1988_Siliconix_Integrated_Circuits_Data_Book 1988 Siliconix Integrated Circuits Data Book
User Manual: 1988_Siliconix_Integrated_Circuits_Data_Book
Open the PDF directly: View PDF .
Page Count: 1204
Download | ![]() |
Open PDF In Browser | View PDF |
General Information . Process Option Flows • Selector Guide _ Cross Reference Analog Switches and Multiplexers Data Conversion III III D WidebandNideo _ Special Functions _ Display Drivers . . Power Conversion II!I ASIC ID Packaging Applications Publications Index Worldwide Sales Offices and Distributors lEI III III III 1988 INTEGRATED CIRCUITS DATA BOOK trW" ~ Siliconix incorporated ..... Siliconix incorporated ~ SlIIconlx Incorporated reserves the rIght to make changes In the cIrcuItry or specIfIcatIons at any tIme wIthout notIce and assumes no responsIbility for the use of any cIrcuIts descrIbed hereIn and makes no representatIons that they are free from patent InfrIngement. WarnIng RegardIng LIfe Support ApplicatIons SlIIconlx products are not sold for applicatIons In any medIcal equIpment Intended for use as a component of any life support system unless a specIfic wrItten agreement pertaInIng to such Intended use Is executed between the manufacturer and SlIIconlx. Such agreement will requIre the equIpment manufacturer eIther to contract for addItIonal reliability testIng of the SlIIconlx parts and/or to commIt to undertake such testIng as a part of Its manufacturIng process. In addItIon, such manufacturer must agree to IndemnIfy and hold SlIIconlx harmless from any claIms arisIng out of the use of the SlIIconlx parts In life support equIpment. Stresses listed under· Absolute Maximum RatIngs· may be applied (one at a tIme) to devices wIthout resultIng In permanent damage. ThIs Is a stress ratIng only and not subject to productIon testIng. Exposure to absolute maxImum ratIng condItIons for extended perIods may effect devIce reliability. @1988 SlIIconlx Incorporated Printed In U.S.A. WY Siliconix ~ incorporated SILICONIX INTEGRATED CIRCUITS For over 25 years, Siliconix, has been a leading supplier of small-signal FETs, power MOSFETs, and a broad selection of analog integrated circuits (ICs). With worldwide corporate and manufacturing headquarters in Santa Clara, California, Siliconix also has manufacturing facilities in Wales, Hong Kong and Taiwan. The IC products detailed in this data book include analog switches and mUltiplexers, data converters, wide band/video switches and multiplexers, display drivers, power conversion ICs, and special function ICs and analog/digital gate arrays. These products are designed for applications in the industrial, computer peripherals, communications, and military markets. Siliconix serves these customers with products of unequaled performance, quality and reliability through the use of our leading design, processing, packaging and testing technologies. The product specifications listed in this data book are arranged in a new, simplified format. The electrical tables and performance curves contain detailed information, simplifying the tasks of design and component engineers. Each of the data sheets has been controlled by the Siliconix quality assurance organization which guarantees that all limits stated are fully tested in production. We solicit your comments and suggestions, and look forward to continually serving your future analog integrated circuit requirements. ~ ~ Siliconix incorporated About This Edition of the Siliconix Integrated Circuit Data Book NEW PRODUCT DATA SHEETS APPEARING FOR THE FIRST TIME: PART NUMBER DESCRIPTION PAGE NUMBER ANALOG SWITCHES AND MULTIPLEXERS DGP201A DGP303A DG400-405 DG408/409 DG411/412/413 DG417/418/419 DG421/423/425 DG441/442 DG444/445 DG480 DG485 DGP508A DG548/549 DG566 DG601 DG908/909 Precision Quad Analog Switch (A/S) •...............•••.... Precision Dual SPDT A/S • • . . . . . . . . • . . . . . . . . . . . . . . . • . . . • .• High Performance A/S . • . • . . . . . . • . . . . • • . • . . . . . . . . . • . . . . .. High Performance 8-ChannellDifferential 4-Channel Multiplexers (MUX) ..••......•..•..•.•................... High Performance Quad A/Ss •• • . • • • • . • • • . • . • . • . . . . . . . • • .• High Performance Mini DIP Switches .........•............. High Performance Dual A/Ss With Latches ....•.........•... Improved Si-Gate Quad A/Ss (DG201 A/202 Upgrade) .•.•..... Improved Si-Gate Quad A/Ss (DG211/212 Upgrade) .•.•..••.• 8-Channel Switch Array ..•.• . . • . . . • . . . • . . . . • . • . . • . • . . • • .• 8-Channel Low-Power Switch Array .•........•....•.....•.• Precision 8-Channel MUX ..•....•.....•.................. 8-Channel/Differential 4-Channel Overvoltage Protected MUXs .. Serial-loading Octal High-Voltage A/S ..................••.. Low Charge High-Speed Quad A/S ..•.•........•....•..•.. 8-ChannellDifferential 4-Channel Fault-Protected MUXs . . . . • • .. 5-102 5-173 5-212 5-229 5-234 5-245 5-255 5-265 5-274 5-282 5-288 5-314 5-369 5-375 5-407 5-414 DATA CONVERSION INTEGRATED CIRCUITS Si2504 Si7240 Si7533 Si7541 Si7541A Si7542 Si7543 Si7545 Si7820 Si8603 Si8604 High Speed CMOS Successive Approximation Register •••.•.•.. 6-22 12-Bit Voltage-Output DAC ....•.•.....•.•.....•..•........ 6-43 10-Bit CMOS Multiplying DAC ......•......•.•.......•.•.... 6-51 12-Bi! CMOS Multiplying DAC (MDAC) •.....•.•.•..•......... 6-58 12-Bit CMOS Multiplying DAC ....•.......•..•....••.•..•... 6-67 12-Bit CMOS MDAC With 4-Bit Latches .......•.......•.•.... 6-76 12-Bit CMOS MDAC With Serial Input . . . . . . . . . . . . . . . . . . . . . . .. 6-90 12-Bit CMOS MDAC With Latches •..••.........•..•.....•.• 6-104 8-Bit Half Flash A/D Converter ..............•......•...••. 6-120 8-Bit AID Converter With Sample/Hold ..................•.. 6-130 8-Bit A/D Converter With Sample/Hold ...•..............•.. 6-141 WIDEBANDIVIDEO INTEGRATED CIRCUITS DG534 DG535 DG536 DG538 DG540 DG541 DG542 4-Channel WidebandlVideo MUX .••.••••..................•. 7-3 16-Channel WidebandlVideo MUX (DIP-28) •.•••..•••.•....... 7-21 16-Channel WidebandlVideo MUX (PLCC-44) ...••............ 7-34 8-ChannellDual 4-Channel WidebandlVideo MUX ••..•.•....... 7-47 Quad WidebandlVideo "T" Switch (20 Lead) ..•...••••....•.. 7-65 Quad WidebandlVideo "T" Switch (16 Lead) ..•...........••. 7-70 Dual SPDT WidebandlVideo "T" Switch .•.•....•........•.... 7-75 ...... 5i1iconix incorporated ~ NEW PRODUCT DATA SHEETS APPEARING FOR THE FIRST TIME (Cont'd) DESCRIPTION PART NUMBER PAGE NUMBER SPECIAL FUNCTIONS 0470 SI7652 Octal Driver/Buffer Switch Array . . • . . . . . . • . • . . . • . . • . • . • • . . .. 8-29 Low-Noise Chopper-Stabilized Op-Amp ....•••.....••.•••.... 8-56 DISPLAY DRIVERS Si9560 Electroluminescent Symmetric Row Driver ....•.•...........• 9-27 ASIC IS05 15-Volt Analog/Digital Gate Arrays .••.•.......•..•.........• 11-3 POWER CONVERSION 519100/5i9101 Si9102 Si9110/S19111 5i9115/Si9116 1-Watt. High-Voltage Switchmode Regulators ................ 1-Watt. High-Voltage Switch mode Regulator ....••••......... High-Voltage Switchmode Controllers ....••.•...•.•..•.•••.. Off-Line 5witchmode Controllers . • • . • • . • • . . . . . • • . . • • . • . • . .• DISCONTINUED/NEW UPGRADE CROSS REFERENCE: PART NUMBER 0123 DF320/320A DF322A DF331/332 DF820 DG151/153 DG152/154 DG161/163 DG162/164 DG200 DG201 ·DG300-308 DG381-390 DG491 DG506-509 DG5240.2,4 DG5241.3.5 G115-117 G122/123 PWM25 PWM27 PMW125 Si25HC04 5i8020/21 AVAILABILITY/REPLACEMENT/UPGRADE Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 DG200A DG201A. DGP201A. DG441 DG300A-308A DG381A-390A Note 1 DG506A-509A Note 1 DG421/423/425 Note 2 Note 2 Note 1 Note 1 Note 1 Si2504 Note 1 NOTES: 1. Obsolete product. 2. Contact factory on availability. 10-16 10-26 10-35 10-43 .... Siliconix incorporated ~ TABLE OF CONTENTS Section 1. General Information Device Ordering Information • . • . . • . . • . • . . . . . . . . . • • . . . . • • . • . . • • • . . • • • . • . • . • • • . •• 1-1 Die Ordering Information . . . . . . • . . . . • • . . . • . • • . • . . . . • • . . . . . . • . • • . . . . . • . • . • . . • . .. 1-3 BS9000 Ordering Information •.•....•..•........•....••...••.••••••.••..••.•.•. 1-5 JAN38510 Ordering Information ..•.............•..•••.•.•.•......••..•.•...•••. 1-6 Standard Military Drawing (SMD) .••...•.••.••.••..•••.•.•••.•.•..••.•..•.•.•••. 1-8 Burn-In Connections .•...•••.•.••.•..•.........•....••.•.••.•••.•••..•••.••• 1-12 Section 2. Process Option Flows Process Option Flow Charts ••...•....•...... . . . • . . . . . . . . • . . • . • • . • • • . • . • . . • . • .• 2-1 Section 3. Selector Guide .................................................... 3-1 Section 4. Cross Reference ............................. ; ..................... 4-1 .Section 5. Analog Switches and Multiplexers Table of Contents Introduction .••....••.•..•••.•••...•..•.....•..•••.•.•••.•.•..•••.•.•.•..•.• 5-1 DG123: 5-Channel SPST PMOS Analog Switch •..•.....••..•..•.•...••••.•.•..••.. 5-8 DG125: 5-Channel SPST PMOS Analog Switch • • . • . . • . • • • • . . . • • • . • . • • . . • . • • • . . • •. 5-11 DG126/129/140: Dual DPST JFET Analog Switches ...•....•.•.••.•.•....•.•...••• 5-15 DG133/134/141: Dual SPST JFET Analog Switches ...•.•••..•.•..•...•.••..•.•••• 5-22 DG139/142/145: Dual DPDT JFET Analog Switches .•........••.•.•..•.•.••..••..• 5-30 DG143/144/146: SPOT JFET Analog Switches •..•.....••.•.••••.••••••.•••.••••• 5-38 DG172: Monolithic 4-Channel PMOS Analog Switch .........••..•.•....•.•.•.....• 5-46 DG180/181/182: High-Speed Driver with Dual SPST JFET Switches •.••••.•..••.••••. 5-51 DG183/184/185: High-Speed Driver with Dual DPST JFET Switches ..•••..•...•.....• 5-62 DG186/187/188: High-Speed Driver with SPDT JFET Switch •...•...•..•.•.....•..•. 5-74 DG189/190/191: High-Speed Driver with Dual SPDT JFET Switches ••.••.•..••...•... 5-85 DG200A: Dual Monolithic SPST CMOS Analog Sy.-itch •..••••.•..•••••.•..•.•.••.•. 5-96 DGP201A: Precision Monolithic Quad SPST CMOS Analog Switch •••..•.•.....•.•.. 5-102 DG201 A/202: Quad Monolithic SPST CMOS Analog Switches . . • • • • • • . • . • . . • . . . . • .. 5-117 DG211/212: Low Cost 4-Channel Monolithic SPST CMOS Analog Switches ••.••....• 5-129 DG221: 4-Channel Monolithic SPST CMOS Analog Switch with Data Latches ....•.... 5-143 DG243: Monolithic General Purpose CMOS Analog Switch .•...••.••..••••.•.....• 5-151 DG271: High-Speed Quad Monolithic SPST CMOS Analog Switch •.••••••.•..•••.•• 5-156 DG300A/301A/302A/303A: CMOS Analog Switches •.•.•.•••..••••.••.•.••...••• 5-161 DPG303A: Precision Dual SPDT CMOS Analog Switch ••.•.••••.•••••...•..•...•.. 5-173 DG304A/305A/306A/307A: CMOS Analog Switches ...•.•..•...•....•..•.....••.. 5-184 DG308A/309: Quad Monolithic SPST CMOS Analog Switches ..••••.•..•••...•.•... 5-195 DG381A/384A/387A/390A: General Purpose CMOS Analog Switches ••.•.•...•.•••. 5-201 DG400-405: Low-Power - High-Speed CMOS Analog Switches ••..••..•••..•..•..• 5-212 DG408/409: 8-Channel/Dual 4-Channel High Performance CMOS Analog Multiplexers ....•.•..•........•.......•••..••...•••.•••..•. 5-229 DG411/412/413: Precision Monolithic Quad SPST CMOS Analog Switches ••..•...... 5-234 DG417/418/419: Precision MiniDIP CMOS Analog Switches •.•.•..•...••.•••.•.••. 5-245 DG421 1423/425: Low-Power - High-Speed Latchable CMOS Analog Switches ...•..•. 5-255 fI"1T Siliconix ~ Section 5. incorporated Analog Switches and Multiplexers (Cont'd) DG441 1442: Monolithic Quad Switches SPST CMOS Analog Switches .•...••...•.••. DG444/445: Monolithic Quad SPST CMOS Analog Switches .......•...•..•....••.. DG480: High-Speed CMOS Octal Analog Switch Array .•.•..•.•......•.....•.••.. DG485: Low-Power - High-Speed CMOS Octal Analog Switch Array ...•............ DG501: 8-Channel Multiplex Switch with Decode .,. . . . . . . . . . . . . • • . . . . . . . . . . . . . .• DG503: 8-Channel Multiplex Switch with Decode ......•......•.•......•..•...•.. DG506A/507A: 16-Channel/Dual 8-Channel CMOS Analog Multiplexers .•.••......•.. DGP508A: Precision 8-Channel CMOS Multiplexer/Demultiplexer •..•.•.••..•••••..• DG508A/509A: 8-Channel/Dual 4-Channel CMOS Analog Multiplexers .......••..•... DG526/527: 16-Channel and Dual 8-Channel Latchable Multiplexers ........•..•.... DG528/529: 8-Channel and Dual 4-Channel Latchable Multiplexers ...•.•...•...•... DG548/549: 8-Channel and Dual 4-Channel CMOS Analog Multiplexers with Overvoltage protection ••.••...••••.•....•..•.••.•.........•.•...•...•... DG566: Serial-Loading Octal SPST High-Voltage Analog Switch .•..•.•.•••••..•..•• DG568/569: 8- and Dual 4-Channel High-Voltage CMOS Multiplexers with Latches ...• DG5040-5045: Monolithic General Purpose CMOS Analog Switches .••..••.•....... DG5140/5141 1514215143/5144/5145: Low-Power - High-Speed CMOS Analog Switches ••...•.•..........•...•.......•...•..•.••......•.••.... DG601: High-Speed Quad SPST CMOS Analog Switch •.•.•..••.•.•.•.•....••.••. DG908/909: 8-Channel/Dual 4-Channel Fault Protected CMOS Analog Multiplexers .•.• Gl18: Monolithic 6-Channel Enhancement-Type MOSFET Switch •...••.••.•..•.•••• Gl19: Monolithic 6-Channel Enhancement-Type MOSFET Switch ••..•.•.•.•..••.•.• Si3002: Monolithic SPDT MOS Switch with Driver ••..•.•.•..•.•..•.••.........••. Section 6. 5-265 5-274 5-282 5-288 5-294 5-299 5-303 5-314 5-331 5-345 5-357 5-369 5-375 5-381 5-389 5-398 5-407 5-414 5-419 5-422 5-425 Data Conversion . Table of Contents Introduction ................................................................. 6-1 LDll 0/111 A: 3 1/2-Digit AID Converter Set • . . . . • . . . . • . . • • . . • • • • • • . . • • . . • . . . • • . •• 6-4 LD120/121A: 4 1/2-Digit AID Converter Set .••••..•••.••.•.•.••••.•••••..••....• 6-10 LD122/121A: 4 1/2-Digit AID Converter Set .•..•..•••..•.•••••.••.•.•••...••..•• 6-16 Si2504: High Speed 12-Bit SAR •..•••••.••...•••.••.•••..•..•.....••.••..•.••. 6-22 Si7135: Precision 4 1/2-Digit Single Chip CMOS AID Converter .••.....••...•..•••. 6-31 Si7240: 12-Bit CMOS Voltage-Output DAC ••.•.••..••••••.•.••.••..•...•..••.••. 6-43 Si7533: CMOS 10-Bit Multiplying DAC .••.••••.•••.•...••.••.•••.•.•.••••...•.•. 6-51 Si7541: CMOS 12-Bit Multiplying DAC .......................................... 6-58 Si7541 A: CMOS 12-Bit Multiplying DAC • . . • . • . . • . . . • • . . • . . . • • • . . • . . . • . • . . • • • • . .. 6-67 Si7542: Microprocessor-Compatible 12-Bit CMOS Multiplying DAC •••..•...•......•. 6-76 Si7543: CMOS 12-Bit Serial Input DAC .........••.••...••..••...............•.. 6-90 Si7545: CMOS 12-Bit Buffered Multiplying DAC ...•.•...•..•....•...•.........•. 6-104 Si7820: CMOS Subranging 8-Bit AID Converter .••.•..•....•.••....•.•••..••••.• 6-120 S18601/03: 8-Bit Data Acquisition Systems ........••........•.••........•••..•• 6-130 Si8602/04: 8-Bit Data Acquisition Systems ...................................... 6-141 Section 7. WidebandNideo Table of Contents Introduction •..••••.•....••.•...••...•......•••.••....••.....•.....•.•....•• 7-1 DG534: 4-Channel/Dual 2-Channel WidebandlVideo Multiplexer ••.••..•..•....••••••• 7-3 DG535: 16-Channel WidebandlVideo Multiplexer ••...••.•..••.•....•.••••.•....•• 7-21 DG536: l6-Channel WidebandlVideo Multiplexer •. ; •.•..•.•.••••.•....•.........• 7-34 ..,. Siliconix incorporated ~ Section 7. WidebandlVideo (Cont'd) DG538: 8-Channel/Dual 4-Channel WidebandlVideo Multiplexer ..................... DG540: Quad SPST WidebandlVideo "T" Switch ................•................ DG541: Quad SPST WidebandlVideo "T" Switch ................................. DG542: Dual SPOT WidebandlVideo "T" Switch ......•.......................... SD5000/5001/5002: DMOS FET Quad Analog Switch Arrays ....................... SD5400/5401/5402: DMOS FET Quad Analog Switch Arrays ......•................ Section 8. 7-47 7-65 7-70 7-75 7-81 7-88 Special Functions Table of Contents Introduction ................................................................ 8-1 0125: Monolithic 6-Channel FET Switch Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-3 0129: 4-Channel MOSFET Switch Driver with Decode .............................. 8-6 0139: Monolithic 2-Channel FET Switch Driver ........................•........... 8-9 0169: Dual High-Voltage Driver ............................................... 8-13 0469: Quad High-Current Power Driver . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . .. 8-23 0470: Low-Power - High-Speed Octal CMOS Driver with Serial Interface ............. 8-29 L144: Low-Power Triple Operational Amplifier ..........•....•................... 8-35 L 161: Micropower Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-41 Si7250: Bubble Memory Power Driver .......................................... 8-52 Si7652: Chopper Stabilized Operational Amplifier ..................•..•.......... 8-56 Si8901: Ring Demodulator/Balanced Mixer ...................................... 8-67 Section 9. Display Drivers Table of Contents Introduction ...........................................•....•............... 9-1 DF412: 4-Digit LCD Decoder/Driver ............................................. 9-2 Si9551/9552: Electroluminescent Row Drivers ................................... 9-12 Si9553/9554/9555/9556: Electroluminescent Column Drivers ....................... 9-18 Si9560: Electroluminescent Symmetric Row Driver ...............•...•........... 9-27 Section 10. Power Conversion Table of Contents Introduction ...........................................................•..• 10-1 Si7660: Monolithic CMOS Voltage Converter .............................•...... 10-2 Si7661: Monolithic CMOS Voltage Converter .................................... 10-9 Si91 00/91 01: 1-Watt. High-Voltage Switchmode Regulators ....................... 10-16 Si9102: 1-Watt. High-Voltage Switchmode Regulator ............................ 10-26 Si9110/9111: High-Voltage Switch mode Controllers ...........•................. 10-35 Si9115/9116: OFF-Line Switchmode Controllers ........••...........•......•.•.. 10-43 Section 11. ASIC Introduction ............................................................... 11-1 IS05: HCMOS Gate Array Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . . . . .. 11-3 Section 12. Packaging Table of Contents Plastic DIP (J. N Suffix). 8-16 Leads ....................................•.•.... Plastic DIP (J. N Suffix). 24-48 Leads . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • • . . . . . . . . . .. Plastic DIP (J. N Suffix). 24 Leads. 0.3" Narrow Body ............................ CerDIP (K. Q Suffix). 14-20 Leads ...............................•............ CerDIP (K. Q Suffix). 24-40 Leads. 0.6" Wide Body ......................•....... 12-1 12-2 12-3 12-4 12-5 ~ ~ Section 12. Siliconix incorporated Packaging (Cont'd) Side Braze DIP (P, 0 Suffix), 14-24 Leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-6 Side Braze DIP (P, R, 0 Suffix) 24-48 Leads, 0.6" Wide Body ..................... 12-7 SO Package (Y Suffix), 8-16 Leads ............................................ 12-8 SO Package (Y Suffix), 16-28 Leads, Wide Body ................................ 12-9 PLCC Package (N, P Suffix), 20-84 Leads ........................... . • . . . . . . .. 12-10 CerQuad Package (M Suffix), 28 & 44 Leads ......•.•......................... 12-11 CLCC Package (M Suffix), 44 Lead .......................................... 12-12 LCC Package (Z, E Suffix), 20 & 28 Leads .................................... 12-13 Flat Package (L Suffix), 14 Lead, Obsolete Version ............................. 12-14 Flat Package (L Suffix), 14 & 16 Leads ....................................... 12-15 MO-002AG (Formerly TO-78) ............................................... 12-16 MO-002AK (Formerly TO-99) ................................................ 12-17 MO-006AD (Formerly TO-100) .............................................. 12-18 Section 13. Applications Table of Contents AN88-2: Microprocessor Compatible Multiplexers Facilitate Video Switching Designs ..............................'................... 13-1 AN88-1: Applications For the 0469 - A High Current Power Driver ................. 13-24 AN87-4: Improve System Precision with the Si7652 Chopper-Stabilized Optional Amplifier ...................................................... 13-29 AN87 -3: The Si7541 A 12-Bit CMOS Multiplying DAC Theory and Applications ........ 13-41 AN87-2: Efficient ISDN Power Converters Using the Si9100 ....................... 13-67 AN87 -1: A 1-Watt Flyback Converter Using the Si9100 . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-74 AN86-1: The DG535/536 Wideband Multiplexer Suits a Wide Variety of Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-85 AN84-2: Theory and Applications of the Si7660 and Si7661 Voltage Converters ..... 13-102 AN83-14: A Simple Approach to Si7135/8085 Interfacing ........................ 13-114 AN83-13: Si8601 Data Acquisition System Interfaces for I/O or Memory Mapped Operation ............................................. 13-122 AN83-7: A High Quality Audio Crosspoint Switch ............................... 13-128 AN83-6: A System Solution to HP-IL Equipment Interface ....................... 13-131 AN83-4: Improved System Performance Using Microprocessor Compatible Multiplexers ................................................ 13-138 AN83-3: A Microprocessor Compatible Analog Switch Makes Interfacing Easy ...... 13-151 AN83-1: The DG308A Digitally Switches Analog Signals ......................... 13-157 AN76-7: Function/Application of the L161 Micropower Comparator ................ 13-165 AN76-6: DG300A Series Analog Switch Applications . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13-173 AN75-1: CMOS Analoq Switches - A Powerful Design Tool ...................... 13-189 AN74-2: Analog Switches in Sample and Hold Circuits .......................... 13-206 AN73-6: Function/Application of the L144 Programmable Micropower Triple Op Amp ... , .................................................... 13-214 AN73-2: IC Multiplexer IncreE!ses Analog Switching Speeds ...................... 13-221 TA87-1: Eliminate the Guesswork in Your Analog Switching Error Analysis ......... 13-227 TA73-1: Multiplexer Adds Efficiency to 32-Channel Telephone System ............. 13-232 Section 14. Publications Index ............................................... 14-1 Section 15. Worldwide Sales Offices and Distributors . ......................... , . 15-1 '7 ..r Siliconix incorporated ~ ALPHA-NUMERIC INDEX D125 •... D129 •... D139 .... D169 .... D469 •... D470 ••.. DF412 ... DG123 ... DG125 ... DG126 ... DG129 •.• DG133 ... DG134 ... DG139 ... DG140 ..• DG141 •.• DG142 ..• DG143 .•. DG144 ... DG145 .•• DG146 .•• DG172 .•. DG180 .•. DG181 .•• DG182 .•. DG183 .•. DG184 ..• DG185 •.. DG186 •.. DG187 .•. DG188 ... DG189 ... DG190 .•. DG191 •.• DG200A .. DG201A .. DG202 • " DG211 ... DG212 ... DG221 ..• DG243 ..• DG271 ... 8-3 8-6 8-9 8-13 8-23 8-29 9-2 5-8 5-11 5-15 5-15 5-22 5-22 5-30 5-15 5-22 5-30 5-38 5-38 5-30 5-38 5-46 5-51 5-51 5-51 5-62 5-62 5-62 5-74 5-74 5-74 5-85 5-85 5-85 5-96 5-117 5-117 5-129 5-129 5-143 5-151 5-156 DG300A •. 5-161 DG301A .. 5-161 DG302A .. 5-161 DG303A .. 5-161 DG304A .. 5-184 DG305A .. 5-184 DG306A .. 5-184 DG307A •. 5-184 DG308A .. 5-195 DG309 '" 5-195 DG381A .. 5-201 DG384A .. 5-201 DG387 A .. 5-201 DG390A .. 5-201 DG400 ... 5-212 DG401 · .. 5-212 DG402 · .. 5-212 DG403 · .. 5-212 DG404 · .• 5-212 DG405 · .. 5-212 DG408 ... 5-229 DG409 ... 5-229 DG411 ..• 5-234 DG412 .•. 5-234 DG413 ... 5-234 DG417 ... 5-245 DG418 ••. 5-245 DG419 ... 5-245 DG421 · •• 5-255 DG423 · •. 5-255 DG425 .•. 5-255 D<3441 ... 5-265 DG442 .•. 5-265 DG444 '" 5-274 DG445 '" 5-274 DG480 ..• 5-282 DG485 ... 5-288 DG501 .•. 5-294 DG503 ... 5-299 DG526 ... 5-345 DG527 ... 5-345 DG528 .•. 5-357 DG529 DG534 DG535 DG536 DG538 . DG540 DG541 DG542 DG548 DG549 DG566 DG568 DG569 DG601 DG908 DG909 DG5040 DG5041 DG5042 DG5043 DG5044 DG5045 DG506A DG507A DG508A DG5140 DG5141 DG5142 DG5143 DG5144 DG5145 DGP201A DGP303A DGP508A G118 .... G119 •.•. IS05 .... L144 .... L161 LD110 ..• LD111 A •. LD120 ... ·. · ·. ·. ·. .... 5-357 7-3 7-21 7-34 7-47 7-65 7-70 7-75 5-369 5-369 5-375 5-381 5-381 5-407 5-414 5-414 5-389 5-389 5-389 5-389 5-389 5-389 5-303 5-303 5-331 5-398 5-398 5-398 5-398 5-398 5-398 5-102 5-173 5-314 5-419 5-422 11-3 8-35 8-41 6-4 6-4 6-10 LD121A .. LD122 ... SD5000 .. SD5001 •. SD5002 .. SD5400 .. SD5401 .• SD5402 .. Si2504 • .. Si3002 • .. Si7135 • .. Si7240 . .. Si7250 . .. Si7533 ... Si7541 •.. Si7541 A .. Si7542 ... Si7543 . .. Si7545 ..• Si7652 . .. Si7660 . .. Si7661 ... Si7820 •.. SiB601 .•• Si8602 ... Si8603 ... Si8604 ... SiB901 ... Si9100 .•. Si9101 .,. Si9102 ... Si9110 ... Si9111 ... Si9115 ... Si9116 •.. Si9551 ..• Si9552 ..• Si9553 . .. Si9554 . .. Si9555 . •. Si9556 • .. Si9560 . .. 6-10,6-16 6-16 7-81 7-81 7-81 7-88 7-88 7-88 6-22 5-425 6-31 6-43 8-52 6-51 6-58 6-67 6-76 6-90 6-104 8-56 10-2 10-9 6-120 6-130 6-141 6-130 6-141 8-67 10-16 10-16 10-26 10-35 10-35 10-43 10-43 9-12 9-12 9-18 9-18 9-18 9-18 9-27 .-F' 8i1iconix ~ incorporated NUMERIC-ALPHA INDEX 1805 .... LOll0 ... LOlllA .. Gl18 .... Gl19 .... L0120 ... L0121A .. L0122 ... OG123 ... 0125 .... OG125 ... OG126 ... 0129 .... OG129 ... OG133 ... OG134 ... 0139 .... OG139 ... OG140 ... DG141 ... DG142 .,. OG143 ... DG144 ... L144 .... OG145 ... OG146 ... L161 . ... 0169 .... DG172 ... DG180 ... OG181 ... DG182 ... OG183 ... OG184 ... OG185 ... OG186 ... OG187 ... OG188 ... OG189 ... OG190 ... OG191 ... OG200A .. 11-3 6-4 6-4 5-419 5-422 6-10 6-10, 6-16 6-16 5-8 8-3 5-11 5-15 8-6 5-15 5-22 5-22 8-9 5-30 5-15 5-22 5-30 5-38 5-38 8-35 5-30 5-38 8-41 8-13 5-46 5-51 5-51 5-51 5-62 5-62 5-62 5-74 5-74 5-74 5-85 5-85 5-85 5-96 OG201A .. 5-117 OGP201 A . 5-102 OG202 ... 5-117 OG211 ... 5-129 OG212 ... 5-129 OG221 ... 5-143 OG243 ... 5-151 OG271 · .. 5-156 OG300A .. 5-161 OG301A .. 5-161 OG302A .. 5-161 OG303A .. 5-161 OGP303A . 5-173 OG304A .. 5-184 OG305A .. 5-184 OG306A .. 5-184 OG307A .. 5-184 OG308A .. 5-195 OG309 ... 5-195 OG381A .. 5-201 DG384A .. 5-201 DG387 A .. 5-201 DG390A .. 5-201 OG400 ... 5-212 OG401 · .. 5-212 OG402 · .. 5-212 OG403 ... 5-212 OG404 ... 5-212 OG405 ... 5-212 DG408 ... 5-229 OG409 ... 5-229 OG411 ... 5-234 OF412 ... 9-2 OG412 ... 5-234 OG413 ... 5-234 OG417 ... 5-245 OG418 ... 5-245 OG419 ... 5-245 OG421 ... 5-255 OG423 ... 5-255 OG425 ... 5-255 OG441 ... 5-265 · OG442 . OG444 · . OG445 · . 0469 .... 0470 .... OG480 OG485 · . OG501 · . OG503 · . OG506A OG507A OG508A OGP508A OG526 OG527 . OG528 OG529 OG534 OG535 · . DG536 · OG538 . OG540 OG541 · . OG542 · . OG548 · . OG549 · . OG566 · . OG568 . OG569 OG601 · . DG908 · . OG909 · . 8i2504 . 8i3002 · . 805000 .. 805001 .. 805002 .. OG5040 OG5041 OG5042 OG5043 OG5044 ·. ·. · ·. ·. ·. . · ·. · ·. · 5-265 5-274 5-274 8-23 8-29 5-282 5-288 5-294 5-299 5-303 5-303 5-331 5-314 5-345 5-345 5-357 5-357 7-3 7-21 7-34 7-47 7-65 7-70 7-75 5-369 5-369 5-375 5-381 5-381 5-407 5-414 5-414 6-22 5-425 7-81 7-81 7-81 5-389 5-389 5-389 5-389 5-389 OG5045 .. OG5140 .. OG5141 .. OG5142 .. OG5143 .. OG5144 .. OG5145 .. 805400 .. 805401 .. 805402 .. 8i7135 ... 8i7240 . .. 8i7250 . .. 8i7533 ... 8i7541 ... 8i7541 A .. 8i7542 ... 8i7543 . .. 8i7545 ... 8i7652 . .. 8i7660 . .. 8i7661 ... 8i7820 . .. 8i8601 ... 8i8602 ... 8i8603 . .. 8i8604 ... 8i8901 ... 8i9100 ... 8i9101 ... 8i9102 ... 8i9110 ... 8i9111 ... 8i9115 ... 8i9116 ... 8i9551 ... 8i9552 . .. 8i9553 . .. 8i9554 . .. 8i9555 . .. 8i9556 . .. 8i9560 . .. 5-389 5-398 5-398 5-398 5-398 5-398 5-398 7-88 7-88 7-88 6-31 6-43 8-52 6-51 6-58 6-67 6-76 6-90 6-104 8-56 10-2 10-9 6-120 6-130 6-141 6-130 6-141 8-67 10-16 10-16 10-26 10-35 10-35 10-43 10-43 9-12 9-12 9-18 9-18 9-18 9-18 9-27 "-I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 General Information . . Siliconix incorporated H DEVICE ORDERING INFORMATION Integrated Circuits and Power ICs DG DG DG Device Family T Device Number 187 303 506 A A A B C P K 1883 -4 J T Device Revision (when used) Operating Temperature Range Package Process Option DEVICE FAMILY (1, 2, or 3 Letters) D DF DG DGP G L LD SD SI - Drivers for FET Switches Digital Function Analog Switches and Analog Multiplexers Precision Analog Switch Multi-Channel FETs Linear Linear Digital Combinations SlIIconlx DMOS Product SlIIconlx Proprietary Integrated Circuit or Second Source Part SJ M - QPL Listed Part DEVICE NUMBER (3 or 4 Digit Numbers) PACKAGE (1 Letter) A H J K L M N P R Y Z - Metal Can Eight Pin Mini Dip-Plastic Dual-In-Line Package-Plastic Dual-In-Line Package-CERDIP Flat Package Ceramic J Bend Quad (CLeC) PLCC Dual-In-Line Package-Side Braze Dual-In-Line Package-Side Braze Small Outline Package (SOIC) Leadless Chip Carrier (LCC) PROCESS OPTION Processing to the current revision of MIL-STD-663, Level B. Compliant-Non JAN -2 - Non Compliant-Non JAN" -4 - 160 Hour Burn-In IBS - BS9000 Compliant 1883 - OPERATING TEMPERATURE RANGE (1 Letter) A -55 to 1250 C B C D -25 to 85 0 C 0 to 70 0 C -40 to 85 0 C " Many older -2 processed parts are now upgraded to 1863 process flows. Band D temperature range parts receive Industrial processing unless a process option dash number Is added to the part number. C temperature range parts are given commercial processing. All possible combinations of device types, temperature ranges, package types and MIL-883 process options are not necessarily available. Consult Individual data book pages or sales office for complete Information. Note: Please refer to the following page for data acquisition nomenclature. 1-1 ..... Siliconix ,,6;11 incorporated Data Acquisiton Si 7545 T Device Family G u T Device Number Gain Error Designator (optional) Temperature Range and Grade Package Process Option TEMPERATURE RANGE GRADE PACKAGE (1 Letter) -40 to 85°C -40 to 85 0 e -40 to 85°C Good Better Best o to 70°C o to 70°C o to 70°C 0 E N P Q Good Better Best S -55 to 1250 e T -55 to 125°C U -55 to 125°C Good Better Best (1 Letter) A B C J K L 1-2 - Side Braze DIP Lee Plastic DIP PLCC (Plastic Quad J-Bend) CERDIP D 1883 (or 883) ~ Siliconix .t£II incorporated DIE ORDERING INFORMATION MONOLITHIC CHIPS Example: DG 201 A TL A DICE Form Screening Criteria Device Revision (If/when used) Device Number III Device Family DEVICE FAMILY SCREENING CRITERIA (1, 2 or 3 Leiters) (1 LETTER) D DG DGP G L Si - Drivers for FET Switches Analog Switches Precision Analog Switch Multi-Channel FETs Linear Siliconix Proprietary or Second Source Part DEVICE NUMBER A - Electrically probed @ 25°C; visual criteria screening to MIL-STD-883, Method 2010 Condition B. - Electrically probed @ 25°C; visual criteria screening to Siliconix Specification 501 B. FORM (4 Leiters) (3 or 4 Digit Numbers) DICE - Chips waffle packaged per Figure 1 in Die Process Information MULTICHIP OPTIONS To order die which form multichip devices the driver chip and corresponding JFETs should be ordered using the geometry designations as shown in Table 1. The following options are considered .. special" and a special part number will be assigned: Example: For DG190 die, order CMJB1000 and NC1000 To determine number of JFETs required to go with each driver in a multichip device, see number in parenthesis following geometry codes as shown in Table 1. 1. Die in wafer form 2. Gold Backing on Integrated Circuit dice 3. Class A visual 4. Customer visual criteria Please identify as .. similar to _ _ _ _ _ _with following additional conditions _ _ _ _ _ _ __ 1-3 B Table 1 Sillconix Plfj NQ. 1-4 Geometry Code Drivir FE! TechnQIQ9Y DG126 LODC1000 NC2000(4) JFET Switch DG129 LODC1000 NC1000(4) JFET Switch DG133 LODC1000 NC1000(2) JFET Switch DG134 LODC1000 NC2000(2) JFET Switch DG139 LODF1000 NC1000(4) JFET Switch DG140 LODC1000 NIP1000(4) JFET Switch DG141 LODC1000 NIP1000(2) JFET Switch DG142 LODF1000 NC2000(4) JFET Switch DG143 LODF1000 NC2000(2) JFET Switch DG144 LODF1000 NC1000(2) JFET Switch DG145 LODF1000 NIP1000(4) JFET Switch DG146 LODF1000 NIP1000(2) JFET Switch DG180 CMJB1000 NIP1000(2) JFET Switch DG181 CMJB1000 NC1000(2) JFET Switch DG182 CMJB1000 NC20PO(2) JFET Switch DG183 CMJA1000 NIP1000(4) JFET Switch DG184 CMJA1000 NC1000(4) JFET Switch DG185 CMJA1000 NC2000(4) JFET Switch DG186 CMJC1000 NIP1000(2) JFET Switch DG187 CMJC1000 NC1000(2) JFET Switch DG188 CMJC1000 NC2000(2) JFET Switch DG189 CMJB1000 NIP1000(4) JFET Switch DG190 CMJB1000 NC1000(4) JFET Switch DG191 CMJB1000 NC2000(4) JFET Switch Siliconix incorporated .-r 8i1iconix incorporated ~ 8S9000 ORDERING INFORMATION ANALOG SWITCHES AND MULTIPLEXERS BS9000 Part Numbering System I I DG181 I I I I I A P BS S2 Screening Level Device Type Number BS9000 Approval I I Package Temperature Range A -55 to 125°C I A P, R K Metal Can 8idebraze CerDIP Available Parts Ordering Part No. DG181AAB882 DG185APB8 82 DG187APB8 82 DG189APB882 DG190APB882 DG191APB882 DG200AAAB8 82 DG200AAKB8 82 Ordering Part No. Ordering Part No. DG300AAAB8 DG300AAKB8 DG301 AAAB8 DG301 AAKB8 DG302AAKB8 DG303AAKB8 DG304AAAB8 DG305AAAB8 DG307 AAKB8 DG308AAKB8 DG384AAKB8 82 DG390AAKB8 82 82 82 82 82 82 82 82 82 82 82 DG506AAKB8 DG507 AAKB8 DG508AAKB8 DG509AAKB8 82 82 82 82 Contact one of the 8i1iconix sales offices for latest information. 1-5 Ir'F Siliconix ~ incorporated ,JAN38510 ORDERING INFORMATION ANALOG SWITCHES AND MULTIPLEXERS Several Siliconix Analog Switches and multiplexers are available fully certified on the QPL (Qualified Parts List) published monthly by befense Electronics Supply Center (DESC). The QPL numbers follow this format: JM38510/XXXXX. Refer to the current Siliconix Price list for available part types and order numbers. JAN Part Numbering System J - -- M38510 1111 07 B E C r-- • r- "r- •••• "JAN" Certification Mark Military Designator Lead Finish - I A--Solder Dip C--Gold Plate Detail Specification (Slash Sheet) Series 1116--DG300A Series 1123--0G200A Series 1190--DG506 . Series 1111--DG181 Case Outline C--14-Lead Side Braze L----I E--1S-Lead Side Braze 1--l0-Lead Metal Can A--14-Lead Flatpack Device Type 01-013181 02-0G182 03-0G184 04-0G185 05-0G187 06-0G188 07-0G190 08-0G191 01-0G300A 02-0G301A 03-0G302A 04-0G303A 05-0G304A 06-0G305A 07-0G30SA 08-0G307A 1123 01-0G200A 02-0G201A 1190 01-0G50SA 03-0G507A 07-0G508A 08-0G509A 1111 1116 Device Class S--Class S B--Class B Available JAN Parts Generic ParI Number 1-6 JAN ParI Number Order ParI Number OG181AP/883 OG181AP/883 DG181AA/883 OG181ALl883 JM38510/11101BCC JM3851 0/111 01 BCA JM38510/11101BIC JM38510/11101BAC SJM181BCC SJM181BCA SJM181BIC SJM181BAC OG182AP/883 OG182AP/883 OG182AA/883 OG182AL/883 JM3851 0/111 02BCC JM38510/11102BCA JM38510/11102BIC JM3851 0/111 02BAC SJM182BCC SJM182BCA SJM182BIC SJM182BAC OG184AP/883 OG184AP/883 OG184ALl883 JM38510/11103BEC JM38510111103BEA JM38510/11103BAC SJM184BEC SJM184BEA SJM184BAC DG185AP/883 OG185AP/883 DG185AL/883 JM38510111104BEC JM38510/11104BEA JM38510/11104BAC SJM185BEC SJM185BEA SJM185BAC ~ ~ Siliconix incorporated Available JAN Parts (continued) Generic Part Number JAN Part Number DG187AP/883 DG187AP/883 DG187AA/883 DG187AL/883 JM38510/11105BCC JM38510/11105BCA JM38510/11105BIC JM3851 0/111 05BAC Order Part Number SJM187BCC SJM187BCA SJM187BIC SJM187BAC DG188AP/883 DG188AP/883 DG188AA/883 DG188ALl883 JM38510/11106BCC JM38510/11106BCA JM38510/11106BIC JM38510/11106BAC SJM188BCC SJM188BCA SJM188BIC SJM188BAC DG190AP/883 DG190AP/883 DG190ALl883 JM38510/11107BEC JM38510/11107BEA JM38510/11107BAC SJM190BEC SJM190BEA SJM190BAC DG191AP/883 DG191AP/883 DG191AL/883 JM38510/11108BEC JM3851 0/111 08BEA JM3851 0/111 08BAC SJM191BEC SJM191BEA SJM191BAC DG200AAP/883 DG200AAP/883 DG200AAAl883 JM38510/12301BCC JM38510/12301BCA JM3851 0/12301 BIC SJM200BCC SJM200BCA SJM200BIC DG201AAP/883 DG201AAP/883 JM38510/12302BEC JM38510/12302BEA SJM201BEC SJM201BEA DG300AAP/883 DG300AAP/883 DG300AAA/883 JM38510/11601BCC JM3851 0/11601 BCA JM38510/11601BIC SJM300BCC SJM300BCA SJM300BIC DG301AAP/883 DG301AAP/883 DG301AAA/883 JM38510/11602BCC JM38510/11602BCA JM38510/11602BIC SJM301BCC SJM301BCA SJM301BIC DG302AAP/883 DG302AAP/883 JM38510111603BCC JM38510111603BCA SJM301BCC SJM301BCA DG303AAP/883 DG303AAP/883 JM38510/11604BCC JM38510/11604BCA SJM303BCC SJM303BCA DG304AAP/883 DG304AAP/883 DG304AAA/883 JM38510/11605BCC JM38510/11605BCA JM38510/11605BIC SJM304BCC SJM304BCA SJM304BIC DG305AAP/883 DG305AAP/883 DG305AAA/883 JM38510/11606BCC JM38510111606BCA JM38510/11606BIC SJM305BCC SJM305BCA SJM305BIC DG306AAP/883 DG306AAP/883 JM38510111607BCC JM38510/11607BCA SJM306BCC SJM306BCA DG307AAP/883 DG307AAP/883 JM38510/11608BCC JM38510/11608BCA SJM307BCC SJM307BCA DG506AAR/883 DG507AAR/883 DG508AAP/883 DG508AAP/883 DG509AAP/883 DG509AAP/883 JM38510/19001BXC JM38510/19003BXC JM38510/19007BEA JM38510/19007BEC JM38510/19008BEA JM38510/19008BEC SJM506BXC SJM507BXC SJM508BEA SJM508BEC SJM509BEA SJM509BEC III 1-7 trY' Siliconix ~ incorporated STANDARD MILITARY DRAWING (SMD) /883 Compliant/Non JAN Class B Siliconix offers products which meet requirements of MIL-STD-883 paragraph 1.2.1 "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices." SMD CompliantINon JAN SMD/DESC Part # 7705201EA 7705201EC 770520FC 7705301EA 7705301EC 7801401CA 7801401CC 81 00601 EA 81006011C 8100602EA 81006021C 8100603EA 81006031C 8100604EA 8100605EA 81006051C 8100606EA 8100609EA 81006091C 8100610EA 8100610lC 8100611EA 81006111C 8100612EA 8100613EA 81006131C 8100614EA Generic Part # DG508AAK DESC DG508AAK DESC DG508AAL DESC DG201AAK DESC DG201AAP DESC DG129AP DESC DG129AP DESC DG5140AK DESC DG5140AA DESC DG5141AK DESC DG5141AA DESC DG5142AK DESC DG5142AA DESC DG5143AK DESC DG5144AK DESC DG5144AA DESC DG5145AK DESC DG5140AK DESC DG5140AA DESC DG5141AK DESC DG5141AA DESC DG5142AK DESC DG5142AA DESC DG5143AK DESC DG5144AK DESC DG5144AA DESC DG5145AK DESC Class B 1883 CompliantINon JAN Industry Part # Sillconix Part # Industry Part # AD7506JD/883 AD7507JD/883 AD7541ASD/883 AD7541ATD/883 AD7545SD/883 AD7545TD/883 DG506AAR/883 DG507AAR/883 SI7541 ASD/883 SI7541 A TD/883 SI7545SD/883 SI7545TD/883 AD7545UD/883 AH0126D/883 AH0129D/883 AH0133D/883 AH0134D/883 AH0139D/883 SI7545UD/883 DG126AP/883 DG129AP/883 DG133AP/883 DG134AP/883 DG139AP/883 1-8 Silicon Ix Part # Industry Part # Silicon Ix Part # AH0140D/883 AH0141D/883 AH0143D/883 AH0144D/883 AH0145D/883 AH0146D/883 DG140AP/883 DG141AP/883 DG143AP/883 DG144AP/883 DG145AP/883 DG146AP/883 AH0163D/883 AH0164D/883 DGM184AK/HR DGM184AK/883B DGM185AK/HR DGM185AK/883B DG145AP/883 DG139AP/883 DG405AK/883 DG405AK/883 DG405AK/883 DG405AK/883 AH0151D/883 AH0152D/883 AH0153D/883 AH0154D/883 AH0161D/883 AH0162D/883 DG141AP/883 DG133AP/883 DG140AP/883 DG129AP/883 DG146AP/883 DG144AP/883 DGM190AK/HR DGM190AK/883B DGM191AK/HR DGP201AAK/883 DGP201AAZ/883 DGP303AAK/883 DG403AK/883 DG403AK/883 DG403AK/883 DGP201AAK/883 DGP201 AAZ/883 DGP303AAK/883 .-r ~ Siliconix incorporated Class 8 1883 Compliant/Non JAN (Cont'd) Industry Part # Silicon Ix Part # Industry Part # Silicon Ix Part # Industry Part # Siliconix Part # DGP303AAZ/883 DGP508AAK/883 DGP508AAZ/883 DG123AL DG123AL-2 DG123ALlHR DGP303AAZ/883 DGP508AAK/883 DGP508AAZl883 DG123ALl883 DG123ALl883 DG123ALl883 DG141AL DG141AL-2 DG141ALlHR DG141ALl883 DG141AP-2 DG141AP/883 DG141ALl883 DG141ALl883 DG141ALl883 DG141ALl883 DG141AP/883 DG141AP/883 DG163AL-2 DG163ALl883 DG163AP-2 DG163AP/883 DG164AL-2 DG164ALl883 DG145ALl883 DG145ALl883 DG145AP/883 DG145AP/883 DG139ALl883 DG139ALl883 DG123ALl883 DG123AP-2 DG123AP/HR DG123AP/883 DG125AL DG125AL-2 DG123ALl883 DG123AP/883 DG123AP/883 DG123AP/883 DG125ALl883 DG125ALl883 DG142AL DG142AL-2 DG142ALlHR DG142ALl883 DG142ALl883B DG142AP-2 DG142ALl883 DG142ALl883 DG142ALl883 DG142ALl883 DG142ALl883 DG142AP/883 DG164AP-2 DG164AP/883 DGl72AL DG172AL-2 DG172ALl883 DG180AA-2 DG139AP/883 DG139AP/883 DGl72ALl883 DGl72ALl883 DGl72ALl883 DG180AA/883 DG125ALlHR DG125AL/883 DG125AP-2 DG125AP/HR DG125AP/883 DG126AK/HR DG125ALl883 DG125ALl883 DG125AP/883 DG125AP/883 DG125AP/883 DG126AP/883 DG142AP/883 DG143AL DG143AL-2 DG143ALlHR DG143AL/883 DG143ALl883B DG142AP/883 DG143ALl883 DG143ALl883 DG143ALl883 DG143ALl883 DG143ALl883 DG180AA/883 DG180AL DG180AL-2 DG180ALl883 DG180AP-2 DG180AP/883 DG180AA/883 DG180ALl883 DG180ALl883 DG180AL/883 DG180AP/883 DG180AP/883 DG126AL DG126AL-2 DG126AL/HR DG126AL/883 DG126ALl883B DG126AP-2 DG126ALl883 DG126ALl883 DG126ALl883 DG126ALl883 DG126ALl883 DG126AP/883 DG143AP-2 DG143AP/883 DG144AL DG144AL-2 DG144ALlHR DG144ALl883 DG143AP/883 DG143AP/883 DG144ALl883 DG144ALl883 DG144ALl883 DG144ALl883 DG181AA-2 DG181AA/883 DG181AL DG181AL-2 DG181ALl883 DG181AP-2 DG181AA/883 DG181AA/883 DG181AL/883 DG181AL/883 DG181ALl883 DG181AP/883 DG126AP/883 DG129AL DG129AL-2 DG129ALlHR DG129AL/883 DG129AL/883B DG126AP/883 DG129ALl883 DG129ALl883 DG129ALl883 DG129AL/883 DG129ALl883 DG144ALl883B DG144AP-2 DG144AP/883 DG145AL DG145AL-2 DG145ALl883 DG144ALl883 DG144AP/883 DG144AP/883 DG145ALl883 DG145ALl883 DG145ALl883 DG181AP/883 DG182AA-2 DG182AA/883 DG182AL DG182AL-2 DG182ALl883 DG181AP/883 DG182AA/883 DG182AA/883 DG182ALl883 DG182ALl883 DG182ALl883 DG129AP-2 DG129AP/883 DG133AL DG133AL-2 DG133AL/HR DG133ALl883 DG129AP/883 DG129AP/883 DG133AL/883 DG133ALl883 DG133ALl883 DG133ALl883 DG145AP-2 DG145AP/883 DG146AL-2 DG146ALl883 DG146AP-2 DG146AP/883 DG145AP/883 DG145AP/883 DG146ALl883 DG146AL/883 DG146AP/883 DG146AP/883 DG182AP-2 DG182AP/883 DG183AL DG183AL-2 DG183ALl883 DG183AP-2 DG182AP/883 DG182AP/883 DG183ALl883 DG183ALl883 DG183ALl883 DG183AP/883 DG133AL/883B DG133AP-2 DG133AP/883 DG134AL DG134AL-2 DG134ALlHR DG133ALl883 DG133AP/883 DG133AP/883 DG134AL/883 DG134ALl883 DG134ALl883 DG151AL-2 DG151ALl883 DG151AP-2 DG151AP/883 DG152AL-2 DG152ALl883 DG141AL/883 DG141AL/883 DG141AP/883 DG141AP/883 DG133ALl883 DG133ALl883 DG183AP/883 DG184AL DG184AL-2 DG184AL/883 DG184AP-2 DG184AP/883 DG183AP/883 DG184ALl883 DG184ALl883 DG184ALl883 DG184AP/883 DG184AP/883 DG134ALl883 DG134ALl883B DG134AP-2 DG134AP/883 DG139AL DG139AL-2 DG134ALl883 DG134ALl883 DG134AP/883 DG134AP/883 DG139ALl883 DG139ALl883 DG152AP-2 DG152AP/883 DG153AL-2 DG153ALl883 DG153AP-2 DG153AP/883 DG133AP/883 DG133AP/883 DG140ALl883 DG140ALl883 DG140AP/883 DG140AP/883 DG185AL DG185AL-2 DG185ALl883 DG185AP-2 DG185AP/883 DG186AA-2 DG185ALl883 DG185ALl883 DG185ALl883 DG185AP/883 DG185AP/883 DG186AA/883 DG139AL/HR DG139ALl883 DG139ALl883B DG139AP-2 DG139AP/883 DG140AL DG139ALl883 DG139ALl883 DG139ALl883 DG139AP/883 DG139AP/883 DG140ALl883 DG154AL-2 DG154ALl883 DG154AP-2 DG154AP/883 DG161AL-2 DG161 ALl883 DG129ALl883 DG129ALl883 DG129AP/883 DG129AP/883 DG146ALl883 DG146AL/883 DG186AA/883 DG186AL DG186AL-2 DG186ALl883 DG186AP-2 DG186AP/883 DG186AA/883 DG186ALl883 DG186ALl883 DG186ALl883 DG186AP/883 DG186AP/883 DG140AL-2 DG140AL/HR DG140AL/883 DG140AP-2 DG140AP/HR DG140AP/883 DG140ALl883 DG140ALl883 DG140ALl883 DG140AP/883 DG140AP/883 DG140AP/883 DG161AP-2 DG161AP/883 DG162AL-2 DG162ALl883 DG162AP-2 DG162AP/883 DG146AP/883 DG146AP/883 DG144AL/883 DG144ALl883 DG144AP/883 DG144AP/883 DG187AA-2 DG187AA/883 DG187AL DG187AL-2 DG187ALl883 DG187AP-2 DG187AA/883 DG187AA/883 DG187ALl883 DG187ALl883 DG187ALl883 DG187AP/883 1-9 III IrY" Siliconix ~ incorporated Class B 1883 Compliant/Non JAN (Cont'd) Industry Part # SlIIconlx Part # Industry Part # Silicon Ix Part # DG187AP/883 DG188AA-2 DG188AA/883 DG188AL DG188AL-2 DG188ALl883 DG187AP/883 DG188AA/883 DG188AA/883 DG188ALl883 DG188ALl883 DG188AL/883 DG301AAK-2 DG301AAK/883 DG301AAZ/883 DG302AAK-2 DG302AAK/883 DG303AAK-2 DG301AAK/883 DG301AAK/883 DG301AAZ/883 DG302AAK/883 DG302AAK/883 DG303AAK/883 DG501AP-2 DG501AP/883 DG503AP-2 DG5040AK-2 DG5040AK/883 DG5041AK-2 DG501AP/883 DG501AP/883 DG503AP/883 DG5040AK/883 DG5040AK/883 DG5041 AK/883 DG188AP-2 DG188AP/883 DG189AL DG189AL-2 DG189ALl883 DG189AP-2 DG188AP/883 DG188AP/883 DG189ALl883 DG189ALl883 DG189ALl883 DG189AP/883 DG303AAK/883 DG303AAZ/883 DG304AAA-2 DG304AAA/883 DG304AAK-2 DG304AAK/883 DG303AAK/883 DG303AAZl883 DG304AAA/883 DG304AAA/883 DG304AAK/883 DG304AAK/883 DG5041AK/883 DG5042AK-2 DG5042AK/883 DG5043AK-2 DG5043AK/883 DG5044AK-2 DG5041AK/883 DG5042AK/883 DG5042AK/883 DG5043AK/883 DG5043AK/883 DG5044AK/883 DG189AP/883 DG190AL DG190AL-2 DG190ALl883 DG190AP-2 DG190AP/883 DG189AP/883 DG190ALl883 DG190ALl883 DG190ALl883 DG190AP/883 DG190AP/883 DG305AAA-2 DG305AAA/883 DG305AAK-2 DG305AAK/883 DG30SAAK-2 DG30SAAK/883 DG305AAA/883 DG305AAA/883 DG305AAK/883 DG305AAK/883 DG30SAAK/883 DG30SAAK/883 DG5044AK/883 DG5045AK-2 DG5045AK/883 DG5048AK/883 DG5049AK/883 DG5050AK/883 DG5044AK/883 DG5045AK/883 DG5045AK/883 DG5048AK/883 DG5049AK/883 DG5050AK/883 DG191AL DG191AL-2 DG191ALl883 DG191AP-2 DG191AP/883 DG200AAA-2 DG191ALl883 DG191ALl883 DG191ALl883 DG191AP/883 DG191AP/883 DG200AAA/883 DG307AAK-2 DG307AAK/883 DG307AAZ/883 DG308AAK-2 DG308AAK/883 DG309AK-2 DG307AAK/883 DG307 AAK/883 DG307AAZ/883 DG308AAK/883 DG308AAK/883 DG309AK/883 DG5051AK/883 DG50SAAK-2 DG50SAAK/883 DG50SAAR-2 DG50SAAR/883 DG50SAAZ/883 DG5051AK/883 DG50SAAK/883 DG50SAAK/883 DG50SAAR/883 DG50SAAR/883 DG50SAAZ/883 DG200AAA/883 DG200AAK-2 DG200AAK/883 DG200AAP-2 DG200AAP/883 DG201AAK-2 DG200AAA/883 DG200AAK/883 DG200AAK/883 DG200AAP/883 DG200AAP/883 DG201AAK/883 DG309AK/883 DG381AAA-2 DG381AAA/883 DG381AAK-2 DG381AAK/883 DG384AAK-2 DG309AK/883 DG381 AAA/883 DG381AAA/883 DG381AAK/883 DG381AAK/883 DG405AK/883 DG507AAK-2 DG507AAK/883 DG507AAR-2 DG507AAR/883 DG507AAZ/883 DG508AAK-2 DG507AAK/883 DG507AAK/883 DG507AAR/883 DG507AAR/883 DG507 AAZ/883 DG508AAK/883 DG201AAK/883 DG201AAZ/883 DG201AK/883 DG202AK-2 DG202AK/883 DG221AK-2 DG201AAK/883 DG201AAZ/883 DG201AAK/883 DG202AK/883 DG202AK/883 DG221AK/883 DG384AAK/883 DG387AAA-2 DG387 AAA/883 DG387AAK-2 DG387AAK/883 DG390AAK-2 DG405AK/883 DG387AAA/883 DG387AAA/883 DG387AAK/883 DG387AAK/883 DG403AK/883 DG508AAK/883 DG508AAZ/883 DG509AAK-2 DG509AAK/883 DG509AAZ/883 DG5140AK/883 DG508AAK/883 DG508AAZ/883 DG509AAK/883 DG509AAK/883 DG509AAZ/883 DG5140AK/883 DG221AK/883 DG243AK-2 DG243AK/883 DG271AK-2 DG271AK/883 DG271AZ/883 DG221AK/883 DG243AK/883 DG243AK/883 DG271AK/883 DG271AK/883 DG271AZ/883 DG390AAK/883 DG400AK/883 DG401AK/883 DG401AZ DG401AZ/883 DG402AK/883 DG403AK/883 DG400AK/883 DG401AK/883 DG401 AZ/883 DG401 AZ/883 DG402AK/883 DG5141AK/883 DG5142AK/883 DG5143AK/883 DG5144AK/883 DG5145AK/883 DG534AP/883 DG5141AK/883 DG5142AK/883 DG5243AK/883 DG5144AK/883 DG5145AK/883 DG534AP/883 DG281AA-2 DG281AAl883 DG281AP-2 DG281AP/883 DG284AP-2 DG284AP/883 DG181AA/883 DG181AA/883 DG181AP/883 DG181AP/883 DG184AP/883 DG184AP/883 DG403AK/883 DG403AZ DG403AZ/883 DG404AK/883 DG405AK/883 DG405AZ DG403AK/883 DG403AZ/883 DG403AZ/883 DG404AK/883 DG405AK/883 DG405AZ/883 DG535AP/883 DG53SAM/883 DG538AP/883 DG540AP/883 DG541AK/883 DG542AK/883 DG535AP/883 DG53SAM/883 DG538AP/883 DG540AP/883 DG541AK/883 DG542AK/883 DG287AA-2 DG287AA/883 DG287AP-2 DG287AP/883 DG290AP-2 DG290AP/883 DG 187AA/883 DG187AA/883 DG187AP/883 DG187AP/883 DG190AP/883 DG190AP/883 DG405AZ/883 DG411AK/883 DG411AZ/883 DG412AK/883 DG412AZ/883 DG413AK/883 DG405AZ/883 DG411 AK/883 DG411AZ/883 DG412AK/883 DG412AZ/883 DG413AK/883 DG548AK/883 DG548AZ/883 DGS01AP/883 DG841AM/883 DG908AK/883 DG908AZ/883 DG548AK/883 DG548AZ/883 DGS01AP/883 DG841 AM/883 DG908AK/883 DG908AZ/883 DG300AAA-2 DG300AAA/883 DG300AAK-2 DG300AAK/883 DG301AAA-2 DG301AAA/883 DG300AAA/883 DG300AAA/883 DG300AAK/883 DG300AAK/883 DG301AAA/883 DG301AAA/883 DG413AZ/883 DG417AK/883 DG418AK/883 DG419AK/883 DG480AK/883 DG485AK/883 DG413AZ/883 DG417AK/883 DG418AK/883 DG419AK/883 DG480AK/883 DG485AK/8B3 D123AK/HR D123AL-2 D123ALl883 D123AP-2 D123AP/883 D125AK/HR D123AK/883 D123AL/883 D123ALl88 D123AP/883 D123AP/883 D125AK/883 1-10 Industry Part # Sillconlx Part # ....' .-r ~ Siliconix incorporated Class B 1883 Compliant/Non JAN (Cont'd) Industry Part # SlIleonlx Part # Industry Part # Silleonix Part # Industry Part # Sillconix Part # D125AL-2 D125ALlHR D125ALlBB3 D125AP-2 D125AP/BB3 D129AL-2 D125ALlBB3 D125AL/BB3 D125ALlBB3 D125AP/BB3 D125AP/BB3 D125ALlBB3 HI1-5041-8 HI1-5042-8 HI1-5043-8 HI1-5044-8 HI1-5045-8 HI1-506-8 DG5041AK/883 DG5042AK/883 DG5043AK/883 DG5044AK/883 DG5045AK/883 DG506AAR/883 IH5144MJE/883 IH5145MJE/883 L161AL-2 L161ALl883 L161AP-2 L161AP/883 DG5144AK/883 DG5145AK/883 L161ALl883 L161AL/883 L161AP/B83 L161AP/883 D129ALlHR D129ALlBB3 D129AP-2 D129AP/HR D129AP/BB3 D139AA-2 D129AL/BB3 D129ALlBB3 D129AP/BB3 D129AP/BB3 D129AP/BB3 D139AA/BB3 HI1-506L-8 HI1-507-8 HI1-507L-8 HI1-508-8 HI1-508L-8 HI1-509-8 DG526AK/883 DG507 AAR/883 DG527 AK/883 DG508AAK/883 DG528AK/883 DG509AAK/883 AD7541ASD/883 AD7541ASE/883 AD7541ATD/883 AD7541ATE/883 AD7541 SD/883 AD7541 SE/883 SI7541ASD/883 SI7541ASE/883 SI7541ATD/883 SI7541ATE/883 SI7541 SD/883 SI7541 SE/883 D139AP-2 D139AP/BB3 D169AK-2 D169AK/883 D169AP-2 D169AP/883 D139AP/BB3 D139AP/BB3 D169AK/883 D169AK/BB3 D169AP/B83 D169AP/B83 HI1-509L-8 HI2-200-8 HI2-300-8 HI2-301-8 HI2-304-8 HI2-305-8 DG529AK/883 DG200AAA/883 DG300AAA/883 DG301AAA/883 DG304AAA/883 DG305AAA/883 AD7541 TD/883 AD7541TE/883 AD7542SD/883 AD7542TD/883 AD7543SD/883 AD7543TD/883 SI7541TD/883 S17541TE/883 SI7542SD/883 SI7542TD/883 SI7543SD/883 SI7543TD/883 D469AP-2 D469AP/883 D470AP/883 HI1-200-8 HI1-201-8 HI1-300-8 D469AP/8B3 D469AP/BB3 D470AP/B83 DG200AAK/883 DG201AAK/8B3 DG300AAK/8B3 HI2-381-8 HI2-387-8 IH5040MJE/HR IH5040MJE/883 IH5041 MJE/HR IH5041 MJE/883 DG381AAA/883 DG387AAA/883 DG5040AK/883 DG5040AK/883 DG5041AK/883 DG5041 AK/883 AD7545UD/8B3 AD7545UE/883 SIB603AK/883 SI8604AK/883 SW-01BQ883 SW-02BQ883 SI7545UD/883 SI7545UE/883 SI8603AK/883 SI8604AK/883 DG201AAK/883 DG202AAK/883 HI1-301-8 HI1-302-8 HI1-303-8 HI1-304-8 HI1-305-8 HI1-306-8 DG301AAK/8B3 DG302AAK/883 DG303AAK/883 DG304AAK/883 DG305AAK/883 DG306AAK/883 IH5042MJE/HR IH5042MJE/883 IH5043MJE/HR IH5043MJE/883 IH5044MJE/HR IH5044MJE/883 DG5042AK/883 DG5042AK/883 DG5043AK/883 DG5043AK/883 DG5044AK/883 DG5044AK/883 SW-05BK883 SW-05BY883 DG200AAA/8B3 DG200AAK/883 HI1-307-8 HI1-381-8 HI1-384-8 HI1-387-8 HI1-390-8 HI1-5040-8 DG307AAK/883 DG381 AAK/883 DG405AK/883 DG387AAK/883 DG403AK/883 DG5040AK/883 IH5045MJE/HR IH5045MJE/883 IH5140MJE/883 IH5141MJE/883 IH5142MJE/883 IH5143MJE/883 DG5045AK/883 DG5045AK/883 DG5140AK/883 DG5141AK/883 DG5142AK/883 DG5143AK/883 1-11 .. BURN·IN CONNECTIONS Siliconix incorporated Package Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Dl25 P/L -30V (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) (14) 10KGND D129 P/L (7) (7) (7) GND (7) (7) 10K+5V GND -30V (13) (13) (13) 10K+5V +5V D139 D169 P/L - N/C 10KPin 3 10KPin 4 +5V +10V +5V GND -20V GND 1OK- N/C Pin 12 N/C GND +10V GND +10V +10V GND GND +10V GND N/C N/C N/C +10V GND GND GND Part Type D469 N/C DGl23 P/L GND GND GND -20V 4.7K- 4.7K- 4.7K- 4.7K- 4.7K- GND +5V +5V +5V +5V +5V +5V DGl25 P/L GND GND GND -20V DG126 DG129 P/L 10KGND +10V 10KGND DGl33 DG134 P/L 10KGND +10V 10KGND DG139 DG140 P/L 10KGND +10V 10KGND 10KGND DG141 10V 1OKGND -- GND +5V GND GND GND +10V GND GND +10V -20V GND +10V 1OKGND +10V GND GND +10V -20V GND +10V +10V 1OKGND 10KGND +10V GND GND +10V -20V GND +10V 10V 10KGND 1OKGND 10V GND GND 10V -20V GND 10V +10V 10KGND 10KGND +10V GND GND +10V -20V GND +10V GND GND GND +10V 10KGND 1OKGND +10V 10KGND GND +5V DG142 DGl43 P/L 10KGND +10V 1OKGND DG144 DG145 P/L 10KGND +10V 10KGND - +10V 10KGND 10KGND +10V GND GND +10V -20V GND +10V DG146 P/L 10KGND +10V 10KGND - +10V 10KGND 1OKGND +10V GND GND +10V -20V GND +10V DG172 P/L To -20V GND +5V +5V +5V +5V +5V To 7.5K-20V pin 14 GND GND DG180 DG181 A +15V 10K- GND GND DG180 DG181 P/L +15V 1OKGND DGl82 P/L +15V 10KGND DG182 DG186 A +15V DG183 DG184 DG185 L -15V DGl83 DG184 DG185 P 10KGND DG184 P DG185 +15V +5V GND -15V GND 10KGND +15V GND pin 14 - - GND +15V +5V GND -15V GND - - - -- GND +15V +5V GND -15V GND - - 10K- GND GND +15V +5V GND -15V GND 10KGND +15V 10K- 10KGND GND +15V GND +15V +5V GND -15V GND +15V 10KGND -15V -15V 10KGND -- 10KGND +15V -15V 10K- 10KGND GND +15V GND +15V +5V GND P -15V 1OK- 10KGND GND +15V GND +15V +5V DG18S DG187 DG188 P/L -15V 10K- 10KGND GND +15V GND +15V DG187 DG188 A +15V 1OK- GND GND +15V +5V DG189 DG190 DG191 L -15V 10K- 1OKGND GND +15V GND DG189 DG190 DG191 P 1OKGND -15V -15V 10KGND 1-12 -- - 1OKGND 15 10KGND +15V 1OKGND +15V 1OKGND 1OKGND -15V GND +15V +5V GND -15V GND -15V GND +15V 10KGND 10KGND -15V GND -15V GND +15V 10KGND 10KGND +5V GND -15V GND +15V 10KGND 10KGND -15V GND -15V GND 1OKGND +15V +15V +5V GND -15V GND +15V 10KGND 1OKGND -15V - 1OKGND +15V GND +15V +5V GND -15V GND 16 +15V +15V 17 18 BURN-IN CONNECTIONS Siliconix incorporated Part Packagl Type Type 1 2 3 +15V GND 15 16 (15) 10KGND +15V +15V 1OKGND 10KGND +15V +5V +15V (15) 10KGND +15V 10K- 10KGND GND +5V +15V 10KGND 1OKGND -15V -15V 15V 10KGND 10KGND 15V 9 10 1OKGND +15V - (10) +15V 10K- +15V GND 4 5 6 7 (9) (9) -15V - (10) (10) -15V -15V GND (15) (15) -15V GND 10KGND -15V GND (15) 11 12 13 14 1OKGND - +15V - +15V +15V (15) (15) - +15V +15V 10K- 10KGND GND N/C +15V +15V (15) -15V 8 (9) DG200 A +15V DCl200A P/L +15V - GND DCl201 DG201A P/L +15V (15) (15) +15V 10K- 10KGND GND +15V (15) DG212 -15V 10K- 10KGND GND -15V GND 10KGND 10K- -15V GND DG221 15V 1OK- 10KGND GND -15V GND 10KGND 10KGND 15V 15V 10K- 1OKGND GND DG243 (16) (16) (16) (16) - (16) (16) GND DG271 +15V -15V GND 1OKGND 1OK- +15V GND +15V 10K- 1OKGND GND DG202 DCl211 P (16) 10K- 10KGND GND (15) (15) 15V 5V GND -15V GND 1OKGND N/C +15V 10KGND 10KGND +15V (13) (13) 1OKGND +15V (9) GND - GND -15V GND (9) 1OKGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (9) GND - GND -15V GND (9) 10KGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 1OKGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 10KGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 1OKGND +15V (9) GND - GND -15V GND (9) 10KGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 10KGND +15V (9) GND - GND -15V GND (9) 1OKGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 10KGND +15V (9) GND - GND -15V GND (9) 10KGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 10KGND +15V (9) GND - GND -15V GND (9) 1OKGND +15V (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 10KGND +15V +15V (15) (15) -15V GND (15) (15) +15V +15V (15) (15) - +15V (15) 10KGND +15V -15V (15) (15) -15V GND (15) (15) -15V -15V (15) (15) - (15) (15) 10KGND -15V N/C N/C GND +15V +5V GND -15V GND N/C N/C 1OKGND +15V - - GND +15V +5V GND -15V GND - - 10KGND +15V DG300A A (9) DG300A P/L - DG301A A (9) DG301A PIL DG302A P/L - DG303A P/L - DG304A A (9) DG304A P/L - DG305A A (9) DG305A P/L - DG306A P (9) DG306A P/L DG307A P DG307A P/L DG308A P DG309 - (15) - (9) DG381A A +15V 1OKGND DG381A P +15V 10KGND 17 18 -- 1-13 BURN·IN CONNECTIONS PackagE Type 1 DG384A L -15V DG384A P 10KGND DG387A P' DG390A P Part Type 2 8 9 10 11 12 GND -15V GND +15V 10KGND 10K- -15V GND 10KGND +15V GND +15V +BV GND GND -15V GND +15V 1OKGND 10K- -15V GND -15V 1OKGND 1OKGND +15V GND +15V +BV GND 6 4 5 +15V GND 1OKGND -15V -15V 10KGND -15V 1OK- 1OKGND GND +15V GND 1OKGND 10KGND -15V 3 10K- 10KGND GND - Siliconix incorporated 7 +15V +BV - +15V +BV 13 14 15 16 GND +15V -15V GND +15V -15V DG400 10KGND N/C 1OKGND 10KGND 10K- 10K- N/C GND GND 10KGND 10KGND GND +15V +5V GND -16V GND 10KGND DG401 10KGND N/C 10KGND 1OKGND 1OK- 10K- N/C GND GND 10KGND 1OKGND GND +15V +BV GND -15V GND 1OKGND DG402 10KGND N/C 10KGND 10KGND 10K- 10K- N/C GND GND 1OKGND 10KGND GND +15V +BV GND -15V GND 10KGND DG403 10KGND N/C 10KGND 10KGND 10K- 10K- N/C GND GND 10KGND 1OKGND GND +15V +BV GND -15V GND 10KGND DG404 10KGND N/C 10KGND 1OKGND 1OKGND 1OK- N/C GND 10KGND 1OKGND GND +15V +BV GND -15V GND 1OKGND DG405 1OKGND N/C 10KGND 10KGND 10K- 10K- N/C GND GND 1OKGND 10KGND GND +15V +BV GND -15V GND 1OKGND +15V +15V (15) (15) +BV +15V (15) 10KGND +15V DG411 P +15V (15) (15) -15V GND (15) (15) DG417 K 10KGND N/C GND +15V +BV +15V -15V (3) DG421 10KGND GND 10KGND 10K- ,10K- 10K- GND GND GND GND 1OKGND 10KGND GND +15V +5V GND -15V GND 1OKGND DG423 10KGND GND 10KGND 1OKGND 10K 1OKGND GND GND 10KGND 1OKGND GND +15V +BV GND -15V GND 10KGND DG425 10KGND GND 10KGND 10KGND 10K- 10K- GND GND GND 10KGND 1OKGND GND +15V +BV GND -15V GND 10KGND 17 18 DGSOI DG503 813705 P/L (IS) (4) (4) +10V (12) (12) (12) (12) (12) (12) (12) -10V -15V (15) (IS) GND DG508A P/L GND GND -15V (12) (12) (12) (12) (12) (12) (12) (12) 10KGND +15V GND GND GND DG509A P/L GND GND -15V (13) (13) (13) (13) (13) (13) (13) (13) (13) 10KGND +15V GND GND DG528 P GND GND GND -15V (13) (13) (13) (13) (13) (13) (13) (13) 10KGND +15V GND GND GND GND DG529 P GND GND GND -15V (14) (14) (14) (14) (14) (14) (14) (14) (14) 10KGND +15V GND GND GND DG568 GND GND 10K+15V -60 (13) (13) (13) (13) (13) (13) (13) (13) 10K- 10KGND +80, GND GND GND GND DG5S9 GND GND 10K+15V 1OK-60 (14) (14) (14) (14) (14) (14) (14) (14) (14) 10KGND 10K+80 GND GND GND 10KGND 1OKGND 1OKGND 10K- N/C GND 10KGND 10KGND GND +15V +BV GND -15V GND 10KGND 10KGND 10KGND 10K- 10KGND GND 1OKGND 10K- . GND +15V GND +BV GND -15V GND 1OKGND 10KGND 10K- 10KGND GND 1OKGND 10KGND 10KGND GND +15V +BV GND -15V GND 10KGND 10KGND 10KGND 10KGND 1OKGND 10KGND GND +15V +BV GND -15V GND 10KGND DG5040 DG5041 P 10KGND DGS042 DG5043 P 10KGND DGS044 DGS045 P 10KGND DGS140 1-14 10KGND N/C 1OKGND N/C BURN·IN CONNECTIONS Siliconix incorporated Part Type Package Type 6 7 8 9 10 11 12 13 10K- 1OKGND GND 10KGND N/C 10KGND 10KGND GND +15V +5V GND -15V GND 10KGND 10KGND 10K- 10KGND GND 1OKGND N/C 10KGND 1OKGND GND +15V +5V GND -15V GND 1OKGND N/C 10KGND 10K- 10KGND GND 10KGND N/C 10KGND 1OKGND GND +15V +5V GND -15V GND 10KGND 10KGND N/C 10KGND 1OK- 10KGND GND 10KGND N/C 10KGND 10KGND GND +15V +5V GND -15V GND 1OKGND 10KGND N/C 10KGND 10K- 10KGND GND 1OKGND N/C 10KGND 1OKGND GND +15V +5V GND -15V GND 1OKGND (13) (13) (13) (13) GND GND -15V GND (13) (13) (13) 10KGND +15V -15V -15V -15V -15V -15V (14) (14) (14) (14) (14) (14) (14) 10K+10V -15V -15V (14) (14) (14) (14) (14) (14) (14) (14) 10K+10V (9) - - (6) 220-15V (3) GND (2) 220+15V 1 2 3 DG5141 10KGND N/C 1OKGND DG5142 10KGND N/C DG5143 10KGND DG5144 DG5145 4 5 DGP303 P/L - G118 P/L -15V G119 P/L (14) (14) -15V L144 P/L 3M.o. +15V (13) (11) L161 P -15V +15V -15V +15V -15V +15V -15V +15V -15V 10o.n. GND 5V 18K5V GND GND LD110 3K5V 3K5V 3K5V 3K5V 6K5V 18.0. 5V LD111 N/C GND +15V GND 10K+15 -15V LD121 (18) (18) 5V GND 5K5V 5K5V 813002 N/C N/C N/C Pin 9 GND -20V 817240 GND GND GND 1K15V 1K15V 1K15V 817250 N/C GND N/C N/C N/C 817541 GND GND GND 16 817541 A GND GND GND 817542 GND GND 817543 GND GND 817652 To 8 8 Pin 817660 - 817661 818603 818604 18 • +15V N/C Pin 11 GND Pin 9 N/C -1.36 -15V GND V 20KI 200K -15V (18) (18) (18) (18) (18) 5V -15V (18) (18) 2.5K 5V GND GND Pin 4 +10V 1K15V 1K15V 1K15V 1K15V 1K15V 1K15V 1K15V 1K15V 1K15V 1K15V 10V 10V N/C N/C GND N/C N/C N/C N/C N/C N/C N/C 12V 16 16 16 16 16 16 16 16 16 16 16 1K+15V +10V +10V 16 16 16 16 16 16 16 16 16 16 16 16 1K+15V +10V +10V GND GND GND 1K5V 1K5V GND GND 1K5V 1K5V GND 1K5V 1K15V 1K15V 1K15V GND GND GND 1K6V 1KSV GND GND 1K5V 1KSV GND 1K1SV 1K1SV 1K1SV 1K15V Pin 10 To N/C Pin 4 +15 N/C N/C N/C GND +SV Pins (16) 910.0. N/C 10K To GND GND N/C N/C GND +5V CLK 5.6K- S.6K 15V 15V N/C 5.6K- 5.6K 15V 15V 1KSV 1K-15V GND - 68o.n. .1J1.F GND To Pin 2 - - N/C N/C 3K5V 17 GND 3K5V Pin CLK 3M.o. +15V 16 18.0. 5V - +5V 15 30K5V .1J1.F .1J1.F N/C To 14 3K5V +15V 1K5V 1K1SV 5.6K- 5.6K- Pins 15V 15V (11) (16) GND 5.6K- 5.6K- Pins 15V 15V !11) 16) GND (17) GND +5V Pins (16) (17) S.6K- 5.6K- 5.6K- 5.6K- 22KGND GND GND GND GND (11) (7) 5.6K- 5.6K- 5.6K- 5.6K- 22KGND GND GND GND GND (11) (7) 1-15 BURN-IN CONNECTIONS Partl Pkg Type 0470 28 Pin CDIP 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 (2) -t5V +15V (18) -15V (18)' +15V (18) 1 -15\ (18) +lSV NC DGS07A/R -lSV (18) +lSV +15~ GND GND 10K -15V +lSV 10K -lSV GND GND (18) +15V (18) ~?~ ~?:" 10K 10K 10K 10K 10K 10K 10K 2.SV 2.5V 2.5V 2.5V 2.5V 2.5V 2.5V 10K 2.5V 10K 10K 2.5V 2.5V GND GND -t5V 10K 2.5V 10K 430 10K 10K 10K 10K 10K 2.5V 2.5" 2.SV 2.5V 2.5V 2.SV 2.5V ~?:~ 10K 2.5V 10K 2.5V +15" (28) (28) (28) DF412/P DGS06 DGSOSA Siliconix incorporated 15V 10K GND .n. ~?:" GND GND GND -t5V (28) (28) (28) (28) (28) -15V 10K GND -- (2) (2) (2) (2) (2) (2) (2) -15V (2) 15V (28) GND (28) (28) (28) (28) (28) (28) -15V 10K GND lSV (28) GND (28) (28) (28) (28) (28) -lSV 10K GND GND 18 18 18 18 18 18 18 18 18 18 10K +lSV (28) 10K 2.5V GND -t5V GND -t5V GND 400 pf-t5V 10K 10K 10K 10K 2.5V 2.5V 2.SV 2.SV GND GND GND GND GND (28) (28) (28) (28) GND GND GND GND GND (2) (2) (2) (2) GND GND GND GND GND GND GND (28) (28) (28) (28) (28) GND GND GND GND GND GND GND (28) (28) (28) (28) 18 GND GND GND GND GND GND 18 18 10KGND 18 18 (28) (28) (28) (28) (28) GND (2) (2) (2) (2) (2) GND (28) (28) (28) (28) (28) (28) (28) (28) (28) 18 18 18 18 - DG52S (28) (28) DG527 DG535 !~~\ GND (28) (28) (28) (28) (28) N/C 1.SK GND PIN 14 1.SK 1.SK 1.SK 1.SK 1.SK 1.SK N/C +S GND GND GND GND GND GND GND 1.5 .1JJF S.8m .1J,Lf .1J.LF To To J.LF GND ~In GND GND Gin 10K GND 10K GND 10K 10K GND GNC GND GND GND GND 10K 10K 10K GND 10K GND +lSV +15V +lSV +lSV +lSV +lSV GND +lSV 10K GND +lSV DG536 DG5SS1 SB/J PLCC (28) (28) (28) 10K GND (28) (28) (28) (28) 10K SOV 10K SOV (19) (19) (19) (19) (19) (19) (28) (28) GND CLK 2KH Pin 3 N/C l.SK l.SK 1.SK 1.5K GND GND GND GND 1.SK GND 1.5K N/C GND N/C N/C N/C N/C N/C 20K To Pin 26 N/C -t5 Clk 15 15 15 lK- GND GND lK- lKlK+15V +15V +15V +15V -t5V -t5V GND (28) SI2504 1.5K GND +5V 100 400K -t5 lOOK -SV GND .n. S17135 .n. N/C GNC 20K -t5V 20K Pin 20 N/C N/C N/C GND GNC GND 15 15 15 15 15 GND ~O~ 100 N/C N/C N/C b~~ .n. ..." 15 15 15 S17545 -t5V 8KHZ 5.SK Clk 5V 5.SK 5.SK 5.SK 22K GND GND GNt GND GND -t5V 5V 5V 5V GND +15" +15V 5.6K Clk +15V ~;~~ 5.SK 5.SK GND GND 5.SK 22K GND GND GND +SV GND -t5V GND (7) -t5V (27) +10V (27) (7) SI8S01 SI8S02 1-16 5.SK GND 5.SK 5.SK (27) +15V +15V GND GND GN[ GND GND +15V +15V +15V +lSV GND +15V GND Process Option Flows IIJI ~ ~ Siliconix incorporated PROCESS OPTION FLOW CHARTS Military and Extended Hi-Rei Column I: The first column identifies Siliconix' MIL-M-3B510 Compliant JAN, Class B, process flow option. MIL-M-38510 JAN product will be processed in accordance with the applicable detail slash sheet requirements. Column II: The /883 Compliant/Non-JAN, Class B process flow meets the requirements of MILSTD-B83, paragraph 1.2.1. Devices which are processed to this flow are identified within the generic part number suffix as /883. Column III: The Extended Hi-Rei 1 flow offers customers, with Space type requirements, the option of a Space Rated flow for generation of specification control drawings. Column IV: The Extended Hi-Rei 2 flow is offered to customers that can accept product that has SEM and a 240 hour static burn-in. 2-1 lEI Siliconix incorporated PROCESS OPTION FLOW CHART MII-M-38510 JAN Class B P 1883 Compliant/Non-JAN Method 5004/5005 * Extended HIIRel 1 Extended HIIRel 2 ** INTERNAL VISUAL Method 2010, Cond A INTERNAL VISUAL Method 2010, Cond B E NOT Method 2023 R S L A S H S H E E T INTERIM ELECTRICAL (Post Burn In) Static @ 25°C POA=50/0 Functional @ 26°C, POA=30/0 datal ANAL ELECTRICAL per data sheet minImax oper temp * ** *** 2-2 MIL-STD-883 The latest revision of MIL-STD-883 at time of order Is applicable. Available Option SEM Dual bum-In may be performed In reverse. ~ ~. Siliconix incorporated Hi-Rei and Standard Flow Column I: This flow is for Military/ Aerospace/Industrial customers that can use a noncompliant/ non-JAN device in their equipment. while gaining the advantage of environmental and infant mortality screening. Column II: The standard flow outlined within this column is intended for plastic and hermetic packages with burn-in. Column III: The standard flow outline within this column is intended for plastic and hermetic packages without burn-in. • 2-3 Siliconix incorporated PROCESS OPTION FLOW CHART HI-Rei STD (Burn-In) INTERNAL VISUAL (Industrial) STD INTERNAL VISUAL (Industrial) TEMP CYCLE Method 1010, Cond C (Plastic only) GROSS LEAK Method 1014, Cond C (Hermetic only) BURN-IN 160 hrs Method 1015 Cond A or C QCI QA electrical (AQL) T":!SoC 100% EXTERNAL VISUAL Method 1009 2-4 EXTERNAL VISUAL (AQL) Method 1009 QCI QA electrical (AQL) T..:!5°C ...... Siliconix .c;II incorporated Die Shipments Column I: This flow offers customers the option of assembling canned sample to verify the die are capable of meeting the military temperature range. electrical test limits. Die Attach and Bond Strength will also be performed to insure assembly operation. Column II: Column II is the same as die/canned sample flow with burn-in added for confidence that die samples do not shift across this screen. Die Attach and Bond Strength will also be performed to insure assembly operation. Column III: This column identifies Siliconix' die shipment option without canned samples. -- 2-5 Siliconix incorporated PROCESS OPTION FLOW CHART DIE SHIP CANNED SAMPLES WAFER SCREEN: • CANNED SAMPLE: LTPD=10 DIE SHIP CANNED SAMPLES WITH BURN-IN WAFER SCREEN: • CANNED SAMPLE: LTPD=10 FINAL ELECT Static @ 25°C Min operating temp Max oparatlng temp (per data sheet) FINAL ELECT Static @ 25°C Min operating temp Max operating tamp (per data sheet) • Available Option SEM 2-6 DIE SHIP WAFER SCREEN: • ...... Siliconix incorporated ~ Die Process Information Siliconix is a large-volume supplier of dice to the hybrid industry. Screening includes 100% DC electrical probe and 100% visual inspection of each die. ASSEMBLY The customer's interests will best be served if static sensitivity handling procedures are used. PHYSICAL DATA PART NUMBER DESIGNATIONS Physical layout and dimensions are presented in the Die Topography section Dimensions are shown as '(';'~i. Dice are supplied to length and width dimensions which have an accuracy of ±3 mils. Thickness will be 15 ±1 mils for integrated circuit die with gold backing, and 21 ±1 mils without gold backing, and 8 ±2 mils for FETs. See ordering information. Bonding pad location may be identified from the die topography shown. Contact factory for ordering information. Each die or wafer is passivated with approximately 8000 A of either silicon nitride or non-crystalline glass. FET chips are supplied with gold backing; gold backing is available as an option for integrated circuits. Die metallization is deposited aluminum approximately 12000 Athick. DIE SCREENING CRITERIA Electrical Probe -- All dice are 100% probed in wafer form at 25°C to DC parameters as shown on the wafer test limits specification (available upon request). Hot chuck is also available at additional cost. Visual Criteria -- Each die receives a visual inspection to MIL- STD-883. Method 2010, Condition B criteria. Siliconix QC Department samples each lot to an LTPD of 10%. Alternative visual criteria, including Method 2010, Condition A, or Siliconix industrial criteria are available as options. PACKAGING Die are supplied in dust-proof, anti-static waffle packs (see illustration - Figure 1) OPTIONS (Price will be quoted upon request.) SEM -- Scanning electron microscope examination and control in accordance with MIL-STD-883 Method 2018 can be ordered on die and wafers. SEM wafer qualification should be specified as a separate line item on a request for quote. Wafer Qualification to Unprobed Parameters -Sample testing of purchased die to demonstrate capability to perform at data sheet temperature extremes or to switching times test limits by use of LTPD techniques can be provided at additional cost. Visual inspection to customer generated specifications can be provided. Gold Backing -- IC dice may be purchased with gold alloyed to the backside. This is a special order item. Gold thickness would be as follows: FETs (NC, NIP) 1500 A minimum ICs (all) 3500 A minimum Hot Chuck -- Siliconix can perform wafer sort at the high-temperature limit, at additional cost. CHIP PACKAGING Chips are packaged as individual die in the flat waffle carrier illustrated in Figure 1 . The carrier has a cavity size adequate to allow ease of loading and unloading and it also prevents die from rotating within the cavity. 2-7 ~' ..... Siliconix incorporated ~ DG190 consists of a separate driver chip (CMJB) and four separate JFET transistors (NCB). Figure 2 illustrates the bonding diagram arrangement in the DIP package. The driver and the JFET switches are mounted so that the substrates are electrically isolated. The substrate of the driver is at the negative supply voltage while the substrate of the JFET switches is the gate connection. A pattern-bottom side braze package is used to connect the driver to the JFET gate. The pin connections for the JFET switch chips can be determined from the chip section and switch chips can be determined from the chip section and switch pin-out in the data sheet. Ole Diagrams/Dimensions NOTE: CARRIER TOP & BOTTOM SECURED BY CLIPS MULTI-CHIP DIE TOPOGRAPHY INFORMATION The negative image photos show the metallization pattern. Scale is normally 20x. Bonding pads are 4 mil (0.10 mm) square, glass-free aluminum metallization. Pad identification numbers usually correspond to pin numbers for the dual-in-llne package on data sheets. Some of Siliconix's analog switches are of multi-chip design with inter-chip connections. For example, the Wafer test limits are available upon request. Figure 1 7 8 9 10 Figure 2. 2-8 DG190 JFET Analog Switch .. H Siliconix incorporated 8S9000 Series Process Option Flow Chart .. RAPID CHANGE OF TEMPERATURE BS9400 1.2.6.13 10 CYCLES -65 to 150°C ACCELERATION STEADY STATE BS94001.2.6.9 294,000 m/s' IN DIRECTION Y2 FINE AND GROSS LEAK TESTS BS9400 1.2.6.14 (1), (2) ELECTRICAL TESTS at 25 ° C AS SUBGROUP A3(a) of the SPECIFICATION BURN-IN SCREEN BS94001.2.7.2.1 168 HOUR MINIMUM at 125°C FINAL ELECTRICAL TESTS at 25°C AS SUBGROUP A3(a) of the SPECIFICATION INSPECTION REQUIREMENTS: All tests performed at T amb = 25°C unless otherwIse specified. 100% SCREENING TEST PROCEDURES Production batches containing greater than 10% defective units subsequent to burn-In will not be Issued for release. For complete details of screening and Inspection refer to the appropriate detail specification available on request from your nearest SlIIconlx sales offices. 2-9 .., .. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Selector Guide . . \.. ~ :j"cn ANALOG SWITCH SELECTOR CHART 0= 00' -'0 "O::l Q s(" el. CD 0. SWITCHING SPEED t(on) OR t(off) , WHICHEVER IS GREATER 20/35 to 60/75 ns 10 ns 125/150 ns 500/600 ns 300 ns 250 ns 200 ns DG441 (0,Q,8S) DG442 (0,Q,85) 100 ,n, 0G444 (C,a,SS) QI '0; a. 0G30BA (0, 55) DG309 (c,a,SS) 212.5118 DG123 (P,S,CD,r) 513002 (P,S,SD,r) OG125 (P,S,CD,r) DG221 (C,a, 55, L) DG445 (C, 0, 58) o c: U> 1.5/1.6)18 lJ1S (C, a, SS) DGl72 (P,S,CD,r) 0G211 (C, a, SS) 0G212 (C, a, SS) DGP201A(C,Q,SS 0G202 ,n, ~ 750 ns DG201A (0,Q,85) 175 DG126 (J,D,DS) DGl82 (J,D,SS) 0G540 (0, a, SS) 0G541 (O,a,SS) 80 ,n, OGl85 (J,O,OS) OGl34 (J,O,SS) DG200A (0,0,88) OG142 (J,Q,DD) DG143 (J, S,SD) DGl88 (J,S,SD) OG191 (J, 0, SO) DG542 (0,0,88) ~ Radiation ResIstant QI a: Z o QI ... o :::I o 50210 (D,$,SS,rl DG271 (0,0,88) 80211 (D,S,8S,r) S0212 (O,S,SS,r) 50 50213 (D,S,SS,r) (O,5,S5,r) ,n, 50214 80215 (O,8,88,r) 502100(0,5, SS, r) S02110(0,8,5S,r) 502120(0,5, SS,r) DG5140 (C, S, 58) DG5141 (0,0,$8) DG5142 DG5143 0G5144 OGS145 (0,8, SO) (0,0,50) (C,S,OS) (C,O,OS) DG304A (0,0,88) DG300A DG305A (0,8,80) DG301A 0G306A (C,O,OS) 0G302A DG307A (C,O,SO) 0G303A OGP303A(C, 0, SO 0G381A DG566 (H,8,SS,r) DG243(C,D.SD,M (0,0,88) DGS048 (C, 0, 58) (C,S,SD) 0G5049 (C,O,OS) (C, 0, OS) OGS050 (C, S, SO) (C,O,SO) DGS051 (O,O,SD) (0,0,58) OGS040 (C, S, SS) OGS041 OGS042 OGS043 OGS044 DGS045 0G384A (C, 0, OS) 0G387A (C,8,80) 0G390A (0,0,50) (0,0,55) (C,S,SO) (C, 0, SO) (0,5,05) (0,0, OS) (f) I o i' c: "eo 30 505000(0, Q, 55, r) OG601 (L, a, 55) ,n, 505001 (D,Q,SS,r) 5D5002{0,Q, 55, r) SD5400(D,a,85,r) to SD5401(O,a,5S,r) S05402(0,Q,8S,r) SD5200(D,a,S5,r) 25 ,n, '2 OG181 OGl84 OG1B7 DG190 OG129 (J, 0, OS) (J,0,S5) (J,O,DS) (J,5,50) (J,O,SD) OGl33 (J,O,SS) OG139 (J,D,DD) DGl44 (J,S,50) } Radiation Resistant 00400 (0,5,5S) 0G401 (0,0, SS) 00402 (C,5,50) 0G403 (C,O,SO) S122oo(0,5,8S,r) 812400(0, S, S5,r) 0G404 (C,S,OS) 0G405 (C,O,OS) ~ 00411 (O,a,5S) 00412 (O,Q,SS) (f) 0G413 (C,a,SS) 0G417 (C,S,SS) ...o i 00418 (O,S,SS) 0G419 (C,SO,S) 0G421 (C,D,SS,L 00423 (C,D,SO,L 00425 (O,D,OS,L OG180 OG183 OG186 OG189 10 ,n, (J, 0, 5S) (J,D,DS) (J,S,SO) (J,O,5D) ---_.- ParenthAsls Information (C, a, SS, L) II I L - Mlscelianeous Configuration No. per Package Process o J P H Er= = Plus-40 OMOS or 44 V 51-Gate = DM05 or DICMOS = JFET = PMOS = High Voltage L = Low Voltago CMOS (PolyMOS) ° NO S D Q 8 per Radiation Resistant ~ = Dual (2 per package) = auad (4 per package = Eight per package (O/CMOS) ~ I OG140 (J,O,OS) OG141 (J,O,SS) OG145 (J,O,DO) OG146 (J,S,SD) - _ . - -_. ---- package = Single (1 per package) { 55 SO OS 00 CD Single-Pole SlOgle-Throw Single-Pole Double-Throw Double-Pole Single-Throw Double-Pole Double-Throw Common Drain Miscellaneous r M L =- = = rOS(ON) is a function of drive voltage Make-Befera-Break Latchable Inputs If .1\) ANALOG SWITCHES Functional Conflguratlon Basic Part Number Switch Type rOS(on MAX IS (off) (~) M (2) Supply Voltage Package and Temperature Range Offerings: Switching n!I~AX ~~ V+ v- L (3) Volt. Range (2) V, ( ton ) MAX Supp. toff Range Analog Voltage Range (V) logic Input for ON Switch Levels ~ r-V InL V InH Commants Plastl Plastl DIP SO CerDIP 1 Ch. SPS DG417 1 Ch. SPS 00418 1 Ch. SPS 0G400 CMOS + 40 CMOS + 40 CMOS + 40 35 35 25 0.25 0.25 0.25 15 15 15 -15 -15 -15 5 5 5 30 30 30 175 175 175 146 145 146 44 44 44 V+ to VV+ to VV+ to V- 0 1 1 0.8 2.4 Mini DIP, Low Power 0.8 2.4 Mini OJP, Low Power 0.8 2.4 Low Power, High Perf. OJ OJ OJ 1 Ch. SPS ~ 1 Ch. SPS ~ CMOS + 40 + 40 30 50 0.50 16 -15 44 1 1 AK,CK 30 v+ to Vv+ to Y- OJ -15 125 500 0.8 2.4 Use DG400 for New Designs 15 200 1000 44 1.00 5 5 3Q CMOS 0.8 2.4 Use DG400 for New Designs CJ AK,CK MOS 25 0.25 15 -15 5 30 125 75 44 V+ to V- 1 O.B 2.4 Low Power, High Perf. OJ AK 35 25 0.25 0.50 15 15 -15 -15 5 6 30 30 175 126 145 75 44 44 V+ to VV+ to V- 1 1 0.8 2.4 On Board Latches 0.8 2.4 Low Charge Injection OJ OJ AK AK 2 Ch. SPS DG6141 2 Ch. SPS DG181 pMOS + 40 N-JFET 30 30 0.50 1.00 16 10 -15 -20 6 6 30 20 200 150 126 130 44 36 V+ to V(V+) to (V-)+7.5 1 0 0.8 2.4 Use DG401 for New Designs 0.8 2.0 Usa 00401 for New Designs CJ AK,CK 2 Ch. SPS oG181 2 Ch. SPS" ~ N-JFET N-JFET 30 30 1.00 1.00 15 12 -15 -18 5 15 20 150 130 600 1600 38 (V+)-2 to (V-)+8 0 1 0.8 2.0 Use 0G401 for New Designs 0.8 2.5 Usa 0G401 for New Designs 2 Ch. SPS" DG304A CMOS + 40 2 Ch. SPS 0G381A CMOS + 40 50 50 1.00 1.00 15 15 -15 -15 30 30 250 300 150 250 44 44 V+ to VV+ to V- 1 0 3.5 11.0 JAN Qualified 0.8 4.0 Use 00401 for New Designs CJ CJ AK,BK,CK AK.BK,CK 2Ch. SPS DG300A CMOS+4O 2Ch. SPS ~ CMOS+4O 30 30 300 1000 OJ CJ AK,BK,CK AK,CK 2 2 2 2 50 50 1.00 1.00 15 15 -15 -15 SPS oGl82 SPS OGl82 SPS OGl34 SPS 75 75 80 10 1.00 1.00 1.00 10.00 10 15 12 10 -20 i5Ci'18O N-JFET N-JFET N-JFET N-JFET -15 -18 -20 2 Ch. SPS OG180 2 Ch. SPS QQlll N-JFET N-JFET 10 10 10.00 10.00 15 12 -15 -18 70 2.00 15 -15 35 35 35 175 175 175 175 175 0.25 0.25 0.25 0.25 0.26 0.25 0.25 0.25 15 15 15 15 15 22 15 15 -15 -15 -15 -16 -15 2 Ch. SPS DG200A CMOS + 40 4 4 4 4 4 4 4 4 Ch. Ch. Ch. Ch. Ch. Ch. Ch. Ch. SPS SPS SPS SPS SPS SPS SPS" SPS NOTES: 1. 2. 00411 00412 0G413 0G441 0G445 OGP2011 00442 0G444 CMOS CMOS CMOS CMOS CMOS CMOS IoMOS CMOS + 40 + 40 + 40 + 40 + 40 + 40 + 40 + 40 5 5 5 5 5 5 5 5 5 -22 -15 -15 5 I AI( + 40 Ch. Ch. Ch. Ch. Metal Can OY OY 2 Ch. SPS 0G421 PMOS + 40 2 Ch. SPS DGS048 PMOS + 40 2 Ch. SPS 00401 Side Flat Braze Lee Pac I i i AZ I IAP,BP AL AA,BA !AP,BP IAP,BP AL AL AA,BA 'I' I AA'BA'C~ AA,BA,C~ 250 500 44 44 V+toVV+toV- 1 1 0.8 4.0 JAN Qualified 0.8 2.4 Usa 00401 for New Designs 20 20 20 20 250 130 260 130 600 1800 300 260 36 (V+) to (V-)+5 (V+)-2 to (V-)+5 (V+) to (V-)+7.5 0.8 0.8 0.8 0.8 Designs Designs Designs Designs !AP,BP IAP,BP BP !AP:BP AL AL AL AL AA,BA AA,BA 36 36 0 0 1 0 15 20 300 250 1000 2500 AL AL AA,BA (V+)-2 to (V-)+8 0.8 2.0 Use 00401 for New Designs 0.8 2.5 Use 00401 for New Designs IAP,BP 36 0 1 30 1000 500 44 V+ 10 V- 0 0.8 2.4 JAN Cuallfled AL AA,BA,CA 30 30 30 30 30 44 30 30 175 175 175 175 175 600 175 175 145 146 145 145 145 450 145 145 44 44 44 44 44 44 44 44 v+ V+ V+ V+ V+ V+ V+ V+ ~ to Vto Vto v10 Vto Vto Vto Vto V- 0 0.8 1 0.8 !Note (6) 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 2.0 2.0 2.5 2.0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 Use 0G401 Use 0G401 Us.0G401 Use 0G401 for for for for New New New New Low Power, High Perf. Low Power, High Parf. Low Power, High PorI. 0G201A Upgrade 0G212 Upgrade High Precision 00202 Upgrade 00211 Upgrade Not recommended for new designs. For most products, the analog voltage range Is a function of supply voltages. For PMOS or CMOS SWitch, r DS(on) Is also a function of supply and analog voltage. Sea Individual data sheats for mora details. 3. 4. 5. Logic supply voltage required for TTL compatible Inputs. Preliminary product. Specifications subject to change. Contact the factory for availability. Input reference voltage of 2.5V Is required. See Inchvldual data sheets for more details. 6. See data sheets for sWitch states of differential and multiple switches. AA.BA,C~ lAp ~,BP OJ OJ OJ OJ OJ OJ OJ OJ OJ AK,BK,CK DY OY OY OY OY OY OY DY I AA,BA, I AI< AI< AI( AK AI< AI( AK AI< AZ I ~ :r(J) 0= 00' "'0 '0:3 ~x· iii c. \i tq :rcn 0= ANALOG SWITCHES 00' "'0 "0:;3 Qx' Switching Supply Functional Basic Conflgura- Part lion Number Switch Type rDS(on MAX ) IS(off) (.e.) MAX2 (2) nA VL (3) ton toff 30 30 30 30 20 30 75 200 200 550 300 600 75 150 150 340 750 450 450 10.00 10,00 12 10 90 60 18 (V+) -6 toV- 0 10 90 50 18 (V+) -5 toV- 0 15 15 -3 -3 -15 -15 30 30 1000 500 500 44 44 V+ to vV+ to V- 300 2000 36 (V+) to (V-)+10 1500 124 (V+)-10 to (V-) 0 60 O/CMOS 60 4 Ch. SPST DG212 CMOS +41 175 4 Ch. SPST DG211 CMOS +41 175 6,00 5,00 10 -20 5 20 60 -60 15 100 5 Ch, SPST DG125 PMOS 100 1,00 8 Ch, SPST DGS66 D/CMOS 100 5.00 1 Ch. SPOT DG305A 1 Ch. SPOT ~ 1 Ch. SPOT DG1e8 1 Ch. 1 Ch. 1 Ch. 1 Ch. 1 Ch, 1 Ch, SPOT SPOT SPOT SPDT SPOT SPOT NOTES: OGI66 ~ OGI86 ~ OGI86 ~ N-JFET N-JFET N-JFET CMOS +4 CMOS +41 CMOS +4 CMOS +4 N-JFET N-JFET N-JFET N-JFET PMOS N-JFET N-JFET 12 25 25 25 30 30 30 30 0,25 0,25 15 15 0.50 0.50 1.00 1,00 15 15 1.00 50 50 50 50 1.00 1.00 1.00 1.00 1.00 12 15 15 75 75 80 10 100 10 10 - 0.8 0.8 0.8 0.8 600 O/CMOS +4 +41 +41 +4 V+to V- 0 0 0 I 30 4 Ch. SPST OG541 CMOS CMOS CMOS CMOS 0.8 2.0 High Speed, Low Charge InJ. 3.5 11,0 Single Supply 3,5 11.0 Single Supply -15 4 Ch. SPST OG540 1 Ch, SPOT DG419 1 Ch. SPOT OG402 1 Ch, SPOT DGS050 1 Ch. SPOT DG5142 1 Ch. SPOT OG187 1 Ch. SPOT DG187 1 Ch, SPOT ~ 1 Ch. SPOT OG301A 1 Ch, SPOT OG387A V1nL lv'nH 0 0 I 15 4 Ch. SPST DG202 175 175 Switch -15 -15 PMOS CMOS +4 CMOS +4( 4 Ch. SPST DG201A (V) V+ to VV+ to V- v- CMOS +4 OG309 for aN 1--..- 15 15 15 t5 10 15 DG221 DG271 Supp. Range Input V+ .l2lillZ SPST SPST SPST SPST SPST Voltage Range 1.00 1,00 10.00 1,00 10.00 10,00 10 15 15 15 15 10 12 15 10 10 12 -16 -15 -20 -15 -15 -15 -15 -15 -20 -15 -18 -15 -15 -15 -15 -15 -20 -18 -15 -20 -20 -18 5 5 5 5 5 5 5 5 5 5 5 2000 30 30 30 30 20 15 125 125 125 200 150 150 20 800 30 30 30 300 300 250 1000 30 6 20 20 5 20 16 20 5 1000 20 20 75 76 75 125 130 130 1600 250 250 150 44 44 44 44 36 44 44 44 44 44 44 38 36 44 44 44 44 V+to VV+to V(V+) 10 (V-)+10 Vi-toV- DIP SO CarOIP OY OY AK.BK.CK AK,BK,CK OY OY AK,BK,OK 2.4 Latchabla Inputs CJ CJ 2.0 Chip Select Function OJ 2.4 JAN Qualified 2.4 JAN Qualified CJ OY AK,BK,CK AK,BK,CK 0.8 2.4 Wldeband Video 0.8 2.4 Wldeband Video OJ OJ ON OY I 0.8 2.4 low Cost 0 0.8 2.4 low Cost CJ CJ OY OY 0 0.5 4.6 low Standby Power Note V+ to VNote V+ to VNote V+to VNota (V+) to (V-)+7.S Note V+ to V- 6 6 6 6 6 Note 6 (V+)-2 to (V-)+8 NoteS V+to VNota 6 V+to vV+ to VV+to V- Nota 6 NoteS NoteS NoteS 250 800 36 300 1000 300 (V+) to (V-)+5 NoteS (V+)-2 to (V-)+5 Nota 5 Note 6 1500 250 3S 36 (V+) to (V-)+10 (V+) to (V-) +7. 1000 2500 36 36 250 NoteS Nota 6 (V+)-2 to (V-)+8 NoteS Comments CJ 2.4 Mini DIP, low Power OJ OJ 2.0 0,8 3.0 Use DG402 for New Designs 4.0 JAN Qualified 2.4 Use DG402 for New Designs 2.0 Usa DG402 for New Designs 2.0 USB 2.0 2,0 3,0 2,0 2,0 2.0 3,0 ~ 3. 4. logic supply voltage required for TTL compatible Inputs. Preliminary product. Specifications subject to change. Contact the factory for availability. 5. lnput reference voltage of 2.SV Is required. 6. See data sheets for SWitch states of differential and multlpla switches. See IndiVidual data sheets for more details. I AZ AP AP AL AP,OF AK AK AK,CK AP,BP AP,BP AP,BP CJ CJ AK,BK,CK AK,BK,CK OJ AK,BK,CK CJ AL AL AL AL AL AA,BA AA,BA,CA AA,BA,CA AK,CK Usa DG402 for New Designs AL AL AL AL Usa DG402 for New Designs Usa DG402 for New Designs AP,BP Use DG402 for New Designs AP,BP AL AL Use DG402 for New Designs Usa DG402 for New Designs AA.BA AA,BA,CA AP,BP AP,BP AP,BP AP,BP Not recommended for new designs. For most products, the analog voltage ranga Is a function of supply voltages. For PMOS or CMOS switch, rDS(on) Is also a function of supply and 1. 2. CJ LCI Pack Metal Can AK,BK,CK DG402 for New Designs 0,8 4.0 Use DG402 for New Designs 3.5 11.0 JAN Qualified 0.8 2.4 Break-Befor&-Maka 0,8 2,0 Use 0G402 for New DeSigns 0,8 2.0 0,8 0,8 0.8 OJ Flat A2 AP.BP 0,8 0,8 0.8 0,8 0,8 0,8 2.4 low Power, High Perf. 2.4 low Charge Injection Side Braze AP,BP OJ 4,0 11,0 High V, Serial load analog voltaga. Sea Individual data sheets for more details. 'f c..> Plaltl Plastl CJ CJ 500 130 130 1600 250 Package and Temperature Range Offerings: Levels Analog MAX 1.00 1.00 1.00 1,00 1.00 1.00 1.00 DG308A Ch. Ch. Ch, Ch. Ch. Time (ns MAX) Volt. Range (2) CMOS +4( CMOS +4 CMOS +4( 4 4 4 4 4 50 100 100 100 150 Voltage AA,BA AA,BA AA,BA AA,8A i w .J,.. ANALOG SWITCHES Switching Time Supply rOS(on Functional Conflgura- Ch, Ch, Ch, Ch, Ch, Ch, Ch, Part Number lion 2 2 2 2 2 2 2 Basic SPD SPD SPD SPO SPD SPe SPD OG423 DG403 OGS051 DGP3030' DGSI43 DG542 DG190 2 Ch. SPO DGlgo 2 2 2 2 Ch, Ch, Ch, Ch, Ch, 2 Ch, 2 Ch, SPD SPD SPD SPO SPD SPe SPe Switch Typo CMOS +40 CMOS +40 CMOS +40 CMOS +40 CMOS +40 D/CMOS N-JFET N-JFET OG307A CMOS +40 DG303A CMOS +40 ~ CMOS +40 DG243 DGlgl CMOS +40 00191 DGISQ 2 Ch, SPe DG189 2 Ch. SPO CMOS +40 N-JFET N-JFET N-JFET N-JFET 1 Ch. DPS DG404 1 Ch, OPS DGSI44 1 Ch, DPS ~ CMOS +40 2 2 2 2 2 2 CMOS+40 Ch, Ch, Ch, Ch, Ch, Ch, DPS DPS DPSl DPS DPS OPS NOTES: 1. 2. DG425 DG405 DGS049 DGSI45 DGI84 DGI84 CMOS +40 CMOS +40 CMOS +40 CMOS +40 CMOS +40 N-JFET N-JFET MAX I.n.) (2) ISloff) MAX2 nA 25 25 25 50 30 0,25 0,25 0,50 0,50 0,50 Voltage V+ V- VL (3) -15 -16 -15 5 5 6 (ns Max) Analog MAX -16 5 6 5 5 5 -15 -16 -15 5 5 5 30 30 30 125 75 200 125 1000 500 44 44 44 125 125 125 200 150 150 44 44 44 44 36 60 30 30 50 50 50 50 50 75 75 10 10 10.00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 10,00 10,00 25 30 50 0,25 0,50 1,00 15 16 15 0,25 0,25 0,50 0,50 1,00 1,00 15 -16 -15 -3 -15 -20 -15 -15 -15 -15 -15 -20 -15 -20 15 -15 15 15 10 15 -15 -15 -20 -15 6 5 5 5 6 5 5 30 30 30 30 20 15 Range toff Range 125 75 125 75 125 75 300 250 200 125 go 50 150 130 150 130 250 150 300 250 1000 500 300 250 1000 500 250 130 250 130 300 250 300 250 -22 Voltage Supp. Ion 30 30 30 30 30 10 15 20 30 30 30 30 30 20 20 20 15 15 15 15 22 15 12 15 10 15 15 15 15 15 10 15 10 16 25 25 25 30 30 30 Volt. Range (2) 75 76 75 125 130 130 44 44 44 44 44 18 IV) v+ to vv+ to Vv+ to v- v+ to vV+ taV- Logic Input for ON Switch Not06 NoteS Note 6 NoteS NoteS IV+) -5 10 V- NoteS NoteS 36 44 44 44 44 44 36 IV+) 10 IV-)+7,5 NoteS V+ to VV+ to VV+ to V- NoteS to Vto v- NoteS IV+) 10 IV-)+5 Noto 6 Noto 6 36 IV+) 10 IV-)+7,5 NoteS V+ v+ NotaS NoteS NoteS Note 6 V+ to v- Note 6 V+ to V- Note 6 v+ to v- Note 6 V+ to V- v+ toVV+ to VV+ to v- IV+) 10 IV-)+7,5 r-r-Comments VlnL V lnH 0,8 2,4 On Board Latches 0,8 2,4 Low Power, High ParI, 0,8 2,4 low Charge Injection 0,8 4,0 High Precision 0,8 2,4 Usa DG403 for New Design 0,8 2,4 Wldeband Video 0,8 2,0 Usa DG403 for New Design 0,8 2,0 Usa DG4Q3 for New Design 3,5 11,0 JAN Qualified 0,8 4,0 JAN Qualified 0,8 2,4 Usa 00403 for New Design 0,8 4,0 Use OG403 for New Design 0,8 2,0 Use DG403 for New Design 0,8 2,0 Usa DG403 for New Design 0,8 2,0 Use DG403 tor New Design 0,8 2,0 Use OG403 tor New DeSign 0,8 2,0 Use DG403 for New Design 0,8 0,8 0,8 Nota 6 0,8 1 I I 1 1 Package and Temperature Range Offerings: logic Levels 0,8 0,8 0,8 0,8 0,8 analog voltage. See Individual data sheets for more details. logic supply voltage required tor TTL compatible Inputs. 4. Preliminary product. Specifications subject to change. Contact the factory for availability. 5. Input reference voltage of 2.5V Is required. 6. See data sheets for SWitch states of differential and multiple switches. See IndiVidual data sheets for more details. OJ OJ OJ OJ CJ OJ CJ OJ OJ OJ CJ OJ CJ OJ 2,4 Ion Board Latches 2,4 Power, High Perf, 2,4 ~se DG405 for New Designs 2,4 ~se DG405 tor New Designs 2,0 ~se DG405 for New Designs 2,0 ~sa DG405 for New Designs OJ !-ow OY DY DY OY CerDlP Side Flat Braze LCe Pack OJ OJ CJ Metal Can AI< AZ AI< AI< AZ AI< AK,CK ON DY AP AP,BP AP,BP AK,BK,CK AK,BK,CK AL AL AZ AK,CK AK,BK,CK AK, CK AP,BP AP,BP AP,BP AP,BP 2,4 Low Power, High Perf. 2,4 Use DG404 for New DeSign 2,4 Use OG404 tor New Design ~ Not recommended for new designs. For most products, the analog voltage range Is a function of supply voltages. For PMOS or CMOS switch, rOS(an) Is also a function of supply and 3. Plastl Plastl DIP SO AL AL AL AL AK AK,CK AK,CK DY DY DY AK AK IAz AI< AK,CK jAP,BP jAP,BP AL AL ~ S°(J) 0:::: 00' "0 'O::J Qs(' a CD Co \j ~ S'(/) ANALOG SWITCHES Functional Conflgura- Basic Part Number lion Switch Type 2 Ch. DPST DGI85 2 Ch. DPST DG126 2 Ch. DPST DG183 2 Ch. DPSt DG140 00' -'0 "0:;, 0 -' -,x Switching Time Supply Voltage V+ V- VL (3) Volt. Range (ns Max) MAX Supp. (2) Ion toff Range 1.00 12 -18 1600 36 1.00 15 -15 20 30 600 50 300 250 50 1.00 15 -15 30 250 150 50 50 1.00 1.00 15 -15 30 300 250 CMOS +40 15 -15 30 N-JFET N-JFET 75 75 500 130 44 44 44 44 N-JFET N-JFET N-JFET SO N-JFET 2 Ch. DPST DG129 2 Ch. DPST DG302A CMOS +40 2 Ch. DPST DG306A CMOS +40 2 Ch. OPST DG384A CMOS +40 2 Ch. DPST ~ 2 Ch. DPST DGI85 rOS(on) IS (off) MAX (.0.) MAX2 (2) nA 0= 30 to 2 Ch. DPST DGI83 N-JFET 10 10 1 Ch. DPDT ~ 1 Ch. DPDT ~ 1 Ch. OPOT DGI45 N-JFET 30 N-JFET N-JFET 80 10 Analog Logic Voltage Range Input (V) (V+)-2 to (V-)+8 V+ to V- V+ to V- V+to V- v+ to V- r-- for ON Switch VlnL VlnH 0.8 I I 1 0.8 4.0 JAN Qualified 3.5 11.0 JAN Qualified 0.8 4.0 Use DG405 for New Design 0.8 2.4 Use 0G405 for New Design 0.8 2.0 Use DG405 for New Design 1 1 0.8 0.8 1 1 0.8 0.8 1 0.8 I 1 1.00 15 -15 5 20 1.00 1.00 10 -20 12 -18 5 20 250 130 20 600 10.00 10.00 15 -15 5 16 300 1600 250 20 1000 2500 300 250 36 36 (V+)-2 10 (V-)+8 (V+) to (V-)+8 (V+)-2 to (V-)+8 NoteS 2.0 (V+)-2 to (V-)+5 NoteS 2.0 (V+)-2 to (V-)+8 NoteS 2.0 12 -18 5 36 36 10.00 10 -20 1.00 1.00 12 -18 12 -18 20 SOD SOD 1600 36 36 10.00 12 -18 20 1000 2500 36 20 20 1600 (V+) to (V-)+5 (V+)-2 to (V-)+5 Comments 1 1000 250 6. See data sheets for switch states of dlffarentlal and multiple switches. c..> 0, I SO CorOlP CJ AK,BK,CK CJ AK,BK,CK CJ CJ AK,BK,CK AK,CK Side Flat Braze LCC Pack AP,BP AL AL AP,BP 2.5 Use DG4D5 for New Design 2.0 Use DG405 for New Design AL AL AP,B? 2.5 Use DG40S for New Design 2.0 Use DG40S for New Design AP,BP AP,BP 3.0 USB 0G403 for New Design AP,BP AP,ap AP,ap 3.0 Use 0G403 for New Design 3.0 Use 0G403 fot New Design 0. Metal Can I AP,BP 2.0 Use DG405 for New Design NOTES: 1. ~ Not recommended for new designs. 2. For most products, the analog voltage range Is a function of supply voltages. For PMOS or CMOS SWitch, rOS(on) Is also a function of supply and analog voltage. Saa Individual data sheets for more details. logic supply voltage required for TTL compatible Inputs. Preliminary product. Specifications subject to change. Contact the factory for availability. Input reference voltage of 2.SV Is required. See Individual data sheets for more details. PI~~C Plestl 2.6 Use DG405 10r New Designs --- 3. 4. 5. !!!. ([) Package and Temperature Range Offerings: Logic Levels AP,BP AL AL AL AL AL AL AA,BA AA,BA Cf m DRIVERS Package and Temperature Ranges: Basic # Part of 0125 logic for VlnL Vln~ VOUTL (V) (V) 01 Number Inputs Function Outputs 6 6 MAX Input # Six Separate MAX Output Drive Output Break Current (mA) Swing (V) down (V) Optimum Supply Voltage len lotI (ns) (ns) V+ V- VL 0 0.5 4.6 -5 -30 36 500 1500 10 -20 5 1 0.7 2.2 -10 50 50 300 1500 10 -20 5 0 10 30 36 170 200 10 -20 5 0 Side Braze Plastic Comments VR DIP CelOIP 4 7 Four Channel Driver Metal Can AP AL AP/883 1AL/883 JFET Drivers Drivers 0129 Flat Pack JFET Drivers with Decode 0139 4 2 Note 3 Dual Driver with 0 5 0169 4 2 Note 3 Dual Driver With 0.8 33 +/-40 2 36 170 200 -15 15 5 Smaller MOSPOWER 0 Outputs 4 8 Quad Driver with Note 3 0.8 3 +/- 500 Nota 3 0.8 2.4 +1-100 12.6 8 8 AI( AP AK/863 AP/863 14 100 100 12 0 nla nla MOSPOWEA Driver, 4 Separate Drivers, Low-V H-Brldge Driver CJ AP AP/863 BP 44 100 100 15 -15 nla nla FET Driver. 8 Separato Drivers, Serial Data Input OJ AP Complementary Inputs 0470 AP AP/863 CJ Driver I 2-112 Bridge Lewl Shifter. Line Driver Complementary 0469 CJ Level Shifter I JFET Driver Decode Octal Driver with Serial Input +/-15 AA AA-2 FET SWITCHES Capacitances (pF) Pull-up Basic SWitch Part Number G118 G119 S05000 S05001 S05002 S05400 SD5401 SD5402 Sources 6 6 4 4 4 4 4 4 Drains 1 2 4 4 4 4 4 4 Gates Typo 8 3 4 4 4 OP3T 4 X SPST 4 X SPST 4 4 4 SP6T 4 4 4 4 X SPST X SPST X SPST X SPST On Gate No Ves No No No No No No VGS(lh) rOS(on)MAX VS = 10V 100 100 50 50 50 50 50 50 VS = -10 V BVOSS 450 450 -30 -30 20 10 15 20 10 15 IS (off) (nA) MIN MAX 0.5 0.5 10.0 -1.5 10.0 10.0 10.0 10.0 10.0 0.1 0.1 0.1 0.1 0.1 -4.0 -4.0 2.0 2.0 2.0 -1.5 0.1 2.0 2.0 2.0 egs (Cg) MAX 0.9(lyp) 1.8(lyp) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) GIs (Cd) MAX 0.4(typ) 0.4(lyp) (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) Csb (Cs) MAX Packages and Temp. Sid. Braze Flat Pack 2(typ) AP,AP-2 AL,AL-2 2(typ) (5) (5) (5) (5) (5) (5) AP,AP-2 AL,AL-2 tq 3'cn 00' 0= "0 '0::> QX· ~ a. \i tq s·w ANALOG MULTIPLEXERS 0= 00' -'0 "O:::l MAX rOS(on) Basic Part Number Function Input Latche, (.e.) ID(off) (2) (nA) Analog Range (V) (2) rans V- +1-15 -5 to +10 0.2 0.2 0.2 0.3 O.B O.B O.B O.B +/-15 +/-15 O.B 2.4 15 -15 0.6 0.6 0.6 O.B O.B O.B 3.5 3.5 3.5 2.4 2.4 2.4 -20 -20 -20 -15 -15 -15 2.0 1.0 5 6 10 15 15 15 4.0 11.0 60 O.B 2.4 15 4.5 10.5 4.5 10.5 O.B 2.4 O.B 2.4 15 15 16 15 0 0 -15 -15 Latches On Board OJ -15 -5 High Performance Wldeband/Vldeo DJ DJ Wldeband/Vldeo DJ Eight Channel MUX .... Enable DG90B NO 1000 1 +/-15 1.0 Eight Channel MUX + Enable DG501 Eight Channel MUX + Enable Eight Channel MUX + Enable ~ NO NO NO NO NO YES YES NO 150 150 150 400 400 +/-5 +/-5 400 100 1500 B B B 2 10 10 1.5 1.5 1.5 1.0 1.0 1.0 120 10 +/-50 Eight Channel MUX + Enable Eight Channel MUX + Enable Eight Channel MUX + Enable Eight Channel MUX + Enable +1-15 +/-15 +/-15 -60 -16 90 10 o to 10 10 10 10 o to 10 YES 90 400 400 +/-15 0.3 0.3 1.0 1.0 DG409 DG53B NO YES 100 90 1 10 +/-15 -5 to +10 0.2 0.3 O.B O.B 2.4 2.4 15 15 Four Ch. Single/Two Ch. Diff. MUX DG534 YES 90 10 -5 to +10 0.3 O.B 2.4 15 -5 Four Channel Dual MUX NO YES NO YES 400 400 400 100 10 10 10 120 +/-15 +/-50 1.0 1.0 1.0 2.0 O.B O.B O.B 4.0 2.4 15 2.4 15 2.4 15 11.0 60 -15 -15 -15 Four Channel Dual MUX DGP509A DG529 DG509A DG569 Eight Channel Dual MUX + Enable DG507A Eight ChaMaI Dual MUX + Enable DG527 NO YES 400 400 5 5 +1-15 +1-15 1.0 1.0 O.B 0.8 YES YES NO Sixteen Channel MUX + Enable DG536 DG535 DG506A DG526 Four Channel Dual MUX Eight Ch. Single/Four Ch. Dlff. MUX Sixteen Channel MUX + Enable Sixteen Channel MUX + Enable Sixteen Channel MUX + Enable Four Channel Dual MUX Four Channel Dual MUX +1-15 +/-15 +/-15 5 Any 01 Eight Low Power DG480 Plastl DIP 15 15 15 15 1 1 1 10 +/-10 +/-15 Comments 2.4 2.4 2.4 2.4 75 75 100 90 DG503 DGP50BA DG50BA DG52B DG56B DG54BA VL -15 -15 -15 -5 YES YES NO YES 2.4 2.4 15 15 -60 -15 -15 High Performance Wldeband/Vldeo Fault Protected OJ OJ DJ DJ DJ CarOlP Latches On Board 15 High Voltage Over Vol. Prot. 2. 15 ~ I AL AL CY,DY CY,DY AK,BK,CK BP AK,BK AZ AP AK,BK,CK IAR,BR,CR AK,BK,CK DY DN AZ DY AK AP AP Precision High Voltage AK,BK,CK AK,BK,CK AK,BK,CK OJ OJ AK,BK,CK IAR,BR,CR Latches On Board AZ AZ AK,BK,CK DN DN AZ DY AZ DY BP For most products, the analog voltage range Is a function of supply voltages. For PMOS or CMOS switch, rDS(on)ls also a function of supply and c..> AZ AK,BK,CK 2QQS. Not recommended for new designs. analog voltage. See Individual data sheets for more details. 192P AP,BP AK,BK,CK CJ OJ OJ OJ Latches On Board DN DY AM DJ OJ SO AP,BP WldabandNldeo WldebandIVldeo AZ AK 142K,I43K OJ DJ CJ CJ CJ CJ Hermetic Quad Flat Quad/LOe PLC( Pack I DY AP OJ Precision Side Braze AK AK AK -- Notes: 1. ~x' CD Package and Temp. Range Offerings: vO'l~fes (JIS) VlnL V lnH V+ DG4BO DG485 DG408 DG53B Eight Channel MUX + Enable Supply Time Eight Ch. Serial Input Switch Array Eight Channel MUX + Enable Eight Ch. Single/Four Ch. Dlff. MUX Eight Ch. Serial Input Switch Array logic Levels (V) AZ I I a. VJ OJ HIGH VOLTAGE MULTIPLEXERS Part Number Function Eight Channel MUX + Enable Four Channel Dual MUX Analog Voltage MAX Basic Input Latches rDS(on) (,0, ) Transition Logic Levels (V) Supply Voltages IO(OFF) (nA) Range (V) Time (JIS) Vlnl VlnH V+ V- VL 2.0 4.0 11.0 60 -60 2.0 4.0 11.0 60 -60 OG568 YES 100 120 (V+) - 10 to (V-) OG569 YES 100 120 (V+) - 10 to (V-) Pkg. and Temp. (V) Plastic Side Braze DIP DIP 15 CJ AP,BP 15 CJ AP,BP DATA CONVERSION PRODUCTS: AIDs AND D/As Function 8 Ch. Data Acq. Sys. ~ Ch. Data Acq. Sys. Basic Rosol ... Part tlon Number 818601 SI8602 SI8603 SI8604 Successive Approx. Reg. SI2504 S17135 4 1/2 Digit AID Converter L01201121A 4 112 Digit AID Converter 4 1/2 Digit AID Converter LOI221121A 3 1/2 Digit AID Converter LOll0llllA S17533 CMOS Mult. DAC S17541 CMOS Mult. OAC S17541A CMOS Mult. OAC SI7240 CMOS Voltage Out DAC CMOS Mult. DAC w/Latches S17545 CMOS Mult. DAC w/Latches S17542 CMOS Mult. DAC Serial In S17543 AID Converter AID Converter (Bits) 8 8 8 8 12 15 15 15 11 10 12 12 12 12 12 12 INL Gain Error ± LSB 0.5 0.5 0.25 0.25 nla 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Settling! Converslon Time logic Levels (VSupply = 15 V) Logic Levels (VSupply = 5V) Package and Temp. Range Offerings: MAX Supply Volt HermePlastic (jIS) VlnL VlnH Vinl VinH 0.25 0.25 0.25 0.25 nla 25.0 25.0 25.0 25.0 nla ni. 1.5 nla 1.5 nla nia 13.5 nla 13.5 nla 1.5 nla 1.5 nla 0.8 1 1 1 1 14 12.5 1 1 1 1 1 500000 200000 200000 25000 0.6 0.6 0.6 0.6 2 2 2 nla 0.5 0.5 0.5 0.8 0.8 0.8 0.8 1.5 0.8 0.8 nla 4 4 4 2.4 2.4 2.4 2.4 13.5 2.4 2.4 0.8 nla nla nl. nl. nl. nla nla 0.8 0.8 0.8 3.5 nla 3.5 nla 2.4 2.8 nla nla nla nla nla nla nla 2.4 2.4 2.4 V+ V- Comments 6.5 o II P Interface, 8tH on-board o liP Interfacs, 8tH on-board 15 o II P Interface, SJH on-board 6.5 o JlP Interface, 8tH on-board 15 o 40 MHz Operation, Low Power 7.5 -9 DVM/DMM Applications 6 15 -15 DVM/DMM Applications 15 -15 DVM/DMM Applications 15 -15 DVM/DMM Applications 15 a Replaces AD7520 and AD7533 15 o Reduced Output Capacitance o Reduced Output Capacitance 15 15 o Reduced Output Capacitance a JlP Compatible 15 o 4 Bit Bus Input 15 15 o Serial In DIP OJ OJ OJ OJ CJ CJ CJ CJ CJ IN,KN,LN IN,KN IN,KN IN,KN IN,KN,LN IN,KN,GKN IN,KN,GKN CerOIP Side Braze tic Quadl LCC AK, AKI883 AK, AKI883 AK, AKI883 Quad PLCC ON AK, AKI883 ON AK CK AQ,BQ,CQ ON SO,TO,UO SO,TO SO,TO SO,TO SO, TO, GUO SO,TO,GTO SO,TO,GTO TE TE TE TE GUE GUE GUE JP,KP JP,KP JP,LP tq s·C/) Notes: 1. 2. ~ Not recommended for 0= new designs For most products, the analog voltage range Is a function of supply voltages. For PMOS or CMOS switch, analog voltage. See Individual data sheets for more details. rDS(on) is also a function of supply and 00' "'0 '0:;, 0-' ..,x III m c. ,, tq :rcn 0= LINEARS 00' -.0 "0::1 Qx' i Co Pkg. and Temp. Aangest Functional Configuration Basic Part Number Technology Open Loop Gain (dB) TC MIN MAX Input Input Supply Supply Offset Offset Voltage Voltage Voltage (jlV/oC) (V) (V) (mV) MAX Comments DIP Side Braze Programmable Supply Current CJ AP,BP, 1883 CJ AP,BP, 1883 Plastic Triple Op Amp L144 Bipolar 80.0 +1-1.5 +/-18 5.0 Quad Comparator L161 Bipolar 80.0 +1-1.5 +/-18 3.0 nla Programmable Supply Current CMOS 120.0 +/-3 +/-9 0.005 0.05 Ultra Precision Chopper Stabilized Op Amp S17652 3.3 OJ,OH CorDIP Metal Can OK OA HIGH-VOLTAGE DISPLAY DRIVERS Part Number Description MaxlmumClock Rate TA = 25°0 Pkg. & Temp Ranges: Output Voltage @ Rated Currant Supply Voltages =0.5 rnA CN AM VL 10.8 to 15 V VOO =60V = IL 100 = 0.5 rnA =1 rnA CN AM V L = 10.8 to 15 V VOO=80V IL 100 = 0.6 rnA =5 rnA CN AM IL = 0.5 mA CN OM 100 =8 rnA 4 MHz YOLO =30 V(MAX) @8OmA IOFF 10jl A@ VOO = 200 V VL 8195531 819554 32-Channal Push-pull Output AC EL Column Drivers w/Serlal Data Input 10 MHz YOLO = 8 V(MAX) @ 15 rnA VOHO = 50 V(MIN) @ 15 rnA 8195551 819556 32-Channel Push-pull Output AC EL Column Driver w/Serlal Data Input 10 MHz YOLO = 8 V(MAX) @ 15 rnA VOHO = 70 V(MIN) @ 15 mA 819560 34-Channel Symmetric AC ELRow Orl_ 4 MHz YOLO = 30 V(MAX) @ 70 rnA VOHO = VL = 10.8 to 15 V VOO =225 V Notes: 1. Assuming 1 rnA of constant--current drive. Available In Commercial. Industrial. and MIlitary versions w cb I 44-Pln CLCC IL 32-Channel Open Drain Output AC EL Row Drlvars w/Serlal Data Input * 44-Pln PLCC = 10.8 to 15 V S195511 SI9552 195 V(MIN) @ 70 mA Supply Currents (Worst Case Over Temp.) . w ~ o VOLTAGE CONVERTERS MAX Basic Part Functional Technology MIN MAX MIN Pkg. & Temp. Ranges: MAX Input Supply Supply Output Output Current Voltage Voltage Voltage Voltage (rnA) Configuration Number Voltage Doubler Iinverter 517660 CMOS 0.5 Voltage Doubler Iinverter 517661 CMOS 2.0 (V) (V) (V) (V) 1.5 10 -10.0 20.0 60.0 20 -20.0 40.0 Comments Increased Voltage Range Plastic Metal DIP Can SO CJ AA, AA/883 CY CJ AA, AA/883 CY SWITCHMODE REGULATORS/CONTROLLERS* Pkg. & Temp. Ranges: Basic Part Number 519100 TYP I SOURCE (rnA) TYP I SINK (rnA) VREF Plastic Accuracy DIP - - - ::t 1% DJ TYP MAX MAX MAX V,N VOUT rDS(ON) ROUT (,0,) (,0,) (V) (V) 70 150 5 Cerdlp Surface-Mount AK DN 519101 70 150 5 - - - :t 10% DJ AK DN 819102 120 200 7 - - - ± 1% DJ AK DN 819110 120 - 150 200 ::!::1% DJ AK DY 120 - 20 519111 20 150 200 ±10% DJ AK DY $191151 819116 300 - - - 150 200 ± 1% DJ AK DY * Regulators (819100/01/02) have onboard output MOSFETs, Controilers (819110/11/15/16) are designed to drive external MOSFETs. ~ S'!:Q 85' "0 '0:> 0 -' .,x !>l (jj a. Cross Reference lEI B Cross Reference Siliconix incorporated Sillconix Direct Replacement Suggestions are based on the similarity of, mechanical and electrical characteristics, as reported in the manufacturer's published data. Interchangeability is not guaranteed. Before selecting a device as a substitute, compare the specifications. Siliconix Similar Replacement Suggestions are based on the similarity of electrical characteristics, as reported in the manufacturer's published data. Interchangeablity is not guaranteed, as these parts may have different pin configurations. Before selecting a device as a substitute, compare the specifications. For devices not shown in this guide, or for additional information, the user should contact the nearest Siliconix sales office. SlIIconlx Part Number ADG200AA ADG200AA/883 ADG200AP ADG200AP/883 ADG200BA ADG200BP ADG200CJ ADG201ABO ADG201AKN ADG201AP ADG201AP/883 ADG201ATO ADG201ATO/883 ADG201BP ADG2010J ADG202ABO ADG202AKN ADG202ATO AD0145CD AD7240JN AD7240KN AD7240AO AD7240BO AD7240TD AD72405D AD7501JD AD7501JN AD7501KD AD7501KN AD75015D AD7503JD AD7503JN AD7503KD AD7503KN AD75035D AD7506JD AD7506JD/883 AD7506JN AD7506KD AD7506KN AD75065D AD7506TD AD7507JD AD7507JD/883 AD7507JN AD7507KD AD7507KN AD75075D AD7507TD AD7508KD AD7508KN AD75085D AD7509KD AD7509KN AD75095D AD7521JN Direct Replacement SlIIconlx Similar Replacement DG200AAA DG200AAA/883 DG200AAP DG200AAP1883 DG200ABA DG200ABP DG200ACJ DG411AK DG411DJ DG411AK DG411AK/883 DG411AK DG411AK/883 DG411AK DG411DJ DG412AK DG412DJ DG412AK DG145BP 517240JN 517240KN 517240AO 517240BO 517240TD 5172405D DG501BK DG501CJ DGS01BK DG5010J DGS01AK DGS03BK DGS030J DGS03BK DGS030J DGS03AK DGS06ABK DGS06AAR/883 DG506AOJ DG506ABR DGS06ACJ DGS06AAK DGS06AAR DGS07ABK DGS07AAR/883 DGS07AOJ DGS07ABR DG507ACJ DG507AAK DGS07AAR DGS08ABK DGS08ACJ DG508AAK DG509ABK DGS09ACJ DGS09AAK 517541AJN Part Number AD7521JP AD7521KN AD7521KP AD7521LN AD75215D AD7521TD AD7521UD AD7533AO AD7533BO AD753300 AD7533JN AD7533KN AD7533LN AD7533LP AD75335D AD7533TD AD7533UD AD7541AAO AD7541ABO AD7541AJN AD7!';41AJP AD7541AKN AD7541AKP AD7541AO AD7541A5D AD7541A5D/883 AD7541ATD AD7541ATD/883 AD7541BO AD7545AO AD7545BO AD754500 AD7545GOO AD7545GLN AD7545GUD AD7545JN AD7545JP AD7545KN AD7545LN AD7545LP AD75455D AD75455D/883 AD7545TD AD7545TD/883 AD7545UD AD7545UD/883 AD7820LN AD7820KN AD7820LP AD7820KP AD7820CO AD7820BO AD7820UO AD7820TO AH0126CD SlIIconlx Direct Replacement SlIIconlx Similar Replacement 517541AJP 517541AKN 517541AKP 517541AKN 517541A5D 517541ATD 517541A5D 517533AO 517533BO 51753300 517533JN 517533KN 517533LN 517533LP 5175335D 517533TD 517533UD 517541AAO 517541ABO 517541AJN 517541AJP 517541AKN 517541AKP 517541AO 517541A5D 517541A5D883 517541ATD 517541ATD883 517541BO 517545AO 517545BO 51754500 517545GCO 517545GLN 517545GUD 517545JN 517545JP 517545KN 517545LN 517545LP 5175455D 5175455D/883 517545TD 517545TD/883 517545UD 517545UD/883 517820LN 517820KN 517820LP 517820KP 517820CO 517820BO 517820UO 517820TO DG126BP III 4-1 Cross Reference Part Number AH0126D AH0126DI883 AH0129CD AH0129D AH0129D1883 AHOl33CD AH0133D AH0133D1883 AH0134CD AHOl34D AH0134D1883 AH0139CD AH0139D AH0139DI883 AH0140CD AH0140D AH0140D1883 AH0141CD AH0141D AH0141 D1883 AH0142CD AH0142D AHOl43D AH0143DI883 AHOl44CD AHOl44D AH0144D1883 AH0145D AH0145DI883 AH0146CD AH0146D AH0146D1883 AH0151CD AH0151D AH0151D1883 AH0152CD AH0152D AH0152DI883 AH0153CD AH0153D AH0153D1883 AH0154CD AH0154D AHOl54DI883 AH0161CD AH0161D AH0161DI883 AH0162CD AH0162D AH0162DI883 AHOl63CD AH0163D AH0163DI883 AH0164CD AH0164D AH0164D1883 AM25L04XC AM2504C AM2504XC AM3705CD AM3705D AN0120NA AN0130NA AN0140NA CDG201AK CDG201BJ CDG201BK CDG211CJ CDG308AK CDG308BJ CDG308BK CDG308CJ CDG308J CDG308N 4-2 Slllconlx Direct Replacement H SlIIconlx Similar Replacement DG126AP DG126API883 DG129BP DG129AP DG129AP1883 DGl33BP DGl33AP DGl33API883 DGl34BP DGl34AP DGl34API883 DG139BP DG139AP DG139API883 DG140BP DG140AP DG 140AP 1883 DG141BP DG141AP DG141AP1883 DG142BP DG142AP DG143AP DG143API883 DG144BP DG144AP DG144AP1883 DG145AP DG145API883 DG146AP DG146AP DG146AP1883 DG141BP DG141AP DG141AP1883 DG133BP DGl33AP DGl33API883 DG140BP DG140AP DG 140AP 1883 DG129BP DG129AP DG 129AP 1883 DG146AP DG146AP DG146API883 DG144BP DG144AP DG144API883 DG145BP DG145AP DG145API883 DG139BP DG139AP DG139AP1883 SI25HC04CJ S125HC04CJ S125HC04CJ DG501BP DG501AP SN0120NA SN0130NA SN0140NA DG411AK DG411DJ DG411AK DG411DJ DG411AK DG411DJ DG411AK DG411DJ DG411AK DG411DJ Part Number CDG309AK CDG309BJ CDG309BK CDG309CJ CDG309J CDG309N D123AK D123AKIHR D123AP D123AP-2 D123API883 D123BK D123BP D125AKIHR D125AL D125AL-2 D125ALIHR D125ALl883 D125AP D125AP-2 D125API883 Dl25BK Dl25BP D129AK D129AL D129AL-2 D129ALlHR D129ALl883 D129AP D129AP-2 D129APIHR D129API883 D129BK D129BP D139AA D139AA-2 D139AAI883 D139AP D139AP-2 D139AP1883 D139BA D139BP D139CJ D169AK D169AK-2 D169AKI883 D169AP D169AP-2 D169API883 D169CJ D469AP D469AP-2 D469API883 D469BP D469CJ D470AP D470API883 D470DJ DG123AL DG123AL-2 DG123ALIHR DG123ALl883 DG123AP DG123AP-2 DG123APIHR DG123API883 DG123BP DG125AL DG125AL-2 DG125ALIHR DG125ALl883 DG125AP DG125AP-2 DG125APIHR Sillconix Direct Replacement Siliconix incorporated Siliconix SlmIJar Replacement DG412AK DG412DJ DG412AK DG412DJ DG412AK DG412DJ D123AP D123AKI883 D123AP D123AP1883 D123AP1883 D123BP Dl23BP Dl25API883 D125AL D125ALl883 Dl25ALl883 D125ALl883 D125AP D125API883 D125AP1883 D125BP D125BP D129AP D129AL D129ALI883 D129ALl883 D129AL1883 D129AP D129API883 D129AP1883 D129API883 D129BP D129BP D139AA D139AA1883 D139AAI883 D139AP D139API883 D139API883 D139AA D139BP D139CJ D169AK D169AK1883 D169AK1883 D169AP D169AP1883 D169AP1883 D169CJ D469AP D469API883 D469API883 D469BP D469CJ D470AP D470AP1883 D470DJ DG123ALI883 DG123AL1883 DG123ALl883 DG123ALl883 DG123AP DG123API883 DG123API883 DG 123AP1883 DG123BP DG125ALI883 DG125ALI883 DG125ALl883 DG125ALl883 DG125AP DG125AP1883 DG125API883 ':;:f H Cross Reference Siliconix incorporated Part Number DG125AP/883 DG125BP DG126AK DG126AK/HR DG126AK/883 DG126AL DG126AL-2 DG126ALIHR DG126AL/883 DG126AP DG126AP-2 DG126APIHR DG126AP/883 DG126BK DG126BP DG129AK DG129AK/HR DG129AK1883 DG129AL DG129AL-2 DG129ALlHR DG129AL/883 DG129AP DG129AP-2 DG129AP/HR DG129AP1883 DG129BK DG129BP DG133AK DG133AK/HR DG133AKI883 DG133AL DG133AL-2 DG133ALIHR DG133AL1883 DG133AP DG133AP-2 DG133AP/883 DG133BK DG133BP DG134AK DG134AK-2 DG134AK/HR DG134AKI883 DG134AL DG134AL-2 DG134ALIHR DG134AL/883 DG134AP DG134AP-2 DG134AP1883 DG134BK DG134BP DG139AK DG139AKIHR DG139AK1883 DG139AL DG139AL-2 DG139AL/HR DG139AL/883 DG139AP DG139AP-2 DG139APIHR DG139AP1883 DG139BK DG139BP DG140AK DG140AKIHR DG140AK1883 DG140AL DG140AL-2 DG140ALIHR DG 140AL/883 Sillconix Direct Replacement Similar Part Direct Sillconix Similar Replacement Number Replacement Replacement DG125AP/883 DG125BP DG126AP DG126AP/883 DG 126AP1883 DG126AL/883 DG126ALI883 DG126AL1883 DG126AL/883 DG126AP DG126AP/883 DG126AP1883 DG126AP/883 DG126BP DG126BP DG129AP DG129AP1883 DG129AP/883 DG129ALI883 DG129ALl883 DG129ALl883 DG129AL1883 DG129AP DG129AP1883 DG129API883 DG129AP/883 DG129BP DG129BP DG133AP DG133API883 DG133AP/883 DG133AL1883 DG133ALl883 DG 133ALl883 DG133ALI883 DG133AP DG133API883 DG133AP/883 DG133BP DG133BP DG134AP DG134AP1883 DG134AP/883 DG134AP/883 DG134AL1883 DG134ALl883 DG134AL/883 DG134AL/883 DG134AP DG134AP/883 DG134AP1883 DG134BP DG134BP DG139AP DG139AP1883 DG139/883 DG139AL1883 DG139AL1883 DG139ALl883 DG139ALl883 DG139AP DG139AP/883 DG139AP1883 DG139AP/883 DG139BP DG139BP DG140AP DG140AP/883 DG140/883 DG140AL1883 DG140AL/883 DG140AL/883 DG140AL/883 SlIIconlx SlIIconlx DG140AP DG140AP-2 DG140AP/HR DG140AP/883 DG140BK DG140BP DG141AK DG141AKIHR DG141AKI883 DG141AL DG141AL-2 DG141AL/HR DG141ALl883 DG141AP DG141AP-2 DG141APIHR DG141AP1883 DG141BK DG141BP DG142AK DG142AK/HR DG142AK1883 DG142AL DG142AL-2 DG142ALIHR DG142AL/883 DG142AP DG142AP-2 DG142APIHR DG142API883 DG142BP DG143AK DG143AK/HR DG143AK1883 DG143AL DG143AL-2 DG143ALlHR DG143AL/883 DG143AP DG143AP-2 DG143AP/HR DG143AP/883 DG143BK DG143BP DG144AK DG144AK/HR DG144AK/883 DG144AL DG144AL-2 DG144ALIHR DG144ALl883 DG144AP DG144AP-2 DG144APIHR DG144AP1883 DG144BK DG144BP DG145AK DG145AK-2 DG145AK/HR DG145AL DG145AL-2 DG145ALIHR DG145AL/883 DG145AP DG145AP-2 DG145APIHR DG145AP1883 DG145BK DG145BP DG146AP DG146AK-2 DG146AK/HR DG140AP DG140AP/883 DG140AP/883 DG140AP/883 DG140BP DG140BP DG141AP DG141AP1883 DG1411883 DG141ALI883 DG141ALI883 DG141AL1883 DG141ALl883 DG141AP DG141AP/883 DG141AP/883 DG141AP1883 DG141BP DG141BP DG142AP DG142AP/883 DG142AP/883 DG142AL1883 DG142ALl883 DG142ALI883 DG142AL1883 DG142AP DG142AP/883 DG142AL1883 DG142AP/883 DG142BP DG143AP DG143AP/883 DG143AP1883 DG143AL/883 DG143AL1883 DG143ALI883 DG143ALl883 DG143AP DG143AP/883 DG143API883 DG143AP/883 DG143AP DG143AP DG144AP DG144AP1883 DG144API883 DG144AL/883 DG144AL/883 DG144ALI883 DG144ALl883 DG144AP DG144API883 DG144API883 DG144AP1883 DG144AP DG144AP DG145AP/883 DG145AP/883 DG145API883 DG145ALl883 DG145AL/883 DG145ALl883 DG145AL/883 DG145AP DG145API883 DG145AP1883 DG145AP1883 DG145BP DG145APDG146AK DG146AP/883 DG146AP1883 4-3 III Cross Reference Part Number DGI46AK/883 DG146AL DGI46AL-2 DG146AL/HR DGI46AL/883 DG146AP DG146AP-2 DG146AP/HR DG146AP/883 DG146BK DG146BP DG151AL DGI51AL-2 DGI51ALl883 DG151AP DGI51AP-2 DGI51AP/B83 DG151BP DGI52AL DGI52AL-2 DGI52AL/883 DG152AP DGI52AP-2 DGI52AP/B83 DGI52BP DGI53AL DGI53AL-2 DGI53ALl883 DGI53AP DGI53AP-2 DGI53AP/883 DGI53BP DGI54AL DGI54AL-2 DGI54AL/883 DGI54AP DGI54AP-2 DGI54AP/B83 DGI54BP DG161AL DGI61AL-2 DGI61AL/883 DG161AP DG161AP-2 DGI61AP/883 DG161BP DGI82AL DGI82AL-2 DGI82ALl883 DGI82AP DGI82AP-2 DGI82AP/883 DGI62BP DGI63AL DGI63AL-2 DGI63AL/883 DGI63AP DGI63AP-2 DGI63AP/883 DGI63BP DGI64AL DGI64AL-2 DGI64AL/B83 DGI84AP DG164AP-2 DGI84AP/883 DGI64BP DG172AL DGI72AL-2 DGI72AL/883 DG180AA DGI80AA-2 DGI80AA/883 4-4 H Siliconix Direct Siliconix Similar Replacement Replacement DGI46AP/883 DG146AL DG146AL/883 DGI46AL/883 DGI46ALl883 DG146AP DGI46AP/883 DGI46AP/883 DGI46AP/883 DG146AP DG146AP DG141AL DGI41AL/883 DG141AL/883 DG141AP DG141AP/883 DG141 AP/883 DG141BP DGI33AL DGI33AL/883 DGI33AL/883 DGI33AP DGI33AP/883 DGI33AP/883 DG133BP DG140AL DGI4AL/B83 DGI40AL/883 DG140AP DG140AP/883 DGI40AP/B83 DG140BP DG129AL DGI29AL/883 DGI29AL/883 DG129AP DG129AP/883 DGI29AP/883 DG129BP DG146AL DGI46ALl883 DGI46ALl883 DG146AP DGI46AP/883 DGI46AP/883 DG146AP DG144AL DGI44AL/883 DGI4o!Ali883 DG144AP DGI44AP/883 DGI44AP/883 DGI44Ap DGI45AL DGI45AL/883 DGI45ALl883 DG145AP DGI45AP/883 DG145AP/883 DG145BP DG139AL DG139ALl8B3 DGI39AL/883 DG139AP DG139AP/883 DGI39AP/883 DG139BP DG172AL/883 DG172AL/883 DG172AL/883 DG180AA DG180AA/883 DG180AA/883 Siliconix Par! Number DG180AL DGI80AL-2 DGI80AL/883 DG180AP DG180AP-2 DG180AP/883 DGI80BA DG180BP DG181AA DG181AA-2 DG181AA/883 DG181AL DGI81AL-2 DGI81ALl883 DG181AP DG181AP-2 DGI81AP/B83 DG181BA DG181BP DG182AA DGI82AA-2 DGI82AA/883 DGI82AL DGI82AL-2 DGI82AL/883 DGI82AP DGI82AP-2 DGI82AP/BB3 DGI82BA DGI82BP DGI83AL DGI83AL-2 DGI83AL/88S DGI83AP DGI83AP-2 DGI83AP/883 DGI83BP DGI84AL DGI84AL-2 DGI84AL/883 DG184AP DG184AP-2 DGI84AP/883 DGI84BP DG185AL DGI85AL-2 DGI85AL/883 DGI85AP DGI85AP-2 DGI85AP/883 DGI85BP DG186AA DG186AA-2 DG186AA/BB3 DG186AL DGI86AL-2 DGI86AL/883 DG186AP DGI86AP-2 DGI86AP/883 DG186BA DG1&6BP DG187AA DG1B7AA-2 DG187AA/883 DG187AL DGi87AL-2 DG187AL/883 DG187AP DGI87AP-2 DGI87AP/883 DG187BA DG187BK Direct Replacement DGI80ALl883 DGI80AL/883 DG180AL/883 DG180AP DG180AP/883 DG180AP/883 DG180BA DG180BP DG181AA DG181AA/883 DG181AA/883 DGI81AL/883 DGI81AL/883 . DG181AL/883 DG181AP DGI81AP/883 DGI81AP/883 DG181BA DG181BP DGI82AA DGI82AA/8B3 DGI82AA/883 DGI82AL/883 DGI82AL/883 DG 182AL/883 DGI82AP DGI82AP/883 DGI82AP/883 DGI82BA DGI82BP DGI83AL/883 DGI83AL/B83 DGI83AL/883 DGI83AP DGI83AP/883 DGI83AP/883 DGI83BP DGI84AL/883 DGI84AL/883 DGI84AL/883 DGI84AP DGI84AP/8B3 DGI84AP/883 DGI84BP DGI85AL/B83 DGI85ALl883 DGI85AL/883 DGI85AP DGI85AP/883 DGI85AP/883 DG185BP DG186AA DG186AA/883 DG186AA/8B3 DGI86AL/B83 DGI86AL/883 DG1B6AL/883 DG186AP DGI86AP/883 DG186AP/883 DG1B6BA DG186BP DG187AA DG187AA/883 DG187AA/883 DGI87AL/883 DG187AL/883 DGI87AL/883 DG187AP DG187AP/883 DGI87AP/883 DG187BA DG187BK Siliconix incorporated Siliconix Similar Replacement ;;'J' H Cross Reference Siliconix incorporated Part Number Slliconlx Direct Replacement DG187BP DG188AA DG188AA-2 DG188AA/883 DG188AL DG188AL-2 DG188ALl883 DG188AP DG188AP-2 DG188AP/883 DG188BA DG188BP DG189AL DG189AL-2 DG189ALl883 DG189AP DG189AP-2 DG 189AP 1883 DG189BP DG190AL DG190AL-2 DG190ALl883 DG190AP DG190AP-2 DG190AP/883 DG190BP DG191AL DG191AL-2 DG191AL/883 DG191AP DG191AP-2 DG191AP/883 DG191BP DG200AA DG200AAA DG200AAA-2 DG200AAA/883 DG200AAK DG200AAK-2 DG200AAK/883 DG200AAP DG200AAP-2 DG200AAP1883 DG200ABA DG200ABK DG200ABP DG200ACA DG200ACJ DG200AK DG200BA DG200BK DG200CJ DG201AAK DG201AAK-2 DG201 AAK/883 DG201 AAZ/883 DG201ABK DG201ACJ DG201ACY DG201ADY DG201AK DG201AK/883 DG201BK DG201CJ DG202AK DG202AK-2 DG202AK/883 DG202BK DG202CJ DG211CJ DG211CY DG211DY DG212CJ DG212CY DG212DY DG187BP DG188AA DG188AA/883 DG188AA/883 DG188ALl883 DG188ALl883 DG188ALl883 DG188AP DG188AP/883 DG 188AP1883 DG188BA DG188BP DG 189ALl883 DG189ALl883 DG 189AL/883 DG189AP DG 189AP1883 DG 189AP 1883 DG189BP DG190ALl883 DG 190ALl883 DG190ALl883 DG190AP DG 190AP1883 DG 190AP1883 DG190BP DG191ALl883 DG191ALl883 DG191ALl883 DG191AP DG191AP/883 DG191AP/883 DG191BP DG200AAA DG200AAA DG200AAA/883 DG200AAA/883 DG200AAK DG200AAK/883 DG200AAK/883 DG200AAP DG200AAP/883 DG200AAP 1883 DG200ABA DG200ABK DG200ABP DG200ACA DG200ACJ DG200AAK DG200ABA DG200ABK DG200ACJ DG201AAK DG201AAK/883 DG201AAK/883 DG201AAZ/883 DG201ABK DG201ACJ DG201ADY DG201ADY DG201AAK DG201AAK/883 DG201ABK DG201ACJ DG202AK DG202AK/883 DG202AK/883 DG202AK DG202CJ DG211CJ DG211DY DG211DY DG212CJ DG212DY DG212DY Sltlconlx Similar Replacement Slliconlx Part Number DG221AK DG221AK-2 DG221 AK/883 DG221BK DG221CJ DG221CK DG221CY DG221DY DG243AK DG243AK-2 DG243AK/883 DG243CJ DG243CK DG243DJ DG243DK DG271AK DG271AK-2 DG271AK/883 DG271AZ/883 DG271BK DG271CJ DG271CK DG271CY DG271DY DG281AA DG281AA-2 DG281AA/883 DG281AP DG281AP-2 DG281 AP 1883 DG281BA DG281BP DG284AP DG284AP-2 DG284AP/883 DG284BP DG287AA DG287AA-2 DG287 AA/883 DG287AP DG287AP-2 DG287AP/883 DG287BA DG287BP DG290AP DG290AP-2 DG290AP/883 DG290BP DG300AAA DG300AAA-2 DG300AAA/883 DG300AAK DG300AAK-2 DG300AAK/883 DG300ABA DG300ACA DG300ACJ DG300ACK DG301AAA DG301AAA-2 DG301 AAA/883 DG301AAK DG301AAK-2 DG301 AAK/883 DG301 AAZ/883 DG301ABA DG301ACA DG301ACJ DG301ACK DG302AAK DG302AAK-2 DG302AAK/883 DG302ACJ DG302ACK Direct Replacement Slllconlx Similar Replacement DG221AK DG221 AK/883 DG221 AK/883 DG221BK DG221CJ DG221CK DG221DY DG221DY DG243AK DG243AK/883 DG243AK/883 DG243DJ DG243DK DG243DJ DG243DK DG271AK DG271AK/883 DG271 AK/883 DG271AZ/883 DG271BK DG271CJ DG271CK DG271DY DG271DY DGI81AA DG181AA/883 DG181AA/883 DG181AP DG181AP/883 DG181AP/883 DG181BA DG181BP DG184AP DG184AP/883 DG184AP/883 DG184BP DG187AA DG 187AA/883 DG187AA/883 DG187AP DG187AP/883 DG187AP/883 DG187BA DG187BP DG190AP DG190AP/883 DG190AP/883 DG190BP DG300AAA DG300AAA/883 DG300AAA/883 DG300AAK DG300AAK/883 DG300AAK/883 DG300ABA DG300ACA DG300ACJ DG300ACK DG301AAA DG301AAA/883 DG301AAA/883 DG301AAK DG301AAK/883 DG301AAK/883 DG301AAZ/883 DG301ABA DG301ACA DG301ACJ DG301ACK DG302AAK DG302AAK/883 DG302AAK/883 DG302ACJ DG302ACK 4-5 lEI Cross Reference Part Number Siliconix Direct Replacement DOO03AAK DOO03AAK-2 DOO03AAK/883 DOO03AAZ/883 DOO03ACJ DOO03ACK DOO03ACY DG303ADY DOO04AAA DOO04AAA-2 DOO04AAA/883 DOO04AAK DOO04AAK-2 DOO04AAK/883 DOO04ABA DOO04ACA DOO04ACJ DOO04ACK DOO05AAA DOO05AAA-2 DOO05AAA/883 DOO05AAK DOO05AAK-2 DOO05AAK/883 DOO05ABA DOO05ABK DOO05ACA DOO0SACJ DOO05ACK DOO08AAK DOO06AAK-2 DOO06AAK/883 DOO06ABK DG306ACJ DOO06ACK DOO07AAK DOO07AAK-2 DOO07AAK/S83 DOO07AAZ/S83 DOO07ABK DG307ACJ DOO07ACK DOO08AAK DOO08AAK-2 DG308AAKiS83 DOO0SACJ DOO0SACK DG308ADY DOO09AK DG309AK-2 DOO09AK/883 DOO09CJ DOO09CK DOO09DY DOO81AAA DOO81AAA-2 DOO81AAA/S83 DOOS1AAK DOO81AAK-2 DOO81AAK/883 DG381 ABA DOO81ABK DOO81ACA DOO81ACJ DOO81ACK DOO84AAK DOO84AAK-2 DG384AAK/883 DOO84ABK DOO84ACJ DOO84ACK DOO87AAA DOO87AAA-2 DOO87AAA/883 DOO87AAK DOO03AAK DOO03AAK/883 DOO03AAK/883 DOO03AAZ/883 DG303ACJ DOO03AAK DOO03ADY DOO03ADY DOO04AAA DOO04AAA/883 DOO04AAA/883 DOO04AAK DOO04AAK/883 DOO04AAK/883 DOO04ABA DOO04ACA DOO04ACJ DOO04ACK DOO0SAAA DOO0SAAA/883 DG30SAAA/883 DOO0SAAK DOO0SAAK/883 DOO0SAAK/883 DOO0SAAA DOO05AAK DOO05AAA DOO05AAK DOO05AAK DOO06AAK DOO06AAK/883 DOO06AAK/883 DOO06AAK DOO06AAK DOO06AAK DOO07AAK DOO07AAK/883 DOO07AAK/S83 DOO07AAZ/883 DOO07ABK DOO07ACJ DOO07ACK DG30SAAK DOO0SAAK/883 DOO0SAAK/S83 DOO0SACJ DOO08ACK DOO0SADY DOO09AK DOO09AK/S83 DOO09AK/S83 DOO09CJ DOO09CK DOO09DY DOOS1AAA DOO81AAA/883 DOO81AAA/S83 DOO81AAK DOO81 AAK/8B3 DOO81AAK/8B3 DOO81 ABA DOO81ABK DOO81ACA DOO81ACJ DOO81ACK DOO84AAK DOO84AAK/883 DOO84AAK/883 DOO84ABK DOO84ACJ DOO84ACK DOO87AAA DOO87AAA/883 DOO87AAA/883 DOO87AAK 4-6 H Siliconix Similar Replacement Part Number DOO87AAK-2 DOO87AAK/883 DOO87ABA DOO87ABK DOO87ACA DOO87ACJ DOO87ACK DOO90AAK DOO90AAK-2 DOO90AAK/883 DOO90ABK DOO90ACJ DOO90ACK DG400AK DG400AK/883 DG400CJ DG400CK DG400DJ DG400DY DG401AK DG401AK/883 DG401AZ DG401 AZ/883 DG401CJ DG401CK DG401DJ DG401DY DG402AK DG402AK/883 DG402CJ DG402CK DG402DJ DG402DY DG403AK DG403AK/8B3 DG403AZ DG403AZ/SS3 DG403CJ DG403CK DG403DJ DG403DY DG404AK DG404AK/883 DG404CJ DG404CK DG404DJ DG404DY DG405AK DG405AKlS83 DG405AZ DG405AZ/883 DG40SCJ DG40SCK DG40SDJ DG405DY DG408AK DG408AK/S83 DG408CJ DG409AK DG409AK/883 DG409DJ DG409DY DG411AK DG411 AKl883 DG411DJ DG411DY DG412AK DG412AK/883 DG412DJ DG412DY DG413AK DG413AKi883 DG413DJ DG413DY Siliconix Direct Replacement DG387 AAK/883 DG387 AAK/883 DG387ABA DOO87ABK DOO87ACA DG387ACJ DOO87ACK DOO90AAK DOO90AAK/883 DOO90AAK/883 DOO90ABK DOO90ACJ DOO90ACK DG400AK DG400AK/883 DG400DJ DG400AK DG400DJ DG400DY DG401AK DG401AK/8B3 DG401AZ DG401AZ/883 DG401DJ DG401AK DG401DJ DG401DY DG402AK DG402AK/883 DG402DJ DG402AK DG402DJ DG402DY DG403AK DG403AK/8B3 DG403AZ/S83 DG403AZ/S83 DG403DJ DG403AK DG403DJ DG403DY DG404AK DG404AK/S83 DG404DJ DG404AK DG404DJ DG404DY DG405AK DG405AK/883 DG405AZ/S83 DG405AZ/S83 DG405DJ DG405AK DG405DJ DG405DY DG40SAK DG40SAK/883 DG408DJ DG409AK DG409AKi883 DG409DJ DG409DY DG411AK DG411AK/883 DG411DJ DG411DY DG412AK DG412AK/883 DG412DJ DG412DY DG413AK DG413AK/883 DG413DJ DG413DY Siliconix incorporated Siliconix Similar Replacement ':7 H Cross Reference Siliconix incorporated Siliconi. Siliconi. Part Number Direct Replacement Similar Replacement DG417AK DG417AK/883 DG417DJ DG417DY DG418AK DG418AK/883 DG418DJ DG418DY DG419AK DG419AK/883 DG419DJ DG419DY DG421AK DG421 AK/883 DG421DJ DG421DY DG423AK DG423AK/883 DG423DJ DG423DY DG425AK DG425AK/883 DG425DJ DG425DY DG441AK DG441AK/883 DG441DJ DG441DY DG442AK DG442AK/883 DG442DJ DG442DY DG444AK DG444AK/883 DG444DJ DG444DY DG445AK DG445AK/883 DG445DJ DG445DY DG480AK DG480AK/883 DG480DJ DG485AK DG485AK/883 DG485DJ DGS01AK DGS01AP DGS01AP-2 DGS01AP/883 DGS01BK DGS01BP DGS01CJ DGS01DK DGS03AK DGS03AP DGS03AP-2 DG503BP DGS03CJ DGS040AK DGS040AK-2 DGS040AK/883 DGS040CJ DG5040CK DGS041AK DGS041AK-2 DG5041 AK/883 DGS041CJ DGS041CK DGS042AK DG5042AK-2 DG5042AK/883 DGS042CJ DGS042CK DGS043AK DG417AK DG417AK/883 DG417DJ DG417DY DG418AK DG418AK/883 DG418DJ DG418DY DG419AK DG419AK/883 DG419DJ DG419DY DG421AK DG421AK/883 DG421DJ DG421DY DG423AK DG423AK/883 DG423DJ DG423DY DG425AK DG425AK/883 DG425DJ DG425DY DG441AK DG441 AK/883 DG441DJ DG441DY DG442AK DG442AK/883 DG442DJ DG442DY DG444AK DG444AK/883 DG444DJ DG444DY DG445AK DG445AK/883 DG445DJ DG445DY DG480AK DG480AK/883 DG480DJ DG485AK DG485AK/883 DG485DJ DGS01AP DGS01AP DG501AP/883 DGS01AP/883 DGS01AP DG501AP DG501CJ DGS01AP DG503AP DG503AP DGS03AP1883 DG503AP DG503CJ DG400AK DG400AK/883 DG400AK/883 DG400DJ DG400AK DG401AK DG401AK/883 DG401AK/883 DG401DJ DG401AK DG402AK DG402AK/883 DG402AK/883 DG402DJ DG402AK DG403AK Siliconi. Part Number DG5043AK-2 DG5043AK/883 DGS043CJ DGS043CK DG5044AK DG5044AK-2 DGS044AK/883 DG5044CJ DG5044CK DG5045AK DGS045AK-2 DGS045AK/883 DG5045CJ DG5045CK DGS048AK/883 DG506AAK DG506AAK-2 DGS06AAK/883 DG506AAR DG506AAR-2 DGS06AAR/883 DG506AAZ/883 DG506ABR DGS06ACJ DG506ACR DG507AAK DG507AAK-2 DG507AAK/883 DGS07AAR DG507AAR-2 DG507AAR/883 DG507AAZ/883 DG507ABR DG507ACJ DG507ACR DG508AAK DG508AAK-2 DG508AAK/883 DGS08AAZ/883 DG508ABK DG508ACJ DGS08ACK DGS08ACY DGS08ADY DGS09AAK DGS09AAK-2 DGS09AAK/883 DGS09AAZ/883 DGS09ABK DGS09ACJ DGS09ACK DGS09ADY DGS140AK DG5140AK/883 DGS140CJ DG5140CK DG5141AK DG5141AK/883 DGS141CJ DGS141CK DG5142AK DGS142AK/883 DGS142CJ DG5142CK DGS143AK/883 DGS143AKE DG5143CJ DG5143CK DGSl44AK DG5144AK/883 DG5144CJ DG5144CK DGS145AK DG5145AK/883 Direct Replacement SllIoonl. Similar Replacement DG403AK/883 DG303AK/883 DG403DJ DG403AK DG404AK DG404AK/883 DG404AK/883 DG404DJ DG404AK DG405AK DG405AK/883 DG405AK/883 DG405DJ DG405AK DGS048AK/883 DG506AAK DG506AAK/883 DG506AAK/883 DG506AAR DG506AAR/883 DG506AAR/883 DG506AAZ/883 DGS06ABR DG506ACJ DGS06ACR DGS07AAK DGS07AAK/883 DGS07AAK/883 DGS07AAR DGS07AAR/883 DGS07AAR/883 DGS07AAZ/883 DGS07ABR DGS07ACJ DGS07ACR DG508AAK DG508AAK/883 DGS08AAK/883 DGS08AAZ/883 DGS08ABK DG508ACJ DGS08ACK DGS08ACY DG508ADY DGS09AAK DGS09AAK/883 DG509AAK/883 DGS09AAZ/883 DG509ABK DG509ACJ DG509ACK DG509ADY DG400AK DG400AK/883 DG400DJ DG400AK DG401AK DG401AK/883 DG401DJ DG401AK DG402AK DG402AK/883 DG402DJ DG402AK DG403AK/883 DG403AK DG403DJ DG403AK DG404AK DG404AK/883 DG404DJ DG404AK DG405AK DG405AK/883 III 4-7 Cross Reference Par! Number DG5145CJ DG5145CK DG5241AK DG5241CJ DG5241CK DG5243AK DG5243CJ DG5243CK DG5245AK DG5245CJ DG5245CK DG526AR DG527AR DG528AR DG529AR DGS34AP1883 DGS34DJ DG535AP DG535AP1883 DG535CY DG535DJ DG536AM DG536CV DG536DN DG536DV DG538AP DG538DJ DG538DN DG546AK/883 DG546AZ/883 DG546DJ DG548AAK DG548AAKl883 DG548AAZ DG548ABK DG548ACJ DG548ADV DG548DJ DG566AP DG566AP-2 DG566CJ DG566DP DG568AP DG568AP-2 DG568BP DG568CJ DG569AP DG569AP-2 DG569BP DG569CJ DG611AP/883 DG611DJ DG611DV DG841AM/883 DG841 ON DG908AK DG908AK/883 DG908DJ DG908DV DGM181AA DGM181AA/HR DGM181AA/883B DGM181AK DGM181AK/HR DGM181AKl883B DGM181BA DGM181BK DGM181CJ DGM182AA DGMl82AA/HR DGM182AA/883B DGMl82AK DGM182AK/HR DGM182AL DGMl82AL/HR 4-8 H Siliconix Direct Siliconix Similar Replacement Replacement DG405DJ DG405AK DG421AK DG421 OJ DG421AK DG423AK DG423DJ DG423AK DG425AK DG425DJ DG425AK DG526AR DG527AR DG528AR DG529AR DGS34AP1883 DGS34DJ DG535AP/883 DG535AP/883 DG536DN DG535DJ DG536AM DG536DN DG536DN DG536DV DG538AP DG538DJ DG538DN DG546AK/883 DG546AZ/883 DG546DJ DG548AAK DG548AAK/883 DG548AAZ DG548ABK DG548ACJ DG548ADV DG548DJ DG566AP DG566AP-2 DG566CJ DG566DP DG568AP DG568AP-2 DG568BP DG568CJ DG569AP DG569AP-2 DG569BP DG569CJ DG601AP/883 DG601DJ DG601DV DG841AM/883 DG841 ON DG908AK DG908AK/883 DG908DJ DG908DV DOO81AAA DOO81AAA/883 DOO81AAA/883 DOO81AAK DOO81AAK DOO81AAKl883 00081 ABA DOO81ABK DOO81ACJ DOO81AAA DOO81AAA/883 00081 AAA/883 DOO81AAK 00081 AAK/883 DOO81AAL DOO81AAL/883 Par! Number DGM182AL/883B DGM182BA DGM182BK DGM182CJ DGM184AK DGM184AK/HR DGM184AKl8B<1B DGM184AL DGM184AL/HR DGM184ALl883B DGM184BK DGM184CJ DGM185AK DGM185AK/HR DGM185AK/883B DGM185AL DGM185AL/HA DGMl85AL/883B DGMl85BK DGM185CJ DGM187AA DGM187AAlHR DGM187AA/883B DGM187AK DGM187AK/HR DGM187AK/883B DGM187BA DGM187BK DGM187CJ DGM188AA DGM188AA/HR DGM188AA/883B DGM188AK DGM188AK/HR DGM188AL DGM188AL/HR DGM188AL/883B DGM188BA DGM188BK DGM188CJ DGM190AK DGM190AK/HR DGM190AK/883B DGM190AL DGM190AL/HR DGM190AL/883B DGM190BK DGMl90CJ DGM191AK DGM191AK/HR DGM191AK/883B DGM191AL DGM191AL/HR DGM191AL/883B DGM191BK DGM191CJ DGP201AAK DGP201AAK883 DGP201AAZ883 DGP201ADJ DGP201ADV DGP303AAK883 DGP303AAZ883 DGP303ADJ DGP303ADV DGP508AAK DGP508AAK883 DGP508AAZ883 DGP508ADJ G116AP-2 G116BP G117AL G117AL-2 G118AP Siliconix incorporated Siliconix Direct Siliconix Similar Replacement Replacement 00081 AAL/883 DOO81ABA DOO81ABK DOO81ACJ DG405AK DG405AK/883 DG405AK/883 DGl84AL DG184AL/883 DG184AL/883 DG405AK DG405DJ DG405AK DG405AK/883 DG405AK/883 DGl85AL DGl85AL/883 DG185AL/883 DG405AK DG405DJ DOO87AAA 00087AAAl883 00087AAA/883 DOO87AAK DG387AAK 00087AAK/883 DOO87ABA DOO87ABK DG387ACJ DG387AAA 00087AAA/883 00087AAA/883 DOO87AAK DOO87AAK DOO87AAL 00087 AALl883 00087 AAL/883 DOO87ABA DOO87ABK DOO87ACJ DG403AK DG403AK/883 DG403AK/883 DG190AL DG190AL/883 DG190AL/883 DG403AK DG403DJ DG403AK DG403AK/883 DG403AK DG191AL DG191ALl883 DG191AL/883 DG403AK DG403DJ DGP201AAK DGP201AAK883 DGP201AAZ883 DGP201ADJ DGP201ADV DGP303AAK883 DGP303AAZ883 DGP303ADJ DGP303ADY DGP508AAK DGP508AAK883 DGP508AAZ883 DGP508ADJ G116AP G116BP G117AL G117AL G118AP :;;p H Cross Reference Siliconix incorporated Part NUmber Gl19AL Gl19AL-2 Gl19AP HI1-200-2 HI1-200-4 HI1-200-5 HI1-200-B HI1-201-2 HI1-201-B H11-201HS2 H11-201HSS H11-201HSB HI1--30D-2 HI1--300-S HI1--300-8 HI1--301-2 HI1--301-5 HI1--301-B HI1--302-2 HI1--302-5 Hll--302-B HI1--303-2 Hll--303-5 HI1--303-B HI1--304-2 Hll--304-5 Hll--304-B HI1--30S-2 HI1--30S-5 HI1--305-B HI1--30S-2 HI1--30S-5 HI1--30S-B HI1--307-2 HI1--307-5 HI1--307-B HI1--381-2 Hll--3Bl-5 Hll--3Bl-B HI1--3B4-2 Hll--3B4-5 Hll--3B4-B HI1-3B7-2 HI1-3B7-5 HI1-387-B Hll-390-2 HI1-390-5 HI1-390-B HI1-5040-2 HI1-5040-5 HI1-5040-B HI1-5041-2 HI1-S041-5 HI1-5041-B HI1-5042-2 HI1-5042-5 HI1-5042-B HI1-5043-2 HI1-5043-5 HI1-5043-B HI1-5044-2 Hil-5044-5 HI1-5044-B HI1-5045-2 HI1-5045-5 HI1-5045-B HI1-50S-2 HI1-50S-7 Hll-505-B HI1-50SA-2 HI1-506A-5 HI1-50SA-7 HI1-50SA-B HI1-50SL-2 HI1-50SL-5 SlIIconlx Direct Replacement Slliconlx Similar Replacement Gl19AL GII9AL Gl19AP DG200AAK DG200ABK DG200ACK DG200AAK/BB3 DG201AAK DG201AAK/BB3 DG271AK DG271AK DG271 AK/8B3 DG300AAK DG300ACK DG300AAK/BB3 DG301AAK DG301ACK DG301AAK/8B3 DG302AAK DG302ACK DG302AAK/883 DG303AAK DG303ACK DG303AAK/883 DG304AAK DG304ACK DOO04AAK/883 DG30SAAK DOO0SACK DG305AAK/883 DOO0SAAK DG30SACK DG30SAAK/BB3 DG307AAK DG307ACK DOO07AAK/8B3 DG3B1AAK DG3dlACK DG331AAK/BB3 DG3B4AAK DG3B4AAK DG3B4AAK/BB3 DOOB7AAK DOOB7ACK DG387AAK/883 DOO90AAK DG390AAK DOO90AAK/883 DG400AK DG400AK DG400AK/883 DG401AK DG401AK DG401AK/883 DG402AK DG402AK DG402AK/8B3 DG403AK DG403AK DG403AK/883 DG404AK DG404AK DG404AK/B83 DG405AK DG405AK DG405AK/883 DG50SAAR DG50SAAR/B83 DGSOSAAR/883 DGSOSAAR DG50SABR DG50SAAR/8B3 DGSOSAAR/BB3 DGS2SAK DGS2SCK Part Number HI1-50SL-B HI1-507-2 HI1-507-B HI1-507A-2 HI1-507A-5 HI1-507A-7 HI1-507A-B HI1-507L-2 HI1-507L-5 HI1-507L-B HI1-50B-2 Hll-S0B-S HI1-S0B-B Hll-S08A-2 Hll-S0BA-5 HI1-50BA-7 HI1-508A-B HI1-50BL-2 HI1-508L-5 Hll-S08L-8 HI1-509-2 Hll-S09-5 Hll-S09-B HI1-509L-2 HI1-509L-S HI1-509L-8 Hll-S4B-l Hll-S48-S HI1-548-8 HI1-549-1 HI1-549-5 HI1-549-B HI1-7541JD-5 HI1-7541KD-5 HI1-7541 SD-2 HI1-7541TD-2 HI2-200-2 HI2-200-4 HI2-200-5 HI2-200-B HI2-300-2 HI2--300-5 HI2-300-B HI2-301-2 HI2-301-5 HI2-301-8 HI2-304-2 HI2-304-5 HI2-304-8 HI2-305-2 HI2-305-5 HI2--305-B HI2-381-2 HI2-381-5 HI2-3Bl-B HI2-3B7-2 HI2-3B7-5 HI2-387-B HI3-200-5 HI3-201-5 HI3-201HS5 HI3-300-5 HI3-301-5 HI3-302-5 HI3-303-5 HI3-304-S HI3-305-5 HI3-30S-5 HI3-307-5 HI3-3Bl-5 HI3-3B4-5 HI3-3B7-5 HI3-390-5 HI3-5040-5 Slilconix Direct Replacement SlIIconlx Similar Replacement DG52SAK/BB3 DGS07AAR DG507AAR/BB3 DG507AAR DG507ACR DGS07AAR/BB3 DG507AAR/8B3 DG527AK DG527CK DG527 AK/8B3 DGSOBAAK DGSOBACK DGSOBAAK/8B3 DG548AK DG54BCK DG548AK/8B3 DG54BAK/BB3 DGS2BAK DGS2BCK DGS28AK/883 DGS09AAK DGS09ACK DGS09AAK/BB3 DGS29AK DGS29CK DG529AK/883 DGS4BAK DGS48DJ DGS4BAK/883 DG549AK DG549DJ DG549AK/BB3 SI7541AJN SI7541AKN SI7541ASD SI7541ATD DG200AAA DG200ABA DG200ACA DG200AAA/BB3 DOO00AAA DG300ACA DG300AAA/BB3 DG301AAA DG301ACA DG301AAA/883 DG304AAA DG304ACA DG304AAA/8B3 DG305AAA DG305ACA DG305AAA/883 DOO81AAA DG381ACA DG381AAA/883 DG387AAA DG387ACA DG387AAA/883 DG200ACJ DG201ACJ 111 DG271DJ DG300ACJ DG301ACJ DG302ACJ DOO03ACJ DOO04ACJ DG305ACJ DG30SACJ DG307ACJ DG381ACJ DG3B4ADJ DG3B7ACJ DOO90ADJ DG400DJ 4-9 Cross Reference Part Number HI3-5041-5 HI3-5042-5 HI3-5043-5 HI3-5044-5 HI3-5045-5 HI3-506-5 HI3-506L-5 HI3-507A-5 HI3-507L-5 HI3-508-5 HI3-508A-5 HI3-508L-5 HI3-509-5 HI3-509L-5 HI4-506-B HI4-506A-B H14-507A-B HI4-508A-B ICL7135CJI ICL7135CPI ICL7652CPA ICL7652CPD ICL7652CTV ICL7652IJD ICL7652ITV ICL7660CBA ICL7660CPA ICL7660CTV ICL7660MTV ICL7660SCBA ICL7660SCPA ICL7660SCTV ICL7660SMTV ICL7682CPA ICL7682CTV IH181CJD IH181CTW IH181MTW IHl82CJD IH182CTW IH182MJD IHl82MTW IHl84CJE IHl84MJE IH185CJE IHl85MJE IH187CTW IH187MJD IH187MTW IH188CJD IH188CTW IH188MJD IH188MTW IH190CJE IH190MJE IH191CJE IHS040CJE IHS040CPE IHS040MJE IHS040MJE/HR IHS040MJE/883 IHS041CJE IHS041CPE IHS041MJE IHS041MJE/HR IHS041 MJE/883 IH5042CJE 1H5042CPE IH5042MJE IH5042MJE/HR IH5042MJE/883 IHS043CJE IHS043CPE IHS043MJE IHS043MJE/HR 4-10 Slliconlx Direct Replacement H SlIIconlx Similar Replacement DG401DJ DG402DJ DG403DJ DG404DJ DG405DJ DGS06ACJ DG526ACJ DG507ACJ DG527CJ DGS08ACJ DG548CJ DG528CJ DGS09ACJ DGS29CJ DGS06AAZ/883 DG506AAZ/883 D0507 AAZ/883 DG547AZ/883 SI7135CK SI7135CJ SI7652DH S17652DJ SI7652DA S17652DK S17652DA SI7660DY SI7660CJ S17660CA SI7660AA S17660DY SI7660CJ SI7660CA S17660AA SI7661CJ S17661CA DG181BP DG181BA DG181AA DG182BP DG182BA DG182AP DG182AA DG184BP DGl84AP DG185BP DGl85AP DG187BA DG187AP DG187AA DG187BP DG188BA DG188AP DG188AA DG190BP DG190AP DG191BP DG400AK DG400DJ DG400AK DG400AK/883 DG400AK/883 DG401AK DG401DJ DG401AK DG401AK/883 DG401 AK/883 DG402AK DG402DJ DG402AK DG402AK/883 DG402AKl883 DG403AK DG403DJ DG403AK DG403AK/883 Part Number IHS043MJE/883 IHS044CJE IHS044CPE IHS044MJE IHS044MJE/HR IHS044MJE/883 IHS045CJE IHS045CPE IHS045MJE IHS045MJE/HR IHS045MJE/883 IH5108CPE IHS1081JE IHS108MJE IHS140CJE IHS140CPE IHS140MJE IHS140MJE/883 IHS141CJE IHS141CPE IHS141MJE IHS141 MJE/883 IHS142CJE IHS142CPE IHS142MJE IHS142MJE/883 IHSl43CJE IHS143CPE IHS143MJE IHSl43MJE/883 IHSl44CJE IHSl44CPE IHSl44MJE IHS144MJE/883 IHSl45CJE IHSl45CPE IHSl45MJE IHSl45MJE/883 1H5208CPE IHS2081JE IHS208MJE IH6108CJE 1H6108CPE IH6108MJE 1H6116CJI IH6116CPI 1H6116MJI 1H6208CJE IH8208CPE IH6208MJE 1H8216CJI IH8216CPI IH6216MJI IH9108CPE IH91081JE IH9108MJE LDIIOCJ LDlllACJ LDII4CR LD120CJ LD121ACJ LDI22CJ LFl1201D LFl1201N LFl1202D LFl2201D LFl2202D LFl2202N LFl3201D LFl3201N LF13202D LFl3202N LTC1044CH LTC1044MH Siliconix Direct Replacement Siliconix incorporated Slliconlx Similar Replacement DG403AK/883 DG404AK DG404DJ DG404AK DG404AK/883 DG404AK/883 DG405AK DG405DJ DG405AK DG405AK/883 DG405AK/883 DG908DJ DG908DK DG908AK DG400AAK DG400ADJ DG400AK DG400AK/883 DG401AK DG401DJ DG401AK DG401 AK/883 DG402AK DG402DJ DG402AK DG402AK/883 DG403AK DG403DJ DG403AK DG403AK/883 DG404AK DG404DJ DG404AK DG404AK/883 DG405AK DG405DJ DG405AK DG405AK/883 DGS09ADJ DGS09ADK DGS09AAK DG508ACK DGS08ACJ DGS08AAK DGS06ACK DG506ACJ DGS06AAK DG509ACK DG509ACJ DG509AAK DG507ACK DG507ACJ DG507AAK DG568CJ DGS68BP DGS68AP LDll0CJ LDlllACJ LDl14CR LD120CJ LD121ACJ LDl22CJ DG411AK DG411DJ DG412AK DG411AK DG412AK DG412DJ DG411AK DG411DJ DG412AK DG412DJ SI7660CA SI7660AA ;J H Cross Reference Siliconix incorporated SlIIconlx Part Number LTC1052CH LTC1052CJ LTC1052CN LTC1052MH LTC1052MJ LTC7652CH LI44AL LI44BL L161AL-2 L161AL/883 L161AP L161AP-2 L161AP/883 L161BP L161CJ MAX331MJE MAX332MJE MPC16S MPC4D MPC8D MPC8S MP200DlAA MP200DIAP MP200DIBA MP200DICJ MP200DIPB M?201DIAP MP201DIBP MP201DICJ MP302DIAP MP302DIBP MP302DICJ MP303DIAP MP303DIBP MP303DICJ MP7501JD MP7501JN MP7501KD MP7501KN MP7501SD MP7501TD MP7503JD MP7503JN MP7503KD MP7503KN MP75038D MP7503TD MP7506JD MP7506JN MP7506KD MP7506KN MP75068D MP7506TD MP7507JD MP7507JN MP7507KD MP7507KN MP7507SD MP7507TD MP7508KD MP7508KN MP7508SD MP7509KD MP7509KN MP75098D MP7541TD MP7621JN MP7621KN MP76218D MP7621TD MP7623JN MP7623KN MP7623SD MP7623TD PM7541AAX Direct Replacement Siliconix Similar Replacement SI7652DHI SI7652DK SI7652CJ SI7652AA SI7652AK SI7652DHI LI44AL LI44AL L161ALi883 L161AL/883 L161AP L161AP/883 L161AP/883 L161BP L161CJ DG411AK DG412AK DGS06ABK DG509ADK DGS07ABK DGS08ADK DG200AAA DG200AAK DG200ABA DG200ACJ DG200ABK DG411AK DG411AK DG411DJ DG302AP DG302BP DG302CJ DG303AP DG303BP DG303CJ DGS01BK DG501CJ DG501BK DG501CJ DG501AK DG501AK DGS03BK DGS03CJ DG503BK DG503CJ DG503AK DG503AK DGS06ABK DGS06ACJ DGS06ABR DGS06ACJ DG506AAK DG506AAR DGS07ABK DGS07ACJ DG507ABR DG507ACJ DG507AAK DG507AAR DG508ABK DG508ACJ DG508AAK DG509ABK DG509ACJ DG509AAK SI7541ATD SI7541AJN SI7541AKN SI7541ASD 817541ATD 817541AJN 817541AKN SI7541ASD SI7541ATD SI7541ATD Part Number PM7541ABX PM7541AGP PM7541ANP PM7545AR PM7545BR PM7545GP PM7545HP PM7645AR PM7645BR PM7645GP PM7645HP S125HC04CJ S12504CJ SI3002 S13002A S13002AA SI3002AP S13002BK SI3002BP SI3705DK S13705142K S13705143K S13705192K S13705192P S13705193K SI6009DL SI7240JN SI7240KN 817240AQ 817240BQ 817240TD 817240SD SI7250CK SI7533AQ 817533BQ 817533CQ SI7533JN 817533JP 817533KN S17533KP 817533LN 817533SD SI7533TD SI7533UD SI7541AJN 817541AKN SI7541A8D SI7541 ASD883 SI7541 A8E883 SI7541ATD SI7541 ATD883 S17541 A TE883 SI7541JN SI7541KN SI7541SD 817541 SD/883 SI7541 SE/883 S17541TD SI7541TD/883 817541TE/883 817542JN 817542KN S17542SD/883 SI7542TD/883 817543JN SI7543KN 817543SD/883 S17543TD/883 SI7545AE 817545GLN SI7545GUD S17545GUD/883 S17545GUE/883 SI7545JN Siliconix Direct Replacement SlIIconlx Similar Replacement SI7541ASD SI7541AKN SI7541AJN S17545GUD S17545UD SI7545GLN SI7545LN SI8045GUD SI8045UD SI8045GLN SI8045LN S12504CJ SI2504CJ S13002AA S13002AA SI3002AA S13002AP S13002BP SI3002BP DGS01DK DG501DK DG501DK DG501DK DG501DK DG501DK G118AL SI7240JN SI7240KN SI7240AQ SI7240BQ SI7240TD SI72408D SI7250CK 817533AQ SI7533BQ 817533CQ SI7533JN SI7533JP SI7533KN 817533KP SI7533LN S175338D 817533TD 817533UD SI7541AJN 817541AKN SI7541A8D S17541A8D883 817541A8E883 SI7541ATD SI7541ATD883 S17541ATE883 817541JN S17541KN 8175418D SI7541SD/883 SI75418E/883 817541TD SI7541TD/883 SI7541TE/883 817542JN SI7542KN 817542SD/883 S17542TD/883 SI7543JN SI7543KN S17543SD/883 S17543TD/883 SI7545AE SI7545GLN SI7545GUD 817545GUD883 S17545GUE883 SI7545JN III 4-11 Cross Reference Part Number S17545KN S17545LN SI7545SD SI7545TD SI7545UD S17545UD/883 SI7545UE/883 SI7652BA SI7652BK S176520A S176520H S176520J SI7652DA SI7652DH SI7652DJ SI7652DK SI7660AA SI76600A SI76600J SI7660DY SI7661AA SI76610A SI7661OJ SI7820LN S17820KN SI7820LP SI7820KP SI78200Q SI7820BQ SI7820UQ SI7820TQ SI7820TD/883 SI8601AK/883 SI8601DJ SI8601DK SI8602AK/883 SI8602DJ SI8602DI< S18603AK/883 SI8603DJ SI8603DK S18604AK/883 SI8604DJ SI8604DK SW-D1BQ SW-D1BQ883 SW-D1FQ SW-D2BQ SW-D2BQ883 SW-D2FQ SW-05BK SW-05BK883 SW-05BY SW-05BY883 SW-D5FK SW-05FY SW-05GP SW-201BQ SW-201BQB83 SW-201FQ SW-201GP SW-202BQ SW-202BQ883 SW-202FQ SW-202GP TL520N TS07135CJI TS071350Pl TS07541JN TS07541KN TS07541SD TS07541TD TS0766000A TS076600PA 11090D 4-12 H Sillconix Direct SlIIccnlx Similar Replacement Replacement SI7645KN S17545LN S17545SD SI7545TD SI7s4sUD SI7Si1SUD/883 S17545UE/883 SI7652DA SI7652DK; SI7652DA Si7652DH S17652DJ SI7652DA SI7652DH S17652DJ SI7652DK Si7660AA SI76600A SI7660CJ S17660DY S17661AA S176610A S17661CJ SI7B20LN SI7820KN SI7820LP SI7820KP SI78200Q SI7820BQ SI7820UQ SI7820TQ SI7820TD/883 SI8601 AK/883 SI8601DJ SI8601DK S18602AK/883 SI8602DJ S18602DK S18603AK/883 SI8603DJ SI8603DK SI8604AK/883 SI8604DJ SI8604DK DG201AAK DG201 AAK/883 DG201ABK DG202AAK DG202AAK/883 DG202ABK DG200AAA DG200AAA/883 DG200AAK DG200AAK/883 DG200ABA DG200ABK DG200AOJ DG411AK DG411AK/883 DG411AK DG411DJ DG412AK DG412AK/883 DG412AK DG412DJ SI8601DJ S171350K S171350J SI7541AJN SI7541AKN SI7541ASD SI7541ATD SI7660DY SI76600J DG400AK Part Number 11090P 1109MD 11100D 1110MD 11100P 11110D 11110P llllMD 11120D 11120P 1112MD 11130D 11130P 1113MD 11140D 11140P 1114MD 11150D 11150P 1115MD 11160D 11160P 1116MD 36510/11101BAO 36510/11101BOA 36510/11101BOO 36510/11101B10 36510/11102BAO 38510/11102BOA 38510/11102BOO 38510/11102BI0 38510/11103BAO 36510/11103BEA 36510/11103BEO 38510/11104BAO 38510/11104BEA 38510/11104BEO 38510/11105BAO 38510/11105BOA 38510/11105BOO 38510/11105BI0 38510/11106BAO 38510/11106BOA 38510/11106BOO 38510/11106B10 38510/11107BAO 38510/11107BEA 38510/11107BEO 38510/11108BAO 38510111108BEA 38510/11108BEO 38510111601BOA 38510/11601BOO 38510/11601BI0 38510/11602BOA 38510111602BOO 38510/11602B10 38510/11603BOA 38510111603BOO 38510/11604BOA 38510/11604BOO 38510/11605BOA 38510/11605BOO 38510/11605BI0 38510111606BOA 38510/11606BOO 38510/11606810 38510/11607BOA 38510111607800 38510111608BOA 38510/11608500 38510112301ABOA 38510/12301A800 38510/1230lJ.BI0 Siliconix incorporated SlIIccnlx Direct Sillconix Similar Replacement Replacement DG400DJ DG400AK DG401AK DG401AK DG401DJ DG402AK DG402DJ DG402AK DG403AK DG403DJ DG403AK DG404AK DG404DJ DG404AK DG405AK DG405DJ DG405AK DG406AK DG406DJ DG406AK DG407AK DG407DJ DG407AK SJM181BAO SJM181 BOA SJM181BOO SJM181BI0 SJMI82BAO SJMI82BOA SJMI82BOO SJMI82BIO SJMI84BAO SJM184BEA SJM184BEO SJM185BAO SJMI85BEA SJMI85BEO SJM187BAO SJM187BOA SJM187BOO SJM187BI0 SJM188BAO SJM188BOA SJM188BOO SJM188BI0 SJM190BAO SJM190BEA SJM190BEO SJM191BAO SJM191BEA SJM191BEO SJM300BOA SJM300BOO SJM300B10 SJM301BOA SJM301BOO SJM301B10 SJM302BOA SJM302BOO SJM303BOA SJM303BOO SJM304BOA SJM304BOO SJM304BIO SJM305BOO SJM305BOA SJM305BIO SJM306BOA SJM306BOO SJM307BOA SJM307BOO SJM200ABOA SJM200ABOO SJM200ABI0 Cross Reference SiJiconix incorporated Part Number SlIIconlx Direct Replacement 38510/12302ABEA 38510/12302ABEC 38510/19001BXC 38510/19003BXC 38510/19007BEC 38510/19008BEC 7705201EA 7705201EC 7705301EA 7705301EC 7801401CA 7801401CC 8100601EA 81006011C 8100602EA 81006021C SJM201ABEA SJM201ABEC SJM506BXC SJM507BXC SJM508ABEC SJM509ABEC DG508AAK DESC DG508AAK DESC DG201 AAK DESC DG201AAK DESC DG129AK DESO DG129AP DESC DG5140AK DESC DG5140AA DESO DG5141AK DESO DG5141AA DESC Sillconix Similar Replacement Part Number 8100603EA 810060310 8100604EA 8100605EA 81006051C 8100606EA 8100609EA 81006091C 8100610EA 810061010 8100611EA 81006111C 8100612EA 8100613EA 81006131C 8100614EA Silicon Ix Direct Replacement Silicon Ix Similar Replacement DG5142AK DESC DG5142AA DESC DG5143AK DESO DG5144AK DESO DG5144AA DESO DG5145AK DESC DG5140AK DESC DG5140AA DESO DG5141AK DESC DG5141AA DESO DG5142AK DESO DG5142AA DESO DG5143AK DESC DG5144AK DESO DG5144AA DESC DG5145AK DESO III This Cross Reference material Is accurate to the best knowledge and belief of SlIIconlx Incorporated. Since Individual circuit design and layout can Influence device performance, the purchaser must be responsible for the ultimate selection and determination of Interchangeability. 4-13 --1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Analog Switches and Multiplexers . . WY'Siliconix incorporated ~ TABLE OF CONTENTS Introduction .•.•.........••......•....•......•..•.•...•.•••.•......•..•..•....•...•. 5-1 DG123: 5-Channel SPST PMOS Analog Switch ........•....•..•............•...•....•...•. 5-8 DG125: 5-Channel SPST PMOS Analog Switch ...........•.....•.••..•......•............ 5-11 DG126/129/140: Dual DPST JFET Analog Switches .......•........•.••......•....•....... 5-15 DG133/134/141: Dual SPST JFET Analog Switches .........•..•............•..•...•.....• 5-22 DG139/142/145: Dual DPDT JFET Analog Switches .....•••.•............••........•....•• 5-30 .--' DG143/144/146: SPDT JFET Analog Switches ...........•..•.•.•.•.........•....•...•... 5-38 DG172: Monolithic 4-Channel PMOS Analog Switch ....••....•.•.•...........•..•......... 5-46 DG180/181/182: High-Speed Driver with Dual SPST JFET Switches ........•.........•....•. 5-51 DG183/184/185: High-Speed Driver with Dual DPST JFET Switches ..•.••.•...•.....•....... 5-62 " DG186/187/188: High-Speed Driver with SPDT JFET Switch ..................•............• 5-74 . - DG189/190/191: High-Speed Drive~ with Dual SPDT JFET Switches ...........•..••..•.•...• 5-85 DG200A: Dual Monolithic SPST CMOS Analog Switch ................•.......•..•.•....... 5-96 DGP201A: Precision Monolithic Quad SPST CMOS Analog Switch •.....••.................. 5-102 DG201A/202: Quad Monolithic SPST CMOS Analog Switches •...•.•...•.•..........•..... 5-117 DG211/212: Low Cost 4-Channel Monolithic SPST CMOS Analog Switches .•..........•..... 5-129 DG221: 4-Channel Monolithic SPST CMOS Analog Switch with Data Latches ..........•...... 5-143 DG243: Monolithic General Purpose CMOS Analog Switch ...............••.....•...•....• 5-151 DG271: High-Speed Quad Monolithic SPST CMOS Analog Switch .•.••..•.•....•..........• 5-156 DG300A/301A/302A/303A: CMOS Analog Switches .•..........................•........ 5-161 DPG303A: Precision Dual SPDT CMOS Analog Switch .•.......•.•.......•....•....•..... 5-173 DG304A/305A/306A/307A: CMOS Analog Switches ..••.....•...•....••.•...............• 5-184 DG308A/309: Quad Monolithic SPST CMOS Analog Switches •......•.••.•.............•.• 5-195 DG381A/384A/387A/390A: General Purpose CMOS Analog Switches ..........•.......•...• 5-201 DG400-405: Low-Power - High-Speed CMOS Analog Switches ..•.....•.....••....•...••.. 5-212 DG408/409: 8-Channel/Dual 4-Channel High Performance CMOS Analog Multiplexers . ; ..•.•......•......•...•.•.•.•..•..•.•................ 5-229 DG411/412/413: Precision Monolithic Quad SPST CMOS Analog Switches ...•........•...•.. 5-234 DG417/418/419: Precision MiniDIP CMOS Analog Switches ................•.....•.•.•.•.. 5-245 DG421/423/425: Low-Power - High-Speed Latchable CMOS Analog Switches ..•...•...•..•.• 5-255 DG441/442: Monolithic Quad Switches SPST CMOS Analog Switches ••....••.•.......•.•... 5-265 DG444/445: Monolithic Quad SPST CMOS Analog Switches .....•••••.••.••.••..•..••.•.•• 5-274 DG480: High-Speed CMOS Octal Analog Switch Array •.•...•...•..•.••..........•....... 5-282 DG485: Low-Power - High-Speed CMOS Octal Analog Switch Array ..•....•..•..••...•....• 5-288 DG501: 8-Channel Multiplex Switch with Decode ..•......•.....•..•.•.•.....•..•.•...... 5-294 DG503: a-Channel Multiplex Switch with Decode .....•...•.•........••......•.....•..... 5-299 DG506A1507 A: 16-Channel/Dual 8-Channel CMOS Analog Multiplexers ............•.•...•.. 5-303 DGP508A: Precision 8-Channel CMOS Multiplexer/Demultiplexer .....•.••......•..•........ 5-314 DG508A/509A: 8-Channel/Dual 4-Channel CMOS Analog Multiplexers •.•.......•..•.•...... 5-331 DG526/527: 16-Channel and Dual 8-Channel Latchable Multiplexers ..•......•..•........... 5-345 DG528/529: 8-Channel and Dual 4-Channel Latchable Multiplexers ...•.....•.••...••....... 5-357 DG548/549: 8-Channel and Dual 4-Channel CMOS Analog Multiplexers with Overvoltage protection . . . . • • . . • . . . . . . . . . . . . • . . . . . . . • . . . . . . . . . • . . . . . . • . . . . . . . . . . • 5-369 DG566: Serial-Loading Octal SPST High-Voltage Analog Switch ......•..•.................. 5-375 DG568/569: 8- and Dual 4-Channel High-Voltage CMOS Multiplexers with Latches ........•... 5-381 DG5040-5045: Monolithic General Purpose CMOS Analog Switches •.......•.............•. 5-389 DG5140/5141/5142/5143/5144/5145: Low-Power - High-Speed CMOS Analog Switches •...................•.....•..•....•......•.........•........... 5-398 DG601: High-Speed Quad SPST CMOS Analog Switch ......•......•.........•........... 5-407 DG908/909: 8-Channel/Dual 4-Channel Fault Protected CMOS Analog Multiplexers .....•....• 5-414 G118: Monolithic 6-Channel Enhancement-Type MOSFET Switch .......................... 5-419 G119: Monolithic 6-Channel Enhancement-Type MOSFET Switch .................•......•. 5-422 Si3002: Monolithic SPDT MOS Switch with Driver ........•.•......•............•........ 5-425 ...... Sillconix incorporated ~ ANALOG SWITCHES AND MULTIPLEXERS INTRODUCTION Siliconix is the world's leading supplier of high performance, precision solid-state analog switches and mUltiplexers. Through the implementation of state-of-the-art technologies (CMOS, DMOS, bipolar/PMOS, and JFET processes) in conjunction with advanced design techniques, the products shown in this section represent a broad selection of industrial, military, and commercial grade parts suiting a wide range of applications. Siliconix is dedicated to giving the designer the widest range of functions, performance, and packaging as standards to ensure ease of design. The products in this section include all of the popular Siliconix "OG" series of single, dual, and quad analog switches, single-ended and differential multiplexers plus many new and preliminary devices. Siliconix is branching out into the higher performance switch and multiplexer arena with our proprietary high voltage silicon gate OG400 family. The established OG200, OG300, and OG500 families are made on our mature metal gate process which gives adequate performance for many applications. If higher performance (i.e. lower ON resistance, leakage currents, and power dissipation with faster switching) is required in your application, then the OG400 family is recommended. Most of our DG4XX devices, including analog switches, multiplexers, latched switches, and switch arrays, incorporate ESOS protection> ±4000 V. Single supply operation, charge injection optimization, and a wide range of packaging options including gull-wing small outline, PLCC and LCC packages are additional benefits of this family. A wide range of preliminary products are covered in this section including multiplexers (01 and silicon gate), PolyMOS'" fast switches, and silicon gate switch arrays. In the near future, Siliconix will release two 01 (dielectric isolation) multiplexers with overvoltage (DG548) and/or fault protection (OG908) and two high performance silicon gate multiplexers (OG408/409). If extremely fast switching and very low ON resistance are the most important parameters in your system, then the OG601 PolyMOS'" quad analog switches, pin compatible with the industry standards OG201A/202, are the devices of choice. Switch arrays (serial-in, parallel-out) are a new architecture giving designers greater levels of flexibility in routing signals. The OG480/485 are silicon gate switch array multiplexers that allow control of any of eight switches. Now, summing node applications can be accomplished using a high performance switch array architecture. Finally, Siliconix continues to expand the increasingly popular lines of U.S. MIL-M38510 QPL and European 8S9000 approved parts which have been screened for use in military applications. The following discuss important selection criteria for analog switches and multiplexers. See the detailed selector guide to make the job of selecting the correct part for a specific application easier. Functional Description One of the most common control elements in electrical circuitry is the ON-OFF switch. The switch has evolved over the years from the manually operated circuit breaker of the early experimenters to the mUlti-switch integrated circuits of today. However, the function of the switch has remained the same; to electrically isolate or connect two sections of a circuit. The ideal switch has the following characteristics: 1) Zero ON resistance 2) Infinite OFF resistance 3) Instantaneous tON and tOFF times 5-1 ~ __ WY'Siliconix incorporated ~ Although an analog switch is not perfect and can have many different parasitic elements (Figure 1), it can still be a very good approximation of the ideal switch. ON resistance (rDS(ON) can be as low as 10 n, OFF isolation can be as high as 90 dB (at 1 MHz), and switching speeds can reach 60 ns for a CMOS part, while PolyMOS™ can obtain 30 ns switching speeds. Ideal ON o--1i 0 OFF ~ 0 OFF ON Analog Switch SO 0 I~I RLEAKAGE D S OD ~t~ I t I Figure 1. Comparison of the "Ideal" Switch to a Solid-state Analog Switch Analog Switch Types Before discussing specific parameters of the Siliconix analog switch product line, a brief description and the prime differences between the four processes used in analog switches is provided. JFET The n-channel JFETs used in analog switches such as the DG180 family are depletion mode devices. To maintain a depletion mode JFET switch in the ON state, the valueVGs should be at or near zero. The switch is turned OFF by making VGS more negative than 6 volts. When the switch is ON, VGS is maintained at zero by a floating gate drive circuit. This makes the ON resistance extremely constant over the entire analog signal range (Figure 2) . ros o +10 V Figure 2. JFET "ON" Resistance 5-2 ...... Sillconix .,1;11 incorporated PMOS To maintain an enhancement mode PMOS switch In the ON state, the gate is held at a negative voltage that ensures that Vas exceeds the threshold voltage of the FET even when the analog signal is at the extremes of its range. However, since the rOS(ON) of a MOSFET is a function of Vas , the ON resistance will vary with the analog signal voltage (Figure 3). The variation in ON resistance of the PMOS analog switch is a serious limitation In some applications since it can cause distortion of the analog signal. This effect can be minimized if the load resistance is high compared to the switch resistance. CMOS DMOS (double diffused MOS) switches are n-channel (NMOS) enhancement mode devices capable of subnanosecond switching speeds due to their short channel length and lateral, as opposed to vertical, current flow. Lateral construction also allows low parasitic capacitances which makes DMOS switches ideal for wideband signals (> 500 MHz). However, they exhibit similar ON resistance variations as the PMOS switches. CMOS Since CMOS analog switches are parallel combinations of p- and n-channel MOSFETs, the effective ON resistance is a combination of the PMOS and NMOS resistance curves (Figure 4). This gives a fairly constant ON resistance over the entire analog voltage range. The CMOS switch also has the advantage of very low quiescent supply current because other than for channel leakage, no current flows in the driver except when a control input transition occurs. PMOS roe NMOS roe EFFECTIVE PARALLEL RESISTANCE VA = -10 ~e -10 = o -20 +10 V -30 V Figure 3. Variation of PMOS Switch ReSistance with Signal Voltage -15 V +15 V Figure 4. Graph of CMOS Switch Resistance vs. Analog Signal Metal Gate And Silicon Gate CMOS Both metal and silicon gate technologies are incorporated into our CMOS processes, but each is used with separate product lines. The mature metal gate process, is used for our DG200, DG300, and DG500 families. Our newer silicon gate process (DG400 family) is recommended for applications needing state-of-the-art performance and versatility. 5-3 ...... Siliconix incorporated ~ Figure 5 gives a comparison of the ON resistance curves fora JFET (DG180), a PMOS (DG172), a metal gate CMOS (DG201A) and a silicon gate CMOS (DG400) analog switches. 1k " 100 rOS(ON) (.0. ) 10 -- ~ PMOS (OG172) I - - CMOS (OG201A)--L /OG4111 JET (06180) V+ VTA 1 -15 I =15 V =-15V =25°C -10 -5 0 5 10 Vo- ANALOG SIGNAL VOLTAGE (V) 15 Figure 5. Performance of FET Switches Important Switch Parameters Each switch family in the Siliconix product line has a set of distinct characteristics that make it suitable for certain types of applications. Several major specifications should be compared and prioritized before selecting an analog switch for a particular circuit. This specification is simply the dc resistance of the channel when the analog switch is in the ON state. As explained earlier, the ON resistance of an analog switch depends upon the device type and the analog signal magnitude. Although the resistance may vary across the entire analog signal range, the worst case is normally specified on the data sheet. Switching Speed Switching speed is the elapsed time from the application of the control signal on the input pin to the appearance (or disappearance) of the analog signal at the output. Switching speed can be affected by the load on the analog switch. Each data sheet shows a switching time test circuit with a standard load for comparison purposes. Switch Current The amount of current that can be fed through the switch channel is sometimes important. For example, the DG411 can handle up to 100 rnA of pulsed current or 30 rnA of continuous current, while the DG180 can pass up to 200 rnA of continuous current. Break-Before-Make vs. Make-Before-Break For most analog switch applications, break-before-make switching is desired. This is the case because in most applications it is necessary to disconnect one signal source before connecting another to avoid source crosstalk. However, make-before-break switching is critical in some control circuits such as the feedback resistor gain selector for programmable gain op amps, to avoid opening the loop. 5-4 ~ ~ Siliconix incorporated Electrostatic Discharge Sensitivity (ESDS) Electrostatic discharge is the transfer of charge that occurs when an object makes contact with a device at a different potential. The government, per MIL-883C method 3015, has classified three levels of voltage protection that a device must withstand on all pins (logic input pins are the most susceptible). Class 1 devices are protected to 1999 V, Class 2 from 2000 to 3999 V, and Class 3 protection is greater than 4000 V. Our DG200, DG300, DG506-509 families of metal gate devices are designed to withstand between 600 and 1999 V. 8eginning with the DG411 series, all our new devices have Class 2 or 3 ESDS ratings and are marked accordingly. Charge Injection Charge injection is the transfer of charge to a load from the gates of the FETs during switching. In a sample and hold circuit, charge injection is critical as the charge added or subtracted from the holding capacitor is seen as an error. The lower the charge injection the better. The DG400 family, especially the DG44X and DG411 series, are designed for balanced (near zero) charge injection. The DG601 and DG44X use internal compensation on the drain and/or source to minimize the charge injection seen by applications sensitive to this parameter. Power Supplies and Power Consumption A bipolar supply means positive and negative voltages are used, while single supply means the negative supply is grounded. Most analog designs use bipolar supplies, but a growing number are turning to single supply operation to save board space and cost. Most of our devices work well with bipolar supplies but only a few function properly in the single supply mode. The DG400 family of analog switches and multiplexers not only functions superbly in a single supply mode, but is fully characterized and specified with V+ at 12 V and V- at GND. The lower the power consumed by a device within a system the better. The DG400 family generally consumes under 10 J.lA of supply current compared to the milliamps required by previous products. Interfacing This can be one of the most important parameters of an analog switch application since so many possibilities exist. The two most important interface criteria are logic compatibility and microprocessor compatibility. The two most common logic families are TTL and CMOS. The standard logic levels for both logics are displayed in Table 1. Remember that not all analog switches are compatible with both types of logic. Refer to the functional diagram section of each data sheet to determine the required logic levels. Table 1 LOGIC TTL uO" ~ 1011" 2: 2.4 V 0.8 V CMOS ~ 1.5 V 2: Vcc-1.5 V Logic Levels for TTL and CMOS Compatibility Microprocessor compatibility is a growing concern when designing with analog switches. Standard analog switches require a constant control signal present on the input to hold the switch in the desired position (ON or OFF). This could tie up a microprocessor control system unless external latches are added to control the switch. The DG221 and DG42X series have incorporated these latches, complete with control logic, onboard to minimize parts count and ease interface to microprocessor-based control systems. 5-5 III W'r' Siliconix ~ incorporated Multiplexing Analog multiplexers represent a higher level of integration of analog switches. They have many (4, 8, 16, or more) inputs with only 1 or 2 common outputs. Multiplexers are used where it is necessary to transfer information from many signal channels at a transmitting point to a central or common receiving point, or vice versa. This is most often used when only one transmission line is available for all data transfer between points. The transmitted signals are in either analog or digital form, with multiplexers in this section being the analog variety that pass bipolar voltages or currents which are often obtained from transducers. The analog signals may represent any physical phenomenon such as temperature, pressure, velocity, speech, etc. Examples of this can be found in data acquisition, industrial process control, aircraft systems monitoring, medical electronics, telemetry, and communications. Differential vs. Single-Ended Multiplexing When is it better to select a differential multiplexer versus a single-ended configuration? Figures 6 and 7 demonstrate both options. Single-ended multiplexing, as shown in Figure 6, applies to systems that have signal sources that are close to full-scale range and are referenced to a common point (usually ground). Another case is where differential signal sources with small signal amplitude (millivolt range) are generated by transducers. Instrumentation amplifiers can be used to provide a common reference for all of the signals and reduce feedthrough errors and losses while tailoring each signal source to a desired voltage (or current) to obtain the maximum resolution available in an AID or D/A converter or other device driven by the multiplexer. Differential multiplexing (Figure 7) is utilized when all signal sources are uniform or close to full-scale range and can tolerate switching transients or some mismatch without a significant degradation of the signal accuracy via the multiplexer. Major considerations are switch matching (rDS(ON), I (OFF) ,and capacitance), common-mode rejection, and the system's tolerance to switching transients introduced by the break-before-make switching sequence. 2e>-----A 1 I I +---0 OUTPUT :5~ H =t: =~, 0----40- OUTPUT B I :: N: ft:=j : I ABC Figure 6. 5-6 Single-Ended Multiplexing Figure 7. Differential Multiplexing ~ ~ Siliconix incorporated Factors Affecting System Performance In any multiplexer application, the following factors should be considered: 1) System Attenuation -- Includes loss in the analog signal caused by the multiplexer and the transmission path. This is a frequency dependent factor. 2) Channel Isolation -- At low frequencies, this is principally a function of channel OFF leakage currents, and at high frequencies, it is a function of device and system capacitances. 3) Crosstalk -- There are several sources of crosstalk, the main ones being overlapped between switching channels due to imperfect break-before-make switching, switch leakages, OFF switch capacitances, inter-switch capacitances, stray circuit capacitances, distortion in the transmission medium, etc. 4) Noise -- There are several sources of noise, including thermal or Johnson noise generated in any resistive components, crosstalk, leakages, switching transients, as well a thermal EMFs and transmission path pickup. 5) Switching Rate -- This is important in sampling system where it determines the maximum bandwidth frequency of the multiplexer (via the sampling theorem) and defines crosstalk errors • .. 5-7 '" DG123 5-Channel SPST PMOS Analog Switch WY'Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Low Level Logic Control • Reduces External Components Required • Feedback Switching for Op Amps • Reduces Switching Errors • Commutation Systems • Make-Before-Break Switching Action • Portable and Remote Operation • Very Low Standby Power Requirements DESCRIPTION The DG123 is a 5-channel single-pole, single-throw analog switch deSigned for low level logic controlled analog switching in instrumentation, process control, and communications systems. Featuring make-before-break action, the DG123 can be used inside closed loop systems to select one of five inputs for multiplexing/demultiplexing of analog signals, or for gain bandwidth control (by switching passive elements), without opening the loop. The reference pin (VR) Is normally connected to ground to allow a low-level input (0.4 V to 1.3 V) to control the ON-OFF conditi.on of each switch. The standby or OFF state power consumption is less than 0.5 mW. The DG123 is a bi-directional MOS switch, rated to handle ±10 V analog signals at up to 30 mA continuous current. Each switch will block 20 V peak-to-peak signals when OFF. Package options are the 14-pin ceramic DIP and flatpack. The former is characterized for operation over the standard industrial, B suffix and military, A suffix temperature ranges, while the latter is specified for the military range only. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM S 1 o-+------'------...-I--o D Flat Package 82!1~14 11 8 1 D 2 3 IN 1 IN2 IN 3 5 10 6 9 v- 13 12 4 S2o-+-----~~----+ S3O-~----~;O~--~ S4o-~----_r4_To~-~ S5O-~----~4_T_~~-J 83 84 IN1o-~-~~~ 8S v+ V R (Inhibit) INS IN4 7 : IN 2 0-1-+-.,"'1 I I I I I I IN 3 <>-11-1--11'1 IN 4 0-1-+-.,"'\ Top View Order Number: DG123ALl883 Dual-In-Llne Package ____ .J IN 5 0-1-+-.,"'\ V- VR (Inhibit) 85 v- v+ IN 1 V R (Inhibit) Top View Order Numbers: DG123AP or DG123BP One 5-Channel Switch per Package" Truth Table LOGIC 0 1 SWITCH OFF ON Logic '0' < 0.4 V Logic "1" ~ 1.3 V Switches Shown for Logic "1' Input 5-8 Not Recommended for New Designs DG123 W'P' Siliconix ~ incorporated ABSOLUTE MAXIMUM RATINGS V+ to V- ..................................... 36 V Current (Any Terminal) ....................... 30 mA Vo to V- ...................................... 36 V Storage Temperature .................... -65 to 150°C Vs to V- ...................................... 36 V VotoVs ..................................... 25V VstoVo ..................................... 25V Operating Temperature (A Suffix) ......... -55 to 125°C (8 Suffix) .......... -25 to 85°C Power Dissipation (Package)' Flat Package" ............................. 750 mW 14-Pln DIP'" .............................. 825 mW VR to V- ...................................... 30 V VIN to V- 30 V VR toVIN 6V VIN toVR 2V All leads soldered or welded to PC board. •• Derate 10 mW'oC above 75°C. ••• Derate 11 mW'oC above 75°C. ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1=25°C B A Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 10 V 3=-55,-25°C -55 to 125°C -25 to 85°C V- = -20 V VR = 0 V TEMP TYpd MINb MA>f MINb MAXb UNIT SYMBOL SWITCH Analog Signal Range c Drain-Source ON Resistance -10 1,2,3 VANALOG Is=-lmA liN = 1 mA rOS(ON) 10 -10 10 Vo= 10 V 1,3 2 70 100 125 125 150 Vo= 0 1,3 2 100 200 250 225 300 Vo= -10 V 1,3 2 270 450 600 500 600 Source OFF Leakage Current Is(oFF) Vs = -10 V, Vo = 10 V VIN = 0.4V 1 2 -1 -1000 -5 -100 Drain OFF Leakage Current lo(oFF) Vo = -10 V, Vs= 10 V VIN = 0.4V 1 2 -1 -4000 -10 -300 Channel ON Leakage Current IO(ON) + IS(ON) Vo=Vs=10V liN = 1 mA 1 2 4 4000 10 300 V .0. nA INPUT Input Voltage HIGH V INH liN = 1 mA 1 2 3 1 .8 1.3 1 1.0 1.3 V Input Current with Input Voltage LOW IINL VIN = 0.4 V 1,3 2 1 100 5 100 ,lJ.A 1 0.3 0.5 1 2 2 < DYNAMIC Turn-ON Time Turn-OFF Time tON tOFF See Switching Time Test Circuit (C L= 35 pF, RL=2 k.(l.) Not Recommended for New Designs ,lJ.s 5-9 ~ ~ DG123 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 10 V 3=-55,-25°C -55 to 125°C -25 to 8SoC V- = -20 V VR= 0 V TEMP TYpd MINb MA>f MINb MAXb UNIT DYNAMIC (Cont'd) Source-OFF Capacitance CS(OFF) Vs=OV.lo=O f = 1 MHz 1 5 Drain-OFF Capacitance CO(OFF) Vo=OV.ls=O f = 1 MHz 1 18 R L = 100.n. CL= 3 pF f = 5 MHz 1 >50 pF Off Isolation dB SUPPLY Positive Supply Current Ii- Negative Supply Current l- Reference Supply Current 1 One Channel ON IIN= 1 mA 3 3 1 -6 -6 IR 1 -0.5 -0.5 Positive Supply Current 1+ 1 Negative Supply Current 1- Reference Supply Current IR All Channels OFF VIN = 0.4 V 15 mA 25 1 -20 -40 1 -10 -20 .l1A NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebralo convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC INPUT 1.2V 0V SWITCH INPUT S = +10 V o--t-------(Y VS SWITCH OUTPUT V OUT --HD-_---1~ IN, SWITCH INPUT SWITCH OUTPUT t r <10ns t,<10ns 0V _-+-J (Repeat test for 5 channels) (LOGIC '1' = SWITCH ON) 5-10 V OUT =V s RL R L+ r OSION) Not Recommended for New Designs DG125 5-Channel SPST PMOS Analog Switch ~ Siliconix ,,1;;11 incorporated FEATURES BENEFITS APPLICATIONS • Internal Zener Diode Protection • Reduces Switching Errors • Communication Systems • Reduces External Components • Portable and Battery Operation • Low Standby Power Requirements (P SrDBY < 0.5 mW) • Op Amp Switching • Variable Gain Switching • Low OFF Leakage • Low Level Logic Control DESCRIPTION The DG125 is a 5-channel single-pole, single-throw analog switch designed for low level logic controlled analog switching in instrumentation, process control, and communications systems. Featuring make-before-break action, the DG125, built on Siliconix's PMOS process, can be used inside closed loop systems to select one or more of five inputs for multiplexing/demultiplexing, summing of analog signals, or for gain bandwidth control (by switching passive elements), without opening the loop. In standby or OFF state, power consumption is less than 0.5 mW. The DG125 is a bi-directional MOS switch, rated to handle ±10 V analog signals at up to 30 mA continuqus current. Each switch will block 20 V peak-to-peak signals when OFF. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM Flat Package Packaging for the DG125 includes 14-pin side braze and flatpack options. Performance grades include both the military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature ranges. The flatpack option is only available in the military grade. S 1 O-t------<>"I.'---:c----t-+-o D S20-t-----~~~~---+ S30-t-----~~T~~--+ S40-~----~+_~f~--+ S50-~----~+_+_~r~~ IN 1 o-t-- 50 1 1.4 1 -2.4 Off Isolation 3 pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Logic Supply Current IL 1 1.15 3 3 Positive Supply Current 1+ 1 0.1 15 25 Negative Supply Current 1- 1 -0.02 Logic Supply Current IL 1 0.04 One Channel ON VIN = 0.5 V All Channels OFF VIN =4.1 V 3 -6 3 -6 -20 mA -40 20 J.lA 20 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC INPUT LOGIC "0" = SW ON 4.5 V t r < 10 ns t f < 10 ns C>--it---O""" I &...jK>-.._--.-O v 0 SWITCH OUTPUT LOGIC INPUT v(REPEAT TEST FOR IN2 ) Not Recommended for New Designs 5-13 DG125 .... Siliconix incorporated ~ APPLICATION HINTS 5-14 V+ Positive Supply Voltage (V) VNegative Supply Voltage (V) VL Logic Supply Voltage (V) VIN Logic Input Voltage VINHMin/ VIN~Max V) Vs or Vo Analog Voltage Range (V) 10 15 20 -20 -15 -10 4.5 4.5 4.5 4.1/0.5 4.1/0.5 4.1/0.5 -10 to 10 -5 to 15 o to 20 Not Recommended for New Designs DG126/129/140 Dual DPST JFET Analog Switches ...... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • < 1 mW Standby Power • Minimizes Standby Power Requirements • Portable and Battery Powered Systems • Better Radiation Tolerance • Switching in Satellite Applications III Bipolar Drivers • Constant rDSION) Over Signal Range • Less Distortion • OFF Isolation> 60 dB @ 1 MHz • Low Distortion Circuits • Higher Frequency Switching • High Frequency Switching Circuits DESCRIPTION The DG126, DG129 and DG140 are dual double-pole single-throw analog switches for use in instrumentation, process control, and audio communication systems. This series is ideally suited for applications requiring a constant ON resistance over the entire analog range. ON resistance for the DG126 is < 80 n, the DG129 < 30 n and the DG140 < 10 n, and ON leakage for all three is < 2 nA. With all switches OFF, total power consumption is < 750 IJ.W. These switches have Make-Before-Break action and due to the processing are relatively Radiation tolerant. An enable pin (VR) simplifies interfacing with microprocessor, or other logic. Package options are the 14-pin side braze and flat pack. Each device contains four junction-type field-effect transistors (JFETS) to achieve constant on resistance. Level-shifting drivers enable low-level inputs (0.8 to 2.5 V) to control the ON-OFF state of each switch. With logic "0" at the driver input the switches will be OFF. With a logic "1" at the input the switches will be ON. In the ON state each switch will conduct current in either direction, and in the OFF state each switch will block voltages up to 20 V peak-to-peak. Packaging for this series includes 14-pin side braze and flatpack options. Performance grades include both military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature ranges. The flatpack option is only available in the military grade. PIN CONFIGURATION Dual-In-Une Package Flat Package 82 IN2 v- v+ V R(Enable) IN1 8 1 Top View Top View Order Numbers: Order Numbers: DG126ALl883, DG129ALl883, DG140ALl883 DG126AP, DG126BP DG129AP, DG129BP DG140AP, DG140BP Not Recommended for New Designs 5-15 DG126/129/140 ..... Siliconix Jt;II incorporated FUNCTIONAL BLOCK DIAGRAM Logic '0' < 0.8 V Logic '1' ~ 2.5 V • Switches Shown for Logic '1' Input Two OPST Switches per Package" ABSOLUTE MAXIMUM RATINGS V+ to V- ...............•.....••.•.•••....•••. 36 V V+ to Vo ..•................. , . • . . . . • . • • . . • • . .. 36 V· Vo orVs to V- ................................ 36 Vo toYs .................................... :!:22 V+ to,VR .••..•••...•••••..•••.....••...••..•• 25 VR to V- ..••.•••••••••••••.•••.....•••••••..•• 25 VIN to V- .•••••••.•.•.•••.••••....•••...••.••• 30 25 V V V V V V ±6V Current (Any Terminal) .........•............. 30 mA Storage Temperature ........•........... -65 to 150°C Operating Temperature (A Suffix) ..•...... -55 to 125°C (8 Suffix) .......... -25 to 85°C Power Dissipation' Flat Package" ............................. 750 mW 14-pln DIP'" ............................... 825 mW All leads welded or soldered to PC board. •• Derate 10 mW/oC above 75°C. ••• Derate 11 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a DG126 LIMITS PARAMETER Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=-55,-25°C -55 to 125°C -25 to 85°C V- = -18 V VR = 0 V SYMBOL TEMP TYpd MINb MA>f MINb MAXt UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) Is=-10mA VIN = 2.5 V 5-16 Vo= 10 V 1,3 2 30 Vo= 8 V 1,3 2 25 Vs= 10 V Vo = - 10 V 1 2 0.01 Vs= 8 V Vo = -8 V 1 0.05 2 Vo = 10 V Vs= -10 V 1 2 0.005 Vo = 8 V Vs= -8 V 1 2 0.025 10 80 150 -8 8 V 150 .0. 100 150 1 100 IS(OFF) VI!\! = 0.8 V Drain OFF Leakage Current -10 5 100 nA 1 100 IO(OFF) 5 100 Not Recommended for New Designs DG126/129/140 .-F' Siliconix ~ incorporated DG126 ELECTRICAL CHARACTERISTICS a LIMITS PARAMETER SYMBOL Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=_55,_25° C -55 to 125 c C -25 to 85 c C V- = -16 V VR = 0 V TEMP TYpd MINb MAx" MINb MAXt UNIT SWITCH (Cont'd) Channel ON Leakage Current IO(ON)+ IS(ON) Vo=Vs=-10V 1 2 -0.02 Vo = Vs = -6 V 1 '2 -0.05 -2 -100 nA VIN = 2.5 V -5 -100 INPUT Input Current with Input Voltage HIGH IINH VIN = 2.5 V 1,2 3 20 60 120 100 150 Input Current with Input Voltage LOW IINL VIN = 0.6 V 1,3 2 0.004 0.1 2 4 4 1 0.4 0.6 1 1 1.3 1.6 2 Vs=O,lo=O 1 2.4 Vo=O,ls=O 1 2.4 Vo=Vs=O 1 2.6 = 1 MHz 1 >60 1 2.1 1 -1.2 -1.6 -2.0 -1.4 -1.5 J.lA DYNAMIC Turn-ON Time e tON See Switching Time Test Circuit Turn-OFF Time e tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance f = 1 MHz CO+S(ON) RL Off Isolation = 75.0., f J.ls pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1 Positive Supply Current 1+ 1 0.1 Negative Supply Current 1- 1 -0.5 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 One Channel ON VIN = 2.5 V All Channels OFF Both VIN = 0 V Not Recommended for New Designs 3 3.3 25 'mA 25 J.lA 5-17 DG126/129/140 Siliconix incorporated DG129 ELECTRICAL CHARACTERISTICS a LIMITS PARAMETER SYMBOL Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=-55,-25°C -55 to 125°C -25 to 85°C V- = -18 V VR = 0 V TEMP TYpd MINb MA>f MINbMAX t UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) Is= -10 mA VIN = 2.5 V -10 Vo= 10 V 1,3 2 20 VO= 8 V 1,3 2 30 Vs = 10 V Vo = - 10 V 1 2 0.03 Vs= 8 V Vo = -8 V 1 2 Vo = 10 V Vs= -10 V 1 2 0.02 Vo = 8 V Vs= -8 V 1 2 0.1 Vo = Vs = -10 V 1 2 -0.03 Vo = Vs = -8 V 1 2 -0.08 10 -8 8 V 30 60 .n. 50 75 1 100 IS(OFF) 5 100 VIN = 0.8 V Drain OFF Leakage Current lo(oFF) Channel ON Leakage Current IO(ON)+ IS(ON) 1 100 nA 5 100 -2 -100 VIN = 2.5 V -5 -100 INPUT Input Current with Input Voltage HIGH IINH VIN = 2.5 V 1,2 3 15 60 120 100 150 Input Current with Input Voltage LOW IINL VIN = 0.8 V 1,3 2 0.005 0.1 2 4 4 1 0.5 0.6 1 1 1.1 1.6 2 Vs=O,lo=O 1 2.4 Vo = 0, Is = 0 1 2.4 Vo=Vs=O 1 2.8 1 >60 JiA DYNAMIC Turn-ON Time e Turn-OFF Time e tON tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance Off Isolation 5-18 See Switching Time Test Circuit CO+S(ON) f = 1 MHz RL = 75.n., f = 1 MHz JiS pF dB Not Recommended for New Designs H DG126/129/140 Siliconix incorporated DG129 EL.ECTRICAL. CHARACTERISTICS a LIMITS PARAMETER SYMBOL Test Conditions 1=25°C A B Unless Otherwise Specified: 2=126,85°C SUFFIX SUFFIX V+ = 12 V 3=-55, -25 ° C -55 to 125°C -25 to 85°C V- = -18 V VR = 0 V TEMP TYpd MINb MA'lf MINb MAXt UNIT SUPP1.Y 1 2.6 1 -1.6 -1.8 -2.0 IR 1 -1.1 -1.4 -1.5 Positive Supply Current 1+ 1 0.1 Negative Supply Current 1- 1 -0.5 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current One Channel ON VIN = 2.5 V All Channels OFF Both VIN = 0 V 3 3.3 25 rnA 25 JJ.A EL.ECTRICAL. CHARACTERISTICS a DG140 LIMITS PARAMETER SYMBOL Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=-55, -25 ° C -55 to 125°C -25 to 85°C V- = -18 V VR= 0 V TEMP TYpd MINb MA'lf MINb MAXb UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) Is=-10rnA VIN = 2.5 V Channel ON Leakage Current Vo= 10 V 1,3 2 6.3 Vo= 8 V 1,3 2 9.5 Vs= 10 V Vo = - 10 V 1 2 0.04 Vs= 8 V Vo = -8 V 1 2 0.06 Vo = 10 V Vs= -10 V 1 2 Vo = 8 V Vs= -8 V 1 2 10 -8 8 10 20 15 25 V .n. 10 1000 IS(OFF) VIN = 0.8 V Drain OFF Leakage Current -10 15 300 10 1000 nA IO(OFF) IO(ON)+ IS(ON) 15 300 Vo = Vs = -10 V 1 2 -0.4 Vo = Vs = -8 V 1 2 -1 VIN = 2.5 V Not Recommended for New Designs -2 -100 -5 -100 5-19 DG126/129/140 ....,. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL DG140 LIMITS Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=-55,-25°C -55 to 125°C -25 to 85°C V- = -18 V VR = 0 V TEMP TYpd MINb MAX' MINb MAXt UNIT INPUT Input Current with Input Voltage HIGH IINH VIN = 2.5 V 1,2 3 13 60 120 100 150 Input Current with Input Voltage LOW IINL VIN = 0.8 V 1,3 2 0.004 0.1 2 4 4 1 0.6 1 1.5 1 1.15 2.5 2.5 VS=O,ID=O 1 3 VD=O,ls=O 1 3 VD=VS=O 1 2.8 1 >50 1 2.4 1 -1.5 -1.8 -2.0 -1.4 -1.5 jJ.A DYNAMIC Turn-ON Time e tON Turn-OFF Time e tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CD(OFF) Channel ON Capacitance CD+S(ON) See Switching Time Test Circuit f = 1 MHz R L = 75.0., f = 1 MHz Off Isolation jJ.S pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1 Positive Supply Current 1+ 1 0.1 Negative Supply Current 1- 1 -0.5 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 One Channel ON VIN = 2.5 V All Channels OFF Both VIN = 0 V 3.3 3 25 mA 25 jJ.A NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. ' d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN must be a step function with a minimum rise and fall time of 1 V ljJ.s • 5-20 Not Recommended for New Designs DG126/129/140 .... Siliconix incorporated ~ SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Va is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. tOFF:-VS tON:+VS t r < 10 ns LOGIC INPUT tf < 10 ns SWITCH INPUT OV FrrtIJ¥H Vs ---1--------+---- (LOGIC "1" 12 V (REPEAT TEST FOR S3AND IN2' S2 & S4) SWITCH OUTPUT S, 0-11-----0-"": ............D'-- 60 dB @ 1 MHz) • High Frequency Switching Circuits DESCRIPTION The DG133, DG134, and DG141 are dual precision single-pole, single-throw analog switches for use in process control, communication, and instrumentation applications. This series is ideally suited for applications requiring a constant ON resistance over the entire analog range. ON resistance of the DG134 is < 80 n, the DG133 is < 30 n, and the DG141 is < 10 n, and ON shunt leakage for all three is < 2 nA. With both drivers in the "switch OFF" state, total power consumption is 750 jJ.W. Because JFET and bipolar processing is used, all three devices are relatively radiation tolerant. The DG133, DG134, and DG141 each contain two junction-type field-effect transistors (JFETs) de- signed to function as two single-pole, single-throw electronic switches. Level-shifting drivers enable low-level inputs (0.8 to 2.5 V) to control the ON-OFF state of each switch. With a positive logic "0" at the driver input the switches will be OFF. With a positive logic "1" at the input the switches will be ON. In the ON state each switch will conduct current in either direction, and in the OFF state each switch will block voltages up to 20 V peak-to-peak. Packaging for this series include a 14-pin side braze and flatpack options. Performance grades include both a military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature range. The flatpack option is only available in the military grade. PIN CONFIGURATION Dual-In-Llne Package Flat Package 02~~14 v_w NO NC NO NO NO 01 2 3 4 5 6 7 13 12 11 10 9 8 °2 NO 52 IN2 v+ NO VR(Enable) IN1 51 NO 52 IN2 vv+ vR (Enable) IN1 Tap View 51 Order Numbers: DG133ALl883. DG134ALl883 DG141ALl883 * 5-22 SIde Braze: Order Numbers: DG133AP. DG133BP DG134AP. DG134BP DG141AP. DG141BP Common to Substats and Base of Package Not Recommended for New Designs DG133/134/141 ...,. Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM S1 o~------------------------------ Truth Table IN1 VR (Enable) 0-------. Switch a OFF 1 ON Logic "0" Logic "1" IN 2 0-------------1 S2 Logic ~ ~ 0.8 V 2.5 V 'Switches Shown for Logic "1" Input o--------------------------------<~ D2 Two SPST Switches per Package' ABSOLUTE MAXIMUM RATINGS V+ to V- 36 V Current (Any Terminal) ....................... 30 mA V+ toVo ..................................... 36 V Storage Temperature .................... -65 to 150°C VoorVstoV- ................................ 36V Operating Temperature (A Suffix) ......... -55 to 125°C (B Suffix) .......... -25 to 85°C VotoVs .................................... ±22 V V+ toVR •.••.•.•••••..••.••••••••.••••••••••. 25 V Power Dissipation' Flat Package" ............................. 750 mW 14-Pin DIP'" .............................. 825 mW V R to V- ...................................... 25 V 30 V VIN to VV+ toV IN 25 V VIN toV R ±6 V All leads welded or soldered to PC board. .. Derate 10 mW/oC above 75°C. .. , Derate 11 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a DG133 Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 12 V V-=-18V VR = a LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAXt UNIT MINb MAX' SWITCH Analog Signal Range c Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) IS(OFF) -10 Vo= 10 V 1,3 2 20 Vo= 8 V 1,3 2 30 Vs= 10 V Vo= -10 V 1 2 0.03 Vs= 8 V Vo= -8 V 1 2 Is=-10mA VIN = 2.5 V 10 -8 8 30 60 V .n 50 75 1 100 nA VIN = 0.8 V Not Recommended for New Designs 5 100 5-23 .. DG133/134/141 ..... Siliconix ,.1;11 incorporated DG133 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V PARAMETER SYMBOL LIMITS 1=25°C A 2=125,S5°C SUFFIX 3=-55,-25· C -55 to 125°C B SUFFIX -25 to S5°C MINb MAX' MINb MAX TEMP TYpd UNIT SWITCH (Cont'd) Drain OFF Leakage Current 10(OFF) Vo= 10 V Vs= -10 V 1 2 0.02 VO= 8 V Vs= -S V 1 2 0.1 Vo=Vs= -10 V 1 2 -0.03 V o =Vs=-8V 1 2 -O.OS 1 100 VIN = O.S V 5 100 nA Channel ON Leakage Current 10(ON) + IS(ON) -2 -100 VIN = 2.5 V -5 -100 INPUT Input Current with Input Voltage HIGH IINH VIN = 2.5 V 1,2 3 60 120 100 150 VIN = 0.8 V 1,3 2 0.1 2 4 4 1 0.6 1 .uA Input Current with Input Voltage LOW IINL DYNAMIC Turn-ON Time tON See Switching Time Test Clrcult e Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance CS(OFF) Channel-ON Capacitance COlON) + CS(ON) OFF Isolation OIRR .us 1 f = 1 MHz 1.6 2 Vo = 0 V Is = 0 1 2.4 Vs= 0 V 10 = 0 1 2.4 Vo=Vs=O 1 2.8 1 >60 1 2.1 1 -1.2 -1.8 -2 1 -1 -1.4 -1.5 R L = 75.n, f = 1 MHz pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 5-24 One Channel ON VIN = 2.5 V 3 3.3 mA Not Recommended for New Designs DG133/134/141 WY' Siliconix ~ incorporated DG133 ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=-55, -25 ° C -55 to 125°C -25 to 85°C V-=-18V VR = a V b b TYpd MIN MAXt UNIT TEMP MIN MAX' SYMBOL SUPPLY (Cont'd) Positive Supply Current 1+ Negative Supply Current 1- Reference Supply Current IR All Channels OFF Both VIN = a V 1 0.1 25 25 1 -0.5 -25 -25 1 -0.5 -25 -25 jJ.A DG134 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 12 V V- = -18 V VR = a V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C TEMP TYpd B SUFFIX -25 to 85°C MINb MAX' MINb MAXb UNIT SWITCH Analog Signal Range c Drain-Source ON Resistance 1,2,3 VANALOG rOS(ON) Source OFF Leakage Current IS(OFF) Drain OFF Leakage Current I o (OFF) Channel ON Leakage Current IO(ON) + Is(oN) Vo= 10 V 1,3 2 30 Vo= 8 V 1,3 2 35 Vs= 10 V Vo= -10 V 1 2 0.01 Vs= 8 V Vo= -8 V 1 2 0.05 Vo= 10 V Vs= -10 V 1 2 0.005 Vo= 8 V Vs= -8 V 1 2 0.025 Vo=Vs= -10 V 1 2 -0.02 Vo=Vs= -8 V 1 2 -0.05 Is= -10 rnA V 1N = 2.5 V V 1N = 0.8 V V1N = 0.8 V -10 10 -8 8 V 80 150 .0. 100 150 1 100 5 100 1 100 nA 5 100 -2 -100 VIN = 2.5 V Not Recommended for New Designs -5 -100 5-25 DG133/134/141 wy" Siliconix incorporated ~ DG134 ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B 2=125,85°C SUFFIX SUFFIX V+ = 12 V 3=-55,-25°C -55 to 125°C -25 to 85°C V- = -16 V' VR = 0 V TEMP TYpd MINb MAX' MINb MAXt UNIT INPUT Input Current with Input Voltage HIGH IINH VIN = 2.5 V 1,2 3 60 120 100 150 Input Current with Input Voltage LOW IINL VIN = 0.6 V 1,3 2 0.1 2 4 4 1 0.6 1 1 1.6 2 J.lA DYNAMIC Turn-ON Time tON See Switching Time Test Clrculte Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance CS(OFF) Channel-ON Capacitance CO(ON) + CS(ON) OFF Isolation OIRR f = 1 MHz J.ls Vo= 0 V Is = 0 1 2.4 Vs= 0 V 10 = 0 1 2.4 Vo=Vs=O 1 2.6 1 >60 1 2.1 1 -1.2 -1.6 -2 -1.4 -1.5 R L = 75.0., f = 1 MHz pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1 Positive Supply Current 1+ 1 0.1 Negative Supply Current 1- 1 -0.5 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 5-26 One Channel ON VIN = 2.5 V All Channels OFF Both VIN = 0 V 3 3.3 25 mA 25 J.lA Not Recommended for New Designs DG133/134/141 ..... Siliconix incorporated ~ DG141 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 12 V V- = -18 V VR = a V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C TEMP TYpd MINb MA>f B SUFFIX -25 to 85°C MINb MAXt UNIT SWITCH Analog Signal Range c Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) IS(OFF) Drain OFF Leakage Current 10(OFF) Channel ON Leakage Current 10(ON) + IS(ON) -10 Vo= 10 V 1,3 2 6.3 VO= 8 V 1,3 2 9.5 Vs= 10 V Vo= -10 V 1 2 0.04 Vs= 8 V Vo= -8 V 1 2 0.06 Vo= 10 V Vs= -10 V 1 2 VO= 8 V Vs= -8 V 1 2 Vo=Vs= -10 V 1 2 -0.4 Vo=V s =-8V 1 2 -1.0 Is=-10mA VIN = 2.5 V 10 -8 8 V 10 20 .0. 15 25 10 1000 VIN = 0.8 V 15 300 10 1000 nA VIN = 0.8 V 15 300 -2 -100 VIN = 2.5 V -5 -100 INPUT Input Current with Input Voltage HIGH IINH VIN = 2.5 V 1,2 3 60 120 100 150 Input Current with Input Voltage LOW IINL VIN = 0.8 V 1,3 2 0.1 2 4 4 1 1 1.5 2.5 2.5 J,lA DYNAMIC Turn-ON Time tON See Switching Time Test Clrculte Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance C S(OFF) Channel-ON Capacitance COlON) + CS(ON) OFF Isolation OIRR f = 1 MHz J,ls 1 1.15 Vo= a V Is = a 1 3 aV a 1 3 1 2.8 1 >50 Vs= 10 = Vo=Vs=O RL = 75.0., f = 1 MHz Not Recommended for New Designs pF dB 5-27 DG133/134/141 ..... Siliconix incorporated ~ DG141 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V PARAMETER LIMITS 1=25°C A B 2=125,85°C SUFFIX SUFFIX 3=-55,-25°C -55 to 125°C -25 to 85°C TEMP TVpd MINb MA.J MINbMAX t SYMBOL UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current 1 2.1 1 -1.2 -1.8 -2 IR 1 -1 -1.4 -1.5 Positive Supply Current 1+ 1 0.1 Negative Supply Current 1- 1 -0.5 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 One Channel ON VIN = 2.5 V All Channels OFF Both VIN = 0 V 3 3.3 25 mA 25 )lA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN must be a step function with a minimum rise and fall time of f V l)ls . SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic Input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC INPUT t,< 10 ne tf< 10 ns 3V OV SWITCH INPUT Switch Input Switch Output ton' +Vs Sl t off , -Vs Vs SWITCH 0 V OUTPUT 0 -0.1 -Vs -1 B V (LOGIC "1" = SWITCH ON) 5-28 Vs = 10 V A Suffix Vs = B V B Suffix (Repeat Test for S3 and IN 2 • ~ and S4 ) Vo=Vs~ RL + rOS(on) Not Recommended for New Designs DG133/134/141 .... Siliconix incorporated ..c. APPLICATION HINTS V+ Positive Supply Voltage (V) VNegative Supply Voltage (V) 12 15 10 -18 -15 -10 VR Reference Voltage (V) VIN Logic Input Voltage VINH MinI VINLMax (V) Vs or Vo Analog Voltage Range (V) 0 0 0 2.5/0.8 2.5/0.8 2.5/0.8 -10 to 10 -5 to 13 o to 8 Not Recommended for New Designs 5-29 DG139/1421145 Dual DPDT JFET Analog Swiches ..... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • ( < 1 Jl.W) Standby Power • Minimizes Standby Power Requirement • Portable and Battery Powered Systems • Constant rDS(ON) Over Signal Range • Better Radiation Tolerance than CMOS • Switching in Satellite Applications • High Off Isolation ( > 60 dB @ 1 MHz) • Less Signal Distortion than CMOS • Low Distortion Circuits • Bipolar Drivers • Higher Frequency Switching • High Frequency Switching Circuits DESCRIPTION The DG139. DG142. and DG145 are precision dual double-pole double-throw analog switches designed for use in low distortion. high frequency circuits. ON resistance of the DG139 is < 30 n. the DG142 n and the DG145 is < 10 n an::! ON shunt leakage for all three is < 2 nA. With buth drivers in the ·switch OFF" state. total power consumption is < 750 Jl.W. By using the JFET process. all three analog switches are relatively radiation tolerant. < 80 The DG139. DG142 and DG145 each contain four junction-type field-effect transistors (JFETs) designed to function as two double-pole double-throw electronic switches. Level-shifting drivers enable low-level inputs (2 V" to 3 V) to control the ON-OFF state of the switches. The driver inputs are connected differentially. therefore with input IN2 connected to a 2.5 voltage reference, a positive logic "0" at the input IN1 will turn switches 1 and 3 OFF and switches 2 and 4 ON. A positive logic" 1" at IN1 will turn switches 1 and 3 ON and switches 2 and 4 OFF. The normally grounded VR terminal may be used as an "inhibit" terminal. in which case all switches may be held OFF with a positive voltage applied to YR. In the ON state each switch conducts equally well in either direction. and in the OFF state each switch will block voltages up to 20 V peak-to-peak. Packaging for this series includes the 14-pin side braze and flatpack options. Performance grades include both a military. A suffix (-55 to 125°C) and industrial. B suffix (-25 to 85°C) temperature range. The f1atpack option is only available in the military grade. PIN CONFIGURATION Flat Package Dual-In-Llne Package 02~~14 v-v+ 84 2 13 04 NO 03 3 12 4 5 6 10 83 01 2 IN2 8 11 9 V R (Inhibit) IN1 81 Top View Order Numbers: DG139ALl883, DG142ALl883 DG145ALl883 5-30 Order Numbers: DG139AP, DG139BP DG142AP. DG142BP Not Recommended for New Designs DG139/1421145 . . . . Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM S2 o---------~~ ~~D4 S40 Truth Table I IN:! 0 IN1 Two DPDT Switches per Package* D2 ~ ____ --1 O------iV- ----, I S1 0~-------_4~ D1 I S3 o---------<~ Logic SW1 SW3 SW2 SW4 0 1 OFF ON ON OFF * Switches Shown for Logic "1" Input at IN1 and a 2.5 V reference at IN2 D3 ABSOLUTE MAXIMUM RATINGS V+ to V-, Vo orVs ........................... 36 V Current, (Any Terminal) ...................... 30 mA VoorVstoV- ................................ 36V Storage Temperature .................... -65 to 150°C Vo toYs ..................................... ±22 V Operating Temperature (A Suffix) ......... -55 to 125°C (8 Suffix) .......... -25 to 85°C V+ toV R •••••••.••••.•••••.••••••••••••••••••• V+ to VIN1 or V IN2 25 V ............................ 25 V V R to V- ...................................... 25 V V IN1 toVIN2 V IN1 orV IN2 toVR Power Dissipation * Flat Package* * ............................. 750 mW 14-Pin DIP* * * .............................. 825 mW ±6 V ............................. ±6 V V IN1 or V IN2 to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 V All leads welded or soldered to PC board. ** Derate 10 mW/oC above 75°C. *** Derate 11 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL DG139 Test Conditions LIMITS Unless Otherwise Specified: 1=25°C A B 2=125,B5°C V+ = 12 V SUFFIX SUFFIX V-=-1BV 3=-5S,-2SoC -55 to 125°C -25 to BSoC VR = 0 VIN2 = 2.5 V TEMP TYpd MINb MAX' MINb MAXt UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Source OFF Leakage Current c 1,2,3 VANALOG rOS(ON) IS(OFF) Is= -10 V IN1 = 3 (SW1, 3 V IN1 = 2 (SW2, 4 mA V ON) V ON) V IN1 =2V (SW1, 3 OFF) V IN1 = 3 V (SW2, 4 OFF) -10 Vo= 10 V 1,3 2 20 Vo= 8 V 1,3 2 35 Vs= 10 V Vo= -10 V 1 2 0.15 Vs= 8 V Vo= -8 V 1 2 0.75 10 -B B V 30 60 .0. Not Recommended for New Designs 50 75 1 100 nA 5 100 5-31 DG139/1421145 Siliconix incorporated DG139 ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B V+ = 12 V 2=125,85°C SUFFIX SUFFIX V- = -18 V 3=-55,-25°C -55 to 125°C -25 to 85°C VR = 0 V IN2 = 2.5 V TEMP TYpd MINb MAX' MINb MAXb UNIT SWITCH (Cont'd) Drain OFF Leakage Current 10(OFF) VIN1 = (SW1, V IN1 = (SW2, 2 3 3 4 V OFF) V OFF) Vo= 10 V Vs= -10 V 1 2 0.03 Vo= 8 V Vs= -8 V 1 2 0.15 VIN1 = (SW1, V IN1 = (SW2, 3 3 2 4 V ON) V ON) Vo=Vs= -10 V 1 2 -O.OS Vo=Vs= -8 V 1 2 -0.12 1 100 5 100 nA Channel ON Leakage Current 10(ON) + IS(ON) -2 -100 -5 -100 INPUT 1 Current Input oltage LOW IIN1L VIN1 = 2 V 1,3 2 0.001 0.1 2 4 4 Input 2 Current Input 2 Voltage LOW IIN2L V IN2 = 2 V, VIN1 = 2.5 V 1,3 2 0.001 0.1 2 4 4 Input 1 Current Input 1 Voltage HIGH IIN1H VIN1 = 3 V 1,2 3 20 60 120 100 1S0 IIN2H VIN2 = 3 V, V IN1 = 2.5 V 1,2 3 20 60 120 100 150 1 0.8 1 1 1.6 2 In~ut 1 .I1A In~ut 2 2 Current Input oltage HIGH DYNAMIC Turn-ON Time tON See Switching Time Test CircuitS Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance CS(OFF) Channel-ON Capacitance CO(ON) + CS(ON) OFF Isolation OIRR f = 1 MHz .I1s Vo = 0 V Is = 0 1 2.4 Vs= 0 V 10 = 0 1 2.4 Vo=Vs=OV 1 2.8 1 >60 1 2.6 1 -1.3 -2 -2.2 1 -1.4 -2.2 -2.4 R L = 7S.o., f = 1 MHz pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 5-32 One Channel ON V IN1 = 2 V or V IN1 = 3 V 4.2 4.S mA Not Recommended for New Designs DG139/1421145 .",. Siliconix incorporated ~ DG139 ELECTRICAL CHARACTERISTICS q PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B 2=125,85°C SUFFIX V+ = 12 V SUFFIX V- = -18 V 3=-55,-25°C -55 to 125°C -25 to 85°C VR = 0 V IN2 = 2.5 V TEMP TYpd MINb MAX' MINb MAXt UNIT SUPPLY (Cont'd) Positive Supply Current 1+ Negative Supply Current 1- Reference Supply Current IR All Channels OFF V IN1 =VIN2 = 0.8 V 1 0.75 25 25 1 -1 -25 -25 1 -0.2 -25 -25 )J.A ELECTRICAL CHARACTERISTICS a DG142 Test Conditions Unless Otherwise Specified: PARAMETER V+ = 12 V V- = -18 V VR = 0 V IN2 = 2.5 V SYMBOL LIMITS 1=25°C A B 2=125,85°C SUFFIX SUFFIX 3=-55, -25 ° C -55 to 125°C -25 to 85°C TEMP TYpd MINb MAX' MINb MAXt UNIT III SWITCH Analog Signal Range c Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) IS(OFF) Drain OFF Leakage Current IO(OFF) Channel ON Leakage Current IO(ON) + IS(ON) Is=-10mA VIN1 = 3 V (SW1, 3 ON) VIN1 = 2 V (SW2, 4 ON) -10 Vo=10V 1,3 2 30 Vo= 8 V 1,3 2 35 10 -8 8 V 80 150 .0. V IN1 = (SW1, V IN1 = (SW2, 2 3 3 4 V OFF) V OFF) Vs= 10 V Vo= -10 V 1 2 0.01 Vs= 8 V VO= -8 V 1 2 0.05 VIN1 = (SW1, VIN1 = (SW2, 2 3 3 4 V OFF) V OFF) Vo= 10 V Vs= -10 V 1 2 0.005 Vo= 6 V Vs= -8 V 1 2 0.025 VIN1 = (SW1, V IN1 = (SW2, 3 3 2 4 V ON) V ON) Vo=Vs= -10 V 1 2 -0.02 VD=VS= -8 V 1 2 -0.05 100 150 1 100 5 100 1 100 nA Not Recommended for New Designs 5 100 -2 100 -5 -100 5-33 DG139/1421145 ..... Siliconix incorporated ~ DG142 ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V IN2 = 2.5 V LIMITS 1=25°C A B 2=125,85°C SUFFIX SUFFIX 3=-55, -25 ° C -55 to 125°C -25 to 85°C EMP Typd MINb MAX' MINb MAX UNIT INPUT Input 1 Current Input 1 Voltage LOW In~ut 2 2 Current Input oltage LOW IIN1L IIN2L V IN1 =2 V 1,3 2 0.0005 0.1 2 4 4 1,3 2 0.001 0.1 2 4 4 1,2 3 25 60 120 100 150 1,2 3 25 60 120 100 150 1 0.5 0.8 1 1 1.1 1.6 2.0 Vo = 0 V Is =0 1 2.4 Vs= 0 V 10 = 0 1 2.4 1 2.8 1 >60 1 2.6 1 -1.3 -2 -2.2 -2.2 -2.4 V IN2 = 2 V, V IN1 = 2.5 V Jl.A In~ut 1 Current Input oltage HIGH IIN1H Input 2 Current Input 2 Voltage HIGH IIN2H 1 VIN1 =3 V V IN2 = 3 V, V IN1 = 2.5 V DYNAMIC Turn-ON Time tON See Switching Time Test Clrculte Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance CS(OFF) Channel-ON Capacitance COlON) + CS(ON) OFF Isolation OIRR f = 1 MHz VD=VS=OV R L = 75!l., f = 1 MHz Jl.s pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1.4 Positive Supply Current 1+ 1 0.75 Negative Supply Current 1- 1 -1 -25 -25 Reference Supply Current IR 1 -0.2 -25 -25 5-34 One Channel ON V IN1 = 2 V, V IN1 = 3 V All Channels OFF V IN1 = V IN2 = 0.8 V 4.2 4.5 25 mA 25 Jl.A Not Recommended for New Designs DG139/1421145 Siliconix incorporated DG145 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V IN2 = 2.5 V SYMBOL PARAMETER LIMITS 1=25°C A 2=125,85°C SUFFIX 3--55, -25 ° C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT SWITCH Analog Signal Range c Drain-Souroe ON Resistance 1,2,3 VANALOG rOS(ON) Source OFF Leakage Current IS(OFF) Drain OFF Leakage Current 10(OFF) Channel ON Leakage Current 10(ON) + IS(ON) Is=-10mA V IN1 = 3 V (SW1, 3 ON) VIN1 = 2 V (SW2, 4 ON) VO= 10 V 1,3 2 Vo= 8 V 1,3 2 VIN1 = (SW1, V IN1 = (SW2, 2 3 3 4 V OFF) V OFF) Vs=10V Vo= -10 V 1 2 Vs= 8 V Vo= -8 V 1 2 V IN1 = (SW1, V IN1 = (SW2, 2 3 3 4 V OFF) V OFF) Vo= 10 V Vs= -10 V 1 2 Vo= 8 V Vs= -8 V 1 2 V IN1 = (SW1, VIN1 = (SW2, 3 3 2 4 V ON) V ON) Vo=Vs= -10 V 1 2 V o =V s =-8V 1 2 -10 7 10 -8 8 10 20 V .n 15 25 0.1 10 1000 15 300 0.1 10 1000 nA 15 300 -0.04 -2 100 -5 -100 INPUT InIVut 1 Current Input 1 oltage LOW IIN1L V IN1 = 2 V 1,3 ,nIVut 2 Current Input 2 oltage LOW IIN2L V IN2 = 2 V, V IN1 = 2.5 V 1,3 ,nIVut 1 Current Input 1 oltage HIGH IIN1H VIN1 = 3 V Input 2 Current Input 2 Voltage HIGH IIN2H V IN2 = 3 V, V IN1 = 2.5 V 0.001 2 4 4 0.001 0.1 2 4 4 1,2 3 20 60 120 100 150 1,2 3 20 60 120 100 150 1 0.5 1 1.5 1 1.2 2.5 2.5 Vo = 0 V Is = 0 1 3 Vs= 0 V 10 = 0 1 3 Vo=Vs=O 1 2.8 2 2 0.1 .uA DYNAMIC Turn-ON Time tON See Switching Time Test Circult e Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance CS(OFF) Channel-ON Capacitance COlON) + CS(ON) f = 1 MHz Not Recommended for New Designs .us pF 5-35 DG139/1421145 H Siliconix incorporated ELECTRICAL CHARACTERISTICS a DG145 Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 12 V V- = -16 V VR = 0 VIN2 = 2.5 V OIRR RL = 75.n., f = 1 MHz LIMITS 1=2SoC A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAX' MINb MAXt UNIT DYNAMIC (Cont'd) OFF Isolation 1 >50 dB 1 2.6 1 -1.2 -2 -2.2 -2.2 -2.4 SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1.4 Positive Supply Current 1+ 1 0.75 Negative Supply Current 1- 1 -1 -25 -25 Reference Supply Current IR 1 -0.2 -25 -25 One Channel ON VIN1 = 2 V, VIN1 = 3 V All Channels OFF VIN1 = V IN2 = 0.8 V 4.2 4.5 25 mA 25 jJ.A NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN must be a step function with a minimum rise and fall time of 1 V/jJ.s. SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. t,< 10 ns tf < 10 ns LOGIC INPUT ~~V~U~ VS Switch Input Switch Output S2 ~~---------<~-·-t~~~~~Vo OV SWITCH INPUT 12 V V+ ---+-------+----:---- -o.P ton +Vs toff -Vs Logic Input Sl 0 V------+----' -16 V (LOGIC "1" = SWITCH ON) 5-36 (Repeat Test for S3 & (DG139) ~ ) Vs = ±10 V A Suffix Vs = ± B V B Suffix Not Recommended for New Designs DG139/1421145 ..... Siliconix incorporated ~ APPLICATION HINTS Reference Voltage VIN1 Input 1 Voltage VINHIVINL VIN2 Input 2 Voltage (V) (V) (V) (V) (V) -18 -15 -15 0 0 0 3/2 3/2 3/2 2.5 2.5 2.5 -10 to 10 -5 to 13 -5 to 3 V+ V- Positive Supply Voltage Negative Supply Voltage (V) 12 15 5 VR Not Recommended for New Designs Vs or Vo Analog Voltage Range 5-37 W1P'" Siliconix DG143/144/146 SPOT JFET Analog Swiches ~ FEATURES BENEFITS APPLICATIONS • Low Standby Power « 1 Jl.W) • Minimizes Standby Power Requirement • Portable and Battery Powered Systems • Better Radiation Tolerance • Switching in Satellite Applications • Bipolar Drivers • Constant rDS(ON) Over Signal Range • High Off Isolation (> 60 dB @ 1 MHz) • Less Signal Distortion incorporated • Low Distortion Circuits • Higher Frequency Switching • High Frequency Switching Circuits DESCRIPTION The DG143, DG144, and DG146 are precIsion single-pole double-throw analog switches designed for use in low distortion, high frequency circuits. ON resistance of the DG143 is < 80 .n, the DG144 < 30 .n and the DG146 is < 10 .n and ON shunt leakage for all three is < 2 nA. With the driver in the "switch OFF" state, total power consumption is < 750 Jl.W. By using the JFET process, all three analog switches are relatively radiation tolerant. The DG143, DG144 and DG146 each contain two (JFETs) junction-type field-effect transistors designed to function as single-pole double-throw electronic switches. Level-shifting drivers enable low-level inputs (2 to 3 V) to control the ON-OFF state of the switches. The driver inputs are connected differentially, therefore with input IN2 connected to a 2.5 voltage reference, a positive logic "0" at the input IN 1 will turn switch 1 OFF and switch 2 ON. A positive logic "1" at IN 1 will turn switch 1 ON and switch 2 OFF. The normally grounded VR terminal may be used as an "inhibit" terminal, in which case all switches may be held OFF with a positive voltage applied to VR. In the ON state each switch conducts equally well in either direction, and in the OFF state each switch will block voltages up to 20 V peak-to-peak. Packaging for this series include a 14-pin side braze and flatpack options. Performance grades include both a military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature range. The flatpack option is only available in the military grade. PIN CONFIGURATION Flat Package FUNCTIONAL BLOCK DIAGRAM 82 Dual-In-Une Package :02~JM14 : = ~ NO NO NO 01 4 5 6 7 11 10 9 8 v+ VR INHIBIT IN1 81 VR INHIBIT NO IN1 51 Top View One 5POT 8wltch per Package' Top View Order Numbers: DG143AL/883, DG144AL/883 or DG146ALl883 Order Numbers: DG143AP. DG143BP DG144AP. DG144BP DG146AP. DG146BP Truth Table LOGIC 0 1 SWl OFF ON SW2 ON OFF ·Swltches Shown for Logic "1" Input at INI. and 2.5 V Reference at IN2- 5-38 Not Recommended for New Designs DG143/144/146 . , . Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS V+ to V-, Vo orVs Current, (Any Terminal) ........................... 36 V Vo orVs to V- .................•.............. 36 V Storage Temperature .................... -65 to 150°C VotoVs ..................................... ±22 V Operating Temperature (A Suffix) ......... -55 to 125°C (9 Suffix) .......... -25 to 85°C V+ to VR ...................................... 25 V V+ to VIN1 orVIN2 ...................... 30 mA ............................ 25 V Power Dissipation" Flat Package"" ............................. 750 mW 14-Pln DIP""" .............................. 825 mW VR to V- ...................................... 25 V ±6 V All leads welded or soldered to PC board. Derate 10 mW/oC above 75°C. """ Derate 11 mW/OC above 75°C. V IN1 or VIN2 to V R ............................. ±6 V VIN1 or V IN2 to V- . . . . . . . . . . . . . . . . . . . . . . • . . . . .. 30 V ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER DG143 LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B 2=125,85°C V+ = 12 V SUFFIX SUFFIX V- = -18 V 3=-55,-25°C -55 to 125°C -25 to 85°C VR = 0 V V IN2 = 2.5 V EMP TVpd MINb MA>f MINb MAXb UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Source OFF Leakage Current C 1,2,3 VANALOG rOS(ON) Is=-10mA V IN1 =3V (SW10N) V IN1 = 2 V (SW2 ON) -10 Vo= 10 V 1,3 2 30 Vo= 8 V 1,3 2 35 Vs= 10 V Vo= -10 V 1 2 0.15 Vs= 8 V Vo= -8 V 1 2 0.75 Vo= 10 V Vs= -10 V 1 2 0.03 Vo= 8 V Vs= -8 V 1 2 0.15 Vo=Vs= -10 V 1 2 -0.05 1 -0.12 10 -8 8 V 80 150 .0. 100 150 1 100 IS(OFF) V IN1 = 2 V (SWl OFF) VIN1=3V (SW2 OFF) Drain OFF Leakage Current I o (OFF) Channel ON Leakage Current IO(ON) + IS(ON) V IN1 = 3 V (SW10N) V IN1 = 2 V (SW2 ON) V o =Vs=-8V 5 100 1 100 nA 5 100 -2 -100 -5 -100 2 INPUT In~ut 1 Current Input oltage LOW IIN1L V IN1 =2V Input 2 Current Input 2 Voltage LOW IIN2L VIN2 = 2 V, VIN1 = 2.5 V 1 1,3 2 0.001 0.1 2 4 4 1,3 0.001 0.1 2 4 4 JJ.A Not Recommended for New Designs 2 5-39 W'F' Siliconix DG143/144/146 ~ incorporated DG143 ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V VIN2 = 2.5 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAX' MINb MAXt UNIT INPUT (Cont'd) In~ut 1 1 Current Input oltage HIGH 1,2 3 25 35 60 120 100 150 1,2 3 25 35 60 120 100 150 1 0.5 0.8 1 1 1.1 1.6 2 Vo = 0 V Is = 0 1 2.4 Vs= 0 V 10 = 0 1 2.4 1 2.8 1 >60 1 2.6 1 -1.3 -2 -2.2 -2.2 -2.4 VIN1 =3V IIN1H JJ.A In~ut 2 2 Current. Input oltage HIGH IIN2H V IN2 =3 V, V IN1 = 2.5 V DYNAMIC Turn-ON Time tON See Switching Time Test CircuitS Turn-OFF Time tOFF Drain-OFF Capacitance CO(OFF) Source-OFF CapaCitance CS(OFF) Channel-ON Capacitance CO(ON) + CS(ON) f = 1 MHz Vo=Vs=OV R L = 75.{1, f = 1 MHz OFF Isolation JJ.s pF dB SUPPL.Y Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1.4 Positive Supply Current 1+ 1 0.75 Negative Supply Current 1- 1 -1 -25 -25 Reference Supply Current IR 1 0.5 -25 -25 5-40 One Channel ON V IN1 = 2 V or VIN1 = 3V All Channels OFF VIN1 =VIN2 = 0.8 V 4.2 4.5 25 mA 25 JJ.A Not Recommended for New Designs DG143/144/146 WY' Siliconix ~ incorporated DG144 ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B 2=125,85°C V+ = 12 V SUFFIX SUFFIX V- = -18 V 3=-55,-25°C -55 to 125°C -25 to 85°C VR = 0 V V 1N2 = 2.5 V TEMP TYpd MINb MAX' MINb MAX UNIT SWITCH Analog Signal Range c Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) I s =-10mA VINl = 3 V (SW10N) V 1N1 = 2 V (SW2 ON) Channel ON Leakage Current Vo=10V 1,3 2 20 Vo= 8 V 1,3 2 35 Vs=10V Vo= -10 V 1 2 0.15 Vs= 8 V Vo= -8 V 1 2 0.75 VO= 10 V Vs= -10 V 1 2 0.03 Vo= 8 V Vs= -8 V 1 2 0.15 Vo=Vs= -10 V 1 2 -0.05 Vo=V s =-8V 1 2 -0.12 10 -8 8 30 60 V .0. 50 75 1 100 IS(OFF) V 1N1 =2V (SW10FF) V 1N1 = 3 V (SW2 OFF) Drain OFF Leakage Current -10 5 100 1 100 nA IO(OFF) IO(ON) + IS(ON) V 1N1 = 3 V (SW10N) V 1N1 = 2 V (SW2 ON) 5 100 -2 -100 -5 -100 INPUT Input 1 Current Input 1 Voltage LOW In~ut 2 2 Current Input oltage LOW IIN1L V 1N1 = 2 V 1,3 2 0.001 0.1 2 4 4 IIN2L V 1N2 = 2 V, V 1N1 = 2.5 V 1,3 2 0.001 0.1 2 4 4 20 60 120 100 150 J,lA In~ut 1 1 Current Input oltage HIGH In~ut 2 2 Current Input oltage HIGH IIN1H V 1N1 = 3 V 1,2 3 IIN2H VIN2 = 3 V, V 1Nl = 2.5 V 1,2 3 20 60 120 100 150 1 0.5 0.8 1 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit" Turn-OFF Time tOFF Not Recommended for New Designs J,ls 1 1.0 1.6 2 5-41 DG143/144/146 . . . . Siliconix incorporated ~ DG144 ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V V IN2 = 2.5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT DYNAMIC (Cont'd) Drain-OFF Capacitance CO(OFF) Source-OFF Capacitance CS(OFF) Channel-ON Capacitance CO(ON) + CS(ON) f = 1 MHz Vo= 0 V Is = 0 1 2.4 Vs= 0 V 10 = 0 1 2.4 Vo = Vs = 0 V 1 2.8 1 >60 1 2.6 1 -1.3 -2 -2.2 -2.2 -2.4 RL = 75.0., f = 1 MHz OFF Isolation pF dB SUPPLY 4.2 4.5 Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current IR 1 -1.4 Positive Supply Current 1+ 1 0.75 Negative Supply Current 1- 1 -1 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 One Channel ON VIN1 = 2 V or VIN1 = 3V All Channels OFF VIN1 =VIN2 = 0.8 V 25 mA 25 .I1A ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL DG146 LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B 2=125,85°C V+ = 12 V SUFFIX SUFFIX V- = -18 V 3=-55, -25 ° C -55 to 125°C -25 to 85°C VR = 0 V VIN2 = 2.5 V TEMP TYpd MINb MAX' MINb MAXb UNIT SWITCH Analog Signal Range Drain-Source ON Resistance 5-42 c 1,2,3 VANALOG rOS(ON) Is=-10mA V IN1 = 3 V (SW10N) V IN1 = 2 V (SW2 ON) Vo= 10 V 1,3 2 VO= B V 1,3 2 -10 7 10 -8 8 V 10 20 .0. 15 25 Not Recommended for New Designs DG143/144/146 . . , . Siliconix incorporated ~ DG146 ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 12 V V-=-18V VR = a V V 1N2 = 2.5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd B SUFFIX -25 to 85°C MINb MAX' MINb MAXb UNIT SWITCH (Cont'd) Source OFF Leakage Current Vs= 10 V Vo= -10 V 1 2 Vs= 8 V Vo= -8 V 1 2 Vo= 10 V V s =-10V 1 2 Vo= 8 V Vs= -8 V 1 2 Vo=Vs= -10 V 1 2 Vo=Vs= -8 V 1 2 0.1 10 1000 ISIOFF) V 1N1 = 2 V (SW10FF) V 1N1 = 3 V (SW2 OFF) Drain OFF Leakage Current 10IOFF) Channel ON Leakage Current 1010N) + ISION) V 1N1 = 3 V (SW10N) V 1N1 = 2 V (SW2 ON) 15 300 0.1 10 1000 nA 15 300 -0.04 -2 -100 -5 -100 INPUT Input 1 Current Input 1 Voltage LOW IIN1L V 1N1 = 2 V 1,3 2 0.001 0.1 2 4 4 Input 2 Current Input 2 Voltage LOW IIN2L V 1N2 = 2 V, V 1N1 = 2.5 V 1,3 2 0.001 0.1 2 4 4 1,2 3 20 60 120 100 150 1,2 3 20 60 120 100 150 1 0.5 1 1.5 1 1.2 2.5 2.5 Vo = 0 V Is = 0 1 3 Vs= 0 V 10 = 0 1 3 Vo=Vs=OV 1 2.8 f = 1 MHz 1 >50 J1A Input 1 Current Input 1 Voltage HIGH IIN1H V 1N1 = 3 V Input 2 Current Input 2 Voltage HIGH IIN2H V 1N2 = 3 V, V 1N1 = 2.5 V DYNAMIC Turn-ON Time tON See Switching Time Test Circuit" Turn-OFF Time tOFF Drain-OFF Capacitance COIOFF) Source-OFF Capacitance C SIOFF) Channel-ON Capacitance COlON) + CS(ON) OFF Isolation f = 1 MHz R L = 75.n" Not Recommended for New Designs J1S pF dB 5-43 DG143/144/146 ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER DG146 Test Conditions Unless Otherwise Specified: V+ = 12 V V- = -18 V VR = 0 V V IN2 = 2.5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAXt UNIT MINb MAX' SUPPLY Positive Supply Current 1+ Negative Supply Current l- Reference Supply Current 4.2 4.5 1 2.6 1 -1.2 -2 -2.2 IR 1 -1.4 -2.2 -2.4 Positive Supply Current 1+ 1 0.75 Negative Supply Current 1- 1 -1 -25 -25 Reference Supply Current IR 1 -0.5 -25 -25 One Channel ON V IN1 = 2 V or V IN1 = 3V All Channels OFF VIN1 = V IN2 = 0.8 V 25 mA 25 J.lA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN must be a step function with a minimum rise and fall time of 1 V/)J,s. SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. 2.5 V tr tf LOGIC 3.0 VINPUT 0 V 2.5 V S'f~~~~ Vs __ 12 V < 10 ns < 10 ns 2.5 V __ S'f~~~~ ~___~====~ ~== SWITCH OUTPUT 0 V _ - j - - J t OFF: - V s tON: + V s Jrt+~~~ S 02+-----o--;-:o~t- D S1 S2 S3 S4 I I I I IN 1 IN2 Logic "0" < 0.8 V Logic "1" ~ 2.0 V __ J IN3 'Switches Shown for Logic "1" Input IN4 VOne 4-Channel Switch per Package' ABSOLUTE MAXIMUM RATINGS Storage Temperature (A & 8 Suffix) ....... -65 to 150°C (C Suffix) .......... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (8 Suffix) .......... -25 to 85°C (C Suffix) ............ a to 70°C Power Dissipation (Package)' Flat Package" ............................. 750 mW 14-Pin Ceramic DIP'" ....................... 825 mW 14-Pln Plastic DiP' .. ' ....................... 470 mW V+ to V- ..................................... 36 V V+ to V D ...................................... 25 V V+toVs ······································25V Vs to V- ...................................... 36 V V D to V- ...................................... 36 V VStoVD ...................................... 25V V L to V- ...................................... 30 V V L toV IN V L toVR V IN toVR ..................................... ±6 V ••••••••••••.••••••.•••.•••.••.••••••• ±6 V .••••••••.•..••.••.••••.•..••..••.... ±6 V All leads welded or soldered to PC board. Derate 10 mW/oC above 75°C. Derate 11 mW/oC above 75°C. .. " Derate 6.3 mW/oC above 75°C. Current (Any Terminal) ........................ 20 mA ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 10 V V- = -20 V VR = a V VL = 5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAX MINb -10 -10 MINb MAX' C SUFFIX a to 70°C MAX~ UNIT SWITCH Analog Signal Range c VANALOG V D = 10 V Drain-Source ON Resistance rDS(ON) -10 1,2,3 Is=-1 mA VD= V IN = 0.8 V aV VD= -10 V 10 10 10 1,3 2 100 150 250 150 250 200 1,3 2 130 200 350 225 300 300 1,3 2 300 450 600 500 600 600 Not Recommended for New Designs V .n 5-47 .. ~ ~ DG172 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 10 V V- = -20 V VR = 0 V VL = 5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd B SUFFIX -25 to 85°C C SUFFIX o to 70°C MINb MAX' MINb MAXi MINb MAXt UNIT -1 -1000 -5 -100 -10 -4 -10 -300 -10 SWITCH (Cant'd) Souroe OFF Leakage Current IS(OFF) Vs = -10 V, Vo = 10 V V IN=2V 1 2 -0.03 Drain OFF Leakage Current I o (OFF) Vo = -10 V, Vs= 10 V VIN = 2 V 1 2 -0.12 Channel ON Leakage Current IO(ON) + IS(ON) Vo=Vs=10V VIN = 0.8 V 1 2 4 4000 10 300 10 Input Current with Input Voltage HIGH IINH VIN=5V 1,3 2 0.1 10 1 10 1 Input Current with Input Voltage LOW IINL VIN = 0 V 1,3 2 -4000 nA INPUT -1 -1 -0.5 -0.5 -1 .lJ.A mA DYNAMIC Turn-ON Time tON 1 0.3 0.5 1 0.75 1.0 See Switohlng Time Test Circuit Turn-OFF Time tOFF .lJ.s Source OFF c Capacitance CS(OFF) Vs=OV,lo=O f = 1 MHz 1 5 Drain OFF c Capacitance CO(OFF) Vo = 0 V, Is = 0 f = 1 MHz 1 18 1 28 1 >50 1 1.3 1 -2.0 1 2.5 5.7 5.7 5.7 One Channel ON VIN=OV IR = 0 1 0.8 2.1 2.1 2.1 One Channel ON VIN=OV 1 -1.5 ChannelON c Capacitance CO(ON) + Vo=VS=OV,VIN=OV f = 140 kHz CS(ON) RL = 100 .n, C L = 3 pF f = 5 MHz Off Isolation c pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current l- Logic Supply Current IL Reference Supply Current 5-48 IR One Channel ON VIN=OV 3 3 -5.1 -3.6 -5.1 -3.6 3 -5.1 mA -3.6 Not Recommended for New Designs DG172 ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 10 V V- = -20 V VR = 0 V VL = 5 V SYMBOL LIMITS 1=25·C A B 2=125,85·C SUFFIX SUFFIX 3=-55,-25·C -55 to 125°C -25 to 85°C C SUFFIX o to 70°C TEMP TYpd MINb MA>f MINb MAXt MINb MAX UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Logic Supply Current 'L 1 0.1 10 10 10 1 -0.01 1 2.0 4.5 4.5 4.5 mA All Channels OFF V,N = 5 V IR = 0 1 0.1 10 10 10 .I1A All Channels OFF V,N =5V 1 2.0 JlA Reference Supply Current IR All Channels OFF V,N=5V -20 -4.5 -20 -20 -4.5 -4.5 mA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. .. DIE TOPOGRAPHY 1 r L..::":~:::~==:!!::.J [CID"C" Pad No. Function 1 2 3 5 6 7 8 9 10 11 12 13 14 Source 3 Source 4 Drain V- (Substrate) Input 4 Input 3 Input 2 Input 1 VL VR V+ Source 1 Source 2 20X CMDA 8 Resistors 8 P-channel enhancement MOSFETs 4 PNP Bipolar Transistors 4 NPN Bipolar Transistors 7 Diodes Not Recommended for New Designs 5-49 DG172 ...... Siliconix incorporated ~ SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. 5V 10 V SWITCH INPUT S1 LOGIC 5 V INPUT 0 V t,<10ns tf < 10 ns SWITCH OUTPUT V S ,,+10 V o-If----O"":" ""--+<).---t-~-oV OUT C lI 35 pF S'r~~5~ VS-I-~==:t~-SWITCH OUTPUT 0 V --I----J VOUT =Vs (1/4 CIRCUIT SHOWN) REPEAT FOR S 2 - S4 Rl Rl + r DS(ON) APPLICATION HINTS· V+ Positive Supply Voltage (V) VNegative Supply Voltage (V) VR Reference Pin Connection VL Logic Supply Voltage (V) 10·· 10·· -20 -20 GND OPEN 5 5 15 -15 GND 5 20 -10 GND 5 5 -15 GND 5 5 -25 GND 5 VIN Logic Input VOlt~e VINH inl VINL Max (V) 2.010.8 4.6/0.5 2.010.8 2.010.8 2.010.8 2.010.8 Vs Analog Signal Range (V) -10 to 10 -10 to 10 -5 to 15 o to 20 -5 to 5 -15 to 5 • Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing . •• Electrical Characteristics are based on V+ = +10 V, V- = -20 V only. 5-50 Not Recommended for New Designs DG180/181/182 High-Speed Driver with Dual SPST JFET Switches . . . Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Constant ON Resistance over Entire Analog Range • Low Distortion • Audio Switching • Eliminates Large Signal Errors • Video Switching • High Bandwidth Capability • 0/ A Ladder Switches Q Low Leakage • Low Crosstalk • Sample/Hold DESCRIPTION The DG180-182 are precIsion dual single-pole, single-throw (SPST) analog switches designed to provide accurate switching of video and audio signals. This series, like the entire DG180 family, is ideally suited for applications requiring a constant ON resistance over the entire analog range. Each· device comprises four N-channel JFET tfMSistors and a bipolar driver (TTL compatible) to !!I(;hieve fast and aoqurate switch performance. In the ON state, each switoh conducts current equally welf in either direction. In· the ·OFF condition, the switches will block up ·to 20 V peak-to-peak, with feedthrough less than -60 dB at 10 MHz. The major design difference fs the ON resistance, being 10, 30, and 7S ,cHor the DC;; 1SO. D~H~1, Md DG182 respectively. Reduced switching errors are achieved through law· leakage current ( IS(OFF) < 1 nA for the DG181/1 92). Applications which benefit from flat ON resistance include audio switching, video switching, and sample and holds. Packaging options for the DG180-182 include a 14-pin side braze and 10-pin metal can options. The flatpack version is only available for the DG181. Performance grades include both a military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature ranges. The flatpack option is only available in the military grade. PIN CONFIGURATION Top View Dual-In-Llne Package 82 Top View Flat Package 81 01 82 02 NO NO NO IN 1 IN2 v+ v- VL VR Order Numbers: Side Braze: DG1BOAP or DG1BOBP DG1B1AP or DG1B1BP DG1B2AP or DG1B2BP 01 2 13 8 1 =3 C12 .14 NO 4 11 NO IN 1 5 10 v+ vL 6 7 9 8 Top View Order Number: DG1B1ALfB83 02 82 NO NO IN2 V-' vR vL Metal Can Package Order Numbers: DG1 BOAA or DG1 BOBA DG1B1AA or DG1B1BA DG1 B2AA or DG1 B2BA ·Common to Substrate and Case 5-51 OG180/181/182 .... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM a-'f"'----0 81 0 IN 1 o---Q-l>-J ~"'----o 02 82 0 IN2 Truth Table' 01 Logic ·0· < 0.8 V Logic ·1· ~ 2.0 V o---Q-l>-J 'Switches Shown for Logic ·1· Input Two SPST SWitches per Package ABSOLUTE MAXIMUM RATINGS Current (All Other Pins) .•.•..•••..•....•....•. 30 mA V+ to V- .••..•..•.•...•••...••.•.••.••....••. 36 V V+ toVo •.••••.•....••.•••.......•••...•...•• 33 V Vo to V- .•••..•••.•..•..•••.••....•••.......•• 33 V VotoV8 .•.•...••.•••..••..•..•.•••.....••.•• ±22V VL to V- .••••••••••••••••••..•••..•••.....•.•• 36 V VL toVIN ....•••..•....••....•..••••.••..••••.• 8 V VL toVR .....•.....•...••..•....•••....•..•.•.• 8 V VIN toVR ..•••.•••...•...••.......•••..••..•••. 8V VR to V- ..••....•.....•..••...•.•••.•••...•••. 27 V VRtoVIN ...................•......•..•....... 2V Current (S or D) DG180 ..•••••....••••...•.•• 200 mA Current (S or D) DG181 , DG182 ................ 30 mA Storage Temperature .•........••..••.... -65 to 150·C Operating Temperature (A Suffix) ..••.... -55 to 125·C (8 Suffix) •••.••... -25 to 85·C Power Dissipation' 10-Pln Metal Can" ..•...••...•....•......... 450 mW 14-Pln DIP'" .............................. 825 mW 14-Pln Flat Pack .. •• ...•....••..••.•..•...•. 900 mW All leads welded or soldered to PC board. Derate 6 mW/·C above 75·C. Derate 11 mW/·C above 75·C . •••• Derate 10 mW/·C above 75·C. SCHEMATIC DIAGRAM (Typical Channel) V+ S IN D R 5-52 DG180/181/182 trY' Siliconix ~ incorporated DG180 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1_25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd B SUFFIX -25 to 85°C MINb MAx" MIN' MAXi -7.5 -7.5 UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance 1,2,3 VANALOG rOS(ON) IS(OFF) VIN = 2.0 V 15 V .(1 1,3 2 7.5 10 20 15 25 1 2 0.05 V+=10V,V-=-20V 10 1000 15 300 Vs= 7.5 V Vo=-7.5V 1 2 0.05 10 1000 15 300 1 2 0.04 V+ = 10 V, V- = -20 V 10 1000 15 300 Vs= -7.5 V V o =7.5V 1 2 0.03 10 1000 15 300 Is = -10 mA, Vo= -7.5 V VIN = 0.8 V Vs= 10 V, VO= -10 V Source OFF Leakage Current 15 Vs= -10 V, Vo= 10 V Drain OFF Leakage Current 10(OFF) Channel ON Leakage Current 10(ON)+ IS(ON) Vo=Vs= -7.5 V VIN = 0.8 V 1 2 -0.1 loss 2 ms Pulse Duration 1 300 Input Current with Input Voltage HIGH IINH VIN=5V 1 2 <0.01 Input Current with Input Voltage LOW IINL VIN = 0 V 1,2,3 -30 1 240 300 350 1 140 250 300 Vs= -5 V, 10 = 0 1 21 Vo=-5V,ls=0 1 17 Vo=Vs= 0 V 1 17 1 >55 Saturation Drain Current nA -10 -200 -2 -200 mA INPUT 10 20 10 20 .l1A -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance OFF Isolation COlON) + CS(ON) f = 1 MHz f = 1 MHz, R L = 75.(1 ns pF dB 5-53 DG180/181/182 H Siliconix incorporated DG180 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1 0.6 1 -2.7 1.5 1.5 -5 -5 mA VIN = 0 V or 5 V Logic Supply Current IL 1 3 Reference Supply Current IR 1 -1 4.5 -2 4.5 -2 DG181 EL.ECTRICAL. CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25 ° C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MIN b MAX' MINb MAXt UNIT -7.5 -7.5 SWITCH Analog Signal Range C Drain-Source ON Resistance 1,2,3 VANALOG rOS(ON) IS(OFF) VIN = 2.0 v 15 V .0. 1,3 2 18 30 60 50 75 1 2 0.05 V+=10V,V-=-20V 1 100 5 100 Vs=7.5V Vo=-7.5V 1 2 0.07 1 100 5 100 1 2 0.5 V+ = 10 V, V- = -20 V 1 100 5 100 V s =-7.5V V o =7.5V 1 2 0.6 1 100 5 100 Is = -10 mA, Vo= -7.5 V VIN = 0.8 V Vs= 10 V, VO= -10 V Source OFF Leakage Current 15 Vs= -10 V, Vo= 10 V Drain OFF Leakage Current IO(OFF) Channel ON Leakage Current IO(ON)+ IS(ON) Vo=Vs= - 7.5 V VIN = 0.8 V 1 2 -0.02 Input Current with Input Voltage HIGH IINH VIN=5V 1 2 <0.01 Input Current with Input Voltage LOW IINL VIN=OV 1,2,3 -30 -2 -200 nA -10 -200 INPUT 10 20 10 20 J1A 5-54 -250 -250 DG180/181/182 tI'7' Siliconix ~ incorporated DG181 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,_25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT DYNAMIC Turn-ON Time 1 85 150 180 1 ~5 130 150 V S = -5 V, 10 = 0 1 9 Vo=-5V,l s =0 1 6 Vo=Vs=OV 1 14 1 >50 1 0.6 1 -2.7 tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance COlON) + CS(ON) f = 1 MHz f = 1 MHz, R L = 75!l. OFF Isolation ns pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1.5 -5 1.5 -5 rnA V IN =OVor5V Logic Supply Current IL 1 3.1 Reference Supply Current IR 1 -1 4.5 -2 4.5 -2 ELECTRICAL CHARACTERISTICS a DG182 Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP Typd B SUFFIX -25 to 85°C MINb MAX' MINb MAXb UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance rOS(ON) I s =-10mA, V o =-10V VIN = 0.8 V IS(OFF) VIN = 2.0 V 15 -10 15 V !l. 1,3 2 35 75 150 100 150 1 2 0.05 V+ = 10 V, V- = -20 V 1 100 5 100 Vs=10V Vo = -10 V 1 2 0.07 1 100 5 100 Vs= 10 V, VO= -10 V Source OFF Leakage Current -10 1,2,3 VANALOG nA 5-55 iii DG180/181/182 fI"fr Siliconix ~ incorporated DG182 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAX' MI~ MAXt UNIT SWITCH (Cont'd) Vs=-10V,Vo=10V Drain OFF Leakag~ Current Channel ON Leakage Current IO(OFF) VIN = 2.0 V V+ = 10 V, V- = -20 V Vs= -10 V Vo = 10 V IO(ON)+ IS(ON) V o =V s =-10V VIN = 0.6 V 1 2 0.4 1 100 5 100 1 2 0.5 1 100 5 100 1 2 -0.02 nA -10 -200 -2 -200 INPUT Input Current with Input Voltage HIGH IINH V IN =5V 1 2 <0.01 10 20 10 20 Input Current with Input Voltage LOW IINL VIN = 0 V 1,2,3 -30 1 120 250 300 1 100 130 150 V s =-5V,l o =0 1 9 Vo=-5V,l s =0 1 6 Vo=Vs=OV 1 14 1 >50 1 0.6 1 -2.7 .llA -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance COlON) + CS(ON) f = 1 MHz f = 1 MHz, RL = 75.(1 OFF Isolation ns pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1.5 -5 1.5 -5 VIN = 0 V or 5 V mA Logic Supply Current IL 1 3.1 Reference Supply Current IR 1 -1 4.5 -2 4.5 -2 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. 5-56 DG180/181/182 .-F' Siliconix ~ incorporated DIE TOPOGRAPHY Interchlp Pad Connections A No connection D E From JFET 2, Source From JFET 1, Source To JFET 1, Gate No Connection No Connection C To JFET 2, Gate -t D No Connection B F G H 44 mils E~=~:l Pad No, 20X 10 11 12 13 14 15 CMJB 6 7 8 2 Capacitors Resistors P-channel enhancement MOSFET N-channel depletion JFET 8 PNP Bipolar Transistors 4 NPN Bipolar Transistors 4 Diodes Function Input 2 V+ VL VR V- (Substrate) Input 1 TYPICAL CHARACTERSITICS Supply Current VS, Temperature liN 5 4 YiN and Temperature VS. 100 ~ , 80 --i""" t- ......... """- ~~ r-......... r-...,:-I- 2 liN Yi~L "i .......... ...... 60 .......:IINL (JlA) ......... 40 r-...... ............ -Il20 1+ o -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) -55 -35 -15 5 25 45 65 85 T - TEMPERATURE (OC) I" - -VA (MAX), 10mA - 230 1,,A 210 "., ./ 190 rOS(ON) (.0.) 10 ~ 110 0 2'5 50 75 T - TEMPEI;lATURE (OC) 100 125 tc;~ Vo = 7.5 V ':;; /Vo = -7.5'(- I-tON, 170 .A' I _ ~ ./ tOFF tOFF ../ ~~ (ns) 150 "., ~ Vo=-7.5V i-"' 130 -50 -25 105 125 10 n DG180 Switching Time VS, Vo and Temperature = \b IINH o 10 n DG180 rOS(on) vs, Temperature 100 d = H =5V - ,,- :::;.... I-"" T~ ~=/5VI 1 1 1 1 1 1 90 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 5-57 DG180/181/182 flY' Siliconix ~ incorporated TYPICAL CHARACTERSITICS (Cont'd) 30.n DG181 rOS(on) vs. Temperature 10.n DG180 Leakage VS. Temperature 1000 100 V+ - 10 V V- = -20 V ~ =5V R=O Vs - -VA (MAX). 10= 1 mA / 10 10 , Is (nA) IS OFF / rOS(ON) (.0.) 100 " VV ......r~ ,~", 0.1 IC(fFF) , - - 85 105 45 65 T - TEMPERATURE (OC) 25 125 10 ~ -55 ~ -15 25 65 T - TEMPERATURE (OC) 110 Vo=7.5V __ 100 -.A' 90 ..., ./ L' ~ ./ t:::I""'" 100 ./ 'Ie ~~5V ~N~ ~V~ 80 10 (nA) 10 i= B SUFFIX ~-- ~ tOFF I""'" ""-Vo ~ 7.5, V 50 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 1000 ~,. ASUFFIX'~ 0.1 25 75.n DG182 rOS(on) VB. Temperature 45 65 85 105 T - TEMPERATURE (OC) Vs = -10 V 10 = -10 mA 130 120 ./ ./ 100 B SUFFIX rOS(ON) 100 (.0. ) ,.. 10 -55 - A SUFFIX - I - -15 25 65 T - TEMPERATURE (OC) 125 75.n DG182 Switching Time VS. 'Ie and Temperature 110 5-58 105 TEST LIMITS :: V+ = 10 V, V- = -20 V • B SUFFIX - VL = 5 V,VR = 0 • A SUFFIX - Vc = -10 V, Vs = 10 V 120 60 A jUFilX 1000 130 70 10- 30.n DG181 IC(OFF) vs. Temperature 30.n DG181 Switching Time vs. Vo and Temperature tON, tOFF (ns) ....... .. 1010N) + ISION) ~ - B SUFFIX 70 60 105 Vo = 7~5 V .A" tON, 90 tOFF (ns) 80 -- i:;II"'" ./ ~ r;;;o""" -- -< ./ ././ • Vo = -7.5 V ~~ ~~V - :,.......r- tOFF I...t,; ~Vo=7.5V I I I I I I 50 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) ~ ~ DG180/181/182 Siliconix incorporated TYPICAL CHARACTERSITICS (Cont'd) 75.n DG182 10(OFF) VS. Temperature Capacitance vs. Vo orVs (10.0. FET) 30 1000 TEST LIMITS :: V+ = 10 V. V- =-20 V • B SUFFIX - VL = 5 V.VR = 0 eA SUFFIX - Vo =-10 V. Vs = 10 V 26 100 10 (nA) 10 f: B SUFFIX 22 ....... ~FF(_ - 18 t'-.. Cs.C o (pF) - A SUFFIX ~ 14 C~(OFi) 10 25 45 65 85 105 T - TEMPERATURE (OC) -8 125 I I 1 I ........ 8 ......... 6 80 CS(OFF) ......... 8 V+" 15 V V-" -15 V VR = 0 VL = 5 V RL = 75.0. VIN ?; 220 mV RMS ....... ISO. 60 (dB) ..... t--- 4 "OFF" Isolation vs. Frequency (10.0. FET) 100 VINL = 0.8 V V INH =2 V f = 1 MHz 16 '- Co (ON) + CS(ON) 14 o -4 Vo orVs - DRAIN or SOURCE VOLTAGE (V) Capacitance vs. Vo or Vs (30-75 .0. FET) 20 18 ~Co (ON) + CS(ON) ~ ". 0.1 Cs.Co 12 (pF) 10 VINL = 0.8 V VINH = 2 V f = 1 MHz I\.. r--.... i'o 40 ...... CO(OFF)- i' 20 4 CAPACITANCE IS MEASURED FkoMI _ TEST TERMINAL TO COMMON 2 o -10 -8 -6 -4 -2 0 2 4 6 8 10 o 10· 10. 107 Vo orVs - DRAIN or SOURCE VOLTAGE (V) f - FREQUENCY (Hz) "OFF" Isolation vs. Frequency (30-75 .0. FET) Typical delay. rise. fall. settling times. and switching transients In this circuit. 100 90 ....... 80 i' 70 60 ISO. (dB) 50 V+ = 15 V V- = -15 V VR = 0 VLOG'9 = +5 V RL = 5.0. VIN ?; 220 mV RMS 40 30 20 10 o 10· "f 10· I 1111111 10. " ..... I I 107 f - FREQUENCY (Hz) 10· If Rgen. RL. or C L Is Increased. there will be proportional Increases In rise and/or fall times. 5-59 DG180/181/182 .... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) OG181. OG182 OG180 6 VIN 4 (V) 2 6 - o I Vo (V) 4 2 o Vo (V) 2 0 2 J LOGIC INPUT Vo \ (V) .... 1"-0., Vgen 6 (V) /, I J 1\ ,.., " r Vo (V) Vgen V 1\ 4 2 o =5 V Vo (V) Vgen 1 Vgen = 10 V Vgen =5 V 2 0 I 11 \.. A II -2 =0 Vgen 2 =0 ~ r- ' 2 .A 0 \ Vo -2 V (V) -4 Vo (V) J -6 / -2 ...... V -4 J I~ Vgen -6 =-5 V 5 = Vgen -5 V ~ j j 5 ~ Vo 0 (V) -5 , \ / IV o Vo (V) ~ / -10 5-60 5 o = 10 V , 10 6 -2 o - LOGIC INPUT Vo 10 5 4 o o (V) V IN Vgen = -10 V 0.8 1.2 t - TIME (Us) 1.6 0.4 0 -5 / -10 Vgen o 0.4 """- - = -10 V 0.8 1.2 t - TIME (US) 1.6 DG180/181/182 .,.. Siliconix incorporated ~ SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC INPUT tON :VS =t3V I OFF: Vs = -3 V 3V t r < 10"9 If < 10 ns OV SWITCH INPUT Vs SWrrCH OUTPUT OV 15V swrrCH OUTPUT Vo (REPEAT TEST FOR IN2.~. 02) APPLICATION HINTS· Switch Family 10 .n and 30 n 75 .n V+ Positive Supply Voltage VNegative Supply Voltage VL Logic Supply Voltage VR Reference Supply Voltage VIN Logic Input Voltage VINHMinl VINLMax (V) (V) (V) (V) (V) (V) Vs Analog Voltage Range • 15"" -15 5 GND 2.0/0.8 -7.5 to 15 10 -20 5 GND 2.0/0.8 -12.5 to 10 12 -12 5 GND 2.0/0.8 -4.5 to 12 15"" -15 5 GND 2.0/0.8 -10 t015 10 -20 5 GND 2.0/0.8 -15 to 10 12 -12 5 GND 2.0/0.8 -7 to 12 Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing. "" Electrical Parameter Chart based on V+ = 15 V, V- = -15 V, VL = 5 V, VR = GND. 5-61 -DG183/184/185 High-Speed Driver with Dual DPST JFET Switches WF Siliconix ,.6;11 incorporated FEATURES BENEFITS APPLICATIONS • Constant ON Resistance over Entire Analog Range • Low Distortion • Audio Switching • Reduced Switching Errors • Precision Switching • Low Leakage • Improved Channel Isolation • Video Switching • Eliminates Inadvertent Shorting Between Channels • Sample/Hold 0/ A Ladder Switches • Low Crosstalk • Break-Before-Make Switching • Video Routing DESCRIPTION The DG183-185 are precision dual double-pole, achieve fast and accurate switch performance. The single-throw (DPST) analog switches designed to driver is designed to achieve Break-Before-Make /:~w'rtOhing action, eliminating inadvertent shorting provide accurate switching of audio and viqlil9 signals. This series is ideally suited for apJ;Slicaticms '; ·,'(arid.'·; the crosstalk betwee~ channels that may requiring a constant ON resistance over:~ en~rp\·;.. i..rlii~ul~;}n the ON s.t'i!t~ e~¢~'$WltCh conducts current analog range. Y::,;; -\.: '., ::':";i' ~quallx. wetl ~n eit~'dir~~iol1'~~ln the OFF condition .. :v..... :.... ::: ..... th~~:SWitch~~;wi~·.pr.«;lck ·i)tqq·~:~O V peak-to-peak, The major design difference is in ON":i,&Sistance, :\". wiitfleedthI'6Ugh.ress ..than,:::;eo'dB at 10 MHz. being 10, 30, and 75 n for the DG183, DG184:and ;:.;2t :.":,'.> '::';.;:::,.;.' DG185, respectively. .. '.:. '. ::;.:··i!.. '.: ;\ .. " ': :. ::": '. " .. ~.: . ::;': '.' '\:.1.'PacrQIging options for the DG183-185 include a Reducing switchin~0.~r.s ':~ a~!), a.~P9,mPIi~. ':~. i 16-pin side braze and flat pack. Performance {JVf'.{i:>r ihe" grades include both the military, A suffix (-55 to through low leakagea (nS(C:if.ll:;) 125°C) and industrial, B suffix (-25 to 85°C) DG184/185). APPlid~ifp,..~~Jvtir~/:'~·neM from flat ON resistance inclt.id~..,:,·~aydio switching, video temperature ranges. The flat pack option is only switching, and sample and holds. available in the military grade. \:< Each device consists of four N-channel JFET transistors and a bipolar driver (TIL compatible) to . The DG184 and DG185 are JAN qualified devices. PIN CONFIGURATION Dual-In-Llne Package Flat Package Top View Order Numbers: DG184AL/883. DG185AL/883 Top View Order Numbers: Side Braze: . DG183AP. DG183BP DG184AP.DG184BP DG185AP. DG185BP 5-62 ...r Siliconix incorporated DG183/184/185 ~ FUCTIONAL BLOCK DIAGRAM S1~01 S3~03 IN1 o--Q---C>_...J S2~02 S4~04 IN2 o--Q---C>_...J LogIc "0" $ 0.8 V LogIc "1" ::: 2.0 V "'Swltches Shown for Logic 111" Input Two OPST Switches per Package" ABSOLUTE MAXIMUM RATINGS V+ to V- ......•.............................. 36 V V+ toVo .••............••..........•......•.. 33 V Vo to V- ........•••...•.•..•..............•... 33 V Vo toYS ....•................................ ±22 V VL to V- ...................•....••.....•...... 36 V VL toVIN ...................................... 8 V VLtoVR ·······································8V VIN toVR ...............................•...... 8 V VR to V- ........•...•.....•.................. 27 V VR to V- ...............•...................... 27 V VR toVIN ............•............•.....•..•.. 2 V Current (S or D) DG183 ........••..•......•.. 200 mA Current (S or D) DG184, DG185 ............... 30 mA Current (All Other PIns) ....•..........•.•..•.. 30 mA Storage Temperature •..•................ -65 to 150°C OperatIng Temperature (A SuffIx) ........ -55 to 125°C (8 SuffIx) ......... -25 to 85°C Power DIssIpatIon16-Pln DIP-- ...•..........•.....•..•..••..•. 900 mW Flat Pack- - - .................•......•...... 900 mW All leads welded or soldered to PC board Derate 12 mW'oC above 75°C Derate 10 mW'oC above 75°C SCHEMATIC DIAGRAM (Typical Channel) S IN o 5-63 .. DG183/184/185 Siliconix incorporated DG183 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C B SUFFIX -26 to 85°C TEMP TYpd MINb MAX' MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance 1,2,3 VANALOG rDS(ON) Is(oFF) VIN = 0.8 V 15 -7.5 15 V .n 1,3 2 7.5 10 20 15 25 1 2 0.05 V+ = 10 V, V- = -20 V 10 1000 15 300 Vs= 7.5 V Vo = -7.5 V 1 2 0.05 10 1000 15 300 Vs= -10 V, Vo= 10 V 1 2 0.04 V+ = 10 V, V- = -20 V 10 1000 15 300 Vs= -7.5 V V o =7.5V 1 2 0.03 10 1000 15, 300 Is=-10mA, Vo=-7.5V VIN = 2.0 V Vs= 10 V, Vo= -10 V Source OFF Leakage Current -7.5 Drain OFF Leakage Current IO(OFF) Channel ON Leakage Current IO(ON)+ IS(ON) Vo=Vs= - 7.5 V VIN = 2.0 V 1 2 -0.1 loss 2 ms Pulse Duration 1 300 IINH VIN = 5 V 1 2 <0.01 IINL VIN=OV 1,2,3 -30 1 240 300 350 1 140 250 300 V s =-5V,l o =0 1 21 Vo=-5V,ls=0 1 17 Vo=Vs=O 1 17 1 >55 Saturation Drain Current -2 -200 nA -10 -200 mA INPUT Input Current with Input Voltage HIGH 10 20 10 20 JlA Input Current with Input Voltage LOW -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance CO(ON) + CS(ON) Off Isolation 5-64 f = 1 MHz f = 1 MHz, RL= 75.0. ns pF dB H DG183/184/185 Siliconix incorporated DG183 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT SUPPLY Positive Supply Current Negative Supply Current VIN (All) = 0 V 1 3 3 VIN (All) = 5 V 1 0.1 0.1 VIN (All) = 0 V 1 -5.5 -5.5 VIN (All) = 5 V 1 -4 -4 VIN (All) = 0 V 1 4.5 4.5 VIN (All) = 5 V 1 4.5 4.5 VIN (All) = 0 V 1 -2 -2 VIN (All) = 5 V 1 -2 -2 1+ 1- mA Logic Supply Current Reference Supply Current IL IR ELECTRICAL CHARACTERISTICS a DG184 Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd B SUFFiX -25 to 85°C MINb MAX' MINb MAXb UNIT -7.5 -7.5 SWITCH Analog Signal Range C Drain-Source ON Resistance 1,2,3 VANALOG rOS(ON) Is = -10 mA, Vo= -7.5 V VIN = 2.0 V IS(OFF) VIN = 0.8 V Drain OFF Leakage Current I o (OFF) Channel ON Leakage Current IO(ON)+ IS(ON) 15 V .0. 1,3 2 22 30 60 50 75 1 2 0.06 V+ = 10 V, V- = -20 V 1 100 5 100 Vs= 7.5 V Vo = -7.5 V 1 2 0.05 1 100 5 100 Vs= -10 V, VO= 10 V 1 2 0.04 V+ = 10 V, V- = -20 V 1 100 5 100 Vs= -7.5 V V o =7.5V 1 2 0.03 1 100 5 100 1 2 -0.02 Vs= 10 V, Vo= -10 V Source OFF Leakage Current 15 Vo=Vs= - 7.5 V VIN = 2.0 V -2 -200 nA -10 -200 5-65 DG183/184/185 ..... Siliconix incorporated ~ DG184 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C SYMBOL V+ = 15 V V- = -15 V VL = 5 V VR= 0 V Input Current with Input Voltage HIGH IINH V IN=5V 1 2 <0.01 Input Current with Input Voltage LOW IINL VIN=OV 1,2,3 -30 1 85 PARAMETER B SUFFIX -25 to 85°C TEMP Typd MINb MAX' MINb MAX UNIT INPUT 10 20 10 20 JlA -250 -250 DYNAMIC Turn-ON Time tON 150 180 See Switching Time Test Circuit Turn-OFF Time CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance 1 95 Vs=-5V,1 0 =0 1 9 V o =-5V,l s =0 1 6 Vo=Vs=O 1 14 1 >50 tOFF Source-OFF Capacitance COlON) + CS(ON) f = 1 MHz f = 1 MHz, R L = 75n. Off Isolation ns 130 150 pF dB SUPPW Positive Supply Current Negative Supply Current VIN (All) = 0 V 1 3 3 VIN (All) = 5 V 1 0.1 0.1 VIN (All) = 0 V 1 -5.5 -5.5 VIN (All) = 5 V 1 -4 -4 VIN (All) = 0 V 1 4.5 4.5 VIN (All) = 5 V 1 4.5 4.5 VIN (All) = 0 V 1 -2 -2 VIN (All) = 5 V 1 -2 -2 1+ 1- mA Logic Supply Current Reference Supply Current 5-66 IL IR DG183/184/185 ..,. Siliconix incorporated ~ DG185 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1=25°C A 2=125,BSoC SUFFIX o 3=-S5,-2S C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to B5°C MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance 1,2,3 VANALOG rOS(ON) I s =-10mA, V o =-10V VIN = 2.0 V IS(OFF) VIN = 0.8 V Drain OFF Leakage Current 10(OFF) Channel ON Leakage Current 10(oN)+ IS(ON) 15 -10 15 V .0. 1,3 2 35 75 150 100 150 1 2 0.05 V+ = 10 V, V- = -20 V 1 100 5 100 Vs=10V Vo = -10 V 1 2 0.07 1 100 5 100 Vs= -10 V, Vo= 10 V 1 2 0.04 1 100 5 100 1 2 0.03 1 100 5 100 1 2 -0.03 1 2 <0.01 Vs= 10 V, Vo= -10 V Source OFF Leakage Current -10 V+ = 10 V, V- = -20 V Vs= -10 V Vo = 10 V Vo=Vs= -10 V VIN = 2.0 V nA -10 -200 -2 -200 INPUT Input Current with Input Voltage HIGH VIN = 5 V IINH 10 20 20 J.lA Input Current with Input Voltage LOW 1,2,3 -35 1 120 250 300 1 100 130 150 Vs= -5 V, 10 = 0 1 9 Vo=-5V,ls=0 1 6 Vo=Vs=OV 1 14 1 >50 VIN=OV IINL -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance CO(ON) + CS(ON) Off Isolation f = 1 MHz f = 1 MHz, RL = 75.0. ns pF dB 5-67 .. DG183/184/185 ..... Siliconix incorporated ~ DG185 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V VL = 5 V VR= 0 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MA>f MINb MAXt UNIT SUPPLY =0 V 1 3 3 VIN (All) = 5 V 1 0.1 0.1 VIN (All) = 0 V 1 -5.5 -5.5 VIN (All) = 5 V 1 -4 -4 VIN (All) = 0 V 1 4.5 4.5 VIN (All) = 5 V 1 4.5 4.5 =0 V 1 -2 -2 VIN (All) = 5 V 1 -2 -2 VIN (All) Positive Supply Current Negative Supply Current 1+ 1- mA Logic Supply Current IL VIN (All) Reference Supply Current IR NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. DIE TOPOGRAPHY (DRIVER) Interchlp Pad Connections A B C D E F G H Pad No. 10 11 12 13 14 15 CMJA 8 Capacitors 7 Resistors 12 P-channel enhancement MOSFETs 4 N-channel depletion JFETs 5-68 10 PNP Bipolar Transistors 4 NPN Bipolar Transistors 4 Diodes From JFET To JFET 1, To JFET 3, From JFET From JFET To JFET 4, To JFET 2, From JFET 1, Source Gate Gate 3, Source 4, Source Gate Gate 2, Source Function Input 2 V+ VL VR v- (Substrate) Input 1 DG183/184/185 ..w'" Siliconix ~ incorporated TYPICAL CHARACTERSITICS Supply Current vs. Temperature liN vs. \'IN and Temperature 100 5 d \'INL = "'ir H = 5 V 4 I L • 1I+,IR (mA) ~ 3 80 ...... r--.;;:: t- -- r-.. r----. ....... """- ....... 2 '" ........ ..... 60 IL- .........-IINL liN -1- ......... (J.LA) 40 r....... ........... ..... -IR 20 1+ o -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 10 n IINH o -55 -35 -15 5 25 45 65 85 T - TEMPERATURE (OC) DG183 10 n DG183 SwItchIng TIme vs. Vo and Temperature rOS(on) vs. Temperature 100 230 V I rOS(ON) (.0. ) 105 125 [T -V AMAX). 10mA -- 10 .,. 210 ./ 190 130 - 1/ l."...." A' I_ i.--"' ./ tOFF- ......:~ -....-:::: ~ VI=~ .;> ~=/5VI I' i"""' 110 ~ -50 -25 0 25 50 75 100 125 T - TEMPERATURE (OC) t;~ Vo = 7.5 V '-::;; ~VO =-7.5V- f-- 170 tON tOFF (ns) 150 L: .A' I I 90 -55 -35 -15 I 5 25 45 65 85 105 125 T - TEMPERATURE (OC) n 10 n DG183 Leakage VS. Tempe,ature 30 DG184 rOS(on) vs. Temperature 100 1000 V+ - 10 V V- = -20 V ~ 5V R=O Vs - -VA (MAX). 10-1 mA / 10 10, Is (nA) Is OFFV rOS(ON) 100 (.0.) VV " B SUFFIX ~ A.;>I' 0.1 25 45 I' 10TFF)I- 65 65 105 T - TEMPERATURE (OC) - . 1010N) + ISION) - ",.. 125 10 -55 ~ ~ -15 ~ 25 A jUFI'X 65 105 T - TEMPERATURE (OC) 5-69 DG183/184/185 ...... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) 30.n OG184 10(OFF) vs. Temperature 30.n OG184 Switching Time vs. Vo and Temperature 1000 130 TEST LIMITS :: V+ - 10 V, V- - -20 V _ B SUFFIX - VL = 5 V,VR = 0 A SUFFIX - Vo = -10 V, Vs = 10 V 120 V' 110 tON tOFF (ns) /' L' Vo=7.5V / ' ./" V ';'~5V .A' 100 90 ~~ ~V~ 80 70 60 e f:::iI"'" -- - ~ L-- I'7"'t OF L ~ 100 10 (nA) 10 f: B SUFFIX .... ~ ~ I..!. I-"""'"Vo ~ 7.51V ~ 0.1 50 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 25 75.n OG185 rOS(on) vs. Temperature 1000 ....... 1"'" A SUFFIX ~ 45 65 85 105 T - TEMPERATURE (OC) 75.n OG185 Switching Time vs. Vo and Temperature 130 Vs - -10 V 10 - -10 mA 120 /' 110 /' -< /' 100 rOS(ON) 100 (.0. ) '" - 10 -55 - 70 60 -15 25 65 T - TEMPERATURE (OC) Vo = 7 j 5 V . / / ' .A Vo=-7.5V tON tOFF' 90 (ns) 80 B SUFFIX A SUFFIX - /' ~ to!:;... 14 Capacitance vs.Vo or Vs 10.0. FET = 26 V1NL = 0.8 V VINH = 2 V f = 1 MHz I'.. ....... 22 10 B SUFFIX .... - Cs,Co (pF) ~ A SUFFIX'§ 125 ~FF(_ Co (ON)~+ CS(ON) - "'" .... 14 10 45 65 85 105 T - TEMPERATURE (OC) :-.... 18 ~I"'" 0.1 25 L.--r ~VOj'7.5IV 30 100 5-70 ./ I I 50 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 105 TEST LIMITS V+ - 10 V, V- - -20 V -B SUFFIX - V L = 5 V,VR = 0 eA SUFFIX - Vo = -10 V, Vs = 10 V 10 (nA) ~~ ~Iv~v ~ 75.n OG185 10(OFF) vs. Temperature 1000 125 C~(OFI) -8 -4 o 4 8 Vo orVs - DRAIN or SOURCE VOLTAGE (V) DG183/184/185 ..... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) ·OFF" Isolation vs. Frequency 10.0. FET Capacitance vs. Vo orVs 30-75.0. FET 20 16 .I I 1I 16 i-CO(ON) + CS(ON) 14 12 Cs,Co 10 (pF) 6 6 4 2 ....... 100 V 1NL = 0.6 V VINH=2V f = 1 MHz 60 V+ = 15 V V- = -15 V VR = 0 VL = 5 V RL = 75.0. V1N 2: 220 mV RMS ......... 60 -- ~ CS(OFF) ........ I'--.. r-.... ISO. (dB) - 40 .... ~ CO(OFF)- .... 20 CAPACITANCE IS MEASURED F~OMI TEST TERMINAL TO COMMON - o o -10 -6 -6 -4 -2 0 2 4 6 6 10 Vo orVs - DRAIN or SOURCE VOLTAGE (V) 10. 107 f - FREQUENCY (Hz) 105 10· Typical delay, rise, fall, settling times, and switching transients In this circuit. ·OFF" Isolation vs. Frequency 30-75.0. FET 100 90 ......... 60 .... 70 60 ISO. (dB) "- 50 40 V+ = 15 V V- = -15 V VR = 0 VLOGI9 = +5 V RL = 5.0. V1N 2: 220 mV RMS 30 20 HI o "f 10' I 1111111 10. I I 107 10· f - FREQUENCY (Hz) 5-71 DG183/184/185 .... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) ....-'I/IIIr-o-lf-------4)'f.'-f-O--.---t---O Vo If R gen , RL , or C L Is Increased, there will be proportional Increases In rise andlor fall times. OG184, OG185 OG183 +6 6 VIN Y\tl : (V) o V (V) 5 o : o r~ J r~ (V) ..... 1-00.. Vgen J I = 10 V V 1\ (V) ........ ..- ~ Vgen r~ =0 , \ J J Vgen +2 0 -2 ( = 10 V 1\ 1 \. Vgen =5 V A Vgen =0 \ "..... .. +2 0 \ ~ ~ -4 I Vgen / -2 Vgen = -5 V ,. I I +5 0 \ -5 r~ . / i"'"' ) -10 Vgen =-10 V 0.8 1.2 t - TIME (Jl.S) 1.6 I~ o 0.4 ...... -4 -6 = -5 5 5-72 +4 +2 o A -6 r~ LOGIC INPUT +6 '"' r -2 +10 +5 o Vgen - 5 V 2 0 -2 2 0 V ~ .( 6 r~ o LOGIC INPUT 10 +4 +2 0 I -5 I -10 L Vgen o 0.4 V =-10 V - 0.8 1.2 t - TIME (Jl.S) 1.6 DG183/184/185 If"r' Siliconix ~ incorporated SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC 3.0 V-,-------.. INPUT 0 V 1.5 V SWITCH INPUT 15 V :Vs= +3 V t,< 10 ns tON tf t OFF:V S=-3V .........L.._ _ _...I....., < 10 ns SI SWITCH o-II-----a' INPUT VS--i-:;:::==I:=:-- ±3 V (REPEAT TEST FOR IN2' 8.!ANO 02) SWITCH OUTPUT "'-+O:--"---1~V OUT SWITCH OUTPUT 0 V --+--' tON (LOGIC "1" = SWITCH ON) APPLICATION HINTS· Switch Family 10 11 and 30 11 75 11 V+ Positive Supply Voltage VNegative Supply Voltage VL Logic Supply Voltage VR Reference Voltage VIN Logic Input Voltage VINHMinl VINLMax (V) (V) (V) (V) (V) (V) 15** -15 5 GND 2.010.8 -7.5 to 15 10 -20 5 GND 2.010.8 -12.5 to 10 12 -12 5 GND 2.010.8 -4.5 to 12 15"" -15 5 GND 2.010.8 -10 t015 10 -20 5 GND 2.010.8 -15 to 10 12 -12 5 GND 2.010.8 -7 to 12 Vs Analog Voltage Range Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing. "" Electrical Parameter Chart based on V+ +15 V, V- -15 V, VL 5 V, VR GND. = = = = 5-73 DG186/187/188 High-Speed Driver with SPOT JFET Switch ~ ~ FEATURES BENEFITS APPLICATIONS • Constant ON Resistance over Entire Analog Range • Low Distortion • Audio Switching • Eliminates Large Signal Errors • Video Switching • Low Leakage • Low Crosstalk • High Bandwidth Capability Siliconix incorporated • Sample/Hold e D/ A Ladder Switches DESCRIPTION DG1B6-1BB are precision single-pole, The double-throw (SPDT) analog switches designed to_ provide accurate switching of video and audio' signals. This series, like the entire DG180 family; is __ ' ideally suited for applications requiring a constant ON resistance over the entire analog raoge;The major design difference is the ON- resistance, being 10, 30, and 75 !l for the OG186. DG18i. and DG 188 respectively + Reduced -s~itchin~ j ~rrors are achieved through low i$akage current ( is(6FF) < 1 nA for the DG187118a) -. Applications which benefit from flat ON resistance include audio switching, video switching, and sample-and-holds. Each device comprises four N-channel JFET transistors and a bipolar driver (TTL compatible) to achieve fast and accurate switch performance. The . driver is designed to achieve break-before-make swlt~hlng action, eliminating the inadvertent shorting between ohannels and the crosstalk which would result, In the QN state, e~ch switch conducts current equally wei! -in erther'dlrection. In the OFF condition, the Switches wilt block up to 20 V peak.to-peak. With feedthrough less than -60 dB at 10 MHz. Packaging for the DG186-188 includes a 14-pin side braze, flatpack, and 10-pin metal can options. Performance grades include both a military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature range. The flatpack option is only available in the military grade. PIN CONFIGURATION Top View Dual-In-Une Package 02 Top View Flat Package NC 2 13 N CI 01 3 I_ 12 1 4 81 4 11 IN 5 10 v+ VL NC NC NC 02 82 NC 9 V- 8 VR V-' VL Top View Order Numbers: Side Braze: DG186AP or DG186BP DG187AP or DG187BP DG188AP or DG188BP Order Numbers: DG167 ALl663 or DG188ALl883 Metal Can Package Order Numbers: DG186AA or DG186BA DG187AA or DG187BA DG188AA or DG188BA * Common 5-74 to Substrate and Case DG186/187/188 .... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM S1~01 Truth Table' I LOGIC I ~.t.......---o 02 S2 0 I I I IN o--D--t>-..J ~ I SW 1 OFF ON Logic "0" Logic "1" ~ ~ SW2 ON OFF 0.8 V 2.0 V • Switches Shown for Logic "1" Input One SPDT Switch per Package ABSOLUTE MAXIMUM RATINGS Current (All Other Pins) .•..................... 30 mA V+ to V- •.••.••..•..•....••......•...•.....•. 36 V V+ toVo .....••..•...•...•••...••••.......... 33 V Vo to V- .•.....•......••..•••...••••.•...•.... 33 V Storage Temperature .................... -65 to 150°C VotoVs •..••.•.•.•...•...••....•............ ±22V Operating Temperature (A Suffix) ........ -55 to 125°C (8 Suffix) ......... -25 to 85°C VL to V- •.•••••.•••..•...••....•.............. 36 V Power Dissipation' VL tOVIN .••••••••..•..••••.........•.•.•..•... 8 V L toVR .••.................•.................. 8 VIN toVR ...................................... 8 VR to V- ...••....•............................ 27 V V Metal Can" V V Flat Pack···· .............................. 900 mW 14-Pln DIP'" ................................ 450 mW .............................. 825 mW Alllea::!s welded or soldered to PC board. Derate 6 mW/oC above 75°C. Derate 11 mW/oC above 75°C. •••• Derate 10 mW/OC above 75°C. V R toVIN ..................................•.. 2 V Current (S or D) DG186 .................•.... 200 mA Current (S or D) DG187. DG188 ..............•. 30 mA SCHEMATIC DIAGRAM (Typical Channel) V+ S IN D R 5-75 DG186/187/188 . . . . Siliconix incorporated ~ DG186 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V V L = 5V VR= 0 V SYMBOL LIMITS 1=25°C A B 2=125,85°C SUFFIX SUFFIX 3=-55, -25 ° C -55 to 125°C -25 to 85°C TEMP TYpd MINb MAX' MINb MAXi UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance 1,2,3 VANALOG Vo= -7.5 V Is=-10mA rOS(ON) 10(OFF) Channel ON Leakage Current 10(ON)+ I SION) 15 V .0. 10 20 15 25 1 2 0.05 10 1000 15 300 1 2 0.05 10 1000 15 300 1 2 0.04 V+ = 10 V, V- = -20 V 10 1000 15 300 Vs= -7.5 V Vo=7.5V 1 2 0.03 10 1000 15 300 Vo=Vs=-7.5V 1 2 -0.1 Vs=7.5V V o =-7.5V VIN = 0.6 V or 2.0 ve Vs= -10 V, Vo= 10 V Drain OFF Leakage Current -7.5 7.5 V+ = 10 V, V- = -20 V IS(OFF) 15 1,3 2 Vs= 10 V, Vo= -10 V Source OFF Leakage Current -7.5 -2 -200 -10 -200 loss 2 ms Pulse Duration 1 300 Input Current with Input Voltage HIGH IINH VIN=5V 1 2 <0.01 Input Current with Input Voltage LOW IINL VIN = 0 V 1,2,3 -30 1 240 300 350 1 140 250 300 Vs= -5 V, 10 = 0 1 21 V o =-5V,l s =0 ·1 17 Vo=Vs=OV 1 17 1 >55 Saturation Drain Current nA mA INPUT 10 20 10 20 jJ.A -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CSIOFF) Drain-OFF Capacitance COIOFF) Channel ON Capacitance COlON) + C SION ) OFF Isolation 5-76 f = 1 MHz f = 1 MHz, RL = 75.0. ns pF dB H DG186/187/188 Siliconix incorporated DG186 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C B SUFFIX -25 to 85°C MINb MAX' MIN' MAX TEMP TYpd UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 0.8 1 -3 -3 1 0.8 mA VIN = 0 V or 5 V Logic Supply Current IL 1 Reference Supply Current IR 1 3.2 3.2 -2 -2 ELECTRICAL CHARACTERISTICS a DG187 Test Conditions Unless Otherwise Specified. PARAMETER V+ = 15 V V- = -15 V VL = 5V V R = OV SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C TEMP TYpd B SUFFIX -25 to 85°C MINb MAX' MINb MAXb UNIT -7.5 -7.5 SWITCH Analog Signal Range Drain-Source ON Resistance 1,2,3 VANALOG Vo= -7.5 V rOS(ON) IS(OFF) VIN = 0.8 V or 2.0 ve Drain OFF Leakage Current Channel ON Leakage Current IO(OFF) IO(ON)+ IS(ON) 15 V n 1,3 2 22 30 60 50 75 1 2 0.06 V+ = 10 V, V- = -20 V 1 100 5 100 Vs= 7.5 V V o =-7.5V 1 2 0.13 1 100 5 100 Vs= -10 V, Vo= 10 V 1 2 0.04 V+ = 10 V, V- = -20 V 1 100 5 100 V s =-7.5V V o =7.5V 1 2 0.03 1 100 5 100 Vo=Vs=-7.5V 1 2 -0.02 Is=-10mA Vs= 10 V, VO= -10 V Source OFF Leakage Current 15 -2 -200 nA -10 -200 INPUT Input Current with Input Voltage HIGH IINH VIN = 5 V 1 2 <0.01 Input Current with Input Voltage LOW IINL VIN = 0 V 1,2,3 -30 10 20 10 20 .llA -250 -250 5-77 .-yo Siliconix DG186/187/188 ~ incorporated DG187 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT DYNAMIC Turn-ON Time 1 65 150 160 1 95 130 150 V s =-5V,l o =0 1 9 Vo=-5V,ls=0 1 6 Vo=Vs=OV 1 14 1 >50 tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance COlON) + CS(ON) f = 1 MHz f = 1 MHz, RL = 75.n. OFF Isolation ns pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1 0.8 1 -3 0.8 -3 rnA VIN All = 0 V or 5 V Logic Supply Current IL 1 Reference Supply Current IR 1 3.2 -2 3.2 -2 ELECTRICAL CHARACTERISTICS a DG188 Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V VL= 5 V VR= 0 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance 5-78 Vo= -10 V, VIN = 2.0 or 0.8 VB rOS(ON) -10 1,2,3 VANALOG I s =-10mA 1,3 2 35 15 75 150 -10 15 V 100 150 !l. H DG186/187/188 Siliconix incorporated ELECTRICAL CHARACTERISTICS a DG188 Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V-=-15V V L = 5V V R = OV SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXb UNIT SWITCH (Cant'd) 1 2 0.05 V+ = 10 V, V- = -20 V 1 100 5 100 Vs=10V Vo = -10 V 1 2 0.07 1 100 5 100 1 2 0.04 1 100 5 100 Vs= -10 V Vo = 10 V 1 2 0.05 1 100 5 100 Vo=Vs= -10 V 1 2 -0.03 Vs= 10 V, Vo= -10 V Source OFF Leakage Current IS(OFP) Drain OFF Leakage Current lo(oFF) Channel ON Leakage Current IO(ON)+ IS(ON) V IN = 0.8 V Vs= -10 V, Vo= 10 V or 2.0 V· V+ = 10 V, V- = -20 V -2 -200 nA -10 -200 INPUT Input Current with Input Voltage HIGH IINH V IN =5V 1 2 <0.01 10 20 IINL V IN = 0 V 1,2,3 -30 1 120 250 300 1 100 130 150 V s =-5V,l o =0 1 9 V o =-5V,l s =0 1 6 1 14 1 >50 10 20 .ll.A Input Current with Input Voltage LOW -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance C S(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance C O(ON) + CS(ON) OFF Isolation f = 1 MHz Vo=Vs= 0 V f = 1 MHz, RL = 75!l. ns pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 0.8 1 1 -3 0.8 -3 mA V IN = 0 V or 5 V Logic Supply Current IL 1 Reference Supply Current IR 1 3.2 -2 3.2 -2 5-79 DG186/187/188 ..,.. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. DIE TOPOGRAPHY (DRIVER) Interchlp Pad Connections 1.......- - - A B C D E F G H 80 mils - - -..... ~ D Not Connected From JFET 2, Source Not Connected Not Connected To JFET 2, Gate Not Connected To JFET 1, Gate From JFET 1, Source 44 mils E~~~:+ 20X Pad No. Function 5 6 7 8 9 10 Input 1 V+ VL V N~ Connected V - (Substrate) CMJC 4 4 6 4 Capacitors Resistors P-channel enhancement MOSFET N-channel depletion JFET 5 PN P Bipolar Transistors 4 NPN Bipolar Transistors " Diodes TYPICAL CHARACTERSITICS Supply Current vs. Temperature liN vs. "iN and Temperature 5 100 "i~L = "iH=5V 0' 4 3 ~ 80 .....;;: ....... I-... - r---. t-..... r-- ~- 60 ..... r-....... ........ ~ ",1- 2 ..... o I -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE' (OC) 5-80 """" r-..... 40 -IR 1+ ........."'" 20 o r-...:IINL IINH -55 -35 -15 5 25 45 65 85 T - TEMPERATURE (OC) 105 125 DG186/187/188 ...... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) 10.n DG186 Switching Time VS. Vo and Temperature 10.n DG186 rOS(on) VS. Temperature 230 100 \b- VA (MAX). I - (.0. ) 10 210 -- rOS(ON) - /tON I., P'" Vo = 7.5 V '-;;; VVo =-7.((- I tON, 170 tOFF (ns) 150 130 110 .Y" ....-,V~=~ ./ ./ - - I/" ..... ~ -:':'I' ,, ~i"'" ,, -- tOFF--:: V~=7.5VI :;,.-- 1 1 90 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 10.n DG186 Leakage VS. Temperature 30.n DG187 rOS(on) VS. Temperature 100 1000 V+ = 10 V V- -20 V ~ =5V R=O Vs = VA (MAX). 10= 1 mA ' V 10 10, Is (nA) Is OFF V rOS(ON) 100 1/ V (.0. ) L .,. ..-I J ./""'" V'..-I 0.1 25 V' 10(OFF)- I - T 'I 45 65 85 105 T - TEMPERATURE (OC) 125 ".. 10 -55 30.n DG187 Switching Time VS. Vo and Temperature 130 ........- ...... -- -15 25 65 T - TEMPERATURE (OC) 1000 ./ 100 Vo =7.5V . . / l..A" 90 /' ~ "::7 60 1/ ~ i"-" 105 = V+ = 10 V, V- = -20 V TEST LIMITS • B SUFFIX - VL =5V,VR =0 • A SUFFIX Vo = -10 V, Vs = 10 V 100 -1- -...J I IN1 LOGIC SW1 SW2 SW3 SW4 0 1 OFF ON ON OFF 82~02 84 0 ~~04 Logic "0· < 0.8 V Logic "1" ~ 2.0 V I o---O-t>-...J I IN2 • Switches Shown for Logic " 1" Input Two SPDT Switches per Package' ABSOLUTE MAXIMUM RATINGS Current (S or D) DG190, DG191 ............... 30 mA V+ to V- ..................................... 36 V V+ toVo ........•............................ 33 V Vo to V- ...................................... 33 V VotoV8 ..................................... ±22 V V L to V- ...................................•.. 36 V V L toVIN ...................................... 8 V V L toVR .................................•..... 8 V VIN toVR ....................................•. 8 V VR to V- ...................................... 27 V V R toVIN ..................................... 2 V Current (S or D) DG189 ...................... 200 mA Current (All Other Pins) .................•..... 30 mA Storage Temperature ., .................. -65 to 150°C Operating Temperature (A Suffix) ........ -55 to 125°C (8 Suffix) ......... -25 to 8SoC Power Dissipation' 16-Pln DIP" ................................ 900 mW 14-Pln Flat Pack'" ......................... 900 mW All leads welded or soldered to PC board. Derate 12 mW/oC above 75°C. Derate 10 mW/OC above 75°C. SCHEMATIC DIAGRAM (Typical Channel) V+ S D R 5-86 DG189/190/191 trY' Siliconix ~ incorporated DG189 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR = 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd B SUFFIX -25 to 85°C MINb MAX' MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Vo= -7.5 V rOS(ON) Is(oFF) Drain OFF Leakage Current IO(OFF) Channel ON Leakage Current IO(ON)+ IS(ON) Saturation Drain Current 15 -7.5 15 V .n 1,3 2 7.5 10 20 15 25 1 2 0.05 V+ = 10 V, V- = -20 V 10 1000 15 300 V s =7.5V V o =-7.5V 1 2 0.05 10 1000 15 300 1 2 0.04 10 1000 15 300 V s =-7.5V V o =7.5V 1 2 0.03 10 1000 15 300 Vo=Vs= - 7.5 V 1 2 -0.1 Is=-10mA Vs= 10 V, Vo= -10 V Source OFF Leakage Current -7.5 1,2,3 VANALOG VIN = O.B V Vs= -10 V, Vo= 10 V or 2.0 Va V+ = 10 V, V- = -20 V loss 2 ms Pulse Duration 1 300 IINH V IN =5V 1 2 <0.01 -2 -200 nA -10 -200 rnA INPUT Input Current with Input Voltage HIGH 10 20 10 20 J.lA Input Current with Input Voltage LOW 1,2,3 -30 1 240 300 350 1 140 250 300 Vs=-5V,lo=0 1 21 V o =-5V,l s =0 1 17 1 17 1 >55 VIN=OV IINL -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance OFF Isolation COlON) + CS(ON) f = 1 MHz Vo=Vs= 0 V f = 1 MHz, R L = 75.n ns pF dB 5-87 DG189/190/191 ...... Siliconix incorporated ~ DG189 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C B A 2=125,85°C SUFFIX SUFFIX 3=-55,-25°C -55 to 125°C -25 to 85°C TEMP TYpd MINb MAY: MINb MAXi: UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1 0.6 1 -2.7 3.1 -1 1.5 -5 1.5 -5 mA VIN (All) = 0 V or 5 V Logic Supply Current IL 1 Reference Supply Current IR 1 4.5 -2 4.5 -2 DG19D ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V VL = 5 V VR= 0 V LIMITS 1=25°C B A 2=125,85°C SUFFIX SUFFIX 3=-55, -25 ° C -55 to 125°C -25 to 85°C TEMP TYpd MIN b MAY: MINb MAX UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Source OFF Leakage Current 1,2,3 VANALOG rOS(ON) IS(OFF) Drain OFF Leakage Current IO(OFF) Channel ON Leakage Current IO(ON)+, IS(ON) -7.5 15 -7.5 15 V .n Vo= -7.5 V Is=-10mA 1,3 2 1B 30 60 50 75 Vs= 10 V, Vo= -10 V 1 2 0.06 V+ = 10 V, V- = -20 V 1 100 5 100 V s =7.5V Vo=-7.5V 1 2 0.1 1 100 5 100 1 2 0.05 1 100 5 100 Vs =-7.5V Vo = 7.5 V 1 2 0.06 1 100 5 100 Vo=Vs= - 7.5 V 1 2 -0.02 VIN = O.B V Vs= -10 V, Vo= 10 V or 2.0 va V+ = 10 V, V- = -20 V -2 -200 nA -10 -200 INPUT Input Current with Input Voltage HIGH IINH VIN = 5 V 1 2 <0.01 Input Current with Input Voltage LOW IINL VIN = 0 V 1,2,3 -30 10 20 10 20 .lJ.A 5-88 -250 -250 DG189/190/191 tr"F Siliconix ~ incorporated DG190 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL = 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C B SUFFIX -25 to 85°C MINb MAX' MIN' MAX TEMP TYpd UNIT DYNAMIC Turn-ON Time 1 85 150 180 1 95 130 150 V S = -5 V, 10 = 0 1 9 V o =-5V,l s =0 1 6 1 14 1 >50 1 0.6 1 -2.7 tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacltarce CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance f = 1 MHz COlON) + CS(ON) Vo=Vs=OV f = 1 MHz, RL = 75.0. OFF Isolation ns pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1.5 -5 1.5 -5 mA VIN (All) = 0 V or 5 V Logic Supply Current IL 1 3.1 Reference Supply Current IR 1 -1 4.5 -2 4.5 -2 ELECTRICAL CHARACTERISTICS a DG191 Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V VL = 5 V VR = 0 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-25°C -55 to 125°C TEMP TYpd MINb MAX' B SUFFIX -25 to 85°C MINb MAXb UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Vo = -10 V, VIN = 2.0 or 0.6 V e rDS(ON) -10 1,2,3 VANALOG Is=-10mA 1,3 2 35 15 75 150 -10 15 V 100 150 .0. 5-89 III DG189/190/191 ...... Siliconix incorporated ~ DG191 ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 15 V V- = -15 V VL= 5 V VR= 0 V SYMBOL LIMITS 1=25°C A 2=125,85°C SUFFIX 3--55,-25°C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MIN b MA>f MINbMAX I UNIT SWITCH (Cont'd) Vs= 10 V, VO= -10 V Source OFF Leakage Current 1 2 0.05 V+ = 10 V, V- = -20 V 1 100 5 100 Vs= 10 V Vo = -10 V 1 2 0.07 1 100 5 100 1 2 0.04 1 100 5 100 1 2 0.05 1 100 5 100 1 2 -0.03 IS(OFF) VIN = O.B V Vs= -10 V, VO= 10 V or 2.0 va V+=10V,V-=-20V Drain OFF Leakage Current I o (OFF) Channel ON Leakage Current IO(ON)+ IS(ON) Vs= -10 V Vo = 10 V Vo=Vs= -10 V -2 -200 nA -10 -200 INPUT 10 20 Input Current with Input Voltage HIGH IINH V IN=5V 1 2 <0.01 10 20 Input Current with Input Voltage LOW IINL VIN = 0 V 1,2,3 -35 1 120 250 300 1 100 130 150 V s =-5V,l o =0 1 9 V o =-5V,ls=0 1 6 1 14 1 >50 1 0.6 1 -2.7 3.1 -1 .l1A -250 -250 DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance CO(ON) + CS(ON) f = 1 MHz Vo=Vs= 0 V f = 1 MHz, RL = 75.0. OFF Isolation ns pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1.5 -5 1.5 -5 mA VIN (All) = 0 V or 5 V Logic Supply Current IL 1 Reference Supply Current IR 1 5-90 4.5 -2 4.5 -2 DG189/190/191 . . . . Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. DIE TOPOGRAPHY (DRIVER) tnterchlp Pad Connections With 2 JFET's D 13 A B C 0 E F G H t With 4 JFET' s 44 mils E~~~:J A B C 0 E F G H 20X Pad No. 10 11 12 13 14 15 CMJB 8 Capacitors 7 Resistors 12 P-channel enhancement MOSFET 4 N-channel depletion JFET No Connection No connection To JFET 2, Gate From JFET 2, Source From JFET 1. Source To JFET 1, Gate No Connection No Connection 10 PNP Bipolar Transistors 4 NPN Bipolar Transistors 4 Diodes From JFET 1, Source To JFET 1. Gate To JFET 3. Gate From JFET 3, Source From JFET 4, Gate To JFET 4, Gate To JFET 2, Gate From JFET 2, Source Function Input 2 V+ VL VR V- (Substrate) Input 1 II TYPICAL CHARACTERSITICS Supply Current vs. Temperature 5 4 3 liN vs. YiN and Temperature 100 ~ - -~ t-- T 80 -.. .......... -.. ~"- r--....... 60 .......... 1-0... ......... r-.....,-I- 2 ~IINL ......... 40 r-....... f"'" -IR 1+ o Y YiNL = 0 "i~H =5V I -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (DC) " 20 o IINH -55 -35 -15 5 25 45 65 85 T - TEMPERATURE (DC) 105 125 5-91 DG189/190/191 ...... Siliconix ,,1;;11 incorporated TYPICAL CHARACTERSITICS (Cont'd) 10 .n OG189 Switching Time vs. Vo and Temperature 10.n OG189 rOS(on) VS. Temperature 230 100 V 0- -VA(MAX). 10 mA I - ., I " 210 /'tON ./ 190 rOS(ON) (.0.) --- 10 tON, 170 tOFF (ns) 150 130 110 -50 -25 0 25 50 75 100 125 T - TEMPERATURE (OC) Vo = 7.5 V ':;;;; /Vo=-7.~- f-I _ ~ ./ .Y" ./ ~ ./ ~ ~ - I 30.n OG190 rOS(on) vs. Temperature / Is OFF / 1010N) + ISION) .L 25 rOS(ON) 100 (.0.) VV " B SUFFIX ... ", 10(,FF)I....... ....... 45 65 85 105 T - TEMPERATURE (OC) / 0.1 / 125 130 10 -55 ....- ~ A jUFilX -15 25 65 T - TEMPERATURE (OC) 105 30.n OG190 10(OFF) vs. Temperature 1000 TEST LIMITS :: V+ = 10 V, V- = -20 V 120 • B SUFFIX - VL =5V,VR=0 ..., ./" 110 Vo=7.5V./~ 100 .A 90 80 i::::I""" -- IL ~~ ~V~V tOFF I...l.,. • A SUFFIX - Vo = -10 V, Vs = 10 V 100 -<./ Vo = -7.5 V 10 (nA) 10 ~ B SUFFIX .......I-'""'"I Vo = 7.5 V i""""" "A.....SUFFIX'~ ~ 50 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 5-92 ~i"" ~ 30 .n OG190 Switching Time vs. Vo and Temperature 60 I 90 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) Vs - VA (MAX). 10= 1 mA 10, Is (nA) 70 t=~ 1000 V+ = 10 V V- - -20 V ~ =5V R=O 10 tON, tOFF (ns) -I VI-~ ...... ~=7~5VI -",' ~ 10 .n OG189 Leakage vs. Temperature 100 I., ~ 0.1 25 45 65 85 105 T - TEMPERATURE (OC) 125 tI'Y' ~ DG189/190/191 Siliconix Incorporated TYPICAL CHARACTERSITICS (Cont'd) n DG191 n 75 Switching Time VS. 75 OG191 rOS(on) VS. Temperature 1000 Vs 10 - Yo and Temperature 130 10 V lamA 120 ..-' 110 " Vo =7 j 5V",..-' ~..-' A" Vo = -7.5 V 100 tON, tOFF (ns) B SUFFIX rOS(ON) 100 (.0. ) A SUFFIX - - 90 .- ~N~ ~V~ ...t,. L--r" 80 ...... ~ 70 I?" 60 -15 25 65 T - TEMPERATURE (OC) Capacitance vs.Vo orVs (10.0. FET) TEST LIMITS ::: V+ - 10 V, V- - -20 V • B SUFFIX - VL = 5 V,VR = 0 .A SUFFIX - Vo = -10 V, Vs = 10 V 26 100 ~ ~ 22 Cs,C o (pF) 10 10 (nA) r- ...... i"o... - 18 B SUFFIX _i""""'" ..",.,. ASUFFIX~ 14 0.1 10 25 45 65 85 105 T - TEMPERATURE (OC) -8 125 18 ,I 1 1 I '" 4 80 -10 -8 -6 o -4 a 2 4 6 8 I"..... i' ...... CO(OFF)- -4 -2 4 V+ = 15 V V- = -15 V VR = 0 VL = 5 V R L =75.o. VIN i!: 220 mV RMS 40 CAPACITANCE IS MEASURED F~OMI_ TEST TERMINAL TO COMMON 2 C?(0'j) ........ ISO. (dB) CS(OFF) ........ ......... ...... 'OFF" Isolation VS. Frequency (10.0. FET) 60 ....... r-- Co (ON) + CS(ON) 100 VINL = 0.8 V V INH =2V f = 1 MHz 16 -CO(ON) + CS(ON) 14 qOFF(_ VINL = 0.8 V VINH = 2 V f = 1 MHz Vo orVs - DRAIN or SOURCE VOLTAGE (V) Capacitance VS. Vo orVs (30-75.0. FET) 20 o I 30 1000 6 I 50 -55 -35 -15 5 25 45 65 85 105 125 T - TEMPERATURE (OC) 105 75 n DG191 10(OFF) VS. Temperature 8 --:-VOi7.5IV I 10 -55 12 Cs,C o 10 (pF) - tOFF ./ 8 10 Vo orVs - DRAIN or SOURCE' VOLTAGE (V) i' 20 o 10' 10. 107 10· f - FREQUENCY (Hz) 5-93 DG189/190/191 WY'Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) Typical delay, rise, fall, settling times, and switching transients In this circuit. 'OFF' Isolation vs. Frequency (30-75.0. FET) 100 90 ...... BO " 70 60 f'.. ISO. 50 (dB) V+ = 15 V V- = -15 V VR = 0 VLOGI9 = +5 V RL = 5.0. VIN ~ 220 mV RMS 40 30 20 10 o 10' 6 VIN (V) 4 "f , "" 10. "' " f - FREQUENCY (Hz) If R gen' RL, or C L Is Increased, there will be proportional Increases In rise and/or fall times. OG1B9 OG190, OG191 107 2 10 (V) 5 o 10· LbGI6 I I Vo (V) Vo (V) Vo (V) I J 2 0 -2 r Vo (V) Vo (V) " Vgen , =5 V =0 2 0 -2 I 2 0 -2 .A \ -2 -4 ~I I Vr 5 0 -5 -10 \ i Vo (V) -5, Vo (V) Jll't"" / 0.4 O.B t - .TIME (j1S) Vgen i 1.2 6 4 2 o Vo (V) Vgen 10 5 I.l I " = 10 V I I 1.6 I Vgen = 10 V Vgen =5 V 1\ \, J A . \ -.-:" Vgen =0 I A I I -4 -6 I I I o I I .A"" I Vrn 5 0 -5 -10 I !\ I J = 10 V 1\ \ o 5-94 I ~ -6 Vo (V) I L6GICI INP0T- 2 o ..... o 2 0 IN~UT i\.. 1 Vgen 6 4 2 6 I4 I- o Vo " I =1- 5 '1 i..,..oo" ./ 0.4 = 10 V Y J I Vgen O.B t - TIME (liS) 1.2 1.6 - DG189/190/191 ..... Siliconix incorporated ~ SWITCHING TIME TEST CIRCUIT = Switch output waveform shown for Vs constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. 5V (LOGIC "1" = SWITCH ON) t,<10ns t,<10ns LOGIC INPUT 0 V '---- 15 V tON:Vs=+3V S 8;r·n~~ t OFF: V S = -3 V 03+----<>""':"":L....+-c5...-o__---o-oV OUT S~~~~~ s, sm~2~ vS----t-!;==:j:~-- ±3v o-I---- f MI~ MAXb UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Delta Drain-Source ON Resistance C 1,2,3 VANALOG rOS(ON) d rOS(ON) IO(ON) +IS(ON) 15 115 175 250 175 250 V+ = 10.B V, V- = 10.B V Is= 1 rnA, Vo =±7.5V V IN = 0.4 V V+ = 22 V, V- = -22 V Is = 1 rnA, Vo = ± 15 V 1,3 2 145 250 325 250 325 1,3 2 B5 125 225 125 225 1,3 2 5 10 15 10 15 Vo - +5,0, -5 V, Is - ±1 rnA VIN = O.B V Worst Combination V+ = 22 V V- = -22 V = -15.5 V = -15.5 V 1 2 0.015 -0.25 -20 0.25 20 -0.25 -2 0.25 2 = +15.5 V = +15.5 V 1 2 0.015 -0.25 -20 0.25 20 -0.25 -2 0.25 2 Vo = -21 V V s =-21V 1 2 0.15 -2 -200 2 200 -2 -20 2 20 Vo = +21 V VS=+21 V 1 2 0.15 -2 -200 2 200 -2 -200 2 200 Vo = -5 V Vs = -5 V 2 -10, 10 -2 2 Vo = +5 V Vs = +5 V 2 -10 10 -2 2 V+ = 13.5 V V- = -13.5 V Vo = +12.5 V Vs = -12.5 V Vo = -15.5 V Vs = +15.5 V V+ = 16.5 V V- = -16.5 V Vo = +15.5 V Vs = -15.5 V Is (OFF) Vo = -21 V V+ = 22 V V- = -22 V VIN =3V 5-104 -15 1,3 2 Vo = -12.5 V Vs = +12.5 V Source OFF Leakage Current 15 V+ = 13.5 V, V- = -13.5 V Is= 1 rnA, Vo=±10.0V Vo Vs V+ = 16.5 V V- = -16.5 V Vo Vs Channel ON Leakage Current -15 1 2 -0.01 1 2 -0.01 1 2 0.015 1 2 -0.015 -0.25 -10 1 2 0.15 Vs=+21 V Vo = +21 V Vs=-21V 1 2 -0.15 Vo = -5 V Vs = +5 V 2 Vo = +5 V Vs = -5 V 2 0.25 1 0.25 10 -0.25 -10 -0.25 -1 0.25 1 0.25 10 -0.25 -1 1 10 1 100 -1 -100 -1 -10 1 5 -5 -1 V .n nA H DGP201A Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V VIN = 2.4 V, O.B Va LIMITS 1=25·C D A 2=125,85·C SUFFIX SUFFIX 3=-55,-40·C -55 to 125°C -40 to 85°C b b TEMP TYpd MIN MA~ MIN MAXb UNIT SWITCH (Cont'd) Vo = -12.5 V Vs = +12.5 V 0.01 1 2 -0.01 Vo = -15.5 V Vs = +15.5 V 1 2 0.015 Vs = -15.5 V 1 2 -0.015 -0.25 -10 V+ = 16.5 V V- = -16.5 V Vo = +15.5 V Drain OFF Leakage Current IO(OFF) Vo = -21 V V+ = 22 V V- = -22 V VIN = 3 V 0.25 10 1 2 V+ = 13.5 V V- = -13.5 V Vo = +12.5 V Vs = -12.5 V Vs=+21 V Vo = +21 V Vs=-21V -0.25 -10 0.25 1 -0.25 -1 0.25 10 0.25 1 -0.25 -1 nA 1 2 0.15 1 2 -0.15 1 100 -1 -100 1 10 -1 -10 Vo = -5 V Vs = +5 V 5 2 1 Vo = +5 V Vs = -5 V -5 2 -1 INPUT Input current with VIN HIGH Input current with VIN LOW IIH IlL v+ = 22 V, v- = -22 V VIN under test = 2.4 V 1 2 -0.005 -0.5 -5 0.5 5 -0.5 -5 0.5 5 V+ = 22 V, V- = -22 V VIN under test = 22 V 1 2 -0.005 -0.5 -5 0.5 5 -0.5 -5 0.5 5 V+ = 22 V, V- = -22 V VIN under test = 0 V 1 2 0.005 -0.5 -5 0.5 5 -0.5 -5 0.5 5 1 2,3 450 1 2,3 JlA DYNAMIC Turn-ON Time tON See Switching Time Test Circuits 600 600 BOO BOO 320 450 600 450 600 Turn-OFF Time tOFF Delta tON /:;. tON Worst Combination among channels of the tON measurements 1 2,3 30 50 100 50 100 Delta tOFF /:;. tOFF Worst Combination among channels of the t OFF measurements 1 2,3 30 50 100 50 100 Vgan = 0 V 1 25 50 50 Vgen = ±10 V 1 33 100 100 1 4.5 ns Charge Injection Source OFF Capacitance d Q CS(OFF) R gan = 0.0. CL = 10 nF pC f = 1 MHz, V s = 0 V pF 5-105 DGP201A ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a LIMITS 1=25·C A 0 2=125,85·C SUFFIX SUFFIX 3=-55,-40·C -55 to 125°C -40 to 85°C SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V VIN = 2.4 V, 0.8 V e Co (OFF) f=lMHz,Vs =OV 1 5.5 Co (ON) + CS(ON) f=lMHz,Vs =OV 1 15 Crosstalk (Channel-to-Channel) RL= 50.0. CL = 5 pF f = 1 MHz 1 95 OFF Isolation C L = 5 pF RL = 50.0. f = 1 MHz 1 80 PARAMETER TEMP TYpd I MINb MA'If MINb MAXb UNIT DYNAMIC (Cont'd) Drain OFF Capacitance d pF Channel ON Capacltance d dB SUPPLY Positive Supply Current 1+ V 1N=00r5V V±=±16.5 V 1 2 0.8 Negative Supply Current 1- V 1N =00r5V V±=±16.5 V 1 2 0.26 1.5 2.5 1.5 2.5 -1 -2 mA -1 -2 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebralo oonventlon whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. o. Guaranteed by design, not subJeot to production test. d. Typloal values are for DESIGN AID ONLY, not guaranteed nor subJeot to produotlon testing. e. VIN = Input voltage to perform proper funotlon. DIE TOPOGRAPHY .....1 - - - - 80 mils - - -.....~ l 4 13 72 mils :~J 9 20X ICMCB 8 Capaoltors 9 Resistors 5-106 49 P-ohannel enhancement MOSFET 45 N-ohannel enhanoement MOSFET Pad No. Function 1 2 3 Input 1 Drain 1 Source 1 4 5 6 7 8 9 10 11 13 14 15 16 V- GND Souroe 4 Drain 4 Input 4 Input 3 Drain 3 Souroe 3 V+ (Substrata) Souroe 2 Drain 2 Input 2 Ir7' ~ DGP201A Siliconix incorporated TYPICAL CHARACTERSITICS rDS(ON) vs,VD and Power Supply Voltage Charge Injection vs. Analog Voltage (Vs ) 500 40 ~ 35 A: ct. = 10k pF B: 0L = lk pF 0: q:= 100 pF 30 20 ..... "- / A ~V . /V 25 Q (pC) II V ..... ~ A: v+= B : v+= o : V+ = 400 I-- D : V+ = V+ = 350 r-- F : V+ = 450 .-.-- r-- E: 300 10 5 I 0 -15 -s -10 0 v+ = +15 V v- = -15 V o 5 10 50 -25 15 ct. 10k pF B: 0L= lkpF 30 15 V 10 1/ 220 I-- A 125 :0 B 85.0 HV+=+15V L.- 200 I-- VB ~ ~g:g 180 5 o 120 ./ 100 V 80 V 5 7 9 11 13 15 17 19 21 V- = -15 V ~.g ~ A "-, C/' ..~ r-"./ / - l'..~ ~ ~ ~ "- r-= F 60 -15 23 25 g /" 160 rDS(ON) 140 (n) '/" V 25 rDS(ON) vs. V D and Temperature 1/ 1/ 20 15 5 240 I}V 1/ 25 Q (pC) I F VD (VOLTS) 40 A: TA =1 25 • 0 ~....:;JE -s -15 Charge Injection vs. Power Supply Voltage ] = = = = I ~~_oJ_ 100 Vs(VOLTS) 35 VVVV- ,u.. 150 l- V, V, V, V, II "- 200 .-' v-= 8 VI rDS(ON) 250 (n) 15 -5 V -8V I--10 V -12 V I--15 V -20 V I-- 5 V, v- = 10 12 15 20 -10 ----- ,...E o -5 POSITIVE/NEGATIVE SUPPLIES (VOLTS) EI I--"" 10 5 15 VD (VOLTS) Charge Injection vs. Power Supply Voltage ( one supply held constant ) 25 Q (pC) , '\ 20 15 V \ 80 60 -"" V+ +15 V v - -15 V -- 1 40 liN (pA) 0 -20 -40 -SO 5 ,/ V V V -80 o -25 j 20 / '\ 10 100 I V- = -15 v l I V+= +15 V I 30 -100 -15 -S 5 15 POSITIVE/NEGATIVE SUPPLIES (VOLTS) 25 o 2 4 6 8 10 12 14 16 V IN (VOLTS) 5-107 DGP201A ...... Siliconix incorporated ~ TYPICAL CHARACTERSITICS Supply Current VB. Supply Voltage ( one supply held constant ) Capacitance vs. Analog Voltage 20 2000 1700 "1 V+ =+15 V V- =-15 V 1400 (rnA) C (pF) 1+ 1+ 500 ./ 200 -100 -400 -700 -1000 -15 -25 I 10 I Co (OFF) 6 '"'" 15 5 4 CS(OFF) 2 o -15 25 -10 Supply Current VB. VIN 15 Capacitance VS. Temperature 20 18 3 I C (pF) 0 i\ V+=+15V V- =-15 V 1=1 MHz L 14 1+ ~ I- 12 t---c- r- CS(ON) + Co (ON) 10 8 ~ -2 ~ 16 I 2 -1 10 Vo (VOLTS) 4 (rnA) o -5 POSITIVE/NEGATIVE SUPPLIES (VOLTS) 1-,1+ I 12 r---,CS(ON) + COlON) 8 I- ..... l- V+=+15V V-=-15 V 1=1 MHz 14 / 800 ~ 16 / 1100 1-, 1+ 18 t' Co (OFF) 6 4 -<3 r-:- t- Ct(Oj) 2 o 2 4 6 8 10 12 14 16 0 -55 - - _.J FREQUENCY TESTED IN 2 r-' f MIN MAXb UNIT SUPPLY Positive Supply Current 1+ 1 0.9 1 -0.3 2 2 All Channels ON or OFF Negative Supply Current 1- mA -1 -1 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a'maxlmum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Signals onSx, Ox' or IN x exceeding V+ or V- will be clamped by Internal diodes. Umlt forward diode current to maximum current ratings. f. ID(ON) Is leakage from driver Into "ON" switch. DIE TOPOGRAPHY DG201A - . - - - 80 m l l s - - - " 4 -r 72 mils :~J 20X ICMCB 8 Capacitors 9 Resistors 5-120 49 P-channel enhancement MOSFETs 45 N-channel enhancement MOSFETs Pad No. 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 Function Input 1 Drain 1 Source 1 VGND Source 4 Drain 4 Input 4 Input 3 Drain 3 Source 3 V+ (Substrate) Source 2 Drain 2 Input 2 IrY' DG201A1202 Siliconix ,,1;;11 incorporated DIE TOPOGRAPHY DG202 1----' v-o-------~-------+--------~------------------~ APPLICATION HiNTS· V+ Positive Supply Voltage (V) VIN Logic Input Voltage VINHMin/ VINLMax (V) Vs or Vo Analog Voltage Range (V) 15 •• -15 2.4/0.8 -15 to 15 12 -12 2.4/0.8 -12t012 10 -10 -8 2.4/0.8 -10 to 10 -8 to 8 8 *** ... VNegative Supply Voltage (V) Application Hints are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Electrical Characteristic chart based on V+ = +15 V, V- = =15 V . Operation below 8 V is not recommended. 5-126 DG201A LOGIC INPUT SWITCH STATE 0 ON ~0.8 1 OFF ~ LOGIC VOLT LEVEL V 2.4 V DG202 LOGIC INPUT SWITCH STATE 0 OFF ~0.8 V 1 ON ~ LOGIC VOLT LEVEL 2.4 V DG201A1202 ...... Siliconix incorporated ~ APPLICATIONS 7 160r---~--~----~--~----~---' 'C4 SELECT O---I-"="'-Ir<-! 10 '03 120~---+----+----1----~----~--4 SELECTo--~~~~~ TTL CONTROL 15 'C2 SELECTo--~~~~~ 80 I-----I----""kVoltage 'Cl Gain - dB SELECTo--~~~~~ o 1----f------"1Mc%=1 M FREQUENCY - Hz ~~6~_ _ _ _ _~~-oVOUT AL(VOLTAGE GAIN BELOW BREAK FREQUENCY) 8 = %= 100 (40 dB) 'e ~=10K R, (BREAK FREQUENCY) =----1.27r%Cx 'L (UNITY GAIN FREQUENCY) = _ _1_ _ 27r R, Cx MAX ATTENUATION = 'OS (on) 10 K .. -40 dB Active Low Pass Filter with Digitally Selected Break Frequency III 15 16 t-____HlVOUT TYPICAL PERFORMANCE AQUISITION TIME =25.11S APERTURE TIME =I.11S =5mV SAMPLE TO HOLD OFFSET OROOPRATE =5 mV/S Sample and Hold 5-127 DG201A1202 ..,. Siliconix incorporated ~ APPLICATIONS VOUT +-_____-0"1 .......-;--+_"---' VIN2 0-4 RF1 18 k.n. 14 15 11 10 6 7 RG1 2k.n. GAIN 1 (X1) O----rlf- C==::-'t'-l REF GND'o--+-----' ~----~--~----------oODX INXo----JVV\--~~~ V- o-------~---------- __~------~-------------------' SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. Logic Input INl tr tf +5 < 20ns < 20ns Switch Input Switch Input V +15 V Dl Sl Vo Vs lkn 0.9 Vo Switch OutputVo Switch Output RL1CL 35 pF 0 OV Vo = Vs -15 V __ R_L_ RL + rDS(on) (Repeat Test for IN2 and IN3 • and I~ ) 5-139 DG211/212 Siliconix incorporated APPLICATIONS 1 V 2V 3V 4V 3 14 Vo 11 6 10 k.o. - 4 Vo 3 VOLTS 2 1 IN2 _ _ _ _ _...... IN31 _________________ ~ IN41______________________~ Figure 4. Four-Channel Analog Multiplexer PRECISION ,RTTENUATOR +5V +5V r +15V VIN VIN (MAX) = +150 V 13 00 2 1 9 M.o. 2 3 03 DATA BUS 02 900 k.o. 01 DO 15 14 74175 QUAD 0 FF PROCESSOR SYSTEM BUS R 90 k.o. 11 10 9 k.o. CLK 7 6 OG211 or OG212 1 k.o. -15 V Figure 5. 5-140 Microprocessor Controlled Analog Signal Attenuator VOUT "" DG211/212 ...... Siliconix incorporated ~ APPLICATIONS (Cont'd) FET INPUT OPAMP VINo-------I :>~----~~----------------oVOUT GAIN ERROR IS DETERMINED ONLY BY THE RESISTOR TOLERANCE. OP AMP OFFSET AND CMRR WILL LIMIT ACCURACY OF CIRCUIT. +5V 3 2 GAIN 1 o---+-!-.......d AV = 1 90 kn 14 15 5kn GAIN2 o-_ _+,,16"1-d AV = 10 VOUT R1 + R2 + R3 + R4 VIN = R4 = 100 11 WITH SW4 CLOSED 4kn GAIN 3 o----I--I-d Av =20 GAIN 4 6 o-_ _~8-1-d AV = 100 1 kn OG211 or OG212 -15 V Figure 6. .. Precision-Weighted Resistor Programmable-Gain Amplifier V1 15 16 OG211 VOUT Figure 7. DG211 Sample-and-Hold 5-141 DG211/212 Siliconix incorporated APPLICATION HINTS* DG211. DG212 V+ Positive Supply Voltage VNegative Supply Voltage VL Logic Supply Voltage VIN Logic Input Voltage VINH Mini VINL Max Vs or VD Analog Voltage Range (V) (V) (V) (V) (V) 20 -20 5 2.4/0.8 -20 to 20 15 -15 5 2.4/0.8 -15 to 15 * Application Hints are for DESIGN AID ONLY. not 12 -12 5 2.4/0.8 -12 to 12 10 -10 5 2.4/0.8 -10 to 10 8** -8 5 2.4/0.8 -8 to 8 10 -10 10 5/2 -10 to 10 guaranteed and not subject to production testing. Operation below ±8 V Is not recommended. r------------------~ INl I o--t---I+ +16 V °i:EJ BELOW) -15 V TO SCOPE ~~~~~6~~ -t~~~:.wr I : TO Sl +15 V 100 k.n I I I J-2--~1 M!l.1 I I I I R I (SEE BELO~~) I I _ I ~------------------~ ~~: ~ WO~PD~~~E~~~G~~[t.BLE BANDWIDTH, SLEW RATE, 6 100 k.n R IS ADDED FOR EXTRA GAIN ACCORDING TO FORMULA VOLTAGE GAIN = 2 + 1..QQIs. R Figure 8. 5-142 The 'Scope Extender" Which Displays 4-Channels Simultaneously On A Single Trace Scope DG221 4-Channel Monolithic SPST CMOS Analog Switch with Data Latches ...... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Accepts 230 ns Write Pulse Width • Compatible with Most ILP Buses • ILP Based Systems • On Chip Regulator 411 • Built on PLUS-40 Process • Latches Are Transparent with WR Low • Automatic Test Equipment Allows Wide Power Supply Tolerance Without Affecting TTL Compatibility • Communication Systems • Data Acquisition Systems • Reduced Power Supply Considerations • Allows Flexibility of Design DESCRIPTION The DG221 is a monolithic quad single-pole, single-throw analog switch designed for precision switching applications in communication, instrumentation and process control systems. Featuring independent onboard latches and a common WR pin, each DG221 can be memory mapped, and addressed as a single data byte for simultaneous switching. Designed on the Siliconix PLUS-40 CMOS process to combine low power dissipation and ON resistance (60 .n typ.) while handling continuous currents up to 20 mAo An epitaxial layer prevents latchup. PIN CONFIGURATION This device features true bidirectional performance in the ON condition, and will block signals to 30 V peak-to-peak in the OFF condition. ON resistance is extremely flat over the ±15 V analog signal range. Packaging for this device includes 16-pin ceramic, plastic, and small outline options. Performance grades include military, A suffix (-55 to 125°C), both industrial, Band D suffix (-25, -40 to 85°C), and commercial, C suffix (0 to 70°C) temperature ranges. FUNCTIONAL BLOCK DIAGRAM & TRUTH TABLE Dual-ln-L1ne Package _~S' IN, ~D, _~S2 IN2 ~D2 _~S3 Top View Order Numbers: CerDIP: DG221AK, DG221AK/883, DG221BK, DG221CK IN3 ~D3 Plastic: DG221CJ IN4 Q SO Package (Same pinout as DIPI , 2 3 4 5 6 7 8 Order Number: DG221DY - ~S4 Truth Table IN x 0 WR 0 1 0 OFF 1 Maintains Previous State X Logic "0" Logic "1" SWITCH ON ~ ~ 0.8 V 2.4 V iNA Input Is level sensitive (not edge triggered) ~D4 WR 0 - - - - - ' Four Latchable SPST Switches Per Package' Top View • Switches Shown for Logic "1" Input 5-143 DG221 Siliconix incorporated ABSOLUTE MAXIMUM RATINGS Operating Temperature (A (8 (C (0 Voltages referenced to VV+ ........................................... 44 V GND ......................................... 25 V Digital Inputs, WR, V s , Vof . .. (V-) -2 V to (V+) +2 V or ...................... , 20 mA, whichever occurs first Power 16-Pin 16-Pin 16-Pln Current, Any Terminal Except S or 0 ............ 30 mA Suffix) Suffix) Suffix) Suffix) ......... -55 to 125°C .......... -25 to 85°C ............ 0 to 70°C .......... -40 to 85°C Dissipation (Package)· CerDIP·· ............................ 900 mW Plastic DIp··· ........................ 470 mW SO···· .............................. 600 mW Continuous Current, S or 0 .................... 20 mA Device mounted with all leads soldered or welded to PC board. Derate 12 mW/oC above 75°C. Derate 6.5 mW/oC above 75°C. •••• Derate 7.7 mW/oC above 75°C. Peak Current S or 0 (Pulsed at 1 ms, 10% duty cycle max) .......... 70 mA Storage Temperature (A & 8 Suffix) ....... -65 to 150°C (C & 0 Suffix) ...... -65 to 125°C ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = +15 V V- = -15 V GND =WR = 0 V LIMITS 1_25°C A 2=125,B5,70°C SUFFIX 3=-55,-40,O°C -55 to 125°C !TEMP TYpd MINb MAx" B,C,D SUFFIX MINb MAXt UNIT SUPPLY Analog Signal Range Drain-Source e ON Resistance Source OFF Leakage Current C 1,2,3 VANALOG rOS(ON) -15 15 -15 15 Vo = 10 V 1,3 2 60 90 135 90 135 Vo = -10 V 1,3 2 70 90 135 90 135 Vs= 14 V Vo= -14 V 1 2 0.01 1 100 5 100 Vs= -14 V Vo= 14 V 1 2 -0.02 Vs= -14 V Vo= 14 V 1 2 0.01 Vs= 14 V Vo= -14 V 1 2 -0.02 Vo=Vs = 14V 1 2 0.1 Vo=Vs=-14V 1 2 -0.15 -1 -200 -5 -200 VIN = 2.4 V 1 2 -0.0001 -1 -10 -1 -10 VIN = 15 V 1 2 0.003 VIN = 0 V 1 2 -0.0004 VIN = 0.8 V Is = -1 mA V .0. IS(OFF) -1 -100 -5 -100 VIN = 2.4 V Drain OFF Leakage Current Drain ON Leakage Current 1 100 5 100 nA IO(OFF) IO(ON) -1 -100 -5 -100 1 200 5 200 VIN = 0.8 V INPUT Input Current with Input Voltage HIGH Input Current with Input Voltage LOW 5-144 IINH IWRH IINL IWRL 1 10 -1 -10 1 10 -1 -10 J.LA H DG221 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = +15 V V- = -15 V GND = WR = 0 V LIMITS 1=25·C A 2=125,85,70·C SUFFIX 3=-55,-40,0 ·C -55 to 125°C TEMP TYpd B,C,D SUFFIX MIN b MAX' MINb MAXt UNIT DYNAMIC Turn-ON Time Turn-OFF Time tON tOFF See Switching Time Test Circuit Figure 1 1 550 550 1 340 340 1 550 550 1 340 340 ns Turn-ON Time Write Turn-OFF Time Write Charge Injection tON' WR tOFF, WR Q Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Channel ON Capacitance CO(ON) + CS(ON) OFF Isolation See Switching Time Test Circuit Figure 2 C L = 1000 pF, Vgen = 0 V Rgen = O!l. 1 20 Vs= 0 V VIN=5V 1 8 Vo = 0 V VIN =5V 1 9 Vo=Vs= 0 V VIN=OV 1 29 V IN =5V 1 70 Vs = 1 VP-P' f= 100 kHz CL = 15 pF, RL = 1 k!l. 1 90 1 0.8 1 -0.4 f = 1 MHz pC pF dB Interchannel Crosstalk Isolation SUPPLY Positive Supply Current Negative Supply Current 1+ 1- All Channels ON or OFF VIN = 0 V or 2.4 V 1.5 1.5 mA -1 -1 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. ArOS\ON) Is guaranteed to be within ±5% swltch-to-swltch within a package (not a tested parameter). f. Signa on Sx, D x , WR, IN x exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. 5-145 DG221 ..,. Siliconix .6;11 incorporated DIE TOPOGRAPHY .....---@IIS----I...~I l ' 16 Pad No. 15 3 4 l J 13 5 6 ~------~~----~~ leMMA 8 Capacitors 11 Resistors 66 P-channel depletion MOSFETs 20X 83 mils 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function Input 1 Drain 1 Source 1 v- GND Source 4 Drain 4 Input 4 Input 3 Drain 3 Source 3 WR V + (Substrate) Source 2 Drain 2 Input 2 68 N-channel depletion MOSFETs 2 NPN Bipolar Transistors FUNCTIONAL SCHEMATIC (Single Channel Shown) v+ Sx GND INx Ox WR V- 5-146 DG221 wy" Siliconix ~ incorporated SWITCHING TIME TEST CIRCUIT = Switch output waveform shown for Vs constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. oV LOGIC 3 V INPUT 0 V t r <10ns tj<10ns +15 V SWITCH SWITCH INPUT S 1 OUTPUT V S =+2 V 0-1-----0"': "'--1_0:-_-__-0 V OUT sf~~~~ VS--t--~====~==~-SWITCH OUTPUT 0 V ---1I--...J VOUT = Vs LOGIC ·0" = SWITCH ON RL R L+ rOS(ON) (REPEAT TEST FOR IN2 .IN3 AND IN4 ) Figure 1 WR SWITCHING TIME TEST CIRCUIT LOGIC INPUT t r < 20 ns tj < 20 ns +15 V V+ 3V WR SWITCH SWITCH INPUT S 1 OUTPUT V S =+2 V 0-1-----0" "'~-O:-....,..-~_oV OUT OV V OUT CL:T 35 PF.-L VS----I---~===t==~ OV---+---J V OUT = V S LOGIC "0· = SWITCH ON RL (REPEAT TEST FOR R L+ rOS(ON) IN2.IN3 AND IN4 ) Figure 2 WR SETUP CONDITIONS WR/INPUT MINIMUM TIMING REQUIREMENTS PARAMETER Write Pulse Width MIN LIMIT tww 230 Data Valid to Write tow 180 Data Valid After Write two 30 UNIT ns Figure 3 5-147 DG221 . . . Siliconix incorporated ~ CHARGE INJECTION TEST CIRCUIT RGEN ~ Sx Vo V GEN .=. 1 T "- INX~ WR - -.1_ AVO = measured voltage error due to charge InJection. The error voltage In coulombs Is AQ CL xA Vo. = - OFF ISOLATION TEST CIRCUIT +15 V CHANA ANALYZER CHAN B 1 - - - - ' C = O.OOlJl.F 1I1Jl.F CHIP CAPACITORS 5-148 OFF ISOLATION = 20 LOG I~ ~ I DG221 .... Siliconix incorporated ~ CHANNEL TO CHANNEL CROSSTALK TEST CIRCUIT +15 V ~ v D1 V S1 I I I -=- - _...1 ov r- -=- OV I I I CHANA VS2 -=VC2 ANALYZER NC CHANBI---....I - ~ - C = O.001JLF" 1JLF CHIP CAPACITORS -15 V CCRR = 20 LOGI ~I APPLICATION HINTS V+ Positive Supply Voltage (V) VNegative Supply Voltage (V) GND (V) (V) Input Logic Voltage (V) -WR Analog Signal Range (V) 15 -15 0 0.8/2.4 0.8/2.4 ±15 20 -20 0 0.8/2.4 0.8/2.4 ± 20 10 -10 0 0.8/2.4 0.8/2.4 ±10 10 -5 0 0.8/2.4 0.8/2.4 +10/-5 5-149 DG221 ..... Siliconix incorporated ~ APPLICATIONS IN1 IN2 IN3 IN4 WR" 0 0 0 0 0 1 1 1 1 0 WR IN1 IN2 IN3 IN4 All 0 0 1 1 1 0.1 None 0 1 0 1 1 0.01 ON Switch Gain 0 1 1 1 0 1 0 1 1 0 1 0.001 1 0 1 1 0 2 0 1 1 1 0 0.0001 1 1 0 1 0 3 1 1 1 0 0 4 " WR may be held at '0" for temporary operation similar to DG201A's. With WR at '0" SW1 will remain ON as long as' IN 1" Is held at "0". +15 V V+ 9M.n. DG221 IN1 DATABUS 900 k.n. > 90 k.n. 9 k.n. 1 k.n. >--,--oVo -15 V Figure 4. jJ. P Controlled Analog Signal Attenuator The TL081 Is used as unity gain buffer while DG221 selected voltage divider provides attenuation. 5-150 DG243 Monolithic General Purpose CMOS Analog Switch IrF' Siliconix ~ incorporated FEATURES II PLUS-40 Process II Make-Before-Break Operation II Full Rail-to-Rail Analog Signal Range II True TIL Compatibility BENEFITS APPLICATIONS o Reduced Power Supply Considerations o Programmable Gain Amplifiers o Reduced Switching Noise o Analog Multiplexing o Reduced Need for Buffers til Servo Control Systems • Pull-Up Resistors Not Required DESCRIPTION The DG243 is a monolithic dual SPDT analog switch designed for general switching applications in communication, instrumentation, and process control systems. Featuring make-before-break action, the DG243 can be used in closed loop systems to switch gain or bandwidth networks without opening the loop. with a high breakdown voltage rating of 40 V. An epitaxial layer prevents latchup. Each switch conducts equally well in both directions when ON, and blocks up to 30 Volts peak-to-peak when OFF. ON resistance is fairly flat over the full ±15 V analog signal range. The DG243 is designed on the Siliconix PLUS-40 CMOS process to combine low power dissipation Packaging for this device includes a 16-pin CerDIP and plastic options. Performance grades include military, A suffix (-55 to 125°C) and commercial, C suffix (0 to 70°C) temperature ranges. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM S1~D1 Dual-ln-L1ne Package S3 IN 1 ~A--oD3 I 0 o-----D--C>-..J S2~D2 ~A--oD4 S4 0 o-----D--C>-..J I IN 2 Two SPST Switches per Package' Top View Order Numbers: CerDIP: DG243AK, DG243AK/883 Plastic: DG243CK. DG243CJ Truth Table SW1 SW3 SW2 SW4 0 OFF ON ON 1 OFF Logic "0" < 0.8 V Logic "1" ~ 2.0 V LOGIC • Switches Shown for Logic "1" Input 5-151 Siliconix incorporated DG243 ABSOLUTE MAXIMUM RATINGS vv+ ........................................... Voltages referenced to 44 V V L ............................ (GND -0.3 V) to 44 V GND ......................................... 25 V DlgitallnputsaVs, Vo .............. -2 V to (V+ +2V) or . . . . . . . . . . . . . . . . . . . . . .. 30 mA, whichever occurs first Current, Any Terminal Except S or D ............ 30 mA Continuous Current, S or D .................... 30 mA Peak Current, S or D (Pulsed at 1 ms, 10% duty cycle max) ......... 100 mA Storage Temperature (A Suffix) ........... -65 to 150°C (C Suffix) ........... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (C Suffix) ............ 0 to 70°C Power Dissipation· 16-Pin CerDIP·· ............................ 900 mW 16-Pin Plastic DIp··· ........................ 450 mW All leads soldered or welded to PC board. Derate 12 mW/oC above 75°C. ••• Derate 6 mW/OC above 75°C. ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: SYMBOL PARAMETER V+ = +15 V V- = -15 V GND = 0 VL = 5 V LIMITS 1=25°C A 2=125,85,70°C SUFFIX 3--55,-0°C -55 to· 125°C EMP TYpd MIN b MAX' C SUFFIX o to 70°C MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance rOS(ON) Source OFF Leakage Current IS(OFF) Drain OFF Leakage Current Vo = ± 10 V Is=10mA 1,3 Vs= 14 V Vo= -14 V Vs= -14 V Vo= 14 V 2 Vs= -14 V Vo= 14V 1 2 0.17 Vs= 14 V Vo= -14 V 1 2 -0.35 1 0.05 15 -15 15 V .n 30 50 75 50 75 1 2 0.2 1 100 1 100 1 -0.3 2 -1 -100 -1 -100 1 100 1 100 nA lo(oFF) Vs=Vo=14V Drain ON Leakage Current -15 1,2,3 VANALOG -1 -100 -1 -100 2 200 2 2 200 lo(oN) -2 Vs=Vo=-14V 1 2 -0.04 -2 -200 1 -0.01 2 -1 -1 1 1 -1 -1 1 1 -0.005 -1 -1 1 1 -1 -1 1 1 -200 INPUT Input Current with Input Voltage HIGH IINH VIN = 2.0 V Input Current with Input Voltage LOW IINL VIN = O.B V .llA 5-152 1 2 H DG243 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+=+15V V-=-15V GND = 0 VL = 5 V LIMITS 1=25·C A 2=125,85,70·C SUFFIX 3=-55,O·C -55 to 125°C TEMP MINb MAx" TYpd C SUFFIX a to 70°C MINb MAXb UNIT DYNAMIC Turn-ON Time tON Turn-OFF Tlma tOFF Charge Injection Q Source-OFF Capacitance Drain-OFF Capacitance Channel ON Capacitance C L = 1000 pF, Vgen = 0 V Rgen = O.n. CS(OFF) CD(OFF) 1 250 500 700 1 390 1000 1200 1 60 1 15 1 17 1 45 See Switching Time Test Circuit VD=VS= 0 V VIN = 0 V f = 1 MHz CD(ON) + CS(ON) ns OFF IsolationS VIN = 5 V, ZL=75.n. 1 75 Crosstalk ( Channel-to-Channel) Vs= 2.0 V, f = lMHz 1 89 pC pF dB I SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1 180 1 -150 IL 1 100 IGND 1 -140 300 -300 300 -300 ~A All Channels ON or OFF Logic Supply Current Ground Supply Current 300 -300 300 -300 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. For Logic "1" - V INH = 2.0 V For Logic "0" - V INL = 0.8 V 5-153 DG243 ...... Siliconix incorporated ~ DIE TOPOGRAPHY "'~"----107 m l l s s - - - - -...... , Pad No. ~l 1 3 4 5 6 8 9 10 11 12 13 14 15 16 10 9 ! 69 mils 3 8 ~--~------------------~~ Function Drain 1 Drain 3 Source 3 Source 4 Drain 4 Drain 2 Source 2 Input 2 V + (Substrate) VL GND VInput 1 Source 1 ICMKC 9 Capacitors 6 Resistors 31 P-channel enhancement MOSFET 33 N-channel enhancement MOSFETs 9 Diodes SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs =constant with logic input waveform as shown. Note that VS may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. +5 V t r <20ns tf <20 ns LOGIC INPUT 0 V S~~S~ +15 V SWITCH INPUT S 1 Vs = ±10 V SWITCH OUTPUT 0-1-----0"': "-t-CI'--r--r-o V OUT +-___ Vs_~~_ _ _ _ SWITCH OUTPUT 0 V ---1-J (REPEAT TEST FOR IN2) NOTE: Logic Input waveform Is Inverted for switches that have the opposite logic sense control. CHARGE INJECTION TEST CIRCUIT INX~F =measured voltage error due to charge InJection. The charge Injection In coulombs Is b. Q = C L X b. V0- b. Vo 5-154 DG243 ..... Siliconix ,.1;11 incorporated SCHEMATIC DIAGRAM (Typical Channel) V+ ~----~----~--~--OSx LOGIC TRIPPOINT REF CaMP 1--1---1 GND 0 - - " - - - - ' IN x L-----~--~-------oDx o----'\M~--4---' VAPPLICATIONS The make-before-break operation of the DG243 provides simple transient suppression in these two important applications. Figure 1 shows a minimum amount of glitching during changes of gain states. The relatively low impedance of the gain setting resistors 10k, 1 kil, 100 il shunt the injected charge to ground minimizing transient effects occurring at the inverting input of the op amp. Consequently, these transients are not amplified to VOUT. - V IN - - - - - - - - - - - ~-------~--oVOUT VOUT~ 10 k.rl IN~ 100 k.rl CLEAN TRANSITIONS NO GLITCHES DUE TO CHARGE COUPLING 1/2 DG243 Figure 1. Improving Transient Response In Programmable Gain Amplifiers. "Getting Rid of Glitches" . Figure 2 takes advantage of the make-before-break operation of the DG243 by shorting transition current to real ground instead of virtual ground. The best results are obtained by selecting an op amp with the proper offset voltage specification. DG243 >---+-0 V IN2 o-..JVI/I.r--il---~-<:r V OUT '"--i--' Figure 2. Minimizing Glitches In Audio Switching 5-155 .-po Siliconix DG271 High-Speed Quad Monolithic SPST CMOS Analog Switch ~ FEATURES BENEFITS APPLICATIONS • Fast Switching tON, tOFF < 60 ns • Faster System Operation • High Speed Switching • Reduced Switching Glitches • Sample/Hold • Charge Injection < 9 pC • Low Impedance Operation • rDS(ON) < 50 n incorporated • Digital Filters • Op Amp Gain Switching • TIL Compatible • Disk Drives DESCRIPTION The DG271 high speed quad single-pole single-throw analog switch is intended for applications that require low ON resistance (rDS(ON) < 50 n), low leakage currents (I S(ON) < 1 nA), and fast switching speeds (toN < 60 ns). Built on Siliconix' proprietary high voltage silicon gate process to achieve superior ON/OFF performance, each switch conducts equally well in both directions when ON, and blocks up to 30 volts peak-to-peak when OFF. An epitaxial layer prevents latchup. Packaging for this device includes the 20-pin LCC, 16-pin CerDIP, plastic DIP, and small outline options. Performance grades include military, A suffix (-55 to 125°C), commercial, C suffix (0 to 70°C), and both industrial, Band D suffixes (-25, -40 to 85°C) temperature ranges. PIN CONFIGURATION Dual-In-Llne Package SO Package IN 1 1 01 IN2 O2 S2 v- v+ GNO NO (Same pinout as OiP) 1 234 5 6 7 8 S3 Top View Order Number: Top View DG271DY Order Numbers: CerDIP: DG271AK. DG271AK/883 DG271BK, DG271CK PlastIc: 5-156 DG271CJ Order Number: DG271AZ/883 DG271 ..... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM TRUTH TABLE LOGIC SWITCH 0 1 ON OFF Logic "0" .!i: 0.8 V Logic "1" .:2: 2.0 Y • Switches Shown for Logic "1" Input Four SPST Switches per Package" ABSOLUTE MAXIMUM RATINGS (C Suffix) ...........• 0 to 70°C (D Suffix) .......... -40 to 85°C V+ to V- ..................................... 44 V GND to V- .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 V Dlgltallnputs8 Vs. Vo ... ..... (V-) -2 V to (V+) +2 V or . . . . . . . . . . . . . . . . . . . . .. 20 mAo whichever occurs first. Current. Any Terminal Except S or D ............ 30 mA Continuous Current. S or D ..................•. 20 mA Peak Current. S or D (Pulsed at 1 ms, 10% duty cycle max) ......... 100 mA Storage Temperature (A. 8 & D Suffix) .... -65 to 150°C (C Suffix) ........... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (8 Suffix) .......... -25 to 85°C Power 16-Pln 16-Pln 16-Pln 20-Pln Dissipation (Package)" CerDIP" ....................•....... Plastic DIP"" ........................ Plastic SO ........................... LCC""""" ..................•......... 900 470 600 750 mW mW mW mW Device mounted with all leads soldered or welded to PC board. Derate 12 mW/oC above 75°C. Derate 6.5 mW/oC above 75°C. Derate 7.6 mW/oC above 75°C. Derate 7.6 mW/oC above 75°C. 5-i57 DG271 II'1P" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+ = +15 V V- = -15 V GND = 0 V PARAMETER LIMITS 1=25·C A 2=125,85,70·C SUFFIX 3=-55,-40,-25,O·C -55 to 125°C SYMBOL TEMP VANALOG 1,2,3 TYpd B,C,D SUFFIX o to 70°C -25 to 85°C MINb MAX' MINb MAXI UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance rOS(ON) Source OFF Leakage Current IS(OFF) Is = 1 mA,VIN = 0.8 V Vo = ± 10 V -15 15 -15 15 V .n 1 2,3 32 50 75 50 75 Vs= 14 V Vo= -14 V 1 2,3 0.05 1 100 1 100 Vs= -14 V Vo= 14 V 1 2,3 0.05 Vo= 14 V Vs= -14 V 1 2,3 0.05 VO= -14 V Vs= 14 V 1 2,3 0.05 Vo =Vs = 14 V 1 2,3 0.05 Vo=Vs=-14V 1 2,3 0.05 -1 -200 -1 -200 VIN = 2.0 V 1 2,3 0.010 -1 -10 -1 ' -10 VIN = 15 V 1 2,3 0.010 VIN=OV 1 2,3 0.010 -1 -100 -1 -100 VIN = 2.0 V Drain OFF Leakage Current IO(OFF) Channel ON Leakage Current IO(ON)+ IS(ON) 1 100 1 100 nA -1 -100 -1 -100 1 200 1 200 VIN = 0.8 V INPUT Input Current with Input Voltage HIGH Input Current with Input Voltage LOW IINH IINL 1 10 -1 -10 1 10 JlA -1 -10 DYNAMIC Turn-ON Time tON Turn-OFF Time tOFF Charge Injection Q See Switching Time Test Circuit C L = 1000 pF, Vgen = Rgen = o.n 1 2,3 50 60 75 60 75 1 2,3 45 60 75 60 75 1 9 1 2,3 4.3 1 2,3 -3.4 ns aV pC SUPPLY Positive Supply Current 1+ Negative Supply Current 1- All Channels ON or OFF 5-158 7.5 11 7.5 11 mA -6 -10 -6 -10 DG271 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. V 1N = Input voltage to perform proper function. For Logic "1" - VINH = 2.0 V For Logic "0" - V 1NL = 0.8 V DIE TOPOGRAPHY Pad No. 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 ........- - - 8 1 mils - - -... 2 3 4 5 6 7 Function Input 1 Drain 1 Source 1 VGND Source 4 Drain 4 Input 4 Input 3 Drain 3 Source 3 V + (Substrate) Source 2 Drain 2 Input 2 CSHB 4 Capacitors (1.71pF) 6 Resistors 46 P-channel enhancement MOSFETs 54 N-channel enhancement MOSFET 8 Diodes TYPICAL CHARACTERSITICS Leakage Currents rOS(ON) vs. Vo and Power Supply Voltage 80 rOS(ON) (.0. ) A: B: C: 0: ±5 V Supplies ±7.5 V +10 V ±15 V I V -- 60 "" i/o"- 40 ~ r--..... T A = 25°C Is =-10mA ~ C 0 " 15 ,10 (pA) V - V 20 -15 -10 -5 0 5 10 15 V o - DRAIN VOLTAGE (V) Analog Voltage IS(OFF) or 10(OFF) o Al 1/ VB. -50 -100 --- ~Nl // VI Il -150 -15 TA = 25°C I -10 -5 o 5 10 15 5-159 .. DG271 .... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) Input Switching Threshold vs. V+ and VSupply Voltages 2.5 Supply Currents vs. Switching Frequency r---,....---r---"'T'"---' 8 7 2.01---+----+---1""...-:. 6 1.5 I---+----I--...~' 5 1+,1(rnA) VT (V) 1.01---+----," 4 ./~ 1+ ....... 1' 3 1- 0.51---t.:.-'''----I----t----I 2 O~----~----------~----~ o ±5 ±10 ±15 ±20 10 4 V+, V- POSITIVE & NEGATIVE SUPPLIES (V) 10 5 10 s SWITCHING FREQUENCY SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs =constant with logic input waveform as shown. Note that VS may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of ou~put waveform. +15 V V+ LOGIC 5 V INPUT 0 V 50% t r <20 ns t! < 20 ns Vs SWITCH INPUT S 1 = ±10 V o-I-----o~ SWITCH OUTPUT ...-i-O'--,..-...,....OV 0 S'r~~5~ Vs g;r+~5~ V 0 _----if-oJ (REPEAT TEST FORIN2' IN3 ' 11Il4) BURN-IN CIRCUIT r-ir:==:::;-""t-Q +16 V 160--1-. 16 14 130--1-" 12 11 10 9 +16 V Note: All Resistors are 10 k 5-160 .n unless otherwise specified Note: LCC package uses same circuit and conditions as the DIP DG300A/301 A/302A/303A CMOS Analog Switches ..,. Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Analog Signal Range ±15 V • Full Rail to Rail Analog Signal Range • Low Level Switching Circuits • Fast Switching « 250 ns) • Low Signal Error • Low rDS(ON) « 50 n) o Low Power Dissipation • Programmable Gain Amplifiers III • Single Supply Operation Portable and Battery Operated Circuits • Latchproof CMOS DESCRIPTION The DG300A-DG303A family of monolithic CMOS switches feature three switch configuration options (SPST, SPDT, and DPST) for precisior, applications in communications, instrumentation and process control, where low leakage switching combined with low power consumption are required. Designed on the Siliconix PLUS-40 CMOS process, these switches are latch proof, and are designed to block up to 30 Volts peal¥-to-peak when OF~. An epitaxial layer prevel'TtS latchup. Featuring low power consumption (a few mW) these switches are ideal for battery powered applications, without sacrificing switching speed. Designed for break-before-make switching action, these devices are quasi m and CMOS compatible. Single supply operation is allowed by connecting the V- rail to 0 volts. In the ON condition the switches conduct equally well in both directions (with no offset voltage) and minimize error conditions with their fairly flat ON resistance. Package options for this series include 14-pin CerDIP and plastic DIP. Performance grades include the military, A suffix (-55 to 125 D C), commercial, C suffix (0 to 70 D C) , and industrial, B suffix (-25 to 85 D C) temperature ranges. Additionally, the DG300A and DG301 A are available in 10-pin metal cans, while the DG301A and DG303A are available in 20-pin LCC packages. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM DG300A Metal Can Package Dual-In-Llne Package S, o----ll-----~:)_I."--I_o() 0, Top View Top View V+ (SUBSTRATE & CASE) ~ NC IN, GNO 7 ~~~- Two SPST Switches per Package" GNO Order Numbers: DG300AAA, DG300AAA/883 DG300ABA. DG300ACA CerDIP: DG300AAK. DG300AAK/883 DG300ABK, DG300ACK Plastic: DG300ACJ Logic "0" S 0.8 V Logic "1" ~4.0 V Switches Shown for Logic" 1" Input 5-161 .-F' Siliconix DG300Al301 Al302A1303A ~ incorporated FUNCTIONAL BLOCK DIAGRAM (Cont'd) PIN CONFIGURATION (Cont'd) Dual-In-Llne Package Metal Can Package Top View Top View V+ Dl D2 NO NO DG301A 52 IN 51 o---~-----------o~ NO NO 52 o---~-----------o~ V- GND Order Numbers: CerDIP: DG301AAK, DG301AAK/883 DG301ACK, DG301ABK Plastic: DG301ACJ Order Numbers: DG301AAA,DG301AAA/8B3 DG301ABA, DG301ACA DN N One SPOT Switch per Package' 0 N O0E + 2l l NO NO NO 51 NO IN V D Top View 52 NO NO LCC Package Order Number: DG301AAZ/883 NO I N G N V N NO - 0 D Dual-In-Llne Package 51 0---1------------0..,.- Dl Top View 53 o---I------------o-r....-J.--o D3 IN2 s20---1------------O~1L- D2 540---t:::::::::::~::~:t--oD4 Two DPST Switches per Package' Order Numbers: CerDIP: DG302AAK, DG302AAK/883 DG302ABK, DG302ACK Plastic: DG302ACJ DG303A 51 Dual-In-Llne Package Top View 5 N Top View V+ 54 D4 D2 52 53 N V 5 o'CJ~ NO Dl NO NO 51 NO 52 ~ INl IN2 52 0---1------------<)-:-....-10--0 54 D4 IN2 V- Order Numbers: CerDIP: DG303AAK, DG303AAK/883 DG303ABK, DG303ACK Plastic: DG303ACJ I G N V I N N 0 - N 1 D 2 Two SPOT Switches per Package' TRUTH TABLE"" LCC Package LOGIC Order Number: DG303AAZ/883 0 1 SWl SW2 OFF ON SW3 SW4 ON OFF " 5wltches 5hown for logic "1" Input "" Logic "0" .:;0.8 V, Logic "1" ::.4.0 V 5-162 D2 DG300Al301 Al302A1303A ..... Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS Voltages Referenoed to VV+ ........................................... 44 V GND ......................................... 25 V Digital Inputs, Vs, Voe ........ (V-) -2 V to (V+) +2Vor ..................... , 30 mA, whichever oocurs first. Current, Any Terminal Except S or D ............ 30 mA Operating Temperature (A Suffix) ......... -55 to 125·C (8 Suffix) .......... -25 to 85·C (C Suffix) ..........•. 0 to 70·C Power 14-Pln 10-Pln 14-Pln Continuous Current, S or D ...............•.... 30 mA (Pulsed at 1 ms, 10% duty cycle max) ......... 100 mA Storage Temperature (A & 8 Suffix) ....... -65 to 150·C (C Suffix) ........... -65 to 125·C Dissipation· CerDIP (K)·· ......................... 825 mW Metal Can (A)··· ..................... 450 mW Plastic DIP (J) .......... " ...... , , " " 470 mW Device mounted with all leads soldered or welded to PC board. Derate 11 mW'·C above 75·C. Derate 6 mW'·C above 75·C. Derate 6.5 mW'·C above 75·C. ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Speclfed: PARAMETER V+ = 15 V V- = -15 V GND = 0 V SYMBOL LIMITS 1=25·C 2=125,85,70 ·C 3=-55,-25,0 ·C TEMP TYpd A SUFFIX -55 to 125°C B, C SUFFIX MINb MAXb MINb MAXb UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Source OFF Leakage Current VANALOG 1,2,3 -15 15 -15 15 Vo= 10 V Is= -10 mA 1,3 2 30 50 75 50 75 Vo= -10 V Is=10mA 1,3 2 30 50 75 50 75 Vs= 14 V Vo= -14 V 1 2 0.1 1 100 5 100 Vs= -14 V Vo= 14 V 1 2 -0.1 Vo= 14 V Vs= -14 V 1 2 0.1 Vo= -14 V Vs= 14 V 1 2 -0.1 Vo=Vs= 14 V 1 2 0.1 Vo=Vs= -14 V 1 2 -0.1 -2 -200 -5 -200 VIN =5V 1 2,3 -0.001 -1 -1 -1 VIN = 15 V 1 2,3 0.001 VIN=OV 1 2,3 -0.001 rOS(ON) V .n IS(OFF) VIN = 0.8 V -1 -100 -5 -100 or Drain OFF Leakage Current Drain ON Leakage Current VIN = 4.0 V 1 100 5 100 IO(OFF) nA -1 -100 -5 -100 5 100 1 100 IO(ON) r INPUT Input Current with Input Voltage HIGH Input Current with Input Voltage LOW IINH IINL 1 1 1 -1 -1 jl.A -1 5-163 .. DG300Al301 Al302A1303A Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specilied: PARAMETER SYMBOL V+ = 15 V V- = -15 V GND = 0 V LIMITS 1_25°C 2=125,85,70°C 3=-55,-25,O°C A SUFFIX -55 to 125°C B,C SUFFIX MINb MAXb MINb MAXb UNIT TEMP TYpd 1 150 300 1 130 250 1 50 1 3 Vs= 0 V 1 14 Vo= 0 V 1 14 Vs=Vo=OV 1 40 VIN=OV 1 6 VIN = 15 V 1 7 1 62 1 74 1,2 3 0.23 1,3 2 -0.001 1,3 2 0.001 1,3 2 -0.001 DYNAMIC Turn-ON Time Turn-OFF Time Break-Belore-Make Interval Charge Inlectlon tON See Switching Time Test Circuit tOFF tON -tOFF Q Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) See Break-Belore-Make Test Time Circuit DG301A1303A ONLY C L = 1 nF, Rgen = 0.0. Vgen=OV VIN = 0.8 V or VIN = 4.0 V ns pC , 1=1 MHz Channel-ON Capacitance Input Capacitance CO(ON) + CS(ON) C in 1= 1 MHz VIN=OV RL = 1 k.n Vs = 1 V rms 1= 500 kHz OFF Isolation Crosstalk (Channel-to-Channel) pF dB SUPPLY Positive Supply Current 1+ VIN = 4.0 V (One Input) (All Others = 0 V) Negative Supply Current 1- Positive Supply Current 1+ 1.0 0.5 1 -10 -100 mA -100 100 10 100 .I1A VIN = 0.8 V (All Inputs) Negative Supply Current 1- -10 -100 -100 NOTES: a. Refer to PROCESS OPTION FLOWCHART lor additionallnlormatlon. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are lor DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Signals on Sx, D x , or IN xexceedlng V+ or V- will be clamped by Internal.dlodes. Limit diode lorward current to maximum current ratings. V I. OFF Isolation: 20 log V~ Vs = Input to OFF switch, Vo = Output. 5-164 -= lDG300Al301 Al302A1303A trY" Siliconix ~ incorporated DIE TOPOGRAPHY DG300A I 4 87 mils Pad No 2 4 6 7 8 9 11 13 14 Function Drain 1 Source 1 Input 1 Ground V- Input 2 Source 2 Drain 2 V+ (Substrate) 1 6 20X ICMJA 4 Capacitors 22 N-channel depletion MOSFET 4 Diodes 2 Resistors 18 P-channel depletion MOSFET DG301A I~ 11 I 87 mils Pad No 2 4 6 7 8 11 13 14 Function Drain 1 Source 1 Input Ground v- Source 2 Drain 2 V + (Substrate) 1 6 20X ICMJB 4 Capacitors 15 N-channel depletion MOSFET 1 Resistor 2 Diodes 11 P-channel depletion MOSFET 5-165 DG300Al301 Al302A1303A ..... Siliconix incorporated ~ DIE TOPOGRAPHY (Cont'd) DG302A Pad No. I 3 4 5 10"1'" 2 3 4 5 6 7 6 9 10 11 12 13 14 Function Source 3 Drain 3 Drain 1 Souce 1 Input 1 Ground VInput 2 Source 2 Drain 2 Drain 4 Source 4 V + (Substrate) ICMJA 8 Capacitors 2 Resistors 22 P-channel depletion MOSFET 30 N-channel depletion MOSFET 4 Diodes DG303A ~I 3 4 11 5~___~=--=-- ~1087r ___ ICMJC 8 Capacitors 2 Resistors 22 P-channel depletion MOSFET 5-166 30 N-channel depletion MOSFET 4 Diodes Pad No. Function 2 3 4 5 6 7 Source 3 Drain 3 Drain 1 Souce 1 Input 1 Ground 8 V- 9 10 11 12 13 14 Input 2 Source 2 Drain 2 Drain 4 Source 4 V + (Substrate) DG300Al301 Al302A1303A .... Siliconix incorporated ~ TYPICAL CHARACTERSITICS rOS(ON) vs.Vo and Temperature rOS(ON) vs. Vo and Power Supply Voltage 130 110 90 A: B: C: D: E: F: V+ V+ V+ V+ V+ V+ = = = = = = 5 V, B V, 10 V, 12 V, 15 V, 20 V, VVVVVV- = = = = = = -5 -B -10 -12 -15 -20 60 V V V --1----1 V V V --+----1 V+ = ~15 V V- = -15 V 50 ...-- ............ 40 rOS(ON) (.n) 70 t----1r---t....t:lf-V---+---I rOS(ON) (.n) 30 -- 5 0 t - - - i - - + -__~---1r---i - 20 10~--~----~----~--~~--~ -25 -5 -15 5 15 A: 125°C B: 25°C C: -55°C 10 -15 25 ............. ............. -10 B ~ r'.. -5 0 Vo (V) Vo(V) 30 Q (pC) 20 10 o I '/ -15 tON, tOFF (ns) - ~\. -10 / '""" -5 o 400 1\ \ 300 tOF 15 Vs (V) Input Switching Threshold vs. Positive Supply Voltage 7 I 600 500 400 ~-- - 1+, 1(j.lA) 300 200 DG301/DG303 ONLY o 5 10 15 V+ - POSITIVE SUPPLY VOLTAGE (V) V+I = +115 V V-=-15V VIN = 4 V (one Input) _ (all other = 0) 5 10 15 V+ - POSITIVE SUPPLY VOLTAGE (V) - -460j.lA 1+ - :-- 0 -Oj015fA -200 -55 -35 -15 - 220j.lA I- 100 -100 o ~ 700 5 2 ~ Supply Current vs. Temperature .I, 4 \ '\ r-- BOO 6 i - V- = -15 V T A= 25°C 3 15 toN' ~, o 10 10 = -15 V T A= 25°C VINH = 4.0 V VINL =OV I'\. 200 100 ../ 5 --- v- 500 V+ = +15 V V- = -15 V C L = 1 nF 40 5 Switching Time and Break-Before-Make Time vs. Positive Supply Voltage Charge Injection vs. Analog Voltage (Vs) 50 --...--- A ............. 1- 10. lB r A 5 25 45 65 B5 105 125 TEMPERATURE (OC) 5-167 DG300Al301 Al302A1303A W'F' Siliconix ~ incorporated TYPICAL CHARACTERSITICS (Cont'd) Off Isolation vs. Frequency 150 100 rISO. (dB) 50 o "" V+=+15V V-=-15V r-- RL = 50.0. l"ITlll"TITlii[1 0.0001 0.001 0.01 1"--1' ~ 0.1 10 100 FREQUENCY (MHz) Crosstalk vs. Frequency 120 -- 1" 1'1"- 100 V+ = +15 V V-=-15V RL = 50.0. See CROSSTALK Test Setup XTALK (dB) 1\ 80 \.. ~I"- i" 60 0.0001 0.001 0.01 0.1 10 100 FREQUENCY (MHz) Supply Currents vs. Switching Frequency 15 I Z,~I~II+Nv"' V- = -15 V I O(OFF) or I S(OFF) vs. Temperature ~ 10 3 10 IV+ ~ +15 1V V- = -15 V ~,Vo = 14 V 2 1+, 1(mA) IO(OFF),10 ~ IS(OFF) (nA) 10 1 5 1+ o I- 10° 5-168 I § ~ 10 - V Os ./ 1 L- 10 1 10 2 FREQUENCY (kHz) .... 10 3 V- V V ./ 10-2 -55 -35 -15 5 25 45 65 85 TEMPERATURE (OC) 105 125 ~ ~ DG300Al301 Al302A1303A Siliconix incorporated TYPICAL CHARACTERSITICS (Cont'd) Switching Time I D(ON) vs. Temperature ~ IV+ ~ +lSIV V- = -15 V r - I VD = ±14 V IS(ON) (nA) 10' V 10-2 -55 -35 -15 V+ = 115 V V- = -15 V 350 y , Power Supply Voltage 400 ~ , VS. 450 V 300 tON' tOFF 250 (ns) 200 , V 150 " """'-- ""- tON '- to~~ 100 50 o 5 25 45 65 85 105 125 TEMPERATURE ('C) Switching Time 10 VS. 12 14 16 18 20 22 POSITIVE/NEGATIVE SUPPLIES (V) Temperature 500 450 -IV+='+15 IV 400 '-- V- = -15 V Vs= +3 V 350 tON. 300 tOFF (ns) 250 200 150 100 -..... -- - • tON ~ I---~ I--- -~ ~ 50 ~OFF ~-- a -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE ('C) SCHEMATIC DIAGRAM (Typical Channel) V+O---~~--~----~----~--------~----~----~--~----~ GNDo-~------~----~ DRAIN V-o-~------------------~---------+----~--~~---+--------~ INPUT PROTECTION LOGIC INTERFACE AND SWITCH DRIVERS ANALOG SWITCH 5-169 DG300Al301 Al302A1303A ..,. Siliconix incorporated ~ CHARGE INJECTION TEST CIRCUIT Rgen I / /:lvo Sx ....---A.J"""-If--"-- =---1"-----1r- -......-'II .. R",i5"'""......."R>IV'7.-+ '-----------~:-1 CMOS LOGIC GAIN SELECT HIGH = Av = 101 76 klL 67 klL t -15V RSET programs L 144 power dissipation, gain-bandwidth product. Refer to AN73-6 and the L 144 data sheet. Voltage gain of the Instrumentation amplifier Is : Av =1 + 2R2 (In the circuit shown, AV1 R1 = 10.4, AV2 Low' Power Instrumentation Amplifier with Digitally Selectable Inputs and Gain 5-172 = 101) DGP303A Precision Dual SPOT CMOS Analog Switch W'1r' Siliconix ~ incorporated FEATURES • ± 22 Volt Input Range • 10 .n Max ~rOS(ON) Any Combination Of Switches • 0.5 nA Max At 25°C, ±15 V • Tested ~ tON and ~ tOFF < 50 ns • Pin Compatible with DG303A BENEFITS APPLICATIONS • Fully Tested Around ±10.8, ±16.5 And ±22 V Supplies • Precision Data Acquisition • Increased Signal Range • Automatic Test Equipment • Reduced Switching Errors • Precision Instrumentation • Better Channel-to-Channel Matching • Radar Systems • Simplifies Worst Case Analysis • Simplifies Upgrades DESCRIPTION The DGP303A is a precIsion dual single-pole double-throw analog switch designed for critical applications requiring improved performance over that obtainable with the popular DG303A. Produced on an enhanced proprietary high voltage process, the DGP303A has been fully specified with input analog signals to ±22 V, making it an ideal choice for high voltage applications or where the added margin of safety over traditional switches is of importance. rOS(ON), tON and tOFF have been tested and guaranteed at various input voltages to assure worst-case error analysis. An epitaxial layer prevents latchup. In addition to the low current leakage specifications, Packaging for this device includes the 14-pin CerDIP and plastic DIP options. Performance grades include military, A suffix (-55 to 125°C) and industrial, D suffix (-40 to 85°C) temperature ranges. Customers interested in SO packaging should design-in the DG403DY. PIN CONFIGURATION FUNCTION BLOCK DIAGRAM Dual-In-Llne Package 81 O--I-------.......,r&--I--o 8 3 0--1-------.....-: D1 D3 IN1 IN 2 0--f--i 82 0--1-------....,...,1'"&--1--0 D2 84 0-+-------0" --+-0 D4 Two SPOT Switches per Package Truth Table Top View Order Numbers: CerOIP: OGP303AAK OGP303AAK883 Plastic: OGP303AOJ LOGIC 0 1 SWITCH 1,2 SWITCH 3,4 OFF ON ON OFF Logic' O· S; 0.8 V Logic' 1· > 4.0 V 5-173 DGP303A ..,.. Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS Voltages Referenced to Vv+ ........................................... 44 V GND .•.••..•....•............................ 25 V Digital Inputs Vs. Vol ............ (V-) -2V to (V+) +2V . . . . . . . . . . . . . . . . . . . . . or 30 mA. whichever occurs first Continuous Current (Any Terminal) .............. 30 mA Current. S or D (Pulsed 1 ms 10% duty) ........ 100 mA Storage Temperature (A Suffix) .......... -65 to 150°C (D Suffix) .......... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (D Suffix) .......... -40 to B5°C Power Dissipation (Package)' 14-Pln Plastic DIP" ......................... 450 mW 14-Pln CerDIP'" ........................... 900 mW All leads welded or soldered to PC board. •• Derate 6 mW ,oC above 75°C. ••• Derate 12 mW ,oC above 75°C. Signals on Sx. Dx. or INx exceeding V+ or V- will be clamped by Internal diodes. LImit forward diode current to maximum current ratings. THE DGP FAMILY OF ANALOG SWITCHES AND MULTIPLEXERS Siliconix has improved its high-voltage metal-gate CMOS process to allow for lower leakage. higher voltage and lower variation performance. Additionally. through dramatic improvements in automated testing technology. specifications and limits that were previously untestable are now 100% tested and specified on the DGP303A data sheet. The data sheet specification tables are in a new format as well. The format is that of a military drawing. where all specifications are 100% tested. eliminating any uncertainty about what is actually tested. Many parameters that were previously listed as "typical" or "guaranteed by design" are now 100% tested with minimum and maximum values, so that a worst case design can be realized. The DGP303A also specified certain parameters that have never been seen on a DG303A standard product data sheet in minImax or typical form. An important example of this is the variation of the switching time over all channels, which is specified with a maximum of 50 ns. The variation of "ON" resistance is Similarly specified and 100% tested to be less than 10 .n over six different drain voltage and source current conditions, over all four channels tested, resulting in 24 different readings. 5-174 This specification is necessary for determining the worst-case distortion and signal level variation due to differences in channel resistance and "ON" resistance modulation effects. Also note that rDS(ON) is measured at the lower eX1reme of the voltage operating level, (e.g. ±13.5 V instead of ±15 V) where rDS(ON) is highest. Leakage currents are specified and tested to new lower limits at both room temperature and over the full temperature range. For example, the industrial range devices' leakages have been reduced from 100 nA (over temp) on the DG303A to 5 nA (over temp) on the DGP version. Additionally, the leakages are specified at the eX1remes of the operating ranges (e.g. ±16.5 V instead of ±15 V), where the leakages tend to be the highest. This is essential for designs where worst-case leakage must be well known, such as precision instruments and sample-and-hold amplifiers. The operating range of the DGP303A, up to ±22 V and down to ±10.8 V. This allows the switches to have guaranteed performance limits with power supplies as low as ±12 V (±10%), ±15 V (±10%), and up to ±20 V (±10%). DGP303A .-F' Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V VIN = 2.4 V, 0.8 Va LIMITS 1=2SoC A 2=12S,8SoC SUFFIX 3=-SS, -40 ° C -S5 to 12SoC TEMP TYpd 0 SUFFIX -40 to 8SoC MINb MAX' MINb MAXb UNIT SWITCH Analog Signal Range Drain-Source ON Resistance Delta Drain-Source ON Resistance C 1,2,3 VANALOG rOS(ON) .6. rOS(ON) 50 75 50 75 V+ = 10.8 V, V- - 10.8 V Is=1 mA, Vo =±7.5V V IN = 0.4 V 1,3 2 40 75 100 75 100 V+ = 22 V, V- = -22 V Is = 1 mA, Vo = ± 15 V 1,3 2 25 40 60 40 60 Vo - +5,0, -5 V, Is - ±1 mA VIN = 0.8 V Worst Combination 1,3 2 3 10 15 10 15 Vs =Vo = 15.5 V 1 2 0.1 -0.5 -60 0.5 60 -0.5 -6 0.5 6 Vs = Vo = -15.5 V 1 2 0.1 -0.5 -60 0.5 60 -0.5 -6 0.5 6 Vo=Vs=21V 1 2 0.4 -2 -200 2 200 -2 -20 2 20 Vo = Vs = -21 V 1 2 0.4 -2 -200 2 200 -2 -20 2 20 Vo = -12.5 V Vs = +12.5 V 1 2 0.1 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = +12.5 V Vs = -12.5 V 1 2 -0.1 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = -15.5 V Vs = +15.5 V 1 2 0.15 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = +15.5 V Vs = -15.5 V 1 2 -0.15 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = -21 V 1 2 0.2 -2 -100 2 100 -2 2 Vs=+21 V Vo = +21 V V s =-21 V 1 2 -0.2 -2 -100 2 100 -2 -10 2 10 Vo = -12.5 V Vs = +12.5 V 1 2 0.1 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = +12.5 V Vs = -12.5 V 1 2 -0.1 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = -15.5 V Vs = +15.5 V 1 2 0.15 -0.5 -50 0.5 50 -0.5 -5 0.5 5 Vo = +15.5 V 1 2 -0.15 -0.5 -50 0.5 50 -0.5 -5 0.5 5 V+ = 13.5 V V- = -13.5 V V+ = 16.5 V V- = -16.S V V+ = 22 V V- = -22 V V+ = 13.5 V V- = -13.5 V Drain OFF Leakage Current 15 30 V+ = 22 V V- = -22 V IS (OFF) -15 1,3 2 IO(ON)+ IS(ON) Source OFF Leakage Current 15 V+ = 13.5 V, V- = -13.5 V Is = 1 mA, Vo = ±10.0 V V+ = 16.5 V V- = -16.5 V Channel ON Leakage Current -15 V .n nA IO(OFF) V+ = 16.5 V V- = -16.5 V Vs = -15.5 V 5-175 DGP303A ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V V IN = 2.4 V, 0.8 V e LIMITS 1=25°C A 2=125,85°C SUFFIX 0 3=-55,-40 C -55 to 125°C TEMP TYpd D SUFFIX -40 to 85°C MINb MAX' MINb MAXb UNIT SWITCH (Cont'd) Vo = -21 V Drain OFF Leakage Current IO(OFF) 1 2 0.2 -2 -100 2 100 -2 -10 2 10 -0.2 V S =-21 V 1 2 -2 -100 2 100 -2 -10 2 10 V+ = 22 V, V- = -22 V V IN under test = 5 V 1 2 0.005 -0.5 -5 0.5 5 -0.5 -5 0.5 5 V+ = 22 V, V- = -22 V VIN under test = 22 V 1 2 0.005 -0.5 -5 0.5 5 -0.5 -5 0.5 5 V+ = 22 V, V- = -22 V VIN under test = 0 V 1 2 0.005 -0.5 -5 0.5 5 -0.5 -5 0.5 5 1,3 2 150 300 400 300 400 1,3 2 130 250 350 250 350 V+ = 22 V V- = -22 V VS=+21 V Vo = +21 V nA INPUT Input current with VIN HIGH Input current with VIN LOW IIH IlL J.l.A DYNAMIC Turn-ON Time tON Tum-OFF Time tOFF Delta tON Delta tOFF Charge Injection See Switching Time Test Circuits ns f1 Worst Combination among channels of the tON measurements 1,3 2 30 50 100 50 100 f1 Worst Combination among channels of the tOFF measurements 1.3 2 30 50 100 50 100 Vgen = 0 V 1 35 Vgen=±10V 1 45 1 14 1 14 1 40 1 64 tON tOFF Q Source OFF CapaCitance d CS(OFF) Drain OFF Capacitance d Co (OFF) Rgen = 0.0. ~= 10 nF pC f=IMHz,V s =OV pF f=IMHz,V s =OV Channel ON Capacltance d Co + S(ON) Crosstalk (Channel-to-Channel) RL = 75.0. CL = 5 pF f = 1 MHz OFF Isolation C L = 5 pF RL = 75.0. f = 1 MHz pF dB 5-176 1 56 DGP303A Siliconix incorporated ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER Test Conditions Unless Otherwise Specified: V+=15V,V-=-15V GND = 0 V VIN = 2.4 V, 0.8 Va LIMITS 1=25·C A 2=125,85·C SUFFIX 3=-55,-40·C -55 to 125°C TEMP TYpd 0 SUFFIX -40 to 85°C MINb MAX' MINb MAXb UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current 1- VIN (One Input) = 4V All Others = 0 V V.1 =.116.5 V 1 2 0.45 0.6 1 0.6 1 V IN = 0.8 V, All Inputs V.1=.116.5 V 1 2 0.001 10 100 10 100 VIN (One Input) = 4 V All Others = 0 V V±=.116.5 V 1 2 -0.001 -10 -100 -10 -100 VIN = 0.8 V, All Inputs V.1=.116.5 V 1 2 -0.001 -10 -100 -10 -100 mA .llA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. DIE TOPOGRAPHY 20X Pad No. Function 2 3 4 5 6 7 8 9 10 11 12 13 14 Source 3 Drain 3 Drain 1 Source 1 Input 1 Ground VInput 2 Source 2 Drain 2 Drain 4 Source 4 V+ (Substrate) ICMJC 8 Capacitors 2 Resistors 22 P-channel depletion MOSFETs 30 N-channel depletion MOSFETs 4 Diodes 5-177 tI"F DGP303A ~ Siliconix incorporated TYPICAL CHARACTERSITICS rOS(ON) vs.Vo and Temperature rOS(ON) vs. Vo and Power Supply Voltage 130 110 90 rOS(ON) (.0. ) 60~---r~~~~~---r-A~:~12~5~0~C~ A: V+ = 5 V. V- = - 5 V B: V+ = 8 V, V- = - 8 V C: V+ = 10 V, V- = -10 V V+ = 12 V, V- = -12 V E: V+=15V,V-=-15V F: V+ = 20 V, V- = -20 V V+ = +15 V V- = -15 V 0: 50~--+---~---r---+---;--~ 40~~~--~---r---+--~--~ A/\ 70 rOS(ON) tv 50 - 30 10 -25 T A = 25°C (.0.) ~ ~ 0':"0 E :.,/'" '- ' ... -E - -5 -15 B: 250C C: -550C 15 5 30~--+---~--~~~~~--~ 10L-~~~--~==~~~-J 25 -15 -10 -5 0 Vo{V) VO(V) Charge Injection VS. 600 500 30 20 / -15 I \. -10 -5 V+ = +15 V V- = -15 V VIN = 4 V (one Input) (all other = 0) 700 40 o 15 800 V+ = +15 V V- = -15 V 10 10 Supply Current vs. Temperature Analog Voltage (Vs) 50 Q (pC) 5 1+, 1_ 400 (JlA) 300 CL = 1 nF 200 o 5 10 -r- -.. 22~JlA 1+ 100 1/ ./ ""'" - --460J1A o -100 -200 -55 -35 -15 15 1- -0.015JlA Vs(V) 0.18J1A 5 25 45 65 85 105 125 TEMPERATURE (OC) Off Isolation vs. Frequency 150 100 ISO. (dB) 50 - o "" V+ = +15 V V- = -15 V R L = 50.0. nT[I~rT Iim~1 0.0001 0.001 0.01 0.1 FREQUENCY (MHz) 5-178 r-... ""ro- " 10 100 DGP303A II"r Siliconix ~ incorporated TYPICAL CHARACTERSITICS Crosstalk vs Frequency 120 - r--. 1-0"", 100 V+ = +15 V V- = -15 V RL= 50.0. See CROSSTALK Test Setup X TALK (dB) 1\ 80 ~ 1'-, ....... 60 0.0001 0.01 0.001 10 0.1 100 FREQUENCY (MHz) VS. 15 Supply Currents Switching Frequency 10 4 J11~I~lJ V I D(OFF) or I SCOFF) VS. Temperature IV+ ~ +15 1V V- = -15 V 10 3 !r-- VD = ±14 V 10 illllill 1+.1(mA) 10 2 Is,1 D 10 1 (nA) 5 ,!~ o ~ 10° ~ 10-1 lif 10 1 10 2 FREQUENCY (kHz) 100 / 10-2 -55 -35 -15 10 3 10 1 1 V- I>' V I' V -55 -35 -15 ,/ 5 25 45 65 85 TEMPERATURE (OC) 450 _lV+=1+15 1V _ V-=-15V 400 Vs= +3 V 350 ~ ~ 10-2 " 105 125 500 V ~ ,/ Switching Time VS. Temperature I D(ON) VS. Temperature IV+ ~ +15 1V V- = -15 V §,VD = ±14 V I D(ON) (nA) ,,- V I>' 300 tON. tOFF 250 (ns) 200 150 I--~ L- ~ ..... - tON ~ ~ tlOFF 1--1- -po l,...- i-- foo- 100 50 o 5 25 45 65 85 105 125 TEMPERATURE (OC) -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE (OC) 5-179 DGP303A ..... Siliconix incorporated ~ TYPICAL CHARACTERSITICS Switching Time vs. Power Supply Voltage 450 400 350 300 tON, 250 tOFF (ns) 200 """"'- ~ tON """"- 150 to~r- 100 50 o 10 12 14 16 16 20 22 POSITIVEINEGATIVE SUPPLIES (V) SWITCHING TIME TEST CIRCUITS Vo is the steady state output with the switch ON. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. +15 V ~~~ 4.0V OV SWITCH INPUT Vs ~ .J :::::: 50%~ II.. _i\~~~~=.;t=OF=F=j~_ VS=3.0 v Bjr----~&..., SWITCH INPUT SWITCH OV OUTPUT For load conditions, See Electrical Characteristics (Includes fixture and stray capacitance) '1.. Vo = Vs RL ---=--RL + ROS(ON) CHARGE INJECTION TEST CIRCUIT +15 V V+ IN x 5-180 OFF ON DGP303A . , . Siliconix incorporated ~ CROSSTALK TEST CIRCUIT +15 V Signal Generator 0.0 dBm FREQUENCY TESTED 100 Hz to 13 MHz Analyzer SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer Chan A -15V Chan B OFF ISOLATION TEST CIRCUIT +15V Signal Generator 0.0 dBm FREQUENCY TESTED -<~+e_a:;...Y; 4 V 100 Hz to 13 MHz Analyzer Chan A -16 V Chan B INSERTION LOSS TEST CIRCUIT +15V ~C'r-V_+~______~ Signal Generator 0.0 dBm Vs aV,4V -<"1-+-8-0 100 Hz to 13 MHz Analyzer Chan A Chan B FREQUENCY TESTED SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer -15 V 5-181 iii DGP303A ~ ~ Siliconix incorporated SOURCE/DRAIN ON CAPACITANCE +15 V E C v+ Vs CAPACITANCE METER t----+-'''----, METER OV BOONTON 72BD Capacitance Meter or equivalent SOURCE/DRAIN OFF CAPACITANCE +15 V METER BOONTON 72BD Capacitance Meter or equivalent SCHEMATIC DIAGRAM (Typical Channel) ~---------~oo 5-182 DGP303A ...... Siliconix incorporated ~ BURN-IN CIRCUIT +15 V Note: All Resistors are 10k n unless otherwise specified APPLICATION HINTS The figure below shows a precIsion sample-andhold amplifier using the DGP303A. The errors contributed by the analog switch are mostly attributed to charge injection and leakage. Charge injection causes a dc offset to appear on the holding capacitor. The low leakage of the DGP303A reduces the droop rate of the sample and hold. +15 V +7.5 V -7.5V -15 V B 2 "t'-=-t...,....+--------1r-o Vout LOGIC CONTROL J507 1 = SAMPLE 0= HOLD -15 V Precision Sample & Hold 5-183 DG304A130SAl30SAl307A CMOS Analog Switches wy" Siliconix ~ FEATURES BENEFITS APPLICATIONS • ± 15 V Input Range • Full Rail-to-Rail Analog Signal Range • Low Level Switching Circuits • Low rDSloNI « 500) • Low Signal Error • Single Supply Operation • Wide Dynamic Range • Programmable Gain Amplifiers • Fast Switching « 250 ns) • CMOS Logic Levels • Low Power Dissipation incorporated • Portable Battery Operation DESCRIPTION The DG304A through DG307 A series of monolithic CMOS switches were designed for applications in communications. instrumentation and ,process control. This series is well suited for applicatiOns requiring fast switching and nearly' flat Q~''', resistance over the entire analog range. " ' ;~" Each switch conducts equally well in both directions when ON. and blocks up to 30 volts peak-to-peak when,' OFF. 1cOmpatible. These switches are CMOS input There: are :four' ~eVlces ,iff: ~hl~ series. which are differentiated by' 'the type' of switch action. ,Pack'a9ing f6hhi~,.series include the 14-pin CerDIP ,end'plastic options. The 10-pin metal can option is also available for the DG304A/DG305A. Performance grades include the military. A suffix (-55 to 125°C). commercial. C suffix (0 to 70°C). and industrial. B suffix (-25 to 85°C) temperature ranges. Additionally. the DG307A is available in the LCC package. Designed on Siliconix PLUS-40 CMOS proceSS to achieve low power consumption',,{a fevi'rnilliwatts) and excellent ON/OFF: switch peif6rmanc8; making these ideal for battery Po,!"er~d applications;" without sacrificing switching' IilpeecL Bn!ll!k~befcire make switching action is guaranteed. and an epitaxial layer prevents latch up. Single supply operation (for positive switch voltages) is afforded by connecting the V- rail to 0 V. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM DG304A Metal Can Package Dual-ln-L1ne Package Top View Top View v+ S1 °1 IN1 V+ (SUBSTRATE & CASE) °2 NC S2 NO IN2 ~ NC IN1 IN2 -.., I S2 °2 Two SPST SwItches per Package' GNO Order Numbers: DG304AAA, DG304AAA/883 DG304ABA. DG304ACA Order Numbers: CerDIP: DG304AAK. DG304AAK/883 DG304ABK. DG304ACK Plastic: DG304ACJ LogiC "0" ~ 3.5 V LogiC "1" ~ 11 V • Switches Shewn for Logic "1" Input 5-184 DG304A1305A1306A1307A flY' Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM (Cont'd) PIN CONFIGURATION (Cont'd) DG305A Dual-In-Llne Package Metal Can Package Top View Top View 52o-~r-----------or V+ °2 NO 52 NO IN NO GNO V- IN One SPDT Switch per Package' Order Numbers: Order Numbers: DG305AAA, DG305AAA/883 DG305ABA, DG305ACA CerDIP: DG305AAK, DG305AAK/883 DG305ABK, DG305ACK Plastic: DG305ACJ DG306A Dual-In-Llne Package 51 Top View °1 03 53 V+ INI 54 °4 IN2 °2 52 52 IN2 °2 54 °4 V- Two DPST Switches per Package' Order Numbers: CerDIP: DG306AAK, DG306AAK/883 DG306ABK, DG306ACK Plastic: DG306ACJ Dual-In-Llne Package LCC Package Top View S N N V S 3 0 0 + 4 3 2 1 2019 NO V+ S3 S4 °1 °2 S2 °4 IN2 V- "'8" NO 5 01 6 NO 7 Top View SI B 9 I N 1 Order Numbers: CerDIP: DG307AAK, DG307AAK/883 DG307ABK, DG307ACK Plastic: DG307ACJ 51 53 10111213 G N V I N 0 _ N 2 ° Order Number: DG307AAZ/883 °4 17 NO 16 02 15 NO 14 S2 INI IN2 52 54 Two SPDT Switches per Package' TRUTH TABLE" LOGIC SW1 SW2 0 1 OFF ON SW3 SW4 ON OFF • Switches Shown for Logic "1" Input ... Logic "0" S. 3.5 VI Logic "1" 2: 4.0 V 5-185 • DG304A130SAl30SAl307A ...... Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS V+ to v- ..................................... 44 V GND to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 V Digital Inputs, Vs, Voe ........ (V-) -2 V to (V+) +2Vor 30 mA, whichever occurs first. Current, Any Terminal Except S or D ............ 30 mA Continuous Current, S or D .................... 30 mA (Pulsed at 1 ms, 10% duty cycle max) ......... 100 mA Storage Temperature (A & 8 Suffix) ....... -65 to 150·C (C Suffix) .......... -65 to 125·C Operating Temperature (A Suffix) ......... -55 to 125·C (8 Suffix) .......... -25 to 65·C (C Suffix) ........... 0 to 70·C Power 14-Pln 14-Pln 10-Pln 20-Pln Dissipation' CerDIP (K)" ......................... Plastic DIP (J)'" ..................... Metal Can (A)"" .................... LCC (Z)"'" ........................ 625 470 450 750 mW mW mW mW Device mounted with all leads soldered or welded to PC board. Derate 11 mW'·C above 75·C. Derate 6.5 mW'·C above 25·C. Derate 6 mW'·C above 75·C. Derate 10 mW'·C above 75·C. ELECTRICAL CHARACTERISTICS a Test Conditions Unless otherwise specified: PARAMETER V+ = 15 V V- = -15 V GND = 0 V SYMBOL LIMITS 1=25·C 2=125,85,70·C 3=-55,-25,0·C TEMP TYpd A SUFFIX -55 to 125°C B, C SUFFIX MINb MAXb MINb MAXb UNIT SWITCH Analog Signal Range c Drain-Source ON Resistance Source OFF Leakage Current VANALOG Is=10mA VIN = 3.5 or 11 VI 1,2,3 Vo= 10 V Is= -10 mA 1,3 Vo= -10 V Is=10mA Vs= 14 V Vo= -14 V 2 Vs= -14 V Vo= 14 V 2 Vs= -14 V Vo= 14 V 2 Vs= 14 V Vo= -14 V 2 -15 15 -15 15 30 50 75 50 75 1,3 2 30 50 75 50 75 1 0.1 1 100 5 100 2 rOS(ON) V .n IS(OFF) VIN = 3.5 V 1 -0.1 -1 -100 -5 -100 or Drain OFF Leakage Current Drain ON Leakage Current VIN = 11 VI 1 0.1 1 100 5 100 IO(OFF) nA 1 -0.1 Vo=Vs=14V 1 2 0.1 Vo=Vs= -14 V 1 2 -0.1 VIN = 5 V 1 2,3 -0.001 VIN = 15 V 1 2,3 0.001 VIN=OV 1 2,3 -0.001 -1 -100 -5 -100 1 100 5 100 IO(ON) -2 -5 -200 -200 INPUT Input Current with Input Voltage HIGH Input Current with Input Voltage LOW 5-186 IINH IINL -1 -1 -1 1 1 1 -1 -1 -1 J,lA H DG304A1305A1306A1307A Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless otherwise specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V GND = 0 V LIMITS 1=25·C 2=125,85,70 ·C 3=-55,-25,0 ·C A SUFFIX -55 to 125°C B, C SUFFIX MINb MAXb MINb MAXb UNIT TEMP TYpd 1 110 250 1 70 150 DYNAMIC Turn-ON Time Turn-OFF Time Break-Before-Make Interval Charge Injection tON See Switching Time Test Circuit tOFF tON -tOFF See Break-Before-Make Test Time Circuit DG305A/307A ONLY 1 50 Q C L = O.Ol.MF, Rgen = 1.n. Vgen=OV 1 30 Vs= 0 V 1 14 Vo = 0 V 1 14 Vs=Vo=OV 1 40 VIN = 0 V 1 6 VIN = 15 V 1 7 1 62 1 74 1,3 2 0.001 Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) VIN = 3.5 V or VIN = 11 V f ns pC f = 1 MHz Channel-ON Capacitance Input Capacitance CO(ON) + CS(ON) C IN f = 1 MHz VIN=OV RL = 1 k.n. Vs = 1 V rrn • f = 500 kHz OFF Isolation 9 Crosstalk (Channel-to-Channel) pF dB SUPPLY Positive Supply Current 1+ VIN = 15 V (All Inputs) Negative Supply Current 1- 1,3 2 -0.001 Positive Supply Current 1+ 1,3 2 0.001 Negative Supply Current 1- 1,3 2 -0.001 10 100 -10 -100 100 -100 .MA 10 100 100 VIN = 0 V (All Inputs) -10 -100 -100 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Signals on Sx, Ox' or IN xexceeding V+ or V- will be clamped by Internal diodes. Limit diode forward current to maximum current ratings. f. VIN = Input voltage to perform proper function. g. OFF Isolation = 20 log ~~. Vs = Input to OFF switch, Vo= Output. 5-187 DG304A1305A1306A1307A ...... Siliconix ,.J;II incorporated DIE TOPOGRAPHY DG304A ·1 "'~.----88 mlls----~ 1 ,1'4 13 "1 87 mils Pad No. Function 2 4 6 7 8 9 11 13 14 Drain 1 Source 1 Input 1 Ground v- Input 2 Source 2 Drain 2 V+ (Substrate) _1 6 7 8 9 20X ICMJD 4 Capacitors 2 Resistors 16 P-channel depletion MOSFETs 20 N-channel depletion MOSFETs 4 Diodes DG305A 88 mlls----~I 14 13 Pad No. Function 2 4 Drain 1 Source 1 Input Ground VSource 2 Drain 2 V+ (Substrate) 6 7 8 11 13 14 4 20X ICMJE 4 Capacitors 14 N-channel depletion MOSFETs 1 Resistor 2 Diodes 10 P-channel depletion MOSFETs 5-188 DG304A130SAl30SAl307A .... Siliconix incorporated ~ DIE TOPOGRAPHY (Cont'd) DG306A 1......- - - 8 8 2 mlls-----1~~1 14 13 " tI 3 4 5 11 87 mils ~J Pad No. Function 2 3 4 5 6 7 Source 3 Drain 3 Drain 1 Source 1 Input 1 Ground 9 10 11 12 13 14 Input 2 Source 2 Drain 2 Drain 4 Source 4 V+ (Substrate) Pad No. Function 2 3 4 5 6 7 6 9 10 11 12 13 14 Source 3 Drain 3 Drain 1 Source 1 Input 1 Ground VInput 2 Source 2 Drain 2 Drain 4 Source 4 V + (Substrate) 6 V- ICMJD 6 Capacitors 2 Resistors 22 P-channel depletion MOSFETs 30 N-channel depletion MOSFETs 4 Diodes DG307A .......- - - - 88 mlls----I~ 1 2 14 13 r 3 4 ....1" 5 ....._ _ _ _ _ _ _ _ _ 7 T" 6 20X ICMJF 8 Capacitors 2 Resistors 22 P-channel de letlon MOSFETs 30 N-channel depletion MOSFETs 4 Diodes 5-189 DG304A1305A1306A1307A W'F' Siliconix ~ incorporated TYPICAL CHARACTERSITICS rOS(ON) vs.Voand Power Supply Voltage 100 A: B: C: D: E: 80 rOS(ON) (.0.) ±5 V ±7.5 V +10V ±15 V ±20 V T A = 25°C A - o -20 -15 -10 rOS(ON) (.0.) , C V "..., 20 ) 60 V 1,....00- r0- 40 ,... = = = = +7.5 V +10 V +15 V +20 V TA = 25°C - C -' D 100.. f- "-E. ".... A: V+ B: V+ C: V+ D: V+ II' r-.. ~ / If' ./ ~ ~ ~ If'-' 80 I' Y I i""'- ... 100 A 60 40 rOS(ON) vs. Vo and Power Supply Voltage V- = 0 V 20 -5 0 5 10 15 20 o 5 Vo - DRAIN VOLTAGE (V) 10 15 20 25 Vo - DRAIN VOLTAGE - (V) Leakage Currents vs. Analog Voltage 10 I I .1 II I I or o - I StOFF) 'j -10 10 , Is (pA) -20 ~n ret - 10(OFF) ..J.- r-; ~(O~) I -30 -40 o -15 15 O~----~----~------~--~ o ±5 Switching Time vs. Positive Supply Voltage 240 \ \. tON. tOFF 160 (ns) I\. 120 I ~ " 10 ±20 = = = = +15 V 25°C +15 V 0 ",tON ~ tOFF V+ - POSITIVE SUPPLY VOLTAGE (V) 5-190 V+ TA V 1NH VINL 120 ............. ............ - r-- 80 ---5 200 tON. tOFF 160 (ns) i'... o 240 ,"ON ,"OFF 80 40 ~ ±15 Switching Time vs. Negative Supply Voltage V- = -15 V TA = 25°C V 1NH = +15 V _ VINL=OV ~ 200 ±10 V+. V- POSITIVE & NEGATIVE SUPPLIES (V) VsorVo- (V) 15 40 o -5 -10 -15 V- - NEGATIVE SUPPLY VOLTAGE (V) DG304A130SAl30SAl307A .... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) Supply Currents vs. Toggle Frequency 8 vlll!llt I RL = 00 6 CL = 0 Vs = OPEN 1+. 1(mAl 4 2 1/ o 10 4 10 3 II 10 5 10 6 TOGGLE FREQUENCY (Hzl SCHEMATIC DIAGRAM (Typical Channel) DRAIN INPUT PROTECTION LOGIC INTERFACE AND SWITCH DRIVERS ANALOG SWITCH CHARGE INJECTION TEST CIRCUIT Rgen Sx .--.JV'IN-I---o1 " - - ' - + _ - 0 / f1 v o Vo--_J, Vo Vgen ...._ _+_IN_X_..1 '1" CL= 10000 pF INX f1 Vo ON \ OFF~ IS THE MEASURED VOLTAGE ERROR DUE TO CHARGE INJECTION THE CHARGE INJECTION IN COULOMBS IS f1Q = C LX f1 Vo 5-191 DG304A1305A1306A1307A ...", Siliconix incorporated ~ BREAK-BEFORE-MAKE TIME TEST CIRCUIT SPOT (OG305A, OG307A) LOGIC" 1" = SWITCH ON VINH-lI' LOGIC INPUT T 0 V----' +15V V+ \'---- 50% Sl VSl VS1-----:;=.====~:--- =3 V SWITCH OUTPUT VOl 01 0'--1-------0...,- ....-t--(>'----t"---,..-O VS2 = 3 v S 02_-+_____--(J' SWITCH VOl OUTPUT 0 V " ' : : ' : " - - - J VS2:===~I---I-:-::;::::= V02 SWITCH OUTPUT V-15 V SWITCHING TIME TEST CIRCUIT LOGIC" 1" = SWITCH ON VINH LOGIC INPUT +15 V tr<20 ns tf< 20 ns 50% S OV---J Vs = 3 V 0--11------0-- o VS------t-~==~~----- g'C'fT.rJi- 0 V - - - - tJ tON V-15 V APPLICATION HINTS 5-192 V+ Positive Supply Voltage (V) VNegative Supply Voltage (V) 15 -15 20 -20 15 0 VIN Logic Input Voltage VINHMin/ VINLMax (V) 11/3.5 11/3.5 11/3.5 SWITCH OUTPUT .....~-o-1--,..---oVO Vs Analog Voltage Range (V) -15 to 15 -20 to 20 o to 15 DG304A1305A1306A1307A ..... Siliconix incorporated ~ APPLICATIONS 2) slower switching speed. Typical curves for design aid are given in the figures below. The analog voltage should not go above or below the supply voltages which in single operation are V+ and 0 volts. The DG300A series of analog switches will switch positive analog signals while using a single positive supply. This facilitates their use in applications where only one supply is available. The trade-offs of using single supplies are: 1) Increased rDS(ON): Input Threshold Voltage vs. Positive Supply reStON) vs. Ve and Power Supply Voltage V- = 0 V A: V+ - +7.5 V 100 B: V+ = +10 V All C: V+ = +15 V D: V+ =+20 V 80 j T A =25°C ,..... 5~--~---+----~--~---+----~ 4r---+_--+---~---r---+--~ reStON) VTH 60 (.n. ) (V) 3r---~--~--~--+_--+_--~ 40 ,.. "- ~ / "..-- ........ .... ",. C D ....... 20 o o 5 10 15 V+ - POSITIVE SUPPLY VOLTAGE (V) 5 10 15 20 Ve - DRAIN VOLTAGE - (V) 25 +15 V -15 V 1 M.o. VIN 10 k.o. 11 9 VOUT +15 V -15 V 10 k.o. 8 - - 13 2 --, rI I I 4 6 I I I J L 11 9 DG304A A1 1 M.o. - 7 Ao Binary Input Gain 11 10 01 00 1 10 100 1000 Low Power Binary to Ion Gain Low Frequency Amplifier 5-193 DG304A1305A1306A1307A .,.. Siliconix incorporated ~ APPLICATIONS (Cont'd) -15 V RSET +15 V VrN1 VrN2 CMOS LOGIC INPUT SELECT ~4 HIGH = \fNl 1/4 CD4001 2 3M.o. 5 >-......- 0.1 10 100 FREQUENCY (MHz) Crosstalk vs. Frequency 120 .-., I" I"-l" 100 V+ = +15 V V- = -15 V RL = 50 See CROSSTALK Test Setup X TALK (dB) 1\ 80 i'. ~r-. ~ 60 0.0001 0.001 0.01 0.1 10 100 FREQUENCY (MHz) Supply Currents vs. Switching Frequency 15 ~}lIllUl~~1 :Y. 1+, 1(mA) N- l- 10 ~lli 5 li~ o ~ I D(OFF) or I SCOFF) VB. Temperature IV+ = +15 V 3 V- = -15 V 10 I:r- VD = 14 V 10 2 IS(OFF) (nA) 10 1 V 10 0 1 liii 10 0 5-208 10 2 10 1 FREQUENCY (kHz) 10-2 10 3 ./ -55 -35 -15 V "" V ~ I' 5 25 45 65 85 TEMPERATURE (OC) 105 125 DG381 AJ384AJ387AJ390A ..... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) Switching Time VS. Power Supply Voltage I D(ON) VS. Temperature 450 § V+ = +15 V V- = -15 V . - V D = ±14 V 350 300 /" IS(ON) 10 1 (nA) V ,/ 1 10-2 ,/ -55 -35 -15 V+ = 115 V V- = -15 V 400 tON. 250 tOFF (ns) 200 ~ 150 I" 100 ",. -- tON I-. '- to~~ 50 o 5 25 45 65 85 105 125 TEMPERATURE (OC) 10 12 14 16 18 20 22 POSITIVEINEGATIVE SUPPLIES (V) Switching Time VS. Temperature 500 450 _IV+ =1 +15 1v _ V- = -15 V 400 Vs= +3 V 350 tON' tOFF (ns) 300 250 200 .. - --tON ~ ~ 150 100 .... ~ ---r- ~ I-- tlOFF 1---- 50 o -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE (OC) SCHEMATIC DIAGRAM (Typical Channel) V+ CONTROL IN GND DRAIN V- INPUT PROTECTION LOGIC INTERFACE AND SWITCH DRIVERS ANALOG SWITCH 5-209 DG381 A/384A/387A/390A ...... Siliconix incorporated ~ SWITCHING TIME TEST CIRCUIT LOGIC "I" VINH LOGIC INPUT = SWITCH ON 50% o S OV----' SWITCH OUTPUT ......+- !' LOGIC INPUT T 0 V----' 50% \'--- VS1---------:;=.====;-:-----SWITCH OUTPUT 0 +15 V V+ SI VSl = 3 V o-:--~------o 01 SWITCH OUTPUT __ ..._f_--<~--__,---r_o VOl _ -+_______<0'" Vsz = 3 V S 02 VOl v"":';:"'---JI v~====~~-----lr-~= V02 SWITCH OUTPUT V-15V APPLICATIONS The DG38XA series of analog switches will switch positive analog signals while using a single positive supply. This allows their use in applications where only one supply is available. The trade-offs or performance given up while using single supplies are: 1) Increased rOSION): 2) slower switching 5-210 speed. Typical curves for aid in designing with single supplies are supplied in the figures below. The analog voltage should not go above or below the supply voltages which in single operation are V+ and 0 volts. DG381 Al384A1387Al390A ..... Siliconix incorporated ~ APPLICATIONS (Cant'd) rOS(ON) vs. Analog and Positive Supply Voltage With V- = 0 V v- 170 I 130 110 rOS(ON) (.0. ) 4 . . . t\. J If V+ = +iI 90 70 50 ~ ~I' I- ~ 30 10 o V- = L 0 V __ T A= 25°C ~ OIV I T A = 25°C ~ 150 Switching Tllrne vs. (V+) - Positive Supply Voltage 5 2 -4 tON. tOFF (ns) UN II \ 8 10 tON '\. tOFF Yrtll6 2 r-r- = +10 V I 3 12 o 14 VA - ANALOG VOLTAGE (V) o 5 i'..... 10 15 (V+) - POSITIVE SUPPLY VOLTAGE (V) .. Input Threshold Voltage vs. Positive Supply 7 V- Jo V I 6 '- T A = 2Soc 5 VTH (V) 4 3 2 ~ ... ~ o S o> , , " 10 - ',.;... 15 (V+) - POSITIVE SUPPLY VOLTAGE (V) 5-211 DG400-405 Low-Power - High-Speed CMOS Analog Switches ...... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • ± 15 V Input Range • Wide Dynamic Range • ON Resistance < 35 .n • Low Signal Errors and Distortion • High Performance Audio and Video Switching • Fast Switching Action tON < 150 ns tOFF < 100 ns • Ultra Low Power Requirements (Po < 35 IlW) • Sample and Hold Circuits • Break-Before-Make Switching Action • Battery Operation • Simple Interfacing • TTL, CMOS Compatible DESCRIPTION The DG400 family of monolithic analog switches were designed to provide precIsion, high performance switching of analog signals. Combining low power « 35 IlW) with high speed (toN < 150 ns), the DG400 series is ideally suited for portable and battery powered industrial and military applications. Built on the Siliconix proprietary high voltage silicon gate process to achieve high voltage rating and superior switch ON/OFF performance, breakbefore-make is guaranteed for the SPDT configurations. An epitaxial layer prevents latchup. Each switch conducts equally well in both directions when ON, and blocks up to 30 volts peak-to-peak when OFF. ON resistance is very flat over the full ±15 V analog range, rivaling JFET performance without the inherent dynamic range limitations. The six devices in this series are differentiated by the type of switch action as shown in the functional block diagrams. Package options include the 16-pin plastic, CerDIP and LCC package. Performance grades include industrial, D suffix (-40 to 85°C), and military, A suffix (-55 to 125°C). Additionally, the DG403 and DG405 are available in the narrow body surface mount package, SO-16. FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE Dual-In-Llne Package DG405 LCC Package I NON 5 N C 1 C 1 1 3 2 12019 034 8 V- 53 5 NC 6 7GNO 6 NC B.! ]5 7 "1.. Logic· 0 • Logic· 1· ~ 0.8 V 2.4 V 4 V+ 04 8 50 Package 9 10111213 NON 5 I C 2 C 2 N 2 Top View Order Numbers: CerDIP: DG405AK DG405AK/883 Plastic: DG405DJ 5-212 Order Number: DG405AZ Top View Order Number: DG405DY DG400-405 trY' Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE (Cont'd) Dual-In-Une Package DG400 One SPST Switch per Package Logic· 0 • Logic· 1 • 0.8 V 2.4 V Order Numbers: CerDIP: DG400AK DG400AK/883 Plastic: DG400DJ Dual-In-llne Package LCC Package I N D N S N C 1 C 1 1 DG401 N C 4 G 3 2 1 2 0 1 9 BVNCS NC 6 NC 7 NC 8 Two SPST Switches per Package 7GND Top View l6 NC S VL 4 V+ 9 10111213 N D N S I C 2 C 2 N 2 Order Numbers: CerDIP: DG401AK DG401AK/883 Plastic: DG401DJ Logic· O' :::;; Logic· l ' ~ 0.8 V 2.4 V Order Number: DG401AZ Dual-In-Llne Package DG402 One SPDT Switch per Package Truth Table LOGIC 0 1 Top View SWITCH 1 SWITCH 2 OFF ON ON OFF Logic· O· :::;; 0.8 V Logic· 1 • ~ 2.4 V Order Numbers: CerDIP: DG402AK DG402AK/883 Plastic: DG402DJ 5-213 DG400-405 ~ ~ Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE (Cont'd) Dual-In-Llne Package DG403 Leadless Chip Carrier Two SPOT Switches per Package Truth Table I N D N S N o 1 0 1 1 LOGIC D 3 4 8 3 2 1 2 0 1 9 BVS35 NO 6 Top View ~7 D4 B OFF ON 0 1 7GND 6 NO SWITCH 1 SWITCH 3 SWITCH 2 SWITCH 4 ON OFF Logic· O· :::;; 0.8 V Logic· 1 • ~ 2.4 V 5"\.. 4 V+ SO Package 9 10111213 N D N S I o 2 02 N 2 Top View Order Numbers: CerDIP: DG403AK DG403AK/883 Plastic: DG403DJ Order Number: DG403AZ Top View Order Number: DG403DY Dual-In-Llne Package DG404 V- One OPST Switch per Package Logic· O· Logic· 1 • Top View 0.8 V 2.4 V Order Numbers: CerDIP: DG404AK DG404AK/883 Plastic: DG404DJ ABSOLUTE MAXIMUM RATINGS V+ to V- ..................•....•.........•.... 44V GND to V- . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25V VL to V- ....................•• (GND - 0.3 V) to 44 V Dlgltallnputs1 Vs. VD ........ (V-) -2 V to (V+ plus 2 V) • • • . . • • . • • . . . • . . . . . . • . or 30 mA. whichever occurs first Current (Any Terminal) Continuous •.........•... 30 mA Current. S or D (Pulsed 1 ms 10% duty) ........ 100 mA Storage Temperature (A Suffix) ........ -65 to 150°C (D Suffix) ........ -65 to 125°C Operating Temperature (A Suffix) ........ -55 to 125°C (0 Suffix) ......... -40 to 85°C 5-214 Power Dissipation (Package)· 16-Pln Plastic DIp·· ....................•..•. 16-Pln CerDIP··· .•.......•................. 20-Pln LCC···· • . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16-Pln SO····· ............................. 450 900 750 600 mW mW mW mW All leads welded or soldered to PC board. Derate 6 mW/oC above 75°C Derate 12 mW/oC above 75°C Derate 10 mW/oC above 75°C ••••• Derate 7.6 mW/oC above 75°C 1 Signals on Sx. Ox or INx exceeding V+ or V- will be clamped by Internal diodes. limit forward diode current to maximum current ratings. DG400-405 ...,. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V V- = -15 V VL = 5 V GND = 0 V V IN = 2.4V, 0.8 Va LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-40°C -55 to 125°C 0 SUFFIX -40 to 85°C TEMP TYpd MINb MAXI MINb MAX' UNIT SWITCH Analog Signal Range C -15 VANALOG 15 -15 15 V rOS(ON) V+ = 13.5 V, V- = -13.5 V Is=-10mA'Vo =±10V 1 2,3 20 35 45 45 55 .o.rOS(ON) V+ = 16.5 V, V- = -16.5 V Is= -10 mA, Vo= 5,0, -5 V 1 2,3 3.0 3.0 5.0 3.0 5.0 1 2 -.01 -0.25 -20 0.25 20 -0.50 -20 0.50 20 Vo= 15.5 V, Vs= -15.5 V 1 2 -.01 -0.25 -20 0.25 20 -0.50 -20 0.50 20 IO(ON)+ IS(ON) V+ = 16.5 V, V- = -16.5 V Vo=Vs= ±15.5 V 1 2 -0.04 -0.4 -40 0.4 40 -1.0 -40 1.0 40 In8ut Current with VIN L W IlL VIN Under Test = 0.8 V All Other = 2.4 V 1,2 .005 -1.0 1.0 -1.0 1.0 Inrcut Current with VIN HGH IIH VIN Under Test = 2.4 V All Other = 0.8 V 1,2 .005 -1.0 1.0 -1.0 1.0 1 100 150 150 1 60 100 100 ns 100 pC Drain-Source ON Resistance .0. Delta Drain-Source ON Resistance IS(OFF) Switch OFF Leakage Current IO(OFF) Channel ON Leakage Current V+ = 16.5 V, V- = -16.5 V Vo= -15.5 V, Vs= 15.5 V nA INPUT JJ.A II DYNAMIC Turn-ON Time Turn-OFF Time tON RL = 300.0., C L = 35 pF See Figure 1A tOFF Break-Belere-Make Time Delay to RL = 300.0., C L = 35 pF DG402/DG403 1 20 Charge injection Q C L = 10,000 pF Vgen = 0 V, Rgan = 0.0. 1 60 RL = 100.0., C L = 5 pF 1=1 MHz 1 72 Any Other Channel Switches R L = 100.0., C L = 5 pF 1=1 MHz 1 90 1 12 1 12 1 39 Ofl Iselation Crosstalk' (Channel-to-Channel) Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Drain and Source ON Capacitance CO(ON) + CS(ON) Vs= 0 V 1=1 MHz 10.0 10.0 100 dB pF 5-215 OG400-405 ..... Siliconix ,,6;11 incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V V- = -15 V VL = 5 V GND = 0 V VIN = 2.4V, 0.8 VB LIMITS 1=25°C A D 2",125,85°C SUFFIX SUFFIX 3",-55, -40 ° C -55 to 125°C -40 to 85°C TEMP TVpd MINb MA>f MINb MAXb UNIT SUPPLY 1 2,3 0.01 1 2,3 -0.01 IL 1 2,3 0.01 IGND 1 2,3 -0.01 Positive Supply Current 1+ Negative Supply Current 1V+ = 16.5 V, V- '" -16.5 V VIN = 0.0 or 5.0 V Logic Supply Current Ground Current 1 5 1 5 -1 -5 -1 -5 J.LA 1 5 -1 -5 1 5 -1 -5 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. f. Crosstalk performance Is Improved to 110 dB (typ.) with LCC package. D!E TOPOGRAPHY DG400 14 Pad No. ·1 r 8 65 mils "l 9 10 15 14 20X CSHCA/B 2 Capacitors 2 Resistors 8 P-channel enhancement MOSFETs 5-216 10 N-channel enhancement MOSFETs 2 Diodes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function D NC NC NC NC NC NC NC NC NC V+ VL GND VIN S DG400-405 .... Siliconix incorporated ~ DIE TOPOGRAPHY (Cant'd) DG401 • ~ Pad No. Function 1 2 3 4 5 01 NC NC NC NC NC NC 02 82 IN2 r "~ 8 6 7 8 9 65 mils 9 10 10 11 12 13 14 15 16 15 11 12 13 14 20X v+ VL GND VINI 81 CSHCA/B 4 Capacitors 4 Resistors 16 P-channel enhancement M08FETs 20 N-channel enhancement M08FETs 4 Diodes II DG402 1-- ·1 3 I 8 65 mils 9 " 15 10 11 12 13 14 ~ 20X Pad No. Function 1 2 3 4 5 6 01 NC 02 82 NC NC NC NC NC NC 7 8 9 10 11 12 13 14 15 16 V+ VL GND VINI 81 CSHCA 2 Resistors 15 N-channel enhancement M08FETs 4 Capacitors 2 Diodes 11 P-channel enhancement MOSFETs 5-217 trY' DG400-405 ~ Siliconix incorporated DIE TOPOGRAPHY (Cont'd) DG403 Pad No. Function 1 2 01 NC 03 3 4 5 6 r 8 7 8 9 65 mils 1:~~~____~~____~~~:: ! 11 CSHCA 8 Capacitors 4 Resistors 22 P-channel enhancement M05FETs 12 13 10 11 12 13 14 15 16 14 20X 30 N-channel enhancement M05FETs 53 54 04 NC 02 52 IN2 V+ VL GNO VIN1 51 4 Diodes DG404 .....f--::::--- 82 mils - - -. . @-' 6 ~ 5 4 Pad No. Function 1 01 NC 02 52 NC NC NC NC NC NC 2 r 8 1:~____________________ ~:: 1 12 13 20X 14 65 mils ! CSHCB 2 Resistors 15 N-channel enhancement M05FETs 4 Capacitors 2 Diodes 11 P-channel enhancement M05FETs 5-218 3 4 5 6 7 8 9 10 11 12 13 14 15 16 V+ VL GND VIN1 51 DG400-405 . . . Siliconix incorporated ~ DIE TOPOGRAPHY (Cent'd) DG405 Function Pad No. 1 2 3 4 5 t 8 6 7 65 mils 9 10 ~~----~~----~~ Dl NC D3 83 84 D4 NC D2 82 IN2 V+ VL GND VINI 81 B d 9 CSHCB 8 Capacitors 30 N-channel enhancement M08FETs 4 Resistors 4 Diodes 10 11 12 13 14 15 16 22 P-channel enhancement M08FETs TYPICAL CHARACTERISTICS Input Switching Threshold vs. Logic Supply Voltage 10 ~ I V+=+15 V v-= -15 V I TA = 25·0 / - Input Switching Threshold vs. Power Supply Voltage V ./ \ ...... - '/ I VL =+5 ~ t- TA = 25 0 r- t--r- o o o 2 4 6 VL 40 'E' .c. 8 '2 25 8 UI 0 0:: 20 15 8 10 12 14 16 18 20 rDS(ON) VS. V D and Power Supply Voltage g ~.g 60 ~V+=+15V V- =-15 V ~ VL = +5 V ~ ~:g -- ~ r---- Io'B ..... r-. ~ ~ '- _o~ D E -10 6 rDS(ON) VS. V D and Temperature r-.....'" ~ 10 -15 4 POSITIVE/NEGATIVE SUPPLES (VOLTS) B 85.0 30 ~ 2 (VOLTS) A 125 :0 35 f--- o 10 12 14 16 18 20 8 -5 o 5 Vo (VOLTS) 10 - 15 A V+= 6 V D V+ = 10 V 50 r-- o V+= 12V D V+= 15 V E V+ = 20 V F V+=22V '.c.E' 8 40 '2 8 30 UI 0 0:: 20 V-= -BV V-= -10 V V- = -12 V V-=-15 V V-= -20 V V-=-22V f\J - 25·0 TA A ~ ~ ~~ -2D ~ 10 -25 -15 I-- F -5 5 15 25 Yo (VOLTS) 5-219 DG400·405 .... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) 200 Z 180 Id 160 wa 120 0 J: A: ct.= 10kpF B: CL = lkpF C: CL. = 100 pF 140 ~ i i Charge Injection vs. Analog Voltage (Vs) a 100 U 80 I 60 ~ 40 RV+=+15V V-=-15 V VL = +5 V L A..L I" I / ~ Iff I ~ L- r-..... A ~~ 20 0 -15 .::::; ~A -10 -5 0 5 10 15 Vs (VOLTS) Insertion Loss vs. Frequency 0.0 V+ = +15 V V-=-15 V VL - +5 V VS=lVRMS See INSERTION LOSS Test Setup Iii' ~ -0.6 ~ -1.0 ~ E -1.5 i RL - 600 .n ~1 t' RL =50 .n RL = 75.n -2.0 lK 100 I' '"1M lOOK 10K 10M 100M FREQUENCY (Hz) IS(OFF) VB. Temperature I D(OFF) VB. Temperature l00.0'-'r?=~~::Ij,..,r-rTi 100.01-,rr=====:IJT...,.-r-T"" 10.0 It ~ 10.0 It 0.1 ~ 0.01-1.-'"'1-+--7"'" 0.001 0.1-1r""'1i-O.Ol-1Ir.:::.01'+~"" 0.001 O.OOOl-+-r--r--Iof:....+--+-~+-l~ -55 -35 -15 5 25 45 TEMPERATURE 65 85 105 125 (OC) -55 -35 -15 5 25 45 TEMPERATURE 65 85 105 125 (OC) Leakage currents In this region are determined by extrapolation. Attempts to measure In production are limited by the ability to control humidity and leakages pin to pin below the dew point (where water condenses). 5-220 DG400-405 ..... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) Leakage Current VS. Analog Voltage ID(ON) + IS(ON) VS. Temperature 90 100.0 ~ u WHEN VANALOG EXCEEDS 60 f- POWER SUPPLY SWITCH. SUBSTRATE DIODES 30 I- BEGIN TO CONDUCT. I a !e,(OFF) i--.lIIS(OFF) -(l0 '" -60 8 10.0 ~ , 12 ::J z a ..!!l 0.1 + Z [!] ~ 0.01-10:-1-+7 a .f1 0.001 !-i--'rI I V+= 15 V '1.=5V -90 -55 -35 -15 I; is 4? TEMPERATU~E V- -15/ [ TA =25 C I FOR IS(OFF)' VD = 0 v -150 -20 -15 -10 -5 65 105 125 65 ID(ON) + 1StON) FOR ID(OFF)' VS= a v . -120 0.0001 ~1-.,......,.......IIoF--+-+--+-+--+--1 t-l- Vs/Vo (Oe) a 5 10 15 r 20 (VOLTS) Supply Current VS. Temperature 100.0 10.0 - ~ .s ~ vv+ = + 15V = -15 V :: 1.0 ~ .!. 0.1 ~ ...J ±. 0.01 II vL=+5V IL ~ ~ ,. ~ I~ V ~ ~L ~ F= =E" 0.001 -55 -35 -15 5 25 45 65 TEMPERATURE Break-Betore-Make VS. Analog Voltage 20 15 ~0 ~ ~ r"\ \ 10 5 0 S r J H· r -6 \. -10 -15 f+=+15V V-=-15 v II vL =+5 v 'iii' o Break-Betore-Make vs. Power Supply Voltage 40 35 r\. 30 25 20 Not measurable due~ - \~~~~rfJ~~~ 10 BREAK - \ 15 5 ...... Vs =+10 V _ Vs =-10V HTest See BBM Setup I l VL = +5 V " '-.. 10 HTest SeeBBM Setup I -20 85 105 125 (0 C) '"" "'- o 20 30 40 50 BErDRE - MAKE TIME o 5 10 15 20 25 POSmVE/NEGAllVE SUPPLES (VOLTS) (ns) Leakage currents In this region are determined by extrapolation. Attempts to measure In production are limited by the ability to control humidity and leakages pin to pin below the dew point (where water condenses). 5-221 fI"lr' Siliconix DG400-405 ~ incorporated TYPICAL CHARACTERISTICS (Cont'd) Switching Time VS •• Input Logic Voltage (V,N) V+- +15 V v- =-15 V VL =+5 V Vs =+10V ...... Vs =-10V 540 'iii' [; 480 w 420 ~ - 'iii' r- w [; 360 !:!! 300 ~ 240 :f Switching Time Temperature 240 600 tON I 150 !:!! 120 ~ ~ ..... 120 V+-+15V V-=-15V -tON L , , VL = +5 V L ...... tOFF l - tOFF ~ I--'" I-" V~ = +10 V L r- 90 - V S =-10V Vii. = -10 V - 60 rl- v 30 60 0 0 o 180 ~ :f 180 ~ 210 VB • • 5 4 3 2 -55 -35 -15 6 5 25 45 65 65 105 125 TEMPERATURE (DC) Switching Time VS •• Power Supply Voltage 240 210 [; 180 w 150 ~ !:!! ~ ~ VL = +5 V ~ 'iii' - tON ...... tOFF t 120 w vs'=-s v 90 t:-.:: 60 ~ Vs = -s V'-.; ~ p- ~ !:!! ~ ~ Vs =.:5'v 30 140 'iii' [; Vs = +5 v \.\. Switching Time VB •• Analog Voltage 160 120 r-r-- V+ =+15 V V- =-15 v VL = +5 V 100 - 80 60 40 5 10 20 15 -15 25 -10 Vs Switching Time VS ••• Input Logic Voltage (V,N) 160 V+ - +15 V V- =-15 V VL = +5 V VS=+10V 400 300 250 !:!! 200 1= 150 :f ~ ff- • 50 0 15 w 100 80 - ~~ 60 ~ 40 20 rv; =-10V ~ I"'" ] Vs;v :f ""'" .LI--"" l- i""""' I I I Vs --10 V I I I I V+- +15 V V-= -16 V VL =+5V -tON -tOFF r 0 o 2 VIN 3 4 5 [VOLTS) • REFER TO FIGURE lA FOR TEST CONDmONS •• REFER TO FIGURE 18 FOR TEST CONDITIONS 5-222 120 1= \.. r - - l t OFF [; ~ !l tON 100 10 'VS~+16v 140 'iii' Vs =-10V I-- - 6 (VOLTS) Switching Time VB ••• Temperature 450 ~ o -s posrnvEINEGA11VE SUPPLIES (VOLTS) w r-r-- o o 350 ...... tOFF 20 o I -tON 6 -55 -35 -15 5 25 45 65 TEMPERATURE 65 105 125 (DC) DG400·405 .... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) Switching Time vs .•• Analog Voltage Switching Time vs .•• Power Supply Voltage 160 180 'j;i' 160 ..s 140 w 120 ~ !Z:;: ~ L I\.\'S =;5 v Vs =-5V ~ /' I' V/ VS-+~~~ 100 -L 80 Vs = -5 V 60 40 20 - I 0 o ~ VL = +5 V I tON 10 5 ~ tOFF 15 140 'j;i' ..s 120 w 100 ~ !Z:;: ~ 80 60 40 r---I v+::: +15 V v- = -15 V r--I VL = +5 V 0 -15 20 -10 ..s w ~ !Z:;: U ~ 180 ~ r---- C ~'\.. ~'\.. 150 r---- F I A, 6, E c, D 210 \ D """"- Vs E I'><.\ . 90 +5V Fi">o....~ ~ ..s - - w ~ !Z:;: 7' !-'! ~D '- i 60 30 I-tON 270 'j;i' ""'" tOFF A, F I c,6, ED 240 210 6~'\. 150 o D 60 I - - E F 30 5 10 15 20 o 25 POSITIVE SUPPLY [VOLTS) Switching Time vs .•• Positive Supply Voltage A, F I 6, E C, D ~ ~ :;: ~ ~ 240 210 180 150 120 f',., .¢ -I¢'" I-toN 5 10 15 ...... tOFF 20 25 Switching Time vs .•• Positive Supply Voltage 300 270 w ~ POSITIVE SUPPLY (VOLTS) 300 ..s " 90 - ; cr-..,,'\..' 120 t 0 0 'j;i' V-= 0 v, V- = -5 V = 15 V v Vs =-5V I\, 180 15 [VOLTS) 300 0 v, -5 V -15 V V ..... ....... ~'\.. 120 vV- = = 10 Switching Time vs .• Positive Supply Voltage Switching Time vs .• Positive Supply Voltage 240 I - - 6 t--- tOFF 5 Vs 300 270 - -5 POSITIVE/NEGATIVE SUPPUES [VOLTS) 'j;i' t-- -tON 20 V0 vV V- = = -5 V- -15 v VS=+5V A 6 ..s - w hE ~ ..... 60 30 ~ ~ :;: ~ .~ ~F ~ i""""""" I-toN ~ A, F I B, E C, D 270 'j;i' r> -c~ ~~ r-.." 90 ~ 240 210 V- = -15 V Vs=-5V 180 A 150 _ 6 C 120 ~~ 90 t - l» ~ h f.?D ,.. ~/ 60 30 tOFF V = - -5 0 vV v- I-tON ...... tOFF 0 o 5 10 15 20 POSITIVE SUPPLY [VOLTS) 25 o 5 10 15 20 25 POSITIVE SUPPLY (VOLTS) • REFER TO FIGURE lA FOR TEST CONDITIONS REFER TO FIGURE 16 FOR TEST CONDITIONS 5-223 DG400·405 ...... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) rOSION) vs. Vo and Positive Supply Voltage V-=OV 70 so 'E' s;; 8 'C 8 50 40 UI ,p 3D AV+ 7.5V OV+ 10V CV+ 12V OV+ 15V E V+ 20V F V+ 22 V A ir--i\ A.. ~ J TA=26C- ~ ~ ~- -- 20 - A 0 F 10 o 5 10 15 20 26 Vo (VOLTS) SWITCHING TIME TEST CIRCUIT Vo is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. LOGIC 3.0 V INPUT ~~'J¥H oV 1'- Vs 11vc;-;;::;;0~.9~V~o=l- j. tOFF SWITCH 0 V OUTPUT fN~'J¥H ~ !r< 20 ns 50%~f < 20 ns ..J. -Vs VS= +10 V for tON Vs= -10 V for tOFF RL = 300 5V +15 V ~ n =35pF SWITCH S1Iot---<1! '"'--11---'4)---, INPUT IN1 r--Ot-OC.......... :Lx.:: Repeat test for IN2and ~ For load conditions. See Electrical Characteristics CL (Includes fixture and stray capacitance) NOTE: Logic Input waveform Is Inverted for switches that have the opposite logic sense control RL Vo = Vs ........ RL + rOS(ON) --=--- Figure 1 BREAK·BEFORE·MAKE TEST CIRCUIT LOGIC3.0V ~ INPUT 50% OV VS1--------- V01~ v----.!I _.- ._, ............. +15 V VS1= +10 V VS2= +10 V r-....r..._--,-., D1 Vol ~~----~-+~------~-. RLl S2 Ot----<1! ......+--o--. SWITCH 0 OUTPUTVS2 _____--I____- f_____ LOGIC..n.: INPUT SWITCH 0 V OUTPUT RL =300 (Includes fixture and straY capacitance) 5·224 n CL = 35 pF DG400-405 ..... Siliconix incorporated ~ CHARGE INJECTION TEST CIRCUIT t:.V~ ,-_ _ _ _...... VO---.J IN x -----.. ON OFF ON OFF ISOLATION TEST CIRCUIT +15 V Signal Generator - ± 4000 V • • • • • • Data Acquisition Systems • Audio Signal Routing and Multiplexing I Demultiplexing Reduced Switching Errors Reduced Glitching Improved Data Throughput Reduced Power Consumption Increased Ruggedness • ATE Systems • Battery Operated Systems • High Rei Systems DESCRIPTION The DG408 is an 8-channel single-ended analog multiplexer designed to connect 1 of 8 inputs to a common output as determined by a 3-bit binary address (Ao. Alo A2). The DG409. is a 4-channel differential analog multiplexer designed to connect 1 of 4 differential inputs to a common dual output as determined by its 2 bit binary address (Ao. Al). Break-before-make switching action protects against momentary crosstalk between adjacent channels. An ON channel conducts current equally well in both directions. In the OFF state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches OFF for stacking several devices. All control inputs. address (Ax) and enable (EN) are TTL compatible over the full specified operating temperature range. Applications for the DG408/409 include high speed data acquisition. audio signal switching and routing. ATE systems. and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications. Designed in the 44 V silicon-gate CMOS process. the absolute maximum voltage rating is extended to 44 volts. allowing operation with ±20 V supplies. Additionally. single supply operation is also allowed . An expitaxial layer prevents latchup. Both DG408 and DG409 are available in dual-in-line ceramic and plastic packages. and are specified for operation over the military. A suffix (-55 to 125°C) and industrial. 0 suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION Dual-In-Llne Package Top View Dual-In-Llne Package Top View - ,_ _ _ _. . - 5 8 Order Numbers: CerDIP: DG408AK Plastic: DG408DJ Preliminary Order Numbers: CerDIP: DG409AK Plastic: DG409DJ 5-229 .. DG40S/409 WY'Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM V- GND V- V+ GND S 1 o-+----------a,~~f_() D S la·o-t---------~I....Mt_oD a S2o-~-----------~~~~ S2ao-t------~~·-_4~ S3o-+-------~~r_r_~ S3ao-t-----~L--;_-~~ S4o-+------0I~~~r_~ S4ao-t--aI~--+---~-~~ S5o-r--------a,~T_+-4-~_+ Slbo-t--+---+---4--~I~~t_oDb S6o-r------aI~+_+-+-~~_+ S2bo-+--~--~--~~~--_7~ S7o-r---~~L~~~~~_r_+ S3bo-+---~--~·L---;_----~ S8~~~~~-4_;_;~~~ S4bo-+--a~~---r----~----~ A2 A1 Ao A1 EN Ao EN 00409 Differential 4 Channel Multiplexer DG408 8 Channel Single Ended Multiplexer ABSOLUTE MAXIMUM RATINGS Voltage Referenced to VV+ ..................................•........ 44 V GND ......................................... 25 V Digital Inputs g, Vs, Vo ..•... (V-) -2 V to (V+) +2 V or . • . . . . . . . . . . . . . • . . . . .. 20 mA, whichever occurs first. Current (Any Terminal, Except S or D) .......... 30 mA Continuous Current, S or D ..•................. 20 mA Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) ...•...... 40 mA Operating Temperature (A Suffix) ..•...... -55 to 125°C (D Suffix) ..•......• -40 to 85°C Storage Temperature (A Suffix) ..••..•...• -65 to 150°C (D Suffix) ........•. -65 to 125°C Power Dissipation (Package)· 16-Pln Ceramic DIp·· ........................ 900 mW 16-Pln Plastic DIp··· ....•......••...•..•...• 470 mW All leads soldered or welded to PC board. •• Derate 12 mW/oC above 75°C . ••• Derate 6.3 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A 2=125,85°C SUFFIX V+ = 15 V, V- = -15 V 3=-55,-40°C -55 to 125°C GND = 0 V PARAMETER TEMP TYpd SYMBOL 0 SUFFIX MINb MAXb MINb MAXt UNIT SWITCH Analog Signal Range C 1,2,3 VANALOG Drain-Source e ON Resistance rOS(ON) Vo =±10 V, VAL = 0.8 V Is = -200J1A,VAH = 2.4 V Seauence Each Switch ON 1 2,3 Greatest Change In r OBION) Between Channels f rOS(ON) A -10 V 2.4 V SWITCHING TIME TEST CIRCUIT SWITCH OUTPUT Vo -=- -=- -=- SWITCH OUTPUT Vo S'a-S4a &Oa 00409 S4b 50% t.<20ns tf<20ns S, ON o.avs, OV VSa o.a Vs tTRANS tTRANS SWITCH OUTPUT VOb 0 5-232 50% OV Vs, -=+'5 V -=- -=- 3V LOGIC INPUT -=- Figure 1 Preliminary ... ;:- tI'F ~ DG40S/409 Siliconix incorporated SWITCHING TIME TEST CIRCUIT (Cont'd) +15V r----1'~0_-I AO v+ S1 DG40B -5V S2 -S 81--0----. -=- SWITCH OUTPUT VD DI-o-_-o__-o 3V LOGIC INPUT 50% tr<20ns tf<20ns 50% OV tOFF(EN) tON(EN OV O.IVo r--~_o_iAo SWITCH OUTPUT VD -5V Sla- S4a l--<>-_---. S2b-S4b -::&Da D I--O-..... AI Vo SWITCH OUTPUT -_-.Q VDb -=- Figure 2 +15 V 3V V+ All S &Da EN AO Al LOGIC INPUT +5V DG408 DG409 SWITCH OUTPUT VD OV Vs SWITCH OUTPUT Vo -::- -=- -::- OV -::- \ tr<20ns tt<20ns ~ht· -+I tOPEN Figure 3 Preliminary / 5-233 III DG411/4121413 Precision Monolithic Quad SPST CMOS Analog Switches ..... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • ± 15 Volt Input Range • Widest Dynamic Range • High Performance Audio and Video Switching • ON Resistance < 35 .n • Low Signal Errors and Distortion • Fast Switching Action tON < 175 ns tOFF < 145 ns • Break-Before-Make Switching Action • Simple Interfacing • Ultra Low Power Requirements (Po < 35 IlW) • Precision Automatic Test Equipment • Precision Data Acquisition • Sample and Hold Circuits • Communication Systems • TTL, CMOS Compatible • Battery Operated Systems • ESDS Protection> ±4000 V DESCRIPTION Each switch conducts equally well in both directions when ON, and blocks up to 30 volts peak-to-peak when OFF. ON resistance is very flat over the full ±15 V analog range, rivaling JFET performance without the inherent dynamic range limitation. The DG411 series of monolithic quad analog switches was designed to provide high speed, low error switching of precision analog, audio and video signals. Combining low power « 351lW) with high speed (tON < 175 ns), the DG411 family is ideally suited for portable and battery powered industrial and military applications. The three devices in this series are differentiated by the type of switch action as shown in the functional block diagrams. Package options include the 16-pin CerDIP, plastic and small outline (SO) packages. Performance grades include both the industrial, 0 suffix (-40 to 85°C), and the military, A suffix (-55 to 125°C) temperature ranges. To achieve high-voltage ratings and superior switching performance, the DG411 series was built on Siliconix's high voltage silicon gate process. An epitaxial layer prevents latchup. PIN CONFIGURATIONS FUNCTIONAL BLOCK DIAGRAM Dual-ln-L1ne Package 51 01 SO Package 52 OG411 Four SPST Switches per Package (Same pinout as DIP) 1 234 5 6 7 8 Top View Top View Order Numbers: CerOIP: OG411AK OG411AK/883 Plastic: OG4110J 5-234 Order Number: OG4110Y IN3 Logic' O· ::5: Logic' l ' ~ 0.8 V 2.4 V ·Swltches shown for logic "1" Input. DG411/4121413 .-y' Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM PIN CONFIGURATIONS Dual-in-Line Package OG412 Four SPST Switches per Package SO Package IN2 °2 83 Top View IN3 03 Order Number: DG412DY Top View Logic· o· ~ Logic· 1· ;:::: 0.8 V 2.4 V 84 Order Numbers: CerDIP: DG412AK DG412AK/883 Plastic: DG412DJ ,.. Switches shown for logic "1" Input. IN4 Dual-in-Line Package 81 IN2 SO Package INl OG413 0, 82 V+ Four SPST Switches per Package Truth Table· IN2 VL °2 83 Top View IN3 Order Number: DG413DY 03 84 Top View Order Numbers: CerDIP: DG413AK DG413AK/883 Plastic: DG413DJ IN4 LOGIC 0 1 SWITCH SWITCH 1,4 2, 3 OFF ON Logic· o· ~ Logic· 1· ;:::: ON OFF 0.8 V 2.4 V ·Swltches shown for logic 111" Input. °4 ABSOLUTE MAXIMUM RATINGS V+ to V- .........•........................... 44 V GNO to V- • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 V V L ......................•..... (GND -0.3 V) to 44 V Digital Inputs, V 8, VOl .......... (V-) -2 V to (V+) +2 V or 30 mA, whichever occurs first Continuous Current (Any Terminal) .............. 30 mA Current, S or D (Pulsed 1 ms, 10% Duty Cycle) . 100 mA Storage Temperature (A Suffix) .......... -65 to 150°C (D Suffix) .......... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (D Suffix) ......... -40 to 85°C Power 16-Pln 16-Pln 16-Pln Dissipation (Package)· Plastic DIp·· ......................... 470 mW CerDIP··· ..................•.....•.. 900 mW SO···· .............................. 600 mW All leads welded or soldered to PC board. Derate 6 mW 1°C above 25°C. Derate 12 mW 1°C above 75°C. Derate 7.6 mW/oC above 75°C. Signals on Sx, Ox, or INx exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. 5-235 DG411/4121413 fI"'lr' Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25°C 0 A 2=125,85°C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3=-55,-40°C -55 to 125°C -40 to 85°C VL=5V, GND=OV VIN = 2.4 V, 0.8 ve TEMP TYpd MINb MA>f MINbMAX t SYMBOL PARAMETER UNIT , , SWITCH Analog Signal Range C -15 VANALOG Drain-Source ON Resistance -15 15 V 35 45 n rOS(ON) Is=-10mA, V o =±8.5V V+ = 13.5 V, V- = -13.5 V 1,3 2 25 Vo= -15.5 V VS= 15.5 V 1,3 2 -0.1 IS(OFF) -0.25 -20 0.25 20 -0,25 -20 0.25 20 Vo= 15.5 V Vs= -15.5 V 1,3 2 -0.1 -0.25 -20 0.25 20 -0.25 -20 0.25 20 Vs =Vo= ±15.5 V 1,3 2 -0.1 -0.4 -40 0.4 40 -0.4 -40 0.4 40 Switch OFF Leakage Current I o (OFF) IO(ON) + IS(ON) Channel ON Leakage Current 15 V+=16.5V V- = -16.5 V 35 45 nA INPUT ~8W Current with VIN IlL VIN Under Test = 0.8 V All Other = 2.4 V 1,2,3 .005 -0.5 0.5 -0.5 0.5 Infcut Current with VIN HGH IIH VIN Under Test = 2.4 V All Other = 0.8 V 1,2,3 .005 -0.5 0.5 -0.5 0.5 1,3 110 175 175 1,3 100 145 145 1 25 1 5 RL = 50n,C L = 5 pF 1=1 MHz 1 68 Any Other Channel Switches RL=50n,CL=5pF f - 1 MHz 1 85 1 9 1 9 1 18 Jl.A DYNAMIC Turn-ON Time tON Turn-OFF Time tOFF Break-Belore-Make Time Delay to Charge Injection Q OFF Isolatlon C Crosstalk C (Channel-to-Channel) Source OFF CapaCitance C CS(OFF) Drain OFF Capacitance CO(OFF) Drain and Source ON Capacitance 5-236 C C CO(ON) +CS(ON) RL = 300n , C L = 35 pF See Switching Time Test Circuit Vs =±10 V DG413 Only RL = 300n , C L = 35 pF Vgen = 0 V, Rgen = on C L = 10 nF f = 1 MHz 10 ns 10 pC dB pF DG411/4121413 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A 0 2=125,85°C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3--55,-40° C -55 to 125°C -40 to 85°C VL= 5 V, GND = a V VIN = 2.4 V, 0.8 ve TEMP TYpd MINb MAX' MIN b MAX UNIT SUPPLY Positive Supply Current 1+ 1 2 .0001 Negative Supply Current 1- 1 2 -.0001 IL 1 2 -.0001 1 2 -.0001 IGND Logic Supply Current Ground Current V+ = 16.5 V, V- = -16.5 V VIN = 0 or 5 V 1 5 -1 -5 1 5 -1 -5 J1A 1 5 -1 -5 1 5 -1 -5 (UNIPOLAR SUPPLY) ELECTRICAL CHARACTERISTICS a LIMITS PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: 1=25°C A 0 2=125,85°C SUFFIX SUFFIX V+ = 12 V, V- = 0 V 3=-55,-40·C -40 to 85°C -55 to 125°C VL= 5 V, GND = a V VIN = 2.4 V, 0.8 ve b b TYpd TEMP MIN MAX' MIN MAXb UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance 0 VANALOG rOS(ON) Is = -10 mA, VD = 3.8 V V+ = 10.8 V 12 0 12 V .0. 1,3 2 40 80 100 80 100 1,3 175 250 250 1,3 95 125 125 DYNAMIC Turn-ON Time tON Turn-OFF Time tOFF RL = 300.0. , C L = 35 pF See Switching Time Test Circuit Vs = 8 V Break-Belore-Make Time Delay to DG413 Only RL = 300.0. , C L = 35 pF 1 25 Charge Injection Q Vgen = 0 V, Rgen = 0.0. C L = 10 nF 1 25 1 2 .0001 1 2 -.0001 1 2 -.0001 1 2 -.0001 10 ns 10 pC SUPPLY Positive Supply Current 1+ Negative Supply Current 1- V+ = 13.2 V 1 5 -1 -5 1 5 -1 -5 VIN = 0 or 5 V Logic Supply Current Ground Current IL IGNO J1A V L = 5.25 V 1 1 5 5 -1 -5 -1 -5 5-237 DG411/4121413 Siliconix incorporated ELECTRICAL CHARACTERISTICS a NOTES: I a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. V 1N = Input voltage to perform proper function. DIE TOPOGRAPHY DG411/412/413 ....t------ 109 mils - - - - - - . 13 12 14 Pad No. 11 l 15 16 1 2 3 4 5 6 7 70 mils 8 3 4 5 8 9 10 11 12 13 14 15 16 l 7 6 20X CSHN-A, e, 8 Capacitors 5 Resistors Function C 36 P-Channel Enhancement MOSFETs 44 N-Channel Enhancement MOSFETs 8 Diodes TYPICAL CHARACTERISTICS ON-Resistance vs. Vo and Power Supply Voltage Switching Time vs. Temperature 240 50 45 40 35 rOS(ON) 30 25 (.0.) 20 A AV=±.5V B V=±.8 v o V=±.10 v o V=±,12V E V=±.15 v F v=t?0v I ~ ,. F 16 J A , E...... ~ [""-. ;::- 10 5 -~ tON, tOFF 0 ~O TA = 25·0 t-- 150 (ns) .-. 120 90 60 l- e-- V~ =-15 V ~+5IV I-- I-- --- -'ON =+10 V IVL ...... IOFF I-- I-- ~ t:.-I-io"""" -- 30 o 0 -20 -15 -10 -5 0 5 10 V o - DRAIN VOLTAGE (V) 5-238 ~+=1+15Iv V- 180 AB - t-- 210 A 15 20 -55 -35 -15 6 25 45 65 85 105 125 T - TEMPERATURE (OC) DG411/4121413 ..-F' Siliconix ~ incorporated TYPICAL CHARACTERISTICS (Cont'd) S~PIY Current VS. Leakage Current vs. Analog Voltage Input 40 30 --- 20 10 0 Is,lo (pA) -10 -20 ........::: -50 V -60 -15 10(OFF)r I-::::: ~ I S(OFF) IY" -30 -40 ~ ....... -10 - ::::::1 /' r 10.l1A 10' 10+S(ON) I I 0 5 1 mA 100.l1A v+= 15 V v- = -15.V "l=5V TA =25 C -5 10mA t I.11A 100 nA 10 nA 10 15 10 100 1k 200 140 j 170 110 110 50 Q (pC) 20 80 ~ V+ = +15 V V- = -15 V VL -+5 V A 20 -40 -10 0 5 10M 10 15 .J~ ~ -40 -15 -10 V O - DRAIN VOLTAGE (V) / I AI!. r 50 -10 -5 1M A: CL= 10k pF B: CL = 1k pF C: ~"=5oo pF 140 80 -10 100 k Charge Inlectlon vs. Analog Vo tage (VS ) Charge Inlectlon vs. Analog Voltage (Vo) -70 -15 10 k f - FREQUENCY (Hz) Vo or Vs - DRAIN OR SOURCE VOLTAGE (V) Q (pC) witching Frequency 100 mA AA ~ ~ V C'\: " -5 o 5 10 15 V S - SOURCE VOLTAGE (V) SWITCHING TIME TEST CIRCUIT Vo is the steady state output with the switch ON. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. +5 V LOGIC 3.0 V INPUT +15 V SwrrCH OUTPUT tr <: 20 ns 50% If<20ns ~~IJTCH S1 ot----o'! ......-+---'-1--t"--o Vo ov ~~CH Vs swrrCH OV -tv.:;-;;:::;=:==::;t-- OUTPLrr Repeat lest for al1lN and S. For load conditions, See Electrical Characteristics (Includes fixture and stray capacitance) G.. NOTE: Vo = Vs RL ---=---RL + ROS(ON) 5-239 DG411/4121413 WY'Siliconix incorporated ~ BREAK-BEFORE-MAKE TIME TEST CIRCUIT 3.0V LOGIC INPUT ..J" 5 V t'---_ 50% OV +15 V S1~~----~~ VS1 V = +10 v o-t-----~'1.'--+<)---------------......--..,...._o01 VS1---------------------0.9 Vo ~ 01 SWITCH OUTPUT 1 OV VS2--------+-----~----- (Includes fixture and stray capacitance) CHARGE INJECTION TEST CIRCUIT V+ RGEN GEN V 1 ar. 01 v- GND Vo I~ IN x OFF ON OFF OFF ON OFF -=IN x dependent on switch configuration Input polarity determined by sense of switch CROSSTALK TEST CIRCUIT +15 V C Signal Generator 0 dbM V+ ~'r--'--""" 50.n. FREQUENCY TESTED 100 Hz to 13 MHz Analyzer t----....P--Er-I-':.....----....a-....----t-_o -15V 5-240 SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer ~ ~ DG411/4121413 Siliconix incorporated OFF ISOLATION TEST CIRCUIT +15 V Signal Generator 0.0 dBm FREQUENCY TESTED <1-~I-f3-a:....ov, 2.4 V 100 Hz to 13 MHz SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer -15V INSERTION LOSS TEST CIRCUIT +15V Signal Generator 0 dBm FREQUENCY TESTED aV,2.4V -<:1--+-08-0 100 Hz to 13 MHz -15 V SOURCE/DRAIN ON CAPACITANCE +15 V C ~ CAPACITANCE METER V+ Vs METER IN x ":" f = lMHz Vo av BOONTON 72BD Capacitance Meter or equivalent 5-241 DG411/4121413 ..... Siliconix incorporated ~ SOURCE/DRAIN OFF CAPACITANCE +15V METER 2.4 CAPACITANCE METER -<1--1--0 BOONTON 72BD Capacitance Meter or equivalent v f = 1MHz -15V SCHEMATIC DIAGRAM (Typical Channel) V+ SOURCE VL VIN DRAIN GND V- BURN-IN CIRCUITS -15 V -15V 0--1-1-0 DG411 +15V -15 V b--I--I--o D--+-+-o +5 V +15 V +5 V DG412 Note: All resistors are 10 kfi unless otherwise specified. 5-242 0--1-1-0 DG413 +15 V +5 V DG411/4121413 tI"1P" Siliconix ~ incorporated PIN DESCRIPTION SYMBOL DESCRIPTION S Analog Channel Input or Output Analog Channel Output or Input Logic Control input Positive Supply Voltage Negative Supply Voltage Digital Ground Logic Supply Voltage D IN V+ VGND VL APPLICATIONS Single Supply Operation: Fast Sample and Hold: The DG411/412/413 are characterized and tested for single supply operation at 12 volts. Although these devices can be operated with single supplies from 7.5 up to 22 V, 12 volts was selected as the test voltage because a majority of the applications use 12 volts. To function properly 12 volts is tied to pin 13 and 0 volts is tied to pin 4. Note: Pin 12 still requires 5 volts for proper TTL compatible switching. The bulk of errors in sample and hold circuits attributed to analog switches come from two parameters - leakage currents and charge injection. Both parameters cause completely different errors to take place. Leakage currents discharge the holding capacitor (CH> with time causing droop, while charge The injection causes a dc offset to occur. DG411/412/413's very low leakage current (250 pA) and charge injection (5 pC) specifications enhance sample and hold (Figure 1) accuracy . +15V +15V 381 +5V 01 2 +15 V +15 V 100 k.n. DG411 8W2 14 82 6 02 15 VOUT 6 VIN 16 1N2 5 -15 V -15 V Figure 1. Fast, Accurate Sample and Hold 5-243 .. DG411/4121413 ..... Siliconix incorporated ~ APPLICATIONS (Cont'd) Summing Amplifier When driving a high impedance, high capacitance load such as shown in Figure 2, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor thus preventing offsets from occuring at the output. 00413 Rs VOl o~--------~~ VA2 0 1 - - - - - >---4---0 VOUT V~o-----~ Rs Figure 2. 5-244 Summing Amplifier ~ ~ DG417/418/419 Precision MiniDIP CMOS Analog Switches Siliconix incorporated FEATURES BENEFITS APPLICATIONS • ± 15 Volt InpLit Range • Wide Dynamic Range • Precision Test Equipment • ON Resistance < 35 .n • Fast Switching Action tON < 175 ns tOFF < 145 ns • Ultra Low Power Requirements (PD~35 IlW) • TTL and CMOS Compatible • Low Signal Errors and Distortion • Precision Instrumentation • Break-Before-Make Switching Action • Battery Operated Systems • Simple Interfacing • Sample and Hold Circuits • Reduced Board Space • Improved Reliability • MiniDIP and SO Packaging • ESDS Protection > ± 4000 V DESCRIPTION The DG417, DG41 i3 and DG419 monolithic CMOS analog switches were designed to provide high analog signals. performance switching of Combining low power « 35 IlW), low leakages, high speed, low ON resistance and small physical size, the DG417 series is ideally suited for portable and battery powered industrial and military applications reqUlnng high performance and efficient use of board space. To achieve high voltage ratings aNd superior switching performance, the DG417 series is built on Sliconix's high voltage silicon gate (HVSG) process. Break-before-make is guaranteed for the DG419, which is an SPDT configuration. An epitaxial layer prevents latchup. Each switch conducts equally well in both directions when ON, and blocks up to 30 volts peak-to-peak when OFF. ON resistance is very flat over the full ±15 V analog range, rivaling JFET performance without the inherent dynamic range and supply voltage limitations. The three devices are differentiated by their switch action as shown in the functional block diagrams. Package options include the 8-pin plastic and ceramic DIP, and the small outline. Performance grades include both the industrial, D suffix (-40 to 85°C) and the military, A suffix (-55 to 125°C) temperature ranges. PIN CONFIGURATION AND FUNCTIONAL BLOCK DIAGRAM Dual-In-Llne Package SO Package DG417 One SPST Switch per Package (SAME PINOUT AS DIP) Top View Top View Order Numbers: CerDIP: DG417AK. DG417AK/883 Plastic: DG417DJ Preliminary Order Number: DG417DY Logic" 0 • Logic" 1 • • Switch Shown for Logic "1' Input 5-245 DG417/418/419 ..... Siliconix incorporated ~ PIN CONFIGURATION AND FUNCTIONAL BLOCK DIAGRAM (Cont'd) Dual-In-Llne Package SO Package DG418 (SAME PINOUT AS DIP) Top View Top View Order Numbers: One SPST Switch per Package Truth Table' .:s;; Order Number: DG41BDY Logic· 0 O.B V Logic· 1 • ~ 2.4 V SO Package DG419 CerDIP: DG418AK, DG418AK/883 Plastic: DG418DJ Dual-In-Llne Package One SPOT Switch per Package (SAME PINOUT AS DIP) Top View Top View Order Numbers: Order Number: DG419DY CerDIP: DG419AK, DG419AK/883 Plastic: DG419DJ :s;; Logic· O· 0.8 V Logic· 1 • ~ 2.4 V • Switches Shown for Logic ·1" Input ABSOLUTE MAXIMUM RATINGS Voltages Referenced to VV+ ........................................... 44 V GND ..••.••.•.••....••.•..••••.•.••......•••. 25 V VL •.•••.....•....•.•.......... (GND -0.3 V) to 44 V Digital Inputs Vs, VD1 ...•.•..•• (V-) -2 V to (V+) + 2 V .....•••...••....•••. or 30 mA, whichever occurs first Current, (Any Terminal) Continuous ............. 30 mA Current (S or D) Pulsed 1 ms, 10% duty cycle •.. 100 mA Storage Temperature (A Suffix) .......... -65 to 150'C (0 Suffix) ••....•... -65 to 125'C 5-246 Operating Temperature (A Suffix) •••..••.• -55 to 125'C (0 Suffix) •......•.• -40 to 85'C Power Dissipation (Package)' 8-Pln Plastic DIP" ••.....•.•••••••.•••••.••• 400 mW B-Pln CerDIP'" •..•.........••••..•.•••.••. 600 mW 8-Pln SO···· •.....•...........•••.....•..•. 400 mW All leads welded or soldered to PC board • Derate 6 mW/'C above 75·C. Derate 12 mW"C above 75·C. •••• Derate 6.5 mW/'C above 75·C. Signals on S, 0, or IN exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maxi mum current ratings. Preliminary = DG417/418/419 W'1P'" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER LIMITS Test Conditions Unless Otherwise Specified: 1=25·C A D 2=125,85·C V+ = 15 V, V- = -15 V SUFFIX SUFFIX 3=-55,-40·C -55 to 125°C -40 to 85°C V L = 5 V, GND = 0 V VIN = 2.4 V, 0.8 Ve b b TYpd TEMP MIN MAX' MIN MAXb UNIT SWITCH Analog Signal Range C Drain-Source ON Res)stance -15 VANALOG rOS(ON) Is = -10 mA, Vo = ±12.5 V V+ = 13.5 V, V- = -13.5 V )S(OFF) Switch OFF Leakage Current DG417 DG418 lo(oFF) V+ = 16.5 V, V- = -16.5 V Vo= -15.5 V, Vs= 15.5 V Vo= 15.5 V, Vs= -15.5 V DG419 Channel ON Leakage Current DG417 DG418 IO(ON) DG419 V+ = 16.5 V, V- = -16.5 V Vs = Vo = ±15.5 V 15 -15 35 45 15 V 35 45 .0. 1 2,3 20 1 2,3 -0.1 -0.25 -20 0.25 20 -0.25 -20 0.25 20 1 2,3 -0.1 -0.25 -20 0.25 20 -0.25 -20 0.25 20 1 2,3 -0.1 -0.75 -60 0.75 60 -0.75 -60 0.75 60 1 2,3 -0.4 -0.4 -40 0.4 40 -0.4 -40 0.4 40 1 2,3 -0.4 -0.75 -60 0.75 60 -0.75 -60 0.75 60 nA INPUT Input Current with VIN Low IlL VIN = 0.8 V 1,2,3 .005 -0.5 0.5 -0.5 0.5 Input Current with VIN High IIH VIN = 2.4 V 1,2,3 .005 -0.5 0.5 -0.5 0.5 1 2,3 100 175 250 175 250 1 2,3 60 145 210 145 210 175 250 175 250 J.lA DYNAMIC Turn-ON Time tON Turn-OFF Time tOFF Transition Time ttrans Break-before-Make Time Delay to Charge InJect)on Q Source OFF Capacltance d DG417, DG418 ONLY RL = 300.0., C L = 35 pF Vs=±10V See Sw)tchlng Time Test Circuit DG419 ONLY RL= 300.0., C L = 35 pF VS1 = ±10 V, VS2 = :j:10 V DG419 ONLY RL= 300.0., C L = 35 pF VS1 = VS2 = ±10 V C L = 10 nF Vgen = 0 V, Rgen = 0.0. CS(OFF) ns 1 2,3 1 13 1 60 1 8 DG417 DG418 Preliminary CO(OFF) 5 pC pF f = 1 MHz, Vs = 0 V Drain OFF Capac It anced 5 1 8 5-247 DG417/418/419 ...,. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a., PARAMETER LIMITS Test Conditions Unless Otherwise Specilled: 1=25·C A 0 2=12S,85°C V+ = 15 V, V- = -15 V SUFFIX SUFFIX 3=-55,-40·C -55 to 125°C -40 to 85°C V L =5V, GND=OV VIN = 2.4 V, 0.8 VB TEMP TYpd MINb MAX' MINb MAXb UNIT SYMBOL DYNAMIC (Cont'd) DG417 DG418 Channel ON Capacltance d Co(ON) + CS(ON) 1 30 1 35 1 2,3 .0001 1 2,3 -.0001 1= 1 MHz, Vs = 0 V pF DG419 SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Logic Supply Current IL 1 2,3 .0001 IGND 1 2,3 -.0001 Ground Current V+ = 16.5 V, V- = -16.5 V VIN = 0.0 or 5.0 V 1 5 1 5 -1 -5 -1 -5 j.l.A 1 5 1 5 -1 -S -1 -5 NOTES: a. Reier to PROCESS OPTION FLOWCHART lor addltlonallnlormatlon. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are lor DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. DIE TOPOGRAPHY DG417 I -55 4 Pad No. mils-I 3, D 2 54 5 Function mi1ls 2 3 S 4 V+ (substrate) 5 VL 6 7 IN V- GND J 6 7 20X CSHH-A 8 P-Channel MOSFETs 10 N-Channel MOSFETs 2 Diodes 5-248 1 Resistor 2 Capacitors Preliminary = DG417/418/419 . . . . Siliconix incorporated ~ DIE TOPOGRAPHY (Cant'd) DG418 Pad No. Function 0 3 1 54 mils a 6 7 4 5 6 7 a GND V+ (substrate) VL IN V5 1 20X CSHH-A a P-Channel M05FETs 10 N-Channel M05FETs 2 Diodes 1 Resistor 2 Capacitors DG419 Pad No. Function DA I - 5 5 mils-I 4 3 2 2 1 9 54 mils a 6 7 1 3 51 GND 4 5 6 7 VL IN V- a 9 V+ (substrate) 52 DB 20X CSHH-A 11 P-Channel M05FETs 15 N-Channel M05FETs 2 Diodes Preliminary 1 Resistor 4 Capacitors 5-249 DG417/418/419 H Siliconix incorporated SWITCHING TIME TEST CIRCUIT (DG417 AND DG418 ONLY) Vo is the steady state output with the switch ON. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. +5 V LOGIC 3.0 V ~ INPUT SWITCH INPUT +15 V ~:r < 20 ns 50% -:Lf < 20 ns ov 1'- Vs -IV;-;;:::;:~;:::=~- "" IOFF SWITCH 0 V OUTPUT For load conditions, See Electlcal Characteristics ~ (includes fixture and stray capacItance) NOTE: ;~~~~~~~l,~ah:~c:n~so~~~;f~ I~~C RL Va sense control = Vs - - - - " ' - - RL + ROS(ON) BREAK-BEFORE-MAKE TIME TEST CIRCUIT (DG419 ONLY) 5 V LOGIC INPUT 3.0V ~ +15 V Ir < 20 ns \ o t1 < 20 ns ov VS1= V S 2 ' - - - - - - - - - - - - - - - Va 0.9Vo o V ---t---+------t--+-- SWITCH OUTPUT For Load Conditions, See Electrical Characteristics (CL Includes fixture and stray capacitance) TRANSITION TIME TEST CIRCUIT (DG419 ONLY) +15 V LOGIC 3.0 V INPUT tr < 20 ns 50% +5 V V+ 11 < 20 ns OV S2'Of_ _ _-<~~ VSl IN - VOl SWITCH OUTPUT VS2 - GNO For Load Conditions, See Electrical Characteristics (CL Includes fixture and stray capacitance) 5-250 Preliminary DG417/418/419 .... Siliconix incorporated ~ CHARGE INJECTION TEST CIRCUIT IN X NOTE: FOR DG419 OFF ON RGEN1= RGEN2 V GEN1= V GEN2 BURN-IN CIRCUITS 10 k.O. +15 V SCHEMATIC DIAGRAM (Typical Channel) V+ SOURCE VL VIN GND DRAIN V- Preliminary 5-251 DG417/418/419 ...... Siliconix incorporated ~ CROSSTALK TEST CIRCUIT (DG419 ONLY) 50n. 0.0 dBm FREQUENCY TESTED SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer SIGNAL GENERATOR ANALYZER 100 Hz to 13 MHz HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer FREQUENCY TESTED SIGNAL GENERATOR ANALYZER 100 Hz to 13 MHz Analyzer v- -=- VIN = 0.8 -15 V REPEAT TEST, INTERCHANGING S 1 AND S2' VIN = 2.4 OFF ISOLATION TEST CIRCUIT +15 V 0.0 dBm FREQUENCY TESTED - -_--0 V OUT The DG417 minimizes offset errors due to its low charge injection. Throughput is improved because of its low ON resistance and fast switching speed. Preliminary 5-253 DG417/418/419 ~ ~ Siliconix incorporated PROGRAMMABLE GAIN AMPLIFIER OG419 The DG419 accurately allows gain selection in a small package. Switching into virtual ground reduces distortion caused by rOS(ON) variation as a function of analog signal amplitude. PIN DESCRIPTION SYMBOL DESCRIPTION S An Analog channel Input or Output An Analog Channel Output or Input Logic Control Input Positive Supply Voltage Negative Supply Voltage Digital Ground Logic Supply Voltage D IN V+ VGND VL 5-254 Preliminary DG421 1423/425 .... Siliconix incorporated ~ Low-Power - High-Speed Latchable CMOS Analog Switches FEATURES BENEFITS APPLICATIONS • Latched Inputs • Wide Dynamic Range • ±15 Volt • J.LP Compatible • High Performance Data Bus Switching Input Range • Reduced Component Count • Precision Sample and Hold Circuits • Fast Switching Action tON < 250 ns • Low Signal Errors and Distortion • Digital Filters • Ultra Low Power Requirements (Po < 35 J.LW) • Break-Before-Make Switching Action • J.LP Controlled Analog Systems • ON Resistance < 35 n • Battery Operation • TIL, CMOS Compatible DESCRIPTION The DG421 series of dual monolithic analog switches features latchable logic inputs which simplify interfacing with microprocessors. This series combines fast switching speed (toN < 250 ns), and low ON resistance (rOS(ON) < 35 n) making it ideally suited for battery powered industrial and military applications that require J.LP compatible analog switches. To achieve high-voltage ratings and superior switching performance, the DG421 series is built on Siliconix's high voltage silicon gate CMOS process. Break-before-make is guaranteed for the DG423. An epitaxial layer prevents latchup. ±15 V analog range, rivaling JFET performance without the inherent dynamic range and supply voltage limitations. When WR is set LOW the ""!!!put data latches become transparent. When WR goes HIGH the latches store the logic control data. The RS pin is used to reset all the switches in the circuit to the default value (all inputs LOW) when it is set LOW. Each switch conducts equally well in both directions when ON and blocks up to 30 volts peak-to-peak when OFF. ON resistance is nearly flat over the full This family offers three devices, which are differentiated by switch action as shown in the functional block diagrams. Packaging includes the 16-pin plastic and CerDIP DIPs. Performance grades include both the industrial, D suffix (-40 to 85°C) and the military, A suffix (-55 to 125°C) temperature ranges. PIN CONFIGURATION FUNCTION BLOCK DIAGRAM DG421 Dual-In-Llne Package ~ ~r---------~rr~ro WR ~r--"'---' IN, NC v- NC GND IN, 0-;--+1 IN2 As ~r---+----' NC ~o-+------o.-..-+-oo..z NC Two SPST Switches per Package Truth Table Top View Order Numbers: CerOIP: OG421AK, OG421AK/883 Plastic: OG4210J Preliminary Logic· 0 .::;; 0.8 V Logic· 1 • 2.4 V > 5-255 DG421 1423/425 ".,. Siliconix incorporated ~ FUNCTION BLOCK DIAGRAM PIN CONFIGURATION DG423 Oual-ln-Llne Package Sl o-l------,..,.,~::::-J--oDj 03 S3 WR 1!::!1-rr"LIL"'-"i.------, RSo--1l+~~- ~,"",='-------' IN2 ~~---------+~~-~ B.! 04 Two SPOT Switches per Package Top View Order Numbers: CerDIP: DG423AK, DG423AK/BB3 Plastic: DG423DJ Logic' O· S Logic· 1· ;;:: O.B V 2.4 V DG425 Oual-In-Llne Package Sl S3 ,......j1-----.......!"""=~_t_-oDj 03 WR o--1l-t-fCI'COll--I 1!::!1..--,rrULr:u.lr-----, RSo-J~~ IN2 ~ o--1l-------+O~~J--o O2 B.! 04 Two DPST Switches per Package Truth Table Top View Order Numbers: CerDIP: DG425AK, DG425AK/B83 Plastic: DG425DJ WR o RS IN X o 1 Logic· 0 • S O.B V Logic· 1 • ;;:: 2.4 V ABSOLUTE MAXIMUM RATINGS Voltages Referenced to VV+ •.•..•••••••.••.•••••••.•••.•••••..•••••... 44 V GND ••••••.•••.••.••.••••••••.•.•••.•••••..•• 25 V VL ............................ (GND -0.3 V) to 44 V DlgltallnputsVs, V01 ••.•. V- minus 2 V to (V+ plus 2 V) •••••••••.••••.•.••.• or 30 mA, whichever occurs first Continuous Current (Any Terminal) •••.••••.•.••. 30 mA Current, S or 0 (Pulsed 1 ms, 10% duty) ....••. 100 mA Storage Temperature (A Suffix) •.••.•••.• -B5 to 150·C (0 Suffix) .......... -65 to 125·C 5-256 Operating Temperature (A Suffix) ..•...... -55 to 125·C (0 Suffix) •••••••••• -40 to B5·C Power Dissipation (Package)" 16-Pln Plastic DIP"" ......................... 450 mW 16-Pln CerDIP""" ....••.•..•.•.•..•.•.••.... 900 mW All leads welded or soldered to PC Board • "" Derate 6 mW/·C above 75·C. """ Derate 12 mW/·C above 75·C. Signals on Sx, Ox, or INx exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. Preliminary DG421 1423/425 ..-F' Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A 0 2=125,85°C SUFFIX V+ = 15 V, V- = -15 V SUFFIX 3=-55,-40°C 55 to 125°C -40 to 85°C V L = 5 V, GND = 0 V VIN = 2.4 V, 0.8 va b b TYpd MIN MA>f MIN MAXb UNIT TEMP SWITCH Analog Signal Range C Drain-Source ON Resistance -15 VANALOG rOS(ON) IS(OFF) Switch OFF Leakage Current IO(OFF) Is = -10 mA, Vo =± 8.5 V V+ = 13.5 V, V- = -13.5 V V+ = 16.5 V, V- = -16.5 V Vo= -15.5 V, Vs= 15.5 V Vo = 15.5 V, Vs = -15.5 V 15 -15 35 45 15 V 35 45 .0. 1,3 2 25 1 2 -0.01 -0.25 -20 0.25 20 -0.25 -20 0.25 20 1 2 -0.01 -0.25 -20 0.25 20 -0.25 -20 0.25 20 IO(ON) V+ = 16.5 V, V- = -16.5 V Vs = V D = ±15.5 V 1 2 -0.04 -0.4 -40 0.4 40 -0.4 -40 0.4 40 Input Current with VIN Low IlL V IN under test = 0.8 V all other = 2.4 V 1,2 0.005 -0.5 0.5 -0.5 0.5 Input Current with VIN High IIH V IN under test = 2.4 V all other = 0.8 V 1,2 0.005 -0.5 0.5 -0.5 0.5 1 170 250 250 1 140 200 200 Channel ON Leakage Current nA INPUT /-LA DYNAMIC Turn-ON Time tON Turn-OFF Time tOFF R L = 300.0., C L = 35 pF See Switching Time Test Circuit tww 1 200 200 ns RL= 300.0., C L = 35 pF Latch Timing tow 1 100 100 1 30 30 10 10 Vs=±10V two Break-before-Make Time Delay to DG423 Only RL= 300.0., C L = 35 pF 1 25 Charge Injection C Q C L = 10 nF Vgen = 0 V, Rgen = 0.0. 1 60 1 68 1 85 OFF Isolation Reject Ratio Crosstalk (Channel to Channel) Preliminary R L =50.o., C L =35pF f = 1 MHz Between Any Two Channels R L = 50 .0., f = 1 MHz C L= 5 pF 100 100 pC dB 5-257 .. DG421/423/425 .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: 1=25·C 2=125,85·C V+ = 15 V. V- = -15 V 3=-55,-40·C VL = 5 V. GND = 0 V SYMBOL PARAMETER VIN = 2.4 V. 0.8 VB LIMITS A SUFFIX 55 to 125°C D SUFFIX -40 to 85°C TEMP TYpd MINb MA'if MINb MAXb UNIT ,. DYNAMIC (Cont'd) '\ Source OFF Capacitance CS(OFF) 1 9 Drain OFF Capacitance Ca(OFF) 1 9 Channel ON Capacitance Ca(ON) + CS(ON) 1 18 Positive Supply Current 1+ 1 2 .0001 Negative Supply Current 1- 1 2 -.0001 IL 1 2 .0001 IGND 1 2 -.0001 f = 1 MHz pF SUPPLY V+ = 16.5 V. V- = -16.5 V VIN = 0 or 5 V Logic Supply Current Ground Current 1 5 1 5 -1 -5 -1 -5 j.l.A 1 5 1 5 -1 -5 -1 -5 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. DIE TOPOGRAPHY 93 mils 9 DG421 Pad No. 8 11 r ;'®1 6 12 5 83 mils 13 14 15 CSHDIA or CSHDIB 126 NMOS 114 PMOS 5-258 16 Capacitors 12 Diodes 12 Resistors 16 20X 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function Ih WR NC NC NC NC RS D2 S2 IN2 V + (substrate) VL GND VIN1 Sl Preliminary DG421 1423/425 ..-F' Siliconix ~ incorporated DIE TOPOGRAPHY (Cont'd) DG423 ...f - - - - - 93 mlliss----___.. Pad No . Function 1 2 I2.J... 3 03 4 S3 5 S4 6 ~ 7 8 RS 02 9 S2 10 11 12 13 14 15 16 16 15 IN2 V+ (substrate) VL GND VIN, S, 2 20X CSHD-IA 126 NMOS 114 PMOS 16 Capacitors WR 12 Diodes 12 Resistors DG425 Pad No. .....- - - - 93 m l l s s - - - -....... 11 !,. :@"r 12 13 14 15 ~--------~------~ 2 CSHD-IB r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function I2.J... WR 03 S3 S4 ~ RS O2 S2 IN2 V+ (substrate VL GND VIN, S, 20X 126 NMOS 12 Diodes 114 PMOS 12 Resistors 16 Capacitors Preliminary 5-259 ..w'" Siliconix DG421 1423/425 ~ incorporated TYPICAL CHARACTERSITICS rDS(ON) VS. VD and Power Supply Voltage V- = 0 V rDS(ON) VS. V D and Power Supply Voltage V- = 0 V 60 Is, I D -50 H''----+--j---t--:7I''-----i---i rDS(ON) (.n. ) (pA) I 50 40 / .,B \ -. ./ C '\ D o 5 10 15 ........ 20 V D - DRAIN VOLTAGE (V) rDS(ON) VS. VD and Power Supply Voltage Supply Currents vs. Switching Frequency A: B: C: D: E: ±5 V ±7.5 V +10 V ±15 V ±20 V 1/\ - T A ~ 25°6 I s =-10mA 4 i](v , 40 3 1/ , ""- 30 20 20 +7.5 V +10 V +15V +20 V VANALOG (V) 50 rDS(ON) (.n.) -- I ~ A: B: C: D: :~ - 30 , 1/\ A \ Ir-' \ 1/ -100~~~-~--+_-_+--~-~ -150 '-_..J-_......_....I-_....I._....,j~___I -15 -5 0 -10 5 10 15 T A = 25°C Is =-10mA , I" 70 o -- 10 -20 B r- / ...... J -10 -5 (rnA) /'\ C - :--.... -15 1+, 1- '\ D 0 5 2 ... ~E 10 ~ 15 1+& 20 10 3 / 10 4 10 5 10 6 SWITCHING FREQUENCY (Hz) V D - DRAIN VOLTAGE (V) Input Switching Threshold vs. V+ and VSupply Voltages 2.5 r------..;...;..-.....;;.----..., 2.0 1.5 1.0 0.5 O~--~--~--~-----I o ±5 ±10 ±15 ±20 V+, V- POSITIVE & NEGATIVE SUPPLIES (V) 5-260 Preliminary DG421 1423/425 Siliconix incorporated SWITCHING TIME TEST CIRCUIT Vo is the steady state output with the switch ON. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. VS= +10 V for tON LOGIC 3.0 V INPUT ~~:JTCH ~:r < 20 ns ..J. 50% ~f < 20 ns OV 1'- Vs -t-----.:..---+-- ~ 5V tOFF SWITCH OV OUTPUT ~~iJTCH +15 V VS= -10 V fortOFF SWITCH INPUT Repeat test for IN2 and S2 For load conditions, See Electlcal Characteristics G.. (Includes fixture and stray capacitance) -Vs NOTE: BREAK-BEFORE-MAKE TIME TEST CIRCUIT LOGIC INPUT 3.0 V -.l 50% OV t'----_ V S1' - - - - - - - - - - - V01~ SWITCH OUTPUT 1 +15 V VS1=+10V SIIC>t----O'j" .... VS2= +10 V 01 +....:....------o---, V02 S,~~_ _~~~~~~ RLI 300.[). ov------.l1 ..... I ""VS2'----~--_4~-- SWITCH OUTPUT 2 0 V (Includes fixture and stray capacitance) CHARGE INJECTION TEST CIRCUIT +15 V 1'1- IN X--O-F-~-" ON OFF V IN =3.0 V Preliminary 5-261 DG421 1423/425 H Siliconix incorporated CROSSTALK TEST CIRCUIT +15V Signal Generator 0.0 dBm FREQUENCY TESTED 100 Hz to 13 MHz SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer Analyzer Chan A RL Chan B OFF ISOLATION TEST CIRCUIT +15 V FREQUENCY TESTED - ±4000 V DESCRIPTION The DG444 series of monolithic quad analog switches was designed to provide high speed, low error switching of analog signals. Combining low power « 35 microwatts). with high speed (toN < 160 ns), the DG444/445 Is ideally suited for upgrading DG211IDG212 sockets. Charge injection has been minimized on the drain for use in sample-and-hold circUits. To achieve high-voltage ratings and superior switching performance, the DG444 series was built on Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup. Each switch conducts equally well in both directions when ON, and blocks up to 30 volts peak-to-peak when OFF. ON resistance is very flat over the full ±15 V analog range, rivaling JFET performance without the inherent dynamic range limitation. The two devices in this series are differentiated by the type of switch action as shown in the functional block diagrams for each. Packaging options include the 16-pin plastic and small outline. The performance grade for this series is the industrial, D suffix (-40 to 85°C) temperature range. FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION Dual-In-Llne Package IN DG444 2 O2 so Package 16 15 14 13 12 11 10 S2 V+ 9 (Same pInout as DIP) vL 12345678 Logic· 0 • Logic· 1 • S3 03 Top VIew Order Number: IN DG444DY 3 Top VIew Order Numbers: DG444DJ 5-274 Preliminary DG444/445 .-JP'" Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM PIN CONFIGURATION Dual-In-Une Package IN 2 O2 DG445 S2 SO Package Four SPST Switches per Package V+ 16 15 14 13 12 11 10 9 VL (Sarno pinout as DIP) 12345678 Logic" O· ::;;; Logic" l ' ;;;:: S3 03 Top View Order Number: DG445DY 0.8 V 2.4 V IN 3 Top View Order Numbers: DG445DJ ABSOLUTE MAXIMUM RATINGS Voltages Referenced to VV+ ........................................... GND ......................................... VL ........................... (GND -0.,3 V) to DlgltallnputsVs ,vol .,. (V- minus 2 V) to (V+ plus Operating Temperature (D Suffix) .......... -40 to 85°C 44 V 25 V 44 V 2 V) . . . . . . . . . . . . . . . . . . . . . or 30 mA, whichever occurs first Current (Any Terminal) continuous .............. 30 mA Current (S or D) Pulsed 1 ms. 10% duty ........ 100 mA Storage Temperature (D Suffix) .......... -65 to 125°C Power Dissipation (Package)· 16-Pln Plastic DIp·· ......................... 450 mW 16-Pln SO··· ............................... 600 mW All leads welded or soldered to PC Board . •• Derate 6 mW'oC above 75°C. ••• Derate 7.6 mW'oC above 75°C. 1 Signals on Sx, Dx, or INx exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V VL = 5 V GND = 0 V VIN = 2.4,0.8 VB LIMITS 1=2SoC 2=8SoC 3=_40°C TEMP D SUFFIX -40 to 85°C TYpd MIN' MAXb UNIT -15 15 V 80 100 .n SWITCH Analog Signal Range C Drain-Source ON Resistance VANALOG rOS(ON) ISIOFF) Switch OFF Leakage Current Is = -10 mA, V o = ± 8.5 V V+ = 13.5 V, V- = -13.5 V V+ = 16.5 V, V- = -16.5 V Vo = ± 15.5 V, Vs = ± 15.5 V 10IOFF) Channel ON Leakage Current Preliminary 1010N) + 'S(ON) V+ = 16.5 V, V- = -16.5 V Vs = Vo = ± 15.5 V 1,3 2 1 2 -0.25 -20 0.25 20 1 2 -0.25 -20 0.25 20 1 2 -0.4 -40 0.4 -40 nA 5-275 .. ft'tr DG444/445 ~ Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V V- = -15 V VL = 5 V GND = 0 V = 2.4,0.8 v e VIN LIMITS 1=2SoC 2=8SoC 3=_40°C TEMP 0 SUFFIX -40 to 85°C TYpd MIN b MAXb UNIT INPUT ~8W Current with VIN IlL VIN Under Test = 0.8 V All Other = 2.4 V 1,2 -0.5 0.5 Input Current with VIN HIGH IIH VIN Under Test = 2.4 V All Other = 0.8 V 1,2 -0.5 0.5 JJ.A DYNAMIC Turn-ON Time Turn-OFF Time Charge InJectlon C tON tOFF Q RL=1 k.n., CL=5pF See Figure 1 Vs = ±10 V C L = 10 nF, Vs = 0 V Vgen = 0 V, Rgen = 0 .n 1 160 1 80 ns 1 -10 10 pC SUPPLY Positive Supply Current 1+ 1 2 Negative Supply Current 1- 1 2 Logic Supply Current IL 1 2 IGNO 1 2 Ground Current V+ = 16.5 V, V- = -16.5 V VIN = 0 or 5 V 1 5 -1 -5 (UNIPOLAR SUPPLY) Test Conditions Unless Otherwise Specified: SYMBOL -1 -5 JJ.A ELECTRICAL CHARACTERiStics a PARAMETER 1 5 V+ = 12 V V- = 0 V VL = 5 V GND = 0 V VIN = 2.4,0.8 Va LIMITS 1=25°C 2=8SoC 3=_40 oC TEMP 0 SUFFIX -40 to 85°C TYP d MIN b MAX b UNIT 0 12 V 160 200 .n SWITCH Analog Signal Range C Drain-Source ON Resistance 5-276 VANALOG rOSION) Is = -10 mA, V+ = 10.8 V, Vo = 3 V, 8 V V L = 5.25 V 1 2,3 Preliminary DG444/445 Siliconix incorporated (UNIPOLAR SUPPLY) ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: SYMBOL PARAMETER V+ = 12 V V- = 0 V VL = 5 V GND = 0 V VIN = 2.4,0.8 Va LIMITS 1=25·C 2=85·C 3=-40·C TEMP 0 SUFFIX -40 to 8SoC TVP d MIN b MAX b UNIT DYNAMIC Turn-ON Time tON Turn-OFF Time tOFF R L = 1 k.n., C L = 35 pF See Figure 1 Vs = B V 1 400 1 200 ns Q CL - 10 nF, VL - 5.25 V Vgen = 6.6 V, Rgen = 0 V+ = 13.2 V 1 Positive Supply Current 1+ V+ = 13.2 V VIN = 0 or 5 V 1 2,3 Negative Supply Current 1- VIN = 0 or 5 V 1 2,3 IL V L = 5.25 V VIN = 0 or 5 V 1 2,3 IGNO VIN = 0 or 5 V 1 2,3 Charge InJectlon C .n -40 40 pC SUPPLY 1 5 -1 -5 ,JJ.A Logic Supply Current Ground Current 1 5 -1 -5 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. SWITCHING TIME TEST CIRCUIT Vo Is the steady state outrut with the switch ON. Feedthrough via switch capacitance may result In spikes at the leading and trailing edge 0 the output waveform. LOGIC 3.0V INPUT oV SWITCH INPUT Vs ~ ::::~:: J 50%~ SWITCH INPUT r-......--~.....,01 Vo S10+----o1 "'--+-'--1:_-. 1'J.. tOFF -'tV;;-;;::;::;:=.==;t3.0V SWITCH 0 V OUTPUT NOTE: Repeat test for Ch 2, 3, 4 For load conditions, See Electrical Characteristics '1. (includes fixture and stray capacitance) Vo = Vs RL ---=---RL + 'OS(ON) Preliminary 5-277 DG444/445 .... Siliconix incorporated ~ CHARGE INJECTION TEST CIRCUIT V+ RGEN -=- 1 Va 01 VGEN 1~ VIN =3.0V ON OFF ON OFF Q=l!.voc L I N x dependent on switch configuration Input Polarity determined by sense of switch BURN-IN CIRCUITS -15V -15 V 1:1--+-+-0 P--+-+-o DG444 0--+-+-0 +15 V P--+-+-o +5 V +15 V +5 V +15 V DG445 Note: All Resistors are 10 kll. unless otherwise specified SCHEMATIC DIAGRAM (TYPICAL CHANNEL) V+ o---~------------------~--------~----~------~------. NXo---~-----------i GNO'o----r--------------~--~~----~ V-o---~----------------------------------+-------~------~----------~ 5-278 Preliminary DG444/445 trY' Siliconix ~ incorporated CROSSTALK TEST CIRCUIT +15V Signal Generator 0.0 dBm FREQUENCY TESTED 100 Hz to 13 MHz Analyzer I----I_--A,...-f-=------'.....--+--o SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer -15 V OFF ISOLATION TEST CIRCUIT +15 V FREQUENCY TESTED - ±4000 V DESCRIPTION The DG480 is an analog switch array configured as an 8-channel multiplexer for use in serial input data applications. Combining low ON resistance (rDS(ON) < 100 0) and fast switching (tOFF < 200 ns) the DG480 is ideally suited for data acquisition, process control, communication, and avionic applications. Any, all or none of the 8 switches may be closed at any given time. This device loads the input data serially into the input shift register with each clock pulse. The state of the shift register can be latched via LD at any point into an address register which holds the logic function to control the array. An RS pin resets all the latches to a LOW condition. A serial output terminal DOUT allows chaining of arrays for larger matrix systems. The DG480 is built on Siliconix high voltage silicon gate process to achieve high voltage ratings and superior switch ON/OFF performance. An epitaxial layer prevents latchup. Each channel conducts equally well in either direction when ON and blocks up to 30 volts peak-to-peak when OFF. ON resistance is very flat over the full ±15 V analog range, rivaling JFET performance without the inherent dynamic range limitation. Packaging for the DG480 consists of the 18-pin CerDIP and plastic DIP packages. Temperature ranges available are military, A suffix (-55 to 125°C) and industrial, 0 suffix (-40 to 85°C). PIN CONFIGURATION Dual-In-Llne Package Top View Order Numbers: CerDIP: DG4BOAK, DG4BOAK/BB3 Plastic: DG4BODJ 5-282 Preliminary ~ DG480 Siliconix ..cII incorporated FUNCTIONAL BLOCK DIAGRAM ... r r r ! ....-:. ~ I I I I Lll V- GND V+ ......... D ~ I I I .... I I 121 L3: L4: Ls! La l L71 Ls: J I-- OCTAL LATCH 011 DaII4I ~I - Dsl Osl D71 Dsl SHIFT REGISTER CLK LD DoUT TRUTH TABLES RS 1 1 1 0 CLK' DIN Dl DN 0 0 DN-l 1 1 DN-l X Dl X 0 LD' f f 'X DN (NO CHANGE 0 f f '- DN LN SWN 0 0 OFF 1 1 ON DN LN (NO CHANGE) 'CLK and LD Inputs are Level Triggered ABSOLUTE MAXIMUM RATINGS V+ to V- .•......•............................ 44 V GND to V- . . . • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 V Digital Inputs Vs. Vol. . . . . . . . .. (V-) -2 V to (V+)+ 2 V . . . . . . . . . . . . . . . • • . . •• or 30 mAo whichever occurs first Continuous Current (Any Terminal) ..•........... 30 mA Power Dissipation (Package)' 18-Pln CerDIP" ..........•................. 600 mW 18-Pln Plastic DIP'" ....••...•......•....... 470 mW All leads welded or soldered to PC Board . Derate 9.2 mW/·C above 75·C. Derate 16.5 mW/·C above 25·C. Current. S or D (Pulsed 1 ms. 10% duty cycle) .. 100 mA Storage Temperature (A Suffix) .....•.... -65 to 150·C (D Suffix) .......... -65 to 125·C Operating Temperature (A Suffix) ......... -55 to 125·C (D Suffix) .......... -40 to 85·C Preliminary Signals on Sx. Dx. or INx exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. 5-283 DG480 . . . . Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: 1=25°C 2=125,85°C V+ = 15 V, V- = -15 V 3=-55,-40°C GND = 0 V PARAMETER VIN = 2.0 V, 0.8 VB SYMBOL TEMP TYpd LIMITS A SUFFIX 55 to 125°C MINb MAX' D SUFFIX -40 to 85°C MINb MAXb UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Delta Drain-Source ON Resistance -15 VANALOG 15 -15 15 V rOS(ON) Is = -10 mA, VO= ±10 V V+ = 13.5 V, V- = -13.5 V 1,3 2 75 100 75 100 .n IIrOS(ON) "rOS(ON) rOS(ONl MAX - rOS(ON) MIN rOS(ON) AVG 1 10 10 % IS(OFF) V+ = 16.5 V, V- = -16.5 V Vo= -14 V, Vs= 14 V Vo= 14 V, Vs= -14 V Switch OFF Leakage Current IO(OFF) 1 2 -1 -20 1 20 -1 -20 1 20 1 2 -10 -200 10 200 -10 -200 10 200 IO(ON) + IS(ON) V+ = 16.5 V, V- = -16.5 V Vs = Vo = ±14 V 1 2 -20 -500 20 500 -20 -500 20 500 Input Current with VIN Low IlL VIN under test = 0.8 V all other = 2.0 V 1 2 -1 -5 1 5 -1 -5 1 5 Input Current with VIN High IIH VIN under test = 2.0 V all other = 0.8 V 1 2 -1 -5 1 5 -1 -5 1 5 VOL VIN under test = 0.8 V all other = 2.4 V 1,2 Channel ON Leakage Current nA INPUT Il A OUTPUT Output Voltage with VIN Low - SO 0.4 0.4 V , DYNAMIC Pulse Width for Logic tLOGIC (DIN' LD, CLK, RS) See Figure 1 2 Transition Time tTRAN RL= 1 M.n, C L = 35 pF V Sl = 10 V, V S2 = -10 V 50% of V LO to 90% of Vo See Figure 1 2 Data Setup Time tow 1 80 150 80 150 200 250 50 200 250 50 ns Break-Before-Make tBREAK Turn-ON Time tON Turn-OFF Time tOFF 5-284 RL= 1 k.n, C L = 35 pF V S1 =VS2 = 10 V 90% of Vo to 90% of Vo See Figure 50% of LD, RS to 90% of Vo RL= 1 k.n, C L = 35 pF See Figure lA 1 2 10 20 10 20 1 2 200 250 200 250 1 2 150 200 150 200 Preliminary DG480 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: I_25°C 2=125,85°C V+ = 15 V, V- = -15 V 3=-55,-40°C GND = a V VIN = 2.0 V, 0.8 Va SYMBOL PARAMETER TEMP TYpd LIMITS A SUFFIX 55 to 125°C MINb MAX' D SUFFIX -40 to 85°C MINb MAXb UNIT DYNAMIC (Cont'd) a V, 1 40 pC 1 -65 dB 1 7 1 55 CS(ON) + COlON) 1 200 Positive Supply Current 1+ 1,2,3 Negative Supply Current 1- Ground Current IGNO Charge Injection Vs= Q C L = 1000 pF RL = 50.0., C L = 5 pF f = 1 MHz OFF Isolation Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Drain and Source ON Capacitance Vgen = a V, Rgen = 0.0. f = 1 MHz pF SUPPLY V+ = 16.5 V, V- = -16.5 V VIN = a or 5 V 100 100 1,2,3 -1 -1 1,2,3 -100 -100 j.l.A NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. INPUT TIMING REQUIRMENTS J C=-\ I I I, \ / \ t-- ---i LDj I r-- tLOGIC I \ I -I· I I I \ / ~ tLOGIC~ I = for CLK and LD Inputs of the same frequency The recommended phase delay of LD from CLK Is 1/2 t LOGIC to t LOGIC t LOGidMIN) : 80 ns at 25°C 150 ns at 125°C Preliminary V+ = +15 V V- = -15 V GND = a V 5-285 .. wr Siliconix incorporated DG480 ~ INPUT TIMING REQUIRMENTS (Cont'd) SHIFT REGISTER SETUP DAT_A______ -J~~------~--------- OlK________ DATA TO OlK J;rr-------- ~r______ t 30 ns at 25·0 50 ns at 125·0 j As ------' I ~I'------~"r_------- O~lK~______I ____ __J1' Ast TO OlK t 30 ns at 25°0 50 ns at 125·0 SHIFT REGISTER HOLD DATA ----'1 DATA FROM CLKt 30 ns at 25·0 50 ns at 125°0 ADDRESS REGISTER SETUP 1 OLK As I_--------~.I lD 1---- " ________________ -JI \ ======:::::r-I- - j;Io lD __________I________~~~---- As , TO LOt OlK t TO LOt 30 ns at 25·C 50 ns at 125°0 30 ns at 25 °0 60 ns at 125·0 ADDRESS REGISTER ENABLE 1 OlK I. I LO As T\ t 1'------ = =- 5-286 I, lD I As' TO LO' OLK TO LO' 100 ns at 25·0 150 ns at 125·0 V+ +15 V. V15 V. GND INPUTS ARE 0 V TO 3 V \ .' '1 / 100 ns at 25°0 150 ns at 125°0 =0 V Preliminary ...r incorporated Siliconix DG480 ~ TIMING DIAGRAM RS u .J DIN elK lD Sl S2 S3 ____-F--------IL____ L -________~~~_ _ _ __ _ S4 S5 ________ ~~ ______ --l----~L- _______ ~ ____ S6 S7 Sa --------______ ~rrL ________________ ~ DOUT _ _ _ _ _ _ _ _ _-.1 S 1- Sa and DOUT are expected output with the drain connected high. The sources require pull-downs of 1 k.n. • Preliminary 5-287 DG485 Low-Power - High-Speed CMOS Octal Analog Switch Array rJr Siliconix .1;11 incorporated FEATURES BENEFITS APPLICATIONS • ± 15 Volt Input Range • Low Signal Distortion • Audio Switching and Routing • ON Resistance < 100 il • Reduced Switch Errors • Precision Switching • Serial Data Input/Output • Devices Can Be Chained For System Expansion • Serial Data Acquisition and Process Control • TIL and CMOS Compatible • Reduced Power Supply • Battery and Remote Systems • Any Combination of 8 SPST to the Output • Simple Interfacing • Low Power (Po < 35 IlW) • Automotive, Avionics and ATE Systems • ESDS Protection> ±4000 V DESCRIPTION The DG485 is an analog switch array configured as a low power 8-channel multiplexer for use in serial input applications. Combining low ON resistance (rDS(ON) < 100 il) and fast switching (tOFF < 200 ns), the DG485 is ideally suited for data acquisition, process control, communication, and avionic applications. Any, all or none of the 8 switches may be closed at any given time. This device loads the input data serially into the input shift register with each clock pulse. The state of the shift register can be latched via LOAD at any point into an address register which holds the logic function to control the array. An RS pin resets all latch inputs to a LOW condition. A serial output terminal (DOUT) allows chaining of arrays for larger matrix systems. Built on the Siliconix high voltage silicon gate process the DG485 has a wide 44 V range. An epitaxial layer prevents latchup. Each channel conducts equally well in either direction when ON and blocks up to 30 volts peak-to-peak when OFF. ON resistance is very flat over the full ±15 V analog range, rivaling JFET performance without the inherent dynamic range limitation. Packaging for the DG485 consists of the 18-pin CerDIP and plastiC DIP. Temperature ranges available are military, A suffix (-55 to 125 D C) and industrial, 0 suffix (-40 to 85 D C). PIN CONFIGURATION Dual-ln-L1ne Package Top View Order Numbers: CerDIP: DG4B5AK, DG4B5AK/BB3 Plastic: DG485DJ 5-288 Preliminary DG485 trY' Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM V- i i- 1 i GND V+ I ~ ...-:. D /. I I L1 I I ......:. I I I I I I 1.21 13j L4j Ls: L6 ! L71 La: ,- OCTAL LATCH ~l I>f MINb MAXb UNIT va DYNAMIC (Cont'd) 1 2 200 250 200 250 1 2 150 200 150 200 Vs= 0 V, C L = 1000 pF 1 60 60 RL=50.o., CL=5pF f = 1 MHz 1 -65 1 7 1 55 CS(ON) + CO(ON) 1 200 Positive Supply Current 1+ 1,2 Negative Supply Current 1- 1,2 Logic Supply Current IL Turn-ON Time tON Turn-OFF Time tOFF Charge Injection Q OFF Isolatlon C Source-OFF Capacitance C CS(OFF) Drain-OFF Capacitance C CO(OFF) Drain and Source ON Capacltance C 50% of LD, RS to 90% of Vo RL= 1 k.o., C L = 35 pF See Figure lA Vgen = 0 V, Rgen = 0.0. f = 1 MHz ns pC dB pF .. SUPPLY Ground Current laNo V+ = 16.5 V, V- = -16.5 V VIN=00r5V VL = 5.25 V 1 -1 1 -1 IlA 1.2 1,2 1 -1 1 -1 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. Preliminary 5-291 DG485 W"lI' Siliconix ~ incorporated INPUT TIMING REQUIRMENTS \'---'" = for CLK and LD Inputs of the same frequency The recommended phase delay of LD from CLK Is 112 t LOGie to t LOGie V+ = +15 V t LOGle(MIN) : 80 ns at 25°C V- = -15 V 150 ns at 125°C GND 0 V = SHIFT REGISTER SETUP DATA X , ,"I eLK DATA TO eLK , 30 no at 25·e 50 no at 125·e I As ------'~ t I ~I·------~·Ir-------- -JJ' e_LK_ _ _ _ _ ' __ As' TO eLK' 30 no at 25·e 50 ns at 125°C SHIFT REGISTER HOLD X DATA I. II --~====L''---== _----J~ DATA FROM eLK' 30 no at 25·e 50 no at 125·e ADDRESS REGISTER SETUP eLK I RS 1oo"_ _ _ _ _ _ _ _ _~.1 i LO yr--- \. ~I"~=======:"fl----- LO __________I___________ ~r--- ----------------~I eLK' TO LO' 30 no at 25·e 60 no at 125·e As'TO LO' 30 ns at 25·e 50 ns at 125·e ADDRESS REGISTER ENABLE eLK I I- LO .1 11\ 1'----- eLK' TO LO' 100 ns at 25·e 160 ns at 125·e '1 LO I / As' TO LO' 100 ns at 25·e 150 ns at 125·e V+ = +15 V, V- = - 15 V, GND = 0 V INPUTS ARE 0 V TO 3 V 5-292 Preliminary DG485 WY'Siliconix incorporated ~ TIMING DIAGRAM u As .J DIN elK lD 81 82 83 ____-F--------IL____ ~~ ________ L -________~~~_ _ _ __ _ 84 85 ------~~--~L-_ _ _ _ _ _ _~L___ _ 86 87 8a ______________ ~rtL ________________ ~ DoUT ----------------~ 81- 8 8 and DOUT are expected output with the drain connected high. The sources require pull-downs of 1 k.n . Preliminary .. 5-293 WY Siliconix DG501 a-Channel Multiplex Switch with Decode ,.1;11 incorporated FEATURES BENEFITS APPLICATIONS • Break-Before-Make Switching • Reduced System Cross-Talk • Multiplexing ±5 V Analog Signals • Pull-Up Resistors on Inputs • Easily Interfaced to TIL • Data Acquisition Systems • Bi-Directional Signal Handling DESCRIPTION Designed for applications where single-ended, Break-Before-Make switching action is required, the DG501 is an 8-channel analog multiplexer that is capable of handling bi-directional signals up to ±5 V. In addition, an ·OFF" state can be activated by using a chip enable signal. In" the OFF state, this device can block up to 10 V peak-to-peak signals. An on-chip decoder accepts a 3 bit binary word which enables the seleciton of anyone of the eight analog switches to be turned on individually. Pull-up resistors are provided at each logic input to simplify TIL interface. This device is available in either a 16-pin plastic or ceramic DIP and is available in commercial, C suffix (0 to 70°C), industrial, B suffix (-25 to 85°C) and military, A suffix (-55 to 125°C) temperature ranges. PIN CONFIGURATION TRUTH TABLE LOGIC INPUTS Dual-In-Une Package Top View Order Numbers: Side Braze: DG501AP, DG501BP. Plastic: DG501CJ CHANNEL Ao L A1 L A2 L EN H 'ON' Sl H L L H S2 L H L H S3 H H L H S4 L L H H S5 H L H H S6 L H H H S7 H H H H Sa X X X L OFF Logic Levels' LOW: VL = VLOW < 0.6 V HIGH:VH = VHIGH > 3.5 V * 5-294 Both V+ lines are Internally connected. either one or both may be used. V+ common to substrate. • For supply'voltages of 5 V and -20 V Not Recommended for New Designs DG501 WY'Siliconix incorporated ~ FUNCTION BLOCK DIAGRAM SIGNAL INPUTS EN LOGIC INPUTS Ao 20 20 Al D "1 21 A2 22 22 SIGNAL INPUTS ABSOLUTE MAXIMUM RATINGS V+ to V- .....................••.••........... 3D V V- to V+ .................................... -0.3 V V+ toVA, VEN .......•......................... 30V VA' VEN to V+ ................................ -0.3 V V+ toVo orVs .....••......................... 3D V Vo Vs to V+ •.••..•......••••..••.•.......•..• -0.3 V Vo toYs ............•••.••..........••....... ±25 V VA,VENtOV- .......•••.•...........••........ 30V VoorVstoV- ......•.............•.•........ 30V Current, (Any Terminal) •..........•..••...... -20 mA Storage Temperature (A & 8 Suffix) ....... -65 to 150°C (C Suffix) .•....•.... -65 to 125°C Operating Temperature (A Suffix) •••••.... -55 to 125°C (8 Suffix) .......... -25 to 85°C (C Suffix) ..........•. 0 to 70°C Power Dissipation" 16-Pln Ceramic DIP"" ••.••••..•......••.••..• SOD mW l6-Pln Plastic DIP""" ........................ 470 mW Device mounted with all leads welded or soldered to PC board. Derate 12 mW'oC above 7SoC. """ Derate 6.S mW'oC above 2SoC. Not Recommended for New Designs 5-295 DG501 .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specilied: PARAMETER SYMBOl. V+ = 5 V, V- = -20 V V EN =3.5V V AL =0.6V V AH = 3.5 V l.IMITS 1=25°C A 2=125,85,70°C SUFFIX 3=-55,-25,0°C -55 to 125°C TEMP Analog Signal Range c , -5 1,2,3 VANALOG I s =-100JJ.A V- = -15 V Drain-Source ON Resistance MINb MAXb MINb MAXt UNIT TYpd SWITCH B,C SUFFIX 5 -5 5 VD= 5 V 1,3 2 75 200 300 200 300 VD= 0 V 1,3 2 97 250 375 250 350 V D = -5 V 1,3 2 140 600 900 800 900 VD= 5 V 1,3 2 65 150 225 150 200 VD= 0 V 1,3 2 80 200 300 200 300 V D = -5 V 1,3 2 100 250 375 250 350 V .0, rDS(ON) Is=-l mA V- = -20 V Source OFF l.eakage Current IS(OFF) V s =-5V, V D =5V V EN = 0.6 V 1 2 -0.005 -1 -1000 -3 -150 Drain OFF l.eakage Current ID(OFF) VD=-5V,Vs=5V V EN = 0.6 V 1 2 -0.07 -6 -4000 -10 -500 Channel ON l.eakage Current ID(ON)+ IS(ON) V D =Vs =5V 1 2 0.1 VAL = 0 1 0.8 IINH V AH =3.5V 1 -150 -150 1 1.5 2 tTRANS See Switching Time V- = -20 V Test Circuit V S1 = ±1 V Vss= +1 V V S2 thru V S? = 0 V V- = -15 V 1 2.5 3 6 4000 nA 10 500 INPUT Logic Input Current Input Voltage l.OW l.ogic Input Current Input Voltage HIGH IINL -1.2 -1.2 mA JJ.A DYNAMIC Switching Time Break-Belore-Make Interval tOPEN Turn-ON Time tON Turn-OFF Time tOFF 5-296 See Switching Time Test Circuit VS(AII) = 1 V 1 0.05 1 1.2 1 0.6 JJ.s Not Recommended for New Designs ~ ~ DG501 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: SYMBOL PARAMETER V+ = 5 V, V- = -20 V VEN=3.5V VAL = 0.6 V V AH =3.5V LIMITS 1=25°C A 2=125,85,70°C SUFFIX 3=-55,-25,0°C -55 to 125°C EMP TYpd See Switching Time Test Circuit VS(AII) = 1 V V- = -15 V 1 2 1 0.8 Vs=Vo= 5 V V EN = 0.6 V f = 1 MHz 1 10 1 20 1 -2.6 B, C SUFFIX MINb MAXb MINb MAXt UNIT DYNAMIC (Cont'd) Turn-ON Time tON Turn-OFF Time tOFF Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CO(OFF) Jls pF SUPPLY Drain Supply Current 1- Source Supply Current 1+ 1 5.6 Drain Supply Current 1- 1 -2.4 Source Supply Current 1+ 1 4.9 V EN = 0 V VAL(AII) = 0 V -6 -6 8 8 mA V EN = 3.5 V VAL(AII) = 0 V -6 -6 7 7 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. SWITCHING TIME TEST CIRCUIT S1 INPUT 5V S2 S3 va s4 VS2-7 s5 va S6 S7 Sa V sao--<>!'-II----- .:- Al I I .d. CMOS DECODE LOGIC ! I I ~ ? ~ I I I I I ~I A3 1- I d - 2.4 V tTRANS DG506A1507A ..... Siliconix incorporated ~ tON(EN) AND tOFF(EN) TIME TEST CIRCUIT SWITCH OUTPUT Vo 3V LOGIC INPUT 50% tr<:20 ns If <20 ns 50% OV -=- -=- -=- -=- IOFF(EN) I ON (EN OV O. IVa +15 V SWITCH OUTPUT Vo A2 Va AI ,-=- AO SWITCH OUTPUT Vo -=- -=Figure 2 _---.J/ \ tr<:20ns t1<20n5 '---- SCHEMATIC DIAGRAM V+o-~----~--~------~~--------------~ CaMP LOGIC TRIP- 1--1-_ _-1 POINT REF GNDo-----.l---...J LOGIC A x o----IVVv---"-....l INPUT or EN ~---T----~--4--osx DECODER Ax L-----~--~~-----oDX V-o-----~----------~------------~----------~ LOGIC INTERFACE AND LEVEL SHIFTER TYPICAL SWITCH 5-311 DG506A1507A ...... Siliconix incorporated ~ APPLICATION HINTS* V+ Positive Supply Voltage (V) VNegative Supply Voltage (V) 15 •• -15 12 -12 10 8 *** VIN Logic Input Voltage VINHMinl VINLMax (V) Vs or Vo Analog Voltage Range (V) -15 to 15 -10 2.4/0.S 2.410.6 2.4/0.5 -S 2.4/0.3 -S to S -12 to 12 -10 to 10 • Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing. •• Electrical Characteristics chart based on V+ = +15 V, V- = -15 V . ••• Operation below ±S V is not recommended due to the shift in VINL(MAX). Overvoltage Protection A very convenient form of overvoltage protection consists of adding two small signal diodes (1 N414S, 1N914 type) in series with the supply pins (see figure). This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal V+ or V- value. In this case the overvoltage signal actually becomes the power supply of the IC. From the point of view of the chip, nothing has changed, as long as the difference Vs - (V-) doesn't exceed +44 V. The addition of these diodes will reduce the analog signal range to 1 V below V+ and 1 V above V-, but it preserves the low channel resistance and low leakage characteristics. 5-312 lN4148 V+ S Vg S V- ---+--uo VOvervoltage Protection Using Blocking Diodes DG506A1507A ...r'Siliconix incorporated ~ APPLICATIONS CHANNEL 16 CHANNEL 17 CHANNEL 1 DGS06A # 1 A3 A3 A2 A2 A1 A1 AO CHANNEL 48 CHANNEL 33 CHANNEL 32 DGS06A #2 D v+ A3 A3 A2 A2 A1 A1 EN AO Ao CHANNEL 49 DGS06A #3 A3 A3 A2 A2 A1 A1 AO v+ CHANNEL 64 DG506A #4 D v+ EN v+ S18601 BUS DATA CONTROL ADDRESS BUS DATA CONTROL ADDRESS MICROPROCESSOR 64-Channel 2-Level Multiplex System 5-313 DGP508A Precision 8-Channel CMOS Multiplexer/Demultiplexer ...... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Fully Tested Around ± 10.8,±16.5 and ± 20 V Supplies • Simplifies Worst-Case Analysis • Automatic Test Equipment • Reduces Channel-to-Channel Variations • Precision Data Acquisition • 10% (Max.) delta rDS(ON) • 2.0 nA (Max.) Leakage at 25°C, ±16.5 V • Reduces Switching Errors • Low Charge Injection (Q < 15 pC) • Simplifies Upgrading • Communication Systems • Precision Instrumentation • Upgrading Old Designs • Reduces Switching Noise • Pin-Compatible with DG508A DESCRIPTION The DGP508A is a precision 8-channel CMOS analog multiplexerfdemultiplexer which is specified with improved static and dynamic performance limits. The DGP508A features tighter leakage and delta rDS(ON) limits and wider analog signal ranges than the industry-standard DG508A, yet maintains 100% pin and functional compatibility. This allows for precision system performance upgrading without redesign or layout of circuit boards. In addition, the specification limits and associated test conditions are in a military drawing format, simplifying source-control documentation and ensuring performance based upon a worst-case analysis. Refer to the "Detailed Description" for more information on the "DGP" family. Produced on a proprietary high-voltage CMOS process, the DGP508A has been fully specified for signals up to ±20 V, making it an ideal choice for extended range operation, or in systems with additional headroom 'requirements. An epitaxial layer prevents latchup. PIN CONFIGURATION TRUTH TABLE The DGP508A is available in a 16-pin plastic DIP for the industrial, D suffix (-40 to 85°C) temperature range and the CerDIP for military (available with f883 processing) , A suffix (-55 to 125°C) temperature operation. For more information on the DGP508A, please refer to Siliconix Technical Article TA87-1. Dual-In-Llne Package Order Numbers: CerDIP: DGP50BAAK DGP50BAAK/BB3 Plastic: DGP50BADJ Top View 5-314 ON SWITCH NONE A2 Al Ao EN X X X 0 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 B Logic '0" Logic "1" = VAL = VAH < O.B V > 2.4 V DGP508A flY' Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM v+ v- GNO 51 S2 o-~---------o"1 53 0-11---------<>'1 ....-+---+---. 55 0-1-------0'1 ....-I---I--L-_+ o-li------<>'1 ....-t--+----.J'-7--+ S6 CH~---o~ A-r~,-+--+-r__+ S4 o S7 U-1----O'1 A-l--1f--+-+-..,---.---" S8 ABSOLUTE MAXIMUM RATINGS Voltages Referenced to VV+ ........................................... 44 V GND ......................................... 25 V Digital Inputs V 5 , V 0 1 ........... (V-) -2 V to (V+) +2 V Operating Temperature (A Suffix) ......... -55 to 125°C (D Suffix) .......... -40 to 85°C Power 16-Pln 16-Pln 16-Pln . . . . . . . . . . . . . . . . . . . .. or 30 mA, whichever occurs first Current (Any Terminal) Continuous .............. 30 mA Current (S or D) Pulsed 1 ms 10% duty ......... 100 mA Storage Temperature (A Suffix) .......... -65 to 150°C (D Suffix) .......... -65 to 125°C Dissipation (Package)· Plastic DIp·· ......................... 450 mW CerDIP··· ........................... 900 mW Small Outline .. •• ..................... 900 mW All leads welded or soldered to PC board. Derate 6 mW/oC above 75°C. Derate 12 mW/oC above 75°C. Derate 7.7 mW/oC above 75°C. Signals on Sx ,Dx or IN x exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V VAH = 2.4 V, VAL = 0.8 V VEN = 2.4 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-40°C -55 to 125°C TEMP TYpd D SUFFIX -40 to 85°C MINb MAXb MINb MAXb UNIT SWITCH Drain-Source e ON Resistance Delta Drain-Source e ON ReSistance rOSION) fl. rOSION) V+ = 13.5 V, V- = -13.5 V 15=1 mA, Vo =±10.0V 1,3 2 265 400 500 400 500 V+ = 10.8 V, V - 10.8 V 15=1 mA, Vo =±7.5V V IN = 0.4 V 1,3 2 300 450 550 450 550 V+ = 20 V, V- = -20 V 15=1 mA, Vo=±15V 1,3 2 200 350 450 350 450 Vo - +5,0, -5 V, 15 - ±1 mA VIN = 0.8 V Worst Combination 1 2,3 20 40 50 40 50 .n. 5-315 DGP508A .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND=OV VAH = 2.4 V, VAL = 0.8 V VEN = 2.4 V LIMITS 1=25·C A 0 2=125,85·C SUFFIX SUFFIX 3=-55,-40·C -55 to 125°C -40 to 85°C TEMP TYpd MINb MAXi MINb MAXb UNIT SWITCH (Cont'd) V+ = 13.5 V V- = -13.5 V V+ = 16.5 V V- = -16.5 V Source OFF Leakage Current IS (OFF) V+ = 20 V V- = -20 V -0.25 -10 0.25 10 -0.25 -2 0.25 2 Vo = +12.5 V Vs = -12.5 V 1 2 -0.01 -0.25 -10 0.25 10 -0.25 -2 0.25 2 Vo = -15.5 V Vs = +15.5 V 1 2 0.01 -0.25 -10 0.25 10 -0.25 -2 0.25 2 Vo = +15.5 V Vs = -15.5 V 1 2 -0.01 -0.25 -10 0.25 10 -0.25 -2 0.25 2 Vo = -19 V Vs = +19 V 1 2 0.03 -1 -50 1 50 -1 -10 1 10 Vo = +19 V V s =-19V 1 2 -0.03 -1 -50 1 50 -1 -10 1 10 -5 5 -2 2 Vo = +5 V Vs = -5 V 2 -5 5 -2 2 Vo = -12.5 V Vs = +12.5 V 1 2 0.08 -2 -100 2 100 -2 -20 2 20 Vo = +12.5 V Vs = -12.5 V 1 2 -0.08 -2 -100 2 100 -2 -20 2 20 Vo = -15.5 V Vs = +15.5 V 1 2 0.10 -2 -100 2 100 -2 -20 2 20 Vo = +15.5 V Vs = -15.5 V 1 2 -0.10 -2 -100 2 100 -2 -20 2 20 Vo = -19 V Vs = +19 V 1 2 0.25 -5 -200 5 200 -5 -50 5 50 Vo = +19 V V s =-19V 1 2 -0.25 -5 -200 5 200 -5 -50 5 50 nA IO(OFF) V+ = 20 V V- = -20 V Vo = -5 V Vs = +5 V 2 -50 50 -20 20 Vo = +5 V Vs = -5 V 2 -50 . 50 -20 20 V+ = 16.5 V V- = -16.5 V IO(ON)+ IS(ON) V+ = 20 V V- = -20 V 5-316 0.01 2 V+ = 16.5 V V- = -16.5 V Channel ON" Leakage Current 1 2 Vo = -5 V Vs = +5 V V+ = 13.5 V v- = -13.5 V Drain OFF Leakage Current Vo = -12.5 V Vs = +12.5 V Vo = +15.5 V Vs = +15.5 V 1 2 0.10 -2 -100 2 100 -2 -20 2 20 Vo = -15.5 V Vs = -15.5 V 1 2 -0.10 -2 -100 2 100 -2 -20 2 20 Vo = +19 V Vs = +19 V 1 2 0.25 -5 -200 5 200 -5 -50 5 50 Vo = -19 V V s =-19V 1 2 -0.25 -5 -200 5 200 -5 -50 5 50 DGP508A Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V VAH = 2.4 V, VAL = 0.8 V VEN = 2.4 V IO(ON)+ Vo = +5 V Vs = +5 V 2 -50 50 -20 20 Vo = -5 V Vs = -5 V 2 -50 50 -20 20 LIMITS 1=25·C A 2=125,85·C SUFFIX 3=-55,-40·C -55 to 125 Q C TEMP TYpd 0 SUFFIX -40 to 85 Q C MINb MA'if MIN1MAXb UNIT SWITCH (Cont'd) Channel ONe Leakage Current (Continued) IS(ON) nA SUPPLY 1,2 3 1.3 2.4 3 2.4 3 1,2 3 1.3 2.4 3 2.4 3 1,2 3 -0.65 -1.5 -2 -1.5 -2 1,2 3 -0.65 -1.5 -2 -1.5 -2 V+ = 20 V, V- = -20 V VINunder test = 2.4 V 1,2 -0.001 -0.5 0.5 -0.5 0.5 V+ = 20 V, V- = -20 V V IN under test = 20 V 1,2 0.004 -0.5 0.5 -0.5 0.5 V+ = 20 V, V- = -20 V VIN under test = 0 V 1,2 0.01 -0.5 0.5 -0.5 0.5 1,3 2 750 1000 1500 1000 1500 1,3 2 350 1000 1500 1000 1500 1000 1500 1000 1500 1+ Positive Supply Current I+STANOBY VIN = 2.4 V V A =00r2.4V 1- V±=±16.5V Negative Supply Current I-STANOBY mA INPUT Input Current With YiN High Input Current With YiN Low IAH IAL /-LA DYNAMIC Enable Turn-ON Time tON(EN) Enable Turn-OFF Time tOFF(EN) See Switching Time Test Circuits ns Multiplexer Switching Time tTRANS 1,3 2 700 Break-Before-Make Interval t OPEN 1 450 1 5.5 Charge Injection Q Rgen = 0.0. C L= 10 nF Vgen = 0 V 50 50 15 15 pC Vgen = ± 10 V 1 7 20 20 5-317 DGP508A WY'Siliconix ,,1;11 incorporated ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER Test Conditions Unless Otherwise Specified: V+ = 15 V, V- = -15 V GND = 0 V VAH = 2.4 V, VAL = 0.8 V VEN = 2.4 V LIMITS 1=2SoC A 0 2=125,85°C SUFFIX SUFFIX 3=-5S,-40·C -55 to 125°C -40 to 85°C TEMP TYpd MINb MAX' MINb MAXb UNIT DYNAMIC (Cont'd) Source OFF Capacitance CS(OFF) DraIn OFF CapacItance Co (OFF) DraIn and Source ON Capacitance CS(ON) + COlON) f = 1 MHz Crosstalk OFF IsolatIon f = 100 kHz InsertIon Loss 1 5 1 25 1 30 1 -60 1 -60 1 -1.6 pF dB NOTES: a. Refer to PROCESS OPTION FLOWCHART for addItIonal InformatIon. b. The algebraIc conventIon whereby the most negatIve value Is a mInImum and the most posItIve a maximum, Is used In thIs data sheet. c. Guaranteed by design, not sublect to productIon test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testIng. e. Sequence each switch ON. DIE TOPOGRAPHY ... Pad No. 2 1 73 mils '-----------.lJ 10 ICMGA 4 CapacItors 7 ResIstors 12 DIodes 5-318 11 12 13 14 85 P-channel enhancement MOSFETs 89 N-channel enhancement MOSFETs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 FunctIon Address 0 Enable VSource 1 Source 2 Source 3 Source 4 DraIn Source 8 Source 7 Source 6 Source 5 V+ (Substrate) Ground Address 2 Address 1 DGP508A ..... Siliconix incorporated ~ tON(EN) AND tOFF(EN) TEST CIRCUIT tr<20ns 11<20no 3.0V LOGIC INPUT +15 V V+ Vs S l l - - - - - o -5 v 50% 0 V ----...11 ov ---=~::..::.-+-...., IOFF(EN) swrrCH OUTPUT Vo 0.1 Vo ~2 VO------- SB RL Vo = Vs ---~- RL + ROS(ON) tOPEN TEST CIRCUIT _/ 3V LOGIC INPUT +15 V 2.4 V EN A2 A1 V+ OV Vo Sl Vs +5V SWITCH OUTPUT Vo SB 50% OV SWrrCH OUTPUT tr<20ns \ If <20 no '--- -1£ tTRANSITION TEST CIRCUIT 3.0 V LOGIC INPUT +15 V 2.4V rE;'N:;--~V~+:-SS;-ll------o +10 V S2 S7 SWITCH OUTPUT Vo 0 V _ _ _ _...JI 50% tr<20ns 11<20no O.B VS 1 OV VSB _ _ O_.B_V_S::lI..--+_= ro;;;;....--=.2.....::':":"-4J ITRANsmON SBi------ --T-o OUTPUT 5-319 DGP508A . . , Siliconix incorporated ~ OFF ISOLATION TEST CIRCUIT +15 V O .........o-_---Q SIGNAL GENERATOR FREQUENCY TESTED -=- 100 Hz to 13 MHz SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer Analyzer Chan A OFF ISOLATION = 20 log VOUT VGEN Chan B CROSSTALK TEST CIRCUIT 2.4 V 51 +15 V EN V+ ~2 O.........O-_---Q 58 A2 A1 1 k.n. FREQUENCY TESTED 100 Hz to 13 Mt-tz SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer SIGNAL GENERATOR ANALYZER HP3330B Automatic Synthesizer HP3571A Tracking Spectrum Analyzer Analyzer Chan A CROSSTALK = 20 log VOUT VGEN Char B INSERTION LOSS TEST CIRCUIT 2.4 V +15 V EN V+ Ot-o--t----Q FREQUENCY TESTED SIGNAL 100 Hz to 13 MHz GEN~RATOR Analyzer Chan A INSERTION _ 20 log LOSS - Chan B 5-320 VOUT VGEN ~ ~ DGP508A Siliconix incorporated DRAIN ON CAPACITANCE OV +15 V EN v+ SI A2 CHAN N'l { Al SELECT METER S~ D AO -15 V BOONTON 72BO CapacItance Meter or equIvalent CAPACITANCE METER -=- SOURCE/DRAIN OFF CAPACITANCE OV +15 V SI METER A2 S8 CHANN'l { CAPACITANCE METER Al SELECT AO D BOONTON 72BO CapacItance Meter or equIvalent -=- -15 V -=- CHARGE TRANSFER ERROR 3V~ LOGIC INPUT 0 v OV SWITCH OUTPUT +15 v EN V+ SI / '-_ _ _ _ _ _...J ----/ /:::;. Vo Is the measured voltage due to charge transfer error I Q A2 S8 C_NEL{ SELECT A1 AO -=- D r cL 10nF 5-321 DGP508A .... Siliconix incorporated ~ SCHEMATIC DIAGRAM 4 7 12 85 89 ~ Capacitors Resistors Diodes P-channel enhancement MOSFET N-channel enhancement MOSFET ____________ ~l- I .... In 2.4 V Logic "0" VAL < 0.8 V TIMING DIAGRAMS 3V~1.5V o ~ J 3v _____f1ww AO. A 1. (A2) EN 0 _ _ _ _-' ~jC'~ 2.0 V Figure 1 As -"" OUTPUT 3V~ 0 1.5V v, _ d ~ ":~ 0 '''' L) O.B Vo O.B V Figure 2 5-351 DG526/527 B Siliconix incorporated TRANSITION TIME TEST CIRCUIT +2 4 V LOGIC INPUT t r < 20 n. tl< 20 ns +15V SV 50% EN o As v+ AO Al A2 VS1=---t., O.BVSl SWITCH OUTPUT Vo Sl S2thru S 15 S16 DG526 r--r-+--o-; AS SWITCH OUTPUT 0 Vo 135pF lM.o. VSB -::- O.BVSB +24V +15V S10N V+ Slb Sla thru SBaOa S2b andS 7b SBb SWITCH OUTPUT DG527 Db VOb -::- 135pF Figure 3 ENABLE tONI tOFF TIME TEST CIRCUIT LOGIC INPUT t r < 20 n. tl<20n. SV 50% ,..,..---0-; EN S, 0 0 O. lVO SWITCH OUTPUT o 1--<>-1~"""'--o SWITCH OUTPUT Vo 1 k.o. -::0. 9VO Vo Vs EN AO Al A2 135 Vo pF S, S'a thru SBa S4a Oa S2bthru SBb -::- DG527 SWITCH OUTPUT Db VOb -::- Figure 4 5-352 135PF DG526/527 ...,. Siliconix incorporated ~ OPEN TIME (B.B.M.) INTERVAL TEST CIRCUIT +15 V +2.4 V LOGIC INPUT t r < 20 ns tf<20ns 3V 50% V+ EN o Vs As ALL SAND Da ,.--....,1-1 SWITCH OUTPUT 1--0-_......- 0 BO% SWITCH OUTPUT VD +5 V 00526 00527 VD OV 1 50.0. 1- tOPEN 35pF WRITE TURN-ON TIME tONI WR)TEST CIRCUIT +15V 3 WR 1.5V 50% SWITCH OUTPUT Vo V+ Slor S 'b EN 0 AO,A1, A2, (A3l -tOFF(WRr-k 'O. 2VO OV As REMAINING SWITCHES ":' 00526 00527 SWITCH OUTPUT DEVICE MUST BE RESET PRIOR TO APPLYING WR PULSE Vo .. 1 35PF Figure 6 ":' RESET TURN-OFF TIME tOFFC'Rs)TEST CIRCUIT +15 V EN AO,A1, A2, (A3l ":' SWITCH OUTPUT Vo V+ Slor S 'b REMAINING SWITCHES 00526 00527 O.BVO SWITCH OUTPUT Vo LOGIC INPUT Figure 7 ":' ":' CHARGE INJECTION TEST CIRCUIT +15V EN~ 2.4 V , AYo Rgen r--'VI<'V--+""":S;:"X:;""O' ....._--'''-f--......- - Q Vo T Vgen r VO~ A. Vo IS THE MEASURED VOLTAGE ERROR Figure 8 DUE TO CHARGE INJECTION. THE CHARGE IN COULOMBS IS a = CLx A. Vo 5-353 DG526/527 .... Siliconix incorporated ~ DETAILED DESCRIPTION The internal structure of the DG526 and DG527 includes a 5 V logic interface with input protection circuitry followed by a latch, level shifter, decoder and finally the switch constructed with parallel N and P-channel MOSFETs (see figure 9). The input protection on the logic lines Ao, Alo A2, As, EN and control lines WR, RS shown in figure 9 minimize susceptibility to static encour.tered during handling and operational transients. The logic interface circuit compares the TIL input signal against a TIL threshold reference voltage. The output of the comparator feeds the data input of a D type latch. The level sensitive D latch continuously places th~x input signal on the Ox output when the ClK (WR) input is low, resulting in transparent operation. As soon as ClK (WR) returns high the latch holds the data last present on the DX input at the Ox output, subject to the "Minimum Input Timing Requirements" table. t Following the latches the Ox signals are level shifted and decoded to provide proper drive levels for the CMOS switches. This level shifting insures full ON/OFF switch operation for any analog signal present between the V+ and V- supply pins. The enable (EN) pin is used to enable the address latches during the WR pulse. It can be hard wired to the logic supply if one of the channels will always be used (except during a reset) or it can be tied to address decoding circuitry for memory mapped operation. The RS pin is used as a master reset. All latches are cleared regardless Q!..!he state of any other latch or control line. The WR pin is used to transfer the state of the address control lines to their latches, except during a reset or when EN is low (see Truth Tables). r---------------------------------------------------~------------"v+ LEVEL SHIFT DECODE ~-----I---O S, ------L Sa L----------+---------~ ____________O v- Figure 9. OG526/527 Slmplifed Internal Structure APPLICATIONS INTRODUCTION The DG526 and DG527 minimize the amount of interface hardware between a microprocessor system bus and the analog system being controlled or measured. The internal TIL compatible latches give these multiplexers write-only memory, that is, they can be programmed to stay in a particular 5-354 switch state (e.g., switch 1 ON) until the microprocessor determines it is necessary to turn different switches ON or turn all switches OFF. The input latches become transparent when WR is held low; therefore, these multiplexers operate by direct command of the coded switch state on the address inputs. In this mode the DG526 is identical ~ ~ DG526/527 Siliconix incorporated APPLICATIONS (Cont'd) to the very popular DG506 even sharing the same pin locations. The same is true of the DG527 versus the popular DG507. information in the Ao, A" A2, A3, and EN latches is decoded and the appropriate switch is turned ON. The EN latch allows all switches to be turned OFF under program control. This becomes useful when two or more DG526s are cascaded to build 32-line and larger analog Signal input multiplexers. CIRCUIT OPERATION (See Figure 10) Initially during system power-up RS would be active LOW maintaining all 16 switches in the OFF state. After RS returned HIGH the DG526 maintains all switches in the OFF state. As soon as the system program was ready to perform a write operation to the address assigned to the DG526, the address decoder would provide a CS active LOW signal which is gated with the WRITE (WR) control signal. At this time the data on the DATA BUS (that will determine which switch to close) is stabilizing. When the WR signal returns to the HIGH state, (positive edge) the input latches of the DG526 save the data from the DATA BUS. The coded DATA BUS Figure 11 illustrates one use of the DG527. Dual multiplexers are generally used with differential or instrumentation amplifiers in process control applications to eliminate errors due to common mode signals. In this circuit however, advantage is taken of the dual multiplexing capability of the switch. This is achieved by using the multiplexer to select pairs of R.C. networks to control the pulse width of the multivibrator. This can be a particularly useful feature in process control applications where there is a requirement for a variable width sample "window" for different control signals. >~~ ---------~ t1 3) EN DG526 PROCESSOR SYSTEM BUS RESETC>---------iRs o v- 1 OF 16 ANALOG OUTPUT -15 V Figure 10 5-355 . . , . Siliconix incorporated DG526/527 ~ APPLICATIONS (Cent'd) vOG527 DATA BUS EN -18 AD -17 A1 -16 A2 -15 Vee R1 R2 19 20 R3 21 R4 22 R5 23 R6 24 R7 25 R8 26 28 Q Q RS WR ADD BUS Figure 11. j1P-selected Pulse-Width Control APPLICATIONS HINTS 5-356 V+ Positive Supply Voltage VNegative Supply Voltage GND Analog & Power Supply GND VIN Logic Input Voltage VINHMinl VINLMax Vs orVo Analog Voltage Range (V) (V) (V) (V) (V) 20 -20 GND 2.4/0.8 ± 20 15 -15 GND 2.4/0.8 ±15 8 -8 GND 2.4/0.8 ±8 DG528/529 a-Channel and Dual 4-Channel Latchable Multiplexers ...... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • TTL Compatible • Easily Interfaced • Data Acquisition Systems • 44 V Power Supply Rating • Increased Analog Signal Range • Automatic Test Equipment • On-board Address Latches • Microprocessor Bus Compatible • rDSION) < 400 n • Break-Before-Make • Avionics And Military Systems • Communication Systems • Improved System Accuracy • Microprocessor Controlled Systems • Reduced Crosstalk • Audio Signal Multiplexing DESCRIPTION DG528 and DG529 are 8 and 4-channel analog multiplexers. respectively. with on-Chip address and control latches to simplify design in microprocessor based applications. Break-beforemake switching action protects against momentary shorting of the input signals. Designed on the Siliconix PLUS-40 CMOS process. each bidirectional switch features low 400 n ON resistance over the full analog range, and will block signals to 30 V peak-to-peak in the unselected channels. All logic levels are TTL compatible. DG528 is an 8-channel single-ended analog multiplexer designed to connect 1 of 8 inputs to a common output as determined by a 3-bit binary address (Ao. Al. A2). DG529. a 4-channel dual analog multiplexer. is designed to connect 1 of 4 dual inputs to a common dual output as determined by its 2-bit binary address (Ao. Al) logic. An epitaxial layer prevents latchup. The on-board TTL-compatible address latches simplify the digital interface design and reduce board space in bus-controlled systems such as data acquisition systems. process controls. avionics. and ATE. The DG528 is available in 18-pin CerDIP in the military, A suffix (-55 to 125°C). industrial. B suffix (-25 to 85°C) and commercial. C suffix (0 to 70°C) temperature ranges. and in the plastic DIP for commercial temperature operation. For more information on the DG528 and DG529. please refer to Siliconix Application Note AN83-4. PIN CONFIGURATION Dual-In-Line Package Top View Dual-ln-Llne Package Top View R8 A1 A2 GND v+ 82 85 86 Order Numbers: CerDIP: DG52BAK. DG52BBK. DG52BCK Plastic: DG52BCJ Order Numbers: CerDIP: DG529AK. DG529BK. DG529CK Plastic: DG529CJ 5-357 DG528/529 ".,. Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM S1 S2 S3 S4 S5 D S6 S7 Sa S1a S2a S3a S4a S1b Da S2b S3b S4b RS Db WRo-+-------; A1 DG528 8-Channel Single-Ended Multiplexer DG529 Differential 4-Channel Multiplexer ABSOLUTE MAXIMUM RATINGS Voltage Referenced to VV+ ........................................... 44 V GND ...............•..••.••.......•.......... 25 V Digital Inputs, Vs ,Voh ...... (V-) -2 V to (V+) +2 V or . . . . . . . • • • • • • . . . . . . . . .. 20 mA, whichever occurs first. Current (Any Terminal Except S or D) ........... 30 mA Continuous Current, S or 0 .................... 20 mA Peak Current, S or 0 (Pulsed at 1 ms, 10% Duty Cycle Max) .......... 40 mA 5-358 Operating Temperature (A Suffix) ......... -55 to 125°C (8 Suffix) .......... -25 to 85°C (C Suffix) ..•......... 0 to 70°C Storage Temperature (A & 8 Suffix) •••.•.. -65 to 150°C (C Suffix) ...•••..•. -65 to 125°C Power Dissipation (Package)' 18-Pln Ceramic DIP" . .. . . . • . . • . .. • .. . . . . . . .. 900 mW 18-Pln Plastic DIP**' ••.•.•.....•............ 470 mW All leads soldered or welded to PC board. ** Derate 12 mW/oC above 75°C. ••• Derate 6.3 mW/OC above 75°C. DG528/529 Siliconix incorporated ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A B,C 2=125,70,85°C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3=-55,-25,O°C -55 to 125°C GND = 0, WR = 0 RS = 2.4 V TEMP TYpd MINiMAX b MIN MAXb UNIT SWITCH Analog Signal Range C -15 1,2,3 VANALOG 15 -15 400 500 15 V 450 500 .0. Drain-Source e ON Resistance rOS(ON) Vo =±10 V, VAL = 0.8 V Is = -200.llA,VAH = 2.4 V 1,3 2 270 Greatest Change In r os (ON) Between Channels f rOS(ON) t. -10 V --i EN o AO 0,....--+.. Al O. lVO SWITCH SWITCH 00528 A2 OUTPL1T o I--o-r-""'?'-O 135 OLITPUT Vo 0. 9VO VOb PF Vo Vs r-"t""---o--i EN Slathru S4a Oa S2b S3b S4b AO SWITCH 00529 OLITPLIT Obt--o-.,....-r---o VOb ........:::r=-~;:.:-~or--....I Figure 4 5-364 135 PF ~ ~ DG528/529 Siliconix incorporated OPEN TIME (B.B.M.) INTERVAL TEST CIRCUIT +2.4 V LOGIC INPUT t r < 20 ns tf< 20 ns +15 V 3V V+ 50% EN 0 As Vs SWITCH OUTPUT 80% SWITCH OUTPUT VD +5V ALL SAND Da OG528 OG529 1--0-_......- 0 VD OV 1 1- tOPEN 35PF Figure 5 WRITE TURN-ON TIME tONe WR) TEST CIRCUIT +15V 3 1.5 V :"-ION(WRI SWITCH OUTPUT Vo V+ 50% o EN -.1 S, or S,b AO.A,. (A21 REMAINING SWITCHES o v _________.J~O .-----0-1 As -=- OG528 OG529 SWITCH OUTPUT DEVICE MUST BE RESET PRIOR TO APPLING WR PULSE Vo LOGIC 1-,;;;.;;;.-----;-....1 1 kn. INPUT 1 35PF -=Figure 6 RESET TURN-OFF T!ME tOFF( RS) TEST CIRCUIT +15V V+ EN AO.A,. (A21 REMAINING SWITCHES -tOFF(RSI- ~~~~ -----------~I Vo SIO,S'b OG528 OG529 0. 8VO SWITCH OUTPUT I-D-t--,......-o LOGIC 1-';;;';;;'-";';;';-_"';'_....1 INPUT Vo 1 35PF Figure 7 5-365 DG528/529 ...... Siliconix incorporated ~ CHARGE INJECTION TEST CIRCUIT EN~ 2.4V Rgen S --.....kTo-"T--O 1 ~ V O~ ct. = 1000 pF Vgen r Vo -=- T Figure 8 /:)" Vo IS THE MEASURE VOLTAGE ERROR DUE TO CHARGE INJECTION. THE CHARGE INJECTION IN COULOMBS IS Q = C LX /:)" Vo DETAILED DESCRIPTION The internal structure of the OG528 and OG529 includes a 5 V logic interface with input protection circuitry followed by a latch. level shifter. decoder and finally the switch constructed with parallel N and P-channel MOSFETs (see figure 9). the Ox input at the Qx output. subject to the "Minimum Input Timing Requirements" table. Following the latches the Qx signals are level shifted and decoded to provide proper drive levels for the CMOS switches. This level shifting insures full ON/OFF switch operation for any analog signal present between the V+ and V- supply pins. The input protection on the logic lines Ao. Al. A2. EN and control lines WR. RS shown in figure 9 minimize susceptibility to static encountered during handling and operational transients. The enable (EN) pin is used to enable the address latches during the WR pulse. It can be hard wired to the logic supply if one of the channels will always be used (except during a reset) or it can be tied to address decoding circuitry for memory mapped operation. The RS pin is used as a master reset. All latches are cleared regardless of the state of any other latch or control line. The WR pin is used to transfer the state of the address control lines to their latches. except during a reset or when EN is low (see Truth Tabies). The logic interface circuit compares the TIL input signal against a TIL threshold reference voltage. The output of the comparator feeds the data input of a 0 type latch. The level sensitive 0 latch continuously places th~x input signal on the Qx output when the CLK (WR) input is low. resulting in transparent operation. As soon as CLK (WR) returns high the latch holds the data last present on r--------------------------~------~V+ TTL THRESHOLD VOLTAGE ?o;':;:::=h----o 0 >---1 On LEveL SHIFT DeCODe 4 WIDE LATCH L..4--+-0S 1 ------L," ~----~----~------~V- Figure 9. DG528/529 Simplified Internal Structure 5-366 DG528/529 ...... Siliconix incorporated ~ APPLICATIONS BUS INTERFACING (See Figure 10) The DG528 and DG529 minimize the amount of interface hardware between a microprocessor system bus and the analog system being controlled or measured. The internal TTL compatible latches give these multiplexers write-only memory, that is, they can be programmed to stay in a particular switch state (e.g., switch 1 ON) until the microprocessor determines it is necessary to turn different switches ON or turn all switches OFF. The input latches become transparent when WR is held low; therefore, these multiplexers operate by direct command of the coded switch state on A2, A1, Ao. In this mode the DG528 is identical to the very popular DG508 even sharing the same pin locations. The same is true of the DG529 versus the popular DG509. Initially during system power-up RS would be active LOW maintaining all 8 switches in the OFF state. After RS returned HIGH the DG528 maintains all switches in the OFF state. As soon as the system program was ready to perform a write operation to the address assigned to th~DG528, the address decoder would provide a CS active LOW signal which is gated with the WRITE (WR) control signal. At this time the data on the DATA BUS (that will determine which switch to close) is stabilizing. When the WR signal returns to the HIGH state, (positive edge) the input latches of the DG528 save the data from the DATA BUS. The coded information in the Ao, Alo A2, and EN latches is decoded and the appropriate switch is turned ON. The EN latch allows all switches to be turned OFF under program control. This becomes useful when two or more DG528s are cascaded to build 16-line and larger analog Signal input multiplexers. DATA BUS PROCESSOR SYSTEM BUS R E S E T ( ) o - - - - - - - - I RS D v- 10FB ANALOG OUTPUT -15V Figure 10. Bus Interface 5-367 DG528/529 ~ ~ APPLICATIONS HINTS 5-368 VIN Logic Input Voltage VINHMinl VINLMax Vs orVD Analog Voltage Range V+ Positive Supply Voltage VNegative Supply Voltage GND Analog & Power Supply GND (V) (V) (V) (V) (V) 20 -20 GND 2.4/0.8 ± 20 15 -15 GND 2.4/0.8 ±15 8 -8 GND 2.4/0.8 ±8 Siliconix incorporated DG548/549 8-Channel and Dual 4-Channel CMOS Analog Multiplexers with Overvoltage Protection ..,. Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Analog/Digital Overvoltage Protection • Improved Ruggedness • Data Acquisition Systems • Power Loss Protected • Fail Safe With Power Loss (No Latchup) • Prevents Adjacent Channel Crosstalk • Industrial Process Control • Break-Before-Make Switching • Standard Logic Interface • Avionics Test Equipment • High Rei Control Systems • TTL and CMOS Compatible Inputs DESCRIPTION The DG548 and DG549 are dielectrically isolated 8and 4-channel analog multiplexers, respectively, incorporating overvoltage protection. They withstand analog input voltages greater than the supplies. This is advantageous in systems where the analog inputs originate outside the equipment. The DG548/DG549 can withstand continuous inputs up to 10 volts greater than either supply, which eliminates the possibility of damage when supplies are lost, while input Signals are still present. These multiplexers can withstand brief input transient spikes of several hundred volts which otherwise would require complex external protection networks. Necessarily, ON resistance is higher than the DG508A/DG509A but very low leakage currents combine to produce low errors. The DG548 and DG549 are pin compatible with the industry-standard DG508A and DG509A multiplexers. The DG548 and DG549 are offered in 16-pin plastic and CerDIP packages for operation over the commerCial, C suffix (0 to 70°C) and military, A suffix (-55 to 125°C) temperature ranges. PIN CONFIGURATION Dual-In-Llne Package Top View Order Numbers: DG548AK, DG548BK DG548CK, DG548CJ Preliminary Dual-In-Llne Package Top View Order Numbers: DG549AK, DG549BK DG549CK, DG549CJ 5-369 DG548/549 ~ ~ Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM V- V+ GND V- V+ .. GND s2o-t-------------~71'~~ S1ao-t-----------------~,., S2ao-t-----------~r,6----r_i S3o-t-----------~~_r_r~ S3ao-t-------afo~--;_----~ S4o-.-----------ao~_;~~ S4ao-t--g,~--_+----4_----~ S1o-t---------------~~, D S5o-~-------oI~T_+-~~_t S1bo-.---r----+----4---~r., S6o-~-----a,~+-+-~~~_t S2bo-t---~---7--~~6----~ S7o-~--~,~~+-7_+_~~_t S3bo-t---~--~L---4-----r_i SBo-~~,..,~~+-+_+_;_;_~ S4bo-t--g,~--_r----;_----~ A2 A1 Ao Da A1 EN Ao EN DG549 Differential 4 Channel Multiplexer DG548 8 Channel Single Ended Multiplexer ABSOLUTE MAXIMUM RATINGS Voltage Referenced to VV+ ..........•......•......................... 44 V GND ......................................... 25 V VEN, VA, Digital Input ........... (V-) -4 V to (V+) +4 V , V s, Analog Input Overvoltage with Power ON .......................•.... (V-) -20 V to (V+) +20 V V s' Analog Input Overvoltage with Power OFF . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -35 V to +35 V Continuous Current, S or D .................... 20 mA Peak current, S or D (Pulsed at 1 ms, 10% duty cycle max) .....•.... 40 mA Operating Temperature (A Suffix) ......... -55 to 125·C (C Suffix) .........•.. 0 to lO·C Storage Temperature (A Suffix) ........... -65 to 150·C (C Suffix) .........•• -65 to 125·C Power Dissipation (Package)· 16-Pln Ceramic DIp·· ............•.........•. 900 mW 16-Pln Plastic DIp··· ........................ 600 mW All leads soldered or welded to PC board. •• Derate 12 mW/·C above l5·C. ••• Derate 6.'3 mW/·C above 25·C. Stresses above those listed under • Absolute Maximum Ratings' may cause permanent damage to the device. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25·C A C 2=125,lO·C V+ = 15 V, V- = -15 V SUFFIX SUFFIX 3=-55,-0·C -55 to 125°C o to lOoC GND = 0 V V AH = 4.0 V, VAL = 0.8 V TEMP TYpd MINb MAXb MINb MAXt UNIT SWITCH Analog Signal Range C ON Resistance" rOS(ON) rOS(ON) Match Between Channels f rOS(ON) 5-370 1,2,3 VANALOG t:. -15 Vo =±10 V, 10 = -100,JJ.A 1 2,3 1.2 Vs = 0 V, 10 = -100,JJ.A 1 6 15 1.5 1.8 -15 15 V 1.8 2.0 k.O. % Preliminary DG548/549 flY' Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25·C C A 2=125,70·C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3=-55,-0·C -55 to 125°C o to 70°C GND = 0 V VAH=4.0V, VAL=O.BV b b TYpd MIN MAXb MIN MAXt UNIT TEMP SYMBOL PARAMETER SWITCH (Cont-d) Source OFF Leakage Current IS(OFF) DG548 Drain OFF Leakage Current VEN = 0 V Vs= ±10 V Vo= +10 V 1 2,3 0.03 -0.5 -50 0.5 50 -0.5 -50 0.5 50 Vo= ±10 V Vs= +10 V 1 2,3 1 -5 -250 5 250 -5 -250 5 250 Vo= ±10 V Vs= +10 V 1 2,3 0.5 -2.5 -125 2.5 125 -2.5 -125 2.5 125 4 -20 20 -2000 2000 -20 -2000 20 2000 IO(OFF) DG549 IO(OFF) with Input Overvoltage Applied loov Analog Overvoltage = ± 33 V (See Figure 1) 1 2,3 Differential OFF Drain Leakage Current IOIFF DG549 Only 1,2,3 DG54B Drain ON Leakage Current IO(ON) Vs=Vo=±10V DG549 Sequence Each Switch ON VAL= O.B V V AH = 2.4 V -50 50 -50 50 1 2,3 0.1 -1 -250 1 250 -1 -250 1 250 1 2,3 0.05 -0.5 -125 0.5 125 -0.5 -125 0.5 125 nA INPUT Input LOW Threshold VAL 1,2,3 Input HIGH Threshold VAH 1,2,3 2.4 1,2,3 -1 0.8 O.B V Logic Input Current IA V A = 2.4 Vor O.B V 2.4 1 -1 1 JiA 1 .I1S ns DYNAMIC tA See Figure 2 1 0.5 Break-Before-Make Interval tOPEN See Figure 3 1 BO Enable Delay Turn ON Time tON(EN) 1 2,3 300 500 1000 500 1000 Enable Delay, Turn OFF Tme tOFF(EN) 1 2,3 300 500 1000 500 1000 0.1 % 1 1.2 0.025% 1 3.5 VEN =7V,RL=1 k.o. C L = 3 pF, Vs= 3 VRMS f = 500 kHz 1 6B dB 1 5 pF Access Time Settling Time See Figure 4 ts OFF Isolation Logic Input Capacitance Preliminary Cln 1 25 25 .I1s f = 1 MHZ 5-371 DG548/549 flY' Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25·C A C 2=125,85·C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3=-55,-40·C -55 to 125°C o to 70°C GNO = 0 V VAH = 4.0 V, VAL = 0.8 V TEMP TYpd MIN" MAXb MIN b MAXb UNIT DYNAMIC (Cont'd) Souroe OFF Capaoltanoe . CS(OFF) OG548 Oraln OFF Capaoltanoe 1 5 1 25 1 12 1 30 1 17 1,2,3 0.5 CO(OFF) OG549 013548 ON State Input Capaoltanoe pF CS(ON) OG549 Positive Supply Current 1+ Negative Supply Current VEN = HIGH or LOW VA=OV 1- 2.0 2.0 mA 1,2,3 -0.02 -1 -1 NOTES: a. Refer to PROCESS OPTION FLOWCHART for addltlonallriformatlon. b. The algebralo oonventlon whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. o. Guaranteed by design, not subJeot to production test. d. Typical values are for OESIGN AIO ONLY, not guaranteed nor subJeot to production testing. SWITCHING TIME TEST CIRCUITS 18 ANALOGINPLrr CURRENT (liN) 15 12 (liN) ANALOG INPLrr CURRENT 9 (rnA) j 6 3 o V 17 ±IS ±IS "'" V - 10' V V - 1/ V V s 41 o (OFF) (nA) 3 2 VoLrrPUT OFF LEAKAGE CURRENT 10 (OFF) ±21 ±24 ±27 :tOO :t33 ±36 VIN - ANALOG INPLrr OVERVOLTAGE (VOLTS) Figure 1. Analog Input Overvoltage Charaoterlstlos 5-372 Preliminary DG548/549 . . . Siliconix incorporated ~ SWITCHING TIME TEST CIRCUITS (Cont'd) • Similar Connection for DG549 Figure 2. Access Time vs. Logic Level (High) ACCESS TIME LOGIC INPUT 1\ V A INPUT 4V--r----""'\ 50% l"- t- 2 V/DIV. 1\ OV +10 V ----1---, 1'1 OUTPUT A -10 V \ OUTPUT A V/PIV'1 f J iii I 200 ns/dlv Figure 3. Access Time +1SV +4V LOGIC INPUT I-o-~-_-o ........;;::;::--.;.;-.....1 SWITCH OUTPUT VS----..., Vo SWITCH OUTPUT Vo ov -----1--.. . . tOPEN • Similar Connection for DG549 Figure 4. Break-Before-Make Delay Preliminary 5-373 DG548/549 ..... Siliconix incorporated ~ SWITCHING TIME TEST CIRCUITS (Cont'd) +15V VAH=4V V+ S1 4V +10 V OG54B ENABLE INPUT S2 -s 81-0----. SWITCH .". OUTPUT 50% OV Vs Vo SwrrCH OUV~T OV • Similar Connection for OG549 Figure 6. Enable Delay TRUTH TABLES OG549 OG54B A2 A1 Ao EN sw?tb~ A1 Ao EN ~CIi X X X 0 NONE X X 0 NONE 0 0 0 1 1 0 0 1 1 0 0 1 1 2 0 1 1 2 0 1 0 1 3 1 0 1 3 0 1 1 1 4 1 1 1 4 1 0 0 1 5 6 1 0 1 1 1 1 0 1 7 1 1 1 1 B Logic '0' 5-374 =VAL 5 O.B Logic "1" = VAH ~ 2.4 V Preliminary DG566 Serial-loading Octal SPST High-Voltage Analog Switch .... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • ± 50 Volt Analog Range • Extended Voltage Range • Ultrasound Systems 8 Serial Data Interface • Low rOS(ON) « 40 .n with ± 60 V Supplies) Single Wire Interface • Reduced Switching Errors • Microprocessor-Controlled Systems • Blocks Bipolar Signals • Automatic Test Equipment CI • Bidirectional Switching DESCRIPTION • High Voltage (± 60 V) Systems PIN CONFIGURATION The DG566 is a high voltage D/CMOS octal (8-channel) array of analog switches with a serial data interface controlling the state of each switch independently. This allows selection of none, any or all eight channels simultaneously. In addition to its high analog voltage range of ±50 V, the DG566 features low ON-resistance (30 .n typical), low quiescent power consumption (270 IJ.W maximum), and bidirectional switching over the full analog signal range. Cerquad Package Top View NO 04 S5 NO 4321282726 NO S4 Os 03 S2 The serial data interface simplifies control in remote applications. The WR pin controls latching of the analog switch control inputs. The clock input (CK) shifts the data through the register, but does not change the state of the switches until the latches are enabled via WR. The logic levels are set by the VL input, ranging from a minimum of 8 V to a rated maximum of 18 V. 02 07 S1 Ss 2 v+ 11 Os 19 00UT GNO NO OLK 12 13 14 15 16 1 18 v- VL ON WR Order Number: OG566DM Built in a proprietary high-voltage D/CMOS process, the DG566 achieves high voltage signal control while maintaining low ON-resistance, low leakage ( I S(OFF) < 5 nA at 50 V), and fast transition times « 2 IJ.s). The DG566 is available in the Cerquad package for surface mount applications. It is specified for operation over the industrial, D suffix (-40 to 85°C) temperature range. 5-375 DG566 . . . Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM & TRUTH TABLE V- V+ GND S1o-~~~L-----------------------------------------~--o D1 S2 D2 S3 D3 S4 D4 S5 S6 S7 S8 Ds Ds D7 D8 SHIFT REGISTER Dour CK 8 Latchable SPST SWitches Per Package • DIN X -WR SWITCH 0 0 OFF 1 0 ON X 1 Maintains Previous State Logic '0" ~ Loglc'1" ~11.5V 3.5 V WR Input Is level sensitive (not edge-triggered) 'SWlTCHES SHOWN FOR LOGIC '1" INPUT ABSOLUTE MAXIMUM RATINGS Voltages Referenced to GND Storage Temperature ...........•.....••. -65 to 125°C V+ •.•••.••..•.....••..••..•••••..........••.. 62 V V- .......................................... -62 V VL ••••••••••••••••••.•••••••••••••••••••••••• 18 V Logic Input Voltage ••.•••.••.•..• -0.3 V to VL + 0.3 V Continuous Current, S or D .••........•...•••.. 90 mA Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max) ..•.•••.. 400 mA 5-376 Operating Temperature (D Suffix) .....••••• -40 to 85°C Power Dissipation' 28-Pln Cerquad" ........................... 450 mW Device mounted with all leads soldered or welded to a PC board. Derate 6 mW/oC above 75°C. DG566 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL -WR V+ = 60 V V- = -60 V V L = 15 V = GND = 0 V LIMITS 1=25°C 2=85°C 3=-40°C TEMP D SUFFIX -40 to 85°C TYP d MIN b MAX b UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance ON Resistance Variation Source OFF Leakage Current Drain OFF Leakage Current Drain ON Leakage Current rOS(ON) .o.rOS(ON) I S(OFF) 10(OFF) -50 1,2,3 VANALOG 50 -50 V < Vo < 30 V 1 2,3 25 40 60 30 V < Vo < 40 V 1 2,3 30 50 60 40 V < Vo < 50 V 1 2,3 50 100 150 1 ±2 ±5 Vs= 0 V 1 2,3 0.5 2 50 Vs = 50 V 1 2,3 1 5 100 Vo= 0 V 1 2,3 0.5 2 50 Vo= 50 V 1 2,3 1 5 100 Vs=Vo=OV 1 2,3 2 10 5k Vs =Vo= 50 V 1 2,3 5 20 10 k Is = 20 mA 10(all) = 5 mA VS(all) = 0 V V .n % Vo= -50 V Vs = -50 V nA 10(ON) INPUT f Logic Input LOW Voltage V INL 1 Logic Input HIGH Voltage V INH 1 Logic Input Current Input Voltage LOW IINL Logic Input Current Input Voltage HIGH IINH Turn ON Time tON 3.5 V Turn OFF Time VIN =OV 1 11.5 0.002 2.0 jJ.A tOFF VIN = VL RL = 5 k.n C L = 50 pF See Figures 1 and 2 1 0.002 2.0 1 0.5 2 1 0.2 1.5 i jJ.s 5-377 DG566 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 60 V V- = -60 V VL = 15 V WR = GND = 0 V - LIMITS 1-25 ·C 2=85·C 3=-40 ·C D SUFFIX -40 to 85 ·C TEMP TYP d 20 MIN b MAX b UNIT DYNAMIC - 100 Setup Time to WR tso 1 Hold Time from WR tHO 1 25 Write Pulse Width tWR 1 35 See Figure 2 ns Clock Delay to Data Out too 1 Data Setup Time to Clock tsu 1 0 Data Hold Time from Clock tH 1 35 250 30 Source OFF Capacitance CS(OFF) Vs = 0 V 1 15 Drain OFF Capacitance CO(OFF) Vo= 0 V 1 15 Channel ON Capacitance COlON) +CS(ON) Vs = 0 V, ViiiiR =VL f = 140 kHz 1 110 1 65 1 2,3 0.002 2 2 1 2,3 0.002 2 2 1 2,3 0.002 2 2 RL = 2 k.n, C L = 3 pF OFF Isolation Vs = 10 Vp-p, f=10kHz pF dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Logic Supply Current IL V1N(all) = 0 V or 15 VI NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. _ e. Pulsed at 1 ms, 10% duty cycle. f. "Inputs' refer to digital Inputs D 1 - D s , WR and CK. 5-378 J.l.A H DG566 Siliconix incorporated DIE TOPOGRAPHY .. --I 218 mils 23 Pad Function No. 1 2 3 4 5 6 7 8 9 10 11 12 16 15 24 14 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 159 mils 12 11 10 2 3 6 5 4 8 7 S4 D4 NC NC S3 D3 S2 D2 Sl D1 V+ V- (substrate) GND VL NC DN ClK WR DOUT D8 S8 D7 S7 D6 S6 NC Ds Ss 9 III 20X LNDEH lVNMOS lVPMOS lVDMOS HVPMOS 84 84 16 32 HVDMOS N+ RESISTORS DIODE 32 26 18 TYPICAL CHARACTERSITICS Drain-Source ON Resistance vs.Vo and Power Supply Voltages Drain-Source ON Resistance vs. Temperature 10 10 V+ = 60 V, V- = -60 V 80 - V+ = 40 V, V- = -40 V· ....... I- V+ = 50 V, V- = -50 V :'V+ = 60 V, V- = -60 V,.....::.. ....... 80 ........ 60 rOS(ON) (.0. ) 40 60 J f V J .," ./ rOS(ON) (.0. ) 125°C V V. - --,..-'" p..... ....... ~ ~ ;;....- I-"'" VJ ~ " 20 .J! 5°C..... 5 0 40 11 r---_ 20 55 !leo -40 -20 o 20 VO- DRAIN VOLTAGE (V) 40 60 0 ;,so -40 -20 20 T ?- l - 0 40 60 VO- DRAIN VOLTAGE (V) 5-379 DG566 Siliconix incorporated SWITCHING TIME TEST CIRCUITS LOGIC "1" = SWITCH ON 60V 15V SWITCH OUTPUT V+ LOGIC INPUT VS= 50 v o--II---------CT S OV-----J ---Ic-Clf-t--...,...-o Vo VS------t-~;=====~~-----swrrCH OUTPUT ov-----I-J DINX WRo-~:;~~~~____~~ VCK 0 - - - - - - - ' -SO V SEE FIGURE 2 FOR PROPER CONTROL TIMING Figure 1. Switching Time Test Circuit TIMING DIAGRAM Figure 2. Timing Olagram 5-380 DG568/569 8- and Dual 4-Channel High-Voltage CMOS Multiplexers with Latches trY' Siliconix ~ incorporated FEATURES BENEFITS APPLICATIONS • ± 50 V Signal Range • Extended Voltage Range • On-Board Address Latches " Microprocessor Compatible (15 V CMOS) • High Voltage (± 60 V) Systems • Low rDS(ON) « 40 .n with ± 60 V Supplies) • Reduced Switching Errors • Blocks Bipolar Signals • Bidirectional Switching • Microprocessor Controlled Systems • Automatic Test Equipment • Communications Systems DESCRIPTION The DG568 and DG569 are 8- and 4-channel multiplexers respectively, designed for high voltage (±50 V) applications in microprocessor based instrumentation and process control. Both multiplexers feature low ON resistance (30 ohms typ.) and true bi-directional switch action over the full analog signal range. In addition, on-board data latches and control inputs are provided to simplify interfacing with most microprocessors. and A2), chip select WR and device reset RS (all channels off), are the logic controls which store, or clear, the switch address-inputs. RS also simplifies switch turn-off during system powerup or reset. The DG568 provides 8-channel single ended multiplexing and demultiplexing, while the DG569 is designed for 4-channel differential switching applications. Address inputs with latches (Ao, Al, Both devices are provided in the 18-pin side braze package, and are specified over the military, A suffix (-55 to 125°C) and industrial, B suffix (-25 to 85°C) temperature ranges. Built in a proprietary high-voltage D/CMOS process, these devices achieve high voltage signal control, while maintaining low ON-resistance, low leakage, and fast transition times. PIN CONFIGURATION Dual-In-Llne Package Top View Order Numbers: Side Braze: DG568AP, DG568BP Dual-In-Llne Package Top View Order Numbers: Side Braze: DG569AP, DG569BP 5-381 .. WY'Siliconix incorporated DG568/569 ~ FUNCTIONAL BLOCK DIAGRAM V+ V- GND V+ s2o-~--------------- f B SUFFIX -25 to 85°C MIN b MAXb UNIT SWITCH Source OFF Leakage Current Drain OFF Leakage Current Drain ON Leakage Current IS(OFF) IO(OFF) IO(ON) Vs= 0 V 1 2,3 0.5 2 500 2 50 Vs= 50 V 1 2,3 1 5 750 5 100 Vo= 0 V 1 2,3 1.5 10 10,000 10 1000 Vo= 50 V 1 2,3 5 25 15,000 25 2000 Vs=Vo= 0 V 1 2,3 2 10 10,000 10 5000 Vo= 50 V 1 2,3 5 20 20,000 20 10,000 See Figure 1 V o =-50V See Figure 2 Vs= -50 V nA See Figure 3 INPUTs Logic Input Current Input Voltage LOW IINL VIN=OV 1 0.002 2 2 IINH VIN =VL 1 0.002 2 2 tON(WR) RL= 2 JQl., CL = 50 pF See Figure 4 1 0.5 2 2 tOFF{Rs) R L= 2 JQl., C L = 50 pF See Figure 5 JJ.A Logic Input Current Input Voltage HIGH DYNAMIC Turn-ON Time JJ.s Turn-OFF Time Break-Belore-Make Interval Access Time tssM tA 1 0.2 1 1 1 300 50 50 1 100 20 20 1 60 300 300 1 90 300 300 See Figure 4 Write Pulse Width tWA Reset Pulse Width tFiS See Figure 5 ns Source-OFF Capacitance CS(OFF) VS= aV 1 15 Drain-OFF CapaCitance CO(OFF) VO= aV 1 85 Channel ON Capacitance COlON) + CS(ON) VS= 0 V, V WA =V L f = 140 kHz to 1 MHz 1 110 VFiS =OV, RL=2k,CL=3pF Vs= 10Vp-p ' f= 10 kHz 1 65 Olf Isolation pF dB 5-383 DG568/569 .... Siliconix ,4;11 incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+ = 60 V V- = -60 V VL =VRS =15V V'J'JR = GND = 0 V SYMBOL PARAMETER LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C B SUFFIX -25 to 85°C TEMP TYpd MINb MAX' MIN b MAXb UNIT SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Logic Supply Current 1 2,3 0.002 2 20 2 2 1 2,3 0.003 2 30 2 2 IL 1 2,3 0.002 2 10 2 2 Minimum Supply Voltage V+(min) 1 40 Minimum Logic Supply Voltage Vdmln) 1 B VIN (All) = 0 V or 15 V e J.lA V NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, nO!J!.uaranteed nor subject to production testing. e. "Inputs· refer to digital Inputs A o, A 1, A 2 , RS and WR . DIE TOPOGRAPHY 159 mils 6 5 @ DG568 4 Pad No. 1 2 3 4 5 6 7 8 9 8 9 20X 218 mils WR Ao VL V - (Substrate) S1 S2 S3 S4 D Sa S7 S6 S5 V+ GND A2 fu. RS LNDEA 10 11 12 16 13 5-384 10 11 12 13 14 15 16 17 18 Function 14 15 LVNMOS LVPMOS LVDMOS HVPMOS HVDMOS N+ RESISTORS DIODE 84 84 16 32 32 26 18 OG568/569 ...r'Siliconix incorporated ~ DIE TOPOGRAPHY (Cont'd) 218 mils - - - - - - - - - - - - - - . OG569 Pad No. 8 1 WR 2 Ao 3 VL V- 4 9 5 6 7 8 9 10 11 12 13 14 15 16 17 18 159 mils 10 11 18 12 17 13 14 Function Sla S2a S3a S4a Da Db S4b S3b S2b Slb V+ GND fu RS LNOEB LVNMOS LVPMOS LVDMOS HVPMOS HVDMOS N+ RESISTORS DIODE 84 84 16 32 32 26 18 15 20X TRUTH TABLES OGS6S A2 Al Ao X X X X X X WR RS OGS69 ON Switch Al Ao WR RS ON Switch 1 Maintains previous switch condition X X S 1 Maintains previous switch condition X 0 NONE X X X 0 NONE 1 S 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 2 0 1 0 1 2 0 1 0 0 1 3 1 0 0 1 3 0 1 1 0 1 4 1 1 0 1 4 1 0 0 0 1 5 1 0 1 0 1 6 1 1 0 0 1 7 1 1 1 0 1 8 Logic "1" :VIN Logic "1": VIN =ViNAH l!: =ViNAL :S 0.7 VL 1V 5-385 DG568/569 .... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) I SCOFF) VB, Vs rOS(ON) vs.Vo 440 96 I 66 64 (.0. ) I I I 400 56 48 32 "" 24 16 c- A- 280 IS(OFF) 240 , 1 j (pA) If' I( I( ..:.,. V ~ / V "/ V V :,;- 80 -60 -50 -40 -30 -20 -10 0 1/ 1/ 11/ '!..so -50 -40 -30 -20 -10 10 20 30 40 50 60 Vo - DRAIN VOLTAGE (V) 12 11 11 10 10 - r- 9 A: V+=60V, V-=-60V B: V+=50V, V-=-50V 0: V+=40V, V-=-40V 8 i-J 7 I o (OFF) (nA) 6 V 5 2 Af/-- 5 I J ) ~ 2 IB 0 10 20 30 40 50 60 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 Vo - DRAIN VOLTAGE (V) rOS(ON) vs.Vo and Temperature Threshold Voltage VB. Logic Supply Voltage 10 100 9 8 A 7 6 A VT 5 IA 3 ~ 2 2 4 80 A 60 I rOS(ON) (.0. ) ~ 4 VJ 40 .4 8 10 12 14 16 18 o V V ..... +25°0 20 6 .... V'" V +125°0 V L - LOGIC VOLTAGE (V) 5-386 I 6 Vo - DRAIN VOLTAGE (V) 00 A: V+=60V, V-=-60V B: V+ = 50 V, V- = -50 V 0: V+ = 40 V, V- = -40 V 3 F- - -60 -50 -40 -30 -20 -10 0 r- 4 I B V. ~ 3 r 7 IO(ON) (nA) )I 4 (V) 10 20 30 40 50 60 IO(ON) vs.Vo IO(OFF) VS. Vo 8 0 Vs- SOURCE VOLTAGE (V) 12 9 B ~ ......0 - t-- ,,' .......: ::::;.. 120 40 --- I- I' ." ..... 1" 200 160 8 o B: V+=50V, V-=-50V 0: V+=40V, V-=-40V 320 I - - ...... I i 40 r- r - I A: Iv+ !60 lv, ~_=I-60IV 360 - r- y = to ~' V"j = 1'0 ~ r ~+=ro~, V"j=1°~ r- V+=80V, V-=-60V 72 rOS(ON) I J+=~oJ v~=-1oJ ..... I I I' I I I - 80 -5fO -60 -48 -36 -24 -12 0 12 24 36 VO- DRAIN VOLTAGE (V) 48 60 OG568/569 fI'Y' Siliconix ~ incorporated LEAKAGE TEST CIRCUITS 60 V 15 V Vs VD -50 V VD OV +15 V Figure 1. I S(OFF) Test Circuit • Similar connections for DG569 Figure 2. Figure I D(OFF) Test Circuit 3. I D(ON) Test Circuit tON(WR) TIME TEST CIRCUIT +60 V +15 V vL------~ I.r---------~ ADDRESS SWITCH INPUT ov--~X~~ I~____~____~ OV __ 50 OUTPUT I--o-~--~---() v D L.-~_'::::':::;;~ VD OV--------------~ VL------------------------------- As • Similar connections for DG569 v-- OUTPUT OV-Figure 4. WRITE Turn-ON Time t OFF(RS) TIME TEST CIRCUIT SWITCH INPUT See Truth Table for proper logic OV-50 V ------------,----- OUTPUT ~~~--~----OVD L.--+_~~ OUTPUT VD ov VL---------------------------WR • Similar connections for DG569 ov- Figure 5. RESET Turn-OFF Time 5-387 DG568/569 ..... Silicon Ix incorporated ~ BREAK-BEFORE-MAKE TEST CIRCUIT ...--+-(161 +--+-- f MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance , 1,2,3 VANALOG rOS(ON) IS(OFF) Switch OFF Leakage Current Is= -10 rnA, Vo=±10 V Vo= -14 V, Vs= 14 V Vo= 14 V, Vs= -14 V IO(OFF) -15 1,3 2 15 -15 50 75 1 2 -1 -100 1 100 1 2 -1 -100 1 100 -1 -100 -1 -100 15 V 50 75 .n. 1 100 1 100 nA Channel ON Leakage Current Vs= Vo = 14 V 1 2 Vs= Vo = -14 V 1 2 -2 -200 VIN under test = 0.6 V 1,2 -1.0 1.0 -1.0 1.0 VIN under test = 2.0 V 1,2 -1.0 1.0 -1.0 1.0 IO(ON)+ IS(ON) 2 200 2 200 -2 -200 INPUT In8ut Current with VIN L W IlL Inrcut Current with VIN HGH IIH JlA DYNAMIC : Turn-ON Time tON Turn-OFF Time tOFF Vs=±10V RL = 1 k.n., CL = 35 pF See Figure 1A 1 1000 1200 1 500 700 ns C L = 10,000 pF Vgen = 0 V, Agen = O.n. 1 30 Off Isolatlon C RL = 75.n., C L = 5 pF f = 1 MHz 1 75 CrosstalkC (Channel-to-Channel) RL= 75.n., Vs= 2 Vp-p f = 1 MHz 1 69 1 15 1 17 1 45 Charge InjectlonC Q pC dB Source-OFF Capacitance C CS(OFF) Drain-OFF Capacitance C CO(OFF) Channel ON CapacltanceC CO(ON)+ CS(ON) 5-392 Vo=Vs= 0 V f = 1 MHz pF H DG5040-5045 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions LIMITS Unless Otherwise Specified: 1=25°C A C V+ = 15 V 2=125,70°C V- = -15 V SUFFIX SUFFIX VL = 5 V 3=-55,O°C o to 70°C -55 to 125°C GND = 0 V VIN = 2.0 V, 0.8 V e TEMP TYpd MIN b MAX' MINb MAXt UNIT SUPPLY Positive Supply Current 1+ 1,2 Negative Supply Current 1- 1,2 Logic Supply Current IL 1,2 IGND 1,2 300 -300 300 -300 JlA VIN = 0.0 or 2.4 V Ground Current 300 -300 300 -300 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. f. Signals on S x' D x or IN x exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to 30 mAo DIE TOPOGRAPHY DG5040 -, 69 mils 11~~~_l Pad No. 1 11 12 13 14 15 16 Function Drain V+ (Substrate) VL GND VInput Source 20X ICMKA 3 Capacitors 5 Resistors 13 P-channel enhancement MOSFET 12 N-channel enhancement MOSFET 7 Diodes 5-393 DG5040-5045 ..... Siliconix JI;II incorporated DIE TOPOGRAPHY (Cont'd) DG5041 Pad No. ...1 - - - - - 107 mils 1 8 9 10 11 12 13 14 15 16 8 ® Function Drain 1 Drain 2 Source 2 Input 2 V+ (Substrate) VL GND VInput 1 Source 1 20X ICMKA 5 Capacitors 6 Resistors 25 P-channel enhancement MOSFET 23 N-channel enhancement MOSFET 9 Diodes DG5042 -, 69 mils ~~~::! ICMKB 4 Capacitors 5 Resistors 16 P-channel enhancement MOSFET 5-394 17 N-channel enhancement MOSFET 7 Diodes Pad No. 1 3 4 11 12 13 14 15 16 Function Drain 1 Drain 2 Source 2 V+ (Substrate) VL GND VInput 1 Source 1 DG5040-5045 Ir'JP'" Siliconix ~ incorporated DIE TOPOGRAPHY (Cont'd) DG5043 -1 69 mils ~~:d Pad No. 1 3 4 5 6 8 9 10 11 12 13 14 15 16 Function Drain 1 Drain 3 Source 3 Source 4 Drain 4 Drain 2 Souce 2 Input 2 V + (Substrate) VL GND VInput 1 Source 1 ICMKB 7 Capacitors 33 N-channel enhancement MOSFET 6 Resistors 9 Diodes 31 P-channel enhancement MOSFET .. DG5044 Pad No. 1 69 mils ~~::! 1 3 4 11 12 13 14 15 16 Function Drain 1 Drain 2 Source 2 V + (Substrate) VL GND VInput 1 Source 1 ICMKA 4 Capacitors 5 Resistors 16 P-channel enhancement MOSFET 17 N-channel enhancement MOSFET 7 Diodes 5-395 DG5040-5045 rP'Siliconix incorporated ~ DIE TOPOGRAPHY (Cont'd) DG5045 Pad No. Function 1 3 4 Drain 1 Drain 3 Source 3 Source 4 Drain 4 Drain 2 Source 2 Input 2 V+ (Substrate) VL GND VInput 1 Source 1 5 6 8 9 10 11 12 13 14 15 16 ICMKA 33 N-channel enhancement MOSFET 9 Diodes 7 Capacitors 6 Resistors 31 P-channel enhancement MOSFET SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC "0" = SW ON LOGIC INPUT VO= Vs ___ R.... L __ 3V SWITCH INPUT Sl VS = +10 LOGIC INPUT ~~~ RL+ rOS(on) SWITCH OUTPUT v <>-ll---O"l A....II-<>....- .....-o l ' CL IN1 r-'O-t- 5 pF f - 1 MHz 1 -54 -50 1 1 10 100 -54 150 pC -50 dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Logic Supply Current Ground Current 1 VIN = 0 V or 5 V Switch Duty Cycle < 10% -1 -10 J.lA IL 1 ICONO 1 1 -1 10 -10 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. f. Signals on Sx, Ox or INx exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to 30 mAo 5-402 DG5140-5145 ...... Siliconix incorporated ~ DIE TOPOGRAPHY OG5140 Pad No. 82 mils I 65 mils 16 15 ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function D NC NC NC NC NC NC NC NC NC V+ (substrate) VL GND VIN 5 CSHCA/B 2 Capacitors 2 Resistors 8 P-channel enhancement M05FET5 lON-channel enhancement M05FET5 2 Diodes OG5141 Pad No. 82 mils I 8 65 mils 9 10 11 12 13 20X 14 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function D, NC NC NC NC NC NC D2 52 IN2 V+ (substrate) VL GND VIN, 5, CSHCA/B 4 Capacitors 4 Resistors 20 N-channel enhancement M05FET5 4 Diodes 16 P-channel enhancement M05FET5 5-403 DG5140-5145 WY'Siliconix ,.6;11 incorporated DIE TOPOGRAPHY (Cont'd) 8 9 10 CSHCA 2 Resistors 4 Capacitors 11 P-channel enhancement M05FET5 15 N-channel enhancement M05FET5 2 Diodes DG5143 8 .. -, 65 mils 9 10 16 15 ~ CSHCA 8 Capacitors 30 N-channel enhancement M05FET5 4 Resistors 4 Diodes 22 P-channel enhancement M05FET5 5-404 Pad No. Function 1 2 3 4 5 6 D1 NC D3 53 54 D4 NC D2 52 7 8 9 10 11 12 13 14 15 16 I~ V+ (substrate) VL GND VIN1 51 ~ ~ DG5140-5145 Siliconix incorporated DIE TOPOGRAPHY (Cont'd) DG5144 • Pad No. I 65 mils 16 10 15 12 13 14 ~ 20X CSHCB 2 Resistors 4 Capacitors 11 P-channel enhancement MOSFETS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function Dl NC D2 S2 NC NC NC NC NC NC V + (substrate) VL GND VINI SI 15 N-channel enhancement MOSFETS 2 Diodes DG5145 ....1 - - - - 82 Pad Function No. mlls----I~ I 9 10 L..~~--~~-- --!:: "r 11 12 13 20X __ 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dl NC D3 S3 S4 D4 NC D2 S2 IN:! V+ (substrate) VL GND VINI SI CSHCB 8 Capacitors 30 N-channel enhancement MOSFETS 4 Resistors 4 Diodes 22 P-channel enhancement MOSFETS 5-405 DG5140-5145 Siliconix incorporated SWITCHING TIME TEST CIRCUITS Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. 3V LOGIC INPUT VS=IOVlor tON Vs = -10 V lor 'OFF +15 V OV RL + rDS(on) SWITCH INPUT Vs SWITCH OUTPUT OV SWITCH OUTPUT LOGIC INPUT SWITCH -vS INPUT OV -IS V (REPEAT TEST FOR IN2,1N3AND IN 4 ) Figure 1. 3V~ LOGIC INPUT oV -.-7' VSI --:-:-~k=:::::;:;:::;)- OU70 ""- SWITCH OUTPUT 0 V (REPEAT TEST FOR IN2 ) VS3------~--------_r------- SWITCH OUTPUT +5 V +15 V RLI 300n. l CL3 35pF GND 0 V -IS V Figure 2. 5-406 I CLI 35 pF --(Includes fixture and stray capacitance) DG601 High-Speed Quad SPST CMOS Analog Switch tI'Y' Siliconix ~ incorporated FEATURES BENEFITS APPLICATIONS • Fast Switching Action tON < 20 ns tOFF < 35 ns • Improved Data Throughput • Fast Sample/Hold • Reduced Switching Errors • Precision Instrumentation • Simplified Power Supply • Computer Peripherals • Reduced Switching Transients • Low Noise Op Amp Gain Switching • Simplified Interfacing • Military Systems • Low ON Resistance (rDS(ON) < 30 n) • Single-Supply Operation (5 V to 12 V) • Improved Reliability • Low Charge Injection (Q < 10 pC) • TTL Compatible • ESDS Protection > ±4000 V DESCRIPTION The DG601 is a high performance quad SPST CMOS analog switch intended for applications where fast switching, low charge injection and low ON resistance are required. The DG601 features single-supply operation, and is TTL-compatible with either a single 12 V supply. a single 5 V supply. or with 5 V supplies. Applications for the DG601 include 12 V systems requiring TTL or 5 V logic levels. such as disk drives and other computer peripherals. The fast switching time and low charge injection make the DG601 ideal for high speed data acquisition applications such as sample and hold amplifiers. channel selection and gain ranging. The DG601 is built on the Siliconix proprietary PolyMOS process. allowing 22 V rail-to-rail maximum operation and low parasitic capacitance to facilitate high speed switching. It is available in 16-pin plastic DIP and SO packages for industrial. D suffix (-40 to 85°C). and in the CerDIP for military. A suffix (-55 to 125°C) temperature ranges. FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION & TRUTH TABLE Dual-In-llne Package SO Package v+ (Same pinout as DIP) NO 1234567 8 Top View Order Number: DG601DY Logic' 0 • S 0.8 V Logic' 1 • f MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Delta Drain-Source ON Resistance 1,2,3 VANALOG 0 12 0 12 rOS(ON) V+" 10.8 Is" 1 mA, Vo" 10 V, 2 V 1,3 2 30 50 30 50 llrOS(ON) V+" 10.8 Is" -10 mA, Vo" 3 V, 9 V 1,3 2 3 5 3 5 IS(OFF) Switch OFF Leakage Current I o (OFF) V+" 13.2 V, V- " 0 V Vo= 12.2 V, 1 V Vs" 1 V, 12.2 V 1 2 -1 -100 1 100 -1 -100 1 100 1 2 -1 -100 1 100 -1 -100 1 100 1 200 -1 -200 1 200 IO(ON) + IS(ON) V+ " 13.2 V, V-" 0 V Vs, VO " 1 V, 12.2 V 1 2 -1 -200 In8ut Current wlthVIN L W IlL VIN Under Test" 0 V All Other" 5 V 1,2 -10 Infcut Current with VIN HGH IIH VIN Under Test" 5 V All Other" 0 V 1,2 10 10 1 35 35 1 20 20 Channel ON Leakage Current V, .n. nA INPUT -10 .I1A DYNAMIC Turn-ON Time Turn-OFF Time Break-Before-Make Time Delay 5-408 tON RL,,300.o., C L ,,35pF See Figure 1 tOFF td RL" 300.0., C L " 35 pF 1 15 ns 15 Preliminary DG601 Siliconix incorporated PART 1 ELECTRICAL CHARACTERISTICS a LIMITS SYMBOL PARAMETER Test Conditions Unless Otherwise Specified: 1=25°C A D 2=125,85°C V+ = 12 V SUFFIX SUFFIX V- = 0 V 3=-55, -40 ° C -55 to 125°C -40 to 85°C GND = 0 V VIN = 2.0, 0.8 V e TEMP TYpd MINb MAX' MINb MAXt UNIT DYNAMIC (Cont'd) Charge Injection Q OIRR Off Isolation Crosstalk (Channel-to-Channel) Source-OFF Capacitance CS(OFF) Drain-OFF Capacitance CD(OFF) C L - 1,000 pF Vgen = 6 V, Rgen = O.n See Figure 2 1 R L = 75.0., C L = 5 pF f = 1 MHz 1 Any Other Channel Switches R L = 75.0., C L = 5 pF f - 1 MHz 1 15 pC dB 1 f = 1 MHz Vs= 0 V pF 1 CS(ON) + CD(ON) 1 Positive Supply Current 1+ 1,2 3 Negative Supply Current 1- Drain and Source ON Capacitance 15 SUPPLY 6 8 6 8 VIN = 0.0 V or 5.0 V rnA 1,2 3 -6 -8 -6 -8 ELECTRICAL CHARACTERISTICS a PART 2 LIMITS PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: 1=25°C A D 2=125,85°C V+ = 5 V SUFFIX SUFFIX V- = -5 V 3=-55,-40°C -55 to 125°C -40 to 85°C GND = 0 V VIN = 2.0, 0.8 V e TEMP TYpd MINb MAX' MINb MAX UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Delta Drain-Source ON Resistance VANALOG rDS(ON) ArDS(ON) Is(oFF) PreHminary V+ = 4.5 V, V- = -4.5 V Is = -10 rnA, V D =± V+ = 4.5 V, V- = -4.5 V Is = -10 rnA, V D = 5,0, -5 V ID(oFF) V+ = 5.5 V, V- = -5.5 V V D = ± 4.5 V Vs=+4.5V ID(oN) + IS(ON) V+ = 5.5 V, V- = -5.5 V VS=VD = ± 4.5 V Switch OFF Leal MINb MAXt UNIT SWITCH Analog Signal Range C Drain-Source ON Resistance Delta Drain-Source ON Resistance VANALOG 1,2,3 5 a 5 rDS(ON) V+ = 4.5 V Is = -10 mA, V D = 2,3.5 V 1,3 2 100 125 100 125 ArDS(ON) V+ = 4.5 V Is = -10 mA, V D = 2,3.5 V 1,3 2 10 12.5 10 12.5 IS(OFF) Switch OFF Leakage Current VD= 1 V Vs= 4.5 V 1 2 -1 -100 1 100 -1 -100 1 100 V D = 4.5 V VS= 1 V 1 2 -1 -100 1 100 -1 -100 1 100 1 200 -1 -200 1 200 V n V+ = 5.5 V ID(OFF) Channel ON Leakage Current a nA ID(ON) + IS(ON) V+ = 5.5 V Vs =VD = 4.5, 1 V 1 2 -1 -200 IlL VIN Under Test = 0 V All Other = 5 V 1,2 -10 IIH VIN Under Test = 5 V All Other = 0 V 1,2 10 10 1 55 55 1 35 35 ns 15 pC INPUT ~btJS Current with VIN -10 .uA Input Current with VIN HIGH DYNAMIC Turn-ON Time tON RL = 300.0., C L = 35 pF See Figure 1 Turn-OFF Time tOFF Break-Before-Make Time Delay td RL = 300.0., C L = 35 pF 1 20 Charge Injection Q C L = 1,000 pF Vgen = 2.5 V, Rgen = 0 See Figure 2 1 -15 Off Isolation OIRR Crosstalk (Channel-te-Channel) Source-OFF Capacitance C S(OFF) Drain-OFF Capacitance CD(OFF) Drain and Seurce ON Capacitance Preliminary CS(ON) + CD(ON) n RL = 75.0., C L = 5 pF f = 1 MHz 1 Any Other Channel Switches R L = 75.0., C L = 5 pF f - 1 MHz 1 20 15 -15 dB 1 f = 1 MHz Vs= 0 V 1 pF 1 5-411 DG601 B Siliconix incorporated PART 3 ELECTRICAL CHARACTERISTICS a LIMITS PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: 1=25°C A D 2=125,85°C V+ = 5 V SUFFIX SUFFIX V- = 0 V 3=-55,-40°C -55 to 125°C -40 to 85°C GND = 0 V VIN = 2.0,0.8 V e TEMP TYpd MINb MA>f MINb MAXt UNIT SUPPLY Positive Supply Current 1+ = 5.5 V = 0.0 V or 5.0 1,2 3 V+ VIN Negative Supply Current 3 4 3 4 mA V 1 2,3 1- -3 -4 -3 -4 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. PIN DESCRIPTION PIN NUMBER SYMBOL 2, 7, 10, 15 3,6,11,14 1,8,9,16 13 4 5 DESCRIPTION D An Analog Channel Input or Output S An Analog Channel Il1put or Output IN Logic Control Input V+ Positive Supply Voltage V- Negative Supply Voltage GND Digital Ground SWITCHING TIME TEST CIRCUITS Vo is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. LOGIC 3.0V INPUT SWITCH INPUT v+ ~ ~r<10ns ..J. 50% ~f < 10 ns OV , .... Vs I- tOFF --t;;;;;::;;:==::jr-- VS=2V SWrrCH INPUT SWITCH OV OUTPUT Repeat tast for Ch 2, 3, 4 For load conditions. See Electrical Characteristics ~ (Includes fixture and stray capacitance) NOTE: logic Input waveform Is Inverted for SWitches that have the opposite logic Va sense = Vs ---=--RL RL + rOS(ON) Figure 1 5-412 Preliminary ~ ~ DG601 Siliconix incorporated CHARGE INJECTION TEST CIRCUIT +12V V+ RGEN ~AA~~--f~--4-~O-~ ON GND OFF V- OV -oV V 1N =2.0V Figure 2 BURN-IN CIRCUIT 16 n---+-~ ~----n2 15 ~----n3 14 .----4----1, 4 13 D---+-~ f----4------in 5 12 ~----n6 11 ~----n 7 10 B Note: All Resistors are 10 k.n unless otherwise specified. SO Package Is the same as the DIP. 9 V+ = 12 V Preliminary 5-413 DG90S/gOg a-Channel/Dual 4-Channel Fault Protected CMOS Analog Multiplexers APPLICATIONS FEATURES BENEFITS • All Channels OFF When Power OFF, For Analog Signals Up to ± 25 V • Increased Reliability and Ruggedness • Any Channel Turns OFF If Input Exceeds Supply Rails • Fast Switching (300 ns max) • Break-Before-Make Switching • TTL And CMOS Compatible .... Siliconix incorporated ~ • Power-Down and Overvoltage Protected • Increased Throughput Rate • Channels Remain Isolated When A Fault Condition Occurs • Avionics • Data Acquisition Systems • Industrial Process Control Systems • High-Rei Control Systems • Audio Signal Routing • Simplified Logic Interface DESCRIPTION The DG908 and DG909 are 8-channel and dual 4-channel, respectively, dielectrically isolated CMOS monolithic analog multiplexers. These multiplexers are pin and function compatible with the DG508A/DG509A and similar devices, but add power-down, overvoltage and fault protection features. A series N-P-N MOSFET switch structure ensures"that OFF channels will stay OFF even if the inputs exceed the supply rails by up to ±35 V. An ON channel will be limited to an output level of about 1.5 V less than the supply rails, thus affording protection to any following circuitry. Binary 3-bit address and Enable inputs allow selection of any or none of the channels. All logic inputs are TTL compatible for easy logic interface; the Enable input also facilitates MUX expansion and cascading. The DG908 and DG909 are intended for applications where the multiplexer inputs must look directly to the outside world, such as data acquisition system front ends, and other analog multiplexing applications where high device ruggedness is required. Packaging options include the 16-pin plastic DIP for operation over the industrial, 0 suffix (-40 to 85°C) temperature range, and the 16-pin CerDIP for military, A suffix (-55 to 125°C) temperature operation. PIN CONFIGURATION Dual-In-Llne Package Dual-In-Llne Package Top View Top View AO 1 EN vSlb S2b 1 S3b Order Numbers: CerDIP: DG908AK Plastic: DG908DJ 5-414 ---,.--- S4b Db Order Numbers: CerDIP: DG909AK Plastic: DG909DJ Preliminary ~ ~ DG90S/909 Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM V- V+ GND V+ V- GND Slo-t---------------~~,., Slao-t---------------~~,., S2o-t-------------~~,~_1 S2ao-t-----------~,A---_r_+ S3o-t-----------~~·_r_r_1 S3ao-t-----~Yr·~--r_--_r_+ s4o-t---------~~A,__r~_1 S4ao-+-~I~--~----~--~-J S5o-t-------~r,~,_1_~~_1 o Slbo-+---r_--~----r-~~., S6o-t------o,~+_4-4-~~_1 S2bo-r_~~--~--~rA---~~ S7o-~--~,A-r_~~~~~_+ S3bo-r_~~~~·--~r_--~~ S8o-t-~I~r-+_+_;_;__r_r-J S4bo-r_~~A---~--~~--,_~ A2 Al Ao Al EN DG908 8-Channel Single Ended Multiplexer Da Ao EN DG909 Differential 4-Channel Multiplexer ORDERING INFORMATION PART NUMBER TEMPERATURE RANGE DG908AK -55 to 125°C DG908DJ -40 to 85°C DG909AK -55 to 125°C DG909DJ -40 to 85°C PACKAGE CerDIP • PDIP CerDIP PDIP ABSOLUTE MAXIMUM RATINGS Voltage Referenced to VV+ •..••••...•••.•••...•.••........•.....•.•.. 44 V GND .••.•..••••••..••.•.••.••.••.••..•.••••.. 25 V VEN, VA Digital Input •..•.•.••... (V-) -4V to (V+) +4 V V s , Analog Input Overvoltage With Power ON ..•.•.••.•..•. (V-) -20 V to (V+) +20 V Vs, Analog Input Overvoltage With Power OFF ...................... -35 V to +35 V Continuous Current, S or 0 .................... 20 mA Peak Current, S or 0 (Pulsed at 1 ms, 10% duty cycle max) ••••••••.. 40 mA Operating Temperature (A Suffix) •.....•.. -55 to 125·C (0 Suffix) .......... -40 to 85·C Storage Temperature (A Suffix) ..•••...... -65 to 150·C (0 Suffix) •••...•.•• -65 to 125·C Power dissipation (package)· 16-Pln Plastic DIp·· ......................... 600 mW 16-Pln CerDIP··· ........................... 900 mW All leads soldered or welded to PC board. •• Derate 6.3 mW/·C above 25·C ••• Derate 12 mW/·C above 75·C. CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. and functional operation of the device at these or any other conditions above those indicated in the Preliminary operational sections of the specifications is not implied, Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 5-415 DG90S/gOg WY'Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a LIMIT!,! Test Conditions Unless Otherwise Specified: 1=2S·C A D 2=12S,8S·C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3=-S5,-40·C -55 to 125°C -40 to 85°C GND = 0 V VAL = 0.0 V,VAH =2.4V b b TYpd MIN MAXb MIN MAXt UNIT TEMP SYMBOL PARAMETER . ; SWITCH Analog Signal Range C ON Resistance" rOS(ON) rOS(ON) Match Between Channels f rOS(ON) t:.. Source OFF Leakage Current 1,2,3 VANALOG DG900 13 -13 13 V 600 900 600 900 .0. 10 10 % Vo =±10 V, VAL = 0.0 V 10 = -100J1A 1 2,3 Vs = 0 V, 10 = -100J1A 1 5 Vs= ±10 V VO= +10 V 1 2,3 0.02 -0.5 -50 0.5 50 -0.5 -50 0.5 50 Vo= ±10 V Vs= +10 V 1 2,3 0.02 -1 -lOP 1 100 -1 -100 1 100 Vo= ±10 V Vs= +10 V 1 2,S 0.04 -0.5 -50 0.5 50 -0.5 -50 0.5 50 1 2,3 0.1 -2 -100 2 100 -2 -100 2 100 1 2,3 0.05 -1 -50 1 50 -1 -50 1 50 V+ = V- = VEN = Vo = 0 V VA=OV, Vs=±25V 1 1 2 5 Vs= ±25 V VO= ±10 V 1 1 2 10 0.0 0.0 Is (OFF) Drain OFF Leakage Current -13 VEN = 0 V 10(OFF) DG909 DG908 Drain ON Leakage Current 10(ON) DG909 Sequence Each Switch ON VAL = 0.0 V, V AH = 2.4 V Vs =Vo=±10 V nA FAULT PROTECTION Is with Power OFF IS(OFF) with Overvoltage J1A INPUT Input LOW Threshold VAL 1,2,3 Input HIGH Threshold V AH 1,2,3 2.4 1 2,3 -1 -30 V Logic Input Current IA V A =2.4VorO.OV 2.4 1 30 -1 -30 1 30 J1A O.S J1S DYNAMIC SWitching Time of Multiplexer tTRANS 1 tOPEN 1 Enable Tum ON Time tON(EN) 1 0.6 0.6' Enable Tum OFF Time tOFF(EN) 1 0.3 O:S Break-Before-Make Interval 0.3 40 40 ns J1S 5-416 Preliminary DG90S/909 W7' Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25·C A 0 2=125,85·C SUFFIX SUFFIX V+ = 15 V, V- = -15 V 3=-55,-40·C -55 to 125°C -40 to 85°C GND = 0 V VAL = 0.8 V, VAH =2.4V b b TEMP TYpd MIN MAXb MIN MAXt UNIT SYMBOL PARAMETER DYNAMIC . (Cont'd) Settling Time 0.1 % 1 1 0.01% 1 3 VEN = 0 V, RL = 200.0. CL = 3 pF, Vs= 3 VRMS f = 500 kHz 1 60 1 5 1 25 1 12 1 0.1 1 30 1 17 JJ,S ts OFF Isolation Source OFF Capacitance VEN = 0 V f = 140 kHz DG90B Drain OFF Capacitance Vs = 0 V CS(OFF) CO(OFF) dB Vo= 0 V DG909 pF Input to Output Capacitance CDS(OFF) DG908 ON State Input Capacitance .. CS(ON) DG909 SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 1,2 3 0.4 0.6 0.4 0.6 mA VEN=OV, VA=OV 1,2 3 -0.4 -0.6 -0.4 -0.6 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Sequence each switch ON. _ (rOS(ON) MAX - rOS(ON) MIN) f. A rOS(ON) rOS(ON) AVE Preliminary 5-417 DG90S/909 ...... Siliconix incorporated ~ TRUTH TABLES 00908 00909 A2 Al Ao EN SW9.f'CH Al Ao EN ~.f'CH X X X 0 NONE X X 0 NONE 0 0 0 1 1 0 0 1 1 0 0 1 1 2 0 1 1 2 0 1 0 1 3 1 0 1 3 0 1 1 1 4 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 8 Logic '0" = VAL S 0.8 V, Logic "1" = VAH l!: 2.4 V 5-418 Preliminary G118 IrF Siliconix ~ incorporated Monolithic 6-Channel Enhancement-type MOSFET Switch FEATURES BENEFITS APPLICATIONS • Internal Zener Diode Protects the Gate • • Switching Analog Signals • Multiplexing • Six Switches Per Chip • Designed to Operate with 0125,0129 and 0139 Reduces External Component Requirements DESCRIPTION The G118 contains six enhancement-mode Pchannel MOSFETs designed to function as analog switches. In the ON state each switch will conduct current equally well in either direction, and in the OFF state each switch will block voltages up to 20 V peak-to-peak. The switches are integrated on a common substrate (body). They have a common drain terminal (D) which will function equally well as a common source; likewise, the source terminals will function as drains. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM .. Flat Package G1~~14 G2 G3 G4 2 3 4 13 12 11 G5 5 ro G6 6 9 B(V+)" o I I Top View Order Number: G118AL Dual-In-Llne Package I I I I I I I I I I I I I I I ~ I I ~ I I I I I I I I I I I I 6 6 I I I I I I ~ I~.L- I I I o o I I I 6 Order Numbers: G118AP or G118BP W Common to Substrate and Base of Package Not Recommended for New Designs 5-419 G118 .... Siliconix Incorporated ~ ABSOLUTE MAXIMUM RATINGS VStoVB •...••...•...•••.•••••••.•••..•..•••.. 2V VBtoVS ...•.....••..•.•••••.•••.•.........•. 30V VD toVB ..•••••••••••.•.•...•...••.••••••..... 2 V VB toVD •..••.••••••...••.•••....•.••••.••••• 30 V ±30 V VD toYs Vs toVD . " : " . " •. " .•. " . " •. " .. " " " ... ±30 V VBtoVG ••••••••••.•....•..•....•..•••......• 35V Is.ID .•.•.•.•..•••.••.•••......•...•...••.. 100 rnA IG •...•...••..•••.••..•••..•.••..••.•..••.••. 5mA Storage Temperature .•..••.••.•..•.•.••. -65 to 150°C Operating Temperature (A Suffix) .•...•... -55 to 125°C (8 Suffix) •.•••••••• -25 to 85°C Power Dissipation' Flat Package" ••...•.••••••..••..•••.•••... 750 mW 14-Pln DIP'" .•...•..•••.••....•..••••••.•• 825 mW All leads soldered or welded to PC board. •• Derate 10 mW/oC above 75°C. ••• Derate 11 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a Test ConditIons Unless Otherwise Specified: VOB" 0 V VPB = 0 V PARAMETER SYMBOL LIMITS 1=25°C A B 2=125,85'C SUFFIX SUFFIX 3=-55,-25'C -55 to 125°C -25 to 85°C TEMP TYpd MINb MAX' MINbMAX t STATIC Drain-Source ON Resistance .. rOS(ON) Is=-1mA VOB = 0 V VGo= -30 V 1,3 2 100 125 125 150 VOB = -10 V V Go =-20V 1,3 2 200 250 250 300 V OB = -20 V VGo= -10 V 1,3 2 450 600 500 600 Source OFF Leakage Current IS(OFF) Vso = -20 V VGo= 0 V 1 2 -0.5 -500 -0.5 -500 Drain OFF Leakage Current 10(OFF) Vos= -20 V, VGo= 0 V VS B = 0 V 1 2 -3 -3000 -10 -1000 Gate-Channel Leakage Current IGSS VGB = -20 V 1 2 -0.5 -500 -5 -500 VGS(th) 10 " -10AA, VOG = 0 V VSB = a V 1,2,3 -4 Drain-Source Breakdown Voltage V(BR)OSS 10" -50AA, VGS = a V VSB = 0 V 1,2,3 -30 -30 Source-Drain Breakdown Voltage V(BR)SOS Is = -10AA, VGO = a V 1,2,3 -30 -30 Gate-Body Breakdown Voltage V(BR)GBS IG= -10AA 1,2,3 Gate-Source Threshold Voltage UNIT -1.5 -4 .0. nA -1.5 V -90 -35 -90 -35 DYNAMIC Gate-Source Capacitance Cgo Gate-Drain Capacitance Cgd Drain-Source OFF Capacitance 5-420 Cds (off) VGB = a V f = 1 MHz VOB =VSB = 0 Body Guarded Drain Guarded 1 0.9 Source Guarded 1 0.9 Gate Guarded 1 0.4 pF Not Recommended for New Designs G118 .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V OB = 0 V VPB = 0 V PARAMETER SYMBOL LIMITS 1=25°C A B 2=125,85°C SUFFIX SUFFIX 3=-55,-25°C -55 to 125°C -25 to 85°C TEMP TYpd MINb MA>f MINbMAX t UNIT DVNAMIC (Conl'd) Source-Body Capacitance Csb V OB = 0, V SB = -5 V Drain and Gate Guarded Drain-Body Capacitance Cdb VSB = 0, V OB = -5V Gate and Source Guarded 1 2.0 1 12 pF NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design. not sublect to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. .. Not Recommended for New Designs 5-421 ..... Siliconix incorporated G119 ~ Monolithic 6-Channel Enhancement-type MOSFET Switch FEATURES BENEFITS APPLICATIONS • • • Differential Input Analog Signal Switching • Multiplexing • Designed to Operate with 0125. 0129 and 0139 Integrated MOSFET for Each Gate to Provide "Pull-UP" Current for Gate-Driver Circuit Reduces External Component Requirements e Internal Zener Diode Protects the Gate • Six Switches Per Chip • Low rOS(ON) (100 n) DESCRIPTION The G119 contains six enhancement-mode P-channel MOSFETs designed to function as analog switches. In the ON state each switch will conduct current equally well in either direction. and in the OFF state each switch will block voltages up to 30 V peak-to-peak. The switches are integrated onto a silicon substrate (body) and are internally connected into two groups of three switches per group. This arrangement facilitates the switching or multiplexing of differential analog signals. Each group has a common drain terminal (01 and 02) which will function equally well as a common source. Each gate terminal (G) controls a pair of switches and is provided with a normally-OFF "pull-up" MOSFET which may be turned ON to provide a current source to the gate-driving circuit. The pull-ups are turned ON or OFF by connecting the .. P" terminal to a negative supply or to the .. B" terminal respectively. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM G1 Flat Package D1 P G1 G3 G5 B(V+)W 1 2 3 4 5 6 14 13 12 11 10 9 D2 Sl S:3 S5 S6 S4 S2 NO Top View pO S10 S3 0 S5 0 Order Numbers: G119AL or Gl19BL • Common to Substrate and Base of Package 5-422 S6 0 Gs c~ cU rU I I ""1--! I I I I S 2 o----o-...L...! S4 0 G3 I I + I I I "'* o B(V+) I 0° 1 1 I ~ I :I o.J.....: I I o 02 Not Recommended for New Designs· G119 ft'Y' Siliconix ~ incorporated ABSOLUTE MAXIMUM RATINGS VB to Vs ................................. -2 to 30 V Ip ........•................................ 100 JJ.A VB to Vo ................................. -2 to 30 V Storage Temperature .................... -65 to 150°C Vo toYs ..................................... ±30 V Operating Temperature (A Suffix) .....•... -55 to 125°C (B Suffix) .....•.... -25 to 85°C VB toV G, VB toVp ............................. 35 V Power Dissipation' .......................... 750 mW Is,lo ...................................... 100 mA I G ············································5mA All leads soldered or welded to PC board. Derate 10 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V OB = 0 V VpB = 0 V PARAMETER LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -25 ° C -55 to 125°C TEMP TYpd SYMBOL MINb MAX' B SUFFIX -25 to 85°C MINb MAXb UNIT STATIC Drain-Source ON Resistance rOS(ON) Is=-1mA VOB = 0 V VGO= -30 V 1,3 2 100 125 125 150 V OB = -10 V VGo= -20 V 1,3 2 200 250 250 300 V OB = -20 V VGO = -10 V 1,3 2 450 600 500 600 Source OFF Leakage Current IS(OFF) Vso = -20 V V GO = 0 V 1 2 -0.5 -500 -5 -500 Drain OFF Leakage Current I o (OFF) VOS = -20 V, VGO= 0 V V SB = 0 V 1 2 -1.5 -1500 -10 -1000 Gate ON Currents IG(ON) V GB = -30 V V PB = -30 V 1 -2.4 IGSS V GB = -20 V 1 2 -0.5 -500 Gate-Source Threshold Voltage VGS(th) 10=-10JJ.A,VOG =OV V SB = 0 V 1,2,3 -4 Drain-Source Breakdown Voltage V(BR)OSS 10 = -50JJ.A, VGs= 0 V V SB = 0 V 1,2,3 -30 -30 Source-Drain Breakdown Voltage V(BR)SOS Is= -1 oJJ.A , VGo= 0 V 1,2,3 -30 -30 Gate-Body Breakdown Voltage V(BR)GBS IG= -10JJ.A 1,2,3 -90 -35 -90 -35 Pull-Up Gate-Body Breakdown Voltage V(BR)PBS I p =-10JJ.A V GB = 0 V 1,2,3 -90 -35 -90 -35 Gate-Channel Leakage Current -0.8 -2.4 nA -0.8 -5 -500 -1.5 -4 .0. mA nA -1.5 V Not Recommended for New Designs 5-423 ~ G119 ~ Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: VOB = 0 V VpB = 0 V PARAMETER SYMBOL LIMITS 1=2S·C A B 2=12S.8S·C SUFFIX SUFFIX 3=-SS.-2S·C -S5 to 125°C -25 to 85°C TEMP TYpd MIN b MA>f MINb MAXt UNIT DVNAM1Ce Gate-Source Capacitance Gate-Drain Capacitance Drain-Source OFF Capacitance Cgs Cgd Cds (off) VaB = 0 V f = 1 MHz VOB =VSB = 0 Body Guarded Drain Guarded 1 1.8 Source Guarded 1 1.8 Gate Guarded 1 0.4 Source-BodY Capacitance CBb V OB = O. V SB = -5 V Drain and Gate Guarded 1 2.0 Drain-Body Capacitance Cdb V SB = O. V OB = -5V Gate and Source Guarded 1 6.0 pF NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. e. VaB = 0 V. f = 1 MHz. 5-424 Not Recommended for New Designs Si3002 Monolithic SPOT MOS Switch with Driver ..... Siliconix incorporated ~ APPLICATIONS BENEFITS FEATURES • Internal Gate Protection Zener Diodes • TIL and Compatible Input • Reduces External Component Requirements • Easily Interfaced • Switching Analog Signals DESCRIPTION "0" at the driver input, a common drain (D) is connected through an ON switch to source (S 1) . With logic "1 " at the input, "D" is connected to S 2 • Switch action is make-before-break. The Si3002 contains two P-channel MOS field-effect transistors designed to function as single-pole double-throw analog switches. A level-shifting driver enables a lOW-level input (0.8 to 2 V) to control the ON-OFF state of the switches. In the ON state, each switch will conduct current equally well in either direction. In the OFF state the switches will block voltages up to 20 V peak-to-peak. With logic The Si3002 is available in 10-pin metal can and 14-pin side braze DIP for operation over the military, A suffix (-55 to 125°C) and the industrial, a suffix (-25 to 85°C) temperature ranges. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM Metal Can Package Top View v+ NC:~:D NC3W.7S1 IN4 5 6 V_ (SUBSTRATE AND CASE) VA Order Number:Sl3002AA Dual-ln-L1ne Package NC NC VA IN v- v+ NC One SPOT Switch per Package' NC S2 Top View 'Switches Shown for Logic "1" Input Order Numbers: SI3002AP, SI3002BP Not Recommended for New Designs 5-425 tI"P' Si3002 ~ Siliconix incorporated ABSOLUTE MAXIMUM RATINGS V+ to V- .....••....................•......... 36 V Storage Temperature .................... -65 to 150·C V+ toYs orVo ................................ 25 V Operating Temperature (A Suffix) ..•...... -55 to 125·C (8 Suffix) ..•....... -25 to 85·C V+ toVR orVIN ........•..........•........... 12 V Vo to V- ••.••................................. 36 V Vs to V- .........•...•........................ 36 V VotoVs .............•......•................ ±25V VIN toVR .•.........•..•.....................•. 6 V CURRENT, (Any Terminal) ..................... 30 mA Power Dissipation (Package)" Metal Can"" ....................•........•.. 450 mW 14-Pln DIP""" .....•......•................. 825 mW Device mounted with all leads soldered or welded to PC board. Derate 6 mW/·C above 75·C. """ Derate 11 mW/·C above 75·C. ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER Analog Signal Range C LIMITS Test Conditions 1=25·C A B Unless Otherwise Specified: 2=125,85·C SUFFIX SUFFIX V+ = 10 V 3=-55,-25·C -55 to 125°C -25 to 85°C V- = -20 V VR= 0 V b TEMP TYpd MIN MA>f MINbMAX t 1,2,3 VANALOG Vo = 10 V Drain-Source ON Resistance rOS(ON) Vo=OV Is = -1 mA V INL = 0.8 V VINH = 2.0 V Vo= -10 V Source OFF Leakage Current IS(OFF) Channel ON Leakage Current IO(ON) + IS(ON) Vs= -10 V Vo = 10 V Vo= -10 V Is = 0 VINL = 0.8 V VINH = 2.0 V -10 10 -10 10 1,3 2 100 150 100 150 1,3 2 150 250 150 250 1,3 2 400 500 400 500 1 2,3 -1 -1000 -5 -100 1 2,3 -2 -2000 -10 -200 -0.8 -0.6 -1.0 -0.8 -0.8 -1.0 UNIT V .n nA INPUT I~ut Current ( oltage LOW) IINL VIN = 0 (SW10N) 1 2 3 I~ut Current ( oltage HIGH) IINH VIN = 0 (SW 2 ON) 1,3 2 0.1 10 0.1 10 1 1 1 1 1.5 1.5 mA J.lA DYNAMIC Turn-ON Time tON See Switching Time Test Circuit Turn-OFF Time Source OFF Capacitance 5-426 tOFF CS(OFF) V s =0,f=1 MHz J.ls 1 6 pF Not Recommended for New Designs Si3002 ...,. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a (Cont'd) PARAMETER SYMBOL Positive Supply Current 1+ Negative Supply Current 1- LIMITS Test Conditions 1=25·C A B Unless Otherwise Specified: 2=125,85·C SUFFIX SUFFIX V+ = 10 V 3=-55,-40·C -55 to 125°C -25 to 85°C V- = -20 V VR = 0 V TEMP TYpd MINb MAX' MINb MAXt UNIT 1 3.5 1 -3.0 -3.0 I REF 1 -0.1 -0.1 Positive Supply Current 1+ 1 Negative Supply Current 1- Reference Supply Current VIN=OV 3.0 mA Reference Supply Current V1N =5V I REF 3.0 3.5 1 -3.0 -3.0 1 -1.5 -1.5 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, Is used in this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. tOFF: Vs= -10 V tON: Vs= +10 V t r < 10 ns tf<10ns LOGIC INPUT 0 V S1 SWITCH INPUT 10 V r-----~ D SWITCH OUTPUT o-t----O-;""---.,.-+-<>--t--~VOUT S2 Sf~~~~ Vs ==::j:==~~=~q==~-;:= SWITCH OUTPUT 0 V ---t---..../ VOUT =V s Not Recommended for New Designs RL R L+ r DS(ON) 5-427 Data Conversion . . ~ ~ SlIIconix Incorporated TABLE OF CONTENTS Introduction ....•••.•..•.•.••.•..•......•.•..••.........•....••••••••••••••••...•... 6-1 LD11 01111 A: 3 1I2-Dlglt AID Converter Set •..•.••.•.....••..•••.•.•.••..•........•...... 6-4 LD120/121A: 4 1/2-Dlglt AID Converter Set ............................................. 6-10 LD122/121A: 4 1I2-Dlglt AID Converter Set ..•....••..•...........•...•.•..••.......••.. 6-16 512504: 12-Blt CMOS SAR •••..•.....•.....•..•••••.••....•...•....•....•...•... : .•.. 6-22 S17135: Precision 4 1/2-Dlglt Single Chip CMOS AID Converter •.........•....••.••.••.••.. 6-31 S17240: 12-Bit CMOS Voltage-Output DAC .............................................. 6-43 S17533: CMOS 10-Blt Multiplying DAC .................................................. 6-51 S17541: CMOS 12-Blt Multiplying DAC .................................................. 6-58 S17541A: CMOS 12-Blt Multiplying DAC ................................................. 6-67 SI7542: Microprocessor-Compatible 12-Bit CMOS Multiplying DAC •.••.•.....•.•........•... 6-76 Si7543: CM05 12-Bit Serial Input DAC ................................................. 6-90 517545: CMOS 12-Blt Buffered Multiplying DAC ......................................... 6-104 517820: CMOS Subranging 8-Bit AID Converter .•....•.•..•....•...•.•...•..••.•..•...•. 6-120 Si8601/03: 8-Blt Data Acquisition Systems .........•..•...•.•.•.•...........•.......... 6-130 S18602/04: 8-Blt Data Acquisition Systems ..•.••.••..•..•................•.....•..•...• 6-141 ..w" Siliconix .,/1;11 incorporated DATA CONVERSION INTRODUCTION Siliconix manufactures a variety of data conversion devices, including 12-bit digital-to-analog converters (DACs, or D/As) , 8-bit data acquisition systems (DASs), high resolution integrating analog-to-digital converters (ADCs, or AIDs), and a high speed 12-bit successive approximation register (SAR). This section of the data book includes the complete spectrum of Siliconix data conversion components. Digital-to-Analog Converters Siliconix offers the industry-standard Si75XX family of 10- and 12-bit CMOS multiplying DACs, including the Si7533, Si7240, Si7541, Si7541 A, Si7542, Si7543 and Si7545 devices. This family is based on the Siliconix proprietary PolyMOS·· process, utilizing highly stable thin-film resistors which are laser-trimmed for excellent accuracy. Each of these devices features improved dynamic performance over the industry-standard products in this family, having been designed for reduced glitch impulse, reduced propagation delay, and improved settling time. Data Acquisition Systems and Analog-to-Digital Converters The Siliconix proprietary Si860X family are 8-bit data acquisition systems with 25 microsecond conversion times. The Si8601 is an 8-bit 8-channel system intended for 5 V single-supply operation, with a 5 Volt analog range. The Si8602 is the 15 V version of the Si8601, intended for military applications and other systems that need a 10 Volt signal range. The Si8603 and Si8604 are low-cost single-channel versions of the Si8601 and Si8602 respectively. Each of these data acquisition systems and AIDs contain on-board sample and hold functions and microprocessor interfaces to simplify design and reduce board space and component count . The Si2504 is a high-speed, low-power successive approximation register which is used as a building block in custom and hybrid high-performance 12-bit AID converters. It features improved clock rate (to 40 MHz, compared with the 25 MHz industry-standard), and reduced supply current (10 mA, compared to the industry-standard 100 mAl to allow faster and more efficient custom AID converter design. High Resolution AID Converter Systems Siliconix pioneered the development of monolithic AID converters for display applications in the early 1970's with the LD110/111 quantized feedback 3 1/2-digit AID converter chip set. Today, Siliconix offers improved resolution and accuracy in display converters up to the 4 1I2-digit (approximately 15 bit) level, with the LD120/121A, LD122/121A chip sets and the single-chip Si7135. The Si7135 is the premium monolithic 41/2-digit converter available, offering improved linearity and reduced rollover error compared to the generic 7135 converter. 6-1 .. ~ ~ Siliconix incorporated GLOSSARY OF TERMS Accuracy May be specified in absolute and/or relative terms. Absolute accuracy is interpreted as a measure of the total error of the converter, and is expressed in terms of the difference between the actual analog output and the output expected for a given input digital code. Relative accuracy, on the other hand, is more an interpretation of the non-linearity of the converter and is specified in terms of the difference between the actual analog output and t~e output expected (based on the relative, or actual full scale output of the converter) for a given input code. Absolute accuracy measurements should be made under a set of standard conditions, with the signal sources and measuring equipment traceable to some acceptable standard. The error is specified in LSB or percent of full scale range. Compliance Voltage For a current output D/A converter, this is the maximum voltage range on the output terminal over which the current output of a DAC can vary for the DAC to meet an absolute accuracy as specified (usually ±1/2 LSB). Differential Linearity (DNl) The measured difference in output between any two adjacent digital codes should be exactly 1 LSB (or F.S. X 2-n for an n-bit converter.) Any deviation from the ideal difference is called differential nonlinearity, and is expressed in submultiples of an ~SB. Differential linearity errors greater than 1 LSB can result in non-monotonic performance in a D/ A converter, and missing codes in an A/D converter. Feedthrough An AC specification for a multiplying DAC which defines the frequency at which a specified peak-to-peak AC signal is seen at the DAC output with all bits in the OFF state. It is usually specified as %, ppm, or fractions of an LSB for a given set of input conditions. Four Quadrant For a multiplying D/A converter, "four quadrant" means that both the reference signal and the number 6-2 represented by the digital input signal may be of either polarity. The converter is expected to obey the rules of multiplication for algebraic sign. Gain The gain of the converter is the analog scale factor that describes the nominal conversion relationship between the converter's full scale output and its analog (or reference) input. The gain is generally adjustable by the user (externally) to full scale X (1-2- n ) with all bits ON. For bipolar operation adjust output to F.S. [1_2-(-n-1)] with all bits ON. least Significant Bit (lSB) In a binary numerical system, the LSB is the bit that represents the least, or smallest, value. For example, in the natural binary number 1101 (decimal 13, or 23 + 22 + 01 + 20), the right-most digit is the LSB. It thus represents the smallest analog change that can be resolved in an n-bit converter and is equal to the full scale output range divided by 2n where n = number of bits, LSB = FS/2 n . Linearity Linearity error of a converter, which implies the integral linearity error, is the deviation of the analog output from an ideal straight line, and is usually specified in % or ppm of the Full Scale range or submultiples of 1 LSB. The straight line can be either a "best straight line", or "end point". The former is derived empirically by manipulating the offset and/or gain of the converter to minimize the deviations of the actual analog output from the manipulated best line. The latter assumes the idealized line passes through the "end points" of the converter after it has been calibrated (zero and full scale). Monotonicity A D/ A converter is said to be monotonic if the output either increases or remains constant with increasing digital input codes. The statement monotonic (over temperature) is sometimes substituted for a differential non-linearity specification as a DNL specification of 1 LSB is not a sufficient condition for monotonic behavior. 111'7' Siliconix .J/JII Incorporated Most-Significant Bit (MSB) Stability In a binary numerical system, the MSB is the bit that represents the largest value, or weight. For example, in the natural binary number 1101 (decimal 13, or 23 + 22 + 01 + 20), the leftmost digit (or" 1") is the MSB. Its analog weight, relative to full scale, is FS/2. In bipolar applications the MSB also indicates the polarity of the number represented by the rest of the bits. The stability of a converter is usually related to changes in its characteristics as a function of temperature and time. While such measurements are difficult and time consuming, those related to temperature are often sufficiently critical to warrant their inclusion in the characteristic data. (See also Temperature Coefficient.) Switching Time (Propagation Delay) Offset (Zero Scale Error) The measured analog output when the digital input code corresponds to an analog value of zero. Generally expressed as a percentage of Full Scale range but is also expressed in ppm, LSB's or in units of current or voltage. In a O/A converter the switching time is the time it takes for the logic and switches to change from one state (ON or OFF) to the other. It includes delay and rise time, but does not include settling time, and is measured from the 50% point of the logic input to the 50% point of the changing analog ouput signal. Temperature Coefficient Resolution The number of states (2") that the Full Scale range may be divided into or resolved, where n = number of bits. This is usually expressed as a number of bits (n). Settling Time The elapsed time for the analog output to reach its final value within a specified error band after the corresponding digital input code has been changed. It is usually specified as a Full Scale range change and measured from the 50% point of the digital input code change to the time the output reaches the final value within the specified error band. In general, temperature coefficients are expressed as fractions of an LSB/oC and then over the rated temperature range. The temperature coefficient (or T.C.) can then be defined as the change in the parameter divided by the corresponding temperature change, and is usually specified for gain, offset and linearity parameters. -~ Zero and Gain-Adjustment Principles For unipolar applications first adjust the 01 A converter for zero output with all bits OFF. Then with all bits ON, adjust the output for full scale - 1 LSB. For bipolar applications, in offset binary, adjust the O/A converter's "zero" for negative full scale with all bits OFF. Then with all bits ON set the gain for full scale - 2 LSB. 6-3 LD110/111A ..,. Siliconix ,,1;11 incorporated 3 1/2-Digit AID Converter Set FEATURES BENEFITS APPLICATIONS • Buffered Reference Input • High Gain Stability • High Performance Digital Voltmeters • MOSFET Input • Reduced Signal Loading • Auto-Zero System • Reduced Offset and Drift Over Temperature • Auto-Polarity • Over and Under Range Signals • Reduced External Parts Count • Easily Interfaced • Digital Panel Meters • Digital Instrumentation Readouts • ~P AID Interface Subsystem • Auto-Zeroed Microvolt or Strain Gauge Systems DESCRIPTION The LD11 0 and LD111 A form a precision 3 1/2 digit AID converter system for use in display and microprocessor based data acquisition applications. Based on Siliconix's "Quantized Feedback" technique, intrinsic features include auto-polarity, auto-zero, and ratiometric operation. Except for a stable reference, no critical components are required to achieve rated performance. The technique used offers superior linearity, normal mode rejection, and stability due to the simultaneous integration of the unknown input and the reference voltages. Unlike other conversion techniques, the integrator output voltage never represents more than 100 counts. Thus, critical, high resolution performance is not required of either the integrator or the comparator. The monolithic LD111 A high performance analog processor contains a bipolar comparator, a bipolar integrating amplifier, a bipolar reference amplifier, two MOSFET Input unity gain amplifiers, several P-channel enhancement mode analog switches and the necessary level shifting drivers to allow the analog and digital processors to be directly interfaced. The high impedance input and reference buffer amplifiers eliminate source loading errors and provide the outstanding temperature coefficient inherent in this system. Break-beforemake switch action ensures that neither the analog input nor the reference voltages will be shorted to ground at any time. function of the analog processor. Seventeen static latches store the 3 1/2 digits of BCD data as well as overrange, underrange and polarity information. Nine push-pull output buffers (capable of driving one standard TTL load each) provide the sign, digit strobe and multiplexed BCD data outputs, all of which are active high. The digit scan is an interlaced format of digits 1, 3, 2, and 4. Both devices are supplied in the 16-pin plastic DIP, and are specified for operation over the commercial, C suffix (0 to 70DC) temperature range. PIN CONFIGURATION Dual-In-Llne Package Top View 0 1 B1 O2 B2 0 3 3 04 B3 B4 SIGN GND 11 M/Z Order Number: LDll0CJ Dual-In-Llne Package Top View BUFF OUT 1 V1 VIN AZIN u/D AZ FILTER COMP The PMOS LD110 synchronous digital processor combines the counting, storage and data multiplexing functions with the random logic necessary to control the quantized charge-balancing 6-4 v2 AZ OUT v2 INT OUT ANALOG GND VREFIN 9 INTIN Order Number: LDlllACJ Not Recommended for New Designs trY' ~ LD110/111A Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM BCD OUTPUTS 6, B2 B3 B~ DIGIT STROBES I I I I I I I I I IL _____________ _ LOlllA V2 GND ANALOG GND CLOCK IN SWITCH STATES ARE FOR A LOGIC "0" AT U/D AND M/Z INPUTS ABSOLUTE MAXIMUM RATINGS liN (Pin 15, 2) ............................... ±1 mA V REF •..................•..................••..•. V, V,-V2 (LOll1A) ............................... 30V Operating Temperature ..................•.. 0 to 70°C VSS .......................................... 6 V Vss -V2 (LD110) ............................... 20 V V On Any Pin Relative toVss (LOll0) .... 0.3 V to -20 V Storage Temperature ............•....... -65 to 125·C Power Dissipation (Package)" •..........••.... 750 mW • Device mounted with all leads welded or soldered to PC Board. Derate 6.3 mW/oC above 25°C. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V, = 12 V, V2= -12 V Vss = 5 V VREF= 8.2 V R, = 100 k.n. LIMITS: TYP d TA=25°C MIN b MAX b UNIT SYSTEM Analog Input Range -2 VANALOG Linearity Noise Noise apparent when going from one steady reading to another. Not Recommended for New Designs 2 V 0.02 % rdg 0.1 LSB p_p 6-5 WY'Siliconix incorporated LD110/111A ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: Vl = 12 V, V2= -12 V Vss = 5 V VREF= 8.2 V Rl = 100 k.o. LIMITS: TVP d T A =25°C MIN b MAXb UNIT SVSTEM (Cont'd) Gain T.C. 5 ppm/DC dB NMR fNOISE = 60 Hz 40 Clock Frequency fin 50 % Duty Cycle 30.7 ON Resistance Auto Zero SWitch rOS(ON) V AZ(IN) = -4.0 V Is = -30JlA 6 Clock Input Current LOW ICL VCLOCK(IN) = 0.4 V Input Bias Current liN COMP, LDll0 IINL Normal Mode Rejection 2 250 kHz 20 k.o. INPUT -500 JlA 4 VIN = -12 V -700 pA -1500 -50 JlA AMPLIFIER Reference Buffer AZ Buffer I SOURCE VINL(UlO) = 0.8 V -800 I SINK VAz=-4V 800 I SINK' VIN=-2V 800 VIN=2V -100 -400 JlA VOUT= 0 V 400 Input Buffer I SOURCE AZ Buffer -50 -100 VOS 100 mV " OUTPUT Measure/Zero Voltage, Low VOLl IOL=150JlA Measure/Zero Voltage, High VOHl IOH = -200 JlA Up/Down Logic Voltage, Low VOL2 IOL = 250 JlA Up/Down LO~IC Voltage, Hlg V OH2 I OH = -200 JlA 2.4 Analog Comparator Voltage VOH3 IOH= -100 JlA 2.4 6-6 0.6 2.4 0.6 V Not Recommended for New Designs LD110/111A .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V1 = 12 V, V2 = -12 V Vss = 5 V VREF= 8.2 V R1 = 100 kfi LIMITS: TYP d T A =25°C MIN b MAX b UNIT OUTPUT (Cant'd) Digits, Bits Voltage, Low 0.6 V01.3 IOL=1.6mA Sign Voltage, Low 0.65 VOL4 V Data Bits Voltage, High VOH4 I OH = -200 .uA 2.4 Digits, Sign Voltage, High VOHS I OH = -800 .uA 2.4 SUPPLY V 1 Supply Current LDlllA 11 2.2 V2 Supply Current LDlllA 12A -1.8 -4 V2 Supply Current LD110 120 -17 -23 Vss Supply Current LDll0 Iss 17.4 Power Supply Rejection Ratio, V 1 PSRR 1 85 80 Power Supply Rejection Ratio. V2 PSRR 2 65 60 4 mA 24 dB Reference Voltage Rejection RREF= R2 = 100 k!l. VIN =2V 1 %4rdg per 4VREF NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebralo convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Not Recommended for New Designs 6-7 ...... Siliconix incorporated LD110/111A ~ FUNCTIONAL OPERATION BCO OUTPUTS . OIGIT STROBES 81 B2B3B~ I I I I I I I I I IL _____________ _ 1.0111 A 7 ANALOG GNO GNO CLOCK IN SWITCH STATES ARE FOR A LOGIC '0· AT U/O ANO M/Z INPUTS 011111110111111101 ••• ,110 ••• 11 tiD 01111111011,.11.0.1111 •• 0.1.,11.0 III1IUUUUlJ1IUl Il/IJIIIIIJIIlI M/Z M/Z .1. OVRO --+- AUTO ZERO ~::~A~z::~.I~'-----------MEASUR.~E----------. AZ AZ UJO U/O J-A..J- B-1- B-+-A-oj.-B--I-B COMPARATOR OUTPUT COMPARATOR OUTPUT /'\V / \VV A"VV /\1 /VAZ INTEGRATOR OUTPUT 6-8 INTEGRATOR OUTPUT yv \/?' V Not Recommended for New Designs LD110/111A W7' Siliconix ~ incorporated FUNCTIONAL OPERATION (Cont'd) a 16 8 24 32 48 40 56 64 CLOCK BIll I I 1 111 1 11 111 1 2 212 2 2 2 4 4 4 414 4 4 8 8 8 81 8 8 8 B2 J 2 2 B3 4 4 B4 8 8 01 J I I 2 02 03 041 Rll loon R12 F +1 -I. MAN4630 rK ~ g ~g +-~g r---r---- fl:lL~ r---- 10 "" • rtf-!..!- r---- • ~ MAN4610 ~ MAN4610 ~ C:!. ~ --1g. c -Ts- ~ :::a ~ 3 9374 A2 ..1Rg 4.3 k.O. Al .L 7 AO gf RIO sIn L- V 07 MPSA13 03 -<04 -<05 ~SAI3 -::- .---- 1 I-f! 565 ! 5 ~ : C4::!: O.OO22JLFT -<06 MPSA13 1 LOll0 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 02 +BV • MAN4610 3 8 A .l!....- -::- -- R5 - L R8 12 k.O. f-- C5 O.OIJLF I--I-- ~ -12 V 1 2 3 4 5 6 7 - C3 ' V o. 022 JLF LOlllA 1 6 1 - - ,R4 15 I160 kn 14 13 I - 12 11 10 f-C2 Cl ;~ ~ ~:1 R~~1 k L€;75 k:n. 10 N/C --r.I. R2 10 k.O. lMn~ NATIONAL 2N4274 0.1 0.0082 JJ.F JLF n 01 -::- c:> +12V Not Recommended for New Designs 6-9 LD120/121A 4 1/2-Digit AID Converter Set . . . Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • 0.005% ±1 Count Accuracy • High System Performance • ± 200.0 mV and ±2.000 V Ranges • Single Resistor Programming • High Accuracy Digital Voltmeters and Panel Meters • Auto-zero • Nulls Out Offsets • Auto-polarity • Single Reference • Over and Under Range Outputs • Easily Interfaced • Digital Scales and Thermometers • J.l.P Data Acquisition Systems • Scientific Instrumentation DESCRIPTION The LD120 and LD121 A form a precision 4 1/2 digit A/D converter system for use in display and microprocessor based data acquisition applications. Based on Siliconix's "Quantized Feedback" technique, intrinsic features include auto-polarity, auto-zero, and ratlometrlc operation. Except for a stable reference, no critical components are required to achieve rated performance. The technique used offers superior linearity, normal mode rejection, and stability due to the simultaneous integration of the unknown input and the reference voltages. Unlike other conversion techniques, the integrator output voltage never represents more than 100 counts. Thus, critical, high resolution performance is not required of either the integrator or the comparator. The LD120 analog processor is fabricated with a unique PMOS/Bipolar process. It contains all the necessary amplifiers, MOSFET switches, and switch driver circuits for the system. The reference voltage input is fully buffered in the LD120 to eliminate the reference switch resistance as a source of error. All the amplifiers are internally compensated. The LD120 directly interfaces to the LD121 A digital processor with no additional active components required. The LD121 A synchronous processor contains all the digital circuitry for the quantized feedback system. Device outputs supply two overrange signals, underrange, sign and 4-1/2 digits of multiplexed BCD data. (All outputs are TIL compatible.) Overrange is also indicated by blinking digit strobes above 20,000 counts. An input is provided to inhibit this feature at user option. Microprocessor controlled operation is simplified by a start conversion input that allows conversion-oncommand. Both devices are supplied in space saving 300 mil dual-in-line plastic packages for operation in the commercial, C suffix (0 to 70°C) temperature range. PIN CONFIGURATION Dual-In-Llne Package BUFF OUT 1 HI-Q GNO M/Z Dual-I,n-Llne Package Top View Top View, V+ 03 VIN 04 AZIN 05 AZ ALTER VOO COMP AZOUT vss v- INT OUT ANALOGGNO VREFIN B3 INTIN B2 U/O RE'bUT 4 SIGN/OR/UR B1 Order Number: LD120CJ 6-10 Order Number: LD121ACJ Not Recommended for New Designs ...r Siliconix incorporated LD120/121A ~ FUNCTIONAL BLOCK DIAGRAM ~~/~TART OR CONVERT BCD OUTPUTS B1 B2 B; . DIGIT STROBES Bo I I I I I I I I I IL _________ _ V- V+ CLK ANALOG AZ FILTER GND LD120 Analog Processor VSS VDD GND LD 121 A Synchronous Digital Processor SWITCH STATES ARE FOR A LOGIO "0" AT U/D AND M/Z INPUTS. ABSOLUTE MAXIMUM RATINGS VIN (Pin 15,2 LD120l .................. V- f UNIT INPUTS 1 4 Input Voltage HIGH V1NH Input Voltage lOW V 1NL Input Current/ Input Voltage HIGH IINH V1N =5V (Slgn/OR/UR I ) 1 170 IINL VIN=OV (Start Convert, Clock) 1 -150 cornfLarator Infrut Sign UR/OR/BI nk I Start, ClK IN V 0.5 1 300 P,A Input Current/ Input Voltage lOW -400 OUTPUTS Output Voltage HIGH VOH Output Voltage LOW VOL Output Voltage HIGH VOH Bit lines sIHn/OR/UR Dig tal Strobes IOH= -40 P,A 1 IOL=1.&rnA 1 IOH= -150P,A 1 IOL= 0.8 rnA 1 2.4 0.& 4 M/Z Output Voltage LOW VOL Output Voltage HIGH VOH V 0.& IOH=-0.5P,A 4 U/D Output Voltage LOW 0.& IOL= 0.8 rnA VOL DYNAMIC Start Convert J Clock Frequency tp fCLOCK Rep. Rate (Strobes) 50% Duty Cycle fCLOCK + 640 1 20 1 50 250 kHz 1 78 470 Hz 4.5 5.5 p,s SUPPLY Positive Supply Voltage Vss 1 5 Range Over Which Functionality Is Guaranteed V Negative Supply Voltage Voo 1 -12 Positive Supply Current k Iss 1 14 Negative Supply Current 100 1 -14 -13.2 -10.8 25 rnA 6-14 -25 Not Recommended for New Designs ~ ~ Siliconix incorporated LD120/121A ELECTRICAL CHARACTERISTICS a NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. e. System parameters not directly tested. f. Bit width over which reading Is stable 95% of the time. g. VSTRG must be more positive than -4 V. h. Reference source Impedance must be less than 10 k.O. . I. Pin characteristic only during D4 strobe time. J. Minimum positive going pulse width to Initiate conversion. k. All outputs disconnected. Not Recommended for New Designs 6-15 LD1221121A 4 1/2-Digit AID Converter Set trr' Siliconix ~ FEATURES BENEFITS APPLICATIONS • 0.005% ±1 Count Accuracy • High System Performance • Two Ranges • Single Resistor Programming • High Accuracy Digital Voltmeters and Panel Meters • Auto-zero • Auto-polarity • Nulls Out Offsets • Over and Under Range Outputs • Single Reference • Easily Interfaced incorporated • Digital Scales and Thermometers • liP Data Acquisition Systems • Scientific Instrumentation DESCRIPTION The LD122 and LD121 A form a precision 4 1f2 digit AfD converter system for use in display and microprocessor based data acquisition applications. Based on Siliconix's "Quantized Feedback" technique, intrinsic features include auto-polarity, auto-zero, and ratiometric operation. The LD122fLD121A combination is used to extend system resolution beyond the 10 IiV maximum available from the LD120fLD121 A system. By adding a user selected low noise input amplifier and appropriate filter, any input resolution can be achieved. Except for this added buffer and a stable reference, no critical components are required to achieve rated performance. The technique used offers superior linearity, normal mode rejection, and stability due to the simultaneous integration of the unknown input and the reference voltages. Unlike other conversion techniques, the integrator output voltage never represents more than 100 counts. Thus, critical, high resolution performance is not required of either the integrator or the comparator. The LD122 analog processor is fabricated with a unique combined PMOSfBipolar process. It contains all the necessary amplifiers, MOSFET switches, and switch driver circuits for the system. The reference voltage input is fully buffered on the LD122 to eliminate the reference switch resistance as a source of error. All the amplifiers are internally compensated. The LD122 directly interfaces the LD121 A digital processor with no additional active components required. The LD121 A synchronous processor contains all the digital circuitry for the quantized feedback system. Device outputs supply two overrange signals, underrange, sign and 4-1 f2 digits of multiplexed BCD data. (All outputs are TTL compatible.) Overrange is also indicated by blinking digit strobes above 20,000 counts. An input is provided to inhibit this feature at user's option. Microprocessor controlled operation is simplified by a start conversion input that allows converison-oncommand. Both devices are supplied in space saving 300 mil dual-in-line plastic packages and in the commercial, C suffix (0 to 70 c C) temperature range. PIN CONFIGURATION Top View Top View BUFF IN 1 HI-Q GNO v+ O2 03 VIN 01 04 05 AZIN U/O AZ FilTER COMP AZOUT v- INT OUT ANALOG GNO VREFIN REFOUT B --"'_--1- INTIN Order Number: LD122CJ 6-16 COMP 3 M/Z GNO VOO U/O VSS SIGN/OR/UR START ClK B1 Order Number: LD121ACJ Not Recommended for New Designs ~ ~ LD1221121A Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM BCD OUTPUTS . DIGIT STROBES BUFF IN HIGH QUALITY GND I I I I I I I I I I L ________ _ v- v+ ClK ANALOG AZ FilTER GND VSS VDO GNO LD121A Synchronous Digital Processor LD122 Analog Processor SWITCH STATES ARE FOR A lOGIC "0" AT UfO AND MfZ INPUTS. .. ABSOLUTE MAXIMUM RATINGS .................. V- f UNIT SYSTEM~ 2 V Scale 1 ±X -1 1 200 mV Scale 1 ±~ -2 2 2 V Scale 1 ~ 1 200 mV Scale 1 ~ 2 1 40 1 00 1 5 15 ppm/oC 1 1 5 Count Linearity Count Noise! fCLOCK = 163.04 kHz VREF = 6.0 V Normal Mode Rejection Ratio NMRR Power SUPFl:IY Rejection atlo PSRR fL= 50 Hz or 60 Hz Gain T.C. C STRG =lJ1.F RIN!S 100 k.G. Zero Drift dB ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LD122 (LINEAR CIRCUIT) Test Conditions Unless Otherwise Specified: V+ = 12 V V- = Voo= -12 V Vss= 5 V LIMITS C SUFFIX 1=25°C TEMP TYpd MINb MA>f UNIT INPUT BUFFER Analog Input Voltage VANALOG ON Resistance VIN or HI-Q Switches rOS(ON) Leakage Current Switch ON or OFF Input Currentl Input Voltage HIGH I LEAKAGE 1 -3 VA= 1 V 1 5.5 VA= -1 V 1 0 VIN= ±2.0 V 1 VIN = 2.0 V IIH 6-18 IlL V k.G. 2 pA 20 1 M/Z, U/D Inputs Input Currentl Input Voltage LOW 3 Jl.A VIN = 0.0 V 1 -100 Not Recommended for New Designs H LD1221121A Siliconix incorporated LD122 (LINEAR CIRCUIT) (Cont'd) ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V+ = 12 V V- = Voo= -12 V Vss= 5 V LIMITS C SUFFIX 1=25°C TEMP TYpd MINb MAX' UNIT AZ BUFFER I SOURCE 1 -100 Output Sink Current ISINK 1 800 Offset Voltage Vas VOUT= 0 V 1 On Reslstanceg rOSION) V STRa = -4 V los = 30.uA 1 Reference Buffer Source Current I SOURCE VIN (U/O IN) = 0.8 V Va = 0 V Reference Buffer Sink Current I SINK Output Source Current .uA -50 50 mV 6 20 kn 1 -800 -400 VIN (U/O IN) = 0.2 V Va = 2 V 1 100 I SOURCE VIN (INT. IN) = -100 mV Va = 0 V 1 -100 I SINK VIN (INT. IN) = 100 mV Va = 0 V 1 800 REFERENCE BUFFER .uA INTEGRATOR Integrator Source Current h -50 .uA Integrator Sink Current h Output Swing 400 1 -10 1 -5 -5 5 10 V COMPARATOR Comparator Output Swing V OUT Comparator Offset Voltage Vas 1 Positive Supply Voltage V+ 1 12 9 15 Negative Supply Voltage V- 1 -12 -15 -9 Positive Supply Current 1+ 1 Negative Supply Current 1- 1 RL = 10 k to 5 V AZ Filter IN = 100 mV Integrator OUT = 0 V V mV SUPPLY V Ground Current laN~ M/Z, UfO = 2.4 V Not Recommended for New Designs 3.5 -3 mA -2 6-19 trY' Siliconix ' ~ LD121 (DIGITAL CIRCUIT) ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL incorporated Test Conditions Unless Otherwise Specified: V+ = 12 V V- = Voo= -12 V Vss= S V LIMITS C SUFFIX 1=2S·C TEMP TYpd MINb MA>f UNIT INPUTS 1 4 Input Voltage HIGH VINH Input Voltage LOW VINL Input Currentl Input Voltage HIGH IINH VIN=SV (Slgn/OR/UR I ) 1 170 Input Currentl Input Voltage LOW IINL VIN = 0 V (Start Convert, Clock) 1 -lS0 cornxarator Inrrut Sign UR/OR/BI nk I Start, ClK IN V O.S 1 300 ,I.lA -400 OUTPUTS Output Voltage HIGH V OH Output Voltage LOW VOL Output Voltage HIGH V OH Bit Lines Slgn/OR/UR Digital Strobes IOH= -40,l.lA 1 IOL= 1.6 rnA 1 IOH= -lS0,l.lA 1 IOL= 0.8 rnA 1 2.4 0.6 4 V M/Z Output Voltage LOW VOL Output Voltage HIGH V OH 0.6 4 IOH= -O.S,I.lA U/D Output Voltage LOW 0.6 IOL= 0.8 rnA VOL DYNAMIC Start Convert J Clock Frequency tp fCLOCK Rep. Rate (Strobes) SO% Duty Cycle fCLOCK + 640 ,I.ls 1 20 1 50 250 kHz 1 78 470 Hz 4.S 5.5 SUPPL.Y Positive Supply Voltage Vss 1 S Range Over Which Functionality Is Guaranteed V Negative Supply Voltage Voo 1 -12 Positive Supply Current k Iss 1 14 Negative Supply Current 100 1 -14 -13.2 -10.8 25 rnA 6-20 -25 Not Recommended for New Designs fI"lI' Siliconix incorporated ~ LD1221121A ELECTRICAL CHARACTERISTICS a NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. System parameters not directly tested. f. Bit width over which reading Is stable 95% of the time. g. VSTAG must be more positive than -4 V. h. Reference source Impedance must be less than 10 k.n.. I. Pin characteristic only during 04 strobe time. J. Minimum positive going pulse width to Initiate conversion. k. All outputs disconnected. Not Recommended for New Designs 6-21 Si2504" . " , Siliconix Incorporated ~ High Speed 12·Bit SAR FEATURES BENEFITS APPLICATIONS • High Speed (40 MHz typ.) • Reduced Conversion Time • High-Speed AID Converters • Low Quiescent Power (Icc < 10j.l.A) • Reduced Power Consumption • Low-Power Data Acquisition Systems • Three-State Outputs c Expandable Via Cascading • Can Be Short-Cycled • Allows In-Circuit Trims c Facilitates Higher Resolution AID Converters • Optimizes Conversion Time • Laser-Trimmed AID Converters • High Resolution AID Converters • Variable-Resolution Systems DESCRIPTION The 5i2504 is a high-speed, low power CMOS 12-Bit SAR (successive approximation register) that contains all of the necessary digital control and storage to build a 12-Bit successive-approximation AID converter when combined with a 12-Bit 01 A converter and a comparator. The register can be cascaded for applications requiring more than 12 bits of resolution, and may be short-cycled to reduce the conversion time In lower-resolution applications. Applications include custom and lor hybrid AID converters with resolutions from 8 to 12 bits, and up to 24 bits when cascading two devices. The 12 data outputs have 3-state output buffers, allowing the SAR to be placed in a high-Impedance mode, allowing the DIA converter in an AID system to be trimmed without contending with the output of the SAR. The 5i2504 Is built in a 2 micron silicon-gate CMOS process, alowing high speed operation at reduced power, with TTL-compatible data inputs and outputs. It is available in a 0.600" wide 24-pln plastic DIP for operation over the commercial, C suffix (0 to 70°C) temperature range. The Si2504 is also available in die form, inspected to MIL-STD-883, method 2010, visual B. 6-22 PIN CONFIGURATION Dual-In-Una Packaga Ql0 Q9 Q8 Q7 Q6 NO OE GND OF' Order Numbers: SI2504CJ Plastic DIP SI2504 Dice Si2504 .... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM DO a11 a10 a9-a1 o e O-~:>------+ a11 ao ee • Cell logIc Is repeated for stages Q9 to Q1. ABSOLUTE MAXIMUM RATINGS All Voltages Referenced to GND Vee •.•..••....................••....•. -0.3 V to 7 V Storage Temperature ...•........••...... -65 to 125·C OperatIng Temperature ••....••••.••..•.••.. 0 to 70·C Voltage Applied to Outputs •...... -0.3 V to Vee + 0.3 V Output Current ...................•........•.. 10 mA Input Voltage .........•........• -0.3 V to Vee + 0.3 V Input Current ....•.•..•....•.•.......••.. -30 to 5 mA Power DIssIpatIon (Package)· 24-Pln PlastIc DIp·· .......•.........•...... 1000 mW All leads welded or soldered to PC board. Derate 11.0 mW'·C above 2S·C. 6-23 Si2504 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Speolfled: Vee = 5 V ±10% PARAMETER LIMITS 1=25 ·C 2=70·C 3=0·C TEMP SYMBOL C SUFFIX TYP c MIN b MAXb UNIT STATIC High Level Output Voltage VOH 10H = -2 mA 1,2,3 Low Level Output Voltage VOL IOL=6mA 1,2,3 3 0.4 V High Level Input Voltage VINH Vee = 5.5 V 1,2,3 Low Level Input Voltage VINL Vee= 4.5 V 1,2,3 Pull-Up Reslstanoe (OE only) Rpup 1,2,3 2.4 0.6 500 100 900 Input Leakage Current (exoept OE) liN V IH = Vee, V IL = GND Vee= 5.5 V 1,2,3 -1 1 Output OFF Statl!J,eakage Current (exeept CCI loz OE = 0 V, V OUT = Vee or GND Vee= 5.5 V 1,2,3 -1 1 Statio Supply Current 10 10H = 10L= 0 A 1,2,3 Output Short Clroult d Current Ise Vee= 5.5 V, V OUT = 0 V 1,2,3 Supply Current lee V IN =OVor5V feLoeK = 16.67 MHz 1,2,3 kfi JJ.A 10 -30 mA 17 DYNAMIC Turn OFF Delay CP to Output LOW Turn OFF Delay CP to Output HIGH tpD + Data Setup Time tS(D) Start Input Setup Time tS(S) E to 011 Turn OFF Delay HIGH tpD+(E) Turn ON Delay LOW tpD- (E) E to 011 Bus Release Time OE to Outputs High Impedance Bus Aooess Time OE to Outputs V IH or V IL 6-24 Outputs 011, 011 1 22 44 Outputs Exoept 011, 011 1 15 44 1 15 44 1 4 -10 10 1 16 0 25 1 10 44 1 30 44 1 40 44 1 22 44 tpD - C L = 15 pF CP = HIGH S= LOW tOER R L =3k!l. tOEA ns Si2504 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Vee= 5 V ±10% LIMITS 1=25 ·C 2=70·C 3=0·C C SUFFIX MIN b MAXb SYMBOL TEMP TYP c Minimum Low Clock Pulse tpWL(ep) 1 23 30 Minimum High Clock Pulse tpWH(ep) 1 10 30 1 40 PARAMETER DYNAMIC UNIT (Cont~d) ns Maximum Clock Frequency f MAX 16.67 MHz DIE SORT LIMITS LIMITS Test Conditions Unless Otherwise Specified: Vee= 5 V ±10% PARAMETER SYMBOL C SUFFIX 1=25 ·C TEMP TYP c MIN b MAXb UNIT STATIC High Level Output Voltage V OH IOH = -2 mA 1 Low Level Output VOltlige VOL IOL=6mA 1 High Level Input Voltage V INH Vee= 5.5 V 1 Low Level Input Voltage VINL Vee= 4.5 V 1 Pull-Up Resistance (OE only) Rpup 3 0.4 V 1 2.4 0.6 500 100 900 Input Leakage Current (except OE) liN VIH = Vee, VIL = GND Vee= 5.5 V 1 -1.0 1.0 Output OFF State.J,eakage Current (except CC) loz OE = 0 V, VOUT = Vee or GND Vee= 5.5 V 1 -1.0 1.0 Static Supply Current 10 IOH=loL=OV 1 Output Short Circuit d Current Ise Vee= Max, V OUT = 0 V 1 k.O. jJ.A 10.0 -30 mA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. ih~; 3~~:b!~~Cefonventlon whereby the most negative value Is a minimum and the most positive a maximum, Is used In c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. d. No more than one output should be short circuited at one time. Duration of short circuit should be less than 1 s. 6-25 Si2504 DIE ..... Siliconix incorporated ~ TOPOGRA~HY 140 mils 18171615 21 2019 ~' 141 000 • • • 0000 • • • • o 23 • 24 , • 0' o '0 o Si2504 o • 117 mils 0, 0:, :0 o 2: • • 13 0, • '12 0' a gao . 0 • • • 0000 • • • 0 . 3 7 8 9 456 11 TRUTH TABLE TIME H 6-26 INPUTS OUTPUTS Q8 ~ Q6 Q5 Q4 Q3 Q2 Q1 ~ CC X X X X X X X X X X X H H H H H H H H H H H H H H H H H H H H H H H 010 011 010 L H H H H H H H H H H L H 09 011 010 09 L H H H H H H H H H L H 08 011 010 09 08 L H H H H H H H H H L H 07 011 010 09 08 07 L H H H H H H H H L H 06 011 010 09 08 07 06 L H H H H H H H L H 05 011 010 09 08 07 06 05 L H H H H H 03 H L H 04 011 010 09 08 07 06 05 04 L H H H H 10 02 H L H 03 011 010 09 08 07 06 05 04 03 L H H H 11 01 H L H 02 011 010 09 08 07 06 05 04 03 02 L H H 12 00 H L H 01 011 010 09 08 07 06 05 04 03 02 01 L H 13 X H L H 00 011 010 09 08 07 06 05 04 03 02 01 00 L 14 X X L H X 011 010 09 08 07 06 05 04 03 02 01 00 L X X X X H H L X Z H NC NC NC NC NC NC NC NC NC NC NC Z Z Z Z Z Z Z Z Z Z Z Z NC NC tn 0 0 1 DO Q11 Q10 ~ S E OE X L L H X X X 011 H L H X L H 2 010 H L H 011 011 L 3 09 H L 4 08 H 5 07 H 6 06 7 05 8 04 9 X =HIGH Voltage Level, L =LOW Voltage Level, X = Oon't Care, NC =No Change, Z =HIGH Impedance Si2504 . . . Siliconix incorporated ~ SWITCHING TIME WAVEFORMS AT LEAST CP ------.., ~tPWl(cPr- ~~~~;6~;'" - tS(S)MAX- ~ ~ 1.5V ~ tS(S)MIN '/ '// '//// :x 1.5V tS(O)MAX tS(S)MIN_ ~ -I o 4- tS(O)MAX tS(O)MIN 4- r tpo- MAX tS(O)MI N 1.5V tpO+MAX 1.5 V al 1 1 tpO+MAX al a I lpO- MAX //A/ ///./1 :I ~ tPO+MAX-H DO tpo-MAX ~ ~I ~ 1.5V I.SV E::::::::::::::j~~::::::::::::::::::::::~~~::::::::::::::::::::1'5V ENABLE TO all t all t ~ Jool----t- + (ih MAX tpo - eE) MAX ======~~~~~S;;27~0~*~=po======::::::ss~~~~~~;:::====:: = CP=HWHEN ENABLE CHANGES 1.5 v APPLIES ONLY WHEN START-SIGNAL APPLIED DURING PREVIOUS CLOCK PERIOD SWITCHING TIME WAVEFORMS (OUTPUT ENABLE) OUTPUT:::::::::::::~~k::::::::::::::::::::::::7¥V~::::::::::::::::::::::::= ENABLE 1\_~~~~~~~~~___/1 1.5 v axx HIGH --------+---.1 Lr---------- 90% ~~______________4_--~7!-----------------2.4V ~~I:~:~~R---------t~-t-0-EA-:-:~J\:::::::::::::::::::::0.4V -0 axxLOW Vee TEST CONDITIONS: VOH to HIGH - Z or HIGH - Z to \bH axxo--4----~ 3k n J 3 kn 15 pF VOL to HIGH - Z or HIGH - Z to \bL axxo-------{ I 15PF 6-27 Si2504 .... Siliconix incorporated ~ DEFINITIONS tpD WAVEFORM INPUTS OUTPUTS tpD + MUST BE STEADY WILL BE STEADY tpD - (E) tpD+ (E) • MAY CHANGE FROM H TO L WILL BE CHANGING FROM H TO L MAY CHANGE FROM L TO H WILL BE CHANGING FROM L TO H DON'T CARE: ANY CHANGE PERMITTED CHANGING STATE UNKNOWN KEY TO TIMING DIAGRAM tS(D) ts{S) The propagation delay from the clock signal LOW --> HIGH transition to an output signal HIGH --> LOW transition. The propagation delay from the clock signal LOW --> HIGH transition to an output signal LOW --> HIGH transition. The propagation delay from the Enable signal HIGH --> LOW transition to the 011 output signal HIGH --> LOW transition. The propagation delay from the Enable signal LOW --> HIGH transition to the 011 output signal LOW --> HIGH transition. The set-up time required for the logic level to be present at the data Input prior to the clock transition from LOW to HIGH In order for the register to respond. The data Input should remain steady between ts max and ts min before the clock. The set-up time required for a LOW level to be present at the"S" Input prior to the clock transition from LOW to HIGH In order for the register to be reset, or the time required for a HIGH level to be present on "S" before the HIGH to LOW clock transition to prevent resetting. tpw(CP) The minimum clock pulse width (LOW or HIGH) required for proper register operation • tOER The delay from OE to a 10% change In the outputs when loaded with 3 k.n and 15 pF. tOEA The delay from OE to an output crossing 2.4 V or 0.4 V when loaded with 3 k.n and 15 pF. OPERATION The registers consist of a set of master latches that act as the control elements in the device and change state when the input clock changes from HIGH-to-LOW, and a set of slave latches, that hold the register data and change on the input clock LOW-to-HIGH transition. Externally the device acts as a special purpose serial-to-parallel converter. It accepts data at the 0 input of the register and sends the data to the appropriate slave latch. This data appears at the register output and the DO output on the Si2504 when the clock goes from LOW-to-HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time that data enters the register bit the next less significant bit is set to a LOW, ready for the next iteration and so on for each successive bit conversion cycle. 6-28 The register is reset by holding the S (Start) signal LOW during a full clock LOW-to-HIGH transition. The register synchronously resets the state 011 LOW, and all the remaining register outputs HIGH. The CC (Conversion Complete) signal is also set HIGH at this time. After the clock has gone HIGH resetting the register, the S signal must be removed. On the next clock LOW-to-HIGH transition the data on the 0 input is set into the Q11 register bit. The Q10 register bit is set to a LOW ready for the next clock cycle. On the next clock LOW-to-HIGH transition data enters the Q10 register bit and Q9 is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into QO, the CC signal goes LOW, and the register is inhibited from further change until reset by a Start signal. ..or ~ Si2504 Siliconix incorporated OPERATION (Cont'd) In order to allow one's or two's complement conversion, the complementary output of the most significant register bit is made available. An active LOW enable input (E) allows devices to be cascaded together to form a longer ~gister. This is done by paralleling the clock, D and S inputs and connecting the CC output to the E input of the next less significant device. When the Start signal resets the registers, the CC and E signals go HIGH, starting conversion in the MS Device and inhibiting the next less significant device from accepting data until the previous device is full an'!, its CC goes LOW. If only one device is used the E input should be held at a LOW logic level. If all the bits are not required, the register may be truncated and conversion time saved by ~ing a register output going LOW rather than the CC signal to indicate the end of conversion. The Q and DO outputs may be forced into a high impedance state by bringing OE LOW. This allows busing on common microprocessor buses or laser trimming of hybrid circuits without damaging the Si25D4. APPLICATION HINTS 1. The register can be used with current switches that require either a LOW voltage level or a HIGH voltage level to turn the switch on. If current switches are used which turn on with a LOW logic level, the resulting digital output from the register is active LOW. That is, a logic "1" is represented as a low voltage level. If current switches are used that turn on with a HIGH logic level then the digital output is active HIGH; a logic "1 " is represented as a HIGH voltage level. 2. For a maximum digital error of ±1/2 LSB the comparator must be biased. If current switches that require a LOW logic level to turn ON are used, the comparator should be biased +1/2 LSB and if the current switches require a HIGH logic level to turn ON then the comparator must be biased -1/2 LSB. 3. The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion. Additional data input gating should be used to eliminate the possibility of false BCD coding. 4. The register can be used to perform 2's complement conversion by offsetting the comparator 1/2 full range +1/2 LSB and using Qll as the sign bit. 5. If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on power-on. This situation can be overcome by making the Start input the OR function of CC and the appropriate register output. PIN DESCRIPTION PIN NUMBER SYMBOL E 2 DO 3 4-9 DESCRIPTION Register ENABLE. This input is used to expand the length of the register and when HIGH forces the Qll register output HIGH and inhibits conversion. When not used for expansion the enable is held at a LOW logic level (GND). The serial DATA OUTPUT. CONVERSION COMPLETE output. This output remains HIGH during conversion and goes LOW when a conversion is complete. QD-Q5 Register OUTPUTS. The six least significant bits of the register. QD is the LSB. 6-29 .. Si2504 . . . Siliconix incorporated ~ PIN DESCRIPTION (Cont'd) PIN NUMBER SYMBOL DESCRIPTION 10 NC No connection. 11 D 12 GND 13 CP CLOCK PULSE Input. 14 S START input. Holding this input LOW for at least one clock period will reset the register to 011 = LOW and 00 - 010 = HIGH. A LOW of one clock period is not necessary if it meets the set-up time requirements of the S Input. 15 OE OUTPUT ENABLE input. A LOW on this input will disable the 011 - 00, 011 outputs putting them in a HIGH IMPEDANCE state. This input has an internal pull-up and needs no connection for normal operation. 16-21 06-011 Serial DATA Input. Ground. Register OUTPUTS. The six most significant bits of the register. 011 is the MSB. 6-30 22 NC No Connection. 23 on Complementary output of the MSB register. 24 VCC Positive power supply input. Si7135 Precision 4 1/2-Digit Single Chip CMOS AID Converter ..... Siliconix Jl;;JI incorporated • • APPLICATIONS BENEFITS FEATURES Accuracy ±1 Count in ±20,OOO Counts GI Improves System Accuracy • • Reduced Loading of High Impedance Sources High Resolution Data Acquisition (15 bit) • No External Zero Adjust Direct Measurement of High Impedance Signals 1 pA Input Current • Auto Zero • • Differential Input (CMRR = 86 dB typ.) • Improved Common-Mode Signal Rejection • Precision DMM and DVM's • 15 mW Power Consumption • Battery Operation • Temperature Measuring Instruments • Simplifies Display Interfacing • Remote Data Measurement • Panel Meters • Multiplexed BCD Outputs DESCRIPTION The Si7135 is a precision 4 1/2 digit integrating AID converter system for use in display and microprocessor based data acquisition applications. Based on the reliable dual slope conversion technique, intrinsic features include 2.0000 V full scale range, differential inputs, auto-polarity, auto-zero, and ratio metric operation to achieve a high level of versatility for the systems designer. The multiplexed BCD outputs, when connected to display drivers, make the Si7135 an ideal solution for visual display DVMIDPM applications. Manufactured on the Siliconix proprietary PolyMOS process, the Si7135 exhibits improved linearity over the industry-standard ICL7135, eliminating the linearizing components required by the generic devices. An epitaxial layer prevents latchup. Package options include the 28-pin plastic DIP, CerDIP, and PLCC packages. All are rated for performance over the commercial, C suffix (0 to 70°C) temperature range. For more information on the Si7135, please refer to Silica nix Application Note AN83-14. PIN CONFIGURATION PLCC-28 Package Dual-In-Line Package A U N R N 0 A E 2 UNDERRANGE 2 OVERRANGE 2 STROBE INT OUT 2 R/H AZ IN 2 DIGITAL GND D V L FEE o ERR G R R R E A A C N o C N N G G r:'1r~~\rE~2,r~",-~:~r2:¥.:Elr.2"" STROBE • BUFF OUT R/H REF. CAP.REF. CAP.+ DIGITAL GND BUSY IN LO 2 IN HI POL CLOCK IN D, (LSD) D2 , BUSY 9 D2 D3 , D4 (MSB) Ba ~~____________~ 84 (LSD) D, v+ " ,,,,,,, MLBBMDD S824843 Order Numbers: CerDIP: SI7135CK Plastic: SI7135CJ D B B D B B 5' a Order Number: SI7135CN 6-31 Si7135 .... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM BUFFER AUTO ZERO .--I INT INTEGRATOR I REF HI o-~-------+, IN HI o-~---o~~~~~~~~t-------4--Q9--------------r~~------------i INPUT LOW c~~~g2 O--r------~~~--1-------~ L---------------r ------ 1----------- INLO O-4-~INT~X}--~~--~~~~~~~------------------~ v- DIGITAL GND CLOCK IN RUNI m5l!l OVER RANGE v+ UNDER RANGE STROBE BUSY ABSOLUTE MAXIMUM RATINGS Supply Voltage V+ ...........••..............•..•........... 6V V- .......••••.•.........•••..•............. -9 V Power Dissipation • Ceramic Package ..........•............... 1000 mW Plastic Package ............................. 800 mW PLCC ...................................... 450 mW Analog Input Voltage (either Input)d ........•.. V+ to V- Operating Temperature ....•..•.•.........•• 0 to 70·C Reference Input Voltage (either Input) ......•.. V+ to V- Lead Temperature (Soldering. 10 s) .......•.•... 300·C Storage Temperature ......••.•........•. -65 to 125·C Clock Input ...•................•..•....... GND to V+ 6-32 Dissipation rating assumes device Is mounted with all leads soldered to printed circuit board. Si7135 rY'Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 5 V, V- =-5 f clock= 120 kHz Full Scale = 2.0000 V LIMITS 1=25· C 2=70·C 3=0·C TEMP C SUFFIX TYpc MINb MAXb UNIT -2 2 V ANALOG Analog Input Range 1 VINPUT Zero Input Reading See Figure 1 VIN=OV 1 ± 0.0000 -0.0000 0.0000 Ratlometrlc Reading See Figure 1 VIN = VREF 1 0.9999 0.9998 1.0000 1 0.5 1 0.01 1 1 3 10 linearity Error e INL Differential Non-linearity f DNL See Figure 1 -2VSVIN S2V Rollover Error 9 Input Leakage Current Nolse h I ILK VIN=OV 1 1 eN See Figure 1 VIN=OV 1 15 Digital Reading 1.5 Counts (LSB) pA JJ,V DIGITAL INPUTS Input HIGH Voltage VINH 1 2.2 Input LOW Voltage V INL 1 1.6 0.8 Input HIGH Current IINH V IN =5V 1 0.02 0.1 mA Input LOW Current IINL VIN=OV 1 0.1 10 J.lA IOL=1.6mA 1 0.25 0.4 Pins 12-20 IOH=-1 mA 1 4.2 2.4 Pins 21,23,26, 27, 28 IOH = -10J.lA 1 4.99 4.9 V+ 1 5 4 V- 1 -5 2.8 V See Figure 2 CLOCK IN, RUN/HOLD DIGITAL OUTPUTS Output Voltage LOW Output Voltage HIGH VOL V V OH SUPPLY +5 V Supply Range 6 V -5 V Supply Range 6-33 Si7135 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: SYMBOL PARAMETER V+ = 5 V, V- = -5 f clock= 120 kHz Full Scale = 2.0000 V LIMITS 1=25 ·C 2=70·C 3=0·C C SUFFIX TEMP TYpO 1 1.1 MINb MAX' UNIT SUPPLY (Cont'd) + 5 V Supply Current 1+ 3 mA - 5 V Supply Current 1- 1 0.8 1 120 3 DYNAMIC Clock Frequency I dc 200 kHz NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor sublect to production testing. d. Input voltages may exceed the supply voltages provided the Input current Is limited to 100J1A. e. Error of reading from best straight line. f. Difference between worst case step of adjacent counts and Ideal step. g. Difference In reading for equal positive and negative readings near full scale. h. Peak-to-peak value not exceeding 95% of the time. I. The temperature range can be extended beyond 70·C as long as the auto-zero and reference capacitors are Increased to absorb the higher leakage of the S17135. J. This speCification relates to the clock frequency range over which the SI7135 will correctly perform Its various functions. See tlie MAXIMUM CLOCK FREQUENCY section of the description for limitations on the clock frequency range In a system. DIE TOPOGRAPHY Pad No. :1 12 13 14 28 ; ; ' -__ CSAA 50 43 15 10 6-34 N-Channel Transistors P-Channel Transistors Resistors Capacitors ~~~ ~ ___ _ _ _ _ _ _ _ _ _"":"..1 2DX ~I'" Function 1 V- 2 3 4 5 6 7 8 Reference Analog Common INT Out AZ In Buff Out Ref. Cap.Ref. Cap.+ In Lo In HI V + (substrate) (MSD)Ds (LSB) B1 B2 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 El4 (MSB) B8 D4 D3 D2 (LSD) D1 Busy Clock In POL DI@aIGND R/H Strobe Overrange Underrange Si7135 ..w" Siliconix ~ incorporated TEST CIRCUITS 1 -5V VREF= 1.000 V OV 24 .?+_ _--!2'-j REFER~~c~IG~~~~ ~~ .......6_Jl"00",,k.n.~~ 0.4711F SIGNAL INPUT o.JVv\,--4>--.!:"-I IN HI V+ DIGITALGND CLOCK IN L----ll~~2~2~~~-A 100 k.n. +5 V CLOCK IN 120 kHz Figure 1. SI7135 Test Circuit Figure 2. Logic Input Circuit DETAILED DESCRIPTION .--- CREF+ 1 _______ c.£!~ 8 12 REF HI o-~~---+~ • IN HI INPUT LOW ct~~~g~ o-~~--~~~-~----~ INLO o-~~~xr-~~~~~~~~----------------------~ L~~-------------t------l--------------V- Figure 3. V+ V+ Analog Section of the SI7135 V+ 6.8 k.o. SI7135 REF. HI 6.8 V ZENER SI7135 ! COMMON Iz REF. HI 1.2 V REFERENCE COMMON VFigure 4. Generating External References 6-35 Si7135 .... Siliconix incorporated ~ DETAILED DESCRIPTION (Cont'd) V+ POLARITY ___ t __ 11 23 B1 B2 B4 ~~--~~~~~~~TT~~~~ ._, ANALOG SECTION DIGITAL GND CLOCK IN mlliI HOLD OVER RANGE UNDER RANGE - B8 BUSY Figure 5. Digital Section ANALOG SECTION Figure 3 shows the block diagram of the analog section for the Si7135, figure 5 shows the digital section, and figure 6 shows the timing diagram. Each measurement cycle is divided into four phases. They are (1) AUTO-ZERO (AZ), (2) SIGNAL INTEGRATE (SI) , (3) REFERENCE INTEGRATE (RI) and (4) ZERO INTEGRATOR (ZI). within a common mode range which is specified from 0.5 V below the positive supply to 1.0 V above the negative supply. If the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct commonmode voltage. At the end of this phase, the polarity of the integrated signal is latched into the Polarity flip flop. 3. REFERENCE INTEGRATE (RI) PHASE: IN LO is internally connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the value of input signal. Specifically the digital reading displayed is 1. AUTO-ZERO (AZ) PHASE: First, input high and low are disconnected from the pins and Internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor C AZ to compensate for offset voltages in the buffer amplifier, Since the integrator, and comparator. comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the Input is less than 10 JlV. 4. ZERO INTEGRATOR (ZI) PHASE: First, IN LO is 2. SIGNAL INTEGRATE (SI) PHASE: During this phase, the auto-zero loop is opened, the internal short is removed, and the internal input high and input low nodes are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be shorted to analog COMMON. Second, a feedback loop is closed around the system to IN HI to cause the integrator output to return to zero. Under normal condition, this phase lasts from 100 to 200 clock pulses, but after an overrange conversion, it is extended to 6200 clock pulses. 6-36 10,000 VIN Si7135 . . . Siliconix incorporated ~ DETAILED DESCRIPTION (Cent'd) DIFFERENTIAL INPUT The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a typical CMRR of 86 dB. However, since the integrator also swings with the common mode voltage, care must be taken to insure that the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale swing with some loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity. ANALOG COMMON Analog COMMON is used as the input low return during AUTO-ZERO and REFERENCE INTEGRATE. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The reference voltage is referenced to analog COMMON. REFERENCE The reference input must be generated as a positive voltage with respect to COMMON, as shown in Figure 4. DIGITAL SECTION Figure 5 shows the digital section of the Si7135. The Si7135 includes several pins which allow it to operate conveniently in more sophisticated systems. These include: 1. RUN/HOLD (R/H'> (Pin 25): When high (or open) the Si7135 will free-run with equally spaced measurement cycles every 40,002 clock pulses. If taken low, the Si7135 will continue the full measurement cycle and then hold this reading as long as R/H is held low. A short positive pulse (greater than 300 ns) will now initiate a new measurement cycle, beginning with between 1 and 10,001 counts of AUTO-ZERO. If the pulse occurs before the full measurement cycle (40,002 counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 101 counts after the end of this cycle. Thus, if R/H is low and has been low for at least 101 counts, the converter is holding and ready to start a new measurement when pulsed high. 2. STROBE (Pin 26): This is a negative-going output pulse that aids in transferring the BCD data to external latches for UARTs or microprocessors. There are 5 negative-going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for 1/2 clock pulse width. Similarly, after digit 5, digit 4 goes high (for 200 clock pulses) and 100 pulses later the STROBE pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional STROBE pulses will be sent until a new measurement is available. 3. BUSY (Pin 21): BUSY goes high at the beginning of signal integration and stays high until the first clock pulse after zero-crossing (or after end of measurement in the case of an overrange). The internal latches are loaded during the first clock pulse after BUSY goes high and are latched at the end of this clock pulse. The circuit automatically reverts to AUTO-ZERO when not BUSY, so it may also be considered a (ZI + AZ) signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with CLOCK and subtract 10,001 counts from the number of pulses received -- as mentioned previously there is one "no-count" pulse in each REFERENCE INTEGRATE cycle. 6-37 Si7135 frY' Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) 4. OVER-RANGE (Pin 27): This pin goes positive when the input signal exceeds the range (20,000) of the converter. The output is set at the end of BUSY and is reset to zero at the beginning of REFERENCE INTEGRATE in the next measurement cycle. 5. UNDER-RANGE (Pin 28): This pin goes positive when the reading is 9% of range or less. The output flip-flop is set at the end of BUSY (if the new reading is 1800 or less) and is reset at the beginning of SIGNAL INTEGRATE of the next reading. 6. POLARITY (POL) (Pin 23): This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal frequency of (+) and (-) readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of reference integrate and remains correct until it is revalidated for the next measurement. 7. DIGIT DRIVES (Pins 12, 17, 18, 19 and 20): Each digit drive is a positive-going signal that lasts for 200 clock pulses. The scan sequence is Ds (MSD) , D4, D3, D2 and D1 (LSD). All five digits are scanned and this scan is continuous unless an overrange occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference integrate when Ds will start the scan again. This can give a blinking display as a visual indication of overrange. 8. BCD (Pins 13, 14, 15 and 16): The binary' coded decimal bits B8, B4, B2 and B1 are positive logic Signals that go on simultaneously with the digit driver signal. COMPONENT VALUE SELECTION For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. 4 V full scale integrator swing is fine, and 0.47 Jl.F is nominal. In general, the value of CINT is given by: CINT = CINT = INTEGRATING RESISTOR The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage with 100 Jl.A of quiescent current. They can supply 20 Jl.A of drive current with negligible non-linearity. Values of 5 to 40 Jl.A give good results. with nominal of 20 Jl.A, and the exact value of integrating resistor may be chosen by: RINT = full scale voltage 20 J1.A INTEGRATING CAPACITOR The product of integrating resistor and capacitor should be selected to give the maximum voltage swing which ensures that the tolerance build-up will not saturate the integrator swing (approximately 0.3 V from either supply.) For ±5 V supplies and analog COMMON tied to supply ground. a ±3.5 to 6-38 (10,000) x (clock period) x liNT integrator output voltage swing (10,000) x (clock period) x (20 Jl.A) integrator output voltage swing A very important characteristic of the integrating capacitor is that is has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference. This ratiometric condition should read half scale 0.9999, and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications. AUTO-ZERO AND REFERENCE CAPACITOR The size of the auto-zero capacitor has some influence on the noise of the system. e.g. a large capacitor reduces noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible. Si7135 WY'Siliconix ,,6;JI incorporated COMPONENT VALUE SELECTION (Cont'd) The dielectric absorption of the reference and auto-zero capacitors are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper capacitors can be used here if accurate readings are not required for the first few seconds of recovery. REFERENCE VOLTAGE The analog input voltage (YIN) required to generate a full-scale output is: VIN = 2 VREF. The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high quality reference be used where high-accuracy absolute measurements are being made. MAXIMUM CLOCK FREQUENCY The maximum conversion rate of most dual-slope AID converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a 3 I1S delay, and at a clock frequency of 160 kHz (6 I1S period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a 50 I1V input, 1 to 2 with 150 I1V, 2 to 3 at 250 I1V, etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 160 kHz, the instrument will flash "1" on noise peaks even when the input is shorted. For many dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to 1 MHz may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally. The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage onto the integrator output at the beginning of the REFERENCE INTEGRATE phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3. At higher frequencies, ringing and second order breaks will cause significant nonlinearities in the first few counts of the instrument. The minimum clock frequency is established by leakage on the auto-zero and reference capacitors. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error. To achieve maximum rejection of 60 Hz pickup, the SIGNAL INTEGRATE cycle should be a multiple of 60 Hz. Oscillator frequencies of 300 kHz, 200 kHz, 150 kHz, 120 kHz, 100 kHz, 40 kHz, 33 1/3 kHz, etc. should be selected. For 50 Hz rejection, oscillator frequencies of 250 kHz, 166 2/3 kHz, 125 kHz, 100 kHz, etc. would be suitable. Note that 100 kHz (2.5 readings/seconds) will reject both 50 and 60 Hz. The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the Applications section. If the multiplexed output display takes significant current from the logic supply, the clock should have good PSRR. ZERO-CROSSING FLIP-FLOP The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have decayed. False zero-crossings caused by clock pulses are not recognized. The flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of phase 3. This one-count delay compensates for the delay of the zero-crossing flip-flop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001. No delay occurs during phase 2, so that true ratiometric readings result. EVALUATING THE ERROR SOURCES Errors from the "ideal" cycle are caused by: 1. Capacitor voltage droop due to leakage. 2. Capacitor voltage change due to charge "drain-off" (the reverse of charge injection) when the switches turn off. 3. Non-linearity of buffer and integrator. 6-39 iii Si7135 .... 8i1iconix incorporated ~ COMPONENT VALUE SELECTION (Cont'd) 4. Charge lost by C REF in charging C STRAY. Extreme care must be taken to avoid ground loops in the layout of 8i7135 circuits. especially in high-sensitivity circuits. It is most Important that return currents from digital loads are not fed into the analog ground line. Charge lost by C AZ POWER SUPPLIES 5. Integrating capacitor dielectric absorption. 6. 7. ANALOG AND DIGITAL GROUNDS High-frequency limitations of buffer. integrator and comparator. non-linearity due to and C INT to charge CSTRAY· The 8i7135 is designed to work from ±5 V supplies. However. in selected applications. no negative supply is required. The conditions to use a single +5 V supply are: NOISE The peak-to-peak noise around zero is approximately 15 Jl.V (peak-to-peak value not exceeded 95% of the time.) Near full scale. this value increases to approximately 30 Jl.V. Much of the noise originates in the auto-zero loop. and is proportional to the ratio of the input signal to the reference. 1. The input signal can be referenced to center of the common mode range of the converter. 2. The signal is less than ±1.5 V. 8ee .. DIFFERENTIAL INPUT" for a discussion of the effects this will have on the integrator swing without loss of linearity. TIMING DIAGRAM INTEGRATOR OUTPUT I AUTO ZERO 10.0011 COUNTS SIGNAL INT. 10.0001 I COUNTS REFERENCE INTEGRATE 20.001 COUNTS MAX. FULL MEASUREMENT CYCLE 40,002 COUNTS BUSY OVER-RANGE WHEN APPUCABLE UNDER-RANGE WHEN APPLICABLE EXPANDED SCALE BELOW DIGIT SCAN FOR OVER-RANGE ~D5 ~D4 ~D3 ~D2 ~Dl ~C6~~T~1 STROBE I I I I I !1:-AUTO ZERO DIGrr SCAN FOR OVER-RANGE ~'" • ARST Os OF AZ AND REF INT ONE COUNT LONGER Figure 6. Timing Diagram 6-40 _ Si7135 ..... Siliconix incorporated ~ APPLICATIONS The popular LCD displays can be interfaced to the output of the Si7135 with suitable display drivers, such as shown in Figure 7. A standard CMOS 4000 series LCD driver circuit is used for displaying the 1/2 digit, the polarity, and an 'overrange' flag. Of -5 V +5 V CLOCK IN 27 OR 23 POL 05 12 04 17 ANALOG COMMON - INT OUT ANALOG GNO Sl7135 03 02 01 20 Ba 16 BUF OUT 01 9 2a SEGMENTS DG412 +5 V VOO Bl Bl 13 lJl.F t-----------' 91 B3 B2 B4 15 B214 INPUT HI a~ : 04 03 1a 02 19 AZIN INPUT course, another full driver circuit could be ganged to the one shown, if required. This would be useful if additional annunciators were needed. The Figure shows the complete circuit for a 4-1/2 digit (±2.0000 V) AID. BO L.,..;;;;.. VSS _ _ _O;.;S;.;C;..! 200 RC+ a ~ Figure 7. Driving LCD Display INTERFACING WITH MICROPROCESSORS Circuits to interface the Si7135 directly with two popular microprocessors are shown in Figures 8 and 9. The 8080/8048 and the MC6800 families with 8-bit words need to have polarity, overrange and underrange multiplexed onto the digit 5 word. In each case the microprocessor can instruct the ADC when to begin a measurement and when to hold this measurement. The Si7135 is designed to work from ±5 V supplies. However, if a negative supply is not available, it can be generated using 2 capacitors, and an inexpensive Si7660 or Si7661 IC (Figure 10). ~ r- EN S E L E C lB 2B 3B T lV PAO 2V PAl lA 2A 3A 3V PA2 74C157 ::.. MC680X I IIIIII U 05 Ba B4 B2 Bl N 01 L 0 E 02 SI7135 R 03 RUNI 0 4 HOLD STROBE V E R I MCS650X MC6820 P °° OR PA3 PA4 PAS PA6 PA7 CAl I CA2 I Figure 8. Interface to 680X and 650X Families 6-41 Si7135 Siliconix incorporated APPLICATIONS (Cont'd) .e. ~ - EN 1Y S E 74C157 2Y L E C lB 2B 3B T lA 2A 3A 3Y I e IIIII I L PAl INTEL PA2 BOBO BOB5 PA3 ETC. B255 (MODE 1) ~ 05 B8 B4 B2 Bl P 0 0 E R RUNI E R SI7135 Fi5t5 S'i'I'lOBE 01 02 03 04 I ~ PAD PA4 PAS PAS PA7 PC4 PC6 I J Figure 9. Interface to 8080 Family +5V 1 k.O. 2 10JlF 8 16 k.O. ...-----t--'II\l\r---+ +5V SI7660 OR 0.22 JlF 120 kHz CLOCK OUT SI7661 3 5 VOUT= -5 V 39k.O. -=- +I 1OJlF 16 k.O. '----,-----1 -=- 390 pF Figure 10. Generating a -5 V Supply From a +5 V Supply 11 k.O. Figure 11. Comparator Clock Circuit 11 k.O. 120 kHz CLOCK OUT C04069 INVERTERS Figure 12. 6-42 R - C Clock Circuit Si7240 12·Bit CMOS Voltage-Output DAC W'F' Siliconix ~ incorporated FEATURES BENEFITS APPLICATIONS • Fast Voltage Settling Time: 550 ns to 0.01% • Improved Data Throughput • High Speed AID Converters • Total Unadjusted Error: 1 LSB Max • Reduced Power Supply • Improved Accuracy • Eliminates Instability In Servo Loops • Low Power SingleSupply Operation (30 mW) " Programmable Gain Amplifiers • Battery-Powered Instrumentation • Head Positioning Servos • Excellent Differential Nonlinearity: 1/2 LSB Max over Temperature DESCRIPTION The Si7240 is a fast settling (550 ns typically to 1/2 LSB) 12-bit voltage-output digital-to-analog converter. The Si7240 operates with a single +15 V VDD supply and exhibits exceptionally fast settling times due to the small (and code independent) value of capacitance at the output of the DAC. The Si7240 features 1 LSB total unadjusted error, allowing fixed reference operation without the need for external trims. All grades are guaranteed monotonic to 12 bits over all temperature ranges, in both the voltage mode and the current mode. references, and digital servo systems. Its low power consumption and single-supply operation makes it ideal for battery operated and remote instrumentation applications. Built on the Siliconix PolyMOS process, the Si7240 uses highly stable thin film resistors which are laser-trimmed for excellent accuracy. An epitaxial layer prevents latchup. Applications for the Si7240 include high-speed AID converters, digitally-controlled power supplies and The Si7240 is available in 18-pin plastic commercial, J, K suffix (0 to 70°C), industrial, A, B suffix (-40 to 85°C), and military, S, T suffix (-55 to 125°C) temperature range. PIN CONFIGURATION FUNCTION BLOCK DIAGRAM Dual-In-Llne Package Top View R BIAS AGND DGND V OUT V DD BIT 12 (LSB) BIT 11 BIT 10 BIT 4 BITS BIT 9 BIT B - '_ _ _.-- BIT 7 DGND BIT 1 (MSB) BIT 12 (LSB) ORDERING INFORMATION Total Unadjusted Error Plastic CerDIP Side Brazed Ceramic TA = TMIN to TMAX o to 70°C -40 to 85°C -55 to 125°C +1/2, -2 LSB +114, -1 1/2 LSB SI7240JN SI7240KN SI7240AQ Si7240BQ SI7240SD SI7240TD Preliminary 6-43 .. WY'Siliconix incorporated Si7240 ~ ABSOLUTE MAXIMUM RATINGS Voo to DGND .................•....... -0.3 V, +17 V Digital Input Voltage to DGND .............. -0.3V, Voo Power Dissipation (Any Package) to 75·C ...... 450 mW Derates above 75·C ......•................. 6 mW/·C VBIAS, VO UT to DGND •........................ ±25 V Operating Temperature (J, K Suffix) ......... 0 to 70·C (A, B, Suffix) ...... -40 to 85°C (S, T Suffix) •..... -55 to 125·C V REF to DGND ........•................ -0.3 V, Voo Storage Temperature .................... -65 to 150·C AGND to DGND ......................•.. -0.3V, voo Lead Temperature (Soldering, 10 seconds) ....... 300·C ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25·C K,B,T J,A,S 2=125,85,70·C SUFFIX SUFFIX Voo= 15 V, VREF= 1.23 V 3=-55,-40,0 ·C AGND = DGND = RBIAS = 0 V TEMP TYpd MINb MAX' MIN b MAxt UNIT SYMBOL PARAMETER ACCURACY Resolution Total Unadjusted Errore, Relative Accuracye, f f Full Scale (Gain) Error e, f N 1,2,3 12 ET 1 2,3 -1.0 -1.5 0.5 0.5 -1.25 -2.0 0.5 0.5 INL 1 2,3 -1.0 -1.5 0.5 0.5 -1.25 -2.0 0.5 0.5 GE 1 2,3 -0.5 -0.5 0.5 0.5 -1.25 -2.0 0.5 0.5 1,2,3 -1.2 1.2 -6 6 1 2,3 -0.5 -0.5 0.125 0.25 -0.5 -0.5 0.25 0.5 -0.5 0.5 -0.5 0.5 Full Scale (Gain) C Tempco TC GE Zero Code (Offset) Error e, f Vas fl Full Scale I fl Temperature 12 Bits LSB ppml ·C LSB DNL Monotonic to 12-Blts 1,2,3 PSRR Voo= 15.5 V to 14.5 V All Digital Inputs HIGH 1 2,3 Input Resistance (Pin 1) RREF Approximately 0.67 X RLAOOER 1,2,3 All Digital Inputs LOW 1,2,3 40 40 Input Capacltance C (Pin 1) CREF All Digital Inputs HIGH 1,2,3 100 100 Differential Non-linearitye, Power SUP~IY Rejection atlo f -0.005 0.005 0.005 0.005 -0.01 0.01 -0.01 0.01 % per % REFERENCE INPUT 4.7 4.7 k.o. pF DIGITAL INPUT Input HIGH Voltage VINH 1,2,3 Input LOW Voltage V 1NL 1,2,3 2.4 2.4 V 6-44 0.8 0.8 Preliminary Si7240 IfF Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions Unless Otherwise Specified: 1=25°C K,B,T J,A,S 2=125,85,70 oC SUFFIX SUFFIX Voo= 15 V, VREF= 1.23 V 3=-55,-40,OoC AGND = DGND =RBIAS = 0 V TEMP TYpd MINb MAX' MIN b MAXt SYMBOL UNIT DIGITAL INPUTS (Cent1d) 1,2,3 -1 Input Leakage Current liN Input Capacitance C IN 1,2,3 Output Capacltance C (Pin 17) COUT 1,2,3 Output Resistance (Pin 17) ROUT 1,2,3 12 Output Resistance Tempco TC RO 1,2,3 -300 Bias Resistor RBIAS 1,2,3 12 1,2,3 0.1 VIN = 0 V or 15 V 1 -1 1 JlA 8 8 pF 2.8 2.8 pF 15 IQl. ANALOG OUTPUT Bias and Ladder Resistor Matching 7 15 7 ppm I °C 7 15 7 15 IQl. % DYNAMIC Propagation Delay c, g tpo Voltage Settlln~ Time c, g, h, I, Measured From 50% of Digital Input to 10% of Final Analog Output 1,2,3 To 0.01% of FSR For All O's to Alil's or alil's to All O's 1,2,3 550 To 0.04% of FSR For All O's to Alil's or all1's to All O's 1,2,3 470 To 0.2% of FSR For All O's to Alil's or alil's to All O's 1,2,3 400 100 100 900 900 ns Voltage Settling Time (J, K Grades) t. 45 Glitch Impulse g nV-s POWER SUPPL.Y Voo Range Voo Supply Current 100 Preliminary Accuracy Is Guaranteed At Voo= 15 V 1.2,3 All Digital Inputs VIL or VIH 1,2,3 All Digital Inputs 0 V orVoo 1,2,3 5 16 5 16 V 2 2 mA 100 100 JlA 6-45 Si7240 ~ ~ Siliconix incorporated ELECTRICAL CHARACTERISTICS a NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. 1 LSB ='VREF/4096. f. DAC Load RL >10 10.0. • g. Input logic levels 0 V and 5 V. h. External load = 2.8 pF. I. Side braze versions exhibit 10% longer settling times than plastic versions. J. FSR = Full Scale Range. CAUTION ESD (Electro-Static-Discharge-Sensitive) device. The digital control inputs are zener protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The foam should be discharged to the destination socket before devices are removed. DEFINTION OF TERMS TOTAL UNADJUSTED ERROR This is a comprehensive specification which includes gain error, relative accuracy and zero code offset when configured as shown in Figure 5. Absolute full'scale is VREF -1 LSB (IDEAL) where 1 LSB (IDEAL) is V~EF 4096 Note: "ERROR" defined is ACTUAL VALUE - IDEAL VALUE. DIFFERENTIAL NONLINEARITY Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ±1 LSB max over the operating temperature range ensures monotonicity. DETAILED DESCRIPTION CIRCUIT INFORMATION Analog Section RBIAS v REF The Si7240 12-bit voltage DAC consists of a highly stable thin film R-2R ladder and twelve high speed N MOS single pole double throw switches. AGND BIT 12 (LSB) BIT 3 I I ?---------? BIT 2 BIT 1 (MSB) ?I ?I I The Si7240 has low capacitance at the VOUT terminal, and hence exhibits fast output voltage settling times. The simplified circuit diagram of the DIA converter is shown in Figure 1. 6-46 V OLIT Figure 1. SI7240 Funtlonal Diagram (Inputs High) Preliminary Si7240 ...... Siliconix incorporated ~ DETAILED DESCRIPTION ..... Digital Section The 12 digital inputs are designed to be both TTL and 5 V CMOS compatible when VDD equals +15 V. All logic inputs are static protected MOS gates with typical input currents of less than 1 nA. Internal input protection is achieved by an on-chip distributed diode from GND to each MOS gate. To minimize power supply current, it is recommended that the digital input voltages be driven as close to the supply rails (VDD and GND) as practically possible. J• 1~:!4 a..;:.,;.J p;: ~ II • ;;; .. ... '- .~~ DYNAMIC PERFORMANCE - •• .. .1 • ~ ~ Figure 2. SI7240 Transient Response Waveform Output Impedance When operated in the voltage switching mode the Si7240 exhibits code independent (fixed) output capacitance and output resistance. _This means that settling time of the Si7240 is virtually the same for all code changes when operated as per Figure 4. In contrast, the output impedance and thus the settling time of current mode DACs is code dependent. Moreover, with a current mode CMOS DAC the large output capacitance places a limitation on the realizable settling time, even when using a fast output op amp. The low values of output capacitance of the Si7240 ensure very fast voltage settling when configured with a high speed follower. Figure 3 shows the glitch energy waveform for the major transition. Figure 10 shows the circuit used to achieve the waveforms shown in Figures 8 and 9. .. ~ ~ III[ §.. 11 ~ iiiiiiiii .. rn .. i l IJ I:!! 11 •• = IJ Settling Time L.;. ~ l~ II III = • Figure 3. SI7240 Major Transition Glitch The time taken for voltage settling of the Si7240 to less than 1/2 LSB is given by the approximation: voo= +15 V • Settling Time - tpD + 9R (COUT + CEXT) t PD - Logic Propagation Delay R - DAC Ladder Resistance COUT - DAC Output Capacitance - Capacitance due to External Circuit . • Assuming very high load impedance. Figure 2 shows the output voltage transient response waveform for the transition resulting when all digital inputs change from 0 to +5 V. Preliminary c 1 = 10J.LF TANT O2 = 0.01 J.LF OER Figure 4. Dynamic Performance Test Circuit 6-47 Si7240 ...... 5i1iconix incorporated ~ DETAILED DESCRIPTION (Cont'd) VOLTAGE REFERENCE The input impedance at the VREF pin of the 8i7240 is code dependent and can vary from 7 k.O. up to infinity. The nodal capacitance at the reference terminal is also code dependent and typically varies from 40 pF to 90 pF. Therefore it is essential that the reference be adequately decoupled at pin 1 of the 8i7240 in order to present a low output impedance and thus maintain full accuracy under changing load conditions. APPLICATIONS Figure 5 shows the equivalent circuit of the output of the 8i7240. LOAD IMPEDANCE The 8i7240 equivalent output circuit of Figure 5 shows a Thevenin voltage source VREFD with a fixed output resistance and capacitance of Rand C OUT respectively. 0 is a fractional representation of the digital input word N I.e. 0 = N/4096. R Resistive loading at pin 17 of the 8i7240 causes scale factor error. Op amp bias current through the DAC output impedance (12 k.O. nominal) Introduces an offset term. For example, a 60 M.o. load resistance on pin 17 introduces a 1 L5B scale factor error at pin 17. Op amp bias current of 25 nA introduces a 1 L8B offset term. Effects of amplifier bias current can be minimized by ensuring the parallel combination of R1 and R2 (Figure 6) Is equal to the DAC's output Impedance at pin 17 (nominally 12 k.O.). If the amplifier circuit (of Figure 6) is configured to provide a gain of +1, resistor R2 should be Included and should equal 12 k.O. to minimize output error due to bias current. C OUT ~----------~--~AGND R - DAC LADDER RESISTANCE (12 kA TYP) CO UT - DAC OUTPUT CAPACITANCE (2.8 pF MAX) - THEVENIN VOLTAGE SOURCE (0 s D S 4095/4096) VRE~ Figure S. Equivalent Output Circuit of Sl7240 The 5i7240 can operate in several different modes. Each mode has its own particular characteristics. These are summarized below and discussed in detail in the paragraphs following. OPERATION MODES VOLTAGE SWITCHING MODE The circuit in Figure 6 shows the 5i7240 connected In the voltage switching mode. 8ince V OUT is the same polarity as VREF, this configuration allows single supply operation. Note that the voltage VREF must always be positive with respect to DGND in order to prevent parasitic transistor turn-on. Figure 6. SI7240 In Single Supply Voltage Switching 6-48 Preliminary Si7240 ..... Siliconix incorporated ~ OPERATION MODES (Cent'd) To maintain linearity, the voltages at VREF and AGND should remain within 2.0 volts of each other for a VDD of +15 V. IfVDD is reduced from 15 V or the differential voltage between VREF and AGND is increased to more than 2.0 volts, the accuracy of the DAC will be degraded. Note that the output voltage range has been extended by using a noninverting gain stage. The output Your is expressed as: Where D is a fractional representation of the digital input word (O!:: D !:: 4095/4096). Fastest settling can be achieved by using a dual supply op amp. VOLTAGE SWITCHING MODE WITH AGND BIAS VOLTAGE AGND can be biased above DGND to provide an offset "zero" analog output voltage level. Figure 7 shows this circuit configuration. As in Figure 6, the output voltage range has been extended by using a noninverting gain stage to buffer the DAC. The output voltage Your is expressed as: Where VIN !:: +2.0 V, and where D is a fractional representation of the digital input word (0 !:: D !:: 4095/4096). The effect of R BIAS on total unadjusted error and differential nonlinearity will be the same as reducing VDD by the amount of the offset. VOLTAGE SWITCHING MODE - OFFSET BINARY OPERATION Figure 8 shows a circuit used to implement offset binary coding in the voltage switching mode. Mismatch between R 1 and R2 causes both offset and full scale error, therefore, these resistors must match (to within 0.01 %) and track over temperature. Table 1 shows the digital code vs. output voltage relationship for Figure 8. Table 1 Offset Binary Code Table for Figure 8 with R1 = R2 Digital Input Analog Output 1111 1111 1111 +VREF • -047 2048 ) 1 000 0000 0000 0000 0000 0000 e OV -VREF Figure 7. SI7240 In Single SliPply Voltage Switching Mode with AGND Bias Voltage Preliminary 6-49 .. Si7240 W7" Siliconix ,,6;JI incorporated OPERATION MODES (Cont'd) Figure 8. 517240 In Offset-Blnal'll Voltage-Switching Moae 6-50 Preliminary Si7533 CMOS 10-Bit Multiplying DAC ..... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Full Four Quadrant Multiplication • Allows AC Attenuation Without Biasing • Programmable Gain Amplifiers • 1/2 LSB INL • True 10-Bit Linearity • Low Gain Drift « ±0.1 % over temp) • Reduced Calibration • Digitally Controlled Attenuators And Amplifiers • Simplified Logic Interface • Remote Systems • TTL/CMOS Compatible • Motion Control Systems • Programmable Power Supplies DESCRIPTION The Si7533 is a CMOS multiplying digital-to-analog converter which provides 10 bit accuracy and full four-quadrant multiplication. It is pin- and function-compatible with Analog Devices' AD7533 and AD7520, and is recommended for updating existing AD7520 applications. Built on the Siliconix proprietary PolyMOS'" process, the Si7533 uses laser-trimmed thin film resistors to provide full 1a-bit linearity, 1.4% maximum gain error, and less than 0.1% gain drift over the full range of temperatures. An epitaxial layer prevents latchup. Applications include digitally-controlled attenuators, filters, amplifiers and power supplies, disk drive head positioning. servo loops. industrial controllers and avionic systems. The Si7533 is available in 16-pin Plastic DIP. CerDIP, and Side Braze packages for operation over the commercial, J, K. L suffix (0 to 70°C). industrial. A. B. C suffix (-40 to 85°C) and military. S. T, U suffix (-55 to 125°C) temperature ranges. respectively. For surface mount applications. the Si7533 is available in the 20-pin PLCC for commercial and LCC for military applications. PIN CONFIGURATION Dual-In-Llne Package RFB V REF VDD Bit 10 (LSB) LCC Package Bit 9 Bit 8 Bit 7 PLCC Package OUTI 0UT21 NC '"1.::""_;.r Bit 6 8 VDD GND 4 (MSB) Bit 1 5 NC 6 7 Bit 10 (LSB) 6 NC Bit 38 9 10111213 Bit 4 I I NC Bit 5 Bit 7 Bit 6 Preliminary Top Views Not to Scale 6-51 Si7533 ..... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM 10 k 10 k 10 k -----vv-~-----, 20 k OUT2 OUT1 I I 6 6 BIT 1 BIT 2 R FEEDBACK BIT 3 BIT 10 (LSB) (MSB) ORDERING INFORMATION Relative Accuracy Tmln Tmax - ± 0.05% ± 0.1% ± 0.2% Temperature Range and Package DIP Plastic 0 to 70·C PLCC o to 70·C CerDIP Side Brazed Ceramic LCC -40 to 85 ·C -55 to 125·C -55 to 125·C SI7533LN SI7533LP SI7533CQ SI7S33UD SI7533UE SI7S33KN SI7533JN SI7S33KP SI7533JP SI7S33BQ SI7533AQ SI7533TD SI7S33SD SI7S33TE SI7533SE ABSOLUTE MAXIMUM RATINGS VDD to GND ........••.••..•.••.•••.••. -0.3 V. +17 V VREF to GND .................•.•••.••..•••..• ±2S V VRFB to GND . . . . . . . • . • . . . • . • • • • • • . • • . . . . . . . .. ±2S V Digital Input Voltage to GND •••.••..••... -0.3 V to VDD V OUT1 • VOUT2 to GND ....•..•.••....... -0.3 V toVDD Storage Temperature (D. E. Q Suffix) ..••• -65 to 150·C (N. P Suffix) .•..... -65 to 125·C Operating Temperature (D. E Suffix) ...... -55 to 12S·C (Q Suffix) ••....... -40 to 8S·C (N. P Suffix) ••..••... 0 to 70·C Power 16-Pln 16-Pln 16-Pln 20-Pln Dissipation (Package)· Plastic DIp·· •.....••.••••..•......... Ceramic Side Brazed··· ............... CerDIP··· •....................•.•.•• PLCC···· .......................•.•• 470 900 900 4S0 mW mW mW mW All leads welded or soldered to PC Board. Derate 6.5 mW'·C above 25·C. Derate 12 mW'·C above 7S·C. •••• Derate 10 mW'·C above 25·C. CAUTION ESD (Electro-Static-Discharge-Sensitive) device. The digital control inputs are diode protected; however. permanent damage may occur on unconnected devices subject to high energy 6-52 electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed. Preliminary Si7533 flY' Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Vee = 15 V, V REF = 10 V V OUT1 =VOUT2 = 0 V Output Amplifier = OP-07 LIMITS 1=25°C 2=125,85,70oC 3=-55,-40,OoC TEMP TYP d ALL GRADES MIN b MAX b UNIT ACCURACY Resolution Relative Accuracye, Gain Error e, 1,2,3 10 J, A, S Grades 1,2,3 -0.2 0.2 K, B, T Grades 1,2,3 -0.1 0.1 L, C, U Grades 1,2,3 -0.05 0.05 1 2,3 -1.4 -1.5 1.4 1.5 1,2,3 -0.1 0.1 All Digital Inputs =VIL 1 2,3 -50 -200 50 200 All Digital Inputs =VIH 1 2,3 -50 -200 50 200 5 20 N h INL G FSE h Bits % FSR Measured Using Internal R FB Gain Drlft C , e, h IOUT1(OFF) Output Leakage Current VREF = ±10 V IOUT2(OFF) nA REFERENCE INPUT Reference Input Resistance f RREF 1,2,3 Input HIGH Voltage VIH 1,2,3 Input LOW Voltage V IL 1,2,3 Input Leakage Current liN 10 I4l. LOGIC INPUT 2.4 V 1,2,3 0.8 -1 1 J1A 5 pF Digital Inputs = 0 V or Vee Input Capacltance c C IN 1,2,3 SUPP1.Y AGain IAVee Vee = 14 to 17 V Power Supply Rejection 1 2,3 -0.005 -0.008 5 Vee Range C Vee +15 V for Rated Accuracy 1,2,3 Supply Current Icc All Digital Inputs V IL or VIH 1,2,3 Preliminary 0.005 % per % 0.008 16 V 2 mA 6-53 Si7533 ~ ~ Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Voo = 15 V, VREF= 10 V VOUTl =VOUT2 = 0 V Output Amplifier = OP-07 LIMITS 1=25·C ALL 2=125,85,70·C GRADES 3=-55,-40,O·C TEMP TYP d MIN b MAX b UNIT DVNAMIC ACCURACV Feedthrough Error c, I (VREF to OUT1 ) Output Current Settling Tlme c , g ts Digital Inputs =VIL VREF=±10 V, 100 kHz Sine Wave 1 2,3 To 0.05% of FSR OUT 1 Load = 100.0. 1 2,3 600 800 OUT1 1,2,3 80 OUT2 1,2,3 40 1.4 2.8 % FSR ns Digital Inputs = VIH Output Capacltance c pF COUT OUT1 1,2,3 40 OUT2 1,2,3 80 Digital Inputs = VIL NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. FSR = Full Scale Range = - (V REF )('023/'024) In unipolar mode. f. Absolute TC for RREF Is apllroxlmately -300 ppm/·C. g. Digital Inputs =VIH toVIL or VIL toVIH . h. 0.1% FSR = 1 LSB = 1 mY. I. Feed through for Side Braze package versions Is Improved to typically 0.4% FSR. DETAILED DESCRIPTION The Si7533 is a 10-bit multiplying Digital-to-Analog Converter consisting of a highly stable thin film R-2R ladder network and ten single-pole double-throw current steering NMOS analog switches on a monolithic chip. The binarily weighted CMOS level shifters provide low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most applications. The binary weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each leg of the ladder regardless of switch states. The input resistance at VREF (Figure 1) is always equal to the value "RREF" and is the R-2R ladder characteristic resistance. Since RREF at the VREF pin is constant, the reference terminal can be driven by a reference voltage or a reference current, be it positive, negative or AC. If a current 6-54 source is used, a low TC external feedback resistor RFB is recommended to define the scale factor. 10 k 10 k '--I-+.....--oOUT2 '--0-;....,.--0 OUT1 I I b BIT 1 (MSB) b BIT 2 BIT 3 ~L~~~ RFEEOBACK = 10 k.n. Figure 1. SI7533 Functional Diagram (All Inputs HIGH) Figure 2 illustrates the typical NMOS SPDT switch with its associated CMOS level shifter/driver. Preliminary Si7533 trY' Siliconix ~ incorporated DETAILED DESCRIPTION (Cant'd) v+ inputs LOW. All reference current is switched to OUT2. The current sources I LEAKAGE are composed of surface and junction leakages to the substrate. The 1/1024 current source represents the constant 1 LSB current drain through the ladder termination resistor. The output capacitance on OUT2 (with all its switches ON) is 80 pF, whereas on OUT1 it is only 40 pF. o-------~------~----~ POLY RESISTOR The output capacitances are dependent upon the digital input code and vary between the LOW and HIGH values. Figure 2. Simplified Schematic Single SPOT Switch EQUIVALENT CIRCUIT ANALYSIS Figure 3 shows the equivalent circuit for all digital Analysis of the circuit for all digital inputs HIGH, as shown in in Figure 4 is similar to Figure 3; however the "ON" switches are now on OUT1, hence the 80 pF at that terminal. .--_ _R.QFEEDBACK .---_ _OR FEEDBACK R= 10 kn. IOUT1 IR~ vREF R = 10 kn. - R ~ R= 10kn. 1/1024 t - ILEAKAGE I = 1~ k.n. IOUT1 BOPF IOUT2 + - IREF - IOUT2 - Figure 3. 517533 Equivalent Circuit (All Inputs LOW) Figure 4. 517533 Equivalent Circuit (All Inputs HIGH) APPLICATIONS APPLICATIONS HINTS Static linearity of the Si7533 depends upon the potential of OUT1 and OUT2 (pins 1 and 2) being exactly equal to GND (pin 3). In most applications the DAC is connected to an external output op amp with its non-inverting input tied to ground, which converts its current output into a voltage output signal. The op amp selected should have a low input bias current (typically less than 75 nA) and low drift over the operating temperature range. The Preliminary amplifier's input offset voltage should be nulled to less than 10% of 1 LSB. The non-inverting input should be connected directly to GND without the usual input bias current compensation resistor. This resistor can cause variable offsets which would create errors. Ground loops should be avoided by taking all pins going to GND to a common point. The Voo power supply should have a low noise level and not have transients greater than +17 V. 6-55 W'1I' Siliconix Si7533 ~ incorporated APPLICATIONS (Cont'd) Unused digital inputs must be grounded or taken to VDD. It is also recommended that all digital inputs be taken to ground via a high value (1 MIl) resistor to prevent the accumulation of static charges whenever the PC board is not connected to the system. OUTPUT OFFSET: CMOS DACs exhibit a code dependent output resistance which can cause a code dependent error voltage at the output of the amplifier. The maximum value of this error is 0.67 Vas, where Vas is the amplifier input offset voltage. To maintain monotonlcity it is recommended that Vas be no greater than (100 x10(-6)) VREF over the operating temperature range. It is also important that Vas be nulled, either by using the op amp's nulling pins or an external network. DIGITAL GLITCHES: One cause of glitches is capacitive coupling from the digital lines to the OUT1 and OUT2 terminals. This can be minimized by guarding the analog pins of the Si7533 (pins 1, 2, 15, 16) from the digital input pins by a ground track run between pins 2 and 3 and between pins 14 and 15. Note that the analog pins are at one end of the package separated from the digital inputs by VDD and GND to aid guarding. OUTPUT AMPLIFIER: For low speed applications the AC specifications of the op amp are not critical. In high-speed applications, however, slew rate, settling time, open-loop gain, gain/phase margin specifications of the amplifier should be selected for the desired performance. As mentioned before, the usual bias current compensation resistor at the inverting input of the op amp should not be used. Instead, the amplifier should have a low input bias current over the operating temperature range. multiplication (digitally controlled attenuation). The reference input voltage can range between -20 V and +20 V due to the ability of VREF to exceed VDD. Table 1 shows the digital code input analog voltage ~:--~"I R FEEDBACK BIT 1 O--,.-IM (MSB) DIGITAL INPUT Brr 10Io---L-IM 2 IOUT2 (LSB) L--+_..1 Figure 5. UnIpolar BInary OperatIon (2 - Quadrant) correspondence. R1 provides full-scale trimming (load the DAC with 1111111111 , adjust R1 fOrVOUT = -VREF (1 023/1 024)). Full-scale can also be adjusted by omitting R1 and R2 and trimming the magnitude of VREF. TABLE 1. DIGITAL INPUT MSB LSB ANALOG OUTPUT (VOUT ) 1111111111 -(1023/1024) VIN 1000000000 -(51211024) VIN 0000000001 -(1/1024) VIN 0000000000 OV UnIpolar BInary Code Table for CIrcuIt of FIgure 5 UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION) BIPOLAR BINARY OPERATION (4-QUADRANT MULTIPLICATION) Figure 5 shows the circuit configuration required for unipolar binary (2-quadrant multiplication) operation. With a DC voltage or current-reference (positive or negative) applied at pin 15, the circuit is a unipolar Digital-to-Analog converter. With an AC reference this circuit provides 2-quadrant Figure 6 illustrates the recommended circuit for bipolar operation. With a DC reference of either polarity the circuit provides offset binary operation. With an AC reference, the nine LSBs provide digitally controlled attenuation of the reference input while the MSB provides polarity control. 6-56 Preliminary Si7533 ..,... 8i1iconix incorporated ~ APPLICATIONS (Cont'd) SINGLE SUPPLY OPERATION The circuit of Figure 7 shows the 8i7533 connected in a voltage switching configuration. The reference voltage is applied to OUT1 and OUT2 is connected to ground. The DAC output is available at pin 15 (VREF pin) and has a constant output impedance equal to RREF. The internal feedback resistor (pin 16) is not used. For better linearity in the voltage switching mode, the 8i7240 should be specified. DIGITAL GROUND ANALOG GROUND VDD=+15 V Figure 6. Bipolar Operation (4 - Quadrant Multiplication) 14 151---1 With the DAC loaded to 1000000000. adjust R1 for VOUT =0 V (alternatively. R1 and R2 can be omitted and the ratio of R3 to R4 can be adjusted forVOUT o V). Full-scale trimming can be performed by adjusting VREF or by adjusting the value of R5. VREF <2.5 V VOUT = As in unipolar operation the amplifiers must be chosen for low input offset voltage and low input bias current. The input offset voltage of both amplifiers should be adjusted to less than 0.4 mV and be better than 2 mV over the operating temperature range of interest. R3, R4 and R5 must be matched. Mismatches of R5 to R4 and (2 X R3) cause full-scale error. Mismatch of (2 X R3) to R4 causes both offset and full-scale errors. Table 2 illustrates the relationship between the offset binary digital codes and the analog output voltage. TABLE 2. DIGITAL INPUT MSB LSB 1111111111 ANALOG OUTPUT (VOUT) 1000000000 VIN +(11512) VIN OV 0111111111 -(1/512) 0000000000 -VIN 1000000001 +(511/512) VIN Bipolar Binary Code Table for Circuit of Figure 6 Preliminary BITS 1 - 10 SYSTEM ______~--------+_--__+___~G~ROUND C1 = 10Jl,F ELECTROLYTIC C2 = 0.1J1,F CERAMIC R1 II R2 = 10 k.n. Figure 7. Single Supply Operation Using Voltage Switching The reference voltage must always be positive in the voltage switching mode. If pin 1 goes below -0.3 V an internal diode will be turned on. If not limited a large current will flow and may cause device damage. 8ince the 8i7533 is protected for 8CR latch-up. removing the abnormally negative reference voltage will restore normal operation provided the maximum current handling capacity (20 mAl has not been exceeded. Loading on the reference voltage source is code dependent and the response time of the circuit is often determined by the ability of the reference voltage source to handle the changing load conditions. For this reason bypassing of the reference source is required. To maintain linearity the reference voltage at pin 1 should remain within 2.5 V of GND, for aVDD = 15 V. IfVDD is reduced or the reference voltage increased. the DAC's linearity and differential nonlinearity will be degraded. 6-57 W'F' Siliconix Si7541 CMOS 12-Bit Multiplying DAC ~ BENEFITS APPLICATIONS • 12-Blt Linearity (INL < 1/2 LSB) • Improves System Absolute Accuracy • ATE Systems • Four Quadrant Multiplication • Allows Bipolar Reference Inputs • Fast Settling (600 ns) • Increases Data Throughput • Monotonic (DNL < 1/2 LSB) • Closed-Loop Servo Stability FEATURES • TTL/CMOS Compatible incorporated • Digitally Controlled Gain/ Attenuation • Function Generators • Closed-Loop Servo Systems • Hybrid/Custom A/D Converters • Simplifies Logic Interfacing DESCRIPTION chip for low drift over temperature and time. These are laser-trimmed to achieve 1/2 LSB integral nonlinearity (INL) and reduced gain error. An epitaxial layer prevents latch up. The Si7541 is a 12-Bit multiplying digital-to-analog converter which features true 12-bit integral linearity and monotonicity, fast settling time (600 ns), TTL-compatible logic inputs, and low gain drift of 5 ppm/oC (max). The 1/2 LSB differential nonlinearity specification guarantees monotonicity, thus eliminating instability in closed-loop systems. The Si7541 is available in 18-pin PDIP, CerDIP and side braze DIP packages for commercial, J, K suffix (0 to 70°C), industrial, A, B suffix (-40 to 85°C) and military, S, T suffix (-55 to 125°C) operation, respectively. For surface mount applications, the Si7541 is available in the PLCC-20 (0 to 70°C) and the hermetic LCC-20 (-55 to 125°C) . Each package and temperature range is available in two linearity grades. Multiplying applications for the Si7541 include digitally controlled amplifiers, attenuators, filters and power supplies. The fast settling time makes the Si7541 ideal for high speed data conversion and hybrid or custom A/D converters. The Si7541 is built using the Siliconix advanced 5-mlcron CMOS process known as PolyMOS no , allowing fast settling time and low glitch impulse. Highly-stable thin film resistors are included on the For more information on the Si7541, please refer to Siliconix Application Note AN87-3. PIN CONFIGURATION & ORDERING INFORMATION PLCC Package , GNO ~ BIT 1 (MSB) ~ BIT2 ~ OUT1 OUT2 GNO Top View BIT 9 BIT 5 9 1 11 21P3 BIT 8 BIT 6 NO BIT 7 INL Tmln - Tmax (LSB) :!: 1 :!: 1/2 6-58 RFB V REF VOO GND BIT 12 (LSB) BIT 1 (MSB) BIT 11 BIT 2 BIT 10 voo BIT 12 (LSB) BIT 1 (MSB) BIT 2 BIT 11 BIT 3 BIT 10 BIT3 ~ BIT 4 8 GAIN ERROR Ta = 25°C (LSB) :!: :!: 12.5 12.5 LCC Package Dual-ln-L1ne Package OUT 1 NORFB OUT 2 311 211111201"9 vREF voo BIT 12 (LSB) BIT 11 BIT 4 BIT 9 BIT 3 BIT 10 BIT 5 BIT 6 BIT 8 BIT 7 BIT 4 BIT 9 BIT 5 BIT 6 N Top View 0 BIT 7 BIT 8 TEMPERATURE RANGE AND PACKAGE PLCC o to 700C SI7541JP SI7541KP PDIP o to 700C SI7541JN SI7541KN CerDIP -40 to 85"C SI7541AQ SI7541BQ SIDE BRAZE -55 to 125°C SI7541SO S17541TD LCC -55 to 125°C SI7541SE S17541TE Si7541 trr' Siliconix ~ incorporated FUNCTION BLOCK DIAGRAM 10 kO. 10 kO. OUT2 OUT1 I 6 BIT 1 (MSB) RFEEOBACK BIT 3 BIT 2 BIT 12 (LSB) DEFINITION OF TERMS GAIN ERROR OUTPUT CURRENT SETTLING TIME Gain error or full-scale error is a measure of thE! difference between an ideal DAC's and the actual device output. For the Si7541, ideal full-scale output is -(4095/4096). (VREF). Gain error is adjustable to zero using external trims as shown in Figures 5 and 6. This is the time required for the output current of the DAC to settle to within 1/2 LSB into 100 .n, and is specified for a zero to full scale digital input change. OUTPUT LEAKAGE CURRENT This is the current that appears at OUT1 with the DAC loaded to all Os or at OUT2 with the DAC loaded to all 1s. MULTIPLYING FEEDTHROUGH ERROR This is the AC error due to capacitive feedthrough from \/ftEF to OUT1 with DAC loaded to all O's. PROPAGATION DELAY This is a measure of the internal circuit delay from the time a digital input changes to the point when the analog output at OUT1 reaches 90% of its final value. DIGITAL TO ANALOG GLITCH IMPULSE This is a measure of the area of the impulse injected to the analog outputs when the digital inputs change state. It is usually specified as the area of the impulse in nV-secs. It is measured with VREF GND and an LH0032 as the output op amp, and phase compensation capacitor 0 pF. = = ABSOLUTE MAXIMUM RATINGS Voo to GND .................................. 17 V VREF to GND 25 V VRFB to GND 25 V Digital Input Voltage to GND ............. -0.3 V to Voo VOUT1 ,VOUT2 to GND ....•.••....•... -0.3 V to Voo Storage Temperature (0, Q, E Suffix) ..... -65 to 150°C (N, P Suffix) ....... -65 to 125°C Operating Temperature (S, T Suffix) .....• -55 to 125°C (A, B Suffix) ...••.• -40 to 85°C (J, K Suffix) ••...•...• 0 to 70°C Power Dissipation (Package)· N, P Suffixes •• ............................ 470 mW D, E, Q Suffixes ••• ....•..•.....•.......••• 900 mW All leads welded or soldered to PC board. •• Derate 6.5 mW/oC above 25°C ••• Derate 12 mW/oC above 75°C 6-59 .. Si7541 ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions ~nless Otherwise Specified: Vee = +15 V, V REF = +10 V VOUTl =VOUT2= OV SYMBOL Output Ampllfler: OP-07 LIMITS 1=25°C 2=125,85,70·C 3=-55,-40,O·C TEMP TYpd B, K, T GRADE MINb MAXI A,J,S GRADE MIN b MAXt UNIT ACCURACY Resolution N 1,2,3 12 1,2,3 -1/2 112 -1 1 1,2,3 -112 1/2 -1 1 -12.5 -16.7 12.5 16.7 -12.5 -16.7 12.5 16.7 -5 5 -5 5 -5 5 -5 5 10 10 200 A: -10 J: -10 S: -200 10 10 200 5 -5 5 A: -10 -10 S: -200 10 10 200 Relative Accuracy (Integral Non-Linearity) INL Differential Nonlinearity DNL Gain Error GFSE Measured Using Internal RFB 1 2,3 TCG FS .6. Gain 1.6. Temperature 1,2,3 (1LSB = 0.024% of Full Scale) 12 LSB Gain Temp CoefflclentC 2 1 IOUTl All Digital Inputs = 0 V B: -10 K: -10 T: -200 2,3 Output Leakage Current VREF= ±10 V IOUT2 All Digital Inputs = Vee -5 1 B: -10 K: -10 T: -200 2,3 10 10 200 nA , REFERENCE Reference Input Resistance (Pin 17 to GND) J: ppm/·C RREF 1,2,3 Input HIGH Voltage V IH 1,2,3 Input LOW Voltage VIL 1,2,3 Input Current liN 1,2,3 Input CapacltanceC CIN VIN=OV PSRR .6.Galn 1.6. Vee • .6. Vee = ±5% 10 7 18 7 18 k.o. INPUT 2.4 2.4 V 0.8 -1 1 0.8 -1 8 1 .I1A 8 pF SUPPLY Power Supply ReJection Veil. RangeS 6-60 1 2,3 -0.01 -0.02 0.01 0.02 -0.01 -0.02 1,2,3 5 18 5 0.01 0.02 %per% 16 V Si7541 trY" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions ~nless Otherwise Specified: Voo = +15 V, VREF = +10 V VOUT1 = VOUT2 = OV SYMBOL Output Amplifier: OP-07 LIMITS 1=25·C 2=125,85,70·C 3=-55,-40,O·C TEMP TYpd B, K, T GRADE MINb MA>f A,J,S GRADE MIN b MAXt UNIT SUPPl.V (Cont'd) All Digital Inputs V1L or V 1H 1,2,3 2 2 mA All Digital Inputs 0 V orVoo 1 2,3 100 500 100 500 J.LA tpo From 50% of Digital Input to 90% of Final Analog Output OUTl load = 100!!. C EXT = 13 pF Digital Inputs = 0 V toVoo orVoo to OV 1 100 ns Dlgltal-to-Analog Glitch Impulse Is Output Amplifier: LH0032 V REF = 0 V, C F = 0 pF Digital Inputs = 0 V toVoo orVoo to OV 1 1000 nV-s MUltlPI(,ng Feedthrou~h Error VREFtO OUTl MFER V REF = 20 Vp-p , Sinewave @ 10 kHz 1 1 mV p-p ts To 0.01% of Full Scale Range OUT1 load = 100!!. C EXT = 13 pF Digital Inputs = 0 V toVoo orVoo to OV 1 0.6 J.LS Digital Inputs = V1H V1L 1,2,3 Supply Current 100 DYNAMIC Propagation Delay Output Current Settling Time C OUT1 Output Capacltance c C OUT2 200 70 200 70 70 200 70 200 pF NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Accuracy Is not guaranteed over this range. 6-61 Si7541 ~ ~ Siliconix incorporated DIE TOPOGRAPHY Pad Function No. 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 11 18 10 I 78 mils 8 2 ! Out 1 Out 2 GND Bit 1 (MSB) , Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 (LSB) V DO (substrate) V REF RFB CSAK-IB 48 PMOS Transistors 68 NMOS Transistors 12 NPN Transistors 7 Polysilicon Resistors 12 400 N+ Resistors 10 10 kn Thin Film Resistors 13 20 kn Thin Film Resistors CAUTION ESD (Electro-Static-Discharge-Sensitive) device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed. DETAILED DESCRIPTION The Si7541 is a 12-bit multiplying Digital-to-Analog Converter consisting of a highly stable thin film R-2R ladder network and twelve single-pole double-throw current steering NMOS analog switches on a monolithic chip. The binarily weighted CMOS level shifters provide low power TTL/CMOS compatible' operation. An external voltage or current reference and an operational amplifier are all that is required for most applications. The binary weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each leg of the ladder regardless of switch states. The input resistance at VREF (Figure 1) is always equal to the value "RREF" and is the R-2R ladder characteristic resistance. Since RREF at the VREF pin is constant, the reference terminal can be 6-62 driven by a reference voltage or a reference current, be it positive, negative or AC. If a current source is used, a low TC external feedback.resistor RFB is recommended to define the scale factor. VREF 10 kA 10 kA ---1--+---0 OUT2 ---'-+...,---() OUT1 I b BIT 1 (MSB) BIT 2 Figure 1. BIT 3 BIT 12 (LSB) RFEEDBACK = 10 kA SI7541 Functional Diagram (All Inputs HIGH) Si7541 Ir'Y' Siliconix ~ incorporated DETAILED DESCRIPTION Figure 2 illustrates the typical NMOS SPOT switch with its associated CMOS level shifter/driver. v+ o----~----..----, DTLITTL CMOS INPUT POLY RESISTOR EQUIVALENT CIRCUIT ANALYSIS Figure 3 shows the equivalent circuit for all digital inputs LOW. All reference current is switched to OUT2. The current sources I LEAKAGE are composed of surface and junction leakages to the substrate. The 1/4096 current source represents the constant 1 LSB current drain through the ladder termination resistor. The output capacitance on OUT2 (with all its switches ON) is 200 pF, whereas on OUT1 it is only 70 pF. The output capacitances are dependent upon the digital input code and vary between the LOW and HIGH values. Analysis of the circuit for all digital inputs HIGH, as shown in Figure 4 is similar to Figure 3; however the " ON" switches are now on OUT1, hence the 200 pF at that terminal. Figure 2. Simplified Schematic Single SPOT Switch ....--_ _ORFEEDBACK R ILEAKAGE IR~ = 10 I 70 pF I 200 pF kA ....--_ _R.QFEEDBACK IR~ R=10kA R = 10 kA IOUTl loun R= 10 kA ILEAKAGE Figure 3. SI7541 Equivalent Circuit (All Inputs LOW) t~rl-LE-A-KA-G-E-~~-7-0-PF-~~U~ Figure 4. SI7541 Equivalent Circuit (All Inputs HIGH) APPLICATIONS APPLICATIONS HINTS Static linearity of the Si7541 depends upon the potential of OUT1 and OUT2 (pins 1 and 2) being exactly equal to GNO (pin 3). In most applications the DAC is connected to an external output op amp with its non-inverting input tied to ground, which converts its current output into a voltage output signal. The op amp selected should have a low input bias current (typically less than 75 nA) and low drift over the operating temperature range. The amplifier's input offset voltage should be nulled to less than 10% of 1 LSB (typically less than ±200 J.lV) . The non-inverting input should be connected directly to GNO without the usual input bias current compensation resistor. This resistor can cause variable offsets which would create 6-63 Si7541 ..... Siliconix incorporated ~ APPLICATIONS (Cont'd) errors. Ground loops should be avoided by taking aJi pins going to GND to a common point. The VDD power supply should have a low noise level and not have transients greater than +17 V. Unused digital inputs must be grounded or taken to VDD. It is also recommended that aJi digital inputs be taken to ground via a high value (1 Mil) resistor to prevent the accumulation of static charges whenever the PC board is not connected to the system. OUTPUT OFFSET: CMOS DACs exhibit a code dependent output resistance which can cause a code dependent error voltage at the output of the amplifier. The maximum value of this error is 0.67Vos, where Vos is the amplifier input offset voltage. To maintain monotonicity it is recommended that Vos be no greater than (25 x10- 6 ) (VREF) over the operating temperature range. It is also important that Vos be nulled, either by using the op amp's nulling pins or an external network. DIGITAL GLITCHES: One cause of glitches is capacitive coupling from the digital lines to the OUT1 and OUT2 terminals. This can be minimized by guarding the analog pins of the Si7541 (pins 1, 2, 17, 18) from the digital input pins by a ground track run between pins 2 and 3 and between pins 16 and 17. Note that the analog pins are at one end of the package separated from the digital inputs by VDD and GND to aid guarding. TEMPERATURE COEFFICIENTS: The Gain temperature coefficient of the Si7541 has a maximum value of 5 ppm/oC and a typical of 2 ppm/oC. This corresponds to worst case gain shifts of 2 LSBs and 0.8 LSBs respectively over a 100°C temperature range. When trim resistors R1 and R2 are required to adjust full scale range, low temperature coefficient (approximately 50 ppm/oC) resistors or trim-pots should be selected. OUTPUT AMPLIFIER: For low speed applications the AC specifications of the op amp are not critical. In high-speed applications, however, slew rate, settling time, open-loop gain, gain/phase margin specifications of the amplifier shouid be selected for the desired performance. As mentioned before, the usual bias current compensation resistor at the inverting input of the op amp should not be used. 6-64 Instead, the amplifier should have a low input bias current over the operating temperature range. UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION) Figure 5 shows the circuit configuration required for unipolar binary (2-quadrant multiplication) operation. With a DC voltage or current-reference (positive or negative) applied at pin 17, the circuit is a unipolar Digital-to-Analog converter. With an AC reference this circuit provides 2-quadrant multiplication (digitally controlled attenuation). The reference input voltage can range between -20 V and +20 V due to the ability of VREF to exceed VDD. Rl 'r-:!:---:::"1 R FEEDBACK ~lJsk)·O--,-~ DIGITAL INPUT Brr 12:o---'--I~ (LSB) -f_... ..... Figure 5. Unipolar Binary Operation (2 - Quadrant) Table 1 shows the digital code input analog voltage correspondence. R1 provides full-scale trimming (load the DAC with 1111 1111 1111 , adjust R1 for VOUT = -VREF (4095/4096). Full-scale can also be adjusted by omitting R1 and R2 and trimming the magnitude of VREF. TABLE 1 DIGITAL INPUT MSB LSB ANALOG OUTPUT (VOUT) 1111 1111 1111 -(4095/4096) VIN 1000 0000 0000 -(2048/4096) VIN 0000 0000 0001 -(114096) VIN 0000 0000 0000 OV Unipolar Binary Code Table for Circuit of Figure 5 ~ ~ Si7541 Siliconix incorporated APPLICATIONS (Cont'd) TABLE BIPOLAR BINARY OPERATION (4-QUADRANT MULTIPLICATION) DIGITAL INPUT MSB LSB Figure 6 illustrates the recommended circuit for bipolar operation. With a DC reference of either polarity the circuit provides offset binary operation. With an AC reference, the eleven LSBs provide digitally controlled attenuation of the reference input while the MSB provides polarity control. 2 ANALOG OUTPUT (VOUT) 1111 1111 1111 +(2047/2048) VIN 1000 0000 0001 +(1/2048) VIN 1000 0000 0000 OV 0111 1111 1111 -(1/2048)V 0000 0000 0000 -VIN Bipolar Binary Code Table for Circuit of Figure 6 SINGLE SUPPLY OPERATION DIGITAL GROUND ANALOG GROUND The circuit of Figure 7 shows the Si7541 connected in a voltage switching configuration. The reference voltage is applied to oun and OUT2 is connected to ground. The DAC output is available at pin 17 (VREF pin) and has a constant output impedance equal to RREF. The internal feedback resistor (pin 18) is not used. For better linearity in the voltage switching mode. the Si7240 should be specified. Figure 6. Bipolar Operation (4 - Quadrant Multiplication) VDD= +15 V 16 171---1 With the DAC loaded to 10000000 DODO, adjust R1 for VOUT = 0 V (alternatively, R1 and R2 can be omitted and the ratio of R3 to R4 can be adjusted for VOUT = 0 V). Full-scale trimming can be performed by adjusting VREF or by adjusting the value of RS. VREF <2.5 V R2 R1 BITS 1 - 12 SYSTEM _ _ _ _~----~____~____G~ROUND As in unipolar operation the amplifiers must be chosen for low input offset voltage and low input bias current. The input offset voltage of both amplifiers should be adjusted to less than 0.1 mV and be better than 0.5 mV over the operating temperature range of interest. R3, R4 and RS must be matched. Mismatches of R5 to R4 and (2 X R3) cause full-scale error. Mismatch of (2 X R3) to R4 causes both offset and full-scale errors. Table 2 illustrates the relationship between the offset binary digital codes and the analog output voltage. C1 = 10Jl,F ELECTROLYTIC C2 = 0.1 Jl,F CERAMIC Figure 7. R1 II R2 = 10 k.n. Single Supply Operation Using Voltage Switching The reference voltage must always be positive in the voltage switching mode. If pin 1 goes below -0.3 V an internal diode will be turned on. If not limited a large current will flow and may cause device damage. Since the Si7541 is protected for SCR latch-up. removing the abnormally negative reference voltage will restore normal operation 6-65 Si7541 tnr'" Siliconix ,,6;11 incorporated APPLICATIONS (Cont'd) provided the maximum current handling capacity (20 rnA) has not been exceeded. loading on the reference voltage source is code dependent and the response time of the circuit is often determined by the ability of the reference voltage source to handle the changing load conditions. For this reason bypassing of the reference source is required. To maintain linearity the reference voltage at pin 1 should remain within 2.5 V of GND, for aVoo = 15 V. IfVoo is reduced or the reference voltage increased, the DAC's linearity and differential nonlinearity will be degraded. PIN DESCRIPTION PIN NUMBER 1 2 3 4 5 6 7 8 9 DESCRIPTION PIN NUMBER Current OUTPUT 1 Current OUTPUT 2 Digital Ground Digital Input (Bit 1) (MSB) Digital Input (Bit 2) Digital Input (Bit 3) Digital Input (Sit 4) Digital Input (Bit 5) Digital Input (Bit 6) 10 11 12 DESCRIPTION Digital Input (Bit 7) Digital Input (Bit 8) Digital Input (Bit 9) Digital Input (Bit 10) Digital Input (Bit 11) Digital Input (Bit 12) (lSB) Positive Power Supply Reference Input Voltage Internal Feedback Resistor 13 14 15 16 17 18 BURN-IN CIRCUITS +15 V .,b. , I. 3112111 10V ~Il 1 k.o. 4 +16 V ~a 7f---< at----< ~f---< ~8 4t----< 9 1 Ulll 2111 1 6-66 Si7541A ...... Siliconix incorporated ~ CMOS 12-Bit Multiplying DAC FEATURES BENEFITS APPLICATIONS • 12-Bit Linearity (INL < 1/2 LSB) • Improves System Absolute Accuracy • ATE Systems • Four Quadrant Multiplication • Allows Bipolar Reference Inputs • Gain Error < 1 LSB • Reduces Trims • Fast Settling (300 ns typ.) • Increases Data Throughput • Monotonic (DNL < 1/2 LSB) • No Seek Errors in Servos • TIL/CMOS Compatible • Simplifies Logic Interfacing • Digitally Controlled Gain/ Attenuation • Function Generators • Closed-Loop Servo Systems • Hybrid/Custom A/D Converters DESCRIPTION Highly-stable thin film resistors are included on the chip for low drift over temperature and time. These are laser-trimmed to achieve 1/2 LSB integral nonlinearity (INL) and reduced gain error. The epitaxial layer prevents latch up. The Si7541 A is a 12-Bit multiplying digital-to-analog converter which features true 12-bit integral linearity and monotonicity, low gain error (1 LSB) , fast settling time (300 ns typ.) , TIL-compatible logic inputs, and low gain drift of 5 ppm/DC. The low gain error reduces trim requirements in the system, and the 1/2 LSB differential nonlinearity specification guarantees monotonicity, thus eliminating instability in closed-loop systems. The Si7541A is available in 18-pin PDIP, CerDIP and side braze DIP packages for commercial, J, K suffix (0 to 70°C), industrial, A, B suffix (-40 to 85°C) and military, S, T suffix (-55 to 125°C) operation, respectively. For surface mount applications, the Si7541A is available in the PLCC-20 (0 to 70°C) and the hermetic LCC-20 (-55 to 125°C) . Each package and temperature range is available in two linearity grades. Multiplying applications for the Si7541 A include digitally controlled amplifiers, attenuators, filters and power supplies. The fast settling time makes the Si7541 A ideal for high speed data conversion and hybrid or custom AID converters. The Si7541A is built using the Siliconix advanced 5-micron CMOS process known as PolyMOS 1M , allowing fast settling time and low glitch impulse. For more information on the Si7541 A, please refer to Siliconix Application Note AN87-3. PIN CONFIGURATION & ORDERING INFORMATION PLCC Package Dual-ln-L1ne Package OUT 1 NCRFB OUT 2 311 211111201119 VREF oun GND GND 4 BIT 1 (MSB) ~ ~ ~ ~ BIT 2 ~ Top View BIT 3 ~ BIT 4 8 ~4 VDD BIT 12 (LSB) BIT 11 BIT 10 BIT 9 BIT 5 9I1HlI1111121113 BIT 8 BIT 6 NO BIT 7 INL Tmln - Tmax (LSB) :!: 1 :!: 1/2 RFB v REF V DD OUT2 ,/ GAIN ERROR Ta=25°C (LSB) :!: 6 +1 BIT 5 GND BIT 12 (LSB) BIT 1 (MSB) BIT 11 BIT 2 BIT 10 BIT 3 BIT 9 BIT 4 BIT 8 BIT 6 BIT 7 BIT 1 BIT 2 BIT 3 BIT 4 VDD BIT 12 (LSBI BIT 11 BIT 10 BIT 9 BIT 5 BIT 6 NO BIT 7 BIT 8 TEMPERATURE RANGE AND PACKAGE PLCC o to 700C PDIP o to 70°C CerDIP -40 to 85"C SIDE BRAZE -55 to 125°C LCC -55 to 125°C SI7541AJP SI7541AJN SI7541AAQ SI7541ASD SI7541ASE SI7541AKP SI7541AKN SI7541ABQ SI7541ATD" SI7541 ATE 6-67 Si7541A ..... Siliconix incorporated ~ FUNCTION BLOCK DIAGRAM 10 k.O. 10 k.O. OUT2 OUT1 I I 6 6 BIT 1 (MSB) BIT 2 RFEEDBACK BIT 3 BIT 12 (LSB) DEFINITION OF TERMS MULTIPLYING DAC Digital-to-Analog Converters (DACs) are devices that convert digital data into analog values. A multiplying DAC is a device capable of handling variable reference sources. Its output is the product of two variables: the number represented by the digital input code and the analog reference voltage. RESOLUTION Resolution indicates the number of digital input bits. A 12-bit DAC resolves the full-scale range (FSR) into 212 4096 states. = LSB Value of the Least Significant Bit. For example, a 12-bit unipolar converter has a 1 LSB step value equal to 'lREF/212 or 'lREF/4096 (Volts). RELATIVE ACCURACY Relative accuracy or end-point nonlinearity is a measure of the maximum deviation from a straight line passing through the end points of the DAC transfer function. It is measured after adjusting for zero and full scale errors and is expressed in % of full scale range or (sub)multiples of 1 LSB. DIFFERENTIAL NONLINEARITY Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ±1 LSB max over the operating temperature range ensures monotonicity. GAIN ERROR Gain error or full-scale error is a measure of the difference between an ideal DAC's and the actual 6-68 device output. For the Si7541A, ideal full-scale output is -(4095/4096). ('lREF). Gain error is adjustable to zero using external trims as shown in Figures 5 and 6. OUTPUT LEAKAGE CURRENT This is the current that appears at OUT1 with the DAC loaded to all Os or at OUT2 with the DAC loaded to all 1s. MULTIPLYING FEEDTHROUGH ERROR This is the AC error due to capacitive feedthrough fl"Om 'lREF to OUT1 with DAC loaded to all O's. OUTPUT CURRENT SETTLING TIME This is the time required for the output current of the DAC to settle to within 1/2 LSB into 100 n, and is specified for a zero to full scale digital input change. PROPAGATION DELAY This is a measure of the internal circuit delay from the time a digital input changes to the pOint when the analog output at OUT1 reaches 90% of its final value. DIGITAL TO ANALOG GLITCH IMPULSE This is a measure of the area of the impulse injected to the analog outputs when the digital inputs change state. It is usually specified as the area of the impulse in nV-secs. It is measured with 'lREF = GND and an LH0032 as the output op amp, and phase compensation capacitor 0 pF. = Si7541A .... Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS Voo to GND •..................•.............. 17 V V REF to GND 25 V VRFB to GND 25 V Digital Input Voltage to GND .•........... -0.3 V to Voo VOUT' ,VOUT2 to GND .......•....•... -0.3 V to Voo Storage Temperature (0, Q, E Suffix) ..... -65 to 150·0 (N, P Suffix) ....•.. -65 to 125·0 Operating Temperature (S, T Suffix) ..••.. -55 to 125·0 (A, B Suffix) ..•••.. -40 to 85·0 (J, K Suffix) .••.••.... 0 to 70·0 Power Dissipation (Package)· N, P Suffixes·· ............................ 470 mW 0, E, Q Suffixes ••• .........•.•.•.....••... 900 mW All leads welded or soldered to PO board. Derate 6.5 mW/·O above 25·0 ••• Derate 12 mW/·O above 75·0 ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions ~nless Otherwise Specified: Voo,,+15V, V REF ,,+10V Voun "VOUT2 " OV SYMBOL Output Amplifier: OP-07 LIMITS 1,,25·C 2,,125,85,70·C 3,,-55,-40,O·C TEMP TYpd B, K, T GRADE MIN b MAXb A,J,S GRADE MIN b MAXb UNIT ACCURACY Resolution N 1,2,3 12 1,2,3 -1/2 112 -1 1 1,2,3 -1/2 112 -1 1 -1 -3 1 3 -6 -8 6 8 -5 5 -5 5 -5 5 -5 5 10 10 200 A: -10 J: -10 10 10 200 Relative Accuracy (Integral Non-Linearity) INL Differential Nonlinearity DNL Gain Error GFSE Measured Using Internal R FB 1 2,3 TOG FS ~ Gain 1~ Temperature 1,2,3 (1LSB " 0.024% of Full Scale) 12 LSB Gain Temp Ooefflclent C 2 1 All Digital Inputs" 0 V lOUT' -10 -10 T -200 B K 2,3 Output Leakage Ourrent VREF" ±10 V IOUT2 All Digital Inputs" Voo 1 -5 B -10 K -10 T -200 2,3 5 S: -200 -5 A: -10 ppm/·O nA 5 10 10 200 J: -10 S: -200 10 10 200 18 7 18 REFERENCE Reference Input Resistance (Pin 17 to GND) RREF 1,2,3 Input HIGH Voltage V 1H 1,2,3 Input LOW Voltage V1L 1,2,3 10 7 k.Cl INPUT 2.4 2.4 V 0.8 0.8 6-69 Siliconix incorporated Si7541A ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V DD = +15 V, V REF = +10 V V OUT1 = V OUT2 = OV SYMBOL Output Amplifier: OP-07 PARAMETER LIMITS 1_25°C 2=125,85,70°C 3=-55,-40,O°C TEMP TYpd B, K, T GRADE MIN b MAX A,J, S GRADE MIN b MAXt UNIT INPUT (Coot'd) -1 1,2,3 Input Current liN Input CapacltanceC CIN V IN = 0 V PSRR ll.Galn Ill. V DD , ll. VDD = ±5% 1 -1 8 1 JlA 8 pF SUPPLY Power Supply Rejection VDD Range e 1 2,3 -0.01 -0.02 0.01 0.02 -0.01 -0.02 0.01 0.02 %per% 1,2,3 5 16 5 16 V All Digital Inputs V IL or V IH 1,2,3 2 2 mA All Digital Inputs 0 V orVDD 1 2,3 100 500 100 500 JlA tpD From 50% of Digital Input to 90% of Final Analog Output OUT1 load = 100.0. C EXT =13pF Digital Inputs = 0 V toVDD orV DD to OV 1 100 ns Dlgltal-to-Analog GlItch Impulse Is Output Amplifier: LH0032 V REF = 0 V, C F = 0 pF Digital Inputs = 0 V toV DD orVDD to OV 1 1000 nV-s Multiplying Feedthrough Error ( V REF to OUT1) MFER V REF = 20 V p _p , Sinewave @ 10 kHz 1 1 mV p-p ts To 0.01 % of Full Scale Range OUT1 load = 100.0. CEXT= 13 pF Digital Inputs = 0 V toVDD orV DD to OV 1 0.3 Jls IDD Supply Current DYNAMIC Propagation Delay Output Current Settling Time "OUT1 Output Capacitance C C OUT2 Digital Inputs = V IH V IL 200 70 200 70 70 200 70 200 1,2,3 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Accuracy Is not guaranteed over this range. 6-70 pF Si7541A ..,.. Siliconix ,.1;11 incorporated DIE TOPOGRAPHY Pad Function No. 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 11 r 18 10 9 78 mils 3 2 1 Out 1 Out 2 GND Bit 1 (MSB) Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 (LSB) V oo(substrate) VREF RFB CSAK-IB 48 PMOS Transistors 68 NMOS Transistors 12 NPN Transistors 7 Polyslllcon Resistors 12 400 N+ Resistors 10 10 kn Thin Film Resistors 13 20 k!l Thin Film Resistors CAUTION ESDS (Electro-Static-Discharge-Sensitive) device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed. DETAILED DESCRIPTION The Si7541 A is a 12-bit multiplying Digital-to-Analog Converter consisting of a highly stable ',hin film R-2R ladder network and twelve single-pole double-throw current steering NMOS analog switches on a monolithic chip. The binarily weighted CMOS level shifters provide low power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most applications. The binary weighted currents are switched between the OUTl and OUT2 bus lines, thus maintaining a constant current in each leg of the ladder regardless of switch states. driven by a reference voltage or a reference current, be it positive, negative or AC. If a current source is used, a low TC external feedback resistor RFB is recommended to define the scale factor. VREF 10 10 k.Cl. 10 k.Cl. --1-+.....- - 0 OUT2 ----l....-;.....,---O oun I o BIT The input resistance at VREF (Figure 1) is always equal to the value "RREF" and is the R-2R ladder characteristic resistance. Since RREF at the VREF pin is constant, the reference terminal can be k.Cl. U-~"I'~~"I'\r-~----JV\r I o BIT 2 (MSE.) Figure 1. RFEEOBACK BIT 3 BIT 12 (LSB) = 10 k.Cl. SI7541A Functional Diagram (All Inputs HIGH) 6-71 ..,. Siliconix incorporated Si7541A ~ DETAILED DESCRIPTION Figure 2 illustrates the typical NMOS SPDT switch with its associated CMOS level shifter/driver. v+ O----~----t'----, DTLITTL CMOS INPUT POLY RESISTOR EQUIVALENT CIRCUIT ANALYSIS Figure 3 shows the equivalent circuit for all digital inputs LOW. All reference current is switched to OUT2. The current sources I LEAKAGE are composed of surface and junction leakages to the substrate. The 1/4096 current source represents the constant 1 LSB current drain through the ladder termination resistor. The output capacitance on OUT2 (with all its switches ON) is 200 pF, whereas on oun it is only 70 pF. The output capacitances are dependent upon the digital input code and vary between the LOW and HIGH values. Analysis of the circuit for all digital inputs HIGH, as shown in Figure 4 is similar to Figure 3; however the .. ON" switches are now on OUTl , hence the 200 pF at that terminal. FIgure 2. SImplified SchematIc SIngle SPOT SwItch .--_ _ROFEEDBACK .--_ _OR FEEDBACK R = 10 k.n. R=10~ IOUT1 IR~ R = 10 k.n. IOUT2 VREF + - IOUT1 - FIgure 3. SI7541 A EquIvalent CIrcuIt (All Inputs LOW) 1 t~EAKAGE ,....---::L...---~O ~a 70 pF IOUT2 FIgure 4. SI7541A EquIvalent CIrcuIt (All Inputs HIGH) APPLICATIONS APPLICATIONS HINTS Static linearity of the Si7541 A depends upon the potential of oun and OUT2 (pins 1 and 2) being exactly equal to GND (pin 3). In most applications the DAC is connected to an external output op amp with its non-inverting input tied to ground, which converts its current output into a voltage output signal. The op amp selected should have a low 6-72 input bias current (typically less than 75 nA) and low drift over the operating temperature range. The amplifier's input offset voltage should be nulled to less than 10% of 1 LSB (typically less than ±200 J.l.V) . The non-inverting input should be connected directly to GND without the usual input bias current compensation resistor. This resistor can cause variable offsets which would create Si7541A IIY" Siliconix ~ incorporated APPLICATIONS (Cont'd) errors. Ground loops should be avoided by taking all pins going to GND to a common point. TheVDD power supply should have a low noise level and not have transients greater than +17 V. Unused digital inputs must be grounded or taken to VDD. It is also recommended that all digital inputs be taken to ground via a high value (1 Mil) resistor to prevent the accumulation of static charges whenever the PC board is not connected to the system. OUTPUT OFFSET: CMOS DACs exhibit a code dependent output resistance which can cause a code dependent error voltage at the output of the amplifier. The maximum value of this error is 0.67Vos, where Vos is the amplifier input offset voltage. To maintain monotonicity it is recommended that Vos be no greater than (25 x10- 6 ) (VREF) over the operating temperature range. It is also important that Vos be nulled, either by using the op amp's nulling pins or an external network. DIGITAL GLITCHES: One cause of glitches is capacitive coupling from the digital lines to the OUT1 and OUT2 terminals. This can be minimized by guarding the analog pins of the Si7541 A (pins 1, 2, 17, 18) from the digital input pins by a ground track run between pins 2 and 3 and between pins 16 and 17. Note that the analog pins are at one end of the package separated from the digital inputs by VDD and GND to aid guarding. TEMPERATURE COEFFICIENTS: The Gain temperature coefficient of the Si7541 A has a maximum value of 5 ppm/oC an'd a typical of 2 ppm/oC This corresponds to worst case gain shifts of 2 LSBs and 0.8 LSBs respectively over a 100°C temperature range. When trim resistors R1 and R2 are required to adjust full scale range, low temperature coefficient (approximately 50 ppm/°C) resistors or trim-pots should be selected. OUTPUT AMPLIFIER: For low speed applications the AC specifications of the op amp are not critical. In high-speed applications, however, slew rate, settling time, open-loop gain, gain/phase margin specifications of the amplifier should be selected for the desired performance. As mentioned before, the usual bias current compensation resistor at the inverting input of the op amp should not be used. Instead, the amplifier should have a low input bias current over the operating temperature range. UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION) Figure 5 shows the circuit configuration required for unipolar binary (2-quadrant multiplication) operation. With a DC voltage or current-reference (positive or negative) applied at pin 17, the circuit is a unipolar Digital-to-Analog converter. With an AC reference this circuit provides 2-quadrant multiplication (digitally controlled attenuation). The reference input voltage can range between -20 V and +20 V due to the ability of VREF to exceed VDD. RFEEDBACK 17 4 BIT 1 (MSB) DIGITAL INPUT R2 SI7541A 1 47.n. IOUTl 2 BIT 12 (LSB) - - Figure 5. Unipolar Binary Operation (2 - Quadrant) Table 1 shows the digital code input analog voltage correspondence. R1 provides full-scale trimming (load the DAC with 1111 1111 1111 , adjust R1 for VOUT = -VREF(4095/4096). Full-scale can also be adjusted by omitting R1 and R2 and trimming the magnitude of VREF. TABLE 1 DIGITAL INPUT MSB LSB ANALOG OUTPUT (VOUT) 1111 1111 1111 -(4095/4096) VIN 1000 0000 0000 -(2048/4096) VIN 0000 0000 0001 -(114096) VIN 0000 0000 0000 OV Unipolar Binary Code Table for Circuit of Figure 5 6-73 Si7541A W7" Siliconix ~ incorporated APPLICATIONS (Cont'd) BIPOLAR BINARY OPERATION (4-QUADRANT MULTIPLICATION) TABLE 2 DIGITAL INPUT MSB LSB Figure 6 illustrates the recommended circuit for bipolar operation. With a DC reference of either polarity the circuit provides offset binary operation. With an AC reference, the eleven LSBs provide digitally controlled attenuation of the reference input while the MSB provides polarity control. ANALOG OUTPUT (VOLrr ) 1111 1111 1111 +(2047/2048) VIN +(1/2048) VIN 1000 0000 0001 OV 1000 0000 0000 0111 1111 1111 -(1/2048)V 0000 0000 0000 -VIN Bipolar Binary Code Table for Circuit of Figure 6 SINGLE SUPPLY OPERATION DIGrrAL GROUND ANALOG GROUND The circuit of Figure 7 shows the Si7541A connected in a voltage switching configuration. The reference voltage is applied to OUT1 and OUT2 is connected to ground. The DAC output is available at pin 17 tvREF pin) and has a constant output impedance equal to RREF. The internal feedback resistor (pin 18) is not used. For better linearity in the voltage switching mode, the Si7240 should be specified. Figure 6. Bipolar Operation (4 - Quadrant Multiplication) VDD= +15 V 16 171---1 With the DAC loaded to 1000 0000 0000, adjust R1 for VOUT = a v (alternatively, R1 and R2 can be omitted and the ratio of R3 to R4 can be adjusted for VOUT = a V) . Full-scale trimming can be performed by adjusting VREF or by adjusting the value of R5. As in unipolar operation the amplifiers must be chosen for low input offset voltage and low input bias current. The input offset voltage of both amplifiers should be adjusted to less than 0.1 mV and be better than 0.5 mV over the operating temperature range of interest. R3, R4 and R5 must be matched. Mismatches of R5 to R4 and (2 X R3) cause full-scale error. Mismatch of (2 X R3) to R4 causes both offset and full-scale errors. Table 2 illustrates the relationship between the offset binary digital codes and the analog output voltage. 6-74 VREF VOUT <2.5 V BITS 1 - 12 SYSTEM _ _ _ _~----~--~_~G~ROUND Cl C2 = 10 p.F ELECTROLYTIC = 0.1 p.F CERAMIC Rl 1\ R2 = 10 k.n Figure 7. Single Supply Operation Using Voltage Switching The reference voltage must always be positive in the voltage switching mode. If pin 1 goes below -0.3 V an internal diode will be turned on. If not limited a large current will flow and may cause device damage. Since the Si7541A is protected for SCR latch-up, removing the abnormally negative reference voltage will restore normal operation Si7541A ..... Siliconix incorporated ~ APPLICATIONS (Cont'd) conditions. For this reason bypassing of the reference source is required. To maintain linearity the reference voltage at pin 1 should remain within 2.5 V of GND, for a Voo = 15 V. If Voo is reduced or the reference voltage increased, the DAC's linearity and differential nonlinearity will be degraded. provided the maximum current handling capacity (20 mAl has not been exceeded. Loading on the reference voltage source is code dependent and the response time of the circuit is often determined by the ability of the reference voltage source to handle the changing load PIN DESCRIPTION (DIP) PIN NUMBER 1 2 3 4 5 6 7 8 9 DESCRIPTION PIN NUMBER Current OUTPUT 1 Current OUTPUT 2 Digital Ground Digital Input (Bit 1) (MSB) Digital Input (Bit 2) Digital Input (Bit 3) Digital Input (Bit 4) Digital Input (Bit 5) Digital Input (Bit 6) DESCRIPTION Digital Input (Bit 7) Digital Input (Bit 8) Digital Input (Bit 9) Digital Input (Bit 10) Digital Input (Bit 11) Digital Input (Bit 12) (LSB) Positive Power Supply Reference Input Voltage Internal Feedback Resistor 10 11 12 13 14 15 16 17 18 BURN-IN CIRCUITS ,1---+'--0 +10V 1 kfi +15 V 10 V .b , . 3112111 2 191 1 k.n ~5 8 +15 V ~6 ~ ~8 ~4 9JL1 IJlllll 2111:31 1 6-75 Si7542 Microprocessor-Compatible 12-Bit CMOS Multiplying DAC . , . Siliconix ,,1;11 incorporated FEATURES BENEFITS APPLICATIONS • Double-Buffered 4-Bit TTL-Compatible Latches • Simplified Microprocessor Interface • 4 and 8-Bit Microprocessor Controlled Systems • True 12-Bit Linearity (INL < 1/2 LSB) • Improved System Accuracy • ATE • Instrumentation • Reduced Calibration Requirements • Low Gain Drift: (5 ppm/oC max) • Digitally-Controlled Attenuators e Allows AC Attenuation Without Biasing • Full 4-quadrant Multiplication • Avionics • Reduced Power Consumption • Single +5 Volt Supply Operation DESCRIPTION The Si7542 is a precision 12-bit CMOS multiplying DAC designed for direct interface to 4- or 8-bit microprocessors. The Si7542 consists of three 4-bit data registers, a 12-bit DAC register, address decoding logic and a 12-bit CMOS multiplying DAC. Data is loaded into the data registers in three 4-bit bytes, and subsequently transferred to the 12-bit DAC register. All data loading or data transfer operations are identical to the WRITE cycle of a static RAM. A Clear input allows the DAC register to be easily reset to all zeros when powering up the device. The Si7542 is manufactured using the Siliconix PolyMOS™ process with thin film resistors, which are laser trimmed for high accuracy. Multiplying capability, 12-bit linearity, low power dissipation, +5 V operation, small size and easy J.LP interface make the Si7542 ideal for many instrumentation, industrial control and avionics applications. An epitaxial layer prevents latchup. The Si7542 is available in the following packages and temperature ranges: 16-pin plastic DIP and PLCC-20 for commercial, J, K suffix (0 to 70°C) operation, 16-pin CerDIP for industrial, A, B suffix (-40 to 85°C) operation, 16-pin Side Braze and LCC-20 for military, S, T suffix (-55 to 125°C) operation. PIN CONFIGURATION PLce Package Lce Package Top View Top View Dual-In-Llne Package o 0 V U U R R 'TTNFE 2 1 0 B F Top View T 2 3112111112al19 RFB VREF 0 U ./ ~ VOO VOO ~ OLR 'OCR ~ NO ~ OGNO OGNO 4 A1 9111a1111112111:31 gg~'f{~ 6-76 V R R T N F E 1 0 B F 0 U AGNO 03 ~ VOO OLR NO OGNO 01 A1 NO O-N - A o g 0 'f{o Preliminary Si7542 W'fI" Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM VREF DGND v DD (DIP PIN NUMBERS) 16 RFB OUT 1 2 3 OUT 2 AGND 4-BIT DATA INPUT ORDERING INFORMATION INL Tmln - Tmax (LSB) :!: 1 :!: 1/2 :!: 1/2 GAIN ERROR Ta" 25'C (LSB) :!: 12.3 :!: 12.3 :!: 1 TEMPERATURE RANGE AND PACKAGE PLASTIC o to 7rJ'C PLCC-20 o to 70'C CerDIP -40 to 6SOC SIDE BRAZE -55 to 125'C LCC-20 -55 to 125'C SI7542JN SI7542JP SI7542AQ SI7542SD SI7542KN SI7542KP SI7542BQ SI7542TD SI7542TE SI7542GKN SI7542GKP SI7542GBQ SI7542GTD SI7542GTE SI7542SE ABSOLUTE MAXIMUM RATINGS* V DD to AGND ....•..................... -0.3 V. +17 V (D. E Suffix) ..•...•.....•....•.•....... -55 to 125'C V DD to DGND .......................... -0.3 V. +17 V VREF to AGND ............................... ±25 V V RFB to AGND .•.............••.•............. ±25 V Digital Input Voltage to DGND ......... -0.3 V. +15.3 V V OUT1 • V OUT2 to AGND ............... -0.3 V. +15.3 V AGND to DGND Dissipation (Package)" Plastic DIP'" .............•...•.••... Ceramic Side Braze···· .•............. Plastic Leaded Chip Carrier • • . . . . . . . . . .. LCC···· . . . . . . . . . . . . . . . . . . . . . . . • . . • •. 470 900 450 900 mW mW mW mW -0.3 V toVD D DGND to AGND ....................... -0.3 V to V DD Storage Temperature ................... -65 to 150'C Operating Temperature: (N. P Suffix) .............................. 0 to 70'C (Q Suffix) ....•..•........•.............. -40 to 65'C Preliminary Power 16-Pln 16-Pln 20-Pln 20-Pln Stress ratings only. Exposure to absolute max rating conditions for extended periods may affect device reliability. All leads welded or soldered to PC Board. Derate 6.5 mW/'C above 25·C. Derate 12 mW/'C above 75·C. 6-77 Si7542 ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Voo = +5 V, VREF = +10 V VOUT1=VOUT2= 0 V Output Amplifier: OP-07 LIMITS 1=25·C ALL GRADES 2=125,85,70·C EXCEPT AS NOTED 3=-55,-40,0 ·C TEMP TYP d MIN b MAX UNIT ACCURACY Resolution 1,2,3 12 All Other Grades 1,2,3 -0.5 0.5 A, J, S Grades 1,2,3 -1 1 Monotonic to 12-Blts 1,2,3 -1 1 A, J, S Grades 1,2,3 -2 2 GB, GK, GT Grades 1 2,3 -1 -2 1 2 J, K Grades 1 2,3 -12.3 -13.5 12.3 13.5 A, B, S, T Grades 1 2,3 -12.3 -14.5 12.3 14.5 ~ Gain I ~ Temperature 1,2,3 -5 5 ppm I ·C ~Galn I~ Voo Voo=±5% 1 2,3 -0.005 -0.01 0.005 0.01 % per % DAC Loaded with All Zeros: IOUT1 DAC Loaded with All Ones: IOUT2 1 2,3 -1 -200 1 200 J, K, GK Grades 1 2,3 -1 -10 1 10 N Relative Accuracy (Integral Non-Linearity) INL Differential Nonlinearity Bits (lLSB = 0.024% of Full Scale) DNL GFSE Gain Errore Gain Temp CoefflclentD TCGFS Power Supply Rejection PSRR Output Leakage Current IOUT1, IOUT2 2 LSB nA DYNAMIC. Current Settling TimeD, Multiplying Feedthrough Error D, g f 1,2,3 2 J.Ls VREF = ±10 V 10kHz Sine Wave 1,2,3 2.5 mVp-p DAC Loaded to All Zeros 1,2,3 70 DAC Loaded to All Ones 1,2,3 200 DAC Loaded to All Zeros 1,2,3 200 DAC Loaded to All Ones 1,2,3 70 ts FT C OUT1 Output Capacltance D pF COUT2 6-78 Preliminary Si7542 .... Siliconix ,LII incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Voo = +5 V, VREF = +10 V Voun=VouT2= 0 V Output Amplifier: OP-07 LIMITS 1=25°C 2=125,85,70°C 3=-55,-40,O°C TEMP TYP RREF 1,2,3 10 Logic HIGH Voltage V IH 1,2,3 Logic LOW Voltage V IL 1,2,3 Input Current liN VIN = 0 V orVoo 1,2,3 Input CapacltanceC C IN VIN=OV 1,2,3 SYMBOL PARAMETER ALL GRADES EXCEPT AS NOTED d MIN b MAXb UNIT REFERENCE Reference Input Resistance 8 25 k.O. LOGIC INPUTS 3 V 0.8 0.001 -1 1 'uA 8 pF TIMING h WRITE Pulse Width tWR 1,2,3 120 220 Address to WRITE Hold Time tAWH 1,2,3 50 65 Chip Select to WRITE Hold Time tCWH 1,2,3 50 100 CLEAR Pulse tCLR 1,2,3 200 300 Chip Select to WRITE Setup Time tcws 1,2,3 60 130 Address Valid to WRITE Setup Time tAWS 1,2,3 60 160 Data Setup Time tos 1,2,3 50 65 Data Hold Time tOH 1,2,3 50 65 tcws 1,2,3 60 150 tAWS 1,2,3 120 240 Chip Select to WRITE Setup Time Address Valid to WRITE Setup Time See Timing Diagram (Figure 7) ns Byte Loading DAC Loading SUPPLY Supply Voltage Voo Supply Current 100 Preliminary 5 V ±5% for Specified Performance Digital Inputs = VIH or V IL 1,2,3 1,2,3 4.5 16.5 V 2.5 mA 6-79 Si7542 Siliconix incorporated ELECTRICAL CHARACTERISTICS a (Cont'd.) NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. e. Gain error Is measured using Internal RFB only. Gain error can be trimmed to zero using circuits of Figures 5 and 6. f. Measured to '/ 2 LSB. oun Load = 100 DAC output measured from failing edge of WR . g. Feedthrough error may be reduced by connecting the metal lid on the side braze package to DGND. h. Sample tested at 25°C to ensure complianoe. .n.. CAUTION ESDS (Electro-Static-Discharge-Sensit,ve) device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed. DIE TOPOGRAPHY 96 mils Pad No. Funotlon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Out 1 Out 2 AGND D3 D2 D1 14 4 13 r " 1 :'® 12 5 88 mils 6 7 8 9 Ilo CS WR Ao A1 DGND ern V oolSubstrate) V REF RFB 20X CSARA 276 PMOS Transistors 309 NMOS Transistors 1 NPN Transistor 1 Zener Diode 18 Diodes 9 400 n N+ Resistors 6-80 1 3 kn N+ Resistor 13 10 kn Thin Film Resistors 13 20 kn Thin Film Resistors 11170 n Poly silicon Resistors 8 340 n Polysilicon Resistors Preliminary Si7542 ...... Siliconix incorporated ~ DEFINITION OF TERMS GAIN ERROR RELATIVE ACCURACY Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is expressed in % or ppm of full scale range or (sub) multiples of 1 LSB. Gain error or full-scale error is a measure of the difference between an ideal DAC's and the actual device output. For the Si7542, ideal full-scale output is -(4095/4096). ('4IEF). Gain error is adjustable to zero using external trims as shown in Figures 5 and 6. OUTPUT LEAKAGE CURRENT Current which appears at OUTl with the DAC register loaded to all O's or at OUT2 with the DAC register loaded to all l's. DIFFERENTIAL NONLINEARITY Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ±1 LSB max over the operating temperature range insures monotonicity. MULTIPLYING FEEDTHROUGH ERROR AC error due to capacitive feedthrough from VREF terminal to OUT1 with DAC register loaded to all O's. DETAILED DESCRIPTION GENERAL CIRCUIT INFORMATION The Si7542, a 12-bit multiplying D/A converter, consists of a highly stable thin-film R-2R ladder and twelve N-channel current switches on a monolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference. 41 TO R-2R RESISTOR LADDER CONTROL FROM LOGIC ---------.J ..-----, OUT2 The simplified DI A circuit is shown in Figure 1. An inverted R-2R ladder structure is used, that is, the binarily weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state. '--j-I--+-H.....-lr-H......- - O OUT2 1---1 I I DAC REGISTER I i--H---i OUTI RFB OUT1 Figure 2. Simplified Schematic, Single SPOT Switch One of the current switches is shown in Figure 2. The input resistance at VREF (Figure 1) is always equal to R LOR (R LOR is the R-2R ladder characteristic resistance and is equal to value "RREF")' Since RREF at the VREF pin is constant, the reference terminal can be driven by a reference voltage or a reference current, AC or DC, of positive or negative polarity. (If a current source is used, a low temperature coefficient external RFB is recommended to define scale factor.) 10k.!}, (LSBI . Figure 1. SI7542 Functional Diagram (All Inputs HIGH) Preliminary 6-81 Si7542 flY'Siliconix incorporated ~ DETAILED DESCRIPTION (Cont'd) EQUIVALENT CIRCUIT ANALYSIS The equivalent circuits for all digital inputs LOW and all digital inputs HIGH are shown in Figures 3 and 4. In Figure 3 with all digital inputs LOW, the reference current is switched to OUT2. The current source I LEAKAGE is composed of surface and junction leakages to the substrate, while the 114096 current source represents a constant 1-bit current drain through the termination resistor on the R-2R ladder. The .. ON " capacitance of the output N-channel switch is 200 pF, as shown on the OUT2 terminal. The .. OFF" switch capacitance is 70 pF, as shown on the OUT1 terminal. Analysis of the circuit for all digital inputs HIGH, as shown in Figure 4, is similar to Figure 3; however, the "ON" switches are now on terminal OUT1, hence the 200 pF at that terminal. R=10k.o. 1RE!+ R = 10 k.o. VREF 1/4096 t OUT1 1200PF IlEAKAGE t~ "'----'--::L-----,.0 70 pF OUT2 ILEAKAGE I Figure 4. SI7542 Equivalent Clroult (All Inputs HIGH) ....-_ _ORFB R = 10 k.o. ILEAKAGE I R~ R = 10 k.o. -=- I- 70 pF OUT1 Figure 3. 517542 Equivalent Clroult (All Inputs LOW) APPLICATIONS UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION) Figure 5 shows the analog circuit ccnnections required for unipolar binary (2-quadrant multiplication) operation. The logic inputs are omitted for clarity. With a DC reference vcltage .or current (positive,or negative polarity) applied at pin 15, the circuit is a unipolar D/A converter. With an AC reference voltage or current the circuit provides 2-quadrant multiplicaticn (digitally controlled attenuaticn). The input/cutput relationship is shown in Table 1. 6-82 Figure 6. Unipolar Binary Operation (2 - Quadrant) Preliminary Si7542 W'r' Siliconix ~ incorporated APPLICATIONS (Cont'd) TABLE 1. DIGITAL INPUT LSB MSB 1111 1111 1111 ANALOG OUTPUT (VOUT ) -(4095/4096) V REF 1000 0000 0000 -(1/2) V REF 0000 0000 0001 -(1/4096) V REF 0000 0000 0000 OV Unipolar Binary Code Table for Circuit of Figure 5 Figure 6. Bipolar Operation (4 - Quadrant Multiplication) TABLE 2. DIGITAL INPUT MSB LSB R1 provides full scale trim capability, i.e. load the DAC register to 1111 1111 1111, adjust R1 forVoUT (4095/4096) (-VREF). Alternatively, full scale can be adjusted by, omitting R1 and R2 and trimming the reference voltage magnitude. = ANALOG OUTPUT (VOUT ) 1111 1111 1111 +(2047/2048) V REF 1000 0000 0001 +(1/2048) VREF 1000 0000 0000 OV 0111 1111 1111 -(1/2048) VREF 0000 0000 0000 C1 phase compensation (10 to 25 pF) may be required for stability when using a high speed amplifier. (C1 is used to cancel the pole formed by the DAC internal feedback resistance and the output capacitance at OUT1). Amplifier A1 should be selected or trimmed to provideVos <10% of the voltage resolution atVOUT. Additionally, the amplifier should exhibit a bias current which is low over the temperature range of interest (bias current causes output offset at VOUT equal to I B times R FB; R FB is nominally 10 kIl). -VREF Bipolar Binary Code Table for Circuit of Figure 6 With the DAC register ,loaded to 1000 0000 0000, adjust R1 for VOUT (alternatively, one can omit R1 and R2 arid adjust the ratio of R3 to R4 for VOUT = 0 V). Full scale trimming can be accomplished by adjusting the amplitude of VREF or by varying the value of R5. =a v As in unipolar operation, A 1 must be chosen for low Vos and low lB. R3, R4 and R5 must be selected for matching and tracking. Mismatch of 2R3 to R4 causes both offset and Full Scale error. Mismatch of R5 to R4 or 2R3 causes Full Scale error. C1 phase compensation (10 pF to 25 pF) may be required for stability. BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION) Figure 6 and Table 2 illustrate the circuitry and code relationship for bipolar operation. With a DC reference (positive or negative polarity) the circuit provides offset binary operation. With an AC reference, the eleven LSBs provide digitally controlled attenuation of the AC reference while the MSB provides polarity control. Preliminary INTERFACE LOGIC INFORMATION The Si7542 is designed to memory-mapped output device. interface as a A typical system configuration is shown in Figure B. CS is the decoded device address, and is derived by decoding the three higher order address bits. AO and A1 are the operation address, and are decoded internally in the Si7542 to point to the desired loading operation (i.e., load high byte, 6-83 Si7542 ..,. 8i1iconix incorporated ~ APPLICATIONS (Cont'd) middle byte, low byte or DAC register). Table 3 shows the 8i7542 truth table. All data loading operations are identical to the write cycle of a RAM as shown in Figure 7. . IN SUMMARY: 1. The 8i7542 DAC register can be asynchronously cleared with the CLR input. 2. Each 8i7542 requires four locations in memory. 3. Performing any of the four basic loading operations (i.e., load low byte data register, middle byte data register, high byte data register or 12-bit DAC register) is accomplished by executing a memory WRITE operation to the applicable address location for the required DAC operation. Additionally, the CLR input allows the 8i7542 DAC register to be cleared asynchronously to 0000 0000 0000. When operating the 8i7542 in a unipolar mode (Figure 5), a CLEAR causes the DAC output to assume V. In the bipolar mode (Figure 6), a CLEAR causes the DAC output to go to -VREF. a TABLE 3. SI7542 Truth Table SI7542 Control Inputs 1 SI7542 Operation A1 AO -CS X X X X 0 Resets DAC 12-Blt Register to Code 0000 0000 0000 X X 1 X 1 No Operation Device Not Selected 0 0 0 1f' 1 Load LOW-Byte4 Data Register 0 1 0 1f' 1 Load MIDDLE-Byte4 Data Register 1 0 0 'U' 1 Load HIGH-BytEI' Data Register 1 1 0 1r 1 Load 12-Blt DAC Register with Data In LOW-Byte, MIDDLE-Byte and HIGH-Byte Data Registers WR 2 ,3 CLR Load Applicable Data Register with Data at 00-03 Notes: 1.1 Indicates logic HIGH, 0 Indicates logic LOW, X Indicates don't care. 2. This control signal Is level triggered. 3. 1f' Indicates register latches are transparent when WR = 0, data are stored on edge shown. 4. (MSB) XXXX HIGHByte 6-84 XXXX MIDDLEByte XXXX (LSB) LOW. Byte Preliminary Si7542 "..,. Siliconix incorporated ~ APPLICATIONS (Cont'd) ~I.~::::::::~A~D~D:R~E~S~S~B~U~S~V~A~L:ID~-=-=-=-=-=-=-=-=~~~~ (Pllts°l~~_l_l_)_ _JX,"_~::;:~____________"""",,::---JX," _____ I I tAWH I ~ CS (PIN 8) I'" tAWS WR (PIN 8) 03-00 (PINS 4-7) r '-'::"tc-w-s-------..l...---:----' 'I" I tCWH I. .1 I tWR ~ >t~:~ _ _ _ _ _ _ _ _ _ _ _ _- - J I I -, X X I~~--JI '------ I- DATA BUS ·1 VALID NOTE: TIMING MEASUREMENT REFERENCE LEVEL IS VIH; V1L Figure 7. SI7542 TIming Diagram APPLICATION HINTS The Si7542 is a precision 12-bit multiplying DAC designed for system interface. To ensure system performance consistent with Si7542 specifications, careful attention must be given to the following: 1. 2. Ground Management: Voltage differences between the Si7542 AGND and DGND cause loss of accuracy. (DC voltage difference between the grounds introduces gain error. AC or transient voltages between the grounds cause noise injection into the analog output.) The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the Si7542. In more complex systems where the AGND-DGND connection is at a distant place, it is recommended that diodes be connected in inverse parallel between the Si7542 AGND and DGND pins (1 N914 or equivalent). Output Amplifier Offset: CMOS DACs exhibit a code-dependent output resistance which in turn causes a code-dependent amplifier noise gain. The effect is a differential nonlinearity term at the amplifier output which depends on Vas CVas is amplifier input offset voltage). This differential nonlinearity term adds to the R-2R differential nonlinearity. To maintain monotonic operation, it is recommended that amplifier Vas Preliminary be no greater than 10% of the DAC's output resolution over the temperature range of interest (output resolution = VREF/4096). 3. High Frequency Considerations: Si7542 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This not only reduces closed loop bandwidth, but can also cause ringing or oscillation if the spurious pole frequency is less than the amplifier's 0 dB crossover frequency. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor. 4. Gain Temperature Coefficients: The gain temperature coefficient of the Si7542 has a maximum value of 5 ppm/oC and a typical value of 2 ppm/oC. This corresponds to gain shifts of 2.0 LSBs and 0.82 LSBs respectively over a 100°C temperature range. When trim resistors are used to adjust full-scale range as shown in Figures 5 and 6 the temperature coefficient of R1 and R2 should be taken into account. It may be shown that the additional gain temperature coefficients introduced by R1 and R2 may be approximately expressed as follows: 6-85 Si7542 ..... Siliconix incorporated ~ APPLICATION HINTS (Cont'd) T. C. Contribution = - ~ ('Y 1 + 300) due to R1 RREF T. C. Contribution = + RR2 ('Y2 + 300) due to R2 REF standard Si7542 gain error specification of ±12.3 LSBs it is recommended that R1 = 120 0, and R2 = 60 0,. With 'Y = 50, these values result in an overall maximum gain error temperature coefficient of: 5 ppm/DC +....§QlL (50 + 300) 10 ko, Where 'Y1 and 'Y2 are the temperature coefficients in ppm/oC of R1 and R2 respectively and R REF is the DAC input R REF resistance at the VREF terminal. For high quality wire-wound resistors and trimming potentiometers 'Y is of the the order of 50 ppm/DC. It will be seen that if R1 and R2 are small compared with R REF their contribution to gain temperature coefficient will also be small. For the = 6.5 ppm/DC However, if the Si7542GTD is used which has a specified gain error of ±1 LSB, then with R1 = 10 0, and R2 = 5 0, the maximum gain temperature coefficient is increased by only 0.17 ppm/DC. Where possible R1 should be a select-on-test fixed resistor since the resulting gain temperature coefficient will be tighter in all cases. INTERFACING Si7542 INTERFACE TO MC6BOO four addresses. Table 4 gives a sample loading subroutine. A typical 6800 system configuration is shown in Figure 8. Since the Si7542 contains four registers, each Si7542 is assigned four locations in memory. AO and A 1 provide the operational addresses and are decoded internally to point to the desired register. Register loading is accomplished by executing a memory WRITE instruction to one of the Choosing an arbitrary start address of 7542, locations 7558, 7559 and 755A select the low, middle and high byte registers respectively while address 755B selects the 12-bit DAC register. The 12-bit data to be passed to the subroutine is stored in 4-bit bytes in the lower halves of locations 755C, 755D and 755E. 00-07 FROM SYSTEM---~ RESET MC6BOO RiWt-------I AO-A15 ADDRESS BUS Figure 8. Interfacing the SI7542 to an MC6BOO Microprocessor 6-86 Preliminary .-F Siliconix ~ Si7542 Incorporated INTERFACING TABLE 4. Sample Subroutine for S17542-MC6800 Interface 1.QQ ~ ~ XXXX XXXV XXXZ BD 75 42 B6 75 5C B7 75 58 B6 75 50 B7 75 59 B6 75 5E B7 75 5A B7 75 5B 39 JSR REMARKS Jump to subroutine LOA Low-Byte Data -> A STA Load Low-Byte register LOA Med-Byte data -> A STA Load Med-Byte register LOA High-Byte data -> A STA Load High-Byte register STA DAC register loaded RTS Return from subroutine Low-Byte register address Med-Byte register address High-Byte register address DAC register address Low-Byte data Med-Byte data High-Byte data 7542 7543 7544 7545 7546 7547 7548 7549 754A 754B 754C 7540 754E 754F 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 755A 755B 755C 7550 755E 8i7542 INTERFACE TO 808SA The typical SOS5A system configuration is shown in Figure 9. The Si7542 CS input is decoded from the three high order address lines A13-A 15. The SOS5A WR output is directly connected to the WR input of the Si7542. Table 5 gives a sample loading subroutine. The 12-bit data to be passed to the subroutine is stored in locations 7550 and 755E. The four most significant data bits are assumed to occupy the lower half of 755E. Locations 7559. 755A. 7558 and 755C select the low byte. middle byte. high byte and OAC registers respectively. .. A8-15 1-----7' ALE 808SA ADO-7 ADDRESS/DATA BUS Figure 9. Interfacing the SI7542 to an 8085 Microprocessor Preliminary 6-S7 Si7542 .-JP'" ~ Siliconix incorporated INTERFACING TABLES. Sample Subroutine for S17542-8085A Interface .l.QQ ~ .MI.!::!fM XXXX CO 75 42 3A CAL XXXV XXXZ 7542 7543 7544 7545 7546 7547 7548 7549 754A 754B 754C 7540 754E 754F 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 755A 755B 755C 7550 755E 75 50 32 75 59 1F 1F 1F 1F 32 75 5A 3A 75 5E 32 75 5B 32 75 5C C9 REMARKS Call subroutine LOA Low- and Med- Byte data -> A STA Load Low-Byte register RAR RAR RAR RAR STA Rotate right (4 times) LDA High-Byte data -> A STA Load High-Byte register STA Load DAC register RET Return Low-Byte register address Med-Byte register address High-Byte register address OAC register address Low- and Med-Byte data High-Bite data Load Med-Byte register PIN DESCRIPTION (DIP) PIN NUMBER PIN NUMBER SYMBOL DESCRIPTION SYMBOL DESCRIPTION OUT1 Current Output 1 9 WR WRITE Input 2 OUT2 Current Output 2 10 AO Address Bus Input 3 AGND Analog Ground 11 A1 Address Bus Input 4 03 Data Input (MSB) 12 DGND Digital Ground 5 02 Data Input 13 CLR Clear Input 6 01 Data Input 14 VOO +V Supply Input 7 DO Data Input (LSB) 15 VREF Reference Input 8 CS Chip Select Input 16 RFB DAC Feedback Resistor 6-88 Preliminary Si7542 Ir7" Siliconix .r;;#I incorporated BURN-IN DIAGRAMS +15 V Dual-In-Llne Package +15 V ......,,,, --rt+5 V PLCC-20 Package +5 V NOTE: All resistors are 1 k.o.. Preliminary 6-89 Si7543 CMOS 12·Bit Serial Input DAC .... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Serial Load On Positive Or Negative Strobe • Reduced Pin Count and Board Space • Industrial Process Control • Nonlinearity: ± 1/2 LSB Tmin to Tmax • Improved Accuracy • Instrumentation • Reduced Calibration • Digital Attenuation • Low Gain Drift: 2 ppm/DC Typ. 5 ppm/DC Max. • Simplified Interface • Analog Multiplication o Reduced Power &I Remote Sensing • Full 4-Quadrant Multiplication • Single +5 Volt Supply Op'eration DESCRIPTION The Si7543 is a precision CMOS 12-bit multiplying DAC. Its serial data input reduces the number of input data lines required, resulting in a smaller package. The Si7543 includes two registers and a multiplying DAC. Register A is a serial-to-parallel shift register. The data is clocked from the SRI pin into this register on the edge of the strobe input; either the rising or the falling edge can be selected. After Register A is full the contents are transferred to Register B, a separate DAC register, by using the load inputs. Register B can be reset at any time by use of the CLR (clear) input. True 12-bit linearity (1/2 LSB) , low gain tempco (5 ppm/oC), and low gain error (1 LSB) eliminate the need for DAC calibration and improve system accuracy. The full 4-quadrant multiplying capability facilitates digitally-controlled attenuation and control of ac signals without requiring a dc bias. Applications include serial interface control loops, remote data acquisition and conversion, avionics, and portable instrumentation. Built on the Siliconix PolyMOS'" process, the Si7543 uses highly-stable thin film resistors which are laser-trimmed for high accuracy. An epitaxial layer prevents latchup. Packaging options include the 16-pin side braze DIP and LCC-20 for military, S, T suffix (-55 to 125°C) operation, 16-pin CerDIP for industrial, A, B suffix (-40 to 85°C) operation, the 16-pin plastic DIP and PLCC-20 for commercial, J, K suffix (0 to 70°C) operation. PIN CONFIGURATION PLCC Package LCC Package Top View Dual-In-Llne Package Top View o o 0 V U U R R T TN F E 210 B F Top View U ~ 3112111112~1191 RFB VREF AGND~ STB1~ OCR ~~ STB4 T~ V R R ~ ~ / VDD DGND 0 U LD1~ NO 8 8 VDD ~OCR 6 NO ~ DGND 4 STB4 AGND VDD STB1 OCR NO TIii NO DGND NO STB4 Si'ii3 STB2 --..._ _..r- S S N ~ ~ 2 6-90 0 L S ~ ~ 3 Si7543 WY'Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM RFB OUT 1 V REF OUT 2 AGND CLR TI5i LD2 STBl SRI STB4 Vee STB3 DGND STB2 ORDERING INFORMATION INL Tmln - Tmax (LSB) :!: 1 :!: 1/2 :!: 1/2 GAIN ERROR Ta = 25°C (LSB) :!: 12.3 :!: 12.3 :!: 1 TEMPERATURE RANGE AND PACKAGE PLASTIC o to 70°C PLCC-20 o to 700C CerDIP -40 to 85°C SIDE BRAZE -55 to 125°C LCC -55 to 125°C SI7543JN SI7543JP SI7543AO SI7543SD SI7543KN SI7543KP SI7543BO SI7543TD SI7543SE SI7543TE SI7543GKN SI7543GKP SI7543GBO SI7543GTD SI7543GTE ABSOLUTE MAXIMUM RATINGS' Vee to AGND ............•.•............. -0.3, +17 V Vee to DGND ............................ -0.3, +17 V VREF to AGND .....••..•..................... ±25 V V RFB to AGND ............•................... ±25 V Digital Input Voltage to DGND ...•..... -0.3 V, +15.3 V VOUTl, VOUT2 to AGND ............... -0.3 V, +15.3 V AGND to DGND .............................•.. Vee DGND to AGND ..............................•• Vee Storage Temperature .•................. -65 to 150°C Operating Temperature (N, P Suffix) •..•.••.• 0 to 70°C (0 Suffix) .......... -40 to 85°C (D, E Suffix) ...... -55 to 125°C Power 16-Pln 16-Pin 20-Pln 20-Pln Dissipation (Package)" Plastic DIP'" ........................ Ceramic Side Braze' '" ..•............ Plastic Leaded Chip Carrier'" .......... LCC"" . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 470 900 450 900 mW mW mW mW Stress ratings only. Exposure to absolute max rating conditions for extended periods may affect device reliability. All leads welded or soldered to PC Board. '" Derate 6.5 mW/oC above 25°C. '" 'Derate 12 mW/oC above 75°C. 6-91 Si7543 ..... Siliconix .,,1;11 incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Voo= 5 V,VREF = +10 V VOUT1=V0UT2= 0 V Output Amplifier: OP-07 LIMITS 1=25·C 2=125,85,70·C 3=-55,-40,0 ·C ALL GRADES EXCEPT AS NOTED TEMP TYP d MIN b MAXt UNIT 1,2,3 12 Bits A, J, S Grades 1,2,3 -1 1 All Other Grades 1,2,3 -0.5 0.5 A, J, S Grades 1,2,3 -2 2 All Other Grades 1,2,3 -1 1 G Grade 1 -1 1 All Other Grades 1 -12.3 12.3 GB, GK Grades 2,3 -1 1 GT Grade 2,3 -2 2 J, K Grades 2,3 -13.5 13.5 S, T, Grades 2,3 -14.5 14.5 A, B Grades 2,3 -13.5 13.5 ~ Gain I~ Temperature 1,2,3 -5 5 ppml ·C ~Galn I~ Voo Voo=±5% 1 2,3 -0.005 -0.01 0.005 0.01 % per % DAC Loaded with All Zeros: loun DAC Loaded with All Ones: IOUT2 1 -5 5 J, K, GK Grades 2,3 -10 10 All Other Grades 2,3 -200 200 ACCURACY Resolution Relative Accuracy (Integral Non-Linearity) Differential Nonlinearity Gain Errors N INL (1LSB = 0.024% of Full Scale) DNL GFSE Gain Temp Coefficient" TC GFS Power Supply Rejection PSRR Output Leakage Current jPln 4 = OUT11 Pin 5 = OUT2 IOUT1, IOUT2 2 LSB nA DYNAMIC Current Settling Time c, 9 ts Multiplying Feedthrough Error c, 9 FT 6-92 VREF= ±10 V 10kHz Sine Wave 1,2,3 2 p,s 1,2,3 2.5 mVp-p ...w" ~ Si7543 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V DD = 5 V,VREF = +10 V Voun=VouT2= 0 V Output Amplifier: OP-07 LIMITS 1=25·C 2=125,85,70·C 3=-55,-40,0 ·C TEMP TYP d 1,2,3 10 ALL GRADES EXCEPT AS NOTED MIN b MAXb UNIT DYNAMIC (Cont'd) Reference Input Resistance (Pin 15) RREF 8 25 DAC Loaded to All Zeros 1,2,3 70 DAC Loaded to All Ones 1,2,3 200 DAC Loaded to All Zeros 1,2,3 200 DAC Loaded to All Ones 1,2,3 70 k!l. Coun Output Capacltance c pF C OUT2 LOGIC INPUTS Logic HIGH Voltage V IH 1,2,3 Logic LOW Voltage V IL 1,2,3 Input Current liN Input Capacltancec CIN 3 V VIN = 0 V orVDD 0.8 1 JJ.A 1,2,3 8 pF 1,2,3 <0.001 -1 TIMINGi'! tDS1 STB 1 Used as a Strobe 1 2,3 50 100 tDS4 STB4 Used as a Strobe 1,2,3 0 tDS3 S'i"e3 Used as a Strobe 1 ,2,3 0 tDS2 STB2 used as a Strobe 1 2,3 20 40 tDH1 STBl Used as a Strobe 1 2,3 30 60 tDH4 STB4 Used as a Strobe 1 2,3 80 160 tDH3 STB3 Used as a Strobe 1 2,3 80 160 tDH2 STB2 used as a Strobe 1 2,3 60 120 Serial Inrrut to Strobe Setup Tme ns Serial Input to Strobe Hold Time 6-93 Si7543 ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Voo = 5 V, VREF = +10 V VOUT1=VOUT2= 0 V Output Amplifier: OP-07 LIMITS 1=25°C 2=125,85,70 0 C 3=-55,-40,0 ·C TEMP TYP d ALL GRADES EXCEPT AS NOTED MIN b MAXt UNIT TIMING h (Cont'd) tSRI 1 2,3 80 160 STB1 Pulse Width tSTB1 1 2,3 80 160 STB4 Pulse Width tSTB4 1 2,3 100 200 STB3 Pulse Width tSTB3 1 2,3 100 200 STB2 Pulse Width tSTB2 1 2,3 80 160 Load Pulse Width LD1 , tlO2 1 2,3 150 300 Min. Time Between Strobing LSB Into Re~lster A and Loading Reg ster B tAsB 1,2,3 0 CLR Pulse Width tClR 1 2,3 200 400 Supply Voltage Voo 1,2,3 Supply Current 100 SRI Data Pulse Width ns SUPPLY -- Digital Inputs = VIH or VIL 1,2,3 5 V 2.5 mA NOTES: a. Refer to PRoCEss OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Galh error Is measured using Internal RFB only. Gain error can be trimmed to zero using cIrcuits of Figures 6 and 7_ f. Measured to ' 12 LSB. OUT1 Load = 100 .n., DAC output measured from failing edge of LDl and LD2 . g. Feedthrough error may be reduced by connecting the metal lid on the side braze package to DGND. h. Sample tested at 25°C to ensure compliance. CAUTION ESDS (Electro-Static-Discharge-Sensitive) device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy 6-94 electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed. Si7543 ..... Siliconix incorporated ~ DIE TOPOGRAPHY 817543 Pad Function No. --I .....1 - - - - - 96 mils - - - - _ I I.. 1 3 4 1 5 BB mils 6 1O(® 7 B 1 1 2 3 4 5 1JST 6 N/C 7 B 9 10 11 12 13 14 15 16 SRI STB2 LD2 STB3 STB4 DGND CLR VDD (Substrate) VREF RFB OUT1 OUT2 AGND STB1 9 20X CSARB 276 PMOS Transistors 309 NMOS Transistors 1 NPN Transistor 1 Zener Diode 1B Diodes 9 400 .n N+ Resistors 13k .n N+ Resistor 13 10k .n Thin Film Resistors 13 20 k .n Thin Film Resistors 11 170.n Potysillcon Resistors 8 340 .n Polyslllcon Resistors DEFINITION OF TERMS RELATIVE ACCURACY Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is expressed in % or ppm of full scale range or (sub) multiples of 1 LSB. DIFFERENTIAL NONLINEARITY Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ±1 L8B max over the operating temperature range insures monotonicity. GAIN ERROR Gain error or full-scale error is a measure of the difference between an ideal DAC's and the actual device output. For the 8i7543, ideal full-scale output is -(4095/4096). (VREF)' Gain error is adjustable to zero using external trims as shown in Figures 6 and 7. OUTPUT LEAKAGE CURRENT Current which appears at OUT1 with the DAC register loaded to all O's or at OUT2 with the DAC register loaded to all 1 'so MULTIPLYING FEEDTHROUGH ERROR AC error due to capacitive feedthrough from VREF terminal to OUT1 with DAC register loaded to all O's. 6-95 Si7543 ..... Siliconix ,1;11 incorporated DETAILED DESCRIPTION The Si7543 includes two registers and a 12-bit DAe. The DAe circuit consists of an R-2R resistor array as shown in Figure 1. Thin-film resistors are used, which are laser-trimmed for accuracy. Depending upon the status of each input bit, the binarily weighted currents are switched to either OUT1 or OUT2. This maintains a constant current through each ladder leg regardless of the switch state. A typical NMOS current switch is shown in Figure 2. When all digital inputs are LOW, the equivalent circuit appears as shown in Figure 3. There are two current components shown: I REF and I LEAKAGE. The I REF f4096 current source is actually the 1 LSB current which flows through the ladder termination resistor to GND. The ILEAKAGE current sources represent surface and junction leakages to the substrate. I~ ~~+-~-r4-~i~---r~+---OO~ '-l----~i----~I__--jl---+-~p___O OUT1 RFB DAC REGISTER B Figure 1. SI7543 Functional Diagram (All Inputs HIGH) TO LADDER FROM INTERFACE LOGIC O~ OUT1 Figure 2. Simplified Schematic, Single SPOT Switch The output current is a function of VREF and the digital input code. (Hence the term multiplyIng DAe.) The input resistance at VREF is equal to value "R" and does not change with input code. VREF can be either a fixed or time varying voltage or current, of positive or negative polarity. If a current source is used for the reference input, then a low temperature coefficient resistor should be used for R FB to minimize gain variation with temperature. R =10 kn. O~ VREF + - - Figure 3. SI7543 Equivalent Circuit (All Inputs LOW) The 70 pF capacitor on OUT1 represents the OFF capacitance of the output switch. The 200 pF capacitor on OUT2 represents the switch ON capacitance. A similar analysis holds when all digital inputs are HIGH, as shown in Figure 4. Notice that in this case, the 200 pF is on OUT1 and the 70 pF is on OUT2. This capacitance is code-dependent and is a function of the number of ON switches which are connected to a specific output. oun r-------:t:4--------0 t.9 ..l.LEAKAGE EQUIVALENT CIRCUIT ANALYSIS Figures 3 and 4 show the equivalent circuits for the R-2R ladder when all digital inputs are LOW or HIGH respectively. 6-96 1 ou~ 70PF Figure 4. SI7543 Equivalent Circuit (All Inputs HIGH) Si7543 trY" Siliconix .J;;II incorporated DETAILED DESCRIPTION INTERFACE LOGIC As previously stated, the Si7543 includes two registers. The timing diagram is shown in Figure 5 and the truth table in Table 1. Register A is a serial-to-parallel shift register. The data is clocked from the SRI pin into this register on the rising edge of STB1, STB2, or STB4 or on the falling edge of STB3. TABLE 1. 517543 Truth Table 517543 Control Inputs Register A Control Inputs Register B Control Inputs STB4 STB3 STB2 STB1 a a a S a s S a 1:. a a 1 a a 1 1 1 X X X X a x x X X X 1 CLR LD2 LD1 x x x x x x x x x SI7543 Operation X Data Appearing at SRI Strobe Into Register A 2, 3 x X No Operation (Register A) a Notes X X 1 1 X 1 X 1 1 a a Clear Register B to Code 0000 0000 0000 (Asynchronous Operation) 3 1,3 No Operation (Register B) 3 Load Register B With The Contents of Register A 3 NOTES: 1. CLR = a asynchronously resets Register B to 0000 0000 000, but has no effect on Register A. 2. Serial data Is loaded Into Register A MSB first, on edges shown S Is positive edge 1:. Is negative edge. 3. a = Logic LOW, 1 = Logic HIGH, X = Don't Care. 4. (MSB) XXXX XXXX XXXX (LSB) HIGHByte MIDDLEByte LOWByte After Register A is full the contents are transferred to Register B, a separate DAC register, by bringing LD1 and LD2 momentarily LOW. Register B can be reset (0000 0000 0000) at any time by bringing CLR momentarily LOW. This can be used to initialize the Si7543 at power up, or to rapidly bring the DAC output to a known state. When operating in the unipolar mode (Figure 6), a CLEAR sends the DAC output voltage to a V. When in the bipolar mode (Figure 7), a CLEAR sends the DAC output to -VREF. 6-97 Si7543 trY" Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) =x ' - - t SRI ----.I SRI I t DS1 ' t DS2 , t DS4 ...!.I I I ~1~ k __B_IT_2_~>qP< M __ BI_T_11_..JX,---=E;::;!rB:...12_..JX'--_ __ I STROBE INPUT (STBt,STB2, STB411 (NOT,,) 1 tDH1' tDH2, tDH4 I I I . --~--' f - - - - - - - - - LOADING REGISTER A ---------~.I Li5i AND LD2 NOTE: STROBE WAVEFORM IS INVERTED IF S'fli3 IS USED TO STROBE SERIAL DATA BITS INTO REGISTER A. LOADING REGISTER B . - - - ' " WITH CONTENTS OF REGISTER A Figure 5. Sl7543 Timing Diagram APPLICATIONS INFORMATION UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION) TABLE 2. Figure 6 shows the simplest Si7543 configuration. The logic inputs are omitted for clarity. The input to VREF can be either positive or negative; with a dc reference voltage or current the circuit is a unipolar 01 A converter. With an ac reference voltage or current the circuit provides 2-quadrant reference multiplication (digitally controlled attenuation). The inputloutput relationship is shown in Table 2. +10 V V REF ANALOG OUTPUT (VOUT ) 1111 1111 1111 -(4095/4096) V REF 1000 0000 0000 -(1/2) VREF 0000 0000 0001 -(1/4096) V REF 0000 0000 0000 OV Unipolar Binary Code Table for Circuit of Figure 6 -to V V DD V OUT DGND AGND Figure 6. 6-98 DIGITAL INPUT MSB LSB Unipolar Binary Operation (2 - Quadrant Multiplication) R1 can be used to provide full-scale trim capability. (Load the OAC register to 1111 1111 1111 and for VOUT -VREF (4095/4096).) adjust R1 Alternatively, the full scale can be adjusted by omitting R1 and R2 and trimming the VREF magnitude. (See also the Application Hint "Gain Temperature Coefficients".) C1 (10 to 25 pF) is used for phase compensation and may be required for stability when using a high speed amplifier. (See the Application Hint "High Frequency Considerations".) ~ ~ Si7543 Siliconix incorporated APPLICATIONS INFORMATION For amplifier A1 considerations, Application Hint .. Output Offset". refer to the +10 V VREF ~--+--------------------, BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION) The circuit for bipolar operation is shown in Figure 7, accompanied by the input/output relationship in Table 3. With a positive or negative dc reference, the circuit provides offset binary operation. With an ac reference, the eleven LSBs provide digitally controlled attenuation of the reference while the MSB provides polarity control. TABLE 3. DIGITAL INPUT MSB LSB ANALOG OUTPUT (VOUT ) 1111 1111 1111 +(2047/2048) V REF 1000 0000 0001 +(1/2048) V REF 1000 0000 0000 0111 1111 1111 0000 0000 0000 OV DGND AGND Figure 7. Bipolar Operation (4 - Quadrant Multiplication) Unlike the unipolar circuit of Figure 6, the 0 V level as well as the full-scale must be trimmed in this circuit. To trim the 0 V level, load the DAC register with 10000000 DODO, and adjust R1 forVOUT = 0 V. Alternatively, R1 and R2 can be omitted and the ratio of R3 to R4 adjusted fOrVOUT = 0 V. Full scale can be trimmed by adjusting the amplitude of VREF or by varying the value of R5. -(1/2048) VREF -VREF Bipolar Binary Code Table for Circuli of Figure 7 APPLICATIONS HINTS GROUND MANAGEMENT Voltage differences between the Si7543 AGND and DGND cause loss of accuracy (dc voltage difference between the grounds introduces gain error. AC or transient voltages between the grounds cause noise injection into the analog output). The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the Si7543. In more complex systems where the AGND-DGND connection is at a distant point, it is recommended that diodes be connected in inverse parallel between the Si7543 AGND and DGND pins (1N914 or equivalent). OUTPUT OFFSET CMOS DACs exhibit a code-dependent output resistance which in turn causes a code-dependent error voltage at the output of the amplifier. The maximum amplitude of this offset, which adds to the D/A converter nonlinearity, is 0.67· Vos where Vos is the amplifier input offset voltage. It is recommended thatVos be no greater than 0.1 LSB over the operating temperature range. The bias current causes an output offset at VOUT equal to IB • RFB. HIGH FREQUENCY CONSIDERATIONS The Si7543 output capacitance and the amplifier feedback resistance combine to add a pole to the open loop response. This reduces the closed loop bandwidth, and may also cause ringing or oscillation if the pole frequency is less than the amplifier's 0 dB crossover frequency. Adding a phase compensation capacitor in parallel with the feedback resistor can restore stability to the circuit. 6-99 Si7543 .... 5i1iconix incorporated ~ APPLICATIONS HINTS TEMPERATURE COEFFICIENTS The gain temperature coefficient of the 5i7543 has a maximum value of 5 ppm/oC and a typical value of 2 ppm/DC. This corresponds to gain shifts of 2 L5Bs and 0.8 L5B, respectively, over a 100°C temperature range. When trim resistors R1 and R2 are used to adjust full-scale range, the temperature coefficient of R1 and R2 should also be taken into account. Resistors with temperature coefficients of 50 ppm/DC will usually give acceptable results. For the standard 5i7543 with a maximum gain error of ±12.3 L5Bs, suitable values for R1 and R2 are 120 nand 60 n, respectively. This results in a maximum additional gain error temperature coefficient of approximately 3 ppm/DC. However, if the 5i7543 GTO is used (max gain error = 1 L5B) , then with R1 = 10 nand R2 = 5 n the additional gain error temperature coefficient is only 0.25 ppm/DC maximum. INTERFACING Si7543 INTERFACE TO MC6800 The circuit in Figure 8 and the sample subroutine shown in Table 4 demonstrate one method of interfacing the 5i7543 to an MC6800 microprocessor. If the starting address for the subroutine is 7543 (Hex), then the data can be stored at the end of the listing in locations 7550 (middle and lower bytes) and 755E (high byte), as follows: 7550: 76543210 755E: BA98XXXX where .. B" is bit 11 (M5B), .. 0" is bit 0 (L5B) , and so on. Data line D7 from the 6800 is used as the serial input to the 5i7543 5RI pin. Starting with the MSB, the data is strobed one bit at a time into Register A. After all 12 data bits have been sent to the Si7543, they are then loaded into Register B. Address bits 13, 14, and 15 of the 6800 are used to determine STB3 (AOOO) and LD2 (BODO). ADDRESS BUS (16) AO-IS ADRRESS (16) I-lR:l!/-.l!lW~_ _ _ _ _ _--dEl 6800 "'q,r..2==--_______--IE3 8205 DECODER Dol-----....::;~-==I=+==--A DATA BUS (8) L-__~D~7r_---lr----t__t-----y DATA (8) FROM SYSTEM R E S E T - - - - - - = = - - - - - - - - - I Figure 8. Interfacing the SI7543 to an MC6800 Microprocessor 6-100 Si7543 flY' Siliconix ~ incorporated INTERFACING (Cont'd) TABLE 4. Sample Subroutine for S17543-MC6800 Interface ~ 7543 SEND MNEMONIC LDA BSR LDA BSR BSR STA RTS LDA STA ROL DEC BNE RTS OPERANP A.755E SEND A.755D SEND SEND A,BOOO COMMENT Put upper 4 bits In Acc A Send bits 11 through 8 to SI7543 Put lower 8 bits In Acc A Send bits 7 through 4 Send bits 3 through 0 Load data Into S17543 Register B B,#04 A,ADOO A B SEND Send 4 bits Strobe data Into SI7543 Move next bit Into position 8i7543 INTERFACE TO SOS5A Figure 9 and Table 5 show how the Si7543 can be interfaced to the 8085. In this example, it is assumed that the data to be sent is present in the H and L registers as follows: Register H: XXXXBA98 Register L: 786543210 where "B" is bit 11 (MSB), "0" is bit 0 (LSB) , and so on. Since bit 7 of the Accumulator will be used for the serial data bit, the data is first left-justified in (8) Repeat until 4 bits sent Registers Hand L. Bit 6 of the Accumulator is the Serial Output Enable bit, and must be set before the SIM instruction is used. The ORA instruction puts the next data bit into bit 7 of the Accumulator, keeping SOE asserted at the same time. The AI instruction masks out all bits except 6 and 7, insuring that no flags are inadvertantly reset. Address bits 13, 14, and 15 are used to determine STB3 and LD2. The data is strobed into the Si7543 by writing to location AOOO. After all 12 bits have been sent, writing to location BOOO loads the data into Register B of the Si7543. ADDRESS BUS (16) AO-1S ADRRESS (16) ALE 8205 8085 DECODER WRr-----+-~r-------~~ (8) ADO-7 DATA (8) SODr---------------~ FROM SYSTEM RESET~-----------------------I Figure 9. Interfacing the S17543 to an 8085 Microprocessor 6-101 Si7543 .... Siliconix incorporated ~ INTERFACING (Cont'd) TABLE 5. Sample Subroutine for S17543-8085A Interface J.Aa.E.L. 7543 SEND MNEMONIC MVI DAD DCR JNZ MVI MVI ORA ANI SIM STA DAD DCR JNZ STA RET COMMENT Left-Justify data by shifting Hand L left four times OPERAND B,04 H B 7543 B,OC A,70 H CO Counter for 12 bits Enable Serial Output (SOD) Preserve SOE and data bit Don't reset flags Latch data bit Into SOD FF Strobe data Into SI7543 Shift next bit Into D7 of H AOOO H B SEND BODO Repeat until 12 bits sent Load Register B of SI7543 PIN DESCRIPTION (DIP) PIN NUMBER SYMBOL DESCRIPTION 1 OUT1 DAC current output bus. Normally terminated at op amp virtual ground. 2 OUT2 DAC current output bus. Normally terminated at AGND. 3 AGND Analog Ground 4 STB1 Register A Strobe 1 input, see Table 2. 5 LD1 DAC Register B Load 1 input. When LD1 and LD2 go low the contents of Register A are loaded into DAC Register B. 6 NfC No Connection. 7 SRI Serial Data Input to Register A. 8 STB2 Register A Strobe 2 input, see Table 2. 6-102 PIN NUMBER 9 SYMBOL LD2 10 STB3 11 STB4 12 13 DGND CLR 14 15 VDD VREF 16 RFB DESCRIPTION DAC Register B Load 2 input. When LD1 and LD2 go low the contents of Register A are loaded into DAC Register B. Register A Strobe 3 input, see Table 2. Register A Strobe 4 input, see Table 2. Digital Ground. Register B CLEAR input (active LOW) can be used to asynchronously reset Register B to 0000 0000 0000 +5 V Supply Input Reference input. Can be positive or negative dc voltage or ac signal. DAC Feedback Resistor. Si7543 W'F Siliconix ~ incorporated BURN-IN DIAGRAMS +15 V Dual-In-Llne Package PLCC-20 Package +15 V +-----14 +5 V NOTE: All resistors are 1 k.o. . 6-103 Si7545 CMOS 12-Bit Buffered Multiplying DAC frlT Siliconix ~ FEATURES BENEFITS APPLICATIONS • On-Board Latches • Simplified Microprocessor Interface • Microprocessor Controlled Systems • Low Gain TC: 2 ppm/oC • True 12-Bit Linearity • ATE Systems • Four Quadrant Multiplication • Improved Stability Over Temperature • Power Supplies • INL < 112 LSB Q • Low Gain Error (G FSE < 1 LSB) incorporated • J.LP Controlled Gainl Attenuation Accepts Bipolar Reference Inputs • Function Generators • Reduced System Calibration DESCRIPTION The Si7545 is a monolithic 12-Bit CMOS digital-toanalog converter with an on-board 12-Bit wide latch to simplify the interface to a data bus. The R-2R ladder DAC allows four-quadrant multiplication for ac attenuation applications. The Si7545 allows flexibility in supply voltage and logic levels, being specified for TTL-compatible operation when used with a single 5 V power supply. CMOS logic c~mpatibility is specified when operated from a single 15 V supply. The Si7545 is ideal for microprocessor-controlled data conversion applications such as function generation, power supplies, ATE systems, and process control. As a four-quadrant multiplying DAC, the Si7545 has applications in gain control, attenuation, filtering and programmable references. The Si7545 is built on the Siliconix proprietary advanced 5-micron CMOS process known as PolyMOS"'. Highly stable thin-film resistors are used to provide superior matching and stability over both temperature and time. Laser trimming is used to achieve true 12-Bit linearity and low gain error. An epitaxial layer prevents latchup. The Si7545 is available in the 20-lead PDIP and PLCC packages for operation over the commercial, J, K, L suffix (0 to 70°C) temperature range, the 20-lead CerDIP for industrial, A, B, C suffix (-40 to 85°C) operation, and the 20-lead side braze and LCC packages for military, S, T, U suffix (-55 to 125°C) temperature range operation. Four accuracy grades are available for each temperature range. PIN CONFIGURATION Dual In LIne Package PLee Package o , OB11 (MSB) OB10 DB9 OBB OB7 A G G 0 N N U DDT 0 G N 0 R R F E B F 3112111112Cl~9 A G N 0 0 R U F T B V R E F 0 ~ ~ ~ 4 WR Os ~ OBO (MSB) VOO ~ ~B ~4 9111QI111n21n3 o ODD 0 B B B B B 66432 6-104 Lee Package v OB1 DB11 (MSB) VOO OB10 WR Os DB9 (LSB) OBB OBO (LSB) DB7 DB1 0 0 B B 6 5 0 0 B B 4 3 0 B 2 Si7545 .... Siliconix incorporated ~ ORDERING INFORMATION INL Tmln - Tmax (LSB) GAIN ERROR Ta = 25°C (LSB) TEMPERATURE RANGE AND PACKAGE PLCC o to 700C PDIP o to 70°C CerDIP -40 to 85°C SIDE BRAZE -55 to 125°C LCC -55 to 125°C :!: 2 :!:20 SI7545JP SI7545JN SI7545AQ SI7545SD SI7545SE :!: 1 :!: 1/2 :!:10 SI7545KP SI7545KN SI7545BQ SI7545TD SI7545TE :!:5 Sl7545LP SI7545LN SI7545CQ SI7545UD SI7545UE :!: 1/2 :!:1 Sl7545GLP SI7545GLN SI7545GCQ SI7545GUD SI7545GUE FUNCTIONAL BLOCK DIAGRAM v REFo-J----j ........-t-OOUT ~~~:;;:~~~-t--oAGND VDD DGND WR Cs DEFINITION OF TERMS MULTIPLYING DAC Digital-to-Analog Converters (DACs) are devices that convert digital data into analog values. A multiplying DAC is a device capable of handling variable reference sources. Its output is the product of two variables: the number represented by the digital input code and the analog reference voltage. RESOLUTION Resolution indicates the number of digital input bits. A 12-bit DAC resolves the full-scale range (FSR) into 212 = 4096 states. transfer function. It is measured after adjusting for zero and full scale errors and is expressed in % of full scale range or (sub)multiples of 1 LSB. DIFFERENTIAL NONLINEARITY Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ±1 LSB max over the operating temperature range ensures monotonicity. GAIN ERROR Value of the Least Significant Bit. For example, a 12-bit unipolar converter has a 1 LSB step value equal to 'iREFI 212 or VREF/4096 (Volts). Gain error or full-scale error is a measure of the difference between an ideal DAC's and the actual device output. For the Si7545, ideal full-scale output is -(4095/4096) (VREF). Gain error is adjustable to zero using external trims as shown in Figures 4 and 5. RELATIVE ACCURACY (INL) OUTPUT LEAKAGE CURRENT Relative accuracy or end-point nonlinearity is a measure of the maximum deviation from a straight line passing through the end points of the DAC This is the current that appears at OUTl with the DAC loaded to all Os or at OUT2 with the DAC loaded to all 1s. LSB 6-105 Si7545 ..... Siliconix incorporated ~ DEFINITION OF TERMS (Cont'd) the analog output at OUT1 reaches 90% of its final OUTPUT CURRENT SETTLING TIME This is the time required for the output current of the DAC to settle to within 1/2 LSB into 100 n, and is specified for a zero to full scale digital input change. PROPAGATION DELAY This is a measure of the internal circuit delay from the time a digital input changes to the point when value. DIGITAL TO ANALOG GLITCH IMPULSE This is a measure of the area of the impulse injected to the analog outputs when the digital inputs change state. It is usually specified as the area of the impulse in nV-secs. It is measured with VREF = GND and an LH0032 as the output op amp, and phase compensation capacitor =0 pF. ABSOLUTE MAXIMUM RATINGS* Voo to DGND ........................... -0.3 V, 17 V VREF to DGND ............................... VRFB to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 25 v ± 25 V Digital Input Voltage to DGND ........... -0.3 V to Voo V OUT to DGND ......................... -0.3 V to Voo VAGNO to DGND ....................... -0.3 V toVoo Storage Temperature (D, Q, E Suffix) ..... -65 to 150·C (N, P Suffix) -65 to 125·C Power Dissipation (Package)·· 20-Pln Plastic DIP and PLCC··· .............. 470 mW 20-Pln CerDIP···· .............•............ 900 mW 20-Pln Ceramic Side Braze···· ......•........ 900 mW 20-Pln LCC···· . . . . . . . . .. . . . . . . . . . .. . . . . . ... 900 mW Operating Temperature: Commercial Grades (J, K, L, GL) ............ 0 to 70·C Industrial Grades (A, B, C, GC) ........... -40 to 85·C Extended Grades (S, T, U, GU) .......... -55 to 125·C Stress rating only. Exposure to absolute max rating conditions for extended periods may affect device reliability. All leads welded or soldered to PC board. .,. Derate 6.5 mW/·C above 25·C. •••• Derate 12 mW/·C above 75·C. ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: Voo = +5 V, V REF = +10 V VOUT= 0 V, AGND = DGND SYMBOL Output Amplifier: OP-07 1=25·C 2=125,B5,70·C 3=-55,-40,0·C ~EMP MIN b MAXb N INL Differential Nonlinearity DNL 6-106 MIN b MAXb UNIT GFSE (1LSB = 0.024% of Full Scale) Measured Using Internal R FB DAC Register Loaded With: 1111 1111 1111 1,2,3 12 1,2,3 -0.5 0.5 B,K,T:-1 A,J,S:-2 1 2 1,2,3 -1 1 B,K,T:-1 A,J,S:-4 1 4 12 1 2,3 GC,GL,GU: GC,GL,GU: -1 -2 1 2 1 2,3 C,L,U: C,L,U: -5 -6 5 6 1,2,3 Gain Temp Coefflclenf A,J, S . B,K,T GRADE , Relative Accuracy (Integral Non-Linearity) Gain Errore LIMITS C,L,U GC, GL,GU GRADE TVpd ACCURACY Resolution (5 Volt Operation) , TCBFS b.. Gain I b.. Temperature 1,2,3 2 -5 5 Bits LSB B,K,T:-10 A,J,S:-20 10 20 -5 5 ppml ·C Si7545 WY'Siliconix incorporated ~ (5 Volt Operation) ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Voo = +5 V, VREF = +10 V VOUT= 0 V, AGND = DGND SYMBOL Output Amplifier: OP-07 PARAMETER LIMITS 1=25°C 2=125,85,70°C 3=-55,-40,0°C C,L,U GC, GL,GU GRADE A,J, S B,K,T GRADE MIN b MAXb MIN b 1 2,3 -0.015 -0.03 0.015 0.03 -0.015 -0.03 0.015 0.03 1 -10 10 -10 10 2,3 C,GC: -50 L,GL: -50 U,GU:-200 50 50 200 A,B: -50 J,K: -50 S,T: -200 50 50 200 TEMP TYpd MAXb UNIT ACCURACY (Cont'd) PSRR DC Supply Rejection Output Leakage Current IOUT(OFF ~Galn I~ Voo V oD =±5% All Digital Inputs = 0 V % per % nA DYNAMIC Current Settling Tlme c ts To 0.5 LSB, Load = 100.!1. f CEXT= 13 pF, CS = 0 V Measured From Failing Edge of WR. 1,2,3 1 1 ~s Propagation Delay C tpo Load = 100.n, C EXT = 13 pF f 1 300 300 ns Dlgltal-to-Analog Glitch Impulse Is VREF= AGND Output Amplifier: LH0032 f 1 400 nVsec AC Feedthrough at OUTg FT VREF = ±10 V 10kHz Sinewave 1,2,3 1 mV p-p RREF 1 10 RREFTC 1,2,3 -300 REFERENCE Reference Input Resistance (Pin 19 to GND) RREFTC 7 25 7 25 k.!1. ppml °C OUTPUT Output Capacltancec INPUT COUT WR = 0 ~I DBO-DBll = 0 V CS = 0 V DBO-DBll =V oo 70 150 70 150 1,2,3 pF < Input HIGH Voltage VIH 1,2,3 Input LOW Voltage V IL 1,2,3 Input Current h liN Input Capacltancec e lN 2.4 2.4 V VIN = 0 V orVoo VIN=OV 1 2,3 0.8 -1 -10 1 10 O.B -1 -10 1 10 DBO-DB11 1,2,3 5 5 WR,eS 1,2,3 20 20 ~A pF 6-107 .. Si7545 ~ ~ (5 Volt Operation) ELECTRICAL CHARACTERISTICS a PARAMETER Siliconix , incorporated Test Conditions Unless Otherwise Specified: Voo = +5 V, VREF = +10 V VOUT= 0 V, AGND = DGND SYMBOL Output Amplifier: OP-07 LIMITS 1=25°C 2=125,85,70°C 3--55,-40,O°C c,LLU GC, G ,GU GRADE TEMP TYpd MIN b A,J, S B,K,T GRADE MAXb MIN b MAXt UNIT TIMING Chip Select to Write Setup Time tos Chip Select to Write Hold Time tOH Write Pulse Width tWR Data Setup Time Data Hold Time See Timing Diagram Figure 1 1 2,3 200 270 1,2,3 280 380 280 380 0 0 1 2,3 175 280 250 400 250 400 tos 1 2,3 100 150 140 210 140 210 tOH 1,2,3 10 10 Voo 1,2,3 4.5 tos :!: tWR, tOH:!: 0 ns SUPPLY Voo Rangel Supply Current 100 All Digital Inputs VIH or VIL 1,2,3 All Digital Input o V or Voo 1 2,3 16.5 16.5 2 2 0.1 0.5 0.1 0.5 V mA 0.01 0.01 (15 Volt Operation) ELECTRICAL CHARACTERISTICS a PARAMETER 4.5 Test Conditions 1=25°C Unless Otherwise Specified: 2=125,85,70 oC Voo = +15 V, VREF = +10 V 3=-55,-40,O°C VOUT= 0 V, AGND = DGND EMP TYpd SYMBOL Output Amplifier: OP-07 LIMITS C,L,U GC, GL,GU GRADE MIN b MAXb A,J, S B,K,T GRADE MIN b MAXb UNIT ACCURACY Resolution 1,2,3 N Relative Accuracy (Integral Non-Linearity) INL (lLSB = 0.024% of Full Scale) 1,2,3 Differential Nonlinearity DNL 1,2,3 1 2,3 Gain Errore GFSE Measured Using Internal R FB DAC Register Loaded With: 1111 1111 1111 12 0.5 B,K,T:-l A,J,S:-2 1 2 -1 1 B,K,T:-l A,J,S:-4 1 4 -6 -7 C,L,U: -10 6 7 6-108 TCBFS ~ Gain I ~ Temperature 1,2,3 2 -10 LSB 10 1,2,3 Gain Temp Coefflclenf Bits -0.5 GC,GL,GU: GC,GL,GU: 1,2,3 12 10 B,K,T:-15 A,J,S:-25 15 25 -10 10 ppml °C Si7545 ..,. Siliconix incorporated ~ (15 Volt Operation) ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: Voo = +15 V, VREF = +10 V VOUT= 0 V, AGND = DGND SYMBOL Output Amplifier: OP-07 LIMITS 1=25'C 2=125,85,70'C 3=-55,-40,O'C A,J, S B,K,T GRADE C,L,U GC, GL,GU GRADE MIN b MAXb MIN b 1 2,3 -0.01 -0.02 0.01 0.02 -0.01 -0.02 0.01 0.02 1 -10 10 -10 10 2,3 C,GC: -50 L,GL: -50 U,GU:-200 50 50 200 A,B: -50 J,K: -50 S,T: -200 50 50 200 TEMP TYpd MAXb UNIT ACCURACY (Cont'd) DC Supply Rejection Output Leakage Current PSRR AGain Ill. Voo Voo =±5% IOUT(OFF) All Digital Inputs = 0 V DYNAMIC % per % nA , Current Settling Tlmeo ts To 0.5 LSB, Load = 100 n. f C EXT = 13 pF, CS = 0 V Measured From Failing Edge of WR. 1.2,3 2 2 ).Ls Propagation Delay C tpo Load = lOOn., CEXT= 13 pF' 1 250 250 ns Dlgltal-to-Analog Glitch Impulse Is V REF = AGND Output Amplifier: LH0032 ' 1 250 nVsec AC Feedthrough at OUTg FT VREF = ±10 V 10kHz Sinewave 1,2,3 1 mV p-p RREF 1 10 RREFTC 1,2,3 -300 REFERENCE Reference Input Resistance (Pin 19 to GND) RREFTC 7 25 7 25 kn. ppml 'C' OUTPUT Output CapacltanceC C OUT VA ~I =0 CS = 0 V DBO-DBll = 0 V DBO-DB11 =Voo 70 150 1,2,3 70 150 pF JNPUT / Input HIGH Voltage V IH 1,2,3 Input LOW Voltage V IL 1,2,3 Input Current h liN 13.5 13.5 V Input Capacltanceo CIN VIN = 0 V orVoo 1 2,3 1.5 -1 -10 1 10 1.5 -1 -10 1 10 DBO-DBll 1,2,3 5 5 WR,CS 1,2,3 20 20 VIN=OV ).LA pF 6-109 • Si7545 . . . Siliconix incorporated ~ (15 Volt Operation) ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified Voo = +15 V, VREF = +10 V VOUT= 0 V, AGND = DGND SYMBOL Output Amplifier: OP-07 LIMITS 1=25·C 2=125,85,70·C 3=-55,-40,0 ·C c,LLU GC,G ,GU GRADE' TEMP TYpd MIN b MAXb A,J,S :Fi~iJE MIN b MAXb UNIT TIMING Chip Select to Write Setup Time tes Chip Select to Write Hold Time teH Write Pulse Width tWR Data Setup Time Data Hold Time See Timing Diagram Figure 1 1 2,3 120 150 1,2,3 180 ?OO 180 200 0 0 1 2,3 100 170 160 240 160 240 tos 1 2,3 60 80 90 120 90 120 tOH 1,2,3 10 10 Voo 1,2,3 4.5 tes i!: tWR' teH i!: 0 ns SUPPLY Voo Rangel Supply Current All Digital Inputs VIH or V IL 1,2,3 All Digital Input o Vor Voo 1 2,3 16.5 4.5 16.5 2 2 0.1 0.5 0.1 0.5 mA 100 0.01 0.01 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebralo convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. This Includes the effect of 5 ppm max Gain TC. f. DBO-DB11 = OVtoVooorVooto OV. g. Feedthrough can be further reduced by connecting the metal lid on the side braze package (Suffix OJ to DGND. h. LogiC Inputs are MOS gates. Typical Input current (+25 ·C) Is less than 1 nA. I. Accuracy Is not guaranteed over this range. 6-110 V ~ ~ Si7545 Siliconix incorporated DIE TOPOGRAPHY Pad No. 1-- ~ 96 mils 18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 :~ 1 19 13 20 88 mils 11 2 10 1 3 4 5 7 6 8 9 2DX CSAPB 232 P-Channel Enhancement Mosfet 264 N-Channel Enhancement Mosfet 75 Resistors 29 Diodes 1 Bipolar Junction Transistor (NPN) Function Out Analog GND Digital GND DBll (MSB) D B10 D BS DBB DB7 D B6 Des 064 DB3 DB2 DBl ~o (LSB) CS WR V DO (Substrate) V AEF RFB TYPICAL CHARACTERISTICS NONLINEARITY ERROR vs. DIGITAL CODE 1.00 'in g} 0.75 0.50 0:: 0 !2 w 0.25 ~ 0 i5 z :::J z 0 z I.WIIJII I'11III1' ~ J.lhill ~m' •• ~ r,m' .•1,1. ...... III .... lWItVo\I. ""... -0.25 TA - +25°C VOD = +15 V VREF = +10 V -0.50 -0.75 -1.00 o 1024 2048 3072 4095 DIGrrAL INPUT CDDE (DECIMA[J 6-111 Si7545 Siliconix incorporated H TYPICAL CHARACTERISTICS (Cont'd) PSRR vs. FREQUENCY 0.0015 ./ 0.0012 ~ V I- m c. a: ~ 't; ~ 0.0009 0.0006 ./ ./ 0.0003 ./ oV o " "" . . .V 160 80 ./ V 240 320 400 FREQUENCY (Hz) FEEDTHROUGH ERROR vs. FREQUENCY 12.0 l " - TA +25 ·C I " - VDD = +15 V 1: !a: VREF = 20 Vpp I " - INPUT CODE: 0 0 ~ w :J: V 6.0 If t!l ::l 0 a: i!: 0 w ~ - V .." V i"""' 0.0 1k 10 k 100 k FREQUENCY (Hz) WRITE CYCLE TIMING DIAGRAM ~~,-' ____________ ~_lc_S___________-<_·~I....·_t~C~H~--I·I~ VOOO CHIP SELECT " / MODE SELECTION: WRITE MOOE: HOLO MOOE: Os and WR Ellher or WR high, dala bus (OBO-OBll) Is locked oUI: DAC holds last data present low, OAC responds to data bus ~---------- (OBO-OBll) Inputs. VOO o ~------- VOO OATAVALIO when WR or high state. NOTES: Voo= +5 Vi OATAIN (OBO-0811) Os CS assumed t r = t f= 20 ns VOO= +15 V: I r = I f = 40 ns All Input signal rise and fall times are measured from 10% to 90% of VOO. Timing measurement reference level Is (VIH + V IL) 12. CAUTION ESD (Electro-Static-Discharge-Sensitive) device. The digital control inputs are diode protected; however. permanent damage may occur on unconnected devices subject to high energy 6-112 electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed. ~ ~ Si7545 Siliconix incorporated DETAILED DESCRIPTION D/A Converter Section Figure 1 shows a simplified circuit of the O/A converter section of the Si7545 and Figure 2 gives an approximate equivalent circuit. Note that the ladder termination resistor is connected to AGNO. R is typically 10 kil. or negative polarity. (If a current source is used, a low temperature coefficient external RFB is recommended to define scale factor.) to ladder FROM INTERFACE LOGIC o--j R R AGNO Figure 2. OUT n-channel Current Steering Switch --~-+~~-oAGNO r-------c. TO AGNO SWITCH ---I-j-,----O OUT I b OBll (MSB) RFB OB10 Figure 1. OB9 TO OUT SWITCH OBO (LSB) Simplified D/A Circuit of SI7545 The binary weighted currents are switched between the OUT bus line and AGNO by n-channel SPOT analog switches, thus maintaining a constant current in each ladder leg independent of switch states. The capacitance at the OUT bus line, COUT, is code dependent and varies from 70 pF (all switches to AGNO) to 150 pF (all switches to OUT). One of the current switches is shown in Figure 2. The input resistance at VREF (Figure 1) is always equal to RREF (RREF is the R-2R ladder characteristic resistance and is equal to "R"). Since RREF at the VREF pin is constant, the reference terminal can be driven by a reference voltage or a reference current ac or dc, of positive CONTROL Figure 3. Digital Input Structure The input buffers are simple CMOS inverters designed such that when the Si7545 is operated with VDD 5 V, the buffers convert TIL input levels (2.4 V and 0.8 V) into CMOS logic levels. WhenVIN is in the region of 2.0 to 3.5 V the input buffers operate in their linear region and draw current from the power supply. To minimize power supply currents it is recommended that the digital input voltages be as close to the supply rails f'/DD and OGNO) as is practically possible. = The Si7545 may be operated with any supply voltage in the range 4.5 V -2.0 Figure 7. Voltage Switching Mode The loading of the reference voltage source is code dependent and the response time of the circuit is often determined by the behavior of the reference voltage to the changing load conditions. Good results can be obtained by decoupling VREF with a 10 Jl.F tantalum capacitor in parallel with a 0.01 Jl.F ceramic. To maintain linearity the voltages at OUT and AGND should remain within 2.5 volts of each other, for a VDD of 15 V. If VDD is reduced from 15 V or the differential voltage between OUT and AGND is increased to more than 2.5 V, the differential nonlinearity of the DAC will increase and the linearity of the DAC will be degraded. Figures 8 and 9 show typical curves illustrating this effect for various values of reference voltage and VDD. If the output voltage is required to be offset from ground by some value, then OUT and AGND may be biased up. The effect on linearity and differential nonlinearity will be the same as reducing VDD by the amount of the offset. 6-116 +5 +10 VREF(V) Differential NonLinearity vs. VDD for Figure 7 Circuit. Reference voltage = 15. V. Shaded area shows the range of values that typically occur for the Land U grades. Figure 9. The circuits of Figures 4, 5 and 6 can all be converted to single supply operation by biasing AGND to some voltage between VDD and DGND. Figure 10 shows the 2's complement bipolar circuit of Figure 5 modified to give a range from 2 V to 8 V about a "Pseudo-analog ground" of 5 V. This voltage range would allow operation from a simple VDD of 10 V to 15 V. The LM136A-5.0 voltage reference fixes AGND at 5 V. VIN is set at 2 V by means of the series resistors R1 and R2. There is no need to buffer the VREF input to the Si7545 with an amplifier because the input impedance of the DAC is constant. Note however, that since the temperature coefficient of the D/ A reference input resistance is typically -300 ppm/oC, applications which experience wide temperature variations may require a buffer amplifier to generate the 2.0 V at the VREF pin. Other output voltage ranges can be obtained by Si7545 fr"1I" 8i1iconix ~ incorporated APPLICATION HINTS (Cont'd) VDD = +10 V 10 +15 V Rl 10 k VOUT CMOS DATA BUS VDD = +10 V 10 +15 V Figure 10. Single Supply "Bipolar" 2's Complement DAC changing R4 to shift the zero point and (R1 + R2) to change the slope, or gain of the D/A transfer function. VDD must be kept at least 4.5 V about OUT to ensure that linearity is preserved. MICROPROCESSOR INTERFACING The 8i7545 can interface directly to either 8- or 16-bit microprocessors via its 12-bit wide data latch using standard C8 and WR control signals. A typical interface circuit for an 8-bit processor is shown in Figure 11. This arrangement uses two memory addresses, one for the lower 8-bits of data and one for the upper 4-bits of data into the DAC via the latch. Figure 12 shows an alternative approach for use with 8-bit processors which have a full 16-bit wide address bus such as 6800, 8080, Z80. This technique uses the 12 lower address lines of the processor's address bus to supply data to the DAC, thus each 8i7545 connected in this way uses 4 k bytes of address locations, Data is written to the DAC using a single memory write instruction. The address field of the instruction is organized so that the lower 12-bits contain the data for the DAC and the upper 4-bits contain the address of the 4k block at which the DAC resides. 16-BIT ADDRESS BUS 16-BIT ADDRESS BUS DBll 080 SI7545 CPU CPU WRP------, WR '------lOs P - - - - - - - - - I WR D7r---------------~, 071-----.1 DOr--=_ _ _8~-~B~IT~D~A~T~A~B~U~S~_ _ _ _- , / 8-BIT DATA BUS D0r----------------,/ • 00 = DECODED ADDRESS FOR DAC ·00 = DECODED ADDRESS FOR LATCH Figure 12. Connecting the SI7545 to an a-Bit Microprocessor via the Address Bus Figure 11. a-Bit Processor to SI7545 Interface 6-117 iii Si7545 .... Siliconix incorporated ~ PIN DESCRIPTION PIN NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 DESCRIPTION SYMBOL Current Output Analog Ground Digital Ground Digital Input (Bit 11 MSB) Digital Input (Bit 10) Digital Input (Bit 9) Digital Input (Bit 8) Digital Input (Bit 7) Digital Input (Bit 6) Digital Input (Bit 5) Digital Input (Bit 5) digital Input (Bit 3) Digital Input (Bit 2) Digital Input (Bit 1) Digital Input (Bit 0) Chip Select Input Write Input Positive Power Supply Reference Input Voltage Internal Feedback Resistor OUT AGND DGND DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO CS WR VDD VREF RFB BURN-IN CIRCUIT Dual-In-Llne Packages +15 V +5 V Note: All Resistors are 1 k 6-118 n unless otherwise specified Si7545 .... Siliconix incorporated ~ BURN-IN CIRCUIT (Cont'd) PLCC Package . 3 2111112cJ\1 / 9\\11:1\11\\12\\1 +15 V Note: All resistors are 1 k!l unless otherwise specified 6-119 Si7820 CMOS Subranging 8-Bit AID Converter .,.. Siliconlx incorporated ~ FEATURES BENEFITS APPLICATIONS • Fast Conversion Time 1 .34 I1s Maximum • Increased Data Throughput • Digital Signal Processing • No Accuracy Trims Required • High Speed Data Acquisition • Single +5 V Supply • Simplified Power Supply Requirements • I1P Controlled Servos eOn-Board I1P Interface o Simplified I1P Interface • 1/2 LSB Total Unadjusted Error • 5 Volt Systems DESCRIPTIOtJ The 8i7820 is a high speed, microprocessor compatible, 8-bit analog-to-digital converter which uses a subranging (half-flash) technique to achieve a conversion time of 1.34 I1s. The converter has a V to +5 V analog input range and uses a single +5 V supply. o Applications include high speed data acquisition, real-time digital signal processing, FAX communications systems, oversampled audio digitizing, and digital servo systems such as head positioning for disk drives. The SI7820 will easily interface with microprocessors by appearing as a memory location or 1/0 port without the need for external interfacing logic. The data outputs use latched, three-state buffers to allow direct connection to a microprocessor data bus or system input port. An over-flow output is provided for cascading devices to achieve higher resolution. The Si7820 is pin compatible with the industry-standard AD7820 and ADC0820 devices. The Si7820 is built using the Siliconix proprietary PolyMOS process, allowing a mix of high density fast digital logic with high performance analog ciruitry. An epitaxial layer prevents latchup. It is available in the 20-pin PDIP and PLCC-20 for operation over the commercial K, L suffix (0 to 70°C), 20-pin CerDIP for industrial, B, C suffix (-40 to 85°C) temperature range, and for military, T, U suffix (-55 to 125°C) temperature operation. PIN CONFIGURATION Dual-In-Llne Package PLCC Package Top View Top View , . V DD D~ N/C OFL 7 DB7(MSB) DBS -----....--~ Order Number: SI7820 6-120 _ DB4 MO~ ~ RD + REF- N/C DB3 ~ WR/RDY ~ REF v DD 311 211111201119 DB2 ~ DBS Cs DBO V IN B 91110111111121113 INT GNDREF REF ps Order Number: SI7820 Preliminary Si7820 ..". Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM OBO- 08r OATAOUT PIN~!!175, 16 WR/ROY ORDERING INFORMATION PART TEMP. RANGE PACKAGE* ERROR Si7820KP o to 70°C o to 70°C o to 70°C o to 70°C Si7820CQ -40 to 85°C CerDIP +1/2 LSB Si7820BQ -40 to 85°C CerDIP +1 LSB Si7820UQ -55 to 125°C CerDIP +1/2 LSB Si7820TQ -55 to 125°C CerDIP +1 LSB Si7820LN Si7820KN Si7820LP Plastic DIP +1/2 LSB Plastic DIP +1 LSB PLCC PLCC +1/2 LSB +1 LSB • All devices -- 20 lead packages . •• Consult factory for dice specifications. ABSOLUTE MAXIMUM RATINGS Supply Voltage, Voo to GND ....•............ 0 V, 10 V Voltage at any other pins (Pins 1-9, 11-18) ............. GND -0.3 V, VOO +0.3 V Operating Temperature Ranges SI7820LN/KN/LP/KP ........................ 0 to 70·C SI7820BQ/CQ ............................ -40 to 85·C SI7820TQ/UQ ........................... -55 to 125·C Storage Temperature Range .......•.•.... -65 to 160·C Power Dissipation (Any Package) to 75·C .. ' ... 450 mW Derate Above 75·C by .....•.....•.....•..... 6mW/·C Preliminary Lead Temperature (Soldering 10 seconds) ....•... 300·C 6-121 Si7820 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Voo = 5 V, V REF+= 5 V VREF-= a V, RD-Mode GND = a V LIMITS 1=25·C T, U 2=125,85,70·C SUFFIX 3=-55,-40,0 ·c -55 to 125·C TEMP TYpd B, C, K, L SUFFIX MIN b MAXb MIN b MA>f UNIT ACCURACY Resolution No Missing Codes 1,2,3 8 L, C, U Grades 1,2,3 _1/_ 1/_ -1/_ '/_ B, K, T Grades 1,2,3 -1 1 -1 1 1.4 1.25 4.0 4.0 1.4 1.25 4.0 4.0 8 Bits LSB Total Unadjusted Error e REFERENCE INPUT Reference Input Resistance 1 2,3 RIN 2.2 VREF+ Input Voltage Range 1,2,3 a 5.1 a 5.1 VREF- Input Voltage Range 1,2,3 -0.1 5.1 -0.1 5.1 -0.1 5.1 -0.1 5.1 kCl V ANALOG INPUT Analog Input Range, VINR 1,2,3 Analog Input Capacitance C YIN 1 Analog Input Current Slew Rate! I YIN VIN = a V to 5 V SR 45 1 2,3 1 V pF -0.3 -3 0.2 0.3 3 -0.3 -3 0.1 0.3 3 ~A 0.1 V/~s LOGIC INPUTS Input HIGH Voltage Input LOW Voltage Input HIGH Current -CS, WR, RD Inputs 1,2,3 2.4 2.4 Mode. Input 1,2,3 3.5 3.5 -CS, WR,RD Inputs 1,2,3 0.8 0.8 Mode Input 1,2,3 1.5 1.5 -CS, RD - Inputs 1 2,3 0.3 1.0 0.3 1.0 1 2,3 0.3 3.0 0.3 3.0 150 200 150 200 VINH V INL IINH -WR Input Mode Input 6-122 V 1 2,3 50 ~A Preliminary ..or Siliconix ~ Si7820 incorporated ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25·C T, U 2=125,85,70·C Voo = 5 V, VREF+= 5 V SUFFIX 3=-55,-40,0 ·C -55 to 125·C VREF-= 0 V, RD-Mode PARAMETER SYMBOL GND = 0 V TEMP TYpd B,C, K,L SUFFIX MIN b MAXb MIN b MAX' UNIT LOGIC INPUTS (Cont'd) Input LOW Current IINL Input CapacltanceC C IN -CS, WR, RD Mode Inputs 1 2,3 1,2,3 -0.3 -1.0 -0.3 -1.0 B 5 J.lA B pF LOGIC OUTPUTS Output HIGH Voltage DBO-DB7, OFL, INT Output Voo= 4.75 V Output LOW Voltage DBO-DB7, OFL, INT RDY lOUT = -360 J.lA 1,2,3 4.0 4.0 lOUT = -10J.lA 1,2,3 4.5 4.5 lOUT = 1.6 mA 1,2,3 VOH VOL 0.4 -0.3 -3.0 1 2,3 Three-State Current DBO-DB7, RDY 0.3 3.0 V 0.4 -0.3 -3.0 Output Source Current DBO-DB7, OFL, INT ISRO VOUT= 0 1,2,3 -25 -10 -10 Output Sink Current DBO-DB7, OFL, INT RDY I SINK VOUT=VOO 1,2,3 40 15 15 Output CapacltanceC DBO-DB7, OFL, INT RDY COUT 1,2,3 5 0.3 3.0 J.lA mA 8 8 pF 5.25 V 10 15 mA POWER SUPPLY Supply Voltage Voo Supply Current 100 5 V ±5% for Specified Performance 1,2,3 4.75 1 2,3 5 1 25 1,2,3 ±'/'8 5.25 4.75 10 15 CS= WR =RD = 0 Power Dissipation Power Supply Sensitivity PSS Voo=5V±5% mW -'I. '/. -'I. 'I. LSB TIMINGt,g -CS - -CS to RDY Delay to RD, WR Setup Timing tess 1,2,3 0 0 to RD, WR Hold Time -- tesH 1,2,3 0 0 -CS - tROY Conversion Time (RD Mode) tORO Preliminary CL= 50 pF, R = 3 k.[l. ns 1 2,3 35 70 100 70 90 1 2,3 1.2 1.6 2.5 1.6 2.0 J.ls 6-123 Si7820 ..... Siliconix .1;11 incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: 1=25·C 2=125,85,70·C Voo = 5 V, VREF+= 5 V 3=-66,-40,0 ·C VREF-= 0 V, RD-Mode PARAMETER SYMBOL GND = 0 V TEMP TVpd LIMITS T, U SUFFIX -66 to 126·C MIN b MAXb B, C, K, L SUFFIX MIN b MAX' UNIT TIMING f,9 (Cont'd) Data Access Tlmeh (RD Mode) tACCO See Figure 4 1 2,3 tCRo+10 tCRo+20 tCRo+50 tCRo+20 tCRo+35 RD to INT Delay (RD Mode) tlNTH C L = 50 pF 1 2,3 60 125 225 125 175 Data Hold Tlme l tOH 1 2,3 40 60 100 60 80 tp 1 2,3 500 600 Write Pulse Width tWR 1,2,3 0.6 Conversion Time (WR IRD Mode) tCWR-RO 1 2,3 1.34 1.53 1.34 1.50 Delay Be~een WR and RD Pulses tRO 1 2,3 600 700 600 700 Data Access Time (WR/RD Mode)h tACC1 ns Delay Time Between Conversions 500 600 50 0.6 50 j.l.s tRO < tlNTL See Figure 6 1 2,3 110 160 250 160 225 RD to INT Delay tRI 1 2,3 100 140 225 140 200 WR to INT Delay tlNTL 1 2,3 600 1000 1700 1000 1400 Data Access Time (WR/RD Mode)h tACC2 tRO> tlNTL See Figure 5 1 2,3 60 70 110 70 90 WR to INT Delay (Stand-Alone) tlHWR CL= 50 pF 1 2,3 70 100 150 100 130 10 50 75 50 65 Data Access Time After INT tiD ns NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Total unadjusted error Includes offset, full-scale and linearity errors. f. Sample tested at 25"C to ensure compliance. g. All Input control signals are specified with t R = t F = 20 ns (10% to 90% of 5 V). h. Measured with load circuits of Figure 1 and defined as the time required for an output to cross O.B V or 2.4 V. I Defined as the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 2. 6-124 Preliminary Si7820 .... SlIIconix incorporated ~ SWITCHING TIME TEST CIRCUITS DBN • 3~I I DBN3k.n. Il00PF '1 • I10PF -=- DGND-=A. VOH to HIGH-Z -=- DGND-=A. HIGH-Z toVOH 1 +5 V 3k.n. 3 k.n. DBN • II - DBN .---------~------~ I100PF 10PF I -=- DGND B,VOL to HIGH-Z -=- DGND B. HIGH-Z to VOL Figure 1. Load Circuits for Data Access Time Test Figure 2. Load Circuits for Data Hold Time Test CAUTION Stresses above those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect the device reliability. PIN DESCRIPTION PIN NUMBER SYMBOL DESCRIPTION VIN DBO Three-state data output, bit 0 (LSB). 3 DB1 Three-state data output, bit 1. 4 DB2 Three-state data output, bit 2. 5 DB3 Three-state data output, bit 3. 6 7 WR/RDY WRITE control input/READY status output. See Digital Interlace section. MODE Mode selection input. This input is internally pulled low with a 50 jl.A current source. RD Mode: MODE low/open. WR-RD Mode: MODE high. 1 2 Analog input; range = GND < VIN < VDD. 8 READ input. RD must be low to access data. See Digital Interlace section. 9 INTERRUPT output. INT going low indicates the completion of a conversion. See Digital Interface section. 10 Ground. 11 Lower limit of reference span. Sets the zero code voltage. Range: GND to VREF+. Preliminary 6-125 Si7820 ~ ~ Siliconix incorporated PIN DESCRIPTION (Cont'd) PIN NUMBER SYMBOL DESCRIPTION 12 VREF+ Upper limit of reference span. Sets the Full Scale Input voltage. Range: VREF- to Voo. 13 CS CHIP-SELECT input. CS must be low for the device to recognize WR or RD inputs. 14 DB4 Three-state data output, bit 4. 15 DB5 Three-state data output, bit 5. 16 DB6 Three-state data output, bit 6. 17 DB7 Three-state data output, bit 7 (MSB). 18 OFL Overflow Output. If the analog input is greater than VREF+, OFL will be high at the end of the conversion. It can be used to cascade two or more devices to increase resolution. 19 NC No Connection. Voo Power supply voltage, +5 V. 20 DETAILED DESCRIPTION Converter Operation The Si7820 uses a "half-flash" conversion technique (see Functional Block Diagram). Two 4-bit flash AID converter sections are used to achieve an 8-bit result. Using 15 comparators, the upper 4-bit MS (most significant) flash AID compares the unknown Input voltage to the reference ladder and provides the upper four data bits. An internal DAC uses the MS bits to generate the analog result from the first flash conversion, and generates a residue voltage which is the difference of the unknown input and the DAC voltage. The residue Is then compared to the reference ladder using 15 LS (least significant) flash comparators to obtain the lower four bits of the output. An additional overrange comparator detects if the analog Input is greater than the reference voltage. Operating Sequence The operating sequence for the WR-RD Mode is shown In Figure 3. The conversion is initiated by a falling edge of WR. The comparator inputs track the analog input voltage for the duration of WR low. A minimum of 600 ns is re~ed for the input voltage to be acquired. When WR returns high, the MS flash result is latched into the output buffers and the LS conversion begins. INT goes low approximately 6-126 600 ns later, indicating end of conversion, and that the lower 4 data bits are latched into the output buffers. RD going low then accesses the data. iN'r GOING LOW 500n / SET UP TIME REQUIRED 1 6 ~6J~~~~t~~~A~RIOR TO STARTING CONVERSION . VIN IS TRACKED BY INTERNAL COMPARATORS n 60 n \ INDICATES THAT CONVERSION IS COMPLETE AND THAT DATA CAN BE READ VIN IS SAMPLED>'-+"'-"-AND THE MSB·S ARE LATCHED Ro BROUGHT LOW HERE LATCHES THE 4 LSBS AND ACCESSES DATA ON DBa - DB 7 Figure 3. Operating Sequence (WR-RO Mode) If an externally controlled conversion time is required, the RD line can be brought low as soon as 600 ns after WR goes high. This will latch the lower 4 data bits and output the conversion result on DBO-DB7. At least 500 ns setup time is required from INT ~g low to the start of another conversion (WR going low). Preliminary Si7820 Ir'Il'" Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) Digital Interface The Si7820 has two basic interface modes which are set by the status of the MODE input pin. When this pin is low, the converter is in the RD mode, when this pin is high the converter is set up for the WR-RD mode. RD Mode In RD mode, conversion control and data access is controlled by the RD input (s~ Figur~4). The conversion is initiated by taking RD low. RD is then kept low until output data appears. This mode is useful for microprocessors which can be forced into a WAIT state. The processor can start a conversion, wait, and then read data with a single READ instruction. conversion is initiated on the falling edge of WR. Several options exist for reading the data from the converter. Using Internal Delay !!!...!he first of these options the processor waits for INT output...!2.. go low before reading the data (Figure 5). INT typically goes low 600 ns after the rising edge of WR, indicating that the conversion is complete and the result is available in the output latch. With CS low, data outputs DBO-DB7 can be accessed by pulling RD low. INT is then reset by the rising edge of CS or RD. Pin 6 (WR IRDY) is configured as a status output (RDY) in RD mode. This output can be used to drive the READ or WAIT input of a processor. ROY is an open drain output (with no internal pull-up device) which goes low after the falling edge of CS and goes high impedance at the end of the conversion. An INT output is also provided which goes low at the end of the conversion and returns high on the rising edge of CS or RD. os \ '--AD \.- Figure 5. WR-RD Mode Timing ( tRD > tlNTL ) Reading Before Delay DBO- DB7 Figure 4. RD Mode Timing WR-RD Mode In the WR-RO mode, pin 6 (WR/ROY) is configured as the WRITE input for the converter. With CS low, a Preliminary An alternative option can be used to externally control the conversion time (see Figure 6). The internally generated 600 ns delay varies somewhat with temperature and supply voltage (see Typical Operating Characteristics) and can be overridden with RD. To ~chieve this, the status of INT is ignored and RO is broug~w as soon as 600 ns after the rising edge of WR. This completes the conversion and enables the output buffers, DBO-DB7, which contain the conversion ~ult. INT also goes low after the falling edge of RD and is reset on the rising edge of RD or CS. 6-127 Si7820 fIlY' Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) ~ _ _ _---L_ _ _ _ _ _ tp and a conversion is initiated by pulling WS low. Output data is ~alid approximately 600 ns after the rising edge of WR. --It\......./ INT----~ DBO- DB7 Figure 6. WR-RD Mode Timing ( tRD > tlNTL ) Pipelined Operation In addition to the two standard WR-RD mode options, • pipe-lined· operation can be achieved by tying WR and RD together (see Figure 7). With CS low, WR and RD going low initiates a conversion, and reads the result of the previous conversion at the same time. ~}---- )- DBO- DB7 Figure 8. WR-RD Mode Stand-Alone Timing CS = RD = 0 Analog Considerat!ons The VREF+ and VREF- input set the full-scale and zero input voltages of the AID. In other words, the voltage at VREF- defines the input which produces an output code of all zeroes and the voltage at VREF+ defines the input which produces an output code of all ones (see Figure 9). OUTPUT CODE + l1111111T 11111110"t 11111101+ I I I I I 00000011 "t 00000010+ 00000001 Figure 7. WR-RD Mode Pipe-Lined Timing WR = RD Stand·Alone Operation The converter can also be used in a stand-alone operation (see Figure 8). CS and RD are tied low 6-128 .+ V REF (+) I + -+ -)- - - - - --I-I-~'" FS V IN INPUT VOLTAGE (IN TERMS OF LSB's) FS - lLSB Figure 9. Transfer Function Preliminary frl!' Siliconix ~ Si7820 incorporated DETAILED DESCRIPTION (Cont'd) VIN(+) VIN GNO GND +5V VDD SI7820 II o-.--.......- ......----::-:-:~ voo SI7820 ~V\f\r....--t VREF(+) VREF(+) 11 +5V VREF(-) -=- W Figure 10a. Power Supply as Reference Current path must stili exist from VIN(_) to GND. Figure 10b. Input Not Referenced to GND 0 - -....--"'"1 GND +5 v 0-.---......- -.......---""'1 vOD SI7820 VREF(+) '--.....-'-'-1 VREF(-) Figure 100. External Reference 2.5 V Full-Scale Preliminary 6-129 Si8601/8603 ..... Siliconix incorporated ~ 8-Bit Data Acquisition Systems FEATURES BENEFITS APPLICATIONS • Total Unadjusted Error < 1/2 LSB (Si8603) • Eliminates External Trims • J.lP fPC-Based Data Acquisition Systems • Fast Conversion Time (25 J.ls maximum) • Reduced System Power Consumption • Low Power (2.5 mW) • Reduced Aperture Error • Audio Digitizing • ElimInates Additional Supplies • Remote Data Acquisition fi • Increased Data Throughput On-Chip S/H Function • On-Board 8-Channel Multiplexer (Si8601) • Microprocessor Interface • Voice/Telecom Systems • Battery-Operated Systems • High Density Systems • Reduced Board Space and Component Count DESCRIPTION The Si8601 and Si86Q3 are 8-bit data acquisition systems which include an A/D converter, sample-and-hold function, and a microprocessor interface on one monolithic chip. The Si8603 is a single-cl1annel version, while the Si8601 includes an on-board 8-channel analog multiplexer and decode logic to form a complete 8-channel data acquisition system. The Si8601 and Si8603 are designed for 5 V single-supply operation and TTL-level logic interfacing. For 15 V operation, refer to the Si8602/8q04 data sheet. Built in the Siliconix proprietary PolyMOS T. process, the Si8601/8603 use a capacitive-ladder AID conversion technique to achieve low power, high speed and less than 1/2 LSB total unadjusted error without the need for thin film resistors or laser trimming. The capacitive ladder architecture creates an on-board sample/hold function, reducing the aperture time of the converter to less than 90 ns. This facilitates digitizing rapidly-slewing analog signals with a minimum of error. An epitaxial layer prevents latchup. The total unadjusted error specification of 1/2 LSB (Si8603) eliminates the need for any external trims or adjustments, further reducIng system cost and enhancing overall reliability. The Si8601 is available in 28-pin plastic and ceramic DIP. The Si8603 is available in 16-pin plastic and ceramic DIP. Both are available in industrial, D suffix (-40 to 85°C) and military, A suffix (-55 to 125°C) temperature ranges and in /883 versions as well. For surface mount applications, the Si8601 is available in tl')e PLCC-28. and the Si8603 in the PLCC-20. For more information on the Si8601, please refer to Siliconix application Note AN83-13. PIN CONFIGURATION PLCC-20 Package o V Dual-In-Llne Package 07 05 03 01 Top View Order Numbers: CerDIP: SI8603DJ PlastIc: S18603AK, SI8603DK 6-130 ° LON S K 00 0 7 so 3112 1112011191 ~ ~ ~ ~8 • " ~ ~ Top View ~ ~ 91110111111121113 o G N I R E NON E ° F + Order Number: SI8603DN Si8601/8603 W'F Siliconix ~ incorporated PIN CONFIGURATION (Cont'd) Dual-In-Llne Package PLCC-28 Package eVG 1411 ~ ~ (MSB) ?II'II?BI?7II?61 ~ 02 5 4 03 Order Numbers: ~II / 05 Eoe REF+ CerDIP:SI8601AK SI8601DK Plastic: SI8601DJ Rg ~ ~ ~ GNO se 0 7 (MSB) (LSB) DO ~ OE ~ ~ REF- ~ i §! INl 9 IN2 IN3 ~ ~ 'f. 05 03 0, Eoe REF+ ALe AO 12111jI14111E111E111711181 I I I I I A A NNNNN21 4 Top 5 6 7 8 View Order Number: SI8601DN Top View FUNCTIONAL BLOCK DIAGRAM r------------------,I B ANALOG INPUTS I I I I ADDRESS LOAD CONTROL AID B OUTPUTS CONVERTER TIMING LOGIC I CLK I L __________________ Si8601 ONLY I ~ ABSOLUTE MAXIMUM RATINGS Reference Input Voltage Range, VREF- ............................... -0.3 V to VREF+ Reference Input Voltage Range, VREF+ •...••..•.••.••.•...•.•••.•...... VREF- to Vee +0.3 V Supply Voltage, Vee .•..•••.•......•............ 6.5 V Input Voltage Range, All Inputs .... -0.3 V to Vee +0.3 V Storage Temperature (K Suffix) ..•....... -65 to 150°C (J, N Suffix) •••.•.. -65 to 150°C Operating Temperature (A Suffix) ....••... -55 to 125°C (0 Suffix) ....••.... -40 to 85°C Power 28-Pln 16-Pln 28-Pln 16-Pln 28-Pln 20-Pln Dissipation (Package)' Ceramic DIP" . . . . . . . . . . . . . . . . . . . . . .. 1046 Ceramic DIP'" ••......••••.......•.. 900 Plastic Dip···· •.•.•......•••..•..... 1046 Plastic Dip····· ...................... 900 PLCC····· .••••..•.....•.........••. 900 PLCC····· ............ "............ 900 mW mW mW mW mW mW All leads welded or soldered on PC Board. Derate 6.5 mW/oC above 25°C. Derate 12 mW/oC above 75°C. Derate 6.5 mW/oC above 25°C. Derate 12 mW/oC above 75°C. 6-131 Si8601/8603 ...... Siliconix ,,6;11 incorporated ELECTRICAL CHARACTERISTICS a, rn, n Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL Vcc = 5 V f CLOCK = 1.04 MHz LIMITS 1=25 ·C All 2=125,85·C Grades 3=-55,-40· C TEMP TYP d MIN b MAXb UNIT INPUT Input Channel ON State CurrentS JJ.A VIN = 2.5 V 1 VIN=SV 1 VIN = 0 V 1 VIN=SV 2,3 VIN =OV 2,3 -1000 VANALOG 1,2,3 VREF- High Level Input Voltage V IH 1,2,3 V c c-1.S Low Level Input Voltage VIL 1,2,3 l.S High Level Input Current f IIH VIN=SV 1,2,3 1 Low Level Input Current f IlL VIN = 0 V 1,2,3 -1 1,2,3 4 Input Channel OFF State Current f Analog Input Voltage9 10N(PEAK) -5 200 -200 nA I OFF 1000 VREF+ V JJ.A OUTPUT High Level Output Voltage VOH Low Level Output Voltage VOL OFF State Output Current q 10 = -360).LA Data Outputs 1,2,3 0.4 End Of Conversion 1,2,3 0.4 VREF = S V 1,2,3 1 VBUS= 0 V 1,2,3 V 10=1.6rnA JJ.A los -1 SUPPLY Supply Current h Supply Current Plus Reference Current h Supply Voltage l, c 6-132 Icc VREF+ Is open, VREF- = 0 V VIL = 0 V, V IH = S V 1 2,3 Icc+ IREF Vcc= S V V IL = 0 V, VIH = S V 1 Vcc Refer to 'Operatlng Range" Graph 1,2,3 10 10 3 SO 200 JJ.A 1 rnA 6.S V ~ ~ Si8601/8603 Siliconix incorporated ELECTRICAL CHARACTERISTICS a, m, n Test Conditions Unless Otherwise Specified: LIMITS 1=25 ·C 2=125,85 ·C 3=-55, -40 • C All Grades SYMBOL Vcc= 5 V f CLOCK = 1.04 MHz TEMP Positive R~ference Voltage g, VREF+ Refer to "Operating Range" Graph 1 3c Vcc Negative Reference Voltage g, c VREF- 1 a 0.3 c Voltage BetweenVc c and VREF+ Terminals I VccVREF+ PARAMETER TYP d MIN b MAXb UNIT SUPPLV (Cont'd) Refer to "Operating Range" Graph 1 a V DYNAMIC Control Input Capacitance C1 1,2,3 2.5 Data Output Capacitance Co 1,2,3 5.5 Supply Voltage Sensitivity PSR 1,2,3 0.05 Zero Error J ZE 1,2,3 0.25 Linearity Error J INL 1,2,3 0.25 0.25 pF Vcc = 4.75 V & 5.25 V fCLOCK = 1.04 MHz Total Unadjusted Error J E TOT 1 2,3 Differential Nonlinearity DNL 1,2,3 %IV -0.50 -0.75 0.50 0.75 -0.5 0.5 LSB TIMING Vcc = 3 V Clock Frequency I 100 kHz fCLOCK Vcc = 5 V 1,2,3 1040 Start Pulse Width tsc 1 100 Address Load Control Pulse Width tALC 1 200 Address Set Up Time tsu 1 50 Address Hold Time tH 1 50 Input Voltage Stable I tiS 1 8 ns SI86010NLY Clock Periods 6-133 Si8601/8603 Siliconix incorporated ELECTRICAL CHARACTERISTICS a, m, n PARAMETER SYMBOL. Test Conditions Unless Otherwise Specified: Vcc= 4.75 V to 5.25 V VREF+ = V cc , VREF- = 0 V fCLOCK = 1.04 MHz LIMITS 1=25 ·C 2=125,85 ·C 3=-55,-40· C TEMP TYP All Grades d MIN b MAXb UNIT TIMING (Cont'd) End of Conversion Delay Time tDEC Conversion Time k tCONV f CLOCK = 1.04 MHz tsc=100ns 1,2,3 Output Enable Time tOE C L = 50 pF 1 100 250 Output Disable Time too CL= 10 pF RL= 10 kfi 1 100 250 1 0 200 ns 25 .Ils ns NOTES: a. Refer to PROCESS OPTION FL.OWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONL.Y, not guaranteed nor subject to production testing. e. Decays exponentially during first clock high period. f. Channel addressed with clock OFF. g. Analog Input voltage greater than V REF+ converts as all ones and less than VREF- as all zeros. h. Current Increases linearly with frequency of the clock at a rate of approximately 10% per 100 kHz. I. For proper operation the maximum clock rate must be lowered as the voltage across the reference terminals Is lowered below 4.75 V. The maximum clock rate must be lowered by 0.68 fCLOCKlvolt multiplication factor. VREF+ must be above 3.0 V or Vcc - 1.0 V, whichever Is higher. J. All errors are measured with reference to an Ideal straight-line transfer curve from 1/2 L.SB to ( Vec - 1/2 L.SB). k. Source resistance < 1 kfi . m. All voltage values are with respect to ground terminal. n. All dc parameters are 100% tested at 25 oC. L.ots are sample tested for ac parameters and high and low temperature limits to assure conformance with specifications. q. Veus Is the voltage applied to the output pins when the digital outputs are In OFF state. DIE TOPOGRAPHY 11 Pad Function No. 12 13 Si8601 114 mils 27 18 19 20 21 22 23 24 25 26 CSAD 493 P-Channel Enhancement MOSFETs 477 N-Channel Enhancement MOSFETs 6-134 20X 13 Capacitors 7 Resistors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Vcc CL.K D6 D4 D2 Do OE REFIN1 IN2 IN3 IN4 INs INs Pad Function No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 IN7 INa A2 A1 Ao AL.C REF+ EOC D1 D3 Ds D7 SC GND Si8601/8603 .... Siliconix incorporated ~ DIE TOPOGRAPHY (Cont'd) Si8603 1...........- 6 - - - - -123 mlls-5--4--3--··~ 1 Pad No. 7 1 2 3 4 5 6 114 mils B 9 10 16 7 B 9 10 11 12 13 14 15 16 Function Vee ClK 06 04 02 Do OE GNO IN REF+ EOC 01 03 05 07 SC ~::::~::11::::::::::::~12::1:3~1:4::1::5::~ 20X CSSD 13 Capacitors 7 Resistors 425 P-Channel Enhancement MOSFETs 409 N-Channel Enhancement MOSFETs OPERATING RANGE OF VREF+ ~ w 6 t!J Z ~ t!J z 5 Guaranteed Test Points ~ W !l.. CJ 4 t > L.. 3 3 5 4 Vee 6 (V) 6-135 Si8601/8603 ...... Siliconix incorporated ~ TIMING CLOCK Sl8601 'Only I START SEE DETAIL A ALC SEE DETAIL A ADDRESS ANALOG IN H ___ __________________________________ ~ ==::x SEE DETAIL A Sf ~:ff f-----y---Hf----- I~~---------------tl-s------------~~~s r- - - - , SEE DETAIL A sf------J ! EOC tCONV ----------~~I OLrrPUTCONTROL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--irff--___~ ~TCHOLrrPUTS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~rS-E-E-D-ET-Al-L-B~1~ Sf DETAIL. A START _ _ _ _ _ _ _ _ _ _ _J1~50% . ;%~ t8C-+I·--------- I EOC SI8601 Only I 60%}~___________ I+-tDEC-+t ADDRESS DETAIL.B OUTPLrr CONTROL ==x I.. 1 f,...t-60-%---- ALC ________ '---- ---+lb}..1 r 60%Xr--------------tALC 60% I.- tH 1 I ~ts~ _ ________________~~150% ~1 . 500/,,,------ C :=rf. 90 1 1% -------+1-<· ~TCHED OLrrPLrrS - - - - - - -__ HI Z STATE 1 ~ 1~10% tOE I 1 --I 0 % ~% too DETAILED DESCRIPTION PRINCIPLES OF OPERATION Si8601 with On-chip Eight Channel MUX: The analog multiplexer selects 1 of 8 single-ended input channels as determined by the input address code. The Address Load Control (ALC) transfers and latches the code into the address decoder on the positive edge of the ALC signal. The output latch is reset by the positive edge of the Start 6-136 Conversion (SC) pulse. Sampling starts with the positive edge of the SC pulse and lasts for 8 clock periods from its falling edge. The conversion process can be interrupted by a new SC pulse before the end of 24 clock periods. Continuous conversion may be accomplished by connecting the End of Conversion (EOC) output to the start input. If used in this mode an external pulse should be applied after power up to assure start up. Si8601/8603 tI7' Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) begins identifying bits by identifying the charge on each capacitor relative to the reference voltage. In the switching sequence, all eight capacitors are examined separately until all 8 bits are identified, and then the charge-convert sequence is repeated. In the first step of the conversion phase, the cqmparator looks at the first capacitor (binary weight = 128). One pole of this capacitor is switched to the reference voltage, and the equivalent poles of all the other capacitors on the ladder are switched to ground. If the voltage at the summing node is grater than the trip-point of the comparator (approximately one-half the reference voltage), a bit is placed in the output register, and the 128-weight capacitor is switched to ground. If the voltage at the summing node is less than the trip-point of the comparator, this 128-weight capacitor remains connected to the reference input through the remainder of the capacitor-sampling (bit-counting) process. The process is repeated for the 64-weight capacitor, the 32-weight capacitor, and so forth down the line, until all bits are tested. MULTIPLEXER FUNCTION TABLE INPUTS ADDRESS A2 A1 Ao 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 ADDRESS LOAD CONTROL LOW LOW LOW LOW LOW LOW LOW LOW 1 1 1 1 to to to to to to to to SELECTED ANALOG CHANNEL 1 2 3 4 HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH 5 6 7 8 SWITCHED CAPACITOR AID CONVERTER The CMOS comparator in the (SAR) successive-approximation system determines each bit by examining the charge on a series of binary-weighted capacitors (Figure 1). In the first phase of the conversion process, the analog input is sampled by closing switch SC and all ST switches, and by simultaneously charging all the capacitors to the input voltage. As can be seen, with each step of the capacitorsampling process, the initial charge is redistributed among the capacitors. The conversion process is successive-approximation, but relies on charge shifting rather than the traditional successiveapproximation register and reference DfA to count and weigh the bits from MSB to LSB. In the next phase of the conversion process, all ST and SC switches are opened and the comparator 128 64 32 16 4 2 rrrrrrrrr - - - - Figure 1. - - Simplified Successive Approximation Register 6-137 Si8601/8603 . . . Siliconix incorporated ~ DETAILED DESCRIPTION (Cant'd) VREF(+) 2.6k INx I~4 58 pF o------t\i\i\,-t---..--.. . . . . faOO4 I Figure 2. 28.8 pF I 28.8 pF Equivalent Input Impedances APPLICATIONS The Si8601 and Si8603 are CMOS Converters using charge redistribution to achieve AID conversion. This allows ratiometric conversion. In a single-supply system, VREF- will be connected to ground and VREF+ will be connected to Vee. The output will then be a simple proportional ratio between analog input voltage and Vee (Figure 3). The general relationship is: (VREF+) - (VREF-) Digital Output Analog Input Positive Reference Potential Negative Reference Potential Where DOUT VIN VREF+ VREF- TRANSFER FUNCTION BINARY OUTPllT CODE 11111111 vcc vcc GND 100 KHz ClK SC 06 07 DATA BUS I D4 D2 SI8601 Do OllTPllT ENABLE OE VREF- TRANSDUCER ANALOG INPUTS 05 03 01 EOC l~" 10000000 BUS 0000000 0 VREF+ INl ALC 1N2 AO 1N3 Al 1N4 A2 INS INS INS 1N7 Figure 3. 6-138 START PULSE ANALOG LATCH CONTROL } INPllT ADDRESS } ANALOG INPUTS Ratlometrlc System INPUT VOLTAGE - VOLTS VCC=5V VREF= 5 V GND = VREF _= 0 v RESOLUTION = 19.5 mV RSOURCE S 1 k.n. Si8601/8603 flY' Siliconix ~ incorporated APPLICATIONS (Cont'd) MEMORY MAPPED OPERATION When operating in the memory mapped mode, the data outputs and address input are tied directly to their corresponding busses. The OC, START, and ALC lines are used to tri-state the digital outputs when appropriate. Figure 4 shows the schematic diagram of the memory mapped data acquisition system. Note the A15 is the only address decoding line used for this example. To eliminate memory map redundancy, a more sophisticated address decoding circuit would be needed. The NOR gates of the 4001 combine the address decoding, READ and WRITE signals to control the data acquisition system. The EOC pin is tied to the RST 6.5 of the 8085 to notify the microprocessor when the conversion has been completed and when the data outputs are ready to be read. +15 V 4.9 k.n. Si86011 Si8603 +5V 07 07 °6 °6 Os Os °4 °4 °3 °3 °2 °2 °1 °1 °0 °0 Vee TO 8065 BUS SYSTEM REF+ 3~-~--O----I 555 eLK GNO REFse ALe Eoe RST 6.5 OE r-------IREAO \:-------lWRITE 3/44001 Figure 4. Schematic Diagram of a Memory Mapped Interface 6-139 .. Si8601/8603 WF'Siliconix incorporated ~ PIN CONFIGURATION (Si8601 8-CHANNEl DATA ACQUISITION SYSTEM) PIN NUMBER SYMBOL 2 Vee ClK 3-6 7 06,04, 02, DO OE 8 REF- 9-16 IN1-IN8 17-19 A2-AO 20 AlC 21 22 23-26 REF+ EOC 01,03, 05,07 27 28 SC GND DESCRIPTION Input for the positive supply voltage. Input for the CLOCK. The clock amplitude must conform to the VIH and VIL of the specifications and the rise time should be > 10 ns. Digital DATA OUTPUTS, Bit 0 (Pin 6) is the LSB. Logic input for OUTPUT ENABLE. Connects the three-state output latches to the microprocessor BUS. Input for the most negative voltage of the reference. It is normally grounded unless compressed mode operation is desired. ANALOG INPUTS of the 8-channel multiplexer (channel 1-Pin 9, channel a-Pin 16). The three ADDRESS INPUTS that select the one-of-eight analog inputs to be converted. ADDRESS LOAD CONTROL input that latches the input address into the multiplexer. Input for the most positive voltage of the reference. END OF CONVERSION output that goes high at the end of conversion. Digital DATA OUTPUTS. Bit 7 (Pin 26) is the MSB. START CONVERSION input that initiates the conversion process. Power supply and analog GROUND. PIN CONFIGURATION (Si8603 8-BIT DATA ACQUISITION SYSTEM, DIP VERSION) PIN NUMBER 1 2 SYMBOL DESCRIPTION Vee CLK Input for the positive supply voltage. Input for the CLOCK. The clock amplitude must conform to the VIH and VIL of the specifications and the rise time should be > 10 ns. Digital DATA OUTPUTS, Bit 0 (Pin 6) is the LSB. 3-6 06,04, 02, DO 7 OE Logic input for OUTPUT ENABLE. Connects the three-state output latches to the microprocessor BUS. 8 GND 9 10 IN REF+ EOC 01,03, 05,07 Power supply and analog ground. ANALOG INPUT Input for the positive reference voltage. 11 12,13,14,15 16 SC END OF CONVERSION output that goes high at the end of conversion. Digital DATA OUTPUTS. Bit 7 (Pin 15) is the MSB. START CONVERSION input that initiates the conversion process. GENERAL PRECAUTIONS (For All Applications) 1. VREF+ must NEVER exceed Vee by more than 50 mV. 2. VREF- must NEVER be more negative than GND by more than 50 mV. 3. Under no condition should any voltage be applied to any pin before Vee (prevents latch-up). 6-140 Si8602l8604 tI"F' Siliconix ~ incorporated 8-Bit Data Acquisition Systems FEATURES BENEFITS " Total Unadjusted Error < 1/2 LSB (Si8604) II APPLICATIONS Eliminates External Trims • Increased Data Throughput • J.LP IPC-Based Data Acquisition Systems • Fast Conversion Time (25 J.Lsmaximum) • Reduced System Power Consumption • Battery-Operated Systems • Low Power (9 mW typ.) • Reduced Aperture Error • On-Chip S/H Function • Single Supply Operation • On-Board 8-Channel Multiplexer (Si8602) &I g VoicelTelecom Systems • Audio Digitizing 15 V Military Systems • Remote Data Acquisition • High Density Systems • Reduced Board Space and Component Count e Microprocessor Interface DESCRIPTION The Si8602 and Si8604 are 8-bit data acquisition systems which include an AID converter, sample-and-hold function, and a microprocessor interface on one monolithic chip. The Si8604 is a single-channel version, while the Si8602 includes an on-board 8-channel analog multiplexer and decode logic to form a complete 8-channel data acquisition system. The Si8602 and Si8604 are designed for 15 V single-supply operation, 0 to 10 V Analog Range and CMOS logic interfacing. Built in the Siliconix proprietary PolyMOS'M process, the Si8602/8604 use a capacitive-ladder AID conversion technique to achieve low power, high speed and less than 112 LSB total unadjusted error without the need for thin film resistors or laser trimming. The capacitive ladder architecture creates an on-board samplelhold function, reducing the aperture time of the converter to less than 90 ns. This facilitates digitizing rapidly-slewing An analog signals with a minimum of error. epitaxial layer prevents latchup. The Si8602 is available in 28-pin plastic and ceramic DIP. The Si8604 is available in 16-pin plastic and ceramic DIP. Both are available in industrial, D suffix (-40 to 85°C) and military, A suffix (-55 to 125°C) temperature ranges and in 1883 versions as well. For surface mount applications, the Si8602 is available in the PLCC-28, and the Si8604 in the PLCC-20. For more information on the Si8602, please refer to Siliconix application Note AN83-13. PIN CONFIGURATION Dual-In-Llne Package PLCC-20 Package C V L C N S D K C C C 7 3112 1112011191 / • D6 4 D4 Fs NC ~ D2~ Top View Top View CerDIP: SI8604DJ Plastic: S18604AK, SI8604DK ~ J4 DO 8 Order Numbers: ~ ~ DS D3 NC D1 EOC 91110111111121113 o G N I R E N C N E D F + Order Number: SI8604DN 6-141 Si8602l8604 .... Siliconix incorporated ~ PIN CONFIGURATION (Cont'd) Dual-In-Llne Package PLCC-28 Package ~ e v G RRg ~ g ~ (MSB) 6 0 7 (MSB) 05 02 05 03 (LSB) Do 6 01 Order Numbers: CerDIP:SI8602AK SI8602DK Plastic: SI8602DJ 1 Eoe 1 REF+ REF+ ALe ALe Ao Al 1 A2 -;~--~T~ap~V~I~&W----r- 4 1 ~~~~~~t IN 8 4 IN 7 5 6 7 8 Tap View Order Number: SI8602DN FUNCTIONAL BLOCK DIAGRAM r------------------, I I I 8 ANALOG INPUTS I ADDRESS { ADDRESS LOAD CONTROL I I I L __________________ ~ Si8602 ONLY I ABSOLUTE MAXIMUM RATINGS Reference Input Voltage Range, VREF-' •...•.....•.....••••..••...•••. -0.3 V to VREF+ Reference Input Voltage Range, VREF+ ••..•..••...•........•...•••..••• VREF- to Vee +0.3 V Supply Voltage, Vee ..•..•.........•.....•....• 16.5 V Input Voltage Range, All Inputs .... -0.3 V to Vee +0.3 V Storage Temperature (K Suffix) .......... -65 to 150'C (J, N Suffix) ..•••.. -65 to 150'C Operating Temperature (A Suffix) ...•••... -55 to 125'C (0 Suffix) ...••..... -40 to 85'C 6-142 Power 28-Pln l6-Pln 28-Pln l6-Pln 28-Pln 20-Pln Dissipation (Package)· Ceramic DIp·· ....................... 1046 Ceramic DIp··· ...................... 900 Plastic Dip···· .•••.••....•••.•••..•. 1046 Plastic Dip····· ..••.....•...•.•...... 900 PLCC····· ••••..••..•.••.•••........ 900 PLCC····· .......................... 900 All leads welded or soldered on PC Board. Derate 6.5 mW/'C above 25'C. Derate 12 mW/'C above 75'C. Derate 6.5 mW/'C above 25'C. Derate 12 mW/'C above 75'C. mW mW mW mW mW mW Si8602l8604 ..w'" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a, m, n Test Conditions Unless Otherwise Specified: PARAMETER LIMITS 1=25 ·C 2=125,85·C 3=-55, -40· C All Grades SYMBOL Vcc= 15 V f CLOCK = 1.04 MHz TEMP I ON (PEAK) VIN =5V 1 VIN = 15 V 1 VIN =OV 1 VIN = 15 V 2,3 VIN =OV 2,3 -1000 1,2,3 VREF- 1,2,3 Vee -l.5 TVP d MIN b MAXb UNIT INPUT Input Channel ON State Current 9 Input Channel OFF State Current f Analog Input Voltageg JlA -5 200 -200 nA I OFF VANALOG , 1000 VREF+ High Level Input Voltage VIH V Low Level Input Voltage VIL 1,2,3 1.5 High Level Input Current f IIH 1,2,3 1 Low Level Input Current f IlL JlA VIN=OV 1,2,3 -1 1,2,3 14 1,2,3 9 OUTPUT High Level Output Voltage VOH 10 = -360 JlA V Low Level Output Voltage OFF State Output Current q VOL Data Outputs 1,2,3 0.4 End Of Conversion 1,2,3 0.4 Veus= 15 V 1,2,3 1 Veus = 0 V 1,2,3 10= 1.6mA JlA los -1 SUPPLY Supply Current h Icc VREF+ Is open, V REF- = 0 V VIL = 0 V, V IH = 15 V 1,2,3 0.6 2 mA 6-143 Si8602l8604 trY'Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a, m, n Test CondItIons Unless OtherwIse SpecIfied: SYMBOL PARAMETER Vcc= 15 V f CLOCK = 1.04 MHz LIMITS 1=25 ·C 2=125,85·C 3=-55, -40 • C TEMP TYP All Grades d MIN b MAXb UNIT SUPPLV (COrtt'd) Supply Voltage I, c Vcc Refer to • Operating Range" Graph 1,2,3 Positive R~ference Voltage g, VREF+ Refer to ·Operatlng Range" Graph 1 60 10 1 0 0.3 c 10.8 16.5 V Negative Reference Voltage g VREF- Voltage BetweenVcc and VREF+ Terminals V cc VREF+ Refer to • Operating Range" Graph 1 0 DYNAMIC Control Input Capacitance C1 1,2,3 2.5 Data Output Capacitance Co 1,2,3 5.5 Supply Voltage Sensitivity PSR 1,2,3 0.05 ZE 1,2,3 0.25 -0.5 0.5 1,2,3 0.25 -0.75 0.75 pF Zero Error J Full Scale Error Vcc= 16.5 V & 10.6 V fCLOCK = 1.04 MHz %/V LSB Relative NonlinearIty INL 1,2,3 0.25 -0.5 0.5 DifferentIal NonlinearIty DNL 1,2,3 0.25 -0.5 0.5 fCLOCK 1,2,3 Start Pulse WIdth tsc 1 100 Address Load Control Pulse WIdth tALC 1 200 Address Set Up Time tsu 1 50 Address Hold TIme tH 1 50 Input Voltage Stable I tiS 1 6 tOEC 1 0 TIMING Clock Frequency I, 0 1.5 MHz ns End of Conversion Delay TIme 6-144 SI6602 ONLY Clock Periods 200 ns H Si8602l8604 Siliconix incorporated ELECTRICAL CHARACTERISTICS a, m, n PARAMETER LIMITS SYMBOL Test Conditions Unless Otherwise Specified: Vcc= 10.8 V to 16.5 V VREF+ = 10 V, VREF- = 0 V fCLO CK = 1.04 MHz TEMP tcoNV tsc= 100 ns 1,2,3 1=25 ·C 2=125,B5·C 3=-55,-40· C TYP All Grades d MIN b MAXb UNIT TIMING (Cont'd) Conversion Time k 25 Output Enable Time tOE C L = 50 pF 1 100 200 Output Disable Time too C L = 10 pF R L = 10 k.Cl. 1 100 200 .I1s ns NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Decays exponentially during first clock high period. f. Channel addressed with clock OFF. g. Analog Input voltage greater than VREF+ converts as all ones and less than VREF- as all zeros. h. Current Increases linearly with frequency of the clock at a rate of approximately 10% per 100 kHz. I. For proper operation the maximum clock rate must be lowered as the voltage across the reference terminals Is lowered below 10 V. The maximum clock rate must be lowered by 0.68 f CLOCK Ivolt multiplication factor. VREF+ must be above 3.0 V or Vcc - 1.0 V, whichever Is higher. J. All errors are measured with reference to an Ideal straight-line transfer curve from 1/2 LSB to ( Vcc - 1/2 LSB). k. Source resistance < 1 k.Cl. . m. All voltage values are with respect to ground terminal. n. All dc parameters are 100% tested at 25 oC. Lots are sample tested for ac parameters and high and low temperature limits to assure conformance with specifications. q. Vaus Is the voltage applied to the output pins when the digital outputs are In the OFF state. DIE TOPOGRAPHY .....f - - - - - - - 123 mlls-------I~ 11 2 12 13 Si8602 28114 mils 14 15 16 27 17 18 19 Pin No. Function 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Vce CLK Ds D4 D2 Do OE REFIN, IN2 IN3 IN4 INs INs Pin No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Function IN7 INa A2 A, Ao ALC REF+ EOC D, 03 Ds D7 SC GND 20 21 22 23 24 25 26 CSAD 493 P-Channel Enhancement MOSFETs 477 N-Channel Enhancement MOSFETs 13 Capacitors 7 Resistors 6-145 ..... Siliconix incorporated Si8602l8604 ~ DIE TOPOGRAPHY (Cont'd) Si8604 I'" 123 mils 5 6 4 3 ~I Pad No. 7 1 2 3 4 5 6 7 8 114 mils 9 10 11 12 13 14 15 16 8 9 10 16 Function Vee (Substrate) CLK 06 04 O2 Do OE GND IN REF+ EOC 0, 03 05 07 ~::::::~11::::::::::~~12~13~1~4~1~5:::!J 20X CSBD 425 P-Channel Enhancement MOSFETs 409 N-Channel Enhancement MOSFETs 13 Capacitors 7 Resistors OPERATING RANGE OF VREF+ AND Vee Guaranteed Test Points 10 ,/,/ -----------~~~7~·- ___________ 8 J"" /"A/-:% /.,....". off,f ~~~~~d_ I I I I I I I I I I Vee 6-146 SC Si8602l8604 ..... Siliconix incorporated ~ TIMING I--lll..j 2 4 3 5 8 7 6 9 25 26 CLOCK SI8602\ Only START SEE DETAIL A ALC SEE DETAIL A HI----- --~-------------------------;Hr_----- ADDRESS ANALOG IN EOC __ ~________________________ --;:rr SEE DETAIL A f---- ~ v---fr~----- 1~·--------t-ls--------------~~~1 r- - - - - - , SEE DETAIL A " S~ tcoNV -----------~~~I OLrrPUTCONTROL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~frr---~LATCH OUTPUTS SEE DETAIL BI -----------------------------~Hr-----~" DETAIL A START _ _ _ _ _ _ _ _ _ _ _~1. 50% ~\_ _ _ _ __ t6C----./" I EOC 60%}~_ _ _ _ _ _ __ I+-tDEC--t SI8602\ Only ALC _ _ _ _ _ ---Jf,1oI1~1-60-%----- 1 tALC ADDRESS ~ 50% 1 DETAILB OLrrPLrr CONTROL I.-tH . . . . _ --------..!~r~--------- 6O%Xr - - - - - - - - - - - - - - - 1 tS~ _ _ _ ------J~150% "~ I~ 1(:90%~O% LATCHED OLrrPUTS - - - - - - -_______=------~IH" HIZ STATE 1 1 --.I 1.10% tOE I 1 - - ' ~% too DETAILED DESCRIPTION PRINCIPLES OF OPERATION Si8602 with On-chip Eight Channel MUX: The analog multiplexer selects 1 of 8 single-ended input channels as determined by the input address code. The Address Load Control (ALC) transfers and latches the code into the address decoder on the positive edge of the ALC signal. The output latch is reset by the positive edge of the Start Conversion (SC) pulse. Sampling starts with the positive edge of the SC pulse and lasts for 8 clock periods from its falling edge. The conversion process can be interrupted by a new SC pulse before the end of 24 clock periods. Continuous conversion may be accomplished by connecting the End of Conversion (EOC) output to the start input. If used in this mode an external pulse should be applied after power up to assure start up. 6-147 Si8602l8604 ..,. Siliconix incorporated ~ DETAILED DESCRIPTION (Cont'd) MULTIPLEXER FUNCTION TABLE INPUTS ADDRESS A2 Al Ao 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 ADDRESS LOAD CONTROL LOW LOW LOW LOW LOW LOW LOW LOW to to to to to to to to SELECTED ANALOG CHANNEL 1 2 3 4 HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH 5 6 7 8 SWITCHED CAPACITOR AID CONVERTER The CMOS comparator in the (SAR) successive-approximation system determines each bit by examining the charge on a series of binary-weighted capacitors (Figure 1). In the first phase of the conversion process, the analog input is sampled by closing switch SC and all ST switches, and by simultaneously charging all the capacitors to the input voltage. In the next phase of the conversion process, all ST and SC switches are opened and the comparator Figure 1. 6-148 begins identifying bits by identifying the charge on each capacitor relative to the reference voltage. In the switching sequence, all eight capacitors are examined separately until all 8 bits are identified, and then the charge-convert sequence is repeated. In the first step of the conversion phase, the comparator looks at the first capacitor (binary weight = 128). One pole of this capacitor is switched to the reference voltage, and the equivalent poles of all the other capacitors on the ladder are switched to ground. If the voltage at the summing node is grater than the trip-point of the comparator (approximately one-half the reference voltage), a bit is placed in the output register, and the 128-weight capacitor is switched to ground. If the voltage at the summing node is less than the trip-point of the comparator, this 128-weight capacitor remains connected to the reference input through the remainder of the capacitor-sampling (bit-counting) process. The process is repeated for the 64-weight capacitor, the 32-weight capacitor, and so forth down the line, until all bits are tested. As can be seen, with each step of the capacitorsampling process, the initial charge is redistributed among the capacitors. The conversion process is successive-approximation, but relies on charge shifting rather than the traditional successiveapproximation register and reference DI A to count and weigh the bits from MSB to LSB. Simplified Successive Approximation Register , Si8602l8604 ..,. Siliconix incorporated ~ DETAILED DESCRIPTION (Cont'd) V REF (+) 2.6k IN x 58 pF o------"\iV\.- 1---..--......... I -- -- 28.8 pF Figure 2. Equivalent Input Impedanoes I"on l~o4 I 28.8 pF APPLICATIONS The 8i8602 and 8i8604 are CM08 Converters using charge redistribution to achieve AID conversion. This allows ratiometric conversion. In a single-supply system. VREF- will be connected to ground and VREF+ will be connected to Vee. The output will then be a simple proportional ratio between analog input voltage and Vee (Figure 3). The general relationship is: Digital Output (0 to 255) Analog Input Positive Referenoe Potential Negative Referenoe Potential Where DOUT VIN VREF+ VREF- BINARY OUTPUT CODE TRANSFER FUNCTION 11111111 VCC GND 100 KHz DATA BUS 1 CLK SC De D7 04 O2 SI8602 Do OUTPUT ENABLE OE VREF- iANSOUCER 05 03 jP:::: 10000000 BUS 01 EOC VREF+ .>4H--------:lIN1 ALe 1N2 AO 1N3 A1 1N4 A2 ANALOG INPUTS START INS INS INS IN? 1-----1 AN~g:rR't~CH } } A6~fss ANALOG INPUTS INPUT VOLTAGE - VOLTS Vce= 15V VREF= 10 V GND = VREF _= 0 v RESOLUTION = 39.1 mV RSOURCE S 1 k.n. Figure 3. Ratlometrlc System 6-149 Si8602l8604 ...... Siliconix incorporated ~ PIN CONFIGURATION (Si8602 8-CHANNEL DATA ACQUISITION SYSTEM) PIN NUMBER SYMBOL 2 Vee CLK 3-6 7 06.04. 02. DO OE 8 REF- 9-16 IN1-IN8 17-19 A2-AO 20 ALC 21 22 23-26 REF+ EOC 01.03. 05.07 SC GND 27 28 DESCRIPTION Input for the positive supply voltage. Input for the CLOCK. The clock amplitude must conform to the VIH and VIL of the specifications and the rise time should be > 10 ns. Digital DATA OUTPUTS. Bit 0 (Pin 6) is the LSB. Logic input for OUTPUT ENABLE. Connects the three-state output latches to the microprocessor BUS. Input for the most negative voltage of the reference. It is normally grounded unless compressed mode operation is desired. ANALOG INPUTS of the 8-channel multiplexer (channel 1-Pin 9. channel 8-Pin 16). The three ADDRESS INPUTS that select the one-of-eight analog inputs to be converted. ADDRESS LOAD CONTROL input that latches the input address into the multiplexer. Input for the most positive voltage of the reference. END OF CONVERSION output that goes high at the end of conversion. Digital DATA OUTPUTS. Bit 7 (Pin 26) is the MSB. START CONVERSION input that initiates the conversion process. Power supply and analog GROUND. PIN CONFIGURATION (Si8604 8-BIT DATA ACQUISITION SYSTEM. DIP VERSION) PIN NUMBER SYMBOL 1 2 Vee CLK 3-6 06.04. 02. DO OE 7 8 9 10 11 12.13.14.15 16 GND IN REF+ EOC 01.03. 05.07 SC DESCRIPTION Input for the positive supply voltage. Input for the CLOCK. The clock amplitude must conform to the VIH and VIL of the specifications and the rise time should be> 10 ns. Digital DATA OUTPUTS. Bit 0 (Pin 6) is the LSB. Logic input for OUTPUT ENABLE. Connects the three-state output latches to the microprocessor BUS. Power supply and analog ground. ANALOG INPUT Input for the positive reference voltage. END OF CONVERSION output that goes high at the end of conversion. Digital DATA OUTPUTS. Bit 7 (Pin 15) is the MSB. START CONVERSION input that initiates the conversion process. GENERAL PRECAUTIONS (For All Applications) 1. VREF+ must NEVER exceed Vee by more than 50 mV. 2. VREF- must NEVER be more negative than GND by more than 50 mV. 3. Under no condition should any voltage be applied to any pin before Vee (prevents latch-up). 6-150 WidebandNideo . . ~ ~ Siliconix incorporated TABLE OF CONTENTS Introduction .•..•..•.••......••...............................•..................... 7-1 DG534: 4-ChannellDual 2-Channel WidebandlVideo Multiplexer .......•.•.•.................. 7-3 DG535: 16-Channel WidebandlVldeo Multiplexer ••.•.................••...............•.. 7-21 DG536: 16-Channel WidebandlVideo Multiplexer •.......•...........•......•............. 7-34 DG538: 8-Channel/Dual 4-Channel WidebandlVideo Multiplexer ..........................•.. 7-47 DG540: Quad SPST WidebandlVideo "T" Switch ........................................ 7-65 DG541: Quad SPST WidebandlVideo "T" Switch ...•....................•.....•......... 7-70 DG542: Dual SPDT WidebandlVideo "T" Switch ......•...•.............................. 7-75 SD5000/5001/5002: DMOS FET Quad Analog Switch Arrays •.............................. 7-81 SD5400/5401/5402: DMOS FET Quad Analog Switch Arrays ......•.....•.................. 7-88 ~ ~ Siliconix incorporated WIDEBANDNIDEO INTRODUCTION Siliconix manufactures analog switches and multiplexers for wideband/video applications using Double Diffused MOS (DMOS) technology. DMOS FETs are n-channel enhancement-mode MOSFET's which exhibit very low capacitance and ON resistance, compared to conventional CMOS devices. The result is wide bandwidth switches, from discretes such as the SD210 and SD5000 families, through D/CMOS "T" switches and mUltiplexers which feature crosstalk and off isolation performance as high as 100 dB at 5 MHz and 3 dB bandwidths in excess of 500 MHz. These devices are ideal for broadcast video, digital data routing, high end workstation networks and imaging applications from medical to military. DMOS Switch Arrays The SD500X and SD540Xs are monolithic arrays of four DMOS FETs without drivers. Their low capacitance and low ON resistance make them ideal for high speed wide band switching and sampling applications. D/CMOS "T" Switches The DG54X family of wideband/video "T" switches includes the DG540, DG541 and DG542 switches. The DG540 and DG541 are quad SPST switches, and the DG542 is a dual SPDT (or dual changeover) function. The DG540 employs interstitial ground lines between adjacent channels to achieve improved isolation and reduced crosstalk. The DG541 uses the standard DG201A pin-out, hence has slightly inferior performance than the DG540, but is available in a lower cost, smaller package. Each of these switches uses DMOS "T" switches for fast switching, wide bandwidths and excellent isolation. D/CMOS WidebandlVideo Multiplexers The DG535 and DG536 are 16-channel wideband/video multiplexers which use the Siliconix D/CMOS process to combine wide band DMOS "T" switches with high density, high speed CMOS logic and switch drivers to form complete monolithic wideband/video multiplexing systems. These devices include on-board latches to hold the address selection data and all of the necessary control logic to facilitate connection into larger arrays, matrices and multiplexers. The DG534 and DG538 are 4- and 8-channel wideband/video multiplexers which, like the DG535 and DG536, feature address latches and control logic with the addition of data read back and TTL-compatibility. They make excellent wideband/video crosspoints, routers, and multiplexers, reducing board space, power dissipation, component count and cost while simplifying system design and improving reliability. For detailed information on these products please refer to their individual data sheets and to application notes AN85-3, AN86-1, and AN88-2. . GLOSSARY OF TERMS Bandwidth Crosstalk The "3 dB down" point of the frequency response characteristic. A measure of how much of an unwanted signal appears on a given analog channel due to spurious capacitive or inductive coupling from another channel. Crosspoint Switch A two-dimensional array of analog switches or analog multiplexers that allows for the routing of signals from any input to any output. D/CMOS Semiconductor process that combines DMOS FETs and CMOS logic on a monolithic chip. 7-1 .. W'I' Siliconix ~ incorporated Differential Gain Output Buffer Expressed as a percentage. this is a form of distortion that appears as changes in the amplitude of the chrominance (color) signal as a function of luminance (brightness) amplitude. An amplifier. typically with a gain of two. which is normally used at the output of a video multiplexer to drive a length of double terminated coaxial cable. Output Capacitance Differential Multiplexer Analog multiplexer that selects both the high and the low side of each signal. It can be thought of as two single-ended multiplexers operating in tandem. Differential Phase Measured in degrees is the phase shift of the color subcarries resulting from changes in luminance level. DMOS (Double Diffused MaS) Type of field effect transistor featuring low rOS(ON) and low capacitance. Capacitive load that the output of an OFF switch adds to the output node. PLCC Package Plastic leaded chip carrier. Surface mount package characterized for its small size and reliable lead-toprinted circuit board mechanical interface. Readback Feature that allows for the inspection of the control latch contents in a multiplexer. Single Ended Multiplexers Input Capacitance Array of analog switches that selects one of several analog input signals. Capacitive load that the input terminal of an analog switch presents to the signal source. It is specified both with the switch ON or OFF. "T" Switch Insertion Loss Analog switch configuration consisting of two series switches and a shunt switch to ground. It is used to dramatically improve the off-isolation of the array. Expressed in dB. is a measure of the signal loss caused by the impedance of the analog switch at a given frequency. ' Video Off Isolation Video Buffer A measure of how much of the signal applied to an "open" switch appears at its output due to parasitic components such as gate-to-channel capacitance and lead inductances. An amplifier whose function is to reduce the capacitive loading effect of several video multiplexer inputs on a common signal source. This is normally a unity gain buffer. ON-Resistance Wideband DC input-to-output resistance of an analog switch channel when the switch is turned ON. A relative term. as used in this book it refers to a frequency spectrum at least more than 2 MHz wide. 7-2 Electrical signals carrying dynamic visual information. ~ ~ DG534 4·Channel/Dual 2·Channel WidebandNideo Multiplexer Siliconix incorporated APPLICATIONS BENEFITS FEATURES • Wide band Signal Routing and Multiplexing • Wide Bandwidth (500 MHz) • Improved System Bandwidth • Very Low Crosstalk (-97 dB @ 5 MHz) • Improved Channel Off-isolation • High-end Video Systems On-Board TTL-compatible Latches with Readback Simplified Logic Interfacing • • • J.lP-controlied Systems • Direct Coupled Systems Optional Negative Supply Input Allows Bipolar Signal Swings • • • ATE Systems • Reduced Insertion Loss • Allows Differential Signal Switching n • Low rDS(ON) (90 • Single-ended 4-channel or Dual 2-channel Operation max) • ESDS Protection > ±4000 V DESCRIPTION The DG534 is a digitally selectable 4-channel or dual 2-channel analog multiplexer designed for wideband operation. On-chip TTL-compatible address decoding logic and latches with data read back are included to simplify the interface to a microprocessor data bus. The low ON resistance and low capacitance of the DG534 make it ideal for wide band data multiplexing and video and audio signal routing in channel selectors and crosspoint arrays. An optional negative supply pin allows the handling of bipolar signals without DC biasing. low-power CMOS control logic, drivers and latches. The low-capacitance DMOS FETs are in a "T" configuration to achieve extremely high levels of OFF isolation. Crosstalk is reduced to -97 dB at 5 MHz on the DG534 by including a ground line between each adjacent signal path. The DG534 is built on a D/CMOS process that combines n-channel DMOS switching FETs with For more information please refer to Siliconix Applications Note AN88-2. The DG534 is available in 20-pin plastic DIP and PLCC packages for operation over the industrial, D suffix (-40 to 85°C) temperature range. The 20-iead side braze DiP is available for military, A suffix (-55 to 125°C) temperature range operation. PIN CONFIGURATION Dual-In-Llne Package PLCC Package Top View Top View NO DS v- Sa1 GND GND 8e2 vL , . v+ 311 2111112a1191 v- ~ ~ ~ ~8 ~ ~ ~ ~4 iio WR Order Numbers: Side Braze: DG534AP, Plastic: DG534DJ Preliminary 9111'11111112111:31 iio Order Number: DG534DN 7-3 DG534 Siliconix incorporated TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM VL SA' S A2 V+ GND V- \~r--------------o-r&------, ~_"'-1i--I-o \-i ~ I I I I SB' 0 - + - - - - " 1 .....i- -i----t--rj- SB2 O-+---'T .... -+1- - - 1 0 - - - I "'""i l DA I 4/2 o-t-+-----r-~,_I_--__t_-...I r---~~r__t__t--__. ~ DECODE LOGIC, ADDRESS LATCHES, 1/0 CONTROL X x .r 1 , ON SWITCH X X X X X X 0 X Nona (latches cleared) X X X 0 1 None 0 0 0 1 0 , 0 0 , , X 0 , 0 0 1 0 1 0 1 0 0 1 1 1 0 0 X 0 , 0 0 1 1 0 X 1 1 0 1 1 ~~n~~Te? SA2 eK1ernaliv SBI Transparent SB2 SAl &SBI SA2 & SB2 1 1 1 'Note 1 DB t---+ORS LOGIC As 412 X 1/0 Al Ao EN WR All four Input switches are "T" switches. 1--'-NOTE 1 0 Maintains previous state \ ~'I 0 l~- r-2-- ~ Logic" 1 • : VAH ~ 2.0 V Logic" 0 • : VAL ::s;; 0.8 V 1. 4/2 can be either H or L but should not change during these operations. 2. In this condition the pins Ao and Aj become outputs and reflect the contents Of the latches. Please see timing waveforms for more detail. 3. EN must be latched HIGH to allow proper address data readback operation. i/o WR EN Ao Al ABSOLUTE MAXIMUM RATINGS V+ to GND V+ to VV- to GND ........................... -0.3 V to +22 V Power Dissipation (Package)" .•.•••.•.•..••••••......... -0.3 V to +22 V •.•••...•...•.•••........•. -10 V to +0.3 V 20-Pln Plastic DIP"" Digital Inputs ...... (V- minus 0.3 V) to (V+ plus 0.3 V) or 20 mA, whichever occurs first Vs ,Vo 625 mW 20-Pln Side Braze DIP""" 20-Fln Quad J Lead Plastic"""" 1200 mW 450mW •••........ (V- minus 0.3 V) to (V- plus 14 V) or 20 mA, whichever occurs first CURRENT (any terminal) Continuous........... 20 mA CURRENT (S or D) Pulsed 1 ms 10% duty ..... 40 mA " All leads welded or soldered to PC board. Derate 8.3 mW/"O above 75"0 Storage Temperature (A Suffix) •.... -65 to 150"0 (D Suffix) ..... -65 to 125"0 Derate 16 mW/"O above 75"0 Derate 6 mW1"0 above 75"0 Operating Temperature (A Suffix) ..... -55 to 125"0 (D Suffix) ..... -40 to 85"0 7-4 Preliminary H DG534 ~iliconix Incorporated CONTROL SAl ~S~--------=======- CIRCU~IT~R~Y~==----------- ~~40~ ?9 DA ~T~ -, r-- I I I I I I I I I I L , I I I I I LATCH I I I I I I I _ _ _ .J .. r- I ' I TRI-STA TE I I TTL BUFFER I 'I Ao Preliminary 7-5 DG534 WY'Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: LIMITS 1=2S·C A 2=12S,8S·C SUFFIX 3=-SS,-40·C -55 to 12SoC 0 SYMBOL V+ = 15 V, V- = -3 V VL= +5 V, GND = 0 V WR = 0.8 V RS, EN = 2 V VANALOG V- = -5 V 1 Drain - Source ON Resistance rOS(ON) I s =-10mA, Vs=OV 1,3 2 Resistance Match Between Channels rOS(ON) tJ.. VAIL = O.B V, V AlH = 2 V Sequence each switch ON 1 Source OFF Leakage Current IS(OFF) V s =8V, Vo=OV EN = O.B V 1,3 2 -5 -50 5 50 -5 -50 5 50 Drain OFF Leakage Curr.ent IO(OFF) Vs = 0 V, Vo = 8 V EN = 0.8 V 1,3 2 -20 -500 20 500 -20 -500 20 500 Total SWitch ON Leakage Current IO(ON)+ IS(ON) Vs = Vo = 8 V 1,3 2 -10 -1000 10 1000 -10 -100 10 100 VAO = 2.7 V 1,2,3 -400 VAO = 0.4 V 1,2,3 PARAMETER TEMP TYpd SUFFIX -40 to 85°C MIN b MAXb MINbMAX t UNIT SWlTCH Analog Signal Range e -5 45 8 -5 8 90 120 90 120 9 9 V .0. nA INPUT Address Output Current Input Voltage High -400 IJ.A lAO VAIH 400 1,2,3 2 400 2 See Figure 13 Note 1 Input Voltage Low Address Input Current IAI V 1,2,3 VAIL VAl;' 0 V or 2 V or 15 V 0.8 1,3 2 0.1 -1 -10 1 10 0.8 -1 -10 1 10 ~A DYNAMIC ON State Input Cap!' CS(ON) See Figure 11 PLCC DIP 1 1 23 27 35 30 35 OFF State Input Cap.c CS(OFF) See Figure 12 PLCC DIP 1 1 2 3 5 4 5 OFF State Output·Cap.c Co (OFF) See Figure 12 PLCC DIP 1 1 4 10 8 10 Multiplexer Switching Time tTRANS See Figure 4 1,3 2 300 500 300 500 tOPEN See Figure 4 1,2,3 EN, WR Tum on Time tON See Figures 2 & 3 1,3 2 300 500 300 EN, Tum OFF Time tOFF See Figure 2 1,3 2 150 300 150 300 Break-Belore-Make Interval 6 50 pF 50 ns 7-6 5~0 Preliminary DG534 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V, V- = -3 V VL=+5V, GND=OV WR = O.B V RS, EN = 2 V Q See Figure 5 LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-40°C -55 to 125°C TEMP TYpd D SUFFIX -40 to 85°C MIN b MAXb MIN b MAXt UNIT DYNAMIC (Cont'd) Charge Injection Chip Disabled Crosstalk (See Figure 8) Adjacent Input Crosstalk (See Figure 9) All Hostile Crosstalk (See Figure 7) Differential Crosstalk (See Figure 10) Bandwidth XTALK(co) XTALK (AI) XTALK(AH) XTALK (OIFF) BW RL = 75.0. f = 5 MHz EN = 0.8 V RIN = 10.0. RL = 10 kn f = 5 MHz RIN = 75.0. RL = 75.0. f = 5 MHz R IN -l0n RL = 10 kn f = 5 MHz RIN - 75.0. RL = 75.0. f - 5 MHz RIN = 10.0. RL = 10 kn f = 5 MHz RIN = 75.0. RL = 75.0. f = 5 MHz 1 -70 PLCC DIP 1 1 -75 -65 PLCC DIP 1 1 -97 -87 PLCC DIP 1 1 -80 -70 PLCC DIP 1 1 -77 -72 PLCC DIP 1 1 -77 -72 PLCC DIP 1 1 -84 -84 PLCC DIP 1 1 -84 -84 1 500 1,2 3 0.6 1,2 3 0.6 RL = son, See Figure 6 pC dB MHz SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Any One Channel Selected With Address Inputs at GND or V+ V+ to VOperating Supply Voltage Range V- to GND See Figure 13 Functional Test Only V+ to GND Logic Supply Current 2 5 mA -l.B -2 -l.B -2 1,2,3 10 21 10 21 1,2,3 -5.5 a -5.5 a 1,2,3 10 21 10 21 1,2,3 IL 2 5 150 500 500 V I1A TIMING Reset to Write WR, Rs Minimum pulse Width tRW See Figure 1 1,2,3 50 50 t MPW See Figure 1 1,2,3 200 200 tow See Figure 1 1,2,3 100 100 ns Ao, A 1 , EN Data Valid To Strobe Preliminary 7-7 DG534 W1P" Sillconlx ~ incorporated ELECTRICAL CHARACTERISTICS a Test Conditions LIMITS Unless Otherwise Specified: 1=26'C A D V+ = 15 V. V- = -3 V 2=125.85·C SUFFIX SUFFIX VL=~' GND=OV 3=-55.-40·C -55 to 125°C -40 to 85°C WR = 0.8 V RS. EN = 2 V SYMBOL TEMP TYpd MIN b MAXt MIN b MAxt UNIT PARAMETER TIMING (¢ont'd) Ao. A1' EN Data Valid After Strobe two See Figure 1 1.2.3 Address Bus Tristate tAZ See Figure 1 1 Address Bus Output tAO See Figure 1 tAl See Figure 1 50 50 1 200 200 1 200 200 50 ns Address Bus Input NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLV at 25·C. not guaranteed nor subject to production testing. e. Analog signal range Is measured from the GND pin to ttie designated Source (Input) pin. and Indicates the limits of functionality. Performance limits are only guaranteed for stated test conditions. TYPICAL CHARACTERISTICS Address Output Current vs. Temperature 2 lAO (mA) o -1 -2 -I"- r- r- - 100 SI~k I 1_ VIN = 0.4 V V+ = 15 V V- = -3 V -f- VL = 5 V III -f-Source Vlr =2.7V I I -40 -20 0 20 40 60 80100120 Temperature ('C) 7-8 Logic/Address Input Current vs. Temperature 10 IAI (nA) .1 .01 -40 -20 0 20 40 60 80100120 Temperature ('e) Preliminary DG534 ...... Siliconix incorporated ~ TYPICAL CHARACTERISTICS Supply Currents vs. Temperature 1.0 l~A i' '- .8 I (mA) Leakage vs. Temperature .6 ~~~~-r~~~~~-n 100 "- "- 10 I (nA) ........ ,~+I=ll-I .4 i'" ....... .2 1 nA 100 IL 10 1 pA 0 -40 -20 0 20 40 60 80100120 Temperature (·e) -40 -20 reStON) vs. Drain Voltage 200 180 160 V+! 15 V- = -3 V VL = 5 V Is = -10 mA 140 res (ON) (.0. ) 125oe.---I 120 60 '..JJ -55 oe;7j "1 V ./ I ~~ /' 80 --- - 60 20 I -/1 25oe~ 100 40 reStON) vs. V-; V+ Constant 70 J - - a -2 reStON) (.0. ) 50 r- 2 4 ve (V) 30 6 8 10 -6 40 -4 -3 V- (V) -2 -1 0 120 "-f'i'o. . . . ..... 80 60 -5 Adjacent Input Crosstalk See Figure 9 120 XTALK(AI) (-dB) .. 40 Adjacent Input Crosstalk See Figure 9 100 0 20 40 60 80100120 Temperature (·e) 100 " V+ = 15 V V- = -3 V VL = 5 V RIN = 10 .0. RLr lr ill 1 MHz ~G534DN " 40 ..... IIDG5~4Dr 10 MHz 80 60 r..... ..... Frequency Preliminary XTALK(AI) (-dB) 20 100 MHz 1 MHz 10 MHz 100 MHz Frequency 7-9 DG534 ..w'" Siliconix ~ incorporated TYPICAL CHARACTERISTICS (Cont'd) All Hostile Crosstalk See Figure 7 Differential Crosstalk See Figure 10 100 120 ~ f'....1' 80 100 DG534DN XTALK(AH) (-dB) XTALK(OIFF) t:"..... 60 DG534AP =15 V =-5 V V+ V- VL;~~ 20 1 MHz i I'-t-All Package,a i'-. .... (-dB) ........ ~i' 40 " 80 60 I"" I'40 - 534D r 20 10 MHz V+ = 15 V V- = -5 V VL = ~ V 1 MHz 100 MHz 10 MHz Frequency 100 MHz Frequency Insertion Loss See Figure 6 ON State Capacitance See Figure 11 0 40 35 -4 IL r- (-dB) CS(ON) (pF) 30 -8 V+ V- =15 V =-3 V lL~ -12 1 MHz 10 MHz 25 1/ Ilil"j Pi' 100 MHz 20 4 1 GHz Frequency 6 8 10 Vo - v(V) Chip Disabled Crosstalk See Figure 8 Switching Times vs. Temperature 100 XTALK(CO) 80 350 ~~ ......... (-dB) 60 r--I' 300 250 " 40 1 MHz 7-10 (ns) i'-. . . lllliJ " 10 MHz Frequency rF t DG534DN DG534AP DG534DJ V+ = 15 V V- = -\tV V L =5 Rl = 1 k Cl =45 200 150 'I'- ton V .",. ~ 100 50 100 MHz 1.,..-0 -40 -20 V / VI"'" tOIl ~~ ~ , ~ tBBM 0 20 40 60 80 100120 Temperature (OC) Preliminary DG534 ...... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cent'd) rOS(ON) vs. V+: V- Constant 70 60 rOS(ON) (.Cl.) 50 40 30 20 10 11 12 13 14 15 16 17 18 V+ (V) INPUT TIMING REQUIRMENTS ~."~two~ 3V WR OV t t ow - AD. AI 3V OV DON'T CARE X WRITE DATA X DON'T CARE Writing Data to Device .. __ 3 V - - - - - - - - - - - - - - - " " WR OV ------------------------r, DON'T CARE -----------------------r./ -3V---------,. AD, AI 3V oV NEW DATA DON'T CARE RS 0 V tMPW--+l_ Delay Time Required after Reset before Write __ 3V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - WR OV AD' AI _ 3V oV DRIVEN BUS ---------..../ HIZ DEVICE DATA' OUT HI Z DRIVEN BUS 3V 1/0 0 V - - - - - - - - - - - : - - - . . . . / ~tAZ • Enable must be latched" High" to read back data, otherwise BUS Is high Z. Reading Data From Device Figure 1 Preliminary 7-11 .-r DG534 ~ Siliconix incorporated EN TURN ON/OFF TIME TEST CIRCUIT +15 V LOGIC INPUT tr < 20 ns 3V tf < 20 ns 50% + 10.l1F +5 V OV SA2 SAl V+ 4/21---+---.::>--; 1/0 WR 0.9 VOUT LOGIC INPUT ...----0-; EN L-~GiN~D~1V~-==::;~=::=~-T-]~ VOUT SWITCH OUTPUT Figure 2 WR TURN ON TIME TEST CIRCUIT +15 V + WR+"""'3=-V""----' 10.l1Fl fEE~N~,V~L~.lRR:SS-~V~+~SS~A7l~----o+1V ~ Ao +3 V SA2l---o-..., 4/2 lhru 1/0 SB2 OV OV (WR) VOUT ( ~~------------~ 1- 0.9 VOUT LOGIC INPUT tr < 20 ns tf < 20 ns ADDRESS INPUT tr < 20 ns tf < 20 ns -3 V Flgure 3 7-12 Preliminary ~ ~ DG534 Siliconix incorporated TRANSITION TIME and BREAK-BEFORE-MAKE INTERVAL TEST CIRCUIT +15 V + 10.ll.Fl +5 V EN VL RS +1 V ~--------Ao, 50% V OUT SA2 thru t - - o - - - , SSI +--<>--1 Al Al OV SAl SS21---<:>---' V+ r-- 200 MHz Bandwidth o Reduced Insertion Loss at High Frequencies o Wideband Signal Multiplexing .. Allows Formation of Large Matrices o Crosspoint Arrays " 3 pF Input Capacitance " 9 pF Output Capacitance " Low Power (75 J.l.w) • 90 .n (max) rDS(ON) • J.l.P Interface Latches o Fast Switching (300 ns) Video Switching/Routing • High Speed Data Routing " Minimizes System Power " Precision Data Acquisition • Simplifies J.l.P Interface e FUR Systems o Improves Data Throughput o J.l.P-Based Systems • ESDS Protection > ±4000 V DESCRIPTION The DG535 is a 16-channel multiplexer designed for routing one of 16 wideband analog or digital input signals to a single output. It features low input and output capacitance, low ON resistance, and n-channel DMOS "T" switches, resulting in wide bandwidth, low crosstalk and high "OFF" isolation. The switch FETs were designed to pass signals in either direction, allowing the DG535 to be used as a demultiplexer as well as a multiplexer. The DG535 includes on-board data latches and decode logic, facilitating a simplified microprocessor interface. Additional Chip Select and Enable inputs simplify addressing in larger matrices. The fast transition time of 300 ns (max) and low ON resistance 90 .n (max) makes the DG535 ideal for multiplexing high speed signals through precision data acquisition systems. Single-supply operation and a low 75 J.l.w power dissipation allow operation in battery powered systems and in multi-channel cross points and multiplexers with vastly reduced power supply requirements. The technology used in the DG535 is called D/CMOS. This process combines low-capacitance DMOS FETs on the same substrate with dense, high-speed, low-power CMOS. The DMOS FETs are configured as "T" switches to improve OFF isolation and reduce crosstalk. The CMOS devices form all of the latches, decode logic and switch driver circuitry, resulting in a combination of high performance and high functional integration. The DG535 is available in the plastic 28-lead DIP for the industrial, D suffix (-40 to 85°C), and the 28-lead side braze DIP for military, A suffix (-55 to 125°C) temperature range operations. For surface mount versions, see the DG536 data sheet. For more information on the DG535, please refer to Siliconix Application Note AN86-1. PIN CONFIGURATION - Dual-In-Llne Package GND 1 Sa S12 4 S13 S4 S14 S3 S15 S2 1 S16 S1 0 v+ DIS ST OS A3 EN Ao A1 Top View Ordering Information: DG535AP DG535DJ Plastic DIP DG535AP/883 Side Braze DIP 7-21 DG535 ..... Siliconix incorporated ~ TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM EN C8 C8 8T A3 81 82 83 84 85 8S 87 8a 8g 810 811 812 813 814 815 0 X X X 0 X X X 1 1 1 0 1 1 I I I I II O-+---.-«,,-n-Tr-Tr-Tr-Tr-lT---+ r-'-'-'-~- - Disable Output NONE HIGHZ Al Ao X X X X 0 0 0 0 81 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 S2 S3 0 0 1 1 0 1 1 0 S5 8S 87 0 1 1 0 1 0 1 0 88 89 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 810 811 812 1 1 1 0 1 1 1 1 1 1 0 X X X 54 -1 018 EN C8 C8 X X X 0 LOWZ 813 814 815 816 1 Maintains ~6~~~~~~~~ ..JI --' Input Channel 8elected kJ. prevIous X switch condition LogIc· 1 • : VAH ~ 10.5 V LogIc· 0 • : VAL ::s;; 4.5 V HIGHZ or LOWZ 1. LOW Z, HIGH Z = Impedance of DIsable Output to GND. DIsable output Is current sInk when any channel Is selected. 2. Strobe Input (ST) Is level trIggered. ABSOLUTE MAXIMUM RATINGS V+ to GND ••.•••••••.•..••.••••••.... -0.3 V to +18 V DIgItal Inputs •.••.••.... (GND - 0.3 V) to (V+ plus 2 V) .••.•.••••.••.•••.•..• or 20 mA, whIchever occurs fIrst Storage Temperature (A Suffix) •...••••..• -65 to 150°C (0 Suffix) .......... -65 to 125°C OperatIng Temperature (A Suffix) .•••••••. -55 to 125°C (0 Suffix) .••••.•••• -40 to 85°C V 8 ,VO ••••••••••••••••• (GND - 0.3 V) to (V+ plus 2 V) ••..•••••.••...••.••••. or 20 mA, whIchever occurs first Power DIssIpatIon (Package)· 28-Pln PlastIc DIp·· ••••.•••••••••..•••••••.• 625 mW 28-Pln SIde Braze DIp··· .•••.••.•...••••••.. 1200 mW Current (any termInal) ContInuous ..........••..• 20 mA All leads welded or soldered to PC board. •• Derate 8.3 mW'oC above 75°C ••• Derate 16 mW'oC above 75°C Current (S or D) Pulsed 1 ms 10% duty cycle •••• 40 mA 7-22 H DG535 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+=15V,GND=OV ST, CS = 10.5 V CS = 4.5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-40° C -55 to 125°C TEMP TYpe D SUFFIX -40 to 85°C MIN b MAXb MIN b MAXb UNIT SWITCH Analog Signal Range d Drain' - Source ON Resistance Resistance Match Between Channels rDS(ON) .6. rDS(ON) a 1 VANALOG Is=-l rnA, VD =3V V AH =4.5V, V AL =10.5V Sequence Each Switch ON EN = 10.5 V 1,3 2 55 1 10 a 10 90 120 90 120 9 9 Source OFF Leakage Current IS(OFF) Vs = 3 V, V D= EN = 4.5 V aV 1 2 -10 -100 10 100 -10 -100 10 100 Drain OFF Leakage Current ID(OFF) Vs =OV'VD =3V EN = 4.5 V 1 2 -10 -500 10 500 -10 -100 10 100 Total Switch ON Leakage Current ID(ON) 1 2 -10 -1000 10 1000 -10 -100 10 100 Disable Output RDISABLE V S = VD = 3 V EN = 10.5 V I DISABLE = 1 rnA EN = 10.5 V 1,3 2 100 200 250 200 250 V .n. nA .n. INPUT Input Voltage High VAIH 1,2,3 Input Voltage Low VAIL 1,2,3 10.5 10.5 V Address Input Current IAI VAl = a Vor 15 V 4.5 1,3 2 <0.01 -10 -100 10 100 4.5 -10 -100 10 100 nA DYNAMIC ON State Input Cap. CS(ON) V D = Vs = 3 V 1 40 OFF State Input Cap. CS(OFF) Vs = 3 V 1 3 OFF State Output Cap. CD(OFF) VD = 3 V 1 9 Multiplexer Switching Time tTRANS See Figure 4 1 2,3 tOPEN See Figure 4 1 2,3 EN, CS, CS, ST Turn ON Time tON See Figures 2 & 3 1 2,3 300 300 300 EN, CS, CS Turn OFF Time tOFF See Figure 2 1 2,3 150 150 150 Q See Figure 5 1 Break-Belore-Make Interval pF 300 300 25 25 300 25 ns Charge Injection -35 pC 7-23 CGS3S ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V. GND = 0 V ST. CS = 10.5 V CS = 4.5 V LIMITS 1=25°C A 2=125.85°C SUFFIX 3=-55.-40°C -55 to 125°C D SUFFIX -40 to 85°C TEMP TYpe MIN b MAXb MIN b MAXt UNIT DYNAMIC (Conttd) Single-Channel Crosstalk XTALK (SO) R IN = 75.0.. RL = 75.0. f = 5 MHz See Floure 9 1 -83 Chip Disabled Crosstalk (See Figure 8) XTALK(OO) RL = 75 k.o.. f = 5 MHz EN = 0.8 V 1 -60 Adjacent Input Crosstalk (See Figure 10) XTALK (AI) 1 -72 All Hostile Crosstalk (See Figure 7) XTALK(AH) 1 -60 Bandwidth dB RIN = 10.0.. RL = 10 k.o. f = 5 MHz BW RL = 75 k.o.. See Figure 6 1 >200 1+ Any One Channel Selected With Address Inputs at GND or V+ 1.3 2 5 MHz SUPPLY Positive Supply Current operatln~ Voltage Supply ange V+ to GND 50 100 1.2.3 10 16.5 10 50 100 J.LA 16.5 V MINIMUM INPUT TIMING REQUIREMENTS Strobe Pulse Width tsw See Figure 1 1.2.3 200 200 Ao. A1. A2. A3• CS. CS. EN Data Valid To Strobe tow See Figure 1 1.2.3 100 100 Ao. A 1• A2 • A3. CS. CS. EN Data Valid After Strobe two See Figure 1 1.2.3 50 50 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. d. Analog signal range Is measured from the GND pin to the designated Source (Input) pin. 7-24 ns DG535 ..,. Siliconix incorporated ~ DIE TOPOGRAPHY Pad No. .......- - - - - - 1 2 7 1 26 25 24 mlls-------I~~I 23 22 21 20 19 27 18 17 28 16 15 1 84 mils :~~::l 4 5 6 7 8 9 10 1 2 3 4 GND Sa 5 S5 20X S4 7 S3 8 9 10 11 S2 12 13 14 15 16 S 1 DIS CS CS EN Ao AI A2 A3 ST 19 20 V+ D 21 S 16 22 23 24 SIS 25 S12 LNDG 26 695 Transistors 16 Diodes 27 427, N-Channel 268, P-Channel S7 S6 6 17 18 11 Function 28 S14 S13 SII S10 S9 INPUT TIMING REQUIREMENTS 15 V ST \ ;(.5 V .~~ OV I. tow two 15 V 10.5 V CS, A o, 10.5V AI, A 2, A3 CS, EN 4.5 v 4.5V OV Figure 1 7-25 DG535 Siliconix incorporated EN, CS, CS, TURN ON/OFF TIME TEST CIRCUIT LOGIC INPUT tr < 20 ns If < 20 ns +IS V +15 V ISV - - - "" 7.5V CS OV---J SWITCH I '::.::..!!l~_..2.It-4:-"f"-OOUTPUT VOUT SWITCH OUTPUT ~ 0.1 V OUT --+_.... L -_ _ Figure 2 STROBE (ST) TURN ON TIME TEST CIRCUIT +1SV +1SV LOGIC INPUT tr < 20 ns If < 20 ns ADDRESS INPUT tr < 20 ns I, < 20 ns +15 V 0 V +15 V - - - - - - " " " '--t--------/1 ov 10N(ST)~ VOUT 0.9 V OUT o V _ _ _ _ _ _ _ _ _ _ _ _J SWITCH OUTPUT Figure 3 TRANSITION TIME and BREAK-BEFORE-MAKE INTERVAL TEST CIRCUIT ADDRESS LOGIC INPUT tr < 20 ns If < 20 ns +15 V 7.S V OV SWITCH OUTPUT SWITCH OUTPUT VOUT mRNING OFF-4--+~ TRANSInON TIME (ITRANS) Figure 4 7-26 DG535 .... Siliconix incorporated ~ BANDWIDTH TEST CIRCUIT CHARGE INJECTION TEST CIRCUIT +15 V +15 V +15 V .0. V OUT Is the measurad voltage error due to charge InJection. The charge Injection In Coulombs Is C5~ Q = CL x .o.VOUT +15 V 51GNAL GENERATOR (75.0.) ~v VOUT--q0UT Figure 6 Figure 5 ALL HOSTILE CROSSTALK - X TALK (AH) CHANNEL 51 ON [--5i2fE~~~~~~~~ ALL CHANNEL5 OFF 52 53 S4 54 55 56 57 as 56 57 58 58 59 510 511 512 59 510 511§~ 512 513 514 515 516 515 513 S14 516 SIGNAL ..... V GENERATOR (75.0.) (CD) 51 53 RIN CHIP DISABLED CROSSTALK - X TALK V OUT X TALK (AH) = 20 LOG 10 - V - 51GNAL GENERATOR (75.0. ) ..... V Figure 7 Figure 8 SINGLE CHANNEL CROSSTALK - X TALK (SC) ADJACENT INPUT CROSSTALK - X TALK (AI) CHANNEL 51 ON I ...AA~ -L .v.. -=- v 10.0. A !I - 5n-l I I Sn -=- NOTE5: 1. Any IndivIdual channel between S2 and 816 can be selected V OUT 2. X TALK(5C) = Average value of 20 LOG 10-VIs scanned sequentially from 52 10 516 Figure 9 51GNAL GENERATOR (75.0. ) X TALK(AI) = 20 LOG 10 V5n- l V 5n or 20 LOG 10 V5n+l V 5n Figure 10 7-27 - DG535 Siliconix incorporated BURN-IN CIRCUIT +15 V 27nl----+ 210----; 14 Note: All Resistors are 10 k.n. unless otherwise specified PIN DESCRIPTION PIN NUMBER SYMBOL 2 3 4 5 6 7 8 9 10 GND 58 57 56 55 54 53 52 51 DI5 11,12,13 C5,C5,EN 14 - 17 Ao - A3 18 19 20 V+ 21 22 23 24 25 26 27 28 516 515 514 513 512 511 510 59 7-28 5T D DESCRIPTION Analog 51gnal Ground and Most Negative Potential Channel 8 Analog Input Channel 7 Analog Input Channel 6 Analog Input Channel 5 Analog Input Channel 4 Analog Input Channel 3 Analog Input Channel ,2 Analog Input Channel 1 Analog Input Open drain high Impedance output when DG535 Is disabled (all channels OFF). When DG535 Is enabled (any channel selected) this output Is current sink to Analog GND. Logic Inputs to select required Multlplexer(s) when using several Multiplexers In a system Four binary address Inputs that determine which one of the sixteen channels Is selected. 5trobe Input that latches Ao, Al, A2, A3, CS ,C5, EN Positive supply voltage Analog output of Multiplexer or Analog Input If device used In Demultiplexer configuration. Channel 16 Analog Input Channel 15 Analog Input Channel 14 Analog Input Channel 13 Analog Input Channel 12 Analog Input Channel 11 Analog Input Channel 10 Analog Input Channel 9 Analog Input CGS3S ..,. Siliconix incorporated ~ TYPICAL CHARACTERISTICS rOS(ON) VS. Vo and Power Supply Voltage rOS(ON) vs. Voand Temperature Iii' :!: ::t: B Z' B (fI 0 <- 400 360 320 280 240 200 160 120 80 40 o 300 270 240 210 180 ~V+ +15~L GND = 0 V +125 0 ~ Ff1 §. Z' "'0 ..-' ~oc'l 150 <- 5toC- I 2 4 6 ./ I GND-OV} I T A = 25°C o 10 Vo - DRAIN VOLTAGE (VOLTS) 2 4 6 14r-~~~~r-~-1 Supply Current vs. Supply Voltage and Temperature 14 12 ~ 12 !zw If ::J 10 ~ 6 Dl 4 ± 2 ~ 11 GND = 0 VI L +125°C 8 V U c.. c.. /- 2~--+---~--~---+--~ O~ __ 8 1000 ~ Z' B 100 ~ __ ~ 10 __ ~ 14 12 __ 16 ~ ~ 0 18 10 11 .&'5°C l/ k' Ll II::V I""'" V r o r- ~ t:.--- 12 13 14 IO(ON) + IS(ON) vs. Temperature IO(OFF) and I SCOFF) vs. Temperature H V+ = +15 V I GND = 0 V Vo=Vs =3vl ./ V' 10 / 0.1 _0 0.01 l/ V / l/ V 0.001 -55 -35 -15 5 E 8~ w ~ ~~ (fie: "Ce: c: ::J ., u Et!:l 8~ Y .. 15 16 17 18 V+ - SUPPLY VOLTAGE (VOLTS) + Z' __ V~ V+ - SUPPLY VOLTAGE (VOLTS) _(fI B ~ 10 8 Vo - DRAIN VOLTAGE (VOLTS) Logic Input Switching Threshold VS. Supply voltage (V+) I L ./ .-'. I'" .... 1'" -' o 8 / 'I' 1 / 60 30 1 J B 120 ~ 90 . / // o ~8V r- +1~ V 1-1+15 V 0.1 6~ 0.01 ~ 0 25 45 65 85 105125 TEMPERATURE (0C) 0.0011.-.......I... . .--I._.l...-..J.............--I -55 -35 -15 5 25 45 65 85 105125 TEMPERATURE (0C) 7-29 DG535 . , . Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) S Adjacent Input Crosstalk vs. Frequency -100 -3 dB Bandwidth (Insertion Loss vs. F'requency) +4 ~ ~ ffi ~ ....... -80 RIN = 10.0. -60 -40 IIIII TEST CIRCUIT See Figure 10 UIIL 0.1 ~ ffi 5o ~ ~ o 9 ~ 111111 o ~ Ul Ul r- RL = 10 k.o. -20 I - S 0 ~ u ;; S I -'111111 1 10 FREQUENCY (MHz) -... -80 -70 -60 -50 -40 ~ w ::E F CJ z ... I TEST CIRCUIT See Figure 8 11111 10 100 :f ~ == Ul - .,..... - -"""" "" -+ -...- TEMPERAlURE ("C) 7-30 100 FREQUENCY (MHz) 200 180 ~ TEST CIRCUIT I See Figures 2. 3, 4 160 tON 140 -"...... 120 ~ 100 80 .. 60 ~REtK-~EFfREiM'lKE 40 20 OFF 0 -55 -35 -15 5 25 45 65 85 105125 ...... 1000 ....... -80 -70 -60 Single Channel Crosstalk vs. Frequency tON, tOFF and Break-Before-Make vs. Temperature 'iii' 100 All Hostile Crosstalk vs. Frequency FREQUENCY (MHz) .s I 11111111 10 -50 rR1N = 10.0. ...... -40 I--RL = 10 k.o. ,III -30· 11111 -20 r-TEST CIRCUIT See Figure 7 -10 I-11111 I UllI o 0.1 10 11111111 11111 1111 111111 -90 ~ 0.1 r-- -16 ""' TEST CIRCUIT See Figure 6 FREQUENCY (MHz) t"'-.. o dB POINt / ' 1111 -20 100 RL = 75.0. -30 -20 r--10 I-- 1'~3 Ul ~ ....... RL= 50.0. -8 z0 ~ -12 w Chip Disabled Crosstalk vs. Frequency -90 -4 -80 - -... -60 r- S -100 ~ -40 -20 I-- o 0.1 ' RIN = 75.0. RL = 75.0. 11111 I 11111 I .... TEST CIRCUIT See Figure 9 11111 1 II WlI 10 FREQUENCY (MHz) 100 DG535 ..... Siliconix incorporated ~ DETAILED DESCRIPTION The DG535 is a 16-channel single-ended multiplexer with on-chip address logic and control latches. connected via two series switches (second level) to a common DRAIN output. The circuit connects one of sixteen inputs (S1, S2, ... S16) to a common output (D) under the control of a 4 bit binary address (Ao to As). The specific input channel selected for each address is given in the Truth Table. In order to improve crosstalk all sixteen first level switches are configured as "T" switches (see Figure 12). All four address inputs have on-Chip data latches which are controlled by the Strobe (ST) input. These latches are transparent when Strobe is high but they maintain the chosen address when Strobe goes low. To facilitate easy microprocessor control in large matrices a choice of 3 independent logic With this method SW2 operates out of phase with SW1 and SW3. In the ON condition SW1 and SW3 are closed with SW2 open whereas in the OFF condition SW1 and SW3 are open and SW2 closed. In the OFF condition the input to SW3 is effectively the isolation leakage of SW1 working into the ON resistance of SW2 (typically 200 0.). inputs (EN, CS and CS) are provided on chip. These inputs are gated together (see Figure 11) and only when EN =CS = 1 and CS = 0 is true can an output switch be selected by the appropriate address input (Ao to A3). This necessary logic condition can then be latched by Strobe (ST) going low. SIGNALGND o E Figure 12. - • T • Switch Arrangement C o o E L o G c ST 1----------' FIgure 11. OS, The two second level series switches further improve crosstalk and help to minimize output capacitance. The DIS output (Pin 7) can be used to signal external circuitry. DIS is a high impedance to GND when no channel is selected and a low impedance to GND when anyone channel is selected. CS, EN, ST Control Logic Break-before-make switching is included to prevent momentary shorting of an input channel when changing from one input to another. The device features a two-level switch arrangement whereby two banks of eight switches (first level) are The DG535 has extensive applications where any high frequency video, audio or digital Signals are switched or routed. Exceptional crosstalk and bandwidth performance is achieved by using N channel DMOS FETs for the "T" and series switches. A cross section of a switch is shown in Figure 13. 7-31 .. DG535 ~ ~ Siliconix incorporated DETAILED DESCRIPTION (Cont'd) is necessary. Biasing is not required, however, in applications where signals are always positive with respect to the GND or substrate connection, or in applications involving multiplexing of low level (up to ± 200 mY) signals, where forward biasing of the PN substrate-source/drain terminals would not occur. GND Biasing can be accomplished in a number of ways, the simplest of which is a resistive potential divider and a few dc blocking capacitors as shown in Figure 14. +15 V Figure 13. Cross-Section of a Single DMOS Switch + ( It can clearly be seen from Figure 13 that there exists a PN junction between the substrate and the drain/source terminals. Should a signal which is negative with respect to the substrate (GND pin) be connected to a source or drain terminal, then the PN junction will become forward biased and current will flow between the signal source and GND. This effective shorting of the signal source to GND will not necessarily cause any damage to the device, provided that the total current flowing is less than the maximum rating, (i.e. 20 mAl. Since no PN junctions exist between the signal path and V+, positive overvoltages are not a problem, unless the breakdown voltage of the DMOS source terminal (see Figure 13) (+18 V) is exceeded. Positive overvoltage conditions must not exceed + 18 V with respect to the GND pin. If this condition is possible (e.g. transients in the signal), then a diode or Zener clamp may be used to prevent breakdown occuring. The overvoltage conditions described may exist if the supplies are collapsed while a signal is present on the inputs. If this condition is unavoidable, then the necessary steps outlined above should be taken to protect the device 100 jJ.F/16 V TANTALUM DG535 GND Figure 14. D _ \c;' ANALOG SIGNAL OUT 100 jJ.F/16 V TANTALUM Simple Bias Circuit R1 and R2 are chosen to suit the appropriate biasing requirements. For video applicatiDns, approximately 3 V of bias is required for optimal differential gain and phase performance. Capacitor C1 blocks the DC bias voltage from being coupled back to the analog signal source and C2 blocks the DC bias from the output signal. Both C1 and C2 should be tantalum or ceramic disc type capacitors in order to operate efficiently at high frequencies. Active bias circuits are recommended if rapid switching time between channels is required. An alternative method would be to offset the supply voltages (see Figure 15). DC BIASING Decoupling would have to be applied to the negative eupply to ensure that the substrate is well referenced to Signal ground. Again the capacitors should be of a type offering good high frequency characteristics. To avoid negative overvoltage conditions and subsequent distortion of analog signals, dc biasing Level shifting of the logic signals may be necessary using this offset supply arrangement. 7-32 DG535 .... 8i1iconix incorporated ~ DETAILED DESCRIPTION (Cont'd) +12 V ANALOG SIGNAL IN v+ 0-----15 ANALOG SIGNAL OUT CG535 D the PC board and/or connecting leads will considerably degrade the A.C. performance. Hence, signal paths must be kept as short as practically possible, with extensive ground planes separating signal tracks. GND a-CHANNEL VIDEO MULTIPLEXING DECOUPLING CAPACITORS CIRCUIT LAYOUT If only 8 channels are needed, the crosstalk can be further reduced by using inputs from the top and bottom halves of the DG535 two-level switching architecture and grounding alternating signal input pins. For example, use 81, 83, 85, 87, 89, 811, 813, and 815 for the signal paths and ground the remaining inputs 82, 84, ... 816 and provide a logic "0" to Ao. This will provide additional shielding between channels for reduced crosstalk, and the eight signal channels will be addressed via the three addressing M8Bs (Figure 16). Good circuit board layout and extensive shielding is essential for optimizing the high frequency performance of the DG535. 8tray capacitances on For higher frequency applications or applications where even lower levels of crosstalk are required, the 8i1iconix DG536 is recommended. ' - - - - - - -3V Figure 15. DG535 With Offset Supply Note: TTL to CM08 level shifting is easily obtained by using a MC14504B. Truth Table EN cs Os 0 X X X 0 X X X ST Aa A2 AI AO 1 X X X Input Channel X Pinout Disable Selected Output NONE HIGH Z 1 GND 57 1 1 0 1 0 0 0 0 51 0 0 1 0 sa 0 1 0 0 55 0 1 1 1 0 57 0 0 0 59 1 0 1 0 511 GND 1 1 0 0 513 51 1 1 1 0 SIS GND 55 GND LOWZ X X 0 X HIGH Z or LOWZ previous X X X switch condition ~ 10.5 V Logic" 0 • : VAL::::;; 4.5 V Logic" 1 • : VAH 53 SIS v+ Maintains X GND 511 Figure 16. ST CS GND A3 AI The DG535 as an 8-Channel Video Multiplexer 7-33 DG536 16-Channel WidebandNideo Multiplexer ~ ~ Siliconix incorporated BENEFITS APPLICATIONS • Improved OFF Isolation • Video Switching/Routing • Reduced Insertion Loss at High Frequencies • High Speed Data Routing • 300 MHz Bandwidth • 4 pF (max) Input and 12 pF Output Capacitance • Reduced Input Buffer Requirements • Low Power (75/J.W) • Minimizes System Power • Precision Data Acquisition • Reduced Noise • Crosspoint Arrays • Simplifies Bus Interface • FUR Systems FEATURES • -100 dB Single Channel Crosstalk at 5 MHz .90 n (max) • j.LP Interface Latches • ESOS Protection > ± 4000 • Wideband Signal Multiplexing • Audio Switching DESCRIPTION The DG536 is a 16-Channel multiplexer designed for routing one of 16 wldeband analog or digital input signals to a single output. It features low input and output capacitance, low ON resistance, and n-channel DMOS "T" switches, resulting in wide bandwidth, low crosstalk and high "OFF" isolation. The switch FETs were deSigned to pass signals in either direction, allowing the DG536 to be used as a demultiplexer as well as a multiplexer. The DG536 is available in the plastic PLCC-44 for Industrial, D suffix (-40 to 85°C), and the 44-lead ceramic J-Iead hermetic package for military, A suffix (-55 to 125°C) temperature ranges. For through-hole (DIP) versions, see the DG535 data sheet. For more information on the DG536, please refer to Siliconix Application Note AN86-1. PIN CONFIGURATION The DG536 includes on-board data latches and decode logic, facilitating a simplified microprocessor interface. Additional Chip Select and Enable inputs simplify addressing in larger matrices. The fast transition time of 300 ns' (max) and low ON resistance 90 n (max) makes the DG536 ideal for multiplexing high speed signals through fast data acquisition systems. Single-supply operation and a low 75 j.LW power dissipation allows operation in battery powered systems and in multi-channel cross points and multiplexers with vastly reduced power supply requirements. The technology used in the DG536 is called D/CMOS. This process combines low-capacitance DMOS FETs on the same substrate with dense, high-speed, low-power CMOS. 7-34 6 5 4 3 2 14443424140 GS1 S3G S4G S5 G N__ GS2 N__ G N__ N__ N__ N 7 8 9 10 11 12 13 14 15 16 17 DISD 00 0 00 DS6 PLCC-44, J LEAD PLASTIC PACKAGE Top View 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 Order Number: DG536DN W'1P'" ~ DG536 Siliconix incorporated PIN CONFIGURATION (Cont'd) 6 5 4 3 2 1 44434241 40 7 39 8 38 37 9 10 36 CLCC - 44 44-PIN J LEAD CERAMIC PACKAGE 11 12 35 34 Top View 13 33 Pin Circle same as Plastic Package 14 15 32 31 16 30 17 29 18 19 20 21 22 23 24 25 26 27 2B Order Number: DG536AM/883 TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM EN C8 C8 8T 1':3 A2 Al 81 82 83 84 85 86 87 88 89 810 o-+-i-i-i-i-i-;...or,;,ti-~ ~1 o-+-.-i-i-i-~~n-ti-~ 0 X X X 0 X X X 1 1 1--1-<> D ~2o-~-'~-r-r~~~n-1 1 o-+-,........;r-;-O;-li'l'iT-;,-n-n-+-~If""'" ~4 o--I--.-i-Oili'l'iT-Tr-irir-ri4 I 8 15 o-+--r~,"'iT-rr-Tr-rr"1T""rr--+ I I 8 16 G-t;::!!ii:ric:iJ::i:cric:u:::; I I 813 1 0 1 :l_.J ;::::::=;--;::n:oo:::=,- --1 DI8 X X X AO X Input Channel Selected Disable Output NONE HIGH Z 0 0 0 0 81 0 0 0 1 82 0 0 0 0 1 1 0 83 1 84 0 1 0 0 85 0 1 0 1 66 0 1 0 1 1 1 0 1 8B 1 0 0 0 89 1 0 0 1 810 1 0 1 0 811 1 0 1 1 812 1 1 0 0 813 1 1 0 1 814 1 1 1 0 815 1 1 1 1 87 816 Maintains X X X 0 X X X X LOWZ previous switch HIGHZ or LOWZ condition Logic· 1 " : VAH ~ 10.5 V Logic· 0 " : VAL ~ 4.5 V 1. LOW Z, HIGH Z = Impedance of Disable Output to GND. Disable output Is current sink when any channel Is selected. 2. Strobe Input (ST) Is level triggered. 7-35 .-F' Siliconix DG536 ~ incorporated ABSOLUTE MAXIMUM RATINGS V+ to GND ........................... -0.3 V to +18 V Storage Temperature (A Suffix) ........... -65 to 150·C (0 Suffix) ..•......• -65 to 125·C Digital Inputs ........... (GND - 0.3 V) to (V+ plus 2 V) •.•................... or 20 mA, whlohever ooours first Operating Temperature (A Suffix) ......... -55 to 125·C (0 Suffix) .......... -40 to 85·C VS,YO .................. (GND - 0.3 V) to V+ plus 2 V) .•.................•.. or 20 mA, whlohever occurs first Power Dissipation (Package)· 44-Pln J Lead Ceramic·· ..................... 825 mW 44-Pln J Lead Plastic··· ...........•......... 450 mW Current (any terminal) Continuous ............... 20 mA All leads welded or soldered to PC board. •• Derate 11 mW'·C above 75·C ••• Derate 6 mW'·C above 75·C Current (S or D) Pulsed 1 ms 10% duty cycle .... 40 mA ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V, GND = 0 V ST, CS = 10.5 V CS = 4.5 V LIMITS 1=2S·C A 2=12S,85·C SUFFIX 3=-55,-40·C -55 to 125°C D SUFFIX -40 to 85°C TEMP TYpd MIN b MAXb MIN b MAX UNIT SWITCH Analog Signal Range e 1 VANALOG Drain - Souroe ON Resistance rOS(ON) Reslstanoe Match Between Channels rOS(ON) f:J. Is = 1 mA, Vo = 3 V V AH =4.5V, V AL =10.5V Sequenoe Eaoh Swltoh ON EN = 10.5 V 1,3 2 0 55 10 0 10 90 120 90 120 9 9 .0. 1 Souroe OFF Leakage Current IS(OFF) Vs =3V, Vo=OV EN = 4.5 V 1 2 -10 -100 10 100 -10 -100 10 100 Drain OFF Leakage Current IO(OFF) Vs = 0 V, Vo = 3 V EN = 4.5 V 1 2 -10 -500 10 500 -10 -100 10 100 Total Switch ON Leakage Current IO(ON) Vs= Vo=3V EN = 10.5 V 1 2 -10 -1000 10 1000 -10 -100 10 100 ROISABLE IOISABLE = 1 mA EN = 10.5 V Disable Output V 1,3 2 100 200 250 200 250 nA .0. INPUT Input Voltage High VAIH 1,2,3 Input Voltage Low VAIL 1,2,3 10.5 10.5 V 4.5 IAI VA = GND or V+ 1 2 <0.01 ON State Input Cap7 CS(ON) Vo = Vs = 3 V 1 32 45 45 OFF State Input Cap!' cS(OFF) Vs = 3 V 1 2 4 4 OFF State Output Cap.c Co (OFF) Vo =3 V 1 8 12 12 Address Input Current -10 -100 10 100 4.5 -10 -100 10 100 JJ.A DYNAMIC 7-36 pF DG536 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+=15V,GND=OV ST, CS = 10.5 V LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-40°C -55 to 125°C D SUFFIX -40 to 85°C SYMBOL CS = 4.5 V tTRANS See Figure 4 1 2,3 tOPEN See Figure 4 1 2,3 tON See Figures 2 & 3 1 2,3 300 300 300 tOFF See Figure 2 1 2,3 150 150 150 Q See Figure 5 1 -35 Single-Channel Crosstalk XTALK (SO) R IN = 75.n, RL = 75.n 1=5 MHz See Flaure 9 1 -100 Chip Disabled Crosstalk (See Figure 8) XTALK(OO) R IN = RL = 75 .n, I = 5 MHz EN = 4.5 V 1 -85 PARAMETER TEMP TYpd MIN b MAXb MIN b MAXt UNIT DYNAMIC (Cont'd) Multiplexer Switching Time Break-Belore-Make Interval 300 300 300 25 25 25 ns EN, CS, CS, ST Turn ON Time EN, CS, Time Cs Turn OFF Charge Injection pC dB Adjacent Input Crosstalk (See Figure 10) XTALK All Hostile Crosstalk C (See Figure 7) XTALK(AH) Bandwidth (AI) 1 -92 1 -74 RIN = 10.n, RL = 10 k.n 1=5 MHz BW RL = 50.n, See Figure 6 1 300 Supply Current 1+ Any One Channel Selected With Address Inputs at GND or V+ 1,3 2 5 Voltage Current V+ -60 -60 MHz SUPPLY 50 100 1,2,3 10 16.5 10 50 100 J.LA 16.5 V MINIMUM INPUT TIMING REQUIREMENTS Strobe Pulse Width tsw See Figure 1 1,2,3 200 200 AD, AI, A 2 , A 3 , CS. CS. EN Data Valid To Strobe tow See Figure 1 1,2,3 100 100 AD, AI, A 2 , A 3 , CS, CS, EN Data Valid Alter Strobe two See Figure 1 1,2,3 50 50 ns NOTES: a. Reier to PROCESS OPTION FLOWCHART lor additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. o. Guaranteed by design, not subject to production test. d. Typical values are lor DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Analog signal range Is measured Irom the GND pin to the designated Source (Input) pin. 7-37 • DG536 ...... Siliconix incorporated ~ DIE TOPOGRAPHY 9 u 38 10 36 Pad Function No. 1 S3 2 GND 3 S2 4 GND 5 Sl 6 GND 7 DIS r 11 35 12 34 84 mils 8 9 ~ ~::;:~::~::~:;~~~~~~~~:: 1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20X LNDG 695 Transistors 16 Diodes 427. N-Channel 268. P-Channel INPUT TIMING REQUIREMENTS 15V ST OV f'V \ .~~ tow two 15V 10.5 V 10.5 V 4.5V 4.5 V CS. Ao. Al. A2. A3 CS. EN OV Figure 1 7-38 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 CS CS EN AO A1 A2 A3 ST V+ D GND S16 GND S15 GND S14 GND S13 GND S12 GND S11 GND Pad No. 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Function S10 GND S9 GND S8 GND 57 GND 56 GND S5 GND S4 GND ~ ~ DG536 Siliconix incorporated EN, CS, CS, TURN ON/OFF TIME TEST CIRCUIT +151,1 LOGIC INPLrr tr < 20 ns If < 20 ns +15 V 15 V - - - ""'" ~ Os ---- 7.5 V EN or OS OV---J '-------' SWITCH 1t__~__~OLrrPUT VOLrr 1~~~__-J~__ ~ SWITCH OUTPUT 0.1VOUT L--_ _ +---' Figure 2 STROBE (ST) TURN ON TIME TEST CIRCUIT +15 V +15 V LOGIC INPUT tr < 20 ns If <20 ns ADDRESS INPUT tr < 20 ns If < 20 ns +15 V 0 V +15 V - - - - - - - - - - - - , '-+------------- 01,1 VOUT ION(ST)~ {I 0.9VOUT OV------------------------~ Figure 3 TRANSITION TIME and BREAK-BEFORE-MAKE INTERVAL TEST CIRCUIT ADDRESS LOGIC INPUT tr < 20 ns If < 20 ns +15 V 7.5 V 01,1 SWITCH OUTPUT ~~RNING SWITCH OUTPUT VOUT OFF-t----joO-\ TRANSITION TIME (ITRANS) Figure 4 7-39 frY' Siliconix CG536 ~ BANDWIDTH TEST CIRCUIT CHARGE INJECTION TEST CIRCUIT +15 V incorporated +15 V +15 V +15 V SWITCH OUTPUT l:!. VOUT Is the measured voltage error due to charge InJection. CS~ The charge Injection In Coulombs Is Q=CLxl:!.VOUT SIGNAL GENERATOR (75.0. ) ~V V O U T - - - q OUT Figure 6 Figure 6 ALL HOSTILE CROSSTALK - X TALK (AH) CHIP DISABLED CROSSTALK - X TALK (CD) ALL CHANNELS OFF CHANNEL Sl ON S2 53 S4 S5 S6 S7 S8 59 S10 Sll S12 S13 S14 ii£:::~::~~~i::--:l S4 ~ S6 S7 58 S9 S10 511 S12 513 514 515 S16 t-:::::=:::::::t:::::t S15 S16+SIGNAL GENERATOR (75.0.) :.....-- S5 v VOUT X TALK (AH) = 20 LOG 10 - V - SIGNAL GENERATOR (75.0.) _v Figure 7 Figure 8 SINGLE CHANNEL CROSSTALK - X TALK(SC) ADJACENT INPUT CROSSTALK - X TALK (AI) CHANNEL Sl ON I ...AA~ v,~ .0. : - Sn-l '*' I I Sn SIGNAL-=GENERATOR (75.0.) NOTES: 1. Any Individual channal between S2 and S16 can be selected V OUT 2. X TALK(SC) = Average value of 20 LOG 10-VIs scanned sequentially from S2 to S16 Figure 9 7-40 X TALK (AI) VSn 1 =20 LOG 10---VSn Figure 10 or 20 LOG 10 VSn+l VSn DG536 ..,. Siliconix incorporated ~ BURN-IN CIRCUIT Note: All Resistors are 10k.n unless otherwise specified PIN DESCRIPTION PIN NUMBER SYMBOL 3 5 7 S3 82 81 DI8 8,9,10 CS ,CS,EN 11 - 14 15 16 17 19 21 23 25 27 29 31 33 35 37 39 41 43 2,4,6,18,20, 22,24,26,28, 30,32,34,36, 38,40,42,44 Ao - A3 8T V+ D 816 815 814 813 812 811 810 89 88 87 86 85 84 GND DESCRIPTION Channel 3 Analog Input Channel 2 Analog Input Channel 1 Analog Input Open drain Impedance output when the DG536 Is disabled (all channels OFF). When the DG536 Is enabled (any channel selected) this output Is current sink to Analog GND. Logic Inputs to select required Multlplexer(s) when using several Multiplexers In a system. Four binary address Inputs that determine which one of the sixteen channels Is selected. 8trobe Input that latches AO, AI, A2, A3, CS ,C8, EN Positive supply voltage Analog output of Multiplexer or Analog Input If device used In Demultiplexer configuration. Channel 16 Analog Input Channel 15 Analog Input Channel 14 Analog Input Channel 13 Analog Input Channel 12 Analog Input Channel 11 Analog Input Channel 10 Analog Input Channel 9 Analog Input Channel 8 Analog Input Channel 7 Analog Input Channel 6 Analog Input Channel 5 Analog Input Channel 4 Analog Input Analog signal ground and most negative potential. All pins should be connected externally to ensure dynamic performance. 7-41 .. DG536 .... Siliconix incorporated ~ TYPICAL CHARACTERISTICS 400 H 360 320 tii' rOS(ON) vs. Vo and rOS(ON) vs. Vo and Temperature Power Supply Voltage 300 :c 9. :::E 240 200 2 9. CIl 2 9. CIl I"JL . / // 160 120 rP :c 9. +125· C-/-;, 0 c::: +25·C~~ ............ 80 40 2 4 120 / 90 ....". 14 F 12 o I 8 6 I 2 0 10 12 14 16 10 H V+=+15 V GNO=OV Vo =Vs =3V L I V ~~ + 9. 10 61--+--+--+--+--.II'--~--,f--I 10 0.01 13 14 15 16 17 18 It 9. ~ ~~ 1000 r-""I"--'~'T'""':"'--r-""I"--'r--'T'""" 100 10 1!!5 u OJ /' _0 12 CIlc::: ...V 0.1 11 V+ - SUPPLY VOLTAGE (\IOLTS) IO(OFF) and I S(OFF) VS. Temperature l .J!l 2 8 6 8r--+--t--r--r---r~~~~ 18 1000 2 4 2 10r--+--+--+--+- IO(ON) + IS(ON) vs. Temperature 9. F 12 V+ - SUPPLY VOLTAGE (\IOLTS) 100 I GNO-O~ ± 8 ~ L ...... 14 ~ 10 / -' Supply Current vs. Supply Voltage and Temperature :i:'j!% ~~ If / J Vo - DRAIN VOLTAGE (\IOLTS) CJ ~~ / 1/ I TA=25C 10 c::: Z J ~ 30 Logic Input Switching Threshold VS. Supply voltage (V+) ffi I J 150 Vo - DRAIN VOLTAGE (\IOLTS) 90 1--1 +15 v +1! V 0 8 6 I-- J 180 I 0 - 210 60 ~-ts·c- 0 1+8 V f---- 240 tii' 280 :::E II 270 I V+=+15V GNO = 0 V 0.01 [LV 0.00 1 -55 -35 -15 7-42 5 25 45 65 65 105 125 0.001 ..........L......L_..L........_ ..........L......L_..L........I -55 -35 -15 5 25 45 65 85 105 125 DG536 WY'Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) iii' Adjacent Input Crosstalk vs. Frequency -120 "'r-- 3 ~ -100 IIIRIN II U ... = 10.(} r-... ... -60 I"L -40 I1I1 II 11111 o 9 Z 0 -4 I 1111-3 dB POINJ: / 15 -12 :;!!; -16 Ul II 11111 0.1 TEST CIRCUIT See Figure 6 - 11111 -20 10 100 Chip Disabled Crosstalk vs. Frequenoy All Hostile Crosstalk vs. Frequenoy iii' -160 ~ RL RL =50.(} i- 11111 3 -160 i -140 Iii! =75.n~ ,,"I TEST CIRCUIT See Figure 8 r- I -80 ~ -80 ::J: ~ III -120 0;;: -100 U ~ 0 10 -40 -20 -RIN = 10.(} -RL = 10k.(} ~ 180 I!:J Z Z ~ 160 I=t iii' 120 -- ,.,. 100 80 60 - ~ ~ I""" ~ r- .- I-~ ~ BfEA~ BEjOR1 M,!E 40 20 0 -55 -35 -15 tOFF 5 25 45 65 ~ I 11111 10 100 FREQUENCY (MH71 TEST CIRCUIT See Figures 2, 3, 4 t-tON 140 TEST CIRCUIT See Figure 7 0.1 tON, tOFFand Break-Betore-Make vs. Temperature 200 ~ 1111 11111 o 100 RIN =75.(} RL = 75.(} o;;::::~ FREQUENCY (MHll :E F 1000 -180 IlIfi w 100 FREQUENCY (MH71 -180 ... :g I II 11111 10 FREQUENCY (MH71 iii' ;s i"'~ RL = 50.(} -8 0 TEST CIRCUIT See Figure 10 i- -20 Ul Ul i""-.~ RIN =75.(} iii' -3 dB Bandwidth (Insertion Loss vs. Frequency) 3 ..... -80 +4 85 105 125 3 ~ ~ Single Channel Crosstalk vs. Frequency -180 -160 -140 Ul -120 5 -100 !i::l -80 0 Z ~ -60 U -40 I!:J ~ Z -20 !i'i 0 ' ... RIN =76.(} RL = 76.(} m.:.... III - TEST CIRCUIT See Figure 9 11111 0.1 II 11111 10 100 FREQUENCY (MH71 7-43 DG536 ~ ~ Siliconix incorporated DETAILED DESCRIPTION The DG536 is a 16-channel single-ended multiplexer with on-chip address logic and control latches. connected via two series switches (second level) to a common DRAIN output. The circuit connects one of sixteen inputs (S1, S2, ... S16) to a common output (D) under the control of a 4 bit binary address (Ao to A3). The specific input channel selected for each address is given in the Truth Table. In order to improve crosstalk all sixteen first level switches are configured as "T" switches (see Figure 12). All four address inputs have on-chip data latches which are controlled by the Strobe (ST) input. These latches are transparent when Strobe is high but they maintain the chosen address when Strobe goes low. To facilitate easy microprocessor control in large matrices a choice of 3 independent logic With this method SW2 operates out of phase with SW1 and SW3. In the ON condition SW1 and SW3 are closed with SW2 open where as in the OFF condition SW1 and SW3 are open and SW2 closed. In the OFF condition the input to SW3 is effectively the isolation leakage of SW1 working into the ON resistance of SW2 (typically 200 a). inputs (EN, CS and CS) are provided on chip. These inputs are gated together (see Figure 11) and only when EN = CS = 1 and CS = 0 is true can an output switch be selected by the appropriate address input (Ao to A3)' This necessary logic condition can then be latched by Stroba (ST) going low. A - SIGNAL OUT SIGNAL GND D E Figure 12. "T' Switch Arrangement C o D E o G c Figure 11. The DIS output (Pin 7) can be used to signal external circuitry. DIS is a high impedance to GND when no channel is selected and a low impedance to GND when anyone channel is selected. CS. CS. EN. ST Control Logic Break-before-make switching is included to prevent momentary shorting of an input channel when changing from one input to another. The device features a two-level switch arrangement whereby two banks of eight switches (first level) are 7-44 The two second level series switches further improve crosstalk and help to minimize output capacitance. The DG536 has extensive applications where any high frequency video, audio or digital signals are switched or routed. Exceptional crosstalk and bandwidth performance is achieved by using N channel DMOS FETs for the "T" and series switches. A cross section of a switch is shown in Figure 13. DG536 tI'7' Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) however, in applications where signals are always positive with respect to the GND or substrate connection, or in applications involving multiplexing of low level (up to ± 200 mY) signals, where forward biasing of the PN substrate-source/drain terminals would not occur. SUBSTRATE GND Biasing can be accomplished in a number of ways, the simplest of which is a resistive potential divider and a few dc blocking capacitors as shown in Figure 14. Figure 13. +15 V Cross-Section of a Single DMOS Switch It can clearly be seen from Figure 13 that there exists a PN junction between the substrate and the drain/source terminals. Should a signal which is negative with respect to the substrate (GND pin) be connected to a source or drain terminal, then the PN junction will become forward biased and current will flow between the signal source and GND. This effective shorting of the signal source to GND will not necessarily cause any damage to the device, provided that the total current flowing is less than the maximum rating, (i.e. 20 mA). Since no PN junctions exist between the signal path and V+, positive overvoltages are not a problem, unless the breakdown voltage of the DMOS source terminal (see Figure 13) (+18 V) is exceeded. Positive overvoltage conditions must not exceed +18 V with respect to the GND pin. If this condition is possible (e.g. transients in the signal), then a diode or Zener clamp may be used to prevent breakdown occuring. The overvoltage conditions described may exist if the supplies are collapsed while a signal is present on the inputs. If this condition is unavoidable, then the necessary steps outlined above should be taken to protect the device DC BIASING To avoid negative overvoltage conditions and subsequent distortion of ac analog signals, dc biasing Is necessary. Biasing is not required, + ( 100 }JoFI16 V TANTALUM OG536 GND Figure 14. 0 _ \C2" ANALOG SIGNAL OUT 100 }JoF/16 V TANTALUM Simple Bias Circuit R1 and R2 are chosen to suit the appropriate biasing requirements. For video applications, approximately 3 V of bias is required for optimal differential gain and phase performance. Capacitor C1 blocks the DC bias voltage from being coupled back to the analog signal source and C2 blocks the DC bias from the output signal. Both C1 and C2 should be tantalum or ceramic disc type capacitors in order to operate efficiently at high frequencies. Active bias circuits are recommended if rapid switching time between channels is required. An alternative method would be to offset the supply voltages (see Figure 15). Decoupling would have to be applied to the negative supply to ensure that the substrate is well referenced to signal ground. Again the capacitors should be of a type offering good high frequency characteristics. Level shifting of the logic signals may be necessary using this offset supply arrangement. 7-45 DG536 ...... Siliconix incorporated ~ DETAILED DESCRIPTION (Cont'd) TTL to CMOS level shifting is easily obtained by using a MC14504B. +12 V ANALOG SIGNAL IN S v+ DG536 D GND DECOUPLING CAPACITORS ~v Figure 15. 7-46 DG536 With Offset Supply ANALOG SIGNAL OUT CIRCUIT LAYOUT Good circuit board layout and extensive shielding is essential for optimizing the high frequency performance of the DG536. Stray capacitances on the PC board and/or connecting leads will considerably degrade the ac performance. Hence, signal paths must be kept as short as practically possible, with extensive ground planes separating signal tracks. DG538 8-Channel/Dual 4-Channel WidebandNideo Multiplexer tI"F Siliconix ~ incorporated BENEFITS FEATURES APPLICATIONS • Wide Bandwidth (500 MHz) • Improved System Bandwidth • Very Low Crosstalk (-97 dB @ 5 MHz) • Improved Channel Off-isolation • Simplified Logic Interfacing o High-end Video Systems • Allows Bipolar Signal Swings • Direct Coupled Systems • ATE Systems • On-Board TTL-compatible Latches with Readback • • • Optional Negative Supply Input • Reduced Insertion Loss • Low rDS(ON) (90.n max) • • Single-ended 8-channel or Dual 4-channel operation Allows Differential Signal Switching • ESDS Protection> ±4000 V Wideband Signal Routing and Multiplexing Jl.P-controlied Systems DESCRIPTION The DG538 is an electrically-selectable 8-channel or dual 4-channel analog multiplexer clesigned for wide band operation. On-chip TTL-compatible address decoding logic and latches with data read back are included to simplify the interface to a microprocessor data bus. The low ON resistance and low capacitance of the DG538 makes it ideal for wideband data multiplexing and video and audio Signal routing in channel selectors and crosspoint arrays. An optional negative supply pin allows the handling of bipolar signals without DC biasing. The DG538 is built on a D/CMOS process that combines n-channel DMOS switching FETs with low-power CMOS control logic, drivers and latches. The low-capacitance DMOS FETs are in a "T" configuration to achieve extremely high levels of OFF isolation. Crosstalk is reduced to -97 dB at 5 MHz on the DG538 by including a ground line between each adjacent signal path. The DG538 is available In 28-pin plastic DIP and PLCC packages for operation over the industrial, D suffix (-40 to 85°C) temperature range. The 28-lead side braze DIP is available for military, A suffix (-55 to 125°C) temperature range operation. PIN CONFIGURATION v+ DA v- v+ SBI DA GND DB v- SBI GND GND Dual-in-line Package GND Order Numbers: Side Braze: DG538AP Plasllc: DG538DJ SA2 GND SB2 SB2 GND GND Order Number: SB3 DG538DN Quad J Lead Plastic Chip Carrier SB3 GND SB4 VL iNA A2 AI AO EN iio 7-47 .. DG538 TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM 1/0 A2 A1 Ao EN WR X X X X X S All eight Input switches are "T" switches. V+ V- GND SA1 SA2 --:----t_..-a..L DA _-!---!--+--ll ~ SA3 SA4 o-+---<>-"""! .... SB1 SB2 0-11----+_--1>..., SB4 ...l...r::::?==it:::?==it:::?==it::?=~:::::J 8/4 1 1 Maintains previous state ON SWITCH X X X X X 0 X None (latches cleared) X X X X 0 0 None 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 SA1 SA2 SA3 SM SB1 SB2 SB3 SB4 SA1 SA2 SA3 SA4 0 0 0 0 0 0 1 1 1 1 0 DB Rs X 0 a.-r----ir-+_~ S~ o-II----~~,~_+-~+-~~ 8/4 Siliconix incorporated H 1 0 0 0 1 1 1 0 1 0 X 0 0 0 X 0 1 1 1 0 0 X 0 X 1 NOTE 2,3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 ~:c~n~~crac:r externally Latches Transparent SB1 SB2 & SB3 & SB4 & & 'NOte 1 r-- EN I---+ORS WR Logic" 1 " : VAH 1/0 ~ 2.0 V Logic" 0 " : VAL ::; O.B V 1. 8/4 can be either H or L but should not change during these operations. Ao 2. In this condition the pins A o, A 1 and A2 become outputs and reflect the contents of the latches. Please see timing waveforms for more detail. 3. EN must be latched HIGH to allow proper address data readback operation. ABSOLUTE MAXIMUM RATINGS V+ to GND ........................... -0.3 V to +22 V Power Dissipation (Package)· V+ to VV- to GND •.......................... -0.3 V to +22 V ........................... -10 V to +0.3 V 2B-pln Plastic DIp·· Digital Inputs ...... (V- minus 0.3 V) to (V+ plus 0.3 V) or 20 mA, whichever occurs first Vs , Vo 2B-pln Side Braze DIP"· 625 mW .................. 1200 mW 2B-pln Quad J Lead Plastic···· CURRENT (any terminal) Continuous........... 20 mA CURRENT (S or D) Pulsed 1 ms 10% duty ..... 40 mA • All leads welded or soldered to PC board. Derate B.3 mW/oC above 75°C Storage Temperature (A Suffix) ..... -65 to 150°C Derate 16 mW/oC above 750C (D Suffix) ..... -65 to 125°C Derate 6 mW/oC above 750C Operating Temperature (A Suffix) ..... -55 to 1250C (D Suffix) ..... -40 to B50C 7-48 ........... ........... (V- minus 0.3 V) to (V- plus 14 V) or 20 mA, whichever occurs first 450 mW H DG538 ~i1iconix Incorporated CONTROL CIRCU~IT~R~Y~=---------- r-- I I I I I I I I L Ao Note', V REF Is Internali y generated fr omVl 7-49 DG538 fI"'lI" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 1S V, V- = -3 V V L= +S V, GND = 0 V WR = 0.8 V RS, EN = 2 V LIMITS 1=2S·C 2=125,8S·C DGS38AP 3=-SS,-40·C -S5 to 125°C TEMP TYpd MIN b MAXb MIN b MAXb UNIT SWITCH Analog Signal Range e Drain - Source ON Resistance DG538DN DGS38DJ -40 to 85°C : VANALOG V- = -5 V 1 rOS(ON) I s =-10mA, Vs=OV 1,3 2 -5 45 8 -5 8 90 120 90 120 9 9 Resistance Match Between Channels t:. rOS(ON) VAIL = 0.8 V, V AIH = 2 V Sequence each switch ON 1 Source OFF Leakage Current IS(OFF) V s =8V, Vo=OV EN = O.B V 1,3 2 -5 -50 5 50 -5 -50 5 50 Drain OFF Leakage Current I o (OFF) Vs = 0 V, Vo = 8 V EN = 0.8 V 1,3 2 -20 -500 20 500 -20 -500 20 500 Total Switch ON Leakage Current IO(ON)+ Is(oN) Vs = Vo = 8 V 1,3 2 -10 -1000 10 1000 -10 -100 10 100 1,2,3 -400 V .n. nA INPUT VAO = 2.7 V Address Output Current IlA VAO = 0.4 V Input Voltage High -400 lAO 1,2,3 VAIH 400 1,2,3 2 400 2 See Figure 13 Note 1 Input Voltage Low Address Input Current IAI V 1,2,3 VAIL VAl = 0 V or 2 V or 15 V 0.8 1,3 2 0.1 -1 -10 1 10 0.8 -1 -10 1 10 IlA DYNAMIC ON State Input Cap~ cS(ON) See Figure 11 PLCC DIP 1 1 23 27 35 30 35 OFF State Input Cap.o CS(OFF) See Figure 12 PLCC DIP 1 1 2 3 5 4 5 OFF State Output Cap.o Co (OFF) See Figure 12 PLCC DIP 1 1 4 10 8 10 Multiplexer Switching Time tTRANS See Figure 4 1,3 2 300 500 300 SOD tOPEN See Figure 4 1,2,3 EN, WR Turn on Time tON See Figures 2 & 3 1,3 2 300 SOO 300 500 EN, Turn OFF Time tOFF See Figure 2 1,3 2 lS0 300 1S0 300 Break-Before-Make Interval 6 SO pF SO ns 7-50 H DG538 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER SYMBOL V+ = 15 V, V- = -3 V VL=+5V, GND=OV WR = 0.8 V RS, EN = 2 V Q See Figure 5 LIMITS 1=25°C 2=125,85°C DG538AP 3=-55, -40 ° C -55 to 125°C DG538DN DG538DJ -40 to 85°C MIN b MAXb MIN b MAXb UNIT TEMP TYpd DYNAMIC (Cont'd) Charge Injection Chip Disabled Crosstalk (See Figure 8) Adjacent Input Crosstalk (See Figure 9) All Hostile Crosstalk (See Figure 7) Differential Crosstalk (See Figure 10) Bandwidth XTALK(co) XTALK (AI) XTALK(AH) XTALK (OIFF) BW RL = 75.0. f = 5 MHz EN = 0.6 V RIN = 10.0. RL = 10 k.o. f = 5 MHz RIN = 75.0. RL = 75.0. f - 5 MHz RIN = 10.0. RL = 10 k.o. f = 5 MHz RIN =75.0. RL = 75.0. f = 5 MHz RIN -10.0. RL = 10 k.o. f = 5 MHz RIN = 75.0. RL = 75.0. f = 5 MHz 1 -70 PLCC DIP 1 1 -75 -65 PLCC DIP 1 1 -97 -67 PLCC DIP 1 1 -60 -70 PLCC DIP 1 1 -77 PLCC DIP 1 1 -77 PLCC DIP 1 1 -84 -64 PLCC DIP 1 1 -84 -64 1 500 1,2 3 0.6 1,2 3 0.6 RL = 50.0., See Figure 6 pC dB -72 -72 MHz SUPPLY Positive Supply Current 1+ Negative Supply Current 1- Any One Channel Selected With Address Inputs at GND or V+ V+ to VOperating Supply Voltage Range V- to GND See Figure 13 Functional Test Only V+ to GND Logic Supply Current mA -1.6 -2.0 -1.6 -2.0 1,2,3 10 21 10 21 1,2,3 -5.5 0 -5.5 0 1,2,3 10 21 10 21 1,2,3 IL 2 5 2 5 150 500 500 V IlA , TIMING Reset to Write WR, RS Minimum pulse Width tRW See Figure 1 1,2,3 50 50 t MPW See Figure 1 1,2,3 200 200 tow See Figure 1 1,2,3 100 100 ns Ao, Al, A2, EN Data Valid To Strobe 7-51 DG538 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: V+ = 15 V. V- = -3 V VL = +5 V. GND = 0 V WR = 0.8 V RS. EN = 2 V SYMBOL PARAMETER LIMITS 1=25°C DG538DN 2=125.85°C DG538DJ DG538AP 3=-55.-40 0 C -55 to 125°C -40 to 85°C TEMP TYpd MIN b MAXb MIN b MAXt UNIT TIMING (Coot'd) Ao. Al. A2. EN Data Valid After Strobe two See Figure 1 1.2.3 Address Bus Tristate tAZ See Figure 1 1 tAO See Figure 1 tAl See Figure 1 50 50 1 200 200 1 200 200 50 ns Address Bus Output Address Bus Input NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum ant! the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY at 25"C. not guaranteed nor subject to production testing. e. Analog signal range Is measured from the GND pin to the designated Source (Input) pin. and Indicates the limits of functionality. Performance limits are only guaranteed for stated test conditions. DIE TOPOGRAPHY 13 14 1 89 mils 15 16 17 20 21 22 23 24 25 26 20X LNDPA 222 PMOS Transistors 243 NMOS Transistors 1 NPN Transistor 7-52 3 P+ Resistors 18 Diodes Pad no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Function GND DA V+ SAl GND SA2 GND SA3 eND SA4 3.L4 RS WR A2 Al AO EN I/O VL SB4 GND SB3 GND SB2 GND SBl VDB DG538 ..... Siliconix incorporated ~ INPUT TIMING REQUIRMENTS ~tMPW~ 3V WR OV ttow =+twoj --D-O-N-'T-C-A-R-E---"X WRITE DATA X"--D-O-N-'-T-C-A-R-E- Writing Data to Device _ 3 V - - - - - - - - - - - - - - -....... WR OV Ao, Al, A 23 V - - - - - - - - - - - - - - - - - / - " OV DON'T CARE ---------------+--/ - 3 V -------. RS 0 V Delay Time Required after Reset before Write _3V WR OV A o , Al' A 2 3 V DRIVEN BUS HIZ DEVICE DATA" OUT OV _ HIZ DRIVEN BUS 3V 1/0 0 V - - - - - - - - - - - : - - - - / !.-tAZ • Enable must be latched" High" to read back data, otherwise BUS Is high Z. Reading Data From Device .. Figure 1 EN TURN ON/OFF TIME TEST CIRCUIT +15 V LOGIC INPUT t, < 20 ns 3V tj < 20 ns 50% +5 V EN OV SB4 SAl - SB3 8/41--+-0--, TIO WR 0.9 VOUT RS ....----c>-l EN SWITCH OUTPUT -3 V Figure 2 7-53 DG538 ..... Siliconix incorporated ~ WR TURN ON TIME TEST CIRCUIT +15 V + 10J,lF l WR -+3-V---"" OV ~ENN~.V~L~.lRR:SS-~V~+~SS~A7t~----o+lV At' A2 SA2I---o-, 8/4 thru i/o SB4 Ao +3 V OV (WR) 14- -'f _vO;:,.u:..;T'--_ _ _ _ _ _ _ _ _ _ 0.9 VOUT LOGIC INPUT tr < 20 ns tf < 20 ns ADDRESS INPUT tr < 20 ns < 20 ns t, -3 V Figure 3 TRANSITION TIME and BREAK-BE FORE-MAKE INTERVAL TEST CIRCUIT ADDRESS INPUT LOGIC INPUT tr < 20 ns +15 V + +5 V 10J,lF V+ l +1 V tf < 20 ns V 50% ~ ; - - - - - - - - - OV SAt SB4 1---<)----' SA2 thru 1----<:>----, SB3 Figure 4 7-54 +3 Ao. At. A2 ~ ~ DG538 Siliconix incorporated -3 dB BANDWIDTH TEST CIRCUIT CHARGE INJECTION TEST CIRCUIT iSV +15 V iSV iSV + OV 10JJ.FJ SWITCH OUTPUT EN~ to;~ I!.v 0 Is the measured voltage error due to charge InJection. The charge Injection In Coulombs Is Q=CLx I!.vo V~O o -,- J 100 nF Jl00nF -3V Figure 5 Figure 6 ALL HOSTILE CROSSTALK - X TALK (AH) (C~) CHIP DISABLED CROSSTALK - X TALK SAl 8/4 = LOGIC' O· ~ SB2 SB3 SB4 V " T SAl SA2 1 RIN x V OUT TALK (AH) = 20 LOG 10--V- Note: SA1 on or any other one channel on. Figure 7 ~h~ SA3 V OUT RL SA4 SBl SB2 DB DAAND DB CONNECTED EXTERNALLY SIGNAL GENERATOR §-(M ALL CHANNELS OFF DA SB3 SB4 DB ... V DAAND DB CONNECTED EXTERNALLY SIGNAL GENERATOR V OUT X TALK(CD)= 20 LOG 10 - V ~= 75.n. Figure 8 7-55 .. DG538 W1P'" Siliconix ~ ADJACENT INPUT CROSSTALK - X TALK (AI) incorporated DIFFERENTIAL CROSSTALK - XTALK(DIFF) CHANNELS SA1 AND SB10N 8/4 RIN I -=- I I I =LOGIC "1" ..r:..AA~ v v- . ! - Sn-1 SB1 r-----~-.., SB2+-_ _ Sn ~ SB3+---~ SB4+---~ SIGNAL-=GENERATOR v =20 LOG 10 V SnVSn -1 X TALK (AI) or 20 LOG 10 VSn+1 VSn SIGNAL GENERATOR Figure 10 Figure 9 ON STATE INPUT CAPACITANCE OFF STATE INPUT/OUTPUT CAPACITANCE +15V +15 V OUTPUT +5V +5V SA1 OV, 2.0 V VL As As EN 8/4 / SAa SA4 I I \ AO \ A1 SB3 A2 , SB4 -3V Figure 11 -3V METER HP4192A IMPEDANCE ANALYZER OR EQUIVALENT ':' 7-56 SA1 SA2 V+ VL METER HP4192A IMPEDANCE ANALYZER OR EQUIVALENT Figure 12 DG538 ...... Siliconix incorporated ~ OPERATING VOLTAGE RANGE 22 21 20 19 18 17 16 15 14 OPERATING VOLTAGE AREA (NOTE 2) POSITIVE SUPPLY VOLTAGE v+ (VOLTS) 13 12 11 10 7 6 5 4 3 2 -5.5 -2 -4 NEGATIVE SUPPLY VOLTAGE (VOLTS) -1 v- Note: 1. Both V+ and V- must have decoupllng capacitors mounted as close as possible to the device pins. Typical decoupllng capacitors would be 10j1F tantalum bead In parallel with 100 nF ceramic disc. 2. Production tested with V+ 15 V and V- -3.0 V 3. At VL= 5 V ± 10%,0.8/2.0 V TTL compatibility is maintained over the entire operating voltage range. = = Figure 13 - BURN-IN CIRCUIT - 2S-LEAD DUAL-IN-LiNE 10 k,o, -5 V +15 V +15 V +5 V 7-57 W'1P" Siliconix CG53S ~ incorporated BURN-IN CIRCUIT - 28-LEAD PLCC -5 V +15 V 10 k.O. 9 +5 V PIN DESCRIPTION PIN NUMBER SYMBOL 2 3 11 12 13 DA 8/4 RS WR Analog output Positive supply voltage (must be decoupled) 8 by 1 or 4 by 2 select Reset Write command that latches Ao, Al, A2, EN 14 15 16 A2 Al Ao Binary address inputs that determine which input channel(s) is connected to the output(s) 17 EN 18 19 27 28 i/o DB Input to activate multiplexer Pin to read from or write to the address latches Logic supply voltage Negative supply voltage (must be decoupled) Analog output 4 6 SAl SA2 SA3 SA4 SB4 SB3 SB2 SBl Analog Analog Analog Analog Analog Analog Analog Analog GND Analog and digital ground. All GND pins should be connected externally to optimize dynamic performance. 8 10 20 22 24 26 1,5,7,9 21, 23, 25 7-58 v+ DESCRIPTION VL V- input input Input input input input input input DG538 ..... Siliconix incorporated ~ TYPICAL CHARACTERISTICS Address Output Current vs. Temperature 2 lAO (rnA) o -1 - - .... SI~k r- r- I 100 1- VIN= 4V 10 V+ = 15 V V- = -3 V -f- V L = 5 V IAI (rnA) III - Logic/Address Input Current vs. Temperature Source VIN = 2.7 V .1 "i -2 .01 -40 -20 0 20 40 60 80100120 Temperature (·C) -40 -20 Supply Currents vs. Temperature 1.0 , ~+! 151V V-=-3V_ ~ .8 "- .6 I (rnA) .4 " Leakage vs. Temperature l~A - 10 ~II+I=II-I I (nA) ...... ...... .2 r-~~~~--~~~~--" 100 VLrl I' 1 nA 100 IL 1 pA -40 -20 0 20 40 60 80100120 Temperature (·C) -40 -20 rOS(ON) vs. Drain Voltage 200 160 - 140 rOS(ON) (.0. ) rOS(ON) VS. -5 -4 V-; V+ Constant .7J r--I 60 rOS(ON) (.0.) 50 - 55 ° C 80 -- -- /. ./ V 60 20 I flJ 25°C .---iWI 125°C:----o 100 0 20 40 60 80100120 Tempsrature (·C) 70 J V+! 15 V- = -3 V VL = 5 V Is = -10 rnA 120 40 .. 10 0 180 0 20 40 60 80100120 Temperature (·C) -r-2 --:... ...- . / 0 2 4 Vo (V) 40 30 6 8 10 -6 -3 V- (V) -2 -1 0 7-59 DG538 .... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) Adjacent Input Crosstalk See Figure 9 Adjacent Input Crosstalk See Figure 9 120 120 '" 100 XTAl.KCAI) (dB) 80 ~" "" 100 r--.~ ~G538DN V+ = 15 V V- = -3 V VL= 5 V RIN = 10 .0. 60 RLr 1r 40 ~ " " 100 MHz IDGI5dalN ~ 111?iG53a 20 1 MHz pJ~i' 10 MHz Frequency 100 MHz Frequency All Hostile Crosstalk See Figure 7 Differential Crosstalk See Figure 10 100 120 100 80 r-... r'--", DG538DN XTAl.KCAH) (-dB) IV~I~ 15 I I I V- = -3 V VL= 5 V RIN = RL= 75.0. 40 IIIDG5~8Dt 10 MHz ~ r"-" 80 60 ~ r'\r--. III 1 MHz XTALKCAI) (dB) V "- XTALKCOIFFI (-dB) 60 ao All Package 60 r"-~ 40 40 t- V+ = 15 V 20 20 Vl=~Y' 1 MHz 10 MHz V- = -5 V 1 MHz 100 MHz 10 MHz Frequency 100 MHz Frequency Insertion Loss See Figure 6 ON State Capacitance See Figure 11 o 40 35 -4 r- (-dB) CS(ON) (pF) 30 -a V+ = 15 V V- = -3 V ~LI=I~I~II -12 1 MHz 10 MHz 1111111 I 100 MHz Frequency 7-60 25 1.1 -3 dB pt. 20 1 GHz 0 2 4 6 Vo - VCVI a 10 DG538 ...... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) Switching Times vs. Temperature Chip Disabled Crosstalk See Figure 8 100 80 XTALK(CO) 350 , "'......... 60 OG538AP OG5380J 40 \ \\\\\ 1 MHz "'"' DG53BON 'I"- (-dB) 250 V+ = 15 V V- =-~V VL= 5 Rl = 1 k Cl =45rF 200 Ion 300 I (ns) .... 150 'I' 100 ./ .,~ "'""" ~~ i--"" 50 - toll ~ ..... IBBM -40 -20 0 20 40 60 80 100120 Temperature (·C) 100 MHz 10 MHz Frequency .". ~i"'" rOS(ON) vs. V+i V- Constant 70 60 ~+---+-t-+-- rOS(ON) 50 (.0. ) 40 30 .. 20 10 11 12 13 14 15 16 V+ (V) 17 18 APPLICATIONS Device Description The DG538 D/CMOS wideband multiplexer offers 8-channel single-ended or dual 4-channel functions. An 8/4 logic input pin selects the single-ended or dual mode. To meet the high dynamic performance demands of video, high definition TV, digital data routing (in excess of 100 Mb/s) , etc., the DG538 is ~abricated with DMOS transistors configured in 'r arrangements with second level 'L' configurations (see Functional Block Diagram). Use of DMOS technology yields devices with very low capacitance and low rOSION)' This directly relates to improved high frequency signal handling, higher switching speeds, while maintaining low insertion loss figures. 'T' and 'L' switch configurations further improve dynamic performance by greatly reducing hostile crosstalk and output node capacitance. Frequency Response A single multiplexer on-channel exhibits both resistance (rOSION) and capacitance (CSION). This RC combination causes a frequency dependent attenuation of the analog signal. The -3 dB bandwidth of 7-61 DG538 fI"Y' Siliconix ~ incorporated APPLICATIONS (Cont'd) the DGS38 is typically SOO MHz (into SO .0). This figure of SOO MHz illustrates that the switch-channel cannot be represented by a simple RC combination. The ON capacitance of the channel Is distributed along the ON resistance, and hence becomes a more complex multi-stage network of R's and C's making up the total rOS(ON) and CS(ON). b. They should be mounted as close as possible to the device pins. c. Capacitors should have good frequency characteristics - tantalum bead and/or ceramic disc types are suitable. Recommended decoupling capacitors are 1 to 10 fJ.F tantalum bead, plus 10 to 100 nF ceramic or polyester .. Power Supplies and Decoupllng A useful feature of the DGS38 is its power supply flexibility. It can be operated from dual supply, or a single positive supply (V- connected to 0 V) if required. Recommended operating voltage range is shown in Figure 13. d. Additional high frequency protection may be provided by S1 .0 carbon film resistors connected in series with the power supply pins (see Figure 14). Note that the analog signal must not exceed V- by more than -0.3 V (see absolute maximum ratings). However, the addition of a V- pin has a number of advantages: 1. 2. +5 V +15 V It allows flexibility in analog signal handling, i.e. with V- = -S V and V+ = 15 V, up to ±S V ac signals can be accepted. 51.0. + The value of ON capacitance (CS(ON) may be reduced by increasing the reverse bias across the internal FET body to source junction. For more information see curve of C S(ON) versus t-'o minus V-) voltage in typical characteristic data section. V+ has no effect on CS(ON). C:!..I. OA It is useful to note that tests indicate that optimum video differential phase and gain occur when V- is -3 V. 3. V- eliminates the need to bias the analog signal using potential dividers and large coupling capacitors. It is established rf design practice to incorporate sufficient bypass capacitors in the circuit to decouple the power supplies to all active devices in the circuit. The dynamic performance of the DGS38 is adversely affected by poor decoupling of power supply pins. Also, since the substrate of the device is connected to the negative supply, proper decoupling of this pin is essential. Rules: a. 7-62 Decoupling capacitors should be incorporated on all power supply pins (V+, V-, Vd. ,TI:l DG538 DB SB4 V- -3 V Cl = 10 fJ.F Tantalum C:! = 100 nF Polyester Figure 14. OG538 Power Supply Oecoupllng DG538 trY' Siliconix ",1;11 incorporated APPLICATIONS (Cont'd) Board Layout PCB layout rules for good high frequency performance must also be observed to achieve the performance boasted by the DG538. Some tips for minimizing stray effects are: i. Use extensive ground planes on double sided pcb separating adjacent signal paths. Multilayer pcb is even better. ii. Keep signal paths as short as practically possible with all-channel paths of near equal length. Slight improvements in performance can be obtained by using DG538DN parts in preference to DG538DJ. The stray effects of the quad PLCC package are better than those of the 28-pin dual-in-line package. Interfacing Logic interfacing is easily accomplished with the DG538. Comprehensive addressing and control functions are incorporated in the design. The addition of a VL pin permits interface to various logic types. The device is primarily designed to be TTL logic compatible with +5 V applied to VL. The DG538 actual switching threshold can be raised simply be increasing VL. A typical DG538 switching threshold versus VL is shown in Figure 15. 8 7 6 5 ./ Vth 4 (V) 3 /" V /"" 2 /" o // o 2 4 V 6 8 10 12 14 16 18 VL (V) Figure 15. DG538 Switching Threshold Voltage vs. VL The device features an address read back (Tally) facility, whereby the last address written to the device may be output to the system. This allows improved status monitoring and handshaking without additional external components. This function is controlled by the 1/0 pin, which directly addresses the tri-state buffers applied to the address inputs (Ao-A2). Address inputs can be assigned to accept data (when 1/0 = 0; WR = 0; RS = 1) or output data (when 1/0 = 1; WR = 1; RS = 1) or reflect a high impedance and latched 1; RS 1). state (when 1/0 0; WR = = = NOTE: (EN) must have been latched HIGH to allow proper readback,' otherwise readback is supressed. When the 1/0 assigns the address output condition, the address output can sink or source current for logic low and high respectively. Note that VL is the logic high output condition. This point must be respected if VL is varied for input logic threshold shifting. Note: VL must not exceed V+ by more than +0.3 V. This must also apply when the power supply is turned on, i.e. V+ must rise ahead of VL. Further control pins facilitate easy microprocessor interface. On chip address, data latches are activated by WR, which serves as a strobe type function eliminating the need for peripheral latch or memory 1/0 port devices. Also, for ease of interface, a direct reset function (RS) allows all latches to be cleared and switches opened. Reset should be used during power up, etc., to avoid spurious switch action. See Figure 16. Channel address data can only be entered during WR low, when the address latches are transparent and 1/0 is low. Similarly data read back is only operational when WR and 1/0 are high. Multiplexer output buffers are recommended to reduce insertion loss and transmission errors caused by ON resistance modulation effects. For low power power routing applications, a Siliconix 2N59111 2N5912 JFET may be employed in a source-follower circuit as shown below. Note: For additional information please refer to AN88-2. 7-63 .. DG538 H APPLICATIONS (Cont'd) DATA BUS ,::'::: RS ,', WR t----------j'::~, 110 t ___________-;',,'" :"",,' R E S E l } - - - - - - - - - - - - - t ", WR ,':' ADDRESS BUS ADDRESS DECODER 7sJl 1/0 VIDEO DATA BUS BUS Figure 16. DGS38 In a Video Matrix V+ 2NS911/12 VFigure 17. Discrete Video Buffer 7-64 Siliconix incorporated DG540 Quad SPST Wideband/ Video "T" Switch ..... Siliconix .,1;11 incorporated FEATURES BENEFITS o Wide Bandwidth (500 MHz) GLow Insertion Loss C) o Very Low Crosstalk ( -85 dB) and High OFF Isolation (-75 dB) at 5 MHz Q o"T" Switch Configuration APPLICATIONS Improved Data Throughput "Video Switching o High Frequency Crosspoints Improved System Performance • Reduced Board Space o Local and Wide Area Networks o Reduced Power Consumption o Video Routing o Fast Data Acquisition • TTL Compatible o ATE o Fast Switching (t ON < 70 ns) ±4000 o ESDS Protection > GLow rDS(ON) < 75 Q Radar/FUR Systems V n DESCRIPTION The DG540 is a very high performance monolithic quad SPST wide band/video switch designed for switching wide bandwidth analog and digital signals. By utilizing "T" switching techniques on each channel this device gives exceptionally low crosstalk and high OFF isolation. The crosstalk and OFF isolation are further improved by the introduction of GND pins between signal pins. To achieve TTL compatibility with superior switching performance, the DG540 was built on the Siliconix proprietary D/CMOS process. Each switch conducts equally well in both directions when ON. Capacitance has been minimized to ensure fast switching. Packaging and PLCC military, A suffix (-40 includes the 20-pin side braze, plastic, options. Performance grades include suffix (-55 to 125°C) and industrial, D to 85°C) temperature ranges. PIN CONFIGURATION PLCC Package Dual-In-Llne Package Top View IN2 31121111120111!li / 0 GNO GNO 52 ~ v+ ~ GND ~4 53 ~ D:! GNO ~ ~ ~ ~B 52 v+ GNO 53 GNO 54 GNO 911101111111211131 0 4 IN41N303 GNO -... __.... 03 IN3 Top View Order Number: DG540DN Order Numbers: Side Braze: DG540AP Plastic: DG540DJ Preliminary 7-65 W'F' Siliconix DG540 ~ incorporated TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM LOGIC SWITCH 0 OFF 1 ON Logic "0" ~ 0.8 V Logic "1" ~ 2.0 V ABSOLUTE MAXIMUM RATINGS V+ to V- ............................. -0.3 V to 19 V V+ to GND ........................... -0.3 V to +19 V V- to GND ........................... -19 V to +0.3 V Digital Inputs .............. (V-) -0.3 V to (V+) +0.3 V or 20 mA, whichever occurs first V S, VD' .................... (V-) -0.3 V to (V-) +19 V or 20 mA, whichever occurs first Continuous Current (Any Terminal) .............. 20 mA Current, S or 0 (Pulsed 1 ms, 10% duty cycle max) .........•......................... 40 mA Storage Temperature (A Suffix) ........... -65 to 150°C (0 Suffix) .......... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (0 Suffix) .......... -40 to 85°C Power 20-Pin 20-Pin 16-Pln Dissipation (Package)· Size Braze DIp·· ....................... 900 mW Plastic DIp··· ........................ 800 mW PLCC···· ........................... 800 mW All leads welded or soldered to PC board. Derate 12 mW/oC above 75°C. Derate 7 mW/oC above 25°C. •••• Derate 10 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A D 2=125,85°C V+ = 15 V, V- = -3 V SUFFIX SUFFIX 3=-55,-40°C -55 to 125°C -40 to 85°C GND = 0 V V 1NH = 2 V, VINL = 0.8 V e b b TYpd TEMP MIN MAX' MIN MAXt UNIT SWITCH Analog Signal Range Drain - Source ON Resistance C VANALOG V- = -5 V rDS(ON) I s =-10mA, VD=OV 1,2,3 -5 8 -5 8 1,3 2 40 60 100 60 75 1 2 6 6 Resistance Match Between Channels rDS(ON) Source OFF Leakage Current IS(OFF) Vs = 0 V, VD = 10 V 1 2 -0.05 -10 -500 10 500 -10 -100 10 100 Drain OFF Leakage Current Vs =10V, VD=OV 1 2 -0.05 ID(OFF) -10 -500 10 500 -10 -100 10 100 Total Switch ON Leakage Current ID(ON)+ IS(ON) VS=VD=OV 1 2 -0.07 -10 -1000 10 1000 -10 -100 10 100 7-66 A. V .n nA Preliminary DG540 ..... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25·C A 0 2=125,B5·C SUFFIX SUFFIX V+ = 15 V, V- = -3 V 3=-55,-40·C -55 to 125°C -40 to B5°C GND = 0 V VINH = 2 V, VINL= 0.8 VB TEMP TYpd MINb MA>f MINb MAXt UNIT INPUT Input Voltage High \fNH 1 2,3 \fNL 1 2,3 2 2 2 2 V Input Voltage Low O.B O.B -1 -20 O.B O.B -1 -20 liN VIN = GND or V+ 1 2,3 0.05 OFF State Input Cap.o CS(OFF) Vs= 0 V 1 2 4 4 OFF State Output Cap.o Co (OFF) Vo= 0 V 1 2 4 4 ON State Input Cap~ CS(ON) Vs=Vo=OV 1 14 20 20 Bandwidth BW RL = 50.0. See Bandwidth Test Circuit 1 500 Turn ON Time tON 1 2,3 45 70 110 70 110 1 2,3 20 50 85 50 85 1 25 -75 Input Current 1 20 1 20 J1A DYNAMIC Turn OFF Time tOFF Charge Injection Q RL= 1 k.o. CL = 35 pF, 50% to 90% See Switching Time Test Circuit C L =1000pF. Vo=OV See Test Circuit MHz ns OFF Isolation RIN = 75.0., RL = 75.0. f = 5 MHz, See Test Circuit 1 All Hostile CrosstalkC RIN = 10.0., RL= 75.0. f = 5 MHz, See Test Circuit 1 -85 1 2,3 2.7 1 2,3 2.3 XTALK(AH) pF pC dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 5 7 5 7 mA All Channels ON or OFF -5 -7 -5 -7 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. Preliminary 7-67 • W7' Siliconix DG540 ~ incorporated SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform . • LOGIC "1" = SW ON LOGIC' INPUT 3V SWITCH INPUT S1 t r < 20 ns V S =..:! tf< 20 ns v o-!l----a1 &...lro-......- .....--o LOGIC INPUT -15 V (REPEAT TEST FOR IN2 .INa ANO IN 4 ) CHARGE INJECTION TEST CIRCUIT t:. Vo Vo IN X ~ / Vo ON t \ F OFF t:. Vo =MEASURED VOLTAGE ERROR DUE TO CHARGE INJECTION THE CHARGE INJECTION IN COULOMBS IS Q = C L" t:. Vo OFF ISOLATION TEST CIRCUIT o-__",,::S-I--o' "----4_----<1" '"-+0....._--0 VOUT R SIGNAL GENERATOR 7s.n. 7s.n. OFF ISOLATION = 20 LOG 10 V~UT ALL HOSTILE CROSSTALK - X TALK (AH) S1 r--~~----~~~-------~-~ VOUT S2 1M Sa - S4 R L= 7s.n. XTALK(AH)= 20 LOG 10 7-68 V~UT Preliminary ..or Siliconix DG540 .ell incorporated BANDWIDTH TEST CIRCUIT r----i--<~"--t--...,...--o VOUT OPERATING SUPPLY VOLTAGE RANGE 20 18 16 OPERATING VOLTAGE AREA 14 12 POSITIVE SUPPLY VOLTAGE V+ (VOLTS) ~----------+-10 8 4 2 -5 -4 -3 -2 .. -1 NEGATIVE SUPPLY VOLTAGE V- (VOLTS) Note: 1. Both V+ and V- must have decoupllng capacitors mounted as close as possible to the device pins. Typical decoupllng capacitors would be 10J1F tantalum bead In parallel with 100 nF ceramic disc. 2. Production tested with V+ = 15 V and V- = -3.0 V PIN DESCRIPTION SYMBOL DESCRIPTION S An Analog Channel Input or Output D An Analog Channel Output or Input IN Logic Control Input V+ Positive Supply voltage V- Negative Supply Voltage GND Analog and Digital Ground Preliminary 7-69 DG541 Quad SPST Wideband/ Video "T" Switch ..,.. Siliconix Incorporated ~ FEATURES BENEFITS APPLICATIONS • Wide Bandwidth (350 MHz) • Improved Data Throughput • Video Switching • Easily Interfaced .Very Low Crosstalk (-85 dB at 5 MHz) • Low Insertion Loss • High Frequency Crosspolnts ."T" Switch Configuration • TIL Compatible ~ Fast Switching (t ON < 70 ns) • ESDS Protection > • Low rDS(ON) < 75 .Improved System Performance • Local and Wide Area Networks • Reduced Board Space • Video Routing • Reduced Power Consumption • Fast Data Acquisition • ATE ±4000 V .n • Radar/FLiR Systems • DG201 A Pinout DESCRIPTION The DG541 Is a high performance monolithic quad SPST wide band/video switch designed for switching wide bandwidth analog and digital signals. By utilizing "T" switching techniques on each channel this device gives exceptionally low crosstalk and high OFF Isolation. Also, the DG541 is pin compatible with the industry standard DG201 A analog switch. To achieve TIL compatibility with superior switching performance, the DG541 was built on the Siiiconix proprietary D/CMOS process. Each switch conducts equally well in both directions when ON. Capacitance has been minimized to ensure fast switching. Packaging includes 16-pin side braze, plastic, and small outline options. Performance grades include military, A suffix (-55 to 125°C) and industrial, D suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION Dual-In-Llne Package IN1 D1 81 IN2 D2 82 1 v+ v- GND GND 84 (Same pinout as DIP) 1 2 3 4 5 6 7 B S3 D4 D3 IN3 TopVIBW Order Numbers: Side Braze: DG541AP, DG541AP/883 Plastic: DG541DJ 7-70 SO Package Top View Order Number: DG541DY Preliminary DG541 4I"JP" Siliconix ~ incorporated TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM LOGIC SWITCH 0 OFF 1 ON Logic "0" Logic "1" ~ ~ 0.8 V 2.0 V ABSOLUTE MAXIMUM RATINGS V+ to V- ............................. -0.3 V to 19 V V+ to GlND ........................... -0.3 V to +19 V V- to GlND ..•........................ -19 V to +0.3 V Digital Inputs •..•.......... (V-) -0.3 V to (V+) +0.3 V or 20 mAo whichever occurs first VS, Vo.................... (V-) -0.3 V to (V-) + 19 V or 20 mA, whichever occurs first Continuous Current (Any Terminal) .............. 20 mA Current, S or D (Pulsed 1 ms, 10% duty cycle max) ..•••.•........•.•••••••.••........ 40 mA Storage Temperature (A Suffix) ........... -65 to 150°C (D Suffix) .......... -65 to 125°C Operating Temperature (A Suffix) ........• -55 to 125°C (D Suffix) .......•.. -40 to 85°C Power 16-Pln 16-Pln 16-Pln Dissipation (Package)" Side Braze"" ......................... 900 mW Plastic DIP""" ........................ 450 mW SO .................................. 600 mW All leads welded or soldered to PC board. Derate 12 mW/oC above 75°C. Derate 6 mW/oC above 75°C. """" Derate 7.6 mW/oC above 75°C. ELECTRICAL CHARACTER!STICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A D 2=125,85°C V+ = 15 V, V- = -3 V SUFFIX SUFFIX 3=-55,-40°C -55 to 125°C -40 to 85°C GlND = 0 V V1NH = 2 V, VINL = 0.8 Va b b TVpd TEMP MIN MA>f MIN MAXb UNIT SWITCH Analog Signal Range C Drain - Source ON Resistance VANALOG V- = -5V rOS(ON) I s =-10mA, Vo=OV 1,2,3 -5 1,3 2 40 1 2 8 -5 8 60 100 60 75 6 6 Resistance Match Between Channels rOS(ON) Source OFF Leakage Current IS(OFF) Vs =OV,Vo =10V 1 2 -0.05 -10 -500 10 500 -10 -100 10 100 Drain OFF Leakage Current I o (OFF) Vs =10V,Vo =OV 1 2 -0.05 -10 -500 10 500 -10 -100 10 100 Total Switch ON Leakage Current IO(ON)+ IS(ON) Vs = VO= 0 V 1 2 -0.07 -10 -1000 10 1000 -10 -100 10 100 Preliminary t::.. V .n nA 7-71 .. DG541 . . . Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C 0 A 2=125,85°C SUFFIX SUFFIX V+ = 15 V, V- = -3 V o C -55 to 125°C -40 to 85°C 3=-55,-40 GND = 0 V VINH = 2 V, VINL = 0.8 Va TEMP TYpd MINb MA>f MINb MAXt UNIT INPUT Input Voltage High \fNH 1 2,3 \fNL 1 2,3 2 2 2 2 V Input Voltage Low 0.8 0.8 liN VIN = GND or V+ 1 2 0.05 OFF State Input Cap.c CS(OFF) Vs= 0 V 1 2 4 4 OFF State Output Cap.c CO(OFF) Vo= 0 V 1 2 4 4 ON State Input Cap7 CS(ON) Vs=Vo=OV 1 14 20 20 Bandwidth BW RL = 50.0. See Figure 6 1 350 Turn ON Time tON 1 2,3 45 70 140 70 140 Turn OFF Time tOFF RL = 1 k.o. C L = 35 pF, 50% to 90% See Switching Time Test Circuit 1 2,3 20 50 85 50 85 Charge Injection Q 1 25 RIN = 75.0., RL = 75.0. 1=5 MHz, See Test Circuit 1 -58 RIN = 10.0., RL = 75.0. 1= 5 MHz, See Test Circuit 1 -85 1,2 3 2.7 1,2 3 2.3 Input Current -1 -20 1 20 0.8 0.8 -1 -20 1 20 J,lA DYNAMIC OFF Isolation C L = 1000 pF, Vo= 0 V See Test Circuit pF MHz ns pC dB All Hostile Crosstalkc XTALK(AHI SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 5 7 5 7 mA All Channels ON or OFF -5 -7 -5 -7 NOTES: a. ReIer to PROCESS OPTION FLOWCHART lor addltlonallnlormatlon. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are lor DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper lunctlon. 7-72 Preliminary DG541 II"lI'" Siliconix .IJJP incorporated SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. LOGIC "1" ; SW ON LOGIC· INPUT SWITCH INPUT S1 V S ; +2 V 0-1----0"1 3 V t r <20ns t f < 20 ns LOGIC INPUT ""--Ik>-:e--_-o IN1 ...--0--1--<1 -15 V (REPEAT TEST FOR IN2 .IN 3 AND IN 4 ) CHARGE INJECTION TE~h CIRCUIT Avo V GEN Vo 1 IN X .l.. t L I vo ON \ F OFF = MEASURED VOLTAGE ERROR DUE TO CHARGE INJECTION THE CHARGE INJECTION IN COULOMBS IS Q ; C L" AVo OFF ISOLATION TEST CIRCUIT o-__~S-I--O" 4----<>-----d' 4-+=0_ _- 0 VOUT R SIGNAL GENERATOR 7s.n. 7s.n. OFF ISOLATION; 20 LOG 10 V~UT ALL HOSTILE CROSSTALK - X TALK (AH) SIGNAL GENERATOR XTALK(AH); 20 LOG 10 V~UT 7sn. Preliminary 7-73 DG541 ..,.. Siliconix incorporated ~ BANDWIDTH TEST CIRCUIT GE~~~~OR '\J 76ll. OPERATING SUPPLY VOLTAGE RANGE 20 18 16 OPERATING VOLTAGE AREA 14 12 POSITIVE SUPPLY VOLTAGE V+ (VOLTS) 10 8 6 4 2 -S -4 -3 -2 -1 NEGATIVE SUPPLY VOLTAGE V- (VOLTS) Note: 1. Both V+ and V- must have decoupllng capacitors mounted as close as possible to the device pins. Typical decoupllng capacitors would tie 10J,lF tantalum bead In parallel with 100 nF ceramic disc. 2. Production tested with V+ = 15 V and V- = -3.0 V PIN DESCRIPTION SYMBOL DESCRIPTION S An Analog Channel Input or Output D An Analog Channel Output or Input IN Logic Control Input V+ Positive Supply voltage V- Negative Supply Voltage GND Analog and Digital Ground 7-74 Preliminary DG542 Dual SPOT Wideband/ Video "T" Switch ...r'Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Wide Bandwidth (500 MHz) • Improved Data Throughput • Video Switching • Very Low Crosstalk ( -85 dB) and High OFF Isolation (-75 dB) at 5 MHz • Easily Interfaced • High Frequency Crosspoints • TIL Compatible • Low rDS(ON) < 75 • Low Insertion Loss • Improved System Performance • Reduced Board Space n • Reduced Power Consumption • "T" Switching Configuration • Local and Wide Area Networks • Video Routing • Fast Data Acquisition • ATE • ESDS Protection > ±4000 V • Radar/FUR Systems • Fast Switching (t ON < 100 ns) • Break-Before-Make Switching DESCRIPTION The DG542 is a very high performance monolithic dual SPDT wideband/video switch designed for switching wide bandwidth analog and digital signals. By utilizing "T" switching techniques on each channel this device gives exceptionally low crosstalk and high OFF isolation. The crosstalk and OFF isolation are further improved by the introduction of GND pins between signal pins. To achieve TIL compatibility with superior switching performance, the DG542 was built on the Siliconix proprietary D/CMOS process. Each switch conducts equally well in both directions when ON. Capacitance has been minimized to ensure fast switching. Packaging includes the 16-pin side braze, plastic, and small outline options. Performance grades include military, A suffix (-55 to 125°C) and industrial, D suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION Dual-ln-L1ne Package IN2 O2 GNO INI 01 GNO 51 52 V- V+ 53 GNO Top View Order Numbers: Side Braze: DG542AP. DG542AP/883 Plastic: DG542DJ Preliminary SO Package Top View Order Number: DG542DY 7-75 DG542 ...... Siliconix incorporated ~ TRUTH TABLE FUNCTIONAL BLOCK DIAGRAM Truth Table' LOGIC SW1 SW2 SW3 SW4 0 OFF ON 1 ON OFF Logic "O":S 0.8 V Logic "1" ~ 2.0 V • All Switches shown for logic "1· Input ABSOLUTE MAXIMUM RATINGS V+ to V- ........•.................... -0.3 V to 19 V V+ to GND ........................... -0.3 V to +19 V V- to GND ........................... -19 V to +0.3 V Digital Inputs •.....•....... (V-) -0.3 V to (V+) +0.3 V or 20 mAo whichever occurs first VS. VO..... ... ......... ..• (V-) -0.3 V to (V-) + 19 V or 20 mAo whichever occurs .flrst Continuous Current (Any Terminal) .............. 20 mA Current. S or D (Pulsed 1 ms. 10% duty cycle max) ..•.•.....•.•.....•....•.•......... 40 mA Storage Temperature (A Suffix) ........... -65 to 150°C (D Suffix) .......... -65 to 125°C Operating Temperature (A Suffix) ......... -SS to 12SoC (0 Suffix) .......... -40 to 85°C Power 16-Pln 16-Pin 16-Pln Dissipation (Package)· Side Braze·· ......................... 900 mW Plastic DIp··· ........................ 4S0 mW SO···· .............................. 600 mW All leads welded or soldered to PC board. Derate 12 mW/oC above 75°C. Derate 6 mW/OC above 75°C. •••• Derate 7.6 mW/oC above 75°C. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A 0 2=125,85°C SUFFIX SUFFIX V+=lSV.V-=-3V 3=-55,-40°C -55 to 125°C -40 to 85°C GND = 0 V V1NH = 2 V, VINL = 0.8 VO TEMP TYpd MINb MAX' MINb MAX~ UNIT SWITCH Analog Signal Range C VANALOG Drain - Source ON Resistance rOS(ON) Resistance Match Between Channels /:;. rOS(ON) V- = -S V 1,2,3 -S 8 -S 8 1,3 2 40 60 100 60 7S 1 2 6 6 I s =-10mA, Vo=OV Source OFF Leakage Current IS(OFF) Vs = 0 V, Vo = 10 V 1 2 -O.OS -10 -SOO 10 SOO -10 -100 10 100 Drain OFF Leakage Current IO(OFF) Vs =10V,Vo =OV 1 2 -O.OS -10 -SOO 10 SOO -10 -100 10 100 Total Switch ON Leakage Current IO(ON)+ IS(ON) Vs=Vo=OV 1 2 -0.07 -10 -1000 10 1000 -10 -100 10 100 7-76 V .n nA Preliminary DG542 . . . Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A D 2=125,85°C SUFFIX SUFFIX V+ = 15 V, V- = -3 V 3=-55,-40°C -55 to 125°C -40 to 85°C GND = 0 V V INH = 2 V, V INL = 0.8 Va b b TYpd TEMP MIN MAX' MIN MAXt UNIT INPUT Input Voltage HIGH '{NH 1 2,3 Input Voltage LOW '{NL 1 2,3 2 2 2 2 V 0.8 0.8 0.8 0.8 -1 -20 1 20 -1 -20 liN VIN = GND or V+ 1 2,3 0.05 OFF State Input Cap.c cS(OFF) VS= 0 V 1 2 4 4 OFF State Output Cap.c Co (OFF) Vo= 0 V 1 2 4 4 ON State Input Cap!' CS(ON) Vs=Vo=OV 1 14 20 20 BW RL = 50.0. See Test Circuit 1 500 Break-Before-Make Interval t OPEN RL - 1 k.o. C L = 35 pF, 50% to 90% See Test Circuit 1 Turn ON Time tON RL=1 k.o. C L = 35 pF, 50% to 90% Turn OFF Time tOFF See Test Circuit Charge Injection Q Input Current 1 20 .IlA DYNAMIC Bandwidth OFF Isolation All Hostile Crosstalk XTALK(AH) MHz 10 10 1 2,3 65 100 140 100 140 1 2,3 25 60 85 60 85 1 25 RIN = 75.0., RL = 75.0. f = 5 MHz, See Test Circuit 1 -75 RIN =10.o., R L =75.o. f = 5 MHz, See Test Circuit 1 -85 1 2,3 2.7 1 2,3 2.3 C L = 1000 pF, Vo= 0 V See Test Circuit pF ns pC dB SUPPLY Positive Supply Current 1+ Negative Supply Current 1- 5 7 5 7 mA All Channels ON or OFF -5 -7 -5 -7 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. VIN = Input voltage to perform proper function. Preliminary 7-77 DG542 ~ ~ Siliconix incorporated SWITCHING TIME TEST CIRCUIT Switch output waveform shown for Vs = constant with logic input waveform as shown. Note that Vs may be + or - as per switching time test circuit. Vo is the steady state output with switch ON. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform. VO= Vs SWITCH INPUT S1 V S = +2 v LOGIC INPUT _--.:.R:J.L~_ RL + rDS(on) 0-1----0'1 A-ll-o-+--_-o Vo IN1 ..-.o-i- SUBSTRATE 7-88 S 05400/540 115402 trY' Siliconix ~ incorporated ABSOLUTE MAXIMUM RATINGS SD5401 SD5400 SD5402 SD5401 SD5402 Vos ............. 20 V 10V 15 V Vao ..........• 30/-25 V .... 25/-15 V ..... 30/-22.5 V Vsoe ............ 20 V 10 V 15 V 10 .......................................... 50 mA V OB ............. 25 V 15 V 22.5 V Operating Temperature VSB ............. 25 V 15 V 22.5 V Storage Temperature SD5400 Vas ........... 30/-25 V .... 25/-15 V .... 30/-22.5 V VaB ........... 30/-0.3 V '" 25/-0.3 V ..... 30/-0.3 V .................... 0 to 70·C .................. -55 to 150·C Power Dissipation (Package) f ••••••••••••••••• 640 mW (Each Device) .............. 300 mW ELECTRICAL CHARACTERISTICS a TA = 25°C LIMITS PARAMETER SYMBOL TEST CONDITIONS DEVICE TYpd MIN b MAX b UNIT STATIC Analog Signal Range C Drain-Source Breakdown Voltage Source-Drain Breakdown Voltage Drain-Substrate Breakdown Voltage Source-Substrate Breakdown Voltage VANALOG BVos BVso BVDB BVSB Vas = VBS = -5 V 10=10nA Vao = V BO = -5 V Is=10nA V a B=OV,l o =10nA Source Open V a B=OV,l s =10)J.A Drain Open SD5400 -10 10 SD5401 -5 5 SD5402 -7.5 7.5 SD5400 25 20 SD5401 25 10 SD5402 25 15 SD5400 20 SD5401 10 SD5402 15 SD5400 25 SD5401 15 SD5402 22.5 SD5400 25 SD5401 15 SD5402 22.5 V 7-89 - .... Siliconix incorporated 505400/5401/5402 ~ TA= 25°C ELECTRICAL CHARACTERISTICS a LIMITS PARAMETER SYMBOL DEVICE TYpd MINb MAXb UNIT Vos = 20 V SD5400 1 10 Vos = 10 V SD5401 1 10 Vos=15V SD5402 1 10 VSO = 20 V SD5400 1 10 VSO = 10 V SD5401 1 10 SD5402 1 10 TEST CONDITIONS STATIC (Cont'd) Drain-Source Leakage Current 10S(OFF) Vas =V BS = -5 V nA Source-Drain Leakage Current I SO (OFF) Vao= V BO = -5 V VSO = 15 V Gate Leakage Current Threshold Voltage laBs VT VOB =VSB= 0 V VaB = 30 V SD5400 1 V aB = 25 V SD5401 1 V aB = 30 V SD5402 1 VOS = Vas=VT 10=1J.J.A,VSB=OV 1.0 Vas= 5 V 50 Resistance Match C rOS(ON) l!.rOS(ON) 10 = 1 rnA V SB = 0 V 2.0 V 70 30 Vas = 10 V Drain-Source ON Resistance 0.1 J.J.A All .n Vas= 15 V 23 Vas = 20 V 19 Vas = 5 V 1 5 2.4 3.5 1.3 2 DYNAMIC Gate Node Capacitance Ca Drain Node Capacitance Co Source Node Capacitance Cs Reverse Transfer Capacitance Coa 7-90 Vos=10V Vas =VBS = -15 V f = 1 MHz All pF 3.5 6 0.3 0.5 505400/5401/5402 .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a TA= 25°C LIMITS PARAMETER DYNAMIC DEVICE SYMBOL TEST CONDITIONS gl. Vos = 10 V. 10= 20 mA Vss= 0 V. f = 1 kHz TVpd MI~ MAXb UNIT (Cont'd) Forward Transconductance Crosstalk 15 See Test Circuits 1 and 2 f = 3 kHz XTALK 10 mS All -107 dB NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. e. Refer to test conditions specified In Electrical Characteristics Tables. f. Derate 5mW/oC above 25°C. TYPICAL CHARACTERSITICS Draln-to-Source Resistance vs. Source-to-Substrate and Gate-to-Source Voltage Maximum Power Dissipation vs. Temperature 1000 150 900 135 800 120 700 105 ...... 600 Po (mW) 500 ......... 400 rOS(ON) (n) .............. 300 100 0 o 20 I I 40 60 80 TEMPERATURE (OC) o 100 I 10 ,\~15 60 15 L \ 75 30 I 5-,! ~ 45 200 I SOURCE-TO-SUBSTRATE _ (VSS) (V) ~ 90 .... 1' ~ ... __ DRAIN-TO-SOU~CE CURRENT = 5 mA- AMBIENT TEMPERATURE (T A) = 25°C o Draln-to-Source Res!stance vs. Temperature 4 8 12 16 20 GATE-TO-SOURCE VOLTAGE (VGsl (V) Source-to-Draln Leakage Current VS. Temperature 100 100M 90 GATE-TO-DRAIN VOLTAGE r.tGo) = 0 V 10M 80 70 VG~= .--r 60 rOS(ON) (n) 5V 50 VGs= 10 V __ .. 40 ---t-:-:: .l V~~_ 30 1M ....... ' . 20 lOOK Iso (pA) GATE-TO-SUBSTRATE VOLTAGE VGS = 0 V SOURCE-TO-DRAIN VOLTAGE Vso = 10 V 10K lK ~~~4-----~-----+~~~ 100 10 1 GATE-TO-DRAIN VOLTAGE 10 0 o 25 50 75 100 AMBIENT TEMPERATURE (T A) °C 25 r.t 0) = -5 V 40 56 70 AMBIENT TEMPERATURE (T A) °C 85 7-91 .. ~ ~ 505400/5401/5402 Siliconix incorporated TYPICAL CHARACTERSITICS Source-to-Substrate Leakage Current vs. Temperature Oraln-to-Source Leakage Current vs. Temperature lOOK SOURCE-TO-SUBSTRATE VOLTAGE V SB = 0 V GATE-TO-SOURCE VOLTAGE VGs= 0 V ORAIN-TO-SOURCE VOLTAGE Vos = 10 V ' 10K lK los (pA) 100 ~ V 10 -"" V V -- SOURCE-TO-SUBSTRATE VOLTAGE VSB=-5V GATE-TO-SOURCE VOLTAGE V GS = -5 V DRAIN OPEN - 100 10 ~ ISB (nA) ~ 35 45 55 65 75 85 AMBIENT TEMPERATURE (T A) ·C .01 25 ORAIN-TO-SOURCE VOLTAGEVos = 0 SOURCE-TO-SUBSTRATE VOLTAGE VSB = 0 GATE-TO-SOURCE VOLTAGE VGs= 10 V 10,K lK .--10 -- -- -:.....- :.....- Crosstalk vs. Frequency -120 .... -110 -100 -90 XTALK-80 (dB) -70 .... VIN = lV (RMS) " ...... i'o... """'- ....... " -60 -50 -40 1 25 ~~ 35 45 55 65 75 85 AMBIENT TEMPERATURE (T A) ·C Gate Leakage Current vs. Temperature lOOK --~ .1 1 25 1000 35 45 55 65 75 85 AMBIENT TEMPERATURE (T A) ·C TEST CIRCUIT -30 100 1k 10 k 100 k FREQUENCY (Hz) ~ 1M " 10 M SWITCHING TEST CIRCUIT TO SCOPE CROSSTALK MEASUREMENT Quad Switch S05400/S05401/S05402 +Voo '--..(Q~O VOUT TO SCOPE T VOUT 600 51 600 V. Crosstalk = 20 log,:Q!l[V IN Where VIN = 1 V RMS at 3kHz 7-92 600 INPUT PULSE t r , tf < 1 ns Pulse Width = 100 ns Rep Rate = 1 MHz SAMPLE SCOPE tr < 350 ps RIN = 1 M.n CIN = 2 pF 805400/5401/5402 .... Siliconix incorporated ~ SWITCHING CHARACTERISTICS SWITCHING WAVEFORMS tr (ns) td(on)(ns) OV +Voo - - - " *toFF(ns) voo RL TYP MAX TYP MAX TYP MAX 5 6BO 0.6 1.0 0.7 1.0 10 6BO 0.7 0.8 9.0 15 1k 0.9 1.0 14.0 9.0 * tOFF Is dependent on RL and does not depend on the device characteristics. THEORY OF OPERATION The S05400 series consists of four SPST switches with analog signal capability of ±10 V for the S05400, ±5 V for the S05401 and ±7.5 V for the S05402. Each switch of the array is a OMOS N-channel field-effect transistor of the enhancement-mode type; that is, the device is normally OFF when gate-to-source voltage ('IGs) is 0 V. When VGS exceeds the threshold voltage, VT, the FET switch starts to turn ON. With VGS in excess of +10 V, a low resistance path (typically 30 n) exists between input and output of the switch. Figure 1 shows the normal mode of operation of a single switch of the array for ±5 V analog signal processing. Note that the source is recommended for the input since feedback or reverse transfer capacitance is lower when drain is used as the ouput. When analog signals are routed from one point to another the important factors are isolation, crosstalk between switches, feedthrough and feedback transients, insertion loss and speed of operation. The S05400 series offers superior performance in all these areas (Figure 1). n Isolation. ON resistance is typically 30 and OFF resistance is typically 1010 n, which results in an OFF to ON resistance ratio in excess of 108 Isolation from output to input from 3 kHz analog signals is typically -107 dB, and at 1MHz the isolation is typically 60 dB. Feedback and feed through transients are kept to a minimum because of the very low feedback and feedthrough capacitances. This means that "glitches" are minimized, resulting in "clean" signals at the output. Insertion loss depends upon the source and load impedances involved. As an example, for 600 n source impedance the insertion loss for voice signals (1 VRMS @ 3 kHz) is less than 0.3 dB. Thus the S05400 series makes good telephone cross-point switches. Speed. Because of the low ON resistance and low input capacitance, the S05400 switches turn ON at subnanosecond speeds. They are also capable of handling very high frequency analog signals and still maintain excellent isolation (20-30 dB @ 1 GHz). +5 INPUT -5 +10 D '--f-t-~-o GATE OUTPUT (±5 VI -10 +5 OUTPUT -5 Figure 1 7-93 • S05400/5401/5402 ..... 8i1iconix incorporated ~ APPLICATION Figure 2 shows an 805402 configured for operation as an audio crosspoint switch. For more detailed information on this application, see AN83-7. LEFT INPUT SUMMING NODE FROM OTHER SWITCHES 75 kn INPUT CHANNEL 1 RA 76kn o-:IN~PU.;:.:.T....:N.:.:O::D:.:E:""':'.AJ\RI\Sr--_-+~-O'jI"E-...o:..T-_-+ 10 knRG LEFT INPUT BUS IG I LF347 I ~_..JI ':" _~ (+V) INPUT NODE o-o""""&....1...f-G- . , RS I >-+~6'V:'V:nlr-'---o ~~~N~~:UT I siD I CHANNELl O-:~~~~~I\I\r----+~~"E-...o:..+-~ RIGHT INPUT BUS 76 kn I ':" RS RO soon SUMMING AMP I I I RA CHANNEL 2 o-::IN,::,Pi-UT:..:....:.N::O;,:D:.:E,--,,75Mkn _ _-+I.l2s'-- -~6'Vo'Vo"n-"'-O ~~~~~T I CHANNEL 2 o-::IN",PfUT"-,N""O""D,,,E"-.AJ\RS"""_ _+"S'- 19 V • Fast Level Shifting • Fast Switching (tOFF < 1.5 Ils) DESCRIPTION The 0125 contains six drivers, designed to perform the level-shifting and amplification needed to interface low-level logic outputs and field-effect transistor switches (MOSFET or JFET). With the input logic supply, (vd, at 5 V, the driver output reference, (V-) may be set between -1 and -25 V. Each output is designed to sink 5 mA of current in the ON condition, and to hold off up to 30 V in the OFF condition. The input stage is a base-input PNP transistor, with the emitter returned to theVL supply through a resistor. To turn the driver ON, the logic stage driving it must be capable of sinking 0.7 mAo PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM Package options include the 14-pin side braze and flatpack packages. Performance grades include both the industrial, B suffix (-25 to 85°C) and military, A suffix (-55 to 125°C) temperature ranges. Flat Package v-* 2 3 4 S 6 7 IN1 IN2 IN3 IN4 INS IN6 ENABLE (Vd OUT1 OUT2 OUT3 OUT4 OUTS OUTs 14 13 12 11 10 9 8 OUT1 VL Top View Order Numbers: D12SAL/883 OUT2 • Common to Substate and Base of Package IN 3 o--t----Q OUT3 Dual-In-Llne Package V- OUT1 IN1 OUT2 OUT 4 OUT3 11 OUT4 OUTS INS OUTS INs OUTs INS IN6 ~--~Top View Order Numbers: D12SAP, D12SBP Not Recommended for New Designs 8-3 iii 0125 ~ Siliconix .£II incorporated ABSOL.UTE MAXIMUM RATINGS Vo to V- ..................................... 36 V V L to V- ...................................... 30 V 30 V ±6 V Current, (Any Terminal) ....................... 30 mA Storage Temperature ................... -65 to 150°C Operating Temperature (A Suffix) ......... -55 to 125°C (9 Suffix) .......... -25 to 85°C Power dlsslpatlon* Flat Package* * ............................. 750 mW 14-Pln DIp·· * .............................. 825 mW All leads soldered or welded to PC board. ** Derate 10 mW/oC above 75°C. * ** Derate 11 mW/oC above 75°C. EL.ECTRICAL. CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1=25°C A B Unless Otherwise Specified: 2=125,8S oC SUFFIX SUFFIX V- = 20 V 3=-55, -25 ° C -55 to 125°C -25 to 85°C V L= 5 V TEMP TYpd MINb MA>f MINb MAXt UNIT SYMBOL OUTPUT Output Voltage LOW VOL 10= 5 mA, VL= 4.5 V VIN = 0.5 V 1,3 2 -19.8 -19.6 -19.5 -19.6 -19.5 V Output Current HIGH IOH Vo = 10 V V IN = 4.6 V 1,3 2 0.005 0.1 10 0.1 10 JlA Input Current Voltage HIGH 'INH VIN = 4.6 V 1,3 2 0.001 1 20 JlA Input Current Voltage LOW 'INL V IN = 0 INPUT 1,2,3 -0.15 -1 -10 1 10 -0.7 -1 '-20 -1 mA DYNAMIC Turn-ON Time tON 1 0.11 0.5 0.5 1 1.05 1.2 1.5 1,2,3 -1.5 1,2,3 1.6 1,3 2 -0.09 1,3 2 0.09 See Switching Time Test Circuit Turn-OFF Time tOFF JlS SUPPL.Y Negative Supply Current 1- -2,5 -2.5 VIN1 = 0 All OtherVIN = 4.6 V Logic Supply Current IL Negative Supply Current 1- mA 2.5 -2 -200 2.5 -2 -100 AIIVIN = 4.6 V Logic Supply Current IL JJ.A 1 100 2 100 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet, c, Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. 8-4 Not Recommended for New Designs ~ ~ 0125 Siliconix incorporated DIE TOPOGRAPHY Pad No. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 _55mIlS~ 7654321 ,,- -j C® 8~~~~~~~...I~mIlS 9 10 11 12 13 14 20X Function V - (Substrate) Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 VL Output 6 Output 5 Output 4 Output 3 Output 2 Output 1 IBAF 12 Resistors 6 PNP bipolar Transistors 6 NPN Bipolar Transistors SWITCHING TIME TEST CIRCUIT t r -< 100 ns tf<100ns lOUT 2 rnA .xH---t---(J V OUT I35 + (90%) COUT PF V- Not Recommended for New Designs 8-5 0129 4-Channel MOSFET Switch Driver with Decode ..... Siliconix incorporated ~ APPLICATIONS BENEFITS FEATURES • TTL Compatible • 4 Independent Drivers • Output Sink Current to 10 mA • DC Level Shifts to >19 V • Reduces System Component Requirements • Fast Level Shifting • Interfacing Low Level Logic to MOSFETs or JFETs • Designed to Interface with G118 and G119 DESCRIPTION The D129 is a four-channel driver designed to provide the DC level-shifting and amplification functions needed to interface low-level logic outputs (0.7 to 2.2 V) and field-effect transistor switch inputs (up to 50 V peak-to-peak). With an Input logic supply of 5 V, the output transistor emitter, (V-), may be set at any voltage between -5 and -30 V. In the ON state, the output collector will sink up to 1.0 mA of current, and in the OFF state will hold off voltages up to 50 V above V-. Each of the four drivers has a 3-input logic gate, and the driver will be ON when each of the inputs PIN CONFIGURATION are either open or at positive logic "1". With any of the inputs either grounded or at positive logic "0", the driver will be OFF. Some of the logic inputs to the four gates are internally connected to facilitate decoding from a binary counter, however, 'one input to each gate provides a means for independent operation of each driver, if desired. Package options include the 14-pin side braze and flatpack packages. Performance grades include both the industrial, B suffix (-25 to 85°C) and military, A suffix (-55 to 125°C) temperature ranges. FUNCTIONAL BLOCK DIAGRAM Flat Package INI IN2 IN3 IN4 INS INe IN7 1 2 3 4 S e 7 vL 14 13 12 11 10 9 8 OLrr 1 OLrr2 OLrrs OUT4 v- • vR INI IN2 OUT 1 IN3 OUT2 Top View Order Number: D129AL • Common to Substrate and Base of Package N··O·", IN4 Dual-In-Une Package IN22 IN3 3 IN4 4 INS S INee IN7 7 13 OUT 1 12 OUT2 11 OLrr 3 10 OLrr 4 9V8 vR INs INs IN7 OUT3 OUT4 Top View Order Numbers: D129AP or D129BP 8-6 Not Recommended for New Designs ~ ~ 0129 Siliconix incorporated ABSOLUTE MAXIMUM RATINGS Operating Temperature (A Suffix) .......•. -55 to 125°C (8 Suffix) .......... -25 to 85°C Power Dissipation" Flatpack"" ................................. 750 mW 14-Pln DIP""" ......•...................•... 825 mW Vo to V- (A Suffix) .......•..••................ 50 V Vo to V- (8 Suffix) .••.•..........•...•........ 36 V V R to V- (A Suffix) • . . . . . . • • • . . • • . . . . . . . . . . . • . .• 33 V VR to V- (8 Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 V VL toVR ..•..............•..................... 8 V VIN toVR .•.•...........•.............••.•.... ±6 V VIN to VIN (Any Other VIN Terminals) . . . . . . . . . . . .. 6 V Current, (Any Terminal) ...............•....... 30 mA Storage Temperature ................... -65 to 150°C All leads soldered or welded to PC board. Derate 10 mW'oC above 75°C. """ Derate 11 mW'oC above 75°C. ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: VL= 5 V V- = -20 V VR= 0 V SYMBOL LIMITS 1=25°C A B 2=125,85°C SUFFIX SUFFIX 3=-55,-25°C -55 to 125°C -25 TO 85°C TEMP TYpe MINb MA>f MINb MAXb UNIT OUTPUT Output Voltage, LOW Output Current, HIGH VOL VIN = 2.2 V VL = 4.5 V lOUT = 10 mA 1,3 2 -19.8 -19.3 -19.0 lOUT = 1 mA 1 -19.75 -19.8 0.005 0.1 20 0.2 10 0.25 5 1 5 IOH Vo= 10 V V IN =0.7V 1,3 2 IINH VIN = 5 V, Input Under Test VIN = 0 V, All Other Inputs 1,3 2 -19.25 -19.0 V JJ.A INPUT Input Current, Voltage HIGH Input Current, Voltage LOW IINL VIN = 0 V, VL = 5.5 V tON See Switching Time Test Circuit (CL= 35 pF) 1 2 3 -0.2 1 0.22 -200 -160 -250 JJ.A -225 -200 -250 DYNAMIC Turn-ON Time Turn-OFF Time tOFF 0.3 0.3 JJ.s 1 1.16 1 -1.5 1 2.2 1 -0.01 1 0.46 1.5 1.5 SUPPLY Negative Supply Current 1- -2 -2.25 One Channel ON Logic Supply Current IL Negative Supply Current 1- Logic Supply Current IL V- = -20 V VL = 5.5 V AIIVIN=OV All Channels OFF mA 3 -10 3.3 -25 0.75 JJ.A 1 mA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Not Recommended for New Designs 8-7 iii 0129 DI~ .... Siliconix incorporated ~ TOPOGRAPJ:lY _ 1. . mllsl---··1 1 - - - - - 76 543 2 ,~mils 7 60 B 9 10 11 12 13 ~ Pad No. Function 1 2 3 4 5 6 7 B 9 10 11 12 13 14 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 VR V- (Substrate) Output 4 Output 3 Output 2 Output 1 VL 20X IBADA 10 PNP Bipolar Transistors 2 NPN Bipolar Transistors 3 Diodes 4 Capaoltors 9 Resistors 4 N-channel depletion JFET SWITCHING TIME AND TEST CIRCUIT tf tr V+ = +5 V tpw +10 V r f ~>--Jt--t'-o() V- = -20 V 8-8 p < 100 ns < 100 ns = 1J1.s = 100 kHz OUT , OUT +10 V - - - - - - - . 0 V ' - - - - - -......I _20V------~1~7~V-~~9~0~%~--J Not Recommended for New Designs ..or Siliconix ~ 0139 Monolithic 2-Channel FET Switch Driver incorporated FEATURES BENEFITS APPLICATIONS • • • • • • • • • Interfaces Low Level Signal to FET Switches • • TIL to CMOS • Double-throw Switch Control Complementary Outputs 150 ns Propagation Time 30 V Output Swing Versatile Minimizes Switching Time Easily Interfaced Current Source Coupling TIL Compatible TIL to PROM Logic Levels DESCRIPTION power supplies allow wide flexibility in the actual output voltage levels. Complementary outputs permit maximum application versatility, allowing functions such a double-throw analog switch control. A positive logic" 1 " at the input provides a " 1" at OUT and a .. 0" at OUT. The D139 is a dual low level to high level voltage Uses translator with complementary outputs. include bipolar to MOS logic interface and bipolar logic to FET analog switch control. The following characteristics of the input circuit provide an ideal interface to the common logic forms TIL, CMOS, and DTL: light loading (-113 TIL load) to "0" inputs, a 1.2 V trip point, and high input impedance with high breakdown to "1" inputs. The output can drive up to 30 V peak-to-peak into pure capacitive loads or moderate resistive loads: Current source coupling between the input and output and split The D139 is offered in 1o-pin metal can, plus 14-pin PDIP, side braze and flat pack packages. Performance grades include military, A suffix (-55 to 125 DC) and commercial, C suffix (0 to 7oDC) temperature range. PIN CONFIGURATION TO-100 Top View Dual-ln-L1ne Package NO NO Flat Package NO~~14 NO OUTI OUTI 2 3 4 13 12 11 IN, 5 6 10 9 v+ vL NO NO OUT2 OUT2 IN2 v- VR Top View Order Number: D139AA 1883 * Common to Substrate and Case Order Number: Side Braze: D139AP/883 Plastic: D139CJ Not Recommended for New Designs Order Number: D139ALl883 8-9 .. 0139 ~ ~ Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM LOGIC OUT 0 V- V+ 1 V+ V- L..---o OUT 1 OUT .----oOUT 2 Logic "0" :$ 0.8 V Logic "1" ~ 2.0V ABSOLUTE MAXIMUM RATINGS V+ to V- ....•.....•.......................... 36 V V+ tOVR •..........•........•••......•....•... 36 V V+toVo ••....•.....•.....•....••.......•..•• 36V VltoVR .........•••..••••....•••..•.•.....•... 8V VIN tOVR ••..•••.•.•.••....••.................. 8 V VR to V- •••.•.•........................•••.... 36 V Vl to V- ••...•.•........................••...• 36 V Vo to V- •.•..•.••...••••..•......•••......... 36 V Vl toVIN ••....•.••..•.•...••••.•..•••....•..•. 8 V CURRENT, (Any Terminal) DC ...••..••......•• 12 mA Peak Current (Any Terminal) (200 JJ,s pulse width, 100 pps) ....•••••...•••.• 100 mA Operating Temperature (A Suffix) ...•....• -55 to 125°C (C Suffix) ........•... 0 to 70°C Storage Temperature (A Suffix) ••••...•• -65 to 150°C (C Suffix) .......... -65 to 125°C Power Dissipation' (L Package)" ••••...••••.. 900 mW (P Package)'" . . . . • . . . . . .. 825 mW (A Package)···· .......... 450 mW Thermal Resistance (e JA , J Package) ..•... 0.16°C/mW All leads soldered or welded to PC board. Derate 10 mW/oC above 75°C. Derate 11 mW/oC above 75°C. •••• Derate 6 mW/oC above 25°C. ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1=25°C C A Unless Otherwise Specified: 2=125,700C SUFFIX SUFFIX V+ = 10 V, Vl = 5 V o to 70 0 C 3=-55 O°C -55 to 125 0 C V- = -20 V, VR = 0 V SYMBOL TEMP TYpd MINb MA>f MINbMAX t UNIT OUTPUT 1 2 3 0.6 0.9 0.7 1.1 0.9 0.7 1.1 lOUT = -2 mA 1,2,3 0.82 1.5 1.5 1 2 3 0.52 lOUT = 10J1A 1.1 0.9 1.3 1.1 0.9 1.3 IOUT=2mA 1,2,3 1.5 1.5 10 20 10 20 IOUT=-10JJ,A Output Voltage HIGH V+toVo Output Voltage LOW Vo to V- VOH, VCiH VOL' VOL. VIH=2V forVOH Vil = 0.8 for VOL V INPUT Input Current Voltage HIGH IINH VIN=5V 1 2 0.003 Input Current Voltage LOW IINl VIN=OV 1,2 3 -18 JJ,A 8-10 -500 -600 -500 -600 Not Recommended for New Designs 0139 Siliconix incorporated ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions 1=25·C A Unless Otherwise Specified: 2=125, 70·C SUFFIX V+=10V, V L = 5 V -55 to 125 0 C 3=-55, O·C V- = -20 V, VR = 0 V SYMBOL TEMP TYpd MINb MA~ PARAMETER C SUFFIX o to 70·C MINb MAXb UNIT DYNAMIC Switching Time LOW to High, Delay Plus Rise Time t SWltchln~ t(_) Time HIGH to Low, De ay Plus Fall Time (+) See Switching Time Test Circuit C L = 35 pF 1 65 170 170 1 90 200 200 1 0.01 0.1 0.1 1 2.2 4 4 1 -1.6 -3 -3 ns SUPPLY Positive Supply Current 1+ Logic Supply Current IL Negative Supply Current 1- VIN = 0 or 5 V mA Reference Supply Current Input Voltage HIGH IRH V IN1 =VIN2 = 5 V 1 -0.66 -1.6 -1.6 Reference Supply Current Input Voltage LOW IRL V IN1 =VIN2 = aV 1 -0.63 -1.1 -1.1 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. All dc parameters are 100% tested at 25°C. Lots are sample-tested for ac parameters and HIGH and LOW temperature limits to assure conformance with specifications. DIE TOPOGRAPHY :-r 43 mils L..---------I_! 9 Pad No. 3 4 5 6 7 8 9 10 11 12 Function Out 1 Out 1 Input 1 V+ VL VR V- (Substrate) Input 2 Out 2 \Ji:in CMOA 4 Diodes 4 Capacitors 11 Resistors 4 P-channel enhancement MOSFET 10 PNP Bipolar Transistors 12 NPN Bipolar Transistors Not Recommended for New Designs 8-11 0139 . . . Siliconix incorporated ~ SWITCHING TIME TEST CIRCUIT LOGIC INPUT tr < 20 ns tf < 20 ns 5 V VL 10 V V+ .---+---t----o V OUT L..,.._-,-":::::li-T-o V OUT (VOUT IS THE COMPLEMENT OF V OUT) 8-12 Not Recommended for New Designs 0169 ...... Siliconix incorporated ~ Dual High-Voltage Driver FEATURES BENEFITS APPLICATIONS • 33 V Output at ±40 mA • Wide Output Swing • Analog Multiplexing • Variable Input Threshold • Logic Family Flexibility • 70 ns Delay Time • Fast Switching • Interface Logic to MOS Power • Complementary Outputs • Drive Coupler H Bridge Power Circuit • Logic Level Translation • Driver for PIN Diodes and FET Switches • Line Driver DESCRIPTION The D169 is a versatile high-voltage dual driver designed with complementary outputs making it excellent for driving capacitive loads. By combining a wide output voltage swing (33 V) with fast switching (100 ns delay) make this device well suited for driving power MOSFET configurations. A differential input stage with adjustable threshold provides high input impedance and easy interfacing to low level logic or analog inputs. Current-source coupling to the output stage allows flexibility in output voltage levels, while the complementary emitter-follower outputs can source and sink currents of up to ±40 mAo Each channel of the D169 has 2 separate outputs that are com pie menPIN CONFIGURATION OOT, tary (OUT and OUT) allowing easier driving of MOSPOWER devices. The output can be operated by single or split supplies. The D169 is especially adept in driving capacitive loads such as power MOSFETS, long cables, timing capacitors, and PIN diodes. Analog mulitplexing is simplified by the wide range of interface logic levels accepted, and wide output voltage swing. Packaging for this device includes 14-pin sidebraze, CerDIP, and plastic DIP options. Performance grades include military, A suffix (-55 to 125°C) and commercial, C suffix (0 to 70°C) temperature ranges. FUNCTIONAL BLOCK DIAGRAM 3 OUT, IN, v- v+ V L ---'I.-_ _.s- Top View Order Numbers: Side Braze: D169AP, D169AP/BB3 CerDIP: D169AK, D169AK/BB3 Plastic: D169CJ LOGIC OUT OUT 0 VV+ V+ V- 1 Logic "0" S 0.8 V Logic "1" ~2.0V 8-13 0169 ...... Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS V+ to v-, V+ toV R, V+ toVo ................... 36 V VL toVR, VIN toVR, andVL toVIN ............... 10 V VRtoV-,VL toV-, andVotoV- ................ 36V Current (Any Terminal) DC ..................... 40 mA Peak (Pulsed 1 ms, 10% Duty Cycle) ........... 150 mA Operating Temperature (A Suffix) ......... -55 to 125°C (C Suffix) ........... 0 to 70°C Storage Temperature (A Suffix) .......... -65 to 150°C (C Suffix) ........... -65 to 125°C Power 14-Pln 14-Pln 14-Pln Dissipation· Side braze DIp·· 825 mW CerDIP··· ........................... 825 mW Plastic Dip···· ....................... 470 mW Thermal Resistance ( BJA • J Package) .... 0.16°C ImW All leads soldered or welded to PC board. Derate 11 mW/OC above 75°C. Derate 11 mW/oC above 75°C. •••• Derate 6.5 mW 1°C above 25°C. ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1=25°C A C Unless Otherwise Specified: 2=125,70 o C SUFFIX SUFFIX V+=15V,VL=5V -55 to 125 0 C o TO 70 0 C 3=-55, O°C V- = -15 V, VR = 0 V SYMBOL TEMP TYpe MIN b MAX> MINb MAXt UNIT OUTPUT Output Voltage HIGH (V+ toVO) 1,2 3 0.7 1 1.1 1 1.1 IOUT= 40 mA 1,3 2 1.5 2.5 3.1 2.5 3.1 IOUT= 1 mA 1,2,3 -0.75 -1.2 -1.2 1,3 2 -2.2 -3 -4 -3 -4 VoH/VOP. V IH = 2.0 V or V IL = 0.8 Output Voltage LOW rio to V-I IOUT= 1 mA V VOL/VOL lOUT = 40 mA INPUT Input Current Voltage HIGH IINH VIN = 3 V 1 2 1 Input Current Voltage LOW IINL VIN=OV 1,2 3 -25 1 80 170 170 1 90 200 200 5 5000 -50 -100 5 5000 -50 -100 nA J.LA DYNAMIC Switching Time Low to High, Delay Plus Rise Time t SWltchln~ t (_) Time High to Low. De ay Plus Fall Time 8-14 (+) See Switching Time Test Circuit (C L = 35 pF) ns 0169 ..,. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions 1=25°C A C Unless Otherwise Specified: 2=125,70°C SUFFIX SUFFIX V+ = 15 V, VL = 5 V 0 3=-55, O°C -55 to 125 C o TO 70 0 C V-=-15V, VR=OV SYMBOL TEMP TYpe MINb MAX' MINb MAX' UNIT PARAMETER SUPPLY Switching Crossover Level V xo Positive Supply Current 1+ Logic Supply Current IL Negative Supply Current 1- Reference Supply Current IR C L = 200 pF 1 0.9 V 1 V1N1 =VIN2 = 0 V No Load 1 3.2 1 -2.2 1 1.0 0.1 0.1 4 4 mA -3.0 -3.0 1.5 1.5 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. DIE TOPOGRAPHY ' .....,...6---68 mllS's---..... , Pad No. Function 3 OuT 1 4 OUT1 IN1 V+ VL VR V - (Substrate) IN2 OUT2 OUT2 5 6 7 8 7 43 mils 8 9 10 11 12 20X CMOS 4 Diodes 4 Capacitors 7 Resistors 4 P-Channel Enhancement MOSFETs 10 PNP Bipolar Transistors 8 NPN Bipolar Transistors 8-15 III 0169 ..... Siliconix incorporated ~ SCHEMATIC DIAGRAM (One Channel) LEVEL DETECTOR f A COMPLEMENTARY FOLLOWER OUTPUTS LEVEL SHIFTER , A A f , VL V+ 01 05 02 R2 3.2 kJl 07 IN OUT 03 08 04 09 VR OUT 010 03 R3 R4 5.1 kJl 5.1 kJl 04 V- 8-16 0169 ..... Siliconix incorporated ~ SWITCHING TIME TEST CIRCUITS ~~~o-~~OVOUT VIN TEST # VL VR V+ V- 1 5V 0.7 V 10V 0 200 2 5V 0.7 V 15V 0 0 510n pF pF 200 pF 1000 pF - CL 3 5V 0.7V 10 V 0 4 6V 0.7V 10V 0 6 5V 0 15V -15 V 6 5V 0 15V -15V pF 200 1000 VIL VIH - 1V 3.5V A v 3.5V B 1 1V 3.5V B 1V 3.5V B 0 3.5V B 0 3.5V B - RL WAVEFORMS RL ~!.!.i-;':"""o-~~OV OUT RL --rs.J ~,e a Test Conditions VR V- Test Circuit 0~1.~0~V==~~__________-+~====~ o _~V~I~L::~+-______________~::::::::::;: Waveforms A Waveforms B Test 2 Tests 5 & 6 V+ =15 V, V- Tests 3 & 4 =-15 V Capacitive Load V+ =15 V, V- =0 V Capacitive Load Resistive 10 25 mA 200 pF 1000 pF 200 pF Delay Time, to+ 70 95 220 110 230 ns Rise Time, tR+ 35 60 240 55 200 ns Parameter = 1000 pF Units Low-to-Hlgh Hlgh-to-Low Delay Time, to- 50 50 80 55 80 ns Fall Time, tF- 25 110 400 80 275 ns Typical Switching Times 8-17 0169 W1P" Siliconix ~ incorporated TYPICAL CHARACTERSITICS Effect of Temperature on Supply Currents Supply Current Variation with Logic Supply 7 4.0 r----r---~---r---., SEE TEST #5 NO LOAD 6 I-,I R IL (mA) = 3.0 t----!-....;::"""'...... 5 . /V IL 4 3 ./ 2 . /V / ~ o ~ 1- V "IR 6 7 ./ I-,I R I L 2.0 (mA) V V 2 3 4 5 8 9 10 1----+---+---'==-.....=::----1 0 .....- - " " - - -.......- - - - " - -........ -55 -15 +25 +65 +125 T - TEMPERATURE (OC) 11 (\1. - VR}-LOGIC SUPPLY VOLTAGE (VOLTS) Logic Input Current VB. Logic Input Voltage -100 Switching Times with Resistive Load 1000 700 500 I \1.=5V_ VR = 0 V -80 V+~+10v' } tR+ , / V- = -10 V V 300 V 200 -60 !IN tsw (ns) 100 70 50 (J.LA) -40 "'\ -20 30 to+ V vV' tF ~ ./ ~ V L IL ~ to 20 \ o YiN - 2 3 4 5 LOGIC INPUT VOLTAGE (VOLTS) 2 4 6 10 20 40 +10- OUTPUT CURRENT (mA) Effect of Load Capacitance on Crossover Time 1000 SEE TEST #1 500 5.0 300 -- 200 txo (ns) Effect of Load Capacitance on Crossover Level 10 SEE TEST #1 100 100 50 ../ ~ 2.0 ~ .".,.,.. V Vxo 1.0 ...,. oC 51-----boo..,e::;.-:::;oI"c..--~"""---___1 , tR- 20 SEE TEST #2 o~----~----~----~--~ 10 15 20 25 o 30 20 30 10 10 - LOAD CURRENT (rnA) IV+I+IV-I - OUTPUT SWING (VOLTS) Fall Time with Capacitive Load Switching Times with Capacltlve Load 2000 2000 1000 1000 700 500 tsw 200 (ns) l,.......---" ~ to+ 100 70 50 30 20 tR/ ~ 1..00"": ___ 1""" ..... ..... 50 100 ~ V/ 500 1000 30 20 5000 . / "/" ,. :;.....-0"'" 50 100 CL - LOAD CAPACITANCE (pF) Output • Low" Characteristics PULSED: 80 /Ls, 2% RA~ED 6c CURRENT - V OL- V- 4 (V) 3 ~V I. V+ -VOH (V) dc - 4 V+ = +15 V V- = 0 L~ ~ 3 2 ",. 20 30 40 5000 RJED CUrEN[ - 5 k::: :,....-- V+ = +15 V V- = -15 V I I ~ 10 2000 I 6 ~ ...... V " o 1000 PULSED: 80 /LB, 2% 5 V 500 Output "High" Characteristics 7 2 200 CL - LOAD CAPACITANCE (pF) 7 6 rL ./ ~ /V-=OV 100 70 50 2000 / ./ // tF 200 (ns) to200 V- = -15 V 300 /' , ..., L 700 500 ./ /. V+ = 10 V to 30 V SEE TEST #3 SEE TEST #3 300 40 50 60 70 10L - OUTPUT "LOW· CURRENT (rnA) 80 o 10 20 30 40 50 60 70 80 10H - OUTPUT "HIGH" CURRENT (rnA) 8-19 0169 WY'Siliconix incorporated ~ OPERATING GUIDELINES 40 mA LOAD, V+ = 20 V, VSwitching Waveform =0 V +40 mA LOAD, V+ = 10 V, V- = -10 V Switching Waveform For proper performance of the 0169 circuit, certain guidelines must be followed for the power supply and Input terminals. These are listed below. TERMINAL ALLOWABLE CONDITIONS I V+ !Pln 61 V- Pin 9 Any positive voltage Any negative voltage or zero volts V R (Pin 8) VL (Pin 7) IN1L, IN2L (Pins 5, 10) IN1H, IN2H (Pins 5, 10) l!: V EE + 1 V (Input Threshold = VR + 1.4 V) V L - V R l!: 4 V l!:VEE + 1 V l!:VEE + 3 V 10 VS V+ - V-S 36 V CIRCUIT OPERATION The D169 circuit has three sections: (1) an input level detector, (2) a level shifter, and (3) a pair of complementary emitter-follower outputs. This arrangement provides a high input impedance. high output drive capability. and compatibility with a wide range of power supply levels. The input threshold level can be easily varied to accept various logic levels. Output swing is set by the V+ and V- power supply levels. Level Detector Transistors Oland 02 form a differential input pair. Transistor 00. resistor R1. and diodes D1 and D2 form a current source of about 1 mA which drives 8-20 the common emitter connection. The voltage between supply levels V L and V R determines the trip point where the circuit changes state. With V R grounded. the trip point is about 1.4 volts. depending somewhat on the voltage V L. The input characteristics are shown in Figure 5. Level Shifter Schottky-clamped transistors 03 and 04 along with P-channel MOSFETs 05 and 06 form a complementary-coupled switching stage. This configuration draws no idle current and permits a change of state within 100 ns after the input signal passes the trip point. The circuit delays are such that the .-r Siliconix incorporated 0169 ~ CIRCUIT OPERATION (Cont'd) that the switching action approaches a "break-before-make" sequence as shown in Figure 15. The response times are essentially independent of the input signal level and rise time. The time measured from the input signal step to where the output waveforms from OUT and OUT c,oss is called cross-over time. The voltage level at that time with respect to V- is called crossover voltage. This point is of importance when driving certain loads where a break-before-make action is necessary to avoid high current surges. The crossover time is essentially independent of output voltage swing, but is affected by the load capacitance as shown in Figure 7. The delay time of the negative going waveform from OUT and OUT is not significantly affected by load capacitance; however the delay time of the positive going waveform experiences a delay which is fairly sensitive to load capacitance. This feature reduces the dependence of crossover voltage on the load capacitance as shown in Figure 8. However, the output voltage swing does exert considerable influence upon crossover level as indicated in Figure 9. In order to provide adequate drive to Q3 and Q4, the voltage at the collector of the differential pair must be more positive than the V- level plus the base emitter drop of the schottky transistors. This dictates that the "low" level of V IN should exceed V- by at least one volt. APPLICATIONS Totem-Pole Driver with Bootstrapping When driving MOSPOWER in a totem-pole output configuration (see Figure 17), it is necessary to have the gate voltage 10 to 15 voits positive with respect to the source in order to handle load currents near the MOSPOWER maximum ratings. The 0169 lends itself to bootstrapping because of its high voltage ratings. +15 V +5 V In the circuit shown, the voltage on the 2000 pF bootstrap capacitors is applied via diode .. OR" gates to the V+ terminal; therefore, regardless of which output is high, 30 V is present at V+. Maximum switching frequency is determined by the input capacitance of the MOSPOWER transistors used. 0-------------,....------,....-----, 0--,....-......---, TTL or CMOS INPUTS I I .VRB . --":19-..1 Vi Figure 17. Totem-Pole Driver with Bootstrapping 8-21 0169 W7' Siliconix ~ incorporated APPLICATIONS (Cont'd) Voltage-to-Frequency Converter A simple, low-cost VFC can be designed using the 0169 and a single op amp (see figure 18). The 0169 serves as a level detector and provides complementary outputs. The op amp is used to integrate the input signal VIN with a time constant of R1C1. The input, which must be negative, causes a positive ramp at the output of the integrator which is then summed with a negative zener voltage. When the ramp is positive enough to cause the D169 input (pin 10) to exceed the logic threshold of 1.4 V, then the 0169 outputs change state and OUT 2 flips from negative to positive. This positive output of approximately 11 V puts transistor Q 1 into saturation which then resets the integrator to near zero. The integrator peak differential voltage t:.. V will be approximately 9.2 V. The output frequency f 0, neglecting the short reset interval, will be The pulse repetition rate. fo. is directly proportional to the negative input voltage VIN. +5 V r 5 +12 V 16 7-_._., 1 '" 1 3 '--1--11-"---0 OUT 1 112 r---1"":::"-O CiIT'f"2 1 1 '----1..!1.:...1~O OUT 2 3 k.n. -1-.J 8 -=- 9 -12 V Figure 18. 0169 Used as a Voltage-to-Frequency Converter H-BRIDGE SWITCH APPLICATION +5 V V+ IN~J~ o--1~--f--lI--lI""""o.....;::=-+,---, t----~-ItL Figure 19. Driver for MOSPOWER H-Swltch 8-22 0469 ...... Siliconix incorporated ~ Quad High-Current Power Driver FEATURES BENEFITS APPLICATIONS • High Current Drive (Up to 1A) • Efficient Drive For Large MOSPOWER FETs • H-Bridge Drives • Single Power-Supply • Low Standby Power Consumption • Motor Drives • TTLICMOS Compatible Inputs • Complementary Switching • Easily Interfaced DESCRIPTION The D469 is a quad high current driver designed to interface low current logic to power MOSFETs in motor controls and other power control applications. This 4-channel power driver can source or sink up to 1 A at 2% duty cycles or ±250 mA continuously. is built on the Siliconix PolyMOS'" process. An epitaxial layer prevents latchup. To achieve high current driving capability, the D469 The D469 is available in 14-pin side braze and plastic packages. Performance grades include the military, A suffix (-55 to 125°C), industrial, B suffix (-25 to 85°C), and commercial, C suffix (0 to 70°C) temperature ranges. For further information please refer to application note AN88-1. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAM Dual-In-Llne Package v+ GND IN,oiN, o--+--a IN 2 0--+---; iN2o--+--a Top View Order Numbers: Side Braze: D469AP, D469AP/883. D469BP Plastic: D469CJ Truth Table IN X INx 0 0 1 1 0 1 0 1 OUTx IN 3 0--+-----1 iN 3 o--+--a IN 4 0--+---; iN 4 o---+---{] GND GND VDD GND 8-23 0469 ..... Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS P Package Ambient Temperature Under Bias . . . . . . • • . . • . . • . . . . . • . . • . . . . . . . . . . .• -55 to 125·C Storage Temperature ...•.......••...... -65 to 150·C Voltage on Any Pin with Respect to Ground ............••......•... , -0.3 to Voo +0.3 V J Package Operating Temperature .. -55 to 125·C ...... 0 to 70·C Junction Temperature. . . . . • • . .. 1S0·C ....••••• 12S·C Power Dissipation ......•.•.. 82S mW ....... 62S mW Supply Voltage, Voo .....•••.•.•.••....... -0.3 to 14 V Continuous Output Current .•....••....•...... ±2S0 mA Peak Output Current (Pulsed at 1 ms, 2% Duty Cycle) ................•.....•....... ±1 A Derating ............••.•. 11 mW/·C ... 6.2S mW/·C . . . . . . . . • . • • • . . . . . . . . .. above 7S·C .... above 2S·C 8JA •••••••••••••••••••••••• 91·C/W ...... 160·C/W .........•...•..•...... (No Airflow) .... (No Airflow) ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Voo = 12 V PARAMETER LIMITS 1=25·C 2=12S,8S·C 3=-55,-40·C TEMP SYMBOL TYP c A,B,C SUFFIX MIN b MAXb UNIT INPUT Input Voltage HIGH V INH 1,2,3 Input Voltage LOW VINL 1,2,3 Input Current with Input Voltage HIGH IINH VIN =Voo 1,2 0.001 Input Current with Input Voltage LOW IINL VIN = 0 V 1, 2 0.001 -10 lOUT = -100 mA One Output at a Time 1,2,3 11.1 10 lOUT = -10 mA 1,2,3 11.9 11.8 3 V 0.8 10 )lA OUTPUT Output Voltage HIGH VOUTH V Output Voltage LOW VOUTL lOUT = 100 mA One Output at a Time 1,2,3 0.6 2 lOUT = 10 mA 1,2,3 0.07 0.2 Output Source Current 108+ Vo = 0 V, 2% Duty Cycle 1 1 Output Sink Current 108- Vo = 12 V, 2% Duty Cycle 1 -1 A 8-24 ~ ~ 0469 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Voo = 12 V SYMBOL PARAMETER LIMITS 1=25·C 2=125,85° C 3=_55,_40 0 C TEMP TYP c 1 2 60 1 25 A,B,C SUFFIX MINb MAXb UNIT DYNAMIC 100 150 Propagation Delay tpx Rise Time tr Fall Time tf 1 30 C 1n 1 5 1 2 3 7.5 10 1,2 3 10 20 30 1 2 7 20 20 Input Capacitance C L = 500 pF ns pF SUPPLY INx = iNx = 0 V, Voo= 12.6 V Supply Current 100 IN x = iN x = 3 V, Voo = 12.6 V f = 100 kHz, Voo = 12.6 V C L = 500 pF One Output at a Time mA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. .. AC TESTING CONDITIONS ----------3V iN x (IN x = H) '--,--- -----ov OUTX---~~ ----------3V '--,-,..-- - - - - - o V OUTX---':":":::.JT· 8-25 0469 . . , . Siliconix incorporated ~ DIE TOPOGRAPHY .. 136 mils 14 14 2 ~I Pad Function No. 13 INl ~~ 3 4 2 INl 3 IN2 4 IN2 5 IN3 6 7 IN3 GND 8 IN4 9 10 IN4 OUT 4 119 mils 11 OUT 3 12 OUT 2 13 OUT 1 14 V+ 20X CSACA 8 Resistors 28 P-channel enhancement MOSFETs 44 N-channel enhancement MOSFETs 8 NPN Bipolar Transistors TYPICAL CHARACTERISTICS Supply Current vs. Supply Voltage Input Logic Threshold vs. Supply Voltage 3 4 - Nb LoAD TA = 25°C 3 2~-+--~--~-+--+~~~,--~ ........ ~,,' ONE CHANNEL ON..,... V (V IN1 =VDD) IDD (mA) 2 1----+---t----I7'~ / V / 2 4 6 8 10 12 V DD - SUPPLY VOLTAGE ,V) 8-26 ' / l / I"" V" . / "/ ALL CHANNELS OFF ~ V" ( V IN (ALL) = 0 V) ./ 14 o o 2 4 6 8 10 12 VDD- SUPPLY VOLTAGE (V) 14 tI"F ~ 0469 Siliconix incorporated TYPICAL CHARACTERISTICS (Cont'd) Supply Current vs. Supply Voltage 10~~f-IN~=~10~0~k-H-Z~--~--~--~---' VIN = 0 V, 5 V C L = 5000 pF T A = 25°C 8 ONE INPUT TOGGLED, ALL OTHERS GROUNDED. Supply Current vs Input Voltage 80~~~~~~~~~~~--~ ~ _ Voo 12 V I_-I-_-I-_-+_-t T A = 25°C 60 - NO LOAD 100 100 (rnA) 40~--+----r--~_;H-t---~---i 6~--+---+---+---~~+---1---~ 2000 pF I 1000 pF (rnA) 4 500 pF 100 pF 20~--+----r--~_;~t---~---i o 2 VIN - INPUT VOLTAGE (V) 2 3 10 8 100 (rnA) 6 fiN = 100 kHz VIN = 0 V, 5 V T A = 25°C FOUR INPUTS (iN x) TOGGLED SIMULT ANEOIJ.§, ALL OTHERS IN x GROUNDED. FOUR OUTPUTS PARALLELED 35 C L = 5000 pF 30 25 Voo= 12 V T A = 25°C VIN = 0 V, 5 V ONE INPUT TOGGLED, ALL OTHERS GROUNDED. 20 100 (rnA) 15 4 10 -"...." f = 400 kHz 2 I I I, VI ".. 5 r--200 kHz V - 20 kHz 2 4 6 8 10 12 V oo - SUPPLY VOLTAGE (V) 10 14 Supply Current vs. Capacitive Load 50 100 40 (rnA) 30 20 10 10 Voo= 12 V TA = 25°C V IN = 0 V, 5 V FOUR INPUTS IN x TOGGLED SIMULTANEOUS, ALL IN x GROUNDED FOUR OUTPUTS PARALLELED. I f = 400 kHz 200 kHz 20kHzr-----~------_+----_; 100 1000 10000 C - CAPACITIVE LOAD (pF) 14 Supply Current vs. Capacitive Load Supply Current vs. Supply Voltage 12 8 10 12 4 6 V oo - SUPPLY VOLTAGE (V) 100 1000 C - CAPACITIVE LOAD (pF) .. 10000 Supply Current vs. Switching Frequency 35 30 25 100 C L = 500 pF T A = 25°C VIN = 0 V, 5 V ONE INPUT TOGGLED, ALL OTHERS GROUNDED. 20 I h (rnA) 15 1/1 10 5 '6o=12V ./ ~~ 10 10V 8V 5V ~/J --'l 100 1000 f - SWITCHING FREQUENCY (kHz) 8-27 0469 .... Siliconix incorporated ~ TYPICAL CHARACTERISTICS (Cont'd) Supply Current 70 VB. Switching Frequency = = = CL 500 pF TA 25°C VIN 0 V,S V FOUR INPUTS (IN ) TOGGLED SIMUL1?.NEOUS, ALL OTHER (IN x ) GROUNDED. FOUR OUTPUTS PARALLELED 60 50 100 (rnA) 40 J 30 VDD =12 V 10 V 8V /h 20 ~..; 10 5V ~~ 1000 10 100 f - SWITCHING FREQUENCY (kHz) OUTPUT STRUCTURE INPUT STRUCTURE SWITCHING TIME TEST CIRCUIT C = 10JlF 110.01 ~F CHIP CAPACITORS VDD C~ INPUT ~500 pF INx = Voo TO TEST iN x ' TEST REPEATED FOR ALL INPUTS. BURN·IN DIAGRAM GNO 0--4--_-1 L-=:==~~ PIN DESCRIPTION SYMBOL 8-28 DESCRIPTION INX Non-Inverting Logic Control Input INx Inverting Logic Control Input GND Ground OUT Buffered Output VDD Positive Supply Voltage ...... Siliconix incorporated ~ 0470 Low-Power - High-Speed Octal CMOS Driver with Serial Interface FEATURES BENEFITS APPLICATIONS • up to ± 22 Volt Output Range • Devices Can Be Chained For System Expansion • Automotive and Avionics Systems • Low Propagation Delays « 200 ns) • Any combination of B Outputs • Master Reset To All Drivers • ATE • Serial Data Acquisition and Process control • TTL and CMOS Compatible • Independent Output Voltages • ESDS Protection > • Simple Interfacing • Reduced Parts Count • Increased Versatility • Communication Systems • Display Drivers ±4000 V DESCRIPTION The D470 is a CMOS driver array configured as eight power buffers for use in serial input applications. By combining high output current capability (I OPEAK = 200 mAl and low propagation delays (tPR < 150 ns) the D470 is ideally suited for driving discrete devices in automotive, ATE, and process control applications. This device loads data serially into the input shift register with each clock pulse. The state of the shift register can be latched via LOAD (LD) at any point into an address register which holds the logic bits to control each individual driver. A RS pin resets all the latches which in turn reset the power buffers. A serial data output terminal DOUT allows chaining of power drivers for larger matrix systems. The output voltages may be made independent or equal to V+ and V- for added flexibility. The 0470 is built on Siliconix' high voltage silicon gate process to achieve high voltage ratings and high output current capability. An epitaxial layer prevents latchup. Packaging for the 0470 consists of the 2B-pin CerDIP, plastic DIP, and PLCC. Performance grades available are military, A suffix (-55 to 125°C) and industrial, D suffix (-40 to B5°C) . PIN CONFIGURATION PLCC Package Dual-In-Llne Package o U v _ G V TPNLRNP 44CDSDS As GND 2 Vps OUTS 411 311 211 11128112711261 ,/ OUT3 v P2-3 OUT2 V Nl -2 Top View 9 OUT 1 1 v p1 v- 1:21113111411151116111711181 DOUT VDCDVN + 1 L 0 - C Order Numbers: CerDIP: D470AK, D470AK/883 Plastic: D470DJ Preliminary N K U T Order Number: D470DN B-29 .. H 0470 Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM v+ GND v- VP1 L..1_ DIN OUT1 VNl-2 L~_ OUT2 VP2-3 CLK LJ!._ OUTs VN3-4 L4 OUT4 VP4 SHIFT REGISTER Vps L.§.._ OUTs VN5-6 L.§.._ OUTs V pS _7 L1.._ OUT7 VN7-8 DOUT L.§.._ OUT8 VP8 RS LD TRUTH TABLE RS 1 1 CLK" f f OUTPUT STRUCTURE DIN D1 Dn 0 0 Dn-1 1 1 Dn-1 1 ~ X D1 D (NO CHANGE) 0 X X 0 0 LD" f f ~ D1 L1 OUT 1 0 1 VNl-2 1 0 VP1 D1 II (NO CHANGE) " ClK and lD are level sensitive Inputs. 8-30 Preliminary 0470 WY'Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS V+ to V- ....••.•..•...........•••.....•...... 44 V GND to V- . . . . . . . . • • . . • . . • • • . . . . . . . . . . • • . . . . .• 25 V Digital Inputs, VPX_y, V NX_y 1 ... (V-) -2 V to (V+) + 2 V or 30 mA, whichever occurs first Continuous Current (Any Terminal) .........••.•. 30 mA Current, 106 (Pulsed 1 ms 10% duty cycle) ..... 200 mA Storage Temperature Power 28-Pln 28-Pln 28-Pln Dissipation (Package)· CerDIP·· ......••.••.........•...... 1200 mW Plastic··· .........•...•..•..••..•..•• 625 mW PLCC .. •• ..••••...................•. 450 mW All leads welded or soldered to PC Board. Derate 16 mW/oC above 75°C. ... Derate 8.3 mW/oC above 75°C. .... Derate 6 mW/oC above 75°C. (A Suffix) ......... -65 to 150°C (D Suffix) ........ -65 to 125°C Operating Temperature (A Suffix) ......•.• -55 to 125°C (D Suffix) ......•.•• -40 to 85°C Signals exceeding V+ or V- will be clamped by Internal diodes. Limit forward diode current to maximum current ratings. ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A 0 2=125,85°C V+ = 15 V, V- = -15 V SUFFIX SUFFIX 3=-55,-40°C -55 to 125°C -40 to 85°C GND = 0 V PARAMETER SYMBOL VIN = 2.4 V, 0.8 Vd TEMP TYpo MIN' MA>f MINb MAXb UNIT DRIVER Output Voltage HIGH Output Voltage LOW Output Source Current 10 = -5 rnA 1,3 2 14.6 14.4 14.6 14.4 10=-30mA 1,3 2 11 11 10 = 5 mA 1,3 2 -14.6 -14.4 -14.6 -14.4 10=30mA 1,3 2 -11 -11 -9 -9 Vo = -15 V Pulsed 1,3 2 200 150 200 150 Vo = 0 V Pulsed 1,3 2 175 125 175 125 Vo = 15 V Pulsed 1,3 2 -125 -100 -125 -100 Vo = 0 V Pulsed 1,3 2 -125 -100 -125 -100 VOH 9 9 V .. VOL 106+ mA Output Sink Current 106- LOGIC INPUT Input Current with VIN LOW IlL VIN Under Test = 0.8 V All Other = 2.4 V 1,2 -1 1 -1 1 Input Current with VIN HIGH IIH VIN Under Test = 2.4 V All Other = 0.8 V 1,2 -1 1 -1 1 J.lA Preliminary 8-31 0470 tIY" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A 2=125,85°C V+ = 15 V, V- = -15 V SUFFIX 3=-55, -40 ° C -55 to 125°C GND = 0 V PARAMETER SYMBOL. VIN = 2.4 V, O.B Vd TEMP TYp c D SUFFIX -40 to 85°C MINb MAX' MINb MAXb UNIT LOGIC OUTPUT Output Voltage lOW (DoUT) VOL lo=3.2mA 1,2 Output Voltage HIGH (DOUT) V OH lo=-BOJ.lA 1,2 2.4 2.4 tLOGIC (CJN ' lD, ClK, RS) 1 2 BO 150 80 150 0.4 0.4 V DYNAMIC Pulse Width for logic Inputs Propagation Delay (Rise) tpR VIN = lD, CL = 500 pF 50% of VIN to 50% of Vo 1 2 150 200 250 200 200 250 200 250 Propagation Delay (Fall) tpF 1 2 Data Setup Time tow 1,2 Positive Supply Current 1+ 1,2 Negative Supply Current 1- Ground Current IGNO 50 ns 50 SUPPL.Y V+ = 16.5 V, V- = -16.5 V VIN = 0 or 5 V 100 100 1,2 -1 -1 1,2 -100 -100 J.lA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. d. V IN = Input voltage to perform proper function. INPUT TIMING REQUIRMENTS \'--q, = for ClK and lD Inputs of the same frequency The recommended phase delay of lD from ClK Is 1/2 t LOGIC to t LOGIC t LOGIC(MIN) : BO ns at 25°C 150 ns at 125°C 8-32 ~~ ~ ~1~ ~ GND = aV Preliminary ..-F' 0470 Siliconix incorporated ~ INPUT TIMING REQUIRMENTS (Cent'd) SHIFT REGISTER SETUP DAT_A ________ ~)(~______~--------I /I As I ---'lr---- I I' I I CLK__________I'-.'____ CLK DATA TO CLK t 30 ns at 25°C 50 ns at 125°0 Rst TO CLK t 30 ns at 25°C 50 ns at 125°0 SHIFT REGISTER HOLD ¥'---- DATA I, II J -----'I DATA FROM CLKt 30 ns at 25°C 50 ns at 125°C ADDRESS REGISTER SETUP CLK 1 RS \ I,.,----------,~I LD yr--- I _ _ _ _-JI _____ ~I,======:::::j"'I--- ---------f.---- LD ___________ 1 As CLK t TO LOt 30 ns at 25°C 50 ns at 125°0 'TO LOt 30 ns at 25°C 50 ns at 125°0 ADDRESS REGISTER ENABLE CLK 1 1;--\ --------~ I, LD -------' ,I 1'---- CLK t TO LD' 100 ns at 25°C 150 ns at 125°C RS \ I, LD '1 I / RS' TO LD' 100 ns at 25°C 150 ns at 125°0 V+ = +15 V, V- = - 15 V, GND = 0 V INPUTS ARE 0 V TO 3 V Preliminary 8-33 0470 .... Siliconix incorporated ~ TIMING DIAGRAM u -1 R8 DIN eLK LD 81 82 L -______~~_ _ _ _ _ __ 83 84 85 ------~------~-------~~---- _____-'r- 86 87 ________ ~rJ~ _________ ~ 8a Do~ -----------------~ 81- 8 a and Do~ are expected output with the drain connected high. The sources require pull-downs of 1 k.o. . PIN DESCRIPTION SYMBOL lD NC VPX-V OUTX V NX-V V+ DIN ClK DOUT VGND RS 8-34 DESCRIPTION logic lOAD DATA Input. When HIGH it loads the contents of the shift register into the octal latch. No Connection Positive power supply voltage common to buffers X and Y. Buffer X output Negative Power Supply Voltage, common to buffers X and Y. Positive Supply Voltage Serial Data Input. TTL Compatible for V+ = +4.5 V up to +22 V. Clock. The d-type master-slave flip-flops that make the shift register are updated during the positive transitions of the clock. Serial Data Output. TTL compatible output levels. Can be used to chain several devices. Negative Supply Voltage. Digital Ground. RESET. When LOW this input clears the contents of the shift register to an all zeroes state. Preliminary L144 Low-Power Triple Operational Amplifier tI'1P'" Siliconix JI;II incorporated • Three Amplifiers in One Package o Low Power Consumption • • • APPLICATIONS BENEFITS FEATURES Programmable Supply Current Operates From ±1.5 to ±15 V Drives Large Capacitive Loads « 1000 pF) • Reduces Board Space and Parts Count o Reduces System Power Supply Requirements • Easily Tailored to Optimize Circuit Performance • Eliminates Additional Supply Voltages • Increases System Stability • Instrumentation Amplifiers • Battery-Powered Systems • Remote Data Sensing • Voltage Comparators • Active Filters DESCRIPTION The Siliconix L144 is a low cost triple operational amplifier designed for general purpose applications where low power is a primary consideration. Features include operation with supply voltages as low as ±1.5 VDC, programmable supply current (with single resistor), and internal compensation to ensure stability under all conditions of resistive feedback. The L144 will drive capacitive loads to 1000 pF, and the output stages are short-circuit protected. The programmable supply current of the L144 allows the user to minimize the effects of the speed-power trade-offs associated with all op amps. The three amplifier architecture is excellent for instrumentation-amplifier configurations. The unity-gain stable internal compensation allows simplified operation in buffer, active filter, and gain stage applications. The L 144 is built in a standard bipolar process, allowing low-drift operation over a wide range of power supply voltages and temperatures. Package options include the popular 14-pin side braze and plastic DIP, and the flat pack. The L144 device is specified for operation over the military, A suffix (-55 to 125°C), industrial, B suffix (-25 to 85°C), and the commercial, C suffix (0 to 70°C) temperature ranges. For more information on the L144, please refer to Siliconix Application Note AN73-S. PIN CONFIGURATION Flat Package Dual-ln-Une Package +Vs -IN 1 +INl OUT2 -Vs OUT3 NO Top View Order Numbers: L144AL 1883 Top View Order Numbers: Side Braze: L144AP, L144AP/883 L144BP, L 144BP/883 Plastic: L144CJ 8-35 ".,. Siliconix incorporated L144 ~ FUNCTIONAL BLOCK DIAGRAM +Vs -IN RS SOO.!}. +INo---I--I---' .:::rr----+--o SET CURRENT RS 1 k.D. IL -Vs 1 k.Il _ _Rg __ ____ _ aUT ABSOLUTE MAXIMUM RATINGS Supply voltage •..•.•. . . . . . . . . . . . . . . . . . . . . . . • .. ± 18 V Lead Temperature (Soldering 60 s) .............. 300°C Differential Input Voltage . . . . . • . . . . . . . . . . . . . • • .. ±30 V Power DiSSipation (Package)""" Flat Package ....•.........•....•..•••...•.. 750 mW 14-Pln Ceramic DIP. . . . . . . . . . . . . . • . . . . • . . . • .. 825 mW Plastic DIP ...........•..............•.•..•. 470 mW Input Voltage" (A. B Suffix) ..•..•••..•.••..••.. ±18 V (C Suffix) ....................... ±15 V Output Short Circuit Duration"" .••............ Indefinite Operating Temperature (A Suffix) .••.••... -55 to 125°C (B Suffix) .•........ -25 to 85°C (C Suffix) ..•........ 0 to 70°C Storage Temperature (A and B Suffix) ..... -65 to 150°C (C Suffix) .......•••. -65 to 125°C For supply voltages < ±18 V, maximum Input voltage Is equal to the supply voltage. Continuous short circuit Is allowed for case temperatures to +125°C and ambient temperature to +70°C. " "" All leads welded or soldered to P. C. board. Derate 10 mW/oC for the flat package, 11 mW/oC for the 14-pln DIP above +75°C and 6.3 mW/oC above 25°C for the plastic DIP. ELECTRICAL CHARACTERISTICS a, e Test Conditions d 1=25°C Unless OtherwIse SpecIfIed: 2=125,85,70°C 3=-SS,-2S,O °c Vs = ± 15V, RL= 50 k.n PARAMETER SYMBOL RSET= 3 M.n (Pin 1 to 14) Vas RsS SOk.n 1 2,3 1 TCvas RsSSOk.n 1 3.3 LIMITS A/B SUFFIX C SUFFIX TEMP TYpe MINb MA>f MINb MAXb UNIT INPUT Input Offset Voltage Offset Voltage Tempco 8-36 5 6 10 mV )lV/oC L144 ...... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a, e Test Conditions d 1=25·C Unless Otherwise Specified: 2=125,85,70·C 3=-55,-25,0 ·C Vs = ±15V, RL=50k.n PARAMETER SYMBOL RSET = 3 M.n (Pin 1 to 14) LIMITS AlB SUFFIX C SUFFIX TEMP TYpe MINb MAX' MINb MAXb UNIT INPUT (Cont'd) 50 70 los 1 2 ISlAS 1,2 -100 -200 Output Voltage Swing V OUT 1 ±14 -10 Output Voltage Swing V OUT 1 ±0.5 1 1.5 AVOL 1,2,3 30 Slew Rate SR 1 0.4 V/)J.s Unity Gain Bandwidth GBW 1 0.6 MHz f=100Hz 1 -100 VIN = ±12 V 1 90 80 70 1 90 80 80 dB 350 400 )J.A Input Offset Current nA Input Bias Current -250 OUTPUT 10 -10 10 V Output Short Circuit Current Iso Vs= ±1.5 V, RSET = 120 k.n RL = O.n 15 15 mA DYNAMIC DC Open Loop Voltage Gain Crosstalk 3 1 V/mV dB Common Mode Rejection Ratio CMRR SUPPI.Y Power Supply Rejection Ratio PSRR Supply Current Is Unity Gain, VIN = 0 V On All Amplifiers 1 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. o. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. d. I SET Is adJustable. See typical characteristics. e. All dc parameters are 100% tested at 25·C. Lots are sample-tested for ac parameters and high and low temperature limits to assure conformance with specifications. 8-37 WY'Siliconix incorporated L144 ~ TYPICAL CHARACTERSITICS Gain-Bandwidth Product vs. Supply Current Open Loop Gain VS. Frequency 100 1.4 r-- 1.2 80 r-... ~ 1.0 60 Av (dB) r-... 40 GBW (MHz) " 20 10 100 10 3 10 4 V 0.4 r-... 0.2 1 ~ 0.6 o -20 V 0.8 10 6 10 5 ,..,. ~ 10.uA 100.uA f - FREQUENCY (Hz) 10mA 1 mA I SUPPLY DC Open Loop Gain vs. Temperature Slew Rate vs. Supply Current 105 10~~. ~:tl.5--+15 V 95 Av (dB) SR (V/.us) O.lmJJIIMIII 75 65 1000 -60 -20 10 R~·=Ylif 60 ~i'- 85 / V vlUI ~ Av (dB) 75 / 6 :t15 V :tl0 V + 5V RSET (M.o. ) 4 65 2 55 0 / I SUPPLY 1 mA V ", -- I/:,.V ..... / ~ 100.uA 140 :t5 :tl0 l{olA- " /" ~~.uA ~ 'I' 10.uA 100 Supply Current vs. Set Resistor and Supply Voltage 8 95 8-38 20 T - TEMPERATURE (DC) DC Open Loop Gain vs. Supply Current 105 - 85 55 100 I SUPPLY (.uA) - ... /" - ......r .". "",.", 250.uA -s;tA- :t15 SUPPLY VOLTAGE (V) I :t18 L144 ...... Siliconix incorporated ~ TYPICAL CHARACTERSITICS Input Bias Current vs. Supply Current Supply Current vs. Temperature 1000 320 280 Vs = ±1.5 V Ie (nA) A~ 100 240 ~I'" Is (~A) 200 160 120 1.;';'- Vs = ±15 V 80 ,&'fI' ~ 40 10 100 0 1000 -60 -20 20 60 100 TEMPERATURE (OC) I SUPPLY (~A) Voltage Follower Small Signal Pulse Rsaponse 0.8 Phase Response vs. Frequency 225 r'\. rlil 0.6 Vo (V) 0.4 180 Phase 135 (%) 0.2 ~ 90 n 0 -0.2 140 o 10 20 40 t - TIME U!.s) 45 60 80 o 1 10 100 10 3 10 4 10 5 10 6 FREQUENCY (Hz) 8-39 Siliconix incorporated H L144 APPLICATIONS Active Filter Instrumentation Amplifier _ VOUT ......_...r> ~1.6VP-P VREF 750 ~~~~--~V0~---o k.n PO =7.5mW SAND PASS (GNOo, VOSNULL) AV= 1 + fo=1kHz 0=26 Po = 135Jlw ~R~ Ho= 26 VOS(TYP) RTI = 0.45 mV Q A max .....--o-VOUT VIN VOUT 1/3 L144 1/3 L144 +VOUT PO =7.5 mW VOUT ""YiN= Po VOUT= "LOW" WHEN: VHIGH> VIN > V LOW DIRECT CMOS OUTPUT = 290JlW R2+ R 1 --R-1- V- = -10 V 500 Hz Tcne Detector Bandpass Filter 32 LET THEN VOUT 0, 10 , C THEN C =C3=C4 1 < K< 10 R 7= RS for convenience k.n R - __ 0_S- 21f; oC RS= R6= K RS R1=~ Ho R1= __R_S_ _ Ho+ 1 02- - K - - 8-40 Schmitt Trigger k.n R6320 GIVEN Detector ?ofor~~~~lIk ~~o~hosen component value VHIGH = V,ef R s+ 14 RA RA+RS convenience, IN THIS CIRCUIT Ho= 10 fo=SOOHz 0=25 VLOW= V,ef R S- 14R A RA+RS L161 Micropower Quad Comparator tr'F Siliconix ~ incorporated FEATURES APPLICATIONS BENEFITS • Programmable Supply Current • Allows User to Program Speed/Power Trade-Off • Ultra-Low Power Consumption • Minimizes System Power Requirements • Four Comparators on Single Chip • Reduces Board Space • Smart Munitions • Battery-Operated Systems • Miniaturized Systems • CMOS Logic Systems • Simplifies Logic Interface • Direct CMOS Logic Compatibility ct • Input Sensing Near Ground • Level Detectors • Window Comparators Simplifies SingleSupply Operation • Oscillators and Ramp Generators DESCRIPTION The L161 is a monolithic quad comparator featuring control of both DC and AC parameters with a single power-supply current setting resistor. Operation at very low supply current levels with power dissipation typically in the microwatt region makes the L 161 ideally suited for battery operation. The programmable supply current feature allows the user to optimize the speed-power trade-off to the specific application, truly minimizing system power dissipation. The L 161 is fabricated in a standard bipolar process, resulting in a wide range of operating supply voltages and currents, and allowing low-drift operation over the entire military temperature range. The L161 is available in the 16-pin plastic DIP. Performance grades include a military, A suffix (-55 to 125°C), industrial, B suffix (-25 to 85°C), and commercial, C suffix (0 to 70°C) operation. For more information on the L161, please refer to Siliconix Application Note AN76-7 . PIN CONFIGURATION Dual-ln-L1ne Package Flat Package +IN1~1!V+ -IN 1 +IN2 - IN 2 - IN 3 +IN 3 - IN 4 ~4 2 3 4 5 1 14 1 1 11 1 ISET NO OUT1 OUT2 OUT3 OUT4 ~ +IN1 v+ -IN 1 ISET +IN2 NO OUT1 OUT2 OUT3 OUT4 Top View Order Numbers: L161ALl883 v- Order Numbers: Side Braze: L161AP. L161BP Plastic: L161CJ 8-41 .. ~ Siliconix ,.1;11 incorporated L161 SCHEMATIC DIAGRAM (ONE COMPARATOR) (ONE COMPARATOR) OUTPUT r--------, r------------------------------4----------1-~~B~IA~S~N~E=nN~O~R~K---+-OV+ (COMMON TO ALL FOUR COMPARATORS) ~------~_oISET (-) (+)O-~~------~----------~------~--~ L--------+--------~~ ______+_------------~~----~--+_----~--~----+_OvL ________ J ABSOLUTE MAXIMUM RATINGS Supply Voltage ............................... ±16 V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . .. ±30 V Input Voltage" ................................ ±16 V Output Short Circuit Duration"" ............... Indefinite Operating Temperature (A Suffix) ......................... -55 to +125°C (B Suffix) .......................... -25 to +65°C (C Suffix) ............................ 0 to +70°C Storage Temperature (A and B Suffix) .................... -65 to 150°C (C Suffix) .......................... -65 to 125°C Power Dissipation (Package)""" Flat Package ........................... 750 mW 16-pln DIP (Side braze) .................. 900 mW 16-pln Plastic DIP ....................... 470 mW For supply voltages < ±16 V, maximum Input voltage Is equal to the supply voltage. Continuous short circuit current Is allowed for case temperature to +125°C and ambient temperature to +70°C. """ All leads welded or soldered to PC board. Derate 10 mW/oC above 75°C for the flat package, 12 mW/oC above 75°C for the side braze DIP and 6.3 mW/oC above 25°C for the plastic DIP. LOW POWER ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1_25°C A B,C Unless Otherwise Specified: 2=125,65,70°C SUFFIX SUFFIX Vs = ±3 V, ISET= 10jJ.A 3=-25 _550°C RL = 10 M.n SYMBOL TEMP TYpo MII'f MA>f MIN b MA>f UNIT INPUT Input Offset Voltage VOS 1 2,3 1 1 3 5 6 Input Offset Current los 1 1 20 25 1 20 100 200 mV nA Input Bias Current 8-42 IBT L161 Siliconix incorporated LOW POWER ELECTRICAL CHARACTERISTICS a Test Conditions 1_25°C Unless Otherwise Specified: 2=125,85,70°C Vs = ±3 V, ISET= 10.uA 3=-25 _550°C PARAMETER SYMBOL RL = 10 M.n. TEMP TYp c 1,2 3 30 30 1 -2.95 LIMITS A SUFFIX B,C SUFFIX MIrJ' MAX' MINb MAX' UNIT OUTPUT DC Open Loop Voltage Gain AVOL Low Output Voltage d VOL RL = 20 k.n. 10 5 20 10 -2.6 VlmV -2.6 V High Output Voltaged V OH RL = 200 k.n. 1 2.9 2.5 2.5 CMR Positive Limit Negative Limit 1 1.3 -3.0 V Response Time t 100 mV Overdrive C L = 10 pF 1 5 .us Common Mode Rejection Ratio CMRR VIN = CMR 1 90 75 75 dB 1 80 65 65 dB 1 2,3 210 210 DYNAMIC Common Mode Range SUPPLY Power Supply Rejection Ratio Supply Current e PSRR Is All Outputs Low RL = 00 325 325 325 350 .uA HIGH POWER ELECTRICAL CAHRACTERISTICS a PARAMETER LIMITS Test Conditions d 1=25°C A Unless Otherwise Specified: 2=125,85,70°C SUFFIX Vs = ± 15 V,I SET = 100.uA 3=-25 -550°C RL = 2 M.n. SYMBOL TEMP TYp c MIrJ' MAX' B,C SUFFIX MIN b MAX' UNIT INPUT Input Offset Voltage Vas 1 2,3 1.5 1.5 3 6 6 Input Offset Current los 1 5 60 90 1ST 1 2,3 100 100 400 500 800 mV nA Input Bias Current 8-43 L161 ..... Siliconix incorporated ~ HIGH POWER ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1=25°C B,C A Unless Otherwise Specified: 2=125,85,70°C SUFFIX SUFFIX Vs = t15 V, I SET = 100 ~A 3=-25 _550°C RL= 2 M.o. TEMP TYpe MIN b MAX' MINbMAX t UNIT SYMBOL OUTPUT DC Open Loop Voltage Gain AVOL 1,2 3 100 100 50 25 30 15 V/mV Low Output Voltaged VOL RL = 20 k.o. 1 -14.9 High Output Voltaged VOH RL = 200 k.o. 1 14.9 Positive Limit 1 13 Negative Limit 1 -15 100 mV Overdrive CL = 10 pF 1 1 1 90 75 75 dB 1 80 65 65 dB 1 2,3 2.1 2.1 -14.6 -14.6 V 14.5 14.5 DYNAMIC Common Mode Range CMR Response Time t Common Mode Rejection Ratio CMRR V VIN = CMR ~s SUPPLY Power Supply Rejection Ratio PSRR Supply CurrentS Is All Outputs Low RL = co 3.75 4.0 3.75 4.0 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteBd nor subject to production testing. d. The output current drive of the L 161 Is non-symmetrical. This facilitates the wlre-ORlng of two comparator outputs. e. The output pull-down current Is typically 75-100 times the pull-up current. Set current ( I SET) and supply current ( I SUPPLY) can be determined by the following formulas: I SET = [ (Y+) - (2VBE) - (V-) [ RSET I SUPPLY = 21 X I SET 8-44 mA l161 ..... Siliconix incorporated ~ DIE TOPOGRAPHY Pad No. IBAJA 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20X 20 PNP Transistors 11 NPN Transistors 1 Epl FET Function +IN, -IN, +IN2 -IN2 - IN 3 +IN 3 -IN4 +IN4 V- (substrate) OUT 4 OUT 3 OUT 2 OUT, ISET V+ TYPICAL CHARACTERSITICS Input Bias Current vs. Supply Current Supply Current vs. Temperature 1k 100 Vs = ±15 V 800 ~ ''')3\/ 10 600 Ie (nA) Is (JJ.A) 400 I. 200 0.1 ~ (l 1 10 100 lK o -40 10K ISUPPLY - SUPPLY CURRENT U1A) R SET vs. V SUPPLY for Various I SUPPLIES 10 -- = 10JJ.A ...... IfuPf'L 6 RSET 4 (M.o. ) 2 0.8 0.4 0 , V I' i...o" "'" L ~ V // ,/ /.. ~±2 ±5 i...o" .... i.- ,. NEGATIVE 160 I-- TRANSITION 1..0" --,. 140 (v7~;) I I ...1-1'"'" 1 rnA 40 20 ,/ Vs - SUPPLY VOLTAGE (V) ±15 o o i/ V ./ POSITIVE / / 60 V ,." ...... 10' / 100 80 "10dJJ.A ±10 ..., i-""" / 120 2JOJA 10 V 180 ~ 120 Slew Rate vs. Supply Current 1/ 100JJ.A .vi" ..., 80 200 /1 50JJ.A 8 40 T - TEMPERATURE (OC) / TRANSITION 9 8 7 6 5 SR+ (V/JJ.s) 4 I- 3 Vs = ±1J V I VIN = ±100 mVp 2 RL = 10 M.o. l0 iL =l 1 1- 1 r 200 400 600 800 Is - SUPPLY CURRENT U1A) o 1000 NOTE: The output current drive of each comparator In the L 161 Is non-symmetrical. The pull-up current Is typically 2[V+ - 1 - (V-)/RSETI and the pull-down current capability Is typically from 75 to 150 times the pull-up current. 8-45 L161 ...... Siliconix incorporated ~ TYPICAL CHARACTERSITICS (Cont'd) Voltage Gain VS. Supply Curent Voltage Gain VS. Temperature 120 220 Vs =± 15 V Is = 1 mA '" V s =±15V 100 180 .JI' .... 80 Av 140 (V/mV) 100 60 ,.,.. ,.,.. - I...... ....... -- Av (V/mV) ...... 1- 60 / "" Vs = ±3 V 40 20 20 40 80 120 o T - TEMPERATURE (OC) -40 100 10 Rise Time vs. Supply Current with One CMOS Load Transfer Characteristic +15 +10 1000 ! I I I .I• .I -VSUPPLY = ±15 V _TA = 25°C ",. +5 VOUT (V) 0 / -5 " / I SUPPLY 100 (JiA) ;/ -10 I -15 -200 -100 0 100 10 200 10 1 Response Time vs. Input Overdrive Negative Transition 1000 200 VIN 100 (mV) 0 -100 "" Vs - ±15 V, Is = 1 mA 100 mV 20 mV ~ 5mV : 15 10 I SUPPLY (JiA) \. VOUT 5 (V) 0 "'\. '\... RL = 10 M.n._ .......... CL=10pF -5 r\ 1 100 RISE TIME 10% TO 90% (JJ.s) Fall Time vs. Supply Current with One CMOS Load 10 " IL VIN - DIFFERENTIAL (JiV) 100 10 k 1k Is - SUPPLY CURRENT !J1A) 10 FALL TIME 90% TO 10% (JJ.s) -10 -100(mv 100 -15 o t 20 jV -M V - 2 3 TIME (JJ.s) NOTE: The output current drive of each comparator In the L 161 Is non-symmetrical. The pull-up current Is typically' 2[(V+) -1 -(V-Ii RSETI and the pull-down current capability Is typically from 75 to 150 times the pull-up current. 8-46 L161 ..... Siliconix .1,;11 incorporated TYPICAL CHARACTERSITICS (Cont'd) Response Time vs. Input Overdrive Positive Transition 200 I It = ±15 V 100 trVS Is = 1 mA -5 mV o 20 mv 100 mV 20 mV -100 mY:: -100:: VIN 15 (mV) 10 /'/ J/ // 5 o /V 5 // -10 -15 5mV RL = 10 M.(l_ C L = 10 pF ~ o 2 3 4 5 6 TIME Uls) NOTE: The output current drive of each comparator in the L161 is non-symmetrical. The pull-up current is typically 2[(V+) -1 -(V-)/RSETI and the pull-down current capability is typically from 75 to 150 times the pull-up current. APPLICATIONS The L 161 is a monolithic quad micropower comparator with an external control for varying its AC and DC characteristics. The variation of a single programming resistor will simultaneously alter parameters such as supply current, input bias current, slew rate, output drive capability, and gain. By making this resistor large, operation at very small supply current levels and power dissipations -- typically in the low microwatt region -- is possible. The L161 is therefore ideal for systems requIring minimum power drain, such as battery-powered instrumentation, aerospace systems, CMOS designs, and remote security systems. The L161 is fabricated using standard bipolar processing. The circuit (Figure 1) is composed of five majcr blocks -- four comparators and a common bias network. 01 - 06 and 01 form a darlington differential amplifier with double-to-single ended conversion. 06 is a dual current source whose outputs are exactly twice the current flowing through 08. The collector current of 08 is a function of the current supplied externally to 09 010, which in turn is known as the set current or I SET. This set current is established by a resistor connected between the I SET terminal and a voltage source, most commonly the positive supply. 011 prevents excessive current from flowing through 09 and 010 in the event the I SET terminal is shorted to the positive supply; it has no effect on circuit operation under normal conditions. r--------, r------------------------------------------r~~B~IA~S~C~IR~C~U=IT~--~-O+V (COMMON TO ALL FOUR AMPLIFIERS) ...-:----....1--0 ISET +IN -IN o---1r----------i-----------r--------i---' ~----4----~~---~--------~--~-~--~~~--+--o_v '- _ _ _ _ _ _ _ _ .J Figure 1. Schematic of One Channel of the L161 Plus the Common Bias Network 8-47 - Il'Y" Siliconix L161 ~ incorporated APPLICATIONS (Cont'd) SETTING THE SET CURRENT INPUT BIAS CURRENT The set current can be expressed as: ISET = Input bias current is a function of the betas of input «V+) - (2 VBE) - (V-» RSET (1 ) where V+ is the voltage to which the control resistor is connected, V- is the negative supply voltage, VBE is the base emitter drop of 09 or 010 (about 0.7 V), and R SET is the value of the external control resistor or set resistor. Equation 1 is simply a derivative of Ohms Law. There is also an analytical This is difficult to devices 01 - 02 and I SET. express analytically because f3 varies greatly with both processing and collector current; however it is roughly proportional to the set current and can easily be determined experimentally (see Figure 2). Figure 2. Input Bias Current vs. Supply Current 100 relationship between I SET and the total supply current: ""'±3:V = (I SET (current sourced by 06 to 08) 16 +2 ISET (current sourced to the differential amplifier by 06) (nA) II 1= t- +2 ISET (current sourced to the comparator output by 06» X 4 (the total number of comparators) 0.1 +1 SET (current sourced through 011, 010, and 09 to V-) = (I SET = 21 10 100 1k SUPPLY CURRENT 10 k UJ,A) + 2 I SET + 2 I SET ) X 4 + I SET ISET the high output drive current, (IOH), which allows wire-ORing the outputs. 10H is simply the current sourced by 06: =2 X ISET (3) 10L is found by multiplying the current sourced by the collector of 06 by the gain 07: (4) The beta of 07 is about 75-150. 8-48 V 1 I SUPPLY - The output current pulldown capability (101.) of the L 161 is about 2 orders of magnitude greater than 10H j 10 (2) I SUPPLY E GAIN Gain varies logarithmically with changes in supply voltage and linearly with changes in set current. Primary causes are the decrease in output impedance of 07 with decreasing supply voltage and an increase in transistor betas with increasing set current. Other AC parameters such as slew rate and transition time are also effected by set current; however, current dependent parameters such as beta and chip capacitances make mathematical expressions imprecise. These relationships have been determined empirically and are presented in Figure 3 and 4. L161 ..... Siliconix incorporated ~ APPLICATIONS (Cent'd) Figure 3. Slew Rate vs. Supply Current , 200 160 140 120 / (V~~~ )100 60 , 20 o I' / ..... V POSITIVE TRANSITION / V I SUPPLY - RISE TIME " 7 5 SR+ (V/JJ,s) ~ 4 ISUPPLY 100 (JJ,A) ;" 3 / 200 9 6 6 I' / I 40 V ,,/ ...... / 60 o -'" / 1000 V NEGATIVE TRANSITION 160 Figure 4. Rise and Fall Times vs. Supply Current With One CMOS Load 10 Vs VIN RL CL 400 = ±15 V = ±100 mVp = 10 M.O. = 10 ~F 600 2 o 600 1000 SUPPLY CURRENT U1A) The designer's ability to program the key parameters of the L161 enables him to program just enough supply current to meet his design objectives. This coupled with the L161 's performance using only microwatts of power makes "~ FALL TIME lWlli 10 1 ~ 10 100 RISE TIME 10% TO 90% (JJ,s) it ideal for any micropower or battery-powered system, as well as a replacement for existing higher power comparators. The following applications illustrate the flexibility and unique capabilities of the L161. .. RSET 10 M.D. Po = 30 JJ,W V- Zero Crossing Detector Voltage Level Detector 8-49 L161 Siliconix incorporated H APPLICATIONS (Cent'd) V+ +5 V I SUPPLY = BOOjl.A RSET UPPER LIMIT Rl 100 k.rl VOUT OJ 2 T· 'v OUT Enable Input LOWER LIMIT For V = ±5 V P D =60jl.W CMOS Line Receiver Double Ended limit Detector +15 V +5 V RSET 100 k.o. RS IS k.o. VIN 2 Cl 470 pF RSET 1,2 M.o. 16 13 VOUT .I -=-1 R2 Rl -12 V@SmA A Regulated DC to DC Converter 8-50 220 k.o. 2.2 k.o. CCOMP lo.001.1lF The L 161 as an X100 Operational Amplifier H L161 Siliconix incorporated APPLICATIONS (Cont'd) +9 V ISUPPLY = 10JlA +10 V RSET 16 R1 100 k.o. 300 k.o. 13 R2 300 k.o. R3 100 k.o. A Low Battery Indicator I SUPPLY Square Wave Oscillator = 350 JlA 250 k.o. R3 50 k.o. 10VlLJl CLOCK 0 V II cj>1 CLOCK 10 V,..., ,..., OV.J L-....J L cj>2 A Versatile 2 cj> Pulse Generator 8-51 trJr' Siliconix Si7250 Bubble Memory Power Driver ~ FEATURES BENEFITS APPLICATIONS • TIL Compatible Inputs • Very Low Standby Power • Bubble Memory Coil Pre-Driver • Transition Time < 25 ns with 5pO pF Load • Easy To Interface incorporated • Protection of Bubble Memories • Power Fail Reset • Single Voltage Power Supply DESCRIPTION The Si7250 is a low power coil predriver for direct use with the Siliconix VQ7254 quad MOSPOWER array to drive magnetic bubble memory coils. Its high speed (tTRANS < 25 ns with 500 pF load), TIL compatible inputs and complementary outputs make this device ideal for driving high gate capacitance MOSPOWER devices. The Si7250 is built on the Siliconix proprietary PolyMOS process, allowing superior current handling capabilities. A power fail reset pin protects memory contents in the event of power failure. PIN CONFIGURATION FUNCTIONAL BLOCK DIAGRAlVI X+ IN CS Packaging options include the 16-pin CerDIP for commercial, C suffix (0 to 70°C) temperature operation. X+ OUT Voo CS X+ OUT RESET X+ OUT X+ IN X+ OUT X- IN X- OUT Y+ IN X- OUT X- OUT Y-IN Y+OUT Y+ OUT Y- OUT Y+ OUT GND Y- OUT X-IN RESET x:ou;= Y+ OUT Y+IN V-OUT Top View Order Number: SI7250CK V-OUT Y-IN 8-52 Not Recommended for New Designs Si7250 W'fl" Siliconix ~ incorporated ABSOLUTE MAXIMUM RATINGS Ambient Temperature Under Bias • . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . .. -20 to 80·C Output Current .......................•..... 250 rnA ................•.. (One Output @ 100% Duty Cycle) Storage Temperature ................... -65 to 150·C Maximum Operating Junction Temperature 150·C 9JC = 25·C/W 9JA = 75·C/W (No Airflow) Voltage On Any Pin with Respect to Ground ................ -0.5 to Voo + 0.5 V Supply Voltage, Voo ..................... -0.5 to +14 V Operating Temperature ...........•......... 0 to 70·C Storage Temperature ...••....•..••...... -65 to 150·C ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Voo = 12 V ±10% PARAMETER LIMITS 1=25 ·C 2=70·C 3=0·C TEMP SYMBOL C SUFFIX o to 70°C TYP C MIN b MAXb UNIT INPUT Input Current !lIN I Low Level Input Voltage High Level Input Voltage VI = 0.8 V 1,2,3 10 VIL 1,2,3 0.8 VIH 1,2,3 JJ.A V 2.2 OUTPUT V OL1 IOL= 100 rnA 1,2,3 1.45 2 V OL2 IOL=10mA 1,2,3 0.1 0.2 V OH1 IOH = -100 rnA 1,2,3 Voo -1.4 Voo -2 Voo -0.1 Voo -0.2 Output Low Voltage V Output High Voltage Output Sink Current VOH2 IOH = -10 rnA 1,2,3 IOL VOL = 2 V, 30% Duty Cycle 1,2,3 100 lIoHI VOH =Voo - 2 V, 30% Duty Cycle 1,2,3 100 rnA Output Source Current DYNAMIC Propagation Delay from X+ IN, X- IN, Y+ IN, Y- IN tp Propagation Delay from CS or RESET tp Rise Time (10% to 90%) tr 500 pF Load Not Recommended for New Designs 1,2,3 55 100 1,2,3 90 150 1,2,3 25 45 ns 8-53 II Si7250 .... Siliconix .,1;11 incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Voo= ±10% PARAMETER SYMBOL LIMITS 1=25 ·C 2=70·C 3=0·C C SUFFIX o to 70 c C MIN b MAXb TEMP TYP c 1,2,3 25 45 10 20 UNIT DYNAMIC (Cont'd) Fall Time (90% to 10%) tj 500 pF Load ns Skew Between an Output and Its Complement ts 1,2,3 Input Capacitance C 1n 1,2,3 10 pF SUPPLY Supply Current 1000 _ Chip Deslected CS =VIH, Voo= 12.6 V 1,2,3 1001 1= 100 kHz, Voo= 12.6 V Output Unloaded 1,2,3 75 1002 1= 200 kHz, Voo= 12.6 V Output Unloaded 1,2,3 90 1 4,5 mA NOTES: a. ReIer to PROCESS OPTION FLOWCHART lor addltlonallnlormatlon. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are lor DESIGN AID ONLY, not guaranteed nor subject to production testing. AC TEST CONDITIONS INPUT - OUTPUT ~ ------f--tPJ: ------------ _______________________ - - 8-54 -~:~~ - 0V 50% --.,J-t OUTPUT - s ~ ...5_0_%_ __ Not Recommended for New Designs Si7250 ...... Siliconix ,.1;11 incorporated PIN DESCRIPTION X- OUT, X- OUT, X+ OUT, X+ OUT (Pins 12-15) High current outputs and their complements for driving the gates of the VQ7254 QUAD MOSPOWER FETs which in turn drive the X coils of the bubble memory. CS (Pin 1) Chip select is active low. When high, chip is deselected and I DD is significantly reduced. Chip Select is most commonly used for system expansion. Y+ IN, Y- IN (Pins 5, 6) Active low inputs from controller which turn on the high current Y outputs. RESET (Pin 2) Active low input from RESET .OUT of the controller results in removal of power from the chip so that bubble memory is protected in the event of power supply failure. Y- OUT, Y+ OUT, Y+ OUT, Y- OUT (Pins 9-11 and 7) High current outputs and their complements for driving the gates of the VQ7254 QUAD MOSPOWER FETs which in turn drive the Y coils of the bubble memory. X+ IN, X- IN (Pins 3, 4) Active low inputs from controller which turn ON the high current X outputs. TRUTH TABLE INPUT PINS 1 CS 2 R 1 X X 3 4 x:;:- X- OUTPUT PINS 5 6 V; 7 y- y- X X 0 1 0 1 9 10 11 12 V; X- 0 1 0 1 Y- y+ 13 -X- 14 15 X+ X+ 0 1 0 1 0 1 0 1 0 X X X X X X 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 8 INPUT STATES DECODED The 8 remaining Input states are not decoded resulting In a reset output condition. This Is to prevent the Inadvertent shorting of any power drivers directly across the supplies In a standard bubble memory configuration. 0 1 0 0 I 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1· 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 Not Recommended for New Designs 8-55 Si7652 Chopper-Stabilized Operational Amplifier ~ ~ Siliconix incorporated FEATURES BENEFITS APPLICATIONS • Ultra-Low Input Offset Voltage (Vos < 5 JLV) • Improved System Accuracy • Precision Amplifiers • Reduces Loading of High Z Sources • High Impedance Transducer Amplifiers • Eliminates Trims for Offset and Drift • Remote High Resolution Systems • Improves Input Resolution • Integrating AID Preamplifiers • Low Input Bias Current (Ie < 30 pAl • Low Drift (TCyos< 50 pV/°C) • Low Noise (en < 0.2 JL V p_p ) • Reduces Linearity Errors in High Gain Designs • Low Level Signal Sensing • High Open-Loop Gain (AYOL > 120 dB) DESCRIPTION The Si7652 is a chopper-stabilized operational amplifier designed to achieve virtually zero change in voltage offset (Vos) with both temperature and time. By freeing the design from costly potentiometer adjustments, overall circuit reliability and performance are greatly enhanced. There are two versions of the Si7652. The 8-lead versions rely on the internal 400 Hz oscillator to run the chopper, while the 14-lead versions allow the user to connect an external oscillator for specialized applications where synchronization may be desirable. The 14-lead version also allows for the connection of an output voltage clamp circuit to minimize overload recovery time. With a low maximum input offset voltage of 5 ~V and a low drift of 50 pV/oC (maximum) .. the Si7652 is ideal for high-resolution signal conditioning. Its low drift over time and temperature benefits remote systems where recalibration is difficult and/or costly. Built on the Siliconix proprietary PolyMOS T' process, 8i7652 also features low bias and offset current errors, and has been designed to minimize the charge injection errors normally associated with chopper designs. Package options include the 8-lead metal can and MINIDIP, and the 14-lead plastic and ceramic DIP. Operation is specified over the industrial, D suffix (-40 to 85°C) temperature range. For more information on the 8i7652, please refer to Siliconix Application Note AN87-4. PIN CONFIGURATION C EXTB 1 INT/EXT CEXTA 2 EXT/CLKIN NC(GUARD) 3 NC(GUARD) 6 INT/C~KOUT C E X T A O S C EXTB -INPUT 2 7 v+ +INPUT 3 6 OUTPUT OUTPUT 9 Order Numbers: CerDIP: Plastic: 8-56 v- 4 OUTPUT CLAMP Sl7652DK Sl7652DJ Order Number: Sl7652DA 5 Order Number: SI7652DH CRETN Si7652 . . . . Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM PERIODS OSCILLATOR :HASES ~ 1(1)1 10( + (2) (4) I (3) I + + I (1) I ~ ~I A +IN o---- (deg) I 10 100 1k 90 .... '" "- I'\. 10 k 100 k 1 M FREQUENCY (Hz) 180 ~ ~ Si7652 Siliconix incorporated TYPICAL CHARACTERSITICS Input Offset Voltage Change Supply Voltage I1Vos (jJ.V) 8 3 6 2 4 -k: ~~ l? " ~ 0 -1 ~ 6 4 L...,...oo-" 10 12 14 VS. ~ --- VOUT = V- 0 ...... -20 -30 -40 -50 -60 8 i---"'" I' 2 10 (mA) -2 -3 Maximum Output Current Supply Voltage VB. 16 i'-..... --- VOUT= V+ I 2 TOTAL SUPPLY VOLTAGE V+ TO V- (V) I 4 6 8 10 12 14 16 TOTAL SUPPLY VOLTAGE V+ TO V- (V) Supply Current Supply Current vs. Supply Voltage VS. Temperature 2.5 2.0 ~ 1.5 Is (mA) 1.0 0.5 / y ... / 3 V Is (mA) V -- 2 ~ -1 0 4 -55 6 8 10 12 14 16 TOTAL SUPPLY VOLTAGE V+ TO V- (V) Input Offset Voltage vs. Chopping Frequency DC to 10 Hz P-P Noise Voltage Chopping Frequency 12 6 10 5 125 VS. 4 8 Vos (jJ.V) -25 0 25 50 75 100 AMBIENT TEMPERATURE T A(OC) en (jJ.V) 6 4 3 ~ 2 \, 2 o 0 10 100 1k CHOPPING FREQUENCY (Hz) 10 k 10 - 100 1k CHOPPING FREQUENCY (Hz) 10 k 8-61 .. Si7652 trY" Siliconix ~ incorporated TYPICAL CHARACTERSITICS Common Mode Rejection Ratio vs. Frequency Power Supply Rejection Ratio (PSRR) vs. Frequency 0 -10 -20 -30 -40 -50 PSRR (dB) -60 -70 -80 -90 -100 -110 -120 / / /' PSRR- / V/, I' ~ V pSRR+ _ ~ A I'" .Ai" ~ 1 10 100 1k FREQUENCY (Hz) 10 k 100 k 130 120 110 100 90 80 CMRR 70 (dB) 60 50 40 30 20 10 0 0.1 1'00. 10 100 1k FREQUENCY (Hz) TEST CIRCUIT OUTPUT O.lJLF EACH Figure 1. DETAILED DESCRIPTION Circuit Operation A block diagram of the chopper stabilized amplifier is shown in Figure 2. The main amplifier is connected directly to the output. The nulling amplifier, which is controlled by the oscillator/clock circuit, alternates between nulling itself and the main amplifier. The nulling potentials are stored in the external nulling capacitors. The nulling circuitry 8-62 works independent of signal level, and functions over the entire power supply and common mode range. Charge injection at the by careful design Feedthrough injection, chopping spikes in the input terminals is minimized in the input switches. which is the main cause of output, is also minimized. Si7652 IrJP" Siliconix .£1/1 incorporated DETAILED DESCRIPTION (Cent'd) PERIODS OSCILLATOR :HASES +IN 0-_,---------1 ..... ~ 1(1)1 1<1 t (2) I (3) I t t (4) I (1) I 'I ~I A -IN o--t-~------__l C INT/EXT CLKIN CLK OUT Figure 2. Functional Block Diagram Output Clamp Overload recovery can be a significant problem in chopper stabilized designs. This is because the time constant of the filter at the output of the nulling amplifier can be measured in minutes. If the output goes to either of the supply rails, the inputs are no longer at "virtual ground". The nulling amplifier sees the differential voltage at the input as an error and tries to correct it, saturating the nulling circuit. Therefore, it is appropriate to clamp the output of the main amplifier to insure that there is a low impedance current feedback path to the summing (inverting) input of the amplifier before the output reaches either supply rail. For best results, the clamp resistance should be greater than 100 k!l. Output clamping does reduce the output swing slightly. Figure 3 shows the Si7652 in inverting and noninverting clamped amplifier circuits. INPUT>--'V\I\r-.......---t 0>--_ OUTPUT (R 111 R2) ~ 100 k.n. FOR FULL CLAMP EFFECT Figure 3(a). Inverting Amplifier with Clamp INPUT>-----I NOTE:Rlll R21NDICATES THE PARALLEL COMBINATION OFRI AND R2 C>-~-- OUTPUT R3 + (RIll R2) ~ 100 k.n. FOR FULL CLAMP EFFECT Figure 3(b). Non-Inverting Amplifier with Clamp 8-63 Si7652 W7' Siliconix ~ incorporated DETAILED DESCRIPTION (Cont'd) Clock The nomimal operating frequency of the internal clock/oscillator is 400 Hz. Although the clock is not adjustable on the 8-pin versions of the Si7652. the 14-pin versions allow selection of either internal or external clocking. The INT/ EXT pin should be left floating for use with the internal clock, or tied to Vif an external clock Signal is applied to the EXT ClK IN pin. The duty cycle of the external clock is not important at lower frequencies because the internal oscillator circuitry provides a 50% switching duty cycle. When operating at frequencies above 500 Hz. a 50% to 80% positive duty cycle is preferred because the nulling capacitors are charged only when EXT ClK IN is high. The external clock can swing between either V+ and GND or V+ and Vsince the logiC threshold is approximately 2.5 V below V+. To avoid capacitor imbalance during an overload. a strobe signal may be applied to EXT ClK IN. Neither capacitor will be charged if the strobe signal is low during the time that the overload is applied. Component Selection The only external components required by the Si7652 are two nulling capacitors. The correct value for the capacitors when using the internal 400 Hz oscillator can be anywhere between 0.1 and 1 /J.F. Capacitors toward the 1 /J.F value will allow minimum clock noise in broadband applications. while capacitors toward the 0.1 /J.F value will provide lower offset in limited bandwidth applications. When using an external clock, the capacitors should be scaled proportionally to the relationship of the chopping frequency to the nulling time constant. low grade capacitors such as ceramic are satisfactory for most applications. However, film capacitors are preferred. low dielectric absorption capacitors such as polypropylene will yield the lowest settling at turn-on. Ceramic capacitors may take as long as several seconds to settle to within 1/J.V . APPLICATIONS Output Loading The Si7652 is similar to a transconductance amplifier in that the open loop gain is proportional to load resistance. This phenomenon becomes important when the load impedance is lower than the typical 18 kO output impedance of the device. For example, the open loop gain will be 17 dB lower with a 1 kO load than with a 10 kO load. This has little importance if the amplifier is used only in DC applications. since the DC gain is typically better than 120 dB even with a 1 kO load. However. the best wideband frequency response will occur with a load resistor of 10 kO or higher. The response will be 20 dB per decade from 0.1 Hz to 500 kHz. with phase shifts of less than 2 degrees in the transition region where the main amplifier takes over from the null amplifier. Thermo-Electric Effects Thermo-electric effects developed in thermocouple junctions of dissimilar materials ultimately limit precision DC measurements. Unless all junctions are at the same temperature. thermoelectric voltage from 0.1 to as high as 20-30 Jl.V /oC will be generated. In order to realize the extremely low 8-64 offset voltages that the Si7652 can provide it is essential to take special precautions to avoid temperature gradients. All components should be shielded from air movement. especially that caused by power dissipating elements. Power supply voltages and power dissipation shoul~ be kept to a minimum. and low thermo-electric coefficient connections should be used where possible. Separation from surrounding heat dissipating elements is advised. and high impedance loads are preferable. Latch-up A parasitic four-layer SCR structure is a characteristic of all junction-isolated CMOS devices. SCR action can occur under certain circumstances. drawing excessive supply current and possibly destroying the device. To avoid this condition. no voltages greater than 0.3 V beyond the supply rails should be applied to any pin. The power supplies should be established either at the same time as or before any input signals are applied. If this is not possible. the input current must be limited to less than 1 mA to avoid latch-up during the fault condition. IrF' 8i1iconix ~ Si7652 incorporated APPLICATIONS (Cont'd) Input Guarding To fully realize the low leakage inputs of the 8i7652, special care must be taken in layout and preparation of the printed circuit board. All contamination must be cleaned away with alcohol or TCE and compressed air, and the assembled board should be sealed to prevent recontamination in the future. Even proper cleaning cannot stop all leakages since the inputs of the amplifier are adjacent to terminals that carry supply potentials. This can be reduced by placing a guard ring around the input terminals. The 14-pin package has the pins on either side of the inputs unconnected to ease the layout of the guard. An 8-pin metal can should be laid out using a 10-pin socket pattern. The two extra pins are situated one on each side of the inputs to facilitate guarding (see Figure 4 (a». The guard ring should be connected to a low-impedance point that is roughly the same voltage as the inputs. Leakages from the adjacent pins are absorbed by the guard. Figure 4(b) gives typical guarding connections. INPUT o--'V\I\r-,-----'\/VIv----, C>-~--O OUTPUT INVERTING AMP C>~>----O OUTPUT INPUT w G--e---1 USE R3 TO COMPENSATE FOR LARGE SOURCE RESISTANCES, OR FOR CLAMP OPERATION (SEE FIGURE 3) FOLLOWER External .1" Output_S C>~~--o OUTPUT .!!.l..!!.z.. NOTE: R 1+ R 2 SHOULD BE LOW IMPEDANCE FOR OPTIMUM GUARDING NON-INVERTING AMPLIFIER Figure 4 (b). Typical Guarding Connections Bottom View Board layout for Input guarding with TO-99 package. Figure 4 (a). Board layout for Input guarding with TO-99 package Pin Compatibility The 8-pin versions of the 8i7652 have been laid out to correspond with the pin-out of industry standard 8-pin devices. The only difference is the connection of the nulling capacitors to pins 1 and 8, normally used for offset nulling on other op amps. OP-05 and OP-07 op amp circuits can also be converted to the 8i7652. This is done by replacing the offset-null potentiometer between pins 1, 8, and V+ by two capacitors from those pins to V-. For LM 108 substitution, the compensation capacitor is replaced by the external nulling capacitors. Typical Applications The 8i7652 will find use wherever improved offset and bias current are required. In basic inverting (Figure 5) and noninverting (Figure 6) configurations, the only limitations are the supply voltage (±8 V max.) and the output drive capability (10 k load min). These limitations can be bypassed by the use of an output boost circuit as shown in Figure 7. 8-65 Si7652 W'JP" Siliconix ~ incorporated APPLICATIONS (Cont'd) Because the combination of the two op amps form a composite amplifier, the loop gain stability should be checked carefully when the feedback network is added. +7.5 V OUTPUT INPUT>-"'\Af\r-......- - i C>--"-_ OUTPUT Figure 7. Using the 741 to Boost the Output of the 517652 Figure 5. Inverting Amplifier >-~--"'VOUT 100 k.n. INPUT (>~- __ OUTPUT Figure 6. Non-Inverting Amplifier 8-66 Figure 8. Nulling a High Speed Op-Amp Si8901 ..... 8i1iconix incorporated ~ Ring Demodulator/ Balanced Mixer FEATURES BENEFITS APPLICATIONS • Low ON Resistance • Usable to 250 MHz • RF Mixers • < 2% Device Matching • Low Harmonic Distortion • CATV Encoders and Decoders Error • Wide Dynamic Range • High Third Order Intercept Point (+35 dB) • Modulators • Demodulators • Phase Sensitive Detectors • Pagers DESCRIPTION The 8i8901 Ring Demodulator/Balanced Mixer offers significant improvements for RF mixer "applications where low third order harmonic distortion has been a problem. Combining matching with very low junction capacitance, « 3 pF), low ON resistance (30 .0) and very high OFF resistance (> 109 .0), the 8i8901 accepts an RF and a local oscillator (LO) input and provides a high fidelity IF output with typical conversion loss of -8 dB at frequencies up to 200 MHz. Available in an 8-pin TO-78 and 80-8 package, this device is specified over -25 to 85°C temperature range. PIN CONFIGURATION FUNCTION BLOCK DIAGRAM Malal Can RFo! SO Package SUBSTRATE ",:~'o.o, .. ~ ~ RFVcOl SUBSTRATE Top View Top View (Same plneul as Malal Can) Order Number: Sl8901A (TO-78) Order Number: Sl8901Y (SO-8) IFl SUBSTRATE PERFORMANCE COMPARISON 40 3rd Order Input Intercept Point (+dBM) 30 20 10 Sl 901 ~ .. ~ 5 t ~ ~350 1,..00--- ........: ~NG ..... I ----- 10 15 20 25 30 Power Local Osc. (+dBm) 35 8-67 Si8901 Siliconix incorporated ABSOLUTE MAXIMUM RATINGS VOS Drain to Source........ ... ................ 15 V VOB Drain to Substrate ..•....................• 22.5 V VSB Source to Substrate ••.................. ,' .• 22.5 V VGS Gate to Source ................... -22.5 V to 30 V VGB Gate to Substrate ....•............. -0.3 V to 30 V VGO Gate to Drain ...................• -22.5 V to 30 V 10 Drain Current ............•.........•..•... 50 mA Operating ,Temperature ................... -25 to 85·C Storage Temperature •................... -65 to 150·C Power Dissipation (A Package)' ....... . . . . • . .. 640 mW • Derate 5 mW/·C above 25·C· ELECTRICAL CHARACTERISTICS a TA = 25°C LIMITS TEMP TYP d MIN b MAX b SYMBOL TEST CONDITIONS Drain-Source Breakdown Voltage V(BR)OS V GS =VSB = -5 V Is=10nA Source-Drain Breakdown Voltage V(BR)SO VGO =VOB = -5 V lo=10nA 15 Drain-Substrate Breakdown Voltage V(BR)OB Source Open VGB=OV,1 0 =10nA 22.5 Source-Substrate Breakdown Voltage V(BR)SB Drain Open VGB= 0 V, 10 = 10 nA 22.5 Threshold Voltage VT VOS =VGS =VT Is=1J1A, VSB=OV PARAMETER UNIT STATIC Drain-Source "ON" Resistance Resistance Matching 25 1 VGS= 5 V 50 VGs= 10 V 30 VGs= 15 V 23 VGs ='20 V 19 VGs= 5 V 3 15 0.1 V 2.0 75 _ rOS(ON) 10=10mA VSB = 0 V .Il.rOS(ON) .0. 7 DYNAMIC L0 1 - L02 Capacitance Cgg Conversion Loss Lc Vos= 0 V, V BS = -5.5 V V GS = 4 V 4.4 8 See Figure 1, P LO = +17 dBm dB Third Order Intercept c IMD3 +35 Maximum Operation Frequency fMAX 250 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. ' c. Guaranteed by design, not subject to production test. . d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. 8-68 pF MHz Si8901 trY' Siliconix ~ incorporated APPLICATION HINTS Schematic of the basic commutation-type HF double-balanced mixer using resonant-gate excitation. Recommended reading is AN85-2 .. A Commutation Double-Balanced MOSFET Mixer of High Dynamic Range. " Sl8901 SIGNAL LOW-PASS IMAGE TERMINATING FILTER (OPTIONAL) T 6BOpF - t u r---o- vu 16BOPF Figure 1. ID(ma) /I' IIi rt V BV II rL II 10.00 /DIV )v ov ~ ~~ 1/ f ./ /. I I f -50.00 -5.000 Figure 2. .. 16V J li 12V 50.00 'I I I I I. VDS 0 1.000/DIV (V) 5.000 First and Third Quadrand I-E Characteristics Showing Effect of Gate Voltage Leading to Large-Signal Overload Distortion 8-69 Display Drivers . . ..,. Siliconix incorporated ~ TABLE OF CONTENTS Introduction .•••...•...•.....•..••..•.....................•.•...........•.•..••...•. 9-1 DF412: 4-Digit LCD Decoder/Driver ..............................................••..... 9-2 Si9551/9552: Electroluminescent Row Drivers ...•.......•...•.•...•......•.....•.....•.. 9-12 8i9553/9554/9555/9556: Electroluminescent Column Drivers ......•.........•...•.•..••..•. 9-18 8i9560: Electroluminescent Symmetric Row Driver ....•............................•...•. 9-27 WY' 8i1iconix ~ incorporated DISPLAY DRIVERS INTRODUCTION Ever since the invention of the CRT, designers have looked for smaller, more rugged alternatives. Today, many flat panel technologies are gaining a significant share of the information display market with their compactness (often less than .5 inches thick), their rugged, solid-state construction, and their low power consumption. These display technologies are of particular interest to the military and portable computer markets, where the above criteria are most important. 8i1iconix began its association with flat-panel displays by supplying 7-segment LCD drivers for use with digital panel meters. More recently, 8i1iconix has used its high-voltage D/CM08 power IC process to supply display drivers to Electroluminescent (EL) display manufacturers. Rowand column drivers for flat panel displays are supplied for a wide range of applications from commercial desktop computers to military avionics control panels. 8i1iconix drivers are also specified in plasma, vacuum fluorescent, and LCD applications due to their high performance characteristics. The 8i9551 and 8i9552 are first-generation open-drain row drivers designed for driving the row electrodes of electroluminescent graphics display panels. When combined with either the 8i9553 and 8i9554 (60 V), or the 8i9555 and 8i9556 (80 V) column drivers, they provide the interface between logic-level video control circuitry and the high-voltage display panel. The 8i9560 is a second-generation row driver designed to give higher performance and longer life to AC TFEL (Thin Film EL) panels. It features a bi-directional shift register so that only one part is required for both sides of the panel, and 225 V, 100 mA push-pull outputs to maximize brightness and minimize latent imaging. The DF412 is a four digit liquid crystal display decoder/driver IC containing all of the necessary circuitry to decode up to four digits of multiplexed BCD information and derive the ac signals required to directly drive a four-digit seven-segment liquid crystal display. 9-1 DF412 ...... Siliconix incorporated ~ 4-Digit LCD Decoder/Driver FEATURES BENEFITS APPLICATIONS • Decodes up to 4 7-segment BCD Digits • Reduces Complexity • Driving Liquid Crystal Displays • Interfaces with Most Logic Families • Eliminates DC Bias Levels That Shorten Display Lifetime e On Chip Oscillator e One External Component • Low Power Consumption (1.5 mW typ.) • No Display Buffering Required • Digital Multimeters • Flowmeter Digital Readouts e Portable Instruments • Digit Blanking DESCRIPTION The DF412 4-digit LCD Decoder Driver is a CMOS Monolithic device employing multiple~ed BCD to LCD Decoding. A single DF412 contains all of the circuitry needed to decode up to 4 digits of multiplexed BCD information and derive the AC signals needed to directly drive a 4-digit LCD display. To eliminate leading zeroes, a BCD input of 1111 blanks a digit. segment. In this manner, the net DC potential applied between segment and backplane is zero, a necessary requirement for long display life. Digital input levels are defined as input voltages > 4 V being a logic" 1" and input voltages < 0.8 V being a logiC "0" with VDD BCD input data is decoded into 7-segment form using an on board ROM. The 7-segment data is then latched into the appropriate static latches via the digit strobe inputs and control logic. An internal oscillator, its frequency being controlled by an external capacitor, develops a backplane signal (BP) that is a square wave swinging between ground (Vss) and the positive supply (VDD). Segment drivers supply square waves of the same frequency as the backplane but either in phase for an OFF segment or out of phase for an ON The pinout of the DF412 allows easy PC board interface to dual-in-line LCDs as well as edge connecting types of displays. The DF412 is available in the PLCC-44 package for industrial, D suffix (-40 to 85°C) temperature range operation. PIN CONFIGURATION v B f 0 g eON deb a S P 1 1 1 0 ell lIe 6 5 4 3 2 1 4443 42 41 40 o PLCC-44. J LEAD PLASTIC PACKAGE 18 19 20 21 222324252627 28 9-2 = 5 V. Order Number: DF412DN DF412 tI"!r 8iJiconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM t t SWITCH (7) SWITCH (7) I Bo v B1 B2 I (LSB) B3 ,.., EN (MSB) II I CONTROL LOGIC D FLlPFLOPS ,.., ~ ~ STATIC E~ATCH (7) (7 SEG DATA BUS) BCD TO 7 SEGMENT ROM ~ I STATIC LATCH (7) EN I II J I I ONE I-SHOTS EN STATIC LATCH (7) I SWITCH (7) SWITCH (7) ~ Y fc LOCK I I INHIBIT LOADING OSC RESET -:- 512 I I 1=I- J 8.j - g4 iT I I I STATIC EN LATCH (7) h a3 - g3 ~ I I B,.e ~ ABSOLUTE MAXIMUM RATINGS V DD - Vss .............................. -0.3 V to 8 V Storage Temperature .................... -65 to 125°C Voltage on Any Pin ........... Vss -0.3 V to V DD +0.3 V Power Dlsslpatlon* .......................... 450 mW Current at Any Pin ............................ 10 mA Operating Temperature (D suffix) .......... -40 to 85°C * Device mounted with all leads welded or soldered to PC board. Derate 6.3 mW/oC above 25°C. ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: V DD = 5 V Vss= 0 V Cosc = 200 pF LIMITS 1 = 25°C 2 = 85°C 3 = _40°C TEMP TYpc D SUFFIX -40 to 85°C MIN b MAXb UNIT INPUT Digital Input Leakage Current I IN (DIGITS) Oscillator Input Current IIN(fCLK) VIN =5 V 1 0.01 VIN =5 V 1 350 VIN = a v 1 -350 1 jJ.A 9-3 DF412 .... Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: VDD= 5 V Vss= 0 V Case = 200 pF TEMP BCD and DS Inputs 1 0.8 Clock Input 1 0.5 BCD and DS Inputs 1 4 Clock Input 1 4.5 I OL = 250 J.LA 1 0.3 IOL= 25J.LA 1 0.03 I OH = -250 J.LA 1 4.7 I OH = -25 J.LA 1 4.97 IOL= 5 mA 1 0.3 IOL= 0.5 mA 1 0.03 IOH=-5mA 1 4.7 IOH = -0.5 mA 1 4.97 1 1 1 = 25°C 2 = 85°C 3 = _40°C 0 SUFFIX -40 to 8S oC TYpo MINb MAXb UNIT INPUT (Cont'd) Digital Input Logic LOW Voltage V 1NL V Digital Input Logic HIGH Voltage V 1NH OUTPUT seftment Output Vo tage In '0" State seftment Output Vo tage In "1" State 0.7 VOL (Segment) 4.3 VOH (Segment) V Backplane Output Voltage In • 0" State Backplane Output Voltage In "1" State 0.7 VOL (Backplane) 4.3 VOH (Backplane) DYNAMIC Segment Output Rise Time tr (Segments) C LOAD = 200 pF Segment Output Fall Time tf (Segments) 1 1 Backplane Output Rise Time tr (Backplane) 1 0.8 1 0.8 1 30 J.LS C LOAD = 3900 pF Backplane Output Fall Time Backplane Frequency Minimum LCD tf (Backplane) fBPI Cose = 3800 pF Hz Backplane Frequency Maximum LCD 9-4 fBP2 Case = 1000 pF 1 100 DF412 WY'Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: Voo= 5 V Vss= 0 V Case = 200 pF 100 See Figure 2 100 See Figure 3 LIMITS 1 = 25·C 2 = 85·C 3 = -40·C SUFFIX -40 to 85°C TEMP TYpd MINb MAXb 0 UNIT SUPPLY Supply Current Digital Inputs Static Current Dlglta Inputs Dynamic SUPPI~ Operating Supply Voltage d 1 140 400 )J.A Voo 1 155 1 5 3.5 6 V NOTES: a. Refer to PROCESS OPTION FLOWCHART for addlt1onallnformatlon. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. d. Operation over the supply voltage range Is functionally tested. The dc and ac parametric testing Is performed only at specific test conditions. PIN FUNCTION DESCRIPTION OSC (Oscillator) -- A capacitor connected between the oscillator (OSC) and ground completes the integral clock generator. The frequency of the clock generator (f osc) is determined by the capacitance value and the VDD voltage, as seen in Figure 4. For driving LCDs with a 30 Hz to 100 Hz backplane frequency range, the typical oscillator 5 V). capacitor is 1000 pF to 3S00 pF (for VDD The oscillator pin can also be driven with an external clock whose output swings within 10% of VDD andVss. This is useful when synchronization of more than one DF412 is necessary, such as when driving displays of more than 4 digits on a single backplane. = BP (Backplane) -- The backplane of the liquid crystal display is driven by this pin whose output is a squarewave swinging between VDD and Vss. The frequency of the backplane signal is fosc/512. Most LCDs require backplane frequencies of between 30 Hz and 100 Hz. See Figure 4 for a graph of oscillator capacitance vs. backplane frequency. Digit Strobes 01-04 and BCD Inputs B3, B2, B1 and Bo -- Multiplexed BCD information is entered into the DF412 by presenting the appropriate BCD code to the inputs B3, B2, B1 and Bo and by pulsing the appropriate digit strobe input D1, D2, D3, or D4with positive true logic i.e. VINH > (O.S XVDD for logic 1, VINL < O.S V for logic O. The minimum pulse width of a digit strobe should be not less than one period of the oscillator frequency. Information presented at the BCD inputs (B3, B2, B" Bo) must be valid during the digit strobe pulse. See the timing requirements in Figure 1. The digit strobe inputs are shaped by the input logic shown in Figure Sa. This logic causes a strobe signal which is a signal clock period wide. The active time of this data load strobe (shown in Figure Sb) enables the BCD to 7-segment decoding ROM, which brings the new 7-segment data to the output latches. Delay time for data to get from BCD input to the segment outputs in typically 2 I1s - 3 I1S. The end of the data load strobe is triggered by the second negative clock edge following the digit strobe going high. At this edge, the segment outputs are latched, storing the 7-segment information for this digit. This input structure is the basis for the timing requirements of the DF412, shown in Figure 1. The digit strobe input structure can actually load more than one digit at a time from the same BCD input. The loading of multiple digits can save time for microprocessor applications, such as for zeroes, or blanks. However, all four digits cannot be simultanenously loaded due to a special decode of D1· D2· D3· D4 which causes a reset of the 9-5 .. DF412 ..... Siliconix incorporated ~ PIN FUNCTION DESCRIPTION (Cont'd) backplane divider and inhibits loading of the BCD data. Unused Digit Strobes should be tied to ground. to avoid them floating to a logic 1 condition which could cause an inadvertent reset condition. The reset condition stops the backplane square wave. putting the DF412 drive in a steady voltage state which would degrade the LCD when used in a long term application. When ganging more than one DF412 together. it is necessary to synchronize the individual backplane signals to insure proper segment-backplane signal phase relationships. This is easily accomplished by initially pulling all digit strobe inputs high and by then driving the ganged DF412s with a common oscillator. By comparing the individual backplane TRUTH TABLE B3 B2 B, Bo 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 signals of two DF412s with an exclusive OR gate (see Figure 9) a continual checking of the backplane phase relationships can be accomplished. Should the individual backplane signals become out of phase an automatic reset will occur and proper phase will once again be established. Segment Outputs -- Segments are driven with the DF412 segment outputs which generate square waves that are either in phase with the backplane for an OFF segment or out of phase with the backplane for an ON segment. Output swings of the drivers are between VDD and VSS. The CMOS output drivers provide matched resistance to both VDD and ground. eliminating any net DC voltage component on the LCD thus maximizing display life. TIMING WAVEFORMS AND DEFINITIONS tosw Display Character 0 2 3 I '-I 5 5 7 B· g 2 3 L tOSL OIGIT STROBE INPUT BCO OATAINPUT tOBl ~--~--- to~ --------~ Recommended Drive Conditions· Min Max 65 jJ.s·· tcp Clock Period 19.5 jJ.s·· tosw Digit Strobe Pulse Width tcp+ ljJ.s tOSL Digit Strobe Low Time 2 tcp tOBl Digit Strobe to BCD Setup Time -CD to~ Digit Strobe to BCD Hold Time L 'f BLANK 2 tcp +2 jJ.s . tcp -2 jJ.s CD • These minimum/maximum conditions Indicate the necessary conditions to Insure operation. They are based on design structure (shown In Figure 8a) with sufficient guardband to allow for propagation delay changes. They are not tested nor guaranteed . •• The min-max clock periods correspond to a 30 Hz-l00 Hz LCD backplane frequency range. Figure 1 9-6 ~ ~ DF412 Siliconix incorporated TEST CIRCUITS +5V 1 11 ALL SEGMENT DRIVERS TIED ......___..+____...,THROUGH 200pF TO GND +5 V B3 B2 Bl Bo B3 B2 Bl Q 111 I . VDD 8.1 DF412 CK TOGGLE FLIP-FLOP a DF412 . 8.11----. Bo 01 0 2 ALL SEGr-.:ENTS OPEN g·4 VDD BP - 200 pF - Figure 2. BACKPLANE OPEN CKln 1=25 Hz Static Supply Current Test Setup Figure 3. CK Dynamic Supply Current Test Setup INPUT-OUTPUT SCHEMATICS INPUT ~ "'--...-'VV\r- DATA IN 0------1 32 BIT SIR VSSo-----~~~----------------~ ~----------------------------------_oDATAOUT TRUTH TABLE CONTROL INPUTS FUNCTION LOAD ENABLE CLOCK ENABLE STROBE "'1z... X X Not... X X L H X X H H X X L STROBE INTERNAL SHIFT REGISTER QOUTPUTS (Serial output Is always enabled) Qn-Qn+ 1 No Change Determined by ENABLE and STROBE All off Determined by CLOCK Data out All on ABSOLUTE MAXIMUM RATINGS VL •........•............•...........•...•.••. 18 V Operating Temperature (A Suffix) ......... -55 to 125°C (C Suffix) ............ 0 to 70°C Input Voltage ..................... -0.3 V to V L +0.3 V Q Output Voltage ............................. 225 V Power Dissipation (Package) * Plastic Quad Package** ...............•..... 1700 mW Ceramic Quad Package*** .................. 2000 mW Vss Terminal Current ........................... 1.5 A Storage Temperature (A Suffix) (C Suffix) -65 to 150°C -65 to 125°C All leads welded or soldered to PC board. Derate 13.6 mW 1°C above 25°C. *** Derate 16 mW 1°C above 25°C. 9-13 tnP" Si9551 19552 ~ Siliconix incorporated ELECTRICAL CHARACTERISTICS a SYMBOL PARAMETER LIMITS Test Conditions Unless Otherwise Specified: 1=25°C A C 2=125,70°C SUFFIX SUFFIX VL = 12 V 3=-55,OoC Vss= 0 V TEMP TYpd MINb MAX' MIN b MAXt UNIT INPUT VL= 10.8 V 1 8.1 8.1 VL=15V 1 11.25 11.25 V L= 10.8 V 1 2.7 2.7 VL =15V 1 3.75 3.75 V IH High Level Input Voltage V Low Level Input Voltage VIL High Level Input Current IIH V IN = 12 V 1,2,3 1 1 Low Level Input Current IlL V IN = 0 V 1,2,3 -1 -1 V L= 10.8 V 1 80 80 VL=15V 1 90 90 .I1A Q OUTPUT e 1 Low Level Output Current mA IOLQ Low Level Output Voltage VOLQ IOQ=80mA 1,2,3 30 30 V Off-State Output Current IO(OFF) VOQ = 200 V 1,2,3 10 10 .I1A 1 -45 -45 mA Clamp Current 10K SERIAL OUTPUT High Level Output Voltage V OHS IOHS = -100.l1A 1,2,3 Low Level Output Voltage VOLS IOLS = 100.l1A 1,2,3 11.5 11.5 V 0.5 0.5 DYNAMIC Clock Frequency fCLOCK 1,2,3 0 Pulse Duration Clock High or Low tw 1 125 125 Data setur, Time before Rls ng Clock tsu 1 100 100 Data Hold Time after Rising Clock tH 1 100 100 9-14 4 0 4 MHz ns Si9551 19552 ..,. Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL LIMITS Test Conditions Unless Otherwise Specified: 1=25°C 2=125,70°C VL = 12 V 3=-55,O°C Vss= 0 V TEMP TYpd A SUFFIX C SUFFIX MINb MAX' MIN b MAXt UNIT DYNAMIC (Cont'd) Delay Time High to Low Level Serial Output from Clock tOHL Delay Time Low to High Level Serial Output from Clock tOLH Tunr-On Time Q Outputs fro Enable tON 1 150 150 1 200 200 1 500 500 CL=10pFtoVss IOL = 50 mA R L = 2 k!l. to 130 V Supply ns SUPPLY VL Supply Voltage VL 1,2,3 V L Supply Current IL 1,2,3 10.8 15 10.8 0.5 15 V 0.5 mA NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Output current measurements pulse duration =300 J,lS, duty cycle = 2 %. TYPICAL CHARACTERSITICS IL 8 7 I--Vol = 12 vs. Clock Frequency t; 100 T A = 25°C / 4 3 oV o 80 /'" 5 2 90 ./ 6 IL (mA) ~ V I L vs. Temperature 110 ./ V' - Voo - 12 V; f eLK = 0 70 " (~A) 60 50 40 V ~ 1/ /' """, , V 30 /' 20 10 o 2 3 4 5 CLOCK FREQUENCY (MHz) 6 -60 -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (OC) 9-15 Si9551/9552 ..... Siliconix incorporated ~ SCHEMATIC DIAGRAMS TYPICAl OF SERIAL OUTPUT TYPICAL OF AlL Q OUTPUTS EQUIVALENT OF EACH INPUT VL INPUT .....'11\1\1"'1'"""""" --~~----~----OUTPUT VL J OUTPUT --..,.........___- - - -....- VSS - -__-- f MIN b MAXt UNIT Q OUTPUT e High Level Output Current IOHQ 1,2,3 -15 -15 Low Level Output Current IOLQ 1,2,3 15 15 10K 1,2,3 Clamp Current High Level Output Voltage V OHQ IOHQ = -15 mA 1,2,3 Low Level Output Voltage VOLQ IOLQ = 15 mA 1,2,3 High Level Output Voltage VOHS IOHS = -100 JLA 1,2,3 Low Level Output Voltage VOLS IOLS = 100JLA 1,2,3 20 70 mA 20 72 V 10 8 SERIAL OUTPUT 11.5 11.5 V 0.5 0.5 DYNAMIC Clock Frequency fCLOCK 1,2,3 Pulse Duration Clock High or Low tw 1 50 50 Data setur, Time before Ris ng Clock tsu 1 25 25 tH 1 25 25 Data Hold Time after Rising Clock Delay Time High to Low Level Serial Output from Clock tOHL Delay Time Low to High Level Serial Output from Clock tOLH Propogatlon Dela~ Time High to Low Leve Q Outputs from LE tpHL Propogatlon Delar Time Low to High Leve Q Outputs from LE tpLH 12 0 8 0 10 ns 1 75 75 1 75 75 RL = 3.8 J4'l, toVoo IOL=15mA 1 500 500 RL = 3.8 J4'l, toVss IOL = -15 mA 1 500 500 CL= 10 pF to Vss See Delay Time Waveforms MHz ns SUPPLY VL Supply Voltage VL 1,2,3 Voo 1,2,3 10.8 15 10.8 15 V Voo Supply Voltage 9-22 0 80 0 80 SI9553/9554/9555/9556 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER Si9555/9556 LIMITS Test Conditions Unless Otherwise Specified: 1_25°C A C 2=125,70°C SUFFIX SUFFIX V DD = 80 V, V L = 12 V 3=-55,0°C -55 to 125°C o to 70°C Vss = 0 V TEMP TYpd MINb MAX' MIN b MAXb UNIT SYMBOL SUPPLY (Cont'd) V L Supply Current fCLOCK = 0 1 1 0.5 All Outputs High 1,2,3 5 5 All Outputs Low 1,2,3 2 2 IL V DD Supply Current mA IDD NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Output current measurements pulse duration = 300 .us, duty cycle = 2 % TYPICAL CHARACTERSITICS I DD vs. FOE I L vs. Temperature 100 7~--~--~--~--~--~~~ J L = \2) f CLOCK = 0 I 10 .1 V ./ - "" V L = 12 V; TA = 25°C 6 / V 5 V I Si9555/6 V DD = 80 V 7'-'--+---1 IDD (mA) V ~ .01 -60 -40 -20 0 20 40 60 80 100120140 o~--~--~--~--~--~~~ o 20 TEMPERATURE (OC) 40 I L vs. Clock Frequency 200 4500 / 1500 500 o 1/ o V ;-":,~ 120 V; =112 V DD = 60 V 140 L 2000 100 160 ./ 3000 1000 180 )~ 3500 IL (.uA) 2500 80 I DD vs. Temperature 5000 V~ = J2 vI 4000 r-- T A = 25°C 60 OE FREQUENCY (kHz) 1/ I 120 IDD (.uA) 100 ./ II 80 / 60 / 40 '- ./ 20 o 2 3 4 5 6 7 8 CLOCK FREQUENCY (MHz) 9 10 -60 -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (OC) 9-23 Si9553/9554/9555/9556 ..,. Siliconix incorporated ~ TRUTH TABLE FUNCTION LATCH ENABLE OUTPUT ENABLE INTERNAL SHIFT REGISTER LATCHES ...F X X Shift Data Determined N.2.t X X No Change X L X X H X Determined by X X L CLOCK CLOCK LOAD Q OUTPUTS (Serial output Is always enabled) by Latch Determined Enable by Output Enable LATCH OUTPUT ENABLE Hold New Data Determined All Q outputs low by Latch X X H Data Out Enable SCHEMATIC DIAGRAMS EQUIVALENT OF EACH INPUT TYPICAL OF ALL Q OUTPUT VCC------~------~~-- INPUT ~Wlr-+--+ COMMON }--- ----I""1-;-r---5J--+--+- TYPICAL OF SERIAL OUTPUT VDD VL OUTPUT OUTPUT - - - - . , - - -....- 1 - - VSS -;- TYPICAL OPERATING SEQUENCE LATCH ENABLE_ _ _ _ _ _ _ _ LATCH CONTENTS OUTPUT ENABLE Q OUTPUTS 9-24 ~n,~-------------'nL...----- P_R_EV_I_O_US_L-I.Y~lTORED ____________ DATA X NEW DATA VALID ------------------------l{rl--------------------------------~~~------ II VALID Si9553/9554/9555/9556 . " , Siliconix incorporated ~ TYPICAL WAVEFORMS CLOCK DATA IN INPUT TIMING i \'---------------------------- 50% CLOCK _ _ _ _ _ _ _..... I ;~~~~~ ______________ : ~i~~r5--0%----------------------------------_--_::: --I ,-- tOLH ---I SERIAL OUTPUT t-- tOHL ~~:--------------%H VOL DELAY TIMES: CLOCK TO SERIAL OUTPUT LE _ _ i- '\-----------v. I -.I I t-- tpLH "iL i ~-9-5%~-------------------- V OH Q OUTPUT _______________~I....J I _ _ _ _ _ _ _ _11.-. Q OUTPUT : \ I --, - - - - - - - - - - - - - - - - VOL ------------------V VOLIMAX) I r- tpHL OH VOL PROPAGATION DELAY TIMES: LATCH ENABLE TO Q OUTPUTS 9-25 Si9553/9554/9555/9556 .... Siliconix incorporated ~ BURN-IN DIAGRAM 1k +15 V '-I1-4-t--'VVIr() VL '--t---1t--' 114 W 1k 1/4 W NOTE: 1. For 819553/819554 use +60 V For 819555/819556 use +80 V 9-26 H Si9560 Electroluminescent Symmetric Row Driver Siliconix incorporated APPLICATIONS FEATURES ClI o Flat Panel Displays 230 V Push-Pull Outputs o High-Voltage Line Drivers o 100 mA Source/Sink Current 13 34 Outputs Per Device G Right/Left Shift Pin 13 Polarity Output Gating Non-Impact Printers 13 DESCRIPTION The Si9560 is a monolithic D/CMOS integrated circuit designed to interface video controllers to the high-voltage row electrodes of AC thin-film electroluminescent (ACTFEL) flat panel displays. The Si9560 features 34 push-pull outputs and shift register steering for easier use with large area (640 X 200/400) displays. The shift register steering is controlled by the R/L shift pin which can be tied to Vss for clockwise, or to VL for counterclockwise operation. The outputs are controlled by the OUTPUT ENABLE and POLARITY pins. New data is shifted on the falling edge of CLOCK. If OE is high, a logic high data bit will turn on the output as determined by POLARITY. POLARITY high pulls the output up to VDD, while POLARITY low pulls the output down to Vss. The Si9560 is available in 44-lead plastic or ceramic J-Iead quad packages, and is specified over the commercial, C suffix (0 to 70°C) and industrial, D suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION J-Iead Quad Package Top View QQQQQQQQQQQ 1314 151617 18 192021 22 23 6 5 Q12 Ql1 010 09 08 4 3 2 14443424140 0 Q24 025 026 Q27 028 07 029 06 05 030 031 04 03 032 Order Numbers: Plastic: Sl9560CN Ceramic: Sl9560DM Q33 Q34 02 1819202122232425262728 0 1 Preliminary DOC V R V P D V N A U L S L LOA D C T T 0 S LTD APe AA U K R J J o T U TN T E Y N A 8 L E 9-27 Si9560 ~ ~ Siliconlx incorporated FUNCTIONAL BLOCK DIAGRAM Voo "1L ' ~-.------.-.-.--., POLARITY IiI OE CLOCK RIL DATA IN - 0-110- III Ill.... L..._ _ SIR ·· -·· I I I _. __ • -'-'11 __ _ · ( Q 3 through Q 33 not shown 1I r- .. Vss I[ L_~ ....__._-_. -_._---. ._- - Tr Q1 ~ I~ Lr-_.'\I . .__. _._ . ._.__..J BIT I I I __ , '_._.-------_.__._.__.__._, I ~ .. H I -. 34 0- :--.. DATA OUT TRUTH TABLES FUNCTION RIL SHIFT REGISTER DATA OUT L Q n - Q n +1 Q34 1. H Q n - Qn-1 Q1 NOt. X No Change No Change CLOCK t. LOAD DATA POL OUTPUT X L X All OFF H H H H H H L L L H X OFF L 9-28 ENABLE =Logic 0, H =Logic 1, X =Don't Care Preliminary Si9560 ..... Siliconix incorporated ~ ABSOLUTE MAXIMUM RATINGS Operating Temperature (0 Suffix) .......... -40 to 85·C (C Suffix) ............ 0 to 70·C Voltages Referenced to V 55 Voo ....•.................................... 240 V V L .......................................... 16.5 V Logic Inputs ...................... -0.3 V to VL +0.3 V (CK, RIL, DATA IN, POLARITY, OE) I SS (Pulsed) ................................. 1.0 A Storage Temperature (0, C Suffix) ....... -65 to 125·C Power dissipation (Package)" 44-Pln Plastic Quad"" .... . . . . . . . . . . . . . . . . . .. 1700 mW 44-Pln Ceramic Quad""" .......••....•...... 2000 mW Device mounted with all leads soldered or welded to PC board. Derate 13.6 mW/·C above 25·C. """ Derate 16 mW/·C above 25·C. ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: Voo = 225 Va VL = 12 V V55 = 0 V SYMBOL LIMITS 1=25·C 2=85,70·C 3=-40,O·C TEMP TYpd 0 SUFFIX C SUFFIX MINb MA>f MIN b MAXt UNIT INPUT High Level Input Voltage VL= 10.8 V 1 8.1 8.1 VL= 13.2 V 1 9.9 9.9 VL= 10.8 V 1 2.7 2.7 VL= 13.2 V 1 3.3 3.3 ViH V Low Level Input Voltage VIL High Level Input Current IIH VI = 12 V 1,2,3 1 1 Low Level Input Current IlL VI = 0 V 1,2,3 -1 -1 Voo =Vo = 230 V 1,2,3 20 20 Voo= 230 V, Vo= 0 V 1,2,3 -20 -20 195 195 J1A Q OUTPUTS Off State Output Current J1A IO(OFF) ~1~Llr~Jr~ Output Voltage VOHQ lo=-70mA 1,2,3 Low Level Output Voltage Q Outputs VOLQ lo=70mA 1,2,3 Low Level Q Output Current IOLQ High Level Q Output Current Output Clamp Current V 30 30 1 100 100 IOHQ 1 -100 -100 10K 1,2,3 -100 V L= 10.8 V to 13.2 V Preliminary 100 -100 mA 100 9-29 Siliconix incorporated Si9560 ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: Voo= 225 Ve VL = 12 V Vss = 0 V SYMBOL LIMITS 1=25°C 2=B5,70°C 3--40,O°C TEMP TYpd D SUFFIX MINb MA~ C SUFFIX MIN b MAX UNIT SERIAL. OUTPUT High Level Output Voltage Serial Output VOHS 10 = -100p.A 1,2,3 Low Level Output Voltage Serial Output VOLS 10 = 100p.A 1,2,3 11 11 V 1 1 DYNAMIC 4 0 4 fCLOCK 1 0 Pulse Duration Clock High or Low Iw 1 125 125 ~:Igr~e~~~n~lrgrock tsud 1 100 100 Data Setup Time After Failing Clock thd 1 100 100 Setu~ Time ~Ioc Lo~ Before tsuc 1 300 300 Setup. Time Enatile H~h Before Voot or ss. tsue 1 300 300 Setup. Time Polarity High or Low Before Voot or VSS+ ' tsup 1 300 300 Hold Time Clock HI~ After Voo+ or sst the 1 500 500 Hold Time Enable H~h After VOO+ or sst the 1 300 300 Hold Time Polarity High or Low After VOO + or Vsst thp 1 300 300 Delay Time High to Low Level Output from Clock tdHL 1 150 150 Dela~ Time, Low 0 High Level Output from Clock tdLH 1 200 200 Transition Time High to Low Level Serial Output ttHL 1 200 200 Transition Time Low to High Level Serial Output ttLH 1 100 100 ~1~u~~~rJ Trtg"r9.-~~ab'l~e tanH I OH = -50 mA, VOH = 195 V RL = 2 k!l to 95 V 1 SOD SOD Low Level Turn-on Time Q Outputs from Enable tonL I OL = 50 mA, VOL = 30 V RL= 2 k!l to 130 V 1 500 500 Clock Frequency ~Ot 9-30 or ss+ MHz ns See Inp.ut Timing Voltage Waveforms ns CL = 10 pF to Ground Preliminary Si9560 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions Unless Otherwise Specified: V DD = 225 VO V L = 12 V Vss = 0 V SYMBOL LIMITS 1=25°C 2=85,70°C 3=-40,0°C TEMP TYpd C SUFFIX D SUFFIX MINb MAX' MIN b MAXb UNIT DYNAMIC (Cont'd) High Level Turn-off Time Q Outputs from Enable toffH I OH = -50 rnA, V OH = 195 V R L = 2 k.O. to 95 V 1 1500 1500 Low Level Turn-off Time Q Outputs from Enable toffL I OL = 50 rnA, VOL = 30 V R L = 2 k.O. to 130 V 1 500 500 With One Active Output Driving a 4.7 nF Load to V DD or V ss 1 45 45 Slew Rate, VDD or Vss V/JJ.s SUPPLY Logic Supply Voltage VL 1,2,3 10.8 15 10.8 15 VDD Supply VoltageO VOD 1,2,3 a 230 a 230 V a 1,2,3 0.5 0.5 f CLOCK = 16 kHz, 1 Output ON 1 2 2 All Outputs OFF 1,2,3 8 5 1 Output ON 1,2,3 15 10 fCLOCK = Logic Supply Current IL rnA VOO Supply Current 100 NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Voo must be < 60 V above Vss during switch transitions. Slew rate of V DD orVss should be kept below 45 V/JJ.s. f. Output current measurements pulse duration = 300 JJ.s, duty cycle = 2%. SCHEMATIC DIAGRAMS VL --..,------r-- --.....,.----,---,-- vDO V L ------,----,----- +--+--- Input +--1-- Output Q Output To Control LogIc Vss Typical of Each Input Vss ---1'0 ------..1----..1----Typical of So,Iai Output - - - 4 - - - - 4 - - 4 - - VSS Typical Preliminary of Each Q Output 9-31 Power Conversion II!II ~ ~ 5i1iconix incorporated TABLE OF CONTENTS Introduction ............•.......•....•............•....................•...•....... 10-1 517660: Monolithic CM05 Voltage Converter ••.......................................... 10-2 517661: Monolithic CM05 Voltage Converter ........•...•............................... 10-9 5i9100/9101: 1-Watt. High-Voltage 5witchmode Regulators ............................... 10-16 519102: 1-Watt. High-Voltage 5witchmode Regulator .................................... 10-26 5i911 0/9111: High-Voltage 5witchmode Controllers ..................................... 10-35 5i9115/9116: OFF-Line 5witchmode Controllers .•.........•..................•......... 10-43 fIl"Jt" 8i1iconix JI;II incorporated !POWER CONVERSION INTRODUCTION Virtually every piece of electronic equipment in the world requires a dc power supply. This supply converts power from a battery or an ac line (or sometimes both) into voltages and currents which are useful to the specific piece of electronic equipment it serves. Usually, the outputs must remain constant despite changes in input voltage, output load, and ambient temperature. In addition, the supply should have high conversion efficiency; inject a minimum of noise, ripple, or distortion onto its input or output; be small in volume, light in weight, and low in cost. 8iliconix power conversion circuits bring effective solutions to the problems of supplying power to electronic systems, while meeting the above criteria. 8i1iconix presently supplies three types of power conversion circuits: high-voltage switchmode regulators, high-voltage switchmode controllers, and charge pump voltage converters. The high-voltage switchmode regulators and controllers made by 8i1iconix employ high-performance D/CM08 power IC technology to combine CM08 current-mode controllers with high-voltage input regulation and output switching. This design allows 8i1iconix to build extremely high efficiency switch mode power supply circuits that can run directly from high-voltage inputs such as PBX or 18DN phone lines, or 110 VAC power lines. The 8i9100, 8i9101, and 8i9102 are switch mode regulators which include an integrated 5 !l output M08FET capable of supplying up to 5 Watt loads. They can be configured in single-ended converter topologies, and can be run directly from input voltages as high as 120 V. The major applications for these devices are in telecommunications equipment such as PBX feature phones, 18DN terminals, line-powered modems, and central office electronic equipment. The 8i911 0 and 8i9111 are switchmode controllers with the same features as the switch mode regulators, except that a push-pull output driver is utilized for driving an external M08FET switch for higher power applications. These devices are generally used in telecommunications power supply applications greater than 5 Watts, as well as for general purpose dc/dc power converters. The 8i9115 and 8i9116 are switch mode controllers designed to run directly from the rectified 110 Volt ac power line. Typical applications are in power supplies for electronic controls in appliances, small computers, and high-voltage avionics systems. Our family of low-cost CM08 charge pump voltage converters are used in applications where a single dc supply is available. These monolithic products feature high conversion efficiency, minimum noise and distortion, and minimum space requirements. They can be configured for voltage inversion or voltage doubling, and require only a few external components (typicCllly 2 electrolytic capacitors). A typical application would be negative rail generation in a circuit with a battery upply. The 8i7660 is a charge pump converter that inverts or doubles input voltages from 1.5 Volts to 10 Volts. It features power conversion efficiencies up to 98%. The 8i7661 is a higher-voltage version of the 8i7660 intended for input voltages from 7.5 Volts to 20 Volts. 10-1 ..... ~ Si7660 Monolithic CMOS Voltage Converter .... Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Improved - No External Diode Required • Conversion of +5 V Logic Supply to ±5 V Supplies • 99.7% Typical Open Circuit Voltage Conversion Efficiency • Inexpensive Negative Supply from Positive Supply • On Board Negative Supply for Dynamic RAMs • Localized J.1-Processor (8080 Type) Negative Supplies • Inexpensive Negative Supplies for Analog Switches • Data Acquisition Systems • • e • Easy to Use Minimum Parts Count Small Size No Diode Drop at Output • 95% Typical Power Efficiency • Operating Voltage Range of 1.5 V to 10.0 V • Requires Only 2 Capacitors DESCRIPTION The Siliconix Si7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The Si7660 performs a supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V, resulting in a complementary output voltage of -1.5 V to -10.0 V with the addition of only 2 capacitors. ensures that the output N-channel switch substrates are not forward-biased. The epitaxial layer prevents latch up. Typical applications for the Si7660 are data acquisition and microprocessor based systems where a +5 V supply is available for the digital functions, and an additional -5 V supply is required for the analog functions. The Si7660 is also ideally suited for providing low current, -5 V body bias supply for dynamic RAMs. The "LV" terminal may be tied to GROUND to bypass the internal regulator and improve low voltage (LV) operation. At high voltages (+3.5 to +10 V), the "LV" pin should be left disconnected. Contained on the chip are a voltage regulator, RC oscillator, voltage level translator, four power MOS switches, and a logic network. This logic network senses the most negative voltage in the device and The oscillator, when unloaded, oscillates at a nominal frequency of 12 kHz for an input supply voltage of 1.5 to 10 V. The ·OSC" terminal may be connected to an external capacitor to lower the frequency or it may be driven by an external clock. Packaging for this device includes the 8-pin metal can, plastic miniDIP, and SO options. Performance grades include military, A suffix (-55 to 125°C), industrial, 0 suffix (-40 to 85°C), and commercial, C suffix (0 to 70°C) temperature ranges. For additional information please refer to Applications Note AN84-2. PIN CONFIGURATION SO Package (Same pinout as DIP) Top View NcOav+ CAP+ GND 3 OSC 6 LV CAP- 5 vOUT 10-2 (AND CASE) ~ ~ Top View Order Number: Plastlo: SI7660CJ v+ Order Number: SI7660DY LV CAP- Order Number: S17660M, S17660AA/883, S17660BA, SI7660CA ~ Si7660 Siliconix .6;11 incorporated FUNCTIONAL BLOCK DIAGRAM ~--------------~----------------~----~------------------------~ v+ ,...----------------------0 CAP+ ,...--------0 CAP- L..-__.--oVOUT ABSOLUTE MAXIMUM RATINGS Supply Voltage .........................•...... 11 V Oscillator Input Voltage ...•........•..... -0.3 V to (V+ +0.3 V) for V+ < 5.5 V ............ (V+ -5.5 V) to (V+ +0.3 V) for V+ > 5.5 V LV •..........•.......... No connection for V+ > 3.5 V Storage Temperature (A & B Suffix) ....... -65 to 150°C (C & 0 Suffix) .•.... -65 to 125°C Operating Temperature (A (B (C (0 Suffix) Suffix) Suffix) Suffix) Power Dissipation:' 8-Pln Metal Can" ........... . . .. .. .. . . . . .. .. 500 mW 8-Pln Plastic DIP'" ......................... 300 mW SO-8'" ..•.................•....•....•.... 300 mW All leads welded or soldered to PC board. Derate 6 mW/oC above 75°C. ... Derate 10 mW/oC above 75°C. ......... -55 to 125°C .......... -25 to 85°C ........... 0 to 70°C .....•... , -40 to 85°C ELECTRICAL CHARACTERISTICS a PARAMETER LIMITS Test Conditions 1=25°C A B,C,D Unless Otherwise Specified: 2=125,85°C SUFFIX SUFFIX V+ = 5 V 3=-55,-40,-20,O°C Coso = Od TYpo SYMBOL TEMP MINb MAX' MINbMAX t UNIT INPUT SUWIY Voltage Range LO V+ L RL= 10 kn, LV = GND 1,2,3 1.5 3.5 1.5 3.5 V+ H RL = 10 kn, LV = NC 1,2,3 3 10 3 10 1+ RL=IXl, LV = OPEN 1,2,3 V SUp~y HIG Voltage Range Supply Current 100 500 500 )J.A 10-3 W7" Siliconix Si7660 ~ incorporated ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: PARAMETER V+ = 5V Cosc =Od LIMITS 1=25°C 2=125,85°C 3=-55,-40,-20,0°C A SUFFIX B,C,D SUFFIX MINb MA>f MIN b MAXI UNIT TEMP TYp c V+ = 5 V, LV= OPEN 10 = 20 mA 1 3 2 55 V+ = 2 V, LV = GND 10= 3 mA 1,2,3 PEl RL = 5 k.n. 1 98 95 95 VOUTEl RL=cc 1 99.9 97 97 1 12 kHz V+ = 2 V, LV= GND 1 1 M.n. V+ = 5 V 1 100 kO. SYMBOL OUTPUT out~ut Source Res stance Power Conversion Efficiency ROUT 100 120 150 100 120 120 300 300 .n. % Voltage Conversion Efficiency DYNAMIC Oscillator Frequency d fose Oscillator Impedance Zose NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. d. For C osc > 1000 pF, C 1 and C 2 should be Increased to 100 jJ. F . C 1 = Pump Capacitor, C 2 = Reservoir Capacitor. DIE TOPOGRAPHY Pad No. r 64 mils CSABA ~~--~--~--~ 2 Resistors 1 Zener Diode 40 P-channel enhancement MOSFETs 1 Diode 3 Capacitors 48 N-channel enhancement MOSFETs 10-4 J 2 3 4 5 6 7 8 Function CAP+ GND CAPVOUT LV OSC V+ Si7660 ..... Siliconix incorporated ~ TYPICAL CHARACTERSITICS Figure 1. Operating Voltage as a Function of Temperature Figure 2. Output Source Resistance as a Function of Supply Voltage 1000 500 1 200 \ ROUT 16 (nA) (.0.) 100 50 20 I I I 25 I -55 I I I I 85 10 125 o 2 4 TA (OC) I-I~=~m~ 200 .JIll' ROUT (.0.) ,1.~ 0 I- V! = ~ 150 V ~ i"" ....... 100 l - I-- I' -1 V+ = 2 V VOUT (V) -2 2 f-- V+ 1= -5 1/ V ...". V" i,.....--'" i""'" ~ f ~ L I"""" V V JIll' I ' ,.. ,. -2 ioo'" .... I.---" ./ .... .-- ~ ." ,,"" .,.,./..... 1.,..00" ,,. ..,.. ~ ..,.. ..... ./ ,.". i"" -~ o 20 .JIll' ./ .",.. 40 i""" 10 20 3.0 40 Figure 6. Typical Supply Current vs. Temperature 140 I~ ~ JIll' ~ ,/ '" o OUTPUT CURRENT (mA) 3.~ - 4~ - 5vl _ 16v'~ 0 -10 1 3.5 V -4 Figure 5. Typical SI7660 Output LV OPEN -8 10 V+ - 5 V o -6 ]5~ - r-- I' L ,.". -60 -40 -20 0 20 40 60 80 100120 140 T A - TEMPERATURE (OC) VOUT -4 (V) V II lL -3 I- ..- 50 8 Figure 4. Typical SI7660 Output LV = GND Figure 3. Output Source Resistance vs. Temperature 250 6 INPUT VOLTAGE (V) V ,.. .;' .... 1----'" V JIll' 7V 120 8V 100 9V 10 V I SUPPLY (jlA) "" r-... ~ 80 ..,.. ./ ........ .... ~ V+ = 5 RL = co 60 60 80 OUTPUT CURRENT (mA) 100 40 -60 -40 -20 0 20 40 60 80 100 120140 T A - TEMPERATURE (OC) 10-5 Si7660 tI"r' Siliconix ~ incorporated TYPICAL CHARACTERSITICS (Cont'd) Figure 7. Oscillation Frequency as a Function of External OSC. Capacitance 10000 Figure 8. Unloaded Oscillator Frequency as a function of Temperature 30 ~" 1000 25 '" V+ = 5 V SUPPLY _ """-. fosc (Hz) - V+ = 2 V SUPPLY 100 , \ 20 15 "'\." fosc (kHz) 10 ,~ "........ 5 "" 10 100 1000 INPUT VOLTAGE (V) Figure 9. 100 80 Power Conversion Efficiency as a Function of OSC. Frequency /' 60 (%) I"'" IL= 1 mA ~ , IL= 15 mA Efflc. ~ 40 20 L / ~ Vi =1 o 100 200 500 1000 2000 1J 5 5000 10000 FREQUENCY (Hz) SWITCHING TIME TEST CIRCUIT _ _ _ _ _ -,C080 ~+ ... l- 10-6 I I -- -60 -40 -20 0 20 40 60 80 100 120 140 T A - TEMPERATURE (OC) lWt / ....... r--.. r-.... ....... I o 1000 r--.... ........ 2 V SUPPLY '\.'\. 10 1.0 5 V SUPPLY IL Si7660 ...... Siliconix .£II incorporated PIN DESCRIPTION Symbol Pin Description NC No connection. 2 CAP+ Positive terminal connection for pump capacitor. Pin Number 3 GND Input and/or output ground reference. 4 CAP- Negative terminal connection for pump capacitor. 5 VOUT Output of the voltage converter. 6 LV Low Voltage. Connection to ground shorts out internal power supply regulator for operation below 3.5 V. 7 OSC Oscillator input. External clock input to this pin will override the internal oscillator. The internal oscillator frequency can be slowed by connecting an external capacitor between this pi~ and ground. (See Figure 8.) 8 V+ Input voltage connection. APPLICATIONS . The Siliconix Si7660 is a VOLTAGE source, not a CURRENT source. Therefore, any heavy load current will either greatly reduce the output voltage (possibly out of the desired range) or cause the device to go into power shutdown. To avoid problems, keep the VOLTAGE conversion concept in mind. The 8i7660 is intended for use as a voltage inverter. However, with a few added components, the inverter circuit can be rearranged to provide many different voltage levels. 80me of the possibilities include voltage inversion, voltage multiplication, and even simultaneous inversion and multiplication. For more information refer to Application Note AN84-2. There are many applications where a low current negative supply made with an 5i7660 would do just as well as a full conventional negative sllpply or dc-to-dc converter module. Some examples are I'!egative power supplies for microprocessors, dynamic RAMs, or data acquisition systems. If the output ripple of the Si7660 is too great for a particular application, the value of the pump (C1, Fig. 10) and reservoir (~, Fig. 10) capacitors can be increased to reduce this effect. However, it is important to note that increasing the capacitor size can lead to surge currents at turn-on. If the current is too great, the power dissipation of the device can be exceeded, causing destruction of the device. The maximum recommended capacitor size is 1000 jJ.F. The previous version of the Si7660 required a diode in series with pin 5 when operating above 6.5 V. The improved 8i7660 does not require this diode. The improved version will work in existing circuits which have the diode. 8 .---12 7 817660 3 6 4 5 Figure 10. Basic Voltage Inverter Circuit Figure 11 shows a circuit that will produce two output voltages utilizing both of the 8i7660 features (i.e. inversion and doubling). The combined output current must be limited so the maximum device dissipation is not exceeded. Two 8i7660's can be paralleled to reduce the effective output resistance of the converter. The output voltage at a given current is increased since the voltage drop is halved when the devices are connected as shown in Figure 12. 10-7 Siliconix incorporated Si7660 APPLICATIONS (Cent'd) v+ 8 ...----12 7 3 617660 6 + 5 Figure 11. Combination Inverter/Multiplier Circuit v+ 8 ,..----12 7 3 617660 6 8 r----i2 7 Sl7660 Figure 12. 3 6 4 5 Paralleling Two SI7660's to Reduce the Effective Output Resistance BURN-IN DIAGRAM .-----~Ar--_o-5V +5 V 0 - - - - ' \ GND DEVICE PIN 1 2 3 4 5 6 7 6 10-8 BIAS NC NC GND NC R2to -5 V NC NC R 1 to +5 V GND Si7661 Monolithic CMOS Voltage Converter ..,. Siliconix incorporated ~ FEATURES BENEFITS APPLICATIONS • Conversion of +4.5 V to +20 V Logic Supply to -4.5 V to -20 V Supplies • Inexpensive Negative Supply Generation • On board Negative Supply for Dynamic RAMs • Easy to Use, Requires Only 2 External Capacitors • Localized Il-Processor (8080 Type) Negative Supplies • Minimum Parts Count • Small Size • Inexpensive Negative Supplies for Analog Switches • Voltage Multiplication (Vour = H nVIN ) • 99.7% Typical Open Circuit Voltage Conversion Efficiency • 95% Typical Power Efficiency • Data Acquisition Systems • Up to -20 V for Op Amps, and other Linear Circuits DESCRIPTION The Siliconix Si7661 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The Si7661 performs a supply voltage conversion from positive to negative for an input range of +4.5 V to +20 V, resulting in a complementary output voltage of -4.5 V to -20 V with the addition of only 2 capacitors. Typical applications for the Si7661 are data acquisition and microprocessor based systems, where a +4.5 to +20 V supply is available for the digital functions, and an additional -5 to -20 V supply Is required for analog devices, such as op amps. The Si7661 is also ideally suited for providing low current, -5 V body bias supply for dynamic RAMs. Contained on the chip are a voltage regulator, RC oscillator, voltage level translator, four power MOS switches, and a logic network. This logic network senses the most negative voltage in the device and ensures that the output N-channel switch substrates are not forward-biased. An epitaxial layer prevents latchup. The oscillator, when unloaded, oscillates at a nominal frequency of 10kHz for an input supply voltage of 4.5 to 20 V. The "OSC" terminal may be connected to an external capacitor to lower the frequency or it may be driven by an external clock. The " LV" terminal may be tied to GROUND to bypass the internal regulator and improve low voltage (LV) operation. At high voltages (+8 to +20 V), the "LV" pin should be left disconnected. Packaging for this device includes a-pin metal can and plastic MiniDIP options. Performance grades include military, A suffix (-55 to 125°C), industrial, D suffix (-40 to 85°C), and commercial, C suffix (0 to 70°C) temperature ranges. For more information refer to AN84-2. PIN CONFIGURATION V+ (AND CASE) CAP- Order Numbers: SI7661AA, SI7661BA, SI7661CA NcOav+ Top View CAP+ 2 7 OSC GND 3 6 LV CAP- 4 5 VOUT Order Number: Plastic: SI7661CJ 10-9 WY'Siliconix incorporated Si7661 ~ FUNCTIONAL BLOCK DIAGRAM r---------------~----------------~~----~--------------------------o V+ r------------------------oCAP+ .----------------() CAP- ABSOLUTE MAXIMUM RATINGS Supply Voltage ................................ 22 V Oscillator Input Voltage ............................. . .... .. . .. . .. . .. ..... -0.3 V to (V+ +0.3 V) for V+ <6 V .. , ............. (V+ -6 V) to (V+ +0.2 V) for V+ >6 V LV ........................ No Connection for V+ >9 V Storage Temperature (A & 8 Suffix) ....... -65 to 150°C (C Suffix) ........... -65 to 125°C Operating Temperature (A Suffix) ......... -55 to 125°C (8 Suffix) .......... -25 to 65°C (C Suffix) ............ 0 to 70°C Power Dissipation' 6-Pln Metal Can" .. . . . . . . . . . . . . . . . . . . . . . . . .. 500 mW 6-Pln Plastic DIP'" ......................... 500 mW All leads welded or soldered to PC board. •• Derate 6 mW/oC above 75°C. ••• Derate 6.6 mW/oC above 25°C. ELECTRICAL CHARACTERISTICS a Test Conditions Unless Otherwise Specified: Cosc = 0 9 PARAMETER SYMBOL LIMITS 1=25°C 2=125,85,70 0 ( 3=-55,-25,0 °c TEMP TYP d A,B,C SUFFIX MIN b 'MAXb UNIT INPUT Supply Voltage Range (LV) V+ LV RL = 10 kn., LV = 0 V 1,2,3 4.5 9 Supply Voltage Range V+ RL = 10 kn., LV OPEN 1,2,3 6 20 V Supply Current 10-10 V+ = 4.5 V, RL=oo, LV = 0 V 1 100 500 JJ.A V+ = 15 V, RL = 00, LV OPEN 1 0.7 2 mA 1+ H Si7661 Siliconix incorporated ELECTRICAL CHARACTERISTICS a LIMITS Test Conditions Unless Otherwise Specified: 1_25°C 2=125,85,70 o( 3=-55,-25,0 °c Cose = 0 9 TEMP TYP d V+ = 4.5 V, LV = 0 V 10 = 3 mA 1 75 V+ = 15 V, LV OPEN 10 = 20 mA 1,3 2 55 1 92 SYMBOL PARAMETER A,B,C SUFFIX MIN b MAXb UNIT OUTPUT Output Source Resistance ROUT Power Conversion Efficiency PEl n. V+ = 15 V, RL =2kn. 100 120 % Voltage Conversion Efficiency V ouT E l V+ = 15 V, RL=oo 1 99.7 fose V+ = 15 V 1 10 kHz V+ = 4.5 V, LV = 0 V 1 1 Mn. V+ = 15 V 1 100 kn. 97 DYNAMIC Oscillator Frequency 9 Oscillator Impedance Zose NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. ForCos e > 1000 pF, C l and C 2 should be Increased to 100J,lF ,C l = Pump Capacltor,C 2 = Reservoir Capacitor. DIE TOPOGRAPHY 5 20X 8 i 94 mils Pad No. Function 2 3 4 5 6 7 8 CAP+ GND CAPVOUT VL OSC V+ ID 4 1 CSHA 3 Capacitors 1 Resistor 1 Zener Diode 47 N-Channei Enhancement Mosfets 40 P-Channei Enhancement Mosfets 10-11 W'JP'" Siliconix Si7661 ~ incorporated TYPICAL CHARACTERSITICS FIgure 1. 140 120 100 \~ 130 o 4 V+ = 5 V ~ ROUT 110 (.0.) '" 60 40 \ 150 ~ 80 Output Source ResIstance as a FunctIon of Temperature 170 \ ROUT (.0.) FIgure 2. Output Source ResIstance as a FunctIon of Supply Voltage IL= 3 mA ............ 8 - 70 IL= 20 mA -~ f.--" 50 -55 20 16 12 ./" 90 5 -25 0 VOUT (V) -4 -6 -8 -10 5V 6V 7V ,1/ -2 ~ ./ "" .,,- "" " V" l/ "".,,- , ../ o ,.,,., ~ / ./ ../ ~ ~ / ~v 10' VOUT (V) -10 80 -20 100 OUTPUT CURRENT (mA) FIgure 5. Supply Current 100 90 80 ~ I"'"" ~ I""'"" o 20 50 40 -25 " ~ I--' I-- ~ .... FIgure 6. Temperature -- 5 35 65 TEMPERATURE (OC) ~~ 40 1~~ -* -- ~ """'12 V ~ ~ 18";:' 2~ J I 60 80 100 Frequency of OscillatIon as a FunctIon of External Oscillator CapacItance 10000 ....... ~ 1000 \\ 60 -55 ~~ LV = GND V+ = 4.5 V- ~ II OUTPUT CURRENT (mA) RL=~ I SUPPLY (J1A) 70 10-12 VS. 125 /1 .,.I'" ....... ----------- ------- ---------.- 60 95 V+ = 8 V ~ I"'"" 40 65 TypIcal SI7661 Output LV = OPEN ~ i""" 20 35 / ./ ~ I o 8V / / '/ ~ FIgure 4. TypIcal SI7661 Output LV = GND _I v+ 14.1 V ~ I""'"V+ = 15 V TEMPERATURE (OC) SUPPLY VOLTAGE (V) FIgure 3. -- V fosc (HZ) ~ 95 100 ~ = = I 10 125 V+-15V TA - +25°C I 1 10 100 Cose (pF) 1000 10000 Si7661 ~ Siliconix .,I;lI incorporated TYPICAL CHARACTERSITICS Figure 7. Figure 8. Unloaded Oscillator Frequency as a Function of Temperature 100 16 I\. 14 12 10 fosc (kHz) 8 " '" 6 V+ 95 "- "... " i'... = 15 V -r-- -25 o 1\ Efflc. (%) r-- 85 r- V+ 80 ~C1 rCi =1 111 2 -55 ~ 90 4 o SI7661 Power Efficiency vs. Oscillator Frequency = 15 V T A = +25°C RL =2 K.O. ~ 1 75 25 50 75 100 125 1 TEMPERATURE (OC) 5 2 10 20 50 100 OSCILLATOR FREQUENCY f osc (kHz) SWITCHING TIME TEST CIRCUIT 8 ,----12 7 517661 3 6 4 5 _____ -,Cosc IS IL V+ ""-:L+ .,L. ~ PIN DESCRIPTION PIN NUMBER SYMBOL PIN DESCRIPTION NC No connection. 2 CAP+ Positive terminal connection for pump capacitor. Input and/or output ground reference. 3 GND 4 CAP- Negative terminal connection for pump capacitor. 5 VOUT Output of the voltage converter. 6 LV Low Voltage. Connection to ground shorts out internal power supply regulator for operation below 9.0 volts. 7 OSC Oscillator input. External clock input to this pin will override the internal oscillator. The internal oscillator frequency can be slowed by connecting an external capacitor between this pin and ground. (See figure 6.) 8 V+ Input voltage connection. 10-13 Si7661 ..... Siliconix .,1;11 incorporated APPLICATION HINTS The Siliconix Si7661 device is a VOLTAGE source, not a CURRENT source. Therefore, any heavy load current will either greatly reduce the output voltage (possibly out of the desired range) or will cause the device to go into power shutdown. To avoid problems, keep the VOLTAGE conversion concept in mind. The Si7661 is intended for use as a voltage inverter. However, with a few added components, the inverter circuit can be rearranged to provide many different voltage levels. Some of the possibilities include voltage inversion, voltage multiplication, and even simultaneous inversion and multiplication. For more information refer to Application Note AN84-2. There are many applications where a low current negative supply made with an Si7661 would do just as well as a full conventional negative supply or DC-to-DC converter module. Some examples are negative power supplies for microprocessors, dynamic RAMs, or data acquisition systems. When an external clock is used to drive the Si7661 a 1000 n resistor should be used between the clock source and the OSC input (pin 7) as shown in Figure 10. V+ V+ 6 1 k.O. 7r-----~~~--~ r-----;2 517661 3 CMOS GATE 6 '--....:....-t.;4!..........:5!..t----:-~---o VOUT Figure 10. Driving the 817661 with an External Clock Figure 11 shows a regulator that will operate with much less than 1 volt drop between V+ andVOuT at large output currents. Most three terminal voltage regulators would exhibit a drop of a volt or more under these conditions. In addition, the extended input voltage range of the Si7661 lends itself for use as a negative generator for most op-amp applications. If the output ripple of the Si7661 is too great for a particular application, the value of the pump (Cl, figure 9) and reservoir (C2) capacitors can be increased to reduce this effect. However, it is important to note that increasing the capacitor size can lead to surge currents at turn-on. If the current is too great, the power dissipation of the device can be exceeded, causing destruction of the device. The maximum recommended capacitor size is 1000 jJ.F. V+ r-----; 2 6 7 517661 3 6 5 V+ 10jl.F + C1 10 jI. F L..-----':..--t..!_~ -r • The Zener Voltage sets the output of the regulator, Figure 9. Basic Inverter Circuit 10-14 Figure 11. Low Loss Regulator Circuit VN0300 VOUT Si7661 .... Siliconix incorporated ~ BURN-IN DIAGRAM R1 R2 +15 V -15 V 8 R l' R2 7 6 5 DEVICE PIN = 1 k,O. GND 1 2 3 4 5 6 7 8 BIAS NC NC GND NC R 2 to -15 V NC NC R 1to +15V 10-15 Si91 00/91 01 1-Watt, High-Voltage Switchmode Regulators APPLICATIONS FEATURES • 10 to 70 V Input Range • ISDN Terminals • Current-mode Control • PBX Equipment • On chip 150 V, 5 MOSFET Switch WY'Siliconix .,1;11 incorporated n • Modems • Feature Telephones • Reference Selection Si9100 - ± 1% Si9101 - ±10% • DCIDC Converters • Distributed Power Systems • High Efficiency Operation (> 80%) • Internal Start-up Circuit • Internal Oscillator (up to 1 MHz) DESCRIPTION The Si91 00/Si91 01 high-voltage switchmode regulators are monolithic D/CMOS integrated circuits which contain, most of the components necessary to implement a 1-watt, high-efficiency dc to dc converter. They can either be operated from a low-voltage dc supply, or directly from a 10 to 70 V unregulated dc power source. SHUTDOWN and RESET logic inputs, and external clock synchronization. This device may be used with an appropriate transformer to implement most single ended isolated power converter topologies (i. e., flyback and forward), or by using an external reference can generate a +5 V non-isolated output from a -48 V source. The switch mode regulator subsystem includes high-voltage start-up circuitry, oscillator, voltage reference, current-mode PWM circuitry and a high-speed, 150 V, 5 n MOSFET switch. Additional features include primary current sense, The Si9100/Si9101 is available in 14-pin plastic, CerDIP and PLCC 20-pin packages, and is specified over the military, A suffix (-55 to 125°C) afld industrial, 0 suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION Dual-ln-Llne Package PLCC Package 3 2 1 FUNCTION 20 19 14 BIAS 2 13 4 18 3 12 5 17 4 11 6 16 5 10 7 15 6 9 8 14 7 8 +VIN DRAIN SOURCE TopVlew , Order Numbers: CerDIP: S19100AK. SI9101AK Plastlo: S19100DJ. SI9101DJ 10-16 -VIN vcc OSC OUT OSC IN DISCHARGE 9 10 11 12 13 Top View Order Number: S19100DN. SI~10IDN VREF SHUTDOWN RESET COMP FB 14-pln DIP Pin # PLCC-20' Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2 3 5 7 8 9 10 11 12 14 16 17 18 20 • Pins 1. 4. 6. 13. 15 and 19 = N/C ~ ~ Si91 00/91 01 Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM FB COMP Error Amplifier V REF 0--------11'--1 a DRAIN 0 1.2V BlAB -V IN (BODY) To Internal Circuits '-------------+--+---------''----0 SOURCE VCC v cc 0-------+ Undervoltage Comparator a S SHUTDOWN R RESET ABSOLUTE MAXIMUM RATINGS Voltages Referenced to -VIN VCC ......................................... 15.0 V +VIN ......................................... 70 V VDS ......................................... 150 V ID (Peak) (Note 1) ............................. 2.5 A lo(rms) •••.......•......................... 350 mA Logic Inputs (RESET, SHUTDOWN, OSC IN) ........... -0.3 V to Vcc + 0.3 V LInear Inputs (FEEDBACK, SOURCE) ............... -0.3 V to 7.0 V Operating Temperature (A Suffix) ......... -55 to 125°C (D Suffix) .......... -40 to 85°C Junction Temperature (T J) ..................... 150°C Power 14-Pln 14-Pln 20-Pln Dissipation (Package)' Ceramic DIP (K Suffix)" ..•••..••.••.. 1000 mW Plastic DIP (J Suffix)'" ...••...••.•.•• 750 mW PLCC (N Suffix)···· ......•......•... 1400 mW Thermal Impedance (8JA ) 14-Pln Ceramic DiP ......................... 100°C/W 14-Pln Plastic DIP .......................... 167°C/W 20-Pln PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .. 90°C/W HV Preregulator Input Current (continuous) ........ 3 mA Note 1: 300 J1S pulse, 2% duty cycle Storage Temperature (A Suffix) .......... -65 to 150°C (D Suffix) ........... -65 to 125°C Device mounted with all leads soldered or welded to PC board. Derate 10 mW/oC above 50°C Derate 6 mW/oC above 25°C •••• Derate 11 mW/oC above 25°C 10-17 Si91 00/91 01 . . . . Siliconix incorporated ~ ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: DISCHARGE = -YIN = 0 V Vee= 10 V, +VIN = 48 V RBJAS = 390 ~ Rose= 330 ~ VR RL = 10 M.o. (See Detailed Description) LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55, -40 ° C -55 to '125°C D SUFFIX -40 to 85°C TEMP TYpd MINb MAX' MIN b MAXt UNIT REFERENCe Output Voltage Output Impedance ZOUT V REF = -VIN Short Circuit Current Temperature Stability 1 4.0 V 1 30 ~ 1 100 .I1A 2,3 1 mV/OC , OSCILLATOR Maximum Frequency fose Initial Accuracy Voltage Stability Vose 1 MHz Rose= 0 1 3 1 See Note e 1 100 80 9.5 V $ Vee $ = 13.5 V 1 ±3 % 2,3 500 ppm/oC Temperature Coefficient 120 80 120 kHz ERROR AMPLIFIER Feedback Input Voltage VFB Input BIAS Current Open Loop Voltage Gain FB Tied to COMP SI91 00 1 4.00 3.96 4.04 3.96 4.04 See Detailed Description Reference Section SI9101 1 4.00 3.60 4.40 3.60 4.40 1 25 1 80 1 1 MHz 1 50 ~ Source VFB= 3.4 V 1 2.0 1.4 1.4 Sink VFB = 4.5 V 1 0.15 .12 .12 9.5 V S Vee S = 13.5 V 1 70 V VFB= 4.0 V AVOL Unity Gain Bandwidth Output Impedance Output Current Power Supply Rejection 10-18 ZOUT 500 60 500 60 lOUT PSRR nA dB mA dB H Si91 00/91 01 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions LIMITS Unless Otherwise Specified: 1=25°C A D DISCHARGE = -VIN = a v 2=125.85°C SUFFIX SUFFIX V cc =10V.+VIN =46V 3=-55.-40°C -55 to 125°C -40 to 8SoC R SIAS = 390 kn Rosc= 330 kn SYMBOL TEMP TYpd MINb MAX' MIN b MAXt UNIT CURRENT LIMIT VSOURCE RL = lOOn from DRAIN toVcc V FS = a V 1 1.2 td R L = 100.0. from DRAIN toV cc V SOURCE = 1.4 V. See Figure 1 1 150 Input Voltage +VIN liN = 100 JJ.A Input Leakage Current +IIN Threshold Voltage 1.4 V 200 200 ns 1 70 70 V Vcc 2: 9.4 V 1 10 10 JJ.A I PREREGULATOR = 10 JJ.A 1 6.6 9.4 9.4 R L = 100.0. from DRAIN toV cc (See Detailed Description) 1 6.1 6.9 6.9 Icc 1 0.6 1.0 1.0 ISlAS 1 15 1 50 Delay to Output 1.0 1.4 1.0 PREREGULATORISTARTUP V cc Preregulator Turn-OFF Threshold Voltage V Undervoltage Lockout SUPPLY Supply Current Bias Current mA ./.I.A LO~IC SHUTDOWN Delay tSD SHUTDOWN Pulse Width tsw VSOURCE = -VIN See Figure 2 1 100 50 100 50 ns RESET Pulse Width tRw Latching Pulse Width SHUTDOWN and RESET LOW See Figure 3 1 50 50 tLW 1 25 25 Input LOW Voltage V IL 1 Input HIGH Voltage V IH 1 Input Current Input Voltage HIGH IIH VIN = 10 V 1 1 5 5 Input Current Input Voltage LOW IlL VIN=OV 1 -25 -35 -35 2.0 2.0 V 6.0 8.0 ./.I.A 10-19 Si91 00/91 01 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: DISCHARGE = -VIN = 0 V VCc= 10 V. +VIN = 48 V R BIAS = 390 k.O. R OSC = 330 k.O. LIMITS 1=25·C A 2=125.85·C SUFFIX 3=-55.-40·C -55 to 125°C 0 SUFFIX -40 to 85°C TEMP TYpd MINb MAX' MIN b MAXt UNIT MOSFET SWITCH Breakdown Voltage V(BR)DSS V SOURCE = V SHUTDOWN = 0 V I DRAIN = 100 J1A 2.3 180 ~~~\~t:~~~fe ON rDS(ON) VSOURCE= 0 V I DRAIN = 100 mA 1 3 Drain OFF Leakage Current loss V SOURCE = V SHUTDOWN = 0 V V DRAIN = 100 V 1 Drain Capacitance CDS V SOURCE = V SHUTDOWN = 0 V 1 150 150 V 5 5 .0. 10 10 J1A 250 pF NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design. not subject to production test. d. Typical values are for DESIGN AID ONLY. not guaranteed nor subject to production testing. e. CSTRAY Pin 8 = 0 pF. f. Temperature coefficient of rDS(ON) Is 0.75% per ·C. typical. TIMING WAVEFORMS 1.4 VSOURCE VCC SHUTDOWN o o ~ o 10% SD 10% Figure 2 Figure 1 VCC--_ _..... S"'H7.U";:;T""D""OW:":'::"N· oVCC _ _ _ _ _ __ RESET o- Figure 3 10-20 ~ VCC DRAIN VCC DRAIN ~ ~ Si91 00/91 01 Siliconix incorporated TYPICAL CHARACTERSITICS Output Switching Frequency vs. Oscillator Resistance +VIN vs. +IIN at Startup 140 1M 120 ..... I 1/ VCC- -YIN 100 80 +VIN ~ (Hz) V 40 V ./ 20 o fOUT 100 K J (V) 60 1- ~ 10 15 +IIN (rnA) 10 K 10 k 20 100 k 1M rDS(ON) (.0. ) Figure 5 Figure 4 DETAILED DESCRIPTION PREREGULATORISTARTUP SECTION Due to the low quiescent current requirement of the Si9100 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary" bootstrap" winding on the output inductor or transformer. When power is first applied during startup, +VIN (pin 2) will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between +VIN and Vee (pin 6). This startup circuitry provides initial power to the Ie by charging an external bypass capacitance connected to the Vee pin. The constant current is disabled when Vee exceeds 8.6 V. If Vee is not forced to exceed the 8.6 V threshold, then Vee will be regulated to a nominal value of 8.6 V by the preregulator circuit. As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until Vee exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET tu~ns ON. The design of the Ie is such that the undervo~age lockout threshold will not exceed the preregulator turn-off voltage. Power dissipation can be minimized by providing an external power source to Vee such that the constant current source is always disabled. NOTE: During startup or when Vee drops below 8.6 V the startup circuit is capable of sourcing up to 20 mAo This may lead to a high level of power dissipation in the Ie (for a 48 V input, approximately 1 W). Excessive start up time can result in device damage. See Figure 4 for calculation of power dissipation during start up. BIAS To properly set the bias for the Si91 ~O, a 390 k!l resistor should be tied from BIAS (pin 1) to -VIN (pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally 15 J..lA. REFERENCE SECTION The reference section of the Si9100 consists of a temperature compensated buried zener and trimmable divider network. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4.0 V. This automatically compensates for the input offset voltage in the error amplifier. 10-21 Si91 00/91 01 .... Siliconix incorporated ~ DETAILED DESCRIPTION (Cont"d) The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device. the logiC section limits switch duty cycle to S50% by locking the switching frequency to one half of the oscillator frequency. Remote synchronization pulse into the OSC IN (pin 8) terminal. For a 5 V pulse amplitude, typical values would be 1000 pF in series with 10 kn to pin 8. Applications which use a separate exteranl reference, such as non-isolated converter topologies and circuits employing optical coupling in the feedback loop, do not require a trimmed voltage reference with 1% accuracy. The Si9101 accommodates the requirements of these applications at alower cost, by leaving the reference voltage untrimmed. The 10% accurate reference thus provided is sufficient to establish a dc bias point for the error amplifier. SHUTDOWN AND RESET' SHUTDOWN (pin 11) and RESET (pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET. SHUTDOWN can be either a latched of unlatched input. The output is OFF whenever SHUTDOWN is low. By simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN has no effect until RESET goes high. The truth table for these inputs is given in Table 1. ERROR AMPLIFIER Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier" compensation. AMOS differential input stage provides for low input current. The non inverting input to the error amplifier (VREF) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground. Both pins have internal current source pull-ups and· can' be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time. OSCILLATOR SECTION The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to -YIN for normal internal oscillator operation. A frequency divider in OUTPUT SWITCH The output switch is a 5 n, 150 V lateral DMOS device. Like discrete MOSFETs, the switch contains an intrinsic body-drain diode. However, the body contact in the Si91 00 is connected internally to -VIN and is independent of the SOURCE. Table 1. Truth Table for the SHUTDOWN and RESET Pins. SHUTDOWN H H 10-22 RESET H L OUTPUT Normal Operation Normal Operation (No Change) L H L L OFF (Latched) ..r L OFF (Latched) (No Change) OFF (Not Latched) Si91 00/91 01 ..,. Sillconix incorporated ~ APPLICATIONS BUCK-BOOST NON-ISOLATED 1 W SUPPLY GND Ll 150 I1H C5 220 j.lF 10 V =--_@..0.2ADC _ _..Lo2 C6 0.1 I1F 3 C2 0.1 I1F Cl 2Ol1F C3 1.011F 6 R4 3.3 k Si9101 R8 10 k 1% R9 10 k 1% CRl +5 V 200 mA Rl0 5k R5 01 MPSA93 Ul 300 k C7 0.1 j.l.F 10 R2 10 1/2W C8 0.1 j.l.F TL 431C U2 R6 10 k 4 -48 V NON-ISOLATED 1 W SUPPLY (BUCK) GND 2 C5 220 ~F 10 lN5806 CRl C6 0.1 j.l.F Ll R3 150 k C2 0.1 j.l.F Cl 2Ol1F 6 C3 1.0 j.l.F Si9101 R4 3.3 k Ul -48 V 10 C8 0.1 I1F R9 10 k 1% 150 j.l.H @0.2ADC 14 C7 0.1 j.l.F R8 10 k 1% Rl0 5k R5 III 01 MPSA93 300 k 4 9 -5 V 200 mA R2 10 1/2W R6 10 k TL 431C U2 -=- 10-23 Si91 00/91 01 ...... Siliconlx incorporated ~ APPLICATIONS (Cant'd) ONE WATT FLYBACK CONVERTER FOR TELECOMMUNICATIONS POWER SUPPLIES GND- ~ 1. 2 1N5819 . +5 V 3 0.1 J.l.F 150 J.l.H 20 J.l.F 1 4 5 100 J.l.F GND 7 0.1 J.l.F 18 k,n ). 1 14 c1 13 tll ..........3. >390 k,n 4 Si9100 ... " I 240 k,n 0.022 J.l.F . -5 V fll 1N5819 10 5 ---.§ 9 7 -.JI =i= 1 J.l.F == 0.1 1,n 1J2W 8 J.l.F 12 k,n ~~ 1N4148 150 k,n ! -VIN (-48 VDC) • For additional information on using the SI9100 in telecommunications and ISDN power supplies, see AN87-1 and AN87-2. DUAL-IN-LINE BURN-IN CIRCUIT +70 V +120 V +10 10-24 v o-----1I--'W.......-I NOTES: 22 J.l.F 1. 2. 3. 4. 5. 6. = R1 390 k.o.. 1/4W R 2 & R 3 = 1 k.o. , 2 W R4 = 100.0.. 114 W R5=330k.o.. 1/4W F 1 • F2 = 1/16 A C1 0.1 JLF. 50 V = Si91 00/91 01 ..... Siliconix incorporated ~ PLCC BURN-IN CIRCUIT 70 V NOTES: 120 V 1. R 1 = 390 kn • 1/4 W 2. R 2 & R 3 = 1 kn , 2 W 3.R4=100n.1I4W 4. R5=330kn.1/4W 5. Fl' F2 = 1/16 A 6. C 1 =0.lJ.1.F,50V 10 V 10-25 W'JP'" Siliconix Si9102 1-Watt, High-Voltage Switch mode Regulator ~ FEATURES APPLICATIONS • 10 to 120 V Input Range • ISDN Terminals • Current-mode Control • PBX Equipment • On chip 200 V, 7.n · MOSFET Switch • Modems , • Feature Telephones • SHUTDOWN and RESET Function • DC/DC Converters incorporated • Distributed Power Systems • High Efficiency Operation (> 80%) • Internal Start-up Circuit • Internal Oscillator (up to 1 MHz) DESCRIPTION The Si9102 high-voltage switchmode regulator is a monolithic D/CMOS integrated circuit which contains most of the components necessary to implement a 1-watt, high-efficiency dc to dc converter. It can either be operated from a low-voltage dc supply, or directly from a 10 to 1'20 V unregulated dc power source. SHUTDOWN and RESET logic inputs, and external clock synchronization. This device may be used with an appropriate transformer to implement most single ended isolated power converter topologies (i.e., flyback and forward), or by using an external reference can generate a +5 V non-isolated output from a -10 to -96 V source. The switchmode regulator subsystem includes high-voltage start-up circuitry, oscillator, voltage reference, current-mode PWM circuitry and a high-speed, 200 V, 7 .n MOSFET switch. Additional features include primary current sense, The Si9102 is available in 14-pin plastic, CerDIP and 20-pin PLCC packages, and is specified over the military, A suffix (-55 to 125°C) and industrial, 0 suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION PLCC Package Dual-In-Llne Package 3 2 1 20 FUNCTION 19 14 2 13 4 18 3 12 5 17 4 11 S lS 5 10 7 15 6 9 8 14 7 8 9 TopVlaw Order Numbers: Plastic: 519102AJ CerDIP: 519102DK 10-26 10 11 12 13 Top View Order Number: Plastic: 519102DN 14-pln DIP Pin # PLCC-20' Pin # BIAS +VIN DRAIN SOURCE -VIN vcc OSC OUT OSCIN DISCHARGE vREF SHUTDOWN RESET COMP FB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 • Pins 1, 4, 6, 13, 15 and 19 2 3 5 7 8 9 10 11 12 14 16 17 18 20 = N/C Si91 02 W'W'" Siliconix ~ incorporated FUNCTIONAL BLOCK DIAGRAM FB eOMP Error Amplifier Q S 1.2V To BIAS Internal Circuits Vee L------------+--+------------ f MINbMA~ UNIT REFERENCE Output Voltage Output Impedance 1 4.0 V 1 30 k.O. 1 100 .I1A 2,3 1 mV'·C Rose = 0 1 3 1 See Note e 1 100 80 9.5 V S Vee S = 13.5 V 1 ±3 0/0 2,3 500 ppm'·C FB Tied to COMP (See Detailed Description Reference Section) 1 4.00 VFS= 4.0 V 1 25 1 80 1 1 M,Hz 1 50 k.O. Source VFS= 3.4 V 1 2.0 1.4 1.4 Sink V FS = 4.5 V 1 0.15 .12 .12 9.5 V S VeeS = 13.5 V 1 70 ZOUT Short Circuit Current VREF= -VIN Temperature Stability OSCILLATOR Maximum Frequency fose Initial Accuracy Voltage Stability Vase Temperature Coefficient 1 120 80 MHz 120 kHz ERROR AMPLIFIER Feedback Input Voltage VFB Input BIAS Current Open Loop Voltage Gain AVOL Unity Gain Bandwidth Output Impedance Output Current Power Supply Rejection 10-28 ZOUT 3.96 4.04 3.96 500 60 60 V 500 nA dB mA lOUT PSRR 4.04 dB ~ ~ Si91 02 Siliconix incorporated ELECTRICAL CHARACTERISTICS a PARAMETER Test Conditions LIMITS Unless Otherwise Specified: 1=25·C A D DISCHARGE = -VIN = 0 V 2=125,85·C SUFFIX SUFFIX Vcc= 10 V, +VIN = 48 V 3=-55,-40·C -55 to 125°C -40 to 85°C RBIAS = 390 k.O. Rose = 330 k.O. TEMP TYpd MINb MAX' MIN b MAXi UNIT SYMBOL CURRENT LIMIT VSOURCE RL= 100.0. from DRAIN toVcc VFB= 0 V 1 1.2 td RL= 100.0. from DRAIN toVcc V SOURCE = 1.4 V, See Figure 1 1 150 Input Voltage +VIN liN = 100JJ.A Input Leakage Current +IIN Threshold Voltage Delay to Output 1.0 1.4 1.0 1.4 V 200 200 ns 1 120 120 V Vcc l!: 9.4 V 1 10 10 JJ.A I PREREGuLATOR = 10 JJ.A 1 8.6 9.4 9.4 RL = 100.0. from DRAIN toVcc (See Detailed Description) 1 8.1 8.9 8.9 Icc 1 0.6 1.0 1.0 I BIAS 1 15 1 50 PREREGULATORISTARTUP Vcc Preregulator Turn-OFF Threshold Voltage V Undervoltage Lockout SUPPLY Supply Current Bias Current rnA JJ.A LOGIC SHUTDOWN Delay tSD SHUTDOWN Pulse Width tsw VSOURCE = -VIN See Figure 2 1 100 50 100 50 ns RESET Pulse Width tRW Latching Pulse Width SHUTDOWN and RESET LOW 1 50 50 tLW 1 25 25 Input LOW Voltage VIL 1 Input HIGH Voltage VIH 1 Input Current Input Voltage HIGH IIH VIN = 10 V 1 1 5 5 Input Current Input Voltage LOW IlL VIN=OV 1 -25 -35 -35 See Figure 3 2.0 2.0 V 8.0 8.0 JJ.A 10-29 Si9102 .... Siliconix .,6;/1 incorporated El.ECTRICAl. CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: DISCHARGE = -VIN = 0 V Vcc= 10V, +VIN =48V R BIAS = 390 k.O. ROSC = 330 k.O. LIMITS 1=25·C A 2=125,85·C SUFFIX 3=-55,-40·C -55 to 125°C 0 SUFFIX -40 to 85°C TEMP TYpd MINb MAX' MIN b MAXI UNIT MOSFET SWITCH Breakdown Voltage V(BR)DSS V SOURCE = V SHUTDOWN = 0 V I DRAIN = 100 J1A 2,3 220 Drain-Source ON ResistanceS rDS(ON) VSOURCE= 0 V I DRAIN = 100 mA 1 5 Drain OFF Leakage Current IDSS V SOURCE = V SHUTDOWN = 0 V V DRAIN = 100 V 1 Drain Capacitance CDS V SOURCE = V SHUTDOWN = 0 V 1 200 200 V 7 7 .0. 10 10 J1A 250 pF NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum, Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. Temperature coefficient of rDS(ON) Is 0.75% per ·C, typical. f. CSTRAY Pin 8 = 0 pF. TIMING WAVEFORMS 1.4 VSOURCE VCC SHUTDOWN o VC~~ DRAIN o ~ Vcc DRAIN o 10% SD 10% Figure 2 Figure 1 VCC---_ S::::H'::'U~T=DO""W=-N' oVCC _ _ _ _ _ _ ___ RESET o- Figure 3 10-30 tF s 10 ns o- Si9102 ..... Siliconix incorporated ~ TYPICAL CHARACTERISTICS Output Switching Frequency vs. Oscillator Resistance +VIN vs. +IIN at Startup 140 1M 120 Vee = -YIN 1'0. I 100 I 80 +VIN (V) 60 (Hz) I 40 1/ 20 o fOUT 100 K J '" V i -~ ~ 10 K 10 15 10 k 20 +IIN (mA) 100 k 1M rOS(ON) (.0.) Figure 5 FIgure 4 DETAILED DESCRIPTION PREREGULATORISTARTUP SECTION Due to the low quiescent current requirement of the Si9102 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary "bootstrap" winding on the output inductor or transformer. When power is first applied during startup, +YIN (pin 2) will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between +YIN and Vee (pin 6). This startup circuitry provides initial power to the Ie by charging an external bypass capacitance connected to the Vee pin. The constant' current is disabled when'Vee exceeds 8.6 V. If Vee is not forced to exceed the 8.6 V threshold, then Vee will be regulated to a nominal value of 8.6 V by the preregulator circuit. As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until Vee exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET turns ON. The design of the Ie is such that the undervoltage lockout threshold will not exceed the preregulator turn-off voltage. Power dissipation can be minimized by providing an external power source to Vee such that the constant current source is always disabled. NOTE: During startup or when Vee drops below 8.6 V the startup circuit is capable of sourcing up to 20 rnA. This may lead to a high level of power dissipation in the Ie (for a '96 V input, approximately' 2 W). Excessive start u'p time can result in device damage. See Figure 4 for calculation of power dissipation during start up. BIAS To properly set the bias for the Si9102, a 390 kll resistor should be tied from BIAS (pin 1) to -VIN (pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally 15/lA. REFERENCE SECTION The reference section of the Si9102 consists of a temperature compensated buried zener and trimmable divider network. The output of the 10-31 Si9102 ..... Siliconix incorporated ~ DETAILED DESCRIPTION reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4.0 V. The trimming procedure that is used on the Si9102 brings the output of the error amplifier (which is configured for unity gain during trimming) to within ±1% of 4.0 V. This automatically compensates for the input offset voltage in the error amplifier. The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device. ERROR AMPLIFIER Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier" compensation. AMOS differential input stage provides for low input current. The noninverting input to the error amplifier (VREF) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground. SHUTDOWN AND RESET SHUTDOWN (pin 11) and RESET (pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET. SHUTDOWN can be either a latched of unlatched input. The output is OFF whenever SHUTDOWN is low. By simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN has no effect until RESET goes high. The truth table for these inputs is given in Table 1. 80th pins have internal current source pull-ups and can be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time. Table 1. Truth Table for the SHUTDOWN and RESET Pins. SHUTDOWN RESET H H OUTPUT OSCILLATOR SECTION Normal Operation The oscillator consists of a ring of CMOS Inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to -VIN for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to S50% by locking the switching frequency to one half of the oscillator frequency. OUTPUT SWITCH Remote synchronization can be accomplished by capacitive coupling of a SYNCHRONIZATION pulse into the OSC IN (pin 8) terminal. For a 5 V pulse amplitude, typical values would be 1000 pF in series with 10 kn to pin 8. The output switch is a 7 n, 200 V lateral DMOS device. Like discrete MOSFETs, the switch contains a~ intrinsic body-drain diode. However, the body contact in the Si9102 is connected internally to -VIN and is independent of the SOURCE. 10-32 H L Normal Operation (No Change) L H OFF (Not Latched) L L OFF (Latched) L OFF (Latched) (No Change) S Si9102 tI'Y' Siliconix ~ incorporated APPLICATIONS FLYBACK CONVERTER FOR DOUBLE BATTERY TELECOMMUNICATIONS POWER SUPPLIES +VIN GND lN5819 100 J1.H +5 V 2l. 20 J1.F 0.1 J1.F 300 J1.H 1 r 4 5 100 J1.F GND 7l 0.1 J1.F 18 k,(l ~ 390 k,(l 1 14 ~ 13 ----..3. ell Si9102 4 • .. I 240 k,(l 0.022 J1.F . 11 5 10 ~ 9 1- rJI -5 V lN5819 := 1 J1.F :1= 0.1 1,(l 1f2W 8 22 J1.F J1.F 12 k,(l 2~ lN4148 150 k,(l ! -VIN (-96 VDC) DUAL-IN-LINE BURN-IN CIRCUIT TopVlaw 120 V 200 V NOTES: R 1 = 390 k.o.. 1/4 W R2 = 1 k.o.. 2W R3 = 1 k.o.. 2 W 10 v O---I--'W.......-I R4 = 100 .0.. 1/4 W Rs = 330 k.o.. 1/4 W C 1 = 0.1 J1F. 50 V 10-33 Si91 02 ..... Siliconix .,6;/1 incorporated PLCC BURN-IN CIRCUIT 120 V NOTES: R1 R2 R3 200 V R4 R5 = 390 k.n.. 1/4 W = 1 k.n.. 2 W = 1 k.n.. 2 W = 100 .0.. 1/4 W = 330 k.n. • 114 W C 1 = O.l.11F. 50 V 10V 10-34 tI"F' ~ Si9110/9111 High-voltage Switchmode Controllers Siliconix incorporated FEATURES II APPLICATIONS 10 to 120 V Input Range • Current-mode Control II High-Speed, Source-Sink Output Drive • High Efficiency Operation (> 80%) • DC/DC Converters • Distributed Power Systems • ISDN Equipment • PBX Equipment • Modems • Internal Start-up Circuit • Internal Oscillator (up to 1 MHz) ClI Reference Selection Si9110 - ±1% Si9111 - ±10% DESCRIPTION The Si9110/9111 are D/CMOS integrated circuits designed for use as high-performance switchmode controllers. A high-voltage DMOS input allows the controller to work over a wide range of input voltages (10- to 120-VDC). Current-mode PWM control circuitry is implemented in CMOS to reduce internal power consumption to less than 10 mW. time for fault protection. A push-pull output driver provides high-speed switching for MOSPOWER devices large enough to supply 50 W of output power. When combined with an output MOSFET and transformer, the Si911 0 or Si9111 can be used to implement most single-ended power converter topologies (i.e., flyback and forward). The on-chip oscillator frequency is set by an external resistor, and can be easily synchronized to an external system clock. SHUTDOWN and RESET inputs allow external logic control, and these inputs can also be used to provide a variable shutdown The Si9110 and Si9111 are available in 14-pin plastic, SO-IC and CerDIP packages, and are specified over the military, A suffix (-55 to 125°C) and industrial, 0 suffix (-40 to 85°C) temperature ranges. PIN CONFIGURATION Dual-In-Line Package SO Package 14 13 12 11 10 9 8 (Same pinout as Dual-in-Line) 1234567 Top View Order Numbers: Top View Order Numbers: 81911 OOY, 5191110Y CerOIP: 519110AK, 519111AK Plastic: 51911 OOJ. 519111DJ 10-35 Si9110/9111 .... Siliconix incorporated ~ FUNCTIONAL BLOCK DIAGRAM FB eOMP ose OUT 'l$ 13 14 ose IN DISCHARGE Error Amplifier VREF ose) To Vee Q OUTPUT s -V IN 1.2V To BIAS Vee Internal 3 SENSE 6 Undervoltage Comparator +VIN 11 12 SHUTDOWN RESET Pre-regulator/Startup ABSOLUTE MAXIMUM RATINGS Voltages Referenced to -VIN Junction Temperature (T J) ••..•.•.•.....••••... 150·C Vee •.•..•••..•......••••...••.........•....• 15.0 V Power 14-Pln 14-Pln 14-Pln +VIN •....•.•...••.••.........••••..•...••..• 120 V Logic Inputs (RESET, SHUTDOWN, OSC IN) •.....•.•.. -0.3 V to Vee + 0.3 V Linear Inputs (FEEDBACK, SENSE) ................. -0.3 V to 7.0 V HV Preregulator Input Current (continuous) ......•. 3 mA Storage Temperature (A, 0 Suffix) ...•.... -65 to 150·C Operating Temperature (A Suffix) ......... -55 to 125·C (0 Suffix) .......... -40 to 85·C 10-36 Dissipation (Package)" Ceramic DIP (K Suffix)"" ••...••••..••. 1000 mW Plastic DIP (J Suffix)""" .•............. 750 mW SO-IC (V Suffix)"""" ••...•..•.....•... 800 mW Thermal Impedance (8JA ) 14-Pln Ceramic DiP •..•.•...•..••........... 100·C/W 14-Pln Plastic DIP .•.........•.•....•....... 167·C/W 14-Pln SO-IC ...•..•.........•.•••....•••.. 140·C/W Device mounted with all leads soldered or welded to PC board. Derate 10 mW/·C above 50·C Derate 6 mW/·C above 25·C """" Derate 7 mW/·C above 25·C Si9110/9111 trY" Siliconix ~ incorporated ELECTRICAL CHARACTERISTICS a PARAMETER SYMBOL Test Conditions Unless Otherwise Specified: DISCHARGE = -VIN = 0 V, Vcc=10V,+V IN=4BV R BIAS = 390 k.rl. Rose= 330 k.rl. VR RL = 10 Mn. (See Detailed Description) LIMITS 1=25°C A 2=125,85°C SUFFIX 3=-55,-40°C -55 to 125°C 0 SUFFIX -40 to 85°C TEMP TYpd MINb MAX' MIN b MAxt UNIT REFERENCE Output Voltage Output Impedance 1 4.0 V 1 30 k.rl. 1 100 J,LA 2,3 1 mV/OC Rose = 0 1 3 1 See Note e 1 100 BO 9.5 V S Vee S = 13.5 V 1 ±3 % 2,3 500 ppm/DC 1 4.00 ZOUT Short Circuit Current V REF = -VIN Temperature Stability OSCILLATOR Maximum Frequeney fose Initial Accuracy Voltage Stability Vase Temperature Coefficient 1 120 BO MHz 120 kHz ERROR AMPLIFIER FB Tied to COMP Feedback Input Voltage V FB SI9110 Output Current Power Supply Rejection 4.04 3.96 4.00 1 25 1 BO 1 1 MHz 1 50 k.rl. Source V FB = 3.4 V 1 2.0 1.4 1.4 Sink V FB = 4.5 V 1 0.15 .12 .12 9.5 V S VeeS = 13.5 V 1 70 AvoL ZOUT 3.60 4.40 3.60 500 60 4.40 500 60 nA dB mA lOUT PSRR 4.04 1 SI9111 Unity Gain Bandwidth Output Impedance 3.96 V V FB = 4.0 V Input BIAS Current Open Loop Voltage Gain See Detailed Description Reference Section dB 10-37 ~ ~ Si9110/9111 Siliconix incorporated ELECTRICAL CHARACTERISTICS a Test Conditions LIMITS Unless Otherwise Specified: 1=25°C D A DISCHARGE -¥IN 0 V 2=125,85°C SUFFIX SUFFIX Vec= 10 V, +VIN = 48 V 3=-55,-40 o C -55 to 125°C -40 to 85°C RBIAS = 390 k.O. Rosc = 330 k.O. TEMP TYpd MINb MA>f MINb MAX SYMBOL = PARAMETER = UNIT CURFlENT' LIMIT Threshold Voltage VFB= 0 V VSOURCE Delay to Output td VSENSE =1.4 V, See Figure 1 1.4 V 150 150 ns 1 120 120 V 10 10 J.lA 1 1.2 1 100 1.0 1.4 1.0 PREREGULATORfSTARTUP =10J1A Input Voltage +VIN liN Input LeakagB Current +IIN Vcc 2: 9.4 V 1 I PREREGULATOR = 10 J.lA 1 8.6 9.4 9.4 I OUTPUT = 1 rnA (See Detailed Description) 1 8.1 8.9 8.9 Icc 1 0.6 1.0 1.0 ISlAS 1 15 1 50 Vcc Preregulator Turn-OFF Threshold Voltage V Undervoltage Lockout SUPPLY Supply Current Bias Current mA J.lA LOGIC SHUTDOWN Delay tSD SHUTDOWN Pulse Width tsw RESET Pulse Width tRW Latching Pulse Width SHUTDOWN and RESET LOW C L=500pF VSENSE = -VIN See Figure 2 100 100 1 50 50 1 50 50 tLW 1 25 25 Input LOW Voltage V IL 1 Input HIGH Voltage VIH 1 Input Current ,Input Voltage HIGH IIH VIN = 10 V 1 1 5 5 'Input Current Input Voltage LOW IlL VIN = 0 V 1 -25 -35 -35 ns See Figure 3 2.0 2.0 V 8.0 8.0 J.lA 10-38 Si9110/9111 Siliconix incorporated ELECTRICAL CHARACTERISTICS a SYMBOL Test Conditions Unless Otherwise Specified: DISCHARGE = -VIN = 0 V Vee= 10 V. +VIN = 48 V R BIAS = 390 k.O. Rose = 330 k.O. Output HIGH Voltage VOH IOUT=lmA 1 2,3 Output LOW Voltage VOL lOUT = -1 mA 1 2,3 PARAMETER LIMITS 1_25°C A. 2=125.85°C SUFFix 3=-55.-40°C -55 to 125°C TEMP TYpd D SUFFIX -40 to 85°C MINb MAX' MIN b MAXt UNIT OUTPUT 9.90 9.75 9.90 9.75 V Ouput Resistance ROUT Rise Time tr 0.10 0.25 0.10 0.25 1 2,3 20 25 30 50 30 35 1 40 75 75 1 40 75 75 CL = 500 pF Fall Time .n. ns tf NOTES: a. Refer to PROCESS OPTION FLOWCHART for additional Information. b. The algebraic convention whereby the most negative value Is a minimum and the most positive a maximum. Is used In this data sheet. c. Guaranteed by design, not subject to production test. d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. e. CSTRAY Pin 8 = 0 pF. TIMING WAVEFORMS 1.4 V- Vee ""S""H""U""T""D""O""W"""N SENSE o 0- Vee-----..t Vee-----..J OUTPUT OUTPUT 0- 0Figure 1 Figure 2 Isw V e e - -_ _"'" SHUTDOWN o- 50% 50% Vee _ _ _ _ _ _ _.... RESET o- 50% Figure 3 10-39 Si9110/9111 ..... Siliconix incorporated ~ TYPICAL CHARACTERISTICS +V IN VS. Output Switching Frequency vs. Oscillator Resistance +IIN at Startup 140 1M 120 Vcc- -VIN 100 ~ 80 +VIN fOUT 100 K J (V) 60 (Hz) V 40 20 o , II 1- ~ ~ 10 V 15 +IIN (rnA) "" 10 K 10 k 20 " 100 k 1M rOS(ON) (.0.) Figure 5 Figure 4 DETAILED DESCRIPTION PREREGULATORISTARTUP SECTION Due to the low quiescent current requirement of the Si9110fSi9111 control circuitry, bias power can be supplied from the unregulated input power source, from an external regulated low-voltage supply, or from an auxiliary .. bootstrap" winding on the output inductor or transformer. When power is first' applied during startup, +YIN (pin 2) will draw a constant current. The magnitude of this current is determined by a high-voltage depletion MOSFET device which is connected between +VIN and Vee (pin 6). This startup circuitry provides initial power to the Ie by charging an external bypass capacitance connected to the Vee pin. The constant current is disabled when Vee exceeds 8.6 V. If Vee is not forced to exceed the 8.6 V threshold, then Vee will be regulated to a nominal value of 8.6 V by the preregulator circuit. As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until Vee exceeds the undervoltage lockout threshold (typically 8.1 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the 10-40 MOSFET turns ON. The design of the Ie is such that the undervoltage lockout threshold will not exceed the preregulator turn-off voltage. Power dissipation can be minimized by providing an external power source to Vee such that the constant current source is always disabled. NOTE: During startup or when Vee drops below 8.6 V the startup circuit is capable of sourcing up to 20 mAo This may lead to a high level of power dissipation in the Ie (for a 48 V input, approximately 1 W). Excessive start up time can result in device damage. See Figure 4 for calculation of power dissipation during start up. . BIAS To properly set the bias for the Si911 OfSi9111, a 390 kll resistor should be tied from BIAS (pin 1) to -VIN (pin 5). This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally 15 )J.A. REFERENCE SECTION The reference section of the Si911 0 consists of a temperature compensated buried zener and trimmable divider network. The output of the Si9110/9111 ...... Siliconix incorporated ~ DETAILED DESCRIPTION (Cont'd) reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4.0 V. The trimming procedure that is used on the Si9110 brings the output of the error amplifier (which is configured for unity gain during trimming) to within ±1% of 4.0 V. this automatically compensates for input offset voltage in the error amplifier. The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device. Applications which use a separate exteranl reference, such as non-isolated converter topologies and circuits employing optical coupling in the feedback loop, do not require a trimmed voltage reference with 1% accuracy. The Si9101 accommodates the requirements of these applications at alower cost, by leaving the reference voltage untrimmed. The 10% accurate reference thus provided is sufficient to establish a DC bias point for the error amplifier. ERROR AMPLIFIER Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier" compensation. AMOS differential input stage provides for low input current. The noninverting input to the error amplifier (VREF) is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground. OSCILLATOR SECTION The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC IN and OSC OUT pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to -VIN for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to :550% by locking the switching frequency to one half of the oscillator frequency. Remote synchronization pulse into the OSC IN (pin 8) terminal. For a 5 V pulse amplitude, typical values would be 1000 pF in series with 10 kn to pin 8. SHUTDOWN AND RESET SHUTDOWN (pin 11) and RESET (pin 12) are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET. SHUTDOWN can be either a latched of unlatched input. The output is OFF whenever SHUTDOWN is low. By simultaneously having SHUTDOWN and RESET low, the latch is set and SHUTDOWN has no effect until RESET goes high. The truth table for these inputs is given in Table 1. Both pins have internal current source pull-ups and can be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time. Table 1. Truth Table for the SHUTDOWN and RESET Pins. RESET OUTPUT H H Normal Operation H "l.... Normal Operation (No Change) L H OFF (Not Latched) L L OFF (Latched) L OFF (Latched) (No Change) SHUTDOWN S OUTPUT SWITCH The push-pull driver output has a typical ON resistance of 20 n. Maximum switching times are specified at 75 ns for a 500 pF load. This is sufficient to directly drive MOSFETs such as the 2N7oo4, 2N7oo5, IRFD120 and IRFD22o. Larger devices can be driven, but switching times will be longer, re:}ulting in higher switching losses. In order to drive large MOSPOWER devices, it is necessary to use an external driver IC, such as the Siliconix D469. the D469 can switch very large devices such as the SMM20N5o (500 V, 0.3 .11) in approximately 100 ns. 10-41 '!:Si9110/9111 tr'F' Siliconix ,,1;11 incorporated APPLICATIONS 5-WATT POWER SUPPLY FOR TELECOM APPLICATIONS 1N5822 r·~----~~------~----<>~V GNDo-----~------------------------~----------------__, @0.75A OSC SYNC PULSE ::rro 220J,LF l 1000 pF 0.1 • J,LF 1N5819 ' - - - - - : M - - - - 4 - - - 0 -5 V @0.25 A 6 Si9110 4 2N7004 r __*'__1"____-,-"10'-V"-l~ TO PIN 6 18 k 1J,LF 3 0.1 J,LF 9 12 k 1.n. 1/2 W -48 V BURN-IN CIRCUIT +120 V NOTES: +10 v o-----+-'\J'Vv-l R1 = 390 k.n.. 1/4 W R2 =lk.n.,2W R3 =lk.n.,2W R4 = 100.n., 1/4 W R5 = 330 k.n.. 1/4 W C 1 =0.1J.LF,50V 10-42 FEEDBACK TO PIN 14 Si911S/9116 Off-Line Switchmode Controllers ...... Siliconix incorporated ~ FEATURES APPLICATIONS • 10 to 300 V Input Range • Off-Line Switch mode Power Supplies • Current-Mode Control • High-Speed, Source-Sink Output Drive • Housekeeping Power Supplies • SHUTDOWN and RESET Functions • Distrubuted Power Systems • High Efficiency Operation (> 80%) • Internal Start-Up-Circuit II Internal Oscillator (Up to 1 MHz) DESCRIPTION The Si9115 and Si9116 are D/CMOS integrated circuits designed for use as high-performance switch mode controllers. High-voltage DMOS inputs allow the controllers to work over a wide range of input voltages (10 to 300 VDC). Current-mode PWM control circuitry is implemented in CMOS to reduce quiescent current to less than 1 mAo The on-chip oscillator frequency is set by an external resistor, and can easily be synchronized to an external system clock. SHUTDOWN and RESET inputs allow external logic control, and these inputs can also be used to provide a variable shutdown time for fault protection. A push-pull output driver provides high-speed switching for MOSPOWER devices large enough to supply 50 W of output power. These devices, when combined with an output MOSFET and transformer, can be used to implement most single-ended power converter topologies (i.e., flyback and forward). The Si9116 provides an inverted polarity output to ' facilitate interfacing to a high current MOSFEt driver stage. The Si9115 and Si9116 are available in 16-pin plastic DIP and SOIC packages, and are specified over the industrial, D suffix (-40 to 85°C) temperature range. PIN CONFIGURATION Dual-In-Llne Package BIAS SO Package FB COMP RESET SHUTDOWN DISCHARGE Top View (Same pinout as DIP) 1 2 3 4 5 678 Top View Order Numbers: S19115DY, SI9116DY Order Numbers: Plastic: Si9115DJ, SI9116DJ Preliminary 10-43 Si9115/9116 Siliconix incorporated FUNCTIONAL BLOCK DIAGRAM To Vee eOMP FB 14 15 ose ose IN OUT ~ S19116 I Error I I I I I I I Amplifier OUTPUT 6 -V IN Sl9115 OUTPUT 6 BIAS 16 To Internal elrcull. ~--------------------t-~r---------~~------~4~SENSE Vee 7 b-- 1----- D tpdHL t pdLH 11-6 8 ns 2.8 ns tpdHL t pdLH 6 ns 6.8 ns XQ ~ ~ IS05 Silicon Ix incorporated IS05 TYPICAL MACROS* (Cont'd) Inverting Balanced Output Buffer Schmitt Trigger with TTL Input -----I~>--- o o t pdHL t pdLH * Fanout = = t pdHL = 3.5 ns t pdLH 13.5 ns 1.0 ns 1.5 ns = =0 IS05 MACRO LIBRARY MACRO NAME FUNCTION # OF NA2 EQUIVALENTS GATES NA2 NA3 NA4 NA5 NA6 N02 N03 N04 XO XOS XN XNS 2-lnput NAND Gate 3-lnput NAND Gate 4-lnput NAND Gate 5-lnput NAND Gate 6-lnput NAND Gate 2-lnput NOR Gate 3-lnput NOR Gate 4-lnput NOR Gate Exclusive OR Exclusive OR with SAB Structure Exclusive NOR Exclusive NOR with SAB Structure 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 1.5 2.5 1.5 COMPLEX GATES AN1 AN2 AN3 AN4 AN5 AN6 ON1 ON2 ON3 ON4 ON5 ON6 AND-NOR AND-NOR AND-NOR AND-NOR AND-NOR AND-NOR OR-NAND OR-NAND OR-NAND OR-NAND OR-NAND OR-NAND 2/1 2/2 2/111 3/2 3/3 2/2/2 2/1 2/2 2/111 3/2 3/3 2/2/2 1.5 2.0 2.0 2.5 3.0 3.0 1.5 2.0 2.0 2.5 3.0 3.0 Single Inverter Double Inverter Triple Inverter FUNCTION IN4 IN5 IN6 IN7 IN8 IN9 101 102 Four Inverters Five Inverters Six Inverters Seven Inverters Eight Inverters Nine Inverters Delay Inverter Delay Inverter # OF NA2 EQUIVALENTS 2.0 2.5 3.0 3.5 4.0 4.5 1.5 3.0 FLIP/FLOPS/LATCHES FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF9 FF10 T2 L1 L2 L3 o Flip Flop (OFF) OFF with XRESET OFF with RESET OFF with XSET OFF with SET OFF with XSET & XRESET OFF with SET & RESET OFF with XSET. XRESET1 & XRESET2 OFF with XRESET1. XSET1 & XSET2 Toggle FF with XRESET D-Latch D-Latch with XRESET D-Latch with SET 6.0 6.0 6.0 6.0 6.0 7.5 7.5 9.0 9.0 6.0 3.0 3.0 3.0 TRANSMISSION GATES TGC TGIO Transmission Gate Core Cell Transmission Gate I/O Cell 1.5 110 SINGLE TRANSISTOR DEVICES INVERTERS IN1 IN2 IN3 MACRO NAME 0.5 1.0 1.5 NCHC NCHIO PCHC PCHIO N-Channel Transistor 55/5 N-Channel Transistor 275/5 P-Channel Transistor 55/5 P-Channel Transistor 275/5 1.0 110 1.0 110 11-7 DI IS05 Siliconix incorporated IS05 MACRO LIBRARY (Cont'd) MACRO NAME # OF NA2 EQUIVALENTS FUNCTION INTERFACEISCHMITT TRIGGERS 6.0 + 1/0 lS.0 + 1/0 1 + 1/0 3.0 + 1/0 4.S + 1/0 3.0 + 1/0 S.O + 1/0 4.0 + 1/0 Input Upward Level Shifter CMOS Input Upward Level Shifter TTL Output Downward Level Shifter Schmitt Trigger with TTL Input Schmitt Trigger w/CMOS Input Schmitt Trigger w/CMOS Input Schmitt Trigger w/CMOS Input Schmitt Trigger w/CMOS Input LSIUCl LSIUTl LSODCl STl ST2 ST3 ST4 STS FUNCTION OB 1 OB2 OB3 OB4 TSl TS2 TS3 TS4 Inverting Balanced Output Buffer Trl-State Output Buffer Open Draln-N Output Buffer Open Draln-P Output Buffer Internal Inverting Trl-State w/Enable Internal Inverting Trl-State wi Enable Bar 3-State Output Buffer Driver wi Enable 3-State Output Buffer Driver wi Enable Bar l.S 1.S 4.S 4.S 1.S + 1/0 1/0 1.S + 1/0 1/0 1/0 1.S + 1/0 1.S + 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1.S 2 to 1 Multiplexer SAB Balanced CMOS Input Inv Buffer Core Balanced CMOS Input Inv Buffer 1/0 Inverter with 6N/lP Ratio Input Buffer with 6N/lP Ratio Input Buffer with 3N/l P Ratio Inverter with 3N/l P Ratio Inverter with SN/l P Ratio Input Protection Input Protection Input Protection (Corner Device) Input Protection (Corner Device) Input Protection (Corner Device) InputlOutput Buffer Bidirectional 1/0 Inverting Output Buffer 1/0 1/0 1/0 1/0 MULTIPLEXERS 1/0 IBCl IBIOl IPl IP2 IP3 IP4 IPS IP IPB IPC IPCA IPCB 10Bl 10BA OB # OF NA2 EQUIVALENTS MACRO NAME OSCILLATORS OSCQSP OSCQLP OSCRC OSCRCXE Standard Power Quartz Oscillator Low Power Quartz Oscillator RC Oscillator RC Oscillator with XENABLE 4.S 6.0 3.0 4.S ANALOG CELLS ASl COMPl OPAMPl DIFFl Analog Switch Comparator Operational Amplifier Differential Amplifier 1/0 lS.0 lS.0 9.0 MEMORY CELLS RAMl Random Access Memory 3.0 TYPICAL CHARACTERISTICS MEASURING CIRCUIT SO . / -~ 40 ! ...J 30 I 20 Cl 10 o 0 / ! Cl VDD - S V ~ V -20 ITA= 2S oC \. -10 ::z: -15 J o -S HV ~ ...J w 0 o (VOLTS) SO ~ D.. i.o"~1 pLH 30 , 20 10 Cl 0:: D.. II III I i-"-r;1 ~ ~r.--' I 0 o 40 80 120 ~ I rt 160 200 CAPACITANCE - (pC) 11-8 CL r--.... O.S 1.0 1.S 2.0 2.S 3.0 (VOO-VOH ) - (VOLTS) III 40 Z 0 ...... DD - 5 V I TA= 25 °c I PROPAGATION DELAY vs CAPACITANCE ,s I = -25 O.S 1.0 1.S 2.0 2.S 3.0 VOL - ';;;' "-~ VIN = VDD IOH VIN VSS IOL RISE & FALL TIME vs CAPACITANCE 50 ';;;' ,s I w ::E F ::l ~ all w III 40 30 ~ ..... 20 IV 10 ii: 0 I~i.o" o ~ 40 II ... ~ IL ... 80 ti Ll... t rall 120 160 200 CAPACITANCE - (pC) MEASURING CIRCUIT TA = 25°C VDD= 5 V tr ,tt = 1.0 ns CL ..r Siliconix ~ IS05 incorporated TYPICAL CHARACTERISTICS TIMING OIAGRAM PROPAGATION DELAY vs SUPPLY VOLTAGE ~ I!:. I ~ ~ 15 ~ ~ a.. 200 180 160 140 120 100 80 60 40 20 \ TA= 25 0 C \ ~ \ o 2 4 ~ I ~ ...... o PROPAGATION DELAY vs TEMPERATURE 6 -- c z c ~c.. c a.. 0::: 180 160 VDD = 5 V 140 1/ 120 ;I' 100 ",. 80 60 I"'~ 40 20 0 d 8 10 12 14 16 -40 Voo - (VO LTS) 0 40 80 TEMPERATURE - 10% , 1 90 % I : 10.5 V -:tfall l - I I I : 1- tpHL-1 120 fe) ANALOG CIRCUITS OPERATIONAL AMPLIFIER - (OPAMP1) Typical Electrical Characteristics: Functional Block Diagram: 0 Test Conditions: VOO= 12 V,TA = 25 C Parameter + INPUT OUTPUT -INPUT Value Unity Gain Bandwidth DC Offset DC Gain Power Consumption (no signal, no load) Typical Operating Frequency Range Typical Supply Voltage Range Maximum Output Current: Sink (loll Source (lOH) Slew Rate < 8 MHz 15mV >70 dB 1200 p.W o to 1 MHz 2.4 to 14 V 1 mA 1 mA 35 VI p's DIFFERENTIAL AMPLIFIER - (DIFF1) Functional Block Diagram: l1li Typical Electrical Characteristics: Test Conditions: VOO= 12 V,TA = 25°C Parameter + INPUT OUTPUT -INPUT Value Maximum operating frequency 8 MHz DC Offset 15 mV Power Consumption (no signal, no load) < 1200 p.W Typical Supply Voltage Range 2.4 to 14 V Slew Rate 35 VI p's 11-9 IS05 .... Siliconix incorporated ~ ANALOG CIRCUITS (Cont'd) COMPARATOR - (COMP1) Typical Electrical Characteristics: Functional Block Diagram: Test Conditions: VDD= 12 V, TA = 25 0 C Parameter Value VREF OUTPUT INPUT Maximum operating frequency 8 MHz DC Offset 15mV Power Consumption (no signal. no load) < 1200 p.W Typical Supply Voltage Range 2.4 to 14 V 35 V/p.s Slew Rate ANALOG SWITCH - (AS1) Functional Block Diagram: Typical Performance Characteristics: ON RESISTANCE vs DRAIN VOLTAGE INPUT OUTPUT 270 ENABLE-- 240 rJf' - 210 ....... ~ :c Q, 180 I L.J ~ ~ z a 150 -- 120 - 90 60 30 o o A. IDS = 1 mA A:TA = 125°C B:TA= +25 0 C C:TA= _55°C 2 I ~ I I" ~ / I,...... . /~J / r' . / 'V/ --" 4 V 6 8 10 DRAIN VOLTAGE - (VOLTS) 11-10 12 14 wr Siliconix incorporated 1505 ~ MEMORY CELLS MEMORY CELL - (RAM1) Typical Electrical Characteristics: 0 Test Conditions: VOO= 12 V,TA = 25 C Functional Block Diagram: Parameter INPUT WS RAM 1 OUTPUT Value Write Settling Time 20 ns Read-out Time 20 ns I • WS =Write Select RS = Read Select RS TIMERS - PRECISION TIMER - (555) Circuit Description: This precision timer is capable of producing accurate time delays or frequencies. It is ideal for applications that require excellent frequency stability and high supply voltage rejection. In addition, this timer can be used as a precision Schmitt trigger or threshold detection circuit. The threshold levels are set by three external resistors, R. To achieve minimum voltage dependency, the voltage supply of the resistor-ladder has been connected to the voltage supply of the timer. The reset pin, when enabled, discharges the capacitor and disables the charging process. Typical Electrical Characteristics: 0 Test Conditions: Voo= 12 V,TA = 25 C Parameter Value Typical Operating Frequency o to 4 MHz Typical Supply Voltage Range 2.4 to 14 V l:!. f over Operating Range DC Current, 100 (INl and IN2 at VSS without load) Operating Temperature Range <:!:5 % 300 pA to 900 pA -55 to +125 0 C 11-11 WY'Siliconix incorporated 1505 ~ TIMERS (Cont'd) FUNCTIONAL BLOCK DIAGRAM RESET --, R1 I OUTPUT I I I I I I I I R2 C I L -1 VSS EQUIVALENT GATE COUNT FOR APPROXIMATION OF ARRAY SIZE DEVICE CELLS DESCRIPTION DEVICE CELLS DESCRIPTION 4000 4001 4002 4006 4007 4008 4011 4012 4013 4014 Dual 3-lnput NOR Gatellnv Quad 2-lnput NOR Gate Dual 4-lnput NOR Gate 18-Bit Static Shift Register Dual Pair + Inverter 4-Bit Full Adder (O.C.) Quad 2-lnput NAND Gate Dual 4-lnput NAND Gate Dual Type D FF Gate 8-Bit Static Shift Reaister 4015 4016 4017 4018 4020 4021 4022 4023 4024 4025 Dual 4-Bit Static Shift Register Dual Analog Switch/Quad Mult. Decade Johnson Counter/Divider Presettable Divide by N Counter 14-Bit Binary Counter 8-Bit Static Shift Register Octal Counter/Divider Triple 3-lnput NAND Gate Seven Stage Ripple Counter 11-12 4 4 3 100 51 4 3 18 53 42 6 34 40 139 80 30 3 45 3 Triele 3-lneut NOR Gate H IS05 Siliconix incorporated EQUIVALENT GATE COUNT FOR APPROXIMATION OF ARRAY SIZE (Cont'd) DEVICE CELLS DESCRIPTION DEVICE CELLS 4027 4028 24 24 4029 4032 4034 4035 4038 4042 4043 4044 4046 4049 4050 4051 4052 4053 4066 4068 4069 4070 4071 4072 4073 4075 4076 4077 4078 4081 55 46 145 43 45 40 16 16 10 Dual J-K Flip Flop BCD to Decimal Decoder Binary/Decade UplDown Counter Triple Serial Adder (Positive) 8-Bit Universal Bus Register 4-Stage Shift Register Triple Serial Adder (Negative) Quad Latch Coder/Driver Quad NOR R-S Latch Quad NAND R-S Latch Phase Locked Loop Hex Inverter/Buffer Hex Buffer 8-Channel Analog Multiplexer 4510 4512 4513 4514 4515 4516 74 25 64 68 78 147 4518 4519 4520 4522 4526 4528 70 23 64 74 74 26 Dual BCD Up Counter 4-Bit AND/OR Selector Dual Binary Up Counter BCD Divide-by-N Counter Binary Divide-by-N Counter Dual Monostable Multivibrator 4529 7400 Dual 4-Channel Analog Multiplexer Triple 3-Channel Analog Mult. Quad Bilateral Switch 8-lnput NAND Gate Hex Inverter Quad Exclusive OR Gate 7401 7402 7403 7404 7405 7408 7409 7410 7411 7412 38 3 3 4 4 3 3 4 4 3 5 3 Dual 4-Channel Multiplexer Quad 2-NAND Gate Quad 2-NAND Gate (O.C.) Quad 2-NOR Gate Quad 2-NAND Gate (O.C.) Hex Inverter Dual Schmitt Trigger Hex Schmitt Trigger 3-AND Gate (O.C.) 4082 4093 4094 4099 40160 40161 40162 40163 12 9 93 65 74 74 74 76 40174 40175 86 24 40194 4502 129 8 4503 4504 4508 6 10 33 65 105 24 12 4 8 13 13 15 15 40 8 12 14 6 5 17 DESCRIPTION BCD UplDown Counter 8-Channel Data Selector BCD to 7 Seg. LatchlDec.lDriver 4/16 Line Decoder (High) 4/16 Line Decoder (Low) Binary Up/Down Counter Hex Inverter Quad 2-AND Gate Quad 2-AND Gate (O.C.) Triple 3-NAND Gate Triple 3-AND Gate Triple 3-NAND Gate (O.C.) Quad 2-lnput OR Gate Dual 4-lnput OR Gate Triple 3-lnput AND Gate Triple 3-lnput OR Gate Quad D-Type Register Quad Exclusive NOR Gate 8-lnput NOR Gate Quad 2-lnput AND Gate 7413 7414 8 24 7415 7420 Dual 4-lnput AND Gate Quad 2-1 and Schmitt Trigger 8-Stage Shift/Store Register 8-Bit Addressable Latch 7421 7422 7426 7427 5 3 4 3 4 3 Decade Counter Binary Counter Decade Counter Binary Counter Hex D Flip Flop 7430 7432 7437 7438 3 4 3 3 Quad D Flip Flop 7440 7442 3 26 4-Bit Univ. Shift Register Strobed Hex Inverter/Buffer 7447 7448 48 51 BCD to Decimal Decoder BCD/7-Segment Decoder/Driver BCD/7-Segment DecoderlDriver Hex Three-State Buffer Hex Level Shifter 7451 7454 10 9 Dual 2-AND-OR-INV Gate Quad 2-AND-OR-INV Gate Dual 4-Bit Latch 7455 5 Dual 4-NAND Gate Dual 4-AND Gate Dual 4-NAND Gate (O.C.) High Volt Quad 2-NAND Gate Triple 3-NOR Gate 8-lnput NAND Gate • Quad 2-0R Gate Quad 2-NAND Buffer Quad 2-NAND Buffer (O.C.) Dual 4-NAND Buffer Dual 4-lnput Gate 11-13 ID H 1505 Siliconix incorporated EQUIVALENT GATE COUNT FOR APPROXIMATION OF ARRAY SIZE (Cont'd) DEVICE CELLS DESCRIPTION 7473 7474 7475 7476 7477 7478 7483 7585 7486 74107 74109 74112 74113 74114 74125 74126 74132 74138 74139 74151 74153 74154 74155 74156 74157 74158 74160 74161 74162 74163 Low Power-Schottky Dual J-K FF Dual D Flip Flop Quad Latch Dual J-K Flip Flop Quad Latch Dual J-K W/Pre Co 4-Bit Full Adder 4-Bit Magnitude Comparator Quad Exclusive OR Gate Dual J-K Flip Flop Dual J-K Flip Flop J-K Flip Flop (Negative) Dual J-K Flip Flop Dual J-K Flip Flop Tri-State Quad Buffer Tri-State Quad Buffer Quad Schmitt Trigger Expandable 3/8 Decoder Expandable Dual 2/4 Decoder 8-lnput Multiplexer Dual 4-lnput Multiplexer 4-Line to 16-Line Decoder"" Dual 2/4 Demultiplexer Dual J-K Flip Flop Quad 2/1 Multiplexer Quad 2/1 Multiplexer (Inv Out) Preset Decade Counter Preset Binary Counter Preset Decade Counter (Syn-Cir) Preset Binary Counter (Syn-Cir) 11-14 24 16 29 28 32 28 47 111 8 24 24 28 24 28 8 8 16 24 18 86 24 130 20 20 32 32 87 91 90 93 DEVICE CELLS DESCRIPTION 74164 74168 74169 74173 74174 74175 74190 74191 74192 74193 74196 74197 74247 74248 74249 74253 74257 74266 74279 74283 74353 74365 74366 74367 74368 74373 8-Bit Shift Register Decade Up/Down Counter Binary Up/Down Counter Tri-State Quad D Register Hex 0 Flip Flop Quad D Flip Flop Up/Down Decade Counter Up/Down Binary Counter Up/Down Decade Counter Up/Down Binary Counter Presettable Decade Counter Presettable Binary Counter BCD/7-Segment Decoder/Driver BCD/7-Segment Decoder/Driver BCD/7-Segment Decoder/Driver Dual 4-lnput Multiplexer"" Quad 2-lnput Multiplexer""" Quad Exclusive NOR Gate Quad Set-Reset Latch 4-Bit Full Adder Tri-State Dual 4-Bit Mux (Inv Out) Tri-State Hex Buffer Tri-State Hex Inverter Tri-State Hex Buffer Tri-State Hex Buffer Tri-State Octal D Flip Flop Quad Exclusive OR Gate 7438~ 35 105 87 56 36 24 108 109 104 105 80 77 48 48 40 48 12 8 12 53 24 33 29 21 16 64 8 Do not use except for slow speeds "" Simpler using tr!lnsmission gates " " "Use transmission gates and decode IS05 .... Siliconix incorporated ~ IS05 INTERFACE OPTIONS SILlcbNix DAISY~ SUPPORTED CAD SYSTEM PERSONAL LOGICIAN LOGICIAN DAISY~ PERSONAL LOGICIAN LOGICIAN FULL DESIGN NETLIST SIMULATED NETLIST SCHEMATIC ELECTRICAL SPECS SIMULATION VECTORS .. I [P[1.t!l@l .. .[il[11D@l PACKAGE SELECTION ID PARAMETRIC SIMULATION 11-15 Packaging lEI ...,. Siliconix incorporated ~ TABLE OF CONTENTS Plastic DIP (J. N Suffix). 8-16 Leads .......................................•..•.....••. 12-1 Plastic DIP (J. N Suffix). 24-48 Leads ................................•................. 12-2 Plastic DIP (J. N Suffix). 24 Leads. 0.3" Narrow Body .....•....................•......... 12-3 CerDIP (K. Q Suffix). 14-20 Leads .................................................... 12-4 CerDIP (K. Q Suffix). 24-40 Leads. 0.6" Wide Body .............................•....... 12-5 Side Braze DIP (P. D Suffix). 14-24 Leads ....•..............•....................•....• 12-6 Side Braze DIP (P. R. D Suffix) 24-48 Leads. 0.6" Wide Body .....................•....... 12-7 SO Package (Y Suffix). 8-16 Leads ..................................•.•..•..••..•..•. 12-8 SO Package (Y Suffix). 16-28 Leads. Wide Body ........................................ 12-9 PLCC Package (N. P Suffix). 20-84 Leads . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 12-10 CerQuad Package (M Suffix). 28 & 44 Leads ...................................•...... 12-11 CLCC Package (M Suffix). 44 Lead ...........•...............................•...... 12-12 LCC Package (Z. E Suffix). 20 & 28 Leads .•..............•..•..•.•................... 12-13 Flat Package (L Suffix). 14 Lead. Obsolete Version ..................................... 12-14 Flat Package (L Suffix). 14 & 16 Leads ............................................... 12-15 MO-002AG (Formerly TO-78) .............................•..•...................•.. 12-16 MO-002AK (Formerly TO-99) ...............•....................•.....•.....••..•.. 12-17 MO-006AD (Formerly TO-100) .........•..•......................•...........•...... 12-18 ....,. Siliconix incorporated ~ Plastic DIP (J, N Suffix), 8·16 Leads MILLIMETERS MIN MAX 3.81 5.08 1.27 .38 .38 .51 .89 1.65 .20 .30 9.65 11.68 17.27 19.30 18.93 21.33 22.35 24.38 24.89 26.92 7.62 8.26 5.59 7.11 2.29 2.79 7.37 7.87 3.175 3.81 1.27 2.03 1.02 2.03 1.02 2.03 .38 1.52 1.02 2.03 1.02 2.03 OIM. m 16;==;==r==v/ I;=o=r==;===;= TI A A(1) 8 8(1) C 0-8 0-14 0-16 0-18 0-20 E E(1) e(1) e(A) L Q(1) S-8 S-14 S-16 S-18 S-20 , I l '\ J "" It o INCHES MIN MAX .150 .200 .015 .050 .015 .020 .035 .065 .008 .012 .460 .380 .6BO .760 .745 .840 .8BO .960 .980 1.060 .325 .300 .220 .280 .090 .110 .290 .310 .125 .150 .050 .080 .040 .080 .040 .080 .015 .060 .040 .080 .040 .080 "\\ \\ ~ t.(A)-J..~K MAX 12-1 WY'Siliconix incorporated ~ Plastic DIP (J, N Suffix), 24·48 Leads rn =;=:;=;=;=;=;I\;=r:;=r=;=;: ~I 2 11.;=;=;1i"i"i"i I II II -JL~ I ./ c e(A) ---1 15 0 MAX DIM. A A(1) 8 8(1) C 0-24 0-28 D-40 D-48 E E(1) e(1) e(A) L Q(1) S 12-2 MILLIMETERS MIN MAX 3.81 5.08 .38 1.27 .38 .51 .89 1.65 .20 .30 29.97 33.02 35.05 38.10 50.29 53.34 60.45 63.50 15.24 15.88 13.21 14.73 2.29 2.79 14.99 15.49 3.175 5.08 1.27 2.03 1.02 2.54 INCHES MIN MAX .150 .200 .015 .050 .015 .020 .035 .065 .008 .012 1.300 1.180 1.380 1.500 1.980 2.100 2.380 2.500 .600 .625 .520 .580 .110 .090 .590 .610 .200 .125 .050 .080 .040 .100 tI"JP'" ~ Siliconix incorporated Plastic DIP (J, N Suffix), 24 Leads, 0.3" Narrow Body m E(1) E =;=;==;==;==;=;==;=;==;==;=;==r===;:=r=;==;=:;==;==;=,Lbi 1A:;==:;=:;==;=2 1+-------- D -------+1 -I rDIM. A A(1) 8 8(1) C D E E(1) e(1) ~. L Q(1) S e(1) MILLIMETERS MIN MAX 3.B1 5.0B .3B 1.27 .3B .51 .B9 1.65 .20 .30 29.97 32.00 7.62 B.26 INCHES MIN MAX .150 .200 .015 .050 .015 .020 .035 .065 .OOB .012 1.1BO 1.260 .300 .325 5.59 2.29 7.37 .220 .090 .290 .125 .050 .040 3.175 1.27 1.02 7.11 2.79 7.B7 3.B1 2.03 2.03 .2BO .110 .310 .150 .OBO .OBO III 12-3 ..... Siliconix incorporated ~ CerDIP (K, Q Suffix), 14·20 Leads 11 ~~=2~=-~-==-~~~=r~~~ 1') I ------~~I D Q(1) A L OIM. A A(1) 8 8(1) C 0-14 0-16 0-18 "0-20 E E(1) e(1) e(A) L L(1 ) Q(1) S-14 5-16 5-18 5-20 Q 12-4 MILLIMETERS MIN MAX 4.06 5.08 .51 1.14 .51 .38 1.14 1.65 .20 .30 19.05 19.56 19.05 19.56 22.35 22.86 23.88 24.38 7.62 8.26 6.60 7.62 2.54 8SC 7.628SC 3.18 3.81 3.81 5.08 1.27 2.16 1.65 2.41 .38 1.14 .76 1.52 .25 1.02 0° 15° INCHES MIN MAX .160 .200 .020 .045 .015 .020 .045 .065 .008 .012 .750 .770 .750 .770 .880 .900 .940 .960 .300 .325 .300 .260 .1008SC .3008SC .125 .150 .150 .200 .050 .085 .065 .095 .015 .045 .030 .060 .010 .040 o° 15° Ir'F' Siliconix ~ incorporated CerDIP (K, Q Suffix), 24-40 Leads, 0.6" Wide Body s~ ~I D Q(l) ~~~A L(lr_~VVII UUUU[~JjL B(l)~ ~ -+l I+- e(l) DIM. A A(l) B B(l) C D-24 D-28 D-40 e(l) e(A) E El L Ll Ql S O! B-II- MILLIMETERS MIN MAX 4.06 5.0B .51 1.14 .3B .51 1.14 1.65 .20 .30 31.50 32.00 36.58 37.08 INCHES MAX MIN .200 .160 .045 .020 .015 .020 .045 .065 .012 .OOB 1.240 1.260 1.440 1.460 51.82 52.32 2.54 BSC 15.24 BSC 15.BB 15.24 2.040 2.060 .100 BSC .600 BSC .625 .600 12.95 3.1B 3.Bl 13.46 3.Bl 5.0B .510 .125 .150 .530 .150 .200 1.27 2.16 .050 .OB5 1.52 0° 2.29 15° .060 0° .090 15° 12-5 ..... Siliconix incorporated ~ Side Braze DIP (P, D Suffix), 14-24 Leads -I I-S(l) m II 2 D T L(l) L ~ B(l) .... H e(l) DIM. A A(l) 8 8(1) C 0-14 0-16 0-18 0-20 0-24 E E(l) e(l) e(A) L Q(l) S-14 S-16 S-18 S-20 S-24 12-6 LJ A ~t:- e(A)- l B~~ MILLIMETERS MIN MAX 2.67 4.44 .64 1.39 .38 .53 .97 1.52 .20 .30 17.53 19.55 19.56 21.08 22.36 23.62 24.89 26.16 29.97 31.24 7.37 8.25 7.12 7.87 2.548SC 7.628SC 3.18 4.44 .25 .77 2.41 .51 1.65 .77 1.65 .77 1.65 .77 2.41 INCHES MIN MAX .105 .175 .025 .055 .015 .021 .038 .060 .012 .008 .690 .770 .770 .830 .930 .880 1.030 .980 1.180 1.230 .290 .325 .280 .310 .1008SC .3008SC .125 .175 .010 .095 .030 .020 .065 .030 .065 .030 .065 .030 .095 - ..... Siliconix incorporated ~ Side Braze DIP (P, R, D Suffix) 24-48 Leads, 0.6" Wide Body ITT ~1~2~~d~~h=~Jl I s-l4 [nm d' L(1) 8(1) D I I j.H.l I e(1) Q(1) + VA A(1) L -II. 8 A A(1) B B(1) C 0-24 MILLIMETERS MIN MAX 2.16 4.83 .51 1.78 .38 .58 .97 1.52 .20 .30 29.98 30.98 INCHES MIN MAX .085 .190 .020 .070 .015 .023 .038 .060 .008 .012 1.220 1.180 0-28 35.06 36.22 1.380 1.430 0-40 0-48 E E(1) 50.30 60.45 15.12 51.56 61.72 15.87 1.980 2.380 .595 2.030 2.430 .625 OIM. e(1) elAl L Q(1) S 14.73 15.49 2.54 BSC 15.24 BSC 3.18 4.45 .25 .76 1.65 - .580 .610 .100 BSC .600 BSC .125 .175 .010 .030 .065 lEI 12-7 ~ ~ SO Package (Y Suffix), 8·16 Leads DIM. A A(1) S C 0-8 0-14 0-16 E e H L e 12-8 MILLIMETERS MIN MAX 1.75 1.35 .10 .20 .35 .45 .18 .23 4.60 5.20 8.35 8.95 10.20 9.60 INCHES MIN MAX .053 .069 .004 .008 .014 .018 .007 .009 .181 .205 .329 .352 .378 .402 3.55 4.05 1.27 SSC 5.70 6.30 .60 .80 0° 8° .140 .160 .050 SSC .224 .248 .024 .031 8° 0° Siliconix incorporated ..... Siliconix incorporated ~ SO Package (y Suffix), 16-28 Leads, Wide Body 1 ~2~J OIM. A A(1) B C 0-16 0-18 0-20 0-24 0-28 E e H L e MILLIMETERS MIN MAX 2.15 2.90 .10 .30 .35 .45 .23 .28 10.75 9.95 11.25 12.45 12.50 13.30 15.05 17.60 7.25 1.27 9.80 .60 0° 15.85 18.40 8.00 BSC 10.60 1.00 8° INCHES MIN MAX .085 .114 .. 004 .012 .014 .018 .009 .011 .423 .392 .443 .490 .492 .524 .593 .624 .693 .724 .285 .315 .050 BSC .386 .417 .024 .039 ° 8° o 12-9 ".". Siliconix ,.6;11 incorporated PLCC Package (N, P Suffix), 20-84 Leads 11'- DIM. A A(1) A(2) B B(1) 0-20 0-28 0-44 0-52 0-68 0-84 0(1)-20 0(1 )-28 0(1)-44 0(1)-52 0(1)-68 0(1)-84 0(2)-20 0(2)-28 0(2)-44 0(2)-52 0(2)-68 0(2)-84 e(1) 12-10 MILLIMETERS MIN MAX 4.20 4.57 2.29 3.04 .51 .553 .331 .812 .661 10.03 9.78 12.32 12.57 17.65 17.40 19.94 20.19 25.02 25.57 30.10 30.35 8.890 9.042 11.430 11.582 16.510 16.662 19.050 19.202 24.130 24.330 29.210 29.413 7.37 8.38 9.91 10.92 14.99 16.00 18.54 17.53 22.61 23.62 27.69 28.70 1.27 BSC INCHES MAX MIN .180 .165 .120 .090 .020 .013 .021 .026 .032 .385 .395 .485 .495 .685 .695 .785 .795 .985 .995 1.195 1.185 .350 .356 .450 .456 .650 .656 .750 .756 .950 .958 1.150 1.158 .290 .330 .390 .430 .590 .630 .730 .690 .890 .930 1.090 1.130 .050 BSC A(2) W'F' Siliconix ~ incorporated CerQuad Package (M Suffix), 28 & 44 Leads 1....1 - - - - 0 - SQUARE----..! 0(1) - SQUARE::::.:=:] I-'--"'-L.._ T 0 (2) e(1) DIM. A A(1) A(2) B B(1) 0-28 0-44 D(1)-28 0(1)-44 0(2)-28 0(2)-44 e(1) MILLIMETERS MIN MAX 4.20 4.83 2.29 3.04 .51 .46 .56 .81 .66 INCHES MIN MAX .165 .190 .090 .120 .020 .018 .022 .032 .026 12.57 .495 .485 .685 .695 .442 .458 .642 .658 .390 .430 .590 .630 .050 BSC 12.32 17.40 11.23 16.31 9.91 14.99 1.27 17.65 11.63 16.71 10.92 16.00 BSC 12-11 ..,. Siliconix incorporated ~ CLCC Package (M Suffix), 44 Lead· 8(1) L "'--r-' 0(2) 1 + - - - - - D - SQUARE - - - - - - + 1 DIM. A A(l) A(2) B B(l) D D(l) D(2) e 12-12 MILLIMETERS MIN MAX 2.54 3.43 2.03 3.30 .64 .58 .33 .51 .81 17.27 17.78 15.95 16.81 INCHES MIN MAX .100 .135 .080 .130 .025 .013 .023 .020 .032 .700 .680 .628 .662 14.99 16.51 1.27 Bse .590 .650 .050 Bse 14--+1 A ..w" Siliconix ~ incorporated LCC Package (Z, E Suffix), 20 & 28 Leads L(1) 1.---..1 I I L-_4 1 E 2 I I I r- L DIM. A A(1) B 0-20 0-28 E-20 E-28 e L L(n MILLIMETERS MIN MAX 1.52 2.54 1.27 2.16 .56 .71 8.69 9.09 11.23 11.63 8.69 9.09 11.23 11.63 INCHES MIN MAX .060 .100 .050 .085 .022 .028 .342 .358 .442 .458 .342 .358 .442 .458 1.27 BSC 1.14 1.40 1.96 2.36 .050 BSC .045 .055 .077 .093 IEII 12-13 .... Siliconix incorporated ~ Flat Package (L Suffix), 14 Lead, Obsolete Version ~D-- T L k --*T T I- lr t f E(2) E .... 1 ~ I- 2 L II I 81 I - I- -l Ip 0 0 0 QL DIM. A b c D E e E(2) E(3) k L Q S1 12-14 E(3) MILLIMETERS MIN MAX 1.78 2.16 .48 .38 .10 .15 INCHES MIN MAX .070 .085 .015 .019 .004 .006 6.10 6.60 6.10 6.60 1.27 SSC 4.32 5.08 .76 1.02 .20 .38 7.37 8.89 .25 .51 .64 .25 .265 .240 .240 .265 .050 SSC .170 .200 .030 .040 .008 .015 .290 .350 .010 .020 .025 .010 ...r Siliconix incorporated ~ Flat Package (L Suffix), 14 & 16 Leads Q ~------D------~ T 1 \ ( ~ I I II I I I I S ~ ~~4-~ ~~ e~S1~ 1:- T E 1\ 2 1 l ... ~I 1 T I E3 L • New Outline Meets MIL-M-38510G DIM. MILLIMETERS MIN MAX INCHES MIN MAX A b c 0-14 0-16 E-14 E-16 e E2 E3 k L Q S S1 2.03 2.54 0.38 0.48 0.10 0.15 8.64 9.14 10.41 9.91 6.10 6.60 7.11 6.60 1.27 SSC 4.45 4.95 0.76 1.27 0.20 0.38 7.62 8.89 0.66 1.14 1.14 0.13 .080 .100 .015 .019 .004 .006 .340 .410 .390 .410 .240 .260 .260 .280 .050 SSC .175 .195 .030 .050 .008 .015 .300 .350 .026 .045 .045 .005 12-15 trr ~ MO-002AG (Formerly TO-78) 1T DI -A ~ ~~ I I ~s I I.--~ I ~.~F DIM. A 00 00 o 0(1} e e(1} L- MILLIMETERS MIN MAX INCHES MIN MAX 4.19 .41 8.51 7.75 5.08 2.54 .165 .016 .335 .305 .200 .100 F - j .71 .74 12.70 k L 12-16 0b .l... T 4.70 .53 9.39 B.50 esc esc 1.02 .86 1.14 - .02B .029 .500 .185 .021 .370 .335 esc esc .040 .034 .045 - Siliconix incorporated .... Siliconix incorporated ~ MO-002AK (Formerly TO-99) DIM. A A(1) 0S 0b 0D 0D(1) e e(1) F j k L MILLIMETERS MIN MAX 4.70 4.19 1.01 .25 3.56 4.06 .41 .53 8.51 9.39 8.50 7.75 5.08 SSC INCHES MIN MAX .165 .185 .010 .040 .160 .120 .016 .021 .335 .370 .305 .335 .200 SSC 2.54 SSC ,1.02 .100 SSC .040 .028 .034 .029 .045 .500 - .71 .74 12.70 .86 1.14 - - lEI - 12-17 .... Siliconix incorporated ~ MO-OOSAD (Formerly TO-100) :-LI A(l)-1 IT 00 h I I I I Z I ! ! I I 00(1) lJ ---l DIM. A A(l) 0S ob 00 00(1) e e(l) F j k L 12-18 ! ! 0b 1 T MILLIMETERS MIN MAX 4.70 4.19 .25 1.02 2.79 4.06 .41 .53 8.51 9.39 7.75 8.50 5.84 SSC INCHES MIN MAX .165 .185 .010 .040 .120 .160 .021 .016 .335 .370 .335 .305 .230 SSC 2.92 SSC 1.02 .71 .86 .74 1.14 12.70 - .115 SSC .040 .028 .034 .029 .045 .500 - - - Applications l1li . . . Siliconix incorporated ~ TABLE OF CONTENTS AN88-2: Microprocessor Compatible Multiplexers Facilitate Video Switching Designs .••.....................•...•....................••...... 13-1 AN88-1: Applications For the D469 - A High Current Power Driver ....••...•............•. 13-24 AN87-4: Improve System Precision with the Si7652 Chopper-Stabilized Optional Amplifier .......•.............•................................. '. . . • . . . . 13-29 AN87-3: The Si7541A 12-8it CMOS Multiplying DAC Theory and Applications ..........•..... 13-41 AN87-2: Efficient ISDN Power Converters Using the Si9100 ...•........................... 13-67 AN87-1: A 1-Watt Flyback Converter Using the Si9100 .................................. 13-74 AN86-1: The DG535/536 Wideband Multiplexer Suits a Wide Variety of Applications .......•.••.........................•..•........................ 13-85 AN84-2: Theory and Applications of the Si7660 and Si7661 Voltage Converters ............. 13-102 AN83-14: A Simple Approach to Si7135/8085 Interfacing .•.......•...................... 13-114 AN83-13: Si8601 Data Acquisition System Interfaces for I/O or Memory Mapped Operation ..........................•..•.....•.•.•....•......•• 13-122 AN83-7: A High Quality Audio Crosspoint Switch .........•............................. 13-128 AN83-6: A System Solution to HP-IL Equipment Interface ..........••........•....•..... 13-131 AN83-4: Improved System Performance Using Microprocessor Compatible Multiplexers .....................•.......•.•.........•.....••......• 13-138 AN83-3: A Microprocessor Compatible Analog Switch Makes Interfacing Easy •............. 13-151 AN8~-1: The DG308A Digitally Switches Analog Signals • . • • . . . . . . • . . . . . . . . • . . . . . . . . . . . . . 13-157 AN76-7: Function/Application of the L161 Micropower Comparator ...........••.•...•.... 13-165 AN76-6: DG300A Series Analog Switch Applications .........•...........•...•.•......•• 13-173 AN75-1: CMOS Analog Switches - A Powerful Design Tool ..•.•........•.••............. 13-189 AN74-2: Analog Switches in Sample and Hold Circuits ...••............................. 13-206 AN73-6: Function/Application of the L144 Programmable Micropower Triple Op Amp ..................................•............................. 13-214 AN73-2: IC Multiplexer Increases Analog Switching Speeds .........•........•........... 13-221 TA87-1: Eliminate the Guesswork in Your Analog Switching Error Analysis ...•.•........... 13-227 TA73-1: Multiplexer Adds Efficiency to 32-Channel Telephone System .......•.•.....•..... 13-232 ~ ~ AN88-2 Siliconix incorporated MICROPROCESSOR - COMPATIBLE MULTIPLEXERS FACILITATE VIDEO SWITCHING DESIGNS Gareth Powell February 1988 For many new communications systems - such as ISDN (Integrated Services Digital Network). cable TV. and local area networks (LANs) - traditional switching techniques have become inadequate. To meet the demands of these applications. semiconductor switching devices must now handle wider bandwidths and offer more on-chip features to achieve low chipcount solutions. Higher integration. smaller packages. easier device paralleling/combining. and improved dynamic performance are essential features for designing large-capacity switching systems. Analog video information is frequently digitized for processing in frame grabbers. TV standard converter (e.g .• NTSC to PAL). time-base correction. special effects. or merely as a means of reducing noise levels and enhancing resolution. However. the price paid for the advantages of the digital technique is the substantially wider bandwidth occupied by the digitized signal. Thus. in a typical 8-bit conversion. the sampling rate must be at least three times the chrominance subcarrier frequency of 4.43 MHz: that is. 13.3 MHz. Thus. the bit rate is 8 x 13.3 = 106.44 Mbps. This bandwidth requirement precludes the use of a majority of components and switching techniques commonly employed in video systems. Video switching applications. such as high-definition TV. digital video equipment. and broadcast studio switches have forced improvements in semiconductor switch performance. The Siliconix DG534 and DG538 are members of a fast growing family of mUltiplexer/demultiplexer devices with performance characteristics optimized for wideband switching applications. This application note presents the benefits of the DG534 and DG538 in a diverse range of wideband switching applications. highlighting the devices' performance features and providing useful circuit design techniques. All eight DG538 Input switches are "T· switches. All four DG534 Input switches are "T" switches. V+ GND V- V+ GND V- SA1 SA1 SA2 SA2 I~ .,.. I DA DA SA3 SM I 11 SB1 SB2 DB :"-1 4/2 8/4 EN WR DECODE LOGIC, ADDRESS LATCHES, I/O CONTROL LOGIC DB EN RS 1----I-oRS WR III i/o Ao A, Ao Figure 1. DG534 and DG538 Functional Schematics 13-1 H AN88-2 Device Description The DG538 is a wideband single-ended 8-to-1 or differential 4-channel multiplexer. Several DG538s can easily be configured to create a more complex matrix or to handle crosspoint functions. The DG534, similar to the DG538 with half the number of channels, is a 4-to-1 single-ended or a 2-to-1 differential multiplexer. D/CMOS processing enables these devices to be optimized for high-frequency Signal handling with low ON-resistance while on-chip CMOS circuitry provides all the level shifting, logic interfacing, and latching functions that permit easy system design. The switch structure utilizes lateral n-channel DMOS transistors configured in a "T" arrangement, as shown in Figure 1. The "T" switches are arranged into two groups. Each group is selected by the second-stage "L" switches. This two-level switching configuration minimizes' channel capacitance and off-state signal crosstalk (maximizes OFF-isolation). For comparison, Figure 2 shows the single-channel crosstalk characteristics of the DG538 video multiplexer and the industry-standard DG508A. Note the 35-dB performance improvement of the DG538 versus the standard CMOS 8-channel multiplexer. The DG538 data sheet specifies all-hostile crosstalk. This is a much more rigorous test specification than single-channel crosstalk since it requires all seven "off" channels to be tied together. More crosstalk signal is seen at the switch under these test conditions because there are seven parallel paths, as opposed to only one, and the crosstalk contribution of the package and the PC board are also more apparent. Nevertheless, the all-hostile crosstalk of the DG534 and DG538 approaches -70 dB at 5 MHz, easily meeting most video switching requirements. It is not merely the "T" and "L" configurations that give improved crosstalk. Careful on-chip layout and optimum device sizing were also required. A small device exhibits low intrinsic capacitances, but has greater ON-resistance and, hence, will give a greater insertion loss. However, by employing DMOS (double diffused MOS) FETs for the switches, an excellent compromise between rDS(ON) and intrinsic capacitances is achieved. Figure 3 shows a cross section of an n-channel device made with the D/CMOS process, incorporating DMOS and PMOS transistors. The fabrication of the "T" switch is shown. The short-channel feature of the DMOS devices offers 8 to 10 times less channel capacitance than a conventional lateral NMOS transistor for a given rDS(ON). Figure 3 also shows the n- and p-channel devices that form the CMOS logic interface, level shifting, and latches. -120 c-... -110 r--." -100 -90 -..... -BO i' ~I"'- -70 -60 l'r-- DGSOBA I~ SINGLE C~~~~~~[K I""" l"'I"- (dB) -50 -40 -30 t- S~ -~ = '\.- .? $ 50 n -20 -10 o DGS3B r-... I"'- - -- ---=100k ~:' ~ 1' .... .... - I I I """" I UlIlllill1M 1 I I" """ 10M 100 M FREQUENCY (Hz) Figure 2. DG538/DG508A Single-Channel Crosstalk 13-2 Siliconix incorporated VS. Frequency AN88·2 ...,. Sillconix incorporated ~ FROM DRIVER CIRCUIT I I I P-- SUBSTRATE I N - CHANNEL DMOS 'T' SWITCH N - CHANNEL PMOS FET DMOS FET I I, / --------------~-------------COMPLEMENTARY MOS f /,.f" '1- METAL (AL) 1IlIIIIIIIIIIII- GATE OXIDE (SI02) _ - POLYSILICON GATE [:::J - AELD OXIDE Figure 3, Cross Section of the D/CMOS Process The cross section shows many pn junctions which would become forward biased if signals applied to the device were more negative than the "p" substrate, For this reason, when handling ac signals, the substrate is connected to a negative voltage (V-) to allow signals to swing below ground. ased with overvoltage transients, thus eliminating fault current flow. 40 Using a negative supply also optimizes device capacitances. The body effect on DMOS devices causes the ON-state capacitance to change as a function of V-. For a fixed analog signal, CON reduces exponentially as the source-to-substrate voltage increases (see Figure 4). Other performance benefits can be attained by choosing a particular V(see Figure 19). In the event of an overvoltage (analog Signal gOing more than a diode drop beyond V-), the pn junction between the source or drain and the substrate will forward bias, causing a large current to flow. This fault current will not damage the device as long as the current flow is less than 20 mAo However, low-impedance source circuitry is typical of many applications; for example, the output impedance of a video buffer amplifier is 75 n. Thus, a means of current limiting should be employed in circuits where overvoltage transients are possible. Figure 5 shows a transient protection scheme that uses a diode in V-, This diode (normally forward biased) becomes reverse bi- ~\. \. I" 30 , l'.. .... ON-STATE INPUT CAPACITANCE ...... (pF) 20 10 ....... DG538DJ ........ -10... DG538DN o 2 3 4 I"-- 5 6 ---7 8 9 10 V SOURCE TO SUBSTRATE (V) Figure 4. DG538 ON-state Input Capacitance vs. Source-to-Substrate Voltage Positive overvoltages (> V+) are a different problem. The switch will merely turn OFF (no enhancement) if Signals approach or exceed V+. The DMOS drain diffusion has a fairly high breakdown voltage (typically > 30 V) . Large avalanche currents can flow during 13-3 III .... Sillconix incorporated AN88·2 ~ breakdown, therefore, either the signals must be externally clamped to avoid exceeding breakdown voltage, or a means of external fault current limiting should be adopted. Since the source diffusion will only develop a voltage during the switch "ON" state, under normal supply conditions this breakdown (source-to-substrate) is unlikely to occur due to'the device turning OFF when the source voltage, Vs, approaches V+. Therefore, external positive overvoltage protection is only required when transients or overvoltages are expected to be in excess of +30 V. 6 5 ./ 4 .",- vT (V) 3 .",- 2 1 0 ". ..,""2 ../ 4 .", 6 8 10 12 14 16 18 VL (VOLTS) Figure 6. DG538 Switching Threshold vs. Logic Supply Voltage (vL ) S1a INPUTS •• • ••• The DG538 and DG534 have tri-state latches on their address pins, allowing three modes of operation: Da OUTPUT Dt, S4b 1. Input Data. In this mode, the multiplel - 26 32 AoVt WR--'RE DalDb EI\ - • •• f- DalDb RS V- EN VIDEO OUTPUT' 0 - - L .... RESET ~ f- .:. ~: ----tWR .---------tl/O +5V ADORES BUS +15 V 6S00 -3V s1a : VIDEO INPUTS DATA BUS S4b AS Da/Db OUT 1/0 VL +5V +15 V -3 V Figure S. Other Microprocessor Interfaces V+ DATA BUS Z80 DG53S/4 +15 V r--~~---t +5 V PSU r------...,.J~-___1 WR OV -3V ...--------liio R VDD Figure 9. Using RS Characteristics The DG538 and DG534 data sheets include detailed operating characteristics. typical parameters. and limit values. The important dynamic characteristics. such as crosstalk and bandwidth. are plotted against frequency (to 100 MHz) to help designers predict system performance. since these parameters are as a Power-up Failsafe measures of the ON-state and OFF-state multiplexer performance. Specialized video specifications not included on the data sheet are presented here to provide a better understanding of the devices' performance and suitability for a wide range of video and general wide band switching applications. 13-7 III AN88-2 ~ ~ o IIN~E~~W~iW-1II1II1 Siliconix incorporated IR~~I~!~I PHASE------ -2 ~ IN~~~]ON ~ (dB) i' 1' .... .... I'~ -20· " -8 PHASE (deg) -40· -10 ~O· -12 1M 10M FREQUENCY ~: 100 M 00illI 1000M (Hz) Figure 10. OG538 Bandwidth and Phase Response Bandwidth Is a measure of the ON-state performance and is defined as the frequency at which the signal falls -3 dB from the low-frequency insertion loss figure. Figure 10 shows the typical frequency characteristics of the OG538 measured on an HP8573A network analyzer. Since a multiplexer channel exhibits ON-resistance. rOS(ON). and ON-state capacitance. C (ON). increasing signal frequencies are progressively attenuated. However. It Is a common misconception that 'the bandwidth can be calculated from the rOS(ON) and C (ON) specifications given on the data sheet. The -3 dB frequency for the model shown In Figure 11 is given by the formula: -3 dB = -------:.-----,=-[ RL X rOS(ON)] C RL + rOS(ON) (ON) Substituting RL = 50 n. rOS(ON) = 50 CION) = 23 pF gives an f -3 dB ~ n. A SPICE simulation of the model shown in Figure 12 gave a 510 MHz -3 dB point. which is much closer to the measured value (see Figure 13). r--------., DG53B I I Sx I rOS(ON) lox I I I I I I VIN: (R gen = 0) I CS(ON)r : : I I I I I I I - "'--------..1 ' and 310 MHz The measured frequency response for the same 50 n load (Figure 10) shows a -3 dB point of 13-8 over 500 MHz. This apparent discrepancy results because the rOS(ON) and CION) are distributed among the five OMOS FETs that form the "T" and "L" switches. INSERTION LOSS (dB) = 20 log VOUT VIN Figure 11. Erroneous Model for Frequency Response Calculations VOUT AN88·2 Silica nix incorporated r -- - --- - - I Rl R2 ---rDS(ON)- - - - - - - - - - ---, R3 R4 Rs I , -_ _ _--J\ ---.----0 V OUT \ ,..... ....... R 1 to Rs C l to Cs \ , /..... ........ \ I ....._ ...... ....... ~? C(ON) = an (Since rDS(ON) = 40.0. ) =4.6 pF (Since C S(ON) =23 pF ) Figure 12. Five-Stage RC Model -4 -s INSERTION LOSS ~ittt1tttltITrrmt::::::~E!:-rTofitj#;t;!;!jI- 5 STAGE RC MODEL r-~v: 0 +10 0 0 I -6 +20 0 -10 0 20 0 -30 0 -40 0 -50 0 -60 0 (dB) PHASE -8 SINGLE STAGE RC MODEL r, I' -10 (deg) -12 1M Figure 13. 10 M 100 M FREQUENCY (Hz) 1000 M Bandwidth and Phase Response for the Models of Figures 11 and 12 Note that the equivalent five-stage RC circuit shown in Figure 12 is not a complete model of the OG538 transmission path. However. it does illustrate the effect of distributed parameters. An actual model would be far more complex. with other reactive elements that incorporate package capacitances. inductances. etc. In the absence of a better model. the circuit shown in Figure 12 is useful for predicting bandwidths in crosspoint systems where the frequency response will be affected by paralleling devices (Figure 14). A 10 n source impedance is included in Figure 14. This source impedance simulates the low-output impedance of a video buffer amplifier generally employed at the input to the matrix. The simulation results of the circuit. using single-stage and five-stage models for different numbers of parallel channels. are shown in Table 2. 13-9 ~ a-=- ~ AN88·2 ~ Table 2 -3 dB Bandwidth (20 LOG VOUT) Number of Parallel Channels V IN Single R-C Stage (Figure 11) 5 Stage R-C (Figure 12) 1 280 MHz 400 MHz 2 250 MHz 340 MHz 4 225 MHz 260 MHz 8 185 MHz 200 MHz 16 170 MHz 160 MHz The "flat" response over the bandwidth of interest is an important requirement for video applications. The Independent Television Companies Association (ITCA) specifies the following gain/frequency limits for a video switching matrix. Mid- to high-frequency response: ±0.1 dB between 100 kHz and 5.5 MHz ±0.25 dB between 5.5 MHz and 8 MHz Siliconix incorporated High-definition TV has much tighter tolerances since it requires bandwidths to 25 MHz. The 0 to 30 MHz frequency response of the DG538 and DG534, shown in Figure 15, is well within the required limits. Group Delay, sometimes called envelope delay or deviation from linear phase, is the phase-shift rate of change through a circuit or equipment with respect to frequency, or alternatively, non-linearity of the group frequency response. In a transient waveform which has a continuous spectrum, the group delay becomes the transmission time of a packet of spectral components. It follows, therefore, that if the group delay is constant for all the required bandwidth, there will be no difference in the arrival times of the various spectral components which make up the bandwidth. Because many different frequency components make up a video waveform, this parameter is of particular relevance in video applications. The measured group delay response of the DG538 is shown in Figure 15. It satisfies the most demanding video requirements. The plot shows less than 500 ps over a 30 MHz frequency range. Above 8 MHz: +0.2 "Response shall fall continuously and smoothly" Although this specification tems used in the United specification and similar to NTSC and sequential color is for 625-line PAL sysKingdom, it is a typical other standards, such as and memory (SECAM). ~ ________~-oVOUT san. ~--- -<1.4 --- --- --- --- -r-- --- ~ -<1.6 RL= SO.n. +0.5 -<1.5 - --o --- - 15 30 FREQUENCY MHz san. Figure 15. DG538/DG534 Group Delay and Normalized Insertion Loss Response to 30 MHz Non-Linearity Distortions 5O.n. Figure 14. Equivalent Diagram of an 8 X N Crosspoint Using DG538s when one VIN Is seleoted to All Outputs 13-10 Color video can be divided into two groups: component video [separate red (R), green (G). and blue (B) signals] and composite video, which contains color and brightness (chroma and luma) information in a single waveform. AN88-2 WY'Siliconix incorporated ~ 0.7 V WHITE- ::::'~'.':,"::'J"'.--- COLOR (OR CHROMINANCE) . ... y ••••••• l ,".:.t~c:c :'''i L......::........ N.w. ••• :: .. j ....\ OV -0.3 V ~ ___ i\. . { '~I~U j;,LOR BURST ~SYNC PULSES -I ~1·~-------------64~s Figure 16. Basic Composite TV Signal Composite video has various specifications that relate to the interaction of chroma and luma. In particular. differential gain and differential phase must be specified for video components or systems. To illustrate these distortions. consider the basic composite TV signal. Figure 16 shows a typical color TV signal. The sync pulses. occurring every 64 Ils. synchronize horizontal line deflection. The color signal contains both luminance and chrominance. When this signal is processed by a domestic TV receiver. the red. green. and blue components are recovered and used to modulate three individual electron beams. Frequency related phase shifts (as opposed to differential phase) will cause no change in picture quality since both color burst and chrominance are equally shifted. • Differential Gain. Expressed as a percentage. this is a form of distortion resulting from changes in the amplitude of the chrominance signal as a function of luminance amplitude. The effect on NTSC and PAL pictures is a change in color saturation with changing luminance level. The eye is fairly tolerant to differential gain since the resulting picture changes are fairly subtle. For instance. a brightly colored car traveling from a sunny area of the picture to a shaded area would appear as though its body color intensity had suddenly changed. The amplitude of the chroma contains the color intensity (color saturation). and its phase difference with respect to the color burst determines the blend (hue) of color. • Differential Phase. Measured in degrees. this is the phase shift of the color subcarrier resulting from a change in the amplitude of the associated luminance component. Differential phase shows up in NTSC pictures as a change in hue. a color change more noticeable in a shaded area of the picture. Specialized equipment is employed to measure differential phase and gain. Specifications. such as ITCA. require standard test signals and dedicated test equipment and techniques. Recognized standard test waveforms are shown in Figure 17. E.B.U. INTERNATIONAL TEST LINE SIGNAL C BRITISH NATIONAL TEST LINE SIGNAL A . 2T ~ ro~ 62 0.14 V \. 5~. ;"f~: 26 2T .J {.;: .~.,' ~ 48 ":- V+,), will become forward biased. Under these conditions, large currents may flow and damage the device. To avoid this condition, the power-up sequence should ensure that VL does not come up before V+. Normally, this will not present a problem if V+ and VL are derived from the same power supply. .::;0.1 0 O~--"~~~~~--+~1~1--~+1~3---+~15~-+~17 v+ (VOLTS) Figure 21. DG538 Supply Ranges to Maintain < 0.1 % and 0.1 0 Differential Gain and Phase Handling Precautions All MOS devices can be damaged by the presence of excessively high electric fields in the gate-oxide region. Such fields can cause the gate oxide to rupture, rendering the device unusable. Mishandling MOS devices may cause catastrophic damage from the build-up of static electricity in the human body, which can reach many thousands of volts. To reduce electrostatic discharge (ESO) susceptibility in the OG534/oG538, all logic inputs are protected by the circuit shown in Figure 22. v+ AO,Al,A2I EN, TO INTERNAL LOGIC INPUT STAGE OF DEVICE AS, iiiiR ,8/4 ,"i/0 __~____-Clv- (SUBSTRATE) Figure 22. ESD Protection Circuit Printed Circuit Board (PCB) Layout and Oecoupling Selecting components optimized for high-frequency signals does not guarantee adequate circuit performance. Good layout techniques are also very important. At high frequencies, stray capacitance between long adjacent signal lines can provide low impedance paths that couple with one another. Power supply lines can couple rf signals from one circuit to another. Components or sockets that protrude on a PCB surface may act as small antennas which pick up or radiate rf signals. To avoid these problems, be sure signal paths between components are as short as possible and make extensive use of ground planes and shielding between adjacent signal paths. The OG534 and OG538 have ground pins isolating adjacent channels. These, when connected to grounded shielding paths, give excellent ac performance. Power supplies should be bypassed by the use of decoupling capacitors mounted as close to the device supply pins as possible. This is of particular importance for the OG534/0G538 since the device substrate connects directly to V-. Two capacitors on each power supply are recommended. A ceramic capacitor of 0.01 to 0.1 J.lF, provides high-frequency signal bypassing, and a tantalum capacitor (1 to 10 J.lF) is adequate to bypass low frequencies. Further decoupling can be achieved by adding a lowvalue series resistor (e.g. 51 0.) in the supply line. 13-13 ~ ...::. ...... Siliconix incorporated AN88-2 ~ frared (FLlR) detectors (night vision systems), CAT (computer aided tomography) scanners, and NMR (nuclear magnetic resonance) medical imaging. Components should be assembled on a PCB in a low profile. The DG538, for example, is available as a 28-pin quad surface-mount package or a 28-pin dualin-line package. The latter has poorer crosstalk performance because it has a larger lead frame and because the device pins are connected through the board. Using sockets should be avoided because they degrade device performance significantly. Figure 23 shows the DG538 as an 8-to-1 video source selector. This circuit has many applications in industrial process monitoring systems or in security systems where eight separate video cameras connect to a single monitor in a sequence. The circuit uses three bits to automatically select each source in turn. An override feature can be incorporated to disable the counter and provide manual channel selection. Applications Applications for the DG538 and DG534 are many and varied, ranging from high-frequency signal switching to lower-frequency, low-level signal routing. An example of a differential configuration application is shown in Figure 24. This circuit may be used in component video systems such as TV camera signal routing. Two devices are required for routing four separate RGB sources and their corresponding audio, sync, or timecode signals. Note that the channel select or address bus is common to all devices. Video Systems The DG534 and DG538 multiplexers are ideal for many wideband switching applications, such as highresolution financial data networks, forward-looking in- +5 V ~ 75.0. +15 V VL V+ S1a I I I 8 VIDEO CAMERAS I I ~ Da VIDEO MONITOR DG538 Db AO A1 A2 +5 V Vee -3V 40248 Figure 23. Baslo Closed-Clroult TV System 13-14 tI"F ~ AN88-2 Siliconix incorporated R SOURCE G 1 B S1a RED S4a L - S1b RSOURCE G 2 B 00538 I S4b AO A1 EN RS 4RGB SOURCES RI--SOURCE G 3 B R SOURCE G 4 B r-- '--- .------ GREEN iY OUTPUTS S1a BLUE S4a S1b 00538 S4b AO A1 EN 4 TIMECODE, SYNC OR AUDIO l Rsl'r '-- 4 TIMECODE, { SYNC OR AUDIO CHANNELS SOURCE SELECT Figure 24. An RGB Plus Tlmecode, Sync, or Audio Switching System A majority of video applications require crosspoint configurations, where a number of inputs must be switched to a number of outputs. Applications requiring this type of matrix switching (both analog and digital) range from PCM (Pulse Code Modulation) or telecommunications data switching to financial information routing. A basic crosspoint configuration (8 x 4) is shown in Figure 25. The data-write control strobes address information to each DG538. In turn. the actual address data (for the required route) is present on the address or route-assign bus. Video output buffers are normally used to drive lengths of 75 0 coax cable. In Figure 25. the loading of switch capacitances and buffer input impedances on a given video source will vary. depending on the number of outputs. For example. when a single source is switched to all four outputs. it is loaded by 4 XCS(ON) (~92 pF) plus 4 x Cln of buffer. This increased loading affects the frequency response and phase shift of the output signal. Figure 26 illustrates this effect by showing the frequency response of a single output signal for an increasing number of channels connected to the source. Additional channels (2. 3. and 4) are loaded with 10 kO to simulate the input impedance of video buffers. 13-15 AN88-2 IN1 IN2 a INs VIDEO IN4 INPUTS INS IN6 IN7 INa Siliconix incorporated H · · S1a ~ : • • D : Db a • DG538 -:: I\-- WR I ·· ··• · ~ ~ AV=2 1/ S4b ~ ~ _ OUT 1 - S1a • Da DG538 Db n ~ ~ .. AV=2 1/ S4b I OUT 2 - 1\ WR _ VIDEO OUTPUTS ~ S1a · • • D : Db • DG538 a • n ~ ~ AV=2 1/ S4b I OUTS - \ WR _ ' - - - S1a ·· ···· • Da DG538 Db S4b WR ~ -t Kyo-- I ADDRESS ROUTE ASSIGN Figure 25. An 8 X 4 Crosspoint Switch 13-16 ~ AV=2 _ - ~JJJ DATA WRITE CONTROL OUT4 ~ Siliconix .&;II incorporated o ....... .... ...... -1 - ..... ......... t-.- r- r-r-. r-...;:: ~ -2 GAIN (dB) - i-.. ....... t- ~ i'r-. , ~ ~~ -3 r\ - -- \ r-r-1\ \ 1- i\ 2 ~ -s 1\ 1\ \ \ \ r\ \ 0.3 M 1\ 100 M 10M FREQUENCY (Hz) 1M -3 dB Lovel \ 700 M Figure 26. Frequency Response of B X 4 Matrix Figure 27 shows the measured frequency response of any of four DG538s connected to a common signal source. In this circuit. an EL2020 wideband op amp (with its input resistance padded down to 1 1(0 to improve switch bandwidth) was used as a buffer. The dotted line shows the frequency characteristics of the EL2020 alone. The gain response meets the ±O.1 MHz to 5.5 MHz requirement of ITeA systems. Better performance can be achieved using an improved video buffer. such as an OPA633. if an increased number of outputs is required. input buffers may be used to avoid performance degradation below tolerable limits. Thus. to maintain the performance shown in Figure 27. no more than four DG538s should be connected to a given input buffer. .... 1"- ....r-- -2 -4 4 X DG538 GAIN (dB) -6 EL2020 " 11k ~ .". ~ 11k 11k 0.3M .... , " I"-.''''r, "" " ....PHASE '\ -T- r y,OiY LONE 10M 1M O· , !> -20· 1\ -40. \ " ", 1k IN !V .... .... " r-..... ....... "I .. ~ -8 ... R.: -.. - VOUT -10 " GAIN 0 PHASE (deg) -so· \ \ 30 M FREQUENCY (Hz) Figure 27. Frequency Response of Four DG53Bs Buffered with EL2020s 13-17 AN88-2 ".,. Siliconix incorporated ~ Since each input buffer drives only four switch impedances and their corresponding output buffer input impedances, no major output power is required (unlike the output buffers which must drive up to 2 V into each 75 .0 cable). Therefore, it is sufficient to employ inexpensive and simple discrete buffers, such as source or emitter follower circuits that require only a transistor (FET or bipolar) plus a resistor. Because simple input buffer designs (Figures 28 and 29) are inexpensive, they are feasible for buffering every input in demanding, high-definition applications. Some applications might demand a dc-coupled system that retains all the dc contents of the signal applied to the buffer. For these applications, the follower circuit shown in Figure 29 may be used. This circuit, which exhibits a low dc offset of <40 mY, uses a Siliconix U440 dual FET to maintain simplicity and efficient use of board space. Lower offsets can be accomplished by using a dual FET with better matching characteristics (e.g., U232). In the circuit shown in Figure 28, L3dB ~ 300 MHz for Rgen = 75 .0 , while offering a low input capacitance. The output signal for this circuit has some dc offset; however, this is not usually a problem because the output of the matrix is frequently ac coupled with a dc restoration (black-level clamp) circuit employed at a later stage. Figure 30 shows a simple black-level clamp circuit that employs a DG271 high-speed analog switch. Figure 31 shows a large 32 x 4 crosspoint matrix. It is frequently better, in terms of system flexibility, to use a smaller crosspoint card (e.g., 8 x 4) as the basic building block. This 8 x 4 card must be designed to allow expansion of the total number of inputs or outputs required by the system. YIN +15 V AV ~------~-------oVOUT 3k.o Rs T 2 5PF . -15 V Figure 28. Single FET Source Follower GAIN = 0.99 dc offset < 40 mV 1/2 U440 vINO----t-l-__.-----. ~----~~----~VOUT 180.0 -15 V Figure 29. FET Buffer Uses Matched JFETs for Low DC Offset I o-------.J ~ Figure 30. Simple Black-Level Clamp Circuit 13-18 gfs x Rs 1 +gfs x Rs J300 o----~-_.,._+-----'\ (DER1J€DCfRNJ~9;'vNC) = W7' AN88-2 Siliconix .6;11 incorporated ANALOG VIDEO BUS 4 VIDEO OUTPUTS 1 2 3 4 1 8X4 ~ 1....4 X DG53B 1 2 3 4 5 6 7 8 I~ n ~ I::'I~ I::' Iv I ... .. /,,- ~ I- 'r---1 .... ~V I::' 1::I~ IV - I ... I~ 32 ~ ~ I::' I~ I~ l1li IV Figure 31. 32 X 4 Crosspoint with Bus Isolation 13-19 AN88 ..2 fIllY' Siliconix .,!!;lI!J incorporated Assuming each card has eight input buffers and four output buffers as shown, expansion of system outputs is easily accomplished by paralleling the inputs to the switch cards. Since each card has all its inputs buffered, many cards may be connected to provide multiple outputs without producing significant loading on the signal sources. However, expanding the number of system inputs is more difficult. Each card output has a low-impedance video buffer that prevents simple paralleling, which would greatly overload the analog video bus. By using DG534 devices in a 4-to-1 mode as a submultiplexing configuration, as shown in Figure 35, each line of the video bus sees only one card output at a time. not available or in hazardous industrial environments where mains-derived power supplies are not permitted. Alternatively, this technique could be adopted in a cable TV application, where the channel switcher or selector could be powered from the incoming video lines. The dc power is coupled to the video coax lines using a 1 mH choke, and it is isolated or removed from the video signal using the capacitors (C1, C2, and C3). Figure 32 shows a method for transmitting dc power down the video coax. This system can be adopted in remote switching locations where a power source is Figure 33 shows a DG538 in a dual 4-by-1 arrangement designed to switch four video sources while providing level compensation and/or gain for each. Another popular video-signal manipulation application is digitally controlled gain or attenuation circuits. For example, digitally controlled gain may be required for level trimming different video channels to be switched to a single processing path. SENDING END r--VIDEO OUT lmH 1 2 3 4 5 6 7 8 8 VIDEO SOURCES RECEIVING END Figure 32. Phantom-Powered Remote Video Switch 13-20 H AN88·2 Siliconix incorporated +15 V { 4 VIDEO SOURCES 0:========1 o S1a S4a .------------1 S1b DG538 Da 1--------1 Figure 33. Programmable Gain Video Selector Data Acquisition Front-End Applications A typical data acquisition system comprises frontend sensor stages followed by signal conditioning stages. The analog sensor signal, after being amplified and filtered, is sampled and digitized using a sample-and-hold circuit and an analog-to-digital converter. The digitized signal is then processed, usually under microprocessor control. Usually, many analog channels must be processed. Due to the high cost of signal-conditioning, fast sam- ple-and-hold, and flash analog-to-digital converter components, it is more feasible to employ a frontend multiplexer so that each channel can be processed in turn. The circuit shown in Figure 34 uses a wide band multiplexer for accurate manipulation of the high-frequency input signals. The "user friendly" control and microprocessor-interface features of the OG538, combined with its proven high-frequency signal handling, make it ideal for this circuit. +15 V o-----I 8 ANALOG • VIDEO • cH~M~LS • S 1a DG538 SIGNAL CONDITIONING SAMPLE HOLD VIDEO ADC • DIGITAL VIDEO OUTPUT SC -3 V SYSTEM CONTROL (eg·.l1Fl Figure 34. A Basic Multichannel Video/rf Processing Circuit 13-21 AN88-2 .... Siliconix incorporated ~ INSTRUMENTATION AMPLIFIER S1b S2a LOW LEVEL TRANSDUCERS °al------I OG538 S2b S3a Db SAMPLE HOLD ADC 1------1 Figure 35. A High-Accuracy Low-Level Signal Processing System The DG534 and DG538 are also effective devices for switching low-level signals. Commonly, data acquisition systems monitor a number of sensor signals that could be the output of various temperature, pressure, or vibration transducers. Generally, these are low-frequency (often dc), low-level signals. Thermocouples, for example, typically have millivolt outputs with tens of JJ.V /oC resolution. To accurately monitor small temperature changes, the multiplexer must not introduce any dc offset or noise. Since the circuitry must handle small signal levels that are prone to noise/mains pickup, digital crosstalk, etc., apply the same layout rules used for high-frequency deSigns, such as sufficient grounding and shielding. The DG538, with its interchannel ground pin and symmetrical on-chip layout, improves circuit accuracy. A differential signal handling system is an established means of low-level transducer interfacing. This system rejects noise pickup, switching transients, and metallic junction dc offsets as common-mode signals. A highly accurate low-level transducer interface circuit using a DG538 in its differential mode is shown in Figure 35. Data Acquisition System Signal Conditioning Before sampling and digitizing, an analog signal frequently requires "cleaning up" and ranging, a process known as signal conditioning. System front ends will invariably pick up unwanted signals. Signal carry- 13-22 ing leads often pass areas that superimpose mains hum, radio-frequency interference, or digital noise on the analog signal to be processed. A well-designed and balanced differential twisted-pair system, such as the one illustrated in Figure 35, will minimize these common-mode signals. Filtering Filter circuits are widely used in the signal conditioning stage. Most often, they take the form of lowpass, high-pass, or band-pass configurations that remove unwanted signals outside the required bandwidth. Figure 36 shows a general configuration for an active first-order all-pass circuit that can be used for providing a digitally controlled variablephase shift, where the phase shift is given by 13 (w) = 2 tan-1 and the delay is found from wRC t d = _---::.2...:..R:.:::C__ (wRC) 2 + 1 Note: -wC = 1/RC = cut-off frequency. For constant delay, w < 0.1 RC. The circuit shown in Figure 36 may be employed as a phase correction system to equalize phase delays associated with different signal paths. A video crosspoint, for example, will exhibit a varying phase delay due to changing load capacitance on the transmission path when a single input connects to between 1 and n outputs (Figure 25). AN88-2 Siliconix incorporated A. LEADING PHASE SHIFT > ......- - - 0 VOLrr V I N o - - - -.... CONTROL LOGIC B. LAGGING PHASE SHIFT 10 k.n. > ......---cVOUT R CONTROL LOGIC Figure 36. A Digitally Controlled Phase Shifter Conclusion This application note has provided information for video, audio, and data acquisition switching system designers. Using the DG534 and DG538 microprocessor-compatible multiplexers from Siliconix simplifies the design task and improves system performance. III 13-23 AN88-1 . , . Siliconix incorporated ~ APPLICATIONS FOR THE 0469 A HIGH CURRENT POWER DRIVER James A. Harnden January 1988 INTRODUCTION Many applications operate MOSPOWER devices as ON/OFF switches. In applications where device switching speed is of less concern and the MOSPOWER device' =? gate capacitance (C Iss) is sufficiently low, they may be driven directly by logic devices such as CMOS or TTL with a pull-up resistor. The prime advantages that encourage use of MOSPOWER devices over bipolar transistors however', is the efficiency gained from reduced rDS(ON) voltage drop and increased switching speeds. The gate of a MOSPOWER device is capacitive (C Isal. The value of C Iss is directly related to the devices size and switching speed is directly proportional to the gate driver's output impedance (R/C). To take advantage of the increased switching speed of larger MOSPOWER devices, a more robust driver than simple logic devices is requireq. The 0469 was designed as an optimized driver for MOSPOWER devices. It contains four independent drive channels, and each channel can be configured as a logically inverting or non-inverting driver. Since the 0469 is a CMOS device it is compatible with low power CMOS logic and microprocessors and draws minimal quiescent current (2.5 rnA). The 0469 switching times (typically 25 ns) are specified with a 500 pF load, but higher capacitive loads may be driven at the penalty of proportionally increased transition times. Output impedance of the 0469 (both pull-up and pull-down) is typically less than B n, permitting peak (transient) charging currents of approximately 1.2 amps (at low duty-cycl~s) . Applications Of The 0469 Quad Driver The 0469 quad driver is well suited to applications such as motor drives. Motors ranging from fractiol1al to integral horsepower can be driven directly with MOSPOWER devices. The 0469 provides optimized gate drive signals and simplifies interface to the logic level control circuitry. 100 V 0469 1"----, . . _--_..1 Figure 1. 13-24 Unipolar MOSPOWER Stepper Motor Drive trr ~ AN88·1 Siliconix incorporated Figure 1 illustrates a "unipolar" configuration widely used in stepper motor drives. In this application the MOSPOWER devices are operated as "low side" switches with their sources, and the 0469 gate driver, referenced directly to ground. Oiodes 01 - 04 protect the MOSPOWER devices from overvoltage as a result of flyback voltage generated by the motor winding when a MOSPOWER device is turned off. MOSPOWER devices offer distinct advantages in lowvoltage motor drive applications. Mobile, battery powered applications such as automotive, aircraft, boats, satellites, missiles and mobile robotics are improved by the efficiency of MOSPOWER devices. Power consumed during transition decreases motor performance and increases heat that must be dissipated. New low ON resistance MOSPOWER geometries increase current handling capability for a given heat sink or decrease heat sink requirements at any given current level. Using an efficient gate driver like the 0469 can further increase efficiency by minimizing quiescent current and transition times as well as providing sufficient gate voltage to minimize the MOSPOWER devices rOS(ON} voltage drop. 12V 1 P-channel MOSPOWER devices are now available with breakdown voltages up to 500 V. As figure 3 illustrates, driving the gates of P-channel high-side devices in a high voltage bridge is slightly more complex than the previous low voltage applications, but still considerably less complex than when n-channel high-side switches are used. Although P-channel devices typically cost more then N-channel devices for a given rOS(ON} rating, the added device cost is often offset by the inexpensive gate-drive circuitry. In figure 3 a depletion mode device is used as a series linear regulator to create a power supply 12 V below the bridge power supply, to power the 0469 MOSPOWER gate driver. Current through the series regulator can be calculated based on the average current needed to drive the total gate capacitance at the percentage of the total duty cycle, plus the quiescent current of the 0469. Capacitor C1 supplies the peak current needed for transient (gate drive) conditions. One particular advantage inherent to this drive technique is that it holds the P-channel upper devices "normally OFF". Absence of a gate drive signal results in the gate-source of Q1 clamped in a safe (low impedance) state. This gate drive technique provides a safe "power-up" condition, as well as additional failure protection should the low supply voltage be interrupted during operation. The "All N-Channel" Half-Bridge Figure 2. Low-voltage Complementary MOSPOWER H-brldge In figure 2 a low voltage H-bridge configuration is demonstrated which provides the motor with bidirectional (bipolar) current drive capability. This arrangement works particularly well in applications that use a single 12 volt battery to power the motor and electronics. By using N-channel MOSPOWER devices as "low-side" switches (sources referenced to ground) and P-channel MOSPOWER devices as "high-side" switches (sources referenced to the battery voltage) the gates of all four devices can be driven directly by one 0469 quad MOSPOWER driver. Bridges using N-channel devices in both the upper and lower switch locations always offer advantages when pushing the "state-of-the-art". The lowest rOS(ON} and highest breakdown voltage MOSPOWER devices in the marketplace will always be N-channel. N- channel material offers more than twice the current-carrying efficiency (carrier mobility) of P-channel material, per unit area. A P-channel device of comparable current, voltage, and rOS(ON} ratings, constructed with comparable cell density, will be more than twice the die area of its N-channel complement. Using N-channel devices in the upper quadrants of the H-bridge complicates gate drive. The gate of the N-channel device must be 10 to 12 V positive (with reference to its source) to turn the device fully ON. In a half-bridge, the high-side N-channel device's source may be at any voltage between a diode 13-25 III AN88-1 ..,. Siliconix incorporated ~ drop below ground and a diode drop above the motor drive voltage. To drive the gate properly, a separate voltage must be generated that is referenced to the high-side N-channel device's source and capable of going at least 10 volts above the motor voltage. In Figure 4, a JFET (03) is used to provide the Pchannel power MOSFET with low gate-source impedance when turned OFF. The J107 has an rOSION) rat- ing of less than 10 .n when the gate-source voltage is less than 4.0 V (minimum cutoff-voltage). Zener diode 01 protects the P-channel power MOSFET gatesource from excessive voltage. Zener diode 03 protects the gate-source of JFET 03 from excessive voltage when 04/05 are ON. The CR100 (02) is a constant-current (1.0 rnA) diode used to turn the JFET (03) ON when 05 is turned OFF. 200 V l2V ~ 1. _ _ _ _ .1 Figure 3. High-Voltage Complementary MOSPOWER H-brldge 500 V 02 CR100 l2V Y--, r-- r ~05 ct.D-t>: 1R31!9r9 I t ~I LOGIC INPUTS R1 'r 07Fj ~~--------------~~----~ I I I-=- Figure 4. "JFET Clamp· for High-side P-Channel Gate Drive 13-26 AN88·1 ...... Siliconix .£II incorporated 04, Qs, R 1, R 2, R3 and C1 form a bi-Ievel current source used to drive the JFET clamp (Q3) and upper P-channel power MOSFET (Q1). When Q4 and Qs are driven on by the preceding logic, they initially source current at a level set by R 1 and R 2. The gate D3 drives the P-channel gate to a voltage level clamped by diode D1, turning the power MOSFET (Q1) ON. After the power MOSFET is turned ON the current source value is reduced by approximately an order or magnitude to maintain the power MOSFET's enhancement voltage. Peak current timing is set by the time constant of R3 and C1 and the maintenance current level is set by the value of R 2 . When the current source driver is turned OFF, constant current diode D2 pulls the gate of JFET Q3 to the high voltage rail, turning Q1 OFF. The P-channel devices gate is driven OFF at essentially the same rate as the rise of Q3'S gate, and held securely OFF by the low impedance of Q3. JFETs (or N-channel depletion mode power MOSFETs which could also be used in this circuit) can easily provide ON resistance low enough to prevent transients on the MOSFETs drain (dv/dt) from generating enough voltage at the gate to allow spurious turn-ON. In Figure 5, a high frequency oscillator (100 kHz) and a small bi-filar wound pulse transformer are used to form floating 12 V power supplies, referenced to the source of each upper N-channel device. The value of supply capacitors C1 and ~ are chosen based on capacitance values of the N-channe,1 gates being driven, the duty-cycle and the quiescent current of 100.0. the floating opto-coupler buffer and emitter follower output buffer stage. Diodes D1 and D2 are added to protect the power MOSFETs gate from overvoltage conditions. An opto-coupler is used to isolate gate drive signals, and the emitter follower output stage provides low impedance gate drive. The high-side drive configuration in Figure 5 allows "static" operation. The high-side N-channel devices can be held ON in a steady-state condition, providing a switching range from dc to the maximum bridge operating frequency. The oscillator operates continuously to provide power for the two floating gate-drive supplies. In this arrangement, the pulse transformer can be driven at a much higher frequency than the modulation frequency, making the transformer smaller and less critical than in configurations that drive the gate directly through a pulse transformer. A dynamic "bootstrap" gate drive isolation technique is demonstrated in Figure 6. Dynamic isolation is compatible with several styles of motor drive and current control that result in continuous modulation. If dynamic gate drive techniques can be applied they often result in reduced cost by eliminating high cost items such as high performance opto-isolators. This configuration of isolation has one other inherent feature when compared to the floating power supply technique discussed previously. When the upper MOSPOWER device is turned OFF, its gate is clamped to the source (by low-impedance P-channel device Q2) to prevent spurious dv/dt turn-ON (See Siliconix MOSPOWER Applications Handbook - dVDS/ dt Turn-ON in MOSFETs). 100.0. II LOGIO INPUTS II~ Figure s. All N-channel Bridge with Opto-Coupled Logic Signal 13-27 AN88-1 . , . Silica nix incorporated ~ 500 V R3 R1 06 C2 Q6-f LOGIC INPUTS Figure 6. Bootstrap High-side N-channel Gate Drive Isolation In operation, when 01 is turned ON, the P-channel clamp (02) assures the gate-source of 04 remains shorted. While 01 is ON, 05 (the lower output MOSPOWER device) will be turned ON. The bootstrap capacitor is then charged from the low-voltage supply, via D1 and 05. When 01 is turned OFF, 02 is also turned OFF releasing the clamp across 04'S gate-source. R1 is allowed to pull the gate of. 03 high, turning it ON. This switches current into the capacitive gate of 04, via D 1, 03 and D3. As 04 begins to turn ON, voltage at the source begins to rise toward the positive motor drive voltage. As it rises it carries with it the reference (low) end of the bootstrap capacitor. D 1 (which has to be a fast recovery diode) reverses, protecting the bootstrap capacitor's charge. Above this point, remaining gate charge must be supplied by the bootstrap capacitor, which must be at least an order of magnitude larger than the MOSPOWER gate capacitance (04) being driven. When the upper MOSPOWER device (04) is fully enhanced, the source will be an rDS(ON) drop below the motor drive voltage and its source will be held at the voltage potential remaining in the bootstrap capacitor, minus voltage drops of 03 and D3. The leakage current of MOSPOWER device (04) will limit the amount of time a high level can be maintained without allowing the stored capacitor voltage to "droop" 13-28 to a dangerous voltage level. As a general rule, 8 volts is a reasonable (absolute minimum) gate drive voltage droop to allow. With less than 8 volts of gate drive, the rDS(ON) of 04 will increase rapidly, increasing power dissipation and motor drive voltage losses. Summary Designing a power MOSFET bridge for a motor drive application requires, as with any power circuit, an understanding of economic and performance requirements. Both design requirements will impact the selection of an "optimized" gate drive technique for the MOSPOWER devices. Some methods of isolating the high-side gate drive are advantagous at low voltages but become inefficient or otherwise unsatisfactory at higher voltages. Other isolation techniques work well over a wide range of voltages but are less economical. Still others provide economic advantages but are incompatible with the controller's modulation scheme. Each isolated high-side gate drive technique will be well suited to a range of applications and less than the optimum choice in others. As demonstrated in this applications note, most of these gate drive circuits can benefit from a flexible and economical integrated circuit such as the D469 CMOS quad driver. 5a,',) Siliconix incorporated ~M~ROVE SVS1TEM IPREC~S~ON \i\f~TH THE S~1652 CHOPPER·STAB~UZED OIPERAT~ONAl AMPUF~ER By Carl Jones and Steve Moore June 1987 Conventional Op Amp Limitations The performance of standard operational amplifier circuits is significantly limited when operating with low-level dc signals. These limitations are caused by the relatively large voltage and current offsets of conventional op amps. The most significant source of error is the input offset voltage, Vas. Even a lowoffset op amp, such as the OP-05, has a typical Vas of 70 /lV. This offset voltage produces an output error of 70 mV with a circuit gain of 1000. To reduce this error, most standard op amps offer offset nulling terminals. Offset nulling is accomplished by connecting a potentiometer across the nulling terminals and trimming the offset to an acceptable value. This procedure is time consuming and expensive because the potentiometer for each op amp must be individually adjusted. Figure 1. An Operational Amplifier In an Inverting Configuration - Equivalent Circuit Another problem associated with op amps operating with dc signals is offset drift. Because Vas drifts over time, the potentiometers must be periodically re-adjusted. This re-adjustment is both expensive and inconvenient, especially with remotely located circuits. Vas also drifts with changes in temperature, and in some cases, the drift can be hundreds of /lV/DC. This temperature drift is a major limitation when amplifying low-level dc signals in an unstable temperature environment. In addition to the input offset voltage, there are also offset currents which induce errors at the output. The difference in these currents is called the input offset current (Ios)and the mean los value is called the input bias current (I B). The output offset caused by these small currents depends on the feedback elements and input drive impedance. Figures 1 and 2 show the relationship between the previously discussed input offsets, the feedback network, and the resulting output errors. TOTAL OLrrPUT OFFSET ~ ( 1+ ~ ) {VOS+ lOS x Ra } Figure 2. An Operational Amplifier In a NonInverting Configuration - Equivalent Circuit 13-29 ~ ~ AN87·4 The SI7652 Solution for Precision Performance The 8i7652 is designed specifically for low-level dc applications. With a maximum input offset voltage of 5 JJ.V (0.7 JJ.V typical), the 8i7652 offers designers dramatically improved Input resolution. Also, both the temperature and the time drifts in Vos are virtually eliminated. Thus, the external trim potentiometer and the costly and Inconvenient periodic adjustments are unnecessary. To achieve these performance features, the 817652 utilizes a differential "chopper-stabilized" approach. However, unlike previous chopper amplifiers, the main amplifier Is always connected to the output of the device. This allows the 8i7652 to operate without the large output glitches that occur with traditional chopper amplifier designs. Careful design of the switching circuitry has minimized the charge Injection errors that are normally associated with chopper designs. The design used for the 8i7652 has excellent common-mode rejection ratio (CMRR) and power supply rejection ratio (P8RR) ratings, which are both typically 130 dB. Built with the 8i1iconix PolyM08 process, the M08FET input devices of the 8i7652 require extremely low bias currents and have low Input offset currents, thereby minimizing another potential source of error. Additionally, the 8i7652 has extremely low noise. The input 1/f noise (low frequency) is typically less than 0.2 JJ.V (p-p). The input noise current is a negligible 0.01 pA/.J'Hz . 8i1iconix incorporated Another valuable feature of the 8i7652 is its very high open-loop voltage gain (AvOL), specified at a minimum of 120 dB (typically 150 dB). The Si7652 Chopper Operation The very low input offset voltage of the 8i7652 is achieved by using an internal nulling amplifier which alternately nulls itself and the main amplifier. A diagram for the basic procedure is shown in Figure 3, and the operating sequence is explained below. Period 1: Initially, switch A is closed and switch A is opened, thus short-circuiting the inputs of the nulling amplifier. Any dc voltage at the output of this amplifier is due to offsets within the amplifier. Period 2: After allowing the output of the nulling amplifier to settle, switch B is closed. The appropriate nulling potential is then applied to the nulling amplifier. The external capacitor, CEXT A, stores this potential for the second half of the complete cycle. Period 3: 8witches A and B open, and switch A closes. This connects the inputs of the nulling amplifier across the inputs of the main amplifier. Since the offsets of the nulling amplifier have already been corrected, the output is now due to the main amplifier offsets. Period 4: By now, the output of the nulling amplifier has settled. 8witch C is now closed and a correcting potential is applied to the main amplifier. This potential is stored on CEXT B while the procedure is repeated. PERIODS os~'tlsO~ Y P +IN o_-,.--------1 (2) I (3) I (4) I (1) I ~1.~I~--t~~t--~t~.1 rl~I~--~ OUTPUT A- 1>-1-+-0 ~No__+~~------I~ I (1) I r~~--~ I t A-jI-i-~ TiEXT CLKIN I CLKOUT C- Figure 3. Functional Block Diagram 13-30 H"'--__ _ " , - I_ _ _ _ _ AN87-4 ..,. Siliconix incorporated ~ All logic signals required to drive the switches are derived from an internal, 400-Hz, oscillator. The 14-pin version of the Si7652 provides the option of using an external clock. The external clock input may be used to synchronize the 8i7652, switching to the system clock to reduce the effects of the input switching glitch. VBla.2 Clamp Circuit Prevents Overload Recovery Delays The basic inverting amplifier configuration is shown In Figure 4. If the input signal is within the correct operating range (determined by the supplies and the gain), then the differential input at the 8i7652 inputs (IIdlff) is virtually zero. However, during an overload condition, the amplifier output stage saturates and can no longer drive the feedback network which maintains accuracy. For example, consider a case where R1 = 1K, R2 = 100K (this gives a closed-loop voltage gain (Av) = -100), and supply rails of ±5 V. An input voltage (II I) of 100 mV will result in an output voltage of 100 mV x -100 = -10 V. This voltage, however, is beyond the range of the power supplies, and the output saturates at -5 V. The feedback network applies a voltage which is less than the voltage required to malntainVdlff at zero. The nulling amplifier can only interpret this voltage as an offset, and when it attempts to correct for the offset, the external capacitor, CEXT B, is charged to the supply rail. When the amplifier comes out of saturation, it may take several seconds to discharge the external capacitor and restore operation of the chopper. INPUT mentary MOSFETs in parallel. The common sources of the parallel M08FETs are tied to the output, and their common drains are brought out via the clamp pin. -\~ >---+------i-oOUTPUT t-----t--o VBla.' - \ Figure 5. CLAMP 14-- The Use of Complementary MOS to Implement an Output Clamp The gate threshold voltages are set so that one of the MOSFETs turns on when the output swings within a few hundred millivolts of a supply rail. If the clamp pin is connected to the summing point of the amplifier, the MOSFETs are effectively in parallel with the feedback resistor (R2). As the output approaches one of the rails, the clamp MOSFETs can be considered variable resistors, reducing the gain of the amplifier (see Figure 6). The effect of using the clamp on the overload recovery time is shown in Figures 7a and 7b. R, V IN o--WIr-I'-I OUTPUT >--+-'-'too·Vo ros >--4--0Vo Vdllf = \b. R, + VI' fl2 RJ+fl2 III D.' J.LF Figure 4. Basic Inverting Amplifier Figure 6. Reduction of Gain Resulting From the Clamp Connection To overcome the overload recovery problem, the 14-pin version of the Si7652 includes an output clamp circuit (Figure 5). This consists of the two comple- 13-31 W1P" Siliconix AN87·4 ~ Input 5 mV/dlv. Output 2 V/dlv. 5 ms/dlv. incorporated semiconductors are connected, a small potential difference, or EMF, is produced across the junction. This EMF increases as the temperature increases. Thermal EMFs can be as large as a few /lV, a significant value for low-level signals. Also, these EMFs can vary by as much as a few /lV/oC, causing additional drift errors. To avoid offset errors due to thermal EMFs, it may be necessary to add junctions. Since the amplifier is differential, the number of junctions must be equal before each input. An example of this design is shown in Figure 8. An Oscillograph Showing the Overload Recovery Time Without Clamp Flguro 7a. Vo .. ;' . ",: :.:'" . .;' " :: J.':':;":':' ';" . :i:,·:: .. ' ,:.. :::~. ..... .. .. " . ·.d .. .. , , Input 5 mV/dlv. Output 2 V/dlv. :;.:,' :":,' ~ t .. ' , ' , .,,' ' 5 ms/dlv. Figure 7b. An Oscillograph Showing the Overload Reoovery Time With Clamp The clamp circuit has already been discussed as a means of minimizing the overload recovery time of the capacitors. Another method is to inhibit capacitor charging during an overload. In the Si7652, this charging is inhibited by detecting the overload conditions and applying a low strobe signal to EXT ClK IN for the duration of the overload. o - Resistor Lead/Solder/Copper Junction o - Copper/l\<>lder/I.C. Lead Junction o - Junction Introduced for Thermal Balance Figure B. Using Junctions to Equalize Thermal EMF's To balance the temperature effects apparent at the inputs, it is important to design a symmetrical circuit. lead lengths on components ahead of the inputs should also be equal. Figure 9 shows a test circuit which illustrates these design features. 50 k.o. 0.1 JiF Tips for Ensuring Precision Operation In systems that resolve microvolts, errors that are often ignored must be taken into consideration. Three of the most common error sources are: thermally generated error voltages [thermal electromotive force (EMF)]. leakage currents, and transformer fields. Thermal EMF is usually the main error source in lowlevel signal applications. Whenever two metals or 13-32 >_---1 VOS x 1000 Figure 9. A Thermally Balanced Test Circuit AN87·4 a"F' Siliconix ~ incorporated Placing high-power dissipative (Le., hot) circuit elements away from the chopper-stabilized amplifier is one precaution. Fans are another source which create large temperature gradients. If cooling is necessary, another method should be employed. Leakage Effects Leakages from circuit elements such as diodes and capacitors must be carefully considered in high-impedance systems. Additionally, leakage from contaminated PC boards and sockets can cause unforeseen errors at the microvolt level. Input guarding, as shown in Figure 10, may be necessary. consideration when using a chopper-stabilized amplifier. The wideband frequency of the device deteriorates when the load impedance is less than the typical output impedance of 18 K. Therefore, load impedances should be greater than 18 K. In this case, the open-loop response will be 20 dB per decade from 0.1 Hz to 500 Hz with phase shifts less than 2° in the transition region where the main amplifier takes over from the nulling amplifier. No problem occurs with dc input signals, since the dc gain is typically greater than 120 dB even with the load impedance of only 1 K. Latch-Up-Free Operation External Il(~ 8' 1 Output IIBI:> 6 Bottom View All junction-isolated CMOS devices inherently contain parasitiC SCR pnpn structures. If the SCR is turned on, excessive supply current may be drawn, thus destroying the device. However, if no voltage exceeds any supply voltage by more than 0.3 V, excessive supply current is not drawn. In addition, the power supplies should reach their operating voltages either before or at the same time as the input signals. If one of these fault conditions occurs, the input current must be limited to less than 1 mA to avoid latchup. Simple Application Circuits Board layout for Input guarding with T0-99 package. Figure 10. Guarding the Input From Board Leakages Figures 11 and 12 show the Si7652 in the basic inverting and non-inverting amplifier configurations. The connections for the optional clamp circuit are also shown. Transformer Fields Electromagnetic fields are another source of error when dealing with low-level signals. If possible, transformers should be placed on a different board than the chopper-stabilized amplifier. If space restrictions or high-quality grounding requires that a transformer be mounted near the amplifier, use a shielded transformer. If shielded transformers are too costly, careful layout can often produce acceptable results. INPUT Q-'1I\I\~~-I ~~--I~ OUTPUT 1 =100k.n. For Full Clamp Effect It is also advisable to keep low-level signal paths as short as possible and to keep high-energy circuitry away from the low-level signal path. Output Loading Considerations Because the open-loop gain is proportional to the output load, output loading is an important practical (R t /R 2 0.1 J1F Figure 11. The SI7652 Configured as an Inverting Amplifier 13-33 AN87-4 WY'Siliconix incorporated ~ 0.1 J.lF Increasing the Output Range INPUT 0----1 >--1~~ OUTPUT A simple circuit used to boost the Si7652 output is shown in Figures 13 and 14. These figures show both the inverting and non-inverting configurations. To ensure stability, it may be necessary to use a small capacitor (10 nF), as illustrated. With these configurations, the precision input characteristics of the Si7652 are maintained while achieving the output voltage and current range of the output op amp. R3 + ( Rl I R2 ) = 100 k.n. For Full Clamp Effect Figure 12. The 517652 Configured as a Non-Inverting Amplifier +5V -11INPUT +15 V o-'l/lJ\~--I >-1--- OUTPUT -15 V 0.1 J.lF Figure 13. An Output Boost Circuit for The 517652 (Inverting configuration) 13-34 ~ ~ AN87·4 Siliconix incorporated tSV INPUT 0-----1 C>---..._---. OUTPUT -15 V 0.1 J.LF -11- - _I C Figure 14. An Output Boost Circuit for The 517652 (non-Inverting configuration) Figure 15 shows the use of analog switches with the Si7652 to allow a number of inputs and lor gains to be digitally selected. A variation of this concept may also be used to produce a programmable precision voltage reference suitable for A/O and 01 A converters. A circuit for this application is shown in Figure 16. +15 V 12 VIN1 VIN2 CH1 DG200A 10 5 +15 V 14 13 CH2 DG201A 7 RF3 100 k,o, 15 -15 V 10 GAIN = RF + RG 7 RG GAIN 1 (X1) GAIN 2 (X10) GAIN 3 (X100) GAIN 4 (X1000) III Ol--------.!~----_---1r-________..:;10, INPUT HI INPUT LO Bl 99 k,o, 2.2 AF 1.0 AF Figure 17. The Sl7652 as a Pre-amplifier For an AID Converter v- v+ GND 0.1 AF 51 52 INPUTS 53 54 55 Si7541A 56 DIA CONVERTER 87 Sa DIGITAL I OUTPUT DATA A2 Al AO 512504 EN DGSoaA a-CHANNEL SINGLE ENDED MULnPLEXER SUCCESSIVE '------l~ APPROXIMATION REGISTER Figure 18. Data Aqulsltlon System The Si7652 has an input impedance of 10 12 and an input bias current maximum of 30 pA. The Si7652 may be used as a unity-gain buffer between the multiplexer output and the AID converter input. This configuration reduces system sensitivity to variations in the multiplexer's on-resistance to the point where those variations contribute a negligible error. Sample-and-Hold Applications In the same data acquisition system, if the input sig- nal varies during the AID conversion, an error, which is dependent upon both the speed of the AID converter and the slew rate of the incoming signal, is generated. A sample-and-hold circuit, shown in Figure 19, reduces this error by taking a sample of the input signal and holding it constant during the AID conversion. The sample-and-hold performance is determined by the speed of the analog switch, the charge injection of the switch, the size of the hold capacitor, and the input bias current and offset voltage of the op amp. 13-37 ~ __ AN87·4 ~ ~ leakage. Better droop rate can be achieved with a slight loss in acquisition speed, using the OGP201A precision analog switch in place of the OG271. 0.1 JLF r-------, INPUT 8i1iconix incorporated ~-"'tl--t-_-I L ___ +__ .J By offsetting the supplies of the 8i7652 as shown, Y,N will range from 0 to 12 V. OUTPUT TTL--------J Low Offset Maintains D/A Linearity Figure 19. Basic Sample-and-Hold Circuit The output amplifier performance often limits the D/A converter accuracy. The popular CM08 0/ A converters show an output impedance which is code-dependent, and thus, any offset voltage generated by the O/A output amplifier results in a combination of system offset and nonlinearity which Is Impossible to trim out. Figure 21 shows the 8i7652 used as an output amplifier that performs the current-to-voltage conversion for an 8i7541 A 12-bit 0/ A converter. The low offset voltage of the 8i7652 is critical to maintaining system linearity. Precision Sample-and-Hold Amplifier The precision sample-and-hold circuit shown in Figure 20 uses a OG271 analog switch in conjunction with the 8i7652. The OG271 is a high-speed switch (t on/off < 75 ns) with very low charge injection (typically 9 pC). Also, to further reduce the effects of charge injection, a capacitor (C1) is added to cancel the charge-induced offsets (pedestal errors). This system keeps pedestal error below 5 mV. If greater accuracy is needed, the capacitor (C2) can be adjusted to totally cancel the coupled charge offsets. The size of the hold capacitor is based on a compromise between input tracking time and droop rate. Aperture time is approximately 100 ns, and the acquisition time is less than 20 lIS. The measured droop rate (1 mV/sec.) Is largely due to the analog switch To demonstrate the importance of a low-offset, lowdrift output amplifier, consider the effect of using a biFET op amp in place of the 8i7652. The high slew rate and low noise of the industry-standard OP-15 make it useful as an output amplifier for the 8i7541A. The top-grade offset voltage of the OP-15 is 250 fJ.V at 25°C, and it shows considerable drift over the 0 to 70°C temperature range, reaching a worst-case 300 pF r-----£~----------- I 1 nF 81 DG271 VIN o-_-'8::102f-_ _-c....-; a..-r--t--=---1--I LOGIC IN LOW = 8AMPLE HIGH = HOLD 0.1 JLF Figure 20. A Practical Sample and Hold Circuit 13-38 AN87·4 trY" Siliconix ~ incorporated 2 k R1 VREF voo= +15 V BIT 1 MSB 18 4 loun VOUT 10 k.o. Si7541 0.1 JlF 500.0. IOUT2 BIT 12 LSB 2 - 10 k.o. Figure 21. The 817652 Used as a DAC Output Amplifier value of 10 mV. A 10-mV offset equals 16 LSB in a 12-bit system with a 2.5-V full-scale range. The linearity error introduced is calculated by dividing the offset by the deviation in the 01 A output resistance; the resulting error current is a fraction of the fullscale O/A converter current. The output resistance of the Si7541 A can vary as much as 5 k!l over the 01 A converter range. Therefore, with a 10-mV offset from the op amp, the error current could reach 10 mV/5 kO = 2 I1A. With a 250 I1A full-scale O/A converter current, the LSB is 250 I1A/4096 61 nA. Thus, the linearity error introduced is 2 I1A/61 nA, which equals 33 LSB. = The total offset of the Si7652 over temperature is less than 10 11V, three orders of magnitude lower than the 10 mV offset using the OP-15. Hence, significant reductions in offset and nonlinearity are made using the Si7652. Differential Thermocouple Amplifier The circuit shown in Figure 22 is designed to measure the low-level outputs of a thermocouple. Thermocouples usually exhibit a thermal EMF between 7 and 75 I1V/oC. These low-level signals require the use of an amplifier with a low offset voltage and low input bias current. Also, using the standard instrumentation amplifier ensures high input impedance operation. The Si7652 has a maximum input bias current of 30 pA and an input impedance of 10 12 . Thus, the measurement error is dominated by the contribution of the analog switch leakage and on-resistance, in addition to thermal EMFs as previously discussed. These errors can be eliminated by using a differential measuring technique and by carefully balancing the thermal EMFs in each branch of the differential amplifier configuration. Figure 23 shows how unwanted thermal EMFs cancel in a differential system. Another advantage of using a differential system is that other common-mode errors (e.g., ac noise, leakage offsets, and switching transients) are also rejected. A temperature reference is also included to provide a zero reading at the reference temperature (often O°C). The temp- ature reference subtracts a voltage, equal in magnitude to the EMF, which would be generated by the thermocouple. There are various methods of obtaining a temperature reference, including using an ice bath, ice point cells, and electronic coldjunction compensators. Figure 23 shows the effect of using a temperature reference. 13-39 --=~ AN87-4 ..... Siliconix .r;;;lI incorporated CH-SELECT DG403 THERMOCOUPLES I _...1 --, I L------I--+------!''---h REFERENCE '---+------"""r--H JUNCTION oOC Figure 22. Differential Measurement of Low Level Thermocouple Outputs CHROMEL TYPE K + ALUMEL oOC Metal Junction Thermocouple Potentials Chromel: Alumel el Chromel: Gold rfl. e3 Alumel: Gold The total thermocouple potential seen by the Instrumentation amplifier Is: - e2 + e2 + el -e3 + e3 -ell O°C = el - ell O°C Figure 23. Simple Model to Illustrate the Differential Cancellation of Thermal EMFs 13-40 .... Siliconix incorporated ~ THE Si7541 A 12·BIT CMOS MULTIPLVING DAC THEORY AND APPLICATIONS By Jack ArmlJos and Carl Jones August 1987 INTRODUCTION Basic DAC Circuit This application note provides the information needed to understand CMOS digital-to-analog converter (DAC) operation and to implement successful designs using the Si7541 A 12-bit DAC. The basic principles of DACs and their main error sources are presented. In addition, a detailed description of the Si7541 A 12-bit DAC and the results of a comparative study with respect to other presently available alternate sources is provided. A series of application circuits with practical recommendations is then presented. This note ends with and an appendix covering voltage references and resistance ladders. A basic DAC can be built using a voltage reference, a set of binary weighted resistors, and a set of switches (Figure 2). An output amplifier converts current to voltage and provides a low-impedance voltage output. In this example, the op amp holds one end of all switches at 0 V. The currents flowing through the resistors are binary-weighted. Each switch is operated by a digital bit, open for a zero and closed for a .. one ". BASIC DAC PRINCIPLES Some of the basic concepts and definitions associated with DACs are best understood by first understanding the function of a simple DAC. Definition A DAC is essentially a digitally controlled potentiometer that produces an analog output (voltage or current) that is a fraction of the full-scale setting. The full scale setting or value is determined by the magnitude of the reference voltage chosen. If the reference changes, the DAC output changes. Therefore, to improve system accuracy, a precision reference must be used. A DAC translates digital data from a data processor into an analog waveform containing infomation that can be used in the .. real world". Figure 1 shows a simplified block diagram illustrating the use of a DAC to make a computer talk. Each switch that closes adds a binary-weighted current increment to the summing node connected to the amplifier's inverting input. The negative output voltage is proportional to the total current and, thUS, to the binary value represented by the digital input code. For resolutions exceeding 4 bits, this scheme is not practical. For example, in 8-bit conversion, the required resistance ratio is 128: 1 (e.g., 1.28 MO to 10 kO). If discrete resistors are used, cost and size are increased, and temperature tracking, matching, and parasitic impedances become a problem. / /'" COMPUTER DATA 1,0.1,0 DAC /' BLA, BLA, BLA :--..... SPEAKER'\ DIGITAL WORLD ANALOG ........... (REAL WORLD) Figure 1. A Basic DAC Application 13-41 B AN87·3 Bit 1 Bit 2 I I Bit n ? ? ? -1,: +10 V I I I VREF Siliconix incorporated I I I 0 0 1 mA~ 10 k.o. .5mA ~ 20 k.o. _1_ mA ~ 2 n-l VOUT Figure 2. A Simple DAC Using Binary-weighted Resistors Typical Specifications DAC performance is measured in several areas: accuracy (both absolute and with respect to full scale) , linearity (both integral and differential), offset, noise, conversion time, and output transients (glitch Impulse). Also of importance are the long-term stability of these parameters as well as their sensitivity to temperature variations. Transfer function. figure 3 is the transfer function of an Ideal unipolar 3-bit DAC. It consists of a set of discrete points, corresponding to all the digital codes that can be input to the device. A 12-bit DAC, for example, will have 212 = 4096 points. The ideal DAC has a linear transfer function; that is, all points fall on a straight line. The transfer function can be unipolar (output values have only one polarity) or bipolar (the output can be either positive or negative), depending on how the DAC is configured. Sometimes the reference quantity is a variable input signal. This produces a multiplying DAC since the output becomes the product of two variables: the analog reference voltage and the number represented by the digital input code. Both variables may vary from zero to full scale and have positive or negative values. 13-42 - - - -- - - -- - -- I I 7/8 ~ 3/4 1 LSBI I I I I I- 5/8 o~ I I I I 1/2 9 3/8 I ,~ 114 I I 118 I o 000 001 010 011 100 101 110 111 DIGITAL INPUT Figure 3. Unipolar Transfer Function for an Ideal 3-blt DAC figure 4 shows the transfer function of a bipolar 3-bit DAC. The digital coding used can be offset binary or two's complement [the most significant bit (MSB) is complemented.] In the bipolar mode, the maximum output value is still 1 least significant bit (LSB) below full scale (fS), but an LSB is twice as large as it is in the unipolar mode because the total output swing is now (2 FS - 1 LSB). AN87-3 .... Siliconix incorporated ~ -- ---- - - - - "'j 3/4 1---1--+--/--+--1---1---..-..... ~ 3/4 1/4 5 -1/4 5/8 CI 112 ~z 1---+--/--~--1--+-+--I---, .: ~ -1/2 1---11-.....----+-+-+-+-+_---' -3/4 ~ 1Lal , ,, D ol---lf---I---+--+-+-+-+--~ 9 - ~ 7/8 ~ 1/2 ~ - -- c --r OFFSET ERROR I---'----+--/--+--I---t--+---, 3/8 ,, 1/4 , , 1/8 ...L o -1~~--~~--~--~~--~~000 001 010 011 100 101 110 111 100 101 110 111 000 001 010 0114---+..., , , ,, ,, , ~ ,, I I - - ,- .. ,, , I I , I I I I I I I I IDFAL I I I I 000 001 010 011 100 101 110 111 DIGITAL INPUT DIGITAL INPUT Figure 5. An Offset Error of +2 LSB Figure 4. Bipolar DAC Transfer Function Resolution. Resolution refers to the number of different output voltage levels that the DAC can produce. It also indicates the number of digital input bits. (Twelve-bit DACs resolve the full-scale range into 4096 states.) Monotonicitv. The output of a monotonic DAC is one that either increases or remains constant for increasing input so that the output will always be a single-valued function of the input. This is an important specification, especially in automatic control applications. Gain Error. Figure 6 shows the effect of gain error. In this case, the slope of the transfer function differs from the ideal DAC. Gain error or full-scale error is measured with an all ones input code. -- ---- - -- - I EAL.. ~ 7/8 I- 3/4 I- 5/8 ~ ::J 1 Ls1 c I!I 9 .: Z c 112 3/8 1/4 Accuracy. The absolute static accuracy of a DAC refers to how closely its transfer function follows the transfer function of an ideal DAC. Three types of error are used to quantify the accuracy of a DAC: offset, gain, and integral (non-)linearity errors. 1/8 o , , ,, , ,, , , ,, , ,, , ,, - - - ,- , ,~' I I I I T GAIN 'ERROR I I I I .-l I I I I I 000 001 010 011 100 101 110 111 DIGITAL INPUT Figure 6. A Gain Error of -3 LSB In many applications, adjustments can be made to trim out or compensate for the offset and gain errors by providing endpoint auto calibration. On the other hand, it is usually impractical to compensate for linearity errors. Offset Error. Figure 5 shows the result of offset error. The transfer function is parallel to the ideal but offset by 2 LSBs. (For a unipolar 12-bit converter, 1 LSB =VREF 14096). Relative Accuracy. This term is also known as integral non-linearity, integral linearity error, or endpoint linearity. Relative accuracy is the maximum deviation from a straight line drawn through zero and full-scale at any point in the transfer function. It is measured after adjusting for zero and full-scale errors, and can be expressed as a percentage of full-scale range or (sub) multiples of 1 LSB. Figure 7 illustrates non-symmetrical integral linearity errors. 13-43 III AN87·3 FS .",. Siliconix incorporated ~ -- - ~I~E;~ ~N~L;~~ ~~ - - 71 8 NONLINEARITY > 1/2 LSB 14 18 12 18 14 I~V NO 1 OFFSET 0 ./ • /'/ V 000 001 ~ 010 ~ ", FULL-SCALE CALIBR ATION ~~ ~ ,, , , , , , , 011 100 101 110 111 DIGITAL INPUT Gain Trim Circuit. One may compensate for gain error and the ideal full-scale value may be restored by using a fixed resistor and a trim potentiometer, as shown in Figure 8. The maximum values for Rl and R2 may be calculated using 21el Rmax Rl max -'-"'--'-:-=--100 e Gain Temperature Coefficient (Gain TC). Most modern CMOS DACs have gain TCs on the order of ±5 ppm/oC. This specification is used to determine the worst-case gain variation caused by temperature variations and the difference between TCs of the feedback resistor and the R-2R ladder. The worstcase corresponds to a 10°C segment of the total temperature range. For a temperature variation from -25 to 125°C, the average TC is generally better than ±3 ppm/oC. However, for worst-case analysis, it is often assumed that the worst-case gain TC applies over the whole operating temperature range. R2 DATA Figure 8. Gain Trim Circuit for CMOS DACs 13-44 = gain error (%) The TCs of the DAC, of the external resistors R1 and R2, and of the operational amplifier cause variations In the full-scale output with temperature. The TCs of the R-2R ladder and the feedback resistor are approximately -300 ppm/oC; however, careful design allows their ratio to track so the total effect is better than a ±5 ppm/oC TC. The worst-case additional TCs due to Rl and R2 are -21el Rmax 100 R min Rl R2 = +Iel Rmax 100 Rmin ('Y 1 - 'Y) ('Y 2 - 'Y) where Y = TC of the DAC resistor material in ppm/oC Yl and Y2 = TCs of R1 and R2, respectively, in ppm/oC If Rl and R2 have the same TCs, the overall additional TC is given by additional TC R1 max 2 where R max = maximum specific value of the R-2R ladder (VREF max) Figure 7. Non-symmetrical Integral LInearity Errors pifferential Non-linearity. Also known as differential linearity error, differential non-linearity is the maximum deviation of any analog output step between adjacent input codes, from the Ideal step value of 1 LSB. Differential non-linearity is a quantitative measure of monotonlcity. It is also a measure of the maximum step size. A specified differential nonlinearity of ±1 LSB maximum over the operating temperature range guarantees monotoniclty. = Rl R2 max = R2 R- Rl The potentiometer's TC usually varies with setting, making it difficult to match the TC of the fixed resistor. Therefore, it is advisable to use "select-on-test" fixed resistors for R1. To minimize the additional TC .-r Siliconix ~ AN87-3 incorporated introduced by the trim components, it is preferable to use devices with an improved figure of merit. figure of merit = Leakage from VDD produces a parallel shift; whereas, leakage from the analog switches tends to produce a rotation of the transfer function. lei R max Rmin For instance, selected 12-bit DACs specify gain errors of ±1 LSB at 25°C. This represents more than a twelvefold improvement in the figure of merit. For most applications, this tight specification either eliminates the need for gain trimming or makes R1 and R2 so small that the additional TC becomes negligible. Leakage Effects on Gain. In precision applications, gain error shifts with temperature can also be caused by op amp offset and input bias drifts, changes in VREF, and leakage currents. VOUT NEGATIVE SHIFT INCREASES WITH TEMPERATURE POSITIVE Figure 10. Gain Shift Due to OFF-switch Leakage The lOUT leakage current effect on gain is negligible at and below room temperatures, but above 100°C, the effect of leakage on gain Is considerable. Leakage has two main sources: 1. Leakage which is fairly constant and independent of input code, comes from the VDD supply. 2. In the off state, leakage comes through switches from the R-2R ladder. For an all-zeros input code, this leakage has a maximum effect because all switches are off; however, when there are all ones at the input, a minimum effect results. The leakage current magnitude is a direct consequence of fabrication process, chip layout, and operating temperature. Although exaggerated, Figures 9 and 10 illustrate the gain shifts produced by the two types of leakage and for the two polarities of VREF. VOUT SHIFT INCREASES WITH TEMPERATURE With a negative VREF, the two leakage effects tend to cancel each other near zero and give a net gain decrease at full scale. However, the trim resistors R1 and R2 introduce a positive TC; the combined result is a reduction in gain variation with temperature. For positive values of VREF, the two leakage effects and the TC of R1 and R2 are added, producing more gain variation with temperature than occur with negative reference applications. Leakages can also be caused by film residues from cleaning solvents used during printed circuit board manufacture. Therefore, such residues should be avoided for precision DAC applications. Multiplying Feedthrough Error. Multiplying feedthrough error is an ac error that results from capacitive feedthrough from VREF to OUT1 with the DAC loaded to all zeros. Output Current Settling Time. The time required for the output current of the DAC to settle to within 1/2 LSB for a zero to full-scale digital input stimulus is known as output current settling time. It is measured with an RL = 100.0, CEXT = 15 pF. Digital-to-Analog (DIAl Glitch Impulse. D/A glitch impulse is a measure of the area of the impulse injected to the analog outputs when the digital inputs change state. It is usually specified as the area of the impulse in nY-so It is measured with VREF GND and an LH0032 as the output op amp and the phase-compensation capacitor = 0 pF. = Figure 9. Gain Shift Due to Leakage From VDD 13-45 --=~ AN87-3 ...... Siliconix incorporated ~ DETAILED DESCRIPTION OF THE Si7541A The Si7541 A is a 12-bit multiplying OAC consisting of a highly stable thin-film R-2R ladder network and 12 single-pole double-throw (SPOT) current steering NMOS analog switches on a monolithic chip. The binary weighted CMOS level shifters provide low power TTL/CMOS-compatible operation. An external voltage or current reference and an op amp are required for most applications. The binary weighted currents are switched between the OUT1 and OUT2 bus lines. thus maintaining a constant current in each leg of the ladder. regardless of switch states. The input resistance at VREF (Figure 11) is always equal to the "RREF" and is the R-2R ladder characteristic resistance. Since RREF at the VREF pin is constant. the reference terminal can be driven by a reference voltage or a reference current. either positive. negative. or ac. If a current source is used. a low value TC external feedback resistor RFB is recommended to define the scale factor. 10 k Figure 12. Simplified Schematic of One SPOT Switch EQUIVALENT CIRCUIT ANALYSIS Figure 13 shows the equivalent circuit for all digital inputs low. All reference current is switched to OUT2. The current sources I LEAKAGE are composed of surface and junction leakages to the substrate. The 1/4096 current source represents the constant 1 LSB current drain through the ladder termination resistor. For the industry-standard 7541A. the output capacitance on OUT2 (with all its switches turned on) is typically 200 pF. whereas on OUT1. it is typically 70 pF. 10 k 10 k __. -___ JV\r n---~F\_--~n, IREF ~ R = 10 k.o. - - VREF :=:t~:::~ I I 6 BIT 1 (MSB) BIT 2 I I I ~-------+6 BIT 3 + OUT2 OUT1 FFEEDBACK BIT 12 (LSB) Figure 11. SI7541 A Functional Diagram (All Inputs HIGH) Figure 12 illustrates the typical NMOS SPOT switch with its associated CMOS level shifter/driver. 13-46 IOUT2 - - - Figure 13. SI7541A Equivalent Circuit (All Inputs LOW) The output capacitances are dependent on the digital input code and vary between the low and high values. Analysis of the circuit for all digital inputs high. as shown in Figure 14. is similar to Figure 13; however. the on-state switches are now on OUT1. resulting in 200 pF at that terminal. AN87-3 Siliconix incorporated H fications in the industry-standard data sheet. Several areas showed considerable improvement. RFEEDBACK IR~ Bench tests conducted in the Siliconix applications lab showed that the Siliconix Si7541 A can drop into sockets using any other manufacturer's devices. Tests also demonstrated that several improvements, presented in Table 1, resulted. The highlights from this table are given below. ,-------1------0 IOUT2 1. Input/Output Capacitances. The Si7541 A has the lowest input and output capacitances (considerably lower than the data sheet specification). This translates into better dynamic performance (more speed), as seen later. 2. Input Resistance. The Si7541 A devices showed the least unit-to-unit variation (± 1%). Low variation helps to reduce gain error over temperature. The vendor A's AD7541ABQ showed the highest variation of ±8%. Figure 14. SI7541 A Equivalent Circuit (All Inputs HIGH) COMPARATIVE ANALYSIS A comparative study was conducted to verify the achievement of design goals. Devices from three other manufacturers were tested against the Si7541 A. The Si7541 A met or exceeded all the speci- Table 1. Comparative Chart Siliconix Sl7541ASD 8642 Manufacturer Part Number Date Code Input Capacitance: Max Cln Output Capacitances: All zeros: Cl C2 All Ones: (pI) 7 (1) BEST (1) BEST (1) (1) (pI) (pI) C2 (pI) Vendor I AD7541BD 8625 8.5 (2) BETTER (1) BEST BEST 106 (4) BEST (3) GOOD 187 GOOD 48 (pI) Cl Vendor A AD7541ABQ 8614 9.3 (4) GOOD (3) GOOD (3) BETTER (4) WORST GOOD 160 (2) BETTER 198 (2) BETTER 47 (4) WORST 50 185 42 8.3 (1) 48 77 Vendor P PM7541EX 8520 98 170 40 148 38 BEST ! 1.5% (2) BETTER 9.5 ! 0.5% (2) BETTER 11 ! 8% (4) GOOD 8.5 ! 0.5% (1) (1) BEST 1.16 (4) WORST 1.64 (3) GOOD 1.5 (2) BETTER (1) BETTER 42 (2) GOOD 88 (2) GOOD 136 (2) GOOD 95 (1) BEST 819 BEST 640 (3) GOOD 2778 GOOD 1035 (2) WORST 1030 BETTER 750 (4) (1) BEST NO (3) GOOD (2) (4) (1) GOOD (1) NO GOOD BETTER YES BETTER 3990 WORST 1360 WORST (4) BAD (1) NO GOOD Overvoltage (1) BEST (2) GOOD (4) WORST (3) BAD OVERALL RATING "(1)" BEST (2) BETTER (3) GOOD (3) GOOD Input Res [stance (k,o,) Logic Threshold (V) Prop. Delay Ip Ip (ns) Gilich Impulse (nV-s) (1) Settling Time (100.01%) Needs Prot. Schottky (n) = Competitive (ns) (2) (4) 15 1.64 (3) l1li place "Disclaimer: Tests were conducted using a limited number of devices. However, the results were consistent for each manufacturer's parts. and therefore. they are considered truly representative of typical performance. 13-47 AN87-3 3. 4. ..... 8i1iconix ..,!!;lI incorporated 6. Glitch Impulse. The 8i7541A shows the smallest glitch impulse areas. Figure 16 shows a comparison of glitch impulses between the 8i1iconix and vendor A's parts. Input Logic Threshold. All parts tested were TTL compatible.for V+ = +15 V, and CM08 compatible for lower values of V+. The 8i7541 A showed a logic threshold of 1.16 V vs. 1.5 V to 1.64V for other vendors. This guarantees the best noise immunity for military (O.8-V and 2.0-V) applications. 7. Dynamic Performance. With a slow output op amp (OP-07) , there is no appreciable difference among the four manufacturers tested (Figure 17). However, with a faster op amp (OP-27). the 8i1iconix parts produce the smallest overshoots and settling times (Figure 18). This improves precise operation and allows higher conversion rates. Propagation Delay. The lower input/output capacitances of 8i1iconix DACs allow from 2 to 8 times shorter delays than the DACs made by the other manufacturers (Figure 15). 5. 8ettlina Time. The 8i7541 A devices settle faster, more than twice as fast as the slowest device tested. +15V +10 V ~~-----+--~-oVOUT 100 .n. ; VOUT AD7541A SI7541A Figure 15. Propagation Delay and Settling Time Comparison 13-48 . fIllY' Siliconix ~ incorporated +15V +15 V SI7541A AD7541A Figure 16. Glitch Impulse Comparison 8. Overvoltage. Vendor I's data sheet recommends Schottky protection diodes at the DAC output and contains a warning to avoid overvoltages at the logic inputs which could lead to latchup and device destruction. None of the four parts tested latched up; nevertheless, Siliconix devices displayed a superior overvoltage resistance on the digital input pins, resulting from improved input stage design. Vendor P's parts showed some parasitic transistor action (a tendency to latchup). Vendor I's parts were the most vulnerable with an apparent parasitic diode turning on for both plus and minus polarities. 13-49 AN87-3 H Siliconix incorporated R1 Iiiiiiiiiii Iiiiiiiiiii iiiiiiiiiiii ri =~ VA l1 rJ= i1 fA ~ rJ ~ ~, :;;;;;;; ~ rJ ~ ·Iiiiiiiii -~~~ rJ ~ ~, ~, r~ rj 1,;= :.I rJ ~, ~, ILii • ro: iiiiiiiiiiii-· ri =~ VA l1 ~ ILoii ~, ~ rJ l'1,;:= rJ :.I Vendor I Sillconix Figure 17. Similar Dynamic Performance with OP-07. C 13-50 ~ r~ rJ-- i1 fA ~ ~ l' Vendor P iiiiiiii ~~- Ji =~ VA l1 ~ 1;; ... Scales: 10 V 2V 5 J.l.S Vendor A iiiiiiiiiiii l' iii!rj Ioiiii • VA ~, ~, l' iii iiirJ rJ-- i1 fA ~ II fA ~ Ji i1 = =0 ~, ILoii AN87-3 Siliconix incorporated ;;::: rj rJ ~1 - U ,.rA 11 III ~1 l' • rJ II ~1 l1 II I 'j Vendor P Vendor A Scales: 10 V 2V 5 jJ.S = ~ U" II ~, II II .1 l1 IIII 'I- e,rSh.c,' ~. I Vendor I rA ,j rJ ,j ~, II ~1 l1I Sillconix III Figure 18. Dynamic Performance with OP-27 C = 22 pF 13-51 AN87-3 .... Siliconix incorporated ~ TYPICAL APPLICATIONS Current Steering Mode Unipolar Binary Operation. The circuit shown in Figure 19 is the basic building block for many DAC applications. A fixed reference voltage is applied and a 12-bit digital word controls the output current, which is converted into a voltage by a suitable buffer amplifier. The output can be selected to a resolution of 12 bits (i.e. 4096 steps) between 0 V and -(4095/4096) VIN. For best results, the output amplifier should have very low input offset voltage ~os < 25 X 1O-6VIN ) and low input bias currents QB < 100 nA). Resistors R1 and R2 can be used to set up the correct fullscale output VIN (i.e. -(4095/4096) for a digital input of 111111111111). R2 should be selected according to R2 = (MAX GAIN ERROR IN %) . R REF Max 100 R1 can then be varied to produce the correct fullscale output. (R1 will be less than twice R2). R1 and R2 must have low, well-matched TCs; therefore, precision metal-film or wire-wound resistors with a TC of 50 ppm/DC are recommended. Also, since the TC of potentiometers vary with wiper position, a fixed value resistor (or two in series) should be selected for R1 . An alternative method is to adjust the magnitude of VIN , thus avoiding any TC mismatch between the external and the on-chip resistors. The capacitor, C, used for phase compensation affects the overshoot and settling time of the system. The optimum value for C is dependent on the output capacitance of the Si7541 A (which is code dependent) , the value of the feedback resistor RFB , and the unity gain-bandwidth product of the output amplifier. A good approximation for the Si7541 A is given by C 1n -7 = -1..!L.JGBW where GBW = the gain-bandwidth product of the output amplifier Figures 20 and 21 show the effect of different value compensation capacitors with two popular amplifiers. Although the OP-27 gives a more accurate reSUlt, it has a relatively slow slew rate when compared to the faster-slew rate FET-input op amps such as the TL071. The effect of this on the rise and fall times is apparent in these photographs (f = 20 kHz). Figure 19. Unipolar Binary (current steering mode) 13-52 AN87-3 Siliconix incorporated 10, riS lITo, i1 0 , ; = """""~ OV (:: ';:: = := (a) No Compensation Capacitor (2 V/dlv) (a)No Compensation Capacitor (2 V/dlv) r; 00;; ~~ " r'~ , ';""1 :::::;; ~ OV (b) Compensation Capacitor (2 V/dlv) OV = 15 pF I!!:= I': I~ ~ (b) Compensation Capacitor (2 V/dlv) '!: ~ [;I OV (c) Compensation Capacitor (2 V/dlv) = 39 pF Figure 20, Unipolar Binary Operation Using OP-27 (Slew Rate = 2,8 VI JLs) = = 15 pF r1i,i .;'; " OV " = OV :~~ (c) Compensation Capacitor (2 V/dlv) =39 pF III Figure 21, Unipolar Binary Operation Using TL071 (Slew Rate = 13 V/JLs) 13-53 AN87·3 ..... Siliconix incorporated ~ A disadvantage of unipolar current-steering DAC circuits is the requirement for opposite polarities of the reference voltage and the output. An advantage, however, is the low component count, which means the circuit is simpler and cheaper than a bipolar system. Bjpolar Binary Operation. There are three different coding possibilities for DACs in the bipolar mode: offset binary, two's complement, and sign and magnitude. In all of these systems, the MSB indicates the polarity. This design limits the resolution to 11 bits (i.e., 1 LSB is equivalent to (1/2048) VIN). Offset Binary Operation. The relationship between the offset binary codes and the analog output is shown in Table 2. To calibrate the circuit shown in Figure 22, the digital Inputs are first set to 0000 0000 0000. R1 may need to be adjusted to give the required output, VO = -YIN. Next, the inputs are set to 1111 1111 1111, and R2 is adjusted for an output of VO = (2047/2048) VIN. For best performance, R1 and R2 should be precision metal-film or wire-wound resistors with matched TCs (50 ppm/oC give best results as R1, R2, and R3). This circuit has two main disadvantages: a 2-step calibration procedure must be performed and the resolution is reduced to 11 bits. Table 2. Offset Binary Code Digital Input Analog Output 1111 1111 1111 +(2047/2048)VIN 1000 0000 0001 +(1/2048)VIN 1000 0000 0000 OV 0111 1111 1111 -(1I2048)VIN 0000 0000 0000 -VIN Two's Complement. The two's complement is essentially the same as the offset binary coding, with the exception of the MSB, which is inverted. As shown in Figure 23, R1 is adjusted to give an output of VO = -YIN for an input of 1000 0000 0000. R2 is then adjusted for VO = (2047/2048) VIN with a digital word of 0111 1111 1111. This circuit has the same disadvantages as the offset binary bipolar circuit, that is, an 11-bit resolution limitation and a 2-step calibration procedure. Table 3 shows the relationship between the two's complement binary codes and the analog output voltages. Rl R3 20 k.n. Figure 22. Offset Binary Configuration 13-54 ~ ~ AN87-3 Siliconix incorporated Table 3. Two's Complement Binary Codes Digital Input Analog Output 0000 0000 0000 -v IN 1000 0000 0000 OV 1111 1111 1111 2047/2048 VIN Rl 20 k.n. R3 20 k.n. >-.....-oVO Figure 23. 2's Complement Bipolar Configuration Sign and Magnitude. With this method of coding, the MSB is used to control an analog switch which selects either a positive or negative reference. The switch output must be buffered to ensure that any change in the rDS(ON) of the switch does not affect the calibrated system (Figure 24). calibration step (i.e. selection of R1). This step is the same as described f!lr unipolar binary operation. Also, since the references are buffered, more than one DAC can be driven without a reference for each DAC. One disadvantage, of course, is that systems using a single DAC now need both a positive and a negative reference. For the circuit shown in Figure 24, there is only one DG18S +v REF -v REF VOUT - DIGITAL INPUTS Figure 24. Sign and Magnitude Configuration 13-55 AN87·3 ..... Siliconix incorporated ~ Voltage Switching Mode A disadvantage of the current-steering mode is that the output impedance (capacitance and resistance) is a function of the digital word input. As mentioned earlier, a compensating capacitor is needed to ensure stability of the op amp. The value of this capacitor depends on the output Impedance of the DAC which varies with digital Input. The compensation capacitor must, therefore, aliow for the worst-case, resulting in increased settling time and reduced bandwidth. In the voltage-switching configuration (Figure 25), this problem is avoided by using the VREF pin as the output. The impedance seen at this pin Is constant and independent of digital input. VDD input voltage must be limited to approximately 2.5 V for a +15 V supply and 0.7 V for a +5 V supply. +1 ......""'" VIN = 1.22 V TA = +25-C l- ii: c ... :z ::; I :z co :z +0.6 ... c i= is 0 It""Ci _0.5-jol:...t:...l~~L.4.~=~--+----+-. VRE SI7641A Figure 26. SI7541A In Voltage Switching Mode The output of the Si7541 A in the voltage-switching mode is a voltage of the same polarity as the reference. This mode enables a DAC system to operate from a single power supply, however, the DAC loses its multiplying abilities. The input VIN must not fall more than 0.3 V below OUT2; otherwise, an internal diode will become forward biased. If not current limited, a large flow of current could result and the device could be destroyed. Figure 26 shows the effect of supply voltage on differential non-linearity. The best results are obtained with higher supply voltages. The input voltage, YiN , also affects the differential non-linearity (DNL) significantly because OUT1 and OUT2 are no longer at the same potential. As VIN (OUT1) increases, the available VGS for the NMOS switches connected to OUT1 is reduced, thus increasing the on-resistance of the switch. Since OUT1 and OUT2 are no longer at the same potential, the two NMOS switches in each 2R branch have a different on-resistance. The amount of current flowing in each branch now depends on the switch that is selected (i.e., the digital Input), thus degrading the linearity. To minimize this effect, the 13-56 o 10 5 15 Figure 26. Differential Non-linearity VB. Supply Voltage Output glitches due to digital switching are reduced for a DAC in this mode since OUT1 and OUT2 are connected to low Impedance points and any parasitic capacitances will be discharged through these paths. RFB is not used In this configuration, and the RFB pin is usually tied to OUT1 to reduce any noise pickup. Figure 27 shdws a practical voltage switching DAC circuit. A buffer amplifier is needed between the reference and OUT1 to eliminate any variation In reference from the changing input resistance of the DAC. Gain is usually Introduced at the output amplifier to achieve the desired full-scale output. 16 17 OUT 1 Sl7541A V REF < 2.5V OUT 2 R2 2 R1 10 k SYSTEM GND Figure 27. Operating the Sl7541A from a Single Supply AN87-3 Ir"F Siliconix ,4;11 incorporated In Figure 27, the negative supply for the op amp is connected to ground, and the output of the DAC ranges between 0 V and (4095/4096) RREF . It is necessary, therefore, to use an amplifier which has a common-mode input range which includes the negative rail (in this case ground). Suitable amplifiers include the LM324, CA3130, and TL091. In some applications, it is possible to offset zero for single-supply operation, as shown in Figure 28. The V2 and output can be varied between [(4095/4096)V1 + (1/4096) V2). voo the DAC, since the attenuating network consists of well-matched thin-film resistors. Figure 29 shows a digitally controlled attenuator circuit. The digital inputs can be used to select the amount of attenuation between (4095/4096) VIN and 0 V. The maximum attenuation available is 4096:1 or 72 dB. Due to the current-to-voltage buffer, the output will be an inverted version of the input. The low noise and distortion of this circuit makes it attractive for audio applications. The output amplifier, rather than the DAC, limits the frequency response, slew rate and amplitude of signal which can be passed. Table 4 shows the slew rate and frequency response for two different precision op amps. VOUT Table 4. Slew Rate and Frequency Response OP-AMP SLEW RATE OP07 OP27 0.17 V/JJ,s 2.S VJJ,s MAX FREQ -SVto+SV -2.S V to +2.SV 10 kHz > 120 kHz S kHz > 60 kHz Figure 28. Offsetting Zero for Single Supply Operation Multiplication/Attenuation. The Si7541A is useful as an analog multiplier or attenuator element. A signal applied at RREF can be multiplied by a 12-bit digital fraction. Very little noise or distortion is introduced by This attenuator circuit can be easily converted into a multiplier by using the output amplifier configuration shown in Figure 30. If the input and output must remain in phase, another inverting amplifier must be added to the output. v+ VOUT = -0 x V IN DIGITAL FRAOTION 0 III Figure 29. Attenuator Circuit 13-57 AN87-3 .... Siliconix incorporated ~ FIgure 30. Multiplier Circuit Triangle Wave Generator. In the triangle waveform generator circuit shown in Figure 31, a 12-bit counter is used to produce the digital inputs for the Si7541A. The MSB of the counter is used as a direction bit. When this bit is 0, the exclusive OR gates allow the other 11 outputs of the counter through to the DAC inputs. This condition gives a ramp of positive gradi- ent from 0 V to +2047/2048 RREF (assuming a negative reference) at the output of IC1. When the MSB = 1 , the exclusive OR gates will invert the outputs of the counter, thus producing a ramp with negative gradient. Since the MSB is used as a direction indicator, this system has a resolution of 11 bits. v+ CD4070DB EX-OR 6 9 CD4070DB EX-OR 6 9 v- 6 CD4070DB EX-OR v+ =+5 V 9 13 10 Q1 CD4040B 12-BIT COUNTER Q12 MBB CLOCK 11 Figure 31. Triangle Wave Generator 13-58 to + 15 V ...r Siliconix incorporated AN87·3 ~ +v LOAD (lOOn. -v I IN (5 V) N-CHANNEL FIgure 32. Programmable Current Sink The frequency of the triangular wave is controlled simply by the clock frequency. and the amplitude of the signal is (1 - 2 -11) VREF. IC2 can be used to both invert the polarity and to adjust the dc offset of the triangle if. for example. it must be symmetrical about zero. Programmable Current Sink. A simple. yet accurate. programmable current sink can be obtained by using a small-signal MOSFET and a single resistor. as shown in Figure 32. The voltage. Vs. is determined by the product of the digital input fraction and the reference voltage (i.e. Vs =-0 XVIN). Also. RFB is in parallel with R1. since OUT1 is held at GNO potential by the virtual ground of the output buffer amplifier. Voltage Vs is across this parallel resistance; therefore. the current drawn through the load is given by 1= Vs (R1 + VREF )/(R1 x VREF). Rewriting this in terms of VIN. I =0 VIN R1 (1 + ..BL) RFB This equation can be approximated to 1 = (0 x VIN)/R1. provided that R1 is small compared to RFB . The ratio of R1IRFB determines the offset to this approximation. The maximum available current is limited by the potential drops across R1. the MOSFET. and the load. For example. the circuit shown in Figure 32 is capable of 0 to 50 mA in steps of 12.2 ).I.A with a load of 100 .0. Programmable Current Source. Figure 33 shows a circuit for a programmable current source which is virtually a mirror image of the current sink circuit. P-CHANNEL VPO 300L +VIN l1li -v Figure 33. Programmable Current Source 13-59 W'JP" Siliconix AN87-3 ~ Programmable Gain Element. The Si7541A can be configured as the feedback element of an op amp, as shown in Figure 34. In this circuit, the effective feedback resistance can be controlled by a 12-bit digital word. The output voltage is given by Va = -VIN/D, where D is a digital fraction. Therefore, the digital word 0000 0000 0000 is not permissible because it implies infinite gain. Care must be taken not to saturate the op amp when the digital input is small. At the other extreme, a 1111 1111 1111 input results in Va = -(4096/4095) VIN. Figure 34. SI7541A as a Programmable Gain Element ANALOG INPUT Analog-to-Digital Converters. Several types of analog-to-digital converters (ADCs) can be easily implemented by using a DAC, a comparator, and a few logic components. The simplest is the counter ADC. This circuit uses a binary counter as the input to the DAC. A comparator compares the DAC output with the analog input signal and stops the counter when both reach the same level. The counter outputs constitute the digital word. An improved ADC circuit is shown in Figure 35. The up/down counter controls the DAC. Based on the comparator output, the clock pulses increase or decrease the DAC output to reach the appropriate analog input voltage level. Another popular converter is the successive approximation AID. This circuit achieves conversion in 12 steps. The process begins by comparing the output produced by the MSB with the analog input. If it is less than VANALOG, the next bit is also turned on. If it is more, the MSB is turned off before the next bit is turned on. This process continues until all 12 bits have been weighted. In Figure 36 an Si2504 successive approximation register (SAR) controls the DAC. After 12 comparisons have been made, the digital output of the SAR produces the desired digital code. Figure 37 shows the Si7541 A output during a typical conversion. 0-----, Si7541A DIGITAL OUTPUT DATA TRACK/HOLD 0-----t===:::;:=1 UP UP/DOWN COUNTER DOWN Figure 35. A 12-blt Tracking AID Converter 13-60 incorporated AN87-3 W'P' Siliconix ~ incorporated Si7541A VANALOG DIGITAL OUTPUT DATA SI2504 SUCCESSIVE APPROXIMATION REGISTER CLOCK Figure 36. Successive Approximation AID Converter ;!FS 4 o 1 (MSB) 2 4 3 5 6 7 8 ... CLOCK PERIODS Figure 37. SI7541A Output for 12-81t Successive Approximation Conversion CONCLUSION The general DAC operation theory presented in this application note is intended to support successful designs using the Si7541 A 12-bit CMOS multiplying DAC. The capabilities of these designs will be enhanced by the improvements shown for the Siliconix Si7541A over similar products, especially in speed and dynamic performance. Example circuits and design hints have also been presented to assist the designer in using the Si7541A 12-bit DAC. REFERENCES Dooley, Daniel. Data Conversion Integrated Circuits. New York IEEE Press, Wiley (1980). Loriferene, Bernard. Analog-Digital and'Digital-Analog Conversion. London. Heyden & Sons Ltd. (1982). Analog-Digital Conversion Handbook, Third Edition. Analog Devices (1986). Burton, Phil. CMOS DAC Application Guide, Second Edition. Analog Devices (1986). 13-61 AN87-3 .... Siliconix incorporated ~ APPENDIX: OTHER BASIC DAC PRINCIPLES noisy and very sensitive to changes in current and temperature. Voltage References The voltage reference provides an accurate voltage for generating binary-weighted currents. Any reference error reduces the overall system accuracy; therefore, the ideal references are characterized by accurate output voltages, low temperature drift, precise load and line regulation, and long-term stability. Zener References. The least expensive reference devices are Zener diodes. Zener diodes produce a constant voltage drop when passing a constant current derived from a higher voltage. The active portion of a Zener diode is a reverse-biased p-n junction. In the forward-biased region, the diode acts much like a high-conductance silicon diode (Figure A 1). In the reverse-biased region, little current flows if V is less than Vz, the breakdown voltage. The small leakage current that flows is relatively insensitive to the magnitude of reverse voltage for fixed temperatures. VZ REVERSE BIAS BREAKDOWN VOLTAGE Zener diodes that breakdown in the 6-V range exhibit the best performance with very low TCs (+2 mV/oCl and relatively low sensitivity to current changes. They can be compensated by a VREF (-2 mV/°C) , as shown in Figure A2. IC References. Monolithic ICs provide a more accurate reference (Figure A2). These devices usually include a temperature-compensated Zener diode driven by a constant-current source or a bandgap reference and a buffer output amplifier. These references provide an accurate output voltage that is virtually independent of input voltage, load current, temperature, and time. They provide voltage capabilities from 1.22 to 15 V with voltage tolerances from 0.05% to 5%, drifts of 0.5 to 100 ppm/oC, and current ranges from 400 I1A to 200 rnA. For most of these integrated circuits, the output voltage has been established by trimming ultrastable, low-temperature drift thin-film resistors under circuit operating conditions. These devices are usuaily short-circuit protected in both the current-sourcing and sinking directions. Table A 1 illustrates some of the most popular reference voltages available. ~ Table A1: Typical Reference Output Voltages Reverse Breakdown Voltage -- VR (volts) 1.22 1.235 2.49 2.5 CATHODE FORWARD REVERSE ~ + ANODE + Figure A1. Zener Diode I-V Characteristic As the reverse voltage approaches Vz, the current increases rapidly. Therefore, Zener diodes are generaily used in series with a resistor to limit the current or driven by a constant current source. These diodes provide voltage capabilities from 2 to 200 V with tolerances of 1% to 10% and power dissipations from 1/4 to 50 W. Attractive as they seem as general-purpose voltage references, Zener diodes have many shortcomings. The voltage tolerance is generally poor, and they are 13-62 5.0 6.2 6.9 6.95 7.50 10.00 10.24 1.24 to 5.3, 5 to 15, -5 to -15, Adjustable Adjustable Adjustable Band Gap References. A popular voltage reference for monolithic circuitry is the "band gap" reference, which is based on an inherent physical property of the base-emitter voltage in a forward-biased silicon transistor. The VBE of a silicon transistor at absolute zero (-273°C) is 1.205 V. This value is the band gap voltage of silicon at 0 OK. By amplifying the difference between the VBE values of similar transistors operating at different current densities, it is possible to obtain a constant 1.205 V at any temperature. Bandgap reference circuits are based on the circuit shown in Figure A3. For the proper ratio, R1/R2 Vz = 1.205 V. This, in turn, is amplified by the ratio (R4/R5 + 1) to give the desired output voltage. LowTC thin-film resistors may be laser or zener-zap trimmed to increase accuracy. H AN87·3 Silica nix incorporated R3 IC REF v OUT 1---0 -2.2 mV/oC +2.2 mV/oC 02 01 R1 Iz ... R2 3 terminal reference Equivalent circuit Figure A2. IC Reference 8A }--..:;,.:--3--r-------...f __ v z = 1.205 V T AVBE 1 COM o------~---~----~-----o Figure A3. Bandgap Reference Regulator Bandgap references operate from low-voltage supplies (typically VOUT +2 V) and have an order of magnitude lower output impedances than low-voltage Zener diodes. Bandgap references are low cost, but their output voltage usually must be buffered. In this case, the offset voltage drift of the buffer op amp must also be considered. = Buried Zener Diodes. Zeners have been produced in ICs using the reverse-biased breakdown voltage of the base-emitter junction of a vertical NPN transistor. This pn junction occurs at the surface of the device where breakdown may be affected by crystal imperfections, mobile charges in the oxide, and other forms of contamination. These effects cause noise and long-term stability problems. 13-63 ...... Siliconix incorporated ·AN87·3 ~ In a buried Zener, breakdown occurs well below the surface, thus avoiding surface effects. Long-term stability of 50 ppm/year are achieved. However, because the diffusion process is less controlled under the surface, there is a greater spread in breakdown values and TCs. Therefore, the circuits are generally designed to allow trimming. Typical accuracies better than 0.1% and TCs in the order of +10 ppm/oC are achieved. Temperature-compensated buried-Zener references usually have lower noise than bandgap references and are recommended for high-resolution applications. Temperature-Stabilized References. To improve temperature stability in IC references, on-board heaters may be used to hold the reference elements at a constant, elevated temperature. With this approach, + 1/2 ppm/oC TCs are attainable. The heater can draw hundreds of mA, making this type of device incompatible with low power systems. Forming DACs with Resistance Ladders To reduce the number of resistors and their resistance range, a configuration may be used that pro- vides a suitable attenuation, such as the one shown in Figure A4. The Si7541A is implemented using an R-2R resistance ladder. This circuit consists of four binary-scaled resistor values for each group of 4 bits, with an attenuation of 16: 1 to each successive quad. This scheme can be used for BCD conversion by using a 10: 1 attenuation between quads. Furthermore, this approach can be used to design the R-2R ladder circuit illustrated in Figure A5. Most CMOS DACs are based on this circuit. The feedback resistor is integrated on-chip to track the resistance of the ladder independently of ambient temperature changes. When only the MSB is turned on, the current contributed to the summing node, by the MSB switch, is 11 = VREF/2R. The output voltage isVOUT = -(R/2R)VREF. For the second bit, 12 = VREF/4R, and if only bit 2 is on, VOUT= (-R/4R)VREF' Continuing down the ladder, each 2R resistor passes one-half of the current. The output voltage is proportional to the sum of all the binary-weighted currents that are switched to the OUT1 node. 5 k.n. 80 k.n. (BINARY) 48 k.n. (BCD) Summing Node Figure A4. 8-Blt DAC using two equal-resistance quads 13-64 AN87·3 ..... Siliconix incorporated ~ r--------------------------------------~ 1 v REF I R R R R R 2R 1/641 - Vc "-jt----~-----jt----~----jt-----~-----j~ Lse Mse DIGITAL INPUTS Figure AS. Current-steering DAC Using an R-2R Ladder Lse DIGITAL INPUTS Mse !----~---~---~---~----~--~~-' R1 R2 L ________________________________ J Figure A6. DAC In the Voltage SWitching Mode In CMOS DACs, the analog switches are always very close to the ground potential (within the Vos of the amplifier) and the thin-film resistors are isolated from the substrate. Therefore, VREF can be either positive or negative, and the device can be used with ac input signals. This operation is called mUltiplying. The R-2R ladder can also be used to produce a noninverted output voltage by swapping the VREF and OUT1 terminals as shown in Figure A6. The OUT1 terminal is driven by a low-impedance reference voltage source, and the VREF terminal is connected to a high-impedance load, such as the input to an operational amplifier. The reference voltage source must be bypassed to minimize the variable load and charge injection effects introduced by the DAC switches. RLOAD should be more than 4096 x ROUT to prevent a 0.5 LSB full-scale error. 13-65 III AN87-3 ..... Siliconix incorporated ~ down by switch capacitances, and glitches are created from charge injection coupling from the switch drivers. The output of this circuit follows the equation: where D = Bl/2 + B2/4 + In the voltage-switching mode (Figure A6) , the ladder is used as aggresistive attenuator, and the switches alternate between a low impedance reference voltage source and ground. The currents flowing through each switch change with the input codes. Their magnitude is not as important as the reference source ability for maintaining a fixed input voltage as the codes change. In mpst cases, it is necessary to decouple the reference with the parallel combination of a 10 IJ.F tantalum and a 0.01 IJ.F ceramic capacitors (see Figure A7). ..... + Bn/2n The numerator of each partial fraction is the value "0" or "1" corresponding to the logic state of each digital input. Generally, the magnitude OfVREF is limited due to the nature of the switching elements used. The reference voltage must be less than 2.S V to reduce the effect of unequal VGS applied to the OUTl vs. the OUT2 switches (rOS(ON) variations). Switching The constant resistance seen by the op amp input eliminates linearity errors caused by modulation of the amplifier's offset voltage. Additionally, since the output capacitance is less and the switch transients are coupled to low impedance points, the voltagemode circuit results in cleaner and faster response to digital code input changes. Since the output voltage has the same polarity as the reference, it is possible to operate the whole circuit from a single power supply. Finally, only a single operational amplifier is needed for bipolar digital-offset binary or two's complement operation. The accuracy is satisfactory for low values of VREF, but since the rOS(ON) of the MOSFET switches is modulated by the magnitude of the reference voltage. large values of VREF can produce considerable linearity errors. Additionally, negative voltage references are not allowed in the voltage mode because a parasitic pn junction to ground will be activated. leading to possible destruction of the DAC if current is not limited. Switching may be performed in either voltage or current modes. The analog switches can be bipolar, CMOS, or NMOS, depending on the technology used. Each technology has advantages and limitations. Important switch characteristics that affect DAC performance are switching speed, charge injection, onresistance, and parasitic capacitances. These characteristics play a role in determining performance such as conversion speed, accuracy, and glitching. In the current mode (Figure AS), each leg of the ladder conducts the same current regardless of switch position. The current output is changed to a voltage output by the external operational amplifier. This circuit is simple, its constant input resistance facilitates good performance of the reference source, and it can be used for 4-quadrant multiplication. However, it can present linearity problems due to modulation of the op amp offsets caused by the code dependent output resistance. The dynamic response is slowed 0--...,...------.,---0 V DD = +15 V 16 17 <2.5 V C2 >-...--0 V OUT Si7541A R2 o-~--+---jH 2 Rl BITS 1 - 12 0-----<1-----+---+----0 C1 = 10 mF TANTALUM C2 =0.1 mF CERAMIC R111R2 SYSTEM GROUND = 10 k.n Figure A7. Single Supply Operation Using Voltage Switching 13-66 AN87-2 (I"'JP'" Siliconix JIJI incorporated EFFICIENT ISDN POWER CONVERTERS USING THE Si91 00 By James Blanc June 15. 1987 One of the latest technology revolutions, an integrated worldwide telecommunications network, will be accompanied by another advance in power conversion technology. The integrated services digital network (ISDN) will allow different forms of information (voice, computer data, video, facsimile, etc.) to be transmitted over the telephone network. The International Consultative Committee for Telephone and Telegraph (CCln) has proposed standards for the interfaces required to implement ISDN. Although the standards have yet to be formally adopted, telecommunications companies are moving ahead with pilot test programs, and semiconductor makers are developing chip sets to build ISDN hardware. Every network terminator (NT), signal regenerator (RG) , and terminal equipment (TE) unit used for the implementation of ISDN will require a power converter. [1) A major requirement of these telecom applications (due to the need for emergency-mode operation from a high-impedance source) is high-efficiency energy conversion at fractional-watt power levels. Minimization of parts count, another key factor' for the design of these power converters, is sought to simultaneously achieve low cost and high reliability. D/CMOS integrated circuit technology is ideally suited for the power requirements of ISDN. The analog and digital logic functions needed for pulse-width modulation can be implemented in CMOS to minimize quiescent current to the controller. DMOS transistors provide high-voltage power switching with both very low dynamic and gate drive losses. Integration of the CMOS controller on the DMOS power device yields the best overall performance at the lowest cost and component count. Design Objectives While some differences exist between designs, there are several requirements in addition to efficiency which are common to ISDN power converter applications. These include: o reliable start-up and operation from the high source impedance of telephone subscriber lines (U-interface only) II current limiting to prevent failure of other network terminals when one power converter output is shorted (S-interface only) II a free-running internal oscillator for start-up as well as independent operation, which can be synchronized to an external clock signal • electromagnetic interference (EMI) filtering to limit conducted emissions during both start-up and normal operation, as well as during equipment connections and disconnections. The Si91 00 power IC facilitates compliance with these design requirements with a minimum number of external parts. To illustrate this capability, a discontinuous conduction mode (DCM) flyback converter was built and tested. Measured efficiency was greater than 80% for a wide range of loads, and 60% efficiency was achieved with only a 15-mW load. Before describing the circuit concepts in detail, it is instructive to note the main features of the ISDN powerfeeding concept which has been endorsed by the cCln. ISDN Power Feeding Figure 1 is a block diagram of the ISDN basic access configuration. The two-wire transmission line defined at the U-interface provides a 192k-bits-per-second (bps) digital data path which connects subscriber equipment to the local telephone exchange. Although ISDN permits many new services to be offered, the basic service of voice transmission remains a vital function. Therefore, the network power feeding from batteries in the local telephone exchange remains an essential part of modern telephone system planning. The network terminal (NT) connects the local loop, called the S-bus, to the U-interface at the customer's premises. ISDN-compatible terminals (TE1) communicate at a standard 64k-bps rate over the four-wire S-bus. Non-ISDN-compatible terminal equipment (TE2) , such as analog phones, must connect to the S-bus via a terminal adapter (TA). To minimize noise-coupling problems, the S-bus must be galvanically isolated from the two-wire U-interface. The cCln recommendations call for an offline power converter in the NT to supply 4 W at 40 V 13-67 ~ ...:. AN87-2 ..,. 8i1iconix incorporated ~ 110/220 VAC + TEl TEl Battery Voltage (48 or 60 V typlcally) 100/220 VAC Needed only for IOn] loops It S-Bus S I I .R TE2 H- TA Customer Premises U U NT H- I IL I I ..-...l I RG HI .. I I I I I ... Transmission Line Central Office Switch Local Telephon e Exchang e Figure 1. ISDN Basic Access Configuration nominal to the 8-bus during normal operation (for up to four telephones with full features). Other terminal equipment (e.g., fax terminals) would be fed solely from local ac power lines. In the event of a power outage, one telephone at the customer premises must be fed from the central office battery. This procedure Is accomplished by reversing the voltage polarity on the 8-bus. Non-priority terminals have a diode Input which isolates them during emergencymode operation. A single telephone terminal is fed via a full diode bridge, allowing it to operate during the emergency. A signal regenerator may be required for long loops (U-interface). The Deutsche Bundespost (DBP) proposes to increase the feeding voltage from 60 V to 93 V to compensate for voltage drops on long lines requiring signal regeneration. The standard telephone line voltage used in many other parts of the world is 48 V. Whatever the voltage, the problem for power converters connected to telephone subscriber lines remains the same--they are fed from a high-impedance source. Source Impedance Effects The impedance of telephone subscriber lines limits the amount of power that can be supplied to the load. Referring to Figure 2, for a battery voltage, Vs, and line resistance, Rs, the maximum power to the converter is given by Equation 1, since the power 13-68 limit occurs when source and load impedances are equal. - V/ Re - (Vs/2 ) 2 VS2 Re =- (1 ) 4Re R e is defined as the effective low-frequency input impedance of the power converter. For a flyback converter, with waveforms as shown in Figure 3, the calculation of the low-frequency input impedance is straightforward. The coupled inductor is designed to ensure operation in the discontinuous conduction mode (OeM). This operation requires that the core flux be reset to zero during each cycle. The current is zero at turn-on and ramps up at a rate given by dildt =V l/Lp. The maximum value of the peak primary current, Ipk' is Ipk = di Cit Vl (tON(maX)) = Lp ts 2" (2) The 50% maximum duty ratio imposed by the 8i91 00 controller limits the • on " time of 01 to one-half of the switching period. The average value of the current waveform in Figure 3 is the dc current in the inductor, L1. The current ripple in L1 is small, and the average inductor current, I DC, during start-up is onefourth the peak current value, as given by AN87-2 flY' Siliconix ~ incorporated +5 V Rs loc --.. L1 Ro-1 VI C1 -1 Central Office (CO) I Battery Subscriber Line ~~----~y----~' ~~-------------------~, Flyback Converter Input Filter I U-Interface Figure 2. Power Converter with High Source Impedance 0< 0.5 (After Start-up) Figure 3. Primary Side Current Waveforms Substituting this result into Equation 2 gives Rein terms of the primary inductance. Lp. and switching frequency. f S (f S = 11f s). (4) L p effectively acts as a current limiter during startuP. thus eliminating the need for active current limiting circuitry. The value of Lp must be chosen between a minimum value. which sufficiently limits start-up current. and a maximum value. which permits the rated throughput power to the load. Assume. for example. the maximum load condition given in Table 1. [2] The input power to the converter is the output power divided by the efficiency. 0.650 PIN =Po/h = 0.80 =0.813 W (5) Worst-case efficiency at maximum load is assumed to be equal to 80%. The input power to the converter is given by P IN As seen from duced by half. portion to L p. analysis of the =1/2 L p I pk 2 f S (6) Figure 3. if L p is doubled. I pk is reTherefore. P IN varies in inverse proReferring again to Figure 1. the dc input characteristics gives V1 = Vs - locRs (7) 13-69 .... Siliconix .,1;11 incorporated AN87·2 Table 1. ISDN Power Requirements LOAD CURRENT CURRENT -5 V OUTPUT POWER 100 mA SO mA 650mW 87% Normal -- Power Down 11 mA SmA 70mW 79% Emergency -- Active 55 mA 9mA S20mW BB% SmA OmA 15mW 60% +5 V OPERATING MODE Normal -- Active Emergency -- Power Down Equations 2. 6. and 7 can be combined to give a quadratic equation which yields the maximum and minimum values for L p. A graphical approach. however. gives the same answer and. at the same time. provides more insight into system behavior. After start-up has occurred. the power converter no longer presents a constant impedance at the input terminals. Instead. a constant power characteristic pertains. given by PIN = (V1) (loC> = constant (8) The demonstration flyback converter was designed to operate from a battery voltage of 48 V and a maximum line resistance of 600 .n. The constant power MEASURED EFFICIENCY curve for (V1) OOC) = 0.813. with the load line defined by Vs = 48 V and Rs = 600 .n. are plotted in Figure 4. The intersection of the load line with the constant power curve determines two operating points. A and B. which occur at (V" I dc) (14.6 V. 55.7 mA) and (33.4 V. 24.3 mA). IfVs is slowly increased from zero. V1 and IDC increase along the line. whose slope is Re. from the origin to the constant power curve. This analysis is an oversimplification since a step increase in voltage is more likely to occur at power-up. However. worst-case start-up conditions occur at maximum Rs. which guarantees that the input filter is heavily overdamped. Therefore. the increase inV1 is monotonic. and the results of the simplified analysis are valid. = BO 70 \ 60 50 V1 In Volts 40 ~ SO o ~ \ --.......'\ A 20 10 constaJ Power cuJe IV1' I DC = 0.B1S) / ~....... ~ -......... / ' MaximumRe.L p ~ o B I I 10 20 ---=- I-Minimum R e. Lp SO 40 IDcln mA 50 Figure 4. Flyback Converter Operating States 13-70 A --...... I----- 60 70 BO ~ ~ AN87-2 Siliconix incorporated L2 (RM8PA630 -397 core) GND +5 V N/C N/C Cl 20J.lF 100 V Cl0 .1 J.lF 3 6 7 (ORJlonal) S NC INPUT 1000 pF ~C9 -5 V Si9100 4 R7 Np lN4148 CRl 5 -48 V Figure 5. ISDN Flyback Converter The lines from the origin to points A and B define the minimum and maximum values for Re , and with Equation 4, also determine the limits for L p. Re (min) = 14.6/0.0557 = 263 .0 Re (max) = 33.4/0.0243 = 1.37 k.o For a switching frequency design value equal to 20 kHz, Equation 4 gives = Lp(mln) 1.64 mH Lp(max) = 8.65 mH L p may be chosen near the upper end of the permissible range for maximum start-up current limiting, or it may be chosen for maximum power transfer on a high-resistance line. Setting Re Rs 600 .0 for maximum power transfer gives = = L = 77 turns Nsl = 18 turns N s2 = 18 turns N s3 = 35 turns the 60% efficiency at a load of only 15 mW, which is allowed by the low quiescent current requirement of the CMOS control circuitry in the Si9100. Although power converters can operate at much higher frequencies, the dynamic losses incurred reduce the efficiency during the power-down state. The switching speed (30 ns typical) of the DMOS output transistor in the Si9100 permits operation above audible frequencies with very low dynamic and drive losses. Such performance cannot be achieved with bipolar transistors. A single resistor, R3, sets the oscillator frequency at approximately 34 kHz. A positive sync pulse (5 V amplitude and 0.5 J.Ls pulse width) at 40 kHz was fed through R7 and C9 to pin 8 to demonstrate the principle of synchronization with an external clock. Typically, the free-running frequency should be set at 10 to 20% below the external clock frequency (note that the switching frequency is 1/2 of the oscillator frequency). 600 - 3 75 H - R /8f p- e S - (8) (20,OOO) - . m The latter approach was chosen for the demonstration converter (see schematic in Figure 5). The Si9100 functional diagram is given in Figure 6 for reference. Converter Performance Measured efficiency data for the flyback converter is given in the last column of Table 1. Most notable is Start-up characteristics were verified by connecting a 600-.0 resistance from a dc power supply to the converter input terminals. Reliable start-up was demonstrated at maximum load for supply voltages as low as 44 V. With zero source resistance inserted in the line, the converter maintained regulation down to an input voltage of 23 V. In both cases, the maximum operating voltage is 70 V for the Si9100 . The inductor, L 1 , was wound with 540 turns of #32 magnet wire 13-71 III AN87-2 ...... Siliconix incorporated ~ Feedback CompensatIon DIscharge 14 13 OSC OSC In Out 9 Error AmplifIer VREF C>-"10><--_ _ _t__-I DraIn 40 »-Uf---..:. rr===L_~ BIas Body (-VIN) To Internal CIrcuIts L - - - - - - - - - - - I f - - - f - - - - - . . . . . , . , : - - -......--'s,,-O Source o-!.----J --+ VCC 0...:6:...-_ _ Undervoltage Comparator O-~-4__~11~ SO 1-_ _ _-..:.12=-0 Reset FIgure 6. SI9100 FunctIonal DIagram on a #55206 molypermalloy powder core. The relatively high series resistance of this inductor (6 .0) provides series damping of the input filter. This damping reduces peaking of the filter output impedance. preventing degradation of the control loop response at the filter resol1ant frequency when the supply is operated from a low-resistance source. Measured ripple on both outputs was less than 50 mV peak to pea~. and regulation was better than 5% over line and load. The -5-V' output increases from -5.05 V to -5.75 V when totally unloaded. The current-mode controller of the Si9100 provides fast current-limiting response in the event of a shorted output. With either output shorted to ground. the measured value of short-circuit current drawn at the converter input was 30 rnA. Any output terminal can be shorted for an indefinite period with no resulting high stress condition on the Si9100. Normal operation resumes when the short circuit is removed. 13-72 The input filtering provided by L1 and C1 provides a calculated attenuation of 68 dB at the fundamental of the switching frequency. This allows compliance with FCC Class Band VDE-0871/B requirements; however. conformance testing to these specifications was not performed. Common-mode noise coupling is minimized by the Si9100 since the MOSFET drain is electrically isolated from the package case (a 14-pin DIP). Therefore. very little parasitic capacitance exists from drain to ground. Since the Si9100 places both the driver and MOSFET on the same chip. gate driver lead lengths are reduced from a few centimeters for discrete designs to a few hundred microns. The 5-mAI Jl.s dynamic current limit re~uired during connection of equipment to the S-bus 3] is met by selecting a suitably high value. 20 mH. for L1. Since several ohms of series resistance is desired. a'small wire gauge is used and the inductor is not prohibitively large. A smaller value may be chosen for L1 where the EMI requirements are less critical. AN87-2 ...... Siliconix incorporated ~ Summary D/CMOS power IC technology is ideally suited for the requirements of low-power dc/dc converters, such as those required for the implementation of ISDN. A circuit design for an 850/0-efficient power converter using the Si9100 SMARTPOWER IC has been presented here. Measured performance data is given, along with a graphical analysis method for ensuring reliable start-up when power is fed from a high-impedance source. References 1. Rosenbaum, D. and K.H. Stolp. "The Feeding Conception of the ISDN Basic Access," IEEE INTELEC Conference Proceedings, Munich, FRG, Oct. 14-17, 1985,505-512. 2. Sigloch, R. "Requirements for Small High Efficiency DCIDC Converters in Complex Communication Networks," IEEE INTELEC Conference Proceedings, Toronto, Canada, Oct 19-22, 1986, 197-202. 3. Krautkramer, W. and B. Schickling. "Remote Power Feeding of ISDN-Terminals at the Basic Access," IEEE INTELEC Conference Proceedings, Munich, FRG, Oct. 14-17, 1985,513-519. III 13-73 AN87-1 ..... Siliconix incorporated ~ A 1·WATT FLYBACK CONVERTER USING THE Si9100 James Blanc March 1987 The Si91 00 is a monolithic D/CMOS SMARTPOWER IC which combines high-efficiency CMOS logic, a highvoltage switching transistor and high-voltage preregulator on a single die. It is the first low-cost, high efficiency regulator designed to operate directly from unregulated high-voltage DC power sources in areas such as telecommunications and avionics. The primary application will be in feature phones and ISDN terminals to power the logic components without exceeding the load limits set by the telecommunications industry. Power integrated circuit technology allows low-power CMOS control circuits to be combined with DMOS power transistors in the Si9100. The resulting reduced parts count decreases system cost, improves reliability, and simplifies circuit design. The flyback converter presented here uses the Si9100 to provide an isolated ±5 V supply rated at 1 W. Specifications for this supply are as follows: Input Voltage ....... 15 to 70 VDC Output Voltages Maximum load +5V@167mA, -5 V @ 33 mA +5 V @ 32 mA, -5V@8mA Minimum load Regulation .......... ±5% 100 mV p-p Maximum Ripple Switching Frequency.. 100 kHz Efficiency .......... 80% min for 1.0 W load 75% min for 0.2 W load A schematic for the flyback converter is found in Figure 1, with a parts list provided in Appendix B. However, before discussing the details of the power supply design, it is instructive to review the functions of the Si9100 integrated circuit. CR2 1NS819 L1 ~No----rrr~------~------------------~----------~ • 100J1H C1 20J1F N/C 2 R3 1S0 k.fl. 8 7 N/C 12 ....----110 C3 0.1 J1F 11 C2 0.1 J1F Np = 21 1S0 J1H + C6 0.1 J1F 3~----------4---------~ CRI 1N4148 SI9100 OUTPUT 6~----------4---~--~~ 14 \------=:--1 R4 CS 13 1-"---1--4 240 k.fl. 1 J1F 0.022 J1 F R6 4 12k R2 + L--W~+-----+----o 1.n. INPUT GND (GND PLANE) 13-74 C9 20 J1F .........,vv.. . . . . . O.SW Figure 1. C7 100 J1F Schematic Diagram of the SI9100 Discontinuous Flyback Converter Circuit -5 V AN87·1 ...... Siliconix incorporated ~ FB COMP Error Amplifier VREF O-----r--I BIAS 0----1 VCC 0------+ SOURCE Undervoltage Comparator 1>-~--1I----o SHUTDOWN RESET FIgure 2. SI9100 Simplified Block Diagram Si9100 DESCRIPTION As shown in the block diagram of Figure 2, the Si9100 combines an oscillator, pre-regulatorlstart-up circuit, precision voltage reference, error amplifier, current-mode controller, and a MOSFET switching transistor into one 14-pin dual-in-line package. Overcurrent protection, undervoltage lockout, and logic inputs for both latched and unlatched shutdown modes are also included. Start-up/Preregulator Circuit A unique start-up/preregulator circuit, which is shown in Figure 3, permits the Si9100 to operate over a wide input voltage range (10 to 70 V). The input voltage for the device is connected between the +VIN (pin 2) and -VIN (pin 5) terminals. The high-voltage depletion-mode (normally ON) MOSFET acts as a current source during start-up, charging the capacitance at the Vee terminal (pin 6) directly from the input source. When Vee exceeds the 8.1 V undervoltage threshold, the output switch is enabled to provide well-defined start-up characteristics. Vee is then regulated to 8.6 V by the pre-regulator circuit. If an external voltage source greater than 8.6 V is fed to the Vee terminal, the depletion-mode MOSFET is shut off to reduce power drain from the input power source. +VIN 0---------, 8.6 V Veeo-~~~----~ '----------+---o-VIN Figure 3. Schematic Diagram of the startup section of the SI9100 Oscillator The oscillator requires a single resistor to set its frequency. The requirements of flux reset in singleended converters generally dictates a maximum duty cycle of 50%. With the oscillator frequency set at two times the desired switching frequency, a flip-flop divides the clock signal by two, and the logic disables the output during every other clock cycle. 13-75 ~ __ tI'7" AN87-1 MOSFET Switch The MOSFET switching transistor has typical rOS(ON) and \1BR)OSS characteristics of 4 0 and 180 V, respectively. Worst case specifications are 5 0 and 150 V. The device is a lateral DMOS structure which has external connections for tHe DRAIN (pin 3) and SOU ROE (pin 4). The body of the MOSFET is internally tied to the -VIN terminai, which must be connected to the most negative input potential in the circuit. ~ Siliconix incorporated threshold (8.1 V), then transistor switching begins. The 4.0 V reference and the voltage divider ratio formed by Rs and R6 cause the feedback winding. N S3, to be regulated to +10 V. After start-up is complete the feedback voltage trips the comparator to turn off the pre-regulator circuit. and the Si9100 derives its bias power from the feedback winding. The power saved by this bootstrap technique is equal to the product of the 10 bias current times the difference between VIN and VFB: Power Saved = (600 j.LA) (48 V - 10 V) = 23 mW Error Amplifier The error amplifier permits compensation of control loops for stable regulator operation. The amplifier uses PMOS Input transistors to provide high input impedance (2 MO minimum), and is internally compensated for unity gain stability, with 1 MHz (typical) bandwidth and 60 0 phase margin. Protection In addition to the undervoltage lockout function ,already described, the Si9100 provides overcurrent protection and inputs for external logic control. With a sense resistor (typically 10) connected from the MOSFET source to the -VIN terminal, the voltage at pin 4 is proportional to the output current. When this voltage exceeds a 1.2 V reference the overcurrent comparator disables the output MOSFET. The shutdown delay is typically 100 ns (200 ns maximum). Logic inputs SHUTDOWN (pin 11) and RESET (pin 12) permit the use of latched or unlatched shutdown modes. Internal current source pull-ups normally hold both logic pins high. If the SHUTDOWN pin is pulled low while the RESET is high, then the output switch will be disabled until the SHUTDOWN pin is again allowed to go high. This is the unlatched shutdown mode. If, however. the RESET pin is pulled low while the SHUTDOWN pin is also pulled low. then the converter will be latched off until RESET goes high again. While this is not a great deal of power. it does represent 2.3% of the output for a 1 W supply. Integrated Services Digital Network (ISDN) applications require such techniques for bias power minimization in order to meet emergency-mode limits for the power-down state. Flyback Operation Flyback converter operation is illustrated by the basic waveforms shown in Figure 4. When the MOSFET switch is turned on. current will ramp up in the primary at a rate given by: V di dt I L =~ tON .J/1. ._____ pr,A_'_Pk-,-__ -I tON to- FLVBACK CONVERTER OPERATION Start-up Applying input voltage to the circuit initiates charging of capacitor, 010 through the filter inductor. L 1. The depletion7mode MOSFET, as described above. l?upplies current to capacitor 05 through the Vee terminal of the 10. When Vee reaches the undervoltage 13-76 Figure 4. Flyback converter waveforms AN87-1 trY" Siliconix ~ incorporated Stored energy, given by 1/2Lp IPk2 , is present in L2 at the time the MOSFET is switched off. This energy is released to the secondary windings, N Sl through N S3, during the off time, as shown by the total secondary current, Isee, in Figure 4. This is the flyback principle in its simplest terms. A transformer is designed to transfer energy directly from the primary to the secondary, with as little stored energy as possible. A flyback inductor receives energy during one interval of the switching cycle, then releases this stored energy at a later interval of the switching cycle. During the time that the secondaries are conducting, shown as tree' the magnetic flux recovers, or "resets" to zero, and the MOSFET must block the sum of the reflected voltage from the secondary and the input voltage. This requires a worst case blocking voltage of: good coupling between output and sense windings in order to maintain better than 5% regulation over the 0.2 W to 1 W load range. Design details for the coupled inductor are included in Appendix A. To analyze the system closed loop response, begin by reflecting the filter capacitance and load resistance from each output winding to the feedback winding. Ceff =CS+ (~::r C7+ C 9 2 6) = 1 J.lF + ( 18 (100 J.lF + 20 J.lF) = 31 J.lF The effective load resistance, Reff, can be found by assuming that the entire 1 W load is connected across the sense winding output: Np V pk = VIN + - - (Vo + Vo ) NS1 Re!! = 70 21 + -8- (5.0 + 0.5) = 85 V A leakage inductance spike appears at the leading edge of the Vos waveform. The spike is less than the 150 V minimum \1SR)OSS, and no snubber network Is required. Since the flux is reset to zero before the end of each switching cycle, current flow through the secondary is discontinuous. Consequently, this circuit is called a discontinuous-conduction-mode (DCM) flyback converter. VS 2 Po V/ = 100 .n 1W (10 The effective load impedance is determined at low frequency by the 100 ohm resistance and at high frequency by the capacitive reactance given by Xc = 1/ c£ elf. The control-to-output transfer function thus has a pole at: fp = Regulator Control Loop The function of the regulator control loop is to maintain the output voltages constant as either the input line voltage or load current vary. These are termed "line regulation" and "load regulation", respectively. A sense winding has been chosen to close the regulator loop and provide output isolation. Since the secondary windings are coupled on a common core, the volts/turn ratio is the same for N Sl, N S2 and N S3 . The resulting secondary voltages will track each other quite closely. There is, however, some degradation in load regulation due to leakage (uncoupled) inductance between the ±5 V output windings and the sense winding. This effect becomes progressively worse as the switching frequency is increased. The coupled inductor used here has been designed for 51 Hz 2'11" (100) (31'10 -6) To calculate the low frequency gain of the power stage, assume a 1 mV change in the error voltage, Ve , at the output of the error amplifier, and calculate the voltage Change, /lVs, which results at the feedback winding. Then combine the power stage gain with the error amplifier gain (including the voltage divider) to yield the total loop response. Assume for these calculations that the converter efficiency remains constant at 83.33%. Po 1W 11 0.8333 = 1.2 W 13-77 III AN87·1 WY'Siliconix incorporated ~ The power input to the converter is the product of the stored inductive energy times the switching frequency. The solid line in Figure 5 represents the transfer function of the converter power stage at full load. The corresponding curve at a 20% load is shown in figure 6. To complete the analysis of the control loop requires accounting for the resistive voltage divider and the error amplifier. The resistor Rs sets the DC bias condition, but does not enter into the samll signal analysis. Rearranging to solve for Ipk gives: ~ At high frequencies the gain is R4/R5, with a zero occurring in the transfer function at 2 (1.2) = 0.4 A (150 J.l.H) 10 5 fz Since the current sense resistor, R2, equals 1 n, a 1 mV change in the error voltage (at pin 13) will result in a 1 mA change in the peak inductor current, i.e., Alpk = t:Ne. A 1 mA increase in Ipk causes PIN to increase to: ' 1 2'" . 150 ~ • 10 (0.400 + 0.001) 2 '10 5 = 1.206 W - - - - - - - = 30 Hz = -211'-(240 kn) (.022 J.l.F) The error amplifier response is shown in Figures 5 and 6 as dashed lines. The error amplifier response times the power stage gain gives the total loop gain, which is shown as the gray line for full load in Figure 5 and light load in Figure 6. Actual measurements of loop gain and phase yielded a loop bandwidth of 14 kHz with 68 degrees phase margin. Figure 7 is an oscilloscope photograph of the +5 V output as the load is stepped between 20% and 100% of full load. Response time is under 200 J.l.s with no overshoot. Assuming efficiency remains constant, Po = (.833) • PIN = 1.005 W 80 This translates to an increase in the sense voltage to: 60 Vs =~ Po 'Reff = ~ (100 ' 1.005) = 10.025 V 40 co 3 The gain is given by: z: =< t!J IlVs 10.025 V - 10 V 1 mV = 25 At full load the low frequency gain of the power stage is 25 (28 dB), with a single pole in the transfer function at 51 Hz. Performing a similar calculation at the 20 % load condition yields a gain of 56 (35 dB) with a pole at 10 Hz. There will also be a zero in the transfer function at approximately 30 kHz due to capacitor ESR. 13-78 20 0 -20 -40 100 10 1k 10 k 100 k FREQUENCY (Hz) FIgure 5. Loop gaIn at 100% load trr ~ AN87-1 Siliconix incorporated 80 nal equipment (TE) meet the limits outlined in Table 11. 60 Table I. ISDN power requirements 40 Operating mode IlJ ..:s z < t!J Maximum input power to TE efficiency target 20 Normal-active 900 mW 100 mW Normal-power down Emergency-active 400 mW Emergency-power down 25 mW 0 70 60 70 40 % % % % -20 -40 1 100 10 1k 10k lOOk FREQUENCY (Hz) Figure 6. Loop gain at 20% load The 25 mW limit during emergency power-down mode operation may be especially troublesome2 • In order to supply 10 mW to the TE for such functions as memory back-up, total converter losses must be less than 15 mW. Under such light load conditions the major power loss is in the PWM controller. Only controllers implemented in CMOS can presently be expected to meet this requirement. Although the converter circuit of Figure 1 was not designed specifically for use in ISDN terminals, with some modifications it can be used in these applications. Since CMOS logiC circuits consume power only during switching transitions, the first modification which is recommended is to decrease the switching frequency. The coupled inductor, L2, can be operated at 40 to 50 kHz (change R3 from 150 kn to 390 kn) without a redesign. Decreasing the frequency further requires a larger core size. Figure 7. Step load response ISDN APPLICATIONS Integrated Services Digital Networks (ISDNs) pose some unique problems to telecom systems design engineers. Standards proposed by the International Telephone and Telegraph Consultative Committee (CCITT) recommend that input power to ISDN term i- A second circuit modification which is recommended is to increase the resistances used in the voltage divider network (R sand Rs). The values used in the 1 W converter will dissipate (10)2 / (18 kn + 12 kn) = 3.33 mW. This loss is negligible for the 1 W converter, but it is nearly one forth of the budgeted power loss for the ISDN supply during the emergency power-down state. Setting Rs = 51.1 kn and Rs = 34.0 kn reduces the voltage divider dissipation to 1.2 mW. With these two minor changes the flyback converter meets the efficiency specifications of Table I. Figure 8 illustrates the efficiency improvement at light load levels which results from the circuit changes outlined above. 13-79 AN87·1 . . . 8i1iconix incorporated ~ 100 80 'ii ........ 45 kHz f/ // II /100 kHz 40 , ........... "" most appropriate type of application--Iow power converters. The device is not, however, limited to 1 W designs. Figure 9 shows the maximum achievable output power as a function of minimum Input voltage for several types of converters, two of which are discussed below. >- 60 w Z I..&J W G: I..&... I..&J CCM Flyback Converter 20 .2 .4 .6 .8 OUTPUT POWER (W) Figure 8. Efficiency VB. load curves for the flyback converter Other SI9100 Applications Circuits The 8i9100 has been called a "One Watt High-Voltage 8witchmode Regulator" in order to describe its By redesigning the magnetics for continuous conduction, the flyback circuit of Figure 1 can be made to provide 3 W of output power. Operation in the continuous conduction mode (CCM) Introduces a righthalf-plane (RHP) zero into the control-to-output transfer function of the power stage. The RHP zero incurs a phase lag without the corresponding gain rolloff caused by left-half-plane poles, and lead compensation cannot be used. Instead, the gain must be rolled off to unity (0 dB) below the RHP zero frequency. The continuous-mode flyback will, therefore, have a slower dynamic response than the DCM flyback. Also, to maintain the same output ripple for the 3 W converter, it is necessary to increase the size of the output filter capacitors. 10 8 i a= ~ 6 c a.. I:::I a.. I- 4 :::I C 2 0 0 10 20 40 50 INPUT VOLTAGE (V) Figure 9. Maximum output power 13-80 VB. minimum Input voltage 60 AN87·1 ..... Siliconix incorporated ~ Toroidal cores were used for both the transformer and the coupled output inductor to achieve very low leakage inductance. The transformer winding data is as follows: Forward Converter Forward converters are not normally used for power supplies rated under 100 W. due to the additional cost of the output filter chokes. However. for 2 to 4 W converter applications requiring ultra-low ripple. the cost of the additional inductor may be warranted. One such application is low power instrumentation for avionics. Core - Ferroxcube #768T188-3C8 Windings - N1 = 31 turns (AWG26) N2 31 turns (AWG34) N3 22 turns (AWG32) N4 64 turns (AWG32) N5 43 turns (AWG34) = = = = The forward converter of Figure 10 was designed to operate from 28 V aircraft power (MIL-STD-704D) to provide 2.5 W at 80% efficiency. A single core with multiple windings has been used to decrease cost and board space required for the output filter inductors. The input voltage range is 18 to 32 VDC; regulation is 5%; and the switching frequency is 100 kHz. Measured peak-to-peak voltage ripple was 8 mV for the +15 V output. 4 mV for the -15 V output. and 13 mV for the +5 V output. at maximum load. The primary and clamp windings are placed on the core first. wound bifilar to minimize leakage inductance. The +5 V output is wound next. followed by the ±15 V outputs wound bifilar. The 10 V winding was placed on the outside. Each winding is spread over the entire circumference of the toroidal core for optimum magnetic coupling. T1 (768T188-3C8 CORE) L2 (MAGNETICS 55120 CORE) 1N4148 N2 51<.0. L1 5()J1.H +28 V o-_ _ _ _ _rY'rrrr'-_-:-~-_-.......-~ (MIL-STD-704) ~--~~-nnrrrrL-J~~-J--o~rN ~-4N-~-:--nnrrrrL-4~-+-~-o+15V 15 1<.0. ~--~~--~--~~-~-o15V lSmN 'L-I__~-:--nnrrrn....-J~~-.L.::o -15 V GI Figure 10. 2.5 W forward converter using the 819100 13-81 AN87-1 WY'Siliconix incorporated ~ Coupled inductors must have the same turns ratios as the transformer secondaries or high circulating currents result in very high output ripple. The coupled inductor. L2. is a molypermalloy powder (MPP) toroid (Magnetics #55120) with three times the number of turns as each of the T1 secondaries. The inductor winding data is as follows: +5 V -+15 V --15 V -+10 V -- 66 turns (AWG30) 192 turns (AWG30) 192 turns (AWG34) 129 turns (AWG34) It should be mentioned here that MIL-STD-461 EMI testing was not performed for this supply. To meet CE03 and CS01 limits. some input filter redesign is required. Although current-mode control exhibits excellent aUdio-susceptibility performance. it is still necessary to damp the input filter to reduce peaking of its output impedance at the resonant frequency (Reference 3 provides useful design information regarding these requirements) . References 1) Rosenbaum. D. and Stolp. K. H.• "The Feeding Conception of the ISDN Basic Access." IEEE Intelec Conference. Munich. FRG. Oct 14-17. 1985. pp. 505-512. 2) Krautkramer. W. and Schickling. B.• "Remote Power Feeding of ISDN Terminals at the Basic Access." IEEE Intelec Conference. Munich. FRG. Oct 14-17.1985. pp. 513-519. 3) Middlebrook. R. D•• "Input Filter Considerations in Design and Application of Switching Regulators." IEEE Industry Applications Society Annual Meeting. Oct. 11-14. 1976. APPENDIX A FLYBACK INDUCTOR DESIGN Inductance Calculation 1W =--- 1) 0.8 =+ dt Lp (Ipk f . fs Ipk :!O min = • (0.45 Ts) LP(max) =i =i =i :. LP(max) = 1 I VIN(mln) LP(max) If a maximum duty ratio of 0.45 is assumed. then the minimum current peak is given by: 13-82 or VIN(mln) Combining equations 2 and 3 gives: The minimum primary current slope occurs at the minimum input voltage condition. di min • (0.45 Ts) 3) PIN(max) PIN I = 1.25 W Input power is also equal to the product of the stored energy in the magnetic field times the switching frequency: 2) di dt IPk :!O The first step Is to calculate the maximum primary inductance for discontinuous conduction at maximum load. Input power to the coupled inductor is approximately: ='2 LP(max)l pk(m1n)2. fs LP(max) (VIN(mln) )2(0.45 Ts)2 fs LP(max) V IN(mln) LP(max) i V 2 (0.45 Ts) 2 2 fs IN(mln) (0.45 Ts) PIN (max) (15) 2 1.25 2 2 5 (0.45 TS) 10 fs 182ILH To allow for component tolerances choose a nominal primary inductance of 150 ILH. Equation 2 then gives IPk S>:$ 0.4 A. AN87·1 11'7' Siliconix ~ incorporated APPENDIX A (Cont'd) Core Selection Core A L Value Determination The area product method was used to determine the inductor core size. Refer to "Magnetic Core Selection for Transformers and Inductors" by McLyman, for more information on magnetics design methods (Marcel Dekker, Inc., 1982). The number of primary turns is found from: Ap ( 2 ( E ) " 104 )1.14 Np 8 m AC Ipk Ipk Limiting the peak flux density to 0.15 Tesla gives: 8 m ' Ku • KJ Np where: E Np cIl L= = Core energy storage requirement 8 m = Maximum flux density __ Lplpk (150"10- 6 )(.4) "10 4 BmAc (0.15)(0.195 cm 2) = 20.5 turns "'" 21 turns Ku = Window utilization factor KJ = Current density coefficient This gives the following value for AL: 2 1 E=TLpl pk 2 AL = (1000) 21 (150"10- 6 ) = 340 mH per 1000 turns Let 8 m = 1500, gauss = .15 tesla, and Ku = 0.10 Secondary Turns Calculation Ap =( 2(+.150" 10-6 (.4)2) " 10 4 )1.14 0.15(0.10) (433) = 0.0233 cm4 Since the empirical equation given above applies for the area product of simple one-winding inductors, multiply by 2 for a coupled inductor. All of the secondaries combined will handle the same energy as the primary, and can therefore be allotted equal portions of the window area. The area product requirement is thus: Ap = 2 " 0.0233 crA = 0.0466 cm4 The EP-13 core has an area product of 0.049 cm4 , which meets this requirement. Also, this EP core can be tube-loaded for automatic insertion in high volume manufacturing applications, and is available from multiple sources (Siemens, TDK, and Amperex Ferroxcube). The core flux is reset to zero during the off time for each switching cycle. To guarantee discontinuous conduction mode at the maximum load condition, it is necessary to limit the inductance of the secondary windings to some maximum value. Worst case conditions occur at the maximum switching frequency (110kHz) and maximum AL value (374 mH/l000 turns for 10 % tolerance). The voltage across N Sl during the diode conduction interval is Vo + VD = 5.0 + 0.5 = 5.5 V, and the negative current slope is ~=~ dt Vo +VD tree LS1 where IS1 is the peak current in the N Sl winding, tree is the conduction time of CR2, and LS1 is the inductance of N Sl. The rectifier conduction duty ratio is defined as: d r = tree TS 13-83 III ~ ~ AN87·1 The load current is related to the peak secondary current and duty ratio by the equation: ( N Sl )2 1000 NSI Combining these equations solves for the rectifier conduction duty ratio in terms of load current, inductance, and output voltage. Use NSI =NS2 (0.374) S Siliconix incorporated < - 30.3 J.lH 9 turns = 8 turns: NS3 = (10 V + 0.7 V) = 15.6 turns ~ NSI 5.5 V 16turns dr Winding Order Setting the duty ratio < 0.45 gives: 2(.167)· LSI I - - - - - S .45 5.5(9.09) Therefore, LSI < 30.3 J.lH. Since ALMAX mH/1000 turns, 374 The primary winding (1-2) is placed first over the bobbin using one strand of AWG31 magnet wire (21 turns). The highest current secondary (3-4) is wound over the primary using two strands of AWG31 (8 turns). The 10 V sense winding (7-8) is put down next, using one strand of AWG36 (16 turns). The -5 V output (5-6) is wound last using one strand of AWG31 wire (8 turns). APPENDIX B Si9100 FLYBACK CONVERTER PARTS LIST Ul Ll L2 Cl C2, C3, Cs, C8 C4 C7 C9 Cs CR1 CR2, CR3 Rl R2 R3 R4 Rs Rs SI9100 Inductor, 100 J.lH @ 75 mA DC Coupled Inductor, GFS Mfg. # 85-787-4" 20 J.lF, 100 V, Alumin.um Electrolytic, Sprague # 30D+TE1409 0.1 J.lF ceramic .022 'J.lF ceramic 100 J.lF, 10 V, tantalum, Sprague # 196D107X9010P 20 J.lF, 10 V, tantalum, Sprague # 196D226X9010J 1 J.lF, 50 V, WIMA MKS2 1N4148 1N5819, Schottky rectifier 390 kn, 1/4 W Carbon 1 .0, 1/2 W Carbon 150 kn, 1/4 W Carbon 240 k!l, 1/4 W Carbon 18 kn, 1/4 W Carbon 12 kn, 1/4 W Carbon " GFS Manufacturing Company, 21 Crosby Road, Dover, NH, USA 03820-1409 13-84 AN86·1 tI'7' Siliconix ~ incorporated THE DG535/536 WIDEBAND MULTIPLEXER SUITS A WIDE VARIETY OF APPLICATIONS Gareth Powell Revised February 1988 INTRODUCTION Analog switch IC's traditionally have found limited use in applications involving high-frequency analog or digital signals. Degradation of switch performance and intolerable signal cross-talk between channels has undoubtedly forced many designers to use bulky electromechanical switches or costly discrete designs. At best. analog switch ICs configured in L or T arrangements (see Siliconix Application Note AN83-15) could be adopted. However. increased board space and layout complexity became major problems in configuring systems with high channel density. The DG535/536 are compact l6-channel. singleended multiplexer ICs. primarily designed as a costeffective solution to video and wide band switching problems. Other applications that benefit from the devices' superior performance characteristics are: available on' the chip. The DG536 is housed in a small. 44-pin J-Iead package. thus minimizing board size requirements. The DG535 is packaged in a 28-pin DIP. Chip select pins (CS and CS) permit easy stacking of devices for multichannel multiplexing systems (see Applications Section. Figure 19). v+ Digital switching Audio Switching PCM routing networks ATE systems II High-channel-density multiplexing or demultiplexing systems High-speed multiplexing systems Low-level signal multiplexing .. o PRODUCT DESCRIPTION A functional block diagram of the DG535/536 is shown in Figure 1 and the switch configuration is shown in Figure 2. The device is fabricated using self-isolated. silicon-gate D/CMOS technology. This process enables the logic interface and driver circuitry. the gating and latching stages. and the switching elements to be combined in a monolithic structure. y l- 51 52 53 oA.- 55 56 57 58 u- -I !;~ /.. ......."'t .,. ~ ;.. ~ Os 0- I: ri ADDRESS LATCHES GATING LOGIC DIS E-~,,:lJ = DECODE LOGIC ~ 5T bb b A3A2 Al AO Figure 1. DG535/536 Functional Block Diagram O"""liL /J;W2 !:{ SW1 51 SW3 1 C>--O"""# 'T'SWITCH CONFIGURATION 8 DRAIN OIP {SW4 59 SW5 to ~ S15 I I \ d: IL __________ -b "__I ~L Ease of design for large switching matrices and interface with microprocessors is accomplished with comprehensive logic gating and latching functions -0 D I I . r r-<> ~. II EN r=~ A- 59 510 511 512 513 514 515 516 I /. 54 C5 .. .. • .. GND y 1st level Figure 2. ~ 2nd level DG535/536 Switch Configuration 13-85 AN86·1 ...... Siliconix incorporated ~ An additional feature, a DIS pin, is an open drain terminal with the source tied to the device substrate. The DIS terminal represents a high Impedance to the substrate (normally ground) when the DG535/536 is disabled and a low impedance to ground when the DG535/536 is enabled. This output can be used to indicate which device in a large matrix has been enabled (see Figure 18), or it can be used to switch off circuitry following the multiplexer stages. of the multiplexer. These series switches serve several functions: • • • MINIMIZING PARASITIC EFFECTS The insertion loss and bandwidth of the switch are Improved with DMOS transistors that offer a low onresistance and low intrinsic capacitance (see Siliconlx SD5000 data sheets). On the DG536 channel-to-channel crosstalk is minimized by physically separat-ing each input channel with a GND pin which extends to the device substrate. This, in conjunction with careful PC board layout (see Figure 11), can yield channel-to-channel crosstalk figures better than -92 dB at 5 MHz. Further ac performance benefits are obtained through the n-channel DMOS transistor T configurations (Figure 2). This maximizes the off-isolation, since SW2 provides a shunt path to ground for any signals fed through the parasitic capacitance associated with SW1. SW3 (working in phase with SW1) provides an extra stage of off-isolation and prevents the shunt switch (SW2) from affecting consecutive channels. TWO-LEVEL SWITCHING The two-level switching system of the DG535/536 (SW4 and SW5) works in antiphase, effectively isolatIng half of the switch outputs from the drain (output) They provide an extra stage of off-isolation. They reduce the drain output capacitance significantly and increase the multiplexing transition speed. They reduce the off-leakage current, which reduces the offset voltage that develops from the total off-leakage current flowing through the load resistance and/or switch ON-resistance. This enables lower analog signal levels to be handled accurately. SILICON GATE Polysilicon is used as the transistor gate material for the DG535/536, as opposed to more conventional metal-gate designs. This technology minimizes the charge coupling of the control-logic signals to the switch output due to the self-aligning properties of the process. Metal-gate technology relies on photolithographically aligning the gate metal with the channel diffusions, resulting in greater overlap tolerances. As shown in Figure 3, a PN junction exists between the p-type substrate and then n-type channel diffusions. This junction should not become forward biased by the analog signal going more negative than the substrate potential (normally ground). Device damage could result from the current flow through the forward biased substrate-channel junction, exceeding the aluminum current handling capacity (i.e. 20 mA). Analog signal DC biasing or offsetting the device power supplies can prevent this problem. These methods are discussed in the applications section of this paper (Figure 12 and Figure 13) . SOURCE/BODY S~RCEIJ~IN SYMBOL P-SUBSTRATE Figure 3. 13-86 Cross-section of an N-channel, Silicon-gate DMOS Transistor D -ALUMINUM ~ - GATE OXIDE • - POLYSILICON EJ - FIELD OXIDE AN86·1 f6Y' Siliconix ~ incorporated DG535/536 DC CHARACTERISTICS Leakage Current ON-resistance The DG535/536 features low OFF and ON leakage currents, reducing low switching errors. ON-resistance must be low to ensure low insertion loss, especially when the switch drives low load resistances. As shown in Figure 3, the ON-resistance remains low and fairly constant over the usable analog signal range. This makes the DG535/536 useful for audio applications that require low harmonic distortion. rOS(ON) vs. Drain Voltage and Temperature 400 15 V~ = Vi 360 I- GND = 0 V 320 Until now, most available video multiplexers or digital crosspoint switches relied on high-level supply currents for operation. The DG535/536 requires a total supply current of only 5 I1A, typical. This feature makes the DG535/536 ideal for systems with high channel density, such as 32-channel crosspoint matrices used in vidio mixing consoles or as ECl digital crosspoint replacements in large data transmission systems. The total supply current for a 32-channel crosspoint system using the DG535/536 is approximately 320 I1A, much lower than other video multiplexers. 280 240 rOS(ON) 200 (.0.) +8S0~ - 160 120 +2SoC ~ ~...w \ 80 o o il 2 3 4 5 6 7 8 9 DG536 AC CHARACTERISTICS (Refer to the DG535 data sheet for the 28-pin DIP performance. ) -~O°C _ 40 Bandwidth 10 V o - DRAIN VOLTAGE (V) Figure 4. Power Supply Current Consumption ON-resistance vs. Analog Signal Characteristics of the DGS35/536 This "ON" frequency response, as shown in Figure 6, is expressed as the frequency at which the insertion loss (at dc) increases by 3-dB. The measured bandwidth of the DG536 is greater than 300 MHz. Crosstalk NOMINAL rOS(ON)= 50.0. r-------~~r-----~----~VO~ ~rOS(ON) s 2.0. 600.0. Crosstalk is the amount of unwanted signal apparent at a particular node due to the parasitic capacitance of the device. As the most important parameter for many applications, crosstalk is specified in a number of ways. 1 V pk/pk 1. V INSERTION LOSS = 20 LOG10 VOUT IN Single-channel crosstalk (Figure 7) is the ratio of the signal seen at the drain (output) to the signal applied to a single OFF-channel input. This is expressed by VOUT Figure 5. 600.0. Audio System In a 600-ohm audio system, such as the one represented in Figure 5, the percentage of ON-resistance change relative to the load resistance is only 0.33%. The insertion loss due to the switch ON-resistance is 0.7dB. XTAlK(sc) (dB) = 20 lOG 10 - V IN Most conventional multiplexers specify this parameter on the data sheet as off-isolation. This value for the DG536 is more than twice as good as other 16-channel analog multiplexer ICs, proving the effectiveness of the T switch. 13-87 ~ __ AN86-1 ..,. Siliconix incorporated ~ -3 dB Bandwidth (Insertion Loss vs. Frequency) -4 +15 V +15 V 0 RL = ~o~" -4 Loss (dB) 13IJBI~~:~ -8 V+ S2 THRU S16 EN CS ST H:>-_-O SWITCH AO "':-'-'---0-1 Sl -12 OUTPUT VOLrr -16 -20 10 100 FREQUENCY (MHz) 1 Figure 6. 1000 Bandwidth of the DG536. Please refer to the DG535 Data Sheet for 28-pln DIP performance Single Channel Crosstalk vs. Frequency 180 160 I 140 XTALK (dB) 120 100 51 Q52 ~ I" S3cc;>------o~ 54. _ _ _ __ TEST CIRCUIT See Figure 1~ ..... 'f IIIRIN = 75.0. I I I RL= 75.0. , r-...... 80 SWEEP , GENERATOR (75.0. ) '" V 60 40 20 o 0.1 10 100 FREQUENCY (MHz) Figure 7. 56 0 _ _ _- 0 57 00_ _ __ 58 0 _ _ _-0 51°00 59 5110 512 0 513 0 , 5140 , 0 515 ~ 516 0...-:. ~~ ~ ~ ~ ~ RL - ~ ~ NOTES: 1. Channel Sl on. 2. Any Individual channel between S2 and S16 can be selected. 3. XTALK (50)= Average value of 20 LOG 10 VOUT Is scanned Sequentially from S2 to S16. V Single-channel Crosstalk vs. Frequency Graph and Test Circuit (DG536) 2. All hostile crosstalk (Figure 8) is the ratio of the signal measured at the drain to the signal applied simultaneously to all 15 channels (i. e. , with one channel ON). 3. Chip-disabled crosstalk is the drain output to signal input ratio. The input signal is applied to all 16 off channels simultaneously. 13-88 00 55 0 - 0 - - - - - 0 4. Adjacent input crosstalk (Figure 10) is the ratio of the signal applied to a source (input) to the signal measured at any adjacent source. A low adjacent input crosstalk is required for video applications to avoid ghosting effects that may appear on video monitors or TV screens. AN86-1 trY' Siliconix ~ incorporated All Hostile Crosstalk vs. Frequency 180 81 160 E~l--D---o" 140 120 XTALK (dB) RIN = 75.0. ;'L = 75.0. .... 100 80 60 ""-6--.__. 86~---o----~'~1 87~---o----~'~~ 88~---o----~-~~ ~b RIN = 10.0. RL= 10k.o. CHANNEL S1 ON 89~-"""'--"""'" 810 ~---o-----o"'" 811 p..----o-----o"'" 812 ~---o----~. II!!.. ~1iIIII 813 ~---o-----o"'" 40 20 o 0.1 100 10 FREQUENCY (MHz) Figure 8. SWEEP GENERATOR"'" V (75.0.) ALL HOSTILE VOUT CROSSTALK = 20 LOG10--V- All Hostile Crosstalk vs. Frequency Graph and Test Circuit (DG536) Chip Disabled Crosstalk VS. Frequency 180 TEST CIRCUIT See Figure 14 160 81 82 S3 S4 S5 S6 140 120 ~~. XTALK (dB) 100 87 88 89 81 0 81 1 RL = 50 80 RL = 60 75.o.~ 40 ~ 81 3 81 4 81 5 81 6 0.1 10 FREQUENCY (MHz) Figure 9. ...., ...., ...., A ...., 81 2 ~ 20 o A ...., 100 SWEEP GENERATOR (75.0) ....-:l ....-:l ""V XTALK(CO) = 20 LOG10 VOUT --v- Chip-Disabled· Crosstalk vs. Frequency Graph and Test Circuit (DG536) Switching Time The DG535/536 switching time enables use of the device at high multiplexing rates. The low transition times (toN = 300 ns maximum and tOFF = 150 ns maximum) make it ideal for fast multi-channel analog or digital mUltiplexing. True break=before-make (88M) switching action is guaranteed by design. This prevents shorting (crosstalk) of time adjacent input channels during transition. Capacitance Capacitance determines the loading effect of the multiplexer on signal sources and affects transition times, as well as system bandwidth. 1. OFF-state input capacitance gives the loading of the device (in the OFF state) to a signal source. With a typical value of 2 pF, this allows efficient paralleling of many device channels in multichannel crosspoint matrices with negligible loading effects. 13-89 III AN86·1 ..... Siliconix incorporated ~ I VSn-l l Adjacent Input Crosstalk vs. Frequency -120 r'" -100 XTALK ....... ~r--. I - RIN = 75.0. -80 (dB) ~ -L RIN : <>n-1 ,~!l = til ..t. .......... -60 - I Vsn I Sn ..... i"o r-.. -40 -20 SWEEP GENERATOR (75.0) o 1 10 FREQUENCY (MHz) 0.1 100 INPUT CROSSTALK =20 Vsn-l LOG10 Vsn Vsn+l or 20 LOG10 Vsn FIgure 10. Adjacent Input Crosstalk vs. Frequency Graph and Test CIrcuIt (DG536) 2. ON-state Input capacitance also determines the loading effects of the device ON signal sources and limits the number of parallel on channels allowed ,in a large matrix. In large matrixes buffering of the input signals is recommended. 3. OFF-state output capacitance affects the transition speed of the multiplexer. The output capacitance must be charged and discharged in turning on and off a device; thus. a low value of capacitance enables rapid transition times. Table 1 shows a comparison of DG536 capacitance to comparable 16-channel multiplexers. 5MB-PCB MOUNTING SOCKETS . E2l ,!l, ~::.:: [GROUND PlAN" + L BOTTOM SIDE DG536 MOUNTED ON UNDERSIDE OF PCB CIRCUIT BOARD LAYOUT To optimize the high-frequency characteristics of the DG536. care must be taken in circuit board layout and interconnections. Parasitic stray capacitances caused by poor layout could degrade performance significantly. As shown in Figure 11. use of guard planes and traces between signal paths is a good layout practice. Other layout considerations include: • short signal paths • sufficient power supply decoupling • coaxial interconnect of leads. plugs. and sockets. • sockets should be avoided 13-90 FIgure 11. CIrcuIt Board Layout for OptImal Performance (DG536) ~ AN86-1 Siliconix ,JI;JII incorporated TABLE 1. Capacitance Value for 16-Channel Multiplexers DG526 Parameter DG506A DG508A CD4051 12/3 DG536 CS(off) (pF) 10 6 5 10 2 CD(off) (pF) 35 45 50 60 8 NOTE: These are typical values taken from data sheets. APPLICATIONS arrangement is useful for providing impedance matching and greater drive for transmission stages. Many applications for the DG535/536 will be in video related systems. Some examples of circuit configurations are included in this section. VIDEO The DG536 was broadcast quality ance is achieved +3 V. Differential level. designed primarily for handling video signals. Optimum performwith a bias between +2.5 V and phase linearity is best at this bias A general-purpose 16-channel video multiplexer is shown in Figure 12. DC biasing is achieved with the divider network R1 and R2. A differential video buffer amplifier (NE5539) removes the DC level and enables greater multiplexing rates than achieved with capacitive decoupling. The unity gain buffer amplifier Alternatively, the device supplies can be offset to eliminate the need for 16 separate bias circuits. Such an arrangement, shown in Figure 13, could be used in a security system or in a remote industrial monitoring system. The DG535/536 positive supply and ground pins (at -3 V) should be heavily decoupled to the video camera ground connections. The switching threshold of the device at a supply voltage of + 15 V is approximately between +6 V and +8.5 V above the substrate potential (Figure 14). Since the substrate is held at -3 V, the effective switching threshold referenced to ground is between +3 V and +5.5 V. Thus, the device can still be controlled from CMOS logic signals (provided that the logic 0 ry AL) is less than 3 V and logic 1 ry AHl is greater than +5.5 V). .. r--\l--\l------ --1--------1 A3 V REF I I (+1.5 V) v- Figure 15. Using the L161 Quad Comparator for Address Logic Level Shifting v+ 1 R1 toRs R1 = 100 k.o. A1 TTL 4-BIT { BINARY ADDRESS A2 A3 ~~ i-- -o----t>-~ I--o----t>-~ I-..--. -I'>} ~ ":' ":' v+ DG271 Ao 1 1 R2 R3 R4 DG535/536 Ao A1 A2 A3 v!: 'L I-- -= b v- 11 Figure 16. Using the DG271 for Address Logic Level Shifting Another technique for achieving high-speed level translation at a reasonably low cost uses 0169 dual driver ICs (see Figure 17). The 0169 driver can drive up to +40 mA continuously and is therefore extremely suitable for applications where many OG535/536s are to be driven from a single address bus, such as in multichannel cross points or large switching matrices. For single supply applications, TTL to CMOS level shifting can be easily accomplished using inexpensive CMOS level shifters such as the C04504 or C040109. 13-93 III AN86·1 .... Siliconix incorporated ~ +5 V 0 - - -......- - , V+ DG535/536 L-----------IAo TTL ~----------iAl ADDRESS ~----------iA2 r----------~A3 VJ,f 0169 VFigure 17. Level Translation using 0169 Dual Driver les CROSSPOINT SWITCHING Many analog and digital systems. such as a central router used in a video studio console (Figure 14). require crosspoint switching functions. In this application. many channels route signals to many different outputs. Due to its small outline PLCC package and low power consumption. the DG536 leads itself easily to multichannel crosspoint functions. Figure 18 illustrates how the DIS (disable) pin can be used to indicate which output is selected. When logic 1 is applied to output select. device 1 is enabled and device 2 is disabled. With device 1 enabled. the DIS pin is connected to signal ground. thus turning LED 1 on. With device 2 disabled (due to CS being 1). its DIS pin represents a high impedence to ground and LED 2 is off. Anyone of sixteen inputs can be connected to either output. This is achieved by applying the appropriate 13-94 CMOS logic address to the address inputs (AO to A3) and applying the appropriate logic level to output select simultaneously. The circuit in Figure 18 also illustrates how the chip select inputs can be used. As shown in Figure 19. a 32-channel single-ended multiplexer can be configured without external chip select circuits. This circuit makes use of the CS and CS inputs which allow device selection from a single control line. The basic circuit shown in Figure 18 can be extended and elaborated to give a 16 X 16 matrix for video crosspoint applications such as central routers used in video studios. This circuit. shown in Figure 20. allows source (or video input) to be connected to any video output (or any number of outputs). The strobe input (ST) on each device is used to latch the appropriate address into that particular device. By strobing the required address into each device sequentially. any crosspoint connection can be made. AN86-1 ..... Siliconix incorporated ~ r-~--~------o+5V s,V+ENST , , , , ~~" LED, R, LED2 R2 , DG535/536 , #1 DIS 1--+---' SIGNAL INPUTS CSf-, Ao to Aa S'6 GNDCS 1'1 '-- s, -, , -, '--- ~ V+ EN ~~J D I----IH-+--+---o OUTPUT 2 , DG535/536 , #2 DIS I---H-+----' S'6 Ao to Aa GND It * OUTPUT SELECT '+-+----0 ( '1' =O/P, SELECTED) '0' = 0/P2 SELECTED ~AEg~fgs Figure 18. The DG535/536 as a 16 x 2 Matrix Switch The DG535/536 makes an excellent digital switch due to its low channel-to-channel crosstralk, high off-isolation, and wide bandwidth specifications. In digital data transmission systems. the DG535/536 can easily handle data rates in excess of 100 Mbps. The circuit shown in Figure 20 can be used as a digital cross-point to replace expensive, power consuming ECl crosspoint ICs. Besides handling raw digital data. the DG535/536 can also be used for other forms of data transmission, such as FSK and PCM systems. FSK Frequency shift keying (FSK). commonly used in data transmission networks. relies on representing the digital code with frequency sine wave bursts. An FSK multiplexing system block diagram is shown in Figure 21. Each digital level has a specific signal frequency. The DG535/536 can be used to multiplex 16 different digital channels into a single transmission line or into a transmitter. Similarly. a DG535/536 may be used to demultiplex the data at the receiving end. Since the device can manipulate higher frequency sine waves. data can be transmitted at a higher rate than with a conventional multiplexer. 13-95 W1P" Siliconix AN86·1 ~ +1 5V PCM A more commonly used and faster form of digital data transmission is known as PCM (pulse coded modulation). Used in telecommunications systems. PCM converts analog speech signals into 8-bit digital words for serial transmission. The data transfer rate used (for 4 kHz bandwidth voice signals) is 'up to 274.176 Mbps. {~' ~ VIDEO IN PUT CHANNELS I I STV- ~1 75.n. ··· i5S GNDS • DG535/536 ~ I CH16 - ~ LADDRESS BUS RZ (returns to zero) PCM data consists of three discrete (ternary) levels to overcome long periods of zeroes (Figure 18). Digital signals can degrade beyond legibility after only a few hundred yards of travel down a transmission line. Therefore. the PCM signals must be regenerated at regular distances to avoid excessive distortion. R 01- , EN CS AntoA ENABLE DEVICE SELECT The DG535/536 can be used to route PCM signals in main telephone exchanges. replacing bulky hardwired distribution frames. PCM highways can thus be rerouted remotely. under computer control. rather than manually. VIDEO INPUT CHANNELS incorporated ·,, 01- S16 GNDS AntoA" 75.n. ~ I h Figure 19. 32-Channel Multiplexer 01 S16 VIDEO OUTPUTS Slo-~~-+----,~-+~ S20-H~~1- VIDEO OUTPUTS } I I I VIDEO I 'INPUTS I I I I VIDEO OUTPUT SELECT Figure 20. 16 x 16 Video Crosspoint Circuit 13-96 st6~ I I ~ I II I AN86-1 .... Siliconix incorporated ~ Figure 23 shows the architecture of a conventional binary distribution frame in a telephone exchange. Signal regeneration is applied to handle degradation during transmission and routing. Code converters are required to change the ternary PCM into binary PCM for routing within the distribution frame. Similarly. code converters are required to reconvert the binary PCM into ternary PCM for transmission. _ BINARY PCM (a) Analog voice signal converted to digital signal using 8 bits per sample _ TERNARY PCM (b) Digital signal transmitted and clock regenerated from digital signal to get synchronization Figure 22. OUTPUT TO TRANSMISSION LINE OR TRANSMITTER INPUT STAGE D DIGITAL INPUT CHANNELS Unlike digital switches which require specific digital signals. using the OG535/536 in the distribution frame (Figure 24) eliminates the need for code conversion and meticulous regenera-tion because it can handle analog signals. PROGRAMMABLE GAIN VIDEO AMPI-IFIER '--_ _ _ ADDRESS BUS Figure 21. FSK Multiplexing System Block Diagram The circuit shown in Figure 25 uses the OG535/536 video frequency handling capability to switch feedback resistors in a precision-programmable gainvideo amplifier circuit. G~,n of the op amp is set by R1 AV= + R Feedback R1 Central office or main telephone exchange / r----------------------------, PCM Highway from codecs within main exchange REMOTE EXCHANGE/ SWITCH OR DIGITAL PBX OR CONCENTRATOR REMOTE EXCHANGE/ SWITCH OR DIGITAL PBX OR CONCENTRATOR Couple hundred yards/different floor ~---------------------------Figure 23. Binary PCM Routing Network 13-97 AN86·1 WY'Siliconix incorporated ~ Central office or main telephone exchange / r-------------------------, PCM Highway from codacs within main exchange PCM Highway REMOTE EXCHANGEI SWITCH OR DIGITAL PBX OR CONCENTRATOR \. II I DG535/536 CROSSPOINT .. I I REMOTE EXCHANGEI SWITCH OR DIGITAL pax OR CONCENTRATOR ~------------------------Figure 24. DG536 PCM Distribution Frame For example, when R1 = 1 kn, v+ the results are TABLE 2. Gains for the Circuit of Figure 25 Logic Input 0000 0001 R Feedback on 1 kn = (RA) VIDEO OUT Gain (Av) v- S1 S RA 2 S3 Ra S4 0010 2 kn = (RB) 3 0011 3 kn = (RC) 4 S5 S6 The low and fairly constant ON-resistance of the DG535/536 gives good gain stability, and the resistor tolerances determine the gain error of the circuit. The accuracy of the circuit is, therefore, limited by the op amp CMRR and offset, and the gain of the circuit is limited by the analog signal range of the DG535/536. RF S RG S S10 S11 S12 R1 RD RE S D Rc S13 S RH R1 R3 RK RL RM S ~~~~~~~-.RN L....<:"..-+S:..J.!!6-J1,_ _ _~ Ro RFEEDBACK LOGIC---......J INPUT --::~:-::==-' Figure 25. Precision Programmable Gain Video Amplifier 13-98 AN86-1 W'r' Siliconix ~ incorporated ATE MICROPROCESSOR INTERFACE CIRCUITS A simple but accurate ATE system, as shown in Figure 26, can be designed for testing digital processing boards. On-chip data latches in the DGS3S/S36 simplify interface with a microprocessor data bus. This eliminates the need for peripheral memory devices (such as 110 ports or D-type latch ICs) to maintain switch addressing while the processor uses its data bus for other functions. The propagation delay time for each of the 16 digital signal paths can be tested individually, with negligible errors due to the very small propagation delay through the DGS3S/S36. Also, the variation of delay times from channel to channel is less than 0.2S ns. DIGITAL SIGNAL PROCESSING BOARD UNDER TEST The data latches are activated by the DGS3S/S36 strobe input (ST). The latch is transparent when ST= logic 1, thus the device responds to changes of data at the address inputs. When ST = logic 0, the previous data is latched into the device, regardless of new data appearing at the address inputs. The DGS3S/S36 timing arrangements meet the requirements of popular microprocessors, such as the 80BSA, 6800, and ZBO. The BOBSA to DGS3S/S36 interface is shown in Figure 27, and Table 3 illustrates the timing compatibility of the DGS3S/S36 with the BOBSA and the faster 80BSA-2 devices. 16 BIT DATA BUS Figure 24 shows the complete 6800 to DGS36 interface circuit. In order to have a data valid signal, it is necessary to nand the R IW ICS gate output with the ~2 clock (usually connected to the DBE pin). This makes the interface circuit functionally compatible with the 808SA interface shown in Figure 27. Figure 26. ATE Applications +15 V Rl R2 R3 R4 RS t::l .-- r DATA BUS -1\ -V Ao v+ CS Al A2 A3 EN to +15 V S16 .,{ t>Cirno7 SOS5A R6 .uP SYSTEM BUS WR ADDRESS BUS ~ AD:ESS DECODER I -'.., lSI I I ). Sl 6 DG535/536 ST GNDs D 1'1 D eS' ~ III Figure 27. SOS5A to DG535/536 Interface 13-99 AN86-1 ..... Siliconix incorporated ~ TABLE 3. Timing Compatibility of the DG535/536 with Popular Microprocessors Specification SOSSA SOSSA-2 DGS36 ns/mln. ns/mln. ns/mln. t sw (strobe pulse width) 400 230 200 t ow (data valid to strobe) 420 230 100 two (data valid after strobe) 100 60 50 trasound transducer multiplexing) because the device exhibits inherently low noise and offset voltages. Two factors affect offset voltage: 1. Thermoelectric offset voltage is produced by the incidental thermocouples that exist within the integrated circuit. There are many intermetallic junctions within an IC. These junctions act as individual thermocouple has an identical reversed counterpart. That is. from source to drain. we have gold-aluminum/aluminum/aluminum-silicon and silicon-aluminum/~luminum gold. Therefore, if the temperature surrounding each junction is constant and equal. the thermal EMFs cancel each other. giving a zero net offset voltage. Since a thermal gradient always exists across the chip, then there is always a net thermoelectric offset voltage. For the DG535/536. the thermal EMFs produced on chip are small since the device exhibits a low power consumption (75 I1W). producing a low temperature on the die. '2. Leakage current offset is caused by leakage current flowing through the rOS of an ON switch and/or the load resistance. The offset voltage developed due to leakage current is negligible since the device has very low leakage currents (a benefit incurred by the two-level system) coupled with very low ON-resistance. Note that open collector gates and buffers could be used to level shift the TTL logic levels from the microprocessor -to the CMOS levels required by the DG535/536 logic Inputs. To achieve the correct ST signal in a Z80 processor system, the WR and MREQ signals must be gated with the standard CS signal. as shown in Figure 29. LOW ANALOG SIGNAL SWITCHING/MULTIPLEXING The DG535/536 has several uses in handling low-level analog slgn~ls (such as in medical equipment or ul- 6800 112 jJ.p SYSTEM BUS CONTROL = OBE p .....---IST 01-------00 GNOs CS" BUS Rl toR6 Figure 28. 6800 to OG535/536 Interface 13-100 = 100k.o. AN86·1 ..,. Siliconix incorporated ~ zao ,Ilp SYSTEM BUS Figure 29. zao to OG536 Interface For example: V (offset) = IOION) x rOSION) = ±100 pA (typical @ 25°C) x 55.n (typical) = ± 5.5 nV (typically) The circuit shown in Figure 30 can be used to remotely monitor up to 16 different thermocouples with high accuracy. The output of the thermocouples is in the form of a small dc voltage, on the order of millivolts, with typical voltage changes on the order of tens of microvolts per °C. Thus, voltage offset developed by the switching devices can frequently limit system accuracy. Using the differential multiplexing technique shown in Figure 30, high resolution can be achieved since the thermal EMFs produced by each DG535/536 are canceled as common mode voltages at the Instrumentation amplifier inputs. To minimi;ze pick-up and noise effects, the same PC board layout rules apply for this type of circuit. Best accuracy is achieved by ensuring that the multiplexers are kept close together in a thermally stable environment. THERMOCOUPLES Ix 16) vo DIFFERENTIAL INSTRUMENTATION AMPUFIER 1..-____ CHANNEL SELECT Figure 30. Thermocouple Multiplexing System III 13-101 W1P" 8i1iconix AN84·2 ~ incorporated THEORY AND APPLICATIONS OF THE Si7660 AND Si7661 VOLTAGE CONVERTERS Doyle L. Slack Revised February 1988 INTRODUCTION Many times a simple digital circuit design can be greatly complicated by the needs of just one or two of the on board devices. For example, analog devices often used along with digital circuits (such as op amps and data acquisition systems) are notorious for negative voltage requirements of -5, -10 or -15 V when everything else in the circuit needs only positive voltages. Until recently, the only answer was to either buy a dc to dc converter module (expensive) or redesign the power supply to generate the negative voltages (expensive and wasteful in parts count and space). This Application Note presents the best alternative to this problem: the 8i7660 and 8i7661 monolithic voltage converters. With the 8i7660 and 8i7661, negative voltages from 1.5 to 20 V can be generated from a positive supply with minimum parts count and minimum cost. ~ 1 VIN 52 I I I + 01 I I I C2 + - ~-VIN an oscillator/toggle circuit, providing charge and transfer cycles of equal length. During the charge cycle, 8, and 83 are closed, and current flows into C" charging it to the value of VIN. The oscillator toggle then changes state, and the transfer cycle begins. 8, and 83 are opened while 82 and 84 are closed, allowing C, to dump charge into C2 until the potential across them has equalized. The oscillator/toggle then switches again, and the process starts over. For no load conditions, the voltage inversion will be virtually perfect since the amount of charge that must be transferred from C, to C2 will be limited to losses due to leakage from C2 and any parasitic capacitances. As the load increases, C, must transfer more and more charge to make up for the depletion of C2 as it supplies current to the output during the charge cycle. This action causes the output voltage to drop, making the circuit appear to be a perfect inverter in series with an output resistor that varies in magnitude with the input voltage. Figure 2 shows this concept in a two port diagram of the device, and Figure 3 illustrates the typical output characteristics of both devices configured in the inverter mode. r-------------, I Theory Of Operation The basic theory behind the 8i7660 and 8i7661 is the same and is based on the ideal voltage doubler shown in Figure 1. Capacitor C, is the pump capacitor, and C2 is the reservoir capacitor. The pairs of switches (81 with 83, and 82 with 84) are driven by 13-102 Ro~ / FIgure ,. The Ideal Voltage Doubler \ I o--!__R_ln4_ _ ~---.lJ.-V-ln--_T_-O IL ____________ -.II FIgure 2. Two-Port Diagram of the Voltage Converter Circuit \ Jut AN84-2 .... Siliconix .c;II incorporated 2 4t - v+'= 3 ~10' V - o -2 ~ ~ V OUT -4 ,/ .", .", I' ~ ~ ~ (V) .... -6 ~ I ' I,..;" -8 I" t..... I" -10 o ~ , 5V'-'6V I ~ ".... .", ~ ~ .-" I ' - -,,- ~ 20 ~ ./ ./ ~ -- --- A ~ ~ 40 ./ ./ V' ~ ~ ".. V V 7V 8V 9V 10 V ".... 60 80 Figure 3 (a). Output Characteristic of the 517660 Voltage Converter. V+ 0 -4 VOUT -8 (V) -12 -16 -20 - ---- --------------- -~ ~ ,,- ...- f-'" ...... f- i.--~ ~ f~ ~ 20 40 ------- -~ k--" ,,- .... -~ o =8 V I / ".. ~ 60 The oscillator supplies the signal to the divider section which in turn drives the rest of the circuit. The OSC input has an input impedance of approximately 1 M n. This allows the internal oscillator to be overridden by an external clock or to be slowed down by the addition of an external capacitor. 100 OUTPUT CURRENT (rnA) 2 are very similar. description of the operation of the Si7660 and Si7661 is combined. The internal sections of the circuit are the oscillator. divider. regulator. level translator. and substrate logic. Figure 4 shows a block diagram of the internal sections of the inverter circuit . 10 V 12 V The internal regulator is a series voltage regulator with a zener reference to insure that low voltage components of the circuit are provided with no more than 5 V when the input voltage is greater than 5 V. It also provides current limiting for the oscillator and divider circuits. When the input voltage is less than 3.5 V for the Si7660 (less than 9.0 V for the Si7661). the LV pin is grounded. bypassing the internal regulator. However. when the Si7660 is operated above 3.5 V. the LV pin must be left open to provide latchup protection. For the Si7661. LV should be left open above 9.0 V for proper operation. 14V 16 V 18 V 20 V 80 100 OUTPUT CURRENT (rnA) Figure 3 (b). Output Characteristic of the 517661 Voltage Converter. Circuit Operation With the Si7660 and Si7661. the only parts of the doubler not included inside the package are the pump and reservoir capacitors. The internal switches are made with P-channel and N-channel MOSFETs. The main difference between the Si7660 and Si7761 is the breakdown voltage of the MOSFETs which in turn dictates the maximum input voltage. Also. the design of the Si7661 offers a much greater resistance to device latchup. which is discussed later. Since the internal sections of the two devices Figure 4. Block Diagram of the Voltage Converter Circuit The divider is simply a divide-by-two counter that provides complementary outputs. Q and Q drive the inputs of the level translators. which in turn provide the necessary switching voltages to drive the MOSPOWER switches. The bUilt-in delay of the translators guarantee that break-before-make action occurs. 13-103 l1li AN84·2 .... Siliconix .JI;II incorporated The substrate logic network insures that two things happen. First, it makes sure that the substratesource/drain junctions of 03 and 04 are never forward biased, and that the ON resistance of each of the output transistors will be as low as possible for all operating conditions. Second, the network determines the most negative voltage in the device and uses it to supply power to the level translator. Figure 5 gives the pin configuration of the Si7660 and Si7661. These devices are pin compatible with competitive products. Functionally, the SI7660 is an exact replacement of the industry standard voltage converter competition while the Si7661 provides the advantage of greater voltage range at the expense of slightly higher output resistance. NCOBV+ CAP+ 2 7 OSC CAP+ 2 GROUND 3 6 LV CAP- 4 6 VOUT vice to latch up. As Figure 6 shows, the source of the N-channel device becomes the SCR cathode; the source of the P-channelis the anode; and either drain can act as a gate. Since an SCR does not trigger until certain conditions occur, It can sometimes cause no problems at all, yet sometimes it may be fatal to the CMOS device. The intrinsic SCR needs three conditions to cause latchup. First, the current gain products (betas) of the two parasitic bipolar transistors must be greater than one. Second, the current flowing through the channels of the devices must be greater than the holding current of the SCR. Finally, some kind of pulse must be applied to one of the gates to trigger the SCR action. The trigger pulse can come from several different sources. The power-up sequence of the CMOS device may cause problems if the SCR gate receives power before the other terminals. Another possible trigger source is a high slew rate across the intrinsic SCR. When the SCR is triggered, the CMOS devices are suddenly shorted out by the SCR, and the output impedance of the device becomes very low. 04 of the Si7660 can sometimes experience the conFigure 6. Pin Diagrams of the TO-99 and 8-Pln DIP Packages for the SI7660 and SI7661 Figure 6. IntrinSiC SCR Superimposed on a CMOS Gate Structure Latchup Because of the basic internal four-layer geometry of CMOS devices, an SCR action can sometimes occur. Figure 6 depicts the SCR structure. This SCR action can, under certain conditions, cause the Si7660 de- 13-104 ditions to cause SCR latchup when operating at the upper end of the Input voltage range. The nearby Pchannel substrate logic transistors form the complementary part of the Intrinsic SCR. When the SCR action does occur, the circuit suddenly appears to be a short circuit betweenVIN andVouT. The reservoir capacitor (~) rapidly discharges through this path. After ~ has discharged, the current through 04 drops below the SCR holding value, and the circuit resets. If the conditions that originally caused the SCR action remain present, the device will latch up repeatedly. If the circuit input is not current limited, this action can sometimes dissipate too much power through 04 and the substrate logic, resulting in damage to the device. To prevent damage to the Si7660 when conditions for latchup occur, older versions required a diode In ~e ries with the VOUT pin to block the discharge of ~ and keep the current below the holding value of the SCR. This diode was used whenever the input voltage could exceed 6.5 V at room temperature. Figure 7 shows the operating range of the improved Si7660. AN84-2 ..... 8i1iconix JI;;II incorporated v+ I 8 3 Ie (nA) 4 Figure 8. Schematic Diagram of the Basic Inverter Circuit -55 25 85 2 125 0 TA (OC) Figure 7. Range of Input Voltage and Operating Temperature for the 517660 -4 VOUT (V) The 8i7661 is a higher voltage device than the 8i7660, and is designed on a different process. This high voltage silicon gate process reduces the parasitic betas in 04 to a value that makes it extremely difficult to produce the conditions for latchup. Because of this, the series diode is not needed for proper operation. -8 .A-' ...,.. -~176~0 -- V+ -.......s';Sl1t -12 -16 -20 I-- f-"" o =5 V Vi 20 = 40 i-'" I-'" V SO 80 100 OUTPUT CURRENT (mA) General Applications The 8i7660 and 8i7661 are intended for use as voltage inverters. However, with a few added components, the inverter circuit can be rearranged to provide many different voltage levels. In some configurations, they can even provide more than one voltage output at the same time. The possibilities include voltage inversion, voltage multiplication, and even simultaneous inversion and multiplication. Figure 9 (a). Variation of Output Voltage as a Function of Output Current 2000 1000 500 \ 200 \ ROUT (.n. ) 100 517661 V+-15 V 50 vrr Basic Voltage Inversion 517660 20 With no load, the output voltage magnitude of the basic voltage inverter circuit shown in Figure 8 will typically be within 0.1% of the V+ (input voltage) magnitude for the 8i7660 and within 0.3% of the input voltage magnitude for the 8i7661. As the load current increases, the output will drop as shown in Figure 9 (a). The effective output resistance will vary with input voltage as given in Figure 9 (b). Once the load current reaches its limit (30-40 mA for the 5 V case), the inverter can no longer regulate the voltage properly and shuts down to protect itself from extreme power dissipation. = = 10 o 10 INPUT VOLTAGE (V) 20 Figure 9 (b). Variation of Output Resistance as a Function of Input Voltage. CAUTION: At higher input voltages (for either device), the output maximum limit can cause the power dissipation to exceed the maximum rating of the package (especially plastic). Always calculate the maximum power dissipation for your design. 13-105 l1li AN84·2 .... 5i1iconix incorporated ~ TABLE 1 Effect of Varying the Pump and Reservoir Capacitor 5ize on Output Ripple Noise. Capacitors (J.1F) VOUT (V) VR (mvp_p ) 5i7660 Inverter Mode (see Figure 8) V+ = +5 V lOUT = 10 mA 10 22 47 100 470 1000 -3.838 -3.862 -3.873 -3.874 -3.879 -3.880 150 75 30 26 10 5 5i7661 Inverter Mode (see Figure 8) V+ = +15 V lOUT = 10 mA 10 22 47 100 470 1000 -13.849 -13.872 -13.882 -13.883 -13.885 -13.890 175 80 38 29 10 5 The output ripple of the Inverter is a function of the oscillator frequency as well as the size of the pump and reservoir capacitors. The nominal oscillator frequency is 12 kHz for the 5i7660 and 10kHz for the 5i7661. Because the output ripple is important in some linear applications where supply noise is critical, Table 1 provides ripple values for different pump and reservoir capacitor values. It is important to note that increasing the capacitor size can lead to other difficulties. The main problem is that the large capacitors may draw excessive amounts of current at turn-ON. If the current is too great, the power disSipation of the device can be exceeded causing destruction of the converter. Even when the device is running, the charge transfer under heavy loads can push the switches to their limits. As stated before, the LV pin shorts out the internal regulator at low voltages when it is tied to ground. The LV pin should be grounded for operation below 3.5 V for the 5i7660 and 9.0 V for the 5i7661. However, it is necessary to leave the LV pin floating for high voltage operation, as shown in Figure 10. Failure to do so could permanently damage the device. Figure 11 shows the Inverter configured for low voltage operations. v+ 8 VOUT 2 10JlF 3 6 4 6 v+ 8 2 °1+ 10JlF 817660 --I::"() -=- Figure 11. Inverter Circuit Connections for Low Voltage Operation 7 3 6 .::c. 4 6 - °2 10JlF Figure 10. Inverter Circuit Connections for High Voltage Operation 13-106 VOUT Voltage Multiplication 5ince the inverter design is based on the ideal voltage doubler, it is easy to convert the 5i7660 and 5i7661 devices to provide doubling of the input voltage. Figure 12 gives the schematic diagram of the AN84·2 tI'7' Siliconix ~ incorporated voltage doubler. This circuit requires only two additional diodes and will provide positive voltage multiplication at the expense of the voltage drops of the two diodes in series with the output. This means the positive multiplier will not be able to provide the near perfect output function like the basic inverter circuit does. The output voltage of the multiplier will be: =2 VOUT v+ .-----12 3 8 C - 7 3 6 4 V+ (2) (V+) -2 Vdlode 2 resistance, providing a smaller output voltage drop for a given current. This circuit will also expand the operating output current ranges slightly. Each device must have its own pump capacitor, but the reservoir capacitor is shared between all of the devices. °1 °2 + VOUT + 5 -=- -I- c Figure 13. Combination Inverter/Multiplier Clroult Figure 12. Voltage Doubler Schematic Diagram The circuit of Figure 12 can also be used as a Negative-to-Positive voltage converter. To do so, set pin 8 to Ground and pins 3 and 5 to the negative input voltage, V-. The output voltage will then be: VOUT = I V- I - 2 Vdlode v+ (3) Simultaneous Inversion And Multiplication The circuit shown in Figure 13 will provide both positive multiplication and inversion at the same time. The output voltages will be the same as those given in equations 1 and 2. This configuration is limited by the load current that can be drawn out of either output before the circuit becomes overloaded. Parallel Connection Although a single Si7660 and Si7661 cannot supply very large amounts of current, higher currents can be provided when several devices are connected in parallel. As shown in Figure 14, two or more inverter circuits can be paralleled to provide a lower output Figure 14. Paralleling Multiple Voltage Converters for Increased Current Capability When two or more devices are paralleled, the output noise (ripple) will contain not only components at frequencies of each of the oscillators, but also at sum and difference frequencies due to a mixing action at the inverter outputs. If such noise cannot be tolerated, the OSC pin of one of the devices can be driven by an exclusive NOR gate that compares the oscillator frequencies of the two devices as shown in Figure 15. This forces the two devices to alternate their charge and transfer cycles, which will not only reduce output noise but also maximize efficiency. 13-107 AN84-2 .... 8i1iconix ,Jl;II incorporated caded devices increases, the effective output resistance also increases which will severely reduce the output voltage for a given current level when compared to a single inverter. This effect can be reduced by paralleling devices in the first stages, though the cost in parts increases twofold for every added stage. v+ +5V SUPPLY 3 IL + 310 v+ LOAD = 31L +210 GND Vs IIII 31L + 310 OV 41L+ 31 0 6 IL + 510 2 IL + 210 v+ 1----,.........-0 20~F =:G VOUT (-5 V) LOAD = 21L + 10 °1 vOUT GND 4 IL + 310 v+ Figure 15. Synchronizing Two SI7660's or SI7661's with a Single Exclusive NOR Gate When high voltage inversion is desired, inverter circuits can be placed in series to produce voltage outside of the operating range of a single 8i7660 or 8i7661. Figure 16 shows two inverters cascaded to double the input voltage magnitude while inverting the voltage at the same time. RL IL + 10 LOAD = IL GND Series Connection IL °2 2 IL + 10 V 21L + 10 03 VOUT IL IL V01= Vs-RO (3IL+210) VOUT=- [ 3VS-RO (14IL+ 81 0)1 V02= vs- Ro (51L +310) VC3= Vs-RO (6IL+ 31 0) Figure 17. Current Model of Cascaded Voltage Converters Changing The Oscillator Frequency The typical oscillator frequencies were given in the description of the basic inverter circuit. However, Figure 18 (a) shows that the maximum power efficiency is not achieved at the typical oscillator frequency. If maximum power efficiency is desired, an external capacitor can be connected between the 08C pin and ground. Figure 18(b) illustrates the effect of added capacitance on the oscillator frequency. Figure 16. Cascading Devices for Greater Output Voltage Range When cascading devices, however, the power dissipation of each device must be considered. As each new stage is added, the previous stages will be subjected to more and more load current, from both the quiescent current of the new stage and the multiplying action of the load current through each of the stages, as shown in Figure 17. As the number of cas- 13-108 If synchronization with an external driver or clock is needed, the 08C pin can be driven either by a TTL or CM08 logic gate. Figure 19 provides the proper circuits for interfacing to either logic standard. Note that the TTL interface can only be directly connected to the 08C pin if the circuit is using a 5 V supply. If the input voltage is other than 5 V, some type of buffer circuit will be required. The charge/transfer transitions will occur on each rising edge of the clock. AN84·2 fIf"fl" Siliconix ~ incorporated 100 95 90 Efflc. (%) SI~660 V+ = 5 V ~ .............. .......... , There are many places where a low current negative supply made with an Si7660 or Si7661 would do just as well as a full conventional negative supply or dcto-dc converter module. Some examples of possible uses are power sources for operational amplifiers, dynamic RAM's, microprocessors, and data conversion products. Several examples of these systems are given below. _ "" 85 SU~1= 80 \ 15 V V+ 75 v+ v+ 70 10 20 2 5 OSCILLATOR FREQUENCY (kHz) 50 1K Figure 18(a). Graph of Efficiency Versus Oscillator Frequency -= 2 7 3 6 4 5 CMOS GATE vOUT 20,000 10,000 == ........ SI7661 V+ - 1 5 V - ~ "" 1000 fosc (Hz) SI7660 V+ = 5 V v+ 8 "- 100 '\ "\. 10 100 1000 4.7 K 1K 2 "- 20 1 v+ v+ -= TTL GATE 7 3 6 4 5 - Jil0 F vOUT JL 10,000 Cos c (pf) Figure 18(b). Graph of Oscillator Frequency Versus Added Capacitance Specific Applications When looking at possible applications for the Si7660 and Si7661, it must be remembered that these devices are VOLTAGE sources, not CURRENT sources. Therefore, any heavy load will either greatly reduce output voltage (possibly out of the desired range) or cause the device to go into power shutdown. If the concept of VOLTAGE conversion is kept in mind, many problems will be avoided. Figure 19(b). TTL Drive Circuit for the SI7660 or SI7661 (5 volt Input only) Memories Several different memory manufacturers produce 16K x 1 dynamic RAM's that have a need for a -5 V low current supply to provide substrate biasing. The National MM5290, AMD AM9016, and THOMSON MK4116 all use this type of arrangement. Table 2 gives the -5 V supply current requirements for each of these devices. 13-109 ~ __ AN84·2 ..... Siliconix incorporated ~ TABLE 2 Current Requirements of Several Different Dynamic RAMs. Operating Current Standby Current Refresh Current !lI.A) (/l.A) (/l.A) MM5290 (0 to 70°C) 200 100 AM9016 (0 to 70°C) 200 100 200 200 AM9016 (-55 to 85°C) 400 200 400 MK4116 (0 to 70°C) 200 100 200 Device The only constraint in using the Si7660 or Si7661 for this application is when calculating the voltage fluctuations that will occur when a location is read from or written to. Make sure that the ABSOLUTE MAXIMUM current is considered so that the negative supply for the dynamic RAM will not be pulled down more than 5% (below 4.75 V) during a memory read or write. Even with the maximum current taken into account, the Si7660 or Si7661 could easily provide the negative supply voltage supply for an entire 16K x 8 dynamic memory bank. Figure 20 shows the Si7661 supplying the negative voltage to a 741 op amp configured as an inverting amplifier. As the current drain through the negative supply terminal of the op amp increases, the output voltage of the Si7661 will decrease. However, this will not affect the output capability of the op amp at its rated output current. Figure 21 illustrates this with a photograph of the input and output of the circuit in Figure 20 when a 1 kn. load was placed on the amplifier output. The output was undistorted to 26 V peakto-peak. Op Amps The output ripple of the Si7661 must be taken into consideration when using it as an op amp supply. Some op amps do not have adequate power supply rejection to withstand the ripple noise level of the Si7661. The pump and reservoir capacitors can be chosen to minimize this noise condition (see Table 1). The ripple should be measured at the maximum negative supply current (i.e., rated load) to determine if the Si7661 can be used to supply the op amp. Operational amplifiers are one of the most commonly used integrated circuits and often use negative supply voltages. Although some op amps can supply high current loads, more often the current requirements involved are well within the capabilities of the Si7661. +15 V Figure 21. Output of the 741 Inverting Amplifier at Maximum Undlstorted Output r. ~ ::.."I !: IIIiii ri1 !'= r. ri1 ~ IIiiiiII IiIIiiiI ~ 1DDJ1F ~ rJ 11 L!J 1DDJ1F Figure 20. Using the 517661 to Generate the Negative Rail for a 741 Op-amp 13-110 I'L!J 500 J1 5/DIV. I.!,j ':i 100: 5 V/DIV. H AN84·2 Siliconix incorporated MIC +12 V 20 k.D. 1 k.D. - I v+ 6anF +12 V DG305A J;n 13 12 SPKR (VOX) - +12 V I I 10 I 9 J Va 5 a 25176617 3 6 4 5 l.l1F 11 1 k.D. + HANDSET I +12 V 14 10 k.D. - 10 k.D. 2 555 7 3 6 4 5 1nF 2 3 13 4013 12 4 11 5 10 1 6 9 - 7 a Figure 22. Using the SI7661 to Supply a Low-current Analog Switch Current Analog Switches Although in most cases the Si7660 or Si7661 cannot supply sufficient current for analog switch applications, there are some exceptions. For example, Figure 22 gives the schematic diagram of a circuit that was used to interface a Northern Telecom telephone set to an ICOM 2AT2-meter amateur radio transceiver. New designs should use the silicon-gate DG402 SPDT switch. microprocessor is a good example of this. It is an inexpensive 8-bit CPU that has many different support chips available. To provide the negative supply voltage (-5 V), a basic inverter circuit (such as in Figure 8) using an Si7660 is connected to pin 11 of the microprocessor. The 8080 negative supply draws a maximum current of 1 mA which will not pull down the supply voltage to any great degree. Data Conversion The analog switch provides isolation for the microphone and speaker connections of the transceiver since the telephone set uses a single path for both transmission and reception. The telephone was operated at 12 V for direct interface to the DG305A, and the supply current from the Si7661 was < 1 mAo Microprocessors Some of the older standard microprocessors need a negative supply for substrate biasing. The Intel 8080 Data conversion and acquisition products often have the same problem as op amps, in that noisy supply voltages can cause operational problems. However, the problems caused here can have a much greater impact on the operation of an AID or DI A converter. Since power supply stability can be an important factor in specifying nonlinearity for data conversion products, it is easy to understand that slight fluctuations in supply voltage could be disastrous to a precision measurement system. 13-111 --=~ AN84·2 WY'Siliconix incorporated ~ The Siliconix Si7135 is a 4-1/2 digit integrating AID converter that requires a negative supply when operating over a ± input voltage range. Figure 23 gives the schematic diagram of a DVM circuit using the Si7661 to supply the negative voltage for the Si7135. Regulator Circuits This section discusses some of the possible methods for using the Si7660 or Si7661 in constant-voltage output circuits over a given output current range. For low current inverter applications, the circuit shown in Figure 24 can be used. The output impedance of the circuit can be as low as 5 .n with regulation up to approximately 20 mAo Note that if converters are par- alleled on the output of this circuit, they should be synchronized to minimize output voltage fluctuations and output noise. Another regulator application uses the Si7660 or Si7661 in a positive voltage regulator. Conventional three terminal voltage regulators have a voltage drop of greater than 1 volt between the input and output when operating with fairly heavy load currents. The circuit given in Figure 25 uses an Si7660 or Si7661 voltage converter to double the voltage which is then regulated by the op-amp and FET. This configuration allows regulation without the voltage drop as long as the input voltage does not drop below the Zener voltage plus the product of 10 times rOS(ON). -5 V +5 V ~/oooo -/-/UUUU B ....----12 7 SI7661 3 6 '--_ _-14 5 BP +5 V 100,ILF +5 V tr::: OF412 C04054 4 INPUT 4 CLOCK -5 V Figure 23. SI7661 Used In a DVM Circuit 13-112 AN84·2 .-F' Siliconix ~ incorporated V+ 7 to 8 V 56 k.n. V OUT -5 V 910 k.n. 8 50 k.n. .-----12 z V 1.5 V Sl7661 7 3 6 L----l4 5 100.lJ.F CONCLUSION "i Figure 24. Low Current Inverting Regulator Circuit V+ 1 Therefore, as long as the input voltage does not drop below 5.26 V, the input is guaranteed to be regulated as close to the zener voltage as can be attained by the common mode offset voltage of the op-amp. By selecting the correct zener diode, this circuit can supply more than 100 mA and can be adjusted for varying voltage outputs up to the input voltage limit of the voltage converter. The Si7660 and Si7661 can be inexpensive alternatives to full negative supplies in many different low cost applications. Although they are designed for generation of negative voltages, many different voltage levels can be generated with a few additional parts. The Si7660 and Si7661 are pin compatible to competitive products and function as well or better than the competition in every operating specification. The examples given here are only a few of the many possible applications that could utilize the benefits of reduced board space and cost that the Si7660 and Si7661 provide. 8 617660 2 7 or 617661 - 3 6 4 5 - + 10.lJ.F 10.lJ.F + 1 V 1K z For ID L---l------+.-o V OUT - = 50 mA: VIN > Vz + (I D X rDS(ON)) VIN > 5.2 V+ (50 mA X 1.2.0) VIN > 5.26 V III Figure 25. Schematic Diagram of the Positive Regulator Circuit 13-113 tI'7' 8i1iconix AN83·14 ~ incorporated A SIMPLE APPROACH TO Si7135/8085 INTERFACING By Doyle L. Slack December 1983 INTRODUCTION vREFERENCE Many AID conversion designs in use today are both complex and confusing, and for these reasons they are often overlooked for use in more simple applications. Up to now, many Analog-to-Digital (AID) converter chips have not been microprocessor compatible; the interfacing schemes to make them so have been unnecessarily complicated. But now a simple, straightforward AID converter can be constructed using only the 8i1iconix 8i7135 and one other IC. It can be easily interfaced to most machine level or high level language computer systems using 1/0 ports. This system would be ideal for remotelfield monitoring or storage of slowly changing conditions with minimum maintenance requirements. CIRCUIT COMPONENTS The 8i1iconix 8i7135 IC is a 4 1/2 digit integrating AID converter intended for use as a digital volt meter (DVM) chip. Using the dual slope method of conversion, it can achieve an accuracy of ±1 count in 20,000. 80me of the other features are overrange, underrange, and polarity indications, allowing autoranging and a measurement range of -1.9999 volts to +1.9999 volts. At the optimum clock rate of 120 kHz, approximately 3 conversions per second are possible. Figure 1 gives the pin diagram of the 8i7135. The other half of the A/D system is the Intel 8085 microprocessor -- an inexpensive 8-bit general purpose Central Processing Unit (CPU) that can be operated with a minimum of peripheral devices. With its internal clock circuitry, the only external devices needed to make a working system are address de multiplexing , 1/0 ports, and memory. The latter two are supplied by the Intel 8155 RAM-I/O and 8755 EPROM-I/O chips. By connecting the data and control lines of the 8i7135 AID system to the 1/0 lines of the microprocessor system, the data can be read and processed in whatever way the user chooses via software. 13-114 ANALOG COMMON INT OUT AZ IN BUFF OUT REF. CAP. REF. CAP. + IN LO UNDERRANGE OVERRANGE S'i'ROiiE R/H DIGITAL GND POL CLOCK IN BUSY (LSD) 01 IN HI 02 v+ D3 (MSD) 05 D4 (LSB) B1 B2 (MSB) B8 B4 Figure 1. Pin Diagram of the Sl7135 4 1/2 Digit AID Converter CIRCUIT DESCRIPTION Figure 2 shows the schematic diagram of the 8i7135 AID converter circuit connections to an Intel 8085 microprocessor system. The 8i7135 outputs are straightforward in their functions. The OVERRANGE output goes to a logic 1 when an overrange condition (down count exceeds 20,000) has occurred on the previous measurement. The UNDERRANGE output goes to a logic 1 when the input measurement is less than 10% of full scale. The POLARITY output goes high for positive readings and goes low for negative signals. RUN/HOLD is the only control signal from the microprocessor and can be used to stop the measurement cycle of the 8i7135 and hold the last reading for as long as the line is held low. The other direct outputs from the 8i7135 are the data lines which provide the data in BCD format for each of the 5 digits. The tricky part of the interface is the digit strobe decoding circuitry between the AID converter and the microprocessor. Figure 3 gives a simplified timing diagram of the AID system. When the 8i7135 BU8Y line (PA7) goes high, either the data from the last reading is valid or the OVERRANGE line (PBO) is high. If an overrange is indicated, the microprocessor displays OL and waits for the next reading. If the data is valid, each of the AN83-14 ..... Siliconix incorporated ~ taining both status and data information is decoded. and the port is read again to verify the data for the particular digit being input. After the entire voltage reading has been input. the POLARITY line (PB1) is checked. and the reading and polarity are displayed by the microprocessor. The system then waits for the next conversion. For more details on how the microprocessor handles the data. see SOFTWARE. digit drive signals from the Si7135 goes high one at a time. sequencing from D5 to D1 repeatedly. The 4532 priority encoder condenses the 5 digit drive signals into 3 bits (PA4-PA6) which are combined with BUSY to make up the upper nibble of the input data. The BCD data lines (PAO-PA3) make up the lower nibble. and the BCD data presented corresponds to the digit drive that is high at the time. This byte. con- PBl PBO 1 I O.l,1l~ IN- I 100 K AGND ~ 4532 11 23 27 21 16 PA7 10 12 2 6 PA6 9 17 1 7 PAS 2 18 13 9 PM 19 12 8 :...-- PA3 3 P' . ::R SI7135 20 22 r-og~~~~) :: l,1lF II-- I yV V 100 K IN+ 5 11 10 PA2 4 :...-3 f-INTEL 8155 DATA BUS INTEL 8085 I-- r - - - PAl - I I II PAO --:i=- 6 100 K 7 R .4 1 ~~ l-~-5V l,1lF DGND Figure 2. Schematic Diagram of the SI7135 to 8085 System Interface BUSY I 05 n D4 I D3 n n n n n IL I BUSY -.J L OVERRANGE .. COUNTER Figure 3. Timing Diagram of the SI7135 AID Conversion System 13-115 WY' Siliconix ,./1;11 incorporated AN83·14 MULTIPLEXING Si7135 SYSTEMS It would be desirable to be able to monitor more than one analog signal at a time, since often several different events or conditions of interest occur simultaneously. Since the conversion time of integrating converters is relatively slow, the outputs of several AID converters can be multiplexed without the loss of time that multiplexing the inputs of a single AID converter entails. The Si7135 system lends itself to this type of use very easily without typing up a large number of additional 110 lines. By multiplexing the outputs of each of the AID converters, many inputs can be monitored with little additional hardware. Figure 4(a) shows how the AID converter systems can be multiplexed quite simply by using tri-state buffers. The RUNIHOLD line of the desired converter is pulled low when a reading is needed from that particular AID system. The buffers for that system are then enabled, and the data from the Si7135 is read in the same manner as before. The RUNIHOLD line is then sent high, and the other converters are read sequentially in the same way. This method uses only two extra 110 lines and two 4503 buffer chips for each additional AID converter added to the system. Figure 4(b) shows a detailed schematic of 1/3 of the mUltiplexed system. Each section that is added to the system is wired identically and connected to the 1/0 bus. P8s P80 IN2 SDK-85 SYSTEM POo P13 P10 FIgure 4(a). SchematIc DIagram of the MultIplexed SI7135 AID Converter System 13-116 ~ AN83-14 Siliconix .IIJJI incorporated P85 ~f 1.-------, 16 11 1 ~ '3~0 TO TIMING AND POWER (SAME AS FIGURE 2) 25 21 :: ... ~ 4 tSVO I 453U 16 19 12 8(-- 20 11 4- ~ ~ 10 7 16 8 15 : 28 23 I' 31---+----1 P05 51---+----1 P04 ,----1 :0 71---+----1 P03 9~--~--~ 1= P02 1 8 TO 8155 1/0 BUS 4503 3 I 1 P82 -~ l v 2~: p,- ':._=_~_-_=_: : _-_=_: : _-_=_: : _-_=_: : _-_=_: : _-_=_: : _-_=_: : _. . J_=_ =_~____~~: lL----------------------------------t I P07 131---1---1 P06 r-------------j 2 1------1:, :~ ~ 6 11~--~--~ 14 ~5~= ~ 15 ~------------------------------_;12 I l' l' 15 11 1-__+ IL-__________________________-I 14 2 '------------------;4 L-------------------i6 1_ 1 108 __--1 PO 1 13 POo 3.~--~--__I P13 5 1 - - - + - - - 1 P12 7~--~--~ P11 19~--~--~P10 4503 Figure 4(b). Schematic Diagram of 1/3 of the Multiplexed AID System Shown In Figure 4(a). Including Pin Diagrams of the Components SOFTWARE The software used to read the data from the Si7135 system is shown in Table 1 along with comments on what each command does. This software was written for the Intel SDK85 monitor. The UPDAD and UPDDT subroutines display the data by writing to the 8279 display controller. The OUTPT subroutine outputs the data stored at the location pointed to by the Hand L registers. Only minor changes or additions to the software shown here would be required to store large amounts of readings or read several different inputs simultaneously. Also, this program does not utilize the RUN/HOLD or UNDERRANGE lines. This program was written to run by itself on the Intel SDK85 ~ystem. However. if the A/D converter routine is to be used as a subroutine of another program. the starting address of the subroutine should be changed to 2003H, or NO-OPs (00) should be placed in locations 2000-2002H to eliminate unintentional resetting of the stack pointer. Also, RET (C9) should replace the JUMP instructions at address locations 2037H and 207FH. The instructions at locations 202EH through 2037H should be deleted. If multiple AID units are to be connected to the microprocessor, a routine like the one shown in Table 2 would work well. The program shown in Figure 5 has been modified and named READ for this example, and ports 0, 1. and 8 of the SDK85 system are used for the data transfer. 13-117 ...... Siliconix incorporated AN83·14 ~ TABLE 1 Program for reading in and displaying the data frorn the SI7135 AID converter system. COMMENTS ADDRESS MNEMONIC OP-CODE 2000 LXI SP. 20C2H 31 C2 20 Load stack pointer 2003 2005 2007 2009 MVI A. OOH OUT 02 MVI A. OBH OUT 03 3E 03 3E D3 00 02 OB 03 Set up data direction register for 1/0 ports 200B 200D 200F 2011 IN 00 ANI BOH SUI BOH JNZ 200BH DB E6 D6 C2 00 BO BO OB 20 Check for BUSY. If not. walt 2014 2016 2017 IN 01 RRC JNC 203AH DB 01 OF D2 3A 20 201A 201C 201E 2021 2024 2026 2028 202B MVI A. 01H MVI B, OOH LXI H, 20B2H CALLOUTPT MVI A, OOH MVI B, OOH LXI H, 20B4H CALL OUTPT 3E 06 21 CD 3E 06 21 CD 01 00 82 B7 00 00 B4 B7 202E 2030 2032 2034 IN 00 ANI80H SUI80H JZ 202EH DB E6 D6 CA 00 80 80 2E 20 2037 JMP 200BH C3 OB 20 203A MVI B, ODOH 06 203C 203F CALL DIGIT MOV D, A CD AO 20 57 Get first digit and put It In the proper register 2040 MVI B, OCOH 06 Set pointer to value of second strobe 2042 2045 2046 2047 2048 2049 CALL DIGIT RLC RLC RLC RLC MOV E, A CD AO 20 07 07 07 07 5F Check for OVERRANGE. If not. continue with reading Output OL to display 20 02 20 02 DO Walt for next measurement cycle Return Set pointer to value of first strobe CO BO Get second digit and put It In the proper register 204A MVI B, OBOH 06 204C 204F 2050 CALL DIGIT ADD E MOV E, A CD AO 20 83 5F Set pointer to value of third strobe 2051 MVI B, OAOH 06 2053 2056 2057 2058 2059 205A CALL DIGIT RLC RLC RLC RLC MOVC, A CD AO 20 07 07 07 07 4F Get fourth digit and put It In the proper register 205B MVI B, 90H 06 Set pointer to value of fifth strobe 2050 2060 2061 CALL DIGIT ADDC PUSH PSW CD AO 20 81 F5 Get third digit and put It with the second digit Set pointer to value of fourth strobe AO 90 Display the upper three digits 2062 CALL UPDAD CD 63 2065 POP PSW F1 Restore the lowest two digits 2066 CALL UPDDT CD 6E 03 Display the lowest two digits 13-118 03 Get fifth digit and put It with the fourth digit Save the lowest two digits H AN83-14 Siliconix incorporated TABLE 1 (Cont'd) COMMENTS ADDRESS MNEMONIC OP-CODE 2069 206B 206D 206F 2072 2074 2077 IN 01 ANI02H SUI02H JNZ 207AH MVI A, OFFH STA 1800H JMP 202EH DB E6 D6 C2 3E 32 C3 MVI A, OFBH STA 1800H JMP 202EH data data data data data data 3E FB 32 00 18 C3 2E 20 00 11 15 15 15 15 Put a minus sign In the polarity position IN 00 ANIOFOH SUB B JNZ 20AOH IN 00 ANIOFH RET DB E6 90 C2 DB E6 C9 Read port Mask lower byte of data Compare byte to pointer, If not equal then walt 207A 207C 207F 2082 2083 2084 2085 2086 2087 01 02 02 7A 20 FF 00 18 2E 20 Check polarity bit for positive or negative sign Blank the polarity position Return Return Subroutine DIGIT 20AO 20A2 20A4 20AS 20A8 20AA 20AC 00 FO AO 20 00 OF Read port Mask upper byte of data Return TABLE 2 ADDRESS MNEMONIC OP-CODE COMMENTS 2080 LXI SP, 20C2H 31 C2 20 Load stack 2083 2085 2087 2089 208B 208D MVI A, OFFH OUT OA OUT 08 MVI A, OOH OUT 02 OUT 03 3E D3 D3 3E D3 D3 FF OA 08 00 02 03 Set up data direction register for 1/0 ports 208F 2091 2093 MVI A, ODFH MVIB,ODBH OUT 08 3E DF 06 DB DB 08 Hold present AID Converter 2095 RRC OF Set pointer to next AID Converter 2096 PUSH PSW F5 2097 209A LXI D, A700H CALL DELAY 11 00 CD F1 2090 209E MOV A, B OUT 08 78 D3 08 Enable Buffers 20AO 20A1 RRC MOV B, A OF 47 Set Enable to next AI D Converter 20A2 PUSH B C5 20A3 CALL READ CD 00 20AS POP B C1 Restore Enable Data 20A7 20A8 20A9 RLC RRC JC 20BOH 07 OF DA BO Check If ali AID Converters have been read 20AC POP PSW F1 20AD 20BO 20B1 JMP 208FH POP PSW JMP 2093H C3 8F F1 C3 93 Save pointer data A7 05 Delay for 1/3 second Save Enable Data 20 Read Data from AID Converter III 20 Restore Pointer Data 20 20 Return Clear the Stack Start Over 13-119 H AN83·14 Siliconix incorporated TABLE 2 (Cont'd) MNEMONIC OP-CODE COMMENTS IN 01 DB 01 Check for OVERRANGE. If not, continue with reading 2002 2003 RRC JNC 201AH 0 02 1A 20 2006 2008 200A 2000 2010 2012 2014 2017 MVI A, 01H MVI B, OOH LXI H, 2062H CALLOUTPT MVI A, OOH MVI B, OOH LXI H, 2064H CALL OUTPT 3E 06 21 CD 3E 06 21 CD 01 00 62 B7 00 00 64 B7 DO ADDRESS Subroutine READ 2000 201A MVI B, ODOH 06 201C 201F CALL DIGIT MOV D, A CD 70 57 2020 MVI B, OCOH 06 2022 2025 2026 2027 2028 2029 CALL DIGIT RLC RLC RLC RLC MOV E, A CD 70 07 07 07 07 5F Output OL to display 20 02 20 02 Set pointer to value of first strobe 20 Set pointer to value of second strobe CO 202A MVI B, OBOH 06 202C 202F 2030 CALL DIGIT ADD E MOV E, A CD 70 83 5F 20 Get second digit and put It In the proper register 20 Get third digit and put It with second digit 20 Get fourth digit and put It In the proper register 20 Get fifth digit and put It with the fourth digit Set pointer to value to third strobe BO 2031 MVI B, OAOH 06 2033 CALL DIGIT CD 70 2036 2037 2038 2039 203A RLC RLC RLC RLC MOV C, A 07 07 07 07 4F Set pointer to value of fourth strobe AO 203B MVI B, 90H 06 203D 2040 CALL DIGIT ADDC CD 70 81 Get first digit and put It In the proper register 90 Set pointer to value of fifth strobe 2041 PUSH PSW F5 2042 CALL UPDAD CD 63 2045 POP PSW F1 Restore the lowest two digits 2046 CALL UPDDT CD 6E 03 Display the lowest two digits 2049 204B 204D 204F IN 01 ANI02H SUI02H JNZ 205AH DB E6 D6 C2 Check polarity bit for positive or negative sign 2052 2054 MVI A, OFFH STA 1800H 3E FF 32 00 18 Blank the polarity position 7 Save the lowest two digits 03 01 02 02 5A 20 Display the upper three digits 205 RET C9 Return 2058 205C MVI A, OFBH S:rA 1800H 3E FB 32 00 18 Put a minus sign In the polarity posltllon 205F 2062 2063 2064 2065 2066 2067 RET data data data data data data C9 00 11 15 15 15 15 Return 13-120 AN83-14 ..... Siliconix incorporated ~ TABLE 2 (Cont'd) ADDRESS MNEMONIC Subroutine DIGIT IN 00 2070 OP-CODE COMMENTS DB 00 Read port Mask lower byte of data Compare byte to pointer, If not equal then walt 2072 ANIOFOH E6 FO 2074 SUB B 90 2075 JNZ 2070H C2 70 20 2076 IN 00 DB 00 Read port 207A ANIOFH E6 OF Mask upper byte of data 207C RET C9 Return CONCLUSION The Siliconix Si7135 is an inexpensive, simple integrated circuit that can solve the problems associated with a design that seems far too complex for the job it is intended to do. Note that the Intel 8085 is not the only microprocessor one could interface to the Si7135. This scheme is easily adaptable to other mi- croprocessor architectures. However it is also important to know that the comparatively slow conversion time makes multiplexing of several Si7135's to one microprocessor more practical than multiplexing the inputs to a single Si7135. With multiplexed converters, a fast, easy method of data acquisition can be achieved for a reasonable price. 13-121 ..... Siliconix incorporated AN83·13 ~ Si8601 DATA ACQUISITION SYSTEM INTERFACES FOR 110 OR MEMORY MAPPED OPERATION By Doyle L. Slack Revised January. 1988 interfacing hardware and associated software for both schemes are presented here. INTRODUCTION The Siliconix Si8601 is an 8 channel. 8-bit silicon gate CMOS Data Acquisition System containing an 8 channel multiplexer. an 8-bit AID converter. and an output latching circuit. The AID converter uses a binaryweighted capacitor successive approximation technique allowing fast conversion time and a true sample and hold function with low power consumption. The 8 channel multiplexer offers great flexibility by providing multi-channel data collection with only one AID converter. However. the outstanding advantage of this device is its ease of interfacing to microprocessor systems. Both the address inputs and data outputs are latchable which minimizes the time that the microprocessor and the data acquisition system must dedicate to data transfer. The outputs are tristate. allowing direct connection to the system data bus for memory mapping. Since the Si8601 is easily wired for either 110 or memory mapped operation. ~ REF+ The Si8601 can be easily interfaced to the Intel 8085. an inexpensive 8-bit microprocessor with many available peripheral devices. The 8085 was chosen for interfacing because it makes a good example for wiring to anyone of the several other similar microprocessor architectures. The Intel 8155 RAM-liD and 8755 EPROM-liD chips provide both memory and 110 ports for the 8085 system and can be used to interface the Si8601 and the 8085. If the AID converter output of the Si8601 is to be monitored at an 110 port. it can be left running constantly. The port can be sampled whenever a reading is desired. On the other hand. the memory mapped data acquisition system costs less to build because there is no need for an 110 port. "I A/DCoNVERTER - I REFI 2N - WEIGHTED CAPACITORS SWITCH MATRIX 8 ANALOG INPUTS ADDRESS A 3-STATE OUTPUT LATCH ANALOG MULTIPLEXER _r-------. CONTROL AND TIMING 8 OUTPUTS END OF CONVERSION ADDRESS B ADDRESS C -1..-_ _..,..._........ ADDRESS LOAD CONTROL _ _ _ _...3 CLOCK _ _ _ _ _ _ _ _ _ _......J START CONVERSION - - - - - - - - - - - - - - ' OUTPUTCONTROL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ Figure 1. Block Diagram of the 518601 Data Conversion System 13-122 AN83·13 .... Siliconix incorporated ~ CIRCUIT DESCRIPTION Figure 1 shows a block diagram of the Si8601. Address Inputs Ao. Al. and A2 allow selection of the 8 channels of the multiplexer. Since the multiplexer works asynchronously with respect to the AID converter section. care must be exercised not to change input channels during the first 9 clock cycles (sampling phase) after the SC (start conversion) pulse. Each channel has a single-ended input which has an analog range from -REF to +REF. giving a conversion range from 3 to 6.5 V. Note that only a 5 V Vee and +REF will allow TTL compatibility. The -REF input allows separation of analog and digital grounds which helps to keep noise spikes that might be present on the digital system ground from affecting the accuracy of the analog input to the Si8601. The eight tri-state data outputs provide the data to the microprocesosr. A square wave signal is needed for the CLOCK input. Maximum clock frequencies of 1.4 MHz are possible. Clock duty cycle can be anywhere from 20 to 80%. The OUTPUT CONTROL (OC). START CONVERSION (START). and ADDRESS LOAD CONTROL (ALC) provide the means for the microprocessor to control the Si8601 . The END OF CONVERSION (EOC) output \+111--1 1 2 3 4 goes high when the conversion is finished and when the output is available at the data pins. Figure 2(a} shows the pin diagram of the Si8601 • and Figure 2 (b) gives the relationship of the input and output signals of the data acquisition system. Dual-ln-L1ne Package GND SC 07 05 03 01 OE EOC REF- REF + AlC IN1 AO A1 A2 IN 8 IN7 Figure 2 (a). Pin Diagram of the SI8601 8-channel Data Acquisition System 5 6 8 7 ALC ADDRESS 26 $IUL CLOCK START 25 9 SEE DETAIL A --~~--------------------------------~H~-----SEE DETAIL A Hl---- ---.---------------------------------1:11 SEE DETAIL A --~~----------------------------------{~------- ANALOG v---if ---v IN-----A~___________________________________~/~--------- - . SEE DETAIL A ~TCHOUTPUTS rI $r------J ! EOC OUTPUT CONTROL $; I ________________________________________________i!rS-E-E-D-ET-A-IL-B,1_ DETAIL A Sf START / \'---- --------' \'------ EOC -II AlC ________ ADDRESS ====x~ . \'---- ________~X~____________________________ ,----If---. ~ DETAIL B OUTPUT CONTROL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - / ~TCHED OUTPUTS ------------------------------~c:~ r--/ HI Z STATE Figure 2(b). Timing Diagram of the SI8601 Data Acquisition System 13-123 ...... Siliconix incorporated AN83·13 ~ +5 V 4.9 k.O. 26 3 25 4 24 5 23 6 PB7 PB6 PB5 PB4 PB3 PB2 PBl PBO 17 PA6 PA5 PA4 818601 +5 18 19 PORT 1 TO 8155 110 PORT PORT 0 PA7 5 Figure 3. Schematic Diagram of the 110 Version of the 818601 Interface 1/0 OPERATION SOFTWARE In the I/O mode, the Si8601 is in a free-running loop; the data outputs of the AID converter are always enabled. The data outputs and address inputs of the data acquisition system are connected to the I/O port, and the START input is tied to the EOe line so that the system is constantly measuring the selected input channel (see Figure 3). The data handling is then accomplished by a machine language program that reads in the converted data and processes it in whatever way desired by the user. The data transfer is verified in the program by checking the EOe pin for data stability before accepting the next input. The software shown here was written for use with the Intel SDK-85 development system monitor with the 8 channels of the Si8601 memory mapped at 8000H-8007H and I/O mapped through ports 0 and 1. The UPDDT and UPDAD routines are used to display the contents of the A, D, and E registers. Both programs are written in subroutine form so they can be utilized by more than one calling program. If data storage or comparison is desired, minor changes or additions to the software shown here will be necessary. The I/O oriented programs are shown in Tables 1 (a) and 1 (b). Table 1 (a) shows a simple routine that reads in and displays a single channel selected by the data stored at location 20AOH. The program in Table 1 (b) reads each of the channels and displays them for approximately 1/3 second each. Since the I/O system is constantly running, the EOe pin is monitored by the program, and data is only taken if EOe is high (data is valid). MEMORY MAPPED OPERATION When operating in the memory mapped mode, the data outputs and address inputs are tied directly to their corresponding busses. The oe, START, and ALe lines are used to tri-state the Si8601 when appropriate. Figure 4 shows the schematic diagram of the memory mapped data acquisition system. Note that A15 Is the only address decoding line used for this example. To eliminate memory map redundancy, a more sophisticated address decoding circuit would be needed. The NOR gates of the 4001 combine the address decoding, READ, and WRITE signals to control the data acquisition system. The EOe pin is tied to RST 6.5 of the 8085 to notify the microprocessor when the conversion has been completed and when the data outputs are ready to be read. 13-124 The memory mapped system must be started when a reading is desired. This is done in Tables 2(a) and 2(b) by writing to the desired memory location, which starts the conversion. The EOe line signals an interrupt for the microprocessor, making it jump to the READ subroutine and then returning back to the main program. Table 2(a) uses the Hand L registers to point to the desired channel and then displays the reading from that channel. Table 2(b) reads all 8 channels and displays each one for approximately 1/3 second. AN83·13 IrF Siliconix ~ incorporated +5 V 1-------107 1-------106 1 - - - - - - - 1 05 1-------104 1 - - - - - - - 1 03 1-------102 1-------101 1 - - - - - - - 1 Do 4.9 k.o. TO 8085 1-_ _ _ _ _-1 A2 BUS SYSTEM +5 V 1 - - - - - - - 1 A1 t - - - - - - ; AO 555 J..5.l~-----I RST 6.5 READ A15 ~----I WRITE 3/44001 Figure 4. Schematic Diagram of the Memory Mapped Version of the SI8601 Interface Note the asterisks in tables 1 (a) and 2 (a) . These mark the locations where the desired input channel is selected. Figure 5 gives the locations of the channels in both the 110 and memory mapped configurations. CONCLUSION The Si8601 Data Acquisition System features built-in INPUT CHANNEL 0 1 2 3 4 5 6 7 110 LOCATION 00 10 20 30 40 50 60 70 multi-channel capability with easy interface to most microprocessor systems. The 8085 Is just one example of how this system can be constructed using only an external clock circuit and the Si8601. It has a 25 fJ.s conversion time and extremely low power consumption which makes it ideal for battery powered monitoring of multiple parameters or conditions in the field. MEMORY MAPPED LOCATION 8000H 8001H 8002H 8003H 8004H 8005H 8006H 8007H FIGURE 5. Channel locations for the SI8601 In both I/O and memory mapped configurations 13-125 AN83-13 ..... Siliconix incorporated ~ TABLE 1 (a) Program for reading one channel of the Si8601 In the 1/0 configuration MNEMONIC OP-CODE COMMENTS LXI SP, 20C2H LXI H, 20AOH MVI M, DOH MVI A, DOH OUT 03 MVI A, 7FH OUT 02 CALL READ JMP 2003H 31 21 36 3E D3 3E 03 CD C3 20 20 Load stack pointer Reserve location for channel selector Load channel selector with desired Input Set up data direction registers for 110 ports 20 20 Read the 110 port Start over 2016 2017 2019 MOVA, M OUT 00 IN 00 7E D3 00 DB 00 201B 201C 201F 2021 2024 RLC JNC 2019H IN 01 CALL UPDDT RET 07 D2 19 20 DB 01 CD 6E 03 C9 ADDRESS Calling Program 2000 2003 '2006 2008 200A 200C 200E 2010 2013 C2 AD 00 00 03 7F 02 16 03 Subroutine READ Start conversion Check to see If conversion Is finished, If done, read In data Read In data Display data Return TABLE 1 (b) Program for reading all 8-channels of the SI8601 In the 1/0 configuration ADDRESS MNEMONIC OP-CODE COMMENTS LXI SP, 20C2H LXI H, 20AOH MVI M, DOH MVI A, DOH OUT 03 MVI A, 7FH OUT 02 CALL READ JMP 2003H 31 21 36 3E D3 3E D3 CD C3 Load stack pointer Reserve location for channel selector Load channel selector with desired Input Set up data direction registers for 1/0 ports 2010 2011 2012 MOVA, M PUSH PSW OUT 00 7E F5 D3 00 2014 2016 2017 201A 201C 201F 2020 IN 00 RLC JNC 2014H IN 01 CALL UPDDT POP PSW SUI70H DB 07 D2 DB CD Fl D6 2022 2025 2026 2029 JZ 2029H INRM JMP 2010H RET CA 29 34 C3 10 C9 Calling Program 2000 2003 2006 2008 200A 200C 200E 2010 2013 C2 20 AD 20 00 00 03 7F 02 16 20 03 20 Read the 110 port Start over Subroutine READ 13-126 Start conversion Check to see If conversion Is finished, If done, read-In data 00 14 20 01 6E 03 70 Read-In data Display data Restore channel selector Check to see If all channels have been read, If not, keep going 20 20 Increment channel selector Read next channel Return .-r Siliconix ~ AN83-13 incorporated TABLE 2 (a) Program for reading one channel of the Si8601 In the memory mapped configuration ADDRESS MNEMONIC OP-CODE COMMENTS Subroutine BGNCNVSN Start conversion 2000 MOV M, A 77 2001 MVI A, OCH 3E 2003 SIM 30 2004 FB 2005 EI EXID, FFFFH CALL DELAY 11 FF FF CD F1 05 Delay while conversion takes place 2008 200B RET C9 Return 2010 MOVA, M 7E 2011 CALL UPDDT CD 6E 2014 RET C9 Enable the Interrupt system OC Subroutine READ Read-In results of the conversion 03 Display the results Return Calling Program Load stack pointer LXI SP, 20C2H 31 C2 20 *2023 2026 LXI H, 8000H 21 80 Load channel selector 20 Start conversion 2029 LXI D, FFFFH 11 202C CALL DELAY CD F1 05 1/3 second 202F JMP 2023H C3 23 20 Repeat 2020 CALL BGNCNVSN 00 CD 00 FF FF Delay between readings for approximately TABLE 2 (b) Program for reading all 8 channels of the Si8601 in the memory mapped configuration ADDRESS MNEMONIC Subroutine BGNCNVSN OP-CODE COMMENTS Start conversion 2000 MOV M, A 77 2001 MVI A, OCH 3E 2003 SIM 30 2004 EI FB 2005 LXI D, FFFFH 11 2008 CALL DELAY CD F1 200B RET C9 MOVA, M CALL UPDDT RET 7E CD 6E C9 LXI SP, 20C2H LXI H, 8000H PUSH H CALL BGNCNVSN POP H MOV A, L SUI 07H JZ 2023H INR L JMP 2026H 31 21 E5 CD E1 7D D6 CA 2C C3 OC Enable the Interrupt system FF FF Delay while conversion takes place 05 Return Subroutine READ 2010 2011 2014 Calling Program 2020 2023 2026 2027 202A 202B 202C 202E 2031 2032 03 C2 20 00 80 00 20 07 23 20 26 20 Read-In results of the conversion Display the results Return Load Stack pointer Load channel selector Save channel selector Start conversion Restore channel selector Check to see If all channels have been read, If they have, start over Increment channel selector Go to next channel for a reading • =Location where desired Input channel Is selected. 13-127 ..... Siliconix incorporated AN83·7 ~ A HIGH QUALITY AUDIO CROSSPOINT SWITCH By Bob Zavrel Revised January 1988 8. 9. 10. 11. INTRODUCTION Recent advances in analog switch integrated circuits have made superior audio switch specifications possible. A crosspoint switch for the most demanding audio applications is described here. Although this switch may be used in recording studio and radio broadcast mixers where little compromise is acceptable, the low cost and small size makes this switch ideal for a much more diverse range of applications. Such applications can include audio crosspoint switches found in video systems, audio synthesizers, high quality multiplexers, and home entertainment systems. The size of a complex audio switching array can be greatly reduced by using IC analog switches. The prototype array is an 8x2 stereo crosspoint switch mounted on a 4x7 inch board. Other switch configurations may be fabricated with little effect on the switch characteristics. This single board can replace a score of rotary switches and the bundles of audio cable often found in audio mixers. Furthermore, ground loop problems are reduced by eliminating the cable bundles. A high quality audio frequency switch should have the following features: 1. 2. 3. 4. 5. 6. 7. Siliconix 805002s were chosen because of low ON resistance, low switch capacitance, and very fast switching times. The LF347 quad op amp was chosen for its excellent audio characteristics in a quad package. Two LF347s are used in this switch providing a summing and output amplifier for each of four channels. Since the 805002s switch into virtual grounds, they are held "normally open" by applying Reasonable cost Unity or variable gain Very low harmonic distortion « 0.01%) Flat response (DC to > 1 MHz) Low crosstalk High OFF Isolation Excellent phase linearity SUMMING NODE FROM 6 OTHER LEFT swrrCHES r----' LEFT INPUT BUS RS 75kA RL CHANNEL 1 ± 15 v 41 S 61G RIGHT INPUT BUS 011 SUMMING AMP RA I I UIl..-' 0--{ j _ High speed switching Freedom from switch "popping" Small size Use of DC coupling only i 600.n RD RS 75kA CHANNEL A LEFT OUTPUT RO 6oo.n S05002 LEFT INPUT_B-U,..S----'V\R;;;.S-"'t"--' RL CHANNEL 2 116 •. n 75 .... 141G -'I ±15 v 0--{ 1Rs VII> 75kA I t---4-I ll1G'i I 121s • 0 9 I I I I 1. _ _ _ _ I I SUMMING NODE FROM _ 6 OTHER RIGHT swrrCHES SUBSTRATEO V- J2 Figure 1 13-128 6oo.n .~~~RVD~~ ~~~~NgbtPUT RO 6oo.n AN83-7 .... 8i1iconix incorporated ~ , -15 V the switch gates. To turn them on it is sufficient to apply a V+ level to the gates. For any switch configuration, the appropriate switch(es) are closed by biasing the appropriate gate(s) to the positive voltage supply. In this circuit pairs of switches are controlled together to affect the left and right channels of a stereo input simultaneously. This is accomplished simply by tying the applicable switch gates together and using a common bias. Figure 1 shows how a single 8D5002 is configured as a 2x1 stereo switch. Figure 2 shows how the circuit can be expanded into a switch matrix. Eight 8D5002s are required to construct the 8x2 stereo matrix array. One RL is required for each channel input for termination while four R S 's are employed to feed the signal from the swiitches to the amplifiers. Input buses are consequently formed in front of these resistors. 75 kll. RS GOOn. CHl R O---~--------4r-+--O-~---+----, CHA 75kll. 8 GOOn. Lo---~----~--r-+--a' STEREO INPUTS R R OUTPUT 0-..,....--...,...+-+-1-0" ....--1---+ o-~R-L I I I I I 2 STEREO OUTPUTS ...--+--+--+--+--a': i I 75 kll. RS CHB OUTPUT RS GOOn. >-~"""'V\r--o() R III Figure 2. A High Quality 8x2 Stereo Crosspoint Switch 13-129 AN83·7 .... Siliconix incorporated ~ The SD5002 drains are connected to these input buses. A larger array will cause reduced system performance due to longer lead lengths and increased circuit capacitance. Nevertheless, large matrices can be configured with little performance compromise because of the low initial switch capacitance. RL'S value should reflect the value of the source impedance. Deletion of RL will seriously degrade crosstalk and off isolation performance while lower values of RL will improve these specifications. Rc may be adjusted for a wide range of system gain while a value of about 150 kn will set the circuit to unity gain. Rosets the value of the output impedance and if the switch is to feed a high impedance load, Ro should be included to maintain system performance. Electrolytic and mica capacitors are used on the cir- cuit board for bypassing the two power supply voltages. Supply voltage bypassing will reduce both high and low frequency noise and help stabilize the system. The entire circuit should be well shielded particularly if it will be exposed to strong rf or power line fields. Conductors carrying high current should be kept away from the circuit. Double sided PC board should be used creating a ground plane on the component side as an additional precautionary measure. Table 1 shows the switch performance of the 8x2 crosspoint configuration. RL was set to 10 k n, reflecting the high impedance of the test oscillator's output. Regulated power supply voltages of plus and minus 9 to 15 volts may be used. The Signal voltages should be kept under about 3.5 Vp_p to maintain switch performance. TABLE 1 Frequency (Hz) 50 100 200 500 1 2 5 10 20 50 100 Signal voltages: 3 Vp-p Supply voltages: ±12 volts 13-130 Crosstalk (dB) -74 -74 -74 -74 -74 -73 -70 -67 -62 -55 -50 "Off" Isolation (dB) THO -75 -75 -75 -75 -75 -74 -71 -68 -62 -55 -49 0.006 0.005 0.004 0.003 0.003 0.003 0.003 0.004 0.006 0.020 0.045 trr ~ AN83-6 Siliconix incorporated A SYSTEM SOLUTION TO HP-IL EQUIPMENT INTERFACE Robert J. Zavrel Jr. December 1983 INTRODUCTION Siliconix manufactures several high performance components which lend themselves nicely to portable equipment. For a 4-1/2 digit HP-IL compatible DVM, Siliconix now offers a "systems solution" to the designer of such a device. With the exception of a few standard 4000 series CMOS ICs, all the special integrated circuits are offered by Siliconix. The DVM is based on the Si7135, a high-quality, single chip, dual-slope integrating AID converter. The prototype circuit used to interface the Si7135 to the HP-IL contained 23 standard 4000 series CMOS ICs. This hardware interface solution may be simplified to a custom 28 pin DIP Interface IC "gate array". This interface allows direct connection to the Hewlett-Packard HP-IL standard "GPIO". Additionally, Siliconix offers three devices which complete the specialized DVM IC requirement. The DF412 provides a local LCD driver which allows the DVM to operate as a stand-alone device. Two SD5002 analog switches are arranged to provide an analog input multiplexer which boasts over 100 dB channel-to-channel isolation. Finally, an Si7661 voltage converter eliminates the need for a negative power supply, thus a single 5 V supply is all that is necessary. The HP-IL "interface loop" is a data communication system designed as a portable, low cost, and high quality instrument controller. It is quite suitable for lab environments where easy programming is desirable. The powerful and popular HP-41 handheld computer or the HP-75C portable computer can be used as controllers for up to 31 "HP-IL devices" in the loop. Hewlett-Packard manufactures a wide variety of HP-IL compatible devices including a printer, timer, video interface, and DVM (Reference 1). For convenience the HP-41 will be used as the controller in this paper. A detailed description of HP-IL is beyond the scope of the paper, but a basic understanding of HPIL is necessary to render this interface technique meaningful. HP-IL INTERFACE CIRCUIT/INTERFACE IC HANDSHAKING Care must be taken to avoid confusion of terms. The HP-IL interface circuit contains two basic ICs. It is this circuit which takes the serial IL pulses and routes the data to the two-way data bus, the appropriate handshake and other control pins. Taken together this assemblage of data and control pins is called "GPIO" or "general purpose input/output". Hewlett-Packard offers four approaches to realizing the HP-IL interface circuit. Details of these approaches are available from Hewlett-Packard. The "Interface IC" interfaces the Si7135 digital outputs to the GPIO bus. (Figure 1) Contained within the HP-IL interface circuit are the 28 pin DIP ILB3-0003 from Hewlett-Packard and the Mostek 1820-281040 pin single chip microcomputer. The ILB3-0003 contains multiple registers and extensive circuitry for the HP-IL interface. The microcomputer acts as an HP-IL device controller and provides the GPIO data and control pins, later to be discussed in detail. This Mostek microcomputer is made with a special mask for HP-IL and must be purchased from Hewlett-Packard. These ICs are arranged around two 8-bit data busses labeled as DA and DB. In the DVM and multiplexer circuits, the DB bus is used only for data transfers between the 1820-2810 and the ILB3-0003. The DA is used as the bi-directional bus between the 1820-2810 and the DVM. Because ASCII characters are seven-bit words, the eighth bit of the eight-bit bus should be held low when ASCII is being transmitted. The circuits described here link the GPIO standard interface to the specialized data and control pins of the Si7135 4-1/2 digit DVM chip and a multiplexer. The multiplexer circuit is also relatively simple, needing only a few standard CMOS ICs. ASCII characters are used for all data transfer in HPIL. Data transfer can flow to an external device such as a printer or from an external device such as a DVM. Two device modes are consequently defined 13-131 III AN83-6 ~ ~ Siliconix incorporated DVM BOARD ANALOG INPUTS -+---7 '---.--.r +5 V 0---+---1 I I I I I L _______ .-_ HP-IL INTERFACE +5 V HP 82165A HP82166B or Equivalent Circuit HP 41 Figure 1. HP-IL Multiplexer/DVM System as listener and talker. Data transfer between an HP-IL station and its corresponding peripheral device can utilize six "handshake" and additional command pins located on GPIO. Three handshake pins are used for the listener mode. and three are used for the talker mode. The two handshake modes are very similar. When listener is ready to accept data. a "Ready" pin is taken,low (logic true). The talker may respond at this point if it has data to send with an ASCII character on the data bus and a low "Data Valid" pin. Finally. if the listener regeives the data. it sets the "Data Confirmed" pin low. completing the handshake sequence. Several levels of handshaking are possible using the three handshake pins in different combinations. For the Siliconix DVM. the talker handshaking is very simple. "bata confirmed" is not used. and the "Ready" 13-132 and "Data Valid" pins are hardwired together. "Ready" and "Data Valid" correspond to the RDVO and DAVI pins for the talker handshake. In addition. the GETO pin is used to initialize a reading which is fed to the controller. The GETO pin is set low by a "TRIGGER" command in the computer software program. The "IND" command is used after the "TRIGGER" command to actually read in decimal data from the HP-IL device. The low GETO pin sets a latch in the interface IC in turn allowing a counter to sequence seven ASCII characters to the HP-IL. The counter is sequenced as the RDVO pin is set low if three conditions are met. Sequencing is prevented during the GETO pulse by the first of three conditional "AND" gates controlling the counter. The second gate is activated by the "TRIGGER" latch. In addition. an optional third gate is provided by the "Interface IC' s" .ENABLE pin (to be discussed later). AN83-6 fI'7" Siliconix .,1;;11 incorporated (+V) Table 1. ATD Program 01 14 02 4069 03 04 05 06 07 LBL DVM1 LBL 01 TRIGGER IND VIEW X GTO 01 END 1N 4148 or Similar INTERFACE IC ENABLE STROBE from SI7135 Figure 2. Optional Condition Circuit v- UNDERRANGE REFERENCE OVERRANGE ANALOG COMMON 3 STROBE RIH DIGITAL GND POL REF. CAP.- 7 517135 CLOCK IN BUSY (LSD) 01 IN HI 02 v+ 03 os 04 (MSD) (LSB) B1 (MSB) B8 B4 B2 Figure 3. 517135 Pin Out The seven ASCII characters provide for a polarity character. five digits. and a hardwired ASCII "LF" command. This character is recognized by the controller as an "End of Data" statement. The counter is allowed to sequence one more step after the "LF" command which resets itself and the "TRIGGER" latch. The read cycle is now complete. and the interface IC is ready to send another reading. A very simple seven line program in the HP-41 will initialize the DVM. read in the data. display the data. and loop back to take another reading. This ATD program is shown in Table 1. Figure 1 shows a functional block diagram of the system that contains several levels of asynchronism. The HP-41 is asynchronous to HP-IL; HP-IL is asynchronous to the interface IC: and the "Interface IC" is asynchronous to the Si7135. The "Interface IC" must account for random events at all three levels and convert the polarity and strobed BCD outputs to the proper ASCII characters. A subtle but desirable trait of the interface is that it should not allow a reading by the HP-IL while the Si7135 is latching in new data. Additionally. the interface should not allow the latching of data while the HP-IL is reading. Either condition would result in an invalid entry. The ENABLE pin when used with the circuit in Figure 2 will prevent the counter from sequencing the ASCII characters. The result will be a repetition of a single character which will fill the HP-41 X Register. In turn. this may be checked with HP-41 software. and the data will be deleted preventing an HP-IL read during a latch change. Alternatively. this gate may be held high if an occasional invalid reading is permissible. With this configuration. about 3% of the readings will be invalid. "Invalid" is used here to describe the condition of reading in the five digit number from two separate Si7135 writings. For example. if the Si7135 latches in new data to the interface IC while the HP-IL is reading. perhaps the first two digits may be from the old voltage reading while three would be from new data. The other invalid condition is prevented by stopping the Si7135 with the "TRIGGER" activated latch. This is accomplished by setting the RUN/HOLD pin low and thus stopping the Si7135 cycle until the reading is complete. Si7135/"INTERFACE IC" HANDSHAKING Data is latched into the "Interface IC" from the Si7135 by means of the four BCD data lines (Figure 4). They are routed to the proper character latch by the digit strobe pins. The polarity and most significant 13-133 ~ II.1:II ..,. Siliconix incorporated AN83·6 ~ "LF" command, are hardwired. These latches and hard wires feed tri-state buffers which are sequentially activated by the counter and consequently present their data to the ASCII output bus (DA) on GPIO. digit are simultaneously latched with Digit Strobe One. The STRoBE pin, which should not be confused with the five digit strobe pins, goes low five times after each voltage measurement In tandem with the sequencing five digit strobes. Thus, the latching of SI7135 data into the interface Ie occurs only once during each measurement cycle as a condition of the Digit Strobe pins and the STROBE pin. There is one latch for each variable bit of the six variable ASCII characters. Non-variable bits, Including the entire -- .... ~~ VI V 0 DATA (+v) _ ~Q Autoranging or multiple input select functions can be Implemented using similar straightforward programming techniques. The under-range and over-range pins of the Si7135 are connected to the most significant digit buffer. Enable - ~ DType Flip/ i L J Q~ RESET Q8 Q2 Q3 }- CLOCK DECADE COUNTER Q1 -- Optional Condition Q4 Q5 CLOCK EN Q6 Q7 QO T II~~TE BUFFER ... I J.- f-- 2 ASCII M. S. BITS a-BIT DATA BUS(DA) , HEX TRI-sTATE BUFFERS QUAD "0" LATCHES II lEN 6 ASCII L.S. BITS I EN EN I I EN EN I II I I EN ~ EN EN EN I I BCD DATA BUS (1 ( (1 , ( ~ 4 01 STROBE 02 D3 SI7135 Figure 4. Simplified Circuit of Interface IC D4 1 HARDWIRED "LF" EN ENI I I I RUN/HoLD I I POLARITY 13-134 lrl I EN EN 05 ..-F' Siliconix ~ incorporated Valid readings on the Si7135 range from -19999 to +19999. The under-range and over-range pins on the Si7135 are tied to the second and third bits of the most significant digit latch. Thus, during underrange, a numerical value slightly greater than or equal to 20,000 will be read, and 40,000 will be read during an over-range condition. These values along with the full register condition of the invalid reading discussed earlier can be checked by software. In the case of over or under-range, a subroutine can be called selecting an appropriately higher or lower scale. The scale called can also indicate the proper coefficient for correct numerical display and decimal placement. Therefore, meter calibration may take place in software if the sensor cannot be adjusted. Under and over-range as well as other Si7135 functions are optionally used by the designer. The "Interface IC" was designed to allow customizing the interface for a given set of functions and applications. The "Interface IC" is also useful with other A/O converters including the Siliconix "LO" family. Additionally, the great flexibility afforded by the software allows special readings such as dBm, dB gain, and radian measure, etc. Indeed, applications of this system seem infinite (bfd). HP-ILIMULTIPLEXER INTERFACE In the case of input selection, autoranging and function select, etc., the circuit in Figure 5 may be used. Here, eight inputs are used to feed the Si7135. When the multiplexer is receiving instructions, it actually becomes a listener. A relatively simple circuit is required for the interface between the S05002s and the HP-IL; furthermore, this S05002 circuit may be used as a stand-alone circuit for a wide range of analog switching functions. S05002s can be configured into superior video, audio, or RF switching circuits featuring excellent cross-talk and low-distortion performance (Ref. 2 & 3). Additionally, Siliconix offers a wide range of analog switches and multiplexers to suit any application. Power control is possible with up to 650 volt power FETs and simple standard control circuits. Thus, Siliconix can be a single supplier of specialized components from the HP-IL "Interface IC" to HP-IL controlled high voltage FETsl Three 4000 series CMOS ICs are required to interface data from HP-IL to the switch control gates. A sepa- AN83-6 rate Si7661 is shown on the multiplexer circuit in case the multiplexer is built independently of the DVM. (Figure 1) If it is built independently, a higher supply voltage can be used. This will allow higher analog voltages to be switched. Siliconix also manufactures the S0210 series which are discrete switch devices; these may be used if superior channel isolation is required and/or higher signal voltages must be switched. HP-ILlmultiplexer handshaking is very straightforward. The OAVO pin is used to enable a CMOS latch which stores the last three bits of the transmitted ASCII character. The ROVO pin is not used while the OACI pin is tied to ground. This is the simplest handshake scheme possible with HP-IL. In the multiplexer, the three least significant bits of the ASCII character taken from the OA bus are used to select one of the eight analog inputs. The "OUTA" command in HP-41 software sends the contents of the Alpha Register to the IL device. The very simple hardware interface requires some special compensation in software. The most important constraint with this circuit is to send only one ASCII character at a time. This will prevent "glitches" and false data from being latched. In its normal operations mode, the HP-41 will automatically send an "End of Data· ASCII character at the end of an alpha string. The last ASCII character sent is the one which is latched into the multiplexer. For this reason, the "End of Data" character must be restrained. This is accomplished by setting Flag 17 "SF17" in the software. A more complex problem involves mathematical manipulations of numbers specifying the multiplexer channel. Such manipulations must take place with digital information - not alpha characters. Since HP-IL can only send data from the Alpha Register, these digital characters must be sent to the Alpha Register for transmission to the multiplexer. A problem arises because a decimal point "rides along" with the number to the Alpha Register. The decimal point is consequently read by the IL interface and sent as an ASCII character to the multiplexer causing a "glitch" or an invalid latch. This problem can be solved by clearing Flag 29 "CF29" and not displaying fraction data "FIXO". With these two additional simple commands, the desired numeric ASCII character will be latched into the mUltiplexer. 13-135 AN83-6 ..... Siliconix incorporated ~ GPIO BUS NO DAO DAOI DA1 DA2 +5V +5V DAVO 14 14 1312 5 16 4076 4584 ALL RESISTORS 20 k.O. +5V 9 10 11 4051 13 14 15 12 (-V) 3 6 14 11 S05002 4 S05002 5 ANALOG INPUTS ANALOG OUTPUT TO 517135 ANALOG INPUTS Figure 6. Multiplexer Schematic Diagram SOFTWARE EXAMPLE Table 2 shows a simple program which will sequence the eight input multiplexer, display the input channel number, read In the voltage, display the voltage, and loop back. It is included to provide a sample program to get the system working and illustrate how the necessary commands can be arranged. The power of the HP-IL system may be appreciated when one sees only 29 lines of programming I The user will in most instances modify or rewrite programs to meet individual needs. Details of HP software are contained in the literature provided with the applicable HP devices. The 13-136 HP82166C Interface Kit includes a very comprehensive system description of HP-IL contained in multiple volumes. One word of caution to the hardware designer; there are numerous errors and misleading diagrams in the HP booklet entitled" HP 82166A HP-IL Converter Technical Manual" (Nov. 81). The corrections to these errors are in a follow-up booklet "HPILIGPIO Interface HP-IL Converter Manual Supplement". In conclusion, Siliconix offers the necessary integrated circuits to easily facilitate HP-IL interface to a low cost DVM design. This solution reduces the problem of such an interface to an easy layout task. .-r Siliconix incorporated AN83-6 ~ Table 2 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 LBL DVM1 0 STO 01 LBL 02 VIEW X TRIGGER IND .0001 . FIX 4 VIEW X FIX 0 CF 29 RCL 01 7 16 17 18 19 20 21 22 23 24 25 26 27 28 29 - REFERENCES: = X 07 GTO 03 RCL 01 1 + LBL 03 STO 01 CLA ARCL 01 SF 17 OUTA GTO 02 END 1. Electronic Design, Parzybok, Hanson, Dec. 24, 1981. 2. Siliconix Application Note: • A High Performance Video Switch", Zavrel. 3. Siliconix Application Note: • A High Quality Audio Crosspoint Switch", Zavrel. 13-137 ..... Siliconix incorporated AN83·4 ~ IMPROVED SYSTEM PERFORMANCE USING MICROPROCESSOR COMPATIBLE MULTIPLEXERS Brian Wadsworth Walt Helnzer Revised January. 1988 INTRODUCTION These Siliconix CMOS multiplexers, the DG526, DG527, DG528 and DG529 , feature the excellent characteristics of the DG506A-DG509A series with a bonus: latching logic. Microprocessor based systems are rapidly taking on more control tasks in electronic equipment. On-chip latching logic in a multiplexer does therefore greatly simplify the microprocessor interlace design and improves system performance. When the microprocessor is used in the "real world" of analog signals, it is often used in conjunction with analog multiplexers. Until recently, to interface the microprocessor to the multiplexer has meant the use of some external memory device. These methods sometimes impaired system performance by compromising processor speed and always meant an increased component count. Two of these methods are illustrated in Figure 1. With the introduction of these new multiplexers, the method of interlace has been simplified. These devices have the latch function incorporated into the control circuitry of the multiplexer. Figure 2 illustrates functional diagrams of these multiplexers. To examine the mode of operation, let us consider the DG528. The addition of the data latches on-chip has meant that two new control lines had to be introduced, i.e. WR and RS. Figure 3 shows a detailed diagram of these input latches. MICROPROCESSOR PERIPHERAL INTERFACE ADAPTER POARTt~~~~~~~::=l ..E!IA DG508A EN ANALOG INPUT SIGNALS .------< SERIAL CONTROL INPUT CHIP ENABLE PORT B SI SIP ~~=f-:::l ~ USING SERIAL TO PARALLEL REGISTERS TO MAINTAIN SWITCH CLOSURE Figure 1. Traditional Methods of Driving the DG508 MUX/DMUX with a Memory Device 13-138 ANALOG INPUTS & OUTPUTS AN83-4 Siliconix incorporated v- v+ v- GND 51~~--------~r1 52~q_---------a1 53~+_-----~r1&~-L_i 53a'o-''r-----a'1 &--+--"-_+ 54 ~'t-----~1 ~-I--7---7---i 55 ().l>'I-----o'1 &....£-!--+-+--i 560-"'1----9"'1 '"'-!-+-+--i--i--t 57 ()..!.If---o''1 &..Jf--i--r--,.-;--t---+ 58 54a~~-~r~-~--~--~4 D Da 51b~~-~~--r--~-~ 52bc>"'t---+----;~-o, &--.---+ 53b~4_-~-- 2 clock (often directly connected to the DBE) with R/W line. The gating of the chip select with the 11>2. R/W combination is functionally identical to the 8080 connection. The Z80 to multiplexer interface is shown in Figure 7. Simply by gating the WR and MREQ signals with the standard es signal allows the correct WR signal for the multiplexer to be achieved. +15V DATA BUS PROCESSOR SYSTEM BUS RESET 0 - - - - - - 1 +5V ADDRESS ~~~~~ 1 OF 8 v-15 V Figure 5. Complete 8085 MIcroprocessor to DG528 Interface 13-142 ANALOG OUTPUT H AN83·4 Siliconix incorporated +15 V AO A1 A2 EN DATA BUS DG529 RESET Da AS Db CONTROL BUS WR ANALOG INPUTS v-15V FIGURE 6. Complete 6800 Microprocessor Bus to DG529 Interfaoe DATA BUS AS AO A1 A2 EN v+ AS Z80 SYSTEM BUS DG528 WR WR MREQ v- l1li ADD BUS Figure 7. Z80 TO DG528 Interface 13-143 AN83-4 ...... Siliconix incorporated ~ Another important improvement achieved on the PLUS 40 process was the introduction of an ion-implantation technique. This technique allows much greater process control which results in very uniform, repeatable device parameters. In the case of analog multiplexers, for example, we achieve better matching characteristics switch to switch. The Process These devices have been constructed using a high voltage CMOS process called PLUS 40. This process was designed to provide a more rugged device while at the same time offer performance improvements over the original CMOS process. Basically, two features improve the ruggedness of the device: (a) (b) CHARACTERISTICS The gate oxides of the MOS transistors have been thickened, improving the DC rupture voltage by 33%. Combining this benefit with the improved input protection circuits and body clamped switch design results in improved static voltage immunity. Having discussed the performance of the device, we can now look at some of the important characteristics involved: 1. First, the most critical specification of the device is its microprocessor timing arrangements. As was mentioned earlier, the timing of these devices was designed to be compatible with the SOS5A. In actual fact the timing is such that the SOS5A-2 can be operated on its maximum 5 MHz clock rate. The waveforms shown in Figure S illustrate the timing specifications for the DG52X series. The process maximum rating has been increased. PLUS 40 CMOS devices have an absolute maximum rating of 44 V between supply rails. This means that devices can be operated at ±15 V supplies and still be within 75% of their maximum ratings. Minimum Input Timing Requirements tww WRITE Pulse Width tow Min Umlts over full temp. Unit range Measured Terminal Parameter WR 300 A. EN Oata Valid to WRITE AO. A1. (A2), (Stabilization Time) WR AI EN Data Valid after WRITE 3 (Hold Time) WR En 180 ns two tRS RESET Pulse Width RS AO. A1. (A2). En 500 RS 1.5Vf 3V~ OV tRS~ Vo SWITCH OUTPUT tOFF(RS)::iO.BVO OV FIgure 8. Timing Diagrams 13-144 AN83-4 ...... Siliconix incorporated ~ 2. Another parameter of importance, especially in such applications as sample and hold, is that of charge injection. The graph shown in Figure 9 shows a typical curve for this parameter. In fact all PLUS 40 devices have compensation on the output switches to reduce switching errors due to charge injection. 2 1/ j 8 "I QI (pC) 61-" !"o " r--I- )'" ... " "4 2 -16 -12 -8 -4 -14 -10 -6 -2 2 4 6 8 12 16 10' 14 VSOURCE Figure 9. Charge Injection VB. 3. Much simpler power supply requirements are facilitated due to the on-chip regulator and the PLUS 40 construction. 4. Its PLUS 40 construction also means a more reliable, high performance device. .n. RSOURCE= 0 Chold = 200 pF 0 2. Because the timing arrangements are fully microprocessor compatible, then a more efficient system performance is obtainable. Analog Signal 3. TheVERRoR figure of merit is sometimes used as a parameter for evaluating switch performance. This parameter is the product of rOS(ON) and IO(ON) switch leakage current. It is a primary contributor to switch voltages errors when switching very low level signals such as thermo-couple voltages. The DG528 has a worst case specified VERROR of 100 IJ.V at 125 D C, while at room temperature this figure reduces to 4 IJ.V maximum. APPLICATIONS Temperature Monitoring In these systems, an array of transducers are switched one at a time to an analog-to-digital converter. Figure 10 illustrates the necessary steps in designing the front-end system. This system assumes that the transducers generate small differential signals upon which fairly large common-mode noise is superimposed. This common-mode signal can be assumed to be 50 or 60 Hz power line pickup. Transducers with this type of characteristic would be thermistors wired in a bridge configuration. To calculate the errors introduced by the multiplexer, assumptions about the range of the differential signal, Vdiff, need to be made. A weighted thermistor bridge will easily have an output voltage swing of 0 to 100 mV, representing an input temperature range of o to 100 D C. The second assumption is that the common mode noise pick-up is approximately 2 V p-p. Finally, a measurement accuracy of 1%, or 1DC is required from a bridge with nominal output impedance of 500 n. There are basically two sources of errors to analyze: (a) DC errors contributed by the multiplexer. Figure 11 shows the steady-state differentiai voltage input path for one switch closed. As can be seen, the primary error source is the product of leakage currents in the signal path resistances. These leakage currents generate additional system offset voltages which, Eilven though the bridge presents an unbalanced resistance, are acceptable. (b) Common-mode voltage becoming a differential error due to the resistively unbalanced signal paths. This is the major contributor toward system error. SUMMARY We are now in a position to analyze this information to identify user benefits. These benefits can be itemized as shown below: 1. The ease of interfacing means that component count is reduced. This has the obvious benefit that overheads are reduced because component, inventory, manufacturing and production costs are reduced. Also, because component count is reduced, the systems reliability is increased. 13-145 ~ ~ ..,. Siliconix incorporated AN83·4 ~ THERMISTORS 0G529 i5V o R2 R4 Rl R3 SYSTEM BUS Figure 10. 1------1 + I I Vdlff I I I I OIFF INPUT AID vCMI I I ":'" IL______ ..JI It is worth pointing out at this point that if the bridge resistances were balanced, i.e. RS1 = RS2 = 500 .n, then the multiplexer would only contribute a 0.024% error (assuming a 2% match for switch on-resistance). The dynamic characteristics of the switches are relatively unimportant in this application since temperature is a slowly varying signal. Figure 11. Steady State Errors The total error voltage due to the DG529 Is calculated as: V error = I O(ON) X (rOS(ON)a + SOO) - I O(ON) X (rOS(ON)b + 100) =10 nA X (306 + 500) -10 nA X (300 + 100) =4.06 JJ,V Thus the multiplexer contributes negligible offset error. The differential Input AID would contribute an additional offset of: Verror = I BIAS (+) X (rOS(ON)a + 500) - I BIAS (-) X(rOS(ON)b + 100) 13-146 Figure 12 shows how the common-mode voltage directly adds to the differential signal representing temperature. The net result is a 50 Hz differential error signal, superimposed on the DC temperature signal, of 1.6 mV p-p. This represents an error of 2°C which can be eliminated using an integrating AID sampling at an integer multiple of the 50 Hz noise frequency. AN83-4 ...... Siliconix incorporated ~ and capacitances. Leakage currents limit the maximum measurable resistances while capacitance increases the measurement settling time. Switch leakage currents should be 10% of measured current to enable 100 Mil resistances to be measured. Therefore maximum leakage should be: assume 2 VOLTS HERE 10 100 Vdlff 100 I1A The DG528 has a of 10 nA at +25°C. Figure 12. roh~h~~~~1~~~S t~:1:~ ~C~~~W'ln~!h:olrf~~ 1~: the AID X 10 due = (500 k I (500 + 306 + 500 k) - 500 k I (100 + 300 + 500 k» X2=1,6mV The 1.6 mV adds to the thermistor output voltage signal as a sur:rlmpoSed 50 Hz normal mode voltage. This signal can be re ected by using an Int~ratlng AID converter sampling at an In ager multiple of the S t------fI FORCE NODE v- 0-_---1 FORCE NODE DG528 Figure 14. Simplified Circuit Highlighting the Insulation Test 13-148 Figure 15. Simplified Circuit Highlighting the Continuity Test Using Kelvin (4 wire )Senslng AN83-4 ..... Siliconix incorporated ~ can then condition these signals for the input requirements of the AID converter. DATA ACQUISITION The circuit shown in Figure 16 is intended to highlight the benefits of the microprocessor compatibility of the DG526-8. Note that this circuit also contains DG221 analog switches. The DG221 is a quad SPST switch with the same microprocessor timing arrangements and compatibility as the DG528 (with the exception of RS). The adaptive gain software control algorithms available for process control systems make microprocessor based systems very attractive in these applications. Now, with the advent of the DG528, complete data acquisition systems can be simply interfaced to the processor. The software can then be written to maximize the efficiency of the system by managing the system organization. All the components used in this circuit have been selected due to their microprocessor compatibility. Because the gain of the sample and hold amplifier is programmable, the DG528 can multiplex signals of various magnitudes. The sample and hold amplifier Conversely, the 'back-end' system utilized the DG528 as a demultiplexer where signal outputs from the D/A can be used for various functions. For example, it may be a corrective signal to a controller to reduce system error or simply a signal for an analog display. PROCESS CONTROL Figure 17 illustrates a novel use of the DG527. Differential multiplexers are generally used in process control applications to eliminate errors due to common mode signals. In this circuit however, advantage is taken of the dual multiplexing capability of the switch. This is achieved by using the multiplexer to select pairs of RC networks to control the pulse width of the multivibrator. This can be a particularly useful feature in process control applications where there is a requirement for a variable width sample "window· for different control signals. MICROPROCESSOR CONTROLLED DATA ACQUISITION SYSTEM ~~~EJld ~i DATA BUS BUS I/F D A T A B U S OUT B U S ADDRESS B 1---r----1I--h U S BUS FIgure 16. Enhanced System Performance using DG221, DG526 & DG528 13-149 trY' Siliconix AN83·4 ~ incorporated EXAMPLE PROGRAM Hex Add. Description Assembler Code Hex Code (20)00 01 02 31 LXI SP. 20BOH Initialize stack pointer. MVI A. cPA Set Interrupt register value. Set Interrupt mask (loads Interrupt register from accumulator). Enable Interrupt at this point (when Interrupt key Is pressed, program runs until this point). BcP 2cP 03 04 3E 05 3cP SIM OB FB EI 07 OB 09 OA DB 3E MVIA. cPF cPF 32 STA, B400H cPA Load the aooumulator with the value cPF Hex (this represents "enable" swltoh B). Store the aooumulator value memory looatlon (B400H Is the location of the 52B In this application .) cPcP 84 OC 00 OE OF 10 11 12 13 CE CF DO Example Program 3E Load acoumulator with the value cPB Hex (this represents "enable" for swltoh 1). Store the acoumulator value at memory looatlon B400 Hex. MVI A, cPB STA, B400H 32 00 B4 Jump (loop)baok to the enable JMP,200BH C3 Interrupt at location 2006 Hex DB and start again. 20 When Interrupt (VECT INT) key EI FB Is pressed, the monitor transfers 7B HLT control to looation 20CE Hex. C9 RET Run In the Clroult Setup of Figure lB with the SDK-B5 Development System. v+ i i V- voo A1 R2 EN A3 A4 AS AO DATA BUS p- A1 A6 A7 A8 A2 DG527 Da Db GND [ I ;--11 C2 II I C4 I I C3 I I C5 ~I 06 I I I 07 08 I I HI As AS WR ADD BUS . . WR DEOODE I I I DJ I Q Oex! Aex! ~L I f----o GND A 74123 OLA B I r VOO Figure 17. Jlf' Selected Pulse Width Control 13-150 I 11 01 ----11 1 OLK f---oQ AN83-3 ...,. Siliconix incorporated ~ A MICROPROCESSOR COMPATIBLE ANALOG SWITCH MAKES INTERFACING EASY Brian Wadsworth Revised January, 1988 INTRODUCTION The advances made over recent years in the field of microprocessor programming have made the microprocessor a very attractive tool for systems designers. Not only does the processor significantly reduce systems component count, but the increasingly complex algorithms developed give the microprocessor greater flexibility especially for the measurement or control of analog signals. Until recently, to interface the digital world of the microprocessor to the "real world" of analog switches has meant the use of some type of memory device. If these memory devices are not used then the processor data bus had to remain tied to the logic inputs of the analog switch. This memory function employed one of the following devices: A shift register, a flipflop, or a special peripheral interface adapter. Some of these methods are shown in Figure 1. DG221 is functionally identical to the popular DG201A to which it is also pin compatible, except for pin 12 which is used for the WR input. The logic truth table and pin configuration for the DG221 are shown in Figure 2. Circuit Details The circuit shown in Figure 3 is a simplified schematic of a single channel. It shows the logic interface circuitry, coupled with input protection, followed by D-type latches, level shift and driver circuitry, and finally the CMOS output switch. The DG221 quad latching analog switch combines both functions on a single chip. These latches eliminate the requirement of "WAIT STATES" used to accommodate slower 110 functions which compromise processor speed. This simplifies the interface methods and facilitates more efficient microprocessor performance. The logic interface circuit has been designed to make microprocessor interfacing as simple as possible. The digital inputs, due to their CMOS construction, draw negligible current and provide extremely low capacitive loads ( 5 pF typ.). Full TIL input compatibility is guaranteed without the external pull-up resistor. These features combine to ensure that the DG221 can be driven directly from the microprocessor data bus without overloading the bus. The input protection circuitry consists of internal diodes to both supply rails which forward bias to discharge any static energy into the supply rails. A series resistor is included to limit the current to the forward biased diodes. The data latches are activated by the WR (active low) input. These latches become transparent whenever WR is driven to a logic O. At this time, the The D-type latches are driven from the WR input and in its normal high state will isolate the output switches from excursions as the processor data change. cs D ClK D DATA BUS r-- Q ClK DUAL D-TYPE LATCH A IN1 IN2 ClK D ClK D Q IN3 D G 2 0 1 '--- a-BIT A 110 PORT r-- IN4 DUAL D-TYPE lATCH A. USING EXTERNAL LATCHES TO MAINTAIN SWITCH CLOSURE DG 201A B DG 201A '--B. USING 1/0 PORT AS GATED BUFFER Figure 1. Traditional Methods of Interfacing using Memory Devices 13-151 AN83-3 ~ ~ INX WR . SWITCH ON 0 0 1 0 OFF 1 MAINTAINS PREVIOUS STATE X v+ WR LOGIC "1" VIN 2: 2.4V LOGIC '0' VIN S O.BV S3 WR INPUT IS LEVEL SENSITIVE (NOT EDGE-TRIGGERED) FIgura 2. Pin Configuration The level shift and driver circuitry enables a full ±15 volt analog signal to be switched by the CMOS output switch. The switch uses body snatcher transistors in its construction to Improve switching performance by snatching the body of the N-channel MOSFET to different potentials, depending on the switch state. In the OFF-state, the body is snatched to the negative rail which improves OFF-isolation by providing a low impedance path for high-frequency signals. In the ON-state, the body and source of the N-channel MOSFET are shorted, which reduces the threshold value. A measure of switch performance is the error voltages introduced by the switching element, often referred to as the VERROR figure of merit. This error is the product of rOS(ON) and IO(ON) maximum leakage quoted for the device. The extremely low leakage of 5 nA max. (10 pA typ.), combined with the low ON resistance of 90 .n max. (60 .n typ.) of the DG221 , combine to give an error voltage of 0.45 Jl.V maximum at room temperature. A signal level of 4.5 mV would remain 99% accurate. This switch is very suitable for low level signal switching applications. Finally, the regulator used for the DG221 is a feature which is unique to the data latch analog switch range produced by Siliconix. It is used to maintain a constant internal reference voltage for defining digital input switching thresholds at 1.4 V, allowing the device to maintain its TTL input compatibility over large power supply variations. The regulator has also been deSigned to reduce the effects of temperature on parameters such as switching threshold and switching speed, thus minimizing drift due to ambient conditions over the full military temperature range of -55 to 125°C. Interfacing The DG221 The latch timing arrangements have been designed to be fully compatible with the more popular NMOS microprocessors, e.g. 8085A, 6800, Z80. The timing arrangements for DG221 are given in Figure 4. The timing requirements of the 8085A have also been included for comparison to illustrate the full microprocessor compatibility of the DG221. v+o-------~~--~--------------------------_4r_--------, GND 0 - - - - - - / - - ' IN x o-------!-JoNII-.+-+-I WR 0--'V',fY-.....- t - - - - I v-o---~--+_ ___________+__ _ _ ~ ____ ~ ______ Figura 3. Functional Schematic (single channel shown) 13-152 Siliconix incorporated ~ ..or ~ AN83·3 Siliconix incorporated Although the DG221 was designed primarily to be compatible with the 8085A, it can also be used in conjunction with the MC6800 series and Z80 family of processors, as the interface circuits shown in Figures 5, 6 and 7 illustrate. v+ ADDRESS RMi V *-- tww ---.I WR (221)~ 230nS I I I.. t DW.,J I ~ ADO-AD7 GND 180 ns I !+ tDW~ tWD 30 ns v- Figure 6. 6800 Interface I j4- v+ ~ I V WR(~P)~ 14=== tWD j+ MREa tcc~ ADDRESS BUS Figure 4. Figure 7. Z80 Interface tww Width of Control Low (WR) tDW Data Valid to Trailing Edge of Write tWD Data Valid after Trailing Edge of Write SOBSA 400 (min) 420 (min) 100 (min) BOBSA-2 DG211 400 (min) 420 (min) 60 (min) 400 (min) 420 (min) 30 (min) This also Illustrates how the DG221 more than meets the timing requirements of the faster 8085A-2. All times are In nano seconds. v+ INl 1N2 1N3 1N4 WR I ADDRESS BUS l- GND Figure 5. 8085-221 Interface v- Typical Applications The DG221 is intended for use in microprocessor applications where the data latch facility can be of great benefit. The circuits included in this article are intended to highlight the benefits offered by the DG221 , while at the same time generating some ideas for design engineers. Figure 8 shows the use of the DG221 in an alarm system. The low loading offered by the DG221 to processor outputs enables several DG221 's to be operated in parallel without overloading the processor outputs. A lower component count results by using the DG221 as a Mux in the alarm sensor circuit. The amplifier shown in Figure 9 has processor-controlled gain and inputs enabling analog signals of varying magnitudes to be switched to a common amplifier. This is achieved by ensuring the amplifier has the appropriate value of feedback resistance for the correct output level. The DG221 looks into the high input impedance of the op amp so the effects of rDS(ON) are negligible. Furthermore, since the DG221 can handle positive and negative signals, the unity gain connection on the op amp is possible. 13-153 ~ -- AN83-3 ..... Siliconix incorporated ~ COMPARATOR S~ o-t----i----~~ A-+__~ SP3 o-++---i----~l'f .A-t---+ O/PTO ALARM CIRCUITRY +-+-----01" 1&...-1-_- BEARING TEMP. SP4 +-+---(YI I " - i f - _ OIL PRESSURE t-i----O'! 1&...+_- STATOR TEMP. '--+---(rr 1............_ 1 - MOTOR SPEED CONTROL BUS ADDRESS BUS Figure 8. Jl,P Controlled Alarm Monitor VAl Vo VM Figure 10 highlights the combined use of the DG221 and DG528 in a 32-channel MUX system. Because the timing arrangements for theses devices are identical. they can readily be used together. The reset facility on the DGg28 is particularly useful for synchronization of channel 1 during "power up" condition. The 2-level system has several advantages over a single-level system. These are: (i) reduced output capacitance. (ii) reduced output leakage current. (iii) much faster switching speed. thus higher data transmission rates. The switching of intensity and position in a CRT video display is simplified by using the DG221 in a processor-based system. as is illustrated in Figure 11. This circuit can also be adapted for radar multiplexing because the DG221 allows both the radar trace and a marker to be displayed simultaneously since it can be "programmed" to have more than one switch closed at anyone instant. ~ DATA BUS RMI Figure 9. 13-154 Jl,P Controlled Variable Gain-Amplifier The final circuit shown in Figure 12 shows the use of the DG221 and the DG528 in a remote. processorcontrolled measurement system. ~ ~ AN83·3 Siliconix incorporated The DG221 Is used to condition the Input signals to suit the input requirements of the AID, allowing the system to be used to measure signals of various magnitudes. The typical area where this may be use is in automatic test equipment. In this application, the DG528 can be used as a demultiplexer to effect the illumination of the required status lamp to indicate the test result. As was mentioned earlier, these are only example applications. Other application areas for the DG221 include: communication systems, home security, avionics, instrumentation, data acquisition, etc. AS ADDRESS BUS Figure 10. 2-Level 32 Channel Mux System GRAPHIC INPUTS DATA BUS >~==~~ III ADDRESS BUS FIgure 11. Simple Multiplexing 13-155 ..... Siliconix incorporated AN83·3 ~ GAIN SELECT ~ IEEE 488 BUS ==D .. DATA BUS ~.~ DG221 .llP .A .A I CSO DDRESS BUS; ADDRESS _ DECODE CS, ..... I RS WR ~ CONTROL BUS tJ, I WR 2 D-MUX DG528 WRITE WR1 DECODE I WR DATA OUT A/D LD120 LD121A LD122 -L<~ D.U. T. STATUS LAMPS Figure 12. Remote/Processor Controlled Measurement System CONCLUSION The DG221 quad switch is an extremely reliable and rugged analog switch designed primarily for microprocessor applications. The on board latches have been designed to simplify microprocessor interfacing techniques while at the same time allowing more efficient processor use. The on board regulator gives much greater stability against circuit and ambient conditions, while switch performance achieves very low switching errors. the gate oxides were made thicker to increase the dc rupture voltage by 33%. When this is combined with the logic input protection and CMOS switch bodyclamping diodes, an overall improvement in static damage immunity is achieved. Secondly, the increased voltage rating means normal operation is accommodated with less stress to the device; thus, the PLUS 40 process improves reliability as well as the immunity to static damage. THE PROCESS To achieve this increase in process maximum breakdown voltage, an ion-implantation technique is used. This technique has the benefit of allowing greater process control to be achieved which enables very uniform repeatable device parameters to be realized. One example of this is that switch-to-switch ON resistance variation has been improved to less than 2%. The DG221 is fabricated on our high voltage CMOS process developed by Siliconix called PLUS 40. This process continues to use the buried layer technique for prevention of CMOS latch-up. This new process was originally designed to provide a more rugged device in transient environments. To achieve this, first Finally, due to its PLUS 40 CMOS structure and on board regulator, a much simpler power supply design has been facilitated. The 44 V rating allows a greater margin for overvoltage while the on board regulator allows for large power supply variations. In short, the DG221 is synonymous with high performance, real-world microprocessor applications. 13-156 AN83·1 .... Siliconix incorporated ~ The DQ308A Digitally Switches . Analog Signals Walt Helnzer September 1983 INTRODUCTION The latch proof CMOS DG30BA interfaces easily to system power supplies since it operates from ±5 V to ±15 V. or it operates with a single supply from +5 V to +25 V. all CMOS logic compatible. Additionally. the DG30BA consumes negligible standby power and can switch in less than 200 ns. To minimize analog signal error the DG30BA has a maximum rDS(ON) of 100 .n over the full analog signal range which extends to the positive and negative power supply. at the same time OFF state signal errors are kept small by low leakage currents. More About The DG308A: sistance plotted as a leakage current in Figure 3. combined with the ON resistance characteristic of Figure 2. guarantees full ON/OFF operation between the V+ and V- (±15 V) power supply rails. 150 120 A: ±5 V Supplies B: ±7,5 V A C: ±10 V D: ±15 V I E: ±20 V - r--.,B...I' /0 30 o TA Is = 25'C = -10 mA II 90 60 One channel of the four channel DG30BA is shown in Figure 1 which displays the input protection. logic interface. internal level shifting and switch contact circuitry. With V+ = 15 V and V- = - 15 V. a logic "1" control input (VIH = 11 V minimum) will close the switch. and a logic "0" (VIL = 3.5 V maximum) will open the switch. The ON resistance of the switch over the analog signal range has the characteristic double peaked curve shown in Figure 2. The OFF re- I -20 C D """ --' - i-"'"E ~ -10 o 10 20 VO- DRAIN VOLTAGE (V) FIGURE 2. rOS(ON) vs. Vo and Power Supply Voltage V+ SOURCE CONTROL <>",'J"'___ IN GND DRAIN V- "-----v----J '--___________- - - - - - - . / '--___________------...J INPUT PROTECTION LOGIC INTERFACE AND SWITCH DRIVERS ANALOG SWITCH Figure 1. CMOS Schematic Diagram 13-157 H AN83-1 the power consumption increases in proportion to the increasing toggle frequency, Figure 4 shows the increase in power dissipation as toggling rate increases. When VANALOG exceeds power supply switch substrate diodes I. 1 1 begin to conduct. 1-1 o (OFF)- 80 I I I pA ..... i--'" I-"'" IO(ON) -80 - _i--'" o -IS(OFF) vl J5 V, V- = -15 V -120 I I T( ,21"CI I I 5 10 15 -15 -10 -5 o VANALOG - ANALOG VOLTAGE (V) Figure 3, DG308A: I O(OFF) & I O(ON)vs. Vo 100 10 / :: 01 / :: = : - :: = : - :: = : V 10 100 1 k 10 k 100 k 1 M LOGIC SWITCHING FREQUENCY (Hz) 50% DUTY CYCLE Figure 4, DG308A: Device Power Dissipation vs. Switching Frequency Only residual leakage current flows when the circuit is either ON or OFF resulting in a power dissipation of less than 10 mW. However, as the switch toggles, The actual switching time to turn ON (tON) and turn OFF (tOFF) the switch consists of two distinct intervals: propagation delay and switch actuation, During the propagation delay interval, the CMOS logic input control signal amplifies, level shifts and begins to drive the output FET switch contacts. Switch actuation occurs rapidly as current through the switch begins or is interrupted generally occurring within 20% of the total switching time (see Figure 5). To a first approximation the turn ON time (tON) is independent of the external circuit characteristics; however, turn OFF time (tOFF) depends on external circuit time constants. The (90% - 10%) settling time portion of switch turn off calculates as: tsettling = 2.2 RL [CL + CD(OFF) 1 from 90% to 10% of Vo (see Figure 6), For the load conditions RL = 1 kn and CL = 35 pF: tsettling = 2.2 x 1 kn x (35 + 8) pF 20 ns +15 V V+ 50% Vs = 3 V S o---t----------<~: I _...1 90% Vo V 1NH = 15 V V 1NL = 0 V GND Figure 5, Switching Time Test Circuit 13-158 ns The turn ON time exceeds the turn OFF time over the full temperature and analog signal range by design, This approach results in guaranteed break-beforemake switch operation in multiplexing applications, LOGIC INPUT tf< = 95 In order to minimize the external loading effects on the tOFF parameter, the DG308A specification measures between 50% of the logic control input and 90% of the output voltage V 0 (Figure 5), thus only a portion of the settling time (70% of one time constant) is included in the tOFF measurement. The additional settling time to the 50% point of Vo is 29 ns, LOGIC "1"= SWITCH ON t r < 20 ns Siliconix incorporated AN83·1 fl'Y' Siliconix ~ incorporated I I 10 LOGIC INPUT !oJ. 5 0 A 1__ Bf- 10 OUTPUT VOLTAGE (Vo) ~ Cr- j.- Dr- f4 90% I 5 OFF A Four Channel Analog Multiplexer: v+ = 15 V V-=-15V VI'l=+10V I '.... ON I I 10% 0 I- The four channel input multiplexer (Figure 7) displays the characteristic dead time achievable between channel selections resulting from tON being longer than t OFF. This desirable dead time (break-beforemake operation) prevents transducer signal sources from being momentarily shorted together during channel selection. I ~ OFF TIME (ns) LEGEND A - TURN ON PROPAGATION DELAY B - TURN ON SWITCH ACTUATION A+B - TOTAL SPECIFIED TURN ON TIME C - TURN OFF PROPAGATION DELAY o -1.<&T~f SPECIFIED TURN OFF TIMEt OFF 90% E - TURN OFF RC DELAY DUE TO RLx (CD(OFFtcL) Figure 6. Switching Time +15 V -15 V lV~+-~L- __~==~ While looking at multiplexing applications of the quad switch array, a few important comments apply to signals occurring outside of the normal analog signal range of V+ to V-. Often analog multiplexers receive their input signals from sources located far away. The signal sources sometimes pickup transient signals which exceed the V+ and V- power rails. Under this condition the DG308A acts as a voltage clamp which can shunt transients up to 30 mA to the V+ or V- power supplies. Figure 8 gives a working model of the transient clamping diodes during both switch ON and OFF states. Remember, the DG308A is constructed with a latch proof CMOS process (Reference 1) • ______-h 2 V'o-+--!---3Vo-~~--~-~ ~....,.-... VO A....---IH 4Vo-~-r--r_--+_-~ 10 kO SOURCEo-~---" INI I I r - -......--o DRAIN --...,ONLY PRESENT WHEN SWITCH IS OFF B.B.M. INTERNAL (DEAD TIME) Vo ~ (VoltS)~ ~~~~~~~~~- RCHANNEL = 100.n Max whenlNx = "1" RCHANNEL = 100> 1000 Meg Ohm whenlNx = "0" Figure 8. Typical Single Channel Overvoltage Model IN2 +------' IN3 + ____---l IN4 +---------' Figure 7. Four Channel Analog Multiplexer When transient signals exceed the capability of the DG308A's clamping diodes, external protection circuits are required. One of the most often used and effective protection circuits are clamped series input resistors (Figure 9). This circuit has some important subtleties worth mentioning. First, the series resistor combined with the switch input capacitance of 7 pF 13-159 --=~ ..,. Siliconix incorporated AN83·1 ~ provides a low pass filter action that rapidly attenuates very large fast transient voltages e.g., electrostatic discharge. Second, the series connection of diodes (Zeners) tends to balance the individual leakage currents which could become a serious problem when the circuit operates at high ambient temperatures. Diode leakage current doubles with every 1Q°C increase in temperature. The diode leakage current flowing in the signal path generates undesirable temperature sensitive offset voltages. These offsets cause problems with low level voltage switching applications, e.g. thermocouples. The Zener diodes perform the initial voltage clamping of a transient signal. It turns out that very fast transients, like ESD, are more effectively clamped by zeners than by forward biased diodes. Regarding placement of 8-bit and 12-bit AID converters (0.2% and 0.01 %), let's look at the accuracies attainable in programmable gain amplifiers. Actual switch gain calculation: rOS(ON) = 100 AV(X50) n Rf1 +1 = 2450K +1 RIHOS(ON) 50K + 100 = 49.9021 (X50) Gain Error = (50-49.9) 100 50 = 0.2% error AV (X5) 2450K I (217.78K + 100) =4.99374 5K + 100 (X5) Gain Error = 5-4.99374 5 x 100 = 0.12 error OG308A SERIES INDUCTOR v+ v+ I .L.-CS(OFF) OG308A 1011 ALTERNATE 20 v ZENER RSERIES 1021 ALTERNATE 20V ZENER I Figure 9. Series Resistance Diode Clamped Overvoltage Protection Circuit Figure 10. Series Inductance Overvoltage Protection Circuit The low rOS(ON) of the DG308A allows us to meet the 0.2% accuracy requirement imposed by the 8-bit AID converter. Note that the percent error in gain accuracy is larger in the high gain (X50) rather than the low gain mode (X5). Figure 11 shows a common switch able gain amplifier. This circuit has two gain states X5 and X50. If the The circuit of Figure 11 also h~s a dummy switch (SW1), which is always closed to provide some temperature tracking between the feedback resistors and input resistors. The rOS(ON) of most analog switches has a positive temperature coefficient of 0.7% per degree centigrade. The rOS(ON) will double if the temperature increases by 140°C. analog switch had 0 n ON resistance (rOS(ON)), the given values of Rf1 , Rf2 and RI would produce the circuit gains of X5 Y'hen switch 2 was closed and X50 when switch 2 was open. The rOS(ON) of the analog switch produces a gain error of 0.19%. In order to achieve the 0.01% accuracy requirement of a 12-bit AID converter measuring system, the programmable gain circuit can be rearranged which almost eliminates the rOS(ON) gain sensitivity. The circuit of Figure 12 achieves the required 0.01 % gain 13-160 ~ ~ AN83-1 Siliconix incorporated accuracy by placing the analog switch in series with the high input impedance of the FET op amp. In this circuit gain accuracy is determined by the resistor ratios, which can be chosen to properly track over the operating temperature range. It turns out the weak component of the circuit (Figure 12) becomes rOS(ON) the op amp due to its input offset and CMR capability. The circuit (Figure 12) also provides high input impedance and non-inverting operation. Additionally, using suitable wide band-width clamping Zener diodes between the series resistor and analog switch is not preferred since this would increase offset error generation due to the differential diode leakage flowing across the series resistor causing an Ixr offset error voltage. capacitance of the analog switch provide a very effective damped two-pole low-pass filter. Basically, the inductor blocks the high voltage transient from passing to the analog switch. Additionally, the lagging current passing through the inductor to a first approximation integrates according to: i L = transient time VIN - Vswltch F;$ 0 dt. So far we have been discussing the transient handling capability of the DG308A at the source or drain terminals. The logic inputs ONx) have protection circuits shown in Figure 1. The protection circuit will stand off input voltage transients going positive to 22 V or negative to 44 V with respect to the V+ power supply terminal. The power supply terminals will handle 44 V transients from V+ to V-, which translates to 22 V for a dual supply application. Rfl Rf2 SW2 ~------~-------------oVO~ 1/4DG308A 1I40G308A AV=~ VIN R1 +-! 90 k.o. AV= R, R2 "'-----1---+ + R. + R. + R4 = 100 R. A-__ 5 k.o. WITH SW 4 CLOSED 4 k.o. GAIN ERROR DETERMINED BY RESISTOR TOLERANCE 1 k.o. OP AMP OFFSET AND SW4 R4 L.._ _ _.... 2~b'6'~b'* ~rtIJIRCUIT, Figure 11. Programmable Gain Amplifier One disadvantage of the series input resistor protection circuit, in Figure 9, is the increased total resistance in the signal path which will increase system noise pickup, thus degrading effective transducer signal-to-noise ratio. An alternate fast transient protection circuit shown in Figure 10 does not increase total transducer resistance but still dampens fast transients. Taking advantage of the basic properties of lossy inductance, the ferrite bead allows signal frequencies generally close to D.C. (e.g. thermal couple) to pass through the system to the amplifier. The low frequency resistance of the ferrite bead surrounding the signal lead is very low which minimizes the additional resistive contribution to the transducer signal-to-noise ratio. The high frequency operation of the series lossy inductance combined with the input Figure 12. Precision Weighted Resistor Programmable Gain Amplifier Important Applications Of The DG308A The quad single-pole single-throw DG308A is a generalized building block found in several types of electronic test equipment. Some of the electronic equipment using analog switches include intelligent instruments, computer peripheral equipment, and automatic test equipment. We will be looking at some of the basic circuits found in these applications including programmable gain amplifiers, peak detection, velocity integrators, remote switching, and programmable filters. 13-161 --=I'I!II AN83·1 ..... Siliconix incorporated ~ Programmable Gain Circuits: One of the most important analog circuits found in intelligent instruments and automatic test equipment are the programmable amplifiers and programmable attenuators. The programmable gain amplifier scales the measured signal into the full-scale range of the instruments analog-to-digltal converter. Consequently, the programmable gain amplifier should have better accuracy than one-half of the least significant bit of the system's AID converter. For an 8-bit AID converter, 1/2 LSB represents 0.2% of fullscale. For a 12-bit AID converter, 1/2 LSB represents 0.01% of full-scale. Keeping in mind the accuracy requirements, op amp frequency response and settling time can be easily optimized. In this circuit design it was not necessary to make rOS(ON) small compared to the gain setting resistor values. Consequently, the gain setting resistor values can be reduced until the op amp can no longer drive the total resistive load. Constructing Figure 13 (only resistor values change from Figure 12) proved that not only settling time improved, but so was the magnitude of the ever present charge Injection of the analog switch. Figure 14a to 14b shows the improvement in settling time when the total divider resistance is decreased by an order of magnitude. We quantify the magnitude of charge injection originating from the analog switch in terms of Q (pico-Coulombs). The DG308A injects approximately 35 pC of charge during every switch transition. If the amplitude of the charge injection caused transients is still objectionable, the addition of an extra buffer amplifier results in the charge compensated circuit of Figure 15. v1 R. Vo 1/40G308A R3 k.o. 6.2 k.n. R, = 610 k.o. 1 1I40G308A 14b 6518.0. 613.0. 60.0. ::.J LOGIC TIMING ,.-_ _ _ _ _- - , ~ Figure 13. Precision Programmable Amplifier 13-162 + LF356 14a AV"10 AV" 100 = 65 R. 40~ec ~~ _______ Figure 14. Logic Timing + LF357 AN83·1 Siliconix incorporated GAIN GAIN = RIA RIA = RIB RIB o--~- I I I >---1-----0 V OUT 0- -, - I {~- CHARGE COMPENSATING SWITCHES -::Figure 15. Charge Compensated Inverting Programmable Gain Amplifier Peak Detector Applications: Integrators: The basic peak detector circuit shown in Figure 16 utilizes the DG308A as a zero-offset reset switch. That is. no voltage will be left on the capacitor after reset. A maximum of ±10 V may be discharged directly by the DG308A since it has a maximum switch current rating of 100 mA for 1 ms. Capacitor values up to 10 j.I.F maximum are allowed. This peak detector circuit is commonly found in computer disk and tape drive equipment. Velocity integration used in motor head pOSitioning circuits takes advantage of settable time integrators such as Figure 17. This circuit results in precise linear integration since the set point is determined by the set voltage and RsIR2 ratio. R. SET INPUTQ_ _ ANALOG Vs INPUT R, -,\R",'/Iv-~-I-~~ .....H-.p...... OUTPUT Vo ">11-_4>_--_4----0 VOUT T CMOS INPUTS RESET CONTROL -::- Figure 16. Basic Peak Detector LOGIN INPUTS FEATURES • MINIMAL INTEGRATION ERROR DUE TO LOW CHARGE FEED THROUGH • LOW LEAKAGE Figure 17. Three Mode Integrator 13-163 ..... Siliconix .r;;;JI incorporated AN83·1 Programmable Filters: An active filter is sometimes used at the front end of programmable test equipment. The first order active filter shown in Figure 18 can digitally select four different break frequencies. In order to minimize the effect of switch capacitance on frequency response,the DG308A is located between the low output impedance of the op amp and the frequency determining feedback capacitors. The 100 .n rDS(ON) of the DG308A results in an outside of selected frequency range maximum attenuation of 40 dB. REFERENCE: 1. Analog Switches and Their Applications, June 1980, AN75-1, pg. 7-57. + 16V 160 120 fea SELECT o-I--;:,-==~""""'H - .... ........ 80 CMOS CONTROL LM101A .... OPEN LOOP GAIN - .... "I Av (dB) fC2 SELECT 0-1---,::-:;;=-.1.1'1-1 40 fCl SELECT 0-1----'+-1 o -40 1ea 1~"" .... .......... .......... :......... - ........ " " .......... L- lt~ 1~ ~~ l' lMA 1C2 1Cl 10 1~ .... ~ ="'. ........... ........... ........... " 100 1k 10 k FREQUENCY (Hz) 100 k 1M AL (VOLTAGE GAIN BELOW BREAK FREQUENCY) >-------_-0 VOUT = :~ = 100 (40 dB) 1c(BREAK FREQUENCY) R. 10kA 30 pF = 2'lT~3CX 1L (UTILITY GAIN FREQUENCY) = 2'lT~ Cx MAX ATTENUATION = rOS(ON) = -40 dB 10 k FI!lure 18. ActIve Low Pass Filter wIth DIgItally Selected Break Frequency 13-164 AN76-7 .... Siliconix .1;11 incorporated FUNCTION/APPLICATION OF THE L161 MICROPOWER COMPARATOR INTRODUCTION The L161 is a monolithic quad micropower comparator with an external control for varying its AC and DC characteristics. The variation of a single programming resistor will simultaneously alter parameters such as supply current, input bias current, slew rate. output drive capability, and gain. By making this resistor large, operation at very small supply current levels and power dissipations - typically in the low microwatt region - is possible. The L161 is therefore ideal for systems requiring minimum power drain, such as battery-powered instrumentation, aerospace systems, CMOS designs, and remote security systems. Description The L161 is fabricated using standard bipolar processing. The circuit (Figure 1) is composed of five major blocks - four comparators and a common bias network. 01 - 06 and Dl form a Darlington differential amplifier with double-to-single ended conversion. 06 is a dual current source whose outputs are exactly twice the current flowing through 08. The collector current of 08 is a function of the current supplied externally to 09-010, which in turn is known as the set current or I SET. This set current is established by a resistor connected between the I SET terminal and a voltage source, most commonly the positive supply. 011 prevents excessive current from flowing through 09 and 010 in the event the I SET terminal is shorted to the positive supply; it has no effect on circuit operation under normal conditions. The set current can be expressed as: ISET [(+V) - (2VBE) - (-V)] (1 ) RSET where +V is the voltage to which the control resistor is connected, -V is the negative supply voltage, VBE is the base emitter drop of 09 or 010 (about 0.7 V), and RSET is the value of the external control resistor or set resistor. Equation 1 is simply a derivative of Ohms law. There is also an analytical relationship between ISET and the total supply current: ISUPPLY = [ISET (current sourced by 06 to 08) +2IsET (current sourced to the differential amplifier by 06) +2 I SET (current sourced to the comparator output by 06] X 4 (the total numbers of comparators) + ISET (current sourced through 011, 010, and 09 to -V) [ISET + 21SET + 2ISET] x 4 + ISET = 21 ISET = r--------, r---------------------------------------~~B~IA~S-C~I~RC~U~IT-----+-O+v (COMMON TO ALL FOUR AMPLIFIERS) +IN -IN 0-_+--------+---------1-------......,1---' L-------~--------~~------~------------~~----4_--+_-----4--------+_0-v L. _ _ _ _ _ _ _ _ .J Figure 1. Schematic of One Channel of the L161 Plus the Common Bias Network 13-165 .-F' Siliconix ,,6;;11 incorporated AN76-7 The output current pulldown capability ~ od of the L161 is about 2 orders of magnitude greater than the high output drive current, ~ OH), which allows wireDRing the outputs. IOH is simply the current sourced by Os: (3) IOH = 2 XISET IOL is found by multiplying the current sourced by the collector of 06 by the gain of 07: The designer's ability to program the key parameters of the L161 enables him to program just enough supply current to meet his design objectives. This coupled with the L161's performance using only mlcrowatts of power makes it ideal for any micropower or battery-powered system, as well as a replacement for existing higher power comparators. The following applications illustrate the flexibility and unique capabilities of the L161. 200 NEhATlvE I 180 TRANSITION fSR160 (4) 140 The beta of 07 Is about 75-150. Input bias current is a function of the betas of input devices 01-02 and ISET. This is difficult to express analytically because 13 varies greatly with both processing and collector current; however it is roughly proportional to the set current and can easily be determined experimentally (see Figure 2). V 60 I 40 ,/ 20 o 7 6 SR+ I / I J.l.s) 4 I- Vs = ±15 V VIN = ±100 mVp RL = 10 M.o. CL = 10 pF / I II 200 5 (VI TRANSITION SR+ / V 8 / I'pOSITIVE / 80 9 / II"" / (VI 100 J.l.s) V i"'" ~ / SR- 120 10 ".,. I-- 600 400 3 2 I 1- o 800 1000 I SUPPLY - SUPPLY CURRENT (J.l.A) 100 Figure 3. Slew Rate vs. Supply Current , ..... t3'V "l' 10 1000 Ie (nA) " \. ~ 0.1 Is 100 (J.l.A) ~ 1 = 10 100 lK 10K ISUPPLY - SUPPLY CURRENT (J.l.A) 10 13-166 ~ " FALL TIME "'\. Figure 2. Input Bias Current vs. Supply Current Gain varies logarithmically with changes in supply voltage and linearly with changes in set current. Primary causes are the decrease in output impedance of 07 with decreasing supply voltage and an increase in transistor betas with increasing set current. Other AC parameters such as slew rate and transition time are also affected by set current; however current dependent parameters such as beta and chip capacitances make mathematical expressions imprecise. These relationships have been determined empirically and are presented in Figures 3 and 4. RISE TIME 1\ 1 10 RISE TIME 10% TO 90% Ols) 100 Figure 4. Rise and Fall Times VB. Supply Current With One CMOS Load Micropower Applications A classic comparator application is the doubleended limit detector or window comparator shown in Figure 5. VOUT is high whenever the input voltage is within the two limits. Because the Darlington input stage extends the common-mode input range below AN76-7 trW" Siliconix ~ incorporated the negative supply, the lower limit may be as low as -0.4 V with the V- terminal at ground. A comparison about ground is therefore possible with only one supply. +5V Output Ground or Null FIgure 6. Zero CrossIng Detector VOUT The circuit in Figure 6 may be modified to produce a line receiver (Figure 7). The trip point is set half way between the supplies by R 1 and R 2; R3 provides over 200 mV of hysteresis to increase noise immunity. With 800 IlA of quiescent supply current the maximum frequency of operation is about 300 kHz. If response to TTL levels is desired, change R2 to 39 kil. The trip pOint is now centered at 1.4 V. +5 V FIgure 5. Double-Ended LImIt Comparator wIth WIre OR'd Outputs I SUPPLy = BOO J1A Rl 100 k.n. The L161 is especially suited for this application because of its wire-OR capability; low output on either comparator will pull both outputs to ground. For this example a supply current of 90 IlA was chosen to provide a slew rate of about 5 V/IlS. If greater output drive current or decreased transition times are needed, lower RSET. 3 2 Output Enable Input R2 100 k.n. The zero crossing detector shown in Figure 6 is useful in sine wave squaring circuits and AID converters. This circuit also takes advantage of the L161's ability to detect signals below its negative rail, so only a positive supply is needed. The positive input may either be grounded or connected to a nulling voltage which cancels input offsets and enables accuracy to within microvolts of ground. The CMOS output will switch to within a few millivolts of either rail for an input voltage change of less than 200 Ils. FIgure 7. CMOS LIne ReceIver Mating the L161 with CMOS logic is natural since the L161 draws microamps from a single 5 V supply. However, the L161 will also drive TTL when a suitable pull-up resistor is provided. Figure 8 shows this combination. Total power drain of the circuit is much heavier due to the presence of the 7401. Propagation delays through the circuit are about 1 Il s . 13-167 ~ .. AN76-7 . . " Siliconix incorporated ~ -t5V +v RPULLUP 10 Idl. 1N914 HIGH = NORMAL LOW = STANDBY Figure 8. Driving TTL In many situations further power savings can be achieved by reducing or eliminating I SET during part of the operating time. This is desirable, for example, when a system is multiplexed at a low duty cycle. The L161 may be strobed off completely by reducing ISET to zero as shown in Figure 9. The 3N163 Pchannel MOSFET is OFF when the strobe input is high so no set current flows into the L 161 . For a low strobe input, the 3N163 turns ON, pullingRsET to the positive supply and turning on the comparator. The drain-source resistance of the 3N163 (250 0) is negligible compared to RSET. If the negative supply terminal of the L 161 is returned to ground, the 3N 163 may be eliminated and RSET connected directly to the output of a CMOS gate. When the L161 is strobed OFF, its outputs assume a high-impedance state; this "three state" operation facilitates the connection of many outputs to a single bus. The diode blocks current when the output of Al is HIGH, and operation of the other three comparators is normal. WhE!n the output goes low, however, the IN914 conducts most of ISET to the negative supply. IOL is therefore nearly equal to I RSET, and (from Equations 2 and 4), ISUPPLY = 21 ISET (actual) (5) _ ~ _ ISET 2B 10 - +v STROBE INPUT +v = OFF GROUND = ON -v Figure 9. Strobing the L161 ON and OFF The L 161 will switch itself into a standby mode if one of its outputs is connected to the I SET terminal as illustrated in Figure 10. 13-168 Figure 10. Switching the L161 to a Low Current "Standby' Mode if a f3 of 105 is assumed. Equation (5) states that the supply current of the L161 is reduced from 21 x I Rl (normal operation) to I Rl/1 0, a factor of 210 (or twice whatever f3 of 07 is). Total supply drain is simply the current through RSET. This circuit has an important advantage over the previous strobe circuit: even though the L 161 is operating at a greatly reduced supply current, it is still ON and continues to function. If a lesser' reduction in supply current is desired, connect a resistor in series with the diode. Figure 11 shows an L161 low battery indicator which flashes an LED when the battery voltage drops below a certain threshold. The 2N4274 emitter-base junction serves as a zener which establishes about 6 V on the L161's positive input. As the battery dies, the voltage at the negative input drops more quickly; when the low battery threshold (typically 7.5 V) is AN76-7 Ir'F Siliconix ~ incorporated reached, the L 161 output goes HIGH. This turns on the FETlington, which discharges Cl through the LED. The interval between flashes is roughly equal to R 1Cl, which in this case is 2 seconds. By flashing the LED at a very low duty cycle, this circuit gives a low battery warning with only 10 j.l.A average power drain. ages down to +5 V; below that the charging rate of Cl in the positive direction is determined by IOH and not R4. For lower voltage operation, increase R4 (and lower C accordingly) or decrease RSET. O.ljJ.F +9 V ISUPPLY 0.01 jJ.F = 10llA • ..... Cl RSET 16 Rl 1 M.!l. 0.001 jJ.F 22 M.!l. R2 5 M.!l. TRIP ADJUST '" 100 pF 10 pF 10 R3 400 k.!l. 2N4274 (6 V Zener) 100 1K lOOK f - FREQUENCY (Hz) Figure 13. Frequency vs. the Value of for the Squarewave Oscillator Figure 11. A Low Battery Indicator +10V 16 To generate pulses the positive and negative charging rates of the capacitor must be unequal. Figure 14 illustrates a method using diodes and unequal resistors. The duty cycle of the output pulse is equal to R4/ (R4 + Rs) X 100%. For duty cycles of more than 50%, Dl can be eliminated and the duty cycle set according to the formula, duty cycle = R4 + Rs R4 + 2Rs RSET 100 k.!l. 13 JlSL Figure 12. Squarewave Oscillator Waveform Generators Figure 12 is a square wave generator which is operable to over 100 kHz while Figure 13 depicts the typical frequency vs capacitance performance of the circuit. The low frequency limit is determined only by the size of Cl. Frequency is constant for supply volt- (6) A similar analysis could be made for eliminating D2 when t < 50%. Figure 13 may be used to determine frequency (= 1/period) if 1/2 (R4 + Rs) = 100 kn. The versatile two phase clock generator of Figure 15 uses two L161's to generate pulses of adjustable widths and phase relationships. ICl is the heart of a ramp generator which feeds two variable window comparators formed by IC2A -IC2B and IC2C -IC2D respectively. The voltage on pin 1 of IC2A ramps up as Cl charges through R 1· When this voltage exceeds approximately 5 V (the potential on pin 2 of IC 1N , the output of IC 1A goes HIGH, forcing IC 1Band IC1C LOW. Cl is quickly discharged by IOL of IC1B, and the comparators reset to their normal state QC1A LOW, IC1B and IC1C HIGH). 13-169 III AN76-7 ..... Siliconix incorporated ~ +10 V Dl lN914 ~ lN914 16 R5 550 k Cl RSET 100 2 k.n >",13,+--oJlJl ..:::r:.. 0.001J1~ I I 100J1s lms As the ramp rises. its value passes through the two windows defined by the differences between the voltages on R4 and Rs in the case of Pulse Generator 13-170 10V., ., OV.J L-J L ~ ~ AN76·7 Silica nix incorporated REFERENCE PIN 2 IC 1 CAPACITOR VOLTAGE RAMP ~~=---+-------::::II~~-Ir----- ~m~6N2CE REFERENCE ~P~IN~1~I~C2~:j::t=::~2f~~-+ _ _~_~~~~~_ _ _~_~~~r_ REFERENCE PIN 41C2 REFERENCE PIN 61C2 CLOCK cp1 CLOCK cp2 350 Jisec t=O Figure 16. Waveforms of the Two Phase Pulse Generator +5V RSET 100 k.tl -12 V@5mA R3 560 k.!l. Figure 17. A Regulated DC to DC Converter Figure 17 is a low power DC to DC converter obtained by adding a flyback circuit to the square wave oscillator. Operating frequency is 20 kHz to minimize the size of L 1 and C2. Regulation is achieved by zener diode D2; when the output is less than -12 V, the zener breaks down and discharges C1 slightly which reduces the duty cycle of the oscillator below 50%. Maximum current available before the converter drops out of regulation is 5.5 mA at an overall efficiency of 71 %. With no load the converter draws 590 IJ.A. Operational Amplifiers While designed primarily as a comparator, the L161 will perform as an op-amp if proper compensation is applied. Figure 18 is a simple gain of 100 amplifier with a gain-bandwidth product of 20 MHz I The primary limitation in the performance is the low slew rate (0.3 V/lJ.s) imposed by IOH charging CCOMP. The effects of slew rate and compensation are shown in Figure 19. 13-171 AN76-7 ..... Siliconix incorporated ~ +15 V 16 RSET 1.2 M RS n. lS kn. 13 >---+--OVOUT A lower gain amplifier requires a larger C COMP , which in turn further reduces slew rate. For this reason it may actually be advantageous in certain cases to lower the gain by placing a resistive divider at the input rather than raising R1. Figure 20 shows a 700 microwatt X10 op amp whose slew rate is 0.02 V/l1s and is 3 dB down at 100 kHz. +3V 1. CCOMP O.OOl,IJ.F RSET 1.2 M n. RS 15 kn. ~13~---+---oVOUT Figure 18. The L161 as an X100 Operational Amplilier 100 Rl 910 kn. 100 kn. 1. CCOMP O.003,IJ.F ..........MAX P-P'OUT 10 Figure 20. A Mlcropower X10 Op Amp Vo , (V) ~VOUT FOR 0.005 V P-P IN 0.1 1K 10K 100K I - FREQUENCY (Hz) Figure 19. Frequency Response and Maximum Output lor the X 100 Op Amp 13-172 1M AN7S-S WY'Siliconix incorporated ~ DG300A Series Analog Switch Applications Thomas J. Mroz Revised December 1984 INTRODUCTION To round out its analog switch line, Siliconix has introduced the DG300A to DG307A analog switch family. The DG300A to DG307 A switches were designed to approach the industry standard DG180 family of JFET switches in performance while keeping the economy and low power of CMOS circuitry, and offer fast switching (typically < 150 ns) and low ON resistance « 50 n). Four switch functions, (dual SPST, SPDT, dual DPST, dual SPDT) are offered with TTL or CMOS compatible logic input options. The low ON resistance, fast switching speed and low power of these switches makes the DG300A family an excellent choice for sample and hold, digital-to-analog converters, and multiplexing elements as well as other applications requiring low offsets, fast charging of capacitors and fast switching of analog signals. The SPDT functions offer break-before-make action which aids in simplification of system design. DG300A Family Switch Structure Figure 1 shows a partial schematic of a DG300A switch. Device Q1 along with the Zener diode provide the input protection. This is accomplished by Q1 being turned off whenever the input voltage exceeds the positive supply (V+) and by the Zener breakdown whenever the input goes more negative than V+ -VZENER' Q2 and Q3 form the first input buffer and are designed to set the proper input threshold. The DG300A to DG303A thresholds are typically between 1.5 and 2.5 V and are designed to interface with TTL gates employing pull ups to +5 V. These switches can also be driven from CMOS gates using 5 to 15 V supplies. If 15 V CMOS drive is available, faster switching can be accomplished by using the CMOS input DG304A to DG307A switches. DG304A to DG307 A switch inputs have thresholds typically between 4 V and 6 V with ±15 V supplies and are designed to interface with inputs switching between ground and the +15 V supply. Q4 through Q15 form additional buffers and create the necessary driving voltages for the switch devices, Q16 and Q19. Q17 and Q18 are referred to as being body snatchers, not because of midnight escapades, but because they connect the body of Q19 to either its source or the negative supply. This reduces the ON resistance and the OFF leakage of this device. V+ SOURCE CONTROL IN GND o-~------~----~ DRAIN VINPUT PROTECTION LOGIC INTERFACE AND SWITCH DRIVERS III ANALOG SWITCH Figure 1. 13-173 ....,. Siliconix incorporated AN76·6 ~ PERFORMANCE CHARACTERISTICS Switching Time In measuring switching time it is important to remember that the turn-off time as seen at the load is highly dependent on the load time constant. The switching time test circuit is shown in Figure 2 below. a high impedance. high capacitance load such as that shown in Figure 3. which is the input of a summing amplifier having some noise filtering. it may be necessary to add a second switch (Figure 4) for rapid discharge of the filter capacitor thus preventing offsets from occurring at the summing amplifier output. IC, LOGIC "1"= SWITCH ON LOGIC INPUT ~~~~~~~~~ t r < 20 ns t,< 20 ns O V - - - -J VA 2 VOUT OG300A OR OG304A ~------_t--~~4=~----90% SWITCH OUTPUT -SW. R. 10% OV - - - - - t - . . J tON Figure 3. Summing Amplifier +15 V v+ SWITCH OUTPUT S I I I _oJ D vo RL 300n. 35pF I!L VOUT GND 2X OG303A OR OG307A Figure 2. Switching Time Test Circuit Figure 4. Improving Summing Ampllfler Turn-on time in the circuit shown in Figure 2 is governed primarily by the logic delay path and the rOS(ON) of the switch. The rOS(ON). CLOAO time constant is normally shorter than the RL CL time constant. The two time constants are: rOS(ON) x RL ------'=rOS(ON) + RL xCL for tON and RLxCL for tOFF These two time constants determine rise and fall times of the analog switch. When the switch is driving 13-174 Channel ON Resistance Another important specification of an analog switch is the channel ON resistance. rOS(ON). The rOS(ON) of the DG300A family of switches is typically below 40 n over the operating temperature range. The two figures below show variations of rOS(ON) with respect to temperature (Figure 5) and supply voltage applied to the switches (Figure 6). ~ ~ AN76-6 Siliconix incorporated 60 V+ = ~1S V V- = -15 V A: 125°C B: 25°C C: -55°C 50 rOS(ON) 40 30 20 --- ~ ........... 10 -15 Figure 5. 130 110 90 ............ .......... -10 A: V+ B: V+ C: V+ 0: V+ E: V+ F: V+ The variation of rOS(ON) with respect to the analog voltage is due to the variation in the gate-source voltage of the "ON" switches as shown in Figure 7. - ~ -- ~ - B ............. ~ 0 Vo(V) 5 ~ 10 15 rOS(ON) vs.V o and Temperature = = = = = = SV, 8 V, 10 V, 12 V, 15 V, 20 V, V-=- SV V- = - 8 V V- = -10 V V- = -12 V V- = -15 V V- = -20 V -15 -10 Figure 7. AI\. VV 50 10 -25 ~ -5 rOS(ON) 70 .0. 30 devices is determined by the supply voltages. Thus the change in rOS(ON) is proportional to the change in supply voltage. T A = 25°C ~ ~ 0~o - .... ......... 1- -15 -5 E- '/"" .....E 0 5 15 25 VO(V) Figure 6. rOS(ON) vs. Vo and Power Supply Voltage As shown by Figure 5, rOS(ON) increases as temperature increases. This is a typical FET characteristic due to the decreasing conductivity of silicon as temperature increases. This decrease in conductivity is due to the shortening of the mean free path seen by the majority carriers of the device. The change of switch resistance with respect to temperature is approximately 0.1 ruoe. Figure 6 also shows rOS(ON) variations with respect to analog signal voltage as a function of supply voltages. Supply variations are important because the maximum gate drive available for the switch output -5 0 +5 +10 SOURCE VOLTAGE (V) +15 Resistance vs. Source Voltage of P-Channel and N-Channel FETs In Figure 8, the complementary output pair (for illustrative purposes) is shown in a very basic schematic. When the switch is ON, G1 is tied to the negative supply and G2 is tied to the positive supply. V01 = VS1 =VS1 =VS2 . In order to understand the variation of rOS(ON) with respect to analog voltage, the complementary pair will be broken apart and the rOS(ON) of each device with respect to analog voltage examined. P-CHANNEL III N-CHANNEL Figure 8. Complimentary Output Oevlces (Simplified) 13-175 WY'Siliconi\( incorporated AN76·6 As Figure 7 indicates. the N-channel device with Its gate tied to +15 V. begins to turn ON as its source voltage drops a threshold voltage below +15 V. Thus as the analog voltage decreases from +15 V to -15 V. VGS increases from 0 V to 30 V. thus increasing the channel conductivity. The P-channel device has its gate tied to -15 V. thus as the analog signal increase from -15 V to +15 V. itsVGS goes from 0 V to -30 V. This results in a decreasing channel resistance. The switch resistance is the parallel combination of these two devices and the bottom curve in Figure 7 results. ~ RUMIT CHA ... ~RAG~E.ArL-~~______~ V+O CHARGING DISCHARGING CAPACITORl RL DISCHARGE DISCHARGE (TTL INPUT) CHARGE (TTL INPUT) APPLICATIONS Figure 9. Using Current Limiting Resistors In Capacitive charge/Discharge Circuits The DG300A series of analog switches. having fast switching and low rDS(ON). lend themselves to applications such as sample and hold and high speed multiplexing. Low rDS(ON) also means small offsets when switching integrators or amplifiers. Nearly constant ON resistance also means lower distortion when switching into lower impedance loads. r~RESET C -15 V 10 Charging and Discharging Capacitors VO= 1/RCIVINdt I ~ When charging or discharging capacitors. it is important not to exceed maximum ratings of the switch. Current through the switch must be limited to 30 mA continuous or a 100 mA pulse for 1 millisecond or less having a 10% duty cycle. Exceeding maximum ratings could mean poorer reliability than could otherwise be expected. One method of preventing excessive current is by using current limiting resistors in series with the switch as shown in Figure 9. If voltage differentials between the switch input and the capacitor are small. these resistors may not be necessary because the switch resistance itself would be sufficient to limit current. In the integrator of Figure 10. RL controls the discharge rate of the capacitor. During reset to zero V. the reset switch is closed and the start/stop switch is open. Opening the start/stop switch with the reset open will hold the output of the integrator at its present value. 13-176 START/STOP R s 50 < RL < 100 FOR 15 VOLT OUTPUT SWINGS 50.0. Figure 10. Integrator with Analog Reset and Start/ Stop Capability Charge Cancellation Figure 11 shows a sample and hold circuit using the DG303A dual SPDT switch. Any analog switch when opened will inject charge into the source and drain nodes due to gate to source and gate to drain capacitance. This charge when injected into a sample and hold capacitor will create offset errors in the sample and hold output during hold. This error can be eliminated using another switch to Inject charge into a small storage capacitor (200 pF) during the same period which is then subtracted off during the hold period. H AN7S-S Siliconix incorporated ~G~C ~C -15 V +15 V -15 V D~S\....3b \.VA A BOTTOM VIEW #-J""""t--.--\-------t-- ",,10"'--0 VOUT DG307A 7 + LOGIC CONTROL LOGIC 1 = CHANNEL 2 LOGIC 0 = CHANNEL 1 Figure 12. Basic Switched Differential Amp 13-177 AN76-6 ...... Siliconix incorporated ~ +15 V + -15 V +15 V 75 k.o. 75 k.o. +15 V -15 V +15V 75 k.O. 75 k.O. DG307A +15 V 7 30 pF + 13 2 POSITION 2 ~ ~1"V--1--4"61-~ i 15 '-ir-f-'-'11_+ I ..J -15V : k.O. 512+ POSITION 1 30 pF -15 V DG305A 7 CK Figure 13. 2-Channel to 1-Channel Chopping Differential Amplifier With Position Adjustment The high switching speed of the DG304A is taken advantage of in the 64-channel two level multiplex system of Figure 14. This circuit employs 4 each DG506A 16-channel multiplexers as the first MUX level and uses the high speed DG304A's in the second level to switch between DG506A outputs. CMOS digital logic forms the address logic for the multiplexers as well as the DG304's. As one multiplexer is being sampled at the output, the other multiplexers are being switched to the next address line. This allows the overall system transition time to be shortened from 1.5 /-ls to 0.25 /-ls. The two level system also lowers output node capacitance and output leakage (refer to Reference 5 for details). 13-178 Battery or Low Power Applications The DG300A series of switches are inherently low power and are ideal candidates for applications using battery supplies. Figure 15 shows the variation of device power dissipation versus the switching frequency of the switch. It can be seen that in low frequency switching the power dissipation is negligible. One application for which this switch is ideal is in autoranging circuits for battery operated Digital Volt Meters. Figure 16 is the schematic of a binary addressed amplifier in which the gain increases by decades as the binary input decreases from 1,1 to 0,0. Its minimum gain, as shown in the table, is 1 and its maximum gain is 1000. Since the switch is static in this type of amplifier the power dissipation of the switch will be less than a tenth of a milliwatt. AN76-6 Siliconix incorporated H +15 V S A COMPARISON OF 1 LEVEL vs 2 LEVEL 54-CHANNEL MULTIPLEX SCHEMES 1 LEVEL 1.5jJ.S 160 pF 40 nA TRANSITION TIME OUTPUT CAPACITANCE OUTPUT LEAKAGE 12j1,.113 127 o.ll! S, 2 LEVEL 0.25jJ.S 120 pF 16 nA +l 1 JV 14 INVERTERS~ C04009 EN 'l +15V .3 1~2 ' 1 -2 y V CLOC~ I~ ~ J A 0, O2 5 0, I. RESET I +lY ,j1,.Ni V 1 12 ':' 13 27 V, GNOVREF V2 VSE S:~ 1 I +lr ~ .... 9 ~f"4 0.1..- CLOCK IN ~ r- O. O. 17 S.~ 14 .~ G. 12 y 0, 3 MUXl OGS06A --r- 1 CLOCK IN 6 AD A, A2 A, EN 117r6 15 14~ 0, ~ RESET VSS '["8 +l .,JLJL ON ON 1/4 C04001 13 9~ '4 J;' 6 8 -15 V J~l~t:V 13 27 s.0f2 y ~EN .2~ ".~ ~ 1L +lY 1 12 ':' MUXl OG506A 1 CLOCK PHASES TO OG300 LOGIC INPUT ON ON ~11 IN 0G304A .~ •••• .,,02 11 S2'" V2 GNO s.~ v, GNovREF v. 1 ON 2 (DIP PINOUT SHOWN) 02 1/2 C04520 '3 .,----...fLON 0, 0, 10 7 S63~ 4 S, 6 -..;: INY ••••• 9 4 I 16 2 EN VOO OD 7 14 V, 28 1 V 1/4 C04001 +lr V, GNOVREF V 2 1 6 -15 V OUT V +lY,rilJ 1 12'" 13 27 2 .,!,. RESET (HIGH) ENABLE (LOW) 11 1'8 1: --0 1 +l ~ '4 ,<>f!! a ~ 1~ S7 RESET :t>....~ 11T615 14~ ,. 1/2 C04520 RESET 28 IN, OG304A IN2 2~ 9 11 S2 '.i GNO V. An A, A. A. EN 0 0 11 0, 6_ 4 02 S62~ ~EN 1/4 C04001 .f 1/21~4027 CLOCK IN MUXl OG506A 1 O~ +lr 14 0, V, .... ....•: t;V 4 S, 1>-6 1 - SET EN 1514~ S. .L" r- .....§. K A A 11T6 00 3 .,!,.8 13 CLOCK IN 112 C04027 9 SET 11 Q K RESET VSS 112 '-r-2 S61oJ.j 1/2 C04520 r- ~J o,~ MUXl OG506A I 16 VOO +lr 116 VOO 1 1 1 1 CLOCK IN 2~ V, GNOVREF V2 S~~ INPUTS (1-64) 1/4 C04001 NC -15 V .... 9 CLOCK IN ..... 10 D. ~ I- 1 V S64 OD I 0U Ao -r A, A2 A3 EN 1T615 14~ 0, O2 III 0, L...-...1.§ 1/2 C04520 RESET , TO INl-4 OF 0G304' s FIgure 14. 64-Channel 2-Level Multiplex System Using DG304A as High Speed Switches 13-179 ~ ~ Siliconix incorporated 100 10 I=V+ 'r-v'r-T A 'r-Vs R f-- - I- - - +15 V - -15 V = 25°C = 15 V =2K.o. , I D~300A-303A. 'I' 0.1 1 10 100 ~L If DG304A-307A I I J 1 k 10 k 100 k 1 M LOGIC SWITCHING FREQUENCY (Hz) 50% DUTY CYCLE Figure 15. Device Power Dissipation vs. Switching Frequency 10kA 10kA 10kA 100kA 1M.n. DG304A BINARY INPUT GAIN 11 10 01 00 10 100 1000 1 7 AO Figure 16. Low Power Binary to 10 n Gain Low Frequency Amplifier The low power of the DG307A also makes it ideal for use with the low power programmable triple op amp, the L144, in an active filter. Figure 17 shows the use of the DG307A in a switch able center frequency ac- 13-180 tive filter, allowing a decade change in center frequency. Additional information on the L144 and the active filter circuit can be found in References 6 and 7. AN76-6 ...... Siliconix .J;lI incorporated RF2 201dl. HIGH PASS OUTPUT C1 O.OOBJiF +15 V -15 V LOW PASS OUTPUT +v +15 V 1/2 DG307A 1/2 DG307A 7 CMOS LOGIC DIGITAL INPUT HIGH = 7 kHz LOW =700 Hz 750 Idl. Q = 26, H 0= 26, F 0 HIGH= 7kHz, F 0 LOW = 700 Hz QUIESCENT POWER DISSIPATION DG307A = 120JiW L144 = 18 mW BAND PASS OUTPUT Figure 17. Low Power Active Filter with Digitally Selectable Center Frequency Table 1 Design Procedure for the State Variable Active filter Given: f 0 (Resonant Frequency). H 0 (Gain at the Resonant Frequency) and Q 0 STANDARD DESIGN (Assumes Infinite Op-Amp Gain) 1. Chose Cl = C2 = C, A CONVENIENT VALUE IF HO IS UNIMPORTANT (i.e., GAIN CAN BE ADDED BEFORE ANDIOR AFTER THE FILTER). CHOOSE K 1 = = 5. 3. THEN R 4. CHOOSE Rll 2'IT X = R12 = KR. WHERE R11. R12 = A CONVENIENT VALUE AND K = HO QO LET R 01 = A CONVENIENT VALUE fO x c 6. ROl THEN R02 = --:-::(2:-+---:-:K::-)"":x:":'Q=-0---1- = A ( fO ) THE NOMINAL OP AMP GAIN AT THE RESONANT FREQUENCY. = GBWP THE NOMINAL GAIN-BANDWIDTH PRODUCT OF THE OPERATIONAL AMPLIFIER 13-181 AN76-6 ...... Siliconix incorporated ~ +15V -15V .----_~ -15 V OG304A TO 307A SERIES SWITCH + 14V -=-Bt l 14 V-=- B. ~ 7 B t • B. - MALLORY RM411 14 V 160 MAH Figure 18. Long Term Supply Standby +15 V -15 V TO I 100,ll.F 307A SERIES SWITCH 7 aV=5VOLTS TYPICAL TIME = 5 MIN Figure 19. Short Term Supply Standby An advantage of the DG304A to DG307A family of switqhes, due to their low power consumption, is the 13-182 Battery lifetime should be well over 1 year with continuous standby. Thermocouple Applications Because silicon in contact with aluminum creates a thermocouple, low power dissipation by the integrated analog switch will mean lower offset voltages added to thermocouple voltage. Thus, lower power dissipation translates into better potential accuracy. The DG300A series of analog switches do quite well in this type of application. Figure 20 shows a typical schematic of a thermocouple switching circuit. It is necessary to switch the thermocouples differentially in order to cancel any thermal offsets due to the switch. Single Supply Operation OG304A + ability to use batteries or capacitors to supply standby power to the switch. In this way errors at analog output and shorting of signals can be avoided when supply power fails. This method would also prevent loading of the analog signal by the switch which could prevent the use of the signal in other portions of a system. Figure 18 and 19 show methods of implementing standby power. The DG300A series of analog switches will switch positive analog signals while using a single positive supply. This will allow use in many applications where only one supply is available. The trade-offs (or performance given up) while using single supplies are: 1) Increased rOS(ON); 2) slower switching speed. Typical curves for aid in designing with single supplies are supplied in Figures 21 to 23. As stated in the absolute maximum ratings section of the data sheet, the analog voltage should not go above or below the supply voltages which in single supply operation are V+ and 0 V. AN76-6 Siliconix incorporated MATERIAL B TCI PIN 14 -+15 V PIN B --15 V PIN 7 - GNO DG306A's '-~~-/.'---------------------, MATERIAL A DG306A MATERIAL A MATERIAL B -4______+-____________-' TC3'-~~~~__~______________ MATERIAL A REFERENCE JUNCTION oOC +15 V MATERIALB CKo CK, CK. Figure 20. Thermocouple Multiplexing 5 170 150 II 130 rOS(ON) .n. 110 VI h T A = 25°C ... ~ 11 -UN ~ 50 30 10 -" o 2 ..... 4 B 10 1 \ 1 II 1 r-r- YI-rrl6 4 2 =+10V ~ V 2 =OV TA = 25°C- 3 V+=+jI 90 70 ~OV 12 14 " o VA - ANALOG VOLTAGE (V) Figure 21. rOS(ON) vs. Analog and Positive Supply Voltage With V- = 0 V - '1 tON tOFF 5 10 15 POSITIVE/NEGATIVE SUPPLIES (V) Figure 22. Switching Time vs. Power Supply Voltage 13-183 AN76-6 ..-r' Siliconix ~ V- = 0 V 6 T A = 25·C +--:1--+--:1"" Single Supply Range: (V- = GND) V+: +5 V to +25 V Analog Signal Range: V- :s; V ANALOG :s; V+ 51--1--+--+--~ VT (V) incorporated 41---1--+----:"" 31--1--1 o 5 15 10 V + - POSITIVE SUPPLY VOLT AGE (V) Figure 23. Input Threshold Voltage vs. Positive Supply AMPLIFIER 2 r';;-sv"715vl I I I I II I I I I _ +15 V t-tl-------t~~~~ I I I I OUTPUT AMPLIAER r----., 2 I +15 V _ I 1..----.1 VOUTI 1-t--r.. VIN1o-jl-------7 I I I I I - - 1..----.1 AMPLIFIER 1 +5V +5 V I I -=+5V TTL INPUT 1 4idl. 4 114 SN7402 Figure 24. Switching Single Supply Amplifiers Using the DG300A 13-184 I I I I I I I 5 6 TTL INPUT 2 AN76·6 trY' Siliconix ~ incorporated +15 V 50k.O. VAl (AC) O---"IM,..-+-.., VOUT 5k.O. vA2(AC) o---"IM,..-+-....... 3 10 k.O. Figure 25. Single Supply Op Amp Switching As shown in Figure 26 when switching capacitor-coupled analog signals. the coupling capacitor should appear either before or after but not on both sides of the switch. This is necessary to keep a positive bias on the switch drain and source when the switch is turned on. OUTPUT AMPLIFIER r';:;5V~15VI I I I I I I I I I I I 1 __ L. _ _ _ _ _ ..1 AMPLIFIER 1 r-~;V-+151 I I I I I VIN1o-f1 I I IL. _ _ _ _ _ ..1 .----+""'6'1---D_ 7 8 Cc _ +15 V CKo------' DG304A 3 CK ~-,-,,-,-.-..-' I I ...J AMPLIFIER 2 r-----' I +15 V +15 vI I I I I t---+-+I-f I I I I I 13 IL. ':_ _ _ _ _ ..1 L<~~---+-OCK Figure 26. Proper Methods for Interfacing Capacitive Coupled Outputs to Analog Switches 13-185 AN76-6 Siliconix incorporated +1S V CMOS LOGIC GAIN SELECT HIGH = 10K GND 180 kll. 20 kll. Figure 27. Low Power Non-Inverting Amplifier with Digitally Selectable Inputs and Gain 20 kll. 200kll. 10K 1K +1SV VOUT -1SV +15 V 8 4 2 11 13 6 -15 V - DG301A +5V 7 1 kll. TTL LOGIC GAIN SELECT LOW = 1K Figure 28. Low Power Inverting Amplifier with Digitally Selectable Gain 13-186 AN76·6 Siliconix incorporated -15 V +15 V VIN o-.....-----::-I---()... ...-+':"" RSE 3M >-+--oVOUT DOO03A 7 TTL LOGIC DIGITAL INPUT LOW = NON-INVERTING Figure 29. Polarity Reversing Low Power Amplifier +lSV +15 V -15 V 2 DIFF. INA 5 Av = 10.4 Av CMOS LOGIC INPUT SELECT HIGH DIFFERENCE INB = =101 4 2 RS 11 7SkA 13 6 DOO05A 7 1/3 L 144 GND VOS +15 V RS 7SkA 1/4 C04001 CMOS LOGIC GAIN SELECT HIGH = AV = 101 00005 00006 Ll44 -lSV = 60p,W -lSV = 120p,W =7.5mW R SET programs L144 power dissipation, gain-bandwidth product. Refer to AN73-6 and the L144 data sheet III Voltage gain of the Instrumentation amplifier Is: Av Figure 30. =1 + 2R2 Rl (In the circuit shown, AVl = 10.4, AV2 = 101) Low Power Instrumentation Ampllfle Digitally Selectable Inputs and Gain 13-187 ..,. Siliconix incorporated AN76-6 REFERENCES 1. Lee Shaeffer, "CMOS Analog Switches - A Powerful Design Tool,· Siliconix Application Note AN75-1, July 1975. ~ 4. "Siliconix Analog Switch Data Book", June 1976. 5. J. Jenkins, "IC Multiplexer Increases Analog Switching Speeds", Siliconix Application Note AN73-2, April 1976. 2. Gary Dixon, "Analog Switches in Sample and Hold Circuits," Siliconix Application Note AN74-2, Jan. 1976. 6. Marvin K. Vander Kooi, "L144 Programmable Micro-Power Triple Op Amp", Siliconix Application Note AN73-6, Jan. 1975. 3. Gary Grandbois, "Build an Autoranging DMM with the LD130 AID Converter," Siliconix Design Aid DA76-3, June 1976. 7. Lee Shaeffer, "Op Amp Active Filters - Simple to Design Once You Know the Game", EDN Magazine, April 20, 1976. 13-1138 AN75·1 fI"F' Siliconix ~ incorporated CMOS ANALOG SWITCHES A POWERFUL DESIGN TOOL Revised January 1988 INTRODUCTION thresholds the peaks will not be symmetrical. As the switch heats up the resistance increases 0.5%/ o C. Siliconix CMOS analog switches combine large voltage handling capability, low power dissipation, low leakage, and direct TTLICMOS interface capability for maximum design flexibility. In addition, a family of multiplexers is available which provides binary decoding on the chip for system simplicity. This application note describes the Siliconix CMOS DG20X switch family and DG50X multiplexers. It offers circuits which illustrate their capabilities. I I \ This problem is overcome by connecting an N-channel FET in parallel with the P-channel device. The Nchannel gate is tied to the positive supply, and the FET is turned on hardest when the source is most negative. The resistance curve of the P-channel and N-channel FETs in parallel is shown in Figure 1. The resistance curve is nearly flat for V- :::;; Vs :::;; V+ (only CMOS is capable of this) but some resistance variation is normal. 20% peaking is typical for ±15 V power supplies, with greater peaking at lower supply voltages. If the P- and N-channel FETs have different -15 o vo-J :r .... +15 to \ vo-Jll : tol sl 0 I \ \ RESISTANCE " , / (n.) - / ;' ........ ;' ' ..... _-1--_-==--- --- Properties of CMOS CMOS (Complementary Metal-Oxide-Semiconductor) combines P-channel and N-channel enhancementmode FETs in a common substrate. P-channel enhancement-mode FETs have a negative threshold voltage (the gate must be several volts more negative than the source or drain in order for current to flow between the source and the drain), while Nchannel FETs have a positive threshold (Figure 1). When a P-channel FET is used as a switch (standard PMOS devices), the gate is held at the negative supply when in the ON condition, and the FET conducts for most voltages applied to the source. However, when the source voltage approaches the negative supply, the resistance approaches infinity. The result is a dead-band equal to the threshold voltage of the FET. N-CHANNEL P-CHANNEL S Vth (P) ~I -15 -10 ", j I -5 0 +5 ~N) j +10 +15 SOURCE VOLTAGE (VOLTS) Figure 1. Resistance vs. Source Voltage of P-Channel and N-Channel FETs Because the gates of the P- and N-channel FETs are internally switched to opposite supply voltages, one would expect that leakage currents and switching glitches would cancel whenVs = O. This would indeed be true if the FETs were identical except for polarity. However, because the conductance of the N-doped silicon is 2.5 times greater than that of equally doped P-type silicon, it is a practical impossibility to make the leakage currents and capacitances equal for FETs of equal resistance (the P-channel is physically 2.5 times larger than the N-channel). Therefore, cancellation takes place at some intermediate voltage. Because the measured leakage is the P-channel leakage minus the N-channelleakage, small variation in the absolute value of either can make a large change in the difference. Since small amounts of impurities can greatly influence the leakage, both the magnitude and polarity of the leakage measured at the source or drain will vary greatly from unit to unit, and will depend on the analog voltage and the temperature. Even though the leakage is unpredictable, it is still less than a comparable PMOS or bipolar switch. 13-189 III ..r Siliconix incorporated AN75·1 ~ jV IN ~f output is tied to the negative supply through rDS(ON) of the N-channel FET, while the P-channel device draws no current. If the input is changed to a negative voltage the state of the FET is reversed, pulling the output high. When a CMOS device is turned ON, the load is turned OFF; this overcomes a major disadvantage of PMOS structures, where the load is ON at all times and considerable power is drawn when the FET is ON. P-CHANNEL OUT N-CHANNEL -v The DG201 A circuit can be divided into 6 sections. There is the input comparator, the bias circuit and voltage reference, the level shifter, buffer and inverter and the switch circuit. Figure 3 is the DG201A circuit. Figure 2. A CMOS Inverter In addition to a large analog voltage capability, a second advantage of CMOS is low power dissipation. Figure 2 shows a digital inverter with virtually no static power dissipation. When the input is pulled high, the N-channel turns ON and the P-channel OFF. Thus the V REF CIRCUIT GATE BIAS CIRCUIT v+ VR ~~ > ~ AA v .--GND I == I v- L-- INPUT, SWITCHING CIRCUIT 6L c: ,t" IN1 -¥ =*= I ~V~ V '\ I 1 'i- -----:.- -i' r.~ - -:-!, I,!=; f' '4 ~J- ~, f-i' G~ I kJ Y~ Y~ Figure 3. Schematic of a Typical CMOS Switch Channel (DG200A and DG201A) 13-190 Sl L:-!I r=;' IC 'i- 'i- I..:-l, ~~ r~ ~~ 01 AN75-1 .... Siliconix incorporated ~ The input comparator is a differential amplifier whose threshold is set by the voltage reference, a 10 to 1 voltage divider, which is further stabilized by the "bias circuit". The threshold voltage is derived from a voltage divider and varies as V+ varies. Several feedback schemes are used to sharpen the switching point. The level shifter buffer and inverter are CMOS and consume virtually no power. The inverter is necessary to drive the parallel connected CMOS switch. In the switch two transistors are used to drive the body of the N-channel MOSFET . When ON, the body is tied to the N-channel source and when OFF, it is tied to V-. This eliminates any modulation of ON switch resistance and when OFF, reduces leakage. Because only the voltage divider and comparator differential amplifier draw any current other than leakage, the circuit consumes very little current. All of the multiplexers (DG50XA, DG52X, etc.) contain decode circuitry enabling a binary logic input to select one of 4, 8, or 16 channels. Each multiplexer also contains an ENABLE-INHIBIT control, which shuts the device OFF when in the INHIBIT mode. This allows the common connection (drains) of several multiplexers to be paralleled, and the units can then be enabled one at a time. This is useful when more than 16 channels are involved. Also, when the device is inhibited, its power dissipation is typically less than 1·?.'l'!·j OXIDE k~/;1 METAL one-fourth the normal dissipation, for low total system power dissipation. Latch-Proof Operation Latchup was a thorny problem in first-generation CMOS switches. A cross section of two CMOS FETs (Figure 4) shows both a PNP and an NPN structure, which is connected as an SCR (PNPN). Under abnormal conditions, one or more of the PN junctions becomes forward biased, activating the bipolar transistor. This in turn activates the SCR, which appears as a short between the substrate (positive supply) and ground or V-. Since the product of of the NPN and PNP betas is often greater than 1000, this short would persist until power was removed or until the device burned up. When 200 ohm resistors were placed in series with the power supply leads, device destruction was prevented; however, only removal of the power supply would return the circuit to normal operation. By using a .. buried layer" configuration (Figure 5), Siliconix has reduced the product of the NPN and PNP betas to less than one, making latch-up impossible under any normal circumstance. The switches retain their desirable features such as low leakage, high OFF isolation, and high breakdown voltage. In addition, the latch-proof switches now have a much higher current capability (20 rnA continuous, up to 100 rnA peak of the DG200A). V+ V+ V- P-CHANNEL FET B N-CHANNEL FET D G S LP~ P-WELL __ y_J L~+J I I L _________ L _____ N- SUBSTRATE I R2 I ~---~ VEQUIVALENT CIRCUIT Figure 4. A Cross Section of Two CMOS FETs Showing the Parasitic Transistors and Equivalent Circuit 13-191 W'JP'" Siliconix AN75·1 ~ incorporated OXIOE METAL v- P-CHANNEL FET N-CHANNEL FET v+ N- SUBSTRATE Figure 5. A Cross Section of the Sillconix "Buried Layer" General Switching Applications One of the significant advantages of the CMOS structure is its ability to handle large analog voltages, since only CMOS can allow signal swings to the power supplies. A logical application is switching the outputs of operational amplifiers. The entire system can be run on ±15 V, and the full output of the op amps (typically ±14 V) can be used. In most cases it is advantageous to switch at the relative low impedance output of an op amp rather than at the summing junction, to minimize the effects of switch capacitance and leakage. Figure 6 shows a novel multiplexing application. It is an adapter that allows 4 inputs to be displayed simultaneously on a single trace scope. For low frequency signals «500 Hz) the adapter is used in the "chop" mode at a frequency of 50 kHz. The clock may be run faster, but switching glitches and the actual switching time of the DG201 A limit the maximum frequency to 200 kHz. High frequencies are best viewed in the alternate mode, with a clock frequency of 200 Hz. When the clock is below 100 Hz, trace flicker becomes objectionable. One of the 4 inputs is used to trigger the horizontal trace of the scope. Figure 7 shows a variable low-pass filter with break frequencies at 1, 10, 100 and 1 kHz. The break frequency is expressed in (1): 13-192 fc 211 Rs Cx (1) The low frequency gain is AL = -Rs = 100 (40 dB) R1 (2) A second break frequency (zero) is introduced by rOS(ON) of the DG201A, causing the minimum gain to be AMIN - rOS(ON) = 100 n = 0.01 R1 10kn (3) a maximum attenuation of 40 dB (80 dB relative to the low frequency gain). The amplifier shown in Figure 8 has digitally-programmable gain and inputs. The DG200A "looks" into the high input impedance of the op amp, so the effects of rOS(ON) are negligible. The DG201A is also connected in series with rlN and is not included in the feedback dividers, thus contributing negligible error to the overall gain. Because the DG200A and DG201A can handle ±15 V, the unity gain follower connection (x1) is capable of the full op-amp output range (±12 V). H AN75-1 Siliconix incorporated +15 V +5 V 13 Vl DG201A S 1 3 Sl 1/274C73 1I674C04 a J 14 Dl 2 14 R S2 S2 D2 15 11 ALTERNATE 120 k!l. O.022J1F 200 Hz S3 S3 D3 10 7 5 6 S4 10 6 - 11 - -15 V - r------------------,I +15 V CHANNEL 1 AMPLIFLIER (IDENTICAL TO 2,3,4) I I I ~~~------------------_r----oTOSl +15 V +1!5V i lM.o. I POSITION: R -15 (SEE BELOW) -15 V v I I I I ------------------~ Al IS OP AMP WITH SUITABLE BANDWIDTH, SLEW RATE, ETC., FOR DESIRED SIGNALS. R IS ADDED FOR EXTRA GAIN ACCORDING TO FORMULA VOLTAGE GAIN = 2 + 100 k.o. R III Figure 6, The "Scope Extender" Which Displays Four Channels Simultaneously on a Single Trace Scope 13-193 Siliconix incorporated AN75·1 +15V V1 C4= 150 pF 160 DG201A 7 120 104 SELECT 10 80 -- ...... Av (dB) 103 SELECT ~ .L~ LJf~ ~ 0 .......... .......... 2 1 10 1'7:4'" ............ :.......... "" -40 lC1 SELECT ...~~L- ........... ............ ........... ............ CONTROL lC2 SELECT I .... 103 104 ....... 102 fCl 40 15 TTL LM101A OPEN LOOP GAIN - ...... J 100 1 k 10 k FREQUENCY - Hz ~ 100 kIM AL(Voltage Gain Below Break Frequency) = lM.n. ~~6~ 10kA :~ = 100 (40dB) 1c (Break Frequency) ________________ 1 = 2'ITR 3C X ~~VOLrr 1L (Unity Gain Frequency) 8 = r~~(~ Max Attenuation Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency +15 V DG200A VI 6 +15V CHl -15 V .-_1:;3~_ _==~ CH2 2 V2 6 -15 V GND 3 -::' GAIN 1(Xl) GAIN = RF+RG RG _______.., 2 3 15 14 10 11 7 6 O-------"ii--- 100 kHz), some knowledge of the OFF characteristics are helpful. Figure 14 shows the equivalent OFF circuit of a DG200A and the accompanying graph gives the isolation under the conditions specified. 40 dB isolation at 6 MHz is good for general purpose video switching. A DG200A can achieve this easily, using the circuit shown in Figure 15 (assuming careful P.C. board layout). When greater isolation is needed, the circuit shown in Figure 16 is recommended. The "T" configuration provides over 40 dB more OFF isolation with only a slight increase in ON insertion loss. State of Switches after Command Command A2 A1 S2 S1 0 o (normal) same same 0 1 OFF ON 1 0 ON OFF 1 1 INDETERMINATE Figure 13. 100 0.1 pF (S) 2.5pF 2.5pF (G) III Til IF_ (D) 80 ['\.. 75.n. 60 Vs 4.2 K 0.9pF I 1.3 I~ Vo I i'o... 40 .... 1-'111 =+15V, V2=-15V 20 I-~GNO= 0 CLOAO= 15 pF, RL = 75.n. f-i tii IIIi I I S 1= MS 1111111 10 6 10 7 f - FREQUENCY (Hz) 100 ........ III III RL = 1 k.o. 80 0.13pF s<>---tip~p~ 60 (SIMPUFIEO) 40 ~ .... . .... ~ RL = 10 M.o. . .1 11111111 rll1 = +15 V, Vp -15 V 20 I- VGNO = 0, VEN = 0 III ~L?AIOI~ 111~IPF'Y~=1 ~ ~~~S 1111111 1111111 10 5 10 6 f - FREQUENCY (Hz) Figure 14. Equivalent "OFF" Circuits and OFF Isolations of the DG200 and DG506A 13-197 .... Siliconix incorporated AN75·1 ~ +15 V 10 .46 dB ISOLATION AT 10 MHz OFF CAMERA TO ON CAMERA .40 dB ISOLATION AT 10 MHz, LOAD FROM EACH CAMERA WHEN BOTH ARE OFF • 0.5 dB ON INSERTION LOSS -15 V NOTE: PIN CONNECTIONS SHOWN ARE FOR METAL CAN PACKAGE. Figure 16. General Purpose Video SWitch (f = DC to 10 MHz) DG200A DG200A .84 dB ISOlATION AT 10 MHz OFF CAMERA TO ON CAMERA • 80 dB ISOLATION AT 10 MHz LOAD FROM EACH CAMERA WHEN BOTH CAMERAS ARE OFF .1.0 dB ON INSERTION LOSS '--------t------;-- CAMERA 1 SELECT CAMERA 2 SELECT DG200A 4 75 n. Figure 16. Video Switch with Very High OFF Isolation Figure 14 also shows the high frequency characteristics of the DG506A and a simplified OFF equivalent circuit. The DG506A has OFF isolation which is constant when working into a capacitive load, allowing the designer to model the OFF DG506A as a capacitor of nominal value 1.13 pF. Not all sources have equal OFF isolation, however. 59 has the greatest isolation, while Sa is worse due to its proximity to the 13-198 drain. Grounding the metal lid on the package (it normally floats) increases the isolation an average of 3 dB. An in-depth study of switching high frequency Signals is presented in Siliconix applications note AN73-3, "Switching High Frequency Signals with FET Integrated Circuits." AN7S-1 .-y" Siliconix ~ incorporated Multiplexing Multiplexing allows a number of signals to be processed simultaneously through a single cable, amplifier, and data conversion system. Numerous industrial and commercial uses include factories and warehouses where conditions at remote parts of a building can be monitored and sent to a central control point over a single cable. Airplanes take great advantage of multiplex systems, both receiving and transmitting information from central points with a minimum of wire. Many hotels and motels pipe up to 16 channels of music to each room. The music desired is selected by the guest in the room. When digitizing information , the economies are readily apparent between using a $50 multiplex system and a single A to D converter, as compared to employing a separate expensive A to D converter for each of several channels. Figure 19 shows a typical multiplex system intended to carry one of 8 inputs into a remote location. A 5 V pulse train is sent down a separate channel to perform timing and synchronizing functions. A 15 V reset pulse is superimposed on the 5 V clock, which is detected by the MM74COO in the receiver. Using this system, many remote pOints can be monitored, one at a time, at any of several locations. Signal source and the current sink capability of the power supply are each greater than 20 mA, a resistor should be connected in series with source to limit the current. +15 V -15 V DG50BA LOGIC OUTPUT HIGH = SAMPLE LOW = HOLD Figure 17. A One of 8-channel Sample and Hold SOURCE DRAIN Often information is multiplexed into a conversion system which has a relatively slow processing time, necessitating a sample-and-hold after the multiplexer. Using the DG508A as a sample-and-hold switch combines both functions, as shown in the "one of eight sample-and-hold" circuit (Figure 17). Overvoltage V1 (POSITIVE SUPPLY) + GATE A number of signals may be sent between two points simultaneously by making a slight modification in the receiver circuit (Figure 20). A second DG508A is used as a demultiplexer, allowing all 8 channels to be monitored continuously. DI-S,,---J,,'V'v-'?""'I + 16V 15 V ~ CURRENT FLOW N - SUBSTRATE CROSS SECTION OF P-CHANNEL FET r-------------~-----oD ~------------~----_oS EQUIVALENT CIRCUIT In certain applications the analog signal may exceed +15 V, or be present when the power supplies are off. This is a condition known as overvoltage, and it can present problems unless certain precautions are taken. When the analog voltage exceeds the supply voltage, the source-body junction will forward bias, as shown in Figure 18. Current will flow from the signal source into the supply. If the current source capability of the Figure 18. Current Paths During An Overvoltage Condition If the analog signal is present when the supplies are off, diodes in series with the supplies will allow the supply pins to float and prevent excessive current from flowing. A DG508A with full overvoltage protection is shown in Figures 21 a and 21 b. 13-199 l1li » z ... t.> ~ 8 ~• ...... TO OTHER RECEIVERS +15 V -15 V 1N914 i5 ~.~vn .....J 7 n I GNriJ lnruuumnf lrL I IL _________ _ 10 kll '-----'------.J 08 0102030405060708 01 -::" I I TRANSMITTER- - - - - - - - - --'-- -- -- - I I - - - - - - RECEIVER - - - Figure 19_ A One of 8-channel Transmission System - -- - - -- -- -- J ~ :j"cn 00· 0= -'0 "0:::] ~x· !!. (D- a. ~ 5'(/) 0= 00' .... 0 '0:) QX· III r0- o. +15V -15 V II +15 V (,~ u +15 V 81 -15 V ° OG508A +5 V +15 V IN914 I IL _________ _ ~ ~7 .,'V 10 k.n ~N~ Os 0102030405 0S070S 01 I I TRANSMITTER- - - - - - - - - - - ' - - - - - - - - - - - - - RECEIVER - - - - - - - - - - - Figure 20. An 8-channel Mux/Demux System I - -- J »z ~• ...... ~ If I\l ~ iii rJf" Siliconix AN75-1 ~ +15 V -16 V +lSV incorporated -16 V OUT OUT • R 1THROUGH R 8 EXAMPLE: R = 260 = EXPECTED OVERVOLTAGE -15 V 20 rnA .n. WHEN (8) A DG50BA Protected Against Analog Voltages Being Present When the Power Supplies are OFF VS(MAX) = 20 V (A) A DG50BA Protected Against Analog Signals Which Exceed 15 V Figure 21. Overvoltage Protection (shown for DG50BA) Is Normally Used Only When the Analog Voltage Exceeds the Power Supply Voltages, and the Signal Source Is Capable of Generating Greater than 20 mAo 2-Level Multiplexing When a large number of channels are multiplexed, the outputs of two or more multiplexers can be connected together and each multiplexer sequentially enabled. In the INHIBIT mode the multiplexer draws less power and its output and inputs act as open circuits. Theoretically, an infinite number of channels can be accommodated in this way; in practice the accumulated output capacitance and leakage of many paralleled multiplexers limits the speed and accuracy of the system. A much better method is the two level multiplex system, shown in Figure 22. The two level system has a bank of high speed switches at the output which sequentially switch between the 4 DG506A's. Each DG506A is able to switch during the time the other 3 are being interrogated, and they contribute leakage and capacitance at the output only when they are switched on by the DG181 (1/4 of the time). This circuit has several important advantages over a mUlti-unit single-level system, such as: 1. The switching speed of the system is dependent on the DG181, which is a high speed 2-channel SPST (tON - 150 ns). The slower switching time 13-202 of the DG506A (- 1 I1S) is not important because this switching transition can take place while the other DG506A's are being interrogated. In this way a very fast multiplex system can be made with a large number of low cost, moderate speed multi-channel multiplexers and several high speed SPST switches. 2. The output capacitance of the 2-level system is much lower than that of the single level. It consists of a single DG506A (40 pF) and several DG1B1's (6 pF OFF, 15 pF ON) which is much less than several DG506A's in parallel. If 64 channels are multiplexed, for instance, COUT of the 2-level system would be 72 pF, vs 160 pF for the single-level system. 3. The output leakage current is reduced by a similar amount. (From ±40 nA to ±10 nA in a 64-channel system). The two level multiplex system is very useful in communications links, high speed interfacing with comparators, or wherever a large number of channels must be multiplexed at high speeds. 1 AN75·1 Siliconix incorporated H +15 V -15 V S12~ S, o-li s~of I I I I I INPUTS (1-64) +r INVERTERS OM7404 +5 V L 14'2 1 14 ~7 BIN 0 1 0- VOO J +1YJ~ 1 12 ,~ 3 K CLEAR r- W 7 Q 1 I- Gnd J,." 2 a J 9 1/20M7473 5 CLOCK IN ~ P--Lr-2 W[> 14 10 -deY VCC CLEAR 6 6 ~ RESET (LOW) ENABLE (HIGH) A A VCC OG181 .... 2~ ~,02 28 2 14 S2 '){ V" V •• EN ~ 14~ ~ 6 9 -15 V B C 8 AIN 11 +1~1~'~ 1 1 Y~7 V2 28 S70f9 03 -15 V OM7493 I I I I I +r ! s ol..1 5 VCC BIN MUX3 OG506A I 63 A :2 3>--f ~J0, 4~ ,2 ~~O ~ 14 S2 V" A 1 A 11 A A 16 15 ~ EN 1~ ~UT +:r VL VCC S OG181 4 , S3o-1J1 V, GNO ~ ~ +5y~ ~ '01 '02 GNO ~ An A +:r ~j 0, 1~ O2 117116 15 Q~ WK 1 S, A.:2 0 ~~3 --7 __ 4 BIN IVL MUX2 OG506A ,IS64~ 5 27 V2 V, GNO I I I I I +r -- ~ SET o-li S:~ 11~1 1 1/20M7473 1 CLOCK IN S2 +5?~ -y5 V ~ ~ ~ ~F'-4 1 4 OG181s a 12 1~ 1, '01 '02 GNO 2 ~:" CL OCK IN F!-- EN A A T1j615 12 0, AI9 B C 8 AIN TO MUX1 OGS06A !IS61~A VCC OM7493 OM7400 127 V2 V, GNO V •• 2 tE 6 9 -15 V B ~6 14 C AIN 0 8 11 +1Y2~ 1 12 OM7493 S4~ ~~ I I I I I 1 !l S64~ 5 BIN VCC V, GNO s.e>f9 V ~ A TV 27 V2 ~ '01 '02 GNO :2 MUX4 OGS06A A A A A -T1T6 15 04 ~ - EN 1~ B 14 44 AIN C 0 8 III 11 OM7493 '01 '02 GNO L2J~ Figure 22. 64-Channel 2-Level Multiplex System 13-203 ..... 8i1iconix .,1;11 incorporated AN75·1 Low Level Multiplexing When multiplexing low level signals, extra care must be used because the signal may be masked by ac noise pickup and dc voltages generated by thermocouple effects at the connections of dissimilar metals. Much greater accuracy is obtained if the signal is handled differentially, so that ac noise and dc thermocouple effects appear as common-mode signals which can eventually be rejected. For this reason a line of differential multiplexers is available which allows improved thermal tracking and differential cancellation of leakage and switching glitches. Figure 23 shows a thermocouple representation of a typical multiplexer mounted in a socket. If connection J1S is at the same temperature as connection J 10 , then V1S =V10. If all "8" junctions are at the same temperature as the corresponding "0" junctions, the total voltage across the multiplexer is zero. Conversely, if a temperature imbalance exists between side "8" and side "0" then the voltages will not exactly cancel and a net error voltage will appear. For this reason the multiplexer and associated connections should be mounted in a thermally-stable environment, away from hot components and with as few drafts around the chip as possible. When a OG509A is mounted in a thermally-stable environment, the VSS V1S so t -11+ J1S WIRE OR P.C. STRIP DO + V2S t -11+ SOCKET LEAD J1D -'1+ V1D t -11+ I.C. LEAD -1+ ~+ + V4S V3S t BOND WIRE t- CHIP METALIZATION :4:' ~ -'I + + -'1+ + -'+ V2D V3D V4D V5D rDS(on) (SOUtCE) SEMICONDUCTOR MATERIAL (DRfN) P-CHANNEL + N-CHANNEL Figure 23. Thermocouple Representation of a Typical Multiplexer SWitch (73) MATERIAL "A" TCl 4 MATERIAL "B" SlA S:!A TC2 6 TC3 S3A TC4 S4A 13 12 DGS09A DB SlB S2B or r--.J.--, I S:lB 0 S4B ~ : 1 I I "A" 2 "B" ¥ LOGIC INPUT I IL I D _ _ .J ___ CONSTANT TEMPERATURE Figure 24. A Thermocouple Multiplex System (73) 13-204 COPPER COPPER H AN75·1 Siliconix incorporated typical error developed across the switch is about ±3 fJ..V over the operating temperature range of the device. In free air, with random room drafts, it can be as high as 7 to 10 fJ..V. When heated with a thermal probe at 85°C (resulting in uneven temperature across the device) the absolute voltage across a switch is about 100 fJ..V with a 30 fJ..V differential error. IC multiplexers are therefore ideal in low level applications if care is exercised to insure an even temperature. Figure 24 shows a DG509A thermocouple multiplexer. To decouple the sensors from the meter amplifier, either a reference junction a O°C or a bucking voltage set at room temperature may be used. The latter method is simpler, but is sensitive to changes in ambient temperature. Table I shows the output of several common types of thermocouples versus temperature. 2 80 IE 70 II 60 50 I 40 II) J ..i V IV / 30 IIIV 20 ..& K , G* A!I~ P C* o o II. ~ 1000 -- J.O.M. Jenkins, "IC Multiplexer Increases Analog Switching Speeds," Siliconix Application Note AN73-2, February 1973. (2) The Omega Temperature Measurement Handbook(1975), Omega Engineering, Inc., Stamford, Conn. ANSI SYMBOL T Copper vs Constantan E Chromel vs Constantan Jiron vs Constantan K Chromel vs Alumel G" Tungsten vs Tungsten 26% Rhenium C" Tungsten 5% Rhenium vs Tungsten 26% Rhe nium R Platinum vs Platinum 13% Rhodium S Platinum vs Platinum 10% Rhodium B Platinum 6% Rhodium vs Platinum 30% Rho dium "Not ANSI Symbol 10-""" 2000 3000 4000 5000 TEMPERATURE (FAHRENHEIT) Table 1. (1) R l~T~ ~ ~ ~ ~~ 10 REFERENCES Used with permission of Omega Engineering, Inc., Stamford, Conn. 06907 Output Voltage vs. Temperature of Several Common Thermocouples 13-205 ...... Siliconix incorporated AN74·2 ~ ANALOG SWITCHES IN SAMPLE· AND·HOLD CIRCUITS Gary Dixon Revised January 1988 INTRODUCTION In many cases the designers of sample-and-hold circuitry have relied upon "cut-and-try" methods to achieve good circuit performance. This Application Note provides analytic design information regarding sample-and-hold circuitry and practical design examples. FET analog switches will meet the basic performance requirements for sample-and-hold circuitry. The criteria for choosing a given FET analog switch may seem rather simple since many of the dc data sheet parameters are similar from one switch or from one technology (JFET, PMOS, or CMOS) to another. However, the dynamic features of a switch are the primary characteristics that must be examined. This task is not easy since any measurement assumes a given set of conditions and circuitry. This Application Note will consider two major characteristics of FET analog switches. The first area is that of the large current-handling characteristics of various switches, which can have a pronounced effect on circuit settling times. The second subject involves the offset characteristics of sample-and-hold circuits which may affect the basic accuracy of system design. ily determined high current characteristics. Figure 1 illustrates that the DG181, a 30 .n device, typically enters I DSS limiting at 80 mAo Further investigation indicates the DG182, a 75 .n device, typically encounters current limiting at 30 mAo If we compare the DG181 with a CMOS device, the DG200A, we will find the DG200A has a somewhat more resistive characteristic. The DG411 series of silicon gate analog switches rivals JFET's low ON resistance and fast speeds plus offering a full ±15 V input signal range with very low power dissipation. Figure 2 shows the resistance characteristics of a PMOS switch, the DG172. The average ON resistance for settling purposes may be assumed to be between the minimum resistance at the most positive signal excursion and the maximum ON resistance at the most negative excursion. 100 rnA TYPOG181 TYP 0G200A NORMAL For high speed sample-and-hold circuits, the large current handling capabilities of the switch can play an important role in determining settling time. As a rule, the data sheet specifications for switch ON resistance are made at low current levels, such as those found in analog signal coupling circuits. When an analog switch is required to charge a capacitor, the switch may be required to handle large instantaneous currents and voltages. The switch dynamic characteristics will vary depending upon the type of switch and the drive circuitry used. Of the many JFET switches, the DG181-191 series is recommended for its low ON resistances and its eas- 13-206 t RESlsnvE CHARACTERISTIC TYPOG182 VOS10V TEST CIRCUIT CURVE TRACER -10 V .. ----,I I I 1IoIl;I.I=.I1Q - I ":" I ':.r.- - - .. -100 rnA Figure 1. Current Characteristics of JFET Analog Switches (DG181 and DG182) and a CMOS Switch the DG200A H AN74·2 Siliconix incorporated Charge transfer characteristics will vary to quite an extent, depending upon various switch and circuit configurations. To provide a method of comparison for various switches, the preferred terminology is charge transfer presented in pico coulombs. +150 mA + IDS Charge transfer (Pico Coulombs) Hold capacitance (Pico Farads). "r - - _. -150 mA Figure 2. Characteristics of a PMOS Analog Switch Figure 2 is based on a negative supply voltage to the DG172 of -20 V. If the supply were -15 V, the currents through the switch would decrease, which is a disadvantage of PMOS. The DG181 current is independent of supply voltage, while the DG200A is designed to work with ±15 V supplies. Let us now turn to the second subject to be covered, that of switch charge transfer or charge injection. In the past, this subject has been called switching transients, "glitches", and various other names. Switching transients affect the intrinsic accuracy of any sample-and-hold design. During the sample interval, the capacitor charges to the sample voltage. Then during the transition from sample to hold, an offset voltage is introduced into the charged capacitor. The major phenomenon is that of a capacitive voltage divider formed by the capacitive coupling between the control gate with its associated switch terminals and the storage capacitor, as shown in Figure 3. offset x The DG181 series of JFET switches provides very good transient coupling characteristics. One of the reasons for this performance is the decrease in gate voltage swing, because the FET gate is initially clamped at the analog voltage. The JFET construction also provides an optimization of low coupling capacitance along with low ON resistance. If we now compare a PMOS switch with the JFET characteristic we are able to see a major difference. As may be seen from the two curves of Figures 4 and 5, the charge transfer characteristics for the DG181 and DG172 are similar at CL = 100 pF and Rs = O. It should be noted, however, that the DG172 has a typical ON resistance of 200 n, an increase in ON resistance of 6 times more than that of the DG181. For values of capacitance greater than 100 pF, the charge transfer characteristics of the DG172 are seen to be inferior to those of the DG181. The major factor which causes the storage capacitance to be value-dependent is the large distributed gate-tochannel capacitance, plus the related circuit time constants. 100 pC 40 pC TEST CIRCUIT rs- - fiI SCOPE Rs~11:L 20 pc rDS(ON) = Voltage !~:A:OGJ D ~~~~--~~~c-~ A'--I~I,----,ovouT -10 V Cgd ~--4--'------~ ~CSTORAGE CONTROL GATE Figure 3. Equivalent Switch Circuit 5V o VANALOG (V) Figure 4. +5 V +10 V NOTE: CHARGE TRANSFER IS INDEPENDENT OF C LFROM 100 pF TO 10,000 pF Typical Charge Transfer Characteristic of the DG181 JFET Switch 13-207 ...... Siliconix incorporated AN74·2 ~ ries comes in a distant third, with its somewhat slower switching speed (1000 ns) and higher ON resistance. Inverting DG181 Sample-and-Hold Circuit RS= r-E::::::::I;:so-;;;;---- on C L = 10,000 pF RS= C L = 1000 pF on RS= on CL=100pF -10 o -5 +5 +10 VANALOG (V) Figure 5, Typical Charge Transfer Characteristics of the OG172 PMOS Switch CMOS devices provide an improvement over the JFET and PMOS devices since two gates with complementary control signals are involved. The two resulting "glitches" tend to cancel each other. The transient is therefore greatly reduced but is not eliminated due to design compromises. This is shown in Figure 6. The inverting sample-and-hold circuit has several inherent advantages over the other design approaches. The switch operates at a constant voltage each time, thus reducing the aperture time jitter considerably. The input configuration reduces surge currents that are usually supplied by the signal source. A slight disadvantage of this circuit is the requirement that the two feedback resistors be matched to obtain reasonable accuracy. The feedback resistance value must be carefully chosen so that the amplifier output does not enter a current-limiting mode. General purpose amplifiers with a 20 mA limit will operate with a 5 kO feedback network. The linear time response of the circuit is determined by the time constant (R f + 2 Rsw Cl). In this example, Rsw < Rfl; therefore, the settling time is determined by the feedback resistance. This circuit is current-limited by the amplifier and the feedback resistance, so the large current characteristics of the switch are of little importance. The circuit is also limited by the slew rate of the amplifier. If a 1500 pF storage capacitor is used, the amplifier slew rate should be greater than 2.7 V/l!s. If, as shown in Figure 7, an LM101A op amp is used (with a slew rate of 0.5 VII! s, an additional 25 I! s will be required during slew rate limiting. For the circuit shown, an acquisition time of 98 I!S was measured for a swing of 20 V settling into a 1 mV error band. If we now turn the task of determining the sample-tohold offset, we must first examine the charge transfer characteristics of the switch. Since the source resistance is 5 kO; which is much greater than the 30 0 rOS(ON), we must examine the characteristics near the high impedance curves (Rs 100 kO) on the charge transfer chart of Figure 4. The DG181 provides an offset voltage of 43 mV. The DG200A may be used in this circuit with a voltage jump of 18 mV. If a DG172 switch is used a 91 mV jump should be expected. = -15 -10 -5 o 5 10 15 VANALOG (V) Figure 6. CMOS Charge Transfer Characteristics When the various tradeoffs are considered, the DG181-191 family and DG411 series of analog switches provide the best overall performance for critical sample-and-hold designs. This is due in large part to their fast (150 ns) switching speeds, which allows a fast aperture time. The CMOS DG200A se- 13-208 Improved DG181 Inverting Sample-and-Hold Circuit If these foregoing charge transfer errors are too large for practical use, several methods of reducing the charge transfer are possible. The first method involves increasing the capacitor size which improves the droop rate, but also requires a direct trade-off of accuracy versus speed. A second method involves AN74-2 .... Siliconix incorporated ~ The compensation circuit shown in Figure 8 employs three additional components (R3, C2 and C3) to provide total offset errors which are adjustable to much less than 1 mY. One feature that the OG181 device offers is a 20% larger charge transfer from the 02 terminal. This actually makes compensation much easier since only one side of the network must be adjusted. With other switches (such as the OG200A) parameter variations may require that hold capacitors of two different sizes be used to provide adjustability. An added feature of this circuit configuration of Figure 8 is a net reduction in the system droop due to a balancing effect of the leakage currents. reducing the size of the switching FET, which also decreases charge transfer but increases the ON resistance. This method also requires that a trade-off be made due to the relationship of speed versus accuracy. A third and more practical method is to compensate for the charge transfer. Many circuits have been proposed in the past which vary from simple capacitors in logic circuitry to rather complex systems. The inverting sample-and-hold circuit is rather easy to compensate since it operates at a single voltage level. The basic concept involves an equal but opposite direction of the FET gate voltage. A rather unique circuit using this principle uses the two switches normally found in analog switch packages. 1.500 pF 1' ... I ...... 12N5545 I (DUAL) I I R 1 S1 ...... ...... +15 ... 30 pF eln ().J\""".....,'I-----"..-I4--jI-::'.I..---t~_ ...... ... Ttl.!.' ...... M,...-----!~'_O eOUT 5 "" 58k " , LOGIC IN , " FET INPUT AMPLIFIER Figure 7. Inverting Sample & Hold Circuit k.O. 5 C1 r--------4~-------~ 1.500 pF 1' ... I ...... 12N5545 I(DUAL) ...... ...... I I ......... eln ().J\M~'-----<1"1.'-f~--~--T-!:::;==rJj.!.' ... ...... I,...----~~~ e OUT ", RS 1,500 pF ,~:." -15 V III " FET INPUT AMPLIFIER Figure B. Improved Inverting Sample and Hold Circuit 13-209 W'Jr Siliconix .,6;11 incorporated AN74·2 r-... I ...... 12N5545 ...... I(DUAL) ...... I I ......... ...... .....----...~.......-o eln o---='f---- --6--+-----0 VOUT 02 17 -15 V -15 V III Figure 11. Fast Sample and Hold 13-211 AN74-2 ..... Siliconix incorporated ~ Figure 13 is a charge injection compensated sampleand-hold with less than ±5 pC of charge transfer « 5 mV offset when CL= 1,000 pF). In Figure 12 the switching transients are attenuated by synchronizing the turn-ON and turn-OFF times of one switch with those of another. SIGNAL IN +15V .---~Q) 2 5 -=10 -=- -15 V Figure 12. Attenuating Switching Transients +15V +5V LOGIC CONTROL HIGH = HOLD -, 3 pF I VINo---f----<~·L--+-..,...~---_I Figure 13. Charge Compensated Sample-and-Hold 13-212 10 kll. AN74-2 .... Siliconix ,.1;11 incorporated DG201A VANALOG D INx ~S~ o-----,----It::::=_..J ____~~____~____~ Cc CD40106 R C~ Figure 14. Simplified Compensation Method Figure 14 is another inexpensive charge injection compensation circuit that can be tailored to get a good first order compensation. The values of Rand C are chosen to obtain the proper timing. Cc is sized to dump the proper amount of compensation charge onto the hold capacitor. REFERENCES (1) Lee Shaeffer, "CMOS Analog Switches - A Powerful Design Tool," Siliconix Application Note AN75-1, July 1975. 13-213 trY' Siliconix AN73·6 ~ incorporated FUNCTION!APPLICATION OF THE L144 PROGRAMMABLE MICROPOWER TRIPLE OPAMP INTRODUCTION The L144 is a monolithic triple operational amplifier circuit with an external programming feature for power dissipation and input bias current control. It finds application in RC active filters, amplifiers, micropower comparators, and numerous general signal processing circuits. The L144 is a practical op amp wherever low current drain, low voltage, low power, or very small physical size are the controlling criteria. This Application Note describes the L144, how to program it, what the effects of slew rate limiting are, and some practical circuit applications. The L144 has three operational amplifiers programmed by one external current setting resistor. It operates from power supplies ranging from ±18 V to as low as ±1.5 V with quiescent supply currents from 10 J.LA to greater than 1 mA independent of supply voltage. The schematic shown in Figure 1 reveals a general-purpose PNP input transistor op amp with an outstanding difference. The master bias current is not set by an internal resistor strung from V+ to V-, but is brought out to an external pin. This allows the user to determine the operating currents of each stage through a system of current mirrors. Of special interest to the designer are the equal collector currents of Ql and Q2, which are derived from the output of Q4. These collector currents, divided by a beta of approximately 50, determine the input bias currents for each amplifier. The ratio between the set current and the collector current of Q4 is unity, which allows one to program the input bias current simply by changing the set current input of the device. Input Bias Current and Supply Current The relationship between supply current, supply voltage, and the setting resistor is shown in the graph and set current model of Figure 2. The two diodes of the set current model correspond to the base-emitter junctions of Q16 and Q17. BIAS NETWORK, COMMON, TO THREE AMPLIFIERS ONE AMPLIFIER +vs r------, I I r-4---~--+_--~----r_. -iN +IN o--t=-1==-~ 1-+_-;_-[, I I I I I I I I I I I QJ--~I--+-i--f-ff--- vlN > vLOW DIRECT CMOS OUTPUT Figure 14. Double-Ended Limit Detector 1'" 100 V AN73-2 ..-F' Siliconix ~ incorporated IC MULTIPLEXER INCREASES ANALOG SWITCHING SPEEDS J. o. M. Jenkins Revised March 1988 INTRODUCTION A two-level IC multiplexing system, that has significant advantages over conventional single-level systems, can improve effective switching speeds of analog systems by approximately one order of magnitude. Analog multiplexing is the simultaneous transmission of two or more analog signals on to a single transmission line. Time-division multiplexing is widely used, each analog input being sampled sequentially and conveyed into a common output line. The signals can be transmitted directly in their analog form or they can be digitally coded by means of AID converters and then transmitted. The latter method is used in applications requiring a very high degree of transmission accuracy. which rapid sampling of analog signals is required. In any application in which it is necessary to sample analog signals and convey them at maximum transmission rates, the ratio of t 1: t 2 must be as small as possible (where t 1 represents the time between samples and t 2 the sample duration time). Applications requiring microsecond sample times clearly present considerable difficulty, because IC multiplexers which are commercially available have tON and tOFF times in the region of 1-2 J.l.s. When used in the conventional single-level mode, a substantial loss in transmission efficiency results. Figure 1 shows a simple single-level system for analog mUltiplexing. v- v+ y In a system having 'n' analog inputs, a multiplexingl demultiplexing system will generally require 1/n of the total transmitting and receiving circuitry of a nonmultiplexed system. Hence, system cost is reduced drastically in the former case. Present-day requirements for analog multiplexers have necessitated the development of special circuits. These incorporate multichannel FET mUltiplexers which are now available in integrated-circuit form, and which possess numerous advantages over their discrete counterparts: The use of IC's introduces a higher degree of circuit reliability; (2) Switch for switch, IC's are much more compact; (3) System layout cost is less; (4) Lower cost per switch. Single-level Multiplexing System Fast IC multiplexers, having rapid open and close switch times, are required in many applications in y A ..il ...iIT ... 1 T I ...il _I .... 1 ..... 1 ~I ....il f-<> o .... 1 ....i l _I .... 1 U" v- (1) GND y .... 1 ?-"I I 1 1 1 1 DG506A CMOS DECODE LOGIC b b b b b Figure 1. DG506A Used as a Single-Level Multiplex System With a single-level system one can obtain either (a) the wave-forms shown in Figure 2 (a), and be faced with inter-channel interference due to overlapping samples or, (b) the waveforms of Figure 2(b) which result in delayed channel switching, in order to eliminate interference between channels. 13-221 .. .. ...... Siliconix incorporated AN73·2 ~ L. t 2 .J I I I I I : t1 3 s (2) l..- I~ ...o----I..I_ I I I I I I I I CHANNEL 1 STARTS TO OPEN _ I --.l1.2J1Sr-J1~1'2J1S~t2.1 I : I I I t1 r--- TIME (t) I I~: L3J1S~ r- i ~,---- --V I LO~g g~~NM~~~ -.I AND CLOSE CH 2 I I-- '-- CHANNEL 2 FIJLLY CLOSED I The common node output capacitance increases with the total number of analog channels being multiplexed. With 64 channels (i.e., 4 x 16 channel DG506A), the common node output capacitance will be typically 180 pF. The charging time (t 1) necessary for the analog signal to reach 0.25% of its final value (six time constants) will then be approximately 6 x COUT(rDS(ON) + RANALOG SOURC8 (1 ) If the source resistance is f k!l, t 1 will be CHANNEL 2 BEGINS TO CLOSE 6 x (180 X 10-12 F) x (400 !l + 1 k!l) Figure 2(a). Overlapping Channels =1.51 }.Ls (2) This decreases the effective switching speed of the multiplexer. - nME (t) I --I COMMAND I LOGIC TO CLOSE CHANNEL 2--1 Figure 2 (b). Delayed Channel Switching If the analog sample time needed is 3 IJ.S, for example, system 2(a) would not be a practical proposition. System 2(b) would certainly be practical but would introduce a large wastage of transmission time due to the large ratio of t 1:t 2 (Figure 2 (b). in fact, indicates a 50% loss in transmission efficiency). This problem is manifest in all commercially available IC multiplexers used in single-level systems. Other problems that result from using a single-level system are: (1') With a large number of separate :lnalog inputs, the leakage currents through the OFF switches can introduce an appreciable percentage voltage error into the common output line. This is important if the analog signal iJeinging conveyed through the closed switch is in the millivolt range. 13-222 Two-Level Multiplexing System These problems can be overcome if a two-level multiplexer is used, which inherently provides a much faster switching system. Figure 3 shows an example of a two-level system capable of 32 channels. The first level consists of 16-channel DG506A mUltiplexers, the use of which offers the advantages stated in the introduction. The second level consists of two or more single channels of a DG181; this has switch 0P:!I1 and close times of, typically, 100 ns, and has a break-before-make switching action. The DG181 is available in a dual-in-line package. The two-level system uses the bank of high speed DG181 switches at the output to sequentially switch between the outputs of the DG506A's. Each DG506A is able to switch channels during the time the others are being interrogated. It contributes capacitance and leakage at the output only when it is switched into the output bus by a DG181. The use of the two-level system achieves the following: (1) Effectively reduces the common output node capacitance of the system. It will consist of a single multiplexer output, DG506A (45 pF) and sevmalDG181's (6pFOFF,14pFON). Fora 64-channel 2-level system, for example, the outP'Jt capacitance is reduced to 77 pF, compared to 180 pF of the single-level system. ~ ~ AN73·2 Siliconix . incorporated 32-CHANNEL ANALOG INPUTS •• DG506A (Al CH29· DG181 SWITCH A CLOCKD-f---+-----'~::::--='---==--- f INPUTS (1 -64) G INVERTERS, DM7404 +r VCC 1 DM7493 13.1412 14 AIN ~ A VCC CLOCK ~ INoCLOCK IN 13 12 QrJE- 14 Tr 10_ 11 ..... 1.... ~ G 10 Q CLEAR Is ,:2 DM7493 AIN r01 r02 l l ENABLE (HIGH) 5... S3~ S7'T, ,, , V J 15 VCC Q. I I I , :2 S 14 AIN E.I , Q4~ I I l l A, EN 14~ J1TT5 12 AIN '0 '02 D4~ r- MUX4 DG50SA I 2L SS4~ BIN V2 S4~ V, GND SBar, ,, , 9 B 60 A A J 1T SI1 5 6. EN 14 ~ I J 11 GND ~y Figure S. 54-Channel 2-Level Multiplex System 13-226 +11 V DG181 po Vce rA.01 101py~02 19 V 5 VCC 14 -V 3~ MUX3 DG50SA A VL 1 S1 ~ -t~ V +1Y2~ 1 12 .". 27 GND DM7493 3 ... V2 D. 11 ~y I I -rv f-o +y DM7493 Q~ i ON t V, GND SS301-1 An A BIN '01 '02 , 14~ +1Y 2[11 12 ~ GND 4 CLOCK PHASES TO DG1B1 LOGIC INPUT Q'~ ON VEE .J,.B OUT ~y ruo.... -y" ...... 02 11 fL RESE~(LOW) A, EN J1JS 15 P- ;J--.o...,..,- E 8 _3 rb,.4 IN 14 VCC 14 S2 VR O2 2 A g 01 IN 10 An A DG181 VCC >"(~ po 1~ MUX2 DG50SA JSS2~ L£ BIN VL 1 S1 -15 V 1/2 DM7473 ....§. CLOCK 2 V2 I 8 .J,. Q ,,I , +1f +Sf ~ S:f Ss +r Q~ .J.QK 14~ 21-l- -t~27V +1Y 1 12 DG1B1s IClFAR J A,EN 8 11 * IL...Y-r+2 ...2 A , 1TS 15 2y ~~1-4 1/2 DM7473 J A D,~ V, GND r-J P JSS1~A GND '01 '02 :r MUX1 DG50SA :2 BIN +SV I I I I I 14 S2 VR .J,.8 "'":-:-VEE b P~ 9 -15 V .... Siliconix incorporated ~ TA87-1 ELIMINATE THE GUESSWORK IN YOUR ANALOG SWITCHING ERROR ANALYSIS By Steve Moore and Van Brolllni September 1987 The "DGP" Philosophy To design a precision analog system, errors must be identified and reduced to levels within the guard bands dictated by the overall system accuracy requirements. For worst-case design with analog switches and multiplexers, one must rely on data sheet minimum and maximum limits to determine the error contribution of a given channel. Many devices, however, do not have 100% tested limits for parameters critical for precision such as charge injection, variations in on-resistance, and variations in switching time. Furthermore, other parameter limits are specified on a "not tested, guaranteed-by-design" basis. Therefore, precision system designers must screen incoming devices, living with uncertainty about the actual performance of their system, or compensate by adding circuitry or selecting other expensive components. The "DGP" family of analog switches and mUltiplexers brings new levels of precision to monolithic devices. This family embodies a new philosophy for the specification and testing of analog ICs. In contrast to "typical" or "guaranteed by design" specifications, all limits on the DGP family data sheet are 100% tested. Superior CMOS processing tightens the limits for leakage and extends the analog range beyond anything previously available. Devices are tested with 10% guard bands on the power supplies at the most commonly used voltages. Using new analog test capabilities, charge injection, variations in on-resistance, and switching times are also 100% tested. Eliminating Data Sheet Guesswork When designing a precision data acquisition system with existing analog switch and multiplexer families, the errors introduced by these switches can be the major source of system inaccuracy. The limits for switch on-resistance and leakage currents have always had well-defined data sheet limits--even over temperature. However, it has been impossible to find tested limits for the variations in on-resistance as the power supply, drain, or source voltages are varied. So while it is easy to predict the offsets caused by "ON"-resistance under nominal conditions, the designer must guess what effect varying supply and input levels will have. With the new DGP family of switches and multiplexers, these variations are specified to within 5% over a wide range of supply and analog voltage ranges. Therefore, it is now possible to design a fully guard-banded system. What happens to an analog switch when the power supply voltage is varied from +13.5 V to +16.5 V (a typical ±10% tolerance in a nominally +15 V supply)? With the previous generation of switches, the designer either characterized the device or used the manufacturer's typical performance curves to estimate the guard bands required to ensure system accuracy under all rated conditions. Switch "ON"-resistance could vary as much as 20% between channels and with changes in supply voltage and analog input voltage. These variations translate directly into nonlinearity and gain errors. The DGP devices are tested at worst-case supply voltages to define firm design limits for operation with ±10% variations in nominally ±12 V, ±15 V, and ±20 V systems. The change in "ON"-resistance from switch to switch in multiple switches and multiplexers can limit a system's channel-matching and common-mode rejection. This change has never been specified below 10%, and it is usually listed as a "typical" value, not a tested one. Variations from switch to switch are included in the DGP family tests for on-resistance variation. For example, a total of 24 supply voltage combinations and analog voltages are tested across the four channels of the DGP201A to determine changes in on-resistance specified with less than 5% total variation. Leakage current at the source or drain can result in significant errors in sample-and-hold amplifiers and high-impedance systems. While other switch families offer leakages as low as 1 nA, the DGP family offers 13-227 TA87-1 tr'P' Siliconix ,LII incorporated a factor of four times improvement in leakage performance (down to 250 pA). Additionally, tight limits are established for the most adverse leakage conditions--that is, the worst-case extremes of the temperature and voltage ranges. Most analog switch/multiplexer families for precision applications operate with ±15 V supplies. CMOS technology, which allows an analog signal swing from rail to rail, provides operation with up to ±15 V. The enhanced metal-gate CMOS technology used for the DGP family (see "Process Evolution" below) allows operation with supplies up to ±22 V supplies, with "ON" -resistance and leakage specifications tested for those supply levels. Therefore, a wider signal range is achieved, resulting in greater system headroom and better dynamic range. These features are essential for high-resolution applications such as precision data acquisition and professional audio equipment. Improved AC Performance In today's world of high-speed data acquisition, the requirements of precision systems extend into the realm of the dynamic accuracy as well as the traditionally specified dc parameters. Switch and mUltiplexer specifications of particular importance are charge injection (or charge transfer) and switching speed (or transition time). Charge injection occurs when the parasitic FET switch capacitance transfers a charge into a channel that is being switched on or off. Seen as a glitch which accompanies all onloff transitions, charge injection is a major source of inaccuracy in sample-and-hold amplifiers as the charge is dumped into the hold capacitor (see Figure 1). Because testing this parameter in production is difficult, the tested maximum limits for charge injection have never been specified on analog switch and multiplexer data sheets. However, the DGP201A is fully tested for charge injection with a maximum limit of 50 pC (at Vs = OV). The maximum error contribution of charge injection to a sample-and-hold circuit can be calculated using: A", Using this formula, the maximum voltage error for a 10,000-pF hold capacitor is 5 mY. Switching speed can vary from channel to channel. These variations can create sampling errors, resulting in system dynamic channel mismatch. The DGP 13-228 family uses advanced ac test capability to specify a maximum variation in switching time of 50 ns. 1/4DGP201A VIN Of------- - - - - - - - 1 Figure 1. T_ Cti Simple Sample-and-Hold Circuit Full Range of Standard Functions With the DGP family, Siliconix is offering the most commonly used analog switch and multiplexer configurations. These parts are all pin-for-pin replacements for existing devices, making it easy to upgrade system precision and quality. For example, the DGP201A may be used for quad switch applications, the DGP303A for dual SPDTs, the DGP508A for 8-channel multiplexers, and the DGP509A for dual 4-channel systems. Process Evolution The DGP family is built using a mature metal-gate CMOS technology. Since its introduction in the early 1970s, this process has been significantly enhanced, improving to the point where today the breakdown voltage is consistently above 50 V without trade-ofts for leakage or on-resistance performance. This extremely well-controlled process specification results in leakages typically below 50 pA, allowing vastly improved maximum leakage limits. Improved Sample-and-Hold Performance A precision sample-and-hold amplifier can be built with the DGP201A quad analog switch. Figure 2 shows a practical sample-and-hold amplifier that uses buffering at the input and output. This circuit includes charge cancellation circuitry to minimize pedestal error due to switch charge injection. During the sampling phase (logic input low), SW2 and SW4 are on, while SW1 and SW3 are off. This design forms a closed-loop amplifier that charges the hold capacitor, C2, through the on-state switch, SW4. C2 is charged to the value of the input voltage TA87·1 Ififjff' Siliconix ,./LB incorporated +15V 13 v1 SW2 15 16 4 LOGIC INPUT LOW= SAMPLE HIGH = HOLD -15V -15V Figure 2. High Performance Sample-and-Hold Circuit with Reduced Pedestal Error and Droop Rate being sampled. During the hold phase (logic input high), SW2 and SW4 are open, while SW1 and SW3 are closed. This configuration opens the overall loop, so the output of the sample-and-hold circuit remains fixed at the voltage stored on the hold capacitor. Closing SW3 keeps the input buffer at unity gain in the absence of overall negative feedback. Closing SW1 transfers a charge, which is equal and opposite in magnitude to the amount injected by SW4. This charge would otherwise feed into the hold capacitor and appear at the output as a pedestal (or range dependent offset) error in the sample. Using the DGP201A, with its maximum charge injection of 50 pC, the value of the charge compensation can be intelligently selected to achieve the desired level of precision. Differential Data Acquisition System The extremely low leakage of the DGP201 A and the JFET input buffer gives .this sample-and-hold function an excellent droop rate. Worst-case droop rate is calculated by Precision Gain Switching Differential Amplifier A VIA t =A IIC where I is the sum of leakage from the switch (250 pA maximum) and the JFET (250 pA maximum), and C is the value of the hold capacitor. In this circuit, 500 pA/1000 pF the maximum = 0.5 Vlsec. droop rate is Figure 3 shows a 4-channel 4 1/2-digit differential data acquisition system. The Si7135 AID converter uses a 2.0 V full-scale range, resolving 20,000 counts which translates into a 100 jJ.V step size. Typical leakage currents of most multiplexers can seriously degrade system accuracy, especially with highimpedance sources such as strain gauges and transducer bridges. The DGP509A, with its 2 nA maximum leakage, contributes a maximum 100 jJ.V error (1 LSB) with a 50 k!l source impedance. Using the DGP509A, 4-channel precision differential mUltiplexing is accomplished without degrading commonmode rejection or without additional decode logic. Figure 4 shows an instrumentation amplifier which uses an OP-07 precision op amp and a DGP303A to digitally select one of two gain settings. This circuit features low noise, excellent common-mode rejection, low drift, and well-defined limits for gain accuracy. Analyzing this circuit using the original DG303A and comparing it to the performance using the new DGP303A illustrates the dramatic improvement possible by upgrading to the DGP family without redesigning the circuit. 13-229 ~ .. .... Siliconix incorporated TA87·1 ~ ANALOG GND Os SI7135 +1SV 04 ~ Differential Analog Inputs 02 BP 17 1S 19 04 a1 ~ g1 : D2 01 01 BS 16 B3 OF412 B4 1S VDD B2 B2 14 DB 9 9 INPllT LO Bl 2S SEGMENTS +5V Bl 13 eo :;;1;0.1)1 F 200 pF VSS 1 )IF -::- ·~Enabl. osc ~ Address Select Figure 3. 4112 Digit Differential Data Aqulsltlon System The most dramatic improvement is seen at the industrial temperature range maximum (85°C) . The DGP303A switches are modeled using a resistor (rOSION)) in parallel with a current source (IOION)) for an on-state switch. For the off-state condition, the switches are modeled only as a current source QSIOFF) ). In this example, the gain selection is unity for logic high at the logic input, and a gain of 10 is selected for a logic low. The sources for error (at maximum over temperature of -40 to +85°C) under consideration are: Ie (OP-07A) =4 nA I OION) (DG303AB) = 200 nA; I OION) (DGP303A) = 2 nA 13-230 ISIOFF) or IOIOFF) (DG303A) = 100 nA; ISIOFF) or IOIOFF) (DGP303A) = 1 nA = 75 n = R3 = 10 k; R2 = 100 k rOSION) R1 The input error voltage (Verti) caused by switch leakages can be approximated by: Vertl = 10 k (IOION) +ISIOFF) +Ie) For the DG303A, Using the DGP303A precision analog switch, the error is: Vertl = 10 k x (1 nA + 2 nA + 4 nA) = 70 )J.V These calculations show that with the DGP switch, the error is dominated by the OP-07 bias current. TA87-1 Siliconix incorporated -------82 ---, I 1/20GP303A V OUT R2+ r08(ON) 1/20GP303A 10 R1 R'2 + r08(ON) Logic Input 1 = gain of 10 o = gain of 1 R1 Figure 4. Precision Gain-Selectable Differential Amplifier III 13-231 ~ ~ TA73-1 Siliconix incorporated MULTIPLEXER ADDS EFFICIENCY TO 32-CHANNEL TELEPHONE SYSTEM by John A. Roberts and J.O.M. Jenkins Revised January 1988 Time-division multiplexing has gained wide acceptance in recent years as a means of combining multiple telephone channels on two-wire-pair transmission lines that previously accommodated only one channel. Combined with pulse-code-modulation (PCM) circuitry to convert the sampled signals to a digital format, the multiplexing techniques have generally reduced size, power consumption, and costs of plant equipment. To achieve minimum signal loss and distortion in such systems, much effort has been directed toward building multiplexers that switch from channel to channel with minimum output rise and fall times. Such a multiplexer design, recently built and tested, provides 150 ns switching time, an order of magnitude faster than presently available circuits. mum frequency of f L can be accurately reconstructed from periodic samples taken at a rate as slow as 2fL. TIME- DIVISION MULTIPLEXER PULSE-CODE MODULATED OUTPUT Problems In overcrowding of wire-pair telephone-transmission lines are lessened by using analog tlmedivision multiplexers followed by AID converters. Figure 1. Telephone's Answer This high speed switching is achieved by applying biphase control logic to a two-level multiplexer arrangement that takes advantage of the fast rise times and the break-before-make action of newly developed intergrated circuit multiplexers. Telephone System Requirements A generalized system used to time-division multiplex voice signals is shown in Figure 1. After the signals on each of analog channels have been sampled, each sample is quantized and coded into a PCM format. The new design focuses on the analog multiplexer, which feeds the analog-to-digital converter. The sampling rate for each of the incoming channels is determined by the desired bandwidth of the voice Signals being sampled, while sampling dwell time is fixed by the number of channels that must be sampled. Nyquist's sampling theory 1,2 states that any transmitted waveform that is band-limited to a maxi- 13-232 In practice, however, filters do not provide ideal cutoff at fL' and a somewhat higher sampling rate must be tolerated. For example, to achieve less than 1% error in reconstruction accuracy, the sampling rate must be at least twice the frequency at which the unwanted signals above cutoff are reduced by 40 dB.2.3 Thus, to relax difficult filtering requirements at the input-to-sampling circuitry, a voice bandwidth that is nominally limited to about 2.3 kHz is usually sampled at an 8 kHz rate, or once every 125 j.ls. Single-Level Multiplexers The standard configurations of today's telephone systems dictate that a fundamental group of 32-channels be multiplexed onto one line. Therefore, with a sample frame time of 125 j.ls each of 32 multiplexed channels is sampled for 125/32 or 3.906 j.ls, as Figure 2 indicates. ~ ~ TA73-1 Siliconix incorporated -:::::::1""''''''- r-r-- -- 1-1- t- - ~------- --- --- 32 I 2 ,..-3.906JJ.s -~ l32 I SAMPLING OF CHANNEL 32 f.f- SAMPLING OF CHANNEL I f- SAMPLING OF CHANNEL 2 t-- SE-AMPLITUDE ~ ~~DULATED OUPUT OF MULTIPLEXER 125JJ.s_ For accurate reconstruction of a 3.3 kHz telephone signal. It must be sampled at a rate of about 8 kHz. or once every 125).Ls. The hierarchy of today's telephone system makes It highly desirable to multiplex 32 speech channels during this period. Figure 2. Tight Fit Conventional multiplexing networks can be implemented with either discrete components or integrated circuits. such as the Silica nix DG508A (see table). This circuit multiplexes eight input channels with a switching time between channels of 1 to 1.5 j.Ls. A 32-channel multiplexer is constructed simply by paralleling four DG508A's. Thus, in single-level switching, each of the 32 analog input channels is multiplexed through a single switching bank. CIRCUIT CHARACTERISTICS TABLE DGSOBA: B-CHANNEL ANALOG MULTIPLEXER 2o= 23 rn 4 w 5 6 m 7 B,..' CONTRO{ INPUTS ~~~JNELS 2' 2" SINGLE OUTPUT DGIBI: 2-CHANNEL ANALOG MULTIPLEXER CONTROL{ INPUTS DG508A 450.0. 1.5JJ.s 25 pI INPUT 2 _ _ CHANNELS I '-n--tl ~ 2 OUTPUTS SERIES RESISTANCE (ON CHANNEL) SWITCHING TIME OUTPUT CAPACITANCE DG181 30.0. 150JJ.s 20 pi The problem with such a system stems from the relatively slow 1-1.5 j.Ls switching times between channels. Depending on the design of the particular multi- plexer, there can either be an overlap or "aliasing" between sampling pulses, which leads to crosstalk between channels, or a large separation between samples, which reduces the sampling time of a particular channel. The reduced sampling time results in lower multiplexer efficiency. Added to the 1-1.5 j.Ls switching time is a delay associated with the increased output-node capacitance when multiple channels are combined. For four DG508A's (32 channels), the added delay is about 200 ns. These delays further reduce the effective sampling time and bring some uncertainty into the timing strobe for the AID converter. The node-capacitance problem can be lessened to some extent by a high performance sample-and-hold circuit between the multiplexer and the AID converter. However, the 1-1.5 j.Ls switching times remain, and this problem becomes acute for signals obtained from sources with output impedances of 2 k n and above. Two-Level Multiplexing System response time can be improved by reducing the output-node capacitance. This is achieved by using a two-level multiplexing system as shown in Figure 3. 4 Here, circuits with lower output capacitance (such as the DG181, with performance shown in the table) are placed in the second multiplexing level, which feeds the AID converter. The DG181 can switch at a speed of 150 ns. The full advantages of these speeds, however, are not realized, since interchannel sampling time is still limited by the 1-1.5 j.Ls rise times of the DG508A's. A timing sequence that makes maximum use of switching rise times of the DG181 s (and therefore results in extremely high sampling efficiency) can be achieved by applying control logic to the two-level multiplexer in a manner which will give the sampling sequence shown in Figure 4. The faster switching speed and the break-before-make action of the DG181 virtually removes the possibility of overlap. The problems caused by the relatively slow switching time of the DG508A are eliminated by ensuring that the first channels of multiplexer switches 1A and 2A (Figure 3) are already fully closed when 28 and 38, respectively, are closed. This sequence is then repeated for each of the eight channels of the DG508A's, and the complete cycle is again repeated. 13-233 III TA73-1 2 4 Siliconix incorporated 6 8 10 FIRST-LEVEL } DGS08A's ' - - - - 1 - - -....... } 26 16 46 36 SECOND-LEVEL DG181'. OUTPUT TO A-D CONVERTER Output-node capacitance Is significantly reduced when a second level of multiplexers Is added. Interchannel switching time; however, Is stili determined primarily by the speed of the first-level switches. Figure 3. Two-level Multiplexing CHANNELS 8, 16 CLOSED CHANNELS 1,9 CLOSED CHANNELS 3,11 CLOSED CHANNELS 2,10 CLOSED } CHANNEL-CLOSURE TIMES FOR lAAND2A } CHANNEL-CLOSURE TIMES FOR 3A AND 4A } OUTPUT CHANNEL SEQUENCE -- c~6~~ ~: - - - - i i - - - I OPEN 36 26 CLOSE ----I==:I=~:i CHANNELS 18, 26 CLOSED ;=:t::;::;:+::;;I:=:.. c~6~~~:-----+---+--~-~ c~6~~i:-----+---+--4---+-~ 24 32 9 17 25 2 10 18 26 3 - - - - L - -... -LI--LI... --L--S-AM-L-PL-IN-G-LP-E-R-IO-DL-=-3-.9-0~6-~-S-~-~--~----- By adding two-phase control logic to the two-level multiplexer of Figure 3, the full advantage of the 150 ns switching speed of the DG181 circuits Is realized. Channel numbers correspond with those In Figure 3. Figure 4. Phase II timing 13-234 a"1I'" ~ TA73-1 Siliconix incorporated CGSOBA +5 V ......- - - - - - - - , A :::C:::LO~C~K~_H J-K o o o o ~ lB t ~2B ON SWITCH x o NONE 1 2 3 o o o 1 1 o 1 4 S 6 1 7 B 1 o o o r o 1 1 ~3B AB EN x x OG181 SWITCHES K Ao t ~ +5V-.-----.-----, J J J-K J-K K 4B +5V J-K K K J L---~====~~~~--t------+------+-------~J~ XAB K J J-K K J J-K K (A) LOGIC -U- k[-U- -_f-- '-- r--3.906JI S ~ U- beU- beU- ~ s J "'- -- r-I'-- F= = --Lf =r-- ~ r L r ~ 4) AB - LOGIC 1 CLOSES 3B ~AS - LOGIC 1 CLOSES 2B - r-- r B - r-- I'-- r-- A (-:- 2) - - AB - LOGIC 1 CLOSES 4B r-- I'-- X CLOCK AE! - LOGIC 1 CLOSES lB r L r XAB L XAB - INPUT TO 1ST -:- 8 COUNTER ... .. ~.~ . • .L . - ~~ --. ... ,,'~'l?~ . • . " x..a -INPUT TO 2ND -:-8 COUNTER OGS08A NOS. lA, 2A, 01 • - l" "" ... '",-y"':' ' .• 'j" . (B) TIMING OGS08A NOS. 3A, 4A TTL control circuits (a) Implement timing (bj required In two-phase, two-level multiplexing system. First-level DG50BA switches are MaS circuits, and JFET technology gives the faster switching times needed In the DG18l second-level switches. Figure S. Logic hardware 13-235 TA73·1 trW'" Siliconix ,JI;II incorporated ~~ waveforms are combined to give AB, AB, AB and A B which are needed to close the DG181 gates sequentially. Functions XAB and XAB then clock two 3-bit asynchronous counters. A delay of two clock periods exists between XAB and XAB so that the count sequence applied to the second and third multiplexer is suitably delayed. ~ IiIII1! ~ .~ ~ ~ IiIII1! Ill! (a) 20J,ls/DIV A prototype multiplexer with two-phase control logic has been constructed and successfully tested. Series 7400 TTL circuitry is used to implement the timing and control logic. First-level DG508A switches are MOS circuits, while JFET technology gives the faster switching times needed in the DG181 second-level switches. To simulate all 32 analog inputs to the multiplexer, a voltage-divider network of series resistors is connected across a +3 V supply. Thus, 32 dc voltage levels are consecutively tapped off the network and applied to the multiplexer input. The multiplexer output is displayed on the OSCilloscope, as shown in Figure 6a. As can be seen, the largest transition is from -3 to +3 V. In Figure 6b, this 6 V transition is demonstrated as being accomplished in less than 100 ns. ai': (b) 200 ns/DIV Thirty-two dc levels are sampled In a prototype multiplexer to demonstrate switching speed of the two-level two-phase design. Largest single transition, from -3 to +3 V Is expanded In the lower trace. Verticil! scale for both traces: 2 V per division. Figure 6. Quick Switch Two-Phase Control Logic The timing requirement and logic control layout for the complete circuit are shown in Figures 5a and 5b. Waveforms A and B are obtained from the input clock waveform by an asynchronous divider. The A and B 13-236 If low-power TTL or diode-transistor logiC is used in the control circuits, synchronous counters may be necessary to eliminate cumulative flip-flop delays. Although the system shown is deSigned for negativeedge-triggered J-K flip-flops, the circuitry can be rearranged quite simply for almost any bistable logic element. References 1. Schwartz, M., "Information Transmission Modulation and Noise," 2nd ed. p. 174, McGraw-Hili Book Co. 1970. 2. Shannon, C., "A Mathematical Theory of Communications," Bell System Technical Journal. pp 379-423, July 1948 and pp 623656, October 1948. 3. English, M., "Multiple systems" Electronic Products pp 28-31, May 1969. 4. Yoder, D., "Two-Level Multiplexing for Data-Acquisition Systems," pp 67-72, EEE July 1970. Publications Index III I WF Siliconix ~ incorporated PUBLICATIONS INDEX Siliconix Incorporated wants to keep you informed about our available technical literature. The listing that follows shows publication year and section contents for each book. For complimentary copies, please contact your local Siliconix sales office. A listing of sales offices is included at the end of this book. We are interested in your comments and suggestions about our technical literature. Please send them to Siliconix Incorporated Attn: Technical Literature Dept. MIS 05 2201 Laurelwood Road Santa Clara, CA 95054 or give us a call at (800)554-5565. INTEGRATED CIRCUITS DATA BOOK - 1988 Introduction. Quality And Reliability. Process Option Flows. Analog Switches and Multiplexers. Digital To Analog Converters. Analog To Digital Converters. WidebandlVideo Switches And Multiplexers. Operational Amplifiers, Comparators. FET Drivers. Display Drivers. Voltage Converters. Switch mode Controllers, Regulators. Application specific IC's (ASIC). Application Notes. FET DATA BOOK - 1986 Introduction. Process Option Flows. Design Alternatives. Junction FETS. Current Regulator Diodes. Pico Amp Diodes. Double Diffused (OM OS) FETs. Low Power N & P channel MOSFETs. Application Notes. MOSPOWER DATA BOOK - 1988 Process flows. Selector Guide. N & P Channel Power MOSFETs. Switching Regulator and Controller ICs. Technical Information on Ratings and Characteristics, ESD Sensitivity, Gate Drive and Thermal Considerations. OEM PRICE LIST WITH CROSS REFERENCE SILICONIX SHORT FORM CATALOG MOSPOWER APPLICATIONS HANDBOOK - 1985 Rudy Severns et ai, Siliconix Incorporated. Introduction to MOSPOWER FETs. Power MOSFET Structures. MOSFET Electrical Characteristics. Thermal Design And SOA. Practical Design Considerations. Applications Information. MOSFET Testing and Reliability Appendices. (This handbook contains over 70 articles and application notes written by 31 experts in power processing. Hardbound. 488 p.p.) DESIGNING WITH FIELD-EFFECT TRANSISTORS - 1981 Edited by Arthur D. Evans. Available at your technical bookstore or write to Suite 26-1; McGraw Hill Book Co, 1221 Avenue of the Americas; New York, NY 10020. POWER FETS AND THEIR APPLICATIONS - 1982 Edwin S. Oxner, Staff Engineer, Siliconix, Inc. Available at your technical bookstore or write to: Mail Order billing, Prentice-Hall ,Inc. , Tappan Road, Old Tappan, NJ 07675. RELIABILITY REPORTS Siliconix is dedicated to the manufacture of high quality, reliable products that meet the needs defined by our customers. Reliability Reports exist for most of our products and new reports are continuously being generated as new data becomes available. Customers that require reliability reports for specific devices are encouraged to request them by calling (800) 554-5505. 14-1 III :.II ..... Siliconix incorporated ~ APPLICATION NOTES & TECHNICAL ARTICLES KEY • • • • = = = IC 1988 Integrated Circuits Data Book F 1986 FET Data Book M 1988 MOSPOWER Data Book MAH = 1985 MOSPOWER Applications Handbook CATALOG DOCUMENT (SEE KEY) NUMBER TITLE APPLICATION NOTES F F F IC F IC F IC F IC IC IC MAH MAH F MAH IC MAH AN70-2 AN72-1 AN73-1 AN73-2 AN73-4 AN73-6 AN73-7 AN74-2 AN74-4 AN75-1 AN76-6 AN76-7 AN79-1 AN79-6 AN81-3 AN82-1 AN83-1 AN83-2 IC IC AN83-3 AN83-4 MAH IC F MAH MAH MAH IC AN83-5 AN83-6 AN83-7 AN83-8 AN83-10 AN83-11 AN83-13 IC F F IC F F AN83-14 AN83-15 AN84-1 AN84-2 AN85-2 AN85-3 14-2 FETs for Video Amplifiers FETs in Balanced Mixers FETs as Voltage-Controlled Resistors IC Multiplexer Increases Analog Switching Speeds FETs in Balanced Mixers Functionl Application of the L144 Programmable Micro-power Triple Op Amp An Introduction to FETs Analog Switches in Sample and Hold Circuits Audio-Frequency Noise Characteristics of Junction FETs CMOS Analog Switches - A Powerful Design Tool DG300A Series Analog Switch Applications Functionl Application of the L161 Micropower Comparator A 500 kHz Switching Inverter for 12 V Systems Using VMOS Transistors to Interface from IC Logic to High Power Loads Composite Op Amp for High Performance Solving the Stepper Motor Interface Problems The DG308A Digitally Switches Analog Signals Applying 240 Volt MOSPOWER Transistors and Current Limiting Diodes to Electronic Pulse Dialer Circuits A Microprocessor Compatible Analog Switch Makes Interfacing Easy Improved System Performance Using Microprocessor Compatible Multliplexers Boost OP-AMP Output Power with Complementary Power MOSFETS A System solution to HP-IL Equipment Interface A High-Quality Audio Crosspoint Switch Frequency Response Analysis of the MOSFET Source-Follower Safe Operating Area and Thermal Design for MOSPOWER Transistors The D469: An Optimized CMOS Quad Driver for MOSPOWER FET Switches Si8601 Data Acquisition System Interfaces for I/O or Memory Mapped Operation A Simple Approach to Si7135/8085 Interface A High Performance Video Switch Using the SD5002 Applications for Si1000 Series JFET Amplifier Theory and Applications of the Si7660 and Si7661 Voltage Converters Designing a Super High Dynamic Range Double-Balanced Mixer DMOS FET Analog Switches and Switch Arrays .... Siliconix incorporated ~ APPLICATION NOTES (Cont'd) The DG536 Wide Band Multiplexer Suites a Wide Variety of Applications. IC, M IC, M ANS6-1 ANS6-2 ANS7-1 ANS7-2 IC IC ANS7-3 ANS7-4 IC ANSS-1 12 Bit CMOS Multiplying DAC Improve System Precision with the Si7652 Chopper-Stablized Operational Amplifier Application for the 0469 MOSPOWER Driver IC ANSS-2 Microprocessor Compatible Multiplexers Facilitate Video Switching Designs DASO-1 A Low Cost Regulator for Microprocessor Applications IC MOSPOWER in Motor Drives A 1-Watt Flyback Converter Using the Si9100 Efficient ISDN Power Converters Using the Si9100 DESIGN AIDS MAH DESIGN IDEAS DIS5-1 Designing a One Cell NiCd Powered VHF Oscillator F 0171-1 The FET Constant Current Source F F 0171-9 0173-2 Wideband UHF Amplifier with High Performance FETs High Performance FETs in Low-Noise VHF Oscillators TECHNICAL ARTICLES TA TA TA A Monolithic High Voltage ACTFEL Row Driver for Symmetric Drive Schemes Monolithic Video Multiplexer Directs 300 MHz Data in 300 ns. TA A High Efficiency Power MOSFET used as the Control Element in an SOO V Switch The Use of MOSFETs in High Dose Rate Radiation Environments TA TA TA TA A 01 and JI Compatible Monolithic High Voltage Mux Using the Si9100 for Design of 1 Watt Power Supply What Do We Think Of The 6" Wafer Special Features of Power MOSFETs in High Frequency Switching Circuits F IC MAH TA70-2 TA73-1 MAH MAH TAS3-2 TAS3-3 MAH TAS4-1 MAH MAH TAS4-2 TAS4-3 Correlating the Charge-Transfer Characteristics of Power MOSFETS with Switching Speed Understanding MOSPOWER Transistor Characteristics Minimizes Incoming Testing Requirements MOSFETs Move in on Low Voltage Rectification Power MOSFETs and Radiation Environments MAH TAS4-4 dV Ds/dt Turn-on in MOSFETs MAH TAS4-5 Parallel Operation of Power MOSFETs IC TAS7-1 Eliminate the Guess Work in Your Analog Switch Error Analysis TAS3-1 FET Biasing Multiplexer Adds Efficiency to 32-channel Telephone System Using Power MOSFETs as High-Efficiency Synchronous and Bridge Rectifiers in Switch-Mode Power Supplies Controlling Oscillation in Parallel Power MOSFETS 14-3 Worldwide Sales Offices and Distributors III H Siliconix incorporated U.S. Sales Representatives ALABAMA J..PAI::I.Q MISSISSIPPI See Washington See Alabama NORTH CAROLINA Charlotte (28212) Rep. Inc. ~cfrr~I~~T: ~J~r Cta;.k 425 1l04) 563-5554 F~:"n~64~~~~~g7 ILLINOIS (Southern) See Kansas ILLINOIS (Northern) See Washington 3158 Des Plaines Avenue MONTANA ~~1~?~~650 See Washington Suite 109 ARIZONA ~~~C: Xa;:~~tasl Inc, 4645 S. Lakeshore Drive Suite 1 Morrisville (27560) ~!8o ~;ieway Centre Blvd., ~::irb~~~rL~~?~:6Drp. INPIANA W~1 ~:b~7054 Indianall'liis (46268) ARKANSAS ~~1 g;~~J1664 Wilson Technical Sales, Inc. P.O. Box 68t038 8752 Robbins Rd. Ste.400 ~919) 469-9997 F~:'I~~~~8sr..1~~~ NEBRASKA NORTH PAKOTA See Missouri See Iowa NEVAPA (Northern) See California (Northern) See Texas NEVAPA (Clark County) CALIFORNIA (Southern) See Arizona Tustin (92680) Silicon lx, Inc. 17821 East 17th Street Suite 240 11141 544-637818275 See Massachusetts F~~tg~~~l:'~~~~ CALIFORNIA (Northern) ;~~~I~~ \:~14) 21710 Stevens Creek Blvd. I #100 ~~1 ~~~~7682 NEW HAMPSHIRE NEW JERSEY (Northern) ~ Wayne (07470) lenexa (66219) 1479 Route OKLAHOMA Astrorep Incorporated 23 Sea Texas (Grand Prairie) Midwest Technical Sales ~~1 ~g~j~~97 ~~18t~~~_1103 NEW JERSEY (Southern) ~~::t ~~~lcal Sales rf.~~W~ A~~=Jtes 15301 W. 87th Pkwy. Suite 200 21901 La Vista (316) 794-8585 OREGON See Indiana CONNECTICUT LOUISIANA See Texas PENNSYLVANIA (Eastern) ~'l1: See New Jersey (Southern) NEW MEXICO See Ohio Albuquerque (87111) PUERTO RICO ~W:II PENNSYLVANIA (Western) Quatra Associates, Inc. 9704 Admiral Dewey NE See Massachusetts PELAWARE MARYLANP See New Jersey (Southern) Columbia (21046) fLORIPA ~~~rr~~l~ ~~~~!t~~7~1). 657 Maitland Avenue -IW~: ~6~-0321 FAX: 407-631-2844 Ft. lauderdale (33309) g:~t~~:rh~~crJ3~~SStl~;at ~~1 ~~~~1019 tl~oR&~h:g~ci Road w{'1l: Wo?::i-ll862 ~~16~~6:~054 NEW YORK (Upstate) Endwell (13760) RHOPE ISLANP ~~~~1~~61~~5 607-7~557 See Massachusetts 3215 E. Main Street MASSACHUSETTS 6836 E. Genesee Street ~~1~~~~110 ~~r-~~~II~~ah1~g~I~S. SOUTH CAROLINA Inc. ¥u'~1: ~f~11-ll604 FAX: 315-446-3047 Fishkill (12524) Trl-Tech Electronics, Inc. 14 Westview Drive ~~1411~:r~~1k05 F~: 914-897-5611 (Manual Receive) E. T 45) Ics. Inc. MINNESOTA F~:II~~~=~~~ Burnsville (55337) .I:I&lAII. See California (Northern) SOUTH PAKOTA See Iowa TENNESSEE Jefferson City (37760) Rep. Inc. P. O. Bo 728 113 So. ~~1%~~~ Avenue IE.KM Suite 1 ~4041 938-4358 Sea North Carolina FAX: 61 GEORGIA Tucker (30084) ~ ~~hlake Parkway Inc. ~~1 ~8~~~gt~1 Trl-Tech Electronics, Inc. FAX: Pro Comp Associates, Inc. 1049 East Street ~:~t~~rc(~~~~lates. Marcantll Plaza Bldg. Suite 816 ~~:lIg~\2:1~'lIl~ Tewksbury (01876) Crown Electronic Sales 17020 S. W. Upper Boones Ferry Rd. ~~1~g~023 Evesham Commons 525 Route 73 Suite 1 KENTUCKY Portland (97224) Electromec Sales, Inc. 1601 East Highway 13 Suite 200 n~1: 8:;'~~~-ll232 FAX: 612-894-9352 NEW YORK (Metro/Long Austin (78759) .lm.DsIl. IfG7:1S~!::~h IgTvd . ~~~~:p ~~b~~~rated ~~1 ~J~I~7254 103 Cooper Street Suite 100, BI~. A ~!::~OO FAX: 516-422-2504 15-1 H Siliconix incorporated u.s. Sales Representatives (Cont'd) TEXAS (Cool'd) Grand Prairie (75050) ~~mi~~:re!T" ~2141 647-82.25 F~: In~i4~~9 Houston (77014-1696) Ion Associates, Inc. lmr-M~m'7 Chase Blvd. FAX: 713-&7~612 !.!IAI:I. WASHINGTON Bait Lake City (64115) Bellevua (98007) WISCONSIN ~: : : ' : Main Street Crown Electronic Sales ~~1 'W'i~W~52 ~~1 ~:n~?s861 VERMONT WEST VIRGINIA WYOMING see Massachusetts Sea Ohio See Colorado 14400 Bal-Rad Road, Sts. 108 VIRGINIA PISTRICT OF COLUMBIA See Maryland See Maryland Canadian Sales Representatives North Gower, Ontario (M9B6E3) Pipe Thompson, L.td. (613) 258-4067 Chip Distributor FLORIPA Orlando (32810) P!ll~ Supply, Inc. 7725 N. ora~ Blossom Trail ¥&~: r,~0~103 FAX: 305-29~164 u.S. Distributors ALABAMA ~':~':,"!lle (35801) ~)'i1:~~parkWay South FAX: 205-881-1490 Huntsvilia (35805) Pioneer Huntsville 1~) ~~U Square FAX: 205-837-9358 Huntsvilia (35816) ~s'Illlltrnr=~u"ara Sta. #2D ~~1 roH:k~~o ARIZONA Chandler (85226) Hamlltan/Avnet, N04 ?~i ~,~I'OYI Ave. TWX: 91D-95~77 Calabazas (91302) Irvlna (92715) ra,~r ~ci-9~ra Road mlro Teller Ava. San Diego (92123) Wyle Laboratorles-EMG 9525 ChesaBrake Drive Chatsworth (91311) Hamilton Electro Sales, #71 & 8 9650 Milpitas (95035) Marshall San Jose (95131) ~I. Laboratorl8s~MG w,,~: Chatsworth (91311) Marshall 9710 DeSoto Avanua ~~1 :~L1~ X~~:: ~rJ:C~) Marshall ~~) S41~&\rae1, Ste. B121 FAX: 602-893-11029 Phoenix (850231 ~Laborator as-EMG lJ021 ~= Canyon Hwy. TWX: 910-1151-4282 CALIFORNIA !\gaura Hills (91301) ~&=!m:. ~~1 ~~~464 15-2 Coches 2-4600 1D-339-9298 8-262-1224 w"' ll: ~~~'590 FAX: 619-l;65-11171 f~ 8~~::r:.r::~ Road ~~1 :8:-1J~!oo85 Santa Clara (95052) ~1r i~~~~:n~~OUP tW'~: ~~~~g~80 FAX: 408-727-2500, X303 350 McCormick Avenue w",il: ~~~~~'928 ) on ~~te 10950 ~~12 -837-9446 ~a~c:i,T ~~~~lt. 9674 Telstar Avenue ~~1 :,;g~?s231 =~ Salas, #01 '6" W. 190th Streat FAX: 602-1161-4555 Phoenix (85044) TWX: 910-950-1946 1l~1 ¥il~1lfl-8366 a 217-8700 . 91(h'j40-8364 ~!~:hl:lf1'8) 17rmrg~9~050 TWX: ~~~nloa~1A~~~6J03 1175 Bordeaux Avenue ~~:~1&~~ Yorba Linda (92686) Zeus Components WT~ ~~~anch Pkwy. FAX: 714 -921-2715 COLORA pO 910~95-1969 Irvlna (92714/ m'r2~:n~::~~G w",il: m:g~'572 FAX: 714-863-D473 Thornton (80241) Marshall 12351 N. Grant St. Sta.l08 W~1 ~ga~~899 Siliconix incorporated u.s. Distributors (Continued) Norcross (30071) Future Electronics 3000 Northwoods Parkway Suite 295 ~~I :g.:~r~7580 Norcross (30093) Marshall 5300 Pkwy .. Ste.240 tw~: 969 FAX: 404 743 Norcross (30071) Ploneer/GA 3100 F Northwoods Place (404) 448-1711 FAX: 404-446-5270 J.I.LI..IiQ.l.! ~:~~:~')Ay~~t~O:lo 1130 Thorndale Avenue ru,~: g~g:~~~060 MASSACHUSETTS Lexington (02173) Pioneer 44 Hartwell Ave. ~~I ~~j:g~~1547 Lexington (02173) Zeus 429 Marrett Road ~"i:~~~~1 (07006) ~~~}X~~:P)ElectronICS n1l: ~f~~~7052 FAX: 201-882-0095 100 Centennial Drive &~~\I~"'6~'l?,~Jf7aleS) (01581) nics ad ~~~~~~~aB~'ya ru,~: ~~~~1834 380 S. Northlake Blvd. I Suite 1048 INDIANA 2215 29th Street S. E. A-5 #2B ~~Irg:~~:m ~W.13'W'~921 Altamonte Springs (32701) Marshall Indianapolis (46278) 380 S. Northlake Blvd. ,Sto.1024 ~~lm~~916 ~:~~~T~r;~"~s (32701) 221 North Lake Blvd. ~~:m~~177 FAX: 407-834-0865 201-575~54 MICHIGAN ~:~,T~~1~e:l, Marshall ~~'l1'lI,':l:.';\~reJ87123) ~~lmjm028 ~~:2jfo3i~ A:::"'~:;~~2l12~ Grand Rapids (49508) Pioneer 4505 Broadmoor Ave. SE ~~I ~f~:J8~1831 ':f~) ~C:~~ Drive FAX: 317-297-2787 Indianapolis (46250) ~~¥) C::~~f~ Drive TWX: 810-260-1794 FAX: 317-842-5998 derdale (33309) n/Avnet, 1117 Way • 510-956~097 FAX: 305-971-6420 Ovalda (00700) Zeus ts 1750 ~~I ~g09r-m~~J6r. Summit, Inc. 916 6 treat -28001692 FAX 866 East Syracuse (13206) -lUt ~ kf;~~~lf66214) 8321 Melrose Drive (913) 492~121 Overland Park (66215) Hamllton/Avnet. #58 9219 Qulvlra Road Hamllton/Avnat Unlverslt~ Blvd. FAX: 407-678-1878 GEORGIA ~~fI~~~/~~:~) #15 5825 Peachtree Comers E-O tw~: :1~:~~g~2 FAX: 404-447-7526 893o-A Route 108 ~~18gr:JJ.l~9764 Gaithersburg (20877) Marshall ~df) Hg!i!l'~S Court TWX: 710-628-9748 FAX: 301-840-6538 w"'ll: r,J..~~166 ~:~N) 1~~~~~ ~~~~~:tfe (11788) 275 Oser Avenue MISSOURI i\'~::,sh'::ll City (13790) Lane FAX: 612-559-6321 Zeus Components ~r~~7/~~h~~\er 840 Falrri'rt Park 11;:'1 7~6~~~~95S ~:::\l?t~~~~J~~1.8~ko Marshall Columbia (21045) ~G3"{!~~~/~~1~tb:I~: ru,3l: ~~~~1560 FAX: 315-432-0740 933 Motor Parkway Plymouth (55Ml) ~~:mjgg~74 ~~:~~~~~22 Pioneer/Twin CIties I:fi,~~'ang'e Dr.,Sle. G TWX: 910-576-2738 FAX: 612-944~794 MARYLAND St. Petersburg (33702) 6947 MINNESOTA Eden Prairie (55344) ¥V.,~: ~J:~~~OO5 Hamliton/Avnet, #25 3197 Tech Drive No. FAX: 813-577-6004 Wlntar Park (32792) TWX: 910-989-0614 FAX: 605-243-1395 TWX: 610-252-0893 FAX: 607-722-9562 Buffalo (14202) Pioneer Electronics 9~ ~21rJ8 ~) ':S~~~~o'ive S.E. NEW YORK Deerfield Baach (33441) Ft 11728 Linn N. E. Binghamton (13904) Pioneer IBlnghamton Pioneer Indiana ~~I grti:l~7600 674 S. Mlllta[¥ Trail NEW MEXICO ~~~rwt~~~~e\~S:3/) Clearwater (34620) Future Electronics 4900 N. Creekside Drive n3i: ~~g~~~9653 FAX: 305-481-2950 ~~: ~~~~g~~I!1'64) n1l: ~rg~~82 FAX: ru,~: ~~0~~~6 485 Gradle Drive Marshall 158 Gaither Drive I~~~! 234-9100 (NJ.l. 45 Route 46 1261 WII'/r. Road. #F (32701) Mt. Laurel (08054) FAX: 609-778-1819 Marshall FLORIDA 101 Fairfield Road ~lg~~~r058) FAX: 312-437-0551 Schaumburg (60195) ~~,~:o~l:Cffci~rJl: jl~O~I~tJ~fg;~~~~88 IFAX: 201-862-0095 ~~I ~~:ggg?a807 FAX: 312-660-6530 Elk Grove Village (60007) FAX: 312-490-0569 Fairfield 07006) Hamllto vnet, 619 ~:::'7It~~YA~S;a'r.5J05 13743 Shoreline Court ru,j/: m:j~~606 ~~1 ~r~~~~775 129 Brown Street -\W~: ~~g:~~!oI94 FAX: 607-797-7031 Port Chester (10523) Zeus Components 100 Midland Avenule ~~I ~r~~~2553 ~~ft~~erA~~~~3J61 333 Metro Park -IUt'll: ~rg~~70 15-3 H Siliconix incorporated u.s. Distributors (Continued) NEW yoRK (Conl'd) II:XM. Rochester (14624) Addison (75001) Richardson (75081) QUalilleCom~ents Marshall tr,Il 1250 Scottsville Road ~:r,g~ 7~~allrcle TWX: 910-860-5459 FAX: 214-250-0216 Austin (78758) Hamllton/Avnet, 1126 1807A W. Braker Lane Ronkonkoma (11779) [~fS =~cr.:t~V8. W~ll~~~~o ru,~: f,I~~J~t319 Westbury (11690) Hamllton/Avnet, 1r39 1065 Old C Road ~':.~~~alr8754 ) ru,~: ~~~ 8504 Cross Park Dr. 6 6 FAX: 516 Woodbury (11797) ru,~: f,I~~8~1196 Plonoor/[ong Island 131if".Mf.!r'oJ'ark W. FAX: 516-92H!143 ~~!~iWo° Austin (918) 664-8812 (512) 834-9957 Carrollton (75006) m~ ~~~r~~e~:'~~parkWay Suite 600 ~~: 81gjgg~03 ~~~I1?=~8\~7m) 6024 S. W. Jean Road ~~ggi C6:!s~Mr6 to TWX: 910~56-8179 PENNSYLVANIA (214) 233-5200 Dallas (75240) IDalias 1 29Z'~~:oad • 214~90-8419 Houston (77040) ~~~:ll'~~At~~43 ~~1 ~?~~J~?a662 15238)h West Valley City (64119) ~ ~~or~~S-EMG Ste. E ~~1 ~~t.:g~-2524 WASHINGTON Bellevue (98007) Marshall 14102 N.E. 21st St. ~~1 ~~::J~~2657 ~~~S:~/~~~:~ w.,~: g~~~1606 ~:~~s\~~~rJn WISCONSIN (713) 879-9953 Milwaukee (53214) 2111 W. Walnut Hili Lane 2800 Liberty Avenue, Bldg. E. Salt Lake City (84115) Marshall 466 Lawndale Dr., 8te. #0 5853 Point West Drive w..~: ~~a~~778 215-674~107 1585 West 2100 South ¥t\!.1l:9lf~018 Marshall 11001 8. Wllcr.st, 8te.l00 FAX: Salt Lake City (64119) W~8) L:sl1l'_~oo Horsham (19044) Pioneer/HOrsham 261 Gibraltar Aoad ~~1 ~t8~988 ~~1 ~~:J~!o936 \787581 ~~~ ~~I~Ur~~~r Lane Marshall 2045 Chenault St. Hillsboro (97123) Quality Components 1005 Ihdustrlal Boulevard At Bournawood HamlltonlAvnet, #09 ~~~~t C~~~t~~e Ste N 274 w.,~: 2:~o-lljl-5523 Sugarland (77478) YIAIi Austin (78758) Tulsa (74129) 4850 wrl$'t Road 190 1826 Kramer Lane ~~1 m::gg~9829 g,u6-J1~. ~'II$'Il:'~~n.l.~., w..~: ~rg~g~~422 ~~~ft'~nl~~~! N11 Austin (78758) PioneerJAustin OKLAHOMA f:8S ~~~r:~v'm~S Drive 8ulte 120 ~~~It'cr~~~et, Marsh Electronics, Inc. #16 W:W~~~929 Richardson (75083) Wyle Distribution 1810 N. Greenville Avenue w..~: ~0:8~7683 1563 South 101st Street ~~:~rg~~~1 FAX: 414-771-2847 New Berlin (53151~ ~3.ffiIl~r~:~tR!.~ ~~: ~ro~~118 Waukesha (53186) Bell Industries W227N913 W. Mound Dr. ~~lftI~~~7 Canadian Distributors ~:~~~n(~~:f:S~60 190 Colonade Road (M3J 123) ronlCB Crescent N. 71 1-1470 (L4V 1M5) 6J: exwood t : 15-4 677-7432 61~92-8867 ~!~mO Pointe Claire (H9R 5C7) ~~t~~aE\~t~:;.' 237 Hymus Boulevard 1050 Baxter Road (613) 820-8313 FAX: Baxter Centre Future Electronics , ru,~: ~~-.m~1 614-695~707 St. Laurent (H45 1P8) ALBERTA ~:~ft~~~~~J68 2816 21st Street N. E. (403) 250-9380 Hamllton/Avnet, #65 ~~) R!M.~I83O" TWX: 610~21~731 Siliconix incorporated H European RepresentativesIDistributors ~ GERMANY NETHERLANDS UNITED KINGDOM Bacher Electronics GmbH Rotenmuhlgasse 26 Dltronlc GmbH Jullus-Hoelder Str. 42 Koning en Hartman Elektrotechnlek BV P.O. Box 125 Abacus Electronics Ltd. Abacus House Bone Lane A-1120 Wlen TEL: (0222) 835645-0 TLX: 131532 FAX: (0222) 834275 BELGIUM 7000 StuttGart 70 f&:: ~'¥s11la~20010 FAX: (0711) 7200132 EBV Elektronlk GmbH Obe 0-80 rhaching J.P. lemaire S.A. TEL: TLX: FAX: +[~:: ~~~1~50-OS-S0 EBV Elektronik GmbH Welmarstr 48 Av. Limburg Stlrum 243 6-1810 Wemmel FAX: (02) 450-00-271 DENMARK Delco A.S. ~~r~GggAll~rod ~Th': %2J) Wi!!?~ EIRE ClRELANPl Hili Electronics Klymore Park North E~~W"e~rsot TEL: 265299 TLX: 90708 FINLAND Instrumentarium Elektronllkka P.O. BOK 64 ~~L~2~J) i~3~ TLX: \24426 HAVUL SF FAX: (90) 502 1073 105-1 105-230 7000 Stuttj\art 1 f&\ ~~'1161910-o FAX: (0711) 613750 EBV Elektronlk GmbH Vlersener Strasse 24 4040 Neuss +&:: II!;l~~~f30072 FAX: 02101-593087 EBV Elektronlk GmbH Klebltzraln 18 3006 Bur~edel 1 Hannover f&:: ~~6~ 80 870 EBV Elektronlk GmbH Schenckstr 99 6000 Frankfurt M. 90 t&\ i~~9685037 FAX: (059) 7894458 Ing. Buro Rainer KOnig KOnlgsbergerstrasse 16A D. 1000 Berlin TEL: 030-772-8009 TLX: 184707 Buro K. H. Dreyer hweitzer-Rlng 36 bUJ~9b~7 Almex ~~p~ur~e L' Aubeplne 92164 Antony Cedex f&:: ~1l0~g765.21.12 84 Ing. Bure K. H. Dreyer Flensburger Strasse 3 2380 SChleswla, FAX: (1) 46.66.60.28 f&:: ~~ C. G. E. Compasants 32 Rue Grange Dame Rose 92360 Maudon La Foret Ultratronlk GmbH Gewerbestr, 4 8036 Herrschln~ TEL: (1) 46.30.24.25 FAX: (1) 46.30.01.29 Feutrler 5 Rue Jean Zay 42271 St. Priest En Jarez Cedex f&:: &1?0~i93.40.40 FAX: (1) 77.93.26.31 I. T. T. Multlcomposants Z.I. de Courtaboeuf Avenue des Andes 4055 t&:: l&~~2J 3 09-0 NORWAY ~v~e ~~~\I~~:~~ 20 Dott Ing. Giuseppe De Mlco S.P.A. . 20060 Casslna de Pecchl Via Vittorio Veneto 8 Milano 91940 Les Ulls t&:. ~1l8~g·20.551 FAX: (02) 9522227 ~~bu~e~fiG14 5SF FAX: (0635) 38670 TLX: 847589 Abercorn Electronics Ltd. Suite lA 17 Waterloo Place !f~lr:b~t~S:f~t~~2d EH1 3BG P.O. Box 27 N-2001 Llllestr¢m TLX: 727229 FAX: 031-556-7246 FAX: (02) 831455 ~~~f'SU~:~:'R~~~~'P~ t&\ \~or-02-20 PORTUGAL Crlstalonica Lda. Rua Bernardlm Ribeiro 25 ric Dto.e. Esq. 1100 Llsboa t&:: ~1~631. 540314, 561755 ~ Redlslogar S. A. Corazon de Marla, No. 7 28002 Madrid t&:: ~1J6~13 91 11 FAX: (91) 416 19 71 ~~~~~cfB~2fo Barcelona 11 TEL: (93) 254 90 48 SWEDEN Komponentbolaget NAXAB Box 4115 S-171-D4 Solna TEL: 08-985140 TLX: 17912 KOMP FAX: 08-7645451 SWITZERLAND Abalec A.G. Grabenstrasse 9 8952 Schlieren TEL: 01-730-0455 TLX: 829070 FAX: 01-730-9801 FAX: (08152) 5183 .IIA.LY FAX: (1) 64.46.95.95 SCAIB f[~:: ~~i46.02.00 2600 AC Delft TEL: 015-609906 TLX: 38250 FAX: 015-619194 Turkelek Electronic Co. Ltd . Hatay Sokak No. 8 Ankara TEL: (4) 11894 83 TLX: 44580 Barlec-Rlchfleld Ltd. TEL: 0403-51881 TLX: 877222 FAX: 0403-41746 Farnell Electronic Components Ltd. Canal Road Leeds LS12 2TU TEL: 0532-636311 ~~;:~~04 Hartech Ltd. 7 West Pall ant Chichester West TEL: TLX: FAX: P019 lTD 3511 9196 HB Electronics Ltd. Lever Street Bolton BL3 6BJ t&:: ~~J 386361 FAX: (0204) 384911 Hili Electronics 290 Antrim Road Belfast, N. Ireland TEL: 755611 TLX: 747103 Macro-Marketing Ltd. Burnham Lane ¥k"C':g?06~~~~s 4422 TLX: 947945 FAX: (05286) 56873 Semiconductor Specialists b'!~)oht~ouse ~:s~'8~a~i~~et Middlesex UB7 7XB ~~~~5J 445522, 446415 FAX: 0895-422044 t&\ YUGOSLAYIA Contact: Belram S.A. 83 Avenue des Mimosas 8-1150 Brussels, Belgium TEL. 734-33-32. 734-26-19 TLX: 21790 80 Rue d' Arcuel! 94523 Run~IS Cedex t&:: ~11~7.j~7.23.13 FAX: (1) 45.60.55.49 15-5 H Siliconix incorporated Rest of World RepresentativeslDistributors ARGENTINA Oodwell Industrial 8/F Tal Yau Bldg. 181 Johnston Road YEL S.R.L. ~1~~g:I~.1~1 Wanchal TEL: 5-8616200 TLX: 66623GILND HX CABLE: GILMAN FAX: 5-8934220 1037 Buenos Aires TEL: 46-2211 TLX: 18605 AUSTRALIA J..MQJA Anltech 1-5 Carter Street ¥~E~~~~~So"8'1' Orlol Services & Consultants Pvt. Ltd. 2141 TLX: AA73780 FAX: 02_8-5964 P. B. No. 9275 4, Kurla Industrial Estate Nara~an Na~ar. L.B.S. Marg. e..BAZJ..L. TLX: 011-72102 ~ 04571 Brooklin Sao Paulo Telsys Ltd. Atldum Ind. Park, Bldg. 3 Dvora HaneYla St. TEL: ~55-111 531-9355 TLX: 011) 53288 FAX: 55-11) 61-3nO Authorized U. S. Agent Neve Sharet Tel-Aviv 61431 :::&:: W2~8~001 Etek ElectronIcs Corp. 1490 N. W. 79th Ave. Miami. FL 33126 FAX: (3) 497407 ~~~J83-1188 .IAfA.!::i FAX: (305) 593-1762 HONG KONG Array Electronics Ltd. ~~:~~Oh~S~,~:~~~~:atre Tsusn Wan NT TEL: 0-4110083 61fsL~Y~~R~-:lLHK ~214) 647-8225 F~~:I1~~~~91s..~~~ NEW ZEALANP Unit B, 192 Walrau Rd. Glenfield TEL: (09) 444 2645 Blnanda Man1la :::&:: W4gg2cr.~H SINGAPORE Carter Semiconductor (8) PTE Ltd. ~~p~~~a~~a~entre ¥~~: 1-1 Uchlsalwai-Cho, 2-Chorne TO~~O 100 8 79 TLX: 36443 CARSIN FAX: 734-2449 DOS Electronics PTE Ltd. 80 Gantlng Lane KQBI;A ¥bn~:a~;J12 FAX: (02) 7847702 Tong Baek Trading Co. Ltd. Rm. H201 New Hanll Bldg. ~,':.~tM~ ~~~~,¥~yc 9~du;~~lal TEr,(021 7166625 TLX: K28569 TBTRACO FAX: (02) 7190818 TEL: 3-521833 TWX: 37119 ATEK HX FAX: 3-7644782 No. 02-09 Gentlng Block Ruby Ind. C~'ex . R.O.S. TLX: RS 35382 DOS FAX: 743-7435 ~:-1 ~~S~~r~~l Ctr. No. 19, Lam Hlng Street 0 HX 812 Elcano Street TLX: FAX: ~~~~~m Kowloon Bay, Kowloon PHILIPPINES Alexan Commercial m\ W1Mf~WFigco ConiC Investment Bldg. 13 Hoi< Yuen St. ~ ~~,n ~~.S:ill~sXI ~~r~4 MALAYSIA Lane 251 Nanking East Road GE IndUstries SON BHD Taipei J;(:k S~~:; :J?~man KL 50000 ~~I:a (~\"~M~-1703 TLX: MA 32149 PLAZAM Sec. 5 m:: 1~~Tsg~'lJgb6 CABLE: DONBC TAIPEI FAX: (02) 763-1241 J7~~~~~~erprlses Co. Ltd. 2 Wu Fu One Street ~~E~sig9~ 2517791 15-6 m:: 1&~5~9~vm~up CABLE: DYNASUPPLY VENEZUELA P. Benavides S.R.L. Avllanas a Rio Ediflcio Rio Caribs, Local 9 Caracas ~r~a~~2~.F R.O.S. Bldg. 35 Voldo-Dong Youngdeungpc:rKu Seoul ~X~~:c;l;gUP~I.YO. P. 12 Sol Psana 1 Ekaml Sukhumvlt 63 Bangkok 10110 Warburton - Frankie Tomen ElectronIcs CorP9ratlon ~~~rr~~~.~?~: FAX: 0-4995803 Atek Electronics Co. Ltd. Unit 1009, 10lF TEL: 3-7 TLX: 51226 FAX: 3-79988 CABLE: CEN THAILANP Grand PraIrie, Texas (75050) Ion Associates Inc. 1504 1Q9th Street ¥~t~ gf:~d"J~a{'l~g~~86 Hltech Av. Eng. Lulz Carlos 8errlnl 801 ConJ. 111/121 m:: ~ TEL: 52-92-97 TLX: 21801 PBTH H Siliconix incorporated U. S. Sales Offices EASTERN CENTRAL NORTHWESTERN SOUTHWESTERN 511100nlx Inc. 31 Bailey Avenue Ridgefield, CT 06877 Slllconlx Inc. Silicon Ix Inc, 21710 Stevens Creek Blvd., #100 Cupertino, CA 95014 511100nlx Inc. 17821 E. 17th Steet Suite 240 Tustin, CA 92680 (203) 431-3535 ~~~:lIn~63~~~~~g~2 Slllconlx Inc. 460 Totten Pond Road, 2nd Floor Waltham, MA 02154 (617) 890-7180 Easyllnk: 62914276 FAX: 617-890-0902 Slliconlx Inc. Cranes Roost Office Park 6~~n~~;n8:~~e7're60~~~' (312) 210 960-0106 Easyllnk: 62905249 FAX: 312-960-0329 Sillconlx Inc. Two King James South 24650 Center Ridge Road, 5te.143 Westlake, OH 44145 (408) 252-4620 FAX: 408-255-7682 Sillconix Inc, 7476 E. Long Circle Englewood, CO 80112 (714) 544-5378/7275 Easyllnk: 62912908 FAX: 714-731-0605 (303) 771-6886 FAX: 303-771-6887 (216) 835-4470 Easyllnk: 62910985 FAX: 216-835-9336 407 Whooping Loop, Ste.1647 Altamonte Springs, FL 32701 (407) 831-3644 Easyllnk: 62915200 FAX: 305-831-1321 SlIIconix Inc, 4020 Me Ewen Suite 116 Dallas, TX. 75244 (214) 385-4046/4047 Easyllnk: 62897938 FAX: 214-385-0390 APPLICATIONS ASSISTANCE Siliconix Inc. 2201 Laurelwood Road Santa Clara, CA 95054 (408) 970-5393 TWX: 910-338-0227 FAX: 408-727-5414 Europe Sales Offices UNITED KINGDOM WEST GERMANY FRANCE ITALY Siliconix Ltd. 3 London Road Newbury, Berks, RG13 1JL SllIconlx GmbH Johannesstrasse 27. Postfach 1340 D-7024 Fllderstadt-l Siliconix SARL Centre Commercial de I' Echat Place de I' Europe F-94019 Cretell Cedex tE~\ gbJ?g77.07.87 FAX: (1) 43.39.11. 71 Slliconlx SRL Via Bartolomeo 0' AMano 18 20146 Milano TEL: (02) 473661, 4228026 TLX: 331 837 "Pis Fwd to SlIIconlx" FAX: (02) 412.07.54 f&:: !~~~~~ 30905 fE~:: ~~~ml30002-o FAX: (0635) 34805 FAX: SCANDINAVIA Slllconlx Ltd. ~~~7~O~1 Jarfalla Sweden TEL: 08-795 93 90 TLX: 16404 FAX: 08-795 82 99 (0711) 70002-37 SllIconlx GmbH Putzbrunner Strasse 19 8012 Ottobrunn fE~:: ~~~~bg097835 FAX: (089) 6095117 APPLICATIONS ASSISTANCE Slilconlx Ltd. Morriston! Swansea! SAG 6NE TEL: 011-44-792-310100 FAX: 011-44-792-31040t Far East Sales Offices HONG KONG JAPAN APPLICATIONS ASSISTANCE Slllconlx (H.K.) Ltd. 5th Floor Liven House 61-63 King Yip Street Kwun Tong! Kowloon TEL: 3-427151 TLX: 44449SILXHX FAX: 3-7978011 CABLE: Sillconlx T~r~~~~d~Fw~I~g~~o~~xcl~~me Slliconlx (H. K.) Ltd. 5th Floor liven House 61-63 King Yip Street Kwun Tong, Kowloon t Hong Kong TEL: 3-427151 TLX: 44449SILXHX FAX: 3-7559066 CABLE: Sillconix Chlyoda-Ku, Tokyo 100 TEL: 03-506-3490 TLX: J-23548 FAX: 03-506-3497 Manufacturing Locations UNITED STATES UNITED KINGDOM HONG KONG TAIWAN Sillconix Incorporated 2201 Laurelwood Road Santa Clara! CA 95054 SlIIconlx Ltd. Morriston, Swansea SAS SNE Slliconlx (H. K.) Ltd. 5/6/7/8th Floors Liven House 61-63 King Yip Street Kwun Tong! Kowloon Slliconlx (Taiwan) Ltd. Nantze Export Processing Zone Kaohslung 15-7 ERRATA The data sheets for the devices listed below contain a typographical error in the electrical tables. You will notice we have incorporated into one test table the room temperature and minImax temperature parameter limits. Some of the tables incorrectly show the minimum temperature limits for ON resistance and leakages to be the same as the 25°C room temperature specifications. This should be changed so that the minimum temperature limits match the 125°C limits. The corrections required are to change the minimum temperature test (referenced as test #2) to be on the same line as the maximum temperature test (referenced test #3). Example: Incorrect Drain-Source ON Resistance I s =-10mA, V o =±8.5V V+ = 13.5 V, V- = -13.5 V Correct Drain-Source ON Resistance Is = -10 rnA, Vo = ± 8.5 V V+ = 13.5 V, V- = -13.5 V The data sheets affected are: D125 D129 D169 D470 DG123 DG125 DG221 DG243 DG300A/301 A/302A/303A DGP303A DG172 DG304A/305A/306A/307 A DG308A/309 DG381 A/384A/387 A/390A DG411/412/413 DG421 14231425 DG441 1442 DG444/445 DG180/181/182 DG183/184/185 DG186/187/188 DG189/190/191 DG480 DG485 DG501 DG503 DG200A DGP201A DGP508A DG126/129/140 DG133/134/141 DG139/142/145 DG143/144/146 DG506A/507A DG508A/509A DG526/527 DG528/529 DG534 DG535 DG536 DG538 DG540 DG541 DG542 DG5040-5045 DG601 G118 G119 Si3002
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:29 20:34:58-08:00 Modify Date : 2017:06:29 21:15:59-07:00 Metadata Date : 2017:06:29 21:15:59-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:98ffa5cb-2fbb-0449-858a-35bfb0d993c8 Instance ID : uuid:37f637ef-a6a6-b24f-8696-41c5899d9ed8 Page Layout : SinglePage Page Mode : UseNone Page Count : 1204EXIF Metadata provided by EXIF.tools