1988_TI_Programmable_Logic_Data_Book 1988 TI Programmable Logic Data Book
User Manual: 1988_TI_Programmable_Logic_Data_Book
Open the PDF directly: View PDF .
Page Count: 482
Download | |
Open PDF In Browser | View PDF |
• TEXAS . INSTRUMENTS Progralnlnable Logic 1988 1988 General Information Data Sheets Application Reports Mechanical Data The Programmable Logic Data Book ,., TEXAS INSTRUMENTS IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to or to discontinue any semiconductor product or service identified in this publication without notice. TI advises its customers to obtain the latest version of the relevant information to verify, before placing orders, that the information being relied upon is current. TI warrants performance of its semiconductor products to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not ne,cessarily performed. TI assumes no liability for TI applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright © 1988, Texas Instruments Incorpor~ted INTRODUCTION In this volume, Texas Instruments prflsents technical information on TI's broad line of programmable logic devices (PlDs), including 10-ns, 20-pin PAl® circuits. TI's programmable logic products include high-speed leadership circuits, as well as standard 20- and 24-pin PAL devices in a variety of speed/po/wer versions. This data book includes specifications on existing and future products, including: • High-performance, low-power IMPACT'" and IMPACT-X'" 20- and 24-pin standard PAL circuits • High-complexity latched- :and Registered-input PAL ICs and Exclusive-OR arrays • Flexible, '22V1 O-architectulre macrocell PAL ICs, including TI's enhanced, 20-ns version, the TIBPAl22VP10-20 • High-speed 6- and 3-ns, 1 OKH and 100K ECl IMPACT'" and ExCl'" PAL circuits • Ultra-low-power UV-erasalble and one-time programmable CMOS PAL ICs, including 20-pin, '22V10, and generic architectures • Fast, 50-MHz programmable state machines, including enhanced versions of '8251 05B/167B sequencers and the TIBP'SG507 Programmable Sequence Generator Texas Instruments high-speed programmable. bipolar devices utilize TI's advanced IMPACT'" and new IMPACT-X'" technologies. IMPACT-X'" uses trench isolation and polysilicon emitters to increase performance and reduce power dissipation compared to traditional processes. IMPACT-X'" provides 1.5-/Lm feature sizes and 7-/Lm pitch. Based on IMPACT-X"', TI's new ECl process, ExCl'" , offers even greater speed and density for highperformance ECl circuits. This volume contains design and specification data for 78 device types. Package dimensions are given in the Mechanical Data section in metric measurement (and parenthetically in inches). Four programmable logic applic,ation reports have been incorporated into this data book as a reference tool. They are: Designing with To'3xas Instruments Field Programmable Logic; Hard Array Logic; A Designer's Guide to the PSG507; and Systems Solutions for Static Column Decode. Complete technical data for any Texas Instruments semiconductor product is available from your nearest TI field sales office, local auth.mized TI distributor, or by calling Texas Instruments at 1-800-232-3200. PAL is a registered trademark of Monolithic, Memories Inc. IMPACT and IMPACT-X are trademarks of Texas Instruments Incorporated. ExCL is a trademark of Texas Instruments [Incorporated. v General Information 1-1 II Q CD ::::I CD ... ' !. ....5' o... 3 C» r+ 0' ::::I 1-2 Contents Page Alphanumeric Index .................... ,. . . . . . . . . . . . . . . . . . . . .. Glossary ..... ~ ................ ; . . . . . . . . . . . . . . . . . . . . . . . . . . .. Explanation of Function Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Parameter Measurement Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Hardware/Software Manufacturers ............................... TIIMPACT'" Design and Service Centers ....... ,.................... 1-3 1-5 1-9 1-11 1-12 1-13 1-14 ALPHANUMERIC INDEX Page Page PAL16LSAC PAL 16L8A-2C PALI6LSAM ............ PAL 16L8A-2M .......... 2-3 2-3 TIBPAL20L 10-30C .......................... 2-127 TIBPAL20SPS-30M ....... 2-139 TIBPAL20SPS-20C PAL16R4AC PAL16R4AM . . . . . . . . . . . PAL 16R4A-2M .......... 2-3 TIBPAL20X4-20C PAL16R4A-2C PAL16R6AC PAL16R6A-2C PAL16R6AM ........... PAL16R6A-2M .......... 2-3 2-3 TIBPAL20X4-30C ........................... 2-127 TIBPAL20XS-20C TIBPAL20XS-25M ........ 2-115 2-3 TIBPAL20X8-30C ........................... 2-127 PAL16RSAC PAL 16RSA-2C PAL16R8AM ........... PAL 16R8A-2M .......... 2-3 2-3 TIBPAL20Xl0-20C TIBPAL20Xl0-25M ....... 2-115 TIBPAL20Xl0-30C .......................... 2-127 PAL20LSAC PAL20LSAM ............ 2-15 PAL20R4AC PAL20R6AC PAL20RSAC TIBPAL20X4-25M ........ 2-115 TIBPAL22Vl0C TIBPAL22Vl0M ......... 2-145 PAL20R4AM . . . . . . . . . . . 2-15 TIBPAL22Vl0AC PAL20R6AM ........... 2-15 PAL20R8AM ........... 2-15 TIBPAL22VP10-20C TIBPAL22Vl0AM ........ 2-145 TIBPAL22VP10-25M ...... 2-157 2-169 TIBPALR19L8C TIBPALR19L8M TISPADI6NS-7C ............................ 2-27 TIBPALR19R4C TIBPAD ISNS-6C ............................ 2-35 TIBPAL 16LS-l0C TIBPALI6L8-12M ........ 2-41 TIBPALR19R6C T!BPALRI9R8C TIBPALR19R4M ......... 2-169 2-1S9 TIBPALR 19R5M TI8PALR19RSM ......... 2-1S9 TIBPAL 16LS-12C TIBPAL16LS-15M ........ 2-57 TIBPALT19L8C TIBPAL16LS-15C TIBPAL 16L8-20M ........ 2-S7 TIBPAL 16L8-25C TIBPAL 16LS-30M ........ 2-77 TIBPALT19R4C TIBPALT19RSC TIBPALT19LBM TI8PALT19R4M . ..... TIBPALT19R6M 2-1S1 '" 2-181 II ...e c: ' 0 ca .. .... .E .. 0 "i Q) c: Q) 0 2-1S1 TIBPAL ISR4-1 OC TIBPAL 16R4-12M ........ 2-41 TIBPALT19R8C TIBPAL1SR4-12C TIBPAL 16R4-15C TIBPAL 16R4-1 5M ........ 2-57 TIBPAL 16R4-20M ........ 2-67 TIBPLS50SC TIBPSG507C TIBPALT19RSM . ...... , ' 2-1S1 TIBPLS50SM . .......... 2-193 TIBPSG507M ........... 2-201 TIBPAL 16R4-25C TIBPAL 16R4-30M ........ 2-77 TIBB2S105BC TIBB2S105BM . . . . . . . . . . 2-209 TIBPAL ISRS-l OC TIBPALISRS-12M ........ 2-41 TIBPAL1SRS-12C TIBPAL ISRS-l 5M ........ 2-57 TIBS2S1S7BM . ......... 2-219 TIBS2S1S7BC TIC HAL ISLS-35C ........................... 2-229 TIBPAL ISRS-15C TIBPAL ISRS-20M ........ 2-S7 TIBPAL ISRS-25C TlBPAL ISRS-30M ........ 2-77 TIBPAL ISRS-l0C TIBPAL1SR8-12C TIBPAL ISR8-12M ...... 2-41 TIBPAL ISRS-l 5M ........ 2-57 TIBPAL ISRS-15C TIBPAL ISRS-25C TIBPAL ISR8-20M ........ 2-S7 TIBPAL1SRS-30M ........ 2-77 TIBPAL20LS-15C TlBPAL20LS-20M ........ 2-S7 TIBPAL20LS-25C TlBPAL20LS-30M ........ 2-101 TICPAL ISV8-25C TIBPAL20R4-15C TIBPAL20R4-25C TIBPAL20R4-20M ........ 2-S7 TIBPAL20R4-30M ........ 2-101 TIBPAL20RS-15C TISPAL20RS-20M ........ 2-S7 TICPAL22Vl0M ......... 2-271 TICPAL22Vl0C TIEPAL10HI6PS-3C ......................... 2-2S5 TIEPAL 10H1SPS-SC ......................... 2-291 TIBPAL20RS-25C TIBPAL20RS-30M ........ 2-101 TIEPAL10016P8-3C .... , .................... 2-297 TIBPAL20RS-15C TIBPAL20RB-20M ........ 2-S7 TlEPAL 10016PS-SC ......................... 2-303 TIBPAL20R8-25C TIBPAL20R8-30M ........ 2-101 TIFPLA839C TISPAL20L 10-20C TIBPAL20L 10-25M ....... 2-115 TIFPLAS40C TICHAL ISR4-35C ........................... 2-229 TICHAL ISRS-35C ........................... 2-229 TICHAL ISRB-35C ........................... 2-229 TICPAL ISLS-55C ........................... 2-243 TICPAL ISR4-55C ........................... 2-243 TICPAL1SR6-55C ......... '...............•.. 2-243 TICPAL ISRS-55C ........................... 2-243 TICPAL 1BV8-30M . . . . . . 2-257 TEXAS ." INSTRUMENTS POST OFFICE BOX 6!)5012 • DALLAS. TeXAS 75265 . TIFPLAS39M . . . . . . . . . . . 2-309 TIFPLAS40M . .......... 2-309 1-3 5' o . 3 ~ .... o· Q) :::s 1-4 GLOSSARY INTRODUCTION These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (lEC) for international use. PART 1 - GENERAL CONCEPTS AND CLASSIFICATIONS OF CIRCUIT COMPLEXITY Chip-Enable Input A control input that when active permits operation of the integrated circuit for input, internal transfer, manipulation, refreshing, and/or output of data and when inactive causes the integrated circuit to be in reduced-power standby mode. NOTE: See "chip-select input." II c: o '.ca, E ... o .... .5 '! Chip-Select Input Q) A gating input that when inactive prevents input or output of data to or from an integrated circuit. NOTE: See "chip-enable input." c: Q) o Field-Programmable Logic Array (FPLA) A user-programmable integrated circuit whose basic logic structure consists of a programmable AND array and whose outputs feed a programmable OR array. Gate Equivalent Circuit A basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that number of individual logic gates that would have to be interconnected to perform the same function. Large-Scale Integration (LSI) A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit. In this context a major subsystem or system, whether digital or linear, is considered to be one that contains 100 or more equivalent gates or circuitry of similar complexity. Mask-Programmed Read-Only Memory A read-only memory in which the data content of each cell is determined during manufacture by the use of a mask, the data content thereafter being unalterable. Medium-Scale Integration (MSI) A concept whereby a complete subsystem or system function is fabricated as a single microcircuit. The subsystem or system is smaller than for LSI, but whether digital or linear, is considered to be one that contains 12 or more equivalent gates or circuitry of similar complexity. Memory Cell The smallest subdivision of a memory into which a unit of data has been or can be entered, in which it is or can be stored, and from which it can be retrieved. Memory Integrated Circuit, An integrated circuit consisting of memory cells and usually including associated circuits such as those for address selection, amplifiers, etc. ~ TEXAS INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 1-5 GLOSSARY Output-Enable Input A gating input that when active permits the integrated circuit to output data and when inactive causes the integrated circuit output(s) to be at a high impedance (off). G) Programmable Array Logic (PAL"') CD i ... !. S" 0' A user-programmable integrated circuit which utilizes proven fuse link technology to implement logic functions. Implements sum of products logic by using a programmble AND array whose outputs feed a fixed OR array. . Programmable Read-Only Memory (PROM) A read-only memory that after being manufactured can have the data content of each memory cell altered 3 once only. a Random-Access Memory (RAM) 0' ;::, A memory that permits access to any of its address locations in any desired sequence with similar access time for each location. NOTE: The term RAM, as commonly used, denotes a read/write memory. Read/Write Memory A memory in which each cell may be selected by applying appropriate electronic input signals and the stored data may be either (a) sensed at appropriate output terminals, or (b) changed in response to other similar electronic input signals; Small-Scale Integration (551) Integrated circuits of less complexity than medium-scale integration (MSI). Typical (TYP) A calculated value representative of the specified parameter at nominal operating conditions (VCC = 5 V, T A = 25°C), based on the measured value of devices processed, to emulate the process distribution. Very-Large-Scale Integration (VLSI) A concept whereby a complete system function is fabricated as a single microcircuit. In this context, a system, whether digital or linear, is considered to be one that contains 3000 or more gates or circuitry of similar complexity. Volatile Memory A memory the data content of which is lost when power is removed. PAL is a registered trademark of Monolithic Memories Inc. 1-6 TEXAS . " INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TEXAS 75266 , GLOSSARY PART 2 - OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY lETTER SYMBOLS) f max Maximum clock frequency The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification. ICC Supply current The current into* the ICCH c o .~ Vee supply terminal of an integrated circuit. Supply current, outputs high The current into* the Vee supply terminal of an integrated circuit when all (or a specified number) of the outputs are at the high level. ICCl Supply current,outputs low The current into* the Vee supply terminal of an integrated circuit when all (or a specified number) of the outputs are at the low level. IIH High-level input current The current into * an input when a high-level voltage is applied to that input. III low-level input current The current into * an input when a low-level voltage is applied to that input. 10H High-level output current The current into * an output with input conditions applied that, according to the product specification, will establish a high level at the output. 10l low-level output current The current into * an output with input conditions applied that, according to the product specification, will establish a low level at the output. lOS (10) Short-circuit output current The current into * an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential). 10ZH Off-state (high-impedance-state) output current (of a three-state output) with high-level voltage applied The current flowing into * an output having three-state capability with input conditions established that, according to the production specification, will establish the high-impedance state at the output and with a high-level voltage applied to the output. NOTE: This parameter is measured with other input conditions established that would cause the output to be at a low level if it were enabled. IOZl Off-state (high-impedance-state) output current (of a three-state output) with low-level voltage applied The current flowing into* an output having three-state capability with input conditions established that, according to the product specification, will establish the high-impedance state at the output and with a low-level voltage applied to the output. NOTE: This parameter is measured with other input conditions established that would cause the output to be at a high level if it were enabled. 'E" ~ .2 .5 "iii ~ CU C CU e" *Current out of a terminal is given as a negative value. TEXAS . " INSTRUMENTS POST OFFiCe BOX 855012 • DALLAS, TeXAS 75265 1-7 GLOSSARY High-level input voltage An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables. NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is guaranteed. Input clamp voltage An input voltage in a region of relatively low differential resistance that serves to limit the input voltage swing. Low-level input voltage An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables. NOTE: A minimum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is guaranteed. High-level output voltage The voltage at an output terminal with input conditions applied that, according to the product specification, will establish a high level at the output. VOL Low-level output voltage The voltage at an output terminal with input conditions applied that, according to the product specification, will establish a low level at the output. ta Access time The time interval between the application of a specific input pulse and the availability of valid signals at an output. tdis Disable time (of a three-state output) The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from either of the defined active levels (high or low) to a highimpedance (off) state. (tdis = tpHZ or tPLZ). ten Enable time (of a three-state output) The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low). (ten = tpZH or tPzLl. th Hold time The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal. NOTES: 1 . The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed. 2 . The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is guaranteed. tpd 1-8 Propagation delay time The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level. (tpd = tpHL or tpLH)· TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 ' GLOSSARY Propagation delay time. high-to-Iow level output The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level. Disable time (of a three-state output) from high level The time interval between the specified reference points on the input and the output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state. Propagation delay time. low-to-high-Ievel output The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level. Disable time (of a three-state output) from low level The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state. tPZH Enable time (of a three-state output) to high level The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level. tpZL Enable time (of a three-state output) to low level The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level. tsr Sense recovery time The time interval needed to switch a memory from a write mode to a read mode and to obtain valid data Signals at the output. tsu Setup time The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal. NOTES: 1 . The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed. II c o ; ca ..E o -. .5 'ii CD C CD e" 2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is guaranteed. tw Pulse duration (width) The time interval between specified reference points on the leading and trailing edges of the pulse waveform. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 1-9 EXPLANATION OF FUNCTION TABLES The following symbols are used in function tables on TI data sheets. H G) CD ..e. 5' .... .. high level (steady state) L low level (steady state) t transition from low to high level ~ transition from high to low level value/level or resulting value/level is routed, to indicated destination ~ CD fl x z value/level is reentered irrelevant (any input, including transitions) off (high impedance) state of a 3-state output 0 a ... h ...o·3 Qo the level of Q before the indicated steady-state input conditions were established 00 complement of QO or level of established ell ~ Qn the level of steady-state inputs A through H respectively before the indicated steady-state input conditions were level of Q before the most recent active transition indicated by JL one high-level pulse 1.....f one low-level pulse TOGGLE 0 ~ or t each output changes to the complement of its previous level on each transition indicated by ~ or t. If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained. If, in the input columns, a row contains H, L, and/or X together with i and/or t this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level (H, L, QO, or 00), it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as r-L or l..S ,the pulse follows the indicated input transition and persists for an interval a pulse, dependent on the circuit.) 1-10 TEXAS. INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 SERIES TIBPAL', PAL', TlFPLA DEVICES PARAMETER MEASUREMENT INFORMATION 7V FROM OUTPUT UNDER TEST q CL ~ VCC TEST POINT FROM OUTPUT UNDER TEST RL L ~ c R1 FROM OUTPUT -0 3 PI ... 1 20 19 4 18 5 17 6 16 8 14 15 I/O I/O I/O I/O I/O ... CO CO C 9 1011 12 13 -0 z -og (!) The Half-Power versions offer a choice of operating frequency, switching speeds, and power dissipation. In many cases, these HalfPower devices can result in significant power reduction from an overall system level. The PAL16' M series is characterized for operation over the full military temperature range of - 55 °e to 125 oe. The PAL 16' e series is characterized for operation from Doe to 70 ae. t Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments. U.S. Patent Number 3.463.975. PAL is a registered trademark of Monolithic Memories Inc. PRODUCTION DATA documonts contain inlormation currant IS Df publication data. Prallueta conform to spacificlltions par the terms of Taxas Instruments :'=:=i~·i~~~7i ~:~:~:; :.r::::£::~1 not Copyright @ 1984, Texas Instruments Incorporated TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·3 PAL 16R4A. PAL 16R4A·2. PAL 16R6A. PAL 16R6A·2. PAL 16RBA. PAL 16RBA·2 STANDARD HIGH·SPEED PAL@ CIRCUITS PAL1SR4' M SUFFIX •.. J PACKAGE C SUFFIX ... J OR N PACKAGE PAL1SR4' M SUFFix. , • FH OR FK PACKAGE C SUFFIX .•• FN PACKAGE , (TOPVIEWI (TOP VIEWI eLK ><: u Vee uo __ -.l u>::;, liD liD 3 2 1 2019 Q Q Q I 18 1/0 5 17 6 16 Q Q 15 Q 14 Q Q I/O liD E C I» 1'+ I» (J) :::T CD CD GND 9 1011 1213 BE '-l..._---'r' - M SUFFIX ..• J PACKAGE C SUFFIX ... J OR N PACKAGE PAL16R6' PAL1SRS' M SUFFIX .•. FH OR FK PACKAGE C SUFFIX, .• FN PACKAGE (TOP VIEWI (TOPVIEWI eLK Vee ~o __ ~ u>::;, liD Q 1'+ en 3 Q Q Q Q Q GND '-l..._ _r' 2 1 2019 4 18 5 17 6 16 Q 7 15 Q Q 14 8 liD 9 1011 1213 DE PAL16R6' M SUFFIX ..• J PACKAGE C SUFFIX ... J OR N PACKAGE PAL1SR8' M SUFFIX ..• FH OR FK PACKAGE C SUFFIX FN PACKAGE (TOP VIEWI lTOPVIEWI ~ ~ __ u>d Vee eLK Q Q GND 3 '-l..._---'r' 2 1 20 19 Q 4 18 Q 5 17 Q 6 Q 7 16 '15 Q 8 Q I 2·4 ~I~ ~ ~ (!l 14 9 10111213 OE TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 76265 PAL 16LBA, PAL 16LBA·2, PAL 16R4A, PAL 16R4A·2 STANDARD HIGH·SPEED PAL® CIRCUITS functional block diagrams (positive logic) 'PAL16L8A 'PAL 16L8A-2 EN >1 & 32X64 '<:110-----0 10-----0 t> 10 10-,-""''''-1/0 16 0--.+........-1/0 IO-e+........-I/O 6 II ... 10-",-+,--1/0 II) 10-.-+........-1/0 CI) CI) .c: en ca ca 10-.-+.........-1/0 ... 6 C 'PAL16R4A 'PAL 16R4A-2 OE EN2 ClK C1 & 32X 64 -+- >1 ~ -+8 ~ ,: -+- ~ - r-+- ""'-- Q ~ -f-f- -l- Q ~ Q ~ EN >1 '<:1 . ~ -i""7"" ---.. --+r--"7 ~ , 4 o 2'<:1 10 "" I/O I/O I/O I/O ... - denotes fused inputs TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-5 PAL 16R6A, PAL 16R6A·2, PAL 16R8A, PAL 16R8A·2. STANDARD HIGH·SPEED PAl@ CIRCUITS functional block diagrams (positive logic) 'PAl16R6A ·PAl16R6A·2 6E _(N2 C1 ClK ~ & 32 X 64 ;;'1 ~ 10 ~ - : - --=-C> ....;.'!.- ;... - 0.:- Q Q ~ .....-... ~ ~ Q ~ ~ - Q ~ ~ -..?,..... r---..... I---" ~ - Q 2 Q h EN ;;'1 -+ -2 liD \7 liD ... 6 'PAl18R8A ·PAl18R8A·2 6E ClK & 8 ;;'1 32X 64 Q 10 Q Q 8 16 Q Q Q Q Q 8 - denQtes fused inputs 2-6 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 PAL16LBA, PAL16L8A·2 STANDARD HIGH·SPEED PAL® CIRCUITS logic diagram I (1 ) INPUT LINES PRODUCT , LINES 0 0 I 4 8 12 16 20 24 28 ·· ··· "'8 ·· ·· 31 1 f-- (19) v .- 0 .- (2),,~ r>-l (18) 1/0 v (3) 15 I 16 I ··• · ·· ·• ·· · ···• ·· · ··• · f-... f-- f-' 1 (17) liD (4) 23 )l '" 24 ~p- J (16) 1/0 r-- (5) 31 I )l 32 f--'" 1 (15) liD v (6) 39 I )l '" 40 >---' (14) liD V 7 47 I( )X ~ 48 1 f-- v ~ (13) liD >-- 55 I (8) X 1 56 f-' 1 ... 0 (12) \-- r- (9) 63 I 1 f-- (11 ) I .)l TEXAS .." INSTRUMENlS POST OFF1CE BOX 655012 • DAl.LAS, TeXAS 75285 2·7 PAL16R4A, PAL16R4A-2 STANDARD HIGH-SPEED PAL® CIRCUITS logic diagram ClKl.!lt> . INPUT LINES PRODUCT , LINES 0 0 4 B 12 16 20 24 28 ·· ·· Ii ·· · ··· · ·· · ·· · ··• · ·•• ··• ·•• • '-.../ 1 1 - v (3) 15 I (19)1/0 (18)1/0 1 16 c ... A) A) :::T v ).----, 7 en 1 }-- 1.(2~ IE 31 >---.> :bJ;~Q Cl I (4) ....23 v ...en CD CD ~ 24 - :bJ; '":J,... rt ~15)0 D- >---' Cl (5) 31 I (16)0 32 I e-D>---' (6) 39 )l 40 '""J ~C>t1 v f-- 47 1(7) (14) 0 Cl )l 48 --' f-- 55 I (8) Cl 1 v (13)1/0 1 )l 56 f-< )....)~ f-< • 1 (12) 1/0 ,. . 1 (9) 63 I~ 2-8 ~)OE TEXAS ." INSTRUMENlS POST OFFICE BOX 656012 • DALLAS. TEXAS 76266 PAL 16R6A, PAL 16R6A·2 STANDARD HIGH·SPEED PAL® CIRCUITS logic diagram CLK 11lt>------------- -- ------------------------ ---------------, P RODUCT, LINES INPUT LINES 0 0 00 0- (2) ·· ,?- 4 -- 8 12 16 20 24 28 31 ---- ~ f----c ). r---' '8 ·· liD r---' >---< ~D- 0 0 · · ·· ·· · ·· ·· · ·· · ~- ~:CW'" Q Cl }---> f---' 16 r-r--P- 0 0 X f---' 24 r=pf----- 0 0 ~ '"";:1 ~ Rv I... CI) (17) v Q CD CD .c Cl r-- (4) 23 0 ...caca (16) Q C Cl 31 (5) J] (19) A I----' 32 ~>~ I ~ Q v Cl (6) 39 X 40 \----; 0 ~Dr---' ~ Cl (7) 47 v ~) Q v 48 0 C-=~tJ; 0 0 0 JII) '"";:1 (13) v Q Cl 55 56 0- - 0 0 0 0 · )-- V J (12) \ (9) 63 ~-- TEXAS ." INSTRUMENTS post OFFICE BOX 655012 • DALLAS. TEXAS 75265 liD ~ 2-9 PAL 16R8A, PAL 16R8A-2 STANDARD HIGH-SPEED PAL® CIRCUITS logic diagram ClK l!lt>- PRODUCT i LINES 0 0 ,. I INPUT LINES 4 8 16 12 20 24 28 ·· • 1(2~ '8 ·· · ···· · ··• ·• ·· · ·· · ·• ··• ··• ·· 31 :>f--J Cl D- 16 f---1 ...-- ...--D...-- (4) 23 ~ :tw ~ '"Jv (16)0 t1 I.:l (15)0 ...--> )-- a v 17 )0 Cl (5) 31 X 32 i------1 Dr----' rvr Cl (6) 39 I 40 "'--p- ~ '"-yo;::1 (14)0 ~ '";::1 Cl 47 48 I (8) (18) ~ Cl I 24 tl R Cl f---1 (3) 15 1(7) ""Q f---1 I I ~~ f--- :>- 55 f--f--- 56 )-- (13)0 v Cl =>t1;~'''Q Cl (9) 63 I~- 2-10 ~)OE I TEXAS ~ INSTRJJMENTs POST OFFice BOX 655012 • DALLAS, TEXAS 75265 PAL 16L8A, PAL 16L8A·2, PAL 16R4A, PAL 16R4A·2 PAL 16R6A, PAL 16R6A·2, PAL 16R8A, PAL 16R8A·2 STANDARD HIGH·SPEED PAL@ CIRCUITS absolute maximum ratings over operating free·air temperature range (unless otherwise noted) Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C C suffix .............................. OOC to 70°C Storage temperature range ......................................... - 65°C to 150°C NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions M SUFFIX PARAMETER Vee Supply voltage VIH High-level input voltage VIL Low-level input voltage IOH High-level output current IOL TA Low-level output current Operating free-air temperature NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 5.5 5.5 0.8 -2 12 125 2 2 I OE input I C SUFFIX MIN 2.4 2 All others -55 0 5.5 5.5 0.8 -3.2 24 70 UNIT V V V mA mA ·e programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. PI ... U) CD CD .c (IJ ...caca C Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-11 PAL16L8A, PAL16R4A, PAL16R6A, PAL16R8A STANDARD HIGH-SPEED PAL® CIRCUITS recommended operating conditions M SUFFIX MIN fclock Clock frequency' tw Pulse duration, see Note 2 tsu th Hold time, input or feedback after elK t TYP 0 15 I <;:Iock high I Clock low Setup time, input or feedback before elK t C SUFFIX MAX 25 MIN TYP MAX 0 35 12 20 16 25 0 20 0 UNIT MHz ns ns ns NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock' The minimum pulse durations specified are only for clock high or clock low, but not for both simultaneously. electrical chara,cteristics over recommended operating free-air temperature range E VIK Vee = MIN, 11=-18mA c VOH Vee = MIN, IOH = MAX D) VOL Vee = MIN, 10l = MAX D) 102H ... Vee = MAX, Vo = 2.7 V Vee; = MAX, Vo = 0.4 V II Vee = MAX, VI = 5.5 V IIH Vee = MAX, VI = 2.7 V III Vee = MAX, VI = 0.4 V lo! Vee = MAX, Vo = 2.25 V Outputs Open CJ) :::r 10Zl CD !en Outputs I/O ports Outputs I/O ports Vee - MAX, ICC C SUFFIX M SUFFIX TEST.CONDITIONSt PARAMETER MIN TYP* 2.4 3.2 0.25 I OE INPUT I All others MAX -1.5 140 Vi' = OV TYP* 2.4 3.3 0.4 MAX -1.5 0.5 20 100 -20 100 20 -250 -250 0.2 25 0.1 -0.25 -0.4 20 -0.2 -30 185 UNIT V V 0.35 20 -0.2 -125 -30 MIN V ~A ~ mA ~ mA -125 mA 180 mA 140 tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. tAli typical values are at Vee = 5 V, TA = 25°C. §The output conditions have been chosen to produce a current that closely aproximates one half of the true short-circuit output current, lOS. switching characteristics over recommended supply voltage and operating free-air temperature ranges (unless otherwise noted) PARAMETER FROM TO TEST CONDITIONS f max 25 tpd 1,1/0, TYP* 45 15 MAX UNIT MIN TYP* MAX 35 30 45 15 25 MHz ns tpd elKt 0,1/0 Q Rl = 500 II, 10 20 10 15 ns ten OE~ Q el = 50 pF, 15 25 15 22 ns tdis OEt 1,1/0 Q See Note 3 10 10 15 ns 0,1/0 14 25 30 14 25 ns 1,1/0 0,1/0 13 30 13 25 ns ten tdis *AII typical values are at Vee = 5 V, TA = 25°C. NOTE 3: Load circuits and voltage waveforms are s~own in Section 1. 2-12 C SUFFIX M SUFFIX MIN TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, T~XAS 75265 PAL 16LBA-2, PAL 16R4A-2, PAL 16R6A-2, PAL 16RBA-2 STANDARD HIGH-SPEED PAL® CIRCUITS recommended operating conditions M SUFFIX MIN fclock Clock frequency tw Pulse duration, see Note 2 tsu Setup time, input or feedback before elKt th Hold time, input or feedback after elK t TYP 0 I Clock high I Clock low C SUFFIX MAX MIN 16 0 TYP MAX 18 25 28 28 35 MHz ns 25 ns 28 0 0 UNIT ns NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock. The minimum pulse durations specified are only for clock high or clock low, but not for both simultaneously. electrical characteristics over recommended operating free-air temperature range PARAMETER VIK Vee = MIN, 11=-18mA VOH Vee = MIN, IOH = MAX Vee = MIN, 10l = MAX VOL 10ZH Outputs Vec = MAX, Vo = 0.4 V II Vec = MAX, IIH Vee = MAX, III Vee = MAX, VI = 0.4 V lo! Vee = MAX, Vo = 2.25 V Vee = MAX, Outputs Open 1/0 ports ICC TYP* C SUFFIX MAX MIN MAX TYP* -1.5 3.2 -1.5 2.4 0.25 Vo = 2.7 V 10Zl MIN 2.4 Vec = MAX, 1/0 ports Outputs M SUFFIX TEST CONDITIONSt 0.4 3.3 V V 0.35 0.5 20 20 100 -20 -250 "A VI = 5.5 V 0.2 0.1 mA VI = 2.7 V 25 20 -0.2 ' -0.2 -0.1 -30 -125 75 VI = OV -0.1 -30 95 .c CIl ...nsns "A C mA -125 mA 90 mA 70 Q) Q) "A -250 I All others U) V 100 -20 10E INPUT PI ... UNIT tFor conditions shown as MIN or MAX, use the appropriate value specified 'under recommended operating conditions. *AII typical values are at Vee = 5 V, TA = 25°C. §The output conditions have been chosen to produce a current that closely aproximates one half of the true short-circuit output current, lOS. switching characteristics over recommended supply voltage and operating free-air temperature ranges (unless otherwise noted) PARAMETER FROM TO TEST CONDITIONS M SUFFIX MIN TYP* 16 25 f max tpd 1,1/0, 0,1/0 tpd elKt Q ten OB tdis C SUFFIX MAX MIN TYP* 18 25 MAX UNIT MHz 25 40 25 35 ns Rl = 500 Il, 11 35 11 25 ns Q Cl = 50 pF, '20 35 20 25 ns OEt Q See Note 3 11 30 11 20 ns ten 1,1/0 0,1/0 25 40 25 35 ns tdis 1,1/0 0,1/0 25 35 25 30 ns 'All typical values are at Vce = 5V,TA = 25°C. NOTE 3: Load circuits and voltage waveforms are shown in Section 1. TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-13 II 2-14 PAL20LBA, PAL20R4A, PAL20R6A. PAL20RBA STANDARD HIGH-SPEED PAL® CIRCUITS 02706. DECEMBER 1982-REVISED DECEMBER 1987 • PAL20LS' M SUFFIX ... JW PACKAGE C SUFFIX ... JW OR NT PACKAGE (TOP VIEW) Standard High Speed 125 nsl PAL Family • Choice of Input/Output Configuration • Preload Capability on Output Registers • DIP Options Include Both 300-mil Plastic and 600-mil Ceramic 3-STATE DEVICE I INPUTS o OUTPUTS 'PAL20LSA 'PAL20R4A 'PAL20R6A 'PAL20RSA 14 12 12 12 2 0 0 0 Vcc ) o )/0 )/0 REGISTERED I/O QOUTPUTS PORTS 0 6 4 (3-state buffers) 4 6 (3-state buffers) 2 S 13-sta!e buffers 0 I/O I/O I/O I/O o I GND description These programmable array logic devices feature high speed and a choice of either standard or half-power speeds. They combine Advanced Low-Power Schottky t technology with proven titanium-tungsten fuses. These devices will provide reliable, high performance substitutes over conventional TTL logic. Their easy programmability allows for quick design of "custom" functions and typically result in a more compact circuit board. In addition, chip carriers are also available for further reduction in board space. TEXAS CI) CI) .c tn ... U CO CO U U z>_o NC I 5 4 3 2 1 282726 25 I/O 6 7 24 23 I/O I/O 8 22 NC 9 10 21 I/O 20 19 I/O 11 o I/O 12131415161718 --ou--o zz The PAL20' series is characterized for operation over the full military temperature range of - 55°C to 125°C. The commercial range is characterized from ooe to 70°C. ::':!:~ri;·{:I~" ~=~~:r :.~,:::::~::.s not ...en PAL20LS' M SUFFIX ..• FH OR FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) In addition, extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. PROOUCTIOI OATA documants .ontain information CURlnt IS of publication datI. Products conform to specifications par the tarms of Taxi. Instruments ........_ _OJ-' (!) ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 Copyright © 1982, Texas Instruments Incorporated 2-15 PAL20R4A. PAL20R6A. PAL20R8A STANDARD HIGH·SPEED PAL® CIRCUITS PAL20R4' M SUFFIX . .. JW PACKAGE C SUFFIX . .. JW OR NT PACKAGE PAL20R4' M SUFFIX . .. FH OR FK PACKAGE C SUFFIX . .. FN PACKAGE (TOP VIEW} (TOP VIEW} OUTCLK :J VCC u .... u => U U 0 __ 02>_'" I I/O 110 4 Q 3 5 Q Q Q 110 110 2 1 282726 25 110 24 I 6 7 NC 8 22 NC 21 20 Q Q 19 110 23 10 11 E Q Q 12131415161718 - - ~ ~I~ - g (!) PAL20R6' M SUFFIX . .. JW PACKAGE C SUFFIX . .. JW OR NT PACKAGE (TOP VIEW} OUTCLK PAL20R6' M SUFFIX . .. FH OR FK PACKAGE C SUFFIX . .. FN PACKAGE (TOP VIEW) ..."" ~ VCC I Q 432 Q Q I I I Q Q Q 110 I GNDL..C;~"':"::'i-J u => U U 0 __ oz>_::::: 110 1 282726 5 25 6 7 24 8 22 NC 9 10 21 Q Q Q 23 20 11 DE 19 Q Q Q 12131415161718 --~~Io-g (!) PAL20R8' M SUFFIX . .. JW PACKAGE C SUFFIX . .. JW OR NT PACKAGE PAL20R8' M SUFFIX . .. FH OR FK PACKAGE C SUFFIX . .. FN PACKAGE (TOP VIEW} (TOP VIEW} OUTCLK I ..."" VCC U .... U => 2 U > U _0 __ 0 I Q Q Q Q Q 4 3 2 1 282726 Q Q Q Q NC Q Q 21 Q 10 Q 11 GND '-C!........::~OE 12131415161718 --~~I~-O (!) 2·16 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 Q PAL2DL8A, PAL2DR4A STANDARD HIGH·SPEED PAL® CIRCUITS functional block diagrams (positive logic) PAL20L8A PAL20L8A-2 EN ;'1 & 'ill:>---- 0 40X64 0 1/0 1/0 II ... 1/0 1/0 U) 1/0 G) G) 1/0 .c 0 ... 6 CO CO C PAL20R4A P~L20R4A-2 J EN2 "liE -l OUTCLK ~ 40X64 a C1 ;'1 -+- 1-0 ( 10 -+- ~ 1} 4 -+'--- * Q r---, Q r--- -+-+- - -+- Q r---, Q r---, --;- EN ~ 2'il ;'1 -+- 'il """"T >+ ~ '" + ~ .. 1/0 1/0 1/0 1/0 -~ ,4 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2·17 PAL20R6A, PAL20R8A STANDARD HIGH·SPEED PAL® CIRCUITS functional block diagrams (positive logic) PAL20R6A PAL20R6A-2 OE OUTCLK -tN2 ' C1 r--;- B 40X64 ....;..... -..:L • ,..-fI> -:.. - ~ ~ b-i1!~ - ;;>1 1=0 2 10 Q r----- .J!..J!..- ---... ---... ---... ~ ~ ---... J!..- ---... r?-t-;___ r+- Q Q Q Q Q EN ;;>1 'V 2 6 ) L I/O I/O . PAL20R8A PAL20R8A-2 OE OUTCLK 0 0 0 Q Q Q Q Q 8 2-18 TEXAS . " INSTRUMENTS POST OFFICE BOX 665012 • DALLAS. TEXAS 75265 PAL20L8A STANDARD HIGH·SPEED PAL® CIRCUITS (1) INPUT LINES 10 4 8 12 1\ 16 20 24 28 32 36 \ (2) .. ~ -t.. P RODUCT LI NES 0 • • (3) .. ~ (4)", -t.. (22) V • 7 8 • • • 15 ~ 16 ~ ... • 23• (8) ... ;.. """'t. 10)... Q) 1/0 ~ • "" 1 40 • • • 47 .. CO CO C (18) ~ • 39 i .c en (19) rJ 1/0 (17) 1/0 ~ ... 48 • • (9) 1/0 24 • • ... U) (20) -~ 31 """t32 (7)" II ..... • • (6)", I/O ...r--:--- • (5) .. (21) o (16) I/O v • 55 56 • • • 63 (15) v o (14) """1- ~ 11) TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2·19 PAL20R4A STANDARD HIGH·SPEED PAL® CIRCUITS OUTClK (1)J .... -V INP!JT"lINES 10 ~ 4 8 12 16 20 24 28 32 36 \ 123) PR OOUCT 0 LIN ES 13) ... 4)_ •• • 15 f.A ..... • • • 23 )-- v • • 31• ")- '32 " .... • L>" 40 • ~ (9)_ • • 47 1) :J 1/0 MI.l "" 10 ~ -V o ~ 119) 0 • • • 55 .... r----' ~ :J.... 118)0 '1v (17) C1 :©i 48 b--J 1 116) • • • 63 1 ..... v I (15) " (14) .....-1 ... ~3 2·20 o I/O ~ 56 £!.t- 121) .:..r r - - • 39• 7) -J 1/0 C 24 16) 122) . ~r 7 8 16 5)_ 1 TEXAS .." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 I/O PAL20R6A STANDARD HIGH·SPEED PAL® CIRCUITS OUTClK (1)II..... v , 0 .. INPUTklNES 4 B 12 16 20 24 28 32 36 , (23) (2) .. 1/0 PR ODUCT LI NES 0 r-.,......., 1 v • • • 7 (3) --t 8 • • 4) .... ." 15• 16 ... (6) -;. (7) (8) ... ... (9) )a II... ... ....... r- ~ .... • 23 c, ' ] (20 v )a U) CD CD .s::. f---' 24 • • • 31 )-- en "] M M (1 9)a ;.;>0- c, .... 32 • • • 39 )- 40 " ... • • • 47 )- ... " 48 • • • 55 "] ... CO CO o r--- (1 v c, ~ IJv (1 c, L>-~ ~I c, "I------' -) 56 10) 1/0 I '0 >- ~ -:l... '" c • • (5) (22) J • • • 63 ... v (15) 1 1/0 (14) 11) -;. .... TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 I ~) OE 2-21 PAL20R8A STANDARD HIGH·SPEED PAL® CIRCUITS OUTC LK ,... (1) v INPUT",LlNES "'0 4 8 12 16 20 24 28 32 (2) 36 " (23) -;.. PRODUCT LINES 0 • • • 7 (3) ... :r- ~ r.J."" ID E • >- 15• " A '" • • • 23 .• A '" >- • '" • >- A • _39 ~ • - >- • 47 ~ 48 (9) " • • • 55 >- ... i:l... (20 ~ Q ~ ~ ~19 V Q 11(18 "V"" Q 1. -yo- Q 1.v (1 6) Q I.J. (15 r----' ~ (17 r----' M .-J"" r----' "56 10) Q Cl -4. (8) ... (21) Cl 31 (6) ... 32 (7) ~ :r- "'2~ , I.J.v Cl 16 (51 ... Q .-J"" - - ' ~ 4) ~ Cl • • • 63 ~ Q V Cl (14) .... !.!t ~ I 3)_ OE ~ 2-22 TEXAS .." INSTRUMENlS POST OFfiCE BOX 655012 • DALLAS, TEXAS 75265 PAL20LBA, PAL20R4A, PAL20R6A, PAL20RBA STANDARD HIGH-SPEED PAL® CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M SUFFIX . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C C SUFFIX ............................. DoC to 70°C Storage temperature range ......................................... - 65°C to 1 50°C NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions M SUFFIX PARAMETER VCC Supply voltage VIH High-level input voltage Vil Low-level input voltage IOH High-level output current IOl Low-level output current fclock Clock frequency tw Pulse duration, clock tsu Setup time, input or feedback before OUTClKt th Hold time, input or feedback after OUTClKt TA Operating free.,.air temperature I High I low C SUFFIX MIN NOM MAX MIN NOM MAX 4.5 2 5 5.5 5.5 0.8 -2 12 20 4.75 2 5 5.25 5.5 O.B -3.2 24 30 0 20 20 30 0 -55 125 0 15 15 25 0 0 UNIT V V V mA EI mA MHz ns ns ns ns 70 ·C programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762 . . TEXAS. INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-23 PAL20LBA. PAL20R4A. PAL20R6A. PAL20RBA STANDARD HIGH-SPEED PAL® CIRCUITS electrical characteristics over recommended free-air operating temperature range PARAMETER TEST CONDITIONSt VIK Vee = MIN, 11=-18rnA VOH VOL Vee = MIN, Vee - MIN, 10H = MAX 10L = MAX Vee = MAX, VIH = 2.7 V Vee = MAX, VIH = 0.4 V 0, Q outputs 10ZH 10ZL I/O ports OE Input II • I/O ports 0, Q outputs All others OE Input IIH All others OE Input IlL All others lo§ c .... lee D) Vee = MAX, VI = 5.5 V Vee = MAX, VI = 2.7 V Vee = MAX, VI = 0.4 V Vee = MAX, Vo = 2.25 V Vee = MAX, VI = 0 V, Outputs open, DE at VIH M SUFFIX C SUFFIX MAX MIN TYP* MAX MIN TYP* -1.5 2.4 3.2 2.4 0.25 0.4 V 0.5 V V 20 100 -20 100 -20 -250 -250 0.2 0.2 0.1 40 0.1 40 20 -0.4 20 -0.4 20 -0.2 -30 -1.5 3.3 0.35 -125 150 -0.2 -30 210 UNIT ~A ~A rnA ~A rnA -125 rnA 210 rnA 150 D) tFor conditions shown as MIN or MAX, use the appropriate value specified' under recommended operating conditions. en :::r §The output conditions have been chosen to produce a current that closely approximates one half the true short-circuit current, lOS. ....en switching characteristics over recommended operating free-air temperature range (unless otherwise noted) CD CD tAli typical values are Vee = 5 V, TA = 25°e. PARAMETER FROM TO TEST CONDITIONS f max MIN TYP* MAX 30 UNIT MHz 15 30 . 15 25 RL = 5000, 10 20 10 15 ns Q eL=50pF 10 25 10 20 ns Q See Note 2 11 14 25 30 11 14 20 25 ns 0, I/O 0,1/0 12 30 12 25 ns 1,1/0 0,1/0 tpd OUTeLKt Q ten OE tdis ten OEt 1,1/0 1,1/0 tAli typical values are at Vee = 5 V, TA = 25°e. NOTE 2: Load. circuits and v,?ltage waveforms are shown in Section 1. 2-24 C SUFFIX MAX 20 tod tdis M SUFFIX MIN TYP* TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ns ns PAL20LBA, PAL20R4A, PAL20R6A, PAL20RBA STANDARD HIGH·SPEED PAL® CIRCUITS PRELOAD PROCEDURES 5V Vcc / ov--f VIH ,._--.:O:::U::..:T:,:.P,::U..:.;TS::.D::;I:.:S:::,AB:::;L:,:E:.::D:.....-_ ....Jt ___. \1...__________ VIL _ _ _ ~ j+-ton I I I4~O~,~I: I i I I I I I I o : VERIFY NEW I STATEO'n VDH~~~~~)L _ _~~[j~~~~LY-1_~I~~~~~c======== VOL":= z : ~ tpd PIN1 IOUTCLK) VERIFYO'n+1 h VIH VIL-----------------------J FIGURE 1, PRELOAD WAVEFORMS I+- II ... II) CI) CI) .c U) L _ _ _ __ ...caca C preload procedure for registered outputs Step Step Step Step Step Step Step 1 2 3 4 5 6 7 Pin 13 to VIH, Pin 1 to VIL, and VCC to 5 volts, Pin 14 to VIHH for 10 to 50 microseconds, Apply VIL for a low and VIH for a high at the Q outputs. Pin 14 to VIL. Remove the voltages applied to the outputs. Pin 13 to VIL. Check the output states to verify preload. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-25 E c .... Q) Q) en J CD CD r+ UI 2-26 TIBPAD16N8·7C HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER 03085. JANUARY 1988 • Very-High-Speed Address Decoder (Ideal for Use .with High Speed Processors) • I/O Propagation Delay: 7 ns Max • Field Programmable on Standard PLD Programmers ITOP VIEW) Vee o 1/0 1/0 I/O • Fully TTL Compatible • Security Fuse Prevents Unauthorized Duplication • Dependable Texas Instruments Quality and Reliability • J OR N PACKAGE 1/0 1/0 1/0 o GND Potential Applications Address Decoders Code Detectors Peripheral Selectors Fault Monitors Machine State Decoders ~ _ _...r- II... FN PACKAGE ITOPVIEW) u u ___ >0 3 description 2 U) CD CD 1 20 19 4 18 5 17 .c o ...caca 16 The TIBPAD 16N8 is a very-high-speed Programmable Address Decoder featuring 7 ns maximum propagation delay, the highest speed in the TTL programmable logic family. The TIBPAD16N8 utilizes the IMPACT-X'" process and proven titanium-tungsten fuse technology to provide reliable, high performance substitutes for. conventional TTL logic. 7 15 8 14 C 9 1011 1213 The TIBPAD16N8 contains 1a dedicated inputs and 8 outputs. Each output has two product terms, one of which is used to enable the inverting buffer associated with the respective output. Six of the outputs are I/O ports, the remaining two are dedicated outputs. Each of the six I/O ports can be individually programmed as an input or an output; this allows the device to be used for functions requiring up to 16 inputs and and 2 outputs or 1 inputs and 8 outputs. a The TIBPAD 16N8 is supplied with all six I/O ports in the input configuration (output buffers in the highimpedance state). If an I/O port is selected to be an output, it must be programmed accordingly. It is recommended that all unused outputs on this device remain in the three-state condition for better noise immunity. The TIBPAD16N8-7C is characterized for operation from IMPACT~X aoc to 75°C. Is a trademark of Texas Instruments Incorporated. PROOUCTIOI DATA documents contain information Durrant II of publication data. Pfoducts caoform to specifications par the tarms at TailS Inltruments ::.~=;af:~':!1i ~::I~~I~. :.:":!;:::~~. not Copyright @ 1988, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-27 TIBPAD 16N8·7C HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER functional block diagram (positive logic) & EN '" 1 32x16 'VP----O P----O I> 10 16 ~"""'~I/O ~..r"'-I/O 6 • ~tt-"'-I/O D-i..r...._1/0 c ....'" '" D-i..r...._1/0 6 tJ) :::r CD ....CD (II 2-28 TEXAS . " INSfRUMENlS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 TlBPAD16N8-7C HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER logic diagram (positive logic) 1111 0 4 8 12 16 20 24 31 J..!!!!. ~ N (2) (3) 28 k1~ ":x ~ -".. 0 I/O I/O fI J= 4.75 V. / 7.7 /V 7.6 .!! Q c .'." .....'" £ 7.5 0 7.4 / 7.3 7.0 / / / 7.2 7.1 / V 2 / 4 6 Number of Outputs Switching FIGURE 2 2-32 / TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 76265 8 TIBPAD16N8·7C HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER TYPICAL CHARACTERISTICS PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs FREE-AIR TEMPERATURE 150r--'--~--~--~-'---.--~--' 6.5 UNPROGRAMMED DEVICE '"f I\.tPH~ 6.0 \ CD E j:: ~ 2l \ 5.5 c tPLH .'" CI. E! 5.0 11. TA-Free-Air Temperature- DC PROPAGATION DELAY TIME vs SUPPLY VOLTAGE 24 n, 390 n, III c .. I E j:: > .!! CD 4.4 4.2 4.0 4.5 V U) G) G) - 20 ... CO CO 18 Q 14 .,.. 12 0 tpHL- ..'" ~J CI. i. tP~H-::: I / ~- V/ ./ 10 8 4 5.5 / /./ V 6 I V V t PHL 16 c 4.75 5.25 VCC-Supply Voltage-V .c en C VCC = 5 V, R1 - 200 n, R2 - 390 n, TA - 25 DC, 1 OUTPUT SWITCHING 22 -R2 -CL - 50 pF, -TA = 25 DC r--;: fI -- ... - PROPAGATION DELAY TIME vs LOAD CAPACITANCE -R11. 200 ...... ~ / t7 FIGURE 4 FIGURE 3 ~ / ./ ./ r--- 4.5 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- DC 9~7=5~-~5=0---=25~~0--=2=5--~-==-~~~125 f '\ r-... J -....... --........ "- V o .~ 7.0 6.8 ,".6.6 6.4 ~ 6.2 j:: 6.0 ~ 5.8 ~ 5.6 § 5.4 ;; 5.2 ~. 5.0 E! 4.8 11. 4.6 VCC - 5 V, R1 - 200 n R2 - 390 n CL - 50 pF, 1 OUTPUT SWITCHING ;; ~ o FIGURE 5 V hV 600 200 400 CL -Load Capacitance-pF 800 FIGURE 6 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-33 2-34 TIBPAD 1BNB·6C HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY 03086. DECEMBER 1987 • J OR N PACKAGE Very High Speed Address Decoder (Ideal for Use with High Speed Processors) (TOP VIEW) Vee • 1/0 Propagation Delay: 6 ns Max • Suitable for High Speed NAND·NAND Logic Implementation • Field Programmable on Standard PLD Programmers • Fully TTL Compatible • Security Fuse Prevents Unauthorized Duplication 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 GND '-1.._ _..r" • Dependable Texas Instruments Quality and Reliability • Potential Applications Address Decoders Random Logic (NAND·NAND) Code Detectors Peripheral Selectors Fault Monitors Machine State Decoders II ... FN PACKAGE (TOP VIEW) U UO en --->;:, 3 2 II) II) 1 20 19 4 18 5 17 6 16 15 8 14 .c en 1/0 1/0 1/0 1/0 1/0 ... ~ ~ C 910111213 description The TIBPAD lSNS-6C is a very-high-speed Programmable Address Decoder featuring 6-ns maximum propagation delay, the highest speed in the TTL programmable logic family. The TIBPAD lSNS uses the IMPACT-X'" process and proven titanium-tungsten fuse technology to provide reliable, high-performance substitutes for conventional TTL logic. The TIBPAD1SNS-6C contains 10 dedicated inputs and 8 product terms, each followed by an inverting buffer leading to an 110 port. Each of the eight 110 ports can be individually programmed as an input or an output, depending on the state of the fuse controlling the output buffer, as indicated by Table 1. This allows the device to be used for functions ranging from 17 inputs and a single output to 10 inputs and S outputs. sw A high-speed feedback path, which does not go through the output buffer, is provided to offer higher performance operation in designs where feedback is required. The architectural fuse on the 110 multiplexer is used for the selection of this path (see Table 2). This makes the TIBPAD1SNS-6C ideal for the implementation of a very fast NAND-NAND logic. :>w a: The TIBPAD lSNS is supplied with all eight 110 ports in the input configuration (output buffers in the highimpedance state). If an 110 port is selected to be an output, it must be programmed accordingly. It is recommended that all unused outputs on this device remain in the high-impedance state for better noise immunity. a.. I- o ::::> The TIBPAD1SNS-6C is characterized for operation from 0 DC to 75 DC. c oa: a.. IMPACT-X is a trademark of Texas Instruments Incorporated. PRODUCT PREVIEW d......1IIJ ••ntain informati.n • n prod••ts in the formative .r delign pha.. of development. Charactaristia data anil other =::~::Iri~~ dt-:i:C8:::1~T:'::'=~ur:= pradoets without notice. Copyright @ 1987, Texas Instruments Incorporated TEXAS • INsrRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-35 TIBPAD1BNB·6C HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY functional block diagram (positive logic) 8xl> & 10 I> ~ 8 8 ~ ~ 8 9 36x8 ~ 1/0 EN L 8 18XMUX 1 E I-- G1 C m m ":' r+ en ::r Table 1. Output Buffer Programming CD CD ARCHITECTURAL rn FUSE r+ OPERATION Table 2. I/O Multiplexer programming ARCHITECTURAL FUSE Input Intact Intact (Output Buffer Blown in Hi-Z Statel Output Blown "'0 :D o C c: (") -I "'0 :D m S m ~ 2-36 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 OPERATION I/O Feedback High-Speed Feedback TIBPAD1BNB-6C HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY logic diagram (positive logic) III I~ DI191 I ~ 131 - DIISI I/O v 141 I/O MUX , 1 ~ DI171 v 151 I/O MUX , II) .c BI~ IV en I/O MUX , 161 .... Q) Q) 1 ~ II ....COCO C 1 ~ & I/O v 171 MUX , 1 ~ ~ lSI 1141 I/O MUX, 1 ~ ~ W DI131 ~ 191 - I111 HIGH PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY ~ TEXAS INSTRUMENTS POST OFFICE BOX 655012· DALLAS, TEXAS 75265 I/O a: c.. tO DI121 ~ :>W I/O ::::> C 0 a: c.. 2-37 TlBPAD18N8·6C HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 75°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150 °C NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions E C I» r+ I» (J) :r CD CD Vee Supply voltage VIH High-level input voltage (see Note 2) Vil 10H low-level input voltage (see Note 2) High-level output current 10l TA Operating free-air temperature MIN NOM MAX 4.75 5 5.25 2 UNIT V V Low-level output current 0 0.8 -3.2 V rnA 24 rnA 75 °e NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or tester noise. Testing these parameters should not be attempted without suitable equipment. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted I r+ TEST CONDITIONS PARAMETER (II MIN Typt 2.4 3 MAX -1.2 UNIT V Vee = 4.75 V, 11= -18 rnA VOL Vee = 4.75V. Vee - 4.75 V. 10ZH vee = 5.25 V. 10H = MAX 10l - MAX Vo = 2.7 V IOZl II Vee = 5.25 V. Vo = 0.4 V 20 -20 Vee = 5.25 V, VI = 5.5 V 0.2 pA IIH Vee = 5.25 V, Vee - 5.25 V, VI=2.7V 20 VI - 0.4 V -0.25 pA rnA Vee = 5.25 V. Vee = 5.25 V. Vo = 0 V VI = 4.5 V VIK VOH III lOS lee 0.37 V 0.5 V pA pA rnA 140 180 rnA switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER "'C FROM ::XJ CONDITIONS I/O (no feedback) o I/O (with 1 feedback path C C tpd (") -I "'C ::XJ TEST TO I 1/0 1/0 - 1/0 MUX fuse blown) (with 2 feedback paths I/O MUX fuse blown) (with 3 feedback paths 1/0 MUX fuse blown) Rl = 200 R2 = 390 el = 50 pF tAli typical values are at Vee = 5 V. TA = 25°e. m - w W a: a.. t- (.) :;:) Q oa: a.. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-39 • C I» r+ I» en ::r ~ ~ r+ til 2-40 TIBPAL 16L8·12M, TIBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M TIBPAL 16L8·1 DC, TIBPAL 16R4·1 DC, TIBPAL 16R6·' DC, TIBPAL 16R8·1 DC HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS 03023. MAY 1987-JANUAAY 1988 • • High·Performance Operation: f max (w/o feedback) TIBPAl16R'·10C Series ... 62.5 MHz TIBPAl 16R'·12M Series •.. 56 MHz f max (with feedback) TIBPAl16R'·10C Series ... 55.5 MHz TlBPAl16R'·12M Series ... 48 MHz Propagation Delay TlBPAl16l·10C ... 10 ns Max TlBPAl16l·12M ... 12 ns Max Vee 0 I/O I/O I/O I/O I/O Functionally Equivalent, but Faster than Existing 20·Pin PAls I I/O I 0 GND • Preload Capability on Output Registers Simplifies Testing • Power·Up Clear on Registered Devices (All Register Outputs are Set low, but Voltage levels at the Output Pins Remain High) • TIBPAL l6LB' M SUFFIX ..• J PACKAGE C SUFFIX ... J OR N PACKAGE (TOP VIEWI .c _>0 3 2 C/) 4 • Dependable Texas Instruments Quality and Reliability 8 14 PAL16LB PAL16R4 PAL16R6 PAL16R8 3·STATE 10 8 8 8 2 0 0 0 REGISTERED Q OUTPUTS 0 4 (3·statel 6 13-statel 8 (3-statel I/O ...coco 1 20 19 Security Fuse Prevents Duplication o OUTPUTS ~ ~ U u • INPUTS U) C SUFFIX ... FN PACKAGE (TOPVIEWI Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs DEVICE PI ... TIBPAL l6LB' M SUFFIX ... FK PACKAGE 18 I/O 5 17 I/O 6 16 I/O 15 I/O I/O C 9 1011 12 13 PORTS 6 4 2 0 Pin assignments in operating mode description These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT" circuits combine the latest Advanced low-Power Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom· functions and typically results in a more compact circuit board. In addition, chip carriers are available for further reduction in board space. All of the register outputs are set to a low level during power-up. Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. The TIBPAl16' M series is characterized for operation over the full military temperature range of - 55°C to ·125°C. The TIBPAL16' C series is characterized for operation from aoc to 75°C. IMPACr" is a trademark of Texas Instr~ments Incorporated. PAL® is a registered trademark of Monolithic Memories Inc. t'ntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments. U.S. Patent Number 3.463.975. PRODUCTION DATA d••uments ••ntain inf.rmati.n currant as of publication data. Products conform to spacificatians par the tarms of TaXI. Instruments :=~:~~i;ar::,~1i ~:~~:i:r :,~O::~::~:~~ not TEXAS ~ INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 Copyright @ 1987, Texas Instruments Incorporated 2·41 TlBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M TlBPAL 16R4·1 DC, TIBPAL16R6·1 DC, TlBPAL 16R8·1 DC HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS TIBPAl 16R4' M SUFFIX ... J PACKAGE C SUFFIX ... J OR N PACKAGE TIBPAl16R4' M SUFFIX ... FK PACKAGE C SUFFIX .•• FN PACKAGE (TOPVIEWI (TOP VIEW) eLK Vee '" U .... UO _ _ U>;:, I/O I/O E c D) .... D) en ::::r 3 2 1 2019 0 4 18 Q 5 17 Q 6 16 0 15 I/O I/O 14 I/O Q Q 0 0 9 1011 1213 5E - ~1t:5 gg (!l TIBPAl16R6' M SUFFIX ••• J PACKAGE C SUFFIX •.. J OR N PACKAGE (TOP VIEW) eLK nBPAl16R6' M SUFFIX .•. FK PACKAGE C SUFFIX .•• FN PACKAGE (TOP VIEW) Vee 1/0 CD CD Q ....rn 3 Q 2 1 2019 18 4 Q 17 Q 16 6 Q Q 15 14 1/0 Q Q Q Q Q 9 1011 12 13 GN D '-t...-=--"";"J-' OE - ~1t:5 ga (!l TIBPAl16R8' M SUFFIX .•• J PACKAGE C SUFFIX .•• J OR N PACKAGE (TOP VIEW) eLK TIBPAl16R8' M SUFFIX •.. FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) ~ tl __ u>o Vee Q Q 3 18 Q Q 5 17 0 6 16 Q Q Q Q 7 Q 8 14 Q 9 1011 1213 ill - 0lw a zO (!l Pin assignments in operating mode 2·42 1 2019 4 o GND '-t...-=--~t-' 2 Q TEXAS • INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 a TIBPAL 16L8·12M, TIBPAL 16L8·1 OC, TIBPAL 16R4·12M, TlBPAL 16R4·1 OM HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS functional block diagrams (positive logic) 'PAL16L8 & 7 EN >1 b-----o 32 X 64 0----0 0-.........-1/0 D-e+........-I/O .......-I/O o-~ IO-~.........-I/O ... n-a+-....__ 1/0 CI) Q) Q) .c U) ... 6 C'CS C'CS C 'PAL 16R4 EN2 C1 O! CLK r---s;32X64 ,.......,.. 16xt> 8 ~ ~ "v --, p-f- "v rlL-- >1 8 ~ 1-0 ~ ~ ~ 2'9 Q ~ 10 Q :> 1----1 :> ~ :> ~ Q Q I - - EN >1 r+- '9 '"'- ..... ~ '---7 I-+- "'\ ~I--+4 "'\ ..... ~ 4 7 1/0 1/0 1/0 1/0 .... rv denotes fused inputs TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 2-43 TIBPAL 16R6·12M, TIBPAL 16R6·1 DC, TIBPAL 16R8·12M, TlBPAL 16R8-1 DC HIGH·PERFORMANCE IMPACT ™PAL® CIRCUITS functional block diagrams (positive logic) 'PAL16R6 De----------------------~~~--, CLK .....--------------------------~ r~-r1=ii2tl--o r-----t------1-~-o t---t-----t.......:1--o t---t-----t.......:1--o r------t------1-..l-- E 0 c C» r+ C» ........ l--~:p_1IiI _tb--eri........~-~- f/) :r CD CD 1/0 1/0 r+ (I) 'PAL16R8 De eLK ;;'1 0 0 0 16 0 a 0 0 0 rv denotes 2-44 fused inputs TEXAS .., INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlBPAL 16LB·12M, TlBPAL 16LB·1 DC HIGH·PERFORMANCE IMPACTTMPAl® CIRCUITS INPUT LINES P ROOUCT, LINES 0 0 4 8 12 16 20 24 28 31 0 0 0 0 0 t----. }--- r-- f..--' r-- o- ~ 8 r- 0 0 0 0 0 0 V-- ~ t:>-- (3) 15 ')f p- (19) I.- J (18) o 1/0 J<: 16 }-c 0 0 0 0 0 0 1 ./ 1 (17) --V 1/0 r-- ")[ J: en J< 24 0 0 0 0 0 0 I (5) r- f--.... r-- fJ 31 " ~ 0 0 0 0 0 0 (6 ) p- r-<~ ~ J r)---- 0 0 0 0 0 )---- . )---)---- 47 I (7)")1. f--.... V 1 --V I<' +- 48 0 0 0 0 0 0 - 55 I (8) ")I 56 h f-< 0 0 0 0 0 0 ....r~f-/ 1 '>-- 63 J- J (14) 1 i-_J )---- (15) 1 ~ J..!Ilt>t:. (16) I.- l- 39 40 I J 1/0 ... CO CO C .... 32 I en II) II) ~ (4) 23 II ... (13) (12) I.- 110 1/0 110 o (11 ) I! -IJ1 TEXAS INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·45 TlBPAL 16R4·12M, TIBPAL 16R4·1 DC HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS CLK1!lt> p RODUCT, LINES 0 0 INPUT LINES 4 8 12 16 20 24 28 ·· ·· ~ ''8 ··· ··• · ··• · ··• • E 31 J ~ v j l)- (18) Vi )-- (3) 15 16 I (19) 1/0 1/0 >->->-- P-Q[tJ..!!.~1 a C1 (4) 23 24 >--1=>J< 32 C C1 >-- (5) 31 ~16) a l- ~'- ..>- I--).-.l- ')[ >-- ··• · ·· · ···• P-~ 48 '-..>-- 55 2·46 (9 ) J bv (14) a r- ----J<.J l- p- I--" f--r---, 63 J( TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 (13) 1/0 i }-- 56 I a C1 47 (7) ':>I, (!!) (15) v C1 (6) 39 40 kJ t;:} j VI (12) ~) 1/0 TIBPAL16R6·12M, TIBPAL 16R6·1 DC HIGH·PERFORMANCE IMPACT'MPAL® CIRCUITS CLKDlt> .-~---- - ------------ INPUT LINES P RODUCT • LINES 0 0 4 8 16 12 20 24 28 31 1 :0 0 0 v }-- - ~ 8 I (191 I/O -« ..... 0 0 0 0 0 0 }-- >-D- (31 15 }-- 16 }-- o - fbl~"" Cl \--- 0 0 0 0 0 Q -> t1; ~I Q v Cl (41 23 -'- 24 \-----' \---, 0 0 0 0 0 0 t> -' t1; '"J (161 t1; >-;:I (151 V Q ...caca Q Cl (51 31 \--- 32 0 0 0 0 0 0 - -> - V Q Cl 39 (61 ')[ }-- 40 0 0 0 0 0 0 ~ 48 ~ ;b-t1; 0 0 0 0 0 0 - 55 (81 ")( v (141 Q Cl )-- 47 (71 ")( ~ KY~I Q Cl 56 ·· · -~ 0 0 l-< h 1- !-/ "---' ~- . TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 J v (121 I I/O ~I 2-47 TIBPAL 16R8·12M, TIBPAL 16R8·1 DC HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS ... CLK ( 1 ) v . INPUT LINES P RODUCT , LINES 0 (2) 0 4 8 12 16 20 24 28 ·· ·• ··• ·• ··• • 31 - tr "" D- C1 >-- ~ Vb- 8 }--- ~P}--- 16 o .... .-- >-D- '>r 24 >-- ·· • • CD CD .... til >-- · • •• • .... Q }--- >-- ')[ f6l fbl I.:J. (14) -va- Q C1 '" 40 ·••• ·· ·· · ~ I.:J. (15) --vo-- Q P- (6) 39 ~ - (7) 47 48 )-- C1 :>- ~) Q C1 (8)~55 ,... 56 •• ~~~t?'''' ··• 2·48 R(16) C1 >-- '>r 32 (9) 63 ·X ~ -:>}--- (5) 31 I !.:1 (17) -va- Q C1 (4) 23 en ::T fkl t1 ~Q C1 (3) 15 I» I» Q . C1 '- ~) t TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 Q TlBPAl16l8·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16R8·12M TIBPAl 16LB·1 DC, TIBPAl 16R4·1 DC, TlBPAl 16R6·1 DC, TlBPAl 16R8·1 DC HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e e suffix .............................. ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 0 e I I I NOTE 1: These ratings apply except for programming pins during a programming cycle. I recommended operating conditions PARAMETER VCC VIH Vil 10H 10l MIN 4.5 2 Supply voltage High-level input voltage (see Note 2) low-level input voltage (see Note 2) -12M NOM 5 High-level output current Low-level output current fclock Clock frequency 12 56 0 l High J low tw Pulse duration, clock (see Note2) tsu th TA Setup time, input or feedback before ClKi Hold time, input or feedback after ClKt Operating free-air temperature -IDe MAX 5.5 5.5 0.8 -2 9 9 11 0 -55 25 125 MIN 4.75 2 NOM 5 0 8 8 10 0 0 25 MAX 5.25 5.5 0.8 -3.2 24 62.5 75 ~ UNIT V V V mA mA MHz il G) ns ns ns ... en ca ca Q °c NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system andlor tester noise. Testing these parameters should not be attempted without suitable equipment. . electrical characteristics. over recommended operating free-air temperature range VIK VOH VOL VCC VCC VCC 10ZH§ VCC 10Zl § II VCC VCC = MIN, = MIN, = MIN, = MAX, = MAX, = MAX, = MAX, = MAX, = 5 V, IIH§ VCC Ill§ Vce lOS' Vce Vce - MAX, V, = OV, f = 1 MHz. f = 1 MHz. f = 1 MHz. ICC ein Cout CelK -12M TEST CONDITlONSt PARAMETER = II MIN -18 mA = MAX = MAX Vo = 2.4 V Vo = 0.4 V VI = 5.5 V V, = 2.4 V V, = 0.4 V Vo = 0 IOH 10l 2.4 -30 Outputs Open TYP* -0.8 3.2 0.3 MAX -1.5 MIN -10C TVPt -0.8 MAX -1.5 UNIT 0.5 V V V 100 100 ~ -100 0.2 -100 ~ 0.2 mA 2.4 0.5 3.2 0.3 25 25 ~A -0.08 -0,25 -0.08 -0.25 mA -70 -130 140 180 =2V Vo = 2 V VelK = 2 V V, 5 6 6 -30 -70 -130 mA 140 180 mA 5 6. 6 pF pF pF t For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. tAli typical values are at Vce = 5 V. TA = 25°e. § I/O leakage Is the worst case of 10Zl and I,l or 10ZH and ',H. respectively. , Not inore than one output should be shorted at a time and duration of the short·circuit should not exceed one second. TEXAS ", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 . .c: 2-49 TIBPAL 16L8·12M, TIBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M TIBPAL 16L8·1 DC, TIBPAL 16R4·1 DC, TIBPAL 16R6·1 DC, TIBPAL 16R8·1 DC HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS switching characteristics over recommended supply voltage and oplnating free·air temperature ranges (unless otherwise noted) PARAMETER fmax* FROM TEST CONDITIONS TO With Feedback tpd 0.110 tod ten Q tdis ClKt OE< OEt ten tdis 1.110 1.110 0.110 0.110 R1 = 200 O. R2 = 390 O. See Figure 1 Q Q -12M TYpT 48 56 3 2 Without Feedback 1.110 MIN MAX MIN -10C TypT MAX 12 10 10 10 12 12 55.5 62.5 3 2 1 1 3 3 80 85 7 5 4 4 8 8 10 8 10 10 10 10 80 85 7 5 4 4 8 8 1 1 3 3 UNIT MHz ns ns ns ns ns ns t All typical values are at VCC = 5 V. TA = 25°C. *fmax (with feedbackl = • tsu 1 + tpd (ClK to Q) • f max (without feedbackl = tw high 1 + tw low . programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. 2-50 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlBPAl16lB·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16RB·12M TIBPAl 16lB·1 DC, TIBPAl 16R4·1 DC, TIBPAl 16R6·' DC, TIBPAl 16RB·1 DC HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS preload procedure for registered outputs (see Note 3) The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. Step Step Step Step 1. 2. 3. 4. With Vee at 5 volts and Pin 1 at VIL. raise Pin 11 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse Pin 1. clocking in preload data. Remove output voltage. then lower Pin 11 to VIL. Preload can be verified by observing the voltage level at the output pin. preload waveforms (see Note 3) PIN 11 ---I ~----v'... VIL ~td-1 jf-tsu--l M-tw~ j+-Id ---.I 'ii PIN 1 I I I 1'-..-_-_-...;1_-_-.;..1_-_-_-_-_-_-_ VIH - VIL : I I I I I I ------.~ REGiSTERED 110 I ~ I I I ~,.-O-U-TP-U-T-- VOH INPUT ~ _ _ _ _ _ _ _J VIL - - - - - VOL NOTE 3: td = tsu = tw = 100 ns to 1000 ns. VIHH = 10.25 V to 10.75 V. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-51 TIBPAl16lB·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16RB·12M TIBPAl 16lB·1 DC, TIBPAl 16R4·1 DC, TlBPAl 16R6·1 DC, TlBPAl 16RB·1 DC HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS PARAMETER MEASUREMENT INFORMATION 5V Sl ~ Rl FROM OUTPUT _ ...........~~~_ TEST UNDER TEST POINT CL (See Note A) IE R2 LOAD CIRCUIT FOR THREE·STATE OUTPUTS C ./. 3.5 V TIMING T,1.5V INPUT _ _ _ _U - - - - - - 0.3 V \4-th-+t I4- t su-+\ 1 DATA ~-;;;;3.5V INPUT 1.5V ~ 0.3V ... &» &» rn ::T J CD CD ... (II ---3.5V HIGH-LEVEL PULSE 1 5 V 15 V ~ . . Lt ---'!1 I· 15 V 1 5 V ~ . . I LOW·LEVEL PULSE· .Ji,1.5 V \1-:;; -; - ----" tpd I 14 l . 5V 1 tpd OUT-OF·PHASE OUTPUT (See Note D) 14 - - 3.5 V 0.3 V .1 tpd 1,-_..;1_---.:+ - - :f IN-PHASE OUTPUT VOLTAGE WAVEFORMS PULSE DURATIONS 1. 14.1 ~ I E 14 .1 1.1 '\.1.5 V . VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES OUTPUT CONTROL !low-level enabling) ~3.5V 1.5 V ten -+I VOL tpd . 14- I! -1- - - - -- 0.3 ~ 14-- tdis II V =3.3 V WAVEFORM1~1.5V , .c--VOL-f,0.5V I Sl CLOSED (See Note B) --VOL 1.5 V I 1 VOH p.vVOH . 3.5V - - --0.3V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES INPUT 0.3 V w ten.-.t I j+- -+I - __ ..Jt_ -"X - 14- tdis T. VOL ~ WAVEFORM 2 S10PEN. (See Note B) I I _ _ _ t.-VOH - 1.5 V - LVOH-0.5 V =0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten. 5 pF for tdis' B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses have the following characteristics: PRR s 1 MHz. tr = tf = 2 ns. duty cycle = 50%. D. When measuring propagation delay times of 3-state outputs. switch S 1 is closed. FIGURE 1 2-52 TEXAS ~ INSTRUMENlS ,POST OFFICE BOX 656012 • DALLAS, TEXAS 75265 TIBPAL 16R4·1 DC, TlBPAL 16R6·1 DC, TIBPAL 16R8·1 DC HIGH·PERFORMANCE IMPACfYMPAL® CIRCUITS metastable characteristics for TIBPAL 16R4·10C, TIBPAL 16R6·10C, and TIBPAL 16R8·10C At some point in every system designer's career, he or she is faced with the problem of synchronizing two digital signals operating at two different frequencies. This problem is typically overcome by synchronizing one of the signals to the local clock through use of a flip-flop. However, this solution presents an awkward dilemna since the setup and hold time specifications associated with the flip-flop are sure to be violated. The metastable characteristics of the flip-flop can influence overall system reliability. Whenever the setup and hold times of a flip-flop are violated, its output response becomes uncertain and is said to be in the metastable state if the output hangs up in the region between V,l and V,H. This metastable condition lasts until the flip-flop falls into one of its two stable states, which takes longer than the specified maximum propagation delay time (ClK to Q max). From a system engineering standpoint, a designer cannot use the specified data sheet maximum for propagation delay time when using the flip-flop as a data synchronizer - how long to wait after the specified data sheet maximum must be known before using the data in order to guarantee reliable system operation. The circuit shown in Figure 2 can be used to evaluate MTBF (Mean Time Between Failure) and ~t for a selected flip-flop. Whenever the Q output of the DUT is between 0.8 V and 2 V, the comparators are in opposite states. When the Q output of the DUT is higher than 2 V or lower than 0.8 V, the comparators are at the same logic level. The outputs of the two comparators are sampled a selected time (~t) after SClK. The exclusive OR gate detects the occurrence of a failure and increments the failure counter. NOISE GENERATOR ... - : DATA IN OUT ----, 10 VIH I H .........-t 1-----f1D I I /--i>+ II) CD CD .r:. en ... CO CO C C1 I I Vil COMPARATOR I SClK-------iH>C1 MTBF COUNTER COMPARATOR ... : I I _____ JI L SClK + 4 1 - - - - - - - - - - - - - - - -______- - - - - - 1 FIGURE 2. METASTABLE EVALUATION TEST CIRCUIT In order to maximize the possibility of forcing the DUT into a metastable state, the input data signal is applied so that it always violates the setup and hold time. This condition is illustrated in the timing diagram in Figure 3. Any other relationship of SClK to data will provide less chance for the device to enter into the metastable state. - DATA SClK SClK + 41 - •I •I -----1-'__~.:-------..,----~'--j.r--I I I ~M~ MTBF _ I ~M~ TIME (SEC) # FAILURES I ree - 4t - ClK TO Q (MAXI FIGURE 3. TIMING DIAGRAM TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-53 TIBPAL16R4-1 DC, TIBPAL 16R6-1 DC, TlBPAL16R8-1 DC HIGH-PERFORMANCE IMPACP'PAl@ CIRCUITS By using the described test circuit, MTBF can be determined for several different values of ll.t (see Figure 2). Plotting this information on semilog paper demonstrates the metastable characteristics of the selected flip-flop. Figure 4 shows the results for the TIBPAL16'-10 operating at 1 MHz. 109 -lOy. 108 -ly. 107 - - 1 rna 106 --lwk ~ 5 "III 10 - 1 day I- ::E 104 "... 0 • - - 1 hr 103 10 2 - l m i " 10 1 C .... I» I» At (nsl FIGURE 4. METASTABLE CHARACTERISTICS rn :r From the data taken in the above experiment, an equation can be derived for the metastable characteristics at other clock frequencies. CD CD ....en The metastable equation: MiBF = fSClK x fdata x C1 e (-C2 x at) The constants C1 and C2 describe the metastable characteristics of the device. From the experimental data, these constants can be solved for: C1 = 9.15 x 10~7 and C2 = 0.959 Therefore M;BF = fSClK x fdata x 9.159 x 10- 7 e (-0.959 x at) definition of variables OUT (Device Under Test): The OUT is a 10-ns registered PAL programmed with the'equation Q : = D. MTBF (Mean Time Between Failures): The average time (s) between metastable occurrences that cause a violation of the device specifications. fSClK (system clock frequency): Actual clock frequency for the OUT. fdata (data frequencyi: Actual data frequency for a specified input to the OUT. C1: Calculated constant that defines the magnitude of the curve. C2: Calculated constant that defines the slope of the curve. trec (metastability recovery time): Minimum time required to guarantee recovery from metastability, at a given MTBF failure rate. trec = ll.t - tpd (ClK to Q, max) ll.t: The time difference (ns) from when the synchronizing flip-flop is clocked to when its output is sampled. The test described above has shown the metastable characteristics of the TIBPAl 16R4/R6/R8-1 0 series. For additional information on metastable characteristics of Texas Instruments logic circuits, please refer to TI Applications publication HSDAA004, "Metastable Characteristics, Design Considerations for AlS, AS, and lS Circuits." 2-54 TEXAS ~ INSTRUMENTS POST OfFICE BOX 655012 • OAl,.lAS, TEXAS 75265 TIBPAL 16L8·1 DC, TlBPAL 16R4·1 DC, TlBPAL 16R6·1 DC, TlBPAL 16R8·1 DC HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS TYPICAL CHARACTERISTICS PROPAGATION DELAY TIME vs FREE·AIR TEMPERATURE 9 .. 8 ., I E . 9 VCC _ 5 V 1 OUTPUT SWITCHING c i= PROPAGATION DELAY TIME vs SUPPLY VOLTAGE 7 . kl/o R1 - 200 0 -'tPHl to 0,1/0) R2 - 391 0 Cl - 50 pF See Figure 1 -t-----I;"....,=+-,,.....'F----1f----1 c ., I E . > 'ii 6r-~--+--r-+--f___+--r~ c o .'." ....'" 0 .~ 5 11........::::::j:=::l=:::::::p~t"""'=--t--t---j !2 5 !2 II.. II.. 4 4 3L-~ tpHl II,I/? to 0,1/0) !'..... r-- tPlH~ I 6 Q c [ 7 i= > ~ 8 R1 - 200 0, See Figure 1 R2 - 3900, TA - 25°C Cl-50pF __-L__~~__- L__~~L-~ 3 r-- -- 4.5 -75 -50 -25 0 25 50 75 100 125 TA-Free-Air Temperature- °C tpHl (ClK to Q~ tPlH 4.75 5 (cJ 5.25 VCC-Supply Voltage-V FIGURE 5 FIGURE 6 en +or to Q ) - Q) Q) .c en 5.5 ca ca +or C PROPAGATION DELAY TIME vs NUMBER OF OUTPUTS SWITCHING 11 .. c .,I 9 i= 8 > 'ii 7 E . Q VCC = 5 V R1 - 2000 R2-3900 CL - 50 pF See Figure 1 10 ---- TA - 25°C_ c o! 6 !2 5 ....'" f.--:: II.. :::--r ~ \t'~\.. \\,\1 0\0 - ' 0 \10' \t'\..~ \\~ IlCL~tO~1 -::TI . 4 tPlH (ClK to QI I 3 1 2 3 4 5 6 7 8 Number of Outputs Switching FIGURE 7 TEXAS ~ INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-55 TIBPAL16L8·1 DC, TIBPAL16R4·1 DC, TIBPAL16R6·1 DC, TIBPAL16R8·1 DC HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS TYPICAL CHARACTERISTICS POWER DISSIPATION vs FREQUENCY 8-BIT COUNTER MODE PROPAGATION DELAY TIME vs LOAD CAPACITANCE 900 VCC - 5 V. TA - 25·C 16 R1 - 200 0. 1 Output Switching -=1;...-----1 R2 - 3 9 0 0 b 0'\ c O~~-b.,e:::...-+---I I 14 See Figure 1 . I ...0 II ~~70~"c--;;,Fc ~" E j:: E C ... C» C» en ::r (1) ...en (1) >- 12 .!! ~ 10 !'" £ ! 8 I-' .......... 1-' .......... :.-- ~ ~ TA - O·C :.-- I rr :. 700 -TA - 25·C I 6 I I I f 4 2 5V 800 ; 0 D ~I is c "j VCC TA 600 0 100 200 300 400 500 CL -Load Capacitance-pF 600 I- F-Frequency-MHz FIGURE 9 , SUPPLY CURRENT vs FREE-AIR TEMPERATURE 180r--.--.-.--.~-r-~-.r--' UNPROGRAMMED DEVICE 170r-~-~-+---Ir--+-+---Ir-~ ~160r--+-~~~~-~-+---I-~ I i150r-~~d-~~~~-r-+---I-~ ::I (.) 140 I--+-="'t-o=-P"d~rr""-:-+---I-~ ~130r--+-~~~~~~~~~~~ I ~120r--+-~-+---I~~~~~~d 100~~_~_~~_~_~~~~ -~-~-~ 0 ~ ~ ~ 1001~ TA-Free-Air Temperature-·C FIGURE 10 2·56 ~ 1Q 1 FIGURE 8 i --- .... 1-' TEXAS ,., INSTRUMENlS POST OFFICE BOX 655012 • DALLAS. TEXAS 76265 40 100 TIBPAL 16L8·15M, TIBPAL 16R4·15M, TIBPAL 16R6·15M, TIBPAL 16R8·15M TlBPAL 16L8·12C, TIBPAL 16R4·12C, TIBPAL 16R6·12C, TIBPAL 16R8·12C HIGH· PERFORMANCE IMPACT'MPAL® CIRCUITS JANUARY 1986-REVISED DECEMBER 1987 • • TIBPAL 16LB' M SUFFIX ••• J PACKAGE C SUFFIX ••. J OR N PACKAGE High-Performance Operation Propagation Delay M Suffix ... 12 ns Max C Suffix ... 15 ns Max (TOPVIEWI Vee Functionally Equivalent, but Faster than PAL16L8B, PAL16R4B, PAL16R6B, and PAL16R8B 0 • Power-Up Clear on Registered Devices IAII Registered Outputs are Set Low) • Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DiPs • 1/0 1/0 1/0 1/0 1/0 I/O 0 I GND II ... Dependable Texas Instruments Quality and Reliability TlBPAL 16LB' DEVICE INPUTS PAL16LB 10 3·STATE REGISTERED a OUTPUTS QOUTPUTS 2 0 MSUFFIX •.• FK PACKAGE en C SUFFIX ..• FN PACKAGE 1/0 PORTS CD CD (TOPVIEWI 6 PAL16R4 8 0 4 (3-sto'e) PAL16R6 8 a 6 (3-state) 2 PAL16R8 8 0 8 (3-sto'o) 0 ..c en as as U U _ _ _ >0 4 3 2 description These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT'" circuits combine the latest Advanced Low-Power Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of "custom" functions and typically results in a more compact circuit board. In addition, chip carriers are available for further reduction in board space. ... 1 2019 4 18 I/O 5 17 110 6 16 I/O I/O I/O "IS 14 8 C 9 1011 1213 -0-00 Z C,!) '" Pin assignments in operating mode The TIBPAL 16' M series is characterized for operation over the full military temperature range of - 55°C to 125°C. The TIBPAL 16' C series is characterized for operation from 0 °C to 75°C. IMPACT'" is a trademark of Texas Instruments Incorporated. PAL'" is a registered trademark of Monolithic Memories Inc. t'ntegrated Schottky-Barrier diode-clemped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975. PRODUCTION DATA da...m.......tain informad... .urrent .. 01 publi.atioo data. P..d......00.rll ta lpacificatlHa par do. term••f T.... Instrum.... standard warranty. Praolut:tian p......ing da....t .......ri/y i..- - . 01 .11 poromatarl. Copyright @ 1986, Texas Instruments Incorporated TEXAS .." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-57 TIBPAL 16R4·15M, TIBPAL 16R6·15M, TIBPAL 16R8·15M TIBPAL 16R4·12C, T1BPAL 16R6·12C, T1BPAL 16R8·12C . HIGH·PERFORMANCE IMPACfTMPAL® CIRCUITS TISPAL16R4' M SUFFIX •.. J PACKAGE C SUFFIX •.. J OR N PACKAGE nBPAl16R4' M SUFFIX ... FK PACKAGE C SUFFIX ..• FN PACKAGE (TOP VIEW) (TOP VIEW) elK >£ Vee u --' uo _ _ U>::;, I/O GND '-l..._---Ir" I/O Q Q 4 5 18 17 I/O Q Q 6 16 Q Q 7 15 Q I/O I/O 8 14 Q 3 2 I 2019 9 1011 12 13 OE - ~I~ gg <.:) TIBPAL l6RO' M SUFFIX ..• FK PACKAGE C SUFFIX ..• FN PACKAGE (TOP VIEW) TIBPAl16R6' M SUFFIX ... J PACKAGE C SUFFIX ..• J OR N PACKAGE (TOP VIEW) C ... I» I» fJ) elK ::r >£ Vee CD CD ...en u --' UO _ _ U>::;, I/O Q 3 Q 4 5 Q 6 Q 2 1 2019 Q Q I GND 8 I/O ........_ - - - - ' r " 18 Q 17 16 Q 15 Q 14 Q Q 9 1011 1213 BE - ~I~ ga <.:) TIBPAL 10RS' M SUFFIX .•. J PACKAGE C SUFFIX •.. J OR N PACKAGE TIBPAL 16RS' M SUFFIX •.. FK PACKAGE C SUFFIX.•. FN PACKAGE (TOP VIEW) (TOP VIEW) elK ~ tl __ u>o Vee Q 3 Q 2 1 2019 Q 4 18 Q 5 17 Q 6 16 15 14 Q Q I GND ........_ _ _r" 8 Q 9 1011 1213 BE - Qlw zo a <.:) Pin assignments in operating mode 2·58 TEXAS " , INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 a TIBPAL 16LB·15M, TIBPAL 16LB·12C, TlBPAL 16R4·15M, TlBPAL 16R4·12C HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS functional block diagrams (positive logic) 'PAL1SL8 & EN .. 1 7 'Vk>-----o 32X64 k>-----o 0-.-.......-1/0 .......-I/O P-~ k>-...........- I/O II ... k>-.-t"'+--I/O k>-e+"''''-I/O U) 4) 4) ..c en ... 6 CU CU o 'PAL16R4 J EN2 -L C1 DE ClK & 32X 64 ~ 'V ,i rt- f>+- 'V - 10 r+r+- + 8 1=0 ..1 r-+ r+~ ~ a ~ ~ > ~ a r+- t-- a 2'V a ~ EN ..1 'V r-+- ~ r+- f-J' ~~ "'\ "'\ .... "" ---"'\ I/O I/O I/O I/O , 4 rv denotes fused inputs TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 76265 2-59 TIBPAL 16R6·15M, TIBPAL 16R6·12C, TIBPAL 16RB·15M, TIBPAL 16RB·12C HIGH·PERFORMANCE IMPACP'PAL® CIRCUITS functional block diagrams (positive logic) 'PAl16R6 OE----~------------------~~--_, CLK .....--------------------------~ & 32X64 a 16 E r--;-----1~l_Q C C» 1'+ C» .........,-- I/O J----2:r-~ t/) ::r P--ed--4....--t-- CD CD I/O 1'+ en 'PAL 16Ra OE ClK a ;'1 Q Q Q 8 16 Q Q Q Q Q rv denotes 2·60 fused inputs TEXAS • INSTRUMENTS POST OFFICE BOX 6550.12 • DALLAS. TEXAS 75266 TlOPAL 16LB·15M, TlOPAL 16RB·12C HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS INPUT LINES P RODUCT, LINES 0 4 8 12 16 20 24 28 31 ~ ···· · ~ ·· · ··• · ··•• · ··•• 0 II- >--- 1 .... '- >--- (19) o I)- 8 I-- h f.--/ 1 I (18) --V I 1/0 (3) 15 ')f 16 1 }-- .... (17) 1/0 24 ... Q) Q) - (4) 23 - J.... (16) 1 (15) 1'" (14) J (13) 1 (12) I/O .c en ca ca ... Q - (5) 31 32 f.--/ • V 1/0 (6) 39 -'-" " 40 I (7) ··• · ·· · ·· · - r-)-}-- 47 ')f 48 I (8) ~ h ~ .... 1/0 ~ 55 ')f ,..... 56 I 1/0 b1 - - f.--/ r:=d(l I- (!!. 63 .... TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 v o (11) 2·61 ' I TIBPAL 16R4·15M, TIBPAL 16R4·12C HIGH·PERFORMANCE IMPACT TMPAL® CIRCUITS INPUT LINES 4 LIN 8 12 16 20 24 28 ··•• • · ~ 0 31 >-- J '-' ~ I---- 8 E •• •• •• i-- 16 l-- •• •• · 1----:>I---- 10 1 1 (18) I ~1 f.--" (3) 15 (19) I tbJ; 10 I" r:J "" 10 Q C1 (4) 23 24 •• • •• · D- 32 >->--> • ·•••• 40 Q v (15) I--. • • • 47 · · ·••• b ~>tt; . (14) 1--.. C1 I--- 1 (13) J (12) 48 ~ h. !--./ •• 55 Vl Q 1/0 ;:;; ·••• 56 I-< •• I- 9) 63 I ( 2-62 ~ r.:J. C1 39 1(6),>[ 1(8) Q C1 (5) 31 1(7) tbJ; :CW 16 ) .. 'I 1/0 L --- >- f-f-- ="24 . - 0 0 0 0 0 >- \--- , 0 0 0 0 0 0 " \---t>)-- \--'- (6) 39 CI) CI) .c 'CI) CU ~ ~ (16) ~ (15) Q CU C C -vo- a Cl I-------' 40 c ~ Cl (5) 31 32 ~ Cl >--- (4)~23 1.:1 (17) Q v }-- 0 0 0 0 0 0 ~ ::::>t6]; ~ ~) Q }-- Cl }-- (7) 47 48 0 00 0 0 0 r.:J.... (13) Q Cl 55 (8) '>f 56 I-~ 0 0 0 0 0 0 II-" J (12) .... 1/0 ~ ~ L. 1 ~) TEXAS ." INSTRUMENTS POST OFFICE BOX 655012. DALLAS, TeXAS 75265 2·63 , , TIBPAL 16R8·15M, TIBPAL 16R8·12C HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS ClKillt> . INPUT LINES PR l?~E~CT '0 4 8 12 16 20 24 28 . I 31 0 ••• •• • ~ >- Elrl'8 •• •• •• - '0+ m tn ··•• · ::J '"";:1 {181 Rv {171 ~ >-;:t {161 Y; '"";:1 {151 Rv {141 ~ v Q C1 r---I I---- ~::>)-----i Y; Q C1 {41 23 -'- Q C1 -p- {31 15 X 16 o m n? " 24 ••• • •• CD CD 0+ (I) ~ - .>- t----' C1 {51 31 32 I----" •• • • · ~ Q _D- v Q C1 {61 39 ~ 40 •• • • 47 I---- · I---I----< {71 X ~ • ··•• ·••• ;:- {81 55 X 56 ~ ·• ' I---' {91 63 X >-;:t ... {131 POST OFFICE BOX 665012 • DALlAS. TEXAS 76266 Q C1 C/Y;S "" C1 ~I TEXAS • INSTRUMENTS Q C1 :=/n 48 '2-64 >- Q TlBPAL 16L8·15M. TIBPAL 16R4·15M. TIBPAL 16R6·15M. TIBPAL 16R8·15M TIBPAL 16L8·12C. TIBPAL 16R4·12C. TIBPAL 16R6·12C. TIBPAL 16R8·12C HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS absolute maximum ratings over operating free·air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°e e suffix ................. _ ............ ooe to 75°e Storage temperature range ......................................... - 65°C to 150 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions (see Note 2) -15M PARAMETER Vec VIH Vil 10H MIN 4.5 2 Supply voltage High-level input voltage low-level input voltage High-level output current Low-level output current 10l fclock Clock frequency NOM 5 I Pulse duration, clock (see Note2) tsu th TA Hold time, input or feedback after ClK1 Operating free-air temperature I MIN 4.5 2 12 50 10 15 0 -55 0 0 9 High low Setup time, input or feedback before ClK1 NOM 5 MAX 5.25 5.5 0.8 -3.2 24 0 7 8 10 0 tw -12C MAX 5.5 5.5 0.8 -2 125 62 UNIT ~ : V V V mA mA MHz ... .s:. ns en ... ns «J «J ns 75 o °c NOTE 2: The total clock period of elK high and ClK low must not exceed clock frequency, fclock. Minimum pulse durations specified are only for ClK high or ClK low, but not for both simultaneously. . electrical characteristics, over recommended operating free-air VCC = MIN, VCC - MIN, VIK VOH VOL 10ZH 10Zl Outputs 110 ports Outputs 110 ports = II 10H - MAX = MIN, 10l = MAX VCC = MAX, Vo = 2.7V VCC = MAX, Vo = 0.4 V = 5.5 V II VCC = MAX, VI IIH Vec VCC 10§ = MAX, = MAX, = MAX, = MAX, VI III Vce VCC VI = OV, ICC MIN TYP* 2.4 3.3 -18mA VCC = 2.7 V = 0.4 V Vo = 2.25 V range -15M TEST CONDlTlONSt PARAMETER temp~rature 0.35 Pin 1, 11 All others Pin 1, 11 All others VI 170 MIN TYP* 2.4 3.3 0.5 0.35 MAX -1.5 20 100 -20 -250 0.2 0.1 50 20 -0.2 0.1 0.1 20 20 -0.2 220 -30 170 UNIT V V 0.5 20 100 -20 -250 -125 -30 Outputs Open -12C MAX -1.5 V ~A ~A mA ~ mA -125 mA 200 mA tFor conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. *AII typical values are at Vec = 5 V, TA = 25°e. §The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, lOS. TEXAS . " INSTRUMENTS POST OFFICE BOX 656012 • DALLAS, TEXAS 75265 2-65 I . TIBPAL 16L8·15M, TlBPAL 16R4·1.5M, TIBPAL 16R6·15M, TIBPAL 16R8·15M TIBPAL 16L8·12C, TIBPAL 16R4·12C, TIBPAL16R6·12C, TIBPAL 16R8·12C HIGH·PERFORMANCE IMPACT'MPAL® CIRCUITS switching characteristics over recommended supply voltage and operating free-air temperature ranges (unless otherwise noted) PARAMETER FROM TO 1,1/0 ClKi DE. DEi 1,1/0 1,1/0 0,1/0 TEST CONDITIONS f max ; tpd t tpd ten ~is ten tdis t All -15M MIN -12C TVpt MAX 8 7 B 7 8 8 15 50 Q Rl = 5000, Cl = 50 pF Q Q See !'Iote 3 0,1/0 0,1/0 = MIN TVPt MAX 8 7 B 7 8 8 12 62 12 12 12 15 15 UNIT MHz ns 10 ns 10 ns 10 ns 12 ns 12 ns = typical values are at VCC 5 V, TA 25 ·C. Maximum operating frequency and propagation delay are specified for the basic building block. When using feedback, limits must be calculated accordingly. NOTE 3: Load circuits and voltage waveform,s are shown in Section 1. '2 ; C programming information OJ r+ OJ en :T CD CD r+ en 2-66 ' Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers, Complete programming specifications. algorithms. and the latest information on hardware. software. and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local authorized TI distributor. or by calling Texas Instruments at (214) 997-5762. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 TIBPAL 16L8·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16R8·20M TIBPAL 16L8·15C, TIBPAL 16R4·15C, TIBPAL 16R6·15C, TIBPAL 16R8·15C HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS FEBRUARY 1 • High·Performance Operation Propagation Delay M Suffix ... 20 ns Max C Suffix ... 15 ns Max • Functionally Equivalent, but Faster than PAL16L8A,PAL16R4A, PAL16R6A, and PAL16R8A • • TIBPAl16la' M SUFFIX .•. J PACKAGE C SUFFIX •.. J OR N PACKAGE {TOP VIEW) Vee o 110 110 Po.wer·Up Clear on Registered Devices IAII Registered Outputs are Set Low) 1/0 110 110 Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DiPs 110 o GND -"'_--Jr DEVICE PAL16lB PAL16R4 PAL16R6 PAL16RB 3-STATE INPUTS o OUTPUTS 10 B B B 2 0 0 0 REGISTERED 1/0 PORTS Q OUTPUTS 0 6 4 (3-state) 4 6 (3-state) 2 a (3-state) 0 TlBPAl16la' M SUFFIX •.. FH OR FK PACKAGE C SUFFIX .•. FN PACKAGE (TOP VIEW) ... U) CP CP U .c u ___ >0 description 3 These programmable array logic devices feature high speed and a choice of either standard or half-power devices. They combine Advanced Low-Power Schottky t technology with proven titanium-tungsten fuses, These devices will provide reliable, high-performance substitutes for conventional TTL ipgic. Their easy programmability allows for quick deSign of "custom" functions and typically result in a more compact circuit board. In addition, chip carriers are available for further reduction in board space. 2 o as as ... 1 20 19 18 5 17 6 7 16 15 14 8 Q 9 1011 12 13 The PAL 16' M series is characterized for operation over the full military temperature range of -55°C to 125°C. The PAL16' e series is characterized for operation from ooe to 70°C. tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975. IMPACT is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Monolithic Memories Inc. PRODUCTION DATA do••_ .ontll. information ••rront "' 01 publication date. P......... canform to .paciljcatio•• per the tarOll 01 T.... Iistruments =i~·i:'':.7.; =-::; 1Ir=~:..~ not Copyright © 1984, Texas Instruments Incorporated TEXAS ", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75285 2-67 TlBPAL 16R4·20M. TIBPAL 16R6·20M. TIBPAL 16RB·20M TIBPAL 16R4·15C. TIBPAL 16R6·15C. TIBPAL 16RB·15C HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS TIBPAL 16R4' M SUFFIX ... J PACKAGE C SUFFIX ..• J OR N PACKAGE TIBPAL 16R4' M SUFFIX .•• FH OR FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) (TOP VIEW) ~ _ _ U>:::, tlo Vee eLK I/O 3 1/0 2 1 20 19 Q Q 17 Q 16 18 Q E .. .. c S» S» en -:r CD CD 15 1/0 1/0 GND ""1...._---.Jr- OE 14 TIBPAL 16R6' M SUFFIX .•. J PACKAGE C SUFFIX ... J OR N PACKAGE TIBPAL 16R4' M SUFFIX ... FH OR FK PACKAGE C SUFFIX ..• FN PACKAGE (TOP VIEW) (TOP VIEW) Vee eLK I 1/0 3 Q Q Q Q Q Q en 1 20 19 TIBPAL 16RS' M SUFFIX ... FH OR FK PACKAGE C SUFFIX ... FN PACKAGE (TOPV'IEW) TIBPAL 16RS' M SUFFIX ... J PACKAGE C SUFFIX ... J OR N PACKAGE (TOP VIEW) etK 2 Vee Q 3 Q 1 20 19 18 Q 17 Q 16 Q 15 Q 14 Q 9 1011 1213 GND ........_---l-OE 2-68 2 Q TEXAS ." INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL 16L8·20M, TIBPAL 16L8·15C, TIBPAL 16R4·20M, TIBPAL 16R4·15C HIGH·PERFORMANCE IMPACpM PAL@ CIRCUITS functional block diagrams (positive logic) 'PAL 16L8 EN ;"1 & 32X 64 \/b-----o b-----o b-......-4.....-1/0 10 16 t')....a.I..........- I/O b-.-+..........-I/O 6 h-~...._ - II I/O b-.-+........-I/O en ~ b-~-4...-1/0 CI) .c en 6 ... CO CO C 'PAL 16R4 OE-----------------~ CLK------------------~ 0 0 I> 8 0 16 0 4 4 I/O I/O I/O I/O 4 - denotes fused inputs TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2·69 TlBPAL 16R6·20M, TIBPAL 16R6·15C, TIBPAL 16R8·20M, TIBPAL 16R8·15C HIGH·PERFORMANCE IMPACT™ PAL@! CIRCUITS functional block diagrams (positive logic) 'PAl16R6 DE ]~N2 r, Cl ClK & 32X64 :>1 ~ 1=0 2 P- ---... ---... ---... ---... ---... R- ---... 10 Rr--:--:- II [> r-i!- - R- P- ~ ~ 2.,.. io..-- - I - - EN :>1 P- \l .... - p I-- rz,.... p a a a a a a I/O I/O 2 - ..... 6 'PAl16R8 ~-----------------------d~---' ClK--------------------------~ & 32 X 64 8 r~:>;;1-r-i=O~'_--- a r----t----1-~-a t---r---1--':l--a t---r---1--':l--a r----r---1--.:l--a 8 - 2-70 denotes fused inputs TEXAS ." INSTRUMENTS POST OFFICE BOx 855012 • DALLAS. TEXAS 75285 TIBPAl16lB·20M, TIBPAl16lB·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS I (1) PRODUCT LINES '0 0 INPUT LINES 4 8 12 16 20 24 28 ··· ~ 's ·· · · ···• ·· · ·· · ··· ·••• · ·•• ·• 3" ~v-J 119) o ~ 1 ~ ~ 118) v 110 ~ (3) 15 - 16 1 f- (17) v ~ 110 - (4) 23 - 24 :::> J 116) 1 (15) 1 114) 1 (13) 1 (12) 110 r-- (5) 31 r 32 t-< v 110 ..... (6) 39 X 40 f---' ~ .-- 110 .-- (7) 41 X 48 .-- .-- ~ (8) 55 v 110 A )l 56 (9) v r-- >- v o .- ~ r-- TEXAS ~ INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 (11) 2-71 TIBPAl16R4·20M, TIBPAL16R4·15C HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS CLK~ PRODUCT LINES '0 0 , INPUT LINES , 4 8 12 16 20 24 28 3" ·• ·• "t-- 1 f-' v (191 J I/O (21 ..... '8 •• •• (31 1 -, · ··• · ·••• v >-- 15 (181 I I/O - 16 Q >---- >- ~,:!Im C1 >-----< (41 23 24 ~ r.Jv ~ >-;::L (151 Q /~ >-;::L (141 Q >---->- • >---' C1 (51 31 ..:.: 32 •• •• • · f-pf- .... - f- 40 • (7l ··•• ·••• ·• ff-- ff- 47 v C1 X 48 I-- l>- - 56 1 v r- 55 1(81 X ~ •• •• · >----.... 63 1(91 X 2-72 v C1 (61 39 I (161 Q TEXAS ..If INSTRUMENTS POST OFFICE BOX 666012 • DALLAS. TEXAS 75265 (131 I (121 1 I/O I/O ~ OE TIBPAL 16R6·20M, TlBPAL 16R6·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS ClK !1!-t>---PRODUCT, LINES 0 ._----------------------, INPUT LINES , 4 8 12 16 20 24 28 0 31 >-------c 0 0 0 0 0 0 '--... -/ v 7 (2~ ~ f----' 0 0 0 0 0 0 (31 1 - >-,/- I tr 3 n. C1 15 1191 I/O Q 16 0 0 0 0 0 0 ~p- - f-----" 41 23 (X 24 ->~ (51 31 32 ~ 0 0 0 0 0 0 .c en (161 v Q ; Q C1 ~ ~ ':! (141 ~C>~ ~ (131 v C1 fo- 40 :t>~ 0 0 0 0 0 0 - f0- (71 47 X 48 .... Q C1 1---1 0 0 •• · 0 f--' 66 66 0 - • • 0 >---- 63 >-- 0 .... U) ; CD C1 ~ (151 Q fo-p- (61 39 (91 ~ ':! I C'CI 0 0 0 0 0 0 1(81 ~ I.:J. (171 -va- Q · v Q C1 1 v (121 1'4"" I/O OE TEXAS ." INSTRUMENTS POST OFFICE BOX 855012 • DALLAS, TEXAS 75265 2-73 TIBPAL 16R8·20M, TlBPAL 16R8·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS ClK .!!!.t> PRODUCT LINES '0 0 D) ;tn :::r CD CD r+ fn 8 12 16 20 24 28 ·· ·• ~ ·· · ·•••• (21 Ic I INPUT LINES 4 ~ ::>- Q f-------, ~D- tJ; 0-->tJ; I.:l (181 Q r-vo- C1 v 16 i-----' • >--;-' 23 IQ ~ v C1 24 ··•.· ·••• · · ··• ··• · ·· · ~- f-------, p- )l 32 16 ) ~ I.J (15) ~ ";:1 (14) ~ ";::L (13)Q ~ o--Pr-- 39 v Q C1 40 (71 ~ I.:l (161 -vo- Q C1. 31 (51 f-p- v Q C1 47 - 48 ----1 - >- f---' )l 56 t-- ~ >:bh"e- '" C1 A TEXAS ", INSIRUMENlS POST OFFICE BOX 65501 i .. DALLAS. TEXAS 76265 v C1 f----< (81 55 2-74 tJ;'3 ' ' C1 7 (31 15 (41 3" ~ TIBPAL 16L8·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16R8·20M TIBPAL 16L8·15C, TlBPAL 16R4·15C, TIBPAL 16R6·15C, TIBPAL 16R8·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS absolute maximum ratings over operating free·air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e e suffix .............................. ooe to 75°e Storage temperature range .......................................... - 65 °e to 150°C NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions VCC VIH Supply voltage High-level input voltage Vil low-level input voltage IOH High-level output current 15C 20M PARAMETER NOM MAX MIN NOM MAX 4.5 5 5.5 5.5 4.5 2 5 5.25 5.5 V V 0.8 -3.2 mA 2 0.8 -2 low-level output current IOl fclock Clock frequency 12 0 I High tw Pulse duration, clock (see Note 2) tsu th TA Satup time, input or feedback before ClKt I low Hold time, input or feedback after ClKt 40 0 V 24 mA 50 MHz 10 11 8 9 ns 20 15 ns 0 -55 Operating free-air temperature UNIT MIN 0 125 0 ns 70 °c NOTE: 2. The total clock period of ClK high and ClK low must not exceed clock frequency, fclock. Minimum pulse durations specified are only for ClK high or ClK low, but not for both simultaneously. • .... tI) Q) Q) .c en ....asas C programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 995-5762. TEXAS ~ INSTRUMENTS POST OFFICE BOX 656012 • DALLAS, TEXAS 75265 2-75 TIBPAL 16L8·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16R8·20M TIBPAL 16L8·15C, TlBPAL 16R4·15C, TIBPAL 16R6·15C, TIBPAL 16R8·15C HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS electrical characteristics over recommended operating free·air temperature range TEST CONDITIONSt PARAMETER VIK Vcc Vcc VOH Outputs 10ZH 10Zl 1/0 ports Outputs 1/0 ports Cit (/'J ::T CD CD .... U) = MAX, Vo = 2.7 VCC = MAX, Vo = 0.4 V = MAX, = MAX, VCC IlL VCC - MAX, 10§ VCC VCC VI = MAX, = MAX, =0 VI VI 20M TYpt 2.4 3.2 -18mA IOH = MAX 10L - MAX IIH ICC = VCC VCC II cD) II Vcc - MIN, VOL E = MIN" = MIN, MIN = 5.5 = 2.7 0.25 V MIN TYP* 2.4 3.3 0.35 0.4 MAX -1.5 0.5 UNIT V V V 20 100 -20 20 100 -20 -;150 0.2 -250 Pin 1, 11 All others 0.1 0.1 Pin 1, 11 50 20 -0.2 20 20 -0.2 rnA -125 rnA 180 rnA V V 16C MAX -1.5 All others VI "- 0.4 V Vo = 2.25 V Outputs Open -30 -125 140 V 0.1 -30 190 140 p.A p.A rnA p.A tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *All typical values are at VCC = 5 V, TA = 25 ·C. §The output conditions have been chosen to produce 8 current that closely approximates one half of the true short-circuit output current, lOS. switching characteristics over recommended supply voltage and operating free·air temperature ranges (unless otherwise noted) PARAMETER FROM TO 1,1/0 0,1/0 Q 20M TYpo MAX 10 RL = 50011, CL '" 50 pF, See Note 3 TEST CONDITIONS f max tod tpd ten tdis ten tdis CLKt OE! OEt Q 1,1/0 0,1/0 0,1/0 1,1/0 Q MIN 40 UNIT TYP* MAX 20 10 ns 8 15 8 15 12 8 7 15 8 12 ns 15 20 10 15 ns 10 7 10 10 20 10 15 ns * All typical values are at VCC = 5 V, TA 25 ·C. Note 3: Load circuits and voltage waveforms are shown in Section 1. 2·76 15C TEXAS'. INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 MIN 50 MHz ns ns TIBPAL 16LB·30M, TIBPAL 16R4·30M, TIBPAL 16R6·30M, TIBPAL 16RB·30M TIBPAL 16LB·25C, TIBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL16RB·25C LOW·POWER HIGH·PERFORMANCE IMPACT™PAl® CIRCUITS FEBRUARY 1984-REVISED • High-Performance Operation Propagation Delay M Suffix ... 20 ns Max C Suffix ... 15 ns Max • Functionally Equivalent, but Faster than PAL16L8A. PAL16R4A, PAL16R6A.and PAL16R8A o • Power-Up Clear on Registered Devices CAli Registered Outputs are Set Lowl 1/0 1/0 • Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs I/O I/O 1987 TIBPAl16lS' M SUFFIX .•• J PACKAGE C SUFFIX ••• J OR N PACKAGE (TOP VIEW) Vee I/O I/O o GND-,.._ _~ OEVICE PAL16LS PAL16R4 PAL16R6 PAL16R8 3-STATE INPUTS o OUTPUTS 10 8 2 0 0 0 8 8 REGISTERED I/O PORTS Q OUTPUTS 0 6 4 (3-state) 4 6 (3-state) 2 8 (3-state) 0 II ... TIBPAL 16L8' M SUFFIX ••. FH OR FK PACKAGE C SUFFIX •.. FN PACKAGE (TOP VIEW) en CD CD .c U ___ >0 u description 3 These programmable array logic devices feature high speed and a choice of either standard or half-power devices. They combine Advanced Low-Power Schottky t technology with proven titanium-tungsten fuses. These devices will provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of "custom" functions and typically result in a more compact circuit board. In addition. chip carriers are available for further reduction in board space. 2 en ...coco 1 20 19 18 I 5 17 6 16 15 8 o 14 9 1011 1213 The PAL 16' M series is characterized for operation over the full military temperature range of -55°e to 125°e. The PAL16' e series is characterized for operation from ooe to 70 oe. tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3.463,975. IMPACT is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Monolithic Memories Inc. PRODuCnoli DATA .......0011 cont.i. ,."....lIia. ••rnllll .s a' p••liclli•• Uta. Pr....cts coala.... 10 spscilicotitoa. par 1110 tor... of T.... lnotro..onto =H~8{'::I~ =~ :.r:::~ nat Copyright @ 1984. Texas Instruments Incorporated TEXAS . " INSIRUMENlS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-77 TIBPAL16R4·30M, TIBPAL 16R6·30M, TIBPAL 16R8·30M TlBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL 16R8·25C LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS TIBPAL16R4' TIBPAL 16R4' M SUFFIX ••• J PACKAGE C SUFFIX .•. J OR N PACKAGE M SUFFIX, •• FH OR FK PACKAGE ITOPVIEWI ITOPVIEWI elK C SUFFIX ••• FN PACKAGE ~ Vee U ..J U·o __ u>;::, 1/0 1/0 3 2 1 20 19 Q • c D) r+ ::r 5 17 Q 6 16 Q 7 15 1/0 8 I/O GND "-l.._....;.;J.... OE M SUFFIX .•• J PACKAGE C SUFFIX ••• J OR N PACKAGE TIBPAL 16R4' M SUFFIX ... FH OR FK PACKAGE C SUFFIX ... FN PACKAGE ITOPVIEWI ITOPVIEWI TIBPAL 16R6' D) en 18 Q elK Vee CD CD I/O en Q 3 Q r+ 2 1 20 19 18 17 16 15 Q Q Q Q 14 I/O 9 1011 12 13 GND"-l.._....;.;J.... M SUFFIX ... J PACKAGE C SUFFIX .•. J OR N PACKAGE TIBPAL 16RS' M SUFFIX •.• FH OR FK PACKAGE C SUFFIX ••• FN PACKAGE ITOPVIEWI ITOPVIEWI TIBPAL 16RB' elK Vee Q 3 Q 2 1 20 19 Q 18 Q 17 Q 16 15 Q Q 14 Q 9 1011 1213 OE 2·78 TEXAS ." INSTRUMENlS POST OFFICE BOX 855012 • DALLAS. TeXAS 75265 TIBPAL l6LO·30M, TIBPAL l6R4·30M TIBPAL l6LO·25C, TIBPAL 16R4·25C LOW·POWER HIGH·PERFORMANCE IMPACpMPAL@ CIRCUITS functional block diagrams (positive logic) 'PAL 16LB EN ;>1 & k>-----o 32X 64 r:>----O k>-"'~""-I/O 10 16 P-~""'''''-I/O k>-ti.........-I/O 6 k>-e+........-I/O II II) b- 1 8 32X644- ~ --J- ~ c> ....;L - ~ 2!""" C .... en :::r I» I» CD CD .... en - ~ - r------- r----. r----. r----. ~ ~ + --... ~ 2,.7 ...:.,.- a 1-0 2 lD EN a a a a a ~ :>1 V 110 110 2 6 'PAL 16RS DE----------------------~~~--, CLK----------------------------~ r;:>;;l--r~o,~--- a j----t----1-~-a t---r--1---':l-a j---t----1--+-- a j----t----1--+--a ~---t----1-~-a t---r--1---':l-a t---r--1---':l-a -- denotes fused inputs 2·80 TEXAS ~ IN STRUM ENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL 16L8·30M, T1BPAL 16L8·25C LOW·POWER HIGH·PERFORMANCE IMPACTTNPAL® CIRCUITS I 111 PRODUCT LINES '0 INPUT LINES , 4 8 12 16 20 24 28 0 ··· ~ ··· · 'r:x ··• 31 ,- 0- >----" ~ J 1191 1 1181 o t----c 8 v I/O r- 131 15 16 [--... ·• 1 1171 v I/O II... U) Q) Q) t----c .c 141 ...23 0 v 24 ··• · ·· · ··• · ·•• · ·•• ·• t----c f-- p- J 1161 1 1151 1 1141 I/O ...a:sa:s C 151,,31 32 v I/O t----c 161 39 40 r-... v I/O 171 47 48 )-)-- k - f--" 1 1131 v I/O )-- 181 55 v 56 f-- 63 191 p- J 1121 o 1111 v TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-81 TIBPAL 16R4·30M, TIBPAL 16R4·25C LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS CLK~----------__________________________ PRODUCT ;o;;-_--;:_ _-:=-_~::_I-NP-U_T':'U:::_N-ES-_::::_-__:::_:__-_:=__::':' UNES '0 4 8 12 16 20 24 28 31' 0 ··• · ~ f-- I--' 1 v 119) I 110 va- 1 •• •• • E · en :::r I/O 1 13) 15 ··•• 16 f----1 - C ...mm v 118) -l-> · ··•• • >---' 14) 23 X 24 ... CD CD (II 15) tJ; -;) ' ' Q C1 f---' e-D- tJ; '";:1116) --yo- Q ~ '";:1 Q C1 ~ 32 •• •• f----1 · e-P- C1 16) 39 40 • ··••• ·•• ·•• ~D-tJ; '";:1114) Q v C1 17) 47 48 1 e- 55 18) X v f----c ··•• · 56 '--' 113) 110 1 1 v 63 1 19) X 2-82 115) v (12) 110 1 ~ DE TEXAS ." INSTRUMENTS POST OFFICE BOX 866012 • DALLAS, TEXAS 75265 TIBPAL 16R6-30M. TIBPAL 16R6-25C LOW-POWER HIGH-PERFORMANCE IMPACTTMPAL® CIRCUITS CLK~~--------------------------------------------__~ PRODUCT, LINES 0 0 INPUT LINES 4 8 12 16 20 24 28 31 I-- 0 0 0 0 0 0 >------'~ '--" 7 (2'-f:::,t---< "~ 0 0 0 0 0 0 (3) WI (19) 110 > :bl~ n. a - Cl 15 16 ~ 0 0 0 0 0 0 }-P>---' 23 e---' 0 0 0 0 0 0 :bl a &I ... U) CD CD .c tn ... CO ,-,C>r-- ~16) a Q CO C Cl c-----< (5) 31 (17) Cl (4) >L 24 '";J .... 32 f---< 0 0 0 0 0 0 :bl 8 ->8 C>- >---' (6) 39 40 0 0 0 0 0 0 '";J v (14) a ";::l (13) a Cl 48 0 0 0 0 0 0 - 55 56 0 0 0 0 0 0 ......r~ ~ 63 (9) Cl >----,C>- (7) 47 (8) ¢'a >L V Cl 1 v I (12) 110 l.(p!!!) DE TEXAS ." INSlRUMENTS POST OFFICE BOX 855012 • DALLAS, TEXAS 75265 2-83 TlBPAL t6RB·30M. TlBPAL t6RB·25C LOW·POWER HIGH·PERFORMANCE IMPACT'MPAl® CIRCUITS PRODUCT LINES '0 0 INPUT LINES 4 8 I 12 16 20 24 28 I 3'- 0 0 0 0 0 0 >- ~'~ "" Q C1 ~ 'b-- 8 0 0 0 0 0 0 E >--- 16 0 0 0 0 0 0 CI) CI) (4) .... tn 0 0 0 0 0 (5) }--- . 24 CD CD >---> 23 ::r }--p. 0 0 t±>- 0 0 0 39 (6) )( tl ~ Q C1 I-- 40 l---1 " }--t> 0 0 0 0 0 0 }-- I-- 47 48 }--t> 0 0 0 0 0 0 (bl t:r:l(14) Q I.- C1 w b V (13) Q C1 55 56 }-----, 0 0 0 0 0 0 '-t:>-lbl I-. 63 2-84 Q C1 31 I(~ ~ ~ l---1 o i8) ~ ~) Q Q C1 32 Q) ~ ~ C1 (3) 15 c .... t/) ~ ~(12) 1/0 C1 L., ~) OE I TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL 16LB-30M, T1BPAL 16R4-30M TIBPAL 16LB-25C, TIBPAL 16R4-25C LOW-POWER HIGH-PERFORMANCE IMPACpMPAL® CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vcc (see Note 1) ............................. :. . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) ......................... : . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C C suffix .............................. DoC to 75°C Storage temperature range ......................................... - 65°C to 150°C NOT~ 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions 25C 30M PARAMETER UNIT MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.5 5 5.25 V 5.5 2 5.5 V VCC Supply voltage VIH High-level input voltage Vil Low-level input voltage 0.8 0.8 IOH High-level output current -2 -3.2 mA IOl Low-level output current 12 24 mA fclock Clock frequency 50 MHz 2 , 0 I High I low tw Pulse duration, clock (see Note 2) tsu Setup time, input or feedback before ClKt th Hold time, input or feedback after ClKt TA Operating free-air temperature 40 10 0 8 11 9 20 15 0 -55 0 U) Q) Q) J: ns o ...caca ns ns 0 125 II ... V 70 ·C NOTE: 2. The total clock period of ClK high and ClK low must not exceed clock frequency. fclock. Minimum pulse durations specified are only for ClK high or ClK low, but not for both simultaneously. o programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 995-5762. TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-85 TlBPAL 16L8·301lli, TIBPAL 16R4·30M, TIBPAL 16R6·30M, TlBPAL 16R8·30M TIBPAL 16L8·25C, TlBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL 16R8·25C LOW·POWER HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS . electrical characteristics over recommended operating free-air temperature range • PARAMETER VIK Vee - MIN, VOH Vee VOL Outputs IOZH 1/0 ports Outputs 10ZL • 1/0 ports II = IOH Vee = MIN, = MIN, IOL = MAX = MAX Vee = MAX, Vo = 2.7 Vee = MAX, Vo = 0.4 V = MAX, VI = 5.5 V IIH Vee = MAX, VI = 2.7 V IlL Vee = MAX, = MAX, = MAX, VI Vee Vee VI TYP* 2.4 3.2 0.25 V Vee 10§ MIN -18 mA II lee -30M TEST CONDITIONS t MAX -1.5 -26C MIN· TYP* 2.4 3.3 0.35 0.4 MAX -1.5 0.6 20 20 100 -20 -250 100 -20 Pin I, 11 0.2 All others 0.1 -250 0." 0.1 UNIT V V V ~A ~ mA Pin 1, 11 50 20 All others 20 -0.2 20 -0.2 mA -125 mA 100 mA = 0.4 V Vo = 2.25 V -30 Outputs Open -125 75 = OV -30 75 105 ~ tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. tAli typical values are at Vee = 5 V, TA = 25·e. §The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, lOS. switching characteristics over recommended supply voltage and operating free-air temperature renges (unless otherwise noted) PARAMETER fROM TO TEST CONDITIONS 0,1/0 tdis 1,1/0 eLK! OEJOEt ten tdis 1,1/0 1,1/0 0,1/0 0,1/0 t1td ten TYP* MIN UNIT TYP* MAX 26 MHz ns 30 15 30 15 Q RL = 600 Il, 10 20 10 15 ns Q eL = 50 pF, See NDte 3 15 15 10 20 20 ns 10 25 25 14 30 14 25 ns 13 30 13 25 ns Q t All typical values are at Vee = 5 V, T A 25 ·C. NOTE 3: Load circuits and voltage waveforms are shown in Section 1. 2-86 -26C MAX 25 f max tDd -30M MIN TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 ns TIBPAL20L8·20M, TIBPAL20R4·20M, T1BPAL20R6·20M, TIBPAL20R8·20M TIBPAL20L8·15C, T1BPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C HIGH PERFORMANCE IMPACT'MPAl® CIRCUITS 02920, JUNE 1986- REVISED DECEMBER 1987 TIBPAL20LB' M SUFFIX, , . JT PACKAGE C SUFFIX ... JT OR NT PACKAGE • High Performance: f max (wlo feedbackl TIBPAL20R' C series . , . 45 MHz TIBPAL20R' M series ... 41.5 MHz • High Performance, .. 45 MHz Min Vee • Functionally Equivalent to, but Faster than, PAL20L8, PAL20R4, PAL20R6, PAL20R8 I ITOP VIEW) • Preload Capability on Output Registers Simplifies Testing • Package Options Include Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs • o 1/0 1/0 1/0 1/0 1/0 1/0 o Reduced ICC of 180 mA Max DEVICE 'PAL20L8 'PAL20R4 'PAL20R6 'PAL20R8 3·STATE I INPUTS o OUTPUTS 14 12 12 12 2 0 0 0 0 4 (3~state II ... 1/0 REGISTERED Q OUTPUTS buffers) 6 /3-state buffers) 8 (3-state buffers) PORTS 6 4 2 0 TlBPAL20LB' M SUFFIX .. , FK PACKAGE C SUFFIX ... FN PACKAGE ITOPVIEW) CD CD .s::: en u u ___ uz>_o description 4 These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT'" circuits combine the latest Advanced Low-Power Schottky t technology with proven titanium-tungsten fuses to provide reliable, high performance substitutes for conventional TTL logic, Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are also available for further reduction in board space. I/) 3 2 ... CO CO 1 28 27 26 25 24 23 1/0 1/0 I/O C 22 Ne 21 20 10 " 19 1/0 1/0 1/0 121314 15 16 17 18 NC- No internal connection Pin assignments in operating mode Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55 DC to 125 DC, The TIBPAL20'C is characterized from 0 DC to 75 DC. IMPACT is a trademark of Texas Instruments Incorporated PAL is a registered trademark of Monolithic Memories Inc. t Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975. PRODUCTION DATA do.umants .ontain inlormation currnt 88 of publication data. Products cantDrm to spacifications per the terms of Texas Instruments ::~:~~i~air::1~7i ~!:~~:i:r :.~O:::~~~~ not Copyright TEXAS .., INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 © 1986, Texas Instruments Incorporated 2-87 TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20R8·20M TIBPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS TIBPAL20R4' M SUFFIX . .. JT PACKAGE C SUFFIX . .. JT OR NT PACKAGE TISPAL20R4' M SUFFIX . .. FK PACKAGE C SUFFIX . .. FN PACKAGE (TOP VIEW) (TOP VIEW) ClK e VCC ~ u a --uz>_"" I liD liD 4 3 2 1 2827 26 25 Q liD Q 22 liD liD Q Q 19 liD I 12131415 1617 18 GND --.;'---=.... DE 11 NC 21 20 TlBPAL20RS' M SUFFIX . .. JT PACKAGE C SUFFIX . .. JT OR NT PACKAGE TIBPAL20RS' M SUFFIX . .. FK PACKAGE C SUFFIX . .. FN PACKAGE (TOPVIEWI (TOP VIEWI ClK u ~ 0 __ :J uz>_"" VCC I liD 4321282726 Q Q Q I 5 25 I 6 24 I NC I liD 9 I 10 I 11 121314151617 18 TIBPAL20RS' M SUFFIX . .. JT PACKAGE C SUFFIX . .. JT OR NT PACKAGE TIBPAL20RS' M SUFFIX . .. FK PACKAGE C SUFFIX . .. FN PACKAGE (TOPVIEWI (TOP VIEW) ClK I VCC I Q 4 Q Q I I Q 2 1 2827 26 I Q NC I Q Q I GND Y;;=--..:.:::J>-' 3 5 6 22 9 I 10 I 11 12131415 161718 BE --~~Ib-d (!) NC-No internal connection Pin assignments in operating mode 2·88 TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 TIBPAL20LB·20M, TIBPAL20R4·20M TlBPAL20LB·15C, TIBPAL20R4·15C HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS functional block diagrams (positive logic) TIBPAL20LS' EN >1 & 40 x 64 '<:7t>----0 b----o 14 20 IO-~""_I/O II b-e+-+....-I/O b--<-+-....~ I/O (I) +or Q) Q) b--<-+-+t~ I/O .c 6 CJ) (Q +or TIBPAL20R4' (Q o OE EN ClK C1 ~ 40 X 64 ,..-20X [> 12 4 r+ I..-- ~ 'V ~ 'V >1 8 I--f- o '<:7 ~ 10 ~ ~ :> f-+- ~ :> ~ I-- f-..,l.- Q ~ Q EN o >1 '<:7 f---J ~ f--.y- f-+-- '" '" I---y- L.-~ I/O I/O I/O I/O 4 I"\.J denotes fused inputs TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-89 TIBPAL20R6·20M, TIBPAL20RB·20M TIBPAL20R6·15C, TlBPAL20RB·15C HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS functional block diagrams (positive logic) TIBPAL20RS' OE "lEN C1 r., ClK -a;40X 64 8 ;;>1 p.;. Q ---.. 10 ~ ~-m-;+ 'V ~ Eo ---.. ~ "--- ~ 'V ~ Q r----, AI en Q h EN ;;>1 \7 ,---f-!."- :::T CD CD a r----, ~ 2,.7 AI r+ Q r----, ~ r,. Q . 1/0 r 1/0 2 6 r+ en TIBPAL20RS' OE ClK Q Q Q 12 20X C> 20 Q Q Q Q Q 8 "-' denotes fused inputs 2·90 TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 TIBPAL20LB·20M TlBPAL20LB·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS logic diagram (positive logic) (1) INPUT LINES /0 4 8 12 16 1\ 20 24 28 32 I~ 0 • • • I~ 141 ..... 7 8 161~ ... ~ .. 181~ - . ...r---' • • 23 .-- ~4 • • • 31 ~~ tI) (201 (191 I/O 1/0 G) G) .c en ....asas C 32 (181 • • 39 :J 40 • • • 47 (171 ... I/O 1/0 -- ....... ...J •• • 55 (161 1/0 - ~ 56 ~ • • 1~ .... v 48 l!!t o 1211 .... • I~ 1221 :-- • • • 15 • ... 1231 ,.--- r--J 16 151 \ ..;.r-- "" PR ODUCT II NES 36 • 63 ~ . 1151 o (14) (13) 111~ .;,r------- Pin numbers shown are for JT and NT packages. . TEXAS. INSTRUMENTS POST OFFICE BOX 655012 .. DALLAS, TEXAS 75265 2·91 TIBPAL20R4·20M TIBPAL20R4·15C HIGH·PERFORMANCE IMPACTTM PALl$) CIRCUITS logic diagram (positive logic) ClK , 11) .... INPU~LlNES 10 12) 4 8 16 12 20 24 28 32 36 \ .... '" PR ODUCT 0 LIN ES .1 @!.- 7 8 .... • •• 14)- '" I~- '\.. 15 16 .... • •• 23 ...... . 40 "" ~ c, ~ 1.119) V"" 1.l118) v Q Q IJ... 117) Q ...... • • • 55 J 116) 1 116) ~ • • • 63 ~ '" 114) 111) "" Pin numbers shown are for JT and NT packages. 2-92 Q 1- ~ 56 11!l.4 /0 ----' -Pl ~ 48 II~ Vl c, • • 39 • • • 47 118) (21) I )- • v J :J I10 'D "32 171- 122) Iv >-- ~~] c • • 31• 16) 1 ...... 24 I 123) "" TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • OAUAS. TEXAS 75265 I ~ I/O I/O TlBPAL20R6·20M TIBPAL20R6·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS logic diagram (positive logic) ClK (1)~ ... , 0 . INPUTA;:INES 4 8 12 16 20 24 28 32 (2) 36 , (23) ~ I/O PR ODUCT LI NES 0 • • • 7 (!l '- • • ... 1 ..... "\. " r-- 16 (7)~ (!)~ (1 v 31• 32 •• • 39 )- 40 " ~ • • • 47 -~ )- ..... • • 55 iJ... (1 I.l... (1 B c, ~ L>-~ • c, t;w1 I ..... : t------' 56 1 • (10) .. (20 I'" ~ 48 (~ c, " • • ... iJ ~ r- I.l tl] .-.. • • 23 24 (6)~ 1/0 ... 1 r- ~I.l'" '0 c, • 15 • (5)~ (22) ~ 8 (4) .... J • 63• (15) 1/0 - .. 1 (14) (11) 4.- ~-I + Pin numbers shown are for JT and NT packages. TEXAS " , INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ) OE 2-93 TIBPAL20RB·20M TIBPAL20RB·15C HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS logic diagram (positive logic) (1) . c LK '" INPUT,./-INES "'0 4 B 16 12 20 24 2B 32 (2) 36 ... .... (23) P RODUCT LINES 0 . (3)" • • 7• r ~ ~"2J c, ........ ~ • 15• 4) )- C ..... ~ • en :::r (5)" • • 23 ... -2~ CD CD P+ tit (6) ... (7) (B) ... )- ..., ~ >..., ~ 32 • • • 39 r ~ •• r • 47 • • • 55 )- ~ ~ Pl c, ..., -56 • • 10) ~ c, 1.... 48 (9) ... ~ c, 1- c, )-~ • 63 ~(21) v Q r---' c, • • • 31 -4 ~ c, 16 I» P+ I» Q i:l.... (20) Q 1.1 (19 v Q 1.1(18 rv- Q 1. -v-- (17 1... (16 i:l.... (16 Q Q Q ~ (14) 1) - ... "::l- 1-1 3)_ OE ~ Pin numbers shown are for JT and NT packages. 2-94 TEXAS . " INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TEXAS 75265 TIBPAL20LB-20M, TIBPAL20R4-20M, TIBPAL20R6-20M, TIBPAL20RB-20M TlBPAL20LB-15C, TIBPAL20R4-15C, TlBPAl20R6-15C, TIBPAL20RB-15C HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e e suffix : ............................. ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions -20M PARAMETER vCC Supply voltage VIH High-level input voltage VIL Low-level input voltage IOH High-level output current IOL Low-level output current fclock Clock frequency MIN 4.5 NOM 5 2 -lSC MAX MIN NOM 5.5 4.75 5 5.5 2 5.5 O.B -2 O.B -3.2 12 I High I Low tw Pulse duration, clock tsu th Setup time,. input or feedback before CLKt Hold time, input or feedback after CLKt TA Operating free-air temperature 41.5 0 12 10 15 0 -55 0 0 \i V V mA 24 mA MHz ns 10 0 125 UNIT 45 10 12 12 20 MAX 5.25 75 EI... til Q) Q) .c ns Ul ns CIS CIS ns DC ... C fClock. two tsu. and th do not apply for TIBPAL20LB'. TEXAS • INSlRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-95 TIBPAL20L8·15C, TIBPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS electrical characteristics over recommended free·air operating temperature range PARAMETER TEST CONDITIONS Vee = 4.75 V, Vee - 4.75 V, Vee = 4.75 V, VIK VOH VOL 10ZH 10Zl • C DI S' 0,0 outputs 1/0 ports 0, 0 outputs 1/0 ports II = -18mA 10H - -3.2 mA 10l = = 5.25 V, Vo = 2.7 Vee = 5.25 V, Vo = 0.4 V = = = = = 5.25 V, VI 5.25 V, VI II Vee Vee III * Vee 10S§ Vee 5.25 V, Vee 5.25 V, Outputs open, 5.25 V, -lSC TYpt -0.8 MAX -1.5 2.4 0.3 24 mA Vee IIH* lee MIN V = 5.5 V = 2.7 V VI = 0.4 V Vo = 0 VI = 0, -30 OE at VIH 0.5 20 100 -20 -0.25 1 UNIT V V V p.A p.A mA mA 25 p.A -0.25 mA -70 -130 mA 120 180 mA tAli typical values are Vee = 5 V, TA = 25°e. * For 1/0 ports, the parameters IIH and III include the off-state output current. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. en switching characteristics over recommended operating free-air temperature range (unless otherwise ;- noted) CD r+ (II PARAMETER FROM f max ' tpd with feedback without feedback 1,110 0,1/0 tpd elKt 0 Rl ten ?5E 0 eL tdis ?5Et ten tdis TO TEST CONDITIONS MAX 40 UNIT MHz 15 ns 8 12 no 10 15 ns 0 8 12 ns 1.1/0 0,1/0 12 18 ns 1,1/0 0,1/0 12 15 no = = = 2000, R2 3900, 50 pF, See Figure l' tsu 1 + tpd (elK to 0) , f max (without feedback) = tw high 1 + tw low f max does not apply for TIBPAL20l8' 2-96 -lSC TYpt 50 12 tAli typical values are at Vee = 5 V, TA = 25°e. 1fmax (with feedback) = MIN 37 45 TEXAS ~ INSIRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL20LB-20M. TIBPAL20R4-20M. TIBPAL20R6-20M. TIBPAL20RB-20M HIGH-PERFORMANCE IMPACpM PAl® CIRCUITS electrical characteristics over recommended free-air operating temperature range PARAMETER TEST CONDITIONS VIK Vee = 4.5 V, VOH Vee = 4.5 V, Vee = 4.5 V, VOL 0, 0 outputs 10ZH 10ZL 110 ports 0, 0 outputs 110 ports MIN II = -18 rnA 10H = -2 rnA 2.4 10L = 12 rnA Vee = 5.5 V, Vo = 2.7 V Vee = 5.5 V, Vo = 0.4 V -20M Typt MAX -0.8 -1.5 3.2 0.25 0.5 V 20 100 ~A UNIT V V -20 ~A -0.25 rnA rnA II Vee = 5.5 V, VI = 5.5 V 1 IIH" Vee = 5.5 V, VI = 2.7 V 25 ~A IlL' Vee = 5.5 V, VI = 0.4 V -0.25 rnA 10S§ Vee = 5.5 V, Va = 0 -70 -130 rnA Vee = 5.5 V, VI.= 0, OE at VIH 120 180 rnA lee Outputs open, -30 II t All typical values are Vee = 5 V, TA = 25°e. :t: For 110 ports, the parameters IIH and IlL include the off-state output current. § Not more than one output shquld be shorted at a time, and duration of the short-circuit should not exceed one second. switching characteristics over recommended operating free-air temperature range (unless otherwise noted) FROM PARAMETER TO TEST CONDITIONS with leedback I max ' without feedback MIN -20M Typt MAX 28.5 40 41.5 50 UNIT MHz 12 20 ns R2 = 750 II, 8 15 ns See Figure 1 10 20 ns 0 8 20 ns 1,1/0 0,1/0 12 25 ns 1.1/0 0,1/0 12 20 ns tpd 1,110 0,1/0 tpd eLKt 0 Rl = 390 II, ten OE 0 CL = 50 pF, tdis O'Er ten tdis t All typical values are at VCC = 5 V, T A = 25°e. 'I max (with leedback) = 1 , 1m ax (without leedback) = ..,--;-:--;-c.....,.......,..,tsu + tpd (CLK to 0) tw high + tw low 'max does not apply lor TIBPAL20L8' TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-97 TIBPAL20L8·20M, TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20R8·20M TIBPAL20L8·15C, TlBPAL20R4·15C, TIBPAL20R6·15C, TlBPAL20R8·15C HIGH·PERFORMANCE IMPACpM PAL ® CIRCUITS preload procedure for registered outputs (see Note 2) The output registers of the TIBPAL20R' can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. Step Step Step Step 1. 2. 3. 4. With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse pin 1, Clocking in preload data. Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage level at the output pin. preload waveforms (see Notes 2 and 3) PIN 13 _ _ _ f\---- ::~" n---:-T----- ~/ ~""~ ~td...l PIN 1 ~+~ : l I+-tw-+l I . I I VIH I I I I I -JR ,. ~ 8 o~.~ REGISTERED I/O _ _ _ NOTES: ::: 2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed accordingly. 3. td ~ tsu ~ tw ~ 100 ris to 1000 ns. VIHH ~ 10.25 V to 10.75 V. 2-98 VIL TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL20LB·20M, TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20RB·20M TIBPAL20LB·15C, TIBPAL20R4·15C, TlBPAL20R6·15C, TlBPAL20RB·15C HIGH·PERFORMANCE IMPACTTM PAL ® CIRCUITS programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. PARAMETER MEASUREMENT INFORMATION 5V Sl b Rl FROM OUTPUT_....._ . ._ ...._ UNDER TEST ... TEST POINT II) CD CD R2 .c (/) ...asas LOAD CIRCUIT FOR THREE-STATE OUTPUTS TIMING INPUT : -'w- HIGH.LEVEL ~- --3.5 V " ,1.5V 1.5V, PULSE , ,0.3 V /. 3.5 V /,1.5V :--------0.3V _ _ _oJ ... t.u DATA INPUT o ""'h~ 1.5 V 1.5 V ~ 0.3 V ~ LOW-LEVEL PULSE '1.5V \1.5 I· ----35V V . ~1.5V - - "1 tPLH~ IN.pHASE OUTPUT 1 I " -I I ~~ -;:~ VOH I 'PHL ~ OUT '()F.pHASE OUTPUT 11.5V: I 1.5V • VOL F' 1.5V VOH __ VOL (See Note D) VOL TAGE WAVEFORMS PROPAGATION DELAY TIMES 3.5V 0.3V ~ 1.5 V (low-Iavel enabling) PHL I4--*-tpLH \1 OUTPUT CONTROL 0.3 V _____ t 1.5V --- - VOLTAGE WAVEFORMS PULSE DURATIONS VOLTAGE WAVEFORMS SETUP AND HOLD TIMES INPUT tw~ .. -:----3.5V I .PZL ..... I ItI Sl CLOSED (See No.e B) WAVEFORM 2 Sl OPEN (See No.e B) i 'PZH -i-- -- ---- 0.3 V __ It--tpLZ I I I I WAVEFORM1~ 3.5V 1.5 V =3.3 V 1.5V iI::~5V ~-=-------:.;== --l..t ...: ~ 1.5 V VOL !'-tPHZ -----t--v -----.-0.5 V OH "'0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS NOTES: A_ CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C_ All input pulses have the following characteristics: PRR '" 1 MHz. tr = If = 2 ns, duty cycle = 50%. O. When measuring propagation delay times of 3-state outputs, switch S1 is closed. FIGURE 1 TEXAS . " INSTRUMENTS POST OFFICE BOX 666012 • DALLAS. TeXAS 75266 2-99 • ...c A) A) en :::r CD CD ...en 2-100 TIBPAL20L8·30M, TlBPAL20R4·30M, TIBPAL20R6·30M, TIBPAL20R8·30M TIBPAL20LB·25C, TlBPAL20R4·25C, TIBPAL20R6·25C, TIBPAL20R8·25C LOW·POWER HIGH PERFORMANCE IMPACTTM PAL® CIRCUITS D2920. MAY 1987-REVISED DECEM8ER 1987 • Low-Power, High Performance Reduced ICC of 105 mA Max f max (TIBPAL20R'-25C Series): Without Feedback ... 33 MHz Min With Feedback ... 25 MHz Min tpd (TIBPAL20'-25C Series) ... 25 ns Max • Direct Replacement for PAL20L8A, PAL20R4A, PAL20R6A, and PAL20R8A with at Least 50% Reduction in Power • Preload Capability on Output Registers Simplifies Testing • Power-Up Clear on Registered Devices • Package Options Include Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs • Dependable Texas Instruments Quality and Reliability DEVICE 'PAl20l8 'PAl20R4 'PAl20R6 'PAl20R8 I INPUTS 14 12 12 12 1/0 REGISTERED OUTPUTS PORTS 2 0 0 0 4 (3-state buffers) 6 (3-state buffers) 8 13-state buffers) 6 4 2 0 0 ITOP VIEW) VCC I o 110 110 110 110 110 110 o 3·STATE o OUTPUTS a TIBPAL20LS' M SUFFIX •.. JT PACKAGE C SUFFIX ... JT OR NT PACKAGE GND ""--''---=~ TlBPAL20LB' M SUFFIX •.. FK PACKAGE C SUFFIX .•• FN PACKAGE (TOP VIEW) u u ___ u z>_o 4 3 2 I 28 27 26 25 24 9 " 12 13 14 15 16 17 18 description 23 22 21 20 19 ...en CD CD .s:. en ...caca 110 110 110 NC 110 110 110 o --ou--o zz l!J These programmable array logic devices feature high speed and functional equivalency when NC - No internal connection compared with currently available devices. Pin assignments in operating mode These IMPACT'" circuits combine the latest Advanced Low-Power Schottkyt technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are also available for further reduction in board space. In many cases, these low-power devices are fast enough to be used where the high-speed or "A" devices are used. From an overall system level, this can amount to a significant reduction in power consumption, with no sacrifice in speed. All of the output registers are set to a low level during power-up, but the voltage levels at the output pins stay high. Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55°C to 125°C. The TIBPAL20'C is characterized from OOC to 75°C. IMPACT is a trademark of Texas Instruments Incorporated PAL is a registered trademark of Monolithic Memories Inc. tlntegrated Schottky·Barrier diode·clamped transistor is patented by Texas Instruments. U.S. Patent Number 3.463,975. This docu_1It cantains informatiDn aD pradum in mara thIn ana ph••a af dovalopmant na statUI al 81ch device is indic_ an tba paga(s)spaclfying ilB electrlc.1 characteristics. Copyright @"1987, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 2-101 TIBPAL20R4·30M. TlBPAL20R6·30M. TIBPAL20R8·30M TIBPAL20R4·25C. TlBPAL20R6·25C. TlBPAL20R8·25C LOW·POWER HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS TIBPAL20R4' M SUFFIX .•. JT PACKAGE C SUFFIX ... JT OR NT PACKAGE TIBPAL20R4' M SUFFIX ... FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) (TOP VIEW) ClK VCC I ~ ~ u 0 --UZ>_,,= I I/O 4 liD 3 2 1 28 27 26 Q I 5 25 liD Q I 6 24 Q Q 23 Q Q 22 21 20 Q 19 liD liD liD I I I GND """''--...;.;;J.... NC Q 12 131415 1617 18 ill TIBPAL20RS' M SUFFIX ... JT PACKAGE C SUFFIX ... JT OR NT PACKAGE TIBPAL20RS' M SUFFIX ... FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) (TOP VIEW) ClK VCC I liD 4 Q I I Q Q 3 2 1 28 27 26 5 6 25 Q 24 Q 23 Q Q 22 21 20 19 Q Q 10 liD 11 NC Q Q Q 121314151617 18 TIBPAL20RS' M SUFFIX ... JT PACKAGE C SUFFIX ... JT OR NT PACKAGE TIBPAL20RS' M SUFFIX ... FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) (TOP VIEW) CLK VCC I Q 4321282726 Q 25 Q 24 Q 23 Q 22 Q 21 20 19 I GND I 12131415 1617 18 '-I.:.:;.....-::~ ill - - ~ ~Io - 0 (:J NC - No internal connection Pin assignments in operating mode 2·102 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL20L8·30M, TIBPAL20R4·30M TIBPAL20L8·25C, TIBPAL20R4·25C LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS functional block diagrams (positive logic) TIBPAL20L8' EN ~1 & 40X64 "10----0 0----0 14 20 II b--e+.......-I/O 6 TIBPAL20R4' OE----------------------------~ CLK------------------------------~ & 1-------0 j--t--l-l--j--t---l-l--- 20X I> 12 0 0 20 4 b--....-OIIIf+-+--- I/O 4 -+--- I/O b-..-l~.... b-....I--o. .- I - - I/O b-....I--o...-I~- I/O 4 "-' denotes fused inputs TEXAS .., INsrRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-103 TIBPAL20R6·30M. TIBPAL20R8·30M TIBPAL20R6·25C. TIBPAL20RB·25C LOW·POWER HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS functional block diagrams (positive logic) TIBPAL20RS' OE-------~---- .... 40 • • • 47 ..... I/O I/O ~ ~~I 10 V ~ ~ ~ e, ~) a '1 -v-- )a (18 ~ '1 -yo- ) a (17 l (16 ~ • 55 56 ./ -J . • • 63 (15 .. 1 .... (14) """"1.- I .;,r-I ~ Pin numbers shown are for JT and NT packages. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 a e .... 48 11) 2·106 -AI c, • 10) ... (21) h~ • • (9) I 24 • • 39 (7) (22) ~ 16 ...C l TIBPAL20R6·30M TIBPAL20R6·25C LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS logic diagram (positive logic) CLK (1) ....l{) , 0 INPUT~INES 4 8 12 16 20 24 28 32 I (2) -"t,. PR ODUCT LIN ES ~ • • • 7 v (7) ... -"t,. (!!.t 10) ... ~8'" r 15 16 )0 c, .A ~ • • 23 >-)- ~ 24 • 31• )- ~ ~ Q v II (20 )0 "l (1 "l (1 "l (1 1.1 (1 v c, ~ ~ 32 •• • 39 r ~ c, v ~ 40 • • • 47 )- ~ v c, ..... • • • 55 .... 1/0 I ~ 48 (9) v (22) ~ 8 • (6)... 1 r--.. 1--" • -v (23) 0 • (5) ... , ~ • • 4)" 36 ~ >-=Yl c, v ..... 56 1 • • 63• (15) ~ . . +) .... 1/0 (14) 1~ ct---I Pin numbers shown are for JT and NT packages. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-107 TIBPAL20RB·30M TIBPAL20RB·25C LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS logic diagram (positive logic) 'C LK (1) ''''' INPU~INES ~ "'0 4 8 12 16 20 24 28 32 (2) "'""1.- 36 , (23) .... P ROOUCT LINES 0 - 1 (3)" 4) ... r • • )- ~. "'" • 7 r ~ .... • 15• )- ..... '" 16, >- -t 9) -t "Z4 ~ • • • 31 >- Q - ~ - J(20 v ~ 1 . (19 Q -v-- Q r--' 3Z )- ~- 1 . (18 Q Cl '" • • 47 )- 1'" 48 • • • 55 )- s 1 . (17 J Pl Q .... .... (1 6) Q Cl .... -56 ~ • • 63 • 0) .. ~- 1.(21 Cl 4. (8) Cl • • • 39 (7) Q Cl • • • 23 (6) FI1 ?,,' >-~ Cl • ~ Q ~ r '" (14) 1) .t- -I ~ 3)_ OE P~n 2-108 4: numbers shown are for JT and NT packages. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 TlBPAL2DLB-3DM, TIBPAL2DR4-3DM, TIBPAL2DR6-3DM, TIBPAL2DRB-3DM TIBPAL2DLB-25C, TIBPAL2DR4-25C, TIBPAL2DR6-25C, TIBPAL2DRB-25C LOW-POWER HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C e suffix .............................. DoC to 75°C Storage temperature range ......................................... - 65°C to 150°C NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions -25C -30M PARAMETER UNIT MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 V 5.5 2 5.5 V VCC Supply voltage VIH High-level input voltage VIL Low-level input voltage O.S O.S IOH High-level output current -2 -3.2 mA IOL Low-level output current Clock frequency 12 24 mA 33 MHz fclock 2 0 25 I High tw Pulse duration. clock tsu Setup time, input or feedback before CLKt th Hold time. input or feedback after CLKt TA Operating free-air temperature I Low -55 125 0 V 15 ns fI ... U) CD CD .c en 15 ns 25 ns 0 ns ... °c C 0 75 CO CO fclock. two tsu. and th do not apply for TIBPAL20LS·. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-109 TIBPAL20LB·30M. TIBPAL20R4·30M. TIBPAL20R6·30M. TIBPAL20RB·30M LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS electrical characteristics over recommended free-air operating temperature range PARAMETER Vee = 4.5 V, Vee - 4.5 V, Vee = 4.5 V, VIK VOH VOL 10ZH 10Zl II C ! S» (/) :::r CD !(II -30M TEST CONOITIONS 0, 0 outputs 1/0 ports 0,0 outputs 1/0 ports II = -lBmA IOH = -2 mAo IOl = 12mA MIN TVpT 2.4 -O.B 3.3 0.25 = 2.7 V Vee = 5.5 V, Vo Vee = 5.5 V, Vo = 0.4 V MAX -1.5 0.5 20 100 -20 -0.25 0.1 UNIT V V V I'A I'A mA mA II Vee = 5.5 V, VI = 5.5 V IIH~ Vee = 5.5 V, VI = 2.7 V 20 j4A III ~ Vee = 5.5 V, VI = 0.4 V -0.2 mA 10S§ Vee = 5.5 V, Vee = 5.5 V, Outputs open, Vo = 0 VI - 0, DE at VIH -130 mA lee -30 -70 75 mA tAli typical values are at Vee = 5 V, TA = 25°e. ~ For 1/0 ports, the parameters·IIH and III include the off-state output current. § Not more than one output should be shorted at a time, and duration of the short-circuit should not excaed 1 second. switching characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER f max ' !I!d tDd FROM TO with feedback without feedback 1,1/0 elKt MIN 0,1/0 0 ten DE 0 DEt 1,1/0 1,1/0 0 0,1/025 0,1/0 tsu +tpd n, el = 50 pF, R2 = 750 n, Sea Figure 1 ~e l K to 0)' fmax (without feedback) = h' h 1 I tw Ig +tw ow f max doe. not apply for TIBPAl20lB' ::D o C c: (') -I "'0 ::D m m ~ = PRODUCT PREVIEW inforlllotli••lnlOr•• In iii. far.lIi .. or l1li111 p.... of ..... ......rIIIi. data .1III1IIIior ~... aro doIIl. 2-11 0 ::"Jt:::.=;"":'"wit'\".~=:"" UNIT MHz ns. ns ns no ns ns "'0 < - MAX 30 Rl= 390 tAli typicai values a're at Vee = 5 V, TA = 25°e. 'fmax (with feedback) = TVpT 25 tdls ten tdis -30M TEST CONDITIONS TEXAS ", INSTRUMENTS POST OFFICE BOX 855012 • DALLAS. TEXAS 7528& TlBPAL20LB·25C, TIBPAL20R4·25C, TlBPAL20R6·25C, TIBPAL20RB·25C LOW·POWER HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS electrical characteristics over recommended free·air operating temperature range PARAMETER TEST CONDITIONS VIK Vce VOH Vee VOL Vee 0, Q outputs 10ZH I/O ports 0, Q outputs 10Zl I/O ports = 4.75 = 4.75 = 4.75 II V, 10H V, 10l -18mA = -3.2 mA = 24 mA Vee = 5.25 V, Vo = 2.7 Vee = 5.25 V, Vo = 0.4 V = = = = 5.25 V, VI 5.25 V, VI II Vee IIH* Vee III * Vee 10S§ Vee 5.25 V, Vee - 5.25 V, Outputs open, ICC = V, MIN 5.25 V, 2.4 -25C Typt MAX -0.8 -1.5 3.3 0.5 20 100 -20 -0.25 = 5.5 V = 2.7 V VI = 0.4 V Vo = 0 0.1 -30 VI - 0, OE at VIH V V 0.3 V UNIT V ~A ~ mA mA 20 ~A -0.2 mA -70 -130 mA 75 105 mA ... fI) t All typical values are at Vee = 5 V, TA = 25°C. * For I/O ports, the parameters IIH and III include the off-state output current. § Not more than one output should be shorted at a time. and duration of the short-circuit should not exceed 1 second. CD CD J: switching characteristics over recommended operating free·air temperature range (unless otherwise noted) PARAMETER FROM f max ' with feedback without feedback tpd I, I/O tpd TEST CONDITIONS TO MIN ·25C TYpt MAX UNIT 25 33 40 3 25 ns 2 14 10 15 ns 2 8 15 ns elKf Rl ten OE Q el tdis trEf Q 2 8 15 ns ten tdis I, I/O 0,1/0 15 I, I/O 0, I/O 3 3 25 25 ns tAli typical values are at Vee 'fmax (with feedback) = tsu = + 5 V, TA = 390 Il, 200 Il, R2 50 pF, See Figure 1 15 ... CQ CQ C MHz 50 0, I/O Q = = en ns = 25°C. 1 , f max (without feedback) tpd (elK to QI = tw high 1 + tw low f max does not apply for TIBPAl20lB' PRODUCTION DATA do.umanls ••ntoi. infarmation currant 8. of publication data. Products conform to specificatiDns par t•• tarms of Taxas Instruments :'~~~:~~.ir::I-::li =::i~n :'=ID~S not TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-111 TIBPAL20LB·30M, TIBPAL20R4·30M, TIBPAL20R6·30M, TIBPAL20RB·30M T1BPAL20LB·25C, TIBPAL20R4·25C, TIBPAL20R6·25C, TIBPAL20RB·25C LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS preload procedure for registered outputs (see Note 21 The output registers of the TIBPAL20R' can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. Step Step Step Step 1. 2. 3. 4. With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse pin 1, clocking in preload data. Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage level at the output pin. preload waveforms (see Notes 2 and 31 -1! ~''"~ Ec ~+~ i\-_n:~ PIN13 _ _ _ k-td-.l ....C»C» : ! PIN 1 I+-tw~ n---:-T----1 ---+---TI---' en ::r 1 1 I I 1 I 1 I -1M (1) (1) ....UI REGISTERED 1/0 _ _ _ I VIH VIL 8'-0-UT-P-U-T-::~ INPUT NOTES: 2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin nunibers must be changed . accordingly. 3. td = tsu = tw = 100 ns to ;000 ns. VIHH = 10.25 V to 10.75 V. 2-112 TEXAS ,If INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS '75265 TlBPAL20LB·30M. TIBPAL20R4·30M. TIBPAL20R6·30M. TIBPAL20R8·30M TlBPAL20L8·25C. TlBPAL20R4·25C. TIBPAL20R6·25C. TlBPAL20R8·25C LOW·POWER HIGH·PERFORMANCE IMPACpM PAL@ CIRCUITS programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. . . Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. PARAMETER MEASUREMENT INFORMATION sv Sl b Rl FROM OUTPUT_....._ ...~t-_ TEST UNDER TEST POINT ... fI) R2 Q) Q) .c en ...caca LOAD CIRCUIT FOR THREE-STATE OUTPUTS TIMING INPUT ./. 3.S V /,l.SV _ _ _..J. : - - - - - - - - O . 3 V PULSE ~ 0.3 v INPUT DATA LOW·LEVEL PULSE r---""", .. I 1.5 V -" ~ tPLH 1IN·PHASE, OUTPUT I ~tPHL l:t-- -j /1 S v I . " I I tPHL ~ OUT -OF.pHASE OUTPUT \ );..,.~ \ C" 1.5 v • VOH VOL __ VOL VOLTAGE. WAVEFORMS PROPAGATION DELAY TIMES OUTPUT CONTROL v VOH TI,C'".I 1.5 v (See Note 01 NOTES: v I4----+t-tpLH ' tw~ 3.5V 1.5 _ _ _ _ 0.3 V VOLTAGE WAVEFORMS PULSE DURATIONS ---3.5 \1.5V I ... · - - - - 0.3 .L,1.5V tw ~ ~ v VOL TAGE WAVEFORMS SETUP AND HOLD TIMES INPUT 1.5V~0.3 v ---../: 1.5V .....-- 14- 'su ..,.- 'h ~ ' -'----3SV ' 1 .SV 1 1.SV · C ~---3.5V HIGH.LEVEL ~ 1.5 V (Iow-Iavel 3.5V 1.5 V _:_ - - - - - - - 0.3 V tpZL ~..-..... ..-- 'PLZ I I I' I I , : ~3.3 V WAVEFORM 1 ~ 1.5 V :~5 V . Sl CLOSED ; ~-=-------=-;='~ VOL (See Note BI 'PZH ~ ....: jf-'PHZ enabling 1 i WAVEFORM 2 Sl OPEN ISee Note BI 1 1.5 V \:::-=-{.:::= 0.5 V VOH "0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES. THREE·STATE OUTPUTS A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses have the following characteristics: PRR .:s; 1 MHz, tr = tf = 2 ns, duty cycle = 50%. D. When measuring propagation delay times of 3-state outputs, switch S1 is closed. FIGURE 1 TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-113 E 2-114 TIBPAL20L 10-25M, TlBPAL20X4-25M, TIBPAL20X8-25M, TIBPAL20X10-25M TIBPAL20L 10-20C, TIBPAL20X4-20C, TIBPAL20X8-20C, TIBPAL20X10-20C HIGH-PERFORMANCE EXCLUSIVE-OR IMPACT 1M PAP CIRCUITS 02920, OCTOBER 19aS-REVISED DECEMBER 19a7 • High Performance ... 35 MHz Min • Preload Capability on Output Registers Simplifies Testing TIBPAL20L 10' M SUFFIX, . , JT PACKAGE C SUFFIX, . , JT OR NT PACKAGE (TOP VIEW) • Power-Up Cleer on Registered Devices • Package Options Include Both Plastic and Ceremic Chip Carriers in Addition to Plastic and Ceramic DIPs DEVICE I INPUTS 3·STATE REGISTERED I/O o OUTPUTS Q OUTPUTS PORTS 'PAL20L10 12 2 0 8 'PAL20X4 10 0 4 (3-5tate buffers) 6 'PAL20X8 10 0 8 13-5tate buffers) 2 'PAL20X1O 10 0 10 (3-state buffers) 0 Vcc o 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 o These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices, These IMPACT'" circuits combine the latest Advanced Low-Power Schottky t technology with proven titanium-tungsten fuses to provide reliable. high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board, In addition, chip carriers are available for further reduction in board space. All of the registered outputs are set to a low level during power-up, In addition, extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. fI TIBPAL20L 10' M SUFFIX ... FK PACKAGE C SUFFIX .. , FN PACKAGE (TOP VIEW) description u ° u ___ uz>o::o 4 I I I NC I I I 3 2 1 28 2726 ~5 ~6 25 24 ]7 23 ]8 22 ]9 21 ~10 20 19 ]11 1/0 1/0 1/0 NC 1/0 1/0 1/0 12131415161718 ou zz (!) NC-No internal connection Pin assignments in operating mode The PAL20' M series is characterized for operation over the full military temperature range of - 55 DC to 125 DC, The PAL20' C series is characterized for operation from 0 DC to 75 DC. IMPACT is a trademark of Texas Instruments Incorporated, PAL is a registered trademark of Monolithic Memories Inc. tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975. PRODUCTION DATA documents contain information currant as of publication date. Products conform to specifications per the terms of Texas Instruments :~~:~:~~i~ai~:r~1i ~~:~:~ti:f :'Io::;:::t:~~s not Copyright © 1984, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-115 TlBPAL20X4·25M, TlBPAL20X8·25M, TIBPAL20X10·25M TIBPAL20X4·20C, TlBPAL20X8·20C, TlBPAL20X10·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS TIBPAL20X4' M SUFFIX . .. FK PACKAGE C SUFFIX ... FN PACKAGE (TOP VIEW) TIBPAL20X4' M SUFFIX . .. JT PACKAGE C SUFFIX . .. JT OR NT PACKAGE (TOP VIEW) OUTCLK ':5 U VCC I/O 110 110 U f- ::JU uoo __ oZ>::o::o 4 Q I Q 3 2 1 28 2726 5 25 24 Q I Q 23 n NC 110 110 21 20 19 110 GN D <-<.:-=-....;;::.>-' DE 12131415161718 -- ~ ~Io gg C) TIBPAL20XS' M SUFFIX . .. FK PACKAGE C SUFFIX . .. FN PACKAGE (TOP VIEW) TIBPAL20XB' M SUFFIX . .. JT PACKAGE C SUFFIX . .. JT OR NT PACKAGE (TOP VIEW) OUTCLK '"U ...J VCC 110 f::l U U Q UO __ oz>::oO Q 4 3 2 1 28 2726 Q 25 Q I GND '-1..:.:'---"",", Q Q 23 Q Q n NC Q 21 Q Q 20 Q 110 19 Q DE 12131415161718 TIBPAL20X10' M SUFFIX . .. JT PACKAGE TIBPAL20X 1 0' M SUFFIX . .. FK PACKAGE C SUFFIX ... FN PACKAGE ITOPVIEW) C SUFFIX . .. JT OR NT PACKAGE (TOP VIEW) OUTCLK '" VCC ...J U f- Q ::J U Q U U oz>OO Q 4 Q I I I Q Q Q 3 2 1 28 2726 25 24 Q 6 7 23 Q 5 Q Q Q GND ........'---'"'"'-' DE 12131415161718 -- NC-No internal connection ~ ~Io 0 0 C) Pin assignments in operating mode 2-116 Q 24 TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 Q 22 NC 21 Q 20 19 Q Q TIBPAL20L 1O·25M, TIBPAL20X4·25M TIBPAL20L 1O·20C, TIBPAL20X4·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS functional block diagrams (positive logic) 'PAL20Ll0 EN:>1 "VP---- 0 0 20XC> 12 110 20 1/0 110 I/O 8 fII .... 1/0 110 II) G) G) 110 .c en 110 ....asas 8 C 'PAL20X4 .J EN DE 1. OUTCLK [, ~ Cl 1=0 =1 4OX40P- 2o'Xi> ~ rv ~ P- 4 + ~ ~ rv - Q ------------..... ~ 10 "V 10 Q Q Q ----.... EN :>1 "V 110 ~ --+- ~ ~ ...;.- -a- -+-t---aL..----+- 110 " 110 110 1/0 110 6 4 "V denotes fused inputs TEXAS .." INSTRUMENTS POST OFFICE BOX,655012 • DALLAS, TEXAS 75266 2·117 TIBPAL20XB-25M, TIBPAL20X10-25M TIBPAL20X8-20C, TlBPAL20X10-20C HIGH~PERFORMANCE EXCLUSIVE-OR IMPACTTMPAL® CIRCUITS functional block diagrams (positive logic) 'PAL20X8 ~--------------------- & 4OX40 r--t---t.-+-Q r---r--;-'-::~Q 10 20XI> 20 rv r---~----t_~-Q r---t---;-'-::I--Q r---r---;'~I--Q 10 20 r---~----t_~-Q t--t--"i--+-Q r---r--;~I--Q t--t--"i--+- Q "'-.J denotes fused inputs 2-118 TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 TIBPAL20L 1O·25M TIBPAL20L 1O·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS logic diagram (positive logic) I~ (1) PRODUCT LINES INPUT LINES __________________ ________________ ~A~ 0 .. • 4'" 8···12'" 16"· 20'·' 24 •• ' 28." ~\ 32··.36··39 ? . r")-.L j v (23) o .... ~ ... 8 >-t1 11 (3) .. (22) I/O ... A v 16 ",-;J. v 19 (21) 1/0 '" 24 ~ r...... 27 .L Q) Q) (20) v 1/0 (5) 32 ~19) 35 (6) .. '" ~ .c en ....a:sa:s C 1/0 A 4!1 ~18) '" 43 171 PI .... II) (4) .. . 1/0 48 ...... .y .1.. 51 (8) . (17) 1/0 A - 56 ~L(16) '" 59 (9) 64 -.... .1 67 (10) .. (15) 1/0 1/0 ....."'1 "" 72 ...... .1 -v 75 111 ) ... .... 0'" A (14) o (13) 4 · · ' 8·"12···16···20··· 24·"28· "32"'36·'39 Pin numbers shown are for JT and NT packages. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·119 TlBPAL20X4-25M TlBPAL20X4-20C HIGH-PERFORMANCE EXCLUSIVE-OR IMPACTTMPAL@ CIRCUITS logic diagram (positive logic) ~__________~_________ ____________________~ INPUTA~ LINES / 0-·· 4-· - 8- - - 12· - - 16-'-·20 •• ,24-··28- •• 32· _. 36· ·39 \ OUTCLK ( 1-'{:l ) ~ PRODU CT LINES ~l 3 ~ . . . .1..... ;;. 11 ~, ... .... 16 . . . ......1 ;:::;: 19 (4) ... c Q) .... r+ Q) ::r CD CD ~ ... r+ en 1 , (21) =SD --- ~I~ 27 (5) (22) I/O I/O .... 24 en I/O ..... 8 E (23) (20) Q A 32 ~~ .- tr: ......... 35 (6) 1.:1 (19) I ..... Q Cl A 40 tKJD ~ ~ ......... 43 (7) ... 48 H~ ~ ~ IV 1.::1 51 (8) ... Q Cl '.... (17) Q Cl ... 56 :,....... ..1 59 (9) ~ --""-t.. 64 :t 67 (10) . J ~r (15) I/O I/O " 72 ...: 75 . . . . .1 .:J (11) ... ....... ... 0'" 4 ... 8··· 12".16· •• 20' •• 24 ••• 28 . . . 32 ••• 36' .39 Pin numbers shown are, for JT and NT packages. 2-120 (16) TEXAS . " INSTRUMENlS I POST OFFICE BOX 655012· DALLAS, TEXAS 75265 (14) ~ I/O TlBPAL20X8·25M TIBPAL20X8·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT'MPAL® CIRCUITS logic diagram (positive logic) ~____________________ ~A~ ____________________~ INPUT LINES / 0 ••• 4".8'" 12 .. ·16 . . ·20'''24 . . ·28 . . • 32"'36"39' OUTCLK ( 1 ) ? PRODU CT LINES f~ J :i E4>t (23) I/O ... 8 ~¢ el ~~ .... ... (22) - 11 (3) ... 16 £D ... ~ 19 .... (4) ... ... 24 27 (21) ~ a CI) CI) ';1 '~ ~ ';l (19) >-;:1 (18) (20) ..... el a .- ... tl] 35 (6) ... ... 40 iF ~ 171 ... ... 48 51 (8) ... el el ... : ... C a a (17) a (16) a el ... 56 £D~ 59 .... (9) r 64 67 (10) ... '- tJ] rr::t. ,........ :~ tJ] 43 oJ: en CO CO .... 32 PI ... II) .==9D tJ] ..... (5) el >-;:1 a . ... 72 ~~ ... "",..L ;J 75 (11) ... ... o ••• 4'" 8'" 12' •• 16' •• 20' ., 24' •• 28.' • 32'" Pin numbers shown are for JT and NT packages. el itt ..... ~(15) a ..... (14) I/O ~ 36' '39 TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·121 TIBPAL20X 1O·25M TIBPAL20X10·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT™PAL® CIRCUITS logic diagram (positive logic) INPUT LINES ~ I ________________ 0 ••• 4... ~A~ ________________ ~ 8 ••• 12••• 16 ••• 20 ••• 24••• 28 ••• 32··· 36··39 \ -'----f) OUTCLK (1) ~ ~-a .- '" '";l 0 PRODU CT LINES 3 '-'- E4>t 8 ~~ -.- 11 (3) .... IE ~ . .... .... R;D 27 .. ~ -~ ......, 32 . 36 . (6) .... .~ '......, .... 40 43 (7)...: .... 51 .... '" .... 56 ;::;: -~ :=::: - 69 .. (9) . ~2!l. Q ~ '";J ~ '";J ~ '";:1 67 (10) ... (20) V Q v (19) Q Cl (18) Q V Cl i.J (17) V Q Cl ~ Cl ~ - ~ 64 ~ ";J (15) V Q Q Cl .. '" ~~~ 72 . ,1..... 75 .!:!1l ........ 0-··· 4'" 8'" 12" • 16 ••• 20 ••• 24' •• 28" • 32'" 36·' 39 Pin numbers shown are for JT and NT packages. 2-122 Q Cl ,~ ,~ 48 (8) (22) ~ Cl 24 (S) ~ fb,. 19 (4) ... Q Cl Eo ~ 16 (23)' Cl TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 Cl ~ Q TlBPAL20L 10·25M, TlBPAL20X4·25M, TIBPAL20X8·25M, TIBPAL20X10·25M TIBPAL20L 10·20C, TIBPAL20X4·20C, TIBPAL20X8·20C, TIBPAL20X10·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTtMPAL@ CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e e suffix .............................. ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating conditions PARAMETER MIN 4.5 2 Vee VIH VIL 10H 10L Supply voltage High-level input voltage Low-level input voltage High-level output current Low~level output current fclock elock frequency tw Pulse duration, clock, see Note 2 th TA MIN 4.75 2 0.8 -2 12 25 0 15 20 25 I High I Low Setup time, input or feedback bafore OUTeLKt Hold time, input or feedback after OUTeLKt Operating free-air temperature t su -25M NOM MAX 5.5 5 5.5 0 -55 125 -20C NOM MAX 5.25 5 5.5 0.8 -3.2 24 0 10 14 20 35 0 0 75 UNIT V V V mA mA MHz ns ns ns ns °e NOTE 2: The high and low clock pulse durations cannot both be at the minimum values specified. Their sum must be equal to or greater than the minimum clock period. which is the reciprocal of the maximum recommended clock frequency. electrical characteristics over recommended free-air operating temperature range PARAMETER Vee = MIN, Vee - MIN, Vee - MIN, VIK VOH VOL 10ZH 10ZL Outputs 1/0 ports Outputs 1/0 ports Vee = MAX, Vee = MAX, = MAX, = MAX, = MAX, = 5 V, = MAX, Vee Vee Vee II IIH IlL 10S§ Ice TEST CONDITIONSt Vee '20X4, '20X8, '20Xl0 '20Ll0 Vee II -25M MIN TYP* 2.4 3.2 0.25 = -18 mA 10H - MAX 10L - MAX Vo = 2.7 V = 0.4 V = 5.5 V VI = 2.7 V VI = 0.4 V Vo = 0 VI = 0 Vo VI -20C MAX -1.2 MIN TYP* 2.4 3.3 0.35 0.4 20 100 -20 -250 0.1 20 -0.25 -130 -30 120 120 180 165 -30 120 120 MAX -1.2 UNIT V V V 0.5 20 100 -20 -250 0.1 mA 20 -0.25 ~ mA -130 mA 180 165 mA ~A ~ t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *AII typical values are Vee = 5 V, TA = 25°e. \ § Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. TEXAS ." INSTRUMENlS POST OFFICE BOX 855012 • DALLAS. TEXAS 75265 2-123 TlBPAL20L 10·25M, TIBPAL20X4·25M, TIBPAL20XB·25M, TIBPAL20X10·25M TIBPAL20L 10·20C, TIBPAL20X4·20C, TlBPAL20XB·20C, TIBPAL20X10·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS switching characteristics over recommended operating free·air temperature range (unless otherwise noted) PARAMETER FROM TO TEST CONDITIONS f max ted ted ten tdio ten tdis 1,1/0 0,1/0 MIN 25 -25M TYpt MAX MIN -20C TYpt MAX 35 UNIT 25 20 12 10 20 15 MHz no no OUTCLKt Q Rl = 200 0, 12 10 O'E '1iET Q R2 = 3900, 7 20 7 15 no Q CL=50pF 7 7 1,1/0 1,1/0 0,1/0 0,1/0 20 25 25 15 20 20 ns ns ns 15 15 15 15 tAli typical values ar. at VCC = 5 V, TA = 25·C . . . programming information _ C m r+ m en :::T Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 995-5762. CD CD r+ en 2-124 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DAllAS, TEXAS 75265 TIBPAL20L 1O·25M, TIBPAL20X4·25M, TIBPAL20XB·25M, TIBPAL20X10·25M TIBPAL20L 1D·2DC, TIBPAL2DX4·20C, TIBPAL2DXB·20C, TIBPAL2DX1D·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT™PAL® CIRCUITS PARAMETER MEASUREMENT INFORMATION 5V SI b Rl FROM OUTPUT_+_. ._ . - _ TEST UNDER TEST POINT CL (Saa Nota A) R2 '---4 LOAD CIRCUIT FOR THREE-STATE OUTPUTS TIMING INPUT DATA INPUT /. 3.5V A l .5V _ _ _..J. : - - - - - - - - 0 . 3 V ... tsu~th'" : +---3.5V 1.5V 1.5V 0.3 V ~ HIGH.LEVEL ~ - --3.5 V PULSE ----./rl.5V 1.5V~ :.....- tw - . . : 0.3 V LOW·LEVEL PULSE :. tw~ ~ I.5V .L , l •5 V \:;:;;;--3.5 V --': tPLH~ IN.pHASE OUTPUT 1 I I· 0.3 ~tPHL ,'" 1.5V , I tpHL ~ OUT-DF.pHASE OUTPUT i1 \ V i-;:~ VOH ~ VOL I4----*-tPLH 1 1.5 V FI 1.5 V VOH ~. ______-J. VOL (Sea Nota D) VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES CD CD 3.5V .r:. en 0.3V ...caca VOLTAGE WAVEFORMS PULSE DURAT)ONS VOLTAGE WAVEFORMS SETUP AND HOLD TIMES INPUT 1.5V --- - ...en OUTPUT CONTROL (low·la.al 1.5 V , tpZL ~:e- anabling) WAVEFORM 1 SICLOSED (SaaNoteB) o ~ 3.5V 1.5 V ~ ________ 0.3V 11'""tPLZ I: .. 0.3=3.3V ~ I 1.5 vi' V VOL WAVEFORM 2 S10PEN (Sae Nota B) ': ::--~.== I tPZH~ 1 1.5V ...: ~tPHZ T ~-:..{.::= 0.3V VOH "0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses have the following characteristics: PRR s 1 MHz, tr = tf = 2 ns, duty cycle = 50%. D. When measuring propagation delay times of 3-state outputs, switch 51 is closed. TEXAS . . INSTRUMENTS POST OFFICE BOX 655012 • DAllAS. TEXAS 75265 2-125 TIBPAL20L 10·25M, TIBPAL20X4·25M, TIBPAL20X8·25M, TIBPAL20X10·25M TIBPAL20L 10·20C, TIBPAL20X4·20C, TIBPAL20X8·20C, TIBPAL20X10·20C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS preload procedures preload procedure for registered outputs With Vee at 5 volts, raise Pin 13 (OE) to VIHH to disable the outputs and clear the registers (output goes low). Since the outputs are low, only high levels need be preloaded. Raise the selected output to be preloaded high to VIHH. Lower Pin 13 to VIH. Remove the voltages applied to the outputs. (At least a 1OO-ns wait is required between step 3 and step 4) Lower Pin 13 to VIL to verify preload. Step 1 Step 2 Step 3 Step 4 Step 5 i------i----- --------- VIHH I (PRELOAD PIN 13) 11 OE ...c I 1 1100 ns ~N i SELECTED OUTPUT TO PRELOAD D) (I) ::r CD CD ...en Q 1 100 ns ~ ~ V 1 D) I 100 nS I I 1 :1 Il ;..----I.~-!~T ~ XXXXXXXXX\ _ ----:: VIL VOL VERIFY PRELOAD WAVEFORMS security fuse programming PIN 10 I .---Jill " ' ___ u",. tw3----+~ • 0 V SECURITY FUSE PROGRAMMING WAVEFORMS NOTE: Pin numbers shown apply only for the DIP package. If a chip carrier socket adaptor is not used, pin numbers must be changed accordingly. 2-126 , TEXAS" INSTRUMENTS POST OFFICE BOX 665012 • DALLAS. TEXAS 75265 TlBPAL20L 1O·30C, TIBPAL20X4·30C, TIBPAL20X8·30C, TIBPAL20X10·30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT""PAL® CIRCUITS 02920. DECEMBER 19B7 • Functionally Equivalent to MMI PAL® Series 24XA • Preload Capability on Output Registers Simplifies Testing Vcc • Power· Up Clear on Registered Devices Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs I 3-STATE INPUTS o OUTPUTS REGISTERED Q OUTPUTS 1/0 1/0 1/0 110 1/0 1/0 110 110 PORTS 1/0 'PAL20L10 12 2 'PAL20X4 10 0 'PAL20X8 10 0 8 (3-state buffers) 2 'PAL20Xl0 10 0 10 f3-state buffers) 0 0 (TOP VIEWI o • DEVICE TIBPAL20L 10' C SUFFIX ..• JT OR NT PACKAGE o 8 4 (3-state buffers) II GN 6 TIBPAL20L 10' C SUFFIX ... FN PACKAGE (TOP VIEWI description U These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACrM circuits combine the latest Advanced Low-Power Schottkyt technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are available for further reduction in board space. U U 0 _Z>O:::o 4 3 NC 2 1 282726 5 25 6 24 7 23 8 22 9 21 10 20 11 19 1/0 1/0 1/0 NC 1/0 1/0 1/0 12131415161718 All of the registered outputs are set to a low level during power-up. In addition, extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. NC-No internal connection Pin assignments in operating mode The TIBPAL20' C suffix devices are characterized for operation from ooC to 75°C. IMPACT is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Monolithic Memories Inc. tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975. PRODUCTION DATA d••umonts contain informati.n .umnt al 01 publication dOlo. Products ••nform to spacificati.ls per the terms of Telal Instruments :.=.~~ar::I~i ~=::i:; :.r::::::~. not TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 Copyright © 1987, Texas Instruments Incorporated 2-127 TIBPAL20X4·30C, TIBPAL20X8·30C, TIBPAL20X10·30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL@ CIRCUITS TIBPAL20X4' C SUFFIX ... JT OR NT PACKAGE TIBPAL20X4' C SUFFIX •. : FN PACKAGE ITOPVIEW) ITOPVIEW) OUTCLK :J VCC 1= 110 110 110 u U UO 0 __ ::> 02>:::::::::: 4 3 2 1 282726 25 Q Q Q I NC Q 110 110 110 GND '-<.;;:.-...:.::J... II 7 8 23 22 21 20 19 DE cm TIBPAL20XS' C SUFFIX .•. JT OR NT PACKAGE TIBPAL20XS' C SUFFIX ... FN PACKAGE Cit ITOP VIEW) ITOPVIEW) (I) OUTCLK ::r 110 12131415161718 VCC 110 CD CD Q U) Q Q P+ 5 Q I Q 6 7 I. NC Q Q Q 8 9 I 110 20 10 11 I DE 4 3 2 1 282726 25 24 23 22 21 19 12131415161718 TIBPAL20X10' C SUFFIX •.. JT OR NT PACKAGE TIBPAL20X10' C SUFFIX •.. FN PACKAGE ITOP VIEW) ITOPVIEW) OUTCLK :J VCC 1= ::>U Q U U ~~oz>OO Q Q Q Q Q Q Q 4 3 2 1 282726 25 24 23 22 21 Q 20 Q GND --..;;=--....:.::.... 19 DE 12131415161718 NC-No' internal connection Pin aSSignments in operating mode 2·128 Q Q TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 TIBPAL20L 10·30C, TIBPAL20X4·30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL® CIRCUITS functional block diagrams (positive logic) TIBPAL20L'O' & EN;>1 'ilP---- 0 0----0 20XI> 12 I/O 20 P-<~4-+-1/0 1:>-<>d-4-+- 1/0 P-<~"'-I/O I:>-<>d-"'- I/O , ... U) CD CD .c D- , ~ ~ o 'il h 1D I/O 'il I-;- I/O ~ ~ '\ ~ ....:;.- "'\ ~ ~ I----+- I/O I/O I/O ""- I/O 6 4 '"\..t denotes fused inputs , TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2·129 TlBPAL20XB·3DC. TIBPAL2DX1D·3DC HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL® CIRCUITS functional block diagrams (positive logic) TIBPAL20XB' OE------------~--------~;---, OUTCLK.----------..,-....---i> Q Q Q •.. t---t----L-.JL- a Q C I» I» (I) Q .. :::r \--~fH,--I- CD CD I/O l : > - t i - - - - + - 1/0 (I) TIBPAL20X10' OE-----------------------da.~_, OUTCLK--------------i> t--t--1---+- Q t---r--1--...:t...-Q t---t---1---=l--Q t---t---"1---=l-- Q t---r--1--+--Q t---r--;---=l-- Q t--t--"1--=+-':"'Q Q Q "'" denotes fused inputs 2·130 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlBPAL20L 10-30C HIGH-PERFORMANCE EXCLUSIVE-OR IMPACT'MPAl® CIRCUITS logic diagram (positive logic) I~ I (11 PRODU CT LINES INPUT __________________ 0 --- LINES ________________ ~A~ 4 -- - 8··- 12·_· 16 _ •• 20'" 24'" 28'·' 32'" ~\ 36 .. 39 ~ ,>..L... 3 o .., E4>t ~ 8 ~(221 11 (31 ... v ... 16 I ~ 19 (41 ... 24 . . . . ....L 27 (51 (231 ... A 32 (201 ... - 40 (191 I ....... ,.L ... ~ 43 (71 .. ~ 48 (181 .. J ~I .... EI ... en Q) Q) 110 J: en ca ca ... 110 C 110 I ~171 51 110 J ....... ,1. 35 (61 ... 110 110 ~ 56 ..J. ..,VJ 59 (91 (161 110 ~ 64 ....... r.I. ... 67 (10) ... ..... ... (151 I 110 72 r 75 (111 ... (141 ..... ... o ••• 4··· 8'" 12··· 16·· ·20· •• 24·· • 28· •• 32'" 36' '39 - o (13) Pin numbers shown are for JT and NT packages. TEXAS • INSTRUMENTS POST OFFICE BOX 655012· DALLAS, TEXAS 75265 2-131 TIBPAL20X4·30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT'MPAl@CIRCUITS logic diagram (positive logic) ~____________________ ~A~ ____________________~ INPUT LINES I OUTCLK (1) PROOU CT LINES 0 ... 4 ... 8 ' " 12 ••• 16 ••• ..... 2~" • 24 . . . 28 •• , 32 ••• 36 . . 39 \ v ? 3 J!4>t ')-rl. v .... (23) ........ to!.. (22) I/O 8 ~ .... 11 (3) ,.;. 11 -;.. 16 ;;;">-r! 19 (4) ... c C\) :~ - .... 24 en :r- 27 (5) .. r+ 32 CD CD ... til fJ][fL(20) 10 v Q Cl ~ ~ - .... ~ Rv (19) iF ~ - R (18) ~ 35 (6) I/O ..... v r+ C\) (21) I/O ... 40 43 (7) ... ... 10 10 ;=:: 51 (8) ... v Q Cl fJ] ~fJ] 48 Q Cl 10 ttl,.,. (17) v Q Cl v 56 ~~ 59 (9) - 64 ~~I 67 (10) .. ... (15) I/O I/O ~ ~ 72 ""'to!.. v 75 .!!1!t... .... 0',' 4.·. 8·.,12 . . . 16 .. ·20 . . ·24 . . ·28 .. • 32 . . . 36' ·39 Pin numbers shown are for JT and NT packages. 2·132 (16) TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS ?5265 ~ (14) ~ I/O TIBPAL20XB·30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL® CIRCUITS logic diagram (positive logic) ~ I INPUT LINES ________________ ________________ 0 ... ~A~ 4... 8 .. ' 12 . . . 16· . . 20· . . 24'" 28 . . • 32'" ~ 36"39 \ OUTCLK I1 I ... v PRODU CT LINES ? :i >-r! ~ 1231 [ ~ - ~~ 8 ':, 11 1221 liD Q I ...... .... 131 r '" .Eo ... ~ 16 10 19 141 ... I;l (211 v Q C1 -r '" II .. U) Q) Q) ~ .. .-~ 1.:1 ::t... ~ Ir:l ~~ .- ... ~ ....... ~ '- ~ ;~ -- ... ~ = 5D~ ... 24 .=S;D 27 (51 ... -;... 10 1.:1 I .... 1201 Q C1 10 35 0 as as , 32 .c (191 v C Q C1 161 40 1181 10 43 Q C1 171 ... ... '" 48 10 51 181 ... ';J. 1171 ";:l 1161 >;::t 1151 v Q C1 ... 56 10 59 191 ... v Q C1 r 64 10 67 1101 ... '_ ... 72 .... _S~ 75 1111 .. .... . 0'" 4'" 8'" 12·.·16'" 20'" 24'" 28." 32'" 36"39 - ;V Q C1 1141 1/0 ~ Pin numbers shown are for JT and NT packages. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·133 TIBPAL20X10·30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT'" PAL® CIRCUITS logic diagram (positive logic) ~____________________~A_____________________~ INPUT LINES _...... 10 ... 4 ... 8.·. 12- . . 16·· • 20· . . 24.. • 28 .. - 32.. • 36-·39 \ OUTCLK (11 0 ~~'~' 19t> - ... - PAODU CT LINES 10 3 .ill.t:>t .- (221 '";J. (211 ~ ";l (201 t1! ~ flJ .ED flJ ~ ,V (191 I.:J. (181 !t:l v (171 Ii:L (161 ~ L. ..... , 11 (31 ... ... f:l; 1O 1O 19 C1 ... :~ 24 - 27 (51 .... ~ - 32 - 35 (61 ... ,'" 40 43 ... 48 1O 1O Q ~ 1O Q IV Q e1 Q e1 ... 56 ;~ -- ~ 59 .... (91 ... ~ 1O V - , 1O 67 (101 Q e1 ~ ~ '- .... ~ 64 Q e1 .... "RD tJ; 1.1 "" 72 _ 10 _ 75 (111 .. .... 0-- - 4' - - 8 - - - 12- - - 16- - - 20- - - 24- - - 28- - - 32- - - 36- - 39 Pin numbers shown are for JT and NT packages. TEXAS ~ INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TeXAS 75265 v e1 ...~ r 2·134 v Q e1 1O 51 (81 ... v----- e1 ~ .... (71 ... "V""- Q C1 £D t1! 16 (41 Q ~ 'tl. 8 E V C1 ~ Q TIBPAL20L 10-30C, TIBPAL20X4-30C, TIBPAL20X8-30C, TIBPAL20X10-30C HIGH-PERFORMANCE EXCLUSIVE-OR IMPACT""PAL® CIRCUITS absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) ...................................' . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: e suffix ............................. " ooe to 75°C Storage temperature range ......................................... - 65°C to 150°C NOTE 1: These ratings apply except ·for programming pins during a programming cycle. recommended operating conditions -30C PARAMETER MIN NOM 4.75 5 MAX 5.25 UNIT Vee Supply voltage VIH !:'iigh-Ievel input voltage VIL Low-level input voltage IOH High-level output current -3.2 mA IOL Low-level output current 24 mA fclock elock frequency 22.2 MHz tw Pulse duration, clock, see Note 2 tsu th TA Hold time, input or feedback after OUTeLKi 0 Operating free-air temperature 0 2 5.5 0.8 0 I High 15 I Low 25 Setup time, input or feedback before OUTeLKi V II .. .. V V II) G) G) ns 30 .c en ca ca ns ns 75 °e NOTE 2: The high and low clock pulse durations cannot both be at the minimum values specified. Their sum must be equal to or greater C than the minimum clock period, which is the reciprocal of the maximum recommended clock frequency. electrical characteristics over recommended free-air operating temperature range PARAMETER TEST CONDITIONSt VIK Vee = MIN, II = -18 mA VOH VOL Vee = MIN. Vee - MIN. 10H = MAX IOL - MAX Vee = MAX. Vo = 2.7 V Outputs IOZH 1/0 ports .Outputs -30C MIN TYP* MAX -1.2 2.4 3.3 UNIT V V 0.35 0.5 20 100 -20 V pA pA Vee = MAX, Vo = 0.4 V II Vee = MAX. VI = 5.5 V 0.1 mA IIH IlL Vee = MAX. Vee = MAX, VI = 2.7V VI ='0.4 V 20 -0.25 pA mA -130 mA 10ZL 1/0 ports 10S§ lee t For I '20X4, '20X8, '20X10 I '20L10 Vee = 5 V, Vo = 0 Vee = MAX. VI = 0 -250 -30 120 180 120 165 mA conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *All typical values are Vee = 5 V. TA = 25 e . · o § Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. TEXAS ", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-135 TIBPAL20L 10-30C, TIBPAL20X4-30C, TIBPAl20XB-30C, TIBPAL20X10-30C HIGH-PERFORMANCE EXCLUSIVE-OR IMPACrPAL® CIRCUITS -switching characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER FROM TO fmax* With Feedback TEST CONDITIONS MIN -30C Typt MAX 23 10 30 15 ns ns UNIT 22.2 MHz 1,1/0 0,1/0 OUTCLKt Q R1 = 200 Il, DE OEt Q R2 = 390 Il, 11 20 ns tdis Q CL = 50 pF ten 1,1/0 ~is I, I/O 0,1/0 0,1/0 10 19 15 20 30 30 ns ns ns tDd tDd ten t All typical values are at VCC = 5 V, T A = 25°C. _ .. C :t: f max (with feedback) = 1 tsu + tpdlCLK to Q) • f max without feedback can be calculated as f max (without feedback) = . 1 twhogh + twlow programming information ! I» C/) = ur :::r' 2-136 Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers, Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request, Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 TlBPAL20L 10-30C, TlBPAL20X4-30C, TIBPAL20XB-30C, TIBPAL20X10-30C HIGH-PERFORMANCE EXCLUSIVE-OR IMPAC~PAL® CIRCUITS PARAMETER MEASUREMENT INFORMATION 5V 51 b Rl FROM OUTPUT_. ._ ....~t-_ TEST UNOER TEST POINT CL (Sao Nota A) R2 1--_--. LOAD CIRCUIT FOR THREE-STATE OUTPUTS ./. 3.5 V l .5V - - -.....-:- - - - - - --0.3 V ,.. tsu ..,.- th .... ' :----3.5V DATA 1.5V 1.5V INPUT 0.3 V TIMING INPUT A ~ _t ~ LOW-LEVEL PULSE ~1.5V \1.5~--3.5V I I tPLH~ IN-PHASE OUTPUT tpHL 1 I 1.5V ~ OUT.QF-PHASE OUTPUT (Soe Nota D) \ 0.3 V ~tPHL " i ~-;:~ VOH I ~ I. VOL I4---*-tPLH 1 'C'"..I VOH T l .5V 1•5V \'._ _ _...J. VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tw - : -·1.5V i.r- fI) l) CD .c 3.5V ~---0.3V (I) ca ca VOLTAGE WAVEFORMS PULSE DURATIONS VOL TAGE WAVEFORMS SETUP AND HOLD TIMES INPUT - 1 1 . 5 V II .. HIGH-LEVEL ~---3.5 V 1 1.5V 1.5V I _ PULSE I w I O.3V OUTPUT CONTROL ~ 1.5 V (low-Ievol enabling) I. tPZL'-"" I I 51 CLOSED (Sao Nota B) WAVEFORM 2 51 OPEN (5.. Nota B) -i-------- O.3V ..... II-tPLZ II I : WAVEFORM1~ C 3.5V . 1.5 V i1 I1~5V =3.3 V 1.5V I \..!:!!..--IJ..:--=-----=-;,;,:, tpZH ~ ...: ~tPHZ ~------::.i-== 1.5 V . VOL VOH 0.5 V .. 0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses have the following characteristics: PRR :;; 1 MHz, tr = tf = 2 ns, duty cycle = 50%. D. When measuring propagation delay times of 3-state outputs, switch S1 is closed. TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DAllAS. TEXAS 15265 2-137 TIBPAL20L 1O·30C, TIBPAL20X4·30C, TIBPAL20X8·30C, TIBPAL20Xl0,30C HIGH·PERFORMANCE EXCLUSIVE·OR IMPAC"f'MPAL® CIRCUITS preload procedures preload procedure for registered outputs Step 1 Step 2 Step 3 Step 4 Step 5 With Vee at 5 volts. raise Pin 13 (OE) to VIHH to disable the outputs and clear the registers (output goes low). Since the outputs are low. only high levels need be preloaded. Raise the selected output to be preloaded high to VIHH. Lower Pin 13 to VIH. Remove the voltages applied to the outputs. (At least a 1OO-ns wait is required between step 3 and step 4) Lower Pin 13 to VIL to verify preload. i------~.- I (PRELOAD PIN 13) I I 1100 ns MIN I--+j I - - - - - -- - - - - - - lOa nS I 1 100 ns H ~ I MIN MIN VIHH I II Vr----4\T-r;----:: I SELECTED OUTPUT TO PRELOAD i Q XXXXXXXXX\ . I VIL I~ ~ VOL VERIFY PRELOAD WAVEFORMS security fuse programming PIN 10 I ~4 \-----"" t w 3 - - - -... · OV SECURITY FUSE PROGRAMMING WAVEFORMS NOTE: Pin numbers shown apply only for the DIP package. If a chip carrier socket adaptor is not used, pin numbers must be changed , accordingly. 2-138 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL20SPB·30M, TIBPAL20SPB·20C HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS WITH PRODUCT·TERM SHARING 03088. DECEMBER 1987 • True Product·Term Sharing Option • High·Performance Operation: TlBPAL20Sps·20C tpd ... 20 ns TIBPAL20Sps·30M tpd ... 30 ns TIBPAL20SP8 M SUFFIX ... JT PACKAGE C SUFFIX ... JT OR NT PACKAGE ITOPVIEW) Vee • Choice of Output Polarity • Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs • Depandable Texas Instruments Quality and Raliability I o I/O I/O I/O I/O 1/0 1/0 o II II) TIBPAL20SPS M SUFFIX ... FK PACKAGE C SUFFIX ... FN PACKAGE description These programmable array logic devices feature high-speed product-term sharing. They combine the Advanced Low-Power Schottky technology with proven titanium-tungsten fuses. These devices will provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically result in a more compact circuit board. In addition, chip carriers are available for further reduction in board space. Product-term sharing allows a choice of one Or two outputs for any product term. The 56 product terms are grouped in multiples of 14 per output pair, not counting the 8 enable terms (1 per output). Any number of product terms (from o to 16) can be associated with one output. In addition, a product term may be common to two outputs. In addition to the product term sharing, these devices feature a polarity option for each output. ~ Q) .c (TOPVIEWI CI) U ....CISCIS u ___ u z>_o 5 4 3 2 1 282726 25 6 7 24 23 8 22 9 10 20 C 21 11 19 12131415161718 --cu--o zz (!) NC - No internal connection Pin assignments in operating mode ;: w The TIBPAL20SP8-30M is characterized for operation over the full military temperature range of - 55°C to 125°C. The TIBPAL20SP8-20C is characterized for operation from O°C to 75°C. :>w a:: Q. t- (.) ::;) C oa:: IMPACT is a trademark of Texas Instruments Incorporated. PAL is a ragistered trademark of Monolithic Memories Inc. PRODUCT PREVIEW dac.m.....ontoln Infannatlon an prod.... I. tile IIrmall.. or dlllgR ~hl" of do..la, ....t. Cha,o.toristic dltl a.~ atha, :::::::0ri;t~::I:::II.;,T=~== pradaell wlthalt ooti... Q. Copyright @ 1987, Texas Instruments Incorporated TEXAS ", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-139 TIBPAL20SPB·30M, TIBPAL20SPB·20C HIGH·PERfORMANCE IMPACf'MPAL® CIRCUITS WITH PRODUCT·TERM SHARING logic diagram (positive logic) ,'1) INPUT LINES A I , 0 12) \ 4 8 12 16 20 24 28 32 38 PRODUC; LINES (3) ~ 0 1 ··· 14) .~ en ::r ... CD CD · ·· ~l "" . I 18 L(20) 15 ·· · CD 15) v ·· · (6) 1 ;.f 1 o c c: o-t 19) ~ m S m 1 ·· · I/O - 47 ~J ··· 55 . 63 1 (16), 10 115) v 114) 113) Ill) - ~ 2-140 (171 v ·· · 110) I/O 39 56 "tI 118) v 48 "tI I/O I 40 ~ I/O 31 ·· · (81 (19) v 32 17) 'fO 23 24 U) o 7 8 Ec 122) v ·TEXAS ." INSTRUMENTS POST OFfiCE BOX 655012 • DALLAS. TEXAS 75285' o TlBPAL20SPB·30M, TIBPAL20SPB·20C HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS WITH PRODUCT·TERM SHARING functional block diagram (positive logic) & EN 40 • 64 'V 'Q 0 2Q 0 ;", 'V EN II) 'V [> '4 20 'V 'V EN en 3Q 'V 110 ... CCI CCI C ;", 4Q 110 5Q 110 6Q 110 7Q 110 8Q 110 ;", EN 'V CD CD .c ;", EN II ... ;", 'V EN ;", EN 'V ;", 'V EN ~ W :>W a: Q. I- 0 ::J C 0 a: Q. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALL~S. TEXAS 75265 2-141 TIBPAL20SP8·30M, TIBPAl20SP8·20C HIGH·PERFORMA,.CE IMPACr"PAL@ CIRCUITS WITH PRODUCT·TERM SHARING absolute maximum ratings over operating free·air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: -30M suffix ....................... -55°e to 125°e -20e suffix .......................... , ooe to 75°e Storage temperature range ......................................... - 65 °e to 1 50 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle. recommended operating condtions • C .... I» I» en MIN 4.5 2 Supply voltage High-level input voltage low-level input voltage High-level output current Low~level output current Operating free-air temperature Vee VIH Vil IOH IOl TA -30M NOM MAX 5 5.5 0.8 -2 12 125 -55 MIN 4.75 2 -20C NOM MAX 5 5.25 0.8 -3.2 24 75 0 UNIT V V V mA mA ·e electrical characteristics over recommended operating free·air temperature range ::::r -30M TYPJ MAX -0.8 -1.5 3.2 0.3 0.5 -20C TYP* MAX -0.8 -1.5 3.2 0.3 0.5 CD CD PARAMETER (I) VIK VOH VOL Vee = MIN, Vee = MIN, Vee = MIN, IOH - MAX IOl = MAX IOZH§ Vee = MAX, Vo = 2.7V 100 100 p.A IOZl§ Vee = MAX, Vo = 0.4 V -100 -100 ~A mA .... "'0 oo MIN II = -18 mA 2.4 MIN 2.4 V V V II Vee = MAX, VI = 5.5 V 0.2 0.2 Vee = MAX, VI = 2.7 V 25 25 p.A III § Vee = MAX, VI = 0.4 V -0.08 -0.25 -0.08 -0.25 mA lOS' Vee = MAX, Vo = 0 Outputs open, ei Vee =MAX, VI = 0 f = 1 MHz, eo f = 1 MHz, -30 -70 -130 140 180 -30 -70 -130 mA 140 180 .mA VI = 2 V 5 5 pF Vo = 2 V 6 6 pF tFor conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. ~AII typical values are at Vee = 5 V. TA = 25·e. §I/o leakage is the worst case of IOZl and III or 10ZH and IIH. respectively. 'Not more than one output should be shorted at at time and duration of the short-circuit should not exceed one second. c: n-I "'0 :u m < - ~ 2-142 UNIT IIH§ lee :u TEST CONDInONst TEXAS'" INSTRUMENlS POST OFFICE aox 655012 • DALLAS. TEXAS ~6285 TIBPAL20SPB·30M, TIBPAL20SPB·20C HIGH·PERFORMANCE IMPACTTMPAl® CIRCUITS WITH PRODUCT·TERM SHARING switching characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER lpd len ldis FROM TO I, 0, I/O I/O I, 0, I/O I/O I, 0, I/O I/O TEST CONDITIONS -20C -30M MIN MAX 30 15 20 no 16 30 16 20 ns ,,, 30 16 20 ns MAX 15 Rl = 200 [l, R2 = 390 [l, See Figure 1 MIN UNIT TVP TYP programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications. algorithms. and the latest information on hardware. software. and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local authorized TI distributor. or by calling Texas Instruments at (214) 997-5762. PI ~ Q) Q) .t: U) ...co CO C ~ w :>w a:: a.. tO :> C oa:: a.. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-143 TIBPAL20SPB·30M, TIBPAL20SPB·20C ,HIGH·PERFORMANCE IMPACf'MPAL@ CIRCUITS WITH PRODUCT·TERM SHARING PARAMETER MEASUREMENT INFORMATION SV Sl L Rl FROM OUTPUT _ . ._ ...._ ..._ UNDER TEST R2 CL (See Note A) • LOAD CIRCUIT FOR THREE-STATE OUTPUTS cC» \.1~ -; INPUT J , l . S V r+ C» en :::T CD CD TEST POINT tpd IN-PHASE OUTPUT r+ I'" , : tpd ,.. en ~I, !l.SV I· I.. - - - 3.S V 0.3 V ~I tpd OUTPUT CONTROL (low-level enabling) ~3.SV 1.SV ten~ :,+--VOH I~ I VOL I I" OUT-OF-PHASE OUTPUT (See Note D) VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES ~I tpd I:r.:: VOH /ll.SV --VOL , 14- , I' WAVEFORM 1 Sl CLOSED (See Note B) WAVEFORM 2 S10PEN (See Note B) 1.SV _1 ______ 03 V , --r\: 1.S V ~ . 14-- tdis I', II ~VOL I ~-==~-= ten-+l!+- -+I l4- tdis l. I _____ =3.3 V +O.S V VOL -t.-= VOH ~ LVOH-~'S I 1.S V . V =OV VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance and is SO pF for tpd and ten, S pF for 'dis. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. AII.input pulses have the following characteristics: PRR s 1 MHz, tr = tf = 2 ns, duty cycle = 50%. 0, When measuring propagation delay times of 3-state outputs, switch 51 is closed. FIGURE 1 "'0 ::1:1 o C c: n-I "'0 ::1:1 m :S m' ~ 2-144 TEXAS "", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL22V10M TIBPAL22V1 DAM TIBPAL22V1 DC, TIBPAL22V10AC HIGH-PERFORMANCE IMPACT""PROGRAMMABLE ARRAY LOGIC 02943, OCTOBER 1 • Second Generation PAL Architecture • Choice of Operating Speeds TIBPAL22V10AC ... 25 ns Max TIBPAL22V10AM ... 30 ns Max TIBPAL22V10C ... 35 ns Max TIBPAL22V10M ... 40 ns Max DECEMBER 1987 M SUFFIX ... JT PACKAGE C SUFFIX ... NT PACKAGE (TOP VIEW) ClK/I • Increased Logic Power - Up to 22 Inputs and 10 Outputs • Increased Product Terms - Average of 12 per Output • Variable Product Term Distribution Allows More Complex Functions to be Implemented • Each Output is User Programmable for Registered or Combinatorial Operation, Polarity, and Output Eneble Control VCC 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 II .... M SUFFIX ... FK PACKAGE C SUFFIX .•. FN PACKAGE • TTL-Level Preload for Improved Testability • Extra Terms Provide Logical Synchronous Set and Asynchronous Reset Capability • Fast Programming, High Programming Yield, and Unsurpassed Reliability Ensured Using Ti-W Fuses en (TOP VIEWI CD CD .c en 4321282726 5 25 6 24 23 • AC end DC Testing Done at the Factory Utilizing Special Designed-In Test Features 8 9 22 • Dependable Texas Instruments Quality and Reliability 10 20 21 11 19 ....COCO 1/0/0 1/0/0 1/010 NC 110/0 1/0/0 1/0/0 C 1213 14 15 16 17 18 • • Package Options Include Plastic and Ceramic Dual-In-Line Packages and Chip Carriers --ou-oo zz Cl -gg NC - No internal connection Pin assignments in Qperating mode Functionally Equivalent to AMD AMPAL22V10 and AMPAL22V10A description The TIBPAL22V10 and TIPPAL22V10A are programmable array logic devices featuring high speed and functional equivalency when compared to presently available devices. They are implemented with the familiar sum-of-products (AND-OR) logic structure featuring the new concept "Programmable Output Logic Macrocell". These IMPACr" circuits combine the latest Advanced Low-Power Schottky technology with proven titanium-tungsten fuses to provide reliable high-performance substitutes for conventional TTL logic. These devices contain up to 22 inputs and 10 outputs. They incorporate the unique capability of defining and programming the architecture of each output on an individual basis. Outputs may be registered or nonregistered and inverting or noninverting as shown in the output logic macrocell diagram. The ten potential outputs are enabled through the use of individual product terms. IMPACT is a trademark of Texas Instruments Incorporated. PRODUCTION DATA do.umen,. .ontain informelion CURIRt as of publication data. Products conform to spacifications per th. terms of TUls Instruments standard warranty. Production pro ....lng dolS nOI' necessarily include tasting of all parameters. Copyright @ 1986, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-145 TIBPAL22V10M TlBPAL22V1 DAM TIBPAL22V1 ~C, TIBPAL22V10AC HIGH·PERFORMANCE IMPACTTII PROGRAMMABLE ARRAY LOGIC Further advantages can be seen in the introduction of variable product term distribution. This technique allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output. This variable allocation of terms allows far more complex functions to be implemented than in previously available devices. Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term. These functions are common to all registers. When the synchronous set product term is a logic 1, the output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous reset product term is a logic 1, the output registers are loaded with a logic O. The output logic level after set or reset depends on the polarity selected during programming. Output registers can be preloaded to any desired state during testing. Preloading permits full logical verification during product testing. • With features such as programmable output logic macrocells and variable product term distribution, the TIBPAL22V10 and TIBPAL22V10A offer quick design and development of custom LSI functions with complexities of 500 to 800 equivalent gates. Since each of the ten output pins may be individually configured as inputs on either a temporary or permanent basis, functions requiring up to 21 inputs and a single output or down to 1 2 inputs and 10 outputs are possible. A power-up clear function is supplied that forces all registered outputs to a predetermined state after power is applied to the device. Registered outputs selected as active-low power-up with their outputs high. Registered outputs selected as active-high power-up with their outputs low. A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns. Once blown, the verification circuitry is disabled and all other fuses will appear to be open. The M suffix devices are characterized for operation over the full military temperature range of. - 55°C to 125°C. The C suffix devices are characterized for operation from OOC to 75°C. 2-146 TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 TlBPAL22V10M TIBPAL22V1 DAM TlBPAL22V1 ~C. TIBPAL22V10AC HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC logic diagram (positive logic) (11 INPUT LINES 0 4 8 12 16 20 24 28 32 36 40 ASYNCHRONOUS RESET (TO ALL REGISTERS) AR O. i r1r +CELL 7 -t>t::= O. ·· 0 (21 9 ~J :H= CELL :s: 0 · (3) Wl=l 0 i=l 3>13 P ·· (51 · p- 15 (61 a a · 11 ~ ¥ ::I :S=l.. :l=!"l -d-' a 9 o. ·· a 7 (10) SP CO CO +I (19) C CELL (18) CELL (17) CELL (16) L.......- o. · .s::: C/) '--- :s: (81 (91 CI) +I G) G) c.,-.--,-. O. 13 1201 fI '--- o. a O. CelL CELL 15 (71 (21) '----- 0' 0 · CELL '--- o. (41 =J =J =_1 =J =J =J =J 1221 '--- o. 11 (23) W> =!l=T -<>- CELL M>GJ :§:f il1) (15) (14) CELL SYNCHRONOUS SET (TQ ALL REGISTERS) 03) TEXAS -IJ} INSTRUMENTS POST OFFICE BOX 655012· DALLAS, TEXAS 75265 2·147 TlBPAL22V1 DM TIBPAL22V1 DAM TIBPAL22V1 DC, TIBPAL22V10AC HIGH·PERFORMANCE IMPACT™PROGRAMMABLE ARRAY LOGIC functional block diagram (positive logic) r-£> r C1 J1S SET RESET & 44x132 8 ~ ;,,1 OUTPUT ~ > lOGIC ~ MACROCEll h [> ~ .- EN ~ I/O/Q ~ I- EN ~ ~ I- EN ,........,. ~ EN h ~ EN h ~ EN h ~ EN ~ h ~ EN ~ ~ I- EN ~ ~ I- EN f--; f--- I/O/Q 10 --,:;ClK/1 II... h ~ rv ~>-- h h ~ -> ~ 12 ~ -> ~ 14 1-1--> V- 16 1-1--> c Q) V- ~ 16 ~ rv ~ Q) 1~ fA :r- ...en V- 14 '--- CD CD I-t--I> ~ ---.. ---.. ~I--I> ~ 12 ~~ 10 ~- ---.. ~ 8 '-_ ,........,. r I> I> I>- ~ ~ ~ -4\ 10 10 '"'-' denotes fused inputs 2-148 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 r-r-r-- 10 I/O/Q I/O/Q ------- r-- I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q TIBPAl22V10M TlBPAL22V1 DAM TIBPAl22V1 ~C, TlBPAL22V10AC HIGH·PERFORMANCE IMPACT"" PROGRAMMABLE ARRAY LOGIC output logic macrocell diagram r-------- -, OUTPUT LOGIC MACROCELL I ~--------~--~3 I AR R MUX 2 1-0 >--+_---t1D r--!..---~C1 88 I I b---4~---I0 1} G-0 18 L..-_ _' " O 3 II ... FROM CLOCK BUFFER MUX en 81 I AR _ asynchronous reset ~-~hr=s~ TEXAS ." INSTRUMENTS POST OFFICE BOX 666012 • DALLAS. TEXAS 15265 I I I I J CD CD .c: en ...caca C 2·149 TIBPAl22V10M TlBPAL22V1 DAM TlBPAl22V1 ~C. TIBPAL22V10AC HIGH·PERFORMANCE IMPACT7M.PROGRAMMABLE A~RAY LOGIC 51 - 0 51 - 0 SO - 0 So - 1 REGISTER FEEDBACK, REGISTERED. ACTIVE-LOW OUTPUT REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT E 51 -.1 SO - 1 51 - 1 SO - 0 1/0 FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT I/O FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE FUSE SELECT 51 0 0 1 1 SO 0 1 0 1 FEEDBACK AND OUTPUT CONFIGURATION Regis.ter feedback Registered Active low Register feedback Registered Ac1ive high 110 feedback 110 feedback Combinational Active low Combinational Active high o = unblown fuse, 1 = blown fuse 51 and SO are select-func1ion fuses as shown in the output logic macrocell diagram. FIGURE 1. RESULTANT MACROCELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING absolute maximum ratings over operatinlJ free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 1) ..................... , . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) _ . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e e suffix .............................. ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle or during a pre-load cycle. 2-150 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75266 TIBPAL22V10M, TIBPAL22V1 DC HIGH-PERFORMANCE IMPACT"" PROGRAMMABLE ARRAY LOGIC recommended operating conditions TIBPAL22Vl0M VCC Supply voltage VIH High-level input voltage Vil Low-level inpl;It voltage TIBPAL22Vl0C MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 5.5 2 2 UNIT V 5.5 V 0.8 0.8 V IOH High-level output current -2 -3.2 IOl Low-level output current 12 16 mA fclock Clock frequency t 16.5 18 MHz tw Pulse duration Clock high or low 30 25 Asynchronous Reset high or low 40 35 Input 35 30 Feedback 35 30 Synchronous Set 35 30 Asynchronous Reset low (inactive) 40 35 tsu Setup time before clockt th Hold time, input, set, or feedback after clockt TA Operating free-air temperature 0 mA ns ns 0 -55 125 II ... ns 0 75 °c U) electrical characteristics over recommended operating free-air temperature range PARAMETER VCC - MIN. 11- VCC - MIN. 10H - MAX Val VCC - MIN, 10ZH VCC = MAX, IOl - MAX Va = 2.7 V Vce = MAX, Va = 0.4 V I I Any output Any 1/0 MIN TIBPAL22V10C TYP§ MAX MIN -1.2 18 mA VIK VOH 10Zl TlBPAL22Vl0M TYP§ MAX TEST CONDITIONS* Q) Q) 2.4 3.5 0.25 -1.2 2.4 0.5 V 0.5 V 0.1 0.35 0.1 mA -100 -100 -250 -250 VCC - MAX, VI - 5.5 V VI - 2.7 V 1 1 mA VCC - MAX, 25 25 III VCC - MAX, VI - 0.4 V -0.25 -0.25 MA mA lOS' VCC = MAX, Va = 0.5 V -90 mA ICC VCC - MAX, VI - GND, 180 mA -90 120 -30 180 120 Q MA II -30 ... V 3.5 IIH Outputs open .r::. en ca ca UNIT switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER FROM fmax t With feedback TEST CONDITIONS TO Cl = 50 pF TIBPAl22V10M TYP§ MAX MIN 16.5 TIBPAL22V10C TYP§ MAX UNIT 18 MHz MIN tpd 1,1/0 1/0 Rl = 300 0 for C suffix, 15 40 15 35 ns tpd 1,1/0 (reset) Rl = 390 0 for M suffix, 15 45 15 40 ns tpd Clock a a R2 = 390 0 for C suffix, 10 25 10 25 ns ten 1,1/0 1/0, R2 = 750 0 for M suffix, 15 40 15 35 ns tdis 1,1/0 1/0, See Figure 2 15 40 15 35 ns t f max and fclock (with feedback) fclock (without feedback) = a a tsu . + tp~ (ClK to a)' fmax and fclock without feedback can be calculated as f max and 1 tw high + tw low :t: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. § All typical values are at Vce = 5 V, T A = 25°C. , Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set 0.5 V to avoid test problems caused by test equipment ground degradation. TEXAS .., INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 Vo at 2-151 TIBPAL22V1 DAM, TlBPAL22V10AC HIGH·PERFORMANCE IMPACT"' PROGRAMMABLE ARRAY LOGIC recommended operating conditions TIBPAL22Vl0AM Ea c Vee Supply voltage VIH High-level input voltage VIL Low~level 10H Hj'gh-Ievel output current MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 V 5.5 2 5.5 V input voltage 0.8 0.8 -2 -3.2 V rnA 10L Low-level output current 12 16 rnA fclock elock frequency t 22 28.5 MHz tw Pulse duration tsu Setup time before clock1 elock high or low 20 15 Asynchronous Reset high or low 30 25 Input 25 20 Feedback Synchronous Set 25 20 25 20 Asynchronous Reset low (inactive) 30 25 th Hold time, input, set, or feedback after clockt TA Operating free-air temperature 0 ns ns ns 0 -55 125 0 75 ·e electrical characteristics over recommended operating free-air temperature range en ...en UNIT NOM 2 Q) ::T CD CD TIBPAL22Vl0AC MIN PARAMETER VIK Vee - MIN, II - VOH Vee - MIN, 10H - MAX VOL Vee - MIN, 10L - MAX Vee - MAX, Vo - 2.7 V 10ZH 10ZL TIBPAL22Vl0AM TYP§ MAX TEST CONDITIONS* I Any output I Any 1/0 Vee ~ MAX, Vo MIN -1.2 -18 mA ~ TIBPAL22Vl0AC TYP§ MAX MIN 2.4 2.4 3.5 0.25 0.4 V 0.5 UNIT -1.2 V 0.5 V rnA 3.5 0.35 V 0.1 0.1 -100 -100 -250 -250 1 1 ~A Vee - MAX, VI - 5.5 V VI - 2.7 V 25 25 ~A Vee - MAX, VI - 0.4 V -0.25 -0.25 rnA 10S§ Vee ~ MAX, Vo -90 rnA lee Vee - MAX, VI - GND, 180 rnA II Vee - MAX, IIH IlL ~ 0.5 V -90 -30 120 Outputs open -30 180 120 rnA switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER FROM f max t With feedback TEST CONDITIONS TO TIBPAL22Vl0AM TYP§ MAX MIN TIBPAL22Vl0AC TYP§ MAX MIN UNIT eL ~ 50 pF tpd 1,1/0 I/O R1 ~ 300 [l for e suffix, 15 30 15 25 ns tpd Q R1 ~ 390 [l for M suffix, 15 35 15 30 ns tpd I, 1/0 Iresetl elock Q R2 ~390 [l for e suffix, 10 20 10 15 ns ten 1,1/0 Q R2 ~ 750 [l for M suffix, 15 30 15 25 ns tdis 1,1/0 Q See Figure 2 15 30 15 25 ns t f max and fclock (with feedback) fclock Iwithout feedback I ~ = tsu + tp~ 22 28.5 MHz (elK to aI' f max and fclock without feedback can be calculated as f max and . 1 tw high + tw low :t: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. § All typical values are at Vec ~ 5 V, TA ~ 25 ·e. ~ Not more than one output should be shorted at a time and the duration of the short circuit should not exceed. one second. Set 0.5 V to avoid test problems caused by test equipment ground degradation. 2-152 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012· DALLAS, TEXAS 75265 Vo at TIBPAL22V10M TIBPAL22V1 DAM TIBPAL22V1 DC, 'TIBPAL22V1 OAC HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC preload procedure for registered outputs (see Note 2) The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. Step Step Step Step 1. 2. 3. 4. With Vee at 5 volts and pin 1 at VIL. raise pin 13 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse pin 1. clocking in preload data. Remove output voltage. then lower pin 13 to VIL. Preload can be verified by observing the voltage level at the output pin. preload waveforms (see Notes 2 and 3) PIN 13 ~- / ~ PIN 1 1 1 ! : 1 1 REGISTERED 1/0 I4- t d-+j j4- t su-+j i+-td--+i ==>------\ *-tw-+l I : 1 1 ~ -VIH INPUT I -VIL NOTES: - VIHH VIL ... 1___ 1_____ vlH I 1- --: 1 - I' I 1 1 - U) CD CD VIL .c tn ca ca C 1 I ... Vr----VOH \ OUTPUT VOL 2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed accordingly. 3. td ~ tsu ~ tw ~ 100 ns to 1000 ns. VIHH ~ 10.25 V to 10.75 V. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, 'TEXAS 75265 2-153 TIBPAL22V10M TIBPAL22V1 DAM TIBPALZ2"1 bc, TlBPAL22V10AC HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC power·up reset Following power-up, all registers are reset to zero. The output level depends on the polarity selected during programming. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC's rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met. power-up reset waveforms I1r ~-----------------------------------5V 4 VCC __________ J tpd t 1600 ns typo 1000 ns MAX) 1. 4.'_ _ _ _ r--------~ I ACTIVE-HIGH REGISTERED OUTPUT c .... C» C» ", / / ACTIVE-LOW REGISTERED OUTPUT STATE UNKNOWN Vo . f 5 -; - - - - -- I JlI STATE UN~NOWN VO~ VOH )11.5 V : - o ::r - - * - - - - VOL )+- t su --+I CD CD .... \'.5V CLOCK en FVIH . . . ----.l1- -------------'--~-r: --VIL 14---- tw-----+t tThis is the power~up reset time and applies to registered outputs only. The values shown are from characterization data. t. This is the setup time for input or feedback. programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. 2-154 TEXAS ~ INSTRUMENTS POST OFFle!=, BOX 655012 • DALLAS, TEXAS 75265 TIBPAL22V10M TlBPAL22V1 DAM TIBPAL22V1 ~C, TIBPAL22V10AC HIGH·PERFORMANCE IMPACT"' PROGRAMMABLE ARRAY LOGIC PARAMETER MEASUREMENT INFORMATION 5V S1 L R1 FROM OUTPUT UNDER TEST - .....- TEST POINT ...........R2 CL (See Note A) II ... LOAD CIRCUIT FOR THREE-STATE OUTPUTS TIMING INPUT L. HIGH-LEVEL PULSE F,1.5V - - _.......U - - - 1 5 V 15 V ~ . . L .! 0.3 V ---3.5V 3.5V - - - 0.3 V , DATA ~-:;;:;;3.5 V INPUT ~ 1.5V .~ 0.3V LOW-LEVEL PULSE . 3.5 IN·PHASE OUTPUT tpd .1 I : !1.5V 1 14 .1 14 0.3V ~I tpd OUTPUT CONTROL lIow-levei enabling) :+--VOH ,I~ I VOL 14 .1 tpd OUT·Of·PHASE OUTPUT (See Note D) VOLTAGE WAVEfORMS PROPAGATION DELAY TIMES 3 .5V ... CO CO C VOLTAGE WAVEfORMS PULSE DURATIONS I· 14 1 - - --0.3V \1-:;; -; --- V 1 I 1 5 V 15 V ~ . . VOLTAGE WAVEFORMS SETUP AND HOLD TIMES tpd CD CD .c en ~-tw---.. I+-th-" )4-tsu-+j I INPUT J , 1 . 5 V II) lr.:"":'1 VOH ,,1.5 V --VOL WAVEFORM S1 CLOSED (See Note 8) ~3.5V 1.5V , ten -+I I+- 1.5V ) -,- - - -.r - -·0.3 V I+-- tdis I' I ~3.3V 1~VOL+0.5V I A VOL ten-.l --+I ~~s_Ti_ V ! i -= = -= WAVEFORM2~--"S1 OPEN (See Note B) 1.5 V OH L-VOH·-O.5 V ~0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance. B. Waveform· 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with Internal conditions such that the output is high except when disabled by the output control. C. All input pulses have the following characteristics: PRR :5 1 MHz, tr = tf = 2 ns, duty cycle = 50%. D. When measuring propagation delay times of 3-state outputs, switch S1 is open. FIGURE 2 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 76265 2-155 2-156 TEXAS ,., INSlRUMENlS POST OFFICE BOX 656012 • DALLAS, TEXAS 75285 TIBPAL22VP10-25M TIBPAL22VP10-20C HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC 02943, FEBRUARY 1987-REVISED DECEMBER 1987 • M SUFFIX ... JT PACKAGE C SUFFIX ... NT PACKAGE Functionally Equivalent to the TIBPAL22V10/10A. with Additional Feedback Paths in the Output Logic Macrocell (TOP VIEWI ClK/1 • Choice of Operating Speeds: TIBPAL22VP10-20C . , . 20 ns Max TIBPAL22VP10-25M , .. 25 ns Max • Variable Product Term Distribution Allows More Complex Functions to be Implemented • Polarity of Each Output is Programmable • TTL-bvel Preload for Improved Testability • Extra Terms Provide Logical Synchronous Set and Asynchronous Reset Capability • • • • VCC 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 I GND Fast Programming. High Programming Yield. and Unsurpassed Reliability Ensured Using Ti-W Fuses II ... """';'''--'':'J-O M SUFFIX ... FK PACKAGE C SUFFIX ... FN PACKAGE fI) (TOP VIEWI - AC and DC Testing Done at the Factory Utilizing Special Designed-In Test Features G) G) ua a .c ~ U UQ (3 __ uz>;:,;:, 4 Dependable Texas Instruments Quality and Reliability Package Options Include Plastic and Ceramic Dual-In-Line Packages and Chip Carriers 3 CJ) ...asas 2 1 28 27 26 5 25 6 24 1/0/0 1/0/0 Q 23 NC description 8 22 9 21 10 20 19 11 The TIBPAL22VP10 is equivalent to the TIBPAL22V10A but offers additional flexibility in the output structure. The improved output macrocell uses the registered outputs as inputs when in a high-impedance condition. This provides two additional output configurations for a total of six possible macrocell configurations all of which are shown in Figure 1. 12 13 14 15 16 17 18 --cu-aa 22 (!) -gg NC-No internal connection Pin assignments in operating mode The device contains up to twenty-two inputs and ten outputs, It defines and programs the architecture of each output on an individual basis. Outputs may be registered or nonregistered and inverting or noninverting, In addition, the data may be fed back into the array from either the register or the I/O port, The ten potential outputs are enabled through the use of individual product terms. Further advantages can be seen in the introduction of variable product term distribution, This technique allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output. This variable allocation of terms allows far more complex functions to be implemented than in previously available devices. IMPACT is a trademark of Texas Instruments Incorporated. PRODUCTION DATA d••umo.ts •• ntain information curr••t 81 of pllblication date. Products canfarm to spooifioatio.s par tho Iorms of T.... Instrumonts ~==,r:-i~:,~li =:~ti~n :I~O:=~I:"~ nat TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 Copyright @ 1987, Texas Instruments Incorporated 2-157 TIBPAL22VP10-25M TIBPAL22VP10-20C HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term. These functions are common to all registers. When the synchronous set product term is a logic 1, the output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous reset product term is a logic 1, the output registers are loaded with a logic O. The output logic level after set or reset depends on the polarity selected during programming. Output registers can be preloaded to any desired state during testing. Preloading permits full logical verification during product testing. With features such as programmable output logic macrocells and variable product terms, the TIBPAL22VP1 0 offers quick design and development of custom LSI functions with complexities of 500 to 800 equivalent gates. Since each of the ten output pins may be individually configured as inputs on either a temporary or permanent basis, functions requiring up to 21 inputs and a single output or down to 12 inputs and 10 outputs are possible. E A power-up clear function is supplied that forces all registered outputs to a predetermined state after power is applied to the device. Registered outputs selected as active-low power-up with their outputs high. Registered outputs selected as active-high power-up with their outputs low. A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns. Once blown, the verification circuitry is disabled and all other fuses will appear to be open. The TIBPAL22VP1 0-25M i.s characterized for operation over the full military temperature range of - 55°C to 125°C. The TIBPAL22VP10-20C is characterized for operation from O°C to 75°C. 2-158 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 T1BPAL22VP10·25M TIBPAL22VP10·20C HIGH·PERFORMANCE IMPACT'M PROGRAMMABLE ARRAY LOGIC functional block diagram (positive logic) r--1> r C1 SET RESET 8< 32.44 B 11S ~ ",1 C> OUTPUT >--- P- lOGIC ---. r- MACROCEll h r- ~ 1/0/0 EN 10 ---. ~ ClK/1 ..... ~ '" ~ ---. h h ~ ~ 1~ - '" h I-"""- h h ......... ~ - > ~ - > ~ > ---. >- EN >-r---- > ---. >- EN V- ---. >- EN >-c-- P- V- ---. >- EN r-H r-H r-- -t;: P- ---. >- EN H f++- 1/0/.0 rr- r V- >-r---- P- h ~ > ~ B ......... 1/0/0 - 16 10 ~ ~ 16 12 ......... 1/010 P- 14 14 ~ ~ ~ 12 h h h h EN """" EN """" EN """" ~ EN """" H ~ ---r-- I/O/ofl 110/0 1/0/0 ...en Q) Q) .c tn 1/010 ... 110/0 C CO CO 1/0/0 10 10 'V 10 denotes fused inputs TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-159 TIBPAL22VP10·25M TlBPAL22VP10·20C HIGH·PERFORMANCE IMPACfTMPROGRAMMABLE ARRAY LOGIC logic diagram (positive logic) I. 111 0 AR • 8 12 INPUT LINES 20 2. 28 32 3. 40 ASYNCHRONOUS RESET (TO All REGISTERS) 0. i :Rc :Rc C}1 0' ·· 0 121 ~rr ru:> CELL :g3 9 ~J 0 13) · " =h- ~ I» I» gp 14) ::T 13 0 ...en ~J CELL (20) ~ 0. (I) (I) (21) L-- 0 ... en CELL ~ 0. C (22) L-- 0. E (23) CELL :B=i 7 -i>t:= ·· r,. 15 ~IT CELL (19) )5) ~ 0. 0 · 16) P- 15 0' 17) 13 w l=l 0 18) " -<> 9 · 7 s.> :B=l :8=l :R: :B=i SP (111 2-160 ~~ PEl) FbtcP CELL (15) --L- 0' 0 (10) (17) L-- 0 · CELL CELL :§::f 0' 19) ~h '---- 0. _ · (18) L-- , 0 ·· ~lI CELL (14) CELL SYNCHRONOUS SET \TO ALL REGISTERS) (13) TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlBPAL22VP10·25M TIBPAL22VP10·20C HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC output logic macrocell diagram -, OUTPUT LOGIC MACROCELL r--:-:M~U~X-" ~--------~--~3 AR R 1-0 I I 2 )---1-....--110 .---':""'---1> C1 88 b-~~----i0 1} G-0 18 O 3 FROM CLOCK BUFFER MUX o ....Q) II) 1 / 2 / 3 t - - - - / - - - -......._--+----' 1}G.!!.. o 3 51 II AR --aSynChrOnous reset 55 - _ synchronous L-. _ set-...- Q) I I I .c en ....asas C I J t This fuse is unique to the Texas Instruments TIBPAL22VP1 O. It allows feedback from the 110 port using registered outputs as shown in the macrocell fusing logic function table. TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75266 2·161 TIBPAL22VP10·25M TlBPAL22VP10·20C , HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC S2 - 0 S1 - 0 so - 0 REGISTER FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUT S2 - 0 S1 - 0 SO - 1 REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT c .... D) D) fA :::r S2 - 1 S1 - 0 S2 - 1 S1 - 0 SO - 0 CD !en 1/0 FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUTt SO - 1/0 FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUTt S2 - X S1 - 1 SO - 1 S2 - X S1 - 1 SO - 0 1/0 FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT 1 1/0 FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT tThese configurations are unique to the TIBPAL22VP10 and provide added flexibility when comparing it to the TIBPAL22Vl0 or TIBPAL22Vl0A. FIGU~E 1. ~ESULTANT MACRO CELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING 2·162 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPAL22VP10·25M TIBPAL22VP10·20C HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE PROGRAM-FUSE SELECT 52 51 0 0 0 0 1 1 SO FEEDBACK AND OUTPUT CONFIGURATION 0 1 Register feedback Registered Active low Register feedback Registered Active high 0 0 1/0 feedback 1 0 1/0 feedback X 0 1 I/O feedback Active low Registered Active high Combinational Active low X 1 1 I/O feedback Combinational Active high Registered o = unblown fuse, 1 = blown fuse, X = unblown or blown fuse S2, S 1, and SO are select-function fuses as shown in the output logic macrocell diagram. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: TlBPAL22VP10-25M ................. - 55 °e to 125 °e TIBPAL22VP10-20e ..................... ooe to 75°e Storage temperature range ......................................... -65°e to 150 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle or during a pre-load cycle. VIH High·level input voltage Vil Low-level input voltage 10H High-level output current 4.5 Low~level Clock frequency t tw Pulse duration tsu th TA 2 Setup time before clockt = tsu + tpd NOM MAX 4.75 5 5.25 V 5.5 2 5.5 V 0.8 -3.2 en .. V mA 12 16 mA 25 37 MHz 20 10 Reset high 30 20 Input 25 15 Feedback 25 15 Preset 25 15 30 0 -55 20 Operating free-air temperature .c UNIT MIN 5.5 Clock high or low Reset low (inactive) Hold time, input, preset, or feedback after clockf t fclock (with feedback) 5 TIBPAL22VP10-20C 0.8 -2 output current 10l fclock CD CD C TIBPAL22VP10-25M MIN NOM MAX Supply voltage en CO CO recommended operating conditions VCC I.. 125 0 0 ns ns 75 ns ·C 1 , fclock without feedback can be calculated as (ClK to Q) fclock (without feedbackl = :-=.,.--1.,.....,_;-tw high + tw low TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-163 TIBPAL22VP10·25M TIBPAL22VP10·20C HIGH·PERFORMANCE IMPACpM PROGRAMMABLE ARRAY LOGIC electrical characteristics over recommended operating free·air temperature range PARAMETER VIK Vee - MIN, 11--lamA VOH Vee - MIN, 10H - MAX Val Vee 10ZH Vee = MIN, = MAX, Va = MAX = 2.7 V Vee = Va = 0.4 V II Vee IIH Vee III Vee = MAX, = MAX, = MAX, = MAX, = MAX, 10Zl ...C I» I» TIBPAL22VP10-25M TEST CONDITIONSt I Any output I Any 1/0 10S§ Vee ICC Vee MAX, 10l = 5.5 V VI = 2.7 V VI = 0.4 V Va = 0.5 V VI = GND, MIN TYP* MAX TIBPAL22VP10-20C MIN TYP* -1.2 2.4 3.5 2.4 0.25 0.5 3.5 0.35 0.1 UNIT V V 0.5 -100 0.1 -100 -250 -250 1 1 VI V mA ~A mA 25 25 ~A -0.25 -0.25 mA -90 mA 210 mA -30 Outputs open MAX -1.2 -90 140 -30 220 140 switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise notedl ~ PARAMETER en f max ' tod :r- ... CD CD (I) FROM TEST CONDITIONS TO el = 50 pF, = 300 !l for = 390 !l for = 390 !l for = 750 !l for 1,1/0 1/0 R1 t~ I, 1/0 Ireset) Q Rl tpd Clock Q R2 ten 1.1/0 1,1/0 Q R2 Q See Figure 2 tdis TIBPAl22VP10-25M MIN TYP* 25 50 MAX TIBPAl22VP10-20C MIN TYP* 37 50 MAX UNIT MHz e suffix, 12 25 12 20 ns M suffix, 12 25 12 20 ns e suffix, a 15 a 12 ns M suffix, 12 25 12 20 ns 12 25 12 20 ns t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *AII typical values are at Vee = 5 V, TA = 25°C. § Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set Va at 0.5 V to avoid test problems caused by test equipment ground degradation. , f max Iwith feedback) = . 1 , f max without feedback can be calculated as tsu + tpd lelK to Q) f max Iwithout feedback) 2-164 = tw 1 high + tw low' TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlBPAL22VP10-25M TIBPAL22VP10-20C HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC preload procedure for registered outputs (see Note 2) The output registers of the TIBPAL22VPl 0 can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. Step Step Step Step 1. 2. 3. 4. With Vee at 5 volts and pin 1 at VIL, raise pin 13 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse pin 1, clocking in preload data. Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage level at the output pin. preload waveforms (see Notes 2 and 3) PIN 13 ~ I4- t su-+f I *"-tw--+l i ! I I - I ~ II... - - :::H I I I I I ~-VIH REGISTERED 1/0 ~ INPUT I -VIL NOTES: - i i __!___ :nu_:: *-td--+l PIN 1 ~ I4- t d--+/ o CD CD .c en ca ca ... Vr----VOH \ o OUTPUT VOL 2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed accordingly. 3. td = tsu = tw = 100 ns to 1000 ns. VIHH = 10.25 V to 10.75 V. TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-165 TIBPAL22VP10·25M TIBPAL22VP10·20C HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC power·up reset Following power-up, all registers of the TIBPAL22VP10 are reset to zero. The output level depends on the polarity selected during programming. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC's rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input end feedback setup times are met. power·up reset waveforms ~--------------------------------5V .J;tf 4 VCC __.................... ~----tpdt 141 .. (800 ns typ, 1000 ns MAXI REGISTE:~~I~~~~~~ / . STATE UNKNOWN ~ I ~~5 -; - - - - - - VOH --.....--..........~...............--.....------..........-~~------.....--~.-VOL I CLOCK tThls is the power~up reset time and appiies to registered outputs only. The values shown are from characterization data. *This is the setup time for input or feedback. programming information Texas Instruments Programmable Logic Devices can be programmed using widely availeble software and inexpensive device programmers. When the additional fuses are not being used, the TIBPAL22VP10 can be programmed using the TIBPAL22V10/10A programming algorithm. The fuse configuration data can either be from a JEDEC file (format per JEDEC Standard No.3-A) or a TIBPAL22V10/10A master. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information' on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized Tldistributor, or by calling Texas Instruments at (214) 995-5762. 2-166 TEXAS ." INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TEXAS 76266 TlBPAL22VP10·25M TIBPAL22VP10·20C HIGH·PERfORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC PARAMETER MEASUREMENT INFORMATION 5V Sl t. Rl FROM OUTPUT _ ..._ ..._ ...._ UNDER TEST CL (See Note A) TEST POINT R2 II ... LOAD CIRCUIT FOR THREE-STATE OUTPUTS TIMING INPUT --/. T,1.5 V - - _.....U - - - - - - 0.3 V 1 5 V 15 V ~ . . ---3.5V 3.5 V HIGH-LEVEL PULSE I..--tw--J I+-th-+t I4- t su-+( I DATA ~~-;;::3.5V INPUT..../' 1.5V ..~ 0.3 V I LOW-LEVEL PULSE \.1~;- - .LI1.5 V --" I· tpd -Io414f---.~1 14 - - 3.5 V tpd II /1~-. . . I.:----.'t:;5~ L IN·PHASE OUTPUT tpd OUT-Of-PHASE OUTPUT (See Note D) I 14.' ,I 14 1.5V . VOLTAGE WAVEfORMS PROPAGATION DELAY TIMES 1 ~I I til 3.5V ... IV - - --0.3V OUTPUT CONTROL now-level enabling) IV C ~3.5V 1.5 V I VOH VOL tpd ~VOH 1.5V . - - VOL 1.5 V I I ten ~ 1.5 V --;'I--J I .c VOLTAGE WAVEfORMS PULSE DURATIONS 0.3 V .1 Q) Q) 0.3 V 1 5 V 15 V ~ . . VOLTAGE WAVEFORMS SETUP AND HOLD TIMES INPUT U) I+- ! -1- - - - _. 0.3 -+I 14-- tdis II . V ~3.3V WAVEFORM l - - - - - r \ l 1 . 5 V II~vOL+0.5V Sl CLOSED 1 ~-==~= V (S •• Note 8) ten-+! j+:+-tdis Tit OL WAVEfORM 2 S10PEN (See Note B) Y, 1.5 V --.I • ~- .= VOH ·L-VOH-0.5 V ~ aV VOLTAGE WAVEfORMS ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses have the following characteristics: PRR '" 1 MHz, tr = tf = 2 ns, duty cycle = 50%. . D. When measuring propagation delay times of 3·state outputs, switch S1 is closed. FIGURE 2 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 7526,5 2-167 c .... S» S» o::sCI) CI) .... (I) 2-168 TlBPALR19LBM, TIBPALR19R4M, TIBPALR19R6M, TIBPALR19RBM TIBPALR19LBC, TIBPALR19R4C, TIBPALR19R6C, TIBPALR19RBC HIGH-PERFORMANCE LATCHED-INPUT PAL® CIRCUITS 02709, DECEMBER 1982-REVISED DECEMBER 1987 • High-Performance Operation , , . 30 MHz • Preload Capability on Output Registers • DIP Options Include Both 300-mil Plastic and 600-mil Ceramic • Dependable Texas Instruments Quality and Reliability DEVICE 110 INPUTS I INPUTS o OUTPUTS 3-STATE REGISTERED QOUTPUTS 'PAlR19l8 'PAlR19R4 'PAlR19R6 'PAlR19R8 11 11 11 11 2 0 0 0 2 0 0 0 0 4 13-state buffers) 6 13-state buffers) 8 13-state'buffers) description These programmable array logic devices feature high speed and functionality similar to the TIBPAl16la, 16R4, 16R6, 16Ra series, but with the added advantage of D-type input registers. If any input register is not desired, it can be converted to an input buffer by simply programming the architectural fuse. 110 PORTS 6 4 2 0 TlBPAlR19lS' M SUFFIX ... JW PACKAGE C SUFFIX ' .. JW OR NT PACKAGE (TOP VIEW) Combining Advanced low-Power Schottky t technology, with proven titanium-tungsten fuses, these devices will provide reliable high performance substitutes over conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically result in a more compact circuit board. In addition, chip' carriers are available for further reduction in board space. fI) 0 110 110 110 110 110 110 0 INClK Q) Q) .s::. o .. as as C TIBPALR19lS' M SUFFIX ••• FK PACKAGE C SUFFIX .•. FN PACKAGE Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence. (TOP VIEW) 4321282726 25 An M suffix designates full-temperature circuits that are characterized for operation over the full military temperature range of - 55°C to 125°C. A C suffix designates commercial-temperature circuits that are characterized for operation from OOC to 70°C. .. Vcc 110 110 110 110 110 110 110 110 110 liD liD GND 24 1/0 1/0 23 22 21 liD liD 20 10 19 11 12131415161718 INPUT REGISTER FUNCTION TABLE INPUT INClK 0 OUTPUT OF INPUT REGISTER 1 1 H H l l X l Qo NC - No internal connection Pin assignments in operating mode t Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975. PAL is a registered trademark of Monolilthic Memories Inc. PRODUCTION DATA documants .onlain info.matlon ......t as of publication data. Products .onform 10 .ccificltions par the tarml of Taul Instrumants :'::'~:=i~·t::I-::.ra =~::i:r :.r::::~~~~ not Copyright © 1985, Texas Instruments Incorporated TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-169 TIBPALR19R4M. TIBPALR19R6M. TIBPALR19R8'M TIBPALR19R4C. TIBPALR19R6C. TIBPALR19R8C HIGH·PERFORMANCE REGISTER~D·INPUT PAL@ CIRCUITS TIBPALR19R4' M SUFFIX ... FK PACKAGE C SUFFIX ... FN PACKAGE TIBPALR19R4' M SUFFIX, •• JW PACKAGE' C SUFFIX .•. JW OR NT PACKAGE (TOPVIEWl OUTCLK (TOP VIEW) VCC liD liD 110 110 110 110 Q Q 110 110 Q 110 110 INCLK OE GND c D) en :::T OUTCLK 110 110. 110 110 CD CD r+ en NC Q Q 110 C SUFFIX •.. FN PACKAGE (TOP VIEW) VCC 110 110 Q 4 3 2 1 282726 Q 110 5 110 6 110 7 NC 110 110 10 Q Q 110 INCLK lID OE 11 12131415161718 TIBPALR19RS' M SUFFIX ... JW PACKAGE C SUFFIX ..• JW OR NT PACKAGE TIBPALR19RS' M SUFFIX ... FK PACKAGE C SUFFIX .•. FN PACKAGE (TOP VIEW) (TOPVIEWI OUTCLK 110 110 :s VCC 110 Q ~ u gg5~~~o Q 4321282726 Q 25 24 Q Q 110 110 110 110 GND """''--....;.:;;..... Q 22 21 20 19 Q Q 10 INCLK OE 12131415161718 gg~~I~dd t!l :!!: Pin assignments in operating mode NC-No internal connection 2-170 Q TIBPALR19R6' Q GND Q M SUFFIX .•• FK PACKAGE Q 110 110 110 110 12131415161718 TlBPALR19R6' M SUFFIX ... JW PACKAGE C SUFFIX ... JW OR NT PACKAGE (TOP "(lEW) D) r+ 25 24 23 22 21 20 19 110 5 110 6 110 7 NC 8 110 ~9 110 ~10 110 ~11 Q TEXAS . . , INSTRUMENTs POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIBPALR19L8M, TIBPALR19R4M TIBPALR19L8C, TIBPALR19R4C HIGH·PERFORMANCE REGISTERED·INPUT PAl@CIRCUITS functional block diagrams (positive logic) 'PALR19L8 EN >1 & "iJD----O t>----o b-4~"'-1/0 b-4.........-1/0 b-4.........-I/O b-4.........-I/O PI ....-I/O ~.r....-I/O ~.r 6 'PALR19R4 OE-----------------------------q OUTCLK------------------II> & Q Q INCLK-_cP Q Q 11 I/O 1/0 1/0 1/0 4 4 TEXAS • INSTRUMENTS POST OFFICE BOX 666012 • DALLAS, TEXAS 75265 2-171 TIBPALR19R6M. TlBPALR19R8M TIBPALR19R6C, TIBPALR19R8C HIGH·PERFORMANCE REGISTERED·INPUT PAL @ CIRCUITS functional block diagrams (positive logic) 'PALR19R6 Q Q Q Q Q E... I Q C I» I» 1/0 1/0 tn :T CD CD ... U) 'PALR19R8 OE OUTCLK Q INCLK Q Q Q 11 Q Q Q ':' Q 8 2-172 TEXAS -II INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TEXAS 75265 TIBPALR19LBM, TIBPALR19L8C HIGH·PERFORMANCE REGISTERED·INPUT PAL@CIRCUITS logic diagram (positive logic) 1(11 . INPUT LINES i I/O 1& ~. .., 4 8 12 16 20 , 24 28 32 J (231 'C2 20 'C2 20 I/O MO M M' 2432 2433 ~ 36 ~ PRODUCT LINES ··· · .., ~ ···· ···· ··· · ··· · ··· · ··· · ··· · 0 1 (221 l (211 0 7 I/O @L 'C2 20 8 M' v 2434 11 tr ttJ I/O,1& '02 20 MO M' 15 !!!L 'C2 20 MO M' ~ ,C2 20 MO M' 31 32 ill. fJ fJ '02 20 MD (181 ~ vl (171 v I/O,!!l 40 2438 'C2 20 MO 48 2439 JJ ,C2 20 MD 56 f 2440 ~ .c en ...caca I/O C I/O I/O 1 (161 1 (151 I/O 55 M' I/O,~ I/O 47 M' I/O,~ CD CD 39 M' ~ (191 l 2437 I/O (201 v ~ ~ 2436 I/O ~ l 23 24 II ... U) 16 ~ 2435 I/O I/O q 63 .., '02 20 v o M' I/O,\!!l t1 '02 20 MD M' _ 2442 .A(1 ~. Pin numbers shown are for JW and NT packages. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·173 TIBPALR19R4M, T1BPALR19R4C HIGH·PERFORMANCE REGISTERED·INPUT PAL@ CIRCUITS logic diagram (positive logic) OUTCLK (1) . INPUT LINES ) 110 !& fttF" 4 12 8 16 , 24 20 28 32 0<2 ,e2 20 C ~ PRODUCT LINES 0 ··· · ··· J (22) 1/0 tr · ~ f1fJ ···· P- ~~20) Q ~ Q ,e2 20 ffi. MO M, ~ 2434 8 l v 15 110 ~ .... 110 CD CD 110 2432 7 110 .... en =r I» I» (23) M. M, 2433 IE J '02 20 M' ~ 36 J (21) 1/0 ,e2 20 M. M' 16 ~ 2435 e, ~ ··· 23 ~ '02 20 M' M' ~ 2436 (II 24 /- • 110 ~ 1tJ ···· ,e2 20 MO 32 M' ~ p-I:hlj ~ 1lJ Ir' ··· · 39 ill. ~) p- ~ 2437 110 ~ e, 31 40 M' I ~ 2438 Q Q e, rtJ ···· 47 110 !!L j-- ,e2 M.20 M' ~ 2439 48 if ···· fU IJ l >=1 55 110 !.!!L ,e2 20 M' M' 56 'H ). ~ 2440 >=1 63 110 110 {~ (ill ,e2 20 I (15) I 1/0 1/0 M' M' 2441 ,e2 20 M' M' IIII I ~ 2442 ",,{14 LqE) Pin numbers shown are for JW and NT packages. 2·174 J (16) TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 TIBPALR19R6M. TIBPALR19R6C HIGH·PERFORMANCE REGISTERED·INPUT PAL@ CIRCUITS logic diagram (positive logic) OUTCLK~(1~)~====================================================~ I INPUT LINES 110 rn ~'~2'0 ti:~4:j:j::t=18~:t=1~2:j:j:=1~6~=""2O~;f:2~4li1=2~8li1=3:\:2li1;::3:\:6~\=:;j~ -PRODUCT 2433 ~ (23)1/0 ~ ~ M 2432 ~ LINES ··· · l ; rtfJ · o I/O@LtfJ M' 2434 liD!!!. ~~~)Q : 15 ~:2 16 MO M, • 2435 : P-Fl1~)Q 1/0lllr1tJ~ ~f :: M' • 2436 : ~~~)Q I/D!!!.~-i : fNj!i: . tfji2 . M' 2437 t>- ~ • ~ : 39 IIOJ!!. 40 M' 2438 P- ~ ~) • : M, 'e 2439 Q Q I 47 I/O!!! II 48 • : I/DQ!!.ffJ2~2 :: iJi2 · MO M' 2440 I/D~ • • • 63 M' 2441 1/0\!!l~f' _2442 Ml LZ_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _+-<...!"'""'-- ::'O 4 3 2 I 282726 110 110 110 NC 110 I/O 110 5 6 7 8 9 10 25 24 23 22 21 20 19 II 12 1314151617 18 INPUT LATCH FUNCTION TABLE 0 L H LATCH OUTPUT L L H X 00 INLE OOOU-I WO ~::::~z L H ~ NC - No internal connection Pin assignments in operating mode tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3.463,975. PAL is a trademark of Monolithic Memories Inc. PRDDUCTIO. DATA dooumanta oontain infnrmation ourrant II of publioation date. Praduota oonform to spacificationl par the tarms of TaxIS Instrumants :.:~:~~r,·I:I-:.ri =:~:r :'~D=::~:~ not Copyright © 1985, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-181 TIBPALT19R4M, TIBPALT19R6M, TIBPALT19RBM TIBPALT19R4C, TlBPALT19R6C, TIBPALT19RBC HIGH·PERFORMANCE LATCHED·INPUT PAL® CIRCUITS TIBPALT19R4' M SUFFIX •.• JW PACKAGE C SUFFIX ••• JW OR NT PACKAGE TIBPALT19R4' M SUFFIX ..• FK PACKAGE C SUFFIX ..• FN PACKAGE (TOP VIEW) (TOP VIEW) OUTCLK 110 ~ VCC 110 1/0 1/0 Q Q Q Q 1/0 110 110 110 110 110 110 110 U I- 4321282726 iiiiCE • 5 6 7 8 25 10 20 24 23 22 21 11 DE GNO U gg5!l1~gg 19 12 1314 15161718 TIBPALT19RS' TIBPALT19RS: M SUFFIX .•. JW PACKAGE M SUFFIX ••. FK PACKAGE C SUFFIX ••• JW OR NT PACKAGE (TOP VIEW) C SUFFIX ..• FN PACKAGE OUTCLK (TOP VIEW) ~ VCC 110 110 U I- Q 110 110 110 7 4 Q Q Q 110 110 110 NC Q liD Q 110 110 INLE GND ......:.:=--...;.:;..... U cc::)u UCO ::::::::0 z >:::::::: 3 2 1 282726 7 25 24 23 8 22 21 110 110 OE 10 11 12 13 14 1516 17 18 TIBPALT19RB' M SUFFIX ... JW PACKAGE C SUFFIX ••• JW OR NT PACKAGE TIBPALT19RS' M SUFFIX .•• FK PACKAGE C SUFFIX ••• FN PACKAGE (TOP VIEW) (TOPVIEWl OUTCLK liD ~ VCC 110 ~ Q 110 110 4 '3 2 1282726 Q Q 1/05 110 ]6 . 110 ]7 NC ]8 110 ~9 110 ~10 110 ]11 Q Q 110 110 110 GND """:':=--....:.::JI-' U gg5!l1~go o Q Q DE 250 24 Q 23 Q 22 NC 21~ 0 20[ Q 19[ Q 12 131415161718 c C C UIWI W0 ::::::::~ZO~ Pin assignments in operating mode 2-182 NC-No internal connection TEXAS • INSTRUMENTS POST OFFICE BOX 6E15012 • DALLAS, ·TEXAS 76265 TIBPALT19L8M. TIBPALT19R4M TIBPALT19L8C. TIBPALT19R4C HIGH·PERFORMANCE LATCHED·INPUT PAL® CIRCUITS functional block diagrams (positive logic) 'PALT19LB EN .. I & 'V~---o t>----o t>-_....._I/O b- ;-< ( I VIL secruity fuse programming (see Note 4) Vee ~ I PIN1 _ _ _ _ II:'ll& ~tw3-e1 0V ..7h--------- -----:----- :6 ~'--t_h_. . : vV I I+-tw3...1 I.-th~ J----\. -"1/ PIN 13 _ _ _ _ _ _ _ _ _ _ _ 1_ _ : j.th.j- ----16V I 0V \i NOTE 4: Pin numbers shown are for JW and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed accordingly. TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-191 • c a I» en ::r CD CD .... en 2-192 TIBPLS506M. TIBPLS506C 13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER 03090. DECEMBER 1987 • 50-MHz Clock Rate • Power-On Reset of All Registers M SUFFIX ... JT PACKAGE C SUFFIX ... JT OR NT PACKAGE (TOPVIEWI • 16-Bit Internal State Registers ClK VCC • a-Bit Output Registers • Outputs Programmable for Registered or Combinational Operation • Ideal for Waveform and State Machine Applications 10 11 12 13 14 15 00 01 02 03 GND 16 17 18 19 110 111 112/0E 07 06 05 04 description The TIBPLS506 is a TTL field-programmable state machine of the Mealy type. This state machine (logic sequencer) contains 97 product terms (AND terms) and 24 pairs of sum terms (OR terms). The product and sum terms are used to control the 16-bit internal state registers and the a-bit output registers. ~ u tl ::Qoz>!!!!::: The outputs of the internal state registers (PO-P15) are fed back and combined with the 13 inputs (10-112) to form the AND array. In addition, two sum terms are complemented and fed back to the AND array, which allows any product terms to be summed, complemented, and used as inputs to the AND array. The eight output cells can be individually programmed for registered or combinational operation. Nonregistered operation is selected by blowing the output multiplexer fuse. Each combinational output must also have all fuses blown from the reset term. Registered output operation is selected by leaving the output multiplexer fuse intact. II M SUFFIX ... FK PACKAGE C SUFFIX ... FK OR FN PACKAGE (TOP VIEWI 432 1 282726 5 6 7 8 9 10 11 25 24 23 22 21 20 19 18 19 110 NC 111 112/0E 12131415161718 NMCO'lt..,«l aazzaaa w a: ~ l- e) ::::l C oa: ~ PRODUCT PREVIEW docum..ts contoin Information on products in the formetivo Dr dHign ~h.se of development. Chareet.. istic deto .n~ other srr:~t d:i:.... I::I~r products without notic•. :'.!':.4:: T.c:.:Jl:::7:: Copyright @ 1987. Texas Instruments Incorporated TEXAS .." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 76265 2-193 TlBPLS506M, TIBPLS506C 13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER . logic diagram (positive logic) 0.. 0 -' IL ~ ~ 11 ~ 0.. ::::; IL '"':I:" C.) « w W :::l :IE ~I .... ~ CJ • c Iii !I» en ::T CD !en I I "o ::D C c: •... (") -t "::Dm S m :e NOTES: A. All AND gate inputs with a blown link assume the logic-1 state B. All OR gate inputs with a blown link assume the logic-O state. 2·194 TEXAS ~ INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlBPLS506M, TlBPLS506C 13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER logic diagram (continued) ~ II II II PI U) +or CD CD ~ tn ca +or ca Q ~ w :>w a: a. I(.) ::l C oa: a. TEXAS ..If INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·195 TIBPLS506M. TIBPLS506C 13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER S-R FUNCTION TABLE (sea Note 1) ClK POLARITY FUSE ClK INTACT t t t t INTACT INTACT INTACT • ••• BLOWN BLOWN BLOWN BLOWN S l R STATE REGISTER L L H H L H H QO L H INDETERMINATE L L 00 L H H L L H H H INDETERMINATE NOTE 1: The S-R registers clear at power-up. 00 is the state of the S-R registers before the active clock edge. functional block diagram (positive logic) CLK----------~~~ >-------------------~ 16 2 ",1 97x50 8xMUX 8 ., G1 10-111 8 ""C 112/0E 8 :a o c o c I"\,., -I denotes fused inputs ""C :a m S m :e 2-196 T~. INSTRUMENTS POST OFFICE BOX 855012 • DALLAS, TEXAS 75265 'il 8 QO-07 TIBPLS506M, TlBPLS506C 13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to disabled output (see Note 2) ................................... 5.5 V Operating free-air temperature range: TIBPLS506M. . . . . . . . . . . . . . . . . . . . . . . .. 55°e to 125°e TIBPLS506e . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e Storage temperature range ......................................... - 65 °e to 150 0 e NOTE 2: These ratings apply except when programming pins during a programming cycle. recommended operating conditions TIBPlS506M VCC Supply voltage VIH High-level input voltage Vil Low-level input voltage IOH High-level output current 10l Low-level output current tw tsu TIBPlS506C MIN NOM MAX MIN NOM MAX 4.5 2 5 5.5 5.5 4.75 2 5 5.25 5.5 0.8 -2 0.8 24 rnA Setup time before elK t input or Without C-a"ay With e-a"ay Input or feedback TA Operating free-air temperature ... tI) Q) Q) ns feedback to S-R inputs Hold time after ClK V rnA Clock low th V V -3.2 Clock high Pulse duration UNIT .c en ns ...caca ns at S-R inputs -55 125 75 0 C ·e tThe active edge of elK is determined by the programmed state of ClK polarity fuse. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK VCC VOH Vee Val II Vee = MIN, = MIN, = MIN, = MAX, IH Vce Vee - MAX, III Vee lOS 10ZH Vee Vce 10Zl Vce Vee lec TIBPlS506M TYP§ MAX TEST CONDITIONS* = MAX, = MAX, = MAX, = MAX, = MAX, II = MIN 2.4 3.2 0.25 2.4 0.4 3 0.37 25 20 -0.25 VI - 2.7 V = 0.4 V Va = 2.25 V Va = 2.7 V Va = 0.4 V VI = 4.5 V, -1.2 -1.2 -18mA = MAX 10l = MAX VI = 5.5 V 10H TIBPlS508C TYP§ MAX MIN VI -15 Outputs open -65 20 -15 =5 V, TA = 25·C. 0.5 V 25 ~A 20 ~A rnA 20 ~A -20 ~ 140 tFor conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions. §AII typical values are at Vee V V -0.25 -65 -20 140 UNIT rnA rnA ~ w :>w a: Q. I(J ::> Q oa: Q. TEXAS . " INSTRUMENlS POST OFFICE BOX 65501·2 • DAllAS, TEXAS 75265 2-197 TIBPLS506M, TIBPLS506C 13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC·SEQUENCER switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted). (see Note 3) FROM (lNPUTI TO (OUTPUTI Without C-arrey With C-Array 'PARAMETER fmax* ClK§ ClK I ~. ~r tpd ten !dis Q (nonregisteredl Q (registered Q (nonregistered) . TIBPLS606M MIN TVP MAX 60 40 TEST CONDITIONS nBPLS606C MIN TVPt MAX 20 Rl = 500 Il. Cl=50pF 60 40 UNIT MHz 20 9 9 ns 15 15 6 6 ns ns Q 6 6 Q t All typical values are at VCC = 5 V. TA = 25 ·C. *fmax is independent of the internal programmed configuration and the number of product terms used: §The active edge of ClK is determined by the programmed state of the ClK polarity fuse. NOTE 3: Load circuits and voltage waveforms are shown in Section 1. diagnostics C A diagnostic mode is provided with these devices that allows the user to inspect the contents of the state registers. The step-by-step procedures required to use the diagnostics follow. ....C»C» tn 1. Disable all outputs by taking pin 17 (DE) high (see Note 4). CD CD 2. Take pin 8 (00) double high to enable the diagnostics test sequence. ~ .... 3. Apply appropriate levels of voltage to pins 11 (03). 13 (04). and 14 (05) to select the desired state register (see Table 1). (I) The voitage'level monitored on pin 9 will indicate the state of the selected state register. NOTE 4: If pin 17 is being used as an input to the array. then pin 7 (16) must be taken double high before pin 17 is taken high. diagnostics waveforms 15 _ _ _ _ _. . J / , . - - - - - - - - - - - - - - - - - - - - - - VIHH (PIN 7) . I --J"i OE (PIN 171 _ _ _ _ ;--------------...;...--------VIH ...... 100n.~ ,..-_ _ _,",\ _ _ _ _ _ _ _ _ _ ----VIHH ." :%I o C c: (') (PIN0:' I .,.,i/;,r"T/.... v,..,.v,"Z.,.,'/;,r"TZ",WI/I j J//j/(p;/ m S m .-_-_-_-_-_-_-_-_-_-_-_.. ~:~ \e-100 ns-+t 03.04.05 (PINS 11. 13. 141 _Jt.r-------------- Vi/1///JlllillliIJJliJ//j/llj///N-- - - - - - - - - -- I -t ." :%I \ VOL ~100 n8--+1 . ~~ WIJ/ill/II//I//11//II//////J///////II//li//J/~m'l;,m'(;,m7hmr;;m'i;,mYhm'ihmYhmYh"T7Z ~OH (PIN , Ol ~ 2-198 VOHH -VOH TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75286 TlBPLS506M, TlBPLS506C 13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER TABLE 1. ADDRESSING STATE REGISTERS DURING DIAGNOSTICS REGISTER BINARY ADDRESS BURIED REGISTER PIN 11 PIN 13 PIN 14 L L L Cl L L L L H HH CO L L H H H HH HH HH L L L L H H H H H H H H H L L L H H H HH HH HH SELECTED L P15 P14 H HH Pl L P2 H HH P3 L P5 H HH P6 PO ~ P4 P7 L PS H HH P9 Pl0 L Pll H HH 1"13 .. CD CD ..c .. P12 t/) CO CO Q PROGRAMMING INFORMATION Texas Instruments programmable logic devices can be programmed using widely available software and reasonably priced device programmers. Complete programming specifications, algorithms, and the latest information on firmware, software, and hardware updates are available upon request. Information on programmers that are capable of programming Texas Instruments programmable logic is also available, upon request, from the nearest TI sales office, local authorized Texas Instruments distributor, or by calling Texas Instruments at (214) 997·5762. ~ w :>w a: 0.. I- (J ::> o o a: 0.. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2·199 I I E C I» r+ I» t/) ::T CD CD r+ (Ij 2-200 TlBPSG507M, TIBPSG507C 13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR MAY 1987-REVISED DECEMBER 1987 • 50 MHz Clock Rate • Ideal for Waveform and State Machine Applications • 6-Bit Internal Binary Counter • B-Bit Internal State Register M SUFFIX .•.• JT PACKAGE C SUFFIX ...• JT OR NT PACKAGE (TOPVIEWI ClK • Programmable Clock Polarity • Outputs Programmable for Registered or Combinatorial Operation • 6-Bit Counter Simplifies Logic Equation Development in State Machine Designs • Dependable Texas Instruments Quality and Reliability VCC 16 17 18 19 110 111 112/0E 07 06 05 04 10 11 12 13 14 15 00 01 02 03 GND description The TIBPSG507 is a 13 x 80 x 8 Programmable Sequenc~ Generator (PSG) that offers the system designer unprecedented flexibility in a high-performance field-programmable logic device. Applications such as waveform generators, state machines, dividers, timers, and simple logic reduction are all possible with a PSG. By utilizing the built-in binary counter, the PSG is capable of generating complex timing controllers. The binary counter also simplifies logic equation development in state machine and waveform generator applications. The PSG507 contains 80 product (AND) terms, a 6-bit binary counter with control logic, eight SIR state holding registers, and eight outputs. The eight outputs can be individually programmed for either registered or combinatorial operation. The clock input is fuse programmable for either positive- or negativeedge operation. - M SUFFIX . . . . FK PACKAGE C SUFFIX . . . • FK OR FN PACKAGE (TOPVlEWI :.l . .. CD CD U ::Qd~~';!.~ 4 3 .c en ... 2 1 282726 CIS CIS 25 12 13 5 6 NC 8 22 9 10 21 24 Q 23 01 11 12 13 14 15 16 17 18 NMCUVIDIC 00 z z'O 0 0 C!l NC - No internal connection The 6-bit binary counter is controlled by a synchronous-clear and a count/hold function. Each control function has a nonregistered and registered option. When either SCLRO or SClR1 is taken high, the counter resets to zero on the next active clock edge. When either CNT/HLDO or CNT/HLD1 is taken high, the counter is held at the present count and is not allowed to advance on the active clock edge. The SCLR function overrides the CNT/HLD feature when both lines are simultaneously high. Clock. polarity is programmable through the clock polarity fuse. Leaving this fuse intact selects positiveedge triggering. Negative-edge triggering is selected by blowing this fuse. Pin 17 functions as an input and/or an output enable. When the output enable fuse is intact, all outputs are always enabled allowing pin 17 to be used strictly as an input. Blowing the output enable fuse lets pin 17 function as an output enable and an input. In this mode, the outputs are enabled when pin 17 is low and are in a high-impedance state when pin 17 is high. ~ W ~ a: Q. t- (.) ::l C oa: Q. PRODUCT PREVIEW do.uments .ontaln Information on products in the formatlv. or design ~ba.. of devllopmlnt. Cherl.taristi. data an~ other ::.-::::.at::=srr::t dt",l::a~::I~r T::,=::,::: products without noll... Copyright C) 1987, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • CALLAS. TEXAS 75265 2-201 I ! TlBPSG507M. TlBPSG507C 13 x 80 x 8 PROGRAMMABLE SE~UENCE GENERATOR dellcription (continued) The eight outputs can be individually programmed for combinational operation by blowing the output multiplexer fuse. Each combinational output must also have all fuses blown from its associated reset term. When the output mUltiplexer fuse is left intact, registered operation is selected. The M suffix devices are characterized for operation over the full military temperature range of - 55 to 125 The C suffix devices are characterized for operation from 0 to 75 ac. ac 6-BlT COUNTER CONTROL FUNC"RON TA!,LE CNT/HLD1 CNT/HLDO L X X X H L X X H X SCLR1 L (888 SCLRO X H L L ac. Note 1) OPERATION L H counter active X L L synchronous clear synchronous dear hold counter hold counter NOTE 1: The 6-Bit counter and the SIR control registers are clear upon power-up. Devices with the fuses intact will power~up in the counter~active mode. When all fuses are blown on a product line (AND), its output will be high. When all fuses are blown on a-sum line (OR), its outputs will be low. All product and sum terms are low on devices with fuses intact. c C» ... C» t/) SIR FUNCTION TABLE (sBe Nota 2) ::r CD CLK POLARITY FUSE !fI) \' ClK t S R INTACT L L 00 INTACT t L H L H L H L H L INTACT t H INTACT t BLOWN t .H L BLOWN t BLOWN t t BLOWN L 'H H STATE REGISTER H INDETt 00 L H . tNDETt t Output state is indeterminate NOTE 2: SIR registers are clear upon power up. 00 is the state of the SIR regisier before the active clock edge . ." ::D o C c: (') .... ." ::D m S m ~ 2-202 TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ac TIBPSG507M. TIBPSG507C 13 x 80 X 8 PROGRAMMABLE SE~UENCE GENERATOR functional block diagram ,- ClK .,V ':' 8 6 STATE REGISTERS ~C1 '" 1 80x38 2 a. ~ axC> ~ ~ * 'V 'V ..;.... ~ 8xC> -.!,.... p!,-- ~ 10·111 112/(jE 12 1 --:--:13xC> + ol¥- - 81NARY COUNTER CTR a 1-0 G2 1S 2 54x80 'V 'V 2x 1-0 J IR 1CT-0 C1/2.3+ G3 1CT-0 ~C1 ~ 'V ) 8 1S 8 IR OUTPUT CEll 8 1 ~NC1 EN 8x 1-0 8 1S 8 ] - I"U CO·C5 8x 1-0 8 'V 'V ~ IR '- MUX "V~ 8 ,. r G1 Qo= f denotes fused inputs w == :>w a: a.. I(.) ::J C oa: a.. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • OALLAS, TEXAS 75265 2·203 TIBPSG507M, TIBPSG507C 13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR logic diagram (positive logic) '"r "" ,, ""05" , , "" '" "" "" '" 16 " , :~~ 112/0E f/ I) If;G;l • F=- ~ R )Il -"'~ c C) ;;. r+ C) ~ ;;. en :::r ~ ::: CD CD -'""' ;;. r+ tn ~ ~DO ro-~ :;;':: ... ~ " "'- P2 , I~ I-f.' - ~" I:::: -X> ...r:.. ~ .~ r.= " " ~~ -'""-:F~ ~~ ,~ Hi' ~QO "'-' ~~~" "C ~uur=~02 o ~~~Q3 (") k?~~o, :xJ C C I::::~~OS -I "C :xJ m -< m ~ 2-204 'Ruur=~" ~mrrllllill R~~" -nT ~ TEXAS INSTRUMENTS POST OFFICE BOX 655012 '. DALLAS, TEXAS 75265 TIBPSG507M. TIBPSG507C 13 )( 80 )( 8 PROGRAMMABLE SEQUENCE GENERATOR absolute maximum ratings Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage, VI (see Note 3) ................................................ 5.5 V Voltage applied to a disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free:air temperature range: TIBPGS507M. . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C TIBPGS507e. . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C Storage temperature range ......................................... - 65°C to 150°C NOTE 3: These ratings apply except for programming pins during a programming cycle. recommended operating conditions M SUFFIX PARAMETER Supply voltage VCC V,H High-level input voltage V,L Low-level input voltage IOH High-level output current IOl Low-level output current tw 4.5 2. before ClK active transition C SUFFIX NOM MAX 5 5.5 MIN 4.75 5.5 2 0.8 -2 12 th after ClK active transition Clock low Input or feedback to SIR inputs MAX 5.25 to SClRa Input or feedback ~ V 5.5 V 0.8 -3.2 24 V mA mA Q) Q) 15 ns 25 ns 25 ns .c en ca ca C a at SIR inputs Input or feedback ns a at SCLO Input or feedback Operating free-air temperature UNIT ~ Input or feedback a atCN'l'/HlDa TA 5 ns to eN'!'IHOLDa Input or feedback Hold timet NOM Clock high Pulse duration Setup timet tsu MIN -55 125 0 75 ·C t'nterna' setup and hold times, tsu feedback to SClR1, feedback to eN'!'/HlD1: th feedback at SClR1 and feedback at eN'!'/HlD1. are guaranteed by f max specifications. The active transition of ClK is determined by the programmed state of the ClK polarity fuse. ~ w :>w a: Q. lt) :J Q oa: Q. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 2-205 TIBPSG507M, TIBPSG507C 13 x80 x 8 PROGRAMMABLE SEQUENCE GENERATOR electrical characteristics over recommended operating free-air temperature range (unless otherwise noted 1 PARAMETER VIK VOH VOL IL IIH III lOS !OZH IOZl TEST CONDITIONS VCC VCC VCC Vee Vcc VCC VCC Vee Vee = = = = = = = = MIN, MIN, MIN, MAX, MAX, MAX, MAX, MAX, MAX, MIN II = -18mA 10H = MAX 10l = MAX VI = 6.5 V VI = 2.7 V VI - 0.4 V Vo = 2.25 V VO. = 2.7 V Vo = 0.4 V VI - 4.5 V, OutoutsoDen 2.4 M SUFFIX TYpT 3.2 0.25 MAX -1.2 MIN 2.4 0.4 25 20 -0.25 -55 20 -20 -15 C SUFFIX TypT 3 0.37 -15 MAX -1.2 0.5 26 20 -0.25 -55 20 -20 UNIT V V V ,.A ,.A rnA rnA ,.A ,.A Eow. . . . . . . . . . . . . ..-.. . . . . . . . . . . . . _ . . ._ ,. . . . . .,.... ICC o VCC = MAX (unless otherwise notedl (see Note 41 I» ;- -rnA 140 140 PARAMETER en ::r' CD fmax * ! (I) tpd ten tdis FROM TEST CONDITIONS TO 5-Blt counter 5-Bit counter with SClR1 or BlT/HlD1 5-Bit counter with SClRO or BlT/HlDO SIR registers CLK§ Q (non-registered) 1 ClK§ Q (registered) Q non-reaisteredl I OE~ Q OEt Q MIN M SUFFIX TYpt MAX Rl = 500 0, CL=50pF MIN CSUFFIX Typt MAX 50 35 50 UNIT MHz 20 12 18 12 12 ns ns ns ns ns NOTE 4: load circuits and voltage waveforms are shown in Section 1 of the TTL Data Book, Volume 4. tAli typical values are at VCC = 5 V, TA = 25°C. *fmax is independent of the number of product terms used. §The active edge of CLK is determined by the programmed stete of the ClK polarity fuse. 'tpd ClK to Q (nonregistered) is the same for data clocked from the counter or state registers. PRINCIPLES OF OPERATION ;g PSG DESIGN THEORY c: n Most s.tate machine and waveform generator designs can be simplified with the PSG by referencing all or part of each sequence to a binary count. The internal state registers can then be used to keep track of which binary count sequence is in operation, to store input data and keep track of internally generated status bits, or as output registers when connected to a nonregistered output cell. State registers can also be used to expand the binary counter when a larger counter is needed. oC -I "'0 ::D m < m Through the use of the binary counter, the number of product lines and state registers required for a design is usually reduced. In addition, the deSigner does not have to be concerned about generating wait states where the outputs are unaffected because these can be timed from the binary counter. For detailed information and examples using this design concept, see the "DESIGNER'S GUIDE TO THE PSG507" applications report (literature number SPDA003). :e 2-206 TEXAS ." INSTRUMENTS POST OFFICE BOX 656012 • DALLAS, TEXAS 752.65 TIBPSG507M. TIBPSG507C 13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR PRINCIPLES OF OPERATION PROGRAMMING INFORMATION Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on firmware, software, and hardware updates are available upon request. Information on persons capable of programming Texas Instruments Programmable Logic is also available upon request from the nearest TI sales office or local authorized TI distributor; information may also be obtained by calling or writing Texas Instruments at (214) 997-5762, Texas Instruments, Post Office Box 655803, Dallas, Texas 75265. TYPICAL APPLICATION RFC DYNAMIC RAM REFRESH TIMER DYNAMIC MEMORY CONTROLLER SN74ALS6301 REFREQ REFREQ MEMORY TIMING CONTROLLER TIBPSG507 OSC CLOCK GENERATOR RFC - QO·QS CLK VCC ~ RESET iN WAIT R/iN A22 ALE AS RAS CAS L - MSEL MCI 2 r Fo~ - MSEL HSA ~ * * r-- SN74ALS6310 ~ - - RASI CASI MICROPROCESSOR 7 LE - ADDRESS MCI OE CS - ~ -----+ r -~ -~ RASO CASO iN ~ -~ -~ -~ -~ ~ -~ RASI DATA TEXAS . " POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ...caca J AO·AS RAS2 BANK2 1 MEG x 32 BITS TMS4Cl027 CAS2 iN I AO·AS ~ w BANK3 1 MEG x 32 BITS TMS4Cl027 :>w a:: a.. iN I- l' ::J detailed information, please see the "SYSTEMS SOLUTION FOR STATIC COLUME DECODE" Application Report. INSTRUMENTS f/) BANKI lMEG x 32 BITS TMS4Cl027 CAS3 ~ CD CD .c CASI RAS3 SELO.l ~... C I AO·AS --~ iN , MEMORY BANK SIGNALS AO·AB BANKO 1 MEG x 32 BITS TMS4Cl 027 o C oa:: a.. 2-207 TIBPSG501M. TlBPSG501C 13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR diagnostics A diagnostics mode is provided with these devices that allows the user to inspect-the contents of the state registers. The following are the step-by-step procedures required for the diagnostics. 1. Disable all outputs by taking OE (pin 17) high. (Note: If pin 17 is being used as an input to the array, then pin 15 or pin 7 must be taken to double high first before pin 17 is taken high.) 2. Take 00 (pin 8) double high to enable the piagnostics test sequence. 3. Apply appropriate levels of voltage to pins 11, 13 and 14 to selectthe desired state register, (see Table 1) 4. The voltage level monitored on pin 9 will indicate the state of the selected state register. diagnostics waveforms 5 _________J/~--------------------------------------------VIHH (PIN 71 . DE _ _ _ _ _'l~--------------------------------------~------VIH (PIN, 17) I 14--100 ns---+t _ _ _ _ _ _ _ _ _ _ VIHH {~N~~JS~S~~S:IS~lWCI'J,~,:,~,:tsxfl'~----~\ - - - - - - - - - - VIH VIL 14-100 ns--.lI _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ VOHH ~M~ (PINS 11. 13. 14) S S S s s s s .s s s s s s s , , v ~ S 5 .. I OH VOL I 1+--100 ns--+( Q1 (PIN 9) S S S S I S Ss s s s s s s s s s s s s s s s s s s • s s s s s s SS , TABLE 1. ADDRESSING STATE REGISTERS DURING DIAGNOSTICS REGISTER BINARY ADDRESS PIN 11 PIN 13 PIN 14 ""0 :0 o C c: o -t ""0 :0 m S m ~ 2-208 BURRIED REGISTER SELECTED L L L L L H L L HH CNT/HLDO L H H L H HH CNT/HlD1 SCLRO SCLR1 PO P1 l l H L HH l P2 L HH P3 L HH H HH H L L P4 P5 H H L l H HH P6 P7 H H L CO H H H H H HH C1 H HH L H HH H C3 C4 H HH HH C5 C2 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 , VOH VOL TlB82S 1OSBM, TIB82S 1OSBC 16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET 02897, SEPTEMBER 1985-REVISED DECEMBER 1987 • 50· MHz Clock Rate • Power-On Preset of All Flip-Flops • 6-Bit Internal State Register with 8-Bit Output Register M SUFFIX, , . JD PACKAGE C SUFFIX ... JD OR N PACKAGE (TOP VIEW) • Power Dissipation ... 600 mW Typical • Programmable Asynchronous Preset or Output Control • Functionally Equivalent to. but Faster than 82S105At description The TIB82S 1OSB is a TTL field-programmable state machine of the Mealy type, This state machine (logic sequencer) contains 48 product terms (AND terms) and 14 pairs of sum terms (OR terms), The product and sum terms are used to control the 6-bit internal state register and the 8-bit output register. elK Vee 17 16 15 14 13 12 11 10 Q7 Q6 Q5 Q4 GND 18 19 110 111 112 113 114 115 PRE/OE QO Q1 Q2 Q3 PI .... en Q) Q) M SUFFIX ... FK PACKAGE C SUFFIX ... FK OR FN PACKAGE (TOP VIEW) The outputs of the internal state register (PO- PSI are fed back and combined with the 16 inputs (l0-11S) to form the AND array. In addition a single sum term is complemented and fed back to the AND array. which allows any of the product terms to be summed. complemented, and used as an input to the AND array. The state and output registers are positive-edgetriggered SIR flip-flops. These registers are unconditionally preset high on power-up. Pin 19 can be used to preset both registers or. by blowing the proper fuse, be converted to an output control function. >l .c (/) ....asas U ~5ec::d~~~ 4 3 2 Q 1 282726 5 25 6 24 7 23 8 22 9 21 10 20 11 110 111 112 113 114 115 PRE/OE 12 1314 15161718 The TIB82S1 OSBM is characterized for operation over the full military temperature range of -SsoC to 12SoC. The T1B82S10SBC is characterized for operation from OOC to 7S DC. t Power-up preset and asynchronous preset functions are not identical to 8251 05A. See Recommended Operating Conditions. PRODucnOI DATA ..... m.nts co.taln infarmdia. .umot II of publication dets. Praducls .onfarm to opeoillcatlo.. per.lb. tarms of T•••• Instrum.nts :'=~~r:"f::I~li =~:i:r :.\o:::::~. not Copyright @ 1985. Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DAL.LAS. TEXAS 75265 2-209 TIB82S105BM, TIB82S105BC 16 x 48 x 8 FIELD,PROGRAMMABLE LOGIC SEOUENCER WITH 3·STATE OUTPUTS OR PRESET functional block diagram (positive logic) PRE/OE -----4If--f-"'" ~--~----~----------, EN S CLK-------------------------------------+-~~ .. 1 48 X 29 & 8 8 8 16xI> 10_115 __.."...1:.::6-:....,-I E 48 cm 6xI> tn I> 'V ....~ 6 6 1R 'V ~ CD CD ....til 6 'V denotes fused inputs. timing diagram vee PRE OPTIONAL M 10-11& ---J I I I~-----T--------I4--tsu --.! rh i --~I------------~------~I I ~----I ~I-+I~------- -K _________ ~. I elK r-----1 --~I~----------~I ~ I !ot=tsu . I I I I INTERNAL STATE REG PO-P5 V I ___-JA\~I~,~I--~--~~ I =iII ~~ -_-_-_-_-_-_-_ -11r-v~--~!r-------:I:~tT-~::f_ I I I . I I I QO-Q7---V---~~-----~!~------~· iJ-----\\..----J ~ 2-210 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 QO-Q7 TIB82S 185BM, TIB82S 185BC 16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER WITH 3·STATE OUTPUTS OR PRESET logic diagram (positive logic) 10 191 181 11 12 171 161 " 151 14 141 15 131 17 121 ,. 18 19 110 111 112 )J. I 1271 (19) 12., ,25, (24) • (23) PIIE/1Ir E (221 11. 114 1211 115 1201 ., PO ''32 PO '5 ~I ~.o rt,~~l ~ ~ tt,~1 ~P2 ~~1t ~P3 ~ N ~ ~ ~ H>~ 'S;~e H;~~ ~ H;~1 = , 'fr 1(171 H;~~L H>~ <;S" ,. H>~ ~ ~ ~ a ~ ~ 47· • • • • • • ....... . ........ ....... . ........ • •••••• 0 H>~ H>~ ~11~ ~ r+.~~ .!!!..:. '\l H>.J!r.- ,181 00 01 I , '(161 1 115 , 01 I 1 113) 04 1 1(121 05 I '1'1' 1 1(101 111 o. 07 elK INPUT LINES NOTES: 1. All AND gate inputs with a blown link float to a logic 1. 2. All OR gate inputs with a blown link float to a logic O. TEXAS .Jf INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75266 2·211 TlB82S105BM, TlB82S105BC 16 x 48 x 8 FIELD~PROGRAMMABLE LOGIC SEQUENCER WITH 3-STATE OUTPUTS OR PRESET absolute maximum ratings over operating free-air temperature range (unless otherwise hoted) Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 5.5 V Voltage applied to a disabled output (see Note 3) . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Operating free-air temperature range: TIB82S 105BM . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e TIB82S105Be .......................... ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 0 e NOTE 3: These ratings apply except for programming pins during a programming cycle. recommended operating conditions M SUFFIX PARAMETER ...C I» I» VCC Supply voltage VIH Vil High-level input voltage low-level input voltage IOH High-level output current Low-level output current IOl fclock Clock frequency t ::::r CD CD ... NOM MAX MIN NOM MAX 4.5 2 5 5.5 5.5 0.8 -2 12 4.75 2 5 5.25 5.5 0.8 -3.2 24 0 40 0 50 0 25 0 30 1 thru 48 product terms C/) without C-array* Pulse duration tsu Setup time before ClKi. 1 thru 48 product terms tsu th Setup time. Preset low (inactive) before ClKi§ Hold time, input after ClKi TA Operating free-air temperature CI) UNIT V V V mA mA MHz 1 thru 48 product terms with C-array Clock high or low tw C SUFFIX MIN 12 18 20 35 10 15 15 30 10 0 -55 8 0 0 Preset Without C-array With C-array 125 ns ns ns ns 75 °c tThe maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input, the maximum clock frequency must be calculated. * The C-array is the single sum term that is complemented and fed back to the AND array. § After Preset goes inactive. normal clocking resumes on the first low-ta-high clock transition. 2-212 TEXAS ..If INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIB82S 105BM, TIB82S 105BC 16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEOUENCER WITH 3-STATE OUTPUTS OR PRESET electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER M SUFFIX TEST eONDITIONst MIN VIK VOH Vee - MIN, II - -18 rnA Vee = MIN, Val II IOH = MAX IOl = MAX IIH Vee = MIN, Vee - MAX, Vee - MAX, III Vee - MAX, VI - 0.4 V IO§ IOZH Vee = MAX, Vee - MAX, Va = 2.25 V Vo - 2.7 V IOZl Vee - MAX, Vo = 0.4 V lee Vee = MAX, PRE/OE input at GND, VI = 4.5 V, Outputs open e SUFFIX MAX TYP* MIN TYP* MAX -1.2 2.4 3.2 2.4 0.25 0.4 VI - 5.5 V VI - 2.7 V 25 20 -0.25 -112 -30 -1.2 3 0.37 0.5 V 25 pA pA rnA -112 rnA 20 -20 pA 180 rnA -30 180 V V 20 -0.25 20 -20 120 UNIT 120 pA switching characteristics over recommended supply voltage and operating free-air temperature ranges (unless otherwise noted) PARAMETER 1 f rnax FROM TO I Without e·array I With e-array elKt Q tpd PREt Q tpd Veet Q ten tdis OEl OEt Q tpd TEST CONDITIONS M SUFFIX MIN TYP* 40 25 70 45 8 Rl = 500O, el=50pF Q e SUFFIX MAX 0 20 25 10 10 5 25 15 12 MIN TYP* 50 30 70 45 8 MAX ~.... CD CD UNIT .s::. C/) ... MHz ns 12 15 20 0 10 10 5 20 10 ns ns CO CO C ns ns t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. * All typical values are at Vee = 5 V, T A = 25 De. § The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS. 1f max is independent of the internal programmed configuration and the number of product terms used. programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-213 TIB82S 105BM, TIB82S105BC 16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET diagnostics A diagnostics mode is provided with these devices that allows the user to inspect the contents of the state register. When 10 (pin 9) is held at 10 V, the state register bits PO-P5 will appear at the 00-05 outputs and 06-07 will be high. The contents of the output register will remain unchanged. diagnostics waveforms -y,.....------------------...;....-----_- VIH 11-115-11\ ---------------------------Vli. I I r------""\-- - - - * /1 1\ I I 11 ~--------------~II l, , l0-A, 1 :\~Ih-+l I ! eLK INTERNAL I 14-- tsu _____ STATE REGISTER PO-P5 - PS - - - - I ~. ,-X ~ : - I ~ 00-05----0-n---+:-"-"*. I I I ------r-------'--VIH I I I ' I r VIL I tw--l+j I ----+10V ~~V ,.~------------- VIH I , I '--------VIL - -t- - -:S- - - - /4---tp d - -1- - - - - - ----+: On+1 --t - X I - - /4--tPd NS l - - - -VOH - VOL EVOH VOL I+-tpd-+l OPTIONAL ~ PS = Present stete. NS ----------------------------0 V = Next state TEXAS ." 2·214 INSTRUMENTS ~ST OFFICE BOX 665012 • DALLAS. TEXAS 75265 TIB82S 105BM, TIB82S 105BC 16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER WITH 3-STATE OUTPUTS OR PRESET test array A test array that consists of product lines 48 and 49 has been added to these devices to allow testing prior to programming. The test array is factory programmed as shown below. Testing is accomplished by connecting 00-07 to 18-115, PRE/OE to GND, and applying the proper input signals as shown in the timing diagram. Product lines 48 and 4~ MUST be deleted during user programming to avoid interference with the programmed logic function. TEST ARRAY PROGRAM OPTION PRE/OE AND PRODUCT LINE C 48 49 C 1 1 1 1 1 1 54 32 1o X - - X lH OR INPUT PRESENT STATE NEXT STATE OUT (In) (PS) (NS) (an) 514J3J2J 11° 51413121110 7161514l312J11° 918L716L5J4J3J2~110 H H H H H H HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH LILILILILIL LILILILILILILIL L L L L L L LILILILILILIL ILILIL LILILILILIL HIHIHIHIHIH HIHIHIHIHIHIHIH test array waveforms ~-------------------------------------------------5V VCC~ ___ _ I+-tw~ I I I I : CLK --------------oV nL________________----iIL ---'----------!I:- I4--tsu~th-..l 1 1 I I I4-tpd~ ~ tpd tpd~ ~~II_--_--_-_-::~ 1 1 STATE VIL 1 I 00-Q7 ______--'/or:------------~\J I INTERNAL VIH I! .I-----------------+l----~'-"= . ::~ : 10-17 I 1 \J RE~S~:: _ _ _ _.I1 I /r_-_-_-_~~: TEST ARRAY DELETED OPTION PRE/~ AND PRODUCT LINE C C 1 1 1 1 1 1 5 48 49 x= - - H INPUT PRESENT STATE NEXT STATE OUT (In) (PS) (NS) (an) 4 3 2 1 0 91817161514J3J2111° 51 4 1313(110 514131 2J 1 10 716151413121110 H H H H Ii HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH -1-1-1-1-1- -1-1-1-1-1-1-1- X L L L L L L LILILILILILILILILIL LILILILILIL Fuse intact, - IH OR I-I 01 JJ -1-[ -[I J J:1 = Fuse blown TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-215 TlB82S105BM. TlB82S105BC 16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER WITH 3-STATE OUTPUTS OR PRESET TIB82S105B. 82S105A COMPARISON The Texas Instruments T1682S 1056 is a 16 x 48 x 8 Field-Programmable Logic Sequencer that is functionally equivalent to the Signetics 82S1 05A. However, the TI682S1 056 is designed for a maximum speed of 50 MHz with the preset function being made conventional. As a result the TI682S1058 differs from the 82S105A in speed and in the preset recovery function. The TI882S 1058 is a high-speed version of the original 82S 105A. The TI882S 1058 features increased switching speeds with no increase in power. The maximum operating ,frequency is increased from 20 MHz to 50 MHz and does not decrease as more product terms are connected to each sum (OR) line. -For instance, if all 48 product tems were connected to a sum line on the original 82S105A, the f max would be about 15 MHz. The f max for the TIB82S1058 remains at 50 MHz regardless of the programmed configuration. In addition, the preset recovery sequence was changed to a conventional recovery sequence, providing quicker clock recovery times. This is explained in the following paragraph. E The TI882S1058 and the 82S105A are equipped with power-up preset and asynchronous preset functions. The power-up preset causes the registers to go high during power-up. The asynchronous preset inhibits clocking and causes the registers to go high whenever the preset pin is taken high. Afte,r a power-up preset occurs, the minimum setup time from power-up to the first clock pulse must be metin order to assure that clocking is not inhibited. In a similar manner after an asynchronous preset, the preset input must return low (inactive) for a given time, tsu, before clocking. The Signetics 82S 105A was designed in such a way that after both power-up preset and asynchronous preset it requires that a high-to-Iow clock transition occur before a clocking transition (Iow-to-high) will be recognized. This is shown in Figure 1. The Texas Instruments TIB82S 105B does not require a high-to-Iow clock transition before clocking can be resumed, it only requires that the preset be inactive 8 ns (preset inactive-state setup time) before the clock riSing edge. See Figure 2. The TIB82S105B, with an f max of 50 MHz, is ideal for systems in which the state machine must run several times faster than the system clock. It is recommended that the TIB82S 105B be used in new designs. However, "the TIB82S1058 is used to replace the 82S 105A. then the customer must understand that clocking will begin with the first clock rising edge after preset. TABLE 3. SPEED DIFFERENCES PARAMETER 'fmax tpd, elK to a 2-216 82S105A SIGNETICS TIB82S105B TIONlY 20 MHz 50 MHz 20 ns 15 ns TEXAS ", INSTRUMENTS POST OFFICE BOX 665012 • DALLAS. TEXAS 75265 TIB82S105BM, TIB82S105BC 16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET Vee --"l I I4--t su -+I PRE I I I I elK REGISTERS . I r I~--+----------I I I --~--~I--------~i ____c I ___XJJ I :J I FIGURE 1. 82S105A PRESET RECOVERY OPERATION vee -.I! I I I I PRE EJ... ~tsu I 11 I I I U) I CI) CI) I I I elK REGISTERS J I I I I I I \ X XJ/ ~ I I \ X FIGURE 2. TIB82S1058 PRESET RECOVERY OPERATION TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DAlt.AS, TeXAS 75265 x:: tn ca ca .... C 2-217 c Q) r+ Q) en ::r CD CD r+ In 2-218 TlB82S167BM, TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEDUENCER WITH 3·STATE OUTPUTS OR PRESET 02896, JANUARY 1985-REVISED DECEMBER 19B7 • Programmable Asynchronous Preset or Output Control • Power·On Preset of All Flip-Flops • 8-Bit Internal State Register with 4-Bit Output Register • Power Dissipation . . . 600 mW Typical • Functionally Equivalent to, t but Faster than 82S167A M SUFFIX ... JT PACKAGE C SUFFIX ... JT OR NT PACKAGE (TOP VIEW) ClK VCC 16 15 14 13 12 11 10 00 01 02 PO GND 03 description The TIB82S167B is a TTL fieldcprogrammable state machine of the Mealy type. This state machine (logic sequencer) contains 48 product terms (AND terms) and 12 pairs of sum terms (OR terms). The product and sum terms are used to control the 8-bit internal state register and the 4-bit output register. The outputs of the internal state register (PO-P7) are fed back and combined with the 14 inputs (10-113) to form the AND array. In addition the first two bits of the internal state register (PO-P1) are brought off-chip to allow the output register to be extended to 6 bits if desired. A single sum term is complemented and fed back to the AND array, which allows any of the product terms to be summed, complemented, and used as inputs to the AND array. The state and output registers are positive-edgetriggered SIR flip-flops. These registers are unconditionally preset high on power-up. PRE/OE can be used as PRE to preset both registers or, by blowing the proper fuse, be converted to an output control function, OE. 17 18 19 110 111 112 113 PRE/OE Pl M SUFFIX ... FK PACKAGE C SUFFIX ... FK OR FN PACKAGE ... II) (TOP VIEW) ~ CD CD u .c !2!Qd~~!::!!1 4 13 12 NC 3 2 (I) ... 1 282726 ta ta 25 24 7 23 8 9 22 21 10 20 C 19 11 12 131415161718 NC-No internal connection The TIB82S167BM is characterized for operation over the full military temperature range of - 55°C to 125°C. The TIB82S 167BC is characterized for operation from O°C to 75°C. t Power up preset and asynchronous preset functions are not identical to 82S167A. PRODUCTIOI DATA d••umanll contain i.'.rmati•• currant a. of publioation data. Products .onform to spa.ilioati••• per the term. Ta... Instrumanll :'=~i~;':~':.7.; 0' ==:i:;:'l"=~~~. nD! Copyright @ '985, Texas Instruments Incorporated TEXAS ." INSTRUMENTS POST OFFICE BOX 656012 • DALLAS, TEXAS 75265 2-219 TIB82S167BM. TIB82S167BC 14x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET functional block diagram (positive logic) PRE/~ r-u ~ - LEN -:f"' ----../ ...--- 8 CLK "1 C1 ~1 & 45X 48 14Xt> 10-113 14 Ec 2Xt> ~ ~ +- P- !m 6Xt> (I) ~ ~ :::r' ... CD CD r (I) f-!.- t> ~ 4 48X 25 4 'V 'V 2 2 'V 'V ~ QO-03 2X 18 1 - 1 ", 1R PO,P1 'V 'V 6X 18 1 _ 1 6 6 1R l 6 2 'V denotes 2-220 2 ~' 'V 'V r 4X 18 1=1", 4 1R fused inputs TEXAS • INSTRUMENTS POST OFFICE BOX 855012 • DALLAS. TEXAS 75266 fo- TlB82S167BM. TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET timing diagram Vee ~ PRE I I I ~ --~I------~ OPTIONAL OE 10-113 rh I --~I~----------~------~I I I I --+-< I elK ~~-ts-u~~------ ,~------ Xl: ~--------~----J~~t~su-~~~----- I I I I I ~~!~~NR~~ --.J/~---T.---------L"'--------;II---';-..I.!------P2-P7 00-03, PO-P1 I ; I I I I I IJ~,\r---~!~--~yl-------II '__---..J • . TEXAS . INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-221 TIB82S167BM, TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET LOGIC DIAGRAM 10 '81 171 12 '81 ..,. '" 13 '41 (OP11ONI 131 IS 17 '231 1221 I. ""1 121 I 1161 II. II' ,191 112 113 PRE/(j'E 1211 1201 • 1181 E 1171 .,., PO .3 P4 .0 PO .7 C C ,S ~ .,.., ~ ~ ~ ~ --'"' ..fht: ~ '\t .~ ~;~l: ~2~t: 'R S m;;;;; ~ ~ I ~ c:t"gj.... ;r.::; ~I r;T'"1 ~ or.; ~ • ~ • 47 NOTES: . 2-222 '" 40 3. 'M 32 31 ... 24 23 ... 18111 ... 8 7 1. All AND gate inputs with a blown link float to the high level. 2. All OR gate inputs with a blown link float to the low level . . TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ... ~;!1.- • (151 P I I 1141 I 1131 PO Q3 I 11111 Q2 I I ,101 I I 191 111 Q, GO CLK TlB82S167BM. TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Voltage applied to a disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . .. 5.5 V Operating free-air temperature range: TIB82S 167BM . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e TIB82S167Be .......................... ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 °e NOTE 3: These ratings apply except for programming pins during a programming cycle. recommended operating conditions M SUFFIX PARAMETER VCC VIH Supply voltage Vil low-level input voltage IOH High-level output current IOl Low-level output current High-level input voltage NOM MAX MIN NOM MAX 4.5 2 5 5.5 5.5 0.8 2 12 4.75 2 5 5.25 5.5 0.8 -3.2 24 0 40 0 50 0 25 0 30 1 thru 48 product terms fclock tw tsu tsu th TA Clock frequency t Pulse duration without C-array* 1 thru 48 product terms with C-array Clock high or low Setup time before ClK t, Preset Without C-array 1 thru 48 product terms With C-array Setup time. Preset low (inactive) before ClKt§ Hold time, input after ClKt Operating free-air temperature C SUFFIX MIN UNIT V V V mA mA MHz 12 18 20 35 10 15 15 30 10 0 -55 8 0 0 125 ns ns ns ns 75 °c t The maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input, the maximum clock frequency must be calculated. * The C-array is the single sum term that is complemented and fed back to the AND array. § After Preset goes inactive. normal clocking resumes on the first low-to-high clock transition. TEXAS . • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-223 TlB82S167BM, TlB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEOUENCER WITH 3·STATE OUTPUTS OR PRESET electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK VOH VOL II IIH III IO§ IOZH IOZl C m MIN TYP* 2.4 3.2 0.25 IOH - MAX IOl - MAX VI - 5.5 V VI - 2.7 V VI - 0.4 V Vee - MAX, Vee - MAX, Vee - MAX, Vee = MAX, Vee - MAX, Vee - MAX, Vee - MAX, PRE/OE input at GND, Vo = 2.25 V Vo - 2.7 V Vo - 0.4 V VI - 4.5 V, PARAMETER (I) , I Without e-array :r CD CD ~ o 'max . FROM· TO 90 dod....., ""_ TEST CONDITIONS. 2.4 3 0.37 MAX -1.2 0.5 25 20 -0.25 -30 -112 90 160 UNIT V V V p.A p.A mA 20 20 mA p.A p.A 160 mA and ope...... , ..... tempe............ M SUFFIX MIN 40 I With e-array TYP* 20 20 ~ m MIN 0.4 25 20 -0.25 -112 Outputs open OW", . . . . . . . . . . (unless otherwise noted) -30 C SUFFIX MAX -1.2 II - -18 mA Vee - MIN, Vee -.MIN, Vee - MIN, E . . . _. . ."""""" lee M SUFAX TEST CONDITIONSt 25 e SUFFIX TYP* 70 45 MAX 10 8 0 MIN 50 30 UNIT TYP* 70 45 MAX 20 25 10 10 8 0 15 20 10 ns ns ns MHz tpd tpd tpd elK, PREt Q Veet Q ten OE! Q 10 25 10 20 ns 1dis OEt Q 5 15 5 10 ns Q Rl = 500 n, el = 50 pF t For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions. tAli typical values are at Vee = 5 V, TA = 25°e. § The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS. ,. f max is independent of the internal programmed configuration and the number of product terms used. programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762 .. 2·224 TEXAS . . INSTRUMENTS POST OFFICE BOX 866012 • DALLAS. TEXAS 76265 TIB82S167BM. TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET diagnostics A diagnostics mode is provided with these devices that allows the user to inspect the contents of the state register. When 10 (pin 9) is held at 10 V, the state register bits P2-P7 will appear at the 00-03 and PO-Pl outputs. The contents of the registers, 00-03, and PO-Pl remain unchanged. diagnostics waveforms -y..----------------------------vIH 11·113 - - ' " 1 ~--------------------------Vll ,I =* 1 10 - I 1 I r------"'----------+10V + ---------J11 v ..(. I --------'1 1 ~th~ 1 :,\------- 1 I ClK ----i:i---~l 1 INTERNAL I ' - I1 ' 1 PS -- -I - -+ - - - - - I : tw----i+j I I QO-Q3,PO.Pl----Q-n---+:-""""'* I I PI .... fI) CI) CI) .c '".... Il T- -:S- - -1 - - - - - - .," VIH Vil :IH r--------- "1- X t4--tsu ____ _ STATE REGISTER P2-P7- - *~V , I c-, ' - - - - - - - I \ CO CO , k--tpd-----+: Qn+l --I - X , - - - - I4--tpd~ NS - E -VOH - o VOL VOH VOL I4-tpd-.l OPTIONAL ~ -----------------------------0 V PS = P,esent State NS = Next State TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 2-225 TIB82S167BM, TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE· LOGIC SEOUENCER WITH :i·STATE OUTPUTS OR PRESET test array A test array that consists of product lines 48 and 49 has been added to these devices to allow testing prior to programming. The test array is factory programmed as shown below. Testing is accomplished by connecting 00-03 to 110-113, PRE/DE to GND, and applying the proper input signals as shown in the timing diagram. Product lines 48 and 49 must be deleted during user programming to ~void interference with the programmed logic function. test array program IH OPTION PRE/OE AND PRODUCT • ~ INPUT PRESENT STATE NEXT STATE OUTPUT Unl (PSI (NSI (ani C C 1 1 1 1 1 1 LINE OR 5 4 3 2 1 0 9L81716L514J3J211Jo 51413121110 51413121110 716151413121110 x - H H H H H H H]HIHIHIHIHIHIHIHIH HIH IHJH IH IH Ll LI LI LILIL LILILILILILJLJL 48 49 - L L L L L L LJLJLJLJLILILILILJL LJLILILILIL HIHIHIHIHIH HIHIHIHIHIHIHIH X test array waveforms r .....--..............................................................................................................~5V At VCC~ (I) ::r CD CD ___ _ - .... - (I) - H,I.________ - - - - - - - - - - - - - - - -0 v ILVIH ClK _ .........:....................................."""1 I+- tsu ...... /';'1- -----': VIL _-+:. . . . . . .r=-=::: /1i--..... .. tpd~ ! -VOH l- -I _...Ilr~. . _ . . ._-_-~~: ~ -VOL I \J. . REG:!~:~ ....._ _-JI . 1................................... .....- - - -..., I INTERNAL I I ~tpd I+tpd+j 00-03 -+r- th~ ! 1 10-19 ..........0+1..............._ STATE - I _ _ _ _.........._ _..... test array deleted IH OPTION PRE/OE AND PRODUCT LINE 48 49 X 2-226 C C 1 1 1 1 1 1 OR INPUT PRESENT STATE NEXT STATE OUTPUT lin) (PS) (NS) (an) 5 4 3 2 1 0 91817 6 51413121110 5 41312 110 5 4 312 1 0 7 6 5 4 13 21110 -1- - - - - - - 1- -1-1-1- - - - - - - 1- -1-1- - - H H H H H H HIHIH H HI_HIHIHIHIH H HIHIH HIH - - X L L L L L L LJLIL L LILILILJLIL L LILIL LJL - - = Fuse intact, - = Fuse blown TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TIB82S167BM. TIB82S167BC 14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER WITH 3·STATE OUTPUTS OR PRESET TIB82S167B. 82S167A COMPARISON The Texas Instruments TIB82S167B is a 14 x 48 x 6 Field-Programmable Logic Sequencer that is functionally equivalent to the Signetics 82S167A. However, the TIB82S167B is designed for a maximum speed of 50 MHz with the preset function being made conventional. As a result the TIB82S167B differs from the 82S167A in speed and in the preset recovery function. The TIB82S 167B is a high-speed version of the original 82S 167A. The TIB82S 167B features increased switching speeds with no increase in power. The maximum operating frequency is increased from 20 MHz to 50 MHz and does not decrease as more product terms are connected to each sum (OR) line. For instance, if all 48 product tems were connected to a sum line on the original 82S167A, the f max would be about 15 MHz. The f max for the TIB82S167B remains at 50 MHz regardless of the programmed configuration. In addition, the preset recovery sequence was changed to a conventional recovery sequence, providing quicker clock recovery times. This is explained in the following paragraphs. The TIB82S167B and the 82S167A are equipped with power-up preset and asynchronous preset functions. The power-up preset causes the registers to go high during power-up. The asynchronous preset inhibits clocking and causes the registers to go high whenever the preset pin is taken high. After a power-up preset occurs, the minimum setup time from power-up to the first clock pulse must be met in order to assure that clocking is not inhibited. In a similar manner after an asynchronous preset, the preset input must return low (inactive) for a given time, tsu, before clocking. The Signetics 82S 167A was designed in such a way that after both power-up preset and asynchronous preset it requires that a high-to-Iow clock transition occur before a clocking transition (low-to-high) will be recognized. This is shown in Figure 1. The Texas Instruments TIB82S 167B does not require a high-to-Iow clock transition before clocking can be resumed, it only requires that the preset be inactive 8 ns (preset inactive-state setup time) before the clock rising edge. See Figure 2. CO ... CO C The TlB82S167B, with an f max of 50 MHz, is ideal for systems in which the state machine must run several times faster than the system clock. It is recommended that the TlB82S167B be used in new designs. However, if the n88251678 is used to replace the 825167A, then the customer must understand that clockIng wHI begin with the first clock rising edge after preset. TABLE 3. SPEED DIFFERENCES PARAMETER f max tpd, eLK to Q SIGNETICS 82S167A TlB82S167B TIONLY 20 MHz 50 MHz 20 ns 15 ns TEXAS ", INSIRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-227 TIB82S167BM. TIB82S167BC 14 x 48x 6 FIELD·PROGRAMMABLE LOGIC SEGUENCER WITH 3·STATE OUTPUTS OR PRESET Vee PRE -I': I I+-tsu --+/ jt--tsu-+j I I I I r-1 ---+I------rl-------------i, I elK I REGISTERS :J I I I : _____u I I FIGURE 1. 82S167A PRESET RECOVERY OPERATION Vee .-I! I I I PRE om elK tn :r REGISTERS CD CD r+ o 2-228 I I r-1 : , ~~----------------- , r+ m .....r-tsu J ,'------'x'-__XJI \'-_....IX"_____C FIGURE 2. TIB82S167B PRESET RECOVERY OPERATION TEXAS . . INSTRUMENTS POST OFFICE BOX 666012 • DALLAS, TEXAS 75285 TlCHAL 16L8·35C. TlCHAL 16R4·35C. TICHAL 16R6·35C. TICHAL 16R8·35C HIGH·SPEED HAL® CIRCUITS 02972. MARCH 1 • Mask·Programmed Version of 20-Pin PAL® Family • Virtually Zero Standby Power • 35-ns Maximum Propagation. Delay TICHAL l6L8 C SUFFIX ... DW OR N PACKAGE ITOPVIEW) Vee • HC. HCT. and TTL Compatible • Choice of 20-Pin DIP. 20-Pin SO (Small Outline) or 20-Pin PLCC Packages • Low-Power Replacement for 20-Pin •A' PAL® Devices • Dependable Texas Instruments Quality and Reliability DEVICE l-STATE INPUTS Q 'HAL16L8 'HALI6R4 'HALI6R6 'HALI6R8 10 8 8 8 OUTPUTS 2 0 0 0 I GND REGISTERED 1/0 OUTPUTS PORTS 0 6 4 (l-statel 4 6 (l-statel 2 0 8 (J-statel 0 liD liD liD liD liD liD 0 TICHAL16L8 C SUFFIX ... FN PACKAGE ITOP VIEW) U u _>0 3 2 1 20 19 18 description These high-speed CMOS Hard Array Logic (HAL®) circuits are mask-programmed versions of the 20-pin PAL® devices. They provide reliable, high-speed, low-power substitutes for conventional TTL and HCT logic. They are also compatible with HC logic over VCC range of 4.5 volts to 5.5 volts. 5 17 6 16 7 15 8' 14 9 1011 12 13 This family of CMOS HAL® circuits provide the flexibility of using integrated circuits with virtually zero standby power and lower operating power than those currently achieved by bipolar PALs. Prototyping can be done using standard PAL® devices before converting to CMOS HAL® circuits for production. The TICHAL 16' circuits have internal electrostatic discharge (ESD) protection circuits and have been classified with a 2000-volt ESD rating tested under MIL-STD-883B, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance. The C suffix designates commercial-temperature circuits that are characterized for operation from OoC to 75°C. PAL and HAL are registered trademarks of Monolithic Memories Inc. PRODUCTION DATA docl..lnll ••nlli. info,ma'io. ••,nnt IS of publicetlo. dill. Products confonn '0 _lIcali... pa, the tar... of T.... Inat'.....11 ='=il;"r.::::ri =::r :YI":::':~:'~ not Copyright @ 1987, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-229 TICHAL 16R4-35C. TlCHAl16R6·35C. TICHAl16R8·35C HIGH·SPEED CMOS HAL® CIRCUITS TICHAL16R4 C SUFFIX, , , OW OR N PACKAGE TICHAL16R4 C SUFFIX, , , FN PACKAGE (TOPVIEWI ITOP VIEWI eLK tl 0 __ :1 u>::;; Vee I/O 1/0 2 1 2019 3 Q 4 18 110 Q 5 17 16 Q Q 7 15 Q I/O 8 14 Q Q 1/0 E C AI ..... AI 9 10111213 OE GND Q - ~I~ gg CI TlCHAL16R6 C SUFFIX, , , OW OR N PACKAGE TICHAL16R6 C SUFFIX, , "FN PACKAGE (TOPVIEWI ITOPVIEW) eLK tl 0 __ :1 u>::;; Vee I/O en :T 3 Q ...en CD CD Q 18 17 Q 16 Q Q 6 7 15 Q Q 8 14 Q Q Q 110 Q 9 1011 1213 OE GND 2 1 2019 4 5 - ~I~ gd CI TICHAL16R8 C SUFFIX, , , OW OR N PACKAGE TICHAL16R8 C SUFFIX, , , FN PACKAGE (TOP VIEWI (TOPVIEWI eLK tl __ :1 u>d Vee Q 3 2 1 20 19 Q Q 18 Q 17 Q 16 15 Q Q 14 Q GND 2-230 9 10111213 OE 'TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 TlCHAl16l8·35C, TIC HAL 16R4·35C HIGH·SPEED CMOS HAL® CIRCUITS functional block diagrams (positive logic) TlCHAL16L8 EN ,,1 & '\lb-----O 32 X 64 P-----O P-.-.......-I/O b-4H--+",-1/0 b-4H--+"'- 1/0 - P-4H-.......-1/0 IO-~....+--I/O U) ; P-4H-....+--1/0 CD .c en 6 CIS CIS ~ TlCHAL16R4 C OE AEN2 CLK ., ,,1 & 32 C1 x 64 -!,.. I-Q -!,.. 8 ..J..!I..- 4 ~ ~ - r----. r----. r----. -!,.. c> ~ - -:z.... -:z.... Q 2'\1 10 EN ,,1 '\I - , Q Q 1/0 1/0 ..2,.. 1/0 ..2,.. 1/0 4 4 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-231 I ! ! TICHAL 16R6·35C, TICHAL 16R8·35C HIGH·SPEED CMOS HAL® CIRCUITS functional block diagrams (positive logic) TICHAl16R6 CiE ~(N2 ClK '" C1 32 "x 64 >1 ..!.,.. 2'\7 10 ...!!..,.. ~ --::::-I> -1!,.. ----. ----. ...!!..,.. E ':.,. o .... Q) p.!!,... fI) Q Q (1) (1) r+ EN r----. ,,1 '\7 ~ ::r .... 1 1 2 6 fI) Q ---.., ...!!..,.. r4 Q) Q ---.., ~ - Q Q ..!.,.. ,!.- - I/O 1/0 TICHAl16R8 OE------------------------dEr~__, ClK ----------------P r;;-..,....-~I_-Q .----r----1-~-Q t--;--""""1--':f-Q r----t----1-~-Q r----t----1-~-Q .----t----1-~-Q .----t----1-~-Q .----r----1-~-Q 2-232 TEXAS ..If INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 TIC HAL 16L8·35C HIGH·SPEED CMOS HAL® CIRCUITS logic diagram (positive logic) I (1) . INPUT LINES PRODUCT , LINES 0 0 4 8 12 16 20 24 28 31 r' ·· · · I~ ·· ·· ··• · ·· ·· r-V-J r- 7 8 I f--"'" 1 v (19) 0 (18) 1/0 t-- (3) 15 1'>L r-V-J 16 f--- o ... CIS 24 f--- V J CIS (16)1/0 C f--- (5) 31 X 32 •• • I CD CD .c 1(4)~ I ... II) (17)1/0 · · ···• ·• ·· ··• •• 1 - v (6) 39 X 40 (15)1/0 ~ >---' 1 (14)1/0 V I-- 47 1(7) .:>L I-- 48 I-- 1 v (13)1/0 55 I (8) X 56 I f-- 1 0 (12) v (11) (9) 63 X I TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-233 TICHAL 16R4·35C HIGH·SPEED CMOS HAL® CIRCUITS logic diagram (positive logic) CLK.i!lt> . INPUT LINES PRODUCT , LINES 0 0 4 8 12 16 20 24 28 31 ·•••• · V ~ "'8 ••• • I , 1 7 I (21" (191 110 1 .-- · ··•• · ··•• · ·•• · (181 1/0 v J (31 15 16 ~ .--/A f..- >f..- ~ l.:J. (151Q -v""' ~~Q R (14)Q 1?'"" I---'D)-- I----' C1 (6) 39 I---' 40 ••• • I ·· _ •• • • 1 -' ·· ··• ·• (13) 110 V J - 55 ~ 56 1 ~ I--- v 9) 63 I ( ::>L 2·234 C1 (7 47 I "'48 IJ!) Q (161Q f----I 32 I '"..."J C1 (51 31 I Q~Q C1 (41 23 I '" 24 ~" TEXAS . " INSTRUMENTS POST OFFICE BOX 65501~ • DALLAS, TEXAS 75265 ..... (12) 1/0 J ~)OE TlCHAL 16R6·35C HIGH·SPEED CMOS HAL® CIRCUITS logic diagram (positive logic) CLK~-------------------------INPUT LINES PRODUCT , LINES 0 0 4 8 12 16 20 24 28 ·· · '8 ·•• ·· 31 ~ ~ 1(2),,~ >----c - ' ~>- (19) 1/0 I tJ;:CW'' . I.. Cl (3) 15 I~ J 16 ••• • • >---,>- · f----' 24 >---, •• • • tJ; i.:l tJ; tJ; i.J (17) Q CD CD " .c .. Cl (4) 23 I~ U) as as >----. · :>- C (16) Q " Cl (5) 31 I 32 •• ··• ..·• ·· ·•• ·• ~P>--- (6) 39 I U) ~ ~15)Q Cl '-' 40 1(7) p-- 47 Cl f-----1 48 I (8) tJ; ~14)Q ~~hl -v :J (13) Q Cl 55 ,..... 56 • ·••• · ~ L/ ~ (12) 1/0 ~L4'I- (9) 63 I~- OE TEXAS ~ INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-235 TICHAL16R8·35C HIGH·SPEED CMOS HAL@ CIRCUITS logic diagram (positive logic) ClK (1) .L!Lf> P . I INPUT LINES Rl~~E~CT '0 4 8 12 16 20 24 28 ··• · 0 31 f----' f---; f-t>- ·· · ··•• · ··••• · f-p~ 16 ~ '"";:l (18) t1 tl '"";:l (17) R (16) r---. ~D>---' x f---' f----'p- v A - 32 •• •• · f----' f----' )- v Q fbJ; '"";:l (15) v Q C1 (6) 39 ~ 40 ··..•• ~ )~ 48 •• •• •• 55 f----' -)- ~ '"";:l (13) v 56 ')-~ ';)v "" - ,..... C1 (9 63 I TEXAS .., INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 Q C1 - .-•• ·•• ~ R(14} Q v C1 ).----, (7)~ 2-236 Q C1 (5) 31 I~. Q C1 (4) 23 24 v C1 f----' (3) 15 I (8) Q C1 Elrl:'8 • fbJ; ? "" ~) Q TlCHAL 16L8·35C. TIC HAL 16R4·35C. TICHAL 16R6·35C. TlCHAL 16R8·35C HIGH·SPEED CMOS HAL@ CIRCUITS absolute maximum ratings over operating free·air temperature range (unless otherwise noted) Supply voltage range, VCC ........................................... -0.5 V to 7 V Input voltage range, VI ........................................ -0.5 V to VCC+0.5 V Input clamp current, 11K (VI < 0 or VI > Vcc) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA Output clamp current, 10K (Vo < 0 or Vo > Vcc) ............................. ±20 mA Continuous output current, 10 (VO = 0 to Vcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±35 mA Continuous current through VCC pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 mA Continuous current through GND pin ................................... , . . .. - 200 mA Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds .............. :'. . . . . .. 260 0 C Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooC to 75 °C Storage temperature range ......................................... - 65 °C to 150 0 C recommended operating conditions C-SUFFIX MIN 4.5 2 VCC Supply voltage VIH High·level input voltage VIL Low·level input voltage tw Pulse duration tsu th Setup time, input or feedback before CLKt TA Operating free-air temperature range NOM MAX 5.5 Clock high Clock low Hold time, input or feedback after CLKt 20 20 30 0 0 V V 0.8 I I UNIT V ns ns ns 75 ·C II ... U) CD CD .c CI) ... CG CG Q TEXAS . " INSTRUMENTS POST OFFICE BOX 656012 • DALLAS. TEXAS 75265 2-237 TICHAL 16L8·35C, TlCHAL 16R4-35C, TICHAL 16R6·35C, TICHAL 16R8·35C HIGH·SPEED CMOS HAL® CIRCUITS electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER IIH III High-level output voltage lOW-level output voltage Off-state output current with high-level voltage applied Off-state output current with low-level voltage applied High-level input current low-level input current lee Standby supply current lec Operating supply current VOH VOL 10ZH 10Zl c I = 4.5 V, = 4.5 V, 10H 10l Vee = 6.5 V, Vee = 5.5 V. = 6.5 V. = 5.6 V. Vo = -6 mA = 24 mA C-SUFFIX TYP . MAX =0 VI = Vee VI - 0 VI = o or Vee. Vee = 5.5 V• Other inputs at 0 'or Vee TA = 26·e. TA = 25·e. MIN 3.76 Vo = Vee Vee Vee Vee" 5.5 V. 10 = 0 Vee = 5.5 V. f." 1 MHz. Input capacitance Output capacitance ei eo ~ .. Vee Vee ..1lee* ehange In supply currant ! : TEST CONDITIONS VI = o or Vee. 10 = 0 VI = 0.6 V or 2.4 V. 0.4 V V· 10 p.A -10 ~A 1 -1 p.A p.A 100 p.A 2 1.4 f = 1 MHz f = 1 MHz UNIT mA/MHz 3 mA 10 10 pF pF - switching characteristics over recommended renges of supply voltage and operating free-air temperature (unless otherwise noted) en PARAMETER FROM (INPUT) TO (OUTPUT) with feedback without feedback o or I/O fmax§ tpd tpd I. I/O. or feedback elKt 0 DE. DEt 0 tdis ten ldis I or I/O lor I/O Oorl/O o or I/O ten TEST CONDITIONS R1 = 200 R2= 390 MIN 18 25 n. n. eL=50pF 0 C-SUFFIX TYP MAX MHz 18 10 36 25 ns ns 12 25 ns 12 14 16 25 36 36 ns ns· ns t All typical values are Vee = 5 V. TA = 25 ·e. *This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 or Vee. §fmax (with feedback) = 2-238 tsu 1 elK + tpd ( to 0); fmax (without feedback) = (h' h) tw.g 1 () + tw low TEXAS . " INSTRUMENTS POST OFFICE BOX 855012 • OAUAS. TEXAS 75265 UNIT TICHAL 16L8·35C. TICHAL 16R4·35C. TIC HAL 16R6·35C. TICHAL 16R8·35C HIGH·SPEED .CMOS HAL® CIRCUITS PARAMETER MEASUREMENT INFORMATION Vcc Sl ~ Rl FROM OUTPUT _ UNDER TEST ...._~___- ........ TEST POINT R2 CL (See Note Al PI ... NOTES: A. CL = includes probe and jig capacitance. B. When measuring propagation times of 3-state outputs, 51 is closed. U) FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS CI) CI) INPUT~1.5V \:~~-- - - - - - 3 v tpd - tpLH or tpHL I IN-PHASE OUTPUT OUT ·OF-PHASE OUTPUT I' OV r+--tPLH--+I I+--tPHL----"! I I : I Y,.5V \~;V--VOH I I I+--tPHL---+t k---tPLH----"! - I I ' - _ _ _ _ _ _ _ _ _ _ _J tJ) ... (CI (CI I l .c:: Q VOL VOH 1.5 V - - - - VOL VOLTAGE WAVEFORMS NOTES: A. When measuring propagation times of 3-state outputs, S 1 is closed. B. All input pulses are supplied by generators having the following characteristics: PRR .s: 1 MHz, Zo :::: 50 fl, tr == 6 ns. FIGURE 2. PROPAGATION DELAY TIMES. OUTPUT RISE AND FALL TIMES TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-239 TlCHAL 16LB·35C, TIC HAL 16R4·35C, TICHAL 16R6·35C, TlCHAL 16RB·35C HIGH·SPEEDCMOS HAL® CIRCUITS PARAMETER MEASUREMENT INFORMATION \"----3V f.5V CLK '-,---ov ~I.~-------th'------___·~I .d:'"'~--------~~N'--J+--tsu --'! DATA INPUT I 1.5 V 0.3 V I 2.7 V 2.7 V I I I I I I ~~~ I . ---3 V 1.5 V 0.3 V ov ~q~ VOLTAGE WAVEFORMS E NOTE: Phase relationship between waveforms was chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR s 1 MHz, Zo = tr = 6 ns, tf = 6 ns. FIGURE 3, SETUP AND HOLD TIMES. AND INPUT RISE AND FALL TIMES ~: DE },,1_.5_V_ _ _ _ _ _ _ _ _ _J ( 14-- tPLZ--.! !4---tPZL ~ OUTPUT WAVEFORM 1 Sl CLOSED (See Note B) I I ! _ _ _ _ _ _ _ _ : :V I \1.5V :, I Y-f~'~V ~VCC _ _ VOL I+---- tPZH---.I f OUTPUT : WAV.EFORM 2 S1 OPEN 1.5 V (See Note B) _ _ _ _ _ _ _....J. : I. I ...i - - - - "t-" !'-,·t:-O.5 V I VOH "'----- =0 V 14-- tPHZ---+l tan - tpZL 0' tpZH VOLTAGE WAVEFORMS NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR s 1 MHz, Zo = 50 II, tr = 6 ns, tf = 6 ns. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditi~ns such that the output is high except when disabled by the output control. FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS 2-240 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 TICHAL 16L8·35C, TlCHAL 16R4·35C, TICHAL 16R6·35C, TICHAL 16R8·35C HIGH·SPEED CMOS HAL® CIRCUITS PARAMETER MEASUREMENT INFORMATION X5~ - ---:: HI~~-~:~EL ____.,!'.5 V ~14~----tw------~~~ 1OI14~----tw------""'1 I LOW-LEVEL PULSE I \.5V 3 V '-5~ ____ OV VOLTAGE WAVEFORMS NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR :::; 1 MHz, Zo = 50 0, tr = 6 ns. B. For clock inputs, f max is measured with input duty cycle = 50%, FIGURE 5. PULSE DURATIONS ... U) CD CD .c tn ...caca C . TEXAS'" INSTRUMENTS POST OFFICE BOX 855012 • DALLAS. TEXAS 75265 2-241 E 2-242 TlCPAl16l8·55C, TlCPAl16R4·55C TlCPAl16R6·55C, TICPAl16R8·55C STANDARD CMOS PAl@ CIRCUITS 03062, NOVEMBER, 1987 TICPAL l6LS' C SUFFIX ••• JL OR N PACKAGE ITOPVIEWI • Standard 20-Pin PAL Family • Virtually Zero Standby Power • Propagation Delay ... 55 ns Max • TTL- and HC-Compatlble Inputs and Outputs • Preload Capability to Aid Testing • Fully Tested ,for High Programming Yield Before Packaging • Greater than 2000-V Input Protection for Electrostatic Discharge • Devices In the' JL' Package Can Be Erased and Reprogrammed More Than Once Vee o 110 1/0 110 110 110 110 o I GND ......_ _.... TlCPAl16R4' C SUFFIX ... JL OR N PACKAGE ITOPVIEWI elK DEVICE INPUTS PALt6L8 to PAL16R4 PALt6R6 B B PAL16RB B 3-STATE REGISTERED I/O o OUTPUTS QOUTPUTS PORTS 2 00 0 0 413-state) 6 (3-statel B 13-statel I Vee I 1/0 110 U) iCD .c en Q 6 4 Q Q 2 0 Q 110 110 ......___ OE as as ~ description Q TICPAL16R6' C SUFFIX •.. JL OR N PACKAGE These PAL devices ptovide reliable, highperformance substitutes for conventional TTL and HCT logic. They are also compatible with HC logic over the Vec range of 4.75 V to 5.25 V. Their easy programmability allows for quick design of "custom" functions and typically result in a more compact circuit board. Static power dissipation for these devices is negligible. ITOPVIEWI elK Vee 1/0 Q Q Q Q Q The output registers of these devices are Ootype flip-flops that store data on the low-to-high transition of the clock input. The registered outputs may be disabled by taking OE high, whereas the nonregistered outputs may be disabled through the use of individual product terms. Unused inputs must always be connected to an appropriate logic level, preferably either VCC or ground. Q 110 OE TICPAL16RS' C SUFFIX ... JL OR N PACKAGE (TOPVIEWI elK Vec Q Q Q Q Q Q Q I Q GND ......_ _rOE The dotted circles represent windows found only on the JL package. PAL" is a registered trademark of Monolithic Memories Inc. PRODucnOI OATA d..om.." .ontain inmmotian cu"",t II of po..looti•• dote. Pradocts coof.,m to _Iflooti... par the to,... of TUII lnotro.. m.d.rd w."alltY. P,oductl•• " ....1•• d... oot on" n.....rily io~odl tastln. of III plllmotan. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DAUAS, TeXAS 75265 Copyright @ 1987. Texas Instruments Incorporated 2-243 TICPAl16l8-55C, TICPAl16R4-55C TICPAl16R6-55C, TlCPAl16R8-55C STANDARD CMOS PAl®CIRCUITS description (continued) The programming cell consists of a floating-gate device like those used in EPROMs. All terms are initially connected. The unwanted terms are programmed out to provide the desired function. The output of a given AND gate is low if both the true and complement cells of a term are connected, and high if all related cells are programmed. Programming can be done manually but is usually achieved through the use of commercially available programming equipment. This TICPAl 16' series has internal electrostatic discharge (ESD) protection circuits and has been classified with a 2000-V ESD rating tested under Mll-STD-883B, Method 3015.1. However, care should be exercised in handling these devices, as exposure to ESD may result in a degradation of the device parametric performance. The floating gate programmable cells allow these PAls to be fully programmed and tested before assembly to assure high field programming yield and functionality. They are then erased by ultraviolet light before packaging. All devices in this series contain a security feature. Once the security cell is programmed, additional programming and verification cannot be performed. This prevents easy duplication of a design. ...c C» C» The TICPAL16'C series is characterized for operation from OOC to 75°C. erasure tn ::::r ... CD CD (I) 2-244 The TICPAl16' (Jl package) series can be erased after programming by exposure to ultraviolet light that has a wavelength of 253.7 nm (2537 A). The recommended minimum exposure dose (UV intensity x exposure time) is fifteen w.s.cm - 2. The lamp should be located about 2.5 cm (1 inch) above the chip during erasure. It should be noted that normal ambient light contains the correct wavelength for erasure . Therefore, when using the nCPAl 16' series (Jl package). the window should be covered with an opaque label. TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALlAS. TEXAS 76265 TICPAl16lB·55C, TlCPAl16R4·55C STANDARD CMOS PAl@ CIRCUITS functional block diagrams (positive logic) TlCPAl16lS' EN 201 8< 32 X 64 "illo----o 10----0 p...~~~1/0 b--.+.........-I/O b-~~~I/O ...us Io-H-~~I/O CD CD .c fn 6 ...caca TICPAl16R4' Q J EN2 OE , C1 ClK 8< 32 x 64 201 -.!!,.. 2"il 10 Q -.!!,.. 8 ~ 4 ~ ---- ---.., Q ~ "'"'1> ~ ---.., ~ - Q - Q ---.., EN 201 --2.,.. "il - --2.,.. " 110 110 - 1/0 - 1/0 --2.,.. --2.,.. 4 4 TEXAS ." INSTRUMENTS POST OFFICE BOX 665012 • DALLAS. TEXAS 75265 2·245 ·TICPAl 16R6·55C, TlCPAl16R8·55C STANDARD CMOS PAl® CIRCUITS functional block diagrams (positive logic) TICPAl16R6 OE -tN2 ClK L, & 32 X 64 C1 ,,1 ~ 10 E c C» ....C» ·0 :sCD !en ~ I> ~ ,...!.,& ~ ~ ~ r----. r----. r----. r----. r----. rJ!+ rJ!+ r-!+ ~ ~ ~ Q r-Q ~ ~ 2'V EN ", 'V G+ r+ Q Q Q Q 110 110 2 6 T1CPAl16R8 OE----~------------------dEr~__, ClK -------------~~ r;;-.,...-~I_-Q r---r-""--"':f--Q r----t----1-~-Q r----t----1-~-Q t--T---1-+-- Q r----t----1-~-Q r----t----1-~-Q 8 2·246 TEXAS ." INSTRUMENTS POST OFFICE BOX 866012 • DALLAS. TEXAS 75285 II"rftL lULU· .... " STANDARD CMOS PAL® CIRCUITS logic diagram (positive logic) 1(1 ) INPUT LINES P RODUCT • LINES 0 0 ·.··· '8 ··· ··· ·· · ··• · ·· :- (2),,-~_ 4 12 8 16 20 24 28 - 31 ~:l r- (19) v o - k r- f--" 1 (18) v 110 - (3) 15 .A 16 r- - ~ ~ - :--' 1 I• CI (17) 110 G G ~ ~ (4) 23 U 24 • c: x (5) (1 r- r- V r- ~ 32 r- -..,. J (16) 1 (15) 1 (14) (1 v 110 110 )----, (6) 39 X 40 i).. 110 - (7) -;: ·· · ·· · ~48 ~p-J 55 (8)" -- 56 ~J -- -- r - I--" - +-=:kI r- 63 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 (13) -1 (12) v 110 o (11 ) 2-247 TICPAL 16R4·55C STANDAilD CMOS PAL@> CIRCUITS logic diagram (positive logic) ClK~. , . INPUT LINES PRODUCT , LINES 0 0 ··• · 4 8 12 16 20 24 28 31 J . I~ '8 •• •• •• J >-- V ;>l 16 •• •• • r---< · I---c >- .~ · > - >-- I '" 32 ·••• ~pt-;.- Ir- 40 1(7) .bJi :>~ ·· ··• ·• )---- 47 (16) 0 I.:lv (15)0 r.:J.v (14)0 ~ Cl J< 48 J >---' ~ 55 I (8) ;>l (13) 1/0 ~J 1 ~ 56 •• ••• h 1-/ · }-- 63 I~. 2-248 fb1 r.:J Cl (6) 39 1 •• • • Q Cl . (5) 31 •• .bJi f3 "" Cl (4) 23 1'-'-" 24 ••• •• (18) 1/0 1 (3) 15 I (19) 110 ~ 1 v (12) 1/0 1 ~)OE TEXAS ." INSTRUMENTS POST OFFICE aox 65~12 , CALLAS. TEXAS 15285 TlCPAl16R6·SSC STANDARD CMOS PAl@ CIRCUITS logic diagram (positive logic) CLK~~--------------------------- _______ ----------, INPUT LINES PRODUCT,~--------------------~------------------~ LINES 0 4 8 0--+-+++-++++- I ·• ·· ·· · 12 --- 16 20 24 28 -f-- - 31 I--- J ~ I I f-- (31 15 >f-fol-'3 ~ ~ (181 Q i til ...caca .c C --s-- -1-t,;] 56 •• ·· j V ~==t<}---- (91 63 I~_- TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 (121 1/0 I /1-(111~OE 2-249 I I i ! ! TICPAL16RS·55C STANDARD CMOS pAL® CIRCUITS logic diagram (positive logic) ClK~~--------------~----~--~--____ INPUT LINES PRODUCT , 0 LINES 0 4 8 12 16 20 0 0 0 0 0 0 IEl ..... 24 28 ~ .- Z-- C1 ~ }---J .... I- 0 0 0 0 0 0 1~ 1FI-~ (3) 15 '-' I 16 '-- 0 0 ~ ~ ~ I;:L I-- • --D- o 0 0 I tJ;? "". ~ '8 E 31 '-- (4) 23 .;>L I-- 24 0 0 0 0 0 0 C1 -- ~ .... ·• ·· ··• · ··· · ·· · ~ 1- t> 1- 40 -~ F- - C1 >--- 48-- '=>fbJ; -- . 55 v (13) 0 VI ...r-' I- ~~ >~ ';! "". ~ ~ C1 63 2-250 >-;:L C1 I-- 56 I~ ~ ~14)0 (15) 0 }- 1(7) 47 J!) ~ ':lv C1 (6) 39 I :;::l..,I1.~) 0 .... C1 ~ . 32 I (17) 0 I?'" C1 I--D- 31 I (5)x (18)0 I ~ I I I I TEXAS ." INSTRUMENlS POST OFFI,CE BOX 655012 • DALLAS, TEXAS 75265 ~)OE TICPAL 16LB·55C, TICPAL 16R4·55C TICPAL 16R6·55C, TICPAL 16RB·55C StANDARD CMOS PAL® CIRCUITS absolute maximum ratings over operating free·air temperature range (unless otherwise notedl Supply voltage range, Vec ........................................... :....0.5 V to 7 V Input voltage range, V, ........................................ -0.5 V to VCC +0.5 V Input clamp current, 11K (V, -!:. 0 or V, > VCCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA Output clamp current, 10K (VO < 0 or Vo > VCCl ............................. ± 20 mA Continuous output current, 10 (VO = 0 to Vecl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 35 mA Continuous current through Vec pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 mA Continuous current through GND pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 200 mA Operating free-air temperature range ...................................... OOC to 75°C Storage temperature range ......................................... - 65 °e to 150°C Lead temperature 1,6 mm (1/16 inchl from case for 60 seconds (JL packagel ........... 300 0 e Lead temperature 1,6 mm (1/16 inchl from case for 10 seconds (N packagel ............ 260 0 e recommended operating conditions C-SUFFIX MIN 4.75 VCC Supply voltage VIH High-level input voltage Vil low-level input voltage NOM MAX 5.25 V V 0.8 V 2 I Clock high tw Pulse duration tsu th TA Setup time, input or feedback before ClK I I Clock low Hold time, input or feedback after ClK I Operating free-air temperature range TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 .. DALLAS. TEXAS 75265 20 20 40 0 0 UNIT 75 ... U) Q) Q) ns .c ns ns ·C ...caca tJ) C TICPAl16l8·55C, TlCPAl16R4-55C TlCPAl16R6·55C, TICPAl16R8·55C STANDARD CMOS PAL@) CIRCUITS electrical characteristics over recommended operating free·air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 10H = 3.2 rnA Ilor TTL) 10H = -4 mA 110' CMOS) 10l = 24 mA 110' TTL) 10l = 4 mA 110' CMOS) Vo = 2.4 V Vo = 0.4 V 10ZH 10Zl IIH III leelstandbvl leelope,ating) I Vee = 4.75 V, Vee = 4.75 V, Vee - 4.75 V, vee = 4.75 V, Vee = 5.25 V, Vee = 6.26 V, Vee = 5.25 V, Vee - 5.25 V, Vee = 5.25 V, Vee = 5.25 V, I = 1 MHz to 25 MHz * 4l ee VI - 0.5 Vo, 2.4 V, Vee 5.25 V, Othe, inputs at 0 V 0' Vee VOH VOL = Vee = 0 = 00' Vee, = Oto Vee, 10 = 0 10 = 0, Tvpt MAX UNIT V V 10 -10 10 -10 100 p.A p.A p.A p.A p.A mA MHz 3 mA 2 1.4 1- 1 MHz TA = 25°C, el VI VI VI VI MIN 4 3.86 0.5 0.4 pi 6 C r» switching characteristics over recommended ranges of supply voltage and operating free-air temperature ;- (unless otherwise noted) R1 - 200 (}, R2 - 390 (},. CL - 50 pf tn PARAMETER ::T CD ! FROM (INPUT) elKt TO IOUTPUT) . with leedback wlo leedback 00,1/0 a m. a 15 25 ns a ao, I/O ao, I/O 15 35 35 25 55 55 ns ns ns Imax§ tad tod tan ldis tan ldis I, I/O; 0' leedback ~t 10,1/0 10,1/0 MIN TYpt MAX 35 15 55 22 ns ns 16 25 MHz tAli typical values are at Vee = 5 V, TA = 25°C. *This Is the inc,ease in supply cu,rent 10' each input that is at one 01 the specilied TTL voltage levels ,athe, than 0 0' Vee. §Imaxlwith leedback) = 2-252 2- 1 ; Imaxlwithout leedback) = tsu + tpd lelK to aJ . tsu TEXAS . " INSTRUMENTS POST OFFICE BOX 855012 • DALlAS. TEXAS 75286 UNIT TICPAl16lB·55C, TlCPAl16R4·55C TlCPAl16R6·55C, TICPAl16RB·55C STANDARD CMOS PAl® CIRCUITS preload procedure for registered outputs The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. All of the registers may be preloaded simultaneously by following the steps below. Step 1. With Vee at 5 V and Pin 11 at VIH. raise Pin 1 to VIHH. Step 2. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Step 3. Lower Pin 1 to VIL. then remove the output voltage. Preload can be verified by lowering Pin 11 to VIL and observing the voltage level at the output pins. preload waveforms \'-------v II ... ""~ ---.I PINS 2·9 td w I+- , , , ~ 'L ! I 'I " -, :-'--------------I - - - ,, ~td~ , I -------tpreload _ 11'0 _ _ _ _...: , I I , Q) Q) .s:. fn ...asas VIH VIL C ~tdr-l , l :. . PIN 11 U) \..-----VIL I I I ~ , , - : - - VIH I VIL ---+j td j4- IVIH-',.---------------}-C 'I I , VOH REGISTERED 1/0 ----J~VIL-'- ~ VOL preload parameters, TA - 25°C PARAMETERt VIHH IIHH Av/At td Preload voltage on pin 1 Preload input current at pin 1 Voltage ramping (VIHH) Setup and hold times MIN 12.5 NOM 13 MAX 13.5 UNIT V 3.2 4 4.8 mA VI,.. 50 2 ,.. tOther test parameters and conditions are shown in recommended operating conditions and electrical characteristics tables. TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75285 2-253 TlCPAlI6L8·55C, TlCPAlI6R4·SSC TlCPAlI6R6·SSC, TlCPAl16R8·SSC STANDARD CMOS PAl® CIRCUITS • PARAMETER MEASUREMENT INFORMATION Vee .~ S1 R1 fROM OUTPUT -~-~_---41>-- TEST UNDER TEST POINT R2 NOTES: A. Cl =- includes probe and jig capacitance. • S. When measuring propagation times of 3~state outputs, S1 is closed. FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS C CD at INPUT en ::T CD !en L --Ii,I '.5V \.,'; : : - - - - - - - 3 V tpd - tpLH or tpHL (+--tPLH-+/ I IN-PHASE OUTPUT : I 0 V I+--tPHL~ ,.-----~I-----d --- - Y,.5V I ' I, VOH \1.5V VOL I+--tPLH~ I+--tPHL--+f OUT-Of-PHASE OUTPUT .1\ , , \1.5V • I'r--- VOH 1.5V ----VOL VOLTAGE WAVEfORMS NOTES: A. When measuring propagation times of 3-state outputs, 51 is closed. B. All input pulses are supplied by generators having the following characteristics: PRR :S 1 MHz, Zo = 50 0, tr = 6 ns. FIGURE 2. PROPAGATION DELAY TIMES, OUTPUT RISE AND FALL TIMES 2-254 TEXAS ." INSTRUMENTS POST OFFICE BOX 656012 • DALLAS. TEXAS 75266 TlCPAl16L8·55C, TICPAl16R4·55C TlCPAl16R6·55C, TlCPAl16R8·55C STANDARD CMOS PAl® CIRCUITS PARAMETER MEASUREMENT INFORMA nON f.5V ClK ! w a: 0.. t- O :::» Q o g: EPIC is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Monolithic Memories Inc. PRODUCT PREVIEW do.umlats ...tai. inform.llon on products In tho formlli•• or dosigl ,bul a' d•••lopm.nt. Cblra.leriolic dltl .n~ olh.r =~:~::srrg':t d:I::,:::I~rT:.::~~::~:: products without noti... Copyright @ 1987. Texas Instruments Incorporated TEXAS " , INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-257 TlePAl18V8-30M, TICPAl18V8-25C ADVANCED EPICTM CMOS GENERIC PAL® description (continued) architecture The 'PAL 18V8 architecture is a generic version of the 20-pin family of PAls. This generic flexibility is achieved by the implementation of each output function with an Output logic Macrocell (OlM). The OlM contains architectural options configured through programming. These options include the user selection of combinatorial or registered outputs with a choice of active-high or active-low logic. The 'PAL 18V8 has 74 product terms in the AND array, 64 of which are OR-function product terms, 8 product terms that are used as bidirectional output controls, and 1 product term each as asynchronous reset and synchronous set control, respectively. Each of the 8 outputs has 8 product terms per OR functiori and a dedicated product term for the bidirectional control of that output. The bidirectional control allows for individual outputs to be forced into the high-impedance state for bidirectional operations or for dedicated input usage. Cit The circuit design is enhanced by the addition of synchronous set and asynchronous reset product terms. These two functions are common to all the OlMs. When the synchronous set product term is a logic 1, the output registers are loaded with a logic 1 on the next low-to-hi,gh clock transition. When the asynchronous reset product term is a logic 1, the output registers are loaded with a logic 0 independently of the clock. The output logic level after set or reset depends on the polarity selected during programming. An asynchronous reset always overrides synchronous set . CI) CI) . A clock function is routed to all the OlMs. It is used with the registered macrocell options. The clock function shares a pin with an array input. The sharing provides an additional input pin when registered options are not exercised. o Q) en :::r ....en The registers in the' 18V8 have been designed to reset after power-up. During power-up, all registers will reset to the O-state following a transition of any input or any I/O. The output voltage level for any output will depend on the polarity selected for that output. This feature is especially valuable in Simplifying state machine initialization. All output registers can be preloaded to any desired state during testing. Preloading permits full logical verification during device testing. The TICPAl 18V8 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 2000-V ESD rating tested under Mll-STD-883B, Method 3015.1. However, care should be exercised in handling these devices, as exposure to ESD may result in a degradation of the device parametric performance. The floating gate programmable cells allow these PAls to be fully programmed and tested before assembly to assure high field programming yield and functionality. They are then erased by ultraviolet light before packaging. "'0 :D The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. The C-suffix devices are characterized for operation from OOC to 75°C. o C c: design security (') -4 ." :D m < m The 'PAL 18V8 contains a programmable design security bit. Programming this bit will disable the read verify and programming circuitry, protecting the design from being copied. The security bit is usually programmed after the design is finalized and released to production. A secured device will verify as if every location in the device is programmed. Because programming is accomplished by storing an invisible charge instead of opening a metal link, the '18V8 cannot be copied by visual inspection. Once a secured device is fully erased, it can be reprogrammed to any desired configuration. :e 2-258 TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlCPAl18V8·30M, TICPAl18V8·25C ADVANCED EPICTM CMOS GENERIC PAL® functional block diagram (positive logic) ~ C, . SET 'S R RESET 36x74 8 .., ,......, - n ~ ...... ClKII ...0 .... r 8 I> r I> ." OUTPUT LOGIC MACROCELL ~ r EN h V- EN 8 r V- h V- EN 8 V- h V- EN ,......, r EN h 1/0/0 1/0/0 1/0/0 II U) h ~ ~ ~ ...... - 8 h V- r ,......, r EN 8 r ,......, r EN 8 h V- EN ,......, ,......, r ~ 1/0/0 en CI) CI) .r:: 8 h 1/010 as as ~ 1/010 Q 1/0/0 1/0/0 8 8 8 __ denotes fused inputs ~ W :; w a.. a: le.,) ;:) o oa: a.. TEXAS . " INSIRUMENlS POST OFFICE BOX 656012 • DALLAS. TeXAS 75286 2-259 TICPAl18V8·30M, TlCPAl18V8·25C . ADVANCED EPICTM CMOS GENERIC PAL® logic diagram (positive logic) cu 1'7 ~ ~tT .... en ::r /4128 CD CD ~ ~tT U) (51 311 ~ ~tT 44 . ~ ",53 ""C ::a 54 o ~ C c: n -I (II" . ""C m m (11 Tr ~tT 1/0/0 Tr ~tT ~~tT 71 :r,- =E 2-260 1/0/0 1/0/0 Tr ::a < - 1/0/0 Tr 311 181 1/0/0 Tr 27 .... 1/0/0 1T ,. C I» I» '=tT 1/0/0 (111 TEXAS ." INSlRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 1/0/0 TICPAl1 BVB-30M, TlCPAl1 BVB-25C ADVANCED EPICTM CMOS GENERIC PAl@ output logic macrocell (OlM) description A great amount of architectural flexibility is provided by the user-configurable macrocell output options. The macrocell consists of a Ootype flip-flop and two select multiplexers. The Ootype flip-flop operates like a standard TTL Ootype flip-flop. The input data is latched on the low-to-high transition of the clock input. The Q and Q outputs are made available to the output select multiplexer. The asynchronous reset and synchronous set controls are available in all flip-flops. The select multiplexers are controlled by programmable bits. The combination of these programmable bits will determine which macrocell functions are implemented. It is this user control of the architectural structure that provides the generic flexibility of this device. output logic macrocell diagram r----------, OUTPUT LOGIC MACROCELL , MUX I AR R 1-0 >---+-~--~1D Q~--------_i r-...:.....----~I>Cl 55 : Q 0 1S 1 \ G0 O FROM CLOCK BUFFER MUX 3 I II ... en CD CD 'I ..c I I I I ...caca en C I I G1 , I I I AR _ asynchronous reset E -::hrc:::se_t_ __-1 ~ w 5> w a: 0. I- o :::::> Q oa: 0. TEXAS ~ INSfRUMENlS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 2-261 TICPAL 18V8·30M, TICPAL 18V8·25C ADVANCED EPIC"" CMOS GENERIC PAL® output logic macrocell options MACROCEU FEEDBACK AND OUTPUT FUNCTION TABLE CELL SELECT SI SO 0 0 1 1 0 1 0 1 FEEDBACK AND OUTPUT CONFIGURATION ,Register feedback Registered Active low Register feedback Registered Active high I/O feedback I/O feedback Combinational Active low Combinational Active 'high o= erased cell, 1 = programmed cell 51 and SO are select-function cells as shown in the output logic macrocell diagram, SI - 0 SO - 0 SI - 0 SO - 1 REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT REGISTER FEE,DBACK, REGISTERED, ACTIVE·HIGH OUTPUT SI - 1 SO - 0 ." :::a SI - 1 SO - 1 I/O FEEDBACK, COMBINATIONAL, ACTIVE-LOW OUTPUT 1/0 FEEDBACK. COMBINATIONAL. ACTIVE·HIGH OUTPUT o C c: (") -I ." :::a S ~ 2-262 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DAlLAS. TEXAS 75265 TICPAl18V8-30M, TlCPAl18V8-25C ADVANCED EPIC™ CMOS GENERIC PAL® absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 7 V Input voltage, VI (see Note 1) ................................... -0.5 V to Vee+0.5 V Input diode current, 11K (VI < 0 or VI > Vee). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA Output diode current, 10K (Vo < 0 or Vo > Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA eontinuous output current, 10 (VO = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±40 mA Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 300 0 e Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e e suffix .............................. ooe to 75°e Storage temperature range ......................................... - 65 °e to 150 0 e NOTE 1: These ratings apply except during programming and preload cy'cles. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. recommended operating conditions -25C -30M Vee Supply voltage VIH High-level input voltage VIL Low·level input voltage IOH High·level output current IOL Low-level output current fclk Clock frequency Pulse dlJration NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 V VCC+O.5 0.8 2 VCC+O.5 0.8 V 2 Driving TTL -2 -3.2 Driving CNiOS -2 -4 Driving TTL 12 24 2 4 Driving CMOS V mA mA MHz CLK high tw UNIT MIN 10 8 eLK low 11 9 Asynchronous reset 30 25 Input or feedback 25 20 Reset inactive state 30 25 0 0 tsu Setup time th Hold time TA Operating free-air temperature Input or feedback -55 125 0 ns ns ns 75 ns De :=w 5> w a: Q. .... . CJ ::::> c oa: Q. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-263 TlCPAl18V8·30M, TICPAl18V8·25C ADVANCED EPIC™ CMOS GENERIC PAL@ electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) VOH VOL -30M TEST CONDITIONSt PARAMETER MIN VCC = MIN, 10H = MAX TTL VCC = MIN, 10H = MAX VCC - MIN, Vec = MIN, 10L - MAX CMOS TTL TYP* -25C MAX 4 4 3.B6 3.86 TYP* MAX V 0.5 0.4 V V 10 -10 ~A 10ZH Vce = MAX, 10ZL ,IIH Vce = MAX, Vee = MAX, Vo = 0.5 V VI = 5.25 V IlL Vce = MAX, VI - 0.5 V 10§ Vce = MAX, Vo = 0.5 V Ice Vce = MAX, Outputs open 1 VI = lee f Vec = MAX, f;" 1 MHz Vi = 0 to 3 V, Vcc - MAX, One input at 0.5 V or 2.4 V, Pin 1 4 4 Alec# Other inputs at 0 V or Vec Pin 2 VI = 2 V, Clock Pin f = 1 MHz, All I/O Pins TA = 25°C Other inputs Others 2 2 o I» r+ I» en :r (1) ei (1) r+ fI) -30 -130 o or Vee, -30 ~ -130 mA 100 ~ 2 15 12 15 12 15 15 10 10 ~A 10 -10 100 2 UNIT V 0.5 0.4 eMOS 10L = MAX Vo = 2.7 V MIN ~ mAlMHz mAl Input pF switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fmaxl "'0 o o c: TO (OUTPUT) W /0 feedback With feedback tcd 1,1/0 eLKt tcd Reset Q ten 1,1/0 I,Q,I/O tdis 1,1/0 I,Q,I/O tod :a FROM (IN pun 0,1/0 Q TEST CONDITIONS -30M MIN TYP* e suffix: 50 Rl = 200 Il, R2 = 390 Il, 35 15 -25C MAX MIN TYP* 50 MAX MHz 35 12 15 12 Rl = 390 Il, R2 = 750 Il, 20 10 ns eL=50pF eL = 5 pF, See Figure 4 15 15 ns 15 15 ns CL=50pF M suffix: 30 UNIT 25 ns ns tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. All typical values are at Vec = 5 V, TA = 25°C. * § This parameter approximates lOS' The condition Vo "'" 0.6 V takes tester noise into account. 1Disabled '. outputs tied to GND or Vee. #This is the increase in supply curr~nt for each input that is at one of the specified TTL voltage levels rather than at 0 V or Vee. Itmax(with feedback) = tsu 1 e + tpd( LK to Q) ; fmaxlwithout feedback) = (. I tw hIgh 1 (") -I "'0 :a -m~ :e 2-264 TEXAs (I + tw low ~ INSTRUMENTS .PoST OFFICE BOX 655012 • DALLAS, TEXAS 15265 TlCPAl18V8·3DM, TICPAl18V8·25C . ADVANCED EPICTM CMOS GENERIC PAL® preload procedure for registered outputs The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is pre loaded individually by following the steps given below. The output level depends on the polarity selected during programming. Step Step Step Step 1. 2. 3. 4. With Vee at 5 volts and Pin 1 at VIL, raise Pin 11 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse Pin 1, clocking in preload data. Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing the voltage lellel at the output pin. preload waveforms (see Note 2) ~----:::H PINll~ f4- tsu -+t *I *-td --+I 1 1 PIN 1 i : I I : : 1 1 REGISTERED I/O !4-td-+l I tw--+l I I 1 __ 1___ 1_____ VIH ==>-----\ 1 I INPUT • U) CD CD .c t.n VIL 1 1 ~I -vIH V,.---- VOH / \ -VIL II... ... CO CO C OUTPUT VOL NOTE 2: t,j = tsu = tw = 100 ns to 1000 ns. VIHH = 10.25 V to 10.75 V. ~ w :>w a:: a.. ... CJ :::l o o a:: a.. TEXAS . " INSI:RUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 76285 2-265 TICPAL 18V8·30M, TICPAL18V8·25C ADVANCED EPle™ CMOS GENERIC PAL® power·up reset Following power-up, all registers are reset to zero. The output level depends on the polarity selected during programming. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC!s rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met. power-up reset waveforms JII ~----------~----------------------5V 4 V CC ___________ J 141+-____ tpd t ., (600 ns typ, 1000 ns MAX) I ACTIVE·HIGH REGISTERED OUTPUT / STATE UNKNOWN 1 I 1.5 V / r- VOH ------------~-----------------------------~~------£------VOL I ACTIVE·LOW REGISTERED OUTPUT / STATE UNKNOWN 11.5V -----------~-----------------------~I I+--"" tsu t ---+t \1.5V CLOCK FVIH --------------------~------_f+'''----------J1- - - VIL I4-----tw~ tThis is the power·up reset time and applies to registered outputs only. The values shown are from characterization data. tThis is the setup time for input or feedback. - programming information Texas Instruments Programmable Logic Devices can be programmed using widelY available software and inexpensive device programmers. Complete programming specifications, -algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Insruments at (214) 997-5762. 2-266 TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 15265 TICPAl10VO·30M, TlCPAl1 OVO·25C ADVANCED EPICTM CMOS GENERIC PAL® PARAMETER MEASUREMENT INFORMATION Vcc ~ S1 ISee Note A) R1 FROM OUTPUT UNDER TEST - TEST ...- -...- - - - POINT R2 CL ISee Note B) fI NOTES: A. When measuring propagation times of 3-state outputs, S1 is closed. B. Cl ~ includes probe and jig capacitance. FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS ISee Notes A ~~~U:'~1.5 V tpd _ tpLH or tPHL I - - - - - - - en ....CI:ICI:I 3 V 0 V I ,-_ _ _ _ _--+I___""""'\.J - - - - II Y,.5V I ' I+--tPHL~ OUT·OF·PHASE OUTPUT Q) .c I+--tpHL~ J+--tPLH--+t : ~ II) I I IN-PHASE OUTPUT \ :- : ....Q) C VOH \15 V .....- - V O L I+-tPlH~ II,---- I \15 V , ~5~ VOH __ VOL VOLTAGE WAVEFORMS NOTES: A. When measuring propagation times of 3-state outputs. S1 is closed. B. All input pulses are supplied by generators having the following characteristics: PRR ,;; 1 MHz, Zo = 50 11, tr = FIGURE 2, PROPAGATION DELAY TIMES, OUTPUT RISE AND FALL TIMES 3 ns. ~ w :>w a: 0. I(.) ::J C oa: 0. TEXAS . " INSTRUMENTS POST OFFICE sox 655012 • DALLAS, TEXAS 75265 2-267 TlCPAl18V8-30M, TICPAl18V8-25C ADVANCED EPICTM CMOS GENERIC PAL® PARAMETER MEASUREMENT INFORMATION f·5V ClK (See Notes A and B) \----3V 14-- tsu--.l aa 0 a '.5V 0.3 V v.~1 2.7 I I -----------------------~ I r----- I I INPUT~I 2.7 V DATA (S NtA) \"'.- - - 0 V 1~4~-------th--~----~~~1 _ _ _ _ _ _ _ _ _ _ _ _J ~~~ 3 V '.5V ~0.;.=.3:..V:...._ _ 0 V ~-~ VOLTAGE WAVEFORMS FIGURE 3. SETUP AND HOLD TiMES. AND INPUT RISE AND FALL TIMES --V C X ---------..J DATA INPUT (See Note A) - A , . 5 V ... I» I» I ...... en OUTPUT WAVEFORM 1 SI CLOSED (See Note C) ... (1) (II ---+1----'"'\ I I ~ 1-£1 . I _.r- I I ".5 V ~ I I I+-- tPZH--+I OUTPUT WAVEFORM 2 S, OPEN _ _ _ _ _ _ _ _J (See Note C) . OV I+-- tpLZ--+I I+--- tPZl--+! :r (1) 3V +,.5V L t - - -- VOL I I I J.. lr------t-----~"I ':i '.5 V 2/3 VCC 0.5 V 1 I I --- VOH ~0.5 V ..-____ =0 V I+-- tPHZ---+! ten - tpZl or tpZH tdis - tPlZ or tpHZ VOLTAGE WAVEFORMS FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS HI~~-~~~El ." = o LOW-LEVEL PULSE c: o ~ ~ tw------~~~ 14 tw - - - : : ~I I \.5V - '-5~ 3 V _ _ _ _ OV VOLTAGE WAVEFORMS ." :sm :e \~5 ~ 5V ----'"'\ I c = m ..Jt. ____ FIGURE 5. PULSE DURATIONS NOTES: A. All input pulses are supplied by generators having the followng characteristics: PRR :s " MHz. Zo = 50 II. tr = 3 ns. B. For clock inputs. f max is measured with input duty cycle = 50%. C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. 2-268 TEXAS . " INSTRUMENlS. POST OFFICE BOX 665012 • DAUAS, TEXAS 76266 TlCPAl18V8·30M, TlCPAl18V8·25C ADVANCED EPIC" CMOS GENERIC PAL@ special design features True CMOS Outputs: Each' 18V8 output is designed with a P-channel pull-up transistor and an N-channel pull-down transistor, a true CMOS output with rail-to-rail output switching. This provides direct interface to CMOS logic, memory, or ASIC devices without the need for a pull-up resistor. The CMOS output has 24-mA drive capability, which makes the '18V8 an ideal substitute for bipolar PAls. The electrical characteristics of this device show the output under both CMOS and TTL conditions. Simultaneous Switching: High-performance CMOS devices often have output glitches on nonswitched outputs when a large number of outputs are switched simultaneously. This glitch is commonly referred to as "ground bounce" and is most noticeable on outputs held at VOL (low-level output voltage). Ground bounce is caused by the voltage drop across the inductance in the package lead when current is switched (dv ex I x di/dt). One solution is to restrict the number of outputs that can switch simultaneously. Another solution is to change the device pinout such that the ground is located on a low-inductance package pin. TI opted for a third option in order to maintain pinout compatibility and eliminate functional constraints. This option controls the output transistor turn-on characteristics and puts a limit on the instantaneous current available to the load, much like the lOS resistor in a TTL circuit. Wake-Up Features: The' 18V8 employs input signal transition detection techniques to power-up the device from the standby-power mode. The transition detector monitors all inputs, 1I0s, and feedback paths. Whenever a transition is sensed, the detector activates the power-up mode. The device will remain in the power-up mode until the detector senses that the inputs and outputs have been static for about 40 ns; thereafter, the device returns to the standby mode. Electronic Signature Word: The' 18V8 has a 72-bit word available for the user to store device information, such as 10 codes, revision numbers, or inventory control. The signature cannot be programmed or altered once the device is secured. I... U) Q) Q) .c fJ) ...caca C Power Dissipation: Power dissipation of the' 18V8 is defined by three contributing factors, and the total power disSipation is the sum of all three. Standby Power: The product of VCC and the standby ICC. The standby current is the reverse current through the diodes that are reversed biased. This current is very small, and for circuits that remain in static condition for a long time, this low amount of current can become a major performance advantage. Dynamic Power: The product of VCC and the dynamic current. This current flows through the device only when the transistors are switching from one logic level to the other. The total dynamic current for the '18V8 is dependent upon the users' configuration of the PAL and the operating frequency. Output loading can be a source of additional power dissipation. Interface Power: The product of ~ICC (operating) and VCC. The total interface power is dependent on the number of inputs at the TTL VOH level. The interface power can be eliminated by the addition of a pull-up resistor. Even though power dissipation is a function of the user's device configuration and the operating frequency, the' 18V8 is a lower-powered solution than either the quarter-powered or half-powered bipolar devices. The virtually zero standby power feature makes the '1 8V8 the device of choice for low duty cycle and battery-powered applications. ~ w 5> w IX 0- J- (.,) :,) C o IX 0- TEXAS ~ INSTRl}MENTS POST OFFICE BOX 665012 • OAUAS, TeXAS 75265 2-269 TlCPAl18V8·30M, TlCPAl18V8·25C ADVANCED EPIC™ CMOS GENERIC PAL® special design features (continued) Programming and Eraseability: Programming of the '1aVa is achieved through floating-gate avalanche injection techniques. The charge trapped on the floating gate remains after power has been removed, allowing for the nonvolatility of the programmed data. The charge can be removed by exposure to light with wavelengths of less than 400 nm (4000 AI. The recommended erasure wavelength is 253.7 nm (2537 A), with erasure time of 20 to 30 minutes, using a light source with a power rating of 12000 pW/cm placed within 2.5 em (1 inch) from the device. E The '1aVa is designed for programming endurance of 1000 write/erase cycles with a data retention of ten years. A few precautions will guarantee maximum data retention. Continuous exposure to high-intensity UV light can cause permanent damage. The maximum exposure intensity is 7000 W.s/cm (The equivalent of leaving the unit in a UV eraser for a· week). The window on the device should be covered by an opaque label, as the fluorescent light in a room can erase a unit in three years or, in the case of a direct sunlight, erasure can be complete in one week. ...mmC (I) ::r CD CD ... U) ." ::l:J o o o -I c: ." ::l:J m < m ~ 2-270 TEXAS .." INSTRUMENTS POST OFFICE BOX 866012 • DAlLAS. TEXAS·76265 TICPAL22V10M, TICPAL22V10C EPIC'" CMOS PROGRAMMABLE ARRAY LOGIC 03089. DECEM8ER 1987 JL PACKAGE (TOP VIEW) • 24-Pin Advanced CMOS PAL • Virtually Zero Standby Power • Propagation Delay Time ... 20 ns Typ • Variable Product Term Distribution Allows More Complex Functions to be Implemented • Each Output is User-Programmable for Registered or Combinatorial Operation, Polarity, and Output Enable Control • Extra Terms Provide logical Synchronous Set and Asynchronous Reset Capability • Preload Capability on All Registered Outputs Allow for Improved Device Testing • Power-Up Clear on Registered Outputs • UV Light Erasable Cell Technology Allows for: Reconfigurable logiC Reprogrammable Cells Full Factory Testing for Guaranteed 100% Yields eLK/) Vee 1/0/0 1/0/0 1/0/0 1/0/0 1/010 1/0/0 110/0 1/0/0 1/0/0 1/0/0 GND ... (I) I .c en • Programmable Design Security Bit Prevents Copying of logic Stored in Device • Package Options Include Plastic and Ceramic Dual-In-Line Packages and Chip Carriers ...asas C description This PAL device features high-speed performance, increased and variable product terms, flexible outputs, and virtually zero standby power. It combines Tl's EPIC" (Enhanced Processed Implanted CMOS) process with ultraviolet-light-erasable EPROM technology. Each output has an OlM (Output logic Macrocell) configuration allowing for user definition of the output type. This PAL provides reliable, low-power substitutes for numerous high-performance TTL PAls with gate complexities between 300 and 800 gates. The 'PAl22V10 has 12 dedicated inputs and ten user-definable outputs. Individual outputs can be programmed as registered or combinational and inverting or noninverting as shown in the Output logic Macrocell (OlM) diagram. These ten outputs are enabled through the use of individual product terms. The variable product-term distribution on this device removes rigid limitation to a maximum of eight product terms per output. This technique allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output. The variable allocation of product terms allows for far more complex functions to be implemented in this device than in previously available devices. With features such as the programmable OlMs and the variable product-term distribution, the TICPAl22V10-25 offers quick design and development of custom lSI functions. Since each of the ten output pins may be individually configured as inputs on either a temporary or permanent basis, functions requiring up to 21 inputs and a single output or down to 12 inputs and 10 outputs can be implemented with this device. p"ducts without notl... t- (.) ::l o oa: Copyright @.1987. Texas Instruments Incorporated PRODUCT PREVIEW documlnts contain information :::c::tsria;:.ct;:i::.::I~rT;'::'=:ur:~:: ~ a: Q. Q. EPIC is a trademark of Texas Instruments Incorporated. DR products in the formative or _asign ~h8se of development. Characteristic data anll other 3: w TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-271 TICPAL22V10M. TICPAL22V1 DC EPICTMCMOS PROGRAMMABLE ARRAY LOGIC description (continued) Design complexity is enhanced by the addition of synchronous set and asynchronous reset product terms. These functions are common to all registers. When the synchronous set product term is a logic 1. the output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous reset product term is a logic 1. the output registers are loaded with a logic 0 independently of the clock. The output logic level after set or reset will depend on the polarity selected during programming. Output registers of this device can be preloaded to any desired state during testing. thus allowing for full logical verification during product testing. The TICPAL22V10 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 2000-V ESD rating tested under MIL-STD-883B. Method 3015.1. However. care should be exercised in handling these devices. as exposure to ESD may result in a degradation of the device parametric performance. E The floating gate programmable cells allow these PALs to be fully programmed and tested before assembly to assure high field programming yield imd functionality. They are then erased by ultraviolet light before packaging. cC» The TICPAL22V1 0-25 has a power-up clear function. which forces all registered outputs to a predetermined state after power is applied to the device. Registered outputs selected as active low will power up with their outputs high while registered outputs selected as active high power up with their outputs low. r+ C» en The M-suffix devices are characterized for operation over the full military temperature range of - 55°C to 125°C. The C-suffix devices are characterized for operation from OOC to 75°C. :T CD CD Cit design security The 'PAL22V10 contains a programmable design security bit. Programming this bit will disable the read verify and programming circuitry protecting the design from being copied. The security bit is usually programmed after the design is finalized and released to production. A secured device will verify as if every location in the device is programmed. Because programming is accomplished by storing an invisible charge instead of opening a metal link. the' 22V 10 cannot be copied by visual inspection. Once a secured device is fully erased. it can be reprogrammed to any desired configuration . ." :xJ o C c: n -t ." :xJ m S ~ 2-272 TEXAS ", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 76265 TICPAL22Vl0M, TICPAL22Vl DC EPIClMCMOS PROGRAMMABLE ARRAY LOGIC functional block diagram (positive logic) r--I> C1 -'1S SET RESET & 44x132 8 ., IR >:1 OUTPUT > LOGIC r- MACROCELL h 10 Er- -~ -----'V r----. h V- 12 >- t--p. V- 14 ~ 16 ~ + ~ 1~ ------ >-r--> ~ CLK/I C> ~ '--- 'V --------. ---.. r----. h 16 - p. r- - p. r >-r-- > r 14 >-1-- P. V- 12 ~I-- r 10 ~- r 8 P. > '-- > h r r- ~I1010 EN ,,- EN ~ f++-I1010 ,,- EN ~ f++-I 1010 ------ -..r-- -----h V- EN V- EN ----------- ------ ~ ......11010 !1 ~ ...... 11010 .c CD CD r- EN r- 1/0/0 EN ~ _I1010 h V- EN ~ f++-I h V- EN ~ f-++-I 1010 h V- EN 1010 '"j! CO C f--; f++- 1/0/0 10 10 10 'V denotes fused inputs ~ w :>w a: Q. t; :;:) C oa: Q. TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-273 TICPAL22V10M, TICPAL22V1 DC EPICTMCMOS PROGRAMMABLE ARRAY LOGIC logic diagram (positive logic) 11\ INPUT LINES 0 4 8 '2 '6 20 24 28 32 36 40 AR D. i ~ 0 12\ · E 131 · " =B::h-- =H= =t 14\ 13 ::1 O.0 :::r CD CD til is\ · 17\ d.0 "'0 · ::lJ o 181 " C C D.0 -I 9 · n d.0 · ::lJ m -< m f>- 7 CEll ~~. CEll (20) 119) !lS) J f- ~J CELL (17) '-- :8= =H= IY ~ ~J CELL (161 '-- :8= ft:f :s:t :sor (lO) SP ("1 ~ 2-274 ~J '-- 191 "'0 (21) ~ · ,. 13 CEll CEll ,. D.0 ~1 ~J o.0 16\ 1221 ~ · r+ CELL (231 ~ }f CJ) ~Cr (TO All REGISTERS) L--- =H= o.0 c C» r+ C» h 9 O.0 co ~CELL 7 ASYNCHRONOUS RESET ~rr CELL rn TEXAS .", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 {151 (141 CEll SYNCHRONOUS SET no ALL REGISTERS) 1131 TlCPAL22V10M. TlCPAL22V10C EPIC™CMOS PROGRAMMABLE ARRAY LOGIC / output logic macrocell (OlM) description A great amount of architectural flexibility is provided by the user-configurable macrocell output options. The macrocell consists of a D-type flip-flop and two select multiplexers. The D-type flip-flop operates like a standard TTL D-type flip-flop. The input data is latched on the low-to-high transition of the clock input. The Q and Q outputs are made available to the output select multiplexer. The asynchronous reset and synchronous set controls are available in all flip-flops. The select multiplexers are controlled by programmable bits. The combination of these programmable bits will determine which macrocell functions are implemented. It is this user control of the architectural structure that provides the generic flexibility of this device. output logic macrocell diagram OUTPUT lOGIC MACROCEll ... MUX U) r--------------4.-----~3 2 R 1-0 AR Q) Q) .c: fn 10 ... C1 I FROM CLOCK BUFFER ss I I MUX C ., G1 II CO CO 1} 03 GO 15 AR _ .synchronous reset S5 - synchronous set L______ I I I I J ~ w :>w a: c. l- t.) :::> c oa: c. TEXAS ." INSTRUMENTS POST OFFice BOX 655012 • DALLAS. TeXAS 76265 2-275 TICPAL22V10M, TICPAL22V10C EPIC"'CMOS PROGRAMMABLE ARRAY LOGIC output logic macroc.1I optio"s MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE CELL SELECT 51 0 0 1 1 FEEDBACK AND OUTPUT CONFIGURATION SO 0 1 0 1 Register feedback Registered Register feedback Registered Active low Active high I/O feedback Combinational Active low I/O feedback Combinational Active high o = erased cell 1 = programmed cell 51 and SO are select-function cells as shown in the output logic macracell diagram. II ...c CI) CI) en ::T ... CD CD 51 - 0 SO - 0 (I) 51 - 0 SO - 1 REGISTER FEEOBACK, REGISTERED, ACTIVE-LOW OUTPUT REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT 51 - 1 51 - 1 SO - 1 SO - 0 ""D ::lD o 1/0 FEEDBACK, COMBINATIONAL, ACTIVE-LOW OUTPUT 1/0 FEEDBACK, COMBINATIONAL, ACTIVE-HIGH OUTPUT C c: n -I ""D ::lD m S m ~ 2-276 TEXAS .." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 T1CPAL22V1DM, T1CPAL22V1 DC EPIC™CMOS PROGRAMMABLE ARRAY LOGIC absolute maximum ratings over operating free-air temperature range (unless otherwise noted) t Supply voltage range, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 to 7 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 to Vee + 0.5 V Input diode current, 11K (VI < 0 or VI > Vee). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA Output diode current, 10K (Va < 0 or Va > Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA Continuous output current, 10 (Va = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±40 mA Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: FN or N package ......... 260°C Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: FH or J package .......... 300°C Operating free-air temperature range: M suffix .......................... - 55°C to 125°C e suffix .............................. OOC to 75°C Storage temperature range ......................................... - 65°C to 150°C Note 1: This rating applies except during programming and preload cycles. t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under" recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. recommended operating conditions M SUFFIX Supply voltage VCC VIH High-level input voltage Vil low-level input voltage IOH High-level output current IOl Low-level output current fclock Clock frequency NOM MAX 4.5 2 5 5.5 Driving TIL en C SUFFIX MIN VCC+O.5 0.8 -2 MIN 4.75 2 NOM MAX 5 5.25 VCC+O.5 0.8 -3.2 Driving CMOS -2 -4 Driving TTL 12 16 2 4 Driving CMOS UNIT V V V mA 0 0 MHz 8 ns Pulse duration ClK low 11 9 ns 25 n. Setup time 30 26 tsu 20 25 n. th Hold time Operating free-air temperature Asynchronous reset Input or feedback Reset inactive state Input or feedback TA 0 -55 0 125 0 75 (I) ... IV IV Q 10 30 CD CD .c mA ClK high tw EI... ns DC 3: w 5> w a: a.. I(.) :::;) C oa: a.. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-277 TlCPAL22V10M, TICPAL22V1 DC EPICTMCMOS PROGRAMMABLE ARRAY LOGIC electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VOH = MIN, = MIN, 10H 10H Vee MAX, Vo 10ZL Vo IIH Vee = MAX, Vee - MAX, IlL Vee V" 10§ = = = Vee MAX, Vee MAX, Outputs open' MAX for TTL MAX for eMOS =0 alee# Vee - MAX, One input at 0.5 V or 2.4 V, Vi CD CD = TA 4 3.86 TYP~ MAX 25 0 e -30 I I UNIT V V 0.5 0.5 V 0.4 0.4 10 -10 V -130 -30 ~ ~ -130 mA 100 ~A 2 2 ~A 10 -10 100 ~ mA/MHz Pin 1 4 4 Others 2 2 mA 12 12 I All inputs 10 10 1 All 1/0 pins 15 15 1 MHz, = 4 3.86 to 3 V, I f MIN = 2.7 V = 0.5 V = 0.5 V Vo = 0.5 V VI = 0 or Vee, MAX, lee f ei C SUFFIX MAX TYP* VI - 5.25 V Vee = MAX, f = 1 MHz t/) MIN 10L - MAX for TTL 10L =; MAX for eMOS 10ZH = = = Other inputs at 0 V or Vee elock pin VI = 2 V, ::r ....en Vee -Vee - MIN, Vee = MIN, C ....m m Vee VOL lee M SUFFIX TEST CONDITIONSt pF switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) . PARAMETER fmaxll FROM (INPUT) TO TEST CONDITIONS 10UTPUT) Without feedback e suffix: With feedback tod 1,1/0 0,1/0 tod tod eLKt RESET 0 0 len tdis 1,1/0 1,1/0 1,0,1/0 1,0,1/0 M SUFFIX MIN Rl ! = 20011, = 50 pF R2 = 39011, eL M suffix: Rl eL CL = 39011, R2 = 75011, = 50 pF = 5 pF, See Figure 4 TYP~ CSUFFIX MAX MIN MAX UNIT 45 TYP* 45 30 30 20 20 ns 15 25 15 25 ns 20 20 ns 20 20 ns MHz ns tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. = 5 V, TA = 25°e. §This parameter approximates lOS- The condition Va tAli typical values are at Vee -a :D o C c: n = 0.5 V takes tester noise into account. 'Oisabled outputs are tied to GNO or Vee. 'This is the increase. in supply current for each input that is at one of the specified TTL voltage levels rather than at 0 hmaxlwith feedback) = _ _1 _ _ (eLK to 0); fmaxlwithout feedback) = _ _ . _1_ __ tw1htl + tw(iow) tsu + tpd -I -a :D m S m :e 2-278 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, texAS 75265 V or Vce. TICPAL22V10M, TlCPAL22V1 DC EPIC"'CMOS PROGRAMMABLE ARRAY LOGIC preload procedure for registered outputs The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. The output level depends on the polarity selected during programming. Step Step Step Step 1. 2. 3. 4. With Vee at 5 volts and pin 1 at VIL, raise pin 8 to VIHH. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Pulse pin 1, clocking in preload data. Remove output voltage, then lower pin 8 to VIL. Preload can be verified by observing the voltage level at the output pin. preload waveforms (see Note 2) PIN 8 ~- / ---f I4-tsu~ I+-td--+l CLK/I I I I VIL I I I ~ ~ -VIH REGISTERED I/O ~ INPUT I -VIL = tsu = tw = - VIHH i l l i !- --IUU-::: I I NOTE 2: td - I' )4-td-+l I+-tw---' - 100 ns to 1000 ns. VIHH = I I V,.---VOH \ EI... en Q) Q) .c fI) ... CO CO C OUTPUT VOL 10.25 V to 10.75 V. W == :; w a: Q. .... o :::> o oa: Q. TEXAS . " INSTRUMENTS POST OffiCE BOX 655012 • DALLAS, TEXAS 75265 2-279 TlCPAl22V10M, TlCPAL22V1 DC EPIClMCMOS PROGRAMMABLE ARRAY LOGIC power-up reset .Following power-up, all registers are reset to zero. The output level depends on the polarity selected during programming. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC's rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met. power-up reset waveforms 4 VCC __________ J ;;r ~-----------------------------------5V 1414~---tpdt (600 ns typo '000 ns MAX) ACTIVE-HIGH REGISTERED OUTPUT ...C I» I» ACTIVE-lOW REGISTERED OUTPUT / STATE UNKNOWN I STATE UNKNOWN ~ ~ ~ 1~~: ---T::~ ! !f,.5 V _ _ _~ ____""" ____________________-.J : rJ) - - - - - \ _~ VOH - VOL J+-t.u*~ :::r CD !(I) ClK/1 _____________________________~'.5V . CVIH 1:,.5V - -- ~----------J~ Vil I+---tw~ tThis is the power-up reset time and applies to registered outputs only. The values shown are from characterization data. *This is the setup time for input or feedback. programming information Texas Instruments Programmable Logic Devices can be programmed using widely available softwl!re and inexpensive device programmers. Complete programming specification, algorithms, and the lastest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. - "'D :a o c c: (') -I "'D :a m -:e < m 2-280 TEXAS .." INSTRUMENTS PO$T OFFICE BOX 655012 • DALLAS, T-EXAS 76265 TICPAL22V10M, TICPAL22V1 DC EPIC™CMOS PROGRAMMABLE ARRAY LOGIC PARAMETER MEASUREMENT INFORMATION Vee S, ~ ISee Nota A) FROM OUTPUT _ _ _ R1 _ _>-- TEST ~~ UNDER TEST POINT R2 NOTES: A. When measuring propagation times of 3-state outputs, 51 is closed. B. CL = includes probe and jig capacitance. ...en FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS INPUT ISea Notas A and B) -..IiL'5V \~5:-tpd - tPLH or tpHL I (4--tpLH~ IN-PHASE OUTPUT , :, ' Y,.5V -----3V OV ... , • I+--tpHL~ II I ,~.:V--VOH , - til ctI ctI C VOL k--tPLH~ !+-tPHL---+r OUT-Of-PHASE OUTPUT CI) CI) .c \,.5 V I' '-----------~ VOH '.5 V - - - - VOL VOLTAGE WAVEFORMS NOTES: A. When measuring propagation times of 3-state outputs, S1 is closed. B. All input pulses are supplied by generators having the following characteristics: PRR '" 1 MHz, Zo = 50 I), tr = 3 ns. FIGURE 2. PROPAGATION DELAY TIMES. OUTPUT RISE AND FALL TIMES 3= w 5> w a:: a. I- (.) ::) C oa:: a. TEXAS ." INSTRUMENTS POST OFFICE BOX 6550~ 2 • DALLAS. TeXAS 75265 2-281 TICPAL22V10M. TICPAL22V10C EPIClMCMOS PROGRAMMABLE ARRAY LOGIC PARAMETER MEASUREMENT INFORMATION f· ClK (See Not..s A and BI ____________- J 5V ~14~--------th--------~~~, ~tsu---+l DATA~I ':5 V INPUT (See Note Al 0.3 V I 2'7V~: 2.7V ---------------""i I ~~~ I ,..---------3 V '.5 V I ,.,;;,0;,;;.3,.;V;.....___ ° V ~q~ VOLTAGE WAVEFORMS ,.------------ FIGURE 3. SETUP AND HOLD TIMES. AND INPUT RISE AND FALL TIMES I~~~~ (See Note Al ==x X, 1.5 V I _ _ _ _ _ _ _ _ _ _ _ _ _ _.J. I I I I I \1.5V I I I OUTPUT J_rO. °V ~2/3 VCC II/:: : I. I+-- tPZH---..I • ~3 V I+-- tpLZ----+I I+-- tpZL ---+i OUTPUT WAVEFORM 1 S1 CLOSED (Se•. Note CI 1.5 V I ,..-------1"-----, I 5V '"" - - ..t.. ...J - - - - VOL KLo.5 ~ WAV~10~:E~ _____________",·5 V - - VOH I (See Note C I ' ~O V ~tpHZ--+I ten - tpZl or tpZH 'dis = 'PLZ or tpHZ VOLTAGE WAVEFORMS FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS .~ HI~~~:~EL (") -I \-5 ~ ----:: 5 V 1144------'w ----~~ o o c: -Jt. ______ ~14r_----tw------~~1 -----'\ I LOW-LEVEL PULSE I f..5~ \.5V ." VOLTAGE WAVEFORMS m FIGURE 5. PULSE DURATIONS :D < in == 3 V ____ NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR B. For clock inputs, f max is measured with input duty cycle = 50% s ov 1 MHz, Zo = 50 0, t, = 3 ns. C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. TEXAS + INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TICPAL22V10M, TICPAL22V10C EPICTMCMOS PROGRAMMABLE ARRAY LOGIC special design features True CMOS Outputs: Each '22V10 output is designed with a P-channel pull-up transistor and an N-channel pull-down transistor, a true CMOS output with rail-to-rail output switching. This provides direct interface to CMOS logic, memory, or ASIC devices without the need for a pull-up resistor. The CMOS output has 16-mA drive capability, which makes the '22V10 an ideal substitute for bipolar PALs. The electrical characteristics of this device show the output under both CMOS and TTL conditions. Simultaneous Switching: High-performance CMOS devices often have output glitches on nons witched outputs when a large number of outputs are switched simultaneously. This glitch is commonly referred to as "ground bounce" and is most noticeable on outputs held at VOL (low-level output voltage). Ground bounce is caused by the voltage drop across the inductance in the package lead when current is switched (dv ex I X di/dt). One solution is to restri.ct the number of outputs that can switch simultaneously. Another solution is to change the device pinout such that the ground is located on a low-inductance package pin. TI opted for a third option in order to maintain pinout compatibility and eliminate functional constraints. This option controls the output transistor turn-on characteristics and puts a limit on the instantaneous current available to the load, much like the lOS resistor in a TTL circuit. Wake-Up Features: The '22V1 0 employs input signal transition detection techniques to power-up the device from the standby-power mode. The transition detector monitors all inputs, II0s, and feedback paths. Whenever a transition is sensed, the detector activates the power-up mode. The device will remain in the power-up mode until the detector senses that the inputs and outputs have been static for about 40 ns; thereafter, the device returns to the standby mode. Power Dissipation: Power dissipation of the '22V1 0 is defined by three contributing factors, and the total power dissipation is the sum of all three. ...en= .c en ...caca o Standby Power: The product of VCC and the standby ICC. The standby current is the reverse current through the diodes that are reversed biased. This current is very small, and for circuits that remain in static condition for a long time, this low amount of current can become a major performance advantage. ' Dynamic Power: The product of VCC and the dynamic current. This dynamic current flows through the device only when the transistors are switching from one logic level to the other. The total dynamic current for the '22V10 is dependent upon the users' configuration of the PAL and the operating frequency. Output loading can be a source of additional power dissipation. Interface Power: The product of ICC (operating) and VCC. The. total interface power is dependent on the number of inputs at the TTL VOH level. The interface power can be eliminated by the addition of a pull-up resistor. Even though power dissipation is a function of the user's device configuration, and the operating frequency, the '22V1 0 is a lower powered solution than either the quarter-powered or half-powered bipolar devices. The virtually zero standby power feature makes the '22V10 the device of choice for low-duty-cycle and battery-powered applications. ~ w :>w a: Programming and Eraseabllity Programming of the '22V1 0 is achieved through floating-gate avalanche injection techniques. The charge trapped on the floating gate remains after power has been removed, allowing for the nonvolatility of the programmed data. The charge can be removed by exposure to light with wavelengths of less than 400 nm (4000 A). The recommended erasure wavelengthJs 253.7 nm (2537 A), with erasure time of 20 to 30 minutes, using a light source with a power rating of 12000 p.W/cm placed within 2.5 cm (1 inch) of the device. a. ~ (J ::J Q oa: a. TEXAS . " INSTRUMENTS POST OFfiCE BOX 655012 " DALLAS, TEXAS 75265 2-283 TlCPAL22V10M, TICPAl22V1 DC EPICTMCMOS PROGRAMMABLE ARRAY LOGIC Programming and Eraseability {continued) The '22V10 is designed for programming endurance of 1000 write/erase cycles with a data retention of ten years. A few precautions will guarantee maximum data retention. Continuous exposure to high-intensity UV light can cause permanent damage. The maximum exposure intensity is 7000 W.s/cm (The equivalent . of leaving the unit in a UV eraser for a week). The window on the device should be covered by an opaque label, as the flourescent light in a room can erase a unit in three years or, in the case of a direct sunlight, erasure can be complete in one week . • ""0 ::J:J o C c: (') -I ~ m < -m ~ 2-284 TEXAS + INSTRUMENTS POST OFFICE BOX 665012 • DALLAS, TEXAS 76285 TlEPAl1 OH 16PB·3C HIGH·PERFORMANCE ExeL ™PAL® CIRCUIT 03084, DECEMBER 1987 JTPACKAGE ITOPVIEWI • ECl 10KH PAL • High-Performance Operation Propagation Delay , , . 3 ns Max • Replacement for Conventional ECl logic • 24-Pin, 300-Mil Package • Reliable Titanium-Tungsten Fuses Vee I I/O I/O o Veeo o o Veeo o description I/O I/O This ECl PAL device combines the ExCl'" (Double Polysilicon Self-Aligned) process with the proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional ECl logic, Its easy programmability allows for quick design of "custom" functions and typically results in a more compact board, In addition, chip carriers are available for further reduction in board space, The TIEPAl1 OH 16P8-3 is provided with output polarity fuses, Each output remains active-high when the fuse is intact and is active-low when the fuse is blown, The TIEPAl 10H16P8-3 has 12 dedicated inputs, four standard outputs, and four I/O ports, It should be noted that with emitter-coupled outputs, a high level overrides a low level, Therefore, in order to use an I/O port as an input, the related output must be forced to a low level either through satisfying preprogrammed equations or permanently by programming, II.... FK PACKAGE (TOPVIEWI en u ___ uz>u __ 4 I/O o Veeo Ne o I/O 3 CD CD .c 2 1 28 27 26 5 25 I/O 6 24 0 7 23 8 22 Veeo Ne 9 21 0 10 20 I/O 11 en ....'" '" C 19 12 13 14 15 16 17 18 wu - - - ~z NC - No internal connection The TlEPAl1 OH 16P8-3 is equipped with a security fuse, Once the security fuse is blown, additional programming and verification cannot be performed, This prevents easy duplication of a design, This device is characterized for operation from OOC to 75°C; this temperature range is designated by a "C" suffix in the part number (TiEPAl10H16P8-3CJT), ~ w :>w a: Q. t- O ::> C oa: ExCL is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Monolithic Memories Inc. PROOUCT PREVIEW documlllll.Dntoi. i.lormodD. o. pradaell I. tho for ••Ii.1 or dl.i.. ~ha.. of dl.olop ....t. Chlr••tarl,tI. data .Ii other ::'l::'rr.':t d:i::.:::"';rT=~,== pnducll witIoout .oti.., a.. TEXAS ,., INSTRUMENTS POST OFFICE BOX 1555012 • DALLAS, TEXAS 75265 Copyright © 1987, Texas Instruments Incorporated 2-285 TlEPAl10H16PB·3C HIGH·PERFORMANCE ExCLTMPAL® CIRCUIT functional block diagram (positive logic) 8 & 32 X 64 l!: 8 -1 - "v ~ "v ~ "v 8 12 4. 16Xt> 16 16 8 "v ~ 8 "v ~ 8 ~ 11 ...c C» C» "v 8 ~ "v ~ "v 8 4 en ::r CD !o "'0 ::I:J o C c: (") -t "'0 ::I:J. m S m :e 2-286 '" '" TEXAS ." INSTRUMENTS POST OFFICE BOX 866012 • DAUAS. TEXAS 75286 Vee o o o o 110 I/O 110 I/O TIE PAL 1OH 16P8·3C HIGH·PERFORMANCE ExCLTM PAL® CIRCUIT logic diagram (positive logic) [28](241 VCC INPUT LINES /\ 10 ••• 4 ••• 8 ••• 12 ••• 16 ••• 20 ••• 24 ••• 28 •••' [2](11 ~ [27](231 , v!>"- [3](21 ... [26](221 ~ PRODUCT LINES 0 • • • 7 f>?ol [25](211 I/O I [4](31 II 8 110 • • • 15 [5](41 r I ....en Q) Q) ....... .s:. en ....caca 16 • • • 23 o 4 [6](51 ?p [24](201 ~ 0 0 24 • • • 31 ~ ~ I--' 32 t>p • •• 39 [21](181 o 40 o • • • 47 ~ [9](71 48 • • • 55 gppr [20](171 I ~ 56 110 •• • 63 [10](81 r I [11](91 [12](101 .... [17](141 f------fA "" .... NOTE: Pin numbers in r 1 are for the 0.. [18](151 [13](111 FK package; pin numbers in ( ) are for JT package. TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ~ :>w a: [19](161 :: :: I/O [16](131 t- (.) ::l C o a: a.. 2·287 TIEPAl1 OH 16P8-3C HIGH-PERFORMANCE ExCL™PAL® CIRCUIT, absolute maximum ratings over operating frea-air temperature range (unless otherwise noted) (see Note 1) Supply voltage, VEE (see Note 2) ....................................... 0 V to -6.5 V Input voltage, VI (see Note 3) .................................. . . . . . . . . .. 0 V to VEE Output current .......................................... '. . . . . . . . . . . . . .. - 50 mA Operating free-air temperature ran~e: C suffix .................... : ......... OOC to 75°C Storage temperature range ......................................... - 65 OCto 150°C NOTES: 1. These ratings apply except for programming pins during a programming cycle. 2. All voltage values are with respect to Vee and Veeo. i.e .• these pins are all assumed to be at 0 volts. 3. VI should never be' more negative than VEE. recommended operating conditions (see Note 4) • VEE Supply voltage TA = ooe = 25°C = 75°C = ooe c .... VIH High-level input voltage TA TA TA en :::r VIL Low-level input voltage TA - 25°C TA = 75°C TA Operating free-air temperature D) D) CD ! (I) MIN -4.94 -1.17 -1.13 -1.07 -1.95 -1.95 -1.95 C-SUFFIX NOM MAX -5.2 -5.46 -0.84 -0.81 -0.735 -1.48 -1.48 -1.45 0 75 UNIT V V V °e NOTE 4: The algebraic convention. in which the more negative limit is designated as minimum and the less negative limit is designated as maximum. Is used in this data sheet for logic voltage levels only. For other quantities. e.g .• supply voltages and currents. the normal. magnitude convention is used. electrical characteristics over recommended supply voltage range at specified free-air temperature , (see Notes 4 and 5) PARAMETER TEST CONDITIONS ooe VOH VI = VIHmin or VILmax 25°C 75°C ooe VOL VI = VIHmin or VILmax 25°C 75°C ooe "'tJ .::JJ IIH VI = VIHmax 25°C 75°C ooe c c: n IlL VI = VILmin 25°C 75°C ooe to 75°C o -I "'tJ ::JJ -~ lEE All Inputs open C-SUFFIX TVP MIN MAX -1.02 -0.84 -0.98 -0.895 -0.81 -0.92 -0.735 -1.95 -1.63 -1.95 -1.63 -1.95 -1.79 -1.60 220 220 220 0.5 0.5 0.3 UNIT V V p.A ~A -220 mA NOTES: 4. The algebraic convention. in which the more negative limit is designated as minimum and the less negative limit is designated as maximum, Is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents. the normal magnitude convention is used. 5. Each 10KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feetl per minute Is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V. . ~ 2-288 TEXAS • INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlEPAl1 OH 16P8·3C HIGH·PERFORMANCE ExeLTM PAL@ CIRCUIT switching characteristics over recommended ranges of supply voltage and operating frae-air temperature (see Note 5) PARAMETER FROM (lNPUTI TO (OUTPUTI tpd I, 1/0, or feedback 0,1/0 C-SUFFIX TEST CONDITIONS MIN See Figures 1 and 2 tr tf TYP MAX UNIT 1 3 ns 0.7 1.5 ns 0.7 1.5 ns NOTE 5: Each 10KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 maters (500 leetl per minute is maintained. Outputs are terminated through a 50~ohm resistor to - 2 V. PROGRAMMING INFORMATION Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. PI ... U) CD CD .c o ... CO CO PARAMETER MEASURI=MENT INFORMATION Q INPUT- - 1 ' " 5 - 0 - % - - - \ ; ; - - - 1 I 1 ,'50% I • tPLH~ IN·PHASE OUTPUT tpHL I VIL ~tPHL VOH II i-;;;.;; ~ VOL -J..-.--..c OUT '()F.pHASE OUTPUT VIH I4---*-tpLH 1 \ 50% • OUTPUT WAVEFORM F' 50% VOH __ VOL 801f I 20% I I I 1 t,......c VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES I+- "t" "---VOH (80%1 I 1 I (20%1 I V OL I 1 ~ I4-tf VOLTAGE WAVEFORMS RISE TIME AND FALL TIME FIGURE 1. VOLTAGE WAVEFORMS ;: w 5> w a:: Q. t; ::;) C oa:: a. TEXAS . " INSfRUMENlS POST OFFICE BOX 855012 • DALLAS. TeXAS 16265 2-289 I TIEPAL 1OH16P8·3C HIGH·PERFORMANCEExCLTM PAL® CIRCUIT PARAMETER MEASUREMENT INFORMATION 2.00 V ± 0.01 V 25 "F r 0.1 "F q iNPUT OUTPUT UNDER ~-4---~~~~~ TEST ....... UNDER t-t-~----t-+--- TEST c !C» ~ CD .... CD VIH max or + 2V{ VIL min + 2V } ALL OTHER INPUTS ALL { OTHER OUTPUTS ~. VEE 0.1 "F q -3.20 V ± 0.01 V NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = BOO mV poP. PRR :s; 1 MHz. tw = 500 ns. t,=tf=lns. B. RT is • 50-0 terminator internal to the oscilloscope. C. CL :$ 3 pF. includes fixture and stray clipacitance. D.Coax has 50-0 impedance and the coax to oscilloscope channel A and to channel B must be of equal lengths. E. All unused outputs are loaded with 50-0 ± 1% resistors to ground. F. All. unused inputs should be connected to either high or low levels consistent with the logic function required. G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (114 inch). FIGURE 2. LOAD CIRCUIT 2-290 TEXAS ,., INSTRUMENTS POST OFFICE BOX 656012 • DALLAS, TEXAS 75265 TIE PAL 1OH 16PB·6C HIGH·PERFORMANCE IMPACTTMECL PAL~ CIRCUIT 02111 • ECl 10KH PAL • High-Performance Operation Propagation Delay ... 6 ns Max • Replacement for Conventional ECl logic • 24-Pin, 300-Mil Package • Reliable Titanium-Tungsten Fuses MAY 1987-REVISEO OECEMBER 1987 TIEPAL10H16P8-6 .•• JT PACKAGE (TOP VIEW) Vee I I I/O I I/O 0 0 Veea Veeo 0 0 description 1/0 This IMPACT'" ECl PAL device uses proven titanium-tungsten fuses to provide reliable, highperformance substitutes for conventional ECl logic. Its easy programmability allows for quick design of "custom" functions and typically results in a more compact board. In addition, chip carriers are available for further reduction in board space. I TIEPAL10H16P8-6 ... FK PACKAGE (TOP VIEW) u ___ uz>u __ The TIEPAl1 OH 16P8-6 is provided with output polarity fuses. Each output remains active-high when the fuse is intact and is active-low when the fuse is blown. 4 The TlEPAl 10H16P8-6has 12 dedicated inputs, four standard outputs, and four 110 ports. It should be noted that with emitter-coupled outputs, a high level overrides a low level. Therefore, in order to use an 1/0 port as an input, the related output must be forced to a low level either through satisfying preprogrammed equations or permanently by programming. The TIEPAL10H16P8-6 is equipped with a security fuse. Once the security fuse is blown, additional programming and verification cannot be performed. This prevents easy duplication of a design. 1/0 3 2 1 28 27 26 5 25 6 -24 7 23 8 22 9 21 10 11 20 19 121314 15 1617 18 wu--- ~z NC - No internal connection This device is characterized for operation from OOC to 75°C; this temperature range is designated by a "C" suffix in the part number (TIEPAL10H16P8-6CJT). IMPACT is a trademark of Texas Instruments Incorporated PAL is a registered trademark of Monolithic Memories Inc. PRODUCTION DATA d...m.........1. information currant .1 af publication doll. Products .0.lorm II sp..if_o.. per thlllrml af Tun Instrum.... :.=~i~·i~1:.'li =::':1' lJl·::::~ nat Copyright @ 1987, Taxaslnstruments Incorporated TEXAS . " INSTRl)MENlS POST OFFICE BOX 655012 • DALI.AS, TEXAS 75265 2-291 TlEPAl1 OH 16PB·6C HIGH·PERFORMANCE IMPACTTMECL PAL® CIRCUIT functional block diagram (positive logic) 8 & -1 ~, 32 X 64 8 - 'V ~ 'V ~ 'V 8 12 4, 16X!> 16 16 'V 8 'V 8 ..- h ~ h. 8 ~ 11 c am 8 r+ rn TEXAS ~ IN STRUM ENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 o 1/0 1/0 'V 1/0 vee rn :r o 1/0 ~ 4 o ..- 'V 8 CD CD 2·292 'V o TlEPAl1DH16PB·6C HIGH·PERFORMANCE IMPACT'MECL PAL® CIRCUIT logic diagram (positive logic) [281124} Vcc INPUT LINES /\ 10 ... 4 ... 8 ... 12 ... 16 ... 20 ... 24'''28 .. '' [2111} ....1 - - v [3112} PRODUCT LINES 0>- 0 A [271123} :: [261122} =l • • • 7 >PI [251121} 1/0 T [4][3} I... 8 [5114} I/O • r~ I • • 15 CI) CI) CI) .s:: t/) 16 • ??D • • 23 [241120} 5:: ... CO CO 0 0 24 o • • • 31 ~ [6115} 32 • • • 39 >P 40 o [211118} o • • • 47 [9](7} 48 • • • 55 §P?Dr ,. A [201117} 1/0 I 56 I/O [lOllS} r I [11119} [121110} [131111} • • • 63 .... A [19](16} ..; [171114} ::: [181115} ... ... I-------.~ f---J't [161113} NOTE: Pin numbers in [ 1 are for the FK package; pin numbers in ( ) are for JT package. TEXAS ~ INSfRUMENlS POST OFFICE BOX 655012. DALLAS, TEXAS 75265 2-293 TlEPAl1 OH 16P8-6C HIGH-PERFORMANCE IMPACT™ECL PAL@, CIRCUIT absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see Note 1) Supply voltage, VEE (see Note 2) ....................................... 0 V to -6.5 V Input voltage, VI (see Notes 2 and 3) ..................................... ;. 0 V to VEE Output current ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 mA Operating free-air temperature range: e suffix .............................. ODe to 75 De Storage temperature range ......................................... - 65 De to 150 De NOTES: 1. These ratings apply except for programming pins during a programming cycle. 2. All voltage valuas are with respect to VCC and VCCO, i.e., these pins are all assumed to be at 0 volts. 3. VI should never be more negative than VEE. recommended operating conditions (see Note 4) IIo VEE VIH Supply voltage TA = OoC TA = 25°C High-level input voltage I» ~ I» TA '" 75°C TA '" ooC TA = 25°C TA = 75°C (I) VIL Low-level Input voltage i TA Operating free-air temperature ! (n MIN -4.94 -1.170 -1.130 -1.070 -1.960 -1.960 -1.950 0 C-SUFFIX NOM M~ -5.2 -5.4/3 UNIT V -0.8~0 -0.8to -0.736 -1.4811 -1.48(> -1.450\ 76 v V °C NOTE 4: The algebraic convention, in which the more negative limit is designated as minimum and the less negative limit is designated as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents, the normal magnitude convention Is used. electrical characteristics over recommended supply voltage range at specified free-air temperature, Vee - Veeo - 0 (see Notes 4 and 5) PARAMETER TeST CONDITIONS TA VOH VI = VIHmln or VILmax 25°C 76°C ooC VOL VI = VIHmin or VILmax 25°C 75°C ooC IIH VI'" VIHmax 25°C 75°C OOC IlL VI = VILmin lEE All inputs .opan 25°C 75°C O'C to 76°C OOC MIN -1.020 -0.980 -0.920 -1.950 -1.950 -1.950 C-SUFFIX TVP MAX -0.840 -0.810 -0.735 -1.630 -1.630 -1.600 220 220 220 0.5 0.5 0.3 UNIT V V pA. pA. -240 mA NOTES: 4: The algabralC convantlon, In which the more negative limit i. designated a. minimum and the la•• negative limit is deSignated as maximum, Is used in this data sheet for logiC voltage levels only. For other quantities, e.g" supply voltages and currents, the normal magnitude convantion Is used. 5. Each 10KH PAL'" . has been designed to meet these specificetions after thermal equilibrium has been established. The circuit Is In a te.t socket or mounted on a printed circuit board and transverse air flow greeter than 150 meters (500 feet) per minute is maintained. Outputs are termlnatad through a 50-ohm resistor to - 2 V. 2-294 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 7526!i TlEPAL 1OH16P8·6C HIGH·PERFORMANCE IMPACT'MECL PAL® CIRCUIT switching characteristics over recommended ranges of supply voltage and operating free..:air temperature (see Notes 4 and 5) PARAMETER FROM (INPUT! TO (OUTPUTI tpd I. I/O. or feedback Q TEST CONDITIONS See Figures 1 and 2 tr tf MIN C-SUFFIX TYP 'MAX 4 1 1 2 0.7 0.7 UNIT 6 ns 2.2 ns ns 2.2 NOTES: 4. The elgebraic convention. in which the more negative limit is designated as minimum and the less negative limit is designated as maximum, is usec::t in this data sheet for logic voltage levels only. For other quantities. e.g., supply voltages and currents, the normal magnitude convention is used. 5. Each 10KH PAL~ has been designed to meet these specifications after thermal equilibrium has been established. The circuit is in a test sock.et or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute is maintained. Outputs are terminated through 8 50-ohm resistor to - 2 V. programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive programmers. PI Complete programming specifications. algorithms. and ,the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5762. PARAMETER MEASUREMENT INFORMATION .L, 50% INPUT --ft \..50;-- I ~tPHL VIH VIL tPLHJ....I - - i , . - - + I - _ : t - - VOH 1 /50% I )I. 50% I . I ~ I I VOL tpHL~ ~tpLH '.1':"::1 VOH 1 OUT -OF-PHASE 50% \ 50% OUTPUT • - VOL IN-PHASE OUTPUT OUTPUT WAVEFORM 801f 20% i T I I I 1 t r ........ I+-- ~---VOH (80%1 I 1 I , 120%1 V OL I 1 -.I l+-tf VOLTAGE WAVEFORMS RISE TIME AND FALL TIME VOLTAGE WAVEFORMS PROPAGAT'ION DELAY TIMES FIGURE 1. VOLTAGE WAVEFORMS TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-295 TlEPAL 10H16P8·6C HIGH·PERFORMANCE IMPACTTMECL PAL® CIRCUIT PARAMETER MEASUREMENT INFORMATION 2.00 V ± 0.01 V 251'F r 0.1 "F q INPUT UNDER TEST OUTPUT UNDER TEST II C v~_ .. v{ I» ~ I» or VIL min + 2 V tn :r CD CD ~ A~ } ALL OTHER INPUTS en OTHER { OUTPUTS VEE r ':' 25 "F 0.1 "F q -3.20 V ± 0.01 V NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude =; 800 mV poP, PRR s 1 MHz, tw = 500 ns, tr : tf = , ns. B. RT is a 50-0 terminator internal to the oscilloscope. C. CL s 3 pF, include. fixture and .tray capacitance. D. Coax has 50-0 impedance and the coax to oscilloscope channel A and to channel B must be of.equallengths. E. All unused outputs are loaded with 50-0 ± 1% resistors to ground. F. All unused inputs should be connected to either high or low levels consistent with the logic function required. G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inchl. FIGURE 2. LOAD CIRCUIT 2-296 TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 TlEPAl10016PB·3C HIGH·PERFORMANCE ExCL mpAL® CIRCUIT 03083, DECEMBER 1987 JTPACKAGE (TOP VIEW) • ECl 100K PAL • High-Performance Operation Propagation Delay ... 3 ns Max • lEE ... -220 mA Max • Replacement for 100K ECl logic • 24-Pin, 300-Mil Package • Reliable Titanium-Tungsten Fuses Vee I I 1/0 1/0 o o Veeo Veeo o o 1/0 1/0 description This ECl PAL device combines the ExCl'" (Double Polysilicon Self-Aligned) process with the proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional ECl logic, Its easy programmability allows for quick design of "custom" functions with increased logic density. In addition, chip carriers are available for further reduction in board space, tn 'CD CD u ___ uz>u __ 4 The TIEPAl1 0016P8-3 is provided with output polarity fuses. Each output remains active-high when the fuse is intact and is active-low when the fuse is blown. The TIEPAl 10016P8-3 has 12 dedicated inputs, four standard outputs, and four 110 ports. It should be noted that with emitter-coupled outputs, a high level overrides a low level. Therefore, in order to use an 110 port as an input, the related output must be forced to a low level either through satisfying preprogrammed equations or permanently by programming. II... FK PACKAGE (TOPVIEWJ 3 .c 2 1 282726 5 6 25 24 7 23 Veeo 8 22 Ne 9 0 10 21 20 1/0 11 19 I til ... I/O CIS CIS 0 C 12 13 14 15 16 17 18 wu - - .!j!z NC-No internal connection The TIEPAl1 0016P8-3 is equipped with a security fuse. Once the security fuse is blown, additional programming and verification cannot be performed. This prevents easy duplication of a design. This device is characterized for operation from OOC to 85°C; this temperature range is designated by a "C" suffix in the part number (TIEPAL10016P8-3CJT). ~ w 5> w a: 0- tU :::J C oa: ExCL is a trademark of Texas Instruments Incorporated. 0- PAL is a registered trademark of Monolithic Memories Inc. PRODUCT PREVIEW doc.........ntal. i.formatlo. DR prad.... In the fonnalivl or dasig. ~~I" a' dlvllopml.t. Charlotlrl,tl. dati In~ other :=~cstl~:"Jg':t ~~::I=::I~rT:.~::~a:.,:;.: products wit.out noti... TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 Copyright @ 1987. Texas Instruments Incorporated 2-297 TIEPAL10016P8·3C HIGH·PERFORMANCE ExCLTMPAL® CIRCUIT functional block diagram (positive logic) 8 & 32 i< 64 '" - -1 'V 8 I-- 'V 8 I-- 'V 12 4, 16X!> 16 16 8 'V I-- 1"'8 'V I-- II'\., 8 • o .... I» I» I-- 'V 8 I-- 'V 8 I-- 'V 4 tn :sCD ! (II 2-298 TEXAS'" INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 Vee o o o o 1/0 I/O 1/0 1/0 TlEPAl10016P8·3C HIGH·PERFORMANCE ExeL'" PAL~ CIRCUIT logic diagram (positive logicl [28)(24) Vcc INPUT LINES A '0 ••• 4 ... 81 ••• 12' ••• 181 ...,20 ••• 24·••• 128,...' [2)(1) [27)(23} ~ ......~ [3)(2} PRODUCT LINES [28)(22} 0 ~I •• • 7 I/O 1/0 J [4)(3) [5)(4} [25)(21} PI 8 • la, w a: Q. t- (..) ::::) C oa: Q. TEXAS ", INSTRUMENTS POST OFFICE BOX 855012 • DALLAS. TeXAS 75265 2-301 TlEPAl10016P8·3C HIGH·PERFORMANCE ExCL™ PAL® CIRCUIT PARAMETER MEASUREMENT INFORMATION 2.00 V ± 0.01 V r 25 "F 0.1 "F q -2.50 V ± 0.01 V NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = 800 mV P·P. PRR':s 1 MHz. tw = 600 ns. t r =tf=lns. 8. RT is a 60·11 terminator internal to the oscilloscope. C. CL :S 3 pF. includes fixture and stray capacitance. D. Coax has 50·11 impedance and the coax to oscilloscope channel A and to channel 8 must be of equal lengths. E. All unused outputs are loaded with 50·11 ± 1% resistors to ground. F. All unused inputs should be connected to either high or low levels consistent with the logic function required. G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch). "1:J FIGURE 2. LOAD CIRCUIT :IJ o C c: n ""'!! "1:J :IJ m < iii ~ 2·302 TEXAS .., INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 76285 TlEPAl10016P8·6C HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT 03082. DECEMBER 1987 JT PACKAGE • ECl 100K PAL • High·Performance Operation Propagation Delay ... 6 ns Max • lEE ... -240 mA Max • Replacement for 100K ECl logic • 24-Pin. 300-Mil Package • Reliable Titanium-Tungsten Fuses (TOP VIEW) Vee I 110 110 o o Veeo Veeo o o 110 1/0 description This IMPACT'" ECl PAL device uses proven titanium-tungsten fuses to provide reliable. highperformance substitutes for conventional ECl logic. Its easy programmability allows for quick design of "custom" functions and typically results in a more compact board. Additionally. chip carriers are available for further reduction in board space. (TOPVIEWI U) u ___ uz>u __ 4 The TIEPAl1 0016P8-6 is provided with output polarity fuses. Each output remains active-high when the fuse is intact and is active-low when the fuse is blown. The TIEPAl1 0016P8-6 has 12 dedicated inputs. four standard outputs. and four I/O ports. it should be noted that with emitter-coupled outputs. a high level overrides a low level. Therefore. to use an I/O port as an input. the related output must be forced to a low level either by satisfying pre programmed equations or by permanent programming. fI ... FK PACKAGE 3 2 CD CD .r:. 1 28 27 26 en 25 6 24 7 23 8 22 9 21 10 20 11 ...caca o 19 12 13 14 15 16 17 18 wu - - - ~z NC-No internal connection The TIEPAl1 0016P8-6 is equipped with a security fuse. Once the security fuse is blown. additional programming and verification cannot be performed. This prevents easy duplication of a design. ~ w This device is characterized for operation from OOC to 85°C. :>w a: D.. I- o :J C oa: IMPACT is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Monolithic Memories Inc. PRODUCT PREVIEW da.umants .ontain inlarma!io. a. praduell I. tha 'armati.. ar dllig. ~ha.. af d8V~lopm.nt. Characteristic data anil athar ~=~':::Ir~~t ~rar.:l~rT3i::'=::~::: products without nltice. D.. Copyright © 1987. Texas Instruments Incorporated TEXAS .." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 2-303 TlEPAl10016P8·6C HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT functional block diagra~ (positive logic) 8 & 32 X 64 '" -1 r-- rv ~ 'V 8 8 -- ~ 12 4. 16X!> 16 16 8 'V .'\. 8 'V -- I'\. 8 E 8 8 4 ." ::ZJ o C c: o ""'" ." ::ZJ m < - ~ 2·304 'V TEXAS ." INSIRUMENlS POST OFFICE BOX 655012 • DAlLAS, TEXAS 7&266 rv rv ..- 'V Vee o o o o I/O 110 110 110 TlEPAl10016P8·6C HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT logic diagram (positive logic) [28)(24) VCC INPUT LINES 1\ 10 ... 4 ... 8 ... 12 ... 16 ... 20 ... 24 ... 28 ...' [2)(1) [27)(23) -t>t= ... [3)(2) PROOUCT LINES [26)(22) " 0 • • 125)(21) • 7 14)(3) A 1/0 J I II... 8 • • • 15 15)(4) 1/0 I I CI) Q) Q) ... .c 16 CJ) WP • • • 23 124)(20) 0 C 24 o • • • C1tf 16)(51 ... «I .«1 31 32 ~ • • • 39 [21](18) o 40 o • • • 47 19](7) 48 • • 55 • 120)(17) -:j I 110](8) 1/0 ->w " • • • 63 las< I a: c.. A [12)(10) 119](16) 118](15) 111)(9) 113)(11 ) :::. .A ... I------I.A ~ NOTE: Pin numbers in ( ) are for the FK package; pin numbers in ( ) are for JT package. TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 ~ W I 56 1/0 117)(14) 116)(13) tO ::l Q o a: c.. 2·305 TlEPAl1 00 16PB-6C HIGH~PERFORMANCE IMPACpM ECl PAL® CIRCUIT absolute maximum ratings over operating free-air temperature range lunless otherwise noted) Isee Note 1) Supply voltage, VEE (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. 0 V to - 6.5 V Input voltage, VI (see Note 3) ............................................ 0 V to VEE Output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 rnA Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 85°C Storage temperature range ......................................... - 65°C to 1 50°C NOTES: 1. Thes. ratings apply except for programming pins during a programming cycle. 2. All voltage values are with respect to VCC and VCCO, i.e., these pins are all assumed to be at 0 volts. 3. VI should never be more negative than VEE. recommended operating conditions Isee Note 4) VEE MIN -4.2 Supply voltage VEE VIH High-level input voltage VEE C VIL en ::T TA Low-level input voltage VEE VEE MAX UNIT -4·8. -0.88 V -0.88 V = = = -4.2 V -4.6 V -1.15 -1.165 -4.8 V -4.2 V -1.165 -0.88 -1.81 = = -4.5 V -4,8 V -1.81 -1.475 -1.475 -1.81 -1.49 0 85 VEE VEE - ....t»t» NOM -4.5 Operating free-air temperature V °c ~ electrical characteristics over recommended supply voltage range at OOC to 85 °C Isee Notes 4 and 5) .... U) PARAMETER VOH TEST CONDITIONS VEE -4.2 V VI .= VIHmin or VILmax -4.6 V -4.8 V VI VOL = VIHmin or VILmax VI IIH IlL = MAX -0.87 UNIT -0.88 -0.88 V -1.045 -4.2 V -1.81 -1.595 -4.5 V -1.81 ·-1.700 -1.61 -4.8 V -1.81 -1.61 VIHmax VI = VILmin All inputs open lEE MIN TYP -1.03 -1.035 -0.955 V 220 ~A -240 pA mA 0.5 switching characteristics over recommended ranges of supply voltage and operating free-air temperature Isee Note 5) ""0 PARAMETER FROM (INPUT) TO IOUTPUT) o too I, 1/0, or feedback 0, I/O c: o tf :D tr C -f ""0 :D m TEST CONDITIONS MIN TYP MAX 2 4 0.7 1 6 1.5 ns See Figures 1 and 2 0.7 1 1.5 ns UNIT ns NOTES: 4. The algebraic convention, in which the rnore negative limit is designated as minimum and the less negative limit is designated as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents, the normal magnitude convention is used. 5. Each 100KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit is in a test socket or mounted on 8 printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute is maintained. Outputs are terminated t~rough a 50-ohm resistor to - 2 V. S m ~ 2-306 TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 TlEPAl1 00 16P8·6C HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT PROGRAMMING INFORMATION Texas Instruments Programmable Logic Devices can be programmed using widely available software and reasonably priced device programmers. Complete programming specifications. algorithms and the latest information on firmware. software. and hardware updates are available upon request. Information on programmers that are capable of programming Texas Instruments programmable logic is also available. upon request. from the nearest TI sales office. local authorized Texas Instruments distributor. or by calling Texas Instruments at (2141 997-5762. PARAMETER MEASUREMENT INFORMATION ~,"5-0-%---,;-.; - INPUT ~ ~ tPLH 1_ IN-PHASE I OUTPUT I tpHL VIH ~tPHL VIL I.t--VOH -j /50% I I I • +--... OUT -OF-PHASE OUTPUT - I ~ 50% '\::.:. VOL I4--*-tpLH \ 1 50% F' 50% _ OUTPUT WAVEFORM 801: I 20% I vOH VOL I I I t, ...... I+- (80%) I II (20%) VOL "1\:----VOH I I I -+I I+-tf VOLTAGE WAVEFORMS RISE TIME AND FALL TIME VOLTAGE WAVEFORM$ PROPAGATION DELAY TIMES FIGURE 1. VOLTAGE WAVEFORMS II... rn Q) Q) .c U) ...asas C 3: w ~ a:: a. tO :::) Q oa:: a. TEXAS ." INSlRUMENTS POST OFFICE BOX 86&012 • DALLAS, TEXAS 75265 2-307 TIEPAl10018P8·6C HIGH·PERFORMANCE IMPACTTM ECl PAl® CIRCUIT PARAMETER MEASUREMENT INFORMATION 2.00 V :I: 0.01 V 0.1 "F q INPUT UNDER TEST II C v~_., "{ CD CD 1+ en or ::::r VIL min CD CD 1+ U) +2V OUTPUT UNDER TEST } ~{ ALL OTHER INPUTS OTHER OUTPUTS VEE r -= 25 "F 0.1 "F q -2.50 V :I: 0.01 V NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = 800 mV poP, PRR :s 1 MHz, tw = 500 ns, t r =tf=lns. B. RT is a 50-0 teminator internal to the oscilloscopa. C. CL :S 3 pF, includes fixture and stray capacitencea. D. Coax has 50-0 impedance and the coax to oscilloscopa channel A and to channel B must be of equal lengths. E. All unused outputs are loaded with 50-0 :I: 1 % resistors to ground. F. All unused input should be connected to either high or low levels consistent with the logic function required. G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch). "'0 ::0 FIGURE 2. LOAD CIRCUIT o C c: n -I "'0 ::0 m -< ~ 2-308 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 15286 TIFPLA839M, TIFPLA839C TIFPLA840M, TIFPLA840C 14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS JUNE 1984- REVISED DECEMBER • Input-to-Output Propagation Delay ... 10 ns Typical • 24-Pin, 300-mil Slim Line Packages • Power Dissipation ... 650 mW Typical • Programmable Output Polarity LOGIC FUNCTION I{I) = PO + Pl ... P31 lor polarity link intact III) = PO' Pi' ... lor polarity link open where PO through P31 are product terms ·m TIFPLA839M. TIFPLA840M .•. JT PACKAGE TIFPLA839C. TIFPLA840C .•• JT OR NT PACKAGE (TOPVIEWI description OEl The 'FPLA839 (3-state outputs) and the 'FPLA840 (open-collector outputs) are TTL field-programmable logic arrays containing 32 product terms (AND terms) and six sum terms (OR terms). Each of the sum-ofproducts output functions can be programmed either high true or low true. The true condition of each output function is activated by the programmed logical minterms of 14 input variables. The outputs are controlled by two chip-enable pins to allow output inhibit and expansion of terms. These devices provide high-speed data-path logic replacement where several conventional SSI functions can be designed into a single package. The 'FPLA839M and 'FPLA840M are characterized for operation over the full military temperature range of - 55·e to 125 ·e. The 'FPLA83ge and 'FPLA840e are characterized for operation from o·e to 70 ·e. Vee I I I I 0 0 0 0 0 0 II :l CD CD .c 0E2 GND en ca i TlFPLA839M. TIFPLA840M ... FH OR FK PACKAGE TIFPLA839C, TIFPLA840C .•. FN PACKAGE C (TOPVIEWI ~ u __ I~~~-4 3 2 1 282726 25 24 23 22 21 20 19 12131415161718 5 6 7 8 9 10 11 Pin assignments in operating mode (pin 1 is less positive than VIHHI Copyright @ 1984, Texas Instruments Incorporated TEXAS . " INSTRUMENTS POST OFFICE BOX 866012 • DALLAS, TEXAS 76286 2-309 TlFPLA839M. TIFPLA839C TlFPLA840M. TIFPLA840C 14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS .functional block diagram (positive logic) 0E1--- o & 28X32 o o 32 14 o II o o C m m ~ ~ o -denotes fused inputs. ::r tFPLA839 has 31tate ('V) outputs; FPLA840 has open.... nector (0) outputs. CD aen absolute maximum ratings Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V Off-state output voltage (see Note 1) ......................................... " 5.5 V Operating free-air temperature range: 'FPLA839M, 'FPLA840M . . . . . . . . . . . . .. - 55 °e to 125°C 'FPLA839C, 'FPLA840e .................. ooe to 70 0 e Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 65 °e to 150 0 e NOTE 1: These ratings apply except for programming pins during a programming cycle. 2·310 TEXAS . " INSTRUMENTS POST OFFICE BOX 855012 .. DALLAS. TEXAS 75265 TIFPLA839M, TlFPLA839C TIFPLA840M, TIFPLA840C 14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS LOGIC DIAGRAM (81 "::lL 0 1 (71 ...x 2 3 (61 4 5 (51 ')(. 6 7 (41 ')(. 8 9 (3) 10 11 (21 .... ...x 12 13 (23)')(. 14 15 (22) .... 16 17 L/I: (21) A 18 19 (20) " 20 21 (19) 22 23 -----vI: ---L)l (18) II 24 25 ;>t (17) 26 27 lJlJl Dp D¥ ~ D¥ o¥ D¥ ~ o ~o ~ o ,J!!!. o ~ o 33 I'M(TIU')'I""""MO'I ~ U') 'I""" 00 U') .... co-.:t _~2mcncnQ)C:O OEl OE2 LnIl"""r...Mcnlt) ........ C;;~~;:::ro(g«iC; MClLnIl"""I'MO)U') 1l\f51t~~r;;::l~ ~ .... '" en LIl ~ .... '" ..... MOlDMOlDM NNNII""''1''''"'- 1 1093 ~o ) ~ (1 ) (13) . TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2-311 TIFPLA839M, TlFPlA839C TlFPlA840M, TIFPlA840C 14 x 32 x 6FIElD·PROGRAMMABlE lOGIC ARRAYS recommended operating conditions M SUFFIX Supply voltage, Vee MIN NOM 4.5 5 High-level input voltage, VIH C SUFFIX MAX 5.5 2 Low-level input voltage, VIL I 'FPLA840 I 'FPLA839 High-level output voltage, VOH High-level output current, IOH Low-level output current, IOL MIN NOM MAX 4.75 2 5 5.25 0.8 5.5 5.5 -3.2 -2 -55 125 .V V 0.8 12 Operating free-air temperature, TA UNIT 0 , V V 24 rnA rnA 70 °e electrical characteristics over recommended operating free-air temperature range (unless otherwise' noted) E C ....m m CJ) :r (1) M SUFFIX TEST CONDITIONS t PARAMETER MIN Vee = MIN, II = -18 rnA 'FPLA840 Vee =,MIN, VOH = 5.5 V 0.1 VOH 'FPLA839 Vee - MIN, IOH - MAX VOL II Vee - MIN, IIH Vee = MAX, Vee - MAX, IOL - MAX VI - 5.5 V VI = 2.7 V VI - 0.4 V VIK IOH Vee - MAX, IlL 2.4 3.2 0.25 MIN TVP* MAX -1.5 0.1 2.4 0.5 3 0.37 IO§ Vee = MAX, Vo = 2.25 V IOZH Vee - MAX, Vo - 2.7 V (I) IOZL Vee - MAX, Vo - 0.4 V lee Vee - MAX, Oe inputs at VIH VI = 0 V, -30 V rnA V V 0.1 0.1 rnA 20 20 0.5 rnA -112 rnA 20 -20 ~ 180 rnA -112 -30 20 -20 130 UNIT 0.5 0.5 (1) .... C SUFFIX MAX -1.5 TVP* 190 130 ~A ~A "FPLA839 switching characteristics PARAMETER tpd ten tdis FROM Input TO TEST CONDITIONS M SUFFIX TVP; MAX RL = 500 to GND, Output Output Pin 13 MIN C SUFFIX TVP; MAX 10 25 10 20 RL 1 - 500 to 7 V, 10 25 10 20 RL = 500 to GND, eL = 50 pF to GND 8 20 8 15 CL = 50 pF to GND Pin 1 or MIN UNIT ns ns 'FPLA840 switching characteristics PARAMETER tpd FROM Input TO TEST CONDITIONS Output o ten tdis Pin 1 or Output Pin 13 MIN M SUFFIX TVP; MAX MIN C SUFFIX TVP; MAX RL - 500 to Vee.. eL = 50 pF to GND 10 30 10 25 RL1 - 500 to 7 V, 10 25 10 20 8 15 RL = 500 to GND, eL = 50 pF to GND Vee"" 5 V, TA 20 ' = 25°C. §The output conditions have been chosen to produce a current that closely approximates one half 2-312 ns ns 8 tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. iAII typical values are at UNIT ?f the true TEXAS • INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 short-circuit current, lOS' TIFPLA839M, TIFPLA839C TIFPLA840M, TIFPLA840C 14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS programming information Texas Instruments Programmable Logic Devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997·5762. ... II) Q) Q) .s::. en ... CO CO C TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 2·313 • 2-314 Application Reports I 3-1 Contents Designing with TI Field-Programmable Logic ........................ Hard Array Logic (HAL®) ...................................... A Designer's Guide to the TIBPSG507 ............................ System Solutions for Static Column Decode ........................ 3-2 Page 3-3 3-25 3-31, 3-81 Designing with Texas Instruments Field-Programmable Logic Robert K. Breuninger and Loren E. Schiele Contributors Bob Gruebel, Renee Tanaka, Jim Ptasinski I ." TEXAS INSTRUMENTS 3-3 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes in the devices or the device specifications identified in this publication without notice. TI advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. TI warrants performance of its semiconductor products, including SNJ and SMJ devices, to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed. In the absence of written agreement to the contrary, TI assumes no liability for TI applications assistance, customer's product design, or infringement of patents or copyrights of third parties by or ariSing from use of semiconductor devices described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used. Copyright © 1984, Texas Instruments Incorporated 3-4 Contents Title Page INTRODUCTION ............................................................................ . 3-7 FIELD-PROGRAMMABLE LOGIC ADVANTAGES ............................................... . 3-7 PAL '0 "2n' ....m 0' ~ ::a CD .. '0 0 .... tI) 3-6 11 12 13 14 15 16 17 18 19 20 21 Title Basic Symbology ........................................... : .... '. . . . . . . . . . . . . . . . . . . . . . . Basic Symbology Example ............................... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PROM Architecture .................................................................... PAL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FPLA Architecture . .. . . . . . . .. . .. . .. . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . .. . . . . . . .. . . . . TmPLA16L8 Logic Diagram........ ......................... ........................... TmPALI6R8 Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polarity Selection . '. . . . .. . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . .. . .. . .. .. . Input Register Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Latch Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PAL Process Flow Diagram....... ......... ..... .......... .............................. Counter Implementation with Standard Logic..................... .......................... TmPALI6R4 Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . Karnaugh Map for CLKOUT ................ :........................................... Karnaugh Map for CLKOUT ............................................................. Karnaugh Maps ....................................................................... : Programmed TmPALI6R4 .................................. '............................ Pin ID and Logic Equations................................................. ............ Fuse Map ................................................. '. . . . . . . . . . . . . . . . . . . . . . . . . . . . Source File for ABEL .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABEL Output Documentation................................................ ............ Page 3-7 3-7 .3-8 3-8 3-9 3-10 3-11 3-12 3-12 3-13 3-13 3-14 3-15 3-16 3-16 3-17 3-18 3-19 3-20 3-22 3-23 List of Tables Table 1 2 3 4 Title Clock Selection ............................................................. " . . . .. . . . . . . Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Truth Table ........................... ,..... ................ ........... ................. Truth Table. . . . . . . . . .. . . . . . . . . . .. .. . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . .. . . Page 3-13 3-14 3-16 3-17 INTRODUCTION The purpose of this application report is to provide the first time user of field-programmable logic with a basic understanding of this new and powerful technology. The term «Field-Programmable Logic" refers to any device supplied with an uncommitted logic array, which the user programs to his own specific function. The most common, and widely known field-programmable logic family is the PROM, or Programmable Read-Only Memory. Relatively new entries into this expanding family of devices are the PAL® and FPLA. This report will primarily concentrate on the PAL family of programmable logic. FIELD-PROGRAMMABLE LOGIC ADVANTAGES Field-programmable logic offers many advantages to the system designer who presently is using several standard catalog SSI and MSI functions. Listed below are just a few of the benefits which are achievable when using programmable logic. 1. Package Count Reduction: typically, 3 to 6 MSIISSI functions can be replaced with one PAL or FPLA. 2. PC Board Area Reduced: Fewer devices consume less PC board space. This results in lower PC board cost. 3. Circuit Flexibility: Programmability allows for minor circuit changes without changing PC boards. 4. Improved Reliability: With fewer PC interconnects, overall system reliability increases. 5. Shorter Design Cycle: When. compared with standard-cell or gate-array approaches, custom functions can be implemented much more quickly. The PAL and FPLA, will fill the gap between standard logic and large scale integration. The versati'lity of these devices provide a very powerful tool for the· system designer. An X represents an intact fuse. This makes that input, part of the product term. No X represents a blown fuse. This means that input will not be part of the product term (in Figure 1, input B is not part of the product term). A dot at the intersection of any line represents a hard wire connection. INPUT TERMS ABC PRODUCT LINE ~ TIT L...I OUTPUT F = A'C Figure 1. Basic Symbology In Figure 2, we will extend the symbology to develop a simple 2-input programmable AND array feeding an OR gate. Notice that buffers have been· added to the inputs, which provide both true and complement outputs to the product lines. The intersection of the input terms form a 4 x 3 programmable AND array. From the above symbology, we can see that the output of the OR gate is programmed to the following equation, AB+AB. Note that the bottom AND gate has an X marked inside the gate symbol. This means that all fuses are left intact, which results in that product line not having any effect on the sum term. In other words, the output of the AND gate will be a logic O. When all the fuses are bluwn un a product line, the output uf the AND gate will always be a lugic I. This has the effect uf lucking up the uutput uf the OR gate to. a lugic level I. U) 't oQ. G) a: c o ",p CIS "~ Q. Q. - Q Cl ~ f-V • tl? "" tl !.::L (lBI Q v ~ tr:l (171 Q v ~ r.J (161 "";:l (151 Q Cl (3} 15 .;>\. 16 •• I-----. II-/- • • · - (4} 23 Cl .A 24 ·••• • /- v Q Cl (5} 31 32 •• • D- •• • I- Cl (6} 39 40 • •• • ·· tl v f-D- II) ...0 ~ "";:l ~ ~ (131 Q (141 v Q ~ 4B •• •• •• .. 0 v Cl (B} 55 56 ·••• · .. Q) " ---, /- Q. a:: c Cl (71 47 I... p-~8'''' ca "~ C. Q. oCt Q Cl (B1 63 . 4-!-1 OE Figure 7. TIBPALl6R8 Logic Diagram 3-11 I function. Listed below are some of the manufacturers of this programming equipment.' Citel Storey Systems DATA 1/0 Structured'Design Digelec Sunrise Electronics Kontron Valley Data Science Wavetec Varix Stag Micro Systems ENABLE FIgure 8. Polarity Selection Figure 10 shows an example of this type of input. If the fuse is left intact, data enters while the control input is high. When the control input is low, the data that was . present when the control input went low will be saved. If the fuse is blown, the latch becomes permanently transparent, and is equivalent to a normal input buffer. PROGRAMMING Notice in Figure 7, that the product and inplit lines are numbered. This allows any specific fuse to be located anywhere in the fuse matrix. When the device is in the programming mode (as defined in the device data sheet), the individual product and input lines can be selected. The fuse .at the intersection of these lines, can then be blown (programmed) with the defined programming pulse. Fortunately, the user seldom has to get involved with these actual details of programming, because there exist several commercially available programmers which handle this At Texas Instruments, we have coordinated with DATA 1/0 using their Model 19 for device characterization. Currently, DATA 1/0, Sunrise, and Structured Design have been certified by Texas Instruments. Other programmers are now in the certification process. For a current list of certified programmers, please contact your local TI sales representative. It should now be obvious to the reader, that the actual blowing of the fuses is not a problem. Instead, the real question is what fuses need to be blown to generate a particular function. Fortunately, this problem has also been greatly simplified by recent advances in computer software. DATA I/O has developed a software package called ABEL"'. Also available is CUPL", from Assisted Technology. Both have been designed to be compatible with several different types of programmers. Both of these software packages greatly extend the capabilities of the original PALASM'· program, and both can be run on most professional computers. Before proceeding to a design example, it would be instructive to look at the simplified process flow of a PAL (Figure 11). .This should help give the reader a better understanding of the basic steps necessary to generate a working device. DESIGN EXAMPLE The easiest way to demonstrate the unique capabilities of the PAL is through a .design example. It is REGISTER FUSE INTACT D·TYPE REGISTER FUNCTION TABLE Q CLOCK D 0 t H H L t L L H L X 00 li., 00· THE STATE OF 0 BEFORE CLOCK t Figure 9. Input Register Selection ABEL ~ is a trademark of DATA 1/0. CUPL ,. Is a trademark of Assisted Technology, Inc, PALASM" is a trademark of Monolithic Memories Inc .. 3-12 LATCH FUSE INTACT TRANSPARENT LATCH FUNCTION TABLE OC2 lC2 20 MO (INTACT) Ml (BLOWN) ENABLE 0 0 fi H L L H H H H L L X 00 QO 00 = THE LEVEL OF Q BEFORE ENABLE. Figure 10. Input Latch Selection Table 1. Clock Selection SELl o o SELO o 1 o 1 OUTPUT CLKA ClKB CLKC ClKD As can be seen, three MSI functions are required. The 'LS162 is used to generate the 4-bit counter while the clock selection is handled by the 'LS253. The 'LS688 is an 8-bit comparator which is used for selecting either the binary or decade count. In this example, only five of the eight comparator inputs are used. Four are used for comparing the counter outputs, while the other is used for the BD input. The comparator is hard-wired to go low whenever the BD input is low and the counter output is "9". The P =Q output is then fed back to the synchronous clear input on the 'LS162. This will reset the counter to zero whenever this condition occurs. It is desired to generate a 4-bit binary counter which is fed by one of four clocks. There are two lines available for selecting the clocks, SELl and SELO. Table 1 shows the required input for the selection of the clocks. In addition, it is desired that the counter be able to switch from binary to decade count. This feature is controlled by an input called BD. When BD is high, the counter should count in binary. When low, the counter should count in decade. Figure 12 shows how this example could be implemented if standard data book functions were used. o G) Figure 11. PAL Process Flow Diagram EXAMPLE REQUIREMENTS fI) ~ Q. PAL IMPLEMENTATION hoped that through this el\ample the reader will gain the basic understanding needed when applying the PAL in his own application. In some cases, this goal may only be to reduce existing logic, but the overall approach will be the same. I As stated before, the problem in programming a PAL is not in blowing the fuses, but rather what fuses need to be blown to generate a particular function. Fortunately, this problem has been grl)atly simplified by computer software, but before we examine these techniques, it is beneficial to explore the methods used in generating the logic equations. This will help develop an understanding, and appreciation for these advanced software packages. From digital logic theory, we know that most any type of logic can be implemented in either AND-ORINVERT or AND-NOR form. This is the basic concept used in the PAL and FPLA. This allows classical techniques, such as Karnaugh Mapsl to be used in generating specific logic functions. As with the separate component example above, it is easier to break it into separate functions. The first one that we will look at is the clock selector, but remember that the overall goal will be to reduce this design example into one PAL. a:: c o .~ as .2 Q. Q. 'C 'E.. c:;' S» ...O· j :XI CD 'C 0 ~ en 3-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SElO ClKA ClKB ClKC ClKO ClKOUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 SEll 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 SElO ClKA ClKB ClKC ClKO ClKOUT 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 ·0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 elK (1) ~ p . INPUT lINES Rl~,!>~er. 0 4 8 12 16 20 24 28 31 0 ·•••• >->-- • J... (19) 1/0 1 (2)~!~b- 8 •• •• •• ~ J (18) 1/0 ~ (3) 15 1 16 ·•••• ~ >--P" • ihJ,; i? "" a e1 (4) 23 x. >-- 24 · · • •• • I-- ~ r.:J.v (16) a ~ ~ (15) a ~~tbl ~ r- I-- :>- e1 (5) 31 ':>[ 32 I-- •• •• · ·••• I-- ::>- ... e1 (6) 39 40 fI) 1:: 0 )-- •• - (7)~47 I I Q. (14) ~ Q) Q a: C 0 C1 ',j: 48 • •• • · j · ·••• · (8) 55 66 r- I-' J ca (13) I 1 ,~ 1/0 Q. Q. - · >- 01 A ii, 32 •• •• rr 02 40 •• •• • · 48 "::1-oo · ~ Q2 (131 NC 1 (81 56 ~ •• ~ •• •• (91~ 1 v Figure 17. Programmed TlBPAL16R4 3-18 (14 v ....56 BO rJv 1 •• • •• ClR (151 C1 m 47 CD tJ; >tJ; rJ... C1 39 :ZJ ~ 16 1Q1 t:r1.J v )-- · ClK D In C1 (51 31 ClKB ::s tJ;S DO •• •• • "'2.5" NC C1 (41 23 CLKA -'-' 24 l> ClKC (61 (181 v ClKOUT 1 ··•• ....m 0" 1 (31 15 16 I I (191 (121 1'-4-" BOOUT It is now probably obvious to the reader, that inserting the logic equations into the logic diagram is a tedious operation. Fortunately, a computer program called PALASM will perform this task automatically. All that is required is telling the program which device has been selected, and defining the input and output pins with their appropriate logic equations (Figure 18). The program will then generate a fuse map (Figure 19) for the device selected. Notice that the fuse map looks very similar to the block diagram (Figure 17) which we have just completed by hand. In addition, this information can now be down loaded into the selected device programmer. DEVICE TYPE 16R4 PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN LIST NAMES = NUMBER 1 NUMBER 2 NU~IBER 3 NUMBER = 4 NUMBER 5 NUMBER 6 NUMBER 7 NIJr1SER = €< NU~IBER 9 NUMBER = 10 NU~lBER NUMBER NUMBER NUMBER NU~lBER 11 12 13 14 IS 16 Nur1BER NUMBER NUI1BER 17 l.B Nl.I~lBER = 19 NUMBER 20 PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN PIN NAME NAME NAME NAME NAME NAr1E NAME NAr1E CLK = SELO SEll = CLKA CLKB = CLKC CLKD 'CLR BD GND NAME NAME IOE NAME BDOUT NAME = NC Q3 NAME Q2 NAME Q1 NAME QO NAME NAI1E NC NAME CLKOUT NAME VCC NA~IE EXPRESSIONS AND DESCRIPTION = EXPRESSIONC I] = ICLKOUT=/SEL1*/SELO*/CLKA +/SELl*SEI.O*/CL.KIl +SELl*/SELO*/CLKC +SELl*SELO*/CLKD EXPRESSIONC 2] = IQO=/CLR +QO I II) ~ o c. EXPRESSIONC 3] = IQI=/CLR +/Q1*/QO +Q1*QO Q) a: c o ~ EXPRESSIONI 4] = IQ2=/CLR +/Q2*/QI +Q2*QI*QO +/Q2*/QO CIS .~ Q. EXPRESSIONI 3] = IQ3=/CI.R +/Q3*/Q2 +/Q3*/QI +/(~3*/Q(I +Q3*Q2*Q1*QO c. c:( EXPRESSIONI 6J = IBDOUT~/BD*Q3*/Q2*/QI*QO Figure 18. Pin ID and Logic Equations 3-19 0000 0000 0011 1111 1111 2222 2222 2233 0123 4567 8901 2343 6789 0123 4:;6'7 8901 ICLKOUT -x-- -x-- -X-- x--- -x-- -x-- -x-- x--- XXXX XXXX xxx X XXXX XXX X XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX xxx X XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX --XXXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX -X-- X--- x---X-XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX xxx x xxx x XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXX X XXX X XXXX XXXX XXXX XXX X o - I 2 3 4 5 6 7 '- ISEL1*/SELO*/CLKA+ ISELI*SELO*/CLKB+ SEL1*/SELO*/CLKC+ SEL1*SELO*/CLKD 8 9 10 11 - 12 13 14 15 - XXXX XXXX XXXX XXXX XXXX XXXX 16 17 18 19 20 21 22 23 - ICLR+ - QO - XXXX XXXX XXXX XXXX XXXX 24 23 26 27 28 29 30 31 - ICLR+ - IQI*/QO+ - m*QO - XXXX XXXX XXXX XXX X 32 33 34 33 36 37 38 39 - IQO -X-XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX, XXXX XXXX XXXX XXXX IQI ---x I -, .. l> "0 '2. n &» 0' ::s ::a CD '"g 0 :::I. 0 XXXX XXXX XXXX XXXX XXXX /Q2 XXXX XXXX XXXX XXXX XXXX --XXXXX XXX X XXX X XXXX XXXX XXXX XXXX XXXX XXXX --X---x XXXX XXXX XXXX XXXX -X----x --XXXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 'XXXX XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX -X-- XXXX XXXX XXXX XXXX ---X ---X --X- --X-~-X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX ICLR+ /Q2*/Q1+ Q2*Ql*QO+ /Q2*/QO 1&3 -X-40 ---X ---X 41 42 ---X ---X ---X 43 --X- --x- --X- --X44 XXXX xxxx XXXX XXXX XXXX XXXX XXXX XXXX 45 XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX 46 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 47 - ICLR+ - IQ3*/Q2+ /Q3*/&I+ - IQ3*IQO+ - Q3*Q2*QI*&0 XXXX XXXX XXXX XXXX XXXX XXXX xxxx xxxx XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX X XXXX - --..:X XXXX XXXX XXX X XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 48 XXXX XXXX XXXX XXX X 49 XXXX 50 XXXX XXXX XXXX XXXX 51 XXXX XXXX XXXX XXXX 52 XXXX XXX X XXXX Xxx X 53 XXXX XXXX XXXX XXXX 54 XXXX XXXX XXXX XXXX 55 xxxx xxxx xxxx '0 - - - IBDOLIT XXXX XXXX XXXX XXXX XXXX XXX X XXXX XXX X XXXX XXXX XXXX XXXX --XXXX X XXXX XXXX XXX X XXXX XXXX ---X XXXX XXXX XXXX XXXX XXXX XXXX ---X XXXX XXXX XXXX XXXX XXXX XXXX --XXXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX -x-XXXX XXXX XXXX XXXX XXXX XXXX Figure 19. Fuse Map 3-20 56 57 58 59 60 61 62 63 - /BD*Q3*/Q2*/QI *QO - ADVANCED SOFTWARE PALASM, while extremely useful in generating the fuse map, does little to help formulate the logic equations. This is what the new software packages such as ABEL and CUPL address. They not only generate the fuse map, but they also help in developing the logic equations. In most cases, they can generate the logic equations from simply providing the program with either a truth table or state diagram. In addition, they can test the logic equations against a set of test vectors. This helps ensure the designer gets the desired function. These are only a few of the features available on these new advanced software packages. We recommend that the reader contact tbe specific manufacturers themselves to obtain the latest information available. For your convenience, at the end of this application note we have included the addresses and phone numbers for many of these programming and software companies. As an example, we will approach our previous design utilizing DATA I/O's ABEL packlige. The purpose here is not to teach the reader how to· use ABEL, but rather to give them a basic overview of this powerful software package. Figure 20 shows the source file required by ABEL. Note that the 4-bit counter has been described with a state diagram table. When the ABEL program is complied, the logic equations will be generated from this. The equations for CLK OUT and BD OUT have been given in their final form to demonstrate how ABEL would handle these. Also notice that test vectors are included for ,checking the logic equations. This is especially important when only the logic equations has been given. Figure 21 shows some of the output documentation generated by the program. Notice that the equations generated for the counter, match the the ones generated by the Karnaugh maps. A pinout for the device has also been generated and displayed. The fuse map for the device has not been shown, but looks very similar to the one in Figure 19. As with the PALASM program, this information can be down loaded into the device programmer. PERFORMANCE Up to this point, nothing has been said about the performance of these devices. The Standard High Speed PAL (indicated by an ';.\" after the device number) offered by TI has a maximum propagation of 25 ns from input to output, and 35 MHz fmax . Also available is a new, higher speed family of devices called TIBPALs. These devices are functionally equivalent with the current family and offer a maximum pro\Jagation delay of 15 ns from input to output. They are also rated at 50 MHz fmax . The higher speeds on these devices make them compalible with most high-speed logic families. This allows them to be designed into more critical speed path applications. 3-21 mod~ile BO .. COUNT Tlan "-r2' "4-bit titl~ Iel pin bin~ry/d~cade count~r d\!'vi r:e "Pl bR4"; ~ssi~nm@nts a~d cQnstant do .. larations CLK_.rN>SEL(),SEL1~CLKA 1~·2.3.4= CLKB.CU 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN 0 THEN SO SO SO SO SO SO SO SO 50 SO SO SO SO SO SO SO ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE ELSE Sl; S2; $3; S4, 55; S6; S7, 58, S9; 510: 511, S12, S13; SI4, SIS; SO; .... clock selector"" te-st_vectors ([CLKA, CLKB, CLKe, CLKD, SELl, SELO] -:> CLK_OUn L X X X L, r L J -:> L, X r H X X L, L ] -> H; X X X r L L, H ] -> L; [ X H X L, H J -:> H. L· ] -> [ X X L X H, L, [ X H H, X X H, L J -:> [ X X L H, H J -:> L; [ X X H H, H ] -:> H; te-st_vect"ors , rCLK •. IN, r CK, [ CK, ( CK, [ CK~ [ CK, CK, CK, CK, CK, CK, CK, CK, CK, CK, CK, CO<, CK, r [ r X, .. nd BD_COUNT "counter"" OE, CLR, BD_IN) X J L L, L X J H. L H, X L H, X H, L L H, H, L H, L X L H, L H, L L H, X H, X L H, X L L H, X L H, X L H, H L H, X H X, X -> roUTPUT, BD_OUTl) -> -> -~ -:> -> -:> -:> -> -:> -:> -> -:> -> -:> -> -> -> -> SO, SI, S2, 53, S'I, 55, S6, S7, 58, S9, SIO, Sl1, 512, S13., S14, S15, SO, Z H H H H ] ] ] H ] H ] H'] H ] H ] L ] H ] H ] H ] H ] H J H ] H ] H J Figure 20. Source File for ABEL 3-22 ] Page ABEL(tm) Version 1.00 - Document Generator 4-bit binary/dec~de counter Equ~tions Module SO_COUNT ~or D(?vice Iel Reduced Equations: eLK_OUT = '«SELl & SELO & 'CLKD 41 (SELl & !SELO 8< 'eLKe • C!SELI & SELO & !CLKB 41 !5ELl 8< 'SELO & 'CLKA)))), ~ Q2 & Ql & 00 41 ('038< '02 03 := !«Q3 • ., # (!03 ~ C!Q3 &: ~Qt '00. 'CI_RI»)), 02 := '«028< 01 8< QO # ('028< '01 # ('028< !OO 41 !CLR»», 01 .- '«01 & 00 41 ('01 QO t= I(CQO • 8< '00 # !CLR))), !CLR»; Page 2 ABELCtm) Version 1.00 - Document Generator 4-bit binary/decade counter Chip diagram for Module SO_COUNT I Devic(? let U) P16R4 CLK_IN SElO SEL1 CLKA ClKB CLKC ClKD ClR BD IN GND end o~ ~ VCC ClK OUT 00 01 02 03 BD_OUT OE o 0eD a:: C o '';:; ca ,~ Q. 0c( module BD_COUNT Figure 21. ABEL Output Documentation 3-23 ADDRESSES FOR PROGRAMMING AND SOFtWARE MANUFACTURERS. HARDWARE MANUFACTURERS E Citel 3060 Raymond St. Santa Clara, CA 95050 (408) 727-6562 Structured Design 1700 Wyatt Dr., Suite 7 Santa Clara, CA 95054 (408) 988-0725 DATA I/O 10525 Willows Rd. Redmond, WA 98052 (206) 881-6444 Sunrise Electronics 524 S. Vermont Avenue Glendora, CA 91740 (213) 914-1926 DIGITAL MEDIA 3178 Gibralter Ave. Costa Mesa, CA 92626 (714) 751-1373 Valley Data Sciences 2426 Charleston Rd. Mountain View, CA 94043 (415) 968-2900 Kontron Electronics 630 Price Avenue Redwood City, CA 94063 (415) 361-1012 Varix 1210 Campbell Rd. Richardson, TX 75081 (214) 437-0777 Stag Micro Systems 528-5 Weddell Drive Sunnyvale, CA 94086 (408) 745-1991 WaveteclDigelec 586 Weddel Dr., Suite 1 Sunnyvale, CA 94089 (408) 745-0722 Storey Systems 3201 N~ Hwy 67, Suite H Mesquite, Tx 75150 (214) 270-4135 SOFTWARE MANUFACTURERS Assisted Technologies (CUPL) 2381 Zanker Road, Suite 150 Santa Clara, CA 95050 (408) 942-8787 DATA 110 (ABEL) 10525 Willows Rd. Redmond, WA 98052 (206) 881-6444 *Texas Instruments does not endorse or warrant the suppliers . referenced. Reference 1. H. "froy Nagle, Jr., B.D. Carroll, and David Irwin, An Introduction to Computer Logic. New Jersey: Prentice-Hall, Inc., 1975. 3-24 Hard Array Logic (HAL®) tn 1:: o Co r! c o i .2 -aCo « ." TEXAS INSlRUMENTS 3-25 IMPORTANT NOTICE Texas Instruments (Til .reserves the right to make changes in the devices or the device specifications identified in this publication without notice. TI advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. TI warrants performance of its semiconductor products to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems such testing necesSary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed. In the absence of written agreement to the contrary, TI assumes no liability for TI applications assistance, customer's product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of TI covering or relating to any combination; machine, or process in which such semiconductor devices might be or are used. I , 3-26 Copyright @ 1985, 'texas Instrumenta Incorporated INTRODUCTION The purpose of this document is to provide the design and component engineer with a better understanding of Hard Array Logic (HALI!». [It details both the advantages and disadvantages of HAL and Programmable Array Logic (PALI!» designs as a means of aiding the design and component engineer in deciding whether to go to a HAL device or to remain with the (PAL) product.] More importantly, this document also defines the procedures to be used by the customer when ordering HALs from Texas Instruments. PRODUCT DESCRIPTION Programmable Array Logic (PAL) technology constitutes one of the fastest growing areas in the semiconductor industry today. This growth exists because PALs offer circuit flexibility and package count reduction, an advantage which design and component engineers find over stan Pin 1: Pin 15: Pin'2: Pin 16: Pin 3: Pin 17: Pin 4: Pin 18: Pin 5: Pin 19: Pin 6: Pin 20: Pin 7: Pin 21: ·Pin 8: Pin 22: Pin 9: Pin 23: Pin 10: Pin 24: Pin 11: Pin 25: Pin 12: Pin 26: Pin 13: Pin 27: Pin 14: Pin 28: Programming Equations: "C '2. .. C;' I» 0' ~ l:I ~ "C o ~ rn 3-30 A Designer's Guide to the TIBPSG507 Robert K. Breuninger and Loren E. Schiele with Contributions by Joshua K. Peprah E .. TEXAS INSTRUMENTS 3-31 IMPORTANT NOTICE Texas Instruments (Til reserves the right to make changes in the devices or the device specifications identified in this publication without notice. TI advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. TI warrants performance of its semiconductor products to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each deviCe is not necessarily performed. In the absence of written agreement to the contrary, TI assumes no liability for TI applications assistance, customer's product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intl!lIectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used. Copyright © 1987, Texas Instruments Incorporated 3-32 Contents Title INTRODUCTION ............................................................................. Page 3-37 FUNCTIONAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37 THEORY OF OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example 1: Waveform Generator.............. .................... ..... ... .... ................. . Example 2: Refresh Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example 3: Dynamic Memory Timing Controller......... ................ ....................... . 3-37 3-39 3-42 3-45 DESIGNER NOTES........................................................................... Obtaining Maximum Counter Performance. ..... .. ..... ....... ... ......... ..... ............ ...... Expanding the 6-Bit Counter .................................................................. Software Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51 3-51 3-51 3-51 Appendixes A B C ABEL Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CUPL Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 'PSG507 Fuse Numbers..................................................................... 3-57 3-67 3-79 I tn t:: o ~ G) a: c o '';:: ca ,~ Q. ~ " " P3 .. P5 P. J=~ ~~ ~ao ;:: R> ~~~al =~~a2 ~~a3 ~~-Q4 ~~r141 ~~~Q. ~r"., ;:::.'-'-1> Figure 1. PSG507 Architecture 3-38 for nonregistered operation. This permits the outputs to be directly fed from the counter, AND/OR array, or state registers. Example I highlights this feature. In short, the outputs of a PSG can be controlled by any or all of the following conditions: to the master clock (PSG CLK) of the PSG. As shown in the timing diagram, at count II (10112) the sequence is repeated. By using the SCLRO function, a logic equation can be defined to reset the counter at count II. This concept is demonstrated in Figure 3. With the binary counter programmed to clear at 11, it is a simple matter to decode the outputs from the binary count. With the REF CLK equal to the inverse of binary count zero (CO), REF CLK can be directly generated from the binary counter. A product term is required to connect CO to the output cell. The output register is bypassed by blowing the output multiplexer fuse. Figure 4 shows how CO can be connected. SYS CLK and PCLK are decoded from the present state of the binary counter through the SIR outputs. Since the SIR register holds its present state until changed, product terms have to be used only during output transitions. For example, when the binary counter reaches one, a product term is used to reset the SYS CLK on the next clock transition. Below is a summary of the product terms required to control SYS CLK and PCLK. Note that the output transitions are set up in the previous clock cycle. Also note that only one product term is used regardless of how many output terms switch. This is demonstrated at count 5 and count 11. Figure 4 also shows how SYS CLK and PCLK are connected. • Present state of the inputs • Present state of the binary counter • Present state of the state holding registers The key to understanding state machine design when using a PSG is to realize that different states can be assigned for each sequence. In other words, the assigned state determines which sequence is in operation. The length of each sequence is controlled by the SCLR function. Once the count sequence has been programmed to the desired length, each output can be easily decoded from the present state of the binary counter. The user will soon discover that complex state machines are easily developed when using this technique. This technique is demonstrated in Example 3; Example 1: Waveform Generator The first example demonstrates a design for a simple clock generator used for driving a microprocessor operating at 5 MHz (required duty cycle of33.5% high, 66.5% low). In addition to the 5 MHz system clock (SYS CLK), a reference clock (REF CLK) operating at 15 MHz (50% duty cycle) and a peripheral clock (PCLK) operating at 2.5 MHz (50% duty cycle) are required for other timing controllers and peripherals throughout the system. Both clocks must be in close phase with the SYS CLK to guarantee synchronous operation within the system. The above example demonstrates one of the many uses of the binary counter in the PSG. State registers are not used in this particular application, only the binary counter and three outputs. A 30 MHz clock, typically generated from a crystal, is used for driving the binary counter of the PSG. The three generated clock signals are decoded from the binary count. The unused inputs and outputs are still available for other sequential or combinational applications. Figure 2 shows the timing diagram for the above application. For reference, a decimal count has been assigned o 2 4 3 5 CNT CNT CNT CNT 1: 5: 7: 11: Reset SYS CLK Set SYS CLK, reset PCLK Reset SYS CLK Set SYS CLK, set PCLK This simple application demonstrates the basic concept of building a waveform generator using the PSG. This concept will be expanded further in Example 3 when a memory timing controller is developed. The basic rules for building a waveform generator are summarized below. 13 • Program the counter to reset to zero after the desired count length is reached. • Generate the logic equations to control the outputs from the present state of the binary counter. 6 7 8 9 10 11 t!o Q. CD a: C o '; ,S:! Q. o ~ PSG CLK 115 MHz) REF CLK . . ._________. . .r SYS CLK '-_______________ PCLK 15 MHz) ~G2.5 MHz) 2. Clock Generator Timing Requirements (Example 1 - Waveform Generator) Figur~ 3-39 £:'"COUNT 11 {' fi 'II~ j~~ l\JlJIoo 155\ III III I:O~ SCLRO :=: f+.: ~CiiiT/HLDO ':::' ~ ;:: f+.: ~ ~ ;:: f+.: ~ ::::: f+.: ~ I ~ ;::: H:: ~ {Rfe~~ ~~ ~~~ .. ~~ ~~~ ~~ ~ Figure 3. SCLR at COUNT 11 (Example 1 - Waveform Generator) 3-40 , ~eOUNT6 COUNT eOUNT'\ COUNT 1'~ \ \ r ,;;=r- ~OUNT 1 11 *l Ci;l /l1, /ifli1iiiJ 1 ' ~ 1Fs r.~.r t/) e lK I:ii. Q. ~ ~r-pelK _ovo elK ~r~~ ~- ~~- ~ Figure 4. Waveform Generator (Example 1) t: o CI) IX: C o '';: «:I ,~ C. Q. • CNTIHLDC ;::, ~ K :':.=' .~ K K == .::: ~~ ~ ;;::: ::: ;::: ~ ,:;::;;:::~ ~~ I;::'~~ ~~ ~~ .~~~ fI) ~ o c. Q) a: .. c -o CO -~ Q. c. « !~~~ I~~~ ~Figure 6. Expanding to 7-Bit Binary Counter (Example 2 - Refresh Timer) 3-43 RESET~FC\ PSG elK /CO~TC7' 63 ~ RESET RFC +":-\ I rr;:E5 co C1 C2 C3 co I'- ~ " CNTfHLOC I::: ~~ ~ '-' ~ I == '-' • ~ R; :;;::: R; --". := - =-= ,:::~ ~~~RFR ~~ ~~ I'-~~ ~~~ --".~~ ut~~ Figure 7. Refresh Timer (Example 2) 3-44 Example 3: Dynamic Memory Timing Controller accessing and refreshing the dynamic memory. The memory timing controller must also be capable of arbitrating between refresh and access cycles. In other words, if a refresh request (REFREQ) occurs while the timing controller is performing an access cycle, the controller must finish the access cycle before granting the refresh request. Likewise, if an access cycle is requested during a refresh cycle, the controller must hold the processor while completing the refresh cycle. After the refresh cycle has been completed, the access cycle can be performed. The third and last example will demonstrate a state machine design using the PSG507. Figure 8 shows the circuit requirement for a memory timing controller used for interfacing an Intel 8086 to an 'ALS2967 dynamic memory controller. Note that the clock generator and refresh timer, developed in Examples I and 2, can be used in this circuit. The dynami~mory timing controller generates the control signals (RAS, CAS, MSEL, etc.) needed for DYNAMIC RAM DYNAMIC MEMORY CONTROllER REFRESH ~ 2967 RFC REFREO RESET< i- I-MEMORY TIMING CONTROllER PSG507 CLOCK ~R "ii2ii4'" { OSC RESET l - i- ~ I--< SYS ClK I---< r-- L..t 00-08 RFC '- ii- II- REF ClK 256K DYNAMIC RAMS TMS4256 (161 liASo ~ CASO W '-~ '1'7'" I-\--t I-t--t BANKl AO·A8 256K DYNAMIC RAMS TMS4256 (161 RASl CASl ~ W L..-- '--- .. AO-A8 r IiEFRm REF ClK ~ ~ BANKO RESET RESET 8086 < liAS ~ RASi CAS ~ CASI ~ ROY ROY M/iO MIlO iiDl-WR I--+- r MSEl ~ MSEl MCl I------t MCl ~ MCO II- ,-w.., r-.I f--t f--t I BANK2 AO-A8 RAS2 AO-A17 lE -r" ROW (AD-A81 COL (A9-A 171 AlB SELD A19 SEL1 ~ o ~ W ,-w.., II o CAS2 c. CD a: I ALE ALE 256K DYNAMIC RAMS TMS4256 (161 BANK3 AO-AB 256K DYNAMIC RAMS TMS4256 (161 RAS3 c o '';:; CO ,S:! CAS3 Q. ~ W c. 00-15 00-015 "5"0 D) r+ o·:::s ox :L o A iiD I AO·A17 I AO·A17 I I AO-A17 I :AO-A17 I WR ( DATA FROM MEMORY ~ I AO-A17 I WRITE DATA I ~~~~~~~~~~~~*~~~~~~~~~~~ 9 :zJ AO·A17 . ~Lox ~ I \ 1 1 I 8 9 10 11 12 13 14 15 16 17 18 19 '0 0 ose .g MC1 0 ~ 1 ____________..,_ - - - - T - - - - .., -1- _____ __,,.___________________________ ROY tn \ , t - , RFC MSEl __________ ~ ______________________________ ~ *IF ROY - H. RETURN STO Figure 11. Refresh/Access Grant Cycle 3-48 RE F elK .( ~ [ ~ ~ ALE Mlill PO +i F I :: ,.c::::r I F seLRon '::-...:t; • CNTIHLDO ~ '="=' !:: o--l> ~ PO " ~ .2 I~ ~ K ;::: ., ?= .. ~ '"* P5 "',- .. ~~r "'~ I!::~.r - !::~.r 11111111 1111111 !::~~~ • ~~MSEL I en ~ &. II) a: c o '';:; ca ,S:! i5. Q. c:r: '='FJi' ~~ro ~~~ ':'~~ Figure 12. Counter Control Logic (Example 3 - Dynamic Memory Timing Controller) 3-49 RfF elK .~ ~ !!!..£!!!1 RESE!T r=- -.!!!2L ALE M/Rl REFREQ IPO *lj - ,til rp co C1 C2 C3 C. C. ~QJ CNrIHLDO ~ = ;::, t± ~ PO Pl r---t.: = ~ ~ ~ ;::: ~ ~ ~ ~~~~ :----MCl ~-RFC ;::,tY.: ~ ~-= ;::,.t:± ~ ~~-MSEL ~~~= ~~~~ ~~rFigure 13. Memory Timing Controller (Example 3) . 3-50 DESIGNER NOTES Obtaining Maximum Counter Performance As with any programmable logic device, there are usually several different methods for implementing anyone application. In some cases, device performance is affected. On the PSG, maximum counter frequency is affected by how the designer controls the 6-bit counter. For example, in the waveform generator example shown at the beginning of this application note, the counter was reset to zero after reaching count II by using the nonregistered SCLRO function. By using the registered SCLRI function, a higher operating frequency is obtainable. This method requires an additional "AND" term as shown in Figure 14, but does' provide maximum performance. Note that during the 10th clock cycle the set input on the SCLRI register is high. On the next active clock edge, the counter advances to II and the SCLRI register is set high. This causes the counter to be reset on the next active clock edge. At the same time, the SCLRI register is reset low to allow the counter to advance past zero. In effect, the setup time requirement for SCLR I is performed in the previous clock cycle. When using the SCLRO method, the setup time must be added to the fmax equation. This results in a lower fmax . The same tradeoffs apply with the CNT/HLD function. The PSG507 data sheet specifies fmax for both methods. Expanding the 6-Bit Counter In Example 2, the six bit counter had to be expanded to 7 bits. This was accomplished by adding one of the state registers to the most significant bit of the counter. It should be noted that the synchronous clear and count hold functions must be controlled through the set and reset inputs of the added bits. The designer must be aware of certain limitations when trying to perform this function. Figure 15 shows three additional bits being added to the 6-bit counter. Note that every bit added requires two additional "AND" terms. A problem can arise on certain counts when trying to generate a synchronous clear before reaching the full binary count (all outputs high). The designer must ensure that both Sand R are not high simultaneously. For example, let's say we want the 9-bit counter to return to zero at count 383 (1011111112). At count 383, the SIR register used for C7 is being told to set. Therefore, any reset command would result in both Sand R being high simultaneously. This problem, only seen on a few data words, can be solved by using another state register to control the counter reset. This method is similar to that used above to obtain maximum operating frequency. Figure 16 shows the 9-bit counter returning to zero after count 383. Notice that at count 382 the extra SIR register is being told to reset on the next active clock edge. At count 383 the six product lines controlling C6, C7, and C8 are disabled by the feedback from the extra register, in particular the S input on C7. At count 383, the 9-bit counter will return to zero and the extra register is set high. An extra register may also be needed to achieve the countlhold function when using an expanded counter. During certain counts the added bits will change state, even though the 6-bit counter is programmed to hold. For example, let's say we want the 9-bit counter to hold at count 383. Even though the 6-bit counter can be held at 111111, C6 and C7 will advance on the next active clock edge. In order to hold C6 and C7 where they are, an extra register is used to disable the product lines responsible for the transition from count 383 to 384. Since the counter is on hold, the extra hold register can only be reset from an input pin or a state register(s) transition (not on the next count). In this example, an input pin is used to reset the extra register and the CNT/HOLD register. When the CONTINUE input is taken low, the counter will continue to advance. The system must guarantee that the continue input will not be low during count 382 to avoid the indeterminant set = H, reset = H state. Figure 17 shows this 9-bit counter. It is also important to note that when using extra registers a reset input may be necessary to set the extra registers high after powerup, since all SIR registers powerup clear. This requirement would not be necessary if the phase of the extra register was reversed. This is easily accomplished by using the iriverted feedback from the extra register. However, it is good state machine design practice to include a reset input that forces all SIR registers to a known state. I U) Software Support The PSG507 is supported by two software packages; CUPL, which was created by and is supported by Assisted Technologies, a division of Personal CAD Systems Incorporated, and ABEL, which was created by and is supported by FutureNet, a division of Data I/O Corporation. Each of these software packages can be used to reduce equations and to generate a fuse map necessary to program the PSG507. Appendices A and B show the ABEL and CUPL files for Examples 1, 2, and 3. In addition, a PSG507 template is shown for each software package. These templates provide software information that will make it easier for the designer to create the source files. Test vectors are included with the ABEL and CUPL source files so software simulation can be performed on the computer. If the proper instruction is provided, the software will attach the test vectors to the end of the fuse map. This allows programming equipment to run a functional test on each device immediately after programming. 1:: o Q. G) a: c o ',j: ca .~ Q. Q. ."'-J II ~. '-' H;' f--P' "'-J :::: ~ • "'-J >=I> '-' ~ ~~~ o.:p: I-- '-'~~ '-'~~ ~I-~I-~~~ Figure 14. Registered SCLR Example (Designer Notes) 3-52 r~~~~~~1 cg.?~i'~ ,255- ~------------------------ N-!27 63 ___ rJ ::.,.. C6 II~ -- I SCLRO I ;::; i---i> - CNT/HLDO I -~ ~ ;::; I;::; ~ I ljJ; :: Ef.l C8 ===' ~ ;::; FtJ ~ j~~ I;::;~~ I I ~~ fL:~~ ~~~ EI en 1:: o Q. Q) a: s:: o '';:; CtI .~ C. Q. < f~~~ I 1 I ;::;~~- Figure 15. Expanding to 9-Bit Counter 3-53 COUNT COUN:::il· COUNT 382- r 511' COUNT 383- Ir~~~~;' 127 255 rCOUNTo:;;;.T .3 f""~ C6 ->"j ;:E5;l CO C1 C2 C3 C4 ~ - CNrIHlDO r:..~ := C6 ~ ;::~ 0' C8 ""!!!= >-P.: =[} n E -P.: ~ '.~ ~-- ~~ ~-- ~~~ ut=~ ~ .~ut=- ~~~ Figure 16. Resetting after Count 383 (Expanding the 6-Bit Counter) 3-54 COUNT 255- COUNT CONT1N~~~T 382- 511l -COUNT 255 rCOUNT 127 rCOUNT 127 rCOUNT 63 f ~ _C§ ~ Ig! !<"R"- .~ t-+.. -~I~l_D9 .~ .~ ~ Hi: ~ ~ Hi: ~ ~ ::: Hi: C7 ~~ == :::: ~ ;;;= ~ I ~ ~Ir~r- en 1:: ::::~r~r- a: c o '.j:i =i= !:::' ~r~~~r~~r- o c. CD CO ,~ Q. c. [OUT~UTS, STATE ]) -> [ -> [ -> [ -]; ]; ]; 'count xx ·count xx ·count xx I 3-59 Module PSG EXI title 'ABEL EXAMPLE '1 (WavefoDn Generator) for the PSGS07 DESIGNERS GUIDE, Texas Instruments, August 26, 1987' PSGI device 'F507'; • Input pin assignments PSG_CLK pin 1; • Output REF CLK SYS-CLK PCLK pin and node assignments pin 8; pin 9; SYS CLK r node 48; peLK r node 49; pin 10; • REF_CLK is combinational • Internal counter bits & control - node declarations CO node 55; Cl node 56; node 58,; C2 node 57; C3 SCLRO node 25; • Intermediate declarations for simplification COUNT [C3,C2,Ci,CO]; H,L,clk a 1, 0, .C.; equations REF CLK SYS-CLK SYS-CLK r PCLK PCLK r SCLRO I l> "'0 "2. .. 5' I» 0' ~ :a CD "'0 o ;::. en 3-60 • • • • • = := •• •• := - !CO; (COUNT==5) # (COUNT==11); (COUNT==1) • (COUNT==7); (COUNT-ll); (COUNT=5); (COUNT==l1); • • • • • High on cnt 5 and 11 Low on cnt 1 and 7 High on cnt 11 Low on cnt 5 ·COllnter cleared after cnt 11 The PSG507 has powerup clear of counter· and registers. Six clocks are required after powerup for this design to initialize. This design could be initialized after one clock by setting SYS CLK and PCLK high at COUNTO. i.e. SYS CLK .= COUNTO • COUNTS. COuNT11; and PCLK :-COUNTO I COUNT11; - test vectors ([PSG CLK [ clk [ clk [ clk [ elk [ elk [ clk I elk [ elk [ elk [ elk [ elk [ elk [ elk [ elk [ elk [ elk I elk I elk I elk [ elk [ elk I elk [ elk [ elk I elk COUNT) 0 1 ) ) 2 3 ) 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 ] ] ) ] ] ] ) ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> [REF_CLK, SYS CLK, PCLK) ) ); [ L L L [ ); H L L ]; L L L I ]; H L L I ]; L L L I ]; H H L I [ L ); L H [ ]; H L L [ ]; L L L H L L ]; I L ]; L L I [ H H H ]; [ L H H ]; [ H L H ); L L H ]; I [ H L H ]; [ L L H ]; ]; H H L I [ H L ]; L ]; L H L I [ ); L L L ]; [ H L L ]; L L L I H H H ]; I L H ]; H I end PSG_EX1 I... (I) ...0 c. Q) a: c 0 .~ CO .~ C. c. c::( 3-61 Module PSG EX2 title 'ABEL EXAMPLE '2 (Refresh Timer) for the PSG507 DESIGNERS GUIDE, Texas Instruments, August 26, 1987' PSG2 device 'F507'; " Input PSG CLK RESET RFC pin assignments pin 1; pin 2; pin 3; • Output pin' and node assignments REFREQ pin 8; REFREQ_r node 47; " Internal counter bits & control - node declarations CO node 55; Cl node 56; C2 node 57; C3 node 58; C4 node 59; C5node 60; SCLRO node 25; " Buried register C6 node 31; C6_r node 39; " 7th counter bit " Intermediate declarations for simplffication COUNT = [C6,C5,C4,C3,C2,Cl,CO); , H,L,clk,X = 1, 0, .C., :X.; 13 equations REFREQ := RFC • RESET; REFREQ r .~ (COUNT--76) & !RESET; C6 := (COUNT==63) « !RESET; C6 r .= (COUNT==76) & IRESET t RESET; SCLRO - (COUNT-76) & !RESET t RESET; clear @REPEAT 76 @REPEAT 20 3-62 • • • " " ([PSG_CLK,RESET,RFC) [ clk X) H [ clk L ) L [ clk L ) L [ clk L ) L [ clk H ) L [ clk L ) L [ clk X) H set input reset input set input reset input synchronous nonregistered -> REFREQ ) H -> -> H -> L L -> H -> H -> H -> "CNTO 'CNTl-76 'CNTO 'CNTl-20 "CNT21 "CNT22 'CNTO Module PSG EX3 title 'ABEL EXAMPLE '3 (Dynamic Memory Timing Controller) "for the PSG507 DESIGNERS GUIDE, Texas Instruments, August 26, 1987' PSG3 device 'F507'; • Input pin assignments OSC pin 1; RESET pin 2; 3; ALE pin MIO pin 4; REFREQ pin 5; • Output ROY MCl RFC RAS MSEL CAS • • • • • pin and node assignments 8; ROY r pin node 47; pin 9; MC1-r node 48; pin 10; RFC-r node 49; pin 11; RAS-r node 50; pin 13; MSEL r node 51; pin 14; CAS): node 52; • Internal counter node 55; CO C3 node 58; SCLRO node 25; CNTHOLDl node 29; PO node 31; Pl node 32; BROY node 33; OSCILLATOR RESET - INITIALIZES WHEN HIGH ADDRESS LATCH ENABLE MEMORY I/O REFRESH REQUEST • READY • • • • • MODE CONTROL REFRESH COMPLETE ROW ADDRESS STROBE MULTIPLEXER SELECT COLUMN ADDRESS STROBE bits & control, and state reg - node declarations C1 node 56; C2 noae 57; C4 node 59; , CNTHOLD1_r PO r Pl-r BRDY r node node node node · 30; COUNT/HOLD CONTROL REGISTER 39; • BURIED STATE REGISTER 40; • BURIED STATE REGISTER 41; • BURIED READY SIGNAL • Set notation is used to represent control, buried state, and output " registers. This is done to simplify the equations. The following • sets are in the form; register name = [set input, reset inputJ. Note " that the ouput register pin name specifies the set input. ROY [ROY, ROY rJ; MC1- [MC1, MC1-rJ; RFC= [RFC, RFC- rJ ; RAS= [RAS, RAS-rJ; MSEL [MSEL, MSEL rJ; CAS = [CAS, CAS rT; BROY = [BROY, BRDY_rJ; " Intermediate declarations for simplification. " The sets 'high' and 'low' are used to set or reset the SiR "registers. Example: Mel := high & RESET; will cause pin 9 " to go high on the next clock edge if input pin 2 is high. high = [1, OJ; low = [0, lJ; COUNT [C4,C3,C2,Cl,COJ; STATE - [Pl,POJ; • STATE REGISTER SET DEFINED H,L,clk,X = 1, 0, .C., .X.; @page I U) 1:: 8Q) a:: c o '~ as ,9 Q. Q. [RDY,MCl,RFC,RAS,MSEL,CAS,STATE ]) 0 -]; [clk, H X X X X -> [ H , H , L , H , L , H [clk, L L H H 0 -> [H H L H, L H 0 ]; H,HrL,H,L ,H, 1 ]; [clk, L , H , H, H 0 -> H , H , L , L , L 11, 1 ]; [clk, L , X , X, X 0 -> ]; [clk, L , X , X, X 1 -> H , H , L, L , H , H, 1 [clk, L , X , X, X 2 -> 11 , H , L , L , H , L, 1 ]; @CONST cnt 3; @REPEAT 6 [clk, L , X , X, X , cnt -> H , H , L , L , l l , L , 1 ]; @CONST cnt cnt + 1;) [clk, L , X , X, X 9 -> H , H , L , H , L ,11 0 ]; [clk, L , L , L H 0 -> H , H , L , H L , H 0 ]; test vectors ' REFRESH WITH ACCESS FOT,LOWING' ([OSC, RESET,ALE,MIO,REFREQ,COUNT] .. > [RDY,MCl,RFC,RAS,MSEI" CIIS, STATE]) [clk, H X X X X -> [ H , H , L , H , J~ , ll, 0 -]; [clk, L , X , X L 0 -> [ H , H , L , H , L , ! l I 2 ]; [clk, L , L , L, X 0 -> H , L , L , H , L , H, 2 ]; [clk, L , L , L, X 1 -> [ H , L , H , I, , L , H, 2 ]; [clk, L , L , L, X 2 -> [ H , L , H , L , L , H, 2 1; ]; [clk, L , L , L, X 3 -> H, H , H , L , I, , H, 2 ]; [elk, L H H X 4 -> L I H H L L , H 2 ]; [clk, L , X , X, X 5 -> L, H , L , L ,J~ , H, 2 ]; [clk, L , X , X, X 6 -> L, H , L , II L H, 2 [clk, L X X X 7 -> L H I, H L H 2 1; ] ; [elk, L , X , X, X 8 -> IJ 1 H ! L , H , 1 r H, 2 ]; [clk, L , X , X, X 9 -> L, H L, H ,L , ll, 2 ]; [clk, L , X , X, X 10 -> L H, L , L , I, H 2 ]; [clk, L 1 X , X, X , 11 -> H, H , L , L , H H f 2 ]; [clk, L , X , X 1 X 12 -> H, H , L , L ,H , J~ 2 @CONST cnt =13; @REPEAT 6 { ]; cnt H H L 2 [clk, L , X ,X X -> L r H @CONST cnt cnt + 1;) H, H, L H , 19 L [clk, L , X , X, X -> I' H. , o ]; r test vectors ' REFRESH WITHOUT ACCESS FOLLOWING' ([OSC,RESET,ALE,MIO,REFREQ,COUNT] -> [RDY,MCl,RFC,RAS,MSEL,CAS,STATE_l) [clk, H X X X X -> [ H , H , L , H , L ,Ii, 0 ]; [clk, L , X , X, L 0 -> [ H , H , I, , II ,I" H 2 ]; [clk, L , L , L 1 X 0 -> [ H , L ,I, H, L , H, 2 ]; [clk, L L L X 1 -> [H I, H, 1. ,L II 2 1; [clk, I, L L X 2 -> [H L H, I, ,L , H , 2 1; [clk, L L L X 3 -> [H H H J. I, l!, 2 J; [clk, L , L , H, X 4 -> [ H , H , Ii , ], r L , Hr·? l; [clk, L , H , L, X 5 -> [ H , H , J~ r L ,L , H, 2 ]; [elk, L , H , L r X 6 -> [H H I" H L H 2 J; [clk, L , H , L r X 7 _.> [H H, j, , H , L H 2 J [elk, L , H , L, X' 8 -> [H H, I, H, T" " l:J., :2 [elk, L , H L, X 9 -> [ H , H , I, , H , I. , H r 0 en ~ oQ. G) a:: c:: o ',j:i ca ,sa Q. Q. c:r: @page 3-65 test vectors ' RESET DURING REFRESH ' ([OSC,RESET,ALE,MIO,REFREQ,COUNT] -> X ] -> [clk, H ,X,'X, X [clk, L , X , X , L 0 ] -> [clk, L , L , L , X 0 ] -> [clk, L , L , L , X 1 ] -> 2 ] -> [clk, L , L , L , X 3 ] -> [clk, H , X , X , X end PSG EX3 I 3-66 [RDY,MC1,RFC,RAS,MSEL,CAS,STATE_]) [ H, H, L , H, L , H ]; 0 [ H , H , L , H , L , H , ]; 2 [ H , L , L , H , L , H , 2 ]; [ H , L , H , L , L , H , 2 1; [ H , L , H , L , L , H ]; 2 [ H , H , L , H , L , H , ]; 0 Appendix B. CUPLTN Source and Simulation Files 1****************************************************************************1 1* CUPL (tm) TEMPLATE FOR THE TI PSG507 *1 1* 1* 1* 1* 1* 1* 1* *1 *1 *1 *1 *1 *1 6-BIT COUNTER: The 6-bit counter is accessed through use of the PINNODE *1 This file provides the PSG507 designer quick access to the information needed to write a CUPL source file. By copying this file and deleting this box from the new file a fill-in-the-blanks template will be left for use in creating a source file. /* /* /* /* /* 1* /* /* statement. The pinnode statement is used to assign variables to the internal node numbers. i.e. pinnode [33 •. 38) ~ [CO .. C5).CNT. These variables can then be used in. the same manner as input pins.Using the field statement, i.e. field COUNTER ~ [CO .• C5).CNT; allows an equation like QO = COUNTER'd'3 f COUNTER'd'7; This equation causes the nonregistered output QO to be high only during counts 3 and 7. 1* 1* COUNTER CONTROLS: 1* /* 1* /* /* /* /* STATE /* /* REGISTERS: Clear and hold functions SCLRO, SCLRl, CNTHOLDO, and CNTHOLDl are specified using the PINNODE statement. Any valid variable can be used as a node n~e, i.e. pinnode [39 .. 42) = [CLRO,CLRl,HLDO,HLDl); These variables can then be used in the same manner as an output pin. Buried registers are assigned using the NODE statement, i.e. node [PO •. P7);. The actual registers used are chosen by software in the order specified. 1* 1* OUTPUT STRUCTURE: Each output can be defined as either registered or /* /* 1* /* /* /* /* nonregistered. The structure assignment is automatic and is determined by usage. QO.s = COUNTER'd'77; causes the QO output to remain registered while QO = 90UNTER'd'77; causes the QO output to be nonregistered. When using nonregistered outputs CUPL will automatically program the associated reset fuse for each product term used as required in the PSG507 data sheet. */ */ */ */ */ */ *1 *1 *1 */ *1 */ */ */ */ *1 */ *1 */ *1 */ *1 13 */ */ */ */ *1 *1 *i /* /* */ 1***************************************************** ***********************/ U) ~ () CL CD a: c: () '4: CO ,2 Q. CL P3 ~ P, ~ ::: ~ P< ;::: ~ P6 ~ P7 I:::: en 1:: i-~~'l" I;::: II ~tl" -L ,;::~!J!o>-02 ~ 2"6' ,-~~Q3 1"- II o Co Q) a: c o '';:; ca ,sa Q. Co « ~rtl1" I':-~ ~ ~t"" i'!. ~~~Q' ~ ~~ . ," ~rl161 --j> ~~ MOO .M 000 ~~ ;g ;n~ ;;N ~~ MOO ~;:: ~ l"69 3-79 Il 3-80 System Solutions for Static Column Decode Robert K. Breuninger, Loren Schiele, and Joshua K. Peprah rn t:: oQ. CD a:: c o ~ as .5:! Q. Q. c:a: • TEXAS INSTRUMENTS 3-81 IMPORTANT NOTICE Texas Instruments (Til reserves the right to make changes in the devices or the device specifications identified in this publication without notice. TI advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current. TI warrants performance of its semiconductor products to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed. I In the absence of written agreement to the contrary, TI assumes no liability for TI applications assistance, customer's product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used. Copyright © 1987, Texas Instruments Incorporated 3-82 Contents Title INTRODUCTION ............................................................................. STATIC COLUMN DECODE................................................................... TYPICAL MEMORY CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TIMING CONTROLLER DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NORMAL ACCESS SEQUENCE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HIGH-SPEED ACCESS SEQUENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EXTENDED ACCESS SEQUENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NORMAL/EXTENDED REFRESH SEQUENCES ............................................ . . . . . . SOFTWARE SUPPORT ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SUMMARY .................................................................................. Page 3-85 3-85 3-87 3-87 3-89 3-89 3-90 3-90 3-94 3-94 Appendixes A B ABEL'" Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CUPL'" Files....... .. ..... ... .. ..... ........... .. ............ ... ................ .... ...... 3-95 3-101 ABEL is a trademark of DATA 110 CUPL is a trademark of Persooal CAD Systems, Inc. fI) 1:: o Q. CD a: C o '';:; ca ,~ Q. Q. c:s: 3-83 List of IDustrations Figure Title Page 1 2 3 4 5 6 7 8 9 Static Column Decode Mode Read Cycle Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68020/6301 Static Column Memory Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALS6310 Static ColumnlPage Mode Access Detector ........................................ Timing Controller Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal Access Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-Speed Access Cycle ............................................................... Extended Access Cycle ................................................................. Normal Refresh!Access Grant Cycle ...................................................... Extended Refresh Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85 3-86 3-87 3-88 3-89 3-90 3-91 3-92 3-93 3-84 INTRODUCTION The new 32-bit microprocessors are capable of addressing 4G bytes of physical memory and typically feature clock frequencies greater than 16 Mhz. However, clock speed alone does not guarantee increased system performance; if the processor must wait for data, then memory bandwidth will be the limiting factor. This situation exists between today' s microprocessors and the access times of affordable DRAMs. One solution to optimizing system performance is to mix and match memory, using lower cost dynamic RAM in conjunction with fast, more expensive static RAM caches. However, this approach is only attractive to high end systems where cost and board space is a less significant factor. Another approach to improving system performance is to utilize the new accessing modes available on certain I meg DRAMs, such as static column decode. This method does not improve system performance as much as caches, but it does involve less hardware, resulting in lower system cost. This approach can also be used in systems already using caches, further improving system performance. This application note describes the theory of using static column decode and also describes how it might be implemented in a typical system. In addition, it highlights three new products from Texas Instruments. The SN74ALS6300 "Selectable Refresh Timer", the SN74ALS631O "Static Column Access Detector", and the TIBPSG507 "Programmable Sequence Generator". STATIC COLUMN DECODE The TMS4C1027 is a 1,048,576-bit x 1 dynamic RAM featuring static column decode. Static column decode allows high-speed read and write operations by reducing the number of required signal setup, hold, and transition timings. This is achieved by first strobing the row and column addresses in the normal manner by taking RAS and CAS low. If RAS and CAS are kept low, new data can be accessed by simply changing the column addresses, assuming the new address is in the same row. If the new address is not in the same row, then a normal access cycle must be performed. Figure I is a timing diagram taken from the TMS4CI027 datasheet showing static column decode mode read cycle timing. If the assumption is made that the majority of memory references tend to be sequential, which is a similar assumption made when using caches, then it is logical to assume that a large percentage of memory accesses will be within the same row. The trick is how to implement a timing controller which will take full advantage of the static column mode of operation. ~ I+-tw(RH) 1~4f-------------tw(RL)P------------".1 1 1 II I },A.· II '-- 1 ~i RAS !\ I "'. I 1I I I --------------------------1 ~ t+-tt I .1 14 :I ~ td(RLCL)rd /I+!-';--- I I , I I I4--th(RLCA)~ ~ t4- t h(RA) tsu(RA)--.I I I I tJ., 1 I 1 ~ VIL I ~ oQ. VIH VIL t+-thIRHCA) I I I l+--tc(rd)SC~ I+-tsuICAR)~ I I I i'_ _..........I,....._ _ _.l..S..1 AO·A9 VIH CD a: C o '';::; a3 .~ Q. Q. I ~td(RLCA) •• II j4-tsu(RLrd) I I 1 I I II !ldd" ~ • C» V'C. REFRESH TIMER SO-S3 RefREO CLK 1 ~' f----t f----t f----t SYSCLK osc CLK ~ IOtllil .... DSACK Rt'li Rt'li AS AS STATIC CDLUMN DETECT SN74ALS6310 _P-CLK · r-I • Al0-A1S \ I-t HSA ROW Al0-A1S COLUMN AO-AS A20 A2l .. RASO CASO CASO 'Ii I I I I ~ MCl 7 AS MCO RASl -I-- RASl a CASl -~ CASl ~ lH': BANK 1 1 MEG X 32 BITS (321 TMS4Cl027 'Ii I I I I 7 ·· AO -I-- RAS2 CAS2 I- >-- CAS2 ~ BANK 2 1 MEG X 32 BITS (321 TMS4Cl027 AS RAS2 BO I ·•• ~ r- \ BANKO 1MEG X 32 BITS 1321 TMS4Cl027 'Ii ~ Bl 1 ---.:... AO AO r · • • AS- RASO -----,- MSEL AS r---t I AO - - - l iiASi L.....-- SYS RSf lotlll(A2Z •• OSf-- \ .---- iiFC ~ DYNAMIC RAM 00 RST r---t SYS CLK (OSCt2) LE TIMING CONTROLLER TIBPSG507 ~ REFRESH RATE SELECT DRAM CONTROLLER 74ALS6301 'Ii I I I T ...- ...:l. AO A.O • --, :9 A1S SELO RAS3 RAS3 SEll CAS3 CAS3 BANK 3 1 MEG X 32 BITS 1321 TMS4Cl 027 W 00_. e031 Figure 2. 68020 Static Column Memory Controller QO •• ea31 'J TYPICAL MEMORY CONTROLLER Figure 2 shows a block diagram of a memory system utilizing static column decode. The ALS63 10 is a new circuit offered by Texas Instruments which detects if the present row being accessed is the same as last row accessed. This is the fundamental requirement for implementing static column decode. Note that the row addresses from the 68020 are used as the most significant bits (AIO-AI9) and the column addresses are used as the least significant bits (AO-A9). Figure 3 shows a block diagram of the ALS63 10. In circuit operation, when address strobe (AS) from the 68020 is taken low, the present row (AIO-AI9) and bank address (BO, Bl) is clocked into the first register of the ALS631O. The previous bank and row address, stored in the first register, is clocked into the second register at the same time. The two addresses are then compared to see if they are equal. If they are equal, the high speed access output (HSA) will be logically low. If not, HSA will be high. The function of the PSG507 is to generate the required memory timing control signals (RAS, CAS, etc.) for the ALS6301 dynamic memory controller. The ALS6301 is responsible for multiplexing row and column addresses into DRAM. The ALS6391 is also capable of driving 4 banks of 1M-byte memory. Supporting the PSG507 is the ALS6300 refresh timer. This device is responsible for generating a refresh request signal (REFREQ) every 15.5 p.s. The input select lines are hardwired to match the microprocessor clock frequency. The refresh complete input (RFC), resets the REFREQ signal after the timing controller completes the refresh cycle. TIMING CONTROLLER DETAILS Figure 4 shows a typical flow chart for implementing static column decode. As stated before, the PSG507 is responsible for implementing the flow chart shown in Figure 4. A breakdown of this flow chart reveals 9 states (STO-ST8), associated with 5 different sequences. States STO, STl, ST3, and ST4 are holding and transition states, leading into the various sequences. The five possible sequences are listed below. ST2 Normal Access Sequence ST5 Extended Access Sequence ST6 High-Speed Access Sequence ST7 Normal Refresh Sequence ST8 Extended Refresh Sequence Notice that the HSA signal from the ALS63 10 decides if the timing controller will execute ST5, the Extended Access Sequence, or ST6, the High-Speed Access Sequence. A brief description of each sequence follows. CLKEN----~----------------------------_, CLK--e-~---------------------------, PRESENT ADDRESS REGISTER fI) t:: o Q. CD a: C o 10 AO-A9 4X 4X (BANK] (BANK] BO-B3 P-Q HSA P-Q HSA .. ca () =a Q. ct Figure 3. ALS6310 Static Column Page Mode Access Detector 3-87 NO Figure 4. Timing Controller Flowchart 3-88 NORMAL ACCESS SEQUENCE HIGH-SPEED ACCESS SEQUENCE The normal access sequence is shown in Fi~ 5. This sequence begins by executing a normal RAS/CAS cycle. Notice that a wait state of one clock cycle is needed to guarantee that data is valid for the 68020. This is the problem mentioned in the introduction; if all access cycles had to be performed in this manner, then the processor would face a wait state every access cycle. As will be shown later, this wait state can be eliminated if the next address is from the same row. Notice also, at the end of this sequence, the RAS and CAS output signals are left active low. Here we are making the assumption that the next access cycle will be a high-speed access. We will not know if this assumption is true until the next address is presented by the 68020. At that time, the ALS6310 wilt' signal the timing controller if it can execute a high-speed access. For a high-speed access sequence to be executed, two conditions must be met. The RAS and CAS inputs must already be low, and secondly, the static column access detector must be indicating the present row is the same as the last row (HSA = L). The bank addresses must also be unchanged as detected by the ALS631 O. Figure 6 shows the timing diagram for the high-speed access sequence. Notice that no wait states are required. If the assumption is made that the majority of memory references are sequential, then this sequence will be the one typically used., In other words, this sequence is similar to accessing data from a static RAM, or just like taking data from cache. ST2 CNT1 S2 r-~~~L- ST2 CNT2 SW ST2 CNT3 ST2 CNT4 S3 SW ST2 CNT5 S4 ____________________ ADX SSSSSSSSSSSx R/W \SSSss\\s\SlC - - - - - ST3 CNTO S5 ~ __ ~-------'L ISSSSS,S,' VALID PROCESSOR ADDRESS - - - VALID R/W SIGNAL "')(sss SSS \SS I I I I II) ~--------------------------1-----------------------------+'----------------------I t:: I o MSEL--------------------~----~----~----------t!----------------- Q. CD a: I I CASI --------------------------~------------~--------------+:----------------------- C o += as I MADR S"SSSSSSS"""X ROW ADDRESS x I I I QO~Q31 I COLUMN ADDRESS I I .~ I _ ____________________________________~'--~I.::====:.~I~TA~(C~I~::~W[~~ffiC::::::::::: : ( VALID READ DATA _TA (CAI--.l DSACK-----------------------------------------,____________________ Q. Q. !l dd v IN cD • ~ STO CNTO ST7 CNT1 ST7 CNTO ST7 CNT2 ST7 CNT3 ST7 CNT4 ST7 CNT5 ST7 CNT6 ST7 CNT7 ST7 CNT8 ST7 CNT9 ST7 CNT10 ST7 CNT11 ST7 CNT12 ST7 CNT13 ST7 CNT14 ST3 CNTO OSC SO: SYS ClK S1 S2 SW SW SW SW i r- AS--1 REFREO ~:1-i- ________________________________-1-------1--------------------------------------------t--------- - I RFC 'I I AGREO---------,________________________________________~I~r_----------------------------------------!--------ADX \ \ 55 \ \\X x::s:s VALID PROCESSOR ADDRESS liSA \\\\ \\ \\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\\\\\\\\\\\\\\S\\\\\\\ DON'T CARE \\\\\\\\\ \\\\\\\\\\\\\\\ \\\\\\\\ \\\\\\\ I R/W \s\\\SSSJC - - - - - - - - - - - - - - - - - VALiD RiWDinA - - - - - - - - - - - - - - - - - - - L - ~ I MC1------------1-____________________________r-------------------------------~ RASI----------------~__________________~------------------L_ MADR ROW REFRESH ADDRESS ________________ ROW ADDRESS ~------- COL ADDRESS I MSEl I I ht-----------f I CASI' 00-031 ---------------------------------~-------------------------------------------------------It=~~~~) I+-TA (C) ..... H~ADDAIA r-C-----r- DSACK W Figure 8. Normal Refresh!Access Grant Cycle ST3 CNTO STB CNTO STB CNT1 STB CNT2 STB CNT3 ST1 CNTO ST1 CNT1 ST1 CNT2 ST1 CNT3 ST1 CNT4 ST7 CNT5 ST7 CNT6 STO CNTO STO CNTO OSC SYS CLK ---..J ]- AS------~------------------------------------------------------~------------- REFREQ RFC------------------------------------------------------------iL__________~~--~--------------AGREQ------------------------------------------------------------------------------------------~------------------ADX \SSSSSS\\SS \\S S\ S\SSSS\\S\\ S\SS\ SSS\ DON'T CARE S\\\S\ S\SS\\\\\SSS\\SS'0\TI)\\\\\\\\\\ HSA \\\SSSSSS\\S\\SSS\\SS\\SS \\S\\SSSSSS DON'T CARE SSS\\SS\\SSSSSS\\\\SS\\\SS\S\\\\SSS'\ '0 R/W S\ S\\ \ \\ \\\ \\\\ S\\ \\ \ \ \ \\\ \ \\\ \ \ \\ \\ DON'T CARE \ \\\S S \\S \S \ S\\ \\\ \\ \, 'TISTI,\\\\\ \\ \\ \ 1 MC' ~--------------------~ MADR \\\\\\\\\\\SS\SS\S\\\\S\\\S\\\S\\\\\\\\\\\X ROW REFRESH ADDRESS X\ 'US\\\\\\\ MSEL------------------------1-__________________________________________________________________________ CASI ________________________ ~ QO-Q31 \\\ \\ \ \ \ \\ \ \ \ \\ \ \, \\'\ \, \ '\'}~----------------------------------------... DSACK--------------------------------------------------------------------------------------------------------- W----------------------------------------------w cO w Figure 9. Extended Refresh Cycle Application Reports 1:1 SOFTWARE SUPPORT SUMMARY The PSG507 is supported by two software packages. CUPL which was created by and is supported by Assisted Technologies, a division of Personal CAD Systems Inc. and ABEL which was created by and is supported by FutureNet a division of Data 1/0 Corp. BOth of these software packages have been used to reduce eqUations and to generate the fusemap necessary to program the PSG507. Appendices A and B show the ABEL1M and CUPLno source files for the described static column memory timing controller are attached to assist the designer in progra:mming the PSG507. Since only 54 % (43 out of 80) of the PG507' s product terms were used in this design, it will be easy to modify or add to the sequences used to meet specific system requirements. For detailed information ondesigning with the PSG507 see "A Designer's Guide to the PSG507" application report. Static column decode offers the system designer a method for improving system performance in applications where the microprocessor can outperform conventional DRAM access times. By utilizing the ALS6310 "Static Column Access Detector" , the ALS6300 "Refresh Timer" , and the TIBPSG507 "Programmable Sequence Generator" a high performance memory timing controller can be easily developed to take full advantage of static column decode. 11 3-94 APPENDIX A IlOdule S(DECODE title ' ABEL EXAMPLE FOR TIlE S'lATIC COLUIti DECODER JOSH PEPRAH, TEXAS mS'lRUM!'.IITS, OCT 29, 1987' DECODE device ' r507' ; • Input pin assi9Jlll8llts pin 1; RESET pin 2; 122 pin 3; RII pin 4; REI'REQ pin 5; AS pin 6; HBA pin 7; SYSCLK pin 17 ; ose • • • • • • • • • Output pin and node assiCJIIIRents RfC pin 8; RfC r WI pin 9; WI r MSEL pin 10; MSEL-r CASI pin 11; CASfr 1«:1 pin 13; 1«:1 II pin 14; II rDSACK pin 15; DSACKJ r node node node node node 47; 48; 49; 50; 51; node 53; OSCILLATOR SYSm! RESET - IIBEN LOll IO/MtHlRY - MEMORY ACCESS READ I IIRlTE EHABLE REfRESH REQUEST ADDR STROBE - ACCESS REO HIGH SPEFD ACCESS SYSm! CLOCK - (Ose/2) • REfRESH COMPLETE • ROW ADDRESS STROBE • .m.TIPLEXER SELECT • COLUIIH ADDRESS STROBE • DE CONTROL node 52; • IIRITE • DATA STROBE ACIINOIILEDGE • Internal counter bits , control, and state reg - node declarations CO,C1,C2,C3,C4,C5 node 55,56,57,58,59,60; SCLRO node 25; Ctl'.l'IIOLDO node 28; OOHOLDI node 29; OOHOLDI_r node 30; 11 COUN'l/HOLD CONTROL REGIS'lER • Buried state registers - node declarations node node PI node P2 node P3 AGREQ node PO • " • • 31; 32; 33; 34; 35; PO r node Pl-r node P(r node P3 r node AGREQ_r node 43; 39; 40; 41; 42; " STATE REGIS'lER • STATE REGISTER • STATE REGISTER • STm: REGISTER • ACCESS GRAHT REQUEST STATIlS REGISTER Set notation i8 used to represent control, buried state, and output registers. This is done to simplify the equations. The following sets are in the fOIII; register DaIl8 • [set input, reset input). Rote that the ouput register pin l\8IIe specifies the set input. RfC WI MSELCASI11:1 I DSACK AGREQ: '• = • • • • = I ~ oQ. Q) a: c o as '';:; ,9 Q. Q. c:t [RfC, RfC r); [WI, WI r); [MSEL, MSEL- r) ; [CASI, CASI-r); [11:1, 1«:1 rT; [I, I r);[DSACK, DSACK r); • [AGREQ, AGREQ:r); 3-95 • • • • Int8l1l8diate declarations fot simplification. The sets 'high' and ' low' are used to set or reset the SiR registers. Ewlple: WI := high' RESET; lIill cause pin 9 to go high on the next clock edge if input pin 6 is high. .. • .. = high 1011 COM' S'lAft H,L,cll,X [1, 0]; [0, I]; [C3,C2,Cl,CO]; [P3,P2,P1,PO]; n STm: REGISmt SET DEFINED - 1, 0, .C., .X.; equations enable RI'C .. 1; "outputs always enabled, pin 17 is only an input· " Initialization when RESET is 1011 [WI, CASI, RI'C, W, AGREQ, DSACK,II:1, SCLRO] := IRESET; [1ISEL_r,PO_r,PIJ,P2_r,P3J] := !RESET; n Counter controls defined = I RESET # (STATE -2) f (STATE-==4) f (STATE-""5) t (STADC=6) t (STATE-==7) t (S'lATE-==7) t (STATE:-8) SCLRO • ctmIOLD1 .= , (COIJNTI=5) , (COUN'l==O) & A22 , (COIJNT-10) , (COON'l-4) , (COIJN'l-6) , (A22 , (COIlN'l=oo14) t AGREQ) , (COON'1=3); !RESET t f f f t f t (STATE =2) (STATE-"'4) (STATE-=5) (STATE- =6) (STATE- -7) (STATE- ==7) (STAT(-8) , , , , , (COON'l'-5) (COUHT-o) , A22 (COONT==10) (COUHT==4) (COON'1=6) , (A22 f AGREQ) , (COIlHT-14) , (COUHT-3); CHTHOLDl r :- (STATE -0) , lREFREQ , RESET 1 (SUTt: =1) , !A22 , RESET t (STATE- ••3) , !REFREQ , RESET f (STAT(==3) & REFREQ & AS & SYSCLK & RESET; • Execution of access and refresh sequences state diagram SUft State 0: case !RESET REFREQ & (lAS t ISYSCLK) REFREQ' AS' SYSCLK , RESET !REFREQ' RESET endcase; 3-96 "Hm " STm: : 0; : 0; : 1; : 7; " NORMAL ACCESS CYCLE State 1: " NEXT " STATE : 2; case (COUNT-O) & !A22 (COUNT-O) , A22 endcase; : 0; State 2: RASI :- (COUNT-O) & low & RESET; & high; CASI- :- (COUNT-2) & low & RESET; DSACK- :" (COUNT-2) & low & RESET; 11 - :" (COUNT-3) & low 'RESET; If := (C0UNT-5) 'high; DSACK := (C01JNT-5) 'high; if (coiiNT-5) then 3 else 2; MSEL- :- (COUNT-I) "BOLDING STATE State 3: " NEXT case (!AS " STATE t !SYSCLK) , REFREQ , RESET REFREQ' AS' SYSCLK & RESET !REFREQ , RESET endcase; State 4: ,, CASI :" (COllN'r-O) high & RASI- :- (COONT-O) high' MSEL- := (COUNT-O) low RASI- :" (COUNT-I) & high' DSAcK := (COUNT-1) low & MSEL :- (COONT-l) low high , CAS( :- (COtlNT-I) , , : 3; : 4; : 8; A22; A22; A22; KSA; !RSA; KSA; BSA; I U) t: o " NEXT case (COUNT==O) (COUNT-O) (COUNT-I) (COUNT-I) endcase; " STATE & A22 & RESET & 1A22 & RESET & BSA & RESET : 0; : 4; : 5; , !BSA ,RESET : 6; Co Q) a: c o as '';:; ,~ Q. Co ~ "EXTENDED ACCESS CYCLE state 5: RASI := (COUNT-5) ,low' RESET; MSEL- := (COUNT-6) 'high' RESET; CAS( := (COUNT-7) ,low' RESET; DSACK :" (COUNT==7) 'low' RESET; 11:- (COUHT-8) 'low & RESET; 11- := (COUNT==10) , high; DSACK :- (COUNT-IO) , high; inCOUHT-IO) , RESET then 3 else 5; 3-97 "HIGH SPEED ACCESS State 6: II := (COUH'l==2) & lOll & RESET; 11- := (C00HT==4) & high; DSACK := iCo0HT==4) & high; inCOONT-4) then 3 elae 6; "HOHL REl'RESH CYCLE State 7: AGREQ :- AS 'loll & RESE!; :- (COmr.r-O) 'loll & RESE!; := (COUNT""1) & lOll 'RESET; := (COUN'J'-3) 'loll 'RESET; :- (C01lHT=-5) 'high; :" (COUN'J'==5) 'high; Me( := (C01JHT=a6) 'high; RASI :'" (COOHT==9) & lOll 'RESET; MSEL- :- (C01JHT=alO) , high i RESET; CASI- :- (COOHT==ll) 'loll & RESET; DSACIC := (COIlN'l'-=ll) 'loll 'RESET; 11:= (C01lHT==12) & lOll 'RESET; 11- := (C01lHT==14) , high; DSACK :- (COUH'l-=14) , high; if (c01lHT==6) " (122 t AGREQ) then 0 elae 7; if (COUN'J'....14) then 3 elae 7; 11:1RASIRrCRFCRASI- "Em:HDED REFRESH CYCLE State 8: RASI :- (cotJm'---l) 'high; MSEL- :- (C01lHT==1) 'loll; CASI- := (COUN'J'-1) & high; if (Cotnrz-3) then 7 else -8; I l> "0 "2. teat_VIlctora ' KOHL ACCESS CYCLE' ...0'~' ([OSC, RESET,122,RII,REFREQ,AS,HSA, SYSCLK,COUN'J') (clk, L , X ,X, X , X, (clk, H , X ,X, H , L, (clk, H , X , X, H , H, (clk, H , L ,X, X , X, (elk, H , X ,X, X , X, (clk, H ,X, x, X , X, , X, (clk, H ,X, X, X (clk, H ,X, X, X , X, (clk, H , X , X, X , x, , X, (clk, H , X , X, X ::::s :::a CD "0 o ~ (I) -) (RrC,RASI,MSEL,CASI,MC1,II,DBACK,STATE II X, X, X ) -) ( H, H, L, 8 ,-H ,H, X, X, 0 ) -) ( H, H, L, 8, H ,8, X, H, 0 ) -) ( H, H, L, H, 8 ,H, X, X, 0 ) -) ( H, H, L, H, H ,H, X, X, 0 I -> ( H, L, L, 8, 8 ,H, X, X, 1 I -> ( H, L, 8, 8, H , H, X, X, 2 I -> ( 8, L, H, L, H ,8, X, X, 3 I -> ( H, L, H, L, 8 ,L, X, X, 4 I -> ( H ,L, H, L, 8 ,L, X, X, 5 I -> ( 8, L, H, L, H ,H, H H H H H 8 L L L H , , , , , , , , , , 0 0 1 2 2' 2 2 2 2 3 teat VIlctora 'HOWING S'lATE 4 IIITH EX'l'EHDID ACCESS REQUES'l' ([OsC,RESET,122,RII,RErREQ,AS,HSA,SYSCLK,COUNTI -> (RrC,RASI,MSEL,CASI,MC1,II,DSACK,STATE )) (clk, 8 ,H, X, 8 , H, X, H, 0 I -> ( 8, L, B, L ,-8 ,H, H , 4 (clk, '8 , L ,X, X , X, X, X, 0 I -> ( B, L, H, L, H ,8, H , 4 (clk, R , X ,X, X , X, R, X, 1 I -) ( H, H, L, H, R ,H, R , 5 3-98 I; I; I; I; I; ]; ]; ]; I; I; test vectors 'EXTENDED ACCESS' ( [OSC, RESET, A22, RII, REFREQ, AS, lSA, SYSCLK, COUNT] , X, [elk, I , X, X, X , X, [elk, I , X, X, X , X, [elk, I , X, X, X , X, [elk, H , X, X, X , X, [elk, H , X, X, X , X, [elk, H , X, X, X , X, [elk, H , X, X, X [ellt, , X, H , X, X, X [elk, , X, H , X, X, X -) [RFC, RASI, MSEL, CASI, Mel, II, DSACK, STATEJ ) X, X , 2 ] -) [ H , I, L , H , I ,H, X, X , 3 I -) [ I , H, L , H , H ,H, X, X , 4 I -) [ I , H, L, I , H ,H, X, X , 5 ] -) [ I , L, L, I , H ,H, X, X 6 ] -> [ I , L , I, I , B ,H, X, X , 7 ] -) [ B , L, H , L , H ,H, X, X , 8 ] -) [ B , L , B , L , 8 ,L, X, X , 9 ] -) [ H , L, B , L , H ,L, X, X , 10 I -) [ 8 , L , B, L , B ,H, , I I H H H L L L H test vectors ' HOLDING STm 4 tilTH HIGH SPEED ACCESS REQUEST' ([OSC,RESET,A22,RII,REFREQ,AS, HSA, SYSCLK,COUNT] -) [RFC,RASI,MSEL,CASI,MC1, II,DSACK, STATEJ) [elk, , 8, X , H , 0 I -) [ H , L , H , L , I,H, H 8 , H , X, H , X,'X , X [elk, 0 I -) [ H , L , H , L , I ,H, H H , L , X, X , X, L, X , 1 I -) [ H , L, H , L , B ,H, L [ellt, H , L , X, X , test vectors ' HIGH SPEED ACCESS' ([OSC,RESET,A22,RII,REFREQ,AS, HSA, SYSCLK,COUNT] [elk, H , X, X, X , X, [elk, H , X, X, X , X, , X, [ellt, 8 , X, X, X -) [RFC,RASI,MSEL,CASI,MC1, II, DSACK, STATEJ) X, X 2 I -) [ H , L, H , L , H ,L, L X, X 3 ] -) [ H , L, H , L , 8 ,L, L X, X , 4 ] -) [ H , L, H , L , H ,H, B , , test vectors ' NOH-MEMORY ACCESS FOLLOlIED BY REFRESH REQUEST' ([OSC,RESE7,A22, RII, REFREQ,AS,HSA,SYSCLK,COOHT] -) [RFC,RASI,MSEL,CASI,Mel, II,DSACK, STATEJ) , H, X, H , 0 ] -) [ 8 , L, 8, L, H ,8, [elk, H , H , X, H , X, X, X , 0 ] -) [ H , H , L, H , 8 ,H, [ellt, H , H , X, X , L, X, X [ellt, 0 ] -) [ H , H, L , H , H ,B, H , X, X, H , X, X, L [ellt, H , X, X, H 0 ] -) [ B , H, L , H , H ,B, (ellt, 0 ] -) [ B , H, L , H , H ,H, , X, X, X B , X, X, L , , , test vectors ' NORMAL REFRESH CYCLE' ([OSC, RESET,A22, RII,REFREQ,AS,HSA, SYSCLK,COUNT] (elk, H , X, X, X , L, [elk, , L, H , X, X, X [elk, , L, H , X, X, X , L, (elk, H , X, X, X [elk, H , X, X, X , L, , L, [elk, H , X, X, H [ellt, , L, H , X, X, X -) [RFC,RASI,MSEL,CASI,MC1, II,DSACK, STATEJ) X, X , 0 ] -) [ H , 8 , L, 8 , L ,H, X, X , 1 ] -) [ B , L , L, H , L ,8, X, X , 2 ] -) [ B , L , L, H , L ,H, X, X 3 ] -) [ L , L , L , H , L ,H, X, X , 4 ] -) [ L , L , L, H , L ,1, X, X 5 I -) [ B , H, L, H , L ,H, X, X , 6 ] -) [ B , H , L, B, B ,H, , H H H H H 8 8 8 H H H H , , , , , , , , , 5 5 5 5 5 ]1 II II II 5 3 ]1 ]1 ]1 ]1 ]1 , , , 4 4 6 II II II , , 6 6 3 II , , 4 0 0 0 ]1 ]1 ]1 ]1 ]1 , , , , , , , , , , 5 5 7 7 7 7 7 7 7 0 ]1 ]1 ]1 ]1 ]1 ]1 ]1 ]1 ]1 I... ...0en C. CD a: C 0 '.;I CIS ,~ C. c. (RFC, RASI,MSEL, CASI,l«:l, II, DSACI(, S'lATE (elk, (elk, (elk, 8 , X , X, 8 H , X , X, 8 H , X , X, L , X, X, , L, X, , X, X, ((OsC,RESET, 122, RII, REFREQ,AS, BSA, SYSCLK, CO\IH'r] -) (RFC,RASI,MSEL,CASI,lI:l, II,DSACK, STATE I (elk, (elk, end SCDECODE 3-100 B B 8 8 , , , , X, X, X, X, X, X, X, X, X X X X , , , , X, X, X, X, X, X, X, X, B B B B B 8 8 8 8 B H 8 L L L B , , , , , , , , , , , , , , , , 11 L, 0 ] -> ( 8, L, B, L ,-8 ,8, 8 X, 0 ] -> ( 8, L, 8, L, 8 ,8, H X, 0 ] -) ( 8, L, 8, L, 8 ,8, 8 test vectors ' EXmNDID REFRESB CYCLE' (elk, (elk, 11 B ,B; L ,B, L ,8, L ,B, L ,B, L ,8, L ,8, 8 ,8, 8 ,B, 8 ,H, B ,H, B ,8, B ,8, 8 ,L, 8 ,L, B ,8, X, 0 X, 1 X, 2 X, 3 ] ] ] ] -> -> -> -> ( 8, ( 8, ( B, ( 8, L, 8, B, 8, 8, L, L, L, 11 L ,-8 ,8, 8, B ,B, 8, 8 ,8, 8, R ,B, 8 R 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 , , , , , , , ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; 3 3 8 ]; ]; ]; 8 ]; ]; ]; ]; 8 8 7 APPENDIXB NAME PARTNO DATE REV DESIGNER COMPANY ASSmLY LOCATION ,I ,I,I ,I,I SCDECODE; TIO004; 05,07,87 ; 01 ; Breun i nger ,Peprah; Texas I nstrullents; None; Dallas; / , . flf' ,.11 flf •• If . . If I " ' I I ' II Iff I. I •• Ilf ••• If If II •••• I' I' " " 'f' ••••••• , ••• , , .. 1 •• , . , . , ' . . ' . . Static Colulln Decode This Is an eXaliple of how the PSG507 can be used to generate the required mellory tilling control signals (RAS. CAS. "SEL etc) for static colulln decode IlIPlellentation using the ALS6301. ALS6310 and the AlS630 AlS6300. I n a system env Ironment. / , . Ilflf Iff.f ••• , . , •••••• If f. Iff. Ilf III •••••• ,," " Allowable Target Device Types: '" Inputs I., Iliff. fll' .f. I,I,1, I,I,i, I,I, " I, " Iff. ".1 •• ,,1,,1.1 "11'/ TEXAS INTSRUMENTS PSG507 ,1.".,.'. If ".' ••••••• ",,1 'flfl" f"f".I.flf. , ••••••••••••• 'fll •• ,'.' •••• I., •• II •••• ,/ pin pin pin pin pin pin pin pin 18 '" pin pin pin pin pin pin pin Outputs 8 9 10 11 13 14 15 "' "' OSC RESET AZZ RW REFREQ AS HSA SYSClK " Oscillator " Systell Reset - when lOll " IO!!" - Me.ory access Read, Write Enable Refresh Request Addr Strobe - access request " High Speed Access System Clock - (OSCJ2) ,I,I ,I ,I I,I, " "I, " " " I US 't 0 c. CD RFC RASI NSEl CASI NC1 W DSACK '" Node Declarations " ' pinnode [33 •• 38] = [CO .. 5] pinnode 39 = SClRO pinnode 41 = CNTHOlDO pinnode 42 = CNTHOlDI node [P3 .. 0] node AGREQ " Refresh COIIplete " ROil Address Strobe Multiplexer Select Colulln Address Strobe Node Control " IIrlte " Data Strobe Acknowledge ,I,I ,I ,I Sui It-in 6-Bit counter I' Counter Cc I ear- non regi stered " Counter Hold " Counter Hold I' Buried State Access Grant ,I - non registered - registered Registers Request I," I,I,"" " I,I, I, I,"" a: C 0 '';; CIS .g Q. C. c:( 3-101 , .. Declarations and lnterlaediate Variable Definition '" field COUNT = [C5 •• 0] field STATE = [P3 •• 0] $deflne STO 'b'OOOO $deflne STl 'b'OOOI $define ST2 'b'OOIO $define 513 'b'OOII $define 514 'b'OIOO $define ST5 'b'OIOI $define ST6 'b'OliO $define ST1 'b'OIII Sdefine ST8 'b'IOOO " BUILT-IN COUNTER CONTROL EQUATIONS '/ SCLRO = !RESET , ST2 & COUNT:'d'5 • ST4 & COUNT:'d'O I ST5 & COUNT:'d'IO , ST6 & COUNT: 'd' 4 I ST1 & COUNT: 'd'6 & (Al2 & AGREQ) • ST1 & COUNT: 'd' 14 f ST8 & COUNT:'d'3; CNTHOLDl.s I CNTHOLOl.r = !RESET • ST2 & COUNT:. 'd'S ,514 , COUNT:'d'O t ST5 & COUNT: 'd' 10 , ST6 & COUNT: 'd' 4 I ST1 , COUNT:'d'6 , (A22 & AGREQI • ST7 , COUNT: 'd'14 , ST8 & COUNT:'d'3; = STO • STl I ST3 • ST3 & !REFREQ & RESET " " " ""/' Set count hold while clearing " '/ " the counters accordingly. " " "/' " " " ""/' " " Reset Reset Reset Reset count count count count hold hold hold hold on on on on Iff 3-102 " " " " ""/' " " /' " & !A22 & RESET & !REFREQ & RESET & REFREQ & AS & SYSCLK & RESET; " " Clear counter when RESET is low " and during transitions at the end " the Indicated states and counts. State Hach i ne Equat ions .. , sequence STATE ( present STO: iflREFREQ & liAS ,!SYSCLK)) if(REFREQ & AS & SYSCLK & RESETI i fI ! REFREQ & RESET) default next next next next present STl: iffCOUNT:'d'O & !A22) IfICOUNT:'d'O & A22) default next ST2; next STO; next STl; present ST2: " NORm ACCESS CYCLE " if(COUNT:'d'OI & RESET ifICOUNT:'d'I) iffCOUNT:'d'21 & RESET ifICOUNT:'d'31 & RESET if(COUNT:'d'S) default next next next next next next STO; STl; ST1; STO; ST2 out ST2 out ST2 out ST2 out ST3 out ST2; !RASI; HS[L; [!CASI.IDSACK]; IW; [W.DSACK)i transition transition transition transition to to to to ST1 ST2 ST8 514 " " '/ " present S13: /" HOLDING STATE "/ ifl!AS t ISYSCLK) & RHREQ & RESET if(REFREQ & AS & SYSCLK & RESET) if I !REFREQ & RESET) default next next next next S13; SU; ST8; S13; present 514: if(COUNT:'d'O) if(COUNT:'d'O) if(COUNT: 'd'l) If(COUNT:'d'l) default next next next next next STO out [RASl,!NSEL,CASl]; 514; ST5 out [RASl,!NSEL,CASl]; ST6 out I DSACK; S14; & AZZ & RESET & !AZZ & RESET & HSA & RESET & IHSA & RESET present STS: /" EXTENDED ACCESS CYCLE "/ if(COUNT:'d'S) & RESET if(COUNT:'d'6) & RESET if(COUNT:'d'71 & RESET if(COUNT:'d'8) & RESET if(COUNT:'d'IO) & RESET default next . next next next next next present ST6: /" HIGH SPEED ACCESS "/ If(COUNT: 'd'Z) & RESET If(COUNT: 'd' 4) default APPEND APPEND APPEND APPEND APPEND RAS!.s V.S MCI_.s PO_.r P3_.r = !RESET; = I RESET; = !RESET; = IRESET; APPEND APPEND APPEND APPEND I RAS I; NSEL; [lCASI,!DSACK]; IV; [V,DSACK]; next ST6 out !V; next ST3 out [V,DSACK]; next ST6; present 517: /" NORm REFRESH CYCLE '/ if AS if(COUNT:'d'O) & RESET if(COUNT:'d'l) & RESET if(COUNT: 'd'3) & RESET if(COUNT:'d'S) IfICOUNT: 'd'6) & (AZZ , AGREQ) IfICOUNT:'d'6) & IAZZ & !AGREQ if(COUNT: 'd'9) & RESET if(COUNT: 'd'IO) & RESET if(COUNT: 'd'll) & RESET if(COUNT:'d'IZ) & RESET if(COUNT: 'd'14) default present ST8: /" EXTENDED REFRESH CYCLE If(COUNT:'d'l) If(COUNT:'d'3) default ST5 out ST5 out ST5 out ST5 out 513 out ST5; next next . next next next next next next next next next next next S17 out 517 out 517 out S17 out S17 out STO out 517 out 517 out 517 out ST7 out 517 out S13 out S17; !AGREQ; !NC U !RAS!; !RFC; [RfC,RASl]; NC U NC U !RASI; NSEL; [lCASI,!DSACK]; !V; [V ,DSACK]; I t!o Q. G) a: c o ;:; CO .sa Q. Q. "0 "2(=)' ...0' I» j ::D CD .... "0 o en 3-108 Mechanical Data 4-1 Contents Page Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3 Sockets . , . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . 4-25 4·2 MECHANICAL DATA OW plastic "small outline" packages Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. OW PLASTIC PACKAGE (20-pin package used for illustration) 2,65 (0.1041 ~r 70NOM 9,0 (0.3541 4 PLACES 2'35~J~ ~,I 0,10 (0.004) 0,185 10.031) , I" II -.j 0,510.021 X 45"LC-~---' rl::r- ~1~70NOM r ~ 0.490(0.019' tt-- 0,350 (0.014) 40:t40 -) I jl 'PLACES 0,230 (0.0091 ' ~jf-I P . 1,27 (0.0501 0,40 (0.016) 1t--ti-',27 10.0501 TP (See Note AI ~ DIM A MIN A MAX 16 20 24 2St 10.16 12,70 15,29 17,68 (0.400) (0.500) (0.602) (0.69S) 10,36 12,90 15.49 17,88 (0.408) (0.508) (0.S10) (0.704) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES tThe 28-pin NOTES: A. B. C. D. package drawing is presently classified as Advance Information. Leads are within 0,25 (0.010) radius of true position at maximum material dimension. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion shall not exceed 0,15 (0.006), Lead tips to be planar within ±0,051 (0.002) exclusive of solder. TEXAS . " INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 as as ~ o 4-3 MECHAIIICAL DATA DWplastic "small outline~' packages Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated wit/1in a plastic compQund. The compound will withstand soldering temperature with no deformation, and circuit performance characteris~ics will remain stable when operated in high-humidity conditions. \..eads require no additional, cleaning or processing when used in soldered assembly. 24-PIN ow PACKAGE 15'5(O'6101~ 15,310.6021 ----- 13 0 •• (0.021 I:~:::~::I =-:-1. . 1 LI:z--- k.lJ. . JJlib, x ... -r- ~ o· ••• 0,78510.031) 0,585 IO.~231 NOM \ . •7·PLACES ~ . 1.27 {O.05OI 0,230 (O.OO!II Q.4D"iii.Oiii All LINEAR DIMENSIONS ARE IN MllliMETER$ AND PARENTHETICAllY IN INCHES IIs: NOTES: A. B. C. D. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion shall not exceed' b, 15· (0.006). Leads are within 0,25 (0.010) radius of true positiofl at maximum material dimension. lead tips to be planar within ±0.051 (0.002) exclusive of solder. CD n :r t» :J n- t» 4-4 TEXAS ." INSTRUMENTS POST OFFICE SOX'665012 • DALLAS; TEXAS 76265 MECHANICAL DATA FK ceramic chip carrier packages Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid and braze seal. The packages are intended for surface mounting on solder lands on 1,27 (O.050-inchl centers. terminals require no additional cleaning or processing when used in soldered assembly. FK package terminal assignments conform to JEDEC Standards 1 and 2. FK CERAMIC CHIP CARRIER PACKAGES (2B-terminal package shown) -:3 Io--r r'i :~'-_ _ ~ ili1J CERAMIC CHIP CARRIERS JEOEC OUTLINE DESIGNATION' NO.OF TERMINALS MSOO4CB 20 MS004CC 28 A B MIN MAX MIN MAX 8,69 (0.342) 11,23 (0.442) 9,09 (0.358) 11,63 (0.458) 7,80 (0.307) 10,31 (0.406) 9,09 (0.358) 11,63 (0.458) *AII dimensions and notes for the specified JEDEC outline applv. ~ORNER A 0.71 (0.028) 0,56 (0.022) ~~ I "1 1,63 (0.064) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES TEXAS ~ INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 16266 4-5 MECHANICAL DATA I FN plastic chip carrier package Each of these chip carrier packages consists of a circllit mounted on a lead frame and encapsulated within an electrically non conductive plastic compound. The com'pound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the devices are operated in high-humidity conditions. The packages are intended for surface mounting on solder lands on 1,27 (0.050) centers. Leads require no additional cleaning or processing when used in soldered assembly. FN PLASTIC CHIP CARRIER (28-termlnal peckage used for iII!'stratlonl r 4.50 10.1771 4.24 (0. 1671 Ii' . 122 (00481 1.07 (0.0421 X45' V [ 5 • 1.35 (0.0531 X 45' 1.19(0.0471 0 3 2 1 28 27 26 1 I. r-+ ~:~~o~~if~LI ----rJ Il L...1/O.69 (0.0271 R 25 [ 6 2' [ 7 23 22 ll:: 21 20 -- - - I' 12 1. 13 14 15 16 17 18 I .r~1' 0.25 (0.0101 3 PLACES .B ~"___________ A_(s_e_e_N_ot_e_A_I__~.. 1 NO. OF TERMINALS 20 28 44 II:s: 68 64 MAX MIN R MAX MIN MAX 1~,O3 B.B9 9.04 7,87 8,38 10.3961 (0.3561 11.58 10.3101 (0.4561 (0.4101 10.3301 10.92 (0.4301 16.00 10.6301 10.9851 10.4951 17.65 10.6951 25.27 10.9951 (0.3501 '1,43 (0.4601 16.51 10.6501 24.13 10.9501 30.10 30,35 29,21 (1.1851 11.1951 11.1501 ! C MAX 9,78 25,02 (See Note BI SEATING PLANE (See Note CI 10.3851 12.32 10.4851 17.40 (0.6851 12,57 ~:',::~~::U'" '--~..;::::;~ 8 A MIN .' 'd 16.66 10.6561 24.33 10.9661 29.41 11.1581 10,41 15.49 (0.6101 23.11 (0.9101 23,62 10.9301 27,69 28,70 11.0901 (1.1301 0,81 (0.032)~ 0,66 (0.0261 ~T 1.52 (0.0601 MIN I-.i. I ~ (0.0251 MIN 0,51 (0.020I-oj I ~ 0,36 (0.0141 I LEAD DETAIL CD (') ::T I» ~ ri' !!. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Centerline of center pin each side is within 0,10 (0.004) of package centerline as determined by dimension B. B. Location of each pin is within 0,' 27 (0.005) of true position with respect to center pin on each side. C. T~e lead contact points are planar within 0,10 (0.0041. c !I» 4-6 TEXAS ..., INSlRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 76266 MECHANICAL DATA J ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is'intended for insertiQn in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("'bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. 14-PIN J CERAMIC 1.--19.9410.785) ~ I19.18 (0 755) i::::::: I@@@@@cv® 0.63(0.025)RNOM 7.87 (0 310) I 11-_ _'it-.;;7",.11;;-:(",0.;;;;8",,~ (0.290) -1 J:j ,ffi L~ __ 0 0 0 0 0@0 6.22 (0.245) 1.27 0.51 10.020) MINl 10.050) NOM \-SEATINGPLANE 14PLACES~10.3610.014) 020 (0 0081 14 PLC:CES lw ~ 8- 5.0~~:00) 3.30 (0.130) MIN 11 I-' 1.78 (0.070) MAX 14 PLACES ---- H II _u~u J-.{ J-1 W s~~t!~JT Hu 1( I'" j.0.6~41~~~~)E~IN U...JL --, r- 058 (0023) 0;38 (0:015) 14 PLACES 2.54 10.100) 1,78 (0.070) 4 PLACES PIN SPACING 2.54 (0.100) T.P. (See Note AI Falls Within JEDEC TO-116 and EIA MO-OO 1AA Dimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0.25 (0.010) of its true longitudinal position. .. as as C cau '2 as .c u CD :! TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 4-7 MECHANICAL DATA J ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. l6·PIN J CERAMIC ktbtfw-,~. '!. '!. 7,1fl10.310) 7,37 10.290) 7,1110.280) • 6,22 10.245) l. JI \~n",~' 16 PLACES I\-- 0.3610.014) ,....I. 0,20 10.008) 16 PLACES -1 r CD@@0®@0® 5,oato.200) 1.7810.070) MAX 16 PLACES ~ AA~ ADO SE~i~":T R, j::.~~~ l~1 ~I U~~rt 1jli--O'~i~~~~k~'N 3,3OM\~ 130) 0,305 10.012) MIN 4 PLACES ~ PIN SPACING 2.5410.100) T.P. lSee Note A) g:~: 19:9~~! -I ~ 16 PLACES ~:~ :~:~~: 4 PLACES • For memories of 64 bits and up, a few MSIILSI products in Series 54174 and Series 54S/74S that are derived from memory circuit bars, and complex HCMOS parts. this maximum is 7,62 (0.3001. All other dimensions apply without modification. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN )NCHES IIs: NOTE A: Each pin centerline is located within 0,25 (0.0101 of its true longit,udinal position. CD () :::r' &» :::I (;' !. ...C &» &» 4-8 TEXAS . " INSTRUMENTS POST OFFICE BOX 855012 • DALLAS, TEXAS 75265 MECHANICAL DATA J ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. 18·PIN J CERAMIC 7,87 (0.310) 7,37 (0.290) 7.62 10.300) 6,22 (0.245) -1 t 000000000 l!tt ~~5: S:t;~~G 3'30A::~~OO-) MAX 18 PLACES -1,27 (0.060) NOM GLASS II'~;;;;;;~~~;;;;;;~---,SEALANT -- 18 PLACES -,..-_ _ _ _ _ _ U ..IlL.. 0,356 (0.014) ~\ 0.203(0.008) f 18 PLACES -H I~t!--+tl--~:=~~.g~~) MIN 0,58 (0.023) 0.38 10,015) 18 PLACES PIN SPACING 2,54 (0.100) (See Note AI ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY )N INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. a !ca C TEXAS ", INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 4-9 MECHANICAL DATA J ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaninll or processing when used in soldered assembly. 20-PIN J CERAMIC g 'l 'l ~:~~:~:~~~: 7,62 (0.300) 6,22 (0.245) 1 1.78 (0.070) MAX 20 PLACES 1,27 (0.050) NOM r:;;t~~;;:;:;;:;;;;;:;;~~ ~ 105" .. _s:t;~~G -~--.-----.,- "Sir MIN 20 PLACES , . -_ _' - -_ _ \\ 0,36 (0.014) .-.I~0,20 (0.008) GLASS SEALANT lioe-H---+t-+ft- ~:~~~g~~) MIN • 0,58 (0.023) 0,38 (0.015) 20 PLACES I 20 PLACES ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. c ; 4-10 TEXAS ." INSTRUMENTS POST OFFICE BOX 665012 • DALLAS. tEXAS 76285 ~ "~~~V~ MECHANICAL DATA JT ceramic dual-In-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the pins are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-diped") pins require no additional cleaning or processing when used in soldered assembly. 24-PIN JT CERAMIC ! - - - - 3 2 . 5 1 (1.2801 MAX -----.I ,6'~;~"'~~'C:::::::::::I @@@@@®®®®®®® 7,'2'0,3001 ',22'0245) 1 0000®®0®®®@@ 0,38 (0015) 1.27 (0.050) NOM MIN 1,78 (0.070) ~ ~24PLAces GLASS SEALANT 5,08(0.200) MAX SEA TlNG---.:-I----,rl-1 PLANE ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. I.. ca ca C "i u '2 ca ..c u CD :IE TEXAS ~ INSTRUMENlS POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 4-11 MECHANICAL DATA J ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 15,24 (0.600) centers. Once the pins are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-diped") pins require no additional cleaning or processing when used in soldered assembly. 24-PIN JW CERAMIC ~---------~~~:~:~~:----------~ ®@@@@@@@@@@@ 0,63 (0.025) R NOM 1.7Slt .•7.) 0,51 (O.020) I I I ' ~::~ :~:~~: ~ 1-1~ I 24 PLACES PIN SPACING 2,54 (0.100) T.P. {5ee Note A) Falls within JEDEC MD-015AA dimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. II 3: CD () :::r I» ~ (;' !. ...C I» I» 4-12 TEXAS . " INSIRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 752,?5 MECHANICAL DATA JD ceramic side-brade dual-in-line packages This is a hermetically sealed ceramic package with a metal cap and side-brazed tin-plated leads. JD CERAMIC-SIDE-BRAZE Io---b _ . _ -_BMAX==~II _ . ~~~~nD[Jt bJl OR NUMBERI C0------------------~ It It ---L t . 1-ffimvvmtW1llt ~ ~A___oI II SEATING PLANE 0.38100151 -0011<- 0.20 CO.0081 0.7610.0~01:! 0.51CO.020IMIN _ ~:: , 1.7B 10,0701 1_ _ I ~ 1.9141~i.~~~sMAX -01 1--1 --..j 1--2.5410.1001 NOM PIN SPACING (See Note AI j 3.18 16 18 20 22 2.4 -0.25 (-0.010) 7.62 (0.300) 7.62 (0.300) 7.62 (0.300) 10.16 (0.400) 7.62 (0.3001 B (MAX) 20.57 (0.810) 23.11 (0.9101 25.65 (1.010) 27.94 (1.1001 30.86 (1.215) C (NOM) 7.37 (0.290) 7.37 (0.290) 7.37 (0.290) 9.91 (0.390) 7.37 (0.290) ~N) 24 28 40 48 52 64 -0.25 (-0.010) 15.24 (0.600) 15.24 (0.600) 15.24 (0.600) 15.24 (0.600) 15.24 (0.600) 22.86 (0.900) 8IMAX) 31.8 (1.250) 36.8 (1.450) 52.1 (2.050) 62.2 (2.450) 67.3 (2.650) 82.6 (3.250) C (NOM) 15.0 (0.590) 15.0 (0.5901 15.0 (0.590) 15.0 (0.590) 15.0 (0.5901 22.6 DIM A + 0.51 (+ 0.020) 10.~251 MIN 0.5310.0211 0.3810.0151 ~NI DIM A +0.51 1+0.020) 5.0810.2001 MAX • (0.8901 ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0,0101 of its true longitudinal position. II... as as o "ii u '2 as .c u CD :E TEXAS ~ INSTRUMENlS POST OFFICE BOX 656012 • DALLAS, TeXAS 76285 4-13 MECHANICAL DATA JK ceramic dual-In-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on 10,16 (0.400) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly; 24-PlN JK CERAMIC 24 E::ES \\ ~~36 (0.014) ~~ 0.20 (0.008) r-lJ L T 24 PLACES 0,305 10.0121 MIN Ir ------II~--'-'---1f+-_O.68 (0.0231 PIN SPACING I ----II---- °2!8pt~g~:) 2,54 to.100) T.P. tSee Note AI 4 PLACES 2.03 (0.080) MAX 4 PLACES ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. IIs: CD (') :::T I» :::s c:r !. C .... I» I» 4-14 TEXAS ." INSfRUMENlS POST OFFICE BOX 855012 • DALLAS. TEXAS 75265 MECHANICAL DATA JL ceramic dual-in-line package This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap with a window, and a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mountinghole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly. 20-PIN JL CERAMIC I- 24,7610.975) 23.62 (0.930) ------11 -"~'-{~~~2:J 0000®0000@ 0,58 (O,023) 0,38 (0.0151 20 PLACES ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. ...co CO C TEXAS . " INSlRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 4-15 MECHANICAL DATA N plastic dual-in-Iine package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. 14-PIN N PLASTIC Ii. 7.62. 0.25 14----+lt-(0.30h 0.0101 6,35:!:. 0,25 (0.250.0.0101 (See Notes B and C) Falls Within JEDECTO-116 and EIA MO-001AA Dimensions ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true )ongitudinal position. R. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane. ...C I» I» 4-'16 TEXAS ." INSTRUMENTS POST OFFICE BOX 666012 • DALLAS, TeXAS 75265 MECHANICAL DATA N plastic dual-in-line package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. 16-PIN N PLASTIC 7.62:!: 0.25 (0.3001; 0.010) 6,35 i 0,25 (0.250 ± 0.010) 2.0 (0.0801 NOM 0,84 iO.033) MIN (See Notes 8 and Cl Parts may be supplied In accordance with the alternate side view at the option of TI plants located in Europe. In this case, the overall length of the package is 22.1 (0.870) max. ALTERNATE SIDE view --1 (O.~70J f 0'51~~~201~1 -*-t-"",,78 MAX 16 PLACES 5.08 (0.2001 MAX L ,.... L~ 4 PLACES 0,84 (0.033) MIN 16 PLACES ---ll-- 0.533 (0.0211 0,381 (0.015) 16 PLACES (See Notes Band C} PIN SPACING 2.54 (0.1001 T.P. (See Note Al ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.0201 above seating plane. TEXAS .." INSTRUMENlS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 ...asas C 4-17 MECHANICAL DATA N plastic dual-in-line package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically non conductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance chllracteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. 18-PlN N PLASTIC 7,62 t 0,25 (0.300 ; 0.0101 i----H--8,99 (0.275) MAX _i --I r-,,78 2,03 (0.080) NOM L 0.25 (0.010) NOM OOI -SEATING PLANE 5.08 (O·'t MAX _ ~\ ~ 0,279 ± 0,076 (0011 ±0003) 18 PLACES (See Notel B and C) (0 070) MAX 18 PLACES 'O.51(00'OI~1 MIN -*--J, 3,17 (0 125) MIN - L ~ ~ .; PL.ACES 0.89(00351 MIN 18 PLACES --l ~O.467tO,076 (0018 ± 0003) 1,91 (0 075) 023 (0 009) r-- 18 PLACES (See Notes B and C) PIN SPACING 2,64 (PlOD) T P (See Note Al ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder· dipped leads. C. When solder·dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0.51 10.0201 above seating plane • • 3iC CD n ::::r m = 5' I!. C m Dr 4-18 TEXAS ", INSTRUMENTS POST OFFICE SOX 866012 • DAUAS. TeXAS 75265 MECHANICAL DATA N plastic dual-in-line package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. 20-PIN N PLASTIC Ii. Ii. 8 'O';~::':~0I 7,1' (02BO) 6,61(0260) --1 I • 2,0 10 080) NOM 0,25 (0 010) NOM -tlj 24.77 '0.9'5' 23,22(0.914) jt-l,78 (0.070) MAX 20 PLACES • I i~1 t 5,08 (0.200) MAX-*--SEATING PLANE :.5~~N020) ~~~::l~:~~~: 20 PLACES (SleNotes Band C) 3.9"0.1551 317 (0 125) • . 1,68 (0.066) 0,22 (0.009) J.- 1.-.1.. I 0.8' '0.033) MIN 16 PLACES --ojj.--0.53310.021' j' 'I PIN SPACING 2.54 (0.100) T.P. {See Note Al 0,381 (0.015) 20 PLACES (See Notes B and C) 4 PLACES J~ ~ L r-1,02 (0.040) 4 PLACES VIEWA Parts may be supplied in accordance with the alternate stde view at the option of TI. European-manufactured parts may have pin 1 as shown in view A. Alternate·side-view parts manufactured outside of the USA may have a maximum package length of 26.7 (1.0501. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. B. This dimension does not apply for solder-dipped leads. C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane. II .... ca ca o "i ·cuca .c u CD :E TEXAS .." INSTRUMENTS POST OFFICE BOX 856012 • DALLAS. TEXAS 75285 4-19 MECHANICAL DATA N plastic dual-in-line package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation. and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended.for insertion in mounting-hole rows on 15.24 (0.600) centers. Once the leads are compressed and inserted. sufficient tension is provided to secure the package in the board during soldering. ' Leads require no additional cleaning or processing when used in soldered assembly. 28-PIN N PLASTIC 10------36.611.440) M A X - - - - - - - . f ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES II NOTES: A. Each pin centerline is located within 0.25 (0.010) of its true longitudinal position. B. This dimension does not apply for solderwdipped leads. C. When solder-dipped leads are specified. dipped area of the leaa extends from the lead tip to at least 0.51 10.020) above seating plane. 3: CD () :::T I» :::s 5' e. C I» ~ I» 4-20 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 MECHANICAL DATA N plastic dual-in-line packages (continued) 24-PlN NT PLASTIC 1<-_ _ _ _ _ _ 31'8 (1.250) _ _ _ _ _ _--01 28,6 (1.125) · · .'~::~" .~i~::.==i:VVVVVVVVVI )<----->1-1--7,1 (0.280) MAX 0,38 (0.015) 00000000 \::..J f9\ @@ ® ----I ~ 1--2,0 (0.080) NOM F f M I N-01 10--- 1,78 (0.070) 24 PLACES ~ ~rr 1~1----1~,l-4~(0-.0-4~5)------------------~ ~i - :-To,25 (0.010) NOM 5,08(0.200) MAX /, 105° U"'---- 90" 24PLACES -SEATING PLANE· ~ 1 ]- .11..--- 0 ,36(0.014) If 0,25 (0.010) 24 PLACES (See Note B) . T _ I 4,06(0.160) 317 (0 125) ' 216 (0085) 0:71 (0:028) 4 PLACES - ~ I ~ --I ~ 1,14 (0.045) MIN 24 PLACES --11--- 0 ,533(0.021) PIN SPACING 2,54 (0.100) T.P. (See Note A) 0,381 (0.015) 24 PLACES (See Note B) ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES NOTES: A. Each pin cen'terline is located within 0,2510,010) of its true longitudinal position. B. For solder-dipped leads, this' dimension applies from the lead tip to the standoff. ....CISCIS Q TEXAS . " INSTRUMENlS POST OFFICE BOX 655012 • DALLAS. TeXAS 75265 4-21 MECHANICAL DATA NW plastic dual-in-Iine package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 15,24 (0.600) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additiomil cleaning or processing when used in soldered assembly. NOTE: For all except 24~pin packages, the letter N is used by itself since only the 24-pin package is available in more than one row-spacing. For the 24'pin package, the 7,62 (0.300) versio!' is designated NT; the 15,24 (0.600) version is designated NW. If no second letter or row-spacing is specified, the package is assumed to have 15,24 (0.600) row-spacing. 24-PIN NW PLASTIC 1 - - - - - - 32,8 _.. . ~u~::~:::::::::] \;.[:::~:;:~:~\;. CD0@0®®0®®@@@ 2,0 (0.0801 NOM H L...£.0.25 (0.010) NOM -[I ~ ~ ---I I02~1 ~~~~:3) ISsa Notes Bend CI 1,,78 (0.0701 MAX 24 PLACES L-~---,5,08 10200) MAX -SEATINGPLANE-r0,5' 10.020) MIN 24 PLACES 90 0,28 t 0,08 11,290) M A X - - - - - - - I @l@@@@@@@@@@)@ J I I JL L J , ' 0,467:t 0,076 (0.018:t. 0.003) 0,83 (0.033) MIN -~~ J---1 317 (0 125) MIN 24 PLACES 2.42 (0 0951 MAX . 24 P~ACES 4 PLACES 24 PLACES PIN SPACING 2,54 (0.100) T. P. (5 •• Notes B and cj (See Note A) All LINEAR DIMENSIONS ARE IN MIlliMETERS AND PARENTHETICAllY IN INCHES IIs: NOTES: A. Each pin centerline is located within 0,25 (0.0101 of its true longitudinal position. B. This dimension does not apply for solder·dipped leads. C. When solder·dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane. CD n ::r m :::J C:;" !. c m .... m 4-22 TEXAS ." INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TeXAS 75265 MECHANICAL DATA N plastic dual-in-line package This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation. and circuit performance characteristics will remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 15.24 (0.600) centers. Once the leads are compressed and inserted. sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly. 40-PIN N PLASTIC I' 53.1 [2.0901 MAX 'I ,,::~:~·~~t::::::::::::::::::[1o - @@@@@@@@ 1.3/2.0 (0.05/0.081 T Y r 2 0.10/0,121 ' 3.6/4.6 10.14/0.181 I 2.54 10.100) TVP NONCUMULATIVE n n nw ~ ~ ~~033 2.6713.61 ~ 10.02U DIA 10.106/0.1501 PRODUCTION DATA documents contain iolarmeti•• • urrelll II of publiml•• d.tto. Prod_ ••nf.rm to spaciIiCltio•• por the tto"". of Te,," Instr....nts =~i~·;':.~1.; ~'=::':r 111"::;:=:''' not ~ I ~~ 18~ 18 BODY MATERIAL G - Glass Filled Epoxy P - PBT Polyester TI Socket f""{!)~@-@-@':"o-@-@:-.-:-@-@~@-:@-@~o B Number of Pins 024 to 324 Grid Body - PBT polyester UL 94 V-O On request, G 10/FR4 or Mylar film Outer sleeve - Machined Brass (QQ-B-626) Inner contact - Beryllium copper (QQ-C-530) heat treated Plating: (specified by part number) I Contact Loading Pattern 1.35 10.0&3) DIA A B ±0.010 (0.9501 24,13 (1.050) 26,67 (1.1501 29.21 (1.250) 31.75 (1.350) 34.29 (1.450) 36.83 (1.550) 39.37 (1.650) 41.91 (1.750) 44,45 (1.850) 46,99 ±0.005 t (0.800) 20.32 (0.900) 22,86 (1.0001 25,40 (1.100) 27.94 (1.200) 30,48 (1.300) 33.02 (1.400) 35,56 (1.500) 38.10 (1.600) 40,64 (1.700) 43.18 I as ; o tNoncumulative Dimensions in parentheses are inches Consult factory for detailed information TEXAS • INSTRUMENTS 34 Forest Street. Attleboro, Massachusetts 02703 4-29 IC SOCKETS SOJ BURN-IN/TEST PERFORMANCE SPECIFICATIONS Mechanical Accommodates IC leads per specific IC device Recommended PCB thickness range: 0.062 in to 0.092 in Recommended PCB hole size range: 0.032 in to 0.042 in Durability: 10,000 cycles; 20 mil max contact resistance ' change Insertion force: 1.3 oz per position max Withdrawal force:· S.S grams per position min Electrical Contact rating: 1.0 A per contact Contact resistance: 20 mil max initial Insulation resistance: 1000 Mil per MIL-STD 202, Method 302, Condition B Dielectric withstanding voltage: 700 V ac rms per MIL-STD 202, Method 301 Environmental Thermal shock: 100 cycles, -25°C to +IS0oC, 1 hour Temperature soak: IS00C for 1000 hours, SO mil max change Operating temperature: - 65°C to + ISO °C PART NUMBER SYSTEM CSJT xxx xx xx X T Body Material MATERIALS Body - PES glass, filled UL 94 V-O Contact - copper alloy Plating - overall gold plate min 4 /Lin over min 70 /Lin nickel plating Blank = G.F. PES A = PPS R4-03 B = G.F. PEl Body Variation 02 = Standard 1 forward! backward insertion 03 = Special/orientation pin 04 = Special/high standoff 05 = Special/24-pin 06 '= Standard 2 forward insertion. BECU Contact Finish 37 = Overall gold plate 41'in 38 = Overall gold plate 30 I'in 57 = Selective gold plate 4 I'in 58 = Selective gold plate 30 I'in Number of Contacts 3.00 10,1181 -....::::.. 2.53 4------20.310.8001-1- - - - _ " 10.0991 IIs: 02 VERSION SHOWN ~----, TI SOJ series SIZES: 20 pin Z6 pin 20-PIN (02 VERSION) FOOTPRINT SHOWN --r -@--------@--@--rtf 0,80 I CD ::r I» ::J I I (0.1001 -t~'tl' @-i----*@-1-@111"';: I ' : , : ! C:i" !. I I I ! 5! 5! I"!' '1'1''':; " I ...C I» I» 2,54 IM10.0321 ttt+t---- ---t+~t®l ~ I, (') 5,08 I -@---' ;'--tll---@-ll-Gl ,~.--~ I 54~ ,~ 110.2001 1.27 ' Dimensions in parentheses are inches Contact fa~torv for detailed information 4-30 PRODUCTIOI DATA doc....nts cont.in infor..dion ••rrant I. of pu.llcotion dot•. Protl.......iorll ta .p..llinti••• par t .. tannl of T.... Instr...ents otond.rd w.rrenty. Prod.ction pj'G....lng dot. oot ..._rily incl.do ltIIing of III porl..lttro. 10.0501 TEXAS ~ INSTRUMENTS 34 Forest Street. Attleboro, Massachusetts 02703 I 2 (01001 . 2.64 \ (0.1001 NO. 1 PIN IC SOCKETS DUAL·IN·LlNE PERFORMANCE SPECIFICAnONS C7X SERIES - SCREW MACHINE Mechanical Accommodates IC leads 0.011 ± 0.003 in by 0.018 ± 0.003 Recommended PCB thickness range: 0.062 in to 0.092 in Recommended PCB hole size range: 0.032 in to 0.042 in Recommended hole grid 'pattern: 0.100 in ± 0.003 in each direction Vibration: 15 G, 10-2000 Hz per MIL-STD 1344A, Method 2005.1 Test Condition III. Shock: 100 G, sawtooth waveform, 2 shocks each direction per MIL-STD 202, Method 213, Test Condition I Durability: '5 cycles, 10 mil max contact resistance change per MIL-STD 1344, Method 2016 Insertion force (C7X and C86): 16 oz (454 g) per pin max Withdrawal force: (40 g) per pin min Electrical C7X SERIES - SCREW MACHINE PART NUMBER SYSTEM C7X Contact rating: 1 A per contact Contact resistance: 20 mil max initial Insulation resistance: 1000 Mil at 500 V dc per MIL-STD 1344, Method 3003 Dielectric withstanding voltage: 1000 V ac rms per MIL-STD 1344, Method 3001.1 Capacitance: 1 pF max per MIL-STD 202, Method 305 (X) 1I XX - X X I Environmental Operating temperature: - 55·C to 125 ·C, gold; - 40·C to 100 ·C, tin Corrosive atmosphere: 10 mil max contact resistance change when exposed to 22% ammonium sulfide for 4 hours Gas tight: 10 mil max contact resistance change when exposed to nitric acid vapor for 1 hour Temperature soak: 10 mil max contact resistance change when exposed to 105·C temperature for 48 hours Materials (C7X and CB6) PRECISION MACHINED' SLEEVE PRECISION FOUR-FINGERED CONTACT Body - PBT polyester UL 94 v-o C7X Contacts - Outer sleeve: brass Clip: BECU Contact finish - clip 30 jLin gold over 50 jLin nickel or 50 jLin tin/lead over 50 jLin nickel Specified by Part Number - sleeve 1b "in gold over 50 jLin nickel or 50 jLin tin/lead over 50 jLin nickel C86 Contacts - Phosphor bronze base metal C86 Contact-finish - Tin plate 200 jLin over copper flash ~;~e~;t"t:' ~.:10 Plating ISleeve/Clop) Gold/Gold 5 - Tin/Gold o- Number of Positions S - Variations Solder Ta.l: 9 Pin length 0.125 Typ Single-in-line package (where applicable I Screw Machine Socket 1 - wire wrap 2 - solder tail CB6 SERIES - STAMPED AND FORMED II ... ca ca C CB6 SERIES PART NUMBER SYSTEM l c l86 lXX- L Variation 01 - Standard product Number of positions Tin Dual Beam Face Wipe 'ii Co) '2 ca .c Co) CD :E TI Socket Series PRODUCTIOI DATA documonts •••llil inf.rmotlon curnnt II af publicltiDn date. Preducts canfarm to speclficatians per the tarms of TIXI. Instruments :':~::i;·{::I:ri ~=::i:; :.r::;:~~~~ nat TEXAS ~ INSTRUMENTS 34 Forest Street. Attleboro, Massachusetts 02703 4·31 IC SOCKETS DUAL·IN·LlNE C7X SERIES DUAL·IN·L1NE C7X AND C86 SERIES ~~F=~~----~/9 1.35 0.53 ...U .... (0.021) DIA (0.053) 3.61/4.57 , (0.142)110.180) ...:.j1-{~~:5) DIA C86 SERIES , 4.25 (0.169) . DIPS '" 0 0 0 0 g :Ii<= J 6 8 14 16 18 20 22 24 t24 .Ii Q 0 .. it ~ = :Ii " ~ 0 '" Q E is .. on . 0 0 a :Ii<= ~ i. 7.62 5.08 10.16 7.62 t24 10.300) 10.200) 10.400) 10.300) 10.16 7.62 10.16 7.62 28 10.400) 10.300) (0.400) 10.300} 17.78 15.24 10.16 7.62 32 10.700} 10.600} 10.400) (0.300) 20.32 17.78 10;16 7.62 34 10.800) 10.700) (0.400) 10.300) 22.86 20.32 10.16 7.62 40 (0.900) 10.800) (0.400) 10.300} 25.40 22.86 10.16 7.62 11.000) 10.900) 10.400) 10.300} 48 27.94 25.40 12.76 10.16 50 11.10Q) 11.000) 10.500) 10.400) 30.48 27.94 17.78 15.24 11.200) 11.100) (0.700) 10.600) 64 0 .. it * , 0.38 TVP 0 :i " C! 0 it Q E E is is ~ 30,48 27.94 12.76 10.16 11.200) 11.100) 10.500) 10.400} 35.56 33.02 17.78 15.24 11.400) 11.300) 10.700) (0.600) 40.64 38.10 17.78 15.24 11.600) 11.500) 10.700) 10.600} 45.72 '43.18 17.78 15.24 11.800) 11.7"00) 10.700) 10.600) 50.80 48.26 17.78 15.24 12.000) 11.900) 10.700) 10.600) 58.42 17.78 15.24 I~~~) 12.300) 10.700) 10.600) 63.50 60.96 25.40 7.62 12.500) (2.400) (1.000) (0.900) 78.74 25.40 22.86 1~~2~) 13.100) 11.000) 10.900} .5 Q 30,48 27.94 10.16 7.62 11.200) 11.100} 10.400) 10.300) t Nonstandard sizes Not all sizes available in each series Dimensions apply to all series C I» &t Dimensions in" parentheses are inches Contact factory for detailed Information 4 ..32 PRODUCTION DATA d......nts ••nIIln inf.rmlti.n .urrelt • •f p.bli..ti.n dlto. Producta ••nf.rm t. lpacHic.ti... p.r th. tonal of T.... IlIIIrumonts sta .... rd w.rranty. Pr.ducti.n ~rDCnsing do. nit .......rIl' Inctudo tuI{ng of .11 per.met.... TEXAS ~ INsTRUMENTS 34 Forest Street. Attleboro, Massachusetts 02703 IC SOCKETS BURN·IN/TEST DIP 1 PERFORMANCE SPECIFICATIONS PART NUMBER SYSTEM Mechanical C X 37 XX - Accommodates IC leads 0.011 in by 0.018 in Recommended PCB thickness range: 0.062 in to 0.092 in Recommended PCB hold size range: 0.032 in to 0.042 in Durability: 10K cycles - CM Series, 5K cycles - CP/CQ 22 Number of positions' Overall gold plate Operating temperature: - 65°C to 170°C - CP/CM Series, - 65°C to 150°C - CQ Series Humidity: 10 mil max contact resistance Temperature Soak: 10 rnO max contact resistance change MATERIALS A ±0.01 Length Number of Positions BURN-IN/TEST DIP SOCKETS I, P - High density mounting M - Shrink 0.070 centers C037 SERIES tFor additional plating options consult the factory ~ Series Features Q- Auto unload able TI Socket Series Body - PPS (polyphenylen sulfide) UL 94 V-O Contacts - Higher performance copper nickel alloy Plating: t 4 "in of gold min over 100 "in of nickel min 2.54 A-0.l00 centers 8-0.070 centers Copper nickel alloy Soldertail Environmental IO.100)~ Pin to pin PPS high temperature body material Electrical Contact rating: 1 A per contact Contact resistance: 20 mil max initial Insulation resistance: 1000 M{J at 500 V dc Dielectric withstanding voltage: 1000 V ac rms Capacitance: 1 pF max per MIL-STD 202, Method 305 -.-'.c L LS 3.30}2 10.' 3011... ,?-" 2 54 ~~1O:1001 SOLDER TAil 0 C B ±0.02 ±O.01 Width ±0.01 Contact 14 16 18 20 20,32 22,35 24,89 27,43 (0.8001 (0.8801 12,70 15,24 7,62 (0.9801 (0.5001 (0.6001 (0.300) (1.080) 24 28 40 42 32,51 37,59 52,83 55,37 (1,280) (1.480) 19,05 22,86 15,24 (2.080) (0.750) (0.900) (0.600) (2.180) ~ C037 SERIES CP37 SERIES CP37 SERIES Number of Positions 1 CM37 SERIES •. 50 TI, (0.460) (0.700) (0.800) (0.900) (1.000) 7,62 (0.300) 12,70 (0.500) 24 28 40 30,48 (1.2001 35,56 (1.400) 50.80 (2.000) 15,24 (0.600) 20,32 (0.800) A ±O.016 Length B C ±0.O2 ±0.016 Width 28 27,18 (1.070) 10,67 (0.420) 17,20 (0.677) 40 42 54 37,85 (1.490) 39,62 (1.560) 50,29 (1.980) 16,51 (0.650) 23,11 (0.910) 10.4721 3.48 64 59,18 (2.3301 20,32 (0.800) 26,92 (1.060) 020 1 Number of Positions B nll~"99 ~~.l O.53......!1.- 11,68 17,78 20,32 22.86 25,40 CM37 SERIES --.l (0.021, C max Width 8 14 16 18 20 I ~O.5' 10.2561 B ±0.02 A max Length 1 78-J \..IO.i)701 (0.137) 0,50 10.0201 I as ..... as o Dimensions in parentheses are inches Contact factory for detailed information PRODUCTION DATA do•• monts .ontain information current 8. of publicatiDn dat•• Products conform to specifications par the terms of T8XI. Instruments ::~'!:~i~ai~:1~7i ~:\:~i:r lI~D::;:~~~~ not TEXAS ~ INSfRUMENTS 34 Forest Street. Attleboro, Massachusetts 02703 4-33 IC SOCKETS QUAD·IN·LlNE/SHRINK PACK PERFORMANCE SPECIFICATIONS Insertion force: 16 oz (454 g) per pin max Withdrawal force: 1.5 oz (42 g) per pin min Operating temperature: - 40 °C to 100 °C, tinllead Accommodates IC leads 0.011 ± 0.0003 in by 0.018 ± 0.003 in Contact rating: 1 A per contact MATERIALS Body - PBT polyester UL 94 v-o C4S & CxW Contacts - Copper alloy Contact finish - Reflow tin plating, 40 "in min DUAL BEAM EDGE GRIP CONTACT PART NUMBER SYSTEM FOR CxW SERIES lli C X W XX - 11 QUAD-IN-L1NE (CxW SERIES) l Number of contacts (42, 52, 64) Staggered leads 5 6 - I" A---~ 64 contacts 42, 52 contacts TI Socket Series QUAD-IN-L1NE (CxW SERIES) A Max Length 41,90 (1.651 Product Number C5W64-11 B C Row to Row Max Row to Row 22,90 (0.950) 19,05 (0.750) C6W42-11 27,90 (1.10) 22,90 (0.900) 17,80 (0.700) C6W52-11 34,30 (1.35) 22,90 (0.900) 17,80 (0.700) Dimensions in parentheses are inches Contact factory for detailed information 1,79 (0.050) C4S SERIES PART NUMBER SYSTEMt FOR C4S SERIES 1 II c 4 1S t~::ber of contacts 28,40,42,52,54,64 Shrink Pack (0.070 in pin-to-pin contact spacing) s: (') B Row to Row C Max Width 28 25,02 (0.985) 10,16 (0.400) 13,00 (0.512) 40 35,69 (1.405) 15,24 (0.600) 17,98 (0.708) 64 57,07 (2.247) 19,05 (0.750) 21,62 (0.851) Dimensions in parentheses are inches SHRINK PACK DIP (C4S SERIES) Reflow tin plating CD A Max Length Positions TI Socket Series t Also available in screw machine contacts ::r I» C4S SERIES j C:;' !. C .... I» I» 4-34 PRODUCTION DATA documents contain information current 8S of publication date. Products conform to specifications par the terms of TexIs Instruments :~~~~:~~i~ai~:1~1i ~!::i:~ti:r ~~o::;:~~:~~s not ,If TEXAS INSTRUMENTS 34 Forest Street. Attleboro, Massachusetts 02703 IC SOCKETS BURN·IN/TEST PERFORMANCE SPECIFICATIONS QUAD FLAT PACK (CFPM SERIES) Mechanical Accommodates IC leads per specific IC device Recommended PCB thickness range: 0.062 in to 0.092 in Recommended PCB hole size range: 0.032 in to 0.042 in Durability: 5000 cycles, 10 mil max contact resistance change per MIL-STD 1344, Method 2016 Electrical Contact rating: 1 A per contact Contact resistance: 20 mil max initial Insulation resistance: 1 Mil at 500 V dc per MIL-STD 1344, Method 3003.1 Dielectric withstanding voltage: 700 V ac rms per MIL-STD 1344, Method 3001.1 Capacitance: 1 pF max per MIL-STD 202, Method 305 Environmental 1'"L:~:' PART NUMBER SYSTEM Operating temperature: -65°C to 170°C Humidity: 10 mil max contact resistance change when tested per MIL-STD 202, Method 103B Temperature soak: 10 mil max contact resistance change when exposed to 105°C temperature for 48 hours MATERIALS Body - CFP Series - PES (polyether sulfone) glass filled UL 94 V-O Temperature: -65°C to 170°C Contact - Beryllium copper Plating: t Overall gold plate min 41'in over min 70 I'in nickel plating 01X Lvariation. A - 1.0 mm ~ B - 0.8 mm ~ contact spacing lXX M - Quad pack TI socket Plating 37 - overall gold plate Style PF - Flat pack PIN GRID ARRAY (CZFW SERIES) t For additional plating option consult the factory. Dimensional drawings available from factory. SMALL OUTLINE FLAT PACK (CFPH/K SERIES) PART NUMBER SYSTEM c 11 XX X XXX XX 01 Lplating 37 - overall gold plate Number of positions Configuration PART NUMBER SYSTEM c xx L x LXXX Lplati:: . . ....'" W-llxllx2 o'" Style ZF - Zero force 37 - overall gold plate TI Series socket Number of positions AVAILABlE SIZES Configuration H - 14, 16, 18,20 Positions K - 24, 28 Positions Style FP - Flat pack TI Series socket CFPH Series 14, 16, 18, 20 CFPK Series 24, 28 Small Outline Flat Pack CFPM Series 64, 80 Quad Flat Pack CZFW Series 11 x 11 x 2 Pin Grid Array Contact factory for detailed information PRODUCTION DATA do•• monts .ontsin inlarmalion carnnt .1 of publication date. Praducts conform to specifications per the terms of Taxas Instruments ::~=~~;I[::1~7i ~:\::i:r :.r::::::':~~1 not TEXAS . " INSTRUMENlS 34 Forest Street. Attleboro, Massachusetts 02703 4-35 For more Information contact your local distributor or contact TI directly: Texas Instruments Incorporated CSD Marketing, MS 14·1 Attleboro, MA 02703 (617) 699·5242/~269 Field Sales Offices UNITED STATES INTERNATIONAL California Australia Irvine 91714 17891 Cartwright Road Phone: (714) 660·8111 Texas Instruments Australia, Ltd. P.O. Box 63 Ellzabetl1, South Australia 5112 Phone: 61.·8·255·2066 San Diego 92123 4333 View Ridge Ave., Suite B Phone (619) 278·9600/9603 Torrence 90502 9505 Hamilton St. Bldg. A, Suite One Phone: (213) 217·7000 Georgia Norcross 30092 5515 Spaulding Drive Phone: (404) 662·7861/7931 Massachusetts Attleboro 02703 34 Forest Street, MS 10·6/MS 14·3 Phone: (617) 699·5206/127815213 North Carolina Charlotte 28210 8 Woodlawn Gree~ Suite 100 Phone: (704) 527·0930 Texas. Dallas 75265 7800 Banner Drive; MS 3936 Phone: (214) 995·7550/7547/7548 Texas Instruments provides customer assistance in varied technical areas. Since Ti does not possess full access to data concerning all of the uses and applications of customers' products, responsibility is assumed by TI neither for customer product design nor for any Infringement of patents or rights of others, which may result from TI aSSistance. C r» ... I», 4-36 England Texas Instruments, Ltd. Belfordia House Prebend.Stsreet Bedford MK41 7PA Phone: (0234) 63211, Ext. 1 France Texas Instruments, Ltd .. Metallurgical Materials Division 8·10 Avenue Morane Saulnier 78140 Vellzy·Viliacoublay, Paris Phone: 333. 946. 9712 Hong Kong Texas Instruments Asia, Ltd. Asia Pacific Division 8th Floor, World Shipping Centre Harbor City 7, Canton ~oad Kowloon, Hong Kong Phone: 852·3-722·1223 Italy Texas Instruments Italla SPA Viale Europa, 40 1·20093 Cologno Monzese Milano Phone: 011·39·2·25.300.1 Japan Texas Instruments Japan, Ltd. 305 Tanagasnira Oyama·Cho Suntoh·Gun, Shizuoka·Ken Japan 410·13 Phone: (81) 550·81211 Mexico Texas Instruments de Mexico, SA Av. Reforma No. 450·10 Piso Col. Juarez Delegacion: Cuauhtemoc Mexico City, D.F. Mexico 06600 Phone: 52·5·514·3583 Singapore Texas Instruments Asia #02·08, 12 Lorong Bakar Batu Kolam Ayer Industrial Estate Singapore 1334 Republic of Singapore Phone: 65·747·2255 Taiwan Texas Instruments Supply Co. Taiwan Branch Bank Tower Room 903., 205 Tun Hwa N. Road Taipei, Taiwan Phone: 866·2·713·9311 West Germany Texas Instruments Deutschland GMBH Metallurgical Materials Div. Rosenkavallerplatz 15 0·8000 Muenchen 81 Phone: 011-49·89·915081 TI Sales Offices TI Distributors ALABAMA: Huntsville (205) 837·7530. ARIZONA: Phoenix (602) 995·1007; Tucson (602) 624-3276. TI AUTHORIZED DISTRIBUTORS Arrow/Klerulff Electronics Group Arrow,Canada (Canada) Future Electronics (Canada) GRS Electronics Co., Inc. Hall-Mark Electronics Marshall Industries Newark Electronics Schweber Electronics Time Electronics Wyle Laboratories Zeus Components - OBSOLETE PRODUCT ONLYRochester Electronics, Inc. Newburyport, Massachusetts (617) 462-9332 CALIFORNIA: Irvine (714) 660-1200; Sacramento (916) 929-0197; ~:~t~l~ra~II(~lgk?~:£~gb; Torrance (213) 217·7000; Woodland Hilla (81a) 704-7759. COLORADO: Aurora (303) 368-8000. CONNECTICUT: Wallingford (203) 269-0074. FLORIDA: Altamonte Springs (305) 260-2116; Ft. Lauderdale (305) 973-8502; Tampa (813) 286-0420. GEORGIA: Norcross (404) 662·7900. ILLINOIS: Arlington Heights (312) 640·3000. INDIANA: Carmel (317) 573-6400; Ft. Wayne (219) 424·5174. IOWA: Cedar Rapids (319) 395-9550. KANSAS: Overland Park (913) 451·4511MARYLAND: Baltimore (301) 944-8600. MASSACHUSETTS: Waltham (617) 895·9100. ~:;~J~~~ld:(~'rJ)~~7~4~~ (313) 553-1500; MINNESOTA: Eden Prairie (612) 828-9300. MISSOURI: St. Louis (314) 569·7600. NEW JERSEY: Iselin (201) 750,1050. NEW MEXICO: Albuquerque (505) 345-2555. ~~I~~~~~) ~~~ilJg~~rJs~!~~) (j~~i9;:~_~770; Poughkeepsie (914) 473·2900. NORTH CAROLINA: Charlo"e (704) 527-0930; Raleigh (919) 876·2725. OHIO: Beachwood (216) 464-6100; Dayton (513) 258-3877, ARIZONA: Arrow/Kierulff (602) 437-0750; Hall-Mark (602) 437-1200; Marshall (602) 496-0290; Schwaber (602) 997-4874; Wyle (602) 866-2888. CALIFORNIA: Los Angeles/Orange County: Arrow/Kierultf (818) 701.7500, (714) 838-5422; Hall·Mark (818) 716-7300. (714) 669·4100, 13) 217·8400; Marshall (818) 407-0101, (818) 459-5500, 1141458-5395; Schweber (818) 999-4702; 14 663·0200, ~13l320.8090; Wyle ~213~ 322-9953, ~ ~~:;a:~~g~oHall!~a~k6r9~~r~k~~:0ci;'4 921·9000; Marshall (916) 635·9700; Schweber (916) 929·9732; Wyle (916) 638-5282; San Diego: Arrow/Kierulff (619) 565·4800; ~~~~~~r (~19J) ~~~_1~~~; ~;~h(JI, ~1~~~~116;OO; OREGON: Beaverton (503) 643-6758. PENNSYLVANIA: Blue Bell (215) 825·9500. PUERTO RICO: Halo Rey (809) 753-8700. TENNESSEE: Johnson City (615) 461·2192, TEXAS: Austin ~512) 250-6769; ~:~~~ro~~315;2f::i~~~~~hardson ALABAMA: Arrow/Kierultf (205) 837·6955; Halt-Mark (205) 837-8700; Marshal! (205) 881-9235; Schweber (205) 895·0480. (214) 680-5082; UTAH: Murray (801) 266-8972. VIRGINIA: Fairfax (703) 849-1400, WASHINGTON: Redmond (206) 881-30aO. WISCONSIN: Brookfield (414) 782-2899. ~~~~~~ ~~r.~~ia~~t(l~~)(~1~.~fg1 ~ 970; St. Laurent, Quebec (514) 336·1860, TI Regional Technology Centers CALIFORNIA: Irvine (714) 660-8140; Santa Cla,a (408) 748·2220; Torrance (213) 217·7019. COLORADO: AUrora (303) 368-8000. GEORGIA: Norcross (404) 662·7945. ILLINOIS Arlington Heights (313) 640·2909. MASSACHUSETTS: WaHham (617) 895·9196. TEXAS: Richardson (214) 680-5066. CANADA: Nepean, Ontario (613) 726-1970, San Francisco Bay Area: Arrow/Kierultf (408) 745-6600, Hall-Mark (408) 432·0900; Marsha!! (408) 942-4600; Schwaber (408) 432-7171; Wyle (408) 727-2500; Zeus (408) 998-5121, COLORADO: Arrow/Kierutff (303) 790-4444; Hall-Mark (303) 790-1662; Marshall (303) 451·8383; Schweber (303) 799-0258; Wyle (303) 457-9953. CONNETICUT: Arrow/Kierulff (203) 265·7741; Hall·Mark (203) 269-0100; Marshall (203) 265·3822; Schweber (203) 748-7080. FLORIDA: Ft. Lauderdale: ~~~~~:e[3uO~)(~~~:;:o~~~~~~~~(j~5l3~if_%~ i~280; Orlando: Arrow/Kierulff (305) 725-1480, (305) 682·6923; Hall·Mark (305) 855-4020; Marshall (305) 767-8595; Schweber (305) 331.7555; Zeus (305) 365-3000; Tampa: Hall-Mark (813) 530·4543; Marshall (813) 576· 1399. ~;I~~;~~4t;)~~:~~ ~~:lh~iI9i:~:)2~23_5750; Schweber (404) 449-9170, ILLINOIS: Arrow/Kierulff (312) 250·0500; Halt-Mark (312) 860-3800; Marshall (312) 490-0155; Newark (312) 784·5100; Schweber (312) 364·3750. INDIANA: Indianapolis: Arrow/Kierulff (317) 243-9353; Hall-Mark (317) 872·8875; Marshall (317) 297-0483. IOWA: Arrow/Kierulff (319) 395·7230; Schweber (319) 373·1417. KANSAS: Kansas City: Arrow/Kierulff (913) 541-9542; Hall·Mark (913) 888·4747; Marshall (913) 492-3121; Schweber (913) 492-2922, MARYLAND: Arrow/Kierulff (301) 995-6002; Hall·Mark (301) 988-9800; Marshall (301) 840·9450; Schweber (301) 840-5900; Zeus (301) 997·1118. • TEXAS INSTRUMENTS MASSACHUSETTS Arrow/Kierulff (617) 935-5134; ~~~:!~~r (r~th ~615~5~~, ~:;~~~~*~ci~~~8.0810; Time (617) 532-6200; Zeus (6t7) 863-8800. MICHIGAN: Detroit: Arrow/Kierulff (313) 971-8220; Marshall (313) 525-5850; Newark (313) 967-0600; Schweber (313) 525·8100; Grand Rapids: A(row/Kierulff (616) 243-0912, MINNESOTA: Arrow/Kierulff (612) 830-1800; Halt-Mark (612) 941·2600; Marshall (612) 559-2211; Schweber (612) 941·5280. MISSOURI: 51. Louis: Arrow/KierulH (314) 567·6888; Hall-Mark (314) 291-5350; Marshal! (314) 291-4650; Schweber (314) 739·0526. NEW HAMPSHIRE: Arrow/Kierulff (603) 668·6968; Schweber (603) 625-2250. NEW JERSEY: Arrow/Kierulff (201) 538·0900, (609) 596-8000; GRS ElectroniCS (609) 964-8560; Han·Mark (201) 575-4415, (609) 235-1900; Marshall (201) 882-0320, (609) 234-9100; Schweber (201) 227-7880. NEW MEXICO: Arrow/Kierulff (505) 243-4586. ~:;:iK?e~~~ ~~6r J~~a_~g~o; Hall-Mark (516) 737.0600; Marshall (516) 273·2424; Schweber (516) 334-7555; Zeus (914) 937·7400; Rochester: Arrow/Kierulff (716) 427-0300; Hall-Mark (716) 244·9290; Marshall (716) 235·7620; Schweber (716) 424·2222; Syracuse: Marshall (607) 798-16ft. NORTH CAROLINA: Arrow/Kierulff (919) 876-3132, (919) 725·8711; Hall·Mark (919) 872-0712; Marshall (919) 878-9882; Schweber (919) 876-0000. OHIO: Cleveland: Arrow/Kierulff (216) 248-3990; Hall-Mark (216) 349-4632; Marshall (216) 248·1788; Schweber (216) 464·2970; Columbus: Arrow/Klerulff (614) 436-0928; Hall-Mark (614) 888-3313; Dayton: Arrow/Kierulff (513) 435-5563; Marshall (513) 898-4480; Schweber (513) 439·1800. OKLAHOMA: ArrowlKlerulff (918) 252·7537; Schweber (918) 622-8003, ~:~~~~~O~)~~~~~ ~~!) (~;)s:g:6000. PENNSYLVANIA: Arrow/Klerulff (412) 856·7000, ~2dh5~:;:;(:~~i ~~~~eg,t~~i~) ~~~J8~~~·7037; TEXAS: Austin: Arrow/Kierulff (512~ 835-4180; Hall-Mark (512) 258-8848; Marshall 512) 837·1991; Schweber (512) 339-0088; Wy!e (51 ) 834-9957; Dallas: Arrow/Kierulff (214~38Q.64t34; ~~~~~:r (~1,~) ~5631~~~°d; ~;~h(~J, %':11.~~iOO; Zeus (214) 783-7010; Houston: Arrow/Klerulff (713) 530·4700; Han·Mark (713) 781-6100; Marshal! (713) 895-9200; Schweber (713) 784-3600; Wyte (713) 879-9953. UTAH: Arrow/Kierulff (801) 973-6913; Hall-Mark (801) 912.1008; Marshall (801) 485-1551; Wyle (801) 974-9953. WASHINGTON: Arrow/Klerulfl (206) 575-4420; Marshall (206) 747·9100; Wyle (206) 453-8300. WISCONSIN: Arrow/Kierulff (414) 792·0150; Hall-Mark (414) 797·7844; Marshall (414) 797-8400; Schweber (414) 784-9020. CANADA: Calgary: Future (403) 235-5325; Edmonton: Future (403) 438·2858; Montreal: Arrow Canada (514) 735·5511; Future (514) 694-7710; CHawa: Arrow Canada (613) 226·6903; Future (613) 820·8313; Quebec City: Arrow Canada (418) 687-4231; Toronto: Arrow Canada (416) 672·7769; Future (416) 638·4771; Vancouver: Future (604) 294-1166; Winnipeg: Future (204) 339-0554. Customer Response Center TOLL FREE: (800) 232·3200 OUTStDE USA: (214) 995-6611 (6:00 a.m, - 5:00 p.m. CSl) BU TI Worldwide Sales Offices ALABAMA: Huntsville: 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837·7530. ~~rw!~~~g~~~~~~1'1~~~I(~'~'::4~:4~~W York Dr., g~~:g~:!:: ~~o 1~~~~~(4~~i'7~t~~ Office Park, PUERTO RICO: Halo Rey: Mercantil Plaza Bldg., Suite 505, Hato Rey, PR 00919, (809) 753·8700. TEXAS: Austin: P.O. Box 2909, Austin, TX 78769, WI~~a~~~~kR~~:O~80n: 1001 E. Campbell Rd., ~~i~~ 6:7~~~~g~~~~:7ngg, ~~fJr~::~:~y·, GERMAN~JF~ut::~I:~C ~~:~~~~~~~~:~rrsasse " 1 Kurfuerstendamm n " 06196+8070; Hamburgerstrasse 11, 0·2000 Hamburg 76,040+220'1154, Klrchhorsterstrasse 2, 0·3000 ~~;~v~~rf1id~~~ 2=~~~~alf1~~¥gg~; 11, ~~~~~~i~~:M9, °R=t~:~u,ra. ~5:&t~~~~~1; ARIZONA: Phoenix: 8825 N. 23rd, Ave., Phoenix, San Antonio: 1000 Central Parkway South, San Antonia, TX 78232, (512) 496·1779. 261 +35044. CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvin., UTAH: Mumy: 5201 South Green SE, Suite 200, Murray, UT 84107, (801) 266·8972. Texas Instruments Asia Ltd., 8th Floor, World Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon, Hong Kong, 3 + 722-1223. AZ 85021,1602)995·1007. CA 92714, (714) 660-8187; Sacramento: 1900 Point West Way, Suite 171, Sacramento, CA 95815, n Torrance, DbT~n~~I~\e;:2~~~t•. ' ~Vo~~~.~~gg~~~xc~~~~ CA (213) 217-7010; Woodland Hills: 21220 Erwin St., Woodlan"d Hills, CA 91367, 1618) 704-7759. COLORADO: Aurora: 1400 S. Potomac Ave., Suite 101, Aurora. CO 80012, (303)368-8000. ~~~~~T~!~ ~n.J~~'r~:rct~:rk~~~~~~~~U~~ri8J CT 06492, 1203) 269-0074. FLORIDA: Ft. Lauderdale: 2765 N,W. 6200 St., Ft. Lauderdale, FL 33309, (305) 973-8502; Maitland: 2601 Maitland Center Parkway, Maitland, FL 32751, (305) 660-4600; ~:::g: ~1~:09~1~1n3rI7g.~2b~uite VIRG'INIA: Fairfax: 2750 Prosperity, Fairfax, VA 22031, (703) 849-1400. WASHINGTON: Redmond: 5010 148th NE, Bldg B, Suite 107, Redmond, WA 98052, (206) 881·3080. :J~~:O~I::o~~'~i,'~i ~~: ~~~)~8~.~~:b. CANADA: Nepean: 301 Moodie Drive, Mallorn Center, Nepean, Ontario, Canada, K2H9C4, Wi~~~~~9J~i r~m~~~~~~:.sg~:~e St. E., 1:.1:J ¥~~'~~n:;a~~~~ts~i~:u~!'n~~r~~~e~~ebec, Canada H4S1R7, (514) 335·8392. 101, GA 30092, 1404)662·7900 ARGENTINA: Texas Instruments Argentina S.A.I.C.F,: Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, 1 + 394·3008. ~r~"~g~~~: ~~~~tt:,~LH:A~~:(g~~) ~40~~~Rquln, AUSTRALIA (II NEW ZEALAND): Texas Instruments Australia Ltd.: 6-10 Talavera Rd., North R{de GEORGIA: Norcross: 5515 Spalding Drive, Norcross, I~D:8~:': (~~9)W:l~H~~ Inwood Or., Ft. Wayne, Indianapolis: 2346 S. Lynhurst, ~ulte J·400, Indianapolis, IN 46241, (311) 24&-8555. IOWA: Cadar Rapid,: 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550. MARYLAND: Baltimore: 1 Rutherford Pl., 7133 Rutherford Rd., Baltimore, MO 21207, 1301) 944-8600. MASSACHUSETTS: Waltham: 504 Totten Pond Rd., Waltham, MA 02154, (617) 895-9100. ~S~d;~l ~2~~ 5~u~~~,a~~~ :t~S~~~~ ~~~: Melbourne, Victoria, Australia 3004, 3 + 267·4677; ~11 ~~~~~hWay, 'Elizabeth, South Australia 5112, AUSTRIA: Texas Instruments Ges.m.b.H.: Industrlestrabe BI16, A·2345 BrunnlGebirge, 2236·846210. :~~J~Mde~~~:~ ~~:~~rr::~~o~R~:i8~u~ ~u~~, HONG KONG I + PEOPLES REPUBLIC OF CHINA~ IRELAND: Texas Instruments (Ireland) Limited: ~r:~~71~d., Stillorgan, County Dublin, Eire, ITALY: Texas Instruments Semiconduttori ltaUa Spa: Viale Delle Scienze, 1,02015 Clttaducale (Rletl), Italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma), Monterotondo Scalo (Rome), Italy, 6+9003241; Viale ~~rgf:54~~r~i~~~~~~~f3,ZO'~~~~~~flaIY, 11 774545; Via J. Barozzl 6, 40100 Bologna, Italy, 51 355861. JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama ~~~y~~d.pap:';1~b~I~~2sr:~; t~~~::;'a~~n~tgt,u, Nissho Iwal Bldg., 30 Imabashi 3· Chome, Higashl-ku, Osaka, Japan 541, 06-2Q4-1881; Nagoya Branch, 7F oainl Toyota West Bldg., 10-27, Melekl 4-Chome, Nakamura·ku Nagoya, Japan 450, 52-583-8691. KOREA: Texas Instruments Supply Co.: 3rd Floor, ~~mg~~\~~o~~~~a:~~.~bfangnam-kU, MEXICO: Texas Instruments de Mexico S.A.: Mexico g~?:: ~~f~~m5~~~0'a~ - 10th Floor, Mexico, MIDDLE EAST: Texas Instruments: No. 13, 1st Floor ~:~~~aB~~~ra?~;~::l~~ ~~~: ~7~'+~~~:F' NETHERLANDS: Texas Instruments Holland B.V., ;U?d,g~~t~~:a~~u~~::m~~~rr. CB Amsterdam, 1130 Brussels, Belgium, 21720.80.00. ~~::::~~J.e~~~ol~~t~~,:~~ (~)o~O':'S: PB106, BRAZIL: Texas Instruments Electronicos do Brasil ~=~~~:~ ~~I~t:~~~I,I~~~l{~~sJg. Mile Rd., §:apa~~g, ~a;:ite~~5~~U. Andar Plnheiros, 05424 PHILIPPINES: Texas Instruments Asia Ltd.: 14th MINNESOTA: Edan Pralrla: 11000 W. 78th St., Eden Prairie, MN 55344 (812) 828-9300. DENMARK: Texas Instruments AIS, Mairelundvej 46E, oK·2730 Herlev, Denmark, 2 • 91 7400. PORTUGAL: Texas Instruments E~uipamento ~i\~~R:.~::.~:,~IW3-s:80~ard Pkwy'., Kansas St. Loull: 11816 ~orman Drive, SI. Louis, FINLAND: Texas Instruments Finland OY: Teoilisuuskatu 190 00511 Helsinki 51, Finland, (90) 701-3133. NEW JER'SEY: 1••lln: 485E U.S. Route 1 South, Parkway Towers, Iselin, NJ 08830 (201) 75().1050 FRANCE: Texas Instruments France: Headquarters and Prod. Plant, BP OS, 06270 Villeneuve-Lou bet, (93)20"()1..t)1: Paris Office, BP 67 8-10 Avenue Morane-8aulnler, 78141 Vellzy-Villacoublay, n Sales Office, L'Oree o'Ecully, MO 63148, 1314)569·7600. NEW MEXICO: Albuquerque: 2820-0 Broadbent Pkwy NE, Albuquerque, NM 87107, (505) 345·2555. ~~~~il~~e~~:!~i~~~hi~~~rn:~~~ ~~~~~~, m~i~~~~~~ (:~~~:15a~~ia~~:70n~:~~~~~~al, 2·Q4.8.1003. SINGAPORE 1+ INDIA, INDONESIA, MALAYSIA, THAILAND): Texas Instruments Asia Ltd.: 12 Lorang Bakar Batu , Unit 01..()2, Kolam Ayer Industrial Estate, Republic of Singapore, 747·2255. r~~~: J:rd~~~s~~.~~~~~rSfe~'1~4:a:. ,c1.~~~e SWEDEN: Texas Instruments International Trade ~ci:~~~~~ ~~:J~~~f~~:~J~:'x 39103, 5100 Le Peripole-2, Chemin du Plgeonn er de la ep ere, 31100 Toulouse, (61) 44·18-19; Marseille Sales Office, ~~:1~7~~38~s-146 Rue Paradis, 13006 Marseille, 10054 SWITZERLAND: Texas Instruments, Inc., Reldstrasse 6, CH·8953 oietikon (Zuerich) Switzerland, 1·7402220. TAIWAN: Texas Instruments SuPPI~ Co.: Room 903, ~rw~~~ ~::':'I~cd~/6~~:~2K~a~~1.::i. TaipeI, UNITED KINGDOM: Texas Instruments Limited: Manton Lane, Bedford, MK41 7PA, England,0234 OHIO: B.achwood: 23408 Commerce Park Rd., Beachwood, OH 44122, (216) 464-6100; g~".i3~~(~f~)~:J.d3'lt: 124 Linden Ave., Dayton, OREGON: B.averton: 6700 SW 105th St., Suite 110, Beaverton, OR 97005, (503) 643-6758. ~ TEXAS INSTRUMENTS tI=~~~, J;.v.e~Rtt~,::s:gl~~~I~?~O~~.~~2~orth, 8M > • .Jj} TEXAS INSTRUMENTS Printed in U.S.A . 288 - 100 SDZD001C
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:26 11:35:01-08:00 Modify Date : 2017:07:26 12:44:31-07:00 Metadata Date : 2017:07:26 12:44:31-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:f1af7c3e-ec35-8e41-9457-e46c347f3d82 Instance ID : uuid:5b46a5e4-16d4-7d46-ae48-5deafd96c2cf Page Layout : SinglePage Page Mode : UseNone Page Count : 482EXIF Metadata provided by EXIF.tools