1988_SGS Thomson_Industrial_and_Computer_Peripheral_ICs_1ed 1988 SGS Thomson Industrial And Computer Peripheral ICs 1ed
User Manual: 1988_SGS-Thomson_Industrial_and_Computer_Peripheral_ICs_1ed
Open the PDF directly: View PDF
.
Page Count: 1018
| Download | |
| Open PDF In Browser | View PDF |
2620 Augustine Drive
Suite 210
Santa Clara, CA 9SOS4
(408) 727-3406
FAX: (408) 727-5717
DUSTRIAL AND COMPUTER
PERIPHERAL ICs
DATABOOK
1st EDITION
OCTOBER 1988
USE IN LIFE SUPPORT MUST BE EXPRESSLY AUTHORIZED
SGS-THOMSON' PRODUCTS ARE NOT AUTHORIZED FOR USE A CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF SGS-THOMSON
Microelectronics. As used herein:
1. Life support devices or systems are devices or systems
which, are intended for surgical implant into the body to
support or sustain life, and whose failure to perfom,
when properly used in accordance with instructions for
use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
TABLE OF CONTENTS
INTRODUCTION
ALPHANUMERICAL INDEX
Page 4
7
PRODUCT SELECTOR GUIDE
13
DATASHEETS
21
PACKAGES:
DESIGNING WITH THERMAL IMPEDANCE
MECHANICAL DATA
987
989
t003
SALES OFFICES
1022
INDUSTRIAL & COMPUTER PERIPHERAL ICs
FROM THE BRIGHTER POWER
Since the first high power ICs emerged at the end of the 1960s SGSTHOMSON has set the pace in power
IC process technology, plastic power
packages and innovative circuit design.
Originally this technology knowhow
was applied to consumer circuits such
as high power amplifiers and TV vertical deflection stages, so when motor
driving ICs arrived at the end of the seventies SGS-THOMSON already possessed a unique understanding of the
problems involved and, more important, how they could be solved.
SGS-THOMSON is not just the leader
in smart power technology, it is also
the #1 supplier of smart power ICs in
the western world (Dataquest, May
1988), selling more than any American
or European semiconductor company.
Realized with SGS-THOMSON's unique Multipower-BCD technology, the L4970 power
switching regulator delivers an impressive 10A
output current. A host of protection features
are integrated.
4
Many of the milestones in smart power
technology have been developed by
SGS-THOMSON and many are stili
unmatched. Today's leading edge is a
family of smart power technologies
integrating bipolar, CMOS and DMOS
on the same chip. Using this technology the company has produced a new
generation of ultra-efficient power ICs
that are changing the whole approach
to power system design.
Just one example of the way this technology can be applied is the L6202
Thanks to the high efficiency of Multipower-BCD technology's DMOS power transistors, the L6202
H-bridge motor driver delivers 1.5A/48V with no heatsink.
bridge driver, containing a full DMOS
H-bridge power stage plus control circuits.
Because of the very high efficiency of
the power stage this Ie can deliver
lOW to the load yet it is assembled in
a DIP package.
Many more world-beating products
are included in this databook: the
L49l0 switching regulator, L6230
brushless motor driver, L6114 quad
switch, the industrial power switch
family and much more. So if you're
looking for the brightest solution to
your industrial and computer peripheral application problems you'll find the
answer right here.
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ALPHANUMERICAL INDEX
Type
Function
Page
I'"
AM6012
12 BIT HIGH SPEED D/A CONVERTER ..................................................... .
21
AM6012A
12 BIT HIGH SPEED D/A CONVERTER ..................................................... .
21
DAC0806
6 BIT D/A CONVERTER ............................................................................... .
33
DAC0807
7 BIT D/A CONVERTER ............................................................................... .
33
DAC0808
8 BIT D/A CONVERTER ...............................................................................
33
ESM1600B
QUAD COMPARATOR INTERFACE CIRCUIT ............................................ .
45
ESM1602B
QUAD COMPARATOR INTERFACE CIRCUIT ............................................ .
53
GS-D050
STEPPER MOTOR DRIVER MODULE ........................................................ .
61
GS-D200
STEPPER MOTOR DRIVER MODULE ........................................................ .
79
GS-R400
SWITCH MODE REGULATOR MODULE .............................................. .
GS-R400VB
SWITCH MODE REGULATOR MODULE .................................................... .
119
GS-R400/2
SWITCH MODE REGULATOR MODULE .................................................... .
129
GS-R51212
SWITCH MODE REGULATOR MODULE .................................................... .
137
L149
4A LINEAR DRIVER ..................................................................................... .
147
97
L165
3A POWER OPERATIONAL AMPLIFIER .................................................... .
151
L200
ADJUSTABLE VOLTAGE AND CURRENT REGULATOR .......................... .
159
L272
DUAL POWER OPERATIONAL AMPLIFIER ............................................... .
169
L272D
DUAL POWER OPERATIONAL AMPLIFIER ............................................... .
175
L272M
DUAL POWER OPERATIONAL AMPLIFIER ............................................... .
169
L290
TACHOMETER CONVERTER ..................................................................... .
179
185
L291
5 BIT D/A CONVERTER AND POSITION AMPLIFIER ................................ .
L292
SWITCH MODE DRIVER FOR DC MOTORS .............................................. .
191
L293B
PUSH-PULL FOUR CHANNEL DRIVER ...................................................... .
201
L293C
PUSH-PULL FOUR CHANNEL / DUAL H-BRIDGE DRIVER ...................... .
209
L293D
PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES ............................ .
213
L293E
PUSH-PULL FOUR CHANNEL DRIVER ...................................................... .
201
L294
SWITCH MODE SOLENOID DRIVER .......................................................... .
217
L295
DUAL SWITCH MODE SOLENOID DRIVER ............................................... .
223
L296
HIGH CURRENT SWITCHING REGULATOR ............................................. .
229
L296P
HIGH CURRENT SWITCHING REGULATOR ............................................. .
229
L297
STEPPER MOTOR CONTROLLER ............................................................. .
253
L297A
STEPPER MOTOR CONTROLLER ............................................................. .
253
L298N
DUAL FULL-BRIDGE DRIVER ..................................................................... .
263
L387A
VERY LOW DROP 5V REGULATOR ........................................................... .
273
L601
DARLINGTON ARRAY ................................................................................. .
277
L602
DARLINGTON ARRAY ................................................................................. .
277
L603
DARLINGTON ARRAY ................................................................................. .
277
L604
DARLINGTON ARRAY ................................................................................. .
277
L702
2A QUAD DARLINGTON SWITCH .............................................................. .
281
L2720
LOW DROP DUAL POWER OPERATIONAL AMPLIFIER .......................... .
285
-------------
~ ~~;~~mgr::~~~,
-----------7
ALPHANUMERICAL INDEX
Type
L2722
L2724
L2726
L3654S
L4901A
L4902A
L4903
L4904A
L4905
L4920
L4921
L4940 SERIES
L4941
Function
LOW DROP DUAL POWER OPERATIONAL AMPLIFIER ...........................
Page
285
LOW DROP DUAL POWER OPERATIONAL AMPLIFIER ...........................
285
LOW DROP DUAL POWER OPERATIONAL AMPLIFIER ...........................
293
PRINTER SOLENOID DRIVER .....................................................................
297
DUAL 5V REGULATOR WITH RESET .........................................................
301
DUAL 5V REGULATOR WITH RESET AND DISABLE ................................
311
DUAL 5V REGULATOR WITH RESET .........................................................
321
DUAL 5V REGULATOR WITH RESET .........................................................
329
DUAL 5V REGULATOR WITH RESET AND DISABLE ................................
337
VERY LOW DROP ADJUSTABLE REGULATOR .........................................
345
VERY LOW DROP ADJUSTABLE REGULATOR .........................................
345
VERY LOW DROP 1.5A REGULATORS ......................................................
349
VERY LOW DROP 1A REGULATOR ............................................................
357
L4941 X
VERY LOW DROP 1A REGULATOR ............................................................
357
L4960
L4962
L4964
L4970
L5832
L6114
L6115
L6122
L6123
L6201
L6202
L6203
L6210
L6212
L6217
L6217A
L6220
L6220N
L6221A
L6221N
L6222
L6230
L6231
L6233
L6235
L6236
2.5A POWER SWITCHING REGULATOR ....................................................
363
8
1.5A POWER SWITCHING REGULATOR ....................................................
377
HIGH CURRENT SWITCHING REGULATOR ..............................................
389
HIGH CURRENT SWITCHING REGULATOR ..............................................
401
SOLENOID CONTROLLER .......................................................................... .
417
QUAD 100V DMOS SWITCH ....................................................................... .
429
QUAD 100V DMOS SWITCH .. ..... .... .... ............. .... .......... ....... ............... ....... .
429
100V DMOS SWITCH ................................................................................... .
437
100V DMOS SWITCH ................................................................................... .
437
DMOS FULL BRIDGE DRIVER ....................................................................
443
DMOS FULL BRIDGE DRIVER .....................................................................
455
DMOS FULL BRIDGE DRIVER .....................................................................
471
DUAL SCHOTTKY DIODE BRIDGE .............................................................
487
HIGH CURRENT SOLENOID DRIVER .........................................................
491
STEPPER MOTOR DRIVER ........................................................................ .
497
STEPPER MOTOR DRIVER ........................................................................ .
505
QUAD DARLINGTON SWITCH .....................................................................
513
QUAD DARLINGTON SWITCH .....................................................................
513
QUAD DARLINGTON SWITCH .....................................................................
523
QUAD DARLINGTON SWITCH .................................................................... .
523
QUAD TRANSISTOR SWITCH .................................................................... .
535
BIDIRECT. 3-PHASE BRUSHLESS DC MOTOR DRIVER ..........................
539
3-PHASE BRUSHLESS DC MOTOR DRIVER .............................................
547
PHASE LOCKED FREQUENCY CONTROLLER .........................................
555
R-DAT BRUSHLESS DC MOTOR DRIVER ..................................................
563
BIDIRECT. BRUSHLESS DC MOTOR DRIVER ...........................................
571
ALPHANUMERICAL INDEX
Type
Function
Page
L6495
HIGH SPEED OPERATIONAL AMPLIFIER ..................................................
579
L6503
HAMMER SOLENOID CONTROLLER ..........................................................
585
L6504
SOLENOID CONTROLLER ...........................................................................
591
L6506
CURRENT CONTROLLER FOR STEPPING MOTORS ...............................
599
L6570A
2-CHANNEL FLOPPY DISK READIWRITE CIRCUIT ..................................
605
L6570B
2-CHANNEL FLOPPY DISK READ/WRITE CIRCUIT ..................................
605
613
L6603
MEMORY CARD INTERFACE ......................................................................
L6604
MEMORY CARD INTERFACE ......................................................................
613
L7150
50V QUAD DARLINGTON SWITCH ............................................................ .
621
L7152
50V QUAD DARLINGTON SWITCH .............................................................
621
L7180
80V QUAD DARLINGTON SWITCH .............................................................
625
L7182
80V QUAD DARLINGTON SWITCH ............................................................ .
625
M5450
LED DISPLAY DRIVER .................................................................................
629
M5451
LED DISPLAY DRIVER .................................................................................
629
M5480
LED DISPLAY DRIVER .................................................................................
637
M5481
LED DISPLAY DRIVER .................................................................................
643
M5482
LED DISPLAY DRIVER .................................................................................
649
M8438A
SERIAL INPUT LCD DRIVER ........................................................................
655
M8439
SERIAL INPUT LCD DRIVER ........................................................................
663
M145026
REMOTE CONTROL ENCODER ................................................................. .
669
669
M145027
REMOTE CONTROL DECODER ................................................................. .
M145028
REMOTE CONTROL DECODER ..................................................................
669
MC1488
RS232C QUAD LINE DRIVER ..................................................................... .
679
MC1489
RS232C QUAD LINE RECEIVER ..................................................................
687
MC1489A
RS232C QUAD LINE RECEIVER ..................................................................
687
MC3479C
STEPPER MOTOR DRIVER ........................................................................ .
695
PBL3717A
STEPPER MOTOR DRIVER ........................................................................ .
703
SG1524
REGULATING PWM ......................................................................................
713
SG1525A
REGULATING PWM ......................................................................................
721
SG1527A
REGULATING PWM ......................................................................................
721
SG2524
REGULATING PWM ......................................................................................
713
SG2525A
REGULATING PWM ......................................................................................
721
SG2527A
REGULATING PWM ......................................................................................
721
SG3524
REGULATING PWM ......................................................................................
713
SG3525A
REGULATING PWM ......................................................................................
721
SG3527A
REGULATING PWM ......................................................................................
721
TDA0159A
PROXIMITY DETECTOR ..............................................................................
731
TDA0161
PROXIMITY DETECTOR ............................................................................ .
735
TDE0160
PROXIMITY DETECTOR ................................................................ ............. .
739
TDE1607
INTELLIGENT POWER SWITCH ..................................................................
745
9
ALPHANUMERICAL INDEX
Type
Function
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
INTELLIGENT POWER SWITCH ................................................................. .
RELAY AND LAMP DRIVER ........................................................................ .
DUAL 2A SOURCE DRIVER ........................................................................ .
DUAL 2A SOURCE DRIVER ........................................................................ .
LOW DROP TRIPLE 1.5A SINK DRIVER .................................................... .
INTELLIGENT POWER SWITCH ................................................................. .
STEPPER MOTOR DRIVER ............................................................. .
STEPPER MOTOR DRIVER ........................................................................ .
STEPPER MOTOR DRIVER ........................................................................ .
STEPPER MOTOR DRIVER ........................................................................ .
STEPPER MOTOR DRIVER ........................................................................ .
TL7700A SERIES SUPPLY VOLTAGE SUPERVISORS ........................................................... .
TS27L2
CMOS DUAL OPERATIONAL AMPLIFIER .................................................. .
TS27L4
CMOS QUAD OPERATIONAL AMPLIFIER ..................................................
TS27M2
CMOS DUAL OPERATIONAL AMPLIFIER ...................................................
TS27M4
CMOS QUAD OPERATIONAL AMPLIFIER ..................................................
TS271
CMOS SINGLE OPERATIONAL AMPLIFIER ...............................................
TS272
CMOS DUAL OPERATIONAL AMPLIFIER ...................................................
TS274
CMOS QUAD OPERATIONAL AMPLIFIER ..................................................
UAA4002
CONTROL CIRCUIT FOR FAST-SWITCH ...................................................
SWITCH MODE REGULATOR FOR DC MOTORS ......................................
UAA4003
UAB4718
STEPPER MOTOR DRIVER ........................................................................ .
UAF4718
STEPPER MOTOR DRIVER ........................................................................ .
UAF1780
DUAL 2A LOW DROP INTELLIGENT POWER SWITCH ............................ .
UAF1781
DUAL 2A LOW DROP INTELLIGENT POWER SWITCH ............................ .
UAF1782
DUAL 2A LOW DROP INTELLIGENT POWER SWITCH .............................
UC1840
PROGRAMMABLE OFF-LINE, PWM CONTROLLER ..................................
UC1842
CURRENT MODE PWM CONTROLLER ......................................................
UC1843
CURRENT MODE PWM CONTROLLER ......................................................
TDE1647
TDE1647A
TDE1737
TDE1747
TDE1767
TDE1767A
TDE1787
TDE1787A
TDE1798
TDE1799
TDE3207
TDE3237
TDF1607
TDF1647A
TDF1737
TDF1778
TDF1779A
TDF1783
TDF1798
TEA3717
TEA3718
TEA3718S
TEF3718
TEF3718S
10
Page
745
745
755
745
759
759
759
759
767
779
789
795
745
745
755
799
807
815
767
823
831
831
845
845
851
867
877
867
877
857
867
877
887
899
907
907
915
915
915
921
931
931
ALPHANUMERICAL INDEX
Type
Function
Page
UC1844
UC1845
CURRENT MODE PWM CONTROLLER "", .. ,,"","",,",,"',"',', .. ,,",",',""""
931
CURRENT MODE PWM CONTROLLER .. ,"""" """" .. ,.. " .. "'" .. ,.... " .. ,,,,",,' ,
931
UC2840
PROGRAMMABLE OFF-LINE, PWM CONTROLLER """"" .......... " ...... ",,"
921
UC2842
UC2843
CURRENT MODE PWM CONTROLLER "" ............ " .......................... " ...... , ,
CURRENT MODE PWM CONTROLLER " .... ,,, .. ,.... ,,, .. ,, ............ ,........ ,, ...... ,
931
931
UC2844
CURRENT MODE PWM CONTROLLER ", .... " ...... "" ................ ,.. ,.... " .. "" .. ,
931
UC2845
CURRENT MODE PWM CONTROLLER ", .... ,........ " .. " .... ,.. ,.... ,........ " .. "" .. ,
931
UC3840
PROGRAMMABLE OFF-LINE, PWM CONTROLLER ............ ", .......... " ...... ,
921
UC3842
CURRENT MODE PWM CONTROLLER ........ " .. " .................................... ,,"
931
UC3843
CURRENT MODE PWM CONTROLLER "" ........ ,........ " .. ,...... " .......... " .. " .. ,
931
UC3844
CURRENT MODE PWM CONTROLLER ", .... " .. " .... " .. " ........ " .. ,........ " .. " .. , ,
931
UC3845
CURRENT MODE PWM CONTROLLER .................. " ........................ " ...... ,'
931
UCN4801A
BIMOS LATCH-DRIVER ................ ,............ " .... ,.. " .... ,.. " .. ,.................. " .. " .. ,'
939
UEB4732
ULN2001A
AC PLASMA PANEL DRIVER ...................... " ...... " ...... " ........ " ................ " .. ,
DARLINGTON ARRAy ............ " ............................................................ " .... "
943
949
ULN2002A
DARLINGTON ARRAy .................... """ .. "" .. """""""" .. " .... """" .. " .... """"
949
ULN2003A
DARLINGTON ARRAy" .... " .... """"" .. " .. "" .. " .. " .. "" .. " .. "" .. " .. "" ........ "",."
949
ULN2004A
DARLINGTON ARRAy .. " .. " .... """ .. " .. """""" .. " .. "" .. " .. "" .... """ .... " .. """"
949
ULN2064B
BOV QUAD DARLINGTON SWITCH .. ,," .. , "" ...... "" .. " "" " " " " .. " .. " " .. " .. " .. ,
953
ULN2065B
50V QUAD DARLINGTON SWITCH "'" .... ,.. " " " ,.. ," ........ ,.. " .. " .......... ," .. " .. ,
961
ULN2066B
BOV QUAD DARLINGTON SWITCH " .. """ .. """""""" .. " .. "" .. " .. "" .. "",, .. ,, ,
953
ULN2067B
50V QUAD DARLINGTON SWITCH """""""""""""""""""""""""""""" ,
BOV QUAD DARLINGTON SWITCH " .... "" .. """ .. "" .. " .. " .. "" .. ,,""" .... ,,,, .. ,, ,
961
953
ULN2069B
50V QUAD DARLINGTON SWITCH " .. """ .. """""" .. " ........ """" .. " .... ,, .... ,, ,
961
ULN2070B
BOV QUAD DARLINGTON SWITCH "'" .... "'" .. ,,, .. ,,, .. ,, .... ,,, .... ,,',, .. ,.. ,,"",, .. ,'
953
ULN2071B
50V QUAD DARLINGTON SWITCH " .. " .. "" .. " .. " .. " .. " .... " .. """" .. " .... ,, ...... ,
961
ULN2074B
BOV QUAD DARLINGTON SWITCH " .. " .. """" .. """"" .. " .. " .. " .. ",, .... ,,"" .. ,, ,
953
ULN2075B
50V QUAD DARLINGTON SWITCH " .. " .. """" .. "" .. "" .. " .. " .. " .... ,," .. " .. ,, .. ,, ,
961
ULN2076B
BOV QUAD DARLINGTON SWITCH " .. """ .. "" .. " .. """ .. " .... " .... """ .. " .. ,, .. ,'
953
ULN2077B
ULN2801A
50V QUAD DARLINGTON SWITCH """ .. """" .. """"""" .. "",,"",,,, .. ,, .. "' .. ' ,
DARLINGTON ARRAy .... " .. """" .. " .. " .. " .. ,,,,,,, .. ,,,,,,,, .. ,,,, .. ,, .. ,, .. ,,,, .. ,,,, .... ,, .. ,
961
969
ULN2802A
DARLINGTON ARRAy ...... "" .. ,.... " .. ,,, .. ,,,, .. ,, ...... ,,,,,,,,,,,,, .. ,, .. ,, .. ,,,, .... ,, .... ,, .. ,
969
ULN2803A
DARLINGTON ARRAy" .... "" .. ", .. ",,, .... ,, .... ,, ........ ,,,,,, .. ,, .. ,,,, .. ,, .... ,, .... ,,,,,, .. ,,
969
ULN2804A
DARLINGTON ARRAy ...... "" .. ,.. " .. " .. ",,,,,,,,,,,,,,,,,,,, .. ,,,,,,,, .. ,,,,,,,,,,,,,,,,,,,,,,,,,
969
ULN2805A
DARLINGTON ARRAy ...... "" .. ,,,,,,,,,, .. ,, .. ,,,,,,, .. ,,,, .. ,, .. ,,,,,,,,,,, .. ,,,, ...... ,, .... ,, .. ,,
969
ULQ2001R
DARLINGTON ARRAy", .. ,.......... ,.... ,........ " ........ " .. ,........................ """ .... ",
975
ULQ2002R
DARLINGTON ARRAy .... " ........ " ................ " ...... " ........ "", .... "",,,,,,,,,, .. ,, .... ,
975
ULQ2003R
DARLINGTON ARRAy .... " .. , .. ,.. " .... ", ...... " .. " ........ " .... " .. " .. " .... " .. ", ...... ", .. ,
975
ULQ2004R
DARLINGTON ARRAy .... " ............ "" .. ", .. " .. ",,, .. ,,,,, .. ,, .. ,, .. ,,, .... , .. ,,, .. ,, .. ,, .. ,,,,
975
VB100
HIGH VOLTAGE INTELLIGENT POWER SWITCH .. ", .. " .. """", ........ " .. ,, .. , ,
979
ULN2068B
- - - - - - - - - - - Gil scs-mOMSON - - - - - - - - - - • J, " """~©rnl!QI~~~©'irrnl!QIli'!!~©!li
11
PRODUCT SELECTOR GUIDE
SOLENOID, HAMMER, NEEDLE, RELAY
ESM1600B
ESM1602B
L294
L295
L601!2/3/4
L702
L3654S
L5832
L6114/15
L6122/23
L6212
L6220/N
L6221A1N
L6503
L6504
L7150/52
L7180/82
TDE1607/47/47A
TDE1737
TDE1747
TDE1767/67A
TDE1787/87A
TDE1798
TDE1799
TDE3207
TDE3237
TDF1607/1647A
TDF1737
TDF1778
TDF1779A
TDF1783
TDF1798
UAF1780/1/2
ULN2001A to 2004A
ULN2064B to 2077B
ULN2801A to 2805A
ULQ2001 R to 2004R
VB100
Page
- Quad comparator Interface Circuit ................................................................................ 45
- Quad Comparator Interface Circuit ............................................................................... 45
- Switch-Mode Solenoid Driver ..................................................................................... 217
- Dual Switch-Mode Solenoid Driver .............................................................................. 223
- Darlington Arrays ......................................................................................................... 277
- 2A Quad Darlington Array ........................................................................................... 281
- Printer Solenoid Driver ................................................................................................ 297
- Solenoid Controller ...................................................................................................... 417
- Quad 100V DMOS Switch ........................................................................................... 429
- 100V DMOS Switch .................................................................................................... 437
- High Current Solenoid Driver ...................................................................................... 491
- Quad Darlington Switch ............................................................................................... 513
- Quad Darlington Switch ............................................................................................... 535
- Hammer Solenoid Controller ....................................................................................... 585
- Solenoid Controller ...................................................................................................... 591
- Quad Darlington Switch ............................................................................................... 621
- Quad Darliington Switch .............................................................................................. 625
-Intelligent Power Switch .............................................................................................. 745
- Intelligent Power Switch .............................................................................................. 755
- Intelligent Power Switch .............................................................................................. 745
-Intelligent Power Switch .............................................................................................. 759
- Intelligent Power Switch .............................................................................................. 759
- Intelligent Power Switch .............................................................................................. 767
- Intelligent Power Switch .............................................................................................. 779
- Intelligent Power Switch .............................................................................................. 789
- Intelligent Power Switch .............................................................................................. 795
-Intelligent Power Switch .............................................................................................. 745
- Relay and Lamp Driver ............................................................................................... 755
- Dual 2A Source Driver ................................................................................................. 799
- Dual 2A Source Driver ................................................................................................. 807
- Low Drop Triple 1.5A Sink Driver ................................................................................ 815
- Intelligent Power Switch .............................................................................................. 767
- Dual 2A Low Drop Intelligent Power Switch ................................................................ 915
- Seven Darlington Arrays ,............................................................................................ 949
- Quad Darlington Switches ........................................................................................... 953
- Eight Darlington Arrays ............................................................................................... 969
- Seven Darlington Arrays ............................................................................................. 975
- High Voltage Intelligent Power Switch ........................................................................ 979
13
!
PRODUCT SELECTOR GUIDE
UNIPOLAR STEPPER MOTORS
L297/A
L702
L6506
L7150/52
L7180/82
ULN2064B to 2077B
-
Page
Stepper Motor Controllers ........................................................................................... 253
2A Quad Darlington Switch ............................................. :........................................... 281
Current Controller for Stepping Motors ....................................................................... 599
Quad Darlington Switch ............................................................................................... 621
Quad Darlington Switch ............................................................................................... 625
Quad Darlington Switch ............................................................................................... 953
BIPOLAR STEPPER MOTORS
L297/A
L298N
L6201
L6202
L6203
L621 0
L6217
L6117A
L6506
MC3479C
PBL3717A
TEA3717
TEA3718/S
TEF3718/S
UAB/UAF4718
GS-D050
GS-D200
-
Stepper Motor Controllers ........................................................................................... 253
Dual Full Bridge Driver ................................................................................................ 263
0.3 ohms DMOS Full Bridge Driver ............................................................................. 443
0.3 ohms OM OS Full Bridge Driver ............................................................................. 455
0.3 ohms DMOS Full Bridge Driver ............................................................................. 471
Dual Schottky Diode Bridge ........................................................................................ 487
Stepper Motor Driver .................................................... ,.............................................. 497
Stepper Motor Driver ................................................................................................... 505
Current Controller for Stepping Motors ....................................................................... 599
Stepper Motor Driver ................................................................................................... 695
Stepper Motor Driver ................................................................................................... 703
Stepper Motor Driver ................................................................................................... 823
Stepper Motor Driver ................................................................................................... 831
Stepper Motor Driver ................................................................................................... 845
Stepper Motor Driver ................................................................................................... 907
Stepper Motor Driver Module ........................................................................................ 61
Stepper Motor Driver Module ........................................................................................ 79
-------------~ ~~~~m?:~~
14
-------------
PRODUCT SELECTOR GUIDE
BRUSH LESS MOTORS
L6230
L6231
L6233
L6235
L6236
-
Page
Bidirect. 3-Phase Brushless DC Motor Driver .......................................................................... 539
Three-Phase Brushless DC Motor Driver ................................................................................. 547
Phase Locked Frequency Controller ........................................................................................ 555
R-DAT Brushless DC Motor Driver ........................................................................................... 563
Bidirectional Brushless DC Motor Driver .................................................................................. 571
DC MOTORS
~
\JLJ)
L149
L165
L272/M
L272D
L290
L291
L292
L293B/E
L293C
L293D
L298N
L2720/2/4
L2726
UAA4003
VB100
-
4A Linear Driver ....................................................................................................................... 147
3A Power Operational Amplifier ............................................................................................... 151
Dual Power Operational Amplifier ............................................................................................ 169
Dual Power Operational Amplifier ............................................................................................ 175
Tachometer Converter ............................................................................................................. 179
5 Bit 01A Converter and Position Amplifier .............................................................................. 185
Switch-Mode Driver for DC Motors ........................................................................................... 191
Push-Pull Four Channel Drivers ............................................................................................... 201
Push-Pull Four Channel ........................................................................................................... 209
Push-Pull Four Channel Driver with Diodes ............................................................................. 213
Dual Full Bridge Driver ............................................................................................................. 263
Low Drop Dual Power Operational Amplifier ............................................................................ 285
Low Drop Dual Power Operational Amplifier ............................................................................ 293
Switch Mode Regulator For DC Motors .................................................................................... 899
High Voltage Intelligent Power Switch ...................................................................................... 979
--------------~ ~~~~m~~~
------------15
PRODUCT SELECTOR GUIDE
DISPLAYS
L601/2/3/4
L3654S
M5450/1
M5480
M5481
M5482
M8438A
M8439
UCN4801A
UEB4732
ULN2001A to 2004A
ULQ2001R to 2004R
-
Page
Darlington Arrays ......................................................................................................... 277
Printer Solenoid Driver ................................................................................................ 297
Led Display Drivers ..................................................................................................... 629
Led Display Driver ....................................................................................................... 637
Led Display Driver ....................................................................................................... 643
Led Display Driver ....................................................................................................... 649
Serial Input LCD Driver ............................................................................................... 655
Serial Input LCD Driver ............................................................................................... 663
BIMOS Latch-Driver .................................................................................................... 939
AC Plasma Panel Driver .............................................................................................. 943
Seven Darlington Arrays ............................................................................................. 949
Seven Darlington Arrays ............................................................................................. 975
SPECIAL FUNCTIONS
AM6012/A
DAC0806/7/8
ESM1600B
ESM1602B
L149
L6495
L6570AlB
L6603/4
M1480261718
MC1488
MC1489/A
TDA0159A
TDA0161A
TDE0160
TL7700A SERIES
TS271
TS272/27M2/27L2
TS274/27M4/27L4
16
-12 Bit High Speed Multypling D/A Converters .............................................................. 21
- 8 Bit D/A Converters ..................................................................................................... 33
- Quad Comparator Interface Circuit ...............................................................................45
- Quad Comparator Interface Circuit ............................................................................... 53
- 4A Linear Driver .......................................................................................................... 147
- High Speed Operational Amplifier ............................................................................... 579
- 2 Channel Floppy Disk ReadlWrite Circuits ................................................................ 605
- Memory Card Interface ................................................................................................ 613
- Remote Control Encoder/Decoder .............................................................................. 669
- RS232C Quad Line Driver ........................................................................................... 679
- Quad Line Receiver ..................................................................................................... 687
- Proximity Detector ....................................................................................................... 731
- Proximity Detector ....................................................................................................... 735
- Proximity Detector ....................................................................................................... 739
- Supply Voltage Supervisor .......................................................................................... 883
- CMOS Single Operational Amplifier ............................................................................ 857
- CMOS Dual Operational Amplifier ............................................................................... 867
- CMOS Quad Operational Amplifier ............................................................................. 877
PRODUCT SELECTOR GUIDE
VOLTAGE REGULATORS
!..
IN
5
J.100nF
1:
100nF
L200
L296/P
L387 A
L4901 A
L4902A
L4903
L4904A
L4905
L4920/1
L4940 SERIES
L4941/X
L4960
L4962
L4964
L4970
SG1524/2524/3524
SG1525A/2527A/3527A
TL7700A SERIES
UA4002
UC1840/2840/3840
UC1842/2842/3842
UC1843/2843/3843
UC1844/2844/3844
UC1845/2845/3845
GS-R400
GS-R400VB
GS-R400/2
GS-R51212
-
O
J,
OUT
J: 100llF
r--'-4____-.3_____2~--~~
RESET
... -
J:
J.
OUT
Page
Adjustable Voltage and Current Regulator ................................................................. 159
High Current Switching Regulators ............................................................................. 229
Very Low Drop 5V Regulator ....................................................................................... 273
Dual 5V Regulator With Reset .................................................................................... 301
Dual 5V Regulator With Reset and Disable ................................................................ 311
Dual 5V Regulator With Reset .................................................................................... 321
Dual 5V Regulator With Reset .................................................................................... 329
Dual 5V Regulator With Reset and Disable ................................................................ 337
Very Low Drop Adjiustable Regulators ........................................................................ 345
Very Low Drop 1.5A Regulators ................................................................................ 349
Very Low Drop 1A Regulators .................................................................................... 357
Power Switching Regulator ......................................................................................... 363
Power Switching Regulator ......................................................................................... 377
High Current Switching Regulator ............................................................................... 389
High Current Switching Regulator ............................................................................... 401
Regulating Pulse Width Modulator .............................................................................. 713
Regulating Pulse Width Modulator .............................................................................. 721
Supply Voltage Supervisors ........................................................................................ 883
Control Circuit for Fast Switch ..................................................................................... 887
Programmable, Off-Line, PWM Controllers ................................................................. 921
Current Mode PWM Controllers .................................................................................. 931
Current Mode PWM Controllers .................................................................................. 931
Current Mode PWM Controllers ................................................................................. 931
Current Mode PWM Controllers .................................................................................. 931
Switch Mode Regulator Module .................................................................................... 97
Switch Mode Regulator Module .................................................................................. 119
Switch Mode Regulator Module .................................................................................. 129
Switch Mode regulator Module .................................................................................... 137
17
!
r
DATASHEETS
19
AM6012
AM6012A
!
""
12-BIT HIGH SPEED D/A CONVERTERS
• ALL GRADES 12-BIT MONOTONIC OVER
TEMPERATURE
• DIFFERENTAL NONLINEARITY TO ±0.012%
(13 BITS) MAX OVER TEMPERATURE
(A GRADES)
• 250ns TYPICAL SETTLING TIME
• FULL SCALE CURRENT 4mA
• HIGH SPEED MULTIPLYING CAPABILITY
DIP-20 Plastic
• TTLlCMOS/ECLlHTL COMPATIBLE
SO-20L
(0.4)
• HIGH OUTPUT COMPLIANCE: - 5V TO + 10V
• COMPLEMENTARY CURRENT OUTPUTS
PIN CONNECTION
• LOW POWER CONSUMPTION: 230mW
DESCRIPTION
The AM6012 is an industry standard monolithic
12-bit digital-to analog converter. Complementary
current output and high speed multiplying capability make the AM6012 useful in a wide range of applications such as video displays, process control
circuitry and fast ND converters. The 6012 is the
first D/A to achieve 12-bit differential linearity without the use of thin film resistors or active trimming. The 6012's unique circuit design insures
monotonicity without the precision trimming associated with most other 12-bit DAC architectures.
The AM6012 is packaged in a 20-pin plastic DIP
and is SO-20L for surface mounting. Although tested and specified at ± 15V, the AM6012 works well
over a wide range of power supply Voltages. Performance is essentially independent of supply voltage over the range of + 5 volts, - 12 volts to ± 18
volts. The AM6012 series guarantees full 12-bit manotonicity for all grades and differential nonlinearity as high as 0.012% (13 bits) for the A grades
and 0.025% (12 bits) for the standard grades over
the entire temperature range.
Guaranteed monotonicity and low cost make the
AM6012 an ideal choice for high volume applications requiring fine local resolution. Typical applications include printer graphics and video displays.
These applications need a minimum of 12 bits of
resolution, although conformance to an ideal
straight line from zero to full scale is less important.
June 1988
MS8-81
82
+VS
10
83
10
84
-VEE
85
COMPo
86
VREF (-)
87
VREF (+j
88
GNO/VLC
89
812-LS8
810
811
A60f2-2
1112
21
AM6012-AM6012A
ABSOLUTE MAXIMUM RATINGS
o to 70
-65 to + 125
±18
-5 to + 18
-8 to + 12
+VS to -VEE ±18V
max Differential
1.25
Operating Temperature Range
Storage Temperature
Power Supply Voltage
Logic Inputs
Voltage at Current Outputs Pins
Reference Inputs
Reference Input Current
°C
°C
V
V
V
V
mA
CONNECTION DIAGRAM AND ORDERING INFORMATION
Type
Differential
linearity (%)
AM6012PC
0.025
AM6012APC
0.012
AM6012 D
0.025
AM6012 AD
0.012
Temperature
Range (OC)
Package
o to 70
DIP.20
01070
SO.20L
BLOCK DIAGRAM
MSB
LSB
B1
B2
2
B3
B4 B5 B6
B7 BB B9 B10 B11 B12
3
AM6012
REFERENCE
20
R R R R
CODE SELECTED
NETWORK
0111 1111 1111
SEGMENT GENERATOR
17
VEE
THERMAL DATA
Rlhj-amb
2/12
22
13
GND
A6DII!-1
Thermal resistance junction-ambient
+VS
AM6012-AM6012A
ELECTRICAL CHARACTERISTICS
These specifications apply for Vs = + 15V, VEE = -15V, IREF = 1.0mA, over the operating temperature
range unless otherwise specified
",.
!
AM6012A
Paramo
Description
Test Conditions
Min.
Resolution
12
Monotonicity
12
-
D.N.L.
Differential
Nonlinearity
Deviation from ideal step size
N.L.
Nonlinearity
Deviation from ideal straight line
IFS
Full Scale Current
VREF= 10.000V
R14 = R15 = 10.000kQ
TA=2SoC
TCIFS
Full Scale Temp.Co.
Typ.
AM6012
Max.
Min.
12
12
12
Typ.
Max.
Units
12
12
12
12
12
Bits
12
12
Bits
-
±.012
-
-
±.02S
%FS
13
-
12
-
-
Bits
-
-
±.OS
-
-
±O.OS
%FS
3.967
3.999
4.031
3.93S
3.999
4.063
mA
-
±S
±20
-
±10
±40
ppmoC
-
±.OOOS
±.002
-
+10
-S
±1.0
-
Voe
Output Voltage
Compliance
D.N.L. Specification guaranteed
over compliance range
ROUT> 10 megohme typo
-S
IFSS
Full Scale
Symmetry
IFS·IFS
-
Izs
Zero Scale Current
±0.2
-
±.001
±OA
±.OO4 VoFSoC
+10
V
±2.0
~A
-
-
0.10
-
-
0.10
~A
-
2S0
SOD
-
2S0
SOD
nSec
-
2S
SO
-
2S
SO
nSec
-
20
-
pF
IS
Setting Time
To ± 112 LSB, all bits ON or
OFF, TA =2SoC
tpLH
tpHL
Propagation
Delay· all bits
SO% to SO%
COUT
Output Capacitance
-
20
-
VIL
-
-
0.8
-
-
0.8
VIH
Logic Logic "a"
Input
Levels Logic "1"
2.0
-
-
2.0
-
-
liN
Logic Input Current
VIN= -S to +18V
-
-
40
-
-
40
~A
VIS
Logic Input Swing
VEE= -lSV
-S
-
+18
-S
-
+18
V
IREF
Reference Current
Range
0.2
1.0
1.1
0.2
1.0
1.1
mA
115
Reference Bias
Current
0
-O.S
-2.0
0
-O.S
-2.0
~A
V
3/12
23
AM6012-A:M6012A
ELECTRICAL CHARACTERISTICS (Continued)
AM6012A
Paramo
di/dt
Description
Reference Input
Slew Rate
PSSIFS+
Power Supply
Sensitivity
PSSIFSVs
VEE
Power Supply
Range
Test Conditions
Min.
Typ.
Max.
Min.
Typ.
Max.
Units
RI4(eq) =8000
CC=OpF
4.0
8.0
-
4.0
8.0
-
rnAJ~s
Vs=( + 13.5V to + 16.5V)
VEE= -15V
-
±.00005 ±.001
-
±0.0005 ±.001
VEE = -13.5V to -16.5V
VS=+15V
-
±.00025 ±.001
-
±.00025 ±.001
VoFS/%
4.5
-
18
4.5
-
18
-18
-
-10.8
-18
-
-10.8
VOUT=OV
1+
Vs = +5V, VEE= -15V
1-
Power Supply
Current
Vs= +15V, VEE= -15V
1PD
V
-
5.7
8.5
-
5.7
8.5
-
-13.7
-18.0
-
-13.7
-18.0
5.7
8.5
-
5.7
8.5
-13.7
-18.0
-
-13.7
-18.0
1+
Power
Dissipation
AM6012
-
Vs= +5V, VEE= -15V
-
234
312
-
234
312
VS= +15V, VEE= -15V
-
291
397
-
291
397
Fig. 1 - Relative Accuracy Error
rnA
rnW
Fig. 2 - Example of Nonmonotonic Behavior
OUTPUT
OUTPUT
CURRENT
DIGITAL INPUT CODE
A6012-JO:: DIS
4/12
24
A60J2-fO:: LIB
AM6012-AM6012A
APPLICATION INFORMATION
FUNCTIONAL DESCRIPTION
The segmented design of the AM6012, shown in
the block diagram, insures that there are no sIgnIficant differential nonlinearities in the transfer characteristic. The eight major carries of the most
significant bits are not subject to the gross differential nonlinearities that can occasionally occur
in an R-2R type DAC. This advantage is due to the
fundamentally different way that the current is handled in an AM6012.
In a conventional R-2R type DAC, when the input
code is increemented past a major carry, a current
representing the new code is substituted for the
sum of all the less significant bit currents that were previously on. To avoid any nonlinearities, the
two total currents must be extremely well matched.
In the case of the MSB major carry in a 12-bit DAC,
the match must be better than one part in 2048 to
maintain monotonicity. However, in the AM6012,
a new current is never substituted for the sum of
several smaller ones, but redirected through alternate channels and incremented one step at a time.
For example, consider the MSB carry in an
AM6012. In the initial state of 011111111111 as
shown in the block diagram, the switches in the
segment generator are set in such a way that currents 10, II and 12 are steered directly into the noninverting output lOUT. In addition, a portion of 13
is directed through the 9-bit DAC that is controlled
by the 9 least significant bits into lOUT. With the
9LSBs set to "I", all of the 13 current is directed
to lOUT except for the 11512 that goes to ground
through the right-most transistor in the 9-bit DAC.
After the input word is changed to 100000000000,
the segment decoder switch for 13 will be all the
way to the right, the switch for 14 will be in the middle, and all the switches in the 9-bit DAC will be
to the left. lOUT will be composed of 10, h, 12 and
13. None of 14 will be directed into lOUT until a higher code is reached. In other words.. 13 i~ .now
steered directly to lOUT instead of being divided
by a factor of 511/512 in the 9-bit DAC. Since no
major current substitution occurs, there is less
chance of a large nonlinearity at this transition than
in a comparable R-2R DAC.
that results in a maximum relative accuracy error
of 3LSB. This must be distinguished from a differentiallinearityerror. Differential nonlinearity is the
measure of the variation in analog value, normalized to full scale, associated with a ILSB change
in digital input code.
For example, for a 4mA full scale output, a change of ILSB in digital input code should result in a
0.98fLA change in the analog output current
(ILSB = 4mA x 1/4096 = 0.98fLA). If in actual use,
however, a ILSB change in the input code results
ina change of only 0.24fLA (1/4LSB) in output current, the differential linearity error would be 0.74fLA
or 3/4LSB.
The AM6012 has very good differential linearity in
spite of the porr relative accuracy. Conversely, the
DAC of Figure 1 has very good relative accuracy
but poor differential linearity. The anomaly in the
middle of the transfer function is the result of a positive differential linearity error followed by a negative differential linearity error greatertha~ 1LS.B.
A negative output step for an increase .In dlgltal.lnput code is referred to as non monotonic behaVIOr.
In general, if a DAC has a differential linearity error specification greater than 1LSB, it may be nonmonotonic at one or more of the major carries. In
most case the worst differential linearity error will
occur at the MSB transition point.
As noted in the functional description, the 6012's
unique design minimizes differential linearity errors
at the transition points of the 3MSBs. This results
in a tight specification on maximum di~erential.no~
linearity over temperature. Differential linearity IS
verified on all AM6012s with 100% final testing.
In many converter applications, uniform step size
(or minimum differential linearity error) is more important than conformance to an ideal straight li~e.
Twelve-bit onverters are usually needed for high
resolution rather than high linearity as evidenced
by the fact that few transducers are more linear
than 0.1 %. This is also true in video graphiCS, where the human eye has difficulty discerning nonlinearity of less than 5%. The AM6012 is especially
well suited for these applications since it has inherently low differential linearity error.
RELATIVE ACCURACY VS. DIFFERENTIAL NONLINEARITY
We defines relative accuracy as the maximum deviation of the actual, adjusted DAC output from the
ideal analog output (a straight line drawn between
the lowest code output voltage and the highest code output voltage) for any bit combination. Relative accuracy is often referred to as nonlinearity. The
DAC transfer function shown in Figure 1 has a bow
5/12
25
AM6012-AM6012A
APPLICATION INFORMATION (Continued)
ANALOG OUTPUT CURRENTS
Both true and complemented output sink currents
are provided where 10 + 10 = IFR. Current appears
at the "true" output when a "1" is applied to each
logic input. As the binary count increases, the sink
current at pin 18 increases proportionally, in the
fashion of a "positive logic" D/A converter. When
a "0" is applied to any input bit, that current is turned off at pin 18 and turned on at pin 19. A decreasing logic count increase 10 as in a negative or
inverter logic D/A converter. Both outputs may be
used simultaneously. If one of the outputs is not
required it must still be connected to ground or to
a point capable of sourcing IFR; do not leave an
unused output pin one.
Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other
voltage source. Positive compliance is 25V above
V - and is independent of the positive supply. Negative compliance is + 10V above V - .
The dual outputs enable double the usual peak-topeak load swing when driving loads in quasidifferential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving center-tapped
coils and transformers.
POWER SUPPLIES
The AM6012 operates over a wide range of power
supply voltages from a total supply of 20V to 36V.
When operating with V - supplies of -10Vor less,
IREF :51 mA is recommended. Low reference current operation decreases power consumption and
increases negative compliance, reference amplifier negative common mode range, negative logic
input range, and negative logic threshold range;
consult the various figures fro guidance. For example, operation at - 9V with IREF = 1mA is not recommended because negative output compliance
would be reduced to near zero. Operation from lower supplies is possible, however at least 8V total
must be applied to insure turn-on of the internal
bias network.
Symmetrical supplies are not required, as the
AM6012 is quite insensitive to variations in supply
voltage. Battery operation is feasible as no ground
connection is required; however, an artificial ground
may be used to insure logic swings, etc. remain
between acceptable limits.
TEMPERATURE PERFORMANCE
The nonlinearity and mononicity specifications of
the AM6012 are guaranteed to apply over the entire rated operating temperature range. Full scale
6/12
26
output current drift is flight, typically ± 10ppm/oC
with zero scale output current and drift essentially
negligible compared to 1/2 LSB.
The temperature coefficient of the reference resi·
stor R14 should match and track that of the output resistor for minimum overall full scale drift.
SETTLING TIME
The AM6012 is capable of extremely fast settling
times, typically 250ns at IREF = 1.0mA. Judicious
circuit design and careful board layout must be employed to obtain full performance potential during
testing and application. The logic switch design
enables propagation delays of only 25ns for each
of the 12 bits. Settling time to within 1/2 LSB of the
LSB is therefore 25ns, with each progressively larger bit taking successively longer. The MSB settles in 250ns, thus determining the overall settling
time of 250ns. Settling to 1O-bit accuracy requires
about 90 to 130ms. The output capacitance of the
AM6012 including the package is approximately
20pF; therefore, the output RC time constant dominates settling time if RL > 500n.
Settling time and propagation delay are relatively
insensitive to logic input amplitude and rise and fall
times, due to the high gain of the logic switches.
Settling time also remains essentially constant for
IREF values down to 0.5mA, with gradual increases for lower IREF values lies in the ability to attain a given output level with lower load resistors,
thus reducing the output RC time constant.
Measurement of settling time requires the ability
to accurately resolve ± 2p,A, therefore a 2.5kO load
is needed to provide adequate drive for most oscilloscopes. At IREF values of less than 0.5mA, excessive RC damping of the output is difficult to
prevent while maintaining adequate sensitivity. However, the major carry from 011111111111 to
100000000000 provides an accurate indicator of
settling time. This code change does not require
the normal 6.2 time constants to settle to within
± 0.1 % of the final value, and thus settling times
may be observed at lower values of IREF.
AM6012 switching transients or "glitches" are very
low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time.
Fastest operation can be octained by using short
leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the
supply, reference, and VLC terminals. Supplies do
not require large electrolytic bypass capacitors as
the supply current drain is independent of input logic states; 0.1 p,F capacitors at the supply pins provide full transient protection.
AM6012-AM6012A
APPLICATION INFORMATION (Continued)
REFERENCE AMPLIFIER SETUP
The AM6012 is a multiplying DIA converter in which
the output current is the product of a digital number and the input reference current. The reference current may be fixed or may vary from nearly
zero to + 1.0mA. The full range output current is
a linear function of the reference current and is given by:
4095
IRF= --x4x(IREF)=3.999 IREF,
4096
where IREF = 114
In positive reference applications, an external positive reference voltage forces current through R14
into the VREF( +) terminal (pin 14) of the reference
amplifier. Alternatively, a negative reference may
be applied to VREF( -) at pin 15. Reference current
flows from ground through R14 into VREF( +) as in
the positive reference case. This negative reference
connection has the advantage of a very high impedance presented at pin 15. The voltage at pin
14 is equal to and tracks the voltage at pin 15 due
to the high gain of the internal reference amplifier.
R15 (nominally equal to R14) is used to cancel bias
current errors. (Figure 3).
Bipolar references may be accommodated by offsetting VREF or pin 15. The negative commonmode range of the reference amplifier is given by:
VCM - = V - plus (lREF x 3kfl) plus 1.SV. The positive common-mode range is V + less 1.23V.
When a DC reference is used, a reference bypass
capacitor is recommended. A 5.0V TTL logic supply is not recommended as a reference. If a regulated power supply is used as a reference, R14
should be split into two resistors with the junction
bypassed to ground with a 0.11'F capacitor.
For most applications the tight relationship between
IREF and IFS will eliminate the need for trimming
IREF. If required, full scale trimming may be accomplished by adjusting the value of R14, or by
using a potentiometer for R14.
MULTIPLYING OPERATION
The AM6012 provides excellent multiplying performance with an extremely linear relationship between IFS and IREF over a range of 1mA to 11'A.
Monotonic operation is maintained over a typical
range of IREF from 100l'A to 1.0mA.
REFERENCE AMPLIFIER COMPENSATION FOR
MULTIPLYING APPLICATIONS
AC reference applications will require the reference amplifier to be compensated using a capacitor
from pin 16 to V - . The value of this capacitor depends on the impedance presented to pin 14. For
R14 values of 1.0, 2.5 and 5 Okfl; minimum values
of Cc are 5, 12 and 25 pF. larger values of R14
require proportionately increased values of Cc for
proper phase margin (See Figure 4 and 5).
For fastest response to a pulse, low values of R14
enabling small Cc values should be used. If pin 14
is driven be a high impedance such as a transistor
current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall compensated which
will decrease overall bandwidth and slew rate. For
R14 = 1kfl and Cc = 5pF, the reference amplifier
slews at 4mAlms enabling a transition from
IREF = 0 to IREF = 1mA in 250ns.
Operation with pulse inputs to the reference amplifier may be accommodated by an alternate compensation scheme. This technique provides lowest
full scale transition times. An internal clamp allows
quick recovery of the reference amplifier from a cutoff (IREF = 0) condition. Full scale transition (0 to
1mAl occurs in 62.5ns when the equiyalent impedance at pin 14 is SOOfl and Cc = O. This yields a
reference slew rate of SmAIl'S which is relatively
independent of RIN and VIN values.
lOGIC INPUTS
The AM6012 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise
immunity. This feature is made possible by the large input swing capability, 40l'A logic input current,
and completely adjustable logic inputs may swing
between - 5 and + 1OV.
This enables direct interface with + 15V CMOS logic, even when the AM6012 is powered from a + 5V
supply. Minimum input logic swing and minimum
logic threshold may be adjusted over a wide range
by placing an appropriate voltage at the logic threshold control pin (pin 13, VLC). For TTL interface,
simply ground pin 13. When interfacing ECl, an
IREF ::5 1mA is recommended. For interfacing
other logic families, see block titled "Interfacing
with Various Logic Families". For general setup of
the logic control circuit, it should be noted that pin
13 will sink 1.1 mA typical, external circuitry should
be designed to accommodate this current (Figure 6).
7/12
27
AM6012-AM6012A
Fig. 3 - Reference amplifier biasing
AM6012
R14
VIN~ RIN
IO
1B
IO +IO - IFS
FOR ALL INPUT CODES
VIN~
R15
16
20
CDM~--,
CC
17
v-
Reference Configuration
---r-;--:J
I
I ~. 1
T 1:::c
v+
19
..L.0 .1..L. 22,uF
20:::C:C
v-
TANT.
(NOTE 5)
A60!2-8,',' LIB
R14
R15
RIN
Cc
Positive Reference
VR+
OV
N/C
.D1JlF
VR+/R14
Negative Reference
OV
VR-
N/C
.01JlF
-VR-/R14
La Impedance Bipolar
Reference
VR+
OV
VIN
(Note 1)
VR+/R14) + (VIN/RIN)
(Note 2)
Hi Impedance Bipolar
Reference
VR+
VIN
N/C
(Note 1)
(VR+ - VIN)/R14
(Note 3)
Pulsed Reference (Note 4)
VR+
OV
VIN
No Cap
(VR +/R14) + (VIN/RIN)
IREF
Notes:
1. The compensation capacitor a function of the impedance seen at the + VREF input and must be at least 5pF x R14(eq)
in kn. For R14 < 800n no capacitor is necessary.
2. For negative values of VIN, VR+/R14 must be greater than -VIN Max/RIN so that the amplifier is not turned off.
3. For positive values of VIN, VR + rnust be greater than VIN Max so the amplifier is not turned off.
4. For pulsed operation, VR+ provides a DC offset and may be set to zero in some cases. The impedance at pin 14
should be 800n or less.
5. For optimum settling time, decouple V . with 20n and bypass with 22/,F tantulum capacitor.
6. Reference current and reference resistor - there is a 1 to 4 schale factor between the reference current (IREF) and
the full scale output current (IFS). If VREF= + 10V and IFS=4mA, the value of the R14 is:
8/12
28
AM6012-AM6012A
Fig. 4 - Minimum size compensation capacitor
(IFS 4mA, IREF 1.0mA)
=
=
R14(EQ)(KO)
Cc(pF)
10
50
25
5
2
Fig. 5 . Reference Amplifier Frequency response
(dB)
H=
10
3
5
0
o
1
5
Note: A 0.01 ~F capacitor IS recommended for fixed reference operation.
-3
-6
I
I
SMALL SIGNAL
LARGE SIGNAL
~
--;::- :.<\
,
,
\1\
rl
J
I
I
0.01
'\
\'\
I
R14=2K
Cc = 10~F
1
0.1
10
(MHz)
A6012-JJ:: OI
Fig. 6 • Interfacing Circuits
Fig. 7 • Accomodating Bipolar Reference
VAEF +
CMOS
+ 15V
RREF
VIN
RIN'
" A"
20K
IREF
o-~I~in::r-l:.l~41.=:-:-::-'
470
d
18 Io
AM6012
..C"----J 19 Io
13
3K
510
IREF > PEAK NEGATIVE SWING OF Iin
~REF
ECl
RREF 1 4 - - - , 18 Io
(+)
~
o·-=-~·::r
~
VIN HIGH
INPI~T
AM6012
~
f;-;;-o
19 Io
IMPEDANCE
13K
VREF
" A"
o
(+)
MUST BE ABOVE PEAK POSITIVE SWING OF VIN
PIN 13
6.2K
-
5.2V
9/12
29
AM6012-AM6012A
Fig. 8 • AM6012 Logic Inputs
e
2 mA
KOhm
~
RS
R1
ROFF
E
R14
10 KOhm , -_ _ _ _ _ _ _,
HOV
REF
1---4~--C::=]--i VREF (+)
AM6012
(-)
R14
VREF
1.0mA
812
R15
10 KOhm
iO,,--,-G
1
LSB
2.0mA
Slraighl bynary
one polarity
with true input
code, true zero
output.
a-c
b-g
RFR2~2.5K
Complementary
binary one
Rl
polarity with
complementary
input code, true
zero output.
Slraighloffset
binary; offset
half scale, symmetrical about
zero, no true
zero output.
a-g
b-c
~R2~2.5K
a-c
b-d
f-O
Rl
~R3~2.5K
R2~
l' s complement
offsel half scale
symmetrical
about zero, no
true zero output
Output
Scale
Connec.
Code Format
Symmetrical
Offsel
D
OPTIONAL
(SEE CODE TABLE)
ROFF = VREF
Unipolar
>_............ VOUT
10
1.25K
a-c
b-d
f-g
Rl
~R3~2.5K
R2~
1.25K
MSB comple-
.A60J2-7." ." LIB
MS8
LS8
10
10
Vour
Bl 82 83 84 85 86 87 88 89 810 811 812
Positive full scale
Positive full scale-LSB
Zero scale
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
0
0
3.999
3.998
.000
.000
.001
3.999
9.9978
9.9951
.0000
Positive full scale
Positive full scale-LSB
Zero scale
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
.000
.001
3.999
3.999
3.998
.000
9.9976
9.9951
.0000
Positive full scale
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
3.999
3.998
2.000
1.999
.001
.000
.000
.001
1.999
2.000
3.998
3.999
9.9976
9.9927
.0024
-.0024
-9.9927
-9.9976
0
0
0
I
1
I
1
I
0
I
0
0
1
1
0
1
0
0
1
I
0
1
0
0
1
I
0
1
0
0
1
1
0
1
0
0
1
I
0
I
0
0
1
1
0
1
0
0
1
I
0
1
0
0
1
I
0
I
0
0
1
I
0
1
0
0
1
0
0
1
1
0
3.999
3.998
2.000
1.999
.001
.000
.000
.001
1.999
2.000
3.998
3.999
9.9976
9.9927
.0024
-.0024
-9.9927
-9.9976
I
1
I
1
0
0
0
1
I
0
0
I
0
0
1
1
0
0
I
0
0
I
1
0
0
1
0
1
1
0
0
1
1
1
0
0
1
0
0
1
1
0
0
1
0
0
a
1
0
0
I
1
0
0
1
0
0
1
1
0
0
I
0
0
1
1
0
a
I
I
0
0
1
0
0
a
1
0
1
0
1
1
0
3.999
3.998
2.001
2.000
1.999
.001
.000
.000
.001
1.998
1.999
2.000
3.998
3.999
9.9951
9.9902
.0049
.000
-.0049
-9.9951
-10.000
0
0
0
0
I
1
1
1
I
0
0
I
0
0
1
I
0
0
I
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
I
I
0
0
I
0
0
1
1
0
0
1
0
0
1
I
0
0
1
0
0
1
1
0
0
I
0
0
I
1
0
0
1
0
0
1
1
0
0
1
0
0
1
3.999
3.998
2.001
2.000
1.999
.001
.000
.006
.001
1.998
1.999
2.000
3.998
3.999
9.9951
9.9902
.0049
.000
-0.049
-9.9951
-10.000
Posilive full scale-LSB
I + I Zero scale
I-I Zero scale
Negalive full scale-LSB
Negative fu II scale
Positive full scale
Positive full scale-LSB
I + I Zero scale
I-I Zero scale
Negalive full scale-LSB
Negative full scale
1
mented (need
inverter at B1).
Offsel binary,
offsel half
scale, true zero
output.
e-a-c
b-g
Rl~R2~5K
Positive fu II scale
Positive full scale-LSB
+LSB
Zero Scale
-LSB
Negalive full scale+LSB
Offsel wilh
True Zero
Negative full scale
2's complement
e-a-c
offsel half scale
b-g
true zero output
RI~R2~5K
Positive full scale
Positive full scale-LSB
+1 LSB
MSB com ple-
Zero scale
mented (need
inverter at B1)
-1 LSB
Negalive full scale+ LSB
Negative full scale
a
a
1
0
1
1
0
ADDITIONAL CODE MODIFICATIONS
1. Any of the offset binary codes may be complemented by reversing the output terminal pair.
10/12
30
AM6012-AM6012A
Fig. 10 - Recommended Full-scale Adjustment Circuit
Fig. 9 - Basic Negative Reference Operation
RREF
VREF (-)
~
.
R15
Io
14
~1B
AM6012
19
15L------~
VREF
+ 5V
Io
Fig. 11 - CRT Display Driver
+120V DC
"X" INPUT
"y"
INPUT
•
o
-15V
--+
10
A60t2-5: : LI .
Fig. 12 - 12-BIT High-Speed AID Converter
CLOCK
LSB
+ i5V
VAEF
ANALOB IN
lo-i0Yl
+ i0V
5.000K
lIEF
1>.1IOOK
MSB
AM6012
COlI'
I
iDnF iuF
VI-)
iuF
V1+)
A6fU2-fl: : LIB
11/12
31
AM6012-AM6012A
Fig. 13 - Interface with 8-blt Microprocessor Bus
I
MSB
7
6
DE
3
2
1
LS373
5
4
o
AM
E2
E1 -
'-
EA
D3A
I
-
6012
EB
~
D2A
G3A
Q2A
-
D3B
D2B
DiA
QiA -
DiB
GiB -
DOA
GOA
DOB
GOB
-
1/2LS100
G3B
G2B
~
-
LSB
1/2LS100
A6012-4: : LIB
Fig. 14 - Interface with digital signal processor TS68930/31
+151.)
r
DB-7
18K
Vref+
Us
28
HC374
14
B12-5
CP
B
AM6012
B
OUT
AM6012A
DB11
B4-2
12
TS6B938/
31
Vref
B.1uF
B1
HCB4
os
E2
AB
El
HC13B
00
GHD
Uref-
1BK
-UEE
CaMP
2B.
B
[2[
uF. 2uF
-15U
A9-11
12112
32
3
A.
BBIII15812-51
DAC0808
DAC0807
DAC0806
8-BIT D/A CONVERTERS
• RELATIVE ACCURACY: ±O.19% ERROR MAXIMUM (DAC0808)
• FULL SCALE CURRENT MATCH: ± 1 LSB TYP
• 7 AND 6-BIT ACCURACY AVAILABLE
(DAC0807, DAC0806)
• FAST SETTING TIME: 150 ns TYP
• NONINVERTING DIGITAL INPUTS ARE TTL
AND CMOS COMPATIBLE
• HIGH SPEED MULTIPLYING INPUT SLEW RATE: 8 mAIl's
• POWER SUPPLY VOLTAGE RANGE: ±4.5V
to ±18V
• LOW POWER CONSUMPTION: 33 mW @±5V
SO-16J
DIP-16 Plastic (0.25)
and Ceramic
PIN CONNECTION
COMP
N.C.
(-)
GNO
VREF
(+) VREF
DESCRIPTION
The DAC0808 series is an 8-bit monolithic digitalto-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with ± 5V supplies. No reference
current (IREF) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 IREF/256. Relative accuracies
of better than 0.19% assure 8-bit monotonicity and
linearity while zero I,evel output current of less than
41'A provides 8-bit zero accuracy for IREF~2 mAo
The power supply currents of the DAC0808 series
are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.
10
+VS
Ai
A8
A2
A7
A3
A6
A4
9
A5
DACOBOB-t3
The DAC0808 will interface directly with popular
TTL, or CMOS logic levels, and is a direct replacement for the MC1508/MC1408.
June 1988
1/11
33
DAC0808-0807-0806
ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Vs
+18
V
-18
V
-10 V to + 18
V
5
rnA
VCC ,VEE
VEE
Digital Input Voltage V5 - V12
Reference Current, 114
Reference Amplifier Inputs, V14, V15
Operating Temperature Range
DAC0808L
DAC0808LCID1
-55°C:5TA:5 + 125°C
O:5TA:5 + 75°C
-65°C to + 150°C
Storage Temperature Range
ORDERING INFORMATION
Accuracy
Temperature
range
Plastic
DIP-16
Ceramic
DIP-16
SO-16
8 bit
o to 75°C
DAC0808LCN
DAC0808LCJ
DAC0808D
7 bit
o to 75°C
DAC0807LCN
DAC0807LCJ
DAC0807D
6 bit
o to 75°C
DAC0806LCN
DAC0806LCJ
DAC0806D
8 bit
-55 to 125°C
-
DAC0808W
-
BLOCK DIAGRAM
+VS
Ai
A2
A3
A4
A5
A6
A7
AS
+o--t-f--+-----.
DACOBOB-J
THERMAL DATA
Rthj-amb
2111
34
Thermal resistance junction-ambient max
Ceramic
DIP-16
SO-16
Plastic
DIP-16
150°C/W
120°C/W
100°C/W
DAC0808-0807-0806
ELECTRICAL CHARACTERISTICS
(VS=5V, VEE= -15V, VREF/R14=2 rnA, TA=TMIN to TMAX and all digital inputs at high logic level
unless otherwise noted.)
Parameter
Er
Test Conditions
tpLH
tpHL
Propagation Delay Time
TClo
Output Full Scale Current Drift
MSB
VIH
VIL
Digital Input Logic Levels
High Level, Logic "1"
Low Level, Logic "0"
(Figure 9)
MSB
Digital Input Current
High Level
Low Level
(Figure 9)
VIH=5V
VIL=O.BV
Reference Input Bias Current
Output Current Range
(Figure 3)
(Figure 9)
VEE= -5V
VEE= -15V, TA=25°C
115
10
Output Current
Output Current, All Bits Low
Output Voltage Compliance
VEE= -5V
VEE Below -10V
SRI REF
Min.
Relative Accuracy (Error Relative (Figure 10)
to Full Scale 10)
DACOBOBL
DACOB07LCIDI
(Note 1)
DACOB06LCIDI
(Note 1)
Settling Time to Within 1/2 LSB T A = 25°C (Note 2)
(Figure 11)
(Includes tpLH)
Reference Current Siew Rate
Output Current Power Supply
Sensitivity
%
%
%
ns
100
ns
150
30
ppm/DC
2
VREF = 2.000V.
RI4=1000{l
(Figure 9)
(Figure 9)
Er ",0.19%, T A =25°C
(Figure 14)
-5V",VEE'" -16.5V
Power Supply Voltage Range
Vs
VEE
T A = 25°C (Figure 9)
O.B
VDC
VDC
0
-0.003
0.040
-O.B
mA
mA
-1
-3
p.A
0
0
2.0
2.0
2.1
4.2
mA
mA
1.9
1.99
0
2.1
4
mA
p.A
-0.55, + 0.4
- 5.0 , + 0.4
V
V
2.7
mAlp.s
p.AlV
4
B
0.05
2.3
-4.3
4.5
5.0
-4.5 -15
VS=5V.vEE= -5V
Vs = 5V.VEE = -15V
Vs=15V.vEE=-5V
Vs=15V.VEE= -15V
Unit
±0.19
±0.39
±0.7B
±20
(Figure 9)
All Bits High
Max.
%
T A = 25°C (Figure 11)
Power Supply Current (All Bits Low)
IS
lEE
Power Dissipation
All Bits Low
Typ.
33
106
90
160
22
-13
5.5
-16.5
170
305
mA
V
mW
mW
mW
mW
Note 1 All current sWitches are tested to guarantee at least 50% of rated current.
Note 2 All bits switched.
Note 3 Range control is not required.
3/11
35
DAC0808-0807-0806
Fig. 1 • Supply Current vs
Temperature
Fig. 2 • Supply Current vs Supply
Voltage (VEE)
Fig. 3 • Supply Current vs Supply
Voltage IYs}
Icc
(mA) HALL 8ITS HIGH OR LOW f
8
1 1 1 1 I
~ ~ lEE (1 14 =2mA) 6
TTTTT
l -l - lEE (114 =1mA) - '"-"
4
IE (1 14 =0.2mA) ~ ~
~~
Icc
Icc
(mA) ~ALL 8ITS HIGH OR LOW
ff ALL
(mA)
8
8ITS HIGH OR LDW1
114 2mA
1
lEE
6
4
2
~
2
1,5
-50
0
50
4
12
8
T
l
10
Ai THROUGH A8 I--
II
2
0
4
8
'l
(V)
Fig. 7· Output Voltage-Compliance
vs Temperature
0.6
SHADED AREA
8 l-
-16
4/11
36
o
V=I~I
-4
0
4
8
12 VL
12
8
Vs (V)
Fig. 6 • Output Voltage Compliance
ON
ALL BITS
I
2.4
VEi=-15V VE~=-5V
I
jT
I14=2mA
A2
1.2
I1'4JmA
A3
0.8
A4
A5
0.4
IJo.~mA
INDICATES
I
PERMISSIBLE OUTPUT
\OEL;_A_GE RANGE FOR
16V. I 14-2mA
l -l l -l -
o
-4
~~
~ ~ ~ ~ ~ ~~
-8
-12
-50
o
50
1 0 0 T A(0 C)
(V)
Fig. 8 • Frequency response
'"
1\\ I\.,
A
-16
0.1 0.20.5 1
~
\c
2
-14 -10 -6 -2
2
6
10 Vo (V)
Curve A: Large Signal Bandwidth
Method of Figure 7, VREF=2 Vp·p
offset 1 V above ground
B
~ '"'
/""
~
o
Unless otherwise specified: R14 =
R15=1 kO,C=15pF,pin16toVEE;
RL = 500, pin 4 to ground.
,
4
~~ ~ ~ ~ ~~
l-
151 (II 1,4 =12 mt) f- f4
2
(dB)
Vo
(V)
o~
-
0.4
-8 -4
16
I EE (I 14 =2mA) f-
1.6
0.2
o
-
10
0.8
L-
f-
(mA)
I 14 =2mA
Ai
4
-
VEE (V)
Fig. 5 • Bit Transfer Characteristics
(mA)
4
2
1~
1 0 0 T A (0 C)
Fig. 4 • Logic Input Current vs
Input Voltage
-8
6
I
o
f
8
(MHz)
Curve B: Small Signal Bandwidth
Method of Figure 7, RL = 2500,
VREF=50 mVp·p offset 200 mV
above ground.
Curve C: Large and Small Signal
Bandwidth Method of Figure 9 (no
op amp. RL = 500), RS = 500,
VREF= 2V, Vs = 100 mVp·p centered
at OV.
DAC0808-0807-0806
Test Circuits
FIGURE 9. Notation Definitions
+Vs
13
The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.
VREF
A3
IO=K(A1+A2+A3+A4+A5+A6+A7 +A8)
2
4
8 16 32 64 128 256
A4
A5
A6
VREF
where K == R14
and AN = "1" if AN is at high level
AN = "0" if AN is at low level
FIGURE 10. Relative Accuracy
A1
~~~~§ 12 BIT
Vo- 0 to 10V
D to A
MSB
5
13
6
7
B
DAC
8 BIT H:>-----<~++-o--:-l
9
COUNTERI--o--~+I-+-o-~ 0808
10
11
12
LSB
50 Kohm
14
950
1Kohm
OAC0808-4
-VEE
5/11
37
DAC0808-0807-0S06
FIGURE 11. Transient Response and Settling Time
Yin
(Vi
._-------
2.4
+2V
V
\
0.4
VO
(Vi
0.7
INTERNAL
r'"
SETTLING
TIME
..JL
5.10
Vo
TRANSIENT
RESPONSE
100 nF
rI
1 4V
I~
~ CLAMP
LEVEL
Is= 150ns TYP.
if-
k-
-100
OAC0808-5
FIGURE 12. Positive VREF
-------l>
~ OAC0808-14
~
FIGURE 13. Negative VREF
+Vs
VREF
...JL
A2
A3
A3
A4
A4
A5
A5
A6
6/11
38
VO
Lr
A6
A7
A7
-VEE
-VEE
vo
Lr
r--
DAC0808-0807-0806
FIGURE 14. Reference Current Slew Rate Measurement
The reference amplifier provides a voltage at pin
14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for
feeding the ladder. The reference amplifier input
current, 114, must always flow into pin 14, regardless of the set-up method or reference voltage polarity,
1 Kohm
15
DAC
2
1 Kohm
TO
SCOPE
-VEE
3
15 pF
REFERENCE AMPLIFIER DRIVE AND COMPENSATION
~~~~20mA
I
'
I
ts
,
OAC0808-6
Connections for a positive voltage are shown in Figure 12. The reference voltage source supplies the
full current 114. For bipolar reference signals, as
in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only
a small sacrifice in accuracy and temperature drift,
The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1, 2.5 and 5 kD,
minimum capacitor values are 15,37 and 75 pF.
The capacitor may be tied to either VEE or ground,
but using VEE increases negative supply rejection.
APPLICATION INFORMATION
CIRCUIT DESCRIPTION
The DAC0808 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a
reference resistor and reference voltage need be
added,
The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses
current steering for high speed, and a termination
amplifier consisting of an active load gain stage
with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder
at a constant voltage during switching and provides a low impedance termination of equal voltage
for all legs of the ladder.
The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed
to the switches. Nota that there is always a remainder current which is equal to the last significant bit.
This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1,992 mA for a 2.0 mA reference
amplifier current if the NPN current source pair is
perfectly matched,
A negative reference voltage may be used if R14
is grounded and the reference voltage is applied
to R15 as shown in Figure 13. A high input impedance is the main advantage of this method, Compensation involves a capacitor to VEE on pin 16,
using the values of the previous paragraph. The
negative reference voltage must be at least 3V above the VEE supply. Bipolar input signals may be
handled by connecting R14 to a positive reference voltage equal to the peak positive input level at
pin 15.
When a DC reference voltage is used, capacitive
by pass to ground is recommended, The 5V logic
supply is not recommended as a reference voltage, If a well regulated 5V supply which drives logic is to be used as the reference, R14 should be
decoupled by connecting it to 5V through another
resistor and bypassing the junction of the 2 resistors with 0,1 /-IF to ground, For reference voltages
greater than 5V, a clamp diode is recommended
between pin 14 and ground,
If pin 14 is driven by a high impedance such as a
transistor current source, none of the above compensation methods apply and the amplifier must
be heavily compensated, decreasing the overall
bandwidth,
7/11
39
DAC0808-0807-0806
OUTPUT VOLTAGE RANGE
The. voltage on pin 4 is restricted to a range of - 0.6
to 0.5V when VEE = - 5V due to the current switching methods employed in the DAC0808.
The negative output voltage compliance of the
DAC0808 is extended to - 5V where the negative
supply voltage is more negative than -10V. Using
a full-scale current of 1.992 mA and load resistor
of 2.5 kO between pin 4 and ground will yield a voltage output of 256 levels between 0 and - 4.980V.
Floating pin 1 does not affect the converter speed
or power dissipation. However, the value of the load
resistor determines the switching time due to increased voltage swing. Values of RL up to 5000
do not significantly affect performance, but a 2.5
kO load increases worst-case setting time to 1.2 p,s
(when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details output loading.
OUTPUT CURRENT RANGE
The output current maximum rating of 4.2 mA may
be used only for negative supply voltages more negative than - 7V, due to the increased voltage drop
across the resistors in the reference current amplifier.
ACCURACY
Absolute accuracy is the measure of each output
current level with respect to its intended value, and
is dependent upon relative accuracy and full-scale
current drift. Relative accuracy is the measure of
each output current level as a fraction of the fullscale current. The relative accuracy of the
DAC0808 is essentially constant with temperature due to the excellent temperature tracking of the
monolithic resistor ladder. The reference current
may drift with temperature, causing a change in
the absolute accuracy of output current. However,
the DAC0808 has a very low full-scale current drift
with temperature.
The DAC0808 series is guaranteed accurate to within ± 1/2 LSB at a full-scale output current of 1.992
mA. This corresponds to a reference amplifier output current drive to the ladder network of 2 mA, with
the loss of 1 LSB (8 p,A) which is the ladder remainder shunted to ground. The input current to pin 14
has a guaranteed value of between 1.9 and 2.1 mA,
allowing some mis-match in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a
full-scale output current of 1.992 mAo This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA.
8111
40
Then the DAC0808 circuits' full-scale current is
trimmed to the same value with R14 so that a zero
value appears at the error amplifier output. The
counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.
Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of ± 1/2 of one part in
65,536, or ± 0.00076%, which is much more accurate than the ±0.019% specification provided
by the DAC0808.
MULTIPLYING ACCURACY
The DAC0808 may be used in the multiplying mode with 8-bit accuracy when the reference current
is varied Over a range of 256: 1. If the reference current in the multiplying mode ranges from 16 p,A to
4 mA, the additional error contributions are less
than 1.6 p,A. This is well within 8-bit accuracy when
referred to full-scale.
A monotonic converter is one which supplies an
increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for
all values of reference current above 0.5 mA. The
recommended range for operation with a DC reference current is 0.5 to 4 mAo
SETTLING TIME
The "worst case" switching condition occurs when
all bits are switched "on", which corresponds to
a low-high transition for all bits. This time is typically 150 ns for settling to within ± 1/2 LSB for 8-bit
accuracy and 100 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These timers apply when RL .;;; 500 ohms and Co .;;; 25
pF.
The test circuit of Figure 11 requires a smaller voltage swing for the current switches due to internal
voltage clamping in the DAC0808 A 1.0-kilohm load
resistor from pin 4 to ground gives a typical settling time of 200 ns.
Thus, it is voltage swing and not the output RC time constant that determines setting time for most
applications.
Extra care must be taken in board layout since this
is usually the dominant factor in satisfactory test
results when measuring settling time.
Short leads, 100 p,F supply bypassing for low frequencies, and minimum scope lead length are all
mondatory.
DAC0808-0807-0806
PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTEPUATOR
When used in the multiplying mode can be applied
as a digital attenuator. See Figure 15. One advantage of this technique is that if Rs = 50 ohms, no
compensation capacitor is needed. The small and
large signal band are now identical and are shown
in Figure BC.
The best frequency response is obtained by not allowing 114 to reach zero. However, the high impedance node, pin 16, is clamped to prevent
saturation and insure fast recovery when the current through R14 goes to zero. Rs can be set for
a ± 1.0 mA variation in relation to 114. 114 can never be negative.
The output current is always unipolar. The quiescent dc output current level changes with the digital word which makes accoupling necessary.
CURRENT TO VOLTAGE CONVERSION
Voltage output of a larger magnitude are obtainable with the circuit of fig. 16 which uses an external operational amplifier as a current to voltage
converter. This configuration automatically keeps
the output of the DACOBOB ground potential and
the operational amplifier can generate a positive
voltage limited only by its positive supply Voltage.
Frequency response and setting time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier
must be compensated for unity gain, and in some
cases over compensation may be desirable.
Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input. The LM301 can be used
in a feedforwerd mode resulting in a full scale setting time on the order of 2.0 f's.
voltage is developed with respect to the negative
voltage and appears as a common-mode signal to
the reference amplifier in the D-to-A converter. This
allows use of its amplifier as a classic current-tovoltage converter with the non-inverting input
grounded.
Since ± 15V and + 5.0V are normally available in
a combination digital-to-analog system, only the
-5.0 V need be developed. A resistor divider is
sufficiently accurate since the allowable range on
pin 5 is from - 2.0 to - B.O volts. The 5.0 kilohm
pulldown resistor on the amplifier output is necessary for fast negative transitions.
Full scale output may be increasing Ro and raising
the + 15V supply voltage to 35 V maximum. The
resistor divider should be altered to comply with
the maximum limit of 40 volts across the LM723
Co may be decreased to maintain the same RoCo product if maximum speed is desired.
PROGRAMMABLE POWER SUPPLY
The circuit of figure 17 can be used as a digitally
programmed power supply by the addition of
thumb-wheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to + 25.5 volts in 0.1 - volt
increments, ±10 mV.
PANEL METER READOUT
The DACOBOB can be used to read out the status
of BCD or binary registers or counters a digital control system. The current output can be used to drive directly an analog panel meter. External meter
shunts may be necessary if a meter of less than
20 mA full scale is used. Full scale calibration can
be done by adjusting R14 or Vref (see fig. 1S).
COMBINED OUTPUT AMPLIFIER AND VOLTAGE REFERENCE
CHARACTER GENERATOR
For many of its applications the DACOBOB requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as
a current to voltage converter and its output need
only go positive. With the popular LM723 voltage
regulator both of these functions are provided in
a single package with the added bonus of up to 150
mA output current. See Figure 17. The reference
In a character generation system fig. 19 one
DACOSOB circuit uses a fixed reference voltage and
its digital input defines the starting point for a stroke. The second converter circuit has a ramp input
for the reference and its digital input defines the
slope of the stroke. Note that this approach does
not result in a 16-bit D-to-A converter (see Accuracy Section).
9/11
41
DAC0808-0807-0806
TWO-DIGIT BCD CONVERSION
Two 8-bit, D-to-A converters can be used to build
a two digit BCD D-to-A or A-to-D converter (fig. 21).
If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full
scale current levels of 4.0 mA and 0.4 mA with the
outputs connected to sum the currents. The error
of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and
thus an DAC0806 may be used for the least significant word.
FIGURE 15. Programmable Gain Amplifier or Digital
Attenuator Circuit
Vsense
RS
R 14
VREF
-When VS=O. 1)4=2.0mA
Vo= (Vre! + Vs IAlR
R14 RS
0
14
FIGURE 16.
+5V
13
DAC0808-9
m
r-o--C:J----Q VREF= 1OV
A2
A3
A4
A2
A8)
Al
Vo=10V ( 2" + 4" + ... 256
A5
AS
A7
FIGURE 17. Combined output amplifier and voltage
reference circuit
FIGURE 18. Panel meter readout circuit
RO = 5K
+Vs
CO
+5V
25pF
13
I
14
6
VREF
4
I*J
~
l
-VEE
I*J
-15V
10/11
42
R14
a:
0--'-----'
DIGITAL WORD FROM COUNTER/REGISTER
DAC0808-0807-0806
FIGURE 19. Digital summing and character generation
+Vs
Vo = (101 + 102 ) RO
I
A
Vo= [V,ef1 [AI + V,ef2 [BI]R
R141
Rl4z
0
L
-VEE
o---C>=---I---f------o"-----l
FIGURE 20. Analog product of two digital words (High Speed Operation)
Vo=
+V.
t-=-'<0-'<='--O
I
~101
RO= V,ef [AI RO
R141
VREF
Vo
102=[BI IVol
R142
=~ [RO( V,ef
R142
) [AJ ]
R141
A
L
-VEE
Since Ro = R142 and K = V,ef
__--,
o---C>-'---+---t=======~::~==~
R141
DAC0808-/2
102 = K [A] IB]
IK can be an analog variable
FIGURE 21. Two-digit BCD conversion
(*) MOST SIGNIFICANT BCD WORD
(**) LEAST SIGNIFICANT BCD WORD
11111
43
- - - - - - - - - - .. _._------_.- .._--
ESM1600B
QUAD COMPARATOR INTERFACE CIRCUIT
• MINIMUM HYSTERESIS VOLTAGE AT EACH
INPUT: 0.3 V
• OUTPUT CURRENT: 15 mA
• LARGE SUPPLY VOLTAGE RANGE: + 10 V to
+ 35 V
• INTERNAL THERMAL PROTECTION
• INPUT AND OUTPUT CLAMPING PROTECTION DIODES.
The ESM1600B can operate in a wide supply voltage range (standard operational amplifier ± 15 V
supply or single + 12 V or + 24 V supplies used in
industrial electronic sets).
Moreover, internal thermal protection circuitry cuts
out the output current of the four comparators when
power dissipation becomes excessive.
DESCRIPTION
DIP-14/2
(PlastiC)
The ESM1600B is a quadruple comparator intented
to provide an interface between signal processing
and transmitting lines in very noisy industrial surroundings.
Output of each comparator, used as line driver, supplies a constant current (PNP output stage) and is
specially well protected against powerful overvoltages. The open collector output circuit allows the
connection of several comparators to a single transmitting line.
S016J
The ESM1600B can operate as receiver on a line
transmitting noisy high-voltage signals. Hysteresis
effect, internally implemented on inputs of each
comparator provides an excellent noise immunity.
In addition, each input is also protected against
overvoltages.
ORDER CODES: ESM1600B (DIP-14)
ESM1600BFP (S016J)
PIN CONNECTIONS (top view)
DIP-14
9
10
4
11
12
6
13
14
1 -Inverting input 1
2 - Non-inverting input 1
3 -Output 1
4 - Non-inverting input 2
5 -Inverting input 2
6-0utput2
7-GND
a -Output 3
9 -Inverting input 3
10 - Non-inverting input 3
11-0utput4
12 - Non-inverting input 4
13 -Inverting input 4
14-Vee
September 1988
S016J
3
4
6
8
1 -Inverting input 1
2 -Non-inverting input 1
3 -Output 1
4 - Non-inverting input 2
5 -Inverting input 2
6 -Output 2
7-GND
a-N.C.
9-N.C.
10 -Output 3
11 -Inverting input 3
12 -Non·inverting input 3
13 ·Output4
14 - Non-inverting input 4
15 -Inverting input 4
16-Vee
1/7
45
ESM1600B
ABSOLUTE MAXIMUM RATINGS
Sy':;;b;;!r- - --- - - ----Par;':;;ete-r-_.
- -- - I - ----- --- -- - --- ---- Vcc~uPPIY\l·0.75
2
iii
I::J
~K
a.
~
~-+-
o
25
o
~
Q.
----
"""---- r--
~
75
50
S
o
0.25 -
o
o
100
10
5
15
TEMPERATURE lOCI
OUTPUT CURRENT ImAI
Figure 3: Output saturation voltage
Figure 4: Short circuit carrent
20
I
IO=10mA
~
0_9 1-----.
---
z
~
0
~
tIC
IX:
16
-
14
-
1--
~-
1---
--
:>
o
u
----
"'-~
IX:
50
-
U
.:-IX:
0
f"'--.---
25
TEMPERATURE IUCI
48
-
!::
-
--- - -
0.6
0.5
-25
4/7
r--- -
::J
U
VI
I-
-
I-
0_8
0
::J
I-
18 1-- --- t - - - f-
.§
75
100
:I:
CIl
12 -----
10
-25
o
±L
--
---
25
50
TEMPERATURE COe)
75
100
ESM1600B
TYPICAL APPLICATIONS
Figure 5 : Conversion of DTL, TTL, MOS Signals on a Transmitting Line.
I
A +15
v
90 k!l
0------1 & I-----+-------i -
1/4
ESM1600B
> ____
.....------1+
10 k\l
-15 V
j
30 \.'
190 kl!
.------i -
1 14
ESM 1600B
>------,
O-------j & r----+------t---+--~+
- 1/4
ESMl600B
&
r--------·---'
r----+---I +
10 kn
Figure 6 : Reception of Highly Noisy Signals.
----
-
-
- - - --
- - -
- - ---. - - -
-
.-
-
24V
120 kll
.....----1- 1/4
100 kll
ESM1600B ">----0
line _ _ _..-----c_=f----t---~
+
33 kH
60 kl!
.------------- --~--- ID'/
SGS-THOMSON
'J,
5/7
~D©IliI@rn~rni:1i'IliI@Ii!D©®
49
ESM1600B
TEST CIRCUIT
Figure 7.
VI
V"
I
t33V~
t
33 V
--r\7\:
12V~~
OV~
Figure 9.
-----------------------
FigureS.
.33V------<
'av------t+
.2V------<
.2V-----t
ISC
Figure 10.
.33 V
.33 V
.2V-----'
.2V-----'
6/7
50
ESM1600B
Figure 11.
Figure 12.
133 V o-~~--+-~-....,
+
14
~
1/.
ESM1600B
E,M1600B
l200vl
1
2
v
~"1
o---t--+----+-+--+~
800 !!
Figure 13 : Response Time.
50
40
---
~
~ 30
0
-
>-
2~
"C
---
C---_
0
----
-
-
--~---
--
--
-
-V+?tr>
-~
-
-------
--
0
::>
ui
I
Tamtl
------ f--
::>
>-
--~-
20
> 10 "-
t_
-
w
"<~
!
- - - VO-f.---- -
s:;V.[
~ ~'" . ~~
I
10 kH
J
"
-
-
----
"<~
4
>
>-
3
-----
2
--
-
f---
VI
..
_-
-----
-
-
-
0
--- 1---
-
-
--
::>
"-
;;;
1
-1
o
2
3
o
4
3
4
5
6
TIME (p'l
7/7
51
ESM16028
QUAD COMPARATOR INTERFACE CIRCUIT
• MINIMUM HYSTERESIS VOLTAGE AT EACH
INPUT: 0.3 V
• OUTPUT CURRENT: 15 mA
• LARGE SUPPLY VOLTAGE RANGE: + 10 V
TO + 35 V
• INTERNAL THERMAL PROTECTION
• INPUT AND OUTPUT CLAMPING PROTECTION DIODES
The ESM1602B can operate in a wide supply voltage range (standard operational amplifier _t 15 V
supply or single + 12 V or + 24 V supplies used in
industrial electronic sets).
Moreover, internal thermal protection circuitry cuts
out the output current of the four comparators when
power dissipation becomes excessive.
DESCRIPTION
DIP-14/2
The ESM1602B is a quadruple comparator intended to provide an interface between signal processing and transmitting lines in very noisy industrial
surroundings.
(Plastic)
Output of each comparator, used as line driver, is
well protected against powerful overvoltages. The
output is a common emitter stage including complementary transistors. This arrangement ensures that
no simultaneous conduction of high and low stages
can occur in the presence of noise signals. Shortcircuit currents toward Vcc and ground are limited
to the same value.
The ESM1602B can operate as receiver on a line
transmitting noisy high-voltage signals. It has the
same input stage as ESM1600B. Hysteresis effect,
intemally implemented on inputs of each comparator provides an excellent noise immunity. In addition
each input is also protected against overvoltages.
SO-16J
ORDER CODES: ESM1602B (DIP-14)
ESM1602BFP (SO-16J)
~
----
PIN CONNECTION (top view)
DIP-14
SO-16J
1 - Inverting Input 1
1 - Inverting input 1
2 - Non-Inverting input 1
2 - Non-inverting Input 1
3 - Output 1
·16
4 - Non-Inverting Input 2
15
5 - Inverting Input 2
6 - Output 2
7 -GND
'0
4
6
"
'2
'3
'4
8 - Output 3
9 - Inverting input 3
3
'4
4
13
5
12
6
11
10 - Non-inverting Input 3
11 - Output 4
12 - Non-Inverting input 4
10
13 - Inverting input 4
==-____ _
8
L__________
September 1988
9
3 - Output 1
4 - Non-Inverting Input 2
5 - Inverting input 2
6 - Output 2
7-GND
8 - N C_
9 - N.C.
10 - Output 3
11 - Inverting input 3
12 - Non-inverting input 3
13 - Output 4
14 - Non inverting input 4
15 - inverting input 4
16 - Vee
1/8
53
ESM1602B
ABSOLUTE MAXIMUM RATINGS
~---
Symbol
Parameter
-------
..-
-
Unit
Vee
Supply Voltage
45
V
VID
Differential Input Voltage
45
V
V,
Input Voltage
10lmax)
- 0.7 to + 45
r--------------Internally Limited
Output Current
Ptot
Power Dissipation
Top
Operating Ambient Temperature Range
T stg
Storage Temperature Range
----------~
..
- -
~
- 25 to + 85
- 40 to + 150
VCC
1000
II
2500
II
BOO
(j
500
H
25
H
Common supply
and thermal
protection
Non inverting
Input
Inverting
input
70
kll
600
H
28
II
GND
1/4 ESM1602B
54
V
mA
_lntElrn~III'Li mitEl~_l_-",,_
- - I--
SCHEMATIC DIAGRAM
2/8
-,----~
Value
--
I
'C
'C
ESM1602B
ELECTRICAL CHARACTERISTICS Vee = + 35 V, - 25 'C <; Tamb <; + 85 'C
(unless otherwise specified)
Typ.
Min.
'.'
Input Voltage Range - Note 1
Non-inverting Input
Inverting Input
o
!
o~~:u~ ;a;~r;~o~~~ag; (highl~~~00
,
= - 10
i
Supply Current
RL = = for the 4 Comparators
.
--t. _ 11 " 10
.Qut~ut Slew:rat(ljF1..,-=2~~l,T Ei"'."...."" ':+:"~'C)-=--_-=--+"j _I
Input protecti:e Diode Forward Voltage (I = 20 mA,
T amb = + 25 C)
-of'Pul~es-ag;;m~t which CirCUit Output IS
(Tamb=+2~O~)
Note 5 _ .
i
"_
I
1
.
I
mA
:
V
1
I
1]'1-.'
V/~LS
I
9
11
i
12
1
I
I
1
--j 13,14
I
1
1
vII
mJ
!
I
~
-
I
~LA
__..I
I
r- -
1
8
I
15
-,
rI
Note 4
Pulsed Curr;';-Appi;d to Protecbve-O;,;(put o;ode;;--Notes:
mV
I
1
,
m
A
I
4
I
6
I
RL Common for the Comparators
1.6
I
I
I
mA)~-~-~1-~'~~--+--v--~·"
Output Saturation Voltage (low level) . (10 = + 10 mAl
1-
I
U
1
--1- v-T--=-1
33
I
33.
500 I
5
I
Short·circuit Output Current
Max.
-~--
150
Input Bias Current· Note 3
Protected
(T amb = + 25 ec)
I
I
2
Input Control Voltage (? V < V eM < 33 V) - Note 2
Energy
~ lu.:-r;~~1
Value
Parameter
20
-!
I
I
-
1
I
I
I
1"-';;:-115-1
1.---=-_L_O'4 __ l.._-=_L
I
___ I
1. When negative input is biased between a and 2 volts output IS always low.
2. Comparator hysteresis voltage on positive Input on the one hand and negative input on the other hand equals sum of Input control
voltages Ve1 + VC2 or VCJ + VC4.
3. Input current flows out of the circuit owing to PNP input stage. ThiS current is constant and independent of output level. So no load
change IS transmitted to Inputs.
4. By definition, a circuit is immunized against powerful signals when no durable charactenstic change occurs after the application of
these signals and when the circuit has not been destroyed
In industrial surroundings, parasitic signals contain usually high voltage (over 200 V) AC harmonics having variable impedance of
500nto10Kn
The power dissipation of these signals is divided between clamping diodes and the Vee. Simulation IS used to determine the maxImum energy level. The Injected current value cannot in any case exceed 3 A.
5. Output protective diodes are individually by means of positive and negative discharge voltages of a capacitor. The negative discharge control occurs through a single diode. DUring positive discharge. due to the properties of integration, a grounded collector
PNP transistor appears in parallel with the clamping diode connected to Vee. A part of the current flows through thiS transistor, VeE
being greater than Vee. If T IS the total discharge duration, energy dissipated in the cirCUit is
Comparator output
W=
J·T [i1
Vd
+ i2(Vcc + Vd)
1dt
o
For a certain injected current, the lower the current b, that is to say the lower the PNP current gain the smaller the energy is diSSipated In
the cirCUIt. Topology and technological processes have been chosen to shorten this current gain.
_ _ _ _ _ _ _ _. _ ._ _ _ _ _ _ _ ._ _ _ ._ _ . _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _ _ ......J
3/8
55
ESM1602B
Rg 1 -
INPUT BIAS CURRENT.
Fig. 2 -
5
--
"~
fZ
0>
3
0.75
z
:::l
tJ
rn
<{
iii
~
w
1
w
-i-j
125
4
a:
a:
OUTPUT SATURATION VOLTAGE.
2
f:::l
~
11.
~
o
-25
0
>=
<{
a:
~
o
:::l
f-
0.50
<{
rn
"
25
f-
:J
""""'-- I 50
--
I~
11.
f-
:J
0
0.25
0
1()()
5
0
TEMPERATURE lOCI
Fig. 3-
15
10
OUTPUT CURRENT (mA)
Fig. 4-
OUTPUT SATURATION VOLTAGE
SHORT CIRCUIT CURRENT.
30 , . - - - _._--
1.2
IO=10mA
~
<
w
"
z
a;
a:
a:
O.B
tJ
>=
to
<{
a:
f-
tJ
u.6
a:
u,:.
<{
J:
0
25
50
TEMPERATURE (OC)
56
_.-
,
~ ....
--
It>
--
0
UI
0.4
0.2
-25
4/8
::::---...
a:
11.
0
I
tow level
:::l
Ul
f:J
f:::l
20
:J
0
:J
-~
~el
f-
f-
0
>
25
E
<{
75
100
.. - - . -
10
5
-25
0
25
50
TEMPERATURE ("C)
75
100
ESM16028
TYPICAL APPLICATIONS
Figure 5 : Conversion of DTL, TTL, MOS Signals on a Transmitting Line.
I
f
JO V
15 V
90 kH
Line
uno
- 1/4
ESM1602B>----
ES~~:mB>---
...------1+
\----t---i
+
10 kl1
15 V
Figure 6 : Reception of Highly Noisy Signals.
·21 V
120 kn
1/4
ESMl602B .r----u
100 kll
Line
I
- -....-----{:=:J----t---i +
33 k!!
60 kll
I
I
L
-----------
----- ------ LW ~~~~~gr::~~~~
-- ----- ---.-.-..----
5/8
57
ESM16028
Figure 7: Free-running Square Wave Oscillator.
~
30
v
1 Mil
30 V
68 kll
1/.
ESM1602B>---+----- Va
-I---~+
1 nF
L -_ _ _ _ _ _ _ _ _ _ _
68 kll
--""----"""----- - - - - - - - - - - - - - - - - -
TEST CIRCUITS
Figure 8.
vIt
133V~
Ov-~
'33V~
'2V~
YI~
6/8
58
+2.5 to -< 32.5 V
t
ESM16028
Figure 9.
\8
Figure 10.
v ------1+
. HV
.2 v
'sc
I
I
"2V------'
I
"
Figure 11.
~-~~"--~"~--~-- ~~
Figure 12.
- I
I
I
\ 33
+33V-----I
I
v
I
I
10
·2V - - - - - - '
I
~---~--~~---
---
I
"--""~-
"~------""-
Figure 13.
Figure 14.
--"-~--~-
Vee
.33
v
f
I
I
I
T
-~"-"-----"l
I IIT
vee
800
I
I
n
+2 V
I
I
14 13 12 11 10 Y 8
I
ESM1602B
I
.2 V
2
3
II
1
4
5
6
7
"z
8
ESM16028
I
I I 1 I
I I
ICC
"
"----------
14 13 12 11 10 '
8
oon
~~
- - --~---"""-"""-
-
L'
I
J
33 V
'"
7/8
59
ESM1602B
Figure 15.
1-'
--
_.-
-_._-_._--_._--
~
±2oovl
40nF.
- - - - - - _ _._--._._----- ------.
..
-------
Figure 16: Response Time.
50
2:
w
"
I
40 1--30
<{
r-----
--.-
~
~--
I-
0
>
20
I-
lD
:>
r
Tamb- t25°C
10kH
---+--H--~ ~VI~
Va
- --
--
\
--c~-- ~
- - - ~----, ~-
---f- -
---
f--
~
.lV
--'
1
Q.
I-
:>
0
0
ui
"!:::;
-+----j._-. -
---
-
._--
I- --
-
V,
<{
4
-
-'-'--
0
>
3 __
-
I-
:>
-
+
--- r- - -
-----
f--l
Q.
~
1L-__
-1
o
L-_L-~L-~L-~
2
__
o
4
TIME (p.s)
8/8
60
L...
,/
•J,
SCS-11-IOMSON
UliJllIOWJ@rn~rn[m~@lI!lllO@
~.- . - - - - . - - - - - - - - - - -
GS-0050
- - - - -
--~-~-----
~---~--~--~
----
~~
--~---
0.5 A SWITCH MODE BIPOLAR STEPPER MOTOR
DRIVER MODULE
•
•
•
•
•
•
•
•
NO EXTERNAL COMPONENT REQUIRED
INPUTS TTL/CMOS COMPATIBLE
LOGIC INHIBIT/ENABLE
CHOPPER REGULATION OF MOTOR BIPOLAR CURRENT
PROGRAMMABLE MOTOR CURRENT
(0.5 A max) (by steps or continuously)
WIDE VOLTAGE RANGE (10-46 V)
FULL-STEP, HALF-STEP AND QUARTERSTEP OPERATIONS
OVERTEMPERATURE PROTECTION
DESCRIPTION
ORDER CODE· GS-D050
The GS-D050 is a driver for bipolar stepper motors
that directly interfaces a microprocessor and two
phase permanent magnet motors.
The motor current is controlled in a chopping mode
up to 0.5 A. The small outline makes the GS-D050
ideal when space is a premium.
i
.
V::'= :
-_ -_
.s,t ~~~2:~~:--=~'~~ ------ABSOLUTE MAXIMUM RATINGS
L09i~IIlpU~~01_ta_ge-
:_V_' _ _
I-_~ _ _ ~~k_OU1[J~ Current_
Vref
T sfg
-=- -~
u~;;
--J=-___ 162_-_-
:
-~_-~
l
- - - - ~----' ~---1
- 40 to + 105
I cC
20 to:c85___
Reference Input Voltage
Storage Temperature Range
I
-T-c_-op-~O--p~-r-a;~-ng-C~-se-;--~m-_p~raw-re-R-il-ng-e- - - -=--~-1
-_ _
~
~cc
I
THERMAL DATA
---
~-~~
Rth
(c~a)
-----
October 1988
-~
-
---~
-~
---
Case-ambient Thermal Resistance
--
-
---
-
-
-
--
----
1/18
61
GS-0050
MECHANICAL DATA (dimension in mm)
51
MOTHER BOARD LAYOUT (top view)
~---------'--"-'-'-'-
- - - - - -
2/18
----------
62
J
69
~ ~
135
j
GS-D050
EQUIVALENT BLOCK DIAGRAM OF G5-D050
Vss
10
B
111
9
101
BRIDGE 1
11,
8
1--+-----0
PH 1
A
11
Vref
1,-12
GND
c
BRIDGE 1
I 12
6
D
3/18
63
GS-D050
PIN FUNCTIONS
Pin
Function
....
6 - 102
7 - PH2
~=!'~]
Input pin for current level and operating mode selection (see 1"
description).
Input pin for current level and operating mode selection (see 1"
description).
_--_._-
Phase 2 Logic Input
__
~~~se~Logic...'r1p.LJt _
._______________ . ___ _
. ________ _
__ 9-=-10 , __ ~rl£.u!'p.irl.!~ cur!~t level ~e~~~ lH~.~_~,,_d!lsc:r.pt~IlL _ _ _ ______ _ __________ _
10 - 1"
Input pin used, together with 101 , to select the current level according to the following table.
111/1,2 101/102
Phase Current
o
o
1
11 - Vref
o
1
o
Iph = 100 % Isel
Iph= 60%l sel
Iph = 19% Isel
No Current
Reference Input Voltage for the Chopper Comparators. The voltage applied to this pin settles the
phase current to the desired value. A 5 V ref sets a 0.5 A phase current when full-step drive is
selected.
1--'---
12 - GND
Ground Connection. Motor and logic supply voltage must be referenced, as well as the logic
r---______+-s~ig~n_a_ls~,__t_o_th_i_s~p_in_.___________
13 - V 5
Motor Unregulated Supply Voltage.
Maximum Applicable Voltage is 46 V.
f-- ----- .. - -.. --.---... ---- ... --.--------_.--._--- ------- ..
I-..!~~
__
~~~ ___
~~ge Output_A:.2~i~fJ.lJ.t....tl..~s~..s..~me phase ~fthEl_~~ivinll.sigllal
F'f:'.1._
Bridge Output B. This output has a ph------...:
BA
CD
AB
A-
10/18
------------
70
l:.'9,/ SCS-THOMSON - - - - -.. - - - - - • II
illiJD©I!I@rn~rn©~I!I@IIlD©il!
GS-D050
TWO PHASE ON OR NORMAL DRIVE
Two windings are energized at any given time according to the sequence (FWD direction).
AB & CD; CD & BA; BA & DC; DC & AB
In this case
level set.
101, 111
signals are used just for current
Fig. 9 and 10 show the timing or various signals.
Figure 9 : Two Phase on -FWD Direction.
L
101 . I II. [ 12. 102
0
-L
'''''
I
'''',
.:::
~:~
---------~i-----J.--------Jl
I
J. __
__-_-_-_.1..:
I
CD & SA
DC &. SA
AS
a. DC
I
AB &CD
11/18
71
GS-D050
---------------
Figure 10: Two Phase on -REV Direction_
-----------1
I
L
I
I
--L
I
AB & CD
BA & DC
SA &(0
AB & CD
A.
'r- 99 '> 3
I
L_MOTOR
- - _J
J'
- - - - - - - - - - - - -
18/18
78
SWITCH MODE BIPOLAR STEPPER MOTOR
DRIVER MODULE
i
• NO EXTERNAL COMPONENT REQUIRED
• NORMAL, WAVE, HALF STEP DRIVE CAPABILITY
• INPUTS TTUCMOS COMPATIBLE
• CHOPPER REGULATION OF MOTOR CURRENT
• PROGRAMMABLE MOTOR CURRENT (2 A
max)
• WIDE VOLTAGE RANGE (10-46 V)
• SELECTABLE SLOW/FAST CURRENT DECAY
• SYNCHRONIZATION FOR MULTIPLE APPLICATION
• REMOTE INHIBIT/ENABLE
• HOME POSITION INDICATOR
• OVERTEMPERATURE PROTECTION
I
I
DESCRIPTION
The GS-D200 is a complete controller and driver for
bipolar stepper motors that directly interfaces a
microprocessor and two phase permanent magnet
motors.
ORDER CODE :
GS-D200
j
The motor current is controlled in a chopping mode
up to 2 A. High flexibility in use is provided by GSD200 that, furthermore, reduces the burden on the
microprocessor and simplifies the software development in a complete microprocessor controlled
stepper motor system.
ABSOLUTE MAXIMUM RATINGS
Symbol
Supply Voltage (pin 18)
Vss
Logic Supply Voltage (pin 12)
10
Value
Parameter
Vs
Peak Output Current
T stg
Storage Temperature Range
T cop
Operating Case Temperature Range
Recommended maximum operating Input voltage
IS
Unit
48
V
7
V
2
A
- 40 to + 105
°C
- 20 to + 85
°C
46 V.
THERMAL DATA
Case-ambient Thermal Resistance
September 1988
Max
5.0
1/18
79
GS-0200
CONNECTION DIAGRAM (top view)
J
1
GNDI
SYNC
~2
RESET
~3
HALF/FULL
,
HOME
5
::~
V,,(46V max)
A
~6
-,
16
8
l'
[)
10 SET
9
13
GND2
CONTROL
10
STEP ClK
CWJl,;L.:W
OSC
-
1~
B
C
11
ENABLE
Vss
~12
(7V max)
5·9444
TYPICAL APPLICATION
RESET
ENABLE
STEP ClK
MPU
HALF/FULL
Cw/ccw
HO";'-E
CO~'-ROl
'oSET
Vss=5V
9
12
VS~46V
18
17
3
A
r-----.,
1
I
---t-
cr:
6
16
4
GS - 0200
15
7
l- I
B
cr:O
C
Ocr:
o..W
-0..
roo..
W
:'5~
5
10
14
l-
D
(/)
I
5-94105
OSC
80
I
I
L _____ ..J
8
2/18
I
0 I
11
SYNC
GNDl GND2
GS-D200
EQUIVALENT BLOCK DIAGRAM OF GS-D200
,~~~------~--
-~~---~-
---
--~
<{
ro
I
I
u
u
I
I
I
~1 ~ -I~
L o
Z
l'J
L
(f)
U)
cr
)-
w
-·-·1~
->
'f
3/18
81
GS-0200
PIN FUNCTIONS
I,
Function
Pin
1 - GNDl
i
Common Ground for Low Current Path
2 - SYNC
Output of the Module Chopper Oscillator.
Several GS-D200 can be synchronized by connecting together all SYNC pins (see later). An
if--~==~+ external chopper clock source. if used, must be injected at this pin. __________ _
~
3 - RESET
I
i
4 - HALF/Fl..JLL Ha-lf-/F-uIiStep Select Inpu-tWhe-n high or not connected, it selects half step operation, when
low it selects full step operation.
-.------.------------------f-
5 - HOME
I
Reset Asynchronous Input. An active low pulse on this input restores the module to the HOME
position (ABCD ~ 0101).
6 - STEPCLK
Output that indicates when the module is in its initial state (active low. ABCD ~ 01 01 ~ state 1).
This signal should be ANDed with the output of a mechanical home position sensor of the
motor.
A Pulse on this input moves the motor by one step. The step occurs on the rising edge of this
~ _____ ~~ignal_._____________ _____
_.___
_
_____
_ _______________ _
I 7 - CW/CCW Clockwise/Counterclockwise Direction Control Input. When high or not connected clockwise
,
rotation is selected. Physical direction of motor rotation depends also on connection of windings.
L
Direction can be changed at any time being this signal synchronized inside the module.
I
--T-he-cho-p-pe-r-fr-equency of the m-od-u-l-e-isi;;t~rn~liYfixed--a~ 17 KHz. This fr,~que~c-;-c-;nb~-increased by connecting a resistor between this Pin and Vss or decreased by connecting a
I
capacitor between this pin and GND1. When multi-GS-D200 configurations must be
synchronized, this pin is connected to ground on all but one module.
'8 - osC-
~-Io'SET- Th;Mot~ha;--C~rre~tj; Set -;;;t1A. This current can be decreasedby;;~~~cting~-;;si~
i
between this pin and GND1, or increased by connecting a 10 KIl min resistor between this pin
and Vss.
___________ . ______________________________ _
Control input that defines the motor current decay inherent to chop mode control. When low, a
L _____+-~_~_:_odre~~rr~~tObtained
110 - CONTROL
; when high, or not conn::ted,_s_lo_wcurrent decay is impose:_th_e__
11 - ENABLE
Module Enable Input. When low the module is inhibited. When high or not connected the
\
module is active.
1-------+-------------_._--_._-----_._5 V Supply Input. Maximum Voltage must not exceed 7 V.
! 12- Vss
--
--
1__ 12::GN [);2-- Co_m_m_o"-~()U n_d_forH_I_g_h_Cu rrent
--
,
14 - D
~~-c=16 - B
4/18
82
---
-----
-----
- - - - - -------- - - - - - -
Pa_th_
Phase D Output
?_h_a_s_eC_-_O_ut-p_-ut-_Phase B Output
--
---
---
17 - A
Phase A Output
18 - Vs
Module Supply Voltage. Maximum voltage must not exceed 46 V.
GS·D200
ELECTRICAL CHARACTERISTICS (T amb
r-'
=
25 'C unless otherwise specifed)
_S_Y_~~s_bO_I--+ SU~_I_y_V_O_I~a_:_~_a_m_e-_t-e=r===-_-_--j-p-in-1s_T_e_s_t_C_"Od;';"",
~i~Py£JM::T U~;':
Supply V()lt.a~ ___________ Pin 12
Vss
Is
f---- Iss
_I
Quiescent Supply Current
~,~t;,~,
Input Voltage
f--------
--
Input Current
Ii
-P~n
6, 7,
5, 4, 6,
1~sS
=
7:1-0
--r--
=
L~w +
;V~
5 25
Enable Input Current
0s
Vss
Pin 11
.v.. j .
V
mA-
10
______ _
0S
Vss
V
V
j
I
mA
-;;:;,;;. -
V, = High +
Low
High
;-1
·---·0(3
j
2_0
f-----+----------------+------------~-t-----
Vsat
1
60
d
5 V
V,
Pin 11
Enable Input Votlage
-------
5
High I 2.0
_
-----+- ----------------
475:
Pin 12 All Input High -- - - -- -
--- - - - - - - - - - -
Vi
__
~i~t ~80----~s=:;:-- 1- - 115 20
Quiescent Supply Current
--
Vee = L I
Vee=H'
----~
0.6
10
-
I
mA
flA
------
V
V
Home Output Voltage
Pin 5
Ihome = 5 mA
Source Saturat. Voltage
Pin 14, 15_,1__6_,_1_7_ _ _I--'o_=_1_A-j_ _- t_ _-+_1._S-j__V----l
0.4
LowiI
High
f--_V--,s,,-at_-t_S_ource Saturat. VO._lt_a_g~_e_ _ _-j_P_in_1_4_,_1_5_,_1_6_,_17____I_o_=_1_A-t_____+ ___+-_1_.S__ ~
Ie
Chopper Freq.
f elk
Stepclk Width
_____ --1__-+_17
Pin 6 See Fig. a
Set Up Tinle___________
Hold
Time
---------tRclk
~--.
KHz
0.5
I ~ee Fig~_~____
,llS
10+ __ +__~
a - - - - - - - - - f--. 1.0 - I
---l e e.....Fig.
-- ..- -
___
0___
flS
~
Reset Width
See Fig. b
1.0
fls
Reset to Clock Set Up Time - - S e e - F i ; b - - - - - · t 1 - o E - t - - - f l S __ ,
w __~ _ _ _ _ _ _ _ _
~
__ . _ _ _ _ _ _
_ __
Figure a.
- - - - - ----------
STE.P ClK
CW/CCW
~-9t.l.
7
5/18
83
GS-D200
Figure b.
I
STEP elK
J
RESET
,
I
J
MODULE OPERATION
The GS-D200 is a complete bipolar stepper motor
driver that incorporates all the small signal and power functions to directly interface a microprocessor
and a two phase permanent magnet motor (see the
typical application). Very few information must be
delivered by the microprocessor to the module:
_ step clock
_ direction (clockwise or counterclockwise)
_ mode (half or full step)
_ reset and enable
_ current decay (slow or fast)
Based on this information, the module generates the
proper four phases sequence to directly drive a two
phase bipolar motor. Therefore the GS-D200 greatly simplifies the task of the microprocessor and of
the system programmer.
No external component is needed to operate the
GS-D200. However, to add flexibility in use, some
internally set functions can be modified externally,
like the maximum current flowing through the motor
windings and the switching frequency of the current
chopper, by addition of few inexpensive passive
components (resistor and capacitor).
6/18
84
If any of logic input is left open, the rnodule forces
them to high level.
The GS-D200 is housed in a metal case that provides heatsink and shielding against radiated EMI.
The thermal resistance case to arnbient is about
5 °C/W. This means that for each watt of internal power dissipation the case temperature is + 5 °C above
ambient tern perature. It is recommended to keep
the case temperature below 85°C in operating
conditions.
According to ambient temperature and I or to power
dissipation, an additional heatsink may be required:
the mounting of optional heatsink is made easy by
the four holes provided on the top of the metal case.
The GS-D200 incorporates a thermal protection that
switches off the power stages when the junction
temperature of active components reaches 150 °C.
To keep the power dissipation to a minimum, two level supply voltages must be applied to the module:
5 V for logic functions and Vs from 10 to 46 V for power section.
GS-0200
----_._------------
A. BIPOLAR STEPPER MOTOR BASICS
Simplified to the bare essentials, a bipolar permanent magnet motor consists of a rotating-permanent
magnet surrounded by stator poles carrying the windings (fig. 1).
tating the voltage applied to the windings in sequence.
For a motor of this type there are three possible drive
sequences.
Bidirectional drive current is imposed on windings
A-B and C-D and the motor is stepped by commu-
Figure 1 : Simplified Bipolar Two Phase Motor.
A
D _--1-_--1//
CID
~----+--c
-~""
8
A. 1. ONE-PHASE-ON OR WAVE DRIVE
Only one winding is energized at any given time according to the sequence:
AB - CD - BA - DC
(BA means that the current is flowing from B to A).
Fig. 2 shows the sequence for a clockwise rotation
and the corresponding rotor position.
Figure 2 : One-phase-on (wave mode) drive.
I
I
8-
o~c
o~
eQc
.y-
8.
BO
7/18
85
GS-D200
A. 2. TWO-PHASE-ON OR NORMAL DRIVE
This mode gives the highest torque since two windings are energized at any given time according to
the sequence (for clockwise rotation).
AB & CD ; CD & BA ; BA & DC ; DC & AB
Fig. 3 shows the sequence and the corresponding
position of the rotor.
Figure 3: Two-phase-on (normal mode) drive.
At
A-
D_~C
D_~
W
~~+
A-
Ct
A+
~-
'V
0
C
B-
D~~C
B-
A. 3. HALF STEP DRIVE
This sequence halves the effective step angle of the
motor but gives a less regular torque being one winding or two windings alternatively energized. Eight
steps are required for a complete revolution of the
rotor.
The sequence is :
AB ; AB & CD ; CD ; CD & BA ; BA ; BA & DC ;
DC; DC &AB
as shown in fig. 4.
By the configurations of fig. 2, 3, 4 the motor would
have a step angle of 90 0 (or 45 0 in half step). Real
motors have multiple poles pairs to reduce the step
angle to a few degrees but the number of windings
(two) and the drive sequence are unchanged.
Figure 4 : Half Step Sequence.
A+
o~o
D"-VC
A-
A+
-~+
~C
~+
DQC
-~t
D~-C
B-
B-
BO
Bt
A-
A-
AO
At
O~O
D~C
B+
~_-
t~-
Bt
BO
D~
Dve
t~-
~-C
B -
5-5938
8/18
86
--l
GS-0200
B. PHASE SEQUENCE GENERATION INSIDE THE GS-0200
The GS-0200 contains a three bit counter plus
some combinational logic which generate suitable
phase sequences for half step, wave and normal full
step drive. This 3 bit counter generates a basic
eight-step Gray code master sequence as shown in
fig. 5. To select this sequence, that corresponds to
half step mode, the HALF/FULL input (pin 4) must
be kept high or left open.
Figure 5 : The Eight Step Master Sequence Corresponding to Half Step Mode.
CLOCK
A
B
c
o
ABCD" 0101
0001
1001
1000
1010
0010
0100
0110
HOME POSITION
OQ);I
I:
("
l",
o
8.
-:,-9449
The full step mode (normal and wave drive) are both
obtained from the eight step master sequence by
skipping alternate states. This is achieved by forcing
the step clock to bypass the first stage of the 3 bit
counter. The least significant bit of this counter is not
affected and therefore the generated sequence depends on the state of the counter when full step
mode is selected by forcing pin 4 (HALF/FULL) low.
If full step is selected when the counter is at any oddnumbered state, the two-phase-on (normal mode)
is implemented (see fig. 6).
On the contrary, if the full mode is selected when
the counter is at an even-numbered state, the onephase-on (wave drive) is implemented (see fig. 7).
9/18
87
GS-D200
Figure 6: Two-phase-on (normal mode) drive.
CLOCK
L
I
A8CD=0101
~~----II
I
1010
1001
HOME POSITION
0110
I
~~~~.J~'''~'.
~C'~C~'~
__ ~ ___ ____ _ __ .__.________ ._________.________ J
-------. ----.----------------.. -l
Figure 7 : One-phase-on (wave mode) drive.
!
ClOCK
H
____~----~I
L
L-__~--__
I
ABCD=OOOl
1000
0010
0100
o~, o~,o6, J~.-,
0\JVo-v' °VJo
'vSO
'oj_
eO
I
I
fl'.
L..-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _
10/18
88
GS-D200
C. RESET, ENABLE AND HOME SIGNALS
The RESET is an asynchronous reset input which
restores the module to the home position (state 1 :
ABCD = 0101). Reset is active when low.
The ENABLE input is used to start up the module
after the system initialization. ENABLE is active
when high or open.
The HOME output signals this condition and it is intended to be ANDed with the output of a mechanical home position sensor.
D. MOTOR CURRENT REGULATION
the current decays until the next oscillator pulse arrives.
The two bipolar winding currents are controlled by
two internal choppers in a PWM mode to obtain
good speed and torque characteristics.
The decay time of the current can be selected by
the CONTROL input (pin 10). If the CONTROL input is kept high or open the decay is slow, as shown
in fig. 8, where the equivalent power stage of GSD200, the voltages on A and B are shown as well
as the current waveform on winding AB.
An internal oscillator supplies pulses at the chopper
frequency to both choppers.
When the outputs are enabled, the current through
the windings raises until a peak value set by loSET
and Rsense (see the equivalent block diagram) is reached. At this moment the outputs are disabled and
Figure 8 : Chopper Control with Slow Decay.
VA
','~'
1
V-c, Ptn18
L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _
Vs'
~I ----~r-~--------~r-~-----O
~~ L--',-,--
r-.- r-.-r-
(V,al'
Vsen".,)
'AB
I
I
I
I
I
I
I
I
I I
1 I
I
I
I
i
I
I
:
__L L
I
i
I
f--
I
I
I
I
.-l
j
~rI
I
_
I
I
I
I
I
I
+_
I
1 -.l~ -~
I
__ drive current (0,. 0,. ON)
recirculation current (0·" ON, 02, OFF. D,. ON)
11/18
89
GS-D200
When the CONTROL input is forced low, the decay is fast as shown in fig. 9.
Figure 9 : Chopper Control with Fast Oecay.
!-----~.~---~-.---
-- . ---.-------------- _ ..
--"1
v, - P,n 16
(Vd ,
VSPfls.)
1---
--
1--'-
---
lHHlli
vs. Vd
(v.. ~t
I
-
I
-
-
:
I
-- -
-
t
Vs~ns~)
'AB'
,
I
I
-
I
I
-
-
-- -
I
,
I
I
I
I
I
:
I
I
I
I
I
I
I
I
I
I
- - - drive current (Q,. Q,. ON)
.. recirculation current (Q,. Q2. OFF. D,. D2. ON)
The CONTROL input is provided on G8-0200 to allow maximum flexibility in application.
If the G8-0200 must drive a large motor that does
not store much energy in the windings, the chopper
frequency must be decreased: this is easily obtained by connecting an extemal capacitor between
08C pin and GN01.
In these conditions a fast decay (CONTROL LOW)
would impose a low average current and the torque
could be inadequate. By selecting CONTROL
HIGH, the average current is increased thanks to
the slow decay
E. MODULE PROGRAMMING
When no external component is used, the G8-0200
is set at the following conditions:
loutpeak
12/18
90
=1 A
L'J,
...,/
fc chopper frequency
=17 KHz
By addition of inexpensive passive components the
working conditions can be modified as follows.
SCS·THOMSON -_.-.-- ---..- . - IijJOI!:I'iI@rn~rn~I'iI@1Il0I!:ill
GS-D200
E.1. OUTPUT CURRENT PROGRAMMING
The output peak current (initially set at 1 A) can be
re-programmed by addition of an external resistor.
be connected between inSET and GND1 as shown
in fig. 10
If a lower peak current is desired, a resistor R 1 must
1-----
Figure 10 : Peak Current Reduction.
I
12
R,
1
GS-D200
_ _-
The value of output current, for Vss = 5 V, is related
to the value of R1 by
For example, for R1
11.2
lout =
-----
11.2 +
=
1 K£l
lout
=0.5 A.
If a higher peak current is needed, a resistor R2 must
be connected between 10SET and Vss as shown in
fig.11.
A where R1 is in KQ
12
R1
Figure 11 : Peak Current Increase.
Vss
R,
GS-D200
The output current, for Vss
value of R2 by
=
5 V, is related to the
120 + 12. R2
lout = ------ ---- - A where R2 is in Kn
12 + 11.2. R2
For example, for R2 = 24 Kn lout
Minimum value of R2 is 10 kQ. This current programmability can be used in half step sequence to
increase the current when only one phase is on : a
more regulator torque is so obtained.
=1.45 A
E.2. CHOPPER FREQUENCY PROGRAMMING
The chopper frequency is internally set at about 17
KHz. This frequency can be changed by addition of
external components as follows.
To increase the chopper frequency a resistor R3
must be connected between OSC pin and Vss as
shown in fig. 12.
91
GS-0200
.--.~~-
.. - - - - - - - -
Figure 12 : Chopper Frequency Increase.
R
1
1
12
GS-0200
~~6____________- - J
fe := 34 KHz
The new chopper frequency is given by :
fe
~
17 (1
+~-)
R3
To decrease the chopper frequency a capacitor C
must be connected between OSC pin and GND1 as
shown in fig. 13.
KHz where R3 is in Kn
For example, if Vss
~
5 V and R3
~
18 KQ
Figure 13: Chopper Frequency Decrease.
OSC
8
c
GS-0200
GN01 L-____________~~~
5-9457
The new chopper frequency is given by :
80.5
fe
~
For example, if Vss
KHz.
~ 5 V
and C
~
4.7 nF, fe := 8.5
- - - - - - - - - - KHz where C is in nF
4.7 + C
F. MULTI MODULES APPLICATION
In complex systems, many motors must be controlled and driven. In such a case more than one GS0200 must be used.
To avoid chopper frequencies noise and beats, all
the GS-D200 should be synchronized.
14/18
92
If all the motors are relatively small, the fast decay
may be used, the chopper frequency does not need
any adjustement and fig. 14 shows how to synchronize several modules.
GS-D200
Figure 14: Multimotor Sybchronization. Small Motor and Fast Current Decay.
osc 0------18
TO MOTOR 1
GS - 0200
MASTER
SYNC
10
osc
O--+--~8
SYNC
CONTROL
TO MU!UH 2
GS - 0200
SLAVE
10
osc 0>--+---18
CONTROL
TO MOTOR 3
GS - 0200
SLAVE
10
CONTROL
s- 94511
When at least one motor is relatively large a lower
chopper frequency and a slow decay may be required. In such a case the overall system chopper fre-
quency is determined by the largest motor in the system as shown in fig. 15.
Figure 15 : Multimotor Synchronization. Large and Small Motor. Slow Current Decay.
lOKI)
osc
~----18
SYNC
TO LARGE MOTOR
(2AI
GS - 0200
MASTER
I
10
OSC (>---+--.... 8
SYNC
CONTROL
TO SMALL MOTOR
(lAI
GS - 0200
SLAVE
10
CONTROL
- - - - _.. - - - -
G.THERMAL OPERATING CONDITIONS
In many cases the GS-D200 module does not require any additional cooling because the dimensions
and the shape of the metal box are studied to offer
the minimum possible thermal resistance case-toambient for a given volume.
It should be remembered that the GS-D200 module
is a power device and, depending on ambient tem-
. _ - _..
__
perature, an additional heath-sink or forced ventilation or both may be required to keep the unit within
safe temperature range. (Tcasemax < 85°C during
operation).
The concept of maximum operating ambient temperature is totally meaningless when dealing with power components because the maximum operating
15/18
._---------
93
GS-0200
ambient temperature depends on how a power device is used.
What can be unambiguously defined is the case
temperature of the GS-D200 module.
To calculate the maximum case temperature of the
module in a particular applicative environment the
designer must know the following data:
_ Input voltage
_ Motor phase current
_ Motor phase resistance
_ Maximum ambient temperature
From these data it is easy to determine whether an
additional heath-sink is required or not, and the relevant size i.e. the thermal resistance.
The step by step calculation is shown for the following example:
Vin ~ 40 V, Iphase ~ 1 A, Rph Phase resistance
10 n, Max. Tamb ~ 50°C
~
G1. Calculate the power dissipated from the indexer
logic and the level shifter (see electrical characteristics) :
Ploglc ~ (5 V . 60 mAl + (40 V . 20 mAl ~ 1.1 W
G2. Calculate the average voltage across the winding resistance:
Vout ~ (Rph . lout) ~ 10 n . 1 A ~ 10 V
G3. Calculate the required ON duty cycle (D.C.) of
the output stage to obtain the average voltage (this
D.C. is automatically adjusted by the GS-D200) :
D.C.
~ V out ~ _~ ~ 0.25
Vin
40
G4. Calculate the power dissipation of the GS-D200
output power stage. The power dissipation depends
on two main factors:
_ the selected operating mode (FAST or SLOW
DECAY)
_ the selected drive sequence (WAVE, NORMAL, HALF STEP)
1--
~F-a-st-D-e-Ca-y------
L~'owJ=>~cay
_ _ __
-
-
G4.1 FAST DECAY. For this mode of operation, the
internal voltage drop is Vsatsource + Vsatslnk during
the ON period i.e. for 25 % of the time.
During the recirculation period (75 % of the time),
the current recirculates on two internal diodes that
have a voltage drop Vd ~ 1 V, and the internal sense
resistor (0.5 [2). For this example, by assuming
maximum values for conservative calculations, the
power dissipation during one cycle is :
Ppw ~ 1.1 • [2 Vsat. Iph. DC + 2 Vd .Iph. (1 . DC) + 0.5.
IphJ
Ppw ~ 1.1 • [2 0 1.8 • 1 • 0.25 + 2. 1 • 1 • 0.75 + 0.5. 1J
Ppw ~ 1.1 • [0.9 + 1.5 + 0.5J ~ 3.19 W
The factor 1 .1 takes into account the power dissipation during the switching transient.
G4.2 SLOW DECAY. The power dissipation during
the ON period is the same. The RECIRCULATION
is made internally through a power transistor (Vsatsink) and a diode. The power dissipation is, therefore:
Ppw ~ 1.1 • [2 Vsat. Iph. DC + (Vsat + Vd) • Iph· (1·DC)J
Ppw~ 1.1. [2.1.8.1.0.25+ (1.8+ 1).1 00.75J
Ppw~1.1.[0.9+ 2.1J~ 3.3W
G4.3 WAVE MODE. When operating in this mode
the power dissipation is given by values of 4.1 or 4.2
paragraphes, because one phase is energized at
any given time.
G4.4 NORMAL MODE. At any given time, two windings are always energized. The power dissipation
of the power output stage is therefore multiplied by
a factor 2.
G4.5 HALF STEP. The power sequence, one phase
ON, two phase ON forces the power dissipation to
be 1.5 times higher than in WAVE MODE when the
motor is running. In stall condition the worst case for
power dissipation is with two phase ON i.e. a power
.
dissipation as in NORMAL MODE.
The following table summarizes the power dissipations of the output power stage of the GS-D200
when running for this example:
--
r --
-- -
C- ~ ~r~ --~~_ - ~ ~~ ~Wave
GS. Calculate the total power dissipation for the GS-
0200 :
Normal
example, an external heat-sink is required and the
thermal resistance can be calculated according to :
Ptot ~ Plogic + P pw
In this example, for slow decay and normal mode
Ptot ~ 1.1 + 6.6 ~ 7.7 W
G6. The case temperature can now be calculated:
T case
~
Tamb + (Ptot • Rth)
~
55 + (7.7. 5)
~
93.5°C
Rthtot ~ T em.!, -T~r1l~~ 8_~ __ 5~ ~ 3.9 °C/W
Ptot
7.7
and then
Rthhs ~ Rth - Rthtot
G7. If the calculated case temperature exceeds the
maximum allowed case temperature, as in this
16/18
------.-------Gi,/
SGS-niOMSON
•J,
li:ilu©l'J@rn~rn©~I'J@i'lu©$
94
Rth - Rthtot
5. 3.9
5-3.9
~ 17.7 cC/W
GS-D200
The following table gives the thermal resistance of some commercially available heath-sinks that fit on the
GS-0200 module.
1_ _ ....
Iv1~-~uf~~t~~er
Thermalloy
I
Thermalloy
Thermalloy
Fischer
Assman
~slTla~_
Part Number
6177
6152
6111
SKIS
V5440
V5382
Rth
(C/W)
Mounting
3
4
10
3
4
4
Horizontal
Vertical
Vertical
Vertical
Vertical
Horizontal
MECHANICAL DATA (dimensions in mm)
(-01)')11
17/18
95
~G~S~-D~20~O=----______________ __________ _ _________
MOTHER BOARD LAYOUT
N"4 HOLES ?2~Ol
18/18
96
GS-R400
FAMILY
140W SWITCHING VOLTAGE REGULATOR MODULES
•
•
•
•
•
•
•
•
•
•
•
•
MTBF IN EXCESS OF 200.000 HOURS
NO EXTERNAL COMPONENTS REQUIRED
PC CARD OR CHASSIS MOUNTABLE
HIGH OUTPUT CURRENT (4 A)
HIGH INPUT VOLTAGE (48 V)
FIXED OR ADJUSTABLE OUTPUT VOLTAGE
HIGH EFFICIENCY (UP TO 90%)
SOFT START
REMOTE INHIBIT/ENABLE
REMOTE OUTPUT VOLTAGE SENSE
RESET OUTPUT (GS-R405S ONLY)
NON-LATCHING SHORT CIRCUIT PROTECTION
• THERMAL PROTECTION
• CROW BAR PROTECTION FOR THE LOAD
------
.
-~---.--,
DESCRIPTION
The GS--R400 series is a complete family of HIGH
CURRENT HIGH VOLTAGE SWITCHING VOLTAGE REGULATORS available in several output voltages from 5.1 to 40 V.
These step down regulators shielded for EMI, can
provide local on-card regulation, or be used in central power su pply systems, in both professional and
industrial applications.
PRODUCTS FAMILY
r----_-_=__=__=_o=rd~e_r_=_N_=_u-m_b;_;_-_--_ _--+_-~ -
6;i;ut V~ltage-
GS-R405S
5.1 V
GS-R405
5.1 V
GS-R412
12 V
GS-R415
15 V
GS-R424
24 V
GS-R400V
Adjustable 5.1 to 40 V
September 1988
-t-I
Reset Output
Yes
[
Ii
1/21
97
GS-R400
CONNECTION DIAGRAM (side view)
GS-R 400 V
GS-R 4055
GS-R 405/412/415/424
INH
INH
INH
Vi
GND 1
Vi
GND 1
Vi
GND 1
GND 2
GND 2
GND 2
RT
5-
55+
55+
Va
5+
Vo
~a
s - 6 g] 1"
5 - 6!1]
5-6']2/1
/1
MECHANICAL DATA (dimensions in mm)
c:
--~-.
5
~--
--
36.83! 01
:JI
r-w
C·O')~/1
-~---~------------~-
2/21
98
GS-R400
PIN FUNCTIONS
l
Symbol! - - - - - INH
Pin
: - Inhibit
_I
. To be connected to GND2 when not used.
RT
. - Reset Output
Vi
I: - Input Voltage
GND ,
I
I Common gro-und for input voltage.
Common ground of high current path.
Ground
S-
- Sensing Negative
II
I
For connection to remote load, this pin senses the actual
ground of the load itself. To be connected to GND2 when not
used. This pin is connected to case.
I,Forconnecti~~to
-----t----------S+
Available on GS-R405S only. Reset voltage IS high (5.1 V)
when output voltage reaches nominal value (5.1 V) and It is
generated with a fixed 100 ms delay.
Unregulated DC voltage input. Maximum voltage must not
exceed 48 V. Recommended maximum operating voltage is
,46 V.
- Ground
GND2
Function
, TTL compatible input. A logic high level signal applied to this
I pin disables the module .
remo; I~~d~ thiS pin allo';'~~~;~;e s~n
sing on the load itself.To be connected to Va when not used.
, - Sensing Positive
I
1- Output Voltage
1----------------- --- Output Voltage Programming
P
I
-----
-
----
------
Regulated and stabilized DC voltage is available on this pin.
Max output current is 4 A The device is protected against
short circuit of this pin to ground or to supply.
Available on GS-R400Vonly. A variable resistor (18 K£l
max) connected between this pin and S - adjusts the output
voltage.
ABSOLUTE MAXIMUM RATINGS
r
Parameter
Value
Symbol:
1 - - - - + - - - - - - - - - - - - - - -------- . ------- - -I + - - - - - - - - _ + _
V,
IRT
-~--
19c-,nput voltilgEJ_
I
Reset output sink current
------ - - - - - -
Unit
48
V
20
mA
----------------
V,NH
\ Inhibit voltage
Tstg
'Storage temperature range
Tcop
IOperating case ter11fJerature range
15
L
--------
------ -
40tO+l05
V
'C
-----
- 20 to + 85
- - - - - - - - - --
C
----------
Recommended maximum operating input voltage is 46V
3/21
99
GS-R400
ELECTRICAL CHARACTERISTICS (T amb = 25'C
unless otherwise specified)
_______ T_~y~p,e_ _ _ _ _ _ _ _ _~-G-S---R-4--~~
Symbol
Parameter
-~---I------~-
.-
GS-R 405
Vo
Output Voltage
V,=Vo+8V,lo=IA
Vo
Temperature
Stability
V, = Vo + 8V, 10 = lA
5
GS-R 4012 V :
5.15.2
5
0.2
5.1
5.2
Input Voltage
___ O_~_I
0.2
46
10 = 1A
_~
_O_u_tp_ut_~_u_rr_en_t_ _V,- = Vo+_s..v_ _ _ _ _ 22
10
Current Limit
10L
f-_I_~:_C +-~_F~_r~_;~_~_~_:;_I:y_P_ut_+-~_~_U~_P_~_:_S_\_0_r_te_d
__
1]
_ _ _+-___
Vi =
Efficiency
0.2_ _ _
Vo + BV
l_00_·~. ,o ~
___
75
fWo
Line Regulation
8
:
v
V
4
I
A
8
i
A
I
~o~-4-,~
_
85
%
2---~~;
L~--
10 = 1A V I = Vo + 3V
to 46V
---~
--------.
SVR
Supply Voltage
f = 100Hz
4
_ _ _ ~ejectio"----~'--A ____ .____ ~_... _. _______ I_
-·----I-···-------~I-------
Load Regulation
I
~61
46
75
10 = lA
r---+-------+-------------------.
15
~ O~__
5
8
VI=Vo+8V
46
8
1~:s1
11.5
---r-----~-____t-- ----~
V,
I
~;P-:-M-;;- ~~~ uni~.
I----r:.es..._c_o_nd_i~_~i_n_._T_y_p_~~
4
mVIV
I
-----
-----4-0----T mV/A
Lllo = 2A
(1 to 3 A)
20
20
-L--_
f -__
V_,__+_R_i'--pp'--l_e_V_o_lt_a=-ge__+-I-'-o"-'ot__=
__2_A_______
Soft Start Time
'
~
VINHL_
V ,NHH
Low Inhibit
Voltage
V'c=Voot+l0V
feB
0.8
-_
2.0
5.5
Crow Bar Delay
Time
2.0
--------+-----
I_,N_H__+_H__
i9'--h_______ r-"'-"-H=-~_
:
- - - ._---_. - - 1 - - - - - - - -
1----+-------+------ - tR
,
Max Differential
Voltage
L_~~_?ense
4/21
100
IRL = SmA
IRL = 15mA
Reset Delay
Time
Vo - S '
2.0
--
-----
100
-
ms
--~~:
..
mV
f-:-
---~-
""'I::
i
J~~ -;-
~
I
100
S- - GND2
_----
......
5.5
500
500
.-----
Reset High
Level
I~!
VRL
.t-Reset Low Level
25
15
0.8
,------ · - · - - - - - - - - - - r - - - - - - - - .
Input Current
~
15
I-- - - - - - - - - -
High Inhibit
Voltage
_____5_0_ _---11
______
2_5-----t----.2s...----
10_0~
_____
ms
__m_v_
i
GS-R400
ELECTRICAL CHARACTERISTICS
~~mb~
(Tamb
= 25"C unless otherwise specified)
'J:l------~-------~---l--GS-R4~
__ Parameter
Vo
Output Voltage
r=Testc~it. ---+-1MI;-r-;;--Ma0-lvI rn ._
I V,=Vo+8V
Tempera~ure
Vo
Stabillty'_ _
V,
Input Voltage
'!....'
_
= Vo + 8~_lo
1143
I
= 1Aj
10 = 1A
15
18
I
Average Input
~~~~~:ng
IS,'
-
Frequency
~S
---
--
01
02
.
.
rJlax.
Min.
24
25
51
I
-
40'
V
I
06
02/16
27
0.2
400 V
Typ. - Max.] Unit
__
0.1
!:!JY
C
46
46
V
~j02n___
4'
:
0.2
0.2
A
0.1
-1
100
-------------------
Efficiency
1")
~utPu1tAShorted---j-
:
Typ.
0 =
---- - - -
'~;
T
Vi = 46V
-
____
r
46
II~L- ~~:~~~tCL~:~nt~: :_0~:~-i=°2
[
156]23
02
_
GS-R
-----,-------------,--
-GS:I:1424
75/90
10 = 1A
V, = Vo + 8V
10=1A V,=Vo+3V
~VV-oR-~-L-i-n-e-R-e-g-U-la-ti-o-n~-to-4-6-V------Supply Voltage
f = 100Hz
_--+_R_el,--e_ct_,o_n_ _ _+--I?_._ ~_1A
_______
8
2A
LO. ad RegUlatlon~.
(1 to 3A)
1------+--------_.
60
-------.----
loot = 2A
Ripple Voltage
...:IJi~
12
mVIV
-----
----t----------~--
~Io =
6
20/90
----+-----------_.-----100
60
_~/~ ..
,
25/150
mV
---------.- ---+-------------1---------15/3S
35
ms
~~~~-S-0-ft-S-t-a-rt-T-i-m-e~-V'--'"~=-V-o'--0'--t-+-1-0-V--~---25
-~~-------+_----------__+--_____1
-------~~
Low Inhibit
Voltage
0.8
0.8
-----------1---------
High Inhibit
Voltage
2.0
5.5
S.5
2.0
2.0
----~~:t~
-~~------I------
Input Current
V ,NH
High
=
SV
SOO
500
-
SOO
.~----+----"'-------~----------
Crow Bar Delay
+__~-:~-:-i
I--____
I
:i -- --1
---t------- ---
Time
_H_'9_h
;-~-;~-;-~ ~; _._IL·_e. :~=_ -= _~ N_.
S
-------f----
-----~~-+----I
V
1
+______
_D_2_ _ _ _..L _ _ _ _ _ _ _ _ _ W"
--_:1_1_"_0_
':::::-_---1-0-0 :
~
• Maximum Output Current is guaranteed up to Va = 36V and derated linearly to 3A at Va = 40V
5/21
101
GS-R400
--------------------_.
_ _ . _ _. . _ - - -
MODULE OPERATION
level, the module restarts softly. Maximum DC voltage applicable to this pin is 15 V. When remote
control (inhibit) of the module is not used, the INH
pin must be connected to GND2.
The GSR400 series is a family of step down switching mode voltage regulators.
Unregulated DC input voltage must be higher than
nominal output voltage by, at least, 3 V. Minimum
input voltage is therefore 8 V for GS-R405S and GSR405; maximum input voltage is 48 V for all types.
The remote load sensing is another feature provided in all the models.
This function is performed by two pins (S+, S-) that
can monitor the voltage directly across the load
when this load is connected to the module by long
wires: voltage drop on these wires is automatically
compensated. Maximum drop compensation must
not exceed 100mV. The case of the module is internally connected to S-. Therefore, the case must
be always isolated from ground if the sensing function is used. The switching frequency of the module
is 100 KHz. To prevent EMI, the module is contained in a metal box that provides shielding and heatsink.
Output voltage is fixed or adjustable (GS-R400V).
The maximum current delivered by the output pin is
4 A. A minimum output current of 200 mA is required for proper module operation. In no-load condition, the module still works, but the electrical characteristics are slightly modified vs. specifications.
To prevent excessive over current at switch on, a
soft start function is provided. Nominal output voltage is approached gradually in about 15 ms.
The module can be inhibited by a TTL, NMOS or C
MOS compatible voltage applied to the INH pin.
When this voltage is at high level, the module is switched off : if the inhibit signal goes from high to low
Figure 1 : Module connection to remote or nearby loads.
- - -
----------
-
-------
~----~:
LOAD~=-=---S
GND
REMOTE LOAD CONNECTION
5- 6 9 35/1
L
NEARBY LOAD CONNECTION
-----------------------
GS-R405S
The RESET output is provided on GS-R405S only
as an auxiliary function to reset or inhibit microprocessors when the output voltage, at switch on and
off, reaches a prefixed value of 4.9 to 5.1 V or when
the output voltage, for any reason, drops below nominal value by more than 100 mV. In any case the
6/21
,'W., SCS-niOMSON
•J,
102
minimum falling threshold value is 4.75 V or higher
and the reset output voltage is generated with a
fixed delay of 100 ms.
Time delay of the reset function also rejects wrong
information caused by occasional spikes generated
during switch on and off.
UflJI©>iI@rn~rn©1JI'iI@IIlI©i!i
---- ------.-- -----
GS-R400
Figure 2: Output voltages reset as a function of output voltage and time .
.-
OUTPUT NOW
STABLE,RESET
GOES HIGH
Vo
AN INTERRUPTION
OF SUPPLY CAUSES
RESET OF MICRO
~
RESET
THRESHOLO-
--------
I
AT POWER DOWN
MICRO IS INHIBITED
IMMEDIATELY
MONITORED
VOLTAGE
--I
V
RESET
OUTPUT
I
I
I
i
I
in
I
I
-11-
DELAY
I
_11_
DELAY
5-7(.66,1
GS-R400V
The output voltage of this model can be adjusted in
a range from 5.1 to 40 V by use of an extemal variable resistor as shown in Fig.3.
The variable resistor can be substituted by a fixed
value Rx to obtain a fixed output voltage Va according to the formula:
Rx
=
2.67.
(~.ol
- 1 ) KQ
where Va can vary from 5.1 to 40 V.
Figure 3 : Output voltage adjustment on GS-R400V.
o to
18 K 1t max
5- 691111.
7/21
103
GS-R400
---------
..
-~---
MODULE PROTECTIONS
THERMAL PROTECTION
in a soft mode: if the overload is still present, the
module switches off and the cycle is repeated until
the overload condition is removed, The average
overload current is limited to a safe value for the module itself. Input current during output short circuit is
always lower than in regular operation,
The module has inside a thermal protection. When
ambient temperature reaches prohibitive values, so
that internal junction temperature of active components reaches 150°C, the module is switched off.
Normal operation is restored when internal junction
temperature falls below 130°C: this large hysteresis allows an extremely low frequency intermittent
operation (ON - OFF) caused by thermal overload.
LOAD PROTECTION
The module protects, by a crow bar circuit, the load
connected to its output against overvoltages,
This circuit senses continuously the output voltage:
if, for any reason,the output voltage of the module
exceeds by + 20 % the nominal value (fixed or adjustable), the crow bar protection is activated and it
short circuits the output pin to ground, This protection prevents also damages to module if output pin
is wrongly connected to supply voltage,
SHORT CIRCUIT PROTECTION
The module is protected against occasional and
permanent short circuits of the output pin to ground
or against output current overloads.
When output current exceeds the maximum allowed
value for safe operation, the output is automaticaly
disabled, After a fixed time, the module starts again
THERMAL DATA
The thermal resistance module to ambient is about
5 °C/W, This means that if the internal power dissipation is 10 W, the temperature on the surface of
the module is about 50°C over ambient temperature,
Four holes are provided on the metal box of the module to allow the mounting of this optional external
heatsink,
It is recommended to keep the metal box temperature below 85 DC,
According to ambient temperature and/or to power
dissipation, an additional heatsink may be required,
TYPICAL APPLICATIONS
the module with batteries that, according to their
charge status, can show large spread on voltage,
The high input voltage range allows both cost saving on 50/60 Hz transformer when the module is
supplied from the main and the possibility to supply
Figure 4 : A typical application of GS-R400 family,
GND 1
'-----5-"-,."-
8/21
104
INH
Vi
-~~ICE
'-----1----1
GS-R400
TYPICAL APPLICATIONS (continued)
quency therefore the equivalent input circuit is as
shown in Fig. 5.
The module has. internally, an input filtering capacitor between pin Viand GND1. Atthe switching fre-
Figure 5: Equivalent input circuit of GS-R400 voltage regulator.
EXTERNAL CONNECTING WIRE
II-+---~Vi +
r -
-
I
I
I
I
: INTERNAL
I CAPACITOR
-'
5-1)939
When very long connecting wires are used, the input capacitor may be damaged by this power dissipation. For this reason it is suggested to keep input
connecting wires as short as possible.
Since II is a high frequency alternating current, the
inductance associated to long input connecting wire
can cause a voltage ripple on point VI that produces
a ripple current across internal capacitor and a power dissipation on r.
Figure 6 : Preregulators for Distributed Supplies.
--_
. ._
----
---------------,
\ - - _ - - - ( ) 5VIO.4 A
5 BV
L4805
I----------<~~O 5V/O.4A
I
I
~ "" Ig I
$- 6941
I
The fixed voltage regulators shown on Fig.6 are
available from SGS-THOMSON Microelectronics.
An over-all low power dissipation is achieved due to
I
1_
I
:
.
5V/O 4A
SYSTEM
RESET
the high efficiency of the GS-R400V and inherent
low voltage drop of fixed regulators. Up to 10 different points can be supplied, using L4805 or L387.
9/21
- - - - - - - - - -
105
GS-R400
TYPICAL APPLICATIONS (continued)
Figure 7 : 24 V to 12 V Power Conversion for Trucks.
~---
- - -
- - - - - - - - - - - - - - --
-
-
-
---
----,
I
I
12VI4A
I
5 - 69l,2
Figure 8 : Multiple output supply using preregulator.
25-35V
Ep-=
GS-R405S
5V(4A)
SYSTEM
RESET
-..
12V (4A)
5 -7187
.--------------_._---
---
- - - - - -------------------~
Figure 9 : Uninterruptable power supply.
- - - - - - - - - - -
------------------------------,
MAINS
+5V
SYSTEM
RESET
10/21
-- - - -- ----- ru,/
• J,
106
SC:;S·1HOMSON
[i;]DIOL'iI@~~~IOVI'iI@Ii!DIO$
GS-R400
EFFICIENCY VS. INPUT VOLTAGE & OUTPUT CURRENT
GS-R412
GS-R405
G
G- 5486
5485
'1
'1
(", )1--
('" )
--
80
-~
r-
t<-
-
-t-
- ----
10
~
-~
-
+-
(V)
40
I--
-
20
10
--
'-... \\
\
r-
t-
-
,\\..
--- 1---- I--- f--- f - -
--
30
--".
~ "A
i'-- ~
.........
- - I--- I--- 1--- f---
:
20
t--
"<;:
-
:
G
r-. I'....
)
~
I---
-
---
-- -
---
-
---
-
-
4A
---
40
30
(V)
GS-R424
'1
-
- - --
5487
'1
2- 3 1A
(", )
r--.. ~
K:' ~
90
"-
\.
\
--
20
30
-
40
G SUI
r-..
--- r--::~
lA
~-4A
---
......
:--......
...:.: -
~
\
10
~-
...........
\.
80
70
I--
70
--
GS-R415
('"
2A
!r---....1A""""
-
-
4A
-- '7
........
-
-----
50
-
-
1---
-
-
--
"
- ---
-
---
4A
~
~
1A
...........
60
---
~
.......... ~
70
--
-
80
..........
80
\
(V)
30
40
(V)
11/21
107
GS-R400
MOTHER BOARD LAYOUT
/-
112.SS±O.15
GS-R405S
I-
112.55+0.15
-I
II 2.SS± 0.15
-I
GS-R405
GS-R412
GS-R415
GS-R424
/'
GS-R400V
Printed Circuit Driling (Components side)
Required holes pattern to be drilled on the mother boards to allow correct mounting.
12/21
108
GS-R400
DESIGN HINTS
The hints provide a pratical guideline for the selection of the transformer, the rectifying diodes and the
filtering capacitor of a power supply based on GSR400 family.
In the following we will consider the full wave bridge
only, that allows the best transformed utilization.
Let's consider the application shown in the Figure
10. The rectifier circuit configurations suitable for
medium to high current applications, are the Full
Wave Center Tapped and the Full Wave Bridge.
(See fig.11)
5 V . 4 A = 20 W
12 V . 2.5 A = 30 W
Both configurations offer the advantage of a smaller surge current in the winding of the transformer
and the doubling of ripple frequency that allows the
filtering capacitor reduction.
The output power of the power supply is, respectively:
for GS-R405S
for GS-R412.
The total input power is, therefore
Pi = . Pg
20_ + -]Q = 62W
Eft.
.75
.85
The two values for efficiency are derived from GSR electrical characteristics.
Figure 10 : Microcomputer supply using GS-R400.
+SV
LOGIC
BOARO
RE5ET
G5-R40S5
G5-R412
+12V
FLOPPY
HARO-Dl5K
GND
~-_---()
-12V
5-8186
The maximum input voltage to the module is set up
to 40 V to work well below the Absolute Maximum
Rating (48V).
Vi (pk) = 40 V
The minimum input voltage is set uo to 16 V to alIowa minimum drop-out of 4 V on the GS-R412.
The nominal input voltage is set up at the middle of
this range to allow a larger input ripple voltage and
line voltage variations.
Vi(DC)=
40-16 +16=28V
2
Vi (min) = 16 V
13/21
109
GS-R400
DESIGN HINTS (continued)
Figure 11 : Rectifying circuits.
------ - - - - - - - - - - - - - ,
c
5-8187
Let's assume a maximum 100 (120) Hz output ripple of the two regulators of 20 mVpp. Since the ripple rejection of the two modules is, at least 50 dB
(316 times), the maximum allowed input ripple is
20 mV . 316 = 6.32 Vripple(pp)
Let's definite rf(in) as the ratio of RMS ripple to DC
voltage
rf(in)=
-~ ~.~2 28
Vi(DC)
.100 = 8 %
~eJ.Q) =
RL = 28\L = 12.73 Ohm
2.2A
- - - - -- - - -- ---- - - L"'!I
110
Vi(pk)
1..8,!
= 0.82
34V
From the graph of fig. 12b we obtain,
= __ 62W - = 2.2 A
28 V
~(D(;)
for
= 0.82
Vi(pk)
The equivalent load for the transformer + rectifier +
capacitor is therefore
14/21
Vi(pk)nom = 40 - 15 % = 34 V
Then we calculate
The input current is calculated from the input power
and voltage :
_FL_
Vi(pk) must correspond to the nominal value of the
mains plus the allowed variations. Let's assume that
the AC voltage at the primary of the transformer may
vary of ± 15 %.
At nominal AC voltage the corresponding secondary maximum DC voltage is :
(lJCRL = 8 and _Rs = 4%
RL
N
~~~~~~~~:I!~©§
-
-
-
-- -----------
GS-R400
I,
I,
DESI<;iN HINTS (continued)
Figure 12a : Input Voltage (DC/pk) Ratio Half Wave.
nn
R.
.v
+ c1 8",
90
~
.l
80
1
~~
~ "r
2
--
4
~
70
6
8
---
~
60
Vi(DC)
----%
50
Vi(PK)
30
110
2. 5
15
,n
~~
r/I'
40
~ ~~
20
r
O. 05
O. 5
35
40
50
60
70
80
90
10 o
r% ...
~ l%~
~V
V
V
10
a
0.1
10
100
1,000
wCR L (C in farads, R L in ohms)
w
_ __
-
-
___
-
~
211f, f = line frequency
_ __ r==
S(iS-ntOMSON
15/21
. ., / iI:IlD((;Iffi@~~~((;1JIffi@i!D((;®
111
GS-R400
------,---,
-----
_.,---------
------'-~-.---.---.-
----'-'-
DESIGN HINTS (continued)
Figure 12b : Input Voltage (DC/pk) Ratio Full Wave.
0.05
100
]~;~ ICEF
90
it~~
~'~~.
80
,J"
~J/
70
V
V
~
o. 5
1
2
.-
4
..-
6
--
8
1o
1 2.5
15
...-
~~
V...
~VI--
Vi(DC)
--- %
Vi(PK)
~ r:=
0 .1
...
60
2a
~ Vi.-'" ...
50
35
40
V
50
V l-
60
~
...l-
80
t:::
f-
4a
70
90
l-
00
t-
3a
0.1
AL
25
3a
~
r-
~(%)
10
wCAL (C in farads, AL in ohms)
100
W=21Tf,
1.000
f=line frequency
Therefore
8
C=--211:f· RL
8
6.28 ·100 ·12.73
= 1000 ~F
To take into account the spread of commercially available capacitors, this value is doubled: 2200 ~F 150 V.
We procede now assuming that:
Rs = 4 % RL = 0.04 . 12.73 = 0.51 Ohm
It represents the total series resistance of the transformer and the rectifying bridge.
16/21
112
GS-R400
DESIGN HINTS (continued)
Figure 13 : Ripple Voltage vs. Input Capacitance and Rs/RL.
100
Circuit
70
50
30
....
20
~~
.......
~~
I ......
10
"*
7.0
<;
5:0
"-
~
.
3.0
;;
2.0
R/R, 1%)
r'
A
:: 1.0
--10
-- 30
Half·Wave
~
~
~~
__ 0.1
--1.0
--10
--30
Full-Wave
A
~
,,-,~
,"
"
0.
~
~
~~
"
((
.::
Parameter
A
1.0
t'..:: ~
t"~
~
""r"
o. 7
0.5
........ ~
,",
0.3
....... ~
~
"
~
1'...:
~
0.2
....... ~ ~ ...... t:S:
o. 1
["", r...-:t'l'-
1.0
2.0
3.0
5.0 7.0
20
10
wCR
w=
L
30
200 300
50 70 100
(C in farads, R
27ff, f
""
L-
500
1000
in ohms)
= line frequency
From the figure 13 for WCRL = 8 and Rs/RL = 4 % it results:
rf
= 7.5 %
Therefore the peak to peak value 01 the resulting input ripple will be :
Vripple(pp) = 2 -v2 . rl . Vi(DC) = 5.9 Vpp
This value is lower than the maximum allowed (6.32 Vpp).
.
~ SCS-TlIOMSON
-- ""11
[;:t]U©I:I@~~~©1JI:I@ilU©®
-
.._
17/21
-
113
GS-R400
-----
DESIGN HINTS (continued)
Figure 14 : RMS/Average Peak/Average Diode Current relation.
10
Qj
"0
.<:!
7
0
..
e:.
~
5
>
«
u::
3
in
2
....
1
:2
a:
1
u::
"
1
1.0
u..
i
2.0
3.0
6.0 7.0
10
20
30
nweA
60
70 100
1000
200 300
L
40
Qj
"0
30
0
:;;
20
0.02
I-"
0
e:.
~
~ >--
:>
«
u.
....
Il
«
w
"-
0.05
,.:::::P""
10
7
..
6
u.
3
1.0
0.1
0.2
-
~ E::=
::...- r-
0.5
1 .0
2.0
5.0
1a
e
~
2.0
-='
~
a:
*
30
100
3.0
5.0 7.0 10
20
50
30
200 300
70 100
500 700 1000
nweRI..
n=G
w "" 2
For Half-Wave Single-Phase Rectifier Circuits
F.or Full-Wave Single-Phase Rec.tifier Circuits
C
in Farads
RL in Ohms
rr t where f = Line Frequency
Rs '"" A MS Eq uivalent Source Resistance
The minimum input DC voltage will correspond to
the minimum input AC voltage, i.e. the nominal value minus 15 %, therefore
Vi(DC)min = Vi(DC)nom - 15 %
= 28 - 15% = 23.8 V
As shown on figure 14 for 2wCRL = 16 and Rs/2RL
= 2 % we obtain:
The minimum peak voltage present at the input of
the regulators will be the minimum DC voltage minus the peak of ripple voltage:
Vi(pk)min = 23.8 -
5i
= 20.85V
well above the minimum allowed (16 V).
18/21
114
IfiRMS)
If(Av)
=2
Therefore:
Isec (RMS)= I;!,D,C) :..?
,2
2.2.2= 3.12 A (RMS)
"02
GS·R400
DESIGN HINTS (continued)
The secondary voltage must be :
l.I,(pk):I: 1.4 = 25.1 V (RMS)
\/2
where 1.4V takes into account the voltage drop on
diodes.
As shown on figure 13 for 2wCRL = 2 . 8 = 16 and
Rs/2RL = 1/2·4% = 2% we get
Then the transformer rating is calculated:
VA=25.1 3.12=78.3VA
To select the rectifying bridge of diodes, the following considerations applies.
and
Vsec (RMS) =
The forward average current is one half the total input DC current since the configuration is a bridge:
If(Av) = I~[)C)
2.2_ = 1 1 A
22'
If (pk)
.
If (Av) = 8 I.e. If (pk) = 8 . If (Av) = 8.8 A
If (RMS)
if (Avg) = 2 i.e. If (RMS) = 2 . If (Av) = 2.2 A
The surge current occurs at the maximum secondary voltage
Isurge =
1/, (flk)
Rs
40
0.51
78.4 A
HOW TO CHOOSE THE HEAT SINK
Sometimes the GS-R400 requires an external heat
sink depending both operating temperature conditions and power.
Before entering into calculation details, some basic
concepts will be explained to better understand the
problem.
Tease = Tamb + Pd· Rth = 40 + 13·5 = 105°C
This value exceeds the maximum allowed temperature and an external heat sink must be added. To
this purpose four holes are provided on top of the
case.
The thermal resistance between two points is represented by their temperature difference in front of
a specified dissipated power, and it is expressed in
Degree Centigrade per Watt.
To calculate this heat sink, let's first determine what
the total thermal resistance should be.
For GS-R400 the thermal resistance case to ambient is 5 °C/W. This means that an internal power
dissipation of 1 Watt will bring the case temperature
at 5 °C above the ambient temperature.
This value is the resulting value of the parallel
connection of the GS-R thermal resistance and of
the additional heatsink thermal resistance.
Rth = lease(mplr Tamb =
§5134~ = 3.46'C/W
R1l.(C:3$BL ~hi.Heatsin~1 = 3 46'C/W
Rth(GSR) + Rth(Heatsink)
.
The maximum allowed case temperature of the module is 85°C.
To calculate the thermal resistance of the additional
Let's suppose to have a GS-R412 that delivers a
heat sink the following equation may be used:
load current of 4 A at an ambient temperature of
Rth(Hs) = ~.46~tb{GSR) = ~.46· ~ = 10 54'C/W
40 DC.
Rth(GSR) - 3.46
5 - 3.46
.
The dissipated power in this operating condition is
about 13W, and the case temperature of the modu Ie
will be:
19/21
115
GS-R400
HOW TO CHOOSE THE HEAT SINK (continued)
The following list may help the designer to select the proper commercially available heat sink.
Sometimes it can be more convenient to use a custom made heat sink that can be experimently designed
and tested.
Manufacturers
Thermalloy
Fischer
SGE Borsari
I
Assmann
L
-t-~::
6152
6111
SK18
SK48
SK07
SR50
V5440
V5382
V5460
_ _ _ _ _ _ ----.l_-"551~
-
Rth
.. _ Moun~ng.
Fastening
J
3
3
4
Horiz----r------;;-rew
I
Vert
I
S~~ew
Vert.
Adhes.
I
Vert.
Screw,
Vert.
Screw
Vert.
Adhes.
6
Vert.
Adhes.
4
4
Vert.
Horiz.
Vert.
Vert.
Adhes.
Screw
Screw
Screw
3
4
10
__ ~ __1-
HOW TO CHOOSE THE PROTECTING FUSE
The GS-R400 family protects the load against overvoltage, by an intemal crow-bar that continuously
senses the output voltage and fires a thyristor when
the voltage is higher than the nominal + 20%. Thyristor current capability is 150 A.
The crowbar can be activated either by an overvoltage generated by an external injected voltage, or
by a failure of the module itself.
In the first case the module provides to limit the input current to a safe value, and to recover the normal operations it is sufficient to switch off the input
voltage for a time greater than the discharge time of
the input filter capacitor.
In the second case the failure is pratically a module
input-output short circuit, the input current is no
more limited by the module, and it is necessary to
provide a method for disconnecting the module from
the input voltage in a very short time to avoid failures
of the board where the module is mounted.
The simplest method foresees the use of a fuse in
the input path to limit the fault current to a safe value.
20/21
116
The proper fuse should be selected with some criteria:
_ the fuse must handle the steady state current
_ the fuse must handle the inrush current that occurs at tum-on
_ the fuse must blow if the module has an input to
output short circuit.
To this purpose, it is usual to select a fuse whose
rated current is between 150 and 250 % of the rated full-load input current.
This usually provides enough overload capability to
prevent fuse blowing from aging and fatigue due to
repeated turn-on overload.
It is also necessary to examine the opening time versus the fuse overload characteristics, and the best
choice is the high reliability, low cost, standard commercial units like 3AG, 3AB or DIN41661.
All the units must be of the fast type with fusing characteristics as depicted in dashed area of fig. 15.
GS-R400
HOW TO CHOOSE THE PROTECTING FUSE (continued)
Figure 15 : Fast fusing intervention curve.
G-5960
t
c-=-=
e
(mS)6
}l\
-
- -
t---1----
-~
1---
-
t--
1\
-
t--~~--
1---10
------
j
~
-~
-
I- .-1I-~--
-
r\..- 1---
,
[\
t----l r-- ---II--~-
r\
-
!"l\
~~-.
t'I
~
10
As an example, for a GS-R405 unit supplied by a 24
Volt minimum input voltage, the fuse rating can be
calculated as follows.
At a maximum delivered power of 20 Watt, assuming a 70 % efficiency, the input power will be 28.5
Watt and the input current 1.2 A.
-- - - - -- ----
-
-
-
j
- - (:::.--::--\- t--
I----
~
--
f-
f--- 1--
I-:=-:~: - :::==-
~:--.--:-
1--+-
-
--
I (A)
The fuse rating will be 2A that guarantees a maximum fusing time of 20 ms (typical 2 ms) for a current of 20A that can be generally accepted without
board problem.
21/21
117
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
GS-R400VB
140W SWITCHING VOLTAGE REGULATOR MODULE
•
•
•
•
•
•
•
•
•
•
•
MTBF IN EXCESS OF 200.000 HOURS
PC CARD OR CHASSIS MOUNTABLE
HIGH OUTPUT CURRENT (4 A)
HIGH INPUT VOLTAGE (48 V)
ADJUSTABLE OUTPUT VOLTAGE (5.1 t040 V)
HIGH EFFICIENCY (up to 90%)
SOFT START
EXTERNAL SYNCHRONIZATION
REMOTE INHIBIT/ENABLE
REMOTE OUTPUT VOLTAGE SENSE
NON-LATCHING SHORT CIRCUIT PROTECTION
• THERMAL PROTECTION
• CROW BAR PROTECTION FOR THE LOAD
• MAXIMUM CURRENT LIMITING
DESCRIPTION
The GS-R400VB is a HIGH CURRENT HIGH
VOLTAGE SWITCHING VOLTAGE REGULATOR
particularly suited for designing multiple outputs power supplies.
ORDER CODE: GS-R400VB
This step down regulator shielded for EMI, can provide local on-card regulation, or be used in central
power supply systems, in both professional and industrial applications.
ABSOLUTE MAXIMUM RATINGS
~m~__
parameter-=__-=-~-=---------V~I~e -
~---+-D__C;__lnput-",olta.2.~ ~
_
__----,
G;
I
I_~ Ts'JL
l_storil(Je TerTlperatur.e....Ra.n.ge _ _
I
Output Current
Inhibit Voltage ~ --
-
---
L Teop........LOperatlnJL Cas", Temperayure .£'ange
-- -
48
-----~-, ----
-
-
-- -
1
4
----15 -
·-[U~itJ
!___
=+
--
__
---::: 40to +~05___
-- 20 to + 85
V __ ~
A
V-
j
=-c~j
__
1
C
Recommended maximum operating .Input voltage is 46 V
September 1988
_
... ______. __ ~ _ _...__._ _ _ _ .~_ _ _~_
1/9
119
GS-R400VB
CONNECTION DIAGRAM (side view)
c-·~-----··
- - - - - - - - - -..
------~.--
G
s- R400VB
INH
Vi
GND 1
OSC
SYNC
CL.
GND 2
S-
5+
Vo
p
I
S-880511
J
MECHANICAL DATA (dimension in mm)
.- . ..
-~-
~~~--
---l
[-c,----------.)JI
I 3683! 0\ I
.
~
__
i..
5
c·
85.5
120
01J~11
I
GS-R400VB
PIN FUNCTIONS
PIN
INH
Vi
FUNCTION
-Inhibit
TTL compatible input A logic high level signal applied to this pin disables the module.
To be connected to GND2 when not _used.
- Input Voltage
Unregulated DC voltage input. Maximum
voltage must not exceed 48 V. Recommen-
--I- ~~;:::~~~~~~:;~~:~:~;~:~;:-~:-~~...--
GND1
- Ground
OSC
- Oscillator Output Pin
An internal RC network determines the
100 KHz PWM switching frequency.
This pin must be connected SYNC if the unit
is a Master.
- Synchronization Input Pin
This pin must be connected to SYNC pin of
the Master unit.
f-----
--------
SYNC
f--------j--.--.-.------.--- .
C.L.
An external resistor connected between this
pin and S - fixes the maximum output current (2,2 Kn min). To be left open when current set is not used.
- Current Limit
------
f - - - - - - - - j - . - - - . - - - - - - -.... - - - - - - - - - . -
GND2
c-------S-
- Ground
Common ground of high current path.
- Sensing Negative
For connection to remote load, this pin
senses the actual ground of the load itself.
To be connected to GND2 when not used.
This pin is connected to case.
f--------j----------.---------.------ .--
For connection to remote loads this pin allows voltage sensing on the load itself. To be
connected to Va when not used.
- Sensing Positive
1 - - - - . - r--- .. -.----------------
Va
- Output Voltage
Regulated and stabilized DC voltage is available on this pin.
Max output current is 4 A.
The device is protected against short circuit
of this pin to ground or to supply.
P
- Output Voltage Programming
A variable resistor (18 KQ max) connected
between this pin and S + sets the output voltage. ______ ._ _ _ _ _ ._______ .__ _
, - - - - - - - ' - - - - - - - _ .... _--_._----- -
I
3/9
121
GS-R400VB
ELECTRICAL CHARACTERISTICS (Tamb = 25"C unless otherwise specified)
,-------------------------------------------------------,,-------------,--------~
PARAMETER
Min
Test Conditions
Typ
Max
Unit
----------~-----
Va
Output Voltage
Vi=Va+BV
Va
Temperature Stability
10 = lA
5_1
40*
Vi
Input Voltage
10 = lA
10
Output Current
Vi = Va + BV
IOL
Current Limit
Vi = Va + BV
IIsc
Average Input Current
Vi = 46V Output shorted
fs
Switching Frequency
10 = 1A
100
V
f----------------------------j----------------------------- - -- - - - - - - - ----------
Vi = Va + BV
mvrc
0_2/1.6
- - - - - - - - - - - - - - - - ----- ---------------1--------
--------
B
46
V
0.2
4*
A
5
B
A
02
0.4
A
----- - - - - - - - - - - - - - - - - t - - - - - - -
0_5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------+--------------+------1
------------------------------- ------------------- ---------------- - - - - - - - - - - - - - - - - - - - - - - - -
KHz
~-------------------------------------------------------
I'1Vo
Efficiency
Va = Va+BV
Line Regulation
10
~--------------------------
fa = 100 Hz
10 = lA
%
2/6
mVIV
4/12
mVIV
20/90
mV/A
25/150
mV
1'110 = 2A (1 to 3A)
Load Regulation
~-------------------------------
V,
75/90
---- ------------------ ----- --- - - - - ---- - ----------- -----------
SVR3upply Voltage Rejection
I'1Vo
la=lA
lA
Vi = Va + 3V to 4BV
=
Ripple Voltage
--------
lOUT = 2A
~------------------------------------------------------------+---
tss
Soft Start Time
VINHL
Low Inhibit Voltage
VINHH
High Inhibit Voltage
Vin = VOUT + 10V
15
f - - - - - - - - - - - - - - - - - - - - - - - - - - - - t - - - - - - - - - - - - - - - - ---- ----------
IINH
Input Current High
tCB
Crow bar Delay Time
ms
O.B
V
5.5
V
- - - -----------------+----------
2.0
500
~A
---------- - - - - - - - ---------------------j----------5
~s
VINH = 5V
----------------------------~------------------+--------------+--------
RCL
Current Limit Resistor
~------------------------
- - - -- - - - - - - ---- ------ --------- -
RSET
Voltage Setting Resistor
VSD
Max Differential Sense Voltage
Vo to S +
S-toGND2
L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- - ' - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2,2
KO
- - --------------'-- 1----- -- -
0
___ _ _ _____
_
lB
KO
100
mV
_ _ _ _ _ _ _ _- - - '_ _ _ _ _ _----'
* Maximum Output Current is guaranteed up to Vo = 36V and derated linearly to 3A at Vo = 40V.
4/9
122
GS-R400VB
MOTHER BOARD LAYOUT
I
i
MODULE OPERATION
The GSR400VB is a step down switching mode voltage reg ulator.
current limiting is not used, C. L. pin must be left
open.
Unregulated DC input voltage must be higher than
nominal output voltage by, at least, 3 V. Minimum
input voltage is therefore 8 V for 5.1 V output, while
maximum input voltage is 48 V.
To prevent excessive over current at switch on, a
soft start function is provided. Nominal output voltage is approached gradually in about 15 ms.
Output voltage is adjustable. The maximum current
delivered by the output pin is 4 A and this value can
be programmed by using an external resistor
connected between C.L. pin and the S- pin. A minimum output current of 100 mA is required for proper module operation. In no-load condition, the module still works, but electrical characteristics are
slightly modified vs. specifications. When external
The module can be inhibited by a TTL, NMOS or C
MOS compatible voltage applied to the INH pin.
When this voltage is at high level, the module is switched off : if the inhibit signal goes from high to low
level, the module restarts softly.
Maximum DC voltage applicable to this pin is 15 V.
When remote control (inhibit) of the module is not
used, the INH pin must be connected to GND2.
5/9
123
GS-R400VB
The remote load sensing is another feature provided by the G8-R400VB.
This function is performed by two pins (8+, 8-) that
can monitor the voltage directly across the load
when this load is connected to the module by long
wires: voltage drop on these wires is automatically
compensated.
The case of the module is internally connected to
8-. Therefore, the case must be always isolated
from ground if 8- is used.
The switching frequency of the module is 100 KHz.
To prevent EMI, the module is contained in a metal
box that provides shielding and heat-sink.
Figure 1 : Module connection to remote or nearby loads.
rr:-- ~o+
LOAD~::-S~ __
GND
REMOTE LOAD CONNEC TlON
NEARBY '-DAD CONNECTION
The output voltage can be adjusted in a range from
5.1 to 40 V by use of an external variable resistor as
shown in Fig. 2.
The variable resistor can be substituted by a fixed
resistor; the value of Rx to obtain a fixed output volt-
age Va is calculated according to the formula:
Rx=2.67. (
Vo -1
5.1
)
KQ
where Va can vary from 5.1 to 40 V.
Figure 2 : Output voltage adjustment on G8-R400VB.
o
10 18 K
n.
ma l(
;'-8809
6/9
124
GS-R400VB
The output overcurrent protection limit can be programmed by using an external resistor RL connected between to current limit C.L. pin and S-.
The value can be selected according to the curve
shown in fig. 3.
Figure 3 : Current Limit vs programming resistor value.
G-S96311
-- -f---- - --30 f--
-
---+---I--~jc---
V
20-~ -
f----t-----V--
-
t----~-
- -- -- t-------
101----~
~
-+--+-+--+-+----- -
The G8-R400VB is designed for multiple outputs
power supplies and to this purpose two pins, named
OSCILLATOR and SYNCHRONIZATION are available.
If the unit is a slave, the SYNC input must be connected to the OSC output of the master unit, and the
OSC pin of the slave must be left open as shown in
fig. 4.
When used in a stand alone application or as a master of a multiple outputs unit, these two pins must be
tied together.
Figure 4 : GS-R400VB multiple outputs connection.
,-----------------------~---------------
-
-<>VoUTl
Rx
VI
Vo f----.------oVOUT2
SLAVE
OSC.GS-R400VB
Rx
5VNC_
GND
5-879111
The Oscillator output can drive up to four Synchronous inputs. The layout of the PCB must be accurately checked to avoid noise injection on the Oscil-
lator output line, otherwise the overall power supply
characteristics will be heavily impaired.
7/9
125
GS-R400VB
MODULE PROTECTIONS
Thermal Protection
The module has inside a thermal protection. When
ambient temperature reaches prohibitive values, so
that internal junction temperature of active components reaches 150C, the module is switched off.
Normal operation is restored when internal junction
temperature falls below 130C : this large hysteresis
allows an extremely low frequency intermittent operation (ON - OFF) caused by thermal overload.
mode : if the overload is still present, the module
switches off and the cycle is repeated until the overload condition is removed. The average overload'
current is limited to a safe value for the module itself. Input current during output short circuit is always lower than in regular operation.
Short Circuit Protection
This circuit senses continuously the output volage :
if, for any reason, the output voltage of the module
exceeds by +20% the nominal value (fixed or adjustable), the crow bar protection is activated and it
short circuits the output pin to ground. This protection prevents also damages to module if output pin
is wrongly connected to supply voltage.
The module is protected against occasional and
permanent short circuits of the output pin to ground
or against output current overloads.
When output current exceeds the maximum programmed value the output is automatically disabled.
After a fixed time, the module starts again in a soft
Load Protection
The module protects, by a crow bar circuit, the load
connected to its output against overvoltages.
THERMAL DATA
The thermal resistance module to ambient is about
5C/W. This means that if the internal power dissipation is 10 W, the temperature on the module surface
is about 50C over ambient temperature.
Four holes are provided on the metal box of the module to allow the mounting of this optional external
heat-sink.
According to ambient temperature and/or to power
dissipation, an additional heatsink may be required.
8/9
126
GS-R400VB
TYPICAL APPLICATIONS
Figure 5 : Typical application on the GS-R400VB.
-----0 5V14A
4-.-V-I------VO~___.~----012V/2A
! osc. G5-R400V8 s +
3.6K!\
12
Kil
5-8798/1
ENABLE 0 - - .
The high input voltage range allows both cost saving on 50/60 Hz transformer when the module is
supplied from the main and the possibility to supply
the module with batteries that, according to their
charge status, can show large spread on voltage.
Since II is a high frequency alternating current, the
inductance associated to long input connecting wire
can cause a voltage ripple on point VI that produces
a ripple current across internal capacitor and a power dissipation on r.
The module has, internally, an input filtering capacitor between pin VI and GND1. Therefore at the
switching frequency the equivalent input circuit is as
shown in fig. 6.
When very long connecting wires are used, the input capacitor may be damaged by this power dissipation. For this reason it is suggested to keep input
connecting wires as short as possible.
Figure 6 : Equivalent input circuit of GS-R400VB voltage regulator.
EXTERNAL CONNECTING WIRE
V
rI
I
+
-,
I
I
INTERNAL
I CAPACITOR
I
..J
I
I
_______________ J
127
GS-R400/2
__ F~~iJy
SWITCHING VOLTAGE REGULATOR MODULES
- - -
---~---
----~
-
---~-~---~-~----~------
~-.~-
---~-~
-------._----------------
•
•
•
•
•
•
•
•
•
MTBF IN EXCESS OF 500.000 HOURS
NO EXTERNAL COMPONENTS REQUIRED
PC CARD OR CHASSIS MOUNTABLE
HIGH OUTPUT CURRENT (4 A)
HIGH INPUT VOLTAGE (40 V)
FIXED OUTPUT VOLTAGE (5.1 V; 12 V)
HIGH EFFICIENCY (up to 85 %)
SOFT START
NON-LATCHING SHORT CIRCUIT PROTECTION
• THERMAL PROTECTION
• CROW BAR PROTECTION FOR THE LOAD
• HIGH POWERIVOLUME RATIO (24 Watt/cubic
inch)
I
I
I
I
DESCRIPTION
The GS-R400/2 is a family of SMALL SIZE HIGH
CURRENT HIGH VOLTAGE SWITCHING VOLTAGE REGULATORS.
These step down regulators, shielded for EMI, can
provide local on-card regulation, or be used in central power supply systems, in both professional and
industrial applications.
PRODUCTS FAMILY
- - , - . - - - - ..
-,--.~
Order Number
Output Voltage
5.1 V
GS-R405/2
12 V
GS-R412/2
' - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.l. _ _ _ ... _ _ .. _ _ _ _ _ _ _ _...J
~
ABSOLUTE MAXIMUN RATINGS
V,
10
TS'9
Tcop
I~t~~~~::~:tur~range ~----_-_ ---~l.- - ----- t~~
..
Operating case temperature range
'-------------
September 1988
40
J
05-C
- 20 to + 85'C
-------
- - - - --- -
117
129
GS-R400/2
----------------~----------~-
MECHANICAL DIMENSIONS AND CONNECTION DIAGRAM (Bottom view)
508
25 I.
2032
>
Vo
2
127
1
II
tL
ro
-------< ~ -,.-;
----< ~
35
~-
GND2,
I
.I
-.
co
0
U>
('oJ
~
I
1
ro
10.86 5.08
I
VI+- GND~ 1-00 f-
-r
,.,
"'-118.1(,/'
-I
50.S
'-----~---------------~--------------------
PIN FUNCTIONS
-t'-
'---'I--~~---
,----~--
Vi
-~---,--~.--~---~
--~~~-~
PIN
FUNCTION
--~-~--.------. ~~-r_--~~~--------------- Input Voltage
Unregulated DC voltage input. Maximum voltage must not exceed 40 V.
- --~ - -.. ----~-~-----__1
--r_~.-~----~-~~----'----~-
GND,
i-Ground
-~---+--------~---
GND2
I - Ground
- Output Voltage
Common ground for input voltage
- - - - -..... ---------~~ . - -----
Regulated and stabilized DC voltage is available on this pin. Max output current
is 4 A.
The device is protected against short
circuit of this pin to ground or to supply.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _...J
~
_____________ " ..,/ SCS-1lI0MSON
•J,
130
------1
-----------------1
The case is electrically connected to GND.
2/7
-~~-.-~--
Common ground of high current path.
iill~It:L1I@rn~rnlt:m~I@IIl~!:$
GS-R400/2
ELECTRICAL CHARACTERISTICS (T amb
---------1
=
25"C Unless otherwise specified)
GS-R 405/2
TYPE
~;;:i1~";-"o~;~:"::'
Vo
-...
Vi
Temperature
Stability
---
---~----------.--------
10
Vi
,
-
-
10 = 1 A
Output CurrenI'
Vi = 24 V
- ----------
--
Current Limit
lise
Average Input
Current
Min.
Typ.
Max.
5
5_1
5.2
11.5
0_2
-----
Typ.
Max.
12
12.5
---+
V
-
I
..
_-
mv
'C
0.5
--
9
40
16
40
0.1
4
0.1
4
A
8
A
0.2
A
----
----
UNIT
- - - - - - - ------
-
- - - ------
Vi = 40V
Output shorted
V
1···-
--
Vi = Vo + 8 V
-----
t--Min.
-
= 24 V 10 = 1 A
Input Voltage
10l
GS-R 412/2
- -----
5
8
5
0.1
0.2
0.1
--
--""
fs
Switching
Frequency
_. __._-_._...
'1
Efficiency
t;V o
Line Regulation
--
--------------
Vi = 24 V
10 = 2 A
10 = 1 A
Vi = 16to 26 V
t-----. --- - - - - - - -
SVR Supply Voltage
rejection
-------
._- ..
- - - - ---
-
-
-- -
80
85
2
2
4
- - - - -[------
-
--
Load Regulation
Vi = 24 V
10 = 0.5 to 1.5 A
20
Vr
Ripple Voltage
loul = 2 A
25
mVIV
Vn
Noise Voltage
loul = 2 A
:
"
25
-------- - - - - - -
mVIV
I
----+------------_..
~-----
----
%
6
------
t;V o
----
1--
- -[ - - - - -
--
f = 100 Hz
10 = 1 A
kHz
100
100
- -
- t-------
~
mV/A
----
50
f--------35
mV
--.-mV
---- - - - - - -
Ir
Reflected lin
Vi= 24 V
10 = 1 A
60
120
Tr1
Line Transient
recovery time
10= 1 A
Vi = 16 to 26 V
500
500
Tr2
Load Transient
recovery time
Vi = 24 V
Vi = 0.5 to 1.5
100
100
Rlh
Thermal resistance
8
8
C/W
tss
Soft start time
15
25
ms
tCB
Crow bar Delay
Time
5
5
ms
VCB
Crow bar Delay
Threshold
6
14.5
V
mA
-----
I
ms
---
I
i
ms
--
Vin=Voul +10V
--
i
,
• The maximum current can be delivered when lease < 85"C. Forced ventilation or additional heat-sink may be requtrec to
keep Tease < 85"C.
317
131
GS-R400/2
MODULE OPERATION
The GSR400/2 series is a family of step down
switching mode voltage regulators.
Unregulated DC input voltage must be higher
than nominal output voltage by, at least, 4 V.
Minimum input voltage is therefore 9 V for GSR405/2 and maximum input voltage is 40 V for all
the types.
The output voltage is fixed and the maximum current delivered by the output pin is 4A. A minimum
output current of 100 mA is required for proper
module operation. In no-load condition, the module still works, but the electrical characteristics
are slightly modified vs. specifications.
To prevent excessive over current at switch on, a
soft start function is provided. Nominal output
voltage is approached gradually in about 15 to 25
ms.
The switching frequency of the module is 100
KHz. To prevent EMI, the module is contained in
a metal box that provides shielding and heat-sink.
MODULE PROTECTIONS
Thermal Protection
The module is provided with a thermal protection.
When ambient temperature reaches prohibitive
values, so that internal junction temperature of
active components reaches 150°C, the module is
switched off. Normal operation is restored when
internal junction temperature falls below 130°C:
this large hysteresis allows an extremely low frequency intermittent operation (ON - OFF) caused
by thermal overload.
Short Circuit Protection
The module is protected against occasional and
permanent short circuits of the output pin to
ground or against output current overloads.
When the output current exceeds the maximun
allowed value for safe operation, the output is
automatically disabled. After a fixed time, the module starts again in a soft mode: if the overload is
4/7
132
still present, the module switches off and the cycle is repeated until the overload condition is removed.The average overload current is limited to
a safe value for the module itself. Input current
during output short circuit is always lower than in
regular operation.
Load Protection
The module protects, by a crow bar circuit, the
load connected to its output against overvoltages.
This circuit senses continuously the outpout voltage : if, for any reason, the output voltage of the
module exceeds by + 20 % the nominal value,
the crow bar protection is activated and it short
circuits the output pin to ground. This protection
prevents also damages to the module if the output pin is wrongly connected to the supply voltage.
Gi
SGS-ntOMSON
~I i!ilUICOOI!il.Ii©1i"IiIWU©$
GS-R400/2
OPERATING AMBIENT TEMPERATURE RANGE
The GS-R400/2 modules are power devices, i.e.
devices that deliver and dissipate power. The power dissipation is related to the delivered output
power by
Pd = Po
1
(11
By knowing the thermal resistance case to ambient RTH = 8'C / W for natural convection condition, the maximun ambient temperature for a
case maximum temperature of 85'C will be
-1)
Tamb max
= Tcase max - Pd' RTH
i.e.
where
Tamb 5v = 85 - 3.75.8 = 55'C max
11 = efficiency = Ppo
IN
Tamb 12V = 85 - 8.64 = 34'C max
The operating ambient temperature range cannot
be simply defined by numbers because it depends on many conditions that must be previously defined.
On the contrary, the operating case temperature
is well defined and it ranges from - 20 to + 85 'C.
The two extremes are imposed by reliable operation of aluminium electrolytic capacitors that are
housed inside the modules.
From these data, the maximun ambient temperature range can be easily calculated, as show in
the following example:
V IN = 24V VOUT = 5 V ; 12V
This ambient temperature can be increased by lowering the thermal resistance case to ambient.
Various methods can be adopted such as addition of external heat-sink on forced ventilation or
both.
If an external heat-sink with RTH = 10'C/W is
used, the values are modified as follows.
The total thermal resistance case to ambient is
the parallel of the two thermal resistances
RTH TOT = RTH CASE' RTH HEAT-SINK = 4's"CIW
RTH CASE + RTH HEAT-SINK
Tamb 5V
= 68'C max Tamb 12V = 56'C max
louT = 3A.
The dissipated powers of GS-R405/2 and GSR412/2 are respectively:
Pd 5V = 3.75W
Pd12V = 6.4W
5/7
133
GS-R400/2
---------------------------TYPICAL APPLICATIONS
The high input voltage range allows both cost saving on 50/60 Hz transformer when the module is
supplied from the mains, and the possibility to
supply the module with batteries that, according
to their charge status, can show large spread on
voltage.
Figure 1 - A Typical Application of GS-R400/2 Voltage Regulator
•....
j
- - - - ..
----------~
Vo
VI
GS R400/2
GND2
GND1
5-8799
----_._--_.---------------------------
The module has, internally, an input filtering capacitor between pin VI and GND1. Therefore, at
the switching frequency the equivalent input circuit is as shown in fig. 2.
Figure 2 - Equivalent Input Circuit of GS-R400/2 Voltage Regulator
--------------_.
EXTERNAL CONNEC TlNG WIRE
+
r-
"I
I
INTERNAL
CAPACITOR
L
5-6939
6/7
134
GS-R400/2
Since II is a high frequency alternating current,
the inductance associated to long input connecting wire can cause a voltage ripple on point VI
that produces a ripple current across internal capacitor and a power dissipation on r.
When very long connecting wires are used, the
input capacitor may be damaged by this power
dissipation. For this reason it is suggested to
keep input connecting wires as short as possible.
EFFECIENCY VS. INPUT VOLTAGE & OUTPUT CURRENT
(,-5965
'1
("/" )
r--
1---
- - ~-
3A
_.
80
------~
t-
-
~~
;
~K~ ~
" ........, ~
,
70
"'"
60
50
GS-R405/2
a
10
30
20
'1
("/")
1-
-
t--..
-- - - -
3A
85
.-
"~-
_.
..-'~
1A·--;
I
75
!
~~
~
GS-R412/2
-
_.-
65
-
55
a
I
10
20
30
717
135
GS-RS1212
TRIPLE OUTPUT SWITCHING VOLTAGE
REGULATOR MODULE
---_._---_._---_._._.
•
•
•
•
•
•
•
•
•
•
MTBF IN EXCESS OF 200.000 HOURS
NO EXTERNAL COMPONENTS REQUIRED
PC CARD OR CHASSIS MOUNTABLE
HIGH OUTPUT CURRENT (3.5 A on 5 V output)
HIGH INPUT VOLTAGE (40 V)
TWO 12 V; 0.15 A ISOLATED OUTPUTS
HIGH EFFICIENCY
SOFT START
RESET OUTPUT
NON-LATCHING SHORT CIRCUIT PROTECTION
• THERMAL PROTECTION
• CROW BAR PROTECTION FOR THE LOAD
DESCRIPTION
The GS-R51212 is a triple output HIGH CURRENT
HIGH VOLTAGE SWITCHING VOLTAGE REGULATOR that provides +5 V and two isolated 12 V
outputs.
This step down regulator shielded for EMI, provides
local on-card regulation. The very large input voltage range allows flexibility in both professional and
industrial applications.
ORDER CODE: GS-R51212
CONNECTION DIAGRAM (top view)
RT
GND3
V03
GND2
V02
GNDOUT
'VOl
:.
"
~
~
I~
GNDIN
~
-"I
,"'I
~
~
5-8803
- - - - - -----_.
September 198_8_ _ _ _ _ _ _ _ _ _ _ _ _ _ __
1/9
137
GS-RS1212
[
ABSOLUTE MAXIMUM RATINGS
--
-----------
VI
DC input voltage
IRT
Reset output sink current
T5 tg
Storage temperature range
Tcop
Operating case temperature range
-
L
5
c·
85.5
2/9
138
----- L'9'J
'},
SCS-THOMSON
~~©L'iI@~~~©~L'iI@IIl~©$
-0-------
- 40 to + 105'.C
- 20 to + 85'C
MECHANICAL DATA (dimensions in mm)
_ _.. _ .
40 V
20 mA
01)~/l
GS-R51212
PIN FUNCTIONS
--"----"-"
FUNCTION
PIN
RT
----.
-----"
V,
GNDIN
GNDoUT
Reset output is high when output voltage reaches nominal value (5.1 V)
and it is gener ated with a fixed 100 ms delay. A proper resistor (270 n
min) must be connected between this pin and V01
Reset Output
-- - - - - - - - - - - - - - -
Ground
1-----Ground
-
V01
---. - - -
--
5 V Output Voltage
---------
V02
c----GND2
GND3
Commongrou nd of high current path. Thecase of the module isconnected to this pin.
---------
Regulated and stabilized DC voltage is available on this pin. Max output current is 3.5 A.
.
The device is protected against short circuit of this pin to ground or to I
supply.
Regulated and stabilized 12 V DC output at 150 mA max. current referred to GND2.
This output ca n float ± 200 V in respect to GNDoUT and GND3.
------" -""-
------- ---
Ground
Reference gro und for V02 output.
12 V Output Voltage
~
-"-"-
Common grou nd for input voltage.
------
------"
12 V Output Voltage
c------- - - - - " " - _ . V03
- - -
Unregulated D C voltage input. Maximum voltage must not exceed 40 V.
Input Voltage
~--.--
-----
'.
- - - - - - - - - ----.----
----.
-
J
I
-- ---- --" -- ----- --------------- ------- --1
Regulated and stabilized 12 V DC output at 150 mA max. current referred to GND3.
This output ca n float ± 200 V in respect to GNDoUT and GND2.
" - - _ .... _ . - - - . _ - " -
Ground
--~--
----
I
- - . " - - -- -
-- -
- - - - - --------- - - - - - - - - - " - - - - - - - -
I
----,
I Reference ground for V03 output.
- - - - " - - - " - - - - - - - - - - - -------------------
I
I
---------------
--------~
MOTHER BOARD LAYOUT Printed Circuit Drilling (components side).
Printed Circuit Drilling (component side).
- . " - - - -.." - .
~------------------------------""--.--- ..
3/9
139
GS-RS1212
ELECTRICAL CHARACTERISTICS (Tamb = 25"C unless otherwise specified)
--
Test Conditions
Min
Typ
Max
Unit
Output Voltage
Vi = 24 VIol = 2.5 A
4.95
5.1
5.2
V
V02 Output Voltage
Vi = 24 V 102 = 0.1 A
*
11.5
12.5
V
V03 Output Voltage
Vi = 24 V 103 = 0.1 A
*
11.5
12.5
V
PARAMETER
VOl
Vo
Temperature Stability
Vi
Input Voltage
101
Output Current
Vi = 24 V
102
Output Current
Vi =24 V
*
103
Output Current
Vi = 24 V
*
Ise
Average Input Current
Vi = 40 V VOUtl = 0 V
Ise
Average Input Current
Vi = 40 V V OU11/213 = 0 V
Ir
Reflected lin
fs
Switching Frequency
All Outputs
mVI"C
0.2
9.0
40
----------
0.5
--
A
.15
A
.15
A
A
------_..- --
Vi = 24 Viol = 2.5 A
V
3.5
0.2
....
-
0.4
A
160
mA
100
KHz
75
%
mV/v
102 = 0.1A 103 = 0.1 A
11
Efficiency
---
Vi = 24 VIOl = 2.5 A
102 = 0.1 A 103= 0.1 A
!!.Vo Line Regulation
101 = 2.5 A VI = 15 to 25 V
102 = 0.1 A 103 = 0.1 A
2
!!.Vo Load Regulation
Vi = 24 Viol = .5 to 2.5 A
20
mV/A
Vi = 24 V 102 = .05 to .1 A
1
mV/A
Vi = 24 V 103 = .05 to .1 A
1
mV/A
50/60Hz
4
mV/v
SVR Supply Rejection
------
---
-
-
-
."-------
Vr
Ripple Voltage
Vi = 24 Viol = 2.5 A
30
mV
Vn
Noise Voltage
Vi = 24 Viol = 2.5 A
40
mV
Ireset = 5mA
0.2
V
100
ms
500
J.ls
100
Irh
Reset leakage Current
Vrl
Reset Low Level
Trd
Reset Delay Time
Trl
Line Transient Recovery Time
101 = 2.5 A Vi = 15 to 35 V
Tr2
Load Transient Recovery Time
Vi = 24 V 10 = .5 to 2.5 A
Rth
Thermal Resistance
• loutt = 0.5 A.
4/9
140
--
---
----
~
200
J.ls
5
"CIW
GS-RS1212
MODULE OPERATION
The GS-R51212 is a triple output switching mode
voltage regulator.
Unregulated DC input voltage must be higher than
nominal output voltage by, at least, 4V. Minimum input voltage is therefore 9 V while maximum input
voltage is 40 V.
The main output voltage is 5V and the maximum
current delivered is 3.5 A. A minimum output current
of 500 mA is required for proper module operation.
The current available on the 12 Volt outputs depends on the current delivered by the main output
and the value of the input voltage.
Figure 1 : Current available from 12 V output vs. input voltage and 5 V output current.
-I
I
--r----r-
100
!
I
I
I
ilOliT SECONDARY: OuTPlif
ivs
50
~---+___
l
I
.
"",&IOUT5VI
--to
~-
.
I
L
i
i
I
,
r
20
To prevent excessive over current at switch on, a
soft start function is provided. Nominal output voltage is approached gradually in about 15 ms.
The switching frequency of the module is 100 KHz.
To prevent EMI, the module is contained in a metal
box that provides shielding and heat-sink.
The RESET output is an auxiliary function useful to
reset or inhibit microprocessors when the output
voltage, at switch on and off, reaches a prefixed value of 4.9 to 5.1 V or when the output voltage, for
any reason, drops below nominal value by more
than 100 mV. In any case the minimum falling threshold value is 4.75 V or higher and the reset output
voltage is generated with a fixed delay of 100 ms.
This is an open collector output to guarantee maximum flexibility.
Time delay of the reset function also rejects wrong
information caused by occasional spikes generated
during switch on and off.
5/9
141
I
GS-R51212
MODULE OPERATION (continued)
Figure 2 : Reset as a function of output voltage and time.
r· -.- - - .-. -. - .- --.,,--- --'-I
OUTPUT NOW
STABLE,RESET
GOES HIGH
AN INTERRUPTION
OF SUPPLY CAUSES
RESET OF MICRO
IOOmV OF
HVSTERESIS
RESET
THRESHOLD-
_j ____ v_-_~_-_-_-_-_-_-_~
__
I
AT POWER DOWN
MICRO J5 INHIBITED
IMMEDIATELV
-------
MONITORED
VOLTAGE
I
I
I
I
I I
I
I
RESET
OUTPUT
DELAY
DELAY
5-7466/1
------"- - - - - - - - -
6/9
142
GS-RS1212
MODULE PROTECTIONS
Thermal protection
The module has inside a thermal protection. When
ambient temperature reaches prohibitive values,
so that internal junction temperature to active
components reaches 1S0°C, the module is
switched off. Normal operation is restored when
internal junction temperature falls below 130°C:
this large hysteresis allows an extremely low frequency intermittent operation (ON-OFF) caused
by thermal overload
Short circuit protection
The module is protected against occasional and
permanent short circuits of the·output pins to their
respective grounds or against output current overloads.
When the S V output current exceed the maximum
allowed value for safe operation, the output is
automatically disabled. After a fixed time, the
module starts again in a soft mode: if the overload
is still present, the module switches off and the
cycle is repeated until the overload condition is
removed. The average overload current is limited
to a safe value for the module itself. Input current
during output short circuit is always lower than in
regular operation.
Load protection
The module protects, by a crow bar circuit, the load
connected to the S V output against overvoltages.
This circuit senses continuously the output voltage: if, for any reason, the output voltage of the
module exceeds 6 V, the crow bar protection is
activated and it short circuits the output pin to
ground.
THERMAL DATA
The thermal resistance module to ambient is about
SOC/W. This means that if the internal power dissipation is 10 W, the temperature of the module
surface is about SO°C over ambient temperature.
According to ambient temperature and/or to power
dissipation, an additional heat-sink may be required. Four holes are provided on the metal box of
the module to allow this mounting of this optional
external heat-sink.
TYPICAL APPLICATION
The high input voltage range allows both cost
saving on SO/60 Hz transformer when the module
is supplied from the main and the possibility to
supply the module with batteries that, according to
their charge status, can show large spread on
Voltage.
The module has, internally, an input filtering capacitor between pin VI and GND 1 . At a high switching frequency the equivalent input circuit is as
shown in Fig. 2.
Since II is a high frequency alternating current, the
inductance associated to long input connecting
wire can cause a voltage ripple on point. VI that
produces a ripple current across internal capacitor
and a power dissipation on r.
When very long connecting wires are used, the
input capacitor may be damaged by this power
dissipation. For this reason it is suggested to keep
input connecting wires as short as possible.
7/9
143
GS-RS1212
-----~---"------------~--~---"---"
---
Figure 3 : Equivalent input circuit of GS-RS1212 voltage regulator.
EXTERNAL CONNEC TlNG WIRE
-,
I
INTERNAL
CAPACITOR
L
5-69]9
~----------------{)-
Figure 4 : GS-RS1212 typical applications.
DIGITAL
BOARD
VOl
0-
GNDOUT
GNO(OIGIU
GND 2 GND(ANAl(}{,)
~-l
GS-R51212
V02
().'"----~-
~O
GN03
·\2V
1
-
i
-12V
I ANALOG
: BOARD
I
S 880/1
0----
VOl
V,
GNDOUT
V,N
G5-R51212
I
GN02
v03
VOl
C>-
(,NO
GNO)
.",--
~
G""---
--
LOGIC BOARD
_
~v
l-
-11V
OT
I
L
8/9
144
RESET
-~,-
'- _J
,)-BIlOll)
II
GS-R51212
EFFICIENCY VS. INPUT VOLTAGE
~r---~--r--.---'---'---r--~~
(o/,)
80
-r
70
50 - __-L-_+-_
50
o
10
20
30
9/9
- - - - -
145
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L149
4A LINEAR DRIVER
- - - - - - - - - - - - - - - - - - - - - - . - _ . - - - - - - - _ . ._ - - - - - - -
•
•
•
•
•
•
•
1-
HIGH OUTPUT CURRENT (4A peak)
HIGH CURRENT GAIN (10.000 typ.)
OPERATION UP TO ± 20 V
THERMAL PROTECTION
SHORT CIRCUIT PROTECTION
OPERATION WITHIN SOA
HIGH SLEW-RATE (30 VI J.ls)
Pentawatl'"
The L 149 is a general purpose power booster in
Pentawatt® package consisting of a quasi-complementary darlington output stage with the associated
biasing system an inhibit facility.
The device is particularly suited for use with an operational amplifier inside a closed loop configuration
to increase output current.
ABSOLUTE MAXIMUM RATINGS
'~J;':'b4 _~=
,
Vs
I
'- --""--I
______ P~rameter
Value
___ _
± 20
Supply Voltage
Input\loltage
___ ---- --- - -- ---- ---
1\l5-=V41_UPP~ Power Transistor VCE
40
V
0'4 - V3 _ Lower Power Transistor VCE
40
V
3
A
I
I
1100
V 1NH
I'
I
r
,
DC Output Current
Peak Output Current (internally limited)
Input Inhibit Voltage
-T:~tJ ::~:~:;~::~:tl;~T~~p:~~u:~' .--- - - - .
4
A
- Vs + 5
V
-= \/s :-~~ .. _._+--- V
25
W
- 40 to 150
~
°C
TEST CIRCUIT
>.---.......---{) au T
- - - - - - - - - _ . _ - - _ . _ . _ - - - - - _ . _ - - - ..- - . - - - - - - - - -
September 1988
1/4
147
L149
CONNECTION DIAGRAM (top view)
>
5
0
/
4
OUTPUT
>
3
(tab connected to pin 3)
+Vs
~
- Vs
2
> INPUT
1
INHIBIT
5- 4025
SCHEMATIC DIAGRAM
INPUT
____________
2/4
148
~
~~~~.03
__
40_'8_"_ _ _ _ _ _ _ _ _ _ _
-VS _ _ _ _ _ _ _ _
J
L149
THERMAL DATA
Thermal resistance junction-case
Rthj-case
ELECTRICAL CHARACTERISTICS (Tj = 25°C, Vs = ± 16V)
:;=~--s-u-p-p--:-a-:~:-I-~-a-:--te-e-r-=r--~ __--_-;--_e_~_t_cond~~~ons
r--Id
hFE
-- -
--
---
,--------,
Min.
TY;! ::: -~~~t~
----
Quiescent drain current
Vs = ± 16V
30
Input current
Vs = ± 16V
200
mA
400
J.1A
- - - - - - . ------------- ....-- ---_.. _---------_ .. -----+-_·_--+----+---+----1
DC current gain
Vs = ± 16V
10 = 3A
6000 10000
-----_.
-----
Gv
Voltage gain
Vs =±16V
VCEsat
Saturation voltage
(for each transistor)
10 = 3A
3.5
Vs =±16V
0.3
10 = 1.5A
------- - - - - - -----.- --------t-----t---+--r-
1-------
,
V
- - - -
Vas
Input offset voltage
VINH
Inhibit input voltage (pins 1-3)
1----------
V
._----+---_ .. _-- - - - - - - - _..- -----+----+---+----j
ON condition
± 0.3
± 1.8
OFF condition
--------------j------.-.--------
RINH
Inhibit input resistance
SR
Slew rate
V
---------+---1-----+-----1
i
2.0
KQ
30
VI J.1S
--------------t---+----+-------- - c......B_ _ _
Po_w_e_r_b_a_n_d_w_id_t_h_ _ _ _-'-_V_a_=..±__ 1OV, d = 1 %, RL = 8n
2~~__ L_____ KHz
APPLICATION INFORMATION
Figure 1 : High slew-rate power operational amplifier (SR = 13VI J.1s).
.......---"1'--'O·Vs
r---~---------
RijSfl
RL
O.1,.,F
C6
~---------~---~O-V5
S-393411
3/4
149
L149
Figure 2 : Maximum saturation voltage vs. output
current.
Figure 3 : Current limiting characteristics ..
G" 360911
VCE(sat )
(V)
c,/
/
/
-If-
V
·2
- . -.
·4
·6
12
-36
Figure 4 : Supply voltage rejection vs. frequency.
18
-30
24
-24
30
-1 B
36
-12
Figure 5 : Distortion vs. output power
(f = 1 KHz).
r:
G 3608
SVR
I
(dB)
I
Iii
RohW,
! I
--L I III ,.-
Vs! lav
30
I
40
I
Jv r I
-
vOl
50
60 . -
R L=4Jl
Vs:32V
1-'-1-I
, I
./
i ,.I I
H
i rt U
I
10
M
i tITIII
l-
-
I
.Im
ri ~,i
10
-
H·'
Rl = 8a
-~
20
-
-
10'
--
10'
f'
~1j
--
t~
t(Hz)
Figure 6 : Distortion vs. output power
(f = 10 KHz).
Figure 7: Output power vs. supply voltage.
,4
,.
21
15
O.'~_,
.. _"
~.
0,01 L--.....L...J....L.LJ..J.J...jJ_...J.-..l...1....L.J..I.uI.l.J
10
4/4
150
"
L165
3A POWER OPERATIONAL AMPLIFIER
• OUTPUT CURRENT UP TO 3A
• lARGE COMMON-MODE AND DIFFERENTIAL MODE RANGES
• SOA PROTECTION
• THERMAL PROTECTION
• ± 18V SUPPLY
The l165 is a monolithic integrated circuit in Pentawatt® package, intended for use as power operational amplifier in a wide range of applications,
including servo amplifiers and power supplies. The
high gain and high output power capability provide
superior performance wherever an operational
amplifier/power booster combination is required.
Pentawatt@
ORDER CODE: l165V
ABSOLUTE MAXIMUM RATINGS
~
s
Vs - V4
V4 - V3
Vi
I
Supply voltage-
±15
V
36
Vi
Differential input voltage
10
Peak output current (internally limited)
Power dissipation at Tease
Tstg, TI
~
36
Lower power transistor VCE
I Input voltage
Ptot
Vs
±18
Upper power transistor VCE
~
90'C
Storage and junction temperature
APPLICATION CIRCUITS
Figure 1 : Gain> 10.
I
3.5
A
20
W
-40 to 150
'C
Figure 2 : Unity gain configuration.
r--
0.1 jJF
I
lN400l
0.22,uF
0.22pF
lN400l
O.1,lJF
1
-Vs
5-43"'3
S-td42
Rl
____ 1
September1988
"-------_._--------------
-----
...-
1/7
--
151
L165
CONNECTION DIAGRAM
(top view)
l
o
~~-.
~-
I
LTab connected
__
5
+Ys
4
OUTPUT
~
:::ERTING INPUT
1
NON INVERTING INPUT
5-262812
to pin 3
SCHEMATIC DIAGRAM
1
~--------~---------.
4
-0
THERMAL DATA
Thermal resistance junction-case
217
152
max
3
L165
ELECTRICAL CHARACTERISTICS (Vs = ± 15 V, TI = 25 'C unless otherwise specified)
-
,-~
-~-
---,----~-
-----,---
,-----~
Symbol~~! 3.5A).
IOK.ll
~------~
])Kfi 2-'•
•2*
r:-~
.7
D.221Jf
UKfirl.
-LT-
R,
:c
L 165
10Kfi
01 to 04: I
VFS 1.2@ I ~ 4A
trr:s: 500 ns
Note: The input voltage level is compatible with L291 (5·8IT O/A converter).
The transfer function is : ~
V,
=
R4
Rx R3
517
155
L165
Figure 11 : High current tracking regulator.
Figure 12 : Bidirectional speed control of DC
motor (Compensation networks not shown).
+15V
·V.
0----1r------'--1
r--+-~----{)
",
0.'.'
2A
DC MOTOR
O.1 ....
rt---<=_ _--,
~--ot-~--O."
.,,0-------'''------'
s- t. 370, 1
PI
A: for±185V;5±32
Note: V, must be chosen in order to verify
2 V;- V,536V
B: forV;5±18V
01,02:
I
VF51.2V@ 1=2A
trr 5 500 ns
Figure 13 : Split power supply.
cr--~-,---~-----~--0+Vo
Vi
+Bto+36V
cr~~~---~-----~~--o-Vo
5-537911
6/7
156
L165
Figure 14 : Power squarewave oscillator with independent adjustments for frequency and duty-cycle.
Rt
>"~-----1~UVout
nn
tIl
PI : duty·cycle adjust
P2 : frequency adjust (f = 700 Hz with Cl = 10 nF. P2
Kll. f = 25 Hz with Cl = 10 nF. P2 = 0)
= 100
5-53B1
7/7
157
L200
ADJUSTABLE VOLTAGE AND CURRENT REGULATOR
• ADJUSTABLE OUTPUT CURRENT UP TO 2 A
(GUARANTEED UP TO Tj = 150 ec)
• ADJUSTABLE OUTPUT VOLTAGE DOWN TO
2.85 V
• INPUT OVER VOL TAGE PROTECTION (UP TO
60 V, 10 ms)
• SHORT CIRCUIT PROTECTION
• OUTPUT TRANSISTOR S.O.A. PROTECTION
• THERMAL OVERLOAD PROTECTION
• LOW BIAS CURRENT ON REGULATION PIN
• LOW STANDBY CURRENT DRAIN
metal case. Current limiting, power limiting, thermal shutdown and input overvoltage protection (up
to 60 V) make the L200 virtually blow-out proof.
The L200 can be used to replace fixed voltage regulators when high output voltage precision is required and eliminates the need to stock a range of
fixed voltage regulators.
. . . . . . .·.··.·.e
.
,
e.
"
Pentawatt'"
TO-3 (4 lead)
DESCRIPTION
The L200 is a monolithic integrated circuit for voltage and current pro9,!;ammable regulation. It is
available in Pentawatt R package or 4-lead TO-3
ABSOLUTE MAXIMUM RATINGS
I~----- val~e=Iunit_
Parameter .. _____". - -
Symbol
~----~-----------------~-
V;
DC Input Voltage
V;
Peak Input Voltage (10 ms)
___.___ ._________,__, _
I--_~t_:_t--+_~~::rt ~i~~n
_ _ ..___
To p
40
v
:
60
v
----------------.----.---- --'-,----------------+----1
Dropout Voltage
Tstg
,
I
i Storage Temperature
~
_____
_i--- _______3_2________f-_V_
---==-~-.-----L :~::;~:::~ : : : :
I
-55to 150
I
-
25 to 150
'C
I
-
55 to 150
'c
Operating Junction Temperature for L200C
'-------'-----
for L200
-----------------.----------------~----
'c
--------~-----
THERMAL DATA
II
I
,
TO-3
--------,
Pentawatt'"
Rth j-case
Thermal Resistance Junction-case
Max
4'CIW
3 'C/W
Rth}amb
Thermal Resistance Junction-ambient
Max
35 'C/W
50 'C/W
September 1988
1/9
159
L200- - - - - CONNECTION DIAGRAMS AND ORDER CODES (top views)
5-238'11 Z
5-2555/3
I_j::
_t
BLOCK DIAGRAM
1
___
IN~I~-I-I
~
\CURRENT
/LiMITING
I
"--,.._-'
OUTPUT
~ ---..I----+--iICOMPARATOR ~ 2
l__
GROUND
s· 3926
APPLICATION CIRCUITS
Figure 1 : Programmable Voltage Regulator
with Current Limiting.
Figure 2 : Programmable Current Regulator.
R
R3
10 = Vs
~2
R
L 200
------------
2/9
160
L200
SCHEMATIC DIAGRAM
1
I,R2Q
01
D2
Iter
J
,
R6
'r •
<3.'
ELECTRICAL CHARACTERISTICS (Tamb
@imb;ir-'
=
25 'C, unless otherwise specified)
2e_~conditions_J
Parameter
Typ·T~~x.
Min.
Tun~
VOLTAGE REGULATION LOOP
I :~-I ~~:~i~~:'~;:'"''''" "--I ~ ;'::
~-'~----~'--'"
__ 1~2. . .~_92
I
B= 1 MHz
---------
---
Vo
-------------
---------
Output Voltage Range
Voltage Load Regulation
(note 1)
-~---
..
80
pV
, ,,10 =
I ,,10 =
36
2.85
2A
0.15
1.5 A
0.1
09
- - . - - - -... ---~---
I Line Regulation
Vo = 5 V
t-.Vo
'
V,=8to18V
SVR
I Supply Voltage Rejection
Vo = 5 V
48
48
and 5
_. ._ - - -
-----
Vi = 20 V
10 = 10 mA
1%
1_%
dB_
'I
60
1 - - - - - + - - - - _ - - - - - - - + - - - - . - - - - - - - - -"------+-t-.V,_o
Droupout Voltage between Pins 1 10 = 1.5 A
"Vo <0 2 %
-----------
V
-f __ I
60
10 = 500 mA
"Vi = 10V pp
f = 100 Hz (note 2)
Reference Voltage (pin 4)
I
---------
10 = 10 mA
"V,
Vref
lmAj
10 = 10 mA
2.64
i __
~
J?:~
I
I
dB
::6J: ~
3/9
161
L200
ELECTRICAL CHARACTERISTICS (continued)
,------,-------~-----~---~~-,-------
Symbol
Parameter
---~---~-
~
~~.---------
Test conditions
..
---,----,-----~--,
Min.
Typ.
Max.
Unit
-~------------.-----+----------------j---~+---+-----+-----1
!1Vref
Average Temperature Coefficient
of Reference Voltage
Vi = 20 V
10 = 10 mA
for Tf = - 25 to 125 ·C
-0.25
·1.5
f-_1_4_ _f--B
..i_a_s_C_u_rr_e_n_ta_t_p_i_n_4_ _ _ _---cIf-_____f_or_T__I_=_1_25__
tO_1_5_0_.C_____ -I___3_ _t-_ _-+__--1
'I
Average Temperature
Coefficient (pin 4)
Zo
\ Output Impedance
CURRENT REGULATION LOOP
vsc
____ ..__
2:
jEi'
Vi = 10 V
Current Limit Sense Voltage
between Pins 5 and 2
!1 Vsc
!1T·Vsc
15 = 100 mA
__0 ______ - - - - - - - -
'Average Temperature
----·~-,----r
Vo = Vref
0.38
____________________________
---
'
0.45
0.52
- _ . _ -t-0.03
.--~.-~.-.-.-~------+------------
'1
Vi= 10 V
10=0.5A
10 = 1 A
10 = 1.5 A
Peak Short Circuit Current
Isc
Vi-Vo= 14V
(pins 2 and 5 short circuited)
~L ___ ,--_
I
_
3.6
A load step of 2 A can be applied provided that input-output differential voltage is lower than 20 V (see Figure 3).
The same performance can be maintained at higher output levels if a bypassing capacitor is provided between pins 2 and 4.
Figure 3 : Typical Safe Operating Area
Protection.
Jt
l o(max )
(A)
.+.
Figure 4 : Quiescent Current vs. Supply
Voltage.
&-286011
(~~) H+H++-H+t--1++H
~v:=2~~S J: ~t=
Tj;2~·C
duty- cycle =1 0 1.
=~~c
JfuJtW;
1~~~~~A~~~(T~=~soec )
-
4.4
H-+-+-l-++-H-+--Hr++-H-+-+-l-+-l
4.2
4.0
H--+I+-l-++-H-+--Hr++-H-+--H-+-I
3.8
H-I--H-++-H-+--Hr++-H-+--H-+-I
3.6
Hl+-+-l-++-H-+--Hr++-H-+--H-+-I
3.4
H-+--Hr++-H-+-+-'f-++-H +-H-+-I
-
10
162
%
%
%
0.9
--~---.----+------
4/9
%rC
Coefficient of Vsc
Current Load Regulation
Note 1
Note 2:
V
20
10
20
30
A
L200
Figure 5 : Quiescent Current vs. Junction
Voltage.
'd
-
1
-
" t-... f',.
-
-
I--
........
I
,
~ .........
-
~ I--.
120
110
-40
--
..
I
-l-
-
.-
.-1--
I-
0.8
Q4
-- -
t
-
j
.-
Tj (IIC)
Figure 7 : Output Noise Voltage vs. Output
Voltage.
1
.-
·-f~
!
I
-
c--
-I--- .-
- -
l,~
Tf~t-IFI---~
--
-
~
=seefW
I ! ; 1-
-
'--
0-
Rth j -amb
".
--b,~1--- . -
86
r-~~~
j.). 1.. rTlr- '-
-
Vo =Vref
1
~
I.
(rnA)
Vi = ZOv
_.
~-
C.-28'6
T1
~
(mA)
Figure 6 : Quiescent Current vs. Output
Current.
1.6
12
Figure 8 : Output Noise Voltage vs.
Frequency.
(,1850
G-28Jl
t-
"N
)1-- 1.6 f-1.4
j
I--
III
B=I00Hz
Yo=Yref
.-
'.-
1
1.2
f--
0.8
I--
0.6
I--
0.4
I--
0.2
f--
I'..
10
15
Vo(V)
Figure 9 : Reference Voltage vs. Junction
Temperature.
1J=15O·
1·=75·C
I'
T-=2S·C
_.
H
10'
10'
10'
f (Hz)
Figure 10 : Voltage Load Regulation vs.
Junction Temperature.
(;-181.8
'ref
(mY)
I--
-LJ-
f--
""ref
f--
Vi ",lOY
-
1
10 =IOrnA
I-- - I--
27110
1'---
2160
Yo
I
i
I-
.
2740
-
I---
I--
-I- . - 2720
I--- I--- -
'\
~
i'\
-
-~
-
I--
-
-I
-
16
.-
.1-- _
I
-I-
_.
I--I-- 12
--
1-
/--
I--
-+
+
---
lo=~ J...--
V
-~__
t- I~
J...t-- t-
I-.~C_Io
l - I-
~
.-
1---
-
.
- 1-
-}- ~l
[
va =5.5v
I---
L
I
f
"0
(mY)
1--1- - -
1--
1.5A,-- ,.:..~
-.,.-
I--- e I--- I--- /-.
--
IAI-- ,--I- f-·
F
-
1-I---
I-- . - - I - -
2700
-40
40
80
-40
80
5/9
163
L200
Figure 12 : Dropout Voltage vs. Junction
Temperature.
Figure 11 : Supply Voltage Rejection vs.
Frequency.
SVR
(dB)
,-
~o~~I[l1j
-
Vi ",15VOC .. 2VRMS
10 ",lOrnA
85
4.5
80
f-"
75
3.5
70
2.5
65
60
1.5
55
,
50
.. ..
,
,
10'
10
,"
'"10'
,
..
0.5
-40
Figure 13 : Output Impedance vs. Frequency.
40
80
Figure 14 : Output Impedance vs. Output
Current.
Zo
Hi
(n)
1~0~4~~+-+~1~
flV
,,3V
1000
500 ~-H--f'.tc+
1.5
0.5
Vo
G 1861/1
r
~.
40
1----·---····-·.
Figure 16 : Load Transient Response.
Figure 15 : Voltage Transient Response.
(mV )
10 (A)
Ht
V;
V)
20
-
1
10
=1A
-I
--I-."""'---l-+--
-20
i
0
C2-L.= 0
0
I"~'W~
~o =S.5V • Vi =10V
~
0
I
o
6/9
164
1
Z
3
4
5
6
7
8
9
tIps)
r'::L
Vj=10V
I
10=lOmAtolA
I
--:::::7~F
Ht-,,_r..t-l-_--t+----
~,~s ;;;s ~s
1
5-2386/1
L200
Figure 17 : Load Transient Response.
Figure 18 : Current Limit Sense Voltage vs.
Junction Temperature.
Vi '" IOV
lo:lOmA lo2A
LI"i"+-+--Co = l}JF
Co :O.047pF
5-138811
-5-5382
0
Figure 21 : High Current Voltage Regulator
with Short Circuit Protection.
Figure 22 : Digitally Selected Regulator with
Inhibit.
,---------------------
lkU
I
Vi
L 200
O.22IJF R1
R2
1
5-]51,3f2
7/9
165
L200
Figure 23 : Programmable Voltage and Current Regulator.
Ir-------~:::::::::;::::::::+_------~--tR~3~.~~.--~--_o Vo
0.1 n
Rt
R2
, KIl.
vo",Vrefto26V
470 Il.
IO=35mAto1.SA
A
·Pt: CURRENT REGULATION
P2: VOLTAGE REGULATION
Note
:
5 - 41 25 {2
Connecting point A to a negative voltage (for example - 3 Vila rnA) it is possible to extend the output voltage range down to a V and
to obtain the current limiting down to this level (output short-circuit condition).
Figure 24 : High Current Regulator with NPN
Pass Transistor.
Figure 25 : High Current Tracking Regulator.
Rsc
+Vj
+Vj
1
at
0-----.,----''-1
I-'--+-~r__---o
.'.
O.1"F
I
Vo
I
Q.22pF
5-290411
>"------'-----'----{)-'.
1
A: /or±18<;V;<;±32
Note - V, must be chosen in order to verify 2V; - V, <; 36 V
8/9
166
L200
Figure 26 : High Input and Output Voltage.
~
BDX53
1l
1
L 200
~~
2Kfi
3
36V
Q.22J..1F
I
~
T
~O,uF
~
-Vz
Vj(malt)" 56v+ Vz
:~jII
RI
Figure 27 : Constant Current Battery Charger.
:ll
5-291112
L 200
,
~.,..
01
i02
r ..L
1
1
1
Vi
R2
(12V)
i
1
1
R1
- _ . _ - - ............
5-2912/1
J
The resistors R, and R2 determine the final charging voltage and
Rsc the initial charging current. 0, prevents discharge of the battery
throught the regulator.
The resistor RL limits the reverse currents through the regulator
(which should be 100 mA max) when the battery is accidentally reverse connected. If RL is in series with a bulb of 12 V/50 mA rating
this will indicate incorrect connection.
Figure 28 : 30 W Motor Speed Control.
Figure 29 : Low Turn on.
=
t
5
on
C Vo R
0.45
, Kll.
I
Figure 30 : Light Controller.
R3
s - 1..1
21,/1
L 200
I~----,--o~4
R2
I
5 - 3921
~ SCS·1HOMSON
~""I UI'iIOtl'J@~~~t~I'J@1Il0t\l)
9/9
167
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L272
L272M
DUAL POWER OPERATIONAL AMPLIFIERS
•
OUTPUT CURRENT TO 1A
•
OPERATES AT LOW VOLTAGES
• SINGLE OR SPLIT SUPPLY
•
LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
•
GROUND COMPATIBLE INPUTS
•
LOW SATURATION VOLTAGE
The high gain and high output power capability
provide superior performance whatever an operational amplifier/power booster combination is
required.
• THERMAL SHUTDOWN
The L272 and L272M are monolithic integrated
circuits in powerdip and minidip packages intended for use as power operational amplifiers in
a wide range of applications including servo amplifiers and power supplies, compact disc, VCR, etc.
Powerdip (8 + 8)
Minidip Plastic
ORDERING NUMBERS:
L272
L272M
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Input voltage
Differential input voltage
DC output current
Peak output current (non repetitive)
Power dissipation at Tamb = 80°C (L272), Tamb = 50°C (L272M)
T case = 75°C (L272)
Storage and junction temperature
28
Vs
± Vs
1
1.5
1
5
-40 to 150
V
A
A
W
W
°C
BLOCK DIAGRAM
4,9-16
L272
L272M
1/6
169
...
,
l272-l272M
CONNECTION DIAGRAM
(Top view)
16
GND
15
GND
14
GND
GND
13
GND
INPUT ·2
12
GNO
INPUT.2
11
GND
INPUT.'
10 GND
INPUT -1
9
OUTPUT 1
OUTPUT 2
1
3
OUTPUT I
8
INPUT-l
7
INPUT.I
OUTPUT 2
6
INPUT.2
GND
S
INPUT_2
SUPPLY VOLTAGE
2
L272M
GND
5_5905
L272
SCHEMATIC DIAGRAM (one only)
S_590L/l
THERMAL DATA
RthJ V51
E 1, E2 = logic inputs
5_ 5931/1
Fig. 10 - Servocontrol for compact-disc
REFLECTED
BEAM
LASER
Fig. 11 - Capstan motor control in video recorders
DIGITAL
INPUT
________________~_________ ~~~~~~~~~:~~~ ________________________~5/_6
173
L272-L272M
Fig. 12 - Motor current control circuit
Note: The input voltage level is compatible with L291 (5-BIT D/A converter)
Fig. 13 - Bidirectional speed control of DC motors.
2R~
R1 where RM = internal resistance of motor. The voltage
M
2R3 R 1 and
available at the terminals of the motor is VM = 2 ( Vi _ V2s ) + I Ro I. IM where I Rol
Rx
1M is the motor current.
For circuit stability ensure that Rx>
0
0
Rx
IOKQ
R2
IOKO
IOKn
S-5909/2
~6/~6_________________________ ~~~~~~~¥~:~~
174
___________________________
L272D
DUAL POWER OPERATIONAL AMPLIFIER
ADVANCE DATA
•
OUTPUT CURRENT TO lA
•
OPERATES AT LOW VOLTAGES
•
SINGLE OR SPLIT SUPPLY
•
LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
•
GROUND COMPATIBLE INPUTS
•
LOW SATURATION VOLTAGE
•
THERMALSHUTDWON
cations including servo amplifiers and power
supplies, compact disc, VCR, etc. The high gain
and high output power capability provide supe·
rior performance wheatever an operational
amplifier/power booster combination is required.
SO-16J
The L272D is a monolithic integrated circuit
in SO-16 packages intended for use as power
operational amplifier in a wide range of appli·
ORDERING NUMBER: L272D
ABSOLUTE MAXIMUM RATINGS
Supply voltage
I nput voltage
Differential input voltage
DC Output current
Peak output current (non repetitive)
Power dissipation at T case = 90°C
Storage and junction temperature
Vs
Vi
Vi
10
Ip
Ptot
T stg , Tj
28
Vs
± Vs
1
1.5
1.2
-40 to 150
V
A
A
W
°C
CONNECTION DIAGRAMS
N.C.
16
N.C.
N.C.
15
N. C,
OUTPUT 1
I
3
14
INPUT·l
SUPPLY VOL T.I 4
13
~INPUT+l
OUTPUT 2
GNO
N. C.
I5
6
12 h,NPUT +2
"
10
N. C.
N.C.
N. C.
5-10617
June 1988
INPUT-2
5-10678
1/4
ThiS is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
175
L272D
SCHEMATIC DIAGRAM (one only)
.v.
out
THERMAL DATA
Rthi-alumlna(*)
Thermal resistance junction-alumina
max 50
(*) Thermal resistance junctions-pins with the chip soldered on the middle of an alumina supporting substrate measuring
15 x 20 mm; 0.65 mm thickness and infinite heathsink.
~2/~4_________________________ ~~~I~~?~~~n
176
---------------------------
L272D
ELECTRICAL CHARACTERISTICS (Vs = 24V,
Parameter
Vs
Suppiy voltage
Is
Quiescent drain current
Tamb =
25°C unless otherwise specified)
Test Conditions
Min.
Typ.
4
V a ,:
Vs
2
Max.
Unit
28
V
Vs = 24V
8
12
mA
Vs = 12V
7.5
11
mA
Ib
Input bias current
0.3
2.5
jJ.A
Vas
I nput offset voltage
15
60
mV
los
I nput offset cu rrent
50
250
nA
SR
Slew rate
B
Gain-bandwidth product
Rj
I nput resistance
Gv
O.L. voltage gain
1
V/jJ.s
350
KHz
Kn
500
f = 100Hz
70
dB
f = 1KHz
50
dB
60
eN
Input noise voltage
B = 20KHz
10
jJ.V
IN
Input noise current
B = 20KHz
200
pA
CRR
Common Mode rejection
f = 1KHz
60
75
dB
SVR
Supply voltage rejection
54
70
62
56
dB
dB
dB
23
21
22.5
V
V
60
60
dB
dB
0.5
%
145
°c
f = 100Hz
RG = 10Kn
V R = 0.5V
Vo
Vs = 24V
Vs = ± 12V
Vs = ± 6V
Output voltage swing
Ip = 0.1A
Ip = 0.5A
Cs
Channel separation
d
Distortion
Tsd
Thermal shutdown
junction temperature
f = 1KHz; RL = 10n; G v =30dB
Vs = 24V
Vs = ± 6V
f = 1KHz
Vs = 24V
Gv = 30dB
RL = 00
177
L272D
Fig. 2 -- Quiescent drain
current vs. temperature
Fig. 1 - Quiescent current
vs. supply voltage
---trl
i
'D ,
(mA
-
--j
--
r-~.
~-~
,
d
(mA
L'.>.
6D
f--'~~+-
-1--
~---
r~l
-
"'-
7D
No.
r-.....
rt-
8D
;. ++
~-
--c-
13-612
(dB
c-- -
'[-±
V
Fig. 3 - Open loop voltage
gain
13-6119
"-
5D
~-I
"-
f-- 1--- -
40
1"-
3D
"'jo..'
I'"
1
,
1"-
r-~-
i
!"
I
16
20
24
20
Fig. 4 - Output voltage
swing vs. load current
(V
13
,
1.0
10'
60
lD'
10 5
""-J.
f (Hz)
Fig. 6 - Supply voltage
rejection vs. frequency
Fig. 5 -- Output voltage
swing vs. load current
13-£112
:--t~-
--
:Vs: :!:12V
- f-- -
I........
I--
,
-12
-11
--
-
I--- 1---f--
r- I'--.
,
80
___
12V
~~!:"~_NP_U__T,(IG-'"-"10-+1:..'---j_-+----j
70
40
,
""
1----+-+--.+----'"
LI
r---+-t--t---t---t--+---+---1
30 ·f---.r·-j--f---+-_·f-
--I600
40D
I LOAD(mA)
200
4DO
5DD
ILOAD(mA)
Fig. 7 - Channel separation
vs. frequency
10 4
10
Fig. 8 - Common mode
rejection vs. frequency ,_ ""
(d B)
f--i--++tfilt-f--l-j-'jltll
80
]C
f (H z)
178
1----1--
20L--L_L_-L_L--L_L-i-L~
200
4/4
!
+-r-f---+---1
60f--~~~~~+_+-+_1-50
i
-10
1-
~- -"-rvs- " J +--+,-+-+---1
!
I--
lD
90
.--
Ys= ±12V
-13
I
---.
!
(dB'
(VI
10"
t (Hz)
f (Hz)
L290
TACHOMETER CONVERTER
The L290, a monolithic LSI circuit in a 16-lead dual
inline plastic package, is intended for use with the
L291 and L292 which together from a complete 3chip DC motor positioning system for applications such as carriage/daisy-wheel position control
in typewriters.
I
DlP-16 Plastic
(0.25)
The L290/1/2 system can be directly controiled by
a microprocessor. The L290 integrates the following functions:
_ tacho voltage generator (FIV converter)
_ reference voltage generator
_ position pulse generator
I
ORDER CODE: L290B
_ _ _ _ _ _ _ _ _ _ _ _ _ _ .._ _..1I
ABSOLUTE MAXIMUM RATING
I
Symbol
t~-------v;-
!
[
--
Vi (FTA, FTB, FTF)
___ Ptot- T stg ,. T J
Supply
Voltag~---
--[~=--_~~lue---:-=-TlJ~it;
Parameter
____ .. __
± 15
.
V
Input Signals
LT~taIPo~er_[)issiP'Iti()n.._Tamb = 70
°C
Storage and Junction Temperature
SYSTEM BLOCK DIAGRAM
_ .._ . _ - - - - - - - - - -
--------------------------------,
L292
=<}J
')
f.17J
-----------------------------
September 1988
1/6
179
L290
CONNECTION DIAGRAM (top view)
FrB
1[r--v
VAB
2[
14 STA
d
13 STB
>V o
Vbias
12 FTF
11 GNO
61
VMB
VMA
FTA
15 VAA
Vrf'f
TACHO
~16
10 STF
s[
9
- Vo
5·" 15911
BLOCK DIAGRAM
.------.~--------
---~---------.------------------
11
, 6 FTA
-
J
A'
+
I\J
FTB
'"
FTF
J
A2
STF
STA
,J SIB
TACHO
,2
10
-~VAA
'5
VA8
VMS
VMA
7 8
-----_._------------
180
L290
TEST CIRCUIT
+Vs
TACHO
3,2.5K1l..
FTA
16
I----+--+-D
5 TA
1 3 I--~-+----(:J
5 TS
14
FTS
L290
FTF
1 Ol----~-D STF
B
~~~-j~i--i==~~----------OVMB
-----------{) VM A
2,82011..
5
~]
5- 4144f4
Vbiast1.8V
Vbias-1.8V
THERMAL DATA
Rlh
J·amb
Thermal Resistance junction-ambient
Max
I
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, S in (A), Vs
unless otherwise specified)
Symbol
Parameter
Vs
Supply Voltage
Id
Quiescent Drain Current
Test Conditions
~
1-Min.
± 12
V,
Vs =±15V
Input Signal from Encoder
(pin 1, 16)
Typ.
Voltage Gam
Va
Output Voltage Swing
(pin 2, 15)
I
f = 10KHz FT A =
F!.§. = ± o.:~P
FTA = FTB = ± 1Vp
-~
20
0C/W
25 "C
± 15
I
Unit
I
.... 1
V
mA
_.,
IH'
-
~
Max.
13
f max = 20 KHz
Output Offset Voltage
FTA = FTB = 0 V
(pin 2, 15)
l~p~Bias curren;(P;;;-1,-;6)i-----------.
Tamb
± 10
INPUT AMPLIFIERS (A, and A2 )
FTA, FTB
I
80
I
± 0.6
± 55
I
mV
,- - - -
015
- - -
flA
I'
"~5--'1
"
I
dB
V
3/6
181
L290
ELECTRICAL CHARACTERISTICS (continued)
Symbol
I
Parameter--[=T~st c~nditJ;;~
I
COMPARATORS WITH HYSTERESIS (C " C 2 , and C 3 )
- - - - - - - - - - - - - - - - - --
, VTHP (0)
I
VTHN (00)
!'.FTF
~,_2:'_15L_____ ___
Threshold Hysteresis
----
VL
-------
-- --
C2, _ _ _
--------
---==_=-_ ~ ~--y-~-- ___
~ 2 rnA
FTA~FTB~FTF~OV
Output Voltage (low level)
(pin 10, 13, 14)
---
Ileak
C3
Negative Threshold Voltage
:_ _ _ _ I(Pin
,--
C , and C 2
Positive Threshold Voltage
(pin 2,12,15)
I'
I
la
-----
I
02
~::-:~~B-~ ~~: ~ 1 V
[ (pins 10, 13, 14)
+-120
I
04
.
1
-
~V
'
I
,uA
REFERENCE
GENERATOR
,
V ref
DC Reference Voltage
(pin 3)
I ref
Output Current (pin 3)
FTA ~ FTB
I,el ~ 1 rnA
~
± 0,5 Vp (')
4.5
V
rnA
L ___ _
"TACHO" AMPLIFIER (A3)
--------
Output Offset Voltage (pin 4)
FTA ~ ± 15 rnV
DC Output Voltage (pin 4)
FTA~FTB~
± 0,5 Vp
VMA ~ VMB
± 1.25 Vp
!'.Va
Va
I
I
Output Voltage Swing (pin 4)
!---
--------
FTB ~ 0.5 V
(H)
V a1
-----------------,-----I'
,
5A'
I
FT A
-6
FTB
~ 0.5
V
Note
± 1.7
4/6
182
o_r
: FTA~FTB~FTF~
C)
Phase relationship between the signals:
FTB : 90'
, FTA: 0'
.. FTA:O'
FTB:-90'
VMA~90'
... FTA: 0'
FTB : 90'
VMA ~ 90'
VM8 = 0"
VMB ~
180'
rnV
V
Sin (B) --"-_F'TA ~ FTB ~ - 0.5
1V
rnV
- 6,6
+ 150
~
- 6,5
n
± 80
16,6
V
~
Va1 + Va2
I
.
6
Vp
-----------------------
L290
..
WAVEFORMS (Neglecting threshold voltage level of the comparators).
CLOCKWISE
DIRECTION
ANTICLOCKWISE
DIRECTION
VAA
VAS
C51
C52
VMA
VMS
(58
C5A
TACHO
SYSTEM DESCRIPTION: refer to the L292 data sheet.
5/6
183
(j)
~
las
"T1
~
0-
cO·
t:
iD
..'2
...-..
~
11\
I\)
~
:::J
Ul
<
@
(")
0
-
"ll
" <
11\
o
a ·I\)
1,,-
3
1..- . :. L290
"Q.
(1)
ro
OJ
-
"0
"0
II
o·
~
o·
I\)
::t>
::J
~~
• lOV
0
~F
~
~
~019
0.%1\
Iz
I"
0
1 o.zo.
,.
!!IC/)
""t;I
Ai
Ii!
!O
;0
Q.
11
A II
1..7Kn
".7~Ay
rJH1
Ii:
... O,,'IJF
!illcn
II
0, ,
~H
.LO.H~'~iSpud
22.K.n
,jK",11
ITACHol! "9
. 10.1..,.
SKn
",,0
.. 21
9
L291
l:i
OAellN
-------OACi5'Ui"
2 SC'
,lsCl
~RO~
I,
~CAC l------H'"'
51sc
J
,lJPROCES!l~ I
,I
,Ise,
.,
J~I.G!'I._.
'V, ~
_. _ • __
Slrcb.
,..
• V.
T13
CiNO
-V,
~~; 01~
LfR-into
'0
-v,
• IZ
-12
"
0'0
HiKn
CE21CE1
13
ur
ON(H)
0"1 L)
c
L292
I~
--------~
----~-.--~-.----
5 BIT - D/A CONVERTER AND POSITION AMPLIFIER
• 5 BIT D/A CONVERTER (1/2 LSB MAX LINEARITY ERROR) ;
• ERROR AMPLIFIER;
• POSITION AMPLIFIER.
DESCRIPTION
The L291, a monolithic LSI circuit in a 16-lead dual
in-line plastic package, is intended for use with the
L290 and L292 to form a complete 3 chip DC motor
positioning system for applications such as carriage/daisy-wheel position control in typewriters,
DIP-16
(Plastic 0,25)
ORDER CODE: L291 B
The L290/291/292 system can be directly controlled
by a microprocessor.
ABSOLUTE MAXIMUM RATINGS
Symbol
Vs
Ptot
Tstg, Tj
Parameter
-----_._-----
Value
Unit
----------~--
±15
Supply Voltage
V
--
Total Power Dissipation Tamb = 70'C
Storage and Junction Temperature
1
W
-40to 150
'c
SYSTEM BLOCK DIAGRAM
'----_ _ _ _ _-----' S-4171
September 1988
1/6
185
L291
CONNECTION DIAGRAM (top view)
ERRV
1
16 POS/OUT
SC,
,5
POS/IN
SC l
,4
.V s
SC J
13
GND
,2
DAC/QUT
SC 5
N.C.
"
SIGN.
,0
7
Strobe 8
-VS
DACIIN
5-4160
BLOCK DIAGRAM
SC1
SC2
4
SC3
5
SCt.
6
SC5
D/A
CONY.
....~+---16
SIGN
POS/OUT
,
9
'--
OAC/IN
ERRV
OAC/OUT
2/6
186
POS/IN
1 15
12
~
~"fI
Strobe
SIiS·THOMSON
iIii~©!I@~~I<©'IT!I@IlI~©$
5-4157/1
B
L291
TEST CIRCUIT
,------~----------~~
SIGN
5(10-L5_8 2
5(20
5C]
L 291
SC4()--S(5
5
M58~6-rB__-T____~__~r-____~
StrobE'~--J
:,
1.158/1
"--------------------------~---~----------------,
THERMAL DATA
[RthJ~amb
I
Max
Thermal Resistance Junction-ambient
ELECTRICAL CHARACTERISTICS (refer to the circuit, 81 and 82 in (a), Vs
T amb ~ 25'C, unless otherwise specified)
Symbol
Vs
Parameter
-1;;t
co~ditions
Supply VOltage----------------
~~_ld ~le~ln
__
current-=t-= ___
!
Min.
I
Typ.
I
---t±~~--l--·-+
~
± 12
Max.
un~i
±15--j.-V-.
!
~=~. ~-_==J- ;5_±_iO-·~_ I--~A--
POSITION AMPLIFIER
Vstrobe
Enable Vol
I
tage Level
Vas
t::
Ib
----
VR
.,----
Output Offset
(pin 16)
~~~~',: ~::, : -
VOltag~_ V~robe:VL Gv
.
-
Input Bias
2 )_1 Vstrobe
- Current (pin 5
(pin 16)
O"'~"o
"go S",O,
--~~~~~
Residual
(pin 16)
----
0,.,,,",,;;'
tv"ooe
~-~-
l-;o,-
0
"'
:
:~,j
-l- -_.
501
mV
..~~~
TV
°8V " c - l
-- ----
V, , " ,"'h' , V,
I
--1---= ..... ,
= 20 dB -
Iv"~o",,______ -~ -~ ~_
0
V,
0. .3-
~:J~V
• See block diagram and the note for Position Amplifier.
~--
---- - ~rr,/
SGS·ntOMSON
""J,I ~n©L'l@rn~rn©~L'l@lIln©®
3/6
187
L291
ELECTRICAL CHARACTERISTICS (continued)
Param_e.~~~-
I Symbol I
TesUondit~
I
Min.
D/A CONVERTER
I
I ref
II
Vos
II
~~~~~\~~f~;e:::~~I_ -'~"-,-'--------ll,---0.3
Current Reference Offset
Voltage (pin 9)
Ii
I ref = 0,3 to 1.2 mA
All Inputs High
SC1 to SC5 = L
1'>10
-1~~a~~~..E:~ror
101 + 102
_
II ref =
I
0.7~
I__
Level
l--V;;-- i ~~~t~~ltage Le~~1
-"
IL -
-1.4
+ 1.4
__
i 2.~-
(digi;ai-j SC5 = MSB
VL =
O~--'-'
Digital Inputs Current (high
188
1,61
I
_i~CltEJ), __,____ ~_________ ,___L
4/6
mA
+ 1.442
j.lA
~/oFsl
±0.4
(di~;;-lsC1 ~-LSB------""------I~~
i ~~ti!)llnp~;s Current (Io,.;l
mA
-1.442
+ 21
I Pin
~_~n~~t~tage
mV
1.4
- 21
_____
12 Output Offset Current I All Inputs High
(including Error Amplifier bias
~current),
los
± 20
- - - - - + 1- - - - f - - - - +- - -
________SIGN = H(102) ~~il....
1--_ _-+_ _ _ _ ,___,____,,'
mA
----+----+----+----+---1
:~,:::::: :::::,'111 ,0 O":A --5:0 1(1 ",1- 1.358
::
1.2
0,8
":
,-----~-
+ Vs
V
-50
j.lA
j.lA
___ ._.l_ _, _ _ _ .
L291
D/A CONVERTER
The L291 contains a 5-bit D/A converter accepting a binary code and generating a bipolar output current,
the polarity of which depends on the SIGN input. The amplitude of the output current is a multiple of a reference current Iref.
The maximum output current is
IFs =
± __~L
16
Iref
The following table shows the value of 10 for different input codes. Note that the input bits are active low.
1-._-_.-
SIGN
._---_.
DIGITAL INPUT WORD
-----------
SC5
MSB
-----.----~--
-
SC4
SC3
SC2
SC1
LSB
Output Cu rrent
10
---_.. _------_.
. .. _ - - - - - - -
L
L
L
L
L
L
-
~
Iref
L
H
H
H
H
L
-16
Iref
X
H
H
H
H
H
o
H
H
H
H
H
L
H
L
L
L
L
L
+
+
16
1
1
-f6"
Iref
31
16 Iref
x=
indifferent
L = low
H= high
This D/A converter has a maximum linearity error equal to
tees its monotonicity.
± 1/2 LSB (or ± 1.61% Full Scale) ; that guaran-
ERROR AMPLIFIER
In order to have a good stability, the Error Amplifier must work with a closed loop gain greater or equal than
20 dB.
POSITION AMPLIFIER
It is inserted by means of the strobe signal, TTL and microprocessor compatible. Its output is connected to
pin 16 when Vstrobe = Low; pin 16 is grounded for Vstrobe = High.
SYSTEM DESCRIPTION: refer to the L292 data sheet.
5/6
189
L291
Figure 1
Complete Application Circuit.
IliR-infO
I
7 SIGN
_ ... -
_.
Strob~
ON!H)
OFf"(L)
-
tV s
D1 to D4: {
6/6
190
GNO
VF <; 1.2V @ I ~ 2A
trr <; 200 ns
L292
SWITCH-MODE DRIVER FOR DC MOTORS
------~~------
•
•
•
•
•
•
~~----~~
DRIVING CAPABILITY: 2 A, 36 V, 30 KHz
2 LOGIC CHIP ENABLE
EXTERNAL LOOP GAIN ADJUSTEMENT
SINGLE POWER SUPPLY (18 TO 36 V)
INPUT SIGNAL SYMMETRIC TO GROUND
THERMAL PROTECTION
The L290/1/2 system can be directly controlled by
a microprocessor.
Multiwatt 15
DESCRIPTION
The L292 is a monolithic LSI circuit in 15-lead
Multiwatt ® package. It is intended for use, together with L290 and L291, as a complete 3-chip
motor positioning system for applications such
as carriage/daisy-wheel position control in typewrites.
ORDER CODE: L292
ABSOLUTE MAXIMUM RATINGS
,------,----~~~
-~~YI1l~o-'t
Vs
--
--~~--~-~-
Parameter
Power Supply
-----
,-----
V;
---------
Input Voltage
--~---~
~.
V;nh,bH
_
..
-~
~'-
~~---~
..
-
~-
_______ ~J_-
-- V:I:e ---
--n~it
-15to+Vs
V
-
o to
Inhibit Voltage
Vs
V
~-----~-
10
2.5
Output Current
--------------------+= 75 'C)
Ptot
Tstg
~-
----
~---~-
--------~-
~
--~~--
- 40 to + 150
Storage and Junction Temperature
TRUTH TABLE
~
$-
Output Stage
Condition
Pin 12
L
L
Disabled
.-
..
L
H
I
~-----r----~
L
-------~-~-
Normal Operation
Disabled
I------r---------------~~--
- ~. -
15
"!3~
""~
,
'0
$
Pin 13
-~-
H
~:
CONNECTION DIAGRAM (top view)
Vinhibit
- -
25
Total Power Dissipation (Tease
-.-------~
8
7
6
5
CF = 92 n F
SCiS-THOMSON
IiIitlD©~@~~~©1i~@IIlD©$
___ _
----
L293B
L293E
PUSH-PULL FOUR CHANNEL DRIVERS
•
OUTPUT CURRENT 1A PER CHANNEL
•
PEAK OUTPUT CURRENT 2A PER CHANNEL (NON REPETITIVE)
•
INHIBIT FACILITY
•
HIGH NOISE IMMUNITY
•
SEPARATE LOGIC SUPPLY
•
OVERTEMPERATURE PROTECTION
The L293B and L293E are packaged in 16 and 20pin plastic DIPs respectively; both use the four
center pins to conduct heat to the printed circuit
board.
The L293B and L293E are quad push-pull drivers
capable of delivering output currents to 1A per
channel. Each channel is controlled by a TTLcompatible logic input and each pair of drivers
(a full bridge) is equipped with an inhibit input
which turns off all four transistors. A separate
supply input is provided for the logic so that
it may be run off a lower voltage to reduce
dissipation.
Additionally, the L293E has external connec·
tion of sensing resistors, for switchmode control.
DIP-16 Plastic
(0.4)
Powerdip
16+ 2+ 2
ORDERING NUMBERS: L293B (16 leads)
L293E (20 leads)
ABSOLUTE MAXIMUM RATINGS
Vs
Vss
Vi
V inh
lout
Ptot
Tstg , Tj
Supply voltage
Logic supply voltage
Input voltage
Inhibit voltage
Peak output current (non-repetitive t = 5ms)
Total power dissipation at TgrOund-Pins= BO°C
Storage and junction temperature
DC motor control
June 1988
36
36
7
7
2
5
-40 to 150
V
V
V
V
A
W
°C
Bidirectional DC motor control
1(8
201
L293B - L293E
CONNECTION AND BLOCK DIAGRAM (L293)
(top view)
CHIP ENABLE 1
16
V55
INPUT 1
15
INPUT 4
OUTPUT 1
14
OUTPUT 4
GNO
13
GN 0
GNO
12
GNO
OUTPUT 2
11
OUTPUT 3
INPUT
2
10
v5
9
! NPUT 3
CHIP ENABLE 2
"
5 -1..169
CONNECTION AND BLOCK DIAGRAM (L293E)
(top view)
CHIP ENABLE'
1
V"
INPUT 1
INPUT 4
OUTPUT 1
OUTPUT 4
SENSE 1
17
SENSE 4
GNO
16
GNO
GNO
15
GNO
SENSE 2
14
SENSE 3
OUTPUT 2
13
OUTPUT 3
INPUT 2
12
v,
2/8
202
"
INPUT 3
CHIP ENABLE 2
SCHEMATIC DIAGRAM
.-----11::
T2
T3
(,1)
TS
[
r:: T7
II
Rsl
~
iiiU»
1£1
© •
~:i!
II
~T12
I
~ R2
T 17
l{g
~Z
TJ5
f::S--@
(19)
QR9
r-
l ,.
.!2.
!2J@
(12 )
(14)(13) (16X17)
N
5
~
CO
(0)
5184
OJ
I
r-
...-'
o/'oJ
w
I'"'"
~
N
CO
(*) In the L293 these points are not externally available. They are internally connected to the ground (substrate).
o
Pins of L293
(0)
m
() Pins of L293E
- r-
L293B-L293E
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
max
max
14
80
ELECTRICAL CHARACTERISTICS (For each channel, Vs= 24V, Vss= 5V, Tamb = 25°C,
unless otherwise specified)
Test conditions
Parameter
Min.
Typ.
Max.
Unit
Vs
Supply voltage
Vss
36
V
Vss
Logic supply voltage
4.5
36
V
Is
Total quiescent supply
current
Iss
Total quiescent logic
supply current
V iL
I nput low voltage
V iH
Input high voltage
Vi = L
Vi = H
10 = 0
10 = 0
V 1nh = H
2
6
V inh = H
16
24
Vi = L
10 = 0
44
60
Vi = H
10 = 0
V inh = H
16
22
V inh = L
16
24
-0.3
1.5
Vss ,,; 7V
2.3
Vss
> 7V
2.3
7
V ss
rnA
4
Vinh= L
V inh = H
mA
V
V
-10
p.A
100
p.A
-0.3
1.5
V
Vss .;;;; 7V
2.3
> 7V
2.3
Vss
7
V
-100
p.A
± 10
p.A
liL'
Low voltage input current
V 1L = 1.5V
liH
V inhL
High voltage input current
2.3V .;;;; ViH .;;;; Vss -0.6V
I nh ibit low voltage
V inhH
Inhibit high voltage
V ss
linhL
Low voltage inhibit current
VinhL - 1.5V
linhH
High voltage inhibit
current
2.3V .;;;; V inhH .;;;; Vss -0.6V
30
-30
VCEsatH Source output saturation
voltage
10 --lA
1.4
1.8
V
V CEsatL Sink output saturation
voltage
10 = lA
1.2
1.8
V
2
V
VSENS
Sensing Voltage
(pins 4,7,14,17) (**)
tr
Rise time
0.1 to 0.9 Vo (*)
250
ns
tf
Fall time
0.9 to 0.1 Vo (.)
250
ns
ton
Turn-on delay
0.5 Vi to 0.5 Vo (0)
750
ns
toff
Turn-off delay
0.5 Vi to 0.5 Vo (0)
200
ns
(*) See fig. 1.
('*) Referred to L293E.
~4/_8_________________________ ~~~~~~~~:~~©~
204
___________________________
L293B- t293E
TRUTH TABLE
Fig. 1 - Switching times
Vi (each channel)
Vo
V inh . (00)
H
L
H
L
H
L
X (0)
X (0)
H
H
L
L
(0) High output impedance.
(00) Relative to the considerate channel.
5-4'71
Fig. 3 - Source saturation
voltage vs. ambient temperature
Fig. 2 - Saturation voltage
vs. output current
VCE sat
,....,-,---,,.....,-,--,--":.r'-'-,
'n ~+-~vL,.~,,~vL-~~~--+-~
VCEsatH
Fig.4 - Sink saturation volt·
age vs. ambient temperature
veE,.tL
,n
(V)
---
"s=24'1
-J J
v,~.~z,~vl----'-~-r--t-~
Vinhibil=Vss ,,5V
3 ~_~I',",nh",ib",'t"rv-""-"-r5_V_r--t_+---1
Vinhibit,,'Iss ,,5V
~+-~~--+--+--+--+---
"CEsatH
~
r--t-+--r--t .--r=- 10::0.1 A
0.5
'.5
'0 (A)
Fig. 5 - Quiescent logic
supply current vs. logic
supply voltage
-so
-so
50
Fig. 6 - Output voltage vs.
input voltage
50
Fig. 7 - Output voltage vs.
inhibit voltage
vo"-'~v,~.~z~'v~,--,-,--~~~
I"
"ss,,'Ij=5V
(rnA)
Vs=2t.V
Vi :LOW
50
---
"inh=HIGH
"
"
V
'II
I--- V,/
II
"
"
I
I,
VCEsat l
veE sat l
10
ZO
30
"SS(V}
'.5
Z.5
5/8
205
L293B-L293E
APPLICATION INFORMATION
Fig. 8 - DC motor controls (with connection
to ground and to the supply voltage)
Ml
A
H
H
Fast motor
stop
H
Run
H
L
Run
L
Fast motor
stop
L
X
Free running
X
Free running
L = Low
H = High
C = H;
D=L
Turn right
V inh = H
C = L;
D=H
Turn left
V inh = L
C = X;
X = Don't care
L = Low
".
D=X
"
D1
lu
Free running
motor stop
X = Don't care
H = High
O.22~F
D5
D6
ch
luI i l2dOOmA
Dr
D1 - D8 =
206
Fast motor stop
C=D
motor stop
Fig. 10 - Bipolar stepping motor control
6/8
FUNCTION
INPUTS
M2
B
V inh
motor stop
Fig. 9 - Bidirectional DC motor control
{
V F .. l.2V @ I = 300 mA
trr" 500 ns
L293B-L293E
APPLICATION INFORMATION
(continued)
Fig. 11 - Stepping motor driver with phase current control and short circuit protection
~2
V,
02
19
.f:
4.,N4001
10
08
~13
12
07
.J..
4"x1Nl.QOI
12
11
L293E
f09
1!
L2
14
:~
--;J..
05
..I-
16815
7
03
2.1N4148
010
~,
17
ILl
~1
~OjJF
0 +5V
'8
r:l..
04
20
:~ iFZ
01
1111
1
2
:E'pF
~
[
R52!
lJl
.L..
R52
lJl.
~1
2xlN4148
012
.L..
.5V
10K~
0·R3
14
LMJ~:
+ 9
VA
'"
~
"~
10 _
[ Rl
lKil
10Kn.
LM339
Vret'OKll.
ll.!:!Il
I~F
RMo,:
SIn.
rO.,pF
"R9
10KA
RIO
10K11
IOOKA
8:"
I~F
100K.tl.
R12
Rll
~
114
LMJ39
+ 7
D1 to D8 :
1
1.5Mfi
~18
,
10
Kil
13
12
RS
.5V~
R4
3
V
t
4
CP4
[
114
10Kl1
!..OKll
RU-
R15
R17
10K11
2
LM339
5 +
47K.n
1,7K.n.
R14
R16
I
5-516611
{ V F " L2V @ I = 300 mA
trr " 200 ns
___________________________
~!~~~&~~
________________________
~7/~8
207
L293B-L293E
MOUNTING INSTRUCTIONS
The Rth j-amb of the L293 and the L293E can
be reduced by soldering the GND pins to a
suitable copper area of the printed circuit board
as shown in figure 12 or to an external heatsink
(figure 13).
Fig. 12 - Example of p.e. board copper area
which is used as heatsink
During soldering the pins temperature must
not exceed 260 Q e and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper
area must be connected to electrical ground.
Fig. 13 - External heatsink
example (R th = 30 °e/W)
mounting
p.e.BOARD
~8/~8_________________________ ~~~~~?~~~~ ~
208
_________________________
L293C
PUSH-PULL FOUR CHANNEL! DUAL H- BRIDGE DRIVER
PRELIMINARY DATA
•
600mA OUTPUT CURRENT CAPABILITY
PER CHANNEL
•
1.2A PEAK OUTPUT CURRENT
REPETITIVE) PER CHANNEL
•
ENABLE FACILITY
•
OVERTEMPERATURE PROTECTION
•
LOGICAL "0" INPUT VOLTAGE UP TO
1.5V (HIGH NOISE IMMUNITY)
(NON
The device may easily be used as a dual H-bridge
driver: separate chip enable and high voltage
power supply pins are provided for each Hbridge. In addition, a separate power supply
is provided for the logic section of the device.
The L293C is. assembled in a 20 lead plastic
package which has 4 center pins connected
together and used for heatsinking.
• SEPARATE HIGH VOLTAGE POWER SUPPL Y (UP TO 44V)
Powerdip
(16+2+2)
The L293C is a monolithic high voltage, high
current integrated circuit four channel driver in
a 20 pin DIP. It is' designed to accept standard
TTL or DTL input logic levels and drive inductive loads (such as relays, solenoids, DC and stepping motors) and switching power transistors.
ORDER CODE: L293C
BLOCK DIAGRAM
IN 4
19
OUT4
OUT3
IN 3
18
13
12
r---+--------+---4~--+-~I~I~{)ENABLE2
20
10
VS2Lr-+~------~--------------~
L293C
9
~1~-+~------~----------------'
~--+--------+--~~--+----r-o
2
3
7
INI
OUTI
OUT2
8
~
ENABLE 1
-9287
5.6.15.16
June 1988
IN2
1/3
209
L293C
ABSOLUTE MAXIMUM RATINGS
Vs
Vss
VI
VEN
lout
Ptot
T stg , TJ
Supply voltage
Logic supply voltage
Input voltage
Enable voltage
Peak output current (non-repetitive t = 5ms)
Total power (jissipation at TgrOUnd-Plns = 80°C
S:torage and junction temperature
50
V
7
7
7
1.2
5
V
V
V
A
W
°c
-40,to 150
TRUTH TABLE
CONNECTION DIAGRAM
(Top view)
ENABLE
OUTPUT
H
H
H
L
H
L
X
L
Z
INPUT
20
ENABLE I
Vss
INPUT I
19
INPUT 4
OUTPUT I
18
OUTPUT 4
(NC)
17
(NC)
GNO
16
GNO
X = Don't care
GNO
GNO
OUTPUT 2
(NC)
INPUT 2
Z = High output impedance
SWITCHING TIMES
OUTPUT 3
INPUT 3 .
VS1"
VS2
ENABLE 2
5-9288
THERMAL DATA
Thermal resistance junction-case
Thermal resistance junction-ambient
;::.:2/..::.3_ _ _ _ _ _ _~_ _ _ _ _
210
~ ~~tm~I19©~
max
max
14
80
--------------
L293C
ELECTRICAL CHARACTERISTICS (For each channel, Vs
= 24V,
Vss
= 5V, Tamb = 25°C,
unless otherwise specified)
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
Vs
Supply voltage (pin 9, 10)
Vss
44
V
Vss
Logic supply voltage (pin 20)
4.5
7
V
Is
Total quiescent supply current
(pin 9,10)
Iss,
Total quiescent logic supply
current (pin 20)
VI
=
L;
10
= 0;
VEN
=
H
2
6
VI
=
H'
10
= 0;
VEN
=
H
16
24
V EN
=
L
Vi
=
L;
I0
= 0;
V EN
=
H
44
60
VI
=
H;
10
=
VEN
=
H
16
22
V EN
=
L
16
24
0;
mA
4
mA
V IL
Input low voltage
(pin 2, 8, 12, 19)
-0.3
1.5
V
VIH
Input high voltage
(pin 2,8, 12, 19)
2.3
Vss
V
IlL
Low voltage input cu rrent
(pin 2,8, 12, 19)
-10
JJA
IIH
High voltage input current
(pin 2, 8,12,19)
100
JJA
VENL
Enable low voltage (pin 1, 11)
-0.3
'1.5
V
VENH
Enable high voltage (pin 1, 11)
2.3
Vss
V
IENL
Low voltage enable current
(pin 1, 11)
VENL
-100
JJA
IENH
High voltage enable current
(pin 1,11)
2.3V .;; VEN H .;; Vss -0.6
± 10
JJA
VCE (sat) H
Source output saturation voltage
(pins 3,7,13,18)
10
=
-0.6A
1.4
1.8
V
VCE(sat) L
Sink output saturation voltage
(pins 3, 7,13,18)
10
= +0.6A
1.2
1.B
V
tr
Rise time (*)
0.1 to 0.9 Vo
250
ns
tf
Fall time (0)
0.9 to 0.1 Vo
250
ns
ton
Turn-on delay (*)
0.5 VI to 0.5 Vo
750
ns
toft
Turn-off delay (0)
0.5 VI to 0.5 Vo
200
ns
VI
= 1.5V
2.3V';; VI .;; Vss -0.6V
= 1.5V
30
-30
(0) See switching times diagram
___________________________
~~~~~~~~~
________________________~3/~3
211
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L293D
PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES
PRELIMINARY DATA
•
600mA. OUTPUT CURRENT CAPABILITY
PER CHANNEL
•
1.2A PEAK OUTPUT CURRENT (NON REPETITIVE) PER CHANNEL
•
ENABLE FACILITY
•
OVERTEMPERATUREPROTECTION
•
LOGICAL "0" INPUT VILTAGE UP TO
1.5V (HIGH NOISE IMMUNITY)
•
INTERNAL CLAMP DIODES
To simplify use as two bridges each pair of channels is equipped with an enable input. A separate
supply input is provided for the logic, allowing
operation at a lower voltage and internal clamp
diodes are included.
This device is suitable for use in switching applications at frequencies up to 5 kHz .
The L293D is assembled in a 16 lead plastic
package which has 4 center pins connected
together and used for heatsinking.
The L293D is a monolithic integrated high voltage, high current four channel driver designed to
accept standard DTL or TTL logic levels and
drive inductive loads (such as relays solenoides,
DC and stepping motors) and switching power
transistors.
Powerdip
12+2+2
ORDERING NUMBER: L293D
BLOCK DIAGRAM
VS
8
OUT 1
Vs
3
Vss
OUT 3
11
V,.
16
10
IN 1
9
ENABLE 1
15
IN 2
4,5,12,13
6
14
OUT 2
OUT 4
IN 3
ENABLE 2
IN 4
L 2930
S_6573
June 1988
1/4
213
L293D
ABSOLUTE MAXIMUM RATINGS
Vs
VSS
Vi
Ven
10
Ptot
T stg , Tj
Supply voltage
Logic supply voltage
Input voltage
Enable voltage
Peak output current (1 OOJ.ls non repetitive)
Total power dissipation at T ground-Pins= 80°C
Storage and junction temperature
36
36
7
7
1.2
5
-40 to 150
V
V
V
V
A
W
°c
CONNECTION DIAGRAM
ENABLE 1
16
Vss
INPUT 1
15
INPUT 4
OUTPUT 1
14
OUTPUT 4
GNO
13
GNO"
GNO
12
GNO
OUTPUT 2
11
OUTPUT 3
INPUT 2
10
INPUT 3
Vs
8
ENABLE 2
5_6574
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
"'2/...:.4_ _ _ _ _ _ _ _ _ _ _
51 SGS-THOMSON
.
J'~ !;I)~~I!I@!l~!l~1i"I!I@~~~:O
214
max
max
14
80
°C/W
°C/W
_ _ _ _ _ _ _ _ _ _ __
L293D
ELECTRICAL CHARACTERISTICS (For each channel, Vs
24V, Vss
unless otherwise specified)
Parameter
Vs
Supply voltage (pin 8)
V's
Logic supply voltage (pin 16)
Is
Total quiescent supply
current (pin 8)
Test condition
Min.
Typ.
Vss
4.5
Vi
~
L
10
~O
Vi
~
H
10
~
0
Ven
~
H
Ven ~ H
Total quiescent logic supply
current (pin 16)
Vi
~
L
10
~
0
Ven
Vi
~
H
10
~
0
Ven~
~
Input low voitage
(pin 2, 7,10,15)
V IH
Input high voltage
(pin 2, 7, 10, 15)
36
V
36
V
6
16
24
H
44
60
H
16
22
16
1.5
Vss';; 7V
2.3
Vss
> 7V
2.3
7
IlL
Low voltage input current
(pin 2,7,10,15)
V IL = 1.5V
IIH
High voltage input current
(pin 2, 7, 10, 15)
2.3V .;; VIH .;; Vss -0.6V
V enL
Enable low voltage (pin 1,9)
V enH
Enable high voltage (pin 1, 9)
mA
24
-0.3
Vss
mA
4
Ven ~ L
V IL
Unit
2
Ven ~ L
Iss
Max.
V
V
-10
iJ.A
100
iJ.A
-0.3
1.5
V
Vss';; 7V
2.3
Vss
> 7V
V enL = 1.5V
2.3
7
Vss
lenL
Low voltage enable current
current (pin 1, 9)
ienH
High voltage enable current
(pin 1,9)
2.3V .;; V enH .;; Vss -0.6V
VeEsatH
Source output saturation
voltage (pins 3, 6, 11, 14)
10
= -0.6A
VeEsatL
Sink output saturation
10~+0.6A
30
V
-30
-100
iJ. A
±10
iJ. A
1.4
1.8
V
1.2
1.8
V
voltage (pins 3, 6, 11,14)
VF
Clamp diode forward voltage
10
= 600 mA
1.3
V
tr
Rise time (*)
0.1 to 0.9 Vo
250
ns
tf
Fall time (.)
0.9 to 0.1 Vo
250
ns
ton
Turn-on delay' *)
0.5 Vi to 0.5 Vo
750
ns
toff
Turn-off delay (*)
0.5 VI to 0.5·V o
200
ns
'*) See fig. 1
------------- ~ !~tm~~~~Jl------------3~/4
215
L293D
TRUTH TABLE (One channel)
INPUT
ENABLE 1*)
OUTPUT
H
H
H
L
H
L
H
L
Z
L
L
Z
Z = High output impedance
I') Relative to the considered channel
Fig. 1 - Switching Times
216
L294
SWITCH-MODE SOLENOID DRIVER
.-------~ ..
• HIGH VOLTAGE OPERATION (UP TO 50V)
• HIGH OUPTPUT CURRRENT CAPABILITY
(UP TO 4A)
• LOW SATURATION VOLTAGE
• TTL-COMPATIBLE INPUT
• OUTPUT SHORT CIRCUIT PROTECTION
(TO GROUND, TO SUPPLY AND ACROSS
THE LOAD)
• THERMAL SHUTDOWN
• OVERDRIVING PROTECTION
• LATCHED DIAGNOSTIC OUTPUT
- - . - -..--.--~~-~----~---
-------'--
tronic typewriters_ Power dissipation is reduced by
efficient switch mode operation_ An extra feature of
the L294 is a latched diagnostic output which indicates when the output is short circuited_
The L294 is supplied in a 11-lead Multiwatt ® plastic
power package_
I
I
Multiwatt 11
DESCRIPTION
The L294 is a monolithic switch mode solenoid driver designed for fast, high-current applications such
as hammer and needle driving in printers and elec-
ORDER CODE: L294
~----------------
BLOCK DIAGRAM
~--------------
--------
02
5-5011,/1
-_._---- - - - - - _ . _ - - - - - - -
September 1988
1/6
217
L294
ABSOLUTE MAXIMUM RATING
Symbol
Parameter
Value
Unit
Vs
Power Supply Voltage
50
V
Vss
Logic Supply Voltage
7
V
Enable Voltage
7
V
Input Voltage
7
V
Vi
Peak Output Current (repetitive)
Ptot
Total Power Dissipation (at Tease
4.5
= 75C)
Storage and Junction Temperature
-----------
---
25
+
~11
-$-
SINK OUTPUT
1~
CURRENT SENSING
ENABLE
TIMING
8
INPUT VOLTAGE
GND
6
DIAGNOSTIC OUTPUT
LOGIC SUPPLY
ON
TIME
VOLTAGE
LIMITER
SOURC E OUTPUT
POWER SUPPLY VOLTAGE
Tab connected
THERMAL DATA
2/6
218
. w
-40 to 150
CONNECTION DIAGRAM (top view)
I
A
- - - - - - - - - - - - - - - - - - - - - --'--------------------------'---
1-----I
-t--
to pin 6
5 - 531211
----------------
L294
----
ELECTRICAL CHARACTERISTICS (refer to the test circuit, Vs = 40V , Vss = 5V , Tamb = 25"C, unless otherwise specified)
l
Symbol 1-
Parameter
Test conditions
---v;-- tpower Supply Voltage (pin 1)
- - Id--
Max.
Unit
46
V
12
QUiescent Drain Current (pm 1
20
_______________+_V_;2___ 0_.6V; VENABLE -=-_~ ____ _
30
7
V
5
8
mA
10
100
flA
4.5
-I'O~i~sc~~tL~gic Sup~l~
, Current
mA
70
! Logic Supply Voltage (pin 4)
V~~
-I
ss--
Operative Condition
1
____ I
--
Min.
DIAG Output at High Impedance
V;
0.6
V
0.45
_-------------------1 V, <; 0.45V
~-------------
VENABLE
f--IE-N-AB-L-E-
-1
. V;20.6V
Input Current (pin 7)
'[
-- ----------- --
--------
-
f_~CJI!I_L_8'J~ __________ _
Enable Input Voltage (pin 9)
t E~-b!;l~;;u-t-C-u-rre-n-t-(p-in-9-)
-
~IA
3
0.8
-.
tV~~A;~:L-=_~=_-~_--
-100
~ VENABLE = H__ _
I Transconductance
i Rs - 0 20
I
-.
V
2.4
High Level
~IA
100
V, - 1V
4V
0.95
VI~
1.05
f----_I---------.---f-------
Vsat H
___,,!sal L__
Source Output Saturatio
Voltage
Output Leakage Current
f -__K
_ _-+-O_n Time Limiter
4A
i Ip = 4A
4.5
-jRs-=-0-.2-0-;-V, <; 0.45-V--
1
---=----=-----
Diagnostic Output Voltage
(pin 5)
IOIAG
Diagnostic Leakage Current
(pin 5)
f--Vp;ns-- i-OP AMP and ClTA DC
Gain C)
V
Constanl(lV~~ABLE -:L ____
VOIAG
Vp;n 10
=
'S~k O~t~u~atu~ationVoltag~ fJp : 4~__
Vsal H+ Vsal L Total Saturation Voltage
I'eakage
lip
VOIAG = 4 W - - - - - -
tv:,
VOltagetvPI~~= 100 to 800,;;v-
t--V~~;~I_s_e_n;~n_g_v_olta_-g_;_(pI_n-~1-0_) _____
_~-1-2-~----,---I----
I
IDiAG = 10 mA
V
mA
--I
0.4
I
i
-+------L
r ---- 1-
10
flA
I
---
5
'I
- -
I
=--=- -----=_-=J::-_~ :-:=1 =~-=c
09
After a time interval tmax === KC2, the output stages are disabled.
See the block diagram.
Allowed range of VSENS without the intervention of the short circuit protection.
3/6
219
L294
CIRCUIT OPERATION
The L294 works as a transconductance amplifier:
it can supply an output current directly proportional
to an input voltage level (Vi). Furthermore, it allows
complete switching control of the output current
waveform (see fig.1).
lar to t1. The peak current Ip depends on Vi as
shown in the typical transfer function of fig.3.
It can be seen that for Vi lower than 450 mV the
device is not operating.
The following explanation refers to the Block Diagram, to fig.1 and to the typical application circuit
of fig.2.
For Vi greater than 600 mV, the L294 has a transconductance of 1AlV with Rs = 0.2Q. For Vi included between 450 and 600 mV, the operation is
not guaranteed.
The ton time is fixed by the width of the Enable input signal (TTL compatible) : it is active low and
enables the output stages "source" and "sink". At
the end of ton, the load current Iload recirculates
through 01 and 02, allowing fast current tum-off.
The order parts of the device have protection and
diagnostic functions. At pin 3 is connected an external capacitor C2, charged at constant current
when the Enable is low.
The rise time t, depends on the load characteristics, on Vi and on the supply voltage value (Vs,
pin 1). During the ton time, Iload is converter into a
voltage signal by means of the external sensing
resistance Rs connected to pin 10. This signal,
amplified by the op amp and converted by the
transconductance amplifier OTA, charges the external RC network at pin 8 (R1, C1). The voltage
at this pin is sensed by the inverting input of a
comparator. The voltage on the non-inverting input
of this one is fixed by the external voltage Vi
(pin 7).
After t" the comparator switches and the output
stage "source" is switched off. The comparator
output is confirmed by the voltage on the non-inverting input, which decreases of a constant fraction of Vi (1/10), allowing hysteresis operation. The
current in the load now flows through 01.
Two cases are possible: the time constant of the
recirculation phase is higher than R1.C1 ; the time
constant is lower than R1.C1. In the first case, the
voltage sensed on the non-inverting input of the
comparator is just the value proportional to Iload. In
the second case, when the current decreases too
quickly, the comparator senses the voltage signal
stored in the R1 C1 network.
In the first case t1 depends on the load characteristics, while in the second case it depends only on
the value of R1.C1 .
In other words, R1.C1 fixes the minimum value of
t1 (t1 2 1/10 R1.C1. Note that C1 should be chosen in the range 2.7 to 10 nF for stability reasons
of the OTA).
After t1, the comparator switches again: the output is confirmed by the voltage on the non-inverting input, which reaches Vi again (hysteresis).
Now the cycle starts again : t2, t4 and t6 have the
same characteristics as t" while 13 and t5 are simi-
4/6
220
After a time interval equal to K . C2 (K is defined in
the table of Electrical Characteristics and has the
dimensions of ohms) the output stages are switched off independently by the Input signal.
This avoids the load being driven in conduction for
an excessive period of time (overdriving protection). The action of this protection is shown in
fig.1 b. Note that the voltage ramp at pin 3 starts
whenever the Enable signal becomes active (low
state), regardless of the Input signal. To reset
pin 3 and to restore the normal conditions, pin 9
must return high.
This protection can be disabled by grounding
pin 3.
The thermal protection included in the L294 has a
hysteresis.
It switches off the output stages whenever the
junction temperature increases too much. After a
fall of about 20'C, the circuit starts again.
Finally, the device is protected against any type of
short circuit at the outputs: to ground, to supply
and across the load.
When the source stage current is higher than 5A
andlor when the pin 10 voltage is higher then 1V
(i.e. for a sink current greater than 1V/Rs) the output stages are switched off and the device is inhibited.
This condition is indicated at the open-collector
output DIAG (pin 5) ; the internal flip-flop FIF
changes and forces the output transistor into saturation. The FIF must be supplied independently
through Vss (pin 4). The DIAG signal is reset and
the output stages are still operative by switching
off the supply voltage at pin 1 and then by switching the device on again. After that, two cases
are possible: the reason for the "bad operation" is
still present and the protection acts again ; the
reason has been removed and the device starts to
work properly.
L294
Figure 1 : Output Current Waveforms.
V'''AB'''~;
'p.nJ
i'on"
:'!
,
L1-------L-.
1
i
•
t
a)
Figure 2 : Test and Typical Application Circuit.
Vi
ENABLE
LJ""
-.I
r
Cl
47nF
D1 : 3A fast diode
200 ns
}
trr$
5 - 53'114
Figure 3 : Peak Output Current vs. Input
Voltage.
Ip
(A)
RS = 0.2
--
n
V
V
V
~
Z
V
1/
I
Figure 4 : Output Saturation Voltages vs.
Peak Output Current.
'Vsatr---,--r-,----,-,--T""""'-'.p-'-,
(V J
1.5
0.5
'---"-_..1-_L..-1_--'--_-'------'_--'
.t,
-------_._------------
'ptA)
5/6
221
L294
Figure 6 : Turn-off Phase.
Figure 5 : Safe Operating Areas.
Ie
veE
veE
(A I
I VI
/
'0
K
I
I
rt\1
~
30
\
II
~
-
-
---
r\e
\
_.
---
100
200
----
~
\
.:.....-
r-
20
10
""-. r-..
]00
\ (nsec)
CALCULATION OF THE SWITCHING TIMES
Referring to the block diagram and to the waveforms of fig.1 , it is possible to calculate the switching times
by means of the following relationships.
tl =-
L
RL
In (1 -
It = -
L
RL
In
RL
V1
.Ip)
where: V1 = Vs - VsatL - VsatH- VRsens
--_'!'!:_--_.
V2 + RL . 10
Where: V2 = Vs + VOl + V02
IK<;lo<;lp
10 is the value of the load current at the end of ton.
a) __~
RL
t1 = t3 = t5 = ...
In
O:9Ip. RL + V3
Ip RL + V3
b) - R1 C1 In 0.9
In
12=t4=t6= ...
=')0
where
V3 = Vsat L + VR sens + VOl
R1 C1
(Y1.:::.Il'..R,= )
V1 -IK RL
Note that the time interval t1 = 13 = t5 = ... takes the longer value between case a) and case b). The switching frequency is always:
fswltching =
In the case a) the main regulation loop is always closed and it forces:
IK = (0.9
± S)
Ip
where : S = 3 % @ Vi = 1 V
S= 1.5 % @ V, = 4 V
In the case b), the same loop is open in the recirculation phase and IK, which is always lower than 0.9 Ip, is
obtained by means of the following relationship.
IK = Ip e __ t1Fit,__ .'!l. (1 - e _ _t1 .£lL..)
L
RL
L
With the typical application circuit, in the conditions Vs = 40V, Ip = 4A, the following switching times result:
tl=255~s
tf=174~s@lo=lp
t . a) 70 ~s
1· b) 16 ~s
t2 = 29 ~s
6/6
222
f=10.2 KHz
L295
DUAL SWITCH-MODE SOLENOID DRIVER
PRELIMINARY DATA
• HIGH CURRENT CAPABILITY (up to 2.5A per
channel)
• HIGH VOLTAGE OPERATION (upto 46Vfor po·
wer stage)
• HIGH EFFICIENCY SWITCHMODE OPERA·
TION
• REGULATED OUTPUT CURRENT (adjustable)
• FEW EXTERNAL COMPONENTS
• SEPARATE LOGIC SUPPLY
• THERMAL PROTECTION
The L295 is a monolithic integrated circuit in a 15·
lead Multiwatt ® package ; it incorporates all the
functions for direct interfacing between digital circui·
try and inductive loads. The L295 is designed to ac·
cept standard microprocessor logic levels at the in·
puts and can drive 2 solenoids. The output current
is completely controlled by means of a switching teo
chnique allowing very efficient operation. Further·
more, it includes an enable input and dual supplies
(for interfacing with peripherals running at a higher
voltage than the logic).
The L295 is particularly suitable for applications
such as hammer driving in matrix printers, step mo·
tor driving and electromagnet controllers.
I
Multiwatt 15
I
L
ORDER CODE: L295
----------
----------
----
ABSOLUTE MAXIMUM RATINGS
~··~::I C~~~il~~~~~g:olt:ge-·VEN:V,
50
12
7
I
Enable and input voltage
Vref
: Reference voltage
10
/' Peak output current (each dlannel)
- non repetitive (t ~ 100 ~sec)
- repetitive (80 % on - 20 % off ; Ton ~ 10 ms)
, - DC operation
i Total power dissipation (at Tease ~ 75°C)
Ptat
---.:rstrJ,~to~il(l€l~~d J.1Jflction. temperatu re
I
v
V
7
V
V
3
2.5
A
A
2
25
- 40 to 150
W
cC
A
APPLICATION CIRCUIT
-+- Vss
--f
'0
R'
L 295
~220~F
e4
C2I'~f I
-1
D,
JL'---+9,-13.9
~.
K~F
R~ C3
02
.i.l.
-
September 1988
-
1/6
223
L295
CONNECTION DIAGRAM (top view)
----~------
-------~------------
15
~
14
13
12
",
10
------------------------~
OUTPUT H ch 2
OUTPUT L ch 2
CURRENT SENSING 2
REFERENCE VOLTAGE Z
INPUT 2
LOGIC SUPPLY VOLTAGE Vss
OSCILLATOR
RC NETWORK
GROUND
ENABLE
INPUT 1
REFERENCE VOLTAGE 1
CURRENT SENSING 1
OUTPUT L ch 1
OUTPUT H ch 1
SUPPLY VOLTAGE Vs
I
L
5- S&5&/1
Tab conne-cted 10 pin 8
BLOCK DIAGRAM
~:
Rl
"
12
l1
01
J
THERMAL DATA
Rth j-case
Rth j-amb
2/6
224
Thermal resistance junction-case
Thermal resistance junction-ambient
~ SCiS·1HOMSON
--------- """'!1
IR'AJD@OOrn~Ireii'OO@IIlD@$
max
max
3
35
°C/W
°C/W
L295
ELECTRICAL CHARACTERISTICS (Refer to the application circuit, Vss = 5V, Vs = 36V; TJ =
25'C; L = low; H = high; unless otherwise specified)
-----
-
----
- - ----
Parameter
Test conditio ns
..
Supply Voltage
Vs
--------------
-------------
_.
------
Quiescent drain current
(from VSS)
Id
Typ.
Max.
Unit
12
46
V
4.75
10
V
4
mA
46
mA
----- - ----
Logic Supply Voltage
Vss
Min.
-----
--
----
Vs = 46 V; V', = Vl 2
I
is~-TQuiescent drain current
I
=
Vss = 10 V
(from VS)
-
.-
_.
Vil, Vi2 ;
- -
- 0.3
0.8
High
2.2
7
Low
-0.3
0.8
High
2.2
7
Low
Input Voltage
._-
-
V
-----------
----
-
----------
Enable Input Voltage
VEN
---
-
---
_.
V
--
Vil
-100
=
~A
Input Current
111,112
10
Vil =
VEN = L
Enable Input Current
lEN
-100
~A
-
10
VEN = H
1----·_····· Vre t1,
Input Reference Voltage
Vref2
._-------------
Ire fl,
Iref2m
Input Reference Voltage
Fosc
Oscillation Frenquency
---
----
0.2
1--._--
2
V
-5
~A
----
C= 3.9 nF;
R= 9.
Vref = 1 V
Rs = 0.5!)
25
KHz
------l-
~~! Transconductance (each ch.)
Vref
!
1.9
2
AN
2.1
~
------
Vdrop
c-----Vsens 1
Vsens2
n Vd,op =
Total output voltage drop
(each channel)
n
-_.
External sensing resistors
voltage drop
2.8
10 = 2 A
3.6
V
2
1~!
-----
I
t
_---'--------1
VCEsal0l + VeEsa! Q2·
3/6
225
L295
APPLICATION CIRCUIT
+Vs
+Vss
O.1~F ~20~F
'5
10
e2
L295
04
OR'-1
-~113.91'Kll
R3
02, 04
01,03
= 2A High speed diodes
= 1A High speed diodes
)
IIF
I I
e4
0'
_
02
(3
lrr5 200 ns
R1 = R2 =2Q
L1 = l2 = 5 mH
FUNCTIONAL DESCRIPTION
The L295 incorporates two independent driver
channels with separate inputs and oytputs, each capable of driving an inductive load (see block diagram).
The device is controlled by three microprocessor
compatible digital inputs and two analog inputs.
These inputs are:
EN
chip enable (digital input,active low) ,
enables both channels when in the low
state.
Vin1, Vin2
channel inputs (digital inputs,active
high), enable each channel independently. A channel is actived when
both EN and the appropriate channel
input are active.
Vref1, Vref2
reference voltages (analog inputs),
used to program the peak load currents. Peak load current is proportional to Vref.
Since the two channels are identical, only channel
one will be described.
the output transistors 01 and 02 switch on and current flows in the load according to the exponential
law:
- R1 t
V
(I -e
L1
1=
R1
where:
R1 and L 1 are the resistance and inductance of the load and V is the voltage available on the load (Vs - VdropVsense).
The current increases until the voltage on the external sensing resistor, RS1, reaches the reference
voltage, Vref1. This peak current, Ip1, is given by :
Vref1
Ip1 =
RS1
At this point the comparator output, Comp1, sets the
RS flip-flop, FF1, thatturns off the output transistor,
01. The load current flowing through D2, 02, RS1,
decreases according to the law:
- R1 t
e
The following description applies also the channel
two, replacing FF2 for FF1 , Vref2 for Vref1 etc.
When the channel is activated by a low level on the
EN input and a high level on the channel input, Vin2,
4/6
226
where
L1
VA = VCEsatQ2 + Vsense 1 + VD2
L295
If the oscillator pin (9) is connected to ground the
load current falls to zero as shown in fig. 1.
At the time t2 the channel 1 is disabled, by taking the
inputs Vin1 low and/or EN high, and the output transistor 02 is tumed off. The load current flows through
02 and 01 according to the law:
- R1 t
VB
VB
1= (
L1
+ IT2 ) e
R1
R1
where
IT2
VB
=
= current value
Vs + V01 + V02
at the time t2.
Fig. 2 in shows the current waveform obtained with
an RC network connected between pin 9 and
ground. From to t1 the current increases as in fig. 1.
A difference exists at the time t2 because the current starts to increase again. At this time a pulse is
produced by the oscillator circuit that resets the flip
flop, FF1 , and switches on the outout transistor, 01.
The current increases until the drop on the sensing
resistor Rs1 is equal to Vref1 (b) and the cycle repeats.
The switching frequency depends on the values of
Rand C, as shown in fig. 4 and must be chosen in
the range 10 to 30 KHz.
It is possible with external hardware to change the
reference voltage Vref in order to obtain a high peak
current Ip and a lower holding current Ih (see fig.3).
The L295 is provided with a thermal protection that
switches off all the output transistors when the junction temperature exceeds 150 "C. The presence of
a hysteresis circuit makes the IC work again after a
fall of the junction ternperature of about 20 'C.
The analog input pins (Vref1, Vref2) can be left open
or connected to Vss ; in this case the circuit works
with an internal reference voltage of about 2.5V and
the peak current in the load is fixed only by the value of Rs:
2.5
Ip
=
Rs
SIGNAL WAVEFORMS
Figure 1 : Load current waveform with pin 9
con nected to GNO.
-._.-- - - - - - - - - l
Il-,o- ---,
_
Figure 2 : Load current waveform with external R-C network connected between pin 9
and ground.
,
1I --~_ _____I
II
'2:_______ 1
v
vee'
EN!
-p=---::-.----''------,
I
I
I
,
I
to
1
I
I
,,1 12 1'31 14\1
I
I
I
1'1
I It I
I
ON
01
OFF
02
'f-I
OFF
.,
5/6
---_._------
227
L295
SIGNAL WAVEFORMS (continued)
Figure 3 : With Vret changed by hardware.
---------------
I
II
i I
--+--I~
---+-r--
I,
:
I
II
I:
I
"
t
--
I
I
t- 7i
m
1-
IIIL-t I
I
t
---7
"
Switching frequency vs. values of
I
I:
I1111
-
Figure 4
R and C.
10
I
I
~---
,
~
10
6/6
228
G
8
100
8
R (Kill
L296
L296P
HIGH CURRENT SWITCHING REGULATORS
•
•
•
•
•
•
•
•
•
•
4 A OUTPUT CURRENT
5.1 V TO 40 V OUTPUT VOLTAGE RANGE
0 TO 100 % DUTY CYCLE RANGE
PRECISE (±2 %) ON-CHIP REFERENCE
SWITCHING FREQUENCY UP TO 200 KHz
VERY HIGH EFFICIENCY (UP TO 90 %)
VERY FEW EXTERNAL COMPONENTS
SOFT START
RESET OUTPUT
EXTERNAL PROGRAMMABLE LIMITING
CURRENT (L296P)
• CONTROL CIRCUIT FOR CROWBAR SCR
• INPUT FOR REMOTE INHIBIT AND
SYNCHRONUS PWM
• THERMAL SHUTDOWN
The L296 and L296P are mounted in a is-lead Multiwatt® plastic power package and requires very few
external components.
Efficient operation at switching frequencies up to
200 KHz allows a reduction in the size and cost of
external filter components. A voltage sense input
and SCR drive output are provided for optional
crowbar overvoltage protection with an external
SCR.
Multiwatt'")
(15-lead)
DESCRIPTION
The L296 and L296P are stepdown power switching
regulators delivering 4 A at a voltage variable from
5.1 Vto 40 V.
Features of the devices include soft start, remote inhibit, thermal protection, a reset output for microprocessors and a PWM comparator input for synchronization in multichip configurations.
ORDER CODES:
L296
L296P
The L296P incudes external programmable limiting
current.
L296HT
L296PHT
PIN CONNECTION (top view)
15
~
14
13
1
11
10
9
8
7
6
5
-$-~
~1
I
..""
CROWBAR DRIVE
RESET OUTPUT
RESET DELAY
RESET INPUT
OSCILLATOR
FEEDBACK INPUT
FREQUENCY COMPENSATION
GROUND
SYNC. INPUT
INHIBIT INPUT
SOFT-START
CUR RENT LIMIT
SUPPLY VOLTAGE
OUTPUT
CROWBAR INPUT
Tab connected to pin 8
September 1988
1/23
229
L296-L296P
ABSOLUTE MAXIMUM RATINGS
Symbol
Vi
Vi - V2
V2
V1, V12
V15
V4, V5,
V7, Vg, V13
V10 , V6
V 14
Test Conditions
Unit
Input Voltage (pin 3)
Parameter
50
V
Input to Output Voltage Difference
50
V
-
-1
-7
Output DC Voltage
Output Peak Voltage at t = 0.1 ~sec f = 200KHz
V
- - - - - - -f - - - . - - - . - - - - - -
~I
Voltage at Pins 1, 12
10
Voltage at Pin 15
15
V
I
Voltage at Pins 4,5,7,9 and 13
5.5
V
i
V
I
- - - - - - - - - -- - - - - - - - - - - - -
-------- ------
Voltage at Pins 10 and 6
7
Voltage at Pin. __
14 (114
:0; 1 mAl
.. _._------- - - - - - - _.. _ - -
_._...-
----j
t---"'-I
Vi
- - - _.._------_
.. -
---J
mA
Ig
Pin 9 Sink Current
- - - - _ . _ - - _ ..
111
Pin 11 Source Current
114
Pin 14 Sink Current (V14 < 5 V)
50
mA
Ptot
Power Dissipation at T case
20
W
- 40 to 150
°C
1--
---------
Tj, T stg
1
!
- - - - - - - . - . - - - 1---------------- - - - - - ---:-;-l
20
-- -----------
:0;
-----------
f--------- -------
90°C
Junction and Storage Temperature
mA
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
Max
Max
3
35
BLOCK DIAGRAM
..L
.,...
VY-,
..L
~
"r
Y
,
) RE.SE.T INPUT
"
L-----------+-H-----~L---_1
RESET
"
RESET OllTPUT
13
I
INHIBIT
INPUT
230
RESH [)[lAV
1,
I
!
---I
THERMAL DATA
2/23
I
-j
0"0
I
i
I
i
L296-L296P
PIN FUNCTIONS
----------- - - - - - -
Name
Function
CROWBAR INPUT
Voltage Sense Input for Crowbar Overvoltage Protection. Normally
connected to the feedback input thus triggering the SCR when V out
exceeds nominal by 20 %. May also monitor the input and a voltage
divider can be added to increase the threshold. Connected to
ground when
SCR not used.
------- - -- - - -
- - - - - + ....__.. _ ...... --_._. .-.
.
2
OUTPUT
3
SUPPLY VOLTAGE
Unrergulated Voltage Input. An internal Regulator Powers the L296s
Internal Logic.
4
CURRENT LIMIT
A resistor connected between this terminal and ground sets the
current limiter threshold.
If this terminal is left unconnected the threshold is internally set (see
electrical characteristics).
5
SOFT START
Soft Start Time Constant. A capacitor is connected between this
terminal and ground to define the soft start time constant. This
capacitor also determines the average short circuit output current.
6
INHIBIT INPUT
TTL - Level Remote Inhibit. A logic high level on this input disables
the device.
1-------
7
SYNC INPUT
- - - -
~__8~_-+_ _~GROUND
Regulator Output.
Multiple L296s are synchronized by connecting the pin 7 inputs
together and omitting the oscillator RC network on all but one
device.
Common Ground Terminal.
9
FREQUENCY
COMPENSATION
A series RC network connected between this terminal and ground
determines the regulation loop gain characteristics.
10
FEEDBACK INPUT
11
OSCILLATOR
A parallel RC networki connected to this terminal determines the
switching frequency. This pin must be connected to pin 7 input
when the internal oscillator is used.
12
RESET INPUT
Input of the Reset Circuit. The threshold is roughly 5 V. It may be
connected to the feedback point or via a divider to the input.
13
RESET DELAY
A capacitor connected between this terminal and ground
The Feedback Terminal on the Regulation Loop. The output is
connected directly to this terminal for 5.1 V operation; it is
'----____+-____________ con~ec;.~~_~a_a_di_vid_e!.-'9~ ~igh~r_vo_ltF
R5
6lV
llo
4.7
Cl
UnF
KG
'I'
4.l
KG
GNOo-~---------~-----------~~-----~-~~
INHIBIT
C7, C8 : EKR (ROE)
L1 : L ~ 300 ~LH a18 A
n
Core type: MAGNETICS 58930 - A2 MPP
N' turns: 43 Wire Gauge: 1 mm (18 AWG) COGEMA 946044
Minimum suggested value (1 0 ~F) to avoid osciliations. Ripple consideration leads to typical value of 1000
8/23
236
~F
or higher.
L296-L296P
Figure 5: PC. Board and Component Layout of the Circuit of Figure 4 (1:1 scale).
9/23
237
L296-L296P
Figure 6 : DC Test Circuits.
Figure 6b.
Figure 6a.
,V i
*
Voltm...r with input im~.nc: • .!:!>OMn
~------------------~
Figure 6c.
I'O,uF
1·SetV1OFORVg=1 V
2· Change V10 to obtain V9 = 3 V
3 _Gv = DVg
nVlO
2V
*Voltme-t.r with mput
!!..VlO
Figure 6d.
.v,
10/23
238
im~danc.~SOMll
L296-L296P
Figure 7 : Quienscent Drain Current vs. Supply
Voltage (0 % Duty Cycle - see fig. 6a).
-
45
40
U Sl10
-t
130
(mA ) .-
[30
-
(mAl
._.
eo
;-- - I _.
f-
t,
I
.-
JS
30
25
20
f-- --
I--..-
10
---
75
70
1j
-
_.-
-- -
_.
=
--
60
;;
;---r
-
I
20
~
,
65
r
_.
r
- --
10
Figure 8 : Quienscent Drain Current vs. Supply
Voltage (100 % Duty Cycle see fig. 6a).
30
40
50
i
ti
"
40
r
I
[0
VdY)
Figure 9 : Quiescent Drain Current vs. Junction
Temperature (0 % Duty Cycle see fig. 6a).
I
j
20
r
40 Vi (V)
30
Figure 10 : Quiescent Drain Current vs. Junction
Temperature (100 % Duty Cyclesee fig. 6a).
130
[30
(mA )
(mA )
+-
VI :]5'1
36
80
34
75
-
V i =35V
28
---
,..
.-
,/"
65
60
26
55
24
50
....... ~
45
22
- f-
---
70
32
30
-
-
V
;--- -- , -
-
--
-
t---I-- . -
. - ;--- !-1 - .. -
--
.-
-r-
--
.-
i-- --
40
20
-25
0
25
50
75
100
125
-25
ISO Ij (-C)
Figure 11 : Reference Voltage (pin 10) vs. VI
(see fig. 4).
0
]5
50
75
100
125
ISO Tj (eo
Figure 12 : Reference Voltage (pin 10) vs. Junction
Temperature (see fig. 4).
v'"
(V)
-- --10·2A
c-5.125
5.150
5.100 ---- -
5.115
5.'100
5.075
f----+-+-f--+-
i
5.075
_ _ 1---
-V
./~
-
-j'----..
1-
-f-----
-~+-
I-H-
j -
i
i
10
20
-
-
.-
- ;--
-- --
30
-
5.025--
e-
-
---
'--
40 Vi (v)
-25
~
~.,I
SCiS-THOMSON
25
50
75
J---
100
li(*O
11/23
ililU©Ii'd@~~~©1i'ii1@11!]U©i!J
239
L296-L296P
Figure 13 : Open Loop Frequency and Phase
Response of Error Amplifier
(see fig. 6c).
Figure 14 : Switching Frequency vs. Input
Voltage (see fig. 4).
.
Go 5119
G.
CdB I
(KHz)
--- f- - f - -
60
- - r-
--
)
30
20
104
- - I- - - 40
102
.ao
100
-10
10K
lOOK
c--
96
.110
\
IK
9.
-120
\
\
100
---
-
~~
10
10
yo·v....
-
f--
='\ ~ f - -
50
40
-
1=
\
f (Hz)
IN
-
10
Figure 15 : Switching Frequency vs. Junction
Temperature (see fig. 4).
-
15
r- -20
25
30
35
105
40
Yj(V)
Figure 16 : Switching Frequency vs. R1
(see fig. 4).
"-5UI"
G 411211
f
(KHz I
,
(KHz)
Vj-=:JIY
'b- V,.,
"'
r-
.........
,
"0
lOS
-
100
··
·
!DO
f-
'5
90
"::...."
~3=1.5nF
I
~3"2.2nF:'
1111
10
.zs
0
zs
50
75
100 ".
~
150
,
~,
LLU
,
C'CI·
10
Figure 17: Line Transient Response (see fig. 4).
RI(KQ>
Figure 18 : Load Transient Response (see fig. 4).
6
Go Slot
_I"~v'"
V;
I I.L
Vo=Vr.f
10 ",2A
-
INPUT VOLTAGE
-
100
r- -
~
20
I
OLnPUTYOLTAGE
CHANGE
50
\
·50
.100
-,-- -
f- --f- I---
30
I
"0
(mY)
-100
f--- -
OUTPUT VOLTAGE
12/23
5
'ems)
~
~""f/.
240
.
t-
0.5
SGS-niOMSON
Iliilll!::l!@l
Plot
(V)
(W)
2.5
1.5
~ i--
'1"'4A
I -I--
'Z=2A
50
Figure 23 : Power Dissipation (device only) vs.
Input Voltage.
100
Figure 24 : Power Dissipation (device only) vs.
Input Voltage.
- ,
t",100KH z
Vo=Vr(>f
--
--
.-
~-
Ptot
(W)
fo =5OKH z
Vo =Vref
-1,
~-
--
10
--f-
lo=4A
I";
15
..~
.'
lo=2A
+-~
lir
-
~
)0
35
40
~
M.-
+I-~~45
,-
f--.
--
20
BYW8(}
1m.
-
1--8~
I
I
"I:
.. -
""""-'
I-- Io;2A
--
'0
t---
Bvwao
~-
45 Vi (V)
.
... lo=LoA
bolBVW80
-~
-rr
25
-
t--t-
,," BYW80
~MBR1045
MBR 1045
20
---
30
.0
13/23
241
L296-L296P
Figure 26 : Power Dissipation (device only) vs.
Output Voltage (see fig. 4).
Figure 25 : Power Dissipation (device only) vs.
Output Voltage (see fig. 4).
6~S21'
G·I,!I'5
Ptot
Vi ::35V
IW)
VozY,.t
f--
'Yj=35V
'=looKHz
Tj=I25-C
r-c-- r-
j0:--±:;:. ;;::.. ~
~ ;..::::- ~
lo=2A~
I-
~~
Q:::
fCC-
_.
80 I---
-
I
70
60
I . -"--
-
--
....-
~'/
MBR1045
-
50t(Hz
100KHz
-+--t~
~V
50
--
f~ZSKH~
~ r-
MBR1045
IIV~
!
....::::::
200KHz
-
I
diod.N8R 1045 (Sch~t~~)
--
-- --
21
"
13
Yo (V)
Figure 27 : Voltage and Current Waveforms at Pin 2
(see fig. 4).
Figure 28 : Efficiency vs. Output Current.
-
·2
f-++
(V)
Vj =35V
Vo",V,.f
~
I !
---;--,- _.. -
--
I")
t;25KH~
Vl",35
1---
80
70
·2
1
30
~
~V
60
~V
( A)
'2
20
---
--
~OKHz
~
100kHz
-+- .
50
I
10
r--
200KHz
I
-+--
diode-MBA MU.5{Schottky 1
o
200 400
I--f-
t (ns)
600 800 000
Figure 30 : Efficiency vs. Output Voltage.
Figure 29 : Efficiency vs. Output Voltage.
G 5252
'l
I'.
)
Yo :Yr.'
f",lOOKHz
f='50KH z
/
'10
..,
60
r-- -
~-:;;;
f-- -
~
80
Vj=15V
V :::::- --
70
+
~ F-
./ /'
I: ~
70
60
-~
(SCHOTTKY)
-
I
t-i
lo=2At04A
YI_35V
50
DIODE ""BRI04S
IJ
242
100KHz
DIODE ""BRI04S
1---
14/23
-
)
r--
."1'
~
SGS-THOMSON
~DICIB@I-659812
. _ _ _ _1
Figure 37 : 12 V110 A Power Supply,
l!
1O.000JJF SOY
r~
I z.z
IOKfl
,12\1
nF
--0
"'~
@j
L .--------r~--~~
f ~':~=~
r-----. on.-
I
n",F
19123
247
l296-l296P
Figure 38 : Programmable Power Supply.
l
- -...- -
~-
...- -.... -_ ...-
·--·-1
80VA
rB4v~2~51~--~~--------'
20V~
10
Kfl
--_--05-5832/5
I
V o =5.1t015V
10 = 4 A max. (min. load current = 100 mAl
ripple <; 20 mV
load regulation (1 A to 4 A) = 10 mV (V 0 = 5.1 V)
line regulation (220 V ± 15 % and to 10 = 3 A) = 15 mV (V
~----.-
...
-
...
_
I
I
0
...
= 5.1 V)
_-_ ..
J
_-_
.•.
_
.... _
..
_--._-
Figure 39 : Preregulator for Distributed Supplies.
L--r--~-T---~~5V
n L2 and C2 are necessary to reduce the switching frequency spikes.
_ _ _ .•• _ _ .• _ _ _ .••._ _ _ _ J
20/23
248
L296-L296P
Figure 40 : In Multiple Supplies Several L296s
can be Synchronized As Shown.
Figure 41 : Voltage Sensing for Remote Load.
300,oH
IOn
-L- T
.,
"
SYNC
OSC
-
"
OSC
SYNC
!
J
L
B
-<)-------
.,
10
II
C
----t-----D-
I
-----.---
__J
10n
GND---4------------~--~r-~5~5~"~"~"
Figure 42 : A 5.1 V/15 V/24 V Multiple Supply. Note the Synchronization of the Three L296s.
-
..
-
-
------,
I
3~fi
2--
)
3~~,14r
t -Ll-+
•
I 2x
J1;>0I'F
avWOOT40vT
s- 5811
18
Kfi
Vo =24V
47
/L
21/23
249
L296-L296P
Figure 43 : 5.1 V/2 A Power Supply using External Lirniting Current Resistor and Crowbar Protection on
the Supply Voltage (L296P only).
5.1V12A
I
5-9347
.~~
..
~----------------------------------.--.-
SOFT-START AND REPETITIVE POWER-ON
When the device is repetitively powered-on, the softstart capacitor, Css, must be discharged rapidly to
ensure that each start is "soft". This can be achieved economically using the reset circuit, as shown
in Fig. 44.
The approximate discharge tirnes obtained with this
circuit are:
In this circuit the divider R1, R2 connected to pin 12
determines the minirnum supply voltage, below
which the open collector transistor at the pin 14 output discharges C ss .
If these times are still too long, an external PNP
transistor may be added, as shown in Fig. 45 ; with
this circuit discharge times of a few rnicroseconds
may be obtained.
Figure 44.
Figure 45.
---~-
..
eSs
IDIS
2.2 ~F
4.7 ~F
10 ~F
200 ~s
300 ~s
600 ~s
-------
~--~~-------,
5
12
14
5-9479
S-91.,78
e55
22/23
250
l296-L296P
HOW TO OBTAIN BOTH RESET AND POWER FAIL
Figure 46 illustrates how it is possible to obtain at
the same time both the power fail and reset functions simply by adding one diode (D) and one resistor (R).
In this case the reset delay time (pin 13) can only
start when the output voltage is Va? VREF - 100 mV
and the voltage across R2 is higher than 4.5 V.
put pin 12 hysteresis in order to increase immunity
to the 100 Hz ripple present on the supply voltage.
Moreover, the power fail and reset delay time are
automatically locked to the soft start. Soft start and
delayed reset are thus two sequential functions.
The hysteresis resistor should be in the range of
about 100 KQ and the pull-up resistor of 1 to 2.2 Kn.
With the hysteresis resistor it is possible to fix the in-
Figure 46.
PULL- UP RESISTOR
rt----71-.. . . fYn~-..-_{) va = 5.1 V
o
RESET OUT
R
5- 9573
23/23
251
L297
L297A
~~~~~
•
•
•
•
•
•
•
•
•
~
---
--~-
-----~
--
STEPPER MOTOR CONTROLLERS
~-
~-~
~----~
---~
---~-~-~-----
~-
-~
------
and mode input signals. Since the phase are generated internally the burden on the microprocessor, and the prograrnmer, is greatly reduced.
Mounted in a 20-pin plastic package, the L297 can
be used with monolithic bridge drives such as the
L298N or L293 E, or with discrete transistors and
darlingtons. The L297A also includes a clock
pulse doubler.
NORMALIWAWE DRIVE
HALF/FULL STEP MODES
CLOCKWISE/ANTICLOCKWISE DIRECTION
SWITCHMODE LOAD CURRENT REGULATION
PROGRAMMABLE LOAD CURRENT
FEW EXTERNAL COMPONENTS
RESET INPUT & HOME OUTPUT
ENABLE INPUT
STEP MULSE SOUBLER (1297a only)
The L297 Stepper Motor Controller IC generates
four phase drive signals for two phase bipolar and
four phase unipolar step motors in microcomputercontrolled applications. The motor can be driven in
half step, normal and wawe drive modes and onchip PWM chopper circuits permit switch-mode
control of the current in the windings. A feature of
this device is that it requires only clock, direction
ABSOLUTE MAXIMUM RATINGS
-~~---11In;:~;~:;~---~-~~----Ptot
2sr~:_~
Total power dissipation (Tamb ~ lO'C)
__ ~torag_e and junction temperature
~~~-
TWO PHASE BIPOLAR STEPPER MOTOR CONTROL CIRCUIT
CLOCK
-~
"
-
7
HALFIFD'lL
19
ENABLE
-
__
--
110
'--T--T-...J
SENSE2
cow ROc
s'"c~ "0"'- -~ -
01 toOS ~ 2A FAST DIODES
'---~~~~~---~----~---
September 1988
STEPPER
MOTOR
WINDINGS
'0
Vrli'f
,qSIRS2~O_5fi
+- +-+-'
J 02
13 03
L298N
L297
IlR
r
s
,1
04_-+_+-+-+-,
05
1
06
OJ
08
R"
r
~------ -~-~~~~~-~ ~-~-
-----
~
1/9
2.53
L297-L297A
PIN CONNECTION (L297)
-
~
SYNC
20
GNO
19
~ HALF/FULL
HOME
18
0
CLOCK
17
D
CW/CCW
16
~
A
l297
INH 1
RESET
OSC
B
15
Vref
C
14
SENS 1
INH 2
13
SENS 2
0
12
Vs
11
CONTROL
ENABLE
10
5-5839
BLOCK DIAGRAM (L297)
A
INHl
B
C
INH2
0
1-----+--0 ENABLE
RESET
(}
TRANSLATOR
DIRECTION
(CWICCW)
ClOCK
t---+---~r-
_.. ___
------
42 V; Vss ~ 5 V, T) ~ 25 OC ; unless otherwise specified)
_T_e_stCo_n_d_ition~_
i
Typ.
Min.
Max.
Vss
Logic Supply Voltage (pin 9)
4.5
Quiescent Supply Current
(pin 4)
Is
I
Ven=L
VI
=L
V,
=
H
[-
Unit
----
J"llPp~)'Voltage.Jpin 4 )_______O_p~e_r_a__
ti_ve_C_o_n_d_it_io_n__ I~~_+_2_.5t-___+
_ V s_ _
I
___Parame~
~
-------
46 ---j_____
V _
_____
5
f·····
7
13
V
22
-
_?~.mA
50
VI=X
t------t-------------+-~----~--_+----+_----r___---
I
Quiescent Current from Vss
(pin 9)
Iss
I
'!.'_= L___
I
2_,"-_~
___
VI = H
I-v::;--~-L---V~=-;------
.__
7 ___12
6
mA
I
1
+-~~---~--+---+---+---
Input Low Voltage
(pins 5.7,10,12)
V'L
- 0.3
.
1.5
f---------+-'----------'--------------+-----------------J---+-------1
Input High Voltage
f - - - - - - + - " -(pins
- - - -5,7.10,12)
- ' - - ' - - - - ' - - ' - - - - - - - - - I - - - - - - - - - - - + ' _2_.3__...,[_ _ _ !
V,H
IlL
I
I'H
'1'
Low Voltage Input Current
(pins 5,7,10,12)
V,
High Voltage Input Current
VI = H oS Vss - 0.6 V
=
L
I_
t-=1oI
.
30
.
---1-.--
·---t-
1.5
Vss
,
High Voltage Enable Current
100
-.---
; - 0.3
2.3--
,IA
-~
I
V
I
- 10
Low Voltage Enable Current
(pins 6,11)
len = H
Vss
f
---1._("-p._in_s_5,.?:~t...~) ________ -+---------V en = L
I Enable Low Voltage (pins 6,11)
f---V-en-= H ---En~ble High Voltage (pins 6,11)--- - - - - - f..-._ _ _ _
V
I
Ven = H oS Vss - 0.6 V
30
100
IlA
f -_ _ _ _+_(~p-in-s-6~,-11~)---------+_~--------i---
_LI_s_0_u_rc__8_s_a_tur_at_io_n_v_o_lt_ag_8___ 1:2_1_:_ . ____~
_V_C_E_s_a_1I_H_I
_f>_:_~_-l :~ _v~
3/9
265
L298N
ELECTRICAL CHARACTERISTICS (continued)
Symbol
VeE sat
Parameter
Test Conditions
Min.
IL = 1 A (5)
Sink Saturation Voltage
(L)
-.~
IL = 2 A (5)
VeE
IL = 1 A (5)
Total Drop
sat
--
Typ.
1.2
_._--1.7
---
-1
T, (Vi)
Source Current Turn-off Delay
(4 )
(4 )
(1)
2
1.5
V
ps
T 2 (Vi)
Source Current Fall Time
0.9 IL to 0.1 IL(2)
Source Current Turn-on Delay
0.5 V, to 0.1 I L(2)
T4 (Vi)
Source Current Rise Time
0.1 I L to 0.9 I L(2)
(4)
T 5 (VI)
Sink Current Turn-off Delay
0.5 Vi to 0.9 I L(3)
(4)
T6 (VI)
Sink Current Fall Time
0.9 IL to 0.1 I L(3)
T7 (Vi)
Sink Current Turn-on Delay
0.5 Vi to 0.9 I L(3)
(4)
1.6
ps
T8 (V,)
Sink Current Rise Time
0.1 IL to 0.9 I L(3)
(4 )
0.2
,IS
Ie (VI)
Commutation Frequency
IL = 2 A
Source Current Turn-off Delay
0.5 Ven to 0.9 IL(2)
T2 (Ven )
Source Current Fall Time
0.9 IL to 0.1 I L(2)
T3 (V en )
Source Current Turn-on Delay
0.5 Ven to 0.1 IL i2 )
T4 (V en )
Source Current Rise Time
0.1 IL to 0.9 I L(2)
T5 (V en )
Sink Current Turn-off Delay
0.5 Ven to 0.9 I L(3)
T 6 (V en )
Sink Current Fall Time
0.9 IL to 0.1 IL(3)
T?(Ven)
Sink Current Turn-on Delay
0.5 Ven to 0.1 I L(3)
Ts (V en )
Sink Current Rise Time
0.1 IL to 0.9 I L(3)
Ie (V en )
Commutation Frequency
IL = 2 A
(4)
(4 I
0.2
ps
2
,IS
0.7
ps
0.7
ps
0.25
lIS
25
(4 )
(4)
(4 )
(41
i4 )
141
(4 )
(4 )
40
3
Figure 1 : Typical Saturation Voltage vs. Output
Current.
J-ls
ps
0.3
,IS
0.4
,IS
2.2
ps
0.35
ps
0.25
,IS
0.1
J-lS
1
KHz
Figure 2 : Switching Times Test Circuits.
J.
VSAT
(V)
Vs=42V
vss =5V
H
2.4
/L
2.0
/
1.6
,/'
~ /'
1.2
0.8
---
0.4
o
0.4
0.8
'.2
'.6
2.0
2.4
Io(A)
KHz
1
1) Sensing voltage can be -1 V for t ~ 50 )lsec; in steady state Vsens min:::: - 0.5 V.
2) See fig. 2.
3) See fig. 4.
4) The load must be a pure resistor.
5) PIN 1 and PIN 15 connected to GND.
266
V
T 3 (Vi)
T, (V en )
4/9
V
4.9
Sensing Voltage (pins 1, 15)
0.5 Vi to 0.9 I L(2)
1.62.3
3.2
IL = 2 A (5)
Vsens
Unit
rMax~ -
5o_S85211
Note: For INPUT Switching, set EN = H
For ENABLE Switching, set IN = H
L298N
Figure,3 : Source Current Delay Times vs. Input or Enable Switching.
,...-----------~-~-.-
Imax(2A)
90·'. -
10·1.
-
"
--
--
-----T1
Ven · (4V)
I
50.1.
..- - - - -
-------------7
\;:-----------.7
T3
T2
~ \.-----------------11'
J
r
t
T4
t
5_ 5853/2
Figure 4 : Switching Times Test Circuits.
VSS=5V
VS=42V
Note: For INPUT Switching. set EN = H
For ENABLE Switching, set IN = L
5/9
267
L298N
Figure 5: Sink Current Delay Times vs. Input 0 V Enable Switching.
go-,. --+------_-_-_-_-_-_-_-_-_-_-_-_-_-j-_-:-r.,.---
Imax(2A)
\---- -------.A
10"1. -
T7
T6
TI
.1
{---------------\
I ma.(2A)
90".
10 .,.
---:- -.- - -_/_------- -'\=---------.--(---~- \
T7
T8
T5
1
-
--
-
--
T6
.1
y---------- -----\
5-10667
- - - - - - - - - - - - _ .. _--------
Figure 6 : Bidirectional DC Motor Control.
Inputs
Function
! C = H; D = L
I
Ven = H
C = L;
D= H
Ven=L
C=X, D=C
Turn Right
Turn Left
r,~ . fC-._=_==_D~-.~~~~~~;=F=a=st=M=--o!=-o-r--S--t-o-p---_---11
"I
.
TO
CONTROL
CIRCUIT
l'
L= Low
~I
o
RS
01 TO D4;IA FAST RECOVERY DfODE(trr-'!200n5)
6/9
268
~
H = High
Free Running
Motor Stop
x == Don't care
L298N
Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4
and channel 2 with channel 3.
----------
Vs
Vss
fOO nF
9
:J..
ENABLE
INI
OUT 1
IN 2
OUT 2
10
13
12
14
APPLICATION INFORMATION (Refer to the block diagram)
1.1. POWER OUTPUT STAGE
The L298N integrates two power output stages (A ;
B). The power output stage is a bridge configuration
and its outputs can drive an inductive load in common or differenzial mode, depending on the state of
the inputs. The current that flows through the load
comes out from the bridge at the sense output: an
external resistor (RsA; RSB.) allows to detect the intensity of this current.
1.2. INPUT STAGE
Each bridge is driven by means of four gates the input of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.
The In inputs set the bridge state when The En input is high; a low state of the En input inhibits the
bridge. All the inputs are TTL compatible.
2. SUGGESTIONS
Each input must be connected to the source of the
driving signals by means of a very short path.
Turn-On and Tum-Off: Before to Turn-ON the Supply Voltage and before to Turn it OFF, the Enable
input must be driven to the Low state.
3. APPLICATIONS
Fig 6 shows a bidirectional DC motor control Schematic Diagram for which only one bridge is needed.
The external bridge of diodes 01 to 04 is made by
four fast recovery elements (trr <; 200 nsec) that
must be chosen of a VF as low as possible at the
worst case of the load current.
The sense output voltage can be used to control the
current amplitude by chopping the inputs, or to provide overcurrent protection by switching low the enable input.
A non inductive capacitor, usually of 100 nF, must
be foreseen between both Vs and Vss, to ground,
as near as possible to pin 8 (GND). When the large
capacitor of the power supply is too far from the IC,
a second smaller one must be foreseen near the
L298N.
The brake function (Fast motor stop) requires that
the Absolute Maximum Rating of 2 Amps must never be overcome.
The sense resistor, not of a wire wound type, must
be grounded near the negative pole of Vs that must
be near the GND pin of the I.C.
An external bridge of diodes are required when inductive loads are driven and when the inputs of the
When the repetitive peak current needed from the
load is higher than 2 Amps, a paralleled configuration can be chosen (See Fig.?).
7/9
269
L298N
IC are chopped; Shottky diodes would be preferred.
Fig 9 shows an example of P.C.B. designed for the
application of Fig 8.
This solution can drive until3 Amps In DC operation
and until 3.5 Amps of a repetitive peak current.
Fig 10 shows a second two phase bipolar stepper
motor control circuit where the current is controlled
by the I.C. L6506.
On Fig 8 it is shown the driving of a two phase bipolar stepper motor; the needed sig nals to drive the
inputs of the L298N are generated, in this example,
from the IC L297.
Figure 8 : Two Phase Bipolar Stepper Motor Circuit.
This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.
'5
l6V
'.lnf
Z
osc
16
11 A
4
8
c
STEPPER
MOTOR
WINDINGS
CONTROL
5-5846/4
RS1 = RS2 = 0.5 Q
Dl to D8
2 A Fast diodes
{
VFS1.2V@I=2A
trr S 200 ns
_______________________
8/9
270
I
L298N
Figure 9: Suggested Printer Circuit Board Layout for the Circuit of fig. 8 (1 : 1 scale)
Figure 10: Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.
5"
:J6U
1senF
EN.B
EN.A
RESET
14
13
PHASE
INPUTS
{
•
5"
22.
L5585
12
1.
11
12
L298N
1~ ~1=r=:;Hh
11
22'
15
,.
14
•
f-f-f-HH
17
3.9nF"
1
••
nS8L2!JBN-Bt
RR and Rsense depend from the load current
9/9
271
L387A
VERY LOW DROP 5V REGULATOR
PRECISE OUTPUT VOLTAGE (5 V ± 4 %)
VERY LOW DROPOUT VOLTAGE
OUTPUT CURRENT IN EXCESS OF SOOmA
POWER-ON, POWER-OFF INFORMATION
(RESET FUNCTION)
• HIGH NOISE IMMUNITY ON RESET DELAY
CAPACITOR
L387 A particularly suitable for microprocessor systems. This output provides a reset signal when power is applied (after an external programmable delay) and goes low when power is removed, inhibiting the microprocessor. An hysteresis on reset
delay capacitor raises the immunity to the ground
noise.
•
•
•
•
DESCRIPTION
The L387A is a very low drop voltage regulator in
a Pentawatt® package specially designed to provide stabilized SV supplies in consumer and industrial applications. Thanks to its very low input/output voltage drop this device is very useful in battery powered equipment, reducing consumption and
prolonging battery life. A reset output makes the
Pentawatt®
ORDER CODE: L387A
'----_.----------------
ABSOLUTE MAXIMUM RATINGS
r
Sym-vl-bo-,-'
F~~';;;;;~lnput VOlt~-ge--p-ar.!.m-e-t-er
-~-----.J. -==V_:I~e
. 'T:~I Oper~ti-;;-g T~~p~rature R~nge·
US~g, TJ
I-Storage
--=]--JJ~it-1
- 40 to + 125
~~d Junction Tempe_ra_tu_re_ _ _ _ _ _ _ ._.
___
-_40_tO_+_15_0_
°C
I
'£J
..
APPLICATION CIRCUIT
OUTPUT
VOL TAGE
I Nv--._---l
I
lOOn F
5
"
t-~---.--U.
L387 A
U
I KJl
J200~F
5V
*
RE ET
OUTPUT
5-5636/1
• Min 33
~F
and max. ESR
September 1988
0; 3 Q
over temperature range.
1/4
273
L387A
CONNECTION DIAGRAM (top views)
L1:l
@
\V II
51
4
1
+VOUT
: DELAY CAPACITOR
(Cd)
:~
/
(tab connected to pin 3)
'"'' ~"::~
5 - 5307
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ ..._ _ _ _ ... _ _ _ _ _ . _ _ _ .
BLOCK DIAGRAM
- _..- - _ . - - - _ . _ - _ . _ - - - - - - - - - - - _ . _ - _ . _ - - - - - - - -
-----------
OUTPUT
INPUT
10~~--------------------~-------
--------1>----05
RESET
OUTPUT
--1--v2
GROUND
Cr-~------+-----~--~--~------~--------~---~-----~-Q)
THERMAL DATA
Rth
274
j·e a s e I
Thermal Resistance Junction-case
Max
I
4
'c/w I
l387A
ELECTRICAL CHARACTERISTICS (refer to the test circuit, V, = 14.4 V, Tj = 25 DC, Co = 100 IlF;
unless otherwise specified)
~mboll_=-~param-eter - 1I
~
Vo
V,
t-
-- - ~!est Cond~ClI1.s ~- mA to 500 mA
,n. O~er F~I-T Ra~ge
tlli1i~
TYP-"-11- lIi1ax .
T J = 25 DC
4 80
5 00
40 "' T J "' 125°C
4 75 I 5 00
(- 40 to 125°C) - - - - : - - - -
-
,(see note H)
I
II" Unit
5.20
5 25
26
-~I
V
t--I
V
I'
~~ot~,::;- !~.:: ~~'~~:O;;;A-,=5'''------l 155t-~-1 :~
V, -
'
~ =5
Output Voltage
Operating Input
Voltage
I
I
t
~a
-Dropout Voltage
II: =
'1
nl-A--;-~-~----=-1 0 0 - - ; -
350
10 = 500 mA
Quiescent Current
0 -
0 NOM
m
0.40 r-D.'6-5-r0.60 • 0,8
:
I - 0 mA
I: : 150 mA
10 =350 mA
'I
5
20
60
I
'
I
V
I
15
35
100
j
I =~2V----' -:: :~~~ :~----l ~~~ T~:~I
I
[20==3~gO:~
_0~ ~~.~ ~z± 5~_ ---+ h t
mA
,1/;
Temperature
!
Output Voltage Drift,
~~j:~~o~oltage
IA = 16 mA
Voltage
1.5 < Vo < 4.75 V
_OverFu~T(:::~ DC _"' T J "'~5 DC)
Reset Output
Leakage Current
Vo in Regulation
Over Full T Range
---
Delay Time for
Reset
_.. Output
._---
Cd = 100 nF
Over Full
T Range
_._..
Charging Current
(current generator)
V4 = 3 V
__
__
__. _ - _ .
r-V_AT_(O_II_)+-___._ _ _ _+-~~II~ ::~~teout H to L Transition,.:v_e_r_
IC4
VAT (on) Power on
1--_ _-+-_V._oThresh.'l~
,
mV;oC
'I
l'
T-r
I
~~:;n~utPut-- IA.:3mA-----.1g
I.
OUT
1
17
OUT
2
16
OUT
3
~
15
OUT
4
iN 5
,.
OUT
5
iN 6
13
OUT
6
iN 7
"
OUT
11
OUT 8
IN
•
GND
10
~~~~~I%GF~I~~ES
5-349011
-----
SCHEMATIC DIAGRAMS
L601
L602
COM
__------~--.-~aUT
iNo-~--------~~
I
L-J+---------
_J
EACH DRiVER
5- 31.89
L603
L604
i
2.7kn
iN 0
r--e:::J-
--r
I
~-+ -~--oOUT
~----<
•
,
L~
L
-1+-
EACH DRIVER
2/3
278
i
t.....
L-J+s-
1989
EACH DRIVER
_ J
5_2574
L601-L602-L603-L604
THERMAL DATA
ELECTRICAL CHARACTERISTICS (Tamb = 25 'C, unless otherwise specified)
SY;;'-b~-'T--
-----
----
Test conditions
Parameter
T' Mi;- ~TY~. =LMaX'-rU~itj
1 --
---
ICEX
.1 Output Leakage Current
VCE
~
90V
------
VCE!, a II
i Collector Emitter Saturation
r-_~~e~
h FE
DC Forward Current Gain
(L601 only)
-----
V,
.... - - - - -
V,
Minimum Input Voltage
(ON condition)
-----
-----
----
Maximum Input Voltage
(OFF condition)
1---Clamp Diode Reverse
IR
Current
VF
Ic
Ic
Ic
~
~
~
VCE
Ic
3V
~
---
-
~
1.7
1.2
f--
t - - 1---
-
--
c---
-----
0.55
7
0.75
-- f--- .-
t--2
Turn·on Delay
0.5 V, to 0.5 Vo
to ff
Turn-off Delay
0.5 V, to 0.5 Vo
----
-----
11.5
2.5
5
V
V
V
----
----
V
V
V
V
. _ - - ---50
flA
2.4
V
- -
0.4
--
V
V
V
25 flA
300 mA
1------
-1-
-
1000
---
flA
300 mA
---
~
10
--C- 2
,
300 mA
------
I
90 V
ton
I-
~
---- - ----
Ic
VeE ~ 3 V
for L602
for L603
for L604
f-------VCE ~ 90 V
Ic
for L601
for L602
for L603
for L604
IF~
- -
~
-----
18 ~ 500 ,LA
18 ~ 350 flA
18 ~ 250 flA
300 mA
200 mA
100 mA
------- ----
VR
Clamp Diode Forward
Voltage
------
----------
---
f--
0.4
.
fls
----
---
fls
3/3
----- - - - - - - - -
279
L702
2A QUAD DARLINGTON SWITCH
- -- - - - - - - - - - - - - - - - ----I
• SUSTAINING VOLTAGE: 70 V
.2 A OUTPUT
• HIGH CURRENT GAIN
• IDEAL FOR DRIVING SOLENOIDS, DC MOTORS, STEPPER MOTORS, RELAYS, DISPLAYS, ETC.
. •. •._•. .•. .• .• . .•.•. . .• . .• .• • .• . . •. . . •. . .
n
•....•....••.•....
\',"'-,,,,,\-.,,
,
-""',"'"\,,,",,,,,,\\
Multiwatt-11
DESCRIPTION
The L702 is a monolithic integrated circuit for high
current and high voltage switching applications. It
comprises four darlington transistors with common
emitter and open collector suitable for current sinking applications mounted on the new POWERDIP
and Multiwatt® packages.
Powerdip 8 + 8
ORDER CODES:
This circuit reduces components, sizes and costs;
it can provide direct interface between low level logic and a variety of high current applications.
L702B - Powerdip
L702N - Multiwatt
ABSOLUTE MAXIMUM RATINGS
-------------
---
---
--
Parameter
Symbol
Value
--90
- _I
Unit
U
---.~----
VCEX
V,
Collector-emitter Voltage (input open)
._---
--
- - -
Input Voltage
----------
- - - ------
Ic
PIal
V
. _ -f----
Collector Current
3
A
4
W
Total Power Dissipation at Tease oS 90
'c
} Powerdip
Multiwatt
---_._-
T)
V
Total Power Dissipation at Tpin 9 to 16 oS 90'C
Total Power Dissipation at Tamb oS 70'C
TSl g
i
. - - - -c---- .
30
--
.---
1.1
W
20
W
--_._------f----
Storage Temperature
-55to 150
°c
Operating Junction Temperature
- 25 to 150
·C
------,~-----
September 19_88
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
1/4
281
L702
STEPPING MOTOR BUFFER
--
~I·
~·~~f
I 1
L 7028(N J
01)
Zl!
~
'}'-F-k~~'ffi
'~.v
Q1
,
(10)
11"
I
Z1
'~,eell" 1,
I __J
-Q ...
...
6
I)
8c=J-r< 141
Z4
I,oo.uF
I)
9
15
6)
,,-
J"~"
CONNECTION DIAGRAMS (top view)
Powerdip
Multiwatt
---.---~~
~.
-~~-
5-31,80/Z
81
1
~
16
-$-
I
82
1
15
3
14
C2 4
13
5
12
C4 6
11
Cl
GND
C3
83 7
84
~
10
9
nc
a
Cl
7
C2
6
GND
5
C3
C4
3
nc
2
63
64
~
e
THE TAB 15 CONNECTED TO PIN 6
--~-----
SCHEMATIC DIAGRAM (each Darlington)
----------------~-------
C
34011
--4----4--<1 GND
5-3486/1
282
61
62
4
--~-
2/4
11
10
5-3749
L702
THERMAL DATA
R1hj-amb
Thermal Resistance Junction Ambient
Rth j-pins 9/16
Thermal Resistance Junction Pins 9 to 16
Rth J-case
Thermal Resistance Junction-case
} Powerdip
Max
70
'C/W
14
Multiwatt
Max
Max
'C/W
'CIW
ELECTRICAL CHARACTERISTICS (Tease = 25
Symbol
Parameter
- - - -- - - -
I CEX
-------------- - - - - ---
Output Leakage Current
n Sustaining
VCEls u s II
VCEls all
Collector Emitter Saturation
Voltage
Test conditions
Vi
Ton
Toff
---
Min.
---
Typ.
Max.
Unit
10
50
(lA
-
70
Ic = 100 mA
V
-----1-._---_._--------------- - - - -1----- ---1_9
Ic = 1.25 A
1.3
Ii =2mA
DC Forward Current Gain
1000
Ic = 1 A
VCE = 3 V
-----,-~
Ii
unless otherwise specified)
VCE = 90 V
Collector Emitter
Voltage
hFE
r----
'c
3
-
- _ .._-
- - ._---
Input Current
V
4000
[----
Vi=3.75V
7
V, = 2.4 V
3
Open Collector
- - - - - - - - - -1 - - - - - - - - - - - - - -------Off Condition
Ic <: 0.1 mA
Input Voltage
VCE=70V
-------On Condition
2.4
VCE = 3 V
Ic21 A
-----0.3
Turn On Time
Vs=12V
1
Turn Off Time
RL = 10 n
--- - - - 11
mA
mA
6
0.4
I
Figure 1 : Switching Time.
-----
I
----V
V
._--
~--
Figure 2 : ton and toff Test Circuit.
Vio------!
>-------Ovo
JLzv
ton
toff
3/4
283
L702
~----~~---.-----
Figure 3 : Peak Collector Current vs. Duty
Cycle and Number of Outputs
(L702B only).
Figure 4 : Collector Emitter Saturation
Voltage vs. Collector Current.
t-f-
G·40e9
)
)
)
Tamb =70 0 C
t--t-
j-j---
I-
T::::1QOms
I~
1.5
-
-
-~
f-+j-
-
..I"V
2
0.5
1----
~:;;; - - -
3
4t--
t--
f-i
F
f-17?'-~
V l-l
_/v V__ hFE060t
t-
-
-
~~
_~;2"'- ~ ~+
1
-~
~
1-1-
I~-
G-360J
t-
1-1
I
:
r
-ft -,
~
r
.
II
'
;
,J-
f--
-f.-I-~ 1-+-+I ;
ICIA)
10"1.
Figure 5 : Collector Current vs. Input
Voltage.
Figure 6 : Input Current vs. Input Voltage.
G-3601
G-J602
T
Ie
-
CA )
-
t
-
~~
f7' f-I-
-I--
f-j
~-
t-I
1--
t-
I--
f-rf
lf-f--
VeE ",3V
I~I-I--
\f-l-- l--I-l--l-l-- -I--
I-- l-- - L
I--
t-
tt
J
+-+- -+- t-
~
a~1 I
GJ6
Ie
"
CA) • r--
,,"-----
~_L
SINGLE PULSE
H
oe
"E
,"f::=I---
f-'
I-, I---
40
_.1-fI-- I--f--
V 1--1--
-t-
--
t-
-
-
+-IIf-V
11
II i
:~
10
20
ttVj
(V)
Figure B : Safe Operating Areas (L702N).
G-408211
Ie
·
f4=1:
ttT
SINGLE PULSE
__ L~ I
500IJ
1\:
De
,-
I\.
50 ,us
·
"
l\
, I---
~-
I
·,
"
,
I--~
I
t-
- I---
20
j--
1
V
-~
--
~i=-
10 -2
p-V
-
',//
30 f-
5ms !
sOOps'
!/50jJS
-
i-
l-
.,
,
-
f-
1--++
I'"
,-
-
50
CA)
]
,
60 I--
+.-t-
Figure 7 : Safe Operating Areas (L702B).
--t- -t-
1--
I-- I-f-
10
t-
Il
Cm ~-
I- I--t-.~
-
---
th"
l:;:;pl--
,
."
10
I
10
1
2
1
."
I
i
10
4/4
~-----
284
~~----
L2720/2/4
LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS
PRELIMINARY DATA
•
•
OUTPUT CURRENT TO 1A
OPERATES AT LOW VOLTAGES
•
•
SINGLE OR SPLIT SUPPLY
LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
•
•
•
LOW INPUT OFFSET VOLTAGE
GROUND COMPATIBLE INPUTS
LOW SATURATION VOLTAGE
•
•
They are particu larly indicated for driving, inductive loads, as motor and finds applications
in compact-disc VCR automotive, etc.
The high gain and high output power capability
provide superior performance whatever an operational amplifier/power booster combination is
required_
'"
~
"
..............•........••..•... C'>
\
THERMAL SHUTDOWN
. ......•
.,
CLAMP DIODE
The L2720, L2722 and L2724 are monolithic integrated circuits in powerdip, minidip and SIP-9
packages, intended for use as power operational
amplifiers in'a wide range of applications including servo amplifiers and power supplies.
, ,
Powerdip
(8 + 8)
,
/>.
.<;<.,),<+i>.
:""0,
\
~/.'"
/"".
a
I
\
\
Minidip
Plastic
SIP-9
ORDERING NUMBERS:
L2720
L2722
L2724
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Peak supply voltage (50ms)
Input voltage
Differential input voltage
DC output current
Peak output current (non repetitive)
Power dissipation at Tamb = 80°C (L2720), Tamb = 50°C (L2722)
T case = 75°C (L2720)
.
Tease = 50°C (L2724)
Storage and junction temperature
28
50
Vs
± Vs
1
1.5
1
5
10
-40 to 150
V
V
A
A
W
W
W
°c
BLOCK DIAGRAMS
--03
L2720
June 1988
L2722
L2724
1/7
285
L2720/2/4
CONNECTION DIAGRAMS
(Top view)
,---iF==9i\:===JNPUT-l
16
GNO
OUTPUT t
15
GND
SUPPLV VOLTAGE
14
GND
13
GND
INPUT -2
12
GNO
JNPUT.2
11
GHO
INPUT.,
10 GND
INPUT -1
9
OUTPUT 1
OUTPUT 2
1
3
GND
.2
8
INPUT_I
7
INPUT+!
OUTPUT 2
6
INPUT.2
GND
5
INPUT_2
1~==::>JNPUT+l
INPUT+2
o
1i===:>JNPUT-2
1t:::==:>GNO
N.C.
I~==:::>OUTPUT 2
1F===vs
L2722
'---~4J...lJJl====OUTPUT 1
5-9748
GNO
L2724
S-~905
L2720
SCHEMATIC DIAGRAM (one section)
.v"
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-pins
Thermal resistance junction-albient
SIP-9
Powerdip
Minidip
max
max
• Thermal resistance junction-pin 4.
~2/~7_________________________ ~~~~~~~~:9~
286
---------------------------
L2720/2/4
ELECTRICAL CHARACTERISTICS (Vs = 24V,
Parameter
Vs
Single supply voltage
Vs
Split supply voltage
Is
Quiescent drain current
Tamb
= 25°C unless otherwise specified)
Test Conditions
Min.
TVp.
Max.
4
28
±2
± 14
Unit
V
=
Vo
Vs
Vs
2
Vs
~
24V
10
15
=
8V
9
15
0.2
1
!J.A
mA
Ib
Input bias current
Vos
I nput offset voltage
10
mV
los
Input offset current
100
nA
SR
Slew rate
B
Gain-bandwidth product
Rj
Input resistance
Gv
O.L. voltage gain
eN
f
=
100Hz
f
=
1KHz
1.2
MHz
Kn
=
22Hz to 22KHz
70
80
dB
60
Input noise voltage
IN
Input noise current
CMR
Common Mode rejection
f
SVR
Supply voltage rejection
f = 100Hz
RG = 10Kn
VR = 0.5V
=
1KHz
VDROP (HIGH)
10
!J.V
200
pA
66
84
dB
60
70
75
80
dB
dB
dB
Vs
Vs
Vs
=
=
=
24V
±12V
+
- 6V
Ip
=
100mA
0.7
Ip = 500mA
1.0
V
Vs
= ±2.5V to
VDROP(LOW)
1.5
± 12V
Ip
=
100mA
0.3
Ip
=
500mA
0.5
V
Channel separation
f
=
1 KHz
RL = 10n
Gv
Tsd
V/!J.s
500
B
Cs
2
=
30dB
Vs = 24V
Vs - 6V
Thermal shutdown
1.0
60
60
dB
145
°c
junction temperature
___________________________
~~~~~~~~~~
________________________~3/~7
287
L2720/2/4
Fig. 1 - Quiescent current
vs. supply voltage
Fig. 2 - Open loop gain vs.
frequency
Fig. 3 - Common mode
rejection vs. frequency, ""
·163
(dB )
10
(mA}H+-+-H+t-I-t--t--H++-lI-i
60
70
"'.
""5",24'1
'"'"
60
50
40
30
20
I"'.
'"
10
12
16
20
24
10'
I'"
'"
-
"'.
10'
Fig. 5 - Output swing vs.
load current (Vs = ± 12V)
Fig. 4 - Output swing vs.
load current (Vs = ± 5V)
G-&164
(v I
(V )
Vs ,,!5V
Vs:!11V
13
-..
I"
-
11
~
~~E
~~ r-
400
600
-
--
l- I-
-
1--- -- I--- f---
"'-
I
~~E----
--~~ ~f:"-'
I---
\0
100
'LOAO(mA)
Fig. 6 - Supply voltage
rejection vs. frequency
600
400
Fig. 7 - Channel separation
vs. frequency
G-61S2
(d B)
Vs:
G-G!3'
(dB )
1
121/
~~"'€:B
'0
l-
70
i'.
50
""
40
20
.......-
~t-t
re---
!
I---t
10'
I{Hz)
4~/~7-------------------------~~~~~~~~T:~~©~
288
i
""
50
30
10'
1
2V
70
I
!
I
i
,
I
i
i
I
i
10
___________________________
L2720 12/4
APPLICATION SUGGESTION
In order to avoid possible instability occurring
into final stage the usual suggestions for the
linear power stages are useful, as for instance:
layout accuracy;
A 100nF capacitor connected between supply
pins and ground;
boucherot cell (0.1 to 0.2 pF + H1 series) bet·
ween outputs and ground or across the load.
With single supply operation, a resistor (1 KQ)
between the output and supply pin can be
necessary for stabi I ity.
Fig. 8 - Bidirectional DC motor control with pP compatible inputs
V Sl = logic supply voltage
Must be V S2
E 1, E2
=
> V S1
logic inputs
s _ ~93111
Fig. 9 - Servocontrol for compact-disc
REFLECTED
BEAM
LASER
Fig. 10 - Capstan motor control in video recorders
DIGITAL
INPUT
- - - - - - - - - - - W'l
SCS-THOMSON
'], "
5/7
~~©iru@~~:!©'firu@fiilfl©:!i
289
L2720/2/4
~---------------------------------------------------------------------
Fig. 11 - Motor current control circuit
R7
RS
2.SKn.
36KO
IOKO
2.SKO
2·,.
50_593011
Note: The input voltage level is compatible with L291 (5-BIT D/A converter!
Fig. 12 - Bidirectional speed control of DC motors.
For circuit stability ensure that Rx> 2R3 o R1 where RM = internal resistance of motor. The voltage
RM
V
2R
Rl
available at the terminals of the motor is VM = 2 ( VI - __s__ ) + IRol. I M where I Rol = - - - - and
2
Rx
I M is the motor current.
0
Rx
Vin
Rl
10Kn
R2
lOKn
-'6/_7_ _ _ _ _ _ _ _ _ _ _ _ _
290
IOKn
~ ~~~~m~1J~:~~©~
--------------
L2720/2/4
Fig. 13 - VHS-VCR Motor control circuit
LOAOING MOTOR
CASSETTE MOTOR
uP
fM\ CAPSTAN
~
L2720
ZB
+
ORUM
®M MOTOR
L2720
.....
TDA
8114
RESET
____~_____________________
RIGHT
LEFT
REEL TACHO
MOTOR
0
0
~~~~~~~,~~
VHS2::0IS
5-9482
________________________~7/~7
291
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L2726
LOW DROP DUAL POWER OPERATIONAL AMPLIFIER
ADVANCE DATA
It is particularly indicated for driving inductive
loads, as motor and finds applications in compact-disc VCR automotive, etc.
•
OUTPUT CURRENT TO 1A
•
OPERATES AT LOW VOLTAGES
•
SINGLE OR SPLIT SUPPLY
•
LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
•
LOW INPUT OFFSET VOLTAGE
•
GROUND COMPATIBLE INPUTS
•
LOW SATURATION VOLTAGE
•
THERMAL SHUTDOWN
•
CLAMP DIODE
The high gain and high output power capability
provide superior performance whatever an operational amplifier/power booster combination is
required.
L'/~~
The L2726 is a monolithic integrated
in SO-20 package intended for use as
operational amplifiers in a wide range
plications including servo amplifiers and
supplies.
2~"'
circuit
power
of appower
80-20
(12+4+4)
1
ORDER NUMBER: L2726
ABSOLUTE MAXIMUM RATINGS
28
50
Vs
± Vs
1
1.5
Supply voltage
Peak supply voltage (50ms)
I nput voltage
Differential input voltage
DC output current
Peak output current (non repetitive)
Power dissipation at Tamb = 85°C
Tease = 75°C
Storage and junction temperature
BLOCK DIAGRAM
1
5
-40 to 150
V
V
A
A
W
W
°C
+vs
12
20
11
10
2
9
4~7 Jj4~j7
L2726-1 .- DIS
June 1988
1/4
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
293
L2726
CONNECTION DIAGRAM
(Top view)
+vs
OUT 2
N.C.
GND
GND
GND
GND
N.C.
N.C.
GND
GND
GND
GND
N.C.
IN 2 (-)
IN 1 (-)
IN 2 (+)
IN 1 (+)
L2726-2:: DIS
SCHEMATIC DIAGRAM (one section)
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient (*)
max
max
15.0
65
(*) With 4 sq. cm copper area heatsink
~2/~4_________________________ ~~~~~~?~:~~
294
___________________________
L2726
ELECTRICAL CHARACTERISTICS (Vs = 24V,
Parameter
Vs
Single supply voltage
Vs
Split supply voltage
Is
Qu iescent drain current
r--'
Tamb
= 25°C unless otherwise specified)
Min.
Test Conditions
Typ.
Max.
4
28
±2
± 14
Unit
V
Va
~
Vs
Vs
2
Vs
~
24V
10
15
~
8V
9
15
0.2
1
/lA
mA
Ib
Input bias current
Vas
I nput offset voltage
10
mV
los
Input offset current
100
nA
SR
Slew rate
B
Gain-bandwidth product
Ri
Input resistance
Gv
O.L. voltage gain
2
V//ls
1.2
MHz
Kn
500
f
~
100Hz
~
1KHz
70
80
dB
f
eN
Input noise voltage
IN
Input noise current
CMR
Common Mode rejection
f
~
SVR
Supply voltage rejection
f
~
B
~
RG
VR
60
10
/lV
200
pA
66
84
dB
60
70
75
80
dB
dB
dB
22Hz to 22KHz
1KHz
100Hz
10Kn
0.5V
Vs
Vs
Vs
~
~
VDROP (HIGH)
~
~
.-
24V
±12V
± 6V
Ip
~
100mA
0.7
Ip
~
500mA
1.0
Ip
~
100mA
0.3
Ip
~
500mA
0.5
V
Vs
~
±2.5V to ± 12V
VDROP(LOW)
Cs
Tsd
1.5
V
Channel separation
Thermal shutdown
f ~ 1KHz
RL ~ 10n
G v ~ 30dB
24V
Vs
Vs - 6V
~
I
1.0
60
60
dB
145
°c
junction temperature
3/4
295
L2726
Fig. 1 - Quiescent current
vs. supply voltage
Fig. 2 - Open loop gain vs.
frequency
Fig. 3 - Common mode
rejection vs. frequency, . ••, ,
0-616J
(dB
(08 I
70
""-
+"
'Is ~ 24 V
""-
50
......
""-
70
"
"5=24'1
I-
10'
- ~j .
1""-
""-
r*Ht
""-
-
""-
11--
f
1
I
""-
10'
0·6128
G-616'
('
"'s.!
I
1= -I···
i
'Is: ! 12'1
5V
-~
--
I
L
I
-- -
~ "-
i
-
--
I-
,-
~
........
........
~~E
~I~
-
f (Hz)
Fig. 5 - Output swing vs,
load current (V s = ± 12V)
Fig. 4 - Output swing vs.
load current (Vs = ± 5V)
(V )
10 4
~GATIVE
-
~~ ::-r=:::
~
~
10
r-- - 200
400
100
600
Fig. 6 - Supply voltage
rejection vs. frequency
600
ILOAO(mAl
Fig. 7 - Channel separation
vs. frequency
0-6162
(dB I
L
G-6131
(dB I
---
'i,;=S'12V
~', "\g:E
80
70
60
'0' "
.......
70
"I'\.I\.
60
70
20
I
I
~--tl
i
I
,
I
10'
~4/~4___________________________ ~~~~~~g~:~~~
296
'"
,./
50
I
10~
f(H z)
_____________________________
..r==
.,L SGS-THOMSON
~D©[ru@~[]J~©'[j'[ru@~D©~
L3654S
PRINTER SOLENOID DRIVER
The L3654S is a printer solenoid driver containing
ten open-collector d river outputs and a ten-bit
serial-in, parallel-out register.
Data is clocked into the shift register serially
and transferred to the open-collector outputs
by an enable input. Serial input data is loaded
by the rising edge of the clock. A serial output
from the tenth bit is provided which changes
at the falling edge of the clock. This output is
not controlled by the enable input and remains
active at all time.
clamped to ground internally at 50V to dissipate
stored energy in inductive loads.
The L3654S is supplied in a 16 lead dual in-line
plastic package, and its main fields of application comprise thermal printers, cash registers
and printing pocket calculators.
DIP-16 Plastic
(0.25)
The L3654S is pin to pin compatible with the standard L3654, but can work with V. down to 4.75V.
Each output is rated at 250mA (sink) and is
ORDER ING NUMBER: L3654S
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Input voltage
External supply voltage
OUtput current (single output)
Ground current
Total power dissipation (Tamb = 70°C)
Storage and junction temperature
V.
Vi
VE
10
19
Ptot
Tst9' T j
9.5
9.5
45
0.4
4.0
1
-65 to 150
V
V
V
A
A
W
°C
BLOCK DIAGRAM
OUTPUTS
10
V
OUTPUT 1
EN ENABLE
V
01
DATA
INPUT
5 - 5013/1
June 1988
1/4
297
l3654S
CONNECTION DIAGRAM
(top view)
OUTPUT ENABLE 1 [
16
Vs
OUTPUT 6
2[
15
OUTPUT 5
OUTPUT 7
3(
14
OUTPUT 4
OUTPUT 8
4[
13
OUTPUT 3
OUTPUT 9
12
OUTPUT 2
OUTPUT 10
11
OUTPUT 1
DATA OUTPUT
7
10 DATA INPUT
GND
CLOCK
5-5012
Fig. 1 - Timing diagram
VCLK
VDO
--n----:'IT I~~"'
~[-
L---.lt PDEL [
I
OUTPUT- -
-
-
-
-
-
~
r
-r--n ' , :
PDEH
L-----+--JijL
THERMAL DATA
Rth j-amb
Thermal resistance junction-ambient
~2/~4~__________________________ ~ ~~~~~?:~:~?~,
298
max
80
°C/W
_____________________________
L3654S
ELECTRICAL CHARACTERISTICS
(Vs = 5V,
vE =
30V, T amb = 0° to 70 oe, unless otherwise
specified)
Test conditions
Parameter
Vs
Supply voltage
Is
Supply current
Min.
Typ.
4.75
Tamb~ 25 c C
~
Vs
9.5V
VEN~
~
V
40
mA
2.6V
250 rnA (each bitl
55
70
mA
40
V
1
mA
65
V
1.6
V
External operating supply
voltage
I'eak
Output leakage current
(each outputl
VE
Vz
I nternal clamp voltage
Iz
~
0.3A *
VEN~
OV
VCE sat
Output satu ration voltage
10
~
250 mA
VEN~
2.6V
VDI
V CLK
V EN
Input logic levels
(pins 1,9,101
Low State (LI
IDI
Data input current
40V
9.5
27
VE
~
Unit
OV; VDO~ OV
VEN~
10
Max.
VEN~OV
45
50
0.8
V
High state (HI
VDI~
2.6V
2.6
Tamb~ 70 c C
0.3
0.57
mA
O°C
0.57
Tamb~ 70c C
220
Tamb~
VDI~
ICLK
Clock input current
1V
VCLK~
2.6V
Tamb~ 70°C
/1- A
0.33
mA
O°C
0.33
VCLK~1V
Tamb~ 70 c C
125
VEN~
Tamb~ 70 D C
Tamb~
lEN
0.2
0.75
Enable input current
2.6V
0.2
0.5
/1- A
0.33
mA
O°C
0.33
VEN~1V
Tamb~ 70 c C
125
Input pu II-down resistance
Clock input
Tamb~ 25 c C
V CLK
Enable input
Tamb~ 25°C
V EN
Data input
Tamb~ 25°C
VDI
Low state (LI
OV
IDO(pin 71~
Tamb~
R'N
V DO
Output logic levels
(pin 71
VDI~
< Vs
R DO
Output pull-down
resistance (pin 71
* Pulsed: pulse duration
~
VDI~
300/1-5, duty cycle
~
OV
Kn
8
< Vs
VDO~1V
/1-A
8
< Vs
High state (HI
VDI~ 2.6V
IDO (pin 71 ~ -0.75 mA
0.5
4.5
a
0.01
2.6
0.5
V
3.4
V
14
Kn
2%
3/4
299
L3654S
ELECTRICAL CHARACTERISTICS
(see fig. 1 and the section "definition of terms")
Test conditions
Parameter
Min.
Typ.
Max.
Unit
Clock. data and enable input
tCLK
4
tCLK
5.5
tSET-UP
1
tHOLO
3
Il S
Glock to enable delay
tCLK EN
2 t81T
tEN CLK
t81T
Enable to clock delay
Data output delay
tpOH. tpOL
R L =5Kn.
CL ';;10pF
0.8
2.5
IlS
Output delay
tpoEL
3
tpoEH
3.5
IlS
Output rise time
R L = 100 n. C L <100pF
1.2
Il S
Output fall time
RL=100n. CL <100pF
1.2
IlS
VOO rise time
0.4
Il s
VOO fall time
0.4
Il S
DEFINITION OF TERMS
V S5
:
External power supply voltage. The return for open-collector relay driver outputs.
VOl. VCLI'" V EN : The voltages at the data, clock and enable inputs respectively.
VOO
: The voltage at data output.
t81T
: Period of the incoming clock.
tCLK
: The portion of t81T when V CLK ;;;. 2.6V.
tCLK
: The portion of t81T when V CLK .;;; 0.8V.
t HOLO
: The time following the start of tCLK required to transfer data within the shift register.
tSET-UP
: The time prior to the end of tCLK required to insure valid data at the shift register input
for subsequent clock transitions.
~4~/4~_________________________ ~~~~;~~~~:~~ _____________________________
300
L4901A
DUAL 5V REGULATOR WITH RESET
PRELIMINARY DATA
•
OUTPUT CURRENTS:
= 400mA
101
102 =
400mA
•
FIXED PRECISION OUTPUT VOLTAGE 5V
±2%
•
RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
•
RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
•
RESET OUTPUT LEVEL RELATED TO
OUTPUT 2
•
OUTPUT 2 INTERNALLY SWITCHED WITH
ACTIVE DISCHARGING
•
LOW LEAKAGE CURRENT, LESS THAN
1J1A AT OUTPUT 1
•
LOW QUIESCENT CURRENT
•
INPUT OVERVOLTAGE PROTECTION UP
TO 60V
•
RESET OUTPUT HIGH
•
OUTPUT
TION
TRANSISTORS SOA PROTEC-
• SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION
The L4901A is a monolithic low drop dual 5V
regulator designed mainly tor supplying microprocessor systems.
Reset and data save functions during switch onl
off can be real ized.
Heptawatt
(INPUT 1)
ORDERING NUMBER: L4901A
ABSOLUTE MAXIMUM RATINGS
DC input voltage
Transient input overvoltage (t = 40 ms)
Output current
Storage and junction temperature
24
60
internally limited
-40 to 150
V
V
BLOCK DIAGRAM
Vi I o--J--i---I--L'::R~EG~':"'Ij--I~II--C Vol
:r
r:~=""1---l~n RESET
L~~j--I'----'UTI MING
4
June 1988
1/9
301
w
o
r-J
["
--'"
en
n
r.j::o
m
0
::I:
CD
S
l>
l>
-I
1
IN.1
IN.2
n
5-9349/1
0
l>
G)
2
::xJ
THERMAL &
OVERVOLTAGE
PROTECTION
l>
S
7
--0
III
~
I I
"
),
OUTi
OiSUt
©~
""Ut
© •
~g
I!
III
"".
~iii!Ii
II
I
,,~., ~~.."~ J II
\JII"'I rTA
~~ f.t-J
J.J.
I
II
Moo
l'
Y
I
rk:
6
0
,1,
5
--0
GND
0
41
.L
L49Dt::LIB
OUT2
III
3
RESET
OUTPUT
o TIMING
CAPACITOR
.....
L4901A
CONNECTION DIAGRAM
(Top view)
~7
OUTPUT 1
2
6
OUTPUT
5
,
RESET
GROUND
3
TIMING CAPACITOR
2
INPUT 2
~I
INPUT 1
$~
5-7768
PIN FUNCTIONS
NAME
FUNCTION
INPUT 1
Low quiescent current 400mA regulator input.
2
INPUT 2
400mA regulator input.
3
TIMING CAPACITOR
If Reg. 2 is switched-ON the delay capacitor is charged
with a 10J.lA constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.
4
GND
Common ground.
5
RESET OUTPUT
When pin 3 reaches 5V the reset output is switched high.
5V
Therefore tRD = Ct (1 OJ.lA ); tRD (ms) = Ct (nF)
6
OUTPUT 2
5V - 400mA regulator output. Enabled if Vo 1 > V RT
and V IN 2
VIT' If Reg. 2 is switched-OFF the CO2
capacitor is discharged.
7
OUTPUT 1
5V - 400mA regulator output with low leakage (in
switch-OFF condition).
>
THERMAL DATA
Rth J-case
Thermal resistance junction-case
---------------------------~~~I~~g~~~
max
4
________________________-23/~9
303
L4901A
TEST CIRCUIT
ELECTRICAL CHARACTERISTICS (V INl = V IN2 = 14,4V, Tamb = 25°C unless otherwise
specified)
Parameter
Vi
Min.
Test Conditions
Typ.
DC operating input voltage
Max.
Unit
20
V
VOl
Output voltage 1
R load 1 KO
4.95
5.05
5.15
V
V 02H
Output voltage 2 HIGH
R load 1 KO
V OI -O.l
5
VOl
V
V 02L
Output voltage 2 LOW
102 = -5mA
101
Output current 1
b. VOl = -100mV
ILOl
Leakage output 1 current
VIN = 0
VOl" 3V
102
Output current 2
b.V 02 = -100mV
VIOl
Output 1 dropout voltage (0)
101 = 10mA
101 = 100mA
101 = 300mA
VIT
Input threshold voltage
V ITH
Input threshold voltage hyst.
b. VOl
Line regulation 1
b.V 02
Line regulation 2
b.V 01
Load regulation 1
0.1
V
mA
400
1
400
V 0 1+l.2
!LA
mA
0.7
0.8
1.1
0.8
1
1.4
6.4
VOl + 1.7
250
V
V
V
V
mV
7V < VIN < 18V
101 = 5mA
5
50
mV
102 = 5mA
5
50
mV
5mA < 101 < 400mA
50
100
mV
b.V 02
Load regulation 2
50
100
mV
IQ
Quiescent current
0< VIN < 13V
7V < VIN < 13V
102 = 101 .. 5mA
4.5
1.6
6.5
3.5
mA
mA
IQl
Qu iescent cu rrent 1
6.3V < VIN 1 < 13V
VIN~ = 0
102 = 0
101
5mA
0.6
0.9
mA
5mA < 102 < 400mA
_4~/9_________________________ ~!~~~~~~:~~~
304
___________________________
L4901A
ELECTRICAL CHARACTERISTICS (continued)
Test Conditions
Parameter
V RT
Reset threshold voltage
V RTH
Reset threshold hysteresis
Min.
Typ.
Max.
Unit
V02 -O.15
4.9
V02 -OD5
V
30
50
80
mV
V
4.12
V02
0.25
0.4
V
5
11
ms
20
ItS
V RH
Reset output voltage HIGH
VRL
Reset output voltage LOW
'R = 500ltA
'R = -5mA
tRD
Reset pulse delay
Ct = 10nF
td
Timing capacitor discharge
time
Ct = 10nF
II VOl
LIT
Thermal drift
-20°C';; Tamb .;; 125°C
0.3
-0.8
mVrC
lIV 02
LIT
Thermal drift
-20°C';; Tamb .;; 125°C
0.3
-0.8
mV/oC
SVRl
Supply voltage rejection
f = 100Hz
84
dB
SVR2
Supply voltage rejection
TJSD
Thermal shut down
V02 -1
3
V R = 0.5V
= 100mA
'0
-
50
50
80
dB
150
°c
* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is
lowered of 25mV under. constant output current condition.
APPLICATION INFORMATION
In power suppl ies for J.1P systems it is necessary
to provide power continuously to avoid loss
of information in memories and in time of day
clocks, or to save data when the primary supply
is removed. The L4901A makes it very easy to
supply such equipments; it provides two voltage
regulators (both 5V high precisiont with separate inputs plus a reset output for the data save
function.
CIRCUIT OPERATION (see Fig. 1)
After switch on Reg. 1 saturates until VOl
rises to the nominal value.
When the input 2 reaches V,T and the output 1
is higher than V RT the output 2 (V 02 ) switches
on and the reset output (V R) also goes high after
a programmable time T RD (timing capacitor).
V02 and V R are switched together at low level
when one of the following conditions occurs:
-
an input overvoltage
-
an overload on the output 1 (VOl
V ,T - V ,TH );
a switch off (V ,N
<
<
V RT );
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2,
and does not influence Reg. 1.
The VOl output features:
5V internal reference without voltage divider
between the output and the error comparator;
very low drop series regu lator element utilizing current mirrors;
permit high output impedance and then very
low leakage current error even in power down
condition.
This output may therefore be used to supply
circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The VOl
---------------------------~~~~~~~rr~l~~~
________________________~5/~9
305
L4901A
CIRCUIT OPERATION (continued)
regulator also features low consumption (0.6mA
typ.) to minimize battery drain in applications
where the VI regulator is permanently connected
to a battery supply.
The V02 output can supply other non essential
5V circuits wich may be powered down when
the system is inactive, or that must bs powered
down to prevent uncorrect operation for supply
voltages below the minimum value.
The reset output can be used as a "POWER
DOWN INTERRUPT", permitting RAM access
only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV
SHADOW. MEMORY when the supply is interrupted.
Fig. 1
SWITCH
ON
VOl
OVERLOAD
V02
OVERLOAD
VIN
OVERLOAD
THERMAL
SHUT
SWITCH
DOWN
OFF
APPLICATION SUGGESTIONS
Fig. 2 shows an application circuit for a p,P
system typically used in trip computers or in
car radios with programmable tuning.
Reg. 1 is permanently connected to a battery
and supplies a CMOS time-of-day clock and a
CMOS microcomputer chip with volatile memory.
Reg. 2 may be switched OF F when the system
is inactive.
Fig. 4 shows the L4901A with a back up battery
on the VOl output to maintain a CMOS time-ofday clock and a stand by type N-MOS p,P. The
reset output makes sure that the RAM is forced
into the low consumption stand by state, so the.
access to memory is inhibit and the back up
battery voltage cannot drop so low that memory
contents are corrupted.
In this case the main on-off switch disconnects
both regulators from the supply battery.
The L4901 A is also ideal for microcomputer systems using battery backup CMOS static RAMs.
As shown in fig. 5 the reset output is used both to
disable the p,P and, through the address decoder
M74HC 138, to ensure that the RAMS are disabled
as soon as the main supply starts to fall.
Another interesting application of the L4901A is
in p,P system with shadow memories. (see fig. 6)
When the input voltage goes below V rr , the
reset output enables the execution of a routine
that saves the machine's state in the shadow
RAM (xicor x 2201 for example).
Thanks to the low consumption of the Reg. 1
a 680p,F capacitor on its input is sufficient to
provide enough energy to complete the operation.
The diode on the input guarantees the supply
of the equipment even if a short circuit on V I
occurs.
_6/~9_________________________ ~~~I~~~~:~~~
306
---------------------------
L4901A
APPLICATION SUGGESTION (continued)
Fig.2
IN1
REG.1
BATTERY
~
CMOS
pP WITH
RESET
REG. 2
VOLATILE
RAM
OTHER
LOGIC
C3
10nF
@5V
I
LL.901 A
5
RESET OUT
RESET
4
Fig. 3 - P.C. board component layout of fig. 2 (1 : 1 scale)
GND
IN1
OUT2
____________ ill SGS-THOMSON
.J'~
GND
_ _ _ _ _ _ _ _ _ _ _--'-7/9
il)]D©IRl@~~~©'lfIRl@iRlD©ill
307
L4901A
APPLICATION SUGGESTION (continued)
Fig.4
IN1
~Y
REG. 1
O.22.uF
.I
I
BACKUP
BATTERY
IN 2
4.?.u F
6
REG. 2
I
OUT2
.0 P(3875-2875)
VOO
WITH BATTERY
BACKUP
RAM
11010/JF
I
RESET
VOO
CT
L4901A 5
lonFI
RESE TOUT
RESET
4
5_777112
Fig.5
--,- -c.'
Vi
INI
1~~
OUTI
2.2.S
fF~
au" J-!- r----1
21N2
I
'DO
J:
"00
$i'.7 F
~
J:
L4901A
CMOS
STATIC
R"MS
LIKE
TC5516
OR TCS5Ej5
RESET~~
.J:.--'-
10 n F'
O:~R ~
5V CHIPS
:t:
CT
L._~G~NO::..----,
--:IT
.1.
l -.
____~r____~_______ r4--------+------b-~----------_+~
RESET 'Is
I
We
MREQ
Z8400
U
I
VDD
L--.
Gl
Vi
G'A
L: m
;-;1M74HC138
AI5
c
AI4
B
T41-
A13
A
"I-
YflTO OTHER
MEMORY
CHIPS
Y"61-
nI-
T
;:!8/..:9 _ _ _-,-_ _ _ _ _ _ _ _ _
308
T
S-to53/1
~ ~~~~m?:1?~
.1.
I 2.8tolV
~:r.LlTHIUM
BATTER V
L4901A
APPLICATION SUGGESTION (continued)
Fig.6
Vi
IN1
:c
7
OUT 1
680
pF
L4901A
Vs
OUT 2
IN 2
ADDRESS
DATA
IIOf'F
8085
RESET 5
CT
10 n f
I
TRAP
GND
5_80':1512
Fig. 7 - Quiescent current
(Reg. 1) vs. output current
Fig. 9 - Total quiescent current vs. input voltage
Fig. 8 - Quiescent current
(Reg. 1) vs. input voltage
5_5795
rJ
'0' I
'0'
(mA)
(rnA)
,
I
15
101 (rnA)
1
700
ImA )1
--I .- -f--+!
r-
ls~i
I
500
v
V
800
1,\
V
1
~
700
100
\\
15
IK
18
,
"
""'-
Vi (V J
18
Vi (v)
Fig. 12 - Supply voltage
rejection regulators 1 and 2
vs. input ripple frequence
5YR
(dB }
SVRl
--SYR
0
\
I. ' \ .
\
\
300
,\
12
-- \
/
400
\\
-
/
500
'\ ,\
15
80
600
'
300
200
.-
1
I
Vi1 (V)
Fig. 11 - Regu lator 2 output current and short circuit
current vs. input voltage
Fig. 10 - Regulator 1 output current and short circuit
current vs. input voltage
ImA 1
18
I--
~
"
\
10 0
\\
3
6
9
12
15
18
21
24 Vi (v)
10
----------------------------- ~~~~~~~v~~~~:l ___________________________9~/9
309
L4902A
DUAL 5V REGULATOR WITH RESET AND DISABLE
PRELIMINARY DATA
•
DOUBLE BATTERY OPERATING
•
OUTPUT CURRENTS:
•
FIXED PRECISION OUTPUT VOLTAGE 5V
±2%
•
RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
•
RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
•
RESET OUTPUT LEVEL RELATED TO
OUTPUT 2
•
OUTPUT 2 INTERNALLY SWITCHED WITH
ACTIVE DISCHARGING
101
102
= 300mA
= 300mA
•
OUTPUT 2 DISABLE LOGICAL INPUT
•
LOW LEAKAGE CURRENT, LESS THAN
1JlA AT OUTPUT 1
•
RESET OUTPUT NORMALLY HIGH
•
INPUT OVERVOLTAGE PROTECTION UP
TO 60V
•
OUTPUT TRANSISTORS SOA PROTECTION
•
SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION
The L4902A is a monolithic low drop dual 5V
regulator designed mainly for supplying microprocessor systems.
Reset and data save functions and remote switch
on / off control can be realized.
Heptawatt
ORDERING NUMBER: L4902A
ABSOLUTE MAXIMUM RATINGS
DC input voltage
Transient input overvoltage (t = 40 ms)
Output current
Storage and junction temperature
28
V
60
internally limited
-40 to 150
V
°C
BLOCK DIAGRAM
015.
0----4-+1
L.::~_t--r--U TIMING
S-784013
June 1988
1/9
311
W
r:::;
en
('")
Ico
~
:::I:
m
S
»
-I
('")
0
IN
»
G')
:D
»
S
0
THERMAL & I
OVERVOLTAGE
PROTECTION
~
I III - r-, 0 li I
7
~
~
OUT1
~UI
!'In
'9U1
©.
~~
!'l:o
~i:
..L..L
©UI
~o
iillz
r
D":D : :
I
11
D
L4S02::LIS
...
j
j
I
~-
iT
~I
fll
5-9359/1
6
0
5
~
2
OUT2
RESET
OUTPUT
o TIMING
CAPACITOR
...
r
to
0
I\,')
l>
L4902A
CONNECTION DIAGRAM
(Top view)
-
~
OUTPUT 1
OUTPUT 2
RESET
GROUND
DISABLE INPUT
TIMING CAPACITOR
$~
~
INPUT
5 -7841
PIN FUNCTIONS
NAME
FUNCTION
INPUT 1
Regulators common input.
2
TIMING CAPACITOR
If Reg. 2 is switched-ON the delay capacitor is charged
with a 51lA constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.
3
V02 DISABLE INPUT
A high level (> V OT ) disable output Reg. 2.
4
GND
Common ground.
5
RESET OUTPUT
When pin 2 reaches 5V the reset output is switched high.
5V
Therefore t Ro = Ct (10IlA); tRO (ms) = Ct (nF).
6
OUTPUT 2
5V - 300mA regulator output. Enabled if Vo 1 > V RT'
DISABLE INPUT < V OT and V IN > VIT' If Reg. 2 is
switched-OFF the CO2 capacitor is discharged.
7
OUTPUT 1
5V - 300mA. Low leakage (in switch-OFF condition)
output.
THERMAL DATA
Rth j-case
Thermal resistance junction-case
max
4
___________________________ ~~~~~~~~~:~~: ________________________~3/_9
313
L4902A
TEST CIRCUIT
Vol
Vi
6
Vo2
5
DIS.
2.2},F
2
Ir
4.7 t'F
r
10nF
s -9360
I
12
2. 2},F
ELECTRICAL CHARACTERISTICS (V 1N = 14.4V, T amb = 25°C unless otherwise
Parameter
Min.
Test Conditions
Typ.
specified)
Max.
Unit
24
V
VI
DC operating input voltage
VOl
Output voltage 1
R load 1K.fl
4.95
5.05
5.15
V
V 02 H
Output voltage 2 H IG H
R load 1K.fl
Vo l -0.1
5
VOl
V
V02L
Output voltage 2 LOW
102 = -5mA
101
Output current 1 max.
IlVOl =-100mV.
ILOl
Leakage output 1 current
V
0.1
300
mA
1
VIN = 0
p.A
VOl" 3V
102
Output current 2 max.
IlV02=-100mV
VIOl
Output 1 dropout voltage (*j
101 = 10mA
101 = 100mA
101 = 300m A
VIT
Input threshold voltage
VITH
Input threshold voltage
hysteresis
Il VOl
Line regulation 1
IlV 02
Line reg\ilation 2
Il VOl
Load regu lation 1
Il V02
Load regulation 2
IQ
Quiescent current
VRT
Reset threshold voltage
VRTH
Reset threshold hysteresis
VOl +1.2
0.7
0.8
1.1
0.8
1
1.4
6.4
V0 1 +1.7
250
V
V
V
V
mV
101 = 5mA
5
50
mV
102 = 5mA
5
50
mV
5mA < 101 < 300mA
40
80
mV
5mA < 102 < 300mA
50
80
mV
4.5
2.7
1.6
6.5
4.5
3.5
mA
mA
mA
V 02cO.15
4.9
V 02 -OD5
V
30
50
80
mV
7V < V1N < 24V
0< V1N < 13V
7V < VIN < 13V V 02 LOW
7V < VIN < 13V V02 HIGH
101 = 102 .. 5mA
~4/~9_________________________ ~~~~~~~~~
314
rnA
300
___________________________
L4902A
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test Conditions
VRH
Reset output voltage HIGH
IR = 500,uA
VRL
Reset output voltage LOW
IR = -lmA
tRO
Reset pulse delay
Ct = 10nF
td
Timing capacitor discharge
Ct = 10nF
VOT
V02 disable threshold voltage
10
V0 2 disable input current
t. VOl
t.T
Thermal drift
-20°C
< Tamb <
Thermal drift
-20°C
<
t. V02
Min.
Vorl
3
Typ.
Max.
Unit
4.12
V02
V
0.25
0.4
V
5
11
ms
20
,us
time
t.T
SVRl
Supply voltage rejection
SVR2
Supply voltage rejection
TJSO
Thermal shut down
1.25
Vo < OAV
Vo)o 2AV
Tamb
<
2.4
V
-150
-30
,uA
,uA
125°C
0.3
-0.8
mV/oC
125°C
0.3
-0.8
f = 100Hz VR =0.5V 10= 100mA
mV/oC
50
84
50
80
dB
150
°c
dB
• The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is
lowered of 25mV under constant output current condition.
APPLICATION INFORMATION
In power supplies for JlP systems it is necessary
to provide power continuously to avoid loss
of information in memories and in time of day
clocks, or to save data when the primary supply
is removed. The L4902A makes it very easy to
supply such equipments; it provides two voltage
regulators (both 5V high precision) with common
inputs plus a reset output for the data save function and a Reg. 2 disable input.
an input overvoltage;
an overload on the output 1 (VOl
a switch off (V 1N
V 1T - V 1TH );
<
< V RT );
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2,
and does not influence Reg. 1.
The VOl output features:
CIRCUIT OPERATION (see Fig. 1)
After switch on Reg. 1 saturates until VOl
rises to the nominal value.
5V internal reference without voltage divider
between the output and the error comparator
very low drop series regulator element utilizi ng cu rrent mirrors
When the input reaches V1T and the output 1
is higher than V RT the output 2 (V 02 ) switches
on and the reset output (V R) also goes high after
a programmable time T RO (timing capacitor).
permit high output impedance and then very
low leakage current even in power down condition.
V02 and V R are switched together at low level
when one of the following conditions occurs:
- a high level (> VOT ) is applied on pin 3;
This output may therefore be used to supply
circuits continuously, such as volatile RAMs, allowing the use of 'a back-up battery.
--------------
~ ~~~~m?::~~©~
____________
9
--'5/_
315
L4902A
CIRCUIT OPERATION (continued)
The V02 output can supply other non essential
5V circuits wich may be powered down when
the system is inactive, or that must be powered
down to prevent uncorrect operation for supply
voltages below the minimum value.
The reset output can be used as a "POWE R
DOWN INTERRUPT", permitting RAM access
only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV
SHADOW MEMORY when the supply is in·
terrupted.
The disable function can be used for remote
on/off control of circuits connected to the V02
output.
Fig. 1
Vffi~----~r---~-+~-----4------+-------+-------f-L---+-~------~~
SWITCH
ON
V02
VIN
OVERLOAD I OVERLOAD
THERMAL
SHUT
DOWN
V02
SWITCH
DISABLE
OFF
5-7842/2
APPLICATION SUGGESTION
Fig. 2 illustrate how the L4902A's disable input
may be used in a CMOS J..!Computer application.
The VOl regulator (low consumption) supply
permanently a CMOS time of day clock and a
CMOS J..!computer chip with volatile memory.
V02 output, supplying non-essential circuits, is
turned OFF under control of a J..!P unit.
Configurations of this type are used in products
where the OF F switch is part of a keyboard
scanned by a micro which operates continuously
even in the OF F state.
Another application for the L4902A is supplying a
shadow-ram microcomputer chip (SGS M38SH72
for exemple) where a fast NV memory is backed
up on chip by a EEPROM when a low level on
the reset output occurs.
By adding two CMOS-SCHMIDT-TRIGGER
and few external components, also a watch dog
function may be realized (see fig. 5). During
normal operation the microsystem supplies a
periodical pulse waveform; if an anomalous
condition occours (in the program or in the
system), the pulses will be absent and the disable
input will be activated after a settling time determined by R 1 Cl. In this condition all the
circuitry connected to V 02 · will be disabled,
the system wi II be restarted with a new reset
front.
The disable of V02 prevent spurious operation
during microprocessor malfunctioning.
_6/~9_________________________ ~~~~~~~~~:~~~ ___________________________
316
L4902A
APPLICATION SUGGESTION (continued)
Fig.2
-1
.I
INI
1
C~
TTERY
7
REG.l
I~3
I /-lF
47,41fI
Voo
OUT 1
r
3 V02 OIS
+1
OUT 2
6
REG. 2
~
J
CMOS
CLOCK
VOO
OUT PORT
IN PORT
CMOS
/-lP WITH
VOLATILE
RAM
ItOl0/-lf!
IC4
VOO
OTHER
LOGIC
_I
I
~5V
C:l2
10nF
L L.902A
5
RESET OUT
RESET
I
5-7843/1
Fig. 3 - P.C. board and component layout of the circuit of Fig. 2 (1 : 1 scale)
GND
DIS.
OUT2
GND
____________ ru SCS-THOMSON _ _ _ _
-----_--'-7/9
•J."
i'j]D!:OO©~~~!:lI00©i'!lD!:®
317
L4902A
APPLICATION SUGGESTION
(continued)
Fig.4
Vi
Vol
VDD
7
6
DISABLE
3
L4902A
Vo2
:::c
TO OTHER
5V CHIPS
10,u F
1>}J
5
F
M38SH72
RESET
2
lOnF
I
100nF
I
s- 93621 2
Fig.5
OUT1~7~------------------------------~------~VDD
OUT2~6~----------~~----~~
L4902A
.
DIS.
OfF
RST~------~-----+----_+------------------~~RSTfP
TIM.
- - -
- -
- - -
-- - -
-I
33 nF
OUTPUT
PORT
i
I
~--~~~~~---~
: JUill
5 -9363/2
_8~/9____________________~~_ ~~~~~~?v~:~~
318
---------------------------
L4902A
APPLICATION SUGGESTION (continued)
Fig. 6- Quiescent current
vs. output current
Fig. 7 - Qu iescent current
vs. input voltage
G 566611
G-5B6'>ll
la
(rnA)
-~-~-k+
""
10
e- I--
C--
'mA
-
--
)
'--
- - I - - I-
1
e--,- I-I.--""
J.--
-
-
--
~
f--::: I--
J.-- f--
-
IdB 1
SVRI
0
t::5
-I
(")
IN 1 0 1
I
C
5 - 9422
l>
G)
I
:c
l>
THERMAL &
OVERVOLTAGE
PROTECTION
~
IN 2 _ 2 1,1
s:
II r '11
i
8
1
1
I
II
I
7
il~
nI
6
0
OUH
0
OUT2
::1:UI
ll'll:'l
""UI
@.
Wil:i!
I"lo
§l].:
@UI
~o
III ..... __..__ J II
~z
O:NSO' : :
I
I'
.LJ.
D
..I.
~
3
--<>
RESET
OUTPUT
TIMING
CAPACITOR
Ii
L4903
CONNECTION DIAGRAM
(Top view)
OUTPUT 1
INPUT 1
INPUT 2
TIMING
CAPACITOR
RESET
OUTPUT
3
GND
5
V02
DISABLE
INPUT
5-9417
PIN FUNCTIONS
NAME
FUNCTION
INPUT 1
Low quiescent current 50mA regulator input.
2
INPUT 2
1OOmA regulator input.
3
TIMING CAPACITOR
If Reg. 2 is switched-ON the delay capacitor is charged
with a 1OIlA constant current. When Reg. 2 is switchedOFF the delay capacitor is discharged.
4
GND
Common ground.
5
V 02 DISABLE INPUT
A high level (> V DT ) disables output Reg. 2.
6
RESET OUTPUT
When pin 3 reaches 5V the reset output is switched low.
5V
Therefore tRD = Ct (10IlA); tRD (ms) = Ct (nF).
7
OUTPUT 2
5V - 100mA regulator output. Enabled if Va 1 > V RT .
DISABLE INPUT < V DT and V IN 2 > VIT' If Reg. 2 is
switched OFF the CO2 capacitor is discharged.
8
OUTPUT 1
5V - 50mA regulator output with low leakage in switchOFF condition.
THERMAL DATA
Rth j-pin
Rth j-amb
Thermal resistance junction-pin 4
Thermal resistance junction-ambient
max
max
70
100
°C/W
°C/W
___________________________ ~~~~~~~~~:~~~ ________________________~3/~7
323
L4903
TEST CIRCUIT
P.C. board and components layout
of the test circuit (1 : 1 scale)
5- 'IoHI
GNO 015, RS Vo2 Vol
ELECTRICAL CHARACTERISTICS (V IN = 14,4V, T amb = 25°C unless otherwise specified)
Parameter
Vi
Test Conditions
Min.
Typ.
DC operating input voltage
Max.
Unit
20
V
VOl
Output voltage 1
R load lKn
4.95
5,05
5.15
V
V 02H
Output voltage 2 HIGH
R load lKn
VOl -0,1
5
VOl
V
V 02L
Output voltage 2 LOW
/01
Output current 1 max,
I LOI
Leakage output 1 current
0,1
102 = -5mA
(*1
11 VOl = -100mV
Output current 2 max,
Output 1 dropout voltage
VIT
Input threshold voltage
VITH
Input threshold voltage
hysteresis
1
11 V 02 = -100mV
(*1
VOl +1,2
0.7
0.75
0,8
0,9
6.4
VOl +1,7
Li ne regu lation 1
Line regulation 2
11 VOl
Load regulation 1
lIV 02
Load regu lation 2
IQ
Quiescent current
0 V OT ) is applied on pin 5'
an input overvoltage;
an overload on the output 1 (VOl < V RT );
a switch off (V IN
VIT - V ITH );
<
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2,
and does not influence Reg. 1.
The VOl output featu res:
5V internal reference without voltage divider
between the output and the error comparator
very low drop series regulator element util·
izing current mirrors
permit high output impedance and then very
low leakage current even in power down conditions.
This output may therefore be used to supply
circuits continuously, such as volatile RAMs, allowing the use of a back-up battery.
~ ~~~~m~1J~:~~~~
_____________
5/'-7
325
L4903
CIRCUIT OPERATION (continued)
only in correct power conditions, or as a "BACKUP ENAB LE" to transfer data into in a NV
SHADOW MEMORY when the supply is interrupted.
The disable function can be used for remote
on/off control of circuits connected to the V02
output.
The V02 output can supply other non essential
5V circuits wich may be powered down when
the system is inactive, or that must be powered
down to prevent uncorrect operation for supply
voltages below the minimum value.
The reset output can be used as a "POWE R
DOWN INTERRUPT", permitting RAM access
Fig. 1
vIN.V01,VO
vIN1;VIN2
V iT
vtTH
VOl
VRT
VOT
V02 .vR
SWITCH
ON
VOl
OVERLOAD
V02
OVERLOAD
VIN
OVERLOAD
~~~~MAL
DOWN
V02
DISABLE
SWITCH
OFF
5-941911
APPLICATION SUGGESTION
Fig. 2 illustrates how the L4903's disable input
may be used in a CMOS tIComputer application.
turned OFF under control of a tiP unit.
Configurations of this type are used in products
where the OFF switch is part of a keyboard
scanned by a micro which operates continuously
even in the OFF state.
The VOl regulator (low consumption) supply
permanently a CMOS time of day clock and a
CMOS tIcomputer chip with volatile memory.
V02 output, supplying non-essential circuits, is
Fig.2
REG. 2
OTHER
LOGIC
C3 5V
C,
10nF
I
lL.903
6
RESET OUT
RESET
~6/_7_________________________ ~~~~~~~~~~~~~ ___________________________
326
L4903
APPLICATION SUGGESTIONS (continued)
Fig. 3 - Quiescent current
(Reg. 1) vs. output current
Fig. 4 - Quiescent current
(Reg. 1) vs. input voltage
(,_579611
'0' 1-+-1-+-\-++-+--+-+-+-1-+-1-+-+-1
(m A)
-
~
-----
J-J- Ll__
"12 =0
lo1t::5mA
o 5 >--1--I-+-\-++-+--+-+-+->--1--I-W-<
V
/
V
V
1/
25
50 [OlemA)
18
ViI (V)
Fig. 6 - Supply voltage rejection regulators 1 and 2
vs. input ripple frequence
Fig. 5 -- Total quiescent
current vs. input voltage
G 5B~611
SVR
(CiB )
'0
(m' )
IOl~[02S5m'"
---"02 l0W
-vo2iGH
y
I
II
-
-1
~
SVR
"
yv12
.SVRl
80
0
r-..
'\:
0
V
0
----------------------------- ~~~~~~~~~~Jl ___________________________
7c-/7
327
L4904A
DUAL 5V REGULATOR WITH RESET
PRELIMINARY DATA
• OUTPUT CURRENTS:
101
102
• RESET OUTPUT NORMALLY HIGH
= 50mA
= 100mA
•
FIXED PRECISION OUTPUT VOLTAGE
5V ± 2%
•
RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
•
RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
•
RESET OUTPUT LEVEL RELATED TO
OUTPUT 2
• OUTPUT TRANSISTORS SOA PROTECTION
• SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION
The L4904A is a monolithic low drop dual 5V
regulator designed mainly for supplying microprocessor systems.
Reset and data save functions during switch on/
off can be realized.
• OUTPUT 2 INTERNALLY SWITCHED WITH
ACTIVE DISCHARGING
•
LOW LEAKAGE CURRENT, LESS THAN
1JLA AT OUTPUT 1
•
LOW QUIESCENT CURRENT (INPUT 1)
•
INPUT OVERVOLTAGE PROTECTION UP
TO 60V
Minidip Plastic
ORDERING NUMBER: L4904A
ABSOLUTE MAXIMUM RATINGS
V IN
10
Ptot
Tj
24
60
internally limited
1
-40 to 150
DC input voltage
Transient input overvoltage It = 40 ms)
Output current
Power dissipation at Tamb = 50°C
Storage and junction temperature
V
V
W
°C
BLOCK DIAGRAM
Vi 1 0--.....--'-1-----...
r:~=:_1-_L6~() RESET
L::':~.J----t=---o TI MIN G
4
June 1988
5-9<11/1
1/8
329
w
0w
en
I~
'"
n
J:
m
s
l>
-I
n
0
I
bL
I
THERMAL 6:
OVERVOLTAGE
PROTECTION I
I i II
l>
G')
::c
I
IiO tt I
l>
s
8
--0
~
OUH
;!lUI
lit;;
© •
~i!
~O
~S
©UI
~O
J.J.
...
~z
I
II
j ~
.I.
5- 9410/1
~ I ~.
OUT2
RESET
OUTPUT
III
3
TIMING
OR
CAPACIT
0
r
.j:>,
(.0
0
.j:>,
»
L4904A
CONNECTION DIAGRAM
(Top view)
7
OUTPUT 2
RESET
OUTPUT
5
N.C.
PIN FUNCTIONS
FUNCTION
NAME
INPUT 1
Low quiescent current 50mA regulator input.
2
INPUT 2
100mA regulator input.
3
TIMING CAPACITOR
If Reg. 2 is switched-ON the delay capacitor is charged
with a 10p,A constant current. When Reg. 2 is switchedOFF the delay capacitor is discharged.
4
GND
Common ground.
6
RESET OUTPUT
When pin 3 reaches 5V the reset output is switched high.
5V
Therefore tRD = Ct (10P,A ); tRD (ms) = Ct (nF).
7
OUTPUT 2
5V - 100mA regulator output. Enabled if Vo 1
V RT
and VIN 2
VIT' If Reg. 2 is switched-OFF the CO2
capacitor is discharged.
8
OUTPUT 1
5V - 50mA regulator output with low leakage in switchOFF condition.
>
>
THERMAL DATA
Rthj-amb
Thermal resistance junction-ambient
max
100
___________________________ ~~~~~~~~~ __________________________
3/_8
331
L4904A
TEST CIRCUIT
P.C. board and components layout
of the test circuit (1 : 1 scale)
8
7
L4904A
6 RESET
3
S-9.(.1J/l
= 14,4V, T amb = 25°C unless otherwise specified)
ELECTRICAL CHARACTERISTICS (V 1N
Parameter
Vi
Test Conditions
Min.
Typ.
DC operating input voltage
20
VOl
Output voltage 1
R load 1Kn
4.95
5.05
V02H
Output voltage 2 HIGH
R load 1Kn
VOl -0.1
5
V02 L
Output voltage 2 LOW
102
101
Output cu rrent 1
l::. VOl
I LOl
Leakage output 1 current
VIN = 0
VOl" 3V
102
Output cu rrent 2
l::.V02
VIOl
Output 1 dropout voltage (*)
V 1T
Input threshold voltage
VITH
Input threshold voltage hyst.
l::.V Ol
Line regulation
l::.V 0 2
Line regulation 2
l::.V Ol
Load regulation 1
l::.V02
Load regulation 2
IQ
Quiescent current
o<
IGil
Quiescent current 1
6.3V < VINl
VIN2 = 0
101 .. 5mA
= -5mA
=
=
101
101
=
=
V
VOl.
V
mA
1
-100mV
VOl +1.2
0.7
0.75
O.S
0.9
6.4
VOl +1.7
<
VIN
<
lSV
101
102
VIN
= SV
5mA
5mA
= 5mA
= 5mA
< 101 < 5'OmA
< 102 < 100mA
VIN < 13V
7V < VIN < 13V
102 = 101 .. 5mA
<
13V
102
=
V
V
V
mV
250
7V
p.A
mA
100
10mA
50mA
V
V
50
-100mV
Unit
5.15
0.1
~4/~8_________________________ ~~~~~~~~'~©~
332
Max.
5
50
5
50
mV
5
20
10
50
4.5
1.6
6.5
3.5
mA
mA
0.6
0.9
mA
mV
___________________________
0
L4904A
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test Conditions
V RT
Reset threshold voltage
VRTH
Reset threshold hysteresis
VRH
Reset output voltage HIGH
IR = 500MA
V RL
Reset output voltage LOW
IR = -5mA
Min.
Typ.
Max.
Vo2 -O.15
4.9
V02 -O.05
V
30
50
80
mV
4.12
V02
V
0.25
0.4
V
11
ms
20
MS
V02 -1
Unit
tRD
Reset pulse delay
Ct - 10nF
td
Timing capacitor discharge
time
Ct = 10nF
6V OI
6T
Thermal drift
-20°C" Tamb " 125°C
0.3
-0.8
mVtC
Thermal drift
-20°C" Tamb " 125°C
0.3
-0.8
mVtC
6 V02
6T
SVR1
3
Supply voltage rejection
= 100Hz
VR = 0.5V
10
= 50mA
50
84
dB
10
= 100mA
50
80
dB
150
°c
f
SVR2
Supply voltage rejection
TJSD
Thermal shut down
* The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is
lowered of 25m V under constant output current condition.
APPLICATION INFORMATION
In power supplies for JJ.P systems it is necessary
to provide power continuously to avoid loss
of information in memories and in time of day
clocks, or to save data when the primary supply
is removed. The L4904A makes it very easy to
supply such equipments; it provides two voltage
regulators (booth 5V high precision) with separate inputs plus a reset output for thp. data save
function.
-
an overload on the output 1 (VOl
a switch off (V IN
V IT - V ITH );
<
<
V RT );
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2,
and does not influence Reg. 1.
The VOl output features:
5V internal reference without voltage divider
between the output and the error comparator;
CIRCUIT OPERATION (see Fig. 1)
After switch on Reg. 1 saturates until VOl
rises to the nominal value.
very low drop series regulator element utilizing current mirrors;
When the input 2 reaches V IT and the output 1
is higher than V RT the output 2 (V 02 ) switches
0[1 and the reset output (V R ) also goes high after
a programmable time T RD (timing capacitor).
permit high output impedance and then very
low leakage current even in power down conditions.
V02 and V R are switched together at low level
when one of the following conditions occurs:
- an input overvoltage
------------------------------
This output may therefore be used to supply
circuits continuously, such as volatile RAMs, allowing the use of a back-up battery. The VOl
regulator also features low consumption (O.6mA
~~~~~~~v~:~~~
____________________________
5~/8
333
L4904A
CIRCUIT OPERATION (continued)
typ.) to minimize battery drain in applications
where the VI regulator is permanently connected
to a battery supply.
voltages below the minimum value.
The reset output can be used as a "POWE R
DOWN INTERRUPT", permitting RAM access
only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV
SHADOW MEMORY when the supply is interrupted.
The V02 output can supply other non essential
5V circuits which may be powered down when
the system is inactive, or that must be powered
down to prevent uncorrect operation for supply
Fig. 1
SWITCH
ON
VOl
OVERLOAD
V02
THERMAL
VIN
OVERLOAD
OVERLOAD
SHUT
SWITCH
DOWN
OFF
APPLICATION SUGGESTIONS
Fig. 2 shows an application circuit for a J..!P
system.
Reg. 1 is permanently connected to a battery
and supplies a CMOS time-of-dav clock and a
CMOS microcomputer chip with volatile memory.
Reg. 2 may be switched OFF when the system
is inactive.
Fig. 3 shows the L4904A with a back up battery
__________________________
~6/~8
334
on the VOl output to maintain a CMOS time-ofday clock and a stand by type C-MOS J..!P. The
reset output makes sure that the RAM is forced
into the low consumption stand by state, so the
access to memory is inhibit and the back up
battery voltage cannot drop so low that memory
contents are corrupted.
In this case the main on-off switch disconnects
both regulators from the supply battery.
~~~~~~?V~:~~~
___________________________
L4904A
APPLICATION SUGGESTIONS (continued)
Application Circuits of a Microprocessor system (Fig. 2) or with data save battery (Fig. 3). The reset
output provide delayed rising front at the turn-off of the regulator 2.
Fig. 2
[",±
INI
F
IN2
1
REG.l
8
I
2
~- rl
REG. 2
C~
I
l
1,uF
7
OUT 2
~021 tol0,uF
I
l,uFI
10nF
VOO
OUT 1
~COI
I
J
CMOS
CLOCK
VOO
CMOS
,uP WITH
VOLATILE
RAM
RESET
Voo
OTHER
LOGIC
~5V
L4904A 6
1:
RESET OUT
RESET
5 - 941411
Fig. 3
~:-r~IN~'~~~8~~
I
I
REG. 1
BATTERY
L....._ _ _.......
O.22,uF
BACKUP
BATTERY
VOO
OUT 2
IN 2
REG. 2
BACKUP
1 tol0IJF
I
,uP
WITH BATTERY
RESET
RAM
VOO
CT
10nF
I
L4904A 6
RESE TOUT
RESET
4
5 - 9415/1
____________ 51 SGS-THOMSON
"'N
_ _ _ _ _ _ _ _ _ _ _7:-/8
Wil~©IRI@~~~©1i'IRI@o:lfl©®
335
L4904A
APPLICATION SUGGESTIONS (continued)
Fig. 5 - Quiescent current
(Reg. 1) vs. input voltage
Fig. 4 - Quiescent current
(Reg. 1) vs. output current
101
( mAl
f-+++-+++-++-H-t--+-1-+-H
~
101
(rnA)
',112 ",0
lo1~5mA
I
,
0.5
f-+,++~+H+-H-+--+-f-++1
V
/
V
7
./
50101CmAl
25
12
15
18
Vii (V)
Fig. 7 - Supply voltage
rejection regulators 1 and 2
vs. input ripple frequence
Fig. 6 - Total quiescent current vs. input voltage
SYR
lato1
'rnA I
(dB I
101':: 102 ~ SmA.
\1,1',,'1;2
, --
1/
-
I
I
V
V-
SVRI
'0
SVR
70
~
~
~
60
50
15
18
-'8/_8_ _ _ _ _ _ _ _ _ _ _ _ _
336
Vi (V)
10
~ ~~~~m?,r~:J?lt
--------------
L4905
DUAL 5V REGULATOR WITH RESET
ADVANCE DATA
•
•
DOUBLE BATTERY OPERATING
OUTPUT CURRENTS: 101 =200mA
102 =300mA
•
RESET OUTPUT HIGH
•
OUTPUT TRANSISTORS SON PROTECTION
•
SHORT CIRCUIT AND THERMAL OVERLOAD PROTECTION
•
FIXED PRECISION OUTPUT VOLTAGE 5V
± 1%
•
RESET FUNCTION CONTROLLED BY INPUT VOLTAGE AND OUTPUT 1 VOLTAGE
•
RESET FUNCTION EXTERNALLY PROGRAMMABLE TIMING
The L4905 is a monolithic low drop dual 5V
regulator designed mainly for supplying microprocessor systems.
•
RESET OUTPUT
OUTPUT 2
Reset and data save functions during switch on!
off can be real ized .
•
OUTPUT2INTERNALLYSWITCHEDWITH
ACTIVE DISCHARGING
•
LOW LEAKAGE CURRENT, LESS THAN
1J1A AT QUTPUT 1
•
•
LOW QUIESCIENT CURRENT (INPUT 1)
INPUT OVERVOLTAGE PROTECTION UP
T060V
LEVEL
RELATED TO
Heptawatt
ORDERING NUMBER: L4905
ABSOLUTE MAXIMUM R.ATINGS
DC input voltage
Transient input overvoltage (t = 40 ms)
Output current
Storage and junction temperature
28
v
60
internally limited
-40 to 150
V
BLOCK DIAGRAM
Vi I O--T-T---T----L!R~EG~.2.1
.
j-r-t'---r--{; Vol
r:::-:::-l--!i--o RESET
L':':'::":'_r--,--() TIM IN G
4
June 1988
1/8
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change withe ,t notice.
337
L4905
SCHEMATIC DIAGRAM
a:
l-
I:::J
0
0
:::J
(,DO
1-1-
ru
~
zl-
........
U
w:::J
000..
:::E
.... "
wIa::::J
1-0..
0
"
U
10
"
ICI
(I')
w
!!~
~~
W..J
u..O
w>
a:
C\I
o
z
zz
........
/ 8_ _ _ _ _ _ _ _ _ _ _ _ _
_2_
338
(,D
@. ~~~~m?1I't:~~~
--------------
L4905
CONNECTION DIAGRAM
(Top view)
~-
~7
OUTPUT 1
OUTPUT 2
£>
$~
RESET
GROUND
TIMING CAPACITOR
INPUT 2
INPUT 1
5
,
3
2
~
S_77£>8
PIN FUNCTIONS
NAME
FUNCTION
INPUT 1
Low quiescent current 200mA regulator input.
2
INPUT 2
300mA regulator input.
3
TIMING CAPACITOR
If Reg. 2 is switched-ON the delay capacitor is charged
with a 10llA constant current. When Reg. 2 is switched-OFF the delay capacitor is discharged.
4
GND
Common ground.
5
RESET OUTPUT
When pin 3 reaches 5V the reset output is switched high.
5V
Therefore tRD = Ct ( 1011 A ); tRD (ms) = Ct (nF)
6
OUTPUT 2
5V - 300mA regulator output. Enabled if Vo 1 > V RT
and V 1N2
VIT' If Reg. 2 is switched-OFF the CO2
capacitor is discharged.
7
OUTPUT 1
5V - 200mA regulator output with low leakage (in
switch-OFF condition).
>
THERMAL DATA
RthJ-case
Thermal resistance junction-case
max
____________ 5i SGS-THOMSON
•J'~
4
_ _ _ _ _ _ _ _ _ _-'3/__8
1iii~[:IRI@~~~[:'!iIRl@i:l~©,.
339
L4905
TEST CIRCUIT
Vol
7
Vi1
6
Vi2
o.ljJF
5 RESET
2
4.7 fF
1 1
r
Vo2
3
10nF
2.2,PF
5-9348/1
rIr
ELECTRICAL CHARACTERISTICS (V 1Nl
14,4V,
Tamb
2 2jJF
.
25° unless otherwise
specified)
Parameter
Vi
Test Conditions
Min.
Typ.
DC operating input voltage
Max.
Unit
24
V
VOl
Output voltage 1
R load 1 Kn
5.0
5.05
5.1
V
V 02H
Output voltage 2 HIGH
R load lKn
VOl -0.1
5
VOl
V
V 02L
Output voltage 2 LOW
101
Output current 1
= -5mA
lIV Ol = -100mV
I L01
Leakage output 1 current
V 1N = 0
VOl" 3V
102
Output current 2
lIV 02
ViOl
Output 1 dropout voltage (*j
101
101
101
-.
V1T
I nput threshold voltage
V1TH
Input threshold voltage hyst.
lIV Ol
Line regulation 1
lIV 02
Line regulation 2
lIV Ol
Load regulation 1
=
V
mA
200
1
-100mV
V ol +1.2
0.7
0.8
1.05
0.8
6.4
V 01 +1.7
1
1.3
250
7V < VIN
<
V
V
V
mV
24V
101
=
5mA
5
50
mV
102
=
5mA
5
50
mV
40
80
mV
5mA
<
101
5mA
<
102 < 300mA
Load regulation 2
IQ
Qu ieseent cu rrent
0< V 1N < 13V
7V < V1N < 13V
102 = 101 " 5mA
IQl
Quiescent current 1
6.3V < VIN 1
VIN~ = 0
101 ~ 5mA
4_1_8 _ _ _ _ _ _ _ _ _ _ _ _ _
itA
mA
300
= 10mA
= 100mA
= 200mA
lIV 02
340
0.1
102
<
<
200mA
13V
102
50
100
mV
4.5
1.6
6.5
3.5
mA
mA
0.6
0.9
mA
=0
~ ~~~~m?u~:9::
______________
L4905
ELECTRICAL CHARACTERISTICS (continued)
Test Conditions
Parameter
V RT
Reset threshold voltage
VRTH
Reset threshold hysteresis
VRH
V RL
Reset output voltage HIGH
Min.
Typ.
Max.
Unit
V02 -O·15
30
4.9
Vor°.o5
V
50
80
mV
Vo2 -1
4.12
V02
0.4
V
11
ms
20
liS
Reset output voltage LOW
IR = 500"A
IR = -5mA
tRD
Reset pulse delay
Ct = 10nF
td
Timing capacitor discharge
time
Ct = 10nF
t; VOl
t;T
Thermal drift
-20°C';; Tamb .;; 125°C
0.3
- 0.8
mVrC
t; V02
t;T
Thermal drift
-20°C';; Tamb .;; 125°C
0.3
- 0.8
mV/oC
SVR1
Supply voltage rejection
f = 100Hz
84
dB
SVR2
Supply voltage rejection
TJSD
Thermal shut down
0.25
3
V R = 0.5V
10 = 100mA
5
54
50
50
V
80
dB
150
°c
• The dropout voltage is defined as the difference between the input and the output voltage when the output voltage is
lowered of 25mV under constant output current condition.
APPLICATION INFORMATION
In power supplies for JJP systems it is necessary
to provide power continuously to avoid loss
of information in memories and in time of day
clocks, or to save data when the primary supply
is removed. The L4905 makes it very easy to
supply such equipments; it provides two voltage
regulators (both 5V high precision) with separate inputs pi us a reset output for the data save
function.
CIR'CUIT OPERATION (see Fig. 1)
After switch on Reg. 1 saturates until VOl
rises to the nominal value.
When the input 2 reaches V IT and the output 1
is higher than V RT the output 2 (V 02 ) switches
on and the reset output (V R ) also goes high after
a programmable time T RD (timing capacitor).
V02 and V R are switched together at low level
when one of the following conditions occurs:
-
an input overvoltage
-
an overload on the output 1 (VOl
a switch off (V IN
V IT - V ITH );
<
<
V RT );
and they start again as before when the condition is removed.
An overload on output 2 does not switch Reg. 2,
and does not influence Reg. 1.
The VOl output features:
5V internal reference without voltage divider
between the output and the error comparator;
very low drop series regulator element utilizing current mirrors;
permit high output impedance and then very
low leakage current error even in power down
condition.
This output may therefore be used to supply
circuits continuously, such as volatile RAMs. allowing the use of a back-up battery. The VOl
- _________ 51 SCiS-THOMSON
_ _ _ _ _ _ _ _ _ _ _5.:..:...c.
/8
• J I~ i1jJ"GO;OO@~~~GO;1i'OO@i!DGO;:;;
341
L4905
CIRCUIT OPERATION (continued)
regulator also features low consumption (O.6mA
typ.,) to minimize battery drain in applications
where the VI regulator is permanently connected
to a battery supply.
The V02 output can supply other non essential
5V circuits wich may be powered down when
the system is inactive, or that must be powered
down to prevent uncorrect operation for supply
voltages below the minimum value.
The reset output can be used as a "POWER
DOWN INTERRUPT", permitting RAM access
only in correct power conditions, or as a "BACKUP ENABLE" to transfer data into in a NV
SHADOW MEMORY when the supply is in·
terrupted.
Fig. 1
SWITCH
ON
VOl
OVERLOAD
V02
OVERLOAD
APPLICATION SUGGESTIONS
Fig. 2 shows an application circuit for a J.l.P
system typically used in trip computers or in
car radios with programmable tuning.
Reg. 1 is permanently connected to a battery
and supplies a CMOS time-of-day clock and a
CMOS microcomputer chip with volatile memory.
Reg. 2 may be switched OF F when the system
is inactive.
VIN
OVERLOAD
THERMAL
SHUT
SWITCH
DOWN
OFF
Fig. 4 shows the L4905 with a back up battery
on the VOl output to maintain a CMOS time-ofday clock and a stand by type N-MOS /J.P. The
reset output makes sure that the RAM is forced
into the low consumption stand by state, so the
access to memory is inhibit and the back up
battery voltage cannot drop so low that memory
contents are corrupted.
In this case the main on-off switch disconnects
both regulators from the supply battery.
~6/_8_________________________ ~~~~~~~~~:~~~ ___________________________
342
L4905
APPLICATION SUGGESTION (continued)
Fig.2
INl
REG.l
Cl~
lBATTERY
.I
1
~C4
Il~F
O.22~FI
__ IN2
~
VOO
OUT 1
7
2
I
REG. 2
6
C~
I
L4905
10nF
~ 1 tol0~F I
C5
-1:
CMOS
~p WITH
VOlATILE
RAM
VOO
OTHER
LOGIC
@SV
RESET OUT
5
VOO
RESET
OUT2
r
C2±
lpF
1
CMOS
CLOCK
RESET
5-10540
Fig. 3 - P.C. board component layout of fig. 2 (1 : 1 scale)
GND
IN1
OUT2
GND
----------------------------- ~~~~~~~v~~Jl ____________________________7~/8
343
L4905
APPLICATION SUGGESTION (continued)
Fig.4
INI
V
O.22pF
±
1
IN 2
±PF
Z
REG.
6
Z
4.7 P F ±
I
L4905
5
BACKUP
RAM
RESET
1
Fig. 5 - Quiescent current
(Reg. 1) vs. output current
,uP
WITH BATTERY
VOO
11010pF
RESET OUT
CMOS
CLOCK
VS B
BACKUP
BATTERY
OUTZ
J:
I
I
VOO
_r
VOO
CT~
10nF
.
~~~
OUTI I LOI < lpA
7
REG. 1
OTHER LOGIC
@ 5V
RESET
S -10541
Fig. 6 - Quiescent current
(Reg. 1) vs. input voltage
Fig. 7 - Total quiescent current vs. input voltage
,
I
)
101
(rnA)
f--
Vii :12V
V12 ,,0
101" 102 ::: SmA
[o1~5mA
Vii" Vi2
V
I..-
..... 1--- J...--
l--
V
/
j..--
8/8
344
~~~~~~~~~---
@
V
t----
1/
j
12
200
V
II
V
l/
100
I
,~
15
18
VII (V)
12
15
"
V, (v)
~~~~m?l~:~~~~ ------~~--~---
L4920
L4921
VERY LOW DROP ADJUSTABLE REGULATORS
PRELIMINARY DATA
• VERY LOW DROP VOLTAGE
• ADJUSTABLE OUTPUT VOLTAGE FROM
1.25 VTO 20 V
• 400 mA OUTPUT CURRENT
• LOW QUIESCENT CURRENT
• OVERVOLTAGE AND REVERSE VOLTAGE
PROTECTION
• + 601- 60 V TRANSIENT PEAK VOLTAGE
• SHORT CIRCUIT PROTECTION WITH FOLDBACK CHARACTERISTICS
• THERMAL SHUT-DOWN
These regulators are designed for automotive, industrial and consumer applications where low
consumption is particularly important.
In battery backup and standby applications the low
consumption of these devices extends battery life.
DESCRIPTION
Pentawatt
The L4920 and L4921 are adjustable voltage regulators with a very low voltage drop (0.4 V typo at 0.4 A
Tj = 25 DC), low quiescent current and comprehensive on-chip protection.
These devices are protected against load dump
transients of ± 60 V, input overvoltage, polarity reversal and over heating.
A foldback current limiter protects against load short
circuits.
The output voltage is adjustable through an external divider from 1.25 V to 20 V. The minimum operating input voltage is 5.2 V (TJ = 25 °C).
Minidip (4 + 4)
ORDER CODES: L4920
L4921
BLOCK DIAGRAM
[
INPUT
r!
lPREREGLLATOOt--
.1
AMPLIFIER
L- - 1 - - - - 1 - -
r---'---,
I
PRg::'KlN }
R~:!~f~E ~1
I
I THERMAL J
rRoTElcT'ON
IC~~~i:~ JI
FOLDBACK
-1'
OUTPUT
-
--:-.'- -' )::) ~fD'
__
>--}L
-_.- --- --).
I
____
./
OUI PU I
Ir-==-==)
J
G
R
N.C.
INPUI
S·7QlS
Tab connected to pin 3
5-7914
TEST AND APPLICATION CIRCUIT
Lr"-...-.IN
OUT
5-791112
c = 100 I1F is required for stability (ESR,,; 3 n over T range)
R2 = 6.2 KU.
THERMAL DATA
Rth -amb
Rth -p;n s
Rth -case
214
346
l
Thermal Resistance Junction-ambient
Thermal Resistance Junction-pins
Thermal Resistance Junction-case
Minidip
(4 + 4)
Max
Max
Max
80°C/W
15 "C/W
-
Penta watt
60°C/W
3°C/W
L4920/L4921
ELECTRICAL CHARACTERISTICS (for VI = 14.4 V; - 40::; Tj
::;
125 'C (note 1), Vo
= 5 V;
Co = 100 IlF, unless otherwise specified)
Symbol
Vi
Parameter
Operating Input
Voltage
Test Conditions
Vo ;" 4.5 V
10 =400 mA
VREF $ Vo < 4.5 V
10 = 400 mA
Min.
Max.
Unit
Vo + 0.9
Typ.
26
V
5.4
26
V
V R'EF
Reference Voltage
5.4 V < Vi < 26 V
1.25
1.33
V
/l,.V o
Line Regulation
V 0 + 1.2 V < Vi < 26 V
10 = 5 mA
Vo ;" 4.5 V
2
15
mV/v
/l,.V o
Load Regulation
5 mA < 10 < 400 mA (*)
Vo ;" 4.5 V
5
25
mV/v
Vo
Dropout Voltage
0.25
0.5
0.5
0.9
V
V
10 = 0 mA
Vo+l.2V'>
i
Vt ,,35\1
!
60
'S/1'1"
I~,I
6D
«\'5-
""~-----I~-'%
-
50
-----
~
0,5
50KHz
100KHz
200KHz
1
("I.)
f--+,-,~.,,-,,-+-f.-- - - I 100KHz
90 f---+--,----t--·+--t-+---t--j
~
80 it,./::::t:::j:=t;t-";;-'-~15i~v ----,-70
f--~""',r.
.......I---+-+-:::t_.,
&0
f--+--+-·-jo'C'DCCDE'---+--+--+
. ""+'-+---+
---t-----li- iBVWBO
~_I
I '
0.5
50
100
(O/,)
f-+--+---L-f-+-+--+--+-f--I
vD : VREF
f ,,50KHz
r---
c--
I
,._-
6D
DIODE
BYWBO
1.5
0.5
1.5
15
10 (A)
Fig. 23
Efficiency vs.
output voltage
_6077
(0',)
t:50~
90
~
~
.;:::; FL&::=
!_J
l~KHZ
10 =2A
~i :~;~80- f - -
1--
12.5
_8/'-1_3_ _ _ _ _ _ _ _ _ _ _ _ _
370
0
-
Fig. 22
Efficiency vs.
output current
f-- r--- -
17 :lA
-ti-
I~~ ,.-
-
f" 25KHz
DIODE
BYW60
q;
-
- r--
Fig. 21
Efficiency vs.
output current
607~
+_1-
I
\
4>
~
- 25
17 fA)
Fig. 20
Efficiency vs.
output current
Ptot
~
--:;:
1.2
D.S
I (H-~--.-~--~
2 x3300pF
50V
EVF
I
L 296
*L~ IGr2;
.IN5822
-5V
I
:]2nF
.
UI
220~F cS
O.2A
'OOfJ F
EKR
... 5.1 V
---r+-----1----~--()3.5
'------. .
~
_2.2~F
A
~22,uF
.J..
-'-----~---------'___O
INHIBIT
--:================-:+-_____________. . .
* BYWBO
I
L 4960
10:5822
-m
~loomA
6.2Kfi
~ 100,uF
. . . EKR
'--___+'___~
+ 1;~
I
470,uF
25V
EKR
ru SCS-THOMSON _ _ _ _ _ _ _ _ _ _ _
1_1'--/13
'J I_
iiiln©I!IIQJ~~~©1JOOIQJ~D©~
373
L4960
APPLICATION INFORMATION (continued)
Fig. 29 - DC-DC converter 5.1V/4A,
± 12V/2.5A; a suggestion how to synchronize a negative output
+12V12.5A
6.2K .il.
4.7K .il.
L----*--+-+---------------------~~----~~---------2~GND
120pF
L 3
03
2 x 220}JF
40V
EKR
6.2K.il.
4.7K .il.
_12V/2.5A
5-9323/2
L 1, L3 = COGEMA 946042 (969051)
L2 = COGEMA 946044 (946045)
1 2 ,03 = BYW80
° .°
Fig. 30 - In multiple supplies several L4960s can be synchronized as shown
L4960
L4960
.:.1:::2/..:1.:.3_ _ _ _ _ _ _ _ _ _ _ _
374
~ ~~~~m~,r"::~lt
---------------
L4960
APPLICATION INFORMATION (continued)
Fig. 31 - Regulator for distributed supplies
MOUNTING INSTRUCTION
The power dissipated in the circuit must be
removed by adding an external heatsink.
Thanks to the Heptawatt package attaching the
heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink
and the package it is better to insert a layer of
silicon grease, to optimize the thermal contact,
no electrical isolation is needed between the
two surfaces.
Fig. 32 - Mounting example
=
-------------- ~ ~~~~m&'l~~~ ____________
1_3:..,:/1__
3
375
L4962
1.5A POWER SWITHING REGULATOR
PRELIMINARY DATA
•
•
•
•
•
•
•
•
•
1.5A OUTPUT CURRENT
5.1V TO 40V OUTPUT VOLTAGE RANGE
PRECISE (± 2 %) ON-CHIP REFERENCE
HIGH SWITCHING FREQUENCY
VERY HIGH EFFICIENCY (UP TO 90%)
VERY FEW EXTERNAL COMPONENTS
SOFT-START
INTERNAL LIMITING CURRENT
THERMAL SHUTDOWN
plastic package and Heptawatt package and
requires very few external components.
Efficient operation at switching frequencies
up to 150KHz allows a reduction in the size
and cost of external filter components.
The L4962 is a monolithic power switching
regulator delivering 1.5A at a voltage veriable
from 5V to 40V in step down configuration.
Features of device include current limiting,
soft start, thermal protection and 0 to 100%
duty cycle for continuous operating mode.
The L4962 is mounted in a 16-lead Powerdip
Heptawatt
Powerdip
(12+ 2 +2)
ORDERING NUMBER:
L4962 (12 + 2 + 2 Powerdip)
L4962E (Heptawatt)
L4962EH (Horizontal Heptawatt)
ABSOLUTE MAXIMUM RATINGS
V ll , V 15
V 10
III
114
Ptot
50
50
-1
-5
5.5
7
1
20
4.3
15
-40 to 150
Input voltage
Input to output voltage difference
Negative output DC voltage
Output peak voltage at t = O.l,us, f = 100KHz
Voltage at pin 11, 15
Voltage at pin 10
Pin 11 sink current
Pin 14 source current
Power dissipation at T pins ~ 90°C (Powerdip)
Tease ~ 90°C (Heptawatt)
Junction and storage temperature
V
V
V
V
V
V
mA
mA
W
W
°c
-~-"-----
BLOCK DIAGRAM
---
(11 7
l496Z
1I
Pin X
Pin (X)
September 1988
Powerdip
Heptawatt
1/12
377
L4962
CONNECTION DIAGRAMS
(Top view)
N. C
,6
N.C
OUTPUT
'5
SOFT START
N.C
1i.
OSCILLATOR
GND
13
GND
GND
12
GNO
NC
1I
FREQ.CQMP
10
INPUT
FEEDBACK
l!lDI
L
SOFT START
OSCILLATOR
GND
1:
FREQ, CQMP
FEEDBACK INPUT
}NPUT
S-1195
Tab connected to pin 4
.
N.C
N C
THERMAL DATA
Rth j-case
Rth j-plns
Rthj-amb
OUTPUT
Heptawatt
Thermal res stance junction-case
Thermal res stance junction-pins
Thermal res stance junction-ambient
Powerdip
max
max
max
• Obtained with the GND pins soldered to printed circuit with minimized copper area.
PIN FUNCTIONS
HEPTAWATT
POWERDIP
NAME
1
7
SUPPLY VOLTAGE
Unregulated voltage input, An internal regulator powers the internal logic.
2
10
FEEDBACK INPUT
The feedback terminal of the regulation loop.
The output is connected directly to this terminal for 5.1 V operation; it is connected via a
divider for higher voltages.
3
11
FREQUENCY
COMPENSATION
A series RC network connected between this
terminal and ground determines the regulation
loop gain characteristics,
4
4,5, 12, 13
GROUND
Common ground terminal.
5
14
OSCILLATOR
A parallel RC network connected to this terminal determines the switching frequency. This
pin must be connected to pin 7 input when the
internal oscillator is used.
6
15
SOFT START
Soft start time constant. A capacitor is connected between this terminal and ground to
define the soft start time constant. The capacitor also determines the average short circuit
output current.
7
2
OUTPUT
Regulator output.
FUNCTION
11, 3, 6,
I N.C.
8,9, 16
,:::2/:..:.1=-2_ _ _ _ _ _ _ _ _ _ _
ID'l SCS-THOMSON
'J, "
378
~Dc;IRI©~~~c;1i'IRI©iJlDc;;:;
L4962
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, TJ
35V, unless -
otherwise specified)
Parameter
Test Conditions
DYNAMIC CHARACTERISTICS
Vo
Output voltage range
VI = 46V
10 = 1A
VI
Input voltage range
V 0 = V ref to 36 V
10 = 1.5A
6.V o
Line regulation
VI = 10V to 40V
6.V o
Load regulation
Vo = V ref
10 = 0.5A to 1.5A
V ref
Internal reference voltage
(pin 10)
Vi = 9V to 46V
10 = 1A
6. V ref
Average temperature
coefficient of refer. voltage
T j = O°C to 125°C
10 = lA
0.4
6T
Vd
Dropout voltage
10= 1.5A
1.5
10m
Maximum operating load
current
VI = 9V to 46V
Vo = V ref to 36V
1.5
12L
Current limiting threshold
(pin 2)
VI =9V to 46V
V 0 = V ref to 36V
2
ISH
Input average current
Vi = 46V;
7]
Efficiency
f=100KHz
Vo = V ref
70
%
10 = lA
Vo = 12V
80
%
50
56
dB
85
100
SVR
f
Supply voltage ripple
rejection
Vo = V ref
6. VI = 2V rms
friPple = 100Hz
Vo = V ref
Voltage stability of
switching frequency
Vi = 9V to 46V
Temperature stability of
switching frequency
T j = O°C to 125°C
f max
Maximum operating
switchi ng freq uency
Va = V,ef
Tsd
Thermal shutdown
junction temperature
I
M
6.Tj
40
V
9
46
V
15
50
mV
8
20
mV
5.1
5.2
V
10 = 1A
5
output short-circuit
mV/oC
2
V
A
15
3.3
A
30
mA
10 = lA
Switching frequency
M
6.V
V ref
10 = 1A
120
115
KHz
0.5
%
1
%
150
KHz
150
°c
3/12
379
L4962
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test Conditions
DC CHARACTERISTICS
17Q
Guiescent drain current
!
0% duty cycle
-1 2L
Output leakage current
30
100% duty cycle .
I pins 2 and 14 open
VI
= 46V
15
0% duty cycle
I
40
mA
20
mA
1
mA
!
SOFT START
11550
Source current
100
130
160
fJA
11551
Sink current
50
70
120
fJA
ERROR AMPLIFIER
V llH
High level output voltage
V 10
= 4.7V
III
= 100fJA
V llL
Low level output voltage
V 10
= 5.3V
111
= 100fJA
11151
Sink output current
V 10
= 5.3V
100
150
fJA
-1 1150
Source output current
VlO
= 4.7V
100
150
fJA
110
I nput bias current
V 10
= 5.2V
Gv
DC open loop gain
V ll
= 1V
to 3V
V
3.5
0.5
2
46
55
10
V
fJA
dB
OSCILLATOR
1-114
Oscillator source current
5
mA
_4/_1_2_____________ ~ ~~~~m~1T~:~~~' --------______
380
L4962
CIRCUIT OPERATION (refer to the block diagram)
The L4962 is a monolithic stepdown switching
citor Css and allowed to rise, linearly, as this
regulator providing output voltages from 5.1 V
capacitor is charged by a constant current source.
to 40V and delivering 1.5A.
Output overload protection is provided in the
form of a current limiter. The load current is
The regulation loop consists of a sawtooth oscilsensed by a internal metal resistor connected to
lator, error amplifier, comparator and the output
a comparator. When the load current exceeds a
stage. An error signal is produced by comparing
preset threshold this comparator sets a flip flop
the output voltage with a precise 5.1 Von-chip
which disables the output stage and discharges
reference (zener zap trimmed to ± 2%).
the soft start capacitor. A second comparator
Th is error signal is then compared with the sawresets the flip flop when the voltage across the
tooth signal to generate the fixed frequency
soft start capacitor has fallen to O.4V.
pulse width modulated pulses which drive the
The output stage is thus re-enabled and the outoutput stage.
put voltage rises under control of the soft start
network. If the overload condition is still present
The gain and frequency stability of the loop can
the limiter will trigger again when the threshold
be adjusted by an external RC network concurrent is reached. The average short circuit curnected to pin 11. Closing the loop directly gives
rent is limited to a safe value by the dead time
an output voltage of 5.1 V. Higher voltages are
introduced by the soft start network. The
obtained by inserting a voltage divider.
thermal overload circuit disables circuit operation when the junction temperature reaches
Output overcurrents at switch on are prevented
by the soft start function. The error amplifier
about 1500 C and has hysteresis to prevent
output is initially clamped by the external capaunstable conditions.
Fig. 1 - Soft start waveforms
CLAMPED_ERROR
O~CILLATOR
AMi? OUTPUT
OUTPUT
NOMINAL
ERROR AMP
~
OUTPUT
OUTPUT
CURRENT
S _5835
Fig. 2 - Current limiterwaveforms
CURRENT
LIMITER
TRIGGERS
Llt-.4lT
THRESHOlD
AVERAGE
SHORT CIRCUIT
CURRENT
r-r-L.~~-~~_~~~~
__
~~~~~~L~L~~~~
_ _ _ _ _ _~
5-9BB
_____________ ml SCiS."THOMSON _ _ _ _ _ _ _ _ _ _ _
5_1_12
• J, • jjJD~~[8cG";J,©1J:RlG~l©ili
381
L4962
Fig. 3 - Test and application circuit (Powerdip)
R1
R4
10
7
L1
2
L4962
C1
1000)JF
63V
C2
2.2nF
5-784611
1) D 1 : BYW98 or 3A Schottky diode, 45V of VRRM;
2) L1: CORE TYPE - MAGNETICS 58120 - A2 MPP
N° TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
3) C6, C7: ROE, EKR 220llF 40V
Fig. 5 - Quiescent drain
current vs. supply voltage
(100% duty cycle)
Fig. 4 - Quiescent drain
current vs. supply voltage
(0% duty cycle)
I,Q
ImA
,_
-
-
G 6066
G-6D65
-t-
110
,
;
;1
j
I
,
+-
_.
-
I
i
,
I
20
=r
I
--t--
I
--
I
\
I
-
I
I
I
13
-f
":.-~'+-~-+-+-+-+-4'-
ir"
I
----,-1
I
30
T
I
I
20
40
~ ~~~~m~::~~~
V i (v)
-25
0
-
j_:-
i
_6_/1_2 _ _ _ _ _ _ _ _ _ _ _ _
382
--t- +tJ
i
.-
---
f+-
(mA)
_.
Fig. 6 - Quiescent drain
current vs. junction temperature (0% duty cycle)
25
50
75
100
Tj ('Cl
--------------
L4962
Fig. 8 - Reference voltage
(pin 10) vs. VI rdip) vs. VI
Fig. 7 .. Quiescent drain
current vs. junction tem·
perature (100% duty cycle)
+
'10
c; -
~
C6 S
~rpl
------r----
(mA)
+-1
Fig. 9 - Reference voltage
(pin 10) vs. junction tem·
perature
IVI
1"
f--,f---+~-+-~'i~-~~'-~
10,,14.
f--+-+--+-f--+--i
5 150
t---+---Rf--+-"-+-I
,>-
"
1
96
90
--
--
\
lOOK
!
f (Hz)
10
15
20
Fig. 14
response
25
30
35
40
45
'Ii (V)
_25
0
25
~t3",'.5nF
LOAD CURRENT
I-- - -
r-- - - ---'
3
-
I
1
1
I,
I
I
I
2
f--
,
I
I
f--
-50
C3 '" 2.2nF'"
10
-
-f--
l-
OUTPUT VOLTA1GE CHANGE
IIIII
'~.•.
i'-:
IIII
t
10
125
I II
I VI
'o"IA
"-
100
RI (KA)
-------------- i.U ~~~~m~lTr;1:~~l1
(ms)
1$0
TJ
(~)
G-680
Vi
VOI"VRE~
1
.~
100
75
Fig. 15 .. Load transient
response
Line transient
INPUT VOLTAGE
:.
50
(;-6070
(KHz I
,"-.
I--
'.
\
!
10K
Vo·Vr~1
"0
-160
lK
V,.J5V
r--
10'
1\
100
""o·Vrf'f
r-
Fig. 13 .' Switching fre·
quency vs. R2 (see test
circuit)
G- 4,.2/1
f
(KHz)
!
_120
\
I
10
Fig. 12 .. Switching fre·
quency vs. junction tem·
perature
- - -so
~
I--T
1,("()
(KH;tJ
--
i _ I---
'f ,\
---\-~--~ f - I \ .
'f"
!
+- -.--
60
V I (v)
Fig. 11 .. Switching fre·
quency vs. input voltage
Fig. 10 - Open loop fre·
quency and phase response
of error amplifier
G,
IdB I
40
---+
f-
IT
f-
I
f - L I AI
f-- f=
-
r--
I
I
1 (m.,)
7/12
383
L4962
Fig. 16 - Supply voltage
ripple rejection vs. frequency
'"
~'~ti~
(dBl
70
F
I
i!
I
If
I
,-,--,----,---',--,--,-,---+-'-'T'-,
(v)
__ ..
---'I--+--+---4-+-+-+-\--I
if' "
-~
tJJ
'0
11'1 ~2VR~5
<'-6084
'0
,,'
ft
I I
1.6
-
I
!
.
:
I
-
12-.1.5A
I-
--r"
i
I
075
0.5
2.5
Fig. 19
Efficiency vs.
output current
Fig. 20
Efficiency vs.
output current
('/.) I-+.-,.-;C'~OKocH'",=:+---+---j-+-+--+---1
1.11--+----';.--+_+-+--+__+-_+-+--+
Vi :35V I
r-- Va "VREF-,_-t---+---t_+--+~_-/
90 f---t-I--+--+I--I--+-+-+----
~
1-~-+-I-4--+~-+-+-t---1
50
0
Fig. 21
Efficiency vs.
output current
".---.~-r---r---,--,-,--r=r'-'--,
~
f=-100KHz-
90
Fig. 18 - Dropout voltage
between pin 7 and 2 vs.
junction temperature
Vo=-Vref
lolA
r
" --
Tr~
v, ~35V
60
50
Fig. 17 - Dropout voltage
between pin 7 and pin 2 vs.
current at pin 2
(0
('/.) f---t''-.'"50i;;K-;'-H,c-'_=_+-+-t--t---t-f;'OOKHz-
90
I---.."-+.-;-.,,c-,+--~--+-t--+--+---t-- ---t
1_:2 5e-50KHz
00
60
1-+--+--+-+--+--+-t--~-+---1
1-+--+---4-+-+--- t-molJE-- f--------~
BYW9B
a.'
'"
0.15
10 (A)
0.5
Fig. 22
Efficiency vs.
output voltage
DIODE
DIODE
VSK31,O
V5K340
0,75
10 (A)
Fig. 23
Efficiency
output voltage
(;-
~
('/. I
vs.
~
0.5
0.75
Fig. 24-Maximum allowable
power dissipation vs. ambient temperature (Powerdip)
0-),$'11
83
~
,~t.
('/. I
~lS0KHZ
90
---;; ~
:r
V--
100KHz
p-
~OKHZ
90
......-:: p-
Vi .35\1
10 :lA
-+
DIODE
V5K340
~I--
---;; r::::: :::.-
<,
\
20
";,
~~1-G"
Vi _35'1
10 :IA
,.I:'~~
DIODE
BYW98
-I
10
384
.,.~
J'q,,+
Ii8/12
~
f\ "'>.,.
100KHz
20
50
~
.. :fut
~".~
-'f;t-
~
-\-"
L4962
APPLICATION INFORMATION
Fig. 25 - Typical application circuit
L1
V;
0--_----17
~-4~__~____~~~Vo
L4962
15
14
4,5,12,13 11
10
BYW98
(6
40V
C7
R4
(5
22)-' F
R3
R2
4.3Kfi
GND
4.7 KIt
GND
5- 93.0
C1 , C6 , C7 : EKR (ROE)
D 1 : BYW98 OR V ISK340 (SCHOTTKY)
SUGGESTED INDUCTORS (L 1 ): MAGNETICS 58120 - A2MPP - 45 TURNS - WIRE GAUGE 0.8mm 120AWG) COGEMA 946043
OR U 15. GUP15. 60 TURNS 1mm, AIR GAP 0.8mm (20AWG) - COGEMA 969051
Fig. 26 - P.C. board and component layout of the circuit of Fig. 25 (1 : 1 scale)
Resistor values for
standard output 7 voltages
_____________________________
~~~~~~~~~:~~©~
Vo
R3
R4
12V
15V
18V
24V
4.7Kn
4.7Kn
4.7Kn
4.7Kn
6.2Kn
9.1Kn
12Kn
18Kn
__________________________
9~/l_2
385
L4962
APPLICATION INFORMATION (continued)
Fig. 27 - A minimal 5.1V fixed regulator; very few components are required
INtfIBIT
FLIP
HOP
o
A
15
4 5,12,13
• COGEMA 946043
969051
•• EKR (ROE)
(TOROID CORE) ,
(U15 CORE)
2.2IJF~C5S
Fig. 28 - Programmable power supply
1~
2.
2'J!JpF
BYW98
40V
5 - 9342fl
Vo = 5.1V to 15V '
10 = 1.5A max
Load regulation (0.5A to 1.5A) = 10mV (V o = 5.1V)
Line regulation (220V ± 15% and to 10 = 1A) = 15mV (V o = 5.1VI
~lO~/~12~______________________ ~~~~~~g~I~~~
386
___________________________
L4962
APPLICATION INFORMATION (continued)
Fig. 29 - DC-DC converter 5.1 V14A. ± 12V11 A. A suggestion how to synchron ize a negative output
150,uH
L4962
+12V11A
L1
BYW98
2, 220;"F
_40 V
EKR
6.2KIl
47 K Il
'~--+-~----------------------~~~----------------~~GND
120pF
150,uH
L 3
BYW98
2x220!,F
40V
EKR
62 K·Jl
4.7 K Jl
_12VI1A
5-9341/2
L1, L3 = COGEMA 946043 (969051)
L2 = COGEMA 946044 (946045)
Fig. 30 - In multiple supplies several
L4962s can be'synchronized as shown
Fig, 31 - Preregulator for distributed supplies
L4962
10-4011
"
L 4962
5-9339/1
*
L2 and C2 are necessary to reduce the switching frequency spikes
when linear regulators are remote from L4962
11/12
387
L4962
MOUNTING INSTRUCTION
mils). During soldering the pins temperature
must not exceed 260°C and the soldering time
must not be longer than 12 seconds.
The external heatsink or printed circuit copper
area must be connected to electrical ground.
The RthJ-amb of the L4962 can be reduced by
soldering the GND pins to a suitable copper
area of the printed circuit board (Fig. 32).
The diagram of figure 33 shows the Rth l-amb as
a function of the side "Q" of two equa square
copper areas having the thickness of 35~ (1.4
Fig. 32 - Example of P.C. board copper area which is
used as heatsi nk
COPPER
Fig. 33 - Maximum dissipable power and junction to
ambient thermal resistance
vs. side "Q"
AREA lSI' THICKNESS
G·JtI.
"
(
eo
r\
Rlh j-amb
-......
•
r--- r-
>-- 40
-
~I-"
f.----
'0
~-
Ptot (lamb. 'O'C)
10
]Q
100
I {mml
31111
p, C, BOARD
_12~/_12_______________________ ~1~~~~~~
388
__________________________
L4964
HIGH CURRENT SWITCHING REGULATOR
•
•
•
•
•
•
•
•
•
•
•
4 A OUTPUT CURRENT
5.1 V TO 28 V OUTPUT VOLTAGE RANGE
0 TO 100 % DUTY CYCLE RANGE
PRECISE (± 3 %) ON-CHIP REFERENCE
SWITCHING FREQUENCY UP TO 120 KHz
VERY HIGH EFFICIENCY (UP TO 90 %)
VERY FEW EXTERNAL COMPONENTS
SOFT START
RESET OUTPUT
CURRENT LIMITING
INPUT FOR REMOTE INHIBIT AND SYNCHRONUS PWM
• THERMAL SHUTDOWN
output for microprocessors and a PWM comparator
input for synchronization in multichip configurations.
The L4964 is mounted in a 15-lead Multiwatt® plastic power package and requires very few external
components.
Efficient operation at switching frequencies up to
120 KHz allows a reduction in the size and cost of
external filter components.
Multiwau®
(15·lead)
DESCRIPTION
The L4964 is a stepdown power switching regulator
delivering 4 A at a voltage variable from 5.1 V to
28 V.
Features of the device include overload protection,
soft start, remote inhibit, thermal protection, a reset
ORDER CODES:
L4964
L4964HT
BLOCK DIAGRAM
September 1988
1/12
389
L4964
ABSOLUTE MAXIMUM RATINGS
Symbol
Vi
Vi - V 2
V2
V12
Vs, V7, Vg
V1Q, VB, V1
V14
Value
Unit
Input Voltage (pin 3)
Parameter
36
V
Input to Output Voltage Difference
38
V
Output DC Voltage
Output Peak Voltage at t = 0.1 !lsec f = 100 kHz
-1
-7
V
V
Voltage at Pin 12
10
V
Voltage at Pins 5, 7 and 9
5.5
V
Voltage at Pins 10, 6 and 13
7
V
Voltage at Pin 14 (114" 1 mA)
Vi
Ig
Pin 9 Sink Current
1
mA
111
Pin 11 Source Current
20
mA
114
Pin 14 Sink Current (V 14 < 5 V)
50
mA
P101
Power Dissipation at T case" 90 °C
20
W
Tj, T s1g
Junction and Storage Temperature
- 40 to 150
°C
THERMAL DATA
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
Max
Max
3
35
CONNECTION DIAGRAM (top view)
4t-
15
14
13
12
11
10.
g'
8
7
6
5
-$-~
~1
/
5-581,9/2
Tab connl'Cted to pin 8
Note: Pins 1, 4, 15 must not be connected. Leave open circuit.
2/12
390
N.C.
RESET OUTPUT
RESET DELAY
RESU INPUT
OSCILLATOR
FEEDBACK INPUT
FREQUENCY COMPENSATION
GROUND
SYNC. INPUT
INHIBIT INPUT
SOFT-START
N.C,
SUPPLY VOLTAGE
OUTPUT
N.C.
L4964
PIN FUNCTIONS
N°
Name
1
N.C.
2
OUTPUT
3
SUPPLY VOLTAGE
Function
Must not be connected. Leave open circuit.
Regulator Output.
Unregulated Voltage Input. An internal regulator powers the L4964's
internal logic.
4
N.C.
5
SOFT START
Soft Start Time Constant. A capacitor is connected between this
terminal and ground to define the soft start time constant. This
capacitor also determines the average short circuit output current.
6
INHIBIT INPUT
TTL - Level Remote Inhibit. A logic high level on this input disables the
L4964.
7
SYNC INPUT
Must not be connected. Leave open circuit.
Multiple L4964's are synchronized by connecting the pin 7 inputs
together and omitting the oscillator RC network on all but one device.
S
GROUND
9
FREQUENCY
COMPENSATION
A series RC network connected between this terminal and ground
determines the regulation loop gain characteristics.
Common Ground Terminal.
10
FEEDBACK INPUT
The Feedback Terminal of the Regulation Loop. The output is
connected directly to this terminal for 5.1 V operation; it is connected
via a divider for higher voltages.
11
OSCILLATOR
A parallel RC network connected to this terminal determines the
switching frequency. The pin must be connected to pin 7 input when
the internal oscillator is used.
12
RESET INPUT
Input of the Reset Circuit. The threshold is roughly 5 V. It may be
connected to the beedback point or via a divider to the input.
13
RESET DELAY
A capacitor connected between this terminal and ground determines
the reset signal delay time.
14
RESET OUTPUT
15
N.C.
Open Collector Reset Signal Output. This output is high when the
supply is safe.
Must not be connected. Leave open circuit.
CIRCUIT OPERATION (refer to the block diagram)
The L4964 is a monolithic stepdown switching regulator providing output voltages from 5.1 V to 28 V
and delivering 4A.
The regulation loop consists of a sawtooth oscillator, error amplifier, comparator and the output stage.
An error signal is produced by comparing the output
voltage with a precise 5.1 Von-chip reference (zener zap trimmed to ± 3 %). This error signal is then
compared with the sawtooth signal to generate the
fixed frequency pulse width modulated pulses which
drive the output stage. The gain and frequency stability of the loop can be ajusted by an external RC
network connected to pin 9. Closing the loop directly gives an output voltage of 5.1 V. Higher voltages
are obtained by inserting a voltage divider.
Output overcurrents at switch on are prevented by
the soft start function. The error amplifier output is
initially clamped by the external capacitor Css and
allowed to rise, linearly, as this capacitor is charged
by a constant current source.
Output overload protection is provided in the form
of a current limiter. The load current is sensed by an
internal metal resistor connected to a comparator.
When the load current exceeds a preset threshold
this comparator sets a flip flop which disables the
output stage and discharges the soft start capacitor.
A second comparator resets the flip flop when the
voltage across the soft start capacitor has fallen to
0.4 V. The output stage is thus re-enable and the
output voltage rises under contro of the soft start
network. If the overload condition is still present the
limiter will trigger again when the thershold current
is reached. The average short circuit current is limited to a safe value by the dead time introduced by
the soft start network.
3/12
391
L4964
The reset circuit generates an output signal when
the supply voltage exceeds a threshold programmed by an extemal divider. The reset signal is generated with a delay time programmed by an external capacitor. When the supply falls below the threshold the reset output goes low immediately. The reset output is an open collector.
A TTL - level input is provided for applications such
as remote on/off control. This input is activated by
high level and disables circuit operation. After an inhibit the L4964 restarts under control of the soft start
network.
The thermal overload circuit disables circuit operation when the junction temperature reaches about
150 and has hysteresis to prevent unstable conditions.
Figure 1 : Reset Output Waveforms.
OUTPUT NOW
STABLE,RESET
GOES HIGH
IOOmV OF
HYSTERESIS
I
AN INTERRUPTION
OF SUPPLY CAUSES
RESET OF MICRQ
+
_L_ _ .,........:....------,;
RESET
THRESHOLD-
I
AT POWER DOWN
MICRO IS INHIBITED
IMMEDIATELY
----- ----- - -
MONITORED
VOLTAGE
RESET
OUTPUT
Figure 2 : Soft Start Waveforms.
OSCILLATOR
OUTPUT
NOMINAL
ERROR AM~
OUTPUT
OUTPUT
CURRENT
S _5835
4/12
392
L4964
Figure 3 : Current Limiter Waveforms.
12
5-6596(1
ELECTRICAL CHARACTERISTICS (refer to the test circuits T j
specified)
jSymbolj
Parameter
= 25 DC, Vi = 25 V,
Test Conditions
unless otherwise
I Min. I Typ. I Max. I Unit I
Fig.
DYNAMIC CHARACTERISTICS (pin 6 to GND unless otherwise specified)
Vo
Output Voltage Range
V, = 36 V
10 = 1 A
Vref
28
V
4
Vi
Input Voltage Range
Vo =V ref to 28 V
10 = 3 A
9
36
V
4
!1Vo
Line Regulation
Vi = 10 V to 30 V, Vo = Vref, 10 = 2 A
15
70
mV
4
!1Vo
Load Regulation
10 = 1 A to 2 A
10
30
mV
4
10 = 0.5 A to 3 A
15
50
mV
4
5.1
5.25
V
4
Vo =Vref
I
I
Internal Reference
Voltage (pin 10)
Vi = 9 V to 36 V
10 = 2 A
Average Temperature
Coefficient of
Reference Voltage
Tj = a 'C to 125°C
Vd
Dropout Voltage
between Pin 2
and Pin 3
10 = 3 A
10 m
Maximum Operating
Load Current
VI = 9 V to 36 V,
12L
Current Limiting
Threshold (pin 2)
Vi = 9 V to 36 V
Vo = Vref to 28 V
ISH
Input Average Current
Vi = 36 V ; Output Short-circuited
Vref
!J.V ref
--
!J.T
4.95
10 = 2 A
10 = 2 A
Vo =Vref to 28 V
my/DC
0.4
2
3.2
1.5
2.4
80
4
V
4
A
4
8
A
4
140
mA
4
4
4.5
V
5/12
393
L4964
ELECTRICAL CHARACTERISTICS (continued)
ISymbol1
Parameter
Test Conditions
Min. I Typ. I Max. I Unit I Fig. I
DYNAMIC CHARACTERISTICS (continued)
11
SVR
Effiency
10 = 3 A
Supply Voltage Ripple
Rejection
75
%
4
IVo =12V
85
%
4
I'1VI = 2 Vrms
Vo =Vref
f
Switching Frequency
I'1f
--
Voltage Stability of
Switching Frequency
Vi = 9 V to 36 V
--
I'1f
I'1T J
Temperature Stability
of Switching
Frequency
T j = a °C to 125°C
f max
Maximum Operating
Switching Frequency
Vo =Vref
Tsd
Thermal Shutdown
Junction Temperature
I'1 Vi
I Vo =Vref
fripple = 100 Hz
10 = 2 A
46
40
56
-
dB
4
50
60
kHz
4
0.5
%
4
1
%
4
kHz
-
°C
-
120
10 = 1 A
135
145
DC CHARACTERISTICS
130
-12l
I V6 = 0
Quiescent Drain
Current
Vi = 36 V V 7 = 0 V
S1 : B
S2:B
Output Leakage
Current
Vi = 36 V, V6 = 3 V, S1 : B,
S2 : A, V 7 = 0 V
I
V 6 =3V
66
100
mA
6a
30
50
mA
6a
2
mA
6a
SOFT START
Source Current
V6 = 0 V,
Sink Current
Vs = 3 V
Vs = 3 V
INHIBIT
V6l
Low Input Voltage
Vi = 9 V to 36 V
V6H
High Input Voltage
V7 = 0 V
- 16l
-16H
6/12
394
Input Current with Low Vi = 9 V to 36 V
Input Voltage
V7 = 0 V
Input Current with
S1 : B
High Input Voltage
S2: B
S1 : B
S2: B
- 0.3
0.8
V
6a
2
5.5
V
6a
V6 = 0.8 V
20
iJA
6a
V6 = 2 V
10
iJA
6a
L4964
ELECTRICAL CHARACTERISTICS (continued)
ISymbol1
Parameter
Test Conditions
I Min. I Typ. I Max. I Unit I Fig. I
ERROR AMPLIFIER
V 9H
High Level Output
Voltage
V10
~4.7V,
Ig
~100flA,S1
: A, S2 :A
V 9L
Low Level Output
Voltage
V 10
~5.3V,
Ig
~100flA,S1
: A, S2 :E
1951
Sink Output Current
V10
~
5.3 V,
S1 : A,
S2 :B
100
150
flA
6c
Source Output Current
V1o~4.7V,
S1 :A,
S2 :D
100
150
flA
6c
S2 :C
40
55
-19
so
110
Input Bias Current
V10
Gv
DC Open Loop Gain
Vg
~5.2
~
V
3.4
0.6
S1 : B
1 V to 3 V,
S1 : A,
2
20
V
6c
V
6c
flA
6c
dB
6c
10
flA
6a
-
mA
6a
Vref
V
6d
V
6d
V
6d
mV
6d
OSCILLATOR AND PWM COMPARATOR
~
-17
Input Bias Current of
PWM Comparator
V7
-111
Oscillator Source
Current
V11
Rising Threshold
Voltage
Vi
0.5 V to 3.5 V
~2
V,
S1 :A,
S2: B
4
RESET
V 12R
V12 F
V13D
~
S2: B,
Delay Threshold
Voltage
V12~5.3V,
vref
Vref
S1 :A,
S2: B
4.3
4.5
4.7
100
Output Saturation Volt.
114
Input Bias Current
V12
~
5 mA;
~
V12~4.7V;
S1, S2: B
S1 : B, S2 : B
0 V to V,ef,
V12 ~ 5.3 V
so
Delay Source Current
V13~3V
I
51
Delay Sink Current
S1 :A
S2 : B
IV12~4.7V
Output Leakage
Current
V,
114
Vref
-150mV -100mV
V 14S
-1 13
Vref
4.75
Falling Threshold
Voltage
Delay Threshold
Voltage Hysteresis
113
S1 : B,
-150mV -100mV -50mV
V13 H
112
9 V to 36 V,
~
36 V,
V 12
~
5.3 V, S1 : B, S2 : A
60
0.4
V
6d
1
10
~
6d
110
150
8
100
flA
6d
mA
6d
flA
6d
7/12
395
I
r
L4964
Figure 4: Dynamic Test Circuit.
RESET
"01~--~~"J
L 4964
]"'
R5
t
10
"Hn
22~F
GN00---
T"-1.2nF
"TI
.---
J
-
-~
-+-------
"'-------"---oONO
INHIBIT
C7, C8 : EKR (ROE)
L1 : L ~ 300 ~H at 8 A
Core type: MAGNETICS 58930 - A2 MPP
R ~ 500 mil
N' turns' 43
Wire Gauge: 1 mm (18 AWG)
" - - - - - - - - - - - - - - - - - - - - - - - _ . _ - - - - - - - - - - - - - _ . _ - - - - - _..
Figure 5 : PC. Board and Component Layout of the Circuit of Fig. 4 (1:1 scale).
8/12
396
L4964
Figure 6: DC Test Circuits.
Figure 6b.
Figure 6a.
i·
10Vi
L 4964
~-.---
!
lOO f.'F
oB
L 4964
S-684212
Figure 6c.
,V i
0--------<.-----.
r
/ }-----1r--lIO
100 ,uF
L 4964
1 - Set V ,0 FOR V9 ~ 1 V
2 - Change V10 to obtain V9 ~ 3 V
3 _Gv ~ DVo
2V
*lJoltmeter with input imp.dance?:.50Mn
!3.V 10
5_68l..1Ol1
'---------------------------_._------------_.- ----
J
Figure 6d.
~-----------~------
l
I
S-684S/2
9/12
397
L4964
Figure 7 : Switching Frequency vs. R1 (see fig. 4).
Figure 8 : Open Loop Frequency and Phase Response of Error Amplifier (see fig. 6c).
-
G !l43111
(KHz )
\
10'
I~L5nF
f\
G-!J219
Gy
(dB)
60
.......... Gy
50
\
..
\
r\
.8
Figure 9 : Reference Voltage (pin 10) vs. Junction Temperature (see fig. 4).
-
-160
\
-10
RI(Kn)
10
100
lK
10K
lOOK
f (Hz)
1M
Figure 10 : Power Dissipation (L4964 qnly) vs.
Input Voltage.
G !J429
Vrot
G_!J430
Ptol
(W)
(V )
YI=25V
5.100
5ms
'o=SOI'"
. . . .'::.•. ,. . ._''\ ~.:.:-:" ".: ,.\.
<"
"
ORDER CODE: L4970
I
BLOCK DIAGRAM
Multiwatt 15
,
-----------"'"
--------,~
--_.---------,
!
S.1,U 17U
1.4
Ui
is
SYNC "::"::l-~~~
1
Ct se
Rose
~2
boot
Ufeedb
COIIP.
L497G
C55
fl88L49?8-BfB
IN
--~~~~~~~~~~~~~~---~~~~-----
September 1988
_J
1/16
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
401
L4970
ABSOLUTE MAXIMUM RATINGS
Symbol
Test Conditions
Unit
Vg
Input Voltage
55
V
Vg
Input Operating Voltage
50
V
V7
Output DC Voltage
Output Peak Voltage at t = 0.1
-1
-7
V
V
65
V g + 15
V
V
V
V6
Parameter
~s
f = 200 KHz
Bootstrap Voltage
Bootstrap Operating Voltage
Input Voltage at Pins 3, 11, 12
12
V4
Reset Output Voltage
50
V
14
Reset Output Sink Current
50
mA
V3,Vtt,Vt2
Vs, V tO , Vt3
Is
It
°
1'2
P,ot
T t , Tst9
Input Voltage at Pin 5, 10, 13
Reset Delay Sink Current
7
V
30
mA
Error Amplifier Output Sink Current
10
mA
Soft Start Sink Current
30
mA
Total Power Dissipation at T case < 120 cC
30
W
- 40 to 150
'C
Junction and Storage Temperature
PIN CONNECTION (top views)
~
f'"h
--qT
Ur-ef S.1U
13
12
SYNC
SOFT START
FEEDBACK INPUT
FREQ. COMPENSATION
Ui
GNO
OUTPUT
BOOTSTRAP
11
1B
B
7
6
5
4
-$-~
L
r
12U
14
~
Teb connactlld to pin B
RESET DELAY
RESET OUT
RESET INPUT
Cose
Rose
88L"!1711~Cl
THERMAL DATA
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
2/16
402
Max
Max
1
35
L4970
PIN FUNCTIONS
N°
Function
Name
1
OSCILLATOR
Rose. External resistor connected to ground determines the constant
charging current of Cose.
2
OSCILLATOR
Cose. External capacitor connected to ground determines (with Rosel the
switching frequency.
3
RESET INPUT
Input of Power Fail Circuit.
The threshold is 5.1 V. It may be connected via a divider to the input for
power fail function. It must be connected to the pin 15 with an external
resistor when not used.
4
RESET OUT
Open Collector Reset/Power Fail Signal Output. This output is high when
the supply and the output voltages are safe.
5
RESET DELAY
A Cd capacitor connected between this terminal and ground determines
the reset signal delay time.
6
BOOTSTRAP
A Cboot capacitor connected between this terminal and the output allows
to drive properly the internal D-MOS transistor.
7
OUTPUT
Regulator Output.
8
GROUND
Common Ground Terminal.
9
SUPPLY VOLTAGE
Unregulated Voltage Input.
10
FREQUENCY
COMPENSATION
A serie RC network connected between this terminal and ground
determines the regulation loop gain characteristics.
11
FEEDBACK INPUT
The Feedback Terminal of the Regulation Loop. The output is connected
directly to this terminal for 5.1 V operation ; it is connected via a divider
for higher voltages.
12
SOFT START
Soft Start Time Constant. A capacitor is connected between this terminal
and ground to define the soft start time constant.
13
SYNC INPUT
Multiple L4970's are synchronized by connecting pin 13 inputs togheter or
via an external syncr. pulse.
14
Vref
5.1 V ref Device Reference Voltage.
15
Vstart
Internal Start-up Circuit to Drive the Power Stage.
Figure 1 : Feedforward Waveform.
U2
/
I
/
//
,,
,,
,,
,/
'/
'/
/"
~
/
I-
I-----;
~
Ucc=38U
Ucc=15U
/
Uc
U7
I--
-
-
Ucc",15 U
Ucc-39 U
T
~
t188L497B-B7
3/16
403
L4970
Figure 2 : Soft Start Function.
CU'lMPFD
ERROR AMPLI F I ER
OUTPUT
OSCILLATOR
OUTPUT
~
NOMINAL
ERROR
AMPLH IE::R
OUTPUT
CURRENT
SOFT START RAMP - - - -__
NBt
Figure 3 : Limiting Current Function.
ase ILLATOR
CONTROL
VOL rAGE
VOL TAGE ACROSS
THE CATCH DIODE
I
I
I
I
----------- ----------eLK
I
SET CLOCK
CLK1
I PEAK
INDUCTOR CURRENT
PIN? CURRENT
NBBL49?B-B9
4/16
404
L4970
Figure 4 : Reset and Power Fall Functions.
A
INPUT RESET
FALLING THRESHOLD
START - UP
THRESHOLD
- -TURN-OFF THRESHOLD
,OU
Uo 5t::v
~.lU
l
~5TERE5V5
~
SOFT START
TIME
OUTPUT RESET
+--,f'tOR'
DELAV RESET
+--+
'tDMI
-I'---TIPOUER,
FAIL
TIME
f1BBL49?B-1B
B
- - - - - - - -
INPUT RESET THRESHOLD
START UP THRESHOLD
Uo
S.1U
/
COUTPUT
RESET
-,f---,'I tOR OELA'r' RESET
fl88L4978-11
5/16
405
L4970
ELECTRICAL CHARACTERISTICS (refer to the test circuit, T j
otherwise specified)
I
Symbol
I
Parameter
Test Conditions
I
= 25°C, V j = 35 V, f = 200 kHz, unless
Min.
I
Typ.
I
Max.
I
Unit
Fig.
50
V
5
5.1
5.2
V
5
12
30
mV
5
10
20
30
50
mV
mV
5
5.1
5.2
V
7
10
25
mV
7
40
DYNAMIC CHARACTERISTICS
Vi
Input Volt. Range (pin 9)
Vo = Vrel to 40 V
10 = 10 A
15
Vo
Output Voltage
Vi = 15 V to 50 V
10 =5A;Vo =Vrel
5
t1Vo
Line Regulation
Vi = 15 V to 50 V
10 =2A;Vo =Vrel
t1Vo
Load Regulation
Vo = Vrel
10 = 3 A to 6 A
10 = 2 A to lOA
V REF SECTION (pin 14)
Reference Voltage
VREF
Line Regulation
t1VREF
",VREF
t1V REF /t1 T
IREF
VSTART
V ref
5
Vi=.15Vt050V
V,2 = 0
Load Regulation
IREF = 0 to 3 mA
20
mV
7
Average Temp. Coell.
Ref. Voltage
Tj =0 °C to 125°c
OA
mV/C
7
Short Circuit Curr. Limit
VREF = 0
70
mA
7
SECTION (pin 15)
Reference Voltage
P '2 = 0 V
12
12.6
V
7
"'Vrel
Line Regulation
P,2 =OV;
Vi = 15 to 50 V
OA
1
V
7
"'Vrel
Load Regulation
Irel = 0 to 1 mA
P'2 = 0 V
50
200
mV
7
I ref
Short Circuit Current Limit P,2 =OV;P ,5 =OV
Vd
Dropout Voltage between
Pin 9 and 7
10 = 5 A
10 = 10 A
17L
Max Limiting Current
Vi = 15 V to 50 V
Vo = V rei to 40 V
Efficiency
6/16
406
llA
mA
7
0.55
1.1
80
0.8
1.6
V
V
5
11
12.5
14
A
5
10 = 5 A
Vo =Vrel
Vo = 12 V
80
85
92
%
%
10 = 10 A
Vo=Vrel
V o =12V
75
80
87
%
5
5
L4970
ELECTRICAL CHARACTERISTICS (continued)
Min.
Typ.
Supply Voltage Ripple
Reject.
Vi = 2 VRMS ; 10 = 5 A
1 = 100 Hz ; Vo = Vrel
56
60
Switching Freq.
R = 15 KQ ; C = 2.2 nF
180
200
M/~Vi
Volt. Stability 01 Switching
Freq.
Vi = 15 V to 45 V
2
MIT)
Temp. Stability 01 Switch.
Freq.
T) = 0 to 125
f max
Max. Operating Switch.
Freq.
Vo :::: V ret
Symbol
SVR
1
Test Conditions
Parameter
'c
Max.
Unit
Fig.
dB
5
220
KHz
5
6
%
5
%
5
KHz
5
V
7A
V
7A
1
500
10 = 10 A
DC CHARACTERISTICS
Vgon
Turn-on Thresh.
V9Hys,
Turn-off Hyster.
190
1900
III
Quiescent Current
10
12
1
V'2=0;S1=D;
S2 = C ; S4 = A
Operating Quiescent Curr. V, 2 = 0
1 = 200 KHz
Out Leak Current
11
10
16
mA
7A
16
20
mA
7A
2
mA
7A
V
7C
0.7
V
7C
Vi = 55 V ; S3 = A ;
V,2 = 0 V ; 1 = 200 KHz
SOFT START (pin 12)
Soft Start Source Current
V,2 = 3 V ; V "
Output Saturation Voltage
1,2s = 20 mA ; V9 = 10 V
=0 V
ERROR AMPLIFIER
V , OH
High Level out Voltage
V,0L
Low Level out Voltage
1, 0
P
"
1, 0
P"
= - 50flA ; S2 = A
= 0 V ; S1 = C
6
= 50flA ; S2 = A
=6V;S1 =C
Input Bias Current
V = 5 ; S1 = B ;
"
Rs = 10K
2
10
uA
7C
Input off Voltage
P = Vas;
"
Rs = 50 Q ; S1 = A
2
10
mV
7C
Gv
DC Open Loop Gain
PVCM = 4 V ;
Rs = 50 Q ; S1 = A
60
dB
7C
SVR
Supply Volt. Rej.
15 < Vi < 50 V
60
dB
7C
1"
VOS
80
7/16
407
L4970
RAMP GENERATOR (pin 2)
Ramp Valley
Ramp Peak
V, = 15 V
V, = 45 V
Min Ramp Current
S1 =A;11 =1001lA
Max Ramp Current
S1 = A ; 11 = 1 mA
1.5
V
7A
2.5
5.5
V
V
7A
Il A
mA
7A
Fig.
270
2.4
2.7
Min.
Typ.
300
7A
SYNC FUNCTION (pin 13)
Symbol
Parameter
Test Conditions
SYNC
Low Input Voltage
V, = 15 V to 50 V
Max.
Unit
- 0.3
0.9
V
3.5
SYNC
High Input Voltage
V, 2 = 0
5.5
V
- 1'3L
Sync Input Current with
Low Input Voltage
V,3 =0.9 V
0.4
mA
- 1'3 H
Input Current with High
Input Voltage
V , 3 = 3.5 V
1.5
mA
SYNC
ns
_~ __50
Delay
Output Amplitude
Output Pulse Width
5
V
0.5
Ilsec.
Vref
- 100
V
mV
70
RESET AND P. FAIL FUNCTIONS
Vref
- 50
- _ ...100
120
Rising Threshold Voltage
(pin 11)
S1 = B
80
mV
70
V5H
Delay High Threshold
Voltage
S1 = B
5
5.1
5.2
V
70
V5L
Delay Low Threshold
Voltage
S1 = B
1
1.1
1.2
V
70
- 15S0
Delay Source Current
V3 = 5.3 V ; Vs = 3 V
S1 = A
40
55
70
Il A
70
Delay Sink Current
V3 =4.7 V ;V5 =3 V
S1 =A
10
mA
70
Hysteresis
15s 1
V4s
14
V3R
Out Saturation Voltage
14 = 15 mA ; S2 = B
0.4
V
70
Output Leak Current
V 4 = 50 V ; S2 = A
100
70
Rising Threshold Voltage
Hysteresis
13
8/16
408
V, = 15 to 50 V
S1 = B
Vref
- 150
V11R
Input Bias Current
5
5.1
5.2
Il A
V
0.4
0.5
0.6
V
70
1
3
Il A
70
70
::!!
cc
r::
-'
...
:;;:Z8
01&1
~1'11'1>
M ID
N
15 9
3
~z
esl ezl e31
13
RZ
6
4
7
L-1110U~
•~ ,
L4970
5 B 10
I I~
Ii
".7K
SYNC
.8
r
"0
"0
1
2
111
t
,.,
(")
,
o
Vo
Ii
13X~Vl: +S
BIIPSIIIIO 113VEKR 113Y
ell
2.7K
2.2nF
-8
27
o ,
liND
'0GND
L4970-2BIS:: LIB
r
..,.
o(C
.j:Io
~
'"
<0
.....
o
L4970
Figure 6: Mockup of the Circuit of Fig. 5 (1.1 scale).
10/16
-------------------410
~~~~~~~~~~
L4970
Figure 7: DC Test Circuits.
'"
~~'" '0 .u
O~U15~,---15
-,1,..--2----,14
~
J:
2.2uF
2.2uF
~
J:
nBBL4!J?B-Bfi
'----._-------_._--_._----
Figure 7A.
Vi
I
o
r.:H.'",:____
1BuF
o
A
Ii
S1
9
54
~
8...-_ _1-,2_:--'3
I
A
V re f -5 .1V
V7
oC
51
1.2nF
8
A1.
1.
J: I
2 . 2nF
N88L49?8-84
Figure 78.
:I:
1BuF
9
112
12
11
8
N88L49?8-85
~
~.,I
SGS·1HOMSON
11/16
i'!iD©OO~~rn«:1i"iiI@IllD©$
411
L4970
Figure 7C.
-----~-lfaU;- -
- - ~~----I
.?
~
Ui
9
l'OOUA
oc
} - - . . - - . . - - - l 11
I
1188L4978-82
Figure 70.
~------~--
----5V
Vi
!
B
3
52
V4
15
12/16
-~-----
412
ffBBL4!J?B-B3
15mA
L4970
Figure 8 : Quiescent Drain Current vs. Supply
Voltage (0 % duty cycle - see fig. 7A).
NBBL 497B - 14
-.
190
(mAl
f·588KHz
28
18
/'~
16
~ -::::: r--- I---"
V
14
12
18
14
I
28
48
"-., l'--
f--- -
..
"-
'-..., f·· 5813KHz
I"~
r--:: ........-
f-188KHz
NB8KHZ
:--- F::::
r-f-..
_.
WITHOUT
OSCILunOR
58 U i (U I
NBB1497B-15
-
"-.,
5
(rnA I
1 H(d
59
t-
1 S0
1j ( • C I
Figure 11 : Reference Voltage (pin 14) vs. Vi
(see fig. 7).
NB8L 497f1-17
r--
t,) ref
,c-
IVI
22
5.128
f.588KHz
2B
5.118
L
18
f..-I--
f-288KHz
16
l- t--
f.188KHz
14
"""'"
8
Figure 10 : Quiescent Drain Current vs. Duty
Cycle.
1900
~
18
WITHOUT
OSCILLATOR
38
~
12
I
I
18
I'"
16
f.188KHz
6
~
18
::::::..t--1
t:-::
f- ....-
8
---
28
f..-- ..-+f-28~HZ
I--
NBBL 497B -15
190
I
(rnA I
Figure 9: Quiescent Drain Current vs. Junction
Temperature (0 % duty cycle).
5.188
5.898 f-- -
--
.
5.888 r--- -
12
f-- -
IB
r---
.--
r--
-
8
L
2B
4B
5B
8B O. C. I % I
Figure 12 : Reference Voltage (pin 14) vs.
Junction Temperature (see fig. 7).
NBBL497f1-1B
U14
( VI
IB 15 29 25 3B 35 413 45 58
VilVI
Figure 13 : Reference Voltage (pin 15) vs. V,
(see fig. 7).
rtBBL497f1 19
VIS
(UI
12.5138
S.158
12.2S8
5.125
5.188
5.875
12.1388
--
11.758
....-I -
11.588
11.258
5.959
11.888
Ui·35V
18.758
-59
5B
1813 T j
(.
CI
18 15 28 25 38 35 48 45 58
UilUI
13/16
413
L4970
Figure 14: Reference Voltage (pin 15) vs.
Junction Temperature (see fig. 7).
Figure 15 : Switching Frequency vs. Input Voltage
(see fig. 5).
f188L4978-28
f188L4978 - 21
U1S
1KHz)
I U)
218
12.4
285
12.2
288
- ---
12.8
11.8
r---
195
I--
198
185
11.6
r---
U,.3SU
_.
'---
-51'1
18 15 28 25 38 35 48 45 58
58
UiIU)
Figure 17 : Switching Frequency vs. R4
(see fig. 5).
Figure 16 : Switching Frequency vs. Junction
Temperature (see fig. 5).
f188L4978-22
G· 6430
1KHz)
228
-
288
100
181'1
161'1
, -- -t
_. r-
148
-~-T--
U i . 35U
121'1
10 1~O------~--~--~~-L-R4~(K~n~)
-51'1
58
8
188 Tjl'C)
Figure 18 : Line Transient Response (see fig. 5).
f188L4978 23
I
Uo·5.1U
Ia.5A
-
/;2~~~~Z c---
1\
f188L4978-24
U,
U·i .35U
Vo-Uref
I U)
-
LOAD CURRENT r--- -
58
48
li
""Uo
Figure 19 : Load Transient Response (see fig. 5).
10
IA)
8
6
38
v
ImU)
4
2
""Ua
+58
ImU)
If'
8
["
+588
'-../
-58
8
-588
8
14/16
414
2
3
4
tlms)
1'1.4
8.8
1.2
1.6
tlms)
L4970
---------_._-----
Figure 20 : Dropout Voltage between Pin 9 and
Pin 7 vs. Current at Pin 7.
tl88L497{]-25
VO
{VI
VD
tl88L4978-26
-,--
{V I
1.6
1.6
1.2
V
/"
0.8
L
/"
V
L
V ~ ...---
0.4
l# ~
o 1
2
3
T j 025" C
~
-
./
4
5
V
v
6
7
8
{W I
='1..L
--
Uo=Ur'ef
-
c-
~
V
V
~/
....-- ----
loolGA
V
20
UJ
-T-
30
--
tl88L497{]-28
r---
I
-- t-"Jo
V V
"';;- r-.
/
f.::: -~
75
-- ~-
-
,
/
65
/
/"
-- -
-~-
-
-
-
l~--
35
1~
Vo(V)
tl88L497{]-3&
n
I
88
- -f.2B9KHz
- ,t
-
./
-
91l
,
l\::jA
V
-_.
f • 199K;;'>-1--
91l
V
=
-
HI
{%
Uo"Vref
L.50uH
85
Vl051lV
Figure 25 : Efficiency vs. Output Voltage.
tl88L497&-29
95
18
5
Figure 24 : Efficiency vs. Output Current.
n
L=50uH
-
8
40
----f--
f0288KHz
28
14
-
150 T J {" C I
11l1l
[1--- -.--
12
Io=5A
hO.5A
I---"' !--lo.4A
I---"' f- I003A
Figure 23 : Power Dissipation (device only) vs.
Output Voltage.
15
V
--
V
51l
---
/
,/
V
V
-----
-50
.-
--;-- r--
/.
IOolBA
...-v r--!O_7A
/' /.
(W I
,,-
6
79
/
/"'
V
p to t
f0200KHz
L=S(3uH
~-
80
/
1l.8
17{AI
/"
V
tl88L497&-27
P to t
8
1.2.
0.4
Figure 22 : Power Dissipation (device only) vs.
Input Voltage.
10
/"' V
/.
Tj.125"C
{%
Figure 21 : Dropout Voltage between Pin 9 and
Pin 7 vs. Junction Temperature.
f~IlIl~~
V ...---
f.509KHz
,--
V
il
79
V i.59V
IOolllA
Vi·5IlV --Vi.35V -
51l
2
4
6
8
Io{AI
10
20
30
40
Vo {V I
15/16
415
l4970
Figure 26 : Power Dissipation Derating Curve.
PD
391J
291J
191J
B
69
99
128
159 C lamb
0
n88L4!1?1I-12
Figure 27 : lOA - 5.1 V Application Circuit.
RESET OUT
u,
SYNC
R6
R1
~~~~~~~--~--~--~-,0Uo.5.1U
ro- 1LA
..
High State
Enable Input Current (pin 11)
10
>LA
1.3
V
1300
>LA
Vref
Internal Reference Voltage (pin 9)
..
Iref
1.2
1---
"------
~
Reference Current (pin 9)
Iref
1.25
== V re f/Rref
R,el = 1.2 K!2
Ipd
Peak Duration Control Current (pin 6)
Ipd = l,e1/8
tpd
Peak Duration Time (pin 6)
tpd = C 1 VTh Ilpd
Vlh=1.4V
110
130
180
>LA
- - - - - - - -r--500
>L s
Cl = 4.7 nF
..
lod
Off Duration Con~rol Current (pin 7)
lod = I,ef 18
toff
Off Duration Time (pin 7)
tod = C2 Vth Ilod
Vth = 104V
..
Id1
NPN Driving Current (pin 15)
Id2
PNP Driving Current (pin 8)
Ip
Peak Current (emitter of NPN
Darlington)
--~----
110
-_.
130
180
>LA
50
>L s
C2 = 4.7 nF
Idl = 100 I,ef (only present
during charging phase)
80
28
Id2 = 35 Iref
- - f-----...- - - .
Ip = 450 mViRsens
Rsens = 0.1 n
I
100
130
mA
48
4.2
4.5
4.8
mA
lA
70
75
85
mV
2
V
n
35
--
..
~-
--
Vh
Holding Current Control Voltage
Vh
== Rsens III
Ih = Emitter
Current of N PN
, Darlington
Hn
r
Pin 2
Floating
Pin 2 Externally
Biased
Holding Current Contrallnput
Impedance (Pin 2)
Peak to Hold Current Ratio
Pin 2 Floating
100
150
200
5.8
6
6.2
0.97
1
1.03
..
Pin 6 Shorted
18
Sense Input Bias Current (Pin 3)
..Internal Clamping (Pin 16 to 15)
>LA
_.
1= 200 >LA
14
16
18
V
Dump Protection Threshold Voltage
(Pin 1)
28
32
34
V
Rdl
Dump Protection Threshold Input
Impedance (Pin 1)
22
32
42
Kn
Thermal Drift of Reference Voltage
420
100
_.
Vdt
Vclamp
4111
~
0.5
I
i
InV/oC
L5832
---_.--------------------------
APPLICATION INFORMATION
The L5832 solenoid controller is intended for use
with one or two external darlington transistors to
drive inductive loads such as solenoids, relays, electric valves and DC motors.
Controlled by a logic input and an inhibit input (both
TTL compatible), the device drives the external darlington (s) to produce a load current waveform as
shown in figure 3. This basic waveform shows that
the device produces an initial current peak followed
by a lower holding current. Both the peak and hol-
ding current levels are regulated by the L5832's
switchmode circuitry.
The duration of the peak, the peak current level and
holding current level can all be adjusted by external
components.
Moreover, by omitting C1, C2 or both it is possible
to realize single-level current control, a transitory
peak followed by a regulated holding current or a
simple peak (figure 1).
Figure 1 : Components Connected to Pins 6 and 7 Determine the Load Current Waveshape.
COMPONENTS ON
PINS 6 AND 7
LOAD CURRENT
WAVEFORM
--~-----~-----------
H
C1
I
7
S-6002
I
C2
s-,oo'
C2
I
5- 6005
f-----------~-----~--4_---------------~
HI
~-G006/1
C2
:'-6003
f---------- .------
4----rJ
S~'OOB 1
-----~--~-
------
-
-- -
---------
5/11
421
L5832
The peak current level Ip, is set by the sensing resistor, Rsens, and is fou nd from :
0.45
Altematively, this level may be varied by adding a
divider to pin 2 (R1, R2) and suitable values are
found from:
Rsens
The holding current level, Ih, is set by a voltage applied to pin 2. If this pin is left open circuit an internal reference of 75 mV supervenes and the holding
current is given by :
where Vx = 3V, Rx = 5850Q. Rin = 150Q (Rin of pin 2)
and Vext is the external voltage applied to the divider.
Ip
6
Figure 2 : Application Circuit Showing all the Optional Components. In Particular it Illustrates
how the Holding Current Level is Adjusted Independently of the Peak Current (with
R1, R2, Vext) and how the Internal Zener Clamp is Connected. This Circuit Produces
the Waveforms Shown in Fig.3.
,------------------------
- ,
,~-,~
-'----------,
_~LI1) . RL + VL
toff= -
R
Note that if the load is a motor VL = Eg + VD.
(VC02 is the voltage at the collector of 02).
To ensure stability, a small capacitor (about 200 pF)
must be connected between the base and collector
of 02 when pin 16 is used.
,--------~------
MOTOR
9/11
425
l5832
Normally A I is a design parameter therefore C2 can
be calculated directly from:
C2=
Pd = RLlL2 + VDIL(1- 0) + Vsat· IL 0 + RsIL20
RL = resistance of valve = 2Q
VD = drop across diode, VD == 1V
Vsat = saturation voltage of 02, == 1V
Rs=R11 =220mQ
o= duty cycle = 20 %
where
In(ILP -A I) RL + VL
-Iref· L
12 RL
ILp· RL + VL
This application is particularly important because it
allows the use of inductive loads with the lowest possible series resistance (compatible with constructional requirements) and therefore reduces notably the
power dissipation.
For example, an electric valve driven from 24V
which draws 2A has a series resistance of 12Q and
dissipates 48W . Using this circuit a valve with a 2Q
series resistance can be used and the power dissipation is:
therefore:
Pd = 8 + 1.6 + 0.4 + 0.16 = 10.16W
This given two advantages: the size (and cost) of
the valve is reduced and the drive current is reduced from 2A to about 0.4A.
The same consideration is also true for DC motors.
Figure 7 : Application Circuit Using Only one Darlington. The Resistor and Zener Shown Dotted Activate the Load when Power is Applied.
Vee .:;Vi-45
r--~--------------~
.L,
l :5K n.;.sOKll.
Ir'
YIN
r---o-----t,o
I
I
I
I
~3.9V 10.1
,
I
KJl
A2
I
I
,
G 0
L __ ~~~__~----~---4~--~--~------------~
lL .f- -----~//oo',...._..,...".,._V!o..
IJ.tr----- - ' I
LOAD
CURRENT
"' I
:'
,I
"
.,
INPUT
s- 5981
10/11
426
L5832
Figure 8: P.C. Board and Component Layout of the Circuit of Fig. 7 (1 :.1 Scale)
C S-O'7e
Figure 9: Application Circuit Showing how two Separate Supplies can be Used.
5V~~----
________- - ,
R1
8
V1N 0---_--+-----I 10
L5832
R3
16
15
lKfl
11
RZ
7 4.5.1Z.13 3
'OKll
C1
GNDo---+---~~
R5
l2'
Kn
CZ
__~__~~~~~------~
<;-5'38411
The application circuit of figure 9 is very similar to
figure 2 except that it shows the use of two supplies-one for the control circuit, one for the power
stage.
Chose R6 so that the voltage on pin 8 does not
exceed 46V DC. This can be done simply bearing
in mind that the pin 8 current is 35 IreI'
R6 must not be too high if a very low supply voltage
is used because:
V smin
= R6
. 16 + 4.75
. = 750 . 35 . 10- 3 + 4.75 = 31V
Vsmtn
The zener diode DZ can not exceed 62V because
when Q1 is off and DZtriggered - the fast recirculation - the voltage on pin 8 may not exceed 60 V.
11/11
427
L6114
L6115
QUAD 100 V, DMOS SWITCH
• OUTPUT VOLTAGE TO 100 V
• 0.7 Q
•
•
•
•
ROS(ON)
SUPPLY VOLTAGE UP TO 60 V
LOW INPUT CURRENT
TTUCMOS COMPATIBLE INPUTS
HIGH SWITCHING FREQUENCY (200 KHz)
Powerdip 14 + 3 + 3
DESCRIPTION
Realized with the Multipower-BCD mixed bipolar/CMOS/DMOS process, the L6114/15 monolithic
quad DMOS switch is designed for high current,
high voltage switching applications. Each of the four
switches is controlled by a logic input and all four
are controlled by a common enable input. All inputs
are TTUCMOS compatible for direct connection to
logic circuits. Each source is available for the insertion of the sense resistors in current control applications.
Two versions are available: the L6114 mounted in
a Powerdip 14+3+3 package and the L6115 in a 15lead Multiwatt package.
Multiwatt-15
ORDER CODES: L6114 (Powerdip)
L6115 (Multiwatt-15)
CONNECTION DIAGRAMS (top view)
GNO
19
GNO
,
51
5,
Dl
I.
0'
52
15
53
02
"
03
vee
13
IN'
EN
12
IN3
"
IN2
S4
D4
S3
D3
IN4
IN 3
IN2
-=
>,!
:; '"
M
W
U
zc
cr
>-
U>
U>
'"N
W
'"
!
........, >---.
:""
die
>-
mount don
~
ze
.
~.a8e
8.58
1.06
1.50
~lnk
q.mi I
dlssi oting Freo =- 2.888 sq.mi
0.66
HM 76 3 hoal
2.80
2.50
5
3.00
3.56
4.80
4.50
5.00
DISSIPATED POl.£R ( I.bll )
7/8
435
L6114/L6115
Figure 13: Transient Thermal Resistance for Single Pulses (Multiwatt).
G - 6422
,
3
S IF' GLE
u
Pd • 2 !.bll
:/
9.091
PULSE
mau, ed on boa d
~
9.91
/
V
die
V
~iz
~
/
• 34.808
on die dl .lpaUng c eo .. 1S.6
9.1
1
TIr£ OR PULSE UIOTH (
19
5
Cj.mils
e, ~9.mll~
199
1999
)
Figure 14 : Peak Transient Thermal Resistance vs.Pulse width and duty cycle (Multiwatt).
G-6423
,
3
u
OC • 9.5
29
~
a:
....
9.4
~
9.3
:':!
~
'"iEw
19
....
xc
9.2
~
NC
10
5-10£>60
$
(l)
01
02
15
14
13
12
11
10
NC
03
IN 3
IN 2
INl
GNO
EN
VCC
9
8
7
6
5
53
NC
$- "
3
52
2
NC
L
Tab connected to pin 8
51
5-10659
L6123 (Mulliw. 15)
L6122 (Powerdip)
THERMAL DATA
,-----,-------
-
----------------------,----~-------,
L-t
Rth i-pins Thermal Resist;nce Junction-pins - - - - Rth j-ease Thermal Resistance Junction-case
H~:amb
~ermal Resistance Junction-ambient_ _
I
2/6
438
__
Max
Max
Max
Powerdip__~-~ultiwatt -15!
14°C/W I
3°C/W
65°C/W L
35 °C/W __ J
t
L6122-L6123
ELECTRICAL CHARACTERISTICS (T j
r__ SYV::O'-
Supply
= 25 DC, Vcc = 40
:~t::eter
Test<:;onditions
I
RDS
(on)
~
V EN
10
~
VINL, VENL
Input Low Voltage
VINH, VENH
Input High Voltage
IINL, IENL
Input Low Current
Input High Current
IINH, IENH
100
(oft)
Turn off Delay Time
tf
Fall Time
V
I
mA
I
I
mA
V
VDs~100V
mA
VDS ~ 80 V
T J ~ 125°C
mA
0_7
ID~1_5A
-
0_3
0_8
V
7
V
VIN, VEN ~ L
- 100
VIN, VEN ~ H
10
Il A
IlA
2
tr
Unit
-----i-------'------
!
Turn on Delay Time
------_.--Rise Time
48
9
1 mA
Vcc214V
VEN, VIN ~ H
Max.
3
VEN ~ L
Static Drain-source on
Resistance
_ Typ.
14
L
Output Leakage Current
n
; Min,
All VIN ~ H
V EN ~ Square Wave
(200 KHz, 50 % DC)
Drain Source Breakdown
Voltage --- -
I Dss
--,------T--------
i
--------1---
~ ',:C_~~::::~~:;;,
BV DSS
V, unless otherwise specified)
ID ~ 15 A
--------j--------
td
f-----'~"'---+_--
VSD (*)
VSD
(on)
(*)
--------
t
See Test Circuit and
Waveforms
- - - - --------
~
Source Drain Diode Forward
ISD
Voltage
sourc_ e Drain Forward
Voltage
ISD ~ 1_5 A
VIN, VEN ~ H
(') Pulse test: pulse width
~
300 ~s, duty cycle
~
1_5 A
V EN
~
L
2 %_
SWITCHING TIMES RESISTIVE LOAD
Figure 1 : Test Circuit.
+ 4011
+4011
3/6
439
L6122-L6123
Figure 2 : Waveforms.
1.54
---- --
1.SA
90·'.
10
10
Id(On)J
II
VIN
SV
t-S_O_"I.L..-_
•
_ _ _ _ _ _~ _ _ _ __
SV - - - - - - - - f (
SV
I,
Id(ofl)
__ J
SV
--
(j
VIN
5-9516
5-9817
b)
a)
Figure 3: Static Drain-source on Resistance.
Figure 4 : Normalized Breakdown Voltage vs.
Temperature.
,
~f---
ROS(on )
11
--
-
--
0.9
0.8
----
0.6
(V)
l
I
I-+-
r
_..
-
0.3
o
4
G 6143
ROS(on )
Vee =40V
VEN=Y!N =SV 10=0.SA
V
/'
G-6ll9
Hi'
Hi'
60
/
I
1(j'
20
/
10 3
10'
V
100
ISD
(A)
lei' 1~=15O"C
V
-
Figure 6 : Typical Source-drain Diode Forward
Voltage.
10'
//
-20
/
60
20
10'
1.8
/'
-20
f--- - - r/
./
"
I---""
0.8
ID(A)
Figure 5 : Normalized on Resistance vs. Temperature.
f- -
~
0.9
-
10=250JJA
Vee = 40V
VEN=O
,,/
I
r- -
440
V r--
1.1
j..--
o.s
0.6
G- 6341
BVoss
I
V-
0.7
4/6
II
.~
50'1.,
VEN
,f"'- - - - - - -
VEN
l:
10'loj
o
100
1&'1
SCS-THOMSON
•/, fiIilOI::II©IW<©'II'IIi@IJIJOIC$
k": IL
V II
~
Vee=40V
VEN=O f--- '--
I
/ I
II I
1/
/25'e
I
-40'C
0.8
1.2
1.6 VSO(V)
L6122-L6123
Figure 7: Rth j-amb vs. Dissipated Power (Multiwatt).
G- 601
....
w
~
....<>
~
v
~ '------, >---....,
--
C>
i
w
>--...
~
~
tree air
moun ed on
CB be cd
'"""'
u
'"a
~
'"ru
I
:"
..........,
t----
die
mount don
:!I
zc "
H.5H
1.HH
1.SH
~tnk
q.mil
'~.B8B
dtssi oling Frea '" 2_BBB sq.mi
H_DD
HM 7H 3 hf)()
2.HH
2.S0
5
3.00
3.S0
4.80
4.50
5.00
OISSIPATIO POt.[R ( \Jotl )
Figure 8 : Transient Thermal Resistance for Single Pulses (Multiwatt).
G - 6422
~
w
:3
SIr- GLE
0
~
a:
~
'"
w
'"
~
:g'"
~
Pd - 2 Lbll
1---.
~
J!'
/ ----B.B01
B.Bl
/'
cd on boo d
mou
V
....
z:
'"0:z:
"'ULSE
/
die siz
~
/
- 34_000
on die dt .tpallng c eo • 1G.G
B.l
TI~
1
OR PULSE UlOTll
lB
q.mi Is
o sq.mi 15
lBB
lBBB
s)
5/6
441
L6122-L6123
Figure 9: Peak Transient Thermal Resistance vs. Pulse Width and Duty Cycle (Multiwatt).
G-6423
:3
"u
...~
DC - 8.S
28
9.4
IE
:!l
..."'
...~
F
8.3
II<
19
....
z:
9.2
101
'"a:z:
Pd - S IJoll
~
""a:
~
free air
8.1
S
DC-DUTY
cve
E______ !_ll.l,.ll.E._1.!. DJIf_____ _
PULSE REPETI ION PERIOD
e.l
6/6
442
1ge
Ie
TItE OR PULSE
/JID~
( ... )
ieee
L6201
0.30 DMOS FULL BRIDGE DRIVER
ADVANCE DATA
•
SUPPLY VOLTAGE UP TO 48V
•
•
2A MAX PEAK CURRENT
TOTAL RMS CURRENT UP TO 1.0A (limited by power dissipation)
RDDs(oN) 0.3S1 (TYPICAL VALUEAT25°C)
•
•
CROSS CONDUCTION PROTECTION
•
TTL COMPATIBLE DRIVE
•
OPERATING FREQUENCY UP TO 100KHz
•
•
•
THERMALSHUTDOWN
INTERNAL LOGIC SUPPLY
HIGH EFFICIENCY (TYPICAL 90%)
to 48V and efficiently at high switching speeds.
All the logic inputs are TTL, CMOS and p.C
compatible. Each channel (half-bridge) of the
device is controlled by a separate logic input,
while a common enable controls both channels.
The L6201 is mounted in an SO.20 package.
Even at the full rated current and voltage no
external heatsink is required at normal operating
temperatures.
DESCRIPTION
The L6201 is a full bridge driver for motor control applications realized in Multipower-BCD
technology which combines isolated DMOS
power transistors with CMOS and Bipolar circuits
on the same chip. By using mixed technology it
has been possible to optimize the logic circuitry
and the power stage to achieve the best possible
performance. The DMOS output transistors can
deliver 1.0A RMS at motor supply voltages up
BLOCK DIAGRAM
SO-20
(12+4+4)
ORDERING NUMBER: L6201
OUT 1 OUT2
C SOOT 1
CSOOT 2
20
ENABli
t-t---."
IN 1
13
IN 2
'--JJ--t-J----"'--i18
S 10491
September 1988
1/12
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
443
L6201
ABSOLUTE MAXIMUM RATINGS
Power supply
Input or Enable voltage
DC output current (note 1)
- non repetitive « 1ms)
Sensing voltage
Boostrap peak voltage
Total power dissipation (T pins = 90°C)
(Tamb = 70°C no copper area on PCB)
Storage and junction temperature
52
v
-0.3 to 7
V
A
A
V
V
W
1
5
-1 to 4
60
4
0.9
-40 to 150
W
°C
Notel: Pulse width limited only by junction temperature and the transient thermal impedance.
CONNECTION DIAGRAM
(Top view)
SENSE
ENABLE
N.C.
GND
GND
GND
GND
N.C.
OUT.2
+VS
Vref
BOOT 2
IN.2
GND
GND
GND
GND
IN.1
BOOT
OUT.1
BBL620J-CJ
THERMAL DATA
RthJ-Plns
Thermal resistance junction-pins
~2/~1~2_______________________ ~!~~~g~~
444
max
15
__________________________
L6201
PIN FUNCTIONS
PIN
NAME
FUNCTION
SENSE
A resistance Rsense connected to this pin provides feedback for motor current control
2
ENABLE
When a logic high is present on this pin the DMOS
POWER transistors are enabled to be selectively driven
by IN1 and IN2.
3
NO CONNECTION
4,5,6,7
GND
8
NO CONNECTION
9
OUT2
Output of the half bridge.
10
Vs
Supply voltage.
11
OUT1
Output of the half bridge.
12
BOOT1
A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at
high switching frequencies.
13
IN1
Digital input from the motor controller.
14,15,16,17
GND
Common ground terminal.
18
IN2
Digital input from the motor controller.
19
BOOT2
A boostrap capacitor connected to this pin ensures efficient driving of the upper POWE R DMOS transistor at
high switching frequencies.
20
V ref
Internal voltage reference, a capacitor from this pin to
GND increases stability of the POWER DMOS logic drive
circuit.
Common ground terminal.
------------- ~ !~~~m&=©~ ___________
---=-3:..=..=/12
445
L6201
ELECTRICAL CHARACTERISTICS (Refer to the test circuits Tj = 25°C,
Vs
36V,
unless
otherwise stated)
Parameter
Vs
Supply voltage
V ref
Reference voltage
Is
Quiescent supply current
Test Conditions
EN = H
EN = H
EN = L
V'N = L
V'N = H
Fig. 10
Min.
Typ.
Max.
Unit
12
36
48
V
'L =0
13.5
V
10
10
8
mA
mA
mA
fc
Commutation frequency (*1
30
TJ
Thermal shutdown
150
DC
Td
Dead time protection
100
ns
100
KHz
TRANSISTORS
OFF
loss
Leakage current
Fig. 11
100
/J A
0.3
n
0.3
V
ON
Ros
On resistance
VOS(ON)
Drain source voltage
V sens
Sensing voltage
Fig. 9
los = 1.0A
-1
4
V
SOURCE DRAIN DIODE
VSd
Forward ON voltage
Iso = 1.0A
trr
Reverse recovery time
'F = 1.0A
tfr
Forward recovery time
EN; L
dif
Cit
.
= 25A//Js
0.9(**1
V
300
ns
200
ns
LOGIC LEVELS
V'NL, YEN L
Input Low voltage
-0.3
0.8
V
V 1NL • VENH
Input High voltage
2
7
V
"NL, 'EN L
Input Low current
V'N. VEN = L
-10
/J A
"NH.'ENH
Input High current
V'N, VEN = H
30
/JA
LOGIC CONTROL TO POWER DRIVE TIMING
t1 (ViI
Source current turn-off delay
Fig.12
300
ns
t2 (Vi'
Source current fall time
Fig.12
200
ns
t3 (V,)
Source current turn-on delay
Fig.12
400
ns
t4 (v,1
Source current rise time
Fig.12
200
ns
t5 (ViI
Sink current turn-off delay
Fig.13
300
ns
t6 {ViI
Sink current fall time
Fig.13
200
ns
t7 (Vi'
Sink current turn-on delay
Fig.13
400
ns
ta (ViI
Sink current rise time
Fig.13
200
ns
i
('1 Limited by power dissipation
(**1 In synchronous rectification the drain - source voltage is of 0.3V typo
4/12
..c:.:~_ _ _ _ _ _ _ _ _ _ _ _
446
,1.
~ SIiS-THOMSON
...
lil!lO©OO@Il:o.m©'ii'I!l@i:!O©$ - - - - - - - - - - - - - -
L6201
Fig. 2 - Quiescent current
vs. frequency
Fig. 1 - Typical Is normalized vs. T J
G-
6J1~
G-
IS
Fig. 3 - Typical Is normalized vs. Vs
6316
Is
Is
ImA )
INo'ml~_~+-_+--+-_-t-t_t----t--+--j
-+-+-H
~---b+-+-I--+-+-,
40
1.2
......
11
1
............
0.9
......
08
30
0.8 t----t--+---t--f--t-t----t--+--t--I
0.7 --,
,/'
20
15
V
0.4
o:J
0.3
i
10
-25
+25
+50
+75
IS 0
[A
100
50
TJ ('C)
-1--+-+1-+-+-+-+-+-1
~ :-r-t+-t--+--I-'-t--+--+---I
V
0.6
0.5
+--+--1--+-----1---+-+-+....,
0.9
25
0.7
_.1 ~
35
150
200 11KHz)
Fig. 4 - Typical diode
behaviour in synchronous
rectification
t/88L62fJl fJ4
5
10
i :
!
15
25 30 35 '0 45
20
Fig. 5 - Typical Ros
vs. Vs ~ Vref
Vs(V)
(ON)
ROSON
[
(it)
18
1.6
\
1.4
\
1.2
/'
/
,/
/'
9.2
/
9.4
9.6
V
/
/
/
\
10
08
0.6
o4
O. 2
9.8
10
1 USO(Ul
Fig. 6 - Ros (ON) normalized at 25°C vs. temperature
typical values
(;-6313
'Is
:VREFIV)
Fig. 7 - ROS (ON) vs. DMOS
transistor current
ROSON,-_,-_,-~-~t/~8~8~L~62TfJ~1--~fJ5
[O[
~1 ROsonlT j )
1.8 -
RoSon(25')
9.3
16
/
1.4
12
./
O. 8
V
/'
9.2
./
,/
O. 6
-so
9.1
-25
0 +25 +50 +75 +100
___________________________
TJ (-C)
~~~~~~?~:~~~
I (A 1
_________________________
5~/1_2
447
L6201
Fig. 8 - Typical power dissipation vs. IL
1188L6281-86
Pd
(W)
18
/
/
B
6
4
2
PHASE CHOPPING
-- ENABLE CHOPPING
8
8
2
Fig. 8a - Two phase chopping
Fig. 8b - One phase chopping
~6/~1~2________________________ ~~~~~~?~:~~~
448
___________________________
L6201
Fig. 8c - Enable chopping
TEST CI RCUITS
Fig.9 - Saturation voltage
a) Source outputs
b) Sink outputs
Vs
vs
SI
A
r~
I
V2
v1
r
10
SI
13
r~
18
11
L6201
~1
, '
GND
A
I"
r
V2
v1
10
13
1B
L6201
11
r
s- 10"92
s - 10493
For IN1 source output saturation: VI = "H"
SI = A
V = "H"
SL = A
2
I
For IN2 source output saturation: VI
= "H"
S, = B
SL= B
IV
For IN1 sink output saturation:
For I N2 sink output saturation:
2
= "H"
VI = "H"
S, = A
V
SL = A
2
= "L"
VI = "H"
S, = B
V
SL = B
2
= "L"
I
I
449
L6201
TEST CIRCUITS
(continued)
Fig. 11
Fig. 10 - Quiescent current
-
Leakage current
vs
b) Sink outputs
a) Source outputs
51
vs
v.
13
B
l r--t Lv
10
~1
10
11
18
L6201
L6201
A 5l
'~
il
11
L6201
A~
9
B
GND
GND
5-101,96
5-10495
GND
5-10 .. 94
SWITCHING TIMES
Fig. 12 - Source current delay times vs. input
v.
~
36 V
10
IN
13118
1119
10·/.
L6201
5V
EN
Vin
50·/.
GND
5-10663
Fig. 13 - Sink current delay times vs. input
v.
= 36 v
10
IN
13/18
L6201
II~
EN
GND
5-10665
"-'8/-=-1-=-2_ _ _ _ _ _ _ _ _ _ _ _
450
$-
10666
~ ~~~~m?1r~:~~~
-----,-----------
L6201
CIRCUIT DESCRIPTION
The L6201 is a monolithic full bridge switching
motor driver realized in the new MultipowerBCD technology which allows the integration of
multiple, isolated DMOS power transistors plus
mixed CMOS/bipolar control circuits. In this way
it has been possible to make all the control
inputs TTL, CMOS and MC compatible and
eliminate the necessity of external MOS drive
components.
the low-to-high transition a spike of the same
polarity is generated by C2, preceded by a spike
of the opposite polarity due to the charging of
t)1," input capacity of the lower POWER DMOS
transistor. (Fig. 15)
Fig. 15 - Current typical spikes on the sensing pin
vs·36V
Ip.o.~A
fal00ns
LOGIC DRIVE
INPUTS
OUTPUT MOSFETS (*)
INl
IN2
V EN = H
L
L
H
H
L
H
L
H
Sink 1, Sink 2
Sink 1, Source 2
Source 1, Sink 2
Sou rce 1 , Sou rce 2
VEN= L
X
X
All transistors turned OFF
L = Low
H = High
X = Don't care
«) Numbers referred to INPUT 1 or INPUT2 controlled
outputs stages
S-10661
TRANSISTOR OPERATION
ON STATE
CROSS CONDUCTION
Although the device guarantees the absence of
cross-conduction, the presence of the intrinsic
diodes in the POWER DMOS structure causes
the genaration of current spikes on the sensing
terminals. This is due to charge-discharge phenomena in the capacitors C 1 & C2 associated with the
drain source junctions (Fig.14). When the output
switches from high to low, a current spike is
generated associated with the capacitor C1. On
Fig. 14 - Intrinsic structures in the POWER
DMOS transistors 's
When one of the POWE R DMOS transistor is
ON it can be considered as a resistor R os (ON)
(= O.3Q) throughout the recommended operating range. In this condition the dissipated
power is given by:
PON = ROS(ON) • los2
The low Ros (ON) of the Multipower-BCD
process can provide high currents with low power
dissipation.
OFF STATE
When one of the POWE R DMOS transistor is
OFF the Vos voltage is equal to the supply voltage and only the leakage current loss flows. The
power dissipation during this period is given by:
POFF = Vs • ID5S
The power dissipation is in the order of pW and
is negligible in comparison to that dissipated
in the ON STATE.
TRANSITIONS
5 - 9415
Like aliMOS power transistors the DMOS
. POWE R transistors have as intrinsic diode
between their source and drain that can operate
as a fast freewheeling diode in switched mode
~ ~~~~m~1f~:s©~
____________
...:9/_12
451
L6201
applications. During recirculation with the
ENABLE input high, the voltage drop across the
transistor is Ros (ON,-' 10 and when the voltage
reaches the diode voltage it is clamped to its
characteristic. When the ENABLE .input is low,
the POWER MOS is OFF and the diode carries
all of the recirculation current. The power dissipated in the transitional times in the cycle
depends upon the voltage and current waveforms
in the application.
ptr_ns . = IDS (t) • Vos (t)
BOOSTRAP CAPACITORS
To ensure that the POWER DMOS transistors are
driven correctly gate source voltage of about 10V
must be guaranteed for all of the N-channel
DMOS transistors. This is no problem for the
lower POWER DMOS transistors as their sources
are refered to ground but a gate voltage greater
than the supply voltage is necessary to drive the
upper transistors. In the L6201 th is ach ieved by an
internal charge pump circuit that guarantees correct DC drive in combination with the boostrap
circuit charges the external Ce capacitors when
the source transistor is OFF and the sink transistor is ON giving lower commutation losses
in switched mode operation. For efficient
charging the value of the boostrap capacitor
should be greater than the input capacitance of
the power transistor which is around 1 nF. It is
recommended that a capacitance of at least
1(}nF is used for the bootstrap. If a smaller
capacitor is used there is a risk that the POWE R
transistors will not be fully turned on and they
will show a higher RDS (ON)' On the other hand
if a elevated value is used it is possible that a
current spike may be produced in the sense
resistor.
REFERENCE
To stabilise the internal drive circuit it is reo
commended that a capacitor be placed between
this pin and ground. A value of O.22JlF should
be sufficient for most applications.
This pin is also protected against a short circuit
to ground.
DEAD TIME
To protect the device against simultaneous
conduction in both arms of the bridge and the
452
resulting rail to rail short, the logic control
circuit provides a dead time greater than 40ns.
THERMAL PROTECTION
A thermal protection circuit has been included
that will disable the device if the junction temperature e reaches 150°C. When the temperature
has fallen to a safe level the device restarts under
the control of the input and enable signals.
APPLICATION INFORMATION
RECIRCULATION
During recirculation with the ENABLE input
high, the voltage drop across the transistor is
R DS (ON)' IL for voltages less than O.7V and is
clamped at a voltage depending on the characteristics of the source-drain diode for greater
voltages. Although the device is protected against
cross conduction, current spikes can appear on
the current sense pin due to charge/discharge
phenomena in the intrinsic source drain capacitances. In the application this does not
cause any -problems because the voltage created
across the sense resistor is usually much less
than the peak value, although a small RC filter
can be added if necessary.
POWER DISSIPATION
In order to achieve the high performance provided by the L6201 some attention must be paid
to ensure that it has an adequate PCB area to
dissipate the heat. The first stage of any thermal
design is to calculate the dissipated power in the
application, for this example the half step operation shown in figure 16 is considered.
RISE TIME Tr
When an arm of the half bridge is turned on current begins to flow in the inductive load until
the maximum current I L is reached after a time
Tr . The dissipated energy EOFF/ON is in this
case:
EOFF/ON = [Ros (ON) • IL2 • Tr j. 2/3
L6201
Fig. 16 - Load current in half step operation
ON TIME TON
During this time the energy dissipated is due to
the ON resistance of the transistors EON and the
commutation E COM ' As two of the POWE R
DMOS transistors are ON EON is given by:
EON = IL2 • Ros (ON) ·2· TON
I~ the commutation the energy dissipated is:
ECOM
= Vs·
I Tr
I
Ton
I
Tf i T d
IL • TcoM • fswlTcH • TON
Where:
TCOM
= Commutation
Time and it is assumed
that;
TCOM = TTURN-ON = TTURN-OFF = lOOns
fswlTCH = Chopper frequency
FALL TIME Tf
For this example it is assumed that the energy
dissipated in this part of the cycle takes the same
form as that shown for the rise time:
EON/OFF = [Ros (ON) • IL2 • T f j. 2/3
QUIESCENT ENERGY
The last contribution to the energy dissipation is
due to the quiescent supply current and is
given by:
EQUIESCENT
= IQUIESCENT
• Vs • T
Fig. 17 shows a two phase Bipolar Stepper Motor
Control circuit where the current is controlled by
the IC L297.
Between the sense resistors and each sense input
of the L297 a resistor must be foreseen; if the
connections between the outputs of the L297
and the inputs of the L6201 need a long path, a
resistor must be connected between each input
of the L6201 and ground.
When the Supply Voltage is higher than 26V or if
the motor is driven through long wires, a snubber
network made by the series of Rand C must be
foreseen very near to the output pins of the
L6201.
The following formulas can be used:
R"'" Vs/l p
C = Ipl (dv/dt) where
Vs is the max supply voltage foreseen on the ap·
plication;
Ip is the peak of the lood current;
dvldt is the needed rise time of the output voltage (200V /tlsec is generally used).
TOTAL ENERGY PER CYCLE
ETOT
= EOFF/ON
+ EON + ECOM +
+ EON/OFF + EQUIESCENT
The Total Power Dissipation POlS is simply:
Tr
TON
Tf
Td
T
Rise time
ON time
Fall time
Dead time
Period
T
Tr+ToN+Tf+Td
-----------------------------
~~~~~~?v~:~~©~
________________________
~1~1~/1~2
453
L6201
Fig. 17 - Two phase Bipolar stepper motor control circuit with chopper current control and translator
CW/CCW
STEP
HALF /FULl
CONTROL
MOTOR
L62G1
RESET
WINDING
f5VJ~I---------+I
OUTPUT
LOGIC
ENABLE
L62G1
MOTOR
WINDING
SYNC
'SU
22K
SENSE
RESISTORS
Fig. 18 - Rth junction to ambient vs.-"on board" heat sink area
88L6201-01
Rth (j -a)
(0
C/W)
75
70
1\
\
Pu =
\
65
60
55
\
~
50
45
o
2
1W
..............
-4
r-- f-6
B
On Board Heat Sink Area (sQ.cm.)
~12~/_12_________________________ ~~~~~~?~:~~~~
454
_____________________________
L6202
0.30 DMOS FULL BRIDGE DRIVER
PRELIMINARY DATA
•
device is controlled by a separate logic input,
while a common enable controls both channels.
The L6202 is mounted in an l8-lead powerdip
package and the six center pins are used to
conduct heat to the PCB. Even at the full rated
current and voltage no external heatsink is required at normal operating temperatures.
SUPPLY VOLTAGE UP TO 48V
•
5A MAX PEAK CURRENT
•
TOTAL RMS CURRENT UP TO 1.5A
•
R DS
•
•
CROSS CONDUCTION PROTECTION
TTL COMPATIBLE DRIVE
•
OPERATING FREQUENCY UP TO 100KHz
•
THERMAL SHUTDOWN
(ON)
0.3£2 (TYPICAL VALUE AT 25°C)
•
INTERNAL LOGIC SUPPLY
•
HIGH EFFICIENCY (TYPICAL 90%)
The L6202 is a full bridge driver for motor control applications realized in Multipower-BCD
technology which combines isolated DMOS
power transistors with CMOS and Bipolar circuits
on the same chip. By using mixed technology it
has been possible to optimize the logic circuitry
and the power stage to achieve the best possible
performance. The DMOS output transistors can
deliver 1.5A RMS at motor supply voltages up
to 48V and efficiently at high switching speeds.
All the logic inputs are TTL, CMOS and MC
compatible. Each channel (half-bridge) of the
Powerdip 12+3+3
ORDERING NUMBER: L6202
BLOCK DIAGRAM
OUT 1
OUT2
VREF 1 8 1 - - - -....
ENABLE
H~---r"""",
2
'--P-+-+-""----t IN
2
16
4.5,6,13,14,15
5-9392/1
September 1988
1/16
455
L6202
ABSOLUTE MAXIMUM RATINGS
Power supply
Differential output voltage (Between pins 10 and 8)
Input or Enable voltage
Pulsed output current (note 1)
- non repetitive « 1ms)
Sensing voltage
Boostrap peak voltage
Total power dissipation (T pins = 90°C)
(T amb = 70°C no copper area on PCB)
(Tamb = 70°C 4cm 2 copper area on PCB)
Storage and junction temperature
52
v
60
-0.3 to 7
5
V
V
A
A
10
-1 to 4
60
5
1.3
2
-40 to 150
V
V
W
W
W
°C
Note1: Pulse width limited only by junction temperature and the transient thermal impedance.
CONNECTION DIAGRAM
(Top view)
VREF
SENSE
ENABLE
BOOT Z
Z
N.C.
IN 2
GND
GND
GND
GND
GND
GND
6
!N!
N.C.
B0011
OUT 2
OUT1
5-9424
THERMAL DATA
Rth i-pins
Rthi-amb
Thermal resistance junction-pins
Thermal resistance junction-ambient (Fig. 21)
6 ____________
1.::..
::.<2/c::
456
~ ~~~~m~::~~l1
max
max
12
60
--------------
L6202
PIN FUNCTIONS
PIN
NAME
FUNCTION
SENSE
A resistance Rsense connected to this pin provides feedback for motor current control.
2
ENABLE
When a logic high is present on this pin the DMOS
POWE R transistors are enabled to be selectively driven
by IN1 and IN2.
3
NO CONNECTION
4
GND
Common ground terminal.
5
GND
Common ground terminal.
6
GND
Common ground terminal.
7
NO CONNECTION
8
OUT2
Output of the half bridge.
9
Vs .
Supply voltage.
10
OUTl
Output of the half bridge.
11
BOOTl
A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at
high switching frequencies.
12
IN1
Digital input from the motor controller.
13
GND
Common ground terminal.
14
GND
Common ground terminal.
15
GND
Common ground terminal.
16
IN2
Digital input from the motor controller.
17
BOOT2
A boostrap capacitor connected to this pin ensures efficient driving of the upper POWE R DMOS transistor at
high switching frequencies.
18
V ref
Internal voltage reference, a capacitor from this pin to
GND increases stability of the POWER DMOS logic drive
circuit.
-------------- ~ ~~~~m?,r;\':~~l1-------------'-....:3.:....:/1:..::;6
'457
L6202
ELECTRICAL CHARACTERISTICS (Refer to the test circuits Tj
25°C, Vs
42V, unless
otherwise stated)
Parameter
Vs
Supply voltage
V ref
Reference voltage
IREF
Output current
Is
Quiescent supply current
Test Conditions
Min.
12
Typ.
Max.
Unit
36
48
V
13.5
V
2
EN = H
EN = H
EN = L
V IN = L
V IN = H
Fig.10
10
10
8
IL =0
mA
mA
mA
mA
fc
Commutation frequency (*)
30
Tj
Thermal shutdown
150
°c
Td
Dead time protection
100
ns
100
KHz
TRANSISTORS
OFF
loss
Leakage current
Fig. 11
Vs = 52V
1
mA
ON
Ros
On resistance
ROS(ON)
Drain source voltage
V sens
Sensing voltage
n
0.3
Fig.9
los = 1.2 A
0.36
V
4
-1
V
SOURCE DRAIN DIODE
VSd
Forward ON voltage
trr
Reverse recovery time
tl r
Forward recovery time
EN = L
Iso = 1.2A
I F =1.2A
dif
dt = 25A/p.s
0.9(**)
V
300
ns
200
ns
LOGIC LEVELS
VIN L. VENL
I nput Low voltage
V IN L, V EN H
Input High voltage
liN L, lEN L
Input Low current
V IN , VEN = L
IINH, IENH
Input High current
VIN, VEN = H
-0.3
0.8
2
V
7
V
-10
p.A
30
p.A
300
ns
ns
LOGIC CONTROL TO POWER DRIVE TIMING
tl (Vi)
Source current turn-off delay
Fig.12
t2 (Vi)
Source current fall time
Fig.12
200
t3 (Vi)
Source current turn-on delay
Fig.12
400
ns
t4 (Vi)
Source current rise time
Fig.12
200
n.
t5 (Vi)
Sink current turn-off delay
Fig.13
300
ns
t6 (Vi)
Sink current fall time
Fig.13
200
ns
t7 (Vi)
Sink current turn-on delay
Fig.13
400
ns
Sink current rise time
Fig.13
200
ns
t8 (Vi)
(*) Limited by power dissipation
(**) In synchronous rectification the drain-source voltage drop Vos is shown in fig. 4.
~4/~1~6________________________ ~~~~~~~~:~~ ___________________________
458
L6202
Fig. 2 - Quiescent current
vs. frequency
Fig. 1 - Typical Is normal·
ized vs. T J
6-6315
IS
Is
(mAI
I
Is
(Norm J
40
1.2
1.1
Fig. 3 - Typical Is normal·
ized vs. Vs
G-6326
--
"
o. 9
o. 6
o. 7
o. 6
o. 5
35
0.9
30
0.6
25
;--..
I - f--
0.5
,/
10
+50
50
T; (OCI
+75
100
200 f(KH.,
ISO
Fig. 4
Typical diode
behaviour in synchronous
rectification
--I
--
I
t- 1--
0.4
o. 3
+25
t
0.6
V
15
..
--l-
0.7
,/
20
o. 4
0.3
·25
.L
--\-
5
10
15 20
Fig. 5 - Typical RDS
25 30 35 40 45
V.(VI
(ON)
VS,Vs""Vref
G- 631
~
ROSON
(lll
(AI
1.6
1.6
1.4
1.2
Vos
1.0
0.6
0.6
\
\
\
,
0.4
0.2
0.2 0.4 06
0.8
1
1.2
10
1..4 1.6 Vsd. Vos (VI
Fig. 6 - RDS (ON) normal·
ized at 25°C vs. temperature
typical values
G-6313
J.
.VREF(VI
Fig. 7 - RDs (ON) vs. DMOS
transistor current
R~ONro-''-'-rT-r'-ro-.~~~
enl
1
Vs
H-+++-H+-f-H-++H-l
~ ROSon CT J )
1.6 -
ROSon (25°)
0.5
16
1.4
./'
1.2
./
O. 6
H-++-HH-+-+--H-++H-l
0.4H-++-HH-+-+--H-++H-l
"...-
0.3
./
,-/'
0.1 H-t--l--H'-t-+-+--H-t--t-H-l
o. 6
-50 -25
H+++-IH++-H++-ft"l-l
0.2 H-++-H'-t-+-+--H-t--t-H-l
0 +25 +50 +75 +100
TJ
,·e)
6
I (A)
5/16
459
L6202
Fig. 8 - Typical power dissipation vs. IL
G 632512
I
.,-lIt!'" Iv\
26
24
22
20 - ! 18
16
Vs=36V
L=lmH
T =2ms
r-- IN'
1s =100KHz F::20KHz
"\,- X
- - PHASE CHOPPING
CHOPPING
,>-'v..
14
-'-'~ENABLE
. / )S
12
10
'/.
8
6
4
2
l'
, ~,
' /V
Y: ..-::; .....
h
~~
I"
~
2
3
4
5
6
Fig. 8a - Two phase chopping
Fig. 8b - One phase chopping
EN
0-_-<""-"
'jL~LI-t>-4-+-Q;IN2
~6/:..::1.::..6_ _ _ _ _ _ _ _ _ _ _ _ ~ lil;m~lt
460
-------------
L6202
Fig. Bc - Enable chopping
TEST CIRCUITS
Fig. 9 - Saturation voltage
b) Sink outputs
a) Source outputs
vs
51
A
LS
I
V2
V1
I
9
51
12
r~
16
L6202
A
10
r
8
4/5/6/13/14/15
V2
v1
9
12
16
2
L6202
10
8
1
5- 9 754
For IN1 source output saturation: V l = "H"
S, = A
SL = A
I V 2 = "H"
For IN2 source output saturation: V l = "H"
S, = B
SL = B
I
___________________________
V
2
For IN1 sink output saturation:
V l = "H"
S, = A
V = "L"
SL = A
2
For IN2 sink output saturation:
V l = "H"
S, = B
V2
SL = B
= "H"
~~~~~~?~~:~~~
I
I
= "L"
_________________________
7~/l~6
461
L6202
TEST CIRCUITS (continued)
Fig. 11
Fig. 10 - Quiescent current
-
Leakage current
b) Sink outputs
a) Source outputs
Vs
Vs
12
rLV
5'
B
.:I,'
'6
52
L6202
.r:f~\ 2
L6202
'08
.:I,
A.:I, V,
r:1!
A 5L
r~~
.415/6113/14115
5'
L6202
1/41516113/14/15
5- 976611
5-9756
1/415/6/13114'15
5-9755
SWITCHING TIMES
Fig. 12 - Source current delay times vs. input chopper
IL
Vs :42V
Imax=1.2A
90'/,
IN
'2116
10/8
~JL
L6202
10'/,
5V
Yin
EN
50'/,
4/5/6/13/14115
5-9757
5-9759
Fig. 13 - Sink current delay times vs. input chopper
1L
Imax=1.2A
90'/,
IN
10'/,
L6202 101B
EN
1/4/5/6/13114/15
5- 9758
.:.<8/...::1.::..6_ _ _ _ _ _ _ _ _ _ _ _
462
5-9760
~ ~~~~m~1ir::~~©~
-------------
L6202
CIRCUIT DESCRIPTION
The L6202 is a monolithic full bridge switching
motor driver realized in the new MultipowerBCD technology which allows the integration of
multiple, isolated DMOS power transistors plus
mixed CMOS/bipolar control circuits. In this way
it has been possible to make all the control
inputs TTL, CMOS and I1C compatible and
eliminate the necessity of external MOS drive
components.
the low-to-high transition a spike of the same
polarity is generated by C2, preceded by a spike
of the opposite polarity due to the charging of
the input capacity of the lower POWER DMOS
transistor. (Fig. 15)
Fig. 15 - Current typical spikes on the sensing pin
Vout
VS=42V
Ip=O.5A
f=100ns
LOGIC DRIVE
INPUTS
OUTPUT MOSFETS (*'
IN1
IN2
VEN= H
L
L
H
H
L
H
L
H
Sink 1, Sink 2
Sink 1, Source 2
Source 1, Sink 2
Sou rce 1 , Sou rce 2
VEN= L
X
X
All transistors turned OFF
lsense
L - Low
H = High
X = Don't care
(*' Numbers referred to INPUT 1 or INPUT2 controlled
outputs stages
::'-9426/1
TRANSISTOR OPERATION
ON STATE
CROSS CONDUCTION
Although the device guarantees the absence of
cross-conduction, the presence of the intrinsic
diodes in the POWER DMOS structure causes
the generation of current spikes on the sensing
terminals. This is due to charge-discharge phenomena in the capacitors C1 & C2 associated with the
drain source junctions (Fig. 14). When the output
switches from high to row, a current spike is
generated associated with the capacitor C1. On
Fig. 14 - Intrinsic structures in the POWER
DMOS transistors Vs
o----j
Cl
PaN = ROS(ON) • los2
The low Ros (ON) of the Multipower-BCD
process can provide high currents with low power
dissipation.
OFF STATE
When one of the POWE R DMOS transistor is
OFF the Vos voltage is equal to the supply voltage and only the leakage current loss flows. The
power dissipation during this period is given by:
POFF = Vs • loss
Vout
~n
When one of the POWE R DMOS transistor is
ON it can be considered as a resistor Ros (ON)
(= O.3n) throughout the recommended operating range. In this condition the dissipated
power is given by:
C2
The power dissipation is in the order of pW and
is negligible in comparison to that dissipated
in the ON STATE.
TRANSITIONS
'5-9425
Like all MOS power transistors the DMOS
POWER transistors have as intrinsic diode
between their source and drain that can operate
as a fast freewheeling diode in switched mode
463
L6202
applications. During recirculation with the
ENABLE input high, the voltage drop across the
transistor is Ros (ON) • 10 and when the voltage
reaches the diode voltage it is clamped to its
characteristic. When the ENABLE input is low,
the POWER MOS is OFF and the diode carries
all of the recirculation current. The power dissipated in the transitional times in the cycle
depends upon the voltage and current waveforms
in the application.
Ptrano. = los (t) • Vos (t)
BOOSTRAP CAPACITORS
To ensure that the POWER DMOS transistors are
driven correctly gate source voltage of about 10V
must be guaranteed for all of the N-channel
DMOS transistors. This is no problem for the
lower POWER DMOS transistors as their sources
are refered to ground but a gate voltage greater
than the supply voltage is necessary to drive the
upper transistors. In the L6202 this achieved by an
internal charge pump circuit that guarantees correct DC drive in combination with the boostrap
circuit charges the external Cs capacitors when
the source transistor is OFF and the sink transistor is ON giving lower commutation losses
in switched mode operation. For efficient
charging the value of the boostrap capacitor
should be greater than the input capacitance of
the power transistor which is around 1nF. It is
recommended that a capacitance of at least
10nF is used for the bootstrap. If a smaller
capacitor is used there is a risk that the POWE R
transistors will not be fully turned on and they
will show a higher Ros (ON)' On the other hand
if a elevated value is used it is possible that a
current spike may be produced in the sense
resistor.
REFERENCE
To stabilise ·the internal drive circuit it is recommended that a capacitor be placed between
this pin and ground. A value of 0.221lF should
be sufficient for most applications.
This pin is also protected against a short circuit
to ground.
DEAD TIME
To protect the device against simultaneous
conduction in both arms of the bridge and the
:.10::!./.:.:16:.....-_ _ _ _~------
464
resulting rail to rail short, the logic control
circuit provides a dead time greater than 40ns.
THERMAL PROTECTION
A thermal protection circuit has been included
that will disable the device if the junction temperature e reaches 150°C. When the temperatur.e
has fallen to a safe level the device restarts under
the control of the input and enable signals.
APPLICATION INFORMATION
RECI RCU LATION
During recirculation with the ENABLE input
high the voltage drop across the transistor is
ROS'(ON)' IL for voltages less than 0.7V and is
clamped at a voltage depending on the, characteristics of the source-drain diode for greater
voltages. Although the device is protected against
cross conduction, current spikes can appear on
the current sense pin due to charge/discharge
phenomena in the intrinsic source drain capacitances. In the application this does not
cause any problems because the voltage created
across the sense resistor is usually much less
than the peak value, although a small RC filter
can be added if necessary.
POWER DISSIPATION
In order to achieve the high performance provided by the L6202 some attention must be paid
to ensure that it has an adequate PCB area to
dissipate the heat. The first stage of any thermal
design .is to calculate the dissipated power in the
application, for this example the half step operation shown in figure 16 is considered.
RISE TIME Tr
When an arm of the half bridge is turned on current begins to flow in the inductive load until
the maximum current IL is reached after a time
Tr . The dissipated energy EOFF/ON is in this
case:
EOFF/ON = [ROS(ON)' IL2 • Trl' 2/3
~ I~tm~~
-------------
L6202
ON TIME TON
Fig. 16
During this time the energy dissipated is due to
the ON resistance of the transistors EON and the
commutation E COM ' As two of the POWER
DMOS transistors are ON EON is given by:
EON = IL2 0 ROS(ON) 02 0 TON
In the commutation the energy dissipated is:
I Tr
I
Ton
I
Tf i T d
5- 9761
Where:
DC MOTOR SPEED CONTROL
TCOM = Commutation Time and it is assumed
that;
TCOM = TTURN-DN = TTURN-OFF = lOOns
fSWITCH = Chopper frequency
FALL TIME Tf
For this example it is assumed that the energy
dissipated in this part of the cycle takes the same
form as that shown for the rise time:
EON/OFF = [Ros (ON) olL 2 0 T f
10 2/3
QUIESCENT ENERGY
The last contribution to the energy dissipation is
due to the quiescent supply current and is
given by:
EQUIESCENT
= IQUIESCENT
0 Vs 0 T
TOTAL ENERGY PER CYCLE
ETOT
= EOFF/ON
+ EON + ECOM +
+ EON/OFF + EQUIESCENT
The Total Power Dissipation POlS is simply:
Tr
TON
Tf
Td
T
Rise time
ON time
Fall time
Dead time
Period
T
=
Tr + TON + T f + Td
-----------------------------
Since the L6202 integrates a full H-Bridge in a
single package it is idealy suited for controlling
small DC motors. When used for DC motor
control the L6202 provides the power stage required for both speed and direction control.
The L6202 can be combined with a current regulator like the L6506 to implement a transconductance amplifier for speed control, as shown in
figure 17.
In this configuration the L6506 sense the voltage
across the sense resistor, RSENSE, to monitor
the motor current. The L6506 then compares the
sensed voltage to control the speed or during the
brake of the L6202.
Between the sense resistor and each sense input
of the L6506 a resistor must be foreseen; if the
connections between the outputs of the L6506
and the inputs of the L6202 need a long path, a
resistor must be connected between each input
of the L6202 and ground.
When the Supply Voltage is higher than 26V or if
the motor is driven through long wires, a snubber network made by the series of Rand C must
be foreseen very near to the output pins of the
L6202.
The following formulas can be used:
R "" Vs/lp
C =
Ip/(dv/dt) where
Vs is the max Supply Voltage foreseen on the
appl ication;
Ip is the peak of the load current;
dv/dt is the needed rise time of the output voltage (200V /tlsec is generally used).
Higher voltages than 26V of V s require that a
diode (BYW98) is connected between each power output pin and ground as well.
If the Power Supply Cannot Sink Current, a
suitable large capacitance must be used and connected near the supply pin of the L6202.
Sometimes a capacitor at pin 17 of the L6506 let
the application better work.
~~~~~~~v~:~~©~
________________________
~1~1~/1~6
465
L6202
Fig. 17 - Bidirectional DC motor control
Vee .5U
OI~ECTIOH
6
{
Uspeed.1Umax
(Ip max .. 2A)
::I: 3. 3nF
16
14
5
12
11
13
?
Ref 1
ENABLE
ION/OFF)
L65G6
18 R4
3
18K
~1
2.2K
Uee.5U
V
15
R3
Ref 2
tl88L5282-8111
BIPOLAR STEPPER MOTORS APPLICATIONS
Bipolar stepper motors can be driven with an
L297 or L6506, two L6202 bridge BCD drivers
and very few external components. Together
these three chips form a complete micropro·
cessor-to-stepper motor interface.
As shown in Fig. 18 and Fig. 19, the controller
connect directly to the two bridge BCD drivers.
External component requirements are minimal:
an RC network to set the chopper frequency
and a resistive divider to establish the comparator
reference voltage (pin 15 for L297, pin 10 and
15 for L6506). These solutions have a very high
efficiency because of low power dissipation.
A snubber network at the output of the L6202
and resistors between the inputs of the some IC
and GND cound be foreseen (see DC Motor
Speed Control).
HIGH CURRENT MICROSTEP DRIVE FOR
STEPPE R MOTORS
The L6202 can by used in conjunction with the
L6217 to (figure 20) implement a high current
microstepping controller for stepper motors.
In this application the L6217 is used as a control
466
circuit and its outputs are used only to drive the
inputs of the L6202. The application allows
easy interface to a microprocessor since the
L6217 may be connected directly to the micro·
processor bus.
In the circuit shown in Figure 20, the L6217
senses the motor current by monitoring the
voltage across the sense resistors, RSENSE, and
compares this value to the output of a 6 bit
(7 bit ifthe L6217 A is used) 0 to A Converter.
The L6217 controls the current using a fre·
quency modulated, constant off time, switching
controller. The off time of each coil may be
set using and external resistor and capacitor connected to PTA and PTB.
In this configuration the microprocessor simply
loads the appropriate value for the direction of
current flow through the coil and the data for
the DAC into the L6217. The L6217 and L6202
then forms the complete interface between the
micro and the motor.
When the pins 3 and 4 of the L6217 (Test A and
B) are low, the bridges must be in tri-state con·
dition.
For this reason two LM339 comparators must be
used. The outputs of the comparators act on the
enable inputs of the L6202 ICs.
A bilevel operation can be used for decreasing
the minimum controllable load current. The mi·
L6202
nimum current that can be controlled is .given by
the following expression:
Vs
IL (avg.l = - - - - - - - - - - - Rsense + (2Ros on + RLoAol/DC
where R LOA 0 is the equivalent resistance of
the load DC is the duty cycles given by
Ton
If 12V is forced on pin 18 (Reference voltagel
and the supply voltage V 5 is reduced below 12V
the on resistance tends to increase above the normal guaranteed 0.30hm.
Consequently the minimum current will also be
reduced, as given in the above expression. When
a minimum current operation is required, a high
signal at point (AI can disable the pnp transistors
in fig. 20. So it's possible to operate at a V 5 of
(7V - VSEI.
Fig. 18 - Two phase Bipolar stepper motor control circuit with chopper current control
5U
RESET
ENABLE
o ~ 1-+--__-,
IN 1~j---~=====4[)~----~-1
L62G2
IN 2 <>--1--1===::tJ:::>-+-----1~
L62G2
IN 4 ~----I---=:jb::l:[)+------___I
MOTOR
WINDING
MOTOR
WINDING
22K
22K
SENSE
RESI:iTDRS
!1BBL62B2-B2f1
_______________________
~~~~~~~~~:~~©~
____________________
~1~3~/1~6
467
L6202
Fig. 19 - Two phase Bipolar stepper motor control circ;uit with chopper current control and translator
a~
A
C~/CCIJ
STEP
HALFIFULL
RESET
B
MOTOR
WINOING
L6282
INH1
CONTROL (SU)
OUTPUT
LOGIC
ENABLE
C
L6282
MOTOR
WINOING
SYNC
22K
'SU
22K
SENSE
RESISTORS
Uref
NBBL 6282 - 83f1
Fig. 20 - High current microstepping controller for stepper motors
OUT
B.1uF
DB
01
02
03
04
OS
06
PH
STB
AlB
12U
::I
39
22B
38
• BYW9B-Se
37
36
B.luF
lee
L6217
lK
0176
::I
IA)
35
8.1uF
34
33
42
lN4148
31
38
12
.7U
OUT
NBBLli282-B4f1
::..:14:!../.:::.:16~ _ _ _ _ _ _ _ _ _ _ _
468
l.fi ~~~~m~::9lf -------------
L6202
THERMAL CHARACTERISTICS
Fig.21 -
Rth
with two "on board" square heatsink vs. side Q
of!
W
~
13.00
10.50
1.00
1.S0
2.010
2.S0
3.00
3.~0
4.1313
1 l em )
Fig. 22 - Transient thermal resistance for single pulses
SING LE
on board
10
II
Pl LSE
v/
2W
~
.~
-------
/-
/
..
on boar ~ heat-sin
area " 6
q.
,em
0.1
e.801
e.01
0.1
1
10
1130
10ee
TItE OR PULSE WIDTH ( SEC )
____________________________
~~~~~~~~~:~~:1
________________________
~1_5~/1~6
469
L6202
Fig. 23 - Peak transient Rth VS. pulse width and duty cycle
~
DC
0.4
!
~
~
0.>
20
0.3
--
10
B.2
>~
'g"
"''"
/ / on boo d hool ,i nk are
~-0.1
cr
it
0.1
10
TIrlE OR PULSE WIDTH ( ms )
16/16
470
- G !!iq.cm
II
P(peak) - 5
100
1~aa
L6203
0.30 DMOS FULL BRIDGE DRIVER
PRELIMINARY DATA
•
SUPPLY VOLTAGE UP TO 48V
deliver 4A RMS at motor supply voltages up to
48V and efficiently at high switch speeds.
All the logic inputs are TTL, CMOS and MC
compatible. Each channel (half-bridge) of the
device is controlled by a separate logic input,
while a common enable controls both channels.
The L6203 is mounted in a 11-iead Multiwatt
package.
• TOTAL RMS CURRENT UP TO 4A
•
• RDs(oN) 0.3D. (TYPICAL VALUE AT 25°C)
CROSS CONDUCTION PROTECTION
• TTL
COMPATIBLE DRIVE
• OPERATING
FREQUENCY UP TO 100KHz
•
THERMAL
SHUTDOWN
•
INTERNAL LOGIC SUPPLY
• HIGH
EFFICIENCY (TYPICAL 90%)
•
5A MAX PEAK CURRENT
~----------------------------~
The L6203 is a full bridge driver for motor control applications realized in Multipower-BCD
technology which combines isolated DMOS
power transistors with CMOS and Bipolar circuits
on the same chip. By using mixed technology it
has been possible to optimize the logic circuitry
and the power stage to achieve the best possible
performance. The DMOS output transistors can
Multiwatt-ll
ORDERING NUMBER: L6203
BLOCK DIAGRAM
OUT!
ENABLE
11
OUTI
'---'>----__~-
GND
~-9520
'*' Suggested value for
September 1988
CBOOT1
and CBOOT2: 10nF
1/16
471
L6203
ABSOLUTE MAXIMUM RATINGS
Power supply
Differential output voltage (Between pins 1 and 3)
Input or Enable voltage
Pulsed output current (note 1)
- non repetitive « 1 ms)
Sensing voltage
Boostrap peak voltage
Total power dissipation (Tease = 90°C)
(T amb = 70°C free air)
Storage and junction temperature
52
60
-0.3 to 7
5
10
-1 to 4
60
20
2.3
-40 to 150
Notel: Pulse width limited only by junction temperature and the transient thermal impedance.
CONNECTION DIAGRAM
(Top view)
I
ENABLE
I
SENSE
VREF
I
BOOU
IN 2
GNO
4p:::::r::::==::::>
---...Jt=:===::;t~~I~~
-I "-
~
IN 1
BOOT.l
OUT 1
Vs
OUT 2
5-9514
Tab connected to pin 6
THERMAL DATA
Thermal resistance junction-case
Thermal resistance junction-ambient
472
max
max
3
35
V
V
V
A
A
V
V
W
W
°C
L6203
PIN FUNCTIONS
PIN
NAME
OUT2
2
FUNCTION
Output of the half bridge.
Supply voltage.
3
OUT1
Output of the half bridge.
4
BOOT1
A boostrap capacitor connected to this pin ensures efficient driving of the upper POWE R DMOS transistor at
high switching frequencies.
5
IN1
Digital input from the motor controller.
6
GND
Common ground terminal.
7
IN2
Digital input from the motor controller.
8
BOOT2
A boostrap capacitor connected to this pin ensures efficient driving of the upper POWER DMOS transistor at
high switching frequencies.
9
V ref
Internal voltage reference, a capacitor from this pin to
GND increases stability of the POWER DMOS logic
drive cricuit.
10
SENSE
A resistance Rsense connected to this pin provides feedback for motor current control.
11
ENABLE
When a logic high is present on this pin the DMOS
POWE R transistors are enabled to be selectively driven
by IN1 and IN2.
-------------- ~ ~~~~m?1T~l~~©~ ____________
-=3'-'/1::.6
473
L6203
ELECTRICAL CHARACTERISTICS (Refer to the test circuits T j
25°C, Vs = 42V, unless
otherwise stated)
Parameter
Vs
Supply voltage
V ref
Reference voltage
IREF
Output current
Is
Quiescent supply current
Test Conditions
Min.
12
Typ.
Max.
Unit
36
48
V
13.5
V
2
EN = H
EN = H
EN = L
V 1N = L
V 1N = H
Fig. 10
10
10
8
IL = 0
mA
mA
mA
mA
fe
Commutation frequency (*)
30
Tj
Thermal shutdown
150
100
KHz
°C
Td
Dead time protection
100
ns
TRANSISTORS
OFF
loss
Leakage current
Fig. 11
Vs = 52V
1
mA
ON
Ros
On resistance
VOS(ON)
Drain source voltage
V sens
Sensi n9 voltage
IDS = 3A
0.3
n
0.9
V
4
-1
V
SOURCE DRAIN DIODE
VSd
Forward ON voltage
trr
Reverse recovery time
tlr
Forward recovery time
EN = L
Iso = 3A
IF= 3A
dif
dt
= 25A/!J,s
1,35(**)
V
300
ns
200
ns
LOGIC LEVELS
V 1N L, V EN L
I nput Low voltage
-0.3
0.8
V
V 1N H, V EN H
Input High voltage
2
7
V
-10
!J,A
IINL, lEN L
I nput Low current
V 1N , V EN = L
IINH' lEN H
Input High current
V 1N , V EN = H
30
!J,A
LOGIC CONTROL TO POWER DRIVE TIMING
tl (Vi)
Source current turn-off delay
Fig. 12
300
ns
t2 (Vi)
Source current fall time
Fig. 12
200
ns
t3 (Vi)
Source current turn-on delay
Fig. 12
400
ns
t4 (Vi)
Source current rise time
Fig. 12
200
ns
ts (VI)
Sink current turn-off delay
Fig.13
300
ns
t6 (Vi)
Sink current fall time
Fig. 13
200
ns
t7 (Vi)
Sink current turn-on delay
Fig. 13
400
ns
ts (Vi)
Sink current rise time
Fig. 13
200
ns
(*) Limited by power diSSipation
(**) In synchronous rectification the drain-source voltage drops Vos is shown in Fig. 4.
~4/~1~6________________________ ~~~~~~~V~:~?~'
474
___________________________
L6203
Fig. 2 - Quiescent current
vs. freq uency
Fig. 1 - Typical Is normalized vs. T J
Fig. 3 - Typical Is normal·
ized vs. Vs
(;-6326
IS
(rnA)
40
35
30
25
20
15
10
1.2
......
11
............
09
--
-1---
06
7
I
06
Is
(Norm)f~+--t--t-t--+--t---t--j-t--i
5
09
V
0.8 f--t--+---t-J-+--t--t--j-t--i
0.7 f--t--+---t-J--t--+---t----1I-+--I
0.6 f--t--t---t--j--t--+--t--jc-t--i
0.5 - ---+-+-+--1-+-+--+---t----1
v
./
0.4 f-+-+-~---J,+-+-+---t-H
o3
04
03
-25
+25
+50
+75
50
TJ ('C)
100
150
200 f (KHz)
Fig. 4
Typical diode
behaviour in synchronous
rectification
ISD"
(A)
V DS
v"'.
0.2 0.4 Q6
0.8
1
12
5 10 15 20 25 30 35 40 45 IIs(V)
Fig. 5 - Typical Ros
vs.Vs=O:Vref
(ON)
G-6Jl'
ROSON
(Il)
1.6
1.6
14
1.2
1.0
0.6
0.6
0.4
0.2
II
\
I
10
1.4 1.6 Vsd. Vos (V)
lis
'VREF(V)
Fig. 7 - RoS (ON) vs. DMOS
transistor current
Fig. 6 - Ros (ON) normalized at 25°C vs. temperature
typical values
6-5313
ROSON
(11) H-+++-H-t-t--t-t-H-++-1
.,r,l.Roson(Tj)
16
r--
ROS on (25°)
16
0.4H-+++-H-+-++HH-+-+t
1.4
12
./
./
O. 6
V
/..
0.3 H++-H-++-H-+++-i"9---I
0.2 H-+++H-+-++HH-++t
V
0.1 H-+-++H-+-+++-H-+-+t
o6
-50
-25
0
+25 -+50
'-75 -+100
TJ (OC)
I (A)
5/16
475
L6203
Fig.S - Typical power dissipation vs. IL
G
I
26
-lIJ-v- v., INN
6325/2
Vs=36V
L:lmH
T :2ms
24
22
fs :IOOKHz <;20 - 20KHz
18
4
2
":,'.
,~ )<
16
14
12
10
8
6
- - PHASE CHOPPING
-'-'-ENABLE CHOPPING
):7 T,
./ ~
'/
. :~ /.V
'I'
V k:V'
ih v, i:/'
.Ml~
2
3
4
5
6
7 IL(A)
Fig.8a - Two phase chopping
Fig. 8b - One phase chopping
~6/~1~6________________________ ~~~~~~~~:~~~
476
___________________________
L6203
Fig. Bc - Enable chopping
TEST CIRCUITS
Fig. 9 - Saturation voltage
a) Source outputs
b)' Sink outputs
Vs
51 A
r~
_
2
5
51
7
V
2
.L
11
L6203
3
B
5
r~
7
V2
11
I
Vl_
1.
A
L6203
3
V1I
6
5- 9768
5-9767
ForlN1 source output saturation: VI = "H"
SI = A
V
SL
For I N2 source output saturation: V 1
=A
I
For IN1 sink output saturation:
2
= "H"
= "H"
SI = B
SL = B
I
___________________________
For IN2 sink output saturation:
V
= "H"
2
~~~~~~g~:~~~~
VI = "H"
SI = A
V
SL = A
2
I
Vl
="L"
= "H"
S, = B
SL = B
IV
2
= "L"
________________________
~7/~l~6
477
L6203
TEST CIRCUITS (continued)
Fig. 11 - Leakage current
Fig. 10 - Quiescent current
Vs
a) Source outputs
51
b) Sink outputs
B
rAlv
J.. J:. 1
A 5L
11
52
.P
B
L6203
L6203
Iv
J:.2
8~
11
11
L6203
6-10
s- 9773/1
5-9772/1
SWITCHING TIMES
Fig. 12 - Source current delay times
VS.
input chopper
lmax;:: 3A
90'1,
IN
517
3/1
10'1.
L6203
EN
5V
11
Yin
50'1,
5-9770/1
Fig. 13 - Sink current delay times
VS.
5-9807
input chopper
Vs = 42 V
Imax::: 3A
90'1,
IN
5/7
10'1,
L6203
3/1
EN
50'1,
6/10
5-9769/1
5- 9808
~8/~1~6__________________~____ ~~~~~~~¥~:~~~
478
___________________________
L6203
CIRCUIT DESCRIPTION
The L6203 is a monolithic full bridge switching
motor driver realized in the new MultipowerBCD technology which allows the integration of
multiple, isolated DMOS power transistors plus
mixed CMOS/bipolar control circuits. In this way
it has been possible to make all the control
inputs TTL, CMOS and MC compatible and
eliminate the necessity of external MaS drive
components.
the low-to-high transition a spike of the same
polarity is generated by C2, preceded by a spike
of the opposite polarity due to the charging of
the input capacity of the lower POWER DMOS
transistor. (Fig. 15)
Fig. 15 - Current typical spikes on the sensing pin
Vs ;41.V
Ip=O.5A
f=100ns
LOGIC DRIVE
INPUTS
OUTPUT MOSFETS (*1
IN1
IN2
L
H
L
H
Sink 1, Sink 2
Sink 1, Source 2
Source 1, Sink 2
Source 1, Source 2
X
All transistors turned OFF
V EN
=H
L
L
H
H
V EN
=L
X
L = Low
H = High
X = Don't care
(*1 Members referred to INPUT 1 or INPUT2 controlled
outputs stages
lsense
5-9416/1
TRANSISTOR OPERATION
ON STATE
CROSS CONDUCTION
Although the device guarantees the absence of
cross-conduction, the presence of the intrinsic
diodes in the POWER DMOS structure causes
the generation of current spikes on the sensing
terminals. This is due to charge-discharge phenomena in the capacitors C 1 & C2 associated with the
drain source junctions (Fig. 14). When the output
switches from high to low, a current spike is
generated associated with the capacitor C1. On
Fig. 14 - Intrinsic structures in the POWER MaS
transistors
(I
When one of the POWER DMOS transistor is
ON it can be considered as a resistor Ros (ON)
(= O.3U) throughout the recommended operatingrange. In this condition the dissipated
power is given by:
PaN = ROS(ONI ·los2
The low Ros (ON) of the Multipower-BCD
process can provide high currents with low power
dissipation.
OFF STATE
When one of the POWE R DMOS transistor is
OFF the Vos voltage is equal to the supply voltage and only the leakage current loss flows. The
power dissipation during this period is given by:
POFF = Vs • loss
The power dissipation is in the order of pW and
is negligible in comparison to that dissipated
in the ON STATE.
~n
TRANSITIONS
s- 9415
-----------------------------
Like all MaS power transistors the DMOS
POWE R transistors have as intrinsic diode
between their source and drain that can operate
as a fast freewheeling diode in switched mode
~~~~~~?v~:~~:f
__________________________
9~/l_6
479
L6203
applications. During recirculation with the
ENABLE input high, the voltage drop across the
transistor is RoS (ON) 10 and when the voltage
reaches the diode voltage it is clamped to its
characteristic. When the ENABLE input is low,
the POWER MOS is OFF and the diode carries
all of the recirculation current. The power dissipated in the transitional times in the cycle
depends upon the voltage and current waveforms
in the application.
Ptrans. = los (t) " Vos (t)
BOOSTRAP CAPACITORS
To ensure that the POWER DMOS transistors are
driven correctly gate source voltage o'f about 10V
must be guaranteed for all of the N-channel
DMOS transistors. This is no problem for the
lower POWER DMOS transistors as their sources
are refered to ground but a gate v.oltage greater
than the supply voltage is necessary to drive the
upper transistors. In the L6203this achieved by an
internal charge pump circuit that guarantees correct DC drive in combination with the boostrap
circuit charges the external C B capacitors when
the source transistor is OFF and the sink transistor is ON giving lower commutation losses
in switched mode operation. For efficient
charging the value of the boostrap capacitor
should be greater than the input capacitance of
the power transistor which is around lnF. It is
recommended that a capacitance of at least
10nF is used for the bootstrap. If a smaller
capacitor is used there is a risk that the POWER
transistors will not be fully turned on and they
will show a higher Ros (ON)' On the other hand
if a elevated value is used it is possible that a
current spike may be produced in the sense
resistor.
REFERENCE
To stabilise the internal drive circuit it is recommended that a capacitor be placed between
this pin and ground. A value of 0.22JlF should
be sufficient for most applications.
This pin is also protected against a short circuit
to ground.
DEAD TIME
To protect the device against simultaneous
conduction in both arms of the bridge and the
resulting rail to rail short, the logic control
circuit provides a dead time greater than 40ns.
THERMAL PROTECTION
A thermal protection circuit has been included
that will disable the device if the junction temperature e reaches 150°C. When the temperature
has fallen to a safe level the device restarts under
the control of the input and enable signals.
APPLICATION INFORMATION
RECIRCULATION
During recirculation with the ENABLE input
high, the voltage drop across the transistor is
Ros (ON) 'I L for voltages less than 0.7V and is
clamped at a voltage depending on the characteristics of the source-drain diode for greater
voltages. Although the device is protected against
cross conduction, current spikes can appear on
the current sense pin due to charge/discharge
phenomena in the intrinsic source drain·capacitances. 1n the application th is does not
cause any problems because the voltage created
across the sense resistor is usually much less
than the peak value, although a small RC filter
can be added if necessary.
POWER DISSIPATION
In order to achieve the high performance provided by the L6203 some attention must be paid
to ensure that it has an adequate PCB area to
dissipate the heat. The first stage of any thermal
design is to calculate the dissipated power in the
application, for this example the half step operation shown in figure 16 is considered.
RISE TIME Tr
When an arm of the half bridge is turned on current begins to flow in the inductive load until
the maximum current IL is reached after a time
Tr . The dissipated energy EOFF/ON is in this
case:
EOFF/ON
~102/~16~______________________ ~~~~~~?~~~~~~
480
= [ROS(ON)
" IL2 "Trl" 2/3
________ _________________
~
L6203
ON TIME TON
Fig. 16
During this time the energy dissipated is due to
the ON resistance of the transistors EON and the
commutation E COM ' As two of the POWE R
DMOS transistors are ON EON is given by:
EON
= IL2
. RDS(ON) ,2, TON
In the commutation the energy dissipated is:
IT,
I
Ton
I
Tf i T d
5- 9775
Where:
TCOM = Commutation Time and it is assumed
that;
TCOM = TTURN-ON = TTURN-OFF = 100ns
fSWITCH = Chopper frequency
FALL TIME T f
For this example it is assumed that the energy
dissipated in this part of the cycle takes the same
form as that shown for the rise time:
EON/OFF
= [ROS(ON)
·I L2 • Ttl· 2/3
QUIESCENT ENERGY
The last contribution to the energy dissipation is
due to the quiescent slJPply current and is
given by:
EQUIESCENT = IQUIESCENT • Vs • T
TOTAL ENERGY PER CYCLE
ETOT = EOFF/ON + EON + ECOM +
+ EON/OFF + EQUIESCENT
The Total Power Dissipation PDIS is simply:
T,
TON
Tf
Td
T
Rise time
ON time
Fall time
Dead time
Period
T
=
T,+T oN +Tf+T d
DC MOTOR SPEED CONTROL
Since the L6203 integrates a full H-Bridge in a
single package it si idealy suited for controlling
small DC motors. When used for DC motor
control the L6203 provides the power stage required for both speed and direction control.
The L6203 can be combined with a current regulator like the L6506 to implement a transconductance amplifier for speed control, as shown in
figure 17.
In this configuration the L6506 sense the voltage
across the sense resistor, RSENSE, to monitor
the motor current. The L6506 then compares the
sensed voltage to control the speed or during
the input signals to the L6203.
Between the sense resistor and each sense input
of the L6506 a resistor must be foreseen; if the
connections between the outputs of the L6506
and the inputs of the L6202 need a long path, a
resistor must be connected between each input
of the L6202 and ground.
A snubber network made by the series of Rand
C must be foreseen very near to the outputs pins
of the L6203.
The following formulas can be used:
R ~ Vs/lp
C = Ipi (dv/dt) where
Vs is the max supply voltage foreseen on the application;
Ip is the peak of the load current;
dv/dt is the needed rise time of the output voltage (200V Ipsec is generally used).
A diode (BYW98) is connected between each
power output pin and ground as well.
If the power supply cannot sink current, a suitable large capacitance must be used and connected
near the supply pin of the L6202.
Sometimes a capacitor at pin 17 of the L6506 let
application better work.
-------------- ~ ~~I;m~1r~:~~~ ___________
----'1:.:;1;....:/1;..:,6
481
L6203
Fig. 17 - Bidirectional DC motor control
Ucc.5U
..-I
22KO
DIRECTION {
6
Uspeed.2lJmax
IIp max.4A)
16
Ref I
4
ENABLE
ION/OFF)
2
Ucc.5U
:::c
RI
2.2K
L65G6
14
5
12
11
13
7
IN I
3
EN
3
18 R4
17
15
Ref 2
3. 3nF
IN 2
L62G3
18K
R3
18
lBK
RS
15nF
02
B.50
1188L6283-8611
BIPOLAR STEPPER MOTORS APPLICATIONS
Bipolar stepper motors can be driven with an
L297 or L6506, two L6203 bridge BCD drivers
and very few external components. Together
these three chips form a complete microprocessor-to-stepper motor interface.
As shown in Fig. 18 and Fig. 19, the controller
connect directly to the two bridge BCD drivers.
External component requirements are minimal:
an RC network to set the chopper frequency,
a resistive divider to establish the comparator
reference voltage (pin 15 for L297, pin 10 and
15 for L6506) and a snubber network made by
Rand C in series.
The following formulas can be used:
R "" Vs/lp
C = Ip/(dv/dt) where Vs is the max. Supply
Voltage foreseen on the application;
Ip is the peak of the load current;
dv/dt is the needed rise time of the output voltage (200V/lls is generally used). Depending on
the Printed Circuit Board design, a resistor between each input of the L6203 and ground could
be requested. These solutions have a very high
efficiency because of low power dissipation.
HIGH CURRENT MICROSTEP DRIVE FOR
STEPPER MOTORS
The L6203 can be used in conjunction with the
L6217 to (figure 20) implement a high current
microstepping controller for stepper motors.
;:,.12::.,/.:,.16'--_ _ _ _ _ _ _ _ _ _ _
482
In this application the L6217 is used as a control
circuit and its outputs are used only to drive the
inputs of the L6203. The application allows
easy interface to a microprocessor since the
L6217 may be connected directly to the microprocessor bus.
In the circuit shown in Figure 20, the L6217
senses the motor current by monitoring the
voltage across the sense resistors, RSENSE, and
compares this value to the output of a 6 bit
(7 bit if the L6217A is used) D to A Converter.
The L6217 controls the current using a frequency modulated, constant off time, switching
controller. The off time of each coil may be
set using and external resistor and capacitor connected to PTA and PTB.
In this configuration the microprocessor simply
loads the appropriate value for the direction of
current floW through the coil and the data for
the DAC into the L6217. The L6217 and L6203
then forms the complete interface between the
micro and the motor.
When the pins 3 and 4 of the L6217 (Test A and
B) are low, the bridges must be in tri-state condition.
For this reason two LM339 comparators must be
used. The outputs of the comparators act on the
enable inputs of the L6203 ICs.
A bi level operation can be used for decreasing
the minimum controllable load current. The mi-
iIfi. ~~~~m?1Jrtf~~©' --------------
L62(J
nimum current that can be controlled is given by
the following expression
IL (avg.)
=
Rsense' (2Ros o n
+
RLoAo)/DC
where R LOAO is the equivalent resistance of the
load DC is the duty cycle given by
If 12V is forced on pin (Reference voltage) ar
the supply voltage V 5 is reduced below 12V tl
on resistance tends to increase above the norm
guaranteed 0.30hm.
Consequently the minimum current will also I
reduced, as given in the above expression. Wher
mi nimum current operation is required, a high
gnal at point (A) can disable the pnp transistc
in fig. 20. So it's possible to operate at a Vs
(7V - Vsd.
Fig. 18 - Two phase Bipolar stepper motor control circuit with chopper current control
5U
IN
RESET
1~~----~====$[~______~
R
L62G3
c:
IN 2~~----t=====$[~------~
L62G3
;
!
22K
I
I
,~
22K
f188L62B3-B2f1
SENSE I"~
RESISTOR,'
l.;;.i~
I~'
/i"
!~'
lil
/.,'"
I:",
i'
,;',':
-------------- ~ ~~~~mg1f~:~~~~ __________i{
/.::'
6203
g. 19 - Two phase Bipolar stepper motor control circuit with chopper current control and translator
8.~
51)
8~1-+-_--'
...-;---.
A
CW/CCW
STEP
ILF IFULL
RESET
B
R
L62G3
C
INHI
TROL 15V I
OUTPUT
LOGIC
ENABLE
C
L62G3
R
C
SYNC
.5V
22K
22K
SENSE
RESISTORS
gh current microstepping controller for stepper motors
OUT
a .luF
121)
I
B.luF
BY\J9B-5B
L6217
lK
D176
I
IAI
31
I----~-_I
3B I---~-+-_I
lN4148
.71)
ff88L6283-B4f1
B.luF
L62(
THERMAL CHARACTERISTICS
Fig. 21 -
Rth j-amb
of Multiwatt package vs. dissipated power
tree air
mount d
die
5~ze:
0,800
0,S0
1.00
1.513
r~d
HM 70- 3 hea
5 ink
q,mil
dissi10Ung area = 2.0138 sCl.mi
0.00
DM
ed on PCB ba
2.013
2.50
5
3.00
3.50
4.!10
4.50
5.00
DISSIPATED POI...ER ( LJatt. )
Fig. 22 - Comparison of transient
Rth
for single pulses with and without heatsink
/SINe LE
//
P.JLSE
V
b
Pd
/
0
/'" V
~'
mounled
~~
free air
Pd 0 2 W
THM 7B23 ~eal:.
5 W
5
ink
(*)
V
e.1
O.eel
B.B1
B.1
18
TII"£ OR PULSE WIDTH ( 5 )
-------------- ~ ~~~~m?1r~~~
1BBB
5203
g. 23 - Peak transient Rth vs. pulse width and duty cycle
~f--
DC ~-
I----i---
f-
__-r
j.-----r
10
f~
p
j---
I-----r
cD
'CLE --
~I
10
0. I
TIME
OR PULSE WIDTH
!~T~
100
(
"
S
a
--
1000
ms 1
--- iifi. ~~~~m~1iT~lf --------------
L6210
DUAL SCHOTTKY DIODE BRIDGE
•
MONOLITHIC ARRAY
SCHOTTKY DIODES
•
HIGH EFFICIENCY
OF
EIGHT
The L6210 is available in a 16 Pin Powerdip
Package (12+2+2) designed for the 0 to 70°C
ambient temperature range.
• 4A PEAK CURRENT
•
LOW FORWARD VOLTAGE
•
FAST RECOVERY TIME
due to low forward voltage drop and fast reverse
recovery time, are required.
• TWO SEPARATED DIODE BRIDGES
The L6210 is a monolithic IC containing eight
Schottky diodes arranged as two separated
diode bridges.
Powerdip 12+2+2
This diodes connection makes this device versatile in many applications.
They are used particular in bipolar stepper motor
applications, where high efficient operation,
ORDERING NUMBER: L6210
ABSOLUTE MAXIMUM RATINGS
Repetitive forward current peak
Peak reverse voltage (per diode)
Operating ambient temperature
Storage temperature range
2
50
70
-55 to 150
BLOCK DIAGRAM
1,8
16,9
3,6
11.14
S-9JZO/l
4,5,12,13
September 1988
1/3 -
487
L6210
THERMAL DATA
Rthj-case
Rthj-arnb
Thermal impedance junction-case
Thermal impedance junction-ambient without external heatsink
max
max
14
65
CONNECTION DIAGRAM
(Top view)
K
16
~
K
OUT 1
2
15
~ OUT 4
A
3
14
~
GNO
4
13
GNO
GNO
5
12
GNO
A
G
11
A
OUTZ
7
10
OUT 3
I8
9
K
K
A
~-9311
ELECTRICAL CHARACTERISTICS (TJ
Paramater
Vf
Forward voltage drop
25°C unless otherwise specified)
Test Conditions
Min.
Typ.
Max.
I f = 100mA
0.65
O.S
If = 500mA
O.S
1
1
1.2
If = lA
IL
Leakage current
VR = 40V
Tarnb = 25°C
1
Unit
V
mA
NOTE: At forward currents of greater than lA, a parasitic current of approximately lOrnA may be collected by adiacent
diodes.
~2/~3____________------------~~~~~~~©~
488
__________________________
L6210
Fig. 1 - Reverse current vs.
voltage
I
"Ai
'R
~j!~~~~~~~I~
Tj
~1l5'C
Fig. 2 - Forward voltage vs.
current
(;·606'
Id
IA I
/.~
~
TJ =125'C
Tj
=,s·c
Ij",5'C'1/
I-
Yl'l
Tj"Z5*C
H-t
10
'0
01
.0
50
0.2
~(V,
0,4
0.6
0.8
MOUNTING INSTRUCTIONS
The Rthi-amb of the L6210 can be reduced by
soldering the GND pins to a suitable copper
area of the printed circuit board as shown in
figure 3 or to an external heatsink (Figure 4).
During soldering the pin temperature must not
exceed 260°C and the soldering time must not
be longer then 12s. The external heatsink or
printed circuit copper area must be connected
to electrical ground.
Fig. 3 - Example of P.C. board copper area
which is used as heatsink
Fig. 4 - Example of an
external heatsink
p.e.BOARD
___________________________
~~~~~~~~~:~~©~
________________________
~3/~3
489
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L6212
HIGH CURRENT SOLENOID DRIVER
PRELIMINARY DATA
• HIGH VOLTAGE OPERATION (UP TO 50 V)
• HIGH OUTPUT CURRENT CAPABILITY (UP
T06A)
• LOW SATURATION VOLTAGE
• TTL-COMPATIBLE INPUT
• OUTPUT SHORT CIRCUIT PROTECTION (TO
GROUND, TO SUPPLY AND ACROSS THE
LOAD)
• THERMAL SHUTDOWN
• OVERDRIVING PROTECTION
• LATCHED DIAGNOSTIC OUTPUT
switch-mode operation. An extra feature of the
L6212 is a latched diagnostic output which indicates
when the output is short circuit.
The L6212 is supplied in an 15-lead Multiwatt plastic power package.
Multiwatt-15
(Horizontal)
DESCRIPTION
The L6212 is a monolithic switch-mode solenoid driver designed for fast, high-current applications such
as hammer driving in printers and electronic typewriters. Power dissipation is reduced by efficient
ORDER CODE: L6212
CONNECTION DIAGRAM (top view)
~I
i
CD
L . -"
SINK OUTPUT
CURRENT SENSING
AMPLIFIER INPUT
ENABLE
N.C.
TIMING
INPUT VOLTAGE
GND
DIAGNOSTIC OUTPUT
DIAGNOSTIC SUPPLY VOLTAGE
N.C.
ON TIME LIMITER
N.C.
SOURCE OUTPUT
POWER SUPPLY VOLTAGE
S-9301
Tab connected to pin 8
September 1988
1/6
491
L6212
BLOCK DIAGRAM
DlAG. OUi
+VSS
+VS
01
2
OUTH
,-__-tJ~OAO
01
OUT l
Cl
Rl
5-9300
ABSOLUTE MAXIMUM RATINGS
~~--------------
Parameter
f
I
Vs
Power Supply Voltage
Vss~~i~Supply Voltage
.
--------
~_Enable V()lt~~ _ _
VI
Ip
L
l ~lot
----,----
Input Voltage
Peak Output Current-(repetiti;~)---------Total_F'0wer_ Dissipation (at T case
i__~~t~!~o~(1e
Value
Unit
50
V
7
V
7
V
7
V
6.5
A
------------+-----j
25
= 75°C)
1-
- 40 to + 150
and Junction Temperature
W
°C
THERMAL DATA
Thermal Resistance Junction-case
Themal Resistance Junction-ambient
Max
Max
----------------------------~
2/6
492
-::---,_~g;~-l
-------
L6212
ELECTRICAL CHARACTERISTICS (refer to the test circuit, Vs
unless otherwise specified)
1- Symbol
Parameter
=
37 V, Vss = 5 V, Tamb = 25
Test Conditions
Vs
Power Supply Voltage (pin 1)
Id
Quiescent Drain Current
Min.
Typ.
20
I Vi:>
Logic Supply Voltage (pin 6)
Iss
Quiescent Logic Supply Current : VOIAG = L
, DIAG Output at High
r~p~;~~~:eOut-p~t
I Non-operative
Input Current (Pin 9)
VENABLE
~BL-;- -En-able Input Current
_""-,,tH
-
Source OutpU! ~aturatl()n
I
_\ICJ1t__
-
V
5
8
rnA
10
100
flA
0.6
V
V > 06 V
H
+ VSa1 L Total Saturation Voltage
--.-----------
-
----
-0.3
2.4
~9Nh ~:v~
V, = 08-V
VEN=H
Ve=24V
IE~_~ A
___
loul = 5.5 A
-------
_ _ __
~----.-----
: ""'~"""fo$~~::;::C;;:,::;:;,n ~~:f'v --=I
V01AG
I
Diagnostic Saturation Voltage
(PIn7)
~ f~~;~~st'c
IOIAG
Vpon 10
I ~Vpon 10
,
Leakage Current
OP AMP DC Voltage
G-;;';--- -
VOIAG = 40 V
,;~
flA
flA
0.8
V
-100
100
flA
2.5
V
2.5
V
:bA
~o:==_2_-_1_~
2
rnA
,loiAG = 10 rnA
,
Vpin
V
-2
-5
____ ,! __________ ~~5---~I
Output Leakage Current Source V s = 45 V
PNP
, Vi ,; 0.45 V
Ileakage
0.45
-
045
Low Level
Vsal 1,_ _ _ ~i~~_O_utput _~atlJl"_at_ion_V_o_lt_._--+_I",OU__I_= 5.5~__~ ______ _
Vsal
rnA
7
Output
~~ ~ ~
Enable Input Current (Pin 12)
V
30
rnA
4.5
Input Voltage (pin 9)
__ "--5--!
04
V
10
fl A
100 t;800 mV
--------~---------------~---~
,
!
Ip'n_'_~_"" 1 rnA ______ ~5__ L__
Ipin10
+
Vpin10=4VV g =V 13 =0,
V pin 10 = 2 V V,3 = 0.9 V
Isense
Input Bias Current (pin 13)
Vsense
Sensing Voltage (pin 14) (H)
Unit
46
70
VEN = L
0.6 V
Vss
Vi
Max.
12
VEN = H
°e,
I
,!
I
V
10
1.5
-1
flA
mA
flA
0.9
V
n
After a lime interval tm" = KC" the output stages are disabled.
(**) Allowed range of Vsense without the intervention of the short circuit protection.
3/6
493
L6212
Figure 1 : Output Current Waveforms,
t1 t3 t5
Vif-_+_ _ _-"t"""-'t.....""!-_ __
V pin4
5-5365
b)
a)
Figure 2 : Test and Typical Application Circuit.
Vi
ENABLE
""l.....r
r
C2
47nF
5-9572
g~ ~~ :::: ~:~~:
4/6
494
}
trr QOOns
L6212
CIRCUIT OPERATION
The L6212 works as a transconductance amplifier:
it can supply an output current directly proportional
to an input voltage level (Vi). Furthermore, it allows
complete switching control of the output current waveform (see Fig. 1).
The following explanation refers to the Block Diagram, to Fig. 1 and to the typical application circuit
of Fig. 2.
The ton time is fixed by the width of the Enable input
signal (TTL compatible) : it is active low and enables
the output stages "source" and "sink". At the end of
ton, the load current haad recirculates through 01 and
02, allowing fast current turn-off.
The rise time tr depends on the load characteristics,
on VI and on the supply voltage value (Vs, pin 1).
During the ton time haad is converter into a voltage
signal by means of the external sensing resistance
Rs connected to pin 13. This signal, amplified by the
op amp charges the external RC network at pin 10
(R1, C1). The voltage at this pin is sensed by the Inverting input of a comparator. The voltage on the
non-inverting input of this one is fixed by the external voltage Vi (pin 9).
After, tr, the comparator switches and the output
stage "source" is switched off. The comparator output is confirmed by the voltage on the non-Inverting
input, which decreases of a constant fraction of Vi
(1/10), allowing hysteresis operation. The current In
the load now flows through 02.
Two cases are possible: the time constant of the recirculation phase is higher than R1, C1 ; the time
constant is lower than R1, C1. In the first case, the
voltage sended on the non-inverting input of the
comparator is just the value proportional to haad. In
the second case, when the current decreases too
quickly, the comparator senses the voltage signal
stored in the R1 , C1 network.
In the first case t1 depends on the load characteristics, while in the second case it depends only on
the value of R1, C1.
In the other word, R1, C1 fixed the minimum value
of t1 (t1 ::> 1/10 R1 x C1. Note that C1 should be chosen in the range 2.7 to 10 nF for stability reasons of
the op amp).
After t1, the comparator switches again: the output
is confirmed by the voltage on the non-inverting input, which reaches Vi again (hysteresis).
Now the cycle starts again: t2, t4 and IE; have the
same characteristics as tr, while 13 and ts are similar
to t1. The peak current Ip depends on Vi as shown
in the typical transfer function of Fig. 3.
It can be seen that for Vi lower than 450 mV the device is not operating.
For Vi included between 450 and 600 mV, the operation is not guaranteed.
The other parts of the device have protection and
diagnostic functions. At pin 4 is connected an external capacitor C2, charged at constant current when
the Enable is low.
After time interval equal to K· C1 (K is defined in the
table of Electrical Characteristics and has the dimensions of £2) the output stages are switched off
independently by the Input signal.
This avoids the load being driven in construction for
an excessive period of time (overdriving protection).
The action of this protection is shown in Fig. 1b. Note
that the voltage ramp at pin 4 starts whenever the
Enable signal becomes active (low state), regardless of the Input signal. To reset pin 4 and to restore the normal conditions, pin 12 must return high.
This protection can be disabled by grounding pin 4.
In order to keep constant the energy delivered to the
load, when the supply voltage changes, it's possible to modify the output maximum peak current (Ip)
by means the external voltage divider R2 and R3
which "senses" the supply Voltage.
Ip is given by :
Vi (Rs + R2 + R3) - 5 Vs (R2 + Rs)
Ip =
5 R3 Rs
so the variation of Ip versus Vs is :
tl.1 = _ R2 + Rs
p
R3 Rs
The thermal protection included in the L6212 has
hysteresis.
It switches off the output stages whenever the junction temperature increases too much. After a fall of
about 20°C, the circuit starts again.
Finally, the device is protected against any type of
short circuit at the outputs: to ground, to supply and
across the load.
When the source stage current is higher than 7A
andlor when the pin 13 voltage is higher then 1 V
(i.e. for a sink current greater than 1 V/Rs) the output stages are switched off and the deVice IS inhibited.
This condition is indicated at the open-collector output DIAG (pin 7) ; intemal flip-flop FIF changes and
forces the output transistor into saturation. The FIF
5/6
495
L6212
must be supplied independently through Vss (pin 6).
The DIAG signal is reset and the output stages
made operative by switching off the supply voltage
at pin 1 and then by switching the device on again.
After that, two cases are possible : the reason for
the "bad operation" is till present and the protection
acts again; the reason has been removed and the
device starts to work properly.
Figure 3 : Peak Output Current vs. Input Voltage.
Figure 4: Peak Output Current vs. Input Voltage.
G
Ip
Ip
CAl
(AJ
~
--
R2=O
R3=OPEN
RsO' O.13Jl.
6192
!
-
--
~bV
I
R2= 100 .n..
R30::33Kll.
RS= 0.13.0..
/
1
//1
I
/'
V
)
/
V
/,'"
V
./
L
/'
V
0.511.522.533,54
Vi('.')
Figure 5 : Peak Output Current vs. Supply
Voltage.
IP
r--,-,--r---,--r----,--"'~'--,
CAl
VI = 3.5'0'
R2 =100
n
6
~ ~~~6~,~~ r----+-+--f.-+---j
5.5
f--+-+--f--+-r.-f--i----4
• .5
f---+-+--f---t--'f'-......._c:---i----4
3.5
--
.- -
-I---r---
r--- - -.
-j---t--~---I--1
i
10
6/6
496
15
20
25
30
35
40
Vs(V)
0.5
i
1.5
2
2.5
3
3.5
4
Vi (V)
L6217
STEPPER MOTOR DRIVER
•
•
•
•
•
MICROSTEPPING
BIPOLAR OUTPUT CURRENT UP TO 400 mA
LOW SATURATION VOLTAGE
BUILT-IN FAST RECOVERY DIODES
OUTPUT CURRENT DIGITALLY PROGRAMMABLE
• 6 BIT D/A CONVERTERS SET OUTPUT CURRENT
• THERMAL SHUTDOWN
for micro-stepping the motor current is internally
sensed and compared to the output of the D/A
converter.
A monostable, programmed by an RC network sets
th.e motor current decay time.
The L6217 is supplied in a 44 pin PLCC with 11 of
the 44 pins used for heatsinking.
,------------_.- -----------,
DESCRIPTION
The L6217 is a monolithic IC that controls and drives
both phases of a Bipolar Stepper Motor with PWM
control of the phase current. The output current level of each phase is programmed by a 6 bit D/A
converter so that the device may be used in full-step,
half-step and micro-step applications. The inputs for
the DIA converters and the phase inputs to select
the direction of current flow are latched to minimize
the interface to a microprocessor.
The power section of the device is a dual H-Bridge
drive with internal clamp diodes for current recirculation. To maintain the degree of accuracy required
PIN CONNECTION
PLCC 44
(Plastic Chip-Carrier)
L- - - - - - ORDER CODE: L6217
(top view)
:£-'
1>- 1m I~ 1>a:4:ut/lut!)
0f ) t V'!lf)--(
6
5
4
0
UlZ
3
DO
01
MRSToL
02
PTA
03
04
VSB
05 (MSB)
VSA
PH
VSP (+16)
olGF
OUT A2
OUTBl
OUT B2
RSB
RSA
18 19
GNo
September 1988
5-9266
1/7
497
L6217
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
I
V si
Logic Supply Voltage
7
Vsp
Motor Supply Voltage
18
Unit
---"'"-
V
---~
V
-~--
Logic Input Voltage
VI
6
--
V
---~
Reference Input Voltage
Vref
Vsi
----_.
10
Output Peak Current
Tj
Operating Junction Temperature
I
Storage Temperature
T stg
V
-----
-
-
500
I
mA
150
"C
- 55 to + 150
°C
BLOCK DIAGRAM
,--~----------------------~~-----------
PH
M B
0'
03
m
~
14
"
34
04
ie!
02
3'
l
3.
T
C
H
37
E
A
5
~
0
01
l
B
OIGF
PTA
TESTA
B
OUTPUT A 1
~
17
F
E
R
5
J8
DO
r
~~~==f=:::l.
______-'==:::'::~';:'::~GNOOl
,
8---"-0---L
l
A
T
C
H
E
5
ptNS)
--~VREf IN
R. , OUT
B
U
F
F
E
•5
681T
DIA
.STo-~l----------~--~
~-------~------~----~--------------------------
THERMAL DATA
Thermal Impedance Junction-Case
~,--,-~-,-,_T_h_e_rm_a_I_lmpedance Junction-Ambient
2/7
498
~
__
Max_
Max_
~~L-
__
~
__
10
80__
~
----------~-
L6217
PIN FUNCTION DESCRIPTION
r~o ~I-------~
I
I
38,39
44
I
I
Name
---
Function
R;t
Active low input resets the D/A latches to 0 and disables the output.
DO - 05
Data inputs for the D/A converter (DO = LSB).
For a data input of 00, the corresponding outputs are held in the off
, state.
AlB
Channel select for input data. Pin AlB selects channel A when high.
PH
Logic input selects direction of current flow in output bridge from A 1 (B 1)
to A2 (B2) for PH = 1.
Strobe
MRST DL
MRST
-
---
----
Active low input latches input data (00-05 and PH) into input latch.
The capacitor on this pin programs the power on reset delay according
to the formula:
T DR = (0.35) (C) 10 6
Power-on reset circuit output. (micro reset signal).
This output remains low from power on until the delay capacitor has
charged past the delay threshold.
10
PtA
Pulse time A, an external parallel RC network tied to ground defines T ott
time for channel A. ( T ott = 0.69 R2C2).
11
PtB
Pulse time B, an external parallel RC network tied to ground defines toll
time for channel B. (T off = 0.69 R3C3).
5
Vref In
18t~28T
40
Voltage applied to this point sets the reference for the D/A converter and
threfore sets the maximum output current.
(see equation 1, next two pages).
- - - - - - - - - - - - - - - - - - - - - - - - - - ------- -------------------
Gnd
Gnd 0
Pin must
be- -connected
to ground.
------
---
Logic Supply Voltage
~sp
------
Ground connection and also conducts heat to the P.C. board.
------I- - - - - - - - -
I
--
- ------
--
Motor Supply Voltage
-------
16,15 l o u t A1 - A2
31,30
B1 - B2
H - Bridge outputs.
43,41
CSO, CS1
Chip select inputs CSO is active high, CS1 is active low.
::7':2:91
13,12
RsA - RsB
VsA - VsB
Sense resistor from this pin to ground set the peak output current.
I
Analog inputs for sensing motor current, separate inputs are provides to
allow filtering of the sense voltage if required.
--------
1-~~4-L- T~r~~o~t B
I~"I-D~~
-
-----
----
----------- ------
---
These pins are for testing of D/A outputs.
Vj"~~d~p--;-e~erenc~ - - - - - - - - - - - - - - - - -
_25
-_=l
Reset Threshold Voltage
Can be used to modify the internal comparator lockout time. In
microstepping typical application a 1.8 KQ resistor must be connected
between this pin and ground.
3/7
499
L6217
ELECTRICAL CHARACTERISTICS
Symbol
01 cc = 5.0 V,
Parameter
Tj
= 25 'C unless
Test Conditions
otherwise specified noted) .
Min.
Typ.
Max.
Unit
Vsp
Motor Supply Voltage
8
16
V
Vsi
Logic Supply Voltage
4.75
5.25
V
0.8
V
LOGIC INPUTS (DO-D6, CSO, CS1, PH, RST and NB)
VIL
Input Low Voltage
VIH
Input High Voltage
IlL
Input Low Current
IIH
Input High Current
2
VSi
V
VI = 0.4 V
- 400
~
VI = 2.4 V
10
~
CURRENT CONTROL AND D TO A SECTION
Vref
Reference Voltage
2.55
V
Vrin
Reference Input Range
2.0
3.0
V
Monotonicity of D to A
- 0.5
+ 0.5
LSB
-1
+ 1
LSB
277
mA
5
%
36
IlS
100
~
Vec = 5.0 V
Linearity of D to A
lop
Peak Output Current
(gain of current loop)
Vref = 2.40 V
Rsense = 2 g
Data = 7 F (Hex)
10
Output Matching
Vref = 2.38 V
2.45
225
2.50
252
MONOSTABLE
Toff
Cutoff Time
Td
Turn-off Delay
loff
Output Leakage Current
Rt = 56 Kg
Ct = 820 pF
28
1
Data = 00 (Hex)
Ils
RESET CIRCUITRY
Vth
Reset Threshold Voltage
3.9
4.1
Reset Threshold Hysteresis
70
100
10
14
3.25
3.5
3.75
70
100
Iso
Delay Capacitor Charging Current
Ve = 2.5 V
7
lsi
Delay Capacitor Discharge Current
Vc = 2.5 V
10
Vdth
Vdhys
101
V sat
4/7
500
Delay Threshold Voltage
Hysteresis Voltage on Delay
Threshold
4.3
V
mV
~
mA
V
mV
Output Leakage Current
Vo =5 V
200
Output Saturation of Reset Out
10 = 2 mA
0.4
~
V
L6217
ELECTRICAL CHARACTERISTICS (continued)
I Symbol
Parameter
I
Test Conditions
I
Min.
I Typ.
I Max.
Unit
SOURCE DIODE - TRANSISTOR PAIRS
Saturation Voltage
10 = 400 mA
Diode Forward Voltage
10 = 400 mA
SINK DIODE - TRANSISTOR PAIRS
Saturation Voltage
10 = 400 mA
Diode Forward Voltage
10 = 400 mA
AC CHARACTERISTICS
TsOI(ST)
ThOI(ST)
TwPI
TeST
01 to Strobe
t
Setup Time
100
ns
01 to Strobe J, Hold Time
500
ns
Pulse Width Low
600
ns
Strobe Setup Time
2.5
JlS
AlB to Strobe J, Setup Time
100
ns
TsPH(ST) PH to Strobe J, Setup Time
100
ns
T~B(ST)
CIRCUIT OPERATION
The current control section of the L6217 A is a pulse
width modulated control that senses the motor current. When the motor current reaches the peak programmed current the comparator will trigger the
monostable turning off the upper transistors. After
the toff time equal to 0.69 RC the upper drivers are
enabled again.
The peak current is given by the equation:
Vref
0
lop =
4.69.Rsense
64
o = Input data (0 - 63)
When the input data is 00, the ouptut stages are disabled by internal logic so that the output current decays rapidly to zero.
An internal generated lockout time avoids the use
of an external RC network between the sensing resistor (RsA, RsB) and the corresponding input (VsA,
VsB), by disabling the comparator sensing during
the lockout time. This time is typically 2.5/1s.
5/7
501
L6217
Figure 1 : Microstepping (typical application).
-----
r - - - - - - _ -- - _
l~RsT
-= ~~:~~
~ __ cso
~ STROBE
C51
N.C
GNDO
DO
39
L----------48
.----------49
D1
D2
38
----37
36
35"------
.-------110
11
03
04
05
PH
561UJ..
t;;'\ {
2.SmH
20nTypV
~
$·9165,1
----------.-
---- ---
- - - - - - - - - - - - -....-~
Figure 2 : Microcomputer Interface Timing.
I
DATA
~
1
>
(;
T h D 1(5 T)I
~-------+<
----
~
STROOE CS1
T sDJ(ST~
I
:r
TwPl
~
~
eso
1
I
AlB
'"
=x-:-~---.,
1
'1
6/7
502
j'
~
-------------
TsAlB(ST)
1
----~-1--
\
TeST
-.----
.1
u
-
Ts PH (ST)
- -
-
- - - - -
- - -
S-10GGS
- - - -
L6217
Figure 3 :
Td, Toft
and
.1
I
Tlock out
I·
T\ockout
..
I
5 - 10666
~--------------------~~--~--------~~~---------"
Figure 4 : Reset Waveforms.
----------------------.-----
.. ---~---.--------
VS1 min
Vth Hmax
Vt h H
--..;.;..;.;;..;.......;.....--'--_ _...,..~~:..:_:.:..t;;.;;;::.:.;;;:.._~~--
Vt h Hmin
I
RESET OUT
s- 9268/1
7/7
503
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~ SGS-ntOMSON
.,..,
I ~O©~@~[lJ~~u~@[RI]O©~
L6217A
STEPPER MOTOR DRIVER
The power section of the device is a dual H-Bridge
drive with internal clamp diodes for current circulation. To maintain the degree of accuracy required
for microprostepping, the motor current is internally
sensed and compared to the output of the D/A
converter.
•
•
•
•
•
MICROSTEPPING
BIPOLAR OUTPUT CURRENT UP TO 400 mA
LOW SATURATION VOLTAGE
BUILT-IN FAST RECOVERY DIODES
OUTPUT CURRENT DIGITALLY PROGRAMMABLE
• 7 BIT D/A CONVERTERS SET OUTPUT CURRENT
• THERMAL SHUTDOWN
A monostable, programmed by and RC network
sets the motor current decay time.
The L6217 A is supplied in a 44 pin in PLCC with 11
of the 44 pins used for heatsinking.
DESCRIPTION
The L6217 A is a monolithic IC that controls and drivers both phases of a Bipolar Stepper Motor with
PWM control of the phase current. The output current level of each phase is programmed by a 7 bit
01 A converter so that the device may be used in fullstep, half-step and micro-step applications. The inputs for the 01 A converters and the phase inputs to
select the direction of current flow are latched to minimize the interface to a microprocessor.
PLCC 44
(plastic Chip-Carrier)
ORDERING NUMBER: L6217A
CONNECTION DIAGRAM (top view)
2
1 "43 42 41
D1
7
MRSTDL
8
02
9
D3
PTA
10
DI.
PTB
11
05
VSB
12
06 (MSB)
VSA
13
PH
VSp (+16)
DIGF
OUT A2
OUTBl
OUT A 1
OUT 82
RSA
RSB
GND
September 1988
S 9272
1/8
505
L6217A
ABSOLUTE MAXIMUM RATINGS
Value
Unit
V sj
Logic Supply Voltage
7
V
Vsp
Motor Supply Voltage
18
V
Logic Input Voltage
6
V
Symbol
Parameter
V,
Vret
10
Reference Input Voltage
Vsi
V
Ouptut Peak Current
500
mA
150
°C
- 55 to + 15
°C
Operating Junction Temperature
Tj
Storage Temperature
Tstg
BLOCK DIAGRAM
PTA
TEST A
PH
B D.
D.
..
~
;;
04
03
0
02
OIGF
34
J5
3.
OUTPUT
H-BRIOGE 1
L
A
T
e
H
37
OUTPUT A'
14
33
E
5
8
U
OUTPUT A2
F
F
E
R
5
31
01
GND(llP1NSJ
STROBE
rREF IN
--J
~:
e50
VREF
A/8
VREF OUT
V5P
L
A
T
e
H
E
8
U
F
F
E
R
339TVP[
781T
D/A
COMPARATOR
5
5
5-926"1
iiS1'
THERMAL DATA
Thermal Impedance Junction-case
Thermal Impedanc!3 Junction-ambient
2/8
506
Max
Max
10
80
L6217A
PIN FUNCTION DESCRIPTION
N°
1
Function
Name
Active low input resets the D/A latches to 0 and disables the output.
40, 34
R s'
DO-D6
44
AlB
Channel select for input data. Pin AlB selects channel A when high.
33
PH
Logic input selects direction of current flow in output bridge from A1 (B1)
to A2 (B2) for PH = 1.
Data inputs for the D/A converter. (DO = LSB)
For a data input of 00, the corresponding outputs are held in the off state.
42
Strobe
9
MRST DL
8
MRST
10
P,A
Pulse time A, an external parallel RC network tied to ground defines toll
time for channel A (Toll = 0.69 RC).
11
P,B
Pulse time B, an external parallel RC network tied to ground defines i oll
time for channel B. (Toll = 0.69 RC).
5
Vref in
18 to 28
Gnd
2
Vsi
32
Vsp
16, 15
31,30
Out A1-A2
B1-B2
H-Bridge Outputs.
43,41
CSO, CS1
Chip select inputs CSO is active high, CS1 is active low.
17,29
RsA - RsB
Sense resistor from this pin to ground set the peak output current.
13,12
VsA - VsB
Analog inputs for sensing the motor current, separate inputs are provides
to allow filtering of the sense voltage if required.
3,4
Test A & B
6
Vref out
7
V'h
DIGF
14
Active low input latches input data (DO, D6 and PH) into input latch.
The capacitor on this pin programs the power on reset delay according to
the formula:
TOR = (0.35) (C) 10 6
Power-on reset circuit output. (micro reset signal).
This output remains low from power on until the delay capacitor has
charged past the delay threshold.
Voltage applied to this points sets the reference for the D/A converter and
threfore sets the maximum output current.
Ground connection and also conduct heat to the P.C. board.
Logic Supply Voltage
Motor Supply Voltage
These pins are for testing of D/A outputs.
2.5 V Band Gap Reference
Reset Threshold Voltage
Can be used to modify the internal comparator lockout time. In
microstepping typical application a 1.8 KQ resistor must be connected
between this pin and ground.
3/8
507
L6217A
ELECTRICAL CHARACTERISTICS (Vee
Symbol
= 5.0
Parameter
V, Tj
= 25 'C unless otherwise specified noted)
Test Conditions
Min.
Typ.
Max.
Unit
Vsp
Motor Supply Voltage
8
16
V
Vsi
Logic Supply Voltage
4.75
5.25
V
LOGIC INPUTS (00-06, CSO, CS1, PH, RST and NB)
VIL
Input Low Voltage
VIH
Input High Voltage
2
0.8
V
Vsi
V
IlL
Input Low Current
VI = 0.4 V
- 400
IIH
Input High Current
VI = 2.4 V
10
!lA
!lA
2.55
V
CURRENT CONTROL AND D TO A SECTION
Vcc =5.0 V
2.45
2.50
Vrel
Reference Voltage
Vrin
Reference Input Range
2.0
3.0
V
Monotonicity of D to A
- 0.5
+ 0.5
LSB
-1
Linearity of D to A
lop
Peak Output Current (gain of
current loop)
Vrel = 2.38 V
Rsense = 2 0
Data = 7 F (Hex)
10
Ouptut Matching
Vrel = 2.38 V
225
252
+1
LSB
277
mA
5
%
MONOSTABLE
Toll
Cutoff Time
Td
Turn-off Delay
loll
Ouptut Leakage Current
R t =56KO
Ct = 820 pF
J.Ls
28
36
1
Data = 00 (Hex)
J.Ls
100
J.LA
RESET CIRCUITY
Vth
Reset Threshold Voltage
3.9
4.1
Reset Threshold Hysteresis
70
100
10
Iso
Delay Capacitor Charging Current
Vc =2.5 V
7
lsi
Delay Capacitor Discharge Current
Vc=2.5V
10
Vdth
Delay Threshold Voltage
V dhys
Hysteresis Voltage on Delay
Threshold
101
V sat
508
V
mV
14
!lA
mA
3.25
3.5
70
100
3.75
V
mV
Output Leakage Current
Vo =5 V
200
!lA
Output Saturation of Reset Out
10 = 2 mA
0.4
V
SOURCE DIODE - TRANSISTOR PAIRS
4/8
4.3
Saturation Voltage
10 = 400 mA
Diode Forward Voltage
10 = 400 rnA
L6217A
ELECTRICAL CHARACTERISTICS (continued)
ISymbol I
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
SINK DIODE - TRANSISTOR PAIRS
Saturation Voltage
10 = 400 mA
Diode Forward Voltage
10 =400 mA
AC CHARACTERISTICS
TsDI(ST)
01 to Strobe
ThDI(ST)
01 to Strobe
.J. Setup Time
.J. Hold Time
TwPI
Pulse Width Low
TeST
Strobe Setup Time
T,.AfB(ST) AlB to Strobe
TsPH(ST)
PH to Strobe
.J. Setup Time
.J. Setup Time
100
500
600
2.5
100
100
ns
ns
ns
~
ns
ns
CIRCUIT OPERATION
The current control section of the L6217A is a pulse
width modulated control that senses the motor current. When the motor current reaches the peak programmed current the comparator will trigger the
monostable turning off the upper transistors. After
the toff time equal to 0.69 RC the upper drivers are
enabled again.
The peak current is given by the equation:
lop =
Vref
4.69 • Rsense
•
When the input data is 00. the output stages are disabled by internal logic so thatthe output current decays rapidly to zero.
An internal generated lockout time avoids the use
of an external RC network between the sensing resistor (RsA. RsB) and the corresponding input (VsA.
VsB). by disabling the comparator sensing during
the lockout time. This time is typically 2.5 its.
D
128.
D = Input data (0 - 7F H)
5/8
509
L6217A
Figure 1 : Microstepping Typical Application.
VSl =5VO
NC
- :,
3 8 _ _ _ _ _ _ _ ~_[)Z.
~~~--~~~~~~8
L~~
0'.'
--;;
D3
37
36~~~~~~~~D~4~
35
L6217A
D5
34t----------~
321------.--1
33
--
--~~--
31~~--,
220pF
D6
PH
ovsp =lZV
30
-f
~~~~~~~~~~~
----------1!
I°'PT·'
15 Jl
025 W
fL~~~~~~~~~~_
-~~-------
25mH
r;:;\
201lTyp~
6/8
510
$-9271/2
L6217A
Figure 2 : Microcomputer Interface Timing.
DATA
~
~
I..
.-j
\J
STROBE CS1
I..
T sDI(STll
TwPI
:;
I
=t-:-t---I
.1
I
1
'I
I'
\
I
Tc ST
.. I
~
~
C50
PH
<1
T h D I (5T)1
-----
AlB
I
1
~
-------------
Ts AlB(5T)
~- i:- - - - - - - - ---- - -- - - - - ____ oJ,
T5 PH (5 T)
5-10665
Figure 3 : Td. TOFF and Tlock out.
,I
I
I.
Tlockout
-.
5 - 10666
7/8
511
L6217A
Figure 4 : Reset Waveforms.
VS1 min
4.75V
'Vth Hmax
Vt h H
---.;;.;.:.:..:....ifC--~_ _"-T...:;:.:...:.:~~"---.lI~_ _
Vth Hmin
RESET OUT
: TOR i
~
8/8
512
5- 9268/1
L6220
L6220N
QUAD DARLINGTON SWITCHES
• TWO NON INVERTING + TWO INVERTING INPUTS WITH INHIBIT
• OUTPUT VOLTAGE UP TO 50 V
• OUTPUT CURRENT UP TO 1.8 A
• VERY LOW SATURATION VOLTAGE
• TTL COMPATIBLE INPUTS
• INTEGRAL FAST RECIRCULATION DIODES
DESCRIPTION
The L6220 monolithic quad darlington switch is designed for high current, high voltage switching applications. Each of the four switches is controlled by
a logic input and all four are controlled by a common
inhibit input. All inputs are TTL-compatible for direct
connection to logic circuits.
switches are commoned. Any number of inputs and
outputs of the same device may be paralleled.
Two versions are available: the L6220 mounted in
a Powerdip 12 + 2 + 2 package and the L6220N
mounted in a 15-lead Multiwatt package.
•
-./.
'-:
..... '
' ,:, : ' , ! ,'-.
,/ •.•..•..........
0
...........................•..
".....•..
Multiwatt 15
Each switch consists of an open-collector darlington
transistor plus a fast diode for switching applications
with inductive loads. The emitters of the four
Powerdip 12 + 2 + 2
ORDER CODES: L6220
L6220N
BLOCK DIAGRAM
------jl0( 5)
15(11)
6(1)
YIN
15(11)
VIN
=o~av
=O.8V ~---,16(12)
3(15)
A...---"'---'16(12)
2(H)
I
14 (9)
1(13)
4512.13(6)
'------S-9993
~
___
~_
T INH
=O.BV~---,14(9)
1(13)
4.5,12,13(8)
I
5 - 999"
~-------------
6/10
518
L6220-L6220N
Figure 8 : Switching Times Test Circuit.
Figure 9 : Switching Times Waveforms.
VINH
5V
11(7 )
9(4)
VIN 1.~
YIN2
10(5)
VIN2.3
VIN 3
15(11)
VIN ~
16(12)
YINI
0
~
0
5V
Vc
VINH
S-9996f1
5-9995/1
Figure 10: Collector Saturation Voltage
vs. Collector Current.
Figure 11 : Free- wheeling Diode Forward
Voltage VS. Diode Current.
G
IC
/
Ji -
(A)
25'C
-OUT1-4
- - OUT 2-3
//
1.75
/
1.50
If
IV
VI
Tj=25'C
-QUTl-4
- - OUT 2-3
/
1//
~
/
/
0.75
0.50
0.25
/
0.5
?
6359/1
V
(A)
1.5
//
1.25 I--- 1-.
L
V
,/
f~
~
o
o
0.7
0.9
1.1
1.3
o
1.2
1.6 Vf (V)
7/10
519
L6220-L6220N
Figure 12 : Collector Saturation Voltage
vs. Junction Temperature at
Ic = 1 A.
VCEsal
(V)
f--
I
---1
Figure 13 : Free-wheeling Diode Forward
Voltage vs. Junction Temperature at It = 1 A .
r-
JI C =IA
-OUTI-4
--OUT 2-3
.l-
-
1. 5 H-++-+-+-+
c
r--t--
-
....
-
..,.. r,
0.9
l-
-+
0.7
-50 -25
25
50
t
75 100
,.",
t
+-t-H
+-+-t-+-++-Ht:~t- - -[:
1.1
Tj (e)
-- rT
- 50 -25
0
25
50
75
100
Tj (OC)
Figure 15 : Free-wheeling Diode Forward
Voltage vs. Junction Temperature at IF = 1.8A.
v,
H--+++-H-+++-+-i--+++-H
(v)LLlJ..
+I _1~~:.,;eA-I--+I-_+-+-j-+-+
-OUTl-4
--OUT 2-j
t
~ -1--'-1 1;
t 2 H"-++~-~_:t-_+-F-d:H--::+++'
Figure 14: Collector Saturation Voltage
vs. Junction Temperature
at Ic = 1.8A.
1.6
++-+-+-t-f--r - -+-
1.4
1.3
".,
t
r-~t I
0.8
VCEsal
--I--
-
1.2
1.1
f--
-
+r
I
(V)
f-J
1,=18~_~
+-
---
I--
-
r-OUT 1-4 '
1.7 f--- -- OUT 2-3- f-f--
-+-+-HI-+--++-H--+-1
r-
-
1.6
-T
f--
l-
rf--
f--
I-
e--
-
1.5
1.2
H-+-+-+-H-I--+-+-H-I--+-+-H
~f.:::
1.4
r-
1.3
r1.2
O. 8 '---"---'---'--'--,---"--'---'--'--'--'--'---'--'--L...J
-50 -25 0
25
50 75 100
Tj(OC)
-50
Figure 16.
f-
-25
0
25
50
-
75
100
Tj(OC)
Figure 17 : Unipolar Stepper Motor Driver.
vp
VSf
~
1
:E:E
"'"
OUTI
VIN1 v
MOTOR
WINDINGS
,----l
I
CLAMP A
OUT 2
~
Vz
VIN2
~
VIN3 v
OUT3
IN B 0---,--1'5
/V'V">
•
L ___
CLAMPB
VIN4
OUT4
~
INHIBIT
INHIBIT
8/10
520
I
10
I
..I..
5- 9997/1
I
....J
L6220-L6220N
.'
APPLICATION INFORMATION
When inductive loads are driven by L6220/N, a zener diode in series with the integral free-wheeling
diodes increases the voltage across which energy
stored in the load is discharged and therefore
speeds the current decay (Fig. 16). For reliability it
is suggested that the zener is chosen so that Vp +
Vz < 35 V.
The reasons for this are two fold:
2) The instantaneous power must be limited to
avoid the reverse st;lcond breakdown.
The particular internal logic allows an easier full step
driving using only two input signals.
~
I
IN A
(
I
I
I :
I
FULL STEP DRIVING
IN B
1) The zener voltage changes in temperature and
current.
Figure 18 : Allowed Peak Collector-current vs. Duty Cycle for 1, 2, 3
or 4 Contemporary Working
Outputs (L6220).
5-9987
Figure 19 : Allowed Peak Collector Current vs. Duty Cycle for 1, 2, 3
or 4 Contemporary Working
Outputs (L6220N).
G-6)64
Ie
(Al
1.75
1:50
1.25
\
IC
(Al
1\ 1\
Tamb=70'C
T = 20ms -
\
\
1\ \ I\,
~\ \
4~
0.75
,,,
2
r---.. ........
.......
0.25
o
10
1.50
1.25
1'-.,
~ i'...
0.50
\
1.75
'" -
20 30 40
-
I'--
.\ '\2
\ I'\( "'-
't ~
r-....
........
~T~bJ.c
~
T:l0ms
"" -..... ........
r--..... ......
j'-.....
I"- t--
0.50
~
"
r\.
0.75
........
50 60 70
\.
\\ \
\\ \
0.25
........
l"-
r-
o
('I.)
10
20 30
40 50 60 70
('I.)
MOUNTING INSTRUCTION
The Rth j-amb of the L6220 can be reduced by soldering the GND pins to a suitable copper area of the
printed circuit board (Fig. 20) or to an external heatsink (Fig. 21).
ving a thickness of 3511 (1.4 mils). During soldering
the pins temperature must not exceed 260°C and
the soldering time. must not be longer than 12 seconds.
The diagram of figure 22 shows the maximum dissipable power Ptot and the Rth j-amb as a function of
the side" a" of two equal square copper areas ha-
The external heatsink or printed circuit copper area
must be connected to electrical ground.
9/10
521
L6220-L6220N
Figure 20: Example of P.C. Board Copper
area which is used as Heatsink.
COPPER
AREA
3~}J
Figure 21 : External Heatsink Mounting
Example.
THICKNESS
P. C. BOARO
Figure 22 : Maximum Dissipable Power
and Junction to Ambient Thermal Resistance vs. Side "a".
Figure 23 : Maximum Allowable Power
Dissipation vs.
Ambient Temperature.
G 355912
Ptot
Rth
(W)
(.CfW)
~j-a.mb
.........
,-
........ t-.
...... ,..-1--
,-.
V
Ptot
n amb =70·C)
-
:::.
s
+~
-.
\
of"
'i
">1<
;:,-
'to\,
'\.""
,1-&
~
!.
I'\.~
-4
~1.
""IE:
-
-- f--
40
~
r-- 20
I (mm)
lfI
~ ~
1"\"
,...
c--
40
'!.
"'~1
r-
-
--
30
\~
+" ~-
-~h j-amb
---
~+-++
~ 1\+
"'~.!-
( ·CfW)
--
-50
50
11/11
533
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L6222
QUAD TRANSISTOR SWITCH
•
•
•
•
•
The emitters of the four switches are commoned.
Any number of inputs and outputs of the same device may be paralleled.
OUTPUT VOLTAGE TO 50 V
OUTPUT CURRENT TO 1.2 A
VERY LOW SATURATION VOLTAGE
TTL COMPATIBLE INPUTS
INTEGRAL SUPPRESSION DIODE
This device is intended to drive coils such as relays,
solenoids, unipolar stepper motors, LED, etc.
DESCRIPTION
The L6222 monolithic quad transistor switch is designed for high current, high voltage switching applications.
Powerdip 12 + 2 + 2
Each of the four switches is controlled by a logic input and all four are controlled by a common enable
input. All inputs are TTL-compatible for direct
connection to logic circuits. Each switch consists of
an open-collector transistor plus a clamp diode for
applications with inductive loads.
ORDER CODE : L6222
._---
~
"--"--'
--_.
Figure 1 : Unipolar Stepper Motor Drive .
.
~-----
-----------------------------.---
11
IN 1
IN 2
IN 3
IN 4
L6222
16
OUT 1
15
3
OUT 2
10
6
OUT 3
9
8
OUT 4
COIL 1
COIL 2
COIL 3
COIL 4
ENABLE 14
VZ =30V
4.5.12.13
S-9198
September 1988
1/3
535
L6222
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
50
V
Logic Supply Voltage
7
V
Input Voltage
15
V
Collector Current (PEAK)
1.2
A
Vs
Output Voltage
Vss
V,N
Ic
Top
Operating Temperature Range (junction)
- 40 to + 150
'C
T stg
Storage Temperature Range
- 55 to + 150
°C
CONNECTION DIAGRAM (top view)
OUT 1
16
CLAMP A
15
~
oun
11,
~ ENABLE
IN 1
IN 2
GND
[
I,
13
GND
GND
I
5
12
GND
OUT J
11
Vss
CLAMPS
10
IN 3
9
OUT"
~
IN I,
S-9Z99
TRUTH TABLE
For each inpul:
Enable
Input
Power Out
H
H
L
H
L
ON
OFF
OFF
X
H = High level
L = Low level
X = Don·' care
THERMAL DATA
Max.
Max.
2/3
536
80
14
L6222
ELECTRICAL CHARACTERISTICS (T 8mb
Symbol
Vss
VCE
(sus)
ICEX
VCE
(sal)
Parameter
25°C, unless specified)
Test Conditions
Logic Supply Voltage
Min.
Unit
4.50
Max.
Typ.
7
V
Output Sustaining Voltage
VIN=0.8V
Ic = 100 mA
Output Leakage Current
VCE =50 V
VIN=0.8V
Collector Emitter Saturation Voltage
VIN ;" 2.0V Ic =0.1 A
0.2
Ic=O.4A
0.5
Ic =0.7 A
0.9
46
V
1
V IL
Input low Voltage
IlL
Input Low Current
VIH
Input High Voltage
IIH
Input High Current
VIN;" 2.0 V
Is
Logic Supply Current
Vss = 5 V All Outputs ON
Ic = 0.7 A
VIN = 0.4 V
V
0.8
V
-100
flA
±10
flA
85
mA
2.0
All Outputs
OFF
mA
V
50
8
mA
IR
Clamp Diode Leakage Current
VR = 50 V
100
VF
Clamp Diode Forward Voltage
IF =0.7 A
1.6
IF =1.2 A
2.0
f.lA
V
3/3
537
-------------------------
---------------------
BIDIRECTIONAL THREE-PHASE BRUSHLESS
DC MOTOR DRIVER
PRELIMINARY DATA
• 3A OUTPUT CURRENT, CONTROLLED IN LINEAR MODE
• SUPPLYVOLTAGEUPT018V
• COMPATIBLE WITH ANI F-TO-V CONVERTER
ANDPLLSPEEDCONTROLSYSTEM
• SLEW RATE LIMITING FOR EMI REDUCTION
• CONNECTS DIRECTLY TO HALL EFFECT
CELLS
• THERMAL SHUTDOWN WITH HYSTERESIS
• THREE-STATE OPERATION ALLOWS NEGLIGIBLE POWER DISSIPATION DURING 1/3 f
CYCLE
• INTERNAL PROTECTION DIODES
• FEW EXTERNAL COMPONENTS
DESCRIPTION
put stage is switched to an off state, reducing dissipation to a very low value and minimizing torque ripple.
A speed control input controls the base current to
the lower transistors to limit the motor current and
hence control the speed. Any type of speed control
system, including F to V and PLL systems, may be
used with the L6230 by providing an analog signal
at this input. The motor current may be sensed by
an external resistor connected to a sensing pin on
the device.
The power stage of the device is designed to eliminate the possibility of simultaneous conduction of
the upper and lower power transistors of one output
driver, when operating in the right loop.
The L6230 is a single-chip driver for three-phase
brushless DC motors capable of delivering 3A output current with supply voltages to 18 V_ Designed
to accept differential input from the Hall effect sensors, the device drives the three phases of a brushless DC motor and includes all the commutation logic required for a three phase bidirectional drive_
Both delta and wye configurations may be used
To limit EMI esmission the L6230 operates in a linear mode and controls the rise and fall times of the
output stage. In addition the device is designed to
limit power dissipation: during recirculation the out-
Mulliwatt-15
(Horizontal)
ORDER CODE: L6230H
~---------
----- ---------
CONNECTION DIAGRAM (top view)
-~.------~
O·
.
o
15'
14,
13
12:
11 i
l9;Oi
H 3(-)
H2
H2
H1
Hl
3
SENSING
OUT J
Vc
6'
5
4
September 1988
CURRENT
GND
HJ (+)
2
connE'cted to pin 8
OUT 1
'V s
OUT 2
8,
7!
-~---
H
(+)
(-)
(+)
INDEX
FWD/REV
s-
9].{.S/1
1/8
539
L6230
BLOCK DIAGRAM
INDEX
+Vs-12V
+vs
Vc 10
4
5
HA.LL LOGIC
INPUT
9
GND
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Vs
Supply Voltage
20
V
10
Peak Output Current Each Channel
- Non Repetitive (100 J.Ls)
- Repetitive (t = 10 ms)
- 0 C Operation
4
3.5
3
A
A
A
Logic and Analogic Inputs
Vs
Vi
Parameter
= 75°C
Ptot
Total Power Dissipation T case
Top
Operating Temperature Range
Tj, T stg
Storage and Junction Temperature
25
W
o to 70
°C
- 40 to 150
°C
THERMAL DATA
Max
2/8
540
3
L6230
PIN FUNCTIONS
I/O
Function
I
Direction Control. When this pin is low, the motor will run in
the forward direction. A high will drive the motor in the
reverse direction. Direction is defined by the position of the
sensors in the motor.
INDEX
0
Signal pulse proportional to the motor speed. In PLL speed
control applications, this is the feedback to the PLL. One
pulse per electrical rotation. This is an open collector output.
3
HI (+)
I
Positive input of differential amplifier on channell.
Interfaces with Hall Effect sensor, SI, from motor.
4
HI (-)
I
Negative input of differential amplifier on channell.
Interfaces with Hall Effect sensor, SI, from motor.
5
H2 (+)
I
Same as Pin 3 for Channel 2
6
H2 (-)
I
Same as Pin 4 for Channel 2
7
H3 (+)
I
8
GND
Name
N°
1
FWD/REV
2
Same as Pin 3 for Channel 3
Ground Connection
9
H3 (-)
I
Same as Pin 4 for Channel 3
10
Vc
I
Speed control input. Connected to output of PLL in PLL
speed control applications.
11
OUT3
12
SENSE
13
OUT2
14
Vs
15
OUTI
0
I
0
Output motor drive for phase 2.
0
Output motor drive for phase 1.
Motor Supply Voltage
ELECTRICAL CHARACTERISTICS (T amb
Symbol
Output motor drive for phase 3.
Current Sensing. Input for load current sense voltage for
output stage.
Parameter
Vs
Supply Voltage
Is
Quiescent Supply Current
= 25
'C ; Vs
= 12 V
unless otherwise specified)
Test Conditions
Min.
Typ.
Max.
10
12
18
Unit
V
60
100
mA
HALL AMPLIFIERS
a
V CM
Common Mode Voltage Range
Vio
Input Offset Voltage
Vi =6 V
lib
Input Bias Current
lio
Input Offset Current
10
V
2
10
mV
Vi =6 V
2
10
f.lA
Vi =6 V
0.1
f.lA
SPEED CONTROL INPUT (Vc)
Vi
Input Voltage Range
lib
Input Bias Current
V,c
Input Clamping Voltage
a
Vc < Vsens
1
5.9
5
V
5
f.lA
V
3/8
541
L6230
ELECTRICAL CHARACTERISTICS (continued)
~ymboiT
Para~;t;; --
-
~~ Te;t CO~dit;~n!l-=-: _!'Iin.JTy~-Max.
1- Unit
FWD/REVERSE INPUT
VIH
Input High Voltage
I--~-I~--+-:-~~~-~:-~f~~o~~;~~-
I
I
I
Vs
l
V!
--r-------1=
--- - --t- -.-J~--I-~-~
t- ~~ !
=-5-r=-~_I_llA
0
-
p~u_t-_L-o:W~~c~u~rr~e_n-t~~~.~~~_ _ _--
IlL ----i-_-ln___
2
I
HALL LOGIC OUTPUT
--~--.------
VLO
LO.W Output Voltage
I
__ IL_
Leai---
LOWER DRIVER
I--n
UD2-;
LD2
~~i=:===i~.
UD3
LD3
_ _ + - - + - -___--1
.
__ T:---L
_:_i-__L_J
~.-t====iL
t-t=::t::=~~I:----LJ- .
j
.
-L-{: --',-I
r
- 0 - -......
lOUT:
(CH •.~!.~
.......;.
o
__.. _ - - - - - - - - - -
.
----
DETERMINING HALL EFFECT SENSOR CODING
at 180 intervals, then with respect to fig. 4, a similar
diagram, fig. 6, results in sensors 60 apart with the
windows rotating clockwise. This situation results in
a "forward" rotation of the motor.
The L6231 assumes that the positioning of the Hall
Effect sensors in a three-phase brushless DC bipolar motor are at 30 intervals. One can imagine two
"windows" on the rotor each of which is 90 wide and
180 apart, see fig. 4. As a window passes over a
sensor, the sensor output goes high. The timing diagram, fig.3, shows the waveforms produced. These
waveforms must appear at the Hall Effect Inputs of
the L6231. Note that the rotation in fig. 4 must be
counter-clockwise for forward rotation of the motor
in whatever manner that is defined for the motor.
Fig. 4 is a stylized concept for determining the Hall
Effect code pattern and does not reflect the actual
direction of rotation of the motor in a physical sense.
If a motor is chosen whose sensor outputs do not
match the L6231 desired input pattern, a signal set
conversion must be determined. It is helpful to visualize this by developing a diagram similar to that
of fig. 4.
For example, let us examine the-output pattern of a
differentlype of motor (fig. 5). Assuming 90 windows
6/7
552
Figure 4.
S3
L6231
Since S3 is the first sensor encountered by the window in fig. 6, this should be used for the L6231 Hall
Effect Input, H1. After 30 of rotation CW, the H2 input of the L6231 must go high. The inverse of S1
from the motor would satisfy this. After an additional 30 of rotation, the H3 input must go high. The
S2 sensor is encountered by the window. Thus, S2
is applied to this input, H3. By continuing around the
diagram, one can develop a pattem which matches
that for the L6231.
Figure 5.
S3
\
/
S2
_ _ _ _---'~---..l.- - - ' -
:
I . . . __________
S1
~_
S1
.
I
,.,,,,,
,
Thus, the conversion table for this particular motor
is:
L6230 Inputs
Motor Sensors
H1
S3
S1
H2
S2
H3
S2
S3
o
Figure 6.
90
180
270
ANGLE OF ROTATION
Note, forthe inverted signal from S1 an actual inverter gate is not necessary with the L6231. Since the
L6231 has differential inputs, the negative input pin
may be used. Therefore, with TIL compatible Hall
Effect sensors, the positive input is connected to a
reference point along with the Gther negative inputs.
7/7
553
L6233
..
I
PHASE LOCKED FREQUENCY CONTROLLER
ADVANCE DATA
•
PRECISION PHASE LOCKED FREQUENCY
CONTROL SYSTEM
•
XTAL OSCILLATOR
•
PROGRAMMABLE
QUENCY DIVIDERS
•
PHASE DETECTOR WITH ABSOLUTE FREQUENCY STEERING
•
DIGITAL LOCK INDICATOR
•
DOUBLE EDGE OPTION ON THE FREQUENCY FEEDBACK SENSE AMPLIFIER
REFERENCE
•
TWO HIGH CURRENT OP-AMPS
•
5V REFERENCE OUTPUT
FR!::-
The L6233 is designed for use in phase locked
frequency control loops. While optimized for
precision speed control of DC motors, these
device is universal enough for most applications
that require phase locked control. A precise
reference frequency can be generated using the
device's high frequency oscillator and program·
mabie frequency dividers. The oscillator operates
using a broad range of crystals, or, can function
as a buffer stage to an external frequency source.
The phase detector on these integrated circuit
compares the reference frequency with a fre·
quency/phase feedback signal. In the case of a
motor, feedback is obtained at a hall output or
other speed detection device. This signal is
buffered by a sense amplifier that squares up the
signal as it goes into the digital phase detector.
The phase detector responds proportionally to
the phase error between the reference and the
sense amplifier output. This phase detector
includes absolute frequency steering to provide
maximum drive signals when any frequency
error exists. This feature allows optimum startup and lock times to be realized.
Two op-amps are included that can be con·
figured to provide necessary loop filtering.
The outputs of these op-amps will source or sink
in excess of 16mA, so they can provide a low
impedance control signal to driving circuits.
Additional features include a double edge option
on the sense amplifier that can be used to double
the loop reference frequency for increased loop
bandwidths. A digital lock signal is provided
that indicates when there is zero frequency error
and a 5V reference output allows DC operating
levels to be accurately set.
20 PlCC
DIP-16 Plastic (O.25)
ORDERING NUMBERS: L6233 (DIP-16)
L6233P (20 PLCC)
CONNECTION DIAGRAMS
(Top views)
16
GROUND
2
15
osc. INPUT
4
1)
+VIN
DOUBLE EDGE
DISABLE
12
AUX. AMP
OUTPUT
SENSE AMP.
11
AUX.AMF
NON, INV. INPUT
0111 4/5 SELECT
0111 2/4/8 SELECT
LOCK INDICATOR
"
OUTPUT
PHASE OET ECTOR
OUTPUT
INPUT
5V REf OUTPUT
LOOP AMP.
INV. INPUT
.8
osc.
OUTPUT
LOCK
INDICATOR
OUTPUT
PHASE DETECT.
OUTPUT
N.C.
DOUBLE EDGE
DISABLE
SENSE AMP.
'NPUT
18
osc. OUTPUT
16
N. C.
AUX, AMP.
+VIN
OUTPUT
AUX.AMP.
NON. [NY. INPUT
AUX.AMP
INV. INPUT
lOOP AMP
OUTPUT
DIP·16
June 1988
1/8
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
555
L6233
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Power dissipation (Tamb .;;; 70°C)
Operating temperature range
Storage temperature
14
1
o to 70
-65 to 150
v
w
°c
°c
BLOCK DIAGRAMS
(DIP-16)
15
14
1
2
5-9311
6
3
10
LOOP
11
AMPLIFIER
9
B
7
13
16
12
(PLCC PACKAGE)
5
B
13
LOOP
14
AMPLIFIER
20
~2/_8_________________________ ~~~~~~~~~:9~
556
___________________________
L6233
ELECTRICAL CHARACTERISTICS (Unless otherwise stated, specifications hold for
O°C
to
Parameter
Test Conditions
Min.
Supply current
Is
Tamb
+70°C; +VIN = 12V)
Typ.
Max.
20
Unit
mA
REFERENCE
V REF
Output voltage
4.75
5.0
5.25
V
/:;VREF Load Regulation
lOUT = 0 to 7mA
5.0
20
mV
t;VREF Line regulation
+VIN = B to 12V
2.0
20
VOUT= OV
35
mA
Short circuit current
Isc
OSCILLATOR
Gv
DC voltage gain
Input DC level
VIB
Oscillator input to oscillator output
Oscillator input pin open,
mV
16
dB
T j = 25°C
1.3
V
Input impedance
VIN = VIB ± 0.5V,
T j = 25°C
1.6
Kn
Vo
Output DC level
Oscillator input pin open
T j = 25°C
1.4
V
foMAX
Maximum operating frequency
ZIN
*
10
MHz
10
MHz
DIVIDERS
f OMAX
Maximum input frequency
Input = 1 Vpp at oscillator input
Input = 5V (Div. by 4)
150
500
jJ.A
0.0
5.0
jJ.A
Div. 4/5 input current
Input = OV (Div. by 5)
VTH
-5.0
Div. 4/5 threshold
1.6
2.2
V
Input = 5V (Div. by B)
0.5
150
500
jJ.A
Input = OV (Div. by 2)
-500 -150
Div. 2/4/B input current
Div. 2/4/B open circuit voltage
Input current = OjJ.A (Div. by 4)
1.5
2.5
Div. by 2 threshold
0.35
O.B
Div. by 4 threshold
1.5
Div. by B threshold
Volts below VREF
0.35
jJ.A
3.5
V
3.5
V
V
O.B
V
30
%
10
mV
-0.2
jJ.A
SENSE AMPLIFIER
VT
Threshold voltage
HT
Threshold hysteresis
Ib
Input bias current
Percent of V REF
Input = 1.5V
DOUBLE EDGE DISABLE INPUT
Input = 5V (Disabled)
VI
VT
150
500
jJ.A
-5.0
0.0
5.0
jJ.A
0.5
1.6
2.2
V
I nput current
Input = OV (Enabled)
Threshold voltage
___________________________
~~~~@~g~:~~~
________________________
~3/~8
557
L6233
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test Conditions
PHASE DETECTOR
V OH
High output level
Positive Phase/Freq. Error, Volts Below V REF
_._- --....
! 0.2
0.5
i
V
VOL
Low output level
Negative Phase/Freq. Error
0.2
0.5
V
V OM
Mid output level
Zero Phase/Freq. Error, Percent of V REF
47
i 50
53
%
High level maximum source
VOUT = 4.3V
2.0
8.0
mA
Low level maximum sink curro
VOUT=0.7V
2.0
5.0
mA
Mid level output impedance
(Note 2)
lOUT = -200 to +200/LA
6.0
Kn
current
T j = 25°C
LOCK INDICATOR OUTPUT
V sat
Saturation voltage
Freq. Error,
Leakage current
Zero Freq. Error
LOOP AMPLIFIER
Ib
NON INV. reference voltage
Percent of V REF
Input bias current
Input = 2.5V
Gv
Open loop gain
SVR
Supply voltage rejection
ISH
Short circuit current
+VIN = 8 to 12V
47
50
-0.8
-0.2
53
%
/LA
60
75
dB
70
100
dB
Source,
VOUT= OV
16
35
mA
Sink,
VOUT= 5V
16
30
mA
"-----
AUXILIARY OP-AMP
VOS
Input offset voltage
VCM = 2.5V
Ib
Input bias current
V CM = 2.5V
V CM = 2.5V
los
Input offset current
Gv
Open loop gain
SVR
Supply voltage rejection
CMR
Common mode rejection
ISH
Short circuit current
8
mA
10
mA
70
120
dB
+VIN = 8 to 12V
70
100
dB
VCM = 0 to 10V
70
100
dB
Source,
VOUT=OV
35
mA
Sink,
VOUT=5V
30
mA
• These impedance levels will vary with T j at about 1700ppm/oC
THERMAL DATA
Rth j-amb
558
mV
200
Thermal resistance junction-ambient
max
100
L6233
APPLICATION INFORMATION
Determining the Oscillator Frequency
The resulting reference frequency appearing at
the phase detector inputs is equal to the oscillator frequency divided by the selected divide
ratio. If the double edge option is used, (Pin 5
low), the frequency of the sense amplifier input
signal is doubled by responding to both the rising
and falling edges of the input signal. Using this
option the loop reference frequency can be
doubled for a given motor RPM.
The frequency at the oscillator is determined by:
the desired RPM of the motor, the divide ratio
selected, the number of poles in the motor, and
the state of the double edge select pin.
fos c (Hz) = (Divide Ratio) • (Motor RPM) •
(1/60 SEC/MIN) • (No. of Rotor Poles/2)
(x 2 if Pin 5 Low)
Fig. 1 - Recommended Oscillator Configuration Using AT Cut Quartz XTAL
n s . 1 Vpp
MAY BE
REQUIRED
TO PREVENT
SPURIOUS
OSCILLATION
-,,
-
lJV
I'
s-
9314
Fig. 2 - External Reference Frequency Input
EXTERNAL
1 to 2 "pp
REFERENCE
/\J
----1
ns~1Vpp
14 - - ,
I
or
200mV pp t02V
nJ
-~13V
Z·
5-9315
Fig. 3 - Method for Deriving Rotation Feedback Signal From Analog Hall Effect Device
VREF OUT
OJ .... F
~I---t-----I
300mVpp
LOW LEVEL
ANALOG HALL
OUTPUT
:>
5-9316
* This signal may require filtering if chopped mode drive scheme is used.
-------------- I::1i. ~~~~m?::i!~©~ _____________
::..5:.::../8
559
~
I
L6233
APPLICATION INFORMATION (continued)
Phase detector operation
The phase detector on these devices is a digital
circuit that responds to the rising edges of the
detector's two inputs. The phase detector output
has three states: a high, 5V state, a low, OV state,
and a middle, 2.5V state. In the high and low
states the output impedance of the detector is
low, the middle state output impedance is high,
tipically 6.0KQ. When there is any static frequency difference between the inputs the detector output is fixed at its high level if the +input
(the sense amplifier signal) is greater in frequency,
and fixed at its low level if the -input (the reference frequency signal) is greater in frequency.
When the frequencies of the two inputs to the
detector are equal the phase detector switches
between its middle state and either the high or.
low states, depending on the relative phase of
the two signals. If the +input is leading in phase
then, during each period of the input frequency,
the detector output will be high for a time
equal to the time difference between the rising
edges of the inputs, and will be at its middle level
the remainder of the period. If the phase relationship is reversed then the detector will go
low for a time proportional to the phase difference of the inputs. The resulting gain of the
phase detector, Kef> , is 5V/41T, radians, or about
0.4 V /radian. The dynamic range of the detector
is ± 21T radians.
The operation of the phase detector is illustrated
in the figures below. The upper figure shows
typical voltage waveforms seen at the detector
output for leading and lagging phase conditions.
The lower figure is a state diagram of the phase
detector logic. In this figure, the circles represent
the 10 possible states of the logic and the connecti ng arrows the transition events/paths to
and from these states. Transition arrows that
have a clockwise rotation are the result of a
rising edge on the +input, and conversely, those
with counter-clockwise rotation are tied to the
rising edge on the-input signal.
The normal operational states of the logic are
6 and 7 for positive phase error, 1 and 2 for a
negative phase error. States 8 and 9 occur during
positive frequency error, 3 and 4 during negative
frequency error. States 5 and 10 occur only as
the inputs cross over from a frequency error to
a normal phase error only condition. The level
of the phase detector output is determined
by the logic state as defined in the state diagram
figure. The lock indicator output is high, off,
when the detector is in states 1, 2, 6 or 7.
Fig. 4 - Typical Phase Detector Output Waveforms
T (ONE PERIOD
OF REFERENCE
'I
FREQUENCY(.
sv
SENSE AMPLIFIER INPUT
LEADING REFERENCE
FREQUENCY INPUT
BY 90 DEGREES
2.SV
ov
sv
2J:>V
o
J_U_U_U_U
SENSE AMPLIFIER INPUT
TRAILING REFERENCE
FREQUENCY INPUT
BY 90 DEGREES
~-9319
_6_/8_ _ _ _ _ _ _ _ _ _ _ _ _
560
~ ~~~~~~1Jr::~~~,
--------------
L6233
Fig. 5 - Phase Detector State Diagram
RISING EDGE
ON PHASE D[TECTO~R
- INPUT
(R(fERENCE)
RISING EDGE
ON PHASE DETECTOR
+ INPUT
(SENSE AMP)
C
+
•
I
OUTPUT« 25V
OUTpuT. 5V
DIGITAllOC~
I
OUTPUT. OIl
INDICATOR HIGH DURING STATES I. 2. 6. AND 7
5- 9421
Fig.6 - Suggested Loop Filter Configuration
FROM REF.
FILTER
Vln
R3
~
R1
1 + S/wP
+ S/wZ
TO POWER
DRIVE STAGE
wp
R2C1
LOOP AMP
~-
*
9311
The statistic phase error of the loop is easily adjusted
by adding resistor, R4, as shown. To lock at zero
phase error R4 is determined by :
wZ
Where: It.vOUTI
and V OUT
(R1 + R2) C1
= 1VOUT-2.5VI
= DC Operating Voltage At Loop
Amplifier Output During Phase
Lock
(Vour 2.5)
(V our 2.5)
2.5V • R'3
R4
> a R4 Goes to OV
< 0 R4 Goes to 5.0V
I t.VOUT I
- - - - - - - - - - - 51
1 SGS-mOMSON
'J, '"
7/8
~D©Ilil©~~rn©1JIlil@~D©(\)
561
L6233
Fig. 7 - Reference Filter Configuration
S2
FROM
Vin
Rl
PHASE DETECTOR o--C::J-......-C::-r-.....- - j
OUTPUT
Vout
>-~"""'-Q
S'
1 + --+-WN
WN'
TO lOOP
FILTER
INPUT
JRl R2Cl C2
AUXILIARV
OP AMP.
S-9318
_l_=_l_e
20
2
Rl + R2
JR1R2
Cl
=r=
Note: with Rl = R2
Cl
Fig. 8 - Reference Filter Design Aid - Gain
Response
Fig.9 - Reference Filter Design Aid - Phase
Response
6·6061
G 6C61
(dBI
I
,
I
r- - 50
VARIABLE is 1/d 2
(FOR Rl ::R211.&z,.C,C2)
-
20
l.0
5
tx\
1
-10
'f
I
~
-20
I
- 40
- 60
I
r----r-I-+---t'-pI\'t'f'\\l";;R1,ABLE 15".'
(FOR R1,R211Jhi'C21
-100
-30
N
-40
I
I
-140
-160
- 180
8
0.1
~8/_8_____________________ ~~~~~~?v~f~~~
562
r- :
- 120
I
6
1-10
""t"'~
-80
I
"'- ~
1--50
. . . . ~~~v
..
- 20
w~ 1 - - - 2
~
r-......~
I
~~~~~itj-20 1--+-r+rH~
20
/,0 1---10
10
o'f
.... ~:;;:
L~_U--LLUll_~:::::t~i!iiilil
6
8
0.1
---------------------------
L6235
R-DAT BRUSH LESS DC MOTOR DRIVER
ADVANCE DATA
•
400mA OUTPUT CURRENT, CONTROLLED
IN LINEAR MODE
•
COMPATIBLE WITH ANI F-TO-V CONVERTER AND PLL SPEED CONTROL
SYSTEM
•
INHIBIT FUNCTION
•
SLEW RATE LIMITING FOR EMI REDUCTION
•
CONNECTS DIRECTLY TO HALL EFFECT
CELLS
•
THERMAL SHUTDOWN WITH HYSTERESIS
•
THREE-STATE OPERATION ALLOWS
NEGLIGIBLE POWER DISSIPATION DURING 1/3f CYCLE
A
•
INTERNAL PROTECTION DIODES
•
FEW EXTERNAL COMPONENTS
The L6235 is single-chip driver for three-phase
brushless DC motors capable of delivering 400mA
output current with supply voltages to 18V.
Designed to accept differential input from the
Hall effect sensors, the device drives the three
phases of a brush less DC motor and includes
all the commutation logic required for a three
phase drive.
To limit EM I emission the L6235 controls the
rise and fall times of the output stage. In addition the device is designed to limit power
dissipation: during recirculation the output stage
is switched to an off state, reducing dissipation
to a very low value and minimizing torque ripple.
A speed control input controls the base current
to the lower transistors to limit the motor current and hence control the speed. Any type of
speed control system, including F to V and
PLL system, may be used with the L6235 by
providing an analog signal at this input. The
motor current may be sensed by an external
resistor connected to a sensing pin on the device.
The power stage of the device is designed to
eliminate the possibility of simultaneous conduction of the upper and lower power transistors
of one output driver, when operati ng in the
right loop.
PLCC (15+5)
ORDERING NUMBER: L6235
INDEX
BLOCK DIAGRAM
+V6-12V
.vB
17
3Kohll
'lie 13
10
12
GND
June 1988
1/7
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
563
L6235
CONNECTION DIAGRAM
(Top view)
Gl
Z
o
INHIBIT
18
OUT I
INDEX
17
+VS
H! (+)
16
OUT 2
H 1(-)
15
SENSING
H 2(+)
14
OUT 3
9
10
:r:r
N
~
"
w
Q
.!.
0
Z
12
13
:r
W
~
<
n
ABSOLUTE MAXIMUM RATINGS
VS
'0
Vi
Ptot
Top
Tj , T st9
Supply voltage
Peak output current each channel
non repetitive (100J.!s)
- repetitive (80% on - 20% off; ton = 10ms)
- DC operation
Logic and analogic inputs
Total power dissipation at Tpins = 50°C
Operati ng temperature range
Storage and junction temperature
18
V
1.5
500
400
+Vs
5
o to 70
-40 to 150
A
mA
mA
W
°C
°C
THERMAL DATA
Rth j-amb
Rth j-pins
Rtt
Thermal resistance junction-ambient
Thermal resistance junction-pins
Transient thermal resistance It = 2sec.)
max
max
max
100
20
30
.: :;2/'-.: 7_____________ ~ ~~~~m?1I~:~~©~ -------------564
L6235
PIN FUNCTIONS
NAME
FUNCTION
I/O
4
INHIBIT
5
INDEX
6
H1 (+)
Positive input of differential amplifier on channell.
Interfaces with Hall Effect sensor, Sl, from motor.
7
H1 (-)
Negative input of differential amplifier on channell.
Interfaces with Hall Effect sensor, S 1, from motor.
8
H2 (+)
Same as pin 3 for channel 2.
9
H2 (-)
Same as pin 4 for channel 2.
10
H3 (+)
Same as pin 3 for channel 3.
11
GND
Ground connection.
12
H3{-)
Same as pin 4 for channel 3.
Output stage inhibit. When this pin is high all three output stages are ina high impedance state!
o
Speed control input. Connected to output of PLL in
PLL speed control applications.
13
14
Out 3
15
Sense
16
Out 2
o
Output motor drive for phase 3.
Current Sensing. Input for load current sense voltage for
output stage.
o
17
18
Signal pulse proportional to the motor speed. In PLL
speed control appl ications, th is is the feedback to the
PLL. One pulse per electrical rotation. This is an open
collector output.
Output motor drive for phase 2.
Motor supply voltage.
Out 1
o
Output motor drive for phase 1.
_____________________________ ~~~~~~~~~:~~~ __________________________~3/~7
565
L6235
ELECTRICAL CHARACTERISTICS (Tamb
Parameter
Vs
Supply voltage
Is
Quiescent supply current
= 25°C;
Vs
= 12V unless otherwise specified)
Test Conditions
Min.
Typ.
10
12
Without Load
30
Max.
Unit
V
60
rnA
10
V
HALL AMPLIFIERS
V CM
Common mode voltage range
V io
Input offset voltage
Vi
=
6V
2
10
mV
lib
Input bias current
Vi
=
6V
2
10
IlA
lio
Input offset current
Vi
=
6V
0.1
0
IlA
SPEED CONTROL INPUT (Vel
Vi
Input voltage range
lib
Input bias current
Vic
Input clamping voltage
0
<
Vc
1
V sens
5
V
5
IlA
5.9
V
INHIBIT INPUT
VIH
Input high voltage
2
Vs
V
VIL
Input low voltage
0
0.8
V
IIH
Input high current
10
IlA
IlL
Input low current
-50
IlA
5mA
0.8
V
=
10
IlA
-5
HALL LOGIC OUTPUT
=
VLO
Low output voltage
I
IL
Leakage current
VCE
12V
OUTPUT POWE R STAG E
Vsat
Total saturation voltage
V OSR
Output voltage slew-rate
V sens
Sense voltage range
10
10
10
=
=
=
0.15A
O.4A
1.0A
0
2.2
2.5
2.7
V
100
V/ms
0.7
V
THERMAL SHUTDOWN
Tj
Ju nction temperatu re
TH
Hysteresis
DC
150
30
DC
-'4'-'/7_____________ f.U ~~~~m~1I~:J?©' -------------566
L6235
DESCRIPTION
The output current is related to the speed control voltage by:
The L6235 is a three-phase brush less motor
driver IC containing all the power stages and
commutation logic required for a three-phase
drive. When the INHIBIT INPUT is high all
three OUTPUTS ARE PLACED in a high - IMPEDANCE STATE.
(V c - 1)
7 Rs
The value of the sensi.ng resistor is given by:
Logic signals from the motor's Hall effect sensors
are decoded to generate the correct driving
sequence according to the truth table of Fig. 1.
Rs
=
(Vx
- 1)/(7 Imax)
where Vx is the full scale voltage of Vc.
When one of the push-pull output drivers is
activated the upper transistor is always in saturation while the lower transistor is controlled
in linear mode to set the desired speed in steady
state conditions.
In this way the Vc/l out characteristics can be
modified. Note that Vx max is clamped a't 5.9V.
The most important feature of the L6235 is
slew rate control. With this device a typical
value of 0.1V/J.ls is achieved, reducing EMI to a
very low value.
In PLL speed control applications the device
provides a signal proportional to the motor
speed at pin 2 (it is the buffered H 1 input).
The output of the PLL is connected to the speed
control input of the device at pin 10, Vc.
Another key feature is three-state operation;
when the current is recirculating the corresponding phase driver is switched off and power dissipation is negligible. Current recirculates through
the free~wheeling diodes in the acceleration
phase and through the motor is steady-state
conditions. Torque ripple is also minimized.
In addition, a 1 V offset is added to the speed
demand voltage to match the minimum output
of the PLL.
An external resistor, R s , senses the output
stage currel'1t. The sensing voltage across this
resistor is amplified in the device by a factor of
7 to allow a reduction in the voltage drop the
resistor.
The L6235 can also operate with a brush less
motor connected in a star configuration, leaving
the centre floating.
•
The Hall inputs are ground compatible comparators and can work with direct active digital
Hall signals on three terminals (of the same
polarity) and a TTL level on the other three
terminals.
The amplified sensing voltage is then compared
with the speed demand signal from the PLL
and the resulting error signal sets the amplifier
output accordingly.
Fig. 1 - TRUTH TABLE
HALL EFFECT
DIFF. INPUT
UPPER DRIVER
STATUS
1 = POSITIVE
O' = NEGATIVE
o =OFF
1 =ON
1 = ON
o =OFF
H1
H2
H3
UD1
UD2
UD3
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1.
0
0
0
1
1
1
0
0
LOWER DRIVER
STATUS
0
0
0
0
0
LD1
LD2
LD3
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
567
L6235
Fig. 2 - Timing diagram
J. .
O... ; ...
HALL
HI
DII::UETR~
:: ....
UPPER DRIVER 'UDI
LONER DRIVER
LDI
~..
2
3
4
~ ~ ~ ~ ~ ~ ~ j... ~ . !. . ~. h
... ..... ... ... ... .. .... ..
0
±Ji--'...~...L-1:::::t-..-...-t..-....~......... j.......t...... .. .... l::J=... :.......: 0
EFFECTS
i. . . ·~......
n
!
UD2-l
. . . ·. . . l. . . ·! ...... ,..... j.......!. . . .:. . . .:
~! : ! !
I::'
:
:
LD2+-l
0
i
LJ
:
I
n
:~J.';::
. .'. .!.
~~
wi::.:
~!.!
(CH ••
0
S-94B4
DETERMINING HALL EFFECT SENSOR CODING
Fig. 3
The L6335 assumes that the positioning of the
Hall Effect sensors in a three-phase brushless DC
bipolar motor are at 30 intervals. One can
imagine two "wjJ:ldows" on the rotor, each of
which is 90 wide and 180 apart, see fig. 4. As
a window passes over a sensor, the sensor output
goes high. The timing diagram, fig. 2, shows the
waveforms produced, These waveforms must
appear at the Hall Effect Inputs of the L6235.
Note that the rotation in fig. 3 must be counterclockwise for forward rotation of the motor in
whatever manner that is defined for the motor.
Fig. 3 is a stylized concept for determining the
Hall Effect code pattern and does not reflect the
actual direction of rotation of the motor in a
physical sense, If a motor is chosen whose sensor
outputs do not match the L6235 desired input
pattern, a signal set conversion must be determined. It is helpful to visualize this by developing a diagram s[milarto that of fig. 4.
For example, let us examine the output pattern
of a different type of motor (fig. 4). Assuming
90 windows at 180 intervals, then with respect to
fig. 3, a similar diagram, fig. 5, results in sensors
60 apart with the windows rotating clockwise.
The situation results in a "forward" rotation of
the motor.
~6/~7___________________________ ~~~~~~~~~:J?~ ------------~--------------
568
L6235
Since S3 is the first sensor encountered by the
window in fig. 5, this should be used for the
L6235 Hall Effect Input, H1. After 30 of rotation CW, the H2 input of the L6235 must go
high. The inverse of S1 from the motor would
satisfy this. After an additional 30 of rotation,
the H3 input must go high. The S2 sensor is
encountered by the window. Thus, S2 is applied
to this input, H3. By continuing around the diagram, one can develop a pattern which matches
that for the L6235.
Fig. 5
53
,I
52
--------~~~--L--51
!.-9~83
Fig. 4
Thus the conversion table for this particular
motor is:
L6235 Inputs
Motor Sensors
51
S2
H1
S3
H2
S1
H3
S2
Note, for the inverted signal from S1 an actual
inverter gate is not necessary with the L6235.
Since the L6235 has differential inputs, the negative input pin may be used. Therefore, with TTL
compatible Hall Effect sensors, the positive input
is connected to a reference point along with the
other negative inputs.
S3
o
90
180
270
ANGLE OF ROTATION
Fig. 6 - Application circuit using the L6233 PLL-Controller
LOCI< INDICATION
,---------~------~------------~~--~+V5
OUTPUT
J:
IOpF
lKU
510n
L6233P
12 f-.---------1
lKU
5KO
___________________________
~~~~~~g~~©~
________________________
~7/7
569
L6236
BIDIRECTIONAL R-DAT BRUSH LESS DC MOTOR DRIVER
ADVANCE DATA
•
400mA OUTPUT CURRENT, CONTROLLED
IN LINEAR MODE
•
COMPATIBLE WITH ANI F-TO-V CONVERTER AND PLL SPEED CONTROL
SYSTEM
•
SLEW RATE LIMITING FOR EMI REDUCTION
•
CONNECTS DIRECTLY TO HALL EFFECT
CELLS
•
THERMAL SHUTDOWN WITH HYSTERESIS
•
THREE-STATE OPE RATION ALLOWS
NEGLIGIBLE POWER DISSIPATION DURING 1/3f CYCLE
•
INTERNAL PROTECTION DIODES
•
FEW EXTERNAL COMPONENTS
The L6236 is a single-chip driver for three-phase
brush less DC motors capable of delivering
400mA output current with supply voltages to
18V. Designed to accept differential input from
the Hall effect sensors, the device drives the three
phases of a brush less DC motor and includes
all the commutation logic required for a three
phase bidirectional drive. Both delta and wye
configurations may be used.
To limit EMI esmission the L6236 operates in a
linear mode and controls the rise and fall times
of the output stage. In addition the device is
designed to limit power dissipation: during
recirculation the output stage is switched to an
off state reducing dissipation to a very low value
and minimizing torque ripple.
A speed control input controls the base current
to the lower transistors to limit the motor cur·
rent and hence control the speed. Any type of
speed control system, including F to V and PLL
systems, may be used with the L6236 by pro·
viding an analog signal at this input. The motor
current may be sensed by an external resistor
connected to a sensing pin on the device.
The power stage of the device is designed to eli·
minate the possibility of simultaneous conduction of the upper and lower power transistors of
one output driver, when operating in the right
loop.
PLCC (15 + 5)
ORDERING NUMBER: L6236
BLOCK DIAGRAM
INDEX
5- 9828
June 1988
GNO
1/7
This is advanced information on a new product now in-"development or undergoing evaluation. Details are subject to change without notice.
571
L6236
CONNECTION DIAGRAM
(Top view)
G>
Z
o
FWD/REV
18
OUT I
INDEX
17
+VS
H 1(+)
16
OUT 2
H 1(-)
15
SENSING
H 2(+)
14
OUT 3
9
10
II
12
13
_ _......................................._ - - ' 5-9841
:x: :x:
!::::
w
..!., ~
:x:
G>
Z
0
w
~
<
n
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Peak output current each channel
- non repetitive (lOOJ,ls)
- repetitive (80% on - 20% off; ton = 10ms)
- DC operation
Logic and analogic inputs
Total power dissipation at T plns = 50°C
Operating temperature range
Storage and junction temperature
18
1.5
A
500
mA
mA
400
+Vs
5
Oto 70
-40 to 150
THERMAL DATA
Rth j-amb
Rth j-plns
Rtt
572
Thermal resistance junction-ambient
Thermal resistance junction-pins
Transient thermal resistance (t = 2sec.)
max
max
max
V
100
20
30
L6236
PIN FUNCTIONS
NAME
I/O
FUNCTION
4
FWD/REV
5
INDEX
6
H1 (+)
Positive input of differential amplifier on channel 1.
Interfaces with Hall Effect sensor, S1, from motor.
7
H1 (-)
Negative input of differential amplifier on channel 1.
Interfaces with Hall Effect sensor, S1, from motor.
8
H2 (+)
Same as pin 3 for channel 2.
9
H2 (-)
Same as pin 4 for channel 2.
10
H3 (+)
Same as pin 3 for channel 3.
11
GND
Ground connection.
12
H3 (-)
Same as pin 4 for channel 3.
Direction Control. When this pin is low, the motor will
run in the forward direction. A high will drive the motor
in the reverse direction. Direction is defined by the
positive of the sensors in the motor.
o
13
Speed control input. Connected to output of PLL in
PLL speed control applications.
14
OUT3
15
SENSE
16
OUT2
o
Output motor drive for phase 3.
Current Sensing. I nput for load current sense voltage "for
output stage.
o
Output motor drive for phase 2.
Motor supply voltage.
17
18
Signal pulse proportional to the motor speed. In PLL
speed control applications, this is the feedback to the
PLL. One pulse per electrical rotation. This is an open
collector output.
OUT1
o
--------------
Output motor drive for phase 1.
~ ~~~~m~~:~~~
____________
--'3/_7
573
L6236
ELECTRICAL CHARACTERISTICS (Tamb = 25°C; Vs = 12V unless otherwise specified)
Parameter
Vs
Supply voltage
Is
Quiescent supply current
Test Conditions
Min.
Typ.
10
12
30
Max.
Unit
V
60
rnA
10
V
HALL AMPLIFIERS
V CM
Common mode voltage range
Via
Input offset voltage
lib
Input bias current
lio
Input offset current
0
Vi
=
6V
2
10
mV
Vi
=
6V
2
10
J.lA
Vi
=
6V
0.1
J.lA
SPEED CONTROL INPUT (Vel
Vi
Input voltage range
lib
Input bias current
Vic
Input clamping voltage
0
Vc
<
1
V sens
5
V
5
J.lA
5.9
V
FWD/REVERSE INPUT
V IH
Input high voltage
2
Vs
V
VIL
Input low voltage
0
0.8
V
IIH
Input high current
10
J.lA
IlL
Input low current
-50
J.lA
0.8
V
10
J.lA
-5
HALL LOGIC OUTPUT
= 5mA
V LO
Low output voltage
I
IL
Leakage current
VCE
=
12V
OUTPUT POWER STAGE
V sat
Total saturation voltage
VOS R
Output voltage slew-rate
V sens
Sense voltage range
10 = 0.15A
10 = OAA
10 = 1.0A
0
2.2
2.5
2.7
V
100
V/ms
0.7
V
THERMAL SHUTDOWN
Tj
Junction temperature
TH
Hysteresis
574
°c
150
30
°c
L6236
DESCRIPTION
The L6236 is a three-phase brush less motor
driver IC containing all the power stages and
commutation logic required for a three-phase
bidirectional drive.
The output current is related to the speed control voltage by:
10 = (Ve -1)/7 Rs
Logic signals from the motor's Hall effect sensors
are decoded to generate the correct driving
sequence according to the truth-table of Fig. 1.
The value of the sensing resistor is given by:
Rs = (V x -1)/(7 Imax)
The direction of rotation.is controlled by the
forward/reverse input (pin 1). When this pin is
at a low level the motor rotates in the forward
direction.
where Vx is the full scale voltage of Ve.
In this way the Vel lout characteristics can be
modified. Note that Vx max is clamped at 5.9V.
When one of the push-pull output drivers is
activated the upper transistor is always in saturation while the lower transistor is controlled
in linear mode to set the desired speed in steady
state conditions.
The most important feature of the L6236 is
slew rate control. With this device a typical value
of 0.1V/J.J.s is achieved, reducing EMI to a very
low value.
In PLL speed control applications the device
provides a signal proportional to the motor
speed at pin 2 (it is the buffered H1 input). The
output of the PLL is connected to the speed
control input on the device at pin 10, Ve.
In a delta configuration a key feature is threestate operation; when the current is recirculating
the corresponding phase driver is switched off
and power dissipation is negligible. Current recirculates through the integrated free-wheeling
diodes in the acceleration phase and through the
motor in steady-state conditions. Torque ripple
is also minimized.
In addition, a 1V offset is added to the speed
demand voltage to match the minimum output
on the PLL.
The L6236 can also operate with a brush less
motor connected in a star configuration, leaving
the center floating.
An external resistor, Rs , sense the output stage
current. The sensing voltage across this resistor is
amplified in the device by a factor of 7 to allow
a reduction in the voltage drop in the resistor.
The Hall inputs are ground compatible comparators and can work with direct active digital
Hall signals on three terminals (of the same
polarity) and a TTL level on the other three
terminals.
The amplified sensing voltage is then compared
with the speed demand signal from the PLL and
the resulting error signal sets the amplifier output
accordingly.
Fig. 1 - TRUTH TABLE FOR FORWARD ROTATION
HALL EFFECT
DIFF. INPUT
UPPER DRIVER
STATUS
LOWER DRIVER
STATUS
1 = POSITIVE
0= NEGATIVE
o =OFF
1 =ON
1 =ON
O=OFF
H1
H2
H3
UD1
UD2
UD3
LD1
LD2
LD3
1
1
1
0
0
0
0
1
1
1
0
0
1
1
1
0
1
0
0
0
0
1
0
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
-------------- iiil ~~t~m~:~JI-------------=..:5/..:..7
575
L6236
Fig. 2 - Timing diagram
:°:1:2,3
HALL
EFFECTS
DIFFER.
INPUTS
HI
~
II
:J·······~·······~······i·······
2,3,4,11,
r--~-...:-..-......;.+ ...... L...... L ....
:: F:::::::~f:-:::-:::l..:::-:·:-::t:::::t-~~
:
,'.
i
UDI!
LOMER DRIVER
LDI
!'!-:-+-----i-+--I
UD2
--i :
LD2
Lq±l :
!:.
UPPER DRIVER
.
~
LD3
-i!-+-+j- - l
I'
:
i
j
j
~:---t:::::±=:::t-~
-+-1
UD3
·F °
:
'
:
:
i
LJ
.
j
~
:
:
.
I'.:
~t=t::t-n
>--+-----+_-+---1
lOUT!
'.
'.
...... !" .....! 0
(CH ..I!.i ...... ·t·
S-9464
DETERMINING HALL EFFECT SENSOR CODING
Fig.3
~
The L6236 assumes that the positioning of the
Hall Effect sensors in a three-phase brush less DC
bipolar motor are at 30 intervals. One can
imagine two "windows" on the rotor each of
which is 90 wide and 180 apart, see fig. 4. As
a window passes over a sensor, the sensor output
goes high. The timing diagram, fig. 2, shows the
waveforms produced. These waveforms must
appear at the Hall Effect Inputs of the L6236.
Note that the rotation in fig. 3 must be counterclockwise for forward rotation of the motor in
whatever manner that is defined for the motor.
Fig. 3 is a stylized concept for determining the
Hall Effect code pattern and does not reflect the
actual direction of rotation of the motor in a
physical sense. If a motor is chose whose sensor
outputs do not match the L6236 desired input
pattern, a signal set conversion must be determined. It is helpful to visualize this by developing a diagram similar to that of fig. 4.
51
For example, let us examine the output pattern
of a different type of motor (fig. 4). Assuming
90 windows at 180 intervals, then with respect to
fig. 3, a similar diagram, fig. 5, results in sensors
60 apart with the windows rotating clockwise.
The situation results in a "forward" rotation of
the motor.
~6~/7_______________________ ~~~~~~~~~l~~~
576
53
__________________________
L6236
Since S3 is the first sensor encountered by the
window in fig. 5, this should be used for the
L6236 Hall Effect Input H1. After 30 of rota·
tion CW, the H2 input of the L6236 must go
high. The inverse of S1 from the motor would
satisfly this. After an additional 30 of rotation,
the H3 input must go high. The S2 sensor is
encountered by the window. Thus, S2 is applied
to this input, H3. By countinuing around the dia·
gram, one can 'develop a pattern which matches
that for the L6236.
Fig.5
53
,I
52
/
--------~~-L---~--S1
~-9483
Fig.4
Thus the coriversione table for th is particu lar
motor is:
51
Motor Sensors
52
S3
S1
S2
53
o
90
180
L6236 inputs
H1
H2
H3
Note, for the inverted signal from S 1 actual
inverter gate is not necessary with the L6236.
Since the L6236 has differential inputs, the nega·
tive input pin may be used. Therefore, with TTL
compatible Hall' Effect sensors, the positive input
is connected to a reference point along with the
other negative inputs.
270
ANGLE OF ROTATION
Fig. 6 - Application circuit using the L6233 PLL-Controller
LOCK INDICATION
OUTPUT'
r---------~------~------------~~---o.VS
lO,..F
~ O,22~F
lKtl
S10n
"
I
'0nF
L6233P
..,
12 r-~-------t
13
14
15
lMtl
91K1l
Q.47pF
30Kn
27Dtr4n
___________________________
SKG
~!~~~~~~:~~~
__________________________
7~/7
577
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L6495
HIGH SPEED OPERATIONAL AMPLIFIER
ADVANCE DATA
• SUITABLE FOR VIDEO APPLICATIONS
• SLEW RATE 150 V/us (AV = 20 dB AND
Iset = 100 ~A)
• UNITY GAIN BANDWIDTH (45 MHz TYP)
• LARGE SIGNAL BANDWIDTH (20 MHz TYP)
• LOW NOISE (5 nV/ 'fRZ)
• LOW OFFSET VOLTAGE
• PROGRAMMABLE OUTPUT PEAK CURRENT
• NO EXTERNAL COMPENSATION
FOR
AV = 20 dB OR HIGHER
------~-----·-----I
I
TO-99 (8 Pins)
MINIDIP
DESCRIPTION
(plastic)
The L6495 is a high performance monolithic operational amplifier with wideband and high slew rate.
The frequency compensation is built into the chip for
closed loop gain higher than 20 dB.
Large gain bandwidth product and high slew rate
make the L6495 ideally suited for wideband signal
amplification or switching, in video gain blocks, line
driver circuitry, driving capacitive loads and generally for all high frequency applications.
ORDER CODES:
L6495 (T099)
L6495 DP (MINIDIP)
The L6495 is available in both minidip and metal can
8 pin.
BLOCK DIAGRAM
+SU
INPUT
HI0nF
750hm
I
I
-SU
18pF
BBLtj4~5-5Z
~~~m1~8
1ffi
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
579
L6495
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Vs
Supply Voltage
Vis
Differential I nput Voltage
Vi
Input Voltage
10
Output Current
Value
Unit
± 10
V
±7
V
-Vs-0.5
+ V s + 0.5
V
V
±100
mA
o to
Top
Operating Temperature
Ptot
Power Dissipation at T amb = 70 DC
Minidip
TO-99
70
'C
600
500
mW
mW
Tj
Junction Temperature
- 55 to 150
°C
Tstg
Storage Temperature
- 55 to 125
°C
THERMAL DATA
Thermal Resistance Junction-amb
Max
TO-99
Minidip
155°C/W
120°C/W
CONNECTION DIAGRAMS
Q
COMP
tUs
NC
IN-
INt
3
4
OUT
ISET
-Us
88L6495-C1
2/6
580
NC
ININt
-Us
1
8
COMP
2
7
+Us
3
6
4
5
OUT
ISET
88L5495-C2
L6495
ELECTRICAL CHARACTERISTICS (T amb
specified)
= 25 "C ; Vs = ± 5 V ; Iset = 100 [LA ; unless otherwise
Min.
Typ.
Max.
±3
± 5
± 9
V
NO LOAD
10
12
mA
8
10
Input Resistance
Av = 20 dB
100
Gin
Input Capacitance
Av = 20 dB
5
Vas
Offset Voltage
11 Vas
Average Offset
Voltage Drift
Symbol
Supply Voltage
Is
Supply Current
Ib
Input Bias Current
Rin
--
I1T
Test Conditions
Parameter
Vs
o to
70 cC
Common Mode Voltage Range
I1V o =5V;
RL = 2 K!1
Large Signal Bandwidth
Av = 20 dB
GBW
Gain Bandwidth
Product
Av = 0 dB
Ccomp = 18 pF ;
eN
Equivalent Input
Noise Voltage
1 KHz to 500 KHz
Vo
Output Voltage Swing
RL = 2 K!1
10
Output Current
B
n
Ro
Output Resistance
Open Loop
SR
Slew Rate
Av = 20 dB
SR
Slew Rate
Ccomp = 18 pF
Av = 0 dB
30
pF
5
mV
10
30
!lV/DC
1
!lA
± 3
Open Loop
Voltage Gain
Gv
!lA
K!1
2
Offset Current
los
VCM
Unit
V
72
dB
20
MHz
45
MHz
5
nVIVHz
± 4
V
± 20
± 30
mA
30
n
100
150
V/!lS
40
V/!lS
CMRR
Common Mode Reject. Ratio
70
dB
SVR +
RATIO
Power Supply Rejection
(positive supply)
70
dB
SVR RATIO
Power Supply Rejection
(negative supply)
60
dB
tr
n Test
Rise Time
Av = 20 dB
20
ns
CirCUit of Fig. 4.
3/6
581
L6495
Figure 1 : Output Current vs. 15et.
88L6495-D1
10
ImA )
45
./v
413
35
....-
V
/
/
V
313
58
75
125lsetluA)
11313
Figure 2: Non Inverting Amplifier Configuration (AV
= 20 dB).
'Us
I
HHlnF
3
OUT
Uin
-Us
88L6495-53
4/6
582
L6495
Figure 3: Buffer Configuration (AV
= 0 dB).
+Us
HIBnF
I
OUT
Uin
nF
I
I
18pF
-Us
88L6495-54
An external compensation capacitor at pin 8 is needed if the loop gain of the operational amplifier is less then 8.
Figure 4: Bandwidth Test Circuit (closed loop gain of the L6495
~~~~~~~~~~~~~~~~---
.---~--.------o
= 20 dB).
..- - . - -..
~~~--~~~~--
.... - - -.. --
+5V
INPUT
}---__.....--<> • 1 V
OUT
750hm
188nF
:c:
R2
-su
88L5495-51
~__._ _~_____ .-.J
5/6
583
L6495
Figure 5: Bandwidth Test Circuit (closed loop gain of the L6495 = 0 dB).
+SU
750hm
CABLE
¥---~~--~--~
OUT
750hm
INPUT
1H{3nF
!1U
I
I
-5U
1BPF
88L6495-57
----------------------
6/6
584
L6503
~~-
~~-
l
---~-~-~--~~-----------
HAMMER SOLENOID CONTROLLER
PRELIMINARY DATA
• DRIVES FOUR DARLINGTONS WITH UP TO
2.5 mA DRIVE CURRENT
• FEEDBACK lOOP CONTROLS DARLINGTON
CURRENT
• PRESETTABlE CONDUCTION TIME
• lATCHED IlC-COMPATIBlE INPUTS
• DIAGNOSTIC CIRCUITRY
DESCRIPTION
Designed primarily for selenoid driving applications,
the l6503 Hammer Solenoid Controller includes all
the circuitry needed to control four darlington power
devices or a quad darlington array such as the SGS
l7180.
The device is controlled by four latched logic inputs,
which may be connected directly to a microcomputer chip, plus an analog input which sets the load
current. Additionally, the conduction time of the outputs is controlled by a clock input which drives internal timers.
Fault conditions may be detected thanks to diagnostic circuitry which allows the control micro to read
(serially) the load current status of the extemal darlingtons.
Assembled in a 20-pin DIP package, the l6503 operates on a single 5 V supply and is suitable for computer printers, solenoid valves and similar applications.
1-------
-~-
~-
---- ---
-~
DIP-20 Plastic
(0.4)
ORDER CODE: L65CJ3
~----~----~- -~~--
--
--~
--
CONNECTION DIAGRAM (top view)
----~
DATA
---
----
--~~
Vss
---I
i
I
I
September t988
VREF
2
ClK
DEC2
3
DEC4
DEC1
4
DEC3
IN
5
OUT
CDE2
6
CDE4
RM2
7
RM4
CDE1
8
CDE3
RM1
9
RM3
GND
10
DROP
I
1/5
585
L6503
BLOCK DIAGRAM
~
r;:=::=:=:t:;~~-~ I
IN
16
DROP
11
OUT
L6503
5-9174
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
Vss
Supply Voltage
7
V
ICDE
Output Current
10
mA
Vi
Top
T stg , Tj
Input Voltage (for analog and logic inputs)
Operating Temperature
Storage and Junction Temperature
OtoV ss -O.5
V
o to 70
cC
- 40 to 150
°C
THERMAL DATA
Thermal Resistance Junction-ambient
2/5
586
Max
80
L6503
PIN FUNCTIONS DESCRIPTION
N°
Function
Name
1
DATA
latches control command into the four inputs DEC1-DEC4 on the high-low
transition.
2
Vref
Analog reference input which sets the load current for all four channels;
when lower than 0.5 V resets the logic circuitry.
3
DEC2
Data input for channel 2. Data is latched on the high-low transition of the
DATA input.
4
DEC1
Data Input for Channel 1.
5
IN
Input for diagnostic shift register used to cascade several device.
6
CDE2
Channel 2 output (connect to base of darlington). Up to 2.5 rnA drive.
7
RM2
Feedback input from sensing resistor of channel 2 darlington.
8
CDE1
Channel 1 Output.
9
RM1
Feedback input for channel 1 sense resistor.
10
GND
Ground.
Clock Input for Diagnostic Register.
11
DROP
12
RM3
Feedback input for channel 3 sense resistor.
13
CDE3
Channel 3 Output.
14
RM4
Feedback input for channel 4 sense resistor.
15
CDE4
Channel 4 Output.
16
OUT
Output of Diagnostic Register.
17
DEC3
Input for Channel 3.
18
DEC4
Input for Channel 4.
19
ClK
Input for clock signal which sets conduction time for all four channels.
Ton = 128/fcLK .
20
Vss
5 V Supply Input Voltage.
FUNCTIONAL DESCRIPTION
The L6503 Hammer Solenoid Controller is designed
to control a quad darlington array, such as the SGSTHOMSON l7180, in solenoid driving applications.
Compatible with 5 V microcomputer and peripheral
chips, the L6503 is controlled by four logic inputs one per channel (DEC1 - DEC4) - which are latched
by a high-low transition on the DATA input.
When one of the channels is activated the corresponding darlington is driven, with up to 2.5 mA drive
current. The conduction period is determined by the
frequency applied to the ClK input which clocks the
7-bit timer in each channel. The conduction time is
therefore 128/fClK. Typically the ClK frequency will
be of the order of 100KHz but the l6503's internal
logic will operate at any clock rate within the range
of practical conduction times.
darlington's emitter and set by the voltage applied
to the Vref input. The current depends on both the
values of Vref and the sensing resistor:
I = Vref/Rsense.
The control microcomputer may verify correct operation of the complete drive subsystem thanks to a
diagnostic circuit in the L6503. A four bit PISO shift
register in the device monitors the feedback signals
from the four output darlingtons and may be read
serially after each command to check that the loads
were driven.
Typically, this register, clocked by the DROP input,
will be read a short time after each drive command
has been latched into the device.
The input of this register (IN) is available externally
so that multiple devices may be cascaded.
During the conduction period the load current is
controlled by feedback from a sense resistor in the
3/5
587
L6503
ELECTRICAL
CHARACTERISTICS (Vss
Symbol
5 V , Tamb
Parameter
=
Test Conditions
Min.
Typ.
Max.
0 to 70°C
4.75
5
5.25
V
75
90
mA
Vss
Supply Voltage
Ti
Iss
Total Supply Current
ICDE = 2 mA
All Channels On
=
VREF
Input Voltage Reference
VREF
Reset Logic Function
IREF
Input BIAS Reference Current
VREF
Input Voltage (pin 1, 3, 4, 5, 11, 17,
18, 19)
ViL
Vi
Vout
Output Logic Voltage (pin 16)
25°C, unless otherwise specified)
=
Unit
1
2.4
V
0.3
0.65
V
-5
fIA
o to 2.4 V
0.4
V
2.7
ViH
VOL
lOUT
mA
=
VOH
lOUT
=-
0.4
+ 1.6
V
100
2.7
f1A
Ib
Ib
ICDE
- 100
Input Bias Current (pin 1, 3, 4, 5, 11,
17,18,19)
V,L
Input Bias Current (pin 7, 9, 12, 14)
1 <: VRM <: 2.4 V
Output Current (pin 6, 8, 13, 15)
VOUT
Output Voltage Range (pin 6, 8, 13,
15)
VOL
Error Amplifier Input Offset Voltage
1 V <: VREF <: 2.4 V
± 10
V,H
=
Vss - 0.5 V
VOH
- 100
2.5
fIA
fIA
mA
0.2
V
Vss - 0.5
± 10
mV
0.8
1.5
fIs
7
10
TIMING SECTION
Data Ability Time t
Data to CDE Delay Time t1 (1)
Clock 10 CDE Delay Time t2 (1)
Reset Time 13
160
=0 V
VRM = 0 V
VRM
1.9
Reset to CDE Delay Time t4 (1)
1.3
fIs
100
KHz
3
fIs
500
KHz
Resel to Output Delay Time 18 (1)
1.3
fls
Drop 10 in Delay·Time 19 (1)
1.0
fls
Low Level Clock Stale t5 (1)
500
Drop Frequency
Low Level'Drop State t7
(1) 100% Tested
588
fIs
fIs
Clock Frequency
RM to OUT Delay Time 16 (1)
4/5
ns
ns
ns
500
L6503
Figure 1 : Application Diagram.
+V ••
~
-
4
10 aND
DEC2
3
111 CDE4 S!I
20 2
·L71BO
17
13 CDE3
...
1
ClK
~
L6503
la
DRDP~
~
OUT
,
CDE2
7
CDEI
1
6
II
14
16
9
I
......J
6
11
12 14
7
I
[
•
~
~
~
.J
a
18
DATA
13
'.}
'
DEC3
L--.
+V
y+VREF
IDEC1 •
-DEC4
AlP
y
10
6
I*i
...JT~
...
4
2
B
1
S-9Z75
RM4
RMI
[) ) 1
I
Figure 2 : Timing Diagram.
REF
~
-,L--......J
I~-------------------Ij
I
DEC(n)
DATA
~
CDE(n)
'lLI---,...------.::~:.:..:....------
--Tl---
1.J;'-"'---'U
1---.~
'6
RM 4
DROP
Q4
'I
I"'
U
L-~
-1'>;
~S~---~
~
L
!:o-911611
5/5
589
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L6504
SOLENOID CONTROLLER
PRELIMINARY DATA
wheel printers and typewrites. The device is controlled by three logic inputs and features switch mode
regulation of the load current. A key feature of the
device is that the rise and fall time of the load current can be set by external components. Additionally an analog input allows the load current to be set
by an external DC Voltage. An undervoltage lockout
circuit guarantees the output off state for switch on
phase.
• SWITCH MODE CURRENT REGULATION
• TTL COMPATIBLE LOGIC INPUTS
• DRIVES ONE OR TWO EXTERNAL POWER
TRANSISTORS
• VERY PRECISE ON-CHIP REFERENCE
• ANALOG CURRENT CONTROL INPUT
• ADJUSTABLE CURRENT RISE AND FALL
TIME~CONTROL INDEPENDENT OF SOLENOID SUPPLY VOLTAGE
• UNDERVOLTAGE LOCKOUT
DIP-14 Plastic
(0.25)
DESCRIPTION
Designed for use with one external power transistor, the L6504 drives the hammer solenoid in daisy-
ORDER CODE: L6504
BLOCK DIAGRAM
+ VS
+VSS
10
LJ
1
CDNTROL'-+--
SOLENOID
2
ENABLE ~--~~----4---~~-'
3
ENABLE - , + - - '
CURRENT
SENSE
REF OUT
REF IN
~-9393
5
R2
CURRENT
RISE TIME
ADJUST
September 1988
B
C1
:r:
RISE AND
FALL TIME
CURRENT
RISE TIME
ADJUST
1/7
591
L6504
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Vs
Value
Unit
10
V
- 0,3 to 7
V
V
DC Supply Voltage
V 2 ,3
Enable Input Voltage Range
V,
Control Input Voltage Range
- 0,3 to 7
Vg
Sense Voltage
- 0,3 to 2
V
16
Reference Output Current
2
mA
V11
External Reference Voltage
2
V
T stg
Storage Temperature
- 55 to 150
°C
Tj
Junction Temperature
- 55 to 150
Top
°
Operating Temperature
to 85
CONNECTION DIAGRAM (top view)
\.../
CONTROL
[ 1
14
~
ENABLE
[ 2
13
~
ENABLE
[ 3
12
~
Rl
[ 4
11
~
REF, IN
R2
[ 5
10
~
SUPPLY
VOLTAGE
REF. OUT
[ 6
9
~
SENSING
C2
[ 7
8
~
Cl
GROUND
NPN DRIVING
OUTPUT
PNP DRIVING
OUTPUT
5-9364
THERMAL DATA
Max
2/7
592
100
'C
°C
L6504
PIN FUNCTION
N°
Function
Name
1
CONTROL
TTL Compatible Control Input. A low level activates the output, driving the
load. Internal Pull-up Resistor.
TTL Compatible Enable Input. A low level disables the output stage.
2
ENABLE
3
ENABLE
TTL Compatible Enable Input. A high level disables the output stage.
4
R1
The value of this resistor (') sets slope of trailing edge of load current.
5
R2
The value of this resistor (') sets slope of leading edge of load current.
6
REFERENCE OUT
Output for Internal Reference Voltage.
7
C2
The value of this capacitor sets the duration of power transistor switch off
time.
S
C1
The value of this capacitor sets slope of leading and trailing edge of load
current.
9
SENSING
Connection for Load Current Sense Resistor. Value sets the maximum
load current: I = Vref/Rs.
10
SUPPLY VOLTAGE
Supply Voltage Input.
11
REFERENCE IN
Input for External Reference Voltage to Control Load Current by DC-level.
12
PNP DRIVING OUTPUT
Output to Control External PNP-transistor for Fast Current Discharge.
13
NPN DRIVING OUTPUT
Output for Basecharge and Discharge of External Power Transistor.
14
GROUND
Ground
(') Value between 10 kn and 200 kn (or open).
3/7
593
l
L6504
ELECTRICAL CHARACTERISTICS
N°
Symbol
1.
Vs
Operating Supply Voltage
10
2.
Vsth
Supply Voltage Threshold
For Output Switch· off
10
VCH = LOW
VE = HIGH
Parameter
Pin
Test Conditions
Min.
2.96
3.
Is
Quiescent Current
10
Pin 1 Highstate
4.
VCl
Control Voltage
1
Low State
5.
VCH
Control Voltage
1
High State
2.3
6.
ICl
Control Input Current
1
Vt Low State
- 1
1
Typ.
4.5
Vt High State
3.7
7
ICH
Control Input Current
VEL
Enable Voltage
2/3
Low State
9.
VEH
Enable Voltage
2/3
High State
10.
liN
Input Current
2/3
V2,3 Low State
-10
11.
liN
Input Current
2/3
V2,3 High State
-1
12.
VOL
Driving Voltage Low
13
RI3,14=5K Low State
13,
10
Driving Current
13
Vt3 = 2 V
6.5
14.
VSE
Sense Voltage
9
15.
Vref
Reference Voltage
6
16 = o. " 2 mA
1.28
Unit
10
V
4.45
V
12
mA
1.5
V
0
mA
V
0.6
7.
8.
Max.
5
uA
1.5
V
1
~A
5
~A
V
2.3
0.5
V
10
16
mA
2
V
1.33
1.38
V
2
mA
0
16.
Iref
Reference Current
6
17.
VRIN
Reference Input
11
18 .
ICB
Charge Current
8
R2 (Pin 5) = 20 K
Pin 1L
58
19.
lOB
Discharge Current
8
Rl (Pin 4) =20 K
PinlH
20.
Iso
Source Current
12
V t2 =2V
21 .
V sats
Source Saturation Voltage
12
Isource = 0.5 mA
1.2
V
22.
Vsats
Sink Saturation Voltage
12
Isink = 2 mA
0.4
V
23.
VV-I
24.
tr
Recirculation Time of Load
Current
7
25.
to
Current Sense Delay Time
9
4/7
594
VI-Converter Voltage
4/5
0.3
10K < Rl, 2 < 200 K
Rl = R2
C2 = 1.5 ns
R2 = 20 Kohm
2
V
65
72
~A
28
32.5
37
~A
0.5
1
1.6
mA
1.26
1.32
1.4
V
27
30
33
~s
0.3
1
2.5
~s
L6504
Figure 1
Timing Diagram Start Phase.
Vel (Pin 81
,·"t~
.. t
S- 9365
APPLICATION INFORMATION
Figure 2 : Free Running Load Current Leading
and Trailing Edge.
Figure 3.
+VSS
SOLENOID
9
L6504
CURRENT
SENSE
6
\
\
REF OUT/IN
L - - ,_ _. - - . - - - '
SWITCH OFF SLOPE
DUE TO COIL
TEMPERATURE
,
COLD
HOT'
11
....
-
14
5-10575
CURRENT
RISE TIME
ADJUST
CURRENT
FALL TIME
ADJUST
5-9394
5/7
595
L6504
Figure 4 : Slew Rate of Loading Edge Controlled.
---1
Figure 5.
+VSS
RISE AND
FALL TIME
)
SOLENOID
L6504
9
CURRENT
SENSE
REF OUT/IN
11
'-----,---,--,.--'
14
CURRENT
RISE TIME
ADJUST
H
CURRENT
FALL TIME
ADJUST
S-9395
J
PIN 1
.t
~----------------------~
Figure 6 : Slew Rate Leading and Trailing Edge
Controlled.
- _ .__..._ - - - - - - - - -
Figure 7.
~~~~~~~---,
+VSS
RISE AND
FALL TIME
l..J
SOLENOID
1
L6504
9
CURRENT
6
SENSE
REF OUT/IN
'---.------y--,-'
11
14
CURRENT
RISE TIME
ADJUST
617
596
5-10671.
CURRENT
FALL TIME
ADJUST
~-9J96
L__
---_. ___ 1
L6504
Figure 9.
Figure 8 : Free Running Leading Edge Fast
Current Slope at Trailing Edge.
+ vs
~--+-tf:~
L6504
6
NPN
RS
I
REF OUT/IN
I
L-__r -__- ,__-r~11
~
14
CURRENT
RISE TIME
ADJUST
CURRENT
FALL TIME
ADJUST
S·9J97
"---_~
.-t
_ _.>.S·'""C!.3.fL67L__ _ ... _ _ _ _ _ _ _ _ _ •_ _ _ _ _ _ J
7/7
597
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L6506
CURRENT CONTROLLER FOR STEPPING MOTORS
PRELIMINARY DATA
DESCRIPTION
The L6506 is a linear integrated circuit designed to
sense and control the current in stepping motors
and similar devices. When used in conjunction with
the L293, L298, L7150, or L7180, the chip set forms
a constant current drive for and inductive load and
performs all the interface function from the control
logic thru the power stage.
DIP-18 Plastic
Two or more devices may be synchronized using
the sync pin. In this mode of operation the oscillator
in the master chip sets the operating frequency in
all chips.
ORDER CODE: L6506
BLOCK DIAGRAM
Vcc
'8
INIU---~5~----------------~~
OUT 1
IN2U---~6~----~--------~~~
OUT 2
INJo---~------~--------~~~
l-+-~n
IN4U---~8------4---~----~~~ '1
OUTJ
OUT 4
POWER
ENABLE
VSENSE 2
REF. 2
SYNC
VSENSEI
REF. I
R/Co--~-+---I
osc.
September 1988
GND
5-'283/3
1/5
599
L6506
CONNECTION DIAGRAM (top view)
RIC
1
18]
Vec
osc.
2
17]
REF 2
SYNC
3
16 ]
REF 1
ENABLE
4
15) VSENSE 2
IN 1
5
14 ]
OUTl
IN 2
6
13]
OUT 2
IN 3
7
12 ]
OUT3
IN 4
e
11 ]
OUT 4
9
10] VSENSE 1
POWER
GND
I
5-928412
ABSOLUTE MAXIMUM RATINGS
Value
Unit
Supply Voltage
10
V
Input Signals
7
V
Total Power Dissipation (T amb = 70°C)
1
W
Parameter
Symbol
Vee
VI
Ptot
Tj
Junction Temperature
150
°C
T stg
Storage Temperature
- 40 to 150
°C
THERMAL DATA
Max
80
ELECTRICAL CHARACTERISTICS (Vee = 5.0 V, T amb = 25 'C ; unless otherwise noted)
Symbol
Vcc
Icc
Parameter
Test Condtions
Quiescent Supply Current
Min.
Typ.
4.5
Supply Voltage
Vcc = 7 V
Max.
Unit
7
V
25
mA
COMPARATOR SECTION
VIN
Input Voltage Range
V sense Inputs
VIO
Input Offset Voltage
VIN=1.4V
Curre~t
110
Input Offset
liB
Input Bias Current
Response Time
2/5
600
- 0.3
VREF = 1.4 V VSENS = 0 to 5 V
0.8
3
V
± 5.0
mV
± 200
nA
1
j.!A
1.5
~s
L6506
ELECTRICAL CHARACTERISTICS (Continued)
! Symbol!
Parameter
!
Test Conditions
Min.
! Typ.
! Max. !
Unit
!
COMPARATOR SECTION PERFORMANCE (over operating temperature range)
Input Offset Voltage
V 1N =1.4V
Input Offset Current
LOGIC SECTION(over operating temperature range) - (TTL compatible inputs & outputs)
2.0
VIH
Input High Voltage
VIL
Input Low Voltage
VOH
Output High Voltage
Vec = 4.75 V
IOH = 400 IlA
VOL
Ouptut Low Voltage
Vce = 4.75 V
IOH = 4.0 mA
IOH
Ouput Source Current
Outputs 1 - 4
Vcc = 4.75 V
2
Vs
V
0.8
V
3.5
0.25
V
0.4
2.75
V
mA
OSCILLATOR
70
5
fosc
Frequency Range
VthL
Lower Threshold Voltage
0.33 Vec
VthH
Higher Threshold Voltage
0.66 Vec
Ri
I nternal Discharge Resistor
CIRCUIT OPERATION
The L6506 is intended for use with dual bridge drivers, such as the L298, quad darlington arrays, such
as the L7180, or discrete power transistors to drive
stepper motors and other similar loads. The main
function of the device is to sense and control the current in each of the load windings.
A common on-chip oscillator drives the dual chop-
per and sets the operating frequency for the pulse
width modulated drive. The RC network on pin 1
sets the operating frequency which is given by the
equation:
1
f = 0.69 RC for R > 10K
The oscillator provides pulses to set the two flipflops which in tu m cause the outputs to activate the
drive. When the current in the load winding reaches
the programmed peak value, the voltage across the
sense resistor (Rsense) is equal to V,el and the corresponding comparator resets its flip-flop interrupting the drive current until the next oscillator pulse
occurs. The peak current in each winding is programmed by selecting the value of the sense resistor and V,el. Since separate inputs are provided for
0.7
1
KHz
V
V
1.3
Kn
each chopper, each of the loads may be programmed independently allowing the device to be used
to implement microstepping of the motor. Lower
threshold of L6506's oscillator is 113 Vee. Upper
threshold is 2/3 Vce and internal discharge resistor
is 1 KQ ±30 %.
Ground noise problems in multiple configurations
can be avoided by synchronizing the oscillators.
This may be done by connecting the sync pins of
each of the devices with the oscillator output of the
master device and connecting the RIC pin of the
unused oscillators to ground.
The equations for the active time of the sync pulse
(T2) , the inactive time of the sync signal (T1) and
the duty cycle can be found by looking at the figure
1 and are:
T2 = 0.69 Cl R1 RIN
(1 )
Rl + RIN
T1
=
0.69 R1 C1
T2
DC = T1 + T2
(2)
(3)
3/5
601
L6506
By substituting equations 1 and 2 into equation 3
and solving for the value of R1 the following equations for the external components can be derived:
R1
1
= (DC -2) RIN
T1
C1 = 0.69 R1
(4)
(5)
Looking at equation 1 it can easily be seen that the
minimum pulse width of T2 will occur when the value of R1 is at its minimum and the value of R1 at its
maximum. Therefore, when evaluating equation 4
the minimum value for R1 of 700Q (1 KQ - 30 %)
should be used to guarantee the required pulse
width.
Figure 1 : Oscillator Circuit and Waveforms.
SYNC.
RIC
I T2 I
T1
5-9568/1
5-9567
APPLICATIONS INFORMATION
The circuits shown in figures 2 and 3 use the L6506
to implement constant current drives for stepper motors. Figure 2 shows the L6506 used with the L298
to drive a 2 phase bipolar motor. Figure 3 shows the
L6506 used with the L7180 to drive a 4 phase unipolar motor. The peak current can be calculated
using the equation:
I
Vref
peak
=
Rsense
The circuit of Fig.2 can be used in applications requiring different peak and hold current values by
modifying in the reference voltage.
4/5
602
The L6506 may be used to implement eitherfull step
or half step drives. In the case of 2 phase bipolar
stepper motor applications, if a half step drive is
used, the bridge requires an additional input to disable the power stage during the half step. If used
in conjunction with the L298 the enable inputs may
be used for this purpose.
For quad darlington array in 4 phase unipolar motor
applications half step may be implemented using
the 4 phase inputs.
The L6506 may also be used to implement microstepping of either bipolar or unipolar motors.
L6506
Figure 2 : Application Circuit Bipolar Stepper Motor Driver.
5V
36 V
o
lrl
paR
18
POWER
ENABLE
4
.....+-+·-+~
z~
14
13
PHASE
INPUTS
6
5V
12
10
11
l2
L 298N
13
14~+-~-r~~
6
15
8
I
I
I
I
_ _ .• _ _ _ _ _ ..J
Figure 3 : Application Circuit Unipolar Stepper Motor.
36V
5V
~.WER
ENABLE
18
14
4
5
13
PHASE
INPUTS
5V
L 7180
12
L6506
11
11
15
.J..
5/5
603
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L6570A
L6570B
2-CHANNEL FLOPPY DISK READ/ WRITE CIRCUITS
- - - - -
• TWO GAIN VERSIONS (A AND B)
• COMPATIBLE WITH 8", 5.25" AND 3.5"
DRIVES.
• INTERNAL WRITE AND ERASE CURRENT
SOURCES, EXTERNALLY SET
• INTERNAL CENTER TAP VOLTAGE SOURCE
• CONTROL SIGNALS ARE TTL COMPATIBLE
• TTL SELECTABLE WRITE CURRENT BOOST
• OPERATES ON + 12VAND+5 V POWER SUPPLIES
- - - -
--_.._ - - _ _ - - - - - ..
tures a gain of 85 min and the L6570B of 300 min.
All logic inputs and outputs are TTL compatible and
all timing is extemally programmable for maximum
design flexibility.
~--.------
.....
DIP-28 Plastic
DESCRIPTION
The L6570N B are integrated circuits which perform the functions of generating write signals and
amplifying and processing read signals required for
a double sided floppy disk drive. The L6570A fea-
ORDER CODES: L6570A
L6570B
BLOCK DIAGRAM
September 1988
1/7
605
L6570A-L6570B
ABSOLUTE MAXIMUM RATINGS
Symbol
Test Conditions
Unit
Vcc
5V Supply Voltage
Parameter
7
V
V DD
12V Supply Voltage
14
V
T stg
Storage Temperature
- 65 to 150
°C
°C
°C
Tamb
Ambient Operating Temperature
Tj
Junction Operating Temperature
VI
Ptot
o to + 70
o to + 130
Logic Input Voltage
Power Dissipation
- 0.5 to 7.0
V
500
mW
CONNECTION DIAGRAM (top view)
+HOO
Vee
-HOO
+AO
+HOI
-AO
-HOI
+IN
CB
-IN
Rw
GI
ReCe
62
Re
01
Vdd
02
Vet
RiW'
RDP
HSO/HSI
VOl
PW
EI
TO
GNO
EO
5-9518
THERMAL DATA
Max
2/7
606
~
a...,I
SGS·ntOMSON
IliIOICII©mIl.E1I'IIl@i!In«:i11
100
L6570A-L6570B
ELECTRICAL CHARACTERISTICS (unless otherwise specified, 4.75V $ Vcc $ 5.25V ; 11.4V $ Voo
12,6V ; 0 'C $ Tamb $ 70 'C; Rw = 430 Q ; REO = 62 KQ; C E = 0.012 /IF ; REH = 62 KQ ; R Ec
=220Q)
$
I Symbol I
Test Condtions
Parameter
I
Min.
I Typ.
I Max.
Unit
I
POWER SUPPLY CURRENTS
Icc
5V Supply Current
Read Mode
Write Mode
35
38
rnA
rnA
100
12V Supply Current
Read Mode
L6570A
L6570B
26
35
rnA
rnA
Write Mode (exclude
Write and Erase
L6570A
currents)
L6570B
24
35
rnA
rnA
LOGIC SIGNALS-READ/WRITE (R/W), CURRENT BOOST (eB)
VIL
Input Low Voltage
IlL
Input Low Current
VIH
Input High Voltage
IIH
Input High Current
VIL
= OAV
VIH
= 2AV
0.8
V
- OA
rnA
20
/lA
V
2.0
LOGIC SIGNALS-WRITE DATA INPUT (WDI), HEAD SELECT (HSO/HS1)
VT+
Threshold Voltage, Positive-going
lA
1.9
V
VT-
Threshold Voltage, Negative-going
0.6
1.1
V
OA
VT+, VT- Hysteresis
IIH
Input High Current
VIH
IlL
Input Low Current
VIL
= 2AV
= OAV
V
20
!lA
- 0.4
rnA
Voo-O.5
V
CENTER TAP VOLTAGE REFERENCE
VCT
Output Voltage
Iwc + IE = 3 rnA to
60 rnA
Voo-l.5
Vcc
Turn-Off Threshold
4.0
Voo
Turn-Off Threshold
9.6
VCT
Disabled Voltage
V
V
1.0
V
ERASE OUTPUTS (E1, EO)
Unselected Head Leakage
VEO. VEl = 12.6V
IE =50 rnA
3/7
607
L6570A-L6570B
ELECTRICAL CHARACTERISTICS (Continued)
ISymbol I
Parameter.
Min.
Test Conditions
Typ.
Max.
Unit
WRITE CURRENT
Unselected Head Leakage
VE1 , VEO = 12.6V
Write Current Range
Rw = 820 Q t0180 Q
Current Reference Accuracy
Iwc = 2.3/R w
VCB (current boost) = O.5V
25
jlA
3
10
mA
-5
+5
%
1.0
Write Current Unbalanced
Iw c = 3 mA to 10 mA
Differential Head Voltage Swing
Lllwc"; 5 %
12.8
Current Boost
VCB = 2.4V
1.25 1wc
1.35 1wc
%
Vpk
ERASE TIMING
Erase Delay Range
RED = 39 KQ to 82 KQ
CE = 0.0015 j.!F to 0.043 j.!F
0.1
1.0
ms
Erase Delay Accuracy
TED = 0.69 RED CE
RED = 39 KQ to 82 KQ
CE = 0.0015 j.!F to 0.043 j.!F
-15
+15
%
REH + RED = 78 KQ to 164 KQ
CE = 0.0015 j.!F to 0.043 j.!F
0.2
2.0
ms
T EH = 0.69 (RED + RED) CE
REH + RED = 78 KQ to 164 KQ
CE = 0.0015 j.!F to 0.043 j.!F
-15
+ 15
%
LlTEO
x100%
TED
Erase Hold Range
Erase Hold Accuracy
LlTEO
TED
x 100 %
ELECTRICAL CHARACTERISTICS (Unless otherwise specified:
sine wave, DC coupled to center tap. Summing amplifier load = 2
VIN (Postamplifier)= 0.2 Vpp sine wave, AC coupled; RG = open;
Vee; CD = 240 pF; CTD = 100 pF; RTD = 7.5 KQ; Cpw = 47 pF ;
VIN (Preamplifier) =10mVpp
KQ line-line, AC coupled.
Data pulse load = 1 KQ to
Rpw = 7.5 KQ).
READ MODE
ISymbol I
Parameter
Test Conditions
Min.
Typ.
Max.
I
Unit
PREAMPLIFIER-SUMMING AMPLIFIER
Diff Voltage Gain
Freq. = 250 KHz
L6570A
L6570B
Bandwidth (- 3 dB)
4/7
608
85
300
115
400
MHz
3
± 1.0
Gain Flatness
Freq. = DC to 1.5 MHz
Diff. Input Impedance
Freq. = 250 KHz
20
Max. Diff. Output Voltage Swing
VIN = 250 KHz Sine Wave
THD,.; 5 %
L6570A
L6570B
2.5
4.0
Small Signal Difference Output
Resistance
10";1.0mApp
Common Mode Rejection Ratio
VIN = 300 mVpp @ 500 KHz
L6570A
Inputs Shorted
L6570B
VN
dB
KQ
Vpp
75
Q
dB
50
40
L6570A-L6570B
ELECTRICAL CHARACTERISTICS (Continued)
I Symbol I
Parameter
Test Conditions
I
Min.
I Typ.
I Max. I Unit
I
PREAMPLIFIER-SUMMING AMPLIFIER
~Voo ~300
mVpp @500 KHz
Inputs Shorted to VCT
50
dB
Channel Isolation
Unselected Channel
VIN ~100 mVpp
@ 500 KHz. Selected Channel
Input Connected to V CT
40
dB
Equivalent Input Noise
Power BW ~ 10kHz to 1 MHz
Inputs Shorted to VCT
Power Supply Rejection Ratio
VCT
10
Center Tap Voltage
1.5
~Vrms
V
POST AMPLIFIER-ACTIVE DIFFERENTIATOR
AO, Dilt. Voltage Gain
+ IN, . IN to 01, 02
Freq.
Bandwidth (- 3d B)
+IN,·INtoD1,D2
Co
Gain Flatness
+IN,·INtoD1,D2
~
Freq.
~
250 KHz
0.1
~
~F,
Ro
8.5
~
2.5 KQ
11.5
3
MHz
± 1.0
DC to 1.5 MHz
Ro ~ 2.5 KQ
VN
dB
Co~0.1~F,
Max. Dilt. Output Voltage
Swing
VIN ~ 250 KHz Sine Wave, AC
Coupled.
,; 5 % THO in Voltage across Co
5.0
Vpp
Max. Dill. Input Voltage
VIN ~ 250 KHz Sine Wave, AC
Coupled.
,; 5 % THO in Voltage across
Co, RG ~ 1.5 KQ
2.5
Vpp
Dill. Input Impedance
Gain Control Accuracy
~AR
-----x 100 %
KQ
10
AR ~ AoRG/(8 x 103 + RG)
RG ~ 2 KQ
- 25
+ 25
%
3.7
mVpp
AR
Threshold Differential Input
Voltage
Peak Differential Network
Current
Min. diff. input voltage at post
amp.
that results in a change 01 state at
RDP
V1N ~ 250 KHz square wave,
Co ~ 0.1 ~F Ro ~500 Q,
T R, T F ,; 0.2 ~. No overshoot;
Data pulse lrom each VIN
transition
1.0
mA
5/7
609
L6570A-L6570B
ELECTRICAL CHARACTERISTICS (Continued)
I Symbol
Parameter
I
Test Conditions
I
Min.
I Typ.
I Max. I Unit
TIME DOMAIN FILTER
Delay Accuracy
L'.TTD
- - x 100 %
TTD
Delay Range
T TD = 0.58 RTD . (CTD + 10 .11) +
150 ns.
RTD = 5 KQ to 10 KQ
CTD = 56 pF
VIN = 50 mV pp @ 250 KHz sq.
wave
T R, T F <; 20 ns, AC coupled.
Delay measured from 50 % input
amplitude to 1.5 V data pulse
- 15
+ 15
%
TTD =0.58 RTD = (CTC + 10- 11 ) +
150 ns.
RTD = 5 KQ to 10 KQ
CTD = 56 pF to 240 pF
RD = 500 Q
CD = 0.1 !1F.
240
2370
ns
Tpw =0.58 Rpw x (Cpw + 8
X 10- 1 2) + 20 ns
Rpw = 5 KQ to 10 KQ
Cpw ? 36 pF
with measured at 1.5V amplitudes
- 20
+ 20
%
0.5
V
1225
ns
DATA PULSE
Width Accuracy
L'. Tpw
-----x 100 %
Tpw
Active Level Output Voltage
10H
= 400 !1A
Inactive Level Output
Leakage
10L
= 4 mA
Pulse Width
T pw = 0.58 Rpw x (C pw + 8
x 10. 1 2) + 20 ns
Rpw = 5 KQ to 10 KQ
Cpw = 36 pF to 200 pF
2.7
145
V
TEST SCHEMATICS
Figure 1 : Preamplifier Characteristics.
Figure 2 : Postamplifier Differential Output
Voltage Swing and Voltage Gain.
Vout
10Kfl
S-9546
6/7
610
I
L6570A-L6570B
TEST SCHEMATICS (Continued)
Figure 3 : Postamplifier Threshold Differential Input Voltage.
4~,,"
25
f=250KHz
SQUARE WARE
----II
24
~~r
21
02
20
Ro=500n
5-9547
Figure 4 : Complete Test Circuit.
ROP HS8/HS1 R/W WOI CB +Ucc UOO
Rpw
PW
17
18
19
11
12
28
5
9
CPwI
Rtd
15
CtdITO
01
Cd
L657G
29
21
22
RG
23
G2
24
25
25
27
8
Re
Reh
7
E1
ReCe
Ice
f188L65?8-B3
7/7
611
L6603
L6604
MEMORY CARD INTERFACE
ADVANCE DATA
• Single Power Supply operation
• Internal Clock Generator or External Clock Input
• Adjustable Precision of PVS
Output Voltage (2 %)
• 100 mVlstep of the Writing Output Voltage
• 110, Reset and Clock Outputs Protection Against
Short Circuit to GND and to V pvs.
DIP 28
ORDER CODE: L6603
. .• .• . :. . .
QiI
DESCRIPTION
'-',",,,"'-,",,','.'
t";";:":'-";!:,:;-,
The L6603 and L6604 are integrated circuits for application as interface between different types of memory card and a microprocessor which excanges
data with cards. Its operate with a single power supply.
PLCC 28
ORDER CODE: L6604
CONNECTION DIAGRAMS
,
m
Us
110
-,0
/
I/O
RESET
OUT
~
U
CK
uP
w
, ;g
0
0
I~'"
PWM OUT
ENABLE
Vcs ENABLE
FROM
m
RESET OUT
St
,
U
CK
OUT
VC5
[NAOl[
DAce
XTAL
DAel
XTAL
I*'
I*'
DAC2
BYPASS
1<,
OA[3
Vec8
I*'
I*'
OAC4
10
VccC
DAC5
II
VccE
DAC6
12
PVSI
DAC?
13
PUS AD]
GND
14
PUS
BBL65B3-Cl
Ives
'* ,
[
DAca [
"
/:-;
6
"
DAC1
7]
DAC2
22
OAe)
?1
DAC4
1"
OACS
11
?A
19
12
13
~
~
u
IT
"Q
o
0
14
n
L
[~
15
m
_,
C1
16
17
U
([
::J
(J1
~
m
18
U
,:::>w
r:+: l FROM .jp
• PLee ,:
1 "","""<0.
DIP 28
1/8
September 1988
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
613
L6603/L6604
BLOCK DIAGRAM
.,
'U •
J
PUB ADJ
I
!
I
.""
C2
A
I ~
I
I IC3
05
Q.<
I
I
I
I
,02
i
06
PUS
~CS
21
elI
u=
8BL1iMU-BJ
,NOBLE
DACHtD7
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Test Conditions
V
Operating Temperature Range
- 20 to 70
°C
Storage Temperature Range
- 40 to 150
°C
Supply Voltage
Top
T stg
THERMAL DATA (*)
Thermal Resistance Junction-ambient
2/8
614
Unit
10
Vs
Max
L6603/L6604
PIN FUNCTIONS
Pin
Name
1
1/0
2
RESET
3
St
4
CK ENABLE
5
VCS ENABLE
6 to 13
DACO to DAC7
Control Input for Reset of Memory Card FA Function
Strobe for Card with Memory (TTL compatible)
Commutation for
~P
Cards CK ENABLE; 1 (internal clock)
Control Input for VCS Supply Voltage
Control Inputs for Programmation of Vpvs Supply (see operation of
programming supply Vpvs )
14
GND
Ground
15
Vpvs
Programmable Supply for Memory Card (no use with decoupling
capacitor) Note 7 (to the credit card)
16
Vpvs Adj
17
PVS I
18
19
20
Vcs Vcc E
C
B
21
BYPASS
22
23
XTAL
XTAL
24
CKOUT
25
PWM OUT
26
RESETIOUT
27
1/0 Out
28
Note
Note
Note
Note
Note
Note
Note
Note
Function
Input of the Bidirectional Data Line
1
2
3
4
5
6
7
8
Vs
Adjustment Input for 2 % Precision Vpvs Output
Input for Vpvs Regulator
Inputs for Connection of Power Transistor (V cc regulator) (decoupling
capacitor on pin 18 > 100 nF if necessary) Note 8
(pin 18 to the credit card)
Output Voltage of Regulator for Clock Circuits (decoupling
capacitor> 150 nF). Note 9
Inputs for X-tal Connection. Note 10
Output for Clock Signal (TTL levels). Note 11 (to the credit card)
Output for DCIDC Converter
Reset Output. Note 11 (to the credit card)
Output 1/0. Note 11 (to the credit card)
General Power Supply
For Inputs V"" enable, Reset, 1/0, St, CK enable DAC (0 - 7).
For inputs DAC (0 - 7)
For input CK enable
For input Reset
For input Vvcs enable
For input 1/0
Typical internal thermal protection & current limiting system
Current limiting with "fold back system"
1,1m max (A);
0.75 V
Rlim
Note 9 Internal current limiting system
Note 10 Input for external clock (fig. 3)
Note 11 Output protected against short-circuit to ground and to & Vp",
3/8
615
L6603/L6604
ELECTRICAL CHARACTERISTICS (Vs = 8.5 V;
Symbol
Parameter
V'H
Input High Voltage
V'L
Input Low Voltage
I'H
Input High Current
I'L
Tamb
= 25 'C unless otherwise specified)
Test Conditions
Min.
Typ.
Max.
2
Input Low Current
Unit
1
0.8
V
1
250
~
2
500
~
3
100
(.iA
4
400
~
5
- 200
(.iA
6
- 150
(.iA
2
- 300
~
3
+ 10
~
4
- 200
~
5
- 300
(.iA
6
Isw
Supply Current Writing
Mode (pin 28)
Vpvs = Vpvsw max
tbd
mA
ISR
Supply Current Reading
Mode (pin 28)
Vpvs = VPVSR
tbd
mA
Ves
Output Voltage Range
Vs = 7 to 10 V ;
les = 0 to - 200 mA ;
T amb = - 20 to 70 'C ;
4.8
Load Regulation
I es = 0 to - 200 mA
0.18
%
Line Regulation
Vs = 7 to 10 V ;
- 50
dB
Temperature Coeff. of
Output Voltage Ves
T amb = - 20 to 70°C
65
dB
tol11
Fall Time of Ves
Fig. 1 CL =30 pF
5
25
(.is
toff2
Fall Time of Vpvs
Fig. 1 CL =30 pF;
~ Vpvs =0.1 V
40
100
(.is
Operating Curro Limit
Ves=-4%;
R 'im = 3 ohm
~
Ves
---
5
5.2
V
~ Ves
~
Ves
---
~
~
Vs
Ves
--~ T
Ics
max
- 220
mA
- 70
- 100
mA
VPVSWMAX
Maximum Programming
Voltage (writing mode
memory)
Vs = 7 to 10 V ;
Ipvs = 0 to - 50 mA ;
24.5
25.5
26.5
V
VPVSWMIN
Minimum Programming
Voltage (writing mode
memory)
Vs = 7 to 10 V ;
Ipvs = 0 to - 50 mA ;
4.9
5.1
5.3
V
Output Voltage Range of
PVSP (reading mode
memory)
Vs = 7 to 10 V ;
Ipvs = 0 to - 20 mA ;
4.8
5
5.2
V
les1
VPVSR
4/8
616
Short Circuit Current limit
Note
V
L6603/L6604
ELECTRICAL CHARACTERISTICS (continued)
Symbol
tlVpvs
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
Load Regulation
Ipvs = 0 to - 50 mA ;
0.8
%
Line Regulation
Ivps = 0 mA ;
Vs = 7 to 10 V
50
dB
Temperature coeft. of
Ouptut Voltage V PV s
Ipvs = 0 mA ;
T amb = - 20 to 70 °C
74
dB
Note
--
Vpvs
tlVs
---
tlVpvs
tlVpvs
---
tl
T
IpvsMAx
Vpvs ADJ
- Ves
Short Circuit Current Limit
- 50
Differential Volt.
between Vpvs (reading
mode) & Ves
-5
= 30 pF ;
- 65
- 80
mA
5
%
12
50
fls
25
100
fls
tpLH1
Turn ON Time of Ves
Fig. 1 CL
tpLH2
Turn ON Time of Vpvs
Fig. 1 CL = 30 pF ;
tlVpvs = 0.1 V
ton1
Rise Time of Ves
Fig. 1 CL = 30 pF ;
10
50
flS
ton2
Rise Time of Vpvs
Fig. 1 CL = 30 pF;
tl Vpvs =0.1 V
30
100
fls
5/8
617
L6603/L6604
ELECTRICAL CHARACTERISTICS (Vs = 8.5 V;
~I-'-------- P;;;;~~te-r-VOH1
I
I
High Output Voltage
(pin 26)
Tamb
= 25 'C ; unless otherwise specified)
Test Conditions
(-PIN 26) V;s min ---IOH = - 200ljlA
1-
I Mi~-:-r TYp. -,-M~-;-rUnit
I
I Low Output Voltage
(pin 26)
(PIN 26) VIH = 2 V ;
IOl = + 200ljlA
I-------t~-~---------------Max Output Voltage
015
V
V
L __l. ~r~~;:~h~:_~~~~_~
Isc2
'Short-circuit Curro Limit
~-V~H2' ~;h~~tPu;-VOIt~;
I
I
r-VOl;-tLOW
VSC2
ilOl = + 200ljlA
VIH min = 0.8 V
1.9
~~:::~~~vJu;rn:,:~37 1/O-:42V---
I-I
.-----
I---~----·-
0.9
V
VCS
+ 0.3
V
I
I
~A-I--1
- 30
(Pin 27)
l. _V_O_H_3_+-I-"~"--I~~ ~l~~_~~ta~__ _
VOH4
r-
IOH
= -
200ljlA
~I~ ~~tPut Voltage 'I~ +-200/~A---
VOL3
=
I
__ 3.5
IOH = - 10ljlA
High Output Voltage
+--1
V
l
I Max Output Voltage
durrng Short-circuit
I
---
O~Put Voltag-e---- ~~smmaa: ~ 2 V
(pin 27)
mA
~~n-.
Vcs
IIOH = - 500ljlA
(pin 27)
i
Note
-'1-4"-8"---+-----+- V
4-.2
4.1
4.2 .
4.1
T[
0.1
=1=V
-'-~~~,"","-V-0.4
I
V
Vcs
:
V
.
mA
I
(pin 24)
VSC3
-1'
Max Output Voltage
during Short-circuit
between Pin 24 & Vpvs
Output
I
Isc4
------
ton
toll
Short-Circuit Curro ,Limit
(pin 24)
-- - --, -- - - - - - - - " . - - - - - - - -
Rise Time of Clock
Output (pin 24)
Fall Time of Clock Output
(pin 24)
Duty Cycle (T1/T)
L..
6/8
618
-~Fi9~2 " -
fXTAl = 4.91 MHz,
CL = 30 pF
I-I
>::.
15
ns
18
ns
I
Fig. 2
[.,fXT, AL = 4,.91 MHz;
CL = 30 pF
fXTAl = 4.91 MHz;
CL = 30 pF
I
I
40
60
I
I
I
L
,
--iI
%
I
L
L6603/L6604
OPERATION OF PROGRAMMING SUPPLY Vpvs
The output voltage Vpvs can be programmed from 5 V to 25.5 V by steps of 0.1 V and can be expressed as
follows:
code DAC 0-7
Vpvs = - - - - - - - - 10
Two operating modes are possible
Reading mode (code DAC = 50) : Vpvs = 5 V ;
Writing mode (code 51 to 255) : Vpvs = 5.1 to 25.5 V
In this case, the voltage drop between output of converter DC/DC (PVSI) and Vpvs is constant and is tipicalIy to 3 V.
Figure 1 : Ves and Vpvs Delay Times Versus Ves Enable.
-----~·-I
Ucs ENABLE
~
----1--/'
Ucs
tPLH1~
Upus
\~-----:'/~
981r,j
I
toff1
181
\
tpLH2~
.~:
~~_ _..JI •
toFf2
~
+-+'-------.:
toni
I~
~
ton2
I
88L6683-52
Ctot load
= 30 pF.
Figure 2 : Clock Output Waveform.
---_._---
I
I
~
I
ton
Ctot load
I
I
~
.
I
tofF
"l-- \
I
.lo-------
T1
I
~
1"
__ ~,~., H_J
= 30 pF.
7/8
619
L6603/L6604
Figure 3 : Input for External Clock.
·
4
8k
EXT.
J1f
CLOCK
23
XTAL
22
XTAL
88L66fi13-S3
_____________ .______ JI
~--------------
Figure 4 : Application Circuit.
)w
m
w
" ..,
....
m
w
-'
ID
a:
z
w
>.:
u
w
-'
ID
a:
z
w
LS8
620
MS8
'------y---J
OAe 18 to 71
II
u
:>
' - - - - - - -_ _ _ _ _ _
8/8
6.81(
22
- - - - - - - - - - - - - - - - - - _ _ _ _ _ _1
L7150
L7152
50 V QUAD DARLINGTON SWITCHES
The L7150 has 350 input resistors and is compatible with TTL, DTL, LSTTL and 5 V CMOS logic. The
L7152 has 3 KU input resistors for use with 6-15 V
CMOS and PMOS logic.
• FOUR NPN DARLINGTONS WITH ISOLATED
CONNECTIONS
• OUTPUT CURRENT TO 1.5 A EACH DARLINGTON
• MINIMUM BREAKDOWN 50 V
• MUL TIWATT PACKAGE ALLOWS OPERATION AT 1.5 A, 50 V, 100 % DUTY CYCLE, ALL
FOUR DEVICES ON
• INTEGRAL SUPPRESSION DIODES
• VERSIONS FOR 5 VJl.ND 6-15 V LOGIC FAMILIES
These devices are suitable for driving a wide range
of inductive and non-inductive loads including DC
motors, stepper motors, solenoids, relays, lamps,
multiplexed LEOs and heaters.
/_._-_
.. _ - _ .
I
I
I
Mulliwatt-1S
I
DESCRIPTION
The L7150 and L7152 are 1.5 A quad darlington arrays mounted in the 15-lead Myltiwatt@ plastic
package. Each darlington is equipped with a suppression diode for inductive loads and all three terminals are isolated.
I
ORDER CODES: L7150
L7152
l
CONNECTION DIAGRAM (top view)
- . - -. . . . • .-
..
-~--
_
..
_ _.
-$-
--
15
B 4
14
E4
C t..
13
12
------
N C.
"
C3
E 3
10
,
83
GNO
81
I
E1
( 1
I
Vs
(1
L
___________
Ta_b connected
September 1988
El
81
I
S-5958/'
to~p~in~8~
__
~
... _ _ _ .___
~.
__________
J
1/4
621
L71S0-L71S2
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Parameter
Unit
VCEX
Output Voltage
50
V
10
Output Current
1.75
A
VI
Input Voltage
30
V
18
Input Current
25
mA
Ptot
W
25
Power Dissipation (T case = 75°C)
Tamb
Operating Ambient Temperature Range
T stg
Storage Temperature
o to
70
°C
- 55 to 150
°C
SCHEMATIC DIAGRAM
____----o----n c
s-
5957
L7150 : HN = 3 son
L7152 : HN = 3Kn
ELECTRICAL CHARACTERISTICS (T amb = 25 'C unless otherwise specified)
Symbol
Parameter
ICEX
Output Leakage Current
Ij(on)
Vj(on)
Unit
Fig.
100
500
J.lA
J.lA
1
V
2
1.15
1.3
1.4
1.5
V
V
V
V
3
4.3
9.6
1.8
5.2
mA
mA
mA
mA
4
Ie = 1 A
Ie = 1.5 A
2
2.5
V
V
5
Ie = 1 A
Ie = 1.5 A
6.5
10
V
V
T amb = 70°C
Ie = 100 mA
Vj = 0.4 V
Collector-emitter
Saturation Voltage
Ie
Ie
Ie
Ic
18
18
18
18
=625 J.lA
= 935 J.lA
= 1.25 mA
= 2 mA
Input Current
forL7150
for L7150
forL7152
forL7152
Vj
Vj
Vj
Vj
= 2.4 V
=3.75 V
=5 V
= 12 V
VCER (sus) Collector-emitter
Sustaining Voltage*
VeE (sat)
Max.
Test Condtions
VCE =50 V
VCE =50 V
Input Voltage
= 500 mA
= 750 mA
=1A
= 1.25 A
for L7150
VeE = 2 V
VeE = 2 V
for L7152
VeE = 2 V
VCE = 2 V
Min.
Typ.
35
1.4
3.3
0.6
0.7
tpLH
Turn-on Delay Time
0.5 Vj to 0.5 Va
1
Ils
tpHL
Turn-off Delay Time
0.5 Vj to 0.5 Va
1.5
J.lS
2/4
622
L71S0-L71S2
THERMAL DATA
Max
Max
3
35
TEST CIRCUIT
Figure 1.
Figure 2.
OPEN
s- 59 26
Figure 3.
Figure 4.
OPEN
OPEN
5-1986
5- t960
Figure 5.
5-1967
3/4
623
L71S0-L71S2
MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the Multiwatt@ package attaching the
heatsink is very simple, a screw or compression
spring (clip) being sufficient. Between the heatsink
and the package it is better to insert a layer of silicon grease, to optimize the thermal contact ; no
electrical isolation is needed between the two surfaces.
Figure 6 : Mounting Example.
-~----------~~----
------------1
I
I
4/4
624
L7180
L7182
80 V QUAD DARLINGTON SWITCHES
• FOUR NPN DARLINGTONS WITH ISOLATED
CONNECTIONS
• OUTPUT CURRENT TO 1.5 A EACH DARLINGTON
• MINIMUM BREAKDOWN 80 V
• MUL TIWATT PACKAGE ALLOWS OPERATION AT 1.5 A, 80 V, 100 % DUTY CYCLE, ALL
FOUR DEVICES ON
• INTEGRAL SUPPRESSION DIODES
• VERSIONS FOR 5 V AND 6-15 V LOGIC FAMILIES
The L7180 has 350 n input resistors and is compatible with TTL, DTL, LSTTL and 5 V CMOS logic.
The L 7182 has 3 Kn input resistors for use with 615 V CMOS and PMOS logic.
These devices are suitable for driving a wide range
of inductive and non-inductive loads including DC
motors, stepper motors, solenoids, relays, lamps,
multiplexed LEOs and heaters.
Mu Itiwatt 15
DESCRIPTION
The L7180 and L7182 are 1.5 A quad darlington arrays mounted in the 15-lead Multiwatt@ plastic
package. Each darlington is equipped with a suppression diode for inductive loads, and all three terminals are isolated.
ORDER CODES:
L 7180
L7182
ABSOLUTE MAXIMUM RATINGS
,---,------------------------------------------- -----
Symbol
Parameter
V CEX
Output Voltage
10
Output Current
Vi
Input Voltage
---
__________L_~~t Co_n~~ti0l1s
I
80
I
__ J-l..'lit
V
1.75
A
60
V
f-----'--f--~-----''-----------------------~---- - - - - - - - - + - - - - - 1
18
Input Current
25
mA
Ptot
Power Dissipation (T case = 75°C)
Tamb
Operating Ambient Temperature Range
T stg
Storage Temperature
------
25
W
o to 70
- 55 to 150
SCHEMATIC DIAGRAM
.;-----+---{) C
L7180 : RIN = 350 Q
L7182 : AiN = 3 KQ
5- 5957
September 1988
1/4
625
I
L7180-L7182
CONNECTION AND SCHEMATIC DIAGRAMS (top view)
-$-
Vs
B4
E4
(4
15
I.
""
"
Ri
N,C,
C
B
C3
I
E3
B3
*
GND
B2
E2
(2
Vs
C1
E1
B1
-'SUB
5- 5957
L7180 : R'N
L7182: AiN
= 350Q
= 3 KQ
5-5958/1
LTab connec.ed '0 p'n 8
THERMAL DATA
I
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
ELECTRICAL CHARACTERISTICS (T amb
Symbol
ICEX
Parameter
VCE(:~t)
Collector-emitter
Saturation Voltage
25 'C unless otherwise specified)
TestCon_d_it_io_n__s________-r_M_in_.~-T~y~p-.+_M-a-x-.-c_u-n_i_t-rF~ig~.
Output Leakage Current
VCER(sus) Collector-emitter
Sustaining Voltage(')
=
I
VCE=80V
VCE =80 V
Tamb =70 °C
Ic = 50 mA
V, = 0.4 V
lie =500 mA
Ic = 750 mA
Ic -1 A
1--- ___ 1--______________ Ic: 1.5 A _
I'(on)
Input Current
°C/W
°C/W
3
35
Maxi
Max
J
I
18
18
18
18
100
500
=625 J.lA
= 935 J.lA
= 1.25 mA
=2.25 mA
For L7180
For L 7180
ForL7182
ForL7182
V, = 2.4 V
Vi = 3.75 V
V,=5V
Vi=12V
VCE = 2 V
Ic = 1 A
Ic=1.5A
V
2
1.15
1.3
1.4
1.6
V
V
V
V
3
4.3
9.6
1.8
5.2
mA
mA
mA
mA
4
2
2.5
V
V
5
6.5
10
V
V
50
1.4
3.3
0.6
1.7
1
·
I------.-r-------------r-------~-----_+--~-~-_+--t_~
I For L 7180
V'(an)
Input Voltage
! VCE=2V
ForL7182
VCE = 2 V
1 VCE = 2 V
::~~ i~;~~~~6~:;~:~:--+~: ~:.:: ~:: ~:(')t,,",, = 10IlS.
Guaranteed by design; not tested 100 %.
214
626
Ie = 1 A
Ic = 1.5 A
--
-
- - - _.. -
-
--
-------
1 --
-~-
1.5
s
il - - 1 - ilS
L7180-L7182
TEST CIRCUITS
Figure 1.
Figure 2.
OPEN
Figure 3.
Figure 4.
OPEN
OPEN
OPEN
S-19&O
5-1986
Figure 5.
OPEN
5-1987
3/4
627
L7180-L7182
MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink.
Thanks to the Multiwatt® package attaching the
heatsink is very simple, a screw or a compression
spring (clip) being sufficient. Between the heatsink
and the package it is better to insert a layer of silicon grease, to optimize the thermal contact ; no
electrical isolation is needed between the two surfaces.
Figure 6 : Mounting Example.
4/4
628
{"U ~~t~~~~~~·
-------------
,.r==
.,L SCiS-THOMSON
~D©OO@~[L~©'[fOO@[RJJD©~
M5450
M5451
LED DISPLAY DRIVERS
• M5450 34 OUTPUTS/15mA SINK
• M5451 35 OUTPUTS/15mA SINK
GENERATOR OUTPUTS (NO
• CURRENT
EXTERNAL RESISTORS REQUIRED)
• CONTINUOUS BRIGHTNESS CONTROL
• SERIAL DATA INPUT
• ENABLE (ON M5450)
• WIDE SUPPLY VOLTAGE OPERATION
• TTL COMPATIBILITY
silicon gate technology. They are available in
40-pin dual in-line plastic packages.
A single pin controls the LED display brightness
by setting a reference current through a variable
resistor connected to V DD or to a separate supply of 13.2V maximum.
The M5450 and M5451 are pin-to-pin replacements of the NS MM 5450 and MM 5451.
Application examples:
•
MICROPROCESSOR DISPLAYS
•
INDUSTRIAL CONTROL INDICATOR
•
RELAY DRIVER
•
INSTRUMENTATION READOUTS
The M5450 and M5451 are monolithic MOS
integrated circuits produced with an N-channel
DIP-40 Plastic
ORDERING NUMBERS: M5450 B7
M5451 B7
ABSOLUTE MAXIMUM RATINGS
V DD
VI
Vo (off)
10
Ptot
Tj
Top
T stg
Supply voltage
Input voltage
Off state output voltage
Output sink current
Total package power dissipation
Junction temperature
Operating temperature range
Storage temperature range
-0.3 to 15
-0.3 to 15
15
40
at 25°C
at 85°C
150
-25 to 85
-65 to 150
V
V
V
mA
1W
560 mW
°C
°C
°C
Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.
June 1988
1/7
629
M5450-M5451
CONNECTION DIAGRAMS
~
.0
OUTPUT BIT 18
"ss
OUTPUT BIT 17
2
3.
OUTPUT BIT 19
OUTPUT BIT 17
2
OUTPUT BIT 16
3
38
OUTPUT BIT 20
3
OUTPUT BIT 15
•
OUTPUT BIT 16
37
OUTPUT BIT 21
OUTPUT BIT 15
•
'Iss
OUTPUT B[T 19
37
OUTPUT BIT 21
OUT~UT
5
36 OUTPUT BtT 22
OUTPUT BIT 14
5
36
OUTPUT BIT 13
6
35 OUTPUT BIT 23
OUTPUT BIT 13
6
35 OUTPUT BIT 23
BIT 22
OUTPUT BIT 12
,.
OUTPUT BIT 24
OUTPUT B[T 12
,.
OUTPUT B[T 24
OUTPUT BIT 11
33
OUTPUT BIT 2S
OUTPUT B[T 11
33
OUTPUT BIT
OUTPUT BIT 10
32 OUTPUT BIT 26
OUTPUT BIT 10
9
OUTPUT SIT 9
10
31
OUTPUT BIT 27
OUTPUT BIT 9
10
OUTPUT BIT 8
"
30 OUTPUT BIT 28
OUTPUT B[T 8
29 OUTPUT BIT 29
OUTPUT 81T 7
13
28 OUTPUT BIT 30
OUTPUT BIT.6
M5450
OUTPUT BIT S
,.
27 OUTPUT BIT 31
OUTPUT BIT
~
OUTPUT BIT 4
IS
26 OUTPUT BIT 32
OUTPUT BIT 4
15
OUTPUT BIT 3
16
25 OUTPUT BIT 33
16
17
,.
OUTPUT BIT 3
OUTPUT BIT 2
OUTPUT BIT 34
OUTPUT BIT 2
17
OUTPUT BIT 1
18
23
DATA ENABLE
OUTPUT BIT I
18
BRIGHTNESS
"20
22
DATA IN
21
CLOCK IN
BRIGHTNESS
CONTROL
VOD
"20
CONTROL
VDD
"
M5451
31
2' OUTPUT BIT 29
13
'8 OUTPUT BIT)O
"
,.
n"
OUTPUT BIT 31
21
CLOCK IN
26 OUTPUT BIT 32
Z5
5-5796
BLOCK DIAGRAM
OUTPUT BIT,
BRIGHTNESS
,8
CONTROL
OUTPUT BIT 17
30 OUTPUT BIT 28
5_';o7'3S
Fig. 1
1~
32 OUTPUT BIT 16
"12
,.
OUTPUT BIT 6
DATA ENABLE(M5450)
OUTPUT 35
(MS4,-,').....--':.::..t-SERIAL
DATA-"'-''''-I,...-J
CLOC."K'+_-'-'-I---
5-5797
630
OUTPUT BIT 20
OUTPUT BIT 14
OUTPUT BIT 7
2/7
OUTPUT BIT 18
3'
38
OUTPUT BIT 33
OUTPUT BIT 34
OUTPUT BIT 35
DATA IN
M5450- M5451
STATIC ELECTRICAL CHARACTERISTICS (T amb within operating range, Voo= 4.75V to
13.2V, Vss= OV, unless otherwise specified)
Parameter
VOO
Supply Voltage
100
Supply Current
VI
Input Voltage
Logical "0" Level
Logical "'1" Level
Is
Brightness Input Current
Inote 21
Vs
Brightness Input Voltage
Ipin 191
VO(off)
Off State Out. Voltage
10
Out. Sink Current Inote 3)
Segment OFF
Segment ON
f clock
Input Clock Frequency
10
Output Matching Inote 11
Test conditions
Min.
Typ.
Max.
Unit
13.2
V
7
mA
-0.3
2.2
Voo-2
0.8
Voo
Voo
V
V
V
0
0.75
mA
3
4.3
V
13.2
V
10
J.lA
10
4
25
J.lA
mA
mA
0.5
MHz
± 20
%
4.75
Voo= 13.2V
± 10 J.lA input bias
4.75';; Voo';; 5.25
VOO > 5.25
Input current = 750 J.lA
Vo = 3V
Vo = 1V Inote 41
Brightness In. = 0 J.lA
Brightness In. = 100 J.lA
Brightness In. = 750 J.lA
Notes: 1. Output matching is calculated as the percent variation from IMAX
0
2
12
0
2.7
15
+ IMIN12.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to
another.
3. Absolute maximum for each output should be limited to 40 mAo
4. The Vo voltage should be regulated by the user. See figures 5 and 6 for allowable Vo versus 10 operation.
FUNCTIONAL DESCRIPTION
Both the M5450 and the M5451 are specifically designed to operate 4 or 5-digit alphanumeric displays
with minimal interface with the display and the data source. Serial data transfer from the data source to
the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading "1"
follow~d by the 35 data bits allows data transfer without an additional load signal. The 35 data bits are
latched after the 36th bit is complete, thus providing non-multiplexed, direct drive to the display.
Outputs change only if the serial data bits differ from the previous time.
Display brightness is determined by control of the output current LED displays.
A 1 nF capacitor should be connected to brightness control, pin 19, to prevent possible oscillations.
A block diagram is shown in figure 1. For the M5450 a DATA ENABLE is used instead of the 35th
output. The DATA ENAB LE input is a metal option for the M5450.
3/7
631
M5450-M5451
FUNCTIONAL DESCRIPTION (continued)
The output current is typically 20 times greater than the current into pin 19, which is set by an external
variable resistor. There is an internal limiting resistor of 400n nominal value.
Figure 2 shows the input data format. A start bit of logical "1" precedes the 35 bits of data. At the 36th
clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits
of the sh ift registers into the latches.
At the low state of the clock a RESET signal is generated which clears all the shift registers for the next
set of data. The shift registers are static master-slave configurations. There is no clear for the master
portion of the first shift register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all
registers and all latches. The START bit and the first clock return the chip to its normal operation.
Bit 1 is the first bit following the start bit and it will appear on pin 18. A logical "1" at the input will
turn on the appropriate LED.
Figure 3 shows the timing relationship between Data, Clock and DATA ENABLE.
A max clock frequency of 0.5 MHz is assumed.
For applications where a lesser number of outputs are used, it is possible to either increase the current
per output or operate the part at higher than lV V OUT '
The following equation can be used for calculations.
T j = [(V OUT ) (I LED ) (No. of segments) + (Voo • 7 mAl
1 (124°C/W)
+ Tamb
nY n
n L-
where:
Tj
= junction temperature (150°C max)
VOUT= the voltage at the LED driver outputs
ILEO= the LED current
124°C/W = thermal coefficient of the package
T amb = ambient temperature
The above equation was used to plot figure 4,5 and 6.
Fig. 2 - Input Data Format
CLOCK
n y nn
riL...Jn r-~
L,-J Y
-..J
L...J
DATA
j-,L...Jn Y n Y
__ .J
r
I
I
: START: BIT'
I
:BIT35: BIT36'
I
L...J
I
J
~;,14f$;/I'M;/&)ffi;7;,1;/$;/4'@j_
n
~.
(INTERNAL)
L._ _ _ __
n
RESET
(INTERNAL)
' - -_ __
5-5827/1
_4/_7_ _ _ _ _ _ _ _ _ _ _
ru
SCS-THOMSON _ _ _ _ _ _ _ _ _ _ __
.
J'~ ""'"O©IliI@~~~©llllil@~O©:§i
632
M5450 -M5451
Fig.3
CLOCK
DATA
300ns MIN
DATA ENABLE
lOOns MIN
Plol
,-,--"",-,-,....,-,-....,-""n
(WI
r-+--+'~~:--l;~:'y"c"o
Fig.5
(,-1,910
I
-t 1
+t-
\~
Tamb(OC)
-
-r'" 'b.
3OSE:GM-1d.,.
'"
.:x
-+1+ pM
60
Tam b,,8S'C
Tj"l50°C(MAX)
20SEGM
_+.1
0.6
Fig.6
I
I
18
5 -;78 ~
12
16
I
20
24 'LED (rnA)
8
12
16
20
]t.
28
3234N"Segm.
TYPICAL APPLICATIONS
Basic electronically tuned Radio or TV system
LEO DISPLAY
M5450
DISPLAY
DRIVER
PLL
SYNTHESIZER
5_5800
STATION
DETECT. ETC.
-------------- ~ ~~~~~~1T~:~~Al
5/7
633
M5450-M5451
TYPICAL APPLICATIONS (continued)
Duplexing 8 Digits with One M5450
vDD
,-, ,-, ,-, ,-, ,-, ,-, ,-, ,-,
O. O. 0 .'='./:1 ./~ ./~ .'::1.
9 16
28 40
32
39
24
31
M5450
CLOCK IN
+----
5-5801
DATA IN
POWER DISSIPATION OF THE IC
The power dissipation of the
Ie can be
limited using different configurations.
a)
S_S787
~6~/7________________________ ~~~~~~?~:~~
634
__________________________
M5450-M5451
In this application R must be chosen taking into account the worst operating conditions.
R is determined by the maximum number of segments activated
R=
Vc - V D
MAX
-Va
NMAX'l
MIN
o
The worst case condition for the device is when roughly half of the maximum number of segments
are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings
of the device.
In critical cases more resistors can be used in conjunction with groups of segments.
In this case the current variation in the single resistor is reduced and Ptot limited.
b)
In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly
chosen.
The total power dissipation of the IC depends, in a first approximation, only on the number of
segments activated.
c)
I n this configuration V auT + V 0 is constant. The total power dissipation of the IC depends only on
the number of segments activated.
--------------
~ ~~~~m?1r~:~~~~
____________
---...:7/_7
635
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
M5480
LED DISPLAY DRIVER
• 3 112 DIGIT LED DRIVER (23 SEGMENTS)
•
CURRENT GENERATOR OUTPUTS (NO
RESISTORS REQUIRED)
•
CONTINUOUS
BRIGHTNESS
CONTROL
• SERIAL DATA INPUT
•
NO LOAD SIGNAL REQUIRED
•
WIDE
•
TTL COMPATIBILITY
SUPPLY
VOLTAGE
technology. It utilizes the M5451 die packaged in
a 28-pin plastic package making it ideal for a
3% digit dispaly. A single pin controls the LED
dispaly brightness by setting a reference current
through a variable resistor connected either to
VDD or to a separate supply of 13.2V maximum.
The M5480 is a pin-to-pin replacement of the
NS MM 5480.
OPERATION
Applications examples:
•
MICROPROCESSOR DISPLAYS
•
INDUSTRIAL CONTROL INDICATION
•
RELAY DRIVER
•
INSTRUMENTATION READOUTS
The'M5480 is a monolithic MOS integrated
circuit produced with a N-channel silicon gate
DIP-28 Plastic
ORDERING NUMBER: M5480 B7
ABSOLUTE M.AXIMUM RATINGS
V DD
V,
Vo (off)
10
Ptot
Supply voltage
I nput voltage
Off state output voltage
Output sink current
Total package power dissipation
Tj
Top
T stg
Junction temperature
Operating temperature range
Storage temperature range
-0.3 to
-0.3 to
15
15
. 15
40
at 25°C
at 85°C
150
-25 to 85
-65 to 150
V
V
V
mA
940mW
490mW
°C
°C
°C
Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.
June 1988
1/6
637
M5480
CONNECTION DIAGRAM
Vss
OUTPUT BIT 12
OUTPUT BIT 11
OUTPUT BI110
OUTPUT BIT 13
3
OUTPUT BIT 14
OUTPUT BI1 9
OUT PUT BIT 15
8
OUTPUT BIT 16
OUTPUT BI1
OUTPUT BIT 7
OUTPUT BIT 17
OUTPUT BI16
OUTPUT BIT 18
5
OUTPUT BIT 19
OUTPUT BIT
OUTPUT BIT 4
OUTPUT BIT 20
OUTPUT BI13
10
OUTPUT BIT 21
OUTPUT BI1 2
11
OUT PUT BIT 22
OUTPUT Bill
11
BRIGHTNESS
CONTROL
13
OATA IN
VOO
14
CLOCK IN
5·S782
BLOCK DIAGRAM
Fig. 1
BRIGHTNESS
CONTROL
5-5783
_2/_6_ _ _ _ _ _ _ _ _ _ _-+_
638
~ ~~~~m~1J~~~
M5480
STATIC ELECTRICAL CHARACTERISTICS (T amb within operating range, Voo= 4.75V to
13.2V, V 55= OV, unless otherwise specified)
Parameter
Test conditions
Voo
Supply Voltage
100
Supply Current
Voo= 13.2V
VI
I nput Voltages
Logical "0" Level
Logical "1" Level
± 10ltA Input Bias
IB
Brightness Input Current
(note 21
VB
Brightness Input
Voltage (pin 131
VO(oll)
Off State Output Voltage
10
Output Sink Current
(note 31
Segment OFF
Segment ON
fclock
Input Clock Frequency
10
Output Matching (note 11
Notes:
Min.
Typ.
Max.
Unit
13.2
V
7
mA
-0.3
2.2
Voo-2
0.8
Voo
Voo
V
V
V
0
0.75
mA
4.3
V
18
V
10
itA
10
4
25
itA
mA
mA
0.5
MHz
± 20
%
4.75
4.75 .; V 00 .; 5.25
Voo > 5.25
Input Current = 750 itA
3
13.2
Vo = 3V
Vo = 1V (note 41
Brightness In. = 0 itA
Brightness In. = 100 itA
Brightness In. = 750 itA
0
2
12
0
2.7
15
1. Output matching is calculated as the percent variation from I MAX + IM IN /2.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to
another.
3. Absolute maximum for each output should be limited to 40 mAo
4. The Vo voltage should be regulated by the user.
FUNCTIONAL DESCRIPTION
The M5480 is specifically designed to operate 3 1/ 2 digit alphanumeric displays with minimal interface
with the display and the data source. Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading "1" followed by the 35 data
bits allows data transfer without an additional load signal. The 35 data bits are latched after the 36th bit
is complete, thus providing non-multiplexed, direct drive to the display.
Outputs change only if the serial data bits differ from the previous time.
Display brightness is determined by control of the output current for LED displays. A 1nF capacitor
should be connected to brightness control, pin 13, to prevent possible oscillations.
A block diagram is shown in figure 1. The output current is typically 20 times greater than the current
into pin 13, which is set by an external variable resistor.
There is an internal limiting resistor of 400n nominal value.
___________________________
~~~~~~g~~~
_________________________
3~/6
639
M5480
FUNCTIONAL DESCRIPTION (continued)
Figure 2 shows the input data format. A start bit of logical" 1" precedes the 35 bits of data. At the
36th clock a LOAD signal is generated synchronously with the high state of the clock, which loads the
35 bits of the shift registers into the latches.
At the low state of the clock a RESET signal is generated which clears all the shift registers for the next
set of data. The shift registers are static master-slave configurations. There is no clear for the master
portion of the first register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all
registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 3 shows the timing relationships between Data, and Clock. A maximum clock frequency of
0.5 MHz is assumed.
Figure 4 shows the Output Data Format for the 5480. Because it uses only 23 of the possible 35 outputs,
12 of the bits are "Don't Care".
For applications where a lesser number of outputs are used, it is possible to either increase the current
per output, or operate the part at higher than 1V V OUT '
The following equation can be used for calculations.
T j = [(V OUT) (I LED ) (No. of segments) + Voo • 7 mA] (132°C/W) + Tamb
where:
T j = junction temperature (150°C max)
VOUT= the voltage at the LED driver outputs
I LED = the LED current
132°C/W = thermal coefficient of the package
T amb = ambient temperature
Fig.2 - Input Data Format
CLOCK
DATA
n
LOAD
(INTERNAL)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---J
L _ _ _ __
n
RESET
(INTERNAL)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.......J
Fig.3
CLOCK
DATA
~
L_
\
f t.,,"
-4/~6-------------------------~~~~~~gT~n
640
'-_ _ __
5_S826
----------__---------------
M5480
Fig. 4 - Serial Data Bus/Outputs Correspondence
TYPICAL APPLICATION
BASIC 3 1/2 Digit interface.
I ~I ~::J
1_1'- _I
l~~S~G_M!t:!.~1
M5480
DISPLAY
DRIVER
r
r
5-57.
CLOCK DATA
POWER DISSIPATION OF THE IC
The power dissipati?n of the Ie can be limited using different configurations .
•Yc
a)
In this application R must be chosen taking into account the worst operating conditions.
R is determined by the maximum number of segments activated.
R=
Ve - V D
N
MAX -
\tOUT MIN
MAX·
ID
The worst case condition for the device is when roughly half of the maximum number of segments
are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings
of the dev ice.
In critical cases more resistors can be used in conjunction with groups of segments.
In this case the current variation in the single resistor is reduced and Ptot limited.
-------------------------- ~~~~~~?~f~~~ ____________________~____
5/6
641
M5480
b)
5-S788
In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly
chosen.
The total power dissipation of the IC depends, in a first approximation, only on the number of segments activated.
c)
In this configuration VOUT+VO is constant. The total power dissipation of the IC depends only on
the number of segments activated.
_6'-/6_ _ _ _ _ _ _ _ _ _ _ _
642
~ ~~I~m?:~11
---------------'
M5481
LED DISPLAY DRIVER
• 2 DIGIT LED DRIVER (14 SEGMENTS)
GENERATOR OUTPUTS (NO
• CURRENT
RESISTOR REQUIRED)
• CONTINUOUS BRIGHTNESS CONTROL
• SERIAL DATA INPUT
• DATA ENABLE
• WIDE SUPPLY VOLTAGE
• TTL COMPATIBILITY
OPERATION
technology. It utilizes the M5450 die packaged
in a 20-pin plastic package copper frame,. making
it ideal for a 2-digit display. A single pin controls
the LED display brightness by setting a reference
current through a variable resistor connected
either to Voo or to a separate supply of 13.2V
maximum.
The M5481 is a pin-to-pin replacement of the
NS MM 5481.
Application examples:
•
MICROPROCESSOR DISPLAYS
•
INDUSTRIAL CONTROL INDICATOR
•
RELAY DRIVER
•
INSTRUMENTATION READOUTS
The M5481 is a monolithic MOS integrated
circuit produced with a N-channel silicon gate
DIP-20 Plastic
(0.25)
ORDERING NUMBER: M5481 B7
ABSOLUTE MAXIMUM RATINGS
Voo
VI
VO(Off)
10
Ptot
Supply voltage
Input voltage
Off. state output voltage
Output sink current
Total package power dissipation
Tj
Top
T stg
Junction temperature
Operating temperature range
Storage temperature range
-0.3 to
-0.3 to
15
V
15
V
V
15
40
mA
at 25°C
1.5W
at 85°C 800mW
150
°C
-25 to 85
°C
-65 to 150
°C
Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.
June 1988
1/6
643
M5481
CONNECTION DIAGRAM
-
-
20
OUTPUT BIT 9
OUTPUT BIT 1
19
OUTPUT BIT10
OUTPUT BIT 6
18
DOUTPUT BIT 11
OUTPUT BIT 5
17
~ OUTPUT BIT
OUTPUT BIT 4
16
OUTPUT BIT 13
15
VSS
7
14
OUTPUT BIT 14
OUTPUT BIT 8
OUTPUT BIT 3
OUTPUT BIT 2
OUTPUT BIT 1
BRIGHTNESS
CONTROL
VOO
I6
I
12
18
13
DATA ENABLE
19
12
DATA IN
110
11
CLOCK
5-5790
BLOCK DIAGRAM
OUTPUT BIT 1
OUTPUT 91T14
Fig. 1
BRIGHTNESS
CONTROL
SERIAL
DATA -_--':o...t----j
CLOC•.::K,-_.:..!...4~
15
/ 6=----_ _ _ _ _ _ _ _ _ _ _ _
-=2::..:
644
1ifi. ~~~~m~lI~:~~©~
5- S191
--------------
M5481
STATIC ELECTRICAL CHARACTERISTICS (T amb within operating range, Voo= 4.75V to
13.2V, V 55= OV, unless otherwise specified)
Parameter
Voo
Supply Voltage
100
Supply Current
VI
I nput Voltages
Log ical "0" Level
Logical "1" Level
IB
Brightness Input Current
(note 2)
VB
Brightness Input
Voltage (pin 9)
Vo(o!!)
Off State Output Voltage
10
Output Sink Current
(note 3)
Segment OFF
Segment ON
fCloCk
Input Clock Frequency
10
Output Matching (note 1)
Notes:
Test conditions
Min.
Typ.
I nput Current = 750 !J.A
Vo = 3V
V 0 = 1 V (note 4)
Brightness In. = O,.,A
Brightness In. = 100,.,A
Brightness In. = 750,.,A
Unit
13.2
V
7
mA
-0.3
2.2
Voo-2
0.8
Voo
Voo
V
V
V
0
0.75
mA
4.3
V
13.2
V
10
,.,A
10
4
25
,.,A
mA
mA
0.5
MHz
± 20
%
4.75
Voo= 13.2V
± 10!J.A Input Bias
4.75";; Voo";; 5.25
V oo > 5.25
Max.
3
0
2
12
0
2.7
15
I
1. Output matching is calculates as the percent variation from IMAX + IMIN12.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to
another.
3. Absolute maximum for each output should be limited to 40 mAo
4. The Vo voltage should be regulated by the user.
FUNCTIONAL DESCRIPTION
The M5481 uses the M5450 die which is packaged to operate 2-digit alphanumeric displays with mini·
mal interface with the display and the data source. Serial data transfer from the data source to the
display driver is accomplished with 2. signals, serial data and clock. Using a format of a leading "1"
followed by the 35 data bits allows data transfer without an additional load signal.
The 35 data bits are latched after the 36th bit is complete, thus providing non .. multiplexed, direct drive
to the display. Outputs change only if the serial data bits differ from the previous time. Display bright·
ness is determined by control of the output current for LED displays. A 1 nF capacitor should be
connected to brightness control, pin 9, to prevent possible oscillations.
A block diagram is shown in figure 1. The output current is typically 20 times greater than the current
into pin 9, which is set by an external variable resistor.
These is an internal limiting resistor of 400n nominal value.
~ SGS-THOMSON
- - - - - - - - - - - - - - - "'Yl.
IiiilO©IliI@I 5'.25
Max.
3
0
2
12
0
2.7
15
1. Output matching is calculated as the percent variation from I MAX + I M I N/2.
2. With a fixed resistor on the brightness input some variation in brightness will occur from one device to
another.
3. Absolute maximum for each output should be limited to 40 mAo
4. The Va voltage should be regulated by the user.
FUNCTIONAL DESCRIPTION
The M5482 uses the M5451 die which is packaged to operate 2-digit alphanumeric displays with minimal interface with the display and the data source. Serial data transfer from the data source to the
display driver is accomplished with 2 signals, serial data and clock. Using a format of a leading "1"
followed by the 35 data bits allows data transfer without an additional load signal.
The 35 data bits are latched after the 36th bit is complete, thus providing non--multiplexed, direct drive
to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A 1 nF capacitor should be
connected to brightness control, pin 9, to prevent possible oscillations.
A block diagram is shown in fiqure 1. The output current is typically 20 tir,les greater than the current
into pin 9, which is set by an external variable resistor.
There is an internal limiting resistor of 400n nominal value.
___________________________
~~~~~~?~~~~
________________________
~3/~6
651
M5482
FUNCTIONAL DESCRIPTION (continued)
Figure 2 shows the input data format. A start bit of logical" 1" precedes the 35 bits of data. At the 36th
clock a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits
of the shift registers into the latches.
At the low state of the clock a RESET signal is generated wh ich clears all the sh ift registers for the next
set of data. The shift registers are static master slave configurations. There is no clear for the master
portion of the first shift register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.·
When power is first applied to the chip an internal power ON reset signal is generated which resets all
registers and all latches. The START bit and the first clock return the chip to its normal operation.
Figure 3 shows the timing relationships between Data and Clock.
A maximum clock frequency of 0.5 MHz is assumed.
Figure 4 shows the Output Data Format for the M5482. Because it uses only 15 of the possible 35 outputs, 20'of the bits are "Don't Cares".
For applications where a lesser number of outputs are used it is possible to either increase the current
per output or operate the part at higher than 1V V OUT'
The following equation can be used for calculations.
Tj
where:
== [ (V OUT )
(I LEO ) (No. of segments) + Voo • 7 mA
1 (80°C/W)
+ Tamb
T j = junction temperature (150°C max)
V OUT = the voltage at the LE D driver outputs
I LE 0= the LED current
80°C/W = thermal coefficient of the package
T amb = ambient temperature
Fig. 2- I nput Data Format
CLOCK
n
--1
1
n· n
LJ LJ
I
I
I
n
L.J
I
n
LJ
36
r-~
LI
j-"L.Jn LJn LJn L..Jn L.Jn L .
.. _oJ
I
:START : BITl :
DATA
I
I
I
I
I
I
: Bn 34: BlT3Sj
---IlWmff&h7&;,7$ff)'&A?$hf%)'AWll;)
n
LOAD
(INTERNAL) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--..1
L _ _ _ __
n
RE5ET
(INTERNAL)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-J
L...._ __
5-5785/1
Fig.3
CLOCK
DATA
5-5826
4~/~6_________________________ ~~~~~~~~I~~~
652
-------------------------
M5482
Fig. 4 - Serial Data Bus/Outputs Correspondence
TYPICAL APPLICATION
BASIC electronically tuned TV system
LED DISPLAY
M5482
DISPLAY
DRIVER
POWER DISSIPATION OF THE IC
The power dissipation of the IC can be limited using different configurations .
•Vc
a)
Your
i
In this application R must be chosen takiog into account the worst operating conditions.
R is determined by the maximum number of segments activated.
Vc -Vo MAX -Vo MIN
N MAX· 10
The worst case condition for the device is when roughly half of the maximum number of segments
are activated.
'
It must be checked that the total power dissipation does not exceed the absolute maximum ratings
of the device.
In critical cases more resistors can be used in conjunction with groups of segments. In this case the
current variation in the single resistor is reduced and Ptot limited.
R=
______________
-=----:-~.:..:.:....:;"--,--~-"-"-'--
~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _5~/~6
653
M5482
b)
In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly
chosen.
.
The total power dissipation of the IC is, in first approximation, depending only on the number of
segments activated.
c)
In this configuration VOUT +VD is constant. The total power dissipation of the IC depends only on the
number of segments activated. .
_6~/6_________________________ ~1~1~~~~n
654
--------------__----__-----
M8438A
SERIAL INPUT LCD DRIVER
• DRIVES UP TO 32 LCD SEGMENTS
• DATA TRANSFER: FIXED ENABLE MODE
FOR DIP-40, ENABLE AND LATCH-MODE FOR
44PLCC
• INPUTS ARE CMOS, NMOS AND TTL
COMPATIBLE
•
•
•
•
.CASCADABLE
REQUIRES ONLY 3 CONTROL LINES
ON CHIP OSCILLATOR
CMOS TECHNOLOGY FOR WIDE SUPPLY
VOLTAGE RANGE
• -40 TO 85°C TEMPERATURE RANGE
DESCRIPTION
The M8438A is a CMOS integrated circuit that drives an LCD display, usually under microprocessor
control. The part acts as a smart peripheral that
drives up to 32 LCD segments. It needs only three
control lines due to its serial input construction. It
latches the data to be displayed and relieves the
microprocessor from the task of generating the required waveforms.
The M8438A can drive any standard or custom parallel drive LCD whether it be field effect or dynamic scattering. Several drivers can be cascaded,
if more than 32 segments are to be driven. The' AC
frequency of the LCD waveforms can be supplied
by the user or can be generated by attaching a capacitor to the OSC input which determines the frequency of an internal oscillator.
The M8438A is available in DIE form and assembled in 40 pin dual-in line plastic or 44 PLCC
packages.
B
C
DIP-40 Plastic
44 PLCC Plastic Chip Carrier
ORDERING NUMBERS: M8438A DIE 1
M8438A 86
M8438A C6
PIN CONNECTIONS
~CLOCK
.voo
El
2
39
SEG 1
SEG 32
,
3
38
SEG 2
37
SEG 3
SEG 30
5
36
Vss
SEG 29
6
35
DO
SEG 28
7
SEG 27
8
"
33
SEG4
SEG 26
9
32
SEG 5
SEG 25
10
31
05C.
SEG 24
11
30
BP
SEG 23
12
29
SEG6
SEG 22
13
28
SEG?
SEG 21
"
27
SEG8
26
5EG 9
SEG31
SEG 20 15
DI
SEG 19
16
25 SEGlO
SEG18
17
24
SEG17
18
23
SEG lii
19
22
SEG13
SEG15
20
21
SEG14
SEG11
SEG12
5_8309
1 444342 "
SEG28
4°39
n
8
37
~
MS
p
DO
~
01
36 pSEG4
35
~SEG5
~ osc.
SEG2'
IL
34
SEG23
13
33
BP
32 pSEG6
S£GZO
16
30
B.
31 pSEG1
1& 19
;Ill
21
12 23 2425 2627
:1& 29
~SEG8
~
He
.',;~.,~"~.';;~
~~~~~::~;~~~
June 1988
1/7
655
M8438A
BLOCK .DIAGRAM
BP
OSC.
SEG.
EL
MODE
CLOCK
CONTROL
MS
DI~-------4----~
1 - - - 0 DO
5 8307
OSC
EL
MS
01
00
BP
SEG
:Osciliator (capacitor or drive signal)
:Enable/Latch control input
:Mode select input (not available in 40 Pin OIL)
:Serial data input
:Serial data output
:Backplane output
:Segment output signal
ABSOLUTE MAXIMUM RATINGS
Symbol
(VDD-VSS)
Parameter
Supply voltage
Value
Unit
-0.3 to +12
V
V
VI
Input voltage
VSS - 0.3 to VDD + 0.3
Vo
Output voltage
VSS - 0.3 to VDD + 0.3
V
Po
Power dissipation
250
mW
-55 to +125
°C
°C
Tstg
TA
Storage temperature
Operating temperature
-40 to +85
Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions in excess of those
indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2/7
656
M8438A
ELECTRICAL CHARACTERISTICS (T amb = 25°C and VDD = 5V unless otherwise noted)
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Condition
Voo
Supply Voltage
100
Supply Current
Oscillator f< 15kHz
Quiescent Current
Voo=10V
IQ
VIH
Input High Level
VIL
Input Low Level
liN
Input Current
CI
Input Capacitance
VIH
Input High Level
VIL
Input Low Level
liN
Input Current
Min.
Max.
3
10
V
60
/LA
10
/LA
V
.5V oo Voo
0
.2VOO
±5
CLOCK
DI
EL
5
Driven mode
OSC
.1Voo
±10
Driven mode
RON
Segment Output Impedance
IIL= 10/LA
RON
Backplane Output Impedance
IL=100/LA
VOF F
Output Offset Voltage
CL = 250pF between each SEG output
and BP
RON
Data Output Impedance
IL=100/LA
V
/LA
pF
V
.9Voo
Driven mode
Unit
40
V
/LA
k{J
3
k{J
±50
mV
3
k{J
Max.
Unit
500
ns
DYNAMIC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Condition
Min.
tTA
Transition Time OSC
Driven mode
tso
Data Set-up Time
Fig. 1 and 2
150
ns
tHO
Data Hold Time
Fig. 1 and 2
50
ns
tSE
EL Set-up Time
Fig. 1
100
ns
tHE
EL Hold Time
Fig. 1
100
ns
tWE
EL Pulse Width
Fig. 2
175
ns
tCE
Clock to EL Time
Fig. 2
250
tpd
f
DO Propagation Delay
Fig. 1, 2; CL = 55pF
Clock Rate
Voo = 10 50% duty cycle;
DC
ns
500
ns
1.5
MHz
FUNCTION,.AL DESCRIPTION
LCD-AC-GENERATOR
This block generates a 50% duty cycle signal for
the backplane output. The circuit can be used in
two different modes: oscillator or driven.
OSCILLATOR MODE:
In this mode the backplane frequency is determined by the internal RC oscillator together with an
8-stage frequency divider. For generating the backplane output signal of 50% duty cycle the oscillator frequency is divided by 256. The RC oscillator
requires an external capacitor to be connected bet-
ween input OSC and VSS. A value of 18pF gives
a backplane frequency of 80Hz ± 30% at
VDD = 5V. The variation of the backplane frequency
over the entire temperature and supply voltage range is ± 50%.
DRIVEN MODE:
In this mode the signal at the backplane output BP
is in phase with an external driving signal applied
to input OSC. This mode is used to synchronize
the LCD drive of two or more cascaded driver
circuits.
3/7
657
M8438A
FUNCTIONAL DESCRIPTION (continued)
DETECTION LOGIC
The circuit is able to distinguish between the conditions for oscillator or driven mode. If the circuit
is to be in the oscillator mode, the OSC pin has
a capacitor connected to it. The oscillator will start
as soon as the supply voltage exceeds a certain
minimim value. The signal at pin OSC swings within a range from 0.3VDD to 0.7VDD. If the circuit
is to be in the driven mode, the OSC pin has to be
forced to logic levels by an external source. The
transition time between the logic levels must be
short, so that the circuit does not react on the voltage level in between. In the driven mode the
a-stage frequency divider is by-passed.
SEGMENT OUTPUTS
A logic 0 at the data input DI causes a segment
output signal to be in phase with the backplane signal and turns the segment off. A logic 1 causes
a segment output to be in opposite phase to the
backplane signal and turns the segment on.
MICROPROCESSOR INTERFACE
The circuit can operate in two different data transfer modes: Enable mode and latch mode. One of
either mode can be chosen with the mode select
input MS. An internal pull up device is provided between this input and VDD. Enable mode is selected if MS is left open or connected to VDD.
Latch mode is selected if MS is connected to VSS.
The input MS is not available, if the device is
assembled in the 40 pin package, and is internally fixed to operate in ENABLE MODE.
ENABLE MODE
Fig. 3 shows a timing diagram of the enable mode. Data is serially shifted in and out of the shift
register on the negative transition of the clock.
Serial entry into the shift register is permitted when
the enable/latch control EL is high. When EL is low
it causes the shift register clock to be inhibited and
the content of the shift register to be loaded into
the latches that control the segment drivers.
LATCH MODE
Fig. 4 shows a timing diagram of the latch mode.
Data is serially shifted in and out of the shift register on the negative transition of the clock.
Serial entry into the shift register is permitted independently of the enable/latch control EL. When
EL is high it causes a parallel load of the content
in the shift register into the latches. It is accepta4/7
658
ble to tie the EL line high. Then the latches are transparent and only two lines, clock and data input,
would then be needed for data transfer.
POWER-ON LOGIC
A power on reset pulse is generated internally when
the supply voltage is being turned on. The generation of the reset pulse is level dependent and will
occur even on a slowly rising supply Voltage.
The power on reset pulse resets all shift register
stages and the latches that control the segment drivers. Therefore all segment outputs are initially in
phase with the backplane output. This causes the
display to be blanked and no arbitrary data to show
up. This condition is maintained until data is shifted into the register and loaded into the latches.
CONDITIONS FOR POWER-ON RESET FUNCTION
The paR circuit triggers on the rising slope of the
positive supply voltage VDD. A reset pulse will be
generated, if conditions a) through d) are given:
a) Level
Rising slope from V1 to V2
V1 max=0.5V
V2 min=3.0V
~
VDD
----V2
------V1
~
-~-----O.5V
VDD
b) Rise time
tr min = 10 /ls
tr max = 1 s
-----3.0V
I
I
--f--Lt--
"
12
c) Rise function
The function of VDD between t1 und t2 may be
nonlinear, but should not show a maximum and
should not exceed 0.25 V//ls.
d) Recovery time
The minimum time between turn-off and turnon of VDD is 1s.
CASCADE CONFIGURATION
Several LCD drivers can be cascaded if a liquid crystal display with more than 32 segments is to be
connected.
The phase correlation between all segment outputs
is achieved by using the second (and any other)
device in the driven mode.
Two different cascade configurations can be chosen depending whether the LCD frequency is to
be determined by the internal RC oscillator or by
an external signal.
Figure 3 shows the connection scheme for a self
oscillating configuration, figure 4 shows the connection of an externally controlled one.
M8438A
Fig. 1 - Timing diagram of enable mode: set-up and hold time
----
CLOCK
ENABLE I LATCH
DATA IN
-----
I
J
"-L
bnn
f ·I~
funmn---=x
tHE
tSE
I
-- ---
tSD
tHO
DATA OUT
.1
tpd
------------
5-8310'1
Fig. 2 - Timing diagram of latch mode: set-up and hold time
tCE
CLOCK
/
----
{
----
ENABLE'LATCH
~
'I
'WE
1
DATA IN
DATA OUT
1'" .1" E~:::::
r nm------- =:x
.1 tpd'_ _ - - - - - - - - - - - - - -
,
5- 831 1'1
5/7
659
M8438A
Fig. 3 - Timing diagram of enable mode: Serial load into SR and parallel transfer to LCD
ENABLE/LATCH
CLOCK
DATA IN
SEGMENTS
BACKPLANE
5~8312/1
Fig. 4 - Timing diagram of latch mode: Serial load into SR and parallel transfer to LCD
ENABLE/ LATCH
CLOCK
DATA IN
SEGMENTS
BACKPLANE
5-8313/1
6/7
660
M8438A
Fig. 5 - Cascade configuration, self oscillating
.c1.
DEVICE 1
DEVICE 2
LCD
B_p~1 T ~LIo_s_c____Bp..JH:B~P~~~~:
0_S_C_ _ _
I
I
DEVICE n
B_P. .~
yLO_S_C_ _ _ _
NC
5- 8314
Fig. 6 - Cascade configuration, drive by external signal
DEVICE
LCD
DRIIJoING U--~--"'OSC
SIGNAL
BP
DEVICE 2
OSC
I
I
I
BP
NC
I
I
DEVICE n
L1.
B_P~~
0_S_C_ _ _ _
NC
5-8364
7/7
661
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
M8439
SERIAL INPUT LCD DRIVER
• DRIVES UP TO 32 LCD SEGMENTS
• DATA TRANSFER: LATCH MODE
• INPUTS ARE CMOS, NMOS AND TTL
COMPATIBLE
• CASCADABLE
• REQUIRES ONLY 3 CONTROL LINES
Plastic DIP-40
• ON CHIP OSCILLATOR
• CMOS TECHNOLOGY FOR WIDE SUPPLY
VOLTAGE RANGE
ORDERING NUMBERS: M8439 86
M8439 DIE 1
• -40 TO 85°C TEMPERATURE RANGE
DESCRIPTION
The M8439 is a CMOS integrated circuit that drives an LCD display, usually under microprocessor
control. The part acts as a smart peripheral that
. drives up to 32 LCD segments. It needs only three
control lines due to its serial input construction. It
latches the data to be displayed and relieves the
microprocessor from the task of generating the required waveforms.
The M8439 can drive any standard or custom parallel drive LCD whether it be field effect or dynamic scattering. Several drivers can be cascaded,
if more than 32 segments are to be driven. The AC
frequency of the LCD waveforms can be supplied
by the user or can be generated by attaching a capacitor to the OSC input which determines the frequency of an internal oscillator.
The M8439 is available in DIE form and assembled
in 40 pin dual-il') line plastic.
PIN CONNECTION
+Voo
~
CLOCK
EL
2
39SEGl
SEG32
3
38
SEG2
SEG31
4
37
SEG 3
SEG 30
5
3.
•
Vss
35
00
7
34
01
8
33
SEG4
SEG 26
9
32
5EG 5
SEG 25
10
31
osc.
SEG24
11
30
BP
SEG 23
12
29
SEG6
SEG 22
13
28
SEG 21
14
SEG 29
SEG 28
SEG 27
SEG7
27
SEG8
SEG 20 15
2.
SEG 9
SEG 19
25 SEG10
I.
SEG18
17
24
SEG 17
18
23
SEG12
SEG lii
19
22
SEG13
SEG 15
20
21
5EG14
SEG11
5_8309
June 1988
1/6
663
M8439
BLOCK DIAGRAM
BP
05C.
5EG.
EL
MODE
CLOCK
CONTROL
SR CLOCK
01 U-------~----__i
f----O
DO
S·9596
OSC
EL
DI
DO
BP
SEG
:Oscillator (capacitor or drive signal)
:Enable/Latch control input
:Serial data input
:Serial data output
:Backplane output
:Segment output signal
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
(VDD-VSS)
Supply voltage
Value
Unit
-0.3 to +12
V
V
VI
Input voltage
VSS - 0.3 to VDD + 0.3
Va
Output voltage
VSS-0.3 to VDD+0.3
V
PD
Power dissipation
250
mW
Storage temperature
-55 to + 125
Operating temperature
-40 to +85
°C
°C
TstQ
TA
Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating. only and functional operation of the device at these or any other conditions in excess of those
indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2/6
664
M8439
ELECTRICAL CHARACTERISTICS (T amb = 25°C and VDD = 5V unless otherwise noted)
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Test Condition
Parameter
VOO
Supply Voltage
100
Supply Current
Oscillator f< 15kHz
Quiescent Current
Voo=10V
IQ
VIH
Input High Level
VIL
Input Low Level
liN
CI
Input Current
VIH
Input High Level
VIL
Input Low Level
liN
Input Current
Input Capacitance
OSC
Max.
3
10
V
60
/LA
10
/LA
.5Voo Voo
0
.2Voo
±5
CLOCK
DI
EL
I
Min.
5
Driven mode
Driven mode
V
V
/LA
pF
V
.9Voo
Driven mode
Unit
V
.1Voo
±10
/LA
kD
RON
Segment Output Impedance
IIL= 10llA
40
RON
Backplane Output Impedance
IL=100/LA
3
kD
VOFF
Output Offset Voltage
CL = 250pF between each SEG output
and BP
±50
mV
RON
Data Output Impedance
IL=100/LA
3
kD
Max.
Unit
500
ns
DYNAMIC ELECTRICAL CHARACTERISTICS
Symbol
Test Condition
Parameter
Min.
tTR
Transition Time OSC
Driven mode
tso
Data Set-up Time
Fig. 1 and 2
150
ns
tHO
Data Hold Time
Fig. 1 and 2
50
ns
tSE
EL Set-up Time
Fig. 1
100
ns
tHE
EL Hold Time
Fig. 1
100
ns
tWE
EL Pulse Width
Fig. 2
175
ns
tCE
Clock to EL Time
Fig. 2
250
tpd
DO Propagation Delay
Fig. 1, 2; CL = 55pF
Clock Rate
Voo = 10 50% duty cycle;
f
DC
ns
500
ns
1.5
MHz
FUNCTIONAL DESCRIPTION
. LCD-AC-GENERATOR
This block generates a 50% duty cycle signal for
the backplane output. The circuit can be used in
two different modes: oscillator or driven.
OSCILLATOR MODE:
In this mode the backplane frequency is determined by the internal RC oscillator together with an
8-stage frequency divider. For generating the backplane output signal of 50% duty cycle the oscillator frequency is divided by 256. The RC oscillator
requires an external capacitor to be connected bet-
ween input OSC and VSS. A value of 18pF gives
a backplane frequency of 80Hz ± 30% at
VDD = 5V. The variation of the backplane frequency
over the entire temperature and supply voltage range is ± 50%.
DRIVEN MODE:
In this mode the signal at the backplane output BP
is in phase with an external driving signal applied
to input OSC. This mode is used to synchronize
the LCD drive of two or more cascaded driver
circuits.
3/6
665
M8439
FUNCTIONAL DESCRIPTION (continued)
DETECTION LOGIC
The circuit is able to distinguish between the conditions for oscillator or driven mode. If the circuit
is to be in the oscillator mode, the OSC pin has
a capacitor connected to it. The oscillator will start
as soon as the supply voltage exceeds a certain
minimim value. The signal at pin OSC swings within a range from 0.3Voo to 0.7Voo. If the circuit
is to be in the driven mode, the OSC pin has to be .
forced to logic levels by an external source. The
transition time between the logic levels must be
short, so that the circuit does not react on the voltage level in between. In the driven mode the
a-stage frequency divider is by-passed.
SEGMENT OUTPUTS
A logic 0 at the data input 01 causes a segment
output signal to be in phase with the backplane signal and turns the segment off. A logic 1 causes
a segment output to be in opposite phase to the
backplane signal and turns the segment on.
MICROPROCESSOR INTERFACE
Fig. 2 shows a timing diagram.
Data is serially shifted in and out of the shift register on the negative transition of the clock.
Serial entry into the shift register is permitted independently of the enable/latch control EL. When
EL is high it causes a parallel load of the content
in the shift register into the latches. It is acceptable to tie the EL line high. Then the latches are transparent and only two lines, clock and data input,
would then be needed for data transfer.
POWER-ON LOGIC
A power on reset pulse is generated internally when
the supply voltage is being turned on. The generation of the reset pulse is level dependent and will
occur even on a slowly rising supply Voltage.
The power on reset pulse resets all shift register
stages and the latches that control the segment dri-
4/6
666
verso Therefore all segment outputs are initially in
phase with the backplane output. This causes the
display to be blanked and no arbitrary data to show
up. This condition is maintained until data is shifted into the register and loaded into the latches.
CONOITIONS FOR POWER-ON RESET FUNCTION
The POR circuit triggers on the rising slope of the
positive supply voltage Voo. A reset pulse will be
generated, if conditions a) through d) are given:
a) Level
Rising slope from V1 to V2
V1 max=0.5V
V2 min = 3.0V
b) Rise time
tr min = 10 /ls
tr max= 1 s
~
VDO
----V2
------V1
.
~
-~-----O.5V
VDO
-----3.0V
,
I
~
t1
12
c) Rise function
The function of Voo between t1 und t2 may be
nonlinear, but should not show a maximum and
should not exceed 0.25 V//ls.
d) Recovery time
The minimum time between turn-off and turnon of Voo is 1s.
CASCADE CONFIGURATION
Several LCD drivers can be cascaded if a liquid crystal display with more than 32 segments is to be
connected.
The phase correlation between all segment outputs
is achieved by using the second (and any other)
device in the driven mode.
.
Two different cascade configurations can be chosen depending whether the LCD frequency is to
be determined by the internal RC oscillator or by
an external signal.
Figure 3 shows the connection scheme for a self
oscillating configuration, figure 4 shows the connection of an externally controlled one.
M8439
Fig. 1 - Timing diagram of latch mode: set-up and hold time
tCE
----
CLOCK
-----
ENABLE/LATCH
DATA IN
.1
-\
1
tSD
1
.1"
DATA OUT
.1
~
'I
tWE
E~--m
Eum---uu=x
tpd'_ _ - - - - - - - - - - - - - -
,
5- B31 1/'
Fig. 2 - Timing diagram of latch mode: Serial load into SR and parallel transfer to LCD
ENABLE I LATCH
CLOCK
DATA IN
SEGMENTS
BACKPLANE
S-8313/1
5/6
667
M8439
Fig. 3 - Cascade configuration, self oscillating
DEVICE 1
DEVICE 2
LCD
B~PI T ~L.Io_s_c___B_p....Hr-L..B=P====
r1_0_S_C_ _ _
I
DEVICE n
1
~
yL.o_s_C_ _ _ _B_P....
NC
5-8314
Fig. 4 - Cascade configuration, driven by external signal
DEVICE
LCD
DRIVING U--_-...OSC
SIGNAL
BP
DEVICE 2
OSC
NC
BP
1
I
I
I
I
DEVICE n
~
yL.o_s_C_ _ _ _B_P..
NC
5-8364
6/6
668
t='!'
SCiS-mOMSON
~'Yl.. UljJD©IJiI@~~~©lllJil@Ir(I]D©~
M145026/7/8
REMOTE CONTROL ENCODER/DECODER CIRCUITS
•
M145026 ENCODER
data (0, 1, open) to allow 3 9 (19,683) different
codes.
•
M145027/M145028 DECODERS
•
MAY BE ADDRESSED IN EITHER BINARY
OR TRINARY
•
TRINARY ADDRESSING
NUMBER OF CODES
•
INTERFACES WITH RF, ULTRASONIC, OR
INFRARED TRANSMISSION MEDIAS
•
DOUBLE TRANSMISSIONS FOR ERROR
CHECKING
•
4.5V TO 18V OPERATION
•
ON-CHIP R/C OSCILLATOR, NO CRYSTAL
REQUIRED
Two decoders are presently available. Both use
the same transmitter - the M 145026. The decoders will receive the 9-bit word and will interpret some of the bits as address codes and
some as data. The M145028 treats all nine bits
as address. If no errors are received, the M 145027
outputs the four data bits when the transmitter
sends address codes that match that of the
receiver. A valid transmission output goes high
on both decoders when they recognize an address
that matches that of the decoder. Other receivers
can be produced with different address/data
ratios.
•
HIGH EXTERNAL COMPONENT TOLERANCE, CAN USE 5% COMPONENTS
All the devices are available in 16 lead plastic
package.
•
STANDARD CMOS B-SERIES INPUT AND
OUTPUT CHARACTERISTICS
•
APPLICATIONS INCLUDE GARAGE DOOR
OPENERS, REMOTE CONTROLLED TOYS,
SECURITY MONITORING, ANTITHEFT
SYSTEMS, LOW END DATA TRANSMISSIONS, WIRE LESS TELEPHONES
MAXIMIZES
DIP-16 Plastic
(0.25)
The M145026 encodes nine bits of information
and serially transmits this information upon
receipt of a transmit enable, TE, (active low)
signal. Nine inputs may be encoded with trinary
ORDER CODE: M145026 B1
M145027 B1
M145028 B1
CONNECTION DIAGRAMS
Encoder
Decoder
Decoder
11.1101
1
IS
Voo
AI
1
16
A,2102
2
IS
DATA OUT
Ai
2
15
Al/OJ
3
14
fE
A3
3
14
0'
13
RTC
A4
4
13
De
S
12
CTC
AS
5
12
09
A5
A6/06 6
11
RS
Rl
6
VT
Rl
10
11.9/09
Cl
,
10
R2/C2
Cl
V5S
e
9
"'10104 4
A510S
...7/07
,
VSS
e
M145026
June 1988
AS/08
M145027
Voo
AI
1
16
Voo
06
A2
2
15
A6
3
14
A'
13
AS
5
12
A9
6
11
VT
10
R2fC2
DATA IN
.
A3
VSS
4
e
MI45028
9
DATA IN
1/10
669
M145026-M145027-M145028
ABSOLUTE MAXIMUM RATINGS
DC Supply Voltage
Input Voltage, All Inputs
DC Current Drain Per Pin
Storage Temperature Range
Operating Temperature Range
-0.5 to +18
V
-0.5 to V DD +0.5
V
mA
10
-65 to +150
°C
-40 to +85
°C
Stresses above those listed under "Absolute Maximum Ratings" may causes permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.
SWITCHING CHARACTERISTICS
(Cl
=
50 pF, Tamb
= 25°C)
Parameter
tTlH
tTHl
Output Rise and Fall Time
tTlH
tTHl
Data In Rise and Fall Time (M145027, M145028)
fel
Encoder Clock Frequency
VDD
Min
TYP
Max
Unit
5
10
15
-
-
100
50
40
200
100
80
ns
5
10
15
-
-
15
15
15
p,s
5
10
15
0
0
0
2
5
5
MHz
kHz
-
-
-
fCl
Maximum Decoder Frequency
(Referenced to Encoder Clock) (See Figure 9)
5
10
15
-
-
-
-
240
410
450
tWl
TE Pulse Width
5
10
Hi
65
30
20
-
-
-
-
182
-
-
-
-
±25
±25
System Propagation Delay
(TE to Valid Transmission)
Tolerance on Timing Components
(L'lRTC+L'lCTC+L'lRl +L'lCl)
(L'lR2 + L'lC2)
O_ _ _ _ _ _ _ _ _ _ _ _
2/c.::1..:.
.::;
670
-
~ ~~~~m~~l:lt
-
-
ns
Clock
Cycles
%
M145026 -M145027 - M145028
ELECTRICAL CHARACTERISTICS
-40'C
VDD
Parameter
25'C
+85'C
Unit
V
Min
Max
Min
Typ
Max
Min
Max
5
10
15
-
-
0.05
0.05
0.05
-
0
0
0
0.05
0.05
0.05
-
-
0.05
0.05
0.05
5
10
15
4.95
9.95
14.95
-
4.95
9.95
14.95
5
10
15
-
4.95
9.95
14.95
-
-
V
5
10
15
-
-
1.5
3
4
-
1.5
3
4
-
1.5
3
4
V
-
2.25
4.50
6.25
"1" Level
5
10
15
3.5
7
11
-
3.5
7
11
2.75
5.50
8.25
-
3.5
7
11
-
5
5
10
15
-2.5
-0.52
-1.3
-3.6
-
-2.1
-0.44
-1.1
-3
-4.2
-0.88
-2.25
-8.8
-
Source
-
-1.7
-0.36
-0.9
-2.4
5
10
15
0.52
1.3
3.6
-
0.44
1.1
3
0.88
2.25
8.8
-
0.36
0.9
2.4
5
10
15
-
-
3
16
35
4
20
45
7
26
55
-
15
-
±0.3
-
±0.00001
±0.3
-
±1.0
A1/D1-A9/D9 (M145026)
A1-A5 (M145027)
A 1-A9 (M145028)
5
10
15
-
-
±55
±300
±650
±80
±340
±725
-
CI
I nput Capacitance (V I = 0)
-
-
-
-
IDD
Quiescent Current - M 145026
5
10
15
-
-
-
-
VOL
Output Voltage
VI= VDD or 0
VOH
VI=OorVDD
VIL
VIH
"0" Level
"1" Level
I nput Voltage
(Va = 4.5 or 0.5V)
(Va = 0.9 or 1V)
(VO= 13.5 or 1.5V)
(Va = 0.5 or 4.5V)
(Va = 1.0 or 9V)
(Va = 1.5 or 13.5V)
"0" Level
Output Drive Current
IOH
IOL
II
(VOH
(VOH
(VOH
(VOH
=
=
=
=
2.5V)
4.6VI
9.5V)
13.5V)
(VOL = 0.4V)
(VOL = 0.5V)
(VOL = 1.5V)
Sink
I nput Current
TE (M145026, Pullup Device)
II
II
IDD
IT
IT
I nput Current
RS (M145026)
Data In (M145027, M145028)
Input Current
Quiescent Current
M145027, M145028
Total Supply Current
M145026 (fCL = 20 kHz)
Total Supply Current
M145027, M145028 (ICL = 20 kHz)
5
10
15
-
-
-
-
-
-
-
-
-
5
10
15
-
-
5
10
15
-
-
-
-
-
-
-
-
5
7.5
-
0.0050
O.Q1OO
0.0150
0.10
0.20
0.30
30
60
90
50
100
150
-
100
200
300
200
400
600
-
200
400
600
400
800
1200
-
V
-
-
V
-
-
mA
mA
/JA
-
/JA
/JA
pF
-
-
-
-
p.A
-
-
p.A
-
-
-
p.A
-
p.A
-------------- ~ ~~~~m?ll~:~~l: _____________3'- /1_0
671
M145026 -M145027- M145028
OPERATING CHARACTERISTICS
M145026
The encoder will serially transmit nine bits of trinary data as defined by the state of the A 1/D1-A9/D9
input pins. These pins can be in either of three states (0,1, open) allowing 3 9 = 19683 possible codes.
The transmit sequence will be initiated by a low level of the TE input pin. Each time the TE input is
forced low the encoder will output two identical data words. This redundant information is used by the
receiver to reduce errors. If the TE input is kept low, the encoder will continuously transmit the data
words. The transmitted words are self-completing (two words will be transmitted for each TE pulse).
Each transmitted data bit is encoded into two data pulses. A logic zero will be encoded as two consecutive short pulses, a logic one by two consecutive long pulses, and an open as a long pulse followed by a
short pulse. The input state is determined by using a weak output device to try to force each input first
low, then high. If only a high state results from the two tests, the input is assumed to be hard wired to
V DD . If only a low state is obtained, the input is assumed to be hard wired to Vss. If both a high and a
low can be forced at an input, it is assumed to be open and is encoded as such.
The transmit sequence is enabled by a logic zero on the TE input. This input has an internal pullup device so that a simple switch may be used to force the input low. While TE is high the encoder is completely disabled, the oscillator is inhibited and the current drain is reduced to quiescent current. When TE
is brought low, the oscillator is started, and an internal reset is generated to initialize the transmit sequence. Each input is then sequentially selected and a determination is made as to input logic state. This
information is serially transmitted via the Data Out output pin.
M145027
The decoder will receive the serial data from the encoder, check it for errors and output data if valid.
The transmitted data consisting of two identical data words is examined bit by bit as it is received. The
first five bits are assumed to be address bits and must be encoded to match the address inputs at the
receiver. If the address bits match, the next four (data) bits are stored and compared to the last valid
data stored. If this data matches, the VT pin will go high on the 2nd rising edge of the 9th bit of the
first word. Between the two data words no signal is sent for three data bit times. As the second encoded
word is received, the address must again match, and if it does,the data bits are checked against th,e
previously stored data bits. If the two words of data (four bits each) match, the data is transferred to the
output data latches and will remain until new data replaces it. At the same time, the Valid Transmission
output pin is brought high and will remain high until an error is received or until no input signal is
received for four data bit times.
Although the address information is encoded in trinary fashion, the data information must be either a
one or a zero. A trinary (open) will be decoded as a logic one.
M145028
This receiver operates in the same manner as the M145027 except that nine address bits are used and no
data output is available. The Valid Transmission output is used to indicate that a valid signal has been
received.
Although address information normally is encoded in trinary, the designer should be aware that, for the
M145028, the ninth address bit (A9) must be either a one or a zero. This part, therefore, can accept only
2 x 3 8 = 13,122 different codes. A trinary (open) A9 will be interpreted as a logic 1. However if the
transmitter sends a trinary (or logic 1) and the receiver address is a logic 1 (or trinary) respectively, the
. valid transmission output will be shortened to the R1 x Cl time constant.
DOUBLE TRANSMISSION DECODING
Although the encoder sends two words for error checking, a decoder does not necessarily wait for two
transmitted words to be received before issu ing a val id transmission output. Refer to the flowcharts in
Figure 7 and 8.
~4/_1_0________________________ ~~~~~~~~~:~~©~
672
___________________________
M145026-M145027-M145028
Fig. 1 - Encoder block diagram M145026
!=IS
,0.1101
RTC
o-~+--+-"----1--t---+--+-+-1',-:>t--,
,0.2102 o--+--+-.,----1--t---t---+-K "">1-----4
~S5
AS/OS o-"-+--+-.,----1--K : > f - - - - - - - - - - + - - 1
A6I060-"-+--+-.,-K ::>1-------------1
,0.7107
0-'--+--+--1K:>+-----------~---t
A81080--'-+_4C>I-----------------t
A9ID9o-"'l<:::::>f-------------------'
Fig. 2 - Decoder block diagram M145027
, - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - ' ' ' - - 10 ~~~~SM1S5'C
06
07
4-BIT
SHIFT
REGISTER
08
09
A2~~-t__-_t_--+__4C
A3~~_4--+__4C ~*------t_--~
A4 O-:~_4--K
1-_-..0._______09 ~~TA
'0 ~
A5
'6
~vDD
B
,~Vss
5_5116
----------------------------~~~~~~~~~:J?JI
________________________~5~/1~O
673
M145026 - M145027 - M145028
Fig. 3 - DecOder block diagram M145028
SEQUENCER CIRCUIT
9
6
6
5
4
9-BIT
SHIFT
REGISTER
~.~5--4---~--~---+~K ~~----------------~--~
9 OAT A
1---__-+--__---0
IN
~VOD
15
14
S_6171
PIN DESCRIPTION
M145026 ENCODER
A1/D1-A9/D9
These inputs will be encoded and the data serially output from the encoder.
Vss
The most negative supply (usuafly ground).
RS,CTC,RTC
These pins are part of the oscillator section of the encoder. If an external signal source is used instead
of the internal oscillator it should be connected to the RS input and the RTC and CTC pins should be
left open.
TE
This Transmit-Enable (active low) input will initiate transmission when forced low. A pullup device will
keep this input high normally.
Data Out
This is the output of the encoder that will present the serially encoded signals.
Voo
The most positive supply.
M145027/M145028 DECODERS
A1-A5 (M145027) 1 A1-A9 (M145028)
These are the address inputs that must match the encoder inputs A 110 1-A5/05 in the case of M145027
or A 1/01-AO/09 in the case of M145028, in order for the decoder to output data.
~6/~1~O_______________________ ~~~~~~~~~~~
674
__________________________
M145026 - M145027-M145028
06-09 (M145027)
These outputs will give the information that is presented to the encoder inputs A6/D6-A9/D9.
Note: Only binary data will be acknowledged, a trinary open will be decoded as logic one.
R1, C1
These pins accept a resistor and capacitor that are used to determine whether a narrow pulse or a wide
pulse has been encoded. The time constant R1 x C1 should be set to 1.72 transmit clock periods.
R1C1 = 3.95 RTC x CTC.
R2/C2
This pin accepts a resistor to Vss and a capacitor to Vss that are used to detect both the end of an encoded word and the end of transmission. The time constant R2 x C2 should be 33.5 transmit clock
periods (four data bit periods). This time constant is used to determine that the Data In input has remained low for four data bit times (end of transmission). A separate comparator looks at a voltage equi·
valent two data bit times (0.4 R2C2) to detect the dead time between transmitted words.
R2C2 = 77 x RTC x CTC.
Valid Transmission, VT
This output will go high when the following conditions are satisfied:
1. the transmitted address matches the receiver address, and
2. the transmitted data matches the last valid data received (M 145028 only).
VT will remain high until either a mismatch is received, or no input signal is received for four data data
bit times.
Voo
The most positive supply
Vss
The most negative supply (usually ground).
Figure 4 - Encoder Oscillator Information
This oscillator will operate at a frequency determined
by the external RC network; i.e ..
1
f "'" 2.3 x RTC x CTC
~CTC
"
--------- ------------ -I~ ---
-
"
for 1 kHz";;; f ";;;400 kHz
--------
where: CTC
JNTERNAL
ENABLE
(Hz)
= CTC + C layout + 12
pF
RS '" 2 RTC
RS ),20 k
RTC ).10 k
400 pF < CTC < JlF
The value for RS should be chosen to be about 2 times RTC. This range will ensure that current through
RS is insignificant compared to current through RTC. The upper limit for RS must ensure that RS x 5 pF
(input capacitance) is small compared to RTC x CTC.
____________________________
~~~~~~~~~:~~©~
__________________________
7~/l_0
675
M145026 - M145027 -M145028
For .frequencies outside the indicated range, the formula will be less accurate. The actual oscillation
range of this circuit is from less than 1 Hz to over 1 MHz.
Figure 5 - Encoder/Decoder Timing Diagram
--D _______________________________:~~~~~:~~~~____ ----__________________________ ::::..:::"~:~~:,.O"
1
0M
.. ,
'I
1 ," ..,
1
I'
'I
OM .. ,
I
,-",
I
--~,~~~~
'I'
I
I'
'I
1
'I
1s1.ORO
lndWORO
I
l
~~~I?,T1I . . . 5MlSS10H,---------------'M"'I4.::50=2'-'7AN=D..::M:::14:::50:::28:.,:D:=ECO=0E:::;RS'-_ _ _ _ _ _ _ _---l'---l
========================~xC===
Figure 6 - Encoder Data Waveforms (M145026)
ENCODER
OSCILLATOR
(PINI2)
DATA
OUT
, (PIN'S)
ENCODED
"ONE"
U I*
U 1*
ENCODED
·ZERO'"
LJl '
n
ENCODED
'"OPEN'"
U 1*
.'--_ _ _ _ _.....
I.
I.
U
.J
L . ._ _ _ _ _ _
Ul.L-._ _ _ _ _
--...J
DATA PULSE PERIOD
.1
DATA BIT PERIOD
.1
*'50 ns PULSE APPEARS AT THIS POINT
(THIS DOES NOT AFFECT THE TRANSMITTER/RECEIVER OPERATION)
8/10
676
Figure 7 - M145027 Flowchart
Figure 8 - M145028 Flowchart
SERIALLY SHIfT THE
DISABLE "'1
ON THE ,.,
ADORESS ""SNATCH
ADDR£SS<"l","T"l*
INTO THE STORAGE
AND IGNORE THE
REST Of THIS WORD
~
R~
""ell
©.
~i!
~o
",,!II:
©iji
~o
DISABLE YT
ON THE ,.,
DATA MISMATCH
~z
s:
~
-'="
(J1
oI\)
0')
I
s:
~
-'="
(J1
oI\)
......
I
s:
~
-'="
(J1
Cll
-..J
-..J
I~>-'
0
oI\)
*fOR SHIFT REGiSTER COMPARISONS,a"T"ls store<::l as a"'!"
co
M145026 -M145027 -M145028
Figure 9 - M145027/M145028 (fmax vs. Clayoutl
fma,x
(KHz)
"1145026
Clock
500
10
15
20
25
30
35
40
4S
50
S 61831
C1ilyOUI{PFIOfl plns)-S{M145021): Pins 1.5 and12-15(M14502B)
Figure 10 - Typical Application
'00
'00
I
j
M145027
M145026
j
1.
CTC':CTC.Clayoul.12pF
lOOpfSCTCSI5j.JF
RT(;;,IOK;R5::'::2RT
R12:10K
CE':t.QOpF
R22:100K
C22:700pF
ll __ VT
'-_...,..._--'
fos c .-----.!.2.3RTC CTC'
R1Ch3.95RTCCTC
R2C2.17RTCCTC
--------{L--_"...:,.:.:'...:',-o'_J
REPEAT
Of ABOVE
(CTC'
e
CTC + 20 pFI
Example RIC Values
(All Resistors and Capacitors are ± 5%)
fos c (kHzl
RTC
CTC'
RS
Rl
362
181
88.7
42.6
21.5
8.53
1.71
10 k
10 k
10 k
10 k
10 k
10 k
50k
120 pF
240 pF
490pF
1020 pF
2020 pF
5100 pF
5100 pF
20 k
20 k
20 k
20 k
20 k
20 k
100 k
10
10
10
10
10
10
50
_10-'-1.=.1.:..0 _ _ _ _ _ _ _ _ _ _ _ _
678
Cl
k
k
k
k
k
k
k
470 pF
910 pF
2000 pF
3900 pF
8200 pF
0.021'F
0.021'F
R2
100
100
100
100
100
200
200
C2
k
k
k
k
k
k
k
~ ~~~~m~1!~:~~lt
910 pF
1800 pF
3900 pF
7500 pF
0.0151'F
0.021'F
O.lI'F
MC1488
RS232C QUAD LINE DRIVER
• CURRENT LIMITED OUTPUT± 10 mA TYP.
• POWER-OFF SOURCE IMPEDANCE
300nMIN.
• SIMPLE SLEW RATE CONTROL WITH EXTERNAL CAPACITOR
• FLEXIBLE OPERATING SUPPLY RANGE
• INPUTS ARE TTL AND IlP COMPATIBLE
DIP-14 (0.25)
(Plastic and Ceramic)
SO-14J
DESCRIPTION
The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with
the specifications of EIA Standard No. RS232C.
ORDER CODES:
MC1488P (Plastic DIP)
MC1488L (Ceramic DIP)
MC1488D (SO-14)
TYPICAL APPLICATION: RS232C Data Transmission.
6
MC1489
llJr·n~
ll'_12V
l_~
TTL
TTL
,::~"V
,
or
iJP
::
'I
-
p...:-_----'
r--t---'_j
R5-232C
CABLEAND
CONNECTOR
1
14
MC~89
Or
iJP
3
--
~.6_
7
. _.
I
J
1
1'--_..--_....
~
September 1988
.. 7776
1/7
679
MC1488
ABSOLUTE MAXIMUM RATINGS
Symbol
Power Supply Voltage
Value
15
Unit
Vs
Parameter
VEE
Power Supply Voltage
-15
V
VIR
Input Voltage Range
- 15 <; VIR <; 7
V
Vo
Output Signal Voltage
± 15
V
o to 75
°C
- 65 to 150
°C
Tamb
Operating Ambient Temperature
T stg
Storage Temperature Range
CONNECTION DIAGRAMS (top views)
J
VEE
1
14
INPUT 1
2
13 ] INPUT 48
OUTPUT 1
3
12
INPUT 2A
I 4
11 ] OUTPUT 4
INPUT 29
I
5
10 ] INPUT 38
OUTPUT 2
I
6
9 ] INPUT 3A
GND
I
7
8 ]
LOGIC DIAGRAM
+Vs
~ INPUT
V
11
~
13
12
4A
1
7 0
14
0
9
~
10
OUTPUT 3
S-1177
S _7778
THERMAL DATA
Rth
217
680
j-amb
I
Thermal Resistance Junction-ambient
max
Plastic
DI P - 14
Ceramic
DIP - 14
SO - 14
200°C/W
165°C/W
165°C/W
MC1488
ELECTRICAL CHARACTERISTICS (V s= 9 ±1 a % V, V E E= - 9 ±1 a % V, T amb =
a to 75
'{; unless
otherwise specified)
Symbol
Test Conditions
Parameter
IlL
Input Current
Low Logic State
(VIL = OV)
IIH
Input Current
High Logic State
(VIH = 5V)
Output Voltage
High Logic State
RL= 3KQ
VIL = 0.8V. Vs = 9V, VEE = -9V
VIL = 0.8V, Vs = 13.2V, VEE = -13.2V
VOH
Output Voltage
VOL
los
+
los Ro
Is
lEE
Pc
Min.
Typ.
1
6
9
Low Logic State
RL = 3 KD
-6
VIH = 1.9V, VEE =-9V, Vs =9V
VIH = 1.9V, VEE =-13.2V, Vs = 13.2\ -9
Max. Unit
Fig.
1.6
mA
1
10
~A
1
7
10.5
V
V
2
2
-7
- 10.5
V
V
2
2
+
Positive Output Short - circuit
Current
6
10
12
mA
3
+
Negative Output Short-circuit
Current
-6
- 10
-12
mA
3
Q
4
15
4,5
19
5.5
20
6
25
7
34
12
mA
5
Output Resistance
Vs = VEE = 0
IVol = ± 2V
Positive Supply Current
(Rj = =)
VIH
VIL
VIH
VIL
VIH
VIL
Vs
Vs
Vs
Vs
Vs
Vs
Negative Supply Current
(RL ==)
Power Consumption
SWITCHING
= 1.9 V
=0.8 V
= 1.9 V
= 0.8 V
= 1.9 V
=0.8 V
=
=
=
=
=
=
9V
9V
12 V
12 V
15 V
15 V
VIH = 1.9 V
VIL = 0.8 V
VIH=1.9V
VIL = 0.8 V
VIH=1.9V
VIL = 0.8 V
VEE = - 9 V
VEE=-9V
VEE=-12V
VEE=-12V
VEE=-15V
VEE=-15V
Vs = 9 V
Vs = 12 V
VEE = - 9 V
V EE =-12V
300
- 13
-17
-15
- 18 - 23
-15
- 34
- 2.5
333
567
mA
~A
mA
~
mA
mA
5
mW
CHARACTERISTICS (Vs = ± 9 ±1 % V, VEE = - 9 ± 1 % V, Tamb = 25°C)
tpLH
Propagation Delay Time
Zj = 3 KQ and 15 pF
275
350
ns
tTHL
Fall Time
Zj = 3 Kn and 15 pF
45
75
ns
6
tpHL
Propagation Delay Time
Zj = 3 Kfl and 15 pF
110
175
ns
6
trLH
Rise Time
Zj = 3 Kn and 15 pF
55
100
ns
6
6
* MaXimum package power diSSipation may be exceeded If all outputs are shorted simultaneously
3/7
681
MC1488
TEST CIRCUITS
Figure 1 : Input Current.
Figure 2 : Output Voltage.
J
01
"------------~-----------~
Figure 3 : Output Short-Circuit Current.
Figure 4 : Output Resistance (power off).
-
~----
- ------------------,
0"'-......,._...,.--'
Figure 5 : Power Supply Currents.
-----
Figure 6 : Switching Response.
~-------~-----~-,
';~v
1.'Kn
I
115P
f
'
' - -_ _ _ _ 0'
VIL
+O.8V
"
tTHl and tTlH measured IO·f. to 90"'.
~--~~-
4/7
682
---------
MC1488
Figure 8 : Short-Circuit Output Current vs.
Temperature.
Figure 7 : Transfer Characteristics vs.
Power Supply Voltage.
Yo
(V)
I"
(mA)
/ ; _V.ot12V
1-
Vs='±9V
.,
_,--Vs= ±6V
+12
.'
III
'9
+3
.6
.3
_3
~
_.
l:
=Ff-l-rl
-3
-6
_9
-12
o
0.2
0.4
Yo
0.6
-,
-"
0.8
1.2
_55
50
100 lamb(-C)
1.4
Figure 9 : Output Slew-Rate Load Capacitance.
m
Figure 10 : Output Voltage and Current-Limiting Characteristics.
G 0)812
SR
:~
(V/~s)
,
10
-~
J.-l-:
.
1
+~
·+11
• =-=
ff="
10
\..
\
+0
r--....
~
+4
\
~-
1-
.
I
4
6
8
10
101
A·
\
\
\
-0
o
_12
VI~
-16
°o,OV
losl\,-
1.9V
I •
~
\
"0
VS=VEE=+9V
4
2
~
_4
.
IC'
3M LOAD LINE
\
.~.I--'
~VO
10
-
{rnA}
&
8
_20
c!
1
_16 _12
_8
_4
0
+4
+8
+12
... 16
Vo(Y)
Figure 11 : Maximum Operating Temperature vs. Power-Supply Voltage.
G_5811,
E
I
12
-
.........
""
Vs
14
10
3
"-
3Kflx4
--
-
"'-.
~
6
-
~
0
-
~
"
~
~
7
--
.....
I
VE.E
f---- ---
I
_55
+50
+100 lamb (.C)
5/7
683
MC1488
APPLICATION INFORMATION
The Electronic Industries Association (EIA) has released the RS232C specification detailing the requirements for the interface between data processing
equipment. This standard specifies not only the
number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and
its companion circuit, the MC1489 quad receiver,
provide a complete interface system between DTL
or TTL logic levels and the RS232C defined levels.
The RS232C requirements as applied to drivers are
discussed herein.
The required driver voltages are defined as between
5 and 15 V in magnitude and are positive for a logic
"0" and negative for a logic "1 ". These voltages are
so defined when the drivers are terminated with a
3000 to 70000 resistor. The MC1488 meets this
voltage requirement by converting a DTLITTL logic
level into RS232C levels with one stage of inversion.
The RS232C specification further requires that during transitions, the driver output slew rate must not
exceed 30 V per flS. The inherent slew rate of the
MC1488 is much too fast for this requirement. The
current limited output of the device can be used to
control this slew rate by connecting a capacitor to
each driver output. The required capacitor can be
easily determined by using the relationship C = los
x liTI liV from which Figure 12 is derived. Accordingly, a 330 pF capacitor on each output will guarantee a worst case slew rate of 30 V per J.ls.
connecting cable. The worst possible signal on any
conductor would be another driver using a plus or
minus 15 V, 500 mA source. The MC1488 is designed to indefinitely withstand such a short to all four
outputs in a package as long as the power-supply
voltages are greater than 9.0 V (i.e., VS ::0: 9.0 V ;
VEE S - 9.0 V). In some power-supply designs, a loss
of system power causes a low impedance on the
power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs
to the MC1488 effectively shorting the 3000 output
resistor to ground. If all four outputs were then
shorted to plus or minus 15 V, the power dissipation
in these resistors would be excessive. Therefore, if
the system is designed to permit low impedances to
ground at the power-suppies of the drivers, a diode
should be placed in each power-supply lead to prevent over-heating in this fault condition. These two
diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These
same diodes will allow the MC1488 to withstand momentary shorts to the ±15 V limits specified in the
earlier Standard RS232B). The addition of the
diodes also permits the MC1488 to withstand faults
with power-supplies of less than the 9.0 V stated
above.
The maximum short-circuit current allowable under
fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.
The interface driver is also required to withstand an
accidental short to any other conductor in an inter-
Figure 12 : Slew Rate vs. Capacitance for
Isc = 10mA.
Figure 13: Power Supply Protection to
Meet Power-off Fault Conditions.
G S81')
SR
,t-=FF
Iv) "~
''::~f\
!-f-I-
11
! L'l~
!
--
' I
I
~. t-
:"S
-c=!OVf~S
<--.. - -
10
---:-
,-
,I
,.
.
---,
•,
--
65
6/7
684
I
---+-
1~333PF
I
10
I
2
10
2
6. 8 )
10
2
I
4
68
C (pFl
L _________________._ ._ __
MC1488
OTHER APPLICATION
The MC1488 is an extremely versatile line driver
with a miriad of possible applications. Several features of the drivers enhance this versatility:
1. Output Current Limiting - this enables the circuit
designer to define the ouptut voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins.
2. Power-Supply Range - as can be seen from the
schematic drawing of the drivers, the positive and
negative driving elements of the device are essentially independent and do not require matching po-
wer-supplies. In fact, the positive supply can very
from a minimum seven volts (required for driving the
negative pulldown section) to the maximum specified 15 V. The negative supply can vary from approximately - 2.5 V to the minimum specified - 15 V.
The MC1488 will drive the ouptutto within 2 Vofthe
positive or negative supplies as long as the current
output limits are not exceeded. The combination of
the current-limiting and supply-voltage features alIowa wide combination of possible outputs within
the same quad package.
7/7
685
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
MC1489
MC1489A
QUAD LINE RECEIVERS
•
•
•
•
INPUT RESISTANCE -3.0 K to 7.0 Kn
INPUT SIGNAL RANGE - ± 30 V
INPUT THRESHOLD HYSTERESIS BUILT-IN
RESPONSE CONTROL:
a) LOGIC THRESHOLD SHIFTING
b) INPUT NOISE FILTERING
DIP-14
(Plastic (0.25) and Ceramic)
I
I
I
DESCRIPTION
The MC1489 monolithic quad line receivers are designed to interface data therminal equipment with data communications equipment in conformance with
the specifications of EIA Standard No. RS-232C.
l
I
SO-14J
aRDER CODES: MC1489L. MC1489AL
(DIP-14 Ceramic)
.
MC1489P. MC1489AP
L__ ____ ~~~~~§:~?~4~9A~~O~_1
TYPICAL APPLICATION: RS232C Data Transmission
+Vs
TTL
TTL
~p
~p
or
or
p..:-_--"
r-1---;_-<'
L
----------
September 1988
RS-232C
CABLEAND
CONNECTOR
-------------------
------
1/7
687
MC1489-MC1489A
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
10
V
Vs
Power Supply Voltage
VI
Input Voltage Range
± 30
V
IOL
Output Load Current
20
mA
Ptot
1
W
o to 75
'C
- 65 to 150
°C
Power Dissipation
Tamb
Operating Ambient Temperature
T stg
Storage Temperature Range
CONNECTION DIAGRAMS (top view)
INPUT A
14
RESPONSE
CONTROL A
13
INPUT D
OUTPUT A
12
h RESPONSE
INPUT B
11
~
RESPONSE
CONTROL B
10
OUTPUT B
9
~ INPUT C
h RESPONSE
GROUND
8
~ OUTPUT
~ CONTROL D
OUTPUT D
~ CONTROL C
C
SCHEMATIC DIAGRAM (1/4 of circuit shown)
, -____~----~-1-40VS
9Kll
5Kll
t.7KJl
OUT
1NPUT
L---+-----~----~----~~~OGND
*
2/7
688
MC1489=6.7KO
Me t4B9A =t.6KO
MC1489-MC1489A
ELECTRICAL CHARACTERISTICS (Response control pin is open; V s
unless otherwise specified)
Symbol
Parameter
Test Condtions
= 5 V,
Min.
IIH
Positive Input Current
VIH = 25 V
VIH = 3 V
IlL
Negative Input Current
VIL = - 25 V
VIL=-3V
VIH
Input Turn-on Threshold Voltage
Tamb =25 0 C VOL" 0.45
IL = 10 mA for MC1489
for MC1489A
1
1.75
0.75
VIL
Input Turn-off Threshold Voltage
Tamb =25 0 C VOH ~ 2.5 V
IL = - 0.5 mA
VOH
Ouptut Voltage High
VIH = 0.75 V IL =- 0.5 mA
IL = 0.5 mA Input Open Circuit
VOL
Output Voltage Low
VIL = 3 V
los
Output Short Circuit Current
Is
Power Supply Current
All gates "on"
VIH = 5 V
Pc
Power Consumption
VIH = 5 V
SWITCHING CHARACTERISTICS (Vs = 5 \/,
Typ.
0
Max.
8.3
- 3.6
- 0.43
- 8.3
1.95
2.5
2.5
10 = a mA
= 25
= 0 to 75
3.6
0.43
IL = 10 mA
Tamb
T amb
0
C
Unit
mA
mA
.1.5
2.25
V
1.25
V
4
4
5
5
V
V
0.2
0.45
V
- 3
- 4
mA
16
26
mA
80
130
mW
C, see Fig. 1)
Typ.
Max.
Unit
tpLH
Propagation delay Time
RL = 3.9 KQ
25
85
ns
ITLH
Rise Time
RL = 3.9 KQ
120
175
ns
tpHL
Propagation Delay Time
RL = 390 Q
25
50
ns
tTHL
Fall Time
RL = 390 Q
10
20
ns
Symbol
Test Condtions
Parameter
Min.
TEST CIRCUITS
Figure 1 : Switching Response .
Figure 2 : Response Control Node.
• 5V
lN3064K4
1/4 NCI489A
~
RESPONSE NOOE
"'0
'TLH and tTHL
measured 10"1._90"1.
C, capacitor is for noise filtering
R, resistor is for threshold shifting
317
689
MC1489-MC1489A
Figure 3 : Input Current.
Figure '4 : Output Short-Circuit Current.
Figure 5 : Output Voltage and Input Threshold Voltage,
Figure 6 : Power Supply Current.
"
7
S_179l
TYPICAL CHARACTERISTICS (Vs
=5
Figure 7 : Input Current.
V, T amb
= 25°C
unless otherwise specified)
Figure 8 : MC1489 Input Threshold Voltage
Adjustament.
G
G- 5828
';
rr-tR,
1m. J
V
V
-2
-4
-6
V
./
5Kn
Vlh
.5V
./
~;~
./
1-,-
I
R,
13Kfl
t--
RT
I1Kfi
Vlh
_5V
,-
I
II !
T
I
_ 25 -20
-15 -10 -5
0
5
10
15
Vi (V)
-3
-2
_1
~Vth
J:
1--,-
,
"tr ,
;
r
_'0
690
V'h
.5V
R,
=
:
-8
4/7
.. ~
R,
I
l-
~819
MC1489-MC1489A
Figure 9: MC1489A Input Threshold Voltage
Adjustment.
Figure 10 : Input Threshold Voltage vs.
Temperature.
G !l1I3'
V,H
- -t Jt-tt~
(VI
3.2
2.B
i
2A
f
1.6
r-r. -tlf
-±~fH,
~9AVIH
1
1.2
MC14B9 "IH
DB
MC1489V1L ~
Me 1489A \IlL
D.4
-3
-2
"Vi (V)
L---i-.-'
H ,J 1J
-60 - .. 0
-rfTTnt
-20
0
20
40
60
090
Tamb'·C)
Figure 11 : Input Threshold vs. Power-Supply
Voltage.
V,H
(vi
_831
G'
V1H MC14B9A
6
4
2
V 1H MC14B9
Vll MC1489
D. B V MC1489A
IL
D. 6 - -
o. 4
D. 2
10
Vs (V)
APPLICATION INFORMATION
GENERAL INFORMATION
The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number
and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its
companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or
TTL logic levels and the RS-232C defined levels.
The RS-232C requirements as applied to receivers
are discussed herein.
The required input impedance is defined as between 3000 nand 7000 n for input voltages be-
tween 3.0 and 25 V in magnitude; and any voltage
on the receiver input in an open circuit condition
must be less than 2.0 V in magnitude. The MC1489
circuits meet these requirements with a maximum
open circuit voltage of one VSE.
The receiver shall detect a voltage between - 3.0
and - 25 V as a Logic "1" and inputs between + 3.0
and + 2.5 V as a Logic "0". On some interchange
leads, an open circuit of power "OFF" condition
(300 n or more to ground) shall be decoded as an
"OFF" condition or Logic "1 ". For the reason, the input hysteresis thresholds of the MC1489 circuits are
all above ground. Thus an open or grounded input
will cause the same output as a negative or Logic
"1" input.
5/7
691
MC1489-MC1489A
DEVICE CHARACTERISTICS
The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input hysteresis for noise rejection. The
MC1489 input has typical turn-on voltage of 1.25 V
and turn-off of 1.0 V for a typical hysteresis of
250 mV. The MC1489A has typical turn-on of 1.95 V
and turn-off of 0.8 V for typically 1.15 V of hysteresis.
Each receiver section has an external response
control node in addition to the input and output pins,
thereby allowing the designer to vary the inputthreshold voltage levels. A resistor can be connected between this node and and an external power supply.
Figure 2, 4 and 5 illustrate the input threshold voltage shift possible through this technique.
pulses. Figure 8 and 9 show typical noise-pulse rejection for external capacitors of various sizes.
These two operations on the response node can be
combined or used individually for may combinations
of interfacing applications. The MC1489 circuits are
particularly useful for interfacing between MOS circuits and MDTLlMTTL logic systems. In this application, the input threshold voltages are adjusted.
(with the appropiate supply and resistor values) to
fall in the center of the MOS voltage logic levels.
(See Figure 10).
This response node can also be used for the filtering of the high-frequency, high-energy noise
The response node may also be used as the receiver input as long as the designer realizes that he
may not drive this node with a low impedance
source to a voltage greater than one diode above
ground or less than one diode below ground. This
feature is demonstrated in Figure 11 where two receivers are slaved to the same line that must still
meet the RS-232C impedance requirement.
Figure 12: Typical Turn-on Threshold vs.
Capacitance from Response
Control Pin to GND.
Figure 13 : Typical Turn-on Threshold vs.
Capacitance from Response
Control Pin to GND.
Vi
IV)
I
M[14B9
-t-t
l_~.i.1
300pF
50°1._
10
6/7
692
100
1000
W{ns}
10
100
1000
W(ns)
MC1489-MC1489A
Figure 14: Typical Paralleling of Two MC1489/A Receivers to Meet RS-232C.
RESPONSE.
:- ----------------
---:=~.1
CONTROL PIN·
-r~
ftJ
,,
._~
I
I
I
____~ ___._______ ._____________ ._____________.J
7/7
693
o_~
_______
MC3479C
STEPPER MOTOR DRIVER
• SINGLE SUPPLY OPERATION + 7.2 V TO
+ 16 V
• 350 mAl COIL DRIVE CAPABILITY
• BUILT IN FAST PROTECTION DIODES
• SELECTABLE CW/CCW AND FULL/HALF
STEP OPERATION
• SELECTABLE HIGH/LOW OUTPUT IMPEDANCE (HALF STEP MODE)
• TTL/CMOS COMPATIBLE INPUTS
• INPUT HYSTERESIS: 250 mV TYP.
• PHASE LOGIC CAN BE INITIALIZED TO
PHASE A
• PHASE A OUTPUT DRIVE STATE INDICATION
Powerdip
12 + 2 + 2
ORDER CODE. MC3479C
' _ _ _ _ _o _ o _ _ _ o _ o_ _ _ _ _
o __ ~
_ _- - - - "
INPUT TRUTH TABLE
DESCRIPTION
INPUT lOW
The MC3479C is designed to drive a two-phase
stepper motor in the bipolar mode. The circuit
consists of four input selections a logic decoding/sequencing section two driver stages for the motor
coils and an output to indicate the Phase A drive
state.
INPUT HIGH
CW/CCW
CW
CCW
FIHS
Full Step
Half Step
OIC
High Z
ClK
Positive Edge Triggered
low Z
i
BLOCK DIAGRAM
~
_ _ _ '___ 0 _ - -
I
0_ _ _ _ _ _ _ _ _
0_ _
0_ _ _ _ _ _ _ _ _ __
Vs
r -. .-~-----'!..()L 1
CLK
L2
CW/CCW
VD
L3
FULL/HALF
STEP
I
ole
I
I
5-9181/1
BIAS/SET
o_ _ _ _
September 1988
o_~
GND 4.5.12.13
_ _ _ _ _ o _ _0
__
o_ _ _ _
J
I
1/7
695
MC3479C
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Vs
Supply Voltage
16
Voc
Vo
Clamp Diode Cathode Voltage (pin 1)
Vs
Voc
VOD
Driver Output Voltage (pins 2, 3, 14, 15)
Vs
Voc
100-
Driver Output Current/Coil
Y'N
Parameter
Input Voltage (pins 7, 8, 9, 10)
± 500
mA
- 0.5 to 7
Voc
Iss
Bias/Set Current (pin 6)
10
mA
VOA
Phase A Output Voltage (pin 11)
16
Voc
Phase A Sink Current (pin 11)
20
mA
Junction Temperature
150
'C
- 55 to 150
'C
IDA
Tj
Tstg
Storage Temperature range
RECOMMENDED OPERATION CONDITIONS
Symbol
Parameter
Min.
Max.
7.2
16
V
Clamp Diode Cathode Voltage (DC)
-
Vs
V
mA
Vs
Supply Voltage (DC)
Vo
Unit
Driver Output Current (per coil)
-
350
V,
DC Input Voltage (pin 7, 8, 9, 10)
0
5,5
V
Iss
Bias/Set Current (outputs active)
- 300
75
flA
100
IDA
Tamb
Phase A Sink Current
0
8
mA
Operating Ambient Temperature
0
70
°C
CONNECTION DIAGRAMS
~
1
Ll
16
15
LJ
L1
l4
GND
13
GND
GNO
1l
GNO
11
PHASE A
BIASfSET
6
eLK
10
CW/CCW
Die
9
FULl/HA.lf
STEP
5-9H12/1
THERMAL DATA
Max
2/7
696
70
MC3479C
PIN DESCRIPTION
Symbol
Name
Pins
Description
Vs
POWER SUPPLY
16
Power supply pin for both the logic circuit and the motor coil
current. Voltage range is 7.2 V to 16 V.
GND
GROUND
4-5-12-13
Ground Pins for the Logic Circuit and the Motor Coil Current.
The physical configuration of the pins dissipating heat from
within the package.
Vo
CLAMP DIODE
1
This pin is used to protect the outputs where large voltage
spikes may occur as the motor coils are switched. Typically
a diode is connected between this pin and pin 16. See figure
5.
L1, L2,
L3, L4
DRIVER OUTPUTS
2-3
14-15
B/S
BIAS/SET
6
This pins is typically 0.7 V below Vs. The current out of this
pin (through a resistor to ground) determines the maximum
output sink current. 11 the pin is opened (Iss < 5.0 ~A) the
outputs assume a high impedance condition while the
internal logic presets to a Phase A condition.
CK
CLOCK
7
The positive edge of the clock input switches the outputs to
the next position. This input has no effect if pin 6 is open.
F/HS
FULUHALF STEP
9
When low (logic 0) each clock pulse will cause the motor to
rotate one full step.
When high, each clock puis!;! will cause the motor to rotate
one-half step.
(see figure 4 for sequence).
CW/CCW
CLOCKWISE
COUNTERCLOCKWISE
10
This input allows reversing the rotation of the rotation of the
motor.
(see figure 4 for sequence).
OIC
OUT IMPEDANCE
CONTROL
8
This input is relevant only in the half step mode (pin
9 > 2 V). When low (logic 0) the two driver out of the
non-energized coil will be in a high impedance condition.
When high the same driver outputs will be at a low
impedance reference to Vs.
(see figure 4).
PhA
PHASE A
11
This outputs indicate (when low) that the driver outputs are
in the phase A condition (L 1 = L3 = VoHo ; L2 = L4 = VOLo).
High Current Outputs for the Motor Coils. L 1 and L2 are
connected to one coil and L3 and L4 to the other coil.
317
697
MC3479C
DC ELECTRICAL CHARACTERISTICS(Specifications apply over the recommended supply voltage
and temperature range, unless otherwise noted)
ISymbol I
Parameter
Test Conditions
I Min.
I Typ.
Max. I Unit
INPUT LOGIC LEVEL
VTLH
Threshold Voltage
(low to high)
VTHL
Threshold Voltage
(high to low)
VHYS
III
IIHl
IIH2
2
Hysteresis
Current
V
0.8
V
0.4
V
- 100
VI = 0.4 V
VI = 5.5 V
VI = 2.7 V
100
20
~A
DRIVER OUTPUT LEVELS
VOHO
Output High Voltage
100 =- 350 mA
100=-0.1mA
IBs =- 300 ~
Vs - 2.0
Vs - 1.2
V
V
VOlO
Output Low Voltage
IBs =- 300 ~
100 =- 350 mA
0.8
V
Dvoo
Difference Mode out
Voltage Difference
IBs =- 300 ~
100 = 350 mA
0.15
V
Cvoo
Common Mode out
Voltage Difference
IBs =- 300 ~
100=-0.1mA
0.15
V
10Zl
Out Leakage-HiZ State
0< Vo < VM, IBs =5 ~A
- 100
+ 100
~
loz2
Out Leakage·HiZ state
0< Voo < VM, IBs = - 300 ~
Pin 9 = 2 V
Pin 8 = 0.8 V
- 100
+ 100
~
12
mA
75
mA
CLAMP DIODES
Forward Voltage
10 =350 mA
Leakage Current
PHASE A OUTPUT
Out Low Voltage
lOA = 8 mA
Off State Leakage Current
VOA = 16.5 V
POWER SUPPLY
IssB
Power Supply Current
in Stand by State
6
Power Supply Current
(100 = 0) ; IBs = - 300
4/7
698
VBs = Vs
~A)
L1 = VOHo
L3 = VOHo
L2 = VOlo
L4 = VOHo
MC3479C
BIAS SET CURRENT
IBS
Notes:
I Bias Set Current
I to
set PHASE A
3. DVOD ~ I VOD1.2 - VOD3.4 I
VOD1.2 ~ (VOHD1 - VOHD2) or (VOHD2 - VOLD1) AND
4. eVOD ~ I VOHD1 - VOHD2 or VOHD3 - VOHD4 I
AC SWITCHING CHARACTERISTICS (T amb
Symbol
Parameter
= 25
VOD3.4
'C ; V M
- 5
~
flA
(VOHD3 - VOHD4) OR (VOHD4 - VOHD3)
= 12
V)
Test Conditions
Min.
Typ.
Max.
Unit
30
KHz
ICK
Clock Frequency
PWCKH
Clock Pulse Width
HIGH
10
PWCKl
Clock Pulse Width
lOW
20
fls
flS
0
fls
tsu
Set-up Time CW/CCW and F/HS
5
tHO
Hold Time CW/CCW and F/HS
10
tpCD
Propagation Delay ClK-to Driver
Out
8
fls
tpBSD
Propagation Delay Bias/Set to
Driver Output
1
fls
tpHLA
Propagation Delay ClK-to Phase
A lOW
12
fls
tpLHA
Propagation Delay ClK-to Phase
A HIGH
5
fls
fls
Figure 1: AC Test Circuit.
>1211
L2
1KIl.
56KIl.
BIASI SET
C/K
MC3479c 14
O/C
8
FIHS
CW/CCW
10
PHASE A
S-91B3
5/7
699
MC3479C
Figure 2 : Typical Application Circuit.
DIGITAL
INPUTS
PHASE A
~
"
CLOCK
cr---
7
DIRECTION
I
MOTOR
10
G
~~~~'HALFo--
~~~~lcE(
S-9187
4049
Figure 3 : Bias/Set Timing (refer to fig.1).
PWSS
VM
BIAS/SET
INPUT
L1-L4
OUTPUTS
S-9161,
Figure 4 : Clock Timing (refer to fig.1).
3V
CIK
Ll-L4
OUTPUTS
3V-----------------~
F/HS
CW/cCW
INPUTS
0-----------'
I
PHASEA
OUTPUTS
_ _
6/7
700
~5-.16~5l'5~V
_________
~_
MC3479C
Figure 5 : Output Sequence.
- - - -.. -
--------_.-
---
------- -
.
eLK
8IASfSET~~,--+---~--~--~----~--~---7----~--~--~---7--~~
(W/CCW
,
~,~,__~,~_~__~,____~__~__~'J'-~---'--~~--~--:----7I:ALB
11
L2
L3
L4
PHAS£A
OUTPUT
C:O
A:S:C
~L'__~_~!r---:---'lL-
BIA:O:C
__i-__~__-1----~--i-__~__~r'
, ,
'I
-,--~~~--t-~~__~~~--1L
!7+--1
, ,
,,
r'
~~~'--!----L
__~____r---:---,~r'----~--t---~-.J~
~
~
, ,
,
~~zl,__~__-f---i----L-__~__--i~l;__~~__r---~----;~
I
I
I
1
I
,
:
I
1
1
I
I
1
'
I
I
~r,--~----~~~~:--~----~--~~r:--~~--7---'~
I
I
~ HIGH IMPEDANCE
(A)FUll STEP "ODE
ffHS lOGIC ··0··
OIC DON· T CARE
,
,
11
~
,
I
II
1m!
, ,
Ll
t1ZI
I
I
L4
bd
,
I
,
I
I
, ,
,
I
,
I
,
,
'A
e '
: 8
0
,,
,
,
I
WffhZl
,
I
I
,,
I
I
tzWM
,,
,,
t'l/'ll4
I
tzW.IA
,
I
,I
,
I
11
II
L3
Izd
I
I
I
I
I
I
,
OUTPUT
,
I
,
I
I
C
I
0
:E
,
F
0
I
I
I
,'
,
I
'
bzaj-
I
f2'JJ
G
,
wz1..I
,
,
HIGH IMPEDA.NCE
Cyi/ccw LOGIC "0"
FfHS
LOGIC •• , ..
OIC
lOGIC ··0··
J!
,,
I
,
"
,1
I
I
H1A,18'C
D
I
I
I
I
~(-~~--'---'----l
__~___~__Jr---.----~--{---~---,L
~
, I
,
i
I
~~~
I'l4I
i"
I I
I
PHASE A
8
I
~
I
l4
,
I
I A
B
f?1Vd
:, '
wzza
I
I
Y?ZZm1
I
I
f'lM01
,
,
,
A
I
(8) HALf STEP "ODE
:I
H
nom
WZVA
I
,
I
,
,
G
: F
I
____~__~__~__~____~_+-__~__~____~__~'~
I
I
,
I
I
I
U-1r-~-~--L---~~-~~r'-~-~--~
IC) HALF STEP MODE
CWI(CW lOGIC "0"
FfHS
LOGIC "1 ,.
OIC
lOGIC ··0··
I
_J
7/7
701
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PBL3717A
STEPPER MOTOR DRIVER
• FULL STEP - HALF STEP - QUARTER STEP
OPERATING MODE
• BIPOLAR OUTPUT CURRENT UP TO 1 A
• FROM 10 V UP TO 46 V MOTOR SUPPLY
VOLTAGE
• LOW SATURATION VOLTAGE WITH INTEGRATED BOOTSTRAP
• BUILT IN FAST PROTECTION DIODES
• EXTERNALLY SELECTABLE CURRENT LEVEL
• OUTPUT CURRENT LEVEL DIGITALLY OR
ANALOGUE CONTROLLED
• THERMAL PROTECTION WITH SOFT INTERVENTION
A monostable, programmed by an external RC network, sets the current decay time.
The power section is a full H-bridge driver with four
internal clamp diodes for current recirculation. An
external connection to the lower emitters is available for the insertion of a sensing resistor. Two
PBL3717As and few external components form a
complete stepper rnotor drive subsystem.
The raccomended operating ambient temperature
ranges is from 0 to 70°C.
The PBL3717 A is supplied in a 12 + 2 + 2 lead Powerdip package.
DESCRIPTION
The PBL3717 A is a monolithic IC which controls and
drives one phase of a bipolar stepper motor with
chopper control of the phase current. Current levels
may be selected in three steps by means of two logic inputs which select one of three current comparators. When both of these inputs are high the device is disabled. A separate logic input controls the
direction of current flow.
Powerdip
12+2+2
ORDER CODE: PBL3717A
BLOCK DIAGRAM
I"
REF 0--- ,-
I,'
I
I
1223
Q
I
I
\:z:l]
1.0.
I
I
11~5
I
GNoo------i/:2 _
COMPARATOR
INPUT
September 1988
I,
PULSE
TIME
:'EN5E
RESISTOR
1/10
703
PBL3717A
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
Vs
Power Supply Voltage (pins 14, 3)
50
V
Vss
Logic Supply Voltage (pin 6)
7
V
V,
Logic Input Voltage (pins 7, 8, 9)
6
V
Vc
Comparator Input (pin 10)
Vss
Vr
Reference Input Voltage (pin 11)
15
V
10
Output Current (DC operation)
1.2
A
- 55 to + 150
°C
DC
Storage Temperature
T stg
150
Operating Junction Temperature
Tj
CONNECTION DIAGRAM (top view)
~
16
SENSE
RESISTOR
PULSE TIME
IS
OUTPUT A
GND
13
GND
GND
12
GND
OUTPUT B
I
REFERENCE
INPUT I
INPUT
PHASE
¢
5- 6745
TRUTH TABLE
Input 0
(pin 9)
Input 1
(pin 7)
H
L
H
L
H
H
L
L
No Current
Low Current
Medium Current
High Current
THERMAL DATA
11
40
• Soldered on a 35~ thick 20 em' P.C. board copper area.
2/10
704
PBL3717A
PIN FUNCTIONS
N°
Name
Function
1
OUTPUT B
Output Connection (with pin 15). The output stage is a "H" bridge formed
by four transistors and four diodes suitable for switching applications.
2
PULSE TIME
3
SUPPLY VOLTAGE B
4
GROUND
Ground Connection. With pins 5, 12 and 13 also conducts heat from die to
printed circuit copper.
5
GROUND
See pin 4.
6
LOGIC SUPPLY
7
INPUT 1
This pin and pin 9 (INPUT 0) are logic inputs which select the outputs of
the three comparators to set the current level. Current also depends on
the sensing resistor and reference voltage. See truth table.
8
PHASE
This TTL-compatible logic input sets the direction of current flow through
the load. A high level causes current to flow from OUTPUT A (source) to
OUTPUT B (sink). A schmitt trigger on this input provides good noise
immunity and a delay circuit prevents output stage short circuits during
switching.
9
INPUT 0
10
COMPARATOR INPUT
11
REFERENCE
12
GROUND
13
GROUND
14
SUPPLY VOLTAGE A
15
OUTPUT A
16
SENSE RESISTOR
A parallel RC network connected to this pin sets the OFF time of the lower
power transistors. The pulse generator is a monostable triggered by the
rising edge of the output of the comparators (toll = 0.69 RT CT).
Supply Voltage Input for Half Output Stage.
See also pin 14.
Supply Voltage Input for Logic Circuitry.
See INPUT 1 (pin 7) .
Input connected to the three comparators. The voltage across the sense
resistor is feedback to this input through the low pass filter Rc Cc. The
lower power transistor are disabled when the sense voltage exceeds the
reference voltage of the selected comparator. When this occurs the current
decays for a time set by RT CT, toll = 0.69 RT CT.
A voltage applied to this pin sets the reference voltage of the three
comparators, this determining the output current (also thus depending
on Rs and the two inputs INPUT 0 and INPUT 1).
See pin 4.
See pin 4.
Supply Voltage Input for Half Output Stage.
See also pin 13.
See pin 1.
Connection to Lower Emitters of Output Stage for Insertion of Current
Sense Resistor.
3/10
705
PBL3717A
Figure 1 : Test and Application Circuit.
REFERENCE LOGIC
VOLTAGE SUPPLY
+ 5V
+5V
VR
11
LOGIC
CONTROL
INPUTS
11
7
10
9
6
MOTOR
SUPPLY
+36V
14
15
L'; 10 mH
R'; 13 II
MA
L
PBL3717A
MOTOR
WINDING
PHASE
MB
RS
111
GND--~--~----~---4~----~-
= 0).
Figure 2 : Waveforms with MA Regulating (phase
M
4/10
706
1 Ln-.:TO~N~ T~O.!...FF!-....In
7 c=~
ovLD
VM=v. .S-VMA
5-6747/2
....__
S -77l.0
PBL3717A
ELECTRICAL CHARACTERISTICS (refer to the test circuit Vs
= 36 V, Vss = 5 V,
Tamb = 25 'C
Min
Max
unless otherwise specified)
Symbol
Parameter
Vs
Supply Voltage
(pin 3, 14)
Vss
Logic Supply Voltage
(pin 6)
Iss
Logic Supply Current
(pin 6)
IR
Reference Input Current
(pin .11)
Test Conditions
Typ
Unit
10
46
V
4.75
5.25
V
7
15
mA
0.75
1
mA
0.8
V
Vss
V
pin 8
- 100
~A
pins 7, 9
- 400
~A
10
~A
VR ~ 5 V
LOGIC INPUTS
Vil
Input Low Voltage
(pins 7, 8, 9)
ViH
Input High Voltage
(pin 7, 8, 9)
lil
Low Voltage Input Current
(pins 7, 8, 9)
Vi
High Voltage Input Current
(pins 7, 8, 9)
Vi
liH
2
~
0.4 V
~
2.4 V
COMPARATORS
VCl
VCM
VCH
Ic
Comparator Low Threshold
Voltage (pin 10)
VR
Comparator Medium
Threshold Voltage (pin 10)
VR
Comparator High
Threshold Voltage (pin 10)
VR
~
~
~
5 V
5 V
5 V
10
1,
~
10
1,
~
10
1,
~
~
~
~
L
H
66
78
90
mV
H
L
236
251
266
mV
L
L
396
416
436
mV
± 20
~A
35
~s
Comparator Input Current
(pin 10)
~
56 Kn
toll
Cutoff Time
RT
td
Turn Off Delay
(see fig. 2)
loll
Output Leakage Current
(pins 1, 15)
10
~
CT
1,
H
~
~
820 pF
25
H
2
~s
100
~A
SOURCE DIODE-TRANSISTOR PAIR
Saturation Voltage
(pins 1, 15)
1M ~- 0.5 A
(see fig. 2)
Conduction Period
1.7
2.1
Recirculation Period
1.1
1.35
Saturation Voltage
(pins 1, 15)
1M ~- 1 A
(see fig. 2)
Conduction Period
2.1
2.8
Recirculation Period
1.7
2.5
ILK
Leakage Current
Vs
~
VF
Diode Forward Voltage
1M
~-
0.5 A
1
1.25
1M
~-
1A
1.3
1.7
1M
~-
0.5 A
2
1M
~-
1A
5
Vsat
V sat
Isu~
Substrate Leakage Current
when Clamped
46 V
300
V
V
~A
V
mA
5/10
707
PBL3717A
ELECTRICAL CHARACTERISTICS (continued)
I Symbol
I
Parameter
I
Test Conditions
Min.
I Typ.
I Max. I Unit
SINK DIODE-TRANSISTOR PAIR
Saturation Voltage
(pins 1, 15)
IM=0.5A
1.1
1.35
V
1M = 1 A
1.6
2.3
V
ILK
Leakage Current
Vs = 46 V
300
!lA
VF
Diode Forward Voltage
IM=0.5A
1.1
1.5
1M = 1 A
1.4
2
V sat
APPLICATION CIRCUIT
Figure 3 : Two Phase Bipolar Stepper Motor Driver.
0~f2-,
6
7
lOA
I
I
II
11A
Vs
Vss
Cl nf T F
C2:f0.,,.,F UI
14
3
15 MAA
PBL3717A
9
PhA
82
4
5
GND
.pF
~CT
RT]
K
56Il
8
820pF
1 1
2
16
I
4
5
12
I
13
..L..
RS[ III
1 K Il
.:..::;
6/10
708
IMA
-
.JYY"\..
(
1MB (
(
RC
10
16 MBB
1'---
PBL3717A
7
[OB
9
MBA
RC
CC~=
~~O
pF
PhB
lIB
10
~
82~~f= RS[ ~ III
:~~~
RT
56
Kil
12
11I
FROM
pPROCESSOR
13
MAB
11
6
1
I
3
14 '5
I
S~6748/1
EPPER
O~TOTOR
V
I
PBL3717A
Figure 4: P.C. Board and Component Layout of the Circuit of fig. 3 (1 : 1 scale).
Cc
Cc
o~~m
c::::)
.cQ
beT MRs
RsOO
C3
c::::>
(2
c:::::::2
-eRr
c::::)C i
Cf
cs- 0215
Figure 5 : Input and Output Sequences for Half Step and Full Step Operation.
STANO BY WITH
HOLDING TORQUE
IM= SOmA
HALF STEP MOTOR DRIVE
1M = 250mA
3
~
5
6
FULL STEP MOTOR DRIVE
1M =500mA
7
PhA
IN
PhB
---f---,
500mA---- - - - - - - - - - - - - - - -
I MA _
I
J
- - - - --- - - --,.- ----
IL.....-_______ _
::::p ----- c::~:._.__-+-_-+r--_~----~,.----=
-500mA------- _______________________ _
OUT
~~
-500 m A - - - - - - - - -
- - -
-
-
- - - - -
- -
- -
L....- _ _ L....-
S-67~9
7/10
709
PBL3717A
APPLICATION INFORMATIONS
Fig. 3 shows a typical application in which two
PBL371 7A control a two phase bipolar stepper motor.
Like full step this can be done at any current level ;
the torque is not constant but it is lower when only
one winding is energized.
PROGRAMMING
A coil is turned off by setting 10 and Ii both high.
The logic inputs 10 and Ii set at three different levels
the amplitude of the current flowing in the motor winding according to the truth table of page 2. A high
level on the "PHASE" logic input sets the direction
of that current from output A to output B ; a low level from output B to output A.
It is recommended that unused inputs are tied to pin
6 (Vss) or pin 4 (GNO) as appropriate to avoid noise
problem.
The current levels can be varied continuously by
changing the ref. voltage on pin 11.
CONTROL OF THE MOTOR
The stepper motor can rotate in either directions according to the sequence of the input signals. It is
possible to obtain a full step, a half step and a quarter step operation.
FULL STEP OPERATION
Both the windings of the stepper motor are energized all the time with the same current IMA = 1MB.
QUARTER STEP OPERATION
It is preferable to realize the quarter step operation
at full power otherwise the steps will be of very irregular size.
The extra quarter steps are added to the half steps
sequence by putting one coil on half current according to the sequence.
AB
A
-72
A
B -7 B -7 2 B
-7
-
AB
-7
-B
A2
-7
A etc.
MOTOR SELECTION
As the PBL3717 A provides constant current drive,
with a switching operation, care must be taken to
select stepper motors with low hysteresis losses to
prevent motor over heal.
L-C FILTER
To reduce EMI and chopping losses in the motor a
low pass L -C filter can be inserted across the outputs ofthe PBL3717A as shown on the following picture.
10 and Ii remain fixed at Whatever torque value is required.
Calling A the condition with winding A energized in
one direction and A in the other direction, the sequence for full step rotation is :
AB -7 AB -7 AB -7 AB etc.
L
15 OUT A
1 OUTB
For the rotation in the other direction the sequence
must be reserved.
5-7742
In the full step operation the torque is constant each
step.
HALF STEP OPERATION
Power is applied alternately to one winding then
both accordJ0g to' Q1e s~uen~e: _
AB -7 B -7 AB -7 A -7 AB -7 B -7 AB -7 A etc.
8/10
710
MOTOR
WINDING
(LM,R M )
c
PBL3717A
L=_1_ LM
- 10
PBL3717A
Figure 6 : Source sat. Voltage vs. Output Current
(recirc. period).
Figure 7 : Source sat. Voltage vs. Output Current
(conduction period).
G- 5790
G 57B9
Vsat
"sat
(V)
(V)
I---- - -
-
>-- I--""
I--
0.2
0.4
0.6
o.a
-
:-
02
HAl
Figure 8: Sink sat. Voltage vs. Output Current.
0.4
l - I--""
-
0.6
0.8
I (A)
Figure 9 : Comparator threshold vs. Junction
Temperature.
G 5791
toO
-02
f-- ~
-
0.6
0.8
\
60
40
04
\
60
I (AJ
20
20
40
60
80
100 120
140 160
MOUNTING INSTRUCTIONS
The Rth j-amb of the PBL 3717A can be reduced by
soldering the GND pins to a suitable copper area of
the printed circuit board or to an external heatsink.
The diagram of fig. 11 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the
side "a" of two equal square copper areas having a
thichkness of 35~ (see fig. 10).
The extemal heatsink or printed circuit copper area
must be connected to electrical ground.
9/10
711
PBL3717A
Figure 10 : Example of P.C. Board Copper Area
Which is Used as Heatsink.
COPPER AREA 35,uTHICKNESS
Figure 11 : Max. Dissipable Power and Junction
to Ambient Thermal Resistance vs.
size "a".
±-
Ptot
(W)
!
~
- -. -
1\
r---
.-
I--- 1----
~
t--- 1----
!
10/10
712
0=
r- t -I
___ ~f- _
, , 'T~~i20
P.C.BOARD
~-t- 80
~l-amb
1--- r - '-..
1----
~~--(
30
-E
1-
-
\-140
I (mm)
60
40
20
SG1524
SG2524
SG3524
REGULATING PULSE WIDTH MODULATORS
• COMPLETE PWM POWER CONTROL CIRCUITRY
• UNCOMMITTED OUTPUTS FOR SINGLE-ENDED OR PUSH PULL APPLICATIONS
• LOW STANDBY CURRENT .. 8 mA TYPICAL
• OPERATION UP TO 300 KHz
• 1 % MAXIMUM TEMPERATURE VARIATION
OF REFERENCE VOLTAGE
DESCRIPTION
The SG1524 , SG2524, and SG3524 incorporate on
a single monolithic chip all the function required for
the construction of regulating power supplies inverters or switching regulators. They can also be used
as the control element for high power-output applications. The SG1524 family was designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage
doublers and polarity converter applications employing fixed-frequency, pUlse-width modulation
techniques. The dual altemating outputs allows either single-ended or push-pull applications. Each
device includes an on-ship reference, error amplifier, programmable oscillator, pulse-steering flipflop, two uncommitted output transistors, a highgain comparator, and current-limiting and shutdown circuitry.
5016 J
DlP-16
(Plastic -0.25- and Ceramic)
ORDER CODES: SG1524J - SG2524J - SG3524J
(Ceramic)
SG2524N - SG3524N (Plastic)
SG2524P - SG3524P (SO-16J)
~_
________
i
. _. _____.... __________ ....J,
BLOCK DIAGRAM
':I@--.
osc.
"REF
---() 16
I
!
OUT
CT
7
Osc.
-
COMPENSATION
9
-
(RAMP)
,
CB
--
_~.
.>V
NOR-
----
13
EB
11,
SHUTDOWN
GNO
----010
'~1
September 1988
1/7
713
SG1S24-SG2S24-SG3S24
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
V IN
Ic
Value
Unit
Supply Voltage
40
V
Collector Ouptut Current
100
mA
50
mA
IR
Reference Output Current
IT
Current Through CT Terminal
- 5
mA
P'o'
TS'g
Total Power Dissipation at Tamb = 70°C
1000
mW
Storage Temperature Range
- 65 to 150
°C
Top
Operating Ambient Temperature Range SG1524
SG2524
SG3524
- 55 to 125
- 25 to 85
o to 70
°C
°C
°C
CONNECTION DIAGRAMS
~
16
+ 5V VREF
OSC.I SYNC.
14
EMITTER B
C.L.I+)SENSE
13
COL LECTOR B
C.L.I-) SENSE
12
COLLECTOR A
11
EMITTER A
INV· INPUT
1
NON INV. INPUT
2
GROUND
10
SHUTDOWN
9
COMPENSATION
5-6393 "
THERMAL DATA
R'h j-amb
R'h j-alumlnla
*
I Themal
Resistance Junction-ambient
Themal Resistance Junction-aluminia
Max
Max
Plastic
DIP-16
Ceramic
DIP-16
80°C/W
150°C/W
-
-
S016J
50°C/W
Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15 x 20 mm;
0.65
2/7
714
mm thickness with infinite heatsink.
SG1S24-SG2S24-SG3S24
ELECTRICAL CHARACTERISTICS (unless otherwise stated, these specifications apply for
TJ = - 55 'C to+ 125 'C for the SG1524, - 25 'C to + 85 'C for the SG2524, and 0 'C to + 70 'C for the
8G3524, V N = 20 V, and f = 20 KHz).
Symbol
Parameter
SG1524
SG2524
Test conditions
SG3524
Unit
J
Min. I Typ. Max. Min.J Typ. I Max.
REFERENCE SECTION
VREF
",V REF
"'VREF
"'VREF/"'T
"'VREF
4.8
Output Voltage
Line Regulation
V 1N = 8 to 40 V
5
5.2
10
20
50
4.6
5
5.4
V
10
30
mV
20
50
mV
Load Regulation
IL = 0 to 20 mA
20
Ripple Rejection
f = 120 Hz, T J = 25 cC
66
66
dB
Short Circuit Current
Limit
VREF = 0, T J = 25 cC
100
100
mA
Temp. Stability
Over Operating Temp. Range
0.3
Long Term Stability
T J = 125°C, t = 1000 Hrs
20
20
0.3
mV
300
300
kHz
5
5
1
1
%
OSCILLATOR SECTION
fMAX
MI",T
MaximurT) Frequency CT = 0.001 /IF, RT = 2 kQ
Initial Accuracy
RT and CT Constant
Voltage Stability
VIN = 8 to 40 V, Ti = 25 cC
Temperature Stability Over Operating Temp. Range
%
1
1
%
2
2
%
Output Amplitude
Pin 3, T J = 25 cC
3.5
3.5
V
Output Pulse Width
CT = 0.01 /IF, T j = 25°C
0.5
0.. 5
/ls
ERROR AMPLIFIER SECTION
Vas
Ib
Input Offset Voltage
VCM = 2.5 V
0.5
5
2
10
Input Bias Current
VCM =2.5 V
2
10
2
10
mV
/lA
Gv
Open Loop Volt. Gain
CMV
Common Mode Volt.
Tj = 25°C
CMR
Comm. Mode Rejec.
T J = 25°C
70
70
dB
B
Small Signal
Bandwidth
Av = 0 dB, T j = 25°C
3
3
MHz
Va
Output Voltage
Tj = 25°C
72
80
1.8
60
3.4
0.5
80
1.8
3.8
0.5
45
0
dB
3.4
V
3.8
V
45
%
COMPARATOR SECTION
Duty-cycle
% Each Output On
VIT
Input Threshold
Zero Duty-cycle
VIT
Input Threshold
Maximum Duty-cycle
Ib
Input Bias Current
0
1
1
V
3.5
3.5
V
1
1
/lA
3/7
715
SG1S24-SG2S24-SG3S24
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
SG1524
SG2524
Test conditions
SG3524
Min. I Typ. I Max. Min. I Typ. I Max.
Unit
CURRENT LIMITING SECTION
Sense Voltage
Pin 9 = 2 V With Error
Amplifier
Set for Max. Out. Tj = 25 DC
190
Sense Voltage T.C.
CMV
200
210
180
+ 1
- 1
200
0.2
Common Mode Volt.
220
mV;oC
0.2
- 1
mV
+ 1
OUTPUT SECTION (each output)
Collector-emitter Volt.
Collector Leackage
Cur.
tr
tf
Iq •
40
VeE =40 V
40
0.1
50
1
2
Saturation Voltage
Ie = 50 mA
Emitter Out.' Voltage
VIN = 20 V
Rise Time
Rc = 2 KQ, Ti = 25 DC
0.2
Fall Time
Re = 2 KQ, Tj = 25 DC
0.1
Total Standby Curr.
VIN = 40 V
17
V
17
18
0.1
50
~A
1
2.
V
18
V
0.2
~s
0.1
8
10
~s
8
10
( .) Excluding oscillator charging current, error and current limit dividers, and with outputs open.
Figure 1 : Open-loop Voltage Amplification of
Error Amplifier vs. Frequency.
Figure 2 : Oscillator Frequency vs. Timing
Components.
G
"
(dB
60
)
RF=Q)
f
(Hz)
I
bJ'M~
~
300lUL
_
'""'\
" :\
I
I
RF is
-
impedance from pin 9
10K
"- ~
to ground.Values below 3DKJl
will begin to limit the maximum
dU1y- cycle.
I
I
100
4/7
716
,.
·,
··,
··,
10.
100101:
1K
"
f {Hz}
5 133/1
c T = 1nF
JnF
--
30Kll.
20
r----
,
-
--j Vi =11. OV
r-"
100K
.........
100Kil
40
,
Vi = 20Y
-
.......
f'..
10nF
.......
"
30nF
100nF
"
t----= 1"--
100
10
20
RT (Kn)
mA
SG1524-SG2524-SG3524
Figure 3 : Output Dead Time vs. Timing
Capacitance Value.
G
Figure 4 : Output Saturation Voltage vs. Load
Current.
G- 511,0/1
5139
E
)
r--
)
VIN ::20V r
VIN=20V
3.5
./
V
2.5
Ti=1~~:~
-55"c..
0.4
'----
0.'
O.OQ1
1.5
Note:Dead time=blanking pulse width
P'Uj 01'~Ui ~i',iY
I III
JllJ II
lIU
0.00.4
0.01
0.04
CT
./
0.5
F-
.-::::. ~ ~
CpF)
20
,/
--
40
V ........
V ~
::----.-
'> E<
.....-: v
>"'
60
Figure 5 : Open Loop Test Circuit.
INPUT
2K11
'W
'5
OS
VREF
"
13
5G1524
OUT
.6
lIT
6
NJ.
CT
7
PRINCIPLES OF OPERATION
The SG1524 is a fixed-frequency pulse-with-modulation voltage regulator control circuit. The regulator
operates at a frequency that is programmed by one
timing resistor (RT) and one timing capacitor (CT).
RT established a constant charging current for CT.
This results in a linear voltage ramp at CT, which is
fed to the comparator providing linear control of the
output pulse width by the error amplifier. The
SG1524 contains, an on-board 5 V regulator that
serves as a reference as well as powering the
SG1524's internal control circuitry and is also useful in !>upplying external support functions. This reference voltage is lowered externally by a resistor
divider to provide a reference within the common-
'N~
SHUT
INPUT INPUT COMP. DOWN
2
'0
•
•
CURRENT
LIMIT
OUTP
"
.4
4
mode range of the error amplifier or an external reference may be used. The power supply output is
sensed by a second resistor divider network to generale a feedback signal to error amplifier. The amplifier output voltage is then compared to the linear
voltage ramp at CT. The resulting modulated pulse
out of the high-gain c6mparator is then steered to
the appropriate output pass transistors (OA or Os)
by the pulse-steering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to
assure both output are never on simultaneously during the transition times. The width of the blanking
pulse is controlled by the value of CT. The outputs
5/7
717
SG1524-SG2524-SG3524
may be applied in a push-pull configuration in which
their frequency is half that of the base oscillator, or
paralleled for single-ended applications in which the
frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to
the comparator with the current limiting and shut-
down circuitry and can be overridden by signals from
either of these inputs. This common point is also
available externally and may be employed to control
the gain of, or to compensate, the error arnplifier, or
to provide additional control to the regulator.
RECOMMENDED OPERATING CONDITIONS
Supply voltage VIN
Reference Output Current
Current through CT Terminal
8 to 40
o to 20
- 0.03 to - 2
V
mA
mA
Timing Resistor, RT
Timing Capacitor, CT
1.8 to 100
0.001 to 0.1
KQ
/IF
TYPICAL APPLICATIONS DATA
OSCILLATOR
The oscillator controls the frequency of the SG1524
and is programmed by RT and CT according to the
approximate formula:
where
cle by clarnping the output of the error amplifier. This
can easily be done with the circuit below:
Figure 6.
RT is in KQ
CT is in /IF
f is in KHz
Pratical values of CT fall between 0.001 and 0.1 /IF.
Pratical values of RT fall between 1.8 and 100 KQ.
This results in a frequency range typically from 120
Hz to 500 KHz.
BLANKING
The output pulse of the oscillator is used as a blanking pulse at the output. This pulse width is controlled by the value of CT. If small values of CT are required for frequency control, the oscillator output
pulse width may still be increased by applying a
shunt capacitance of up to 100 pF from pin 3 to
ground. If still greater dead-time is required, it should
be accomplished by limiting the maximum duty cy-
6/7
718
SYNCHRONOUS OPERATION
When an external clock is desired, a clock pulse of
approximately 3 V can be applied directly to the oscillator ouptut terminal. The impedance to ground at
this point is approximately 2 KQ. In this configuration RT CT must be selected for aclock period slightly greater than that the external clock.
If two more SG1524 regulators are to be operated
synchronously, all oscillator output terminals should
be tied together, all CTterminals connected to a single timing capacitor, and the tirning resistor connected to a single RT terminal. The other RT terminals
can be left open or shorted to VREF. Minirnum lead
lengths should be used between the CT terminals.
SG 1524-SG2524-SG3524
Figure 7: Flyback Converter Circuit.
r--I~-4~--
300
JL
5
Kn
1
20mA
M
15
+15V
'----!OII--~- -15 V
11
16
~C=}---------~6
-10
Figure 8: PUSH-PULL transformer-coupled circuit.
+
,-------------------_._--------------,
2ev
~
,...----"::---
1K
n
1W
BYWS1
+5V. SA
I
1 2 ~_---.J
" f----+--'
5T
13
~----[=--}-------l
6 SG1524 1 4 f - - - - - - ,
5T
10nF
10
7/7
719
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SG1525A/27A
SG2525A-3525A/27 A
REGULATING PULSE WIDTH MODULATORS
----~~-~---------~
•
•
•
•
•
•
•
•
8 TO 35 V OPERATION
5.1 V REFERENCE TRIMMED TO ± 1 %
100 Hz TO 500 KHz OSCILLATOR RANGE
SEPARATE OSCILLATOR SYNC TERMINAL
ADJUSTABLE DEADTIME CONTROL
INTERNAL SOFT-START
PULSE-BY-PULSE SHUTDOWN
INPUT UNDERVOLTAGE LOCKOUT WITH
HYSTERESIS
• LATCHING PWM TO PREVENT MULTIPLE
PULSES
• DUAL SOURCE/SINK OUTPUT DRIVERS
shutdown, as well as soft-start recycle with longer
shutdown commands. These functions are also
controlled by an undervoltage lockout which keeps
the outputs off and the soft-start capacitor discharged for sub-normal input voltages~ This lockout circuitry includes approximately 500 mV of hysteresis
for jitter-free operation. Another feature of these
PWM circuits is a latch following the comparator~
Once a PWM pulses has been terminated for any
reason, the outputs will remain off for the duration
of the period. The latch is reset with each clock
pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200 mA.
The SG1525A output stage features NOR logic, giving a LOW output for an OFF state. The SG1527 A
utilizes OR logic which results in a HIGH output level when OFF.
DIP-16
(Plastic -0.25 and Ceramic)
~.>""""'.'"
~~
U
DESCRIPTION
The SG1525N1527 A series of pulse width modulator integrated circuits are designed to offer improved performance and lowered external parts count
when used in designing all types of switching power
supplies. The on-chip + 5.1 V reference is trimmed
to ± 1 % and the input common-mode range of the
error amplifier includes the reference voltage eliminating external resistors. A sync input to the oscillator allows multiple units to be slaved or a single unit
to be synchronized to an external system clock. A
single resistor between the CT and the discharge
terminals provide a wide range of dead time adjustment. These devices also feature built-in softstart circuitry with only an external timing capacitor
required. A shutdown terminal controls both the softstart circuity and the output stages, providing instantaneous turn off through the PWM latch with pulsed
September 1988
S016J
1/10
721
S~ 1525A/27 A-SG2525A/27 A-SG3525A/27 A
CONNECTION DIAGRAM AND ORDERING NUMBERS (top view)
--;.J
16
VREF
N.I.INPUT
15
+Vj
SYNC
14
OUTPUT 8
13
Vo
1
INV. INPUT
Type
4
OSC. OUTPUT
Ceramic
DIP
Plastic
DIP
SG1525A
SG1525AJ
SG1527A
SG1527AJ
S016J
Cr
12
GROUND
SG2525A
SG2525AN
SG2525AJ
SG2525AP
Rr
11
OUTPUT A
SG2527A
SG2527AN
SG2527AJ
SG2527AP
SG3525A
SG3525AN
SG3525AJ
SG3525AP
SG3527A
SG3527AN
SG3527AJ
SG3527AP
10
DISCHARGE
SOFT - START
SHUTDOWN
COMP.
B
5- 6.1;11,
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Vi
Supply Voltage
40
V
Vc
Collector Supply Voltage
40
V
5
mA
500
mA
50
mA
5
- 0.3 to + 5.5
- 0.3 to Vi
mA
V
V
lose
Parameter
Oscillator Charging Current
10
Output Current, Source or Sink
IR
Reference Output Current
IT
Current through CT Terminal
Logic Inputs
Analog Inputs
Ptot
1000
mW
Tj
Junction Temperature Range
- 55 to 150
°C
T s1g
Storage Temperature Range
- 65 to 150
°C
Top
Operating Ambient Temperature: SG 1525A/27 A
SG2525A/27 A
SG3525A/27 A
- 55 to 125
- 25 to 85
o to 70
°C
°C
°C
Total Power Dissipation at T amb
=
70°C
THERMAL DATA (DIP-16)
Rth j-pins
Rth j-amb
I Thermal
Resistance Junction-pins
Thermal Resistance Junction-ambient
Max
Max
Ceramic
Plastic
150°C/W
50°C/W
80°C/W
50
°C/W
THERMAL DATA (S016J)
Rth j-alumina*
Thermal Resistance Junction-alumina
Max
Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15 x 20 mm ; 0.65 mm
thickness with infinite heats ink.
2/10
722
SG 1S2SA/27 A-SG2S2SA/27 A-SG3S2SA/27 A
BLOCK DIAGRAM
-~~'f
i
'i
'sD-(",ROUND
11 O~---------4-
'c
01)
JL
OUTPUT A.
---------- - - - -
Rr
, 0--------
>~;c
..:.1 .
I
1. ~
COMe
, 0--
I
:~ :~:: ~
SOFr~STARr
,
rv--~!.
r
~
')GI5Z5A OUTPUT C,IAGf
~~ 1
'C
- -0
I]
'REF
OUTPUT A
.oil
I
1
,---+------~----5HUTOOWN
5K fl
:=T 10 MO
Gain Bandwidth
Product
G v = 0 dB
DC Transconduct.
30 KO <; RL <; 1 MO
TI = 25°C
Ti = 25°C
60
75
60
75
dB
1
2
1
2
MHz
1.1
1.5
1.1
1.5
ms
3.8
5.6
3.8
5.6
V
Output Low Level
0.2
Output High Level
0.5
0.2
0.5
V
CMR
Comm. Mode Reject.
V CM = 1.5 to 5.2 V
60
75
60
75
dB
PSR
Supply Voltage
Rejection
Vi = 8 to 35 V
50
60
50
60
dB
45
49
45
49
0.7
0.9
0.7
0.9
PWM COMPARATOR
Minimum Duty-cycle
0
Maximum Duty-cycle
Input Threshold
Zero Duty-cycle
Maximum Duty-cycle
*
4/10
724
Input Bias Current
0
%
%
V
3.3
3.6
3.3
3.6
V
0.05
1
0.05
1
flA
SG1525A/27 A-SG2525A/27 A-SG3525A/27 A
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Conditions
SG1525A/2525A
SG1527 A/2527 A
I
SG3525A
SG3527A
I
I
Unit
I
Min. Typ. Max. Min. Typ. Max.
SHUTDOWN SECTION
"
v,
Soft Start Current
Vso = 0
Soft Start Low Level
Vso =2.5 V
Shutdown Threshold
To outputs, Vss = 5.1 V
T j = 25°C
Shutdown Input
Current
Vso=2.5V
Shutdown Delay
Vso =2.5 V
OUTPUT DRIVERS (each output)
Output Low Level
25
50
80
0.4
0.7
V
0.8
1
V
1
0.4
1
mA
0.2
0.5
0.2
0.5
/lS
Isink = 20 mA
0.2
0.4
0.2
0.4
V
ISink = 100 mA
1
2
1
2
V
01 c
Vss = 0 V
0.6
T j = 25°C
50
80
0.4
0.7
0.8
1
0.4
25
0.6
/lA
= 20 V)
Isource = 20 mA
18
19
18
19
V
Isource = 100 mA
17
18
17
18
V
Under-Voltage
Lockout
Vcomp and Vss = High
6
7
8
6
7
8
V
Output High Level
Ie
Collector Leakage
Vc = 35 V
200
!lA
t(
Rise Time
C L = 1 nF,
T J =25 °C
100
600
200
100
600
ns
tf"
Fall Time
C L = 1 nF,
T j =25 °C
50
300
50
300
ns
14
20
14
20
mA
TOTAL STANDBY CURRENT.
I
Supply Current
Vi = 35 V
I
: These parameters. although guaranteed over the recommended operating condijions. are not 100 % tested in production.
Tested at f", = 40 KHz (RT = 3.6 KQ, CT = 0.1 ~F. RD = 0 Q). Approximate oscillator frequency is defined by :
f=
1
CT(O.7 RT+ 3 RD)
• DC transconductance (gM) relates to DC open-loop voltage gain (G,) according to the following equation: G, = gM RL where RL is the resistance
from pin 9 to ground. The minimum gM specification is used to calculate minimum G, when the error amplifier output is loaded.
5/10
725
.....
~
I\J
-I
m
o
O'l
en
-I
VREF
Q
r--------------- -----,
I
:rI
I
REFERENCE
REGULATOR
(')
.}
,
::c
c
@)+V,
:::::j
O.1pF
...
U1
I\)
U1
»
N
»
""
In
G')
I\)
U1
I\)
U1
»
--
I\)
.
»
""
,
lW
~
,
~ ['~
!!lin
~~
@.
lW
I\)
14
•
»
OUT B
I
!o
I
il!J!I
!;!lin
.c+-~GNO
~i
SOFT START
I:Vos
2.(.)
3.(-)
CiJ
U1
I
•
~;!
en
G')
I
-----I
5-6415'1
U1
--
I\)
»
""
SG1525A/27 A-SG2525A/27 A-SG3525A/27 A
RECOMMENDED OPERATING CONDITIONS (0)
Parameter
Value
Input Voltage (Vi)
8 to 35 V
Collector Supply Voltage (Vc)
4.5 to 35 V
Sink/Source Load Current (steady state)
o to 100 mA
o to 400 mA
o to 20 mA
Sink/Source Load Current (peak)
Reference Load Current
Oscillator Frequency Range
100 Hz to 400 KHz
2 KQ to 150 KQ
Oscillator Timing Resistor
Oscillator Timing Capacitor
~F
0.001
Dead Time Resistor Range
to 0.1
~F
o to 500 Q
..
(.) Range over which the device IS functional and parameter limits are guaranteed.
Figure 1 : Oscillator Charge Time vs. Rr
and Cr.
Figure 2 : Oscillator Discharge Time vs. RD
and Cr.
RO
(11.)
150/1 050
736
1
-
==i
V
mA
10
i
12
mA
I
_
I
1
I
[100 x
a
V
. ...
---~-r--~~-
-
~
35
f- -
-
1
10 - r-
r-XH;-
=t=:::=:::= f-~ 10kHz
_--=---+
-~_
20
-f-'~-
~~.~_I.t.~
__
-_
Hysteresis at Detection Point C2 (PI) > 150/1 050 (MHz)~. _ _ _~5.j ___ ._~_ ~ ___ ~~_._ %_~~_.c
* If the circuit is used at a frequency higher than 3 MHz,
2/4
I
(MHz~
Negative Resistance on Terminals A and E
(4 kQ < Rl < 50kn, 1050< 3 MI:l~ __________.
HY5t
I
_
·-----··----~~I <2.3~F)l
Output Frequency (C3 = 0)
Output Current Ripple
4
__ ---+_~
Reverse Voltage limitation (Icc = 100 mAl
-
it is recommended to connect a capacitor of 100 pF between terminals E and D.
TDA0161
OPERATING MODE
Between terminals A and E, the integrated circuit
acts like a negative resistance equal to the external
resistor R1 connected between terminals Band H.
The oscillation sustains when loss resistance Rp of
tuned circuit becomes higher than R1. Then, the
supply current will be Icc 1 mA (pins G and D).
The oscillation stops when loss resistance Rp of tuned circuit becomes smallerthan R1. Then, the supply current will be Icc = 10 mA (pins G and D).
Eddy currents induced by coil L 1 in a metallic body,
determine loss resistance Rp.
R1
o
I
I
I
I
I
'------0
:
Close metallic object
I
I
~
Remote metallic object
------------_._-_.
----------
TYPICAL APPLICATIONS
, - - - - - - - - - - - - - - - - - - -----1
1
1
:
1
;---- - - - - - - - - - -
- ------
1
I
r-----~----+------~~---__o+
I
I
1
TDA 0161
L1
E
C
0
1
1
C2
1
1_ _ _ _ -
I1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _I
Detector
120
n
1
I
I
1_ _ _ _ - _____ .
Receiving circuli
3/4
737
TDA0161
,------------.-------,---------.----------,---------_.
L1
C1
R1
f ose
Detection Range (*)
(flH)
2 mm
30
---------~
C2
pF
(pF)
(kHz)
(kQ)
120
2650
6.8
47
27
470
27
3300
(1)
COIL CHARACTERISTICS
i
Core
1
I
Coil Former
Cofelec
432 FP 9 x 5 SE
1/2
CAR 091 - 2
Cofelec
432 FP 14 x 8 SE
1/2
CAR 142 -- 2
Cofelec
432 FP 26 x 16 SE
1/2
CAR 262 -- 2
i
I
2
I
3
THOMSON Fils et Cables
Thomrex 14
(14/100 mm)
THOMSON Fils et Cables
Thomrex 14
(14/100 mm)
i
._~____. _ L . . -__ .~_ _ _ _ _ l
**
Wire"
I
THOMSON Fils et Cables
Thomrex 14
(14/100 mm)
...
I
I
Number of
Turns
40
I
I
100
I
200
~---~--~-~--
The above results are obtained with single wire coil. When using Litz wire instead of single wire, the parallel resistance of the coil be-
comes higher and the value of Rl may be increased, resulting in better sensitivity.
4/4
738
TDE0160
PROXIMITY DETECTOR
---------------------------------------i--------
• SUPPLY VOLTAGE: + 4 TO + 36 V
• SUPPLY CURRENT: < 1.2 mA
• OUTPUT TRANSISTORS: I = 20 mA ;
VeE (sat) s; 1100 mV
• OSCILLATOR FREQUENCY: < 1 MHz
• LOSS RESISTANCE: 5 TO 50 kQ.
DIP-14/2
(Plastic)
SO-14J
~.p<
•. .•. . . ~
..
~-
DESCRIPTION
. .........
The TDE0160 is designed to detect metal bodies by
the effect of Eddy currents on the HF losses of a coil.
It has two complementary open collector outputs
with peak limiting. Hysteresis is adjustable, and an
electronic switching circuit is incorporated for disabling both outputs.
An internal zener diode maintains the supply voltage to the circuit in "dipole" operation.
""i ........
ORDER CODES: TOE0160DP (DIP-14)
TOE 0160FP (SO-14J)
PIN CONNECTION
DlP-14 I SO-14J
Output 1 (collectorl
Outputs 1 and 2 (emitter)
Output 2 (collector)
Hysteresis adjustment
Detector filter capacitor
Sensing range adjustment
Oscillator circuit
September 1988
Ground
Switching period capacitor
Switch input
VCC
Decoupling
Zener output
N.C.
1/6
739
TDE0160
ABSOLUTE MAXIMUM RATINGS
Value
Unit
Vee
Supply Voltage
Parameter
36
V
Va·
Output Voltage'
36
V
40
rnA
Symbol
10 (1 1-1 3) Output Current (11-13)
Iz
Zener Current
Tj
Junction Temperature
40
rnA
+ 150
°C
Toper
Ambient Temperature Range
- 25 to + 85
°C
Tst9
Storage Temperature Range
- 65 to + 150
°C
• Internal peak limiting to protect against transient voltage surges.
SCHEMATIC DIAGRAM
I,
--'
2/6
740
-------~
TDE0160
ELECTRICAL CHARACTERISTICS (T amb = + 25 'C unless otherwise specified)
Symbol
Vcc
Min.
Typ.
Max.
Unit
Pin 11
4
36
V
Pins 9-11
3
-
4
V
Pin 11
-
-
1.2
mA
Parameter
Supply Voltage
Vz
Zener Voltage (Iz
Icc
Supply Current
= 0.1
= 20
mAl
-
Limiting (I
mAl
Pin 1 or 3
-
42
-
V
-
Output Transistor Saturation Voltage
(1, or 13 = + 20 mAl
Pin 1 or 3
-
0.9
1.1
V
-
Output Transistor Leakage Current (V
-
Switching Threshold
=+
30 V)
Pin 12
Negative Resistance' (5 kQ < RH < 50 kQ; f
Rs = 0)
Rn
-
Inherent Hysteresis (R2
-
Pin 1 or 3
= 100
kHz;
-
-
2
j.lA
90
110
130
mV
= RH
-
-
1
2
%
-
%
-
= 0)
-
Programmed Hysteresis (H < 15 %)
Rn
Rs
---
Rs + RH
Oscillation Frequency
-
-
1
MHz
-
Switching Frequency (with matched oscillator circuit)
-
750
-
Hz
-
Switching Time-delay
-
0.5 Cd (/IF)
-
s
-
Switching Response Time (Cd
-
10
-
/lS
fose
= 10
n F ; V cc
=+
20 V)
• See characteristic curves
SWITCHING OPERATION
Vce
-----1
lor3
I
I2
'e
:I
If Ic exceeds Ico, where leo
=
V(ref)
.
~' the sWitch
cuts off the output transistors and tests the value of
current Ie, with time constant 0.5 Cd.
On power up the internal start system cuts off the
output transistors until Vee reaches a value permitting normal operation of the circuit.
3/6
741
TDE0160
NEGATIVE RESISTANCE
vs
FREQUENCY
ZENER VOLTAGE
vs
JUNCTION TEMPERATURE
~
5
w
~
~
CJ
U
Z
~
w
II:
w
>
w
Z
~
i
W
N
CJ
I
Vec = +20V
w
Zener current "::;: 20 rnA
Z
o
10
40
100
400
'---~--'-----'---~
40
1000
175
150
0
:J:
III
w 125
II:
:J:
I-
CJ
Z
Vee~+20J
~
100 t--
~
11
f = 100 kHz
~ 10.5
_ RH= 10 kll
RS=O
lfi
-
l:
U
I-
~
w
U
>
r-
~
w
z
-
0
50
10
w
CJ
-40
100
150
200
9
- 40
JUNCTION TEMPERATURE ,oCI
4/6
742
200
II:
75
50
150
Vec=+20V
Ii;
I'--.. ..............
100
NEGATIVE RESISTANCE
vs
JUNCTION TEMPERATURE
SWITCHING THRESHOLD
vs
JUNCTION TEMPERATURE
.§
a
..J
50
JUNCTION TEMPERATURE ,oCI
FREQUENCY IkHzl
:>
0
r.== SGS.ntOMSON
At..,
I IiilOCII©mIl.IIC1illl@Il!DCII!
0
50
100
150
200
JUNCTION TEMPERATURE ,oCI
TDE0160
TYPICAL APPLICATION DIAGRAMS
I
I
l
.
1
I
14
I
I
I'
I
I
RS
[
I
I
I
L
~
--
~
---
-
~
b)
a)
+vcc
1
RH~F
ov
14
2
13
3
12
Cd
0
4 <0
11
5 ;; 10
w
0
I-
CA
6
RS
Ca
Cf
Cd
Co
La
Rd
RH .
Rs:
RL :
10 nF
1 nF
10 nF
390 ~F
65 ~ to 1 MHz
10 Q
15 kQ
3kQ
2.2 kQ
Vee :20 V
fa ~ 1MHz
emean = 2.5mm
coil :14 mm
Core COFELEC 432 FP
Turns: 47
Stranded wire: 15 x 5/100
1/ La
c)
J
5/6
743
TDE0160
MILD STEEL
lOSS RESISTANCE
vs
DETECTION RANGE (mml
35
c:
Hp
r--=---,
I
I
'Ss
O
2!
w
I
I
t:J
30
25
J
U
0
z
=+ :;?5°C
0.2
i
o
i
0.6 r--
T case = ... 'OO°C
o
234
6
r---
0.7
....
~
0.6
S
o
:J
u
....
"....
I---
'"
:)
..
0.5
0.4
~;:
0.6
.... II:
0,4
0.3
~ffi
,?a:
0.2
:t
-1-
4
5
=
a::J
I I
I I
I
I I I I r--/. T
\\
0.1
0
..
0.2
...'"'"
o
Q.
4
5
6
case
./
TC8$e
~ /
'\"< ~
""-C
2
r--
j..----
=+ 1~Cf'~_
r-
t...;;
N
o
=-25"C
T case = + 250C
./
I\.\
00
3
-
3
\1
0.8
t:;t
2
1------ -- -
2
.\
Q.
f}
t-..:: t-
l"-
--f- -,
o
"
Q.
"0
"'...
~
/
TDE1647,A • TDE1607 eM
~
II:
~
LIMITING RESISTOR 101
TDE1647,A - TDE1607 eM
..
ca~
I---
k' I-L P"' Tcas,e =+ l000~_
I
lIMIT!NG R£SISTOR IIlI
....
Tc---I--I
...a:
::>
u
....
"....
"...o
....
Q.
Tca:oe =-+ 25°C
0.4 I----+-+---,f--':::::r-------j
il
Tease
=+
1000C
.
0.3 f--t----k-~-+t--_-lif---.."'::;j;::"_-C---1
0.2 I----+--i-"....
.-------1
..
0.1 -
:)
~
""",+I-t------.--,
o
-~.-,~
.....;;;:;::===----t---l
2
3
:
I
i
I
4
5
6
7
LIMITING RESISTOR 1m
....
"....
Q.
:J
0
I
0.9
0.8
0.7
I
II:Z
-OJ
'?II:
.... 0:
0.5
Ou
0.3
Ul
0.2
0.1
cc"
:t
'.."
~
0.4
0
I I I
/ T case = -25°C
I
!:4
::>- 0.6
0 ....
I I I
I I j
I
I
/ T cas.e--t25°C
~I
~
;-.
I
I
2
-
I T case == ... 10c0C
:::2!; :-X. I I
3
JlI
l"J
I
I
4
6
LIMITING RESISTOR 1m
5/10
749
TDE1647/A, TDE1747, TDE1607, TDF1607, TDF1647/A
Short-circuit current versus case temperature
Mimimum limiting resistor value versus supply voltage
TDE1747
TDEl647.A - TDE1747
~
w
"!:;0..
..
"- 20
::>
-25 0 25
75
125
175
CASE TEMPERATURE 1°C)
LIMITING RESISTOR l!ll
TDE1647.A - TDE16D7 CM
TDF16D7 - TDE1607 DP
40· h:O;;;~:;';-:::::;:::::J;::::;;::::::::~~:;:::J
35~~~~~~~~~~~
~
~ ~~~~~-----+------~----~
I-
~ 25 ~~~~------~-----}------4
'"
B 20
!:::
::>
u
~
"~ 15
Z
w
~
0::
~ O. 5 >----L-+--'~~!::
>
~
-25'C
u
!:::
::>
u
0.4
...
"
0
0..
0..
13
'"0
:J:
to
::>
0.2
I/)
0
-25 0
25
75
125
CASE TEMPERATURE ,oCI
6/10
750
~25°C-
-'
0:
,:
~
25
175
0.8
1.5
LIMITING RESISTOR 101
2
TDE1647/A, TDE1747, TDE1607, TDF1607, TDF1647/A
TDE1647,A· TDE1747· TDE1607 eM
TDE1647,A • TDE1747
~
Tj; + 25°C
...
C)
:!
E
o
>
z
...a::z
o
a::
~
a::
~
~
>-
..J
:::l
-.--~.
0.1
--.-----;---------c-----j
-1- ----.--~--I
200
300
o
10
"!3o
>
z
o
i=
«
IX
::>
~
II>
...:::l
...::>
II.
o
0.8
TDF1607 DP • TDE1607 DP
-~.-----i---_'~_"
-
I-+~
0.2
4
...z
3
E
a:
a::
:::l
U
Tj~00C
____
-
o L......-'-_ _
o
50
Tj~
""':~
Tj ~
II.
::>
'"
..--4Tj~+150°C--
....
~--'-~_
100
...
_
2
....0.>-
+25°C
+ 100°C _-_
-~.-----
_"_~_ _ _..J
150
200
0
250
.
!-rr
-i-f+I
10
I i
! I
--
'-
I
_ 1+_;_
~~+-+-t
o
I I
High level-f---
,...-
-t
OUTPUT CURRENT ImAI
low level
i
I
:
:
I
30
20
!
I
!
I
I
I
I
-f--
I
40
SUPPLY VOLTAGE IVI
Supply current versus junction temperature
TDE1647,A· TDE1747 - TDE1607
t-~+
Tj:I+ 25I° C
(.)
2~
...
Z
w
a:
0.4
1\
II:
::>
TOE1607
TOF1607
U
>....
~:~ ___ LOIN
II.
n.
:::l
II>
____________________~
1
level
--------1
I--i----,-.-----------1
1"\
0.6 f--
...
:::l
...
"::>
0.2
TOE1647.A
0
·,TIET'
0
o
JUNCTION TEMPERATURE lOCI
20
40
60
80
SUPPLY VOLTAGE IVI
7/10
751
TDE1647/A, TDE1747, TDE1607, TDF1607, TDF1647/A
Response Time.
~
~
w
"~
0
>
...
5
::>
0
...~
"!:;
C(
..
0
>
(
20
..
0
7'
I
10
0
10
5
i
f
I
o
0.4
>
1
20
::>
~
!/
::>
0
10
~
j
1
!
I
0
10
oJ
5
0
> 0
w
".
1
1
i
C(
i
i
i
0
~
""'~
.....
I I i
0.6
1.2
::>
!
1.6
TIME '""
Test Circuit.
,..-----..---0 VCC=24 V
10 kn
V sense
Vo
lkn
8/10
752
ASC
0
4
8
12
16
TDE1647/A, TDE1747, TDE1607, TDF1607, TDF1647/A
TYPICAL APPLICATIONS
TDE1647, A - TDE1747.
Basic Circuit.
Output Current Extension (5 A).
Vee
5n
vee
vsense
VI
l t
Vee
1.5 n
Vo
414)
2,,Vsense
VI
0.1 n
j'4.7 nF I
"01
Vo
GNO
4.7 nF
RL
.~
• Dl : required if inductive load.
DRIVING LOW IMPEDANCE RELAYS (10 = 300 mAl
,..-----------_.
__. __.._....
---I
7161
•. 7 nF
The device in the above application operates at :
Vee = + 45 V, 10 = 300 mA with a heatsink such that
Rth(j-a)S 80 "C/W. The device supports an output voltage
of Vee = Vz during the current cut off time, which is
decreased by the zener diode.
This voltage must be ~ to the maximum supply voltage.
L..-_ _ _ _ _ _ _ _ _ _ _ _ _ ...•.. _ _ _ _ _ _ •.•.• _. _ _ _ .. _ _ _ . _.....•.... _
9/10
753
TDE1647/A, TDE1747, TDE1607, TDF1607, TDF1647/A
WAVEFORMS
v
I
I
I
I
(FIGURE 1a)
\
\
/
\\
\
\
(\/
V+
o
/ :· .. ···· .. ·....·.. ·· ...... ···I· ..\.. ;~
I
I
: '~~7>
~......
RESPONSE TIME WITH THE ZENER DIODE
.. t
35 ms
v
(-----------:=\
Vee-Vlsat)
I
\
\\
/
I
/
\
I
V+
/-V
I
754
I
\\
\ . .;""-
!+++ ........ ++ ..... +.++ +++ ... ++ •• + • • • + .+.++++\.+++++++
I
;
RESPONSE TIME WITHOUT THE ZENER DIODE
10/10
\
I
'---......:
Note:
(FIGURE 1 b)
'-_/:;,.
65 ms
1. In the case of the figure 1a, the TDE1647, A-eM can withstand + 60 V @ 400 mA for t
~
5 ,us.
.....
..
I
TDE1737
TDF1737
INTERFACE CIRCUIT - RELAY AND LAMP-DRIVER
-------"--"----"--""" " " - - - " - - - - - - - - " - - - - - - "
• HIGH OUTPUT CURRENT
• ADJUSTABLE SHORT-CIRCUIT PROTECTION
• THERMAL PROTECTION WITH HYSTERESIS
TO AVOID THE INTERMEDIATE OUTPUT LEVELS
• LARGE SUPPLY VOLTAGE RANGE: + 8 V to
+ 45 V
- - - - -
The output is also protected against short-circuits
with the positive power supply.
The device operates over a wide range of supply
voltages from standard ± 15 V operational amplifier
supplies down to the single + 12 V or + 24 used for
industrial electronic systems.
1
~
. -.·• · ·. ~>e
DESCRIPTION
The TDE1737-TDF1737 is a monolithic amplifier
designed for high current and high voltage applications, specifically to drive lamps, relays and control
of stepper motors.
~
~ I
METAL CAN
eM SUFFIX
This device is essentially blow-out proof. Current limiting is available to limit the peak output current to
a safe value, the adjustment only requires one external resistor. In addition, thermal shut down is provided to keep the I.C. from overheating. If internal
dissipation becomes too great, the driver will shut
down to prevent excessive heating.
ORDER CODES
Part
Number
TDE1737
TDF1737
Temperature
Range
- 25°C to + 85 °C
1- 40°C to + 85 °C
Package
. .. ..
CM
DP
FP
Example: TDE1737DP
PIN CONNECTION (top views)
50-14
METAL CAN
0-
MINIDIP
Vee 8
Non-inverting
lnPUl
2
6
Current limit
3
Inverting
Input
September 1988
..
GND
J
NC.
N.C. [ 2
13
~ N.c.
N.C. [ 3
12
~
NC.
N.C. ~ 1
Output [ ..
Vee ~ 5
N.C. [ 6
NON-inverting input [
7
\,.../
14
~ Current limit
"j
10
J
8 J
9
GNO
N.C.
"0"
Non-inverting
input
Invtltting input
3
2
7
6
Output
Vee
GND
4
5
Current limit
inven.ing input
1/4
755
TDE1737 - TDF1737
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Vs
Supply Voltage
50
V
VI
Input Voltage
50
V
VIO
Differential Input Voltage
50
V
10
Output Current
1000
mA
Ptot
Parameter
Power Dissipation
Toper
Operating Free-air Temperature Range
TDE1737
Toper
Operating Free-air Temperature Range
TDF1737
Tstg
Internally Limited
W
- 25 to + 85
°C
- 40 to + 85
°C
- 65 to + 150
°C
Value
Unit
METAL CAN
MINIDIP
45
50
°C/W
METAL CAN
MINIDIP
185
120
°C/W
S014
90
°C/W
Junction-ceramic Substrate
(case glued to substrate, substrate temperature maintened
constant)
S014
65
°C/W
Storage Temperature Range
THERMAL CHARACTERISTICS
Symbol
Rth(j~c)
Rth(j~a)
Parameter
Maximum Junction-case Thermal Resistance
Maximum Junction-ambient Thermal Resistance
Junction-ceramic Substrate
(case glued to substrate)
ELECTRICAL CHARACTERISTICS
TDE1737 -25 'C :":Tamb:":+ 85 ce, + 8 V:": Vee :":+ 45 V, 10 :":300 mA, T j :":+ 150 'C
(unless otherwise specified)
TDF1737 - 40 'C:": T amb :": + 85 ce, + 8 V:": Vee:": + 45 V, 10:": 300 mA, T j :": 150 'C
Symbol
Min.
Typ.
Max.
Unit
Via
Input Offset Voltage - (note 1)
-
2
50
mV
liB
Input Bias Current
-
0.1
1.5
Icc
Supply Current (Vee
-
3
5
~
mA
VeM
Common-mode Input Voltage Range
Vee-2
Isc
Short-circuit Current Limit (Rse
Vee-Va
10L
Parameter
= + 24 V, 10 = 0)
= 1.5
fl, Tease
= + 25°C)
Output Saturation Voltage (output low)
(VI + - VI - 250 mV 10 = 300 mA, Rse
= 0)
Output Leakage Current
(output high) (Va = Vee = + 24 V, T amb
= + 25°C)
2
-
-
500
-
1
1.5
V
-
-
10
Il A
V
mA
Notes: 1. The offset voltage given is the maximum value of input voltage required to drive the output voltage within 2 V of the
ground or the supply Voltage.
2. Devices bonded on a 40 cm' glass~epoxy printed circuit 0.15 cm thick with 4 cm' of cooper.
2/4
756
TDE1737 - TDF1737
SCHEMATIC DIAGRAM
Vee
R3
3kn
.......-t---+-( Q21
limit
GND
1
SIMPLIFIED SCHEMATIC
InpulS
>-_-+__+-_--t,--""""'OUtpUl
"sc
TYPICAL APPLICATION -
r-------.-------~flvcc
1.2
n
3/4
757
TDE1737 - TDF1737
Available output current versus limiting resistors
Peak short-circuit current versus limiting resistor
<
!
1
+25"C
I
I
+ 75"C
I
+ loO°C
~
::!wo
II:
:>
()
~400
l-
Tease
!z
\
::!ooo
II:
,,~
:>
()
t:
~
i3700
II:
:>
...
;;:300
~
~
'"lo:
0
~200
0
2
~300
3
LIMITING RESISTOR
1m
I I I
I
ISC peak -
-25°C
111 II I
r
J
Tease = +25°~
\K
.:-,
LS
:s:I: 500
C
~
Tcase
,
Tease = + 100°C
~t--I
Tease "" + 125° C
r":S:: ~
m
1
1.5
I~ ~
0.5
LIMITING RESISTOR
Short-circuit current versus case temperature
•
= .. 75C>'C
2
1m
Safe operating area (non repetitive overload)
5
!zw
1
50.8
a:
a:
~
tP7
a:
a:
t:
a
\.
'-..
..
06
\
i3 04
a: 0.5
- 25° C< T case< .. 125 C
0
~5 0 .2
~
~ 0.3
:I:
'"
I
!
i
0.1
-25
25
75
125
o
175
CASE TEMPERATURE lOCI
20
Satu·ration voltage versus output current
+25°C
o
100
200
300
400
OUTPUT CURRENT (mAl
4/4
758
40
60
80
COllECTOR·EMITTER VOLTAGE IVI
TDE1767,A
TDE1787,A
INTERFACE CIRCUIT (RELAY AND LAMP-DRIVER)
•
•
•
•
•
•
•
•
OPEN GROUND PROTECTION
HIGH OUTPUT CURRENT
ADJUSTABLE SHORT-CIRCUIT PROTECTION
INTERNAL THERMAL PROTECTION WITH EXTERNAL RESET
LARGE SUPPLY VOLTAGE RANGE
ALARM OUTPUT
INPUT VOLTAGE CAN BE HIGHER THAN Vee
OUTPUT VOLTAGE CAN BE LOWER THAN
GROUND (Vee - Va:S: Vee [max])
I
DESCRIPTION
The TDE1767,A/TDE1787,A are monolithic amplifiers designed for high current and high voltage applications, specifically to drive lamps, relays, stepping motors.
These devices are essentially blow-out proof. The
output is protected from short-circuits with the positive supply or ground. In addition thermal shut down
is provided to keep the IC from overheating. If internal dissipation becomes too high, the driver will shut
down to prevent excessive heating.' The output
stays null after the overheating is off, if the reset input is low. If high the output will alternatively switchon and off until the overload is removed.
The device operates over a wide range of supply
voltages from standard 15 V operational amplifier
supplies to the single + 6 V or + 48 V used for industrial electronic systems. Input voltages can be higher
than the Vee.
-:
MINIDIP/2
ORDER CODES: TDE1767 DP
TDE1767 ADP
TDE1787DP
~_ _ _ _ _ _ _ _ _ _T_D_E_17_8_7_A_D_P_ _ _~
PIN CONNECTION
(top view)
,-----------------
Alarm output
Inverting input
Non-inverting
input
GND
08
- - - -
-
Current limit
2
7
V CC
3
6
Output
4
5
Reset
An alarm output suitable for driving a LED is provided. This LED, normally on (if referred to ground),
will die out orflash during an overload depending on
the state of the reset input.
The output is low in open ground conditions.
THERMAL DATA
RthIJ-c)
Rthij-a)
! Maximum Junction-case Thermal Resistance
I, --- -~-------T~C/W
Maximum Junction-ambient Thermal ~_es_is_tan_ce_'_ _ _ _ _ _ ~ ____ B_O__
Devices bonded on a 40 cm2 glass-epoxy printed circuit 0.15 cm thick with 4 cm2 of copper.
September 1988
,I
- _ 'C/W :
1/8
759
TDE1767,A-TDE1787,A
ABSOLUTE MAXIMUM RATINGS
TDE1767A/TDE1787A
TDE1767/TDE1787
Unit
Vee
Supply Voltage
60
50
V
VIO
Input Differential Voltage
60
50
V
VI
Input Voltage
- 10 to + 60
- 10 to + 50
V
10
Output Current
1.2
1.2
A
- 0.5 to + 60
- 0.5 to + 50
V
Symbol
VI(reset)
Parameter
Reset Input Voltage
lOA
Alarm Output
Current
----_._._.
Ptot
Power Dissipation
Toper
T stg
__ . _ - - -f------=-'-o...!O + 20_ _ L---=-.10 to + 20
~
Internally Limited
- 25 to + 85
- 25 to + 85
°C
Storage Temperature Range
- 65 to + 150
- 65 to + 150
°C
SCHEMATIC DIAGRAM
__
._.
EQUIVALENT SCHEMATIC
Vee
Current limit
Alarm output 1 f-----f----'
0
'------16 - - - - ,
Reset 5 } - - - 4 - - - 1
'--_ _ _
760
--
Operating Ambient Temperature
Range
, - - - - - - - - _ . - ..
2/8
mA
mW
--4~-----_ _ _ _-f4IGroun~- __
.J
RL
TDE1767,A-TDE1787,A
---I
Figure 1.
I
--o-----1E
TDE1767
TDEl787
Vref
;;;':1 V
I
0''------''----_ _ _ _ ' - - - [
,____ ,_~_, __J
The reference input can be the inverting or non-inverting one.
ELECTRICAL
TDE1767 A : TDE1767: TDE1787 A : TDE1787 A : -
CHARACTERISTICS (Unless otherwise specified)
25 DC ::; T amb ::; + 85 DC, + 6 V ::; Vee::; + 60 V, 10 ::;
25°C::; Tamb::; + 85°C, + 6 V ::; Vee::; + 45 V, 10::;
25°C::; T amb ::; + 85 DC, + 6 V ::; Vee::; + 60 V, 10::;
25°C::; T amb ::; + 85 DC, + 6 V ::; Vee::; + 45 V, 10 ::;
500
500
300
300
mA,
mA,
mA,
mA,
T j ::;
T i::;
T j ::;
T j ::;
Symb~arameter
Icc
Input Offset Voltage
--0~te
1)
Power Supply Current (measured-~;;;-4)-----~-----Output High (T amb = + 25°C)
I
Output High (Vee = Vee (ma,), T J = + 150°C)
, Output Low (Vee = Vee (ma,), Tamb = + 25 GC)
Min
Typ
Max
-
2
50
-
5,8
5
1.5
8
7
4
I
Input Bias Current
,--~-.-----------------
Common-mode Input Voltage Range
(note 2)
I
Input Voltage Range (V,eJ 2: + 1 V)
(figure 1, note 2)
IV'
Vsense
VO(sat)
---_..
-
15
----"'"
TDE1787A, TDE1767A
TDE1787, TDE1767
1
1
TDE1787A, TDE1767A
TDE1787, TDE1767
0
0
TDE1767A
TDE1787A
-
- --
Current Limit Sense Voltage: Va = Vee - 2 V, t = 10 ms
:Vo =OV,t=10ms
(Vo=Vee- 2V)
Output Saturation Voltage (output high Vi - lIT 2: 50 mV,
Rse =0, Vee =+ 30 V)
TDE1787 A, TDE1767 A
T J = + 25°C
TDE1787, TDE1767
TDE1787A, TDE1767A
T J =+150°C
TDE1787, TDE1767
-,-
IA
Available Alarm Output Current
Output Source Current (V AH = Vee - 2,5 V)
Output Sink Current (in thermal shut-down) VA = 1.4 V
-
60
45
700
380
-
140
130
150
140
175
165
-
1
1
1,1
1,1
-
I
I
Reset Input Current
Reset Threshold
-
Output Leakage
--i---
V
- - - - - - - - - - - - _.._ -
-4
5
-
--,
--
(open ground)
I
mV
I
I,
1,1
1.2
1.2
1,3
100
,--
~A
mA
Curre~t
~A
V
------,--------,--,---~--
Ireset
100
c----60
45
-
Output Leakage Current (output low)
Vth (reset)
--
mA
IOL
I
mV
V
Short-circuit Output Current
(Vee = + 35 V, t = 10ms)
Rse=O,18Q
Rse = 0,33 Q
Ise
._--
Unit
,-
mA
-,---- -,--
I'B
V eM
150°C
150°C
150 DC
150°C
----- ,----- ,--------
,-------
r---y;;;-
+
+
+
+
-
-5
10 , --i---2
40
1.4
-
10
-
I--
~A
~-
V- , -
J-lA
Noles: 1. The offset voltage given is the maximum value of differential input voltage required to drive the output voltage within 2 V
of the ground or the supply voltage,
2, Input voltage range is independent of the supply voltage,
3/8
761
TDE1767 ,A- TDE1787 ,A
Fig. 2 -
~
z
w
PEAK SHORT-CIRCUIT CURRENT vs
LIMITING RESISTOR.
1.00
t-
.90
a:
a:
.80
:>
.70
t-
.80
-t---'t----+ VCC~
+30 V
TdJnb- +25°C
a:
(3
,.:.
a:
0
:z:
0.
t::>
.50
.70
o
.40
~
.30
«
>
.10
«
0.00
0.00 .10
.20
.30
.40
.50
.80
.
.10
0.00 .10
t-
Z
Fig 5 -
?"
1.50
~
1.30
4
()
~
0.
0.
~
1.20
1.10
~
1.00
~
.90
:;:
2
.30
.40
t::>
~
rn
OUTPUT SATURATION VOLTAGE vs
OUTPUT CURRENT.
.80
.70
.60
:>
o
a
10
30
50
60
o
.50
SUPPLY V;)LTAGE IV)
Fig. 6 -
Fig 7 -
§
~
.80
OUTPUT CURRENT IAI
OUTPUT TRANSISTOR
SAFE OPERATING AREA (pulsed).
a:
NORMAL OPERATING AREA
(5tlort-circuit protected).
0.1
0
t-
t-
Z
W
()
0.2
0.3
C>
t::>
...~
0.
~
::;
t-
:>
o
0.4
0.5
40
SUPPLY VOLTAGE (VI
762
.70
.60
4/8
.50
1.40
z
o
w
a:
a:
::>
.20
LIMITING RESISTOR 1m
POWER SUPPLY CURRENT (pin 4)
6
+25°C
0.00
.70 .80
o
«E
Tamb~
+30 V
.20
LIMITING RESISTOR 1m
Fig 4 -
~-
VCC~
.W
.40
'"«-'
VS
I
.-
.60
.30
.20.
AVAILABLE OUTPUT CURRENT
UMITING RESISTOR.
1.00
tZ
::>
()
5()
Fig. 3 -
50
SUPPLY VOLTAGE (VI
60
TDE1767,A-TDE1787,A
ALARM OUTPUT CAPABILITY CURRENT
Fig B
Fig. 9 -
CURRENT SINKING.
CURRENT SOURCING
T iJrnb =
f-
2S°C
26
~
E
24
~ 12f--4~-+~+-~+----+~-+~-+---(
20
;2
tw
t-
~
16
'"
12
;!;
B
u
><
en
J
U
w
--1
_
4
{)
H
g::
I%:
;;)
A:arm output -
U
It:
::J
after thermal _
en
o
D,h~tdQ",-:n
{)
2
4
2
ALARM OUTPUT VOLTAGE
REFERENCED TOSUPPLY VOLTAGE (V)
ALARM OUTPUT VOLTAGE
REFEREI.CED TO GROUND (V)
Fig. 10 - RESPONSE TIME.
?
w
CJ
-
<{
!:;
- -
I---- f-
0
-
>
t-
I---- - -
;;)
"-
t-
;;)
0
{)
it---L
w
J
<{
0
{)
>
t-
;;)
"-
~
w
"!:;
<{
~
-
0
>
I--
0-
-
J
"t-
J
0
---
-
I
?
"!:;
Fig 11 - RESPONSE nME.
~
{)
TIME
?
w
CJ
\)
2.5 V
<{
!:;
1-- -
0
U
>
t-
::J
3
"-
4
10
{)
~
(~s)
20
TIME 1,,5)
Figure 12 : Test Circuit.
Vcc~+
30 V
0.22 "
TDE1767
TDE1787
1.4 V
o--~~~~--i
JOO!!
5/8
763
TOE 1767 ,A-TOE1787 ,A
TYPICAL APPLICATIONS
Figure 13 : Open Load Detection.
RS
~eCO----9~==J-~----~------~1
ILl
Vee "1 ;;. 50 mV
R2
Rs IL ;> 100 mV
Figure 14 : Driving Lamps, Relays, Etc ...
RSC
-vee
·Current limiting
r----
~,
Output
TDEI7117
+
Input
Reset
V
I
Alarm output
t
Ground
5.6 kII
l00kll
Cmax)
~
i-
Figure 15: Common Reset.
rr-------
-------------------~~__oVcc
"sc
RSC
TDE1m
TDE1787
TDE1767
OutPUt
TDE1187
+
Ground
R....
AlilrmL.....--------__~------------..J
100 leD
Imaxl
~--L--4--_----.--+------~---l
6/8
~ SGS-ntOMSON
At.
iIIID©MIlI!.I<©'Ii'Ii@1li1lC$
""!I
764
LOAD
TDE1767 ,A-TDE1787,A
Figure 16 : Parallel Driving of Loads Up to 1 A.
O.15n
V ref
V ref
TDE1m
TDEl71r7
TDE11ii7
TDEl71r7
v,
100 k!l
lmaxl
USING ALARM OUTPUT
Figure 17 : Parallel Alarm Outputs.
----~----------------~~----------~~----------ovee
10ku
Alarm signal
Figure 18: Led to
vcc.
-----1,.---......- - - - - 0 Vee
Figure 19 : Led to Ground.
-----<~-------o
5.6 kn
Vee
7
TDE1m
TDEl71r7
7
4
TDE1167
5.6 kll
TDEl187
4
7/8
765
TDE1767,A-TDE1787,A
Figure 20 : Interface between High Voltage and Low Voltage Systems.
r--------------.------------~------.
-- ..-
Vcc';; +50 V
VCC;'+6V
1
RSC
r-----
+1 + 1 V, note 4 and 5)
Ise
Short·eircuit Output Current (Vee = 30 V, t = 10 ms)
10l
~u~p'u: ~o: ~ela:a5g~ ~~;rent
T = + 85
I
(Vee = 30 V, Vo = 0 V)
I (pin 1lsou,ee
I(pin 61sink
~~:~\~~~~ ~~;;:~:
r-'
(in thermal
8
4
40
45
1
-
45
0.7
0.9
1.3
A
-
1
1.25
V
oC~--_-·
I
I
10
,.
mA
= VCC - 2.5 V)
I 4
8
shut·d~wn), ~1l._6L=.~'Jl~-'-111_~+-_:::-
::~
!
I-._V.:,t",h,-,(,.::.es::.:e,-,tl,-+-R_e_s_e_t_T_h_r_e_sh~________ ____ ___ __
I,esel
Reset Output Sink Current (in thermal shut·down) for
V,eset,,+0.8V
r-Io-l-(O-P-e-n-G-N-o-I+-o-ut-P-u-t-L-e-a-ka-ge Current (open ground)
--VBRvEo:=-'--o'-ut-P-ut-T-~a-n-si-st-o-rA-v-al-;;-nch~'v-o-lt-age(Ve~'--V-~)-
.f-
~5
--1
+
(lB_
2
'I
6~ ~
~_1 ~ ___ ..2__
-
-;;; __
_401
L
~
---
-- [
V
-1-0-0--+-"-A---l
I
I
!
Available Alarm Output Current
Output Source Current (V (Pin 1)
65
2
15
- 25
10 = 500 mA
Output Saturation Voltage
j
-
Input Voltage Range (note 4)
V,
Vee - Vo
-,
---+----=-
. __V__ _
mA
-10 - i--_1_O_O_i--.c>,_A__1
-~1_0_.L __V_.J
Notes: 2. For operating at high temperature, the TDE1798 and TDF1798 must be derated based on a -150C maximum junction temperature and a junction-ambient thermal resistance of 70 'CNV.
3. The offset voltage given is the maximum value of input differential voltage required to drive the output voltage within 2 V ofthe ground
or the supply voltage.
4. Input voltage range IS Independent of the supply voltage.
5. The reference input can be the inverting or the non-inverting one.
3/12
769
TDE1798/TDF1798
POWER SUPPLY CURRENT.
OUTPUT SATURAnON VOLTAGE.
~
<
.§
~
w
a::
a::
~
!:;
o
>
z
o
8
OUTPUT HIGH -
6
-
1. 5
1--- f - - I - -I
~
:>
..
~
!;(
..
Q,
Q,
20
10
50
40
30
...., biJIII'
..,.
I-<;\~
Tj= +25D C
!;
o
60
0
o
"00
400
200
OUTPUT CURRENT ImAl
ALARM OUTPUT CURRENT SINK
(alter thermal shut down).
ALARM OUTPUT CURRENT SOURCE
(nonnal operation).
<
.§ .w
!;;
w
II:
II:
(.>
20
'"z
iii
o
10
OUTPUT VOLTAGE IVI
20
OUTPUT VOLTAGE IVI
RESPONSE nME.
~
JO
Rl~100
VCC~
w
Cl
~
0
!l
+30 V
I::J
0
...a.
:>
2.5
w
Cl
0
!:;
w
"«!:;
0
0
IQ,
~
1
0
770
1
«
0
2.5
0
>
....
:>
a.
TIME I._I
4/12
0
~
>
:>
JO
>
~
~
Q,
SUPPLY VOLTAGE IVI
::J
~
p-
0.5
I::J
0u;r"UITLpw I - I-
?5>0C
~'tJaC
;-:'P'
::J
:>
f-- '\~-
-
II:
(.>
- f---
---
w
~
0
2
4
8
TIME!,..,
10
TDE1798/TDF1798
TYPICAL APPLICATIONS
TYPICAL APPLICATION AUTOMATIC RESET
-,-,
TYPICAL APPLICATION CONTROLLED RESET
------- ------
Vee
, - - - - - - - --1
l~ to
:1~:flll>11
J
-1~
~Ok
I
"
...,..._ _-,1-,1
1
I
I
1__ ' _______
J
INI'ur
___- ! - - - I
.I
I
~---
SHORT CIRCUIT CONDITIONS WITH AUTOMATIC RESET
OU,I'UT
CUHH[NT
JUNCTION
TlMPlfIATUH[
t
p
0 0 0
t
SOURC[
t
nESET
AND
SYNCt-IRO
r
-----
-t---' -
I
ALAIlM
OUTPUT
I
f
I
i I 0 0 C4J--~
: nn0 I
I.
SHOlll
CIllelll r
·1
5/12
771
TDE1798/TDF1798
SHORT CIRCUIT CONDITIONS WITH CONTROLLED RESET
OUTPUT
CURRENT
t
fl
JUNCTION
TEMPl:RATURl:
t
I_~~_.
ALARM
OUTPUT
SOURCE
t
HLSET
AND
t
SYNCHHO
v--------.
--
I
I
I
I
I
I
I
I
I
I
I.
~;lIOFlr
-CIIICUI'
• I
DEMAGNETIZATION OF INDUCTIVE LOADS
WITHOUT EXTERNAL CLAMPING DEVICES.
This method provides a very fast demagnetization
of inductive loads and can be used up to 150 mJ.
With no external clamping device, the energy of demagnetization is dissipated in the TDE1798 output
stage, and the clamping voltage is the collector emitter breakdown voltage V(BR) CEO.
The amount of energy W dissipated in the output
stage during a demagnetization is :
W = V(BR)
RL
(10 _
V(BR) - Vcc L (1
R
og
+
VCC) )
V(BR) - Vce
Vcc
Vee --
v (BBlCEO'-L-_"'-_ _
VCE
V(BRICtO
Vcc
Remark 1 : This energy is dissipated inside the
case, then rnust be included in the whole power dissipation.
Remark 2 : The use of extemal clamping devices is
recommended in case of parallel driving of loads.
6/12
772
The dispersion of the collector-emitter breakdown
voltage V(BR) would induce the circuit with the lowest V(BR) to dissipate the whole demagnetization
energy (which is roughly proportionnal to 102).
TDE1798/TDF1798
A 1 AMP. DRIVER (reset may be either automatic or controlled)
- - -....
--~-----------------
...
-.~
....- - - - -. .
~.-.-
Vee
-1
I~JrUT - - - - -....
TOE
1798
Vee
TOE
IUSI··1 (,ATf
or
nleOMMANDl D
1798
Vee
ALARM OUTPUT SINK
ALARM OUTPUT SOURCE
,-----------~---.--~
.-_--<~---_{)
..
-~
, - - - - - - - 0 Vee
Vee
8
2
TOE
/f/
1798
3 4
8
6
2
TOE
1798
7
3
4
7/12
773
TDE1798/TDF1798
PARALLEL ALARM OUTPUTS
r---------------------.---------------~-------------ovcc
10 k!1
8
6
8
6
2
2
TOE
TOE
1798
1798
3
3
4
71----0
4
ALARM SIGNAL
INTERFACE BETWEEN HIGH VOLTAGE AND LOW VOLTAGE SYSTEM
, - - - - - - - - - - - - - - - - - - - - - - - - -..
---------------------------------------~
Vcc>+ 6V
Vee ';;;+45V
0----
[
+lV----;E
TDE1799
V ref
0-------;
E
;? 1 V
The reference input can be inverting or the non-inverting one.
ELECTRICAL CHARACTERISTICS
- 25 'C <:: Tamb <:: + 85 DC, 6 V <:: Vee <:: + 33 V, 10 <:: 500 mA, T) <:: + 150 'C
(unless otherwise specified)
---
----
Symb~I)_
r--
Input Offset Voltage
I cc
Power Supply Current
lIB
Input Bias Current
Min.
Typ.
Max.
Unit
2
50
mV
3
4
mA
(note 3)
T amb
~ +
25 'C
--.---------J
15
VICR . ~mmon-mode Inpu~ VO_~Ol~e Rang~ ___ .. (note4_)_____.___ } __
Input Voltage Range
__
Test Conditions
Parameter
VIO
ls~__ .1
vOl
r---'-
10L
I-- --I sink
Short-Circuit
OutPut~urrent
Output Saturation Voltage
- - . - -.. . -----.-------
Vre ! 2 + 1 V, figure 1,
note 4
Ireset
~~-r
(VCC ~+ 30 V,
Vo ~ 30 V,
T J ~_-r 85 DC)
V(pin 7)
$
__
V
V
700
I
mA
V
1.25
50
100
I
~A
15
-
I
mA
.1
2 V
6
.._ . ________
for
~A
I
~33 V, t ~ 10 ms,
T amb ~ 25 DC
- (VI + - VI - > 50 mv,!
10 ~ 500 mA
Available Alarm Output Sink Current
~:~:~~o~~nk Current
25
VCC
Output off Leakage Current
:::::
_
40 __ ~
45
.
I..
~. ~:~:~~:::ge:~a:~~~~_=I-Vth(reset)
I
-=-
1
-
. - -
V(~i~~\e $5~ 0.8 V -II_-2.__
~I~; '~~~~~:~~:iiIT {:;,~" : : :::~Ut
I
C 1~-
14~--G;--1
14
=. . +-mVA'I'
1 ___
--'--
+
eli-~ '~o :~:I
Notes: 2. For operating at high temperature, the TDE1799 must be derated based on a + 150 °C maximum junction temperature
and a junction-ambient thermal resistance of 70 °C/W.
3. The offset voltage given is the maximum value of input differential voltage required to drive the output voltage within 2 V
of the ground of the supply voltage.
4. Input voltage range is independent of the supply voltage.
5. After thermal shut down, voltage required to restart.
6. When in thermal shut down the reset pin 8 draws a current.
3110
781
TDE1799
Figure 2 : Supply Current I vs. Supply Voltage.
Figure 3 : Alarm Output Current and Voltage.
88TDE1799-D2
88TDE1799-Dl
--=-
Is
10
ImA I
ImA I
-
--
/
28
/
f--
3.5
/
28
3
/'
2.5
V
=-- i-=-
~
/
12
II
f--4
2
Hl
f----
-
U
--~-
2
48 UsIUI
38
20
4
5
8
Uo I U I
Figure 4 : Saturation Voltage I vs_ Output Current.
BBTDE1799-D3
Usa t
I U)
1. 25
.-:::;::::::::
-s-c:- ~ ~
-25"C
.75
~
>-::
'85" C
.5
180
200
308
400
588 10imAI
Figure 5 : Typical Application with Automatic Reset.
Vee
10kn
I
TDE1799
'-----------------------------------------------"
4/10
782
TDE1799
Figure 6 : Short-Circuit and Over loads Conditions Waveforms.
OUTPUT
CURRENT
FUNCTI?:
ALARM
VOLTAGE
AND
RESET OUTPUT
VOLTAGE
0 11,~Jl~
I p
t~--+'I~ ~
I
n n n! I
!
1
I------
SHORT -CIRCUIT WITH VCC
-
I
.. j
.g:~:~ lL__...Jj'--_________--1I~___~_
Figure 7 : Typical Application with Controlled Reset.
VCC
I
Vcc
OUTPUT
STATUS
ALARM
RESET
RESET
TDE1799
INPUT
3
4
5/10
783
TDE1799
Figure 8 : Short-Circuit and Over loads Conditions Waveforms.
to
~ ---,
I,
t I
OUTPUT
CURflENT
I
JUNCTION
rEMPERATURE
"
I
ALAHM
I
OUTPUT
VOLTAGE
_1-
tj
STATUS
OUTPUT
VOLTAGE
RE.SET
INPUT
t
VOLTAGE
I~
I
I
I
I
I
C-
SIIORT -CmCUIT WITH Vee
I'
Figure 9 : Output Status Function: Open Load Detection.
IV"i"J~I~
Vllin21
oL-____~~____________~--------~~--------~
OUTPUT
CURRENT 0
IL-------l--~'-+-----T-----4-F-~
I
I
STATUS
OUTPUT
VOLTAGE 0
1
I
I
I
I
I
I
--+I____---l________
L-____.......L_______
I
~L_ ~----__
LOAD DISCONNECTE D
~
Open load detection is possible during the hachured area when (Vpin 3· Vpin 2) (Output status) 1~
6/10
784
~ SGS·ntOMSON
...
.,I ili~II:IiB@J;il.rn©1i"IiB@IlJ~©$
~
I
TDE1799
Figure 10.
l
Vee
R
liMn
R1=
Rlimit· Vrel
VCC - Vrel
REMARK: sometimes the user considers as an open load a
load greater than R limit. In this case a resistor R1 must be
connected between the output and ground.
Figure 11 : Output Status Function Short Duration / Short Circuit Detection.
INPUT
OUTPUT
VOLTAGE
OUTPUT
CURRENT
OUTPUT
STATUS
VOLTAGE
I
1
1
I limit
\
[1
I
1
.. I
I ..
(INPUT) OSV 1
-7
CURRENT LIMITATION
REMARK: long duration short circuit are detected by the thermal shut down.
7/10
785
TDE1799
RESET AND SYNCHRONIZATION
Recommended diagram when the outputs are in parallel. After thermal disjunction a restart is possible when
all the circuits are returned in operating conditions.
Figure 12 : Synchronous Automatic Reset (Parallel or Independent Outputs).
+
15
to
50 kn
3
B
3
TUE1799
2
B
B
3
TDE1799
I UE1799
5
2
51
52
------------------
----------------- ----0
5
51/
Figure 13 : Synchronous Controlled Reset (Parallel or Independent Outputs).
+
8
3
Logical
TOE1199
voltage
15
to
TDE1799
TDE1799
50 kfl R
R
------,
-
,--
I~--
!
~
Oplion I
(open colJeclor gate)
Option II
MAIN FEATURES
• Vec' Vec 50 V
• Maximum output current 0.5 A
• Full protection against overloads and short circuits
• No need of deadtime during rotation reversing
• TTL compatible inputs
• TDE1799 and TDE1798 input signals have the
same reference
• No automatic restart after disjunction
8110
786
FW/CCW
o
l_o~FF'
0
r--O---r-->-
_ 1798
°
17"-
O~
~;FT-%H
I-----L----+----
L
I
OFF.!
OFF
I
OFF.~
TDE1799
Figure 14 : Two Quadrants D.C. Motor Drive.
12k
INlIOU2
!:I.uk
u
cw/ccw
TOE
1798
1k
.t
22j.1F
12k
o
I.!r~
ON/OFF
RESET
INPUT
o
~2j.1F
o
J
B.2k
40V
0; 1N4148
Figure 15 : ON OFF Cycles.
TOE 1799
ToE1798
c!
ON/OFF
I
START IN RUSH
TO(1708
TO[1799
CURHl:NT~
UMITATION
OUTPUT
CURRENTS
MOTOR
Bemf
VOLTAGE
ACCROSS
MOTOR
oMotor inductance demagnetization.
9/10
787
TDE1799
Figure 16: Rotation Reversing.
cw/ccw
TOE 1798
OUTPUT
CURR[;NT
TOE1799
OUTPUT
CURRENT
h
Lr"-
h
~08AI
V
VOLTAGE
ACCROSS
MOTOR
VCC+
,
t
I
I
.
I
~O"A 1 I
..
I
I
-- ~
t-
..,
r
f\
0
f--
~
,
-
vcc
Figure 17: Overload Conditions.
TDE17!l8
INPUT
I
TOJ:1798
OUT/JUT
CURRENT
1
TOE1798
ALARM
OUTPUT
HESET
INPUT
1
ON
f\-,
!-
I~
I
I
I
J
I·
788
.I
TYPICAL MINIMU~_
20
DURATION
~
#H.
OVERLOAD
• For instance overload during TDE1798 operation.
10/10
TOE 1799 INPUT
OISADLED
-I
...
TDE3207
INTERFACE CIRCUIT (RELAY AND LAMP DRIVER)
• HIGH OUTPUT CURRENT
• ADJUSTABLE SHORT-CIRCUIT PROTECTION TO GROUND
• INTERNAL THERMAL PROTECTION WITH
HYSTERESIS TO AVOID THE INTERMEDIATE
OUTPUT LEVELS
• LARGE SUPPLY VOLTAGE RANGE: + 10 V
TO + 30 V
• SHORT:CIRCUIT PROTECTION TO Vcc
MINIDIP/2
DESCRIPTION
The TDE3207 is a monolithic amplifier designed for
high-current and high-voltage applications, specifically to drive lamps, relays and stepping motors.
This device is essentially blow-out proof. Current limiting is available to limit the peak output current to
a safe value, the adjustment only requires one external resistor. In addition, thermal shut down is provided to keep the IC from overheating. If extemal
dissipation becomes too high, the driver will shut
down to prevent excessive heating.
ORDER CODE: TDE3207DP
The output is also protected from short-circuits with
the positive power supply.
The device operates over a wide range of supply
voltages from standard ± 15 V operational amplifier
supplies down to the single + 12 V or + 24 V used
for industrial electronic systems.
PIN CONNECTION
N.C.
Inverting input
Non-inverting
input
GND
September 1988
N.C.
VCC
Current limit
Output
1/5
789
TDE3207
SCHEMATIC DIAGRAM
r---------.---------------.----J7 vee
Inverting input
Non-inverting input
I
I
~ Rse
Th..-mal
protection
I
I
'-------£:--t------------I5
Output (Va)
I
I
I
o
RL
I
I
ABSOLUTE MAXIMUM RATINGS
Value
Unit
Vee
Supply Voltage
36
V
V/D
Differential Input Voltage
36
V
V,
Input Voltage
36
V
10
Output Current
300
mA
Symbol
Ptot
Toper
T stg
2/5
790
Parameter
Internally Limited
W
Operating Ambient Temperature Range
- 25 to + 85
'C
Storage Temperature Range
- 65 to + 150
°C
Power Dissipation
TDE3207
ELECTRICAL CHARACTERISTICS
- 25 'C s Tamb S + 85 ac, + 8 V S Vee S + 30 V, 10 S 150 mA, T j S + 150 'C (unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
Input Offset Voltage - (note 2)
-
2
50
mV
118
Input Bias Current
-
0.1
1.5
Icc
Supply Current (Vcc
High Level
Low Level
Via
Parameter
=
+ 24 V,
10 =
0,
VCM
Common-mode Input Voltage Range
Isc
Short-circuit Current
Rsc = 3.30)
Vcc-Vo
10L
los
(Tamb =
T amb =
+ 25 'C, Vcc
=
Output Saturation Voltage (output high)
(VI + - VI -) ~ + 50 mV, 10 = 150 mA, Rsc
Output Leakage Current (output low) Va
Tj = + 25 'C
Tj = + 85°C
Minimum Short-circuit Output Current
T amb-= + 25 'C, Vec = + 24 V, Rsc
=
=
+ 24 V,
0,
Tj =
0 V, Vcc
+ 25°C
=
~A
mA
+ 25 'C)
-
4
2
10
2
-
Vcc-2
V
-
250
-
mA
-
1.2
1.8
V
-
1
-
-
100
500
-
50
-
-
~
+ 24 V
mA
=
=
Noles: 1. For operating at high temperatures, the TDE3207 must be derated based on a + 150 'C maximum junction temperature and a junction-ambient thermal resistance of 110 ·CIW.
2. The offset voltage given is the maximum value of input voltage required to drive the output voltage within 2 V of the ground or the
supply voltage.
TYPICAL APPLICATIONS
BASIC CIRCUIT
10 kl!
RSC
3.3!l
10 kl!
• 01 required for inductive loads
3/5
791
TDE3207
SUPPLY CURRENT VERSUS JUNCTION
TEMPERATURE
AVAILABLE OUTPUT CURRENT VERSUS
LIMITING RESISTOR
~
Izw
II:
II:
:l
0
I:l
11.
I:l
0
0.7
~r
0.6
0.5
T
0.4
0.3
r~
...I
0.2
0.1
--
j
25°e
=+
+---~
,oooe
Tease =+
I
1
w
ID
5
case
I
~~
.~
0
~
2
6
0.5 L.-..L.--'------'_-"---'---'_ _-'----'----'
50
75
100
125
25
o
7
LIMITING RESISTOR (01
JUNCTION TEMPERATURE lOCI
SATURATION OUTPUT VOLTAGE VERSUS
CASE TEMPERATURE AND AVAILABLE
OUTPUT CURRENT
SlWI'L Y CURRENT VERSUS SUPPL Y
VOLTAGE
~
w
5
4
3
t-
f
<
.-~-
~
CI
~
o
>
C(
1.2
r-- C-
I-
~ 0.8
I::l
o 0.6
z
V
V
0.4
II:
::l
0.2
o
--
P ;.,;. ,,r-L< ><
c-
~ t7 KrZ' ~
"-.i'..
,,/
~
~
30
<
25
0
20
~
>
>
...I
11.
11.
:l
20
SUPPLY
SUPPLY VOLTAGE
vs
MINIMUM lIMmNG RESISTOR VALUE
15
50 mV,
Notes: 2. For operating at high temperatures, the TDE3237 must be derated on a 150°C maximum junellan temperature and a Junction-am·
bient thermal resistance as showed in the thermal characteristics data base.
3. The offset voltage given is the maximum value of input voltage required to drive the output voltage within 2 V of the ground or the
supply voltage.
SIMPLIFIED SCHEMATIC
r-------.-----------D
Rl
Vee
0
I
~-----1:>
Output
Inputs
Current limiting
3/4
797
TDE3237
TYPICAL APPLICATION
BASIC CIRCUIT
Rl
R2
AVAILABLE OUTPUT CURRENT VERSUS
LIMITING RESISTOR
~
~
0.7
z
w
I
::>
SUPPLY VOLTAGE VS
MINIMUM LIMITING RESISTOR VALUE
40
35
a:
a:
0.6
I
~
0
0.5
I
Cl
T
~
...
::>
0.4
I
~
::>
0
0.3
1
w
~
III
«
;;:
>
«
~
0.2
«
= + 25:1C
if T c"'.
!
~~ I
0.1
0
case
w
~
3
4
5
25
"
~
0
20
......>::>
15
>
~+ 100°C
.<".
~
-'>..--
en
I
11
2
30
j
10
6
2
LIMITING RESISTOR fill
OL-~~
o
__L-~~__L-~~~~
50
100
150
200
AVAILABLE OUTPUT CURRENT fmAI
798
4
MINIMUM LIMITING RESISTOR VALUE fill
SATURATION OUTPUT VOLTAGE VERSUS
CASE TEMPERATURE AND AVAILABLE
OUTPUT CURRENT
4/4
3
250
TDF1778
DUAL 2-A SOURCE DRIVER
• OUTPUT CURRENT UP TO 2.5 A
• WIDE RANGE OF SUPPLY VOLTAGES: + 8 to
+ 32 V
• CAN WITHSTAND OVERVOLTAGES OF AS
HIGH AS 60 V BETWEEN Vcc AND GROUND
• INTERNAL ZENER DIODE PROVIDES FAST
SWITCHING OF INDUCTIVE LOADS
• OUTPUT VOLTAGE CAN BE LOWER THAN
GROUND
MULTIWATT-11
DESCRIPTION
The TDF1778 is a dual source driver delivering high
output currents and capable to drive any type of
loads (Electrovalves, contactors, lamps).
This device is essentially blow-out proof, each output is protected against short-circuits. If internal dissipation becomes too high, drivers will shut down to
prevent excessive heating. An "ALARM" output is
provided to indicate the action of the thermal protection. To reactivate the power outputs, the reset input must be forced to low state.
"SENSE" information of both power outputs are
ORed together and then processed internally.
ORDER CODE: TDF1778SP
A "STROBE" input is also provided to offer the possibility of disabling the power outputs.
PIN CONNECTION
- Output 1
9
8
4
3
2
-vee
3
4
5
- Output 2
6
- Ground
7
8
9
- Sense output
- N.C.
- Strobe
- Input 2
- Alarm output
10 - Reset input
11 - Input 1
September 1988
1/8
799
TDF1778
BLOCK DIAGRAM
Strobe
r- ----------I
I
I
I
I
Output 2
Output 1
Input 2
Input 1
I
Alarm
output
I
I
I
L _________________ _
Q1
--l------J
Reset
Sense
output
Ground
input
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
Parameter
Supply Voltage
V" Vreset Input Voltage (pins 7, 10 and 11)
Strobe Input Voltage
V strobe
10
Ptot
Toper
Tj
Value
V
- 30 to + 50
V
- 0.5 to Vcc
V
Output Current
Internally Limited
A
Power Dissipation
Internally Limited
W
- 40 to + 85
°C
+ 150
°C
Operating Ambient Temperature Range
Junction Temperature
THERMAL DATA
Maximum Junction-case Thermal Resistance
Maximum Junction-ambient Thermal Resistance
2/8
800
Unit
35 V (60V/10 ms)
3
40
TDF1778
ELECTRICAL CHARACTERISTICS
Vee; + 24 V, - 40 'C < T j < + 85 'C (unless otherwise specified)
Symbol
Parameter
Min.
Vee
Power Supply Voltage
8
Icc
Power Supply Current (pin 6), 101 = 102 = 2 A
-
VIL
VIH
Logic Input Voltage (pins 7, 10, 11)
-
Typ.
Max.
Unit
32
V
-
20
mA
-
0.8
V
2
-
VI
Logic Input Threshold (pin 5)
-
0.8
-
V
IIH
High Level Input Current (pins 7, 10, 11) VI = + 2 V
-
20
50
>t A
Low Level Input Current (pins 7, 10, 11) VI = + 0.8 V
-5
0
+5
!lA
High Level Logic Output Voltage (pins 8, 9)
1(8) = 1(9) = - 30 >tA
2.4
4
-
-
0.4
1.5
1.8
400
1000
40
44
48
-
-
IlL
VOH
VOL
Vee - VOl
Vee - V02
10L
Low Level Logic Output Voltage (pins 8, 9)
1(8) = 1(9) = 2 mA
Output Saturation Voltage (V(7) high, V(II) high, 10 = 2 A)
V
-
Low Level Input Current (pins 1, 3)
V(7) Low, V(II) Low, Vo = 0 V
Vee - VOl Switch-off Output Voltage (inductive load)
Vee - V0 2
101, 102
V
Available Output Current (pins 1, 3), V(7) High, V(II) High,
Vee - Vo = 32 V, T J = 25 cC
V
!lA
100
V
mA
-
-
IOalarm
Available "Alarm" Output Current, V(9) = + 4 V
4
8
-
mA
losense
Available "Sense" Output Current, V(8) = + 4 V
4
8
-
mA
IIHsense
Output Sensing High Level Input Current (pins 1, 3) VI = + 2 V
-
1
2
mA
0.8
1.9
2.5
V
V IHse n S8
High Level "Sense" Input Voltage (pins 1, 3)
3/8
801
TDF1778
AVAILABLE OUTPUT CURRENT
OUTPUT SATURATION VOLTAGE
2.00
~
2:
Tj=25°C
IZ
~
......
3
a:
1- r- ~ ..
::J
U
tu
~
roo ..
I-
::J
"
'" , ..... ~
~
I j -.- 85°C
i'::
2
::J
o
w
-'
~
1
..
;{
>
'.70
1.60
~
1.50
a
1.40
-:
.......... "' ....
Tj-o';2~OC
~
5
+24
v_ ~
.-
c-
~
.--
r.. I', roo ..
..
10
::J
1.20
~
1.10
~ Ii'?'
I-
~
~
.90
0.00
.25
50
I -f -
t + B5 "C
,25"C
75
1.00 1.25 1.~ 1.75 2
.80
30
r-----
Vee - Vo IV)
OUTPUT CURRENT (AI
AVAILABLE ALARM OR SENSE OUTPUT CURRENTS
POWER SUPPLY CURRENT
24 r---_r--_,----~--_r--_,----,_--~--_,
I
S
I-
I-
-
Z
~
w
a:
a:
a:
C(
::J
u
U
'"Z
J
~
~
'"
----
- .. ---
~
OUTPUT LOW
1----
--- T
I
1:'
POWE:.n SUPPLY VOLTAGE (V)
ALARM OR SENse OUTPUT VOL TAG[ (V)
MAXIMUM OUTPUT CURRENT VS LOAD INDUCTANCE
~
i""..
~
........
I-
Z
w
a:
a:
J
~ CON~IDEN6E
........ ........
r-.... ""'"
u
r-
-
I
I
,I
I
~CC=16V
.....
VCC:::30 V
.
I-
J
I::l
o
:;
J
:;;
X
«
:;;
o
25
50
75
LOAD INDUCTANCE (mH)
4/8
802
2.:"') 7.50
-
-
OJTf>UT H I G I I 101 -·102-= 2A
I
,.
::J
~
I
;{ 12
516
(X)
16
T amb = 1- 2S Cl C
;{
'7" ~
7'
. I
~
J
o
---
Tj~-40"C~~
1.00
I-
-
...... ."".
1.30
«
IV>
--
... fi""
I-
'"i'. '" .. ..... ~
,
vcc'c
1.90
1.80
100
TDF1778
OPEN LOAD DETECTION
Input
[1[2
Strohe
!
.
D
1
1
-.-1
OUIPU(-4_ _- - '_ _~_~_~-----------------current
Sen'"
output
LLLCCl-----L
Normal
----~+-------
Opcr__---
_,
JUrl!.;liOI-+_ _
I
temlJoCrature
AI.'m
+ __---J-:_ _ _ _ _ _ _ _ _ _ _--4_L-_ _ _~
output
RESET
-+__
--.-J1_ _ _ _ _ _ _ _ _ _ _l-_ 1 . . -_ _ _ _ _ __
1
~---
f -.
I.
Shor(-circuil
---~·-jl
DEMAGNETIZATION UNDER INDUCTIVE LOAD
Vee
Vee
Vo
Vee~---,
6/8
804
TDF1778
TYPICAL APPLICATION
TYPICAL APPLICATION WITH TDF1778 TWO INDUCTIVE LOADS 2 A - 24 V
Vee ,., 24 v
sTnorlr
LOGICAL
TDF1778
CONTROL
UNIT
5[NS[
OUTPUT
I\LARM
OUTPUT
"
f--~-C'3J
9
Load: LC ~ 8OmH.
Rmo. ~ Vcd2 rnA
Rc·~
6
n
Load: Lc = 80 mH, Rc = 12 n
Rma, = Vccl1 mA
MAIN FEATURES
This application protected against short circuits.
The load disconnection is detected when inputs E1
and E2 are low and the sense output is high.
When thermal protection is activated the pin 9 is low.
Inputs and outputs are TTL comptable.
7/8
805
TDF1778
TDF1778 HIGH CURRENT APPLICATION WITH INDUCTIVE LOAD 24 V - 4 A
Vee :.: 24 V
I
1
C
1'~1I
~7
RES!::
r
1--------1 10
LOGICAL
TDF1778
. CONTROL
'i
I
OUTPUT
I
,I r'
I
.
I
I
~
,
I.e
I
0:
L;l"
I
fIC
--l
.,\,.,"
-1 9
1_:.::AL;::::A""RM",--,o",U",TPc::uccT
load: LC = 8OmH, RC '"'- 6
Rmax '- VCcl2 mA
n
Load: Lc ~ 80 mH, Tc
Rmax ~ Vcc/2 mA
~
6
n
MAIN FEATURES
This application has the same features as the dual 2 A -12 V application.
8/8
806
"
'--t' C3.J
3-----J1-----..-
UNIT
S[NSr:
T
~
1_---=5-"T""'0"'' .;...r----15
1:1
I
TDF1779A
DUAL 2-A SOURCE DRIVER
--------------~---------~
• OUTPUT CURRENT UP TO 2_5 A
• W[DE RANGE OF SUPPLY VOLTAGE: + 8 V
TO + 26 V
• CAN W[THSTAND OVERVOLTAGES OF AS
H[GH AS 60 V BETWEEN Vee AND GROUND
• OUTPUT VOLTAGE CAN SWING TO LOWER
THAN GROUND
• "SENSE" AND "ALARM" OUTPUTS ARE OPEN
COLLECTOR OUTPUTS
------------~---
~~-----.---
MULT[WATT-11
~
DESCRIPTION
The TDF1779A is a dual source driver delivering
hihg output currents and the capability to drive high[y inductive loads (E[ectrova[ves, contractors, re[ays ... ).
. . .""""' .•.". ;.....•
, x·.
g.~,
;'
This device is essentially b[ow~out proof, each out~
put is protected against short~circuits. [f internal dis~
sipation becomes too high, drivers will shut down to
prevent excessive heating. An "ALARM" output is
provided to indicate the action of the thermal protec~
tion. To reactivate the power outputs, the reset in~
put must be forced to [ow state.
\
-:,-
ORDER CODE: TDE 1779ASP
"SENSE" information of both power outputs are
ORed together and then processed internally.
A "STROBE" input is also provided to offer the pos~
sibi[ity of disabling the power outputs.
PIN CONNECTIONS
11
10
9
a
7
&
5
-4
3
1 - Output 1
~ Vcc
~ Output 2
~ N.C.
5 ~ Strobe
6 ~ Ground
7 ~ Input 2
8 ~ Sense output
9 ~ A[arm output
10 ~ Reset input
11 ~ Input 1
2
3
4
Tab is connected to pin 6
September 1988
1/7
807
TDF1779A
BLOCK DIAGRAM
r-
---~-------
I
I
I
I
I
I
I
I
I
I
I
Input 1
Alarm
output
r
I
I
I
L_________________ _
input
MAXIMUM RATINGS
---_.-
- -
Symbol
Parameter
- - - - -
Vee
VI, V reset
Vstrobe
10
_ P",
Toper
S_upply Voltage
Input Voltage (P ins 7,10 and 11)
Strobe Input Vol tage
-_:- -;~t-.-te-.m-p~~,",: :-ng-e-_-_~·_· -·_-_~·_·~_-_~_
35 V (60 V/10 ms)
V
- 30 to + 50
V
-+ -
Output Current
I~WO' D;";,,t
___
Operating Ambi
I
0.5 to Vcc----i---Y_
·--:~i:.~:~. : :~;::
I. .
~
-------~-
____ Tj
_ Junction Tempe rature
THERMAL CHARACTERISTICS
Maximum Junction-case Thermal Resistance
Maximum Junction-ambient Thermal Resistance
-~~------.-.----------.---
2/7
808
_ + 150
_
I
°C
I
TDF1779A
ELECTRICAL OPERATING CHARACTERISTICS
= + 24 V, - 40 'C < Ti < + 85 'C (unless otherwise specified)
Vee
t~_~~~~I=-~power~~p-PI;~~i~~~~h:~a:t~riStiCS -- - ---- -------~-~='-~~·l
I--~:I~
:~;:rl~:~p~O~:9~e~i;~~ 1~.'111~1=IO'2, = 2A_
VIH
1_ _ _
_______ .___________ _______
IIH
, High Level Input Current (pins 7,10,11 VI = + 2 V
1-=-_!IL=-r~~V'I L~~li~p~tc;;~rent(pi~~ 7,10,11) VI~~ 0.8 V
-5
:___-_ _ ; Off State Ou.!pLJt.~oltag_e..(£irl~8~U(8L:J(9) =2_rTl/\
I
~~~ =~g~
V(7) Low, V(11) Low, VO = 0 V
~--
--
Vee - V01
Vee - V02
_
,
- - - - - - ---
-- -
--
Unit
26
V
20
mA
V
I
0.8
V
20
,IA
0
_
+ 5
flA
0.4
V
V
1.5
1.8
----------._---------,-------+------
400
--
-~
,IA
1000
SWitch-off Output Voltage (Inductive load) Note 1
V
45
101, 102
_
1
Max.
!Output Saturation Voltage (V(7)high, V(11) High, 10 = 2A)
'~;O-L-~'; 1.~;el-OutPut Cur~~~t pi~S-13) ---
I
2 __
....'\Ir.__~ogic;~~t_!_hr~S~~cijrlin_5_)_____________ _
,
Typ.
Available Ouptut Current (pins 1,3), V(7) high, V(11 p) high,
Vcc-Vo=26V,TI=25°C
mA
10
10 Alarme
,. Available "Alarme" Output Current, V(9) = + 4 V
4
8
mA
10 Sense
I
Available "Sense Ouptut Current, V(8) = + 4 V
4
8
mA
IIH Sense
Note:
r-Ou;P~t-S-;'~sing
high Level Input Current (pins 1,3) VI
=~-2V
2
mA
1. An external discharge circuit is required for inductive loads.
3/7
809
TDF1779A
AVAILABLE OUTPUT CURRENT
I-
T'-U
2.00 ~-r-.----'----'--'--.--'--'-----'----'
~ 190
.1;:'. ~.
".
..
.
o
.
" "" .
Tj =85"C
1
OUTPUT SATURATION VOLTAGE
o
~
i'
125~ ,
I I
VCC= t24 v+--+~+--+-+--+_I--I
I--t--I-+--+-+--+-I-+--+--:J
I--t--I-+~f -+--+-1-+--+'"
1.60 1--t--I-+--+-+--t--I--b.""'f--1
1 80
1 ,70
1.SO
I--t--I-+--+-+--+-t.~~'-+--
g 1AO f---+-I-+ --t-+--:J."f--+--+--I
~ ::: t::::::t::::::t:::~::::::~~~~...
~~!~~:::t=--1I----t_--I
...... ,~.
T- =
10
~
~
~,
20
~
~
1. 10
o
80
h"-'-M;lb-,,,,""S!SW;C-+--+'~I-+--+--1
'.00
Tj_ % w ' lj -. + 85"C
0.00
30
25
.50
75
100 1,25 1,50 175 200 225 2
POWER SUPPLY CURRENT
16
T"mb'- -t-25"C
-
,
,
12
-OllTPLJT
10' ,02
I
-_
...... - .--
4/7
810
,
,
HIJ.-l2A
,
OUTPur LOW
---T
,
15
ALARM OR SENSE OUTPUT VOLTAGE (VI
f>()
OUTPUT CURRENT IAI
Vee Vo IVI
AVAILABLE ALARM OR SENSE OUTPUT
CURRENTS
+--+-1-+--+
L-~Vc...oA""r=L_"-'·_'"_.-,'2_5°_C-'---'-_L-...L-~~
POWERSUPPlV VOLTAGE IV)
-,
,
TDF1779A
OPEN LOAD DETECTION
'nPUI...,!r----'___________
--L_ _ _ __
£1-[2
I
I
------'-D--l~~_ _
51E
1 dll;
LOAD
a~ : '
OUTPUT...?~ H
+----i
LInlT
I- u~c
- -
a-
}6U
I
: :
-
CURRENT
UOL TRI>E
• t
"-'c:a
g
I
I
!:
• t
: :
.
I
I
• t
I
CA~~~~~OR (Q: ==: =:~= =:~ - - - - - - - - - - - -~;:
iL.lj
~
UOL TAGE a -
4
9: MINIMUM RESET SIGNAL DURATION (9
~ ~
20
~A
(Tl);
~ ~-
-
~,
OUERLORO PRESENCE.'
lOrnA (T3)
~
10
~s
-'_T~'
,.......,
• t
BBTOFI?B3-55
typ)
(typical values)
dt
dt
The sequence discribed above will be repeted as long as overload conditions will remain.
5/7
819
TDF1783
Figure 8 : Thermal Shutdown.
-~'--~'-~-'------l
INPUT
VOLTAGE
I
1
L - - - - - - - - - - - - - - -__,~~--_+_r~------------~•• t
:
LOAD
CURRENT
OUTPUT
VOLTAGE
1
L-____________~________~>~'~<----~I~-L----------------.. t
I
I
'~--TH~17B·~
1
I
:
-
TL
I
--~:~------
L -____________71-------,~---L,~----------------..
DELAY
CAPACITOR
VOLTAGE
t
6U
--------~I
~U________ .L
C
~"'55uA
C
~
-lBmA
L-__~d~t~-______~L-----~~--T_._~--~d~t--------.t
I
lr--< B
riT4
,
I
The thermal protection turns off the 3 outputs simultaneously (TH - TL
~
I
88TOF1?83-S6
30°C is the thermal hysteresis). Any erra-
tic restarts will be avoided when T4 is shorter than the duration given by the thermal hysteresis.
•
6/7
820
TDF1783
Figure 9: Output Stage and Current Limitation .
.---------~~--
....
-~--.----.
---_._---._----------------------------------------,
Ucc
RB
iB
UB
Ucc
RL
10
Rsc
88TDF1783-57
• Rsc calculation
Tj ~ t50 °c ;2VBE
(Rsc 10). 3:"5
<
460 mV } ~
_
VBE
<
Rsc. 10
<
0.805 V
Re calculation
RB=
VCC-~B:.
3·
(VB'" 2 V, i
F:
50 IlA at
10::::
1.5 A)
11
POWER DISSIPATION OF THE TDF 1783
P = (Vee. Icc) + n (Vee sat. lo) + iB (VB - RSC ·Io)
n : number of conducting outputs
Vee sat = Va - VRSC
Rsc.lo = VRSC
PROTECTION AGAINST ELECTROSTATIC
DISCHARGES
context, guarantee an electrostatic discharge protection up to 200 V.
Usual cautions have to be taken to protect delay and
input pins against parasitic discharges. Other pins
are protected up to 2 KV.
The inputs are designed to operate from - 30 to
+ 50 V. This characteristic, useful in an industrial
7/7
821
TEA3717
STEPPER MOTOR DRIVER
--------------------
• HALF-STEP AND FULL-STEP MODE
• BIPOLAR DRIVE OF STEPPER MOTOR FOR
MAXIMUM MOTOR PERFORMANCE
• BUILT-IN PROTECTION DIODES
• WIDE RANGE OF CURRENT CONTROL 5 TO
1000 mA
• WIDE VOLTAGE RANGE 10 TO 45 V
• DESIGNED FOR UNSTABILIZED MOTOR
SUPPLY VOLTAGE
• CURRENT LEVELS CAN BE SELECTED IN
STEPS OR VARIED CONTINUOUSLY
POWERDIP 12 + 2 + 2
DESCRIPTION
The TEA3717 is a bipolar monolithic integrated circuit intended to control and drive the current in one
winding of a bipolar stepper motor. The circuit
consists of an LS-TTL compatible logic input, a current sensor, a monostable and an output stage with
built-in protection diodes. Two TEA3717 and a few
external components form a complete control and
drive unit for LS-TTL or microprocessor-controlled
stepper motor systems.
ORDER CODE: TEA3717DP
CONNECTION DIAGRAM (top view)
~
1
16
SENSE
RESISTOR
2
15
OUTPUT A
GND
13
GND
GND
12
GND
11
REFERENCE
OUTPUT 8
PULSE TIME
V. (8)
INPUT 1
PHASE
September 1988
INPUT ~
1/7
823
TEA3717
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Vmm
Power Supply Voltage (pins 14,3)
Vcc
Logic Supply Voltage (pin 6)
Vin
Vin
Vv
lin
10
Output Current
Tj
Junction Temperature
Unit
45
V
7
V
V
Input Voltage
Logic Inputs
Analog Inputs
Reference Input
Input Current
Logic Inputs
Analog Inputs
I,n
Value
- 0.5 to 6
Vcc
15
mA
- 10
- 10
,
T stg
Storage Temperature Range
Toper
Operating Ambiant Temperature Range
±1
A
+ 150
°C
- 55 to + 150
°C
o to
+ 70
°C
THERMAL DATA
Maximum Junction-pins Thermal Resistance
Maximum Junction-ambient Thermal Resistance
11
45*
Soldered on a 35 mm thick 20 em' PC board copper area
SCHEMATIC DIAGRAM
Vmm
Ph
11
10
GND
c
2/7
824
T
E
TEA3717
RECOMMENDED OPERATING CONDITIONS
Symbol
Value
Parameter
Min.
Unit
Typ.
Max.
5
Vcc
Supply Voltage
4.75
5.25
V
Vmm
Supply Voltage
10
-
40
V
10
Output Current
0.020
-
0.8
A
Ambient Temperature
0
-
70
°C
te
Rise Time. Logic Inputs
-
-
2
~s
tl
Fall Time, Logic Inputs
-
-
2
~s
Tamb
ELECTRICAL CHARACTERISTICS, Vee = 5 V, ± 5 %, V mm = + 10 V to + 40 V,
= 0 'C to + 70 'C (unless otherwise specified)
Tamb
Symbol
Parameter
Min.
Typ.
Max.
Unit
-
-
25
mA
High Level Input Voltage - Logic Inputs
2.0
-
-
V
Vil
Low Level Input Voltage - Logic Inputs
-
-
0.8
V
IIH
High Level Input Current - Logic Input (V I = + 2.4 V)
-
-
20
~A
Low Level Input Current - Logic Inputs (VI = + 0.4 V)
Icc
Supply Current
VIH
- 0.4
-
-
mA
VCH
VCM
VCl
Comparator Threshold Voltage (VR = + 5.0 V), 10 = 0,1, =0
10 = 1,1, =0
10 = 0,1, = 1
390
230
65
420
250
80
440
270
90
mV
Ico
Comparator Input Current
- 20
-
20
~A
loll
Output Leakage Current (10 = 1, 1, = 1)
Tamb =+ 25°C
Tamb =+ 70°C, Vs =40 V, Vss =5 V
-
-
100
100
200
Vsat
Total Saturation Voltage Drop (10 = 500 mAl
-
-
4.0
Ptot
Total Power Dissipation
10 = 500 mA, fs = 30 kHz
10 = 800 mA, fs = 30 kHz
-
1.8
3.7
2.3
toll
Cut off Time (see figure 1 and 2, V mm = + 10 V, ton ~ 5 ~s)
25
30
35
td
Turn off Delay (see figure 1 and 2, T amb = + 25 'C,
dVC/dt ~ 50 mV/j.Ls)
-
1.6
III
~A
V
W
-
j.Ls
~s
317
825
TEA3717
Figure 2.
Figure 1 (see note).
Motor winding
~
i-vMA. VM' VM'· VMA
0,
M,\
Phase
Mfl
Vmm
I
I
normalized
I
Is
ton + toft
Vcc
GNDO----Ec
FUNCTIONAL DESCRIPTION
The circuit is intented to drive a bipolar constant current through one motor winding. The constant current is generated through switch mode regulation.
The re is a choice of th ree different cu rrent leve Is with
the two logic inputs 10 and h. The current can also
be switched off completely.
INPUT LOGIC
If any of the logic inputs is left open, the circuit will,
treat it as a high level input
!····I·o-·rl~=_ _ ~urrent Level_
H
L
H
L
H
H
L
L
No Current
Low Current
Medium Current
Maximum Current
PHASE - This input determines the direction of current flow in the winding, depending on the motor
connections. The signal is fed through a Schmidttrigger for noise immunity, and through a time delay
in order to guarantee that no short-circuit occurs in
the output stage during phase-shift High level on
the PHASE-input causes the motor current flow
from MA through the winding to Ms.
Note: Rs "'" 1 0, inductance free
Rc~1kn
4/7
826
Cc
~
820 pF, ceramic
Rt
~
56kn
Ct
~
820 pF, ceramic
10 and h - The current level in the motor winding is
selected with these inputs. The values of the different current levels are determined by the reference
voltage VR together with the value of the sensing resistor Rs.
CURRENT SENSOR
This part contains a current sensing resistor (Rs), a
low pass filter (Re, Ce) and three comparators. Only one comparator is active at a time. It is activated
by the input logic according to the current level chosen with signals 10 and h. The motor current flows
through the sensing resistor Rs. When the current
has increased so that the voltage across Rs becomes higher than the reference voltage on the other
comparator input, the comparator output goes high,
which triggers the pulse generator and its output
goes high during a fixed pulse time (toff) , thus switching off the power feed to the motor winding, and
causing the motor current to decrease during toff.
SINGLE-PULSE GENERATOR
The pulse generator is a monostable triggered on
the positive going edge of the comparator output
TEA3717
The monostable output is high during the pulse time,
toff, which is determined by the timing components
Rt and Ct.
toff = 0.69 ·R t Ct
It should be noted however, that it is not permitted
to short circuit the outputs.
Vee, Vmm , VR
The circuit will stand any order of turn-on or turn-off
The single pulse switches off the power feed to the
motor winding, causing the winding current to decrease du ring toff.
of the supply voltages Vss and Vs. Normal dV/dt
values are then assumed.
If a new trigger signal should occur during toff, it is
ignored.
Preferably, VR should be tracking Vee during poweron and power-off.
OUTPUT STAGE
ANALOG CONTROL
The output stage contains four Darlington transistors and four diodes, connected in an H-bridge. The
two sinking transistors are used to switch the powersupplied to the motor winding, thus driving a
constant current through the winding.
The current levels can be varied continuously either
if VR is varied or with a circuit varying the voltage fed
into the comparator terminal (see fig.1).
Figure 3.
,----------------------------.~.--~-.------
Motor
winding
GN
L _________________ ~-
Functional blocks
A TTL compatible input logic
B. Current sensor
e. Single-pulse generator (monostable)
D. Output stage with protection diodes.
5/7
827
TEA3717
Figure 4 : Typical Sink Saturation Voltage vs
Output Current.
VsatlU
IVI
r-4
-
e-
-
._--
r-
1---
-
I--
-
I""-
o
-
10-
0.1
."".. i--'"
4
-
3
-I--
ImlAI
TA
./
=-t-
2SoC
V t-- -
~
",
828
I--
-
~
~
~
;,.;;;~
. -r-
~
-
r--r--
r-
o
O.B
4
6/7
..
I-
IWI
0.4
._- t---r--
1-- I---
-
Ptat
0.2
"+
-_.
-~.
1---
f--
Figure 6 : Typical Power Losses vs Output
Current.
,
t--
r-
0.5
3
-h:L-L~
Tamb
25"C
I--- - - r--- f-I-
-
~
3
-
IVI
Tamb =+ 2~C
--
-
VsatlHI
) LJ
-
Figure 5 : Typical Source Saturation Voltage vs
Output Current.
0.6
O.B 1m IAI
0.1
0.5
0.8
ImlAI
TEA3717
TYPICAL APPLICATION
Figure 7 : Serial Printer Carriage Drive.
o
From ,. -processor
Carriage stepper
motor
Figure 8 : Principal Operating Sequence.
I Printing speed with
Stand by with I halfstep motor drive
holding torque I Im-250mA
I
-_-_-.:_J
Im=90mA
I I 2 3 4 5. 6 .7 8
IOA------I;-..:-.................;:;......::.......:::'"""-!~'::"'O;
!
ItA
I
I
Carriage return with
full step motor drive
Im=500ma
.-+:______
n
PhA~~------+-n---r--t--_-------------- -----~---
Phe
----1--I
:~
d
-500~=- ~ _____ ~
Motor current PhaseA
SOOmA---- -
-----
hanging
---
1_ _____
Phasee
~
p~ase at this point gives
faster current decay
-~n-n--
=--~~ _LrL __
:
SOOnv\ __ - - - - - - - - - - - r~---=r-n-n
-SOOnv\--==' ____ 1_ _ _ _ _ _
U_W__ _
7/7
829
TEA3718
TEA3718S
STEPPER MOTOR DRIVER
ADVANCE DATA
• HALF-STEP AND FULL-STEP MODE
• BIPOLAR DRIVE OF STEPPER MOTOR FOR
MAXIMUM MOTOR PERFORMANCE
• BUILT-IN PROTECTION DIODES
• WIDE RANGE OF CURRENT CONTROL 5 TO
1500 mA
• WIDE VOLTAGE RANGE 10 TO 50 V
• DESIGNED FOR UNSTABILIZED MOTOR
SUPPLY VOLTAGE
• CURRENT LEVELS CAN BE SELECTED IN
STEPS OR VARIED CONTINUOUSLY
• THERMAL OVERLOAD PROTECTION
• ALARM OUTPUT (TEA3718SP) OR PREALARM OUTPUT (TEA3718SSP)
DESCRIPTION
The TEA3718 and TEA3718S are bipolar monolithic
integrated circuits intended to control and drive the
current in one winding of a bipolar stepper motor.
The circuits consist of an LS-TTL compatible logic
input, a current sensor, a monostable and an output
stage with built-in protection diodes. Two TEA3718
or TEA3718S and a few external components form
a complete control and drive unit for LS-TTL or
microprocessor-controlled stepper motor systems.
POWERDIP 12 + 2 + 2
ORDER CODES: TEA3718DP
TEA3718SDP
MULTIWATT-15
ORDER CODES: TEA3718SP
TEA3718SSP
PIN CONNECTIONS (top views)
TEA3718
1·Vee
2·1,
3·Ph
4·10
S·G
6-Vref
7·ALARMOUT
8·GND
9·NG
10-Vmm
11-T
12-MA
13-E
14-MB
1S-Vmm
TEA3718S
1 ·Vee
2·1,
3·Ph
4·10
S·C
6- Vref
7· PRE·ALARM OUT
8·GND
9·NG
10-Vmm
11-T
12-MA
13-E
14-MB.
1S-Vmm
TEA3718
TEA3718S
MB
E
MA
Vmm
Vmm
GND
GND
GND
GND
vee
VR
11
C
Ph
10
September 1988
1/13
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notioe.
831
TEA3718-TEA3718S
BLOCK DIAGRAM
MA
Vmm
MB
~HASE
11
10
,..:z::;,--+---+r--ch--+r-+'
GND
c
T
E
CaMP_INPUT
AND ALARM OUT
ALARM OUPUl
TEA3718 SP ONL Y
MA MB
PHASE
11
~--+---+~~-+T-~
10
GND
c
2/13
832
T
E
PRE-ALARM OUPUl
TEA3718SSf
TEA3718-TEA3718S
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
Vmm
Parameter
Supply Voltage
Value
Unit
7
50
V
V
Input Voltage
Logic Inputs
Analog Inputs
Reference Input
Vcc
15
Input Current
Logic Inputs
Analog Inputs
-10
-10
10
Output Current
± 1.5
A
T)
Junction Temperature
+150
°C
o to + 70
°C
-55to+150
°C
VI
II
Toper
Tst9
V
6
mA
Operating Ambient Temperature Range
Storage Temperature Range
THERMAL DATA
Rth
()-c)
Rth ()-a)
Maximum Junction-case Thermal Resistance
°C/W
Powerdip
Multiwatt
11
Powerdip
Multiwatt
45"
40
3
Maximum Junction-ambient Thermal Resistance
°C/W
" Soldered on a 35 ~m thick 20 cm' PC board copper area.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Value
Min.
Typ.
Max.
Unit
Vcc
Supply Voltage
4.75
5
5.25
V
Vmm
Supply Voltage
10
-
45
V
1m
Output Current
0.020
-
1.2
A
70
°C
Tamb
Ambient Temperature
0
tr
Rise Time Logic Inputs
-
-
2
/.!S
tf
Fall Time Logic Inputs
-
-
2
/.!S
3/13
833
TEA3718-TEA3718S
MAXIMUM POWER DISSIPATION
Ptat
5.0
\
\
(W)
4"0
3"0
1\
\..
1
"" '"
"~
-
2"0
POWERDIP
45°C/W
~
1.0
MULTIWATT WITH
lO°C/W HEATSINK
i\
~1
~
0
o
-
\ roo-
50
100
150
TallluoC
Figure 1.
Motor winding
~
MA
MB
Phase
Vee
----()Il
Rs = 1 0. INDUCTANCE FREE
Rc= 4700.
Cc = 820 pF CERAMIC
Rt= 56 ko.
Ct = 820 pF CERAMIC
GND O----_&;::
P =5000.
R2 = 1 K
I
I
~
4/13
834
TEA3718-TEA3718S
ELECTRICAL CHARACTERISTICS, Vee = 5 V, ± 5 %, V mm = + 10 V to + 45 V,
= 0 °C to + 70°C (unless otherwise specified)
Tamb
Min.
Typ.
Max.
Unit
Icc
Supply Current
-
-
25
mA
VIH
High Level Input Voltage - Logic Inputs
2
-
-
V
Vil
Low Level Input Voltage - Logic Inputs
-
-
0.8
V
IIH
= + 2.4 V)
Low Level Input Current - Logic Inputs (VI = + 0.4 V)
Comparator Threshold Voltage (VR = + 5 V)
10 = 0,1, = 0
10 = 0, 1, = 0
10 = 0, 1, = 1
-
-
20
I-lA
Symbol
III
VCH
VCM
Vel
Parameter
High Level Input Current - Logic Inputs (VI
-
-
mA
390
230
65
420
250
80
440
270
90
mV
- 20
-
20
I-lA
= 1, 1, = 1, Tamb = + 25°C)
Total Saturation Voltage Drop (1m = 1 A)
Powerdip
-
-
100
I-lA
-
-
2.8
Multiwatt
-
-
3.2
Ico
Comparator Input Current
IOff'
Output Leakage Current (10
V sat
-0.4
= 1 A, Is = 30 kHz
= + 10 V, Vton > 5 I-lS)
Turn off Delay (see figure 1 and 2, Tamb = + 25 ac,
V
Ptot
Total Power Dissipation - 1m
-
3.1
3.6
W
toff
Cut off Time (see figure 1 and 2, V mm
25
30
35
I-lS
td
-
Vsat
Iref
V sat
Alarm Output Saturation Voltage - 10
(only CB-501 package)
= 2 mA
(Powerdip)
(Multiwatt)
Vf
Isub
V sat
Diode Forward Voltage
Substrate Leakage Current
Sink Diode Transistor Pair
Saturation Voltage
(Powerdip)
(Multiwatt)
Vf
I-ls
V
-
0.8
-
-
0.4
1
mA
1m = 0.5 A
1m = 1 A
1m - 0.5 A
1m = 1 A
If = 0.5 A
If = 1 A
If = 1 A
-
1.05
1.35
1.1
1.25
-
1.2
1.5
1.3
1.7
1.5
1.7
5
V
1m = 0.5 A
1m = 1 A
1m = 0.5 A
1m = 1 A
If = 0.5 A
If = 1 A
-
1
1.2
1
1.1
1.2
1.3
1.3
1.5
1.4
1.5
Reference Input Current, V R = 5 V
Source Diode Transistor Pair
Saturation Voltage
-
1.6
dVC/dt> 50 mV/I-lS)
Diode Forward Voltage
V
V
mA
V
V
V
5/13
835
TEA3718-TEA3718S
LOWE R Dlom-. VF- VS lOUT and T J
SINK DRIVER VeE sat VS lOUT and Tj
v
v
12
Tj=250C
,
~50C
-:::. b==~=1~OC
0.6
I
-
Tj:::0250C
___ ~V~
L.,...--:b== ~~
......
08
12
L,.....--V ~ ~
~~
0.8
~
It
fj'-;C850C
0.6
i _125 0 C
0.4
04
0.2
0.4
0.6
0.8
02
1A
SOURCE DRIVER VeE sat VS lOUT and Tj
v
1.2
,~
Tj:;'O~
V
08
~
0.6
~~
V
~
~
IiII""
~
Tj;::12SoC
\0
T)=65 C
0.4
0.4
0.8
0.6
1--11---4---+-+- - I - - -
1A
----
08
0.6
,A
V rc t=5V
I----
8
6
--
I-
--
-- I-----I-- I--
I---- I----- - -
~
21---
'"
tvlN comp
5V
1--- - I-----
2
r--...
~
0.25
1A
COMPARATOR INPUT CUHHFNT VS Tj ilnd Vc
I
'""
r"-.
0.4
0.2
'ref VS JUNCTION TEMPERATURE
0.3b
1A
UPPER DIODE Vr- VS IOUTandT j
0.4
0.2
DB
0_6
04
IN c:c_np
4
- f--- 1--f - I---
6
I'"
8
10
0.2
-]5
6/13
836
25
25
75
125
°c
- 75
25
75
125
°c
TEA3718-TEA3718S
FUNCTIONAL BLOCKS
MOTOR
WINDING
SCHMIDT TIME
PHASE
LOGIC 11
INPUTS IO·~---+----il~iI-rr-·1l
GND
VCC
11~
ALARM
---r
RC
Cc
J; 820pF
RS
Note: T1 and R.can be omitted il MOS logic is used.
7/13
837
TEA3718-TEA3718S
Figure 2.
VMAVMBorVMB-VMA
normalized
ton + 'off
Id
-----4t
FUNCTIONAL DESCRIPTION
The circuit is intented to drive a bipolar constant current through one motor winding. The constant current is generated through switch mode regulation.
There is a choice of three different cu rrent levels with
the two logic inputs 10 and h. The current can also
be switched off completely.
INPUT LOGIC
If any of the logic inputs is left open, the circuit will
treat it as a hig h level input.
=rrm~wcc~~~~, c~"","",
I
H
L
L
L
Medium Current
Maximum Current
PHASE - This input determines the direction of current flow in the winding, depending on the motor
connections: The signal is fed through a Schmidttrigger for noise immunity, and through a time delay
in order to guarantee that no short-circuit occurs in
the output stage during phase-shift. High level on
the PHASE input causes the motor current flow from
MA through the winding to MB.
10 and h - The current level in the motor winding is
selected with these inputs. The values of the different current levels are determined by the reference
8/13
838
voltage VR together with the value of the sensing resistor Rs.
CURRENT SENSOR
This part contains a current sensing resistor (Rs), a
low pass filter (Re, Ce) and three comparators. Only one comparator is active at a time. It is activated
by the input logic according to the current level chosen with signals 10 and h. The motor current flows
through the sensing resistor Rs. When the current
has increased so that the voltage across Rs becomes higher than the reference voltage on the
other comparator input, the. comparator output goes
high, which triggers the pulse generator and its output goes high during a fixed pulse time (toft), thus
switching off the power feed to the motor winding,
and causing the motor current to decrease during
toff.
SINGLE-PULSE GENERATOR
The pulse generator is a monostable triggered on
the positive going edge of the comparator output.
The monostable output is high during the pu Ise time,
toff, which is determined by the timing components
Rtand Ct.
toft = 0.69 . Pt Ct
TEA3718-TEA3718S
The single pulse switches off the power feed to the
motor winding, causing the winding current to decrease during toff.
If a new trigger signal should occur during toff, it is
ignored.
Vee, Vmm , VR
The circuit will stand any order of turn-on or turn-off
the supply voltages Vee and Vmm. Normal dV/dt values are then assumed.
OUTPUT STAGE
Preferably, VR should be tracking Vee during poweron and power-off if Vmm is established.
The output stage contains four Darlington transistors and four diodes, connected in an H-bridge. The
two sinking transistors are used to switch the power
supplied to the motor winding, thus driving a
constant current through the winding.
The current levels can be varied continuously if VR
is varied or with a circuit varying the voltage on the
comparator terminal.
ANALOG CONTROL
It should be noted however, that it is not permitted
to short circuit the outputs.
POWER LOSSES Vs OUTPUT CURRENT
P tot
(WI
/
T A == + 25 0 C
4
,J
/
3
,/
2
--
./
/
."
,/"
"",.
o
1.0
0.4
1.2
, ...., SC:;S-THOMSON ________ ._ _ _ _ __ 9/13
'],
1:ii~©IB@rn~rn©m::J@[i;I]~©®
839
TEA3718-TEA3718S
ALARM OUTPUTS (TEA3718)
When an alarm condition occurs part of the Vcc supply voltage (dividing bridge R - Rc) is fed to the comparators input pin.
On alarm condition the comparator input voltage Vc will become higher than Vch, thus switching off the output stage. A circuit may monitor the voltage Vc to detect the action of the thermal protection (fig. A)
For MW package the alarm output goes low if an alarm condition occurs (fig. B).
Figure A : Alarm Detection For Oil Package.
Figure B : Common Detection For Several
Multiwatt Packages.
o
vee
RI7000 typo
J
---r---=:J
--
ALARM
Vc
vee
J
AI ARM
Us
Rs
t/BBTUi3?lB 131
t/U8Tifl3?IU H2
Depending of the RC value, the behaviour of the circuit is different on alarm condition:
1) RC>80n
The output stage is switched off.
2) RC < 60 n (see figures C and D)
The current IMM in the winding is reduced according to the approximate formula:
VTH
Vee
Rc
IMM= - - - - -
Rs
R+Re
.-
Rs
with: VTH = Threshold of the comparator (VeH. VeM or Vel)
R = 700 n (typical).
10/13
840
TEA3718-TEA3718S
Figure C : (typical curve) Current Reduction In
The Motor On Alarm Condition.
Figure D : (Vrel 5V)Block Diagram For Half
Current On Alarm Condition.
I
IIIN
I
Pc
c
e
330
22nF
R5
I
t188TEA3?18- 114
-----~.-
Notes: 1. Resistance values given here are for the
lue.
Vch
---._--------------_.-
threshold. They should be adjusted using other comparators threshold or other Vret va-
---------------------1
PRE-ALARM OUTPUT (TEA3718SSP)
EA3718S
MOTOR
WINDING
Vmm
MA
Vmm
PHASE
LOGIC 11
INPUTS·lo
GND
4.7kf2
Re
Vee
Cc
T B20pF
..::
~
_ _ PRE·ALARM OUTPUT
TEA3718SSP ONLY
RS
2. When changing Rc Cc should be adjusted to keep the same Rc Cc value .
• Pre-alarm output becomes low when junction temperature reaches 81 (81 typ = 170°C).
11/13
841
TEA3718-TEA3718S
TYPICAL APPLICATION
From .. -processor
12/13
842
Stepper motor
.~___~~~_TEA3718- TEA3718S
-I
PRINCIPAL OPERATING SEQUENCE
I Printing sp 'ed with
Stand by with I Halfstep motor drive
holding torque I im~ 500 mA
Im~180mA
lOA
11A
I
I
1.2
3
4
Full step motor drive
5,6,7
8 ___-_-_--'
11....____
Im~lA
,
'--........_______ ~ ___ _
Ph
------_Lr__L..r_L __ _
Ph~-----"T"'::l"""',---r.......
__ u,
I
IOB---~
11B---~
!-I-------
I
I
lA----
fA
-
-n--
Changing phas~ this point gives
Motor current PhaseA
t,,,,,
J
_m_:________
PhaseS
~
o",,,m dow,
-----:
_____
lA __
-
=--~illL _
-
-
_.1-_
lA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
I
_I
APPLICATION NOTES
MOTOR SELECTION
Some stepper motors are not designed for continuous operation at maximum current. As the circuit
drives a constant current through the motor, its temperature might increase exceedingly both at low and
high speed operation.
Also, some stepper motors have such high core
losses that they are not suited for switch mode current regulation.
UNUSED INPUTS
INTERFERENCE
As the circuit operates with switch mode current regulation, interference generation problems might
arise in some applications. A good measure might
then be to decouple the circuit with a 15 nF ceramic
capacitor, located near the package between power
line Vmm and ground.
The ground lead between Rs, Cc and circuit GND
should be kept as short as possible. This applies also to the lead between the sensing resistor Rs and
point S, see FUNCTIONAL BLOCKS.
Unused inputs should be connected to proper voltage
levels in order to get the highest noise immunity.
13/13
843
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TEF3718
TEF3718S
STEPPER MOTOR DRIVER
• HALF AND FULL-STEP MODES
• BIPOLAR DRIVE OF STEPPER MOTOR FOR
MAXIMUM MOTOR PERFORMANCE
• BUILT-IN PROTECTION DIODES
• WIDE RANGE OF CURRENT CONTROL: 5 TO
1500 mA
• WIDE VOLTAGE RANGE: 10 TO 50 V
• DESIGNED FOR UNSTABILIZED MOTOR
SUPPLY VOLTAGE
• CURRENT LEVELS CAN BE SELECTED IN
STEPS OR VARIED CONTINUOUSLY
• THERMAL OVERLOAD PROTECTION
• ALARM OUTPUT' (TEF3718SP) OR PREALARM OUTPUT (TEF3718SSP)
POWERDIP 12 + 2 + 2
ORDER CODE:
TEF3718DP
TEF3718SDP
DESCRIPTION
The TEF3718 and TEF3718S are bipolar monolithic
integrated circuits intended to control and drive the
current in one widing of a bipolar stepper motor. The
circuits consists of an LS-TLL - compatible logic input, a current sensor, a monostable and an output
stage with built-in protection diodes. Two TEF3718
or TEF3718S and a few external components form
a complete control and drive unit for LS-TTL or
microprocessor controlled stepper motor systems.
MULTIWATT 15
ORDER CODE :
TEF3718SP
TEF3718SSP
PIN CONNECTON
TEF3718
1
2
3
4
5
- Vee
1
2
3
4
5
- Ii
- Ph
-10
-C
6 -Vref
7 -ALARM OUT
8 -GND
9 -NC
10-Vmm
ll-T
12-MA
13 - E
14-MB
15-Vmm
September 1988
TEF3718
TEF3718S
TEF3718S
1
J
5
1
•
11
IJ
IS
- Vee
- Ii
- Ph
-10
-C
6 - Vref
7 - PRE-ALARM OUT
8 -GND
9 -NC
10-Vmm
ll-T
12-MA
13-E
14-MB
15-Vmm
MB
Mil.
GND
vmm
GND
GND
II
Ph
'0
1/5
845
TEF3718-TEF3718S
BLOCK DIAGRAM (TEF3718)
Vmm
MA
MB
Vmm
PHASE
I,
10
;::z:;-+--+t4t--1-r--h
C
E
T
CaMP. INPUT
AND ALARM OUT
Al. OUT
TEF
3718 SPONLV
BLOCK DIAGRAM (TEF3718S)
Vmm
MA MB
PHASE
I, ~r--+----~-t~fy-t.
10
GNO
C
2/5
846
T
E
PRE·ALARM OUPUl
TEF3718SSP ONLY
TEF3718-TEF3718S
ABSOLUTE MAXIMUM RATINGS
Symbol
Vcc
VMM
Parameter
Value
II
V
----
~~---
VI
Unit
7
50
Supply Voltage
Input Voltage:
Logic Inputs
Analog Inputs
Reference Input
---
~----
V
6
Vcc
15
Input Current:
Logic Inputs
Analog Inputs
mA
10
10
10
Output Current
± 1.5
A
Ti
Junction Temperature
+ 150
C
Operating Ambient Temperature Range
- 40 to + 85
°C
Storage Temperature Range
- 55 to 150
°C
Value
Unit
POWERDIP
MULTIW
11
°C/W
POWERDIP
MULTIW
45 (*)
40
Toper
T 5tg
THERMAL CHARACTERISTICS
Symbol
RthU ·C )
RthU-a)
Parameter
Maximum Junction-case Thermal Resistance
3
Maximum Junction-ambient Thermal Resistance
n Soldered on a 35 ~m thick 20 cm
2
°C/W
PC board cooper area.
RECOMMENDED OPERATING CONDITIONS
Symbol
Vee
V MM
1m
Tamb
Parameter
Min.
Typ.
Max.
Unit
4.75
10
5
V
-
5.25
45
Output Current
0.020
-
Ambient Temperature
- 40
-
Supply Voltage
tr
Rise Time Logic Inputs
-
tf
Fall Time Logic Inputs
-
-
i
1.2
A
85
°C
2
fls
2
fls
3/5
847
TEF3718-TEF3718S
ELECTRICAL CHARACTERISTICS
± 5 %. V MM = -10 V to + 45 V. Tamb
Vee = 5 V
Symbol
Min.
Icc
Supply Current
V IH
High Level Input Voltage Logic Input
Vil
Low Level Input Voltage Input
IIH
High Level Input Current Logic Input (VI = 2.4 V)
III
Low Level Input Current Logic Input (VI = 0.4 V )
Comparator Treshold Voltage (VR = + 5 V)
Ico
Comparator Input Current
loff
Output Leakage Current (10 1, 11 = 1)
V sat
Total Saturation Voltage Drop (1m = 1 A,)
Ptot
Total Power Dissipation
(1m = 1 A, fs = 30 kHz)
td
Vsat
_Iref
V sat
-------
10=01, =0
10 = 1 1, = 0
10 = 01 , = 1
-
,
Vsat
Vf
4/5
848
230
65
420
250
80
mA
0.7
V
20
~A
440
270
90
mV
~s)
25
20
~A
~A
2.9
3.3
V
3.1
3.6
W
30
35
Alarm Output Saturation Voltage 10 = 2 mA
0.8
Reference Input Current, VR = 5 V
0.4
.. _ - - - _ . -
~A
100
- 20
-----_._-----1--------1---
V
1
mA
mA
1m =0.5 A
1m = 1 A
1.35
1.75
POWERDIP
Im=0.5A
1m = 1 A
1.25
1.55
I
Diode Forward Voltage
If = 0.5 A
If = 1 A
Substrate Leakage Current
If = 1 A
Sink Diode Transistor Pair
MULTIWATT
1m =0.5 A
1m = 1 A
1.35
1.55
POWERDIP
1m = 0.5 A
1m = 1 A
1.25
1.35
If = 0.5 A
If = 1 A
1.5
1.8
Saturation Voltage
Diode Forward Voltage
~s
I1S
MULTIWATT
Vf
Isub
c-f9: -I
1.6
Saturation Voltage
Unit
25
--
Turn off Delay (see figures 1 and 2, T amb =+ 25 'C
dVC/dt,; 50 mV/~s)
Source Diode Transistor Pair
Max.
V
POWERDIP
MULTIWATT
Cult off Time (see figures 1 and 2 V mm = + 10 V, Vton ,; 5
-
Typ.
2
VCH
VCM
VCl
toff
'C (Unless otherwise specified)
= - 40 C to + 85
Characteristics
1.5
1.7
10
TEF3718-TEF3718S
5.0
Ptot
(WI
\
\
4.0
3.0
\
I\..
\
I\..
45°CIW
(POWERDIP)
'10-
""
2.0
I-- ~
-
"\
1.0
f-
MULTIWATT WITH
10°CIW HEATSINK
1\
"\. \
0
o
50
100
N
150
Tamb"C
Figure 2.
Figure 1.
MotOf lNiOOtng
-------.
-
MA
"
MB
VMA-VMB or VUB-VUA
v"..,..
Rs
vee
= 1 n inductance free
Rc=470n
Cc = 820 pF ceramic
GND
Rt =56kn
Ct = 820 pF ceramic
P = 500n
'0
R2
=
r~
1K
:: l--[1------0i
·
5/5
849
TL7700A
Series
SUPPLY VOLTAGE SUPERVISORS
• POWER-ON RESET GENERATOR
• AUTOMATIC RESET GENERATION AFTER
VOLTAGE DROP
• WIDE SUPPLY VOLTAGE RANGE ... 3 V TO
18 V
• PRECISION VOLTAGE SENSOR
• TEMPERATURE-COMPENSATED VOLTAGE
REFERENCE
• TRUE AND COMPLEMENT RESET OUTPUTS
• EXTERNALLY ADJUSTABLE PULSE WIDTH
DESCRIPTION
The TL7700A series are monolithic integrated circuit supply voltage supervisors specifically designed for. use as reset controllers in microcomputer
and microprocessor systems. During power-up the
device tests the supply voltage and keeps the RESET and RESET outputs active (high and low, respectively) as long as the supply voltage has not reached its nominal voltage value. Taking RESIN low
has the same effect. To ensure that the microcomputer system has reset, the TL7700A then initiates
an internal time delay that delays the return of the
reset outputs to their inactive states. Since the time
delay for most microcomputers and microproces-
sors is in the order of several machine cycles, the
device internal time delay is determined by an external time delay is determined by an external capacitor connected to the CT input (pin 3).
td = 1.3 x 104 X CT
Where: CT is in farads (F) and td in seconds (s). In
addition, when the supply voltage drops below the
nominal value, the outputs will be active until the
supply voltage returns to the nominal value. An external capacitor (typically 0.1 flF) must be connected to the REF output (pin 1) to reduce the influence
of fast transients in the supply Voltage.
The TL7700AI series is characterized for operation
from - 25°C to 85°C; the TL7700AC series is characterized from O°C to 70°C.
Plastic Minidip
50-8 J
BLOCK DIAGRAM
Cr
SENSE
7
INPUT
~ ~--r-------4---~----~
'--------------+--------I--'---REf
GNO
!;'-B031
*( See Note A)
TL7702A R1 = OQ, R2= open; TL7705A R1 = 7.8 Kn, R2 = 10 Kn ;TL7709A R1 = 19.7KQ, R2 = 10 Kil ;TL7712A R1 =32.7KQ, R2 = 10 KQ;
TL7715A R1 = 43.4 KQ, R2 = 10 KQ.
September 1988
1/5
851
TL 7700A-Series
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
20
V
Vs
Supply Voltage. Vee (see note 1)
Vi
Input Voltage Range at RESIN
Vi
Input Voltage at SENSE:
10H
High-level Output Current at RESET
- 30
mA
10L
Low-level Output Current at RESET
30
mA
- 25 to 85
o to 70
°C
°C
- 65 to 150
°C
Tamb
T stg
Noles:
TL7702A (see note 2)
TL7705A
TL7709A
TL7712A
TL7715A
Operating Free-air Temperature Range: TL77XXAI
TL77XXAC
Storage Temperature Range
- 0.3 to 20
V
-
V
V
V
V
V
0.3 to 6
0.3 to 10
0.3 to 15
0.3 to 20
0.3 to 20
1. All voltage values are wilt1 respect to lt1e network ground terminal.
2. For lt1e TL7700A. the voltage applied to the SENSE terminal must never exceed Vs.
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Vs
Supply Voltage
V,H
High-level Input Voltage at RESIN
V,L
Low-level Input Voltage at RESIN
Vi
Min.
Max.
Unit
3.6
18
V
2
V
0.6
Voltage at Sense Input
TL7702A
0
TL7705A
0
10
TL7709A
0
15
TL7712A
0
20
TL7715A
0
V
See Note 3
V
20
10H
High-level Output Current at RESET
-16
mA
10L
Low-I.evel Output Current at RESE;T
16
mA
Tamb
Nole :
Operating Free-air Temperature Range
TL77 - AI
- 25
85
°C
70
TL77 - AC
0
3. For proper operanon of the TL7702A. the voltage applied to lt1e SENSE terrmnal should not exceed Vs - 1 V or 6 V. whichever IS
less.
CONNECTION DIAGRAM AND ORDER CODE
Temperature
Range
"\...r-REf
RE51N
8
GND
4
o to 70°C
5EN5E
I NPU"{
2
CT
Commercial
V5
6
RE5ET
&
RE5ET
Industrial
- 40 to 85°C
S 8040
2/5
852
~
~'"
SGS-ntOMSON
Il!lll©l!l@lrnil.£ii"liIlOOlllC$
Plastic
Minidip
SO-8
TL77XXACP
TL77XXACD
TL77XXAIP
TL77XXAID
TL 7700A-Series
THERMAL DATA
Thermal Resistance Junction-ambient
Max.
120
ELECTRICAL CHARACTERISTICS these specifications unless otherwise specified, apply for:
Tamb = - 25 to 85 'C (TLXXAI) ; T amb = 0 to 70 'C (TL77XXAC)
Symbol
Parameter
Test Conditions (1)
VO H
High-level Output Voltage at RESET
VOL
Low-Level Output Voltage at RESET
IOL~16mA
Vret
Reference Voltage
T amb ~ 25 'C
VT
Threshold Voltage at
SENSE Input
VT+,VT-
Hysteresis (2) at SENSE
Input
mA
TL7705A
TL7712A
Threshold Voltage at
SENSE Input
~-16
TL7702A
TL7709A
VT
IOH
Vs ~ 3.6 V to 18 V
T amb ~ 25°C
V
2.53
2.58
2.48
2.53
2.58
4.5
4.55
4.6
7.5
7.6
7.7
10.6
10.8
11.0
13.5
13.8
2.58
TL7705A
4.45
4.55
4.6
TL7709A
7.4
7.6
7.7
TL7712A
10.4
10.8
11.0
TL7715A
13.0
13.5
13.8
~
3.6 V to 18 V
TL7702A
TL7705A
V
15
Vs ~ 3.6 V to 18 V
T amb ~ 25°C
20
mV
35
45
Vi~2.4VtoVs
TL7702A
V
10
VI
~
20
- 100
0.4 V
Vee! < V, < Vs -1.5 V
IOH
High-level Output Current at RESET
Vo
~
18 V
IOL
Low-level Output Current at RESET
Vo
~
0V
Supply Current
All Inputs and out. open
Is
V
2.48
2.53
TL7715A
Notes:
V
13.2
Vs
Unit
0.4
2.45
Input Current at RESIN Input
Input Current at SENSE
Input
Max.
TL7715A
TL7712A
II
Typ.
TL7702A
TL7709A
II
Min.
Vs-l.5
0.5
2
IlA
50
- 50
1.8
3.3
mA
1. All characteristics are measured with C = 0.1 ~F from Pin 1 to GND, and with C = 0.1 ~F from Pin 3 to GND.
2. Hysteresis is the difference between the positive going input threshold Voltage. VT" and the negative going input threshold voltage,
VT_.
3/5
853
TL 7700A-Series
SWITCHING CHARACTERISTICS
Symbol
Parameter
Test Conditions
Min.
Vih = Vityp + 0.04 x Vi
ViL = Vityp - 0.04 x Vi
0.9
Pulse Width at Output
CI =0.1 IlF
0.65
tpdHL
Propagation Delay Time from RESIN
to RESET
tr/l
Rise/Falitime at RESET and RESET
tpi
Pulse Width at SENSE Input
tpi
Pulse Width at RESIN Input
tpo
Typ.
0.4
2.6
Ils
ms
CL=100pF Vs =5 V
RL =4.7 KQ
1
Ils
CL=10pF
RL =4.7 KQ
1
Ils
1.3
Vs=5 V
+ 5V
0----.._---,
22Kll.
Vs
SENSE
2 RESIN
SENSE
RESET
1-"----,p--<~---'2'-iRESIN
TL7712
RESET
SYSTEM
RESET
Tl7705
O.1,.,F
OV
SENSE
RESIN
RESET~5~----J
Tl7712
-12V o----<~----<~----'
4/5
854
Unit
Ils
Figure 1 : Multiple Power Supply System Reset Generation.
+12V
Max.
Gi
SGS-ntOMSON
~I iIIilD!:Dl©~I!.I
+
+
u
u
>
E88TS271-03
3/10
859
TS271
OFFSET VOLTAGE NULL CIRCUIT
RESISTOR BIASING
\Icc
25kl!
Vee
E88TS27H)4
E88TS271·05
OFFSET COMPENSATION GUARANTEED FOR
TS271 SCX (Iset > 25 flA), TS271 ACX (Iset > 90 flA)
Rset CONNECTED
TO GROUND
RsetCONNECTED TO Vcc(Rset VALUE: SEE FIG. 1)
Figure 1 : Rset Connected to Vee.
1\
10MU
I'
"I~
lMH
vce.· = 5V
VCC-: - 5V
"
"-
I\.
,
lOOkU
"-
~
lOkU
O.lpA
lpA
lOpA
1DOW'
E88TS271·06
4/10
860
TS271
ELECTRICAL CHARACTERISTICS
Tamb = 25 °C, Vee = 10 V, Iset = 1.51JA (unless otherwise specified)
RL Connected to Vee Symbol
Via
Parameter
Min.
TS271C
Typ.
Max.
Input Offset Voltage
Vo=1.4V
TS271
T min < T < T max
TS271A
TS271B
T min < T < T max
VIO
1'0
Ib
VDH
AVd
G wr
CMR
SVR
Icc
Is
Is
(Sink)
Svo
om
Kov
Vn
Temperature Coefficient of Input Voltage
Input Offset Current
Vi =5 V, Va = 5 V
T min < T < T max
Input Bias Current
V, =5 V, Va = 5 V
T min < T < T max
High Output Voltage (note 1)
Vi = 10 mV
RL = 1 mQ
T min < T < T max
Large Signal Voltage Gain
Va = 1 V to 6 V
Vi =5 V
RL = 1 mQ
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
RL = 1 MQ
CL =100pF
fin = 10 KHz
Common-mode Rejection Ratio
Vo=1.4V
Vi = 1 V to 7.4 V
Supply Voltage Rejection Ratio
Vcc = 5 V to 10 V
Vo=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Va = 5 V, Vi = 5 V
T min < T < T max
Output Current
Vi=10mV,Vo=OV
Output Current
Vi =-10 mY, Va =Vcc
Slew Rate at Unity Gain
Phase Margin at Unity Gain
Av = 40 dB
RL = 1 MQ
CL = 10 pF
CL =100pF
Overshoot Factor
CL = 10 pF
CL=100pF
Input Equivalent Noise Voltage
F = 1 KHz
Rs = 10 Q
Unit
mV
10
12
5
6.5
2
3.5
T min < T < T max
a
TS2711, TS271 M
Min.
Typ.
Max.
10
12
5
6.5
2
3.5
0.7
0.7
f.tV/°C
pA
1
1
100
200
pA
1
1
150
300
V
8.8
8.8
9
8.7
9
8.6
V/mV
30
30
100
100
20
20
MHz
0.1
0.1
dB
60
80
60
80
60
80
60
80
dB
10
15
10
17
15
!-LA
18
mA
45
60
85
45
60
85
35
45
0.04
65
35
45
0.04
65
mA
35
10
35
10
40
70
70
40
70
70
V/llS
Degrees
%
nV/..JHz
Note: 1. Low output voltage is less than 50mV.
5/10
861
TS271
ELECTRICAL CHARACTERISTICS
Tamb = 25°C, Vee = 10 V, Iset = 25
RL Connected to Vee Symbol
V,O
a V,O
liO
Ib
VOH
AVd
J.IA (unless otherwise specified)
Parameter
Input Offset Voltage
Vo=1.4V
TS271
T min < T < T max
TS271A
T min < T < T max
TS271B
T min < T < T max
Temperature Coefficient of Input Voltage
Input Offset Current
Vi =5 V, Vo = 5 V
T min < T < T max
Input Bias Current
Vi =5 V, Vo =5 V
T min < T < T max
High Output Voltage (note 1)
Vi = 10 mV
RL = 100KQ
T min < T < T max
Large Signal Voltage Gain
Vo = 1 V to 6 V
Vi = 5 V
RL = 100 KQ
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
RL=100KQ
CL = 100 pF
fin = 100 KHz
Common-mode Rejection Ratio
CMR
Vo=1.4V
Vi = 1 V to 7.4 V
SVR
Supply Voltage Rejection Ratio
Vcc = 5 V to 10 V
Vo=1.4V
Supply Current (per amplifier)
Icc
Av = 1, no Load
Vo = 5 V , Vi =5 V
T min < T < T max
Output Current
Is
V i =10mV,V o =OV
Output Current
Is
(Sink)
Vi =-10 mV, Vo =Vcc
Slew Rate at Unity Gain
Svo
Phase Margin at Unity Gain
om
Av = 40 dB
RL = 100 KQ
C L = 10 pF
CL = 100pF
Overshoot Factor
Kov
CL = 10 pF
CL = 100 pF
Input Equivalent Noise Voltage
Vn
F = 1 KHz
Rs =10 Q
Note: 1. Low output voltage is less than 50mV.
Min.
TS271C
Max.
Typ.
TS2711, TS271 M
Min.
Typ.
Max.
mV
10
12
5
6.5
2
3.5
10
12
5
6.5
2
3.5
flV/oC
pA
2
2
1
1
100
200
pA
1
1
150
300
V
8.7
8.7
8.9
8.9
8.5
8.6
V/mV
30
50
30
20
50
10
MHz
G wc
6/10
862
Unit
0.7
0.7
dB
60
80
60
80
60
80
60
80
dB
flA
150
200
150
250
200
300
mA
45
60
85
45
60
85
35
45
0.6
65
35
45
0.6
65
mA
50
30
50
30
30
50
38
30
50
38
V/flS
Degrees
%
nVdHz
TS271
ELECTRICAL CHARACTERISTICS
Tamb = 25°C, Vcc = 10 V, Iset = 130
J..lA (unless otherwise specified)
RL Connected to Vcc Symbol
Vio
Parameter
Input Offset Voltage
Vo=1.4V
TS271
T min < T < T max
TS271A
T min < < T max
TS271B
T min < T < T max
Temperature Coefficient of Input Voltage
Input Offset Current
Vi =5 V, Vo = 5 V
T min < T < T max
Input Bias Current
Vi =5 V, Vo = 5 V
T min < T < T max
High Output Voltage (note 1)
V, = 10 mV
RL = 10 KQ
T min < T < T max
Large Signal Voltage Gain
Vo = 1 V to 6 V
Vi =5 V
RL = 10 KQ
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
RL = 10 KQ
C L =100pF
fin = 200 KHz
Common·mode Rejection Ratio
Vo=1.4V
Vi = 1 V to 7.4 V
Supply Voltage Rejection Ratio
Vcc=5Vt010V
Vo=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Vo = 5 V , Vi =5 V
T min < T < T max
Output Current
V, = 10 mY, Vo = 0 V
Min.
TS271 C
Typ.
Max.
VIO
lio
Ib
VOH
AVd
G wr
CMR
SVR
Icc
Is
Is
(Sink)
Svo
0m
Kav
Vn
Output Current
Vi =. 10 mY, Vo =Vcc
Slew Rate at Unity Gain
Phase Margin at Unity Gain
Av = 40 dB
RL = 10 KQ
C L = 10 pF
C L = 100 pF
Overshoot Factor
C L = 10 pF
C L = 100 pF
Input Equivalent Noise Voltage
F =1 KHz
Rs = 10 Q
Unit
mV
10
12
5
6.5
2
3.5
1
a
TS2711, TS271 M
Min.
Typ.
Max.
10
12
5
6.5
2
3.5
5
5
1
1
IlV/ o C
pA
100
200
pA
1
1
150
300
V
8.2
8.4
8.2
8.1
8.4
8
V/mV
10
10
15
7
15
6
MHz
2.3
2.3
dB
60
80
60
80
60
70
60
70
dB
800
1300
800
1400
1300
IlA
1500
mA
45
60
85
45
60
85
35
45
4.5
65
35
45
4.5
65
mA
56
56
56
56
30
30
30
30
30
30
V/IlS
Degrees
%
nV/.JHz
Note: 1. Low output voltage is less than 50mV.
7/10
863
TS271
GAIN (dB)
sot--_
Ise! = 130 f.lA
10K
OPEN LOOP FREQUENCY RESPONSE AND PHASlo SHIFT
VCC±5V,RL=10K!l,CL=I00pF, Tamb~ 25°C
E88TS271-07
PHASE
GAIN IdB)
o
so
45
r-.
r-- r-.
40
30
""--- r-.
20
Ise! = 25 f.lA
90
.......
10
135
lBO
i'..
"
o
-10
-20
FREQUENCY (Hz)
lK
lOOK
10K
1M
OPEN LOOP FREQUENCY RESPONSE AND PHASE SHIFT
VCC ± 5 V, RL = 100
GAIN (dB)
40
~
30
= 1.5 f.lA
E88TS271-08
PHASE
I
so J-.....
Ise!
Kll, Cl = 100 pF. Tamb = 25°C
45
r--1-,...
90
"""" r-.
J-......
20
o
10
o
135
180
'"
"'-"
-10
i
-20
lK
10K
"- I'
lOOK
(
r-
"
FREQUENCY (Hz)
1M
OPEN lOOP FREQUENCY RESPONSE AND PHASE SHIFT
VCC ± 5 V, Rl = 1 Mu' Cl ~ 100 pF, T am b=250C
8/10
864
E88TS271-QS
T8271
ORDER CODES
Part Number
TS271C
TS271AC
TS271BC
TS2711
TS271M
TS271AI
TS271AM
TS271 BI
TS271 BM
Temperature
Range °C
Package
N
D
•
•
o to
o to
o to
-
40
55
40
55
40
55
+ 70
+ 70
+ 70
to + 105
to + 125
to + 105
to + 125
to + 105
to + 125
•
•
•
•
•
•
•
•
•
•
J
•
•
•
Examples: TS271 ACN, TS271 CD
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP OR CERDIP
O.51mm
~
'-----r-----Llf
_t
\-i
(1) Nominal dimension
(2) True geometrical position
8
pins
9/10
865
TS271
PACKAGE MECHANICAL DATA (continued)
8 PINS - PLASTIC MICROPACKAGE SO
0,185
0,265
1,75 max..
8 Outputs
10/10
866
TS272
TS27M2/TS27L2
CMOS DUAL OPERATIONAL AMPLIFIERS
• EXCELLENT PHASE MARGIN ON CAPACITANCELOADS
• SYMMETRICAL OUTPUT CURRENTS
• HIGH GAIN BANDWIDTH PRODUCT FOR
TS272
• LOW OUTPUT DYNAMIC IMPEDANCE
N
DIP8
(Plastic package)
• THE TRANSFER FUNCTION IS LINEAR
• PIN COMPATIBLE TO STANDARD DUAL OPERATIONAL AMPLIFIERS (TL082 - LM358)
J
CERDIP8
(Cerdip package)
• STABLE AND LOW OFFSET VOLTAGE
• INTERNAL ELECTROSTATIC DISCHARGE
(ESD) PROTECTION CIRCUITS
• THREE INPUT OFFSET VOLTAGE SELECTIONS : STANDARD (10 mV), A (5 mV),
B(2mV)
D
508
(Plastic micropackage)
(Order Codes at the end of the Data sheet)
DESCRIPTION
The TS272 series are low cost, low power dual operational amplifiers designed to operate with single
or dual supplies. These operational amplifiers use
the SGS THOMSON Microelectronics silicon gate
I,.IN MOS process giving them an excellent
consumption speed ratio. These series are ideally
suited for low consumption applications.
Three power consumptions are available allowing
to have always the best consumption-speed ratio.
• Icc = 10 f.LA per amplifier: TS27L2 (Low bias versions)
• Icc = 150 f.LA per amplifier: TS27M2 (Medium
bias versions)
• Icc = 1 rnA per amplifier: TS272 (High bias versions)
The input impedance is similar to the J-FET input
impedance. Very high input impedance and extremely low input offset and bias currents. They allow
to minimize the static errors in low impedance applications.
November 1988
PIN CONNECTIONS (top view)
8
2
7
3
6
4
5
E88TS272·01
12345678-
Output 1
Inverting input 1
Non-inverting input 1
VccNon-inverting input 2
Inverting input 2
Output 2
Vce+
1/10
867
TS2721TS27M2/TS27 L2
BLOCK DIAGRAM
Vee +
source
xl
InPut
differential
<;tage
Output
E88TS272-02
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Vee
Supply Voltage (note 1)
Vid
Differential Input Voltage (note 2)
Vi
Input Voltage (note 3)
Toper
Unit
12
V
±12
V
- 0.3 to 12
Operating Free-air Temperature
V
°C
TS272C
TS2721
TS272M
TS27M2C
TS27M21
TS27M2M
TS27L2C
TS27L21
TS27L2M
T. 'g
Value
o to 70
-40t0105
-5510125
01070
- 4010105
-5510125
o to 70
- 40to 105
- 55 to 125
- 65 to 150
Storage Temperalure
ac
Notes: 1. All voltage values, except differential voltages, are wtth respect to network ground terminal.
2. Differential voltages are at the non-inverting input terminal respect to the terminal.
3. The magnttude of the input voltage must never exceed the magnitude of the positive supply voltage.
OPTIMAL OPERATING CONDITIONS
Symbol
Vee
Vi
Value
Unit
Supply Voltage (note 1)
Parameter
4 to 10
V
Common Mode Input Vollage Vee = 10 V
0109
V
------------- L", ~~~;~:r~~'=
2110
868
TS272/TS27M2/TS27L2
SCHEMATIC DIAGRAM (For 1/2 TS27x2)
......
co
l-
I-
~
+
l!
u
+
u
u
>
.....
'"
l-
OJ
'"
t-
I~
.!:
ES8TS272-03
3110
869
TS272/TS27M2/TS27l2
ELECTRICAL CHARACTERISTICS FOR TS272
Tamb = 25 °C, Vee = 10 V (unless otherwise specified)
RL Connected to Vee Symbol
Vio
a Vio
lio
lIB
VDH
AVd
G wr
CMR
SVR
Icc
Is
Is
(sink)
Svo
om
Kov
Vn
Vo 1 N 02
Parameter
Input Offset Voltage
Vo=1.4V
TS272
T min < T < T max
TS272A
T min < T < T max
TS272B
T min < T < T max
Temperature Coefficient of Input Voltage
Input Offset Current
Vi =5 V, Vo = 5 V
T min< T < T max
Input Bias Current
Vi =5 V, Vo = 5 V
T min < T < T max
High Output Voltage (note 1)
Vi = 10 mV
RL = 10 kQ
T min < T < T max
Large Signal Voltage Gain
Vo = 1 V to 6 V
Vi =5 V
RL = 10 KQ
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
RL = 10 kQ
CL = 100 pF
Fin = 200 KHz
Common Mode Rejection Ratio
Vo=1.4V
V i = 1 V to 7.4 V
Supply Voltage Rejection Ratio
Vec =5 Vto 10 V
Vo=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Va =5 V
T min < T < T max
Output Current
Vi = 10 mV, Va =0 V
Output Current
Vi =- 10 mV, Va = Vce
Slew Rate at Unity Gain
Phase Margin at Unity Gain
Av = 40dB
RL = 10 kQ
CL = 100 pF
Overshoot Factor
Input Equivalent Noise Voltage
f = 1 KHz
Rs = 10 Q
Cross Talk Attenuation
Note: 1. Low ou1pu1 voltage is less than 50mV.
4/10
870
Min.
TS272C
Typ.
Max.
TS2721/TS272M
Min.
Typ.
Max.
Unit
mV
10
12
5
6.5
2
3.5
10
12
5
6.5
2
3.5
flV /o C
5
5
1
0.2
pA
nA
0.3
pA
nA
1
0.1
1
1
0.15
V
8.2
8.4
8.2
8.1
8.4
8
V/mV
10
15
10
15
6
7
MHz
3.5
65
60
3.5
80
65
80
dB
70
60
70
dB
1000
1500
1000
1600
1500
flA
1700
mA
45
60
85
45
60
85
35
45
5.5
65
35
45
5.5
65
mA
V/flS
Degrees
45
45
30
30
30
30
nV/..JHz
120
120
dB
%
TS272/TS27M2/TS27L2
ELECTRICAL CHARACTERISTICS FOR TS27M2
Tamb = 25 DC, VCC = 10 V (unless otherwise specified)
RL Connected to Vcc Symbol
Via
0'.
Via
liD
118
V OH
AVd
G wr
CMR
SVR
Icc
Is
Is
(sink)
Sva
em
Kov
Vn
Vo 1 No 2
Parameter
Input Offset Voltage
Va=1.4V
TS27M2
T min- < T < T max
TS27M2A
T min < T < T max
TS27M2B
T min < T < T max
Temperature Coefficient of Input Voltage
Input Offset Current
Vi =5 V, Va = 5 V
T min < T < T max
Input Bias Current
Vi =5 V, Va = 5 V
T min < T < T max
High Output Voltage (note 1)
Vi = 10 mV
RL = 100 kn
T min < T < T max
Large Signal Voltage Gain
Va = 1 V to 6 V
RL = 100 kn
Vi =5 V
T min < T < T max
Gain Bandwidth Product
Av= 40dB
RL = 100 kn
CL=100pF
Fin = 100 KHz
Common-mode Rejection Ratio
Va=1.4V
Vi = 1 V to 7.4 V
Supply Voltage Rejection Ratio
Vcc=5Vt010V
Va=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Va = 5 V
T min < T < T max
Output Current
Vi = 10 mV, Va = 0 V
Output Current
Vi = - 10 mV, Va = V cc
Slew Rate at Unity Gain
Phase Margin at Unity Gain
Av = 40 dB
RL =100kn
CL = 100 pF
Overshoot Factor
Input Equivalent Noise Voltage
f = 1 KHz
Rs = 10 n
Cross Talk Attenuation
Min.
TS27M2C
Typ.
Max.
TS27M21/TS27M2M
Min.
Typ.
Max.
Unit
mV
10
12
5
6.5
2
3.5
10
12
5
6.5
2
3.5
2
2
1
I1V/ C
D
0.2
pA
nA
0.3
pA
nA
1
0.1
1
1
0.15
V
8.7
8.9
8.7
8.9
8.5
8.6
V/mV
30
50
30
50
10
20
MHz
1
1
65
80
65
80
dB
60
80
60
80
dB
150
200
150
250
200
I1A
300
mA
45
60
85
45
60
85
35
45
0.6
65
35
45
0.6
65
mA
V/I1S
Degrees
45
45
30
38
30
38
nVf\lHz
120
120
dB
%
Note: 1. Low outpul voltage is less than 50mV.
5/10
871
TS272/TS27M2ITS27l2
ELECTRICAL CHARACTERISTICS FOR TS27L2
Tamb = 25 DC, VCC = 10 V (unless otherwise specified)
RL Connected to V cc -
Symbol
Via
Parameter
Min.
TS27L2C
Typ.
Max.
lio
5
6.5
2
3.5
Temperature Coefficient of Input
Voltage
Input Offset Current
Vi =5 V, Vo = 5 V
2
3.5
0.7
1
0.1
0.2
1
1
0.3
0.15
T min < T < T max
!lV/DC
0.7
1
Input Bias Current
Vi = 5 V, Vo = 5 V
High Output Voltage (note 1)
Vi = 10 mV
RL = 1 MQ
T min < T < T max
Large Signal Voltage Gain
AVd
Vo = 1 V to 6 V
RL = 1 MQ
Vi =5 V
T min < T < T max
Gain Bandwidth Product
G wr
Av = 40 dB
1 MQ
RL =
CL = 100 pF
Fin = 100 KHz
CMR
Common Mode Rejection Ratio
Vo=1.4V
Vi = 1 V to 7.4 V
SVR
Supply Voltage Rejection Ratio
Vcc =5 Vto 10 V
Vo=1.4V
Supply Current (per amplifier)
Icc
Av = 1, no Load
Vo = 5 V
T min < T < T max
Output Current
Is
Vi=10mV,Vo =OV
Output Current
Is
(Sink)
Vi =-10 mV, Vo =Vcc
Slew Rate at Unity Gain
Svo
0m
Phase Margin at Unity Gain
Av = 40dB
'. RL =
1 MQ
C L = 100 pF
Overshoot Factor
Kov
Input Equivalent Noise Voltage
Vn
f = 1 KHz
Rs = 10 Q
V0 1 /V02 Cross Talk Attenuation
10
12
5
6.5
10
12
T min < T < T max
118
VDH
Note: 1. Low output voltage is less than 50mV.
6/10
872
Unit
mV
Input Offset Voltage
Vo=1.4V
TS27L2
T min < T < T max
TS27L2A
T min < T < T max
TS27L2B
T min < T < T max
a Vio
TS27L21ITS27L2M
Min.
Typ.
Max.
8.8
8.8
9
8.7
pA
nA
pA
nA
V
9
8.6
V/mV
60
100
60
45
100
40
MHz
0.1
0.1
65
80
65
80
dB
60
80
60
80
dB
10
15
10
15
IlA
18
17
mA
45
60
85
45
60
85
35
45
0.04
65
35
45
0.04
65
mA
V/!lS
Degrees
45
45
30
70
30
70
nV/~Hz
120
120
dB
%
TS272/TS27M2/TS27L2
ICC (IIA)
I
I
I
HIGH-BIAS VERSIONS
1000
,"r
I
-----
I
MEDIUM-BIAS VERSIONS
--
.'
100
LOW-BIAS VERSIONS
·10
/'-
-
-_ ..- ...-
10
12
14
SUPPLY CURRENT vs FREE-AIR TEMPERATURE
Vo = V,e = 0.2 Vee, T amb= 25 "C, NO LOAD
16
EB8TS272-04
ICC (IIA)
I I
I
HIGH-BIAS VERSIONS
j
1000
I I I
MEDIUM-BIAS VERSIONS
100
LOW-BIAS VERSIONS
10
,.
-50
-25
25
50
75
100
125
SUPPLY CURRENT vs FREE-AIR TEMPERATURE
Vcc= 10V, V'c =5 V, Vo= 5 V, NO LOAD
E88TS272-05
7/10
873
TS272/TS27M2/TS27 L2
GAIN(IIBI
100
T"
PHASE
r"-r-.
eo
60
1
I
'j [[[[1"[ , !!!!!!!!
,.
,
~~HASE SHIFT 'tltl scale)
r"-r-.
GAIN Uellscalel
40
45
!'.~
90
!'."
TS272
135
'1'
t-
180
20
10
100
1.000
10.000
100.000
1.000.000
10.000.000
FREQUENCY 1Hz!
OPEN LOOP FREOUENCY RESPONSE AND PHASE SHIFT
E88T8272·06
Vee = 10V, RL;;; 10kn£L= 100pF. T.m&= 25°C
GAIN(dBI
100
~
ilASl
"
r-.
80
~~
1""-
'''
60
GAIN IIlJltsee
','I ..... r-.
f-
TS27M2
111111 111111111 II
PIiASt SHIf ;'t'r'JYhlllCilllt:'
'"
90
f'
20
135
18.
10
100
1.000
10.000
100.000
1.000.000
Fft£QUENCY IH.lI
OPEN LOOP FREQUENCY RESPONSE AND PHASE SHIFT
Vee =1DV, RL "'DDkn,eL = 100pF, Tamb
=:!!i·e
E88T8272-1J7
GAIN IdB)
PHASE
1'1'
80
60
11111
I~
,
GAIN
Iteftsc~11J1
40
TS27L2
1111mlii
111"(ugh J(:alel
1"'- ... !""PHASE SHIFT
45
' 'r-.
1'"
20
f'
135
18.
20
I.
TOO
1.000
10.000
.100.000
FREQUENCY (Hz I
OPEN LOOP FREOUENCY RESPONSE AND PHASE SHIFT
Vee =10V. RL = 1MD.CL =100pF. T.mb= 25°C
8/10
874
E88TS272-08
TS272/TS27M2/TS27L2
ORDER CODES
Part Number
TS272C
TS272AC
TS272BC
TS2721
TS272M
TS27M2C
TS27M2AC
TS27M2BC
TS27M21
TS27M2M
TS27L2C
TS27L2AC
TS27L2BC
TS27M21
TS27L2M
TS272AI
TS272BI
TS272AM
TS272BM
TS27M2AI
TS27M2BI
TS27L2AI
TS27L2BI
TS27M2AM
TS27M2BM
TS27L2AM
TS27L2BM
Temperature
Range °C
o to 70
o to 70
o to 70
- 40 to 105
- 55 to 125
o to 70
o to 70
o to 70
- 40 to 105
- 55 to 125
o to 70
o to 70
o to 70
- 40 to 105
- 55 to 125
- 40 to 105
-40t0105
- 55 to 125
- 55 to 125
- 40 to 105
- 40 to 105
- 40 to 105
- 40 to 105
- 55 to 125
- 55 to 125
- 55 to 125
- 55 to 125
Package
N
•
•
•
•
•
•
•
•
•
•
•
•
•
0
J
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Examples : TS27L2ACN, TS272CD
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP OR CERDIP
(11 Nominal dimension
(2) True geometrical position
8 pins
9/10
875
TS272/TS27M2/TS27L2
PACKAGE MECHANICAL DATA (continued)
8 PINS - PLASTIC MICROPACKAGE SO
.-1.27
o
_I
0.185
0.265
e
0.35
0.45
tum
1.75 mall.
8 Outputs
10/10
-------------
876
~
SCiS ......_ ....
·"/Ililo©oo~~
TS274
TS27M4/TS27L4
CMOS QUAD OPERATIONAL AMPLIFIERS
• EXCELLENT PHASE MARGIN ON CAPACITIVE LOADS
• -SYMMETRICAL OUTPUT CURRENTS
• HIGH GAIN BANDWIDTH PRODUCT FOR
TS274
• LOW OUTPUT DYNAMIC IMPEDANCE
N
• THE TRANSFER FUNCTION IS LINEAR
DIP14
(Plastic Package)
• PIN COMPATIBLE TO STANDARD QUAD
OPERATIONAL AMPLIFIERS (TL084-LM324)
J
CERDIP14
• STABLE AND LOW OFFSET VOLTAGE
(Cerdip Package)
• INTERNAL E1.ECTROSTATIC DISCHARGE
(ESD) PROTECTION CIRCUITS
• THREE INPUT OFFSET VOLTAGE SELECTIONS: STANDARD (10 mV), A (5 mV),
B(2mV)
D
5014
(Plastic Micropackage)
(Order Codes at the end of the datasheet)
PIN CONNECTIONS (top view)
DESCRIPTION.
The TS274 series are low cost, low power quad operational amplifiers designed to operate with single
or dual supplies. These operational amplifiers use
the SGS-THOMSON Microelectronics silicon gate
LIN MOS process giving them an excellent
consumption-speed ratio_ These series are ideally
suited for low consumption applications.
Three power consumptions are available allowing
to have always the best consumption-speed ratio.
• Icc = 10 ~ per amplifier: TS27L4 (Low bias
versions)
• Icc = 15011A per amplifier: TS27M4 (Medium
bias versions)
• Icc = 1 rnA per amplifier: TS274 (High bias ver~ions)
The input impedance is similar to the J-FET input
impedance: very high input inpedance and extremely low input offset and bias currents. They allow
to minimize the static errors in low impedance applications.
November 1988
14
2
13
3
12
4
11
5
10
6
9
7
8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
-
Output 1
E88TS274-01
Inverting input 1
Non-inverting input t
Vce+
Nan-inverting input 2
Inverting. input 2
Output2
Output 3
Inverting input 3
Non-inverting input 3
VccNon-inverting input 4
Inverting input 4
Output 4
1/10
an
TS27 4/TS27M4/TS27 L4
BLOCK DIAGRAM
E88TS272-02
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Vee
Supply Voltage (note 1)
Vid
Differential Input Voltage (note 2)
Vi
Input Voltage (note 3)
Toper
T stg
2.
3.
Unit
12
V
± 12
V
- 0.3 to 12
Operating Free-air Temperature
V
°C
TS274C
TS2741
TS274M
TS27M4C
TS27M41
TS27M4M
TS27L4C
TS27L41
TS27L4M
Noles: 1.
Value
Storage Temperature
o to 70
-40tol05
- 55 to 125
o to 70
-40tol05
-55to125
o to 70
-40tol05
- 55 to 125
-65to150
OC
All voltage values, except differential voltages, are with respect to network ground terminal.
Differential voltages are at the noninverting input terminal with respect to the input terminal.
The magnitude of the input voltage must never exceed the magnitude of the positive supply voltage.
OPTIMAL OPERATING CONDITIONS
Symbol
. Vee
Vi
2/10
878
Parameter
Supply Voltage (note 1)
Common Mode Input Voltage Vee
=
10 V
Value
Unit
4 to 10
V
o to 9
V
TS274/TS27M4/TS27L4
I
SCHEMATIC DIAGRAM (for 1/4 T527 x 4)
I
L
I
to
"-
f--
f--
~
r
+
u
+
u
u
>
"-
00
N
f--
N
t-
I~
"'
E88TS272-Q3
3/10
879
TS274/TS27M4/TS27l4
ELECTRICAL CHARACTERISTICS FOR TS274
Tamb = 25 ac, Vee = 10 V (unless otherwise specified)
RL Connected to Vee Symbol
Vio
ex Vio
lio
Ib
VOH
AVd
G wr
CMR
SVR
Icc
Is
Is
(Sink)
Svo
0m
Kov
Vn
V0 1 iV 0 2
Parameter
880
TS274C
Typ.
Max.
TS2741/TS274M
Min.
Typ.
Max.
I~ut Offset Voltage
§=1.4V
T 274
T min < T < T max
TS274A
T min < T < T max
TS274B
T min < T < T max
Temperature Coefficient of Input
Voltage
l'lfut Offset Current
i = 5 V , Vo = 5 V
T min < T < T max
I~ut Bias Current
i=5V, Vo=5V
T min < T < T max
H~h Output Voltage (note 1)
i = 10 mV
RL = 10 kQ
T min < T < T max
Large Signal Voltage Gain
Va = 1 V to 6 V
R L =10kQ
Vi =5 V
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
RL=10kQ
CL = 100 pF
fin = 200 KHz
Common Mode Rejection Ratio
Vo=1.4V
V i = 1 V to 7.4 V
Supply Voltage Rejection Ratio
V cc = 5 V to 10 V
Va=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Vo = 5 V
T min < T < T max
Output Current
V i =10mV,V a =OV
Output Current
Vi = - 10 mV, Va = Vcc
Slew Rate at Unity Gain
Phase Mar~in at Unity Gain
Av = 40 d
R L =10kQ
CL = 100 pF
Overshoot Factor
Input E~ivalent Noise Voltage
f =1 K z
Rs = 10 Q
Cross Talk Attenuation
Note: 1. Low output voltage is less than 50mV.
4/10
Min.
Unit
mV
10
12
5
6.5
2
3.5
10
12
5
6.5
2
3.5
5
1
1
0.1
0.2
1
1
0.15
8.2
0.3
8.2
8.4
pA
nA
pA
nA
V
8.4
8
8.1
10
~V/oC
5
V/mV
15
10
15
6
7
MHz
3.5
3.5
65
80
65
80
dB
60
70
60
70
dB
1000
1500
1000
1600
1500
~
1700
mA
45
60
85
45
60
85
35
45
5.5
65
35
45
5.5
65
mA
V/~S
Degrees
45
45
30
30
30
30
nV/..JHZ
120
120
dB
%
TS274/TS27M4ITS27L4
ELECTRICAL CHARACTERISTICS FOR TS27M4
Tamb = 25 ac, Vee = 10 V (unless otherwise specified)
RL Connected to Vee Symbol
Vio
Parameter
Min.
TS27M4C
Typ.
Max.
I~ut
10
12
5
6.5
2
3.5
TS27M4A
T min < T < T max
TS27M4B
T min < T < T max
lio
Temperature Coefficient of Input
Voltage
l'\rut Offset Current
i=5V, Vo=5V
AVd
G wr
CMR
SVR
Icc
Is
Bias Current
i=5V, Vo=5V
HJ:h Output Voltage (note 1)
i = 10 mV
RL = 100 kQ
T min < T < T max
Large Signal Voltage Gain
Va = 1 V to 6 V
RL=100kQ
Vi =5 V
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
RL = 100 kQ
CL = 100 pF
fin = 100 KHz
Common Mode Rejection Ratio
Vo=1.4V
Vi = 1 V to 7.4 V
Supply Voltage Rejection Ratio
Vee = 5 V to 10 V
Vo=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Vo = 5 V
T min < T < T max
Output Current
Vi=10mV,V o =OV
Output Current
Vi =- 10 mY, Vo =Vcc
Sv 0
om
Slew Rate at Unity Gain
Phase Mar~in at Unity Gain
Av = 40 d
RL = 100 kQ
CL = 100 pF
Overshoot Factor
Input Equivalent Noise Voltage
f = 1 KHz
Rs = 10 Q
Cross Talk Attenuation
V01 N 02
1
0.1
0.2
I~ut
Is
(Sink)
Kov
Vn
Jlvrc
2
1
1
1
0.15
T min < T < T max
V OH
10
12
5
6.5
2
3.5
2
T min < T < T max
Ib
Unit
mV
Offset Voltage
= 1.4 V
TS27M4
T min < T < T max
a Vio
TS27M41/TS27M4M
Min.
Max.
Typ.
8.7
8.9
0.3
8.7
8.6
pA
nA
pA
nA
V
8.9
8.5
Vim V
30
50
30
20
50
10
MHz
1
1
65
80
65
80
dB
60
80
60
80
dB
150
200
150
250
200
JlA
300
mA
45
60
85
45
60
85
35
45
0.6
65
35
45
0.6
65
mA
V/JlS
Degrees
45
45
30
38
30
38
nV/"IHz
120
120
dB
%
Note: 1. Low output voltage is less than 50mV.
5/10
881
TS274/TS27M4/TS27L4
ELECTRICAL CHARACTERISTICS FOR TS27L4
25°C, Vee = 10 V (unless otherwise specified)
RL Connected to Vee -
Tamb =
Symbol
Via
a Vio
liD
Ib
Parameter
Min.
TS27L4C
Typ.
Max.
10
12
5
6.5
2
3.5
AVd
Large Signal Voltage Gain
Vo = 1 II to 6 V
RL = 100 kQ
Vi =5 V
T min < T < T max
Gain Bandwidth Product
Av = 40 dB
1 MQ
RL =
C L = 100 ~F
fin = 10K z
Common Mode Rejection Ratio
Vo=1.4V
V j = 1 V to 7.4 V
Supply Voltage Rejection Ratio
Vee = 5 V to 1 0 V
Vo=1.4V
Supply Current (per amplifier)
Av = 1, no Load
Vo = 5 V
T min < T < T max
Output Current
Vi=10mV,Vo=OV
G wr
CMR
SVR
Icc
Is
Is
(Sink)
Svo
om
Kov
Vn
1
V0 1 /Vo 2
6/10
882
0.2
pA
nA
0.3
pA
nA
1
0.15
V
T min < T < T max
8.7
Note: 1. Low output voltage is less than 50mV.
j.iVrC
1
0.1
8.8
Slew Rate at Unity Gain
Phase Margin at Unity Gain
Av= 40dB
RL =
1 MQ
CL = 100 pF
Overshoot Factor
Input Equivalent Noise Voltage
f = 1 KHz
Rs = 10 Q
Cross Talk Attenuation
0.7
1
Output Voltage (note 1)
i = 10 mV
RL = 1 MQ
Output Current
Vj =. 10 mV, Vo =Vcc'
10
12
5
6.5
2
3.5
0.7
T min < T < T max
H~h
Unit
mV
l'lfut Offset Voltage
= 1.4 V
TS27L4
T min < T < T max
TS27L4A
T min < T < T max
TS27L4B
T min < T < T max
Temperature Coefficient of Input
Voltage
I~ut Offset Current
i = 5 V, Vo = 5 V
T min < T < T max
l'\,Put Bias Current
,=5V, Vo=5V
VOH
TS27L41/TS27L4M
Min.
Typ.
Max.
8.8
9
9
8.6
V/mV
60
100
60
100
40
45
MHz
0.1
0.1
65
80
65
80
dB
60
80
60
80
dB
j.iA
10
10
15
17
15
18
mA
45
60
85
45
60
85
35
45
0.04
65
35
45
0.04
65
mA
V/j.iS
Degrees
45
45
30
70
30
70
nV/,JHz
120
120
dB
%
TS274/TS27M4/TS27l4
ICC(~)
I
I
I
HIGH-BIAS VERSIONS
-----
1000
,'f
I
I
MEDIUM·BIAS VERSIONS
,-
100
LOW-BIAS VERSIONS
10
-....... - ...-
,,-- r-Vcc(V)
10
12
14
SUPPLY CURRENT vs FREE-AIR TEMPERATURE
Vo = Vie = 0.2 Vee, T amb= 25°C, NO LOAD
16
E88TS274-02
ICC(~)
I
I
I
HIGH-BIAS VERSIONS
J
1000
I
I
I
MEDIUM-BIAS VERSIONS
100
LOW-BIAS VERSIONS
10
".
TA('C)
-50
-25
25
50
75
100
SUPPLY CURRENT vs FREE-AIR TEMPERATURE
Vcc =10V, V,c=5V, Vo =5V, NO LOAD
125
E88TS274-03
7/10
883
TS27 4/TS27 M4/TS27 L4
i :Ilil liil!
U~U ~rf]l iiJlI
li- I 1!111'1i
1·li"
I
i
TS274
~
i
i
j
[1
,., .. ,
~
lii!!i
1I
i
'IiI
~HASESHIFTU'\lhl~("irl
- '
.",
lli"
"";: " U ,Il[. i i
i'l
I l
III "I"- 1'-:--
Ill: ,I l'~~"~',,,,,
i ''0
I
I
100
1,000
10,000
100000
90
i
~
~J
'0 '0
I-I
I'HA$F
~(l
1,000 000
000:- 000
FREOUE~CY
IH1)
OPEN lOOP FMEOUENCY RESPONSE AND PHASE SHIFT
Vee:: 10V. Rt...;:: 10k n.el
=::
lOOpF. Tamb
= 25°C
EBBTS274-04
GAIN(dBI
,
HASf:
[[[[II [[ 1[[11
r--
~1'
tftIHI
GALN Uph
TS27M4
IICl'I
~,
[
PHAS~ Tillll'ii'~,'~ca,e)
f
..... r-.
45
I"
,
0
90
0
" I
u
,
0
10
100
1.000
10,000
100.000
1000.000
FREOUENCY (Hli
OPEN lOOP FREQUENCY RESPONSE AND PHASE SHIFT
Vee:::: lOV, RL -= toOkU. CL -:: l00pF, Tamb = 25 °c
E8BTS274-05
GAIN (dB)
100
ao
I I""
,
TS27L4
GAl" to,..
I
PHASE
1[[[1
11
[I
[ 1IIIIIf
PHASE SHIFT (ngh "".,-I!)
',~!
K"".L I,
I
i"-
40
90
It
20
135
I.....
b[
It
20
10
10 000
f
180
I
100 000
REOUE~CY
IH;)
OPEN LOOP FREQUENCY RESPONSE AND PHASE SHIFT
Vee:::: 10V, RL:::: lMn: ,el :: lOOpF, Tamb
8/10
884
= 25"C
E8BTS274-06
TS27 4/TS27M4ITS27 L4
ORDER CODES
Part Number
TS274C
TS274AC
TS274BC
TS2741
TS274M
TS27M4C
TS27M4AC
TS27M48C
TS27M4t
TS27M4M
TS27L4C
TS27L4AC
TS27L4BC
TS27M4t
TS27L4M
TS27M4AI
TS27M4AM
TS27M4BI
TS27M4BM
TS27L4AI
TS2714AM
TS27L4BI
TS27L4BM
Temperature
Range °C
o to + 70
o to + 70
o to + 70
- 40 to + 105
- 55 to + 125
o to + 70
o to + 70
o to + 70
- 40 to + 105
- 55 to + 125
o to + 70
o to + 70
o to + 70
- 40 to + 105
- 55 to + 125
- 40 to + 105
- 55 to + 125
- 40 to + 105
- 55 to + 125
- 40 to + 105
- 55 to + 125
- 40 to + 105
- 55 to ± 125
Package
N
•
•
•
•
•
•
•
•
•
•
•
0
J
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Examples: TS27L4ACN, TS274CD
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP OR CERDIP
Dotum
tl) NominID dimension
(2)
True geometrical position
6.35
(I)
9/10
885
TS274/TS27M4/TS27L4
PACKAGE MECHANICAL DATA (continued)
14 PINS - PLASTIC MICROPACKAGE SO
h
1.27 -, •
t • t· t • t. t • ,-
iii iii
8.55
8.75
0,185
0.265
-t+-'""""-"---
1.75 max.
14
10/10
886
PINS
UAA4002
CONTROL CIRCUIT FOR FAST SWITCHING TRANSISTORS
• DIRECT DRIVE OF THE SWITCHING TRANSISTOR
• SELF REGULATED POSITIVE BASE CURRENT (1 A max)
• NEGATIVE BASE CURRENT ENSURING FAST
TURN-OFF (3 A max)
• THE OUTPUT CURRENT CAN BE INCREASED BY MEANS OF ONE (or more) EXTERNAL
TRANSISTOR(S)
• MINIMUM CONDUCTING TIME (or no conduction) TO ALLOW THE DISCHARGE OF A RDC
NETWORK
• PROTECTION AGAINST SATURATION FAILURE OFTHE POWER TRANSISTOR DURING
CONDUCTING PERIOD, WITH ADJUSTABLE
DETECTION THRESHOLD
• INSTANTANEOUS-COLLECTOR CURRENT
LIMITATION
• POSITIVE SUPPLY (Vee) MONITORING
• NEGATIVE SUPPLY MONITORING WITH ADJUSTABLETHRESHOLD
•
•
•
•
•
ON-CHIP THERMAL PROTECTION
PROGRAMMABLE MAXIMUM ON TIME
TTL AND CMOS COMPATIBLE INPUT
CAN BE DRIVEN WITH ALTERNATE PULSES
ADJUSTABLE DELAY BETWEEN THE RISING
EDGE OF THE INPUT SIGNAL AND THE BEGINNING OF THE POSITIVE BASE DRIVE
I
'" '
··fI,!I·.···
,',,',"',
DIP·16/2
ORDER CODE: UAA4002DP
Figure 1: Block Diagram
Rt
RSD
IS2
VINH
SE
E
W
Rt
Ct
IS1
V+
Vcc
VCE
Ic
Rso
Rd
GNO
ct
October 1988
Output sink current
Negative power supply (power stage)
Inhibition input
Input selection
Input
Negative supply monitoring time resistor
Minimum conducting time resistor
Minimum conducting time capacitor
Output source current
Positive power supply (power stage)
Positive supply voltage
VCE(sat) sensing
Collector current monitoring input
VCE(sat) threshold voltage monitoring
Delay time resistor
Ground
Ground
1/12
887
UAA4002
ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Vcc
V+
Supply Voltage
+ 15
V
Positive Supply Voltage (power stage)
+ 15
V
V-
Negative Supply Voltage (power stage)
-10
V
Voltage between Pins 15 and 2
+ 18
V
Positive Output Current
+ 1.5
- 3.5
A
±5
mA
5
kQ
V+ - VIS1
Parameter
182
Negative Output Current
Ic
Current into Input Ic (internal protection diodes)
A
-
Minimum Value of Resistors Rt and RD
-
Voltage between Input and V-
+ 18
V
Tj
Junction Temperature Range
- 40 to + 150
'C
Storage Temperature Range
- 40 to + 150
°C
T stg
Note:
1. Pin 2 (V-) should not be left open.
PIN CONNECTION (top view)
182
V-
INH
SE
E
RRt
Ct
181
V+
VCC
VCE
IC
RSD
RD
GND
IS2
VINH
SE
E
RRt
Ct
IS1
V+
Vcc
VCE
Ic
RSD
R 2.5 V, input SE tied to ground)
V-
-
-2
V
-
Current into Input E (V (5)
Input SE Left Open
Input SE Grounded
-
10
0.2
50
0.3
mA
V
~
0 V)
-
Low Level on Input INH
0
-
0.8
-
High Level on Input INH
2
-
Vee
~A
V
Time Constant ton min (R, between pin 7 and ground)
0.06 R, (kU)
~s
td
Delay between Input Pulse and Rise of Output Current (Ro
between pin 10 and ground)
0.05 Ro (kO)
~s
-
Propagation between Input Pulse and Rise of Output Current
0.3
~s
ton(min)
Vso
W
Desaturation Threshold (Rso between pin 11 and ground)
V- min Detection Resistor Value (W between pin 6 and V-)
BL
2
ton(max)
-
Time Constant ton max (C, between pin 8 and ground)
Thermal Shut Down
V
10 x Rso
R,
(1 +
V-min
5
)
U
2R,C,
s
150
°C
APPLICATION INFORMATION
The coexistence of a power circuit handling high voltages and currents, and a control circuit carrying low
amplitude signals, does not represent any special
difficulty provided that a few simple rules are observed.
Positive and negative supply voltages of the integrated circuit must be carefully filtered by means of capacitors located very close to the device.
The device itself must by situated close to the power transistor, using short connections.
The control circuit ground (pin 9) and the power circuit ground (emitter of the power transistor) must be
linked by a single connection, as short as possible
and of adequate cross-section.
A ground plane on the printed circuit board may be
favourable in noisy environments. With regards to
upper switches of a bridge configuration, the auxiliary supplies of the integrated circuit must have a
low parasitic capacitor with respect to the ground
potentiel. In the same way, the isolated components
3/12
889
UAA4002
bridge systems), adiode (1 N4148) must be connected between pin 13 and ground (cathode on pin 13
and anode on ground) in order to limit the negative
voltage applied to this pin during the conduction of
the free-wheel diode.
driving the UAA4002 (optocoupler or pulse transformer) must have also a low parasitic capacitor in order to reduce dvit phenomenons and to avoid risks
of reswitching or conduction cut-off.
If a free-wheel diode is connected in parallel with the
power transistor (witch is generally the case in
CIRCUIT DESCRIPTION (see block diagram figure 1)
INPUT INTERFACE E AND SE INPUT
current of the switching does not flow through the
shunt.
A voltage below - 0.2 Von input Ic causes comparator to change state. This information is transmitted to the logic unit, which blocks the output pulses
from the circuit until the next positive transition of the
input signal.
If the voltage across the measuring shunt exceeds
0.2 V for the required limiting current value, a voltage divider bridge may be used (see application
note NA031A).
It translates the input signal into the logic levels required by the internal processor.
It also includes a RS flip-flop for the pulse mode operation.
FAULT DETECTORS
• Power transistor collector current limiting (Ic input)
.The collector current of the power transistor is measured by means of a shunt connected in the negative return of the power supply. As a result the current rather than the emitter current, since the base
If input Ic not used, it must be connected directly to
ground.
Figure 2 : Level Mode SE = 1.
InputE
~
I
I
I
I
I
I
Alternate pulse SE = 0
---.ll n*- - -Input E
-----.U.-....,:rr:--------
I LJ'LL'
I
I
I
I
I
Output
~
"These parasitic pulses are not taken into account.
Note: Pulse duration> 100ns.
4/12
890
I
u* __ _
UAA4002
Figure 3 : Switching Transistor Collector Current Measurement.
_ Protection against desaturation of the power
transistor.
Without resistor Rso, the threshold is set internally
at + 5.6 V.
A comparator monitors continuously during the
conduction that the collector voltage on the switching transistor remains lower than the preset value.
In case of overstep, the information is transmitted to
the logic unit, which tums the output off until the next
positive edge of the input signal.
To enable the switching transistor collector emitter
voltage to fall when conduction begins, the protection function against desaturation is disabled during
ton min (see application note NA031A).
The preset value VRSO (see figure 4) is given by :
Rso
Rso= 5 Vx 2 - Rt
This protection is disabled by connecting pin RSD directly to V.
Current I set by external resistor Rt is :
5 (V)
(FOR THRESHOLD EXCEEDING 5.5 V SEE
NA031EA).
I (mA) =
Rt (k)
Figure 4 : VCEsat Voltage Monitoring.
------_.
__.
VCE
lp
To logiC
processor
16
RB
'B1
I
VCE
Sot
'B2
UAA4002
R·
0,"" 0 ' " " "' " ","" ,,"0 0 "0"
"",0 "
: """"" 0
" , """" do.
00
""d" om",", "''''" w""" '" 0 " " " ' ' ',m " '"' ", I
5/12
891
UAA4002
SUPPLY DEFECT
TIME CONSTANTS
.. Negative supply (R input, see figure 4).
4t is .-possible to disable 'Itle output pulses if the negative supply voltage V is insufficient to guaramee
the switching of the power transistor (optional).
.. Minimum conducting time (At input)
Toena"ble'thecapacitor of the switcAing aid network
asSOciated with power transistor to discharge completely, the logic processor ensures that the integrated circuit output pulse has a minimum duration ton
min; To be effective, this must be at'least four times
ttteiime constant of the RDC network.
(FOR USING WITHOUTNEGATlVE POWER SUPPLY SEE NA031 A)
For this a resistor R is tied between pin 6 and the
negative supply.
The value of tan min is prDgrammed by a resistor At
TypicaUy ton min (s) = 0.06 x Rt (k)
A current 2 I flows into it, and the threshold of the
detector is + 5 Von pin 6.
The {Jsab1e range of values forton min is between 1
and 12 s.
Resistor At has a key role in the operation of the
UAA4002 integrated circuit. It sets the value of a
bias current internal to the circuit:
Thus giving the relatiooship :
5+V-min
5
At
V-min
=2xR-=-(1 + - - )
2
5
ARt
This function can be disabled ty tying pin 6 to
ground.
5
J(mA)= - Rt(k)
.. Positive supply (Vce input)
too min embodies a priority function : no other secufity,function can stop the conduction during ton min.
The tan min function cannot be disabled.
An internal comparator ensures that there is no output voltage if positive supply Vcc is less than + 7 V.
This threshold is not adjustable.
• Inhibition (INH input)
• Maximum conducting time (Rt and Ct inputs)
The action of the inhibition input is shown in the diagram below.
This input is CMOS and TTL compatible. Jf not used,
it must be connected directly to ground.
.. Thermal protection
At the start of each conduction period the capacitor
Ct is loaded by a constant current 1/2, where I is the
current through resistor At (I = 5/Rt). When the voltage across Ct reaches + 5 V the conduction is stopped. The value of ton max is thus given by the equation:
The UAA4002 is protected against excessive overheating by a thermal cut-out which automatically
cuts off the output pulses if the chip temperature exceeds + 150 ·C. The interruption is stored for a complete conduction period, but the output pulses reappear as soon as the chip temperature falls below the
limiting temperature value.
!po max (s) =2 x Rt (k) x Ct (nF)
if the ton max function is not to be used, it is only necessary to replace capacitor Ct with a short-circuit.
• Time delay function
A constanttime delay may be implemented between
the rising edge of the control pulse and the begin-
Figure 5.
Input
Inhibition
I
I
I
I
I
I
----~:~rlLJl
I
I
I
I
Output
892
I
I
I
I
I
I
~-----------~~~----ON
6/12
I
I
I
OFF
ON
UAA4002
ning of the conduction pulse at the circuit output =
(1 to 20 ~ by using resistor Ro, td (IlS) = 0.05 RD
(kQ).
LOGIC PROCESSOR
A logic unit processes the information coming from
the fault detectors, and ensures that the output signal fulfils two conditions:
Figure 6.
~---~--~-
.
-------~--,
input - - - - - - '
Output
---->---jll'-------I
I
I I
~
'd
• No double pulsing within a period: the occurence
of a defect is memorized until the end of the period.
• ToO aHow the discharge of a snubber network, the
minimum output pulse width is set at a given value ton min.
OUTPUT STAGE : V+, V-, IS1, IS2, INPUTS
• Introduction
The highly sophisticated output ·stage of the
UAA4002 offers high performance is terms of switching transistor control.
Its principal features are as follows:
_ the switching transistor is direct driven
_ the transistor remains in a quasi-saturated
state, whence reduced storage time
_ control power is limited to the strict minimum
it is easy to use
This stage is in fact in two parts, a positive driver
stage which turns on the transistor and a negative
driver stage which turns off the transistor.
Figure 7.
------------,
High
voltage
supplv
----------------------~
7/12
893
UAA4002
• Power transistor conduction
The maximum value of the positive base current is
determined by the limitation resistor R (lsI 1 A). A
regulation loop is used to keep Tp in a quasi-saturation mode: the more Tp becomes saturated, the
more diode 0 will shunt an important part of the drive
current lSI, through diode 01. Rs is a low value resistor (about 1 ) which helps to stabilize the regulation loop.
Voltage VCE across transistor Q is :
VCE (V) = VSE (V) + Rs () lSI (A)
If the required drive current is greater than 0.5 A,
one external NPN transistor may be added.
In this case:
VCE (V) = 2 VSE (V) + Rs ().Is (A)
• Turn-off switching of power transistors
The closing of contact K2 (figure 10) causes Darlington T2 to conduct. The negative supply voltage is
applied to the base of transistor Tp and a high negative base current IS2 flows, permitting the rapid
evacuation of charges stored in the base-emitter
junction of transistor T p.
The Darlington T2 can carry a maximum current of
3 A. The corresponding saturation voltage is typically 3 V. Like the positive stage, this stage is designed
for easy augmentation of the available output current by the addition of one or more external transistors.
• Typical inductive load waveforms
When conduction begins, the base current assumes
a high value briefly and then reverts to zero. This
base current spike permits rapid switching on of the
power transistor. The base current value is then that
required for quasi-saturation of the transistor. The
base current CUNe is generally cUNed upwardy, due
to the decreased gain of the power transistor with
increased collector current.
Figure 9.
Figure 8.
----------,
A low-value inductor L may be required between the
base of transistor T p and the IS2 output of the
UAA4002, so as to limit the gradient dls2fdt (see
"The Power Transistor in its Environment" published
by the Discrete Semiconductors Division of Thomson-CSF). In many cases, this inductor is not required.
Vee
--------,
UAA4002
v_____ ---1
v
The external PNP transistor increases the negative current
available while decreasing the power dissipation in the
UAM002.
8/12
894
UAA4002
I
Figure 10.
!
--------------------------------------------
l
I
Power transistor collector current
d1B2~
dt
Power transistor base current
Voltage on pin VeE of UAA4(X)2
ov-------------------
CONTROL OF MOS POWER TRANSISTORS
Ideally,MOS power transistors should be voltagecontrolled_ In practice, in order to benefit from the
high speed typical of this type of transistor it is necessary to charge and discharge the spurious input
capacitance at high speed, so that high currents
flow. By virtue of the high current capability of its output stages, the UAA4002 is particularly suitable for
controlling MOS power transistors.
The output of the positive stage is connected directly to the gate of the MOS transistor, to switch it into
conduction very fast. The negative stage controls
the turning off of the MOS transistor, by discharging
the gate capacitance of the transistor. There is no
need for a high negative supply voltage, and the ar-
rangement described in the previous section is therefore used.
In this circuit the UAA4002 is used in a completely
conventional manner, in "Ievel" control mode.
The time constant Ion min is set at 2.8 s, which is
four times the time constant of the snubber network
associated with the BUV37 transistor. The positive
output stage of the UAA4002 is connected to the
Vcc rail through a 15 resistor. The maximum base
current is approximately 0.45 A. The collector current is measured using a 0.10 shunt, and is limited
to 10 A. The BUV37 Darlington for which the specified value of ICsat is 12 A, is thus operated with a
considerable safety margin.
9/12
895
UAA4002
Figure 11.
-t
lOOV
47.n
0
GI
Tp
FOR MORE INFORMATION SEE NA031A
TYPICAL APPLICATIONS
Figure 12: 8 A. 400 V switch.
I"~
BA 1591
.....~t---------,
270
III
n
6W
*Note 1
BY 218
400
HT
-5V
390 .n
L---____________~~------------------~~-------------------Ol ,
Noles: 1. Switching aid network.
2. Polypropylene capacitor.
3. With heatsink. RrlT < 3.5 "/W.
10/12
896
I
UAA4002
Figure 13: 150 W Forward Type Power Supply.
- - - - - - ----------------------------
----------1
II' Lee I r 10
rbA '0·· ,e ",," >'V.,I-
c,pnmJ'VJn!l'lwcr""I,,,y,,,,,,,
¢.
•
~"ma'yg'Olln<:l
Seeonda'Y9H1un d
I
'------------~~~~_~___.J
Performance
• Output voltage stability:
For an input voltage varying from 190 to 245 V, the maximum relative variation in the output voltage is 0.7
% at nominal operating conditions.
(VOUT = 25 V, lOUT = 6 A).
For a variation in the load from 0 to 100 % the relative variation in the output voltage IS 1.3 %.
For a variation in the load from 10 to 100 % (lOUT = 0.6 to 6 A), the relative variation in the output voltage
is 0.4 %.
• Efficiency 80 % under nominal operating conditions.
• Behaviour on overload:
The power supply is fully protected against overloads and short-circuits, the output current being limited
to 7 A.
11/12
897
UAA4002
Figure 14 : Capacitor Type Half Bridge Symmetrical Converter.
'+Io---------------------~~~--,
HC>------..!.-.!------....-4-.....J
Figure 15: 200 A, 700 V Switch.
BATfi!)!
~--~oJ----
II
r-
I fJ
12/12
898
-
-------~
:
i
LSM
4120
WOO
I
, 170°C), the two output stages are disabled, After
a decrease of the junction temperature (typically
. 30°C), the outputs are again enabled.
TYPICAL APPLICATION
EXAMPLE OF APPLICATION
A complete application can be built with only one
UA.4718 and three external components (2 resis-
tors and 1 capacitor). On the figure below, 10 A per
output, the switching frequency is 35 KHz.
Figure 4.
,---- - - - -
fROM
5
n
•
.Kl
Mb
~J~_ _ _ _ _ _ _ _ _- .
E.b
1-'---1=1-0
Md
~"_ _ _ _ _--,
MICHOI'HOCl:>SOR
"
'0
OS<;
o
SHYf'l R MOTOH
8/8
914
UAF1780-1781-1782
DUAL 2 A LOW DROP OUT INTELLIGENT POWER SWITCH
ADVANCE DATA
• LOW POWER DISSIPATION (LOW VSAT: 0.6 V
@2A)
• ALL INPUTS ARE OPERATIONAL WITH
CONTROL SIGNALS HIGHER THAN Vee
• ALL INPUTS WITHSTAND VOLTAGES LOWER
THAN GROUND
• HIGH OUTPUT CURRENTS
• PROTECTION OF OUTPUT TRANSISTORS
(UPTO + 32 V)
• THE OUTPUTS CAN WITHSTAND VOLTAGES
LOWER THAN GROUND
• WITHSTAND ON Vee SPIKES UP TO (60 V,
10 ms)
• DIFFERENTIAL INPUTS
MUL TIWATT-15
ORDER CODES:
UAF1780SP
UAF1782SP
UAF1780HSP
UAF1782HSP
DIP-16/2
DESCRIPTION
The UAF1780-1781-1782 are dual interface circuits
delivering high output currents and capable of driving any type of load.
An on-chip dc/dc conversion unit in conjuction with
a few low-cost external components (a low value inductor and a low voltage capacitor) are implemented to limit the saturation voltage thereby optimizing
the efficiency.
The devices are particularly well protected against
destructive overloads. Each output implements a
current limit circuitry, a desaturation monitoring unit
for the detection of overloads and short-circuits, and
a thermal protection feature.
Corresponding output is turned off in case of prolonged desaturation or excessive internal dissipation.
This condition is reflected by a low level on ALARM
output terminal. This protection unit can be reactivated by applying a logic low signal to RESET input.
However, for inductive loads, a delay is imposed on
signal applied to this RESET input so as to prevent
a rapid and premature conduction of output transistors.
A logic high signal applied to STROBE input will disable both power outputs.
ORDER CODE:
UAFI780DP-1781DP
PIN CONNECTIONS
Input 1
Delay 1
Reset
Output 1
Strobe
Alarm 1
Ground
Current limit
adjust
Oscillator
Vee
Reference
Alarm 2
V(aux)
Input 2
The devices operates within a supply voltage range
of + 8 V to + 32 V.
September 1988
1/6
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
915
UAF1780-1781-1782
PIN CONNECTIONS
1 -Oscillator
9-Vcc
10-0utput 1
11-Alarm 1
12-Delay 1
13 -!!!.2.~.U
14-Reset
15-Strobe
2 -V(aux)
2
6
3
5
8
7
10
9
12
11
3 -Input 2
4-Delay 2
5-Alarm 2
6 -Reference
7 -Output 2
8-Ground
14
13
15
I
i
_J
ABSOLUTE MAXIMUM RATINGS
-
Symbol
n
--
Parameter
~
..- .
-
,------
Value
Unit
~--
Supply Voltage
+ 35
V
Input Voltages
30 to + 55
V
10
Output Current
Internally Limited
A
IL
Current In DC/DC Converter Inductance
Vcc
V I1
Vl2
Vreset
Vstrobe
P tot
Toper
TJ
Total Power Dissipation
Operating Free-air Temperature Range
---
Junction Temperature
0.4
A
Internally Limited
W
- 40 to + 85
'C
+ 150
'C
25
2.5
70
40
'C/W
• + 60 V (10 mS)
THERMAL DATA
RthIJ-c)
Maximum Junction-case Thermal Resistance
Rth(J-a)
Maximum Junction-ambient Thermal
Resistance
216
916
DIP.16
Multiwatt
DIP.16
Multiwatt
I
'C/W
--
III
r
o
("')
"ci>
G)
:II
Oscillator
»
s:
,. --_.1.._--,
I
I
I
CONVERTER
IL _ _ _ _ _ _ _ _ _ _ _ _
10 ADJUST
I
L ___ ...,.____I
I
-------------~--------~
~
;!SUI
~~
@.
~i!
~o
~!
~o
~z
c
»"T1
Reference
Alarm 1
Input 1
STROBE
Reset
Input 2
Alarm 2
Only in CB·79 package \/ersion
......
o
.
.
.....
(Xl
.....
......
(Xl
(0
....,
......
~
(Xl
1\:1
UAF1780-1781-1782
ELECTRICAL CHARACTERISTICS
Vee = + 24 V, - 40 DC, <:: Tamb <:: + 85 'C (unless otherwise specified)
Syv::~ I-Supply Voltage
parameter
_______
tMi~ ___TYp.___t=M:2x- . ~u~~~
I!I
--------------+----+----+---_+--__1
mA
Icc
Supply Current
Input 1 = Input 2 : Low
7
__ ~p~=lnput 1 : High, 10 ~_~X_2_A_._____________+__--+_-2-5-+1-3-2-_t_--__1
1,
Input Current (all inputs)
I
V,>V cel
,
15
I 50
V, < Vcel
a i
r--'-"---+-------~--~----
I
~
10HA
a
High Level Alarm Output Leakage Current (V A = + 10 V)
~. Level
10
flA
Alarm Output Voltage (IA = + 10 mAl
___~_I' __1~__1-1---,3--+----V--__1
Po~er Outputs Dropout Voltage
V
I
10 = 0,5 A
0.15 I 0.25
i
10 = 1 A
0,3
0,4
I
10 = 2 A
__________
0,6 I 07_"----_
f-i_--_I-O-L-_~-+-~~o-w-e-r-o-!'=_tP~u-~t-s=L=e=a-k_a=_g-e-C_-u--rr-e~_
.
100 I flA00LA
I Vee - Vo-
I
I'
----1-L
t cese !
Reset Pulse Duration ( C1 = C2 = 1 flF)
Delay Time before Desaturation Monitoring Unit Becomes--- -Active
VccVceVcc -
Vcel
Icel
10
!
I
I
Reference Input Current (Vcel = 1,4 V)
All Inputs < Vcel
All Inputs> Vee I
- 1
mS
------I-- mS-
20
10
5
1,4
55
I
I
V
flA
80
a
150
+1
Available Output Current
UAF1780DP
2,5
Ro = =
Ro = 2 KQ
I
UAF1780SP
UAF1781 DP
II
I
400
--~-T--
(C1 = C2 = 1flF)
Vo=+12V
Vo=+24V
Vo = + 32 V
Reference Input Voltage
I
I
I
Ro = =
Ro = 2 KQ
I'
A
1
25
2~
_+I-------------.---t----1
-+-____-+___-_+_-50-+--V-~
_______ 1---- _ _ _ _ _ _ _ ~__~ _ _ _U_A_F_1_7_8_2_S_P_ _ _ _ _ _
r-V~c~c_-_V~0-t-_M_a_x_im_u_m_O_u_t~p_ut_V_o_l_ta~g~e_S_w_i_ng~___________ ~____
Vaux - Vcc
4/6
918
DC/DC Output Voltage
0.5 A < 10 < 2 A (each output) CO = 47 flF, L = 100 flH
I
i
1.25
V
UAF1780-1781-1782
Fig 1 -
DIP. 16 PACKAGE.
Fig 2 -
~
z
o
i=
~
i'.
50
25
I-~~-t
on
on
I'\.
o
9
o
0::
w
I'
"Ii'
4
75
25
50
75
100
125
150
AMBIENT TEMPERATURF (oC~
AMBIENT TEMPERATURE (OC)
Fig. 3 -
MUL TIWATI PACKAGE
AVAILABLE OUTPUT CURREIIT VS
EXTERNAL RESISTAI;CE VALUE
DIP. 16 PACKAGE.
Fig 4 -
SATURATlON VOLTAGE VS
ou II-'U 1 CUHflitl=N I
2
a:
~ 1.2
UAF1/0e~
I-
L
/ ~B~
~
'"'"::J
U
I-
::J
"-
I-
:J
0
0.5
8
w
Q
w 1.5
/
V
,y
o
V
L
/'
«
I-
§;--'
0.8 I---:;/;_~~-+--'-'r-:.::;::..:...:::r:--
z
o
i=
«
§
0.4 I--+--t---t-+--t---+~-i""-=--t--r-----t----j
I-
«
UJ
0.5
\.5
o
2.5
2
.4
R1 RESISTOR UALUEIKohm)
Fig 5
RFSPONSE TIME.
Fig.6
:::
w
c.:J
«
I-
/1
--'
o
>
l-
0
I
ii:
I
I
I-
co
o
o
i
z
«
I-
co
l
1.2
16
RESPONSE TIME
~
.
w
Q
'~_2A J \
I-
o--'
> 0
\'O=05A
,
I::J
"I-
co
-
o
o
«
'"
0
.8
OUTPUT CURRENT (AI
0
I::J
"-
z
"~
1
0.4
T"~E
IpS)
0.8
4
10
TIMf: (PS)
5/6
919
UAF1780-1781-1782
Figure 7 : Typical Application.
Vee
~-------------------r----'---.-------r-----.---r---r--,r--,
• RO only necessary with DP package
_ Lo and Co are the external elements of the dc/dc
converter. Typical values and characteristics of
these components are as follows:
For Lo : - inductance = 100 ~H (tolerance
±10%)
- maximal current :2: 400 mA
Size Evaluation For dc/dc Inductance
10 max.
5 max.
f
For Co : The value of this capacitor is not critical,
a capacitor of C1 :2: 47 F, Vn :2: 6.3 V will be suitable for the majority of the applications.
_ The on-chip dc/dc converter can be disabled by
connecting V(aux) terminal to Vec and leaving
"Oscillator" pin floating.
6/6
920
~ 'OA~
~
_ C1 and C2 implement two distinct functions:
- response time required by the desaturation
monitoring unit to become active.
time delay imposed on each power output
prior to conduction.
t _ C· 3.5 V
d 7 ~A
With C2 = C3 = 1 ~F, the outputs are protected
against voltage transients of as high as + 32 V
and the response time of the desaturation monitoring unit is 400 ms.
_ DZ1 and DZ2 Zener Diodes are required in the
case of inductive loads. Vz of these diodes should
be < 60 V.
_ Ro determines the value of maximum output current (DIP package). Its value is given in curve 3,
where output current values are plotted against
the corresponding values of this resistor.
UC1840
UC2840
UC3840
PROGRAMMABLE, OFF-LINE, PWM CONTROLLER
• ALL CONTROL, DRIVING, MONITORING, AND
PROTECTION FUNCTIONS INCLUDED
• LOW-CURRENT, OFF-LINE START CIRCUIT
• FEED-FORWARD LINE REGULATION OVER 4
TO 1 INPUT RANGE
• PWM LATCH FOR SINGLE PULSE PER PERIOD
• PULSE-BY-PULSE CURRENT LIMITING PLUS
Sf-:jUTDOWN FOR OVER-CURRENT FAULT
• NO START-UP OR SHUTDOWN TRANSIENTS
• SLOW TURN-ON AND MAXIMUM DUTY-CYCLE CLAMP
• SHUTDOWN UPON OVER-OR UNDERVOLTAGE SENSING
• LATCH OFF OR CONTINUOUS RETRY AFTER
FAULT
• REMOTE, PULSE-COMMANDABLE START/
STOP
• PWM OUTPUT SWITCH USABLE TO 1A PEAK
CURRENT
• 1% REFERENCE ACCURACY
• 500 kHz OPERATION
-- ----- ------- - - I
DIP-18
(Plastic and Ceramic)
DESCRIPTION
Although containing most of the features required
by all types of switching power supply controllers,
the UC1840 family has been optimized for highlyefficient boot-strapped primaryside operation in forward or flyback power converters. Two important
features for this mode are a starting circuit which requires little current from the primary input voltage
and feed-forward control for constant volt-second
operation over a wide input voltage range.
In addition to startup and normal regulating PWM
functions, these devices otter built-in protection from
over-voltage, under-voltage, and over-current fault
conditions. This monitoring circuitry contains the ad c
ded features that any fault will initiate a complete
shutdown with provisions for either latch off or automatic restart. In the latch-off mode, the controller
may be started and stopped with external pulsed or
steady-state commands.
September 1988
Other performance features of these devices include a 1% accurate reference, provision for slowturn-on and duty-cycle limiting, and highspeed
pulse-by-pulse current limiting in addition to current
fault shutdown.
The UC1840's PWM output stage includes a latch
to insure only a single pulse per period and is designed to optimize the turn off of an external switching
device by conducting during the "OFF" time with a
capability for both high peak current and low saturation Voltage. These devices are available in an 18pin dual-in-line plastic or ceramic package.
The UC 1840 is characterized for operation over the
full military temperature range of -55"C to + 125"C.
The UC2840 and UC3840 are designed for operation from -25"C to +85"C and O"C to +70"C, respectively.
1/10
921
UC1840-UC2840-UC3840
PIN CONNECTION AND ORDER CODES
~
COMP(NSATION
,
1(\
NON INV INPUT
INY INPUT
START I UV
11
a v SENSE
'6
STOP
"
S
.Vi SUPPLY
DRIVER BIAS
1L
RESET
cuRRENT
THRESHOLD
13
CURRENT SENSE
11
5LDW- START
,,~
R T' C T
[ S
'0
v REF
GROUND
Type
Plastic
Ceramic
UC1840
UC2840
UC3840
UC2840N
UC3840N
UC1840J
UC2840J
UC3840J
OUTPUT
PWM
V I SENSE
P
RAMP
5-6"001
ABSOLUTE MAXIMUM RATINGS
Symbol
Vi
Parameter
Supply Voltage + Vi (pin 15)
Voltage Driven
Current Driven 100 mA Maximum
Test Conditions
Unit
32
Self Limiting
V
Vo
PWM Output Volage (pin 12)
40
V
10
PWM Output Current, Steady-state (pin 12)
400
mA
20
-200
~
mA
- 50
20
10
- 0.5 to + 55
- 0.3 to + 32
mA
mA
mA
V
V
Eop
lo(REF)
Ptot
PWM Output Peak Energy Discharge
Driver Bias Current (pin 14)
Reference Output Current (pin 16)
Slow Start Sink Current (pin 8)
Vi Sense Current (pin 11)
Current Limit Inputs (pin 6, 7)
Comparator Inputs (pins 2, 3, 4, 5, 17, 18)
1000
mW
Junction Temperature Range
- 55 to + 150
°C
Top
Operating Ambient Temperature Range: UC1840
UC2840
UC3840
- 55 to + 125
- 25 to + 85
o to + 70
°C
°C
°C
Totg
Storage Temperature
- 65 to + 150
°C
Tj
Power Dissipation at T amb = 70 OC
THERMAL DATA
Thermal Resistance Junction-ambient
2110
922
Max
80
UC1840-UC2840-UC3840
BLOCK DIAGRAM
SENSE
~--~--------------------------~10R4MP
®>---~~~~~
COIolP
INY.INPUT
N.l.INPUl
srART/UV
RE50El
lHRESHOLD
--,J-:-@OJRU""
-
7
~~~iNT
'OOm'"
FUNCTIONAL DESCRIPTION
Function
Name
PWM CONTROL
OSCILLATOR
Generates a fixed-frequency internal clock from an external RT and CT.
Frequency =
Kc
~~
where Kc is a first-order correction factor
~
RTCT
0.3 log (C T x 10 '2 ).
RAMP GENERATOR
Develops a linear ramp with a slope defined externally by
dv
sense vOltage
C R is normally selected <; CT and
dt RR CR
its value will have some effect upon valley voltage.
CR terminal can be used as an input port for current mode control.
ERROR AMPLIFIER
Conventional operational amplifier for closed-loop gain and phase compensation.
Low output impedance: unity-gain stable.
REFERENCE GENERATOR
Precision 5.0 V for internal and external usage to 50 mA.
Tracking 3.0 V reference for internal usage only with nominal accuracy of ± 2 'Yo.
40 V clamp zener for chip O. V. protection, 100 mA maximum current.
PWM COMPARATOR
Generates output pulse wich starts at termination of clock pulse and ends when
the ramp input crosses the lowest of two positive inputs.
PWM LATCH
PWM OUTPUT SWITCH
Terminates the PWM output pulse when set by inputs for either the PWM
comparator, the pulse-by-pulse current limit comparator, or the error latch.
Resets wich each internal clock pulse.
Transistor capable of sinking current to ground wich is off during the PWM
on-time and turns on to terminate the power pulse. Current capacity is 400 mA
saturated with peak capacitance discharge in excess of one amp.
3/10
923
UC1840-UC2840-UC3840
FUNCTIONAL DESCRIPTION (continued)
.-------.----.--~-.-.---.----------.----,
Name
Function
_
I
SEQUENCING FUNCTIONS
START/U. V. SENSE
i------
This comparator performs three functions.
With an increasing voltage, it generates a turn-on signal at a start threshold
With a decreasing voltage, it generates a U. V. fault signal at a lower level
separated by a 200 J.lA hysteresis current.
At the U. V. threshold, it also resets the Error Latch if the Reset Latch has been
_ls EJt _________ - - - -
_ - - - - - - - - - -- _ - - - j
Disables most of the chip to hold internal current consumption low, and Driver
I
.1.B~s..0F'F':_urltil input_vol~ge reacl1e~tartt.hreshold_.___________ --.--1
I Supplies drive current to external power switch to provide turn-on bias.
I
I
I
O:I:I:::II::H
[
SLOW START
Clamps low to hold PWM OFF. Upon release, rises with rate controlled by RsC s
for slow increase of output pulse width.
Also used to clamp maximum duty cycle with divider Rs Roc.
START LATCH
Keeps low input voltage at initial turn-on from being defined as a U. V. fault Sets
at start level to monitor for U. V fault
RESET LATCH
When reset, this latch insures no reset signal to either Start or Error latches so
that first fault will lock the PWM off.
When set, this latch resets the Start and Error latches at the U. V low threshold,
allowing a restart
!
L--·
!
I
I
I
I
PROTECTION FUNCTIONS
ERROR LATCH
r-I
4/10
924
CURRENTLIMITING
When set by momentary input, this latch insures immediate PWM shutdown and
hold off until reset.
Inputs to Error Latch are:
a, U, V. low (after turn-on)
b, 0, V high
c, Step low
d, Current Sense 400 mV over threshold
Error Latch resets at U, V, threshold if Reset Latch is set.
Differential input comparator terminates individual outp~tpu-I~e;;_-~;~hti~~ensel
voltage rises above threshold,
I
When sense voltage rises to 400 mV above threshold, a shutdown signal it sent
to Error Latch,
UC1840-UC2840-UC3840
ELECTRICAL CHARACTERISTICS (refer to the test circuit. Unless otherwise stated, these
specifications apply for T, = - 55 to + 125 'C for the UC1840, - 25 'C to + 85 'C for the UC2840
and 0 to + 70 'C for the UC3840; Vi = 20 V, RT = 20 Kn, C T = 0,001JlF, C R = 0,001 JlF, current limit
threshold = 200 mV)
I
lI
Unit
POWER INPUTS
liST
Start-up Current
I
V, = 30 V, Pin 2 = 2 5 V,
~Start-ufl. Cu!ren~T c'I:~ :~~ Z~_~ 2~5_V
1_ _ _ _
=_
L__ -,
~-:,1 '
r----" ___tOPeratII19Cur':Elr1t___V,"'3°v,Pln2_=35V:
5
1_1~
l~_
33
40
1
~~pply ~ ~ ~arl1P_ _ -" = ~O _m A
_ _ _
REFERENCE SECTION
I
VREF
, Reference Voltage
~~::; ~~:dRR;:::::::,
I TJ
i :::::: ~~A
!1V.REF~!1 ~'LTemperature cae.ft'.
Isc
I
Short Circuit Curr,
15
~5~05T
[_
---~.
: over .. oP.' TemP. . . ' Range ".
5
L
3_3__, ___ _
___
r
...-,---+---+i%-. ::-1- +i:-
:-2S;'C- - - -- -1~95 ,- 5 -
---.---~------------~-----
_5052
. .'. ....
i
.+...0.
4.9- -5-----:5:1:-"'-1
A.I. . II - 80
_'--\.Irl EF -'" ~2!-", ~5--"-~ ______-_8~~-_100L ____
:~ -I ~:
--1----···--
. ± 0.4
j mV;oC
. - 100 I mA
OSCILLATOR
RAMP GENERATOR
5110
925
UC1840-UC2840-UC3840
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
UC1840
UC2840
UC3840
Min. I Typ. I Max.
Min. I Typ. I Max.
0.5
5
2
10
mV
0.5
2
1
5
!JA
0.5
!1A
Test Conditions
Unit
ERROR AMPLIFIER
Vas
Input Offset Voltage
VCM = 5 V
Ib
Input Bias Current
los
Input Offset Current
Gv
Open Loop Gain
i'1Vo = 1 to 3 V
60
Output Swing (max
Out S; Ramp Peak 100 mV)
Minimum Total Range
0.3
CMR
Common Mode
Rejection
VCM = 1.5 to 5.5 V
70
80
70
80
dB
SVR
Supply Voltage
Rejection
Vi = 8 to 30 V
40
50
40
50
dB
0.5
Isc
Short Circuit Current
Vcomp = OV
B'
Gain Bandwidth
Tj = 25°C. Gv = 0 dB
Slew Rate
T J = 25°C, Gv = 0 dB
SA'
66
3.5
-4
1
60
0.3
1
0.8
dB
3.5
-4
-10
2
66
- 10
V
mA
2
MHz
0.8
V/!1s
PWM SECTION
'Continuous Duty
Cycle Range
(other than zero)
Min. Total Cont. Range
Ramp Peak < 4.2 V
5
95
5
95
%
V
Volsat )
Output Saturation
0.2
OA
0.2
OA
Volsat )
Output Saturation
10 = 200 mA
1.7
2.2
1.7
2.2
V
10L
Output Leakage
Vo = 40 V
0.1
10
0.1
10
!1A
Cd
'Comparator Delay
Pin 8 to pin 12
Tj = 25°C, RL = 1 KG
300
500
300
500
ns
3
3.2
2.8
3
3.2
V
-1
-3
!1A
120
180
240
!1A
. 10 = 20 mA
SEQUENCING FUNCTIONS
VT
Ib
6/10
926
Comparator
Threshold
Pins 2, 3, 4, 5
Input Bias Current
Pins 3, 4, 5 = OV
StartlUV Hysteresis
Current
Pin 2 = 2.5 V, Tj = 25°C
Input Leakage
Vi = 20 V
Driver Bias Saturation
Voltage
V1N-VOH
IB =-50 mA
2.8
120
- 1
-3
180
240
0.1
10
0.1
10
!1A
2
3
2
3
V
Driver Bias Leakage
VB = OV
- 0.1
- 10
- 0.1
-10
Slow-start Saturation
Is = 2 mA
0.2
0.5
0.2
0.5
!1A
V
Slow-start Leakage
Vs = 4.5 V
0.1
2
0.1
2
!1A
UC1840-UC2840-UC3840
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
UC1840
UC2840
Test Conditions
UC3840
I Typ. I Max.
Min.
Min.
JTyp.! Max.
Unit
CURRENT CONTROL
0
5
400
440
-2
-5
Current Limit Offset
340
Current Shutdown
Offset
Ib
Input Bias Current
Pin 7 = OV
- 0.3
'Common mode
Range
'td'
Current Limit Delay
340
200
10
mV
440
mV
-2
-5
!lA
3
V
400
ns
- 0.3
3
Tj =25 °C, Pin 7 to 12
RL = 1 KO
0
400
400
200
• Guaranteed by design. Not 100 % tested in production.
Figure 1 : Open Loop Test Circuit.
suPPlV
VOLrAGE
RR 1,00KIl
RS[ 180Kll ROC 2
1
'5
V'N
SLOW ST. 8
16 VREF.
RT
0:°
OA~ l1V1N SENSE
::I:' nF
CT£R'
20K.ft.
R2
9KIl
DRIV. BIAS 14
L=1Kfl.
OUT
MOl
GNO 13
r - 10 RAMP
,
CR~
COMP.
__ l:nF
--- -
STOP 4
RESET 5
INV.
'7
,.
N.!.
C/L(-)
e/L(+)
6
7
GoJ
VREF
fO"I'F
+
UC1840
3.0V SENS
'OA
OR
Cs
PWM OUT 12
9R T'CT
2 START J UV
R'
r---<----o
Ilt
'OKA
10KA
L...-....I
PWM
ADJ.
)t.
).o,,---i )1°
I 4"
KIl
L....
KIl
KJl
CURRENT SENSE
S-6101l
Nominal frequency =
Start voltage
=
RTCT
= 50 kHz
3 (R1 + R2 + R3) + 0.2 RJ
R2+R3 .
= 12 V
-I..
.~
TEST
O.V. fault voltage = 3 (R1
+:~ + R3)
= 32 V
Current limit = 200mV
Current fault voltage = 600mV
Duty cycle clamp = 50%
U.v. fault voltage = 3 (R1 + R2 + R3) = 8 V
R2+R3
7/10
927
UC1840-UC2840-UC3840
Figure 2 : Start U.V. Hysteresis Current.
Figure 3 : PWM Output Saturation Voltage.
-
G-!)364/1
Go 5365
'H
VCE(sat )
'V)
(,tJAI
-~-+''V::-;n-020:::C-V-~+--+-----j--+-+--1
275
Vin=20V
LOW DUTV-C~LE
PULSE TEST
250r-_r~~;;n~2~O_2_.5_V+-----j_~_-r_~_+-~
t--- I--
Tj=25"C
f--
125
100
I: ~
1//
-,~
~
L--_L-----'_--'-_-'-_-"--_L----'._-'
-50
-25
25
50
7S
100
Figure 4 : Oscillator Frequency.
10
20
50
60
100 200
10
RT(Io(!l)
SO
100
200 fo (KHz)
V4
-~
'""
-
-
"---
-
-- -
~
GAIN
V8 5
'V)
1K
10K
l'"
DUTy CYClE
CLAMP VOLTAGE
Cs
=0
c5 >0
"
"
t---~-
-
PHASE
INPUT loJXT. STOP
-
'""'
- - -- -
r-
-
r-
'""'
-
Vl220
'V)
f\---
180
lOOK
1M f 1H z
PWM ouTPUT
VOLTAGE!
270
-"""'r-
928
30
'V)
~-
8/10
20
Figure 7 : Shutdown Timing.
Vjn =2OV
40
100
400 10 (mAl
~
-~
300
G 5368
-
20
200
Figure 5 : PWM Output Minimum Pulse Width.
Figure 6 : Error Amplifier Open-loop Gain and
Phase.
Gy
(dBI
./
v
100
Tj (·C)
---::::p::= .L
T"..-55"C
~
I
360
)
500
1000
UC1840-UC2840-UC3840
APPLICATION INFORMATION
Figure 8 : Programmable PWM Controller in a Simplified Flyback Regulator.
DC INPUT LINE
CONTROL VOLTAGE
In this application [see Fig.8] complete control is
maintained on the primary side. Control power is
provided by RIN and CIN during start-up, and by a
primary-referenced low voltage winding. N2, for efficient operation after start. The error amplifier loop
is closed to regulate the DC voltage from N2 with
other outputs following through their magnetic coupling - a task made even easier with the UC 1840's
feed-forward line regulation.
IT
IT
IT
The UC 1840 will readily accept digital start/stop
commands transmitted from the secondary side by
means of optical couplers.
Not shown are protective snubbers or additional interface circuitry which may be required by the choice
of the high-voltage switch, Os, or the application
9/10
929
UC1840-UC2840-UC3840
Figure 9 : Power Sequencing Functions.
D E
I I
A
I
G
I
HI J
III
"N 0
I I I
III
H I J
I I I
M N 0
Q R S
I I
I
Vc
(NOTE!)
DRIVER
BIAS
SLOW-
START
PWM
OUTPUT
EXT.
STOP
U
RESET
I I
oE
I I
I
I
Q R S
U
I
v
Notes: 1. VG represents an analog of the output voltage generated by a primary·referenced secondary winding of the power transformer. It is
the voltage monitored by the start/U.V. comparator and. in most cases, is the supply voltage, Vi, for the UG1840.
2. Although input to External Stop, Pin 4, is shown, results are the same for any fault input which sets the Error Latch.
POWER FREQUENCY FUNCTIONS
--
--
---
---
Time
---
-~--
ITi~e
Event
A
Initial Turn-on, Vc Rises with Light Load
B
Start Threshold. Driver Bias Loads Vc
C
Operating PWM Regulates Vc
D
Stop Input Sets Error Latch Turning off
PWM
I M
i
U. V. Low Threshold. Error Latch Remain
Set
F
Start Turns on Driver Bias Bus Error Latch
Still Set
G
Vc and Driver Bias Continue to Cycle
H
-
I
--
--
-
Stop Command Removed
--
..
--
-
--_.-
Event
--.--~--
Reset Latch Set Signal Removed
1-
N
Error Latch Set with Momentary Fault
0
Error Latch does not reset as Reset Latch is I
reset
I
P
Q
R
I S
..-
Error Latch Reset at U. V. Low Threshold
K
Start Threshold Now Removes Slow-start
Clam
930
I
I
-
J
10/10
....-...
-
E
~~
--
Return to Normal Run State
- --
Vc and Driver Bias Recycle with no Turn-on
I
Reset Latch Set is Set with Momentary
Reset Signal
I
Vc must Complete Cycle to Turn-on
T
Start and Error Latches Reset
U
Normal Start Initiated
~
I
V-
Return to Normal Run State
i
UC1842/3/4/S
UC2842/3/4/S
UC3842/3/4/S
CURRENT MODE PWM CONTROLLER
• OPTIMIZED FOR OFF-LINE AND DC TO DC
CONVERTERS
• LOW START-UP CURRENT « 1 mAl
• AUTOMATIC FEED FORWARD COMPENSATION
• PULSE-BY-PULSE CURRENT LIMITING
• ENHANCED LOAD RESPONSE CHARACTERISTICS
• UNDER-VOLTAGE LOCKOUT WITH HYSTERESIS
• DOUBLE PULSE SUPPRESSION
• HIGH CURRENT TOTEM POLE OUTPUT
• INTERNALLY TRIMMED BANDGAP REFERENCE
• 500 KHz OPERATION
• LOW Ro ERROR AMP
tor which also provides current limit control, and a
totem pole output stage designed to source or sink
high peak current. The output stage, suitable for driving N-Channel MOSFETs, is low in the off-state.
Differences between members of this family are the
under-voltage lockout thresholds and maximum duty cycle ranges. The UC 1842 and UC 1844 have UVLO thresholds of 16 V (on) and 10 V (off), ideally suited to off-line applications. The corresponding thresholds for the UC 1843 and UC1845 are 8.5 V and
7.9 V. The UC1842 and UC1843 can operate to duty cycles approaching 100 %. A range of the zero to
< 50 % is obtained by the UC1844 and UC1845 by
the addition of an internal toggle flip flop which
blanks the output off every other clock cycle.
DESCRIPTION
The UC 1842/3/4/5 family of controllCs provides the
necessary features to implement off-line or DC to
DC fixed frequency current mode control schemes
with a minimal external parts count. Internally implemented circuits include under voltage lockout featuring start-up current less than 1 mA, a precision reference trimmed for accuracy at the error amp input,
logic to insure latched operation, a PWM com para-
Minidip Plastic
and Ceramic
50-14 J
01 P-14 Plastic
BLOCK DIAGRAM (toggle flip flop used only in UC1844 and UC1845)
Vi
5(9)
GROUND
VREF
5V
SOmA
VFS
2(3)
1(1}
COM. 0 - - - - - - '
3(5)
CURRENT
SENSE
September 1988
1/8
931
UC1842/3/4/5-UC2842/3/4/5-UC3842/3/4/5
ABSOLUTE MAXIMUM RATINGS'
Symbol
Parameter
Vi
Supply Voltage (low impedance source)
Vi
Supply Voltage (Ii < 30 mAl
10
Output Current
Eo
Output Energy (capacitive load)
Unit
30
V
Self Limiting
Analog Inputs (pins 2, 3)
Error Amplifier Output Sink Current
Ptot
Power Dissipation at Tamb"; 50 ° C (minidip, DIP-14)
Ptot
Power Dissipation at Tamb"; 25 ° C (SO-14)
T stg
Storage Temperature Range
TL
Value
Lead Temperature (soldering 10 s)
± 1
A
5
iJJ
- 0.3 to 6.3
V
10
mA
1
W
725
mW
- 65 to 150
°C
300
°C
• All voltages are w~h respect to pin 5, all currents are positive into the specified terminal.
BLOCK DIAGRAM (top view)
DIP-14/ SO-14.
Minidip Plastic and Ceramic.
r--v
t
14
N.C.
2
13
N.C.
VFB
3
12
Vi
N.C.
4
11
Vo
ISENSE
5
10
COMPo
VREF
COMP
ISENSE
3
OUTPUT
OUTPUT
5
N.C.
6
9
GROUND
RT/C T
7
8
POWER
GROUND
GROUNO
5-9"'3
ORDERING NUMBERS
TYPE
PLASTIC
MINIDIP
UC1842
UC1843
UC1844
UC1845
218
932
CERAMIC
MINI DIP
DIP-14
50-14
UC1842J
UC1843J
UC1844J
UC1845J
UC2842
UC2843
UC2844
UC2845
UC2842N
UC2843N
UC2844N
UC2845N
UC2842J
UC2843J
UC2844J
UC2845J
UC2842B
UC2843B
UC2844B
UC2845B
UC2842D
UC2843D
UC2844D
UC2845D
UC3842
UC3843
UC3844
UC3845
UC3842N
UC3843N
UC3844N
UC3845N
UC3842J
UC3843J
UC3844J
UC3845J
UC3842B
UC3843B
UC3844B
UC3845B
UC3842D
UC3843D
UC3844D
UC3845D
Gi
SGS·1HOMSON
~I ~n©IIOO1!.I<©"irIl@llln©$
UC1842/3/4/5-U C2842/3/4/5- UC3842/3/4/5
THERMAL DATA
Rth j-amb
I Thermal Resistance Junction-ambient
Ceramic
Minidip
Plastic
DIP-14
Minidip
Plastic
200°C/W
100°C/W
100°C/W
SO-14
165°C/W
ELECTRICAL CHARACTERISTICS (unless otherwise stated, these specifications apply for - 55
<:: Tamb <:: 125 'C for UC184X , - 25 <:: Tamb <:: 85 'C for UC284X ; 0 <:: Tamb <:: 70 'C for UC384X ; V, = 15 V
(Note 5) ; RT = 10 K ; C T = 3.3 nF)
I
UC184X
284X
Test Conditions
Parameter
Symbol I
Min.! Typ.! Max.
I Unit
UC384X
I
I
! Min.! Typ.! Max. !
REFERENCE SECTION
VREF
Output Voltage
TJ
'" V REF
Line Regulation
12 V ,; Vi'; 25 V
~
25 DC
10
~
1 mA
Load Regulation
1,; 10 '; 20 mA
'" VREF/"'T
Temperature Stability
(Note 2)
Total Output Variation
Line, Load, Temperature (Note 2)
eN
Output Noise Voltage
10Hz,; f ,; 10KHz TJ
(Note 2)
Long Term Stability
T amb
I"
Output Short Circuit
'" V REF
~
~
4.95
5.00
5.05
6
20
-30
5.10
V
6
20
mV
6
25
6
25
mV
0.4
0.2
0.4
mV/oC
5.1
4.82
50
125°C, 1000 Hrs (Note 2)
5.00
0.2
4.9
25°C
4.90
5.18
50
5
25
-100
-180
- 30
52
57
47
0.2
1
5
V
~V
25
-100 -180
mV
mA
OSCILLATOR SECTION
Is
V4
Initial Accuracy
T J = 25°C (Note 6)
Voltage Stability
12~Vi~25V
Temperature Stability
T MIN ~ T amb ~ T MAX (Note 2)
Amplitude
V PIN4 Peak to Peak
47
52
57
KHz
0.2
1
%
5
5
%
1.7
1.7
V
ERROR AMP SECTION
V2
Input Voltage
Ib
Input Bias Current
V PIN1
= 2.5 V
2.45
AvoL
2~Vo~4V
65
2.50
2.55
- 0.3
- 1
2.42
90
65
2.50
2.58
- 0.3
-2
V
IlA
90
dB
Unity Gain Bandwidth
(Note 2)
0.7
1
0.7
1
MHz
Supply Voltage
Rejection
12 ~ V, ~ 25 V
60
70
60
70
dB
10
Output Sink Current
V PIN2 = 2.7 V
VPIN1 = 1.1 V
2
6
2
6
mA
10
Output Source Current
VPIN2 = 2.3 V
VPIN1 =5 V
VOUT High
V PIN2 = 2.3 V;
RL = 15 KQ to Ground
V OUT Low
V PIN2 =2.7 V;
RL=15 Kn to Pin 8
B
SVR
- 0.5 - 0.8
5
- 0.5 - 0.8
6
0.7
5
1.1
mA
V
6
0.7
1.1
V
3/8
933
UC1842/3/4/5-UC2842/3/4/5-UC3842/3/4/5
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test Conditions
CURRENT SENSE SECTION
Gv
Gain
(Notes 3 & 4)
2.85
3
3.15
2.8
3
3.2
V3
Maximum Input Signal
VPIN1 = 5 V (Note 3)
0.9
1
1.1
0.9
1
1.1
Supply Voltage Rejection
12 ,; V, ,; 25 V (Note 3)
SVR
Ib
70
70
VN
V
dB
Input Bias Current
-2
- 10
-2
-10
~A
Delay to Output
150
300
150
300
ns
ISINK
0.1
0.4
0.1
0.4
ISINK
1.5
2.2
1.5
2.2
OUTPUT SECTION
IOL
Output Low Level
IOH
Output High Level
tr
Rise Time
= 20 rnA
= 200 rnA
ISOURCE = 20 rnA
ISOURCE = 200 rnA
CL = 1 nF
Ti = 25°C
13
13.5
13
13.5
12
13.5
12
13.5
V
V
50
150
50
150
ns
50
150
50
150
ns
(Note 2)
tf
Fall Time
Ti
= 25°C
CL = 1 nF
(Note 2)
UNDER-VOLTAGE LOCKOUT SECTION
Start Threshold
Min. Operating Voltage
After Turn-on
X842/4
15
16
17
14.5
16
17.5
X843/5
7.8
8.4
9.0
7.8
8.4
9.0
X842/4
9
10
11
8.5
10
11.5
X843/5
7.0
7.6
8.2
7.0
7.6
8.2
X842/3
93
97
100
93
97
100
X844/5
44
48
50
45
48
50
V
V
PWM SECTION
Maximum Duty Cycle
Minimum Duty Cycle
0
%
0
%
TOTAL STANDBY CURRENT
1st
Start-up Current
0.5
1
0.5
1
rnA
I,
Operating Supply
Current
VPIN2 = VPIN3 = 0 V
11
20
11
20
rnA
Zener Voltage
1,=25mA
34
Viz
Notes:
2. These parameters, although guaranteec, are not 100%testec in production.
3. Parameter measured at trip point of latch with VPIN2 = O.
4. Gai n definec as :
A=
dVPIN1
;0,;VPIN,,,0.8V
d VPIN3
5. Adjust V, above the start threshold before setting at 15 V.
6. Output frequency equals oscillator frequency for the UC1842 and UC1843.
OUlput frequency is one half oscillator frequency for the UC1844 and UCI845.
4/8
934
34
V
UC1842/3/4/5-UC2842/3/4/5- UC3842/3/4/5
Figure 1 : Error Amp Configuration.
I
2.5V
Error amp can source or
sink up to O.5mA
Figure 2 : Under Voltage Lockout.
lee
UC1842 UC1843
UClS44 UC1845
VON
16V
8.4V
"OFF
10V
7.&11
During Under-Voltage Lockout, the output driver is
biased to sink minor amounts of current. Pin 6
should be shunted to ground with a bleeder resistor
5KQ).
10
I
Rr'C r
---i-i
4
I
I
:
'~"H
Cr
I
I
l
_ _ _ _ _ _ 1I
0.3 '-------'-------'----'----------'-----'
2.2
Figure 6 : Timing Resistance vs. Frequency.
4.7
10
22
Figure 7 : Output Saturation Characteristics.
RT~~r-Tr'-Tr~-'rr--'-~~-.
V(sat)
(KnJ
(V)
f----t--+--H+tHt-
10
, ,
'0'
10'
10'
10'
f (Hz)
Figure 8 : Error Amplifier Open-loop Frequency
Response.
G_5781 .
GV
t"
(dB)
80
60
-45
40
-90
20
_,35
-'80
'0
6/8
936
'00
'K
10K
lOOK
1M f(HZ)
!o (A)
UC1842/3/4/5-UC2842/3/4/5-UC3842/3/4/5
I,
i
Figure 9 : Open Loop Test Circuit.
i..
VREF
COMP
VFB
•
v,
lW
lKfi
UC1842
OUTPUT
OUTPUT
ISENSE
RTfC r
GROUND
---~O
GROUND
Cr
'--,______________________________~.~~_"_________________" ___J
High peak currents associated with capacitive loads
necessitate careful grounding techniques. Timing
and bypass capacitors should be connected close
to pin 5 in a single point ground. The transistor and
5 KQ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.
Figure 10: Shutdown Techniques.
l
1 COMP
3 iSENSE
SHUTDOWN
TO CURRENT
SENSE RESISTOR
5-111111
Shutdown of the UC1842 can be accomplished by
two methods; either raise pin 3 above 1V or pull pin
1 below a voltage two diode drops above ground.
Either method cause the output of the PWM comparator to be high (refer to block diagram). The
PWM latch is reset dominant so that the output will
remain low until the next clock cycle after the shut-
down condition at pins 1and/or 3 is removed. In one
example, an externally latched shutdown may be
accomplished by adding an SCR which will be reset
by cycling Vi below the lower UVLO threshold. At
this point the reference turns off, allowing the SCR
to reset.
7/8
937
UC1842/3/4/5-UC2842/3/4/5-UC3842/3/4/5
Figure 11 : Off-line Flyback Regulator.
---------------------------- -- --
---
-------
'2
56""
2W
" '"
"3
1... 3612
' r--"---,
t-R-{'=':J-'"-'IUlr--'-l~
-~
~--l
T4~F
2!)V
J~F
- J ,_ _
--L~_~~
25'1
~
•
Q,
..--
UCI8~'
"U1QJ\Q,
"
co
"",F
600'
R!llHQ
C5
UOl ....
5GSPJ6i
H0613
'--..----'
R13
RWl
201';0
,0.55.0
'~"""~--+-
..
.
""
27K.Q
,
- ------------- - - - - - -
Power Supply Specifications
1. Input Voltage:
95 VAC to 130 VAC
(50 Hz/50 Hz)
2. Line Isolation:
3750 V
3. Switching Frequency:
40 KHz
4. Efficiency @ Full Load: 70 %
5. Output Voltage:
A. + 5 V, ± 5 % : 1 A to 4 A load
Ripple voltage: 50 mV P-P Max.
g. + 12 V, ± 3 % : 0.1 A to 0.3 A load
Ripple voltage: 100 mV P-P Max.
C. - 12 V, ± 3 % : 0.1 A to 0.3 A load
Ripple voltage: 100 mV P-P Max.
Figure 12 : Slope Compensation.
~ Isense
Rsense
S-9461
A fraction of the oscillator ramp can be resistively
summed with the current sense signal to provide
slope compensation for converters requiring duty
cycles over 50 %.
8/8
938
SLOPEC::LIB
Note that capacitor, C, forms a filter with R2 to supress the leading edge switch spikes.
UCN4801A
BIMOS LATCH/DRIVERS
ADVANCE DATA
• HIGH-VOLTAGE, HIGH-CURRENT OUTPUTS
• OUTPUT TRANSIENT PROTECTION
• CMOS, PMOS, NMOS, TTL COMPATIBLE INPUTS
• INTERNAL PULL-DOWN RESISTORS
• LOW-POWER CMOS LATCHES
the simultaneous operation of all drivers at maximum rated current can only be accomplished by a
reduction in duty cycle. Outputs may be paralleled
for higher load current capability.
DESCRIPTION
The UCN4801 A is a high-voltage, high-current
latch/driver comprised of eight CMOS data latches,
a bipolar Darlington transistor driver for each latch,
and CMOS control circuitry for the common CLEAR,
STROBE, and OUTPUT ENABLE functions. The bipolar/MOS combination provides an extremely lowpower latch with maximum interface flexibility.
DIP-22
(Plastic)
The CMOS inputs are compatible with standard
CMOS, PMOS and NMOS circuits. TTL or DTL circuits may require the use of appropriate pull-up resistors. The bipolar outputs are suitable for use with
relays, solenoids, stepping motors, LED or incandescent displays, and other high-power load.
The unit feature open-collector outputs and integral
diodes for inductive load transient suppression. The
output transistors are capable of sinking 500 mA
and will sustain at least 50 V in the OFF state. Because of limitations on package power dissipation,
ORDER CODE: UCN4801ADP
PIN CONNECTIONS (Top view)
22
21
3
20
4
19
5
18
6
17
8
15
16
9
14
10
13
11
12
1- Clear
2- Strobe
3- Input 1
4-lnput2
5- Input 3
6-lnput4
7 - Input 5
8- Input 6
9- Input 7
10- Input 8
11- GND
22 - Output enable
21- Vcc
20- Output 1
19- Output 2
18- Output 3
17 - Output 4
16- Output 5
15- Output 6
14- Output 7
13- Output 8
12- Common
September 1988
1/4
This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change withou1 notice.
939
UCN4801A
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
Vo
Output Voltage
50
V
Vee
Supply Voltage
18
V
- 0.3 to Vee + 0.3
V
mA
VI
Input Voltage Range
Ie
Continuous Collector Current
500
Power Dissipation'
2.0
W
Ptot
Top
Operating Ambient Temperature Range
- 20 to + 85
°C
T stg
Storage Temperature
- 55 to + 125
°C
• Derate atthe rate of 20
mrc above T,mb ~
+ 25·C
SCHEMATIC DIAGRAM
Input N
Common
/----.-~ Output N
Strobe
Clear
Outpu t enalje
CONTROL
2/4
940
LATCH
. DRIVER
UCN4801A
ELECTRICAL CHARACTERISTICS Tamb
Symbol
Parameter
Output Leakage Current (Va
Tamb ~ + 25 'C
Tamb ~ + 70 'C
10
V OISa !)
= + 25
~
leelon)
(each stage)
leeloll)
IR
VF
Note:
V (unless otherwise specified)
Min.
Typ.
Max.
-
-
50
100
0.9
1.1
1.3
1.1
1.3
1.6
Unit
[LA
-
Collector-emitter Saturation Voltage
10 ~ 100 mA
10 ~ 200 mA
10 ~ 350 mA, Vee ~ 7 V
V
-
-
13.5
8.5
3.5
Vee~5V-(note1)
R'N
= 5
50 V)
Input Voltage
Vec ~ 15 V
Vee ~ 10 V
Vila)
V '(1 )
ae, Vee
-
1
-
-
V
KU
Input Resistance
Vee ~ 15 V
Vee ~ 10 V
Vee ~ 5 V
50
50
50
200
300
600
-
Supply Current - Outputs Open
Vee ~ 15 V
Vee ~ 10 V
Vee ~ 5 V
All Drivers off, All Inputs ~ 0 V
-
1
0.9
0.7
50
2
1.7
1
100
-
-
-
50
100
-
1.7
2
mA
Clamp Diode Leakage Current (VR
Tamb ~ + 25°C
T amb ~ + 70°C
Clamp Diode Forward Voltage IF
~
~
50 V)
350 mA
[LA
[LA
V
1. Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to Insure the minimum
logic '"["'.
TRUTH TABLE
Output
INN
Strobe
Clear
Enable
t-1
t
0
1
0
0
OFF
1
1
0
0
X
X
X
X
X
1
X
X
OFF
X
1
X
OFF
0
0
0
ON
ON
X
X
x
OUT N
Information present at an input is transferred to its latch when the
STROBE is high. A high CLEAR input will set all latches to the output
OFF condition regardless of the data or STROBE input levels. A high
OUTPUT ENABLE will set all outputs to the OFF condition regardless
of any other input conditions. When the OUTPUT ENABLE is low, the
outputs depend on the state of their respective latches.
ON
irrelevant
t-1 = previous output state
t = present output state
=
3/4
941
UCN4801A
TIMING CONDITIONS
,---------------------------------------------------------
(Logic levels are Vcc and GND) Vcc = 5 V, Tamb + 25'C
CLEAR--------------------------------
STROBE-----'
~~~~~~---4--+------+---~-------t-----J
-• Er--
--'IIL__
OUTN _ _ _-'
'-_ _ _ _
~------------- - - - - - A. Minimum data active time before strobe enabled (data set-up time)
tOO ns
100 ns
300 ns
500 ns
500 ns
300 ns
500 ns
B. Minimum data active time after strobe disabled (data hold time)
C. Minimum strobe pulse width
D. Typical time between strobe activation and output on to off transition
E. Typical time between strobe activation and output off to on transition
F. Minimum clear pulse width
G. Minimum data pulse width
o~
II
~
f-
450
I
«
«
400
lor 2
!"
350
f-
......
E
f-
~
300
a:
a:
:>
u
a:
250
f-
200
0
~
-'
0
150
u
w
-'
«.
'"
'g"
-'
'"
4/4
942
:\ 1'\1\1\
\ 1\r"\ '\,
~ll'-
r-er-e-
+--
10
/fB
20
I J
30
3r'-4
I' r-I'
r'-- "'
.....
"'-
Number of outputs
conducting
simultaneously
I
100
0
I'-...
l\.t\.
r-e-
,...
-""1"'>
r-r--f':::
J
40
I
.-J
50
60
70
PERCENT DUTY CYCLE
80
90
100
----
I
------~
UEB4732
A.C. PLASMA PANEL DRIVER
• 32-BIT SHIFT REGISTER WITH LATCHES
• DECODING LOGIC CIRCUIT
• LOW TO HIGH VOLTAGE INTERFACE FOR DIRECT CONNECTION TO 32 ELECTRODES
DESCRIPTION
UEB4732 is a BIMOS* IC's especially designed to
provide selective and sustain signals needed by the
X and Y electrodes of an A.C. plasma panel.
Realizing a complete A.C. plasma panel control system requires only UEB4732 and two high voltage
common amplifiers for rows and columns of the panel. The whole network is driven by a few CMOS logical signals.
• Bipolar CMOS and complementary DMOS on same chip.
1-------·
.- ----- --.- ··---·--1
DIP-40
(Plastic)
i
I
I
I
ORDER CODE: UEB4732DP
I
I
IL- _ _ _ _
J
PIN CONNECTION
Clock
Inverting input
Strobe
Output 1
VCC1
01
Ground (logic)
Output 32
Output 2
Output 31
Output 3
Output 30
Output 4
Output 29
Output 5
Output 28
Output 6
Output Il
Output 7
Output 26
Output 8
Output 25
Output 9
Output 24
Output 10
Output 23
Output 11
Output Z2.
Output 12
Output 21
Output 13
Output 20
Output 14
Output 19
Output 15
Output 18
Output 16
Output 17
VA3
September 1988
4 CMOS compatible logic inputs: 01, Clock,
Strobe, Inv.
32 totem pole 100 V outputs, with clamping
diodes to the VA2 and VA3 inputs.
Logic supplies (Ground and VCC1) separated
from hight voltage (VA2, VA3) to avoid disturbances.
VA2
1/6
943
UEB4732
TYPICAL APPLICATION
Power supply
(Gnd, -I 12 V,
+ 100 V, -
Logica) command
100 V)
II
,
V
U~B
HV
Power supply
4737
AMPLI
Floating
power
A.
supplV
Translator
.
UEB
F
..-
I
~
~
()
~
COLUMNS
4732
"I
I
11
9
1
0
!J
I
c
a
1
~Vee
UEB
4732
-
VA3 ..
I
9
01
a
Clock ...
Srrobe .....
1
5
..
S
-+
i
944
K
0
w
=
=
:::
InV ....
216
To 32
electrodes
-
s
n
_
_
VA2 ..
.
A.C
PLASMA PANEL
UEB4732
ABSOLUTE MAXIMUM RATINGS
Parameter
_.
Symbol
VCC1
Logic Supply Voltage
V A2
V A2 Voltage (V A2
V A3
V A3 Voltage
;"
18
._-------------_._--
V A3)
V
---
120
V
10
V
._-- - - - - - - - - - -
----
...
---------
- 0.3 to VCC1 + 0.3
Input Voltage Range
Vi
Unit
Value
V
- - - - - - ------ ---_.-
NOTE: Voltage values are with respect 10 network ground terminal (ground logic).
SCHEMATIC DIAGRAM
,---------------------------------------~.
Clock
DI
Invert ing
mput
Strobe
VA2
VA3
1
Output
,
I)
elp.(·,
ndf'~
stage
"----....
....----~
~---~---For 1 outpuT
31·blt
shift
register
ELECTRICAL OPERATING CHARACTERISTICS (over recommended operating range)
Symbol
VOH
VOL
VOK
fclock
Parameter
Min.
Typ.
Max.
5
10
20
10
V
Low Level Dropout Voltage (for one output) V A3 = Ground
- 10L = 10 mA
-IOL = 20 (llA
5
10
10
20
V
Dropout Clamp Voltage
- 10 = ± 100 mA in One Output
- 10 = ± 100 mA Simultaneously in the 32 Outputs
Maximum Clock Pulse Frequency
Unit
V
High Level Dropout Voltage (for one output) V A2 > 20 V
-IOH=-10mA
-loH=-20mA
2
3
4
8
MHz
• All typical values are alVcc1= 12V, T"",= 25°C.
3/6
945
UE84732
RECOMMANDED OPERATING CONDITIONS (voltage values are referred to .logic ground of the Ie)
Symbol
Min.
Parameter
Vee
Logic Supply Voltage
VA2
V A2 Voltage (VA2
VA3
VA3 Voltage
10
10
;0,
VA3)
Unit
15
V
- 0.6
120
V
- 0.6
10
Typ.
Peak Current (for one output)
- High Level VA2 > 20 V
- Low Level VA3 = Ground
- 20
20
Peak Clamp Current (for one output)
± 100
V
mA
Operating Free Air Temperature
UEB4732
Tamb
Max.
10
mA
°C
0
+ 70
FUNCTION TABLE
Functions
Data
LOAD
LATCH
STROBE
H
i
Strobe
Latchs
R32
L1
L2
L32
X
X
H
L
R1n
R1n
R31n
R31n
R1s
R1s
R2s
R2s
R32s
R32s
Levels at 01 through
032 depend on Inv.
and strobe (see
"strobe").
L
H
J.
J.
R1n
R1n
R2n
R2n
R32n
R32n
R1n
R1n
R2n
R2n
R32n
R32n
R1n
-
L
H
L
H
L
L
H
H
Levels at R1 through
R32 depend only on
data and clock (see
"load").
R1s
R1s
R1
R1
R2s
R2s
R2
R2
R32s
R32s
R32
R32
R1s
R2s
R32s
- - -
l'
l'
X
X
X
X
H
H
X
X
X
X
X
X
X
X
L = Low level
X
J. =
= Irrelevant
High to low transition
For the outputs. the high level (H) is VA2, the low level (L) is VA'.
R1 ...... R32
R1 n.... R32n
= Levels currently at internal outputs of shift register.
= Levels at shift register outputs R1 through R32, respectively, before the most recent i
transition of clock.
R1 s .... R32s = Levels at shift register outputs R1 through R32, respectively, before the most recent
transition of strobe (levels currenfly stored by the 32 latchs L 1 through L32).
R1s ..... R32s
4/6
946
Outputs
R2
H
L
Low to high transition
Shift Register
R1
Inv.
= High level
=
Inputs
Clock
= Logical inversion of R1s ..... R32s.
J.
01
R1n
R1s
L
H
02
R2n
032
R32n
R32n
-- --
R2n
R2s
L
H
R32s
L
H
UEB4732
SCHEMATIC OF ONE OUTPUT STAGE
" - - - - - - - - - - - - - - - - - - - - - - _..
During the sustaining signal, VA2 = VA3 and the
current flows through the two clamp diodes.
...---t---i>
OUTPUT
During the selective signals (write and erase on
the plasma panel), VA2 is at high voltage
(typ.1 00 V, referred to logic ground) VA3 is equal
to logic ground, and the output is selectively
adressed by complementary by DMOS stage.
FROM
LOGIC
------__~----------4_----~------VA3
DESCRIPTION
The UEB4732 is designed to provide easily the line
and the column select operation of a plasma display
panel. For an use on the X axis of the panel, the Inv.
input is set at a steady low level, the outputs are normally low and are selectively switched high when
the strobe input is low. For an use on the Y axis of
the panel, the Inv. input is set at a steady high level,
the outputs are normally high and are selectively
switched low when the strobe input is low (the 32 bit
data is inverted).
The Inv. input may also be used as a sustain input:
when strobe is high, if the Inv. input is switched low,
all outputs switch low, if the Inv. input is switched
high, all outputs switch high.
Data is enterred serially in the shift register, on the
low to high level transition of clock. It is stored in the
32 latchs on the high to low level transition of strobe,
so the outputs are stable during the low level of
strobe, regradless of the state of clock and data, and
a new data can be enterred immediately.
The logical voltage reference (ground logic) and the
high voltage reference (VA3) are separated to avoid
disturbances.
All output stages are complementary DMOS and
contain clamp diodes to the VA2 and VA3 supply inputs. These diodes are designed to provide the peak
current of the sustaining signal (typ. 100 mNoutput)
without distorsion of the signal.
5/6
947
UEB4732
TIMING DIAGRAM
TYPICAL OPERATIONG SEQUENCE
32 pulses
r
tit
32 pulses
r",,--.;.tIt--_,
""
UlJlJl ________ .r-LJ1JUl_________ Jr----,L
Clock
DI
StrObe
::: }
LJ
m~de __________~/lL_________/L ::00
,,---t
OutpuT
,
,
"
\
+ 100 V
0 V
~
VAJ
_______ J
---------~
'---..,y--';/
Output
Sustam
Note: X mode circuits are referred to ground.
Y mode ones are floating on sustaining voltage.
In X mode, Inv. input is low.
In Y mode, Inv. input is high.
6/6
948
~
-------~
roode
y
VA>
Write
Erase
v
o:v
,'OOV
ULN2001A-ULN2003A
ULN2002A-ULN2004A
SEVEN DARLINGTON ARRAYS
These versatile devices are useful for driving a wide
range of loads including solenoids, relays DC motors, LED displays filament lamps, thermal printheads and high power buffers.
• SEVEN OARLINGTONS PER PACKAGE
• OUTPUT CURRENT 500 mA PER DRIVER
(600 mA PEAK)
• OUTPUT VOLTAGE 50 V
• INTEGRAL SUPPRESSION DIODES FOR INDUCTIVE LOADS
• OUTPUTS CAN BE PARALLELED FOR HIGHER CURRENT
• TTUCMOS/PMOSIDTL COMPATIBLE INPUTS
• INPUTS PINNED OPPOSITE OUTPUTS TO
SIMPLIFY LAYOUT
The ULN2001A/2002A/2003A and 2004A are supplied in 16 pin plastic DIP packages with a copper
leadframe to reduce thermal resistance. They are
available also in small outline package (SO-16) as
ULN20010/20020/20030/20040.
1--------_._------------ 1
DESCRIPTION
The ULN2001A, ULN2002A, ULN2003 and
ULN2004A are high voltage, high current darlington
arrays each containing seven open collector darlington pairs with common emitters. Each channel is rated at 500 mA and can withstand peak currents of
600 mAo Suppression diodes are included for inductive load driving and the inputs are pinned opposite
the outputs to simplify board layout.
I
I
i
I
I
I
I
1
i
DIP-16 Plastic
:
I
(0.251
i
I
I
I
The four versions interface to all common logic families:
ULN2001A
General Purpose, DTL, TTL, PMOS,
CMOS
. _________ ~
ULN~002A~4-2~ V PMOS
ULN2003A
5 V TTL, CMOS
ULN2004A
6-15 V CMOS, PMOS
____I
~
_
I
ORD::-~:JDES.
I
I
JI
ULN2001AJ2A/3AJ4A (DIP-16)
ULN2001 D/2D/3D/4D (SO-16)
I
-~-
ABSOLUTE MAXIMUM RATINGS
-S--Y--~o-bO-I+-O-u-tP~tV~lt;ge ------ ~LA
Il A
Fig
---_.-
1
-
Input Current
for
for
for
for
Vi = 2-4 V
Vi = 3.75 V
V, =5 V
Vi = 12 V
----_.- -_. - - - - - - - - - - -
for ULN2064B
VCE = 2 V
VCE = 2 V
for ULN2066B
VCE = 2 V
VCE = 2 V
Input Voltage
Turn - on Delay Time
0.5 Vi to 0.5 Vo
tpHL
Turn - off Delay Time
0.5 Vi to 0.5 Vo
IR
Clamp Diode Leakage
Current
for ULN2064B
V R = 80 V
VR = 80 V
Clamp Diode Forward
Voltage
35
1-1
1-2
1.3
1-4
-
V
-V
V
V
V
...
4.3
9.6
1.8
5-2
r-----
mA
mA
mA
mA
--
Ic = 1 A
Ic=15A
2
2.5
V
V
Ic = 1 A
Ic=15A
65
10.._-
--
1-4
3.3
0.6
1.7
~
...
_-
--
- - - - r-
-------
-
---
-------~---
ULN2064B
ULN2064B
ULN2066B
ULN2066B
tpLH
VF
-
Typ.
.-~-.
for ULN2064B
ULN2066B
Ic=100mA
Vi = 0-4 V
--------Ic = 500 mA
Is =6251lA
Ic = 750 mA
Is = 935 IlA
Is = 1-25 mA
Ic = 1 A
Ic = 1.25 A
Is = 2 mA
---
Vi(on)
--,----Min.
-- - - - - - - - - " - - - - - - - - - - - --- --. --- Output Leakage Current
for ULN2064B - ULN2066B
VCE =50 V
VCE =50 V
T amb = 70°C
VCE(sus)
li(on)
-
Test Conditions
1
- - - - r----1.5
---
2
----
-
3
---- --
4
.. _-"-
5
V
V
- - r----Il s
Il s
ULN2066B
T amb = 70°C
--
IF = 1 A
IF = 1.5 A
-
50
100
- - -1.75
2
Il A
Il A
6
V
V
7
Noles: 1. Input voltage is with reference to the substrate (no connection to any other pins) for the ULN2074B and ULN2076B reference is ground for all other types.
2. Input current may be limited by maximum allowable input voltage.
SCHEMATIC DIAGRAM
..-----+---(') C
B
I
I
~
5-5922
ULN2068B : RIN = 2.5 kQ
ULN2070B : RIN = 11.6 kQ
Rs= 9000
Rs= 3-4 KHO
3/8
955
ULN2064B-ULN2066B-ULN2068B-ULN2070B-ULN2074B-ULN2076B
ELECTRICAL CHARACTERISTICS (V s = 5 V for ULN2068B, V s = 12 V for ULN2070B, Tamb
= 25 "C
unless otherwise specified)
Symbol
ICEX
Parameter
Min,
Test Conditions
Output Leakage Current
for ULN2068B - ULN2070B
VCE =50 V
T amb = 70 DC
VCE =50 V
VCE(suS)
Collector-emitter
Sustaining Voltage
for ULN2068B - ULN2070B
Ic = 100 mA
Vi = 0.4 V
VCE(sa!)
Collector-emitter
Saturation Voltage
for ULN2068B
Ic =500 mA
Ic = 750 mA
Ic = 1 A
Ic = 1.25 A
for ULN2070B
Is =500 mA
= 750 mA
Is = 1 A
= 1.25 A
Vi
Vi
Vi
Vi
= 2.75
= 2.75
= 2.75
=2.75
Vi
Vi
Vi
Vi
=5
=5
=5
=5
ULN2068B
ULN2068B
ULN2070B
ULN2070B
Vi
Vi
Vi
Vi
'8
'8
li(on)
Vi(on)
Is
for
for
for
for
Input Current
Input Voltage
VCE = 2 V
for ULN2068B
for ULN2070B
tpLH
Turn-on Delay Time
0.5 Vi to 0.5 Vo
tpHL
Turn-off Delay Time
0.5 Vi to 0.5 Vo
Clamp Diode Leakage
Current
Clamp Diode Forward
Voltage
IR
VF
Fig
100
500
~A
~A
1
V
2
V
V
V
V
V
V
V
V
1.1
1.2
1.3
1.4
V
V
V
V
=2.75 V
=3.75 V
=5 V
= 12 V
550
1000
400
1250
~A
~A
~
4
2.75
5
V
V
5
6
mA
4.5
mA
2
~A
Ic = 1.5 A
8
1
~s
1.5
~s
for ULN2068B - ULN2070B
VR = 50 V
VR = 50 V
T amb = 70 DC
50
100
~A
~A
6
IF = 1 A
IF = 1.5 A
1.75
2
V
V
7
Ic = 1.25 A
~-....--oc
B
E
S-5921.
ULN2074B : RIN = 350 Q
ULN2076B : RIN = 3 kQ
956
Unit
1.1
1.2
1.3
1.4
V
V
V
V
SCHEMATIC DIAGRAM
4/8
Max.
35
for ULN2068B
Ic =500 mA
Vi = 2.75 V
for ULN2070B
Ic =500 mA
Vi =5 V
Supply Current
Typ,
ULN2064B-ULN2066B-ULN2068B-ULN2070B-ULN2074B-ULN2076B
i
ELECTRICAL CHARACTERISTICS (T amb
Symbol
.
I CEX
Parameter
Output Leakage Current
I
----~~---
=
25 "C unless otherwise specified)
for ULN20748 - ULN20768
VCE=50V
VCE = 50 V
T amb- = 70 "C
--
35
VCE(sus)
Collector-emitter
Sustaining Voltage
for ULN20748 - ULN20768
V, = 0.4 V
Ic = 100 mA
VCF(sat)
Collector-emitter
Saturation Voltage
Ic
Ic
Ic
Ic
for
for
for
for
Input Current
l'lon)
=
=
=
=
500 mA
750 mA
1 A
1.25 A
ULN20748
ULN20748
ULN20768
ULN20768
for ULN20748
VCE = 2 V
VCE = 2 V
for ULN20768
VCE = 2 V
VCE = 2 V
Input Voltage
V1(on)
I
Min.
_0_-
Test Conditions
tpLH
.1 Turn-on Delay Tim-;
0.5 V, to 0.5 Vo
tpHL
Turn-off Delay Time
0.5 V, to 0.5 Vo
18
18
18
18
=625 [lA
= 935 [lA
= 1.25 mA
= 2 mA
V,
Vi
V,
Vi
= 2.4 V
=3.75 V
=5 V
= 12 V
~~1":J~1
--U---r -..
Typ.
-
--
ffl~
1.1
I
1
I
1
-+---1.4
-
-
-
-
V
1.2
1.3
1.4
V
V
V
I
---
-
-_.-
4.3
9.6
1.8
5.2
mA
mA
mA
mA
Ic = 1 A
Ic=1.5A
2
2.5
V
V
Ic = 1 A
Ic = 1.5 A
6.5
10
V
V
1
[ls
i
I
!
i
3.3
0.6
1.7
'
3
'
---
4
--1---- .----
.L..1~
5
[ls
----
TEST CIRCUITS
Figure 1.
Figure 2.
I
I--------;p~---~I
I
:
I
I
!
1
Figure 4.
Figure 3.
I
OPEN
OPEN
1
I
OPEN
Ie
I
L -_ _ _ _ _ _
~
_ _ _ _ _ _ _ _ __
l
5-1966
5/8
957
i
I.
'"
I
ULN2064B-ULN2066B-ULN2068B-ULN2070B-ULN2074B-ULN2076B
Figure 6.
Figure 5.
OPEN
,.,A
OPEN~
0-
V--
5-5721
__
Figure 7.
FigureS.
Figure 9 : Input Current as a Function of
Input Voltage.
Figure 10 : Input Current as a Function of
Input Voltage.
15
6/8
958
2.0
2.5
3.0
3.S
4_0
4.!J
5.0 Vj(VJ
10
11
ULN2064B-ULN2066B-ULN2068B-ULN2070B-ULN2074B-ULN2076B
Figure 11 : Collector Current as a Function of
Input Current.
Ie
(AI
1.5
~
--+
~.
MAXIMUM
REQUIRED I,
I
. -
L
j
I
UlN 2064/66B
ULN 207411681
- ~T=r-t=~
0.5
J
1.0
I
20
TYPICAL APPLICATIONS
Figure 12: Common-anode LED Drivers.
Figure 13: Common-cathode LED Drivers.
If;n,fl~l/t~,t/,
"U,tlf/f; /
i
I
_____ J
7/8
959
ULN2064B-ULN2066B-ULN2068B-ULN2070B-ULN2074B-ULN2076B
MOUNTING INSTRUCTIONS
The Rthj-amb can be reduced by soldering the GND
pins to a suitable copper area of the printed circuit
board (Fig. 14) or to an external heatsink (Fig. 15).
During soldering the pins temperature must not exceed 260 'C and the soldering time must not be longer than 12 seconds.
The diagram of figure 16 shows the maximum dissipable power Ptot and the Rth j-amb as a function of
the side "a" of two equal square copper areas having a thickness of 35 Jl (1.4 mils).
The external heatsink or printed circuit copper area
must be connected to electrical ground.
Figure 14: Example of P.C. Board Copper Area
which is Used as Heatsink.
(OPPER
AREA 3'J)J
Figure 15: External Heatsink Mounting Example.
THICKNfSS
I
~
P.
c. BOARD
Figure 16: Maximum Dissipable Power and
Junction to Ambient Thermal
Resistance vs. Side "a".
Figure 17 : Maximum Allowable Power Dissipation vs. Ambient Temperature.
G 3558
G 1559
\1
~/'\
7~ .
.)...
22-
".>..
~7
~
,,..
--+--+---+- + m~
.~
'2:
-I--
_-
.:.
...~"
~./,
"'1>,
_A
~
--+-+-~~ ~
f-'- ~I
'/~
'''S~L
--:p=~+
-~ -~ffii-;'
-'--r,---'-1
1
"I-.
-1-
10
8/8
960
20
30
.t,O
I (mm)
-50
50
~
100
Tamb("C)
ULN2065B ULN2067B
ULN2069B ULN2071 B
ULN2075B ULN20778
80 V - 1.5 A QUAD DARLINGTON SWITCHES
tible with 6-15 VCMOS and PMOS. The ULN2069B
and ULN2071 B include a predriver stage to provide
extragain, reducing the load on control logic.
• OUTPUT CURRENT TO 1.5 A EACH DARLINGTON
• MINIMUM BREAKDOWN 80 V
• SUSTAINING VOLTAGE AT LEAST 50 V
• INTEGRAL
SUPPRESSION
DIODES
(ULN2065B, ULN2067B, ULN2069B and
ULN2071B)
• ISOLATED DARLINGTON PINOUT (ULN2075B
and ULN2077B)
• VERSIONS COMPATIBLE WITH ALL POPULAR LOGIC FAMILIES
'-
--~--
-
..
DESCRIPTION
Designed to interface logic to a wide variety of high
current, high voltage loads, these devices each
contain four NPN darlington switches delivering up
to 1.5 A with a specified minimum breakdown of
80 V and a sustaining voltage of 50 V. The
ULN2065B,
ULN2067B,
ULN2069B
and
ULN2071 B contain integral suppression diodes for
inductive loads and have common emitters ; the
ULN2075B and ULN2077B feature isolated darlington pinouts and are intended for applications such
as emitter follower configurations. Inputs of the
ULN2065B, ULN2069B and ULN2075B are compatible with popular 5 V logic families and the
ULN2067B, ULN2071 Band ULN2077B are compa-
-
-,---,-~--,--
-
-----
POWERDIP
12 + 2 + 2
PIN CONNECTIONS AND ORDER CODES
,---------~
-
..
~-~~,----,~,-----,-
-
-
-
-
~~---'----
: :_~tTIT:: :
I,
e
J
GND
~
0";
I .
1
I
-
J..I
B
6~ir
I' JjL_
C
B
1~
Vs
13
GND
"
G,"
,,7
C
ULN2065B
ULN2067B
September 1988
ULN2069B
ULN2071 B
"
ULN2075B
ULN2077B
1/8
961
ULN2065B-ULN2067B-ULN2069B-ULN2071 B-ULN2075B-ULN2077B
ABSOLUTE MAXIMUM RATINGS
~SymbOI
- -
-
Parameter
f~ VCEX
Output Voltage
I VCE!sus)
Output Sustaining Voltage
I
10
Output Cu rrent
\
Vi
Input Voltage
II
Vs
Input Current
Supply VoltaQ'efo;--ULN2069S------------
Ii
__--+-Ptot
Value
Unit
i
80
V
50
V
1.75
A
for ULN2075B - 2077B
60
for ULN2067B - 2071 B
30
__ ~0~~~0~E3. ____206~B_ _ _ _ _ _ _ _ _ _ _ _ ~___
I
~.
I
I
- 1--
forULN2071B_________ ____
i
Power Dissipation: at T pins = 90°C
\
at T amb = 70°C
V
V
V
I
25
10
mAl
V ~
4.3!
1
I
W
W
.
~O _____ +-_V_~
I
T amb
[Operating Ambient Temperature Range
- 20 to 85
I
°C
I
T stg
[Storage Temperature
- 55 to 150
\
°C
I
SCHEMATIC DIAGRAM
,---------------------------------------
/"'----+---0 c
B
ULN2065B : RIN = 350 Q
ULN2067B : RIN = 3 kQ
2/8
962
"
ULN2065B-ULN2067B-ULN2069B-ULN2071 B-ULN2075B-ULN2~
ELECTRICAL CHARACTERISTICS (T amb = 25 'C unless otherwise specified)
Symbol
ICEX
VCE(sus)
li(on)
Vi(on)
Min.
for ULN20658 - ULN20678
VCE = 80 V
VCE =80 V
Tamb = 70 'C
Collector-emitter
Sustaining Voltage
.
, VCE(sal)
Test Conditions
Parameter
Output Leakage Current
for ULN20658 - ULN20678
Ic = 100 mA
Vi = 0.4 V
Typ.1 Max.
I
U~itT~~
~lA
100
500
flA
1.1
1.2
1.3
1.4
V
V
V
V
50
V
Ic = 500 mA
18 = 625 ~A
Ic = 750 mA
18=935~A
Ic = 1 A
18 = 1.25 mA
Ic = 1.25 A
18 = 2 mA
for ULN20658 - ULN20678
Ic = 1.5 A
18 = 2.25 mA
Collector-emitter
Saturation Voltage
Input Current
for
for
for
for
for ULN·20658
VCE = 2 V
VCE = 2 V
for ULN20678
VCE = 2 V
VCE = 2 V
Input Voltage
1.5
V
mA
mA
mA
mA
4
Ic = 1 A
Ic = 1.5 A
2
2.5
V
V
5
Ic = 1 A
Ic = 1.5 A
6.5
10
V
V
1.4
3.3
0.6
1.7
0.5 Vi to 0.5 Vo
1
~s
0.5 Vi to 0.5 Vo
1.5
~s
Clamp Diode Leakage
Current
for ULN20658 - ULN20678
V R = 80 V
VR = 80 V
T amb = 70 'C
50
100
~A
Clamp Diode Forward
Voltage
IF = 1 A
IF = 1.5 A
1.75
2
V
V
VF
3
4.3
9.6
1.8
5.2
ULN20658 Vi = 2.4 V
ULN20658 Vi = 3.75 V
ULN20678 Vi =5 V
ULN20678 Vi = 12 V
Turn-on Delay Time
IR
2
------.-~---.-
tpHL ..... :rul"n-off D~lay Time
tpLH
!
_-
~A
6
7
----_. ------_. -------_ ..
Notes: 1. Input voltage is with reference to the substrate (no connection to any other pins) for the ULN2075B and ULN2077B refe·
renee is ground for all other types.
2. Input current may be limited by maximum allowable input voltage.
._.-----
SCHEMATIC DIAGRAM
B
~--+----()
:
C
I
....*
I
I
5-5922
ULN2069B : RIN = 2.5 KQ,
ULN2071 B : RIN = 11.6 KQ,
Rs= 900Q
Rs = 3.4 KQ
3/8
963
35B-ULN2067B-ULN2069B-ULN2071 B-ULN2075B-ULN2077B
_ECTRICAL CHARACTERISTICS (V s = 5 V for ULN2069S, Vs = 12 V for ULN2071 S,
T amb = 25 'C unless otherwise specified)
Symbol
ICEX
Parameter
Output Leakage Current
Test Conditions
Min.
for ULN2069B - ULN2071 B
VCE=80V
VCE=80V
T amb = 70°C
VCE(sus)
Collector-emitter
Sustaining Voltage
for ULN2069B - ULN2071 B
Ic=100mA
Vi = 0.4 V
VCE(sat)
Collector-emitter
Saturation Voltage
for ULN2069B
Ic=500mA
Ic = 750 mA
Ic = 1 A
Ic = 1.25 A
Ic = 1.5 A
for ULN2071 B
Ic=500mA
Ic = 750 mA
Ic = 1 A
Ic =1.25A
Ic = 1.5 A
li(on)
Vi(on)
Is
Input Current
Input Voltage
Supply Current
for
for
for
for
ULN2069B
ULN2069B
ULN2071 B
ULN2071 B
100
500
IlA
IlA
1
V
2
1.1
1.2
1.3
1.4
1.5
V
V
V
V
V
2
= 2.75
=2.75
= 2.75
=2.75
=2.75
V
V
V
V
V
Vi
Vi
Vi
Vi
Vi
=5
=5
=5
=5
=5
V
V
V
V
V
1.1
1.2
1.3
1.4
1.5
V
V
V
V
V
Vi
Vi
Vi
Vi
= 2.75 V
=3.75 V
=5 V
= 12 V
550
1000
400
1250
IlA
IlA
IlA
IlA
4
2.75
5
V
5
6
mA
4.5
mA
8
1
!lS
!lS
for ULN2069B - ULN2071 B
VR = 80 V
VR = 80 V
Tamb = 70°C
50
100
IlA
IlA
6
IF = 1 A
IF = 1.5 A
1.75
2
V
V
7
0.5 Vi to 0.5 Vo
Turn-off Delay Time
0.5 Vi to 0.5 Vo
Clamp Diode Leakage
Current
Clamp Diode Forward
Voltage
Ic = 1.25 A
SCHEMATIC DIAGRAM
___---.,--0 c
E
5-5924
ULN2075B : RIN = 350 n
ULN2077B : RIN = 3 kn
964
Fig.
1.5
Turn-on Delay Time
4/8
Unit
Vi
Vi
Vi
Vi
Vi
for ULN2069B
Ic = 500 mA
Vi = 2.75 V
for ULN2071 B
Ic = 500 mA
Vi =5 V
tpHL
VF
Max.
50
Ic = 1.5 A
VCE =2 V
for ULN2069B
for ULN2071 B
tpLH
IR
Typ.
ULN20658-ULN20678-ULN20698-ULN20718-ULN20758-ULN20778
ELECTRICAL CHARACTERISTICS (T amb
Symbol
IcEX
Parameter
=
25 'C unless otherwise specified)
Test Conditions
Output Leakage Current
Min.
for ULN2075B - ULN2077B
VeE = 80 V
VeE =80V
T amb = 70 'C
VeE(,Us)
Collector-emitter
Sustaining Voltage
for ULN2075B - ULN2077B
Ic=100mA
Vi = 0.4 V
VeE(,at)
Collector-emitter
Saturation Voltage
Ic = 500 mA
18 = 625 f.lA
Ic = 750 mA
18 = 935 IlA
18 = 1.25 mA
Ic = 1 A
Ic = 1.25 A
18 = 2 mA
for ULN2075B - ULN2077B
Ic = 1.5 A
18 = 2.25 mA
li(on)
Input Current
for
for
for
for
V,(on)
Input Voltage
for ULN2075B
VeE = 2 V
VCE = 2 V
for ULN2077B
VeE = 2 V
VCE = 2 V
ULN2075B
ULN2075B
ULN2077B
ULN2077B
Typ.
Max.
Unit
Fig.
100
500
f.lA
f.lA
1
V
2
1.1
1.2
1.3
1.4
V
V
V
V
3
50
1.5
V
4.3
9.6
1.8
5.2
mA
mA
mA
mA
Ie = 1 A
Ie = 1.5 A
2
2.5
V
V
Ic = 1 A
Ie = 1.5 A
6.5
10
V
V
V,
V,
V,
Vi
=
=
=
=
2.4 V
3.75 V
5 V
12 V
1.4
3.3
0.6
1.7
4
5
tpLH
Turn-on Delay Time
0.5 Vi to 0.5 Va
1
f.ls
tpHL
Turn-off Delay Time
0.5 Vi to 0.5 Va
1.5
f.lS
TEST CIRCUITS
Figure 2.
Figure 1.
OPEN
Figure 4.
Figure 3.
OPE.N
OPEN
OPEN
5-5927
5/8
965
ULN2065B-ULN2067B-ULN2069B-ULN2071 B-ULN2075B-ULN2077B
Figure 5.
Figure 6.
l
I
I
i
I
I
_J
Figure 7.
Figure 8.
I
_J
Figure 9 : Input Current as a Function of
Input Voltage.
I, .--r--r--'--.--'---'~~~
(rnA)
Figure 10 : Input Current as a Function of
Input Voltage.
I;
(rnA)
14
7
J_
ULN 20678
UlN 20778
12
10
1.5
6/8
966
20
2.5
3.0
].5
4.0
4.~
5.0 Vi{V)
10
11
V I (V)
ULN2065B-ULN2067B-ULN2069B-ULN2071 B-ULN2075B-ULN2077B
Figure 11 : Collector Current as a Function of
Input Current.
Ie
tAl
~~-~--~--e--+--+--+-
1.5
1.0
0.5
1.0
2.0
).0
I, (mAl
MOUNTING INSTRUCTIONS
The Rth j-amb can be reduced by soldering the GND
pins to a suitable copper area of the printed circuit
board (Fig. 12) or to an external heatsink (Fig. 13).
During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.
The diagram of figure 14 shows the maximum dissipable power Ptot and the Rth j-amb as a function of
the side "oc" of two equal square copper areas having a thickness of 35 Il (1.4 mils).
The external heatsink or printed circuit copper area
must be connected to electrical ground.
Figure 12: Example of P.C. Board Area which is
Figure 13: External Heatsink Mounting Example.
Used as Heatsink.
(OPPER
P
AREA ]5}'
THICKNESS
c. BOARD
~
..'1'
SGS-niOMSON
7/8
I&iD©OOlll!.rn~OO@IlID©$
967
ULN2065B-ULN2067B-ULN2069B-ULN2071 B-ULN2075B-ULN2077B
Figure 14: Maximum Dissipable Power and Junc-
Figure 15: Maximum Allowable Power Dissipa-
tion to Ambient Thermal Resistance
vs. Side "I".
Ptot
tion vs. Ambient Temperature.
G lS59
r--r-,----,---,--,-r--r-.,-''''T''-J Rt h
(W)
,\\t
(-CfW)
-+- -+--+--1 80
'\''''~-S-I
I\~~
-~
l
20
t1f
+
10
8/8
968
20
30
.t,O
I (mm)
~
:,~~
~
~r
"~;te~~..,.,, 't
"'"'It,.
60
-50
1
.
~
'1J,a-"P.
~~
. -+
r
"':{;,
K'"
~
~1t Hl' r.;~
50
100
Tamb<-C)
ULN2801A
ULN2802A ULN2803A
ULN2804A ULN2805A
EIGHT DARLINGTON ARRAYS
• EIGHT DARLINGTONS WITH COMMON EMITTERS
• OUTPUT CURRENT TO 500 mA
• OUTPUT VOLTAGE TO 50 V
• INTEGRAL SUPPRESSION DIODES
• VERSIONS FOR ALL POPULAR LOGIC FAMILIES
• OUTPUT CAN BE PARALLELED
• INPUTS PINNED OPPOSITE OUTPUTS TO
SIMPLIFY BOARD LAYOUT
the ULN2804A has a 10.5 KQ input resistor for 6-15
V CMOS and the ULN2805A is designed to sink a
minimum of 350 mA for standard and Schottky TTL
where higher output current is required.
All types are supplied in a 18-lead plastic DIP with
a copper lead from and feature the convenient input-opposite-output pinout to simplify board layout.
DESCRIPTION
The ULN2801 A-ULN2805A each contain eight darlington transistors with common emitters and integral suppression diodes for inductive loads. Each
darlington features a peak load current rating of 600
mA (500 mA continuous) and can withstand at least
50 V in the off state. Outputs may be paralleled for
higher current capability.
Five versions are available to simplify interfacing to
standard logic families: the ULN2801 A is designed
for general purpose applications with a current limit
resistor; the ULN2802A has a 10.5 KQ input resistor and zener for 14-25 V PMOS ; the ULN2803A
has a 2.7 KQ input resistor for 5 V TTL and CMOS;
DIP-18
(Plastic)
' - - - - - - - - - - - - - ---.-........!
CONNECTION DIAGRAM (top view)
I
IN
1
1
18
OUT
1
IN
2
2
17
OUT
2
IN
3
3
16
OUT
3
IN
4
4
15
OUT
4
IN 5
5
14
OUT
5
IN 6
6
13
OUT
6
--
7
IN
8
11
9
'() COMMON FREE
GND
I
I
IN 7
8
I
r"""1-t--i1'2
OUT 7
OUT
B
WHEELING OIOO£S
5-)1.90/1
I
I
~
'-------------------------------_._------_.-
September 1988
1/6
969
UlN2801 A-U lN2802A-U lN2803A-UlN2804A-U lN2805A
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Output Voltage
50
Vi
Input Voltage for ULN2802A, 2803A, 2804A
for ULN2805A
30
15
Ie
Continuous Collector Current
500
18
Continuous Base Current
25
Ptot
-
.-
.
~.-,--,---~
~.--
I
..
- 20 to 85
Operating Ambient Temperature Range
T stg
I
I
I
I
1,0
2.25
Power Dissipation (one Darlington pair)
(total package)
Tamb
r---.1--
i
i
Value
Vo
I
I
.--~~~.
- 55 to 150
Storage Temperature Range
~--.~--.
Unit
V
V
V
mA
mA
W
W
°C
°C
SCHEMATIC DIAGRAM AND ORDER CODES
For ULN2802A (each driver for 14-15 V PMOS)
For ULN2801A (each driver for PMOS-CMOS)
r
-JIoI-----<)COM
,,
L_,... ________ _
L._~~~~~~~~~ _ _ _ _ _
J
I
For ULN2803A (each driver for 5 V, TTUCMOS)
For ULN2804A (each driver for 6-15 V
CMOS/PMOS
I
2.7kn
INO----r-------c:::J- -
T<-----.------+/
-,--I:..,
:
i
:
L~o~o~ ...
,.
EACH DRIVER
-1~
_~
1 '''"'
EACH DRIVER
For ULN2805A (each driver for high out TTL)
-~-l
2/6
970
-Ji+--{)COM
'N~~~O I,~I'"0-1J-I
-"T--{)our
__
~-}--
I
__J
VO
"'
ULN2801A-ULN2802A-ULN2803A-ULN2804A-ULN2805A
THERMAL DATA
~-ambl T~ermal
Resistance
Ju~;ionamb~n;
------------------------
ELECTRICAL CHARACTERISTICS (T amb
-
i
---,---- --------,.-
Output Leakage Current
---
1--
- - - - --
Collector-emitter
Saturation Voltage
----
-
---------.-.----
-- -
Input Current
VCE = 50 V
T amb = 70 cC
T amb = 70 °C
for ULN2802A
VCE = 50 V
for ULN2804A
VCE=50V
I
-
-
for ULN2805A
Ic = 500 flA
i
Input Voltage
for ULN2802A
VCE = 2 V
for ULN2803A
VCE = 2 V
VCE = 2 V
VCE = 2 V
for ULN2804A
VCE = 2 V
VCE = 2 V
VCE = 2 V
VCE = 2 V
for ULN2805A
VCE = 2 V
]
]
I
I]
I
I
hFE
Ci
DC Forward Current Gain
for ULN2801A
VCE = 2 V
-
= 17 V
= 3.85 V
=5 V
= 12 V
=3 V
--
0.35
093
1
1.5
- - ------
50
U"
0.5
1.45
2.4
1-
1b
-
2
mA
mA
mA
mA
mA
3
Il A
4
- - -f - - - -
,----
I
Ic = 300 mA
13
V
Ic = 200 mA
Ic = 250 mA
Ic = 300 mA
2.4
2.7
3
V
V
V
5
6
7
8
V
V
V
V
5
Ic
Ic
Ic
Ic
125
=200
= 275
= 350
=
mA
mA
mA
mA
Ic = 350 mA
V
2.4
- -
I
1000
Ic = 350 mA
-
2
pF
-
fls
-
1
~IS
-
50
100
Il A
IlA
6
2
V
7
!
15
tpLH
Turn-on Delay Time
0.5 Vi to 0.5 Va
tpHL
Turn-off Delay Time
0.5 Vi to 0.5 Va
0.25
Clamp Diode Leakage
Current
VR = 50 V
Tamb = 70 DC
Clamp Diode Forward
Voltage
IF = 350 mA
VF
1b
--
1.25
I 25
0.25 I 1
IR
flA
V
V
V
---
------
65
-
1.1
1.3
1.6
-------
0.82
500
---
0.9
1.1
1.3
----------------
T amb = 70°C
Vilon)
----
-
IB = 250 flA
IB = 350 flA
IB =500 flA
Input Current
I
~IA
500
I
]
V, = 1 V
~(Off]
]
'
1
V, = 6 V
-----.----
for ULN2802A
for ULN2803A
for ULN2804A
I
I
I
l
I i(on)
:~~~rTr':1
Min;i-iyp.
VCE = 50 V
- - ------- - - . , - -- - - -
Ic = 100 mA
Ic = 200 mA
Ic = 350 mA
...
------
Vi
Vi
Vi
Vi
Vi
)
I
-55 ---~-;'C!WJ
25 'C unless otherwise specified)
Test Conditions
--_.----,--
I
VCE(sa!]
=
---
Parameter
isymbol
I CEX
-
u-M~=_=----
Input Capacitance
VR = 50 V
------_·_--1
1.7
I
I
3/6
971
ULN2801A-ULN2802A-ULN2803A-ULN2804A-ULN2805A
TEST CIRCUITS
Figure 1a.
Figure 1b.
--.-----------------~
Figure 2.
Figure 3.
CX'EN
I
OPEN
I
I
l_ _
Figure 4.
OPEN
Figure 5.
1 - "2
··f
·
L
I
..,.""
- - - - - - " - - " - - - - - -_ _ _ -._0 _ _ -
Figure 6.
-----l
I
I
I
S· '5727
!
~----------------~
4/6
972
Figure 7.
1-I
J
--------------,
U LN2801 A-ULN2802A-U LN2803A-U LN2804A-ULN2805A
Figure 8 : Collector Current as a Function of
Saturation Voltage.
Figure 9 : Collector Current as a Function of
Input Current.
I,.--'---r--.--'---r--~~~,
(mA)
600
400f---+-++-+-----t---+--fL--+-+-+-;f--j
400
200
05
200
10
Figure 10 : Allowable Average Power Dissipation
as a Function of Ambient Temperature.
It--
2.0
r\\
-
(rnA)
300
\~.
(;..~-
10
-
-+i
+-+-+--+-+-1-
\
I
150
100
10
Figure 12 : Peak Collector Current as a Function
of Duty.
I I
T3mh=50'C
400
30 o
REcaMMENaE;
\.
}-
""
\AZ~\~~'!!." ~
>-. ~
~
~g~g~~T~GOUTP~
SIMULTANEOUSLY
200
]0
40
50
I;
~l-rT\}~
1I
10
"-
~ t': " "- t......
:---...
~
I I
t--- r----..
r----..
DUTY CVCLE(°/ol
/
1-
V
1.0
0.5
-- r--
L'
"/
15
~
I
60
Figure 13 : Input Current as a Function of Input
Voltage (for ULN2802A).
(mA
---
1\\\
r
100 ~+--+--t-+-+
\
50
500
f--+---+--+--"I.-"'<-f'"
-
\
0.5
I
~+-~t\--'I-'I+'..-+--"~--+-__f-"o,J-
'00
\
15
Figure 11 : Peak Collector Current as a Function
of Duty Cycle.
'C
DIEV!C~ lI~1T
wo
V
V
9
./
./
""
q'<-~
~,
./
V
./
V./
I I
20
'0
60
DUTY CYCLE("I.)
12
14
16
,e
20
22
24
Vi
(V)
5/6
973
ULN2801A-ULN2802A-ULN2803A-ULN2804A-ULN2805A
---------------------------------------Figure 14 : Input Current as a Function of Input
Voltage (for ULN2804A)
(mA
'f--l -J- -
Ii
I
-T
--
i
-- - -
(mA
--
L
/
V
f---'0
V
k..-'
~~
- - - ';-.0- r-------
,/ I.
'5
r-------
,/
~"
,-<~y
.L,
~
~~
c
/]~~ ~
10
--- -
I---
11
20
Figure 16 : Input Current as a Function of Input
Voltage (for ULN2805A)
,
4.0
3.5
.A1
3.0
A ~~
~.
~~~
~ ~\\-~,
~~
\\'
~\~
AREA
Of NORMAL
/' ~
~
OPERATION WITH
"\\'
-
10
'5
.
1.0
V.J./
0.5
1.5
6/6
974
1.0
--
r- :-:- -~ .
10
15
I
f
~ ~'I"
05
L
I
/
I- -
(mA
I
"\-./
-I'~
-- .~
r---
05
,
10
I
1.5
--
Figure 15 : Input Current as a Function of Input
Voltage (for ULN2803A)
STA,NDARD OR
SCHOTTKY TTL
1.5
3.0
3.5
II I (v)
25
30
35
40
45
50
55
60
Vi (V)
ULQ2001 R/2R
ULQ2003R/4R
SEVEN DARLINGTON ARRAYS
- - - - -- - - -
-----------_.--
--------------------
• SEVEN DARLINGTONS PER PACKAGE
• OUTPUT CURRENT 500 mA PER DRIVER
(600 mA PEAK)
• OUTPUT VOLTAGE 50 V
• INTEGRAL SUPPRESSION DIODES FOR INDUCTIVE LOADS
• OUTPUT CAN BE PARRALLELED FOR HIGHER CURRENT
• TTUCMOS/PMOSfDTL COMPATIBLE INPUTS
• INPUTS PINNED OPPOSITE OUTPUTS TO
SIMPLIFY LAYOUT
DESCRIPTION
-
~
..-.L;.:.
....... -... '- ...
DIP-16 Ceramic
\
--------l
PIN CONNECTION
The ULQ2001 R, ULQ2002R, ULQ2003R and
ULQ2004R are high voltage, high current darlington
arrays each containing seven open collector darlington pairs with common emitters. Each channel is rated at 500 mA and can withstand peak currents of
600 mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite
the outputs to simplify board layout.
IN
1
1
16
>o-~-t--j1\5
I
OUT 1
IN
2
2
IN
3
3
>o-~-t--j114
OUT
3
IN 4
4
.:>o-~--t--f113
OUT
4
IN 5
5
>o-~-t--jI12
OUT 5
IN 6
6
.:>o-~-t--fl"
OUT
6
IN 7
7
X>-~-+-~I'O
OUT
7
OUT
2
The four versions interface to all common families.
'
lJL02001 R :_ Gen~ral pu.rpose, DTl, TTL, CMOS
Ul02002R ' 15-25 VPMOS
~
Ul02()03R _~2..\1.!2S.c;rv1..<:l~
I
i
____________ I
_Ul020.t:tl-F:::-
l
I Current
Tamb = 70°C
I
I
I
I
I
iV;;-;/:~le~tor-emitter
I
Saturation Voltage
___ ~~_~
f-
i
I'/on)
I
Input Current
I
I
___ ---I-
___ I
Gain
-
C,_.
-
Input Capacitance
- - - - _. . _-_._-
tpLH
tPH~_
V, = 1 V
500~_ Y~___L __ ~
IB = 250 >tA
0.9
1.1
I B = 350 IlA I
!
1.1
1.3
IB=500IlA.l- ____ f_1.~_+1~6
for U LQ2002R
for ULQ2003R
V, = 17 V
V, = 3.85 V
~r =~~~OO~R_~,~~ V
V CE=2V
VCE = 2 V
VCE = 2 V
IR
VCE =2 V
Turn-on Delay Time
I
I Clamp Diode Leakage
i
I
I
1.25
1.35
>tA
1b
2
2
I
__ 2__.J
mA
mA
10~-4 _;~
I
I
3
3
.1-;
50 ----L~_+___-_-: _.J:l.~_1__ ~_J
I
!
Ic=300mA
13
V
15
I
Ic = 200 mA
Ic = 250 mA
Ic = 300 mA
2.4
2.7
3
V
V
V
5
5
:
5
IC=125mAtt
Ic = 200 mA
Ic = 275 mA
5
I
6
7
8
I
I
____ -'~_
2
Ic =350 mA 11000 '
._-
----
0.82
0.93
I
Ic = 500 IlA
0.5 V, to 0.5 Vo
-
+Tljrn-of!.Delay Time
I
Ic = 100 mA
Ic = 200 mA
Ic=350mA
_._-
....
i
1a
I
f--..-.-.-t--~--.--.-~~---+-'Ic5- = 2....V. __ ~~5~A
hFE
DC Forward Current
for ULQ2001 R
,-_.
I
500
VCE=2V
i for ULQ2003R
I VCE = 2 V
I VCE = 2 V
I VCE = 2 V
I for ULQ2004R
I
I
I
>tA
V,=6V
I Input Current
I T amb = 70 'C
vi;:,~-I-I~~tV~~;-~--TI.fur-ULQ2002R
:
I
I
100
I
T amb = 70°C
for ULQ2002R
VCE=50V
for ULQ2004R
VCE = 50 V
I'/Off)
I
I
I
VCE = 50 V
I
15
25
0.25
1
---
0.5 V, to 0.5 V o .
I
VR = 50 V
I.
0.25
I
50
IlA
I
6
Current
_t~"Cb = 70 '~.f1 = 50 V -L---L-~-l-..1.~-;--J!~~-~
I Clamp Diode Forward I IF = 350 mA
I
i
1.7
I
2
,
V
I
7
I
Voltage
~ _ _ _ _ _ _ _ _ _ _ _ _L ___,-I
_ . ...L _ _ J
I
VF
l
3/4
977
ULQ2001 R·ULQ2002R-ULQ2003R·ULQ2004R
TEST CIRCUITS
Figure la.
Figure lb.
Figure 2.
Figure 3.
r----~
-.-~--
OPEN
I
OPEN
$-1986
5-1980
Figure 4.
Figure 5.
OPEN
OPEN
5 -1987
Figure 6.
4/4
978
Figure 7.
VB100
HIGH VOLTAGE DUTY CYCLE
CONTROLLER
ADVANCE DATA
•
•
•
•
•
•
•
•
•
INTEGRATED 4S0V POWER DARLINGTON
OUTPUT CURRENT UP TO SA
HIGH IMPEDANCE DIFFERENTIAL INPUTS
PROGRAMMABLE DRIVER CURRENT
DUTY CYCLE CONTROL LINEARITY
WITHIN 1.S%
SWITCHING FREQUENCY UP TO 100 kHz
THERMAL PROTECTION
INTEGRATED PROTECTION AT
COMPARATOR INPUTS
MINIMUM EXTERNAL COMPONENT COUNT
The VB100 is mainly intended as a D.C. motor and
high voltage inductive load driver. It is able to adjust the output voltage duty cycle as a function of
the input control voltage, at a switching frequency
set by an internal stable sawtooh generator.
Built in thermal shut down switches off the power
Darlington whenever the junction temperature exceeds an internally set value, typically 1S0°C with
a SV supply.
MULTIWATT-11
The VB100 is a monolithic integrated circuit which
acts as a fully independent duty cycle controller
with high voltage, high current open collector darIi ngton output.
It is made using the innovative VI Power M1 technology merging a high voltage vertical discrete Darlington transistor together with bipolar control
circuitry.
TEST AND APPLICATION CIRCUIT
September 1988
1/7
This is advanced information on a new product in development or undergoing evaluation. Details are subject to change without notice.
979
VB100
ABSOLUTE MAXIMUM RATINGS
VCE
Power Darlington collector voltage
450
V
Ic
VD
Power Darlington collector current
8
A
Driver stage supply voltage
15
V
Vs
Control stage supply voltage
ID
Driver stage current
V1N,V N1
Comparator input voltage
Ptot
Power dissipation
Top
Tstg
Junction operating temperature
-45 to 150
°C
Storage temperature
-55 to 150
°C
15
V
350
mA
V
Vs to -10
internally limited
THERMAL DATA
Rthj _case Thermal resistance junction-case
max
3.0
°CIW
CONNECTION DIAGRAM (Top view)
'-./ 11
10
9
8
7
6
o
o
5
4
o
3
2
r-"\ 1
)
TAB CONNECTED TO PIN 6
PC-0290
_2/_7_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m~TI~:J?©~
980
______________
VB100
PIN FUNCTION
N°
NAME
High voltage Darlington
emitter
FUNCTION
Output stage ground n.1. It must be short circuited with
VE2 ; if no current sensing is used, a filtering capacitor
must be provided between this pin and the high voltage
supply. If current sensing is required, a shunt resistor can
be connected between pin VE1 and VE2 and power ground
and the filtering capacitor must be connected between
ground and high voltage supply.
1
V E1
2
V SN1 Signal negative supply
voltage
This pin is connected to the PWM ground and to the control circuit substrate. Supply range is from 0 to - 5V. The
applied negative supply voltage must be the most negative voltage of the device and must be the same voltage of
pin VSN2 '
3
VSN2 High current negative
supply voltage
This pin is connected to the driver ground. Supply range
is from 0 to - 5V. An applied negative supply, speeds-up
the output Darlington.
4
Vo
Driver stage supply
voltage
This pin supplies the base current for the darlington driver during tON (output darlington on-time)
10 (on) = (V s - V 0 (sat))/R o'
5
Vs
Control circuit power
supply
Supply voltage input. Being the internal reference voltage
taken from Vs a 5V ±5% D.C. supply is required.
6
Vc
High voltage output collector
This pin is internally connected to package header. It is
the high voltage open collector output.
7
VIN
Inverting input
Input of the PWM comparator. A D.C. value between VCHL
and VCHH sets the output duty cycle from minimum to maximum value.
8
V CH Non inverting input
Non inverting input of the PWM comparator and external
capacitance pin. The capacitance ~EXT (togheter with
REXT) fixes the sawtooth generator frequency (fose)' A low
leakage capacitance is necessary for a linear operation.
The relationship between frequency and CEXT REXT is:
fose z 1.1/(REXT x CEXT)
9
VR
It fixes the current leh of the current generator which changes according to the following relation:
leh = 0.56 x V siR EXT
10
GND Analog ground
It is the control circuit ground: for a reliable circuit operation only few millivolt drop « 10mV) are allowed between
this pin and CEXT ' REXT common point.
11
VE2 High voltage darlington
emitter
Output stage ground n 2. It must be short circuited with
VE1 ; if no current sensing is used, a filtering capacitor
must be provided between this pin and the high voltage
supply. If current sensing is required, a shunt resistor can
be connected between pins V E1 and VE2 and power
ground and a filtering capacitor must be connected between power ground and high voltage supply.
Biasing Resistor
----------------------------~~~~~~?~~~J?©~
___________________________
3_/7
981
VB100
ELECTRICAL CHARACTERISTICS: Vs= 5V; Vee= 300V; VA = 2V; VB = OV; RIN = 10kD; REXT = 50KD;
Ree= 88D; Ro= 330D; ReH = 100D; Tc= Tcase= 25°C
See fig. 1. - unless otherwise specified.
Parameters
Test Conditions
Min.
VeE
Voltage between
pins 6 and 1
IC (leak)
High voltage collector
leakage current
Vee= 350 V
VeE (sat)
Saturation voltage of the
output Darlington
(between pins 6 and 1)
VB = 2 V
le= 3 A
le= 5 A
VA = 0
10= 150 mA
10= 250 mA
Vo (sat)
Saturation voltage
between pins 4 and 1
VB = 2 V
10= 50 mA
VA = 0
le= 2A
Vs
Control circuit power
supply
Is off
Control circuit current
Is on
Control circut current
VB = 2 V
VinTHH
PWM comparator high
threshold
VB = 2 V
Ve= 50 V
Te= -40 to 130°C
VA = 0-+3V-1
(see fig. 2)
PWM comparator low
threshold
VinTHL
Vi nTH (hyst.) PWM comparator
hysteresis
V
mA
2.5
2.7
2.9
3.3
V
V
2.8
3.5
V
4.75
5.0
5.25
V
20
30
45
mA
2.5
6
10
mA
0
120
mV
VB = 2 V
Ve= 50 V
Te= -40 to 130°C
VA = 3V-+0~
(see fig. 2)
100
260
mV
VB = 2 V
Ve= 50 V
Te= -40 to 130°C
(see fig. 2)
50
250
mV
1
10
fJ-A
2.45
2.55
2.8
V
0.4
0.5
0.7
V
+7
%
VA = 0
VB = 2 V
Te= -40 to 130°C
Ve= 0.3 V
VCHH
High level threshold
sawtooth generator
V A = 0 V -+ 3.2 V - 1
V B = 0.3 V
V eHL
Low level threshold
sawtooth generator
VA = 3.2 V -+ 0 V ~
ICH - IR
External capacitor
charging current,
pin 8 versus IR' pin 9
IR= 50 to 110 fJ-A
VA = 1 V
VB = 0.3 V
_4/_7_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~mg::~~cc:,
982
Unit
1
PWM comparator input
bias current
IR
Max.
450
liN
---
Typ.
-7
______________
VB100
ELECTRICAL CHARACTERISTICS:
Test Conditions
Parameters
ICH
T
,
X
VA = 1 V
IR= 100 ,"A
1 Capacitor charging
ICH current change with
temperature (pin 8)
IR= 100 ,"A
tr
Rise time of the
Darlington collector
current, Ic (see fig. 3)
ID= 150 mA
Ic= 3 A
ts
Storage time of the
Darlington collector
current, Ic (see fig. 3)
Ic= 3 A
V SN = -5 V
V SN = 0 V
ID= 150 mA
Fall time of the
Darlington collector
current, Ic (see fig. 3)
Ic= 3 A
V SN = -5 V
V SN = 0 V
ID= 150 mA
Minimum duration of the
Darlington collector
current, Ic (see fig. 3)
Ic= 3 A
VSN = -5 V
V SN = 0 V
ID= 150 mA
Max.
Unit
300
~-
ppm
°C
2.7
Reference bias voltage
pin 11
tON (min)
Typ.
Vs= 0.3 V
Tc= -40t0130°C
VR
tf
Min.
2.8
2.92
V
0.25
,"s
1.5
8.0
,"s
,"s
0.2
1.0
,"s
2.0
10.0
,"s
,"s
,"S
ICH' = ICH (130°C) - ICH (- 40°C)
N.B.' pulsed operation: t rep . = 10 ms
Fig. 1 Test Circuit
RO
REXT
IR
VR
5
Rc
4
6
9
~
GND
Vs
VB100
Vcc
RCH VCH
VA
VB
S[-0312
~-------------~~~~~~?~~~~n ~
____________
5/_7
983
VB100
Fig. 2 Comparator threshold hysteresis
Fig. 3 Switching waveforms
\
OFF
1(1%1
90
VinTHfhist.l
_ ~C~•.!l _+-__---+--O-N--
10
--
\
/
S(-0251/2
Fig. 4 Switching waveforms
:: z---------~
O~----_.------------------~-----+
ICH
ICHl
-v O.10mA
0
~H2
rv
-lOrnA
5C-0315
984
VB100
APPLICATION INFORMATION
The VB100 is mainly intended as a quarter bridge
controller. The sawtooth generator frequency is set
by two external components, REXTand C EXT.:
the output stage. As VIN increases tON increases
following the relationship:
REXT. x CEXT.
tON = t s +tf +t,+0.91 x
x VIN
(VCHH - V CHL)
in the range:
fose = 1 .1/(R EXT . x CEXTJ
0.5Hz < fos e. < 5 kHz
0.5Hz < fos e. < 20 kHz
in the ranges:
23.3 kl]
400pF
0.5 Hz
<
REXT.
< CEXT.
< fose.
<
100 kl]
< 200 ftF
< 100kHz
The input voltage VIN sets the duration of tON for
with VSN = 0
with VSN = - 5 V
If an inductive load is used, it is necessary to provide a current limiting circuit. The device can form
part of a closed loop control by just adding a few
external components; fig. 5 shows a typical application example.
Fig. 5 Application Circuit
Vee
TACHOMETER
Rs
MOTOR
R2
V V
VB100
R,
R"
S[-03'4
R1 =
R2 =
R3=
R4=
100
33 I]
1 kl]
0.15 I]
R5=
Rs=
R7=
Rs=
100 kl]
1.8 kl]
2 kQ
100 kQ
R9 =50kQ
C 1 = 1 nF
R10 = 3.3 kQ
C2 = 1 nF
R11 = 4.7 kQ
REXT = 50 kl]
C 3 = 33 nF
C EXT = 1.8 nF
- - - - - - - - - - - ru'l SGS-THOMSON
'J, '"
J:lJU(gIiil©~r"~C::1fIiil©UIlU(g:i!
7/7
--------------
985
PACKAGES
987
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TECHNICAL NOTE
DESIGNING WITH THERMAL IMPEDANCE
by T. Hopkins, C. Cognetti, R. Tiziani
REPRINT FROM "SEMITHERM PROCEEDINGS" S. DIEGO (U.S.A.) 1988.
ABSTRACT
Power switching techniques used in many modern
control systems are characterized by single or
repetitive power pulses, which can reach several
hundred watts each. In these applications where the
pulse width is often limited to a few milliseconds, cost
effective thermal design considers the effect of thl3rmal
capacitance. When this thermal capacitance is large
enough, it can limit the junction temperature to within
the ratings of the device even in the presence of high
dissipation peaks. This paper discusses thermal
impedance and the main parameters influencing it.
Empirical measurements of the thermal impedance of
some standard plastic packages showing the effective
thermal impedance under pulsed conditions are also
presented.
INTRODUCTION
Power switching applications are becoming very
common in many industrial, computer and automotive
ICs. In these applications, such as switching power
supplies and PWM inductive load drivers, power
dissipation is limited to short times, with single or
repeated pulses. The normal description ofthe thermal
performance of an IC package, Rth U-a) Uunction to
ambient thermal resistance), is of little help in these
pulsed applications and leads to a redundant and
expensive thermal design.
This paper will discuss the thermal impedance and the
main factors influencing it in plastic semiconductor
packages. Experimental evaluations of the thermal
performance of small signal, medium power, and high
power packages will be presented as case examples.
The effects of the thermal capacitance of the packages
when dealing with low duty cycle power dissipation
will be presented and evaluated in each of the example
cases.
The thermal resistance, Rth, quantifies the capability
of a given thermal path to transfer heat. The general
definition of resistance of the thermal path, which
includes the three different modes of heat dissipation
(conduction, convection and radiation), is the ratio
between the temperature increase above the reference
and the heat flow, L,P, and is given by the equation:
Rth =
L,T
L,P
=
L,T
L,Q
L,t
where: L,Q = heat
L,t = time
Thermal capacitance, Cth, is a measure of the
capability of accumulating heat, like a capacitor
accumulates a charge. For a given structural elemen~
Cth depends on the specific hea~ c, volume V, and
density d, according to the relationship:
Cth=cdV
The resulting temperature increase when the element
has accumulated the heat Q, is given by the equation:
L, T = L,Q/Cth
The electrical analogy of the thermal behavior for a
given application consisting of an active device,
package, printed circuit board, external heat sink and
external ambient is a chain of RC cells, each having
a characteristic time constant:
To show how each cell contributes to the thermal
impedance of the finished device consider the
THERMAL IMPEDANCE MODEL FOR PLASTIC simplified example shown in figure 1. The example
PACKAGES
device consists of a dissipating element (integrated
The complete thermal impedance of a device can be circuit) soldered on a copper frame surrounded by a
modeled by combining two elements, the thermal plastic compound with no external heat sink. Its
resistance and the thermal capacitance.
equivalent electrical circuit is shown in figure 2.
TN 204/0588
1/14
989
Fig. 2 - Equivalent Thermal Circuit of Simplified Package
Fig. 1 - Simplified Package Outline
<
MOLD
r-----=------'--
R th si
R th frame
R th mold
C th si
C th frame
C t h mold
CH IP
~:rFRAME
5-10621
5-10622
The first cell, shown in figure 2, represents the thermal
characteristics of the silicon itself and is characterized
by the small volume with a correspondingly lew thermal
capacitance, in the order of a few mJ/oC. The thermal
resistance between the junction and the siliconlslug
interface is of about 0.2 to 2 °C/W, dependin~l on die
size and on the size of the dissipating elements existing
on the silicon. The time constant of this cell is typically
in the order of a few milliseconds.
After the plastic has heated, convection and radiation
to the ambient starts. Since a negligible capacitance
is associated with this phase, it is represented by a
purely resistive element.
When power is switched on, the junction temperature
increase is ruled by the heat accumulation in the cells,
each following its own time constant according with
the equation:
6T = Rth Pd [1 - e (tl T)
1
The second cell represents the good conductive path
from the siliconlframe interface to the frame periphery.
In power packages, where the die is often soldered
directly to the extemal tab of the package, the thermal
capacitance can be large. The time constant for this
cell is in the order of seconds.
The steady state junction temperature, Tj, is a function
of the Rth (j _ a) of the system, but the temperature
increase is dominated by thermal impedance in the
transient phase, as is the case in switching applications.
From. this point, heat is transferred by conduction to
the molded block of the package, with a large thermal
resistance and capacitance. The time constant of the
third cell is in the order of hundreds of seconds.
A simplified example of how the time constants of each
cell contribute to the temperature rise is shown in figure
3 where the contribution of the cells of figure 2 is
exaggerated for a better understanding.
Fig. 3 - Time Constant Contribution of Each Thermal Cell (Qualitative Example)
8.BBt
8.Bl
8.1
t
te
teB
lBBB
TII'E OR PULSl: UIOllf ( A.U.)
_2/_1_4 _ _ _ _ _ _ _ _ _ _ _
Gi SGS-THOMSON _ _ _ _ _ _ _ _ _ _ __
• J I" i!;lni£:OO@~~~i£:1JiIil@~Di£:~
990
When working with actual packages, it is observed that
the last two sections of the equivalent circuit are not
as simple as in this model and possible changes will
be discussed later. However, with switching times
shorter than few seconds, the model is sufficient for
most situations.
EXPERIMENTAL MEASUREMENTS
When thermal measurements on plastic packages are
performed, the first consideration is the lack of a
standard method. At presen~ only draft specifications
exi~ proposed last year and not yet standardized (1).
The experimental method used internally for evaluations
since 1984 has anticipated these preliminary recomen-
dations to some extent, as it is based on test patterns
having, as dissipating elemen~ two power transistors
and, as measurement element, a sensing diode placed
in the thermal plateau arising when the transistors are
biased in parallel.
The method used has been presented elsewhere (2)
for the pattern P432 (shown in figure 4), which uses
two small (1000 sq mils) bipolar power transistors and
has a maximum DC power capability of 40W (limited
by second breakdown of the dissipating elements).
A similar methodology was followed with the new H029
pattern, based on two D-Mos transistors (3) having a
total size of 17,000 sq mils and a DC power capability
of 300 W on an infinite heat sink at room temperature
(limited by thermal resistance and by max operating
temperature of the plastics).
Fig. 4
a) P432 Test Die
D.C.
D.C.
SUPPLY
SUPPLY
D.C.
SUPPLY
FAST
DVM
PULSE
GENERATOR
STORAGE
SCOPE
b) P432 Measurement System
--------------lijl ~~~~m=~9A1------------....;3/-1-4
991
Using the thermal evaluation die, four sets of
measurements were performed on an assortment of
insertion and surface mount packages produced by
SGS-Thomson Microelectronics. The complete characterization is available elsewhere (4). The four
measurements taken were:
1) Junction to Case Thermal Resistance (Power
Packages)
2) Junction to Ambient Thermal Resistance
3) Transient Thermal Impedance (Single Pulse)
4) Peak Transient Thermal Impedance (Repeated
Pulses)
Fig. 5
a) H029 Test Die
b) H029 Measurement System
_4/~1_4_ _ _ _ _ _ _ _ _ _ _ _ _
992
i:1i ~~~~m?1f~:~~Al--------------
Fig. 6 - Set-up for Rth (j _ c) Measurement
PRESSURE CLIPPING
CONNECTION
THIN WIRES
WATER-COOLED
COPPER BLOCK
~THERMAL
GREASE
5-9785
THERMOCOUPLE
The junction to case thermal resistance measurements
were taken using the well known setup shown in figure
6 where the power device is clamped against a large
mass of controlled temperature.
The junction to ambient thermal resistance in still air,
was measured with the package soldered on standard
test boards. described later. and suspensed in 1 cubic
foot box. to prevent air movement.
The single pulse transient thermal impedance was
measured in still air by applying a single power pulse
of duration to to the device. The exponential
temperature rise in response to the power pulse is
shown qualitetively in figure 7. In the presence of one
single power pulse the temperature. 6 T max. reached
at time to. is lower than the steady state temperature
calculated from the junction to ambient thermal
resistance. The transient thermal impedance Ro. is
obtained from the ratio 6 T max/Pd.
Fig. 7 - Transient Thermal Response for a Single Pulse
Tmax --l----~
J ______
' - - I_
__
to
5-9784
______________________________
~~~~~~~~:~~------------------------~5~/1~4
993
The peak transient thermal impedance for a series of
repetitive pulses was measured by applying a string
of power pulses to the device in free air. When power
pulses ofthe same height, Pd, are repeated with a given
duty cycle, DC, and the pulse length, tp, is shorter than
the total time constant of the system, the train of pulses
is seen as a continuous source with mean power level
given by the equation:
Fig. 8 - Transient Thermal Response for Repetitive
Pulses
a multileaded power package in which the die is
attached directly to the tab of package using a soft
solder (Pb/Sn) die attach. The tab of the package is
a 1.5 mm thick copper alloy slug. The thermal model
of the MULTIWATT, shown in figure 9b, is not much
different from that shown in figure 2. The main
difference being that when heat reaches the edge of
the slug, two parallel paths are possible; conduction
towards the molding compound, and convection and
radiation towards the ambient. After a given time,
convection and radiation taked place from the plastic.
Fig. 9
Tmax
Tmin.
I
I
I
I
1
1
I
Tamb
d
P
---':c--c,:--------------
___ J!'I
~n~rL
r---;-.
:on~l..
toft ..I
__
5-9786
On the other hand, the silicOn die has a thermal time
constant of 1 to 2 ms and the die temperature is able
to follow frequencies of some kHz. The result is that
Tj oscillates about the average value:
t::. Tjavg =
a) MULTIWATTassembly
Rth Pdavg
R th mold
The resulting die temperature excursions are shown
qualitatively in figure 8. The peak thermal impedance,
Rthp, corresponding to the peak temperature, t::. T max,
at the equilibrium can be defined:
Rthp =
t::. T max/Pd =
Tamb
F (tp, DC)
C th 5'
The value of Rthp is a function of pulse width and duty
cycle. Knowledge of Rthp is very important to avoid
a peak temperature higher than specificed values
(usually 150°C).
EXPERIMENTAL RESULTS
The experimental measurements taken on several of
the packages tested are summarized in the following
sections.
MULTIWATT Package
The MULTIWATT (R) package, shown in figure 9a, is
l l_4_ _ _ _ _ _ _ _ _ _ _ _ _
_6:...
994
C th frame
L---C::J---
S --10625
b) Equivalent Thermal Circuit
Using the two test die, the measured junction to case
thermal resistance is:
P432
Rth U- c) = 2°C/W
Rth (j - c) = O.4°C/W
H029
The measured time constant is approximately 1 ms
for each of the two test patterns, but the two devices
have a different steady state temperature rise.
lifi ~~~~m~1J~:9~
--------------
package in free air, Rth j _ a, is 36°C/W with the P432
die and 34.5°C/W with the H029 die.
The second cell shown in figure 9 is dominated by
the large thermal mass of the slug. The thermal
resistance of the slug, Rthslug is about 1°C/W and the
thermal time constant of the slug is in the order of 1
second.
Figure 10 shows the single pulse transient thermal
impedance for the MULTIWATT with both the P432
and H029 test die. As can be seen on the graph, the
package is capable of high dissipation for short periods
of time. For a die like the H029 the power device is
capable of 700 to 800 W for pulse widths in the range
of 1 to 10 ms. For times up to a few seconds the
effective thermal resistance for a single pulse is still
in the range of 1 to 3°C/W.
The third RC cell in the model has a long time constant
due to the mass of the plastic molding and its low
thermal conductivity. For this cell the steady state is
reached after hundreds of seconds.
For the M ULTIWATT the DC thermal resistance of the
Fig. 10 - Transient Thermal Response MULTIWATT Package
~
Ul
P4 32
:3
0
~
~
Pd - 2
t-
:'1
'"OJ
'"
~
'"OJ
F
t-
HI2'J
-
z:
die siz
i'l
'"z:
'"
~
on die di
~ipctin9
Pd - 2 Wa l
2
• 34.000
q.mi Is
eo· 1S.S 0
~q.mi
Is
mJunled on board
'"
0.001
0.01
10
0.1
TII'E OR PULSE IlIOTH ( 5 )
The peak transient thermal impedance for the
MULTIWATT package containing the P432 die in free
air is shown in figure 11.
Power DIP Package
The power DIP package is a derivative of standard
small signal DIP packages with a number of leads
connected to the die pad for heat transfer to external
heat sinks. With this technique low cost heat sinks can
be integrated on the printed circuit board as shown
in figure 12a. The thermal model of the power DIP,
shown in figure 12b accounts for the extemal heat sink
on the circuit board by adding a second RC cell in
parallel with the cell corresponding to the molding
compound.
1000
In this model, the second cell has a shorter time
constant than for the MULTIWATT package, due in
large part to the smaller quantity of copper in the frame
(the frame thickness is 0.4 mm compared to 1.5 mm).
Thus the capacitance is reduced and the resistance
increased.
The increased thermal impedance due to the frame
can partially be compensated by a better thermal
exchange to the ambient by adding copper to the heat
sink on the board. The DC thermal resistance between
the junction and ambient can be reduced to the same
range as the MULTIWATT package in free air, as
shown in figure 13.
- - - - - - - - - - - - r u •'J, l" SCiS-THOMSON _ _ _ _ _ _ _ _ _ _ _7.;.../1_4
IJiJDIt:~@~~~It:1T~@ilD©®
995
Fig. 11 - Peak Thermal Resistance MULTIWATT Package
,
:3
u
DC -
2~
....
~.S
l.!
a.4
'"....
'"
lI!
....
'" la
if
B.3
§
a.2
>z::
!;j
z::
a:
~
'"It'a:
~
-
~
l------
~
------------Pd-SWaH
free air
D}!L ___
DC-DUTY CYC E---- __ !..U.L_S_I';._"L
PULSE REPETI ION PERIOD
10
a.l
laa
laaa
THE DR PULSE IJIDTH ( ms )
Fig. 12
R th mold
Ti
thtram.!G~-D--Tamb
-00
Rthsi
R
"", '''''=.
5-10626
a) Power DIP Package
_8;.../1_4_ _ _ _ _ _ _ _ _ _ _ _ _ ~
996
C th mold
~~-f"l-'.m"
C th board
b) Equivalent Thermal Circuit
~~~~m~vT:~~©~
---------------
Fi~.
13 - Rth
(i - a) vs. PCB Heat Sink Size 12 + 3 + 3 Power Dip
CS>
~
'"
u
~
'z:
1\
\
II>
~
z:
S
t;
z:
...,:::>
~
M
6.eB
6.5e
1.66
1.56
2.66
2.56
3.66
3.56
4.66
1 ( em )
As a comparison, figure 14 compares the thermal
performance of the power DIP and the MULTIWATT
package. It is clearly seen that even though the DC
thermal resistance may be similar, the MULTIWATT
is superior in its performance for pulsed applications.
Fig. 14 - Transient Thermal Impedance for Single Pulses in Power DIP and MULTIWATT Packages
SIN
Pd
lB
LE
=
2
DIP(12+3+ ) with
6 SQ.CM 0 BOARD
HEAT SINK AREA
B.BBl
B.Bl
IR
B.l
lB
lBB
lBBS
TIME DR PULSE IJIDTH ( s )
9/14
------------- ~ S~~~~m~1i~:~?~~-----------.....;..-
997
Standard Signal Packages
In standard, small signal, packages the easiest thermal
path is from the die to the ambient through the molding
compound. However, if a high conductivity frame, like
a copper lead frame, is used another path exists in
parallel. Figure 15 shows the equivalent thermal model
of such a package. The effectiveness of a copper frame
in transferring heat to the board can be seen in the
experimental results in DC conditions.
Fig. 15
R th mold
t
lamb
5-10627
a) DIP Package Mounted on PCB
b) Equivalent Thermal Circuit DIP Package on PCB
Table 1 shows the thermal resistance of some standard
signal packages in two different conditions; with the
device floating in still air connected to the measurement
circuit by thin wires and the same device soldered on
a test board.
Table 1 - Thermal Resistance of Signal Packages
Package
DIP8
DIP 14
DIP 16
DIP 20
DIP 14
DIP 20
DIP 24
DIP 20
SO 14
PLCC 44
DC/W
Frame Thickness
& Material
Rth O-a)
floating
(0.4 mm Copper)
(0.4 mm Copper)
(0.4 mm Copper)
(0.4 mm Copper)
(0.25 mm Copper)
(0.25 mm Copper)
(0.25 mm Copper)
(0.25 mm Alloy 42)
(0.25 mm Copper)
(0.25 mm Copper)
125-165
78-90
98-128
64-73
95-124
62-71
58-69
85-112
115-147
84-95
100-134
76-87
67-84
61-68
158-184 133-145
218-250 105-180
66-83
48-72
on board
The transient thermal resistance for single pulses for
the various packages are shown in figures 16 through
20.
The results of the tests, as shown in the preceding
figures, show the true capabilities of the packages. For
example, the DIP 20 with a Alloy 42 frame is a typical
package used for signal processing applications and
can dissipate only 0.5 to 0.7 W in steady state
conditions. However, the transient thermal impedance
for short pulses is low (11DC/W for tp = 100 ms) and
almost 7 Watts can be dissipated for 100 ms while.
keeping the junction temperature rise below 80DC.
The packages using a 0.4 mm Copper frame have
a low steady state thermal resistance, especially in the
case of the DIP 20. The thicker lead frame increases
the thermal capacitance of the die flag, which greatly
improves the transient thermal impedance. In the case
of the DIP 20, which has the largest die pad, the
transient Rth for 100 ms pulses is about 4.3DC/W. This
allows the device to dissipate an 18 Watt power pulse
while keeping the temperature rise below 80DC.
As with the previous examples the peak transient
thermal impedance for repetitive pulses depends on
the pulse length and duty cycle as shown in figure
14. With the signal package, however, the effect of the
duty cycle becomes much less effective for longer
pulses, due primarily to the lower thermal capacitance
and hence lower time constant of the frame.
_1..;;O/....;1~4_ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~~~~m?1i~:J?©~
998
--------------
Fig. 16 - Transient Thermal Impedance DIP 20 (Alloy 42)
.--1-
100
SINe LE
~
u
Pd - 1 IJ H
~
t-
~
'"
L.J
'"
10
V
~
tzo
V
~
'"
zo
a
~
0.001
0.01
on board
mounle
a
g
p ~LSE
V
-
V
/
on die dis ipcl:.ing a eo - 2.000 5q.mi l!lo
die pad '" 125 x 1sa
0.1
TIME OR PULSE WIDTIl (
q.mi 15
10
5
100
1000
)
Fig. 17 - Transient Thermal Impedance 0.4 mm Copper Frame DIP Packages
10
\) ~ i
10
1800
TInE OR PULSE lIlOTH
____________ 51 SGS-THOMSON
'J'"
_ _ _ _ _ _ _ _ _ _ _1_1:../1_4
IiijJn©rnI@~~~©lIrn1@~~©~
999
Fig. 18 - Transient Thermal Impedance 0.25 mm Copper Frame DIP Packages
100
on die
area::: 2. 00 sq. mils
issipotin
20
moun led on board
,
Pd - 2
:3
tl
SINGL
PULSE
u
'"
lE
~
~
'"
'"
. '"
~
'"'"
F
10
...
§
00x135. .mils
ie pad ..
'"
z:
a:
~
'B.01
0.BBl
DIP 20
119 x 129 • .mils
DIP 24
150x280. .mi Is
0.1
1B
lBB
10BB
TII1: DR PULSE WIDTH ( s )
Fig. 19 - Transient Thermal Impedance 0.25 mm Frame PLCC Package
50
sn
,
GLE
V
I:l
z:
~
~
'"
'"
'"
..J
19
~
'"~
...
~
'"z:
...8i
V
Watt
Pd -
V
9.001
/
0.91
~
PULSE
mounl donSI1PC 5 board
:3
u
V
ad - 269
die
ize • 35. 8fJ aq.mils
on die dl sipating
B.l
269 sq.mi s
di.
1
0
eo
19
= 2.08e
sq.mils
100
1990
TII1: OR PULSE UIDTH ( s )
_12..;.I_l_4_ _ _ _ _ _ _ _ _ _ _ _
1000
l.U ~~~~mg~:~~~,
--------------
Fig. 20 - Transient Thermal Impedance 0.25 mm Copper Frame 5014 Package
100~========~==========~========~==~~CDcrTI~
,
3
u
5 WaH
mounled on SM
10
--->1<- - 2 WaH
CB1 B SGS board
100
1080
10000
TIl'[ OR PULSE WroTH ( ms )
Fig. 21 - Peak Thermal Impedance 0.25 mm Copper Frame 14 Lead DIP
Sf)
:3
~
~
'-'~I
W
~
--"
a:
~
f-
>:::
B
,~
z=
f::
10
w
"-
IJ.1
18
100
1000
-------------- I.:fl ~~~~~g~:~~~~ ____________..;;1..;;3.:../;;..14
1001
CONCLUSION
This paper has discussed a test procedure for
measuring and quantifying the thermal characteristics
of semiconductor packages. Using these test methods
the thermal impedance of standard integrated circuit
packages under pulsed and DC conditions were
evaluated. From this evaluation two important
considerations arise:
1) The true thermal impedance under repetitive pulsed
conditions needs to be considered to maintain the peak
junction temperature within the rating for the device.
A proper evaluation will result in junction temperatures
that do not exceed the specified limits under either
steady state or pulsed conditions.
2) The proper evaluation of the transient thermal
characteristics of an application should take into
account the ability to dissipate high power pulses
_14..;1_1_4_ _ _ _,....-_ _ _ _ _ _ _
1002
allowing better thermal design and possibly reducing
or eliminating expensive extemal heat sinks when they
are oversized or useless.
REFERENCES
(1) SEMI Draft Specifications 1377 and 1449, 1986
(2) T. Hopkins, R. Tiziani, and C. Cognetti, "Improved
thermal impedance measurements by means of
a simple integrated structure", presented at
SEMITHERM 1986
(3) C. Cini, C. Diazzi, D. Rossi and S. Storti, "High side
monolithic switch in Multipower-BCD technology",
Proceedings of Microelectronics Conference,
Munchen, November 1986
(4) Application Notes 106 through 110, SGS-THOMSON
Microelectronics, 1987
@. ~~~~m~1J~:~~~
--------------
PACKAGES
SO-8J
SO-16J
SO-14J
SO-20L
SO-20 (12+4+4)
1003
PACKAGES
PLCC - 20 Plastic Chip Carrier
PLCC 15 + 5
PLCC - 44 Plastic Chip Carrier
PLCC -28 Plastic Chip Carrier
8 lead Plastic Minidip
4+4 lead Powerdip
:
.--~-:;;--o.a~!,Q-l:J..n-,
rF--:2~_-2S
,)
I
I
EIj;I
.... 1
'I
I
-
~
'
-+-
'ri
O.9--++--""'--_H=
LU""
, '''\
1153
~2-:7~.~_-l
1004
P001-F6
PACKAGES
8 lead Plastic Minidip/2
"""''" -t--t-tj"'"1' ' '
''',m
"
_._-._-
l
~_.J.~'
63.'J(1)
14 lead Plastic Dip
III Nominal dimension
121 Truegeometri~.l position
J
8 lead Ceramic Minidip
14 lead Plastic Dip/2
(1) Nominaldimt!nsign
121 TruegllOmetric:alposillon
1005
PACKAGES
14 lead Ceramic Dip
16 lead Plastic Dip (0.4)
8+8 lead Powerdip
12+2+2 lead Powerdip
~J
R38toO.50
I
i
wcLj
1 - - - - --
~~--------j
01
16 lead Plastic Dip/2
16 lead Plastic Dip (0.25)
2.54
RL.
I
I
LJl,L-j
I
i
~:::::::i
1006
PACKAGES
18 lead Ceramic Dip
16 lead Ceramic Dip
~
18.95109.521
[::::::1
I
18 lead Plastic Dip
I
20.3
8.95'09.52
~
~
20 lead Plastic Dip (0.25)
12+3+3 lead Powerdip
Q
~
[
~
,::::::J
-
.''''"''----,
1007
PACKAGES
20 lead Plastic Dip (0.4)
16+2+2 Powerdip
14+3+3 Powerdip
28 lead Plastic Dip
14.1
~
.Q,L-~J.4
1.27"'''1
---±'22'""'.86'---_~
I
CJ
37.34-
(TliU
023'0
15.2'016.68
I
[:::::: :::::1
22 lead Plastic Dip
40 lead Plastic Dip
14.1 rna.
'"~
Or
0
----~---
"-
" ," " 8" "
u
.
9..o!
"
1008
(1)
Nomlnaldimens,on
(2)
T",eg80IllI!tricalposjrion
t:::::: ::'::~:::::::
I
Q23t0031
15.21016.68
PACKAGES
PENTAWATT
TO-220
4.8rna~
~
3.85
jii.$. 3.65
I
Horizontal Version
~I~'
01
1.20to~
;::;1
I
i
L
I
2.~~
0.35 to 0.55
1:"-
SOT-82
Vertical Version
~
IX>
$2
-~
.1\
N
c
E
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.3
Linearized : No
XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date : 2012:12:14 10:46:40-08:00
Modify Date : 2012:12:14 19:33:48-08:00
Metadata Date : 2012:12:14 19:33:48-08:00
Producer : Adobe Acrobat 9.52 Paper Capture Plug-in
Format : application/pdf
Document ID : uuid:22202ab9-86c1-473e-84d0-21faf95cb735
Instance ID : uuid:0546daee-7455-41f1-a42d-5f16fd7c1b98
Page Layout : SinglePage
Page Mode : UseNone
Page Count : 1018
EXIF Metadata provided by EXIF.tools