-

VZ@IZ
t-TA °25 0 C

:ii
u

~

A

+20
2dmA

8

~~

y

w

'">-=>

..& ~

-20

-40
30

40

-- .......

OV BIAS

-

200

~100
w
u

z

50

,..

1 0 V BIAS

<:
>U 20

........

;;:

501l,jlOF
Vz BIAS

~ 10

u'

50

BELOW 3 VOLTS AND ABOVEcB VOLTS
CHANGES IN ZENER CURRENT 00 NOT
AFFECT TEMPERATURE COEFFICIENTS
60

50

TA o25 0 C
_

1'10 mA

NOTE

N

~

~

son

..-

V...,<
V r--O 01 mA

/ ,h

g
~
>-

100

1000

;;
>-

70

FIGURE 5 - TYPICAL CAPACITANCE

FIGURE 4 - EFFECT OF ZENER CURRENT

+40

V @ 'ZT

RANGE

0

RANGE

+60

5

........-:: ~

70

20

BO

10
10

20

10

50

Vz. ZENER VOLTAGE (VOLTS)

20

50

100

VZ. ZENER VOLTAGE (VOLTS)

FIGURE 6 - MAXIMUM SURGE POWER
100
Vi

>><:
~

70
50
30

'"~

20

w

10

~

'"'"
~

'"

~

.;,

o.~

.....

f';;;;: ':~t~~:tYi

v

r-

r--.

-r--

1==10"~CLE

70
50
30

-- -

r- r- h
I'::::

I I I I

10
001

J JJI005

002

I--

f-- 211"" DUTY CYCLE

20

RECTANGULAR
WAVEFORM
TJ -25 0 CPRIORTO
INITIAL PULSE

1 V 91 V NON REPETITIVE
I I
I I I '!.I.~
2 4 V-l0 V NON REPETITIVE

01

02

05

10

20
50
PW. PULSE WIDTH (m,)

ThIS graph represents 90 percent, I data pomts
For worst case deSIgn charactensllI::s, multiply surge power by 2/3

4-7

10

20

r- ,..~

50

100

ll- f--.

200

500

1000

1N746 thru 1N759, 1N957A thru 1N986A, 1N4370 thru 1N4372

FIGURE 8 - EFFECT OF ZENER VOLTAGE
ON ZENER IMPEDANCE

FIGURE 7 - EFFECT OF ZENER CURRENT
ON ZENER IMPEDANCE
1000
Vz

500

e~
w

~'"

50

~

~

"'

200
100

'"z'"
>

100 0
700
500

TJ 25 DC
,zllm,) 0 lIZld,)

27V

0

'-'

z

0

r-...

'I.

I"'-

47 V

u;

'"'"

1 60 Hz
0

~
w

8'"
~

I"'-

'-'
;;

;;

62V

10

1 60 Hz
0

~== E50m

'-' 10
z
7
50

27 V

20

TJ - 25 DC
Iz{rms} OIIZld,)

-lz"IOmA
20 0

>
c

c 50
N

N

\

0 - 1--.20 m

\

10
70
50

N

N

20

0

10
01

02

05

50
10
20
10
IZ. ZENER CURRENT ImA)

FIGURE 9 - TVPICAL

~JOISE

20

50

0
10

100

DENS!TY

20

20
30
50 70 10
Vz. ZENER VOLTAGE IVOLTS)

30

FIGURE 10 - NOISE DENSITY

MEASUREMEi~T

50

70

METHOD

10 000
IZ 250"A ~
~
TA 25 DC
0

5000

-

_2000

Filter

l~ 1000

True

fO=20kHz

11 = 10kHz
f2=30kHz
BW = 2.0 kHz

~

> 500

.3

>
200
f-

RMS

V out

Volt
Meter

in 100

~

c

w
~

20

'"

10

z
z

NOise Density
(Volts Per Square Aoot Bandwidth)

50

0

Where

50
20
10

= Overall

V out
Gain

VBW

BW", Filter BandWidth (Hz)
V out = Output NOise (Volts RMS)

The input voltage and load resistance are high so that the zener
diode IS driven from a constant current source The amplifier is
low nOise so that the amplifier nOise IS negligible compared to

o

20

40

that of the test zener The frlter bandpass

100

80

60

FIGURE 11 - TYPICAL FORWARD CHARACTERISTICS
1000
_ MINIMUM
500
MAXIMUM
(",00'"

1200

I

~ 100

'"B 50
~ 20 f-I-- =75 0 C
~

~

10

~

50

//~

V'
./

-'

II

150 DC

25 DC

"-

20
10
04

,
'V:

IV

I

'f r-t-- ODC

/
05

IS

known so that the

nOise density can be calcu lated from the formula shown

Vz. ZENER VOLTAGE IVOLTS)

06
07
08
09
VF. FORWARD VOLTAGE IVOLTS)

4-8

10

11

100

1N746 thru 1N759, 1N957A thru 1N986A, 1N4370 thru 1N4372
FIGURE 12 - ZENER VOLTAGE versus ZENER CURRENT - Vz = 1 THRU 16 VOLTS

0

I / II I I I

0

/

")~~ I
I

I

/

I

I

II
TA = 25 0C

I

I

{Ii'
I (/ /I)

.IP /1)/ II

00 10

20

30

40

50

60

70

I 80

90

10

11

12

13

14

15

16

VZ, ZENER VOLTAGE (VOLTS)

FIGURE 13 - ZENER VOLTAGE versus ZENER CURRENT - Vz = 15 THRU 30 VOL TS
0

0

I I I

:;LJ II

I

/

I

1

00 1
15

16

17

18

19

20

21
22
23
24
VZ, ZENER VOLTAGE (VOLTS)

25

26

27

28

29

30

FIGURE 14 - ZENER VOLTAGE versus ZENER CURRENT - Vz = 30 THRU 105 VOL TS
10

1/

II

/

/1 /

(

LJ
LI

/

I

1

1

00303540

45

50

55

60
65
70
75
VZ, ZENER VOLTAGE (VOLTS)

4-9

80

85

90

95

100

105

IN821,A IN823,A
IN825, A IN827, A •
IN829,A

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

TEMPERATURECOMPENSATED
SILICON ZENER
REFERENCE DIODES

Designers Data Sheet

6.2V,400mW

TEMPERATURE-COMPENSATED ZENER
REFERENCE DIODES
Temperature-compensated zener reference diodes utilIZing a
nitride passivated JunctIOn for long-term voltage stability A rugged,
glass-enclosed. hermetically sealed structure
Designer's Data for "Worst-Case" Conditions
The Designers Data Sheet permits the design of most CirCUitS
entirely from the information presented. Limit data - representing
device charactenstic boundaries - are given to facilitate "worstcase" design.

MAXIMUM RATINGS
Junction Temperature -55 to +17SoC
Storage Temperature -65 to +17SoC
DC Power DISSipation 400 mW @ T A

= 50°C

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed, all-glass
DIMENSIONS: See outline drawing

FINISH:

All external surfaces are corrOSion resistant and leads are readllv
solderable and weldable.

POLARITY: Cathode ond,cated by polarity band
WEIGHT: 0 2 Gram (approx)
MOUNTING POSITION: Any

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.
Vz = 6.2 V ± 5.0%* @ IZT = 7.5 mAl
JEDEC

Type No.

Maximum
Voltage
Change
~Z (Volts)

(Nole
1N821
1N823
1N825
1N827
1N829
1N821A
1N823A
1N825A
1N827A
1N829A

1)

0096
0.048
0.019
0009
0005
0096
0048
0.Q19
0009
0.005

Ambient
Test

Temperature

°c
±1°C
-55,0, +25. +75. +100

Maximum

Temperature
Coefficient
%/oC
(Note 1)

Dynamic
Impedance
ZZT Ohms
(Note 2)
15

001
0.005
0.002
0.001
00005
001
0005
0.002
0001
0.0005

j
10

!

-Tighter-tolerance Units available on special request.

MILLIMETERS
MIN
MAX
305
508
152
229
046
056
F
127
K 2540 3810

INCHES
MIN
MAX
0120 0200
0060 0090
0018 0022
0050
1000 1500
All JEDEC dlmen~onsand notes apply

DIM
A
B
0

-

-

CASE 299-02

D0-204AH
GLASS

4-10

1N821,A,1N823,A, 1N825,A,

1N829,A

1N82~A,

MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(with IZT = 7.5 mA ±O.Ol mAl (See Note 3)
lN821 thru lN829

FIGURE la

FIGURE lb

/

51NB21.A/

75r------r----~~--_r----_r----~--_1~

0

/
/

5

I I
J /

0

}

0

0

-5 0
-1 0

V

I/

/'
1// .........
~..........

""
\ "
\\
\ \
\ \

-2 0

\
\

\

-2 5 1NB21.A\
-55

./

1NB25.A

/'"

1NB27.A

/'

/'

/I /

--+----+----+----+1

-100.~--c~-_b_-~~==:::::r:===±::==:::J
-55

I

I /

-1 5
-75f------'-·----p.,.

/lNB23.A

-.........

...- ,......

..........

"""""

~

1NB29.A

r---

1NB29.A

r-...

1NB27.A

i'-..

\
\

.............

1NB23.A

\

""

"-

50

1NB25.A

100

TA. AMBIENT TEMPERATURE (DC)

ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE
(At Specified Temperatures)
(See Note 4)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INOICATEO BY THE CURVES

FIGURE 3 - lN821A SERIES

FIGURE 2 -lN821 SERIES
10

10
+100 OC

90

:<:

~

~

+100 oC

90

BO

~ 75

.s...

IZT

~

a

'"G

70

BO
75
70

ffi

'"
w

(5 60
N

(5

.!9

.!9

N

50

60

50

25

40
-75

50

AVZ. MAXIMUM VOLTAGE CHANGE (mV)

50
AVZ. MAXIMUM VOLTAGE CHANGE (mV)

(Referenced to IZl = 7 5 mAl

(Referenced to IZT

4-11

=

7 5 rnA)

1N821,A, 1N823,A,1N825,A, 1N827,A, 1N829,A
MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT
(See Nole 21
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.

FIGURE 4 -1N821 SERIES

FIGURE 5 - 1N821A SERIES

1000
80 0
;;; 60 0
~ 400
o

100 0
800
'" 600
5!! 40 0

~ 20 O~"

~

~ I~ 0

~

O~

~
~

~

60
40

~

w

~
N

N~

0

I0

-55°C

~ 80

~F::

40
0

N

10

~

80
60
40

'" 6 0

~

40

'"N

0

'"N

N

10
10

N

20

40

60 80 10

20

40

0

~
~
'"

25°C

~~

~0

'"w
~

i.-lOOOC

20
10

60 80100

25 0 C
~

~ ~~OOIOC
-55°C

r--;:::

0

10
10

I
20

40

IZ. ZENER CURRENT (mAl

60 80 10

20

40

60

80100

lZ. ZENER CURRENT (mAl

NOTE 1.

NOTE 3

Voltage Vanatlon (.~.... VZ) and Temperature CoeffiCient

These graphs can be used to determine the maximum voltage change
of any deVice rn the series over any specific temperature range For
example. a temperature change from 0 to +50o C will cause a volt·

All reference diodes are characterized by the "box method" ThiS
guarantees a maximum voltage variation (AVZ) over the specified
temperature range, at the specified test current tlZT), venfied by
tests at indIcated temperature POints Within the range. Vz IS meas·

ured and recorded at each temperature specified The.6. Vz between
the highest and lowest values must not exceed the maximum fj, Vz
given ThiS method of indicating voltage stability IS now used for
JEDEC registration as well as for military qualification. The former

method of Indicating voltage stability - by means of temperature
coefficient -accurately reflects the voltage deviation at the tempera·
ture extremes, but IS not necessarily accurate Within the tempera·
ture range because reference dIodes have a nonhnear temperature
relationship The temperature coefficient, therefore, IS given only
as a reference.
NOTE 2.

The dynamic zener Impedance, ZZT. IS denved from the SO-Hz ae
voltage drop Which results when an ac current with an rms value
equal to 10% of the dc zener current, IZT, is superimposed on IZT
Curves shOWing the variation of zener impedance With zener current
for each serres are given in Figures 4 and 5.

age change no greater than +31 mV or -31 mV for 1N821 or 1N821A.

as Illustrated by the dashed lines rn Figure 1. The bou ndaries given
are maximum values. For greater resolution, an expanded view of
the shaded area in Figure 1a IS shown in Figure 1b
NOTE 4

The maximum voltage change, ilVZ, Figures 2 and 3 is due en·
tlfely to the Impedance of the deVIce. If both temperature and IZT

are varied, then the total voltage change may be obtained by graph·
Ically adding IlVZ

In

Figure 2 or 3 to the IlVZ

In

Figure 1 for the

device under consideration. If the device IS to be operated at some
stable current other than the specified test current, a new set of
characterrstics may be plotted by supenmposing the data rn Figure 2
or 3 on Figure 1 For a more detailed explanation see AN·437
(Application Notel

4-12

lN957A thru lN986A

MOTOROLA

-

SEMICONDUCTOR

See Page 4·4

TECHNICAL DATA

lN987A
thru
lN992A

Advance Infor:rn.ation

400-MI LLiWATT

CONSTANT-VOLTAGE REFERENCES FOR
120 thru 200-VOL T APPLICATIONS

SILICON ZENER
DIODES

o 400-Mlillwatt
o Guaranteed Low Zener Impedance
o Guaranteed Low Leakage Current
o Controlled Forward CharacterIStics
o Temperature Range. -65 to +175 0 C
o No Heat Sink Required

MAXIMUM RATINGS
Rating
DC Power DISSlpatlon@ TL - 500

e

Derate above T L ::: 500 e
Operating and Storage Junction Temperature Range

Symbol

Value

Po

400

mW

32

mW/oC

-6510+175

uc

TJ, T stg

Untt

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed all glass case
DIMENSIONS: See outlme drawing

FINISH: All external surfaces are corrosion resistant with readily solderable leads

POLARITY: Cathode end mdlcated by color band When operated

In

zener region,

the cathode end will be positive with respect to anode end
WEIGHT: 0 2 grams (approx )

NOTES
, PACKAGE CONTOUR OPTIONAL WITHIN A AND B
HEAT SLUGS, IF ANY, SHALL BE INCLUOED
WITHIN THIS CYLINDER. BUT NOT SUBJECT TO
THE MINIMUM LIMIT OF B
2 LEAD DIAMETER NOT CONTROLLED IN ZONE FTO
ALLOW FOR FLASH. LEAD FINISH BUILDUP AND
MINOR IRREGULARITIES OTHER THAN HEAT
SLUGS
3 POLARITY DENOTED BY CATHODE BANO
4 OIMENSIDNING AND TDLERANCING PER
ANSIYI45, '973

MOUNTING POSITION: Any

FIGURE 1 - POWER OISSIPATION

.slOz

700

o

~ 600

~

500

'"

~ 400

!i'
~ 30 0

~
...........

~

~ 200

r-....

................

'"~ 100
50

75

100
125
150
175
TA, AMBIENT TEMPERATURE lOCI

MilliMETERS
MIN
MAX
305
508
'52 229
046
056
'27
2540
3810

INCHES
MIN
MAX
0120
0200
0060
0090
0022
00'8
0050
1000
1500

All JEDEC dlmensJons and notes apply

~

;e

25

DIM
A
B
D
F
K

200

This document contains Information on a new product Specifications and Information herein
are subject to change without notice

4-13

CASE 299-02
DO-204AH
GLASS

•

1N987A thru 1N992A

ELECTRICAL CHARACTERISTICS
Nominal
Zener Voltage

(TA = 25 0 C, VF = 1.5 V max at 200 mA for all types)

Maximum Zener Impedance
Test

Maximum DC

(Note 5)

Zener Current

IR Maximum
I'A
5.0
5.0
50
5.0
50
5.0

Type
Number
(Note 1)

Vz
(Note 2)
Volts

Current
IZT
mA

ZZT@IZT
Ohms

ZZK@IZK
Ohms

IZK
mA

IZM
(Note 41
mA

1N9B7A
1N9BBA
1N9B9A
1N990A
1N991A
1N992A

120
130
150
160
180
200

1.0
0.95
085
080
068
0.65

900
1100
1500
1700
2200
2500

4500
5000
6000
6500
7100
8000

0.25
0.25
025
0.25
0.25
0.25

25
2.3
20
19
17
15

NOTE 1 - TOLERANCE AND VOL TAGE

Maximum Reverse Current

(Note 3)

DES!G~!ATIO~J

Test Voltage Vdc
5%
10%
VR
91.2
9B 8
114
1216
1368
152

B64
93.6
108
115.2
1296
144

i.OTE 3 - ZENER IMPEDANCE {ZZI DERIVATION

Tolerance Designation
The tolerance designations are as follows.
Suffix A: ± 10%

The zener Impedance IS derived from the 60 cycle ae voltage.
which results when an ae current having an rms value equal to 10%
of the de zener current (lZT) IS superimposed on IZT
A cathode ray oscilloscope curve test IS used to Insure that
each zener diode breakdown regIon begms at a low current level

Suffix B: ±5%
Suffix C: ±2%
Suffix 0: ±1%

and that zener voltage remams nearly constant to a current level

Nominal zener voltage IS measured with the device Junction
thermal equ Ilibnum with ambient temperature of 25°C

In

excess of 12M.

NOTE 2 - ZENER VOLTAGE (VZI MEASUREMENT
In

NOTE 4 - MAXIMUM ZENER CURRENT RATINGS (lZM)

Maximum zener current ratings are based on the maximum
voltage of a 20% Unit. For closer tolerance Units (10% or 5%) or
units where the actual zener voltage (VZI IS known at the
operating pOint, the maximum zener cutrent may be Increased
and IS limited by the derating curve.

NOTE 5 - REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed only for 5% and 10%
400 mW Silicon zener diodes and are measured at VR as shown
on the table.

4-14

IN2970A

MOTOROLA

-

•

thru

SEMICONDUCTOR

TECHNICAL DATA

IN3015A
10 WATTS

ZENER DIODES
ZENER DIODES

Dlffused·junctlon zener diodes for both military and high·
reliability Industrial applications. Available with anode·to·case
and cathode·to·case connections (standard and reverse
polarity), I.e., 1N2970 and 1N2970R. Supplied with mounting
hardware.

GAJ-l

The type numbers shown have a standard tolerance of ± 10% on the
nominal zener voltage. Add suffix "B" for ±S% Units. (2% and 1% tal·
erance also available.)

~B
=-1

--

D
Q

R

,

!-~p

~ 1

LL

cJ~~-++=

J ~
,.."uo,.,.

MAXIMUM RATINGS

DIM
A
B
C
D
E
F
J
K

Junction and Storage Temperature: -65"C to + 175"C.
DC Power Dissipation: 10 Watts. (Derate 83.3 mW'"C above 55 "C).

P
Q

R

ELECTRICAL CHARACTERISTICS

Type No.
lN2970A
lN2971A
lN2972A
lN2973A
lN2974A
lN2975A
lN2976A
lN29nA
lN2978A
lN2979A
IrVR1 -

Nominal
Zanor Voltage
VZ@ Izr
Volt.
6.8
7.5
8.2
9.1
10
11
12
13
14
15

MILUMETERS
MAX
MIN
1181
1077
1109
1018
635
153
1.91
444
11SO
1071
1514 1031
414
480
1.53
141
674 1076

unless otherwise noted,
VF= 1.5 V max @ IF =2 amp on all types.)
Max Zaner Impedance
Zzr @ Izr
Ohm.
1.2
1.3
1.5
2.0
3
3
3
3
3
3

Test Voltage for 5% Tolerance Devlca. VR2 -

ZZK @ IZK
Ohms
500
250
250
250
250
250
250
250
250
250

IZK
rnA
10
10
1.0
1.0
10
10
1.0
1.0
1.0
1.0

Max DC Zaner
Currant
IZMmA

t

INCHES
MIN
MAX
0505
0414 0437
0405
0150
0060
0075 0175
0411 0453
0600 0800
0153 0189
OOSO 0095
0165 0414

STYLE l'
TERM 1 CATHODE
1 ANODE
STYLE 1
TERM 1 ANODE
1. CATHODE

CASE 56-03
Do-203AA
METAL

fTc = 25·C

T•• I
Currant
Izr
rnA
370
335
305
275
250
230
210
190
180
170

J

2 -

Max. Reverse Currant·

IR Max

VRl

VR2

(,A)

1,320
1,180
1,040
960
860
780
720
860
800
580

150
75
50
25
10
5
5
5
5
5

52
5.7
6.2
6.9
7.6
8.4
91
9.9
10.6
11.4

4.9
5.4
59
66
7.2
8.0
8.6
9.4
10.1
10.8

Test Voltage for 10 % Tolerance Device. No Leakage Specified as 20% Tolerance DeVice.

4-15

1N2970A thru 1N3015A

ELECTRICAL CHARACTERISTICS (TC=25°C unless otherwise noted, VF= 1.5 V max @ IF =2 amp on all types.)

Type 1'10.

Nominal
Zener Voltage
VZ@ IZT
Volts

lN29BOA
lN29B2A
lN29B3A
lN29B4A
lN2985A
lN2986A
lN2988A
lN29B9A
lN2990A
1N2991 A
lN2992A
lN2993A
lN2995A
lN2996A
lN2997A
lN299BA
lN2999A
lN3000A
1N3QOl A

lN3002A
lN3003A
lN3004A
lN3005A
lN3006A
lN3007A
lN300BA
lN30D9A
lN3010A
lN3011A
lN3012A
lN3014A
lN3015A
·VRl -

16
18
19
20
22
24
27
30
33
36
39
43
47
50
51
52
56
62
68
75
82
91
100
105
110
1:20
130
140
150
160
180
200

Tesl

Max Zener Impedance

Current

IZT
mA
155
140
130
125
115
105
95
85
75
70
65
60
55
50
50
50
45
40
37
33
30
28
25
25
23
20
19
18
17
16
14
12

ZZT @ IZT
Ohms
4
4
4
4
5
5
7
8
9
10
11
12
14
15
15
15
16
17
18
22
25
35
40
45
55
75
100
125
175
200
260
300

Test Voltage for 5% Tolerance Device VR2 -

ZZK @ IZK
Ohms
250
250
250
250
250
250
250
300
300
300
300
400
400
500
500
500
500
600
600
600
700
800
900
1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,850
2,000

IZK
mA
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

Max DC Zener
Current
IZMmA

Max. Reverse Current *
IR Max

VR1

VR2

122
137
144
152
167
182
206
228
251
274
297
327
358
380
388
395
426
471
517
560
622
692
760
798
836
912
988
1064
1140
1216
1368
1520

115
130
137
144
158
173
194
216
238
259
281
310
338
360
367
374
403
446
490
540
590
655
720
756
792
864
936
1008
1080
1152
1296
1440

(,.A)

530
460
440
420
380
350
300
280
260
230
210
195
175
165
163
160
150
130
120
110
100
85
80
75
72
67
62
58
54
50
45
40

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

Test Voltage for 10 %, Tolerance Device No Leakage Specified as 20% Tolerance Device

4-16

lN3016A thru lN3051A

MOTOROLA

-

SEMICONDUCTOR

See Page 4-21

TECHNICAL DATA

lN3305A thru
lN3350A
6.BV thru 200V

lN4549A thru
lN4556A

ZENER DIODES

3.9V thru 7.5V
Units are available with anode·to·case and cathode·to·case
connections (standard and reverse polarity). For reverse polarity,
add suffix "R" to type number.
50 WATTS

ZENER DIODES

MAXIMUM RATINGS
Junction and Storage Temperature: - 65'C to + 175'C.
DC Power Dissipation: 50 Watts. IDerate 0.5
above 75'C).
TOLERANCE DESIGNATION: The type numbers shown have a standard
tolerance of ± 10% on the nominal zener voltage. Add suffix "S" f"r ± 5%
units. (2% and 1% tolerance also available.)

wrc

CASE 58·01
(stud package)
METAL

4-17

•

1 N3305A thru 1 N3350A, 1N4549A thru 1 N4556A
ELECTRICAL CHARACTERISTICS (T c
Nominal
Zenar

SO Watt
Ca.e 58

lN4549A
lN4550A
1N4551 A
1N4552A
lN4553A
lN4554A
lN3305A
lN4555A
lN3306A
lN4556A
lN3307A
lN3308A
lN3309A
1N3310A

lN3311A
lN3312A
lN3313A
lN3314A
lN3315A
lN3316A
lN3317A
lN3318A
lN3319A
lN3320A
lN3321A
lN3322A
lN3323A
lN3324A
lN3325A
lN3326A
lN3327A
lN3328A
lN3329A
lN3330A
lN3331A
lN3332A
lN3333A
lN3334A
lN3335A
lN3336A
lN3337A
lN3336A
lN3339A
lN3340A
1N3341 A
lN3342A
lN3343A
lN3344A
lN3345A
lN3346A
lN3347A
1N3348A

lN3349A
lN3350A

Test

Voltage Current
@Izr
(lzr)
(VZ) Vou. mA
39
4.3
47
5.1
56
62
68
68
75
75
82
91
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
30
33
36
39
43
45
47
50
51
52
56
62
68
75
82
91
100
105
110
120
130
140
150
160
175
180
200

3200
2900
2650
2450
2250
2000
1850
1850
1700
1650
1500
1370
1200

1100
1000
960
890
830
780
740
700
660
630
570
520
500
460

420
380
350
320
290
280
270
250
245
240
220
200
180

170
150
140
120
120
110
100
95
90
85
80
70
68
65

30'C unless otherwise specified, VF

Max Zener Impedance

Max DC Zenor

1.5 V max @ 10 A on all types.)
ReverseLeakage Current

Current
75°C Case Temp

Typical
Zener

(IZM)mA
Zzr @ Izr

ZZK @ IZK = SmA

ohms

ohms

016
016
0.12
012
0.12
014
02
016
03
024
04
05
06
08
10
11
12
14
16
18
20
22
24
25
26
27
28
30
32
35
40
45
45
50
5.0
52
55
6
7
8
9
11
15
20
25
30
40
50
60
75
80
85
90
100

400
500
600
650
900
1000
70
200
70
100
70
70
80
80
80
80
80
80
80
80
80
80
80
80
80
90
90
90
90
90
90
90
100
100
100
100
100
110
120
140
150
160
180
200
210
220
240
275
325
400
450
500
525
600

IRMax

VRI

VR2

0.5
0.5
1.0
1.0
1.0
2.0
45
2.0
5.0
3.0
54
6.1
67
84
91
99
106
114
122
130
137
14 <1
152
167
182
190
206
22.8
25.1
27.4
297
32.7
342
35.8
380
38.8
395
42,6
47.1
51.7
56.0
622
692
76.0
79.8
83.6
91.2
988
106.4
114.0
121.6
133.0
1368
152.0

05
05
10
1.0
10
2.0
4.3
20
47
30
5.2
57
63
80
86
94
10.1
108
115
122
130
13.7
14.4
158
173
180
194
216
23.8
259
281
310
324
338
36.0
367
374

Voltage
Tamp. Coott.
%/oC

(JJ\)

11900
10650
9700
8900
8100
7300
6600
6650
5900
6050
5200
4800
4300
3900
3600
3300

3000
2800
2650
2500
2300
2200
2100
1900
1750
1550

1500
1400
1300
1150

1050
975
930
880
830
810
790
740
660
600
540
490
420
400
380
365
335
310
290
270
250
230
220
200

150
150
100
.20
20
20
150
10
75
10
50
25
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

'VRI - Test Voltage for 5% Tolerance Device
VR2 - Test Voltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device

4-18

403

44.6
490
54.0
59.0
65.5
72.0
75.6
792
864
936
1008
108.0
115.2
126.0
129.6
1440

025
- 025
.010
015
.030
040
040
045
045
,053
.048
051
055
060
065

065
.070
070

070
075

075
.075
075
080
.080
.080
085
085

085
085
090
090
.090
.090
.090
090
090
.090
.090
.090
.090
090
090
.090
.095
.095
.095
.095
.095
.095
.095
.095
.095
.100

1N3305A thru 1N3350A, 1N4549A thru 1N4556A

FIGURE 1 - TEMPERATURE CHARACTERISTICS
30
10

@
~

~

~ Iz

I

30

~

5
~
§'

,."

10

V

03

,;


1.0

'-'

L.- V

I-

40

~

30

0

'-'

/.'"

20

a:: 1.0

V

=>

~

-10

I-

-20

~ -30
~

I---

/"

w

~

V

I

60

i1i

~ 200

,/

~
oS 50
;:;

FIGURE 3 - TEMPERATURE COEFFICIENT-RANGE
FOR UNITS 10 TO 220 VOLTS

./

V

/

L

/

1

-

~

./

;:;

~
8
w
!5

RANGE

/

70

V

30

60

10

80

90

10

11

10

o

12

/,

RA~GE

./

rl

20

40

60

VZ. ZENER VOLTAGE@IZT (VOLTS)

II

80

FIGURE 4 - TYPICAL VOLTAGE REGULATION

70

~ 50

~ 30 f------

'"o~

20

'"ffi

10

IZ '"

V

a 1 IZM to 0 5 IZM

>

N

,,/'

~ 01

~ 05

'"Z

;2

./

03

\

'-' 02

~

/

1\

01
20

100

120

140

VZ. ZENER VOLTAGE@IZT (VOLTS)

10

~

30

50

10

20

30

50

100

200

VZ. ZENER VOLTAGE AT IZT (VOLTSI

FIGURE 5 - MAXIMUM REVERSE LEAKAGE
(95% OF THE UNITS ARE BELOW THE VALUES SHOWN)
100
.- -

E

lODES NOT INCLUDE lN3828, 1N3829, AND 1N3830j

50
TA

125·C_

I"\,
TA

25·C:

100

150200

01
30

50

30

10

NOMINAL Vz (VOLTS)

4-24

~

1//

15l 50

,..,

/ /

'"~

/

--

./
./

50

~

N
;;

40

100

'/

I-

ffi

V

30

J....V

'-'

50

160

180

200

1N3821 thru 1N3830, 1N3016A thru 1N3051 A

FIGURE 6 - TYPICAL THERMAL RESPONSE L. LEAD LENGTH = 3/8 INCH
100

~

0=,0,5

f-

0=02

t-

0-01

,/'

I-

t - 0- 0 05
t - 0-002

DUTY CYCLE, 0 .,/12
SINGLE PULSE "TJL 'JLh)PPK
REPETITIVE PULSES"TJL - 'JL(I, O)PPK

l - INOTE

10

0003 0005

001

Below 0 1 Second, Tnermal

:

~t1
:
~t2~I
,

to any Lead length Il)

StGI E rUi SE

Hi

PPK

Response Curve IS Applicable

f-

0=001

r-JLJL
I--- :

003

I

11111
01

005

03

05

I
50

10

I, TIME (SECONDS)

FIGURE 7 - TYPICAL THERMAL RESISTANCE

/'

~

0

PRIMARY PATH OF I
CONDUCTION IS THROUGH
THE CATHODE LEAD

./
V

/'

k:"

/'

V

0

/'

V

/'
1/4

1/8

3/8

1/2

5/8

7/8

3/4

10

L, LEAD LENGTH TO HEAT SINK (INCH)

FIGURE 8 - MAXIMUM NON-REPETITIVE SURGE CURRENT
400 0

I JJ

300 0

DIFFUSED JrCTI'DN
DEVICE
0

1. I I I

I.PULSES~UA~E
WAVE PULSE
WIDTH = 0 01
ms

0

DUTY CYCLE = 0%
TL = 50°C ±2oC@3/8"

.....

-

0

......

600

I

-

r--

.1.1 J.l

"ALLO'Y JUNICTlD'N dEJ,dE

40 0
20

30

50

70

10

-I

llill

20

30

50

VZ,ZENERVDLTAGE (VOLTS)

4-25

70

LUll

I I

30

10

100

200

30

50

100

L
200

1N3821 thru 1N3830, 1N3016A thru 1N3051 A

FIGURE 9 - SURGE POWER FACTOR

1'~~RI1I111IB~~~

~~~~~~ci:EOR~~~~Z:~:~~C:A~~~1°~u~~~~g:'~~~:T~;;r:
0.5
D' 0
SURGE CAPABILITY AT DIFFERENT PULSE WIDTHS AND DUTY
0.3i---+-f-H-+++W_d-+-+--H-H-I+--+--+-+-++-++CYCLES THE lOX REFERENCE POINT IS 001 m,AT 0% DUTY
CYCLE
0.2i---+-f-H-+++tt-----j--'''I'-'""'=-H-H-I+--+--+-+-++-+-h-r---+-t-H-+tt-tt----t---t--t-t-t-t-t+f

. . . . r--..

O'I§iII~~r--gamm~.

007
005

~

::-....

0031---+-f-H~++tt--~~~~±3-H-I+--+--+-+-++-+T+t---F~~H-+tt-tt----t---t--t-t-t-t-t+f

0.02t--+---+-+-H-+t+t---t-+-H+-t++\-I-----===r-+--c+-t++t---t--+r"'---j-I'-.-A-..t:t-t---t--H-t--j-tffi
001
O~

0.005
0.003
0002

!~!!1!1I~00~5~~1I~1!;;1I1r-~1r-1~!!1I!~~-!l~!t1l

0001 001

U

02

0.03 0050.07 0.1

0.3

05 0.7 10

3D

50 70 10

3D

SQUARE WAVE PULSE WIDTH (m,)
FIGURE 10 - TYPICAL CAPACITANCE

10.000
5000

TJ=25 DC-

2000

~
'~"'

Vz =39 V

Or-

100

S.2 V

500

U

~ 200
.; 100
0

....

27 V

r--

56V

0
10

02

~

91V=

05

50 10 20
1.0 2.0
YR. REVERSE VOLTAGE (VOLTS)

4-26

50

200 V
100 200

50 70 100

300

500 700 1000

lN3993

MOTOROLA

-

•

THRU

SEMICONDUCTOR

lN4000

TECHNICAL DATA

10WATIS
ZENER DIODES

ZENER DIODES

Low-voltage, alloy-junction zener diodes in hermetically sealed
package with cathode connected to case_ Supplied with mounting hardware.

MAXIMUM RATINGS
Junction and Storage Temperature· -65·C to + 175·C.
DC Power Dissipation· 10 Watts. (Derate 83.3 mW'·C above 55·C).

The type numbers shown in the table have a standard tolerance on the
nominal zener voltage of ± 10%. A standard tolerance of ± 5% on individual units is also available and is Indicated by suffixing "A" to the
standard type number.

ELECTRICAL CHARACTERISTICS (TB = 30·C ± 3,
VF 1.5 max @ IF

=

Type No.
1N3993
lN3994
lN3995
lN3996
1N3997
1N3998
lN3999
1N4000

Nominal
Zenar
Voltage
vz@ Izr
Volts
3.9
43
47
5.1
56
6.2
6.8
7.5

Test
Currant
Izr
mA
640
580
530
490
445
405
370
335

STYLE 1
TERM 1 CATHODE
2 ANODE

I~~

R

A

=2 amp for all units)

Max
DC Zener
Current
zzr@ Izr ZZK @ IZK=1.0 mA IZMmA
Ohms
Ohms
20
400
2380
15
400
2130
1940
12
500
11
550
1780
600
1620
10
1.1
750
1460
1.2
SOD
1330
1210
1.3
250

Max Zener Impedance

ff

¢\l

Reverse
Leakage Current
DIM

IR

""

100
100
50
10
10
10
10
10

VR
Volts
0.5
0.5
1.0
1.0
1.0
2.0
20
30

A
B

MIlliMETERS
MIN
MAX

1194
1077

C
0
E
F

J

191
152
1072

1283
11.10
1029
635
445

P

-

4.14
152

1151
20.32
480

R

-

1077

K

n

INCHES
MIN
MAX

0470
0424

-

0075
0060
0422
0163
0.060

-

0453
0800
0189
0424

All JEDEC dimenSions and notes apply

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

CASE 56-02
DO-203AA

METAL

4-27

0505
0437
0405
0250
0175

MOTOROLA

-

IN4099 thl1l IN4135 •
IN4614 thl1l IN4627

SEMICONDUCTOR

TECHNICAL DATA

SILICON
ZENER DIODES

LOW-LEVEL SILICON PASSIVATED ZENER DIODES

(±5.0% TOLERANCE)

designed for 250 mW applicatIOns reqUiring low leakage, low
Impedance, and low nOise.
• Voltage Range from 1 8 to 100 Volts
•

First Zener Diode Series to Specify NOise Conventional Diffused Zeners

50% Lower than

250 MILLIWATTS
1.8-100 VOLTS
SILICON OXIDE
PASSIVATEO JUNCTION

• Zener Impedance and Zener Voltage Specified for Low-Level
Operation at IZT = 250 p.A
• Low Leakage Current-IR fromO 01 to 10 p.A over Voltage Range

MAXIMUM RATINGS
Rating

Symbol

Value

Umt

Po

250
143

mW/oC

-65 to +200

°C

DC Power DISSipation @ TA:;: 25°C

Derate above 25°C
Junction and Storage Temperature Range

TJ, Tstg

mW

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed, all-glass
DIMENSIONS

See outlme drawmg

FINISH All external surfaces are corrosion resistant and leads are readily solder·
able and weldable
POLARITY: Cathode indicated by polarity band
WEIGHT. 02 gram (approx I
MOUNTING POSITION. Any

NOTES
I PACKAGE CONTOUR OPTIONAL WITHIN A
AND B HEAT SLUGS, IF ANY, SHALL BE
INCLUDED WITHIN THIS CYLINDER, BUT
NOT SUBJECT TO THE MINIMUM LIMIT
OF B
LEAD DIAMETER NOT CONTROLLED IN
ZONE F TO ALLOW FOR FLASH, LEAD
FINISH BUILDUP AND MINOR IRREGU·
LARITIES OTHER THAN HEAT SLUGS
3 POLARITY DENOTED BY CATHODE BAND
4 DIMENSIONING AND TOLERANCING PER
ANSI Y14 5, 1973

POWER TEMPERATURE DERATING CURVE

:i:

400

.§.
:z 350
0

~

300

'-'

....
0
0

0:
..,

..,

30

i'.

0:

:::>

~

..,
0:

~

Q.

'"
0

i'- ~115

~

>

20

~

~

!,!

~

.........

...........

i::

..........

in

15
0

10

I'-.. -....!.N4124
............

w

'"0z

z

0

o

o

75

100

125

150

175

200

I, ZENER CURRENT !}tAl

4-30

I'-- I'--.. ...

-- - -

225

250

275

300

1N4099 thru 1N4135, 1N4614 thru 1N4627

FIGURE 4 - TYPICAL FORWARO CHARACTERISTICS
1000
__ MINIMUM
500
MAXIMUM
[....00'
200

FIGURE 3 - TYPICAL CAPACITANCE

1000
TA =250C

500

r--.., 0 V BIAS

200

~100

~

«
....

"-

1

I'..

~
~ 50
c
a:

I'....

~~

50% OF
Vz BIAS

10

~

50

20 f--~750C

I--

10

50

20

20

10
10

10
20

50

10

20

50

:'-1/

I

§ tOO

V'B'~S

50

~ 20

~

I0

100

04

150°C

I

"""

,/

If

1/

25 DC

'\:

.r

//f

IN

oDe

I

/
05

'r r-t--

I

06

07

08

09

VF. FORWARO VOLTAGE (VOLTS)

Vz. ZENER VOLTAGE (VOLTS)

4-31

10

II

_ _____

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

IN4370 thm IN4372
See Page 4·4

~------------~

IN4549A thru IN4556A
See Page 4-17
LOW-LEVEL TEMPERATURE-COMPENSATED
ZENER REFERENCE DIODES

lN4565 thru lN4584

Highly reliable reference sources utilizing a passivated junction for longterm voltage stability. Glass construction provides a rugged, hermetically
sealed structure.

•

Low Power Drain Devices Specified @ 0.5 rnA, 1.0 rnA. 2.0 rnA,
and 4.0 rnA

•

Maximum Voltage Change Specified over Test Temperature
Range

•

Temperature Compensation Guaranteed over Two Standard
Operating Temperature Ranges'

REFERENCE DIODES
LOW LEVEL
TEMPERATURE-COMPENSATED
ZENER
lN4565 thru lN4584

o to 75°C
-55 to 100°C

MAXIIl/iUM RATINGS

NOlES
1 PACKAGE CONTOUR OPTIONAL WITHIN AAND B

Rating
DC Power DISSipation @ TA " 50°C
Derate above 50°C
Junction and Storage Temperature Range

Symbol

Value

Unit

PD

400

32

mW
mW/oC

TJ, Tstg

-65 to +175

°C

HEAT SLUGS, IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER, BUT NOT SUBJECT TO
THE MINIMUM LIMIT Of B
2 LEAD DIAMETER NOT CONTROLlED IN ZONE FTO
ALLOW FOR fLASH, LEAD fiNISH BUILDUP AND
MINOR IRREGULARITIES OTIiER THAN HEAT
SLUGS
3 POLARITY DENOTED BY CATHODE BAND
4 DIMENSIONING AND TOLERANCING PER
ANSIY145,1973

MILUMETERS
MAX

305

508

0120

,

151

119

0060

D

'46

'56
117

0018

K

2540

A
B

MECHANICAL CHARACTERISTICS

INCHES

".

DIM

'""

MIN

'000

MAX

CASE 299-02
DO-204AH

'021
0050
'500

GLASS

''060
20'

A1IJEDECdlmeRSlonslndnotesappl'(

CASE. Hermettcally sealed. all-glass
DIMENSIONS: See outline drawing

FINISH: All external surfaces are corroSion resistant and leads are readily solderable and weldable
POLARITY: Cathode indicated by polarity band
WEIGHT: 0 2 gram (approx )
MOUNTING POSITION: Any

4-32

.

1N4565 thru 1 N4584

t:.Vz

(Noto 1)

TYPE

Volts
Mox

@

T•• t
Tomporaturo

·C

Tomporatunt

Dynamic

Coefficient
for Reforenco

Imped.
Ohm.

%/OC
(Not. 1)

(Note 2)

Max

Vz = 6.4 Volts :t 5% (IZT = 0.5 rnA)
1N4565
1N4568
1N4567
1N4568
1N4569
1N4565A
lN4566A
lN4567A
1N4568A
1N4569A

0.048
0.024
0.010
0.005
0.002
0.099
0.050
0.020
0.010
0.005

lN4570
1N4571
1N4572
1N4573
1N4574
1N4570A
1N4571A
lN4572A
lN4573A
1N4574A

0.048
0024
0010
0.005
0.002
0.099
0.050
0.020
0.010
0.005

0, +25,
+75

-55,0,
+25, + 75,
+100

0,01
0.005
0.002
0.001
0.0005
0.01
0.005
0.002
0.001
0.005

200

200

VZ=6.4 Volts :t5% (IZT=1.0 rnA)

0, +25,
+75

-55,0,
+ 25, + 75,
+100

0.01
0.005
0.002
0.001
00005
0.01
0.005
0.002
0001
0.0005

100

100

VZ=6.4 Volts :t5% (IZT=2.0 rnA)
1N4575
lN4576
1N4577
1N4578
lN4579
1N4575A
1N4576A
1N4577A
1N4578A
1N4579A

0.048
0.024
0.010
0005
0.002
0.099
0.050
0.020
0.010
0.005

0, +25,
+75

-55,0,
+25, + 75,
+100

001
0.005
0.002
0.001
0.0005
0.01
0.005
0.002
0.001
0.0005

50

50

Vz = 8.4 Volts :t 5% (IZT = 4.0 rnA)
1N4580
1N4581
1N4582
1N4583
lN4584
1N4580A
1 N4581 A
1N4582A
1N4683A
1N4584A

0.048
0.024
0.010
0.005
0.002
0.099
0.050
0.020
0.010
0.005

0, +25,
+75

-55,0,
+25, + 75,
+100

0.01
0.005
0.002
0.001
0.0005
0.01
0.005
0.002
0.001
0.0005

25

25

NOTE1: Voltage Variation (~VZ) and Temperature Coefficient.
All reference diodes are characterized by the "box method" ThiS guarantees a maxImum voltage vanatlon (dVZ) over the specified
temperature range, at the specified test current (IZ1I, venfled by tests at indicated temperature POints wIthIn the range ThiS method of
indicating voltage stability IS now used for JEDEC regIstration as well as for military qualification The former method of indicating
voltage stability-by means of temperature coefficient-accurately reflects the voltage deViation at the temperature extremes, but IS
not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship The
temperature coeffiCient, therefore, IS given only as a reference.
NOTE 2:
The dynamiC zener Impedance, ZZT. IS denved from the 60 Hz acvoltage drop which results when an ac current With an rms value equal
to 10% of the de zener current, IZT IS superimposed on IZT. A cathode-ray tube curve-trace test on a sample basis IS used to ensure that
the zener has a sharp and stable knee region.

4-33

IN4614 thru IN4627
See Page 4·28

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

lN4678
thru
lN4717

ZENER REGULATOR DIODES
Low level oxide passivated zener diodes for applications
requiring extremely low operating currents, low leakage, and
sharp breakdown voltage.
• Zener Voltage Specified @ IZT = 50

ZENER REGULATOR
DIODES

!LA

250 MILLIWATTS

• Maximum Delta Vz Given from 10 to 100 /LA

ABSOLUTE MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

250

167

mW
mW/oC

-65 to +175

°c

DC Power DISSipation @ T A - 50°C
Deratp above T A == 50°C

Operating and Storage Junction Temperature Range

TJ.Tstg

MECHANICAL CHARACTERISTICS
CASE: Hermetically sealed all glass case,
DIMENSIONS: See outline drawing

FINISH: All external surfaces are corrosIon reSistant with readily
solerable leads
POLAR lTV: Cathode end Indicated by color band, When operated '" zener
region, the cathode end will be pOSitive with respect to anode
end
WEIGHT: 0.2 grams (approx )
MOUNTING POSITION: Any.

FIGURE 1 - POWER TEMP,ERATURE DERATING CURVE

I
z

c

~

300

gj

C 250

'"~

~

l'-..

200

w

~ 150
~

~

e

f'...

10 0
0
0
25

50

75

'"'"

100

125

l'::::

150

NOTES
PACKAGE CONTOUR OPTIONAL WITHIN A
AND B HEAT SLUGS, IF ANY. SHALL BE
INCLUOEO WITHIN THIS CYLINDER. BUT
NOT SUBJECTTO THE MINIMUM LIMIT
OF B
LEAD DIAMETER NOT CONTROLLED IN
ZONE F TO ALLOW FOR FLASH. LEAD
FINISH BUILOUPANO MINOR IRREGU·
LARITIES OTHER THAN HEAT SLUGS
POLARITY DENOTED BY CATHODE BAND
DIMENSIONING AND TOLERANCING PER
ANSI Y14 5. 1973
MILLIMETERS
INCHES
MAX
MIN
MIN
MAX
305
508
0120 0200
152
2.29 0060 0090
046
0.56 001B 0022
127
0050
K 2540 3B 10 1.000 1500
All JEDEC dimenSions and notas applv

DIM
A
B
0
F

175

200

TA. AMBIENT TEMPERATURE (DC)

4-34

-

CASE 299-02
DO-204AH
GLASS

•

1N4678 thru 1N4717

ELECTRICAL CHARACTERISTICS ITA = 25°C, VF = 1.5 V max at IF = 100 mA for all type,l
Zener Voltage
Vz @ IZT = 50 I'A
Volts

Type
Number

(Note 1)

Nom (Note 1)

Min

1 N4678
1 N4679
1 N4680
lN4681
lN4682
1 N4683
lN4684
lN4685
1 N4686
lN4687

18
2.0
2.2
2.4
2.7

1.710
1.900
2.090
2.280
2.565

3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
S.7
91
10

2.850
3.135
3.420
3705
4.085
4.465
4.845
5.320
5.890
6460
7.125
7.790
S.265
8.645
9.500

lN468S
lN4689
1 N4690
lN4691
lN4692
1 N4693
lN4694
lN4695
lN4696
1 N4697
1 N4698
lN4699
1 N4700
lN4701
lN4702
lN4703
lN4704
1 N4705
1 N4706
1 N4707
1 N4708
lN4709
lN4710
lN4711
lN4712

11
12
13
14
15

10.45
11.40
12.35
13.30
14.25

16
17
18
19
20

lN4713
lN4714
lN4715
lN4716
lN4717

30
33
36
39
43

15.20
16.15
17.10
18.05
19.00
20.90
22.80
23.75
25.65
26.60
28.50
31.35
34.20
37.05
40.85

22
24
25
27
28

Maximum
Reverse Current

IR I'A
Max
1.890
2.100
2.310
2.520
2.835
3.150
3.465
3.780
4.095
4.515

Test
Voltage

VR Volts
(Note 3)

7.5
5.0
4.0
2.0
1.0

1.0
1.0
1.0
1.0
1.0

0.8
7.5
7.5
5.0
4.0

4.935
5.355
5.880
6.510
7.140
7.875
8.610
9.135
9.555
10.50
11.55
12.60
13.65
14.70
15.75

10
1.0
1.0
1.0
1.0

1.0
1.5
2.0
2.0
2.0
3.0
3.0
4.0
5.0
5.1
5.7
62
6.6
6.9
7.6

0.05
0.05
0.05
0.05
0.05

8.4
9.1
9.8
10.6
11.4

16.80
17.85
18.90
19.95
21.00

0.05
0.05
0.05
0.05
0.01

om

12.1
12.9
13.6
14.4
15.2
16.7
18.2
19.0
20.4
21.2

0.01
0.01
0.01
0.01
0.01

22.8
25.0
27.3
29.6
32.6

10
10
10
10
10

om

23.10
25.20
26.25
28.35
29.40
31.50
34.65
37.80
40.95
45.15

0.01
0.01
0.01

Maximum
Zener Current

IZM rnA
(Note 2)
120
110
100
95
90
85
80
75
70
65
60
55
50
45
35

Maximum

Voltage Change
t>.VZ Volts
(Note 4)
0.70
0.70
0.75
0.80
0.85
0.90
0.95
0.95
0.97
0.99
0.99
0.97
0.96
0.95
0.90

31.8
29.0
27.4
26.2
24.8
21.6
20.4
19.0
17.5
16.3

0.75
0.50
0.10
0.08
0.10

15.4
14.5
13.2
12.5
119
10.8
9.9
9.5
8.8
8.5
7.9
72
6.6
6.1
5.5

0.16
0.17
0.18
0.19
0.20
0.22
0.24
0.25
0.27
0.28
0.30
0.33
0.36
0.39
0.43

0.11
012
0.13
0.14
0.15

NOTES: 1. TOLERANCING AND VOLTAGE DESIGNATION (VZ)
The type numbers shown have a standard tolerance of ±S% on the nominal Zener voltage, C for ±2%, 0 for ±1%.
2. MAXIMUM ZENER CURRENT RATINGS (lZM)
Maximum Zener current ratings are based on maximum Zener voltage of the individual units.
3. REVERSE LEAKAGE CURRENT (lR)
Reverse leakage currents are guaranteed and measured at VR as shown on the table.
4. MAXIMUM VOLTAGE CHANGE IdVz)
Voltage change is equal to the difference between Vz at 100 p.A and Vz at 10 p.A.

4-35

•

lN4728,A
thru
lN4764,A

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

1.0 WATT

ONE WATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES

ZENER REGULATOR DIODES
3.3-100 VOLTS

• Complete Voltage Range - 3.3 to 100 Volts

.00-41 Package
• Double Slug Type Construction
• Metallurgically Bonded Construction
• Oxide Passivated Die
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits
entirely from the information presented. limit curves - representing
boundaries on device characteristics - are given to faciiltate "worst
case" design.
'MAXIMUM RATINGS
RatinG

Value

Unit

1.0
6.67
-65 to +200

Watt

Symbol.

DC Power DISSipation @TA

= 500 C

Po

Derate above 500 e

TJ. Tstg

Operating and Storage Junction
Temperature Range

•
II

mw/oe
°e

MECHANICAL CHARACTERISTICS

r=o
l}'ii

CASE. Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230 D e. 1116"
from case for 10 seconds

K

FINISH: All external surfaces are corrOSion resistant With readily solderable leads
POLARITY: Cathode indicated by color band When operated

In

zener mode, cathode

will be POSitive With respect to anode

MOUNTING POSITION. Anv

'I

F

!

K

~

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
125

~

......

L

I"'.......

'"
z 10
o

~

~ L~AD LE~GTH
TD HEAT SINK

L ~ I"

'-/

DIM
A

L ~ 1/8"

> '<

'

VZ@IZT

~

10

V

.....

~V

......-:::

~

-VZ@IZT

RANGE

70
SO

~

30

N

20

ill
....

r-""

30

20

fE

I'- ~ '/
, , -

30

l-

RANGE

N -2 0
~
-40
20

;:::

w

'"'" ...-(
LV

70
50

U

8

./

0

ill
l-

I-

".

+4 0

=>

/
,....,..

.;.-V V

~ +6 0

~

oS

~

40

50
60
7.0
80
90
VZ, ZENER VOLTAGE (VOLTS)

10

11

20
30
50
VZ, ZENER VOLTAGE (VOLTS)

12

FIGURE 3 - TYPICAL THERMAL RESISTANCE
versus LEAD LENGTH

70

100

FIGURE 4 - EFFECT OF ZENER CURRENT
+60

0
5

--

- -

f-

/"'"

0

/

u

'5;

!--

oS +40
I-

VZ@IZ
-TA' 25°C

-

;:::

..,r-

U

~

+20

h

2JmA

8

cY: /....<

w

5/

'":::>

ill
l-

5

~

/

I-

~

0

.& ~ I'"

-20

~

06
07
08
05
02
03
04
L, LEAD LENGTH TO HEAT SINK (INCHES)

09

10

---

1'001 mA

OmA
NOTE BELOW 3 VOLTS AND ABOVE 8 VOLTS
CHANGES IN ZENER CURRENT 00 NOT
AFFECT TEMPERATURE COEFFICIENTS

N

01

A~
~

-40
30

40

"

50
60
VZ, ZENER VOLTAGE (VOL'TS)

70

80

FIGURE 5 - MAXIMUM SURGE POWER
100

;;;
lI-

70
50

l!O

'"

30

'"~

20

w

10

~

'"'"~
"

~

f;;;: ~CTi

1=11J'~

-I"'---..

30

11 V 91 ,V NpN.R~PE~ITI,V~,!.!,~
/,24 V-l0 V NON·REPETITIVE

....

-

- -

...........

I-

70
50

:--.. r--..

f---- 20% DUTY CYCLE

;. 20

I

10
001

RECTANGULAR
,WAVEFORM
TJ' 25°C PRIOR TO
INITIAL PULSE

Oil!! ~

I I II
002

005

- --

r-- ~

I I I
01

02

05

10

20
50
PW, PULSE WIDTH (m,)

This graph represents 90 percentile data pomts
For worst-case deSign characteristics, multiply surge power by 2/3

4-38

10

20

50

100

200

500

1000

1N4728, A thru 1N4764, A

FIGURE 6 - EFFECT OF ZENER CURRENT
ON ZENER IMPEOANCE

FIGURE 7 - EFFECT OF ZENER VOLTAGE
ON ZENER IMPEDANCE

1000

i

"'

9 200

~ 100

z

:!i

50

~

20

~

~

10

Q

5.0

>

TJ' 25 0 C
,z(rms) = 0.1 IZld,)
1=60 Hz

Vz= 2.1 V

500

......

I'.

;:.:

Tr250 C
,zlrms) = 0 I IZld,)
I· 60H.

-lz=IOmA
200

e

41 V

1""'-

1000
100
500

~ 10
Z
I

27 V

8== F='5.0mA

~

0
5

i!!!
u
:i

I".
6.2 V

I~

0 - 1--20mA
\

i

~

0
0
., 5 0

~

20

0

10
0.1

02

10
20
50
10
IZ. ZENER CURRENT ImAI

05

50

20

2.0

100

2000

"
"~

1000
700
500

,

50 10 10
20 3D
VZ. ZENER VOLTAGE (VOLTS)

TYPICAL LEAKAGE CURREN+AT BO% OF NOMINAL
BREAKDOWN VOLTAGE

-

~

400
300

I'

ZOO

I ... "

Ll
~

100

OV BIAS
1.0 V BIAS

w

~

u

'"'

.

2.0

'"'

::>
u

--

r-...."'" ""10
8

20
10
7.0
5.0

w

~

~
..;

100
70
50

...z

10 100

u

200

<
~

50

FIGURE 9 - TYPICAL CAPACITANCE v...... Vz

FIGURE 8 - TYPICAL LEAKAGE CURRENT
10000
7000
5000

30

50% OF BREAKDOWN BIAS·

4

10
VZ. 'IOr.II'IAL Vz (VOLTS)

1.0

100

w

'"...

~

1.0
0.7
~ 0.5

\

0.2

1\

0.1
0.07
0.05

FIGURE 10 - TYPICAL FORWARD CHARACTERISTICS
1000
___ MINIMUfA
500
MAXIMUM

+125 0 C

,

! 200

r-

~

.,

"

0.01
0.007
0.005

'"' 20

.....

~

~ 10

+250 C

~

0.002
0.001
3.0

100

f::: =15 C

5.0
20

4.0

50

,

- 50
~

~

0.02

~

6.0 7.0 BO 90 10 11 12
VZ. NOMINAL ZENER VOLTAGE (VOLTS)

13

14

IS

4-39

:

I

1.0
0.4

.'"

0

~

'\.

"

0.5

"

V~

./

II

".

1500 C

V

/

,

25 0 C

r-t-. DoC

06
07
DB
09
VF. FORWARD VOLTAGE (VOLTS)

10

1.1

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

1N5221A, B
thru
1N5281A, B

Designer's Data Sheet

500 Milliwatt
Hermetically Sealed
Glass Silicon Zener Diodes
•
•
•
•

GLASS ZENER DIODES
500 MILLIWATTS
2.4-200 VOLTS

Complete Voltage Range - 2.4 to 200 Volts
DO-204AH Package - Smaller than Conventional DO-204AA Package
Double Slug Type Construction
Metallurgically Bonded Construction

Mechanical Characteristics:
CASE: Double slug type, hermetically sealed glass
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case
for 10 seconds
FINISH: All external surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
MOUNTING POSITION: Any
OUTLINE DIMENSIONS

Vi 0.7

_I

~

~ 0.6

~
in

0.5

15

0.4

~

0.3

:;;
:::J
:;;

0.2

~
:;;

0.1

U>

~

,p

o
o

'""
40

_

--1'/8'1-1'/8"1"-

........

"
20

I

Q==

z

0

HEAT

60
SO
100 120 140
TL, LEAD TEMPERATURE lOCI

'"

160

180

~
200

NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B
HEAT SLUGS, If ANY, SHALL BE INCLUDED
WIlHIN THIS CYLINDER, BUT NOT SUBJECT TO
THE MINIMUM LIMIT OF B
2 LEAD DIAMETER NOT CONTROLLED IN ZONE FTO
ALLOW FOR FLASH, LEAD FINISH BUILDUP AND
MINOR IRREGULARITIES OTHER THAN HEAT
SLUGS
3 POLARITY DENOTED BY CATHODE BAND
4 DIMENSIONING AND TOLERANCING PER
ANSIY145,1973

Figure 1. Steady State Power Derating

*MAXIMUM RATINGS
Rating
DC Power Dissipation @ lL
Lead Length = 3/8"
Derate above TL = 75°C

"" 75°C

Operating and Storage Junction Temperature Range

Symbol

Value

Unit

500
4

mW
mWfC

DIM

-65 to +200

°C

D
F
K

Po

TJ, Tstg

*Indlcates JEDEC Registered Data

Designer's Data for "Worst Case" Conditions _ The Designer's Data Sheet permits the design of most cirCUits
entirelv from the Information presented. limit curves - representing boundaries on device characteristics - are

give to facilitate "worst case" design.

4-40

MIWMETERS
A

•

.''05N
'52

'"

'54'

MAlI
5118
'29
056
'27

3810

INCitES

.r<

MAlI

0120

C200
COOl

00£1)
0018

0022

";0

'000 '500

CASE 299-02
DO-2D4AH

1N5221 A, B thru 1N5281 A, B
ELECTRICAL CHARACTERISTICS (TA = 25'C unless otherwise noted. Based on de measurements at thermal equilibrium; lead
length = 3/8'" thermal resistance of heat sink = 30'CIW) VF = I I max @ IF = 200 mA for all types
Max Zener Impedance
Nominal
A and B Suffix only
Zener Voltage
Test
JEDEC
Current
VZ@IZT
Type No.
Volts
ZZT@IZT ZZK @ IZK = 0.25 mA
IZT
(Note 2)
(Note 11
Ohms
Ohms
mA
lN5221
2.4
20
30
1200
lN5222
2.5
20
30
1250
lN5223
2.7
20
1300
30
lN5224
2.8
20
30
1400
lN5225
3
20
29
1600
lN5226
3.3
20
28
1600
lN5227
3.6
20
24
1700
lN5228
3.9
20
23
1900
lN5229
4.3
20
22
2000
lN5230
4.7
20
19
1900
lN5231
5.1
20
17
1600
lN5232
5.6
20
II
1600
lN5233
6
20
7
1600
lN5234
6.2
20
7
1000
lN5235
6.8
20
5
750
lN5236
7.5
20
6
500
lN5237
8.2
20
8
500
lN5238
8.7
20
8
600
lN5239
9.1
20
10
600
lN5240
10
20
17
600
lN5241
II
20
22
600
lN5242
12
20
30
600
lN5243
13
9.5
13
600
lN5244
14
15
600
9
lN5245
15
8.5
16
600
lN5246
16
17
7.8
600
lN5247
17
7.4
19
600
lN5248
18
7
21
600
lN5249
19
6.6
23
600
lN5250
20
6.2
25
600
lN5251
22
5.6
29
600
lN5252
24
5.2
600
33
lN5253
25
5
35
600
lN5254
27
4.6
41
600
lN5255
28
4.5
44
600
lN5256
30
4.2
49
600
lN5257
33
3.8
700
58
lN5258
70
700
36
3.4
lN5259
39
3.2
80
800
lN5260
43
3
93
900
lN5261
47
2.7
1000
105
lN5262
51
2.5
125
1100
lN5263
56
2.2
150
1300
170
1400
lN5264
60
2.1
lN5265
62
2
185
1400
lN5266
68
1.8
230
1600
1700
lN5267
75
1.7
270
2000'
lN5268
82
1.5
330
lN5269
87
1.4
370
2200
lN5270
91
1.4
400
2300
lN5271
100
1.3
500
2600
lN5272
110
1.1
750
3000
lN5273
120
1
900
4000
lN5274
130
0.95
1100
4500
lN5275
140
0.9
1300
4500
lN5276
150
0.85
1500
5000
lN5277
1700
5500
160
0.8
lN5278
0.74
1900
5500
170
lN5279
180
0.68
2200
6000
lN5280
2400
6500
190
0.66
lN5281
0.65
2500
7000
200

4-41

Max Reverse Leakage Current
A and B Suffix only Non-Suffix
IR
itA
100
100
75
75
50
25
15
10
5
5
5
5
5
5
3
3
3
3
3
3
2
1
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

VR
Volts
A
B
0.95
I
0.95
I
0.95
I
0.95
I
0.95
I
095
1
0.95
1
0.95
1
1
0.95
1.9
2
1.9
2
2.9
3
3.3
3.5
3.8
4
4.8
5
5.7
6
6.2
6.5
6.5
6.2
6.7
7
7.6
8
8
8.4
8.7
9.1
9.9
9.4
9.5
10
10.5
11
11.4
12
12.4 13
13.3
14
13.3
14
14.3
15
16.2
17
17.1
18
18.1
19
20
21
20
21
22
23
24
25
27
26
29
30
31
33
34
36
37
39
41
43
44
46
45
47
49
52
56
53
59
62
65
68
66
69
72
76
84
80
86
91
94
99
101
106

0.1
0.1
0.1
0.1
0.1
0.1

108
116
116
130
137
144

114
122
129
137
144
152

IR@VRUsed
for Suffix A

ItA
200
200
150
150
100
100
100
75
50
50
50
50
50
50
30
30
30
30
30
30
30
10
10
10'
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

Max Zener Voltage
Temperature Coeff.
(A and B Suffix only)
IJVZ(%rC)
(Note 3)
-0.085
-0.085
-0.080
-0.080
-0.075
-0.070
-0.065
-0.060
±0.055
±0.030
±0.030
+0.038
+0.038
+0.045
+0.050
+0.058
+0.062
+0.065
+0.068
+0.075
+0.076
+0.077
+0.079
+0.082
+0.082
+0.083
+0.084
+0.085
+0.086
+0.086
+0.087
+0.088
+0.089
+0.090
+0.091
+0.091
+0.092
+0.093
+0.094
+0.095
+0.095
+0.096
+0.096
+0.097
+0.097
+0.097
+0.098
+0.098
+0.099
+0.099
+0.110
+0.110
+0.110
+0.110
+0.110
+0.110
+0.110
+0.110
+0.110
+0.110
+0.110

1 N5221 A, B thru 1 N5281 A, B
NOTE 1. Tole,ance - The JEDEC type numbers shown indicate a tolerance of ± 10% with guaranteed limits on only VZ,IR and VF as shown
in the electrical characteristics table. Units with guaranteed limits on
all six parameters are indicated by suffix "A" for ± 10% tolerance, suffix

"B" for ±5%.

"e" for

±2% and "0" for ± 1%.

NOTE 2. SpecIal Solectlonst Available Includo:
,. Nominal zener voltages between those shown.
2. Two or mors units for series connection with specified tolerance
on total voltage. Series matcl'led sets make zener voltages in' excess of
200 volts possible as well as "providing lower temperature coeffiCients,
lower dynamic impedance and greater power handling ability.
3. Nominal voltages at non-standard test currents.
NOTE 3. Temperature Coefficient (6YZI- Test conditions for temperature coefficient are as follows:
•. IZT = 7.5 rnA. T1 = 25"C.
T2 = 125"C (1N5221A.B through lN5242A.B).
b. IZT = Rated IZT. T 1 = 25"C.
T2 = 125"C (lN5243A.B through lN5272A.B).
Device to be temperature stabilized with current apphed prior to reading breakdown voltage at the specified ambient temperature.
NOTE 4. Zener Yoltage IVZ) Measurement - Nominal zener voltage
is measured with the deVice junction In thermal eqUilibrium at the lead
temperature of 30°C ± 1°C and 318" lead length.
NOTE 5. Zener Impedance (Zz) Derivation - ZZT and ZZK are measured by dividing the ac voltage drop across the device by the accurrent
applied. The specified limits are for Iz(ac) = IZ(dc) With the ac frequency

Surge limitations are given in Figure 7. They are lower
than would be expected by considering only junction
temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in
device degradation should the limits of Figure 7 be
exceeded.

~ 500

h=i=

~

~400
II)

m

-lLHLI--

~ 300

~

c

200

z

100

~
~

2.4-60 '!.....

:::---- "
,/

o
o

=l

--- -

,....0.2

= 60 Hz.

f.~
62-100 V

0.4

-

0.6

O.B

l, LEAD LENGTH TO HEAT SINK (INCH)

tFor more information on special selections contact your nearest
Motorola representative.

Figure 2. Typical Thermal Resistance

APPLICATION NOTE
Since the actual voltage available from a given zener
diode is temperature dependent. it is necessary to determine junction temperature under any set of operating
conditions in order to calculate its value. The following
procedure is recommended:
Lead Temperature, TL, should be determined from:

TL = (lLAPO + TA·
(lLA is the lead-to-ambient thermal resistance ('CIW) and
Po is the power dissipation. The value for (lLA will vary
and depends on the device mounting method. (lLA is
generally 30 to 40'CIW for the various clips and tie points
in common use and for printed circuit board wiring.
The temperature of the lead can also be measured
using a thermocouple placed on the lead as close as
possible to the tie point. The thermal mass connected to
the tie point is normally large enough so that it will not
significantly respond to heat surges generated in the
diode as a result of pulsed operation once steady-state
conditions are achieved. Using the measured value of TL,
the junction temperature may be determined by:
TJ = TL + 4TJL·
4TJL is'the increase in junction temperature above the
lead temperature and may be found from Figure 2 for dc
power:
4TJL = (lJLPO·
For worst-case design, using expected limits of IZ, limits of Po and the extremes of TJ(4TJ) may be estimated.
Changes in voltage, VZ, can then be found from:
4V = IiVZ4TJ.
(lVZ, the zener voltage temperature coefficient, is found
from Figures 4 and 5.
Under high power-pulse operation, the zener voltage
will vary with time and may also be affected significantly
by the zener resistance. For best regulation, keep current
excursions as low as possible.

4-42

10000
7000 '\.
5000
,~
2000

TYPICALLEAKAGEI CUR~ENT 1---,
AT 80% OF NOMINAL
BREAKDOWN VOLTAGE

-

\

1000
700
500
200
100
70
50
20

1
0-

z

~

10
7
5

=>

u
w

'";:l;

1
0.7
0.5
S:

~

\

0.2

+ 125"C

-

,\

0.1
0.07
0.05

\.

0.02

"

0.Q1
0.007
0.005

+ 25'C

0.002
0.001
3

10

11

12

13

VZ, NOMINAL ZENER VOLTAGE (VOLTS)

Figure 3. Typical Leakage Current

14

15

1 N5221 A, B thru 1 N5281 A, B
TEMPERATURE COEFFICIENTS
(- 55·C to

+ 150·C temperature range;

90"'" of the units are in the ranges indicated.)

100
70
§;; 50

+12

i

U

+10

t-

ffi +8
u
it +6

,.,
~ ,.,V

~

u
~

+4

!ii

./

+2

~
:s
I!!

N

-2

>

'"

-4

--:..

V

-

/

r-

" -.. ~

'/

./

V

~
u
~

""..... n

RANG~

E
30
ffi
u 20
it

§

'"
9

........ ::;;...-o'l
RANGE
~ :;.-

10

10

11

12

1
10

-

!Z

~
ttl60

\3
w

:2140
;i1!

--

~

~

,.......
100
120

l...-130

---- -- --

--

f

...tl ~ ,

r--

-4

140
150
160
170
VZ, ZENER VOLTAGE (VOLTS)

180

190

500

200

~

<3

100
70
50

25"C

1 V BIAS

In,w

10

50% OF

~

~1 0
7
5

~u

Vz BIAS

5

TA

25°C

Jil

~20

==

50
20

J

Figure 5. Effect of Zener Current

30

I'.

0.01 rnA

'1 rnA
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS
CHANGES IN ZENER CURRENT DO NOT
AFFECT TEMPERATURE COEFFICIENTS

3

OV BIAS
1'0.

~

........

VZ, ZENER VOLTAGE (VOLTS)

TA

~

~~

/ /Sc

......

Vz@lzr-

-

i--'""'"

y. /..,(

:.-::::.-- f--

1000

U

VZ@IZ
TA = 25°C

20 rnA

Figure 4c. Range for Units 120 to 200 Volts

~

100

+6

gl80

z~

70

Figure 4b. Range for Units 12 to 100 Volts

200

~100

50

Vz, ZENER VOLTAGE (VOLTS)

~

200

30

20

Figure 4a. Range for Units to 12 Volts

~

Vz@lzr

2

Vz, ZENER VOLTAGE IVOLTSI

~ 120

-

:s

/
6

~ f-"""

~~

Vz@lzr

I!!

5

.......:

t-

MAS

3
2
1
120

1
1

10

20

50

100

VZ, ZENER VOLTAGE (VOLTS)

140

160
180
190
VZ, ZENER VOLTAGE (VOLTS)

200

Figure 6b. Typical Capacitance 120-220 Volts

Figure 6a. Typical Capacitance 1-100 Volts

4-43

220

1N5221 A, B thru 1N5281 A, B
100
70
50

~3O

= ~CYIC~

~20
a:

3j

!C

10

~
a:

7

iil

5

~

3

-

.....

11 V-9l V NONREPETlTIVE _I...I.,!
",2.4 V-l'O V NIlNREPErITlVE

F-

....... t-to-.

'-

20% DUTY CYCLE

I I

~2

r--..

r- ~

= 10% DUTY CYCLE

RECTANGULAR
WAVEFORM
TJ 25'C PRIOR TO
INITIAL PULSE

- -

.........

-,..

I I I

~

i"- t::::: ~

I I II

1
0.01

0.05

0.02

0.1

0.5

0.2

10

20

50

100

500

200

1000

PW, PULSE WIDTH (m.)
Figure 7a. Maximum Surge Power 2.4-9 Volts

1000
700
500

1000

~~~

~'00

:;;

25'C

100
tl
z

ffi 70

:;: 50
~ 30
~ 20

<"i

100-200 VOLTS NONREPETITIVE

~

20

~

:;;

«
z

7
5
3
2
1
0.01

10

01

1

100

10

1
01

1000

-"'.
27 V

"

6.2 V

10,000
5000

25'C
,z(rm.} O.lIZ(dc}
f 60 Hz

lmA

IZ
TA

~ 2000

50

100

250pA~

25'C

=

:> 1000

~500

~5mA

I-- 20 rnA

0.51251020

Figure 8. Effect of Zener Current on Zener Impedance

TJ
f--IZ

0.2

IZ, ZENER CURRENT (rnA)

Figure 7b. Maximum Surge Power DO-204AH
100-200 Volts

~

......

15
.ti'

PW, PULSE WIDTH (m.)

~

"

50

~
~

iil, 0

~

200

:I:

Q

11111

TJ 25'C
,z(rm.) O.lIZ(dc}
f 60 Hz

2.7 V

Vz

500

u;

RECTANGULAR
WAVEFORM, TJ

~

iii
c

1\

~

~

z
~

200
100
50
20
10
5
2
1

1

5

7

10

20

30

50

70 100

20

VZ, ZENER VOLTAGE (VOLTS)

40

60

80

Vz, ZENER VOLTAGE (VOLTS)

Figure 10. Typical Noise Density

Figure 9. Effect of Zener Voltage on Zener Impedance

4-44

100

1N5221 A, B thru 1N5281 A, B
1000

___ MINIMUM

500

+
TRUE
RMS
VOLT
METER

~

i;""

I

S 100
>z

~

u

'"

!f2

WHERE BW = FILTER BANDWIDTH 1Hz)
Vout = OUTPUT NOISE IVOLTS RMSI
The input voltage and load resistance are high so that the zener

10

==

5

150'C

20

c

= OVERALLV~~N y'BW

.!f.

diode IS driven from a constant current source. The amplifier IS low
noise so that the amplifier nOise IS negligible compared to that of
the test zener. The f,lter bandpass IS known so that the nOIse density
can be calculated from the formula shown.

/

10

~

.s>-

It.

V

1'1

0,6

/'

..r

V

'"

-,..-.

I

0.7

25'C
O'C

0,8

0,9

VF. FORWARD VOLTAGE (VOLTS)

Figure 12. Typical Forward Characteristics

I

/~~ I
II~ // '/
,~ V / II

~

/
0,5

1
0.4

I

111/

/

75'C

Figure 11. Noise Density Measurement Method
20

/'

50

:::>

NOISE DENSITY
IVOLTS PER S~UARE ROOT BANDWIDTH)

MAXIMUM

200

I I

I

, I

Tl

=

25'~

I

II

~

:::>

u
w

'"
Z
~

.B 01

0,0

/ I

7

1

10

11

12

13

14

15

16

VZ. ZENER VOLTAGE IVOLTSI

Figure 13. Zener Voltage versus Zener Current -

Vz = 1 thru 16 Volts

10

I

I

I

~

.s
>-

V

I

/

'/

fA ='25'C

I

z

~

:::>

u

'"Z

w

~

.B 01

001
15

16

17

18

19

20

21

22

23

24

25

26

27

28

VZ. ZENER VOLTAGE (VOLTS)

Figure 14. Zener Voltage versus Zener Current -

4-45

Vz = 15 thru 30 Volts

29

30

1.1

1N5221A, B thru 1N5281A, B

10

I

III

I

Tl ~ 25°~

( VI

«

f

.'

.s

/ I

I

0-

z

I

~
=>

u

'"
~

~

19

01

001
30

35

40

~

45

~

~

~

m

~

00

~

00

H

~

~

VZ. ZENER VOLTAGE (VOLTS)

Figure 15. Zener Voltage versus Zener Current -

Vz = 30 thru 105 Volts

10

/: r

«

(

.s
0-

i

=>

/' ~/. r

VI If

u

'"
~

~

.....

/~ ::::---

r(

r -

01

19

001
110

120

130

140

150

160

170
180
190
200
Vz. ZENER VOLTAGE (VOLTSI

Figure 16. Zener Voltage versus Zener Current -

4-46

210

220

230

240

Vz = 110-220 Volts

250

260

IN5283

MOTOROLA

l1li

SEMBCONDIUJC1]"(Q)R

•

thru

TECHNICAL DATA

lN5314

CURRENT
REGULATOR
DIODES
CURRENT REGULATOR DIODES

Field·effect current regulator diodes are circuit elements that
provide a current essentially independent of voltage. These
diodes are especially designed for maximum impedance over
the operating range. These devices may be used in parallel to
obtain higher currents.

MAXIMUM RATINGS

Rating

Peak Operating Voltage
(TJ= _55" C to +200"C)
Steady State Power DIssipation
@ TL=75"C

Symbol

Value

pov

Unit

Volts
100

Po

Derate above TL = 75"C

600

mW

48

mW/"C

Lead Length = 3/8"
(Forward or Reverse Bias)
Operating and Storage Junction
Temperature Range

INCHES

MILLIMETERS

DIM

MIN

MAX

MIN

MAX

A
B

0

584
116
046

0230
0085
0018

F
K

1540

761
171
056
117
3810

0300
0107
0011
0050
1500

1000

All JEDEC dLmenslons and notes apply

TJ. Tstg

-55 to +200

"C

CASE 51·02
DO·204AA

GLASS
NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN DIA BAND
LENGTH A HEAT SLUGS, IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER. BUT SHALL NOT BE SUBJECT TO
THE MIN LIMIT OF OIA B
1 LEAD OIA NOT CONTROLLED IN ZONES F. TO ALLOW
FOR FLASH. LEAD FINISH BUILDUP. AND MINOR
IRREGULARITIES OTHER THAN HEAT SLUGS

4-47

1N5283 thru 1N5314

ELECTRICAL CHARACTERISTICS (TA = 25·C unless otherwise noted)
Regulator Current
Ip (mA) @ VT=25 V

Type No.
lN5283
lN5284
lN5285
lN5286
lN5287
lN5.288
lN5289
1 N5290
lN5291
lN5292
lN5293
lN5294
lN5295
lN5296
lN5297
lN5298
lN5299
lN5300
lN5301
lN5302
lN5303
lN5304
lN5305
lN5306
lN5307
lN5308
lN5309
lN5310
lN5311
lN5312
lN5313
lN5314

nom
022
024
027
030
033
039
043
047
056
062
068
075
082
091
100
110
120
130
140
150
160
180
200
220
240
270
300
330
360
390
430
4.70

min
0198
0216
0243
0270
0297
0351
0387
0423
0504
0558
0612
0675
0738
0819
0900
0990
108
117
126
135
144
162
180
198
216
243
270
297
324
351
387
423

max
0242
0.264
0297
0330
0363
0429
0473
0517
0616
0682
0748
0825
0902
1001
liDO
1210
132
143
154
165
176
198
220
242
2.64
297
330
3.63
396
4.29
4.73
5.17

Minimum
Dynamic
Impedance
@ VT=25 V
ZT(M!2)
250
19.0
140
90
66
410
330
270
190
155
135
115
100
0880
0800
0700
0640
0580
0540
0510
0475
0420
0395
0370
0345
0320
0300
0280
0265
0255
0245
0235

4-48

Minimum
Knee
Impedance
@ VK=6.0V
ZK(M!2)
275
235
195
160
135
100
0870
0750
0560
0470
0400
0335
0290
0240
0205
0180
0155
0135
0115
0105
0092
0074
0061
0052
0044
0035
0029
0024
0020
0017
0014
0012

Maximum

Limiting
Voltage
@ IL = 0.8 Ip (min)
VL (Volts)
100
100
100
100
100
105
105
105
110
113
115
120
125
129
135
140
145
150
155
160
165
175
185
195
200
215
225
235
250
260
275
290

1N5283 thru 1N5314

FIGURE 1 -

TYPICAL CURRENT REGULATOR
CHARACTERISTICS

50

0

~

i

10

VL@I,

oI

.E

-4
01,
-6

o I
-so
2

POV 8, VAK VK -

POV

/

-201

-100

I, - Panch-off Current: Regulator current at specified Test Voltage. VT

~

~

!f:!
..

J

/

2.0

1

I

I,&ZT@VT

Z.@V.
0

SYMBOLS AND DEFINITIONS
ID - Otode Current
IL - Limiting Current: 80% of I, minimum used to determine Limiting
voltage. VL

I

VL -

Vr -

+
,REVERSE

ANOOE

~FORWARD
20

40

60

80

ZI( -

a

100

CATHOOE
120

140

=

160

v••. ANODE-CATHODE VOLTAGE (VOLTSI

FIGURE 2 -

Peak Operating Voltage MaXimum voltage to be applied to device
Current Temperature CoeffiCient
Anode to cathode Voltage
Knee Impedance Test Voltage Specified voltage used to establish
Knee Impedance. ZIC
Limiting Voltage: Measured at IL VL• together with Knee AC Impedance. ZK. Indicates the Knee characteristics of the deVice
Test Voltage: Voltage at which I, and Zr are specified
Knee AC Impedance at Test Voltage To test for ZI(. a 90 Hz signal
vI( with RMS value equal to 10% of test voltage. VI(. IS superimposed
on VI(:
Zx VIC/II(
where II( IS the resultant ac current due to VK
To provide the most constant current from the diode, ZK should be
as high as possible. therefore. a minimum value of ZK IS specified
AC Impedance at Test Voltage Specified as a minimum value To
test for ZT. a 90 Hz sIgnal wIth RMS value equal to 10% of Test
Voltage. VT. IS superimposed on VT

ZT -

TYPICAL THERMAL RESISTANCE
APPLICATION NOTE
As the current avaJiable from the diode IS temperature dependent, It IS
necessary to determine Junction temperature, TJ. under specific operatmg
conditions to calculate the value of the diode current The follOWing
procedure IS recommended
Lead Temperature, TLI shall be determmed from.
TL=fhAPD+TA
where IhA IS lead·to ambient thermal resistance
Po IS power diSSipation
and
fAA IS generally 30·40·C/W for the various clips and be pomts 10
common use, and for printed Clrcult·board wIring

k-'"
V
./

.

........

V

./'

POINT OF lEAD TEMPERATURE
MEASUREMENT

~

./

0
02

04

Junction Temperature, TJ • shall be calculated from'

TJ

(MOST HEAT CONOUCTION IS
THROUGH THE CATHOOE LEAOI
06
08

10

L. LEAD LENGTH !INCHES)

FIGURE 3 10

::::TJ

7 O:::POV

25"C
100 V

IN5313

!-""

o - FROM PULSE TESTS)
0

........

IN5309

-lN5ro~

-~~

7
5
3

./1:.0

2

....

0.1

TYPICAL FORWARD CHARACTERISTICS

--

o-(DATA OBTAINED

oI

=T, + OJ, Po

where 8JL IS taken from Figure 2
For Circuit deSign hmlts of VAK, limits of Po may be estimated and
extremes of TJ may be computed USing the information on Figures 4 and
5, changes In current may be found To Improve current regulation, keep
VAI( low to reduce PD and keep the leads short, especially the cathode lead.
to reduce fhl

02

IN5290

....
03

05

07

10

20

30

50

70

V••• ANODE-CATHODE VOLTAGE (VOLTS)

4-49

10

20

30

50

70

100

1N5283 thru 1N5314

FIGURE 4 - TEMPERATURE COEFFICIENT
)

....

6

..... t-..,

~ 04
03

.........

ffi

'"~

2

...... r--....

-

I

8
w

0
~-O I
:0;-0 2
~-O 3
~

=>

--- - -- ---

~

I

r-.... . . . RANGE'
~
r-- -....... j
03

/fa Ipl".' t:.TJ I'CI_

30

40

I---

r--

O~

04

hi, =

-I'-

TYPICAL

-04

-0 ~
02

-

TJ - +2~'C 10 + I~'C
VA' - 2~V

I'....

~

~

06

0)

08

20

09 10

~O

I,. NOMINAL PINCH.(IFF CURRENT ImAl

II

FIGURE 5 - TEMPERATURE COEFFICIENT
0
8

G

~
§

04

~

02

06

~ -0 4
~-o 6

-0 B
-I 0
02

- -.....

""""- I-..

...........

8w
§!!i -0 2

TJ = -55'C 10 +2~'C
VAK = 2~V

................

--

03

I-...

r-r:r:--

-

---- - - - ---

RANGE'

_

TYPICAL

r--t-

04

O~

.....

r-

roo-

06

0)

08

hi, =

{oo ""_1 lITJ I'CI

r--20

09 10

30

~.o

40

Ip. NOMiNAl PINCH·OfF CURRENT ImAl

FIGURE 8 - CURRENT REGULATION FACTOR

--.......

I

-0 I

--~ --;---... RANGE' ............
..............
.......
""7-!o-..l

~ -0 2

;:; -0 3

TYPICAL.J

~ -04

ffi -0 ~
)



TA - 2~'C
AVA,- 40V. VAK VARIED FROM 10Vlo ~ V
AI,= I,@~OV-I,@IOV
W LEAD LENGTH. N'A - 3O'C/W
03

04

O~

"-

06

07

08

09

10

I,. NOMINAL PINCH.(IFF CURRENT ImAl
'90% of the unlls will be In Ihe ranges shown.

4-50

20

30

4.0

50

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

1 N5333A, B, C, D
thru
1 N5388A, B, C, D

Designer's Data Sheet

5-Watt Surmetic 40
Silicon Zener Diodes
· .. a complete series of 5 Watt Zener Diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All
this in an axial-lead, transfer-molded plastic package offering protection in all common
environmental conditions.

5-WATT
ZENER REGULATOR
DIODES
3.3-200 VOLTS

• Up to 180 Watt Surge Rating @ B.3 ms
• Maximum Limits Guaranteed on Seven Electrical Parameters
• Offered in 10%, 5%, 2% and 1% Vz Tolerance
Mechanical Characteristics:
CASE: Void-free, transfer-molded, thermosetting plastic
FINISH: All external surfaces are corrosion resistant and leads are readily solderable
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode
MOUNTING POSITION: Any
WEIGHT: 0.7 gram (approx)

" "',
"-

.........

L = 3/8"

t::---."

-.........

20

I

..............
L = 1" .........

40

~=118"

"~

L = LEAD LENGTH
TO HEAT SINK ISEE FIGURE 51

OUTLINE DIMENSIONS

JC?L

"-

'"" "'"

+~
:~

"'-

r-......

~

",",

................... "~

60
80
100
120 140
TL. LEAD TEMPERATURE I'CI

i-=: ~

160

rt-,~

180 200

L~m~1

Figure 1. Power-Temperature Derating Curve

PIN 1 ANODE
2 CATHODE

NOTE
1 LEAD DIAMETER & FINISH NOT CONTROUEO
WITHIN DIM "F"

MAXIMUM RATINGS
Rating
DC Power Dissipation @ TL = 75'C
Lead Length = 3/8"
Derate above 75'C
Operating and Storage Junction Temperature Range

Symbol

Value

Unit

Po

5

Watts

TJ, TS!Q_

40

mWI'C

-65 to +200

'C

Designer·. Data for ··Worst Case" Conditions - The Designer's Data Sheet permits the design of most CirCUits
entirelv from the information presented. Limit curves - representing boundaries on device characteristics -

are given to facilitate "worst case" design.

4-51

DIM
A
B
D
F
K

MllUMETERS
MIN
MAX
838
330
094

2540

889
368
109
127
3175

INCHES
MIN
MAX
0330
0350
0130
0145
0037
0043
0050
1000
1250

CASE 17-02

GLASS

1N5333A, B, C, D thru 1N5388A, B, C, D
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted VF = 1 2 Max @ IF = 1 A for all types)
Max Zan.r Imped.nce
A III B Suffix Only

MaxRav....
Le....g. Currant

Appll.s
to .11
Suffix

AIIIB
Suffix
Only
Max
Voltag.
Regulation
1!.vZ- Volts
(Not. 41

Nominal
Zener

II

@

Maximum
Regulator

Non iliA
Suffix

B-Suffix

M.x
Surge
Currant
Ir.Amps
(Not. 31

300
150
50
10
5

1
1
1
1
1

1
1
1
1
I

20
18.7
17.6
16.4
15.3

0.85
0.8
0.54
0.49
0.44

1440
1320
1220
1100
1010

400
400
300
200
200

1
1
1
1
10

1
2
3
4
4.9

I
2
3
3
5.2

14.4
13.4
12.7
12.4
11.5

0.39
0.25
0.19
0.1
0.15

930
865
790
765
700

1.5
1.5
2
2
2

200
200
200
150
125

10
10
10
7.5
5

5.4
5.9
6.3
6.6
7.2

5.7
6.2
6.6
6.9
7.6

10.7
10
9.5
9.2
8.6

0.15
0.2
0.2
0.22
0.22

630
580
545
520
475

125
100
100
100
75

2.5
2.5
2.5
2.5
2.5

125
125
100
75
75

5
2
I
I
I

8
8.6
9.4
10.1
10.8

8.4
9.1
9.9
10.6
11.5

8
7.5
7
6.7
6.3

0.25
0.25
0.25
0.25
0.25

430
395
365
340
315

16
17
18
19
20

75
70
65
65
65

2.5
2.5
2.5
3
3

75
75
75
75
75

I
0.5
0.5
0.5
0.5

11.5
12.2
13
13.7
14.4

12.2
12.9
13.7
14.4
15.2

6
5.8
5.5
5.3
5.1

0.3
0.35
0.4
0.4
0.4

295
280
265
250
237

lN5358A
lN5359A
lN5360A
lN5361A
lN5362A

22
24
25
27
28

50
50
50
50
50

3.5
3.5
4
5
6

75
100
110
120
130

0.5
0.5
0.5
0.5
0.5

15.8
17.3
18
19.4
20.1

16.7
18.2
19
20.6
21.2

4.7
4.4
4.3
4.1
3.9

0.45
0.55
0.55
0.6
0.6

216
198
190
176
170

lN5363A
lN5364A
1NS365A
lN5366A
lN5367A

30
33
36
39
43

40
40
3D
3D
3D

8
10
II
14
20

140
150
160
170
190

0.5
0.5
0.5
0.5
0.5

21.6
23.8
25.9
28.1
31

22.8
25.1
27.4
29.7
32.7

3.7
3.5
3.3
3.1
2.8

0.6
0.6
0.65
0.65
0.7

158
144
132
122
110

lN5368A
lN5369A
lN5370A
lN5371A
lN5372A

47
51
56
60
62

25
25
20
20
20

25
27
35
40
42

210
230
280
350
400

0.5
0.5
0.5
0.5
0.5

33.8
36.7
40.3
43
44.6

35.8
38.8
42.6
42.5
47.1

2.7
2.5
2.3
2.2
2.1

0.8
0.9
I
1.2
1.35

100
93
86
79
76

lN5373A
lN5374A
lN5375A
lN5376A
lN53nA

68

75
82
67
91

20
20
15
15
15

44
45
65
75
75

500
620
720
760
760

0.5
0.5
0.5
0.5
0.5

49
54
59
63
65.5

51.7
56
62.2
66
69.2

2
1.9
1.8
1.7
1.6

1.5
1.6
1.8
2
2.2

70
63
58
54.5
52.5

lN5378A
lN5379A
lN5380A
lN5381A
lN5382A

100
lID
120
130
140

12
12
10
10
8

90
125
170
190
230

800
1000
1150
1250
1500

0.5
0.5
0.5
0.5
0.5

72
79.2
86.4
93.6
101

76
83.6
91.2
98.8
106

1.5
1.4
1.3
1.2
1.2

2.5
2.5
2.5
2.5
2.5

47.5
43
39.5
36.6
34

lN5383A
lN5384A
lN5385A
lN5385A
lN5387A
lN5388A

150
160
170
180
190
200

8
8
8
5
5
5

330
350
380
430
450
480

1500
1650
1750
1750
1850
1850

0.5
0.5
0.5
0.5
0.5
0.5

108
115
122
130
137
144

114
122
129
137
144
152

1.1
1.1
1
1
0.9
0.9

3
3
3
4
5
5

31.6
29.4
28
26.4
25
23.6

IR

JEDEC
Typo No.
(Nota 11

Voltag.
VZ@IZT
Volts
(Nota 21

T.st
Current
IZT
mA

ZZT@IZT
Ohms
(Nota 21

ZZK@IZK=lmA
Ohms
(Nota 21

lN5333A
lN5334A
lN5335A
lN5336A
lN5337A

3.3
3.6
3.9
4.3
4.7

380
350
320
290
260

3
2.5
2
2
2

400
500
500
500
450

lN5338A
lN5339A
lN5340A
lN5341A
lN5342A

5.1
5.6
6
6.2
6.8

240
220
200
200
175

1.5
1
1
I
I

lN5343A
lN5344A
lN5345A
lN5346A
lN5347A

7.5
8.2
8.7
9.1
10

175
150
150
150
125

lN5348A
lN5349A
lN5350A
lN5351A
lN5352A

II
12
13
14
15

lN5353A
lN5354A
lN5355A
lN5356A
lN5357A

NOTES:
111 TOLERANCE AND VOLTAGE DESIGNATION - Tho JEDEC typo numbo .. shown
Indicate a tolerance of ± 10% with guaranteed limits on only VZ, IR. 'r, and VF as
shown in the electncal characterlsttcs table. Umts wtth guaranteed limits on all
seven parameters are indicated by SuffiX "A" for ± 10% tolerance and suffix "S"
for ±5%, C for ±20/0 and 0 for ± 1%.
(2) ZENER VOLTAGE IVZ) AND IMPEDANCE (2zr 8r. ZzK) - Test conditions for Zener
voltage and impedance are as follows IZ is applied 40 ± 10 ms prior to reading.
Mounting contacts are located 318" to 112~ from the InSide edge of mounting clips
to the body of the diode. CTA "" 25"C

VR
Volts

p.A

IZM
mA
(Not. 51

applicable POints on logarithmiC paper. Examples of this. using the 3.3 V and 200 V
zeners. are shown In Figure 7. MOUnbng contact located as specified In Note 3

ITA = 25"C

::.~"C)

(4) VOLTAGE REGULA110N (b.VZ) - Test conditions for voltage regulation are as follows: Vz measurements are made at 10% and then at 60% of the Iz max value lISted
In the electrical charactenstics table. The test currents are the same for the 5% and
10% tolerance devices. The test current time durabon for each Vz mea-

surement IS 40 ± 10 ms. ITA "" 25"C
In Note 2.

~~OC)

(3) SURGE CURRENT fir) - Surge current is specified as the maximum allowable
peak., non-recurrent square-wave current with a pulse width. PIN. of 8.3 ms. The
data given in Figure 6 may be used to find the maximum surge current for a
square wave of any pulse Width between 1 ms and 1000 ms by plotting the

Currant

~~OC). Mounting contact located as specrfied

(5) MAXIMUM REGULATOR CURRENT (IzM) - The maximum current shown is based
on the maximum voltage of a 5% type UMlt. therefore. it applies onlv to the B-sufflx
device The acwellZM for any device may not exceed the value of 5 watts divided
by the actual Vz of the devk::e. TL = 7!1C at 3'8" maximum from the device body.

4-52

1 N5333A, B, C, D thru 1N5388A, B, C, D

TEMPERATURE COEFFICIENTS

10

u

-.It

I--""

..;--

./
./

-2

300
200

>-

15

./

""

./

/'

I-""

~t&

50

~~

~.§.

30
20

~

10

u-

::>-

~

RA~GE

::;;

~

./

r----

~~

100

I-"r

T!

RANGE

V

'"

5

6

7

10

8

20

40

VZ, ZENER VOLTAGE @ IZT IVOLTS)

Figure 2, Temperature Coefficient-Range
for Units 3 to 10 Volts

60 80 100 120 140 160 180
VZ, ZENER VOLTAGE @ IZT IVOLTS)

200 220

Figure 3. Temperature Coefficient-Range
for Units 10 to 220 Volts

~

z

f'!
~~

20

U)

D

0.5

::;;0

D

0.2

i!=6

D

0.1

D

0.05

D

0.01

~D

0

10

~~
ffi~

~~
~§
~z

t-:~O.5

C

~
~

;?

0.2
0.001

DUTY CYCLE, 0 tl/t2
NOTE: BELOW 0.1 SECOND, THERMAL
SINGLE PULSE ATJL
0JLlt)PPK
RESPONSE CURVE IS APPLICABLE REPETITIVE PULSES ATJL
OJ Lit, D)PPK
TO ANY LEAD LENGTH IL)

0.005

0.01

0.05

10

0.5
t, TIME ISECONDS)

01

20

100

50

Figure 4. Typical Thermal Response
L. Lead Length
3.8 Inch

=

~

z

40

40

~

13
0:

V
./

30

V
..".10

o

V
o

/'

V

V

en
0..

t-

20

......

::;;

:;;. 10

V

t--

r--.

1 ms*

PW

~

::>
u
w

~-

PW

>0:

PRIMARY PATH OF
CONDUCTION IS THROUGH
THE CATHODE LEAD

0.2

V

..........

r-......

_

~

t-:,.

::>

c--

t--I-t

........ t-

b

::::::::

U)

""~

r-

.£.

r-

0.4

r-- t-

'SQUARE WAVE- PW

l..ill

0.2

F

8.3ms'

100 ms'

.1

~

PW

= 1000 ms'- p

0.1

0.4
06
08
L, LEAD LENGTH TO HEAT SINK liNCH)

3

8 10

20
30 40
NOMINAL Vz IV)

60

80 100

200

Figure 6. Maximum Non-Repetitive Surge Current
versus Nominal Zener Voltage
(See Note 3)

Figure 5. Typical Thermal Resistance

Data of Figure 4 should not be used to compute surge
capability. Surge limitations are given in Figure 6. They
are lower than would be expected by considering only
junction temperature. as current crowding effects cause

temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 6
be exceeded.

4-53

1N5333A, B, C, 0 thru 1N5388A, B, C, 0
ZENER VOLTAGE versus ZENER CURRENT
(Figures 8, 9 and 10)
30
20

I II
T = 25°C_ e---1,000

3.3V

Vz

1

r--

TC

~

100

ffi

0

a:
a:
=>
u

z

"
II

~

Vz

-"0.2 -

PLonED FROM INFORMATION
GIVEN IN FIGURE 6

19

200 V

1

:-H...

O. 1
1

0.1
100
10
fYW, PULSE WIDTH (m,)

1

1000

25°C

/
1
/
,/

11 l/
llL

/,

/

I

1/
10

Vz, ZENER VOLTAGE (VOLTS)

Figure 7. Peak Surge Current versus Pulse Width
(See Note 3)

Figure 8. Zener Voltage versus Zener Current
Vz = 3.3 thru 10 Volts

1,000

T

II

25°C

1=
~

a:

§

10

u

ffi

z

~

19

0.1

1

0.1
10

20

30
40
50
60
Vz, ZENER VOLTAGE (VOLTS)

70

80

80

Figure 9. Zener Voltage versus Zener Current
Vz
11 thru 75 Volts

100

120
140
160
180
Vz, ZENER VOLTAGE (VOLTS)

200

220

Figure 10. Zener Voltage versus Zener Current
Vz
82 thru 200 Volts

=

=

APPLICATION NOTE
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to determine junction temperature under any set of operating
conditions, in order to calculate its value. The following
procedure is recommended:
Lead Temperature, TL, should be determined from:
TL = 8LA PO + TA
8LA is the lead-to-ambient thermal resistance and
is the power dissipation.
Junction Temperature, TJ, may be found from:

Po

TJ = TL + liTJL
liTJL is the increase in junction temperature above
the lead temperature and may be found from Figure

4 for a train of power pulses or from Figure 5 for de
power.
liTJL = 8JL Po
For worst-case design, using expected limits of IZ, limits of Po and the extremes of TJ (liTJ) may be estimated.
Changes in voltage, VZ, can then be found from:
liV = 8VZ liTJ
8VZ, the zener voltage temperature coefficient, is
found from Figures 2 and 3.
Under high power-pulse operation, the zener voltage
will vary with time and may also be affected significantly
by the ~ener resistance. For best regulation, keep current
excursions as low as possible.

4-54

lN5518A,B

MOTOROLA

-

thru

SEMICONDUCTOR

TECHNICAL DATA

lN5546A,B
LOW VOLTAGE AVALANCHE
ZENER DIODES

LOW VOLTAGE AVALANCHE SILICON OXIDE
PASSIVATED ZENER REGULATOR DIODES
Highly reliable silicon regulators utilizing an oxide-passivated
junction for long-term voltage stability. Double slug construction
provides a rugged, glass-enclosed, hermetically sealed structure.

400 MILLIWATTS
3.3 THRU 33 VOLTS

o Low Zener Noise Specified
•

Low Maximum Regulation Factor

o Low Zener Impedance
•

Low Leakage Current

o Controlled Forward Characteristics
o Temperature Range: -65 to

+ 2000 C

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

400
3.2
500

mW
mW/oC

3.3

mW/oC

-65 to +200

°c

DC Power Dissipation @ T A = 50°C
Derate above 500 C

DC Power DIssipation @ TL = 500C
Lead Length = 1/8'"
Derate above 500C (Figure 1)

Po

Operating and Storage Junction
Temperature Range

TJ, Tstg

8

-is 1-

~~=-r

mW

9
tb---.-l
L~

-~

MECHANICAL CHARACTERISTICS
CASE:
Hermetically sealed. all'glass
01 MENSIONS: See outline drawing.
FI NISH: All external surfaces are corrosion resistant and leads are
readily solderable and weldable.

POLARITY: Cathode indicated by polarity band.
WEIGHT: 0.2 Gram (approx)
MOUNTING POSITION: Any
FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
8

LE~GTH r--

L' LJAD
TO HEATSINK

61'-...

L' 1)8"

"l
r---.. r-.
..........
r-J'-. ...........

NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN A
AND B HEAT SLUGS, IF ANY, SHALL BE
INCLUDED WITHIN THIS CYLINDER, BUT
NOT SU8JECT TO THE MINIMUM LIMIT
OF B
2. LEAD DIAMETER NOT CONTROLLED IN
ZONE F TO ALLOW FOR FLASH, LEAD
FINISH BUILDUP AND MINOR IRREGU·
LARITIES OTHER THAN HEAT SLUGS
3 POLARITY DENOTED 8Y CATHODE BAND
4. DIMENSIONING AND TDLERANCING PER
ANSI Y14 5, 1973

3l8"

4r--.

10""""
2

o
o

........... ......... ........
...........

20

40

60

80

100

r-....

r::::::: ~

120

140

MILLIMETERS
INCHES
MAX
MIN
MAX
MIN
305
508
0120 0200
152
229
0060 0090
0018 0022
046
056
Jl050
127
K 2540 38.10 1.000 1500

DIM
A
B
D
F

~~

160

180

200

TL, LEAD TEMPERATURE (DC)

4-55

All JEDEC dimenSions and notes apply.
CASE 299·02

DO·204AH
GLASS

•

1N5518A, B thru 1N5546A, B

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted. Based on de measurements at thermal equilibrium.
VF = 1.1 Max@ IF = 200 rnA for all types)
Max Zener Impedance

Nominal

Max

Reverse Leakage Currant

Zener Voltage

Ta..

B-C·D Suffix

JEOEC
Type No.
(No" II

VZt!lIZT
Volts
(Note 21

Currant

ZZT t!lIZT

IZT

Ohms

,.Ade

mAde

(Note 31

(Note 41

1N5618A

3.3
36
3.9
4.3
4.7

20
20
20
20
10
50
3.0
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
10
10
10
1.0
1.0
10
10
10
1.0

26

50
30
10
30
20
20
20
10
10
0.5

090
0.90
0.90
1.0
1.5
2.0
30
45
55
6.0

90
90
100
100
100
100
100
100
100
100
100

0.5
01
0.05
0.05
005
001
001
001
0.01

6.5
7.0
80
9.0
95
105
115
12.5
130
14.0

10
10
1.0
1.5
20
2.5
3.5
5.0
6.2
68
7.5
82
91
9.9
10.8
11.7
12.6
13.5
144
15.3

1.0
1.0
1.0
1.0

100
100
100
100

15.0
160
17.0
180
20.0
21.0
23.0
24.0
280

16.2
17.1
18.0
19.8
21.6
224
252
27.0
297

IN5519A
lN5520A
lN552IA
lN5522A
lN5523A
IN5524A
lN5525A
lN5526A
lN5527A
lN5528A
lN5529A
lN5530A
lN5531A
IN5532A
IN5533A
IN5534A
IN5535A
lN5536A
lN5537A
lN5538A
IN5539A
lN5540A
lN5541A
lN5542A
IN5543A
IN5544A
lN5545A
lN5546A

5.1
5.6
6.2
68
7.5
82
91
100
11.0
12.0
13.0
140
15.0
16.0
17.0
18.0
19.0
20.0
220
240
25.0
28 a
30.0
330

IR

24
22
18
22
26

30
30
30
35
40

46
60
60

am
am

0.01
0.01
001
001
001
0.01
001
0.01

NOTE 1-TOLERANCEANDVOLTAGE DESIGNATION

VR -Volts
Non&: A- B-C·D
Suffix
Suffix

lie"

B-C.o Suffix
Max NOise Density

Maximum

.t'IZ=250~A

Regulation

DC Zener Current

NO

Factor

'ZM

(Figure II

tNZ
Volts
(Note 61

mAde

(micro-volts per

(Note 51

square root cyde)

lIS
105
98

05
05
05

88

as

81
75

0.5
05
1.0
1.0
1.0
20
40
40
4.0
5.0
10
15
20
20
20
20
20
20
20
20
20
20
20
20
20

88

61
56
51

46
42
38

35
32
29
27
25
24
22
21
20
19
17
16
15
14
13
12

Low
Vz
Current
'ZL
mAde

0.90
0.90
0.85
075
060
065
0.30
020
0.10
005
005
005
0.10
020
0.20

2.0
2.0
2.0
2.0
10
025
0.25
001
001
001
001
0.01
001
001
001

0.20
020
020
0.20
020
0.20
020
020
025
030

0.01
001
0.01
001
001
001
001
001
001
001
001
0.01
001
001

035
040
045
0.50

NOTE 4 - REVERSE LEAKAGE CURRENT URI

The JEDEC type numbers shown are '" 10% with guaranteed hm~s
for Vz, IRI and VF. Units with guaranteed limits for all six parameters
are indicated by a "B" suffix for ±S.O% units,
and "0" suffix for ± 1.0%.

B-C-O Suffix

Reverse leakage currents are guaranteed and are measured at VR
as shown on the table.

suffix for ±2.0%

NOTE 5 - MAXIMUM REGULATOR CURRENT UZMI

NOTE 2 - ZENER VOLTAGE (VZI MEASUREMENT

The maximum current shown is based on the maximum voltage

of a 5.0% type unit. therefore. it applies only to the "B" suffix
device. The actual IZM for any device may not exceed the value
of 400 mi'l!iwatts divided by the actual Vz of the device.

Nominal zener voltage is measured with the device junction in

thermal equilibrium with ambient temperature of 25°C.

NOTE 3 - ZENER IMPEDANCE IZzl DERIVATION

NOTE 6 - MAXIMUM REGULATION FACTOR laVzl

The zener impedance is derived from the 60 Hz ac voltage. which
results when an ac current having an rms value equal to 11)% of
the de zener current (lZT) is superimposed on IZT.

AVZ is the maximum difference between Vz at IZT and Vz
at IZL measured with the device junction in thermal equilibrium.

4-56

1N5518A, B thru 1N5546A, B

ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the
zener breakdown phenomenon and is called micro plasma noise.
To eliminate the higher frequency components of noise a small
shunting capacitor can be used. The lower frequency noise generally
must be tolerated since a capacitor required to eliminate the lower
frequencies would degrade the regulation properties of the zener in

many applications.
Motorola is rating this series with a maximum noise density at
250 microamperes, a bandwidth of 2.0 kHz and a center frequency
of 2.0 kHz.

Noise density decreases as zener current increases. The junction
temperature will also change the zener noise levels, thus the noise
rating must indicate frequency, bandwidth, current Jevel and
temperature.
The block diagram shown in Figure 2 represents the method used
to measure noise density. The input voltage and load resistance is
high so that the zener is driven from a constant current source. The
amplifier must be low noise so that the amplifier noise is negligible
compared to the test zener. The filter frequency and bandpass is
known so that the noise density In volts AMS per square root cycle
can be calculated.

FIGURE 2 - NOISE DENSITY MEASUREMENT METHOD

AMMETER

AMPLIFIER
TRUE
RMS
VOLT

METER
NOISE DENSITY (VOlTS PER SQUARE ROOT BANDWIDTH) ~

OVERALL V;';;N

VBW

WHERE. BW ~ FILTER BANDWIDTH (Hz)
V." ~ OUTPUT NOISE (VOLTS RMS)

FIGURE 4 - TYPICAL FORWARD CHARACTERISTICS

FIGURE 3 - TYPICAL CAPACITANCE
1000

-

SOO

1
~

1000

MINIMUM
MAXIMUM

200

I

100

'" SO
~
c

'" 20

~

200

./ V~

!

2SoC

~ OVBIAS

....

~100

.

10 V BIAS

w
'-'

z SO

-

~7S0C

~ 10
~

TA

SOO

"..

50

/
~

04

....

./

~U

1S0oC

J

/ I.....

'

:

"1--

06

0.7

08

S.O

OOC

2.0

09

10

11

VF, FORWARD VOLTAGE (VOLTS)

50% OF
Vz BIAS

10

2SoC

/
OS

.......

U 20

I

V

20
10

~

I

10
10

20

50

10

20

Vz, ZENER VOLTAGE (VOLTS)

4-57

50

100

1N5518A, B thru 1N5546A, B

FIGURE 5 - ZENER DIDDE CHARACTERISTICS AND SYMBOL IDENTIFICATION

I

FORWARD
CHARACTERISTIC

•

I

I
/

<
oS
~

Vz

~~

REVER5EVDlTAGE
(VOLTS)

/

Ii
I

I

I-

-

r-

IZl

/

VF (VOLTS)

IRkt

-

-

f--

-

-- -

IZT

<
oS
!::'

..
-- - - - - - - - - --

IZM

4-58

REVERSE
CHARACTERISTIC
(5•• tabl. for
specfficvalues)

1NS908
lN6373/ICTE-S, C
MPTE-S, C

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

thru

•

lN6389/ICTE-4S, C
MPTE-4S, C
lN6267, A/1.SKE6.8, A

thru

lN6303, All.SKE250, A

ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR
Mosorb devices are designed to protect voltage sensitive components from high voltage, high energy transients, They have excellent
clamping capability, high surge capablllty,low zener Impedance and
fast response time These devices are Motorola's exclusive, costeffective, highly reliable Surmetlc aXial leaded package and are
IdeallY-SUited for use In commUnication systems, numerical controls, process controls, medical eqUipment, business machines,
power supplies and many other Industrial/consumer applicatIOns,
to protect CMOS, MOS and Bipolar Integrated CirCUits

MOSORBS
ZENER OVERVOLTAGE
TRANSIENT SUPPRESSORS
5,0-200 VOLT
1500 WATT PEAK POWER
6.0 WATTS STEADY STATE

SPECIFICATION FEATURES

• Standard Voltage Range •

5 0 to 200 V

1500 Watts @ 1 0 ms

• Peak Power -

Maximum Clamp Voltage @ Peak Pulse Current

• Low Leakage

II

< 5 0 I'A above 10 V

• Standard Back to Back Versions Available

MAXIMUM RATINGS
Symbol

Value

UnIts

Peak Power DISSipation (1)
@TL"250C

PPK

1500

Watts

Steady State Power DISSipation
@ TL .. 75°C, Lead Length = 3/8"
Derated above T L = 7SoC

Po

Rating

Forward Surge Current (2)

IFSM

f

Watts
50
50

mW/oC

200

Amps

@TA=25 0 C
-65 to + 175
TJ, T Slg
Lead Temperature not less than 1/16" from the case for 10 seconds 230°C

Operating and Storage Temperature Range

°c

MECHANICAL CHARACTERISTICS
CASE: VOid-free, transfer-molded. thermosetting plastic

FINISH: All external surfaces are corroSion resistant and leads are readily solderable
and weldable

POLARITY: Cathode Indicated bV polarity band When operated
Will be poSitive with respect to anode

10

zener mode,

Jj~

,

rl=t
r

NOTES
1 DIMENSIONING AND TOLERANCING PER ANSI
Y14 SM, 1982
2 CONTROLLING DIMENSION INCH
3 LEAD FINISH AND DIAMETER UNCONTROLLED
IN DIM F

MOUNTING POSITION: Any

DIM
NOTES

1 Nonrepeutlve Current Pulse per Figure 4 and Derated above

T A :: 2SoC per Figure 2
2. 1/2 Square Wave (or equlvalentl, PW :: 83 ms,
DutY Cvcle = 4 Pulses per minute maXimum

A
B
D
F
K

MILUMETERS
MIN
MAX

INCHES
MIN
MAX

914
483
097

0360
0190
0038

952
521
107
127

1100

2794

CASE 41-11

PLASTIC

4-59

0375
0205
0042
0050

1N5908, 1N6373 thru 1N6389, 1N6267 thru 1N6303

"ELECTRICAL CHARACTERISTICS (TA = 25"C un Ie •• otherwise noted) VF# = 3 5 V me. IF" = 100A

Devlee
lN5908

Breakdown
Voltage
@IT
VBR(Volt.)
(mA)
Min
6.0

Maximum
Maximum Raverl.

Maximum

Stand·Off Voltage
(Volta)

Reve"e Leakage
@VRWM
IR (~A)

Raver •• Voltage
@ IRSMt = 120 A
(Clamping Voltage)
VRSM (Volt.)

5.0

300

85

VRWM···

1.0

Clamping Voltage
Peak PulOl
Peak Pull.
Current@
Current@
Ipplt = 30 A
Ipp2t = 80 A
VCl
VC2
(Volt. ma.)
(Volta ma.)
7.6

8.0

ELECTRICAL CHARACTERISTIC (TA = 25"C unless otherwl.e noted)VF#= 3.5 V me., IF" = 100 A)(C lufflXdenote.standard back to back verSlonl.
Test both polarities)

Maximum

Maximum

JEDEC
Devica

ReverIe

Maximum

Revers.

Voltaga
@IT
VBR
(mA)
Volt.
Min

Stand·Off

Reverie

Surge

Voltage

Leakage
@VRWM
IR ("A)

Current

VRWM'"
(Volt.)

IRSMt
(Amps)

Clamping
Rever ••
Voltage
Peak Pulse
Current@
@IRSMt
(Clamping
Ipplt = 1.0 A
Voltage)
VCl
VRSM(Volt.) (Volts max)

Voltage
Peak Pul.e
Current@

Ipp2t =10 A
VC2
(Volts max)

1N6382

ICTE·5/MPTE·5
ICTE-5C/MPTE-5C
ICTE-8/MPTE-8
ICTE-8C/MPTE-8C

60
60
94
94

10
10
10
10

50
50
80
80

300
300
25
25

160
160
100
100

94
94
150
150

7I
8I
113
114

75
83
115
116

1N6375
lN6383
lN6376
lN6384

ICTE-l O/MPTE-l 0
ICTE-IOC/MPTE-10C
ICTE-12/MPTE-12
ICTE-12C/MPTE-12C

117
117
141
141

10
10
10
10

10
10
12
12

20
20
20
20

90
90
70
70

167
167
212
212

137
141
161
167

141
145
165
171

1N6377
1N6385
lN6378
lN6386

ICTE-15/MPTE-15
ICTE-15C/MPTE-15C
ICTE-18/MPTE-18
ICTE-18C/MPTE-18C

176
176
212
212

10
10
10
10

15
15
18
18

20
20
20
20

60
60
50
50

250
250
300
300

201
208
242
248

206
214
252
255

lN6379
lN6387
lN6380
lN6388

ICTE-221MPTE-22
ICTE-22C1MPTE-22C
ICTE-361MPTE-36
ICTE-36C1MPTE-36C

259
259
424
424

10
10
10
10

22
22
36
36

20
20
20
20

40
40
23
23

375
375
652
652

298
308
506
506

320
320
543
543

lN6381
lN6389

ICTE-45/MPTE-45
ICTE-45C/MPTE-45C

529
529

10
10

45
45

20
20

19
19

789
789

633
633

700
700

1N6373

II

Davice

Maximum

Breakdown

I N6374

Maximum
Working

Peak

Maximum

Rave-rsI

Reverse

@IT
(mA)

Voltage
VRWM
(Volta)

Leakage
@VRWM
IR (~A)

Breakdown Voltage

MaXimum
Reverse
Surge
Current

Reverse
Voltage
MaXimum
Temperature

IRSMt
(Amps)

@IRSM
(Clamping
Voltege)
VRSM
(Volts)

Coefficient
olVBR
(%I"CI

Device

Min

VBR
Volts
Nom

Ma.

lN6267
lN6267A
lN6268
lN6268A

1 5KE68
1 5KE68A
1 5KE75
1 5KE7 5A

612
6.45
675
713

6.8
6.8
7.5
7.5

7.48
714
825
7.88

10
10
10
10

550
5.80
605
640

1000
1000
500
500

139
143
128
132

108
105
117
113

0057
0057
0061
0061

lN6269
lN6269A
lN6270
lN6270A

I 5KE82
I 5KE82A
1.5KE91
1 5KE9 lA

7.38
7.79
819
865

8.2
82
9.1
91

902
861
100
9.55

10
10
10
1.0

663
702
737
7.78

200
200
50
50

120
124
109
112

125
12 I
138
13.4

0065
0065
0068
0068

lN6271
1N6271A
lN6272
lN6272A

15KE10
15KE10A
1.5KE11
1.5KE11A

900
9.50
9.90
10.5

10
10
II
II

11
105
12.1
116

1.0
10
1.0
10

810
8.55
892
940

10
10
50
5.0

100
103
93.0
960

ISO
145
162
156

0073
0073
0075
0075

JEDEC
Device

4-60

1N5908, 1N6373 thru 1N6389, 1N6267 thru 1N6303

"ELECTRICAL CHARACTERISTICS (Conllnued)
Maximum
Reverse

Working
Breakdown Voltage

@IT
(mA)

VBR
Volts

JEDEC
Device

Device

Min

Nom

Ma.

Maximum

Voltage

Peak
Reverse
Voltage

Maximum
Reverse
Leakage

Reverse
Surge
Current

@IRSM
(Clampling
Voltage)

Temperature
CoefflClont

VRWM
(Volts)

@VRWM
IR (~A)

IRSMt
(Amps)

VRSM
(Volts)

ofVBR
(%I'C)

Maximum

1N6273
lN6273A
lN6274
lN6274A

1 SKE12
1 SKE12A
1 SKE13
I.SKEI3A

108
114
117
12.4

12
12
13
13

132
126
143
13.7

10
10
10
1.0

972
102
lOS
11.1

SO
SO
SO
S.O

870
900
790
82.0

173
167
190
18.2

0078
0078
0081
0.081

1 N627S
lN627SA
1 N6276
lN6276A

1 SKE1S
1 SKE15A
15KE16
15KE16A

13 S
143
144
152

IS
15
16
16

16 S
158
176
168

10
10
10
10

121
128
129
136

SO
50
50
50

680
710
640
670

220
212
235
225

0084
0084
0086
0086

1 N6277
lN6277A
1 N6278
lN6278A

1 SKE18
1 SKE18A
1 5KE20
15KE20A

162
171
180
190

18
18
20
20

198
189
220
210

10
10
10
10

145
153
162
171

50
50
50
50

56 S
595
51 5
540

265
252
291
277

0088
0088
0090
0090

1 N6279
lN6279A
lN6280
lN6280A

1 5KE22
15KE22A
1 5KE24
1 SKE24A

198
209
216
228

22
22
24
24

242
231
264
252

10
10
10
10

178
188
194
205

50
SO
50
50

470
490
430
450

319
306
347
332

0092
0092
0094
0094

lN6281
1 N6281A
1 N6282
1 N6282A

1
1
1
1

5KE27
5KE27A
5KE30
SKE30A

243
257
270
285

27
27
30
30

297
284
330
315

10
10
10
10

218
231
243
256

SO
SO
50
50

38S
400
345
360

391
375
435
414

0096
0096
0097
0097

1 N6283
lN6283A
1 N6284
lN6284A

1
1
1
1

5KE33
5KE33A
SKE36
SKE36A

297
314
324
342

33
33
36
36

363
347
396
378

10
10
10
10

268
282
291
308

50
50
SO
50

31 5
330
290
300

477
4S 7
S20
499

0098
0098
0099
0099

1 N6285
lN6285A
1 N6286
lN6286A

1 5KE39
15KE39A
1 5KE43
15KE43A

351
371
387
409

39
39
43
43

429
410
473
452

10
10
10
10

316
333
348
368

50
50
50
50

26 S
280
240
253

S64
539
619
593

0100
0100
0101
0101

,IN6287
lN6287A
1 N6288
lN6288A

1 5KE47
1 5KE47A
15KE51
1 5KE51A

423
447
459
485

47
47
51
51

517
494
561
536

10
10
10
10

381
402
413
436

50
50
SO
SO

222
232
204
214

678
648
735
701

0101
0101
0102
0102

lN6289
lN6289A
1 N6290
lN6290A

1 SKES6
1 5KE56
1 5KE62
15KE62A

504
532
558
589

56
56
62
62

616
588
682
651

10
10
10
10

454
478
502
530

50
50
50
50

186
195
169
177

805
770
890
850

0103
0103
0104
0104

lN6291
1N6291A
1N6292
lN6292A

1 SKE68
15KE68A
1 SKE75
15KE75A

612
646
675
713

68
68
75
75

748
714
825
788

10
10
10
10

551
581
607
641

50
SO
50
50

153
163
139
146

980
920
1080
1030

0104
0104
0105
0105

1N6293
lN6293A
1N6294
lN6294A

1 SKE82
1 SKE82A
1 SKE91
15KE91A

738
779
819
865

82
82
91
91

902
861
1000
95S0

10
10
10
10

664
701
737
778

50
50
50
50

127
133
114
120

1180
1130
1310
1250

0105
0105
0106
0106

1 N6295
lN6295A
1 N6296
lN6296A

15KE100
1 5KE100A
15KEll0
1 SKE110A

900
950
990
10S0

100
100
110
110

1100
lOS 0
1210
1160

10
10
10
10

810
855
892
940

50
50
50
50

104
110
95
99

1440
1370
1580
IS20

0106
0106
0107
0107

1 N6297
1 N6297A
1 N6298
lN6298A

15KE120
1 SKE120A
1 SKE130
15KE130A

1080
1140
1170
1240

120
120
130
130

1320
1260
1430
1370

10
10
10
10

972
1020
10S0
1110

SO
50
50
50

87
91
80
84

1730
16S0
1870
1790

0107
0107
0107
0107

1 N6299
lN6299A
lN6300
lN6300A

1 5KE150
15KE150A
1 5KE160
15KE160A

1350
1430
1440
1520

150
150
160
160

1650
1580
1760
1680

10
10
10
10

1210
1280
1300
1360

50
50
50
50

70
72
65
68

2150
2070
2300
2190

0108
0108
0108
0108

4-61

,

II

1 N5908, 1 N6373 thru 1 N6389, 1 N6267 thru 1 N6303
'ELECTRICAL CHARACTERISTICS (Continued)

Maximum

Breakdown Voltage

JEDEC

Device

@IT
(mAl

VBR
Volts

Reverse
Voltage

Maximum

Working

Reverse
Surge

@IRSM

Maximum

(Clampling

Temperature

Current

Voltage)

Coefficient

VRWM
(Volts)

Maximum
Reverse
Leakage
@VRWM
IR{"A)

IRSMt
(Amps)

VRSM
(Volts)

olVBR
(%re)

Peak
Reverse

Voltage

Device

Min

Nom

Max

lN6301
lN6301A
lN6302
lN6302A

15KE170
1.5KE170A
1 5KE180
1.5KE180A

153
162
162
171

170
170
180
180

187
179
198
189

10
10
10
10

138
145
146
154

50
50
50
5.0

62
64
58
61

244
234
258
246

0108
0.108
0108
0108

lN6303
lN6303A

1 5KE200
15KE200A
15KE220
15KE220A
1.5KE250
15KE250A

180
190
198
209
225
237

200
200
220
220
250
250

220
210
242
231
275
263

10
10
10
10
10
10

162
171
175
185
202
214

50
50
50
50
50
50

52
55
43
46
50
50

287
274
344
328
360
344

0108
0108
0109
0109
0109
0109

tSurge Current Waveform per Figure 4 and Derate per Figure 2
* Indicates JEDEC Registered Data
.... 112 Square EqUIvalent Sine Wave, PW = 8 3 ms, Duty Cycle 4 Pulses per Minute maximum
*** A TranSient Suppressor IS normally selected accordmg to the maximum reverse stand-off voltage (VRWM), which should be equal to or greater than the de
or continuous peak operating voltage level
#VF applies to Non-C suffix deVices only
C suffix denotes standard back-to-back versions Test both polarities

=

To order clipper-bidirectional deVice

II

In

1N6267 senes, add a "C" suffix to 1 5KE deVice title, Ie. 1 5KE7 5C or 1 5KE7 5eA

FIGURE' - PULSE RATING CURVE

FIGURE 2 -

100I
Nonrepetltlve
Pulse Waveform

PULSE DERATING CURVE

;'

shown In Figure 4

~~

<

'#.

z ....

-(B,

~~
.... w 100
 80
c'-'
Wa:
~c

::>a:
o.w
,,~
<0
wOo
o."

~

1.0

o

1 Om.

......... 1'0...

........

40

I'-....

""-

20

o

10m.

"

60

o

tp. PULSE WIDTH

25

50

FIGURE 3 - CAPACITANCE versus BREAKDOWN VOLTAGE

, N6267. AI' .5KE6.8. A
thru
, N6303. AI' .5KE200. A

, N6373. ICTE-5. C. MPTE-5. C
thru
, N6389. ICTE-45. C. MPTE-45. C
10,000

10.000
Measured@
Zero Bias

Mea.ured@==
Zero Bias

"-

!

1000

'-'

~

I

Measured@

~ 1000

Stlnd 011
Voltlge (VR)

;:

Measured@

~

Stand·Off
Voltage (VR)

_

z

;:;

'-' 100

u 100

1'..

U

o

10

1.0

"

"
100
1~
I~
1" WO
TA. AMBIENT TEMPERATURE (DC)

10
100
BV, BRE4KDDWN VOLTAGE (VOLTS)

1000

4-62

o

100
10
BV, BREAKOOWN VOLTAGE (VOLTS)

1000

1N5908, 1N6373 thru 1N6389, 1N6267 thru 1N6303

FIGURE 4 - STEADY STATE POWER DERATING

i

I

~

50

ffi

4.0

20

..

10

>
o

~

r--

_

50

75

~alue JRSM

100

125

""'' ' '---"

0

I--'p-

'\

150

175

200

......
20

Ihru

1 N6389. ICTE-45. C. MPTE-45. C

1 N6303. A/1.5KE200. A

Vz(Nom) - 6 8 to 13 V:=±====

......

14~E7

~
'"~
'"~

10

0

0

10
03

10
03

3D

50 70

10

20

30

L

\'1><1>-1

V

10

~ 50

20

''\.~
V

oL

N

'l==
,,>-1

0

~ 50

.>Vz. INSTANTANEOUS INCREASE IN Vz ABOVE VZ(Nom) (VOLTS)

43

.........

V

~ 10 0

N

10

20 V

'>-"
V

07

VzlNom) - 6 B 10 13 V

SO 0I=TL: 25 0 C
t-Ip: 10",
~ 20 0

20~~,t--l-7-.:24'1tz 43~-

I........

/

40

1 N6267. A/1.5KE6 8. A

1000

05

-

3D

DYNAMIC IMPEDANCE

~ 50
2o

.......

Ihru

SODr=: TL:2soC
f-- Ip'" 10.us

'"'-'=>
'"~

_

I. TIME(ms)

100 0

100

_

ol'RSM
2

10

FIGURE 6 -

'"5>-

current decays to 50%

0

1 N6373. ICTE-5. C. MPTE-5. C

20 0

Pulse Width Itplls defined as that pamt where the peak_

'RSM _tr"10J.ls

Half Value

TL. LEAD TEMPERATURE (DC)

~

t - - t--

'\

'\

25

Peak

I

100 , ( ,
1

"I\..

.P

PULSE WAVEFORM

~

1-- ' ,

~

0

~__

I

~/8"

~

o

~
w

_I

~Y=

z

o

iii

I

FIGURE 5 -

V

V

./

./ V
OS 07

10

20

30

50 70

10

20

",Vz. INSTANTANEOUS INCREASE IN Vz ABOVE VZ(Nom) (VOLTS)

4-63

30

'-

1N5908, 1N6373 thru 1N6389, 1N6267 )thru 1N6303

APPLICATION

NOTE~

SPECIAL DEVICES
Matched sets and back-to-back configurations for
bidirectional applications can be ordered upon special
request Contact your nearest Motorola representallve

RESPONSE TIME
In most applicatIOns, the transient suppressor device
IS placed In parallel With the equipment or component
to be protected. In this situation, there IS a time delay
associated With the capacitance of the deVice and an
overshoot condilion associated With the Inductance of
the deVice and the Inductance of the connection method
The capacilive effect IS of minor Importance In the parallel
protection scheme because It only produces a time delay
In the transition from the operating voltage to the clamp
voltage as shown In Figure A
The Inducllve effects In the deVice are due to actual

turn-on time (time reqUired for the deVice to go from zero
current to full current) and lead Inductance ThiS inductive effect produces an overshoot In the voltage across
the equipment or component being protected as shown
In Figure B MinimiZing thiS overshoot IS very Important
In the application, since the main purpose for adding
a transient suppressor IS to clamp voltage spikes These
deVices have excellent response time, tYPically In the
picosecond range and negligible Inductance However,
external InduClive effects could produce unacceptable
overshoot. Proper circuit layout, minimum lead lengths
and plaCing the suppressor deVice as close as possible
to the equipment or components to be protected Will
minimize thiS overshoot
Some Input Impedance represented by lin IS essenllal
to prevent overstress of the protection deVice ThiS Impedance should be as high as possible, Without restricting
the circuit operation

TYPICAL PROTECTION CIRCUIT

VIn (Transient)

v

v

to =Time Delay Due to Capacitive Effect

FIGURE B

FIGUREA

4-64

lN5913A

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

lN5956A

1.5 WATT SURMETIC 30
SILICON ZENER DIODES

1.SWATTS

ZENER DIODES

• •• A complete line of 1.S-Watt Zener Diodes offering the following
advantages:

3,3 - 200 VOLTS

• Complete Voltage Range - 3.3 to 200 Volts
• DO-41 Package - Smaller than Conventional Metal Devices
• Metallurgically Bonded Construction
• JEDEC Registered Parameters
• Oxide Passivated Diode
• Molded Package

"MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

15

Watts

12

mWloC

TJ.T,tg

-55 to +200

°c

DC Power DISSipation @TL = 7SoC.
Lead Length = 31S"

Derate above 7SoC
Operating and Storage Junction

--f~I--B

Temperature Range
·'ndlcates JEDEC Registered Data

~D

MECHANICAL CHARACTERISTICS

CASE: Surmetic 30 void-free. transfer-molded, thermosetting-plastic
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230·C, 1116" from

K

lfil
'IF!

case for 10 seconds
FINISH: All external surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode

will be positive with respect to anode.
MOUNTING POSITION: Any

K

~

FIGURE 1 - STEADY STATE POWER DERATING

5

0

I

I

b-..

"-

5

I

I

"

-

DIM

A

-,

"-

'TL

i'...

_

--i 3/8"1--1 3/8"1---

~

0

MilliMETERS
MIN MAX
407
5.20
8
204 2.71
D
071
086
F
- 127
K 27.94

H/" Heat Sinks"",

All JEDEC dimenSions and notes apply

CASE 59-03
00·41

r-......
...........

5

1""'20

40

60
80
100 120 140
TL. LEAD TEMPERATURE (OCI

INCHES
MIN MAX
0.160 0.205
0.080 D107
0.028 D034
- D.050
1.100

160

NOTES
PLASTIC
1 ALL RULES AND NOTES ASSOCIATED
WITH JEDEC 00·41 OUTLINE SHAll
APPLY
POLARITY DENOTED BY CATHODE
BANO
3. LEAO OIAMETER NOT CONTROLLED
WITHIN "F" DIMENSION.

""'-

180

200

{

4-65

•

1N5913A thru 1N5956A

-ELECTRICAL CHARACTERISTICS (TL = 300 C unless otherwISe noted. VF= 1.5 Volts Max@ IF = 200 mAde for all types.)

Motorola
Tvpe

Number
(Note I)
IN5913A
lN5914A
lN5915A
lN5916A
lN5917A
lN591BA
lN5919A
lN5920A
lN5921A
lN5922A
lN5923A
lN5924A
lN5925A
lN5926A
lN5927A
lN592BA
lN5929A
lN5930A
lN5931A
lN5932A
IN5933A
lN5934A
lN5935A
lN5936A
lN5937A
lN5938A
lN5939A
IN5940A
lN5941A
lN5942A
lN5943A
lN5944A
lN5945A
lN5948A
lN5947A
lN5948A
lN5949A
lN5950A
lN5951A
IN5952A
lN5953A
lN5954A
lN5955A
lN5956A

Nominal
Zener Voltage
VZ@IZT
Volts
(Note 2)

33
36
39
43
47
51
56
62
68
75
82
9 I
10
11
12
13
15
16
18
20
22
24
27
30
33
36
39
43
47
51

56
62
68
75
82
91
100
110
120
130
150
180
180
200

Max. Zener Impedance
Test
Current
IZT
mA
1136
1042
961
872
798
735
669
605
55 I
500
457
412
375
34 I
312
288
250
234
208
187
170
156
139
125
114
104
96
87
80
73
67
60
55
50
46
4 I
37
3.4
31
29
2.5
2.3
2.1
1.9

Maximum DC

Max. Reverse
Leakage Current

Zn@IZT
Ohms
10
90
75
60
5.0
40
20
2.0
25
3.0
35
40
45
55
65
70
90
10
12
14
175
19
23
26
33
38
45
53
67
70

86
100
120
140
180
200
250
300
380
450
600
700
900
1200

ZZK
Ohms
500
500
500
500
500
350
250
200
200
400

400
500
500
550
550
550
600
600
650
650
650
700
700
750
800
850
900
950
1000
1100
1300
1500
1700
2000
2500
3000
3100
4000
4500
5000
6000
6500
7000
8000

@

@

Zener
CUrrent

IZK
mA

~A

VR
Volts

IZM
mAde

10
10
10
10
10
10
10
10
10
05
05
05
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025

100
75
25
50
50
5.0
50
5.0
50
50
50
50
50
10
10
10
10
10
10
10
10
18
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1.0
10
10
10
1.0
10
1.0

10
10
10
10
15
20
30
40
52
68
65
70
80
84
91
99
I 14
122
137
152
167
182
206
228
251
274
297
327
358
388
426
47 I
51 7
560
622
692
760
836
912
988
114
1216
1368
152

454
416
384
348
319
294
267
241
220
200
182
164
150
136
125
115
100
93
83
75
68
62
55
50
45
41
38
34
31
29
26
24

IR

22
20
18
16
15
13
12
II
10
90
80
70

-Indicates JEDEC Registered Data.

NOTE 2 - SPECIAL SELECTIONS AVAILABLE INCLUDE

NOTE 1 - TOLERANCE ANO VOL TAGE DESIGNATION

Nominal zener voltages between those shown

Tolerance designation - Device tolerances of ± 10% are indicated by an
"A" sullix, ± 5% by a "8" aullix, ± 2% by a "c" a"lIix, ± 1% bV a "0"
suffix.

4-66

1N5913A thru 1N5956A

TYPICAL CHARACTERISTICS
TEMPERATURE COEFFICIENTS (-55°C to +1500C temperature range)

FIGURE 3 - ZENER VOLTAGE - 14 TO 200 VOLTS

FIGURE 2 - ZENER VOLTAGE - TO 12 VOLTS

v

200

10

-

u

,...... ...-

VZ@IZT

V
/

~
...

I-""

100

il':

70

$

50

U

L

/

L

0

u

/'

W

./

V

/

0

...«=>

0:

30

0:

~

20

/
./

'"

~
N

V

~ 10

0
40

20

/

VZ@IZT

60

80

12

10

10

20
30
50
70
Vz. ZENER VOLTAGE (VOLTS)

VZ. ZENER VOLTAGE (VOLTS)

100

200

ZENER IMPEDANCE
FIGURE 5 - EFFECT OF ZENER VOL TAGE

FIGURE 4 - EFFECT OF ZENER CURRENT
0

200
-

TJ = 250 C
'Z(rm,) = 0 1 IZ(de)

u;

'VZ=150'

30

«

ffi
~
u
:;;

!V
0

0

0
0
50
IZ. ZENER TEST CURRENT (rnA)

100

20

- -l

10mA

10

7.0
>0
50
N
N
30 20
50

./-

~

......-:: V

'"

f-

20

V

«

; 22 ~

50

~

'"

w
u

62 V

10

1 5

'"S

70
50

:<

~9: V
--....::

IZ(de) = lOrnA

100

r-;-~v

2]0

500

4-67

'Z(rm,) = 0 1 IZ(d,)

-111
70

20mA
20
30
10
VZ. ZENER VOLTAGE (VOLTS)

I I

I

50

70

100

-

IN5985A

MOTOROLA

SEMICONDUCTOR

thru

TECHNICAL DATA

IN6025A

500 MILLIWATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES

500 MILLIWATT

GLASS ZENER DIODES
2.4-110 VOLTS

· .. A complete line of 500 mW Zener Diodes offering the following
advantages:
• Complete Voltage Range - 2.4 to 110 Volts

• 00·35 Package - Smaller than Conventional 00-7 Package
•
•

Double Slug Tvpe Construction
Metallurgically Bonded Construction

•

JEDEC Registered

•

OXide Passivated Die

*MAXIMUM RATINGS
RatinG
DC Power DISsipation @ TL" 5o"C.
Lead Length = 3/8"
Derate above 5o"C

Svmbol

Value

Unit

Po

500

mW

TJ,T stg

3.33
-55 to +200

mWfOC

Operating and Storage Junction

°c

Temperature Range

'Indicates JEDEC RegIStered Data.

MECHANICAL CHARACTERISTICS
CASE: Double slug type. hermetically sealed gla ..
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 23o"C, 1/16"
from case for 10 seconds
FINISH: All external surfaces are corrOSion resistant with readily solderable leads.
POLARITY: Cathode indicated by color band. When
cathode will be POSitive with respect to anode.

operated

In

zener mode.

MOUNTING POSITION: Any

FIGURE 1 - STEADY STATE POWER DERATING

i

07
06

z

'"

5

illc;

04

~

"" "-

a:

....~

3

"

02

~
..

O. 1

e

"

r~f

-I3IB. I-I3IB"~
.........

""" ,
..........

40

60

BO

100

120

140

160

MILLIMETERS
INCHES
MAX MIN
MAX
MIN
305
508 0120 0200
1.52
229 0060 0090
D 046
056 0018 0022
F
127
005
K 2540 3810 1.000 1500
All JEDEC dlmenllons&nd notes apply.

DIM
A
B

0
20

NOTES
1. PACKAGE CONTOUR OPTIDNAL WITHIN A
ANOB HEATSLUGS,IFANY,SHALLBE
INCLUDEO WITHIN THIS CYLINOER, BUT
NOTSUBJECTTO THE MINIMUM LIMIT
OF B
2 LEAO DIAMETER N01 CONTROLLED IN
ZONE FTD ALLOW FOR FLASH, LEAD
FINISH BUILDUP AND MINOR IRREGU·
LARITIES OTHER THAN HEAT SLUGS.
3 POLARITY OENOTED BY CATHODE BAND
4 DIMENSIONING AND TOLERANCING PER
ANSI Y14.5, 1973

lBO

200

CASE 299-0Z

TL. LEAD TEMPERATURE (DC)

DO-Z04AH
GLASS

4-68

•

1N5985A thru 1N6025A
*ELECTRICAL CHARACTERISTICS (TL = 3o"C unless otherwise noted) (VF = 1 5 Volts Max@ IF = 100 mAdc for all types.!
Max. Zener Impedance (Note 4)

.

Max. Reverse Leakage Current

~

IR
IlA

ZZK @ IZK =
Ohms 0.25 mA

ZZT @ IZT
Ohms
A,
B

VR
volts

Motorola
Typo
Number
(Nota 1)

Zenor Voltogo
VZ@IZT
Volts
(Note 2)

Tost
Current
IZT
mA

Suffix

Suffix

Suffix

Suffix

Suffix

Suffix

Suffix

Suffix

Max. DC
Zaner
Current
IZM
(Note 3)

lN5985A
1 N5986A
lN5987A
1 N5988A
lN5989A
1 N5990A
1 N5991A
1 N5992A
lN5993A
1 N5994A
lN5995A
1 N5996A
lN5997A
lN5998A
lN5999A
lN6000A
lN6001A
lN6002A
lN6003A
1 N6004A
lN6005A
1 N6006A
lN6007A
lN6008A
lN6009A
1 N6010A
lN6011A
lN6012A
lN6013A
1 N6014A
lN6015A
lN6016A
lN6017A
lN6018A
lN6019A
lN6020A
lN6021A
1 N6022A
lN6023A
lN6024A
lN6025A

2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
9.1
10
11
12
13
15
16
18
20
22
24
27
30
33
36
39
43
47
51
56
62
68
75
82
91
100
110

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
50
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
2.0
2.0
20
2.0
2.0
2.0
2.0
2.0
2.0
2.0
10
10

100
100
95
95
90
90
88
70
50
25
10
8.0
7.0
7.0
10
15
18
22
25
32
36
42
48
55
62
70
78
88
95
130
150
170
180
200
225
240
265
280
300
500
650

110
110
100
100
95
95
90
90
88
70
50
25
10
15
18
22
25
32
36
42
48
55
62
70
78
88
95
110
130
170
180
200
225
240
265
280
300
350
400
800
950

1800
1900
2000
2200
2300
2400
2500
2200
2050
1800
1300
750
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
700
700
800
900
1000
1300
1400
1400
1600
1700
2000
2300
2600
3000

2000
2200
2300
2400
2500
2500
2500
2500
2500
2200
2050
1800
1300
750
600
600
600
600
600
600
600
600
600
600
600
700
700
800
900
1000
1100
1300
1400
1600
1700
2000
2300
2600
3000
4000
4500

100
75
50
25
15
10
5.0
3.0
2.0
2.0
1.0
1.0
0.5
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
0.1
01
0.1
01
0.1
01

100
100
100
75
50
25
15
10
5.0
3.0
2.0
2.0
1.0
1.0
0.5
0.5
01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
01
01

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.5
2.0
3.0
4.0
5.2
6.0
6.5
7.0
8.0
8.4
9.1
9.9
11
12
14
15
17
18
21
23
25
27
30
33
36
39
43
47
52
56
62
69
76
84

0.5
0.5
0.5
0.5
0.5
1.0
1.0
1.0
1.0
1.5
2.0
3.0
4.0
5.2
6.0
6.5
7.0
8.0
8.4
9.1
9.9
11
12
14
15
17
18
21
23
25
27
30
33
36
39
43
47
52
56
62
69

208
185
167
152
139
128
116
106
98
89
81
74
67
61
55
50
45
42
38
33
31
28
25
23
21
19
17
15
14
13
12
11
98
8.9
8.0
74
67
6.1
55
5.0
45

Nominal

B

A,

B

Nan-

Non-

A,

A,

B

Non-

Nan-

Indicates JEOEC RegIStered Data

NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION
Tolerance deSignation - DeVice tolerances of ± 1 0% are indicated
by an "A" SUffiX, ±5% by a "8" suffiX, ±2% by a

"e" SUffiX, ±1%

by a "0" suffiX

NOTE 3:
ThiS data was calculated uSing nominal voltages. In order to
determme the m8)(lmum current handling capability on a worst
case baSIS the follOWing formula must be used:
Izm(worst case)

NOTE 2 - SPECIAL SELECTIONS AVAILABLE INCLUDE:

=

500 mW
Vz(nom) + tolerance

(a) Nominal Zener voltages between those shown.

(b) Matched sets· (Standard Tolerances are ±5.O%, ±2 0%, ±1 0%)
a. Two or more Units for series connectIon With specified
tolerance on total voltage Senes matched sets make
zener voltages In excess of 200 volts possible as well as
providing lower temperature coeffiCIents, lower dynamiC
Impedance and greater power handling ability

NOTE 4:
ZZT and ZZK are measured by diViding the ae voltage drop
across the deVice by the ac current applied. The speCified limits
are for IZ(ac) = 0.1 IZ(dc) With the ae frequency = 10kHz.

b Two or more UOItS matched to one another With any
speCifIed tolerance

4-69

1N5985A thru 1N6025A

TYPICAL CHARACTERISTICS
TEMPERATURE COEFFICIENTS (-55°C to +150 o C temperature range)
FIGURE 2A - ZENER VOLTAGE 2.4 to 12 VOLTS
G

10

I

3-.g

80

~

60 r-- VZ@IZT

8~

40

...

...

G

...
...-

I
I

w

g;

FIGURE 28 - ZENER VOLTAGE 12 to 200 VOLTS
400

...-

VZ@IZT

3-.g

200

...

~ 100

G

u::

./

8

60
40

..."'"

0

::;
w

20

~

...~N -20

/

/'

V

~

...1l'i

~
-40
40

60

10

80

12

./

...-

~

10

N
~

20

V-

L

0
40

20

10

VZ.ZENER VOLTAGE (VOLTS)

70
50
30
VZ.ZENERVOLTAGE (VOLTS)

200

100

FIGURE 3 - EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE
FIGURE 3A
20k

20k

10k

~

e"w

500
200

<.>

z

"'"~
~

TJ 25DC_:El:
IZ(rms) oIIZ(de)
I 10 kH,

100

"'\

'"z>"N
N

::E

ew"

<.>

z

'"~
~

50

700
500

-- -

300
200

;;;

"Vz = 2 7 V
~

10

r--.....
r--.

'\.

02

05

10

20

10

50

20

50

02

03

05

07

20k
_ I Ok

r

~

200

~

100

~
;;;
;l!
>-

IZ = I 0 mA

500

-

TJ - 25DC
IZ(rms) oIIZ(de)
I = I 0 kH,

20mA

SOmA

1\

-

50 _10mA
20

~

./

.;:::::: -::V

1\1

~ 10

N

0
20
20

30

10

20

IZ.ZENER CURRENT (mA)

FIGURE 4 - EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE

~

50

70

10

20

3D

VZ.ZENER VOLTAGE (VOLTS)

4-70

30 V

;-t1-

IZ. ZENER CURRENT (mA)

e"w

91 V

~6 V

'I--

30
20
01

100

1'1'

200 V

--

-

70
50

62V

20
01

-

N

II V

50

Vz

.......

100

'"z>"N

20

TJ=25DC -'-.1.1.
IZ(rms) = 0 IIZ(de)

150 V

<.>

<.>

;;;

iii 10k

FIGURE 38

50

70

100

200

30

50

70

10

MOTOROLA

-

SEMICOMDUCTO[R

1N6267, A thl1l 1N6303, A •
1N6373 thl1l IN6389

TECHNICAL DATA

See Page 4-59

Designer's Data Sheet

3-Watt S!UI[l"rnrncdI
V>
0

""~

i-

g=~

~

ffi

30
20
10
0.1

0.2 0.3 0.5

1
2 3 5
10
P.W., PULSE WIDTH Imsl

20 30

01
0.05
«« 003
.35 002
~~ 0.0 1
~ Oil 0.005
~ ~ 0.003
~ ~ 0002
~ 0001
~ ~ 00005
":. V> 0.0003
.f!'~ 00002
0.000 1
1
1.Sj;:!

:g a:

50

100

Figure 3. Maximum Surge Power

APPLICATION NOTE:
Since the actual voltage available from a given zener diode is
temperature dependent, it is necessary to determine junction
temperature under any set of operating conditions in order to
calculate Its value. The following procedure is recommended:

Lead Temperature, TL, should be determined from:
TL ~ OLA Po

+

TA

OLA is the lead-to-ambient thermal resistance (oC/W) and Po
is the power dissipation. The value for OLA will vary and
depends on the device mounting method. OLA is generally
30-40°CIW for the various clips and tie points in common
use and for printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the tie
point. The thermal mass connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulsed operation
once steady-state conditions are achieved. Using the measured
value of TL, the junction temperature may be determined by:
TJ ~ TL + 6.TJL

10

20
50
100
NOMINAL Vz IVOLTSI

200

500

lK

Figure 4. Typical Reverse Leakage

6.TJL is the increase in Junction temperature above the lead
temperature and may be found from Figure 2 for a train of
power pulses IL ~ 3/8 inch) orfrom Figure 10 for dc power.
6.TJL ~ OJL Po
For worst-case design, using expected limits of IZ, limits of
Po and the extremes ofTJ (6.TJ) may be estimated. Changes in
voltage, VZ, can then be found from:
6.V ~ OVZ 6.TJ
OVZ, the zener voltage temperature coefficient, is found from.
Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary
with time and may also be affected significantly by the zener
resistance. For best regulation, keep current excursions as low
as possible.
Oata of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower
than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be
extremely high in small spots resulting in device degradation
should the limits of Figure' 3 be exceeded.

4-72

3EZ3.905 thru 3EZ20005

TEMPERATURE COEFFICIENT RANGES
(90% of the Units are in the Ranges Indicated)

1;; 10
\8!
G

I

~

/

f--

a'c:::;i

tt

8w

".,

/' ./
/' ./

2

a:

::::>

~

L

!;;:

--

~
.....+

A'
I
RANGE

1;; 200

/
/'
. / /'

~

:§.
1E
c:::;

~

L'

30

a:

~

20

::;;
~

V

~

10

«I IZT IVOLTS)

11

III

10

~

5
6
7
VZ, ZENER VOLTAGE

3

/

V 1/
/1/

40

!;;:

o

12

Htt
RANGE

~ 50

~ -2 V/'

~-4

V VI-

100

8w
!5

/' /'

a:

J.!1- _r- l- f-

",

20

40

60
80
100
VZ, ZENER VOLTAGE

120

140

160

«I IZT IVOLTS)

180

200

Figure 6. Units 10 To 200 Volts

Figure 5. Units To 12 Volts

ZENER VOLTAGE versus ZENER CURRENT
(Figures 7, 8 and 9)

100

50
100~~~~
30

50
30
20


!5 3

ffi

2

a'i
N

1

J:5I 0.5
0.3
0.2
O. 1

10Mf_!lM~

u

I

~ 1~~~~~~~~~~~~~~~~~~~
~ 05

.!>'

o

I

03

0.2I==It:t+l=U=l=+I==+=t++=:I==++=I===J

I

010~~10~~2~0~~3~0J-~~~-5~0-J~6~0~~70~~80~-9~0--'~00

10
VZ, ZENER VOLTAGE (VOLTS)

Figure 7. Vz

Vz, ZENER VOLTAGE (VOLTS)

= 3.9 thru 10 Volts

Figure 8. Vz = 12 thru 82 Volts
~ 80

10

~
~

,,

I

1

I

f--

I

a'i
a:

I

a:
::::>
u

50

r:?

20

~N 03

/

40

".,/

~

~

0

:z

120

140
160
VZ, ZENER VOLTAGE (VOLTS)

lBO

200

Figure 9. Vz = 100 thru 200 Volts

/fo"'"

/
10

z

0.2
01
100

. /V

F
~ 30

ffi
05
z
-

~w

a:

I

I

70

~ 60
m

I

.:.

~

0

M=
lL

_

PRIMARY PATH OF
CONDUCTION IS THROUGHTHE CATHODE LEAD
1/8

1/4
3/B
112
5/B
314
L, LEAD LENGTH TO HEAT SINK (INCH)

Figure 10. Typical Thermal Resistance

4-73

V

7/B

3EZ3.905 thru 3EZ20005
ELECTRICAL CHARACTERISTICS (TA

= 25'C unless otherwise noted) VF =

I 5 V max, IF

200 mA for all types)

Test
Current
IZT
mA

ZZT@IZT
Ohms

ZZK@IZK
Ohms

IZK
mA

3EZ3.9D5
3EZ4.3D5
3EZ4.7D5
3EZ5.1D5

3.9
4.3
4.7
5.1

192
174
160
147

4.5
4.5
4
3.5

400
400
500
550

I
I
I
I

80
30
20
5

I
I
I
I

630
590
550
520

4.4
4.1
3.8
3.5

3EZ5.6D5
3EZ6.2D5
3EZ6.8D5
3EZ7.5D5

5.6
6.2
6.8
7.5

134
121
110
100

2.5
1.5
2
2

600
700
700
700

I
I
I
0.5

5
5
5
5

2
3
4
5

480
435
393
360

3.3
3.1
2.9
2.66

3EZ8.2D5
3EZ9.1D5
3EZ10D5
3EZ11D5

8.2
9.1
10
II

91
82
75
68

2.3
2.5
3.5
4

700
700
700
700

0.5
0.5
0.25
0.25

5
3
3
I

6
7
7.6
8.4

330
297
270
225

2.44
2.2
2
1.82

3EZ12D5
3EZ13D5
3EZ14D5
3EZ15D5

12
13
14
15

63
58
53
50

4.5
4.5
5
5.5

700
700
700
700

0.25
0.25
0.25
0.25

I
0.5
0.5
0.5

9.1
9.9
10.6
11.4

246
208
193
180

1.66
1.54
1.43
1.33

3EZ16D5
3EZ17D5
3EZ18D5
3EZ19D5

16
17
18
19

47
44
42
40

5.5
6
6
7

700
750
750
750

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

12.2
13
13.7
14.4

169
150
159
142

1.25
1.18
1.11
1.05

3EZ20D5
3EZ22D5
3EZ24D5
3EZ27D5

20
22
24
27

37
34
31
28

7
8
9
10

750
750
750
750

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

15.2
16.7
18.2
20.6

135
123
112
100

I
0.91
0.83
0.74

3EZ28D5
3EZ30D5
3EZ33D5
3EZ36D5
3EZ39D5

28
30
33
36
39

27
25
23
21
19

12
16
20
22
28

750
1000
1000
1000
1000

0.25
0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5
0.5

21
22.5
25.1
27.4
29.7

96
90
82
75
69

0.71
0.67
0.61
0.56
0.51

3EZ43D5
3EZ47D5
3EZ51D5
3EZ56D5

43
47
51
56

17
16
15
13

33
38
45
50

1500
1500
1500
2000

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

32.7
35.6
38.8
42.6

63
57
53
48

0.45
0.42
0.39
0.36

3EZ62D5
3EZ68D5
3EZ75D5
3EZ82D5

62
68
75
82

12
11
10
9.1

55
70
85
95

2000
2000
2000
3000

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

47.1
51.7
56
62.2

44
40
36
33

0.32
0.29
0.27
0.24

3EZ91D5
3EZ100D5
3EZll0D5
3EZ120D5

91
100
110
120

8.2
7.5
6.8
6.3

115
160
225
300

3000
3000
4000
4500

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

69.2
76
83.6
91.2

30
27
25
22

0.22
0.2
0.18
0.16

3EZ130D5
3EZ140D5
3EZ150D5
3EZ160D5

130
140
150
160

5.8
5.3
5
4.7

375
475
550
625

5000
5000
6000
6500

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

98.8
106.4
114
121.6

21
19
18
17

0.15
0.14
0.13
0.12

3EZ170D5
3EZ180D5
3EZ190D5
3EZ200D5

170
180
190
200

4.4
4.2
4
3.7

650
700
800
875

7000
7000
8000
8000

0.25
0.25
0.25
0.25

0.5
0.5
0.5
0.5

130.4
136.8
144.8
152

16
15
14
13

0.12
0.11
0.1
0.1

Motorola
Type No.
(Note I)

Max Zener Impedance
(Note 3)

=

Nominal
Zener Voltage
VZ@IZT
Volts
(Note 2)

NOTES:
(1) TOLERANCES - Suffix 1 indicates 1% tolerance, suffix 2
indicates 2% tolerance, suffix 5 indicates 5% tolerance and
suffix 10 indicates 10% tolerance, any other tolerance will be
considered as a special device.
(2) ZENER VOLTAGE (VZ) MEASUREMENT - Motorola guarantees the zener voltage when measured at 40 ms ± 10 ms
3/8" from the diode body, and an ambient temperature of
25'C ( + 8'C, - 2'C).
(3) ZENER IMPEDANCE (ZZ) DERIVATION - The zener imped-

Leakage
Current
IR
p.A Max@

VR
Volts

Maximum
Surge
Zener
Current
Current @TA=25'C
ir-mA
IZM
(Note 4)
mA

ance is derived from the 60 cycle ac voltage, which results
when an ac current having an rms value equal to 10% of the
dc zener current (lZT or IZK) is superimposed on IZT or IZK.
(4) SURGE CURRENT (ir) NON-REPETITIVE - The rating listed
in the electrical characteristics table is maximum peak, nonrepetitive, reverse surge current of 112 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual device capability is as described in Figure 3.

4-74

ICTE-5, C thru ICTE-45, C
See Page 4-59
-

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MCL1300
thru
MCL1304

CURRENT LIMITING DIODES
Field-effect current limiting diodes designed for applications requiring a current reference or a constant current over a specified
voltage range.
CURRENT·LIMITER CHARACTERISTICS AND SYMBOL IDENTIFICATION
(See Notes 1 thru 6)

!

45
E

;:'4
~ 3
a:
2

g;
u

I

Ip@lVT

ZK

CURRENT LIMITING
DIODES

I

.J

jI

r
r-

00

I
Vpo .,..j

VL

10

I

20

30 40

50

60 70

:

80 90

VOLTS
MAXIMUM RATINGS

(TA~25·C

unless otherwise noted)

Junction and Storage Temperature: - 65°C to + 200·C
Peak Operating Voltage: See Table

ELECTRICAL CHARACTERISTICS (TA = 25·C unless otherwise noted)
Knee

Nominal

Test

Plnch·Off

Volt.

Limiter
Imped.

limiting

Operating

at 6 V

Voltage

Voltage
Note 6

Nota 2

Nota 3

Note 4

Nole 5

ZT(min)

ZK(min)

VL (max)

(rnA)

VT
(Volts)

(Megohms)

(Megohms)

(Volts)

VPO
(Volts)

±O3

25

4000

0500

10

75

Typo

Current
Note 1

Tol.

Number

Ip(mA)

MCL1300

05
10

±O6

25

o BOO

0200

15

MCL1302

20

0400

0100

20

75

30

±O6
±O6

25

MCL1303

25

0300

0050

20

75

MCL1304

40

±O6

25

0250

0025

25

75

MCL1301

liB

Peak

Imped.

@

D

K

75

ri·--i

These specifications are preliminary SelectIOns may be made to obtain
nommal currents between those shown, as well as tighter tolerance units
SYMBOL DEFINITIONS:
NOTE 1 Ip - The plnch·olf current IS the guaranteed current at a specified VT
Ip IS specified as a nominal with a tolerance
NOTE 2 VT - The test voltage for measurement of Ip.
NOTE 3 ZT - The Impedance at the test voltage, VT, specified. To provide the
most constant current ZT should be as high as possible; thus a
minimum ZT IS specified. ZT IS derIVed from the 90 cycle per sec·
ond current which results when an AC voltage having an RMS
value equal to 10% of the test voltage (VT) IS superimposed on
VT·
NOTE 4 ZK - Knee Impedance IS specified as a minimum also since again the
highest value is desired VK is established as 6.0 V for convenience.
NOTE 5 VL - limiting Voltage. This speciflcallon IS provided with ZK to indicate the sharp knee of the device. The specification IS
analogous to IR and ZK of a zener diode. VL a maximum speclfi·
cation is measured at 80 % on I p tolerance.
NOTE 6 VpO - The peak-operating voltage Is provided and indicates the maxImum voltage to be applied to the device. The specification Is
necessary since the device is either power limited or breakdown
limited beyond this specified voltage.

4-75

K

L
MilLIMETERS
DIM

MIN

MAX

A

5 B4
216
046

762
272
056
127
3810

B

0
F

K

2540

INCHES
MIN
MAX
0230
o OB5
0018
1000

0300
0107
0022
0050
1500

All JEOEC dImenSIons and notes apply

CASE 51-02
DO-204AA
GLASS
NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN DIA BAND
LENGTH A HEAT SLUGS. IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER. BUT SHALL NOT BE SUBJECT TO
THE MIN LIMIT OF OIA B
LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW
FOR FLASH,LEAD FINISH BUILDUP, AND MINOR
IRREGULARITIES OTHER THAN HEAT SLUGS

MLL746

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

MLL759
MLL957A

thru
MLL986A
500 MILLIWATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES
• Complete Voltage Range -

MLL4370

2.4 to 110 Volts

thru

• Leadless Package for Surface Mount Technology
• Double Slug Type Construction

MLL4372

• Metallurgically Bonded Construction
• Nitride Passivated Die
• Available in 8 mm Tape and Reel
T1 Cathode Facing Sprocket Holes
T2 Anode Facing Sprocket Holes

LEAD LESS
GLASS ZENER DIODES
500 MILLIWATTS
2.4-110 VOLTS

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

500
3.3

mW
mWrC

TJ, Tstg

-65 to +200

·C

DC Power Dissipation @ TA '" 50·C
Derate above TA = 50·C
Operating and Storage Junction
Temperature Range

MECHANICAL CHARACTERISTICS
CASE: Double slug type, hermetically sealed glass
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230·C, for 10
seconds
FINISH: All external surfaces are COrrOSion resistant and readily solderable
POLARITY: Cathode indicated by color band. When operated," zener mode,
cathode will be positive with respect to anode
MOUNTING POSITION: Any

STEADY STATE POWER DERATING
14

1

~~ 12

1

z
o 10

Po I" Tc

~

"

~ 08
is

~

!C

06

r-.

~ 04
~

~

02

rP

a

o

20

40

60

-...!:::."
80

100

"

TA

-,.......
120

TA, LEAD TEMPERATURE I·CI
AMBIENT

""-I'.

-

140

160

"~

180

200

DIM

MILLIMETERS
MIN
MAX

A
8

330370
160
170

R

249

259

U

041

055

CASE 362-01
GLASS

4-76

-

MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372
ELECTRICAL CHARACTERISTICS (TA

= 25'C, VF = 1.5 V Max @200mAforall types)

Type
Number
(Note 1)

Nominal
Zener Voltage
VZ@IZT
(Notes 1,2,3)
Volts

Test
Current
IZT
(Note 2)
mA

Maximum Zener Impedance
ZZT@IZT
(Note 4)
Ohms

Maximum Reverse Leakage Current

MLL4370
MLL4371
MLL4372
MLL746
MLL747
MLL748

2.4
2.7
3.0
3.3
3.6
3.9

20
20
20
20
20
20

30
30
29
28
24
23

150
135
120
110
100
95

MLL749
MLL750
MLL751
MLL752
MLL753
MLL754

4.3
4.7
5.1
5.6
6.2
6.8

20
20
20
20
20
20

22
19
17
11
7
5

MLL755
MLL756
MLL757
MLL758
MLL759

7.5
8.2
9.1
10
12

20
20
20
20
20

6
8
10
17
30

Test
Current
IZT
INote 2)
mA

Maximum Zener Impedance
(Note 4)

Type
Number
INote 1)

Nominal
Zener Voltage
Vz
(Notes 1,2,3)
Volts

ZZT@IZT
Ohms

ZZK@IZK
Ohms

IZK
mA

MLL957A
MLL958A
MLL959A
MLL960A
MLL961A
MLL962A

6.8
7.5
8.2
9.1
10
11

18.5
16.5
15
14
12.5
11.5

4.5
5.5
6.5
7.5
8.5
9.5

700
700
700
700
700
700

1.0
0.5
05
0.5
0.25
0.25

47
42
38
35
32
28

MLL963A
MLL964A
MLL965A
MLL966A
MLL967A
MLL968A

12
13
15
16
18
20

10.5
9.5
8.5
7.8
7.0
6.2

11.5
13
16
17
21
25

700
700
700
700
750
750

0.25
0.25
0.25
0.25
0.25
0.25

26
24
21
19
17
15

MLL969A
MLL970A
MLL971A
MLL972A
MLL973A
MLL974A

22
24
27
30
33
36

5.6
5.2
4.6
4.2
3.8
3.4

29
33
41
49
58
70

750
750
750
1000
1000
1000

0.25
0.25
0.25
0.25
0.25
0.25

14
13
11
10
9.2
8.5

MLL975A
MLL976A
MLL977A
MLL978A
MLL979A
MLL980A

39
43
47
51
56
62

3.2
3.0
2.7
2.5
2.2
2.0

80
93
105
125
150
185

1000
1500
1500
1500
2000
2000

0.25
0.25
0.25
0.25
0.25
0.25

MLL981A
MLL982A
MLL983A
MLL984A
MLL985A
MLL986A

68
75
82
91
100
110

1.8
1.7
1.5
1.4
1.3
1.1

230
270
330
400
500
750

2000
2000
3000
3000
3000
4000

0.25
0.25
0.25
0.25
0.25
0.25

4-77

Maximum
DC Zener Current
IZM
mA

TA = 25'C
IR@VR=1V

TA = 15O'C
IR@VR=1V

pA

pA

190
165
150
135
125
115

100
75
50
10
10
10

200
150
100
30
30
30

85
75
70
65
60
55

105
95
85
80
70
65

2
2
1
1
0.1
0.1

30
30
20
20
20
20

50
45
40
35
30

60
55
50
45
35

0.1
0.1
0.1
0.1
0.1

20
20
20
20
20

Maximum
DC Zener CUrrent
IZM
mA

Maximum Reverse Current
IR Maximum

Test Voltage Vdc

pA

5% VR 10%

61
55
50
45
41
37

150
75
50
25
10
5

5.2
5.7
6.2
6.9
7.6
8.4

4.9
5.4
5.9
6.6
72
8.0

34
32
27
37
23
20

5
5
5
5
5
5

9.1
9.9
11.4
12.2
13.7
15.2

8.6
9.4
10.8
11.5
13.0
14.4

18
15
13
12
11

5
5
5
5
5
5

16.7
18.2
20.6
22.8
25.1
27.4

15.8
17.3
19.4
21.6
23.8
25.9

7.8
7.0
6.4
5.9
5.4
4.9

10
9.6
8.8
8.1
7.4
6.7

5
5
5
5
5
5

29.7
32.7
35.8
38.8
42.6
47.1

28.1
31.0
33.8
36.7
40.3
44.6

4.5
1.0
3.7
3.3
3.0
2.7

S.l

5
5
5
5
5
5

51.7
56.0
62.2
69.2
76
83.6

49.0
54.0
59.0
65.5
72
79.2

17

5.5
5.0
4.5
4.5
4.1

MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372

NOTE 1. Tolerance Designation - The type numbers
shown have tolerance designations as follows:
MLL4370 series: ±10%, suffix A for ±5% units.
MLL746 series: ±10%, suffix A for ±5% units.
MLL957 series:
suffix A for ± 10% units,
suffix B for ± 5% units.

.<1TJC is the increase in junction temperature above the
case temperature and may be found by using:
.<1TJC = 8JCPO·
For worst-case deSign, using expected limits of IZ,
limits of Po and the extremes of TJ(.<1TJ) may be estimated. Changes in voltage, VZ, can then be found from:

NOTE 2. Special Selectionst Available Include:
1. Nominal zener voltages between those shown.
2. Two or more units for series connection with specified tolerance on total voltage. Series matched sets
make zener voltages in excess of 200 volts possible as
well as providing lower temperature coefficients, lower
dynamic impedance and greater power handling ability.
3. Nominal voltages at non-standard test currents.

.<1V = OyZ.<1TJ.
OyZ, the zener voltage temperature coefficient, is
found from Figures 2 and 3.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation,
keep current excursions as low as possible.
Surge limitations are given in Figure 6. They are
lower than would be expected by considering only
junction temperature, as current crowding effects
cause temperatures to be extremely high in small
spots, resulting in device degradation should the limits of Figure 6 be exceeded.

NOTE 3. Zener Voltage IVz) Measurement - Nominal
zener voltage is measured with the device junction in
thermal equilibrium at the case temperature of 30'C
±1'C.
NOTE 4. Zener Impedance IZz) Derivation - ZZT is
measured by dividing the ac voltage drop across the
device by the ac current applied. The specified limits
are for Izlac) = 0.1 x IZ(dc) with the ac frequency =
1.0 kHz.

FIGURE 1 -

TYPICAL LEAKAGE CURRENT

10000
7000 '\.
&000
,~

Typical Leakage Current at BO% of Nominal
Breakdown Voltage

2000

tFor more Information on special selections contact your nearest
Motorola representative.

-

1000
700
&00
200

APPLICATION NOTE
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:
Case Temperature, TC. should be determined from:
TC = I1cAPO + TA·
I1cA is the case-to-ambient thermal resisstance ('CIW)
and Po is the power dissipation. The value for I1cA will
vary and depends on the device mounting method.I1cA
is generally 200'CIW for the various clips and tie points
in common use and for printed circuit board wiring.
The temperature of the case can also be measured
using a thermocouple placed at the case end as close
as possible to the tie point. The thermal mass connected
to the tie point is normally large enough so that it will
not significantly respond to heat surges generated in
the diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured
value of TC, the junction temperature may be determined by:

tOO
70
&0

1

20

!z

10

:::>

70
&0

~

u

~

20

....

to

.e: ~ ~

\

2

+ 125'C
-~

ot
00 7
00 &

1\

002

~

00 t
000 7
000 &

+ 25'C

0002
000 t
30

40

&0

60

70

80

90

to

11

t2

VZ, NOMINAL ZENER VOLTAGE (VOLTS)

4-78

13

14

1&

MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372
FIGURE 2 -

+ 150'C temperature

(-55"C to

TEMPERATURE COEFFICIENTS
range; 90"/. of the units are in the ranges Indicated.)

a - RANGE FOR UNITS TO 12 VOLTS

b - RANGE FOR UNITS 12 TO 100 VOLTS
100

+12

G 70

~

15

§:; 50

+10
+80

+4 0

/ ' V'...... ~

ll!
~ +20

/ /"
~
~
~
g -2 0 ..........

Range

~

VZ@IZT

0,-

30

40

~
~
:5
~

50

~

30

10

11

....

+40

FIGURE 4 -

-

0

A

-

u

~ ~V'

-20

-:: VA

/ lhV'

~

~
N

"".; 'l'"

f- 2OmA

~

,.

TYPICAL CAPACITANCE

500

...- ....".

VZ@IZ
TA = 25'C

+20

ll!

100

10

1000

1.5

~

Range_ l - - VZ@IZT

20
30
50
VZ. ZENER VOLTAGE IVOLTS)

EFFECT OF ZENER CURRENT

U

g

........:: ~

--

70

12

+60

§;

10

.....-: :;..-'l


U)

~

~

-.

fo;;;; ~cyc:e

30

f--

20

10
001

:---

V 2.4 V-l0 V Nonrepelilive

t---

r-

r- t-

:r:-+:-+-10 F= 10%
Duty Cycle
70
50

--

Rectangular
Waveform
25'C PriOrlO
TJ
Initial Pulse

11 V-91 ~ N~nrep~tltlv~

:--- !-.

=--.. . .

20% Duty Cycle

"iII!_

I I II
I I II
002

005

'"
01

02

05

10

20

50

pw. PULSE WlDTH (m.)
ThIS graph represents 90 percentll data POints

For worst-case deSIgn characteristics, multlplv surge power bV 2J3

4-79

10

20

50

-- r-

-

100

200

i--

~

500

1000

MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372
RGURE 7 - EFFECT OF ZENER VOLTAGE
ON ZENER IMPEDANCE

FIGURE 6 - EFFECT OF ZENER CURRENT
ON ZENER IMPEDANCE
1000
Vz

500

~

IZ!rmsl '" 0 lIZ(dc)

in

e'" "

'~60

200

~ 100

I'

~

5,0

~

20

iE
~

10

~

0

-IZ~

~

Hz

~=== E-

z

~
'!;
;;
~

a

10
0
01

01

05

10

10

'z, ZENER

50

10

50

10

\

I0
70
50

.ti'

.ti'

O rnA

0 - _.10m

u

iE

61V

1- 60 Hz

10
7
50

u

7V

TJ ~ 15'C
Iz(rms) = 0 llZldcl

lOrnA

100

S

47 V

z

«

100 0
70 a
500

TJ ~ 15'C

27 V

0
10

100

10

3a

10
30
5 a 7 a 10
VZ,ZENER VOLTAGE IVOLTS)

CURRENT ImA)

FIGURE 8 - TYPICAL NOISE DENSITY

FIGURE 9 -

10000
TA ~ 15'C

_1000

True
AMS
Volt
Meter

Ii!; 1000
~ 500
;: 200

~o
w

~

100
50

0

lQ

~

10

z

NOise Density
V out
(Volts Per Square Aoot Bandwidth) ::: Overall Gam
Where

50
10
10

70

NOISE DENSITY MEASUREMENT METHOD

~
r:=

IZ~150"A

5000

50

VBW

BW = Filter Bandwidth (Hz)
V out = Output NOise (Volts AMSJ

The Input voltage and load resistance are high so that the zener
diode IS driven from a constant current source The amplifier IS
low nOise so that the amplifier nOise IS negligible compared to

a

10

40

60

that of the test zener The filter bandpass Is known so that the
nOise denSity can be calculated from the formula shown

100

80

Vz, ZENER VOLTAGE IVOL TS)

FIGURE 10 - TYPICAL FORWARD CHARACTERISTICS
1000

___ Minimum

500

1
I-

15
g§

:::>

100

~

12

'/

100

' / 'V

-

50

u

c

Maximum

10
10

=

.!? 50
10
10
04

/

=75'C

~

V

./

I

",

150'C

25 0 C

~

.r

"

,/

05

06

I
07

-r08

O'C
09

VF. FORWARD VOLTAGE (VOLTS)

4-80

10

II

100

MOTOROLA

-

SEMICONDUCTOR
TECHNICAL DATA

-----1

MLL4099-MLL4135
MLL4614-MLL4627
SILICON LEAD LESS
GLASS ZENER DIODES

LOW NOISE LEVEL SILICON PASSIVATED
ZENER DIODES

(±5.0% TOLERANCE)

· .. designed for 250 mW applications requiring low leakage, low
impedance, and low noise.

250 MILLIWATTS

• Leadless Package for Surface Mount Technology
• Voltage Range from 1.B to 100 Volts
• First Leadless Zener Diode Series to Specify Noise Lower than Conventional Diffused Zeners

1.8-100 VOLTS
50%

SILICON NITRIDE
PASSIVATED JUNCTION

• Zener Impedance and Zener Voltage Specified for Low·Level
Operation at Izr = 250 pA
o Low Leakage Current - IR from 0.01 to 10 pA over Voltage
Range
o Available in Bmm Tape and Reel
T1 Cathode Facing Sprocket Holes
T2 Anode Facing Sprocket Holes

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

250
1.43

mW
mWI"C

TJ. Tsto

-65 to +200

°C

DC Power Dissipation @ TA = 25°C
Derate above 25°C
Junction and Storage Temperature Range

MECHANICAL CHARACTERISTICS
CASE: Double slug, hermetically sealed glass
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:
230°C for 10 seconds
RNISH: All external surfaces are corrosion resistant and readily
solderable
POLARITY: Cathode mdlcated by color band. When operated m the
zener mode, cathode will be positive with respect to anode
MOUNTING POSITION: Any

POWER TEMPERATURE DERATING CURVE

~_E
z
o

400

DIM
A

350

~ 300

B

'"C5

U

R

u;

~
w

250

150

i:(

100

~

0

15

;p

..............

200

'"

INCHES
MILLIMETERS
MAX
MIN MAX
MIN
330
370 0130 0146
160
170 0063 0067
259 0098 0102
249
041
055 0016 0022

........

I'-.....

I'---

CASE 362-01
GLASS

~

r-...
~

25

50

75

100

125

150

175

TA. AMBIENT TEMPERATURE lOCI

4-81

200

-

Mll4099 thru Mll4135, Mll4614 thru Mll4627
ELECTRICAL CHARACTERISTICS
(At 25"C Ambient temperature unless otherwise specified) IZT = 250 pA and VF = 1.0 V max @ IF = 200 mA on all Types

Type
Number
(Note 1)

Nominal
Zener Voltage
Vz
(Note 1)
(Volts)

Max Zener
Impedance
ZZT
(Note 2)
(Ohms)

Max
Reverse
Current
IR
(pA)

MLL4614
MLL4615
MLL4616
MLL4617
MLL4618
MLL4619
MLL4620
MLL4621
MLL4622
MLL4623
MLL4624
MLL4625
MLL4626
MLL4627
MLL4099
MLL4100
MLL4101
MLL4102
MLL4103
MLL4104
MLL4105
MLL4106
MLL4107
MLL4108
MLL4109
MLL4110
MLL4111
MLL4112
MLL4113
MLL4114
MLL4115
MLL4116
MLL4117
MLL4118
MLL4119
MLL4120
MLL4121
MLL4122
MLL4123
MLL4124
MLL4125
MLL4126
MLL4127
MLL4128
MLL4129
MLL4130
MLL4131
MLL4132
MLL4133
MLL4134
MLL4135

1.8
2.0
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
8.7
9.1
10
11
12
13
14
15
16
17
18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
56
60
62
68
75
82
87
91
100

1200
1250
1300
1400
1500
1600
1650
1700
1650
1600
1550
1500
1400
1200
200
200
200
200
200
200
200
200
200
200
100
100
100
100
150
150
150
150
150
150
200
200
200
200
200
250
250
300
300
400
500
700
700
800
1000
1200
1500

7.5
5.0
4.0
2.0
1.0
0.8
7.5
7.5
5.0
4.0
10
10
10
10
10
10
1.0
1.0
1.0
1.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.Q1
0.01
0.D1
0.01
0.Q1
0.Q1
0.Q1
0.01
0.01
0.01
0.01
0.01
0.Q1
0.01
0.01
0.Q1
0.01
0.01
0.01
0.01
0.Q1
0,01

NOTE 1: TOLERANCE AND VOLTAGE DESIGNATION
The type numbers shown have a standard tolerance of
:t 5.0% on the nominal zener voltage.
NOTE 2: ZENER IMPEDANCE (ZZT) DERIVATION
The zener impedance is derived from the 1000 cycle ac voltage, which results when an ac current having an rms value
equal to 10% of the dc zener current IIZT) is superimposed on
IZT·

Test
Voltage
VR
(Volts)

Max Noise Density
At IZT
250 pA
NO
(Fig 1)
(micro-volts per
Square Root Cycle)

Max Zener Current
IZM
(Note 4)
(mA)

1.0
1.0
1.0
1.0
1.0
1.0
1.5
2.0
2.0
2.0
3.0
3.0
4.0
5.0
5.2
5.7
6.3
6.7
7.0
7.6
8.5
9.2
9.9
10.7
11.4
12.2
13.0
13.7
14.5
15.2
16.8
18.3
19.0
20.5
21.3
22.8
25.1
27.4
29.7
32.7
35.8
38.8
42.6
45.6
47.1
51.7
57.0
62.4
66.2
69.2
76.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
4.0
5.0
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

120
110
100
95
90
85
80
75
70
65
60
55
50
45
35
31.8
29.0
27.4
26.2
24.8
21.6
20.4
19.0
17.5
16.3
15.4
14.5
13.2
12.5
11.9
10.8
9.9
9.5
8.8
8.5
7.9
7.2
6.6
6.1
5.5
5.1
4.6
4.2
4.0
3.8
3.5
3.1
2.9
2.7
2.6
2.3

=

(Note 3)

NOTE 3: REVERSE LEAKAGE CURRENT IR
Reverse leakage currents are guaranteed and are measured
at VR as shown on the table.
NOTE 4: MAXIMUM ZENER CURRENT RATINGS (lZM)
Maximum zener current ratings are based on maximum zener voltage of the individual units.

4-82

MLL4099 thru MLL4135, MLL4614 thru MLL4627

ZENER NOISE DENSITY
A zener diode generates noise when it is biased in
the zener direction. A small part of this noise is due to
the internal resistance associated with the device. A
larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise.
This microplasma noise is generally considered "white"
noise with equal amplitude for all frequencies from
about zero cycles to approximately 200,000 cycles. To
eliminate the higher frequency components of noise a
small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies
would degrade the regulation properties of the zener in
many applications.
Motorola is rating this series with a maximum noise
density at 250 microamperes. The rating of microvolts

RMS per square root cycle enables calculation of the
maximum RMS noise for any bandwidth.
Noise density decreases as zener current increases.
This can be seen by the graph in Figure 2 where a typical
noise density is plotted as a function of zener current.
The junction temperature will also change the zener
noise levels. Thus the noise rating must indicate bandwidth, current level and temperature.
The block diagram given in Figure 1 shows the
method used to measure noise density. The input voltage and load resistance is high so that the zener is
driven from a constant current source. The amplifier
must be low noise so that the amplifier noise is negligible compared to the test zener. The filter bandpass is
known so that the noise density in volts RMS per square
root cycle can be calculated.

FIGURE 1 - NOISE DENSITY MEASUREMENT METHOD
51 k

+

Filter

Load Resistor
Ammeter
dc Power
Supply

fO=2kHz
f1 = 1 kHz
f2 = 3kHz
BW = 2kHz

Vz

Test Zener

Noise Density (volts per square root cycle)

Vout
Overall Gain

v'BW

Where: BW = Filter Bandwidth (Cycles)
Vout = Output Noise (Volts RMS)
FIGURE 2 - TYPICAL NOISE DENSITY versus ZENER CURRENT

40

g
b
a

:::; 30

~

a:

:3
a
V)

a:
~

~ 20

~

"'- r--.......

5

~

~

z

10

~
~

6
z
~O

o

75

"'- f'..MLL4115
"'- .......
"'- ",M'::'4124
-......

100 125

150

175

200

Iz, ZENER CURRENT (~)

4-83

"'- i'-- ...

-

225

r-- r-

250

275 300

Vout

True
RMS
Volt
Meter

MLL4099 thru MLL4135, MLL4614 thru MLL4627

FIGURE 3 - TYPICAL CAPACITANCE

FIGURE 4 - TYPICAL FORWARD CHARACTERISnCS
1000

1000
500

TA

500 MINIMUM
MAXIMUM
200

25'C

o V BIAS
200
-.;;

~100

:::-

w

~

1'!'
~

~

~
=>
c

50
50% OF r--... .......

20

u

20

10

!

t:2 5.0

Vz BIAS

L.

50

5.0
2.0
1.0
1.0

II"'"

1
!Z 100

1.0VBIAS

10

,/

r-- r-75'C
'>:'-

150'C

.!£.

2.0
2.0

5.0
10
20
VZ, ZENER VOLTAGE (VOLTS)

50

1.0 ,,1
0.4

100

4-84

/
0.5

"

I

~

I

~

25'C
O'C

0.6
0.7
0.8
0.9
VF, FORWARD VOLTAGE (VOLTS)

1.0

1.1

MLL4370 thru MLL4372
See Page 4-76

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

MLL4678
thru
MLL4717

250 MILLIWATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES
Low level nitride passivated zener diodes for applications requiring extremely low operating currents, low leakage, and sharp
breakdown voltage.
• Complete Voltage Range -

1.B to 43 Volts

• Zener Voltage Specified @ IZT = 50 pA

LEADLESS GLASS
ZENER DIODES

• Leadless Package for Surface Mount Technology
• Maximum Delta Vz Given from 10 to 100 pA
• Available in B mm Tape and Reel
T1 Cathode Facing Sprocket Holes
T2 Anode Facing Sprocket Holes

250 MILLIWATTS

ABSOLUTE MAXIMUM RATINGS
Rating
DC Power Dissipation @TA = 50'C
Derate above TA = 50'C
Operating and Storage Junction
Temperature Range

Symbol

Value

Unit

Po

250
1.67

mW
mWI'C

TJ, Tstg

-65 to + 175

'C

MECHANICAL CHARACTERISTICS
CASE: Double slug, hermetically sealed glass
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230'C
for 10 seconds
FINISH: All external surfaces are corrosion resistant and readily
solderable
POLARITY: Cathode end indicated by color band. When operated in
zener mode, the cathode will be positive With respect to
anode
MOUNTING POSmON: Any

FIGURE 1 - POWER TEMPERATURE DERATING CURVE

~

z

Q

300

~

250

!;;:
is

1""-

ffi 200

3:

~

150

a!

ffi 100

iil:

~ 50

;p 0

o

25

50

'" ""-

'" ""-

75
100
125
150
TA. AMBIENT TEMPERATURE ('CI

CASE 362-01
GLASS

175

200

4-85

•

MLL4678 thru MLL4717

ELECTRICAL CHARACTERISTICS

II

(TA

= 25'C, VF = 1.5 V max at IF = 100 mA for all types)

Zanar Vohage
VZ@IZT=50pA
Vohs

Maximum
Test
Voltage
Reverse Currant
VR Volts
IRpA
(Note 3)

Maximum
Maximum
Zener Current Voltage Changa
Iil.VZ Volts
IZMmA
(Note 2)
(Note 4)

Type
Number
(Note 1)

Nom (Note 1)

Min

Max

MLL4678
MLL4679
MLL4680
MLL4681
MLL4682

1.8
2.0
2.2
2.4
2.7

1.710
1.900
2.090
2.280
2.565

1.890
2.100
2.310
2.520
2.835

7.5
5.0
4.0
2.0
1.0

1.0
1.0
1.0
1.0
1.0

120
110
100
95
90

0.70
0.70
0.75
0.80
0.85

MLL4683
MLL4684
MLL4685
MLL4686
MLL4687

3.0
3.3
3.6
3.9
4.3

2.850
3.135
3.420
3.705
4.085

3.150
3.465
3.780
4.095
4.515

O.B
7.5
7.5
5.0
4.0

1.0
1.5
2.0
2.0
2.0

85
80
75
70
65

0.90
0.95
0.95
0.97
0.99

MLL468B
MLL4689
MLL4690
MLL4691
MLL4692

4.7
5.1
5.6
6.2
6.B

4.465
4.845
5.320
5.B90
6.460

4.935
5.355
5.8BO
6.510
7.140

10
10
10
10
10

3.0
3.0
4.0
5.0
5.1

60
55
50
45
35

0.99
0.97
0.96
0.95
0.90

MLL4693
MLL4694
MLL4695
MLL4696
MLL4697

7.5
8.2
8.7
9.1
10

7.125
7.790
8.265
8.645
9.500

7.B75
8.610
9.135
9.555
10.50

10
1.0
1.0
1.0
1.0

5.7
6.2
6.6
6.9
7.6

31.8
29.0
27.4
26.2
24.8

0.75
0.50
0.10
0.08
0.10

MLL469B
MLL4699
MLL4700
MLL4701
MLL4702

II
12
13
14
15

10.45
11.40
12.35
13.30
14.25

11.55
12.60
13.65
14.70
15.75

0.05
0.05
0.05
0.05
0.05

B.4
9.1
9.8
10.6
11.4

21.6
20.4
19.0
17.5
16.3

0.11
0.12
0.13
0.14
0.15

MLL4703
MLL4704
MLL4705
MLL4706
MLL4707

16
17
18
19
20

15.20
16.15
17.10
18.05
!-I 9.00

16.80
17.85
18.90
19.95
21.00

0.05
0.05
0.05
0.05
0.Q1

12.1
12.9
13.6
14.4
15.2

15.4
14.5
13.2
12.5
11.9

0.16
0.17
0.18
0.19
0.20

MLL470B
MLL4709
MLL4710
MLL4711
MLL4712

22
24
25
27
28

20.90
22.80
23.75
25.65
26.60

23.10
25.20
26.25
28.35
29.40

0.Q1
0.Q1
0.01
0.01
0.01

16.7
lB.2
19.0
20.4
21.2

10.8
9.9
9.5
8.8
8.5

0.22
0.24
0.25
0.27
0.28

MLL4713
MLL4714
MLL4715
MLL4716
MLL4717

30
33
36
39
43

28.50
31.35
34.20
37.05
40.85

31.50
34.65
37.80
40.95
45.15

0.Q1
0.Q1
0.01
0.Q1
0.Q1

22.8
25.0
27.3
29.6
32.6

7.9
7.2
6.6
6.1
5.5

0.30
0.33
0.36
0.39
0.43

NOTES: 1. TOLERANCE AND VOLTAGE DESIGNATION (VZ)
The type numbers shown have a standard tolerance of ± 5% on the nominal zener voltage.
2. MAXIMUM ZENER CURRENT RATINGS IIZM)
Maximum Zener current ratings are based on maximum Zener voltage of the individual units.
3. REVERSE LEAKAGE CURRENT UR)
Reverse leakage currents are guaranteed and are measured at VR as shown on the table.
4. MAXIMUM VOLTAGE CHANGE (IiI.VZ)
Voltage change is equal to the difference between Vz at 100 pA and Vz at 10 pA.

4-86

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

-----1

1.0 WATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES
•
•
•
•
•
•

MLL4728
thru
MLL4764

LEADLESS
GLASS ZENER DIODES
1.0 WATT
3.3-100 VOLTS

Complete Voltage Range - 3.3 to 100 Volts
Leadless Package for Surface Mount Technology
Double Slug Type Construction
Metallurgically Bonded Construction
Oxide Passivated Die
Available in 12 mm Tape and Reel
T1 Cathode Facing Sprocket Holes
T2 Anode Facing Sprocket Holes

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

1.0
6.67

W
mWrC

TJ, Tstg

-65 to +200

·C

DC Power Dissipation @ TA '" 50·C
Derate above TA = 50·C
Operating and Storage Junction
Temperature Range

MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 230·C, for 10
seconds
FINISH: All external surfaces are corrosion resistant and readily solderable
POLARITY: Cathode indicated by color band. When operated in zener mode,
cathode will be positive with respect to anode
MOUNTING POSITION: Any

STEADY STATE POWER DERATING
1.25

~
~

1.0

DIM
A
B

.......

"-

z

~O.75

fa

R
U

Po versus TA

"-

..........

~

cPO.2 5

o

o w

~

~

INCHES
MIN
0189
0094
0145
0012

CASE 3628·01
GLASS

..........

~ 0.50

MIlUMEIERS
MAX
520
259
454
055

MIN
480
239
368
030

00 ~ rn
T, TEMPERATURE I·CI

~

""
~

.............

~

~

4-87

MAX
0205
0102
0179
0022

-

MLL4728 thru MLL4764

ELECTRICAL CHARACTERISTICS
(TA = 25°e unless otherwise noted. Based on de measurements at thermal equilibrium;
case temperature maintained at 30 +
- 2°e VF = 1 2 V max @ IF = 200 mA for all types)
Maximum Zener Impedance (Note 4)

Leakaga Current

ZZT@IZT
Ohms

Type No.
(Note 1)

Nominal Zener Voltage
VZ@IZT
Volts
(Notas 2 and 3)

Test
Current
IZT
mA

ZZK@IZK
Ohms

IZK
mA

IR
pAMax

VR
Volts

Surge Current @
TA
250C
Ir - mA
(Note 5)

MLL472B
MLL4729
MLL4730
MLL4731
MLL4732

3.3
3.6
3.9
4.3
4.7

76
69
64
53

10
10
9.0
9.0
B.O

400
400
400
500

1.0
1.0
1.0
1.0
1.0

100
100
50
10
10

1.0
1.0
1.0
1.0
1.0

13BO
1260
1190
1070
970

MLL4733
MLL4734
MLL4735
MLL4736
MLL4737

5.1
5.6
6.2
6.B
7.5

49
45
41
37
34

7.0
5.0
2.0
3.5
4.0

550
600
700
700
700

1.0
1.0
1.0
1.0
0.5

10
10
10
10
10

1.0
2.0
3.0
4.0
5.0

B90
Bl0
730
660
605

MLL473B
MLL4739
MLL4740
MLL4741
MLL4742

B.2
9.1
10
11
12

31
28
25
23
21

4.5
5.0
7.0
B.O
9.0

700
700
700
700
700

0.5
0.5
0.25
0.25
0.25

10
10
10
5.0
5.0

6.0
7.0
7.6
B.4
9.1

550
500
454
414
3BO

MLL4743
MLL4744
MLL4745
MLL4746
MLL4747

13
15
16
1B
20

19
17
15.5
14
12.5

10
14
16
20
22

700
700
700
750
750

0.25
0.25
0.25
0.25
0.25

5.0
5.0
5.0
5.0
5.0

9.9
11.4
12.2
13.7
15.2

344
304
2B5
250
225

MLL474B
MLL4749
MLL4750
MLL4751
MLL4752

22
24
27
30
33

11.5
10.5
9.5
B.5
7.5

23
25
35
40
45

750
750
750
1000
1000

0.25
0.25
0.25
0.25
0.25

5.0
5.0
5.0
5.0
5.0

16.7
lB.2
20.6
22.B
25.1

205
190
170
150
135

MLL4753
MLL4754
MLL4755
MLL4756
MLL4757

36
39
43
47
51

7.0
6.5
6.0
5.5
5.0

50
60
70
BO
95

1000
1000
1500
1500
1500

0.25
0.25
0.25
0.25
0.25

5.0
5.0
5.0
5.0
5.0

27.4
29.7
32.7
35.B
3B.B

125
115
110
95
90

MLL475B
MLL4759
MLL4760
MLL4761
MLL4762
MLL4763
MLL4764

56
62
6B
75
B2
91
100

4.5
4.0
3.7
3.3
3.0
2.B
2.5

110
125
150
175
200
250
350

2000
2000
2000
2000

0.25
0.25
0.25
0.25
0.25
0.25
0.25

5.0
5.0
5.0
5.0
5.0
5.0
5.0

42.6
47.1
51.7
56.0
62.2
69.2
76.0

BO
70
65
60
55
50
45

58

400

3000
3000
3000

4-88

=

MLL4728 thru MLL4764

NOTE 1. Tolerance and Type Number Designation - The type numbers
listed have a standard tolerance on the nominal zener voltage of ± 10%.
A standard tolerance of ± 5% on individual Units is also available and
is indicated by suffixing "A" to the standard type number.

deVice mounting method. OcA is generally 200"CIW for the vanous clips
and tie points in common use and for printed circuit board wiring.
The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie pOint. The
thermal mass connected to the tie point IS normally large enough so
that it will not Significantly respond to heat surges generated In the
diode as a result of pulsed operation once steady-state conditions are
achieved. Using the measured value of TC, the Junction temperature
may be determined by'

NOTE 2. Special Selectionst Available Include:
1. Nommal zener voltages between those shown.
2. Two or more Units for senes connection with specified tolerance
on total voltage. Senes matched sets make zener voltages In excess of
200 volts possible as well as providing lower temperature coefficients,
lower dynamic Impedance and greater power handling ability.
3. Nominal voltages at non-standard test currents

TJ = TC

NOTE 3. Zener Voltage (Vz) Measurement - Nominal zener voltage IS
measured with the device Junction In thermal eqUilibrium at the case
temperature of 30"C ± 2"C.


g

+10

>-

RANGE FOR UNITS 12 TO 100 VOLTS

100

"2

~
G

+80

:3

+4 0

>-

~
~

......... ~ /'"

~ +£0

./

~ f-0

..........
1

-40

20

f--

30

....... /'"
.....
>
V ..... ..-(

/ "/

RANGE

50

g

.........

20

w
0

u
w

10

~

>-

30

~

20

N

~

, 0

50

60

70

B0

90

10

11

12

20

50
30
VZ. ZENER VOLTAGE IVOLTSI

VZ. ZENER VOLTAGE IVOL TSI

;;

., 0

>-

-

~
~

TA - 25'C

A

'20

h ~

2rimA

t-....

~

/ h

~

..& ~

~ -20

~

N

"

-40

40

30

I",

I

OV'B'~S

~ 50
0:

'=

"

~ 20

j

1'10 mA

SII'lI Of

10

Vz BIAS

50

BELOW 3 VOLTS ANO ABOVE 8 VOL TS
CHANGES IN ZENER CURRENT 00 NOT
AffECT TEMPERATURE COffflCIENTS

50

l"-

w

'001 mA

NOTE

>-

OV BIAS

200

~ 100

Y. v..<

~

>-

TA~250C

500

..,. ..-

Vz @lIZ

8

~

100

1000

~

~

70

FIGURE 5 - TYPICAL CAPACITANCE

FIGURE 4 - EFFECT OF ZENER CURRENT
'60

g

Vz Ii In

RANGE

50

~

/

.....-:::: ........

~~

;;...--r

.........: ::;..-

70

~

VZ@lIZT

-

30

70

60

20

80

0
10

20

10

50

20

VZ. ZENER VOLTAGE IVOLTSI

50

100

Vz, ZENER VOLTAGE (VOL lSI

FIGURE 6 - MAXIMUM SURGE POWER
100
RECTANGULAR

70
>>-

0:

IE
~

~

30 0:::::::::
20

~
w

~

~
~

><

~
j

10

WAVEFORM

-- ----.

50

~TI

II V ·91 V NONREPETITIVE
I
I
I I I I.J.I.!
,/ 2 4 V·1O V NON REPETITIVE

-

-- -

=I()"~

70

TJ 25'C PRIOR TO
INITIAL PULSE

--- -.r-. -.

50
-

20% OUTY CYCLE

--==

30
20
10
001

1

1 1 1

1

1 I I

002

005

01

02

05

10

20

50

pw. PULSE WIOTH Im.I

This graph represents 90 percentil data pOints.
For worst-case design characteristics, multiply surge power by 213.

4-90

10

--.

20

~

50

---r- 100

200

500

1000

MLL4728 thru MLL4764

FIGURE 7 - EFFECT OF ZENER CURRENT
ON ZENER IMPEDANCE

FIGURE 8 - EFFECT OF ZENER VOLTAGE
ON ZENER IMPEDANCE

1000

e~

"-

200

~ 100

,........

20
10

~ ~O0
~
u
;;

S2V

"

;:

50

Q

Q

~

~

1==50m

Ot-- .--,20 m
10
10
50

20

TJ·25OC
Iz{rms) = 0 llZ(dcl
f· 60 Hz

f---lz·l0mA

~ 10 OF=='

I'.

~

>

"2 200

21 V

"

~ 50

~

in

41 V

z

"z

1000
700
500

TJ·250C
,z(rm.1 ·0 I'Z(dcl
f· 60 Hz

Vz· 21 V

500

,

0

10
01

02

05

10
20
50
10
'Z, ZENER CURRENT ImAI

20

50

0

100

20

f0

FIGURE 9 - TYPICAL NOISE DENSITY

30

50 70 10
20
30
VZ, ZENER VOLTAGE (VOLTSI

50

10

FIGURE 10 - NOISE DENSITY MEASUREMENT METHOD

10000
'Z·250"A

5000

TA '" 250 C

_2000

§
~

+

~1000
~ 500
~

200

~ 100
Q

w

NOise Density

50

V

(Volt. Per Square Root Bandwidth) = Overall
Where: BW = Filter Bandwidth (Hzl
Vout = Output NOise (Volts RMS)

~

<3 20
z
10
~ 50

~~~ vTNJ

The Input voltage and load resistance are high so that the zener

diode is dnven from a constant current source. The amplifier IS low

20
10

nOise so that the amplifier noise is negligible compared to that of

0

20

40
60
Vz, ZENER VOLTAGE (VOLTSI

the test zener. The filter bandpass IS known so that the noise density
can be calculated from the formula shown.

100

80

FIGURE 11 - TYPICAL FORWARD CHARACTERISTICS
1000

___ MINIMUM
MAXIMUM

500

!

200

~

100

I

~ 50

~ 20

~

~ 10

.-.-- ~150C

.!£. 50

I\."

V

""""

L

I

150 0 e

25°C

/I,

20
10
04

,

Y't7

/
05

f

-,.....

Oo~

06
01
08
09
VF, FORWARD VOLTAGE (VOLTSI

4-91

10

11

100

MLL5221A

MOTOROLA

-

SEMICONDUCTOR

thru

TECHNICAL DATA

MLL5270A

LEADLESS
GLASS ZENER DIODES

500 MILLIWATT HERMETICALLY SEALED
GLASS SILICON ZENER DIODES
• Complete Voltage Range -

500 MILLIWATTS
2.4-110 VOLTS

2.4 to 91 Volts

• Leadless Package for Surface Mount Technology
• Double Slug Type Construction
• Metallurgically Bonded Construction
• Oxide Passivated Die

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Po

500
33

mW
mW/OC

TJ. Tstg

-65 to +200

°C

DC Power DISSipation @ TA ~ 50°C
Derate above TA;; 50°C
Operating and Storage Junction

Temperature Range

MECHANICAL CHARACTERISTICS
CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES
for 10 seconds

230°C.

FINISH: All e)tternal surfaces are corrosion resistant and readily solderable
POLARITY. Cathode indicated by color band When operated
cathode wIll be positIve with respect to anode
MOUNTING POSITION

In

zener mode,

Any

STEADY STATE POWER DERATING
14

en

12

~

~

10

,PDvsTC

z

~

.......

08

-

;:;;

5

06

cc

;;: 04
~

cE

02

o

o

20

40

60

80

",

--.::::. vs T~

-,.........,
100

120

DIM
A

I,

,

-- "

140

160

330

B

I SO

R

249
041

U

.......

MILLIMETERS
MAX
MIN
370
170
259
055

INCHES
MAX
MIN
0130
0063
0098
0016

CASE 362-01
GLASS

~

180

100

T. TEMPERATURE lOCI

4-92

0146
0067
0102
0022

-

MLL5221 A thru MLL5270A

ELECTRICAL CHARACTERISTICS
(TA = 25°C unless otherwise noted Based on de measurements at thermal eqUilibrium,

case temperature maontalned at 30±2°C VF

Type No.
(Note 1)

Nominal
Zener Voltage
VZ@IZT
Volts
(NoteZ)

= 11 max @ IF =200 rnA for all types)
Max Zener Impedance
A and B Suffix only

Test
Current

Max Reverse Leakage Current

A and B Suffix only
IR
p.A

VR
Volts

Non-Suffix

Max Zener Voltage
Temperature Coeff.
(A and B Suffix only)
8VZ (%IOC)
(Note 3)

A

B

IR@VRUsed
for Suffix A
p.A

MLL5221A
MLL5222A
MLL5223A
MLL5224A
MLL5225A

24
25
27
28
30

20
20
20
20
20

30
30
30
30
29

1200
1250
1300
1400
1600

100
100
75
75
50

095
095
095
095
095

10
10
10
10
10

200
200
150
150
100

-0085
-0085
-0080
-0080
-0075

MLL5226A
MLL5227A
MLL5228A
MLL5229A
MLL5230A

33
36
39
43
47

20
20
20
20
20

28
24
23
22
19

1600
1700
1900
2000
1900

25
15
10
50
50

095
095
095
095
19

10
10
10
10
20

100
100
75
50
50

-0070
-0065
-0060
±0055
±0030

MLL5231A
MLL5232A
MLL5233A
MLL5234A
MLL5235A

51
56
60
62
68

20
20
20
20
20

17
11
70
70
50

1600
1600
1600
1000
750

50
50
50
50
30

19
29
33
38
48

20
30
35
40
50

50
50
50
50
30

±0030
+0038
+0038
+0045
+0050

MLL5236A
MLL5237A
MLL5238A
MLL5239A
MLL5240A

75
62
87
91
10

20
20
20
20
20

60
80
80
10
17

500
500
600
600
600

30
30
30
30
30

57
62
62
67
76

60
65
65
70
80

30
30
30
30
30

+0058
+0062
+0065
+0068
+0075

MLL5241A
MLL5242A
MLL5243A
MLL5244A
MLL5245A

11
12
13
14
15

20
20
95
90
85

22
30
13
15
16

600
600
600
600
600

20
10
05
01
01

80
87
94
95
105

84
91
99
10
11

30
10
10
10
10

+0076
+0077
+0079
+0082
+0082

MLL5246A
MLL5247A
MLL524BA
MLL5249A
MLL5250A

16
17
18
19
20

78
74
70
66
62

17
19
21
23
25

600
600
600
600
600

01
01
01
01
01

114
124
133
133
143

12
13
14
14
15

10
10
10
10
10

+0083
+0084
+0085
+0086
+0086

MLL5251A
MLL5252A
MLL5253A
MLL5254A
MLL5255A

22
24
25
27
28

56
52
50
46
45

29
33
35
41
44

600
600
600
600
600

01
01
01
01
01

162
171
181
20
20

17
18
19
21
21

10
10
10
10
10

+0087
+0088
+0089
+0090
+0091

MLL5256A
MLL5257A
MLL5258A
MLL5259A
MLL5260A

30
33
36
39
43

42
38
34
32
30

49
58
70
80
93

600
700
700
800
900

01
01
01
01
01

22
24
26
29
31'

23
25
27
30
33

10
10
10
10
10

+0091
+0092
+0093
+0094
+0095

MLL5261A
MLL5262A
MLL5263A
MLL5264A
MLL5265A

47
51
56
60
62

27
25
22
21
20

105
125
150
170
185

1000
1100
1300
1400
1400

01
01
01
01
01

34
37
41
44
45

36
39
43
46
47

10
10
10
10
10

+0095
+0096
+0096
+0097
+0097

MLL5266A
MLL5267A
MLL5268A
MLL5269A
MLL5270A

68
75
82
87
91

18
17
15
14
14

230
270
330
370
400

1600
1700
2000
2200
2300

01
01
01
01
01

49
53
59
65
66

52
56
62
68
69

10
10
10
10
10

+0097
+0098
+0098
+0099
+0099

IZT
mA

ZZT@IZT
Ohms

ZZK @ IZK =0.Z5 mA
Ohms

4-93

@

MLL5221 A thru MLL5270A
0vz,

the zener voltage temperature coeffiCient, IS found from
Figures 3 and 4
Under high power-pulse operation, the zener voltage will vary
With time and may also be affected significantly by the zener
reSistance For best regulation, keep current excursions as low
as possible
Surge limitations are given In Figure 6 They are lower than
would be expected by consldermg only Junction temperature, as
current crowding effects cause temperatures to be extremely
high rn small spots, resultrng In deVice degradation should the
hmlts of Figure 6 be exceeded

NOTE 1. Tolerance - Units with guaranteed limits on all SIX
parameters are indicated by suffix "A" for ± 10% tolerance
and suffix "B" for ± 5.0% units.
NOTE 2. Special Selectionst Avaoiable Include.
1 Nominal zener voltages between those shown
2 Two or more Units for senes connection with specified tolerance on total voltage Senes matched sets make zener voltages In excess of 200 volts possible as well as providing lower
temperature coeffiCients, lower dynamic Impedance and greater
power handling ability
3 NomInal voltages at non-standard test currents
NOTE 3 Temperature CoeffiCient (HVZ) - Test conditions for
temperature coeffiCient are as follows
a IZT= 75 mAo T1 = 25°C.
T2 = 125°C (MLL5221A.B through MLL5242A.B)
IZT = Rated IZT. T1 = 25°C.
T2 = 125°C (MLL5243A. B through MLL5270A.B)
Device to be temperature stabilized with current applied pnor to
reading breakdown voltage at the specified ambient temperature

FIGURE 1 - TYPICAL LEAKAGE CURRENT
WOK
40K
20K
10K
_ 4K
~ 2K
;:- 1K

NOTE 4 Zener Voltage (VZ) Measurement - Nominal zener
voltage IS measured with the device Junction In thermal equilibrium at the case temperature of 30°C .±l°C

=

==

g§ 200

a 10040

NOTE 5 Zener Impedance (Zz) DerivatIon - ZZT and ZZK are
measured by dividing the ac voltage drop across the device by
the ae current applied The specified limits are for Iz(ac)::: 0 1 x
IZ(dc) wIth the ae frequency = 10kHz

t For more Information on specIal

TYPICAL LEAKAGE CURRENT _
AT VR AS STATED FOR
50% UNITS (2 4 V-20 V)

w

~
~

20

10

~ 40

1i' 20
10
04
02
01 0

selections contact your nearest Motorola

representative

25°C

20

40

60
80
10
14
16
12
VZ. NOMINAL ZENER VOlTAGE (VOLTS)

18

20

APPLICATION NOTE
Since the actual voltage available from a given zener diode IS
temperature dependent. It IS necessary to determine Junctton
temperature under any set of operating conditions In order to
calculate Its value The follOWing procedure IS recommended
Case Temperature, TC, should be determined from

FIGURE 2 - TYPICAL LEAKAGE CURRENT

TC = 8CAPO + TA
100

0CA IS the case-to-amblent thermal resistance (OC/W) and Po
IS the power dissipation The value for (JCA will vary and depends
on the device mounting method (JCA IS generally 200°C/W for
the varrous c/rps and tie POints In common use and for prrnted
Circuit board Wiring
The temperature of the case can also be measured uSing a
thermocouple placed at the case end as close as possible to the
tie pornt The thermal mass connected to the tre pornt IS normally large enough so that It will not significantly respond to
heat surges generated In the diode as a result of pulsed operation once steady-state conditions are achieved Usrng the measured value of TC, the junctton temperature may be determined
by

0
0

.,

f-~J - ~125~C
__
O~ I--

110

~ 50

B

TYPICAL LEAKAGE CURRENTAT VR AS STATEO FOR
===
50% UNITS (20 V-S1 V)
~

30

~ 20
25°C

~1 0

;0o

5
3
o2

TJ = TC + ·.HJC

1
20

.lTJC IS the Increase rn Junction temperature above the case
temperature and may be found by uSing

.HJC = OJCPO
For worst-case design, uSing expected irmlts of 'Z. irmlts of Po
and the extremes of TJ(.HJ) may be estimated Changes In voltage, VZ, can then be found from

.lV = OVZ.lTJ

4-94

30

60
70
40
50
VZ. NOMINAL ZENER VOLTAGE (VOLTS)

80

SO

MLL5221 A thru MLL5270A
FIGURE 3 - TEMPERATURE COEFFICIENTS
(-5S0C to +150o C temperature range; 90% of the umts are

>

E
~

z

w

-10

/"

<-£0

V

0

u
w

'"=>
~

::i

~
N

-40

/'

-10

/
-10

:;;

I'-- --" '/

.......

"/

>
...-r

1-""'".......

V

RANGE

30

50

30

Z

~

0

u

10

o

~

......-: V

........ ~

VZ" 'ZT

~ 30
10

N

60

70

80

90

10

10

11

II

FIGURE 4 -

10

10

30
50
Vz_ ZENER VOLTAGE IVOLTS)

EFFECT OF ZENER CURRENT

~

-

VZ!' lZ
I-TA 15 0 e

,..-,:~

~

-10

.......

h ~

20 rnA

:3

-

500

......

/ lh

~

~~I'

-10

200

w
u

z

~
;:;

-40
30

40

50

10VB1AS

.......

20

511% OF
Vz BIAS

50

BELOW 3 VOL TS AND ABOVE 8 VOL TS
CHANGES IN ZENER CURRENT 00 NOT
AffECT TEMPERATURE COEFFICIENTS

~

...

50

;t
j 10

'10mA

25°C

OV BIAS

~100

001 rnA

NOTE

TA
_

t:Y: /,,<

w

'"=>
::i

~..:.

100

1000

~
z

70

FIGURE 5 - TYPICAL CAPACITANCE

'60

'40

Vz!,ln

RANGE

~ 10
~ 50

VZ, ZENER VOL TAGE IVOL TS)

;;
.E

......-::: ~

;;..--

:;;

~O

40

10

~
u

........... --'"

-40
20

£i
~

--:.. /

-80

;:;

u:

the ranges mdicated.)

100

'11

~

In

b - RANGE FOR UNITS 12 TO 100 VOL TS

a - RANGE FOR UNITS TO 12 VOLTS

70

60

70
10
10

80

50

20

VZ, ZENER VOL TAGE IVOL TS)

10

50

20

100

Vz, ZENER VOLTAGE IVOL TS)

FIGURE 6 -

MAX!MUM SURGE POWER

100
RECTANGULAR
WAVEFORM
TJ - 250 C PRIOR TO

70

~

""~

30

'"to

10

l<

~
'"

--

50

10

""===

~TI

11 V 91 V NONREPETlT1VE
I

V 24V

l""-

=I1l'"~U~

I

I

I

I

INITIAL PULSE

10 V NON REPETITIVE

r-

-- --

r-

70

I

C"--

--

50

~

30

~

20

- I i i " DUTY CVCLE

10
001

-~

1 1 II
I I II
002

005

01

02

05

10

20
50
PIN, PULSE WIDTH Ims)

TillS glilph represents 90 percenlll dala pOilUS
For worS! case deSIgn charaClemllcs mulllpJv sUlqe power bv 2/3

4-95

10

10

50

100

l-

200

SOD

1000

MLL5221 A thru MLL5270A
FIGURE 7 - EFFECT OF ZENER CURRENT
ON ZENER IMPEDANCE

FIGURE 8 - EFFECT OF ZENER VOLTAGE
ON ZENER IMPEDANCE

1000
Iz~rms) = 0

e~

"

~ 100

z
~ 50

""

;

20

""
z

10

1 'Z(dcl

u;
::;;

f = 60 Hz

x

TJ °25 0e
l0mA

o

47 V

e
u

27V

"

100
70 E:::: E::50 m
50

~

:!'

"

I-I z

200

200

,.

1000
700
500

TJ 0 250C

Vz 027 V

500

u

20 I-- 1--.2Om

""

10
70
50

i

62 V

~ 50

5"

.ti'

.ti'

Iz(tms) = 0 \ 'Zldcl
f" 60 Hz

\

20
10
01

02

05

10
20
50
10
IZ, ZENER CURRENT (mA)

50

20

Z0

100

FIGURE 9 - TYPICAL NOISE DENSITY

FIGURE 10 -

30

20
30
50 70
10
VZ, ZENER VOLTAGE (VOLTS)

50

70

NOISE DENSITY MEASUREMENT METHOD

10000
IZ 0 250pA ~
TA 0 Z50e

5000

~
r--

_2000

True
RMS
Volt
Meter

~1000
~ 500
~

200

~ 100
o

50

"'0z

20

w

~

NOise DenSity
V out
(Volts Per Square Root Bandwidth) "" Overall Gam
Where

10
50

VfiW

BW"" Filter Bandwidth (HZ)
V out =. Output NOise (Volts AMS)

The Input voltage and load resistance are high so that the zener
diode IS driven from a constant current source The amplifier IS
low nOise so that the amplifier nOise 15 negligible compared to

20
10
0

20

40

60

that of the test zener The filter bandpass IS known so that the

100

80

nOise denSltv can be calculated from the formula shown

VZ,ZENERVOLTAGE (VOLTS)

FIGURE 11 - TYPICAL FORWARD CHARACTERISTICS
1000

___ MINIMUM

500

MAXIMUM

I

~ f=750e

,
~

/V

V
V

II

11"1

rr-

./

15QoC
25°C
20
10
04

0°

/
05

07
08
09
Vf, FORWARO VOLTAGE (VOLTS)

06

4-96

100

10

11

MLL5221 A thru MLL5270A
=1 THRU

FIGURE 12 - ZENER VOLTAGE versus ZENER CURRENT - Vz

10

I II II I

10

o

I I

I

I'~ ~ I

16 VOLTS

I

I

I I
I

TA' 25.~

I

./1~ // '/
I

r/
/1 / / / II

0.0\.0

20

30

40

50

60

10

8.0

10

90

11

12

13

14

15

16

VZ.ZENERVOLTAGE (VOLTS)

FIGURE 13 - ZENER VOLTAGE versus ZENER CURRENT - Vz = 15 THRU 30 VOLTS
10

I

I

/

I

I;L.l I

(

I

1

I

16

11

18

19

20

21
23
24
22
VZ. ZENER VOLTAGE (VOLTS)

25

26

27

28

29

30

FIGURE 14 - ZENER VOLTAGE versus ZENER CURRENT - Vz = 30 THRU 105 VOLTS
10

/

/1

I

I

I(

(

/

tJ
/ I

/

I

I

I

00 30

35

40

45

50

55

60

65

70

75

VZ. ZENER VOLTAGE (VOLTS)

4-97

80

85

90

95

100

105

MMBZ5226B
thru
MMBZ5257B

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

CASE 318-05, STYLE 8
SOT-23 (TO-236AA1AB)

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Po

225

mW

1.8

mWI'C

ROJA

556

'ClmW

Po

300

mW

2.4

mWI'C

ROJA

417

'ClmW

TJ, TstQ

150

'C

Total Device Dissipation FR-5 Board, *
TA ~ 25"C
Derate above 25"C
Thermal Resistance Junction to Ambient
Total Device Dissipation

Alumina Substrate,** TA

=

1~
2

25°C

Derate above 25'C
Thermal Resistance Junction to Ambient

Junction and Storage Temperature
*FR-5 ~ 1.0 x 0.75 x 0.62 In.
**Alumina = 0.4 x 0.3 x 0.024

~3

In.

99.5% alumma.

Pinout: 1-Anode, 2-NC, 3-Cathode (VF

fo

30

01
Anode

Cathode

ZENER DIODES

= 0.9 V Max @ IF = 10 rnA for all types.)

Marking

Test
Current
IZT
rnA

Zener
Voltage
Vz (±5%)
Nominal

ZZK
IZ = 0.25 rnA
o Max

ZZT
IZ ~ IZT
@10%Mod
o Max

Max
IR
p.A

MMBZ5226B
MM8Z52278
MM8Z52288
MM8Z52298
MM8Z52308

8A
88
8C
80
8E

20
20
20
20
20

3.3
3.6
39
43
4.7

1600
1700
1900
2000
1900

28
24
23
22
19

25
15
10
5.0
5.0

1.0
1.0
1.0
1.0
2.0

MM8Z52318
MM8Z5232B
MM8Z52338
MM8Z52348
MM8Z52358

8F
8G
BH
8J
8K

20
20
20
20
20

5.1
56
60
62
68

1600
1600
1600
1000
750

17
11
70
70
50

5.0
5.0
5.0
5.0
30

2.0
3.0
3.5
4.0
5.0

MM8Z52368
MM8Z52378
MM8Z52388
MM8Z52398
MM8Z52408

8L
8M
8N
8P
80

20
20
20
20
20

7.5
8.2
8.7
9.1
10

500
500
600
600
600

6.0
8.0
B.O
10
17

3.0
3.0
30
30
30

6.0
6.5
6.5
7.0
8.0

MM8Z52418
MM8Z52428
MM8Z52438
MM8Z52448
MMBZ52458

BR
85
8T
8U
8V

20
20
9.5
90
8.5

11
12
13
14
15

600
600
600
600
600

22
30
13
15
16

2.0
1.0
0.5
0.1
0.1

84
91
9.9
10
11

MM8Z52468
MM8Z52478
MM8Z52488
MM8Z5249B
MM8Z5250B

8W
BX
BY
8Z
81A

7.8
74
7.0
6.6
6.2

16
17
18
19
20

600
600
600
600
600

17
19
21
23
25

0.1
0.1
0.1
0.1
01

12
13
14
14
15

MM8Z52518
MM8Z52528
MM8Z52538
MM8Z52548
MM8Z52558

B18
81C
810
81E
81F

5.6
5.2
50
4.6
4.5

22
24
25
27
28

600
600
600
600
600

29
33
35
41
44

01
0.1
0.1
0.1
0.1

17
18
19
21
21

MM8Z52568
MM8Z52578

81G
81H

4.2
3.8

30
33

600
700

49
58

0.1
0.1

23
25

Device

4-98

@

VR
V

•

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

............

MPTE·5, C thru MPTE·45, C
See Page 4·59

~------------~-

MPZ5·16 Series
MPZ5·32 Series
MPZ5·180 Series

SILICON POWER TRANSIENT SUPPRESSOR

SILICON POWER
TRANSIENT SUPPRESSOR

designed for applications requiring protection of voltage
sensitive electronic devices in danger of destruction by high energy
voltage transients. Individual cells are matched to insure current·
sharing under high current pulse conditions.
•

Peak Surge Power Capacity Given From 0.1 ms To 10 Seconds

•

Low Clamping Factor Assures Low Voltage Overshoot

•

Negligible Power Loss

•

Small Size and Weight

•

Following Variations are Available:
Non-Standard Voltages
Higher Power Capacity
Other Package Configurations

MAXIMUM RATINGS
Transient Power Dissipation: 40 kW
Pulse Width: O.lms, (See Figure 1)
DC Power Dissipation: 350 Watts @ TC = 25"C
(Derate 2.33 W/"C above 25"C)
Operating Junction & Storage Temperature Range.
-65"C to + 175"C

DIM

A
8
C

D
E

MECHANICAL CHARACTERISTICS

POLARITY:

Anode·to-Case
Upon Request.

IS

5029
3759

-

20.24
292
1.32
G 29.97
H
3.56
J 10.06
L 46.74
0
3.30
F

Standard. Cathode·to·Case Available

INCHES
MIN
MAX

MILLIMETERS
MIN
MAX

5131
3861
1651
2101
343
183
3099
4.06
10.57
4774
381

1980
1.480
0.797
0115
0052
1180
0.140
0396
1840
0130

2.020
1520
0.650
0827
0135
0.072
1220
0160
0416
1860
0.150

CASE 119-01
NOTE OIA "0" 5 PLACES

ELECTRICAL CHARACTERISTICS (TA

=25 ·C, VF =1.5 V max @

10 A for all types)

Maximum
DnlCl

Nom,nal
Operating Voltage
IN... tI

Type
MPZ5-16A

·188
.a2A
·328
·3X
-l80A
·1 BOB

·100<:

VOPIPKI
Vd.

VOPIRMSI
Vrms

14
14
28
28
28
165
165
165

10
10

20
20
20
111
111
111

Clamp;ng
Factor
CF = VZ" IZ II!!!,.I

VZ·'ZT
IN... 21

12.
125
12.
12.
12.
114
114
11.

Minimum Zener Voltage

VZ(mlnl
Vd.

I.I.

32
32
32
180
180
180

•

'ZT

Ad.

o.
04
02
02
02
003
003
003

4-99

Maximum Zener Voltage

MllIimum

Pul. Width = 1.0 ms

R.".... Current

•

IRlmaxl
• VR = VOPIPKI
pAdc

VZ(ml.1
Vd.
2.
20
50
45
40
250
225
205

'Zlpul.1

Ad.
200
200
100
100
100
20
20
20

50

1

Typical
ClPlcltlnce
C Itypl
• VR • VOP(PKI
~F

0025

0025
0011
0011
0011
00012
00012
00012

MPZ5-16 Series, MPZ5-32 Series, MPZ5-180 Series

FIGURE 1 - MAXIMUM NON-REPETITIVE SURGE POWER
100
70

50
30

~

ffi

20
10

70
~ 5.0
~ 30
~ 2.0

IRECTANGULAR WAVEFORMI

-

:---

- -

Q 1n
!: 07
a..

TC = 35°C

"-

=

Te - 125°&

0.5

o3

o2
o1

0.0001

o0005

00002

0001

0 002

0005

001

002
005
t, TIME ISECI

01

02

05

1.0

20

50

FIGURE 2 - TYPICAL DYNAMIC ZENER
VOLTAGE CHARACTERISTICS (Note 2)
0

V lIlA" I
2S"CI

0
0

NOTE 2 The maximum device clampmg factor CF is a

1/

MPZ~ 31 SE~IEJ

1-1-1

1/

)

breakdown of individual devices

MPZS16

30

ratiO of Vz measured at I Z (pulse) given 10 the
Electrical Characteristics Table divided by Vz
measured at I ZT under steady state conditions
Thlsvalue guarantees the sharpness of the voltage

1/

0

0
20

sent, peak voltage mput values VOP(PK) should
be used to select device type.

MPZ5 180 SERIES

0
0

NOTE 1. Nominal operating voltage is defined as normal
input voltage to device for non-operating condition If non-sinusoidal wave or de mput IS pre-

"I I PU~SEI W\D~~ ; 11 0 m~_

SO

70

10

SERIE~

20

[V
30

SO

70

100

Figure 2 de-

monstrates the typical sharpness of the

V

...

break~

down, and indicates the voltage regulation over
a wide range of currents.
200

tNz = VZ@ IZ(pulse) - VZ@IZT

IZlp"lso), ZENER CURRENT IA)

4-100

10

MOTOROLA

-

MZ600 Series

SEMICONDUCTOR

6.2 VOLTS

TECHNICAL DATA

PRECISION REFERENCE
DIODES
with
CERTIFIED
ZENER VOLTAGE-TIME
STABILITY

PRECISION REFERENCE DIODES

... designed, manufactured and tested for applications requiring a precision voltage reference with ultra-high stability of
voltage with time and temperature change.
Special test laboratory uses precision measurement equipment,
four-terminal (separate contacts for current and voltage) measurement techniques and voltage standards to provide calibration directly traceable to the National Bureau of Standards.

-,@i

B

o

rt·---i
K

Every Precision Reference Diode is Individually
serialized and its test data recorded on a Certificate of
Precision that accompanies the device when shipped.
This data shows:
• Actual device voltage at 168 hour intervals
during verification test
• Voltage stability throughout the entire
1000 hour test period

L
NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN D1A BAND
LENGTH A HEAT SLUGS. IF ANY. SHALL BE INCLUDED
WITHIN THIS CYLINDER. BUT SHALL NOT BE SUBJECT TO
THE MIN LIMIT OF DIA B
2 LEAD DIA NOT CONTROLLED IN ZONES F. TO ALLOW
FOR FLASH. LEAD FINISH BUILDUP. AND MINOR
IRREGULARITIES OTHER THAN HEAT SLUGS

DIM

• Certification of Precision

A

• All diodes are marked with the device type
number and polarity band

B
0
F
K

MILLIMETERS
MIN
MAX
584
216
046
2540

762
272
056
127
3810

INCHES
MIN
MAX
0230
0085
0018

-

1000

0300
0107
0022
0050
1500

All JEOEC dimenSIOns and notes apply

CASE 51-02
DO-204AA
GLASS

4-101

•

MZ600 Series

OPERATING TEMPERATURE RANGE:· 25 to 100·C.
MZ800 SERIES (Voltage 6.2V ±5%, Izr= 7.5 mAdct, t.VZ=2.5 mVdc··)

Type No.

Voltag •.Tlme Stability
(pVll000 Hours)

Part. Par Million Change
(ppm11000 Hours)

MZ605
MZ610
MC620
MZ640

31 Maximum
62 Maximum
124 Maximum
248 Maximum

< 5
<10
<20
<40

DYNAMIC IMPEDANCE: 10 Ohms at IZT

=7.5 mAdc, lac =0.75 mAo

NOTES
tTEST CURRENT
For certification testing of time stability, Motorola main·
talns IZT constant and repeatable to ± 0.05 ,..A tolerance.
For voltage tolerance. Impedance and voltage temperature
stability IZT needs to be held to 0.Q1 tolerance only.
"Maximum limits for use as a precision reference device.
limits are well below the maximum thermal limits.
""VOLTAGE·TEMPERATURE STABILITY: Maximum allow·
able voltage change between voltages recorded at 25. 75
and l00·C ambient.

VOLTAGE·TIME STABILITY
(LWZ/1000 Hours).
The device voltage is read and recorded initially and at 168
hour Intervals through 1000 hours. The maximum change of
voltage between readings, taken at any of the seven points.
must be less than the maximum voltage change per 1000
hour specified as Voltage·Time Stability.

TURN·ON CHARACTERISTICS
Precision Reference Diodes have been tested to determine
the behavior of the device under Interrupted power operation.

4-102

To insure specified performance, adequate time must be
allowed for the device and Its environment to reach thermal
equilibrium. "Warm·up" time may range from 8 to 24 hours.
Thermal equilibrium is reached when the chamber is cycling
at the required temperature with the device energized.
After this "'warm·up" period, the device voltage will be
between the minimum and the maximum voltage of those
recorded at the seven pOints of the Voltage·Tlme Stability
certification.

MOUNTING
Excellent results have been obtained by using a mechanical
mounting. If necessary, the device may be soldered Into a
circuit using a heat sink between the heat source and the
body of the diode. A low thermal EMF solder is
recommended.

SPECIAL NOTE
Voltage tolerance less than 5 0% is available upon special
request.
Precision Reference Diodes capable of meeting special
'requirements for standard voltages regardless of required
test current, temperature range, or test temperatures are
available. Custom requirements of particular devices for
specific applications are also available.

MZ600 Series

FIGURE 1 - MAXIMUM VOLTAGE CHANGE, IN p.V ANO PPM,
DUE TO CURRENT SUPPLY STABILITY

VOLTAGE·CURRENT
STABILITY
CHARACTERISTICS

1000

100

F
MZ600 SERI[s
I- Vz •• 6.2V
t-- Zn

10 Ohms
IZINOMI = 7 5 rnA

For verification of time stability, and
for repeatable operation, IZT should
be maintained with a tolerance of
± 0.1"Po Figure 1 will assist in design
where the supply current stability
cannot be maintained to better than
0.2 "Po deviation.

II
I
PPM CHANGE

/
10

::...----

I""-

10

~~

.,
~

p.V CHANGE

1.0

I I I III

"/
10

01

I.9-

'"

~

01

10

100

61z. CURRENT STABILITY Ip.AI

FIGURE 2 - TYPICAL VOLTAGE CHANGE,IN p.V AND PPM.
DUE TO AMBIENT TEMPERATURE STABILITY

VOLTAGE·TEMPERATURE
CHARACTERISTICS

100

1000
~

MZ600 SERI[s
I I I I
PPM CHANGE

CHOICE OF OPERATING
TEMPERATURE

The stability certification IS
performed at 65·C ± 0.02 ·C. The
operating temperature can be
selected within the operating temper·
ature range. " the desired tempera·
ture Is not 65 ·C, the precise voltage
of the device will be different but the
certified stability will stili be
observed.
VOLTAGE TEMPERATURE
STABILITY

~

;'

10

I
~

.,
~

.....-

~1

~

10

p.V CHANGE

V

10

II II

01

01

10

6 TA • AMBIENT TEMPERATURE STABILITY I·CI

For verification of time stability
andlor repeatable operation, the
ambient temperature should be
controlled to ± 0.1 ·C.
Figure 2 will assist in designs where
ambient temperature cannot be
controlled to better than 0.2·C
deviation.

4-103

01
10

'"

~

•

MZ2360
MZ2361

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

•

FORWARD REFERENCE
DIODES
STABISTORS

CONSTANT·VOLTAGE REFERENCE DIODES FOR
LOW VOLTAGE APPLICATIONS
... high'conductance silicon diodes designed as a stable

--i-

for'v"Jsrd refSience sourCe for biasing transistor amplifiers and
similar applications .

~Gl-B

• Guaranteed Forward Voltage Range
• Temperature Effects Provided

I
K

~Gl-B

r=

... I-D

If,
MAXIMUM RATINGS

K

~

L, =1

I
~
K

K

Rating
DC Power DISSipation

Symbol

Value

Unit

PD

1.5

W

~

@TL=30·C ±3·C.
Lead Length = 3/8"
TJ. Tstg

Operating and Storage Juncllon
Temperature Range

- 65 10+ 175

·C

MECHANICAL CHARACTERISTICS
CASE: Surmetlc
DIMENSIONS: See outline draWing
FINISH: All external surfaces are corrOSion resistant and leads are
readily solderable and weldable
POLARITY: Cathode indicated by polarity band. Cathode negatIVe for
forward reference application
MOUNTING POSITIONS: Any

ELECTRICAL CHARACTERISTICS (TA =

25°C unless otherwise

NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
JEDEC DO-41 OUTLINE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN "F"
DIMENSION.

DIM
A
B
D
F
K

MilLIMETERS
MAX
MIN
407
520
204
271
0.71
0.86
1.27
27.94
-

-

INCHES
MIN
MAX
0.160 0205
0080 0.107
0.028 . 0.034
0050
1.100
-

CASE 59·03
D041

Reverse leakage
Current (Max)

@

CASE 59-04

CASE 59·03

noted)
Forward Reference
Voltage (11

I-D

@

Type
Number

VF
Volts
MiniMax

IF
mA

IR
p.A

VR
Volts

Package

Case

MZ2360
MZ2361

0.63/0.71
1.24/1.38

10
10

10
10

5.0
5.0

Surmetlc
Surmet.c

59-04
59-03

1) Motorola guarantees the forward reference voltage when measured at 90 seconds while
maintaining the lead temperature (Tl) at 30°C ± 1°C, 3/8" from the diode body.

4-104

DIM
A
B
D
K

MILUMETERS
MAX
MIN
5.97
6.60
2.79
305
0.76
0.86
2794
-

INCHES
MIN
MAX
0235
0260
0110
0.120
0.030
0.034
1.100

CASE 59-04
D0-41

-

MZ2360, MZ2361

TYPICAL FORWARD VOLTAGE CHARACTERISTICS
FIGURE 1 -

MZ2360

FIGURE 2 -

0
0

0
0

, ,

0

/

0
0
0

I

0

/

MIN/

TJ = 25°C

"MAX

30

~

0

~
o

/

/

/

10

/

/

-'

~,

/

MIN /

TJ = 25°C

MAX

~ 50
~,

~3 0

L

0

/

05

,. I

moe /

2

f

/

/

TJ=

o

V/

f

~

'" 7 0
«

,

,

f

0

/

/

TJ= 125°C /

0

10
04

MZ2361

100

10 0

06

07

08

1~6

09

~

1// /
f

/ V/

/
07

08

09

10

11

12

13

14

15

16

VF. FORWARD VOLTAGE {VOLTSI

VF. FORWARD VOLTAGE {VOLTSI

TYPICAL TEMPERATURE COEFICIENT
FIGURE 3 -

FIGURE 4 -

MZ2360

MZ2361

-2 2

-1 5
G

~ -2 6

G

~ -1 7

.....

I-

ill

~

-1 9

V

o

-2 1

~

~ -2 3 ........

!;;

......

w

-3 0

itw

-3 4

U

8

~ -3 8

S

./

~ -4

ill
1-,

I-

~

0:,'
-2 5

10

20

30

50 70

,

w

..... ~

u

§

..... ......

10

20

30

50

70

100

2

-4 6

-5 0

1.0

.........

......

......

fo""

,...."

20

30

50 70

10

20

IF. FORWARD CURRENT {mAl

IF, FORWARD CURRENT (mAl

4-105

i.--

30

50

70

100

P6KE6.8, A
thru

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

P6KE200,A

ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR

ZENER OVERVOLTAGE
TRANSIENT SUPPRESSORS

The P6KE6 8 series IS designed to protect voltage sensitive
components from high voltage, high energy transients They have
excellent ciampI ng capability, high surge capability, low zener
Impedance and fast response time The P6KE6 8 series IS supplied
In Motorola's exclusive, cost·effectlve, highly reliable surmetlc aXial
leaded package and IS Ideally-sUited for use In communication
systems, numencal controls, process controls, medical equipment,
business machmes, power supplies and many other Industnal/
consumer applications

6.8-200 VOLT
600 WATT PEAK POWER
50 WATTS STEADY STATE

SPECIFICATION FEATURES
•

Standard Zener Voltage Range -

•

Peak Power -

6 8 to 200 V

600 Watts @ 1 Oms

•

Maximum Clamp Voltage @ Peak Pulse Current

•

Low Leakage

•

Maximum Temperature CoeffiCient Specified

< 5 a }1A above 10 V

MAXIMUM RATINGS
Rating
Peak Power DISSipation (1)

Symbol

Value

Units

PPK

600

Watts

@TL"250C

Steady State Power Dlsslpatlof'
@ TL:S; 75°C. Lead Length

3/8"

50
50

mW/oC

'FSM

100

Amps

TJ, T stg

-65 to + 175

°c

Derated above T L '" 75°C
Forward Surge Current (2)

@TA

0

Watts

PD
=

25°C

Operating and Storage Temperature Range

Lead Temperature not less than 1/16" from the case for 10 seconds 230°C

MECHANICAL CHARACTERISTICS
CASE- VOid-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrOSion reSistant and leads are readily solderable
and weldable
POLARITY. Cathode indicated by polarity band When operated
will be positive with respect to anode

In

lener mode,

NOTE
1 LEAD DIAMETER & FINISH NOT
CONTROLLED WITHIN DIM "F"

MOUNTING POSITION: Any

STYLE 1.
PIN 1. ANODE
2. CATHODE

NOTES

1 Non-Repetitive Current Pulse per Figure 4 and Derated above

T A'" 25°C per Figure 2

DIM

2 1/2 Square Wave (or eqUivalent), PW '" 8 3 ms,
Duty Cycle'" 4 Pulses per Minute maximum

A
8
0

F
K

MILLIMETERS
MIN
MAX
8 38
8 89
330
3.68
094
1.09
127
25.40 3175

-

INCHES
MIN
MAX
0.330
0130
0.037

0350
0145
0043

t 000

1.250

CASE 17-02
PLASTIC

4-106

o.

•

P6KE6.8, A thru P6KE200, A

ELECTRICAL CHARACTERISTIC (TA = 25 0 C unless otherwISe noted) VF = 3.5 V max, IF" = 50 A for all types
I

Voltage'

@IT
(mA)

VSR
(Volts)

Maximum

Working Peak

Maximum

Maximum

Reverse Voltage

Reverse Leakage

Reverse Surge

Maximum Reverse
Voltage @ IRSM

Current IRSMt

(Clamping Voltage)

Temperature
Coefficient of VSR

(Amps)

VRWM

@VRWM
IR (pA)

Min

Nom

Max

VRSM (Volts)

(%/oC)

P6KE68
P6KE68A
P6KE75
P6KE7 SA

612
6.45
6.75
713

68
68
75
75

748
7.14
825
788

10
10
10
10

5.50
580
6.05
6.40

1000
1000
500
500

56
57
51
53

10.8
10.5
11 7
11.3

0.057
0057
0061
0061

P6KE82
P6KE82A
P6KE9 1
P6KE91A

7.38
7.79
8.19
8.65

82
82
91
9.1

9.02
8.61
100
955

10
10
10
10

6.63
702
737
778

200
200
50
50

48
50
44
45

12 5
121
13.8
13.4

0.065
0065
0068
0068

P6KE10
P6KE10A
P6KE11
P6KE11 A

900
9.50
990
105

10
10
11
11

11.0
105
121
116

10
10
10
10

8.10
855
8.92
940

10
10
50
50

40
41
37
38

15.0
14.5
162
156

0.073
0073
0075
0075

P6KE12
P6KE12A
P6KE13
P6KE13A

10.8
11.4
11.7
124

12
12
13
13

132
126
143
137

10
10
10
10

972
102
105
111

50
50
50
5.0

35
36
32
33

17.3
167
190
182

0.078
0078
0081

P6KE15
P6KE15A
P6KE16
P6KE16A

135
143
144
152

15
15
16
16

16.5
158
176
168

10
10
10
10

12.1
12.8
129
136

50
50
50
50

27
28
26
27

22.0
21 2
235
225

0084
0084
0086
0086

P6KE18
P6KE18A
P6KE20
P6KE20A

16.2
171
180
19.0

18
18
20
20

198
18.9
220
210

1.0
10
10
10

14.5
153
162
17 1

50
50
50
50

23
24
21
22

265
252
291
27 7

0088
0088
0090
0090

P6KE22
P6KE22A
P6KE24
P6KE24A

198
209
216
228

22
22
24
24

242
231
264
252

10
10
10
10

178
188
194
205

50
50
50
50

19
20
18

31 9
306
347
332

0092
0092
0094
0094

P6KE27
P6KE27A
P6KE30
P6KE30A

243
257
270
28.5

27
27
30
30

297
284
330
31 5

10
10
10
10

218
231
243
256

50
50
50
50

15
16
14
144

391
375
435
414

0096
0096
0097
0097

P6KE33
P6KE33A
P6KE36
P6KE36A

29.7
31 4
324
34.2

33
33
36
36

363
347
396
378

10
10
10
10

268
282
291
308

50
50
50
50

126
132
116
12

477
457
520
499

0098
0098
0099
0099

P6KE39
P6KE39A
P6KE43
P6KE43A

351
371
387
409

39
39
43
43

429
410
473
452

10
10
10
10

316
333
348
368

50
50
50
50

106
112
96
101

564
539
619
593

0100
0100
0101
0101

P6KE47
P6KE47A
P6KE51
P6KE51A

423
447
45.9
485

47
47
51
51

517
494
561
53.6

10
10
10
10

381
40.2
413
436

50
50
50
50

89
93
82
86

678
64.8
735
701

0101
0101
0102
0102

P6KE56
P6KE56A
P6KE62
P6KE62A

50.4
532
558
589

56
56
62
62

616
588
68.2
65.1

10
1.0
10
10

454
47.8
502
530

50
5.0
5.0
5.0

74
78
68
71

805
77.0
890
850

0.103
0103
0104
0104

P6KE68
P6KE68A
P6KE75
P6KE75A

61.2
646
67.5
713

68
68
75
75

74.8
71.4
82.5
78.8

10
1.0
10
1.0

55.1
58.1
60.7
64.1

50
50
50
5.0

61
65
55
58

98.0
92.0
1080
1030

0104
0.104
0105
0.105

P6KE82
P6KE82A
P6KE91
P6KE91A

73.8
77.9
81.9
86.5

82
82
91
91

90.2
86.1
100.0
95.50

1.0
1.0
1.0
1.0

66.4
70.1
73.7
77.8

5.0
5.0
5.0
5.0

51
53
48
48

118.0
1130
131.0
125.0

0105
0.105
0.106
0106

Device

(Volts)

4-107

17

0081

P6KE6.8, A thru P6KE200, A
ELECTRICAL CHARACTERISTICS (continued)
Breakdown Voltage

VBR
(Volts)

Working Paak

Maximum

Maximum

Maximum Reverse

Maximum

@IT
(mA)

Reverse Voltage

Reverse Leakage

Reverse Surge

Temperature

Currant IRSMt
(Amps)

Voltaga@ IRSM
(Clam~lng Voltage)
VRSM (Volts)

Coaff,c,ent of VBR
(%/oC)

@VRWM
IR (!'A)

VRWM
(Volts)

Device

Min

Nom

Max

P6KE100
P6KE100A
P6KEll0
P6KEll0A

90.0
95 a
99 a
105.0

100
100
110
110

110 a
105 a
1210
116.0

10
1.0
10
10

810
85.5
89.2
94.0

50
50
50
50

42
44
38
40

144.0
1370
158 a
152 a

0.106
0106
0107
0107

P6KE120
P6KE120A
P6KE130
P6KE130A

1080
114.0
117 a
1240

120
120
130
130

132 a
126 a
1430
137 a

10
10
10
10

972
102.0
1050
111.0

50
50
50
50

35
36
32
33

173 a
165 a
1870
1790

0107
0107
0107
0107

P6KE150
P6KE150A
P6KE160
P6KE160A

1350
143 a
1440
152 a

150
150
160
160

1650
158 a
1760
168 a

10
10
10
10

1210
128 a
130 0
1360

50
50
50
50

28
29
26
27

215
207
230
219

0108
0108
0108
0108

P6KE170
P6KE170A
P6KE180
P6KE180A

153.0
162.0
162.0
1710

170
170
180
180

187 a
1790
198 a
189 a

10
10
10
10

138 a
1450
1480
154 a

50
50
50
50

25
26
23
24

a
a
a
a
244 a
2340
2580
2460

0108
0108
0108
0108

P6KE200
P6KE200A

1800
1900

200
200

2200
210 0

10
10

1620
1710

50
50

21
22

2870
274 a

0108
0108

tSurge Current Waveform per Figure 4 and Derate per Figure 2
**1/2 Square or EqUivalent Sine Wave, PW

=8

3 ms, Duty Cycle

==-

4 Pulses per Minute maximum

*VBR measured after IT applied for 300 p.s, IT = Square Wave Pulse or equivalent.

FIGURE 1 - PULSE RATING CURVE

FIGURE 2 - PULSE DERATING CURVE

100

on· Repetitive
Pulse Waveform
shown In Figure 4

~

10

a:

"'" """'r-...

~
~

Wa:

""
~ 10
i-

~o

~ffi
"';;:
",,0
WOo..",

~
0.1
OIl'S

101'S

60
40

1001'S

10ms

10ms

o

25

50

75

100

125

"

150

175

200

TA, AMBIENT TEMPERATURE (DC)

Ip, PULSE WIDTH

FIGURE 3 - CAPACITANCE varsus

'"

20

o

10",

" f'...

B~EAKDOWN

VOLTAGE

FIGURE 4 - PULSE WAVEFORM

I
_I,

-

10,000

100

...

1000

"

Measured@
Zero 818S

1'3

~",'

Measured@

Sland·Off Voll~1,e (VR)

10
1

10

-

""

_Ip_

100

o

o

1000

Pulse Width (tplls defmed _
as that pomt where the peak_
current decays to 50%
of IRSM

Half Value _ IR8M -

tr.s;;; 10 f,.!S

2

1/
I.......

0
100

~alue J RSM

'i:

~

W

:i!'"

Peak

I

10

.......

.......

20
t, TIME (m,)

VBR' BREAKDOWN VOLTAGE (VOLTS)

4-108

r--

3.0

40

P6KE6.8, A thru P6KE200, A
FIGURE 5 - STEADY STATE POWER DERATING

~

1

~

~/8"

5.0

'"

C
a:

40

~

30

~

!;t
~

~

2.0

"

In
25

50

75

_

'\.,

1. 0

.P

1

~

>-

c

_I

~Y=

z

o

~

1

100

125

'"

150

175

200

Tl.lEAD TEMPERATURE 10C)

APPLICATION NOTES
SPECIAL DEVICES
Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request. Contact your nearest Motorola representative.
For a bidirectional device use a C or CA suffix (i.e.
P6KE10CA). Electrical characteristics apply in both directions
except for VF. Available for all PIN's except P6KE6.8,A.

RESPONSE TIME
In most applications, the transient suppressor device
is placed In parallel with the equipment or component
to be protected. I n this situation, there is a time delay
associated with the capacitance of the deVice and an
overshoot condition associated with the Inductance of
the deVice and the inductance of the connection method.

1----.---------;1

TYPICAL PROTECTION CIRCUIT
Z,n

L--'oa~

The capactlve affect IS of minor Importance In the parallel
protection scheme because It only produces a time delay
In the transition from the operating voltage to the clamp
voltage as shown In Figure A.
The inductive affects In the deVice are due to actual
turn-on time (time required for the deVice to go from zero
current to full current) and lead Inductance. ThiS inductive affect produces an overshoot In the voltage across
the equipment or component being protected as shown
In Figure B. MinimIZing thiS overshoot IS very Important
In the application, since the main purpose for adding
a transient suppressor IS to clamp voltage spikes. The
P6KE6.B series has very good response time, typically
ns and negligible Inductance. However, external
inductive affects could produce unacceptable overshoot.
Proper circuit layout, minimum lead lengths and plaCing
the suppressor device as close as possible to the equipment
or components to be protected will minimIZe thiS
overshoot.
Some Input Impedance represented by Zin IS essential
to prevent overstress of the protection deVice. ThiS
impedance should be as high as possible, Without restrictIng the circuit operation.

< 1.0

V'"o-_ _ _--+ _____

v

to

= Time

Delay Due to CapacitIve Affect

FIGURE A

FIGURE B

4-109

MOTOROLA

-

SEMICONDUCTOR

TECHNICAL DATA

SA5.0
thru
SA170A

Zener Overvoltage
Transient Suppressor
The SA5.0 series is designed to protect voltage sensitive components from high
voltage, high energy transients. They have excellent clamping capability, high
surge capability, low zener impedance and fast response time. The SA5.0 series IS
supplied in Motorola's exclusive, cost-effective, highly reliable surmetic axial
leaded package and is ideally-suited for use in communication systems, numerical
controls, process controls, medical equipment, business machines, power supplies
and many other industrial/consumer applications.
Specification Features
• Standard Zener Voltage Range - 5 to 170 V
• Peak Power - 500 Watts (a 1 ms
• Maximum Clamp Voltage (a Peak Pulse Current
• Low Leakage < 1 /LA Above 8.5 Volts
• Maximum Temperature Coefficient Specified

MOSORB
ZENER OVERVOLTAGE
TRANSIENT
SUPPRESSORS
5-170 VOLT
500 WATT PEAK POWER
3 WATT STEADY STATE

/

CASE 59-04
PLASTIC

MAXIMUM RATINGS
Symbol

Value

Units

Peak Power DIssipation (1)
@ TL OS 2SoC

PPK

SOO

Watts

Steady State Power DIssipation
@ TL E 7SoC, Lead Length = 3/8"
Derated above TL = 7SoC

Po

Rating

Forward Surge Current (2)
@TA = 2SoC
Operating and Storage Temperature Range

3

Watts

30

mWrC

IFSM

70

Amps

TJ, Tstg

-SS to + 175

°C

lead Temperature not less than 1/16" from the case for 10 seconds. 203°C

MECHANICAL CHARACTERISTICS
CASE: VOld·free, transfer-molded, thermosetting plastiC
FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable
POLARITY: Cathode indicated by polarity band When operated In zener mode. will be positive with respect to anode
MOUNTING POSITION: Any
NOTES 1 Nonrepetltlve Current Pulse per Figure 4 and Derated above TA c:: 25°C per Figure 2
2 1/2 Square Wave (or equivalent), PW = 83 ms, Duty Cycle = 4 Pulses per Minute maximum

4-110

SA5.0 thru SA 170A
ELECTRICAL CHARACTERISTICS (TA

= 25'C unless otherwise

notedl VF'

= 3.5 V Max,

IF"

= 35 A

Breakdown Voltage
VBR
(Voltsl

Maximum

Working Peak
Reverse Voltage
VRWM**(Voltsl

Reverse Leakage
@VRWM
IR (/LAI

Maximum
Reverse Surge

Maximum Reverse

Maximum Voltage

Current IRSMt
(Ampsl

Voltage (izJ IRSM
(Clamping Voltagel
VRSM (Voltsl

olVBR mV/'C

Temperature
Variation

Device

Min

Max

@IT
(mAl

SA5.0
SA5.0A
SA6.0
SA6.0A

6.4
6.4
6.67
6.67

7.3
7
8.15
7.37

10
10
10
10

5
5
6
6

600
600
600
600

52
54.3
43.9
485

9.6
9.2
114
10.3

5
5
5
5

SA6.5
SA6.5A
SA7.0
SA7.0A

7.22
7.22
7.78
7.78

8.82
798
9.51
8.6

10
10
10
10

6.5
6.5
7
7

400
400
150
150

40.7
44.7
378
41.7

12.3
11.2
13.3
12

5
5
6
6

SA7.5
SA7.5A
SA8.0
SA8.0A

8.33
8.33
8.89
8.89

10.2
9.21
10.9
9.3

1
1
1
1

7.5
7.5
8
8

50
50
25
25

35
38.8
333
367

14.3
12.9
15
13.6

7
7
7
7

SA8.5
SA8.5A
SA9.0
SA9.0A

9.44
9.44
10
10

11.5
10.4
12.2
11.1

1
1
1
1

8.5
8.5
9
9

5
5
1
1

314
347
29.5
32.5

15.9
144
16.9
15.4

8
8
9
9

SA10
SA10A
SAll
SAllA

11.1
11.1
12.2
12.2

13.6
12.3
14.9
13.5

1
1
1
1

10
10
11
11

1
1
1
1

26.6
29.4
24.9
274

18.8
17
20.1
18.2

10
10
11
11

SA12
SA12A
SA13
SA13A

13.3
13.3
14.4
14.4

163
14.7
17.6
15.9

1
1
1
1

12
12
13
13

1
1
1
1

22.7
251
21
23.2

22
19.9
23.8
21.5

12
12
13
13

SA14
SA14A
SA15
SA15A

15.6
15.6
16.7
16.7

19.1
17.2
204
18.5

1
1
1
1

14
14
15
15

1
1
1
1

19.4
21.5
188
206

258
232
26.9
24.4

14
14
16
16

SA16
SA16A
SA17
SA17A

178
178
18.9
18.9

21.8
19.7
231
20.9

1
1
1
1

16
16
17
17

1
1
1
1

17.6
19.2
164
181

28.8
26
30.5
27.6

19
17
20
19

SA18
SA18A
SA20
SA20A

20
20
22.2
22.2

24.4
22.1
27.1
24.5

1
1
1
1

18
18
20
20

1
1
1
1

155
17.2
139
154

32.2
29.2
35.8
32.4

21
20
25
23

SA22
SA22A
SA24
SA24A

24.4
24.4
26.7
26.7

29.8
26.9
32.6
295

1
1
1
1

22
22
24
24

1
1
1
1

12.7
14.1
11.6
128

394
355
43
38.9

28
25
31
28

SA26
SA26A
SA28
SA28A

289
28.9
311
311

35.3
31.9
38
34.4

1
1
1
1

26
26
28
28

1
1
1
1

10.7
11.9
9.9
11

466
421
50
454

31
30
35
31

SA30
SA30A
SA33
SA33A

33.3
33.3
36.7
36.7

40.7
36.8
44.9
40.6

1
1
1
1

30
30
33
33

1
1
1
1

9.3
103
8.5
94

53.5
48.4
59
533

39
36
42
39

SA36
SA36A
SA40
SA40A

40
40
44.4
44.4

48.9
44.2
54.3
49.1

1
1
1
1

36
36
40
40

1
1
1
1

78
8.6
7
78

64.3
58.1
71.4
64.5

46
41
51
46
(continued)

4-111

SA5.0 thru SA170A
ELECTRICAL CHARACTERISTICS (TA

= 25'C

unless otherwise noted) VF"

= 3.5 V Max

IF""

= 35 A

Breakdown Voltage
VBR
(Volts)

Working Peak
Maximum
Reverse Voltage Reverse Leakage
VRWM+*+
@VRWM
(Volts)
IR (/'A)

Maximum Reverse Maximum Voltage
Maximum
Reverse Surge
Voltage @. IRSM
Temperature
Current IRSMt (Clamping Voltage)
Variation
(Amps)
VRSM (Volts)
ofVBR mVrC

Min

Max

@IT
(mA)

SA43
SA43A
SA45
SA45A

47.8
47.8
50
50

58.4
52.8
61.1
55.3

1
1
1
1

43
43
45
45

1
1
1
1

6.5
7.2
6.2
6.9

76.7
69.4
80.3
72.7

55
50
58
52

SA48
SA48A
SA51
SA51A

53.3
53.3
56.7
56.7

65.1
58.9
69.3
62.7

1
1
1
1

48
48
51
51

1
1
1
1

5.8
6.5
5.5
6.1

85.5
774
91.1
82.4

63
56
66
61

SA54
SA54A
S A 58
SA58A

60
60
64.4
64.4

73.3
66.3
78.7
71.2

1
1
1
1

54
54
58
58

1
1
1
1

5.2
5.7
4.9
5.3

96.3
87.1
103
93.6

71
65
78
70

SA60
SA60A
SA64
SA64A

66.7
66.7
71.1
71.1

81.5
73.7
86.9
78.6

1
1
1
1

60
60
64
64

1
1
1
1

4.7
5.2
4.4
4.9

10,
968
114
103

80
71
86
76

SA70
SA70A
SA75
SA75A

77.8
77.8
83.3
83.3

95.1
86
102
92.1

1
1
1
1

70
70
75
75

1
1
1
1

4
44
37
4.1

125
113
134
121

85
101
91

SA78
SA78A
SA85
SA85A

86.7
86.7
94.4
94.4

106
95.8
115
104

1
1
1
1

78
78
85
85

1
1
1
1

36
4
3.3
3.6

139
126
151
137

105
95
114
103

SA90
SA90A
SA100
SA100A

100
100
111
111

122
111
136
123

1
1
1
1

90
90
100
100

1
1
1
1

3.1
34
2.8
3.1

160
146
179
162

121
110
135
123

SA110
SA110A
SA120
SA120A

122
122
133
133

149
135
163
147

1
1
1
1

110
110
120
120

1
1
1
1

2.6
2.8
2.3
2

196
177
214
193

148
133
162
146

SA130
SA130A
SA150
SA150A

144
144
167
167

176
159
204
185

1
1
1
1

130
130
150
150

1
1
1
1

22
2.4
19
2.1

231
209
268
243

175
158
203
184

SA160
SA160A
SA170
SA170A

178
178
189
189

218
197
231
209

1
1
1
1

160
160
170
170

1
1
1
1

1.7
1.9
1.6
18

287
259
304
275

217
196
230
208

Device

94

* VF applies to non-C suffix devices only. C suffix denotes standard back-ta-back verSions. Test both polantles.
112 square or equivalent sine wave PW = 83 ms, duty cycle = 4 pulses per minute maximum.
MOSORB transient suppressors are normally selected accordmg to the maximum reverse stand-off voltage (VRWM), which should be equal to
or greater than the de or continuous peak operating voltage level.
Surge current waveform per Figure 4 and derate per Figure 2.

To order clipper bidirectional device, add B "C" suffiX to device title; i.e. SA7.5C or SA7.5CA.

4-112

SA5.0 thru SA 170A
100

~
'"~

~

11111
NON REPETITIVE PULSE
WAVEFORM SHOWN IN
FIGURE 4

10

o 11100
?fi~

"

,.;~ BO

~!Z

12
'"
~

.""-

i~a~ 60

~

~

25

=>",

."'-.

"

40

"-~

"'S:
~~ 20
0.1
0.1/LS

10!Ls
lOO!LS
tp• PULSE WIDTH

~

lms

10 ms

"

0
0

25

50

Figure 1. Pulse Rating Curve

PULS~ WIDT~ It~

J.

IS DEFINED
AS THATPOINT HERE THE PEAK
CURRENT DECAYS TO 50%
l2'PEAK VALUE -IRSM- OFIRSM
100
~
tr~ 10J.Ls

. MEASURED ra
ZERO BIAS

.1
I

"-

z

§
<5

I

'<'

~ 1000
50
100

MEASURED (a
STAND·OFF
VOLTAGE IVR)

U

10
0.1

1
10
100
VBR. BREAKDOWN VOLTAGE (VOLTS)

1000

~
~

3

1\

2

1

,p

0

......

......

::::....

o

2

3

Figure 4. Pulse Waveform

tt-

LL

t--

I-

0

1\
\
o

25

50

LL

0

\

:;:

~

~Y=
>318"
-

4

~
~

2

I"

1000

~

~
ill
C5
'"

IRS~

t. TIMElmsl

U> 5
~

_

'\l"

I-tp-

o

I

HALF VALUE

Figure 3. Capacitance versus Breakdown Voltage

z
o

200

Figure 2. Pulse Derating Curve

_t,

'ii

"

75
100
125 150
175
TA. AMBIENT TEMPERATURE lOCI

1
001

75 100 125 150 175 200
TL. LEAD TEMPERATURE lOCI

Figure 5. Steady State Power Derating

6B V

12 V: 4V 30 V 43 V

110

IL
170 V

01
1
10
:.vZ. INSTANTANEOUS INCREASE IN Vz ABOVE VZINOM)IVOLTSI

Figure 6. Dynamic Impedance

4-113

SA5.0 thru SA 170A
APPLICATION NOTES
SPECIAL DEVICES
Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request. Contact your nearest Motorola representative.
For a bidirectional device use a Cor CA suffix. Electrical
characteristics apply in both directions except for VF.

RESPONSE TIME
In most applications, the transient suppressor device
is placed in parallel with the equipment or component to
be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The
capacitive affect is of minor importance in the parallel
protection scheme because ir only produces a rime delay
in the transition from the operating voltage to the clamp
voltage as shown in Figure 7.

The inductive affects in the device are due to actual
turn-on time (time required for the device to go from zero
current to full current) and lead inductance. This inductive
affect produces an overshoot in the voltage across the
equipment or component being protected as shown in
Figure 8. Minimizing this overshoot is very important in
the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SA5.0
series has very good response time, typically < 1 ns and
negligible inductance. However, external inductive affects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or
components to be protected will minimize this overshoot.
Some input impedance represented by Zin is essential
ro prevent overstress of the protecrion device. This
impedance should be as high as possible, without restricting the circuit operation.

TYPICAL PROTECTION CIRCUIT

v

Vin {TRANSIENTI

v

V,n--_"
to = TIME DELAY DUE TO CAPACITIVE AFFECT

Figure 8

Figure 7

4-114

NOTES

Index and Cross-Reference
Selector Guides

Rectifier Data Sheets

Zener Diode Data Sheets

15672-6
9/88



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:12 18:30:04-08:00
Modify Date                     : 2017:07:12 19:00:26-07:00
Metadata Date                   : 2017:07:12 19:00:26-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:9db8d563-a3a7-2a40-b326-7e5c1e9ecfcb
Instance ID                     : uuid:f1bf8e00-17cb-8849-abc8-2c69163bb7ff
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 508
EXIF Metadata provided by EXIF.tools

Navigation menu