1988_SGS_Power_MOS_Devices_Databook 1988 SGS Power MOS Devices Databook

User Manual: 1988_SGS_Power_MOS_Devices_Databook

Open the PDF directly: View PDF PDF.
Page Count: 690

Download1988_SGS_Power_MOS_Devices_Databook 1988 SGS Power MOS Devices Databook
Open PDF In BrowserView PDF
POWER MOS DEVICES
DATA BOOK
1st EDITION

JUNE 1988

USE IN LIFE SUPPORT MUST BE EXPRESSLY AUTHORIZED
SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF SGS-THOMSON
Microelectronics. As used herein:
- Life support devices or systems are devices or systems
which, are intended for surgical implant into the body
to support or sustain life, and whose failure to perform,
when properly used in accordance with instructions for
use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2

2 - A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

General information.............................................
Technology overview............................................
Selection guide by part number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Selection guide by voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Selection guide by package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Cross reference................................................
Alphabetical list of symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Rating systems for electronic devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Handling of power plastic transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Accessories and mounting instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Electrostatic discharge protection (handling precautions). . . . . . . . . . . . . . ..

7
8
9
14
19
27
33
35
36
39
49

TECHNICAL NOTES........................................... 51
An introduction to POWER MOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53
Evolution of POWER MOS transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57
POWER MOS in switching - an evaluation method and a practical example. 63
Study of a model for POWER MOSFET gate-charge. . . . . . . . . . . . . . . . . .. 75
Comparison of POWER MOS and bipolar power transistors. . . . . . . . . . . .. 85
A brief look at static dVldt in POWER MOSFETs ................ , . . . . .. 89
High density POWER MOSFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95
High voltage transistors with POWER MOS emitter switching ............ 107
A wide range input DC-DC power converter ........................... 113
200KHz 15W push pull DC-DC converter ............................. 121
Drive circuit for an electric fuel cut-off valve .......................... 127
Novel protection & gate drivers for MOSFETs used in bridge-leg configurations 131
High voltage POWER MOSFET STHV1 02 ........................... 137
An introduction to HIMOS ........................................ 143
An economic motor drive with very few components. . . . . . . . . . . . . . . . . . . 149
Inproved POWER MOS ruggedness in unclamped inductive switching .... 153

DATASHEETS . ................................................ 157
Discrete POWER MOS.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Discrete HIMOS ................................................ 627
Dice form..................................................... 639

PACKAGES ..... ............................................... 673
SALES OFFiCES .............................................. 686

3

INTRODUCTION

5

GENERAL INFORMATION
for applications in industrial, automotive, computer, telecommunication, professional, and consumer equipment.

POWER MOS devices are made using well proven
SGS-THOMSON technology. POWER MOS technology stands, with equal stature, firmly alongside the company's POWER BIPOLAR technologies.
This DATABOOK has been produced to complement the advances in silicon technology and isolated packaging.

Selection guides are provided in the following pages to facilitate rapid identification of the most suitable device for the intended use.

The DATABOOK contains data sheets and technical notes on the range of POWER MOS devices

The extensive information makes it easy to evaluate
the performance of the product within any required equipment design.

-------------- ~ ~~~~m?::~~Jl -.,...------------7

TECHNOLOGY OVERVIEW
N-CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS

MAIN FEATURES:
•
•
•
•
•

INTERNAL SCHEMATIC
DIAGRAM

ULTRA FAST SWITCHING
EASY DRIVE
VERY LOW STORAGE TIME
LOW SWITCHING LOSSES
NO SECONDARY BREAKDOWN

5

Standard structure

SOURCE
AL

GATE
POLISILICON

r

THERMAL
OXIDE

TRIPLANAR
EDGE
TERMINATION

J

5-8319
'="=DRAIN

POWER MOS is a technology used to produce power devices featuring easy drive and high switching
speed_
POWER MOS transistors are produced using a
DMOS structure where the channel is obtained by
lateral diffusion_ The surface has a two tier structure; the lower level is the polysilicon gate, and the
upper level is the source metallization_ The structure is self-aligning as the polysilicon holes are used
as a mask for the P - well and the N + source diffusion_ The MOS channel is created by the difference in lateral diffusion of the two impurity
distributions.
The resulting accuracy of this process controls the
channel length to :::;; 1_5 microns and the use of
a polycrystalline gate maintains a high stability of
threshold voltage .

POWER MOS devices are available in a low voltage group, 50-250 volts Voss and high voltage range 250 to 1000 volt Voss. Devices with a
maximum drain current of 52 A per chip are currently available. When used in a pulse mode,
loss max =:: 4 X loss or more.
Applications are in the field of power control and
include, DC-DC converters, switching power supplies, actuator drivers, motor control, robotics etc.
The latest development in POWER MOS technology has generated high density cell structures
which for the same surface area increase the current density of these devices. High density POWER
MOS devices are designed for breakdown voltages up to 1OOV, which is the maximum voltage where increasing the cell density can give real
advantages in current capability (or RDSon).

.------------ ~ ~~~~m~vT:~~~~ -------------8

SELECTION GUIDE BY PART NUMBER

Type

V(BR)OSS
(V)

ROS(on)

(max)
(0)

@

10
(A)

Package

lo(max)

Ptot

(A)

(W)

Page

(mho)

Ciss
max
(pF)

gfs
min

50
50
50
50
50

0.08
0.12
0.04
0.06
0.04

13.00
10.00
15.00
15.00
15.00

TO-220
TO-220
TO-220
TO-220
ISOWATT220

20.00
17.00
30.00
25.00
20.00

70
75
75
75
35

8.00
3.00
4.00
4.00
4.00

700typ
2000
2000
2000
2000

159
163
167
173
167

BUZ11S2
BUZ11S2FI
BUZ20
BUZ21
BUZ25

60
60
100
100
100

0.04
0.04
0.20
0.10
0.10

15.00
15.00
6.00
9.00
9.00

TO-220
ISOWATT220
TO-220
TO-220
TO-3

30.00
20.00
12.00
19.00
19.00

75
35
75
75
78

4.00
4.00
2.70
4.00
4.00

2000
2000
2000
2000
2000

177
177
183
187
191

BUZ32
BUZ41A
BUZ42
BUZ45
BUZ45A

200
500
500
500
500

0.40
1.50
2.00
0.60
0.80

4.50
2.50
2.50
5.00
5.00

TO-220
TO-220
TO-220
TO-3
TO-3

9.50
4.50
4.00
9.60
8.30

75
75
75
125
125

2.20
1.50
1.50
2.70
2.70

2000
2000
2000
4900
4900

195
199
203
207
211

BUZ60
BUZ60B
BUZ71
BUZ71A
BUZ71FI

400
400
50
50
50

1.00
1.50
0.10
0.12
0.10

2.50
2.50
9.00
9.00
9.00

TO-220
TO-220
TO-220
TO-220
ISOWATT220

5.50
4.50
14.00
13.00
12.00

75
75
40
40
30

1.70
1.70
3.00
3.00
3.00

2000
2000
650
650
650

215
219
223
229
223

BUZ72A
BUZ74
BUZ74A
BUZ76
BUZ76A

100
500
500
400
400

0.25
3.00
4.00
1.80
2.50

5.00
1.20
1.20
1.50
1.50

TO-220
TO-220
TO-220
TO-220
TO-220

9.00
2.40
2.00
3.00
2.60

40
40
40
40
40

2.70
0.80
0.80
0.80
0.80

600
500
500
500
500

233
237
241
245
249

BUZ353
BUZ354
IRF140
IRF141
IRF142

500
500
100
80
100

0.60
0.80
0.077
0.077
0.10

5.50
5.50
17.00
17.00
17.00

TO-220
TO-218
TO-3
TO-3
TO-3

9.50
8.00
28.00
28.00
25.00

125
125
125
125
125

2.70
2.70
8.70
8.70
8.70

4900
4900
1600
1600
1600

253
257
261
261
261

IRF143
IRF150
IRF151
IRF152
IRF153

80
100
60
100
60

0.10
0.055
0.055
0.08
0.08

17.00
20.00
20.00
20.00
20.00

TO-3
TO-3
TO-3
TO-3
TO-3

25.00
40.00
40.00
33.00
33.00

125
150
150
150
150

8.70
9.00
9.00
9.00
9.00

1600
3000
3000
3000
3000

261
267
267
267
267

IRF350
IRF450
IRF451
IRF452
IRF453

400
500
450
500
450

0.30
0.40
0.40
0.50
0.50

8.00
7.20
7.20
7.20
7.20

TO-3
TO-3
TO-3
TO-3
TO-3

15.00
13.00
13.00
11.00
11.00

150
150
150
150
150

8.00
8.70
8.70
8.70
8.70

3000
3000
3000
3000
3000

273
279
279
279
279

IRF520
IRF520FI
IRF521
IRF521FI
IRF522

100
100
80
80
100

0.27
0.27
0.27
0.27
0.36

5.60
5.60
5.60
5.60
5.60

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

9.20
7.00
9.20
7.00
8.00

60
30
60
30
60

2.70
2.70
2.70
2.70
2.70

600
600
600
600
600

285
285
285
285
285

BUZ10
BUZ10A
BUZ11
BUZ11A
BUZ11FI

------------------------~~~~~~~::~n------------------------9

SELECTION GUIDE BY PART NUMBER

Type

V(BR)OSS
(V)

ROS(on)

(max)
(0)

(3

10
(A)

Package

lo(max)

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

IRF522FI
IRF523
IRF523FI
IRF530
IRF530FI

100
80
80
100
100

0.36
0.36
0.36
0.16
0.16

5.60
5.60
5.60
8.30
8.30

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

6.00
8.00
6.00
14.00
9.00

30
60
30
79
35

2.70
2.70
2.70
5.10
5.10

600
600
600
800
800

285
285
285
291
291

IRF531
IRF531FI
IRF532
IRF532FI
IRF533

80
80
100
100
80

0.16
0.16
0.23
0.23
0.23

8.30
8.30
8.30
8.30
8.30

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

14.00
9.00
12.00
8.00
12.00

79
35
79
35
79

5.10
5.10
5.10
5.10
5.10

800
800
800
800
800

291
291
291
291
291

IRF533FI
IRF540
IRF540FI
IRF541
IRF541FI

80
100
100
80
80

0.23
0.077
0.077
0.077
0.077

8.30
17.00
17.00
17.00
17.00

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

8.00
28.00
15.00
28.00
15.00

35
125
40
125
40

5.10
8.70
8.70
8.70
8.70

800
1600
1600
1600
1600

291
295
295
295
295

IRF542
IRF542FI
IRF543
IRF543FI
IRF620

100
100
80
80
200

0.10
0.10
0.10
0.10
0.80

17.00
17.00
17.00
17.00
2.50

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

25.00
14.00
25.00
14.00
5.00

125
40
125
40
40

8.70
8.70
8.70
8.70
1.30

1600
1600
1600
1600
600

295
295
295
295
301

IRF620FI
IRF621
IRF621FI
IRF622
IRF622FI

200
150
150
200
200

0.80
0.80
0.80
1.20
1.20

2.50
2.50
2.50
2.50
2.50

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

4.00
5.00
4.00
4.00
3.50

30
40
30
40
30

1.30
1.30
1.30
1.30
1.30

600
600
600
600
600

301
301
301
301
301

IFR623
IRF623FI
IRF720
IRF720FI
IRF721

150
150
400
400
350

1.20
1.20
1.80
1.80
1.80

2.50
2.50
1.80
1.80
1.80

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

4.00
3.50
3.30
2.50
3.30

40
30
50
30
50

1.30
1.30
1.00
1.00
1.00

600
600
600
600
600

301
301
307
307
307

IRF721FI
IRF722
IRF722FI
IRF723
IRF723FI

350
400
400
350
350

1.80
2.50
2.50
2.50
2.50

1.80
1.80
1.80
1.80
1.80

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

2.50
2.80
2.00
2.80
2.00

30
50
30
50
30

1.00
1.00
1.00
1.00
1.00

600
600
600
600
600

307
307
307
307
307

IRF730
IRF730FI
IRF731
IRF731FI
IRF732

400
400
350
350
400

1.00
1.00
1.00
1.00
1.50

3.00
3.00
3.00
3.00
3.00

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

5.50
3.50
5.50
3.50
4.50

74
35
74
35
74

2.90
2.90
2.90
2.90
2.90

800
800
800
800
800

313
313
313
313
313

IRF732FI
IRF733
IRF733FI
IRF740
IRF740FI

400
350
350
400
400

1.50
1.50
1.50
0.55
0.55

3.00
3.00
3.00
5.20
5.20

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

3.00
4.50
3.00
10.00
5.50

35
74
35
125
40

2.90
2.90
2.90
4.00
4.00

800
800
800
1600
1600

313
313
313
319
319

------------------------~~~~~~&T:9~-----------------------10

SELECTION GUIDE BY PART NUMBER

Type

V(BR)OSS
(V)

ROS(on) @

(max)
(0)

10
(A)

Package

lo(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

IRF741
IRF741FI
IRF742
IRF742FI
IRF743

350
350
400
400
350

0.55
0.55
0.80
0.80
0.80

5.20
5.20
5.20
5.20
5.20

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

10.00
5.50
8.30
4.50
8.30

125
40
125
40
125

4.00
4.00
4.00
4.00
4.00

1600
1600
1600
1600
1600

319
319
319
319
319

IRF743FI
IRF820
IRF820FI
IRF821
IRF821FI

350
500
500
450
450

0.80
3.00
3.00
3.00
3.00

5.20
1.40
1.40
1.40
1.40

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

4.50
2.50
2.00
2.50
2.00

40
50
30
50
30

4.00
1.00
1.00
1.00
1.00

1600
400
400
400
400

319
325
325
325
325

IRF822
IRF822FI
IRF823
IRF823FI
IRF830

500
500
450
450
500

4.00
4.00
4.00
4.00
1.50

1.40
1.40
1.40
1.40
2.50

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

2.20
1.50
2.20
1.50
4.50

50
30
50
30
74

1.00
1.00
1.00
1.00
2.70

400
400
400
400
800

325
325
325
325
331

IRF830FI
IRF831
IRF831FI
IRF832
IRF832FI

500
450
450
500
500

1.50
1.50
1.50
2.00
2.00

2.50
2.50
2.50
2.50
2.50

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

3.00
4.50
3.00
4.00
2.50

35
74
35
74
35

2.70
2.70
2.70
2.70
2.70

800
800
800
800
800

331
331
331
331
331

IRF833
IRF833FI
IRF840
IRF840FI
IRF841

450
450
500
500
450

2.00
2.00
0.85
0.85
0.85

2.50
2.50
4.40
4.40
4.40

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

4.00
2.50
8.00
4.50
8.00

74
35
125
40
125

2.70
2.70
4.90
4.90
4.90

800
800
1600
1600
1600

331
331
337
337
337

IRF841FI
IRF842
IRF842FI
IRF843
IRF843FI

450
500
500
450
450

0.85
1.10
1.10
1.10
1.10

4.40
4.40
4.40
4.40
4.40

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

4.50
7.00
4.00
7.00
4.00

40
125
40
125
40

4.90
4.90
4.90
4.90
4.90

1600
1600
1600
1600
1600

337
337
337
337
337

IRFP150
IRFP150FI
IRFP151
IRFP151FI
IRFP152

100
100
60
60
100

0.055
0.055
0.055
0.055
0.08

22.00
22.00
22.00
22.00
22.00

TO-218
ISOWATT218
TO-218
ISOWATT218
TO-218

40.00
26.00
40.00
26.00
34.00

150
65
150
65
150

13.00
13.00
13.00
13.00
13.00

3000
3000
3000
3000
3000

343
343
343
343
343

IRFP152FI
IRFP153
IRFP153FI
IRFP350FI
IRFP450

100
60
60
400
500

0.08
0.08
0.08
0.30
0.40

22.00
22.00
22.00
8.00
7.20

ISOWATT218
TO-218
ISOWATT218
ISOWATT218
TO-218

21.00
34.00
21.00
10.00
14.00

65
150
65
70
180

13.00
13.00
13.00
8.00
8.70

3000
3000
3000
3000
3000

343
343
343
349
355

IRFP450FI
IRFP451
IRFP451FI
IRFP452
IRFP452FI

500
450
450
500
500

0.40
0.40
0.40
0.50
0.50

7.20
7.20
7.20
7.20
7.20

ISOWATT218
TO-218
ISOWATT218
TO-218
ISOWATT218

9.00
14.00
9.00
12.00
8.00

70
180
70
180
70

8.70
8.70
8.70
8.70
8.70

3000
3000
3000
3000
3000

355
355
355
355
355

------------ ~ ~~~~m?::~~~ -----------11

SELECTION GUIDE BY PART NUMBER

Type

V(BR)OSS
(V)

ROS(on) @

(max)
(n)

10
(A)

Package

lo(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

IRFP453
IRFP453FI
IRFZ20
IRFZ20FI
IRFZ22

450
450
50
50
50

0.50
0.50
0.10
0.10
0.12

7.20
7.20
9.00
9.00
9.00

TO-218
ISOWATT218
TO-220
ISOWATT220
TO-220

12.00
8.00
15.00
12.50
14.00

180
70
40
30
40

8.70
8.70
5.00
5.00
5.00

3000
3000
850
850
850

355
355
361
361
361

IRFZ22FI
IRFZ40
IRFZ42
MTH6N60FI
MTH40N06

50
50
50
600
60

0.12
0.028
0.035
1.20
0.028

9.00
29.00
29.00
3.00
20.00

ISOWATT220
TO-220
TO-220
ISOWATT218
TO-218

12.00
35.00
35.00
3.50
40.00

30
125
125
40
150

5.00
17.00
17.00
2.00
10.00

850
3000
3000
1800
5000

361
367
367
373
379

MTH40N06FI
MTP3N60
MTP3N60FI
MTP6N60
MTP15N05L

60
600
600
600
50

0.028
2.50
2.50
1.20
0.15

20.00
1.50
1.50
3.00
7.50

ISOWATI218
TO-220
ISOWATT220
TO-220
TO-220

26.00
3.00
2.50
6.00
15.00

65
75
35
125
75

10.00
1.50
1.50
2.00
5.00

5000
1000
1000
1800
900

379
385
385
391
397

MTP15N05LFI
MTP15N06L
MTP15N06LFI
MTP3055A
MTP3055AFI

50
60
60
60
60

0.15
0.15
0.15
0.15
0.15

7.50
7.50
7.50
6.00
6.00

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

10.00
15.00
10.00
12.00
10.00

30
75
30
40
30

5.00
5.00
5.00
4.50
4.50

900
900
900
500
500

397
397
397
403
403

SGS30MA050D1
SGS35MA050D1
SGS1 OOMA01 OD1
SGS150MA010D1
SGSP201

500
500
100
100
100

0.20
0.16
0.014
0.009
1.40

15.00
17.50
50.00
75.00
1.20

TO-240
TO-240
TO-240
TO-240
SOT-82

30.00 - 400
35.00
400
120.00 400
150.00 400
2.50
18

15.00
15.00
20.00
20.00
0.50

9100
12000
11200
14000
125

409
415
421
427
433

SGSP222
SGSP230
SGSP239
SGSP301
SGSP311

50
450
500
100
100

0.13
3.00
8.50
1.40
0.30

5.00
1.20
0.60
1.20
5.50

SOT-82
SOT-82
SOT-82
TO-220
TO-220

10.00
2.50
1.20
2.50
11.00

50
50
40
18
75

3.00
0.80
0.65
0.50
2.00

550
450
300
125
480

439
445
451
457
463

SGSP316
SGSP317
SGSP319
SGSP321
SGSP322

250
200
500
60
50

1.20
0.75
3.80
0.13
0.13

2.50
3.00
1.40
8.00
8.00

TO-220
TO-220
TO-220
TO-220
TO-220

5.00
6.00
2.80
16.00
16.00

75
75
75
75
75

1.50
1.50
0.80
3.00
3.00

500
500
380
550
550

469
469
475
481
481

SGSP330
SGSP341
SGSP351
SGSP358
SGSP361

450
400
100
50
100

3.00
20.00
0.60
0.30
0.15

1.50
0.30
3.00
3.50
9.00

TO-220
TO-220
TO-220
TO-220
TO-220

3.00
0.60
6.00
7.00
18.00

75
18
50
50
100

0.80
0.10
1.00
1.50
4.50

450
105
250
270
1200

487
493
499
505
511

SGSP362
SGSP363
SGSP364
SGSP367
SGSP369

80
250
450
200
500

0.10
0.45
1.50
0.33
1.50

11.00
5.00
2.50
6.00
2.50

TO-220
TO-220
TO-220
TO-220
TO-220

22.00
10.00
5.00
12.00
5.00

100
100
100
100
100

4.50
3.00
3.00
3.00
3.00

1200
1200
1000
1200
1000

511
517
523
517
523

------------------------~~~~~~g~:~~-----------------------12

SELECTION GUIDE BY PART NUMBER

Type

V(BR)OSS
(V)

ROS(on) @

(max)
(U)

10
(A)

Package

10(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

SGSP381
SGSP382
SGSP461
SGSP462
SGSP471

60
50
100
80
100

0.06
0.06
0.15
0.10
0.075

14.00
14.00
10.00
12.50
15.00

TO-220
TO-220
TO-218
TO.218
TO-218

28.00
28.00
20.00
25.00
30.00

100
100
125
125
150

5.00
5.00
4.50
4.50
9.00

1400
1400
1200
1200
2200

529
529
535
535
541

SGSP472
SGSP474
SGSP475
SGSP477
SGSP479

80
450
400
200
500

0.05
0.70
0.55
0.17
0.70

17.50
4.50
5.00
10.00
4.50

TO-218
TO-218
TO-218
TO-218
TO-218

35.00
9.00
10.00
20.00
9.00

150
150
150
150
150

9.00
6.00
6.00
8.00
5.00

2200
2100
2100
2200
1900

541
547
547
553
559

SGSP481
SGSP482
SGSP491
SGSP492
SGSP574

60
50
60
50
450

0.06
0.06
0.033
0.033
0.70

15.00
15.00
20.00
20.00
4.50

TO-218
TO-218
TO-218
TO-218
TO-3

30.00
30.00
40.00
40.00
9.00

125
125
150
150
150

5.00
5.00
10.00
10.00
6.00

1400
1400
2800
2800
2100

565
565
571
571
577

SGSP575
SGSP577
SGSP579
SGSP591
SGSP592

400
200
500
60
50

0.55
0.17
0.70
0.033
0.033

5.00
10.00
4.50
20.00
20.00

TO-3
TO-3
TO-3
TO-3
TO-3

10.00
20.00
9.00
40.00
40.00

150
150
150
150
150

6.00
8.00
5.00
10.00
10.00

2100
2200
1900
2800
2800

577
583
589
595
595

STHV82
STHV102
STLT19
STLT19FI
STLT20

800
1000
50
50
60

2.00
3.50
0.15
0.15
0.15

2.00
2.00
7.50
7.50
7.50

TO-218
TO-218
TO-220
ISOWATT220
TO-220

5.50
4.20
15.00
10.00
15.00

125
125
75
30
75

2.00
2.00
5.00
5.00
5.00

1000
1200
480
480
480

601
607
611
611
611

STLT20FI
STLT29
STLT30
STVHD90

60
50
60
50

0.15
0.08
0.08
0.023

7.50
12.50
12.50
30.00

ISOWATT220
TO-220
TO-220
TO-220

10.00
25.00
25.00
52.00

30
100
100
125

5.00
9.00
9.00
30.00

480
1200
1200
3000

611
617
617
621

10(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

7.00
7.00
10.00
10.00

100
35
100
35

2.50
2.50
2.50
2.50

950
950
950
950

627
627,
633
633

HIMOS (IGBT)

Type

STHI07N50
STHI07N50FI
STHI10N50
STH 11 ON50FI

V(BR)OSS
(V)

500
500
500
500

ROS(on) @

(max)
(U)

2.70
2.70
2.70
2.70

10
(A)

7.00
7.00
10.00
10.00

Package

TO-220
ISOWATT220
TO-220
ISOWATT220

13

SELECTION GUIDE BY VOLTAGE

ROS(on)

@

(V)

(max)
(0)

10
(A)

50
50
50
50
50

0.30
0.15
0.15
0.15
0.15

3.50
7.50
7.50
7.50
7.50

50
50
50
50
50

0.13
0.13
0.12
0.12
0.12

5.00
8.00
10.00
9.00
9.00

50
50
50
50
50

0.12
0.10
0.10
0.10
0.10

9.00
9.00
9.00
9.00
9.00

50
50
50
50
50'

0.08
0.08
0.06
0.06
0.06

50
50
50
50
50

V(BR)OSS

Package

Type

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

TO-220
TO-220
ISOWATT220
TO-220
ISOWATT220

SGSP358
MTP15N05L
MTP15N05LFI
STLT19
STLT19FI

7.00
15.00
10.00
15.00
10.00

50
75
30
75
30

1.50
5.00
5.00
5.00
5.00

270
900
900
480
480

505
397
397
611
611

SOT-82
TO-220
TO-220
TO-220
TO-220

SGSP222
SGSP322
BUZ10A
BUZ71A
IRFZ22

10.00
16.00
17.00
13.00
14.00

50
75
75
40
40

3.00
3.00
3.00
3.00
5.00

550
550
2000
650
850

439
481
163
229
361

ISOWATT220
TO-220
ISOWAIT220
TO-220
ISOWATT220

IRFZ22FI
BUZ71
BUZ71FI
IRFZ20
IRFZ20FI

12.00
14.00
12.00
15.00
12.50

30
40
30
40
30

5.00
3.00
3.00
5.00
5.00

850
650
650
850
850

361
223
223
361
361

13.00
12.50
15.00
14.00
15.00

TO-220
TO-220
TO-220
TO-220
TO-218

BUZ10
STLT29
BUZ11A
SGSP382
SGSP482

20.00
25.00
25.00
28.00
30.00

70
100
75
100
125

8.00
9.00
4.00
5.00
5.00

700 typ
1200
2000
1400
1400

159
617
173
529
565

0.04
0.04
0.035
0.033
0.033

15.00
15.00
29.00
20.00
20.00

TO-220
ISOWATT220
TO-220
TO-218
TO-3

BUZ11
BUZ11FI
IRFZ42
SGSP492
SGSP592

30.00
20.00
35.00
40.00
40.00

75
35
125
150
150

4.00
4.00
17.00
10.00
10.00

2000
2000
3000
2800
2800

167
167
367
571
595

50
50
60
60
60

0.028
0.023
0.15
0.15
0.15

29.00
30.00
7.50
7.50
6.00

TO-220
TO-220
TO-220
ISOWATT220
TO-220

IRFZ40
STVHD90
MTP15N06L
MTP15N06LFI
MTP3055A

35.00
52.00
15.00
10.00
12.00

125
125
75
30
40

17.00
30.00
5.00
5.00
4.50

3000
3000
900
900
500

367
621
397
397
403

60
60
60
60
60

0.15
0.15
0.15
0.13
0.08

6.00
7.50
7.50
8.00
20.00

ISOWATT220
TO-220
ISOWAIT220
TO-220
TO-3

MTP3055AFI
STLT20
STLT20FI
SGSP321
IRF153

10.00
15.00
10.00
16.00
33.00

30
75
30
75
150

4.50
5.00
5.00
3.00
9.00

500
480
480
550
3000

403
611
611
481
267

60
60
60
60
60

0.08
0.08
0.08
0.06
0.06

22.00
22.00
12.50
14.00
15.00

TO-218
ISOWATT218
TO-220
TO-220
TO-218

IRFP153
IRFP153FI
STLT30
SGSP381
SGSP481

34.00
21.00
25.00
28.00
30.00

150
65
100
100
125

13.00
13.00
9.00
5.00
5.00

3000
3000
1200
1400
1400

343
343
617
529
565

60
60
60
60
60

0.055
0.055
0.055
0.04
0.04

20.00
22.00
22.00
15.00
15.00

TO-3
TO-218
ISOWATT218
TO-220
ISOWATT220

IRF151
IRFP151
IRFP151 FI
BUZ11S2
BUZ11S2FI

40.00
40.00
26.00
30.00
20.00

150
150
65
75
35

9.00
13.00
13.00
4.00
4.00

3000
3000
3000
2000
2000

267
343
343
177
177

------------------------~~~~~~g~:~~
14

lo(max)

------------------------

SELECTION GUIDE BY VOLTAGE

V(BR)OSS

ROS(on)

@

10
(A)

Package

Type

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

lo(max)

(V)

(max)
(0)

60
60
60
60
80

0.033
0.033
0.028
0.028
0.36

20.00
20.00
20.00
20.00
5.60

TO-218
TO-3
TO-218
ISOWATT218
TO-220

SGSP491
SGSP591
MTH40N06
MTH40N06FI
IRF523

40.00
40.00
40.00
26.00
8.00

150
150
150
65
60

10.00
10.00
10.00
10.00
2.70

2800
2800
5000
5000
600

571
595
379
379
285

80
80
80
80
80

0.36
0.27
0.27
0.23
0.23

5.60
5.60
5.60
8.30
8.30

ISOWATI220
TO-220
ISOWATT220
TO-220
ISOWATT220

IRF523FI
IRF521
IRF521FI
IRF533
IRF533FI

6.00
9.20
7.00
12.00
8.00

30
60
30
79
35

2.70
2.70
2.70
5.10
5.10

600
600
600
800
800

285
285
285
291
291

80
80
80
80
80

0.16
0.16
0.10
0.10
0.10

8.30
8.30
17.00
17.00
17.00

TO-220
ISOWATT220
TO-3
TO-220
ISOWATT220

IRF531
IRF531FI
IRF143
IRF543
IRF543FI

14.00
9.00
25.00
25.00
14.00

79
35
125
125
40

5.10
5.10
8.70
8.70
8.70

800
800
1600
1600
1600

291
291
261
295
295

80
80
80
80
80

0.10
0.10
0.077
0.077
0.077

11.00
12.50
17.00
17.00
17.00

TO-220
TO-218
TO-3
TO-220
ISOWATT220

SGSP362
SGSP462
IRF141
IRF541
IRF541FI

22.00
25.00
28.00
28.00
15.00

100
125
125
125
40

4.50
4.50
8.70
8.70
8.70

1200
1200
1600
1600
1600

511
535
261
295
295

80
100
100
100
100

0.05
1.40
1.40
0.60
0.36

17.50
1.20
1.20
3.00
5.60

TO-218
SOT-82
TO-220
TO-220
TO-220

SGSP472
SGSP201
SGSP301
SGSP351
IRF522

35.00
2.50
2.50
6.00
8.00

150
18
18
50
60

9.00
0.50
0.50
1.00
2.70

2200
125
125
250
600

541
433
457
499
285

100
100
100
100
100

0.36
0.30
0.27
0.27
0.25

5.60
5.50
5.60
5.60
5.00

ISOWATT220
TO-220
TO-220
ISOWATT220
TO-220

IRF522FI
SGSP311
IRF520
IRF520FI
BUZ72A

6.00
11.00
9.20
7.00
9.00

30
75
60
30
40

2.70
2.00
2.70
2.70
2.70

600
480
600
600
600

285
463
285
285
233

100
100
100
100
100

0.23
0.23
0.20
0.16
0.16

8.30
8.30
6.00
8.30
8.30

TO-220
ISOWATT220
TO-220
TO-220
ISOWATT220

IRF532
IRF532FI
BUZ20
IRF530
IRF530FI

12.00
8.00
12.00
14.00
9.00

79
35
75
79
35

5.10
5.10
2.70
5.10
5.10

800
800
2000
800
800

291
291
183
291
291

100
100
100
100
100

0.15
0.15
0.10
0.10
0.10

9.00
10.00
9.00
9.00
17.00

TO-220
TO-218
TO-220
TO-3
TO-3

SGSP361
SGSP461
BUZ21
BUZ25
IRF142

18.00
20.00
19.00
19.00
25.00

100
125
75
78
125

4.50
4.50
4.00
4.00
8.70

1200
1200
2000
2000
1600

511
535
187
191
261

100
100
10Q
100
100

0.10
0.10
0.08
0.08
0.08

17.00,
17.00
20.00
22.00
22.00

TO-220
ISOWATI220
TO-3
TO-218
ISOWATI218

IRF542
IRF542FI
IRF152
IRFP152
IRFP152FI

25.00
14.00
33.00
34.00
21.00

125
40
150
150
65

8.70
8.70
9.00
13.00
13.00

1600
1600
3000
3000
3000

295
295
267
343
343

------------ ~ ~~~~m?lJ~:~~n -----------15

SELECTION GUIDE BY VOLTAGE

V(BR)OSS

{V}

Ros(on)

{max}
{O}

@

10

{A}

Package

Type

gfs

Ciss
max
(pF)

10(max)

Ptot

{A}

(W)

min
{mho}

28.00
28.00
15.00
30.00
40.00

125
125
40
150
150

8.70
8.70
8.70
9.00
9.00

1600
1600
1600
2200
3000

261
295
295
541
267

40.00
26.00
120.00
150.00
4.00

150
65
400
400
40

13.00
13.00
20.00
20.00
1.30

3000
3000
11200
14000
600

343
343
421
427
301

Page

100
100
100
100
100

0.077
0.077
0.077
0.075
0.055

17.00
17.00
17.00
15.00
20.00

TO-3
TO-220
ISOWATT220
TO-218
TO-3

IRF140
IRF540
IRF540FI
SGSP471
IRF150

100
100
100
100
150

0.055
0.055
0.014
0.009
1.20

22.00
22.00
50.00
75.00
2.50

TO-218
ISOWATT218
TO-240
TO-240
TO-220

IRFP150
IRFP150FI
SGS100MA010D1
SGS150MA010D1
IRF623

150
150
150
200
200

1.20
0.80
0.80
1.20
1.20

2.50
2.50
2.50
2.50
2.50

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

IRF623FI
IRF621
IRF621FI
IRF622
IRF622FI

3.50
5.00
4.00
4.00
3.50

30
40
30
40
30

1.30
1.30
1.30
1.30
1.30

600
600
600
600
600

301
301
301
301
301

200
200
200
200
200

0.80
0.80
0.75
0.40
0.33

2.50
2.50
3.00
4.50
6.00

TO-220
ISOWATT220
TO-220
TO-220
TO-220

IRF620
IRF620FI
SGSP317
BUZ32
SGSP367

5.00
4.00
6.00
9.50
12.00

40
30
75
75
100

1.30
1.30
1.50
2.20
3.00

600
600
500
2000
1200

301
301
469
195
517

200
200
250
250
350

0.17
0.17
1.20
0.45
2.50

10.00
10.00
2.50
5.00
1.80

TO-218
TO-3
TO-220
TO-220
TO-220

SGSP477
SGSP577
SGSP316
SGSP363
IRF723

20.00
20.00
5.00
10.00
2.80

150
150
75
100
50

8.00
8.00
1.50
3.00
1.00

2200
2200
500
1200
600

553
583
469
517
307

350
350
350
350
350

2.50
1.80
1.80
1.50
1.50

1.80
1.80
1.80
3.00
3.00

ISOWATT220
TO-220
ISOWATT220
TO-220
ISOWATT220

IRF723FI
IRF721
IRF721FI
IRF733
IRF733FI

2.00
3.30
2.50
4.50
3.00

30
50
30
74
35

1.00
1.00
1.00
2.90
2.90

600
600
600
800
800

307
307
307
313
313

350
350
350
350
350

1.00
1.00
0.80
0.80
0.55

3.00
3.00
5.20
5.20
5.20

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-220

IRF731
IRF731FI
IRF743
IRF743FI
IRF741

5.50
3.50
8.30
4.50
10.00

74
35
125
40
125

2.90
2.90
4.00
4.00
4.00

800
800
1600
1600
1600

313
313
319
319
319

350
400
400
400
400

0.55
20.00
2.50
2.50
2.50

5.20
0.30
1.50
1.80
1.80

ISOWATT220
TO-220
TO-220
TO-220
ISOWATT220

IRF741FI
SGSP341
BUZ76A
IRF722
IRF722FI

5.50
0.60
2.60
2.80
2.00

40
18
40
50
30

4.00
0.10
0.80
1.00
1.00

1600
105
500
600
600

319
493
249
307
307

400
400
400
400
400

1.80
1.80
1.80
1.50
1.50

1.50
1.80
1.80
2.50
3.00

TO-220
TO-220
ISOWATT220
TO-220
TO-220

BUZ76
IRF720
IRF720FI
BUZ60B
IRF732

3.00
3.30
2.50
4.50
4.50

40
50
30
75
74

0.80
1.00
1.00
1.70
2.90

500
600
600
2000
800

245
307
307
219
313

16

SELECTION GUIDE BY VOLTAGE

V(BR)OSS

ROS(on) (3

10
(A)

Package

Type

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

lo(max)

(V)

(max)
(n)

400
400
400
400
400

1.50
1.00
1.00
1.00
0.80

3.00
2.50
3.00
3.00
5.20

ISOWATT220
TO-220
TO-220
ISOWATT220
TO-220

IRF732FI
BUZ60
IRF730
IRF730FI
IRF742

3.00
5.50
5.50
3.50
8.30

35
75
74
35
125

2.90
1.70
2.90
2.90
4.00

800
2000
800
800
1600

313
215
313
313
319

400
400
400
400
400

0.80
0.55
0.55
0.55
0.55

5.20
5.20
5.20
5.00
5.00

ISOWATT220
TO-220
ISOWATT220
TO-218
TO-3

IRF742FI
IRF740
IRF740FI
SGSP475
SGSP575

4.50
10.00
5.50
10.00
10.00

40
125
40
150
150

4.00
4.00
4.00
6.00
6.00

1600
1600
1600
2100
2100

319
319
319
547
577

400
400
450
450
450

0.30
0.30
4.00
4.00
3.00

8.00
8.00
1.40
1.40
1.40

TO-3
ISOWATT218
TO-220
ISOWATT220
TO-220

IRF350
IRFP350FI
IRF823
IRF823FI
IRF821

15.00
10.00
2.20
1.50
2.50

150
70
50
30
50

8.00
8.00
1.00
1.00
1.00

3000
3000
400
400
400

273
349
331
331
331

450
450
450
450
450

3.00
3.00
3.00
2.00
2.00

1.40
1.20
1.50
2.50
2.50

ISOWATT220
SOT-82
TO-220
TO-220
ISOWATT220

IRF821FI
SGSP230
SGSP330
IRF833
IRF833FI

2.00
2.50
3.00
4.00
2.50

30
50
75
74
35

1.00
0.80
0.80
2.70
2.70

400
450
450
800
800

331
445
487
331
331

450
450
450
450
450

1.50
1.50
1.50
1.10
1.10

2.50
2.50
2.50
4.40
4.40

TO-220
ISOWATT220
TO-220
TO-220
ISOWATT220

IRF831
IRF831FI
SGSP364
IRF843
IRF843FI

4.50
3.00
5.00
7.00
4.00

74
35
100
125
40

2.70
2.70
3.00
4.90
4.90

800
800
1000
1600
1600

331
331
523
337
337

450
450
450
450
450

0.85
0.85
0.70
0.70
0.50

4.40
4.40
4.50
4.50
7.00

TO-220
ISOWATT220
TO-218
TO-3
TO-3

IRF841
IRF841FI
SGSP474
SGSP574
IRF453

8.00
4.50
9.00
9.00
11.00

125
40
150
150
150

4.90
4.90
6.00
6.00
8.70

1600
1600
2100
2100
3000

337
337
547
577
279

450
450 .
450
450
450

0.50
0.50
0.40
0.40
0.40

7.20
7.20
7.20
7.20
7.20

TO-218
ISOWATT218
TO-3
TO-218
ISOWATT218

IRFP453
IRFP453FI
IRF451
IRFP451
IRFP451FI

12.00
8.00
13.00
14.00
9.00

150
70
150
150
70

8.70
8.70
8.70
8.70
8.70

3000
3000
3000
3000
3000

355
355
279
355
355

500
500
500
500
500

8.50
4.00
4.00
4.00
3.80

0.60
1.20
1.40
1.40
1.40

SOT-82
TO-220
TO-220
ISOWATT220
TO-220

SGSP239
BUZ74A
IRF822
IRF822FI
SGSP319

1.20
2.00
2.20
1.50
2.80

40
40
50
30
75

0.65
0.80
1.00
1.00
0.80

300
500
400
400
380

451
241
325
325
475

500
500
500
500
500

3.00
3.00
3.00
2.00
2.00

1.20
1.40
1.40
2.50
2.50

TO-220
TO-220
ISOWATT220
TO-220
TO-220

BUZ74
IRF820
IRF820FI
BUZ42
IRF832

2.40
2.50
2.00
4.00
4.00

40
50
30
75
74

0.80
1.00
1.00
1.50
2.70

500
400
400
2000
800

237
325
325
203
325

------------ ~ ~~~~m~m:~~Jl------------

17

SELECTION GUIDE BY VOLTAGE

ROS(on) (3

gfs
min
(mho)

Ciss
max
(pF)

Page

35
75
74
35
100

2.70
1.50
2.70
2.70
3.00

800
2000
800
800
1000

325
199
331
331
523

7.00
4.00
8.00
4.50
8.00

125
40
125
40
125

4.90
4.90
4.90
4.90
2.70

1600
1600
1600
1600
4900

337
337
337
337
249

BUZ45A
SGSP479
SGSP579
BUZ353
BUZ45

8.30
9.00
9.00
9.50
9.60

125
150
150
125
125

2.70
5.00
5.00
2.70
2.70

4900
1900
1900
4900
4900

211
559
589
253
207

TO-3.
TO-218
ISOWATT218
TO-3
TO-218

IRF452
IRFP452
IRFP452FI
IRF450
IRFP450

11.00
12.00
8.00
13.00
14.00

150
150
70
150
150

8.70
8.70
8.70
8.70
8.70

3000
3000
3000
3000
3000

279
355
355
279
355

7.20
15.00
17.50
1.50
1.50

ISOWATT218
TO-240
TO-240
TO-220
ISOWATT220

IRFP450FI
SGS30MA050D1
SGS35MA050D1
MTP3N60
MTP3N60FI

9.00
30.00
35.00
3.00
2.50

70
400
400
75
35

8.70
15.00
15.00
1.50
1.50

3000
9100
12000
1000
1000

355
409
415
385
385

3.00
3.00
2.00
2.00

ISOWATT218
TO-220
TO-218
TO-218

MTH6N60FI
MTP6N60
STHV82
STHV102

3.50
6.00
5.50
4.20

40
125
125
125

2.00
2.00
2.00
2.00

1800
1800
1000
1200

367
391
601
607

lo(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

7.00
7.00
10.00
10.00

100
35
100
35

2.50
2.50
2.50
2.50

950
950
950
950

627
627
633
633

Type

lo(max)

Ptot

(A)

(W)

ISOWATT220
TO-220
TO-220
ISOWATT220
TO-220

IRF832FI
BUZ41A
IRF830
IRF830FI
SGSP369

2.50
4.50
4.50
3.00
5.00

4.40
4.40
4.40
4.40
5.50

TO-220
ISOWATT220
TO-220
ISOWATT220
TO-218

IRF842
IRF842FI
IRF840
IRF840FI
BUZ354

0.80
0.70
0.70
0.60
0.60

5.00
4.50
4.50
5.50
5.00

TO-3
TO-218
TO-3
TO-218
TO-3

500
500
500
500
500

0.50
0.50
0.50
0.40
0.40

7.20
7.20
7.20
7.20
7.20

500
500
500
600
600

0.40
0.20
0.16
2.50
2.50

600
600
800
1000

1.20
1.20
2.00
3.50

V(BR)OSS
(V)

10

(max)
(0)

(A)

500
500
500
500
500

2.00
1.50
1.50
1.50
1.50

2.50
2.50
2.50
2.50
2.50

500
500
500
500
500

1.10
1.10
0.85
0.85
0.80

500
500
500
500
500

Package

HIMOS (IGBT)
V(BR)OSS
(V)

500
500
500
500

Vos(on) (3

(max)
(V)

2.70
2.70
2.70
2.70

10

(A)

7.00
7.00
10.00
10.00

Package

TO-220
ISOWATT220
TO-220
ISOWATT220

Type

STH107N50
STH10N50
STHI10N50
STHI10N50FI

------------- ~ ~~~~m?u":~~©~ ------------18

SELECTION GUIDE BY PACKAGE
80T-82

,
V(BR)OSS

ROS(on)

(V)

(max)
(0)

50
100
450
500

0.13
1.40
3.00
8.50

(3

10
(A)

5.00
1.20
1.20
0.60

~
Type

SGSP222
SGSP201
SGSP230
SGSP239

OPTION
80T-194

gfs
min
(mho)

Ciss
max
(pF)

Page

50
18
50
40

3.00
0.50
0.80
0.65

550
125
450
300

439
433
445
451

lo(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

lo(max)

Ptot

(A)

(W)

10.00
2.50
2.50
1.20

TO-220

,
V(BR)OSS

ROS(on)

(3

10
(A)

(V)

(max)
(0)

50
50
50
50
50

0.30
0.15
0.15
0.13
0.12

3.50
7.50
7.50
8.00
10.00

SGSP358
MTP15N05L
STLT19
SGSP322
BUZ10A

7.00
15.00
15.00
16.00
17.00

50
75
75
75
75

1.50
5.00
5.00
3.00
3.00

270
900
480
550
2000

505
397
611
481
163

50
50
50
50
50

0.12
0.12
0.10
0.10
0.08

9.00
9.00
9.00
9.00
12.50

BUZ71A
IRFZ22
BUZ71
IRFZ20
STLT29

13.00
14.00
14.00
15.00
25.00

40
40
40
40
100

3.00
5.00
3.00
5.00
9.00

650
850
650
850
1200

229
361
223
361
617

50
50
50
50
50

0.08
0.06
0.06
0.04
0.035

13.00
15.00
14.00
15.00
29.00

BUZ10
BUZ11A
SGSP382
BUZ11
IRFZ42

20.00
25.00
28.00
30.00
35.00

70
75
100
75
125

8.00
4.00
5.00
4.00
17.00

700 typ
2000
1400
2000
3000

159
173
529
167
367

Type

------------- ~ ~~~~m?lJ~:~~~~ ------------19

SELECTION GUIDE BY PACKAGE
TO-220 (continueed)
V(BR)OSS

(V)

ROS(on)

(max)
(0)

@

10
(A)

Type

(A)

Ptot
(W)

lo(max)

9fs

C iss

min
(mho)

max
(pF)

Page

50
50
60
60
60

0.028
0.023
0.15
0.15
0.15

29.00
30.00
7.50
6.00
7.50

IRFZ40
STVHD90
MTP15N06L
MTP3055A
STLT20

35.00
52.00
15.00
12.00
15.00

125
125
75
40
75

17.00
30.00
5.00
4.50
5.00

3000
3000
900
500
480

367
621
397
403
611

60
60
60
60
80

0.13
0.08
0.06
0.04
0.36

8.00
12.50
14.00
15.00
5.60

SGSP321
STLT30
SGSP381
BUZ11S2
IRF523

16.00
25.00
28.00
30.00
8.00

75
100
100
75
60

3.00
9.00
5.00
4.00
2.70

550
1200
1400
2000
600

481
617
529
177
285

80
80
80
80
80

0.27
0.23
0.16
0.10
0.10

5.60
8.30
8.30
17.00
11.00

IRF521
IRF533
IRF531
IRF543
SGSP362

9.20
12.00
14.00
25.00
22.00

60
79
79
125
100

2.70
5.10
5.10
8.70
4.50

600
800
800
1600
1200

285
291
291
295
511

80
100
100
100
100

0.077
1.40
0.60
0.36
0.30

17.00
1.20
3.00
5.60
5.50

IRF541
SGSP301
SGSP351
IRF522
SGSP311

28.00
2.50
6.00
8.00
11.00

125
18
50
60
75

8.70
0.50
1.00
2.70
2.00

1600
125
250
600
480

295
457
499
285
463

100
100
100
100
100

0.27
0.25
0.23
0.20
0.16

5.60
5.00
8.30
6.00
8.30

IRF520
BUZ72A
IRF532
BUZ20
IRF530

9.20
9.00
12.00
12.00
14.00

60
40
79
75
79

2.70
2.70
5.10
2.70
5.10

600
600
800
2000
800

285
233
291
183
291

100
100
100
100
150

0.15
0.10
0.10
0.077
1.20-

9.00
9.00
17.00
17.00
2.50

SGSP361
BUZ21
IRF542
IRF540
IRF623

18.00
19.00
25.00
28.00
4.00

100
75
125
125
40

4.50
4.00
8.70
8.70
1.30

1200
2000
1600
1600
600

511
187
295
295
301

150
200
200
200
200

0.80
1.20
0.80
0.75
0.40

2.50
2.50
2.50
3.00
4.50

IRF621
IRF622
IRF620
SGSP317
BUZ32

5.00
4.00
5.00
6.00
9.50

40
40
40
75
75

1.30
1.30
1.30
1.50
2.20

600
600
600
500
2000

301
301
301
469
195

200
250
250
350
350

0.33
1.20
0.45
2.50
1.80

6.00
2.50
5.00
1.80
1.80

SGSP367
SGSP316
SGSP363
IRF723
IRF721

12.00
5.00
10.00
2.80
3.30

100
75
100
50
50

3.00
1.50
3.00
1.00
1.00

1200
500
1200
600
600

517
469
517
307
307

350
350
350
350
400

1.50
1.00
0.80
0.55
20.00

3.00
3.00
5.20
5.20
0.30

IRF733
IRF731
IRF743
IRF741
SGSP341

4.50
5.50
8.30
10.00
0.60

74
74
125
125
18

2.90
2.90
4.00
4.00
0.10

800
800
1600
1600
105

313
313
319
319
493

------------------------~~~~~~&~:~~-----------------------20

SELECTION GUIDE BY PACKAGE
TO-220 (continueed)
gfs
min
(mho)

Ciss
max
(pF)

Page

40
50
40
50
75

O.SO
1.00
O.SO
1.00
1.70

500
600
500
600
2000

249
307
245
307
219

4.50
5.50
5.50
S.30
10.00

74
75
74
125
125

2.90
1.70
2.90
4.00
4.00

SOO
2000
SOO
1600
1600

313
215
313
319
319

IRFS23
IRFS21
SGSP330
IRFS33
IRFS31

2.20
2.50
3.00
4.00
4.50

50
50
75
74
74

1.00
1.00
O.SO
2.70
2.70

400
400
450
SOO
SOO

325
325
4S7
331
331

2.50
4.40
4.40
1.20
1.40

SGSP364
IRFS43
IRFS41
BUZ74A
IRFS22

5.00
7.00
8.00
2.00
2.20

100
125
125
40
50

3.00
4.90
4.90
O.SO
1.00

1000
1600
1600
500
400

523
337
337
241
325

3.S0
3.00
3.00
2.00
2.00

1.40
1.20
1.40
2.50
2.50

SGSP319
BUZ74
IRFS20
BUZ42
IRFS32

2.S0
2.40
2.50
4.00
4.00

75
40
50
75
74

O.SO
O.SO
1.00
1.50
2.70

3S0
500
400
2000
SOO

475
237
325
203
331

500
500
500
500
500

1.50
1.50
1.50
1.10
0.S5

2.50
2.50
2.50
4.40
4.40

BUZ41A
IRFS30
SGSP369
IRFS42
IRFS40

4.50
4.50
5.00
7.00
S.OO

75
74
100
125
125

1.50
2.70
3.00
4.90
4.90

2000
SOO
1000
1600
1600

199
331
523
337
337

600
600

2.50
1.20

1.50
3.00

MTP3N60
MTP6N60

3.00
6.00

75
125

1.50
2.00

1000
1S00

385
391

ROS(on)

@

lo(max)

Ptot

(A)

(W)

(V)

(max)
(0)

10
(A)

400
400
400
400
400

2.50
2.50
1.S0
1.S0
1.50

1.50
1.S0
1.50
1.S0
2.50

BUZ76A
IRF722
BUZ76
IRF720
BUZ60B

2.60
2.S0
3.00
3.30
4.50

400
400
400
400
400

1.50
1.00
1.00
O.SO
0.55

3.00
2.50
3.00
5.20
5.20

IRF732
BUZ60
IRF730
IRF742
IRF740

450
450
450
450
450

4.00
3.00
3.00
2.00
1.50

1.40
1.40
1.50
2.50
2.50

450
450
450
500
500

1.50
1.10
0.S5
4.00
4.00

500
500
500
500
500

V(BR)OSS

Type

------------ ~ ~~~~m?1J~:~~©~ -----------21

SELECTION GUIDE BY PACKAGE
ISOWATT220

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

MTP15N05LFI
STLT19FI
IRFZ22FI
BUZ71FI
IRFZ20FI

10.00
10.00
12.00
12.00
12.50

30
30
30
30
30

5.00
5.00
5.00
3.00
5.00

900
480
850
650
850

397
611
361
223
361

15.00
7.50
6.00
7.50
15.00

BUZ11 FI
MTP15N06LFI
MTP3055AFI
STLT20FI
BUZ11S2FI

20.00
10.00
10.00
10.00
20.00

35
30
30
30
35

4.00
5.00
4.50
5.00
4.00

2000
900
500
480
2000

167
397
403
611
177

0.36
0.27
0.23
0.16
0.10

5.60
5.60
8.30
8.30
17.00

IRF523FI
IRF521FI
IRF533FI
IRF531FI
IRF543FI

6.00
7.00
8.00
9.00
14.00

30
30
35
35
40

2.70
2.70
5.10
5.10
8.70

600
600
800
800
1600

285
285
291
291
295

80
100
100
100
100

0.077
0.36
0.27
0.23
0.16

17.00
5.60
5.60
8.30
8.30

IRF541FI
IRF522FI
IRF520FI
IRF532FI
IRF530FI

15.00
6.00
7.00
8.00
9.00

40
30
30
35
35

8.70
2.70
2.70
5.10
5.10

1600
600
600
800
800

295
285
285
291
291

100
100
150
150
200

0.10
0.077
1.20
0.80
1.20

17.00
17 .00
2.50
2.50
2.50

IRF542FI
IRF540FI
IRF623FI
IRF621FI
IRF622FI

14.00
15.00
3.50
4.00
3.50

40
40
30
30
30

8.70
8.70
1.30
1.30
1.30

1600
1600
600
600
600

295
295
301
301
301

200
350
350
350
350

0.80
2.50
1.80
1.50
1.00

2.50
1.80
1.80
3.00
3.00

IRF620FI
IRF723FI
IRF721FI
IRF733FI
IRF731FI

4.00
2.00
2.50
3.00
3.50

30
30
30
35
35

1.30
1.00
1.00
2.90
2.90

600
600
600
800
800

301
307
307
313
313

350
350
400
400
400

0.80
0.55
2.50
1.80
1.50

5.20
5.20
1.80
1.80
3.00

IRF743FI
IRF741FI
IRF722FI
IRF720FI
IRF732FI

4.50
5.50
2.00
2.50
3.00

40
40
30
30
35

4.00
4.00
1.00
1.00
2.90

1600
1600
600
600
800

319
319
307
307
313

V(BR)OSS

ROS(on)

@

10

(max)
(0)

(A)

50
50
50
50
50

0.15
0.15
0.12
0.10
0.10

7.50
7.50
9.00
9.00
9.00

50
60
60
60
60

0.04
0.15
0.15
0.15
0.04

80
80
80
80
80

(V)

1

Type

10(max)

------------ ~ ~~~~mg1r~:~~~~ -----------22

SELECTION GUIDE BY PACKAGE
ISOWATT220 (continueed)
V(BR)OSS

C5

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

IRF730FI
IRF742FI
IRF740FI
IRF823FI
IRF821FI

3.50
4.50
5.50
1.50
2.00

35
40
40
30
30

2.90
4.00
4.00
1.00
1.00

800
1600
1600
400
400

313
319
319
325
325

2.50
2.50
4.40
4.40
1.40

IRF833FI
IRF831FI
IRF843FI
IRF841FI
IRF822FI

2.50
3.00
4.00
4.50
1.50

35
35
40
40
30

2.70
2.70
4.90
4.90
1.00

800
800
1600
1600
400

331
331
337
337
325

3.00
2.00
1.50
1.10
0.85

1.40
2.50
2.50
4.40
4.40

IRF820FI
IRF832FI
IRF830FI
IRF842FI
IRF840FI

2.00
2.50
3.00
4.00
4.50

30
35
35
40
40

1.00
2.70
2.70
4.90
4.90

400
800
800
1600
1600

325
331
331
337
337

2.50

1.50

MTP3N60FI

2.50

35

1.50

1000

385

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

RoS(on)

10

(V)

(max)
(n)

(A)

400
400
400
450
450

1.00
0.80
0.55
4.00
3.00

3.00
5.20
5.20
1.40
1.40

450
450
450
450
500

2.00
1.50
1.10
0.85
4.00

500
500
500
500
500
600

Type

10(max)

TO-218

V(BR)OSS

ROS(on)

C5

10

Type

lo(max)

(V)

(max)
(n)

(A)

50
50
60
60
60

0.06
0.033
0.08
0.06
0.055

15.00
20.00
22.00
15.00
22.00

SGSP482
SGSP492
IRFP153
SGSP481
IRFP151

30.00
40.00
34.00
30.00
40.00

125
150
150
125
150

5.00
10.00
13.00
5.00
13.00

1400
2800
3000
1400
3000

565
571
343
565
343

60
60
80
80
100

0.033
0.028
0.10
0.05
0.15

20.00
20.00
12.50
17.50
10.00

SGSP491
rylTH40N06
SGSP462
SGSP472
SGSP461

40.00
40.00
25.00
35.00
20.00

150
150
125
150
125

10.00
10.00
4.50
9.00
4.50

2800
5000
1200
2200
1200

571
379
535
541
535

51
-:r1,. SGS-THOMSON
[ij]~((;;rnl@[gll,l~((;;'jj'rnl@[RJJ~((;;f§)

23

SELECTION GUIDE BY PACKAGE
TO-218 (continueed)
V(BR)OSS

(V)

ROS(on)

@

(max)

10

Type

(A)

(0)

10(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

100
100
100
200
400

0.08
0.075
0.055
0.17
0.55

22.00
15.00
22.00
10.00
5.00

IRFP152
SGSP471
IRFP150
SGSP477
SGSP475

34.00
30.00
40.00
20.00
10.00

150
150
150
150
150

13.00
9.00
13.00
8.00
6.00

3000
2200
3000
2200
2100

343
541
343
553
547

450
450
450
500
500

0.70
0.50
0.40
0.80
0.70

4.50
7.20
7.20
5.50
4.50

SGSP474
IRFP453
IRFP451
BUZ354
SGSP479

9.00
12.00
14.00
8.00
9.00

150
150
150
125
150

6.00
8.70
8.70
2.70
5.00

2100
3000
3000
4900
1900

547
355
355
257
559

500
500
500
800
1000

'0.60
0.50
0.40
2.00
3.50

5.50
7.20
7.20
2:00
2.00

BUZ353
IRFP452
IRFP450
STHV82
STHV102

9.50
12.00
14.00
5.50
4.20

125
150
150
125
125

2.70
8.70
8.70
. 2.00
2.00

4900
3000
3000
1000
1200

253
355
355
601
607

10(max)

Ptot

(A)

(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

IRFP153FI
IRFP151 FI
MTH40N06FI
IRFP152FI
IRFP150FI

21.00
26.00
26.00
21.00
26.00

65
65
65
65
65

13.00
13.00
10.00
13.00
13.00

3000
3000
5000
3000
3000

343
343
379
343
343

10.00
8.00
9.00
8.00
9.00

70
70
70
70
70

8.00
8.70
8.70
8.70
8.70

3000
3000
3000
3000
3000

349
355
355
355
355

3.50

40

2.00

1800

373

ISOWATT218

V(BR)OSS

(V)

ROS(on)

(max)
(0)

@

10

Type

(A)

60
60
60
100
100

0.08
0.055
0.028
0.08
0.055

22.00
22.00
20.00
22.00
22.00

400
450
450
500
500

0.30
0.50
0.40
0.50
0.40

8.00
7.20
7.20
7.20
7.20

IRFP350FI
IRFP453FI
IRFP451 FI
IRFP452FI
IRFP450FI

600

1.20

3.00

MTH6N60FI

51
SCiS-1HOMSON
~l, Ii(j]O©rnl@rnl1rn©'ii'rnl@[RI]O©~
24

SELECTION GUIDE BY PACKAGE
TO-240

V(BR)OSS

RoS(on)

@

10

(V)

(max)
(0)

(A)

100
100
500
500

0.016
0.009
0.20
0.16

50.00
75.00
15.00
17.50

Type

SGS1 00MA01 001
SGS150MA01001
SGS30MA05001
SGS35MA05001

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

120.00
150.00
30.00
35.00

400
400
400
400

20.00
20.00
15.00
15.00

11200
14000
9100
12000

421
427
409
415

10(max)

(A)

Ptot
(W)

gfs
min
(mho)

Ciss
max
(pF)

Page

10(max)

TO-3

~
V(BR)OSS

ROS(on)

@

10

(V)

(max)
(0)

Type

(A)

50
60
60
60
80

0.033
0.08
0.055
0.033
0.10

20.00
20.00
20.00
20.00
17.00

SGSP592
IRF153
IRF151
SGSP591
IRF143

40.00
33.00
40.00
40.00
25.00

150
150
150
150
125

10.00
9.00
9.00
10.00
8.70

2800
3000
3000
2800
1600

595
267
267
595
261

80
100
100
100
100

0.077
0.10
0.10
0.08
0.077

17.00
9.00
17.00
20.00
17.00

IRF141
BUZ25
IRF142
IRF152
IRF140

28.00
19.00
25.00
33.00
28.00

125
78
125
150
125

8.70
4.00
8.70
9.00
8.70

1600
2000
1600
3000
1600

261
191
261
267
261

100
200
400
400
450

0.055
0.17
0.55
0.30
0.70

20.00
10.00
5.00
8.00
4.50

IRF150
SGSP577
SGSP575
IRF350
SGSP574

40.00
20.00
10.00
15.00
9.00

150
150
150
150
150

9.00
8.00
6.00
8.00
6.00

3000
2200
2100
3000
2100

267
583
577
273
577

------------- ~ ~~~~m?::~~~~ ------------25

SELECTION GUIDE BY PACKAGE·
TO-3 (continueed)
V(BR)OSS
(V)

Ros(on)

C3

(A)

Ptot
(W)

g1s
min
(mho)

Ciss
max
(pF)

Page

IRF453
IRF451
BUZ45A
SGSP579
BUZ45

11.00
13.00
8.30
9.00
9.60

150
150
125
150
125

8.70
8.70
2.70
5.00
2.70

3000
3000
4900
1900
4900

279
279
211
589
207

IRF452
IRF450

11.00
13.00

150
150

8.70
8.70

3000
3000

279
279

lo(max)

(A)

Ptot
(W)

g1s
min
(mho)

Ciss
max
(pF)

Page

7.00
10.00

100
100

2.50
2.50

9.50
9.50

627
633

lo(max)

(A)

Ptot
(W)

g1s
min
(mho)

Ciss
max
(pF)

Page

7.00
10.00

35
35

2.50
2.50

9.50
9.50

627
633

10

(max)
(0)

(A)

450
450
500
500
500

0.50
0.40
0.80
0.70
0.60

7.20
7.20
5.00
4.50
5.00

500
500

0.50
0.40

7.20
7.20

Type

10(max)

TO-220 (HIMOS)

V(BR)OSS
(V)

500
500

VOS(on)

C3

(max)

10

Type

(A)

(V)

2.70
2.70

7.00
10.00

STHI07N50
STHI10N50

ISOWATT220 (HIMOS)

V(BR)OSS
(V)

500
500

ROS(on)

(max)
(V)

2.70
2.70

C3

10

Type

(A)

7.00
10.00

STHI07N50FI
STHI10N50FI

51
SCiS-THOMSON
~1,. ~O~OO@rnlbrn~'D'OO@IKIlO~~
26

CROSS REFERENCE

SGS·THOMSON
NEAREST

PAGE

INDUSTRY
STANDARD

SGS·THOMSON

2SK295
2SK296
2SK308
2SK310
2SK311

SGSP351
IRF723
IRF142
IRF722
IRF833

499
307
261
307
331

BUZ11A
BUZ11FI
BUZ11P
BUZ11S2
BUZ11S2FI

BUZ11A
BUZ11FI
BUZ11FI
BUZ11S2
BUZ11S2FI

2SK312
2SK313
2SK319
2SK320
2SK324

SGSP575
IRF453
IRF730
IRF843
SGSP575

577
279
313
337
577

BUZ14
BUZ15
BUZ20
BUZ21
BUZ24

BUZ20
BUZ21
BUZ24

2SK345
2SK346
2SK349
2SK350
2SK357

SGSP358
IRF523
IRFP453
IRFP453
SGSP317

505
285
355
355
469

BUZ25
BUZ32
BUZ34
BUZ41A
BUZ42

BUZ25
BUZ32
BUZ34
BUZ41A
BUZ42

2SK382
2SK383
2SK399
2SK403
2SK428

IRF822
IRF530
SGSP461
SGSP474
SGSP321

325
291
535
547
481

BUZ45
BUZ45A
BUZ60
BUZ60B
BUZ64

BUZ45
BUZ45A
BUZ60
BUZ60B

2SK440
2SK512
2SK527
2SK528
2SK532

SGSP367
IRF452
MTP3055AFI
IRF722FI
IRF540FI

517
279
403
307
295

BUZ71
BUZ71A
BUZ71FI
BUZ71P
BUZ72A

BUZ71
BUZ71A
BUZ71FI
BUZ71FI
BUZ72A

2SK549
2SK552
2SK553
2SK554
2SK555

MTP3055A
IRF843
IRF842
IRF841
IRF840

403
337
337
337
337

BUZ73A
BUZ74
BUZ74A
BUZ76
BUZ76A

BUZ74
BUZ74A
BUZ76
BUZ76A

517
237
241
245
249

2SK556
2SK557
2SK560
2SK643
2SK644

IRFP453
IRFP452
IRFP450
SGSP474
SGSP479

355
355
355
547
559

BUZ353
BUZ354
IRF140
IRF141
IRF142

BUZ353
BUZ354
IRF140
IRF141
IRF142

253
257
261
261
261

2SK672
2SK673
2SK674
2SK708
2SK788

BUZ72A
MTP3055A
SGSP381
IRFP453FI
IRFP452

233
403
529
355
355

IRF143
IRF150
IRF151
IRF152
IRF153

IRF143
IRF150
IRF151
IRF152
IRF153

261
267
267
267
267

2SK789
2SK790
BUZ10
BUZ10A
BUZ11

IRFP451
IRFP450

355
355
159
163
167

IRF240
IRF241
IRF242
IRF243
IRF340

IRF240
IRF241
IRF242
IRF243

*
*
*
*

INDUSTRY
STANDARD

SGS·THOMSON

BUZ10
BUZ10A
BUZ11

SGS·THOMSON
NEAREST

PAGE
173
167
167
177
177

SGSP591
SGSP591

595
595
183
187

*
191
195

*
199
203

SGSP575

207
211
215
219
577
223
229
223
223
233

SGSP367

SGSP575

577

* Datasheet available on request.

------------------------~~~~~~~::~~-----------------------27

CROSS REFERENCE

INDUSTRY
STANDARD
IRF342
IRF350
IRF351
IRF352
IRF353

SGS·THOMSON

SGS·THOMSON
NEAREST
SGSP575

IRF350
IRF350
IRF350
IRF350
SGSP579
SGSP579
SGSP579
SGSP579

PAGE

INDUSTRY
STANDARD

SGS·THOMSON

SGS·THOMSON
NEAREST

PAGE

577
273
273
273
273

IRF541FI
IRF541P
IRF542
IRF542FI
IRF542P

IRF541FI
IRF541FI
IRF542
IRF542FI
IRF542FI

295
295
295
295
295

589
589
589
589
279

IRF543
IRF543FI
IRF543P
IRF610
IRF611

IRF543
IRF543FI
IRF543FI

295
295
295
469
469

279
279
279

IRF612
IRF613
IRF620
IRF620FI
IRF620P

IRF620
IRF620FI
IRF620FI

469
469
301
301
301

IRF621
IRF621FI
IRF621FI
IRF622
IRF622FI

301
301
301
301
301

IRF622FI
IRF623
IRF623FI
IRF623FI

IRF440
IRF441
IRF442
IRF443
IRF450

IRF450

IRF451
IRF452
IRF453
IRF510
IRF511

IRF451
IRF452
IRF453
IRF510
IRF511

IRF512
IRF513
IRF520
IRF520FI
IRF520P

IRF512
IRF513
IRF520
IRF520FI
IRF520FI

285
285
285

IRF621
IRF621FI
IRF621P
IRF622
IRF622FI

IRF521
IRF521FI
IRF521P
IRF522
IRF522FI

IRF521
IRF521FI
IRF521FI
IRF522
IRF522FI

285
285
285
285
285

IRF622P
IRF623
IRF623FI
IRF623P
IRF630

SGSP367

301
301
301
301
517

IRF522P
IRF523
IRF523FI
IRF523P
IRF530

IRF522FI
IRF523
IRF523FI
IRF523FI
IRF530

285
285
285
285
291

IRF631
IRF632
IRF633
IRF640
IRF641

SGSP367
SGSP367
SGSP367
SGSP477
SGSP477

517
517
517
553
553

IRF530FI
IRF530P
IRF531
IRF531FI
IRF531P

IRF530FI
IRF530FI
IRF531
IRF531FI
IRF531FI

291
291
291
291
291

IRF642
IRF643
IRF720
IRF720FI
IRF720P

SGSP477
SGSP477
IRF720
IRF720FI
IRF720FI

553
553
307
307
307

IRF532
IRF532FI
IRF532P
IRF533
IRF533FI

IRF532
IRF532FI
IRF532FI
IRF533
IRF533FI

291
291
291
291
291

IRF721
IRF721Fr
IRF721P
IRF722
IRF722FI

IRF721
IRF721FI
IRF721FI
IRF722
IRF722FI

307
307
307
307
307

IRF533P
IRF540
IRF540FI
IRF540P
IRF541

IRF533FI
IRF540
IRF540FI
IRF540FI
IRF541

291
295
295
295
295

IRF722P
IRF723
IRF723FI
IRF723P
IRF730

IRF722FI
IRF723
IRF723FI
IRF723FI
IRF730

307
307
307
307
313

*
*
*
*

SGSP317
SGSP317
SGSP317
SGSP317

* Datasheet available on request.

------------------------~~~~~~g~:~~-----------------------28

CROSS REFERENCE

INDUSTRY
STANDARD

SGS·THOMSON

SGS·THOMSON
NEAREST

PAGE

INDUSTRY
STANDARD

SGS·THOMSON

SGS·THOMSON
NEAREST

PAGE

IRF730FI
IRF730P
IRF731
IRF731FI
IRF731P

IRF730FI
IRF730FI
IRF731
IRF731FI
IRF731FI

313
313
313
313
313

IRF833FI
IRF833P
IRF840
IRF840FI
IRF840P

IRF833FI
IRF833FI
IRF840
IRF840FI
IRF840FI

331
331
337
337
337

IRF732
IRF732FI
IRF732P
IRF733
IRF733FI

IRF732
IRF732FI
IRF732FI
IRF733
IRF733FI

313
313
313
313
313

IRF841
IRF841FI
IRF841P
IRF842
IRF842FI

IRF841
IRF841FI
IRF841FI
IRF842
IRF842FI

337
337
337
337
337

IRF733P
IRF740
IRF740FI
IRF740P
IRF741

IRF733FI
IRF740
IRF740FI
IRF740FI
IRF741

313
319
319
319
319

IRF842P
IRF843
IRF843FI
IRF843P
IRFP140

IRF842FI
IRF843
IRF843FI
IRF843FI
IRFP140

337
337
337
337

IRF741FI
IRF741P
IRF742
IRF742FI
IRF742P

IRF741FI
IRF741FI
IRF742
IRF742FI
IRF742FI

319
319
319
319
319

IRFP140FI
IRFP140P
IRFP150
IRFP150FI
IRFP150P

IRFP140FI
IRFP140FI
IRFP150
IRFP150FI
IRFP150FI

343
343
343

IRF743
IRF743FI
IRF743P
IRF820
IRF820FI

IRF743
IRF743FI
IRF743FI
IRF820
IRF820FI

319
319
319
325
325

IRFP151
IRFP151FI
IRFP151P
IRFP152
IRFP152FI

IRFP151
IRFP151 FI
IRFP151 FI
IRFP152
IRFP152FI

343
343
343
343
343

IRF820P
IRF821
IRF821FI
IRF821P
IRF822

IRF820FI
IRF821
IRF821FI
IRF821FI
IRF822

325
325
325
325
325

IRFP152P
IRFP153
IRFP153FI
IRFP153P
IRFP350FI

IRFP152FI
IRFP153
IRFP153FI
IRFP153FI
IRFP350FI

343
343
343
343
349

IFR822FI
IRF822P
IRF823
IRF823FI
IRF823P

IRF822FI
IRF822FI
IRF823
IRF823FI
IRF823FI

325
325
325
325
325

IRFP350P
IRFP450
IRFP450FI
IRFP450P
IRFP451

IRFP350FI
IRFP450
IRFP450FI
IRFP450FI
IRFP451

349
355
355
355
355

IRF830
IRF830
IRF830P
IRF831
IRF831FI

IRF830
IRF830
IRF830FI
IRF831
IRF831FI

331
331
331
331
331

IRFP451FI
IRFP451P
IRFP452
IRFP452FI
IRFP452P

IRFP451FI
IRFP451FI
IRFP452
IRFP452FI
IRFP452FI

355
355
355
355
355

IRF831P
IRF832
IRF832FI
IRF832P
IRF833

IRF831FI
IRF832
IRF832FI
IRF832FI
IRF833

331
331
331
331
331

IRFP453
IRFP453FI
IRFP453P
IRFZ20
IRFZ20FI

IRFP453
IRFP453FI
IRFP453FI
IRFZ20
IRFZ20FI

355
355
355
361
361

*
*
*

* Datasheet available on request.

------------ ~ ~~~~m?1r~:~~Jl-----------29

CROSS REFERENCE

INDUSTRY
STANDARD

SGS·THOMSON

SGS·THOMSON
NEAREST

PAGE

INDUSTRY
STANDARD

IRFZ20P
IRFZ22
IRFZ22FI
IRFZ22P
IRFZ40

IRFZ20FI
IRFZ22
IRFZ22FI
IRFZ22FI
IRFZ40

361
361
361
361
367

MTP3N50
MTP3N60
MTP3N60FI
MTP4N08
MTP4N10

IRFZ42
MTH6N60FI
MTH7N45
MTH7N50
MTH8N35

IRFZ42
MTH6N60FI
SGSP474
SGSP479
SGSP475

367
379
547
559
547

MTH8N40
MTH15N18
MTH15N20
MTH25N08
MTH25N10

SGSP475
SGSP477
SGSP477
SGSP472
SGSP471

MTH35N05
MTH35N06
MTH40N06
MTH40N06FI
MTH40N06P

SGS·THOMSON

SGS·THOMSON
NEAREST

SGSP351
SGSP351

331
385
385
499
499

MTP4N18
MTP4N20
MTP4N35
MTP4N40
MTP4N45

SGSP317
SGSP317
IRF733
IRF732
IRF831

469
469
313
313
331

547
583
583
541
541

MTP4N50
MTP5N05
MTP5N06
MTP5N12
MTP5N15

IRF830
SGSP351
SGSP351
IRF620
IRF620

331
499
499
301
301

SGSP492
SGSP491

595
595
379
379
379

MTP5N18
MTP5N20
MTP5N35
MTP5N40
MTP6N08

IRF620
IRF620
IRF731
IRF730
SGSP311

301
301
313
313
463

MTM7N45
MTM7N50
MTM8N35
MTM8N40
MTM15N18

SGSP574
SGSP579
SGSP575
SGSP575
SGSP577

577
589
577
577
583

MTP6N10
MTP6N60
MTP7N05
MTP7N12
MTP7N15

SGSP311
SGSP358
SGSP317
SGSP317

463
391
505
469
469

MTM15N20
MTM15N35
MTM15N40
MTM15N45
MTM15N50

SGSP577
IRF350
IRF350
IRF451
IRF450

583
273
273
279
279

MTP7N18
MTP7N20
MTP8N08
MTP8N10
MTP8N12

SGSP317
SGSP317
IRF520
IRF520
SGSP367

469
469
285
285
517

MTM20N08
MTM20N10
MTM25N05
MTM25N06
MTM25N08

IRF142
IRF142
IRF141
IRF141
IRF140

261
261
261
261
261

MTP8N15
MTP8N18
MTP8N20
MTP8N45
MTP8N50

SGSP367
SGSP367
SGSP367
IRF841
IRF840

517
517
517
337
337

MTM25N10
MTM35N05
MTM35N06
MTP2N35
MTP2N40

IRF140
SGSP592
SGSP591
IRF721
IRF720

261
595
595
307
307

MTP10N05
MTP10N06
MTP10N08
MTP10N10
MTP10N12

SGSP322
SGSP321
IRF532
IRF532
SGSP367

481
481
291
291
517

MTP2N45
MTP2N50
MTP3N35
MTP3N40
MTP3N45

SGSP330
SGSP319
IRF721
IRF720
SGSP330

487
475
307
307
487

MTP10N15
MTP10N25
MTP10N35
MTP10N40
MTP12N05

SGSP367
SGSP363
IRF741
IRF740
SGSP322

517
517
319
319
481

MTH40N06
MTH40N06FI
MTH40N06FI

* Datasheet available on request.

30

IRF832

PAGE

MTP3N60
MTP3N60FI

MTP6N60

CROSS REFERENCE

INDUSTRY
STANDARD

PAGE

INDUSTRY
STANDARD

SGS·THOMSON
NEAREST

PAGE

SGSP321
SGSP362
SGSP361
SGSP382

481
511
511
529
397

RFM12N40
RFM15N12
RFM15N15
RFM18N08
RFM18N10

IRF451
SGSP577
SGSP577
IRF142
IRF142

279
583
583
261
261

MTP15N05LFI MTP15N05LFI
MTP15N06
SGSP381
MTP15N06L MTP15N06L
MTP15N06LFI MTP15N06LFI
MTP20N08
IRF542

397
529
397
397
295

RFM25N05
RFM25N06
RFP2N08
RFP2N10
RFP2N18

IRF141
IRF141
SGSP351
SGSP351
SGSP317

261
261
499
499
469

MTP20N10
MTP25N05
MTP25N06
MTP25N08
MTP25N10

IRF542
IRF543
IRF543
IRF540
IRF540

295
295
295
295
295

RFP2N20
RFP3N45
RFP3N50
RFP4N05
RFP4N35

SGSP317
IRF821
IRF820
SGSP358
IRF733

469
325
325
505
313

SGSP474
SGSP479

403
403
403
547
559

RFP4N40
RFP6N45
RFP6N50
RFP7N35
RFP7N40

IRF732
IRF831
IRF830
IRF743
IRF742

313
331
331
319
319

RFH12N35
RFH12N40
RFH25N18
RFH25N20
RFH35N08

IRFP451
IRFP451
SGSP477
SGSP477
IRFP150

355
355
553
553
343

RFP8N18
RFP8N20
RFP10N12
RFP10N15
RFP12N08

SGSP367
SGSP367
SGSP367
SGSP367
SGSP362

517
517
517
517
511

RFH35N10
RFH45N05
RFH45N06
RFK10N45
RFK10N50

IRFP150
SGSP492
SGSP491
SGSP574
SGSP579

343
571
571
577
589

RFP12N10
RFP15N05
RFP15N06
RFP18N08
RFP18N10

SGSP361
SGSP322
SGSP321
IRF542
IRF542

511
481
481
295
295

RFK12N35
RFK12N40
RFK25N18
RFK25N20
RFK35N08

SGSP575
SGSP575
SGSP577
SGSP577
IRF150

577
577
583
583
267

RFP25N05
RFP25N06
SGSP201
SGSP202
SGSP221

SGSP382
SGSP381

SGSP222

529
529
433
433
439

RFK35N10
RFK45N05
RFK45N06
RFM10N12
RFM10N15

IRF150
SGSP592
SGSP591
SGSP577
SGSP577

267
595
595
583
583

SGSP222
SGSP230
SGSP231
SGSP232
SGSP238

SGSP222
SGSP230
SGSP230
SGSP230
SGSP239

439
445
445
445
451

RFM10N45
RFM10N50
RFM12N18
RFM12N20
RFM12N35

SGSP579
SGSP579
SGSP577
SGSP577
IRF451

589
589
583
583
279

SGSP239
SGSP301
SGSP302
SGSP311
SGSP312

SGSP239
SGSP301
SGSP301
SGSP311
SGSP311

SGS·THOMSON

MTP12N06
MTP12N08
MTP12N10
MTP15N05
MTP15N05L MTP15N05L

MTP3055A
MTP3055AFI
MTP3055AP
RFH10N45
RFH10N50

SGS·THOMSON
NEAREST

MTP3055A
MTP3055AFI
MTP3055AFI

SGS·THOMSON

SGSP201
SGSP201

451
457
457
463
463

* Datasheet available on request.

------------- ~ ~~~~m~1J't:9©~ -----------31

CROSS REFERENCE

INDUSTRY
STANDARD

SGS·THOMSON

SGSP316
SGSP317
SGSP319
SGSP321
SGSP322

SGSP316
SGSP317
SGSP319
SGSP321
SGSP322

SGSP330
SGSP331
SGSP332
SGSP340
SGSP341

SGSP330

PAGE

INDUSTRY
STANDARD

469
469
475
481
481

SGSP578
SGSP579
SGSP591
SGSP592
SGSP3055

SGSP579
SGSP591
SGSP592

IRF722
IRF723
SGSP341

487
307
307
493
493

STHV82
STHV102
STLT19
STLT19FI
STLT20

STHV82
STHV102
STLT19
STLT19FI
STLT20

601
607
611
611
611

STLT20FI·
STVHD90

STLT20FI
STVHD90

611
621

SGSP358

493
499
505
505
511

SGS·THOMSON
NEAREST

SGSP341

SGSP342
SGSP351
SGSP357
SGSP358
SGSP361

SGSP341
SGSP351

SGSP362
SGSP363
SGSP364
SGSP367
SGSP368

SGSP362
SGSP363
SGSP364
SGSP367

SGSP369
SGSP381
SGSP382
SGSP461
SGSP462

SGSP369
SGSP381
SGSP382
SGSP461
SGSP462

523
529
529
535
535

SGSP471
SGSP472
SGSP473
SGSP474
SGSP475

SGSP471
SGSP472

541
541
553
547
547

SGSP476
SGSP477
SGSP478
SGSP479
SGSP481

SGSP475
SGSP477

SGSP482
SGSP491
SGSP492
SGSP571
SGSP572

SGSP482
SGSP491
SGSP492

SGSP573
SGSP574
SGSP575
SGSP576
SGSP577

SGSP358
SGSP361

IRF830

SGSP477
SGSP474
SGSP475

SGSP479
SGSP479
SGSP481

IRF152
IRF150
SGSP577
SGSP574
SGSP575
SGSP575
SGSP577

SGS·THOMSON

SGS·THOMSON
NEAREST
SGSP579

MTP3055A

PAGE
589
589
595
595
403

511
517
523
517
331

)

547
553
559
559
565
565
571
571
267
267
583
577
577
577
583

* Datasheet available on request.

------------ ~ ~~~~m~1r~:~~©~ '------------32

ALPHABETICAL LIST OF SYMBOLS
Parasitic capacitance between drain and body
Parasitic capacitance between drain and source
Parasitic capacitance between gate and drain
Parasitic capacitance between gate and source
Input capacitance
Output capacitance
Reverse transfer capacitance
D.U.T.

Device under test

10

Drain current

10LM

Drain peak current, inductive

10M

Drain peak current

lOSS

Zero gate voltage drain current

IG

Gate current

IGSS

Gate-body leakage with drain short circuited to source

ISO

Source-drain diode current

ISOM

Source-drain diode peak current

lUIS

Unclamped inductive switching current

L

Load inductance of a specified circuit

PW

Pulse width

P tot

Total power dissipation

ROS (on)

Static drain-source on resistance

Ri

Generator internal resistance

RL

Load resistance of a specified circuit

Rth j-amb

Thermal resistance junction-ambient

Rth j-ease

Thermal resistance junction-case

TI

Maximum lead temperature for soldering purpose

Tamb

Ambient temperature

Tease

Case temperature

Tj

Junction temperature

Tstg

Storage temperature

V(BR) OSS

Drain-source breakdown voltage

VOG

Drain-gate voltage

V OGR

Drain-gate voltage with specified resistance between gate and source

VOS

Drain-source voltage

VOS (on)

Drain-source on state voltage

----------------------------~~~~~~?~~:~~~~

----------------------------33

ALPHABETICAL LIST OF SYMBOLS

VGS

Gate-source-voltage

VGS (th)

Gate threshold voltage

V SD

Source-drain diode forward on voltage

VClamp

Drain clamping voltage

Vi

Input voltage of a specified circuit
Frequency

gf5

Forward trasconductance

td (off)

Turn-off delay time

td (on)

Turn-on delay time

tf

Fall time

ton

Turn-on time

tr

Rise time

trr

Reverse recovery time

----------------------------~~~~~~?vT:~~~---------------------------34

RATING SYSTEMS FOR ELECTRONIC DEVICES
A. DEFINITIONS OF TERMS USED
a. Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note: This definition excludes inductors, capacitors, resistors and similar components.
b. Characteristic. A characteristic is an inherent
and measurable property of a device. Such a
property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear and
can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in
graphical form.
c. Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic
device for any particular application can be obtained by considering only those characteristics
which are directly related to the application.
d. Rating. A value which establishes either a limiting capability or a limiting condition for an
electronic device. It is determinate for specified
values of environment and operation, and may
be stated in any suitable terms.
Note: Limiting conditions may be either maxima or minima.
e. Rating system. The set of principles upon
which ratings are established and which determines their interpretation.
Note: The rating system indicates the division
of responsibility between the device manufacturer and the circuit designer, with the object
of ensuring that the working conditions do not
exceed the ratings.

B. ABSOLUTE MAXIMUM RATING SYSTEM
Absolute maximum ratings are limiting values of operating and environmental conditions applicable to
any electronic device of a specified type as defined
by its published data, which should not be exceeded
under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of
changes in operating conditions due to variations in
the characteristcs of the device under consideration
and of all other electronic devices in the equipment.
The equipment manufacturer should design so that,
initially and throughout life, no absolute maximum
value for the intended service is exceeded with any
device under the worst probable operating condi-

tions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, Signal variation,
environmental conditions, and variation in characteristics of the device under consideration and of all
other electronic devices in the equipment.

C. DESIGN - MAXIMUM RATING SYSTEM
Design-maximum ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer
to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the
characteristics of the electronic device under consideration.
The equipment manufacturer should design so that,
initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation equipment, component variation, variation in characteristics of all other devices in the equipment, equipment
control adjustment, load variation, signal variation
and environmental conditions.

D. DESIGN - CENTRE RATING SYSTEM
Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined
by its published data, and should not be exceeded
under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibilty for
normal changes in operating conditions due to rated supply-voltage variation, equipment component
variation, equipment control adjustment, load variation, Signal variation, environmental conditions, and
variations in the characteristics of all electronic
devices.
The equipment manufacturer should design so that,
initially, no design-centre value for the intended service is exceeded with a bogey electronic device in
equipment operating at the stated normal supplyvoltage.
The Absolute Maximum Rating System is commonly
used for semiconductor devices.

----------------------------~~~~~~~~©~ ---------------------------35

HANDLING OF POWER PLASTIC TRANSISTORS
PRECAUTIONS FOR PHYSICAL HANDLING OF
POWER PLASTIC TRANSISTOR [TO-220,
ISOWATT220, TO-218 (SOT-93), ISOWATT218,
TO-126 (SOT-32), SOT-82, SOT-194]

1.3. The leads should not be bent at an angle of
more than 90° and they must be bent only
once (fig. 3b).
1.4. The leads must never be bent laterally (fig.
3c).

When mounting power transistors certain precautions must be taken in operations such as bending
of leads, mounting of heatsink, soldering and removal of flux residue. If these operations are not
carried out correctly, the device can be damaged
or reliability compromised.

1.

1.5. Check that the tool used to cut or form the
leads does not damage them or ruin their surface finish.

2.

Mounting on printed circuit
During mounting operations be careful not to
apply stress to the power transistor.
2.1. Adhere strictly to the pin spacing of the transistor to avoid forcing the leads.
2.2. Leave a suitable space between printed circuit and transistor, if necessary use a spacer.
2.3. When fixing the device to the printed circuit
do not put mechanical stress on the transistor. For this purpose the device should be
soldered to the printed circuit board after the
transistor has been fixed to the heatsink and
the heatsink to the printed circuit board.

Bending and cutting leads
The bending or cutting of the leads requires
the following precautions:

1.1. When bending the leads they must be clamped tightly between the package and the bending point to avoid strain on the package (in
particular in the area where the leads enter
the resin) (fig. 1). This also applies to cutting
the leads (fig. 2).
1.2. The leads must be bent at a minimum distance of 3 mm from the package (fig. 3a).

Fig. 2 - Lead forming or cutting mechanism

Fig. 1 - Bending the leads

Plas.Iic
Package

m
t

Lead forming or cutling
mechanism

_II.j
Spaced?
A·0039

W
Clamp mechanism

Fig. 3 - Angles for lead wire bending

~I
a

b

c

-------------- ~ ~~~~m?lrT:~~~ -------------36

HANDLING OF POWER PLASTIC TRANSISTORS
3.

sawatt). It is also important to use suitable
fixes for the tin baths to avoid deterioration
of the leads or of the package resin.

Soldering
In general a transistor should never be exposed to high temperature for any length of time. It is therefore preferable to use soldering
methods where the transistor is exposed to
the lowest possible temperatures for a short
time.

3.1. Tolerable conditions are 260°C for 10 sec or
350 0 for 3 sec. The graphs in fig. 4 give an
idea of the excess junction temperature during the soldering process for a TO-220 (Ver-

3.2. An excess of residual flux between the pins
of the transistor or in contact with the resin
can reduce the long-term reliability of the device. The solvent for removing excess flux
must be chosen with care. The use of solvents
derived from trichloroethylene is not recommended on plastic packages because the residue can cause corrosion.

Fig. 4 - Junction temperatures during soldering

s - ~6JO
TJ

260·C. solderong bath
Exposed to air

('C)

:

150

100

50

·20

4,

h

40 60 80 100

350·C soldering bath

I

Exposed to air

150

100

1.5mm:

260'C

50lder

S-S631

TJ
('C)

50

'
I

140

180

220

Time (sec)

Mounting at heatsink
To exploit best the performance of power transistor a heatsink with Rth suitable for the power that the transistor will dissipate must be
used.

4.1. The plastic packages used by SGSTHOMSON for its power transistor (SOT-32,
SOT-82, SOT-194, TO-220, ISOWATT220,
TO-218, ISOWATT218) provide for the use of
a single screw to fix the package to the heatsink. A compression spring (clip) can be sufficient as an alternative (fig. 5).
The screw should be properly tightened to en-

10

20

30

40

50

60

Time(sec 1

sure good contact between the back of the
package and the heatsink but should not be
too tight to avoid deformation of the copper
part (tab) of the package causing breaking of
the die or separation of the resin from the tab.
4.2. The contact Rth between device and heatsink can be improved by inserting a thin layer
of silicone grease with fluidity sufficient to
guarantee perfectly uniform distribution on
the surface of the tab. The thermal resistance with and without silicone grease is given
in fig. 6. An excessively thick layer or an excessive viscosity of the grease can degrade
the Rth .

----------------------------~~~~~~?vT:~~©~

----------------------------37

HANDLING OF POWER PLASTIC TRANSISTORS
Fig. 5 - SOT-93 mounting examples

Fig. 6 - Contact thermal resistance vs. insulator
thickness.

0.05

5.

5.1.

0.10

0.15

Th(mm)

Heatsink problems
The most important aspect from the point of
view of reliability of a power transistor is that the
heatsink should be dimensioned to keep the T j
of the device as low as possible. From the mechanical point of view, however, the heatsink
must be realized so that it does not damage the
device.
The planarity of the contact su rface between
device and heatsink must be <25p.m for
TO-220, ISOWATI220, TO-218, ISOWATT218,
TO-126 (SOT-32), SOT-82, SOT-194.

5.2. If selfthreading screws are used there must be
an outlet for the material that is deformed during formation of the thread. The diameter 0
1 (fig. 7) must be large enough to avoid distortion of the tab during tightening. For this purpose it may be useful to insert a washer or use
of the type shown in fig. 8 where the pressure
on the tab is distributed on a much larger surface. Sometimes when the hole in the heatsink
is formed with a punch, around the hole or hollow there may be a ring which is lower than the
heatsink surface.
This is dangerous because it may lead to distortion of the tab as mentioned before.
5.3. A very serious problem is that ofthe rigidity between heatsink, device and printed circuit
board. Once the device and the heatsink are
mechanically connected, and the heatsink is
fixed to the apparatus frame, the device and the
PCB are bound together by the leads ofthe devices. A solution of this type is extremely dangerous.

Fig. 8 - Suggested screw

T
, .. ·oo~o

I

Fig. 7 - Device mounting

WRONG

RIGHT

----------------------------- ~~~~~~~~~ ----------------------------38

ACCESSORIES AND MOUNTING INSTRUCTIONS
TO-3

MATERIAL

MECH.
DATA
Page

ACCESSORY
ASSEMBLY NUMBER
TYPE

Q.ty

CHEESE HEAD
SCREWS
SLOTTED

©
@

~

NOT AVAILABLE FROM
SGS·THOMSON

MICA
WASHER

CDA 3126 A'

MICA

46

INSULATING
BUSHES

CDA 3155 A

NYLON

47

WASHERS

NOT AVAILABLE FROM
SGS·THOMSON

LOCK
WASHERS

NOT AVAILABLE FROM
SGS·THOMSON

HEXAGON
NUTS

NOT AVAILABLE FROM
SGS·THOMSON

SOLDER LUG

NOT AVAILABLE FROM
SGS·THOMSON

CDA 3126 B

FOR MODIFIED TO·3

P

®

Maximum torque (applied to mounting flange)
Recommended: 0.55 Nm
Maximum: 1 Nm.

--------------

~ ~~~~mgtr~:~~«;~

-------------39

ACCESSORIES AND MOUNTING INSTRUCTIONS
TO-218 (SOT-93)

"

~

ACCESSORY

CHEESE HEAD
SCREWS
SLOTTED
MICA
WASHER
INSULATING
BUSHES

@
@

G~
~

MATERIAL

MECH.
DATA
Page

COA 3154

MICA

47

COA 3155 C

NYLON

47

ASSEMBLY NUMBER
TYPE

Q.ty
NOT AVAILABLE FROM
SG5-THOMSON

WASHERS

NOT AVAILABLE FROM
SGS·THOMSON

LOCK
WASHERS

NOT AVAILABLE FROM
SGS·THOMSON

HEXAGON
NUTS

NOT AVAILABLE FROM
SGS·THOMSON

SOLDER LUG

NOT AVAILABLE FROM
SGS·THOMSON

®

Maximum torque (applied to mounting flange)
Recommended: 0.55 Nm
Maximum: 1 Nm.

-------------- ~ ~~~~m?1J';;I:~~©' -------------40

ACCESSORIES AND MOUNTING INSTRUCTIONS
ISOWATT218

ACCESSORY
ASSEMBLY NUMBER
TYPE

Q.ty

CHEESE HEAD
SCREWS
SLOTIED

NOT AVAILABLE FROM
SGS-THOMSON

WASHERS

NOT AVAILABLE FROM
SGS-THOMSON

LOCK
WASHERS

NOT AVAILABLE FROM
SGS·THOMSON

HEXAGON
NUTS

NOT AVAILABLE FROM
SGS·THOMSON

MATERIAL

MECH.
DATA
Page

Maximum torque (applied to mounting flange)
Recommended: 0.55 Nm
Maximum: 1 Nm.

-------------- ~ ~~~~m~1r't:~~~~ -------------41

ACCESSORIES AND MOUNTING INSTRUCTIONS
TO·220

ACCESSORY
ASSEMBLY NUMBER
TYPE

MATERIAL

Q.ty

MECH.
DATA
Page

NOT AVAILABLE FROM
SGS·THOMSON

CDA 3163

INSULATING
BUSHES

48

CDA 3159

MICA

48

CDA 3155 B

NYLON

47

NOT AVAILABLE FROM
SGS·THOMSON
NOT AVAILABLE FROM
SGS·THOMSON
HEXAGON
NUTS

NOT AVAILABLE FROM
SGS·THOMSON

SOLDER LUG

NOT AVAILABLE FROM
SGS·THOMSON

Maximum torque (applied to mounting flange)
Recommended: 0.55 Nm
Maximum: 0.7 Nm.

-------------- ~ ~~~~m~v~:J?lt -------------42

ACCESSORIES AND MOUNTING INSTRUCTIONS
TO-220

MATERIAL

MECH.
DATA
Page

CDA 3155 B

NYLON

47

CDA 3159

MICA

48

ACCESSORY
ASSEMBLY NUMBER
TYPE
CHEESE HEAD
SCREWS
SLOTIED
INSULATING
BUSHES
MICA
WASHER

Q.ty

NOT AVAILABLE FROM
SGS·THOMSON

WASHER

NOT AVAILABLE FROM
SGS·THOMSON

LOCK
WASHER

NOT AVAILABLE FROM
SGS·THOMSON

HEXAGON
NUTS

NOT AVAILABLE FROM
SGS·THOMSON

Maximum torque (applied to mounting flange)
Recommended: 0.55 Nm
Maximum: 0.7 Nm.

-------------- ~ ~~~~m?Ir~:~?©~ -------------43

ACCESSORIES AND MOUNTING INSTRUCTIONS
ISOWATT220

~~ IT~

ACCESSORY
ASSEMBLY NUMBER
Q.ty

CHEESE HEAD
SCREWS
SLOTIED

~WASHER
LOCK

~WASHER

I/

HEXAGON
NUTS

1

NOT AVAILABLE FROM
SGS·THOMSON

1

NOT AVAILABLE FROM
SGS·THOMSON

1

NOT AVAILABLE FROM
SGS·THOMSON

1

NOT AVAILABLE FROM
SGS·THOMSON

MATERIAL

MECH.
DATA
Page

Maximum torque (applied to mounting flange)
Recommended: 0.55 Nm
Maximum: 0.7 Nm.

---------------------------~~~~~~~~:~g

44

---------------------------

ACCESSORIES AND MOUNTING INSTRUCTIONS
TO-126, SOT-82, SOT-194, TO-220, TO-218

ACCESSORY
TYPE

"-

r

Q.ty

SPRING
CLIP

1

MICA
WASHER

1

ASSEMBLY NUMBER

MATERIAL

MECH.
DATA

NOT AVAILABLE FROM
SGS·THOMSON

TO-126 ]
SOT·82
SOT·194

NOT AVAILABLE
FROM
SGS·THOMSON

MICA

TO·220: CDA3159
TO·218: CDA3154

48
47

ISOWATT220, ISOWATT218

ACCESSORY
TYPE

SPRING
CLIP

Q.ty

1

ASSEMBLY NUMBER

MATERIAL

MECH.
DATA

NOT AVAILABLE FROM
SGS·THOMSON

45

ACCESSORIES AND MOUNTING INSTRUCTIONS
CDA 3126A

42

0-"""'/2

CDA 31268

42

------------------------~~~~~~&~:9:-----------------------46

ACCESSORIES AND MOUNTING INSTRUCTIONS
CDA 3154

25

0.05

~

[----

W~-

A-00L.2

CDA 3155

-ll
l$:~

jlRx~~ ~
A - 0024/2

a

b

c

d

e

A

TO-3

6.40 to 6.60

3.00 to 3.10

4.00 to 4.05

1.1 max

1.55 to 1.65

B

TO-220

5.30 to 5.50

3.00 to 3.10

3.83 to 3.88

0.60 to 0.65

1.70 to 1.80

3.00 to 3.10
6.40 to 6.60
Dimensions: mm

4.00 to 4.05

1.3 to 1.4

2.7 to 2.9

Suffix

Package

SOT-93
Material: Nylon
C

------------- Gfi. ~~~~m?tr~:~~n

------------47

ACCESSORIES AND MOUNTING INSTRUCTIONS
CDA 3159
R:2

-1-

N

~

1::
0.05

22

A-002SI3

MATERIAL
MICA

CDA 3163

£1

I

=wffi JL-8-

~

I

~

1.6

A-OO 23/3

48

ELECTROSTATIC DISCHARGE PROTECTION (handling precautions)
Electronic components have to be protected from
the hazard of static electricity, from the manufacturing stage down to where they are utilized.
MOS devices are typically voltage and electrical
field sensitive; the thin oxide layers can be destroyed by an electric field.

Fig. 2
GATE
POLISILICON

I

P-VAPOX

Fig. 1
OXIDE LAYER

GATE

/

DRAIN

SOURCE

s- 8320

This happens mostly because a charged conductor, typically a person, is rapidly discharged through
the device.
There will be no net charge on any portion of the
MOS structure when the induced high field exceeds
the breakdown voltage of the MOS capacitor we
may have a self-healing break-down, degradation
or catastrophic failure.

Here are the basic static control protection rules:
A - Handle all components in a static-safe work
area.
B - Transport all components in static shielding
containers.
To comply with the rules the following procedures
must be set up.

The failure hazard is not limited to the gate region
but it could occur wherever two conductive areas
are separated by a thin insulator.
POWER MOS devices can generally be considered less ESD sensitive than MOS I/Cs.

1 - Static control wrist strap (from a qualified source) used and connected properly.
2 - Each table top must be protected with a conductive mat, properly grounded.
3 - Extensive use of conductive floor mats.

The input capacitance of a POWER MOS device
is typically 10 to 200 times larger, and the gate oxide thickness is similar in size to that of the largest
MOS I/Cs used.

4 - Static control shoe straps, wearing typically insulating footwear, such as with crepe or thick
rubber soles.

As a result, it is common practice not to consider·
the ESD as dangerous for POWER MOS, but this
is not alway true, even though they are less sensitive than MOS I/Cs

5 - Ionized air blowers are a necessary part of the
protective system, to neutralize static charges
on conductive items.

HANDLING

6 - Use only the grounded tip variety of soldering
iron.

SGS-THOMSON has chosen a no-compromise
strategy in the MOS ESD protection. From the wafer level to the shipping of finished units, each work
station and processing of the parts is guaranteed.
This is achieved through total adoption of shielding
and grounding media. Our final shipping of the
parts is performed in antistatic tubes, bags or boxes. The suppliers greatest efforts are in vain if the
end user does not provide the same level of protection and care in application.

7 - Single components, tubes, printed circuit cards
should always be contained in static shielding bags; keep our parts in the original bags
up to the very last moment on the production
line.

a - If bigger containers (tote box) are used for in.

plant transport of devices or PC boards they
must be electrically conductive, like the carbon
loaded ones.

-------------- ~ ~~~~m~1r~:~~©~ -------------49

ELECTROSTATIC DISCHARGE PROTECTION (handling precautions)
9 - All tools, persons, testing machines, which
could contact device leads must be conductive and grounded.

be applied before and removed after input signals; insertion and removal from sockets
should be done with no power applied.

10 -Avoid using high dielectric materials (like polystyrene) for sub-assembly construction, storing and transportation.

12 -Filtration, noise suppression, slow voltage surges should be guaranteed on the supply lines.

11 - Follow a proper power supply sequence in testing and application. Supply voltage should

13 -Any open (floating) input pin is a potential hazard to your circuit: ground or short them to
Voo whenever possible.

-------------- ~ ~~~~m?1Y~:~~©~ ---------'-----50

TECHNICAL NOTES

51

TECHNICAL NOTE

AN INTRODUCTION TO POWER MOS
A POWER MOS transistor is a power transistor produced with MOS, and not the usual bipolar technology.
Special characteristics are high switching speeds
and easy driving. This introductory note describes
the essential points of the MOS structure when
used for power devices.
WHAT DOES MOS MEAN?

It means that the essential part (the silicon chip)
of the device is made up of three layers:
one conductive layer (M for metal) that is the
control (drive) electrode
one isolating layer (0 for oxide) that prevents
any current flow from the drive electrode to the
other two electrodes, but does not block the
electric field
one semiconductor layer (S for semiconductor)
which switches on or off depending on the electrical field imposed on it by the control electrode through the opening in the P zone of a
conductive channel between the two zones.

WHAT DOES POWER MOS MEAN?

Fig. 1 shows that the device is totally implemented on the chip surface. In other words both the
on and off states are implemented in a horizontal
plane:
the ON STATE i.e. the residual resistance when
in the on state corresponds to conduction on
the top surface of the silicon
the OFF STATE i.e. the depletion region of one
of the two PN junctions, with its resistivity and
length, gives the device its voltage rating.
With the present technology the "on the surface"
approach allows the production of MOS transistors
that can handle tens of volts and milliamperes (as
in MOS microprocessors or in MOS memories). A
power transistor must be able to handle no less
than a few amperes at voltages of 50-100V or higher. The approach of several devices "on the surface" connected in parallel is unsuitable due to
problems of excessive connections, as each cell
would have three terminals.

Fig. 1 - MOS basic structure

5-793 &

1/3

53

The best solution is to exploit the semiconductor
both vertically as well horizontally. The paralleling
of one of the two N doped regions of all the elementary structures in parallel occurs on the bottom face of the semiconductor.

Fig. 2 - V-Groove structure
VMOS
SOURCE

GATE

At the same time, the PN junction that implements
the off performance (its length corresponds to the
voltage rating of the device) can be positioned vertically, and so avoiding the waste of horizontal space. the channel must be short (1 to 2 microns) to
obtain characteristics of practical interest.
As a result, the POWER MOS device consists of
multi - MOS basic cells, with all the N + type
SOURCE zones connected in parallel on the top
side of the semiconductor chip, as are the cell GATES. The common substrate of the chip forms the
DRAIN.

DRAIN

Fig. 3 - U-Groove structure
UMOS
SOURCE

GATE

THE POSSIBLE STRUCTURES
Figures 2, 3 and 4 show the chronological progression of the different solutions used in the industry
to implement the elementary POWER MOS
structures.
The P doped semiconductor area that appears on
the surface of the semiconductor in front of the
metal electrode is the channel. There is an N-.

DRAIN

Fig. 4 - O-MOS structure
DMOS

Fig. 5 - POWER MOS cell structure

DRAIN

op

f

~
Source
~
Intermedlote
OAyde

~on

GJot~ot.

~

~

,o;n

Ga/~

w·.

Body
-Diode

Source

_2/_3_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1JT:~~~~

54

______________

layer with low doping (high resistivity) on one side
of the channel. This N layer becomes depleted
when the voltage is applied to the device, and consequently allows the device to sustain applied voltages without reaching too high an electric field at
any point of the chip.
Reaching the critical field means reaching the pOint
of voltage breakdown (primary breakdown).
"V" and "U" type structures have been abandoned because the production process is both difficult and critical. Nowadays practically all POWER
MOS are of the D type as shown in Fig. 4, D as a

prefix means that the channel is produced by diffusion.
All the devices have in common the fact that the
current traverses the device vertically, as a consequence two electrodes appear on the surface:
- SOURCE
- GATE
and one electrode appears on the bottom:
- DRAIN
Fig. 5 shows the actual structure of an POWER
MOS in an expanded view of a piece of the chip.
All the important elements can be located in the
figure.

______________ ~ ~~~~m?v~:~~Jl ______________3_/3
55

TECHNICAL NOTE

EVOLUTION OF POWER MOS TRANSISTORS
The vertical double diffused MOS silicon gate technology represents the final evolution of the development of a process to obtain POWER MOS
devices, started in SGS in 1977.

Fig. 1 - Evo/ution of POWER MOS devices
VMOS
SOURCE

(,ATE

The principal steps of this development have passed through the study of these structures (fig. 1);
1) V groove MOS
2) U groove MOS
3) Double diffused MOS metal gate
4) Double diffused MOS silicon gate

DRAIN

Nowadays the VDMOS silicon gate structure is
used while the other three structure have become
obsolete.

UMOS
SOURCE

GATE

All these structures have as a common point the
fact that the current flows through a vertical path
like bipolar power devices and, as a consequence
the devices have two electrodes on the top (gate
and source) and one on the bottom (drain) in electrical and thermal contact with the header.

DRAIN

Another common point is the fact that the starting
material is made of an epitaxial lightly N- doped
layer grown on a heavily N + doped substrate (for
N-channel devices).

DMOS

The N- region largely supports the applied drain
potential because its doping level is much smaller
than the P- body region.

DRAIN

VDMOS SILICON GATE
STRUCTURE

In the VDMOS silicon gate structure the best features of earlier technologies and design are combined with new fabrication techniques to achieve
much better performance. The VDMOS silicon gate
structure needs a more sophisticated technology,
very similar to that of the VLSI.

5-8406

DRAIN

1/6

57

VDMOS (fig. 2) is a two level structure where the
lower level is the gate made of doped polycrystalline silicon and the upper level is the source metallization.
It is a self aligned structure since the polysilicon
holes are the mask for the P- well and N + source
diffusion.
In this way MOS channel regions are obtained by
difference in lateral diffusion of the two impurity di-

stributions. The use of double diffusion achieves
very short channels (~1.5p.).
With the VDMOS silicon gate structure the resulting increase in packing density directly reduces
the cost and improves the performance of the device. In fact the use of a polycrystalline gate reduces the possibility of sodium ion contamination in
the gate oxide (with high stability of threshold voltage VGS(th»). Also the full surface source metallization allows a better heat dissipation.

Fig. 2a - VDMOS structure
SOURCE
CONTACT

EPITAXIAL

N -

ELECTRON
CURRENT
FLOW LINES

DRAIN

METAL

Fig. 2b - SEM microphata af the VDMOS structure

L (channel)
t (gate ex)
t (gate poly)
t (ox~poly-As)
t (p-vapox)
Xj (source)
Xj (body)

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

58

~ ~~~~m?1r~:~~~~

-

-

1.75p.

830 A
3330 A
2500 A
9580 A
0.50 p.
2.58 p.

- _____________

HOW IT WORKS
The structure is switched on by applying a voltage
between the drain and the source and positively
biasing the gate (for a N-channel device) with respect to the source. This biasing creates an electric field in the channel region which reverses the
polarity of the material in the body region to create a majority carrier path from the source to the
drain. Electron current flows from the source me-

tal to the source contact, laterally through the channel and then vertically through the drain and substrate to the drain metal.
The body source together with the drain creates
an internal parasitic diode in inverse parallel connection. This diode conducts when the source is
positive with respect to the drain and it can handle forward current equal to the drain current rating (fig. 3).

Fig. 3 - Schematic representation of POWER MOS structure
SOURCE

D

G

5-B173

s

DRAIN

5- 6172

Fig. 4 - Horizontal layout and vertical structure

CHANNEL
REGION

Ti5r
I

L

I
I
I
+t __ .J

t
II

I I

:I [§IN:
;
~
I
I

I

-i.J

Li'I- -

I I
I I

I

I

"

I

I

I

1

SOURCE
ELECTRODE

.....,..+---'1-1-......

SOURCE

5- 6171,

r - - --,

""'" DRAIN

CHANNEL·
REGION

ELECTRODE

___________________________ ~~~~~~~:~~~ __________________________3_/6

59

DESIGN OF POWER MOS
In the design of a POWER MaS transistor the parameters of interest are the device on resistance
ROS(on)' for a given chip area and the breakdown
voltage.

Fig. 6 - High voltage case
XCELL-2~(,um)

~

50.10

S
z

~

ON RESISTANCE
The vertical power DMOS consists of a large number of cells inteconnected in parallel on a single
die (fig. 4).
ROS(on) parameter is strictly dependent on the topological layout, that is the shape and size of the
cells and the packing density.
In order to optimize this parameter, a comparison
between different geometrical solutions at both low
and high voltages was made.
If the behaviour of the Ros(on) components is analysed (fig. 5) it can be seen that for low voltage applications the channel has a greater effect in
determining the ROS(on) value. To optmize the
ROSton) it is necessary to maxmize the POWER
MaS channel perimeter per unit area with a high
packing density. Low voltage devices have a packing density of about 550 K per square inch.
For high voltage devices the epitaxial layer resistance has a greater effect than the overall on resistance (fig. 6). To optimize ROS(on) it is necessary to
minimize bulk resistance choosing a low packing
density layout which increases the area of the epitaxial drift region. High voltage devices have a packing density of about 280.000 cells per square inch
(fig. 7).

RAce

•

Accumulated Contact ResIstance

RCH
REP,

...
...

Channel RU'lIl1nce
Ep,tlllt,al Layer AUISIance
Junction FET ResIstance

RJFET ...

0.05

0.0
INTERCELL DISTANCE
d(cm)x 10-

Fig. 7 -

a- (100V)

3

b- (400V)

Fig. 5 - Low voltage case
XCELL-20(,um)

RAce ..
RCH
...
REPI
..
RJFET'"

a)

Accumulated Contact ResIstance
Channel ResIstance
Ep,ta)--_. -_. -

i

\\

../

_._-

t

1\

J

I'-

--l---r-lli-,~

t: 100 ns/div, V: 45V/div, I: 1.2A/div, Vg = 10V,
Rg=250
Fig. 2 - Power dissipation waveforms.
5- 8121

SWITCHING PHASE
In practical working conditions three main phases
can be distingushed:

f1

On state
When the device is on and the channel open, the
dissipated power is:
p(on) = VOS (on) X 10
p(on) = VCE (sat) X Ic for bipolar transistors
It can be reduced optimising the technology (metal back, epitaxial thickness) and the design (cell
dimensions and layout).
Off state
When the devices is off and the drain is at the supply voltage, the power dissipation is:
Poff = Voo X loss
Poff = V cc X ICEX

for bipolar transistors

"TRANSITIONS' ,
During switching the dissipated power instant by
instant is:

V

\

IJ

~ ~ r--

t: 100 ns/div, P: 200W/div, Vg = 10V, Rg = 250.
Q. THE EFFICIENCY FACTOR
The performance of POWER MOS device can therefore be rated as the ratio between the total power in switching-on and off and the energy
dissipated per cycle. It can be expressed as:

Pt

Q=~~~~~-

Eon + Eoff + Ep
Where:
Eon -is the energy lost in the turning-on and on
phases
1112

63

Eoff -is the energy lost in the turning-off and off
phases
Ep - is the energy lost in driving the circuit.
The quantity Q is a frequency and is an index of the
maximum frequency at which the device can most
efficiently operate, considering Pt as the maximum
power that the device can dissipate in practical working conditions.
To fully understand this equation a brief analysis of
switching phenomena is essential. As previously
mentioned, POWER MOS do not make use of minority carriers for conduction. The recombination
of these minority carriers is a switching speed limitation.ln POWER MOS devices the majority carrier
flow is simply controlled by the gate voltage and therefore its switching speed is limited only by the time
needed to charge and discharge the parasitic input
capacitances. Consequently the switching behaviour is a function only of the ability of the driving
circuit to charge and discharge some hundreds of
picofarads. This is why POWER MOS can switch
so fast - in the range of tens of nanoseconds.

INPUT
POWER MOS devices behave quite differently from
bipolar power devices, as far as the driving energy
is concerned. POWER MOS require driving power
during the charge and the discharge phases of the
input capacitances. Fig. 3 shows a POWER MOS
driven by a voltage generator with an internal resistance Ri and an open circuit voltage Vi' where RL
is the load.

2) A more pronounced effect comes from the fact
that the voltage across CGO' when the gate source voltage rises from zero to its final value, Vos
must go down from Voo to VOS(on)' In particular
CGO is seen as a higher equivalent capacitance during the drain "on" transitions. The input
must be fed a charge:

=CGo(Voo-VOS(on»)

Q

to account for the voltage variation across CGo,
This happens when the gate voltage reaches
VGs(th), the threshold voltage, and the drain voltage starts falling. It is not until the required charge Q is provided that V GS can increase. This is
called the Miller Effect. For a while the equivalent input capacitance appears infinite and VGO
absorbs the whole input current.
From the momentVos reaches VOS(on) the input
equivalent capacitance is:
Ceq = CGS + CGo(low voltage)
and the transition of the output is completed.
VGS increases again, tending towards Vi'
These two phenomena become apparent when
looking at the gate charge versus gate source
voltage diagram in the data sheets.
The diagram for SGSP471 in fig. 4 can be taken
as an example.
A true capacitor would appear as a straight line starting from the origin. In fact the first segment corresponds to an equivalent capacitance:

Fig. 3 - POWER MOS equivalent circuit.

Ceq = CGS + CGO (high voltage)

Fig. 4 - Gate charge vs, gate-source voltage
SGSP471

<-t.
r-.r,-=-

10

f - - t--

SOV

17
1/V/

5-8123

The input capacitance Ciss = CGS + CGO during the
switching cycle is not constant for two reasons.
1) CGO can be seen as the capacitance between
the gate electrode and the drain, where the dielectric is the depleted drain layer. The drain epilayer is fixed, but its depleted part varies according to Vos. The higher Vos, the thicker the depleted layer and consequently the lower the
associated capacitance.
_2/_12_ _ _ _ _ _ _ _ _ _ _ _ _

64

/

II

G 5893

IV

VDs-~g~

,,,Cos

__ J

r717

/

r7/ r7
r7/

[7~

10 =4.5A
Tease = 25·C f--

J

I

I

II

20

40

60

eo

Q(ne)

.:u. ~~~~m?Ir~:~~~~ --------------

The horizontal segment corresponds to an equivalent infinite capacitance i.e. the charging of CGO
with the gate at Vth and the drain falling from Voo
to VOS(on)' The last segment has a slope corresponding to a capacitance:
Ceq = CGS + GGO (low voltage)
The difference in slope of the first and third segment shows how CGS differs in the two cases.
The behaviour at turn-off of the input capacitance
is exactly opposite, where the described phenomena occur in reverse order. At this point the drive
energy required to make the POWER MOS switch
can be calculated as:
Ep = 1/2 Ceq X
QG and

V GS

VGS

2

Fig. 6 - Ep vs 10 at Voo= V(BR) ossl2
G - 5894

I

)r- r- sdspd2

I

221x 221

800

GOO
SGSP482 _

400

200

158x 158

110xll0
SGSP 331
77x77

= 1/2QG X V GS

-;:F ~SGSP34

can be obtained from fig. 4

iSGSP3~6

I I
10

I
15

10 (A)

The input energy can also be obtained in a more
direct manner by calculating the integral of the IG
waveform during the turn-on or turn-off phase, the
two areas being equal (see fig. 5). In fact this integral represents the quantity QG (gate charge)
which in turn permits the calculation of Ep.
The values of Ep have been calculated for all POWER MOS in the present product range. They are
a function of the die area only, for a given supply
voltage V DO' and have been represented for different die areas as a function of 10 in Fig. 6.

Fig. 5 - Ig. - Vg waveforms.
s- B124

h

0.2
0.1
Ig

I

\\

'0.1
'0-2
10
Vg

V

......

The driving energy does not vary for devices with
the same die area but different breakdown voltages, if their drive supply voltage has a constant ratio
to their breakdown voltage.
In brief Ep can be plotted as a function of the die
area, for a supply voltage equal to half the rated
Voss of the device (see fig. 7). The method used
here to calculate Q G is different from that in the
data sheet where Q G is plotted as a function of
VGs ·
As the results obtained in both methods were in
good agreement the validity of the method used
here is confirmed.
The driving circuit itself dissipates power to drive
the POWER MOS device. Current only flows in the
gate circuit during turn-on and turn-off periods. This
current flowing through the drive circuit will dissipated energy.

If

With reference to fig. 8, where the 50 ohm resistor
is inserted to match the cable and the device, during the on phase, there is a constant power dissipation in the resistor R1.

h

(V2GS/R 1) ·tIT
Where:

t: 0.5 p,s/div, I: 0.1 Aldiv, V:10 V/ div

R1 = 50 ohm (typical value)

tIT = duty cycle

____________________________ ~~~~~~~~~:~~~ __________________________3_/1_2

65

Fig. 7 - Ep versus die side (Sq'mil)
G- 5895/1

E P ,-+-+--+-1------+--+----+----+--+----+-+--+-+-+--+-+-+--+---1-'-1

r-t--+-+----+-+-+-t-----t---+--1---+--+-+----+-+--t---t---v-J+-I

: n J)

800~4-+-!---+--+4~~-+4-+-+-+--rJ~/~~
V

1/
1/
J
400

1-+----+--+----+-+--+--+--+--+-I-+-A"'---++---If--+--+-+-+--1

I1

r----

-r--+--+-+---hI'f-"4-+-+-+-+-+--+-+-+----I

50

100

150

edge dim. DIE
(mil)

Fig. 8 - Driving circuit. A laboratory implementation

when discharging the input capacitances. They never conduct at the same time. No conduction occurs during steady state. In addition, when either
of the two transistors conduct their output impedance is very low thus improving the switching of
the POWER MaS device. The total energy dissipated per cycle, in the input stage (including the
POWER MaS input) is:
Ep=QGxVcc
Where: Vcc = input supply to driving stage voltage.
This is + 12V in Fig. 7.
This energy is actually dissipated in the two driving
transistors, because the parasitic input capacitance of the POWER MaS acts as a non-dissipating
element, storing energy from Q1 at turn-on, and giving it back to Q2 at turn-off.

OUTPUT
Switching times for resistive load
Fig. 10 shows the circuit used to measure the switching times of a resistive load.
Fig. 10 - test circuit

I

I
L ___ _
5-8125

Fig. 9 - Driving circuit. A practical implementation.

Fig. 11 - VGS and Vas waveforms

~

____ ~90.1.

vi
INPUT

10°/.

:
[

I

I
I
[

Vo :
[

5 - 8126

I

I

Fig. 9 shows a possible implementation that avoids
steady state dissipation in the driver.
The NPN transistor, Q1, only conducts at the beginning of the on phase when charging the input
capacitances. Conversely the PNP transistor, Q2,
only conducts at the beginning of the off phase

I
5- 6059

I

td(off) tf

Turn on delay time
Turn on delay time (td(on) in fig. 11) represents the
time necessary for VGS to reach the threshold Ie

_4/_1_2_________________________ ~~~~~~~V~:~~~~ ____________________________

66

vel Vth at which the device begins to conduct.
The smaller the threshold voltage and the bigger
the Vi value, with respect to Vth , the smaller the
td(on) value. In fact from the equation:
V GS =V i(1 - e

Eq.1

-URI

Fig. 12b - Turn-off
5-8130

!
- . - '0

.---t=

r

1'\

\/

ciSS ) .

I

where Ri. Giss is a time constant and by substituting VGS with Vth in Eq.1 we obtain:
.
Vi
Eq.2
td(on) = RI. Giss In - - Vi-Vth

!

-

V05 I - -

J\

-.

./

\

I--- 1----

considering typical values for Vi and Vth we have:
td(on) = 0.35 x Ri.Giss

t

In practice this time is negligible (10 - 20 ns) when
compared to others. During this time the device is
off and the energy dissipated is therefore in the order of pJ and compared with the total energy loss
it can be completely neglected in this analysis.
t-RISE AND t-FALL TIMES
t-rise and t-fall are defined by the slopes of Vos as
shown in fig. 11.

= 50

ns/div

Giss = GGS + GGO
From Eq.1 where Ri'G iss is the time constant Ri includes:
Rgen - the internal resistance of the generator.
R1 - the resistor between gate and source to match
the driving circuit.
RG - the internal resistance of the gate.

Fig. 13a - Equivalent circuit

Turn-off delay time
td(off) can be referred to as the delay time since it
represents the time necessary to remove the excess
charge from the gate and channel, due to the input
overvoltage.
Typical drain current and voltage waveforms (t =
50ns/div.) are shown in fig. 12a and b.
PARASITIC CAPACITANCES
DURING SWITCHING CYCLES

s- 8131

As already mentioned the switching of a POWER
MOS device consists fundamentally in the loading
and unloading of the input capacitor. .

Fig. 13b - Capacitance values as a function of Vos
G- 5696

C
(pF )

Fig. 12a - Turn-on
5-8129

800
700

05

:/

~

1\

1

V~
A-

I \,

I

lJ

'0
-1--

600
500
400

I'

VGS=O
t=IMHz

\

~l\.

\

~" .........

II \

300

200

............. t--

" b-...

~

"'-........

Ciss

-

r-- ~s_
r-- 1"---10Crss

100

t

= 50 ns/div

______________________________

10

~~~~~~~V~:~~:I

15

20

25

30

35

-

40

VOS(V)

___________________________

5_/1_2

67

Obviously the smaller the value of RLC iss the
faster VGS reaches its final value, and switches the
device. To minimize this time constant the user
can act on Rgen and R1 and the device designer on

C iss '
Ciss ' being a function of CGo, varies as a function
of the drain voltage as shown in the waveforms in
fig. 13b and during switching it is subjected to the
Miller effect. Consequently during the td(on) and
td(off) , Ciss remains constant, as does the value of
Vos· td(on) and td (off) are obtained from the charging and discharging laws of a an RC circuit, while
during the off/on and on/off transitions, Ciss varies.
In other words, when Vos decreases during turnon to a very low value VOS(on)' and CGO increases,
there is a delay in the increase of the value of VGS
since the capacitor, as long as it is not charged to
V GS(on)' will absorb the gate current.
During turn-off, due to Vos rising, the discharge
current of CGSwill be balanced by the charging current of CGO, flattening the V GS curve and making
it similar to that at turn-on (Fig. 13c).
Fig. 13 c - An annotated extract from fig. 5 showing the discharging and charging of
eGO

I

I

I
COGOISCHARGING
_ _ BALANCING
CGSCH~GING

Y
TURN·r

Fig. 14 - Time measurement td, t" and tr as functions of 10 . (SGSP311)
G-5897

u

I
(n5)

Voo =50V

.... Id
\
,If

75

r-.

........

r-o .... _

\

-~

....
.... 1"- -l-

i

50

I
I
- i

-

25

Ir

--

-I- -I"'"

I--

I

.-I-L
I

i

I

..

I

j

I

The tr and tf waveforms versus Voo are similar to
those of Ep versus Voo since they are both caused
by the same phenomena. td is independent of Voo
as it is a function of Ciss only (which, since the Miller effect is not present, is constant during this
phase).
td = delay time

I

td=fall time

I

COG CHARGING
BALANCING
C GS DISCHARG IN G

/1

tr = rise time
---

i

~'4
TURN· OFF

I
5-8132

t: O.5J.ls/div, I: O.1A/div, V: 10V/div

Fig. 15 - Time measurements td, t,and tras functions of the drain voltage for a low voltage
POWER MOS. (SGSP311)
G·S898

I
(n5 )

10 =7A

75

Variations in the supply voltage Voo influence these effects: the higher the supply voltage the greater the charge and therefore the t f and driving
energy required (see fig. 8 in the section OUTPUT).
Figs. 14, 15, 16 and 17 show the switching time waveform as a function of both the supply voltage VDO
and the load current 10 , for two devices with different voltages and die sizes.

f-+--Id
..... 1-"""
.... 1-"""

50

--

1.,;"'-

-r- ~If

25

1-.1"'" Ir

--

-~

SGSP311 110V 7A O.30hm 110x110mils2
SGSP369 500V 5A 1.750hm 156x156mils2

20

40

60

_6/_1_2_________________________ ~~~~~~?V~:~~©~ ____________________________

68

Fig. 16 - Time measurement td' t, and tr as functions of the drain current for high voltage
POWER MOS (SGSP365)
G 5899

t
(ns)

I

1
I

Understanding switching with POWER MOS requires consideration of both the physical phenomenon
and the energy dissipation occuring during each
switching cycle.
The typical clamped inductive load circuit shown in
fig. 18 is used as an example.

Vo =200v

150

which depends principally on the switching times.

'",-

-r- td ...... ~
100

Fig. 18 - POWERMOSwithclamped inductive load.

~t--..

......

~::::;

If'

.......

..........

,

50

r-~

....

F--

.... 1--'-

FAST

Ir

DIODE

I
10

10 (A)

Fig. 17 - Time measurements td' t, and tr as functions of the drain voltage for high voltage
POWER MOS.
5 - 8133

G- 5900

I
(ns)

Id

Ie = 5A

100

TURN - ON
75
If
50

1/

,

1/

A detailed explanation of the turn-on phenomena
in a POWER MOS device when the load is inductive is given by Fig. 19 and 20.

.... _ri'
~

./

...... 1"""

""

V
Ir
25

l'

Fig. 19 - Current and voltage waveforms during
turn-on

I'

S-l' 34

100

200

300

Voo(V)

Switching times for inductive loads

1\

af: \c

VOS

ff

The fundamental objective of the device is to switch
high quantities of power very quickly, in other words
to maximize the ratio:
total power switched
energy dissipated per cycle

\.

I\
r

In the majority of applications POWER MOS are
used in switching power through inductive loads
(motor control, switching power supply etc.).

II
Jo

r\ , ..........

A

t: 50ns/div, I: 1.2A/div, V: 40V/dir, R = 250

-------------- ~ ~~~~m?lr~:~~~~ _____________

7_/1_2

69

Fig. 20 - Output energy consumption during
turn-on.

Fig. 21 - Circuit which includes the parasitic indctances.

5-8135

~

I

I

I

I '\

II
'a~

\

\.~

t: 50ns/div, P: 200W/div, E:67.5 p,J
Before the turn-on phase the diode is freewheeling
the load current.
Turn-on can be divided into two subphases:
1) point A to point B (Fig. 19).
Part of the current in the load (constant during the
switching operations) starts to flow in the POWER
MOS device. The diode is recovering its reverse state. The voltage across the POWER MOS device is
almost equal to that of the supply since the diode
still acts as a short circuit for the load at this point.
There is a small step in Vos waveform due to the
voltage drops on the parasitic inductances Lo and
Ls. The size of this step depends on the current
slope dlo/dt (Ls and Lo depend on the circuit
layout).
2) point B to point C (Fig. 19).
In this phase the diode is reverse biased. The current in the POWER MOS device is the sum of the
current in the load plus that in the diode, which causes the peak in the 10 waveform. (see fig. 24)
The Vos voltage falls to VOS(on) as the freewheeling
diode, being reverse biased, is no longer a short circuit. However the fall of Vos is delayed by the Miller effect, which increases Ciss '
All these phenomena cause a high crossover between the 10 and the Vos waveforms even if the
switching is very fast. In fig. 20 the output energy
consumption per turn-on phase is represented. To
decrease this energy, the d1o/dt (A-B phase) and
the reverse recovery of the freewheeling diode (BC phase) must be improved.

In this circuit the following elements have been taken into consideration:
Ld - is the parasitic inductance due the connections between the clamping diode and the
load.
Lo - is the parasitic inductance between the drain
of the POWER MOS device and the load.
LG - is the parasitic inductance between the gate
and the driving circuit.
Ls - is the parasitic inductance between the source and the ground.
The equation that applies to the input loop is:
Vi = Ri X iG + LGdiG/dt + V GS + LsdID /dt
Where Ri is the equivalent resistance of the driving
circuit. When considering the phase when 10 increases it is possible to neglect the term LG diG/dt
as diG/dt =O.
During this phase the threshold voltage has already been overcome, iG is constant. In addition V GS
follows the law of charging a constant capacitance. The Miller effect is not present as Vos is
constant.
It follows that:
dlo/dt =

IMPROVING dlo/dt
Reference to the circuit in Fig. 21 shows the controlling, parameters for d1o/dt.
_81_1_2 _ _ _ _ _ _ _ _ _ _ _ _ _

70

Vi - R1'I G - V GS

------Ls

and dlo/dt can be improved by increasing Vi and
decreasing RG and Ls.

~ ~~~~m?tr~:J?lt

--------------

Fig. 22 - dlddt as a function of Vi (RG=25il) for
SGSP369
G-5901

dID

Fig. 24 - Shows the effect of the parasitic inductances Lo and Ls and of the diode connections respectively on Vos and 10
waveforms

dt
-

-

(A/}Js )

800

~

5-8137

'\

)1 \
600

]J

1/
J
1/

400

I
I

I

0

~

\

I

I

L

J

I

J

/

200

8

\

I~

~

~\j,s

j

~
~

1/
10

15

20

Vi

TURN-OFF
IMPROVING THE REVERSE
RECOVERY OF THE DIODE
As previously mentioned, the clamping diode plays
an important role in determining the waveforms of
10 at turn-on; the faster the diode, the lower the current peak in the POWER MOS, the lower the reverse recovery time of the diode (t rr) and the energy
consumption. For this reason fast recovery diodes
are typically used in these circuits.
SGS-THOMSON has developed a wide range of fast
recovery diodes some of whose characteristics are
shown below (fig. 23).

The circuit in Fig. 18 is still useful in evaluating the
behaviour of an POWER MOS device turning off an
inductive load. The initial conditions can be assumed to be:
1) 10 = ILOAO
2) Vos =VOS(on) = ROS(on) x 10
3) Freewheeling diode reverse biased. In fig. 25 typical waveforms for Vos and 10 during turn-off phase are represented

Fig. 25 - Vos and

'0 during turn-off
s- 8138

Fig. 23 - SGS-THOMSON Fast recovery diodes.

I

-

~r

10

OEVICE

Vreverse

BYW8D-5D/200

50/200V

BYW51-50/200

50/200V

BYT30P 400/1000
BYT60P 200/400

400/1000V
200/400V

Iforward

trr

PACKAGE

IA

11,\

35 ns
0O-22DAB
8A
2x10A 35 ns
TO-220
50170 ns OOP-3
30A
60A
70 ns
OOP-3

J
0,

r---

--------------

~---

i

J.

.~

!
I
i

~ i

J!
Vos

The effect of parasitic inductances Lo and Ls and
of the diode connections respectively on Vos and
10 are shown in Fig. 24.

\

1

F
~l

I

I

ta

I
I

'--;
I.
I!

tb I

t: 50ns/div, V:40V/div, 1:1.2A/div, Rg
Vg = 10V

~ ~~~~mg1r~:~~~~

= 250,

_____________

9_/1_2

71

Fig. 26 - Output Energy during turn-off phase.
S - 8139

!

I

In1

l

I

II

I

I

J

J

v,'

~ ta

I

I

,\

J

The lower RoS(on) the lower the power dissipation.
The manufacturers can control RoS(on):
1) by improving the back metalization of the chip
and its attachment to the case.
2) by controlli ng the epitaxial growth of the DRAI N.
3) by optimizing the horizontal lay-out of the POWER MOS structure (high cell density).
Fig. 27 - Can be used to calculate the energy consumption during the ON phase

Fig. 27 - io waveform during the working cycle

tb

t: SOns/div, P:200W/div, E = 70.6f.tJ

,

It is possible to distinguish two phases:
1) From point D to point E (Fig. 2S).
During this phase Vos increases while 10 , the diode being reversed biased, remains constant and
equal to ILOAO '
2) From point E to point F (Fig. 2S).
During this phase the diode begins conducting allowing the current in the load to flow through itself
and 10 of the POWER MOS device to fall. In Fig. 26
the output energy consumption during the turn-off
phase is represented.
Also in this case a high cross over between Vos
and 10 occurs, even if there is no reverse recovery
of the diode as during the turn-off phase. The Miller effect in the POWER MOS device delays the rise of Vos and therefore the switch-on of the
freewheeling diode D.

The slope of 10 during the conduction phase is given by dlo = V Oo/L (see Fig. 19).
The lost energy per cycle is given by:
Eon = S;102(t) x ROS(on) x dt
where

T

is the pulse width.

In most cases the slope of 10 is quite gentle so if we
call I the average 10 between t1 and t2, (trt2 = T)
in Fig. 27, this energy can be calculated with good
approximation as follows:
Eon =ROS(on)(Tj)

X

12 X

T

ENERGY IN SWITCHING

In Fig. 28, 29, and 30 the curves of Eon are shown
for three different devices. Each curve is characterized by different values of T.

From the energy point of view there are four distinct
phases, each contributing in a different way to the
total dissipated energy per cycle. They are:

Fig. 28 - On state energy values as a function of the
drain current for SGSP301
G-5902

1) ON-STATE
2) OFF-STATE
3) Transition ON-OFF
4) Transition OFF-ON

E 1

10,us

(~J )

.,
//

10

r---rc-

.;

".
l,us

The ON-STATE
In the ON-STATE, when the channel is completely
open, POWER MOS devices have a minimun
RoS(on) which is temperature dependent.
The Power dissipation at a given instant is obtained
from the equation:.
PO(ON-STATE)

= ROS(on)(Tj) x 102
= ROS(on) x [1 + a(Tr2SoC)] x 102

II"

1/

I'

/

'" ..,""

....

.....

0.5,us-

L/ ~".

II

v

1
where a = 8 X 10-3o C- , a positive coefficient.
0.5

_10_1_12_________________________ ~~~~~~?V~:~~~

72

1.5

2.5

10 (A)

____________________________

Fig. 29 - On-state energy waveforms as a function
of the drain current SGSP575.
G- 5903

...... 10~5 I - - - f -

1..0-

/t-"'"

--

100

... V
I--f-

c----

f--- f-~f-It

--

-

,,.:...~

r-~ I-

1/-

--~

. . . V .... ~ I-o"P

10

VI

V

:,....

1",s

1---1--

~~ Ks"'S_1--

1/

IO(A)

Fig. 30 On-state energy values a function of the
drain current SGSP531
G-5904
)

".

....

i.o'"

10,.. 5 I - - - f -

.,.,V
1,..5 - f -

/

".

V
lI

10

During transitions the dissipated power, instant by
instant, is:
P(t) = Vos(t) x lo(t)
The power waveform is triangular in shape (see Fig.
20 and Fig. 26).
Integrating P(t), the energy consumption per cycle
during OFF-ON and ON-OFF transitions can be obtained by:
E =1\~P(t)dt =1\~Vos(t) lo(t)
Where taand tb respectively represent the begining
and the end of transitions. These amounts of enegy principally depend on the intersecting point between voltage and current, and on the switching
speed.

10

I'

Transitions

".

....

In both transitions the intersecting points are very
high and occur at a voltage value close to that of
the supply. The intersecting points represent the power to be switched, consequently in order to optimise the energy consumption the time interval ta tb must be reduced by acting on different driving
and lay-out parameters (VGS' RGS ' parasitic inductances) .
Fig. 31 - Shows the energy lost per cycle during the
ON/OFF transition, as a function of Vi for an
SGSP369 switching 4A at 200 V.

i.o'"

.... ~t-

0.5,..5

~ ......

Fig. 31 - Values of the energy lost per cycle as a
function of the gate voltage

/

G- 5905

'/

/

)

400

OFF-STATE

When the device is switched off the Vos voltage is
equal to Voo (see Fig. 25). Only the leakage current
loss flows through the device. The energy consumption during this period is given by:

300

200

\
\
I

1\
100

Eo = Voo X loss X toff
This energy is the range of pJ and it is negligible
in comparison to that dissipated during the switching and the ON-STATE.

-----------------------------~~~~~~?v~:9~

to...

r-~Ioo.

10

15

_________________________

1_1_/1_2

73

10 = 3/4 lOmax of the device under test
duty cycle = 50%

COMPUTING THE TOTAL ENERGY
CONSUMPTION PER CYCLE
The previous analysis allows us to calculate the total energy dissipated per cycle in an POWER MaS
device. In fact the total energy can be expressed as:
Eq.3 ETOT = EOn + Eoff + Eofflon + Eon/off + Ep

Fig. 32 - Total energy lost per cycle as a function
of the frequency with a fixed duty cycle of
50%
G 5906

where:
SGSP475

ETOT = total energy dissipated per cycle
Eon = energy dissipated during the on-state

_ .. 1--,...

Eoff = energy dissipated during the off-state
Eofflon = energy dissipated during the turn-on
Eon/off = energy dissipated during the turn-off
Ep = total energy dissipated by the drive circuit

f---- -,

SGSP332

I--.

1"1.

'"

10

Neglecting Eott< = pJ) and Ep (= nJ) Eq.3 can be rewritten as:
Eq. 4

ETOT = Eon + Eofflon + Eon/off
•

These three terms in Eq.4 depend in differing
amounts on the operating conditions of the device
10 , Voo and the duty cycle.
To give some idea of the total energy dissipated per
switching cycle the following operating conditions
have been fixed and the results of energy measurements made shown in Fig. 32.
Voo = 1/2 V(BR) oss of the device under test

_12_'_12_ _ _ _ _ _ _ _ _ _ _ _ _

74

-

SGSP302

68

10

•

6

8

102

2

,

68

f (KHz)

The curves tend towards a horizontal asyntote that
represents the cross-over energy (turn-on + turnoff, which is frequency independent).
It is clear that the effect of Eon is of great importance at low frequencies, and the higher the ROS(on)
the greatest the effect.

~ ~~~~mg~':1:~?~~

--------------

TECHNICAL NOTE

STUDY OF A MODEL FOR POWER MOSFET GATE-CHARGE
INTRODUCTION
The increasing interest in POWER MOSFET devices is due especially to their ability to switch power at high frequencies and the simple drive
requirements needed to achieve this.

Fast switching requires low energy loss during
voltage-current cross-over. Easy driving requires
only a very simple circuit and low drive energy.
Optimising these advantages requires a sound
knowledge of the physical phenomenon which controls their operation.
A valid guide for this purpose is given by the gate
charge curve which allows simple evaluation of the
drive energy and the switching times.
The influence of the electrical parameters, both external to the device (e.g. 10 , V oo) and the internal
ones (VTH' GM, Ciss , Crss ' Coss) have been analy-

sed. This analysis of the shape of the gate charge
curve, shows its influence on the behaviour of the
device.
An analytical expression has been derived that gives a good approximation to the total gate charge
and relates it to the internal and external parameters controlling POWER MOSFETs.
It is interesting to note that this analytical expression represents a valid aid in optimising design
when using a software tool.
GATE CHARGE MEASUREMENT

During the switching of a POWER MOSFET, the
gate current has the typical behaviour of current
in an RC circuit, see figure 1.
The transient lasts for some tens of nanoseconds
or more, due essentially to the RC time constant

Fig. 1 - IG - VG waveforms

r\
Ig

\

\

f'....
~

rVg

V

J

,
~

1/9

75

and the maximum current available in the generator. If the current in the gate, IG' is constant and
small enough, the switching time can be increased to a level where the voltage and the current
waveforms are free from the parasitic effects caused by the stray inductances that are usually associated with high frequency power switching.
In this way it is possible to isolate the influence of
the external factors and analyse just the internal
parameters.
The measurement is made as shown in the circuit
in figure 2.

Fig. 2 - Test circuit

o

THEORETICAL ANALYSIS OF THE GATE
CHARGE
To get a better understanding of the phenomena
which occur during switching it is useful to refer
to the model of the POWER MOSFET shown in figure 3. The fig. 3a shows a cross section of a single cell illustrating the parasitic capacitances.
These capacitances correspond to the capacitances quoted in the POWER MOS databook as
follows:

= C1 +

(C2 . C4)/(C2 + C4) +
+ (C3 . CS)/(C3 + CS)
C rss = (C3 . CS)/(C3 + CS)
Coss = (C3 . C5)/(C3 + C5) + C6

C iss

If we take into account the actual test conditions
(VGS = 0, f = 1MHz, VDS = 25V) the above equations are well approximated as follows:

= C1 + C2 +
= CS
Coss = CS + C6
C iss
C rss

CS

This approximation is correct since C2 < < C4 and
CS<  100 KHz) for any given value of "d".
Maximum frequency limitations are of a thermal nature only and depend on the die size.
For the POWER MOS under consideration the maximum power dissipated is 100W when Rthj-case =
1°C/W and Tj max = 150°C.
By plotting the power dissipated as a function of
the frequency, when d = 50% the actual limits of
the two technologies can be seen (Fig. 3).
THERMAL STABILITY
The greater thermal stability of SGS-THOMSON
POWER MOS with respect to bipolar devices is essentially due to the different response that the two

~ ~~~~m~v~:J?©~

--------------

Fig. 3
G- 5890

p
(W)

BIPOLAR

200
MOS

I

IJ

--

THERMAL LIMIT

- +100

-

-IPrj

i/

V

/
V

i.-'

~

f (KHz)

devices exhibit when they are subjected to external power pulses.
The intrinsic mechanism which could lead to thermal runway in bipolar and in a POWER MOS device, are as follows.
In a bipolar an external power pulse results in an
increase in the junction temperature (Tj).
This causes the collector current to increase and
this consequently further increases Tj. This positive feedback is compensated only by the base
widening effect at high currents (that is a higher
recombination of the minority carriers). At high voltages the base widening effect is not present so
that any hot spots lead to thermal runaway.
These phenomena, if not controlled, could seriously damage a bipolar device.
A power pulse in a POWER MOS device would
cause:

= 8·1O- 3 °C 1). The effect of a increase in RDS (on)
is greater than the variation in VGS (th)' As a result
POWER MOS devices are thermally stable. The difference in behaviour of the two devices is even more exaggerated when dealing with paralleled chips.
Two comparisons between bipolar and
SGS-THOMSON POWER MOS devices have
been made.
The first deals with the behaviour of single chips
in SOT-93 (TO-218) package.
The SGS POWER MOS used in this test is the
SGSP475 (400V, 12A, 0,550).

The power bipolar device used in the BUV48 (400A,
10A).
The parameter used to measure the thermal unbalance of the devices is the variation of the thermal resistance Rthj-case due to an external power
pulse.
In fact an increase of Rthj-case implies a decrease
of the active area of the chip and therefore a disuniformity in the spreading of the heat, with a creation of hot spot and thermal and electrical
unbalancing. The devices have been tested under
several conditions, with respect to the power dissipation and the voltage across them (V DS for
SGSP471, VCE for BUV48). The results are shown
in Fig. 4 and Fig. 5).
SGSP475 shows optimum thermal stability under
all conditions while bipolars, with VCE = 45Vand
P> 45W, show a degrading of the thermal performances.
The best electrical and thermal performance of the
SGS-THOMSON POWER MOS are confirmed by
the thermal maps which show a uniform distribution of heat under different working conditions (Fig.
6 and 7).

1) an increase in temperature of the device
2) a decrease in the threshold voltage

Fig. 4 - Variation of Rthj-case

VGS (th) = VGS (th) (25°C) x (1 - ex [(Tj - 25°C)]

R h

where alpha is a positive coefficient of temperature (ex = 2.10- 3 .).
This is positive feedback and similar to a decrease of V SE in bipolar devices.
But in a POWER MOS device there is also a very
important negative feedback. That is an increase
of RDS (on) with temperature:
RDS (on)(T)

=

RDS (on) (25°C)

X

VS.

P (POWER MOS)

SGSP475 SOT-93
t

i-e (K/W) r - - - - - -_ _ _ _ _ _ _...::.S .....;-8::.;:0=-,89
VOS
VOS
VOS
VOS

1.0

.75V
.SOV
=30V
.15V

.
--_.-

0.8

0.6

[1 + ex (T - 25°C)]

where alpha is the temperature coefficient (alpha

--------------

O. 4

~ ~~~~m?tr~:~~~~

~-+--<---+-+---+---+-<----+--+------'

15

30

45

SO

75

90

105

120

peW)

______________

3_/4

87

Fig. 5 - Variation of Rthj-case vs. P (BIPOLAR)
BUV48 SOT-93.
5 - 8090

Rth j _c(K/W)
1.0

O.B

VCE : 4 5 V VCE =30V ----VCE=15V _._.

- -- - --...-

--

0.6

0.4 '---+--f----+_+--+----+----+_+--+----.J
15 30
45 60 75 90 105 120
P( W)

Fig. 6

The thermal instability has a greater effect when
the die are assembled in parallel since any unconformity would be enhanced leading to an overloading of some of the die.
The second thermal comparison was made between SGS-THOMSON POWER MOS and bipolar
devices in multiple chips mounted in a parallel configuration.
The SGS-THOMSON POWER MOS device under
test was:
SGS30MA050D1 :four POWER MOS chips paralleled in TO-240 a package lOmax
= 30A, Voss = 500V,
Ros (on) = 0.2500
Fig. 8 - Variation of Tthj-Case vs. P (POWER MOS)
SGS30M050D TO-240
5-8091

0.5

O. 2

VOS·S5V
"os =45 V
VOS=3SV
V0 5· 1SV

'----+---+--~>----+-----I---I----+----'

30

Fig. 7

.
----·_·-

60

90

120

150

lao

P (W)

The bipolar device under test was:
SGS40TA045D: four bipolar chips paralleled in
TO-240 package Ic = 40A
V CEO = 450V
The results are shown in Fig. 8 and 9 and reveal
a much better thermal stability for the POWER
MOS than for the bipolar device.
Fig. 9 - Variation of Rthj-case vs. P (BIPOLAR)
SGS400T045D TO-240
5-8092
VCE = 2 0 V VCE =15 V - ---

0.5

0.4

0.3

It is only at Vos = 75V that is it possible to notice
a slight variation in the working temperature.

0.2

_4/_4_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mg1rT:~~n

88

30

60

90

120

150

180

P (W)

______________

APPLICATION NOTE

A BRIEF LOOK AT STATIC dV/dt IN POWER MOSFETS
INTRODUCTION
The normal safe operating area of POWER
MOSFETS may be insufficient when used in very
fast switching circuits, such as those required in
SMPS push-pull applications. When there is a high
slew rate between the drain and the source of a
POWER MOSFET, it may go into breakdown at a
voltage less than its breakdown voltage, V(BR) DSS'
due to the spurious turn on of its parasitic bipolar
transistor. This in turn could damage its internal
structure or cause a malfunction of the circuitry.
The critical values of dV /dt may vary with the
operating conditions of the POWER MOSFET
device used; when it is under stress and completely
inactive, (static dV/dt) or when its intrinsic diode
is conducting (dynamic dV/dt). This note discusses
the safe operating conditions for POWER MOSFET
transistors that experience static dV /dt stress.

Fig. 1 - Simplified electrical behaviour of POWER
MOSFETS under the effect of dVldt

The explanation of the measurement circuit
describes the difficulty in attaining the value of
destructive dV /dt.

STATIC dV/dt TURN-ON
Figures 1 and 2 show the simplified equivalent
circuit for a POWER MOSFET when a high slew
rate exists between the drain and the source.
POWER MOSFETS initially in the off state, conduct
in two different ways due to dV /dt:
- by spurious turn-on of the POWER MOSFET
- by spurious turn-on of the parastatic bipolar
transistor.

Fig. 2 - Simplified equivalent circuit

N+

p+

DRAIN
N"

R body

D

1/6

89

Figure 3 shows the equivalent circuit for
conduction by spurious turn-on of the POWER
MOSFET. Figure 4 shows current waveforms
generated by a fast voltage variation across the
POWER MOSFET capacitance. The current pulse
passing through the external impedance (Zgs),

positioned between the gate and source (driving
impedance), creates a voltage pulse. If this voltage
reaches the threshold voltage the POWER MOSFET
switches on. This type of switching thrives on a
high input impedance, Zgs, but is not normally
destructive.

Fig. 3 - Equivalent circuit for conduction by spurious turn-on of POWER MOSFETS

Fig. 4 - Equivalent waveforms for the fast voltage
variation across the POWER MOSFET capacitances.

CURRENT

CURRENT

PULSE

CAUSED BY

dV /d t

t

The equivalent circuit for conduction by spurious
turn-on of the parasitic transistor, is shown in
figure 5. A current pulse passes through the
capacitance CoBand the body. If the voltage drop
across the body resistance rises above O.65V, the
body source junction is polarized, this produces
current injection in the base of the parasitic
transistor which consequently turns on. If Vos is

CURRENT

more than the breakdown voltage of the parasitic
transistor, avalanche breakdown occurs. If the
current, 10 , is not limited externally the device
may be destroyed. Unlike the first mechanism the
critical value of dV Idt depends only on the
structure of the device (R body ' COB and the
resistance between the base and the emitter of the
parasitic transistor).

PULSE
Fig. 5 - Eqivalent circuit for conduction by spurious
turn-on of the parasitic transistor

R body

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?1TT:~~©~

90

______________

This type of conduction may be destructive,
depending on the value of the supply voltage,
V DS ' applied and the collector-emitter breakdown,
V CEX' of the parasitic transistor. This value is
between V(BR)DSS/2 and V(BR)DSS'

Measurement Circuit
The circuit in fig. 6a is a hypothetical application
where a POWER MOSFET could be stressed by
static dV/dt. The POWER MOSFETs P" P2
conduct alternately, and apply the voltage
+ V DD /2 and -VDD/2 on the transformer. During
switching between P, and P2 there is always a
period in which one of the POWER MOSFETs is
turned off. The load is therefore fed with AC.

In SGS-THOMSON POWER MOSFETs V CEX is
near V(BR)DSS' thanks to a large reduction of the
emitter-base resistance of the parasitic transistor
(body and source in short circuit).

Fig. 6a - Typical application where DMOS can be stresses in static dVldt

~n nI:
I I

I

I

I
I

I

l

:

I

n ~! n i ! .
~ Ll.lJ UlJ
DRIVE

PUl:E.

WAVEFORM

-.---J

~

Fig. 6b - Test circuit for POWER MOSFETs stressed by static dVldt

O,1IJ.F
100 K

MERCURY
TRANSMISSION

P1JJD

II~

II

I
I

_u

The dV/dt stress occurs when, for example, P2
turns on and the source of P, decreases from the
voltage V D to zero with a speed equal to the
switching speed of P2 .
The turn-on of the parasitic transistor occurs when
the switching times are in the range of 3-5ns. This
switching speed was obtained using the circuit in
figure 6b where the active POWER MOSFET is
driven bya low impedance pulse generator.

LINE

The pulse generator consists of a transmission line
with a characteristic impedance of 5 ohm, which
during the turn-on of the mercury relay creates a
voltage waveform on the gate of the active POWER
MOSFET. A mercury relay is used to obtain very
steep edges. The transmission line consists of 10
coaxial cables in parallel with a characteristic
impedance of 500hm and infinite impedance load.
Each cable is 6m. long in order to generate a pulse
lasting about 50ns.

-------------- ~ ~~~~~?1J';1:~~©~ ______________3_/6
91

All the connections were' made in order to reduce
to a minimum the inductance and the parasitic
capacitance.

•

Acting on the load voltage (V coax) of the
transmission lines the switching speed of the
POWER MOSFET varies until it reaches the critical
value of dV/dt; all the values measured are shown
on the graph in fig. 7 .

TEST CONDITIONS: VDS: 0.9 B VDS
GATE IN SHORT-CIRCUIT WITH SOURCE

dV Idt
(v/ns)

I

I

I

I

I

I

I

I

NO LOAD LIMIT OF MEASUREMENT CIRCUIT

dV/dt

100V/n 5

~AX ~N

~.U.~.

-

j...- ~ jr-

~i"'"

~

./
~

;HE

~~ ~

...<~ b» K

) V

............LlMIT GUARANTEED FOR SGS P-MOS

V(a')DSS

10V/n 5

Fig. 7 - dVldt for the test circuit with and without
a POWER MOSFET load and limit guaranteed for POWER MOSFET versus breakdown voltage

lV/ns
100

200

300

400

500

V(a')DSS

VD (V)

TEST WITH GATE & SOURCE SHORT
CIRCUITED
The measurement conditions of all the devices are:

Photo 1 - Drain current and voltage waveforms for
SGSP221 on turn of its parasitic transistor

a) ZGs=O
b) Vos=O.9 V(BR) oss
c) DUT = turned-off
The gate is short circuited to the source in order
to switch-on only one of the parasitic bipoiar
transistors.
The maximum value of dV /dt reached when the
DUT is connected in the circuit is shown by the
upper limit of the shaded part of the graph in fig.
7. The part below it represents the safety limit of
the SGS-THOMSON device.
Photograph 1 shows the voltage-current
waveforms for SGSP221 when it switches on its
parasitic transistor. In this case the device is not
destroyed, as the Vos is limited to a voltage of
40V, when V(BR)OSSof the POWER MOSFETs is
65V.

_4/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

92

10 = 10/A/div.; Vos = 1 OV/div.; 5 ns/div.

~ ~~~~mgr~:~~li

--------------

It must also be mentioned that the large drain
current also circulates in the active POWER
MOSFET and could destroy it. Photo 2 shows the

waveform of Vos, 10 for SGSP478 under a
dVos/dt of 50V/ns.

Fig. 8 - Turn-on of the parasitic transistor on
SGSP221

Photo 2 - Drain current and voltage waveforms for
SGSP478

VDS

BEFORE SPURIOUS

TURN-ON

JOV
40V
SPURIOUS TURN -ON

10.4'

THE DRAIN

40
V(aR)OSS

= 65 V

dV/dt

50

t(nsl

= 6V/ ns

Vos= 100V/div. 105A/div. 5ns/div.

TEST WITH GATE & SOURCE NOT IN
SHORT CIRCUIT
Photos 3 and 4 show the Vos voltage and 10
current waveforms for both SGSP478 and
SGSP221 when the impedance Zgs between the
gate and source varies, while maintaining the
driving conditions of the active POWERMOSFET
constant and at the maximum Vos.

Photo 3 - Drain source voltage and drain current
waveforms for SGSP478

With Zgs> 0 the D.U.T. can conduct as in the case
of spurious turn-on of the POWER MOSFET
transistor.
Conduction in POWER MOSFETS tends to limit the
dV/dt which has caused the stray turn-on. Their
switching time therefore increases and a large
current passes during the transition, this avoids the
turn-on of the parasitic transistor, due to the
reduction of dV /dt, but unfortunately there is a
large increase in the switching losses.
In photo 4 it can be seen that Zgs = 0, the parasitic
transistor is turned on and that the insertion of
Zgs = 100hm eliminates this effect.

Vos = 100V/div.; 10 = 8A/div.; 20ns/div.

------------------------------ ~~~~~~~v~:~~:l ____________________________

5__
/6

93

Photo 4 - Drain source voltage and drain current
waveforms for SGSP221

Vos= 10V/div.; lo=4A/div.; 10ns/div.

CONCLUSION
It has been seen that a POWER MOSFET stressed
by a very fast s.lew rate can cause malfunction in
t~e circuit or even destroy the device because of:

destructive values of dVos/dt are difficult to attain
in practical applications, since they exist when
switching times are in the order of 5ns.

-

The stray turn-on of POWER MOSFET can occur
at lower values of dVos/dt. These values depend
on the values of impedance between the gate and
source. This type of conduction does not damage
the POWER MOSFET but increases losses in switching. This can be avoided by:

stray turn-on of the POWER MOSFET itself

- turn-on of the POWER MOSFET parasitic transistor.
The critical value of dVos/dt at the turn-on of the
parasitic bipolar transistor does not depend on the
external circuit, but on the structure of the POWER
MOSFET. SGS-THOMSON POWER MOSFETs
resist dV Idt stress due to optimization of their
design (resistance between base and- emitter of the
bipolar transistor reduced to a minimum). The

-

Limiting the switching speed

- Driving the POWER MOSFET with a low input
impedance.

_6/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?1f~:~~lt

94

______________

t==

SGS-1HOMSON

~~L ~D©OO@~[L~©lYOO@~D©~

APPLICATION NOTE

HIGH DENSITY POWER MOSFETS
Fig. 1 - 8G8 POWER M08FET structure

Top Passivation
Source Aluminium
Intermediate Oxide
Polysilicon Gate
Gate Oxide

N+Substrate
NfSubstrate
Back Metallization

INTRODUCTION

POWER MOSFET;transistor are fabricated using
VLSI technology. A simple chip contains thousands
of identical cells. By optimising the geometry of the
VLSI design it is possible to achieve HIGH DENSITY POWER MOSFET transistors. An increase in

cell density gives an improved operation together
with a reduction of silicon area.
In order to fully appreciate high density POWER
MOSFETS it is necessary to examine the factors
controlling their output characteristics. Figure 2
shows the area associated with each resistive element contributing to the total on-resistance.
1/11

95

Fig. 2 - Resistive elements in SGS POWER MOSFETS structure

The on-resistance of a POWER MOSFET is made
up of four separate terms:
RON = RCH + RACC + RJFET + REP1
where: RON = device on-resistance
RCH = channel resistance
RACC = resistance of accumulated region
RJFET = junction FET resistance
REP1 = drain epitaxial layer resistance
RCH ' RACC ' and RJF depend primarily on the layout of the device. REP1 depends on the structure
of the drain.
Figures 3a and 3b show the relationship between
the on resistance and the cell spacing for devices
_2/_1_1_________________________

96

with a 100V and 500V breakdown voltage respectively.
It can clearly be seen that there is an optimum cell
sapcing of about 12 Jlm for low voltage devices and
30Jlm for high voltage. Moreover, in high voltage
devices the resistance of the drain epitaxial layer
is the most significant of the four terms. The most
effective way of obtaing a lower RON is to make
the higher V(BR) DSS compatible with the drain resistivity. SGS-Thomson uses an edge termination
structure that gives a breakdown voltage near the
theoretical value.
For low voltage devices RON can be reduced by
varying the channel and/or accumulation resistance.

~~~~~~~~:~~n----------------------------

Fig. 3 - Influence of the inter-cell spacing on the RDS (on) elements
Fig. 3a - Low voltage case

V(BR) DSS =

Fig. 3b - High voltage V (BR)

100V

DSS = 500V
GU -1277

GU-1278

XCELL - 20 (,urn)

~

XCELL - 25 (,um)
0.10

J

0.05

Intercell distance

Intercell distance
4d

(em) x10E-3

4

6

From the expressions:
a) RCH

LCH

(VG) . W . Cox· (VG - VT)

0/2

b) RACC

6

Table 1

= ------------It

d (cm)x10E-3

= ------------3 . It (VG) . W . Cox· (VG - VTACd

where: It = carrier mobility
W = channel perimeter
ICH = channel length
Cox = capacitance of oxide per area unit
o = Inter-cell distance
It follows that a reduction of dimensions LCH ' 0,
and the increase of W leads to a large reduction
of both RON for cell densities from 500K cells/inch
sq. to 10 milion cells/inch sq. for V(BR) DSS = 60V.

(N.

Cell density
Cellslinch.sq.)
558K
1.333M
3.82M
10M

RCH

RACC

REP I

18.5
11.9
2.7
1.42

11.8
4.9
1.9
0.59

0.144
0.125
0.107
0.09

VLSI technology offers the possibility of fabricating
these high cell densities.
Fig. 4 shows on resistance per unit area for SGSThomson devices..ov~ a voltage range from 50V
to 700V.
The continuous line represents the theoretical limit of silicon, without conductivity modulation.
For low voltage devices, where the divergence from
the theoretical limit is the greatest, the performance
can be improved by modifying the design rules of
the horizontal geometry.

SO
3/11
-------------- ~ 5~~~~m~1r~@~ol1-------------97

Fig. 4 - Ros (on) vs. breakdown voltage

Ron x area
(ohm cm 2 )
10-1

5

10 3

V(BR) DSS (V)
SGS-Thomson ST ATE-OF-THE-ART

For comparison between the two technologies fig.
5 and photos 1 and 2 show two devices with breakdown voltages of about 60V and an on-resitance
of about 0.040, one with the standard cell and the

other the high density structure.
The chips in the device produced with the standard
technology are 180 x 220 mils2 in area; those produced with the new technology are 170 x 170
mils2.
There are both static and dynamic advantages to
be gained from using high density devices. Their
static characteristcs such as RON' capacity, and
their dynamic characteristcs such as switching times, energy per cycle and gate charge are improved.

Photo 1 - SEM photo of high density POWER
MOSFET - 1.33 million cells in-2

Photo 2 - SEM photo of standard POWER
MOSFET - 550K cells in-2

SGS-Thomson uses a cell density of 558K
cells/inch sq. in its standard low voltage technology. Recently, another technology with a cell density as high as 1.33 milion cells/inch sq. been
developed(1), and devices are now in production.

Note 1: See additional information on page 104

_4/_1_1 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mg::J?~

98

______________

Fig. 5 - Dice comparison
a) High density POWER MOSFET

b) Standard POWER MOSFET

Jij
Ilnll ~l
-- ~
-

=

r--

]rc

-

r-

1

1
1

r-

Fig. 6 - Output characteristics

High density POWER MOSFET
5A/div
500mV/div
1V per step

10
VOS
VGS

Standard POWER MOSFET
5A/div
500mV/div
1V per step

------------ ~ ~~~~m~1Y~:~~ ___________

5_/1_1

99

STATIC CHARACTERISTICS

inter-cell distance are the most important factors
in reducing the on-resistance.
A figure of merit, RON - AREA, allows a comparison of technologies. Fig. 7 compares the values
of RON . AREA for both technologies.

The on-resistance per unit area of a POWER MOSFET chip is an index of the optimization of the
silicon; the channel perimeter and reducing the

Fig. 7 - Behaviour of RON area vs. breakdown voltage.
GU-1282
RON'

Area (n • mm 2 l
2.0

STO

1.5

~HD

1.0.

0.5

20

40

60

80

100

120

140

160

180

BV (V)
As predicted, the increase in efficiency, as the cell
density increases, becomes less as the breakdown
voltage increases. This is due to the increase in
the resistance on the drain (R EPI)' The chip area
for high density devices is reduced by 25% at 70V

breakdown and 21 % at 130V breakdown compared to standard POWER MOSFET devices. Figure 8 shows the decrease in chip efficiency whith
the increase in voltage.

Fig. 8 - Decrease in efficiency as breakdown voltage rises
GU-1283

area 0/0
30
25

20
15
10

20

40

60

80

100

120

140

160

180

V(BRlOSS
DYNAMIC CHARACTERISTICS
Although not as obvious the effect of the cell density on the dynamic characteristic is just as inter
_6/_1_1_________________________

100

esting. In switching applications, the gate charge
in a POWER MOSFET device is of fundamental importance in evaluating both the driving energy and

~~~~~~~~~:~~~~----------------------------

the switching time. The total energy required by
the gate for switching depends on various parameters, which are mainly electrical (supply voltage,
drain current, gate voltage) or structural (reverse
capacitance, gate thereshold voltage, transconductance).
The electrical parameters are external and depend
on the type of application. The structural parameters, instead, depend on the device itself and can

be varied by optimizing its design.
Using the electical configuration shown in fig. 9 it
is possible to examine the device gate charge.
Fig. 10 shows the comparison between the gate
charge curves of devices with the same static characteristics but with different cell densities.
The total gate charge for high density types is about
half that of standard POWER MOSFETS.

Fig. 9 - Gate charge test circuit

+Voo

o

Fig. 10 - Gate charge curve
GU-1286
12

High Density
10

Power MOSFET
170x 170mils2
o
Std Power
>
MOSFET
180x220mils2 ~

Vdd

= 40

Volt

Id= 15 Amp
10

20

30

40

50

60

70

80

90

100

Q (nC)

--------------

~ ~~~~m?::~~~

_____________

7_/1_1

101

The relation between the gate charge curves and
the dynamic characteristics of the devices is defined in figure 11. The Id - Vd characteristics in
switching are strongly correlated to different slopes of the gate charge curves.
Analyzing the gate charge we can consider that:

1) the initial steep slope depends on the input capacitance Ciss . Reducing Ciss ' the slope increases
2) the horizontal part of the curves depend on
CRSS and GM
3) the third part of the slope is again due to CGS
which in turn is related to the geometry

Fig. 11. - Dynamic characteristics vs. gate charge

---Vgs

I

~~

V

Vth

-

/

Gate charge curve

Vds

Id

Id-\tt cross over

~I\K

~sat \kis(on)

I

Fig. 12 - Quality factor K vs. breakdown voltage
GU-1287

Gm/Cr.ss

"

"

• =18DxnDmils2
e=156x156mlls2

(mho/pFl

D.14

'~

A = 170. x 170. mi Is 2 HD

* = 250. x 250. mils 2

-

COMPETITION

0. .12
0..10.

*

0..0.0.

e

• '"

0..0.8

*

0..0.4
0..0.2
0.0.0.
!

100.

20.0.

I

30.0.

I

«

I

!

40.0.

_8/_1_1 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?::~~lt

102

«

I

!

,j

SOD

______________

It is obvious that for a given driving circuit resistance, the sw.itching times and the cross-over energy
losses are strongly defined by the gate charge curves. The most significant parameter for switching
performance is Crss .
The drive energy, (Ep = J VG (0) . do), is represented by the area under the curve. The switching
time and consequently the energy dissipated at
cross-over, is related to the width of the flat section of the gate charge curve. From this it can be
deduced that the optimum device must have a low
CRSS and a high GM . By introducing a second merit coefficient K = GM/C RSS ' the efficiency of the
device in dynamic working conditions can be calculated.
In order to increase the merit factor K, is necessary to increase the transconductance and decrease the reverse capacitance. The best way to
improve the transconductance is to increase the

perimeter of the channel, i.e. by increasing the cell
density.
CRSS can be decreased by reducing the overlap
area between the gate and drain, that is by reducing the distance between each cell.
Both these actions lead to an increase in the cell
density.
Fig. 12 shows the value of K (for equal areas) as
a function of the breakdown voltage, V (SR) oss, for
POWER MOSFET devices produced by both standard and high density technology.
Thermal measurements on both standards and
high density POWER MOSFET were made using
the circuit in Fig. 13.
The circuit is designed around an emitter switching
configuration working at 100KHz with 50% duty cycle and 10 = 10A.

Fig. 13 - Emitter switching circuit

The power dissipation of the POWER MOSFETS
devices were approx 8W for BUZ11 and 6W for
high density BUZ11. The power dissipation depends on two factors:
Pon - state loss
Pcrossover loss

= I i . Ron(T) . d
= f . J Vd . Id . dt .

The on-state power dissipation is the same for both
devices. The second term, depending on the cross-

over point of the switching waveforms for the devices causes the difference in power dissipated.
Considering that the junction to ambient, thermal
resistance Rthj.amb, with heatsink, is 13°CIW, the
devices reach a working junction temperature of
104°C + T(amb) and 78°C + T(ambient) respectively. Under conditions where T amb = 50°C the standard device is operates outside the maximum
thermal ratings while the high density device remains within the thermal safe operating area.

-------------- ~ ~~~~m?1r~:~~~~ _____________

9_/1_1

103

CONCLUSION
Table 2 lists some of the significant advantages the
introduction of high cell density in SGS-Thomson
POWER MOSFETS offer.

Table 3 compares the STVHD90 with 2.3 million
cells/in2 and chip size of 180 x 220 mils-2 to a standard 550k cells in-2 with a chip size of 180 x 220
mils-2.

Table 2

Energy loss/cycle (pJ)
Crss (pF)
Gm/Crss (mho/pF)

0 9 (nC)

Standard

high density

45
420

25
140

0.028

0.085

56

38

A reduction of the input capacitance decreases the
driving energy with consequent cost reduction of
the drive circuitry.
The improved dynamic characteristics, due to feedback capacitance reduction increases the maximum operating frequency.
An increase of the safe operating area is obtained
by thermal improvement.

cell densitylin 2
chip size (mils2)
Rds (on) (milliohms)
Ciss (pF)
Coss (pF)
Crss (pF)
Gate charge (nC)

STVHD90

SGSP386

2.3
180 x 220
23
3000
1000
180
47

550
180x 220
40
1800
1100
550
74

The static characteristics are very much improved
as Ros (on) is reduced 23 milliohms, see figure 14.
GC 0856

rf2
I

(ohms mm-2)

0.4

1\ STJDARD

\

~GH DENSITY

VERY HIGH DENSITY
This article would not be complete without reference to this latest addition to the SGS-Thomson POWER MOSFET devices.
The most recent advance in our high density technology is the introduction of the very high density
cell structure with a cell density of 2.3 million cells
per square inch. This gives a further improvement
in device static and dynamic performance and an
even smaller chip area for a given current rating
than chips with 1.3 million cells per square inch.
The photographs show the very high density cell
structure compared to the standard 550k cells in-2

Cell density versus Ros (on) mm-2

Photo 1: 2.3 million cells in- 2

Photo 2: 550k cells in-2

-.......... ~RY
0.3

0.2

3 Million cells in- 2

_10_'_11_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?v~:~~~~

104

HIGH DENSITY

______________

1-- - - f - __

t:'~_='-:~-+-----f,-j_+-+-+-+-I

10 -- ___ ~R_~ __H__I,GH,_DE-,N_SI,-T-IY"q----l--I---+--+--'F--I
f-- -

---- -

,/
--~'-I----+---I--+-----b"+-+-1

-- - --- --V'--- ----l-V--V"'---'------'-----'-------'

--- - - ; / - -t-/--b"'\=ST~A-:-:N:':---DA:----:R:-::cD--t----l

---

-17~-I-

5 -

The dynamic characteristcs for switching are also
improved in the STVHD90. This can easily be seen
from the comparison of the gate charge curves,
STVHD90 versus the standard type, figure 15. The
flat section of the graph is very reduced hence reducing the switching time and gate drive energy.
This is due do lower reverse capacitance, CRSS '
and higher trasconductance, gfs' in the STVHD90.

--II--r-+-fJ--t--+-+-+-+--HI-+-+-+-l---I
I---- --I---- --t-----l -----L

-L--t--+-+--+--I

~~':~~_I~;I,"-3~_tl_0_Vr-+-++_+----l
10

20

30

40

50

60

D.g(nCI

Gate charge: Very high density compared with an
equal area chip with the same breakdown voltage

______________

~ ~~~~m~1Jt;1:~~~~

_____________

1_1_/1_1

105

APPLICATION NOTE

HIGH VOLTAGE TRANSISTORS WITH POWER
MOS EMITTER SWITCHING
INTRODUCTION
This paper summarizes the results of an investigation carried out on power devices with both MOS
and BIPOLAR parts working together in the same
circuit. The "emitter drive" configuration was considered, with switching power supply applications
in mind.

Fig. 1 - The basic circuit used for the evaluation
of the emitter switching system. The base drive circuit used is shown for comparison
FAST DIODE

Os

The devices used are:
SGSP321 , SGSP352
Power MOS:
Bipolar transistors:
BUV48, BU508A
Ultrafast bipolar transistors: SGSD00035
SGSD00039
(Hollow Emitter)
Fast darlingtons:
SGSD00031, BU810
In the case of flyback switching power supplies a
practical example is also described.

CIRCUIT DESCRIPTION
The term "emitter switching" describes a circuit
configuration where a low voltage transistor (MOS
or Bipolar) switches off the emitter current of a high
voltage transistor, and consequently the transistor
itself.
This configuration combines the fast switching of
a low voltage device with the high power switching
of a high voltage device, since:
high current x high voltage = high power switching.
The combination of a high voltage bipolar and a
low voltage Power MOS is preferable due to the
high switching speed and the low driving energy
of the combined power switch.
The base of the high voltage bipolar device is driven by a constant voltage source. The energy dissipated to drive the high voltage bipolar device
depends on the losses that the forward bias current IS1 generates in the resistance in series with
Rs, IS1 . Rs . t. This power dissipation can only be
reduced by using high gain transistors or darlingtons.
(See fig. 1)

5-8110

The diode in series with the base serves to clamp
the base overvoltage at turn-off.
The two transistor stage is driven by the gate of
the low voltage Power MOS. Very low driving energies, about 180nJ per cycle, are involved in the
charging of the input capacitances.
Consequently the stage can be directly driven by
the output of suitable linear integrated circuits.
The possibily of direct driving by an IC output together with the excellent switching speed make this
configuration extremely suitable for switching power supplies at frequencies of 50kHz or higher.
CIRCUIT OPERATION
As we have seen, the forward base current IS1 is
fixed by the external circuitry:
IS1

Vss - VSEsat - VOSon

= ---------

Rs
The collector current instead depends on the load,
and in general, varies with the time.
The turn-on and turn-off phases can be analysed
separately.
TURN-OFF
When the driving signal to the Power MOS is low
the drain current is interrupted and the emitter cur1/5

107

rent of the high voltage bipolar falls to zero. The
emitter reaches the base voltage and will not carry any more current. As a result the collector current can only flow through the base, becoming a
reverse base current that depletes the base to collector junction. This reverse base current 'B2' from
the moment when the emitter current disappears,
coincides with the collector current. See photo 1.
The stored charge isremoved in a typically very
violent, and consquently rapid manner.

tial way from the usual case of the base drive.

Photo 2 - Base and col/ector current at turn-on

Photo 1 - Base and col/ector current at turn-off

As a result the storage time is substantially
reduced.
The fall time, which is related to the recombination
under the emitter, is also generally reduced.
Typical values for the fall and storage time of the
SGS-Thomson devices used in the test are shown
in Table 1, for both emitter and the base drive
circuits.

The dynamic saturation transient V CEsat dyn is also practically the same with a base drive as with
an emitter drive. The collector current, when the
collector load is the primary winding of a switching
transformer, can vary according to two possibilities. (See Fig. 2)
a) After the initial peak due to the recovery of the
diode present on the secondary winding, the
collector current increases linearly starting from
zero
b) After the same initial peak, the collector current
increases linearly starting from the value memorized in the magnetic circuit at the end of
the previous cycle.

Fig. 2 - Col/ector current waveforms with varying
load

Table 1 - Typical t, and ts on inductive load
Device

Ic(A)

EMITTER
SWITCHING
tstorage

t fall

BASE
SWITCHING
tstorage

t fall

BUX4B

10

500ns

100ns

21's

200ns

BU50BA

5

BOOns

300ns

61's

400ns

SGSDOO031

10

400ns

100ns

1.2J.1s

100ns

BUB10

5

300ns

150ns

BOOns

150ns

SGSDOO035

10

300ns

50ns

BOOns

50ns

SGSDOO039

5

300ns

40ns

700ns

50ns

5-8112

TURN-ON

When the Power MOS is the on state, the bipolar
device also starts conducting. The dynamic behaviour (See Photo 2) does not differ in any substan-

5·S111

_2/_5__________________________ ~~~~~~?V~:~~~, ____________________________
108

REVERSE BIAS SAFE OPERATING AREA

A problem that occurs in bipolar transistors is damage caused by "current crowding".

Fig. 4b -Fast turn-off. crowding with low average
heating but possible high peak power

Fig. 3a illustrates current flowing in a typical bipolar device. Fig. 3b shows how, when the device is
turned off and the current begings to die away, the
current focuses with a high concentration under the
emitter. This high current density can damage or
destroy the transistor.
5-8116

Fig.3a
BASE

EMITTER

BASE

Fig. 4c - Fast turn-off (with VCE delayed by snubber network)

Ie

Fig.3b
BASE

BASE

5-6117

The way the stored charge is swept away in the
high voltage bipolar device when it is driven by the
emitter, produces some interesting consequences.

5-6114

The energy dissipated within a bipolar power transistor at turn-off can be found graphically from a
plot of Ic versus VCE at turn-off. Three cases are
shown in Fig. 4a, band c. The shaded area is proportional to the energy that is dissipated in the device during turn-off.
Consequently turn-off times affect the SOA of the
device, (Fig. 5b). These problems can be overcome using emitter switching.

Fig. 4a - Slow turn-off. No crowding but high average heating

The stored charges are evacuated through the base
contact when the emitter current is zeroed and not
later than a few tens of nanoseconds after the beginning of the storage interval. Consequently, during the turn-off, no charge is injected from the
emitter into the base. Although the reverse base
current is quite relevant, no focusing of the current
in the centre of the emitter fingers takes place.
The bipolar device therefore exhibits an energy absorbing ability at the turn-off RBSOA that is substantially higher than if a normal base drive were
used. With a base drive the emitter would inject
charges and the voltage drop across the distributed base resistance would induce the "emitter
crowding" phenomenon.
The practical evidence for all the transistors investigated (BUV48, BU508A, SGSD00035,
SGSD00039) shows that the reverse bias operating area (RBSOA) extends righ up to the BV CES'
(See fig. 5).
This extreme effect is unfortunately much less pronunced when using fast darlingtons. The higher
complexity of the charge extraction mechanism and
the charge injection from the emitter into the base

--------------

~ ~~~~m~1r~:9©~

______________

3_/5

109

in the driver transistor imply that the RBSOA extension is almost irrelevant
Fig. 5a - reverse bias safe operating area
G-5891

IC
(A )

15

I
EMITTER
I,,",TCHIN(
1-+- BASE
_~~
1--1-- SWITCHING

12

I

...

.

I

I

I!
I

.

\
I' .......

200

1000

I ' I'
II !
i
II
r-. 1 III J
r- .... 10. I
I
II I
600

Fig. 5b - How reverse bias safe operating area
changes for:
i) slow turn-off
ii) fast turn-off

of the transformer.
The power source in the mains singlephase, 220V
a.c., and the switching frequency can be set to
50KHz or more.
The devices used were:
01:
fast darlingtons with BVCES ~ 600V for
110V line
-SGSBU810 for current up to 5A
-SGSD0031 for current above 5A
Fast transistor with BV CES ~ 800V for
220V line
-SGSD00039 for currents up to 5A
-SGSD00035 for current up to 10A
Low voltage POWER MOS
02:
(BVoss = 50V)
-SGSP352 for currents up to 5A
-SGSP322 for currents over 5A
High voltage, low current POWER MOS
03:
V(BR) oss < = 450V)
Control
IC:
UC3842
DZ2:
Zener diode 2W/20V
D1:

G-5892

IC~4-~1_r+~r+-~r+-r~-r~~

(A)~4-~+4-r+~-r+~r+-r~-r~~

C6:

15

R3:

\
\

25V diode, with Ie peak rating as high
as 10A for 500ns
Electrolytic capacitor, 100ILF, 25V.
It ab~orbs possible variations of VBB .
Resistor setting the forward bias base
current of the darlington:
R3= VCE - VBEsat-VOSon-RyIO

12

\

IB1

R7:
-

l"'--

,.,. ON , SLOWER'"
_ _ OFF ~
TURN·OFF

200

400

J ""-l ......
r'J.. - .... 1.1
600

800

R7=

VCE (v)

A POSSIBLE APPLICATION

C4,R6:

A possible application of the "emitter switching"
configuration is shown in Figure 6, where a switching power supply operating in a "flyback" mode has been implemented.

C3,R5:

The basic criteria used in choosing the value of the
circuit elements are given below. The purpose of
the study was to demonstrate the feasibility and to
evaluate the advantages. Exact circuit element values can be further optimized, especially in the case

_~_5----------------------____ ~~~~~~?V~:~~©~
110

Its power rating must exceed R3 . IB2 . t
(in practice 3W)
Shunt resistor to sense the switch current. The over current Is max protection
is set according to
1V

ISmax
RC network, filtering the disturbances
induced by the switching transients on
the ISmax protection input.
RC network, setting the switching frequency and the maximum duty cycle,
according to the UC3842 data sheet.
teharge = 0.55 Rs C3
tdischarge =
= Rs X C3 In [(6.3 Rs - 2.7)/(6.3 Rs - 4)]
f = 1/(te + t d)

____________________________

R8,R9:

C2,R4:
R1:
R2:

D4:

DS:
D3,R10,
C8:

Resistive divider of the feedback voltage from a secondary sense winding, recitified by DS and CS. The divided
voltage is compared by the control IC
to an internal reference of 2.SV.
Compensating network in the error amplifier of the feed-back voltage.
Resistor biasing the 03 gate (1.2 MO,
1/4 W)
Resistor that limits the inrush current
through the POWER MOS, 03, at the
turn-off (1.20, 2W)
Fast recovery diode
Its voltage/current ratings depend on the
particular secondary winding it rectifies.
Low currentllow voltage diode
Snubber network (Fig. 6 shows just one
of the possible configurations).

R10= 1/4fC8
P (R1O) = 1/2 Ld 102 . f
where:
f = switching frequency
Ld = stray inductance of the transformer
Vas = maximum voltage overshoot admitted
A 400V fast recovery diode
The use of a capacitor reduces the crossover of the Darlington (3 to SnF)

D3:
C7:

It is important to note that, the power transistor 03
acts only at the turn-on of the power supply and
when the capacitor C6 supplies more energy to the
base of the darlington and to the supply input of
the Ie than is returned to C6 during the turn-off of
the darlington, 01.

Fig. 6 - "Emitter switching" circuit

CONCLUSION
The "emitter drive" configuration exhibts some
clear differences with respect to the usual "base
drive" configuration, and they can be particularly
useful in switching power supply applications:
- Substantial reduction of the storage time and
improvement of the fall time.
Switching frequencies of SOkHz and higher are
possible
The dynamic drive circuitry is simplified. The
negative voltage supply is not required to remove the stored charge from the base. The
energy needed to drive the gate of the POWER
MOS is very low (180 nJ per cycle).

-

Extremely high ruggedness at the turn-off of the
inductive load (Le. very large RBSOA) if the high
voltage bipolar part is a transitor.
Higher power dissipation in the on-stage, due
to the additional losses in the POWER MOS
(10

2

ROS on ton)'

This last point is the only disadvantage, but it is
more than compensated for if switching at high frequencies. The lower switching losses (a saving
each cycle) can justfy the higher on-state losses
(a fixed expenditure) as soon as the switching frequency is high enough, which is often the case in
switching power supplies.

-------------- ~ ~~~~1H~1r~:~~~~ ______________5_/5
111

APPLICATION NOTE

A WIDE RANGE INPUT DC-DC POWER CONVERTER
INTRODUCTION
This 300W DC-DC converter, shown in Fig. 1 has
a flyback topology and works in continuous mode
with single output and features primary side control.
The Power switch is designed around an emitter
switching configuration. This arrangement uses
three bipolar devices, BUX 12, and with POWER
MOS device in cascode.
The pulse width modulation (PWM) controller is the
SGSUC3840 linear integrated circuit. The characteristics of this IC are pulse by pulse current limiting with shut-down for short circuit protection, over
and under voltage sensing with protective shutdown, soft start, voltage feed-forward for excellent
line regulation (without regulation by feed back network). These facilities are used to advantage in this
design.

CIRCUIT DESCRIPTION
A DC input voltage is chopped at a high frequency,
80KHz is possible.
This high switching frequency allows the use of a very
small transformer with respect to the output power.
In the configuration, shown in Fig. 1, an additional
low-voltage winding, N B , (two turns on this transformer) is used to provide continuous operating power
for the base of the bipolar power device.
The resulting base current is proportional to the load.
The polarity of the transformer windings is configured as a flyback converter. When transistor 06 conducts, the output diodes are reverse biased and
energy is stored in the primary inductance. When 06
turns-off, the voltage polarity of the primary winding
reverses and the stored energy is delivered to the
output.

Fig. 1 300W DC-DC converter circuit diagram.

A ----+--i---i

SU-14.84

118

113

Table 1 - Power Supply Specifications
Operati ng mode
DC Input Voltage
Switching frequency
Output Power
Output Voltage
Output Current
Line Regulation
Load regulation
Efficiency@ 300W
V1N = 48 Voc
V 1N = 80 Voc
Efficiency max@ 150W
V1N = 70 Voc
Output Ripple@ 25A

The power supply operates in continuous mode:
the energy stored in the primary inductance is not
completely transferred to the load during each cycle, for this reason the current in the primary winding has a trapezoidal waveform, Fig. 3.
The emitter switching configuration of the power
switch allows the bipolar transistor to operate at higher frequencies since this technique gives a substantial reduction in the bipolar storage time.
Other advantages are:
- The dynamic drive circuitry is simplified and the
energy needed to drive the gate of the POWER
MOS device is very low (800nJ per cycle).
- Greater ruggedness than in a single bipolar
switch at turn-off with the inductive load. Consequently there can be smaller snubber networks
and a higher leakage inductance in the transformer.
- The power dissipation during on time is lower
than the on losses of a single POWER MOS device with the same characteristics (lc, BVCE) of
the bipolar device.
For better load regulation with isolated output, a
smaller converter (transformer Tr2 with a small signal transistor 03, as a switch) is used instead of
a feedback winding.
This converter, operating at a fixed frequency
(160KHz) and duty-cycle, privides on the first secondary winding, Nt with forward polarity, a voltage proportional to the output regulating voltage,
which is used as a feedback signal.
The other secondary winding of this converter (with
flyback polarity) N j , is used to provide continuous
operating power for the UC3840 and the IRFZ42
gate drive.

Flyback Contnuous Mode
48V to 80V DC
80KHz ± 10%
300W
12V ± 5%
2 to 25A
0.03%1V
0.17%/A (med. value)
70%
75%
80%
400mV

Table 2 - Tr2 specifications
-

Core
Primary
Feedback sec.
Supply sec.

Siemens E20, N30
Np
38 turns
Nt
30 turns
Nj == 56 turns

The start-up of the power supply is obtained by resistor R27 which supplies the transistor base and
by the network (formed by POWER MOS device
04, DZ1, R17, R32) which supplies the PWM circuit and IRFZ42 gate drive transistors 01 and 02.
When the voltage on the secondary winding of Tr2
increases, the POWER MOS device, 04, is automatically turned-off, 04 a is low voltage, low current POWER MOS device: an SGSP301 was
selected. It is interesting to note that the DC safe
operating area of a POWER MOS transistor used
under these conditions is greater than that of an
equivalent bipolar device.
The circuit was mounted on two printed boards.
Board 1 holds the control circuit and board 2 the
power switch. Board 2 has a copper thickness of
about 300p,m. The high current areas are double
sided.

TRANSFORMER
Designing the transformer leads to trade off decisions involving factors such as leakage inductance specifications, insulation, size, power
dissipation, and cost.
The core selected for this power supply is a Siemens EC70-N27 with the following characteristics:
- Effective core Area A = 279 mm 2
- Saturation flux density @ 20°C = 470 mT
- Maximum working flux density B = 300 mT

-2/-8--------------------------~~~~~~~vT:~~~ --------~-----------------114

The design starts with a calculation of the maximum duty cycle, Ll, and the maximum on time
Ton max' Fig. 2.
With Vee min = 48V, Vreset = 45V, T = 12.5lts
(80KHz).
The maximum duty cycle is;
Vreset
Ll= - - - - - - - - - V reset + Vee min
45
- - - - - = 48% Ton max
45 + 48

6lts
Eqn. 1

By equating the volts/second areas - the shaded
areas in Fig. 2 the turns ratio can be calculated
using the worst case as follows: (see Fig. 2).

Fig. 3 shows the mean current value (Imean) in the
primary inductance during the on state. It can be
calculated as follows using the minimum input
voltage:
Pmax · T
Imean = - - - - - - - - - - 11 • Vee min· Ton max
300 . 12.5
_ _ _ _ _ _ = 18,6A
0.7 . 48 . 6
Eqn. 3
The primary inductance Lp can be calculated by
fixing a maximum peak value for primary current
Ip= 20A;
Vee min· Ton max

Lp= - - - - - - - - 2 (Ip - Imean)
48 . 6 - 10-10
100itH
2 . 1.4

nprimary (Va + Vf) • (T - Ton max)
nsecondary (vee min . Ton max)
Vee min· Ton max

48.6.10-6
(12

+ 1) . 6.5 .

Eqn. 4

At full load and at Vee max we have
n . (Va + Vf ) • T
Ton= - - - - - - - - Vee + n (Va + Vf)

3.4
10-6

4.4 its
Eqn. 5

Eqn. 2

Fig. 2 - Switching waveforms at the col/ector of 06

The flux balance in the transformer core depends
on equal volts-second products being applied during charge and reset phases.

P max . T
Iman (@ 80V) = - - - - - - - n . V max . Ton min
Ip = 17.1A
-

16A

With an air-gap, g = 3mm, then AI = 140nH, Np
can be calculated as follows:

ton-

period T
SU·l~85

Np = .,j LlAI (from manufactures data book)
Eqn. 6
Np = .,j 100 . 103 nH/140nH = 27 turns

Fig. 3 - Current waveform in the primary inductance

The minimum air gap with working flux density
B = 250mT is:
I . Np . Ito
g = _ _ _ _ _ _ _ = 2.7 rnA

Ip

B
Ito

T

= 12.56 . 10-7 Hm-1 (permeability of free space)

Since we have g = 3mm at all working conditions
B< 250mT.

~----~--------L------4------·t
SU-l1,79

---------------

Ns ( + 12) = Np/n = 27/3.4 = 8 turns

~~~~~~~~T:~~~

______________

3_/8

115

Fig. 4 - Transformer construction showing the winding pattern for reduced for leakage induction.

CORE

I.
1/2

Ns

SU-1~8q

To reduce the skin effect in the transformer windings at 80KHz, multistrand conductors must be
used. The prototype specifications are given in table 3.

Primary Np
= 27 turns, 6 wires 0 = O.8mm
Secondary
out. Ns( + 12) = 8 turns, 16 wires, 0 = O.8mm

o=

BVoss
Ros ON
10
4/8

50V
35 mQ
35A

20 . 150 . 10- 10

2 . VVE max

2 . 280

5.35nF

5.6nF was selected

3 . 10-6
R29 = - - - - - - = 2700
2C15

P = 112 C15 . (VCE max)2 . f = 17W
The second network, C16, R30 06 is used to limit
the overvoltage due to the transformer leakage inductance when 06 turns-off.
Ld . Ip2
C16= - - - - - - - (Vres + Vp)2 - V res 2
Where: Ld = Leakage inductance (about 1/tH)
V res = Reset voltage 45V
Vp = Allowable voltage spike (180V)
C16 = 8.2nF
R30 value is selected so that the voltage
across C16 is equal to the reset voltage
at the end of the discharge period. Since
06 conducts for about 2.5/ts C16 discharge period is about 10/ts, then R30 value
is calculated as follows:
(Vreset + Vp) . 10 .10-6
R30 = - - - - - - - - - - - = 1.5K
Vp . C16

---------------------------~~~~~~?vT:~~~~
116

=

The power dissipated in this resistor is:

POWER SWITCH
In this application the peak switching current is 20A
and the correspondent peak collector voltage is approximately 280 volts including the 180 volts spike caused by leakage inductance, Fig. 2.
The bipolar transistors selected are 3 x BUX12
in parallel and the POWER MOS selected is the
IRFZ42.

250V
300V
50A

Ip . t f

C15 =

O.8mm

Fig. 4 shows the transformer construction.

BUX12 x 3
BVCEO
BVCES
Ic CONT
IRFZ42

SNUBBERS
To protect the power switch we have two snubber
networks.
The first network of C15, R29 and 05 is used to
reduce the switch-off power losses of 06 by delaying the transistor VCE rise while the current falls
at turn-off.

R29 resistor is selected to discharge C15 with a
time constant of 3/ts (about Ton min).

Table 3 - Winding specifications

Secondary N ( 3) =2 turns, 1 wire,
aux. B +

The emitter switching configuration gives very short
storage time ts for 3 x BUX12: at full load we have ts = 300ns max, and fall time is 150ns maximum. (Photo n. 5).
When the voltage falls on pin 12 of the UC3840,
01 is off and 02 conducts. The POWER MOS 05
is then off and interrupts the emitter current of 06:
at this time current, Ic, flows through the base, becoming a reverse base current IB2 that extracts the
stored charge from the collector region. The voltage on the drain of 05 is held at the same value
as VBB .

---------------------------

The power dissipated in this resistor is:
P

= 1/2

Ld . 12 . f

loop line regulation.
With Ton = 6lts @ 48V we have:

= 16W

Due to non-linear effects the power dissipated is
about 100W.

dV

Vp-Vvalley

4.2-0.5

(dt) min

6

6

PWM CONTROLLER

using this value and Voc min = 48V
with C1 = ~C2

Operating "frequency is set by R2, C2:
With R2 = 8.2K, C2 = 1.SnF, f= 1/R2· C2 =
= 80KHz
Start-up is achieved by the network of Q4, R17,
R32, DZ1. With a start up current of 60mA we
have:
Vcc min
= 8000
R32 = 47K
R17=
60 . 10-3

0.616V/lts

= 77.81ts

dV

Voc min

R1 C1

dt

R1 C1

R1 = 220K

C1

= 3S0pF

Current limit.
The resistive divider of RS (18K) and R6 (1.SK)
provides a Vref = 0.38V on pin 7 which is the
positive input of error amplifier. For a current
limiting value Ishort circuit = 22A the R28 value
is set as:

Vstart and undervoltage threshold are set by
R11, R12. These are calculated by equating the
current through the node using Kirchoffs laws.

R28 = Vref/lsc = 18mO
the shut down current value is defined as:

V
_ 3V(R11 + R12) + 0.2mA . R11 = 13V
startR12

Vref + 0.4

44A

150= - - - - - -

R28

similary:
Voltage control loop.

3V (R11 + R12) _ 9.SV
Vuv(fault)= - - - - - - R12

The error amplifier is set-up for an added DC
gain of about 20dB and a second pole at 9KHz.
The pole introduced by C17/R16 reduces the
gain from 20dB at about 9KHz to OdB at 80KHz
to meet the loop stability criteria.

solvi ng these equation for R11 and R12 then
we get the nearest preferred values of:
R11 = 18K
-

R12 = 8.2K

Over voltage fault:
Setting the overvoltage fault to Vcc = 100V
we have:
R9+R10
100=3V----R9=33·R10,R9 =220K
R10=6.8K
R10
Duty cycle clamp - soft start:
The duty clamp reduces the duty cycle value
to below 48% when the input voltage V1N falls
belows 48V.
The divider R3, R4, is set to provide 3.9 volts
at pin 8. With V1N (min) = 46V, R3 = S07K and
R4 = 17K. With C3 = 47nF the soft start time
is about 6ms.
The feed forward function provides a variable
- slope ramp waveform on pin 10 which is one
of the inputs to the PWM comparator. The ramp
is proportional to the DC input voltage; in this
way the pulse width is immediately reduced
when the input voltage rises. The result will be
a constant volt - second product delivered to
the transformer primary resulting in good open-

______________

Fig. 5 - Gain setting for the error amplifier
GU-\273

80

v( 'pen loo

b/decade

,,~

60

error am

II

1'0...

gain
I

....
1'00..

40

.....

....
(2IT C7,R16l

20

f--20db=R16
rR1S// R14
f-I

~~~~~~?~~:~~~~

.....
.......

.....
....

I I

1K

10K

lOOK

1M

operatl ngfrequency

______________

5_/8

117

OUTPUT CAPACITORS
For the high output current of this application the
most important characteristics of an output capacitor is its equivalent series resistance, E.S.R. In
fact the voltage output ripple is mainly due to losses on the capacitor equivalent series resistance.
E.S.R. specjfication is:

This is the worst case because it has a higher primary current and consequently a higher voltage
spike on bipolar collectors (due to leakage inductance).

where:
E.S.R. < Volle
V0 = Allowable peak-to-peak output ripple voltage
Ie = Ripple current in the output capacitor
The mean current in the secondary winding of the
transformer while the output diodes conduct is:

Photograph No.4 shows bipolar device base current and POWER MOS device gate voltage with the
same operating conditions as Photograph No.1.

Imean

= Imax output /(1 -

f . ton max)

= 48A

The secondary peak current Ipk which corresponds to Ie is:
Ipk = Ie = Imean + 1/2 [.::llprim· n· tonlT - ton)] = 52.4A
With Vo

=

O.4V we have:
E.S.R. < 0.4/52.4

=

Photograph Nos. 2and 3 show the details of photograph No.1 during turn-off and turn-on respectively.

Photograph NO.5 shows the collector current, Ie
and the base current, Ib waveforms of the bipolar
device at turn-off; we ean see the high value of reverse base current 182 and the very short storage
time (about 300ns).
Photograph No.6 shows the output ripple at maximum load with V1N = 48V. (Worst case).

0.0075Q

POWER OUTPUT RECTIFIER
The power output retifier must be of a fast recovery type in order to reduce losses and the current
spike at turn-on of the power switch.
Power diodes with low forward voltages reduce the
output filter losses.
A BYV52 - 50A fast recovery low Vf diode is the
solution chosen for this converter.

Photo 2 - Turn-off, bipolar switch (lc = 5A/div,
VCE = 50V/div)
FU-l014

TESTS ON THE CIRCUIT
The power supply was tested in several operating
conditions: with minimum, maximum and rated input voltage, and with various load configurations.
Photograph No. 1 shows the collector voltage and
current waveform of the bipolar switch at maximum
load (lout =25A) and at minimum input voltage.
Photo 1 -Ie, VCE' on bipolar switch (lc=SA/div,
VCE =SOV/div)

Ie

o

Photo 3 - Turn-on, bipolar switch (lc = 5A/div,
VCE = 50V/div)
FU-IOI5

FU-l013

Ie

o
_6/_8__________________________ ~~~~~~~~T:~~~

118

____________________________

Photo 4 - la = 2A/div, Vgate

=

Photo 7 - Transient response V

5V/div

= 200mV/div
FU-1019

Va 200mV/div

Photo 5 - Storage time bipolar switch (Ia
5A/div, Ie = 5A/div)
FU-l017

;;;;;;;;;;;;;;nWflj U

II

..

;0· ... .
'

tees

~

1; '

~

r
r-

-

•

~,

I

III

i

~•••• ~
. t .•..

I

~ m

II

.... .... .... .... ""~."" .n
"·,,m
. IS

~
.. .... ....

....

o

~

.',1

~

~

~~.
. ...

Fig. 6 and fig. shows the line regulation and the
load regulation (VIN = 70V) respectively. The line
regulation is O.03%/V with an overall variation of
1.1 % and the load regulation is O.17%/A with an
overall variation of 2.9% over the operating range.
Fig. No.8 shows the efficiency of the DC-DC converter at V 1N = 70V. At full load (lout = 25A) the
efficiency is 75% and the power losses on the circuit are about 100W. The power losses are divided approximately as follows: (Table 4)
Table 4

~
..

3~ .38~~

..

~

.. ·1
:~

25W
27W
27W
5W
10W
2W
2W
1.5W

Ie
o

~
e7"". ~nS

Photo 6 - Output ripple v = 200m V/div

Losses
Losses
Losses
Losses
Losses
Losses
Losses
Losses

on
on
on
on
on
on
on
on

output diodes
transformer
the two snubbers
IRFZ42
bipolar devices
resistor R26
resistor R28
resistor R31

Fig. 6 - Line regulation
C.U·1270

line re u lot ion

IS>

ci

-

Vl

.... IS>
-lIS>
0"';

>.

Va 200mV/div

Photograph No. 7 shows the transitory response
of load regulation due to a load variation from 1A
to 25A and from 25A to 1A.

--------------

.5

~ ~~~~m~tr~:~~~~

se

55
UIN

~e

65

7e

75

8e

~5

9a

95

lee

VOLTS

______________

7_/8

119

Fig. 7 - Line regulation

Fig. 8 - Efficiency
GU-1272

~U-1271

EFFICIENCY %

load re uloU""

e

2

~

G

Ioul

8

e

1

12

14

16

18

20

22

24

26

e·

2

4

G

8

Ioul

AMPS

CONCLUSION

By using the emitter switching technique this OCOC converter design uses its switching element to
maximum advantage having a very rugged RBSOA
and the ability to operate at high frequency. This
allows the construction of a compact power supply. The technique also allows high frequency swit-

10

12

14

1G

18

20

22

24

26

AM PS

ching with a relatively simple driving circuit. In
addition to these advantages the efficiency of the
converter at half and full load under a wide range
of input voltages, is acceptable as is the output ripple. The efficiency could be further improved by
replacing the fast recovery epitaxial diodes in the
secondary winding with Schottky diodes.

APPENDIX - Components list of the circuit diagram in fig. 7

R1
R2
R3
R4
RS
R6
R7
R8
R9
R10
R11
R12
R13
R14
R1S
R16
R17
R18
R19
R20
R21
R22
R23
R24
R2S
R26
8/8

120

220Kn
8.2Kn
S07Kn
47Kn
18Kn
1.SKn
1SKn
470n
220Kn
6.8Kn
18Kn
8.2Kn
18Kn
19Kn
28.9Kn
82Kn
820n 1/2W
82n
S60n
47Kn
1.SKn
1.8Kn
2Kn potentiometer
820n
82n
1.8n SW

R27
R28
R29
R30
R31
R32
01
02
03
04
OS
06
C1
C2
C3
C4
CS
C6
C7
C8
C9
C10
C11
C12
C13

4.7Kn
18mn
270n
1.SKn
100n
47Kn

2W
SW
20W
1SW
2W

SGS2N2222A
SGS2N2907
SGS2N2222A
SGSP301
IRFZ42
3x BUX12
3S0pF
1.SnF
47nF
6.8nF
6.8nF
220pF
220pF
330pF
470pF
220nF
47p.F
470nF
47p.F

ill
SGS-1HOMSON
~l, IMiIO~[R]@rnlbrn~'ii'[R]@Ii(I]U~~

C14
C1S
C16
C17
C18
C19
C20
C21

1.Sp.F
S.6nF 300V
8.2nF 300V
47nF
100p.F 100V
100p.F 100V low E.S.R.
4.7p.F
5 x 4700p.F 16V low E.S.R.

01
02
03
04
OS
06
07
08
OZ1

BYW81 - SOA
1 N4148
1N4148
BYW80 - SOA
BYT08P - 300A
BYVS2 - SOA
4x BYW81P - 100A
1N4148
1N4112

IC1
IC2

SGS HCFF 4041B
SGS UC 3840

Tr1 core
Tr2 core
L 1 core

Siemens EC 70 N27
Siemens E 20 N30
TOK
P2616

APPLICATION NOTE

200KHz 15W PUSH PULL DC-DC CONVERTER
INTRODUCTION

The 15W DC-DC converter, shown in Fig. 1 has a
push-pull topology and works in continuous mode
with two outputs (+ 6V, -6V) and features primary
side control with full protection against fault con-

ditions. There is no insulation between the primary and secondary side.
Due to the high working frequency, the power
switches used are the new SGS-THOMSON
advanced POWER MOS type: IRFZ20 with high

1/6

121

density and bonding on the active area.
The PWM controller is the linear integrated circuit
SGS3S2SA, with dual source/sink output drivers,

internal soft-start, pulse by pulse shut-down and
adjustable dead time control.
Table 1 shows the power supply specifications.

TABLE 1

Operating mode
DC input voltage
Switching frequency
Total power output
Outputs

push-pull
10V DC to 18V DC
200KHz ±10%
1SW
+6V ±S% 0.1 to 1.3A
-6V ±S% 0.1 to 1.3A
O.OS%IV
0.2%/A
76%

Line regulation (+ 6 output)
Load regulation ( + 6 output)
Efficiency (@ 1/2 load)

Output ripple@ max load + 6V, - 6V outputs: SOmV peak to peak

Fig. 1
+12V

R9

GND

CIRCUIT DESCRIPTION

The DC input is chopped at a high frequency
(200KHz). This high switching frequency allows the
use of a very small transformer.

When Tr2 is on and Tr3 is off, diodes D2, D3 conduct and diodes D1, D4 are off. When Tr3 is on and
Tr2 is off diodes D1, D4 conduct and diodes D2,
D3 are off.

Due to the push-pull configuration of the converter
the POWER MOS devices, the transformer and the
diodes work at the frequency of 100KHz (photo 1,
2); the output filters and the oscillator of PWM controller work at a frequency of 200 KHz (photo 3).

The snubber formed by CS, R17 is used to clamp
the voltage spikes on Tr2 and Tr3 drains. With a
leakage inductance Ld = O.Sp.H, a primary current
Ip = 2.8A@ VIN MIN and maximum load and an allowable voltage spikes Vp = 30V we can calculate

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

122

~ ~~~~m~1rT:~~I1--------------

C5 as follows:

= 1.SnF
Eq. 1
The PWM controller SGS352A has the two drive
outputs in totem-pole configuration in order to drive the POWER MOS. The feedback signal for the
PWM is directly connected to pin (inverted input
of error amplifier) from + 6V output by the resistive divider R4-R1. The maximum current protection
was sensed by Tr1, R9, RS and is connected to pin
10 (shut-down).
The magnetic coupling of the series inductance in
the output filter is very important for good regula
Fig. 2

v

tion of the voltages. In this way when the load is
very different in the two outputs (+ 6Vmax load;
- 6V min load or viceversa) the indirectly regulated output ( - 6V) has a very stable output voltage
(see fig. 2).
The efficiency is excellent: 70% over a wide range (Fig. 3).
The transient response is very fast: about 50ms.
Photo 4 shows the transient response of load regulation due to a load variation from 1OOmA to 1.3A
and from 1.3A to 100 rnA ( + 6V output).
Fig. 4 shows the P.C. board (track layout) and the
component positions.

(-6) out vs. I (+8) out.

co

...!..

>

O.BO

Fig. 3

1(+6)0

EFFICIENCY (%)

u.
u.
'w

o.

2.

8.

8.

10.

14.

18.

18.

P(W)

--------------

~ ~~~~m?::~~~~

______________

3_/6

123

Fig. 4 - P. C. board and components layout (1: 1 scale)

TRANSFORMER
For this design a Tominta E core of 2E 6 ferrite material was chosen. To calculate the core size we
used the following equations:
105 . POUT
Ae . An> - - - - - - - - - =0.143cm4
1.16 . ~B . f . d
Eq. 2
where:
POUT = output 15 (W)
= flux density swing (T) we chose ~B = 200mT
d
= current density we chose = 450A/cm2
f
= working frequency of transformer
Ae
= effective area of magnetic path [cm2]
An
= useful wJnding cross section [cm2]
~B

The core size is then EE 25 x 6.5 with Ae = 0.42
cm 2, An = 0.45 cm 2 and Ae . A n =0.189 cm 4 >
0.143 cm 4.
The maximum value of primary current at V MIN is:
POUT
Ip= - - - - - - - - - - - {l'0MAX' (VMIN -

~V)

15
- - - - - - - - =2.8A
0.75 . 0.8 . 9
Where

~V

Eq. 3

and on the POWER MaS, 0MAX = maximum duty cycle, 'Y/ = efficiency.
The turns ratio is given by the following equations:
n=

.

V sec .

V MIN - ~V
- - - - - - - - . 0MAX

V OUT

+

= 1.03

Vj

Eq. 4

The number of turns Np is calculated as follows:

Np MIN =

V MIN [V] . 0MAX

~B[T]

.Ae [cm 2 ].f [Hz]

. 104 = 9.5turn
Eq. 5

The number of turns used was Np = 10 and Ns = 10
The primary inductance is then the same as the
secondary inductance.

Lp = Ls = Np2 . AL = 100 . 2400nH = 240ltH
The value of Ld (leakage inductance) was measured on the transformer:

is the voltage drop on the R9 resistor

_4/_6_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?1r'~:~~~~

124

V

- - -prim
- - - . 0MAX =

______________

OUTPUT FILTER

COMPONENT LIST

The most interesting part of the output filter is the
transformer T2 which, coupling the output series
inductance of the two outputs, gives good regulation of the -6V output (magnetic regulator).
T2 construction is very simple because the two inductance are directly wound on the same cylindrical ferrite core. Each winding is made up up of 200
turns and is: L (+6V) = L (-6V) = 17J-tH.
The four fast recovery diodes used are BYW29-100
type.
Capacitors C10, C11 are 220J-tF Roederstein EKR
low ESR type for application in switching power
supplies.
The ripple value obtained is very low: 50mV peak
to peak (photo 3).

Photo 1 - Tr2, Tr3, Vds (Vds= 20Vldiv.)

Resistors
R1
R2
R3
R4
R5
R6
R7
RS
R9
R10
R11
R12
R13
R14
R15
R16
R17

S.2K
5.6K
1.2K
1.5K
1.2K
470K
3.3K
3900
0.220
100
220
220
5.6K
5.6K
1S0
470
330

1/4W
1/4W
1/4W
1/4W
1/4W
1/4W
1/4W
1/4W

1W
1/4W
1/4W
1/4W
1/4W
1/4W
1/4W
1/4W
1/2W

Capacitors
C1
C2
C3
C4
C5
C6
C7
CS
C9
C10
C11
C12
C13

c

o

Photo 2 - Tr3 waveforms (VG= 10Vldiv, Vds=
20Vldiv, Id= 1Aldiv.)

-

100J-tF
1nF
1J-tF
10nF
1.SnF
2.2J-tF
10nF
2.7nF
10nF
220p,F
220p,F
330nF
330nF

Transistors
TR1
TR2, TR3

2N2907
IRFZ20

Diodes
o

01,02,
03,04

BYW2929-100

ICs
11

SGS3525A

Transformers
T1 core
o

T2 core

TOMITA EE 25 x 6.5
2E6 Material
cylindrical 30 x 20mm

______-------- ~ ~~~~m?lr~:~~CG~ _____________

5_/6

125

Photo 2a - Turn ON

Photo 2b - Turn OFF

Photo 3 - Ripple on + 6V and - 6V
outputs (20m V/div.)

Photo 4 - Transient response (20mV/div)

-6/-6--------------___________
126

~~~~~~?v~:a~~---------------------------

APPLICATION NOTE

DRIVE CIRCUIT FOR AN ELECTRIC FUEL CUT-OFF VALVE
INTRODUCTION

CIRCUIT DESCRIPTION

The circuit described in this application note has
been designed to drive the solenoid of an electric
valve. The solenoid has the following characteristics:
2mH@ 1 KHz
Ls
Rs
0.620
Ipull
38A per 100msec
5A
Ihold

The problem this circuit, figure 1, sets out to resolve is to produce an initial current peak of 38A
for 100 milliseconds followed by a continuous reduced holding current of 5A.
This design note uses the features of the L5832
together with two external power transistors, both
the peak and the holding current level are regulated by the switch mode circuitry of the L5832. The

Fig. 1 - IG - VG waveforms

1N4148

03
BUZ11

01
1N4148

7
9

16

R5

4,5,12,13

SU-14.73

COMPONENT LIST (See Fig. 1)

C1
C2
C3
C4
C5
01-02-05-06
02

4.7nF
15nF
1p.F
8p.F
27nF
1N4148
BYV52PI-50

03
IC1

P1
R1
R2
R3
R4

Vz =24V,1W
L5832
1000
4700 1/2W
10001/2W
6801/2W
4700 1/2W

R5
R6
R7
R8
01
02-03

0.010
15KO 1/2W
5601/2W
1.2KO 1/2W
2N1711
BUZ11 or STVH090

1/3

127

gulate ILs . During the regulation 02 and 02 recirculate the Ls current with a slow di/dt. A fast transition
from Ipull to Ihold is ensured by the action of the zener
diode 03 turning on 03. At Ihold the L5832 starts to
regulate ILS again. 02 gate is driven by the bootstrap
circuit C3, OS, R2 and C2. 01 ensures that 02 is off
when the current decreases from Ipull to Ihold ' The figures 4 and 5 show the circuit behaviour. Figure 5
has a faster time-base than figure 4 this enable it to
show the PWM control of solenoid or coil current.

duration of the peak, the peak current level and holding current level are fixed by external components.
The power stage consists of two BUZ11 POWER
MOS transistors and one BYV52PI-50 high current
fast recovery diode. The component list is given
in table 1.
CIRCUIT BEHAVIOUR
The operating waveforms are shown in figure 2.
03 energises the inductive load Ls. When the current through Ls reaches IpulI' the L5832 starts to re-

Fig. 2 - Operating waveforms

Pin 10

---------~.

IN~~T 1
CURRENT

--~,------~I'------------------------~----~
ton

(I L )
Ip

toff

--:-)J,.~

I

--r----- - t -

Coil I LS ------i.~

Pull-in

-----~. COMPARAi5R
T HRESHOLD
(INTERNAL)

~--r---------+--:"""""-H
4S0r V
I

75 mV

H o ' d - - - - - - - - 1..
~

DRlVlNgN

02 _ _ _c--_ _---..

CONDIT~~;

~ ~
-

-~- -11-

~I I- . .

1

- - -

1-: .

I
~Q.O rnA
DRIVING
CONDITION

-

~~
I

I I

I

II

1I
I

I

I

_ _11-':,1

:;

II

_ _ _----;

I
I

I

03------~~

OFF

CONCLUSION
At high current, when the current supplied by the
L5832 is insufficient to drive bipolar darlington transistors, the circuit proposed offers a solution to the

s-

t

dilema. If current regulation is not too important (steeper ramp, i.e. increased ripple) it is possible to simplify the driving of 02 and reduce the number of
external components as in figure 3.

_2/_3__________________________ ~~~~~~~V~:~~~

128

595 Ol~

____________________________

Fig. 3 - Simplified driving of Q2

pin 8

SU-1501

FigureS

Figure4

,

GU-12b3

GU-12bZ

~

20~S

~ V" ~ b

10mV

l\

\,

I=5A/div

J=5A/div

1\

\
~'"'

1=0

~

1n S
j

1=0

The power lost in power devices is:
At 5Amp (I hold)

At 38 Amp (I pull)
Po2 =2x38 = 76W

P D2 = 0.8 x 38 = 30.4W
P o3 =2x38 = 76W

[

P o2 =1.2x5 = 6W
per 100msec.

P D2 =0.8x5 = 4W
P 03 =0.4x 5 = 2W

---------------------------~~~~~~~~T:~~©~

__________________________

3_/3

129

TECHNICAL NOTE

NOVEL PROTECTION AND GATE DRIVES FOR MOSFETs
USED IN BRIDGE-LEG CONFIGURATIONS
INTRODUCTION

The bridge-leg is an important building block for
many applications such as drives and switch-mode
power supplies. Simple gate drives with protection
for POWER MOSFETs need to be designed for the
"low-side" and the "high-side" switches in the
bridge-leg. The POWER MOSFET can conduct a
peak drain current, 10, which is more than three times its continuous current rating. The POWER
MOSFET peak current capability and its linear operating mode are used to good effect in designing
device protection circuitry.
Bridge-leg configurations have a direct bearing on
the degree of protection that can be incorporated.
Consequently, bridge-leg configurations, protection
concepts and gate drives are created simultaneously to design optimised and reliable power electronic circuits.
H-BRIDGE USING POWER MOSFETs
Three POWER MOSFET based bridge configurations are illustrated in figure 1. Figure 1a illustrates a bridge-leg which uses the internal parasitic
diode as a free-wheeling diode thus reducing cost.
However, since the reverse recovery of this parasitic diode is in the order of a microsecond, the turnon switching times of the POWER MOSFET have
to be increased in order to reduce the reverse recovery current. The turn-on time of the POWER
MOSFET is controlled such that pulse current rating of the internal diode is not exceeded. Hence
a compromise is made between maintaining the safe operating area of the MOSFET and reducing
turn-on switching losses. For example, an
SGSP477 MOSFET has a diode pulse current rating in excess or 80 A and a typical diode reverse
time of 300 ns. A rate of change of current at turnon, limited to 50Alp-s, is a realistic compromise between reverse recovery current magnitude and turnon losses. Consequently switching speed is sacrificed for cost. For switching frequencies up to
10kHz, when operating on a 400 V DC high voltage rail, this configuration can be chosen as switching losses are limited, thus enabling a realistic
thermal design.

Fig. 1 - Bridge configurations
H.v.O.c.

H.V. GNO
S(-0323

a) Bridge-leg using internal parasitic diode
H.V.O.C.

Ao-J
OUTPUT
B

0--1-----..1>-1

H.V. GNO

S(-0324

b) Asymetrical bridge-leg providing dildt protection
H.v.O.C.

Ao---J
OUTPUT

H.V. GNO
S(-0325

c) Bridge-leg with blocking diodes
1/6

131

The turn-off speed of the POWER MOSFET in this
configuration has no restrictions. Thus a fast turnoff is desirable to reduce turn-off losses. As the rate
of change of current is limited, radio frequency interference (RFI) and electromagnetic interference
(EMI) are reduced.
An asymmetrical bridge-leg, illustrated in figure 1b;
can be used to limit di/dt during a short-circuit condition thus providing sufficient time to switch-off the
appropriate power devices. The inductors limit the
rate of rise of output current. They also limit the
free-wheeling current through the internal parasitic diodes of the MOSFETs. Adding external freewheel diodes and inductors increases reliability at
the cost of increased complexity. The inductors reduce RFI and EMI as the rate of change of current
is limited.
The configuration illustrated in figure 1c has Schottky "blocking" diodes to prevent current going
through the MOSFET internal parasitic diodes.
Schottky diodes are often used since conduction
losses are kept to a minimum.
Bridge configurations shown in figure 1band 1c
are considered for high frequency switching applications. The advantage of the asymmetrical bridgeleg configuration over the bridge configurations in
figures 1a and 1c is that the bridge-leg is capable
of withstanding simultaneous conduction of the two
devices in the bridge-leg since there are series inductors which reduce the dl/dt under this condition. Hence the short-circuit detection loop time is
not so critical and the devices are not stressed with
high dl/dt and high pulse currents.
The choice of the bridge configuration depends on
the technical specification of the application. For
example, if the technical specification for a specific
application can be met by using the configuration
shown in figure 1a, then this configuration should
be used as costs are lower than with the other two
configurations shown in figures 1band 1c.

2 - Gate drive parasitic inductance can cause oscillations with the MOSFET input capacitance.
This problem becomes more pronounced when
connecting devices in parallel.
3 - There should be sufficient gate to source voltage for the transistor to be fully conducting.
Fig. 2 - Gate drive circuits
a) Isolated gate drive with controllable switching times
+12V

:

t~- -,~-~_r-oo

L.",

• ___

.J

Ie,

S(-0328

b) Simple gate drive for N-Channel MOSFETS in parallel
+12V

c) Gate drive with Vos (on) control for short-circuit
protection
+12V

GATE DRIVE CIRCUITS
The POWER MOSFET is a voltage controlled device, unlike the bipolar transistor which requires a
continuous base drive. An application of a positive voltage between the gate and the source results
in the device conducting a drain current. The gate
to source voltage sets up an electric field which modulates the drain to source resistance. The following precautions should be considered when
designing the gate drive;
1 - Limit VGS to ± 20V maximum. A gate to source voltage in excess of 16V has a marked effect on the lifetime of the device.
_2/_6__________________________ ~~~~~~~V~:~©~ ___________________________
132

Bipolar. MOSFET, CMOS or open-collector TTL logic can be used in the design of simple high performance gate drives. Totem-pole buffers, (figure
2a), are often effectively used to control the turnon and turn-off individually. Figure 2b illustrates a
total MOSFET based gate drive with which the switching speeds at turn-off can be individually controlled. CMOS or open-collector TTL logic can be
used to drive MOSFETs directly, provided an Ultrafast switching speed (~50ns) is not necessary.
In motor drive applications switching speeds of 100
to 200 nanoseconds are sufficient as switching frequency is seldom in excess of 50kHz. Discrete buffers are used to provide high current source and
sinking capability when improved switching speeds
are required or when MOSFETs are connected in
parallel.
Short-circuit protection techniques similar to bipolar
transistors may be considered for MOSFETs.
Vos (on) monitoring permits the detection of shortcircuit conditions which lead to device failure. The
device can be switched off before the drain current reaches a value in excess of the peak pulse
current capability of the MOSFET. This form of protection is very effective with MOSFETs as they can
sustain a pulse current in excess of three times the
nominal continuous current. Figure 2c illustrates
a gate drive which incorporates Vos (on) monitoring
and linear operating mode detection for the MOSFET in the case of short-circuit conditions. When
the MOSFET is turned on the on-state voltage of
the device (V OS(on)) is compared with a fixed reference voltage. At turn-on, VOS(on) monitoring is inhibited for a period of approximately 400ns in order
to allow the MOSFET to turn-on fully. After this period, if Vos (on) becomes greater than the reference value, the device is latched-off until the control
signal is turned-off and turned-on again.

Fig. 3 - Gate drives for top transistor of inverter leg.

a) "Bootstrap" supply floating gate drive.

H.V.D.C.
BOOT-STRAP
SUPPL Y .........-.---~==-=-_-----,
ISOLATED

S[-0329

b) Level shifting gate drive.
H.Y.D.C. +12V
H.V.D.C.

'-CHANNEL

:T
.J

DRIVE "OSFEl

LOGIW~
SIGNAL

.1

S[-0330

c) Floating supply isolated gate drive.
H.V.DL

FLOATING
SUPPLY

ISDLATET
GATE
DRIVE

"HIGH-SIDE" SWITCH GATE DRIVES
The top transistor in a bridge-leg requires a "highside" gate drive circuit with respect to the bridge
ground. Three possible gate drive concepts are
shown in figure 3:
a) The "bootstrap" drive, requiring logic signal
isolation, but no auxiliary floating supply.
b) The level shifting drive.
c) The floating gate drive with optically coupled
isolators, pulse transformers or DC to DC chopper circuit with transformer isolation.

LOGIC
SIGNAL
S[-0331

Bootstrap supplies are particularly well suited fo
POWER MOSFET gate drives which require low
power consumption. Figure 4 illustrates two bootstrap supply techniques. Bootstrap supplies limit
transistor duty cycle since they require a minimum
transistor off time during which they are refreshed.

--------------- ~~~~~~?v~:~~n--------------3-ffi
133

Supply efficiency and maximum duty-cycle are parameters which govern the design of the bootstrap.
Figure 4a illustrates a conventional bootstrap with
an additional capacitor, C1 , which improves the maximum duty cycle as the supply is refreshed even
during transistor on time by this capacitor. Figure
4b illustrates a high efficiency bootstrap supply
which uses a small MOSFET, 01, for requlation.
In this design a low power bootstrap drives the gate
of 01.
The level shifting gate drive, (figure 3b), requires
a high voltage p-channel MOSFET which drives the
n-channel power device. The p-channel MOSFET
is switched using a resistor divider network. No floating supplies are required. A power supply of 12V,
referenced to the high voltage d.c., is used to provide positive gate source voltage for n-channel POWER MOSFET. This circuit eliminates the need for
logic signal isolation and a floating supply. The disadvantage of this circuit is the high cost of the pchannel drive MOSFET.

Fig. 4 - Bootstrap supply techniques

a) Conventional bootstrap with additional capacitor C1.
H.V.O.C.

(,

BOOTSTRAP
SUPPL Y
S[-0332

b) High efficiency bootstrap.
H.v.O.C.

Figure 3c illustrates a floating gate drive with a floating supply. This drive is the most expensive out
of the three shown in figure 3. However, the floating supply need only have a low output power, since MOSFETs are voltage controlled devices. The
advantages of this drive are its high efficiency and
unrestricted transistor duty-cycle.
S[-0333

Fig 5 - Isolated CMOS drive with Vos control for short-circuit protection.
+12V

R,

~~_:~~~~~-+--r-----~
SC-0334

R1
R2
R3

= Oependenton

=
=

application
10kO
22kO

R4
R5
R6
IC1

=

1kO

= 1200
= 56kO

=

HCF4093

IC2 = HCPL2200
C1 = 560 pF
01 = 1N41448
02 = BYT11/600

_~_6__________________________ ~~~~~~?~:~~~

134

01
02

=
=

BSS100
SGSP477

____________________________

Fig. 6 - Short-circuit conditions for an SGSP477
Vos & 10
Vos: 50VIDIV
10: 10AlDIV
t: 2uslDIV

a) Output to high voltage short-circuit
S[ 0340

A,

yr

...t

I'' ' ' ' ' "-...

..........

OJ VI

r-.

--

-

.. t

b) Output to output short circuit
S[ 0341

-

AA

'v.,

promise is generally reached between equipment
costs and the degree of protection required.
Short-circuit protection of a power MOSFET can
be achieved by either Vos (on) monitoring or a current image. In the previous section gate drives
using the Vos (on) monitoring technique were presented. Figure 6 illustrates the MOSFET drain to
source voltage, Vos, and the drain current, 10 ,
when short-circuits are experienced by the POWER
MOSFET, SGSP477, driven by the gate drive illustrated in figure 5.
The MOSFET is turned-off when the drain current
increases sufficiently and Vos (on) monitoring is inhibited for a period of 400ns to allow the device to
turn-on fully .
An inductor is used in series with the device, as
illustrated in figure 1b. This inductor saturates when
a large short-circuit current flows. The rate of change of the short-circuit current due to the saturation
of this inductor is illustrated in figure 6a and 6b.
Figure 6a illustrates the POWER MOSFET drain
to source voltage, Vos, and the drain current, 10 ,
when a bridge-leg output to high voltage supply rail
short-circuit occurs. Figure 6b illustrates an output
to output short-circuit of two bridge-legs.
Another protection technique uses the "current mirror concept", (1). An image of drain current is obtained by having a small MOSFET, (integral or
discrete), in parallel with the main power MOSFET
as illustrated in figure 7.

Fig. 7: The current mirror.

...lr-...

/

.......

r---...... ~

..,....,. II

---r-

N» 1000

o
R

Voltage proportional
to drain current

.. t

PROTECTION
Power electronic circuits such as bridge-legs are
often required to have protection against output to
output short-circuit, over-temperature, simultaneous conduction of devices in series in a bridgeleg and output to high voltage supply or ground rail
short-circuit. These power stages are generally part
of an expensive system such as a machine-tool or
a robot motor drive. Thus the additional cost of protection circuitry is commercially acceptable. A com-

SC-0335

Figure 8 illustrates a floating gate drive which utilizes a pulse transformer for transmitting simultaneously the MOSFET on-signal together and the
gate to source capacitance charging current. The
current mirror technique is used to provide shortcircuit and over-load current protection. The pulse transformer operates at an oscillating frequencyof 1 MHz when a turn-on control signal is present.

-------------- ~ ~~~~m?lr~:~~~ ______________

5_/6

135

te drive be latched-off when the drain current becomes in excess of a specificed value. Figure 9 illustrates how the M08FET, 8G8P477, is
latched-off when the drain current exceeds 10A
with this gate drive circuit.

The secondary is rectified to provide the gate source capacitance-charging voltage. The current mirror provides a voltage "image" of the main
M08FET drain current. This voltage is compared
with a fixed reference voltage in order that the ga-

Figure 8: Pulse transformer gate drive with current mirror protection for an SGSP477.
+12V

LS
ON

R1 = 4700
R2 = 1kO
R3 = 330
R4 = 2kO
R5 = 1000
R6 = 1000
R7 = 1000
R8 = 1000

R9 = 1000
C1 = 330pF
C2 = 10nF
C3 = 10nF
C4 = 220pF
01 = 1M4148
02 = 1M4148
03 = 1M4148

Fig. 9 - Over/oad current protection using current
mirror concept with the gate drive of figure 8 for an SGSP477.
S[ 0342

,.h

if

\

ContrOl!
signal

o

C'"

~

• t

Time scale: 5p,slolV -10: 5A/01V - Vos: 100VIoIV
Control signal: 5VIoIV - VGS: 5 VIOl V

04
05
06
07
08
01
02
03

=

1M4148

=

BZX85C15V

=

B88100

= 1M4148
= 1M4148
= BZX85C15
= B88100

= B88100

=
=

8G8477
BC337
BC327
BC337
BC327
BC337
BC327
BC337

CONCLUSION
M08FET based bridge-leg configurations requiring
protection and floating gate drives have been presented. Novel self-protecting gate drives for the
"high-side" and "low-side" switching have been
discussed. These drives provide protection against
output to high voltage d.c., output to ground and
output short-circuit. For the high-side switch "bootstrap" supply gate drive, level shifting gate drive
and floating supply isolated gate drives have been
compared.
Protection against short-circuit conditions has been
demonstrated using VOS(on) monitoring and the current mirror concept. Both techniques are well suited
for protection against short-circuit conditions. However, the current mirror concept also provides a sufficiently linear image of the current for regulation.

REFERENCES:
FuyG.
Current-mirror FETs cut costs and sensing losses EDN September 4 th, 1986

_6/_6__________________________ ~~~~~~?~~:~~~

136

04
05
06
07
08
09
010
011

____________________________

APPLICATION NOTE

HIGH VOLTAGE POWER MOSFET STHV102

INTRODUCTION
This note deals with the basic characteristics and
the possible applications of STHV102 POWER
MOSFET transistor, rated at 1000 V,4A.

thickness and consequently a much improved
RDS(~n) compared with existing high voltage,
POWER MOSFETs .

A completely new configuration for the edge
structure has been designed in order to obtain a
high breakdown device with characteristics of high
reliability. The advantages offered by the static and
dynamic characteristics of this device are
demonstrated by two applications.

The edge structure designed for this class of device
is shown in figure 1a - 1 b (See page 2).

DEVICE DESCRIPTION
The very first problem to be solved in the design
of a POWER MOSFET with V(BR)DSS
1000V is
to achieve a high breakdown efficiency as defined
by the expression:

>

f:=

V(BR) DSS

----------------<
V(BR)DSS theoretical limit

The ratio, 8 , is the ratio between the actual
breakdown voltage of the device and that of an
idealised planar junction.
It is well known that the closer 8 is to 1 , the more
efficient is the edge structure.
The merit coefficient, f; , is important for any
semiconductor device. When conduction occurs
by majority carriers, the drain resistance is the
output resistance of the POWER MOSFET. So a
higher edge efficiency implies the use of a drain
epitaxial structure having minimum resistivity and

It is planar, having a graded impurity concentration
in the silicon combined with a metal field plate on
the surface.
When the device is subjected to a high voltage, the
equi-potential lines are accurately spaced as a
result of the graded p type region minimizing the
electric field strength at the surface.
The very low value of the surface electric field
makes the devices insensitive to the surface
conditions, allowing significant reliability
improvement (see fig. 1 b).
The STHV102 is the first POWER MOSFET
commercially produced using the structure
described. Its dimensions are (180 x 220) mils2;
the photos 1 and 2 show its static characteristics:
the resistance of this device is typically 2.5 ohm
with a value of Ron X Area = 0.64 ohm cm 2 which
represents a notable achievement.
Photo 1 shows the breakdown characteristics after
1000 hours of HTRB testing, and is indicative of
its highly reliable structure.
Fig. 2 shows the variation of the leakage current
IDSS after 1000 hours of HTRB test: the alignment
to the line shows the high stability achieved using
the graded ring structure.
1/6

137

Fig. 1a - Cross section of the new graded edge structure

P-VAPOX
THERMAL-OXIDE

t

I

p-

P
p+

Fig. 1b - Electric field diagram illustrating the low surface electric field
(---

p

J' '" , ,,
[:C~~
100

nil

1411

I{;O

)(Hl

:H'H3

:lJD

:HII

::IbO

0151flllCE {f1ICR011S>

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _

138

~ ~~~;m?lIT:~~~~

_____________

Photo 1 - Breakdown voltage after 1000hrs of
HTRB. Vos= 200V/div

Photo 2 - Output characteristics 10= O.SA/div,
V05 = 2V/div. STHV102 static characteristics

Fig. 2 - Graph showing the effect on drain source
leakage current, loss of 1000hrs HTRB
testing

Photo 3 - Drain current and voltage waveforms
with Tease = BO°C

NOTE: dots below the line show devices where
rleakage current has decreased, dots above the line 1--1--show devices where leakage current increased. - - - r-~
Dots on the line signify no change.

-7 ~
/

--f--

,/

til

OJ

l/:

OJ

ro

=

1~102
OJ

OJ

0

0

0

:;{

E-=
ro
.-J

/.

.

~

=

V

0

Vl
Vl

/

CJ

0

/

/
102
lOSS (nA)

t=Ohr

Leakage current before test

-------------- ~ ~~~~n&~::~~Jl

3/6

139

APPLICA TIONS
The STHV 102 is ideally suited to applications
where high drain voltage, high switching speeds
and low drive energy are needed. Typically in high
frequency switch mode power supplies and in high
resolution horizontal deflection circuits.
The low value of its input capacitance - a direct
result of the optimised edge structure, allows the
component to be used in high frequency
applications, with very low switching and driving
losses.

An analysis of the waveforms gives us a better
appreciation of the advantages of this device:
a) The high drain voltage capability permits
minimum snubbing even when the transformer
exhibits a high leakage inductance (Photo 3).

1. A 150W 100kHz FL YBACK SMPS

b) The high working frequency shrinks the
transformer size and the filter circuit dimensions.
Photo 5 shows the sniall amount of charge needed
to turn off the device (120nC), implying that the
STHV102 can be easily used also at higher
frequencies.

Figure 3 shows the SMPS electrical circuit and the
photos 3, 4 and 4 show current and voltage
waveforms for the POWER MOSFET.

A high performance with a conversion efficiency
of 87% at 150W has been achieved with this
device.

Fig. 3 - Isolated fly-back Switch Mode Power Supply using a high voltage STHV102 Power MOSFET
D3
R4

E

~

(11

+f c~

:aVA

04

110/220V
A[

O-___._--l'

SMPS COMPONENT LIST
T1

R4

Rl
R2
R3
R4
R5
R6
R7
R8
R9
Rl0
R11
R12
R13
R14
R15
R16
R17
R18
R19
Cl, C2
C3
C4, C6
C5
C7
CB
C9
Cl0
C11
C12, C13
Dl
D2
D3
D4
01
02
IC
PMOS

1
68
100
750
15
47
1.5
2.7
5.6
15
1.5
39
10
15
10
2.7
0.3
1.5
9.1
220
22
10
370
1
200
250
2200
4700
100
lN444B
BYT11·1OQO
BYW77p·l00
BYWBlp·200
2N2222
2N2907
UC3B40
STHV102

ohm
K
K

1
1/4
1
1/4

W
W
W
W

K
K
K

Trimmer

M

1/4

W

2
2

W
W

K
K
K

K
K
K
K
ohm
K
ohm
K
K
uF
pF
pF
pF
nF
uF
pF
uF
uF
nF

250

V

~?

'!.

1500
25
10
25

V
V
V
V

Power output : 1 50W
Frequency : 100kHz
_4/_6 _ _ _ _ _ _ _ _ _ _ _ _--,-

140

~ ~~~~m?1T~:9~~ -------~------

Photo 4 - Drain current at turn-off with
Tease= BO°C

Photo 5 - An indication of gate charge (0 = it) for
STHV102 turn-off

2. HIGH RESOLUTION HORIZONTAL
DEFLECTION CIRCUIT.
The importance of using high voltage POWER
MOSFETs in SMPS designs is also illustrated'by
the reduced size and cost of other components and
in lower power dissipation in the snubber network.
By comparing similar flyback circuits using a power
darlington in one and a POWER MOSFET in the
other, as the switching element, shows the
following savings.

Switching frequency
Transformer volume
Filter capacitor
Snubber capacitor
Snubber losses
Relativecost of device

Darlington

POWER
MOSFET

30kHz
23.3 cm 3
10,OOOfJF
1800pF
7W
1

100kHz
6.5 cm 3

3000P. F
250pF
3W
4

The use of advanced graphic monitors and the
experimentation on telecast systems has resulted
in the Use of complex horizontal defelction circuits
and the requirement for fast and reliable high
voltage power transistors.
STHV 102 represents a good solution, in fact, it
brings together the speed of POWER MOSFET
devices and a high voltage breakdown (1000 V).
In viewofthis, its application in a 64Khz horizontal
deflection circuit has been studied.
Figure 4 shows the electrical circuit.
Photo 6 illustrates the drain current and the drainsource voltage waveforms.
The "negative" region of the drain current is that
which flows in the internal source-drain diode of
Q 1. The fly-back voltage reaches 920V. During
operation at Tc-80oC the device dissipates only
5,5W while generating a 64 KHz, 5A peak-to-peak
deflection coil current.

_____________________________ ~~~~~~~~:~~ ___________________________5_/6

141

Photo 6 - Drain current and voltage waveforms at
Tcase= aOoG

GND

HIGH RESOLUTION DEFLECTION COMPONENT LIST

R1
R2
R3
R4
C1
C2
01
02
03
IC1
L
cf

VDO
VBB

47
100
10
680
15
470
STHV102
2N2222
2N2907
TDAB140
250
3.3
120
12

ohm
"

K
pF
uF

uH
nF
V
V

1/4

W

"
"
"

40

V

1500

V

Fig. 4 - High resolution horizontal deflection circuit
using a high voltage Power MOSFET transistor, STHV102

_6/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1r~:~~4

142

______________

TECHNICAL NOTE

AN INTRODUCTION TO HIMOS
INTRODUCTION

The structure and characteristics of HIMOS (High
Injection MOS) devices, provide circuit designers
with an INSULATED GATE BIPOLAR TRANSISTOR (IGBT) capable of handling high voltages at
high current densities. The principle characteristics
of these new devices are the simplicity with which
they can be driven - similar to a POWER MOSFET
- and their low conduction losses when switching
high voltages. These characteristics, together with
their excellent ruggedness make HIMOS a natural evolution of POWER MOS for high voltage applications. Typical uses for HIMOS transistors are
switching circuits requiring high voltage and high
current, with a switching frequency in the order of
10kHz to 20kHz.

- Ie (h) is the current due to holes injected from the
substrate P+ layer, which are collected on the surface of the source region and
- Ib (h) is the current due to holes that combine
with electron current flowing through the MOS
channel in the base region of the PNP bipolar junction transistor, (BJT).

Fig. 1a - HIMOS - Basic structure

THE BASIC STRUCTURE

Figure 1a shows a single cell of the multicell structure of a HIMOS device.
Figure 1b shows the structure of a POWER MOS
for comparison. Figures 1c and 1d show two models for the HIMOS structure. The drain region of
HIMOS represents the major difference in structure from that of POWER MOSFETs.
This region contains a P+ doped layer. The presence of the P+ N junction drastically reduces the
on-resistance during conduction because conduction causes holes to be injected into the drain
which, in turn, modulates the conductivity of this
region. However, the addition of the P+ layer to
the drain also gives rise to a parasitic thyristor stucture PNPN, created by the NPN - PNP parasitic bipolar structure. In order to avoid the influence of
this parasitic thyristor we have designed a modified structure for the device and a new process for
it~ manufacture.
STATIC ELECTRICAL CHARACTERISTICS

Current flow in HIMOS devices during conduction
is shown in figure 2a. The total current, los is the
sum of the two currents Ie (h) and Ib (h) where: 115

143

Fig. 1c and 1d - Two electrical models for the HIMOS structure.

o

The presence of the P+ N junction in the drain produces an offset in the output characteristics of
O.6V-O.8V. This diode exhibits a reverse breakdown
voltage in the range 30V-70V, see Photograph 5.

E
(

Photo 1 - V(BR)

DSS

= 100V

SGSP361

Photo 2 - V(BR)

DSS

= 250V

SGSP363

Photo 3 - V(BR)

DSS

= 500V

SGSP369

B

s
SC-031B

S
1c

S(-0319

1d

Fig. 2a and 2b - Current flow in HIMOS during
conduction

2a

2b

Since MaS behave like a BJT whose base current
is provided by a MOSFET, it follows that the drain
current of the HIMOS is the sum of the bipolar base and collector currents.
Ids == Imos{1 + ,BPNP)
Eq. 1
These features underlie the advantages of HIMOS
devices particularly in respect of their current capability and low RDS (on) compared with POWER
MaS devices. A comparison of the output characteristics of a HIMOS and three POWER MaS transistor with equal chip size but different breakdown
voltages is shown in photographs 1-4
The comparison highlights two major points. The
first is the difference in the current flowing for a given gate voltage. This shows that HIMOS have a
greater current handling capability and a lower
VDS(on) than the equivalent POWER MaS device.
The low RDS (on) is due to conductivity modulation
of the substrate caused by high injection of holes
from the P+ region.
_2/_5__________________________

144

~~~~;~?vT:~~©~

----------------------------

Photo 4 - V(BRJ

DSS

= 500V

STHI10N50

Fig. 3 - Test circuit for HIMOS transistors

S[-0321

Photo 5 - Output characteristics of a HIMOS device

SWITCHING CHARACTERISTICS

Figures 1 and 3 show the HIMOS equivalent circuit and the test circuit for evaluating the switching
characteristics. When the gate-source voltage,
VGS ' is greater than the threshold voltage, VTH , the
MOS section of the structure turns on. The MOS
drain current is the base current of the parasitic
PNP transistor and it turns on the PNP transistor
in about 10nsec. HIMOS turn-on time is a function
of the impedance of the driver circuit and the applied gate voltage. Photograph 6 shows typical turnon waveforms.

TURN-OFF
Turn-off in HIMOS has typical features of both POWER MOSFET and BJT turn-off due to the use of
conductivitY. modulation for increased current density. Figure 4 shows how the turn-off can be divided into three regions.
During the first phase, I, the gate voltage decreases to a point where the Miller effect begins and
Vos begins to rise. In the second phase the gate
voltage is constant - the Miller effect. During this
period increasing Vos decreases the gate capaci-

____________________________ ~~~~~~?V~:~~~~---------------------------3-/5
145

tance and an inversion of the gate polarity, with,
respect to the drain voltage occurs as Vos rises
above the gate potential. Vos increases to a maximum value with a rate controlled by the driver circuit. These two phases, I and II, are dependent on
the MaS behaviour as the base collector junction
of the PNP transistor is reverse biased. The last
region, which defines t fall , can be divided into two
parts. The first part is the MaS turn-off and is very
fast. The second is slow and starts when the MaS
channel is closed and the PNP transistor has an
open base. This terminates turn-off by recombination of excess carriers. The first part of the fall time can therefore be controlled by the gate drive
circuit. The second part is dependent on the PNP
transistor lifetime and gain.

in figure 6 and confirms the correlation between
tfall and the PNP transistor gain. The lifetime of the
minority carriers in the N- region versus tfall is
shown in figure 7.

Fig. 5 - Variation of t fall with Vds
GC0884

O.BO

0.70

Id=10 A
Vg =10 V
Rg=100 ohm
L=1BO }JH
T(=25 °C

/
....... /

Vi 0.60
2-

Photo 6 - HIMOS turn-on wave form

0.50

/
/'"

V

0.4 0
50

100 150 200 250 300 350 400 450 500
V ds (V)

Fig. 6 - Variation of t fall with temperature
GC-0885

Vds =400V
1.BO Id=10A
Vg=10V
L=1BO}JH
1.60
Rg=100ohm
1.40

VII

~ 1.00 ,........- -

..- MOSFET Turn Off
i (t)

./V

Vi 1.20
2-

Fig. 4 HIMOS turn-off showing three turn-off regions

O.BO

/""

V (t)

L

L

/

V

0.60

Off

20

40

60

T

II

Figure 5 shows how t fall varies with Vos· As Vos
increases so the gain of the PNP transistor increases. This is due to the reduction of the base thickness caused by increasing the depletion region.
The dependence of t fall on temperature is shown

146

100

120

140

LATCH-UP AND SAFE OPERATING AREA
The device current begins to loop regeneratively
when the total current reaches the latch-up value,
Ilateh. If the current attains this value then gate control is lost. Looking at figure 1c we have:

III

_4/_5__________________________

BO
(C)

Is

=

[anpn ·Iell [1 - (anpn + apnp)l

where apnp and anpn are the gains of the transistor structures and II is the recombination current.
The device enters into a regenerative loop and it
fails when apnp + anpn ~ 1. In order to redu-

~~~~~~?v~:~~©~

----------------------------

ce apnp and anpn so that their sum is less than
1, some stuctural and processing changes in fabrication of the device are necessary. By using appropriate doping and shorting the base-emitter
junction (POWER MOSFET body-souce) it is possible to reduce aPNP. aNPN is reduced by the introduction of a buffer heavily doped with N + and
the introduction of lifetime killers.

nally, from an electrical point of view, latch-up can
be seen in the safe operating area curve, figure 8,
for a working temperature of 100°C.

Fig. 9 - HIMOS reverse bias operating area
ut 0690

1\

Fig. 7 - Variation of t fall with the lifetime of the minority carriers in the n- region

10,1
6

u[-0886

2.20

Vds =400 V -----I----+------t--j----J
Id=10 A
2.00
Vg=10 V
1--+---1--+---+----+- , Rg=100 ohm
1.BO
L=1BO}JH
- - --1---1---1--+--+----1
T=25 O(
1.60 i----r-----r---I'--j--- ~--

-t7-

-:;11.40

!------ - - 1 - - -

.3 1 . 2 0 - - -

-v:-/-+-+------I----I

17

~ 1. 00 I---t----t---t-------T//-+--+-+---+---I-------l
o.BO

100,
TJ 'i100 0 [
Rg-100 ohm
L=1BO )JH

,
6

2

1

,
,
6

2

W2

100

2

o 50

100 150 200 250 300 350 400 450 500
LIFETIME (nsec)

Fig. 8 - Variation of

Ilatch

'6

'10 2

2

'Vos(Vl

with temperature

(I I

r-------'\

50

['..,

i".

40

"-

vd ,.,

S[-0322

f---t-+----I--+-~_+~-f---j-~--I-----

r--....

......

-=-=

20f---t-+~--+---j-~-+-+--I--+-~~--I-'-f--~
10

2

Fig. 10 - Test circuit HIMOS reverse bias safe operating area

r---r----- - -f--+--+--f--70 t----C--+--t--+--j--i--- - - r - - - - Vds =400V
Vg =15V
f----l---+---t--t--t-+--l---+-+-+-+-I L= 25 OuH
60
Rg=100 ohm

~30

101

t----t----+--v---t----t--j--+-t----t------l

0.60 +---+----+-+---+--+--!--I--I----+-------1

~

'6'

f---t-+--I--+---j-~-+-+-+-

20

40

60

BO
Tj tC)

100

-,----r---

120

140

160

Ilatch decreasing with temperature, figure 7, or with
increasing Vos is correlated to the gain variations
they cause in the two parasitic transistors. Exter

-------------------------

CONCLUSION

HIMOS devices are a natural development of POWER MOSFET transistors for use in high voltage
applications in the range of 500V -1000V. They present the user with high current devices which have low Vos (on) typical of bipolar devices and the
simplicity of drive typical of POWER MOSFETs.
Increasing the latch - up current and reducing the
lifetime of the minority has opened up new field for
HIMOS.

~~~~~~~~:~~4

___________________________

5_/5

147

W
~L

SGS-THOMSON
~D©rn3@rn[Lrn©LFrn3@~D©~

TECHNICAL NOTE

AN ECONOMIC MOTOR DRIVE WITH
VERY FEW COMPONENTS
INTRODUCTION

The main objectives of this design are the economy and circuit simplicity which enable costs to be
reduced to a minimum. For this reason the design
is particulary suitable for domestic appliances powered by the 220 V AC mains. In this area, characteristics such as low cost, simplicity (and
consequently greater reliability) have priority.
With these objectives the choice of the power
switch is very important because the complexity of
the drive circuit, the number and the power of the
auxiliary supplies and the protection networks, depend on its characteristics. These factors lead to
the decision to use a HIMOS device (an IGBT) as
a power switch. The main characteristics of a HIMOS device are that:
- It switches high current with very low ON resistance, similar to a BJT (bipolar junction tranSistor).
- It is very rugged and has very large safe operating areas similar to Power MOSFETs.
- It has high overload current capability.
- It is easy to drive (like Power MOSFETs) conse-

quently it is possible to drive it directly by means
of popular linear IC.
These characteristics are very suitable for motor
drive applications in general and make HIMOS the
new way of power switching in this area. An additional factor is that a HIMOS device has a smaller
chip area than Power MOSFETs, or bipolar transistors with the same ratings (V(BR) oss and los maJJ
CIRCUIT DESCRIPTION
This DC motor drive circuit has a single switch topology and works in current mode; an STHI10N50
HIMOS is used as the power switch. The complete circuit schematic is shown in figure 1. Its main
features are as follows:
- 300V, 4A DC permanent magnet step down motor drive
- Current mode PWM control
- Output current adjustable pulse by pulse from 0
to 4A
- 220 AC ± 10% supply voltage
- 6KHz switching frequency
- From 6% to 95% operating duty cycle

Fig. 1 - Circuit diagram of the HIMOS motor drive

(1

220V
A(

15nF
R1
56K
R5

R4
10.n.

TR2
2N2222

18k

D( MOTOR

R6

13K

UC3842

R8

(9

47.n.
R7

10nF 02

STHI10N50

1K

BYT03400

R10
P1

C3

DZ1

(4

2.2uF

18V

10nF

22K R9
100K

(5
220pF

(6

(7

15nF

1nF

R11

18K

R2

R3

0.22n

390.0.

1/4

149

The PWM controller IC used is STUC3842. It is a
popular, economic eight pin IC widely used for offline and DC to DC converters. STUC3842 provides the features necessary to implement fixed frequency current mode control scheme with a
minimal external parts count.
Internally implemented circuits include under voltage lockout featuring start-up current less than
1rnA, a precision reference, logic to insure latched
operation, a PWM comparator which provides current limit control and a totem pole output stage. It
can directly drive the gate of the 500V 10A HIMOS
switch STH110N50. The choice of this IC and its
current mode working matches the requirements
of economy and simplicity of this application.
Fig. 2 - STHI10N50 output characteristics
(I step = 6V)

Fig. 3 - STHI20N50 output characteristics
(I step = 6V)

_2/_4 _ _ _ _ _ _ _ _ _ _---:-_ _

150

The motor speed is controlled by the error voltage
which is variable from OV to + 5V, and is applied
to pin 2 of the IC by means of R9. This voltage sets
a constant current level at which the IC interrupts,
pulse by pulse, the current in the power switch: the
PWM control is therefore a "current mode" type.
The HIMOS switch used is STH110N50, for higher
power motors STHI20N50 can be used simply by
changing resistors R2 and R6 and free-wheeling
diode 01. Figures 2 and 3 show respectively the
output characteristics of STHI10N50 and
STHI20N50 devices.
An important part of the circuit is the snubber consisting of R3, C9, 02. This accomplishes two
functions:
a) it provides power for the UC3842 using the charge current of C9 during the STHI1 ON50 turn-off;
infact the IC requires about 20 rnA DC as supply current and cannot be biased simply through
resistor R1 which should be 10Kohm 10W. Instead, using this active snubber, R1 can be set
to a value of 56Kohm 2W in order to apply the
start up power to the UC3842.
b) it reduces the energy dissipated in the power
switch during turn-off; consequently a smaller
heatsink can be used for STHI1 ON50 giving additional cost reduction.
To insure a continuous power supply to the IC,
using the active snubber C9, R3, 02, it is necessary that the capacitor C9 must be completely discharged before turn-off. Because C9 is discharged
by means of R3 during the ON phase of the power
switch, there is a limit to the minimum ON time
which cannot be less than 8 J-ts, consequently the
minimum duty-cycle is 6%.
Considering a peak current.lp = 4A, a fall time t f =
1.5 p,s and the minimum ON time of 8 p,s, the values of the snubber components are calculated as
follows:
C9 = (Ip·t f)/2Vcc = 10 nF
R3 = Ton (min/2. C9 =4000hm
The power dissipated across R3 is:
P = 1/2· C9 . V2 . f = 3W
The adoption of this snubber does not affect the
efficiency of the circuit during normal operation because its power dissipation is very low and it has
the additional benefit ·of using this energy to supply the IC so reducing the dissipation in the power
switch. The extra cost is negligible with respect to
the cost of a transformer for supplying the low voltage power to the IC.
The network of Tr2 and R6 adds a fraction of the
ramp oscillator voltage to the "current sense" si-

~ ~~~~m~1Y~:~~~

--------------

gnal at pin 3 of the IC (via transistor Tr2 2N2222)
to allow slope compensation. Consequently dutycycles as high as 50% can be obtained.
Diodes D1 (BYT08PI400) and D2 (BYT03400) are
fast recovery types and have been used in order
to minimize stresses on the power switch.
MEASUREMENTS ON THE CIRCUIT
The DC motor drive was tested in several operating conditions. These were maximum and rated
output current and in blocked rotor conditions.
The waveforms of the drain voltage, Vos, drain
current, 10 , and gate voltage, VG, both with and without the snubber can be seen in figures 5 and 6
respectively.

Fig. 4 - STHI10N50 turn-off with snubber Id=
1Aldiv, Vds= V50ldiv, Vg =5Vldiv

Il!i~
.~
..

100·'·

....

.... .... ~
... .... .... .... ....

90

~

:= .:."'1t'1

r:4

~

p:.; ~
10
~I':~.

~

~

~
.... . ... ....

-

• .

,~

(~u

~

Fig. 6 - STHI10N50
Vds =50Vldiv
..,;;:

11

1110···

.. ~
..

'0

:g.......

20

ft.

.... .... .... .... ....

.... ....

~
....

rt'"

~ ~
~
r

II)

•

~

~~
~

5 ~U

:,[

20 ns

____________________________

....

1Aldiv,

~
~

. ... .... ....

.~

~

:.::

.... .... ~
... . ... .... ....
... . ... .... ~

o.u

~~

~···fJ . ... ~...

~~~

-

IJI."

... ... .... ....
~
... .... .... .... ~

OmU

...,;

....

Id=

~

306 U

2
.-

-

~I~

10

'

10

""""""","'"

0"1.···

....
10Q··'

:'J

rJ

turn-on

...

~
.. ~
... .... .... ....

Fig. 5 - STHI10N50 turn-off without snubber Id=
1Aldiv, Vds= 50Vldiv, Vg = 5Vldiv

~~

Here you can see the typical behaviour of a HIMOS
device at the turn-off when typical features of both
Power MOSFET and BJT are involved. The storage phase of the turn-off is dependent on the MOS
behaviour as the base collector junction of the PNP
transistor is reversed biased: the gate voltage decreases to a point where the Miller effect begins
to control the current in the drain and Vos start to
rise. The fall time phase can be divided into two
parts: the first part is the MOS turn-off and is very
fast, the second is slow and starts when the MOS
channel is closed and the PNP transistor has an
open base turn-off and is dominated by recombination of excess carriers. Therefore the first part
of the time is controlled by the gate drive circuit,
the second part is dependent on the PNP transistor life-time and gain.
Since the PNP gain increases as Vos increase,
the fall time consequently varies with Vos. Therefore, when the snubber is used and the VDS slope
is dominated by the capacitance, the fall time region due to the MOS is more evident (figure 6).
Figure 6 shows the turn-on behaviour of the HIMOS: it very fast (t-rise 30ns) and, as with Power
MOS devices, is a function of the impedance of the
driver circuit and the applied gate voltage.

5 ~U

..

20

•

Figure 7 shows the behaviour in the case of a blocked rotor and with the current control set at the maximum 4A. This condition was simulated, as worst
case, with and inductance of 300uH and a resistance of 1 0: the current does not exceed 6A. The overcurrent of 2A, with respect the control current of
4A, is due to the delay introduced by the network

~~~~~~~~~:~~©~

___________________________

3_/4

151

of R7, C7 of about 2 p,s. This filter network is necessary to suppress the leading edge spikes on the
IC current sense comparator input.

The losses in the circuit, for the maximum rating
of each component are approximately as follows:
P(R1)=2W, P(R3)= 3W, P(R2)=3W, P(D1)=4W,
P(Tr1) = 7W.

Fig. 7 - Blocked rotor' beheaviour Id= 1A1div,
Vds= 50Vldiv, Vg = 5Vldiv

CONCLUSION
A 300V 4A DC permanent magnet single quadrant
motor drive was developed with objectives of maximum circuit simplicity and economy. Consequently a current mode PWM control with a popular IC
was adopted and an STHI10N50 HIMOS (an IGBT)
was used.
The low drive energy requirement due to the high
input impedance of the HIMOS allows substantial
cost reduction in the control circuit. Conductivity
modulation of the drain produces a low ON resistance, an essential feature to work with high peak
currents in the switching element. The ruggedness,
due to the excellent safe operating areas, is especially relevant for motor control applications.
The easy drive, high current handling and excellent ruggedness make HIMOS the new way of power switching in the motor control field.

100,"

n

,Ill
,I

3

10,:t U

....

....

'P' !:ij
, ,

I
~
.. ,

5
..II!
...

~'I'

.... .... .... ....

I

11!
I

I

::::I,' ,

~t;f~
j

rim

r;no,
,~~

..."

11

~,u
.,.

.... .... . ..l!. . ...

Om:!!

E!lu :,r l1

~,

~..:

~
...

50 ns

. ...

....

_4/_4_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1Y~:J?~

152

______________

TECHNICAL NOTE

IMPROVED POWER MOSFET RUGGEDNESS
IN UNCLAMPED INDUCTIVE SWITCHING
INTRODUCTION
Recent development work by SGS-Thomson has
resulted in the production of POWER MOSFETs
with improved performance in terms of unclamped
inductive switching at high current values. This has
lead to the production of a new class of POWER
MOSFET device that operates reliably in application circuits even when accidental overvoltages
may occur at high current, caused as a result of
the high switching speed of POWER MOSFETs
and random supply voltages.
POWER MOSFET devices have a clamped ES/b
safe operating area that extends to the breakdown
voltage. In some applications, such as SMPS and
Motor Control, ruggedness of this nature can be
insufficient because, during turn-off, the device can
be stressed by random overvoltages at high drain
current values so creating avalanche conditions.
SGS-Thomson is introducing this new POWER
MOSFET generation guaranteed in terms of an unclamped inductive switching test (U.I.S.). The latter parameters meet real operating conditions
found in Power applications.
USEFUL PARAMETERS IN POWER MOSFET
RUGGEDNESS
POWER MOSFETs are very fast switching devices
and can generate high values of dlldt (over
1000Al/ts). For this reason, layout leakage inductance can create dangerous overvoltages. Photo
1 shows a POWER MOSFET drain current and voltage waveforms in a typical switching circuit (see
figure 1). These current and voltage waveforms are
typical in POWER MOSFET applications. It can be
observed that the overvoltage exceeds the POWER
MOSFET breakdown for very short times but at very
high currents.

Photo 1 - 1= 5A/div, V = 20Vldiv
Turn-off with parasitic inductance
~ O.15uH e ~ 40uJ

-

iI ::J

•••

11=

:-

----.~

_.

III

- - III

V(BRIOSS

I

Vpp

IOFF

... ~1=

n

Vee

I••

.

~

2::;:

. · l·1 r.r."l I~ ~
Ito,;"j

~ 119

with a small duty cycle, but the initial breakdown
currents are almost equal to those at turn-off.
It is important to test the device under actual operating conditions of voltage, current and working·
temperature typically found in actual applications.
THE FAILURE MECHANISM
Figure 2 shows possible current paths during
breakdown. Current flows through the diffused body resistance and generates a voltage drop which

Fig. 1 - Typical circuit where breakdown can occur during turn-off

1

0

Vee

1

The energy dissipated in breakdown conditions in
one cycle is very low,
V(BR) DSS
E= 1/2 Ll2 _ _
-'-_ _ = 40 pJ,
V(BR) DSS - Vee

can be greater than the parasitic bipolar transistor
threshold voltage. If turn-on of the parasitic bipo1/3

153

lar transistor occurs, the whole current is focused
into a few cells destroying them. At increased temperature, this phenomenon happens at lower current values because the parasitic bipolar transistor
threshold voltage decreases.

abruptly, and as a consequence, the critical current decreases so that, if critical current becomes
less than the discharge current the device fails.
Therefore it is possible to dissipate high inductive
energy at a low current.

Fig. 2 - Cross section of a POWER MOSFET showing possible current paths during sustaining

U.I.S. TEST
Fig. 4 shows the current and voltage diagrams for
the U.I.S. test.

Fig. 4 - U.I.S. test waveforms and test circuit

POLY51l1CON GATE

.---_+_--I'Oms

1-+-+++I++I---+-~l.2!'OOm

DC

~

V

200

ns

0.25

",C

I"!II! I

T

II
I

4

J

T

l-

i
3

10 2

'\

I\.

1,\

0

'\.

I

1111

10

'\

20

10'

10
I

10°

tplsl

Transfer characteristics

Output characteristics
YGs =20Y

"'~~\k.~n-

R'~~

~~~
LSE

10

lolAI

0

1111

,

2.6

I

IK/W I

10°

A
A

Derating curve
(standard package)

Thermal impedance
(standard package)

Safe operating areas
(standard package)

30
120

1,\
Tcase l CI

100

50

O

Transcond uctance

III

Prl- 9Y
rill I i--- BY
il [l /~
II V

10yfh
50

40

V//

30

/I
/

20

10

,fl /

IV
Il/"

/'

e-r- 7Y

I-f---Hl-+++++++-+-+-l

15 f-t-+-++++++++-++-t+-t-+-ll-:b~

10 J-+-+-++++++-tcl+-t-+-+-t-H--t-+-H

10 J-+-+-+++-h!"'+-I-+-+-+-+-+-+-+-J-+-H

15

Yos =25Y

Tcas l!=25°(

-

6Y

5Y

........ 1-

IV
IV

4Y
5

10

YoslYI

--------______

~ ~~~~m?tr~:~~~~

15

lolAI

______________

3_/5

169

BUZ11 - BUZ11 FI
Static drain-source on
resistance

Gate charge vs gate-source
voltage

Maximum drain current

vs temperature

Ros1oo )'-'--'--'--'--'--'-'-'-'-":':'-'-;-'-=--'
Im(l) )--t---t---t-+-+-+-+-+-+--+-+--i

IO(

A1

VGS(V)

1-+-+-Iki....... -+-+-I--t-t-_+-_-t-t--+-+--t--1
1

35

t---II---I---t---t---+-+-t-tl---l~~----­

15

)--t---t-t-+-+-+-+--j-~--+-~---

Vos=10V

30r-+-+-+-+-+-+-+-+-+-+-~~
- . _..

VGs =10V

25

10

20V

20

10

30

20

40

50 lolAI

50

Capacitance variation

100

20

T[(°[l

VGSlth)
(norml r-+---+--+-+-+---+--+--+-+--l

Tcase=25°(

f=lMHz
3000

2000

1000

1.2 I--+--+---+---.JI--+--+---+--II------

VGs=OV

1\
\

\

'-...

~

r-10

0.81--+----+---+--+--+-- - ........
--t...........
---f''''''--t---t

(iss

1.5

f----)---

--

~ t-- t--

1.0

lo=lmA

I--+--+-:"""'-I---\--- -

Crss

20

15

25

Vos=VGS

0.61--+--+---1--+--+---+---.J1--+--1

30

35

c------

If--- TJ =25°[

I

II
1.2

1.6

VsolVI

_4/_5 _ _ _ _ _ _ _ _ _ _ _ _ _

0.5

V

~ ~~~~m?1r~:J?CG~

V
-

V

/

--=_=

VGS=10V
lo=15A

--

~--t--I-- --~l--

-100

VoslVI

/

0.8

L
/

IsolA)

TJ =1500[-;

I-+--+---+-I-------

--~/-----

Source-drain diode forward
characteristics

170

Inormll--+--i_--+__ f_t-+-_+---+_I-+JI

. . . . . . 1"'--..

\ '\. ""-

0.4

ROSlonl ,-,---,--,---,,-,--,-----,----,-=T"-'---l

1.01-l---l--+...........
----+.........
--"""k,--l----I----+--+___-+----I

"'- """'-

40

Drain-source on resistance
vs temperature

Gate threshold voltage

vs temperature
[lpF )

lo=45A

/

10
0

40V

,/

1

\
f-- -- c--- -_.

t---.--

V

\

10

) - - _._---

15

~

/

~ /"

-50

BUZ11 - BUZ11 FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

T j - Tc
Po= - - - - Rth

It is often possibile to discern these areas on transient thermal impedance curves.

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

from this lOmax for the POWER MaS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax"':;

~

ISOWATT DATA
Safe operating areas

Derating curve

Thermal impedance
/

Pto1 1W )

6"05
__ __ _

_

III

.... 100s

I I

10-

~

6"~

l-

v

1~

~

V

~

0"0.0

1msFf
10msL

6"0~

100ms

/J;r

1°:~1111~f'..!1.
10 1''-;;-0°_~----'---LL..L.c.w-,-_~-'---JL-JI..J...!..W1
"
'VosIV)
, '10
'

50

V

2.5us

AM

~
2

--------------

40

Zth=KRthJ-C

s=*

r-

-tJ

~fr[I[~TII

""

30

JLrL

........

i"--

20

T
10

~ ~~~~m~1r~:~~~~

""

"
______________
o

10°

",

tpls)

o

25

50

75

100

125

Teas.IOC)

5_/5

171

BUZ11A
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ11A

•
•
•
•

Voss
50 V

ROS(on)
0.06 n

10
25 A

HIGH CURRENT
ULTRA FAST SWITCHING
VERY LOW ON-LOSSES
LOW DRIVE ENERGY FOR EASY DRIVE

INDUSTRIAL APPLICATIONS:
• AUTOMOTIVE POWER ACTUATORS
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications.
Typical uses include power actuator driving, motor drive including brushless motors, hydraulic actuators and many other uses in automotive
applications. It also finds use in DC/DC converters
and uninteruptible power supplies.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos

Drain-source voltage (VGS = 0)

50

V

V OGR

Drain-gate voltage (RGS = 20 Kn)

50

V

V GS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 25°C

25

A

10M

Drain current (pulsed)

100

A

Ptot

Total dissipation at T c < 25°C

T stg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

75

W

-55 to 150

°C

150

°C

E
55/150/56

1/4

173

BUZ11A
THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

1.67
75

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
10= 250 p..A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 1 rnA

VGs= 10 V

10= 15 A

Vos= 25 V

10= 15 A

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30 V
RGs= 50 D

10= 3 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

50

250
1000

p..A
p..A

±100

nA

4

V

0.06

D

ON

VGS

(th)

Ros (on) Static drain-source
on resistance

2.1

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

4.0

mho

2000
1100
400

pF
pF
pF

45
110
230
170

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4_ _ _ _ _ _ _ _ _ _ _ _ _

174

~ ~~~~m~1J~:~~©~

--------------

BUZ11A
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 50 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

=

di/dt

Iso= 25 A

100A/""s

Thermal impedance

Safe operating areas

70

I

40

/ J
J /

30

~

flV /'

20

10 ,

lilY

/

""11 I-"""
~~ ~

""C

IIIIIIII
10'

10'

J Tl

f=OO'f-

IIII

2

\.

10

3

10'

'\
'\

r\.

20

10

t

IIIIIIII IIIIIIII
10'

--~

'\

30

~PD~

~GE ~tfl~f

-~

,-- \:~

10°

100

50

tplsl

Tcasel"CI

Transconductance
I

10V

V

I

20

I

Vos=25V

BV
15
7V

I
I

10
/

5V
4V
5 VoslVI

16

12

. . . .V

1/

II

6V

J.~v

IV

0.25

40

I

ile

Transfer characteristics

/1'"

........

ns

50

lolAI
VGS =20V

50

200

'\

t:;;
D=0.5

lolAI

V

'\

60

Output characteristics

2.4

Ptot lW I

IK/WI

10-

A
A

Derating curve

CthJ-C

10'.m=g'mll

25
100

./

/
I

/

Vos=25V

10

15

20

lolAI

-------------- ~ ~~~~m~iJr:1:~~~~ ______________

3_/4

175

BUZ11A
Gate charge vs gate-source
voltage

Maximum drain current
vs temperature

Static drain-source on
resistance
Rosi • nl
Inl

ID1AII-+-H-++-+-+-+-++--++-+-+-+-+-HH
301-+-H-++-+-+-+-++--++-+-+-+-+-HH

G(-06Z7

I

lo=45A
0.10

25 1-+-+o.H-+-+-+-+-++-H-+-+-+-++-HH

Vos=10V

5

'::/V

./

~V

0.08
0
VGs =10V

0.06

b--- ~

0.04

.....

V
1--1--'"

5
20V

20

40

60

80

100 lolAI

50

100

150

(lpF I
Tcase=2S0(

1.1 -++"1.-+-+++-1-++-++-1 Vos=VGS
lo=lmA

f=1MHz

~

vDS=ov

'\.,

\ 1\"\ . . . . . r-\

i'r--

-

FIl~~~II~~[[Il~~~IIjj~~§

1.5

H--HI-+H-HI-++++f+-IA+J.--+.-j

(rss

--r-- r- (oss

--

20

r-- ~~
30

40

VoslVI

0.7 LL...L....l-L.L.L--LJL.L...L....l-LLl..--L.l-.L.L.LJ
-50
50
100

Source-drain diode forward
characteristics

_4/_4 _ _ _ _ _ _ _ _ _ _ _ _ _

176

Drain-source on resistance
vs temperature
ROSI.nl

1\

,,~
40 0

40

Inorml ~

\

80 0

20

TcloCI

Gate threshold voltage
vs temperature

Capacitance variation

120 0

I

7

If

0.02

160 o

40V

II

~ ~~~~m?tr~:J?~~

-50

50

BUZ11S2
BUZ11S2FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE

BUZ11S2
BUZ11S2FI

Voss
60 V
60 V

ROS(on)

0.04 {1
0.04 {1

10

-

30 A
20 A

• VERY LOW ON-LOSSES
• LOW DRIVE ENERGY FOR EASY DRIVE
• HIGH TRANSCONDUCTANCE/C rss RATIO
INDUSTRIAL APPLICATIONS:
• AUTOMATIVE POWER ACTUATORS

N - channel enhancement mode POWER MaS field
effect transistors. Easy drive and very fast switching times make these POWER MaS transistors
ideal for high speed switching circuits in applications such as power actuator driving, motor drive
including brushless motors, hydraulic actuators and
many other uses in automotive applications. They
also find use in DCIDC converters and uninterruptible power supplies.

TO-220

ISOWATT 220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS

VOS
V OGR

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 K{1)

VGS

Gate-source voltage
Drain current (pulsed) Tc =25°C

10M

120
BUZ11S2

10 -

Ptot Tst9
Tj

Drain current (continuous) Tc = 30°C
Total dissipation at Tc <25°C
Storage temperature
Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

V
V
V
A

60
60
±20

30
75

BUZ11S2FI
20

A

35

W

-55 to 150

°c

150
E
55/150/56

°c

- See note on ISOWATT 220 in this datasheet
June 1988

1/5

177

BUZ11 S2 - BUZ11 S2FI
THERMAL DATA-

TO-220

Rthj _case Thermal resistance junction-case
Rthj _amb Thermal resistance junction-ambient

max
max

ISOWA TT220

1.67

3.57

°CIW
°CIW

75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
~8R) oss Drain-source

10= 250 p.A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos = VGS

10= 1 mA

VGs= 10 V

10= 15 A

Vos= 25 V

ID= 15 A

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30 V
RGs= 500

10= 3 A
VGs= 10 V

V

60

breakdown voltage
loss

IGSS

250
1000

p.A
p.A

±100

nA

4

V

0.04

0

ON

VGS(th)

Ros (on) Static drain-source
on resistance

2.1

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

mho

4

2000
1100
400

pF
pF
pF

45
110
230
170

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

- See note on ISOWATT 220 in this datash~et

_2/_5__________________________ ~~~~~~~V~:~~~~ ____________________________
178

BUZ11 S2 - BUZ11 S2Ft
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 60 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

Iso= 30 A

Safe operating areas
(standard package)

VGs= 0

di/dt = 100A/II-s

30
120

A
A

2.6

V

200

ns

0.25

II-C

Derating curve
(standard package)

Thermal impedance
(standard package)

GU-1390

Ptot lW )
70
60

10;~~III~-~-I-~-1-12.SIP'
~

"-

I,

"-

50
1-1- - -

'Ou,

40

III

"-

30

'\

,

20
10

10°' "'10'

'\

lOOms

"-

100 '--:---:--L..L..L~.J-'-;------,----,-,-u.::.:0[.Ll.J111

"VosIV)

Output characteristics
lolA)

VGs =20V

Transcond uctance

Transfer characteristics
lolA) r-+--t-+-t-+-+-+++-H-+-++-+-+-t-+-lrl

/

Pif- 9V
II I-- BV

II 'J
I, /) /
/IV! /

40
30

I

11/

10

Teasel [)

10Vlf-J

50

20

III

100

50

/

1'/ /'

IV

I~V
IV
V

--

,..-

>-- -7V

15

/fo"'"

-

Tcase::::: 2SO (

6V

10

VoS=25V I-+-Hl-H--H--H--H-H

r-+--t-+-t-+-t-+-+-tIf-t-t-t-+-+-t-+-tr-+--H

15

H--t-++--+-+++++++-++-+-+-I-±-:I-I

10 f-+-+-+-t-+--ht'+-++-++-+-+-t-+-lr-+--H

H--l-h!'-t-f-Hf-H-HVos=25V
5V
4V
5 VosIV)

10

15

lolA)

----------------------_______ ~~~~~~?V~:~~©~ ___________________________

3_/5

179

BUZ11 S2 • BUZ11 S2FI
Maximum drain current
vs temperature

Static drain-source on
resistance

Gate charge vs gate-source
voltage

GU-1393

lOlA)

ROSlonl

I--t-t-+--+---j-+-+-+-+-+---I--I
351--t-t-+--+---j-+-+-+-+-+---I--I

(miL)

I'

)

~

I"

5

/
~ /'

Vos=10V
20
0
20V

20r-t-t-r-r-+-+-+-+-+-+-~4

V
40V

~/

1\

10

\

151--t-t-+--+--+--+-+-+-+-+-·+-·~

5

/

lo=45A

/
50

Capacitance variation

100

(norm )

f=lMHz
3000

2000

r-.

[iss

..............

~
~rss

10

15

20

1.0

V

/

1/

V

--f---

~

---VGS = 10V
-lo=15A

/,/

lo=lmA
4

25

30

35

VosIV)

/

VI I--- T =25°C
J

I

I I
1.2

.......

r--

~~~

0.8

.......1"---

L

O. 6

ISO(A)

0.4

...........

Vos=VGS

Source-drain diode forward
characteristics

TJ=150oC-,

..........

8

"" --- -

""""-.,

180

[""...1'-..

1.0

1\

~'\

100~

......

!\
\

..........

J

V

1.5

1.2

VGs=OV

GC-OB73

ROSlon )

VGSlthl
Inorm)

Tcase=25°[

40

Drain-source on resistance
vs temperature

Gate threshold voltage
vs temperature
GC·0523

C(pF )

20

TC ('C)

1.6

VSO(V)

-50

50

100

0.5
-100

-50

50

100

TJ (C)

BUZ11 S2 - BUZ11 S2FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 i~ fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better the
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:
1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth = RthJ -C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

from this lOmax for the POWER MOS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax";

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
/

GC-04IS

6~0.5

50

....

2.5ps

II

10ps

~

lOOp

IH1
~

lost
1OOm5

10-1

~

0.(. OPERATION

'---.......L.---'-L.L.l-LLL'--.......L.--'-L..LJIu.IJJJ
III
' 101
'Vo;IVI

~

~

~

V

IA

100~~
f:::l::j:j:
~

~

~~

.......

f'.

~

2

zth = KR thj ~ c

J'.,

JLrl

--tJ II

Itm~uTI

100

----__________

40

s=-Jt

~ ~~~~m?lr~:~~~

I
I

30

i'-...

i'.

20

t-...

i'.

10

o

o

25

50

75

100

'"
125

I'-..
Teas.loCI

______________

5_/5

181

~

..~L

SGS-1HOMSON
~D©OO@~[lJ~©'iJOO@~D©~

BUZ20

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE

BUZ20

Voss
100 V

ROS(on)

0.2

Q

10
12 A

• 100 VOLTS - FOR UPS APPLICATIONS
• ULTRA FAST SWITCHING
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• EASY DRIVE - FOR REDUCED AND COST
INDUSTRIAL APPLICATIONS:
• UNINTERRUPTIBLE POWER SUPPLIES
• MOTOR CONTROLS

N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching times make this POWER MaS transistor ideal
for high speed switching applications.
Typical applications include UPS, battery chargers, printer hammer drivers, solenoid drivers and
motor control.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS

Vos
VOGR
VGS
'0

Drain-source voltage (VGS = 0)

100

V

Drain-gate voltage (RGS = 20 KQ)

100

V

Gate-source voltage

±20

V
A

Drain current (continuous) Tc = 25°C

12

10M

Drain current (pulsed)

48

A

Ptot

Total dissipation at Tc

75

W

Tstg

Storage temperature

-55 to 150

°C

Tj

Max. operating junction temperature

150

°C

< 25°C

DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)
•

E
55/150/56

Introduced in 1988 week 44

June 1988

1/4

183

BUZ20
THERMAL DATA
Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

max
max

1.67
75

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V

100

10= 250 p.,A

VGs= 0

Zero gate voltage
drain current (V GS = 0)

Vos= Max Rating
Vos= Max Rating

T j = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= V GS

10= 1 mA

VGs= 10 V

10= 6 A

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starting Tj = 25°C

L = 100 p.,H

12

A

gfs

Forward
transconductance

Vos= 25 V

10= 6 A

2.7

mho

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30V
RGs= 50 n

10= 2.9 A
VGs= 10 V

V(BR) OSS Drain-source
breakdown voltage
loss

IGSS

250
1000

p.,A
p.,A

±100

nA

4

V

0.2

n

ON
V GS

(th)

Ros (on) Static drain-source
on resistance

2.1

ENERGY TEST
lUIS

DYNAMIC

2000
500
140

pF
pF
pF

45
75
140
80

ns
ns
ns
ns

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~::~~lt

184

______________

BUZ20
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 24 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

di/dt

Iso= 12 A

=

100AIp.s

Thermal impedance

Safe operating areas

12
48

A
A

1.8

V

200

ns

1.6

p.C

Derating curve

lthJ-Cll~IIII'I~1
(KiWi ~

PtotIWII-+-+-.:t-+-+-t-l--+-H-+-H-I---H
70 t-t--I-J'l.,+-t-t---+-I-60 t-t--I--/--I-"-'I,.-+--+-II--t--+---II--t--I--/--I--I
I

50 t-t--I--/--I--J-P--

~/

4

I I I I10
10

Transfer characteristics

v:: /9'VS;

--?'Vj. ~
~V

I~ ~ V
~~ /'

30

20

Vw,20V7

IIIIIIIII10

'\

/
VOS=25V

/

4V

VoslVI

____________________________

B

~~~~~~~~~:~?~~

VGSIVI

10

20

30

40

lolA)

___________________________

3_/4

193

BUZ25
Static drain-source on
resistance

Maximum drain current
vs temperature

Gate charge vs gate-source
voltage

IOIAI rr..,--r-,-"-,-,,--..,-.--rrn"-T-,,,

ROSl,nl
In)

I

30~+1~~+4~++4-~+1~~

5
.2

I
I

~V

0

~

J

.1

I--

VVGS~20VII---

"'"
-~ 1---

5

/

/
80

60

40

20

100

lolAI

50

Capacitance variation
GU~1589

I I
Tease _25'L
f=1MHz
VGS =OV

--1---- ---

l

\'\

VGSlthl '-~--'----'--r--'----'---,--'---::;"':'::':';

1.21--+-+--+-I-_+_-\----1--\----\--__1

I

'I---.

tn«

r- r---

ROSien)
Inorml
2.0

0.81--+-~_+--+-I---+--.......-!.............
----=-~. . ...j---1
.

1.0

0.61----t--t---I-_+_-f----+-\---+~

0.5

10

15

20

25

30

35

40

VOS IVI

-40

"p'

/

A

I;jV
lj =25°C
I

I

I

I

0.8

.... V
VGS =10V
lo=9A

o

GU-1586

0.4

"",/'

.,.V

1--+-+--,--+-1---+---+---+---- ---.-

ISO IA )

"KI O

--

IO=lmA

Source-drain diode forward
characteristics

lj=150 °c

-

.//'

I-""

~rss

"5

1.2

1.6 VSOIVI

_4/_4 _ _ _ _ _ _ _ _ _ _ _ _ _

194

Drain-source on resistance
vs temperature

1.5 -

I

o

40

20

,/

j

'\
\

lo=28.5A

Te lOCI

Inorml t--r---j----t-t--+-+--+-r~_+_-i

V

'"

Ciss

I---.

800
400

150

/

80V

1

\

1200

100

Gate threshold voltage
vs temperature

ClpF I

1600

~V

Vos=20V
VGs =10V ,

.:u.

~~~~mgr~:~~CG~

40

80

120 TJ I CI

BUZ32
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ32

Voss
200 V

Ros(on)
0.4 0

10
9.5 A

• 200 VOLTS FOR TELECOMS APPLICATIONS
• HIGH CURRENT - FOR PULSED LASER
DRIVES
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• ULTRA FAST SWITCHING
• EASY DRIVE - FOR REDUCED COST AND
SIZE

,
TO-220

INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS FOR ROBOTICS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Typical uses include robotcs, laser diode drives,
UPS, SMPS, DC/DC, DC switch for telecomms and
electric vehicle drives.

INTERNAL SCHEMATIC
DIAGRAM

G~
5

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR
VGS

Drain-source voltage (VGS = 0)

200

V

Drain-gate voltage (RGS = 20 KO)

200

V

Gate-source voltage

±20

V
A

10

Drain current (continuous) Tc = 25°C

9.5

10M

Drain current (pulsed)

38

A

Ptot

Total dissipation at Tc <25°C

75

W

T stg

Storage temperature

- 55 to 150

°C

Tj

Max. operating junction temperature

150

°C

DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)
•

E
55/150/56

Introduced in 1989 week 1

June 1988

1/4

195

BUZ32
THERMAL DATA
max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

1.67
75

°CIW
°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
200

V

ID= 250 JJ-A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

V DS = Max Rating
VDS = Max Rating

Tj = 125°C

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

VDS = V GS

10 = 1 rnA

Static drain-source
on resistance

VGs= 10 V

10= 4.5 A

Unclamped inductive
switching current
(single pulse)

V DD = 30 V
starting T j = 25°C

L = 100 JJ-H

9.5

A

gfs

Forward
transcond uctance

V DS = 25 V

10= 4.5 A

2.2

mho

Ciss
Coss
C rss

Input capacitance
Output capacitance
Reverse transfer
capacitance

VDS = 25 V
VGs= 0

f = 1 MHz

VDD = 30V
RGs= 50 n

10= 2.9 A
VGs= 10 V

V(BR) DSS Drain-source
breakdown voltage
IDSS

IGSS

250
1000

JJ-A
JJ-A

±100

nA

4

V

0.4

n

ON
V GS

(th)

RDS (on)

2.1

ENERGY TEST
lUIS

DYNAMIC

2000
400
120

pF
pF
pF

45
60
140
80

ns
ns
ns
ns

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

-2/-4--________________________ ~~~~~~?vT:~~©~
196

____________________________

BUZ32
ELECTRICAL ·CHARACTERISTICS (Continued)

Test Conditions

Parameters

SOURCE DRAIN DIODE
Iso
150M

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

150= 19 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

Safe operating areas

=

di/dt

150= 9.5 A

Ptot lW I

IKIWI

V
10;

70

lOt

"

10°

"'

10:

6B

101

102

10

VOS'IVI

Output characteristics
lolAI

1

1,-I-r- I-

15

I,
1/

1-'1

J T I-

T

15

-'\

... 1- c---

1'\

20

r\

t

--~,\I-

111111111

10'

10'

°

10
tplsl

50

100

Teasel [I

T ranscond uctance

GC-0662

9f s ISl f-+-t+t+++++++++-H+++-l-i

/
/

20
6V

\.

10
11111111

10'

10'

Tcase=2S0(

V

I-f- c--

'\

30

c-;;,~ po~
1'Pj

lolAI

7V

/-tC

50

Transfer characteristics

I I

~t1 r- v s=20\l
+f- '-'-10V

6

f-- r-f-

Illjj~ 1

'

ns

40

ILililliL.L
10"'

I
68

!;;;o

I

r--

-

D=1I

V

,

60

::;;;

~

0,,0.01
~t~~r02
SI G E pULj~f

DC

,--

=

1~ ~

lmj
10ms
100m

10·'
10°

0=0.5

,~J;;:

1.7

Derating curve

Thermal impedance

·'2f
'-

II.'~

A
A

400
100A//-ts

LthJ-[
lL

9.5
38

I

Vos=25V

V

10

1-1-1 - -

I

10

/

1-. 1--1- ~-

IJ

II

J/i

I

II

II

Hf++++-+-t-H--1 Vos=25V H-H-f-H

4V

./
12

16

20

24

VoslVI

10

15

lolAI

3/4

197

BUZ32
Static drain-source on
resistance

Maximum drain current
vs temperature

ROSlon I
In)

10 IAI

Gate charge vs gate-source
voltage
I

H-++--+-Ic-l-++-Hc-l-~-

12H-~-rr+1-H-~-rr+~H-+4~

1.0

lo=14.3A

'iV

15

I

0.8

/

VGs =10V

10

0.6

/
/

0.4

-- -

0.2

/

........ /

-16

...... V

24

I Vos=40V

/ ~
r--- 1= """"--

40

lolAI

50

Capacitance variation

100

150

rf

T(I'CI

-.-~

-

160V

r-20

40

Drain-source on resistance
vs temperature

Gate threshold voltage
vs temperature

[lpFI

~

_L

20V

32

f---;

VGSlthl
Inorml

Tcase=2S0(

160 0

2.4

f=1MHz
VGs=OV

120 o

\

1.0

I'-..

lo=4.5A

+t-:t~~+t-:t~~t-t-:t~

2.1 H-+i-t-+V-rGs=,=_10rV

-I"-r-...

1.8 H-+i-t-+-t-t-t-t--H-++-t-r+:,jo<"4-1H

-.... .......... r--.

-""1"-

80 o ~

1.5 H--t--i--t-t-t--T-'H-+-t-f--b!'q-H-+-l-1
1.2 H-+-t--t-t-t--l-f--t-:,.I""'f-f-t-+-l-H--+-l-1

1

Vos=VGS

0.5

t-- --ll

40 0 \ '

0.9 H--t--i-/::;;;;I-"f-l-H-+-t-f-t-+-l-H-+-l-1

o=1mA

0.6 H---t--i--t-t-t--l-H-+-t-f-t-+-l-H-+-l-1

"-i'-- t--

03 H--t-t--t-t-+-l-H--H--+-t-+-l-H--+-l-1

...... t-.

10

20

30

40

VosIV)

-50

50

100

O~~~~~~~-L~~~~~

-50

50

100

T I'C)
J

Source-drain diode forward
characteristics
IsolA )

~

.....

-

~

10'

'f't/-- 2S'C

r- 1S0 ' C

10 0

10-'

1.0

2.0

-4/-4--______________________~~~~~~~?uT:~~©~
198

____________________________

BUZ41A
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ41A

Voss
500 V

ROS(on)
1.5 D

10
4.5 A

• HIGH VOLTAGE - FOR OFF-LINE SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT<100KHz
• EASY DRIVE - FOR REDUCED COST AND
COST
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Typical applications include switching power supplies and motor speed control.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

s

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR

Drain-source voltage (V GS = 0)

500

Drain-gate voltage (RGS = 20 KD)

500

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 35°C

4.5

A

10M

Drain current (pulsed)

18

A

Ptot

Total dissipation at Tc <25°C

Tstg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

V

75

W

-55 to 150

°C

150

°C

E
55/150/56

1/4

199

BUZ41A
THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

°CIW
°CIW

1.67
75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 1 mA

Static drain-source
on resistance

VGs= 10 V

10= 2.5 A

gfs

Forward
transconductance

Vos= 25 V

10= 2.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30V
RGs= 50 Q

10= 2.6 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

500

250
1000

p,A
p,A

±100

nA

4

V

1.5

Q

ON

VGS

(th)

Ros (on)

2.1

DYNAMIC

1.5

mho

2000
170
70

pF
pF
pF

45
60
140
65

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

200

Turn-on time
Rise time
Turn-off delay time
Fall time

BUZ41A
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
IS OM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 9 A

trr

Reverve recovery
time
Reverse recovered
charge

Orr

Thermal impedance

,U-169

'~F

=-:~

:f-:=t:=

--

I~F

)--1--

10: F=F
, ) - - I--

I-

--~

[";
--F

,~,I

.J:

----

'"

.

'r-I--

""+~

)--~ ..

~r--..

10°.

,=1::=-

Ul

)--_.

, :---t--

ill--

0:::0.1

68

10

,

66

t--IS

'i~it
°lc

10

V~S 'tV)

10 2

Output characteristics
lolA)

VGS=20V10V

I

/

L

J.V
lI'

/

~

V

30 I-+--I---I-+-H--f-+--+I--'I..
'I\.--+---

t--PO~
~o,.t2.
I;

T

l.-

IIIIIIII10 IIIIIIII10
10'

11111111
10'

2

lolA)
Vos=25V

t

'

10 I-+--I---I-+-H--f-+--j-l----+-+~-+-+--i
1-+--I---1-+-+----1--f-+----I---+-+ -- -~ts100
tplG)

50

100

Tcasel"C)

Transconductance

J

-

/"

V

I

I--- .

/

I

/1-"""

/

VDs =25V

II

J

Ttas l!=25°[

/
/

4.0V

/

V
VosIV)

..... -1-------

201-+--I---1-+-H--f---t-l---+--Pl.f--t---+--1--i

I

4.5\

-+--

J

5V

//'"

'I"

~

Transfer characteristics

t7' /

p.C

I-+-+-j--+-+-+~t--+__+__I--+-·

1111

5

6

40 ~:~=~~~~=~~~~,,~~~.~-II--~~"=

~

~GE gu~~i~f=
10-- 2

ns

50 I-+--I---I-+-H~_t___l--+-"_+-j~+- -

D=0.5

,;!;t
-

f--10-'
10°

III
10°

10--1 ~

V

lW
Ptot ) ~-h-I-++--t--+-_t___l--+-+-+-t---+--+--i
70 1-+-+----!"'"t-4--+-+--+-+I-++--t-k!"\.+-+-+--t--t---t---I-f---f---60 I-+--I---I-+-,\O'\.-+---l-f----j~+-+--__+____IH--+--t

'I

~

1.5

Derating curve

ZthJ--C
IK/W)

m

A
A

1200
di/dt = 100A/p.s

Iso= 4.5 A

Safe operating areas
lOlA)

VGs= 0

4.5
18

8

-----------------------------~~~~~~~vT:~~~~

VGSIV)

4

lolA)

___________________________

3_/4

201

BUZ41A
Static drain-source on
resistance

Maximum drain current
vs temperature
I DIAl 1-++-+-+-1-++-1-1-+-++-1-++-+-+-+-+-1

ROSfonJ

In)

Gate charge vs gate-source
voltage
I

Vos=100V
15

/

VGS =17

fzov

10

/ If

--

V

.... v
10

./

IL

15

20

lolA)

50

100

150

VGSlthl
(norml

VGs=OV- f=lMHz_

-

Drain-source on resistance
vs temperature
ROS(on I
(norm)

400

I-f--

r-- r-

-r-....

-r-....

~ ~ '(--. (ass
~

0.6

0.6

0.4

0.2

-

.......

30

40

VOSIVI

-50

50

100

.

GC-0564

I:-~~::~r:--:

----r=f:=-:--

--1--,---

r--·

-- -_.

I-----t---··f--~---f--f--

II

_4/_4_ _ _ _ _ _ _ _ _ _ _ _ _

~ ~~~~m?lI't:~~~~

/

-f--

f----

Vos=VGS
lo=lmA

Source-drain diode forward
characteristics

202

/
--

1.0

(iss

\

/

-

1.4

0.8

20

/

r-- IO=2.5A

1.8 -

1.2

1.0

10

IsolAI

\1

VGS = 10V

1200

l'

40

20

T(ase = 25°(

1

400V

lo=6.8A

T(1'(1

Gate threshold voltage
vs temperature
G-1339

(lpFI

800

V

r-~

/
V

Capacitance variation

1600

/V
.LVL

,V
-40

~---

r-- /

/

/
40

80

TJ ('(I

BUZ42
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ42

Voss
500 V

ROS(on)
20

10

4A

• HIGH VOLTAGE - FOR OFF-LINE SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT<100KHz
• EASY DRIVE - FOR REDUCED COST AND
SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching times make this POWER MaS transistor ideal
for high speed switching applications.
Typical applications include switching power supplies and motor speed control.

"

TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Vos
VOGR

Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS = 20 KQ)

500

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 30°C

4

A

10M

Drain current (pulsed)

16

A

Ptot

Total dissipation at Tc <25°C

75

W

- 55 to 150

°C

150

°C

T stg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

E
55/150/56

1/4

203

BUZ42
THERMAL DATA

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

max
max

1.67
75

°C/W
°CIW

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos = VGS

10= 1 mA

VGs= 10 V

10= 2.5A

Vos= 25 V

10= 2.5 A

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30 V
RGs= 50 n

10= 2.5 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

500

250
1000

p,A
p,A

±100

nA

4

V

2

n

ON
VGS

(th)

Ros (on) Static drain-source
on resistance

2.1

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

1.5

mho

2000
170
70

pF
pF
pF

45
60
140
65

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~::~~lt

204

______________

BUZ42
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOU~CE DRAIN DIODE

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 8 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

,

1001)$

~0:0.1

III

...-;

1m'

10m

OL--'

10. 100

,

,.

'10"

, . 'la' '

LUI
v~s 'tV)

Output characteristics

5V

/.'/

/'

-

-n

_o,!J1.

I

10'

I
I
I
I

Vos=25V

V

45~

T

~~t-t----

20 1--I--+-,i-+-+-1:-+-+-1-t-+-"I--j-+-+-I

l- '

10 1--I--+-1-t-+-I--f-i---t-++-+-1'<+-I--i

I--I--l-I--I--t-l-+-H-t-+-I-I-"'ts '

10

- -I -

0

/

I

V
~

/"

/
j

Vos=25V

II
/

lJ
II

4

Vos(V)

--------------

Teasel·C)

Transconductance

II

4.0V

100

50

tpl.,

II

Tcase:::2S0(

IV-

'/"

1"j
""I~

.I

/~

~

/

~~-~-----~~~~=~==
W

II

111111111 111111111
10'
10
la'

lolA)

VGs =20V10V

/

70 1--I-+-1'H,,+-+-j--t-l--I--Hi--l'o--

--_._-

"

/

_..

_.

-

10~s

'i

10°

'1l
0=0.1

,;:-

-'HI
D.Lf--"-"

--

II

,

11

11

10

Output characteristics
lolA }

VGs=20V~
10V -

I

-d

1//

'{//

hV

1/1

rt

II
1/

I

I

V

Y
sv

5

~

40

I

_
_o~""-

I;

,11111111
10'

10'

T

l

lolA)

I

'\

20

'

11111111 111111111
10 2
10'

I"

30

i'Pi
po~

r\.

10

"-

100

100

50

tpl.)

Transfer characteristics

I
I

\..
-f-

I

illlllil I

1!!Q/
5

I"

50

~GE ~tff~f:

10ms

/LC

"\

0

0=0.5

, til"

-

5

GU 1390

70

...

II,~

100~

ns

Ptot lW )

Iii

+ttl

V

GC-17141

~~I~

-

1.6

Derating curve

ZthJ-[
IK/W)

0-

A
A

1000

100A//Ls

Thermal impedance

_-.1 --

-

=

di/dt

Iso= 5.5 A

Safe operating areas

==

VGs= 0

5.5
22

1,\1---

Teasel [)

Transconductance
91,IS)

I

VOS=2SV

4.5V

I

I
I

I
I
I
I

Vos=2SV

Tcase =2S0[

I

I

4.0V

I
I
I

II

,/

--

V

I

I

./
10

VosIV}

----------------------------~~~~~~~vT:~~~

lolA}

___________________________

3_/4

2:17

BUZ60
Static drain-source on
resistance

Maximum drain current
vs temperature
lOlA I

Roslon I
IClI

Gate charge vs gate-source
voltage
f--

VGs =10V

/

2

15

I

.....

II
/

IO=8.3A

--f--

20V

f - - 1-1----

.....

J

/

Vos=80V /

.....

f-

I.....

/V

1

~~/

5

1\
\
10

15

20

25

lolAI

GU-1S29

1600J~~~~~: 2~_ --+~+--+---+--+--l

400 \

~

\ 'r...... 5

10

15

20

25

//

T

1.8

to

r-.. . . .

-

-

0.8

V
/

4

-r-.

Vos=VGS
lo=lmA

/v

.0

.6

/

V

~-

35

40

VOSIVI

; 'V

2
-50

50

100

-40

1---

VGS =lW
-

r--

+

1-

lo=2.5A

I----

0.4
30

60

40

20

Drain-source on resistance
vs temperature

1.2

0.6
[oss
[rss

320V

ROSlorJ

-.....

-1-t-I-+--1--+--+~

~

Inormi

..........

800 , \

150
Te 1°[1

VGSlth 1
(norm I

VGS=OV

c--- --r--+-+---t--t---1

/

- L/

V

Gate threshold voltage
vs temperature

-ll---+c.--+-r--+-+---t--t---1

1200 f--

100

50

Capacitance variation

[lpFI

/~

0

40

I----

80

Source-drain diode forward
characteristics

_4/_4 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?1rT:~~~~

218

______________

BUZ60B
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE

BUZ60B

Voss
400 V

Ros(on)
1.5 n

10
4.5 A

• HIGH VOLTAGE - FOR OFF-LINE
APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE - FOR REDUCED COST AND
SIZE
INDUSTRIAL APPLICATIONS:
• ELECTRONIC LAMP BALLAST
• DC SWITCH

N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Applications include DC switch, constant current
source, ultrasonic equipment and electronic ballast for fluorescent lamps.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS

Vos
VOGR

Drai n-source voltage (VGS = 0)

400

V

Drain-gate voltage (RGS = 20 Kn)

400

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 25°C

4.5

A

10M

Drain current (pulsed)

18

A

Ptot

Total dissipation at Tc <25°C

Tstg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

75

W

- 55 to 150

°C

150

°C

E
55/150/56

1/4

219

BUZ60B
THERMAL DATA

max
max

Rthj _case Thermal resistance junction-case
Rthj _amb Thermal resistance junction-ambient

°CIW
°CIW

1.67
75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
10= 250 p.,A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

VGS(th)

Gate threshold
voltage

Vos= VGS

10= 1 mA

Ros (on)

Static drain-source
on resistance

VGs= 10 V

10= 2.5 A

gfs

Forward
transconductance

Vos= 25 V

10= 2.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30 V
RGs= 50 n

10= 2.5 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

400

250
1000

p.,A
p.,A

±100

nA

4

V

1.5

n

ON

2.1

DYNAMIC

1.7

mho

2000
180
60

pF
pF
pF

45
60
140
65

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4·__________________________ ~~~~~~?~:~~~

220

____________________________

BUZ60B
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 9 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

Thermal impedance

70

;

I-

00;;

'3

1:5~
10~~

10°

~

..

III

1

10- 2
10

lolA I

VGs=20V-,
10V-

-+.

/y

///

,/1/

hV

VI

rt'

I

II

V

I

If

SV

5

III
'r-0: po~
,'Pj
r-o=.!Q.

-C-- f-f-f-1- r--- ---f- r-r-r-

"-

III!IIII
10'

c-'

1--,-

'\I\.

f-;---\-

I\f- f - -

1-[\ f-f-

10
111111111

1,,\

11111111

10'

10'

10 '

lolA I

-I-I - i - -

20

JTL '

T

"I

30

I

Transfer characteristics

I
I

I"

-f-- I--r-'-

1111

Output characteristics

j.tC

40

III

-~GE ~tfilf

10ms
100m

5

"I

60

I

~

~~

" ~. t
-

ns

50

0=0.5

1rt

'-.

10°

Iii
I~' -::

II

~~"o(§.

V

Ptot lWI

(KIWI
I,

10 '

1.5

Derating curve

ZthJ-C

--

A
A

1000
di/dt = 100A/j.ts

Iso= 4.5 A

Safe operating areas

l

VGs= 0

4.5
18

10

tpl61

°

50

100

Tease 1°C)

Transconductance

I
II

Vos=25V

4.5V

I

I

I

I
I
II

Vos=25V

\

Tcase=2S0[

I
4.0V

I
I
I

if

/'

-

V
/
1

V
10

Vos{VI

lolAI

------------__ ~ ~~~~m?1rT:~~~ ______________3_/4
221

BUZ60B
Static drain-source on
resistance

Maximum drain current
vs temperature

Gate charge vs gate-source
voltage

GlJ-V43

G(-0490

IAI
IO I-++-++-I-+++-+-+-++-1I-++-+-+-1--H

Roslon I
(Cl.I

VGS =10V

/

2

/

IO=8.3A

V20V

15
Vos=80V/

II

J

0

/
V/

1
-::l:::::

~,....

~

5

L/

//

~

~
320V

L

1/
15

10

20

25

lolAI

50

Capacitance variation
(lpFI

1600

GU-15

';~;!i,i

-- f---

400

oa79

--

10

_ . f-- f---

('55

c-- "'- r-....

r-

5

10

-

15

(ass
(rss

20

--r-....,

--

35

40

VOSIVI

_. c--.

-50

50

100

--_._-

-- c---

-7 --

TJ =150'( / ;
--I---- f---

--

c--

.. 1---- f---

rr'
-- -

-

_....
10 0

f----

~-

/---

Ji -~I~r-

-

--

VsolVI

_4/_4_ _ _ _ _ _ _ _ _ _ _ _ _

222

V'"

-

r-

~ ~~~~m~:9lt

40

-

1-

-

f---

VGS =1OY
I O=25A

./

-40

- -I f---

.-

V
~

--=

1-". - -

,/

/

2

Source-drain diode forward
characteristics
IsolAI

.0

30

/~

.6

0.4
25

V

4

....... --r-....,

VOS=VGS
lo=1mA

0.6

T

18

0.8

r--

\ "\

Drain-source on resistance
vs temperature
ROSlor)

12

-

r--

\

60

40

Inorml

1200 f - - - --

800

20

T,I'(I

VGSlth I
Inorm I

f--- V.lli.j.'l.V

\s:

150

Gate threshold voltage
vs temperature

-.. j.. Jc

100

80

-

BUZ71
BUZ71FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
BUZ71
BUZ71FI

Voss
50 V
50 V

Ros(on)
0.1 n
0.1 n

10 14 A
12 A

• VERY FAST SWITCHING
• LOW DRIVE ENERGY FOR EASY DRIVE,
REDUCED SIZE AND COST
• HIGH PULSED CURRENT - 56A FOR POWER
APPLICATIONS
INDUSTRIAL APPLICATIONS:
• POWER ACTUATORS

,
TO-220

N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching circuits in applications such as power actuator driving, motor drive
including brushless motors, robotics, actuators and
many other uses in automotive control applications.
They also find use in DCIDC converters and uninterruptible power supplies.

ISOWATT 220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
VOS

Drain-source voltage (VGS = 0)

50

V

V OGR

Drain-gate voltage (RGS = 20 Kn)

50

V

V GS

Gate-source voltage

±20

V

10M

Drain current (pulsed) Tc = 25°C

A

56
BUZ71FI

BUZ71
10 -

Dr:ain current (continuous) T c = 30°C

14

12

A

Ptot -

Total dissipation at Tc <25°C

40

30

W

T stg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

-55 to 150

°C

150

°C

E
55/150/56

- See note on ISOWATT 220 in this datasheet
June 1988

1/5

223

BUZ71 - BUZ71 FI
THERMAL DATA·

TO-220

Rthj _case Thermal resistance junction-case
Rthj _amb Thermal resistance junction-ambient

max
max

ISOW ATT220

3.1

4.16

°C/W
°CIW

75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

10= 250 p.A

VGs= 0

Zero gate voltage
drain current (V GS = 0)

Vos= Max Rating
Vos= Max Rating

T j = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

VGS(th)

Gate threshold
voltage

Vos= VGS

10= 1 rnA

Ros (on)

Static drain-source
on resistance

VGs= 10 V

10= 9 A

gfs

Forward
transconductance

Vos= 25 V

10= 9 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30 V
RGs= 50 n

10= 3 A
VGs= 10 V

,,(BA)

oss Drain-source
breakdown voltage

loss

IGSS

V

50

250
1000

p.A
p.A

±100

nA

4

V

0.1

n

ON

2.1

DYNAMIC

mho

3

650
450
280

pF
pF
pF

30
85
90
110

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

• See note on ISOWATI 220 in this datasheet

_2/_5__________________________

224

~~~~~~~~:~~----------------------------

BUZ71 - BUZ71 FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

trr

Reverse recovery
time
Reverse recovered
charge

Orr

Iso= 28 A

di/dt = 100Alfts

Iso= 14 A

Safe operating areas

Thermal impedance

lolA

1
2

VGs= 0

r---- ----.l0of>'\
r---- %"'\~
,?"

""

A
A

1.8

V

120

ns

0.15

ftC

Derating curve
Ptotl W)

ZthJ-C
5~s

,

14
56

IK/W )

las

'-"'::

II

" f'

100,

0=05

lmsr

0=0.1

60

I ...-:

50

0=0.

"'" "",-,
"

0,0.05

II

,~~(

lOms
lOOms

SIN

DC

I

I

1

,

10"

, . VosIV)

16

20V_
10V
9V
BV

i il-

I. l'/1 /
IhV
'If

12

/

j

1/
IlL
if

r-VGs=7V

~

I

;i

~

......

30

" "
" ,

EPU

~I

10 s

Output characteristics
lolA )

40

o,lQ.

20

Jrl._'

10

T

!

10'

po~
,'Pi

10

3

10'

-,

10

tpls)

10

°

I'

"

0
50

Transfer characteristics

100

Tease lOCI

Transconductance
gfslS )

lolA)
6V f - - f--

10

./'

20

I
I

TCiilse=2S0(

15
5V f - - f--

,/-

V

I

1/

/

v

4V

/

1/1-'"

VosIV)

-I-"

/

II

10

-~

Vos,25V

I
Vos=25V

10

20

30

40

50 lolA)

____________________________ ~~~~~~:~~~ ___________________________3_/5

225

·BUZ71 - BUZ71 FI
Static drain-source on
resistance

Maximum drain current
vs temperature

Gate charge vs gate-source
voltage
)

lolA)

ROS(on)

In)

.....

0

r-...

0.25

I"'-

./

r-...
r-...

0.15
0.10

.,d/

.+--+--

0.0 51"-"

/

lL

lolA)

600

II
II
1\1

VGSlth I

Tcase=2S0[

r-...

\

r--.,.

I
I

.8

(",

I- -

-r-.
10

15

1
I
20

/

VOs=VGS
lo=1mA

r--.,.

25

30

35 VosIV)

/

V

1-1-

r--.,.

1.0

/

6

Crss

100

......... r--.,.
r--.,.

1-1- -J.
I

"-

1.5

......... 1"---.

0

(.

......

ROSlon )
(norm.)

I

-

16

2

f=1MHz

\

40V

Drain-source on resistance
vs temperature

(norm )

, VGs=OV

.~

400

200

I
I

1

500

300

Gate threshold voltage
vs temperature
1

(lpF )

12

100

50

V

/

4

\

v

V

V

\
~

50

1/

8

Capacitance variation

700

/

I\.

VGs =20V

40

30

20

10

1'\

Vos=10V

2

V

VGS=10V

lo=18A

6

10

0.20

V

/

-:c-"---;c--

VGS=10V

IO=9A

I --

r--

-

V

4
-50

50

100

0.5
-80

-40

40

80

120

TJ I ()

Source-drain diode forward
characteristics
IsolA )

,
I
=25°(
If/--- _TTj=1500(
J

I

I

I

4

VsoIV)

-4/-5------------------________ ~~~~~~~vT:~~~

226

____________________________

BUZ71 - BUZ71 FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:
1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth = RthJ -C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

from this lOmax for the POWER MOS can be calculated:

Fig. 1

RthJ-c RthC-HS RthHS-amb

IOmax~

~

ISOWATT DATA
Safe operating areas

Derating curve

Thermal impedance
~(-0422/1

lolAI

:~~ ~.
I--

.,

~

«-"s't~hl,
...,.~

'f--'
t;-..~

r---

,II
I

10- 1

....
.....

.....

i:

1'1....

.... 1'..... ...

H11
1~·
w

~

10ms
100ms

50

40

~
6=0.05
6~O.02

6=0.01

Zfh=KRthj-c

s::-!f-

~

t-

\=
t= JLJL

1=

-t-J

30

i"'-.

)'.....

20

r......

SIN6UfPULSE

D.C. OPERATION

III

GC-04t4

I

t-

iii'"

100)'s

1II1

i"'-.

I

~

6~O.5

10}Js

1msH-

' f - - 1-'

1---

5)'s

2

111111111 II

10

1111111111

o

----------------------------~~~~~~~~:9~

'1'-....

r.....
I'....

o

25

50

75

100

125

T cos. lOCI

___________________________

5_/5

227

~

SGS-THOMSON

~~L ~O©OO@~[L~©lJOO@[K!JO©~

BUZ71A

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ71A

Voss
50 V

ROS(on)
0.120

10
13 A

• ULTRA FAST SWITCHING
• LOW DRIVE ENERGY FOR EASY DRIVE
• COST EFFECTIVE
INDUSTRIAL APPLICATIONS:
• AUTOMOTIVE POWER ACTUATORS
• MOTORS CONTROL
• INVERTERS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications such as power actuator driving, motor drive including brush less
motors, hydraulic actuators and many other uses
in automotive and automotive and automatic guided vehicle applications. It also finds use in DCIDC
converters and uninteruptable power supplies.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

50

V

Drain-gate voltage (RGS = 20 KO)

50

V

±20

V

Drain current (continuous) T c = 25°C

13

A

10M

Drain current (pulsed)

52

A

Ptot

Total dissipation at T c < 25°C

T stg

Storage temperature

Vos
V OGR
V GS

Gate-source voltage

10

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

40

W

-55 to 150

°C

150

°C

E
55/150/56

1/4

229

BUZ71A
THERMAL DATA

3.1
75

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
~BR) oss Drain-source

10= 250 p,A

VGs= 0

Zero gate voltage
d rai n cu rrent (VGS = 0)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

VGS (th)

Gate threshold
voltage

Vos= VGS

10= 1 rnA

Ros (on)

Static drain-source
on resistance

VGs= 10 V

10= 9 A

gfs

Forward
transconductance

Vos= 25 V

10= 9 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30 V
RGs= 50 n

10= 3 A
VGS= 10 V

V

50

breakdown voltage
loss

IGSS

-

250
1000

p,A
p,A

±100

nA

4

V

0.12

n

ON

2.1

DYNAMIC

mho

3

650
450
280

pF
pF
pF

30
85
90
110

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~::J?lt

230

______________

BUZ71A
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 26 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

di/dt

Iso= 13 A

Safe operating areas

=

100A/p,s

Thermal impedance

13
52

A
A

2.2

V

120

ns

0.15

p,C

Derating curve

GU-17l!7

10 (A),

Ptot(W)

ZthJ_[

5 ~.sl:

<:

-I--+-

1 ~I\

I,
10~

(K/W )

........

~,

l·JJs

I-

II
10°

0:0.5

0

....-:

I

10°

~

0:0.05

1

~~2
1 O~O.O1

10ms

III

10 S

SIN

--r-

I

EPU

E

I

10°

VOS N)

,

10-'
105

Output characteristics
Io(A )

20V_
10V
9V

16

BV

J /- I--

/ :/1
v
/J rj /

11///

12

j

VGs=7V

II I I

0,1£

\'

10'

10

10'

J

10-,

r\.

0
I-

r-r- - tp(S)

10

°

"-

100

50

Transfer characteristics

'""

Transconductance
)

IO(A)

6V --- c-----

10
20

'--

5V

--I--

l-

,,--- -V

I
/

15

1
I

j

II

/

4V

y

V
Vas (V)

~-

V

/

10

I/

Y

PO~
1'Pj

TTl- '

Tcase=25°(

Vl

r\.

0

i

11111111

llf'

f - - -I-r-

0

0::0.1

I......
OL- ~~
~

- I-r-

- - f - - r>..;1- f - - r-I-

0:0.2

VoS=25V

II
Vos=25V

10

20

30

40

50 Io(A)

---------------------------- ~~~~~~~V~:~~n---------------------------3-/4
231

BUZ71A
Static drain-source on
resistance

Maximum drain current
vs temperature

Gate charge vs gate-source
voltage
)

)

ROSlon I

Inl

I'-.
0.25

0

......

r-....

10

I'...

./

i".

0.15

V

VGs=10V

0.1 0

-t-'

--

0.0 5~

30

20

10

!--l-

/

60 0

Tcase;2S0[

I"

I'\.

300

100

"

ROS lon )

""- ..........

(

1

20

/

/

1.0

/

6

/

VGS=10V
IO=9A

-(--

V

I'-~

15

V

./

""-

Vos=VGS
!---- f--- IO=lmA

-

1

V

""- ..........

8

1

4
25

30

35 VoslVI

-50

50

100

Source-drain diode forward
characteristics
IsolA I
F

I
=25°(
'I/-- e-__TT =1500(
J
J

,
4

VsolVI

_4/_4__________________________

232

Drain-source on resistance
vs temperature

1.5

.......... 1'-....

(rss

10

16

I'-....
1.0

1

1"-_

V

Inorm'!

r-~

r-....
!"

1\
200

G(-052/1

(,,,_

\

40 0

40V

V

1.2

1
1

500

/

12

VGSlth I

f=lMHz
. VGs=OV

~

I
\

V

100

Inorm)

1 1

\1
11

1\

Gate threshold voltage
vs temperature

J I

/

/

lolAI

Capacitance variation

70 0 1

/

/

8

\
50

(lpF I

"'- t'\

-

50

Vos=10V

12

VGs =20V

40

lo=18A

16

0.20

~~~~~~~:~~

0.5
-80

-40

40

80

120

TJ I ()

BUZ72A
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ72A

Voss
100 V

RoS(on)
0.25 n

10
9A

• 100 VOLTS - FOR UPS APPLICATIONS
• ULTRA FAST SWITCHING
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• EASY DRIVE - FOR REDUCED SIZE AND
COST
INDUSTRIAL APPLICATIONS:
• UNINTERRUPTIBLE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching application.
Typical applications include UPS, battery changers,
printer hammer drivers, solenoid drivers and motor control.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
100

V

Drain-gate voltage (RGS = 20 Kn)

100

V

Gate-source voltage

±20

V

9

A

Vos
V OGR

Drain-source voltage (VGS = 0)

V GS
10
10M

Drain current (continuous) T c =25°C
Drain current (pulsed)

36

A

Ptot

Total dissipation at Tc <25°C

40

W

T stg

Storage temperature

-55 to 150

°C

Tj

Max. operating junction temperature

150

°C

DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)
•

E
55/150/56

Introduced in 1989 week 1

June 1988

1/4

233

BUZ72A
THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

3.1
75

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)

Test Conditions

Parameters

OFF
10= Q50 pA

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 1 rnA

VGs= 10 V

10= 5 A

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starting Tj = 25°C

L = 100 ItH

gfs

Forward
transconductance

Vos= 25 V

10= 5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30V
RGs= 50 Q

10= 2.9 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

100

250
1000

itA
itA

±100

nA

4

V

0.25

n

ON

VGS

(th)

Ros (on) Static drain-source
on resistance

2.1

ENERGY TEST

lUIS

9

A

2.7

mho

DYNAMIC

600
240
130

pF
pF
pF

30
70
90
70

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4 _ _ _ _ _ _ _ _ _ _ _ _ _

234

~ ~~~~m?1T~:~~~~

--------------

BUZ72A
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 18 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

di/dt = 100A/p,s

Iso= 9 A

Safe operating areas

9
36

A
A

2

V

170

ns

0.30

p,C

Derating curve

Thermal impedance
ZthJ-e _ _ _
(KIWI

I-::

I

10 0

40

1...-:

o~o.s

1-+- ;----- - l - f - 30
--'4-fnH*,~~H~Ir-~+H~

~I".

lmst-

1oo~.~IIMm~sl
1==
D.C.

lOOms

20

•
I--++t-tfllll\tl--Ilt--t+tttttt

I Iill

10-1
10 s

Output characteristics

III!II10-

o~lRPol IT _

10-1

4

Ip(s)

/
/

16

/

12

/11

r

r,v

f/
II

11/

--

100

'"'"I'-

Tease(OCI

glslSI

20

,. 10V

/IY .....

50

'"

Tcas l!=25°(

/

/'

II V

~

Transconductance

lo(A )
VGs =20V

20

10·

Transfer characteristics

lo(AI

'"

10

T~

15

/
V

Vos=25V

BV

7V

/

5V
10 Vos(VI

V

/

v-

/

/

10

6V

4V

I'

I

Vos=25V

I

IL
II

10 lo(AI

-------------- ~ ~~~~m?1J~:~~lt ______________3_/4
235

BUZ72A
Static drain-source on
resistance

Maximum drain current
vs temperature

1

ROS{on )

In)

lolA)

f-+-H-++-++-I-+-H-++++-I-++-+-I

Gate charge vs gate-source
voltage
)

I
lo=14A

VGs =10V

Vos=20V

15

V/

I
I

0.3

0

/

1/
0.2

1/

-r-l-

VV

I

./

I

:;;-f---

20V

1
V

~I-"'"
1
24

16

lolA)

50

Capacitance variation
C

VGSlthl
Inorm)
YGS,O
f=IMHz

800

)--

100

150

16

T( 1°C)

Drain-source on resistance
vs temperature

Gate threshold voltage
vs temperature

[pF)

I--+--+---+-I--+---+----+-+-+----i

-

15 f--t--+-+-+-II--++-+-+-+-+/-7'.y-/+-+--i

V

700
600
500
400
lOO
200
100

BOV

/

--,......

10 f------j---+r-----F=-+--=+---+----if-----l-+----i

,l

l\,~

Ciss

I\.

\

I

r-----I--

r---- I'-5

10

IS

20

25

lO

l5

f-+-++--t-I--+-I--h-fC/+-+--iI--+-I-I10 f--t-+-+-+-I--.I"'-t---t-f--t-L--'--t-+--+-I
r- H--

_t-I...-'-V9-V+-+---t-+--t~~~~10V

-

O.sl--+--I----+--+--+---+-I--+----i

coss

-

crss

----=

40 Yos [ Y )

lo=lmA

0.5 H--+-+-+-lI-++-+-+-+-++-t-+I--+-t

r- - ----- .-....
r-r- - -r- - -r-r-i-i- - --r-I--t--

-50

50

100

-50

50

Source-drain diode forward
characteristics
IsolA )

~I-"'"

~v
10I

TJ=1500[

r-4

/_25°[

11

II II
O.B

1.6

2.4 VsoIV)

_4/_4___________________________ ~~~~~~~~T:~~©'

236

_____________________________

BUZ74
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ74

Voss
500 V

ROS(on)

10

3.0 0

2.4 A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH VOLTAGE - 500V FOR OFF-LINE SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT> 100KHz
• EASY DRIVE - FOR REDUCED COST AND
SIZE

INDUSTRIAL APPLICATIONS:
• SWITCH MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Typical applications include switching power supplies, uninterruptible power supplies and motor
speed control.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos

Drain-source voltage (VGS = O)

500

V OGR

Drain-gate voltage (RGS = 20 KO)

500

V

V GS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 30°C

2.4

A

10M

Drain current (pulsed)

9.6

A

Ptot

Total dissipation at Tc <25°C

T stg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

V

40

W

-55 to 150

°C

150

°C

E
55/150/56

1/4

237

BUZ74
THERMAL DATA

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

max
max

3.1
75

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)

Parameters

Test Conditions

OFF

10= 250 pA

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (VOS = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 1 rnA

Static drain-source
on resistance

VGs= 10 V

10= 1.2 A

gfs

Forward
transconductance

Vos= 25 V

10= 1.2 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30 V
RGs= 50 Q

10= 2.3 A
VGS= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

500

250
1000

p.A
p.A

±100

nA

4

V

3.0

Q

ON

VGS

(th)

Ros (on)

2.1

DYNAMIC

0.8

mho

500
80
55

pF
pF
pF

20
60
65
40

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

238

Turn-on time
Rise time
Turn-off delay time
Fall time

BUZ74
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
180M

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

180= 4.8 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

di/dt = 100A/p,s

180= 2.4 A

Safe operating areas

Thermal impedance

2.4
9.5

A
A

1.3

V

350

ns

3.5

p,C

Derating curve

ZthJ_C _ _ _

IKIWI

10

0J

c...-H+HlllI..-:,...Ho

0

-::

0

0
[\.,.
0

10·'

10'

Output characteristics

,

20V--;-'::;~

7V~ ~ ~ 6.5V
Tcase=2S0[

,

~

lolA)

I

glslS I

Vos=2SV

----

6V

~ .....
sv
4.5\1 ,----16

VoslVI

v ....

I
I
I

S.5V

12

Transconductance

II

~

JV

""

L

Vos=2SV

~

/

~

100

50

Transfer characteristics
-

lolAI

tpls)

10 0

r--.

V---

/'

V

J

....V

...."

I

I
4

lolA)

-------------- ~ ~~~~m?1rt:~~l: ______________3_/4
239

BUZ74
Static drain-source on
resistance

Maximum drain current
vs temperature
GC-0496

ROslon)

lOlA) 1-++-+-+-+-++-1-++-++-1-++-+--+-+--+-1
3.0 1-++-+-+-+-++-1-++-++-1-++-+--+-+--+-1

(Cl.)

9

VGs =10V!J V =20V
Gs

7
6

I

5

l

-

10

10

12

14

)oIA)

50

Capacitance variation

100

I

VGSlthJ
Inorm)

..........
0

\

(iss

..........

r--- -

r--.....

"'

..........

............

Vos=VGS
lo=1mA

30

40

VosIV)

v
V

1.0
0.6

(rss

./
....... V

r-r-

0.2

4
20

/
/

1.4

I""'-- I'.....

6
(oss

/

1.8

O. 8

\

20

VGS=10V
2.2 t-- t---- -IO=1.2A

1

,~

10

ROSlon )
Inorm)

1.2

VGs=O
f=1MHz

i'-..

II

Drain-source on resistance
vs temperature

Tcilu =2S0(

800

f

150 Tc 1°C}

Gate threshold voltage
vs temperature

ClpF)

400V

/~

1.0 1-++-+-+-+-++-1-++-+-+,,1.-+-+-+--+-+--+-1

0.5 f-+++++-++l-++++--~rI-t+t--H

~V

~V

1.51-++-+-+-+-++-1-+-N+-1-++-t--+-+--+-I

2

400

15

2.01-++-+-+-+--I''''!.l-++-++-I-++-+--+-+--+-I

,... /

3

t::±±:1++-++l-++++--H-++++--t-1

Vos=100V

-

j

4

200

)

1o=3.6A
2.5

8

600

Gate charge vs gate-source
voltage

-50

50

100

-40

40

80

120

TJ I"C)

Source-drain diode forward
characteristics
GC-0495

IsolA)

If~=150°C

10'

I

I

TJ =25°C

VsDIV)

_4/_4 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~l~:~~~~

240

__________-.,-___

W
~L

SGS-THOMSON
~D©OO@~[]J~©uOO@~D©~

BUZ74A

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ74A

Voss
500 V

Ros(on)
40

10

2A

• HIGH VOLTAGE - FOR OFF-LINE SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT> 100KHz
• EASY DRIVE - FOR REDUCED COST AND
SIZE
INDUSTRIAL APPLICATIONS:
• SWITCH MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Typical applications include switching power supplies, uninterruptible power supplies and motor
speed control.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR

Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS = 20 KO)

500

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 40°C

2

A

10M

Drain current (pulsed)

8

A

Ptot

Total dissipation at Tc <25°C

Tstg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

40

W

-55 to 150

°C

150

°C

E
55/150/56

114

241

BUZ74A
THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

3.1

°C/W
°C/W

75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF

10= 250 p..A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

VGS (th)

Gate threshold
voltage

Vos= VGS

10= 1 rnA

Ros (on)

Static drain-source
on resistance

VGs= 10 V

10= 1.2 A

gfs

Forward
transconductance

Vos= 25 V

10= 1.2 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30 V
RGs= 50 Q

10= 2.1 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

500

250
1000

p..A
p..A

±100

nA

4

V

4.0

Q

ON

2.1

DYNAMIC

mho

0.8

500
80
55

pF
pF
pF

20
60
65
40

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4_ _ _ _ _ _ _ _ _ _ _ _ _

242

~ ~~~~m~IJT:~~~~

--------------

BUZ74A
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

150M

Vso

Forward on voltage

Iso= 4 A

trr

Reverse recovery
time
Reverse recovered
charge

Iso

Orr

l.5s

v~-

lOu

~~,,~
10,

JL

"
"~~

i'

1160
us

10

,~~(

100

/.

0

ii'

SIN

0

I
,p

0,!Jc

ill
2

!II

tP
PD~
1j

J T l-

T
!

~

10

I--~ ~

6.5V

10iAI

I
I

Yos=25Y

~

0

-1

tplsl

10

0

r-.,.

Transconductance
glslS I

Vos=25Y

6V

I--

I

....... I----"'"i-""""

I

5.5V

l,?-.. . .

V

1

II

5V
4.5 f - 16

r-.,.

100

50

I

Tcase=2S0[

r-.,.

t

Transfer characteristics

20V-z,

12

p,C

0=0.1

Output characteristics

/

3.5

0
I

0:0.05

Jl

J'V

ns

Derating curve

0=0

II
I~J

2

, , '"

350

100-

0 0: 05

JI

V-

V

U-16 011

'I

ms

7V

1.3

ZthJ-C

lms

0,(.-

10iAI

A
A

IK/W

~

V

100A/p,s

Thermal impedance

IOIAI

/~

=

di/dt

Iso= 2 A

Safe operating areas

0

VGs= 0

2
8

...... V

VoslVI

--------------

1/

V

.......

V

I
4

~ ~~~~mg1r~:~~CG~

IoIAI

______________

3_/4

243

BUZ74A
Static drain-source on
resistance

Maximum drain current
vs temperature

Roslonl

IOIAII--++-t-t--H-+-l--+-+-+-+-I--++-t-t--t-H
10 I--++-t-t--H-+-l--+-+-+-+-H--t-t-t--t-H

ttLl
9

Gate charge vs gate-source
voltage
I

lo=16A
8
VGs =10V

7
6

/

5

/1

I

2.5 I--++-t-t--H-+-l--+-+-+--t-I--++-t-t--t-H
VGs =20V

Vos=100V

I-- -

2.0 I-+-+-+...r--t-++-ll--++-+-+-+-++-t_+_t-H
10
1.5 H-+-t-+-+-+-HP'k+-++-H-+-t-+-+-+-+

/

4

1.0 I--++-t-t--t-++-l--+-+-+~+-++-t-t--t-H

/

3

10

12

14

lolAi

-50

100

150

ROS lon I
Inorml

~

"b-.
!'....

..........

[iss

.8

(oss

10

20

30

40

V

1.0

.L

V

0.6

0.2

.4
VoslVI

I

f--I, _j-T"~--==2i'_5'_-"[+--_t_____+-t_+___+____1

244

V

...... 1/'"

1--1-- -1-- 1--+___+-t-+---+-----1

4/4

..........

.6

[rss

Source-drain diode forward
characteristics

L---'---'---L-----L--'_.L.----'-------'------'-_"------'

o

v

1.4

~

Vos=VGS

,~

iL
..L

t-- \ - lo=lmA

1\

/

ID =2.5A

1.8

"!'-

0

6001\

20

VGS =10V

2.2 1-1- t-

2

VGs=O
f=IMHz

400V

Drain-source on resistance
vs temperature

VGS(th)
(norm I

400

10

Tc I'CI

Tcase=25°(
800

r--

~

~ /'

V

Gate threshold voltage
vs temperature

[lpFI

L

v::V

1

0.5 H-+-t-+-+-+--t-H-+-++-H:+--t-+-+-+-+

Capacitance variation

100

sf

,.;'

2

200

15

VsolVI

-50

50

100

150TPCl

-40

40

80

120

T) I [I

BUZ76
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ76

Voss
400 V

RoS(on)
1.80

10

3A

• HIGH VOLTAGE - FOR OFF-LINE
APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE - FOR REDUCED COST AND
SIZE
INDUSTRIAL APPLICATIONS:
• ELECTRONIC LAMP BALLAST
• DC SWITCH
N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching times make this POWER MaS transistor ideal
for high speed switching applications.
Applications include off-line use, constant current
source, ultrasonic equipment and switching power supply start-up circuits.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (V GS = 0)

400

V

Drain-gate voltage (RGS = 20 KO)

400

V

Gate-source voltage

±20

V

Drain current (continuous) Tc = 35°C

3

A

Drain current (pulsed)

12

A

Ptot

Total dissipation at Tc <25°C

40

W

T stg

Storage temperature

-55 to 150

°C

Tj

Max. operating junction temperature

150

°C

Vos
V OGR
VGS
10
10M

DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

E
55/150/56

1/4

245

BUZ76
THERMAL DATA

max
max

Rthj _case Thermal resistance junction-case
Rthj _amb Thermal resistance junction-ambient

3.1

°C/W
°C/W

75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
,,(SR)

10= 250 itA

VGS= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 1 rnA

VGs= 10 V

10= 1.5 A

Vos= 25 V

10= 1.5 A

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30 V
RGs= 500

10= 2.5 A
VGs= 10 V

oss Drain-source
breakdown voltage

loss

IGSS

V

400

250
1000

itA
itA

±100

nA

4

V

1.S

0

ON

VGS(th)

Ros (on) Static drain-source
on resistance

2.1

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

O.S

mho

500
SO
60

pF
pF
pF

20
60
65
40

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4_ _ _ _ _ _ _ _ _ _ _ _ _

246

~ ~~~~m~::~~~~

--------------

BUZ76
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 6 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= 0

di/dt = 100A/p,s

Iso= 3 A

Z'hJ-C_,,_

Safe operating areas

II

300

ns

2.5

p,C

Ptot lWl

0

i>"""

0,0.05

SIN

V

0

~
D=0.1
~~2

1.4

f-::

100~.S

10-,0,0.01

A
A

Derating curve

Thermal impedance

IK/WI

3
12

I

0

I'..

EP

I'\.
I'...

0

'"

Output characteristics
iliA)

VGs =20V t----10VI--J

W

...-1-

If/
VI,-""

t

I
Vos=2SV

1

Vos=25V

s.sv

I

1

sv

/

4Vf- r--12

16

_ _ f-""

VoslVI

/

V

-I--

vI',

/

4.5V

1/1

"

Transconductance

lolA I

6V

T",,=2S0[

)

2

Transfer characteristics

I'...

100

50

,r

/

v

5

lolAI

-------------- ~ ~~~~m?lI~:~~©~ ___________- - ,__

3_/4

247

BUZ76
Maximum drain current
vs temperature

Static drain-source on
resistance

Gate charge vs gate-source
voltage
I

I

ROSlon I

Inl

I

lo:45A

VGs :10v/ll

15

1/

1'0.
I'

JI
~'/"

~

/

VGs :20V

"-

\

Capacitance variation

800

600

\

400

\

t--.."

Drain-source on resistance
vs temperature

,
\ ........

\

1/
/

1.8

1.2

.........
0

--

..........

.........

/
/

1.4

......... 1'-.
..........

O. 8

/

,
..........

Vos:VGS

1.0

I--- r--- lo:1mA

-

V

0.6

O. 6

~

20

ROSlon)
Inorm)

(iss

1\

10

150
Te I'()

VGSlthl
Inorm)
Tease: 25'(
f:1MHz
VGS:OV

320V

/
V

\

Gate threshold voltage
vs temperature

(lpF I

200

100

'i'

ri-- fU

"\
~

50

r--~'i'

I'

..... ~~

lolAI

Vos:80V/

10 -

I'

10

/~

-+--

V

/
VGs: 1OV
10 :1.5A -

L'

-

)

t-- (rss

10

20

30

4
40 VOS IVI

0.2
-50

50

100

-40

40

80

Source-drain diode forward
characteristics
IsolAI

TJ:1500(~

101

IrJ

II

/11-- r-

100

o

I

TJ:25°(

4

VsolVI

_4/_4 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1Y~:9lt

248

______________

BUZ76A
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ76A

Voss
400 V

RoS(on)
2.50

10

2.6 A

• HIGH VOLTAGE - FOR OFF-LINE
APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE - FOR REDUCED COST AND
SIZE
INDUSTRIAL APPLICATIONS:
• ELECTRONIC LAMP BALLAST
• DC SWITCH
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Applications include off-line use, constant current
source, ultrasonic equipment and switching power supply start-up circuits.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR

Drain-source voltage (VGS = 0)

400

V

Drain-gate voltage (RGS = 20 KO)

400

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 30°C

2.6

A

10M

Drain current (pulsed)

10

A

Ptot

Total dissipation at Tc <25°C

40

W

T stg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

-55 to 150

°C

150

°C

E
55/150/56

1/4

249

BUZ76A
THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

°CIW
°CIW

3.1
75

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)

Parameters

Test Conditions

OFF

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating

Tj = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 1 mA

VGs= 10 V

10= 1.5 A

oss Drain-source
breakdown voltage

"'tSR)

loss

IGSS

V

400

250
1000

p,A
p,A

±100

nA

4

V

2.5

0

ON

VGS

(th)

Ros (on) Static drain-source
on resistance

2.1

DYNAMIC

gfs

Forward
transconductance

Vos= 25 V

10= 1.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 30 V
RGs= 500

10= 2.4 A
VGs= 10 V

0.8

mho

500
80
60

pF
pF
pF

20
60
65
40

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4_ _ _ _ _ _ _ _ _ _ _ _ _

250

~ ~~~~mgu~:~~~~

______________

BUZ76A
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISDM

Source-drain current
Source-drain current
(pulsed)

Tc= 25°C

Vso

Forward on voltage

Iso= 5.2 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

1~~
~s

~~~.

r--

l"'~

10

10ms
lOOms

SIN

1111

10°

B

,

B

10

10'

vo~lvi

'

B

10-2

Output characteristics
lolA I

VGs :20V t---10Vt-#

4

VI"

!

I

0

10

TTl-

I
4

10

i".

0

t
10 tpCs) 10°

l

5V

It

Transconductance

I

Vos:2SV

1
--f----

/I

/

4Vf-- f-12

16

vi""" -- -

/

4.5V

IT

~

100

50

VDs :25V

5.5V

j

~

C\

-1

IDCA )

Tcase=2S0(

I

T

r....
c:-.,

po~
ltPj

!VV'

2

p.C

EP

Transfer characteristics

6V

)

3

2.5

0

+-L./'"

11/

ns

Ii'"

I I!II

105

300

0

O,.!Q.

10"

V

~

0=0

,~:(

1.4

Derating curve

~

0 0 : 0.5

0=0.1
0:0.05

D.C~

A
A

Ptot lWl

'I

100~s

-~

104

'

100Alp,s

ZthJ-(

IK/W

~

10°

=

Thermal impedance

-r-

10'

di/dt

Iso= 2.6 A

Safe operating areas
lolA)

VGs= 0

2.6
10

/

"=~

V

V

L

~

VoslVI

-----------------------------~~~~~~?v~:~~~

5

lolA)

___________________________

3_/4

251

BUZ76A
Static drain-source on
resistance

Maximum drain current
vs temperature

Gate charge vs gate-source
voltage

lOlA I

ROSl,nl
Inl

I

IO=4SA

VGs =10V! /

/.~

~

15

II
1/
/ VGs =20V

1-1- ~ .....

"

--- t - - -t- - t - - t -

......

10

I"'-

1-0-'100""

50

Capacitance variation

100

600

1\

400

\

\

ROSlonl r-,.--,----r--r-,---.,.--,---,-:::::.;:I:.:.:..
/
Inorml

r--j--j--i--+-t-t--t--t--l'I/'---j

1.6

r---J---i--t-t-+-+---t---y-I/-j--j

/

........ 1'-.
1.4 I--+-+-+-+--l-...,L,£...-j-i---t--l

L

't---,

(iss

........

-I-.8

b-,
I........

Vos=VGS

1.0

t-+-+-+-¥LL---t--t--t--t--t--I

V

1-- t--- lo=1mA

I\.

. . . r-+-

VGS=10V

V

0.6

6

t"-"'- ~

10

20

~

1\ \
200

320V

Drain-source on resistance
vs temperature

2

0

f'....

10

150
Tc lOCI

1

600

r--~V

:L

/

VGSlth 1
(norm I
Tcase=25°(
f=1MHz
VGS=OV

L

II

Gate threshold voltage
vs temperature

(lpF I

Vos =80V

Lt"'"- V
\

lolAI

r--

.....

:'J
10

.L~

~r--

10 = 1.5AI--t--

.LV

1

(rss

4
20

30

40 VOS IVI

L

-50

50

100

0.2 '----::'40:--'---"--'---.,.4 O--'...--:'60:---'--T-'-J-::1:-'[1

Source-drain diode forward
characteristics
IsolAI

,

TJ =150'[-

10

f,/~

II

III-- I--

100

4/4

252

o

I

TJ=25'[

4

VsolVI

~ ~~~~m?::J?n

--------------

SGS-THOMSON
..r=-=
~L [R'li]D©OO@~OJ~©uOO@~D©~

BUZ353

N - CHANNEL ENHANCEMENT MODE
POWER MaS TRANSISTOR
TYPE
BUZ353

Voss
500 V

Ros(on)
0.6 Q

10
9.5 A

• HIGH SPEED SWITCHING
• HIGH VOLTAGE - 500V FOR OFF-LINE SMPS
• HIGH CURRENT - 9.5A FOR UP TO 250W
SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT <100KHz
• EASY DRIVE FOR REDUCED COST AND
SIZE

TO-218

INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Typical applications include switching mode power supplies, uninterruptible power supplies and motor speed control.

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR

Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS = 20 KQ)

500

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) T c = 25°C

9.5

A

10M

Drain current (pulsed)

38

A

Ptot

Total dissipation at Tc <25°C

T stg

Storage temperature

Tj

Max. operating junction temperature
DIN humidity category (DIN 40040)
IEC climatic category (DIN IEC 68-1)

June 1988

125

W

-55 to 150

°C

150

°C

E
55/150/56

1/4

253

BUZ353
THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

1.0
45

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)

Parameters

Test Conditions

OFF

10= 250 p.,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating

T j = 125°C

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos = VGS

10= 1 mA

Static drain-source
on resistance

VGs= 10 V

10= 5.5 A

gfs

Forward
transconductance

Vos= 25 V

10= 5.5 A

Ciss
Cos s
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f = 1 MHz

Voo= 30V
RGs= 50 n

10= 2.8 A
VGs= 10 V

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

V

500

250
1000

p.,A
p.,A

±100

nA

4

V

0.6

n

ON

VGS

(th)

Ros (on)

2.1

DYNAMIC

2.7

mho

4900
400
170

pF
pF
pF

75
120
430
140

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_4__________________________ ~~~~~~~~:~~~~ ____________________________

254

BUZ353
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Te= 25°C

Vso

Forward on voltage

Iso= 19 A

trr

Reverse recovery
time
Reverse recovered
charge

Orr

VGs= ·0

=

di/dt

Iso= 9.5 A

Safe operating areas

100Alfts

Thermal impedance

)

~,

r-

120

~

~

~s

0

I
1

,"S

60

o,~ po~
T
J ,I.... '

,'pr

11111

10

111111 I

M

II

,

1

10.

10

Output characteristics

If t-li- t -

VGs =20V
16

10V
8V

\

1\][1
10

10 3

4

10

'

"\

,

100

50

Transconductance
-

37

)

14

I
J

12
10

10

II

t-

,.

I
I

Tcase=2S0[

II

.'\

I'-.

100
tpls)

I

J

I"\.

I

6V

5V t-- t--

" I'-.

20

10'

lolA)
15

("
W

12

ftC

40

Transfer characteristics
GC-0641

lolA)

12

""
"I'-.I'.,

80

"ill"

,- ~

S

1i
10

0 (1

ns

f-+-k.

100

~s

i

1200

140

~s

1~

~'

V

GU-1621

y,9

....

1.7

Ptot lW )

IK/W)

,

A
A

Derating curve

ZthJ- (

~~

38

9.5

/
Vos=25V

Vos=2SV

--

12

lolA)

II

4V

I(

/
10

20

30

40

----------------------------

II
10

VosIV)

~~~~~~~v~:~~~~

___________________________

3_/4

255

BUZ353
Static drain-source on
resistance

Maximum drain current
vs temperature

Gate charge vs gate-source
voltage

Ql-1870

ROS 1,nJ
In)

IA

I D ) 1-++-+-+-++-+-1-++-+-+-+-++-11-+++--1
121-++-+-+-++-+-1-++-+-+-+-++-11-+++--1

10

Vos=100V

lo=14.4A

15
VGS=IOV

V
:::::

O. 5

.....

.-::;..--

....-:V

/

10

VGs =20V

/: /'

/

/t::/

400V

./

I

/

V
10

20

30

lolA)

50

Capacitance variation

150

100

Gate threshold voltage
vs temperature

[lnF J

80

40

Tel·C)

Drain-source on resistance
vs temperature
G(-0639/1

VGSlth J

{norm )

J

6

2

Ii
(lSI

VGS =10V 1-++-+-+-11-++-++-1

- -

lo=5.5A

-r--.

-r-r-8

I-

...

\\
1\

4

VOs=VGS
lo=lmA

\1\..
1'-. ....... -

(01$

".i

0
60 VoslVl

-50

50

100

-50

50

100

Source-drain diode forward
characteristics
IsolA )
h

I."
1J.r- r- T =150'C
1-- Tj=25'C

1

I
0.5

10

15

2.0

2.5

3.0

VsoIV)

_4/_4__________________________

256

~~~~~~:~----------------------------

BUZ354
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
BUZ354

VDSS
500 V

RDs(on)
0.8 G

ID
8A

•
•
•
•

HIGH SPEED SWITCHING
HIGH VOLTAGE - 500V FOR OFF-LINE SMPS
HIGH CURRENT - 8A FOR UP TO 200W SMPS
ULTRA FAST SWITCHING - FOR OPERATION
AT < 100KHz
• EASY DRIVE - FOR REDUCED COST AND
SIZE
TO-218

INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications.
Typical uses include switching mode power supplies, uninterruptible power supplies and motor
speed control.

INTERNAL SCHEMATIC

DIAGRAM

0

.G~
5

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR
VGS

Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS =20 KG)

500

V

Gate-source voltage

±20

V

10

Drain current (continuous) Tc = 25°C

8

A

10M

Drain current (pulsed)

32

A

Total dissipation at Tc <25°C

125

W

Ptot

-55 to 150

°C

. Max. operating junction temperature

150

°C

DIN humidity category (DIN 40040)

E

Tstg
Tj

Storage temperature

IEC climatic category (DIN IEC 68-1)

June 1988

551150/56

1/4

257

BUZ354
THERMAL DATA
Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

max
max

°CIW
°CIW

1.0
45

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
ID= 25Ol1A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

V DS = Max Rating
V DS = Max Rating

Tj = 125°C

Gate-body leakage
current (V DS = 0)

VGs= ±20 V

Gate threshold
voltage

V DS = VGS

ID= 1 rnA

Static drain-source
on resistance

VGs= 10 V

ID= 5.5 A

gfs

Forward
transconductance

V DS = 25 V

ID= 5.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

V DS = 25 V
VGs= 0

f= 1 MHz

V DD = 30 V
RGs= 50 n

ID= 2.8 A
VGs= 10 V

,-, 10 (on) X ROS(on) max VGS= 10 V
for IRF140/lRF141
for IRF142/1RF143

Static drain-source
on resistance

VGs= 10 V
for IRF140/lRF141
for IRF142/1RF143

gfs **

Forward
transcond uctance

V os > 10 (on) X Ros (on) max
10= 17 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2

A
A

28
25

10= 17 A
0.077
0.100

n
n

DYNAMIC

f = 1 MHz

8.7

mho
1600
800
300

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 30 V
10= 15 A
Ri= 4.7 n
(see test circuit)

30
60
80
30

ns
ns
ns
ns

Og

Total gate charge

10= 28 A
VGs= 10 V
Vos= Max Rating X 0.8
(see test circuit)

59

nC

_2/_5__________________________

262

~~~~~~~~~~----------------------------

IRF 140 - 141 - 142 - 143
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (-)

Source-drain current
Source-drain current
(pulsed)

V SD **

Forward on voltage

Iso= 28 A

trr

Reverse recovery
time
Reverse recovered
charge

T j = 150°C

Orr

28
110

A
A

2.5

V

VGs= 0

di/dt = 100 A/p,s

Iso= 28 A

500

ns

2.9

p,C

Pulsed: Pulse duration ~ 300 P.s, duty cycle ~ 2%
(-) Repetitive Rating: Pulse width limited by max junction temperature

Safe operating areas

Derating curve

Thermal impedance
U-1

)

1

GU-1593

Ptot lW )
140

~4(::f*~v~
IRFl4()/l

10

1i213
1 17

120

.-

10 2~F~/1

_.

10'

&l'1

~~

ftt

"

-=O( OPERATION

&'1"1

10"' f:S#

I

1Omsf-lOOms

I~~~tq~

111111
~

2

6

8

10'

:;.;

/:

~

Zt~

10'

= KR

s=-Jt

10 '

20

10'

20

tpls)

40

60

80

100

"I\..
"\.
120

.j-

-00

lolA )
VGS =10V
0

Tcase=25°(

10

V/ '/

h V -~ ///V/

0

0

~ V 9Y8V

~/
~I"

Ill'

~V

~~
IF

-

lolA )

0

lolA

9V
!-8V
VGs =10,
f-- -

l[

40

7V

30

0

I
II
HI' V

VOS>ID(onlxROSlonlmax

r--I-TJ=-SSO[

-

TJ=2S0[

- J-j I

TJ=12S0[, 6V

6V

0

sv

20

IJlV
'I

l'f/

10

10

SV

4V

~

4V
VosIV)

Tcase I [)

Transfer characteristics

Output characteristics

Output characteristics

"\.

40

·~'11'

10 2

10'

",

j-c

JlIL

JllJll~

10.2
10 5

......

60

~

SINGLE PULSE

I

DC

1

"" ,

80

II

1.,

r---r-...

100

10

20

30

40

VosIV)

I
'f/

VGsIV)

3/5

263

IRF 140 - 141 - 142 - 143
Transconductance

-

I

/
//V

16

,IL

8

I

Maximum drain current vs
temperature
I

ROSlon)

TiT T

(nl

VGs =10V'

rfVos>

r-...... ~

18

I

I I

/

......... ...... ~

2

I I
/!--

i'--

24

J =25°C

h

12

Static drain-source on
resistance

lo(on)xRoSlonlmax

1

c--

12

t-....
"~

r----

,/' VGs =20V

i

f-i-' f - - -

"

IRF142,143

v

J

1
C--

IRF140 141

r\..
\

\

I I
10

30

20

40

20

Io(AI

Gate charge vs gate-source
voltage

60

1600

Vos=30V

r-----

Vos=50V

\

10

1/

A~ Yns=80V.lRFI40,142

..ELY

1o=28A

lo(AI

800

\.

400

tr

I

-r-rtrss

Normalized on resistance
vs temperature

15

20

I-- -

-_.+-+--+--+-- i--

-

0.95/
I-+--~-+~~+-~-+---l-

t--

0.85 1--+--+--+-t--lVGs=O
f-_ .._-- 1---lo=250pA

O. 75

25

125 Tease(°C)

.......... ~

t",<

r-.....

100

1.05 1-- -I-+--+/---+!--~f'£--+--+- 1--

I

,~

10

75

(iss

\
5

50

V(BRIOSS ,-,-,----,----,c---,-,---.--,..::::..:r:,
(norml 1-__ -

J

40

ROS (on),--.---.--.-----r-..-.---r---r-=-r=;

25

Normalized breakdown
voltage vs temperature

'case ='25°L
f=lMHz
YGS =OY
1

\

i1" r\

/

20

100

I ,

1200

~~

~rr

80

Capacitance variation
C!pFI

I

15

40

30

35

40

VOS(YI

L--"-....L-L-.-J'----'--~___L--'_"--'

-40

40

80

120

TJ

(OCI

Source-drain diode forward
characteristics
'so IA )

(norm) I--+--+--+-+-t-+--+--t-I-i

v

2.01--+--+--+-+-t-+--+--t-I--i

V

/""

1.5 r--'--+-+--+--+-/--+/---..I~+-+---l

1.0

I--t---l--::;;I.""'~./'
..,...../'

A

lj=150°C

.... -

--

V/'

L
II

lj =25°(

I

I-""

I

0_ 5 I-+--+--t----i!--t--t--t

I,
0.4

_4/_5_ _ _ _ _ _ _ _ _ _ _ _ _

264

-'

0.8

1.2

1.6 VSolYl

ii;l ~~~~m?::J?lt --------------

IRF 140 - 141 - 142 - 143
Clamped inductive test circuit

Clamped inductive waveforms
L

Ec

r

VARY t TO OBTAIN
REO.UIRlD PEAK tOUT

Vos

VGS = 1 0 V ! n

----t
"

~J

""

", "
IL ---- - - _ _ _- - J

E,=O.5 BVoss

,,
,,

,

,-------

Ec=O.75 BVoss
S(-0243
S(-0242

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE
:GENERATOR
................. .

:
~

12V

=

O.2pF

SOKQ

...... .' .......... .
1.5mA

FL

S(-0246

-Vos
CURRENT
SAMPLING
RESISTOR

S(-0244

------______________________

~~~~~~?V~:~~~

__________________________

~5_/5

265

ru
':'f1m SGS-1HOMSON
~o©OO@rn[Lrn©LFOO@[t\'!]o©~

IRF 150 - 151
IRF 152 - 153

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE

Voss

IRF150

100 V

0.0550

40 A

IRF151

60 V

0.0550

40 A

IRF152

100 V

0.08

0

33 A

IRF153

60 V

0.08

0

33 A

10

Ros(on)

• 60-1 00 VOLTS - FOR DCIDC CONVERTERS
• HIGH CURRENT
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• ULTRA FAST SWITCHING
• EASY DRIVE- FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• UINTERRUPTIBLE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Applications include DCIDC converters,UPS, battery
chargers, secondary regulators, servo control, power audio amplifiers and robotics.

TO-3

INTERNAL SCHEMATIC
DIAGRAM

IRF

ABSOLUTE MAXIMUM RATINGS

VOS

*

V OGR *
V GS

10
10
10M(e)
Ptot
Tstg

Tj

Drain-source voltage (V GS = 0)
Drain-gate voltage (RGS = 20 KO)
Gate-source voltage
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Drain current (pulsed)
Total dissipation at Tc < 25°C
Derating factor
Storage temperature
Max. operating junction temperature

150

151

152

153

100
100

60
60

100
100

40
25
160

40
25
160

V
V
V
33
A
20
A
132
A
W
W/oC

±20
33
20
132

150
1.2
- 55 to 190
150

60
60

°C
°C

* T = 25°C to 125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature
• Introduced in 1988 week 44

June 1988

1/5

267

IRF 150 - 151 - 152 - 153
THERMAL DATA
Rthj _case
Rthc-s
Rthj-amb
T,

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

0.83
0.1
30
300

°CIW
°CIW
°CIW
°C

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Parameters

Test Conditions

OFF
breakdown voltage

10= 250 pA
for IRF150/lRF152
for IRF15111RF153

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

,, 10 (on) X ROS(on) max VGS= 10 V
for IRF150/lRF151
for IRF152/1RF153
VGs= 10 V
for IRF150/lRF151
for IRF152/1RF153

10= 20 A

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starting Tj = 25°C
for IRF150/lRF151
for IRF152/1RF153

L = 100 p,H

gfs **

Forward
transconductance

V os > 10 (on) X Ros (on) max
10= 20 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

2

A
A

40
33
0.055
0.08

0
0

ENERGY TEST
lUIS

40
33

A
A

9

mho

DYNAMIC

f= 1 MHz

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?1rT:9©~

268

3000
1500
500

pF
pF
pF

______________

IRF 150 - 151 - 152 - 153
. ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SWITCHING
td
tr
td
tf

(on)
(off)

09

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 20 A
Voo= 24 V
Ri= 4.7 n
(see test circuit)

35
100
125
100

ns
ns
ns
ns

Total Gate Charge

10=50 A
VGs= 10 V
Vos = Max Rating x 0.8
(see test circuit)

120

nC

for
for
for
for

40
33
160
132

A
A
A

2.5
2.3

V
V

SOURCE DRAIN DIODE
Iso

Source-drain current

ISOM (-)

Source-drain current
(pulsed)

Vso **

Forward on voltage

IRF150/lRF151
IRF152/1RF153
IRF150/lRF151
IRF152/1RF153

VGs= 0
for IRF150/lRF151
for IRF152/1RF153

Reverse recovery time Tj = 150°C
Reverse recovered
Iso= 40 A
charge

trr

Orr

Iso= 40 A
Iso= 33 A
600
3.3

di/dt = 100 AJp,s

ns

p,C

* * Pulsed: Pulse duration ~ 300 P.s, duty cycle ~ 2%
(-) Repetitive Rating: Pulse width limited by max junction temperature

Safe operating areas

Thermal impedance

Derating curve
Ptot(W)

140

F"~~

10'~

:
4

~

REtSOf

2~7
10:

lOps

'"

~
'\

120

=;:

,

- i"'\.

100

_

80

lm'r10m'

'\

10°_11

10Dps

'\

60

'=

40

~

r\.

20

r\.
10·'

10.
'

10°

20

40

60

80

100

120 Tcase (O[)

tp(s)

-------------- ~ ~~~~m?::~~l: ______________

3_/5

269

IRF 150 - 151 - 152 - 153
Output characteristics
lolA I

flH
-h'If-

VGs =10V

-

9V

16

/!IJ

BV

6V

lfl/
IJY

rJ V

It~

lolA)

VI

I

BV

W

25

V

VOS>IOlonlxRO Imax/,

Tcase=2S0(

30

.......

v
,,-/

-

11
HI
U

20

7V

V

5V

9 -

'"

..----r

Transfer characteristics

7VV

VI /

12

Output characteristics

15
6V

20 '/'

'/

V V
0.4

12

VOSIVI

16

10

Transconductance

30

20

rl

40

VoslVI

16

I

lOlA

Inl

II

/

I /

----

I
TJ=125°[

IV

I

'1

Vos>IO(on)xROS(onlmax

I
I
10

30

20

40

IOIAI

-019

t--...

24

/

7

B

9 10 VGSIVI

r--.... IRF\50,1~1_ f--- -

'"'"'" f'.
f'. ",

" 'r-...\
'"

16

vr

80

40

6

VGs =20V

f.--- V
~ f--

0.0 2

5

IRFl52,153

./

V

Gate charge vs gate-source
voltage
I

/

0.0 6

4

~

.........

VGs =10V

0.10

,/

/ II

II

TJ=25°[

3

If"".. .......

32 ~

I
0.14

12

2

Maximum drain current vs
temperature

ROSlon)

TJ=-55°[ f---

V

1

Static drain-source on
resistance

9,,151

1-'----

TJ ,-5rC

~//

4V

O.B

TJ =125 C
TJ =25°[- 1 - -

"
I/i

10

4V

120

,

'0lolAI

o
25

Capacitance variation

50

75

100

125

T(as/C

Normalized breakdown
voltage vs temperature
GU-1S09

ClpF I

VIBR)DS S

Inorml
3200
15
Vos=20V,

">5< ~ ~

Vos=50\

10

Vos=80V, IRF150,152

~

/

/
2B

56

\

1.15

VGS=OV

\\

1600

\ \ r-

800

84

\

2400

V
lo=50A

Tease= 25°C
f= 1MHz

l~

\ "'I'..

" i'-.
10

r-....

.,./

Ciss
0.95

~

. . . . 1'-- Crss
20

--

30

r-

-

40 V051VI

/

....

V

.......... V
V

VGs=OV

lo=250)JA

_4/_5__________________________ ~~~~~~~~~:~~n

270

vI--""

lOS

I-- -

r--

0.85

0.75
-40

40

80

120 TJ 1°[1

____________________________

IRF 150 - 151 - 152 - 153
Normalized on resistance
vs temperature
ROSlonI
(norm I

Source-drain diode forward
characteristics
ISO (A )

/

/

1.8

TJ =2So~,

/

1.4

V

1.0

6--

........-

... V

V

40

[

:== ==

II

10'
VGs =10V

-40

0

J=l'U-

./

TJ= SO[

f - r----

lo=20A
2

h ~ TJ=150

10'

II
4

80

Unclamped inductive test circuit

VSD (VI

Unclamped inductive waveforms
L

V(SA) DSS

r

VARY t TO OBTAIN
REO.UIRED PEAK IL
OUT

Vos - - - - i

,,

,,
,

,------SC-0338

S<;'0339

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE
!GENERATOR
................. .

!-........ ....... ..
,.

12V

=

O.2pF

50KQ

~

t5mA

rL

S[-0246

-Vos
CURRENT
SAMPLING
RESISTOR

S[-0244

----------------------------~~~~~~?v~:~~~

___________________________

5_/5

271

IRF350
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
IRF350

Voss
400 V

Ros(on)
0.3 {1

10

15 A

• HIGH VOLTAGE - FOR OFF-LINE SMPS
• HIGH CURRENT - FOR SMPS UP TO 350W
• ULTRA FAST SWITCHING - FOR OPERATION
AT > 100KHz
• EASY DRIVE - REDUCES SIZE AND COST
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Fast switching and easy drive make this POWER MOS transistor ideal for high voltage. Switching applications include electronic
welders, switched mode power supplies and sonar
equipment.

TO-3

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Vos *

VOGR *
VGS
10
10
10M(-)
10LM

Ptot

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 K{1)
Gate-source voltage
Drain current (cont.) at T c =25°C
Drain current (cont.) at T c = 100°C
Drain current (pulsed)
Drain inductive current, clamped (L= 100 ",H)
Total dissipation at Tc < 25°C
Derating factor
Storage temperature
Max. operating junction temperature

400
400
±20
15

9
60
60
150
1.2
-55 to 150
150

V
V
V
A
A
A
A
W
W/oC
°C
°C

* T= 25°C to 125°C
(e) ~epetitive Rating: Pulse width limited by max junction temperature
June 1988

1/5

273

IRF350
THERMAL DATA
Rthj _case
Rthc -s
Rthj _amb
TI

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

°CIW
°CIW
°CIW

0.83
0.1
30
300

°C

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
V(BR) oss Drain-source
breakdown voltage
loss

IGSS

10= 25Ol1A

VGs= 0

Zero gate voltage
d rai n cu rrent (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

400

T j = 125°C

V

250
1000

I1A
I1A

±100

nA

4

V

ON **
V GS (th)

Gate threshold voltage Vos= V GS

10 (on)

On-state drain current

VoS>IO(on) x Ros (on) max' V GS = 10 V

Ros (on)

Static drain-source
on resistance

VGs= 10 V

g fs **

Forward
transconductance

V os > 10 (on) X Ros (on) max
10= 8 A

C jss
Coss
C rss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

10= 25Ol1A

2
15

A
0.3

10= 8 A

n

DYNAMIC
mho

8

f= 1 MHz

3000
600
200

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 180 V
10= 8A
Rj = 4.7 n
(see test circuit)

35
65
150
75

ns
ns
ns
ns

Og

Total Gate Charge

10= 18 A
VGs= 10 V
V DS = Max Rating x 0.8
(see test circuit)

120

nC

_2/_5__________________________ ~~~~;~g~T:~~~~

274

____________________________

IRF350
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)

15
60

Vso **

Forward on voltage

Iso= 15 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

~

Pulsed: Pulse duration

300 JJ.s, duty cycle

1.6

VGs= 0

~

V

1000

ns

6.6

/J-C

di/dt = 100 Alp's

Iso= 15 A

A
A

2%

(e) Repetitive Rating: Pulse width limited by max junction temperature

Safe operating areas
lolAI

Thermal impedance

Derating curve

GC-0894

GU-1573

Ptot lW )

-

r-- b-,.

140

1,,-

-

101

"-

~

t

10~s

100)Js
1ms

"-

«c/§

"-

/
10-1
100

2

I,

6

8101

2

4

68102

2

10-'

'1'1

OC

~:~i

III

S'I"I' '!lit'
10"10'S

"Vos(Vl

f-'

'\

'\

;;.0-

60
lth

~

"'\

JIOlonjxROSlonl

J,V

J

rI/
hr,

15

16 ft--l---t--t-+-+-+--+-+-+-+---l---I

// V

1///

4.5V
5
3.5V

1--1f---1--+-+-+-+--1 4.5V 1 - - - -

4V

4V

t
VoslVI

--------------

50

100

150

W

TJ=125 0C_!J

5V

~V

120 Tease lOCI

Transfer characteristics

GC-0491

lolA I

2

-...-

;-

10ms
100ms

I\.

"\

100
SiO'IS

.I

'\.

120
10°

200

250

~ ~~~~mgr~:~~~~

VoslVI

TJ=2~/L

VP

TJ=-55°C

______________

3_/5

275

IRF350

)

G(-0890

ROSlonI

J=-55l

V ....

16

TJ=25·C

f/ /V ,/"

12

(nl

16
VGs=10V

0.5

rJ ~

JlL
If/-

t---

._.- I~

--

~

f--

~~+-~- ---I~

10

15

20

...... ~
10

lOlA)

20

30

40

50

60

-~ ~I--~

10

~

~

1--1---

~

f=lMHz

320 0'\

\

240

1o=18A -

/.~

-,-

160

I--

\
800

I
20

40

60

80

100

120

100

GU-156711

V(BR)OS5
(norm)

_....

1.15

Vi-"""
1.05

t'---J-.-

(iss
0.95

o \

75

VGS =OV

",-

0 \

50

Normalized breakdown
voltage vs temperature

T,ase=25C

1

/-IV
/.V

25

ID(AI

GU-15{,9

12

\

"'

a..(nCI

"'- 'r--....
........

10

....

\
o

)

14

"'" "'"

Ih V

Capacitance variation

Gate charge vs gate-source
voltage

"",

VGs =20V

I~

VOs>IO(on)x ROS(on)max.

3

t'--..

12

II/

O. 4

....... r---...

J

/

IV V
V

(j(-0892

Io(A)

0.6

-I---I- ~OC

/V

Maximum drain current vs
temperature

Static drain-source on
r'esistance

Transconductance

r-- r-20

/'

/'

V "7

V
VGs=O
ID=250pA

0.85
Coss
Crss

-

30

40

VOS

0.75

-40

40

80

Source-drain diode forward
characteristics

Normalized on resistance
vs temperature

GU-1566

ISD(A)

ROSlon I
(norm )

2.2

1.8 J--J--J--

VGs =10V
ID=5A

4

V
/

0

6

/

~~

10 2

~=150"c VI
101

1./
....

V

Iv

~

TJ =25"(

...... V

I

O. 2

100

-40

40

III

4

-4/-5--------------------------~~~~~~~vT:9~~
276

VSD(V)

----------------------------

IRF350
Clamped inductive test circuit

VARY t

Clamped inductive waveforms

TO OBTAIN

REO.UIREO PEAK IL

OUT

VDS

----t

,,
,,
,

,-------

E,=O.5 BVoss
Ec=O.75 BVoss

S(-0243
S(-0242

Gate charge test circuit

Switching times test circuit

PULSE
!GENERATOR
................. .

12V

!
....... ............ .
~

1.5mA

s-L

S(-0246

--C==1--<...-t_J---o -Vos

CURRENT
SAMPLING
RESISTOR

S(-0244

---------------

ru SGS-1HOMSON
'JI,.

IR\iIfl~IRl©~IL~~'D'IRl©lR!lfl~~

5/5
---------------

277

ru
SGS-THOMSON
~1m [I0iJD©OO@~[L~©uOO@~D©~

IRF 450 - 451
IRF 452 - 453

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE

Voss

Ros(on)

10

IRF450

500 V

0.4 0

13 A

IRF451

450 V

0.4 0

13 A

IRF452

500 V

0.50

11 A

IRF453

450 V

0.50

11 A

• HIGH VOLTAGE - 450V FOR OFF LINE SMPS
• HIGH CURRENT -11A FOR UP TO 350W SMPS
• ULTRA FAST SWITCHING - FOR OPERATION
AT > 100 KHz
• EASY DRIVE - REDUCES COST AND SIZE
• HERMETIC PACKAGE TO-3
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS

TO-3

INTERNAL SCHEMATIC
DIAGRAM

N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Typical applications include switched mode power supplies, uninterruptable power supplies_ and motor
speed control.

5

ABSOLUTE MAXIMUM RATINGS
Vos *
VOGR *
VGS

10
10
10M(e)
10LM

Ptot

Drain-source voltage (V GS = 0)
Drain-gate voltage (RGS = 20 KO)
Gate-source voltage
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Drain current (pulsed)
Drain inductive current, clamped (L = 100 /LH)
Total dissipation at Tc < 25°C
Derating factor
Storage temperature
Max. operating junction temperature

IRF
450

451

452

453

500
500

450
450

500
500

450
450

13
8.1
52
52

13
8.1
52
52

±20
11
7.2
44
44

150
1.2
-55 to 150
150

V
V
V
11
A
7.2
A
44
A
44
A
W
W/oC
°C
°C

* T- = 25°C to 125°C
(e) Aepetitive Rating: Pulse width limited by max junction temperature
June 1988

1/5

279

IRF 450 - 451 - 452 - 453
THERMAL DATA

Rthj _case
Rthc-s
Rthj-amb
TI

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

max
typ
max

0.83
0.1
30
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
,, 10 (on) X ROS(on) max VGs =10 V
for IRF450llRF451
for IRF452/1RF453
VGs= 10 V
for IRF450/lRF451
for IRF45211RF453

2
13
11

A
A

10= 7.2 A
0.4
0.5

n
n

DYNAMIC

gfs **

Forward
transcond uctance

Vos > 10 j\n) x Ros (on) max
10= 7.2

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

8.7

f= 1 MHz

mho
3000
600
200

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 7.0A
Voo= 210 V
Ri= 4.7 n
(see test circuit)

35
50
150
70

ns
ns
ns
ns

09

Total Gate Charge

10= 13 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

120

nC

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _

280

~ ~~~~m?1Jr:1:~~©~

______________

IRF 450 - 451 - 452 - 453
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE
Source-drain current
Iso
ISOM (-) Source-drain current
(pulsed)
Vso **

Forward on voltage

trr

Reverse recovery
time
Reverse recovered
charge

Orr

Iso= 13 A

VGs= 0

Tj = 150°C

A
A

1.4

V

1300

ns

7.4

p,C

di/dt = 100 A/p,s

Iso= 13 A

13
52

Pulsed: Pulse duration ~ 300 fls, duty cycle ~ 1.5%
(-) Repetitive Rating: Pulse width limited by max junction temperature

Safe operating areas

Thermal impedance

Derating curve

'DCAi

u-

Ptot lW)

.~.;z

"'

I."

01

"'

".

'\

..

120

'\

10°
100
I-

'ERAli

l

O~

III

r'\.

.r==

0°1

10-1

StNGlEPUlSE

Ll 1,.
11111

U

11111

10-

2

SlI6\E I\IIE

10-5

10 1

Output characteristics

10-4

'\

60

S=4f-

-&00.01

I.F451
ItF4"!'

'\

80

r-

Zfh=KRthJ:C-:

.~

TC=2S·C
TJ=lS0°C
RthJ(=O.83KJW

~

~

;....

l---

,~

I'I-

40

i'\..

JUL

ii:J

""'

111111 I
10- 3

'\..

20

""Ci'1I1I1

10- 2

10-1

'\.

10°

20

tp Is)

Output characteristics

40

60

80

100

/, /6v
//
If/

Tcase=2SQ(

6V

5V

15

16tt-t-It-I-+--+-+-+-+-+------+--l-----l

;,'1 ;'

VDS > Iolonl,ROSIGn

1//

I

IJ

0

I£V
j

W

hrJ

201t-t-IH--+--+-+--+--+-+-++---l

!J V

~

,

lolA )

V6s =10V

6

4.5V
5V

,/

5
3.5V

4_5V

4V

-1--1--

4V

I
VosIV)

so

100

150

200

120 Tcase IO[)

Transfer characteristics

G(-049t

lolA )

,

- I\.
140

250

VosIV)

,W

TJ=125O(_/~
TJ=2~L

TJ =-55°(

VP
3/5

281

IRF 450 - 451 - 452 - 453
Transconductance

Static drain-source on
resistance

)

!--

/

16

12

./

IV V

10(AI

(nJ

TJ =2S·C

2 ...........

--r--- ~·c
~

//

/

GC-0494

ROSton I

TJ~

6

/-

1/V

VOS>IO (on)X ROS(on)max

15

20

I'-....
I'---

9

VI

IRF4S2.4S3

VGs =20V

I/Y

4

IRF450.4S1

.................

'" i"-.
,

...........

~

~~"
10

20

o
30

50

40

60

25

10(A)

Capacitance variation

75

50

100

125

320 0 1\

15 !----- - - - - - Vos=100V:~
Vos=200~~
Vos=40011

240

"'~

10

~

160

~~

0[1

o\

10=nA

II

56

28

84

112

/1--"""

" i'-

1.05

V

Ciss
0.95

\

"'-

"- ........1'--......

20

-~

/

.//

V

0.85
Coss

r-. r-- Crss roo-

10

Qg(nCi

Normalized on resistance
vs temperature

1.15

VGS =OV

"-

800

/

f =1MHz

\

\

I

GU-167

V(BRIOSS
(norml

Tcase =2S·
20

T",,(OCI

Normalized breakdown
voltage vs temperature
GU-1569

I

,,

'\;~

i~V

10(A)

Gate charge vs gate-source
voltage

...........

.................

/

3
10

.........,

I

VGs =10V

5

/1/
/1
IL

Maximum drain current vs
temperature

30

0.75
40

VOS

-40

40

80

120

TJ (·CI

Source-drain diode forward
characteristics

ROS(on)
(norm I

ISO(AI

2.2
VGS =10V.

18

16s

V

~=150WI

/

6

/

1""-

V

10

,

/

-'"

TJ =2St

II
10 0

2
-40

~

dSA

1.4

10

~

10 2

40

80

120

160 TJ

to

_4/_5_ _ _ _ _ _ _ _ _ _ _ _

/I
4

ID'l
SGS-mOMSON
• J, '"

li(lio(C;rJ\liOJl~Il~(C;'jj'ffiliOJ~U(C;~

282

Vso(VI

_ _ _ _ _ _ _ _ _ _ __

IRF 450 - 451 - 452 - 453
Clamped inductive test circuit

Clamped inductive waveforms
E[

r

VARY t TO OBTAIN
REQ.UIRl1h PEAK IL
OUT

VDS

----+

,,
,

,
'\

E,=0.5 BVoss

'- - --- --

E(=0.75 BVoss
5[-0243
5[-0242

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPE[IFIED 10
VDS
OUT

PULSE
GENERATOR .
:..................

!......

.-

12V

.............. .
1.5mA

rL

S[-0246

--[==}--<~_.J--O -Vos

CURRENT
SAMPLING
RESISTOR

S[-0244

________________

~~~~~~?~~:~~©'

_______________

5_/5

283

IRF 520/FI-521/FI
IRF 522/FI-523/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF520
IRF520FI
IRF521
IRF521FI
IRF522
IRF522FI
IRF523
IRF523FI

Voss

Ros(on)

100
100
80
80
100
100

0.270
0.270

V
V
V
V
V
V

0.270
0.27 0
0.36 0
0.36 0

10 •
9.2 A
7 A
9.2 A
7 A
8 A
6 A

80 V
80 V

0.36 0
0.36 0

8
6

A
A

80-1 00 VOLTS - FOR DC/DC CONVERTERS
HIGH CURRENT
e RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
e ULTRA FAST SWITCHING
e EASY DRIVE- FOR REDUCED COST AND SIZE
e

e

INDUSTRIAL APPLICATIONS:
UNINTERRUPTIBLE POWER SUPPLIES
e MOTOR CONTROLS
N - channel enhancement mode POWER MOS field effect transistors. Easy drive and very fast switching times
make these POWER MOS transistors ideal for high speed
switching applications. Applications include DCIDC converters, UPS, battery chargers, secondary regulators, servo control, power-audio amplifiers and robotics.
e

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220

*

VOGR *
VGS
10M (e)

Drain-source voltage (VGS = 0)
Draili-gate voltage (RGs = 20 KO)
Gate-source voltage
Drain current (pulsed)

10
10

Drain current (cant.) at T c = 25°C
Drain current (cant.) at Tc= 100°C

VOS

Tstg

-

T

IRF
521
522
523
521FI 522FI 523FI
80
100
80
80
100
80
±20
37
32
37
32
520
521
522
523
9.2
9.2
8
8
6.5
6.5
5.6
5.6
520FI 521FI 522FI 523FI
7
7
6
6
4
3.5
4
3.5
TO-220
ISOWATT220
30
60
0.24
0.48
-55 to 150
150

520
520FI
-100
100

Drain current (cant.) at Tc = 25°C
Drain current (cant.) at Tc= 100°C

P tot -

ISOWATT220

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

V
V
V
A
A
A
A
A
W
W/oC
°C
°C

* T= 25°C to 125°C
(_) Repetitive Rating: Pulse width limited by max junction temperature.
- See note on ISOWATT220 on this datasheet.
• Introduced in 1988 week 44

June 1988

1/6

285

IRF 520/FI - 521/FI - 522/FI - 523/FI
THERMAL DATARthj _case
Rthc-s
Rthj-amb
TI

TO-220 IISOWA TT220
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

°CIW
°CIW
°CIW
°C

2.08

1 4.16
0.5
80
300

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

10= 250 p,A
VGs= 0
for IRF520/522/520FI/522FI
for IRF521/523/521 FI/523FI

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

100
80

Tc= 125°C

V
V
250
1000

p,A
p,A

±500

nA

4

V

ON **
VGS (th)

Gate threshold voltage Vos= VGS

lo(on)

On-state drain current

Ros (on)

Static drain-source
on resistance

10= 250 p,A

V os > 10 (on) X ROS(on) max VGS = 10 V
for IRF520/521/520FI/521 FI
for IRF521 1523/521 FI/523FI

2
9.2
8

10= 5.6 A
VGs= 10 V
for IRF520/5211520FI/521 FI
for IRF522/523/522FI/523FI

A
A
0.27
0.36

{}

{}

ENERGY TEST
Unclamped inductive
switching current
(single pulse)

L = 100 p,H
Voo= 30 V
starting T j = 25°C
for IRF520/521/520FI/521 FI
for IRF522/523/522FII523FI

gfs **

Forward
transconductance

Vos > 10 jfn) x Ros (on) max
10= 5.6

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

lUIS

9.2
8

A
A

2.7

mho

DYNAMIC

f= 1 MHz

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m=:9lt

286

600
400
100

pF
pF
pF

- _____________

IRF 520/FI - 5211FI - 522/FI - 523/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SWITCHING

td
tr
td
tf

(on)
(off)

Og

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 4.0 A
Voo= 40 V
Ri= 50 {2
(see test circuit)

40
70
100
70

ns
ns
ns
ns

Total Gate Charge

VGs= 15 V
10= 9.2 A
Vos = Max Rating x 0.8
(see test circuit)

15

nC

9.2
37

A
A

2.5

V

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso **

Forward on voltage

Iso= 9.2 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

VGs= 0

di/dt = 100 A/p,s

Iso= 9.2 A

280

ns

1.6

p,C

* * Pulsed: Pulse duration ::;; 300 P.s, duty cycle ::;; 1.2%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
GU1363

Ptot(W )
,

I
I

\

35

~

./

30

I\.
I\.

25

\

20

~

Zth=KRthj-c

--

r-

k!f

~IA'I+!tIl--+H+tttIl-+++.J1.fL

W1L.L~.l. l.l.l l Lli' Lil l-f-.L.L!.l l l Ll ~I-L.L\

\

15
10

\.
'\

'\

1
IIWllJL
111f----'-li.lllWJ

J.jJJ"'

10- 5

r-

:=r-

10- 3

10-1

10-1

10°

tp(s)

20

40

60

80

100

~

120 Tease ( ()

-------------- ~ ~~~~m?uT:~~~~ ______________3_/6
287

IRF 520/FI - 521/FI - 522/FI - 523/FI

8V

I

~ v/
V
9V---t ~

___

VGs =10V

8

~ V/ ~J..-'"

hV

W, ~

GU-1351

I- ~
'--'-6V

lo(A

8V

ID(A I

Tcase=2S0(

W

12

L,

,

'1
TJ = 125·( .......
TJ = 25·( .........
TJ =-5S'(

12

6V

V
5V

6

W

II-f-"

5V

J

3

I

10

30

20

40

W

~

._- --

4V

4V
Vos(VI

~~

Vos(VI

8

GU-136211

GU·1355

I

ROS(on I

~
....Pr

/J..-'"

/

LV

V

,

II

........

/
JV

------

4

0.2

VDS>ID(onIXRDS (ani max.

16

-

20

30

,I

I

15

10

II

r-- I----< ~

~

600

~

400

12

16

Q g (nC)

_4/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

50

75

100

'~

125

,,

~

T( ('[1

V(BRJDSS,---,--.----,----,----,----.-----,r--,-.'!":~

~\

1\
\1\..

200

j

V

25

"\

Normalized breakdown
voltage vs temperature

Tease = 25°(
f---- I--f= 1MHz
Vr, =OV

\1'..

lo=9.2A

o

Io(AI

Capacitance variation

800

VDS=20V"
VDS=SOV
VDS=80V,IRF520,S22"

IRFS20/521

IRFS221523 "

20

10

I""

'"

/VGs =20V

((pFI

I

................

........

~~

I D (A)

Gate charge vs gate-source
voltage

r--....

....................

I

VGs =10V/

T)2S'(

12

288

I

0.6

I--

'/

!J

I

(nl

TJ=JSS'(

VGS(VI

Maximum drain current vs
temperature

Static drain-source on
resistance

Transconductance

'I V
WfY
VI

/;V

I

I

V

Tcase=2S0(

II

VDS>ID (ani x RDS (onlmax.

16

7V

it

I~ ~

2/J

I 10V,/'V GS =9V

~

,1~ /f..--

4

Transfer characteristics

Output characteristics

Output characteristics

\

~ !--

iss

r--... t-

(oS!

I--

(rss

\
10

20

-

30

40

VDS (V)

1.15

f--+-+--+-I--+--+--if-----t-+---1
f-+--+--+--+---+--+-.jf.----+--+---1

1.0S

r-+--+--+--+-V--+~~""----:::.;Vf.----+--+--l

0.8S

I--+--+--+--+--+---I-f--+-+---l

(norm)

0.15 L--L----L---L-L----L-----1_L--L--L--.J
-40
40
80
120 TJ ('CI

~ ~~~~m?::~~Jl--------------

IRF 520/FI . 521/FI . 522/FI'· 523/FI
Normalized on resistance
vs temperature

Source-drain diode forward
characteristics

ROSlon )
(norm.)

1.5

1/ "

V

r--

V
/

/

1.0

V

VGS"10V-

/

IO=10A

r--r---

",

0.5
-80

40

-40

80

120

TJ ( ()

Unclamped inductive test circuit

Unclamped inductive waveforms
L

VARY t

REO.UIR~'o

VIBR) DSS

r

TO OBTAIN
PEAK IL
DUT

VDS -----+

VGs = 1 0 V ! n

~-I

'\
'\
'\
'\
'\

,------SC-0338

SC-0339

Switching times test circuit

Gate charge test circuit
Voo

PULSE

ADJUST RL
TO OBTAIN
SPECIFIED 10
VDS

....

p~.~s~A.I~.~

12V

OUT

!.... ............. .
~

1.5mA

SL

S(-0246

S[-0244

-----------------------------~~~~~~?uT:~~~~

___________________________

5_/6

289

IRF 520/FI - 521/FI - 522/FI - 523/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastiC sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rlh (101) is the sum of
each of these elements.
The transient thermal impedance, Zlh for different
pulse durations can be estimated as follows:
1 - for a short duration power pulse less than 1ms;
Zlh< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
4h= RlhJ-C
3 - for long power pulses of the order of 500ms or
greater:
Zlh = RlhJ -C + RlhC-HS + RlhHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

from this lOmax for the POWER MaS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax'"

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
-042/1

---=
10~,

5~O.5

.....

i--

1ms

~

m'E

!Q.o~
DC

---

40

1111111
'Zth::KRthj-c

S::

6=0.05
6=0.01
6=0.01

-

-

-it
30

1= JlJL
~

~!

--t-J

111111111

""

i:i

10

II

1111111111

o
tp(s)

61tJ

I'

20

SINliUEPULSE

rI

II""""

:j; ~

r-

50

11111
11111111

4fr

100~sF

....

)

o

25

50

"" """
75

100

-f-

'"

125

r-....
Tea .. 1

----------------------------~~~~~~~V~:~~~ ---------------------------( 290

IRF 530/FI-531/FI
IRF 532/FI-533/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
PRELIMINARY DATA

TYPE
IRF530
IRF530FI
IRF531
IRF531FI
IRF532
IRF532FI
IRF533
IRF533FI
e

e
e

e

Voss
100 V
100 V
80 V
80 V
100 V
100 V
80 V
80 V

Ros(on)
0.16 n
0.16 n
0.16 n
0.16 n
0.23 n
0.23 n
0.23 n
0.23 n

10 •
14 A
9A
14 A
9A
12 A
8A
12 A
8A

80-1 00 VOLTS - FOR DC/DC CONVERTERS
HIGH CURRENT
ULTRA FAST SWITCHING
EASY DRIVE- FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
UNINTERRUPTIBLE POWER SUPPLIES
e MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Applications include DC/DC converters, UPS, battery
chargers, secondary regulators, servo control,
power-audio amplifiers and robotics.

TO-220

ISOWATT220

e

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220

10LM

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 Kn)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 IlH)

10
10

Drain current (cont.) at Tc= 25°C
Drain current (cont.) at Tc = 100°C

VOS *
V OGR *

VGS
10M

(e)

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

Tstg
T

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

5

IRF
531
532
533
531FI 532FI 533FI
80
100
80
100
80
80
±20
56
48
48
56
56
48
48
56
532
530
531
533
12
12
14
14
9
8
9
8
530FI 531FI 532FI 533FI
9
9
8
8
5.5
5.5
5
5
ISOWATT220
TO-220
79
35
0.63
0.28
-55 to 150
150
530
530FI
100
100

V
V
V
A
A
A
A
A
A
W
W/oC
°C
°C

*
T = 25°C to 125°C
(_) Repetitive Rating: Pulse width limited by max junction temperature.
• See note on ISOWATT220 on this datasheet.

June 1988

113

291

IRF 530/FI - 5311FI - 532/FI - 533/FI
THERMAL DATARthj _case
Rthe -s
Rthj-amb
T,

TO-220 IISOWATT220
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

1.58 I 3.57
0.5
80
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
V(BR) DSS Drain-source
breakdown voltage

10= 250 p,A
VGs= 0
for IRF530/532/530FI/532FI
for IRF5311533/531 FI/533FI

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

V
V

100
80

Te= 125°C

250
1000

p,A
p,A

±100

nA

4

V

ON **
VGS (th)

Gate threshold voltage Vos = VGS

lo(on)

On-state drain current

10= 250 p,A

V os > 10 (on) X ROS(on) max VGs =10 V
for IRF530/531/530FI/531 FI
for IRF532/533/532FI/533FI

Static drain-source
on resistance

10= 8.3 A
VGs= 10 V
for IRF530/531/530FI/531 FI
for IRF532/533/532FI/533FI

gfs **

Forward
transconductance

Vos > 10 ~n) x Ros (on) max
10= 8.3

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
14
12

A
A
0.16
0.23

n
n

DYNAMIC
5.1

f= 1 MHz

mho
850
260
50

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

V OD = 36V
10= 8.0 A
Ri = 1~ n
(see test circuit)

30
75
40
45

ns
ns
ns
ns

Og

Total Gate Charge

10= 14 A
VGs= 10 V
Vos = Max Rating x 0.8
(see test circuit)

30

nC

_2/_3_ _ _ _ _ _ _ _ _ _ _ _ _

292

~ ~~~~mg::~~~

--------------

IRF 530/FI - 5311FI - 532/FI - 533/FI
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE
Iso
ISDM (e)

Source-drain current
Source-drain current
(pulsed)

Vso **

Forward on voltage

Iso= 14 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

ISD= 14 A

VGs= 0

14
56

A
A

2.5

V

360

ns

21

ItC

di/dt = 100 A/its

* * Pulsed: Pulse duration ~ 300 p,s, duty cycle ~ 2%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

-

Tc

Po= - - - - Rth
from this lOmax for the POWER MaS can be calculated:

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C
3 - for long power pulses of the order of SOOms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Fig. 1

RthJ- C RthC-HS RthHS-amb

IDmax";;

~

--------------

~ ~~~~m?u":~~~,

______________

3_/3

293

IRF 540/FI-541/FI
IRF 542/FI-543/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF540
IRF540FI
IRF541
IRF541FI
IRF542
IRF542FI
IRF543
IRF543FI
e
e

e
e

Voss
100 V
100 V
80 V
80 V
100 V
100 V
80 V
80 V

RoS(on)
0.077 n
0.077 n
0.077 n
0.077 n
0.100 n
0.100 n
0.100 n
0.100 n

10 •

28
15
28
15
25
14
25
14

A
A
A
A
A
A
A
A

80-100 VOLTS - FOR DC/DC CONVERTERS
HIGH CURRENT
ULTRA FAST SWITCHING
EASY DRIVE- FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
UNINTERRUPTIBLE POWER SUPPLIES
e MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Applications include DC/DC converters, UPS, battery
chargers, secondary regulators, servo control,
power-audio amplifiers and robotics.

TO-220

ISOWATT220

e

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220
VOS *
VOGR *

VGS
10M

(e)

IDLM

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 Kn)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 fLH)
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100° C

T stg

T-

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

IRF
541
542
543
541FI 542FI 543FI
80
100
80
100
80
80
±20
110
110
100
100
110
110
100
100
541
542
543
540
28
25
25
28
20
20
17
17
540FI 541FI 542FI 543FI
15
15
14
14
9
9
8
8
TO.-220
ISOWATT220
125
40
0.32
1
-55 to 150
150
540
540FI
100
100

V
V
V
A
A
A
A
A
A
W
W/oC
°C
°C

*
T=25°Cto125°C
(.) Repetitive Rating: Pulse width limited by max junction temperature.
• See note on ISOWATT220 on this datasheet.

June 1988

1/6

295

IRF 540/FI - 541/FI - 542/FI - 543/FI
THERMAL DATA·
Rthj _ease
Rthe-s
Rthj-amb
TI

TO-220 IISOWATT220

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

1

max
typ
max

1

°CIW
°CIW
°CIW

3.12

0.5
80
300

°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
~BR) oss Drain-source

loss
IGSS

breakdown voltage

10= 250/-tA
VGs= 0
for IRF540/542/540FII542FI
for IRF541 1543/541 FII543FI

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

100
80

Te= 125°C

V
V
250
1000

/-t A
/-t A

±500

nA

4

V

ON **
V GS (th)

Gate threshold voltage Vos = VGS

10(on)

On-state drain current

10= 250/-tA

V os > 10 (on) X RoS(on) max V Gs =10V
for IRF540/541/540FII541 FI
for IRF542/543/542FII543FI

Static drain-source
on resistance

10= 17 A
VGs= 10 V
for IRF540/541/540FII541 FI
for IRF542/543/542FII543FI

gfs **

Forward
transconductance

V os > 10 (on)
10= 17 A

C iss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
28
25

A
A
0.077
0.100

0
0

DYNAMIC
X

Ros (on) max

f = 1 MHz

8.7

mho
1600
800
300

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 15 A
Voo= 30 V
Ri= 4.70
(see test circuit)

30
60
80
30

ns
ns
ns
ns

Og

Total Gate Charge

10= 28 A
VGS= 10 V
Vos= Max Rating x 0.8
(see test circuit)

59

nC

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

296

!W. ~~~~m?1Y~:~~©~ --------------

IRF 540/FI - 541/FI - 542/FI - 543/FI
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

Iso
150M (e)

Source-drain current
Source-drain current
(pulsed)

Vso **

Forward on voltage

150= 28 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

A
A

28
110
2.5

VGs= 0

=

dildt

Iso= 28 A

100 Alp's

V

500

ns

2.9

{J-C

* * Pulsed: Pulse duration ~ 300 p,s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

.

_.

IOIAI

, ~'-

:~-

1-

GU-1544

---,

-

10:~-S~c

,

-

~

-:--=~
101Jsf------

--I"-

~-

,~=
/

10~

1\

,_.

~
~L

lOmsr
(OPERATION

100msr

Output characteristics

VGS =10V
0

~V
1//vi-"

0

~ /'

~V

0

10

~~

-

f!1- -

p

","\'..

60
Zth::KRfhj-c

r-

S=-!t

iiJ

"'"
"",

40

r-r--

JlJL

PlSE

20

1111111' jill

10- 1

20

10°
tp Is)

40

60

BO

lolA

9V
-BV
VGs =10\

)1

0

7"v

TJ=-SSoC
30

6V

0

TJ=2SoC

-

10

J.J /

10

20

!

V

'(
~~

4V
VoslVI

~
Tcase I ()

fj

10

SV

4V

"

fl-/.V

20

'/
SV

120

/ '/
II / - H il /

VoS>IO(onlxROS(onlmax

40 f----,--

TJ=12SoC -

6V

100

Transfer characteristics

0

1// I.---

Ifh/
1J.v."

I

',-

80

Output characteristics

v:: /9yav

-;"\,

100

~

II

2

lolA I

120

&:0.05

1m,

Ptot lWI
140

r

~.

I-

1 &=0.1

_tf"

TCClse=2S0(

~

II

-1-

~
r--

8=0.5

'--c--

,.-- -

~~~~

=-_.

Derating curve
(standard package)

Thermal impedance
(standard package)

30

40

----------------------------~~~~~~~v~:9©~

VoslVI

___________________________3_/6
297

IRF 540/FI - 541/FI - 542/FI - 543/FI
Transconductance
)

/
V/ ,.-

16

!J
1/

12

-

lolA)

ROSlon)
1(\)

I

1

I

I

rT

JI

Vos> IO{anlXROS(onlmax

I

2

VGs =10V ,

1

_,X

40

20

lolA)

Gate charge vs gate-source
voltage

40

Vos=30V

10

[f-

~

~

M ~

~

1200

~s=80V.IRF540.542

I
II

12

t

80

100

400

\'\

Tease =25°(
f=1MHz
VGS =OV
I
Ciss

r-

\
~

10

---

25

30

35

40

VOS IV)

./

A

~V

1j=150'C

.. - y . . . . . I--r--1.01-1- 7,/"+--+--+--+--+--+---

-

OL-L-~-L-L~~L-L-~~-~

40

80

I

10 0

120 TJ I·C)

_4/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

298

1j =25°C

II

./

0.4

II

0.8

~

1-- .-

1.2

1.6 VSOIV)

~ ~~~~m?:~~~~~

/~ --+--+--+--I--t-,)L-.

-

)._.

lo=250~A

~

1--+--+-+-+--t--1-r--t---lr-l
/""

--

~I__+-+_-+_-+_:J;~F-I---l

-- I--+--+--+---I---r- --- -- ---

ISO IA )

1,5 ) - -j-l---+--+--1V~jL-+---t--I

TeIOC)

_ _ I - - --·I-+--j--+-- +-

0.851---I--+--+--+--IVGs=0

Source-drain diode forward
characteristics

V

125

100

.-I---+-,/-h..-9---+--- 1---- ~ .-

T: r-20

VIBR)OSS
Inorm) __

0.95

irss

15

75

..-,/
1.05 1--+_. +--+--+V--l".....~.r=--+-··-1---1--

~oss

1'......

50

--I----- -

Inorm) 1---I---+---+--+--+--1I---I--I--+--i

VGs =10V

25

115 I---\-i--t--+--- - -

I
I

\

5

ROS Ion) r--,--.--,--,-------r-.----',-,---'''T''''-i

-40

~

Normalized breakdown
voltage vs temperature

I
60

Normalized on resistance
vs temperature

2,0

~

.1

lolA)

GU1S89

..........
40

""

\

I I

800

lo=2BA

20

IRF540/541

~

-

Capacitance variation

1600

\

v

60

CipF)

)

Vos=50V

IRF542/543

VV GS =20

f-r::: I--f.-'

I-----

f".. ~

18

I
II

I~

...... ~

i"'--

I

30

20

15

~

24

TJ=25°C

/

10

Maximum drain current vs
temperature

TtI:-

..-

Bf

Static drain-source on
resistance

0.75 _L4-0-'--'--'--4...L--'-B"-0---'----'12'-0-LTJ~(OC)
0

IRF 540/FI - 5411FI - 542/FI - 543/FI
Clamped inductive test circuit

Clamped inductive waveforms
Ec

r

VARY t TO OBTAIN
REO.UIRlO PEAK IL
OUT

Vos - - - - t

VGS = 1 0 V ! n

~J

,. ""

.' ,,
,

",_ _---J
IL ---- - - _

E,=O.5 BVDSS

,,

,-------

EC=O.75 BVDSS
5(-0243
S(-0242

Switching times test circuit

Gate charge test circuit

PULSE

!~~.~~~.~1~.~....

12V

~

........., ......... .

1.5mA~

5(-0246

CURRENT
SAMPLlN(j
RESISTOR

5(-0244

--------------

~ ~~~~m?::~~~~

______________

5_/6

299

IRF 540/FI - 541/FI - 542/FI - 543/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:
1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
~h= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

from this IDmax for the POWER MaS can be calculated:

Fig. 1

RthJ-( RthC-HS RthHS-amb

IDmax~

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
GC-0420/t

."0.5

II
.~

~

6~

"'"
f'=:

&"0.0

/

GC-0416

)

50

.....:

~

"

40
Zth=KRthj-c

6=.Jf= JLfL

f'..
"-

30

==
=
=--tJ

r--...

""-

20

6"0.01

10

SINGLEPULSf

/
10-2
10- 4

11111111
10- 3

10- 2

10-1

10°

_6/_6__________________________ ~~~~~~~v~:9n

300

Ip(s)

o
o

25

50

75

"'" "
100

t'-...
125

i'Teas.(OC

____________________________

IRF 620/FI-621/FI
IRF 622/FI-623/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF620
IRF620FI
IRF621
IRF621FI
IRF622
IRF622FI
IRF623
IRF623FI

Voss
200 V
200 V
150
150
200
200

V
V
V
V

150 V
150 V

Ros(on)
0.8 0
0.8 0
0.80
0.8 0
1.2 0
1.2 0

5A
4A
5A
4A
4A
3.5 A

1.2 0
1.2 0

4A
3.5 A

10 •

200V FOR TELECOMMUNICATION
APPLICATIONS
e ULTRA FAST SWITCHING
e RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
e EASY DRIVE - REDUCES COST AND SIZE
INDUSTRIAL APPLICATIONS:
e SWITCHING MODE POWER SUPPLIES
e DC SWITCH
e ROBOTCS
e

TO-220

INTERNAL SCHEMATIC
DIAGRAM

N -channel enhancement mode POWER MaS field effect transistors. Easy drive and very fast switching times make these
POWER MaS transistors ideal for high speed switching applications. Typical uses are in telecommunications, robotics,
switching power supplies and as a DC switch.
ABSOLUTE MAXIMUM RATINGS

TO-220
ISOWATT220

10M (e)

Drain-source voltage (V GS = 0)
Drain-gate voltage (RGS = 20 KO)
Gate-source voltage
Drain current (pulsed)

10
10

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

VOS *
VOGR *

VGS

Drain current (cont.) at Tc= 25°C
Drain current (cont.) at Tc= 100°C
Ptot

T stg
T·
*
(.)
•
•

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

ISOWATT220

G~
5

IRF
621
622
623
621FI 622FI 623FI
150
150
200
150
150
200
±20
20
20
16
16
621
622
623
620
4
4
5
5
2.5
2.5
3
3
620FI 621FI 622FI 623FI
4
3.5
3.5
4
2
2.5
2.5
2
ISOWATT220
TO-220
40
30
0.24
0.32
-55 to 150
150
620
620FI
200
200

V
V
V
A
A
A
A
A
W
W/oC
°C
°C

T = 25°C to 125°C
Repetitive Rating: Pulse width limited by max junction temperature.
See note on ISOWATT220 on this datasheet.
Introduced in 1988 week 44

June 1988

1/6

301

IRF 620/FI - 621/FI - 622/FI - 623/FI
THERMAL DATA
Rthj _case
Rthc-s
Rthj-amb
TI

TO·220 IISOWATT220
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

I 4.16

0.5
80

°CIW
°CIW
°CIW

300

°C

3.12

ELECTRICAL CHARACTERISTICS (Tease = 25° C unless otherwise specified)
Parameters

Test Conditions

OFF
,, 10 (on) X ROS(on) max VGS = 10 V
for IRF620/621/620FI/621 FI
for IRF622/623/622FI/623FI

2

A
A

5
4

10= 2.5 A
VGs= 10 V
for IRF620/621/620FI/621FI
for IRF622/623/622FII623FI

0.8
1.2

Q
Q

ENERGY TEST
Unclamped inductive
switchLng current
(single pulse)

L = 100 p,H
Voo= 30 V
starting T j = 25°G
for IRF620/621/620FII621 FI
for IRF622/623/622FII623FI

gfs **

Forward
transconductance

Vos > 10 ~n) x Ros (on) max
10= 2.5

C iss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

lUIS

5
4

A
A

1.3

mho

DYNAMIC

f= 1 MHz

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?::J?~

302

600
300
80

pF
pF
pF

______________

IRFP 620/FI - 621/FI - 622/FI - 623/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SWITCHING

td
tr
td
tf

(on)
(off)

Og

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 2.5 A
Voo= 75V
Ri= 50 Q
(see test circuit)

40
60
100
60

ns
ns
ns
ns

Total Gate Charge

10=6 A
VGs= 10 V
Vos = Max Rating x 0.8
(see test circuit)

15

nC

5
20

A
A

1.8

V

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso **

Forward on voltage

trr

Reverse recovery
time
Reverse recovered
charge

Orr

for IRF620/621/620FII621 FI
Iso= 5 A
VGs= 0
for IRF622/623/622FII623FI
VGS = 0
Iso = 4 A

1.4

di/dt = 100 A/p$

Iso=5 A

V

350

ns

2.3

p,C

* * Pulsed: Pulse duration ::;; 300 p,s, duty cycle ::;; 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 In this datasheet

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)

lolAl

)

''--_1-_
,

IRF620/1

I-

;;(1->

itF6~/3

40

IRF620/1 '

10~s

IRF622/3

,"-

10'1
100

100~s

1"\

ROSlon)LlMIT I'~

10ms
lOOms
01.
IRF620/2

IRF62113
2

~

6

8

101

2

10 2

"6 8

10"~~

~

• •

lms

2

"Vos(V)

-

-

'-1--

Zfh=KRfhj_c

S = l£.

30

1:

20

~

i'..
i'..

10

so

~

,

~

100

____________________________ ~~~~~~~~:~~~, ___________________________3_/6

303

IRF 620/FI - 621/FI - 622/FI - 623/FI
Output characteristics

Output characteristics

Transfer characteristics

G-864

lolA)

10V

III
Vos> IO(onlxROS(onlmax HI--t-I-+--t--+-t--i

V!VGS =6V

~

II
II

TJ=25°[

6V

v

If

5V

IV

~~:::~2~;~( _~r=R-IH-HC+-++--H---1

/I

5V

I

4V

II

Tcase=12SoC-

I--- I--4V
8

VosIV)

40

20

Transconductance

60

80

J

VosIV)

Static drain-source on
resistance
lolA

In)

VOS(onl> IO(onJxROS(onlmax t-+-t-+-t-t-t--i

)~,

......

VGS =20V

10V /

41...", ~~

I'--IRF620/621

i'-

"'- ~
~

IRF622/623

V

/

6

,

v

8

5

Maximum drain current vs
temperature

ROSlan I

0

4

1/ V
I--'

"'"
"""

"\

,'\
~

2

"\

o
lolAI

12

Gate charge vs gate-source
voltage
)

1500

Vos=40V"
vos=100j
0

'I)

5

lolA)

1000

r-r-,-,-.,---,c-r-r"---':"-"I-r-T'-'"r.
f-+-I-+--t-+- ~-+--j-+-tt-+II-I-+-+-t--l

V(BR1DSS

(norml

rrr-r-,-rr",-",--,-r,,-'T-"i""T--,
t-+-+-+-I-H--+-+-+--t-++--1--+--t--+-I-I-H
JD~250

A

1\-+-I-+4r+-+

160V

--

/

/

100

75

50

Normalized breakdown
voltage vs temperature

+-+-I--t-+-+-+-!~_Jl_~~I-I-+-+-+4
r--- - --f---+--+--1-+4 ::f~~,
1---,--+I---+-I-+-+-+--+---H T,_=2SoC - -~r--

~~

Vi

20

Capacitance variation
ClpFl

15

16

25

0.9

lo=6A

t-+-f-t-l-H--+-t-+-t-+-t-I-+-t--+-I-I-H

/

10

20

20

40

_4/_6__________________________ ~~~~~~~~:~©~

304

60 VosfVI

50

TJiOCI

_____________________________

IRF 620/FI - 621/FI - 622/FI - 623/FI
Normalized on resistance
vs temperature

Source-drain diode forward
characteristics

20

f--+-I_+-!---+--!--+--'----H--7f~-/'I'-+-+-++

1.S f-t-f-t-f-t-f-t-f-t-~I'+-I--+-I--+-I-t-I

l

I

1.S

0.5

100

Unclamped inductive test circuit

Unclamped inductive waveforms
VIBR) DSS

r

VARY t TO OBTAIN
REO.UIRED PEAK IL
DUT

Vos ----+
"

", "

IL

""

---- - - ---~

,,
,,

,
,------SC-0338

SC-0339

Switching times test circuit

Gate charge test circuit
+Vos

Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
DUT

PULSE
GENERATOR

f··················

!...
~

'"

12V

=

CURRENT
REGULATOR

O.2pF

50KQ

D

G

............. .
1.5mA

..JL

S(-0246

S(-0244

______________________________

~~~~~~~v~:~~~~

____________________________

5_/6

305

IRF 620/FI - 6211FI - 622/FI - 623/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth {tot} is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

-

Te

Po= - - - - Rth
from this lOmax for the POWER MOS can be calculated:

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Fig. 1

RthJ-( RthC-HS RthHS-amb

IOmax~

~

ISOWATT DATA
Safe operating areas

Thermal impedance

IOIAI:~!IEIII~11
~F620F1/1FI

I
50

~--I/-:;=-:dFI--H:±lIf.---::!§;j
.... c-±intt:!i.rc--+"----'-,0~+S++t+H

10"

Derating curve

~ IRF620FI/1F

40

30

111
••

10"1• •1

"o

306

t'--

10

IRF620FI12FI
IRF621FI/3FI

_6/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

i""'-

20

~ ~~~~m?lI~:~'CG~

"r--,.

t'-........

o

25

50

75

100

125

Teas.loe

______________

IRF 720/FI-721/FI
IRF 722/FI-723/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF720
IRF720FI
IRF721
IRF721FI
IRF722
IRF722FI
IRF723
IRF723FI

Voss
400 V
400 V
350 V
350 V
400 V
400 V
350 V
350 V

Ros(on)
1.8 n
1.8 n
1.8 n
1.8 n
2.5 n
2.5 n
2.5 n
2.5 n

I0 •
3.3 A
2.5 A
3.3 A
2.5 A
2.8 A
2.0 A
2.8 A
2.0 A

• HIGH VOLTAGE - FOR OFF LINE
APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE - FOR REDUCED COST
AND SIZE
INDUSTRIAL APPLICATIONS:
• ELECTRONIC LAMP BALLAST
• DC SWITCH
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Applications include off-line use, constant current
source, ultrasonic equipment and switching powers supplies start-up circuits.

TO-220

ISOWATT220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220
Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 Kn)
Gate"source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 f.tH)
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Total disSipation at Tc <25°C
Derating factor
T stg
Storage temperature
T
Max. operating junction temperature
* T= 25°C to 125°C

5

IRF
721
722
723
721FI 722FI
723FI
400
350
350
400
350
350
±20
11
11
13
13
11
11
13
13
721
722
723
720
3.3
2.8
2.8
3.3
2.1
1.8
1.8
2.1
720FI 721FI 722FI 723FI
2
2.5
2
2.5
1.2
1.5
1.5
1.2
ISOWATT220
TO-220
50
30
0.24
0.40
- 55 to 150
150

720
720FI
400
400

V
V
V
A
A
A
A
A
A
W
W/oC
°C
°C

(e) Repetitive Rating: Pulse width limited by max junction temperature.

•

See note on ISOWATT220 on this datasheet.

June 1988

1/6

307

IRF 720/FI - 721/FI - 722/FI - 723/FI
THERMAL DATA·

Rthj _ease
Rthe-s
Rthj-amb
TI

TO-220 IISOWA TT220

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

2.50

1

°C/W

4.16

0.5

°CIW

80
300

°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
,,(BA)

oss Drain-source
breakdown voltage

10= 250 p,A
VGs= 0
for IRF720/722/720FII722 FI
for IRF7211723/721 FII723FI

loss

Zero gate voltage
drain current (V GS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

400
350

Te= 125°C

V
V
250
1000

p,A
p,A

±500

nA

4

V

ON **

VGS (th)

Gate threshold voltage Vos = VGS

10(on)

On-state drain current

10= 250 p,A

V os > 10 (on) X ROS(on) max VGS = 10 V
for IRF720/721/720FII721 FI
for IRF7221723/722FII723FI

Static drain-source
on resistance

10= 1.8 A
VGs= 10 V
for IRF720/721/720F1I721 FI
for IRF722/723/722F1I723FI

gfs **

Forward
transconductance

Vos > 10 j\n) x Ros (on) max
10= 1.8

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
3.3
2.8

A
A
1.8
2.5

Q
Q

DYNAMIC

1.0

f= 1 MHz

mho
600
200
40

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 1.5 A
Voo= 175 V
Ri= 50 Q
(see test circuit)

40
50
100
50

ns
ns
ns
ns

Og

Total Gate Charge

10= 3.3 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

15

nC

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~trr;,:J?lt

308

- _____________

IRF 720/FI - 721/FI - 722/FI - 723/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

3.3
13

Source-drain current
Iso
ISOM (-) Source-drain current
(pulsed)
Vso

Forward on voltage

trr

Reverse recovery
time
Reverse recovered
charge

Orr

Iso= 3.3 A

1.6

VGs= 0

dildt = 100 Alp,s

Iso= 3.3 A

A
A
V

450

ns

3.1

Il-C

* * Pulsed: Pulse duration ~ 300 p,s, duty cycle ~ 1.5%
(-) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Thermal impedance
(standard package)

Safe operating areas
(standard package)

Derating curve
(standard package)
Ptot lW )
35

IR~2~1±

10"

-.-5

~

30

• IRF72213
: IRF720/1

10~s

"

, IRF7221;'~'\

100:~~\o~

"

I'\.

25

r'\.

\\

lOOps

20

lms

'\

15
D.C. OPERATION

10-;

'\.

10

IRF72012
IRF72113

,
r'\.

111111

W-'

100

66

10

1

68

10

2

Output characteristics
'olA)

Output characteristics

60

80

100

120 Tcase 1°C)

'olA )

VI-

~

40

Transfer characteristics

6V

VGS =10V/

/

20

' Vos,V)

Vos >IOonlxROSlonlmax.

6V

I
/I
III

Tcase=25°(

j

5.5V

I .~'"

V

5.5V
5V~

It

r-----

J
1+-+--+-+--+-+---1 5V

4.5V

1

4.5V

4V~ f--

/I
12

16

VosIV)

______________

/J

TJ =125°C
TJ =25°C

i"--f..!.'1

TJ=-55°C

i'-.0

~

l.'iV

~ty

100

200

~ ~~~~m~::~~~~

Vos,V)

5

VGsIV)

______________

3_/6

309

IRF 720/FI - 7211FI - 722/FI - 723/FI
Transconductance

Static drain-source on
resistance

I

Maximum drain current vs
temperature
lolA }

RDS(onl

Inl

x

I

VOS>IO lonl ROS lan)max.

vGs =10v/ll
TJ=-~ 1-1".

V
Vr""
/.r i--""i"'"'

i--""

-

r---to..

II

--

TJ = 2S'(

-~S'

V

-

v/

'-r-- -

....-;::V"

r--... r-... ........ ~

VGs =20V

I'l

IRF720,721

-['.. ...............
IRF722,723 .........

.......

1-''''''''

,
I' ~

tV
o

S lOlA)

10

Gate charge vs gate-source
voltage
,-

VGslV )

11

20

15

~~

h ~

10

~~
/

Tease = 2S'(
f=lMHz
VGS=OV

600

1\

400

\

,

(iss

\

\

\

lo=3.3A

16o.glnC)

12

\.

-.........

1.8

/

/

20

30

40 VOSIV)

V

0.6

/

J...

,//

II

10°
-40

40

80

TJ I'C)

_4/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

310

TJ= 2S'(

III

r-

I

0.2

I

TJ =lS0'(

VGS=10V
10 =1.SA -

V'

~

/'f" ....... TJ=lS0·(
10'

o

I

........ 1---

V

,//

./'
VGs=O
lo=250~A

-

r-

[rss

ISDIAI

/

1.0

125 Tc IO [}

vi-"""

0.85

~

TJ=2S'(

/

100

r---

./
0.95

Source-drain diode forward
characteristics

/

1.4

75

105

-14

1/

50

VIBR}OSS
Inorm}
1.15 -

-

10

Normalized on resistance
vs temperature
ROSlon )
Inorml

25

Normalized breakdown
voltage vs temperature
GU-1489

(lpFI

200

/

lolAI

Capacitance variation

800

Vos=80V
Vos=200~~
Vos=320V"

/

,

,,~

If

4

~ ~~~~m~::J?~~

VSOIV)

0.75
-40

40

80

120 TJ I [}

IRF 720/FI - 721/FI - 722/FI - 723/FI
Clamped inductive waveforms

Clamped inductive test circuit
L

VARY t

REO.UIR~h

TO OBTAIN
PEAK IL
OUT

Vos - - -.....

VGS = 1 0 V ! n

,,

~J

,,
,

'.... _-----

E,=0.5 BVoss
E(=0.75 BVoss

S(-0243
5(-0242

Gate charge test circuit

Switching times test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE
f-GENERATOR
................ .

CURRENT
REGULATOR
12V

=

0.2pF

0

50KQ

!

.....................
1.5mA

rL

S(-0246

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

5(-0244

----__________

~ ~~~~m?::~~CG~

______________

5_/6

311

IRF 720/FI - 7211FI - 722/FI - 723/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj - Tc
Po= - - - - Rth

It is often possibile to discern these areas on transient thermal impedance curves.

from this lOmax for the POWER MOS can be calculated:

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth = RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax';';;

~

ISOWATT DATA
Safe operating areas

Derating curve

Thermal impedance
)

50
40
100, IRF722FI/3F

IIIII

I'-..
30

'r-...

20
10

o

_6/_6_ _ _ _ _ _ _ _ _ _ _

ID'l SCiS-THOMSON
•J j

312

"

~U[;ffil@~[Llll[;'[j'ffil@~U[;~

"

I'-..

,
I'I'-..

a

25

50

75

_ _ _ _ _ _ _ _ _ _ __

r=-= SGS-1HOMSON

L

II..,

IRF 730/FI-731/FI
IRF 732/FI-733/FI

[i\'ll]O©lm@rn[Lrn©1n~3@~O©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF730
IRF730FI
IRF731
IRF731FI
IRF732
IRF732FI
IRF733
IRF733FI

Voss
400 V
400 V
350 V
350 V
400 V
400 V
350 V
350 V

Ros(on)
1.0 n
1.0 n
1.0 n
1.0 n
1.5 n
1.5 n
1.5 n
1.5 n

10 •
5.5 A
3.5 A
5.5 A
3.5 A
4.5 A
3.0 A
4.5 A
3.0 A

HIGH VOLTAGE - FOR ELECTRONIC
LAMP BALLAST
e ULTRA FAST SWITCHING
e EASY DRIVE - FOR REDUCED COST
AND SIZE
e

TO-220

INDUSTRIAL APPLICATIONS:
ELECTRONIC LAMP BALLAST
e DC SWITCH
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Applications include DC switch, constant current source,
ultrasonic equipment and electronic ballast for
fluorescent lamps.
ABSOLUTE MAXIMUM RATINGS
e

INTERNAL SCHEMATIC
DIAGRAM

TO-220
ISOWATT220
VOS *
VOGR *

VGS
10M

(e)

IOLM

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 Kn)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 /LH)
Drain current (cont.) at Tc = 25°C
Drain current (cont.) a~ Tc= 100°C
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

Ptot •
•
T stg
Tj

ISOWATT220

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

5

IRF
731
732
733
731FI 732FI
733FI
350
400
350
400
350
350
±20
20
20
16
16
20
20
16
16
731
732
733
730
5.5
5.5
4.5
4.5
3.5
3.5
3
3
730FI 731FI 732FI 733FI
3.5
3.5
3
3
2
2
1.8
1.8
ISOWATT220
TO-220
74
35
0.59
0.28
-55 to 150
150

730
730FI
400
400

V
V
V
A
A
A
A
A
A
W
W/oC
°C
°C

* T= 25°C to 125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature.
• See note on ISOWATT220 on this datasheet.

June 1988

1/6

313

IRF 730/FI - 731/FI - 732/FI - 733/FI
THERMAL DATA·
Rthj _case
Rthe-s
Rthj-amb
TI
.

TO-220 IISOWATT220
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

I 3.57
0.5
80
300

°CIW
°CIW
°CIW
°C

1.69

ELECTRICAL CHARACTERISTICS (Tease = 25° C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

10= 250 p,A
VGs= 0
for IRF7301732/730FII732FI
for IRF731 1733/731 FII733FI

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

V
V

400
350

Te= 125°C

250
1000

p,A
p,A

±500

nA

4

V

ON **
VGS (th)

Gate threshold voltage Vos= VGS

10(on)

On-state drain current

10 = 250 p,A

Vos > 10 (on) X RoS(on) max VGS = 10 V
for IRF730/731/730FII731 FI
for IRF732/733/732FII733FI

Static drain-source
on resistance

10= 3.0 A
VGs= 10 V
for IRF7301731/730FII731 FI
for IRF732/733/732FII733FI

gfs **

Forward
transconductance

Vos > 10 }fn) x Ros (on) max
10= 3.0

Cjss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2

A
A

5.5
4.5
1.0
1.5

n
n

DYNAMIC
2.9

f= 1 MHz

mho
800
300
80

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 3.0 A
Voo= 175 V
R j = 15 n
(see test circuit)

30
35
55
35

ns
ns
ns
ns

09

Total Gate Charge

10= 5.5 A
VGs= 10 V
Vos = Max Rating x 0.8
(see test circuit)

35

nC

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

314

@:. ~~~~m?v~:J?~

______________

IRF 730/FI - 7311FI - 732/FI - 733/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 5.5 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

VGs= 0

A
A

1.6

V

600

ns

4

f.tC

di/dt = 100 Alf.tS

Iso= 5.5 A

5.5
20

* * Pulsed: Pulse duration ~ 300 P.s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
U-1524

10'

~,

IRF732,l

:~1
IRF73 3

~

-'~l---

/

oe

O~ERATION

~

II

...u

I

'ion

J

zth =KRthj ~ (

-tJ
IIIII~I II

111111111
IRF730,2
68

10 2

II

2

111111111

"'"

20

f-

-11JL

'-:-OS;

IRF731,3~

'\

30

ff-

6=*

SINGLE PULSE

~

'\

50

40

~~':

"

'\.

60

~~

~
l,...-

,S::O.l

'~~I
10~ _ _
,

1JoI!Jr-'

&=0.5

101J$
~

I\.

70

--I

---

GU-1533

Ptot lW} -

~~II

10

'Vos'(V}

20

Output characteristics

Output characteristics
lolAI

l---

lOlA}

VGs =10V

80

100

'"

120 Tease 1°0

t--+-+--t--t--tlt--+--- -f--- - 3

4.5V

~~+-+_+_-jI/~~~I__--t--t--t---+---t--- r- ---- ---1----

l--- - - T",.=25'[ f-+-+-i-+'-t--+--l-i

---~-

f---+--jl--++-f-++-+-+-+-+-+-j
1-++-+-+--+-+-+-+-+- l---l--- -

60

Transfer characteristics

I
6

40

'\

- l--- -

-- --f----"

.-- - - - t----

2

~:,-[--_RH+__+----Ilj =25[_

r--

-

t-- lj =-55"[-,-,-tttt-+--t--t---t--+---J
4V

- --

I
VosIV)

50

100

1

I

- - --'-' -

t--~t-

I
150

200

250

300

VosIV}

1

2

! Vos>IOI:}xROSIOn}~
VJ.I
I

3

4

5

6

7

8

VGS IV}

3/6

315

IRF 730/FI - 7311FI - 732/FI - 733/FI
Transconductance

Maximum drain current vs
temperature

Static drain-source on
resistance
(j(-0490

GC_0489

)

)

Ros(an )
(n)

VGs =10V

Vos>IOlonlxROS{onlmax

8

20V
Tj=

6

-

2

I-- f-"

25'C

/V ~
~V I -

4

V
I. V/

2l

/

55'~_

II
/

125'C

)

1/

r- t-l - t--

v

1//

1

l"- t-!! F730, 731

r-- r-.c- r-....

~b:::: vi--'"

IRF732,733

III

>--- f-----IO(A)

15

10

20

25

25

r--

1600

50

~
75

Tease = 25'C
f=1MHz
VGS=OV

10 f----

A~

Vos=200V
Vosd20V,IRF730,73

1.15

..... 1-'"

1200

2~

800

~

/

/

400

lo=5.5A

16

24

1.05

-

1\,
1\
1\ ~

QglnCl

5

Ciss

-

10

0.95

... V
./

V V

V

V

VGs=O
lo=250~A

........ t-

\

100

VIBR)DS S
(norm) - -

h

Vos=80~:,>

""'" ~~,,~

Normalized breakdown
voltage vs temperature
u-'

C(pF)

15

o

Capacitance variation

Gate charge vs gate-source
voltage
)

lo(A)

'-1-

15

-

r--

0.85
Coss
Crss
20

25

30

35

40

VOS (V)

0.75

-40

40

80

120

TJ lOCI

Source-drain diode forward
characteristics

Normalized on resistance
vs temperature

GU-1S26

-1528

ISO (A)

ROS(aTV
(norm )

V

.8

~

1/

V

/

V

.4

TJ =150'C!J

/v

10'

/

.0

...V

V

l/

VGS =1111

I

10 =2.0A

III

100

.2

-40

40

80

TJ =25'C

I

o

"so (V)

_4/_6__________________________ ~~~~~~~V~:~~~~ ____________________________
316

IRF 730/FI - 731/FI - 732/FI - 733/FI
Clamped inductive waveforms

Clamped inductive test circuit
L

E[

r

VARY t TO OBTAIN
REO.UIRED PEAK IL
OUT

Vos---'"

VGs = 1 0 V r - n

~J

,,
\

,

,-------

E1=0.5 BVoss
Ec=O.7S BVoss

S[-0243
S[-0242

Gate charge test circuit

Switching times test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE
!GENERATOR
................. ..

12V

!

~ . . . . . . . . . . . . . . . . . . e'

1.smA

FL

S[-0246

r-t-~r-f--o -Vos

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

S[-0244

____________________________

~~~~~~~~:~~©~

___________________________

5_/6

317

IRF 730/FI - 7311FI - 732/FI - 733/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWAIT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWAIT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

-

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
~h= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Tc

Po= - - - - Rth
from this lomax for the POWER MOS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

lomax:;:;

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
-421/

6"0.5

50

".

~

II
6~

rrir
'I

f-

".

~

~

~

40 1---Zth=KRthj-c

0=*

~ ~

6:0~
.... M
cA }r

~rtI~I~TII

I

-tJ
~T~
'

-."

- 1--- ~, f---- -- f--- I---f---

~

20

.....

r-+-

,

"-

10

-

o
10-2

f-

i"'-

30

JlIL

tpls)

a

I

"k

1--

J"...
25

50

75

100

125

Teas.IOC)

_6/_6___________________ ~~~~~~~~:~~~ ___________________________

318

IRF 740/FI-741/FI
IRF 742/FI-743/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF740
IRF740FI
IRF741
IRF741FI
IRF742
IRF742FI
IRF743
IRF743FI

Voss
400 V
400 V
350 V
350 V
400 V
400 V
350 V
350 V

Ros(on)
0.55 n
0.55 n
0.55 n
0.55 n
0.8 n
0.8 n
0.8 n
0.8 n

10 10 A
5.5 A
10 A
5.5 A
8.3 A
4.5 A
8.3 A
4.5 A

• HIGH VOLTAGE - FOR SWITCHING POWER
SUPPLIES
• ULTRA FAST SWITCHING
• EASY DRIVE - FOR REDUCED COST
AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• DC SWITCH
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Applications include DC switch, switching power supplies, ultrasonic equipment and electronic ballast
for fluorescent lamps.
ABSOLUTE MAXIMUM RATINGS

TO-220

INTERNAL SCHEMATIC
DIAGRAM

TO-220
ISOWATT220
Drain-source voltage (V GS = 0)
Drain-gate voltage (RGS = 20 KD)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 JlH)
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Ptot Tstg
TI

ISOWATT220

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

5

IRF
741
742
743
741FI 742FI 743FI
350
400
350
350
400
350
±20
40
40
33
33
40
40
33
33
740
741
742
743
10
10
8.3
8.3
6.3
6.3
5.2
5.2
740FI 741FI 742FI 743FI
5.5
5.5
4.5
4.5
3
3
2.5
2.5
TO-220
ISOWATT220
125
40
0.32
1
-55 to 150
150

740
740FI
400
400

V
V
V
A
A
A
A
A
A
W

W/oC
°C
°C

* T=25°Cto125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature.
- See note on ISOWATT220 on this datasheet.
June 1988

1/6

319

IRF 740/FI - 741/FI - 742/FI - 743/FI
THERMAL DATA-

Rthj _case
Rthc -s
Rthj-amb
T,

TO-220 /ISOW ATT220

1 1 3.12
0.5
80
300

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF

V(BR) oss Drain-source
breakdown voltage

10= 250 p,A
VGs= 0
for IRF740/7421740F1/742FI
for IRF7411743/741FI/743FI

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (V os = 0)

VGs= ±20 V

400
350

Tc= 125°C

V
V
250
1000

p,A
p,A

±500

nA

4

V

ON **

V GS (th)

Gate threshold voltage Vos= VGS

10(on)

On-state drain current

10= 250 p,A

Vos > 10 (on) X ROS(on) max VGS = 10 V
for IRF740/741/740FI/741FI
for IRF742/743/742FI/743FI

Static drain-source
on resistance

10= 5.2 A
VGs= 10 V
for IRF740/7411740FI/741 FI
for IRF742/743/742FI/743FI

gfs **

Forward
transconductance

Vos > 10 n) x Ros (on) max
10= 5.2

Cjss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
10
8.3

A
A
0.55
0.8

n
n

DYNAMIC

lf

f = 1 MHz

4.0

mho
1600
450
150

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 5.0 A
Voo= 175 V
R j = 4.7 n
(see test circuit)

35
15
90
35

ns
ns
ns
ns

Og

Total Gate Charge

10= 10 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

63

nC

_2/_6__________________________

320

~~~~~~~v~:~~~----------------------------

IRF 740/FI - 741/FI - 742/FI - 743/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
150M (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso = 10 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

VGs= 0

di/dt

150= 10 A

=

100 A/p.s

10
40

A
A

2.0

V

800

ns

5.7

p.C

* * Pulsed: Pulse duration ~ 300 p,s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
GU-124
9

~

.,0.5

--

II

11

.dJ

1 &=0.

140

-

~

Ptot lW )

120 -~

",

100

~

"'\..

so

&,0.05

",
",

60

L

°
-"!

lth:KRthj-c

s=.!t

t-

1iJi

1111"·

2

","

40

t-

JUL t-

CSE

20
20

Output characteristics

~-

~

1111

40

60

SO

100

120

Tease I C)

Transfer characteristics

Output characteristics
Gu 1290

lOlA )

lOlA )

20

20
VGS; 10V

~

~~

~ P'

~

....fl'l--!I""'"

7V

TJ ; 125'(-li
15

,

I

VOS>IOlon)X ROSlon)maxJ

III
l(f

5V

VOS IV)

____________________________

~~

4V

4V
S

If

10

5Vf-

/

I

6V

I

,.....

~/ /

TJ;25,c-.·QI

J

~

II/V
TJ;-55'C~

20

If

15

10

)

Tease; 25°C

I

t--

:~~ r......

15

~,

'{f-YGS; 9V

JJ'-SV

Tease; 25'C

10

10V-

20

40

60

SO

~~~~~~~vT:~?~'

VOSIV)

___________________________

3_/6

321

IRF 740/FI - 741/FI - 742/FI - 743/FI
Static drain-source on
resistance

T ranscond uctance
--

I

GU 1301

ROSlon I
1.0.1

1/

VOS >1 0 (onl x ROS lonlmax.
12
TJ=-55'C r-- -

./

,

f/

TJ =125'C -

1-

04

10

15

/'

-

f/

10

Gate charge vs gate-source
voltage
VGS(V I

------

L

f"-..

ioo.....

:""- ~

VGS= 20V

20

30

50

25

IOIAI

Capacitance variation

Inorml

;;f;V

os

~/

1200

800

........ .........

\

...... ~
-'~s.J
~

40

60

G.gln()

5

Normalized on resistance
vs temperature
ROS(on I
Inorml

100

,,

~

125 Tcl'()

10

15

20 25

30

35

-r--'- r----f--+--+-+---1

1----1--+--+--+--+--FV--1~----+-\-__l
r~-+~/~~-I--~~+-+--­
........ V

0.85 t---j--I---t---t----j-.,-+--t---+--

-r40

-

VOS (VI

- - 1-- - -t---+---+--+--+\,-- --r-0.75

-40

40

80

120

TJ ('CI

Source-drain diode forward
characteristics
lOS (AI

VGS=10V
2.0

/

10 = 5.5A

1.5

1.0

..,/

..,,"

/

V

/

I

r"

-40

I

10 1

II
II

o

40

80

120 TJ I CJ

10 0

_4/_6__________________________

322

1.05

0.95/

\, \

/

0.5

Ciss

\ ~

...... 1'-0..

20

-

\

400

lo=10A

75

~

1---+--+-+--+-+---1--+---+--+_--1

1.15 -

f= 1MHz
VGS =OV

"1'-0..

/

/

","

VIBRIOSS '-~'-'----r---'-'--'--;--'---,

1600

10

IRF740,741

Normalized breakdown
voltage vs temperature

Trase= 25'C

~~~:~~ciV'''-" d V
V =320V,

,"

IRF742,743'

ClpF I

15

'r--...

........ r-...,

o

In IAI

20

........ 1"-..

VGS=10~

0.8

bv

G-

lolAI

J/

1.2

r-- TJ=25'C

J

Maximum drain current vs
temperature

-TJ =150 C
-TJ =25'C

4 VOS (VI

~~~~~~gv~:~~----------------------------

IRF 740/FI - 741/FI - 742/FI . 743/FI
Clamped inductive test circuit

Clamped inductive waveforms
L

Ec

r

VARY t TO OBTAIN
REO.UIR€D PEAK IL
OUT

VDS - - - - i

VGs = 1 0 V ! n

~J

,,
,

,,

'... _-----

E,=0.5 BVoss
E(=0.75 BVoss

S(-0243
S(-0242

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Ves
OUT

PULSE
GENERATOR .
:..................

12V

i
*. . . . . . . . . . . . . •••• ~ ...

1.5mA

.JL

S(-0246

-Yes
CURRENT
SAMPLING
RESISTOR

S(-0244

------------__

~ ~~~~m~1Jr;1:~~~

______________

5_/6

323

IRF 740/FI - 7411FI - 742/FI - 743/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:
1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
~h= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
~h = RthJ-C + RthC-HS + RthHS-amb

It is often possibile to discern these areas on transient thermal impedance curves.
from this IDmax for the POWER MOS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

IDmax';;;

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
)

.,.

'"0.5

II
~

1!;pr
, /
10~

6~

i
_

"

I

50

~

Ir'

I-

Zth

I-'"
h

,~~,~

::~

40

= KR thj ~C

f=

324

"

30

f:= -..flJl...

-t-J

i'..

.......,

20

"-

10

tpls)

_6/_6__________________________

.......,

k!t

a
a

25

50

75

"

100

"'- .......,
125

Teas.loe

~~~~~~?uT:~~~~----------------------------

IRF 820/FI-821/FI
IRF 822/FI-823/FI
N - CHANNEL ENHANCEMENT MO'DE
POWER MOS TRANSISTORS
TYPE
IRF820
IRF820FI
IRF821
IRF821FI
IRF822
IRF822FI
IRF823
IRF823FI

Voss
500 V
500 V
450 V
450 V
500 V
500 V
450 V
450 V

Ros(on)
3.0 {2
3.0 {2
3.0 {2
3.0 {2
4.0 {2
4.0 {2
4.0 {2
4.0 {2

10 •
2.5 A
2.0 A
2.5 A
2.0 A
2.2 A
1.5 A
2.2 A
1.5 A

• HIGH VOLTAGE - 450 V FOR OFF LINE SMPS
• ULTRA FAST SWITCHING - FOR OPERATION
AT > KHz
• EASY DRIVE- FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Typical applications include switching power supplies,
uninterruptible power supplies and motor speed
control.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220
Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 K{2)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 /LH)
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc= 100°C
Drain current (cont.) at Tc= 25°C
Drain current (cont.) at Tc= 100°C

Tstg
T

ISOWATT220

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

IRF
822
823
821
821FI 822FI 823FI
450
500
450
450
500
450
±20
7
7
8
8
7
8
7
8
822
823
820
821
2.2
2.2
2.5
2.5
1.6
1.4
1.4
1.6
820FI 821FI 822FI 823FI
1.5
1.5
2
2
0.9
0.9
1.2
1.2
TO-220
ISOWATT220
50
30
0.40
0.24
-55 to 150
150
820
820FI
500
500

V
V
V

A
A
A
A
A
A

W
W/oC
°C
°C

*
T = 25°C to 125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature.
• See note on ISOWATT220 on this datasheet.

June 1988

1/6

325

IRF 820/FI - 8211FI - 822/FI - 823/FI
THERMAL DATA·
Rthj _case
Rthc-s
Rthj-amb
TI

TO-220 1,sOWATT220
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

2.5 1 4.16
0.5
80
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)

Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

10= 250 p,A
VGs= 0
for IRF820/822/820FI/822FI
for IRF821/823/821 FI/823FI

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

V
V

500
450

Tc= 125°C

250
1000

p,A
p,A

±500

nA

4

V

ON **
VGS (th)

Gate threshold voltage Vos = VGS

lo(on)

On-state drain current

10= 250 p,A

Vos > 10 (on) X ROS(on) max VGS = 10 V
for IRF820/821/820FI/821 FI
for IRF822/823/821 FII823FI

Static drain-source
on resistance

10=1.4A
VGs= 10 V
for IRF820/821/820FI/821 FI
for IRF822/823/822FI/823FI

gfs **

Forward
transconductance

Vos > 10 ~n) x Ros (on) max
10 = 1.4

C iss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
2.5
2.2

A
A
3.0
4.0

n
n

DYNAMIC
mho

1.0

f = 1 MHz

400
150
40

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 1.0 A
Voo= 225 V
Ri= 50 n
(see test circuit)

60
50
60
30

ns
ns
ns
ns

Og

Total Gate Charge

10= 2.5 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

19

nC

_2/_6 _ _ _ _ _ _ _ _ _ _ _- -

326

~ ~~~~m~::~~~

--------------

IRF 820/FI - 821/FI - 822/FI - 823/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso **

Forward on voltage

Iso= 2.5 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj =150°C

Orr

VGs= 0

di/dt = 100 AIJls

Iso= 2.5 A

2.5
10

A
A

1.6

V

600

ns

3.5

JlC

* * Pulsed: Pulse duration :::; 300 J.l.s, duty cycle :::; 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Derating curve
(standard package)

Thermal impedance
(standard package)
GU-1314

~

Ptot lWl
-)---

)--

I

r...--

0

r- ..- - 1 - -

-r-

10"~~E"lmll
Eo,o

I

=
JUL

Zth=KRthj-"c-

D.C: OPERATI N

10·':~'I~ffll!II'00Ims

l'

li<~;0

10ms

-

""'.,.-!.l"oIFI-ttttt-++.+tttIIt---+H

0

I

"

I'\..

0

-

10'5

Output characteristics

"-

k!f

-ttJ ~10'2~l1 .-'-l.l J.1W.1
. . .l-.WJI.uw. . l l lil". .J. . UI I.uwa.I I I-,-,-U.L.W '1
~;r:

)--- -)---

0

10"

10 0
tpls)

so

i'-...

"-

100

"

Transfer characteristics

Output characteristics
G-0497

lolA)

VGs=10V. --:::;

Tcase=2S0[

~

~

~ ~ 6:SV

lolAi 10VA VGs=7V

4

lOlA )

6.5V

I

VOS>IOlon)X ROS Ion) max

I

6V

6V

s.sv

S.5V

~

V'

TJ =12S

lVV

TJ = 2S

I
JV

0
[ ___

-..J

(-.......1Jj

sv

SV

TJ=SSO(----lJ..

4.5\r---

4.5V

~

J.~J

4V

12

0

16

VosIV,

so

100

1S0

"

II/

200

VosIV)

8

VGS IV)

327

IRF 820/FI - 821/FI - 822/FI - 823/FI
Transconductance

Maximum drain current vs
temperature

Static drain-source on
resistance

)

lOlAI

Ros(onl
(Ill

9

VOS>'O(on)xROS(on) max
TJ =

,

./

/' l./ V

VGs =10V

---

I

i-"""
T)=125°C

~ 10-

-

6

I""'"---

-

I--

1.8

IRF820,821

r-.... ~

IRF822,823

"~

~,

"\:

0.6

/

2

10

12

14

lo(AI

1,\

o

25

Capacitance variation

Gate charge vs gate-source
voltage

r-......

b- .......... 1'-,.

1.2

!
,,-

'0 (A)

II VGs =20V

/

5

/J
4

~

8

. / 'T7=25:1,
./
I--

. /V

'h
,rt/

2.4

-~O°C -~

50

75

100

125

TC ( ()

Normalized breakdown
voltage vs temperature

VGS(V )

V(BR)OSS
(norm)
Tcase=2S0(

0

,-+---+---t---I

1.15

600 "!\-+--+--1-1--+-+--+---+-+--1

1.05

rt"-,.r;;;;;::l=+=::j::C;S=S+=:j::::I=:::j::~

0.95

)--\-\rl--I---t--t---t----I-+-+---t----l

0.85

800

t---t---t---t----I

VGS =0
f=lMHz

..... ~
......... V

Vos=100V"
15

~ ?'
~V
/.~v

Vos=250V,
Vos=400V
10

V

400

II

0.75

(lglnC)

16

20

/

VGS-10V

2.2 I--I-- I-'0 =2.5A

30

40

Vos(V)

Source-drain diode forward
characteristics

Normalized on resistance
vs temperature
ROS(on I
(norm)

G(-0495

Iso(A I~.

II
J

1.8

v

1.4

If~=150OC

10'

/

V

1.0

I
6

. . . .v

I

V

2
-40

4/6

328

40

80

120

. . .V
VGs=OV

':::,.,.

lo=2.5A

12

.........

lo=250~A

200

/

V

./'

T) (O()

10'

o

TJ =25'C

Vso(VI

-40

40

80

120

TJ nl

IRF 820/FI - 821/FI - 822/FI - 823/FI
Clamped inductive waveforms

Clamped inductive test circuit

VARY t TO OBTAIN
REClUIRED PEAK It.
DUT

Vos - - -....

VGS = 1 0 V ! n

~-I

,,
\

\

,
,-------

E,=O.5 BVoss
Ec=O.75 BVoss

S[-0243
S[-0242

Switching times test circuit

PULSE
GENERATOR

f··················

!
~.

Gate charge test circuit

12V

-................ .

1.5mA

FL

S(-0246

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

S[-0244

______________ @:. ~~~~m~::~~n

______________

5_/6

329

IRF 820/FI - 8211FI - 822/FI - 823/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

-

Tc

Po= - - - - Rth
from this lomax for the POWER MOS can be calculated:

1 - for a short duration power pulse less than 1 ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
~h= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax";;

~

ISOWATT DATA
Derating curve

Thermal impedance

Safe operating areas

IIAI:~II~III~II
1=
--t---

-

}

14

f-

50
40

10~s

I 100~

30

~

1O-;~lmlll~IIEIi'..lm:;~m
1---f-H-ttti+t-+--+++t-tIRF820FI/2Flp
IRF821FI/3FI

I III

1O-~'---=-OO----:'~'LLl.L;

"

""'-

........

10

f'..

ill

11111
----'-,----'--'-,.L1,L"---:02---:-'---'---!-",'-!--',.UJSVos(Vl

o

':-'-'-'0-;-"""1

_6/_6_ _ _ _ _ _ _ _ _ _ _ _ _

330

........

20

'1 10ms

~ ~~~~m?1YT:9©~

l'....
o

25

50

75

100

125

Tcos.loe

--------------

IRF 830/FI-831/FI
IRF 832/FI-833/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF830
IRF830FI
IRF831
IRF831FI
IRF832
IRF832FI
IRF833
IRF833FI
e
e
e

e

Voss
500 V
500 V
450 V
450 V
500 V
500 V
450 V
450 V

Ros(on)
1.5 {2
1.5 {2
1.5 {2
1.5 {2
2.0 {2
2.0 {2
2.0 {2
2.0 {2

10 •
4.5 A
3.0 A
4.5 A
3.0 A
4.0 A
2.5 A
4.0 A
2.5 A

HIGH VOLTAGE - 450 V FOR OFF LINE SMPS
ULTRA FAST SWITCHING - FOR OPERATION
AT > KHz
EASY DRIVE- FOR REDUCED COST AND SIZE
COST EFFECTIVE PLASTIC PACKAGE

INDUSTRIAL APPLICATIONS:
SWITCHING POWER SUPPLIES
e MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications. Typical uses include SMPS, lamp ballast and motor
control.
e

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220
Vos *
V OGR *
VGS
10M (e)
10LM

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 K{2)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 JLH)

10
10

Drain current (cont.) at Tc = 25°C
Drai n cu rrent (cont.) at T c = 100°C

10 10 -

Drai n cu rrent (cont.) at T c = 25°C
Drain current (cont.) at Tc= 100°C

Ptot -

•

T stg

T

ISOWATT220

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

IRF
831
832
833
831FI 832FI 833FI
500
450
450
450
500
450
±20
15
15
13
13
15
15
13
13
830
831
832
833
4.5
4.5
4
4
2.5
2.5
3
3
830FI 831FI 832FI 833FI
2.5
2.5
3
3
1.8
1.8
1.5
1.5
ISOWATT220
TO-220
74
35
0.59
0.28
-55 to 150
150

830
830FI
500
500

V
V
V
A
A
A
A
A
A
W
W/oC
°C
°C

* T = 25°C to 125°C
(.) Repetitive Rating: Pulse width limited by max junction temperature.
See note on ISOWATT220 on this datasheet.

•

June 1988

1/6

331

IRF 830/FI - 8311FI - 832/FI - 833/FI
THERMAL DATA·
Rthj _case
Rthc-s
Rthj-amb
TI

TO-220 IISOWA TT220
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

1.69 I 3.57
0.5
80
300

°CIW
°CIW
°CIW
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage
loss
IGSS

10= 250 itA
VGs= 0
for IRF830/832/830FI/832FI
for IRF831 1833/831 FI/833FI

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

V
V

500
450

Tc= 125°C

250
1000

itA
itA

±500

nA

4

V

ON **
VGS (th)

Gate threshold voltage Vos= VGS

10(on)

On-state drain current

10= 250 itA

V os > 10 (on) X ROS(on) max VGS= 10 V
for IRF830/831/830FI/831 FI
for IRF832/833/832FI/833FI

Static drain-source
on resistance

10= 2.5 A
VGs= 10 V
for IRF830/831/830FI/831 FI
for IRF832/833/832FI/833FI

gfs **

Forward
transconductance

Vos > 10 j\n) x Ros (on) max
10= 2.5

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
4.5
4.0

A
A
1.5
2.0

0
0

DYNAMIC

f= 1 MHz

2.7

mho
800
200
60

pF
pF

pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 2.5 A
Voo= 225 V
Ri= 150
(see test circuit)

30
30
55
30

ns
ns
ns
ns

09

Total Gate Charge

10= 4.5 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

32

nC

• See note on ISOWATT220 in this datasheet
* * Pulsed: Pulse duration ~ 300 /ls, duty cycle

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

332

~ 2%

~ ~~~~m~::~~Al--------------

IRF 830/FI - 8311FI - 832/FI - 833/FI
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

4.5
15

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso **

Forward on voltage

Iso= 4.5 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

1.6

VGs= 0

di/dt = 100 A/p,s

Iso= 4.5 A

A
A
V

800

ns

4.6

p,C

Pulsed: Pulse duration ~ 300 /lS, duty cycle ~ 1.5%
(e) Repetive Rating: Pulse width limited by max junction temperature

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
GU-1343

Ptot lW I
70

II

'i

~

....-:

0=*
.JlJL

-tj

f-

lolAl

VGS :l0V/

r-.

/

/.V
I'

/

I'

lolA)

I--VGS:l0V

\.
r'\.

10 0
tplsl

20

40

60

80

100

120 Tcase lOCI

Transfer characteristics
I VOS>IOlonlxROSlonlmax

S.OV

I

V

V
4.S\

./

_

4.5V

4.0V

II
/11

4.0V

IV'-

It'''

I\.

10

Output characteristics

/

IVs

T(ase=25°(

'\

20

r-

10-'

Output characteristics

"\

30

r-

IIIII~I II

11111111

I\.

40
Zth=KRfhj-c

IIIIIIII

'\

50

~

SINGLE PULSE

2

r'\.

60

II-

~~.~

.........

Jr.I"

0=0.5

..J..J.

J

-

VoslVI

______________

100

200

~ ~~~~m~1r~:9~~

VoslVI

1

2

a

3

4

-TJ:12SoC _
'--TJ :2SoC
-TJ :-5SoC ~ -

S

6

7

8

.

VGS IV)

______________

3_/6

333

IRF 830/FI - 8311FI - 832/FI - 833/FI
Transconductance
g'slS I

Static drain-source on
resistance
RaSlon}

V

Tj=-55°C

-

V

/

V V

11/ V

1// /

Maximum drain current vs
temperature

Inl

25°C
125°C
VGs =17
f20V

/ II

1//

/JI

I~

VOs>iO(onlxROS(onlmax.

./

III

V/

V

I-- r-"

II

4

Gate charge vs gate-source
voltage
-04/1

I

15

10

lolAI

20

lolAI

Capacitance variation

Normalized breakdown
voltage vs temperature

ClpF I

VIBRIOS5
Inorml

_

T(ase = 25°C
20

VGS=OV- l - t f=1MHz __

1600

1.15

.....

t- t-

5

0

/0

5

120o

~V

Vos=100V
Vos=250V
Vos=400V

k%;V

1\
1\
400

/

lo=4.5A

V

32

24

16

l'

800

~

-- t -

1.8 f--

-

IO=2.5A

I

I

f-

0.6

V

/

4/6

334

V

30

40

VOS IVI

ISO IA I
TJ_25°C
~

T;-150°C

1/

/J

10'
r!J-150°C

/

1/

I

I
10°

-40

20

Source-drain diode forward
characteristics

/

40

80

TJ lOCI

o

III

........ V
V
VGs=O
lo=250~A

t--

./

/

1.0 t - -

0.2

l!

~

10

LV

0.85

~ Coss

/

I

1.4 l -

....

Qgln()

/

VGS = 10V

0.95

Cissc--

~ f"...

Normalized on resistance
vs temperature
ROSlon I
Inorml

V

1.05

"

TJ=25 C

4

VsolVI

0.7 5
-40

40

80

120

TJ ICI

IRF 830/FI - 8311FI - 832/FI - 833/FI
Clamped inductive test circuit

Clamped inductive waveforms
Ec

r

VARY t

TO OBTAIN
REO.UIR~b PEAK IL OUT

Vos ----+

VGS=10Vy-n.

~J

\

\

\

,,
,-------

E,=O.5 BVoss
Ec=O.75 BVoss

S[-0243
S[-0242

Switching times test circuit

Gate charge test circuit

PULSE
GENERATOR .
:..................

12V

f
.....................
1.5mA

J"L

S[-0246

CURRENT
SAMPLING
RESISTOR

(URRENT
SAMPLING
RESISTOR

S[-0244

--------------

~ ~~~~m?1Y~:~~@~

______________

5_/6

335

IRF 830/FI - 831/FI - 832/FI - 833/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATI220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATI220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATI220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

-

1 - for a short duration power pulse less than 1ms;
Zth< RthJ .C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth = RthJ .C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Te

Po= - - - - Rth
from this lOmax for the POWER MaS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

IOmax~

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
(j[-1}42V1

PtotlW)

&.0.5

50

II
~
10-

1~
~

6.0.t

r-

,.,

,....

~

,.,

~

40
Zth::KRthj-c

s:-4f

........
30

~

"-

-tJ

20

r--..
...............

.........

10

o
tpls) ,

"
o

25

50

75

100

125

t'-....
Teos.loe

_6/_6______________ ~~~~~~?V~:~~©~--------------336

IRF 840/FI-841/FI
IRF 842/FI-843/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRF840
IRF840FI
IRF841
IRF841FI
IRF842
IRF842FI
IRF843
IRF843FI
e
e
e

e

Voss
500 V
500 V
450 V
450 V
500 V
500 V
450 V
450 V

Ros(on)
0.850
0.850
0.850
0.850
1.1 0
1.1 0
1.1 0
1.1 0

10 8 A
4.5 A
8 A
4.5 A
7 A
4 A
7 A
4 A

HIGH VOLTAGE - 450 V FOR OFF LINE SMPS
ULTRA FAST SWITCHING - FOR OPERATION
AT > 100KHz
EASY DRIVE- FOR REDUCED COST AND SIZE
COST EFFECTIVE PLASTIC PACKAGE

INDUSTRIAL APPLICATIONS:
SWITCHING POWER SUPPLIES
e MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications.
e

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ISOWATT220

G~
5

ABSOLUTE MAXIMUM RATINGS
TO-220
ISOWATT220
Vos *
V OGR *
VGS
10M (e)
10LM

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 KO)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100/tH)

'0
'0

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

'0'0-

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

Ptot Tstg

-

T

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

IRF
843
841
842
841FI 842FI 843FI
450
500
450
450
450
500
±20
28
32
32
28
32
32
28
28
840
841
842
843
8
7
7
8
5.1
4.4
4.4
5.1
840FI 841FI 842FI 843FI
4.5
4.5
4
4
2.8
2.5
2.5
2.8
TO-220
ISOWATT220
125
40
0.32
1
-55 to 150
150

840
840FI
500
500

V
V
V
A
A
A
A
A
A
W
W/oC
°C
°C

* T = 25°C to 125°C
(.) Repetitive Rating: Pulse width limited by max junction temperature.
See note on ISOWATT220 on this datasheet.

-

June 1988

1/6

337

IRF 840/FI - 841/FI - 842/FI - 843/FI
THERMAL DATA·
Rthj _case
Rthc-s
Rthj-amb
TI

TO-220 IISOWATT220
1 1 3.12
0.5
80
300

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

10= 250 pA
VGs= 0
for IRF840/842/840FI/842FI
for IRF841/843/841 FI/843FI

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

V
V

500
450

Tc= 125°C

250
1000

itA
itA

±500

nA

4

V

ON **
VGS(th)

Gate threshold voltage Vos= V GS

10(on)

On-state drain current

10 = 250 itA

V os > 10 (on) X ROS(on) max VGs =10 V
for IRF840/841/840FI/841 FI
for IRF842/843/842FI/843FI

Static drain-source
on resistance

10= 4.4 A
VGs= 10 V
for IRF840/841/840FI/841 FI
for IRF842/843/842FI/843FI

gfs **

Forward
transconductance

Vos > 10 ~n) x Ros (on) max
10= 4.4

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2

A
A

8
7
0.85
1.1

n
n

DYNAMIC
4.9

f = 1 MHz

mho
1600
350
150

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 4.0 A
Voo= 200 V
Ri= 4.7 n
(see test circuit)

35
15
90
30

ns
ns
ns
ns

09

Total Gate Charge

10= 8 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

63

nC

_2/_6__________________________ ~~~~~~?u~:~~©~

338

____________________________

IRF 840/FI - 841/FI - 842/FI - 843/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso **

Forward on voltage

Iso= 8 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

32

8

A
A

2

V

VGs= 0
1100

ns

6.4

f-tC

di/dt = 100 AIJ1,s

Iso= 8.0 A

* * Pulsed: Pulse duration ::;; 300 p,s, duty cycle ::;; 1.5%
(e) Repetive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
GU-

4

Ptot lW )

0:0.5

t:/'(.

1~1=IRF8401

I'

11

6-IRF84
1

ffJ

/1

~TC'2S'(

lIu§MIII'11

O(OPERAlIOH-

1,6=TJ=150·(

-,

11'111

80

Zth:KRthj-c

s=-¥-

~

~

1---

10- 1

'olA ) VGS ;10V
9V

16

5V

12

10°

20

8

~

V

,
,r

40

60

80

120

'r--.

Tcase 1°C)

Transfer characteristics
)

I~ ~

~~ J~

JII

16

I

100

Tcase=2S0(

'/

Vos>IO{on)xROS{onlmax.

j

Tcase=2S0(

/

",

11,,,,,''1,111

Output characteristics

~,

"-

20

tp Is)

"
,

1/

,

40

-t-J

II

" ",

f-

I-

JUL l-

PlSE

'

VGs ;10V
9V
8V
lV
6V

2

~

",

60

Nl

Output characteristics
'olA )

&=0.1

~
2

. , '101

W

/--'"

120
100

-t'"

-SINGLE PULSE

10-1
10 0 '

f,.....

140

6=0.05

--RthJC= 1.0K/W

4

~

II

~
t--

I

5V
8

J

/J

4
4V

4V

TJ;125°C~

TJ;-55°C

VIl .- TJ;25°C

lAV

/
8

Vos'V)

20

40

60

80

-----------------------------~~~~~~~~T:~~~

VDsIV)

___________________________

3_/6

339

IRF 840/FI - 841/FI - 842/FI - 843/FI
Transcond uctance

Static drain-source on
resistance
G-1545

gls(S I

I

Maximum drain current vs
temperature

ROS(on I
I..n.)

I

VOs>IO(onI'ROS(onlmax.

12.8

----r-

3·0

r---..

1

2. 5

TJ=l55'C- f - - r--

6

V

lj = 25'C
6. 4

T J25'C

1.0

I

3. 2 /."",.

If

........

I

VGS=20V-

f----

lRF840, 841

~

IRF842,~3"""'" ........... r-...

/

1.5

~

r--. f".

VGS=10V)r'
2.0

I"t\.

V

~

o

1

12

16

10

10 (A)

Gate charge vs gate-source
voltage
G(-054111

)

,

1\

5
15

20

2S

30

35 10 (AI

Capacitance variation

25

50

75

100

125

Tease!"()

Normalized breakdown
voltage vs temperature
GU-154

[(pF I

V(BR)DS S

(norm)
160

5
VDs =100V
VDs =250V
VDs =400V
0

l&

5j

~

~

~

0\\
I........

1200

60

40

[iss
1.05

0.95

1\ t

ID=8A

(1g(n[(

J".,.

5

Normalized on resistance
vs temperature

10

40

45 VOSIVI

Source-drain diode forward
characteristics
ISO

(norm I

(A I

/

/

.#

/
1.5

.....v

. . . .V
0.5

35

GC-0418

RDS(on J

V

VGs=IOV

V

/

/'
100

F

;;<

IJ =150'[
I,
J =25 C

lo=4.5A

I

o

1
-40

4/6

340

0

40

. . . .V

V

. . . .V

V

0.85

I'" " r---..

Cos
l - t-- Crss
15 20 25 30

V

ID=250pA

\

40o \

VGs=O

1.15

80 Oil \

II
20

Tease = 25 C
1= 1MHz
VGS =OV

VSO(VI

0.75

-40

40

80

120

TJ ( ()

IRF 840/FI - 841/FI - 842/FI - 843/FI
Clamped inductive test circuit

Clamped inductive waveforms

VARY t TO OBTAIN
RECWIRED PEAK IL
OUT

Vos - - - . ;
\
\

\

\

,
,-------

E,=0.5 BVoss
E(=0.75 BVoss

S[-0243
S[-0242

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE

fq~~f:~·~l~.~....

12V

!

...................
1.5mA

1L-

S[-0246

-Vos
CURRENT
SAMPLING
RESISTOR

S[-0244

----------------------------~~~~~~?v~:~~©~

___________________________

5_/6

341

IRF 840/FI - 841/FI - 842/FI - 843/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rlh {Iol} is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

-

1 - for a short duration power pulse less than 1ms;
Zlh< RlhJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zlh = RlhJ-C + RthC-HS + RthHS-amb

Tc

Po= - - ' - - - Rth
from this lOmax for the POWER MOS can be calculated:

Fig. 1

RthJ - C RthC-HS RthHS-amb

IOmax~

~

ISOWATT DATA
Safe operating areas

Derating curve

Thermal impedance
G-040/t

IDIA')~~IEIIIIII
9

GC-

)

I

:I£F84 FI(1FI

'~RFs~FiiiFl

P?

6~O.5

':

10\~'(.~<

~

f-

1~
6=0,0

f-"'

: IRF840fl/1fl

10m?
OOm

-:,----'--',--'-c,u.;,U,10

2
10- 1070

I

: -'10"2- : -,---'--:-,u..:-,'-:-"sVosIVl

1-----:--'--'--!--',-!-L,

2'--,

_6/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

342

7'
7U

40
Zth;:KRthj-c

~

s=-Jt

"""-

30

JLrL

"i'...

-t;J

6

I-l-t

III

~

6-0.0

10-;~IIIIIIII"llmll~
IRF840FI12F
IRF841FI13F

50

II

10p'

20

~
.........

1

"-

10

PULSE

\'...

II
tpls)

o
o

f'-......
25

50

75

100

125

Teaselo

m:. ~~~~m?lJ":~~lt --------------

IRFP 150/FI-151/FI
IRFP 152/FI-153/FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE

Voss

ROS(on)

IRFP150
IRFP150FI

100 V
100 V

0.055
0.055

IRFP151
IRFP151FI

60 V
60 V

IRFP152
IRFP152FI

100 V
100 V

IRFP153
IRFP153FI

60 V
60 V

e

n
n
0.055 n
0.055 n
0.08 n
0.08 n
0.08 n
0.08 n

10 40 A
26 A
40 A
26 A
34 A
21 A
34 A
21 A

60 - 100 V FOR DC/DC CONVERTERS

e HIGH CURRENT

RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
e ULTRA FAST SWITCHING
e EASY DRIVE - FOR REDUCES COST AND SIZE
INDUSTRIAL APPLICATIONS:
e UNINTERRUPTIBLE POWER SUPPLIES
e MOTOR CONTROLS
N - channel enhancement mode POWER MOS field effect transistors. Easy drive and very fast switching times
make these POWER MOS transistors ideal for high speed
switching applications. Applications include DC/DC converters, UPS, battery chargers, secondary regulators, servo control, power audio amplifiers and robotics.

TO-218

e

ABSOLUTE MAXIMUM RATINGS

10M (e)

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 Kn)
Gate-source voltage
Drain current (pulsed)

10
10

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc= 100°C

10 10 -

Drain current (cont.) at T c = 25°C
Drain current (cont.) at Tc = 100°C

Ptot -

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

T stg
Tj

INTERNAL SCHEMATIC
DIAGRAM

TO-218
ISOWATT218

Vos *
V OGR *
V GS

ISOWATT218

IRFP
153
151
152
151FI 152FI
153FI
60
100
60
60
100
60
±20
140
160
160
140
153
150
151
152
40
34
40
34
22
26
26
22
153FI
150FI 151FI 152FI
26
21
21
26
16
13
13
16
ISOWATT218
TO-218
150
65
0.52
1.2
- 55 to 150
150

150
150FI
100
100

V
V
V
A
A
A
A
A
W
W/oC
°C
°C

* T= 25°C to 125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature.
See note on ISOWATT218 on this datasheet.
• Introduced in 1988 week 44

-

June 1988

1/6
343

IRFP 150/FI - 151/FI - 152/FI - 153/FI
THERMAL DATA·
Rthj _case
Rthc -s
Rthj-amb
TI

TO-218 IISOW ATT218

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

max'
typ
max

0.83 I 1.92
0.1
30
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage
loss
IGSS

10= 250 p,A
VGs= 0
for IRFP150/152/150FI/152FI
for IRFP1511153/151 FI/153FI

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

100
60

Tc= 125°C

V
V
250
1000

p,A
p,A

±100

nA

4

V

ON **
V GS (th)

Gate threshold voltage Vos= V GS

10(on)

On-state drain current

Ros (on)

Static drain-source
on resistance

10= 250 p,A

V os > 10 (on) X ROS(on) max VGS= 10 V
for IRFP150/151/150FI/151 FI
for IRFP152/153/152FI/153FI

2
40
34

10= 22 A
VGs= 10 V
for IRFP150/151/150FI/151FI
for IRFP152/153/152FI/153FI

A
A
0.055
0.08

11
11

ENERGY TEST
Unclamped inductive
switching current
(single pulse)

L = 100 p,H
Voo= 30 V
starting T j = 25°C
for IRFP150/151/150FI/151FI
for IRFP152/153/152FI/153FI

gfs **

Forward
transcond uctance

Vos> 10 (on) x Ros (on) max
10= 22 A

C iss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

lUIS

40
34

A
A

13

mho

DYNAMIC

f= 1 MHz

_2/_6_________________________ ~~~~~~g~:~~~

344

3000
1500
500

pF
pF
pF

___________________________

IRFP 150/FI - 151/FI - 152/FI - 153/FI
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SWITCHING

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 20 A
Voo= 24 V
Ri= 4.71)
(see test circuit)

35
100
125
100

ns
ns
ns
ns

Total Gate Charge

VGs= 10 V
10= 50 A
Vos = Max Rating x 0.8
(see test circuit)

110

nC

ISOM (e) Source-drain current
(pulsed)

for
for
for
for

40
34
160
140

A
A
A
A

Vso **

Forward on voltage

Iso= 40 A

2.5

V

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

td
tr
td
tf

(on)
(off)

09

SOURCE DRAIN DIODE

Source-drain current

Iso

Orr

IRFP150/151/150FI/151 FI
IRFP152/153/152FI/153FI
IRFP150/151/150FI/151 FI
IRFP152/153/152FI/153FI

Iso= 40 A

VGs= 0
600

ns

3.3

J-tC

di/dt = 100 A/J-ts

* * Pulsed: Pulse duration ~ 300 P.s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature

• See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Derating curve
(standard package)

Thermal impedance
(standard package)
Ptot lW )
14 0

-

r-..
f\.

120

4

RF150f

2 IRj'S,)

10J.lS

r-

100

100I-lS

r-

0

1m,

" '\
'\

60
40

I\.
I\.

20

'\.
20

40

60

80

100

120

T(ase (OC)

--------------________________ ~~~~~~?V~:~~:l ____________________________

3__
16

345

IRFP 150/FI - 151/FI - 152/FI - 153/FI
Output characteristics

Output characteristics
lolA I

VGs =10V

1--

~

9V

16

~1It

VI--

j~

12 r--

r--

i-~

9V

VGs =10V

.0

,r

20

/

20

!----

r-- 1-- -

10
IV

1.2

1.6

10

30

20

40

I

L

TJ=25°C

/1// / '

TJ=125°C

12 r-c

I

1//

r;

II

I
I
I
30

20

10

40

j

0.0 6

0.0 2

Gate charge vs gate-source
voltage

./

--

,./
lolAI

40

-

10

16

1>5< ~ ~

Vos =50\
Vos=80V, IRF150,152

~

1600

I

/

800

lo=50A

1/

56

84

8

9 10 VGSIVI

IRF\50,1~1_ - r-

,
"""- ..,<\f\.
......

r'I.\

vr

V
80

120

,

'\~

o
lolAi

25

50

75

100

125

Tease(C

Normalized breakdown
voltage vs temperature
VIBRIDS S
Inarml
115

!\\

V

1.05

~

L\ ~
\ \
r\.

-

r-

[iss

,

i'-

--

......
28

7

VGs =20V

Tease= 25°C
f=IMHz
VGS=OV

1\

2400

6

-1--1--

\JU-1509

3200 1\
Vos=20V,

TJ 1'-5rC

~

I '~

IRF15Z153

/

Capacitance variation

II

'I'-..

i""'-- ........

24

ClpFI

I

3

VGs =10V

0.10

VOS>IO(onlxROSlonlmax

2

~

""-

32

I

V

TJ=125C
TJ=25°C

lOlAIf""-.,

Inl
0.14

......

-

Maximum drain current vs
temperature

Static drain-source on
resistance
TJ=-IIOC r-I

/

1

VoslVI

ROSlon I

II

rl
VV
4 5

r-VoslVI

II
III
fI

II, 'j

4V
0.8

gf,ISI

1---

!J
III
flL

6V

10

Transconductance

16

VOS>IOlonIXRO lariinaxl

5

!----

4V
-

W

25

7V

30
IV

--

III

Tcase;;;25°(

--

/'

0.4

I

8V

Tcase=2S0(

1/ VV

+iIIYV --

tt~
V

7V/

I/A V
~

GU-1S01

lolA I

6V~

8V

Transfer characteristics

10

0.95

20

~

........

........ J.-

........ V
//

V

VGs=OV
lo=210~A

0.85

~

[rss

30

40 VoslVI

0.75
-40

40

80

120 TJnl

_4/_6__~______________________ ~~~~~~?V~:~~~~ ____________________________
346

IRFP 150/FI - 151/FI - 152/FI- 153/FI
Normalized on resistance
vs temperature
RaSlon I

Source-drain diode forward
characteristics
ISO (A )

{norm I

/

/
1.8

t-1.4 --

/

t7

k":

TJ=25·~,

~~

-

J=l~O-

//'

1.0

,/
--

..,/

VGs =10V
--

6 --

TJ=lS0·[

.==: ==

'I

-""11

10'

TJ= 5·[

-

I

lo=20A

I

2

-40

40

4

80

Unclamped inductive test circuit

V50 (V)

Unclamped inductive waveforms
L

VIBR) DSS

VARY t TO OBTAIN
REClUIREO PEAK IL
OUT

VDS ----+
'\
'\

,

'\

'\

,------SC-0338

SC-0339

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE

fq~!,!~~·~·~9.~....

+Vos

12V

!

..... ............ .
."

1.5mA

IL

5[-0246

--C==J---4H._J--o - Vos

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

5[-0244

-------------- ~ ~~~~mg1r~:~~©~ ______________

5_/6

347

I RFP 150/FI - 151/FI - 152/FI - 153/FI
ISOWATT218 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT218 PACKAGE

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage
and clearance standards. The ISOWATT218 package eliminates the need for external isolation so
reducing fixing hardware.
The package is supplied with leads longer than the
standard TO-218 to allow easy mounting on pcbs.
Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink
capacitance
ISOWATT218 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT218 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT218 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

-

Tc

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

Po= - - - - Rth
from this lOmax for the POWER MOS can be calculated:

RthJ- C RthC-HS RthHS-amb
~

IOmax~

ISOWATT DATA
Safe operating areas

Derating curve

Thermal impedance

C-041

)

70

60
50

40
30

or=:
100~~.~tMI~.
DC

20

f---f-++++H+ :~:~~~:;I~;;III+I++If---j-++--I++H-

_6/_6_ _ _ _ _ _ _ _ _ _ _ _ _

'\

10

o

348

1'\

F

1'\

o

1'\
20

40

60

80

100 120

140 Tcaselo

~ ~~~~mg::~~Jl--------------

IRFP350FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
IRFP350FI

Voss
400 V

Ros(on)
0.30

10
10 A

• HIGH VOLTAGE - FOR OFF-LINE SMPS
• HIGH CURRENT - FOR SMPS UPTO 350W
• ULTRA FAST SWITCHING - FOR OPERATION
AT > 100KHz
• EASY DRIVE - REDUCES SIZE AND COST
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Fast switching and easy drive make this POWER MOS transistor ideal for high voltage switching applications include electronic
welders, switched mode power supplies and sonar
equipment.

ISOWATT218

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos

*

VOGR *
VGS
10
10
10M(e)
10LM

P tot

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 KO)
Gate-source voltage
Drain current (cont.) at T c = 25°C
Drain current (cont.) at Tc= 100°C
Drain current (pulsed)
Drain inductive current, clamped (L = 100 pH)
Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

400
400
±20
10
6.3
60
60
70
0.56
-55 to 150
150

V
V
V
A
A
A
A
W
W/oC
°C
°C

* T = 25°C to 125°C
(-) ~epetitive Rating: Pulse width limited by max junction temperature
June 1988

1/6

349

IRFP350FI
THERMAL DATA

Rthj _case
Rthc-s
Rthj _amb
TI

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

1.78
0.1
30
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage
loss

IGSS

10 = 250 JlA

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

400

Tj = 125°C

V

250
1000

IJlA
IJlA

±100

nA

4

V

ON **

VGS (th)

Gate threshold voltage Vos= VGS

10 (on)

On-state drain current

Vos > 10 (on)

Ros (on)

Static drain-source
on resistance

VGs= 10 V

g fs **

Forward
transconductance

Vos > 10 (on)
10= 8.0 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

10 = 250 JlA
X

Ros (on) max' V GS = 10 V

2
10

A
0.3

10= 8.0 A

n

DYNAMIC
X

Ros (on) max

f= 1 MHz

8.0

mho

3000
600
200

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 8.0 A
Voo= 180 V
Ri= 4.7 n
(see test circuit)

35
65
150
75

ns
ns
ns
ns

09

Total Gate Charge

10= 18 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

120

nC

350

IRFP350FI
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

10
60

A
A

1.6

V

Source-drain current
Iso
150M (e) Source-drain current
(pulsed)

Vso **

Forward on voltage

150= 15 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

VGs= 0

di/dt = 100 Alp..5

150= 15 A

1000

ns

6.6

/tC

Pulsed: Pulse duration ~ 300 p,s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature

Derating curve

Thermal impedance

Safe operating areas

-0681

6(-0445

::: ~

:==

10"1

0,0
v..~S\O~'\

,-10\

I"

"

10ms

~

IE

•• 0.05

~

10"2

V

=Zt h::KRthJ·c

b =..!.£.
't'

iiJ

SINGLE PULSE

10- 3

Output characteristics

10-3

10-1

W2

Tcase=2S0[

It' v
v
W:V
JV

6

J
IF

t"--

,

6V

,

1211--1---f-+-+-+-T'-",,~se::.;=2;:-5°-"+[-+-+-+--1

Ii

0
Vos>IOlonjxROSfonJ

4.5V

TJ.125 0

5V
4.5V

50

100

150

200

[_/i

TJ=2~h

1--1--1--

W
TJ.-55°[

V$

4V
VosIV!

G(-0493

iYl

5

16 H-i--+-+-+-+--+--+-+-+--I-+---<

4V

TeaseIO[)

r/f

20H-H-+-+-+-+-+--+--+-+-+----i

5
3.5V

100

50

lolA )

5V

J,V

~V

2

V

""- "-

Transfer characteristics

VGs =10V

8

i'-...

Output characteristics

1/ V6v
/V

f'

20

Ipls)

G[-0491

lolA )

"-

40

II
100

:"

60

Jl.D-

&'0.'01

10Q~

10- 4

80

=

;:::

I.;

1~~~
0
10 :

I-

~

6.0.02

1OO~s

100

f--

0.0.2

10 2

)

~

•• 0.5

250

VosIV)

______________ ~ ~~~~m?lrT:~~CG~ ______________3_/6
351

IRFP350FI
Transconductance

Static drain-source on
resistance

9fs IS )

TJ=~

---

V"'-

16

/V

In)
0.6

VGs =10V

0.5

~V

11
IL

VOS>IOlon)X ROS lon)max
3

10

15

20

..... ~
10

lolA)

Gate charge vs gate-source
voltage

10

~

v,;

~

u

~

20

\

30

40

50

60

v,; V

f-~f-

I
I

o 1\

160 0

800

20

40

60

BO

100

120

ROSton)

100

GU-1S67/1

VIBR)OSS
Inorm)
1.15

...-~
".".,,"'-

"",

1.05

I'--

UglnC)

Ciss
0.95

"'

"'.......

10

Normalized on resistance
vs temperature

15

VGS =OV

1, \

II

50

Normalized breakdown
voltage vs temperature

f=lMHz

3200 \

\

lo=1BA

25

lolA)

GU~bb9

~

"\

o

Capacitance variation

240

/,~

" 1'- "

VGs =20V

Tca s e=25"[

~

.........

Ih
hV

Q

12

............

12

-8

)

14

--

I

/
II

0.4

1[/

lolA)

16

0°C

IV /'

4

[j[~0890

ROSlon I

TJ=25°C

/ ' ~V-

/

12

Maximum drain current vs
temperature

/'

/'

"" ""

"."

VGs=O lo=250pA

0.85
...........

r-

-............ Coss
Crss

20

30

40

Vos

0.15

-40

40

BO

-

120

r--

TJ 1°C)

Source-drain diode forward
characteristics
IsolA)

Inorm)
2.2
1.B - - I - -

VGs =10V
lo=5A

1.4

/'

1.0

0.6

/

V

?'

'TJ=150"[ VI
10

V

~

10 2

/

,

.£ lj

=25"[

.... V

"

I

0.2

10 0
-40

40

o

1/

4

_4/~6_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?::J?©~

352

VsoIV)

- _____________

IRFP350FI
Clamped inductive test circuit

Clamped inductive waveforms
L

E(

r

VARY t TO OBTAIN
REO.UIRED PEAK IL
DUT

vDS

VGS = 1 0 V ! n

- - -....

~-I

,,

,,

,

,-------

E,=O.5 BVoss
Ec=O.75 BVoss

S(-0243
S(-0242

Switching times test circuit

Gate charge test circuit
Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
DUT

PULSE
GENERATOR

f··················

+Vos

SAME TYPE
AS OUT

12V

!...... .. ......... .
.".

~

OUT

1.5mA

~

S(-0246

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

S(-0244

--------------

~ ~~~~m~::~~©~

______________

5_/6

353

IRFP350FI
ISOWATT218 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT218 PACKAGE

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. These'distances are in agreement with VDE and UL creepage
and clearance standards. The ISOWATT218 package eliminates the need for external isolation so
reducing fixing hardware.
The package is supplied with leads longer than the
standard TO-218 to allow easy mounting on pcbs.
Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink
capacitance
ISOWATT218 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT218 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT218 package.
The total thermal resistance Rth {tot} is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

-

Tc

Po= - - - - Rth
from this lOmax for the POWER MaS can be calculated:

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

RthJ- C RthC-HS RthHS-amb
~

lOmax';;

_6/_6____________________~----~~~~~~~V~:~~~

354

____________________________

r.=-= SGS-THOMSON

.,L

~

IRFP 450/FI-451/FI
IRFP 452/FI-453/FI

~O©OO@[g[L[~©uOO@~O©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
IRFP450
IRFP450FI
IRFP451
IRFP451FI
IRFP452
IRFP452FI
IRFP453
IRFP453FI
e

e
e
e

Voss
500 V
500 V
450 V
450 V
500 V
500 V
450 V
450 V

Ros(on)
0.4 0
0.4 0
0.4 0
0.4 0
0.50
0.50
0.50
0.50

10 •
14 A
9A
14 A
9A
12 A
8A
12 A
8A

HIGH VOLTAGE - 450V FOR OFF LINE SMPS
HIGH CURRENT - 12A FOR UP TO 350W SMPS
ULTRA FAST SWITCHING - FOR OPERATION
AT > 100 KHz
EASY DRIVE - REDUCES COST AND SIZE

INDUSTRIAL APPLICATIONS:
SWITCHING MODE POWER SUPPLIES
e MOTOR CONTROLS
e

TO-218

ISOWATT218

INTERNAL SCHEMATIC
DIAGRAM

N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching applications.
5

ABSOLUTE MAXIMUM RATINGS
TO-218
ISOWATT218
Vos *
VOGR *
VGS
10M (e)
10LM
10

ID

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 KO)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 p.H)
Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc= 100°C
Drain current (cont.) at Tc= 25°C
Drain current (cont.) at Tc= 100°C

T stg
T·

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

IRFP
451
452
453
451FI 452FI 453FI
450
450
500
500
450
450
±20
48
48
56
56
56
56
48
48
452
453
450
451
14
14
12
12
7.9
8.8
8.8
7.9
450FI 451FI 452FI 453FI
8
9
9
8
5.6
5.6
5
5
TO-218
ISOWATT218
180
70
1.44
0.55
-55 to 150
150

450
450FI
500
500

V

V
V

A
A

A
A
A

A
W
W/oC
°C
°C

* T= 25°C to 125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature.
• See note on ISOWATT218 on this datasheet.
June 1988

1/6

355

IRFP 450/FI - 451/FI - 452/FI - 453/FI
THERMAL DATARthj _case
Rthc-s
Rthj-amb
T,

TO-218 IISOWATT218
max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

0.69 I 1.8
0.1
30
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
" 10 (on) X RoS(on)max VGs =10V
for IRFP450/451/450FI/451 FI
for IRFP452/453/452FI/453FI

2

A
A

14
12

10= 7.9 A
VGs= 10 V
for IRFP450/451/450FI/451 FI
for IRFP452/453/452FI/453FI

0.4
0.5

Q
Q

DYNAMIC

lf

gfs **

Forward
transcond uctance

Vos> 10 n) x Ros (on) max
10= 7.9

C jss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

9.3

f= 1 MHz

mho
3000
600
200

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 7.0 A
Voo= 210 V
R j = 4.7 Q
(see test circuit)

35
50
150
70

ns
ns
ns
ns

09

Total Gate Charge

10= 13 A
VGs= 10 V
Vos = Max Rating x 0.8
(see test circuit)

120

nC

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

356

~ ~~~~m~::~~~

--------______

IRFP 450/FI - 451/FI - 452/FI - 453/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
150M (-)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

150= 14 A

trr

Reverse recovery
time
Reverse recovered
charge

Tj = 150°C

Orr

VGs= 0

di/dt = 100 AIII,s

Iso= 14 A

14
56

A
A

1.4

V

1300

ns

7.4

p,C

* * Pulsed: Pulse duration ~ 300 P.s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATT218 in this datasheet.

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
~-O686

PtotlW)

f=

200

"...

I"-

160

Zth= KRthj-

I"-.

10~

10-

IRFP45012IRFP45113100

68

101

6

'102

,10ms

-tJ

OC

mt
6

,r-

120

r.=1R
1:
JUL ~

10-~0-5

80

~
r-

IIIIIII1010- 2

10- 4

10- 3

1

tpls)

lI- /6v
IV

Tcas e:=2S0(

/;

6

If/

6V

V

5
121I-1---t-+-+--+-T",,,\,,,-se----=;=2c-°=-+[-+-+--+--1

,

4.5V

I--~i--

150

200

Tj=2~/L

TJ=-55°[

VP

4V
100

,W

TJ=125°[-/h
5

50

(-0493

11

a

5V

VosIV)

\'-.,

'II

16 H-t---t-+-+--+--+--+-+-+---I-J------l

4V

~

TeaseIO[)

h'f

5

4_5V

3.5V

100

20f-H--t~---+--+--+--+-+-+-+-H

VOS>IOlonlxROSlonl

J.~
~ /"

l~

75

lolA I

5V

J./ V

1///

50

Transfer characteristics

VGS =10V

r-----

25

Output characteristics
GL-0491

lolA )

'"

40

11111111

'VosIV)

Output characteristics

'" "- "

250

VosIV)

3/6

357

IRFP 450/FI - 451/FI - 452/FI - 453/FI
Transconductance

Static drain-source on
resistance

gfs IS)

~

V"""

16

/ / ---:::
Lk(V

12

(n)

TJ=25"c

~

16
VGs =lOV

-H-

j--.

10

15

20

10(A)

I

...............
12

/

VI

5

Vos >IOlon)X ROS(on)max.

~

i'-l"

10

20

30

40

50

60

Vos=lOO~,~

240

vos=2000~
Vos=400V

'\~ 7'

0

GU-1569

L
/

0

112

o \

/'
0.95

10

-

20

-

[rss 1'--'30

40

VOS

Source-drain diode forward
characteristics

2.2
VGS =10V.
16s

,/

~=150"c (I

/
101

/

10

~~

10 1

J5A
,/

14

h

1) =25·C

/
6

I ......

V

I

10 0

2
-40

358

40

80

120

160 TJ (C)

o

//

/'

,,~ .................... [ass

IsolAI

18

-..-

",..

0.85

GU-l

ROS(on I
(norm I

V(BR)DS S
(norm)

[iss

, \ ['...

Qg(n[)

Normalized on resistance
vs temperature

"

100

",..-

.........
84

75

1.05

I'--..

1/

56

50

1.15

VGS =OV

lo=13A

28

~

f=lMHz

\

\
1

800

r-.....

Normalized breakdown
voltage vs temperature

"-,

160

9/

0

25

IO(A)

Capacitance variation

\

""k"-r-0

o

Tca se=25·

15

IRFP450,451
r-.....
..........
r-..... r-.....

IRFP452,453

.-.~

o3
o

320 o

-

VGs =20V

[(pFl

20

......

I~V
I~V

4

Gate charge vs gate-source
voltage
I

lo(A)

6

",..1-"

f/ V

/1/
III

G(-0494

RDSlonl

I- ,...- -:;;':5°[

/'"

Maximum drain current vs
temperature

/I

4

vsolVI

0.75

-40

40

80

120

TJ (OCI

IRFP 450/FI - 451/FI - 452/FI ·453/FI
Clamped inductive waveforms

Clamped inductive test circuit
L

E(

r

VARY t TO OBTAIN
REClUIRltb PEAK IL
OUT

Vos - - - - t

,,

,,
,
,-------

E1=0.5 BVDSS

Ec=O.75 BVDSS
5(-0243
5(-0242

Switching times test circuit

Gate charge test circuit

PULSE

f-GENERATOR
................ .

12V

i

.......................
1.5mA

FL

5(-0246

CURRENT
SAMPLING
RESISTOR

5(-0244

-----------------------------~~~~~~?v~:~~~~

___________________________

5_/6

359

IRFP 450/FI - 451/FI - 452/FI - 453/FI
ISOWATT218 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT218 PACKAGE

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage
and clearance standards. The ISOWATT218 package eliminates the need for external isolation so
reducing fixing hardware.
The package is supplied with leads longer than the
standard TO-218 to allow easy mounting on pcbs.
Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink
capacitance
ISOWATT218 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT218 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT218 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

Tc

-

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

Po= - - - - Rth
from this lomax for the POWER MOS can be calculated:

RthJ - C RthC-HS RthHS-amb
~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve

100
80

60

!=
100m
100~111'11~i'lm'0ims
10I II
c----t---HTttttt-+++1IRFP4S0FII:FI
1
IRFP4S1FI/lFI
100 2
' 6 810'
2
'6 8
102 2

'" "
..........

......

20

~
UC

4

6

BVDS(V)

_6/_6_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?trT:~~©~

360

40

"

50

'"
100

......

b.,

______________

IRFZ20/FI
IRFZ22/FI
N - CHANNEL ENHANCEMENT MODE
POWER MaS TRANSISTORS
TYPE

Voss

ROs(on)

IRFZ20
IRFZ20FI

50 V
50 V

0.1
0.1

IRFZ22
IRFZ20FI

50 V
50 V

0.12
0.12

n
n
n
n

10
15 A
12.5 A
14
12

A
A

•
•
•
•

N-CHANNEL POWER MOS TRANSISTORS
VERY LOW Ros (on)
LOW DRIVE ENERGY FOR EASY DRIVE
COST EFFECTIVE
INDUSTRIAL APPLICATIONS:
e AUTOMOTIVE POWER ACTUATORS
e MOTOR CONTROLS
e INVERTERS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching circuits applications
such as power actuators driving, motor drive including brush less motors, hydraulic actuator and many
other in automotive and automatic guided vehicle
applications. They also find use DC/DC converters and uninterruptible power supplies

TO-220

ISOWATT220

INTERNAL SCHEMATIC
DIAGRAM

IRF

ABSOLUTE MAXIMUM RATINGS
Z20
Z20FI

10LM

Drain-source voltage (VGS =0)
Drain-gate voltage (RGS = 20 Kn)
Gate-source voltage
Drain current (pulsed)
Drain inductive current, clamped (L = 100 p,H)

10
10

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

*

Vos

VOGR *
VGS
10M

(e)

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C

P tot -

-

Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

Z22
Z22FI
50
50
±20

60
60
Z20
15
10
Z20FI
12.5
7.5
TO-220
40
0.32

56
56
Z22
14

9

V
V
V
A
A
A
A

Z22FI
12
A
A
7
ISOWATT220
30
W
0.24 W/oC
-55 to 150
°C
150
°C

* T = 25°C to 125°C

~.) ~epetitive

Rating: Pulse width limited by max junction temperature
_ See note on ISOWATT220 in this datasheet

June 1988

1/6

361

IRFZ20/FI - IRFZ22/FI
TO-220 IISOW ATT220

THERMAL DATA·
Rthj _case
Rthc-s
Rthj-amb
T\

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

3.12 1 4.16
0.5
80
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
V(BR) oss Drain-source
breakdown voltage
loss
IGSS

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (V GS = 0)

Vos = Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

V

50

Tc= 125°C

250
1000

p,A
p,A

±500

nA

4

V

ON **
VGS(th)

Gate threshold voltage Vos= V GS

10(on)

On-state drain current

10= 250 p,A

V os > 10 (on) X ROS(on) max VGS = 10 V
for IRFZ20/lRFZ20FI
for IRFZ22/1RFZ22FI

Static drain-source
on resistance

VGs= 10 V
for IRFZ20/lRFZ20FI
for IRFZ20/lRFZ22FI

gfs **

Forward
transcond uctance

Vos > 10 ~n) x Ros (on) max
10= 9.0

C jss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

Ros (on)

2
15
14

A
A

10= 9.0 A
0.10
0.12

n
n

DYNAMIC
5

f= 1 MHz

mho
850
350
100

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 9.0 A
Voo= 25 V
Rj = 50 n
(see test circuit)

30
90
40
30

ns
ns
ns
ns

09

Total Gate Charge

10= 20 A
VGs= 10 V
Vos = Max Rating x 0.8
(see test circuit)

17

nC

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

362

~ ~~~~mg::9g

--------------

IRFZ20/FI - IRFZ22/FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current

Iso

ISOM (e) Source-drain current
(pulsed)

Vso **

Forward on voltage

trr

Reverse recovery
time
Reverse recovered
charge

Orr

for
for
for
for

IRFZ20/lRFZ20FI
IRFZ22/1RFZ22FI
IRFZ20/lRFZ20FI
IRFZ22/1RFZ22FI

VGs= 0
for IRFZ20/lRFZ20FI Iso= 15 A
for IRFZ22/1RFZ221F Iso= 14 A
Tj = 150°C
dildt = 100 Np,s

Iso= 15 A

15
14
60
56

ns
ns
A
A

1.5
1.4

V
V

100

ns

0.4

p,C

•• Pulsed: Pulse duration ~ 300 P.s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature
• See note on ISOWATI220 in this datasheet

Safe operating areas
(standard package)

Derating curve
(standard package)

Thermal impedance
(standard package)

)

Ptot lW )

rRFZ20
rRFZ22

10}J$

"IRFZ22

r---r-

I-10~

.-I

I--

:"

""-

O.C.OPERAT ION

I-- ~~

10-1
'0

TC'2S'C
TJ.1s0·C
RthJC=3.12K/W

SINGLE PULSE

S:::t"'
or,;M

30

W2

~

'olA )
16

VGs =10V-!I

_:~

~- v
11'/

12

8

4

II

ij-- r-7V

If
..-

~

I

11

V

6V~

fff-

---- kif..nD-

!EI

10-4

10- 5

Output characteristics

Zth:KRthj- ,

F7-

IGl

11111111

1

""-

ms

o~

~

l./ I

~
r---

40

~

FF

50

'W(

10- 3

III~IIIII -:
10-1

10-2

20

"

10

10 0
tpls)

25

Output characteristics
tt- t- VGs =101J

'olA )

'=-

I-~

25

./'"

tav

5V- I---

/

"

100

"

125 Tease IO()

'olA)

(

£;S(

,1/1

10

"

Ii~ '-"

6V

f

15

75

7V

20

Tcase=25°(

50

Transfer characteristics

Tcase=2S0(

9V

"-l'...

'

/l
1

TJ =-55°C

TJ =25°C
TJ =125°C

f-ff-f-

5V

10
"

4V

4V

1/. . . .
VosIV)

10

20

30

40

50

-----------------------------~~~~~~~v~:~~~

VosIV)

100

II

Vas> IOlonJxROS(onlmax

o

___________________________3_/6
363

IRFZ20FI - IRFZ22/FI
Transconductance

Static drain-source on
resistance

gfs(SI

Maximum drain current vs
temperature

ROSlon I

I

(fl.1

TJ=-55°C

10

--

1--1- 'T:25°C
-I-I-- T =125°C

/..-

//

,

~~-

(/

I--t-

20
0.25
15

0.20
0.15

II

VGs =10V

0.10
0.05
20

10

40

50

ID(AI

10

Gate charge vs gate-source
voltage
VGS(V I

y

-

VOS>10(onlXROSlonlmax

30

30

20

#v

~:::~50~ ~

10

40

r

~~

\1

50 0

300

I~

......

!'I...
\

c·

t--

"-

r--

1.15 1-- -

D.,(nCI

10

Normalized on resistance
vs temperature
RDSlon I

15

125

\'\
TC ( CI

--f---t----t--+--I.---t----t----j

~"""

".....~V

-f-- -f--

r--

I

25

30

0.95 b-"'!V,---+V-t----t----IVGS =0
ID=250pA
0.85

c,.ss
20

100

1. 05 f---t---+--+--If---+-::~/==-+--I--t----1

I

I
15

75

I~

(norm)

I

............ l

200

10

50

~

V(B R)DSS r--.-,---,----,.--,-,---.--,-=CT-"-'-,

C

I ......

~

Normalized breakdown
voltage vs temperature

J

100

V

~
IRFZ22

IDIAI

Tcas l!=25°[
f=lMHz
' VGs=OV

iD=20A

1

50

I I

cl
60 o ~ \

:::;:.. to-.. IRFZ2

VGs -20V

I

40 0

----" ~

~ -...;

V

Capacitance variation

70 0'

VDs =15V

'/

--J..-"

C(pF I

15

--

10

35 VDS(V)

J---+--+---+_.+--+--+---+-+--+---(

0.75 L..-...L----'-----'-_'--..L----'-_--'-_'--..L--'
-40
120 TJ (OC)
40
80

Source-drain diode forward
characteristics
)

(norm.!

l'
1.5

'/

V

~

/
10'

./

V
-80

TJ =-55°C
TJ =25°~
T =150°C

/

1.0

0.5

rtf- -

V

/

VGS=10V
IO=10A

1-----

0

-40

40

80

120

1J (0C)

4

_4/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~lI~:~~~~

364

VSD (V)

______________

IRFZ20/FI - IRFZ22/FI
Clamped inductive waveforms

Clamped inductive test circuit
L

VARY t TO OBTAIN
REO.UIRED PEAK IL
OUT

Vos - - -.....

,, ,,
,

E,=O.S BVoss

\

..

_-----

Ec=O.75 BVoss
5(-0243
5C-0242

Gate charge test circuit

Switching times test circuit

+Vos

Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE
GENERATOR .
:..................

CURRENT
REGULATOR
12V

=

O.2pF

SOKQ

G

!

0
SAME TYPE
AS OUT
S

0

.......... ,. ........ ,.

OUT

1.5mA

..11.-..

5C-0246

S 10
-Vos
CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

5(-0244

______________

~ ~~~~m?1r~:~~CG~

______________

5_/6

365

IRFZ20/FI - IRFZ22/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates theneed for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on tran-.
sient thermal impedance curves.

Po =

Tc

-

---=----

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb

Rth

from this lOmax for the POWER MOS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

IOmax~

~

ISOWATT DATA
Safe operating areas
lolA)
:

0[·0432/1

GCwQ414

)

IRFZ20Ft

~]~tiffitti ~*~
IRFZ10Fl

10',

Derating curve

Thermal impedance

IRFZ11Fl

111111'<-~-~·1

10~s

,

1,6 1
1

50

,

, IIi"

40

30

.........

r-....

20

~

10

o

_6/_6_________________________ ~~~~~~g~:~©~

366

'1--. i'l"--.

a

25

50

75

100

125

Teas.'

___________________________

IRFZ40
IRFZ42
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE

Voss

ROS(on)

IRFZ40

50 V

0.028

IRFZ42

50 V

0.035

n
n

10
35 A
35 A

,

• VERY LOW Ros (on)
• LOW DRIVE ENERGY FOR EASY DRIVE
• HIGH TRANSCONDUCTANCE IC rss RATIO
INDUSTRIAL APPLICATIONS:
• AUTOMOTIVE POWER ACTUATORS
• MOTOR CONTROLS
• INVERTERS

N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching times make these POWER MOS transistors
ideal for high speed switching circuits applications
such as power actuators driving, motor drive including brush less motor, hydraulic actuators and many
other in automotive and automatic guided vehicle
applications. They also find use DCIDC converters and uninterruptible power supplies

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos

*

VOGR *
V GS

10
10
10M(e)
10LM

Ptot

Tstg
Tj

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS =20 Kn)
Gate-source voltage
Drain current (cont.) at Te = 25°C
Drain current (cont.) at Te = 100°C
Drain current (pulsed)
Drain inductive current, clamped (L = 100 pH)
Total dissipation at Te <25°C
. Derating f~ctor
Storage temperature
Max. operating junction temperature

5

IRFZ40

IRFZ42
50
50
±20

35
32
160
160

35
29
145
145
125
1.2
-55 to 150
150

V
V
V
A
A
A
A
W

W/oC
°C
°C

* T= 25°C to 125°C
(e) Repetitive Rating: Pulse width limited by max junction temperature

June 1988

1/5

367

IRFZ40 - IRFZ42
THERMAL DATA

Rthj _case
Rthc-s
Rthj-amb
TI

max
typ
max

Thermal resistance junction-case
Thermal resistance case-sink
Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose

1.0
0.5
80
300

°C/W
°C/W
°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF

V(BR) oss Drain-source
breakdown voltage

10= 250 p,A

VGs= 0

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

IGSS

Gate-body leakage
current (V os = 0)

VGs= ±20 V

VGS (th)

Gate threshold
voltage

Vos= V GS

lo(on)

On-state drain
current

V

50

Tc= 125°C

250
1000

p,A
p,A

±500

nA

4

V

ON **

Ros (on) Static drain-source
on resistance

10= 250 p,A

Vos > 10 (on) X ROS(on) max VGs =10V

2

A

35

10= 29 A

VGs= 10 V
for IRFZ40
for IRFZ42

0.028
0.035

0
0

DYNAMIC

gfs **

Forward
transcond uctance

V os > 10 (on)
10= 29 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

X

17

Ros (on) max

f= 1 MHz

mho
3000
1200
400

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 29 A
Voo= 25 V
Zi= 4.70
(see test circuit)

25
60
70
25

ns
ns
ns
ns

09

Total gate charge

10= 64 A
VGs= 10 V
Vos= Max Rating x 0.8
(see test circuit)

60

nC

_2/_5__________________________
368

~~~~~~?V~:~~

____________________________

IRFZ40 . IRFZ42
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

VSD **

Forward on voltage

trr

Reverse recovery
time
Reverse recovered
charge

Orr

for IRFZ40
for IRFZ42
VGs= 0
for IRFZ40
for IRFZ42

Iso= 51 A
Iso= 46 A

Tj = 150°C

A
A
A

2.5
2.2

V
V

350

ns

2.1

ftC

dildt = 100 Alp,s

ISD= 51 A

35
160
145

* * Pulsed: Pulse duration ~ 300 p,s, duty cycle ~ 1.5%
(e) Repetitive Rating: Pulse width limited by max junction temperature

Safe operating areas

Thermal impedance

Derating curve
u-

lOlA)

)

lO)JS

11):0.1

1m,

,r---

I

II

~

Jill

10°

75

III

:

II

I

10°

W

so

Zth::KRthj-c

~

100ms

SINGLE

'"'"

100

~

I'"

.~~.OS

10m"s

'I-- I{~:-

:r

-

kJJ

100s

,

o};:l:~ION

'4

il -

-=..b

''ri.-t
~"FZ401'

10'2

125

.,0.5

,~,~
10 2fRFirf

&=-!f.JlIL -

PlS'

2nl

---

25

-t:J

1111111"11111

.10- 5

10- 4

10- 3

10- 2

10- 1

25

10°

50

75

Output characteristics

Output characteristics

'"'"

100

tp (5)

--

125 Tease I·C)

Transfer characteristics

GU-1462

lOlA )

)

Te~se=

~5·C

)

,

I-- VOS>IO (on)x ROS(on)max.

Tcase= 25·C
160

160

VGS =10V

//
VGS=10Y
120

/" V

/

80

40

/V

?V

~
A ~ ,....,"""

~~

-

/"..,......

:;:.

~

8V

120

80

7V
40
6V
5V4V
4 VOS (V)

____________________________

I

//
/1

9V

,,"""

/

If"

-

8V

J

7V

~.

II

10 '

. IJ - 1£0
TJ =25·C
TJ --55·C

6V

I

5V
10°
10

20

30

40

~~~~~~?~~:~~~~

VOSIV)

o

2

4

6

8

10

12 14

16 VGS IV)

___________________________

3_/5

369

IRFZ40 - IRFZ42
Transconductance

I

TJ =

20

10

_~SOC

-

TJ= 2~0(- -

./

Iv

I

ROSlon I
1m" I
45

}

30

40 - - - - - -

r--

35

VGr~

I

25

r;

1

20

VOS

~Io IT}' R~SIOn}max.

120

lOlA}

50

75

100

125

150

175 lolAI

3000

~~
Vos=25~"
Vos=40V lda V

10

~

V

/

2000

II

60

V[SRIOSS
[norml

125

150

--

Tcnl

1*

I

I

f---i--I'--'--i--t---r--t---J"---J
--c-c---- ,--- .....
lo=250~A

----:-----

- - --_._---

1.1 --4-4-+-+-+--+-+-+--+---j...4"'--1

\

.........

\

~
"i'...

...,.,.,,,,,."

(iss

""".............

1.0 .---

~ r--!---

_ .. -

15

20

25

30

-,-I---Y4.---"'--+--+--+-+-+--1

-- ___pL V
I----I-+-+--t--t--i-

0.9 I-!

"---I-I--=:J-1-'-.1-

35

Vos[VI

1

-----'-1--

0.8 L--L--L--L--L--L--L--.L-.L-.L-J......-'--'
-80
-40
40
80

Source-drain diode forward
characteristics
IsolA )

j

I

1.50

1.0

/

V

1/

/

V

/~~

10'

101 =29

t

I
50

100

TJ I C)

'j

Tr 25'[

10 0
-50

//

TJ=150'[~V

101

VGS =10V

....... V

0.4

TJ _55'[

I

II I
0.8

1.2

1.6

_4/_5 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~tr~:~~©~

370

100

--

1. 2 f---j---l---l--l VGS =0

10

Normalized on resistance
vs temperature

0.5
-100

,

~

---;--11- ----- -----

1.3 - -

(1,[n[1

ROSlon )
(norm I

75

(j[-0523

"""- ~rss
40

50

VGS=OV

1000

20

~

Normalized breakdown
voltage vs temperature

1\
\

lo=64A

/

25

Capacitance variation

f=1MHz
Vos =15V"

"'\

10

Tcase=2S0(

~

~

o
25

C[pF I

r--

"-

IRFZ4~

---

--

I

!

15

"

--c-

IRFZ40

20 - 1 - - - -

I--V

10
o

Gate charge vs gate-source
voltage
VGS[V I

40
30

15 - -

I

80

40

--1-- - - -- - -

.....

c-- r--

.-AI
VGS= 20'y

-

!

50 r-~

J

-c-

o

30

I

-I-- -c-

-

TJ= 12S C

IIv""

Maximum drain current vs
temperature

Static drain-source on
resistance

2.0 Vso[VI

______________

IRFZ40 . IRFZ42
Clamped inductive waveforms

Clamped inductive test circuit

Ec

r

VARY t TO CBT AIN
REO.UIRED PEAK IL
OUT

Vas - - - - t

,,

,,

,
,-------

E,=O.5 BVoss
Ec=O.75 BVoss

5(-0243
5(-0242

Switching times test circuit

Gate charge test circuit
+Vos

Voo
ADJUST RL
TO OBTAIN
SPECIFIED 10
Vos
OUT

PULSE
GENERATOR .
:..................

12V

!

..... .- ........... ,.
1.5mA

5L

5C-0246

CURRENT
SAMPLING
RESISTOR

CURRENT
SAMPLING
RESISTOR

5(-0244

-------------- ~ ~~~~m~lf":~~lt ______________

5_/5

371

MTH6N60FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
PRELIMINARY DATA

TYPE
MTH6N60FI

Voss
600 V

ROS(on)

10

1.2 Q

3.5 A

• HIGH VOLTAGE - 600 V FOR OFF-LINE
APPLICATIONS
• ULTRA FAST SWITCHING TIMES FOR
OPERATIONS AT> 100KHz
• EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLY
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make these POWER MOS ideal for very high
speed switching applications. Typical uses include SMPS, uninterruptible power supplies and motor controls.

ISOWATT218

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Vos
VOGR

Drain-source voltage (VGS = 0)

600

V

Drain-gate voltage (RGS = 20 KQ)

600

V

VGS

Gate-source voltage

±20

V

10

Drain current (cont.) at Tc = 25°C

3.5

A

10M

Drain current (pulsed)

14

A

Ptot

Total dissipation at Tc <25°C

40

W

Tstg

Storage temperature

Tj

Max. operating junction temperature

Derating factor

June 1988

0.32

W/oC

-65 to 150

°C

150

°C

1/6

373

MTH6N60FI
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
Rthj-amb Thermal resistance junction-ambient

3.12
62.5

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

10= 250 p.,A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= V GS
Vos = V GS

RoS (on)

Static drain-source
on resistance

VGs= 10 V 10= 3A

VOS(on)

Drain-source
on voltage

VGs= 10 V 10= 6A
VGs= 10 V 10= 3A

gfs

Forward
transconductance

Vos= 10 V

10= 3 A

Ciss
Cos s
C rss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 25 V
Ri= 50 Q

10= 3 A
Vi = 10 V

loss

IGSS

V

600

Te= 125°C

200
1000

p.,A
p.,A

±500

nA

4.5
4

V
V

1.2

Q

8
7.2

V
V

ON

V GS (th)

10= 1 mA
10= 1 mA

Te= 100°C

2
1.5

Te= 100°C

DYNAMIC

mho

2

1800
350
150

pF
pF
pF

60
150
200
120

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_6__________________________ ~~~~~~?~:~~©~

374

____________________________

MTH6N60FI
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters

SOURCE DRAIN DIODE

A
A

3.5
14

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 6A

VGs= 0

1.3

V

trr

Reverse recovery
time

Iso= 6A

di/dt = 100A/f-ts

600

ns

lo{AI

Derating curve

Thermal impedance

Safe operating areas

GC-0420/f

:

GC-0416

I

, ,-a~

:==

,.

'=0.5

~~~

-'"

4<::)r$~

.~

100~s

,

',L

lms

-

II

10~s

I

I--"

1~
6~

10msF
lOOms

f=;

~

= .J1..fL

30

=-tJ

~

IIIII

11111111

2

o

'-

l/

~

~

"

~

~ ~~

lolA I V =10V
Gs
9V

t-

I~ V6V
~~ ~r

,
,

25

50

75

100

"'-

""

125 Teos.loCI

GC-050S

lo{A I

/11

16

I

U

VoS>IOlonlxROS(onlmax.

Tcase=2S0[

2

J

Tcase=2S0(

SV

8

I

V

V

16

12

~

2

"

Transfer characteristics
(j(-OS07

lo{A I

j

o

Output characteristics

Output characteristics

4

~

10

Ip{sl

VGs =10V
9V
8V
7V
6V

""

20

6=0.01
SINGLE PULSE

V

III

IIIIIII
, os

"" ""

S=-1f

6=0.0

V

40

Zth=KRtnJ-c

O.c. OPERATION

:

50

~

A/-T =-5S
J

4

4V

TJ =12S 0 (

4V

--t

VIL 1.-- T

J =2S

0

0

(

(

lA V
8

Vos{VI

20

40

60

80

Vos{VI

--____________ ~ ~~~~m?1f~:~~l: ______________3_/6
375

MTH6N60FI
Transconductance

Static drain-source on
resistance
G-1545

gls(S )

I

Gate charge vs gate-source
voltage

ROS(on )
I..nJ

YOS >10 (on)' ROS (on) max
12.8

15

3·0
\
5

\ °
TJ"-55[- c-- -

9.6

YGS=10Y
2.0

1.5

If'

T J25°[

I.",...

3. 2

0

lO

~

5 /

0.5

I
16

10

10 (A)

Capacitance variation

15

20

25

30

Y(BR)OSS
(norm)

VGSlthl
(norm)
Tease" 25 [
I "1MHz
YGS "OY

1.15

o\

lOO

1.05

80 0\ \

0.92

0.95

0.84

0.85

1\
...........

40 o

\

. . . . .r

[iss

/'
--

........ /

i'-.
5

I"-....
. . . . t--

10

15

20

[ass
[rss
25

0.76

30

35

40

0.75

45 YOS(V)

50

-50

Normalized on resistance
vs temperature

100

Source-drain diode forward
characteristics

GC-04IB

RDston I

ISO (A )

Inorm )

/

/

.#

/

/
15

V

/'

//"

/'

VGS"IOV

V

100

lo;4.5A

vTJ ;115~o[

==

;;0 J ;25 C

I
1
-40

VGS;O
IO"250pA

\ !\

376

(lg(n[)

Normalized breakdown
voltage vs temperature

l08 1-+--P'<:-t-+--+~H-+-+--1 YOS" Y
GS
H-+-t--'k::1-t-+-++-+--+--Ilo;1mA

o

60

40

20

GU-1S49

1600

0.5

lo;8A

35 10 (A)

Normalized gate threshold
voltage vs temperature

[lpF )

120

~

II

\

12

{f

~

~

./

I

r

YGS;20Y-

/'/

TJ" 25"[
6.4

Vos;100V,
Vos=250V
Vos;400V

7

o

40

80

VSO(V)

........ /

/'

-40

40

80

120

TJ

IO[)

MTH6N60FI
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90'1'

v·I

10'/.

',
·1

I

1

Voo

3.3

I

Pulse width ~ 100 J1.s
Duty cycle ~ 2%

~F

:. - 6059

'd(off) 'f

SC-0008/1

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Vee

1.8KIl

::CJ:: (-.~,~-'----'
..
PW

...i

PW adjusted to obtain required VG

--------------

~ ~~~~m?1J~:~~©~

______________

5_/6

377

MTH6N60FI
ISOWATT218 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT218 PACKAGE

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage
and clearance standards. The ISOWATT218 package eliminates the need for external isolation so
reducing fixing hardware.
The package is supplied with leads longer than the
standard TO-218 to allow easy mounting on pcbs.
Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink
capacitance
ISOWATT218 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT218 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT218 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

-

Tc

Po= - - - - Rth
from this lOmax for the POWER MOS can be calculated:

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

RthJ- C RthC-HS RthHS-amb
~

lOmax';;;

_6/_6 ________________ ~~~~~~?~~:~~~

378

_______________________

r=-= SCiS-1HOMSON

"L

~

MTH40N06
MTH40N06FI

rR'lUD©OO@~[lJ~©uOO@~D©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
MTH40N06
MTH40N06FI

Voss
60 V
60 V

ROS(on)
0.0280
0.0280

10

40 A
26 A

• VERY LOW ON-LOSSES
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• LOW DRIVE ENERGY FOR EASY DRIVE
• HIGH TRANSCONDUCTANCE/C rss RATIO
AUTOMOTIVE POWER APPLICATIONS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching
times make these POWER MOS transistors ideal
for high speed switching circuit in applications such
as power actuator driving, motor drive including
brush less motors, hydraulic actuators and many
other uses in automotive applications.
They also find use in DCIDC converters and uninterruptible power supplies.

ABSOLUTE MAXIMUM RATINGS

TO-218

INTERNAL SCHEMATIC
DIAGRAM

TO-218
ISOWATT218

VDS
VDGR
VGS

Drain-sou rce voltage (VGS = 0)
Drain-gate voltage (RGS = 1 MO)
Gate-source voltage

IDM

Drain current (pulsed)

MTH40N06
MTH40N06FI

Drain current (cont.) Tc = 20°C

Storage temperature
Max. operating junction temperature

V
V
V

60
60
±20
140
TO-218

Total dissipation at Tc <25°C
Derati ng factor

ISOWATT218

40
150
1.2

A
ISOWATT218
26

A

65

W

-65 to 150
150

• See note on ISOWATT218 in this datasheet
• Introduced in 1988 week 44
June 1988

1/6

379

MTH40N06 - MTH40N06FI
TO-218

THERMAL DATA •
Rthj _ case Thermal resistance junction-case
TI
Maximum lead temperature for soldering purpose

max
max

ISOWATT218

0.83 1.92
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
oss Drain-source
breakdown voltage

,,{BR)

VGs= Q

10= 100 p,A

V

60

loss

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating x 0.85
Vos = Max Rating x 0.85 Tc= 100°C

250
1000

p,A
p,A

IGSS

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

±100

nA

Gate threshold
voltage

Vos= V GS
Vos= V GS

4.5
4

V
V

Ros (on)

Static drain-source
on resistance

VGs= 10 V

10= 20 A

0.028

n

Vos (on)

Drain-source on
voltage

VGs= 10 V
VGS= 10 V

10= 40 A
10= 20 A Tc= 100°C

1.4
1.12

V
V

ON *
V GS

(th)

10= 1 rnA
10= 1 rnA Tc= 100°C

2
1.5

ENERGY TEST
Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starti ng T j = 25°C

gfs *

Forward
transconductance

Vos= 15 V

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Og

Total gate charge

lUIS

L = 100 p,H

40

A

10

mho

DYNAMIC
10= 20 A

f= 1 MHz

Vos= 25 V
VGs= 0
Vos= 50 V
VGS= 10 V

10= 40 A

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?u~:~~~~

380

5000
2500
1000

pF
pF
pF

120

nC

- _____________

MTH40N06 - MTH40N06FI
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters
SWITCHING

Turn-on time
Rise time
Turn-off delay time
Fall time

td (on)
tr
td (off)
tf

Voo= 25 V
Rgen = 50 n

10= 20 A

50
300
150
100

ns
ns
ns
ns

3

V

SOURCE DRAIN DIODE
V SD

Forward on voltage

ISD= 40 A

VGs= 0

trr
ton

Reverse recovery time Iso= 40 A
Forward turn-on time

VGs= 0

Pulsed: Pulse duration ~ 300 P.s, duty cycle
• See note on ISOWATT218 in this datasheet

*

Safe operating areas
(standard package)

ns
ns

2%

Derating curve
(standard package)

Thermal impedance
(standard package)

.

lolA )

~

200
150

-0446

[i(-044B/l

6(.1".

I

6=0.S

10',

r-- -

~

,;)f'

~~~\~~

\\

..- ~--"

12'"

"-

"

~

1~

10V/

tp=300ps

0

0

0

L

• • VosIV)

8VV~;::"

...-

i

10- 2
10- 5

.

0.8

10-3

1111

10-2

10-1

...-

lilA I

i'-

~

Ipls)

,"-

Transfer characteristics

f-8V 10V

H+--f-+-Jf-+---Ir-I Tcue =2S0( I-+-H-'r-Ir-Ir+-ir-l
H+--I-+-I-Hr-I tp=300~' I-+-I-+-r-Ir-Ir-Ir-Ir-I

7V

7V

30 t-t-+-+"VC-=-:!;2S;t++t+-t-+-1I11+1-I-+-++f-l

•.51

-

20 t-t-t-t-+++++t+-t-H1r+-I-+-+-+-f-l
6V

S'V
5V

~

0.4

""","-"-

0

11111111111

10-4

i'-

l-

~ ~ Vfo"'"
J~ ~

~V / '
~ !% ~
~~ V

\

,"-

60

Output characteristics

~~

V V/ ,/

/ ~V

'\

1:

JLfL

/

Output characteristics

./

'"

0

Zth=KRth/-c

S=O.OI
SINGLE PULSE

II
,

TclU =2S0(

--

8=0.0

10ms

oe\\

-

~

120

S =..!2.
lOOms

0

~

r-.., ....

~

IIIAIS 0

.;'

S:o.O

1m,

"

-

ISO

"

1,...00

V...4.SV
1.2

1.6

VoslVI

20

30

2

3

4

S

6

7

8

VosfV)

-------------- ~ ~~~~m~::J?Al----------'-'.--'-----'-'--'--3-/6
381

MTH40N06 - MTH40N06FI
Transconductance

Static drain-source on
resistance
OC_I1Il

I

IO~40A

r - I--

24 f---r--t--'---t--t---,f--+-

---

15
0.028

TUH =-5S o C

Vu=tOV

-12

Gate charge vs gate-source
voltage

0.027

2S·C

'I /

125°(

.... v

0.026

V

V

/

Vos=20V"

/
10

5

1
30

~1A1

40

10

Capacitance variation
ClpF
I
270 0

\

240 0
210

o

"- ........ r--... c...

1\

\

o \

"-

\

150 0

0
90 0

'-..

~

30 0

0

40

50 ~IAI

40

80

Normalized breakdown
voltage vs temperature
L.-J----t--+---+-+--t---j

V"",OSS

f--+---+-+--+---+--'-f--i--- ' -

1.1 - / - -

r-I--L--- 1--'-- ~-f-ID~250~A

I

--- -

I

/

1--+--+--+-------- I--~- -+1.05

/

~ ---~vLc

_ ,_

t--

0.8

/-r-I---I--+--+--+--+--l

f--+--+--+--+-+---t-l--+--+--l

0. 95 r---t7'/'--t

:--

40

20

10

1

1

(norm.)

c,..

"'-

60V

VOS!thJ r--"'---'---'---r--r--'-.---r-~~

l

VGS=OV
f=1MHz
TclU =2S0(

--

Ie.

.....

..........

30

r--

'\

60 0

20

Normalized gate threshold
voltage vs temperature

_\1\

30V

~'V'/

1/

0.02 5'
20

10

~/

g VZ

VDSIVI

Normalized on resistance
vs temperature

-50

-50

50

100

Source-drain diode forward
characteristics

G(_Olo<;11

RON
(norm .J

II

I

1.2
1.1

':,'

'i'

0.9

,£

/

J

V

Ii
1o~20A

V

VGs =10V

I-- f--

, / ....",1'

I

,.

J

0.7

0.6
50

4/6

382

"

50

100

150 T·O
,1CI

II
0.4

0.8

1.2

1.6

2.4

~ ~~~~m~::~~~~

2.8

VsolVI

--------------

MTH40N06 - MTH40N06FI
Switching time waveforms for resistive load

Switching times test circuit for resistive load

:r-

v·I

----~90.1.

,

,

10",

3.3

r

I

Voo

I
I

90".1

~F

I

5-6059

I

td (off) If

S(-0008/1

Pulse width ~ 100 p,s
Duty cycle ~ 2%

Unclamped inductive load test circuit

Unclamped inductive waveforms
V(BRlDS5

Voo

10

VI_I1u

Pw

2200

3.3

~F

}IF

,;
J

,;

I ,;

1<:..-_ _ _- - '

I

,,
L_

SC-0316
5(-0317

V j = 12 V - Pulse width: adjusted to obtain
specified 10M

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Vee

1.8Kll

:CJ: C~~,--c==r--t
PW

!
....

1Kfl.

PW adjusted to obtain required VG

-----------------------------~~~~~~~~:~~:l

____________________________

5__
/6

383

MTH40N06 - MTH40N06FI
ISOWATT218 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT218 PACKAGE

ISOWATT218 is fully isolated to 4000V dc.lts thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage
and clearance standards. The ISOWATT218 package eliminates the need for external isolation so
reducing fixing hardware.
The package is supplied with leads longer than the
standard TO-218 to allow easy mounting on pcbs.
Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink
capacitance
ISOWATT218 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT218 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT218 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

-

Tc

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
~h= RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ -C + RthC-HS + RthHS-amb
It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

Po= - - - - Rth
from this lOmax for the POWER MOS can be calculated:

RthJ- C RthC-HS RthHS-amb
~

IOmax~

ISOWATT DATA
Safe operating areas

Derating curve

Thermal impedance

GC-0417

)

70

I
102,

f-t-

-}

1111

'-1-

~<}~ 100KHz
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS
• SWITCHING POWER SUPPLIES
TO-220
N - channel bnhancement mode POWER MOS field
effect transistors. Easy drive and fast switching times make these POWER MOS ideal for very high
speed switching applications. Typical uses include SMPS and uninterruptible power supplies.

ISOWATT220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

600

V

Drain-gate voltage (RGS = 20 KO)

600

V

Gate-source voltage

ISOWATT220

Drain current (cont.) at Tc = 25°C

3

2.5

A

Drain current (pulsed)

10

10

A

Total dissipation at Tc <25°C

75

35

0.6

0.28

Derating factor
Storage temperature
Max. operating junction temperature

June 1988

V

±20
TO-220

-65 to 150

W
W/oC
°C

150

1/6

385

MTP3N60 - MTP3N60FI
TO·220

THERMAL DATA

max
max

Rthj _ case Thermal resistance junction-case
Rthj _ amb Thermal resistance junction-ambient

ISOWATT220

1.67 3.57
62.5

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Test Conditions

Parameters

OFF

V(BR) oss Drain-source
breakdown voltage

10= 250 p,A

VGs= 0

V

600

loss

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8 Tc= 125°C

200 ,p,A
1000 p,A

IGSS

Gate-body leakage
c,urrent (Vos = 0)

VGs= ±20 V

±100

nA

Gate threshold
voltage

Vos= VGS
Vos= VGS

4.5
4

V
V

RoS (on)

Static drain-source
on resistance

VGs= 10 V 10= 1.5 A

2.5

n

VOS(on)

Drain-source
on voltage

VGs= 10Vl o =3A
VGS= 10 V 10= 1.5 A Tc= 100°C

9
7.5

V
V

gfs

Forward
transconductance

Vos= 15 V 10= 1.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

ON

VGS

(th)

10= 1 rnA
10= 1 mA Tc= 100°C

2
1.5

DYNAMIC

Vos= 25 V f= 1 MHz
VGs= 0

mho

1.5

1000
300
80

pF
pF
pF

50
100
180
80

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

V oD = 25 V 10= 1.5 A
Ri= 50 n
Vi= 10 V

_2/_6_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?::~~li

386

- _____________

MTP3N60 - MTP3N60FI
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters

SOURCE DRAIN DIODE

A
A

3

Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 3A

VGs= 0

1.1

V

trr

Reverse recovery
time

Iso= 3A

di/dt = 100AIJLs

165

ns

10

Safe operating areas
(standard package)

Thermal impedance
(standard package)

Derating curve
(standard package)
GU~

)

Ptot lW )

:::;::

m

IIIIII

,if:

LU.

==
=
=: Q;-~~(§-c_;=r-:-M
I

cr

10~s

---

-,

'~

100~s

~
~

-

S:"*
J1JL

10ms
OPERATION

11111111

100ms
2

VDsIV)

Output characteristics
IDIAI

VGS=10V/

/V

Tcase=2S0[

V

11111111

lolAI

t--VGS-10V

'"1'\

20
10

20

Output characteristics

/

'\

30

-

~ll

III ilill

I

103

'\.
'\

40
Zfh=KRthj·c

~O1

40

60

80

100

"

'\.

120 Tease I'CI

Transfer characteristics
lOlA

s.OV

) VOS>IOlonlxROSlonlm ax

I

sV

~

/ V ...

4.5,
4.5V

r-TJ=125'[_ r-r---T) =25'[
r-'---T) =-55'[

j'/

-

'I'

/

13 43

r-- """'\.

so

~

.....

SJNGLEPUlSE

o.c.

70
60

...-

~;oo

1ms
-.

-

4.0V

4.0V

/VV

I

f/
VoslVI

100

200

----------------------------~~~~~~?vT:~~~~

~
VoslVI

1

2

3

4

5

6

7

8

VGS IVI

___________________________

3_/6

387

MTP3N60 - MTP3N60FI
Transconductance

Static drain-source on
resistance

Gate charge vs gate-source
voltage
GC-OS43/1

gfs lS I

,./

TJ~-55'C

/""

25'(

.-

125'C

/ V

II V

ROS{on)

IlL)

20

VGS~17

II J /

15

Vos~100V
Vos~250V
Vos~400V

hov

1//

/ If

/XI
III

VOs>IOlonIXROSlonlm".

/I

-f4

lolAI

Capacitance variation

-

V

gv

10

I!/

k% V

k;%V

L:~

L./

/

15

10

20

lo~4.5A

V

lolA)

16

Normalized gate threshold
voltage vs temperature

24

32

Qgln()

Normalized breakdown
voltage vs temperature

U-133

ClpF I

~~i~l H--H-t-M-t-H-t-t-t-t-+-H-t-+-H

VIBR)OSS
Inorml

T(ase - 2S'C
1600

VGS

~OV-

f~1MHz_

t-- t-t-- t--

1200

1.0B H-f"oI~t-t--t-H-+-+-t VOS~VGS
H--H-"!o<+-++-t-+-H-110~lmA

1.15

H--HH-+-t--P'kt--H-t-H--HH-+-H

1.05

0.92 1-+-H-t-H--HH-t-t+N--H-t-+-+-1

0.95

H--H-t-M-t-H-t-t-t-t-+-H-t-+-+-1

0.8 5

1.00

VV -~
L

BOO

l'

Ciss

1\

V

.... V
V

\

400

.....

0.B4

~ ~ ~[oss

~

10

20

30

40

0.7 5
-40

VOSIVI

Normalized on resistance
vs temperature
ROSlon)
Inorml

/

VGS~10V

1.8 t-- -

IO~2.5A

It

ISO IA )

1/
10'
TJ~150'(

/

V

I

V

4/6

388

TJ I'C)

~150'(

II
If'.

TJ=25 (

I

III

0.2
-40

-

TJ

/

/

120

./

/

0.6

80

Tr 2S'(

/

1.0

40

Source-drain diode forward
characteristics

/

1.4

VGS~O
lo~250~A

40

BO

TJ

n)

------------,.--

4 VsolVI

~ ~~~~m~1r~:~~~

--------------

MTP3N60 - MTP3N60FI
Switching times test circuit for resistive load

Switching time waveforms for resistive load
____ ~90.'.

vi
: ;10".
.:-

:
·1

I

3.3

I

Pulse width ~ 100 p's
Duty cycle ::; 2%

I
I

Voo

1

~F

-Vo :
I

5 - 6059

!

td(ottl 't

S(-0008/l

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit

1.8Ktl

PW adjusted to obtain required VG

____________________________

~~~~~~?~:~~~

___________________________

5_/6

389

MTP3N60 - MTP3N60FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

Tj

It is often possibile to discern these areas on transient thermal impedance curves.

1 - for a short duration power pulse less than 1ms;
Zth < RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth = RthJ -C
3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ-C + RthC-HS + RthHS-amb

Te

-

Po= - - - - Rth
from this lOmax for the POWER MOS can be calculated:

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax";;

~

ISOWATT DATA
Safe operating areas
lolA)

Derating curve

Thermal impedance
(-0421/

G(-0764

:

GC-0415

PtotlW)

S~O.5

Ii

~
:~ ~~(§.;;J=
r--

,

/

lms

:

.
1

luI's
1001'S

10ms[

D.C. OPERA liON

lrrtr ""
~

111111
468

11111111
468

6=-Jt

i'

30

JUL

'-..

--tJ

.........

20

"

l..ooo'Yi'

II

S~O.OI

10

rfmMTI

10- 2
10 4

_6/_6_ _ _ _ _ _ _ _ _ _ _ _ _

390

40

Zth=KRthj-c

1,.ooo'.Y!'

lOOms

1111
'1

.....
~

S:o~

~
11111

-.....

~

50

........
~

10 3

10 2

10

1

100

~ ~~~~m?1J~:~~~~

o
tpls)

~

"
a

25

50

75

100

125

~
Teas.lo

______________

MTP6N60
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
PRELIMINARY DATA

TYPE
MTP6N60

Voss
600 V

ROS(on)

10

1.20

6A

• HIGH VOLTAGE - 600 V FOR OFF-LINE
APPLICATIONS
• ULTRA FAST SWITCHING TIMES FOR
OPERATIONS AT> 100KHz
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLY
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make these POWER MOS ideal for very high
speed switching applications. Typical uses include SMPS, uninterruptible power supplies and motor controls.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Vos
V OGR

Drain-source voltage (V GS = 0)

600

V

Drain-gate voltage (RGS = 20 KO)

600

V

VGS

Gate-source voltage

±20

V

10

Drain current (cont.) at Tc = 25°C

6

A

10M

Drain current (pulsed)

30

A

Ptot

Total dissipation at Tc <25°C

125

T5t9
Tj

June 1988

Storage temperature
Max. operating junction temperature

W
W/oC

Derating factor
-65 to 150

°C

150

°C

1/5

391

MTP6N6.0
THERMAL DATA

max
max

Rthj _case Thermal resistance junction-case
Rthj-amb Thermal resistance junction-ambient

°CIW
°CIW

1
62.5

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) oss Drain-source
breakdown voltage

10= 250 itA

VGs= 0

600

V

loss

Zero gate voltage
drain current (V GS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8 T c = 125°C

200
1000

itA
itA

IGSS

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

±500

nA

Gate threshold
voltage

Vos= VGS
Vos= VGS

4.5
4

V
V

RoS (on)

Static drain-source
on resistance

VGs= 10 V 10= 3 A

1.2

Q

VOS(on)

Drain-source
on voltage

VGs= 10 V 10= 6 A
VGs= 10Vl o =3A Tc= 100°C

8
7.2

V
V

gfs

Forward
transcond uctance

Vos = 10 V ID = 3 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

ON

VGS(th)

10= 1 mA
10= 1 mA

Tc= 100°C

2
1.5

DYNAMIC

mho

2

Vos= 25 V f= 1 MHz
VGs= 0

1800
350
150

pF
pF
pF

60
150
200
120

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

V OD = 25 V
Ri= 50 Q

10= 3 A
Vi= 10 V

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mg1r~:~~n

392

______________

MTP6N60
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 6A

VGs= 0

1.3

V

trr

Reverse recovery
time

Iso= 6A

di/dt = 100Allts

600

ns

A
A

6
30

Safe operating areas

Thermal impedance

Derating curve

-,

Ptot lW I

lolAI

140

±W-i~
f~

-

1'\
I, ,

4-~q9

==

6:0.5

1

II

"\

100

100~s

V

lms

OPERATION

II

II~II
10'

10'

t

VGs =10V
9V
8V
7V

6V~

J

/

~

~

-

"t'-..

0

"J"....

VoslVI

20

fSv

lolA I V =10V
Gs
9V

-

12

~

I
I

100

120

TcaSe I Cl

J II

Tcase=25°(

1/

VoS>IO(on)xROStonlmax

2

,

SV
8

I

I

fj f-TJ=-55°(

4

'/

80

16

I

TCClse=2S0(

60

lolAI

:~~

~0 ~,.

16

40

Transfer characteristics

Output characteristics

,

I-

"- I'\.

0

Output characteristics
lolAI

'"""

0

.

lOOms

O.c.

"-

0

10m~

/

2

-"

120

11 -

10~s

4V

4V

TJ=125°(~

1ft

~TJ,2S0(

(hI'

V
8

VoslVI

20

40

60

80

VoslVI

- _____________ ~ ~~~~m~::~~Jl--------------3-/5
393

MTP6N60
Transconductance

Static drain-source on
resistance

,

9fs(S )

G-1545

Gate charge vs gate-source
voltage
GU-1551

ROS(on)

G(-054111

I.n.)

VOS >10 (on)X ROS (on)max.
12.8

2.5

-

T)J55°C- -

6

15

3·0

I

VGS =10V

2.0
T) = 25'[
4

II"

3. 2

T J25"C

I."
If

1

16

15

20

25

30

35 10 (A)

~

ID=8A

20

Normalized gate threshold
voltage vs temperature

40

60

Qg(nC)

Normalized breakdown
voltage vs temperature

GU-1S49

C(pF )

V(BR)OSS
(norm)

VGSlthl
Inorml

1600

Tease = 25 C
f =IMHz
VGS =OV

,\
.........

1.08

40 o

\

~

t'-.

5

............

.......
10

15

20

0.92

0.95

0.84

0.85

Crss
25

0.76

30

35

40

-50

45 VOSIV)

50

0.75

100

Source-drain diode forward
characteristics

C-0418

RDS(on I
(norm )

ISO (A )

/

/

L

/

V

/'

LV

V

VGs=IOV

,/

::==

~

-'

1) JI5O"C

) =25"C

lo=4.5A

0.5

1
-40

D

40

/,/

,/

Cos s

Normalized on resistance
vs temperature

1.5

... v

1.05

\r\
\

,/
,/

100

\
80 o

VGS=O

1.15

ID=2S0pA

(iss

1200

394

~

~

il
10

10 (A)

Capacitance variation

~

1

~

0.5

I
12

o

10

V

1.0

I

VGS=20V-

/V

1.5

VDs =100V
Vos=250V
Vos=400V

~~

VSO(V)

-40

40

80

120

T) ("C)

MTP6N60
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90.1'

v·I

10·1.

I

Pulse width ~ 100 ps
Duty cycle ~ 2%

I
I

I

Yoo

3.3

',

~F

5- 6059

td (off) If

5C-0008/l

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit

1.8Kfl

:CJ::: (..r~,-C=:J---L
PW

i
....

1Kn.

PW adjusted to obtain required VG

- _____________

~ ~~~~m~vr:1:~~~

______________

5_/5

395

MTP15N05L/FI
MTP15N06L/FI
N - CHANNEL ENHANCEMENT MODE
LOW THRESHOLD POWER MOS TRANSISTORS
PRELIMINARY OAT A

TYPE
MTP15N05L
MTP15N05LFI
MTP15N06L
MTP15N06LFI

Voss
50 V
50 V
60 V
60 V

ROs(on)
0.15 {}
0.15 {}
0.15 {}
0.15 {}

10

15
10
15
10

A
A
A
A

• LOGIC LEVEL ( + 5V) CMOSITTL
COMPATIBLE INPUT
• HIGH INPUT IMPEDANCE
• ULTRA FAST SWITCHING
N - channel enhancement mode POWER MOS field
effect transistors. The low input voltage - logic level - and easy drive make these devices ideal for
automotive and industrial applications. Typical uses
are in relay and actuator driving in the automotive
enviroment.

TO-220

ISOWATT220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS

TO-220
ISOWATT220

Vos
VOGR

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 K{})

VGS

Gate-source voltage

MTP15N06L
MTP15N06LFI

MTP15N05L
MTP15N05LFI

60

50

V

60

50

V

±15

TO-220
10
10
10M(e)

Drain current (cont.) at Tc = 25°C
Drain current (cont.) at Tc = 100°C
Drain current (pulsed)

Ptot

Total dissipation at Tc <25°C
Derating factor

T stg

Storage temperature

Tj

Max. operating junction temperature

V

ISOWATT220
10

15
9.5

6.3

40

40

75
0.6

30
0.24

A
A
A

W
W/oC

- 65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area

June 1988

1/6

397

MTP1SNOSLIFI - MTP1SN06L1FI
THERMAL DATA

TO-220 IISOWATT220

Rthj _ease Thermal resistance junction-case
Rthj-amb Thermal resistance junction-ambient
Maximum lead temperature for soldering purpose
TL

max
max
max

1.67 I 4.16
62.5
275

°CIW
°C
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
~BR) oss Drain-source

breakdown voltage

10= 1 mA
for MTP15N06L1FI
for MTP15N05L1FI

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos = Max Rating

Gate-body leakage
current (V os = 0)

VGs= ±15 V

Gate threshold
voltage

Vos= VGS
Vos= VGS

10= 1 mA
10= 1 mA

VGs= 5V

10= 7.5 A

Drain-source
on voltage

VGs= 5 V
VGs= 5 V

10= 15 A
10= 7.5 A

gfs

Forward
transco nd uctance

Vos= 15 V

10= 7.S A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

loss
IGSS

VGS= 0
V
V

60
50

Te= 125°C

-

1
50

p,A
p,A

±100

nA

2
1.S

V
V

0.15

(2

3
1.S

V
V

ON **

VGS (th)

Ros (on) Static drain-source
on resistance
Vos (on)

Te= 100°C

1
0.75

Te= 100°C

DYNAMIC

mho

5
900
450
200

pF
pF
pF

40
260
200
200

ns
ns
ns
ns

22

nC
nC
nC

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 25 V
Vi= S V

10= 7.5 A
Ri= SO (2

Og
Qgs
Q gd

Total Gate Charge
Gate-source charge
Gate-drain charge

Voo= 48 V
VGs= 5 V

10= 15 A

_2/_6_ _ _ _ _ _ _ _ _ _ _ _ _

398

~ ~~~~m?::9~

,14
7
7

--------------

MTP15N05L1FI - MTP15N06L1FI
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
IsoM(e)

Source-drain current
Source-drain current
(pulsed)

15

Vso **

Forward on voltage

Iso= 15 A

VGs= 0

trr

Reverse recovery
time

Iso= 15 A

di/dt = 100A/p,s

A
A

60

V

1.8

300

ns

Pulsed: Pulse duration ::;; 300 "'s, duty cycle ::;; 2%
(e) Pulse width limited by safe operating area

Safe operating areas
(standard package)

Thermal impedance
(standard package)
G(~0767

S=}~

~:i

10',

1-

K~_

Derating curve
(standard package)
Ptot lW )
70

10~sr-

I,

60

100~s

i'

-

" l\.
'\

50

I\.

'\

1ms -

40
~~_ERATION

'\

10ms'30

T(=25'(

20
MTP15N05L
I

'\

"-

10

'\

MTP15N06L

20

Output characteristics

Transfer characteristics

40

60

80

100

l\.

120 Tease lOCI

Transconductance

lolA) H-:+++++-+-H---+rH-:+-+-+++-+---H

12 H-:+++++-+---HH--H--H Vos ;25Y
H-r--t-+++++--t----Hf-+---H TJ=25°(

f--JFJf-+-+-+-+--+-++++-+-J.---H-H3Y

YosIY)

____________________________

16

lolA)

~~~~~~~~:~~~---------------------------3-/6
399

MTP1SNOSLlFI - MTP1SN06L/FI
Static drain-source on
resistance

Gate charge vs gate-source
voltage

Ros1on ) rrT-r,....,rT""-r,-,....,-,--r.-r.,-,--,--.;::::.:.~
IIlI
VGS =5V f-+-+++-f-+-+++-H-I
TJ=25°C f-+-+-+--t-1--+-H-t++-I

/

1-+-M-t-H-++-H--++-++-I+++-+--1

I I
Tcase=2S0[

/

vGs=ov
f=1MHz

900

1\

/

I

600 ~

Vos=48V
lo=15A )--- I-TJ=25°C

/

16

12

lolAI

Normalized gate threshold
voltage vs temperature

16

t-t-t-

I

\

-I~

(lg(nC)

10

ross

t-t--t-

(rss

I-t-t-

30

VOS(V)

20

Normalized on resistance vs
temperature

Normalized breakdown
voltage vs temperature
-14

11

VGSlth I
Inorml

[iss

l-

300

I
12

~

\

/

H--M-+-t++t"""'M"H+-IH-++--H

0.1

II

ClpFI

/

/

0.3 1-++-++-IH-+++-I++-++-I-I--4-+--1
1-++-+--1-I-++++-I--++-++-I-l5V
0.2

Capacitance variation

1

V(BR)OSS

ROS(on )

(norm)

(norm.)

1.15

l2

~

i--

..........

0

'-....

........................
..........

lOS

"'- ...........

8
)--- r--

I'-..
...........

Vos=VGS
lo=1mA

,/

1.5

/

. . . vV

0.95

V

............

/

VGs=O
lo=250pA

1.0

/

0.85

O. 6

V

/
VGs =5V
lo=7.5A I-

--

,;'
I

4

0.75
50

-50

100

150 TpCI

-40

40

80

120

TJ (OCI

0.5
-80

-40

40

80

120

TJ I ()

Source-drain diode forward
characteristics
)

,
I
10'

rtL-

-

TJ =_55°C
TJ =25°(
TJ =150°C

0

10 0

4

VSO (V)

-4/-6------____________________ ~~~~~~~ITT:~~~'

400

____________________________

MTP15N05L1FI - MTP15N06L1FI
Switching time waveforms for resistive load

Switching times test circuit for resistive load

~

____ ~90'J"

V·I

10"/.

'

,
·1

I

1

3.3

Voo

~F

5 - 6059

Pulse width ~ 100 p's
Duty cycle ~ 2%

'd(off) 'f

5C-0008/l

Body-drain diode trr measurement
Jedec test circuit

Gate charge test circuit
Voo

1.8KO

:CJ: C.....~,----r-~-----'
PW

i

.....

PW adjusted to obtain required V G

____________ 51 SGS-THOMSON
•J,,,

_ _ _ _ _ _ _ _ _ _ _ _5_/6

~O©rnl@Il'l\.Il'©'ii'rnl@~O©~

401

MTP1SNOSLIFI - MTP1SN06L/FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

T j - Tc
Po= - - - - Rth

It is often possibile to discern these areas on transient thermal impedance curves.

from this lOmax for the POWER MOS can be calculated:

1 - for a short duration power pulse less than 1ms;
Zth< RthJ -C
2 - for an intermediate power pulse of 5ms to 50ms:
Zth = RthJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth = RthJ-C + RthC-HS + RthHS-amb

Fig. 1

RthJ- C RthC-HS RthHS-amb

lOmax";;

~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
}

50
40

Zth:KRthj·c

&:

10-1
1m+

i"'-.
O.L OPERATION " -

",-'

I'-

10m,

-tt

mm,=&j

30

lOOms

MTP15N05LFIMTP15N06LFI-

'10

6/6

402

'

f'-.

"

10

III

~ III
VosIV}

.........

20

W'

100

o
tpls}

"I--..

f'-.
r-.....

o

25

50

75

100

125

Teas.loC

------------ ~ ~~~~m?1JT:~~©~ --------------

MTP3055A
MTP3055AFI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
MTP3055A
MTP3055AFI

Voss
60 V
60 V

Ros(on)
0.15 n
0.15 n

10 -

12 A
10 A

• ULTRA FAST SWITCHING - UP TO > 100KHz
• LOW DRIVE ENERGY FOR EASY DRIVE
REDUCES SIZE AND COST
• INTEGRAL SOURCE - DRAIN DIODE
INDUSTRIAL APPLICATIONS:
• GENERAL PURPOSE SWITCH
• SERIES REGULATOR

TO-220

N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast times
make these POWER MOS transistors ideal for high
speed switching circuit in applications such as power actuator driving, motor drive including brushless motors, robotics, actuators lamp driving,
series regulator and many other uses in industrial
control applications. They also find use in DCIDC
converters and uninterruptible power supplies.

ISOWATT220

INTERNAL SCHEMATIC
DIAGRAM

G~
5

ABSOLUTE MAXIMUM RATINGS

Vos
V OGR
VGS
10M
IGM

TO-220
ISOWATT220

MTP3055A
MTP3055AFI

Drain current (continuous)
Total dissipation at T c < 25°C
Derating factor
Storage temperature
Max. operating junction temperature

V
V
V
A

60
60
±20
26
1.5

Drain-source voltage (VGS = 0)
Drain-gate voltage (RGS = 20 Kn)
Gate-source voltage
Drain current (pulsed)
Gate current (pulsed)

A

TO-220
12

ISOWATT220
10

40

30

A
W

0.32
-65 to 150
150

- See note on ISOWATT220 in this datasheet
June 1988

1/6

403

MTP3055A - MTP3055AFI
TO-220

THERMAL DATA •

Rthj _ case Thermal resistance junction-case
TI
Maximum lead temperature for soldering purpose

max
max

ISOWATT220

3.12 4.16
275

°CIW
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
~BR) OSS Drain-source

10= 250 IlA

VGs= 0

V

60

breakdown voltage
Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS
Vos= VGS

Ros (on)

Static drain-source
on resistance

VGs= 10 V

10= 6 A

Vos (on)

Drain-source on
voltage

VGs= 10 V
VGs= 10 V
VGs= 10 V

ID= 12 A
ID= 6A
10= 6 A Tc= 100°C

gfs *

Forward
transconductance

VDS = 10 V

10= 6 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

VDS = 25 V
VGs= 0

Og

Total gate charge

loss
IGSS

Tc = 125°C

50
1000

Il A
Il A

±100

nA

4.5
4

V
V

ON *

VGS

(th)

10= 1 rnA
10= 1 rnA Tc= 100°C

2
1.5
0.15

n
2.0
0.9
1.5

V
V
V

DYNAMIC

4.5

mho
500
200
100

pF
pF
pF

VDS = 48 V ID= 12A
VGs= 10 V

17

nC

VDD = 25 V ID= 6 A
Rgen= 50 n

20
60
65
65

ns
ns
ns
ns

f= 1 MHz

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?tr~:~~CG~

404

______________

MTP3055A - MTP3055AFI
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters
SOURCE DRAIN DIODE
Vso

Forward on voltage

Iso= 12 A

VGs= 0

2

V

trr

Reverse recovery
time

Iso= 12 A

VGs= 0

75

ns

Pulsed: Pulse duration ~ 300 p,s, duty cycle
• See note on ISOWATT220 in this datasheet

*

~

2%

Derating curve
(standard package)

Thermal impedance
(standard package)

Safe operating areas
(standard package)

GU1428

I
,....

6

1-

'Y

b~

1::=1=

10'

f------ 00,

~~~

f------

r--

o~

I

1'.

i==t=l= -.;~

',

lOT'

10~

"'-

ct
I&~

.

t:;;;
~NG

,

10-2
10-5

20V_

16

1r

:~ / III

I

rI

rJ)

t

,v ...

1/

III

LjJJ""

-

r--..

'*

-

-

E

I

~
&~
rJLrL r-

RB

iI

I11111

10-2

........

r-....

"

20

I-

r-....

......

.....

10
10-'

10°
Ip(sl

a

a

50

100

/,y

lA~ bI'--r-----

T( .. ~e=25°(

IJ~

10'

TJ=-55°[
TJ=25°[
TJ =125°[

1-1-

8

c-I-

6

.--1--

V

/ /V
.t~V

(O()

100

II

T =25°[

.---1--- r--T -125°[

--I--

f'/

II

L

Vos> 10(onl xROSlonlmax

2

4V

-----------------

""

TJ =-55°[

10

/I

4

Vasty)

Tease

T ranscond uctance

6V I-- t=

5V,-- f------

......

)

IO(A)

r-VGs=7V

50

ph=KRthj-

-

/'

-

r-

~

/'

IIJV

12

60

.,.

Transfer characteristics

Output characteristics

10V

~

~

[p~ .0

o.t OPERATION -~

..'

Io(AI

.",...

&~O

-

r

GU-4

Ptot(W )

VoS>IO(on)xROS(on)max

o

10

51
SGS-THOMSON
'JI,.

20

30

40

50

la(A)

_ _ _ _ _ _ _ _ _ _ _3_/6

~U[;Iiil(Q)~Ib~~"U'OO(Q)II(I]U~~

405

MTP3055A - MTP3055AFI
Static drain-source on
resistance

Gate charge vs gate-source
voltage

Capacitance variation
[(pF )

ROSlon )

In)
lo=12A

)--'--

0.25

Vos·=25V

0.20

!,-, ~

12

-l-

'l./
4BV

~t:7
/.'//

V

V

/

f--

00 51--

500

35"./.~

0.15

0.10

I
Tcase=2S0(

f=1MHz
' Vus=OV

I\,

16

Vus=10V

I

II
1\
600 1\\
700

20

300

\"
\.

'\

200

L

~-

Vus=20V

I
I

t..

400

"

100

~

"

30

20

40

50

lolAI

12

--

Normalized gate threshold
voltage vs temperature
VuSlthl '---'--'--'---'-~-r----'----r-=T""-',
Inorm) )___- - + - r - j - - I-+---+---+-----i)---I---I
1.21--I--+---+-----i--1-+--+--+-+-----I

-~---+-----+----+--I-

- -....................
........... b-.,

10)----

-+.........
~........

1---

1-

25

30

35 VosIV)

ROSlon )

v'~

0.95

...- ,.,....

I..1.5

/

V

1/

V

V
Vus=O
lo=250)lA

1.0

/

V

/

--'

VGS=10V
IO=10A

f---

/
50

150

100

TJIO[)

IsolA )

/

I
1ft-- -TT =25°[
=150
J

0

[

I

4

406

20

1.15

0.75

Source-drain diode forward
characteristics

4/6

I

15

Inorm.)

i

0.4
-50

1.

1

0.85

--

(rss

Normalized on resistance vs
temperature

V(BRJDSS
(norm)

---I--~-~~-r~~t--+--_r-~

0.6---

-

Normalized breakdown
voltage vs temperature

1.05

O.B --)--- -.. --L-I---t-I--..........
c--lVos=Vus
~
- - , - lo=1mA j----t--r-t-t-----t--1

10

16

I
[OII:+-+-+-,f-+--r+++++-H

VoslVI

Output characteristics

200

~

II SINGLE PULSE

OPERATION
,11111
I

IIIII

250

300

-C

o.c.

IDIAI

H-t-k+++-t-Hr-+t-+++++-H-H

s=lZ

I

100ms

'I--

Zth:KRthJ-c

/t'

1ms

10'

400

5=0.2

II.
20

IV

Vos=25V

VJ

11/,'

V

10 VDslVI

40

80

3/5

429

SGS150MA010D1
Static drain-source on
resistance

Gate charge vs gate-source
voltage
I

ROS(on I

ImIlI

/

10

8000 1H-++-+-1C+++-+-1H-t-+-+-1H-++-+-1

/

12

I

,....

10

Capacitance variation

/

6000

....,.-

f+I-+-t-l-H-++-+-HT J=25'[
f=lMHz1-\--t\I-+f-++-++HvGs=oV

I-

4000 f-+-kt-t-1-..ct++-1-+t++-1-++++-1
TJ =25'[ -e- e-eVGs =10V i-e- e-e-

I
I
I

I

200

100

lolAI

100

Normalized gate threshold
voltage vs temperature
VGSlthl ""TT-,-,rrTT--rlrrTT--"-'--T"T"T--,
Inorml H-'lIT-+-1C+t-+-+-1C+t-+-+-1C+t-++-1

Vos=50V
lo=150A

200

JOO

r---~

400

2000 H-++-+-f-i"'-kl:+-1H-++-+-1H-++-+-1

G.glnCl

Normalized breakdown
voltage vs temperature

10

20

JO

40

VoslVI

Normalized on resistance
vs temperature

VIBRIDSS rrTT-,-,rrTT--rlrrTT--rlc-rT'T"T-,
Inorml H-++-+-1C+t-+-+-1C+++-+-1-1-t-+-+-1

ROSlool rrTT"rrTT--rlrrTT,,-'---rT''T-;
Inorml f-++++-1-+t++-1-+t++--i++-++--i

l.lH--HTf-+-H-t-f-+++-,lLf-+t++-1

2.0 H-t-++-+-t-HVGs =10V H-+-+-+-+-+-+--I
H-+--+--+-+-+-+--Ilo=50A

1.1 H-t-+'<--1C+t-++-1C+t-++-1-1-t-++-1
H-t-++-+-I'<-H-t-++-+-tV OS =VGS
H-++-+-H-'lH+-1-1-+-i lo=2mA

1.5 H--HTf-++-+-+--,f-++-+---vF+++--H
0.9 H-++-I-f-+++-+-H--M-I-H-+-l----H
0.9 f--b.f-t+-1-+t++-1-+t++-1++-++--i
0.8 f-++++-1-+t++-1-+t++-1-PH+-1
-50

50

100

Source-drain diode forward
characteristics
IsolAI

.::.
~
TJ =150'[
10 2

lI':L

25'[

1/1/

II

IL
10 1

II
0.5

VGs=O

I
1.5

VsolVI

_4/_5_ _ _ _ _ _ _ _ _ _ _ _ _

430

~ ~~~~m?::~~CG~

1.0 H-+-++f-+-br4--f-++-++f--I-+-+--H

SGS150MA01001
Test circuit for inductive load switching and diode
reverse recovery times

Diode reverse recovery time waveform

ISO

Vee

S(-0161

Gate charge test circuit
Voo

:CJ: (;. .,~-,­
PW

...i

PW adjusted to obtain required V G

---------------------------- ~~~~~~~v~:9©~ ___________________________

5_/5

431

r=-= SGS-1HOMSON

~~l. ~D©OO@~[L~©lJOO@~D©~

SGSP201

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP201

Voss
100 V

ROS(on)
1.4 (2

10
2.0 A

• HIGH SPEED SWITCHING APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• GENERAL PURPOSE SWITCHING
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include general purpose low voltage switching, solenoid driving, motor and lamp control,
switching power supplies, and driving, bipolar power switching transistors.

OPTION
SOT-194

SOT-82

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
VOS

Drain-source voltage (V GS = 0)

100

V

Drain-gate voltage (RGS =20 K(2)

100

V

Gate-source voltage

±20

V

Drain current (cont.) at T c =25°C
Drain current (cont.) at Tc = 100°C

2.0

A

1.2

A
A

Drain current (pulsed)

6

Drain inductive current, clamped

6

A

Total dissipation at Tc <25°C

18

W

Derating factor
T stg

Storage temperature

Tj

Max. operating junction temperature

0.144

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

SGSP201
THERMAL DATA

Rthj _case Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

max

6.95
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

10= 250/LA

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

100

V

Tc= 125°C

250
1000

p,A
p,A

±100

nA

4

V

1.4
2.8

{}

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

10 = 250 p,A

2

10= 1.2 A
10= 1.2 A Tc= 100°C

{}

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 1.2 A

Vos= 25 V
VGs= 0

f= 1 MHz

0.5

mho

90

125
45
30

pF
pF
pF

10
20
15
15

15
30
20
20

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 1.2 A
Voo= 50 V
Ri= 4.7 {}
Vi= 10 V
(see test circuit)

_2/_5 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~;m?::~~Jl
4~4

______________

SGSP201
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (-) Source-drain current
(pulsed)

VSD

Forward on voltage

Iso= 2.0 A

VGs= 0

trr

Reverse recovery
time

Iso= 2.0 A
dildt = 25 AJI1,s

VGs= 0

2.0
6

A
A

1.35

V

90

ns

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1.5%
(-) Pulse width limited by safe operating area

Safe operating areas
I

I

K- _ _

lO~sf-

,,

d~
$"

\

ii.>'

100

Derating curve

Thermal impedance

~9
/

20

I
\

0

100~s

10

~' ~,

_

~

_

12

r::-:;'';'itI:I~:ill''fl-Htl-H+l#HIZ~h: :;;'hJ -'

lms f-

WI

'" " "

16

T

"
r-...

10ms
lOOms
D[

'"

I
o

10- 2

Output characteristics

10-'

tp lsi

Output characteristics

o

25

50

75

100

~

125

'"

T,... (O[)

Transfer characteristics

'0

'0

(A)

(A)

Vos .zsv L-+---+-++-1-+-t-It---,l-¥++--+-i

80"sPULSE
/.

TESTt--+-++-t-b~--+-i---H

Tc •• ,S··"""C++-+--H-++++-+-1H
H-+-+++++--H-+-'f-H'f-!=:=;:.:=15.C
--55-<:

H--t-tJM7't-+--t--+-H-++++++6V

6V

SV

4'1

,

1

3

4

5

6

7

8

"os (V)

]0

Vos (\I)

____________________________ ~~~~;~?~:~n---------------------------3-/5
435

SGSP201
Transconductance

Static drain-source on
resistance

Gate charge vs gate-source
voltage

H-+-+-+-+-+-H-++-++-+-++-I-SSOC

'0=2.54
Tcase =2S·C

16

./
1.2

1-Il-+A-+-+-+-H-++-++-+-++-I,2S oC

H--l-I-l-+-+--HH-+-+-+-H-+-:IA--H-I

20Y

12

VOSc50V

./' ~V

H-+-+-+-H--HH--±7!9-H-t-r---t;'1Ivt-l

0.5 II-fjf+-+-+-+-+-H-J VDS =2SV
Jff-+-+-+-+-+-H-J 80", PULSE TEST

../

V V/

SOY

10

1.0

1/

V
/

V
lolA)

IlIAI

Capacitance variation

Normalized gate threshold
voltage vs temperature
VGSlthl rr.,-,-,--,,--r-rr.,-,-,--,,--r-rTn-,
Inorm) H-+-1-++-+-+-I-++-+--+-+-+-+-+-++-+---I

I-I-+-+-+-+-++-+-+-+-++,IV.c;s=O

f=1M z

150

4

1t\+-H+++-H++++1++-+-+-++-j

Q enC}

Normalized breakdown
voltage vs temperature
V'BRIOSS rr.,-,-,--r-r"r-r-r-r..-r-r-r-rT'T-'i'-.,
Inorm) H-+-+--+-+-+-HH-+-+-+-+-++-H-+-+---I

1.17 H-+-1--+-+-+-+-I-++-+---IVOS =V GS

l.lH--HH-+-+-+-+-++-+H-+-+--¥t-+-H-1

1.0

to H-+-+-+-+-+-I-7I"++-1-+-+-+-+-I-++-1-1

H-+-1--+-+-+-+-I-++-+---Ilo=250~A

1\

(iss

H-+-+-+:..t<+-+-I-++-+-l-lVGS=O
H-+--l>+-+-+-+-H-+-+-l-lb=250jlA
0.83

0.9

1++---1-1-+++-1++---1-1-+++-+-++-+-1

0.8

L..L--'-.JL.L..LJ.-LL...L--'-.JL.L.L...L-LL...L...LJ'-'

(05$

0.66
Vos(V)

Normalized on resistance
vs temperature
ROSI,"I +-++-+-+-+-+-HH-+-+-+-+-+-HI-++-t---l
Inorm) +-++-+-+-+-+-HH-+-+-+-+-++-I-++-t---l

1.0

H--HH-++-brq..-H-++-+-+-t-+-H-i

0.5

LL...LJ--L.L...L-LLJ......LJ-L.L...L-LL...L-LJ'-'

-50

50

100

100

-50

50

Source-drain diode forward
characteristics
'so
(AI

2.0 H--HH-++-+-+-+-H++-+-+-t-+-H-i
VGS =10V H-+-1-++-+-I-7f-+-H-J
1.5 H--H----l-'I0'-r=l,.2-,A-++-+-+-+-+:k-I-++-+-H

50

-50

VGS=O

Tc-.ZS"C15()'(;10

~~

...........

f-f-

-

,
rJ
"sO(Yl

_4/_5__________________________ ~~~~;~~~~:~~~~ _____________________________

436

SGSP201
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90'1'

vi

:

10'1.

3.3

VDD

I

I

~F

I

I

I
I

-Vo :
I

I

'd (off)

5 - 6059

'f

SC-0008/l

Pulse width ~ 100 /1-S
Duty cycle ~ 2%

Clamped inductive waveforms

Clamped inductive load test circuit

V

_

D

2200

JAF

3.3

VOO

JAF

-----,

,,
I

L.._ _ _- - '

L ____ ____ •

SC·0311
SC-0310

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , V clamp = 0.75 V(BR) OSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
lK.n.

1.8Kll

::CJ: (_.-!~,-t::=.JI---L
PW
! lKD.
....
PW adjusted to obtain required VG
5/5

SGSP222
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP222

Voss
50 V

ROS(on)
0.13 fl

10
10 A

• HIGH SPEED SWITCHING APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS.
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Uses include general motor speed control, low voltage DC/DC converters and solenoid driving.

OPTION
SOT-194

SOT-82

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

50

V

VOGR

Drain-gate voltage (RGS = 20 Kfl)

50

V

VGS

Gate-source voltage

±20

V

Drain current (cont.) at T c =25°C
Drain current (cont.) at T c =100°C

10

A

6.3

A

Drain current (pulsed)

40

A

Drain inductive current, clamped

40

A

Total dissipation at Tc <25°C

50

W

Derating factor

0.4

W/oC

Tstg

Storage temperature

Tj

Max. operating junction temperature

- 65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

439

SGSP222
THERMAL DATA

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

max

2.5
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) OSS Drain-source
breakdown voltage
loss

IGSS

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

V

50

Tc = 125°C

250
1000

p,A
p,A

±100

nA

4

V

0.13
0.26

n
n

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGS= 10 V

10 = 250 p,A

10= 5 A
10= 5 A

2

Tc= 100°C

DYNAMIC

gfs

Forward
transcond uctance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 5 A

Vos= 25 V
VGs= 0

f= 1 MHz

mho

3

460

550
350
180

pF
pF
pF

15
40
40
20

20
55
55
30

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 5 A
Voo= 25 V
Ri= 4.7 {2
Vi= 10 V
(see test circuit)

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _

440

~ ~~~;m~::9Jl--------------

SGSP222
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso

Forward on voltage

Iso= 10 A

VGs= 0

trr

Reverse recovery
time

Iso= 10 A

VGs= 0

di/dt = 25 AlI'$

10
40

A
A

1.4

V

100

ns

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Derating curve

Thermal impedance
)

lolA

J
10~s

0f1-"""
~.'-' "

...

50

I" "'-

100~s

100_~

~

lms

....

~ ....

7;.h

J
i--""0",,=0!!l'.2Af-I-"-bI-~~~rl+tltI\ Z~h:
-C
10_1o=0.ill!1--":
~

10ms
100m
DC

-ttJ

I

10 2

VosIV)

Output characteristics

10

I"

30
20

"1"'-

10

11111111111

I

1

40

'

tp Is)

o
o

25

50

""I"
"-

':\

75

Transfer characteristics

Output characteristics

(~I I-++:Vo.l...s=--!c2s::!v--+-I-++-++-+-+--t-+ll-cII-".:y."-H
16

~

=2S'C Ic':-:+-+-r-+-+-+++-l
8O",PUlSE TEST:"'++++-J.,,"v-H

Tca..

16

1-++-80-t-"-rSPU---r-1lSE-t-TEr-STt+++-=t-=tl:lI~,,+-V'-l+--i+1

10

1-++-++-++I-++-++-JjrH-I-t-H-t-H

8

12

fV-+++-i--+-+-++++-+-+-r-+-+-+++-l

·6V

5V

zo

______________________________

30

~~~~~~?V~:J?~~

VOS (Vi

2

3

4

5

6

7

8

9

VGS(YI

____________________________

3__
/5

441

SGSP222
T ranscond uctance

Gate charge vs gate-source
voltage

Static drain-source on
resistance
ROSlonl ~~--,-,--,---,--,;-r---r--T'---r-r--'-'--r'r'-T-l

In)

IS I

g,•

I

IVI

Tu'S.·-5S·C
•

•

Q_~O~

VGS

16

I

I ~5'C

l

I

VDS'20:~
3SV

125'

SOY

Vos c
eo

o11 H-+-+-+-f-+--+-I1--1--+-+-+-t-++-t--l-t-H

25~

5 PULSE

A ~

TEst

/

10="1504

Teas ... lS-,C

1/

0.10 H-+-+---bf-+-H--I--+-+-+-t--H20V

1

L

II

0.09 0L.L...L.J---"--L10...L.J---"--LL20,-'--L..L~3-:-0L..L-'-lo~IA::")
I

2

3

•

5

6

7

8

10

9

I

10lAI
8

Capacitance variation

IpFI

700
600
500

Normalized gate threshold
voltage vs temperature

\I
VGs=O

,U

f ='MHz

10

12

14

16

Q (nO

Normalized breakdown
voltage vs temperature
VIBRlOSS
Inorm)

H-+-+-+--I-+-H--I--H-t-t-+-t-I-t-t-t-I
H-+-+-+--I-+-H--I--H-t-t-+-t-I-t-t-t-I

10

H--\--l--l-++--b-f"4--+-t-t-+-++-H-H-I

H-++-H-+++-H--l VOS=VGS

1\

IO=250~A

115

'1\.

\ 1\'i'-......

\

\

300

---

--r-. f--

"r---...

"-

Ciss

I-- r-

i

~

H-++-+--I-+--f"lkl-+-+-+--I-+-H--I-t-H

1.0

0.85 H-+-+-+-t-+-H--I--+-+-+-t-+--t-1-....t-t-H

0.9 H-+-+-+++-+-H-+-t--t-i VGS =0
H-+-+-+++-+-t-++-t--t-i IO=250~A

crss)

Ii-""-

1

0.8

f--++-i++++f-++-I'-t-H+t--t-H-j
-50

IS

10

15

20

25

30

35

40

V

05

ROS(en)

-

_.

Source-drain diode forward
characteristics
IAI

/

1.5

I

V
r-f-- - 1--1-- - _ . - -- -

V'

0

V

Y!

TC·~".io·~1 Ifzs·c

VGS=O

I

10

V

J.jII

I I I I

-I- -,--

10
VGs =10V'
lo=8A - -

----

1--1-- , - -

100

ISO

1--7

(norm)

50

(V)

Normalized on resistance
vs temperature

_.-

0.5

2

-25

25

·50

75

100

TJIO[)

_4/_5____________________________ ~ ~~~~~?~:~~~,
442

~

______________________________

SGSP222
Switching time waveforms for resistive load

Switching times test circuit for resistive load

v f , ____ ~,90.1.
10·,.

,I

I

,

Vee

3.3

I

~F

I

-yo :

5-6059

td (off) tf

S(-0008/1

Pulse width ::;; 100 p,s
Duty cycle ::;; 2%

Clamped inductive waveforms

Clamped inductive load test circuit

Vcl.amp

Vo_

2200

3.3

}JF

}JF

Voo
-----,
I

I

I - _ _ _--J
"

L ______ __ .

SC-0311
SC-0310

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M • Vclamp= 0.75 V(BR) OSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo

1.8~Jl

::CJ: (;.-t,-C::::::r--L
PW

i
....

lKn.

PW adjusted to obtain required VG

_____________________________

I~~~~~~?~~:~~~~

____________________________

5_/5

443

SGSP230
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE

Voss

Ros(on)

10

SGSP230

450 V

30

2.5 A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH VOLTAGE - 450V FOR OFF-LINE SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT> 100KHz
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include switching power supplies, uninterruptible power supplies and motor speed control.

OPTION
SOT-194

SOT-82

INTERNAL SCHEMATIC
DIAGRAM

s

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

450

V

VDGR

Drain-gate voltage (RGS = 20 KO)

450

V

V GS

Gate-source voltage

±20

V

ID

Drain current (cont.) at Te = 25°C

2.5

A

Drain current (cont.) at Te= 100°C

1.5

A

Drain current (pulsed)

10

A

Drain inductive current, clamped

10

A

Total dissipation at Te <25°C

50

W

Derating factor

0.4

W/oC

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

445

SGSP230
THERMAL DATA

max

Rthj . case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

ELECTRICAL CHARACTERISTICS

2.5
275

("l'~ase = 25°C unless otherwise specified)

Parameters

Test Conditions

OFF
V(BR) OSS Drain-source
breakdown voltage

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

VGS(th)

Gate threshold
voltage

Vos= VGS

Ros (on)

Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

gfs

Forward
transconductance

Vos= 25 V

10= 1.2 A

Cjss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

loss

IGSS

V

450

Tc = 125°C

250
1000

p,A
p,A

±100

nA

4

V

3
6

0
0

ON (*)

10= 250 p,A

2

10= 1.2 A
10= 1.2 A Tc= 100°C

DYNAMIC

0.8

mho

340

450
95
50

pF
pF
pF

10
25
55
25

15
35
70
35

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 1.2 A
Voo= 225 V
Rj = 4.70
Vi= 10 V
(see test circuit)

_2/_5 _ _ _ _ _ _ _ _ _ _ _ _ _

446

~ ~~~~mg1JT:~~ll--------------

SGSP230
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso

Forward on voltage

Iso= 2.5 A

VGs= 0

trr

Reverse recovery
time

Iso= 2.5 A
di/dt = 100 A/p,s

VGs= 0

2.5
10

A
A

1.2

V

340

ns

(*) Pulsed: Pulse duration = 300 its, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Thermal impedance

Safe operating areas

Derating curve
P'o,IW)
50

IIII

"'-,"-

40

"'-

30
20

10

10 2

Output characteristics
'oIA)

'oIA)

VGS=1~

Tcase=2S0( -/---

Tcase=2S0(

~

'[

~/

5.5V

I
L

I

~,...

I

I

1
4.5V

4V

160

240

tp Is)

o
o

VosIV)

____________________________

~ /"

/'
L..-

25

50

100

75

~

125

I"

Tc... (°C)

Transfer characteristics

~~

-

lolA)

Ji'

5.5V

U

Vos=25V

III
rl

5V

/J.

b

5V

80

10

II
1

.Output characteristics

11

VGs -10V

1/

IIIIIII~

'" "
'"1"'-,"-

TJ =125°(

4.5V

Y-

- '//1

=25°(
I I/f- TT =-55°(
r--r--

I/,

/- //

4V

'I

~~

o
12

16

~~~~~~?V~:~~~

VosIV)

J
J

2

___________________________3_/5
447

SGSP230
Transconductance
9fs H-+-+-+-+-++-I-++-+-+-+-++-I-+-t-+--1

IS) ~~~+-++-I-++-+-l-+-++-I-+-t-+--1

VOS=r2~S+-V+-t-++-++-H-+-+-++-++-IH

ROSI,n )

(n.1

VGs'=10V

2S"C
125"C

0.5

1

1.5

2

2.5

3

Gate charge vs gate-source
voltage

Static drain-source on
resistance

3.5

4

-

V

. Ves .90V 1-++-+-+-......97'n.I"+-t-l
225V 1-++-i--!7~"'bo'F-++-t-l

10

'/

360 V f-+-HA-:oI44-1H-+-t-l

20V

10 lolAI

lOlA)

8

12

14

16·Q InC)

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature

Capacitance variation

10

GC-0785

VGSlth)

V1BR)OSS
Inorm I

Inorml
VGS=O
f =1101Hz

0.8

f-++-I-++-t-+-H-+-+

I,VOS=VGS

lo=250~A

1.2

...... ~

Ht-+-+-+-+-++-I-++-t-l-H-+-+-+-t-H

0.6

,.....

1.0

I-l\-++-+-H-+-t+-l Coss -,-+-+-+-++-1-1
f-\f\d-+-+-H-+-t+-lC ro. ----,l=±=ot-++-t-1

10=250pA
VGs=OV
1

"-

I""-

......

0.8

.... '"

r--

......

,.

~~+-t~H-+-+~1-'-1H-~H-1

40

30

20

40 VOS IV)

l

0.6
-50

Normalized on resistance
vs temperature

0.9
-50

50

....

V

""

./

50

100

T)I'C1

Source-drain diode forward
characteristics
10

ROS(on)

(norm I

IA)

J I
I

3.0

I

~

VGs =10Y
lo=1.5A

2.5

Tcase .-150·C

I'

2.0

1/1'

1.5
1.0

0.5

_f-

....

""

10

vGs·o

~25"C

1/""

II/

I
-50

50

o

0.4

0.8

1.2

1.6' 2

2.4

2.8

3.2 .SOIV)

_4/_5__________________________ ~~~~~~~V~:~~~~ ____________________________
448

SGSP230
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90'I'

vi

:

10'1.

Vee

3.3

I

Pulse width ~ 100
Duty cycle ~ 2%

I
I

I
I

I

~F

-Vo :

5- 6059

Id(off) If

SC-0008/l

p's

Clamped inductive load test circuit

Clamped inductive waveforms

Vo_

2200
~F

3.3

VOO

~F

-----,
I

I
I

SC.0311----..-J L - - - - - - -_.
SC·0310

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , V clamp = 0.75 V(BR) OSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit

1.8Kll

::CJ: Co+~,
PW

i

-C::J---{

lKfl.

"""'"

PW adjusted to obtain required VG

--------------------------____

~~~~~~?v~:~~©'

____________________________

5_/5

449

SGSP239
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP239

Voss
500 V

ROS(on)
8.50

10
1.2 A

• HIGH SPEED SWITCHING APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching
times make this POWER MaS transistor ideal for
high speed switching applications. These include
switching power supplies, solenoid drivers and drive circuits for power bipolar transistors.

,
OPTION
SOT-194

SOT-82

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
VOS
VOGR

Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS = 20 KO)

500

V

VGS

Gate-source voltage

±20

V

10

Drain current (cont.) at T c =25°C
Drain current (cont.) at Tc = 100°C

1.2

A

0.8

A

Drain current (pulsed)

4.8

A

Drain inductive current, clamped

4.8

A

Total dissipation at Tc <25°C

40

W

10
10M

(e)

10LM

(e)

Ptot

Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

0.32

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

451

SGSP239
THERMAL DATA
max

Rthj _ case Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

3.12
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)

Parameters

Test Conditions

OFF
V(BR) OSS Drain-source
breakdown voltage

10= 25Ol1A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

gfs

Forward
transcond uctance

Vos= 25 V

10= 0.6 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f = 1 MHz

loss

IGSS

V

500

Tc= 125°C

250
1000

I1A
I1A

±100

nA

4

V

8.5
17

n
n

ON (*)
VGS

(th)

Ros (on)

10 = 25Ol1A

2

10= 0.6 A
10= 0.6 A Tc= 100°C

DYNAMIC
mho

0.65

260

300
80
40

pF
pF
pF

15
15
30
20

20
30
60
45

ns
ns
ns
ns

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 0.6 A
Voo= 250 V
Vi= 10 V
Ri= 4.7 n
(see test circuit)

_2/_5___________________________

452

~~~~~~~~:~~~~

____~----------------------

SGSP239
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 1.2 A

VGs= 0

trr

Reverse recovery
time

Iso= 1.2 A
di/dt = 25 Alp's

VGs= 0

1.2
4.8

A
A

1.15

V

350

ns

(*) Pulsed: Pulse duration = 300 "'s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operati ng areas

Thermal impedance

Derating curve

G(-0581

lolA I

-

0~~'
~..(:J7\O~'i.

"

~-~

-

10~s

,

40

""" "...:::"

6-~

II
10ms
lOOms

6

8

102

,

I
"VosIVI

,

b

~

Output characteristics

1:

-t-J

SINGLE PULSE I

10-1 tp lsi

W'

G-~S16

10

/

Tc.s.=25"C.

~~
/~ ~

IA

0.8

:r

45V

...

ll-

l/'

~~

4V

I
I

zs·c

0.'

------------------------------

T)=-55°(
)---

TJ =25°(

0.4

,4
20

30

40

50

60

70

eo

~ ~~~~~~V~:~~~~

125 T,,,,I°C)

Vosw)

--1;---/

TJ=125°(

,,

0.8

If
to

100

G[-Q190/1

1.2

4.SV

r

75

~I
fl /

Tcase=

11

r-- -

50

1.6

5V

I

08

l.£ ~-.

f'...
25

10iAI

"..

,/

o

VGS=10V

/

w;~~~ ~

"-

Transfer characteristics
G-~51

10
C. )

"'-1"~

o

Output characteristics

CA )

I'..

20

10

111111111 I

10- 3

W4

=..!..e.

JlJL

0' 0.05
~ 0= 0.02
r- 0= 0.01

"

30

Zth.:XRthJ-c

!;3

~

I

,

V
",..

1 6=0+

D(

~

I"

8=0.5
lms

"
1

50

II
I' 100~s

"" "

Vos=25V

~

____________________________

3__
/5

453

SGSP239
T ranscond uctance

Gate charge vs gate-source
voltage

Static drain-source on
resistance

9(,(5)

/ IV
I
IV
I IV
I
II

)

ROSlon I

1n.1

VoS=25V

10

2.4
-

TJ=-55'( -

8

/./
~V

2

6

r

0.4

V

12

0.8

/ II

/
-- V ~

- -

+-

----

/

20V

TJ=125'(

t
If

/

VGs =10V

-

TJ=~5'(

V

Vos=100V
250V
400V

10

lo=1.2A

---.

1--1--

1.6

/

--

2

o

lolAI

Capacitance variation

0.4

0.8

1.2

V

i
1.6

I

12

lolAI

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature
VGSithl r-r---,-,--.,---,,.,.----,.,.-,,---,-,--.,...-"'r'T'--,
Inorm) H-l-+H4-++-H-l-+-+---H_i

I I

ViBRJDSS
(norm)

I I

1

I I

H-++-H-+-+-1Vos =v GS H--+--+-t-I
lo=250~AH--+--+-t-I

300 H''ot-t-+-t-++-+-+-+-++-,-++-+-+-+-+--I
H--t-"\-.!:::t-++-+-++-+--I[;" t-+-+++-+--I

1.2

200 H-+-+-+-++-Hf--L..L..J....L..t-+-H--+-++--I
l-++-+-+-++--H T",.=25'[ H--H--+-++--I
t-++-+-+-++--H VGS =0
H-+-t-+-++--H f=lMHz

1.0 H-++-+-.......
---P"kcr-..H-+-+-t-I--+-+-+-i

16

lo=250pA
VGs=OV
1.1

100 I\\I--++-+-t+-H-++++H--H-++-+-l

.....
.....

.......

.....

V

........
.......
0.8

/
,/

r-+----10

20

30

40 Vos(V)

Normalized on resistance
vs temperature

~~;;~l

.L

0.6
-50

100

50

TJ('[)

0.9

-50

50

Source-drain diode forward
characteristics

H--+-+-+--+--+-+-+-t-I--+-+-+--H-i

3.0 H4-++-H.....L...L.H4-++-H_i
1-+--+-+-t-I---IVGS =10V t-+-+-+-+--I-+--l
2.5
lo=1.5A
2.0 H--+-+-+--+--+-+-+-t-I--+-+--+::;.!"'-t-i
1.5 H-+-++-H-+++7Ii"'T-++-H_i
1.0 H-+-+-+I----b¥'H--+-+-+---H-+-t-i
0.5

I

I-""II--~I---++-H-++H--+-+-+-H_i

w' LL..L.J...L.LL.JLl...L.LJ......LJ.....L.l....l...L.L.L.J
-50

50

o

0.4

0.8

1.2

1.6 VsolVI

_4/_5__________________________ ~~~~~~?vT:~~~~

454

____________________________

SGSP239
Switching time waveforms for resistive load

Switching times test circuit for resistive load

~

____ ~90'J.

v·I

',

10'/.

I
I

I

Vee

3.3

I

Pulse width :::;: 100 J,Ls
Duty cycle ,::; 2%

pF

5- 6059

td (oft) tf

5(-0008/1

Clamped inductive waveforms

Clamped inductive load test circuit

Vo_

voo
----,
I

I

I -_ _ _---oJ
"

L. ____ ____ _

SC-0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp = 0.75 V(BR) OSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
lKA

D.U.T.

1.8~O

::CJ: (_.;,---I-'---'
.
PW

...i

S(-0305

PW adjusted to obtain required VG

--------______________________ ~~~~~~?v~:~~©~ ____________________________

5__
/5

455

SGSP301
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP301

•
•
•
•

Voss
100 V

Ros(on)
1.4 n

10

2.0 A

HIGH SPEED SWITCHING APPLICATIONS
GENERAL PURPOSE APPLICATIONS
ULTRA FAST SWITCHING
EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• GENERAL PURPOSE SWITCHING
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include general purpose low voltage switching, solenoid driving, motor and lamp control,
switching power supplies, and driving, bipolar power switching transistors.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

100

V

VOGR

Drain-gate voltage (RGS = 20 Kn)

100

V

V GS

Gate-source voltage

±20

V

10

Drain current (cont.) at T c =25°C

2.0

A

10

Drain current (cont.) at Tc = 100°C

1.2

A

IDM (e)

Drain current (pulsed)

6

A

10LM

(e)

Drain inductive current, clamped
Total dissipation at T c

< 25°C

Derati ng factor
T slg

Storage temperature

Tj

Max. operating junction temperature

6

A

18

W

0.144

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

457

SGSP301
THERMAL DATA

max

Rthj _ case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

6.95
275

°C/W
°C

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)

Test Conditions

Parameters

OFF

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

10= 250 JJ-A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

V

100

Tc= 125°C

250
1000

JJ-A
JJ-A

±100

nA

4

V

1.4
2.8

Q

ON (*)

VGS

(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGS= 10 V

10= 250 JJ-A

2

10= 1.2 A
10= 1.2ATc = 100°C

Q

DYNAMIC

gfs

Forward
transconductance

Cjss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

'0= 1.2 A

Vos= 25 V
VGs= 0

f = 1 MHz

0.5

mho

90

125
45
30

pF
pF
pF

10
20
15
15

15
30
20
20

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 1.2 A
Voo= 50 V
Rj = 4.7 Q
Vj = 10 V
(see test circuit)

-2/-5--________________________ ~~~~~~?vT:~~~~
458

____________________________

SGSP301
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM (.)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 2.5 A

VGs= 0

trr

Reverse recovery
time

Iso= 2.5 A
di/dt = 25 A/p,s

VGs= 0

2.0
6

A
A

1.35

V

90

ns

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1.5%
(.) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

)

,,

p~
$"

\

?'

~9

10pst20

I
\

lOOpS

1\

/

'" '" "

16

12

~"""ltI~~tHlf---l+f-HIlIIZ~h: ~hJ-'
lms t-

C

r--.
10ms
lOOms

"'-

DC [
WI

10

y

- : Tea•• ' 25'C

o

Output characteristics

Output characteristics

~ VGs·'OVf-++e""v+-t-i

(AI =!80"'PULSE TEST

tp Is)

Hf--hP""!--H-++++-I-IH--1

o

25

50

75

100

'"'"

125

T""IOC)

Transfer characteristics

'0
(AI

'0
(AI

Vos .25V 1--+--4+t-HffI-;H++-H
80,.,.PUL5E TE5Tf-+++--v--hH-A-I-I-+-I

II

Tc • • 25'~C++-1-11-+-+++++-+--1

1-+-+++++-t--+--lH--IH-I'F=;:as:. 250C
--55"<:
H--t---+;~+-+-+--H-+-+++++'6V

6V

5V

,

2

3

4

5

6

7

e Vos (VI

30

¥DS (v)

_______________________~~__ ~ ~~~~~~~:~~~~ ____________________________3_/5

459

SGSP301
Transconductance

Static drain-source on
resistance

Gate charge vs gate-source
voltage

RfAj"Ii-++I-t-++++-++I-t-++-f-+-++I---I
>-++-+--+--I-++-l-++-+-+-I--+-H-SS'(

IO=2.SA

1.4

I--ti't--f-+-+-+-HH-+-+-+-H T".. =2S'(

~

f-+-H-t-H-f-t-+-H-t-H-f-j---'--'-1-j

16

'case=2S-C

20V

1.2 H-+-+-+-+-+-+-I-+-H-+-++-+-Y-t--H-i

Ht---I-7'!-+-+-+-HH-+-+-+-H--H 12S'(

12

VOS ·50V
BOV

10

,1-0

H--H-t-H-f-f-+--±;.1"'I-+-+-+-+-++-t-t- lo=250}lA

0.83 f-+-I-I-++-1-+-+-++-I-+-H-+-t-f"i-!-

0.66
VoS(V}

2.0

1-++-+--+-+-+-+-1-++-+-+-+-+-+-1-++-1--1
1-++-+--+-+-+-1-1-++-1-+-+-+-+-1-++-1--1

i-++I-t-++---bf++I---I
1.5 H--H--f-'T-=l,.2,A+++-f-t-+.7H-t-++-t-i

50

ISO
(AI

YGS=O

lc_-25'ClSO'C_

10

L...L-'-L..L-'---'-L.....L...L-'-L..L-'---'-L.....L....L-'-'--'

-50

4/5

460

50

100

I)r-- ~~~

.-f-f-

.,

1. 0 1-++-+-++-+-hI"'-l-+-1-++-+-+-I-+-H-i

0.5

100

Source-drain diode forward
characteristics

i-+-H++-+-+-I-I--H+++++-+-H---I
VGS =10V
I0

L...L-'-L..L-'---'-L.....L...L-'-L..L-'---'--'-..L....L-'-'-

-50

Normalized on resistance
vs temperature
ROSlo"1

r:++r:++=++H+r:++=++P~q

(norm)

t-t--Hf-t:;~-+-+-++-t-t- VGS=O

f'<; -H-+-H--H-++++-+-+-H---H

J~
"sO (V)

a. (nC)

Normalized breakdown
voltage vs temperature

I--++--H-+-t--t-t-++-h lo=250pA

j\

1

lo(A)

~IAI

(norm)

-

/
1/ ./
~ [LV
.L7 ~v

SGSP301
Switching time waveforms for resistive load

Switching times test circuit for resistive load

~ ____ ~90.'.

'

vi

:
10°'.
I

3.3

I

Pulse width ~ 100 p,s
Duty cycle ~ 2%

VDD

I

I

.

I

I

~F

-Vo :

td (off) tf

5 - 6059

$(-0008/1

Clamped inductive waveforms

Clamped inductive load test circuit

V

_

D

Voo

---,
I

I
I -_ _ _--oJ L ____ ____ _
"
SC-0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp = 0.75 V(BR) OSS'

Body-drain diode trr measurement
Jedec test circuit

Gate charge test circuit
Vee
lKA

1.8Ktl

:CJ: Cot~,-C:::::J--{
PW

i

lKn

.....
PW adjusted to obtain required VG

--~------------------------ ~~~~~~~u~:~~~

___________________________

5_/5

461

SGSP311
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP311

Voss
100 V

Ros(on)
0.30

10
11 A

• HIGH SPEED SWITCHING APPLICATIONS
• 100V FOR DCIDC CONVERTERS
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• STEPPER MOTOR CONTROL
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical uses include DC/DC converters, stepper motors and solenoid drives.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Vos

Drain-source voltage (VGS = 0)

100

V
V

V OGR

Drain-gate voltage (RGS = 20 KO)

100

VGS

Gate-source voltage

±20

V

10

Drain current (cont.) at Tc =25°C
Drain current (cont.) at Tc= 100°C

11

A

7

A

Drain current (pulsed)

30

A

10
10M

(e)

Ptot

Total dissipation at Tc <25°C

75

W

Derating factor

0.6

W/oC

Tstg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
• Introduced in 1989 week 1
June 1988

1/5

463

SGSP311
THERMAL DATA

max

Rthj _ case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

1.67
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF

V(BR) oss Drain-source
breakdown voltage
loss

IGSS

10 = 250 p,A

VGS= 0

Zero gate voltage
drain current (V GS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

V

100

Te = 125°C

250
1000

p,A
p,A

±100

nA

4

V

0.3
0.6

n
n

ON (*)

VGS

(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

10 = 250 p,A

2

'0= 5.5 A
10= 5.5 A Te= 100°C

ENERGY TEST

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starti ng Tj = 25°C

L = 100 p,H

11

A

9fs

Forward
transconductance

Vos= 25 V

'0= 5.5 A

2

mho

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

lUIS

DYNAMIC

375

480
230
110

pF
pF
pF

15
40
40
20

20
55
55
30

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 5.5 A
Voo= 50 V
Vi= 10 V
Ri= 4.7 n
(see test circuit)

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _

464

~ ~~~~m~1J~:~~Jl--------------

SGSP311
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso

Forward on voltage

Iso= 11 A

VGs= 0

trr

Reverse recovery
time

Iso = 11 A
di/dt = 25 AIJls

VGs= 0

11
44

A
A

1.35

V

140

ns

"
(*) Pulsed: Pulse duration = 300
P.s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

6=0.5

80

t-- 1\
Zth:KrHh}_c

1\

60

S = J.£.

10°,

F
~~II~Mlll~oo~mS~11

~

~

~.l:

10ms

'\
40

OC

tpls)

Output characteristics
'0

(AI

VGS ·14Vj

m=
f-H

Ii

V

10V

~

~

h~

'\

1'\

20

Output characteristics

o
o

I~
~

110

80

40

Transfer characteristics

$
16

trr

7V

17

8V
Tease .. 25-C

LL

80,.,. PULSE TEST
10

.t

t--if-+-++-!-j'case .Z5~
H-+-++-!_i 80 ,.,sPUlSE

TESTt+++d-t--+-1

~

6V

V

1t++-++-!-t-t-t-+++-+--+-1r-+-1 SV
4V
10

20

30

Vos (VI

2

3

4

5

6

7

8

9

10 VGS(V)

465

SGSP311
T ranscond uctance
9,.
(5)

Gate charge vs gate-source
voltage

ROSlon I

VOS=Z5V
8O,.,sPULSE TEST

I--

Static drain-source on
resistance

Tcase =-5S-C

II'll

25'C

V

12s'C

/I

80V

0.4

J

VGs =10V

..... V

I

0.2

I

rl
I

2

3

4

5

6

1

8

10

9

16

'0 (A)

-24

I
I--

10iAI

C

-

t-1.16

100

300
200

~

,\ .......
\

Ciss

1

......... ,.....

.........

100

5

-

10

15

Coss

1---1-++-+-"-++++-1-1 VOs=VGS
IO=250}JA

12

16

20

24

(lgln[)

Normalized breakdown
voltage vs temperaturfi

1.0 I-++-+-+-++-hr<+-+-+-+-+-++-I-+++--I

f--

I---I-+--I-+-+++-IH""+-+-+-H-~..q-++--I

0.9 1-++-+-+-++-+-1-++-+-+-+-++-1-+-++--1

0.84

crss

20

25

30

35

40

1.1 1-+-+-+-+-++-+-I-++-+-+-+-+>'i'--1-++-+-i

1.0 I-+-+--I-t-++-Pild--t-t-t-H--+-I-+++--I

VOS ( V)

Source-drain diode forward
characteristics
ISO
(A)

1-+-+-1-+++--1 VGs=10V I-+-+-I-+++-+-H
2.0
lo=5.5A t-++--l-+H-I-H

1.5 f-++--l-+H-I-I-++-f---YH+--l-++-H

1.0 H""+-t-t--bt'''t-H""-t-t-t-H--+-I-t-++--I

466

I

-

Normalized on resistance
vs temperature

4/5

10=16A

VIBRlOSS I-++-+-+-++-+-I-++-+-+-+-+-+-I-++-+-i
Inorml I-++-+-+-++-+-I-++-+-+-+-+-+-I---t-;.r--t-i
VGS'O
f:=lMHz

800

400

I

I

(pF)

600

I"Z' VV

20V

Normalized gate threshold
voltage vs temperature

Capacitance variation

500

,/

~t':v

....... 1""'"

1/

f"../ / /

SOy

12

0.6

/1"""''''-

Iii

./

VOS=20V

/'

1Jj~

VJ~

Tr1 ~ti.~

VGS,O

"C

SGSP311
Switching time waveforms for resistive load

Switching times test circuit for resistive load

:r

----~90.J.

vi

a
-.J Uv;

:

10·1.

I
I

I

VOO

3.3
~F

I

5-6059

Id (otf) If

5(-0008/1

Pulse width ~ 100 p,s
Duty cycle ~ 2%

Unclamped inductive waveforms

Unclamped inductive load test circuit

Y(BRIOS5

10M
10 _ / .... 1

Voo

10

VI_TL
u
Pw

"
2200

3.3

!IF

}IF

: ,,"

....

" -_ _ _- - I

I

,
,

L _

S(-0316
5(-0317

Vi = 12 V - Pulse width: adjusted to obtain
specified IDM

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
1K.n.

1.8Kll

::CJ: ~;~,-C::::J---{
PW
! 1Kn.
.....

PW adjusted to obtain required VG

---___________

~ ~~~~m~1rr:1:~~~~

______________

5_/5

467

~

SGS-1HOMSON

SGSP316
SGSP317

~'YL ~D©OO©~[]J~©uOO©~D©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP316
SGSP317

Voss
250 V
200 V

ROS(on)
1.20
0.750

10

5A
6A

• HIGH SPEED SWITCHING APPLICATIONS
• ULTRA FAST SWITCHING
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• EASY DRIVE - REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• DC SWITCH
N - channel enhancement mode POWER MaS field
effect transistors. Easy drive and very fast switching
times make these POWER MaS transistors ideal
for high speed switching applications. Typical uses
are in telecommunications, switching power supplies and as a DC switch.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS

SGSP317

SGSP316

Drain-source voltage (VGS = 0)

250

200

V

Drain-gate voltage (RGS = 20 KO)

250

200

V
V

±20

Gate-source voltage
Drain current (cant.) at Tc = 25°C

5

6

A

Drain current (cant.) at Tc = 100°C

3.1

3.7

A

Drain current (pulsed)

20

24

Total dissipation at Tc <25°C
Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

A

75

W

0.6

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
• Introduced in 1988 week 44
June 1988

1/6

469

SGSP316 - SGSP317
THERMAL DATA

max

Rthj _ case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

1.67
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(SR) oss Drain-source
breakdown voltage

loss

IGSS

10 = 250/hA
for SGSP316
for SGSP317

VGs= 0
250
200

Zero gate voltage
drain current (V GS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

V
V

Tc= 125°C

250
1000

/h A
/h A

±100

nA

4

V

1.2
0.75

n
n

2.4
1.5

n
n

ON (*)

VGS

(th)

Gate threshold voltage Vos= VGS

Ros (on) Static drain-source
on resistance

VGs= 10 V
10= 2.5 A for
10= 3 A for
VGs= 10 V
10= 2.5 A for
10= 3 A for

10= 250/hA

2

SGSP316
SGSP317
Tc= 100°C
SGSP316
SGSP317

ENERGY TEST

lUIS

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starting T j = 25°C
for SGSP316
for SGSP317

L = 100/hH

Vos= 25 V

10= 3 A

Vos= 25 V
VGs= 0

f = 1 MHz

5
6

A

1.5

mho

A

DYNAMIC

gfs

Forward
transconductance

Ciss
Cos s
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

380

_2/_6__________________________

470

~~~~~~~V~:~~©~

____________

500
130
65

pF
pF
pF

~--------------

SGSP316 - SGSP317
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SWITCHING

td
tr
td
tf

(on)
(off)

Turn-on time
Rise time
Turn-off delay time
Fall time

~= 3 A
V 00 = 100 V
Vi = 10 V
. = 4.7
(see test circuit~

Q

15
30
45
15

20
40
60
20

ns
ns
ns
ns

5
6
20
24

A
A
A
A

1.3
1.3

V
V

SOURCE DRAIN DIODE

Iso

Source-drain current

ISOM (-)

Source-drain current
(pulsed)

Vso

Forward on voltage

trr

Reverse recovery
time

for
for
for
for

SGSP316
SGSP317
SGSP316
SGSP317

VGs= 0
Iso= 6 A for SGSP316
Iso = 5 A for SGSP317
Iso= 6 A
dildt = 100 A//ls

VGs= 0

180

ns

(*) Pulsed: Pulse duration = 300 P.s, duty cycle 1.5%
(-) Pulse width limited by safe operating area

--____________

~ ~~~~m~lYrt:~~~~

_____________

3_/6

471

SGSP316 - SGSP317
Safe operating areas

Thermal impedance

Derating curve
)

J

JU

10', ,=='=

-SGSP31J
.... SGSP316

v~1<

SGSP31J
SGSP316

I-Zth::KIHhJ-c

10s
100~s

"

,Ii

/

10~

80

,

~c:;-o~ /

10-'m~• •~

I
'ms

r-..
f\.

60

S =..!.E..

~

'\

1:

40

"\

ms

SGSP316SGSP317~

,

'"f\.

20

lOOms

~mt

tpls)

Output characteristics

o

f\.

120

80

40

Transfer characteristics

Output characteristics
~IAI

o

'OV

V s,6V

Tcase=-55°(
Tcase=2SoCTcase=12SoC-

SV

Vw V
VGs=4.SV

VGs=4V

0.5

1.S

2

2.5

l.5

l

4

4.5

~

T ranscond uctance

Vos(Vj

30

20

VoslVI

3

5

4

VGs(VI

Gate charge vs gate-source
voltage

Static drain-source on
resistance

(j(-0161

ROSlon }

/

1.0

V ,2SV

/

I

In)

Vos=40V
V05=100

VGs =20V

-I--

/
0.8

f-++-t-+-t-+--t-i-t--t--+--i

T".. '-SSoC

V

10V /

±

__ i.o:::::
0.4

/

V

0.6

V

t-i

V.

'/

Vos=160

J

V //

/,

'/

./

~V

I

I

0.2

~,6A

Tc.,,:25°(

f-- -

II

II
~IA}

12

16

20

lolA)

20

QlnC}

_4/_6___________________________ ~~~~~~~~~:~~~ _____________________________

472

SGSP316 - SGSP317

(I,Fl
1500

1000

I I

:::r ++rH~±:·-I-I-+-+-I---+-j

vGS(lh!r-r----,-,---r-~---,-,~~~rr---,-,~~
(norm) H----M-+--l-++-l-+-+-++--H--+--+-+--+_+_

1.1H-+-4'<+-l-++-l-++-++--H--t--+-+--+_+_
,250 A

-+--\--+-t-+--+--1 ~~f~~z t-f--f--r-- -I- f-t. tTclH ",2S oC.
H--+-+ -+-H--+-+-r--r-,----I---H-+j
- f--t---f- -

+-1---+-++-+-+-+-+--1

+-

j--

I",r-H-H500

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature

Capacitance variation

I"

I~

-+-+-t-+-+~H--1
0.9

rJRl':f- ,

H----1LI-f--f--I-+--I--+-I----+-I---l-+--I-l-+-I-----1----.j

Co

40

60VosiVI

Normalized on resistance
vs temperature
ROS[on)

r-r-,,--,r-r-'--'-'--r-T--,--rr,,----'!'OT-'T--!,

1.5

I-t-+-+-+-I-t--H-+--I-t----¥---I-t-+-+-I-+-H

(norm 1H-+-+--+-t-+-I-t-t--t-+~H-+-+_h~

-50

-50

50

Source-drain diode forward
characteristics

ISOIAlmm*mmJm~

I

I
50

05

----------------------------~~~~~~?v~:~~~

Ves lVI

___________________________

5_/6

473

SGSP316 - SGSP317

v:r

Switching times test circuit for resistive load

Switching time waveforms for resistive load
. - - __

~,90.1.

l

10·1.

I
I

3.3

I

Pulse width ~ 100 /Ls
Duty cycle ~ 2%

I
I

VOO

90·1.1

--- - - -

I

90'1.

I

~F

-vo :

5 - 6 059

td (off) tf

S(-0008/1

Unclamped inductive load test circuit

Unclamped inductive waveforms
V(BRIOSS

vo-

Voo

--,

,/

I

,,

I"'--_
/
_ _--'L

_____ _

S[-0316

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo

1.8KI1

:CJ: (-~:,--C::J--{
PW

i

lKn

.....
PW adjusted to obtain required VG
_6/_6__________________________ ~~~~~~~~:~~~~ ____________________________

474

SGSP319
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP319

•
•
•
•

Voss
500 V

ROS(on)
3.8 0

10
2.8 A

HIGH SPEED SWITCHING APPLICATIONS
500V - HIGH VOLTAGE FOR SMPS
ULTRA FAST SWITCHING
EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching
times make this POWER MaS transistor ideal for
high speed switching applications. Typical applications include switching power supplies, battery
chargers, motor speed control and solenoid drivers.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS = 20 KO)

500

V

Gate-source voltage

±20

V

Drain current (cont.) at Tc = 25°C

2.8

A

Drain current (cont.) at Tc= 100°C

1.7

A

Dr~in

11

A

current (pulsed)

Drain inductive current, clamped

11

A

Total dissipation at Tc <25°C

75

W

Derating factor

0.6

W/oC

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

475

SGSP319
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

1_67
275

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Parameters

Test Conditions

OFF
,,

10-2

, 'VosIV)

Output characteristics

10- 1

tplsl

o

'\.
o

Output characteristics
lolA )

lolAI

2~6.5V

4

Tcase::::2S0(

lQVA

VGS=7V

40

120

80

lOlA I

f

VOS=25V

I

Ih

Tcase=2S0(

1/
/1

r

6V
3
5.5V

5.5V

T""IO[)

Transfer characteristics

6.5V

6V

160

T)=125°(_""
o
T)=2s C--...1/

I

5V

5V

T) =SsoC-.....,/..J

1

16

VoslV,

///

4.5V
4V

4.5'{-

12

50

100

150

200

~------------- ~ ~~~~m?lJ~:~~~~

VoslVI

~

__'--___________

3_/5

477

SGSP319
Transcond uctance

Static drain-source on
resistance

Gate charge vs gate-source
voltage
G(-0498

)

Ros(onl
(Ill
9

Vos=2SV

20

-~

TJ=-6SoC

V
./

V VV

~~~

I~

8

............. r; =2S·( I -

....... I--- I--

-

TJ =12SoC

VGs =10V // V =20V
Gs
6

-

/

S

/#

r---

VOS=100V,,1S

10

/.?}

10

12

14

/

lolAI

/

lo=2.5A

12

Normalized gate threshold
voltage vs temperature

Capacitance variation

~V

/

/

10 (A)

~V

Vos=2S0V
Vos=400V

/

2
4

-

/

3

I(

f

16

o.g

(nC)

Normalized breakdown
voltage vs temperature
V(BR)OSS
Inorm)

Tcase=25°(
800 I--t---I--+---t VGS=O .-+--1---+---1
f=1MHz

f--t-l-+-1f--t-l-+-1Vos =VGS H-+-+-+-i

1.15

........

lo=2S0~Af--t-+-+-+-I

12

.......V

1.05

600 \
~~-I--+---t--+--~--+---t--~

400

10

0.95

200 f-\\rl---+---1-t--+--+--+--+-+---t
,~
C
C,s.

............

H-++-+-......--P+--d......
-+-++-H-+--t--+-I

.......
0.8 f--t-l-+-+--t-+-+-+-f--t-l-+-t--If".-f""'l

......., /
,/

VGs=OV
lo=2S0pA

0.85

m

~

20

30

40

-

- --

--I-+-t-t-+-+-+-I-~----+---t---1

VoslVI

Normalized on resistance
vs temperature

0.75

-40

40

80

120

TJ ( Cl

Source-drain diode forward
characteristics

-8'

ROS(on I

/

(norml

2.2 ----i- VGs =10V
lo=14A

/

18

V

-------.I--+--+---t--+-4--+~

/
4

./

0

/

I

./

6

1/
100

2
-40

40

80

120

TjI"C)

_4/_5 _ _ _ _ _ _ _ _ _ _ _ _ _

478

L--J..-LJ
,
_ _..L--L-----'------'_ _-'---"-----'-----'

o

VsolVI

~ ~~~~m~ll~:~~~~

______________

SGSP319
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90.'.

v·I

a
-.J UV

,

,

10·,.

I
I

I

Voo

3.3

j

~F

I

5 - 6 059

td (off) If

SC-0008/1

Pulse width ~ 100 p's
Duty cycle ~ 2%

Clamped inductive load test circuit

Clamped inductive waveforms

Vo_

2200
/-IF

3.3
/-IF

VOD
----..,
I

I
I
IIL-_ _ _--J

L_ - - ___ __ .

SC-0311
SC-0310

Vi = 12 V - Pulse width: adjusted to obtain
specified IDM' Vclamp = 0.75 V(BR) OSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit

1.8KO

PW adjusted to obtain required VG

~ ~~~~m?1J~:~~~~

______________

5_/5

479

~

..'YL

SGS-1HOMSON

SGSP321
SGSP322

~D©OO@~[L~©lJOO@~D©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP321
SGSP322
•
•
•
•

Voss
60 V
50 V

Ros(on)
0.130
0.130

10
16 A
16 A

HIGH SPEED SWITCHING APPLICATIONS
LOW VOLTAGE DCIDC CONVERTERS
ULTRA FAST SWITCHING
EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Uses include
motor speed control, low voltage DCIDC converters and solenoid driving.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

G~
5

ABSOLUTE MAXIMUM RATINGS

SGSP321

SGSP322

Drain-source voltage (VGS = 0)

60

50

V

Drain-gate voltage (RGS = 20 KO)

60

50

V

±20

V

16

A

Drain current (cont.) at Tc= 100°C

10

A

Drain current (pulsed)

40

A

Drain inductive current, clamped

40

A

Total dissipation at Tc <25°C

75

W

Derating factor

0.6

W/oC

Gate-source voltage
Drain current (cont.) at Tc = 25°C

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

481

SGSP321 - SGSP322
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

1.67
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)

Parameters

Test Conditions

OFF

V(BR) oss Drain-source
breakdown voltage

loss

IGSS

10= 250 JlA
for SGSP321
for SGSP322

VGs= 0
V
V

60
50

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

Tc = 125°C

250
1000

JlA
JlA

±100

nA

4

V

0.13
0.26

n
n

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

ID= 250 JlA

VGs= 10 V
VGs= 10 V

10= 8 A
10= 8 A

2

Tc= 100°C

DYNAMIC

gfs

Forward
transconductance

V DS = 25 V

10= 8 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

mho

3

460

550
350
180

pF
pF
pF

15
45
40
25

20
60
55
35

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 8 A
Voo= 25 V
Vi= 10 V
Ri= 4.7 n
(see test circuit)

2/5
--------------

482

Gil
SGS-THOMSON - - - - - - - - - - - - - 'J, '"
~OrGIlD©[gI!,I~rG'D'IJ\l©Ii(i]OrG~

SGSP321 - SGSP322
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 16 A

VGs= 0

trr

Reverse recovery
time

Iso= 16 A
di/dt = 25 Alp-s

VGs= 0

16
40

A
A

1.4

V

100

ns

,

(*) Pulsed: Pulse duration = 300 /Ls, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

80

Zth=KRthJ·C

Ml.mIIII
lOOms

0
10 •

10-lm~• •~

-

r-.

"-

60

s: ...!E..

\.

1:

\.

'\

40

OC

"\

20

1--+--t-++t-ttH~~~~iii H:f-HtH-t-++t-tHt1

LL
1O-;LOO-.L....L...J.,.L,W.lli10-,_,-.L.L,ll,ll..1 02---'-,....L..,LLl.l,-':-"'Vos (V)

Ip(s)

Output characteristics

o

Output characteristics

--

o

r--

-

r"\

120

80

40

-- -

"-

160

T",,(oC)

Transfer characteristics
(~) t-t-+vo s_"""'_2s="v--+-t-t-++++-+-I-H'l-lrfi-¥-l/-t-t
..L

(5)

80 LSE
16 H--+-t-I'--t-,PU,-r-'E,S'++tt-t'-:::lv-l,,+"'++-t;:j
S

g,•

•

•
Te.i'S.·-5S-C
~S·C

12512

fM--++++-+-t-t-++++-H-+t-t--t-+-1
10

f-+++++--+-f-++++-nIH-1I-t-H--++--i

80 PULSE TEST
5

6V

1

2

3

4

5

6

7

8

9

10

J0 (A )

--------------

30

~ ~~~~m~1J~:~~~

VOS (Vl

2

3

4

5

6

7

8

9

VGs(V)

______________

3_/5

483

SGSP321 - SGSP322
Transconductance

Static drain-source on
resistance

Gate charge vs gate-source
voltage
G_~o!t

C~

I
I

I--f,r--"....
, Hf--tF.i
Jlavb+-+-t-t-t-t--+-tI-+t-+--t-1
as
16
1

1-+-H-I+JH-I-H80~. PULSE TEST

6V

0.11 1-++-t-t-t-t---t+1-++-+--+-t-t--+-t-t--t-H

'0

.,

A ~

/

0.10 1-++-t--!7'f+-+-t-++-+--+-t-t-t 20 v

10-15A

1

I
I

I

0.09 LL-'-J-L-L...L-L-LL-"-:-,---'---L..L~LL~
o
10
20
30
lolA)

Capacitance variation

800
700

II

Normalized gate threshold
voltage vs temperature

10

12

14

'6

Q

CnCI

Normalized breakdown
voltage vs temperature
VIBRIOSS

U
l\

~

'case .15·C

a

CpFI

1

3SV
~S'20:~
SOY

l-+-Hf-I-¥+-I-H Tcilse=25"C

r::++=I+H+r::++=I+H+~m

Inorm) I-+-H+H-I-H--H-t-H-t-H-++-l

vGs·O
f:1MHz

1.15

I-++-t--+-I-++-+--+-H VOS =VGS
lo=250pA

1.0

I-+-H-+H---pt-d--H-t-H-t-H-++-l

11\.
600

500
400
300

200

\~ r--...

\

\

-t-- t--

Ciss

. . . . t--...

"1"- +--

'DO

t- r- ~

0.85 I-+-H+H-t-H--H-t-H~i'-i-++-l

0.9 M-t-I-+-t-t-t-t-t--t-HH VGS=O
10 250pA

crs~

0.8

tttlE±EB±E~
-50

Normalized on resistance
vs temperature
ROS(on)

Inorm) f--f--t---f--+-f-+-++-t---f-r-+-+---li-i-/71

Source-drain diode forward
characteristics
ISO
CAl
0

JI

1.5 f-f--t---f--+-f-+-++-t---fi-i--+-T7'k"F-t----1

V
0

--1--+--

10 f-f-+-+-+-f-cV.v:-I-t-+--+-+-Ir+--f--+-I

TC.H"5KJ·~ ~s.c

J

10

I---+v--J-""VI-+-++-I-t-+-+-I ~~~~OV t - 0.5 H-+-+-+-H+-+-H-+-+-+-I4--l

2

1
-25

4/5

484

25

50

75

100

TJloCJ

-.l
vGs.o

50

100

TJI'CJ

SGSP321 - SGSP322
Switching time waveforms for resistive load

Switching times test circuit for resistive load

:r

----~90.J.

vi

:

10·,.

3.3

I

Pulse width ~ 100 p's
Duty cycle ~ 2%

:

I
I

Vee

I

~F

-Vo :

td(off) 'f
5C-0008/1

Clamped inductive waveforms

Clamped inductive load test circuit

Vo_

VOD

-----,

,
I

I

K--_ _ _~

L ________ .

SC·0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp= 0.75 V(BR) OSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo

1.8KO

~ Co+~,-c=r--{
PW

i

1Kfl

.....
PW adjusted to obtain required VG

- - - - - - - - - - - ill
SCiS-1HOMSON
•] ,.,

5/5

.l\iJUlQ:ffil@[gIL[gIQ:'ii'ffil@IKIlUIQ:~

485

SGSP330
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP330

Voss
450 V

Ros(on)
30

10
3A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH VOLTAGE - 450V FOR OFF-LINE SMPS
• ULTRA FAST SWITCHING FOR OPERATION
AT> 100KHz
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include switching power supplies, uninterruptible power supplies and motor speed control.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

450

V

Drain-gate voltage (RGS = 20 KO)

450

V

Gate-source voltage

±20

V

3

A

Drain current (cont.) at T c =100°C
Drain current (pulsed)

1.9

A

12

A

Drain inductive current, clamped

12

A

Drain current (cont.) at T c =25°C

Total dissipation at Tc <25°C

75

W

Derating factor

0.6

W/oC

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(.) Pulse width limited by safe operating area
June 1988

1/5

487

SGSP330
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

1.67
275

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Parameters

Test Conditions

OFF
,,(SR)

oss Drain-source
breakdown voltage

loss

IGSS

10 = 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= V GS

V

450

Tc = 125°C

250
1000

p,A
p,A

±100

nA

4

V

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

10= 250 p,A

2

10= 1.5 A
10= 1.5 A Tc= 100°C

3

{}

6

{}

DYNAMIC

gfs

Forward
transcond uctance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 1.5 A

Vos= 25 V
VGs= 0

f= 1 MHz

mho

0.8

340

450
95
50

pF
pF
pF

10
25
55
25

15
35
70
35

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 1.5 A
Voo= 225 V
Ri= 4.7 {}
Vi= 10 V
(see test circuit)

~2/_5 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1TT:~~li

488

______________

SGSP330
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Source-drain current
Iso
ISOM (-) Source-drain current
(pulsed)
Vso

Forward on voltage

Iso= 3 A

VGs= 0

trr

Reverse recovery
time

Iso= 3 A
di/dt = 100 A/p,s

VGs= 0

3
12

A
A

1.2

V

360

ns

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1.5%
(-) Pulse width limited by safe operating area

Derating curve

Thermal impedance

Safe operating areas
lolA

I

J
6=0.5
80

......

.:s,p

,

~~if

1---

-"

Zth; KRthJ-c

S = J.2.

.10s

III

1',

10~

....

liYm
1m'

'Om~

l~ooms
OC

Output characteristics

1\

'\

lotAI

VGS =l,.

Tcase=25°( f-+-

/

Tcase=2S0(

o

s.5V

'"'" "-

o

40

110

80

Transfer characteristics

~

-

lolAI

S.sV

~
~
~V

II
4

~V

'\

10

Output characteristics

I
VGs =10V

" "-

40

1

lotAI

-

60

1"

U

Vos=2sV

SV

Jj

~..,

I

sV

;1

I

.&~

I
4.5V

4V
80

160

240

VostVI

______________

TJ=11s0(

4.5V

~

/I
fl

VII

TJ=2S0(
I VI- TJ=-ssO(
I-- -

VI. I
/. l'l'

IL

,Lv

4V

7

~~

o
12

16

~ ~~~~m?1r~:~~~~

VostVI

2

______________

3_/5

489

SGSP330
Transconductance
gfs

Static drain-source on
resistance

~+-!-+-+-+-+-c~+-t-+-+-++-H-+-+--1

IS) ~~~+-++-H-+-t-+-+-++-H-+-+--1

Gate charge vs gate-source
voltage

RDS[on )

Inl

VOS=;2"S:;-V+-l-+-+-+-+--t-++-t-++-+-+--H

H-+-l-++++-H-+-l-IH

Tcase=-SS·C

VGs =10V

2S"C
12S"C

V

V

H--H-t:.H"'l7H-+i-i

I-I-'

US

1

1.5

2

2.5

3

3.5

4

10 lolA)

'OIA)

Capacitance variation
I

P~) 11++1-+-++++-++-1-+--+-+++-++-+-1
f 0: IMHz

VGSlth )

12

14

16·Q InC)

Normalized breakdown
voltage vs temperature
(norm )

L

1~~~~6~~

1.2

10

V(BR)OSS

I

Inorm )

H-+-t-+-t-++-+-+--H

»+++-!-!-rrr+++1-!-f-+++4-!-

8

Normalized gate threshold
voltage vs temperature

VGS,O
0.8

. VOs·90V H--H+~~bt"'-H-i
225V
360V H--t-.j"'"l-:~"'t-H-+i-i

10

20V

lo=250~A

VGs=OV
0.6 H+--+--IH-+-+-+--+-++-!-+-+-+-+-C~++-

1

l"-

(--(-

I'""

1.0

,......

V

0.4 "~-+-++-+-C+-++-!--IH Ciss

l"-

£V

I'-

f*-+-I-++-++H- Cos s -'-1-++-+--1-1-1

0.2

>-mrt--+-+-cl--+-+-+-+--l C ro.

1

1""-

0.8

V

~~H+1-1

1/
I

~

0.6
40

20

40 VOS IV)

2.5
2.0

'0

IA)

I:::::

I-"

1----I-++-H--IVGs =10V H-f--+-+--+--J
lo=1.5A

H-+-++-H-+-+Hf-+-+--+v7l"'T-i

-50

Source-drain diode forward
characteristics

3.0 1----I-+-+--f-H--L---'-+----1-+-++-t-+---1

J. ~25"C

VGS=O

Teas • .-150·C

to

V

1.5 1----I-+-+-+-+-+-+-+-c-l-:::7l",,+-++-H---I
1.0 1----I-+-+--+i,.;--b>1'/"'-j--+---t--I-+-++-t-+---1

~I

0.5 i"""fl--=+f--+-+-+-+-++--t--I-+-++-t-t---l

I·
j

-50

4/5

490

50

o

0.4

0.8

1.2

1.6' 2

....

0.9

50

-50

Normalized on resistance
vs temperature

~~;i~l H-+-++-H-+-+H-+-+--+-H-I

I..--

2.4

2.8

1

3.2 VSO I v)

50

V

I..--

SGSP330
Switching times test circuit for resistive load

Switching time waveforms for resistive load

:r

v·I

----~90.1.

,,

10'1.

I
I

I

Vee

3.3

I

Pulse width ~ 100 p,s
Duty cycle ~ 2%

~F

Id(ot!) If

5-6059

5C-0008/l

Clamped inductive load test circuit

Clamped inductive waveforms

Vo_
10M

~
---"

10

vDD

----,

"

,,"

IlIL...
"
I " _ _ _........

Voo
L __ ______ .

Sc..0311

Vi = 12 V - Pulse width: adjusted to obtain
specified IDM' Vclamp= 0.75 V(BR) DSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
lKA

1.8KO

::CJ: ~_.:,----I"-'---'
.
PW

i
.....

PW adjusted to obtain required VG

_____________________________

~~~~~~?v~:~~~

___________________________

5_/5

491

SGSP341
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP341

Voss
400 V

ROS(on)
20 !l

10
0.6 A

• HIGH SPEED SWITCHING APPLICATIONS
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• GENERAL PURPOSE
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching times make this POWER MOS transistor ideal
for high speed switching applications. Typical applications include motor starter and drive circuits
for power bipolar transistors.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

s

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

400

V

Drain-gate voltage (RGS = 20 K!l)

400

V

Gate-source voltage

±20

V

Drain current (cont.) at Tc =25°C
Drain current (cont.) at T c = 100°C

0.6

A

0.4

A

Drain current (pulsed)

1.2

A

Drain inductive current, clamped

1.2

A

Total dissipation at Tc <25°C

18

W

Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

0.14

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

493

SGSP341
THERMAL DATA

6.8

max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(SR) oss Drain-source
breakdown voltage

10= 250 flA

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGS= ±20 V

VGS(th)

Gate threshold
voltage

Vos= VGS

Ros (on)

Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

gfs

Forward
transcond uctance

Vos= 25 V

10= 0.3 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

loss

IGSS

V

400

Tc= 125°C

250
1000

flA
flA

±100

nA

4

V

20
40

{}

ON (*)

10= 250 flA

2

10= 0.3 A
10= 0.3 A Tc= 100°C

{}

DYNAMIC

0.1

mho

80

105
20
15

pF
pF
pF

10
15
25
40

15
20
35
55

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 200 V
10= 0.3 A
Ri= 4.7 {}
Vi= 10 V
(see test circuit)

-2/-5--------------------------~~~~~~gv~:9n
494

----------------------------

SGSP341
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

150= 0.6 A

VGs= 0

trr

Reverse recovery
time

150= 0.6 A
di/dt = 100 Alp's

VGs= 0

0.6
1.2

A
A

1.2

V

140

ns

(*) Pulsed: Pulse duration = 300 P.s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve

-0

lolA)

q..<:>'l

-"

.~

101'5
8-0.5

,

8=0

IIIII

(,

0=0.

II

1...-

10ms
100~ls

~
7'

lms

D.L

~

IIII

1111

10- 2
100

2

4

6

6

101

2

4

68102

~

;:::

~

100)ls

~

,/

2

4

GC-OS45

)

20

III

v~~

~::::

G(-0745

WS

Output characteristics

c-

~ ~:~~~
W3

16

==

12

'c.an c26• C

IJ

a

"

~

"-

iiJ
11111111 II
W2

WI

tp Is)

o

Output characteristics
ID
IAl

'" '" ""

o =..!.E.
1:

r-E=OOl
SINGLE PULSE
10- 4

'!"'"

Zth=KRthJ_c

II!IIIIIIIIIIII

lO- 2

Vos(V)

"""
~

~
~

25

50

75

100

-'-

ay

1
0

VOS=25V

'casf'125-C
25'(
-55'(

t--

til

0.&

sv

o.s

I
IJ

6yt

0.'

s.SY

O.l

\~i=

0.2

~
20

lO

40 Vos IV)

'cHV
~

//1

,.sv

0.1

T""I O [)

IJjJ

o.e
0.1

I"-

II' /

(Al

0.9

O.ll-t--t++++++++2l~'1-+-+-±","i...
SY..,j

"

125

Transfer characteristics

YGSdOIl.

sPULSE TES1

o

'"

1/
6

VGS(YI

_____________________________ ~~~~~~~V~:~~~---------------------------3-/5
495

SGSP341
Transconductance

Static drain-source on
resistance
ROSlan I

Gate charge vs gate-source
voltage
vGS

I
I

IIL)

(vi

VGs =20V..1
24

16

Tcas.=2S-C
IO=lA

1/

./

l/

LI
0..2

f-+-+IlA-H-Hf..+. +-++-f-+-+-: 125-C
f-+-'HIl----tooH+-r++-t+-H-+-t'-";-f-H
f-+.IAA-++-lvos·zsv

0..1

10V

16

~

H-+-++-t--++i-+i

.... 1:::::: ::::; ......

=t:-

v.

vos·eoy

0-

/v

./

~v./

Vu,v

~v

/

f-#-+-+++--+-1-+-+--+-t-t---t--t-t--

/
0-1

0..2

O-J

0."

0..5

0..6

0..7

0..8

'0 (AI

0.2

Capacitance variation
VGSlthi

C

(norm)

--

0.6

0.8

1.2

lolA)

"

Normalized gate threshold
voltage vs temperature

IpO

200

0.4

VGS zO

rr-,------,-,,,,--rr---,---,-,,,,--ri"+i'--r
f-+-++-+-++--t-f-+-++-+-+++-t-+++~

Normalized breakdown
voltage vs temperature
.....-,.-,--Jr-TI---r---r-,--,--,-...;.::::;..::....,

VIBRIDSS ,---,,---r.......

++-I----l--l......J11--+++-H++-I

Inormll--r-----I--i. . -_.-+-

f"lMHz

f---+--+---+---+-1 VGS;O
- ,-t-I--I-- lo;250"A 1----1---+-+-+-1,-+-.'1

115 f-+++-+-f-+++--+-1Vos;VGS 1-+++-+---+""'"
f-+--H--+-t---+--++--+-1lo;250"A 1-+++-+---+""'"
1.1

150

100

50

Q CnC)

V-t-i
1-+--t-t----t--H---++-t--If-t-t--l7"f-

1.0 H---+-IH--t-l--f--"kt-+---H-++-+-+-+--t-I--!

1\

"

C iss

p.

[t-- r- Coss
Crs5

\\

0.85 I--+--t-lt---t--H-+-t--t--t-t---t---t--t-+-N-----t--IH

t--

30

Normalized on resistance
vs temperature

.. 50

Source-drain diode forward
characteristics

Roslon) rT---r-lrr...--r-,,,,--rrTT-,ri-=--r-'n

Inorm) H--+--IH-+--+-+-+-++---H--t-l-+-+-+--t--iH
2_5 f-+-+-t--+-1--! VGS ;10V t-++-t-+-t---t--H-H
f-+-+-t--+-1--! lo;O.3A t-++-t-+-t---t--tft-H
2.0

1.5

II

to

III
0.5
.. 50

50

-------------- ~ ~~~~m~1J';1:~~©~ -------------4/5

496

SGSP341
Switching time waveforms for resistive load

Switching times test circuit for resistive load

'f

----~90.1.

vi

a
-.J Uv;

:

10'1.

Voo

3.3

I

I

pF

I

I

I
I

-Vo :

5 - 6 059

td(offl 'f

SC-0008/l

Pulse width ~ 100 iJ-s
Duty cycle ~ 2%

Clamped inductive waveforms

Clamped inductive load test circuit

Vo_

2200

,..F

3.3
,..F

Voo

----,
I

I
I -_ _ _---I L ____ ____ .
"
SC-0311
SC-031 0

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp = 0.75 V(BR) OSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
lKA

1.8KO

::CJ: C.t-~,-C::J--{
PW

...i

lKfl.

PW adjusted to obtain required VG

--------------

~ ~~~~m?::~~~~

______________

5_/5

497

SGSP351
N - CHANNEL ENHANCEMENT MODE
POWER MaS TRANSISTOR
TYPE
SGSP351

•
•
•
•

Voss
100 V

ROS(on)

10

0.6 {}

6A

HIGH SPEED SWITCHING APPLICATIONS
DCIDC APPLICATIONS
ULTRA FAST SWITCHING
EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES
• MOTOR CONTROL
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typica~ applications include stepper motor and printer hammer
drives and switching power supplies

TO-220

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

100

V

VOGR

Drain-gate voltage (RGS = 20 K{})

100

V

VGS
10

Gate-source voltage

±20

V

6

A

Drain current (cont.) at Tc = 100°C

4

A

Drain current (pulsed)

24

A

Drain inductive current, clamped

24

A

Drain current (cont.) at Tc = 25°C

Total disSipation at T c

< 25°C

Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

50

W

0.4

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

499

SGSP351
THERMAL DATA

2.5
275

max

Rthj _ease Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

°C/W
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage
loss

IGSS

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGs=O)

VOS = Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

V

100

Te= 125°C

250
1000

p,A
p,A

±100

nA

4

V

0.6
1.2

{2

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

VGS= 10 V
VGs= 10 V

10 = 250 p,A

10= 3 A
10= 3 A

2

Te= 100°C

{2

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 3 A

Vos= 25 V
VGs= 0

f= 1 MHz

mho

1

180

250
100
40

pF
pF
pF

10
25
25
15

15
35
35
20

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 3 A
Voo= 50V
Ri= 4.7 {2
Vi= 10 V
(see test circuit)

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mgr;1:~~~

500

______________

SGSP351
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
150M (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

150= 6A

VGS= 0

trr

Reverse recovery
time

Iso= 6 A
di/dt = 25 A/p,s

VGs= 0

6
24

A
A

1.35

V

120

ns

(*) Pulsed: Pulse duration = 300 its, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Derating curve

Thermal impedance
I

IDIAI

2

10,

f--

f---l-J~
'J

'=== ~<:::)q.o~

:~

50

f"-

10~s

"'

100~s

6-~

lmsr-

/

6=0.1

r"

~

10ms
, lOOms

~

o.et-

~

I

I

2

~IA) H-t-t-++++-t-t-HvGS='O~ ,..

1

. . .J

V

& = J.E.
1:

Jl.JL

~ ~:~~~

r

30

Zlh=KRthJ-c

-t-J

6=0.01

SINGLE PULSEI
10-4

Output characteristics

10-3

I" "-

10

11111111

10-2

20

I

10-' tp lsi

o

o

Output characteristics

ap'"

"1"-"-

40

&-0.5

25

50

""-

75

""

~

Transfer characteristics
(,5340

'0

'V

10
eA)

f-

I

VOS=25V

II /

80,.,5 PULSE TEST

.0
'0

LIL

Tcase =25·C
8O!JS PULSE TEST

6V

/I,

IH r-IIr
fI,
'I

-55·C
case=2S·C

.,25·C

1-

II

5v

A

~~

I~~~LLLL~~LLLL~~~

o

VosIV)

-------_______

'0

20

30

40

~ ~~~~m~tr~:~~@~

vosev)

______________

3_/5

501

SGSP351
Gate charge vs gate-source
voltage

Static drain-source on
resistance

Transconductance

"_0:.34')

I ~55'C

915
(5)

Tcals.!25~t-

~

I I
I

V

II

125'c

V

I

I;

I

0.61-+-l-~-+-+-I-++-l-1-+-H-+-++-+-1-

16

'0=7.5A
Tcase =25·C

V05=20VSOV
80V:-:::>

0.5 H--J--jl+-H-i-H-l-f-+-H-+-++-¥-H

VOS= 25V
8O~s PULSE TEST

V

./~ ~

)

./

~~

-.....:

II

f7

OJ f-+-H-i"'H-i-+-b~f-++-I-++-t-+-H

10 (A)

Capacitance variation
C r-~-r~-'r-~-r~-'r-'-,

II

III

0.2 LL-LJ---L-LJ.-LLl..-LJL.L..L..l-'-.L..L-'-:-LJ
o
12
16
lolAI

8

a

(nC)

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature
VGSlthl ,..,....,..,-r,,-,-r-r,,-r,,-,-r!!f:J!f'Ui~
(norm.)I-+-H-++-+-+-I-+-H-++-+-+-I-+-H~

( pF) 1--+--+-+---II---+--+- -'-=O---lI---+---1
VG S
1--+--+-+---11---+---1 f =lMH z f - - \.1

f-++-I-++-t-+-H--t-I-++-+-+-J7f-H-l

0.9 H--H-I-H-l-H--H-+--H~H-+i-l

0.9

f-++-I-i-H-l-H--H-+-H-l-H--H-l

0.8 -50

0.8 ti_i50±t±±:J±ti50±t±±:J±±TiJlj'C)j

J.t.-+--i--+---1f--+--+--+-+_.- .-

\'r-...

200

\

100 \

\ ~ ......... ~

Cos s

C rss

L-L-..L....l-'-.L...L-'-L-L-..L....l-'-.L...L-'-L-L-..L....l-l

40 1/
(II)
05

20

Normalized on resistance
vs temperature
ROSton)

50

100

TJI'C)

Source-drain diode forward
characteristics

""--'TT'-rr,,-r,,-'-r4-='~

(norm)

H-i-i-++-t-+-H--H-i-H-l-I----lI~

1.3

H-i-i-++-t-+-H--H-i-M-l-I+-H-I

1.2

H-i-i-++-t-+-H--H7'f-H-l-I+-H-I

0.7

H-+-+-+-+-+-l-I+-H-i-t-l--J--j-+.-+-+-I

II

50

III1

3

VSO (V)

~----------------__ ~~~~~~~v~:9~-----------------------------

_4/_5______

502

SGSP351
Switching times test circuit for resistive load

Switching time waveforms for resistive load

:r

----~90.I,

v·I

10'1,

'

,

I

I

I

3.3

I

Pulse width :::;; 100 p,s
Duty cycle :::;; 2%

Voo

~F

I

5 - 6 059

I

td(off) 'f

S(-0008/1

Clamped inductive load test circuit

Clamped inductive waveforms

VOD

---,
I

I

I

SC·0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp = 0.75 V(BR) OSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
1KA

::CJ: C....~,--I"-'--..J
PW

1.8KO

...i

PW adjusted to obtain required VG
515

503

SGSP358
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP358

•
•
•
•

Voss
50 V

RoS(on)
0.3 G

10
7A

HIGH SPEED SWITCHING APPLICATIONS
GENERAL PURPOSE
ULTRA FAST SWITCHING
EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• D.C. SWITCH
• UNINTERRUPTIBLE POWER SUPPLIES
N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching
times make this POWER MaS transistor ideal for
high speed switching applications. Typical applications include DC switching, uninterruptible power supplies and drive circuits for power bipolar
transistor.

,
TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

50

Drain-gate voltage (RGS = 20 KG)

50

V

±20

V

Drain current (cont.) at Tc = 25°C

7

A

Drain current (cont.) at Tc =100°C
Drain current (pulsed)

4.4

A

28

A

Gate-source voltage

V

Drain inductive current, clamped

28

A

Ptot

Total dissipation at Tc <25°C

50

W

0.4

W/oC

T stg

Storage temperature

Tj

Max. operating junction temperature

Derating factor

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

505

SGSP358
THERMAL DATA

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

max

2.5
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Pa·rameters

Test Conditions

OFF
,,+-t--+t-H

10
!

to

0.28

LL~-LL.L-'-LL:-':-'-'-'-:-:-:,-'--'--':-=-'

-50

50

100

TpC(

II
VsolVI

~ ~~~~m?IJ":~~Jl--------

______

5_/6
521

SGSP363 - SGSP367
Switching times test circuit for resistive load

Switching time waveforms for resistive load

:r.

----~90.'.

vi

:

10·,.

I

I
I

--- - - -

90.'.
I

I

3.3

I

~F

I

90-'.1

-Vo :

Id (ott) It

5 - 6059

5C-0008/1

Pulse width ::;; 100 p.,s
Duty cycle ::;; 2%

Unclamped inductive load test circuit

Unclamped inductive waveforms
VIBRIDSS

VI_::I"L
u

Pw

2200

3.3

jlF

JlF

.-

'"

I
I
--.tL _____ -

I
'"
__
IO<..-_
'"

I ~~

S[-0316

S(-0317

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo

1.8KO

::CJ= Cot:,-C:=:J--{
PW

i

1K.C1.

.....
PW adjusted to obtain required VG

6/6
-----------------

522

Gil
SCiS-1HOMSON - - - - - - - - - - - - - - - - '1,,,
~urc;IRl@!l;I\,!l;rc;'j)'IRl@li(i]urc;~

SGSP364
SGSP369
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE

Voss

SGSP364
SGSP369

450 V
500 V

ROS(on)
1.5 {}
1.5 {}

10
5A
5A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH VOLTAGE - FOR ELECTRONIC LAMP
BALLAST
• ULTRA FAST SWITCHING
• EASY DRIVE - REDUCED COST AND SIZE

,

INDUSTRIAL APPLICATIONS:
• ELECTRONIC LAMP BALLAST
• DC SWITCH
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching
times make these POWER MOS transistors ideal
for high speed switching applications. Applications
include DC switch, constant current source, ultrasonic equipment and electronic ballast for fluorescent lamps.

TO-220

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS

SGSP364

SGSP369

VOS

Drain-source voltage (VGS = 0)

450

500

V

VOGR

Drain-gate voltage (RGS = 20 KU)

450

500

V

V GS

Gate-source voltage

±20

V

10

Drain current (cont.) at Tc = 25°C

5

A

Drain current (cont.) at Tc = 100°C

3

A

Drain current (pulsed)

20-

A

Drain inductive current, clamped

20

A

Total dissipation at Tc <25°C

100

W

Derating factor

0.8

W/oC

10
10M

(e)

10LM

Ptot

(e)

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
1/5

523

SGSP364 - SGSP369
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

1.25
275

°C/w
°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
~BR) OSS Drain-source

loss

IGSS

breakdown voltage

10= 250 p,A
for SGSP364
for SGSP369

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

VGs= 0
450
500

V
V

Te = 125°C

250
1000

p,A
p,A

±100

nA

4

V

1.5
3

{}

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

10= 250 p,A

2

10= 2.5 A
10= 2.5 A Te= 100°C

{}

DYNAMIC

gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 2.5 A

Vos= 25 V
VGs= 0

f= 1 MHz

mho

3

780

1000
200
130

pF
pF
pF

20
30
85
25

30
40
110
35

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 2.5 A
Voo= 250 V
Ri= 4.7 {}
Vi= 10 V
(see test circuit)

_2/_5 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~tr~:~~4

524

______________

SGSP364 - SGSP369
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (-)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 5 A

VGs= 0

trr

Reverse recovery
time

Iso= 5 A
di/dt = 100 A/p,s

VGs= 0

5
20

A
A

1.2

V

470

ns

(*) Pulsed: Pulse duration = 300 P.s, duty cycle 1.5%
(-) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

IO{A

J
0=0.5

100

,,
6~ ~

I"

Zth:KRthJ_c

lOps

~

~OOps

,,

/

"

60

y-t-

==
- ~~c.,'o~

10~

,
I

/; =..!.e..

1 0 - 1 m ; R• •

.~

60

1:

msj

40

"I"I"

Oms

20

OOms

SGSPJ64 fSGSPJ69 f -

1

c~

o
tp{s)

Output characteristics

Output characteristics

o

25

50

75

""'"

100

I"

125

"

Teas,{OC)

Transfer characteristics

I

'IA I

V6S =10V!J IIV

V",10V/ ' / 5 V
Tc~u=25°(

1/

~

Iv ....

~

V

1(. . =25-(

I

.

4.5V

,,- V
/
V

I

I

I
I
II

4V

II

5V

I
I

4.5V

II

I

4V

1/
VoslVI

20

40

60

10

VDSIVI

-----------------------------~~~~~~?V~:9~---------------------------3-/5
525

SGSP364 - SGSP369
Static drain-source on
resistance

Transconductance

Gate charge vs gate-source
voltage
-0216

ROS(on)

In.)

.-

---

f---+-+--+--\--+~-+---t

-~­

2

-'I----~

---

V--r--

1.8

-r--(--

---r--+--+--+-----i
.IAI

VGS =10VI-+-I--1-+4.y./-+-+----l

Capacitance variation

L

Vos=400V

~

15

~

/'/

I

/

--t--- t-14

IDIA)

42

Uln[}

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature
~~i~l

'//

Vos=200V.

/

1=1-- - - I - I - - - -- ~t____t__t___t_+__t__t____l
1--1-- - _..L --- ------r- - - - - I - 10~-L~~1-L-L~~-L~L-~~
10

hV

Vos=100V

-

-

1--1-- -t----b''l-tA-v+-+-t---t-+__t__+---I--l
1.4 H-il..-:----vi--V......,·il--I---t_+__t__t--t--+--+--t--I

5

~;/

lo=6A

tj::::tj::::t~::::~::::~I/~::::t_7-r-.y-/--tl--_-+-~-r---+---I

o

~

-1---

2.2 H++Hr+-+--l--H-++-+:-O-L -H
20 V

/

/

I

-I----+--+-f--+-+ -t--I--I---+-+--I----l

-f--r-

f---+----I----::7'i""::+--\-t--/,/

-1----

VIBR }05S

r-r-,,--,-,,-,-,..,--,--,-r--r-r---.ri'-i'-'-ln

Inorml

I-++-l-+++-+-t-+--H-++-+-+-t-+--HH

1.0

1.0

1-++-l-+t-+--f-71Lt-+-l-++-+-+-t-+--HH

0.80 J.-++-t_++-+--+-H----t--I--t--+-t----P'fd--t--H

0.9 J.-+--H--+-+-++-I-+--H--+-+-+--+-+-+--H-i

J.-+--H---I--H---H +-I-++--++-H--+-t-H

~--t-+--+--t -I----t----t v.s=ov

-~-~

.- -_. - - J~1M~:5°(r-+--+-+-I--t----t
1.20

500 1I't--f-+-+-+-H-+-+-H-+-+-+--"r-+-l
~

- -+--H-+-++-+--+-+-+-+-+-+-1
\',ri

-_\,~

c,,,

f--++-++f--+++-H Vos= vGS 1--+-+-+--+-1-1
ID=250)JAI--+-+-+---H-I

-I--

Vos(VI

Normalized on resistance
vs temperature

Source-drain diode forward
characteristics

~~;~:;l f++-t-+++++++-t-++-+-+-+-++H
IsoIAI

1-++-t--l-+--+-1 VG5 =10 V 1--+---H--I-t--+,4-+-I
2.0 1-++-1--+-+-+-110 =2.5A

~H[~H~~a$~f-!-~+,.~
J.-++-t-t--+--+/--A--J.-+--H--I--H-T=-'",~.=L25"--c+'[-

IJ
1.5

1.0

0.5
-50

50

100

VsolVI

-------------- ~ ~~~~m~lr~:~~©~ -------------4/5

526

SGSP364 - SGSP369
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90'1'

v·I

,,

10'1.

I
I

I

3.3

I

Pulse width :::;; 100 p's
Duty cycle :::;; 2%

Voo

~F

I

I

td(offl tf

5 - 6059

S(-0008/1

Clamped inductive load test circuit

Clamped inductive waveforms

V

_

D

VDD
----.
I

I
IIL-_ _ _

~

L. ________ •

SC·0311

Vi = 12 V - Pulse width: adjusted to obtain
specified IDM , Vclamp= 0.75 V(BR) DSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
1:1

1.8Ka

:CJ: (_t7~.-C:::::J--l.
PW

i
.....

lKn

PW adjusted to obtain required V G

-------------- ~ ~~~~m~::~~~ ______________

5_/5

527

r=-= SGS-THOMSON
..~1m ~O©OO@~OJ~©lJOO@~O©~

SGSP381
SGSP382

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP381
SGSP382
•
•
•
•
•

Voss
60 V
50 V

Ros(on)
0.06 0
0.06 0

10
28 A
28 A

HIGH SPEED SWITCHING APPLICATIONS
60 VOLTS - DC/DC AND UPS APPLICATIONS
HIGH CURRENT
ULTRA FAST SWITCHING
EASY DRIVE FOR REDUCED COST AND SIZE

INDUSTRIAL APPLICATIONS:
• DC/DC CONVERTERS AND UPS
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching
times make these POWER MOS transistors ideal
for high speed switching applications. Typical uses
include UPS, battery chargers, printer mechanism
drives and motor speed control

TO-220

INTERNAL SCHEMATIC
DIAGRAM

SGSP381

SGSP382

Drain-source voltage (VGS = 0)

60

50

V

Drain-gate voltage (RGS = 20 KO)

60

50

V

ABSOLUTE MAXIMUM RATINGS

±20

V

Drain current (cont.) at Tc = 25°C

28

A

Drain current (cont.) at Tc= 100°C

17

A

Drain current (pulsed)

112

A

Drain inductive current, clamped

112

A

Total dissipation at Tc <25°C

100

W

Derating factor

0.8

W/oC

Gate-source voltage

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

529

SGSP381 - SGSP382
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

1.25
275

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Test Conditions

Parameters

OFF

V(BR) DSS Drain-source
breakdown voltage

IDSS

IGSS

ID= 250 itA
for SGSP381
for SGSP382

VGs= 0
V
V

60
50

Zero gate voltage
drain current (VGS = 0)

V DS = Max Rating
V DS = Max Rating x 0.8

Gate-body leakage
current (V DS = 0)

VGs= ±20 V

Gate threshold
voltage

VDS = VGS

Tc = 125°C

250
1000

itA
itA

±100

nA

4

V

0.06
0.12

n
n

ON (*)

VGS(th)

RDS (on) Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

ID= 250 itA

2

ID= 14 A
ID= 14 A Tc= 100°C

DYNAMIC

gfs

Forward
transconductance

V DS = 25 V

ID= 14 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

VDS = 25 V
VGs= 0

f= 1 MHz

mho

5

1100 1400
800
400

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

V DD = 25 V
ID= 14 A
Vi= 10 V
Ri= 4.7 n
(see test circuit)

_2/_5 _ _ _ _ _ _ _ _ _ _ _ _ _

530

~ ~~~~m~::~~~~

25
75
50
40

35
100
65
55

ns
ns
ns
ns

--------------

SGSP381 - SGSP382
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 28 A

VGs= 0

trr

Reverse recovery
time

Iso= 28 A
di/dt = 25 A/p's

VGs= 0

28
112

A
A

1.4

V
ns

125

(*) Pulsed: Pulse duration = 300 /Ls, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Derating curve

Thermal impedance
GC-0571

lolA ~

II

I

100

I

r-rr-

·T"I~

~0$'
~~~a~

10)15

/'

100)15

I

1
1O-

mmmHE

Zth=KRlhJ_c

& =J.£

I---

I

o

Output characteristics

_L_

as

---

Tcase=2S0(

V

=l"l 7'

ilV

JV/

(---

~ /

----

//1/

fI- / V

BV

Output characteristics
7V

25

50

75

100

lolA I

- - r-- -

V

( - - (---

--

--- t--

-

~
20

Vos=2SV

--I----i----f-::, - - - - - - - - -

'"

T,,,,loCI

rT",;~-55.~ / 25/

I!J

I+--+--+-+-+---

1/

I

-1
I

5V

4V

o
Vos(Vl

"-

125

i//II
{I;
1.'1

~ _____ 1--_ _-+_7_V-+_+ +--+_-1

6V

-f--

11/ 125°(

--1

/

If'/ i-p[

o

"'-,"-

Transfer characteristics

_

~v

r-iAV

"-,"'-

40

, 'VosiVI

t----

j"'-

60

20

~~~~~~~t ocl

iliA I

,"-,"-

1:

10ms -lOOms

I

~

80

lms

"

1

24

VosrVJ

-+

o

I

I

I

J

(f
~

--._- -

.1

- - r-VliS{V)

------------__ ~ ~~~~m?1JT:~~~~ ______________3_/5
531

SGSP381 - SGSP382
Transconductance

Static drain-source on
resistance

9fs iS I

I

Imo.)

/

VGs =20V

Tcase=-S5°

V

Il v

V

100

v

80

If

Vos=20V
VDS =3SV

Vos=50V

-ttl,
-------.ISI./

L'/

1

_I-"""

20

30

40

IL
I

II

/10V

'--

40

Capacitance variation

1

I

60

11

~-

60

II

/

v

lolA)

80

20

Normalized gate threshold
voltage vs temperature

40

so

Q.lnCl

Normalized breakdown
voltage vs temperature

VGSlthl.--r-r-r-,-,..,---r-r--,--;r-r,-,--,--,-r'T'T"'i-'l

(InFI

(norm H-+-1-++-+-t--t-t-t-t--t-+-t-H-t-t-H

\
1\

160 0

Tc. . =25°(

~

o \

IO"250~A

f=1HHz

Vos=ov

t"'-

1\ "t--+-

\

0

"-

"r-..

o

10

c..
0.9 1--I-+-+-+-I-++-++--H-*l--+-1-++-++-1

t'---

c...

-I'"- I'"-

t - t-- t--

30

20

t-- t -

~
40

VoslVI

Normalized on resistance
vs temperature

Source-drain diode forward
characteristics
(;(·0191

VGSIV)

I

IO"'4A10V1--I--H-+-t-+-1-t-t-t---t7'I--+-1
Vw

H-+-t--H-t-t-++---t."'H---t-1

~"34A

VOS"20V
Vos·35V
Vos,SOV

10

/

r-tt:/,
r-;jli'"

V'/
J

J
0.51-++-+-+-+-+++-+-1H-++-H-I--I-++-1

I

1
v
-50

50

_4/_5_ _ _ _ _ _ _ _ _ _ _ _ _

532

~.34A

L

120

/

25°(

/11

120

(;(-0'9'

VGSIV)

ROSlon I

VDs ",25V

I

Gate charge vs gate-source
voltage

20

30

40

~ ~~~~m?1J~:~~~

so

Q.ln()

1-++++1-+-+-+¥\--H-I

SGSP381 . SGSP382
Switching time waveforms for resistive load

Switching times test circuit for resistive load

:r

----~90.'.

Vi

:

10·,.

Voo

3.3

I

Pulse width ~ 100 its
Duty cycle :;;; 2%

I
I

I
I

I

~F

-Vo :

5- 6059

Id(oft) If

S(-0008/1

Clamped inductive waveforms

Clamped inductive load test circuit

V _
D

voo
-----,
I

I

I
"-_
_ _---I L.. _______ ._
SC·0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M • Vclamp= 0.75 V(BR) DSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
lK.n.

1.8Kll

:CJ: C~:,--C::::J--L
PW

!

--

lKfi

PW adjusted to obtain required VG

--------------

~ ~~~~m~::~~~,

______________

5_/5

533

SGSP461
SGSP462
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP461
SGSP462

Voss
100 V
80 V

Ros(on)
0.15 {}
0.1 {}

10
20 A
25 A

• HIGH SPEED SWITCHING APPLICATIONS
• 80 - 100 VOLTS - FOR UPS APPLICATIONS
• RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• UNINTERRUPTIBLE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching
times make these POWER MOS transistors ideal
for high speed switching applications. Typical applications include UPS, battery chargers, printer
hammer drivers, solenoid drivers and motor control.

TO-218

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS

SGSP461

SGSP462

VDS

Drain-source voltage (VGS = 0)

100

80

V

VDGR

Drain-gate voltage (RGS = 20 K{})

100

80

V

VGS

Gate-source voltage

10

Drain current (cont.) at Tc = 25°C

20

25

A

10

Drain current (cont.) at Tc= 100°C

13

16

A

Drain current (pulsed)

80

10M

(e)

Ptot

Total dissipation at Tc <25°C

Tstg

Storage temperature

Tj

Max. operating junction temperature

Derating factor

±20

V

100
125
1

A
W
W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
• Introduced in 1988 week 44
June 1988

1/6

535

SGSP461 - SGSP462
THERMAL DATA

Rthj _ease Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

max

1
275

ELECTRICAL CHARACTERISTICS (Tease=25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) oss Drain-source
breakdown voltage

loss

IGSS

10= 250 p,A
for SGSP461
for SGSP462

VGs= 0
100
80

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (VOS = 0)

VGs= ±20 V

V
V

Te= 125°C

250
1000

p,A
p,A

±100

nA

4

V

0.15
0.1

n
n

0.3
0.2

n
n

ON (*)

VGS(th)

Gate threshold voltage Vos= VGS

Ros (on) Static drain-source
on resistance

VGs= 10 V
10= 10 A
10 = 12.5 A
VGS= 10 V
10= 10 A
10 = 12.5 A

10= 250 p,A

2

for SGSP461
for SGSP462
Te= 100°C
for SGSP461
for SGSP462

ENERGY TEST

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starting T j = 25°C
for SGSP461
for SGSP462

L = 100 p,H

gfs

Forward
transconductance

Vos= 25 V

10= 12.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

lUIS

20
25

A
A

4.5

mho

DYNAMIC

950

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mguT:~~~

536

1200
480
230

pF
pF
pF

- _____________

SGSP461 - SGSP462
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SWITCHING
td
tr
td
tf

(on)
(off)

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 12.5 A
Voo= 50 V
Vi= 10 V
Ri= 4.70
(see test circuit)

20
60
65
25

30
80
85
35

ns
ns
ns
ns

20
25
80
100

A
A
A
A

1.35
1.35

V
V

SOURCE DRAIN DIODE
Iso

Source-drain current

ISOM (e)

Source-drain current
(pulsed)

V SD

Forward on voltage

trr

Reverse recovery
time

for
for
for
for

SGSP461
SGSP462
SGSP461
SGSP462

VGs= 0
Iso = 20 A for SGSP461
ISD = 25 A for SGSP462
Iso= 25 A

VGs= 0

190

ns

di/dt = 25 Alp,s

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

--------------

~ ~~~~m~trT:~~©~

_____________

3_/6

537

SGSP461 - SGSP462
Safe operating areas

Thermal impedance

Derating curve
)

6=0.5
125

~~~~::; ~h=
10~s

I"l~

100

r-

I 'VU~S

0~~'111111'6~0(0~m'E'-11
10msr--

10

1"-

L'--

50

L'--

"-

25

SGSP461
SGSP462

o

Output characteristics
VGSIVI

"-

75

E

1ms

Output characteristics

o

25

50

'"

1"-

75

I"

Transfer characteristics

'--'--'-'--'---'---'-'I/"IITT
1---'-""l!L.,
27 1-+--H1-++-+-t-++--H-+Ht-+'r.12~S.;i:-C-H

r~I-t- ~:::;:~,"r:-~+,j-FL~+I/h'-l+---t_-+-~I---t
VOS"80V I- j.L, '(.f

11-j /-if--t--t-I---t--t
v

=2SV

lo=lBA

J
3

I

I

II

30

40

o.ln()

Transconductance
+

-t--r~I-- ~f--+-+-l_+-L_I'-.Jl--+-I-+-l
25'(

If/-I-/I

24

27

VoslVI

Gate charge vs gate-source
voltage
VGSIVI

ROSlon 1

In)

0.2 4

Gc-om

V 'I
-rl I,
t - - t - Vos=sov
r-j.LJI
Vos=80V

ill

0.2 0

fI

f--I--I--

20V

I

-1-H-+-1-++-t----L+-+-l-I
125'(

I--r-I-

VGS =10V

0.12

V

/

-I ~~~

1.--'/

0.08

-I0.04
26

538

21

0.16

1/ -- ~~-

4/6

18

Vos=20V

- H - -++-1-+-+-1--'-:::'
II-+-+-H--I
Vos=25V

6

1S

Static drain-source on
resistance

g"ISI ,---,-,--,--,--r-r-,--,--,--,Ir-T---r~r--,
1--1-- -t--t-+-H--t-+-t- I-II~--t----

I

12

9

lolAI

o

20

-

40

lo=1BA

1
1

/
/

60

-

I
I

/"

80

100 lolA)

20

30

40

0.1,(1

SGSP461 - SGSP462
Capacitance variation

Normalized gate threshold
voltage vs temperature

V(BR)OSSrT-,--,---,,,,,rr..,-,--r-,..,-,,-'T"T'T--1

VGSlthl

(norm) r++-t-++-++--II+++-+-+-+-+-+-+-l--H

Inorml

IprJ

Normalized breakdown
voltage vs temperature

fclMHz
VGs·OV

1.6",

-

--

Tc.,..,,,~·c

UK

800
600

200

1\
..........

~
\

\

..

1.1
1.1

lo;250,llAr+--H---+--,f£-t-+-++-+-1

0.9

r++-+-+-++-t-l-t-H+-H-++++-+1

1.0

;

0.9

'" r---...

'-..

-

Co.,

ern

l - t--

0.6

r-0.7
-50

Normalized on resistance
vs temperature

50

Source-drain diode forward
characteristics
IsolA I

[/,V
1.0

r++-+-+-++--b1<++++-I-++-+-1--I---J--j

0.5

rt--H-t-H--t-l-+-H+H-+-+-+-+-+1

TJ;1500[

V~5O[

I

II
VsolVI

------------------------------ ~-~~~~~?vT:~~©~ ____________________________

5__
/6

539

SGSP461 - SGSP462
Switching time waveforms for resistive load

Switching times test circuit for resistive load

____ ~90.1.

vi

:

: ;10°'.
.:-

Voo

3.3

I

pF

I

I

I

I
I

-Vo :

td(offl If

5 - 6 059

S(-0008/1

Pulse width ~ 100 p,s
Duty cycle ~ 2%

Unclamped inductive waveforms

Unclamped inductive load test circuit

10M
10

Villi

_,.,,1

"
10

v,_IL
u

Pw

2200
~F

3.3
}JF

:

""
/"

" -_ _ _--1

I

,

\L _

5[-0316
5(-0317

Vi = 12 V - Pulse width: adjusted to obtain

specified 10M

Body-drain diode trr measurement
Jedec test circuit

Gate charge test circuit
Voo
1KA

1.8KO

~ C~~,~=:r--{
PW

!

lKfl.

.....

PW adjusted to obtain required VG

_6/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

540

~ ~~~~m~1J":~~lt

--------------

1'='=

SCiS-1HOMSON

SGSP471
SGSP472

~.,L U0i]o©oo@rnOJ~©'ITOO@~O©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP471
SGSP472

Voss
100 V
80 V

Ros(on)
0.0750
0.05 0

10

30 A
35 A

•
•
•
•

HIGH SPEED SWITCHING APPLICATIONS
80 - 100 VOLTS - FOR DCIDC CONVERTERS
HIGH CURRENT> 1V DROP AT 20A
RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED SIZE AND COST
TO-218

INDUSTRIAL APPLICATIONS:
• UNINTERRUPTIBLE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching
times make these POWER MOS transistors "ideal
for high speed switching applications. Applications
include DC/DC converters, UPS, battery chargers,
secondary regolators, servo control, power audio
amplifiers and robotics.

ABSOLUTE MAXIMUM RATINGS

INTERNAL SCHEMATIC
DIAGRAM

5

SGSP471

SGSP472
80

V

80

V

V DS

Drain-source voltage (VGS = 0)

100

VDGR
VGS

Drain-gate voltage (RGS = 20 KO)

100

Gate-source voltage

10

Drain current (cont.) at Tc = 25°C

30

35

A

10

Drain current (cont.) at Tc = 100°C

19

22

A

Drain current (pulsed)

120

140

A

10M

(e)

Ptot

V

±20

Total dissipation at Tc <25°C

150

W

Derating factor

1.2

W/oC

T stg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
• Introduced in 1988 week 4 4 "
June 1988

1/6

541

SGSP471 - SGSP472
THERMAL DATA

Rthj _ case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

max

0.83
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

loss

IGSS

10= 250 p,A
for SGSP471
for SGSP472

VGs= 0
100
80

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Tc = 125°C

V
V
250
1000

p,A
p,A

±100

nA

4

V

0.075
0.05

0
0

0.15
0.1

0
0

ON (*)

VGS

(th)

Gate threshold voltage Vos= VGS

Ros (on) Static drain-source
on resistance

VGs= 10 V
10= 15 A
10= 17.5 A
VGs= 10 V
10= 15 A
10= 17.5 A

10= 250 p,A

2

for SGSP471
for SGSP472
Tc= 100°C
for SGSP471
for SGSP472

ENERGY TEST

Unclamped inductive
switching current
(single pulse)

Voo= 30V
starting T j = 25°C
for SGSP471
for SGSP472

L = 100 p,H

gfs

Forward
transconductance

Vos= 25 V

10= 17.5A

Ciss
Coss

Input capacitance
Output capacitance
Reverse transfer
capacitance

V DS = 25 V
VGs= 0

f= 1 MHz

lUIS

30
35

A
A

9

mho

DYNAMIC

Cr~s

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1fT:~~~~

542

1800 2200
810
375

pF
pF
pF

______________

SGSP471 - SGSP472
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SWITCHING

td
tr
td
tf

(on)
(off)

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 17.5A
Voo= 50V
Ri= 4.7 n
Vi= 10 V
(see test circuit)

30
85
100
40

40
110
130
55

ns
ns
ns
ns

30
35
120
140

A
A
A
A

1.35
1.35

V
V

SOURCE DRAIN DIODE

Iso

Source-drain current

ISOM (e)

Source-drain current
(pulsed)

Vso

Forward on voltage

trr

Reverse recovery
time

for
for
for
for

SGSP471
SGSP472
SGSP471
SGSP472

VGs= 0
Iso = 30 A for SGSP471
Iso = 35 A for SGSP472
Iso= 35 A
di/dt = 25 A/p.s

VGs= 0

190

ns

(*) Pulsed: Pulse duration = 300 j.ts, duty cycle 1.5%
(e) Pulse width limited by safe operating area

-------------- ~ ~~~~m~lr~:9lt _____________3_/6
543

SGSP471 - SGSP472
Safe operating areas

Derating curve

Thermal impedance
I
6=0.5

II
lOps

=

100ps-

10-1

lms

160

i.---

6=0.2

SGSP472
SGSP471

......-rrr

.......

6=0.1

f--

f-&-o.O 5

~

Zth=KRthj_c

j,.£ 6=0.01

10ms-

SINGLE PULSE
lOOms
SGSP471

~
I'

-ttJ

80

Iii

IIIIIIIIH

40

....,&-0.02 k"'_

DC

100 '-o--'-.LLJLLli.,-,-:---,S=GS,-,P4--,72..w..L'-"-;;--'---'-'~-:-"
100 1
~ 6 610'
2
4 6 8102
2
4
6 9VOS(V}

Output characteristics

III

1\\\\ 1111I1111

2

I1111111111
10 2

Iplsl

10V

TQII::t2S-C
t,olOOps

8V

V

"" '\
o

40

V. V

-,
1c... =-55-(1c. . =25-(Tc_=125-(

7V

6.SV

t~~

--,-

III
It
/I

S.5V

SV
V",o4.SV

"

~r

V

VoslVI

-16'

G-

ROS{on)
-~I--

Vos=25V

2

Gate charge vs gate-source
voltage

Static drain-source on
resistance

I

I

VoslVl

T ranscond uctance

r--

t-- - -

ImILI

t--

--

68

52

V ,..,....

c-i- -

1c. . =25-(

44

/ ./
I~r'
M'/

T

=12S·

VGs =10V

20
~IAI

Z
ill

.......

v

I

IO=loSA
Tcaseo=ZS·C

-

/

I
II

-I-

28
20

sovt'2
sov
17

IV

Ii

20V

v

36

If

bL'/V

VOso2OV -

V /

60
1c. . =-55-

544

77

III,

6.5V

S.5V

~ WI

I

I 'J

Vw 2SV

f--

20~+--r-+~__+-~6V~~__~

6V

/'; V'"

'\.

120

I

7V

l'/

4/6

80

7SV

~y~
20

'\

V"' . . . .

l- V

lO

o

'\

Transfer characteristics

r-

IV

I'\.

'\

Output characteristics
Ge-016S

~IA I

'--"

120

s =..!.£.
1:

II
o

40

80

120

IDIAI

20

60

Q(nc)

SGSP471 - SGSP472
Capacitance variation

Normalized gate threshold
voltage vs temperature
VGSlthlr-rT""T-r-r-r-'--'--r-,,-'-r-r-'-'--"r'~

C

(norm

Ipf)

1400

\

Tc..,·ZS·

I"-....

600

.......
1"-....-

-

10

1.1l-++-I-++-++H-+-++H.¥-\-+t--H

0.9

H-+-+-+-t-+-H-++-+-N-++-+-+-I-H

0.8

H-+-+-+-t-+-H-++-++-IH-+-+"t-H-1

Coss

0.9 t--t-:.r-I-+-t-++-+-+-+-+-f-t-++-+-+-+-+-I

Cno

40

r-r-'-'--'-r-r-'--'--'--r-T-'-r-r--'-'-~~

{norm )1-++-+-+-+-++-+-+-+-++-1-++-+-+-+-+-1

100

-50

"os IVI

Normalized on resistance
vs temperature
ROSlon)

Source-drain diode forward
characteristics
G(·om

isolA I
50

=t=j:·f
rl

_li
T,Ht=1S0 0 (

1.5

Inormjl-++-+-+-+-++-IH-+-+-+-t-++-+-+-+-+-i

~-

\ 1\
\ I\.
['...

VIBRIOSsr-r-,--,-,--,-,---,-,rr-,--,-r-r-r-,---,--'T"'r-T--,

ul-++-+-'t-t-++-+-+-+-++-I-++-+-+-+-+-I

fl1MHz

\

l-+-t:-I-+-t-+-H-++-++H-+-+-+-H-1

'\;5'OV

I\.
1800

Normalized breakdown
voltage vs temperature

V

I-++-+-+-+-++-IH-+-+--t-,~+-+-+-+-+-i

/V

~
. . =25°C

I

VGs=OV

I

-50

'0.5

II
1.5

~ ~~~~m~1r~:~~~

VsolVI

______________

5_/6

545

SGSP471 - SGSP472
Switching times test circuit for resistive load

Switching time waveforms for resistive load
v : ; ' : : - ' ____

~,90.J.

10-/.

I
t

,,
I

Voo

3.3
~F

-vo :

5 - 6059

td (off) If

5C-0008/1

Pulse width :E;; 100 p,s
Duty cycle :E;; 2%

Unclamped inductive waveforms

Unclamped inductive load test circuit

V(BRIOSS

10M

0 _",,1

1

Voo

10

VI_T1.
U

Pw

2200
}IF

3.3
}IF

:

,,"
/

"

/

" -_ _ _---J

I

,
,

L ____ -

-

5[-0316
5[-0317

Vi = 12 V - Pulse width: adjusted to obtain

specified IDM

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
1:1

1.8KO

:CJ: (;--",---"-,---,
PW

i

....

PW adjusted to obtain required VG
6/6

546

~ ~~~~m?v~:~~li

--------------

ru
SGS-1HOMSON
~1m [K(A]O©OO@~[L~©lJOO@[K!]O©~

SGSP474
SGSP475

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP474
SGSP475

Voss
450 V
400 V

ROS(on)

0.70
0.550

10
9A
10 A

•
•
•
•

HIGH SPEED SWITCHING APPLICATIONS
HIGH VOLTAGE - FOR OFF-LINE SMPS
HIGH CURRENT - FOR SMPS UP TO 350W
ULTRA FAST SWITCHING - FOR OPERATION
AT >100kHz
• EASY DRIVE FOR REDUCED SIZE AND COST

INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Fast switching and easy drive make these POWER MOS transistors ideal for high
voltage switching applications. These applications
include electronic welders, switched mode power
supplies and sonar equipment.

TO-218

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

SGSP474

SGSP475

450

400

V

450

400

V

VOS
VOGR
VGS

Gate-source voltage

10

Drain current (cont.) at Tc = 25°C

9

10

A

Drain current (cont.) at Tc= 100°C

5.6

6.3

A

Drain current (pulsed)

40

40

A

Drain inductive current, clamped

40

40

A

10
10M

(e)

10LM

(e)

Ptot

Drain-gate voltage (RGS = 20 KO)

V

±20

Total dissipation at Tc <25°C

150

W

Derating factor

1.2

W/oC

Tstg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

547

SGSP474 - SGSP475
THERMAL DATA
0.83
275

max

Rthj _ case Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Test Conditions

Parameters

OFF
V(BR) oss Drain-source
breakdown voltage

loss

IGSS

10= 250 pA
for SGSP474
for SGSP475

VGs= 0
V
V

450
400

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGs= ±20 V

Tc= 125°C

250
1000

p,A
p,A

±100

nA

4

V

0.7
0.55

n
n

1.4
1.1

n
n

ON (*)
VGS

(th)

Gate threshold voltage Vos= VGS

Ros (on) __Static drain-source
on resistance

VGs= 10 V
10 = 4.5 A for
10= 5 A for
VGs= 10 V
10 = 4.5 A for
10= 5 A for

10 = 250 p,A

2

SGSP474
SGSP475
Tc= 100°C
SGSP474
SGSP475

DYNAMIC
gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 5 A

Vos= 25 V
VGs= 0

f= 1 MHz

mho

6

1600 2100
390
260

pF
pF
pF

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 225 V
10= 5 A
Vi= 10 V
Ri= 4.7 n
(see test circuit)

_V_5_________________________ ~~~~~~?~:~~~

548

30
45
125
30

40
60
165
40

ns
ns
ns
ns

___________________________

SGSP474 - SGSP475
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters

SOURCE DRAIN DIODE

Source-drain current

Iso

9
10
40

A
A
A

1.2
1.2

V
V

for SGSP474
for SGSP475

150M (e) Source-drain current
(pulsed)
Forward on voltage

Vso

VGs= 0
150= 9 A for SGSP474
150= 10 A for SGSP475

Reverse recovery
time

trr

150= 10 A
di/dt = 100 Alp,s

ns

420

VGs= 0

(*) Pulsed: Pulse duration = 300 "'s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Derating curve

Thermal impedance
-Q467

6-0.5

6=0.2

fo-

h-rrr
b=0.1

~

~
0=0,02

.....

~

-

tI-

~

160

r-""\.

Zth::'KRthJ-c

v_

" '\

S=~
1:

80

~

I.·

SINGLE PULSE

11111111

I I UII I I

Illi

'\

1""-

40

II

o
tpls}

Output characteristics

f\-

120

JLJL
\.L6=0.01

2

)

o

40

80

"- f\-

120

Transfer characteristics

Output characteristics
-Oll~

iliA I

V",10V

J

V/

1.1.

IlIAI

/5.5

IlIAI

, V",10V

Tcan =-55°

v

4.5V

...,...-

5.5V

/V/v

0
A'/
rv

1#/"

II

v
J

5V
4V

Vns =2SV

IJ

Tcasc=25°(
t=80jJs

J.V

"

VoslVI

----------------------------~~~~~~?~T:~~~

1

2

3

4

5

6

7

8

9

VGS(VI

___________________________

3_/5

549

SGSP474 - SGSP475
T ranscond uctance

Static drain-source on
resistance

Gate charge vs gate-source
voltage
G-SU9

5

V

I

0.8 ~+-I-+-t-+--Hrl-+-t--+--t-+--H-t-++-1

/~

10

V:~

lo,'8A

VOS=2SV

-~ ~----

'2 f---

10

----j-.-t--+----'----'---+--I

--I-"

4

r:.

0.6 ~+-I-+-t-+--Hrl-+-t--+--t-+--H-t-++1

r------~-T-t-i___=t::t=T,=-E:,-=55.~(=~

~+-I-+-t-+--Hrl-+-t--+--Hl0V

~ VOS ,80V

20DV

I'~ f - - - nov

Vr

j7,

0.4 f-++-+---+-H--Hr-++-+---+-t-::J--15l-9-t+i

;.V

V~

L

0.2 f-t+1r-++-++--f-++-+---+-H--HH--+-+---j

II

21f'
4

6

8

'0

'2

'4

'6

'8

~IAI

20

10

Capacitance variation

30

lolAI

20

Normalized gate threshold
voltage vs temperature

a (nC)

Normalized breakdown
voltage vs temperature

VGS!th..rT--,-,rr,.-,--,--,,---,--,-,-,,---,-,r'Gr=C-'T0B"l-0/!.-,'
{norm.!

100

40

V(BRIDSS

rr,.-,-,-,.-,--,--"--,.-,--,--,,,.-,----T''i'-'-'r'--l

Inorml

~tt+ttttttt+t~~::tr::1

t-t---H-t-t-t---H-t-+-t--+--t-++---t-t-++-1

1.3 r-+--H-t-t-+--Hrl-+-t--+--~--H-+-++-1

1o=250~A

f-t+ll-bt-t+-t-++-t-j

f.1MHz

VGS ,OV

1OOOf-H\+----+--+--1---1 Tea • e ,2S"C 1--1-aoo~~-+--+--1--+--'---r-1--~

0.9

f-t--H-t-+-++--t-+-N---+-H+1-t-t+i

0.8 f-+--H-t-+-t--Ht--++---t-t-'kt---H-t-++-1

5

'0

'5

20

25

JO

35

40

0.7

f-+--H--t-+-t--Ht--++---t-t-t-+--Nrl-++-1

0.6

f-t+-+---+-H--Hr+-+-++--f-++-+--+,,'f--H

-50

Vo5(V)

Normalized on resistance
vs temperature
ROSlonlH-++-+-+-+--H-+-+-+-+-H--t---+-t-+-H
InormlH-++-+-+-+--H-t-+-++-H--t---+-t-+-H
2.5

-50

Source-drain diode forward
characteristics
GC_01l2

isolA I

50

1717-

t-

IL
,so·(I~

2.0

2S 0 (

1.5

I
I1I1

1.0

-50

4/5

550

50

100

VsolVI

50

SGSP474 - SGSP475
Switching times test circuit for resistive load

Switching time waveforms for resistive load
____ ~90.1.

vi

:

:;
.:10·,.

I
I

Voo

3.3

I

~F

I

I
I

-Vo :

td(off) If

5-6059

S(-0008/l

Pulse width ~ 100 its
Duty cycle ~ 2%

Clamped inductive load test circuit

Clamped inductive waveforms

V

_

D

2200
~F

3.3

VOO

~F

---,
I

I

I -_ _ _--J
"

L ______ __ .

SC-0311
SC·0310

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M • VClamp= 0.75 V(BR) OSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo

1.8Kll

:CJ:: Co+~,-C::::J--f
PW

i

....

lKn.

PW adjusted to obtain required VG

______________________________

~~~~~~?v~:~~~~----------------------------5--/5
551

SGSP477
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP477

Voss
200 V

ROS(on)
0.17 n

10

20 A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH CURRENT - FOR TELECOMM
POWER SUPPLIES
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS FOR ROBOTICS.
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include robotics, laser diode drives, UPS,
SMPS and DCIDC converters, electric vehicle drives and a DC switch for telecommunications.

TO-218

INTERNAL SCHEMATIC
DIAGRAM

G~
5

ABSOLUTE MAXIMUM RATINGS

10
10M

(e)

10LM

(e)

Drain-source voltage (VGS = 0)

200

V

Drain-gate voltage (RGS = 20 KD)

200

V

Gate-source voltage

±20

V

Drain current (cont.) at T c =25°C

20

A

Drain current (cont.) at T c =100°C

13

A

Drain current (pulsed)

80

A

Drain inductive current, clamped

80

A

Total dissipation at Tc <25°C

150

W

1.2

W/oC

Derating factor
T stg

Storage temperature

Tj

Max. operating junction temperature

-55 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

553

SGSP477
THERMAL DATA

max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

0.83
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
,,(SR)

oss Drain-source
breakdown voltage

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

VGS(th)

Gate threshold
voltage

Vos= VGS

Ros (on)

Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

gfs

Forward
transconductance

Vos= 25 V

10= 10 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs '" 0

f= 1 MHz

loss

IGSS

200

V

Tc= 125°C

250
1000

p,A
p,A

±100

nA

4

V

0.17
0.34

n
n

ON (*)

10 = 250 p,A

10= 10 A
10= 10 A

2

Tc= 100°C

DYNAMIC

8

mho

1900 2200
550
260

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 100 V
10= 10 A
Vi= 10 V
Ri= 4.7 n
(see test circuit)

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mgv~:~~©~

554

30
50
110
35

40
65
145
45

ns
ns
ns
ns

______________

SGSP477
ELECTRICAL CHARACTERISTICS (Continued)

Parameters

Test Conditions

SOURCE DRAIN DIODE
Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso

Forward on voltage

Iso= 20 A

VGs= 0

trr

Reverse recovery
time

Iso= 20 A
di/dt = 100 A//Ls

VGs= 0

20
80

A
A

1.3

V
ns

320

(*) Pulsed: Pulse duration = 300 P.s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

6-0.5

-

6=0.2
.....,..,."

6=0.1

r"'"

1~

~

160

,v

~

1:

JUL
I

SINGLE PULSE

II

40

1111111111

o

I1111111

11111111111111

tp(s)

Output characteristics

Output characteristics

Tc:25°C

lovl/f7v
/I

,

vos;;;:

~

/r:::::
~v

,.,-;;

V

6V

~V

~r,.r

,

o

~ ..o

e

'"
o

40

80

1I

4V

o
VOS{Vl

-------_______

'\.

ec-OOIS

Tc·-5S"c I - -

-

f--

Tc·2&-C
Tc·125-C

Tc=25°C

I--

II

:1 VJ
H.f
'f)

VOS"25V

tp:::80)Jsec

rJ
5V

r

~ ............ r-

f'\.

120

lOlA )

6V

I

5V

'\

Transfer characteristics
GC-0062

10 (A)

'\

80

~

V

2

'\.

S =...!.£

$=0,02

~6;0.01

-~

120

Ith::XRthJ-c

.4

II/I

/11

VGS .. 4V

~

o
o

VDS(V)

~ ~~~~m~::~~~~

o

~

•

VGS(V)

______________

3_/5

555

SGSP477
Transconductance

Gate charge vs gate-source
voltage

Static drain-source on
resistance

GC-0012

Vos
IV)

I

/

II

./

V :.0

10=22 A
Tc=25°C

/

/

IV

Vos"

r--- IZ /j-/

I~~~
IGOV

v/ Y

/ . /V
./

VOS"25V

'/

I

/

I
0~J--L~

o

IO(AI

--

GC-0073

VGS(Th

CI..

(norm)

far MHz

\

Tc-25OC

5

\

800

\ "\

,~

~

--

Coo.

-0061

V

VOS"VGS
10 "250pA

1"-

'" "-

5

"',

5

"-

5

5

b-

5

vos(V)

40

Normalized on resistance
vs temperature

Source-drain diode forward
characteristics

-899
ROS!on [

1/

(norm)

/

IA)
[os

mBllIiiI
+v

/

v

/
,,/
/

/

/

/

""V
VGs =10V
lo=10A

I-- ,---

vos(V)

4/5

556

V
V

. . . .V

/

:,....-'"
IO=250}JA

I"'"

0

Q(nCI

80

(norm)

5

. . . . r-.-

60

V(8RIOSS

"'-["-..

VGS ·OV

40

2

Normalized breakdown
voltage vs temperature

)1'\..

1600

[200

0

'O(A)

Normalized gate threshold
voltage vs temperature

Capacitance variation
pF

_ _L-~-L~_ _L-~~

~ ,---

SGSP477
Switching times test circuit for resistive load

Switching time waveforms for resistive load

:r

v·I

----~90'I,

10'1,

t:L

,,
I
I

I

-.J Uv;

Voo

3.3

I

Pulse width ~ 100 Jls
Duty cycle ~ 2%

~F

5 - 6059

td(offl If

SC-0008/l

Clamped inductive load test circuit

Clamped inductive waveforms

VOD
----,
I

I

I
SC-0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M • Vclamp = 0.75 V(BR) OSS.

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
VDD

1.8KO

::CJ: :_.-l~.---r---'I---{
PW

...!

lKfl.

PW adjusted to obtain required VG

____________________________

~~~~~~?~~~~©~

___________________________

5__
/5

557

r=-= SGS-THOMSON

~.,L ~O©OO@~[L~©lJOO@[t(!]o©~

SGSP479

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE

SGSP479

Voss
500 V

Ros(on)
0.7 0

10
9A

•
•
•
•

HIGH SPEED SWITCHING APPLICATIONS
HIGH VOLTAGE - 500V FOR OFF-LINE SMPS
HIGH VOLTAGE - 9A FOR UP TO 350W SMPS
ULTRA FAST SWITCHING - FOR OPERATION
AT> 100KHz
• EASY DRIVE - REDUCES COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS

N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include switching mode power supplies,
uninterruptible power supplies and motor speed
control.

TO-218

INTERNAL SCHEMATIC
DIAGRAM

s.

ABSOLUTE MAXIMUM RATINGS

Drain-source voltage (VGS = 0)

500

V

Drain-gate voltage (RGS = 20 KO)

500

V

Gate-source voltage

±20

V

9

A

Drain current (cont.) at Tc = 100°C

5.6

A

Drain current (pulsed)

36

A

Drain inductive current, clamped

36

A

Total dissipation at Tc <25°C

150

W

1.2

W/oC

Drain current (cont.) at Tc = 25°C

Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

559

SGSP479
THERMAL DATA

°CIW

0.83
275

max

Rthj _ case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

°C

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
,,(

30 0

1.5 -

1 - - - I--

1,. . =25-(

VGS",Oy

\ 1"'- -.......

o \

YGS!t1l1

(norm)

\

240 0

~=50A

~

Normalized gate threshold
voltage vs temperature

\\

0

I

20V

I
I

Capacitance variation
(Ip FI

JI

0.4

0.8

1.2

2.4

2.8

VsoIV)

0.9 S

//

/

-- -- -

-

SGSP491 - SGSP492
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90.1.

V·

,

I

,

10·,.

I

Voo

3.3

I

--- - - -

I

I

90.,.

I

~F

I

I

90·1.

-Vo :
I

s- 6059

I

Id(offl If

S(-0008/1

Pulse width ~ 100 /J-s
Duty cycle ~ 2%

Unclamped inductive load test circuit

Unclamped inductive waveforms
V(BR)DSS

10M

....
/

10

VI_Tl..
U

P.,

2200

3.3

VF

JlF

/

/

I

/

I /

I

.... / 1

10 _

Villi

,,

S(-0316 " - - - - - - ' L -

- - - -

-

S(-0317

Vi = 12 V - Pulse width: adjusted to obtain

specified 10M

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
VDD

1.8KO

:CJ: Co+~,-t=::J--l.
PW

:

....

1Kn.

PW adjusted to obtain required VG
5/5

575

SGSP574
SGSP575
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP574
SGSP575

Voss
450 V
400 V

Ros(on)
0.7 0
0.550

10
9A
10 A

•
•
•
•

HIGH SPEED SWITCHING APPLICATIONS
HIGH VOLTAGE - FOR OFF-LINE SMPS
HIGH CURRENT - FOR SMPS UPTO 350W
ULTRA FAST SWITCHING - FOR OPERATION
AT > 100kHz
• EASY DRIVE FOR REDUCED SIZE AND COST

INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistors. Fast switching and easy drive make these POWER MOS transistors ideal for high
voltage switching applications. These applications
include electronic welders, switched mode power
supplies and sonar equipment.

TO-3

INTERNAL SCHEMATIC
DIAGRAM

s

ABSOLUTE MAXIMUM RATINGS

SGSP574

SGSP575

Drain-source voltage (V GS = 0)

450

400

Drai n-gate voltage (RGS = 20 KO)

450

Gate-source voltage

400

V
V
V

±20
9

10

A

Drain current (cont.) at Tc= 100°C

5.6

6.3

A

Drain current (pulsed)

40

40

A

Drain inductive current, clamped

40

Drain current (cont.) at Tc = 25°C

Total dissipation at Tc <25°C
Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

40

A

150

W

1.2

W/oC

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area

June 1988

1/5

577

SGSP574 - SGSP575
THERMAL DATA
max

Rthj _case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

0.83
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF
V(BR) OSS Drain-source
breakdown voltage

loss

IGSS

10= 250/lA
for SGSP574
for SGSP575

VGs= 0
V
V

450
400

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
cu rrent (V os = 0)

VGs= ±20 V

Te = 125°C

250
1000

/lA
/lA

±100

nA

4

V

0.7
0.55

n
n

1.4
1.1

n
n

ON (*)
VGS(th)

Gate threshold voltage Vos= VGS

Ros (on)

Static drain-source
on resistance

VGs= 10 V
10 = 4.5 A for
10= 5 A for
VGS= 10 V
10 = 4.5 A for
10= 5 A for

10= 250/lA

2

SGSP574
SGSP575
Te= 100°C
SGSP574
SGSP575

DYNAMIC
gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 5 A

Vos= 25 V
VGs= 0

f= 1 MHz

mho

6

1600 2100
390
260

pF
pF
pF

40
60
165
40

ns
ns
ns
ns

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 225 V
10= 5 A
Ri= 4.7 n
Vi= 10 V
(see test circuit)

_2/_5_ _ _ _ _ _ _ _ _ _ _ _ _

578

30
45
125
30

!U ~~~~m?IJ~:~~©~ --------------

SGSP574 - SGSP575
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters
SOURCE DRAIN DIODE

Iso

Source-drain current

ISOM (-)

Source-drain current
(pulsed)

Vso

Forward on voltage

VGs= 0
Iso= 9 A for SGSP574
Iso = 10 A for SGSP575

Reverse recovery
time

trr

9
10
40

A
A
A

1.2
1.2

V
V

for SGSP574
for SGSP575

420

VGs= 0

Iso= 10 A
di/dt = 100 A/p,s

ns

(*) Pulsed: Pulse duration = 300 P.s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
J

6=0.5

6=0.1

$=002

.....

jNGri

Io!:~

/5.5

v/

~

I,'

Illr

IIIIIII II

40

111111111

o

10- 1

45V

_.1 VGs =10V
V

"-

80

tp{sJ

6V

'\

,"'-

'\
r-....

o

80

40

120

Transfer characteristics

Output characteristics
(;(·0124

V".10V /

"-

120

S =...!..e.

= 1:
== JUL
,-

v_

'-:

iliA I

Zth:"KRthj_c

~6=0.01

~

Output characteristics

r--"\.

~

i-"

~

160

~

6=0.2
h-rTr I-

iliA I ,-,--,..---,---,--.---,---,-----l""''-,
TU51:=-55°

I

Ij;V V
jV/V

1111

~

1---

5V

#-V

r vI-

~/

I
J

4V

V[Js=2SV

TcIH =2S 0 (
t=80}Js

~V

./#

TC1u =2S 0 (
t=BO}Js

".
VDs{VI

10

20

30

40

50

60

90

VDs{VI

1

2

3

4

5

9

VGSIVI

579

SGSP574 - SGSP575
Gate charge vs gate-source
voltage

Static drain-source on
resistance

Transconductance

G-SIoS9

V

/~
/~
V~

10,18A

0.8 H-++-+-+-+-H-++-++-H-+-t-+-t--H
VDs =lSV

12

c----

10

-

~ ~ Vos ,80V
200V
I'~ - - nov

0.6 H-++-+-++-H-++-++-H-+-t-+-t-I'-t

--

---i -j_.t-::±::t:T::'":i,,:;-S:::S'j::(=t~

H-++-+-+-+-H-++-++-Hl0V

"I-

/.~

0.41++++1++-1++-++-f-j;,1'5+4-t--H

I

0.2 ++++-I++-+-+--t-++-1I++++-t--H

10

12

14

16

18

C

,
~

,

Tease =25-C

-

-

\~

",,,

400

.......

~s

~

200 - f - - Cr55

5

10

15

(norm)
V1BRJDSS

25

H--t-+-+-t-+-H-+-N--HH-+++-I-+-i

0.7

30

35

40

19iE[IJ±ilTI~ti~ffi
~

50

Source-drain diode forward
characteristics
G(·O\l2

isolA I

J
2.0 1--++-l-l--+++-1I++++-I+T-i+++-I

lS0 0 (

!J 2S'(

1.51--++-+-1--+++-1+++++-++-1++-+-1
1.0 1++++-I+-biLt-+-++-1I++++t--H

580

100 a InC)

0.9~miEi§

-++-++-H-+++-t-++-t-+-N-+-1-+-l

VoS(V)

ROSlonll--++-l-l--+++-1I++++-I++-1+++-I
tnormll--++-l-l--+++-1I++++-I++-1+++-I

4/5

60

Normalized breakdown
voltage vs temperature

0.8 I-++++-t-+--H-+-+-+-Plrd--+-++-I-+-+

-

20

0.9

Normalized on resistance
vs temperature

-50

40

1.11-++++N-+-+-+--t-++-1-++-+-+-1-+-+

f .. 1MHz

VGS ,OV

600

20

1.lH-+++H-+-++-t-++-11++++-1-+-+

1000
800

I

lotAI

V(jS(th,--,-,-r-r"T-r",,'-'--'-r-r-~~~
(norm.l H--t-+-+-t-++-t-+-+-+-H-++++-I-+-i
1.4 1-+++-+-1++-+-+-+++-1-+++-+-1-+-+

....... 1'-.,

1

30

Normalized gate threshold
voltage vs temperature

Capacitance variation

(pF)

20

10

~IAI

50

100

II

"

VsolVI

SGSP574 - SGSP575
Switching time waveforms for resistive load

Switching times test Circuit for resistive load

~

____ ~90'1'

V·I

10'/.

,'

I
I

I

3.3

I

Pulse width ~ 100 p..s
Duty cycle ~ 2%

Voo

~F

5- 6059

td (ott) t t

5(-0008/1

Clamped inductive waveforms

Clamped inductive load test circuit

Voo

-----,
I

I

I
SC-0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp = 0.75 V(BR) OSS'

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Vee

I.SK/l

::CJ: C.:r:.
PW

--C::J--{
1
1KD.

....

PW adjusted to obtain required VG

____________ ill SCiS-THOMSON
•J,,,

_ _ _ _ _ _ _ _ _ _ _ _5_/5

~oa;;ffil©~[,~(E;'jj'ffil©[j:j]oa;;~

581

SGSP577
·N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP577

Voss
200 V

Ros(on)
0.170

10
20 A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH CURRENT - FOR TELECOMM
POWER SUPPLIES
• ULTRA FAST SWITCHING
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS FOR ROBOTICS.
N - channel enhancement mode POWER MaS field
effect transistor. Easy drive and very fast switching
times make this POWER MaS transistor ideal for
high speed switching applications. Typical applications include robotics, UPS, SMPS and" DCIDC
converters, electric vehicle drives and a DC switch
for telecommunications.

TO-3

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

200

V

Drain-gate voltage (RGS = 20 KO)

200

V

Gate-source voltage

±20

V

20

A

Drain current (cont.) at Tc= 100°C

13

A

Drain current (pulsed)

80

A

Drain inductive current, clamped

80

A

Total dissipation at Tc <25°C

150

W

Derating factor

1.2

W/oC

Drain current (cont.) at Tc = 25°C

T stg

Storage temperature

Tj

Max. operating junction temperature

- 65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
June 1988

1/5

583

SGSP577
THERMAL DATA

max

Rthj _ease Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

0.83
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) OSS Drain-source
breakdown voltage
loss

IGSS

10= 250 IlA

VGS= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

V

200

Te= 125°C

250
1000

Il A
Il A

±100

nA

4

V

0.17
0.34

n
n

ON (*)

VGS(th)

Ros (on) Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

10= 250 IlA

2

10= 10 A
10= 10 A Te= 100°C

DYNAMIC

gfs

Forward
transcond uctance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V

10= 10 A

V DS = 25 V
VGs= 0

f= 1 MHz

mho

8

1900 2200
550
260

pF
pF
pF

40
65
145
45

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 10 A
Voo= 100 V
Ri= 4.7 n
Vi = 10 V
(see test circuit)

30
50
110
35

_2/_5__________________________ ~~~~~~ _____________________________

584

SGSP577
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Source-drain current
Iso
ISOM (e) Source-drain current
(pulsed)
Vso

Forward on voltage

Iso= 20 A

VGs= 0

trr

Reverse recovery
time

Iso= 20 A
dildt = 100 AIp's

VGs= 0

20
80

A
A

1.3

V
ns

320

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

6-0.5
160

.......

0=0.2

I-r-rrr I6=0.1

I-

~5

~

Zth='XRthj_c

1::

JLJL

80

IIIIIIIII~

40

i:iJ

'V_
~6=001

IIIII11111111

2

m
I

lOY

-

Tc = 25°C

VGS~

/~ ~

h

~v

6V

ld?'

~v

,

o

~ ......
o

~V

,...-

,

I

I

5V

~v

~V
V

I

o

"

r\

40

80

120

ec-oOll5

IO(A)

Tc--55°C

6V

I - -I - -

II,

-

)-4

Tc"25-C
Tc-12S-C

Tc"25°C
tp z 80 sec

'/

f-j fI

'--

III

VOS"25V

I-- 1----

~
r

.v
~

I--

1
4V

"'\

Transfer characteristics
GC-0062

10 (A)

"°

Output characteristics
GC-0061

'\

o

1111111111

tpis)

Output characteristics

"-

S =...!.2.

.....&-0.02

SINGLE PULSE

I-t"\.

120

IIJ)

/1/

VGS"4V

~~

o

VDSIV)

------------------------______ ~~~~~~?V~:~~~~ ____________________________

3_/5

585

SGSP577
Gate charge vs gate-source
voltage

Static drain-source on
resistance

Transconductance

GC-0072

VGS
I

(V I

v
v

/

;

/

V l-0

10=22 A
Tc=25°C

/

Vos"

/11

I~~~

"7 l~v

ISOV

17

/jV
j

'VOS"25V

Ij

7

oL-~-L~

o

GC-0073

-'-t

VGS{T

el"

hi" f'-

Vas ·OV

BOO

f·1 MHz

\

Tc a 25°C
5

\

\

,~

GC-0068!
V1BRlDSS

(norm)

'" ""-

5

\ \..
.........

1'-.. .

""'"'-

-

Normalized breakdown
voltage vs temperature

(norm)

00

00

-

Coo.

I"'"
0

VDS(V)

Normalized on resistance
vs temperature
G[-0899

RDSlon J

1/

(norm I

/'

ID~250}JA

5;;;-

i'--

5

~

0.65
-40

Source-drain diode forward
characteristics

IDS~
(A)~

.

e

.

+

v

/

vV

./

Tc=25°C

V

... V
VGs =10V
lo=10A f-- r--

II

II

Vos (V)

586

/V

5

'" " ",

5

/

V

VDS=VGS

/

V

Q(nt)

IO(A)

Normalized gate threshold
voltage vs temperature

Capacitance variation
F

rr

__L-~-L~__L-~~

/

V V
IO"250~A

SGSP577
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90'I'

V·I

aUv;

'•

10'"

I

I

I

~

3.3

I

Pulse width ~ 100 p,s
Duty cycle ~ 2%
Vi =10 V

Vee

~F

5-6059

td(ott) If

S(-0008/1

Clamped inductive load test circuit

Clamped inductive waveforms

Vo_

VDD

----,
I

I
I1It-_ _ _--J L ___ _____ •

SC·0311

Vi = 12 V - Pulse width: adjusted to obtain
specified IDM • Vclamp = 0.75 V(BR) DSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit

lKA

1.8KO

:CJ:: Ct+~,-C:::J--l.
PW

...i

lKfl.

PW adjusted to obtain required VG

-------------- ~ ~~~~m?tr~:~~l: ______________5_/5
587

SGSP579
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE
SGSP579

Voss
500 V

ROS(on)
0.7 Q

10

9A

• HIGH SPEED SWITCHING APPLICATIONS
• HIGH VOLTAGE - 9A FOR UP TO 350W SMPS
• ULTRA FAST SWITCHING - FOR OPERATION
AT> 100KHz
• EASY DRIVE - REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING MODE POWER SUPPLIES
• MOTOR CONTROLS
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS transistor ideal for
high speed switching applications. Typical applications include switching mode power supplies,
uninterruptible power supplies and motor speed
control.

TO-3

INTERNAL SCHEMATIC
DIAGRAM

5

ABSOLUTE MAXIMUM RATINGS
Drain-source voltage (VGS = 0)

500

V

VOGR

Drain-gate voltage (RGS = 20 KQ)

500

V

VGS

Gate-source voltage

±20

V

10

Drain current (cont.) at Tc = 25°C

9

A

Drain current (cont.) at Tc = 100°C

5.6

A

Drain current (pulsed)

36

A

Drain inductive current, clamped

36

A

Total dissipation at Tc <25°C

150

Derating factor

1.2

W
W/oC -

-65 to 150

°C

150

°C

Tstg

Storage temperature

Tj

Max. operating junction temperature

(e) Pulse width limited by safe operating area
June 1988

1/5

589

SGSP579
THERMAL DATA

Rthj _ case Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

max

0.83
275

°C/W
°C

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) oss Drain-source
breakdown voltage

10= 250-pA

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

Static drain-source
on resistance

VGs= 10 V
VGs= 10 V

gfs

Forward
transconductance

Vos= 25 V

10= 4.5 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

loss

IGSS

V

500

Tc = 125°C

250
1000

p.A
p.A

±100

nA

4

V

0.7
1.4

n
n

ON (*)

VGS

(th)

Ros (on)

10= 250 p.A

2

10= 4.5 A
10= 4.5 A Tc= 100°C

DYNAMIC

mho

5

1600 1900
280
170

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 4.5 A
Voo= 250 V
Vi= 10 V
Ri= 4.7 n
(see test circuit)

-2/-5--------------------------~~~~~~?v~:~~n
590

30
40
130
30

40

60
170
40

ns
ns
ns
ns

_____________________________

SGSP579
ELECTRICAL CHARACTERISTICS (Continued)

Test Conditions

Parameters

SOURCE DRAIN DIODE
Iso
150M (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

150= 9 A

VGs= 0

trr

Reverse recovery
time

150= 9 A

VGs= 0

dildt = 100 Alp.s

36

A
A

1.15

V

9

420

ns

(*) Pulsed: Pulse duration = 300 its, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
-46

6-05
.=0.2
I-r-rrr i-'
6=0.1
~
.=0,02

102'sllilv''''''l_1111111111111

10l'~'II"·<;IT'·iI'W"MIII'~""~"'1'0P~S
'v
'
100~111'11r-....1'1~

i-i

~

6;0.01

SINGLE PULSE

100m

DC

160 f-I"'.
'\.
120

"

I---

~

lOOp'

)

~

11111111111111

Ztn=KRthJ_c

S

I

I,'

=..!.£.
1:

JlfL

80

IIIII!I II

40

111111111

o

Output characteristics

.IAI
V6S"~

~~

V(js=lO~

I

SV

V

I'
V'

/

40

'"

120 "160

80

T""loCJ

Transfer characteristics

6V

TCUt =2S 0 (

/

~V

/

o

f/

Y

/, .....

"\

G(-0221

I

Ttlse=2S0(

'\

iiJ

tpls)

Output characteristics

'\

r--

4.5V

It
1

sv

r-- f--

I

f

4V

4V

3 V

VDsIVI

--____________

VoslVI

~ ~~~~m?1r~:~~©~

2

3

4

5

9

Vc;sIVI

______________

3_/5

591

SGSP579
Transconductance

Static drain-source on
resistance

Gate charge vs gate-source
voltage

I

VI

v.v/

t-7' V/
tz r6

Vos,100V- I-Vos,250V
Vos=400V-

10

1.2

V

.I

H-++-H-+-Y-H-++-H'-t--+--J
V
20V

J

0.8

Vos=25V

V
Hr---I::¥f--V+H-+/~H-+-t-+-H

///

ID=1SA

I

0.4

1

~IAI

20

10

Capacitance variation

30

1
.J

VGSlthl rr-rr--r-,--,-,-r--r,,--,---,rr-rr-rT-'i--l
Inorm) H-+-++-t--++-+-+-++-+--iH-+-t+-t-H

--.

-

(,.

80

100

(llnCl

Normalized breakdown
voltage vs temperature
VIBRIOSS

Inorm)

f++--f-++-++-I-++-+--'---LL+--t-+-T-H

13 1-+++-+-+++-110 =250)lAt--++--t-+-+-++-1

1.2

H--H-+-+-+--H-++-++-f++-+-+t-H

1.1

0.8

H-+-+-+-+-+--H-++-++-t--=f''''I-4d-t-H

0.9

0.4

H-+-+-+-+-+--H-++-++-f++-+-+t-H

0.7

1.6

H-+++-i-+-+++--t-i VOS =V GS
H-+++-i-+-+++--t-i lo=250)lA

\

40

lolA)

Normalized gate threshold
voltage vs temperature

C!nF I

-

I

--

, I - - - -I---H-+-++-H--t--+-H
12

TtlH =25°(

1

c-

L

3

/:V

/V

v

r--- r--

\\

\\

\1\..
r-..

(

ern

20

-50

60Vos(VI

Normalized on resistance
vs temperature

50

0.5

100

-50

50

100

Source-drain diode forward
characteristics
I50~
soIAlmmEE
B
-1---

H--+-++-+-t---i VGs =10V t-++--t-++-++-H
H--+-++-+--+-1l o=9 A

._--,-

/

T,.. =25'(

I
0.5 _

-50

50

100

0.1 '--'--'--"---'---'-----''---'--'---'----'---'--''---'----'--'
o 0.4 0.8 1.2
1.6
VsolVI

_4/_5 _ _ _ _ _ _ _ _ _ _ _ _ _

592

_

~ ~~~~mg1J~:~~lt

--------------

SGSP579
Switching time waveforms for resistive load

Switching times test circuit for resistive load

~

____ ~90'1'

V·

•

I

•

10'"

I
I

I

3.3

I

Pulse width ~ 100 p.,s
Duty cycle ~ 2%

Voo

~F

5- 6059

Id(off) If

S(-0008/l

Clamped inductive waveforms

Clamped inductive load test circuit

Vo_

VOD

---,
I

I
I
"'-_
_ _--J L ___ _____ •

SC·0311

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M , Vclamp= 0.75 V(BR) OSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo
MAINS
INPUT

1.8Kll

::CJ: :_07:,-C:::r--L
PW

:

....

1Kfl.

PW adjusted to obtain required VG
______________________________ ~~~~~~~~~:~~~~ ____________________________5__
/5

593

!'=:-=

..~1m

SGS-THOMSON

SGSP591
SGSP592

~D©OO@~[]J~©lJOO@~D©~

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS
TYPE
SGSP591
SGSP592

Voss
60 V
50 V

ROS(on)

0.0330
0.0330

10
40 A
40 A

•
•
•
•

HIGH SPEED SWITCHING APPLICATIONS
50 - 60 VOLTS FOR INVERTERS AND UPS
HIGH CURRENT - VOS(on) :5 1V at 20A
RATED FOR UNCLAMPED INDUCTIVE
SWITCHING (ENERGY TEST) •
• EASY DRIVE - REDUCES SIZE AND COST
INDUSTRIAL APPLICATIONS:
• DC/DC CONVERTERS
• MOTOR CONTROLS

N - channel enhancement mode POWER MOS field
effect transistors. Easy drive and very fast switching
times make these POWER MOS transistors ideal
for high speed switching circuits applications such
as DC/DC converters, UPS, inverters, battery chargers and solar power converters.

TO-3

INTERNAL SCHEMATIC
DIAGRAM

s

ABSOLUTE MAXIMUM RATINGS

SGSP591

SGSP592

Vos

Drain-source voltage (VGS = 0)

60

50

VOGR

Drain-gate voltage (RGS = 20 KO)

60

50

VGS

Gate-source voltage

10

Drain current (cont.) at Tc = 25°C

V
V

±20

V

40

A

Drain current (cont.) at Tc= 100°C

25

A

Drain current (pulsed)

160

A

Ptot

Total dissipation at Tc <25°C

150

W

1.2

W/oC

T stg

Storage temperature

Tj

Max. operating junction temperature

10
10M

(e)

Derating factor

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area
• Introduced in 1988 week 44
June 1988

1/5

595

SGSP591 - SGSP592
THERMAL DATA

0.83
275

max

Rthj _ case Thermal resistance junction-case
Maximum lead temperature for soldering purpose
TL

ELECTRICAL CHARACTERISTICS (Tcase=25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) oss Drain-source
breakdown voltage

loss

IGSS

10= 250 p,A
for SGSP591
for SGSP592

VGS= 0
V
V

60
50

Zero gate voltage
drain current (V GS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

Tc= 125°C

250
1000

p,A
p,A

±100

nA

4

V

33
66

mQ
mQ

ON (*)

VGS

(th)

Ros (on) Static drain-source
on resistance

. VGs= 10 V
VGs= 10 V

10= 250 p,A

2

10= 20 A
10= 20 A Tc= 100°C

ENERGY TEST

Unclamped inductive
switching current
(single pulse)

Voo= 30 V
starting Tj = 25°C

L = 100 p,H

gfs

Forward
transconductance

Vos= 25 V

10= 20 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f = 1 MHz

lUIS

A

40
\

DYNAMIC

mho

10

1900 2800
1500
850

pF
pF
pF

45
145
120
70

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

10= 20 A
Voo= 25 V
Ri= 4.7Q
Vi= 10 V
(see test circuit)

_2/_5 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1JT:9~

596

35
110
90
55

- _____________

SGSP591 - SGSP592
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE

Iso
ISOM (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 40 A

VGs= 0

trr

Reverse recovery
time

Iso= 40 A
dildt = 25 AIp,s

VGs= 0

40
160

A
A

1.4

V
ns

140

(*) Pulsed: Pulse duration = 300 p's, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
)

IDIA)
6-0.5

I I
V~

-- -f

160

I111

!116~s =

,v

100)Js ~

«;-<::>",0(;:'

v

10.1

'\..

,

m--

./

~

r~

'r'

5=0.05

~

120

t
0 =-'f

'\

'\

s

10ms

&=0.02 '7

'/ _

=

f- -

i"""'F+ffi1lit'~~6=0.01

100ms -

SINGLE PULSE

DC
SGSP591
SGSP592

Z,o,KR'hJ-c

I

r----,

I111

, 'VDS{V)

-

----/t.l.1
I,
lLJ
mr- -rITnIIInm-IIII~II-mlHl

11111111.JJl.WIIUIL...L.L:I~IIIIIIILJ..llJJJJJ

W 2 L.LLll.llJlLLIIIII
1l.J..l.l.WL

Output ~haracteristics

10. 5

10- 4

.-Jl..Jl....

10- 3

II

10-2

10- 1

tp{s)

80

"\

40

!"'"\

o

Output characteristics

'\.
o

40

80

120

160

T",,{OC)

Transfer characteristics

65V

20

r--t-t-t-+-t-t---l-t--t-+Hf+---t--+-1I--+++l

5V

VoslVI
40

______________________________

2

3

4

5

6

7

I

VoslVI

VoslV)

~~~~~~?~:~~~

____________________________

3_/5

597

SGSP591 - SGSP592
Static drain-source on
resistance

Transconductance

Gate charge vs gate-source
voltage
GC-0107

VGSIV}

ROSlon 1

r--

1

(mo.l
I-- - I - -

.f-- L _

-f---i i l
Vos=35V
VDS =20V

Vos=50V

40

II I I
/ /

Tt . . =-55°(

25°C

IY

I

30

~Gs=10V

--

125°(

'IV
f/

20

I

20V

~=50A

I-Tr.M=2SOC

--

I

II
10
20

lO

~IAI

40

Capacitance variation

o

40

80

120

lolAI

20

{norm.}

v(i5=ov

\ 1"'- .........
\

"'-

\

0
0

r----..

c".

.........

lo=2S0}JA

--

r-.... c.

V

-

-I-

0

O.sl-i--+-+--I-+-+-+--f-+---i

0

Normalized on resistance
vs temperature

/

ROSlon 1
(norm I
~

--

'/

VGs =10V
lo=20A

/
J

1.3

/

11

0.9

0.7

V
-50

598

Source-drain diode forward
characteristics

V

V

/

/

,u
50

0.4

O.S

2.8

VsoIV)

/V

0.9 5

0.9
50

15

/

/

'-- r---

c.u

r----..

/

1.0 5

I-- I--

.........

-r--

0

./

--

f=1MHz

TcIM =25°(

"\

0

IllnC}

VIBRIDSS

\

o

100

(o(_01C.

1\\

'\

60

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature

Clpf

240 0

40

-50

/

..--~

SGSP591 - SGSP592
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90.'.

Vi

:

10·,.

I
I

,

Voo

3.3
~F

I

I

s- 6059

I

td(offl If

S(-0008/1

Pulse width ~ 100 p's
Duty cycle ~ 2%

Unclamped inductive load test circuit

Unclamped inductive waveforms
V(BRIOS5

vo 'OM
'0 _ / , , 1

Voo

10

v,_T1.
u

Pw

I

2200

3.3

!IF

}JF

....
....

/

"

Voo

I
I
....
I
I /
"'--_ _ _---' L_
5C-0316

5C-0317

Vi = 12 V - Pulse width: adjusted to obtain

specified IDM

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit
Voo

1.8KO

~

PW

:_...
~,.....r-,---"

...i

PW adjusted to obtain required VG

------------------------______ ~~~~~~?v~:~~~~ ____________________________

5_/5

599

STHV82
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
ADVANCE DATA

TYPE

STHV82

Voss
800 V

Ros(on)
20

10

5.5 A

• 800 V - HIGH VOLTAGE FOR OFF-LINE
APPLICATIONS
• ULTRA FAST SWITCHING FOR OPERATION
AT 100 KHz
• EASY DRIVE FOR REDUCED COST AND SIZE
INDUSTRIAL APPLICATIONS:
• SWITCHING POWER SUPPLIES

N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make this POWER MOS ideal for very high
speed switching applications. It is ideal for off-line
SMPS where a high breakdown voltage POWER
MOS is required, particulary in single switch design such as flyback and forward converters.

TO-218

INTERNAL SCHEMATIC
DIAGRAM

ABSOLUTE MAXIMUM RATINGS

VOS

Drain-source voltage (VGS = 0)

800

V

VGS

Gate-source voltage

±20

V

10

Drain current (continuous) at Tc = 25°C

5.5

A

10M

Drain current (pulsed)

16

A

Ptat

Total dissipation at Tc <25°C

125

Tstg

Storage temperature

Tj

Max. operating junction temperature

June 1988

W
W/oC

Derating factor
-65 to 150

°C

150

°C

1/3

601

STHV82
THERMAL DATA
max

Rthj _ ease Thermal resistance junction-case

°C/W

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
V(BR) OSS Drain-source
breakdown voltage

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos= Max Rating
Vos= Max Rating x O.B

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

Static drain-source
on resistance

VGS = 10 V

gfs

Forward
transconductance

Vos= 25 V

10= 2 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

loss

IGSS

V

BOO

Te= 125°C

250
1000

p,A
p,A

±100

nA

4

V

2

n

ON
VGS

(th)

Ros (on)

10= 250 p,A

2

10 = 2.5 A

DYNAMIC
2

mho

1000
150
90

pF
pF
pF

40
100
300
100

ns
ns
ns
ns

70

nC

SWITCHING
td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 400 V
RGs= 50 n

10= 2 A
VGs= 10 V

09

Total Gate Charge

Voo=500 V
VGs= 10 V

10= 6 A

_2/_3_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mg::~~lt

602

______________

STHV82
ELECTRICAL CHARACTERISTICS (Continued)
Parameters

Test Conditions

SOURCE DRAIN DIODE
Iso
ISOM

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

trr

Reverse recovery
time
Reverse recovery
charge

Orr

5.5
16

Iso= 5.5 A

Iso= 5.5 A

--------------

VGs= 0

di/dt = 100Alp,s

~ ~~~~m?::9~

A
A

1.4

V

1000

ns

15

p,C

_____________

3_/3

603

,.t==
.,L SGS-1HOMSON
~O©rn3@~[]J~©lfrn3@~O©~

STHV102

N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
PRELIMINARY DATA

TYPE
STHV102

•
•
•
•

Voss
1000 V

Ros(on)
3.5 Q

10
4.2 A

1000 V - VERY HIGH VOLTAGE FOR SMPS
EASY DRIVE - REDUCED COST AND SIZE
ULTRA FAST SWITCHING
HIGH RESOLUTION CTV DEFLECTION

INDUSTRIAL APPLICATIONS:
• SINGLE TRANSISTOR HIGH VOLTAGE
SWITCH
• SWITCHING POWER SUPPLIES
N - channel enhancement mode POWER MOS field
effect transistor. Easy drive and very fast switching
times make these POWER MOS transistors ideal
for high speed switching applications. Typical uses
include single transistor forward and flyback converters and lamp ballast. They are also used in high
voltage CTV EHT supplies, interfaces to thyristor
and power transistors operating from 380V and
440V A.C. supplies and resonant converters operating up to 500kHz.

TO-218

INTERNAL SCHEMATIC
DIAGRAM

0

9

G~
s

ABSOLUTE MAXIMUM RATINGS
Vos
VGS
'0
'0

V

Drain-source voltage (VGS = 0)

1000

Gate-source voltage

±20

V

Drain current (cont.) at Tc =25°C
Drain current (cont.) at Tc = 100°C

4.2

A

2.6

A

10M (e)

Drain current (pulsed)

16

A

Ptot

Total dissipation at Tc <25°C

125

W
W/oC

Derating factor
Tstg

Storage temperature

Tj

Max. operating junction temperature

-65 to 150

°C

150

°C

(e) Pulse width limited by safe operating area

June 1988

1/5

605

STHV102
THERMAL DATA

max

Rthj _ case Thermal resistance junction-case
TL
Maximum lead temperature for soldering purpose

1
275

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF

V(BR) OSS Drain-source
breakdown voltage

10 = 250/J-A

VGs= 0

Zero gate voltage
drain current (VGs=O)

Vos= Max Rating
Vos= Max Rating x 0.8

Gate-body leakage
current (V OS = 0)

VGS= ±20 V

Gate threshold
voltage

Vos= V GS

10= 250/J-A

Static drain-source
on resistance

VGs= 10 V

10= 2 A

gfs

Forward
transconductance

Vos= 25 V

10= 2 A

Ciss
Coss
C rss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

loss

IGSS

V

1000

Tc= 125°C

250
1000

/J- A
/J- A

100

nA

4

V

3.5

Q

ON (*)

VGS

(th)

Ros (on)

2

DYNAMIC

2

mho

900
150
90

1200
250
110

pF
pF
pF

SWITCHING

td (on)
tr
td (off)
tf

Turn-on time
Rise time
Turn-off delay time
Fall time

Voo= 400 V
10= 2 A
Vi= 10 V
Ri= 50 Q
(see test circuit)

Og

Total gate Charge

Voo=500 V
VGs= 10 V

10= 6 A

_2/_5__________________________ ~~~~~~g~:9~~

606

ns
ns
ns
ns

40
100
300
100
70

nC

_____________________________

STHV102
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SOURCE DRAIN DIODE

Iso
150M (e)

Source-drain current
Source-drain current
(pulsed)

Vso

Forward on voltage

Iso= 4.2 A

VGs= 0

trr

Reverse recovery
time
Reverse recovery
charge

Iso= 4.2 A
di/dt = 100 A//J-s

VGs= 0

Orr

4.2
16

A
A

2.5

V

1000

ns

15

/J-C

(*) Pulsed: Pulse duration = 300 P.s, duty cycle 1.5%
(e) Pulse width limited by safe operating area

Safe operating areas

Thermal impedance

Derating curve
PtotlW

125

I'..

100

10~ ~~",li~'I'~'~'~"II~11
Hit
10ms

I'

10-1
10
'

I,

,lOOms
D(
"103

(I

, '10'

iii
' 'VosIV)

w'

10- 5

VGS =10V /

tp=80"s

#

1/

IV

-

~I
10104

25

3

25

V
1/

*

125

/"

II

r--

J

V
/

Ii

l/

J
4V

/

Vos=25V

Tc=2S0(
tp=80"s

VGSIV)

VosIV)

_______________

Tcos.l°C)

1
J

16

100

~

Transconductance

IL

12

75

--+

I

Tc=25°(
tp=80"s

'/.

50

'"'"

I

Vos=25V

5V

'""-

-459

-

~

I'..

lolA )

/ /

Tc=25°(

-

:;::~

Transfer characteristic

. / ~ Tv

'"

50

INGLEP11Lrf:m

Output characteristics
lolA)

'"

75

~ ~~~~m~1r~:~?~~

_____________

lolA)

3/5

607

STHV102

Roslonl,.---r--r--r--r--r--""---r--r--"'--~~

lfi) ~~~~~~~~~~~_~
T,=25°C
4

,.-f---

tp.80~s

r-+-

VGs=10V

Gate charge vs gate-source
voltage

Capacitance variation

Static drain-source on
resistance
(

GC-0463

G(04SI.

IpF)

_

--r-I--+---r+t-+-1-.
f=1MHz

2000

HI.'--·-1---L_.

/

10

I

c-+--r----f--t-- ~G~;2050C·-

1000

V

17

-,

11-+- ,- f--f-I-·-+-+--f-·-+-l\.~. --i--t-L-I- \-. f---I-- \~.IC... I

500

10

lolA)

7

40

,
'\

I'\.

0.9

"- 0..

VOS=VGS
1o=250"A I--

0.8

t\.

/
0.9 5

r\.

t-... ~o

100

"

150

0.9

TjloCJ

_.

/

to 5

-

-- I---

"-50

//

_ .. --

:/

V

28

·1.5

/

70

\--_.

 i.-

F"'

/-::::. t:$: ...-

40

6~V

20

~

I

V

:

20

40

60

80

-----------------------------~~~~~~~~~:~~~~ --------------------------

lolAI

3/5

623

STVHD90
Capacitance variation

Gate charge vs gate-source
voltage

Static drain-source on
resistance
GC-0196

RDS(on )

Imfll

1-+--1-1++++-1 T,..,=25°( 1-++-++--1--1--1

20

4(}()0

60
IO=30A
16

Vos=25

t--

60
VGs =10V

_V

20

1/

vv

20V

__ v v

v

p-+--

1/ / . o v
1/1/

120

60

160

GC-IlB09

VGS)th )

\

(norm I

32

46

t-

V(BR)OSS

30

20

10

64

40

ROS(on)

Inorml

Inorml

f7

1\

107

vGs=o
f----t- lo=250~A

\

10

J

1.12

"-

V

1.06

r\

0.93

1.0

\

VOs=VGS
f----f---- lo=250~A

"

0.66

0.79

V

0.94

1"\
I\.

0_88

"

V

V

V

17

2.2

J

I

VGs =10V
lo=30A

1.8

V

1.4

1.0

V
/17

_vV

0.6
-50

-50

50

Static drain diode forward
characteristics

I

10°
0

4/5

624

0.4

VoslVI

Normalized on resistance vs
temperature

Normalized breakdown
voltage vs temperature

Normalized gate threshold
voltage vs temperature

a~EEEtHEla=E8=m

r--16

lolAI

2000

+- -!LV

V
40

'Y . /

V!7

12
40

f=1MHz
l-+-I-I-+++~ vGs=o

0.8

12

16

2.4

VsolVI

-so

50

100

STVHD90
Switching times test circuit for resistive load

Switching time waveforms for resistive load

~

____ ~90'1.

vi

:

10'/.

I
I

I

Vee

3.3

I

I

~F

I

-Vo :

5-6059

Pulse width < 100 f.i.s
Duty cycle < 2%

td(off) 'f

SC-0008/l

Clamped inductive load test circuit

Clamped inductive waveforms

VD _

2200

3.3

IJF

IJF

voo
-----,
I

I
I -_ _ _.....J
"

L ________ •

SC-0311
SC-031 0

Vi = 12 V - Pulse width: adjusted to obtain
specified 10M • Vclamp= 0.75 V(BR) OSS·

Gate charge test circuit

Body-drain diode trr measurement
Jedec test circuit

t8Kll

:CJ: (_o+~,-C=:J--{
.

PW

!

...

lKn

PW adjusted to obtain required VG

______________

~ ~~~~m~m:9:

______________

5_/6

625

STHI07N50
STHI07N50FI
HIGH INJECTION N-CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS (IGBT)
PRELIMINARY OAT A

TYPE

Voss

STHI07N50
STHI07N50FI

500 V
500 V

10
7A
7A

• HIGH INPUT IMPEDANCE
• LOW ON-VOLTAGE
• HIGH CURRENT CAPABILITY
APPLICATIONS:
• AUTOMOTIVE IGNITION
• DRIVERS FOR SOLENOIDS AND RELAYS

N - channel High Injection POWER MOS transistors (lGBT) which features a high impedance insulated gate input and a low on-resistance
characteristic of bipolar transistors. This low
resistance is achieved by conductivity modulation
of the drain. These devices are particularly suited
to automative ignition switching. They can also be
used as drivers for solenoids and relays.

TO-220

ISOWATT220

0

INTERNAL SCHEMATIC
DIAGRAM

s

ABSOLUTE MAXIMUM RATINGS

Vos
VGS
10 (-)

10M

Drain-source voltage (VGS =0)
Gate-source voltage
Drain current (contin.) at Tc = 25°C
Drain current (pulsed)
Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

V
V
A
A

500
±20
7
20
STHI07N50
100

STHI07N50FI

35

W

0.8

-65 to 150
150

(e) Pulse width limited by safe operating area
June 1988

1/6

STHI07N50 - STHI07N50FI
THERMAL DATA-

TO-220

max

Rthj _ case Thermal resistance junction-case

1.25

ISOW ATT220

3.6

°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified)
Test Conditions

Parameters

OFF

V(BR) oss Drain-source
breakdown voltage

'10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGS = 0)

Vos = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (V os = 0)

VGs= ±20 V

Gate threshold
voltage

Vos= VGS

10= 250 p,A

Drain-source voltage

VGs= 10 V

10= 7 A

gfs

Forward
transconductance

Vos= 20 V

10= 7 A

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 25 V
VGs= 0

f= 1 MHz

Voo= 400 V
Vg = 10V

10= 10 A
Rg = 100 n

loss

IGSS

V

500

T j = 125°C

250
1000

p,A
p,A

±100

nA

4

V

2.7

V

ON (*)

V GS

(th)

Vos (on)

2

DYNAMIC

2.5

mho

850
90
40

950
140
80

pF
pF
pF

100
700
500
800

150
1000
700
1500

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (off)
tf

RESISTIVE LOAD
Turn-on delay time
Rise time
Turn-off delay time
Fall time

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~1r~:9l:

______________

STHI07N50 • STHI07N50FI
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SWITCHING (continued)
INDUCTIVE LOAD
td
tf

(off)

Turn-off delay time
Fall time

USE TEST

Voo= 12 V
Vos clamp = 350 V
VGs= 10 V
L = 10 mH
Vcc= 14 V
L = 7 mH

1.4
1.5

1
1.1

10= 7 A
Rg = 100 n
Tj = 100°C

J1-S
J1-s

A

6

Vos clamp = 400 V

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1,5%
• See note on ISOWATT220 or this datasheet

Safe operating areas
(standard package)

Thermal impedence
(standard package)

Derating curve
(standard package)
)

0=0.5

100

1)ls

',,.!"'

10'

80

,o~s

.

10-'

"-

o.c

10-'

\

:
10 0

"" "

"'"

60
40

~

20

6.

-IUJ

102

II
VGs =15V

10V/",

1-1 / V
/ /

I, V

12

11/. /

Iii V
Iff V ...-

JV

1/

'l/:

25

50

75

100

125

VoslVI

Transconductance

-

'"

T""IO[)

Static drain-souce on
voltage

)

lolA)

o

tpls)

69

10'

I"!"

o

Output characteristics

16

g'IMI~I~ s=-it

lOms

;--.-

10- 2

1"'-

Zth:KRthj_c

,oo~s

10 0

~

5~s

VDSlon I

~

IV)

TJ=25°(

Vos=25V

12
8V

/'
TJ =25°(' -

.6

6V

[2\'
4 VosIV)

-------------_

/

-

VGs=10V-:::;~

/

7V

//

L-

TJ =125°(

/100 0 (

//

t,,-=~OOilS

//

25 0 ( . /

A
V":;OOO(

,/

I/v_VGs=15V

lfi .....-:""

JJ.V

.",

~y

1
I

~""
'"

1

12

16

~ ~~~~mgr~:~~CG'

lolA)

o

10

15

20

25 lolA)

________ _____
~

3_/6

STHI07N50 - STHI07N50FI
Gate charge vs gate-source
voltage
I

Reverse biased SOA

Normalized on voltage
vs temperature
VOSlooJ
(norml

20

IO=7A
VGs =10V

1.04
16

Vos=400V
lo=12A

12

/

092

20

30

10:~.~~~MI
r=
1--1=

"\
1\

/

10

-

........,,,

0.96

V

J

- f--_

/~I-

-

40

Functional test circuit

50 Ug (n[1

10-;

0.88
-50

50

Functional test waveforms

INPUT
SIGNAL

Vd'mp

VOS

~

o ----

4/6

~

Tr 100 0[
1--+--+++f-HH Rg=100 ohm L=180~H

I - - __

STHI07N50 - STHI07N50FI
Switching times test circuit for resistive load

Switching time waveforms for resistive load

t

:r

v·I

----~90.1.

,

,

10°'.

VDD

I

I

I

2200

3.3

}IF

}JF

VDD

I
I
5(-0345

I

td (ott) If

5-6059

Pulse width ~ 100 p,s
Duty cycle ~ 2%

Clamped inductive load and RBSOA test circuit

Clamped inductive waveforms

V

_

D

VDD
~
I

I
IL.. _ _ _--J L ________ .

SC·0311

SC·032211

Gate charge test circuit
VDD

:CJ: (;. . .

,-.r----....---1

PW

i

.....

)W adjusted to obtain required VG

______________ ~ ~~~~m?1r~~~©~ ______________5_/6
631

STHI07N50 - STHI07N50FI
ISOWATT220 PACKAGE
CHARACTERISTICS AND APPLICATION.

THERMAL IMPEDANCE OF
ISOWATT220 PACKAGE

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together
with excellent electrical isolation.
The structure of the case ensures optimum distances between the pins and heatsink. The
ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture
assure consistent heat spreader-to-heatsink capacitance.
ISOWATT220 thermal performance is better than
that of the standard part, mounted with a 0.1 mm
mica washer. The thermally conductive plastic has
a higher breakdown rating and is less fragile than
mica or plastic sheets. Power derating for
ISOWATT220 packages is determined by:

Fig. 1 illustrates the elements contributing to the
thermal resistance of transistor heatsink assembly,
using ISOWATT220 package.
The total thermal resistance Rth (tot) is the sum of
each of these elements.
The transient thermal impedance, Zth for different
pulse durations can be estimated as follows:

PD =

T

1 - for a short duration power pulse less than 1ms;
Zth< R thJ -C

2 - for an intermediate power pulse of 5ms to 50ms:
Zth= R thJ -C

3 - for long power pulses of the order of 500ms or
greater:
Zth

Tc

-

=

R thJ -C

+

RthC-HS

+

RthHS-amb

It is often possibile to discern these areas on transient thermal impedance curves.

- -j - - Rth

Fig. 1

RthJ- C RthC-HS RthHS-amb
~

ISOWATT DATA
Safe operating areas

Thermal impedance

Derating curve
/

GC-0415

PtotlW)

6~0.5

,I'

101

1~'~

II
~

5~,

o.c.,

10 0,

I"

,

10~'

100p'

-

"
10-t~ i"""
6"0.0
~~~
';J.of

'\

10-1

~,:----'--!,--'c,~,1L---L...l...L.LLL11L--'-,----'--'-,uljuu
I,ll
10 0

101

' , '10 2

i--'

~

40
Zth:KRthj-c

S::-Jf

r-....

i;j

2

it~~TI

VosIV)

-6/-6---_________________ ~~~~~~?~:9n

632

f""'..

30

JLfL

.........

20

',-

~}r

~
10"2

50

"~

i'-,

10

o
tpls)

........

o

.........
25

50

75

100

125

Teos,

____________________________

STHI10N50
STHI10N50FI
HIGH INJECTION N-CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTORS (IGBT)
PRELIMINARY DATA

TYPE
STHI10N50
STHI10N50FI
•
•
•
•

Voss
500 V
500 V

10

10 A
10 A

HIGH INPUT IMPEDANCE
LOW ON-VOLTAGE
HIGH CURRENT CAPABILITY
FAST TURN-OFF: t f < 1.5 P.s

APPLICATIONS:
• MOTOR CONTROL
N - channel High Injection POWER MOS transistors (IGBT) which feature a high impedance insulated gate input and a low on-resistance
characteristic of bipolar transistors. This low
resistance is achieved by conductivity modulation
of the drain. These devices are particularly suited
to switching motor control applications in consumer
equipment such as washing machines and tumble
dryers and industrial equipment motor control.

TO-220

ISOWA TT220

INTERNAL SCHEMATIC
DIAGRAM

0

s

ABSOLUTE MAXIMUM RATINGS
VOS
VGS
lo(e}
10M

Drain-source voltage (VGS = 0)
Gate-source voltage
Drain current (contin.)at Tc = 25°C
Drain current (pulsed)
Total dissipation at Tc <25°C
Derating factor
Storage temperature
Max. operating junction temperature

500
±20
10
30

V
V
A
A

STHI10N50
STHI10N50FI
W
100
35
0.8
-65 to 150
150

(e) Pulse width limited by safe operating area
June 1988

1/6

633

STHI10N50 - STHI10N50FI
THERMAL DATA-

TO-220

Rthj _case Thermal resistance junction-case

max

1_25

ISOW ATT220

3.57

°C/w

ELECTRICAL CHARACTERISTICS (Ti = 25°C unless otherwise specified)
Parameters

Test Conditions

OFF
,,(SR)

oss Drain-source
breakdown voltage

10= 250 p,A

VGs= 0

Zero gate voltage
drain current (VGs=O)

VOS = Max Rating
Vos = Max Rating x 0.8

Gate-body leakage
current (Vos = 0)

VGs= ±20 V

VGS(th)

Gate threshold
voltage

Vos= VGS

Vos (on)

Drain-source voltage

VGs= 15 V
VGs= 15 V

loss

IGSS

V

500

Ti= 125°C

250
1000

p,A
p,A

±100

nA

4

V

2.7
2.7

V
V

ON (*)
10= 250 p,A

10= 10 A
10= 10 A

2

Ti= 100°C

DYNAMIC
gfs

Forward
transconductance

Ciss
Coss
Crss

Input capacitance
Output capacitance
Reverse transfer
capacitance

Vos= 20 V

10= 10 A

Vos= 25 V
VGs= 0

f= , MHz

Voo= 400 V
Vg = 15 V

10= 10 A
Rg = 100 n

2.5

mho

850
90
40

950
140
80

pF
pF
pF

100
700
500
800

150
1000
700
1500

ns
ns
ns
ns

SWITCHING

td (on)
tr
td (~ff)
tf

RESISTIVE LOAD
Turn-on delay time
Rise time
Turn-off delay time
Fall time

_2/_6 _ _ _ _ _ _ _ _ _ _ _ _ _

634

~ ~~~~m~v~:~~n

--------------

STHI10N50 - STHI10N50FI
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions

Parameters

SWITCHING (continued)

INDUCTIVE LOAD
Turn-off delay time
Fall time
Crossover time
Tu'rn-off losses

td (011)
tl
tcross
Eoll

VDS clamp = 350 V
Vg = 15 V
L = 180 p.H

0.7
1.1
1.7
4

ID= 10 A
Rg = 100 Q
Tj = 100°C

1.2
1.5
2

p's
p's
p's

mJ

(*) Pulsed: Pulse duration = 300 p,s, duty cycle 1,5%
(-) See note on ISOWATT220 in this datasheet

Safe operating areas
(standard package)

Derating curve
(standard package)

Thermal impedance
(standard package)

I

I

,

I

101

:

Ips

:
T,_25°(

SI~GLE

III
lms

60

m

\-'
PULSE ' \

1"-

60

1~~

,

O,L

100

100

UII
5"s

'"."1"'-

"-

0

"-

10ms

:

"'-

20
III

10- 2

1111111
100

2

"'101

"'102

2

o

11111
'VosiVI

2

Output characteristics

Transconductance
GC-06

lolAI

16

/
VGs=15V

1-1

/ /

II /
l
I"/. /

12

/lV
VII V
JV

Iv

I&(

10V ........ ~-

o

25

50

75

'""-

100

1"'-

125

Teas.loCi

Static drain-souce on
voltage

glslS I

VOS!on)

IVI
TJ=25°(

VOS=25V

12
6V

/

/"

V
j/V

7V
i--"

I !>V
4 VoslVI

____________________________

~"'OOO(

VGs=10V-::::;~

_I

/-

Tj"125°(

0

//

1/ /~VGs=15V

h ,. /'.'"
..IV":

,,'I

6V

25°(/

A

/

TJ =25°(- r--- r---

'/10QO(

//

t,=~oo~s

I

4~i"

,

1/

12

16

lolAI

10

,15

20

25 lolAI

~~~~~~~~:~~---------------------------3-/6
635

STHI10N50 - STHI10N50FI
Gate charge vs gate-source
voltage
)

Normalized on voltage
vs temperature

Reverse biased SOA

VOSlonl

Inorm)

20

lo=10A

1.04

-

r--

VGs =10V
16

Vos=400V
)o=12A

12

V

V

- r--

-~r-

'f'o..

L

/

1°:~.EHI.1

['-.,.

0.96

TI=1000[
Rg=100 ohm
L-180 ~H f+tH-+-I-+tttHl

~

0.92

10-; _ _

J

1/

10

20

30

40

50

o.g InO

-50

Switching times inductive
load vs drain current

100

50

Switching times inductive
load vs Rg

Gt-0697

tins)

tins )

lo=10A

I - VGs =15V

r-

1500 I--+-'-+-'-'--'""--"L=t----I--f-I---+---r-I-·_+_
--I
tcross 10Qoe

Vos=350V t--t--

tf,lt 1000[

tcross1000[

I=t-: 1-'--'-

150 0

r-j-- r-

t f•1t 100 0[

f----)100 Or- t--

r-"t,;;1t 25°[
50011--+---,-,-+-+-+-+-+-"---:-'---+--1
I--+-+-+-+-+-+--+- Rg=100
rVGs =10V
10

4/6

636

t-

lolAi

tcross

-

- -

tdloff) 100 0[

...1'

t f•1t 25°[

... J---11

.A
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:01:07 12:56:58-08:00
Modify Date                     : 2013:01:07 14:40:58-08:00
Metadata Date                   : 2013:01:07 14:40:58-08:00
Producer                        : Adobe Acrobat 9.52 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:81096139-1bac-4f81-acb5-9cea360977cc
Instance ID                     : uuid:16cb3437-2b28-4622-a801-7a0391280118
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 690
EXIF Metadata provided by EXIF.tools

Navigation menu