1988_TI_Programmable_Logic_Data_Book 1988 TI Programmable Logic Data Book
User Manual: 1988_TI_Programmable_Logic_Data_Book
Open the PDF directly: View PDF
.
Page Count: 482
| Download | |
| Open PDF In Browser | View PDF |
•
TEXAS
.
INSTRUMENTS
Progralnlnable Logic
1988
1988
General Information
Data Sheets
Application Reports
Mechanical Data
The Programmable Logic
Data Book
,.,
TEXAS
INSTRUMENTS
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify, before placing orders,
that the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
ne,cessarily performed.
TI assumes no liability for TI applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or
relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.
Copyright © 1988, Texas Instruments Incorpor~ted
INTRODUCTION
In this volume, Texas Instruments prflsents technical information on TI's broad line of programmable logic
devices (PlDs), including 10-ns, 20-pin PAl® circuits.
TI's programmable logic products include high-speed leadership circuits, as well as standard 20- and 24-pin
PAL devices in a variety of speed/po/wer versions. This data book includes specifications on existing and
future products, including:
•
High-performance, low-power IMPACT'" and IMPACT-X'" 20- and 24-pin standard PAL
circuits
• High-complexity latched- :and Registered-input PAL ICs and Exclusive-OR arrays
• Flexible, '22V1 O-architectulre macrocell PAL ICs, including TI's enhanced, 20-ns version, the
TIBPAl22VP10-20
• High-speed 6- and 3-ns, 1 OKH and 100K ECl IMPACT'" and ExCl'" PAL circuits
• Ultra-low-power UV-erasalble and one-time programmable CMOS PAL ICs, including 20-pin,
'22V10, and generic architectures
• Fast, 50-MHz programmable state machines, including enhanced versions of '8251 05B/167B
sequencers and the TIBP'SG507 Programmable Sequence Generator
Texas Instruments high-speed programmable. bipolar devices utilize TI's advanced IMPACT'" and new
IMPACT-X'" technologies. IMPACT-X'" uses trench isolation and polysilicon emitters to increase performance
and reduce power dissipation compared to traditional processes. IMPACT-X'" provides 1.5-/Lm feature sizes
and 7-/Lm pitch.
Based on IMPACT-X"', TI's new ECl process, ExCl'" , offers even greater speed and density for highperformance ECl circuits.
This volume contains design and specification data for 78 device types. Package dimensions are given
in the Mechanical Data section in metric measurement (and parenthetically in inches).
Four programmable logic applic,ation reports have been incorporated into this data book as a reference
tool. They are: Designing with To'3xas Instruments Field Programmable Logic; Hard Array Logic; A Designer's
Guide to the PSG507; and Systems Solutions for Static Column Decode.
Complete technical data for any Texas Instruments semiconductor product is available from your nearest
TI field sales office, local auth.mized TI distributor, or by calling Texas Instruments at 1-800-232-3200.
PAL is a registered trademark of Monolithic, Memories Inc.
IMPACT and IMPACT-X are trademarks of Texas Instruments Incorporated.
ExCL is a trademark of Texas Instruments [Incorporated.
v
General Information
1-1
II
Q
CD
::::I
CD
...
'
!.
....5'
o...
3
C»
r+
0'
::::I
1-2
Contents
Page
Alphanumeric Index .................... ,. . . . . . . . . . . . . . . . . . . . ..
Glossary ..... ~ ................ ; . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Explanation of Function Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Parameter Measurement Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Hardware/Software Manufacturers ...............................
TIIMPACT'" Design and Service Centers ....... ,....................
1-3
1-5
1-9
1-11
1-12
1-13
1-14
ALPHANUMERIC INDEX
Page
Page
PAL16LSAC
PAL 16L8A-2C
PALI6LSAM ............
PAL 16L8A-2M ..........
2-3
2-3
TIBPAL20L 10-30C .......................... 2-127
TIBPAL20SPS-30M ....... 2-139
TIBPAL20SPS-20C
PAL16R4AC
PAL16R4AM . . . . . . . . . . .
PAL 16R4A-2M ..........
2-3
TIBPAL20X4-20C
PAL16R4A-2C
PAL16R6AC
PAL16R6A-2C
PAL16R6AM ...........
PAL16R6A-2M ..........
2-3
2-3
TIBPAL20X4-30C ........................... 2-127
TIBPAL20XS-20C
TIBPAL20XS-25M ........ 2-115
2-3
TIBPAL20X8-30C ........................... 2-127
PAL16RSAC
PAL 16RSA-2C
PAL16R8AM ...........
PAL 16R8A-2M ..........
2-3
2-3
TIBPAL20Xl0-20C
TIBPAL20Xl0-25M ....... 2-115
TIBPAL20Xl0-30C .......................... 2-127
PAL20LSAC
PAL20LSAM ............ 2-15
PAL20R4AC
PAL20R6AC
PAL20RSAC
TIBPAL20X4-25M ........ 2-115
TIBPAL22Vl0C
TIBPAL22Vl0M ......... 2-145
PAL20R4AM . . . . . . . . . . . 2-15
TIBPAL22Vl0AC
PAL20R6AM ........... 2-15
PAL20R8AM ........... 2-15
TIBPAL22VP10-20C
TIBPAL22Vl0AM ........ 2-145
TIBPAL22VP10-25M ...... 2-157
2-169
TIBPALR19L8C
TIBPALR19L8M
TISPADI6NS-7C ............................ 2-27
TIBPALR19R4C
TIBPAD ISNS-6C ............................ 2-35
TIBPAL 16LS-l0C
TIBPALI6L8-12M ........ 2-41
TIBPALR19R6C
T!BPALRI9R8C
TIBPALR19R4M ......... 2-169
2-1S9
TIBPALR 19R5M
TI8PALR19RSM ......... 2-1S9
TIBPAL 16LS-12C
TIBPAL16LS-15M ........ 2-57
TIBPALT19L8C
TIBPAL16LS-15C
TIBPAL 16L8-20M ........ 2-S7
TIBPAL 16L8-25C
TIBPAL 16LS-30M ........ 2-77
TIBPALT19R4C
TIBPALT19RSC
TIBPALT19LBM
TI8PALT19R4M . .....
TIBPALT19R6M
2-1S1
'"
2-181
II
...e
c:
'
0
ca
..
....
.E
..
0
"i
Q)
c:
Q)
0
2-1S1
TIBPAL ISR4-1 OC
TIBPAL 16R4-12M ........ 2-41
TIBPALT19R8C
TIBPAL1SR4-12C
TIBPAL 16R4-15C
TIBPAL 16R4-1 5M ........ 2-57
TIBPAL 16R4-20M ........ 2-67
TIBPLS50SC
TIBPSG507C
TIBPALT19RSM . ...... , ' 2-1S1
TIBPLS50SM . .......... 2-193
TIBPSG507M ........... 2-201
TIBPAL 16R4-25C
TIBPAL 16R4-30M ........ 2-77
TIBB2S105BC
TIBB2S105BM . . . . . . . . . . 2-209
TIBPAL ISRS-l OC
TIBPALISRS-12M ........ 2-41
TIBPAL1SRS-12C
TIBPAL ISRS-l 5M ........ 2-57
TIBS2S1S7BM . ......... 2-219
TIBS2S1S7BC
TIC HAL ISLS-35C ........................... 2-229
TIBPAL ISRS-15C
TIBPAL ISRS-20M ........ 2-S7
TIBPAL ISRS-25C
TlBPAL ISRS-30M ........ 2-77
TIBPAL ISRS-l0C
TIBPAL1SR8-12C
TIBPAL ISR8-12M ......
2-41
TIBPAL ISRS-l 5M ........ 2-57
TIBPAL ISRS-15C
TIBPAL ISRS-25C
TIBPAL ISR8-20M ........ 2-S7
TIBPAL1SRS-30M ........ 2-77
TIBPAL20LS-15C
TlBPAL20LS-20M ........ 2-S7
TIBPAL20LS-25C
TlBPAL20LS-30M ........ 2-101
TICPAL ISV8-25C
TIBPAL20R4-15C
TIBPAL20R4-25C
TIBPAL20R4-20M ........ 2-S7
TIBPAL20R4-30M ........ 2-101
TIBPAL20RS-15C
TISPAL20RS-20M ........ 2-S7
TICPAL22Vl0M ......... 2-271
TICPAL22Vl0C
TIEPAL10HI6PS-3C ......................... 2-2S5
TIEPAL 10H1SPS-SC ......................... 2-291
TIBPAL20RS-25C
TIBPAL20RS-30M ........ 2-101
TIEPAL10016P8-3C .... , .................... 2-297
TIBPAL20RS-15C
TIBPAL20RB-20M ........ 2-S7
TlEPAL 10016PS-SC ......................... 2-303
TIBPAL20R8-25C
TIBPAL20R8-30M ........ 2-101
TIFPLA839C
TISPAL20L 10-20C
TIBPAL20L 10-25M ....... 2-115
TIFPLAS40C
TICHAL ISR4-35C ........................... 2-229
TICHAL ISRS-35C ........................... 2-229
TICHAL ISRB-35C ........................... 2-229
TICPAL ISLS-55C ........................... 2-243
TICPAL ISR4-55C ........................... 2-243
TICPAL1SR6-55C ......... '...............•.. 2-243
TICPAL ISRS-55C ........................... 2-243
TICPAL 1BV8-30M . . . . . . 2-257
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 6!)5012 • DALLAS. TeXAS 75265
.
TIFPLAS39M . . . . . . . . . . . 2-309
TIFPLAS40M . .......... 2-309
1-3
5'
o
.
3
~
....
o·
Q)
:::s
1-4
GLOSSARY
INTRODUCTION
These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council
of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical
Commission (lEC) for international use.
PART 1 - GENERAL CONCEPTS AND CLASSIFICATIONS OF CIRCUIT COMPLEXITY
Chip-Enable Input
A control input that when active permits operation of the integrated circuit for input, internal transfer,
manipulation, refreshing, and/or output of data and when inactive causes the integrated circuit to be in
reduced-power standby mode.
NOTE: See "chip-select input."
II
c:
o
'.ca,
E
...
o
....
.5
'!
Chip-Select Input
Q)
A gating input that when inactive prevents input or output of data to or from an integrated circuit.
NOTE: See "chip-enable input."
c:
Q)
o
Field-Programmable Logic Array (FPLA)
A user-programmable integrated circuit whose basic logic structure consists of a programmable AND array
and whose outputs feed a programmable OR array.
Gate Equivalent Circuit
A basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that
number of individual logic gates that would have to be interconnected to perform the same function.
Large-Scale Integration (LSI)
A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit.
In this context a major subsystem or system, whether digital or linear, is considered to be one that contains
100 or more equivalent gates or circuitry of similar complexity.
Mask-Programmed Read-Only Memory
A read-only memory in which the data content of each cell is determined during manufacture by the use
of a mask, the data content thereafter being unalterable.
Medium-Scale Integration (MSI)
A concept whereby a complete subsystem or system function is fabricated as a single microcircuit. The
subsystem or system is smaller than for LSI, but whether digital or linear, is considered to be one that
contains 12 or more equivalent gates or circuitry of similar complexity.
Memory Cell
The smallest subdivision of a memory into which a unit of data has been or can be entered, in which it
is or can be stored, and from which it can be retrieved.
Memory Integrated Circuit,
An integrated circuit consisting of memory cells and usually including associated circuits such as those
for address selection, amplifiers, etc.
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
1-5
GLOSSARY
Output-Enable Input
A gating input that when active permits the integrated circuit to output data and when inactive causes
the integrated circuit output(s) to be at a high impedance (off).
G) Programmable Array Logic (PAL"')
CD
i
...
!.
S"
0'
A user-programmable integrated circuit which utilizes proven fuse link technology to implement logic
functions. Implements sum of products logic by using a programmble AND array whose outputs feed a
fixed OR array.
.
Programmable Read-Only Memory (PROM)
A read-only memory that after being manufactured can have the data content of each memory cell altered
3 once only.
a Random-Access Memory (RAM)
0'
;::,
A memory that permits access to any of its address locations in any desired sequence with similar access
time for each location.
NOTE: The term RAM, as commonly used, denotes a read/write memory.
Read/Write Memory
A memory in which each cell may be selected by applying appropriate electronic input signals and the
stored data may be either (a) sensed at appropriate output terminals, or (b) changed in response to other
similar electronic input signals;
Small-Scale Integration (551)
Integrated circuits of less complexity than medium-scale integration (MSI).
Typical (TYP)
A calculated value representative of the specified parameter at nominal operating conditions (VCC = 5 V,
T A = 25°C), based on the measured value of devices processed, to emulate the process distribution.
Very-Large-Scale Integration (VLSI)
A concept whereby a complete system function is fabricated as a single microcircuit. In this context, a
system, whether digital or linear, is considered to be one that contains 3000 or more gates or circuitry
of similar complexity.
Volatile Memory
A memory the data content of which is lost when power is removed.
PAL is a registered trademark of Monolithic Memories Inc.
1-6
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TEXAS 75266
,
GLOSSARY
PART 2 -
OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY lETTER SYMBOLS)
f max
Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required
sequence while maintaining stable transitions of logic level at the output with input conditions
established that should cause changes of output logic level in accordance with the specification.
ICC
Supply current
The current into* the
ICCH
c
o
.~
Vee
supply terminal of an integrated circuit.
Supply current, outputs high
The current into* the Vee supply terminal of an integrated circuit when all (or a specified number)
of the outputs are at the high level.
ICCl
Supply current,outputs low
The current into* the Vee supply terminal of an integrated circuit when all (or a specified number)
of the outputs are at the low level.
IIH
High-level input current
The current into * an input when a high-level voltage is applied to that input.
III
low-level input current
The current into * an input when a low-level voltage is applied to that input.
10H
High-level output current
The current into * an output with input conditions applied that, according to the product
specification, will establish a high level at the output.
10l
low-level output current
The current into * an output with input conditions applied that, according to the product
specification, will establish a low level at the output.
lOS (10)
Short-circuit output current
The current into * an output when that output is short-circuited to ground (or other specified
potential) with input conditions applied to establish the output logic level farthest from ground
potential (or other specified potential).
10ZH
Off-state (high-impedance-state) output current (of a three-state output) with high-level voltage
applied
The current flowing into * an output having three-state capability with input conditions established
that, according to the production specification, will establish the high-impedance state at the output
and with a high-level voltage applied to the output.
NOTE: This parameter is measured with other input conditions established that would cause the
output to be at a low level if it were enabled.
IOZl
Off-state (high-impedance-state) output current (of a three-state output) with low-level voltage
applied
The current flowing into* an output having three-state capability with input conditions established
that, according to the product specification, will establish the high-impedance state at the output
and with a low-level voltage applied to the output.
NOTE: This parameter is measured with other input conditions established that would cause the
output to be at a high level if it were enabled.
'E"
~
.2
.5
"iii
~
CU
C
CU
e"
*Current out of a terminal is given as a negative value.
TEXAS . "
INSTRUMENTS
POST OFFiCe BOX 855012 • DALLAS, TeXAS 75265
1-7
GLOSSARY
High-level input voltage
An input voltage within the more positive (less negative) of the two ranges of values used to
represent the binary variables.
NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which
operation of the logic element within specification limits is guaranteed.
Input clamp voltage
An input voltage in a region of relatively low differential resistance that serves to limit the input voltage
swing.
Low-level input voltage
An input voltage level within the less positive (more negative) of the two ranges of values used to
represent the binary variables.
NOTE: A minimum is specified that is the most-positive value of low-level input voltage for which
operation of the logic element within specification limits is guaranteed.
High-level output voltage
The voltage at an output terminal with input conditions applied that, according to the product
specification, will establish a high level at the output.
VOL
Low-level output voltage
The voltage at an output terminal with input conditions applied that, according to the product
specification, will establish a low level at the output.
ta
Access time
The time interval between the application of a specific input pulse and the availability of valid signals
at an output.
tdis
Disable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms,
with the three-state output changing from either of the defined active levels (high or low) to a highimpedance (off) state. (tdis = tpHZ or tPLZ).
ten
Enable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms,
with the three-state output changing from a high-impedance (off) state to either of the defined active
levels (high or low). (ten = tpZH or tPzLl.
th
Hold time
The time interval during which a signal is retained at a specified input terminal after an active transition
occurs at another specified input terminal.
NOTES: 1 . The hold time is the actual time interval between two signal events and is determined by
the system in which the digital circuit operates. A minimum value is specified that is the
shortest interval for which correct operation of the digital circuit is guaranteed.
2 . The hold time may have a negative value in which case the minimum limit defines the longest
interval (between the release of the signal and the active transition) for which correct
operation of the digital circuit is guaranteed.
tpd
1-8
Propagation delay time
The time between the specified reference points on the input and output voltage waveforms with
the output changing from one defined level (high or low) to the other defined level. (tpd = tpHL or
tpLH)·
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 '
GLOSSARY
Propagation delay time. high-to-Iow level output
The time between the specified reference points on the input and output voltage waveforms with
the output changing from the defined high level to the defined low level.
Disable time (of a three-state output) from high level
The time interval between the specified reference points on the input and the output voltage waveforms
with the three-state output changing from the defined high level to a high-impedance (off) state.
Propagation delay time. low-to-high-Ievel output
The time between the specified reference points on the input and output voltage waveforms with
the output changing from the defined low level to the defined high level.
Disable time (of a three-state output) from low level
The time interval between the specified reference points on the input and output voltage waveforms
with the three-state output changing from the defined low level to a high-impedance (off) state.
tPZH
Enable time (of a three-state output) to high level
The time interval between the specified reference points on the input and output voltage waveforms
with the three-state output changing from a high-impedance (off) state to the defined high level.
tpZL
Enable time (of a three-state output) to low level
The time interval between the specified reference points on the input and output voltage waveforms
with the three-state output changing from a high-impedance (off) state to the defined low level.
tsr
Sense recovery time
The time interval needed to switch a memory from a write mode to a read mode and to obtain valid
data Signals at the output.
tsu
Setup time
The time interval between the application of a signal at a specified input terminal and a subsequent
active transition at another specified input terminal.
NOTES: 1 . The setup time is the actual time interval between two signal events and is determined
by the system in which the digital circuit operates. A minimum value is specified that is
the shortest interval for which correct operation of the digital circuit is guaranteed.
II
c
o
;
ca
..E
o
-.
.5
'ii
CD
C
CD
e"
2. The setup time may have a negative value in which case the minimum limit defines the
longest interval (between the active transition and the application of the other signal) for
which correct operation of the digital circuit is guaranteed.
tw
Pulse duration (width)
The time interval between specified reference points on the leading and trailing edges of the pulse
waveform.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
1-9
EXPLANATION OF FUNCTION TABLES
The following symbols are used in function tables on TI data sheets.
H
G)
CD
..e.
5'
....
..
high level (steady state)
L
low level (steady state)
t
transition from low to high level
~
transition from high to low level
value/level or resulting value/level is routed, to indicated destination
~
CD
fl
x
z
value/level is reentered
irrelevant (any input, including transitions)
off (high impedance) state of a 3-state output
0
a ... h
...o·3
Qo
the level of Q before the indicated steady-state input conditions were established
00
complement of QO or level of
established
ell
~
Qn
the level of steady-state inputs A through H respectively
before the indicated steady-state input conditions were
level of Q before the most recent active transition indicated by
JL
one high-level pulse
1.....f
one low-level pulse
TOGGLE
0
~
or t
each output changes to the complement of its previous level on each transition indicated by
~ or t.
If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is
valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The
output persists so long as the input configuration is maintained.
If, in the input columns, a row contains H, L, and/or X together with i and/or t this means the output is valid
whenever the input configuration is achieved but the transition(s) must occur following the achievement of
the steady-state levels. If the output is shown as a level (H, L, QO, or 00), it persists so long as the steady-state
input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input
transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as
r-L or l..S ,the pulse follows the indicated input transition and persists for an interval
a pulse,
dependent on the circuit.)
1-10
TEXAS.
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
SERIES TIBPAL', PAL', TlFPLA DEVICES
PARAMETER MEASUREMENT INFORMATION
7V
FROM OUTPUT
UNDER TEST
q
CL
~
VCC
TEST
POINT
FROM OUTPUT
UNDER TEST
RL
L
~
c
R1
FROM OUTPUT -0
3
PI
...
1 20 19
4
18
5
17
6
16
8
14
15
I/O
I/O
I/O
I/O
I/O
...
CO
CO
C
9 1011 12 13
-0
z
-og
(!)
The Half-Power versions offer a choice of
operating frequency, switching speeds, and
power dissipation. In many cases, these HalfPower devices can result in significant power
reduction from an overall system level.
The PAL16' M series is characterized for
operation over the full military temperature range
of - 55 °e to 125 oe. The PAL 16' e series is
characterized for operation from Doe to 70 ae.
t Integrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments. U.S. Patent Number 3.463.975.
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCTION DATA documonts contain inlormation
currant IS Df publication data. Prallueta conform to
spacificlltions par the terms of Taxas Instruments
:'=:=i~·i~~~7i ~:~:~:; :.r::::£::~1 not
Copyright @ 1984, Texas Instruments Incorporated
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·3
PAL 16R4A. PAL 16R4A·2. PAL 16R6A. PAL 16R6A·2. PAL 16RBA. PAL 16RBA·2
STANDARD HIGH·SPEED PAL@ CIRCUITS
PAL1SR4'
M SUFFIX •.. J PACKAGE
C SUFFIX ... J OR N PACKAGE
PAL1SR4'
M SUFFix. , • FH OR FK PACKAGE
C SUFFIX .•• FN PACKAGE
, (TOPVIEWI
(TOP VIEWI
eLK
><: u
Vee
uo
__ -.l
u>::;,
liD
liD
3
2
1 2019
Q
Q
Q
I
18
1/0
5
17
6
16
Q
Q
15
Q
14
Q
Q
I/O
liD
E
C
I»
1'+
I»
(J)
:::T
CD
CD
GND
9 1011 1213
BE
'-l..._---'r'
-
M SUFFIX ..• J PACKAGE
C SUFFIX ... J OR N PACKAGE
PAL16R6'
PAL1SRS'
M SUFFIX .•. FH OR FK PACKAGE
C SUFFIX, .• FN PACKAGE
(TOP VIEWI
(TOPVIEWI
eLK
Vee
~o
__ ~
u>::;,
liD
Q
1'+
en
3
Q
Q
Q
Q
Q
GND
'-l..._ _r'
2
1 2019
4
18
5
17
6
16
Q
7
15
Q
Q
14
8
liD
9 1011 1213
DE
PAL16R6'
M SUFFIX ..• J PACKAGE
C SUFFIX ... J OR N PACKAGE
PAL1SR8'
M SUFFIX ..• FH OR FK PACKAGE
C SUFFIX FN PACKAGE
(TOP VIEWI
lTOPVIEWI
~ ~
__ u>d
Vee
eLK
Q
Q
GND
3
'-l..._---'r'
2
1 20 19
Q
4
18
Q
5
17
Q
6
Q
7
16
'15
Q
8
Q
I
2·4
~I~ ~ ~
(!l
14
9 10111213
OE
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265
PAL 16LBA, PAL 16LBA·2, PAL 16R4A, PAL 16R4A·2
STANDARD HIGH·SPEED PAL® CIRCUITS
functional block diagrams (positive logic)
'PAL16L8A
'PAL 16L8A-2
EN >1
&
32X64
'<:110-----0
10-----0
t>
10
10-,-""''''-1/0
16
0--.+........-1/0
IO-e+........-I/O
6
II
...
10-",-+,--1/0
II)
10-.-+........-1/0
CI)
CI)
.c:
en
ca
ca
10-.-+.........-1/0
...
6
C
'PAL16R4A
'PAL 16R4A-2
OE
EN2
ClK
C1
&
32X 64
-+-
>1
~
-+8
~
,:
-+-
~
-
r-+- ""'--
Q
~
-f-f-
-l-
Q
~
Q
~
EN
>1
'<:1
.
~
-i""7""
---..
--+r--"7
~
,
4
o
2'<:1
10
""
I/O
I/O
I/O
I/O
...
- denotes fused inputs
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-5
PAL 16R6A, PAL 16R6A·2, PAL 16R8A, PAL 16R8A·2.
STANDARD HIGH·SPEED PAl@ CIRCUITS
functional block diagrams (positive logic)
'PAl16R6A
·PAl16R6A·2
6E
_(N2
C1
ClK
~
&
32 X 64
;;'1
~
10
~
- : - --=-C>
....;.'!.-
;...
-
0.:-
Q
Q
~
.....-...
~
~
Q
~
~
-
Q
~
~
-..?,.....
r---.....
I---"
~
-
Q
2
Q
h
EN ;;'1
-+
-2
liD
\7
liD
...
6
'PAl18R8A
·PAl18R8A·2
6E
ClK
&
8
;;'1
32X 64
Q
10
Q
Q
8
16
Q
Q
Q
Q
Q
8
- denQtes fused inputs
2-6
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
PAL16LBA, PAL16L8A·2
STANDARD HIGH·SPEED PAL® CIRCUITS
logic diagram
I
(1 )
INPUT LINES
PRODUCT ,
LINES
0
0
I
4
8
12
16
20
24
28
··
···
"'8
··
··
31
1
f--
(19)
v
.-
0
.-
(2),,~
r>-l
(18) 1/0
v
(3) 15
I
16
I
··•
·
··
·•
··
·
···•
··
·
··•
·
f-...
f--
f-'
1
(17) liD
(4) 23
)l
'"
24
~p-
J
(16) 1/0
r--
(5) 31
I
)l
32
f--'"
1
(15) liD
v
(6) 39
I
)l
'"
40
>---'
(14) liD
V
7 47
I( )X
~
48
1
f--
v
~
(13) liD
>--
55
I (8) X
1
56
f-'
1
...
0
(12)
\--
r-
(9) 63
I
1
f--
(11 )
I
.)l
TEXAS .."
INSTRUMENlS
POST OFF1CE BOX 655012 • DAl.LAS, TeXAS 75285
2·7
PAL16R4A, PAL16R4A-2
STANDARD HIGH-SPEED PAL® CIRCUITS
logic diagram
ClKl.!lt>
.
INPUT LINES
PRODUCT ,
LINES
0
0
4
B
12
16
20
24
28
··
··
Ii
··
·
···
·
··
·
··
·
··•
·
·••
··•
·••
•
'-.../
1
1
-
v
(3) 15
I
(19)1/0
(18)1/0
1
16
c
...
A)
A)
:::T
v
).----,
7
en
1
}--
1.(2~
IE
31
>---.> :bJ;~Q
Cl
I (4) ....23
v
...en
CD
CD
~
24
-
:bJ;
'":J,...
rt
~15)0
D-
>---'
Cl
(5) 31
I
(16)0
32
I
e-D>---'
(6) 39
)l
40
'""J
~C>t1 v
f--
47
1(7)
(14) 0
Cl
)l
48
--'
f--
55
I (8)
Cl
1
v
(13)1/0
1
)l
56
f-<
)....)~
f-<
•
1
(12) 1/0
,. . 1
(9) 63
I~
2-8
~)OE
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 656012 • DALLAS. TEXAS 76266
PAL 16R6A, PAL 16R6A·2
STANDARD HIGH·SPEED PAL® CIRCUITS
logic diagram
CLK
11lt>------------- -- ------------------------ ---------------,
P RODUCT,
LINES
INPUT LINES
0
0
00
0-
(2)
··
,?-
4
--
8
12
16
20
24
28
31
----
~
f----c
).
r---'
'8
··
liD
r---'
>---<
~D-
0
0
·
·
··
··
·
··
··
·
··
·
~-
~:CW'"
Q
Cl
}--->
f---'
16
r-r--P-
0
0
X
f---'
24
r=pf-----
0
0
~
'"";:1
~
Rv
I...
CI)
(17)
v
Q
CD
CD
.c
Cl
r--
(4) 23
0
...caca
(16)
Q
C
Cl
31
(5)
J]
(19)
A
I----'
32
~>~
I
~
Q
v
Cl
(6) 39
X
40
\----;
0
~Dr---'
~
Cl
(7) 47
v
~)
Q
v
48
0
C-=~tJ;
0
0
0
JII)
'"";:1
(13)
v
Q
Cl
55
56
0-
-
0
0
0
0
·
)--
V
J
(12)
\
(9) 63
~--
TEXAS ."
INSTRUMENTS
post OFFICE BOX 655012 • DALLAS. TEXAS 75265
liD
~
2-9
PAL 16R8A, PAL 16R8A-2
STANDARD HIGH-SPEED PAL® CIRCUITS
logic diagram
ClK
l!lt>-
PRODUCT i
LINES
0
0
,.
I
INPUT LINES
4
8
16
12
20
24
28
··
•
1(2~
'8
··
·
····
·
··•
·•
··
·
··
·
·•
··•
··•
··
31
:>f--J
Cl
D-
16
f---1
...--
...--D...--
(4) 23
~
:tw
~
'"Jv
(16)0
t1
I.:l
(15)0
...-->
)--
a
v
17 )0
Cl
(5) 31
X
32
i------1
Dr----'
rvr
Cl
(6) 39
I
40
"'--p-
~
'"-yo;::1 (14)0
~
'";::1
Cl
47
48
I (8)
(18)
~
Cl
I
24
tl
R
Cl
f---1
(3) 15
1(7)
""Q
f---1
I
I
~~
f---
:>-
55
f--f---
56
)--
(13)0
v
Cl
=>t1;~'''Q
Cl
(9) 63
I~-
2-10
~)OE
I
TEXAS ~
INSTRJJMENTs
POST OFFice BOX 655012 • DALLAS, TEXAS 75265
PAL 16L8A, PAL 16L8A·2, PAL 16R4A, PAL 16R4A·2
PAL 16R6A, PAL 16R6A·2, PAL 16R8A, PAL 16R8A·2
STANDARD HIGH·SPEED PAL@ CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
C suffix .............................. OOC to 70°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
M SUFFIX
PARAMETER
Vee
Supply voltage
VIH
High-level input voltage
VIL
Low-level input voltage
IOH
High-level output current
IOL
TA
Low-level output current
Operating free-air temperature
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.75
5
5.25
5.5
5.5
0.8
-2
12
125
2
2
I OE input
I
C SUFFIX
MIN
2.4
2
All others
-55
0
5.5
5.5
0.8
-3.2
24
70
UNIT
V
V
V
mA
mA
·e
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
PI
...
U)
CD
CD
.c
(IJ
...caca
C
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-11
PAL16L8A, PAL16R4A, PAL16R6A, PAL16R8A
STANDARD HIGH-SPEED PAL® CIRCUITS
recommended operating conditions
M SUFFIX
MIN
fclock
Clock frequency'
tw
Pulse duration, see Note 2
tsu
th
Hold time, input or feedback after elK t
TYP
0
15
I <;:Iock high
I Clock low
Setup time, input or feedback before elK t
C SUFFIX
MAX
25
MIN
TYP
MAX
0
35
12
20
16
25
0
20
0
UNIT
MHz
ns
ns
ns
NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock' The minimum pulse durations specified
are only for clock high or clock low, but not for both simultaneously.
electrical chara,cteristics over recommended operating free-air temperature range
E
VIK
Vee = MIN,
11=-18mA
c
VOH
Vee = MIN,
IOH = MAX
D)
VOL
Vee = MIN,
10l = MAX
D)
102H
...
Vee = MAX,
Vo = 2.7 V
Vee; = MAX,
Vo = 0.4 V
II
Vee = MAX,
VI = 5.5 V
IIH
Vee = MAX,
VI = 2.7 V
III
Vee = MAX,
VI = 0.4 V
lo!
Vee = MAX,
Vo = 2.25 V
Outputs Open
CJ)
:::r
10Zl
CD
!en
Outputs
I/O ports
Outputs
I/O ports
Vee - MAX,
ICC
C SUFFIX
M SUFFIX
TEST.CONDITIONSt
PARAMETER
MIN
TYP*
2.4
3.2
0.25
I OE INPUT
I All others
MAX
-1.5
140
Vi' = OV
TYP*
2.4
3.3
0.4
MAX
-1.5
0.5
20
100
-20
100
20
-250
-250
0.2
25
0.1
-0.25
-0.4
20
-0.2
-30
185
UNIT
V
V
0.35
20
-0.2
-125
-30
MIN
V
~A
~
mA
~
mA
-125
mA
180
mA
140
tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
tAli typical values are at Vee = 5 V, TA = 25°C.
§The output conditions have been chosen to produce a current that closely aproximates one half of the true short-circuit output current, lOS.
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
FROM
TO
TEST CONDITIONS
f max
25
tpd
1,1/0,
TYP*
45
15
MAX
UNIT
MIN
TYP*
MAX
35
30
45
15
25
MHz
ns
tpd
elKt
0,1/0
Q
Rl = 500 II,
10
20
10
15
ns
ten
OE~
Q
el = 50 pF,
15
25
15
22
ns
tdis
OEt
1,1/0
Q
See Note 3
10
10
15
ns
0,1/0
14
25
30
14
25
ns
1,1/0
0,1/0
13
30
13
25
ns
ten
tdis
*AII typical values are at Vee = 5 V, TA = 25°C.
NOTE 3: Load circuits and voltage waveforms are s~own in Section 1.
2-12
C SUFFIX
M SUFFIX
MIN
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS,
T~XAS
75265
PAL 16LBA-2, PAL 16R4A-2, PAL 16R6A-2, PAL 16RBA-2
STANDARD HIGH-SPEED PAL® CIRCUITS
recommended operating conditions
M SUFFIX
MIN
fclock
Clock frequency
tw
Pulse duration, see Note 2
tsu
Setup time, input or feedback before elKt
th
Hold time, input or feedback after elK t
TYP
0
I Clock high
I Clock low
C SUFFIX
MAX
MIN
16
0
TYP
MAX
18
25
28
28
35
MHz
ns
25
ns
28
0
0
UNIT
ns
NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock. The minimum pulse durations specified
are only for clock high or clock low, but not for both simultaneously.
electrical characteristics over recommended operating free-air temperature range
PARAMETER
VIK
Vee = MIN,
11=-18mA
VOH
Vee = MIN,
IOH = MAX
Vee = MIN,
10l = MAX
VOL
10ZH
Outputs
Vec = MAX,
Vo = 0.4 V
II
Vec = MAX,
IIH
Vee = MAX,
III
Vee = MAX,
VI = 0.4 V
lo!
Vee = MAX,
Vo = 2.25 V
Vee = MAX,
Outputs Open
1/0 ports
ICC
TYP*
C SUFFIX
MAX
MIN
MAX
TYP*
-1.5
3.2
-1.5
2.4
0.25
Vo = 2.7 V
10Zl
MIN
2.4
Vec = MAX,
1/0 ports
Outputs
M SUFFIX
TEST CONDITIONSt
0.4
3.3
V
V
0.35
0.5
20
20
100
-20
-250
"A
VI = 5.5 V
0.2
0.1
mA
VI = 2.7 V
25
20
-0.2
' -0.2
-0.1
-30
-125
75
VI = OV
-0.1
-30
95
.c
CIl
...nsns
"A
C
mA
-125
mA
90
mA
70
Q)
Q)
"A
-250
I All others
U)
V
100
-20
10E INPUT
PI
...
UNIT
tFor conditions shown as MIN or MAX, use the appropriate value specified 'under recommended operating conditions.
*AII typical values are at Vee = 5 V, TA = 25°C.
§The output conditions have been chosen to produce a current that closely aproximates one half of the true short-circuit output current, lOS.
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
FROM
TO
TEST CONDITIONS
M SUFFIX
MIN
TYP*
16
25
f max
tpd
1,1/0,
0,1/0
tpd
elKt
Q
ten
OB
tdis
C SUFFIX
MAX
MIN
TYP*
18
25
MAX
UNIT
MHz
25
40
25
35
ns
Rl = 500 Il,
11
35
11
25
ns
Q
Cl = 50 pF,
'20
35
20
25
ns
OEt
Q
See Note 3
11
30
11
20
ns
ten
1,1/0
0,1/0
25
40
25
35
ns
tdis
1,1/0
0,1/0
25
35
25
30
ns
'All typical values are at Vce = 5V,TA = 25°C.
NOTE 3: Load circuits and voltage waveforms are shown in Section 1.
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-13
II
2-14
PAL20LBA, PAL20R4A, PAL20R6A. PAL20RBA
STANDARD HIGH-SPEED PAL® CIRCUITS
02706. DECEMBER 1982-REVISED DECEMBER 1987
•
PAL20LS'
M SUFFIX ... JW PACKAGE
C SUFFIX ... JW OR NT PACKAGE
(TOP VIEW)
Standard High Speed 125 nsl PAL Family
•
Choice of Input/Output Configuration
•
Preload Capability on Output Registers
•
DIP Options Include Both 300-mil Plastic
and 600-mil Ceramic
3-STATE
DEVICE
I INPUTS
o OUTPUTS
'PAL20LSA
'PAL20R4A
'PAL20R6A
'PAL20RSA
14
12
12
12
2
0
0
0
Vcc
)
o
)/0
)/0
REGISTERED
I/O
QOUTPUTS
PORTS
0
6
4 (3-state buffers)
4
6 (3-state buffers)
2
S 13-sta!e buffers
0
I/O
I/O
I/O
I/O
o
I
GND
description
These programmable array logic devices feature
high speed and a choice of either standard or
half-power speeds. They combine Advanced
Low-Power Schottky t technology with proven
titanium-tungsten fuses. These devices will
provide reliable, high performance substitutes
over conventional TTL logic. Their easy
programmability allows for quick design of
"custom" functions and typically result in a
more compact circuit board. In addition, chip
carriers are also available for further reduction
in board space.
TEXAS
CI)
CI)
.c
tn
...
U
CO
CO
U U
z>_o
NC
I
5
4 3 2 1 282726
25
I/O
6
7
24
23
I/O
I/O
8
22
NC
9
10
21
I/O
20
19
I/O
11
o
I/O
12131415161718
--ou--o
zz
The PAL20' series is characterized for operation
over the full military temperature range of
- 55°C to 125°C. The commercial range is
characterized from ooe to 70°C.
::':!:~ri;·{:I~" ~=~~:r :.~,:::::~::.s not
...en
PAL20LS'
M SUFFIX ..• FH OR FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
In addition, extra circuitry has been provided to
allow loading of each register asynchronously to
either a high or low state. This feature simplifies
testing because the registers can be set to an
initial state prior to executing the test sequence.
PROOUCTIOI OATA documants .ontain information
CURlnt IS of publication datI. Products conform to
specifications par the tarms of Taxi. Instruments
........_ _OJ-'
(!)
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
Copyright © 1982, Texas Instruments Incorporated
2-15
PAL20R4A. PAL20R6A. PAL20R8A
STANDARD HIGH·SPEED PAL® CIRCUITS
PAL20R4'
M SUFFIX . .. JW PACKAGE
C SUFFIX . .. JW OR NT PACKAGE
PAL20R4'
M SUFFIX . .. FH OR FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOP VIEW}
(TOP VIEW}
OUTCLK
:J
VCC
u
....
u
=> U U 0
__ 02>_'"
I
I/O
110
4
Q
3
5
Q
Q
Q
110
110
2 1 282726
25
110
24
I
6
7
NC
8
22
NC
21
20
Q
Q
19
110
23
10
11
E
Q
Q
12131415161718
- -
~ ~I~
- g
(!)
PAL20R6'
M SUFFIX . .. JW PACKAGE
C SUFFIX . .. JW OR NT PACKAGE
(TOP VIEW}
OUTCLK
PAL20R6'
M SUFFIX . .. FH OR FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOP VIEW)
...""
~
VCC
I
Q
432
Q
Q
I
I
I
Q
Q
Q
110
I
GNDL..C;~"':"::'i-J
u
=> U U
0
__ oz>_:::::
110
1 282726
5
25
6
7
24
8
22
NC
9
10
21
Q
Q
Q
23
20
11
DE
19
Q
Q
Q
12131415161718
--~~Io-g
(!)
PAL20R8'
M SUFFIX . .. JW PACKAGE
C SUFFIX . .. JW OR NT PACKAGE
PAL20R8'
M SUFFIX . .. FH OR FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOP VIEW}
(TOP VIEW}
OUTCLK
I
...""
VCC
U
....
U
=> 2
U >
U _0
__ 0
I
Q
Q
Q
Q
Q
4
3 2
1 282726
Q
Q
Q
Q
NC
Q
Q
21
Q
10
Q
11
GND '-C!........::~OE
12131415161718
--~~I~-O
(!)
2·16
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
Q
PAL2DL8A, PAL2DR4A
STANDARD HIGH·SPEED PAL® CIRCUITS
functional block diagrams (positive logic)
PAL20L8A
PAL20L8A-2
EN ;'1
&
'ill:>---- 0
40X64
0
1/0
1/0
II
...
1/0
1/0
U)
1/0
G)
G)
1/0
.c
0
...
6
CO
CO
C
PAL20R4A
P~L20R4A-2
J EN2
"liE
-l
OUTCLK
~
40X64
a
C1
;'1
-+-
1-0
( 10
-+-
~
1}
4
-+'---
*
Q
r---,
Q
r---
-+-+- - -+-
Q
r---,
Q
r---,
--;- EN
~
2'il
;'1
-+-
'il
""""T
>+
~
'"
+
~
..
1/0
1/0
1/0
1/0
-~
,4
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2·17
PAL20R6A, PAL20R8A
STANDARD HIGH·SPEED PAL® CIRCUITS
functional block diagrams (positive logic)
PAL20R6A
PAL20R6A-2
OE
OUTCLK
-tN2
' C1
r--;-
B
40X64 ....;.....
-..:L
•
,..-fI> -:..
-
~
~
b-i1!~
-
;;>1
1=0 2
10
Q
r-----
.J!..J!..-
---...
---...
---...
~
~
---...
J!..-
---...
r?-t-;___ r+-
Q
Q
Q
Q
Q
EN ;;>1
'V
2
6
)
L
I/O
I/O
. PAL20R8A
PAL20R8A-2
OE
OUTCLK
0
0
0
Q
Q
Q
Q
Q
8
2-18
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS. TEXAS 75265
PAL20L8A
STANDARD HIGH·SPEED PAL® CIRCUITS
(1)
INPUT LINES
10
4
8
12
1\
16
20
24
28
32
36
\
(2) ..
~
-t..
P RODUCT
LI NES
0
•
•
(3) ..
~
(4)",
-t..
(22)
V
•
7
8
•
•
•
15
~
16
~
...
•
23•
(8) ...
;..
"""'t.
10)...
Q)
1/0
~
•
""
1
40
•
•
•
47
..
CO
CO
C
(18)
~
•
39
i
.c
en
(19)
rJ
1/0
(17)
1/0
~
...
48
•
•
(9)
1/0
24
•
•
...
U)
(20)
-~
31
"""t32
(7)"
II
.....
•
•
(6)",
I/O
...r--:---
•
(5) ..
(21)
o
(16)
I/O
v
•
55
56
•
•
•
63
(15)
v
o
(14)
"""1-
~
11)
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2·19
PAL20R4A
STANDARD HIGH·SPEED PAL® CIRCUITS
OUTClK
(1)J ....
-V
INP!JT"lINES
10
~
4
8
12
16
20
24
28
32
36
\
123)
PR OOUCT
0
LIN ES
13)
...
4)_
••
•
15
f.A
.....
•
•
•
23
)--
v
•
•
31•
")-
'32
"
....
•
L>"
40
•
~
(9)_
•
•
47
1)
:J
1/0
MI.l ""
10
~
-V
o
~
119) 0
•
•
•
55
....
r----'
~
:J....
118)0
'1v
(17)
C1
:©i
48
b--J 1
116)
•
•
•
63
1
.....
v
I
(15)
"
(14)
.....-1
...
~3
2·20
o
I/O
~
56
£!.t-
121)
.:..r r - -
•
39•
7)
-J
1/0
C
24
16)
122)
. ~r
7
8
16
5)_
1
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
I/O
PAL20R6A
STANDARD HIGH·SPEED PAL® CIRCUITS
OUTClK
(1)II.....
v
,
0
..
INPUTklNES
4
B
12
16
20
24
28
32
36
,
(23)
(2) ..
1/0
PR ODUCT
LI NES
0
r-.,......., 1
v
•
•
•
7
(3)
--t
8
•
•
4) ....
."
15•
16
...
(6)
-;.
(7)
(8) ...
...
(9)
)a
II...
...
.......
r-
~
....
•
23
c,
' ] (20
v
)a
U)
CD
CD
.s::.
f---'
24
•
•
•
31
)--
en
"]
M
M
(1 9)a
;.;>0-
c,
....
32
•
•
•
39
)-
40
"
...
•
•
•
47
)-
...
"
48
•
•
•
55
"]
...
CO
CO
o
r---
(1
v
c,
~
IJv
(1
c,
L>-~
~I
c,
"I------'
-)
56
10)
1/0
I
'0
>- ~
-:l... '"
c
•
•
(5)
(22)
J
•
•
•
63
...
v
(15)
1
1/0
(14)
11)
-;.
....
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
I
~) OE
2-21
PAL20R8A
STANDARD HIGH·SPEED PAL® CIRCUITS
OUTC LK
,...
(1)
v
INPUT",LlNES
"'0
4
8
12
16
20
24
28
32
(2)
36
"
(23)
-;..
PRODUCT
LINES
0
•
•
•
7
(3) ...
:r- ~ r.J.""
ID
E
•
>-
15•
"
A
'"
•
•
•
23
.•
A
'"
>-
•
'"
•
>-
A
•
_39
~
•
-
>-
•
47
~
48
(9) "
•
•
•
55
>-
...
i:l...
(20
~
Q
~
~
~19
V
Q
11(18
"V""
Q
1.
-yo-
Q
1.v
(1 6)
Q
I.J.
(15
r----'
~
(17
r----'
M
.-J"" r----'
"56
10)
Q
Cl
-4.
(8) ...
(21)
Cl
31
(6)
...
32
(7)
~
:r-
"'2~
,
I.J.v
Cl
16
(51 ...
Q
.-J"" - - '
~
4)
~
Cl
•
•
•
63
~
Q
V
Cl
(14)
....
!.!t
~
I
3)_
OE
~
2-22
TEXAS .."
INSTRUMENlS
POST OFfiCE BOX 655012 • DALLAS, TEXAS 75265
PAL20LBA, PAL20R4A, PAL20R6A, PAL20RBA
STANDARD HIGH-SPEED PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M SUFFIX . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
C SUFFIX ............................. DoC to 70°C
Storage temperature range ......................................... - 65°C to 1 50°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
M SUFFIX
PARAMETER
VCC
Supply voltage
VIH
High-level input voltage
Vil
Low-level input voltage
IOH
High-level output current
IOl
Low-level output current
fclock
Clock frequency
tw
Pulse duration, clock
tsu
Setup time, input or feedback before OUTClKt
th
Hold time, input or feedback after OUTClKt
TA
Operating free.,.air temperature
I
High
I
low
C SUFFIX
MIN
NOM
MAX
MIN
NOM
MAX
4.5
2
5
5.5
5.5
0.8
-2
12
20
4.75
2
5
5.25
5.5
O.B
-3.2
24
30
0
20
20
30
0
-55
125
0
15
15
25
0
0
UNIT
V
V
V
mA
EI
mA
MHz
ns
ns
ns
ns
70
·C
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762 .
. TEXAS.
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-23
PAL20LBA. PAL20R4A. PAL20R6A. PAL20RBA
STANDARD HIGH-SPEED PAL® CIRCUITS
electrical characteristics over recommended free-air operating temperature range
PARAMETER
TEST CONDITIONSt
VIK
Vee = MIN,
11=-18rnA
VOH
VOL
Vee = MIN,
Vee - MIN,
10H = MAX
10L = MAX
Vee = MAX,
VIH = 2.7 V
Vee = MAX,
VIH = 0.4 V
0, Q outputs
10ZH
10ZL
I/O ports
OE Input
II
•
I/O ports
0, Q outputs
All others
OE Input
IIH
All others
OE Input
IlL
All others
lo§
c
....
lee
D)
Vee = MAX,
VI = 5.5 V
Vee = MAX,
VI = 2.7 V
Vee = MAX,
VI = 0.4 V
Vee = MAX,
Vo = 2.25 V
Vee = MAX,
VI = 0 V,
Outputs open,
DE at VIH
M SUFFIX
C SUFFIX
MAX
MIN TYP*
MAX
MIN TYP*
-1.5
2.4
3.2
2.4
0.25
0.4
V
0.5
V
V
20
100
-20
100
-20
-250
-250
0.2
0.2
0.1
40
0.1
40
20
-0.4
20
-0.4
20
-0.2
-30
-1.5
3.3
0.35
-125
150
-0.2
-30
210
UNIT
~A
~A
rnA
~A
rnA
-125
rnA
210
rnA
150
D)
tFor conditions shown as MIN or MAX, use the appropriate value specified' under recommended operating conditions.
en
:::r
§The output conditions have been chosen to produce a current that closely approximates one half the true short-circuit current, lOS.
....en
switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
CD
CD
tAli typical values are Vee = 5 V, TA = 25°e.
PARAMETER
FROM
TO
TEST CONDITIONS
f max
MIN TYP*
MAX
30
UNIT
MHz
15
30 .
15
25
RL = 5000,
10
20
10
15
ns
Q
eL=50pF
10
25
10
20
ns
Q
See Note 2
11
14
25
30
11
14
20
25
ns
0, I/O
0,1/0
12
30
12
25
ns
1,1/0
0,1/0
tpd
OUTeLKt
Q
ten
OE
tdis
ten
OEt
1,1/0
1,1/0
tAli typical values are at Vee = 5 V, TA = 25°e.
NOTE 2: Load. circuits and v,?ltage waveforms are shown in Section 1.
2-24
C SUFFIX
MAX
20
tod
tdis
M SUFFIX
MIN TYP*
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
ns
ns
PAL20LBA, PAL20R4A, PAL20R6A, PAL20RBA
STANDARD HIGH·SPEED PAL® CIRCUITS
PRELOAD PROCEDURES
5V
Vcc
/
ov--f
VIH
,._--.:O:::U::..:T:,:.P,::U..:.;TS::.D::;I:.:S:::,AB:::;L:,:E:.::D:.....-_
....Jt
___.
\1...__________
VIL _ _ _
~
j+-ton
I
I
I4~O~,~I:
I
i
I
I
I
I
I
I
o
: VERIFY NEW
I STATEO'n
VDH~~~~~)L
_ _~~[j~~~~LY-1_~I~~~~~c========
VOL":=
z
:
~ tpd
PIN1
IOUTCLK)
VERIFYO'n+1
h
VIH
VIL-----------------------J
FIGURE 1, PRELOAD WAVEFORMS
I+-
II
...
II)
CI)
CI)
.c
U)
L _ _ _ __
...caca
C
preload procedure for registered outputs
Step
Step
Step
Step
Step
Step
Step
1
2
3
4
5
6
7
Pin 13 to VIH, Pin 1 to VIL, and VCC to 5 volts,
Pin 14 to VIHH for 10 to 50 microseconds,
Apply VIL for a low and VIH for a high at the Q outputs.
Pin 14 to VIL.
Remove the voltages applied to the outputs.
Pin 13 to VIL.
Check the output states to verify preload.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-25
E
c
....
Q)
Q)
en
J
CD
CD
r+
UI
2-26
TIBPAD16N8·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
03085. JANUARY 1988
•
Very-High-Speed Address Decoder (Ideal for
Use .with High Speed Processors)
•
I/O Propagation Delay: 7 ns Max
•
Field Programmable on Standard PLD
Programmers
ITOP VIEW)
Vee
o
1/0
1/0
I/O
•
Fully TTL Compatible
•
Security Fuse Prevents Unauthorized
Duplication
•
Dependable Texas Instruments Quality and
Reliability
•
J OR N PACKAGE
1/0
1/0
1/0
o
GND
Potential Applications
Address Decoders
Code Detectors
Peripheral Selectors
Fault Monitors
Machine State Decoders
~
_ _...r-
II...
FN PACKAGE
ITOPVIEW)
u
u
___ >0
3
description
2
U)
CD
CD
1 20 19
4
18
5
17
.c
o
...caca
16
The TIBPAD 16N8 is a very-high-speed
Programmable Address Decoder featuring 7 ns
maximum propagation delay, the highest speed
in the TTL programmable logic family. The
TIBPAD16N8 utilizes the IMPACT-X'" process
and proven titanium-tungsten fuse technology
to provide reliable, high performance substitutes
for. conventional TTL logic.
7
15
8
14
C
9 1011 1213
The TIBPAD16N8 contains 1a dedicated inputs and 8 outputs. Each output has two product terms, one
of which is used to enable the inverting buffer associated with the respective output. Six of the outputs
are I/O ports, the remaining two are dedicated outputs. Each of the six I/O ports can be individually
programmed as an input or an output; this allows the device to be used for functions requiring up to 16
inputs and and 2 outputs or 1 inputs and 8 outputs.
a
The TIBPAD 16N8 is supplied with all six I/O ports in the input configuration (output buffers in the highimpedance state). If an I/O port is selected to be an output, it must be programmed accordingly. It is
recommended that all unused outputs on this device remain in the three-state condition for better noise
immunity.
The TIBPAD16N8-7C is characterized for operation from
IMPACT~X
aoc to
75°C.
Is a trademark of Texas Instruments Incorporated.
PROOUCTIOI DATA documents contain information
Durrant II of publication data. Pfoducts caoform to
specifications par the tarms at TailS Inltruments
::.~=;af:~':!1i ~::I~~I~. :.:":!;:::~~.
not
Copyright @ 1988, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-27
TIBPAD 16N8·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
functional block diagram (positive logic)
&
EN '" 1
32x16
'VP----O
P----O
I>
10
16
~"""'~I/O
~..r"'-I/O
6
•
~tt-"'-I/O
D-i..r...._1/0
c
....'"
'"
D-i..r...._1/0
6
tJ)
:::r
CD
....CD
(II
2-28
TEXAS . "
INSfRUMENlS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
TlBPAD16N8-7C
HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER
logic diagram (positive logic)
1111
0
4
8
12
16
20
24
31
J..!!!!.
~
N
(2)
(3)
28
k1~
":x
~
-"..
0
I/O
I/O
fI
J
= 4.75 V.
/
7.7
/V
7.6
.!!
Q
c
.'."
.....'"
£
7.5
0
7.4
/
7.3
7.0
/
/
/
7.2
7.1
/
V
2
/
4
6
Number of Outputs Switching
FIGURE 2
2-32
/
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265
8
TIBPAD16N8·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
150r--'--~--~--~-'---.--~--'
6.5
UNPROGRAMMED DEVICE
'"f
I\.tPH~
6.0
\
CD
E
j::
~
2l
\
5.5
c
tPLH
.'"
CI.
E! 5.0
11.
TA-Free-Air Temperature- DC
PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
24
n,
390 n,
III
c
..
I
E
j::
>
.!!
CD
4.4
4.2
4.0
4.5
V
U)
G)
G)
-
20
...
CO
CO
18
Q
14
.,..
12
0
tpHL-
..'"
~J
CI.
i.
tP~H-:::
I
/
~-
V/ ./
10
8
4
5.5
/
/./ V
6
I
V
V t PHL
16
c
4.75
5.25
VCC-Supply Voltage-V
.c
en
C
VCC = 5 V,
R1 - 200 n,
R2 - 390 n,
TA - 25 DC,
1 OUTPUT SWITCHING
22
-R2 -CL - 50 pF,
-TA = 25 DC
r--;:
fI
-- ...
-
PROPAGATION DELAY TIME
vs
LOAD CAPACITANCE
-R11. 200
...... ~
/
t7
FIGURE 4
FIGURE 3
~
/
./
./
r---
4.5
-75 -50 -25 0
25 50
75 100 125
TA-Free-Air Temperature- DC
9~7=5~-~5=0---=25~~0--=2=5--~-==-~~~125
f
'\
r-...
J
-....... --........ "- V
o
.~
7.0
6.8
,".6.6
6.4
~ 6.2
j:: 6.0
~ 5.8
~ 5.6
§ 5.4
;; 5.2
~. 5.0
E! 4.8
11. 4.6
VCC - 5 V,
R1 - 200 n
R2 - 390 n
CL - 50 pF,
1 OUTPUT SWITCHING
;;
~
o
FIGURE 5
V
hV
600
200
400
CL -Load Capacitance-pF
800
FIGURE 6
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-33
2-34
TIBPAD 1BNB·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
03086. DECEMBER 1987
•
J OR N PACKAGE
Very High Speed Address Decoder (Ideal for
Use with High Speed Processors)
(TOP VIEW)
Vee
•
1/0 Propagation Delay: 6 ns Max
•
Suitable for High Speed NAND·NAND Logic
Implementation
•
Field Programmable on Standard PLD
Programmers
•
Fully TTL Compatible
•
Security Fuse Prevents Unauthorized
Duplication
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
GND '-1.._ _..r"
•
Dependable Texas Instruments Quality and
Reliability
•
Potential Applications
Address Decoders
Random Logic (NAND·NAND)
Code Detectors
Peripheral Selectors
Fault Monitors
Machine State Decoders
II
...
FN PACKAGE
(TOP VIEW)
U
UO
en
--->;:,
3
2
II)
II)
1 20 19
4
18
5
17
6
16
15
8
14
.c
en
1/0
1/0
1/0
1/0
1/0
...
~
~
C
910111213
description
The TIBPAD lSNS-6C is a very-high-speed Programmable Address Decoder featuring 6-ns maximum
propagation delay, the highest speed in the TTL programmable logic family. The TIBPAD lSNS uses the
IMPACT-X'" process and proven titanium-tungsten fuse technology to provide reliable, high-performance
substitutes for conventional TTL logic.
The TIBPAD1SNS-6C contains 10 dedicated inputs and 8 product terms, each followed by an inverting
buffer leading to an 110 port. Each of the eight 110 ports can be individually programmed as an input or
an output, depending on the state of the fuse controlling the output buffer, as indicated by Table 1. This
allows the device to be used for functions ranging from 17 inputs and a single output to 10 inputs and
S outputs.
sw
A high-speed feedback path, which does not go through the output buffer, is provided to offer higher
performance operation in designs where feedback is required. The architectural fuse on the 110 multiplexer
is used for the selection of this path (see Table 2). This makes the TIBPAD1SNS-6C ideal for the
implementation of a very fast NAND-NAND logic.
:>w
a:
The TIBPAD lSNS is supplied with all eight 110 ports in the input configuration (output buffers in the highimpedance state). If an 110 port is selected to be an output, it must be programmed accordingly. It is
recommended that all unused outputs on this device remain in the high-impedance state for better noise
immunity.
a..
I-
o
::::>
The TIBPAD1SNS-6C is characterized for operation from 0 DC to 75 DC.
c
oa:
a..
IMPACT-X is a trademark of Texas Instruments Incorporated.
PRODUCT PREVIEW d......1IIJ ••ntain informati.n
• n prod••ts in the formative .r delign pha.. of
development. Charactaristia data anil other
=::~::Iri~~ dt-:i:C8:::1~T:'::'=~ur:=
pradoets without notice.
Copyright @ 1987, Texas Instruments Incorporated
TEXAS •
INsrRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-35
TIBPAD1BNB·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
functional block diagram (positive logic)
8xl>
&
10
I>
~
8
8
~
~
8
9
36x8
~
1/0
EN
L
8
18XMUX
1
E
I--
G1
C
m
m
":'
r+
en
::r
Table 1. Output Buffer Programming
CD
CD
ARCHITECTURAL
rn
FUSE
r+
OPERATION
Table 2. I/O Multiplexer programming
ARCHITECTURAL
FUSE
Input
Intact
Intact
(Output Buffer
Blown
in Hi-Z Statel
Output
Blown
"'0
:D
o
C
c:
(")
-I
"'0
:D
m
S
m
~
2-36
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
OPERATION
I/O Feedback
High-Speed
Feedback
TIBPAD1BNB-6C
HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
logic diagram (positive logic)
III
I~
DI191
I
~
131
-
DIISI
I/O
v
141
I/O
MUX ,
1
~
DI171
v
151
I/O
MUX ,
II)
.c
BI~
IV
en
I/O
MUX ,
161
....
Q)
Q)
1
~
II
....COCO
C
1
~
&
I/O
v
171
MUX ,
1
~
~
lSI
1141
I/O
MUX,
1
~
~
W
DI131
~
191
-
I111
HIGH PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655012· DALLAS, TEXAS 75265
I/O
a:
c..
tO
DI121
~
:>W
I/O
::::>
C
0
a:
c..
2-37
TlBPAD18N8·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 75°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150 °C
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
E
C
I»
r+
I»
(J)
:r
CD
CD
Vee
Supply voltage
VIH
High-level input voltage (see Note 2)
Vil
10H
low-level input voltage (see Note 2)
High-level output current
10l
TA
Operating free-air temperature
MIN
NOM
MAX
4.75
5
5.25
2
UNIT
V
V
Low-level output current
0
0.8
-3.2
V
rnA
24
rnA
75
°e
NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted I
r+
TEST CONDITIONS
PARAMETER
(II
MIN
Typt
2.4
3
MAX
-1.2
UNIT
V
Vee = 4.75 V,
11= -18 rnA
VOL
Vee = 4.75V.
Vee - 4.75 V.
10ZH
vee = 5.25 V.
10H = MAX
10l - MAX
Vo = 2.7 V
IOZl
II
Vee = 5.25 V.
Vo = 0.4 V
20
-20
Vee = 5.25 V,
VI = 5.5 V
0.2
pA
IIH
Vee = 5.25 V,
Vee - 5.25 V,
VI=2.7V
20
VI - 0.4 V
-0.25
pA
rnA
Vee = 5.25 V.
Vee = 5.25 V.
Vo = 0 V
VI = 4.5 V
VIK
VOH
III
lOS
lee
0.37
V
0.5
V
pA
pA
rnA
140
180
rnA
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER
"'C
FROM
::XJ
CONDITIONS
I/O (no feedback)
o
I/O (with 1 feedback path
C
C
tpd
(")
-I
"'C
::XJ
TEST
TO
I
1/0
1/0
-
1/0 MUX fuse blown)
(with 2 feedback paths
I/O MUX fuse blown)
(with 3 feedback paths
1/0 MUX fuse blown)
Rl = 200
R2 = 390
el = 50 pF
tAli typical values are at Vee = 5 V. TA = 25°e.
m
-
w
W
a:
a..
t-
(.)
:;:)
Q
oa:
a..
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-39
•
C
I»
r+
I»
en
::r
~
~
r+
til
2-40
TIBPAL 16L8·12M, TIBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M
TIBPAL 16L8·1 DC, TIBPAL 16R4·1 DC, TIBPAL 16R6·' DC, TIBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
03023. MAY 1987-JANUAAY 1988
•
•
High·Performance Operation:
f max (w/o feedback)
TIBPAl16R'·10C Series ... 62.5 MHz
TIBPAl 16R'·12M Series •.. 56 MHz
f max (with feedback)
TIBPAl16R'·10C Series ... 55.5 MHz
TlBPAl16R'·12M Series ... 48 MHz
Propagation Delay
TlBPAl16l·10C ... 10 ns Max
TlBPAl16l·12M ... 12 ns Max
Vee
0
I/O
I/O
I/O
I/O
I/O
Functionally Equivalent, but Faster than
Existing 20·Pin PAls
I
I/O
I
0
GND
•
Preload Capability on Output Registers
Simplifies Testing
•
Power·Up Clear on Registered Devices (All
Register Outputs are Set low, but Voltage
levels at the Output Pins Remain High)
•
TIBPAL l6LB'
M SUFFIX ..• J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEWI
.c
_>0
3
2
C/)
4
•
Dependable Texas Instruments Quality and
Reliability
8
14
PAL16LB
PAL16R4
PAL16R6
PAL16R8
3·STATE
10
8
8
8
2
0
0
0
REGISTERED
Q OUTPUTS
0
4 (3·statel
6 13-statel
8 (3-statel
I/O
...coco
1 20 19
Security Fuse Prevents Duplication
o OUTPUTS
~
~
U
u
•
INPUTS
U)
C SUFFIX ... FN PACKAGE
(TOPVIEWI
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs
DEVICE
PI
...
TIBPAL l6LB'
M SUFFIX ... FK PACKAGE
18
I/O
5
17
I/O
6
16
I/O
15
I/O
I/O
C
9 1011 12 13
PORTS
6
4
2
0
Pin assignments in operating mode
description
These programmable array logic devices feature high speed and functional equivalency when compared
with currently available devices. These IMPACT" circuits combine the latest Advanced low-Power
Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes
for conventional TTL logic. Their easy programmability allows for quick design of custom· functions and
typically results in a more compact circuit board. In addition, chip carriers are available for further reduction
in board space.
All of the register outputs are set to a low level during power-up. Extra circuitry has been provided to allow
loading of each register asynchronously to either a high or low state. This feature simplifies testing because
the registers can be set to an initial state prior to executing the test sequence.
The TIBPAl16' M series is characterized for operation over the full military temperature range of - 55°C
to ·125°C. The TIBPAL16' C series is characterized for operation from aoc to 75°C.
IMPACr" is a trademark of Texas Instr~ments Incorporated.
PAL® is a registered trademark of Monolithic Memories Inc.
t'ntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments. U.S. Patent Number 3.463.975.
PRODUCTION DATA d••uments ••ntain inf.rmati.n
currant as of publication data. Products conform to
spacificatians par the tarms of TaXI. Instruments
:=~:~~i;ar::,~1i ~:~~:i:r :,~O::~::~:~~ not
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
Copyright @ 1987, Texas Instruments Incorporated
2·41
TlBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M
TlBPAL 16R4·1 DC, TIBPAL16R6·1 DC, TlBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
TIBPAl 16R4'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
TIBPAl16R4'
M SUFFIX ... FK PACKAGE
C SUFFIX .•• FN PACKAGE
(TOPVIEWI
(TOP VIEW)
eLK
Vee
'" U
....
UO
_ _ U>;:,
I/O
I/O
E
c
D)
....
D)
en
::::r
3
2
1 2019
0
4
18
Q
5
17
Q
6
16
0
15
I/O
I/O
14
I/O
Q
Q
0
0
9 1011 1213
5E
-
~1t:5
gg
(!l
TIBPAl16R6'
M SUFFIX ••• J PACKAGE
C SUFFIX •.. J OR N PACKAGE
(TOP VIEW)
eLK
nBPAl16R6'
M SUFFIX .•. FK PACKAGE
C SUFFIX .•• FN PACKAGE
(TOP VIEW)
Vee
1/0
CD
CD
Q
....rn
3
Q
2
1 2019
18
4
Q
17
Q
16
6
Q
Q
15
14
1/0
Q
Q
Q
Q
Q
9 1011 12 13
GN D '-t...-=--"";"J-' OE
-
~1t:5
ga
(!l
TIBPAl16R8'
M SUFFIX .•• J PACKAGE
C SUFFIX .•• J OR N PACKAGE
(TOP VIEW)
eLK
TIBPAl16R8'
M SUFFIX •.. FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
~ tl
__ u>o
Vee
Q
Q
3
18
Q
Q
5
17
0
6
16
Q
Q
Q
Q
7
Q
8
14
Q
9 1011 1213
ill
- 0lw
a
zO
(!l
Pin assignments in operating mode
2·42
1 2019
4
o
GND '-t...-=--~t-'
2
Q
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
a
TIBPAL 16L8·12M, TIBPAL 16L8·1 OC, TIBPAL 16R4·12M, TlBPAL 16R4·1 OM
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
functional block diagrams (positive logic)
'PAL16L8
&
7
EN >1
b-----o
32 X 64
0----0
0-.........-1/0
D-e+........-I/O
.......-I/O
o-~
IO-~.........-I/O
...
n-a+-....__ 1/0
CI)
Q)
Q)
.c
U)
...
6
C'CS
C'CS
C
'PAL 16R4
EN2
C1
O!
CLK
r---s;32X64
,.......,..
16xt>
8
~
~ "v
--,
p-f- "v
rlL--
>1
8
~
1-0
~
~
~
2'9
Q
~
10
Q
:>
1----1
:>
~
:>
~
Q
Q
I - - EN >1
r+-
'9
'"'-
.....
~
'---7
I-+-
"'\
~I--+4
"'\
.....
~
4
7
1/0
1/0
1/0
1/0
....
rv denotes fused inputs
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
2-43
TIBPAL 16R6·12M, TIBPAL 16R6·1 DC, TIBPAL 16R8·12M, TlBPAL 16R8-1 DC
HIGH·PERFORMANCE IMPACT ™PAL® CIRCUITS
functional block diagrams (positive logic)
'PAL16R6
De----------------------~~~--,
CLK .....--------------------------~
r~-r1=ii2tl--o
r-----t------1-~-o
t---t-----t.......:1--o
t---t-----t.......:1--o
r------t------1-..l--
E
0
c
C»
r+
C»
........
l--~:p_1IiI
_tb--eri........~-~-
f/)
:r
CD
CD
1/0
1/0
r+
(I)
'PAL16R8
De
eLK
;;'1
0
0
0
16
0
a
0
0
0
rv denotes
2-44
fused inputs
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlBPAL 16LB·12M, TlBPAL 16LB·1 DC
HIGH·PERFORMANCE IMPACTTMPAl® CIRCUITS
INPUT LINES
P ROOUCT,
LINES
0
0
4
8
12
16
20
24
28
31
0
0
0
0
0
t----.
}---
r-- f..--'
r--
o-
~
8
r-
0
0
0
0
0
0
V--
~
t:>--
(3) 15
')f
p-
(19)
I.-
J
(18)
o
1/0
J<:
16
}-c
0
0
0
0
0
0
1
./
1
(17)
--V
1/0
r--
")[
J:
en
J<
24
0
0
0
0
0
0
I (5)
r-
f--....
r-- fJ
31
"
~
0
0
0
0
0
0
(6
)
p-
r-<~
~
J
r)----
0
0
0
0
0
)----
.
)---)----
47
I (7)")1.
f--....
V
1
--V
I<'
+-
48
0
0
0
0
0
0
-
55
I (8) ")I
56
h
f-<
0
0
0
0
0
0
....r~f-/
1
'>--
63
J-
J
(14)
1
i-_J
)----
(15)
1
~
J..!Ilt>t:.
(16)
I.-
l-
39
40
I
J
1/0
...
CO
CO
C
....
32
I
en
II)
II)
~
(4) 23
II
...
(13)
(12)
I.-
110
1/0
110
o
(11 )
I!
-IJ1
TEXAS
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·45
TlBPAL 16R4·12M, TIBPAL 16R4·1 DC
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
CLK1!lt>
p RODUCT,
LINES
0
0
INPUT LINES
4
8
12
16
20
24
28
··
··
~
''8
···
··•
·
··•
·
··•
•
E
31
J
~
v
j
l)-
(18)
Vi
)--
(3) 15
16
I
(19)
1/0
1/0
>->->--
P-Q[tJ..!!.~1 a
C1
(4) 23
24
>--1=>J<
32
C
C1
>--
(5) 31
~16) a
l-
~'-
..>-
I--).-.l-
')[
>--
··•
·
··
·
···•
P-~
48
'-..>--
55
2·46
(9
)
J
bv
(14)
a
r-
----J<.J
l-
p- I--"
f--r---,
63
J(
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
(13)
1/0
i
}--
56
I
a
C1
47
(7) ':>I,
(!!)
(15)
v
C1
(6) 39
40
kJ
t;:}
j
VI
(12)
~)
1/0
TIBPAL16R6·12M, TIBPAL 16R6·1 DC
HIGH·PERFORMANCE IMPACT'MPAL® CIRCUITS
CLKDlt>
.-~----
-
------------
INPUT LINES
P RODUCT •
LINES
0
0
4
8
16
12
20
24
28
31
1
:0
0
0
v
}--
-
~
8
I
(191
I/O
-« .....
0
0
0
0
0
0
}--
>-D-
(31 15
}--
16
}--
o -
fbl~""
Cl
\---
0
0
0
0
0
Q
->
t1;
~I
Q
v
Cl
(41 23
-'-
24
\-----'
\---,
0
0
0
0
0
0
t>
-'
t1;
'"J
(161
t1;
>-;:I
(151
V
Q
...caca
Q
Cl
(51 31
\---
32
0
0
0
0
0
0
-
->
-
V
Q
Cl
39
(61 ')[
}--
40
0
0
0
0
0
0
~
48
~
;b-t1;
0
0
0
0
0
0
-
55
(81 ")(
v
(141
Q
Cl
)--
47
(71 ")(
~
KY~I Q
Cl
56
··
·
-~
0
0
l-<
h
1-
!-/
"---'
~-
.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
J
v
(121
I
I/O
~I
2-47
TIBPAL 16R8·12M, TIBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
...
CLK ( 1 ) v
.
INPUT LINES
P RODUCT ,
LINES
0
(2)
0
4
8
12
16
20
24
28
··
·•
··•
·•
··•
•
31
-
tr ""
D-
C1
>--
~
Vb-
8
}---
~P}---
16
o
....
.--
>-D-
'>r
24
>--
··
•
•
CD
CD
....
til
>--
·
•
••
•
....
Q
}---
>--
')[
f6l
fbl
I.:J.
(14)
-va- Q
C1
'"
40
·•••
··
··
·
~
I.:J.
(15)
--vo-- Q
P-
(6) 39
~
-
(7) 47
48
)--
C1
:>-
~) Q
C1
(8)~55
,...
56
••
~~~t?''''
··•
2·48
R(16)
C1
>--
'>r
32
(9) 63
·X
~
-:>}---
(5) 31
I
!.:1
(17)
-va- Q
C1
(4) 23
en
::T
fkl
t1
~Q
C1
(3) 15
I»
I»
Q
.
C1
'-
~)
t
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
Q
TlBPAl16l8·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16R8·12M
TIBPAl 16LB·1 DC, TIBPAl 16R4·1 DC, TlBPAl 16R6·1 DC, TlBPAl 16R8·1 DC
HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
e suffix .............................. ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
I
I
I
NOTE 1: These ratings apply except for programming pins during a programming cycle.
I
recommended operating conditions
PARAMETER
VCC
VIH
Vil
10H
10l
MIN
4.5
2
Supply voltage
High-level input voltage (see Note 2)
low-level input voltage (see Note 2)
-12M
NOM
5
High-level output current
Low-level output current
fclock Clock frequency
12
56
0
l High
J low
tw
Pulse duration, clock (see Note2)
tsu
th
TA
Setup time, input or feedback before ClKi
Hold time, input or feedback after ClKt
Operating free-air temperature
-IDe
MAX
5.5
5.5
0.8
-2
9
9
11
0
-55
25
125
MIN
4.75
2
NOM
5
0
8
8
10
0
0
25
MAX
5.25
5.5
0.8
-3.2
24
62.5
75
~
UNIT
V
V
V
mA
mA
MHz
il
G)
ns
ns
ns
...
en
ca
ca
Q
°c
NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system andlor
tester noise. Testing these parameters should not be attempted without suitable equipment.
.
electrical characteristics. over recommended operating free-air temperature range
VIK
VOH
VOL
VCC
VCC
VCC
10ZH§
VCC
10Zl §
II
VCC
VCC
= MIN,
= MIN,
= MIN,
= MAX,
= MAX,
= MAX,
= MAX,
= MAX,
= 5 V,
IIH§
VCC
Ill§
Vce
lOS'
Vce
Vce - MAX,
V, = OV,
f = 1 MHz.
f = 1 MHz.
f = 1 MHz.
ICC
ein
Cout
CelK
-12M
TEST CONDITlONSt
PARAMETER
=
II
MIN
-18 mA
= MAX
= MAX
Vo = 2.4 V
Vo = 0.4 V
VI = 5.5 V
V, = 2.4 V
V, = 0.4 V
Vo = 0
IOH
10l
2.4
-30
Outputs Open
TYP*
-0.8
3.2
0.3
MAX
-1.5
MIN
-10C
TVPt
-0.8
MAX
-1.5
UNIT
0.5
V
V
V
100
100
~
-100
0.2
-100
~
0.2
mA
2.4
0.5
3.2
0.3
25
25
~A
-0.08 -0,25
-0.08 -0.25
mA
-70
-130
140
180
=2V
Vo = 2 V
VelK = 2 V
V,
5
6
6
-30
-70
-130
mA
140
180
mA
5
6.
6
pF
pF
pF
t For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.
tAli typical values are at Vce = 5 V. TA = 25°e.
§ I/O leakage Is the worst case of 10Zl and I,l or 10ZH and ',H. respectively.
, Not inore than one output should be shorted at a time and duration of the short·circuit should not exceed one second.
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
.
.c:
2-49
TIBPAL 16L8·12M, TIBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M
TIBPAL 16L8·1 DC, TIBPAL 16R4·1 DC, TIBPAL 16R6·1 DC, TIBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
switching characteristics over recommended supply voltage and oplnating free·air temperature ranges
(unless otherwise noted)
PARAMETER
fmax*
FROM
TEST CONDITIONS
TO
With Feedback
tpd
0.110
tod
ten
Q
tdis
ClKt
OE<
OEt
ten
tdis
1.110
1.110
0.110
0.110
R1 = 200 O.
R2 = 390 O.
See Figure 1
Q
Q
-12M
TYpT
48
56
3
2
Without Feedback
1.110
MIN
MAX
MIN
-10C
TypT
MAX
12
10
10
10
12
12
55.5
62.5
3
2
1
1
3
3
80
85
7
5
4
4
8
8
10
8
10
10
10
10
80
85
7
5
4
4
8
8
1
1
3
3
UNIT
MHz
ns
ns
ns
ns
ns
ns
t All typical values are at VCC = 5 V. TA = 25°C.
*fmax (with feedbackl =
•
tsu
1
+ tpd (ClK to
Q)
• f max (without feedbackl =
tw high
1
+ tw low
.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
2-50
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlBPAl16lB·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16RB·12M
TIBPAl 16lB·1 DC, TIBPAl 16R4·1 DC, TIBPAl 16R6·' DC, TIBPAl 16RB·1 DC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
preload procedure for registered outputs (see Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 volts and Pin 1 at VIL. raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1. clocking in preload data.
Remove output voltage. then lower Pin 11 to VIL. Preload can be verified by observing
the voltage level at the output pin.
preload waveforms (see Note 3)
PIN 11
---I
~----v'...
VIL
~td-1
jf-tsu--l
M-tw~
j+-Id ---.I
'ii
PIN 1
I
I
I
1'-..-_-_-...;1_-_-.;..1_-_-_-_-_-_-_
VIH
-
VIL
:
I
I
I
I
I
I
------.~
REGiSTERED 110
I
~
I
I
I
~,.-O-U-TP-U-T-- VOH
INPUT
~
_ _ _ _ _ _ _J
VIL
- - - - - VOL
NOTE 3: td = tsu = tw = 100 ns to 1000 ns.
VIHH = 10.25 V to 10.75 V.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-51
TIBPAl16lB·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16RB·12M
TIBPAl 16lB·1 DC, TIBPAl 16R4·1 DC, TlBPAl 16R6·1 DC, TlBPAl 16RB·1 DC
HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V
Sl
~
Rl
FROM OUTPUT _ ...........~~~_ TEST
UNDER TEST
POINT
CL
(See Note A)
IE
R2
LOAD CIRCUIT FOR
THREE·STATE OUTPUTS
C
./.
3.5 V
TIMING
T,1.5V
INPUT _ _ _ _U - - - - - - 0.3 V
\4-th-+t
I4- t su-+\
1
DATA
~-;;;;3.5V
INPUT
1.5V
~
0.3V
...
&»
&»
rn
::T
J
CD
CD
...
(II
---3.5V
HIGH-LEVEL
PULSE
1 5 V
15 V
~
.
.
Lt ---'!1
I·
15 V
1 5 V
~
.
.
I
LOW·LEVEL
PULSE·
.Ji,1.5 V
\1-:;; -; -
----"
tpd
I
14
l . 5V
1
tpd
OUT-OF·PHASE
OUTPUT
(See Note D)
14
- - 3.5 V
0.3 V
.1
tpd
1,-_..;1_---.:+ - -
:f
IN-PHASE
OUTPUT
VOLTAGE WAVEFORMS
PULSE DURATIONS
1.
14.1
~
I
E
14
.1
1.1
'\.1.5 V
.
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
OUTPUT
CONTROL
!low-level
enabling)
~3.5V
1.5 V
ten -+I
VOL
tpd
.
14-
I!
-1- - - - -- 0.3
~ 14-- tdis
II
V
=3.3 V
WAVEFORM1~1.5V
,
.c--VOL-f,0.5V
I
Sl CLOSED
(See Note B)
--VOL
1.5 V
I
1
VOH
p.vVOH
.
3.5V
- - --0.3V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT
0.3 V
w
ten.-.t
I
j+-
-+I
-
__ ..Jt_
-"X -
14- tdis T.
VOL
~
WAVEFORM 2
S10PEN.
(See Note B)
I
I _ _ _ t.-VOH
-
1.5 V
-
LVOH-0.5 V
=0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten. 5 pF for tdis'
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR s 1 MHz. tr = tf = 2 ns. duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs. switch S 1 is closed.
FIGURE 1
2-52
TEXAS
~
INSTRUMENlS
,POST OFFICE BOX 656012 • DALLAS, TEXAS 75265
TIBPAL 16R4·1 DC, TlBPAL 16R6·1 DC, TIBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACfYMPAL® CIRCUITS
metastable characteristics for TIBPAL 16R4·10C, TIBPAL 16R6·10C, and TIBPAL 16R8·10C
At some point in every system designer's career, he or she is faced with the problem of synchronizing
two digital signals operating at two different frequencies. This problem is typically overcome by
synchronizing one of the signals to the local clock through use of a flip-flop. However, this solution presents
an awkward dilemna since the setup and hold time specifications associated with the flip-flop are sure
to be violated. The metastable characteristics of the flip-flop can influence overall system reliability.
Whenever the setup and hold times of a flip-flop are violated, its output response becomes uncertain and
is said to be in the metastable state if the output hangs up in the region between V,l and V,H. This metastable
condition lasts until the flip-flop falls into one of its two stable states, which takes longer than the specified
maximum propagation delay time (ClK to Q max).
From a system engineering standpoint, a designer cannot use the specified data sheet maximum for
propagation delay time when using the flip-flop as a data synchronizer - how long to wait after the specified
data sheet maximum must be known before using the data in order to guarantee reliable system operation.
The circuit shown in Figure 2 can be used to evaluate MTBF (Mean Time Between Failure) and ~t for a
selected flip-flop. Whenever the Q output of the DUT is between 0.8 V and 2 V, the comparators are in
opposite states. When the Q output of the DUT is higher than 2 V or lower than 0.8 V, the comparators
are at the same logic level. The outputs of the two comparators are sampled a selected time (~t) after
SClK. The exclusive OR gate detects the occurrence of a failure and increments the failure counter.
NOISE
GENERATOR
... -
:
DATA
IN
OUT
----,
10
VIH
I
H .........-t
1-----f1D
I
I
/--i>+
II)
CD
CD
.r:.
en
...
CO
CO
C
C1
I
I
Vil
COMPARATOR
I
SClK-------iH>C1
MTBF
COUNTER
COMPARATOR
...
:
I
I _____ JI
L
SClK
+
4 1 - - - - - - - - - - - - - - - -______- - - - - - 1
FIGURE 2. METASTABLE EVALUATION TEST CIRCUIT
In order to maximize the possibility of forcing the DUT into a metastable state, the input data signal is
applied so that it always violates the setup and hold time. This condition is illustrated in the timing diagram
in Figure 3. Any other relationship of SClK to data will provide less chance for the device to enter into
the metastable state.
-
DATA
SClK
SClK + 41
-
•I
•I
-----1-'__~.:-------..,----~'--j.r--I
I
I
~M~
MTBF _
I
~M~
TIME (SEC)
# FAILURES
I ree
- 4t - ClK TO Q (MAXI
FIGURE 3. TIMING DIAGRAM
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-53
TIBPAL16R4-1 DC, TIBPAL 16R6-1 DC, TlBPAL16R8-1 DC
HIGH-PERFORMANCE IMPACP'PAl@ CIRCUITS
By using the described test circuit, MTBF can be determined for several different values of ll.t (see Figure 2).
Plotting this information on semilog paper demonstrates the metastable characteristics of the selected
flip-flop. Figure 4 shows the results for the TIBPAL16'-10 operating at 1 MHz.
109
-lOy.
108
-ly.
107
- - 1 rna
106 --lwk
~
5
"III 10
- 1 day
I-
::E 104
"...
0
•
- - 1 hr
103
10 2 - l m i "
10 1
C
....
I»
I»
At (nsl
FIGURE 4. METASTABLE CHARACTERISTICS
rn
:r
From the data taken in the above experiment, an equation can be derived for the metastable characteristics
at other clock frequencies.
CD
CD
....en
The metastable equation:
MiBF = fSClK x fdata x C1 e (-C2 x at)
The constants C1 and C2 describe the metastable characteristics of the device. From the experimental
data, these constants can be solved for: C1 = 9.15 x 10~7 and C2 = 0.959
Therefore
M;BF
= fSClK
x fdata x 9.159 x 10- 7 e (-0.959 x at)
definition of variables
OUT (Device Under Test): The OUT is a 10-ns registered PAL programmed with the'equation Q : = D.
MTBF (Mean Time Between Failures): The average time (s) between metastable occurrences that cause
a violation of the device specifications.
fSClK (system clock frequency): Actual clock frequency for the OUT.
fdata (data frequencyi: Actual data frequency for a specified input to the OUT.
C1: Calculated constant that defines the magnitude of the curve.
C2: Calculated constant that defines the slope of the curve.
trec (metastability recovery time): Minimum time required to guarantee recovery from metastability, at
a given MTBF failure rate. trec = ll.t - tpd (ClK to Q, max)
ll.t: The time difference (ns) from when the synchronizing flip-flop is clocked to when its output is sampled.
The test described above has shown the metastable characteristics of the TIBPAl 16R4/R6/R8-1 0 series.
For additional information on metastable characteristics of Texas Instruments logic circuits, please refer
to TI Applications publication HSDAA004, "Metastable Characteristics, Design Considerations for AlS,
AS, and lS Circuits."
2-54
TEXAS
~
INSTRUMENTS
POST OfFICE BOX 655012 • OAl,.lAS, TEXAS 75265
TIBPAL 16L8·1 DC, TlBPAL 16R4·1 DC, TlBPAL 16R6·1 DC, TlBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME
vs
FREE·AIR TEMPERATURE
9
..
8
.,
I
E
.
9
VCC _ 5 V
1 OUTPUT SWITCHING
c
i=
PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
7
.
kl/o
R1 - 200 0 -'tPHl
to 0,1/0)
R2 - 391 0
Cl - 50 pF
See Figure 1 -t-----I;"....,=+-,,.....'F----1f----1
c
.,
I
E
.
>
'ii
6r-~--+--r-+--f___+--r~
c
o
.'."
....'"
0
.~
5
11........::::::j:=::l=:::::::p~t"""'=--t--t---j
!2
5
!2
II..
II..
4
4
3L-~
tpHl II,I/? to 0,1/0)
!'.....
r--
tPlH~
I
6
Q
c
[
7
i=
>
~
8
R1 - 200 0, See Figure 1
R2 - 3900, TA - 25°C
Cl-50pF
__-L__~~__- L__~~L-~
3
r--
--
4.5
-75 -50 -25
0
25
50
75 100 125
TA-Free-Air Temperature- °C
tpHl (ClK to Q~
tPlH
4.75
5
(cJ
5.25
VCC-Supply Voltage-V
FIGURE 5
FIGURE 6
en
+or
to Q ) -
Q)
Q)
.c
en
5.5
ca
ca
+or
C
PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING
11
..
c
.,I
9
i=
8
>
'ii
7
E
.
Q
VCC = 5 V
R1 - 2000
R2-3900
CL - 50 pF
See Figure 1
10
----
TA - 25°C_
c
o!
6
!2
5
....'"
f.--::
II..
:::--r ~ \t'~\..
\\,\1
0\0
-
'
0 \10'
\t'\..~
\\~
IlCL~tO~1
-::TI .
4
tPlH (ClK to QI
I
3
1
2
3
4
5
6
7
8
Number of Outputs Switching
FIGURE 7
TEXAS
~
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-55
TIBPAL16L8·1 DC, TIBPAL16R4·1 DC, TIBPAL16R6·1 DC, TIBPAL16R8·1 DC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
TYPICAL CHARACTERISTICS
POWER DISSIPATION
vs
FREQUENCY
8-BIT COUNTER MODE
PROPAGATION DELAY TIME
vs
LOAD CAPACITANCE
900
VCC - 5 V. TA - 25·C
16 R1 - 200 0. 1 Output Switching -=1;...-----1
R2 - 3 9 0 0 b
0'\
c
O~~-b.,e:::...-+---I
I 14 See Figure 1
.
I
...0
II
~~70~"c--;;,Fc
~"
E
j::
E
C
...
C»
C»
en
::r
(1)
...en
(1)
>-
12
.!!
~ 10
!'"
£
!
8
I-'
.......... 1-'
..........
:.-- ~
~
TA - O·C
:.--
I
rr
:. 700 -TA - 25·C
I
6
I I I
f
4
2
5V
800
;
0
D
~I
is
c
"j
VCC
TA
600
0
100
200
300
400
500
CL -Load Capacitance-pF
600
I-
F-Frequency-MHz
FIGURE 9
,
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
180r--.--.-.--.~-r-~-.r--'
UNPROGRAMMED DEVICE
170r-~-~-+---Ir--+-+---Ir-~
~160r--+-~~~~-~-+---I-~
I
i150r-~~d-~~~~-r-+---I-~
::I
(.) 140
I--+-="'t-o=-P"d~rr""-:-+---I-~
~130r--+-~~~~~~~~~~~
I
~120r--+-~-+---I~~~~~~d
100~~_~_~~_~_~~~~
-~-~-~
0
~
~
~ 1001~
TA-Free-Air Temperature-·C
FIGURE 10
2·56
~
1Q
1
FIGURE 8
i
---
.... 1-'
TEXAS ,.,
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 76265
40
100
TIBPAL 16L8·15M, TIBPAL 16R4·15M, TIBPAL 16R6·15M, TIBPAL 16R8·15M
TlBPAL 16L8·12C, TIBPAL 16R4·12C, TIBPAL 16R6·12C, TIBPAL 16R8·12C
HIGH· PERFORMANCE IMPACT'MPAL® CIRCUITS
JANUARY 1986-REVISED DECEMBER 1987
•
•
TIBPAL 16LB'
M SUFFIX ••• J PACKAGE
C SUFFIX ••. J OR N PACKAGE
High-Performance Operation
Propagation Delay
M Suffix ... 12 ns Max
C Suffix ... 15 ns Max
(TOPVIEWI
Vee
Functionally Equivalent, but Faster than
PAL16L8B, PAL16R4B, PAL16R6B, and
PAL16R8B
0
•
Power-Up Clear on Registered Devices
IAII Registered Outputs are Set Low)
•
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DiPs
•
1/0
1/0
1/0
1/0
1/0
I/O
0
I
GND
II
...
Dependable Texas Instruments Quality and
Reliability
TlBPAL 16LB'
DEVICE
INPUTS
PAL16LB
10
3·STATE
REGISTERED
a OUTPUTS
QOUTPUTS
2
0
MSUFFIX •.• FK PACKAGE
en
C SUFFIX ..• FN PACKAGE
1/0 PORTS
CD
CD
(TOPVIEWI
6
PAL16R4
8
0
4 (3-sto'e)
PAL16R6
8
a
6 (3-state)
2
PAL16R8
8
0
8 (3-sto'o)
0
..c
en
as
as
U
U
_ _ _ >0
4
3
2
description
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices.
These IMPACT'" circuits combine the latest
Advanced Low-Power Schottky t technology
with proven titanium-tungsten fuses to provide
reliable, high-performance substitutes for
conventional TTL logic. Their easy
programmability allows for quick design of
"custom" functions and typically results in a
more compact circuit board. In addition, chip
carriers are available for further reduction in
board space.
...
1 2019
4
18
I/O
5
17
110
6
16
I/O
I/O
I/O
"IS
14
8
C
9 1011 1213
-0-00
Z
C,!)
'"
Pin assignments in operating mode
The TIBPAL 16' M series is characterized for
operation over the full military temperature range
of - 55°C to 125°C. The TIBPAL 16' C series
is characterized for operation from 0 °C to 75°C.
IMPACT'" is a trademark of Texas Instruments Incorporated.
PAL'" is a registered trademark of Monolithic Memories Inc.
t'ntegrated Schottky-Barrier diode-clemped transistor is patented
by Texas Instruments, U.S. Patent Number 3,463,975.
PRODUCTION DATA da...m.......tain informad...
.urrent .. 01 publi.atioo data. P..d......00.rll ta
lpacificatlHa par do. term••f T.... Instrum....
standard warranty. Praolut:tian p......ing da....t
.......ri/y i..- - . 01 .11 poromatarl.
Copyright @ 1986, Texas Instruments Incorporated
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-57
TIBPAL 16R4·15M, TIBPAL 16R6·15M, TIBPAL 16R8·15M
TIBPAL 16R4·12C, T1BPAL 16R6·12C, T1BPAL 16R8·12C .
HIGH·PERFORMANCE IMPACfTMPAL® CIRCUITS
TISPAL16R4'
M SUFFIX •.. J PACKAGE
C SUFFIX •.. J OR N PACKAGE
nBPAl16R4'
M SUFFIX ... FK PACKAGE
C SUFFIX ..• FN PACKAGE
(TOP VIEW)
(TOP VIEW)
elK
>£
Vee
u
--' uo
_ _ U>::;,
I/O
GND
'-l..._---Ir"
I/O
Q
Q
4
5
18
17
I/O
Q
Q
6
16
Q
Q
7
15
Q
I/O
I/O
8
14
Q
3
2
I 2019
9 1011 12 13
OE
-
~I~
gg
<.:)
TIBPAL l6RO'
M SUFFIX ..• FK PACKAGE
C SUFFIX ..• FN PACKAGE
(TOP VIEW)
TIBPAl16R6'
M SUFFIX ... J PACKAGE
C SUFFIX ..• J OR N PACKAGE
(TOP VIEW)
C
...
I»
I»
fJ)
elK
::r
>£
Vee
CD
CD
...en
u
--' UO
_ _ U>::;,
I/O
Q
3
Q
4
5
Q
6
Q
2
1 2019
Q
Q
I
GND
8
I/O
........_ - - - - ' r "
18
Q
17
16
Q
15
Q
14
Q
Q
9 1011 1213
BE
-
~I~
ga
<.:)
TIBPAL 10RS'
M SUFFIX .•. J PACKAGE
C SUFFIX •.. J OR N PACKAGE
TIBPAL 16RS'
M SUFFIX •.. FK PACKAGE
C SUFFIX.•. FN PACKAGE
(TOP VIEW)
(TOP VIEW)
elK
~ tl
__ u>o
Vee
Q
3
Q
2
1 2019
Q
4
18
Q
5
17
Q
6
16
15
14
Q
Q
I
GND
........_ _ _r"
8
Q
9 1011 1213
BE
- Qlw
zo a
<.:)
Pin assignments in operating mode
2·58
TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
a
TIBPAL 16LB·15M, TIBPAL 16LB·12C, TlBPAL 16R4·15M, TlBPAL 16R4·12C
HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS
functional block diagrams (positive logic)
'PAL1SL8
&
EN .. 1
7
'Vk>-----o
32X64
k>-----o
0-.-.......-1/0
.......-I/O
P-~
k>-...........- I/O
II
...
k>-.-t"'+--I/O
k>-e+"''''-I/O
U)
4)
4)
..c
en
...
6
CU
CU
o
'PAL16R4
J EN2
-L C1
DE
ClK
&
32X 64
~
'V
,i
rt-
f>+-
'V
-
10
r+r+-
+
8
1=0
..1
r-+
r+~
~
a
~
~
>
~
a
r+-
t--
a
2'V
a
~
EN
..1
'V
r-+-
~
r+-
f-J'
~~
"'\
"'\
....
"" ---"'\
I/O
I/O
I/O
I/O
,
4
rv denotes
fused inputs
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265
2-59
TIBPAL 16R6·15M, TIBPAL 16R6·12C, TIBPAL 16RB·15M, TIBPAL 16RB·12C
HIGH·PERFORMANCE IMPACP'PAL® CIRCUITS
functional block diagrams (positive logic)
'PAl16R6
OE----~------------------~~--_,
CLK .....--------------------------~
&
32X64
a
16
E
r--;-----1~l_Q
C
C»
1'+
C»
.........,-- I/O
J----2:r-~
t/)
::r
P--ed--4....--t--
CD
CD
I/O
1'+
en
'PAL 16Ra
OE
ClK
a
;'1
Q
Q
Q
8
16
Q
Q
Q
Q
Q
rv denotes
2·60
fused inputs
TEXAS •
INSTRUMENTS
POST OFFICE BOX 6550.12 • DALLAS. TEXAS 75266
TlOPAL 16LB·15M, TlOPAL 16RB·12C
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
INPUT LINES
P RODUCT,
LINES
0
4
8
12
16
20
24
28
31
~
····
·
~
··
·
··•
·
··••
·
··••
0
II- >---
1
....
'- >---
(19)
o
I)-
8
I--
h
f.--/
1
I
(18)
--V
I
1/0
(3) 15
')f
16
1
}--
....
(17)
1/0
24
...
Q)
Q)
-
(4) 23
-
J....
(16)
1
(15)
1'"
(14)
J
(13)
1
(12)
I/O
.c
en
ca
ca
...
Q
-
(5) 31
32
f.--/
•
V
1/0
(6) 39
-'-"
"
40
I (7)
··•
·
··
·
··
·
-
r-)-}--
47
')f
48
I (8)
~
h
~
....
1/0
~
55
')f
,.....
56
I
1/0
b1 - - f.--/
r:=d(l
I-
(!!. 63
....
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
v
o
(11)
2·61
'
I
TIBPAL 16R4·15M, TIBPAL 16R4·12C
HIGH·PERFORMANCE IMPACT TMPAL® CIRCUITS
INPUT LINES
4
LIN
8
12
16
20
24
28
··••
•
·
~
0
31
>--
J
'-'
~
I----
8
E
••
••
••
i--
16
l--
••
••
·
1----:>I----
10
1
1
(18) I
~1
f.--"
(3) 15
(19) I
tbJ;
10
I"
r:J
""
10
Q
C1
(4) 23
24
••
•
••
·
D-
32
>->-->
•
·••••
40
Q
v
(15)
I--.
•
•
•
47
·
·
·•••
b
~>tt; .
(14)
1--..
C1
I---
1
(13)
J
(12)
48
~
h.
!--./
••
55
Vl
Q
1/0
;:;;
·•••
56
I-<
••
I-
9) 63
I (
2-62
~
r.:J.
C1
39
1(6),>[
1(8)
Q
C1
(5) 31
1(7)
tbJ;
:CW 16 )
.. 'I
1/0
L---
>-
f-f--
="24
.
-
0
0
0
0
0
>-
\---
,
0
0
0
0
0
0
"
\---t>)--
\--'-
(6) 39
CI)
CI)
.c
'CI)
CU
~
~
(16)
~
(15)
Q
CU
C
C
-vo-
a
Cl
I-------'
40
c
~
Cl
(5) 31
32
~
Cl
>---
(4)~23
1.:1
(17)
Q
v
}--
0
0
0
0
0
0
~
::::>t6];
~
~) Q
}--
Cl
}--
(7) 47
48
0
00
0
0
0
r.:J....
(13)
Q
Cl
55
(8) '>f
56
I-~
0
0
0
0
0
0
II-"
J
(12)
....
1/0
~
~
L.
1
~)
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012. DALLAS, TeXAS 75265
2·63
,
,
TIBPAL 16R8·15M, TIBPAL 16R8·12C
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
ClKillt>
.
INPUT LINES
PR
l?~E~CT '0
4
8
12
16
20
24
28
.
I
31
0
•••
••
•
~
>-
Elrl'8
••
••
••
-
'0+
m
tn
··••
·
::J
'"";:1
{181
Rv
{171
~
>-;:t
{161
Y;
'"";:1
{151
Rv
{141
~
v
Q
C1
r---I
I----
~::>)-----i
Y;
Q
C1
{41 23
-'-
Q
C1
-p-
{31 15
X
16
o
m
n? "
24
•••
•
••
CD
CD
0+
(I)
~
-
.>-
t----'
C1
{51 31
32
I----"
••
•
•
·
~ Q
_D-
v
Q
C1
{61 39
~
40
••
•
•
47
I----
·
I---I----<
{71 X
~
•
··••
·•••
;:-
{81 55
X
56
~
·•
'
I---'
{91 63
X
>-;:t
...
{131
POST OFFICE BOX 665012 • DALlAS. TEXAS 76266
Q
C1
C/Y;S ""
C1
~I
TEXAS •
INSTRUMENTS
Q
C1
:=/n
48
'2-64
>-
Q
TlBPAL 16L8·15M. TIBPAL 16R4·15M. TIBPAL 16R6·15M. TIBPAL 16R8·15M
TIBPAL 16L8·12C. TIBPAL 16R4·12C. TIBPAL 16R6·12C. TIBPAL 16R8·12C
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°e
e suffix ................. _ ............ ooe to 75°e
Storage temperature range ......................................... - 65°C to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions (see Note 2)
-15M
PARAMETER
Vec
VIH
Vil
10H
MIN
4.5
2
Supply voltage
High-level input voltage
low-level input voltage
High-level output current
Low-level output current
10l
fclock Clock frequency
NOM
5
I
Pulse duration, clock (see Note2)
tsu
th
TA
Hold time, input or feedback after ClK1
Operating free-air temperature
I
MIN
4.5
2
12
50
10
15
0
-55
0
0
9
High
low
Setup time, input or feedback before ClK1
NOM
5
MAX
5.25
5.5
0.8
-3.2
24
0
7
8
10
0
tw
-12C
MAX
5.5
5.5
0.8
-2
125
62
UNIT
~
:
V
V
V
mA
mA
MHz
...
.s:.
ns
en
...
ns
«J
«J
ns
75
o
°c
NOTE 2: The total clock period of elK high and ClK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for ClK high or ClK low, but not for both simultaneously.
.
electrical characteristics, over recommended operating free-air
VCC = MIN,
VCC - MIN,
VIK
VOH
VOL
10ZH
10Zl
Outputs
110 ports
Outputs
110 ports
=
II
10H - MAX
= MIN,
10l
= MAX
VCC
= MAX,
Vo
= 2.7V
VCC
= MAX,
Vo
= 0.4 V
= 5.5 V
II
VCC
= MAX,
VI
IIH
Vec
VCC
10§
= MAX,
= MAX,
= MAX,
= MAX,
VI
III
Vce
VCC
VI = OV,
ICC
MIN
TYP*
2.4
3.3
-18mA
VCC
= 2.7 V
= 0.4 V
Vo = 2.25 V
range
-15M
TEST CONDlTlONSt
PARAMETER
temp~rature
0.35
Pin 1, 11
All others
Pin 1, 11
All others
VI
170
MIN
TYP*
2.4
3.3
0.5
0.35
MAX
-1.5
20
100
-20
-250
0.2
0.1
50
20
-0.2
0.1
0.1
20
20
-0.2
220
-30
170
UNIT
V
V
0.5
20
100
-20
-250
-125
-30
Outputs Open
-12C
MAX
-1.5
V
~A
~A
mA
~
mA
-125
mA
200
mA
tFor conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.
*AII typical values are at Vec = 5 V, TA = 25°e.
§The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, lOS.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS, TEXAS 75265
2-65
I
.
TIBPAL 16L8·15M, TlBPAL 16R4·1.5M, TIBPAL 16R6·15M, TIBPAL 16R8·15M
TIBPAL 16L8·12C, TIBPAL 16R4·12C, TIBPAL16R6·12C, TIBPAL 16R8·12C
HIGH·PERFORMANCE IMPACT'MPAL® CIRCUITS
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
FROM
TO
1,1/0
ClKi
DE.
DEi
1,1/0
1,1/0
0,1/0
TEST CONDITIONS
f max ;
tpd t
tpd
ten
~is
ten
tdis
t All
-15M
MIN
-12C
TVpt
MAX
8
7
B
7
8
8
15
50
Q
Rl = 5000,
Cl = 50 pF
Q
Q
See !'Iote 3
0,1/0
0,1/0
=
MIN
TVPt
MAX
8
7
B
7
8
8
12
62
12
12
12
15
15
UNIT
MHz
ns
10
ns
10
ns
10
ns
12
ns
12
ns
=
typical values are at VCC
5 V, TA
25 ·C.
Maximum operating frequency and propagation delay are specified for the basic building block. When using feedback, limits must be
calculated accordingly.
NOTE 3: Load circuits and voltage waveform,s are shown in Section 1.
'2 ;
C
programming information
OJ
r+
OJ
en
:T
CD
CD
r+
en
2-66
'
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers,
Complete programming specifications. algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 997-5762.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
TIBPAL 16L8·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16R8·20M
TIBPAL 16L8·15C, TIBPAL 16R4·15C, TIBPAL 16R6·15C, TIBPAL 16R8·15C
HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS
FEBRUARY 1
•
High·Performance Operation
Propagation Delay
M Suffix ... 20 ns Max
C Suffix ... 15 ns Max
•
Functionally Equivalent, but Faster than
PAL16L8A,PAL16R4A, PAL16R6A, and
PAL16R8A
•
•
TIBPAl16la'
M SUFFIX .•. J PACKAGE
C SUFFIX •.. J OR N PACKAGE
{TOP VIEW)
Vee
o
110
110
Po.wer·Up Clear on Registered Devices
IAII Registered Outputs are Set Low)
1/0
110
110
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DiPs
110
o
GND -"'_--Jr
DEVICE
PAL16lB
PAL16R4
PAL16R6
PAL16RB
3-STATE
INPUTS
o OUTPUTS
10
B
B
B
2
0
0
0
REGISTERED
1/0 PORTS
Q OUTPUTS
0
6
4 (3-state)
4
6 (3-state)
2
a (3-state)
0
TlBPAl16la'
M SUFFIX •.. FH OR FK PACKAGE
C SUFFIX .•. FN PACKAGE
(TOP VIEW)
...
U)
CP
CP
U
.c
u
___ >0
description
3
These programmable array logic devices feature
high speed and a choice of either standard or
half-power devices. They combine Advanced
Low-Power Schottky t technology with proven
titanium-tungsten fuses, These devices will
provide reliable, high-performance substitutes
for conventional TTL ipgic. Their easy
programmability allows for quick deSign of
"custom" functions and typically result in a
more compact circuit board. In addition, chip
carriers are available for further reduction in
board space.
2
o
as
as
...
1 20 19
18
5
17
6
7
16
15
14
8
Q
9 1011 12 13
The PAL 16' M series is characterized for
operation over the full military temperature range
of -55°C to 125°C. The PAL16' e series is
characterized for operation from ooe to 70°C.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCTION DATA do••_
.ontll. information
••rront "' 01 publication date. P......... canform to
.paciljcatio•• per the tarOll 01 T.... Iistruments
=i~·i:'':.7.;
=-::; 1Ir=~:..~
not
Copyright © 1984, Texas Instruments Incorporated
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75285
2-67
TlBPAL 16R4·20M. TIBPAL 16R6·20M. TIBPAL 16RB·20M
TIBPAL 16R4·15C. TIBPAL 16R6·15C. TIBPAL 16RB·15C
HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS
TIBPAL 16R4'
M SUFFIX ... J PACKAGE
C SUFFIX ..• J OR N PACKAGE
TIBPAL 16R4'
M SUFFIX .•• FH OR FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
(TOP VIEW)
~
_ _ U>:::,
tlo
Vee
eLK
I/O
3
1/0
2
1 20 19
Q
Q
17
Q
16
18
Q
E
..
..
c
S»
S»
en
-:r
CD
CD
15
1/0
1/0
GND ""1...._---.Jr- OE
14
TIBPAL 16R6'
M SUFFIX .•. J PACKAGE
C SUFFIX ... J OR N PACKAGE
TIBPAL 16R4'
M SUFFIX ... FH OR FK PACKAGE
C SUFFIX ..• FN PACKAGE
(TOP VIEW)
(TOP VIEW)
Vee
eLK
I
1/0
3
Q
Q
Q
Q
Q
Q
en
1 20 19
TIBPAL 16RS'
M SUFFIX ... FH OR FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOPV'IEW)
TIBPAL 16RS'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)
etK
2
Vee
Q
3
Q
1 20 19
18
Q
17
Q
16
Q
15
Q
14
Q
9 1011 1213
GND ........_---l-OE
2-68
2
Q
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL 16L8·20M, TIBPAL 16L8·15C, TIBPAL 16R4·20M, TIBPAL 16R4·15C
HIGH·PERFORMANCE IMPACpM PAL@ CIRCUITS
functional block diagrams (positive logic)
'PAL 16L8
EN ;"1
&
32X 64
\/b-----o
b-----o
b-......-4.....-1/0
10
16
t')....a.I..........- I/O
b-.-+..........-I/O
6
h-~...._ -
II
I/O
b-.-+........-I/O
en
~
b-~-4...-1/0
CI)
.c
en
6
...
CO
CO
C
'PAL 16R4
OE-----------------~
CLK------------------~
0
0
I>
8
0
16
0
4
4
I/O
I/O
I/O
I/O
4
-
denotes fused inputs
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2·69
TlBPAL 16R6·20M, TIBPAL 16R6·15C, TIBPAL 16R8·20M, TIBPAL 16R8·15C
HIGH·PERFORMANCE IMPACT™ PAL@! CIRCUITS
functional block diagrams (positive logic)
'PAl16R6
DE
]~N2
r, Cl
ClK
&
32X64
:>1
~
1=0 2
P-
---...
---...
---...
---...
---...
R-
---...
10
Rr--:--:-
II
[>
r-i!- - R-
P-
~
~
2.,..
io..--
-
I - - EN :>1
P-
\l
....
-
p
I--
rz,....
p
a
a
a
a
a
a
I/O
I/O
2
-
.....
6
'PAl16R8
~-----------------------d~---'
ClK--------------------------~
&
32 X 64
8
r~:>;;1-r-i=O~'_--- a
r----t----1-~-a
t---r---1--':l--a
t---r---1--':l--a
r----r---1--.:l--a
8
-
2-70
denotes fused inputs
TEXAS ."
INSTRUMENTS
POST OFFICE BOx 855012 • DALLAS. TEXAS 75285
TIBPAl16lB·20M, TIBPAl16lB·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
I (1)
PRODUCT
LINES '0
0
INPUT LINES
4
8
12
16
20
24
28
···
~
's
··
·
·
···•
··
·
··
·
···
·•••
·
·••
·•
3"
~v-J
119)
o
~
1
~
~
118)
v
110
~
(3) 15
-
16
1
f-
(17)
v
~
110
-
(4) 23
-
24
:::>
J
116)
1
(15)
1
114)
1
(13)
1
(12)
110
r--
(5) 31
r
32
t-<
v
110
.....
(6) 39
X
40
f---' ~
.--
110
.--
(7) 41
X
48
.--
.-- ~
(8) 55
v
110
A
)l
56
(9)
v
r--
>-
v
o
.-
~
r--
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
(11)
2-71
TIBPAl16R4·20M, TIBPAL16R4·15C
HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS
CLK~
PRODUCT
LINES '0
0
,
INPUT LINES
,
4
8
12
16
20
24
28
3"
·•
·•
"t--
1
f-'
v
(191
J
I/O
(21 .....
'8
••
••
(31
1
-,
·
··•
·
·•••
v
>--
15
(181
I
I/O
-
16
Q
>---- >- ~,:!Im
C1
>-----<
(41 23
24
~
r.Jv
~
>-;::L (151 Q
/~
>-;::L (141 Q
>---->-
•
>---'
C1
(51 31
..:.:
32
••
••
•
·
f-pf-
....
-
f-
40
•
(7l
··••
·•••
·•
ff--
ff-
47
v
C1
X
48
I--
l>-
-
56
1
v
r-
55
1(81 X
~
••
••
·
>----....
63
1(91 X
2-72
v
C1
(61 39
I
(161 Q
TEXAS
..If
INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS. TEXAS 75265
(131
I
(121
1
I/O
I/O
~ OE
TIBPAL 16R6·20M, TlBPAL 16R6·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
ClK
!1!-t>---PRODUCT,
LINES
0
._----------------------,
INPUT LINES
,
4
8
12
16
20
24
28
0
31
>-------c
0
0
0
0
0
0
'--...
-/
v
7
(2~
~
f----'
0
0
0
0
0
0
(31
1
-
>-,/-
I
tr
3 n.
C1
15
1191
I/O
Q
16
0
0
0
0
0
0
~p-
-
f-----"
41 23
(X
24
->~
(51 31
32
~
0
0
0
0
0
0
.c
en
(161
v
Q
;
Q
C1
~
~
':!
(141
~C>~
~
(131
v
C1
fo-
40
:t>~
0
0
0
0
0
0
-
f0-
(71 47
X
48
....
Q
C1
1---1
0
0
••
·
0
f--'
66
66
0
-
•
•
0
>----
63
>--
0
....
U)
;
CD
C1
~ (151 Q
fo-p-
(61 39
(91
~
':!
I
C'CI
0
0
0
0
0
0
1(81
~
I.:J.
(171
-va- Q
·
v
Q
C1
1
v
(121
1'4""
I/O
OE
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS, TEXAS 75265
2-73
TIBPAL 16R8·20M, TlBPAL 16R8·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
ClK
.!!!.t>
PRODUCT
LINES '0
0
D)
;tn
:::r
CD
CD
r+
fn
8
12
16
20
24
28
··
·•
~
··
·
·••••
(21
Ic
I
INPUT LINES
4
~
::>-
Q
f-------,
~D-
tJ;
0-->tJ;
I.:l (181 Q
r-vo-
C1
v
16
i-----'
•
>--;-'
23
IQ
~
v
C1
24
··•.·
·•••
·
·
··•
··•
·
··
·
~-
f-------,
p-
)l
32
16 )
~
I.J
(15)
~
";:1
(14)
~
";::L
(13)Q
~
o--Pr--
39
v
Q
C1
40
(71
~
I.:l
(161
-vo- Q
C1.
31
(51
f-p-
v
Q
C1
47
-
48
----1
-
>-
f---'
)l
56
t--
~
>:bh"e- '"
C1
A
TEXAS ",
INSIRUMENlS
POST OFFICE BOX 65501 i
..
DALLAS. TEXAS 76265
v
C1
f----<
(81 55
2-74
tJ;'3 ' '
C1
7
(31 15
(41
3"
~
TIBPAL 16L8·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16R8·20M
TIBPAL 16L8·15C, TlBPAL 16R4·15C, TIBPAL 16R6·15C, TIBPAL 16R8·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
e suffix .............................. ooe to 75°e
Storage temperature range .......................................... - 65 °e to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
VCC
VIH
Supply voltage
High-level input voltage
Vil
low-level input voltage
IOH
High-level output current
15C
20M
PARAMETER
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
5.5
4.5
2
5
5.25
5.5
V
V
0.8
-3.2
mA
2
0.8
-2
low-level output current
IOl
fclock Clock frequency
12
0
I High
tw
Pulse duration, clock (see Note 2)
tsu
th
TA
Satup time, input or feedback before ClKt
I low
Hold time, input or feedback after ClKt
40
0
V
24
mA
50
MHz
10
11
8
9
ns
20
15
ns
0
-55
Operating free-air temperature
UNIT
MIN
0
125
0
ns
70
°c
NOTE: 2. The total clock period of ClK high and ClK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for ClK high or ClK low, but not for both simultaneously.
•
....
tI)
Q)
Q)
.c
en
....asas
C
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995-5762.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS, TEXAS 75265
2-75
TIBPAL 16L8·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16R8·20M
TIBPAL 16L8·15C, TlBPAL 16R4·15C, TIBPAL 16R6·15C, TIBPAL 16R8·15C
HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS
electrical characteristics over recommended operating free·air temperature range
TEST CONDITIONSt
PARAMETER
VIK
Vcc
Vcc
VOH
Outputs
10ZH
10Zl
1/0 ports
Outputs
1/0 ports
Cit
(/'J
::T
CD
CD
....
U)
= MAX,
Vo
= 2.7
VCC
= MAX,
Vo
= 0.4 V
= MAX,
= MAX,
VCC
IlL
VCC - MAX,
10§
VCC
VCC
VI
= MAX,
= MAX,
=0
VI
VI
20M
TYpt
2.4
3.2
-18mA
IOH = MAX
10L - MAX
IIH
ICC
=
VCC
VCC
II
cD)
II
Vcc - MIN,
VOL
E
= MIN"
= MIN,
MIN
= 5.5
= 2.7
0.25
V
MIN
TYP*
2.4
3.3
0.35
0.4
MAX
-1.5
0.5
UNIT
V
V
V
20
100
-20
20
100
-20
-;150
0.2
-250
Pin 1, 11
All others
0.1
0.1
Pin 1, 11
50
20
-0.2
20
20
-0.2
rnA
-125
rnA
180
rnA
V
V
16C
MAX
-1.5
All others
VI "- 0.4 V
Vo = 2.25 V
Outputs Open
-30
-125
140
V
0.1
-30
190
140
p.A
p.A
rnA
p.A
tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
*All typical values are at VCC = 5 V, TA = 25 ·C.
§The output conditions have been chosen to produce 8 current that closely approximates one half of the true short-circuit output current, lOS.
switching characteristics over recommended supply voltage and operating free·air temperature ranges
(unless otherwise noted)
PARAMETER
FROM
TO
1,1/0
0,1/0
Q
20M
TYpo
MAX
10
RL = 50011,
CL '" 50 pF,
See Note 3
TEST CONDITIONS
f max
tod
tpd
ten
tdis
ten
tdis
CLKt
OE!
OEt
Q
1,1/0
0,1/0
0,1/0
1,1/0
Q
MIN
40
UNIT
TYP*
MAX
20
10
ns
8
15
8
15
12
8
7
15
8
12
ns
15
20
10
15
ns
10
7
10
10
20
10
15
ns
*
All typical values are at VCC = 5 V, TA 25 ·C.
Note 3: Load circuits and voltage waveforms are shown in Section 1.
2·76
15C
TEXAS'.
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
MIN
50
MHz
ns
ns
TIBPAL 16LB·30M, TIBPAL 16R4·30M, TIBPAL 16R6·30M, TIBPAL 16RB·30M
TIBPAL 16LB·25C, TIBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL16RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACT™PAl® CIRCUITS
FEBRUARY 1984-REVISED
•
High-Performance Operation
Propagation Delay
M Suffix ... 20 ns Max
C Suffix ... 15 ns Max
•
Functionally Equivalent, but Faster than
PAL16L8A. PAL16R4A, PAL16R6A.and
PAL16R8A
o
•
Power-Up Clear on Registered Devices
CAli Registered Outputs are Set Lowl
1/0
1/0
•
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs
I/O
I/O
1987
TIBPAl16lS'
M SUFFIX .•• J PACKAGE
C SUFFIX ••• J OR N PACKAGE
(TOP VIEW)
Vee
I/O
I/O
o
GND-,.._ _~
OEVICE
PAL16LS
PAL16R4
PAL16R6
PAL16R8
3-STATE
INPUTS
o OUTPUTS
10
8
2
0
0
0
8
8
REGISTERED
I/O PORTS
Q OUTPUTS
0
6
4 (3-state)
4
6 (3-state)
2
8 (3-state)
0
II
...
TIBPAL 16L8'
M SUFFIX ••. FH OR FK PACKAGE
C SUFFIX •.. FN PACKAGE
(TOP VIEW)
en
CD
CD
.c
U
___ >0
u
description
3
These programmable array logic devices feature
high speed and a choice of either standard or
half-power devices. They combine Advanced
Low-Power Schottky t technology with proven
titanium-tungsten fuses. These devices will
provide reliable, high-performance substitutes
for conventional TTL logic. Their easy
programmability allows for quick design of
"custom" functions and typically result in a
more compact circuit board. In addition. chip
carriers are available for further reduction in
board space.
2
en
...coco
1 20 19
18
I
5
17
6
16
15
8
o
14
9 1011 1213
The PAL 16' M series is characterized for
operation over the full military temperature range
of -55°e to 125°e. The PAL16' e series is
characterized for operation from ooe to 70 oe.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3.463,975.
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
PRODuCnoli DATA .......0011 cont.i. ,."....lIia.
••rnllll .s a' p••liclli•• Uta. Pr....cts coala.... 10
spscilicotitoa. par 1110 tor... of T.... lnotro..onto
=H~8{'::I~ =~ :.r:::~ nat
Copyright @ 1984. Texas Instruments Incorporated
TEXAS . "
INSIRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-77
TIBPAL16R4·30M, TIBPAL 16R6·30M, TIBPAL 16R8·30M
TlBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL 16R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
TIBPAL16R4'
TIBPAL 16R4'
M SUFFIX ••• J PACKAGE
C SUFFIX .•. J OR N PACKAGE
M SUFFIX, •• FH OR FK PACKAGE
ITOPVIEWI
ITOPVIEWI
elK
C SUFFIX ••• FN PACKAGE
~
Vee
U
..J U·o
__ u>;::,
1/0
1/0
3
2
1 20 19
Q
•
c
D)
r+
::r
5
17
Q
6
16
Q
7
15
1/0
8
I/O
GND "-l.._....;.;J.... OE
M SUFFIX .•• J PACKAGE
C SUFFIX ••• J OR N PACKAGE
TIBPAL 16R4'
M SUFFIX ... FH OR FK PACKAGE
C SUFFIX ... FN PACKAGE
ITOPVIEWI
ITOPVIEWI
TIBPAL 16R6'
D)
en
18
Q
elK
Vee
CD
CD
I/O
en
Q
3
Q
r+
2
1 20 19
18
17
16
15
Q
Q
Q
Q
14
I/O
9 1011 12 13
GND"-l.._....;.;J....
M SUFFIX ... J PACKAGE
C SUFFIX .•. J OR N PACKAGE
TIBPAL 16RS'
M SUFFIX •.• FH OR FK PACKAGE
C SUFFIX ••• FN PACKAGE
ITOPVIEWI
ITOPVIEWI
TIBPAL 16RB'
elK
Vee
Q
3
Q
2
1 20 19
Q
18
Q
17
Q
16
15
Q
Q
14
Q
9 1011 1213
OE
2·78
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 855012 • DALLAS. TeXAS 75265
TIBPAL l6LO·30M, TIBPAL l6R4·30M
TIBPAL l6LO·25C, TIBPAL 16R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACpMPAL@ CIRCUITS
functional block diagrams (positive logic)
'PAL 16LB
EN ;>1
&
k>-----o
32X 64
r:>----O
k>-"'~""-I/O
10
16
P-~""'''''-I/O
k>-ti.........-I/O
6
k>-e+........-I/O
II
II)
b-1
8
32X644-
~
--J-
~
c>
....;L
-
~
2!"""
C
....
en
:::r
I»
I»
CD
CD
....
en
-
~
-
r-------
r----.
r----.
r----.
~
~
+
--...
~
2,.7
...:.,.-
a
1-0 2
lD
EN
a
a
a
a
a
~
:>1
V
110
110
2
6
'PAL 16RS
DE----------------------~~~--,
CLK----------------------------~
r;:>;;l--r~o,~--- a
j----t----1-~-a
t---r--1---':l-a
j---t----1--+-- a
j----t----1--+--a
~---t----1-~-a
t---r--1---':l-a
t---r--1---':l-a
-- denotes fused inputs
2·80
TEXAS ~
IN STRUM ENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL 16L8·30M, T1BPAL 16L8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTNPAL® CIRCUITS
I 111
PRODUCT
LINES '0
INPUT LINES
,
4
8
12
16
20
24
28
0
···
~
···
·
'r:x
··•
31
,-
0-
>----"
~
J
1191
1
1181
o
t----c
8
v
I/O
r-
131 15
16
[--...
·•
1
1171
v
I/O
II...
U)
Q)
Q)
t----c
.c
141 ...23
0
v
24
··•
·
··
·
··•
·
·••
·
·••
·•
t----c
f--
p-
J
1161
1
1151
1
1141
I/O
...a:sa:s
C
151,,31
32
v
I/O
t----c
161 39
40
r-...
v
I/O
171 47
48
)-)--
k
- f--"
1
1131
v
I/O
)--
181 55
v
56
f--
63
191
p-
J
1121
o
1111
v
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-81
TIBPAL 16R4·30M, TIBPAL 16R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
CLK~----------__________________________
PRODUCT ;o;;-_--;:_ _-:=-_~::_I-NP-U_T':'U:::_N-ES-_::::_-__:::_:__-_:=__::':'
UNES '0
4
8
12
16
20
24
28
31'
0
··•
·
~
f--
I--'
1
v
119)
I
110
va-
1
••
••
•
E
·
en
:::r
I/O
1
13) 15
··••
16
f----1
-
C
...mm
v
118)
-l->
·
··••
•
>---'
14) 23
X
24
...
CD
CD
(II
15)
tJ; -;) ' '
Q
C1
f---'
e-D-
tJ;
'";:1116)
--yo-
Q
~
'";:1
Q
C1
~
32
••
••
f----1
·
e-P-
C1
16) 39
40
•
··•••
·••
·••
~D-tJ;
'";:1114) Q
v
C1
17) 47
48
1
e-
55
18) X
v
f----c
··••
·
56
'--'
113)
110
1
1
v
63
1 19) X
2-82
115)
v
(12)
110
1
~ DE
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 866012 • DALLAS, TEXAS 75265
TIBPAL 16R6-30M. TIBPAL 16R6-25C
LOW-POWER HIGH-PERFORMANCE IMPACTTMPAL® CIRCUITS
CLK~~--------------------------------------------__~
PRODUCT,
LINES
0
0
INPUT LINES
4
8
12
16
20
24
28
31
I--
0
0
0
0
0
0
>------'~
'--"
7
(2'-f:::,t---<
"~
0
0
0
0
0
0
(3)
WI
(19)
110
> :bl~ n. a
-
Cl
15
16
~
0
0
0
0
0
0
}-P>---'
23
e---'
0
0
0
0
0
0
:bl
a
&I
...
U)
CD
CD
.c
tn
...
CO
,-,C>r--
~16) a
Q
CO
C
Cl
c-----<
(5) 31
(17)
Cl
(4) >L
24
'";J
....
32
f---<
0
0
0
0
0
0
:bl
8
->8
C>-
>---'
(6) 39
40
0
0
0
0
0
0
'";J
v
(14)
a
";::l
(13)
a
Cl
48
0
0
0
0
0
0
-
55
56
0
0
0
0
0
0
......r~
~
63
(9)
Cl
>----,C>-
(7) 47
(8)
¢'a
>L
V
Cl
1
v
I
(12)
110
l.(p!!!) DE
TEXAS ."
INSlRUMENTS
POST OFFICE BOX 855012 • DALLAS, TEXAS 75265
2-83
TlBPAL t6RB·30M. TlBPAL t6RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACT'MPAl® CIRCUITS
PRODUCT
LINES '0
0
INPUT LINES
4
8
I
12
16
20
24
28
I
3'-
0
0
0
0
0
0
>- ~'~ ""
Q
C1
~
'b--
8
0
0
0
0
0
0
E
>---
16
0
0
0
0
0
0
CI)
CI)
(4)
....
tn
0
0
0
0
0
(5)
}---
.
24
CD
CD
>--->
23
::r
}--p.
0
0
t±>-
0
0
0
39
(6) )(
tl
~
Q
C1
I--
40
l---1
"
}--t>
0
0
0
0
0
0
}--
I--
47
48
}--t>
0
0
0
0
0
0
(bl
t:r:l(14) Q
I.-
C1
w
b
V
(13)
Q
C1
55
56
}-----,
0
0
0
0
0
0
'-t:>-lbl
I-.
63
2-84
Q
C1
31
I(~
~
~
l---1
o
i8)
~
~) Q
Q
C1
32
Q)
~
~
C1
(3) 15
c
....
t/)
~
~(12) 1/0
C1
L.,
~) OE
I
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL 16LB-30M, T1BPAL 16R4-30M
TIBPAL 16LB-25C, TIBPAL 16R4-25C
LOW-POWER HIGH-PERFORMANCE IMPACpMPAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vcc (see Note 1) ............................. :. . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) ......................... : . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
C suffix .............................. DoC to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOT~
1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
25C
30M
PARAMETER
UNIT
MIN
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.5
5
5.25
V
5.5
2
5.5
V
VCC
Supply voltage
VIH
High-level input voltage
Vil
Low-level input voltage
0.8
0.8
IOH
High-level output current
-2
-3.2
mA
IOl
Low-level output current
12
24
mA
fclock
Clock frequency
50
MHz
2
,
0
I High
I low
tw
Pulse duration, clock (see Note 2)
tsu
Setup time, input or feedback before ClKt
th
Hold time, input or feedback after ClKt
TA
Operating free-air temperature
40
10
0
8
11
9
20
15
0
-55
0
U)
Q)
Q)
J:
ns
o
...caca
ns
ns
0
125
II
...
V
70
·C
NOTE: 2. The total clock period of ClK high and ClK low must not exceed clock frequency. fclock. Minimum pulse durations specified
are only for ClK high or ClK low, but not for both simultaneously.
o
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995-5762.
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-85
TlBPAL 16L8·301lli, TIBPAL 16R4·30M, TIBPAL 16R6·30M, TlBPAL 16R8·30M
TIBPAL 16L8·25C, TlBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL 16R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
.
electrical characteristics over recommended operating free-air temperature range
•
PARAMETER
VIK
Vee - MIN,
VOH
Vee
VOL
Outputs
IOZH
1/0 ports
Outputs
10ZL
•
1/0 ports
II
=
IOH
Vee
= MIN,
= MIN,
IOL
= MAX
= MAX
Vee
= MAX,
Vo
= 2.7
Vee
= MAX,
Vo
= 0.4 V
= MAX,
VI
= 5.5
V
IIH
Vee
= MAX,
VI
= 2.7
V
IlL
Vee
= MAX,
= MAX,
= MAX,
VI
Vee
Vee
VI
TYP*
2.4
3.2
0.25
V
Vee
10§
MIN
-18 mA
II
lee
-30M
TEST CONDITIONS t
MAX
-1.5
-26C
MIN· TYP*
2.4
3.3
0.35
0.4
MAX
-1.5
0.6
20
20
100
-20
-250
100
-20
Pin I, 11
0.2
All others
0.1
-250
0."
0.1
UNIT
V
V
V
~A
~
mA
Pin 1, 11
50
20
All others
20
-0.2
20
-0.2
mA
-125
mA
100
mA
= 0.4 V
Vo = 2.25 V
-30
Outputs Open
-125
75
= OV
-30
75
105
~
tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
tAli typical values are at Vee = 5 V, TA = 25·e.
§The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, lOS.
switching characteristics over recommended supply voltage and operating free-air temperature renges
(unless otherwise noted)
PARAMETER
fROM
TO
TEST CONDITIONS
0,1/0
tdis
1,1/0
eLK!
OEJOEt
ten
tdis
1,1/0
1,1/0
0,1/0
0,1/0
t1td
ten
TYP*
MIN
UNIT
TYP*
MAX
26
MHz
ns
30
15
30
15
Q
RL = 600 Il,
10
20
10
15
ns
Q
eL = 50 pF,
See NDte 3
15
15
10
20
20
ns
10
25
25
14
30
14
25
ns
13
30
13
25
ns
Q
t All typical values are at Vee = 5 V, T A 25 ·C.
NOTE 3: Load circuits and voltage waveforms are shown in Section 1.
2-86
-26C
MAX
25
f max
tDd
-30M
MIN
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
ns
TIBPAL20L8·20M, TIBPAL20R4·20M, T1BPAL20R6·20M, TIBPAL20R8·20M
TIBPAL20L8·15C, T1BPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C
HIGH PERFORMANCE IMPACT'MPAl® CIRCUITS
02920, JUNE 1986- REVISED DECEMBER 1987
TIBPAL20LB'
M SUFFIX, , . JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
•
High Performance: f max (wlo feedbackl
TIBPAL20R' C series . , . 45 MHz
TIBPAL20R' M series ... 41.5 MHz
•
High Performance, .. 45 MHz Min
Vee
•
Functionally Equivalent to, but Faster than,
PAL20L8, PAL20R4, PAL20R6, PAL20R8
I
ITOP VIEW)
•
Preload Capability on Output Registers
Simplifies Testing
•
Package Options Include Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs
•
o
1/0
1/0
1/0
1/0
1/0
1/0
o
Reduced ICC of 180 mA Max
DEVICE
'PAL20L8
'PAL20R4
'PAL20R6
'PAL20R8
3·STATE
I INPUTS
o OUTPUTS
14
12
12
12
2
0
0
0
0
4
(3~state
II
...
1/0
REGISTERED
Q OUTPUTS
buffers)
6 /3-state buffers)
8 (3-state buffers)
PORTS
6
4
2
0
TlBPAL20LB'
M SUFFIX .. , FK PACKAGE
C SUFFIX ... FN PACKAGE
ITOPVIEW)
CD
CD
.s:::
en
u
u
___ uz>_o
description
4
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices.
These IMPACT'" circuits combine the latest
Advanced Low-Power Schottky t technology
with proven titanium-tungsten fuses to provide
reliable, high performance substitutes for
conventional
TTL logic,
Their easy
programmability allows for quick design of
custom functions and typically results in a more
compact circuit board. In addition, chip carriers
are also available for further reduction in board
space.
I/)
3
2
...
CO
CO
1 28 27 26
25
24
23
1/0
1/0
I/O
C
22 Ne
21
20
10
"
19
1/0
1/0
1/0
121314 15 16 17 18
NC- No internal connection
Pin assignments in operating mode
Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low
state. This feature simplifies testing because the registers can be set to an initial state prior to executing
the test sequence.
The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55 DC
to 125 DC, The TIBPAL20'C is characterized from 0 DC to 75 DC.
IMPACT is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.
t Integrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3,463,975.
PRODUCTION DATA do.umants .ontain inlormation
currnt 88 of publication data. Products cantDrm to
spacifications per the terms of Texas Instruments
::~:~~i~air::1~7i ~!:~~:i:r :.~O:::~~~~ not
Copyright
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
© 1986, Texas Instruments Incorporated
2-87
TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20R8·20M
TIBPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
TIBPAL20R4'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE
TISPAL20R4'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOP VIEW)
(TOP VIEW)
ClK
e
VCC
~ u
a
--uz>_""
I
liD
liD
4
3 2
1 2827 26
25
Q
liD
Q
22
liD
liD
Q
Q
19
liD
I
12131415 1617 18
GND --.;'---=.... DE
11
NC
21
20
TlBPAL20RS'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE
TIBPAL20RS'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOPVIEWI
(TOP VIEWI
ClK
u ~ 0
__ :J
uz>_""
VCC
I
liD
4321282726
Q
Q
Q
I
5
25
I
6
24
I
NC
I
liD
9
I
10
I
11
121314151617 18
TIBPAL20RS'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE
TIBPAL20RS'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOPVIEWI
(TOP VIEW)
ClK
I
VCC
I
Q
4
Q
Q
I
I
Q
2
1 2827 26
I
Q
NC
I
Q
Q
I
GND Y;;=--..:.:::J>-'
3
5
6
22
9
I
10
I
11
12131415 161718
BE
--~~Ib-d
(!)
NC-No internal connection
Pin assignments in operating mode
2·88
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
TIBPAL20LB·20M, TIBPAL20R4·20M
TlBPAL20LB·15C, TIBPAL20R4·15C
HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20LS'
EN >1
&
40
x 64
'<:7t>----0
b----o
14
20
IO-~""_I/O
II
b-e+-+....-I/O
b--<-+-....~ I/O
(I)
+or
Q)
Q)
b--<-+-+t~ I/O
.c
6
CJ)
(Q
+or
TIBPAL20R4'
(Q
o
OE
EN
ClK
C1
~
40 X 64
,..-20X [>
12
4
r+
I..--
~
'V
~
'V
>1
8
I--f-
o
'<:7
~
10
~
~
:>
f-+-
~
:>
~
I--
f-..,l.-
Q
~
Q
EN
o
>1
'<:7
f---J
~
f--.y-
f-+--
'"
'"
I---y-
L.-~
I/O
I/O
I/O
I/O
4
I"\.J denotes fused inputs
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-89
TIBPAL20R6·20M, TIBPAL20RB·20M
TIBPAL20R6·15C, TlBPAL20RB·15C
HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20RS'
OE
"lEN
C1
r.,
ClK
-a;40X 64
8
;;>1
p.;.
Q
---..
10
~
~-m-;+ 'V
~
Eo
---..
~
"---
~
'V
~
Q
r----,
AI
en
Q
h
EN ;;>1
\7
,---f-!."-
:::T
CD
CD
a
r----,
~
2,.7
AI
r+
Q
r----,
~
r,.
Q
.
1/0
r
1/0
2
6
r+
en
TIBPAL20RS'
OE
ClK
Q
Q
Q
12
20X C>
20
Q
Q
Q
Q
Q
8
"-' denotes fused inputs
2·90
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
TIBPAL20LB·20M
TlBPAL20LB·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)
(1)
INPUT LINES
/0
4
8
12
16
1\
20
24
28
32
I~
0
•
•
•
I~
141 .....
7
8
161~
...
~
..
181~
-
. ...r---'
•
•
23
.--
~4
•
•
•
31
~~
tI)
(201
(191
I/O
1/0
G)
G)
.c
en
....asas
C
32
(181
•
•
39
:J
40
•
•
•
47
(171
...
I/O
1/0
--
.......
...J
••
•
55
(161
1/0
-
~
56
~
•
•
1~
....
v
48
l!!t
o
1211
....
•
I~
1221
:--
•
•
•
15
•
...
1231
,.---
r--J
16
151
\
..;.r--
""
PR ODUCT
II NES
36
•
63
~
.
1151
o
(14)
(13)
111~
.;,r-------
Pin numbers shown are for JT and NT packages.
. TEXAS.
INSTRUMENTS
POST OFFICE BOX 655012 .. DALLAS, TEXAS 75265
2·91
TIBPAL20R4·20M
TIBPAL20R4·15C
HIGH·PERFORMANCE IMPACTTM PALl$) CIRCUITS
logic diagram (positive logic)
ClK
,
11) ....
INPU~LlNES
10
12)
4
8
16
12
20
24
28
32
36
\
....
'"
PR ODUCT
0
LIN ES
.1
@!.-
7
8
....
•
••
14)-
'"
I~-
'\..
15
16
....
•
••
23
......
.
40
""
~
c,
~
1.119)
V""
1.l118)
v
Q
Q
IJ... 117)
Q
......
•
•
•
55
J
116)
1
116)
~
•
•
•
63
~
'"
114)
111)
""
Pin numbers shown are for JT and NT packages.
2-92
Q
1- ~
56
11!l.4
/0
----'
-Pl
~
48
II~
Vl
c,
•
•
39
•
•
•
47
118)
(21) I
)-
•
v
J
:J
I10
'D
"32
171-
122)
Iv
>-- ~~]
c
•
•
31•
16)
1
......
24
I
123)
""
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • OAUAS. TEXAS 75265
I
~
I/O
I/O
TlBPAL20R6·20M
TIBPAL20R6·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)
ClK
(1)~
...
,
0
. INPUTA;:INES
4
8
12
16
20
24
28
32
(2)
36
,
(23)
~
I/O
PR ODUCT
LI NES
0
•
•
•
7
(!l
'-
•
•
...
1 .....
"\.
"
r--
16
(7)~
(!)~
(1
v
31•
32
••
•
39
)-
40
"
~
•
•
•
47
-~
)-
.....
•
•
55
iJ...
(1
I.l...
(1
B
c,
~
L>-~
•
c,
t;w1
I .....
: t------'
56
1
•
(10) ..
(20
I'"
~
48
(~
c,
"
•
•
...
iJ
~
r- I.l
tl]
.-..
•
•
23
24
(6)~
1/0
... 1
r- ~I.l'"
'0
c,
•
15
•
(5)~
(22)
~
8
(4) ....
J
•
63•
(15)
1/0
- .. 1
(14)
(11)
4.-
~-I
+
Pin numbers shown are for JT and NT packages.
TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
)
OE
2-93
TIBPAL20RB·20M
TIBPAL20RB·15C
HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS
logic diagram (positive logic)
(1)
.
c LK '"
INPUT,./-INES
"'0
4
B
16
12
20
24
2B
32
(2)
36
...
....
(23)
P RODUCT
LINES
0
.
(3)"
•
•
7•
r ~
~"2J
c,
........
~
•
15•
4)
)-
C
.....
~
•
en
:::r
(5)"
•
•
23
...
-2~
CD
CD
P+
tit
(6)
...
(7)
(B) ...
)-
...,
~
>...,
~
32
•
•
•
39
r
~
••
r
•
47
•
•
•
55
)-
~
~
Pl
c,
...,
-56
•
•
10)
~
c,
1....
48
(9) ...
~
c,
1-
c,
)-~
•
63
~(21)
v
Q
r---'
c,
•
•
•
31
-4
~
c,
16
I»
P+
I»
Q
i:l....
(20)
Q
1.1 (19
v
Q
1.1(18
rv-
Q
1.
-v--
(17
1...
(16
i:l....
(16
Q
Q
Q
~
(14)
1)
- ...
"::l- 1-1
3)_
OE
~
Pin numbers shown are for JT and NT packages.
2-94
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TEXAS 75265
TIBPAL20LB-20M, TIBPAL20R4-20M, TIBPAL20R6-20M, TIBPAL20RB-20M
TlBPAL20LB-15C, TIBPAL20R4-15C, TlBPAl20R6-15C, TIBPAL20RB-15C
HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
e suffix : ............................. ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
-20M
PARAMETER
vCC
Supply voltage
VIH
High-level input voltage
VIL
Low-level input voltage
IOH
High-level output current
IOL
Low-level output current
fclock
Clock frequency
MIN
4.5
NOM
5
2
-lSC
MAX
MIN
NOM
5.5
4.75
5
5.5
2
5.5
O.B
-2
O.B
-3.2
12
I High
I Low
tw
Pulse duration, clock
tsu
th
Setup time,. input or feedback before CLKt
Hold time, input or feedback after CLKt
TA
Operating free-air temperature
41.5
0
12
10
15
0
-55
0
0
\i
V
V
mA
24
mA
MHz
ns
10
0
125
UNIT
45
10
12
12
20
MAX
5.25
75
EI...
til
Q)
Q)
.c
ns
Ul
ns
CIS
CIS
ns
DC
...
C
fClock. two tsu. and th do not apply for TIBPAL20LB'.
TEXAS •
INSlRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-95
TIBPAL20L8·15C, TIBPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
electrical characteristics over recommended free·air operating temperature range
PARAMETER
TEST CONDITIONS
Vee = 4.75 V,
Vee - 4.75 V,
Vee = 4.75 V,
VIK
VOH
VOL
10ZH
10Zl
•
C
DI
S'
0,0 outputs
1/0 ports
0, 0 outputs
1/0 ports
II = -18mA
10H - -3.2 mA
10l
=
=
5.25 V,
Vo
= 2.7
Vee
=
5.25 V,
Vo
= 0.4 V
=
=
=
=
=
5.25 V,
VI
5.25 V,
VI
II
Vee
Vee
III *
Vee
10S§
Vee
5.25 V,
Vee
5.25 V,
Outputs open,
5.25 V,
-lSC
TYpt
-0.8
MAX
-1.5
2.4
0.3
24 mA
Vee
IIH*
lee
MIN
V
= 5.5 V
= 2.7 V
VI = 0.4 V
Vo = 0
VI = 0,
-30
OE at VIH
0.5
20
100
-20
-0.25
1
UNIT
V
V
V
p.A
p.A
mA
mA
25
p.A
-0.25
mA
-70
-130
mA
120
180
mA
tAli typical values are Vee = 5 V, TA = 25°e.
* For 1/0 ports, the parameters IIH and III include the off-state output current.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
en switching characteristics over recommended operating free-air temperature range (unless otherwise
;- noted)
CD
r+
(II
PARAMETER
FROM
f max '
tpd
with feedback
without feedback
1,110
0,1/0
tpd
elKt
0
Rl
ten
?5E
0
eL
tdis
?5Et
ten
tdis
TO
TEST CONDITIONS
MAX
40
UNIT
MHz
15
ns
8
12
no
10
15
ns
0
8
12
ns
1.1/0
0,1/0
12
18
ns
1,1/0
0,1/0
12
15
no
=
=
=
2000,
R2
3900,
50 pF,
See Figure l'
tsu
1
+ tpd (elK to 0)
, f max (without feedback)
=
tw high
1
+ tw low
f max does not apply for TIBPAL20l8'
2-96
-lSC
TYpt
50
12
tAli typical values are at Vee = 5 V, TA = 25°e.
1fmax (with feedback) =
MIN
37
45
TEXAS
~
INSIRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL20LB-20M. TIBPAL20R4-20M. TIBPAL20R6-20M. TIBPAL20RB-20M
HIGH-PERFORMANCE IMPACpM PAl® CIRCUITS
electrical characteristics over recommended free-air operating temperature range
PARAMETER
TEST CONDITIONS
VIK
Vee = 4.5 V,
VOH
Vee = 4.5 V,
Vee = 4.5 V,
VOL
0, 0 outputs
10ZH
10ZL
110 ports
0, 0 outputs
110 ports
MIN
II = -18 rnA
10H = -2 rnA
2.4
10L = 12 rnA
Vee = 5.5 V,
Vo = 2.7 V
Vee = 5.5 V,
Vo = 0.4 V
-20M
Typt
MAX
-0.8
-1.5
3.2
0.25
0.5
V
20
100
~A
UNIT
V
V
-20
~A
-0.25
rnA
rnA
II
Vee = 5.5 V,
VI = 5.5 V
1
IIH"
Vee = 5.5 V,
VI = 2.7 V
25
~A
IlL'
Vee = 5.5 V,
VI = 0.4 V
-0.25
rnA
10S§
Vee = 5.5 V,
Va = 0
-70
-130
rnA
Vee = 5.5 V,
VI.= 0,
OE at VIH
120
180
rnA
lee
Outputs open,
-30
II
t All typical values are Vee = 5 V, TA = 25°e.
:t: For 110 ports, the parameters IIH and IlL include the off-state output current.
§
Not more than one output shquld be shorted at a time, and duration of the short-circuit should not exceed one second.
switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
FROM
PARAMETER
TO
TEST CONDITIONS
with leedback
I max '
without feedback
MIN
-20M
Typt
MAX
28.5
40
41.5
50
UNIT
MHz
12
20
ns
R2 = 750 II,
8
15
ns
See Figure 1
10
20
ns
0
8
20
ns
1,1/0
0,1/0
12
25
ns
1.1/0
0,1/0
12
20
ns
tpd
1,110
0,1/0
tpd
eLKt
0
Rl = 390 II,
ten
OE
0
CL = 50 pF,
tdis
O'Er
ten
tdis
t All typical values are at VCC = 5 V, T A = 25°e.
'I
max (with leedback) =
1
, 1m ax (without leedback) = ..,--;-:--;-c.....,.......,..,tsu + tpd (CLK to 0)
tw high + tw low
'max does not apply lor TIBPAL20L8'
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-97
TIBPAL20L8·20M, TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20R8·20M
TIBPAL20L8·15C, TlBPAL20R4·15C, TIBPAL20R6·15C, TlBPAL20R8·15C
HIGH·PERFORMANCE IMPACpM PAL ® CIRCUITS
preload procedure for registered outputs (see Note 2)
The output registers of the TIBPAL20R' can be preloaded to any desired state during device testing. This
permits any state to be tested without having to step through the entire state-machine sequence. Each
register is preloaded individually by following the steps given below.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, Clocking in preload data.
Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.
preload waveforms (see Notes 2 and 3)
PIN 13 _ _ _
f\---- ::~"
n---:-T-----
~/ ~""~
~td...l
PIN 1
~+~
: l
I+-tw-+l
I
.
I
I
VIH
I
I
I
I
I
-JR ,. ~ 8 o~.~
REGISTERED I/O _ _ _
NOTES:
:::
2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.
3. td ~ tsu ~ tw ~ 100 ris to 1000 ns.
VIHH ~ 10.25 V to 10.75 V.
2-98
VIL
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL20LB·20M, TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20RB·20M
TIBPAL20LB·15C, TIBPAL20R4·15C, TlBPAL20R6·15C, TlBPAL20RB·15C
HIGH·PERFORMANCE IMPACTTM PAL ® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
PARAMETER MEASUREMENT INFORMATION
5V
Sl
b
Rl
FROM OUTPUT_....._ . ._ ...._
UNDER TEST
...
TEST
POINT
II)
CD
CD
R2
.c
(/)
...asas
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
TIMING
INPUT
:
-'w-
HIGH.LEVEL ~- --3.5 V
" ,1.5V
1.5V,
PULSE
,
,0.3 V
/.
3.5 V
/,1.5V
:--------0.3V
_ _ _oJ
... t.u
DATA
INPUT
o
""'h~
1.5 V
1.5 V
~
0.3 V
~
LOW-LEVEL
PULSE
'1.5V
\1.5
I·
----35V
V
.
~1.5V
- - "1
tPLH~
IN.pHASE
OUTPUT
1
I
"
-I
I
~~
-;:~ VOH
I
'PHL ~
OUT '()F.pHASE
OUTPUT
11.5V:
I
1.5V
•
VOL
F'
1.5V VOH
__ VOL
(See Note D)
VOL TAGE WAVEFORMS
PROPAGATION DELAY TIMES
3.5V
0.3V
~
1.5 V
(low-Iavel
enabling)
PHL
I4--*-tpLH
\1
OUTPUT
CONTROL
0.3 V
_____ t
1.5V
--- -
VOLTAGE WAVEFORMS
PULSE DURATIONS
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT
tw~
..
-:----3.5V
I
.PZL .....
I
ItI
Sl CLOSED
(See No.e B)
WAVEFORM 2
Sl OPEN
(See No.e B)
i
'PZH
-i-- -- ----
0.3 V
__ It--tpLZ
I I
I I
WAVEFORM1~
3.5V
1.5 V
=3.3 V
1.5V
iI::~5V
~-=-------:.;==
--l..t
...:
~
1.5 V
VOL
!'-tPHZ
-----t--v
-----.-0.5 V
OH
"'0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS
NOTES: A_ CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C_ All input pulses have the following characteristics: PRR '" 1 MHz. tr = If = 2 ns, duty cycle = 50%.
O. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
FIGURE 1
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS. TeXAS 75266
2-99
•
...c
A)
A)
en
:::r
CD
CD
...en
2-100
TIBPAL20L8·30M, TlBPAL20R4·30M, TIBPAL20R6·30M, TIBPAL20R8·30M
TIBPAL20LB·25C, TlBPAL20R4·25C, TIBPAL20R6·25C, TIBPAL20R8·25C
LOW·POWER HIGH PERFORMANCE IMPACTTM PAL® CIRCUITS
D2920. MAY 1987-REVISED DECEM8ER 1987
•
Low-Power, High Performance
Reduced ICC of 105 mA Max
f max (TIBPAL20R'-25C Series):
Without Feedback ... 33 MHz Min
With Feedback ... 25 MHz Min
tpd (TIBPAL20'-25C Series) ... 25 ns Max
•
Direct Replacement for PAL20L8A, PAL20R4A,
PAL20R6A, and PAL20R8A with at Least 50%
Reduction in Power
•
Preload Capability on Output Registers Simplifies
Testing
•
Power-Up Clear on Registered Devices
•
Package Options Include Plastic and Ceramic
Chip Carriers in Addition to Plastic and Ceramic
DIPs
•
Dependable Texas Instruments Quality and
Reliability
DEVICE
'PAl20l8
'PAl20R4
'PAl20R6
'PAl20R8
I INPUTS
14
12
12
12
1/0
REGISTERED
OUTPUTS
PORTS
2
0
0
0
4 (3-state buffers)
6 (3-state buffers)
8 13-state buffers)
6
4
2
0
0
ITOP VIEW)
VCC
I
o
110
110
110
110
110
110
o
3·STATE
o OUTPUTS
a
TIBPAL20LS'
M SUFFIX •.. JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
GND ""--''---=~
TlBPAL20LB'
M SUFFIX •.. FK PACKAGE
C SUFFIX .•• FN PACKAGE
(TOP VIEW)
u
u
___ u
z>_o
4
3
2 I 28 27 26
25
24
9
" 12 13 14 15 16 17 18
description
23
22
21
20
19
...en
CD
CD
.s:.
en
...caca
110
110
110
NC
110
110
110
o
--ou--o
zz
l!J
These programmable array logic devices feature
high speed and functional equivalency when
NC - No internal connection
compared with currently available devices.
Pin assignments in operating mode
These IMPACT'" circuits combine the latest
Advanced Low-Power Schottkyt technology
with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL
logic. Their easy programmability allows for quick design of custom functions and typically results in a
more compact circuit board. In addition, chip carriers are also available for further reduction in board space.
In many cases, these low-power devices are fast enough to be used where the high-speed or "A" devices
are used. From an overall system level, this can amount to a significant reduction in power consumption,
with no sacrifice in speed.
All of the output registers are set to a low level during power-up, but the voltage levels at the output pins
stay high. Extra circuitry has been provided to allow loading of each register asynchronously to either a
high or low state. This feature simplifies testing because the registers can be set to an initial state prior
to executing the test sequence.
The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL20'C is characterized from OOC to 75°C.
IMPACT is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.
tlntegrated Schottky·Barrier diode·clamped transistor is patented by Texas Instruments. U.S. Patent Number 3.463,975.
This docu_1It cantains informatiDn aD pradum in
mara thIn ana ph••a af dovalopmant na statUI al
81ch device is indic_ an tba paga(s)spaclfying ilB
electrlc.1 characteristics.
Copyright @"1987, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
2-101
TIBPAL20R4·30M. TlBPAL20R6·30M. TIBPAL20R8·30M
TIBPAL20R4·25C. TlBPAL20R6·25C. TlBPAL20R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS
TIBPAL20R4'
M SUFFIX .•. JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
TIBPAL20R4'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
(TOP VIEW)
ClK
VCC
I
~
~
u
0
--UZ>_,,=
I
I/O
4
liD
3
2
1 28 27 26
Q
I
5
25
liD
Q
I
6
24
Q
Q
23
Q
Q
22
21
20
Q
19
liD
liD
liD
I
I
I
GND """''--...;.;;J....
NC
Q
12 131415 1617 18
ill
TIBPAL20RS'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
TIBPAL20RS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
(TOP VIEW)
ClK
VCC
I
liD
4
Q
I
I
Q
Q
3
2 1 28 27 26
5
6
25
Q
24
Q
23
Q
Q
22
21
20
19
Q
Q
10
liD
11
NC
Q
Q
Q
121314151617 18
TIBPAL20RS'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
TIBPAL20RS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
(TOP VIEW)
CLK
VCC
I
Q
4321282726
Q
25
Q
24
Q
23
Q
22
Q
21
20
19
I
GND
I
12131415 1617 18
'-I.:.:;.....-::~ ill
- -
~ ~Io
-
0
(:J
NC - No internal connection
Pin assignments in operating mode
2·102
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL20L8·30M, TIBPAL20R4·30M
TIBPAL20L8·25C, TIBPAL20R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20L8'
EN ~1
&
40X64
"10----0
0----0
14
20
II
b--e+.......-I/O
6
TIBPAL20R4'
OE----------------------------~
CLK------------------------------~
&
1-------0
j--t--l-l--j--t---l-l---
20X I>
12
0
0
20
4
b--....-OIIIf+-+--- I/O
4
-+--- I/O
b-..-l~....
b-....I--o. .- I - -
I/O
b-....I--o...-I~-
I/O
4
"-' denotes fused inputs
TEXAS ..,
INsrRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-103
TIBPAL20R6·30M. TIBPAL20R8·30M
TIBPAL20R6·25C. TIBPAL20RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20RS'
OE-------~----....
40
•
•
•
47
.....
I/O
I/O
~
~~I
10
V
~
~
~
e,
~) a
'1
-v-- )a
(18
~
'1
-yo- ) a
(17
l
(16
~
•
55
56
./ -J .
•
•
63
(15
.. 1
....
(14)
""""1.-
I
.;,r-I
~
Pin numbers shown are for JT and NT packages.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
a
e
....
48
11)
2·106
-AI
c,
•
10) ...
(21)
h~
•
•
(9)
I
24
•
•
39
(7)
(22)
~
16
...C
l
TIBPAL20R6·30M
TIBPAL20R6·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL@ CIRCUITS
logic diagram (positive logic)
CLK
(1)
....l{)
,
0
INPUT~INES
4
8
12
16
20
24
28
32
I (2)
-"t,.
PR ODUCT
LIN ES
~
•
•
•
7
v
(7) ...
-"t,.
(!!.t
10) ...
~8'"
r
15
16
)0
c,
.A
~
•
•
23
>-)-
~
24
•
31•
)-
~
~
Q
v
II
(20 )0
"l
(1
"l
(1
"l
(1
1.1
(1
v
c,
~
~
32
••
•
39
r
~
c,
v
~
40
•
•
•
47
)-
~
v
c,
.....
•
•
•
55
....
1/0
I
~
48
(9)
v
(22)
~
8
•
(6)...
1
r--..
1--"
•
-v
(23)
0
•
(5) ...
,
~
•
•
4)"
36
~
>-=Yl
c,
v
.....
56
1
•
•
63•
(15)
~
. . +)
....
1/0
(14)
1~
ct---I
Pin numbers shown are for JT and NT packages.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-107
TIBPAL20RB·30M
TIBPAL20RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)
'C LK
(1)
'''''
INPU~INES
~
"'0
4
8
12
16
20
24
28
32
(2)
"'""1.-
36
,
(23)
....
P ROOUCT
LINES
0
-
1 (3)"
4) ...
r
•
•
)-
~.
"'"
•
7
r
~
....
•
15•
)-
.....
'"
16,
>-
-t
9)
-t
"Z4
~
•
•
•
31
>-
Q
-
~
-
J(20
v
~
1 . (19
Q
-v--
Q
r--'
3Z
)-
~-
1 . (18
Q
Cl
'"
•
•
47
)-
1'"
48
•
•
•
55
)-
s
1 . (17
J
Pl
Q
....
....
(1 6)
Q
Cl
....
-56
~
•
•
63
•
0) ..
~-
1.(21
Cl
4.
(8)
Cl
•
•
•
39
(7)
Q
Cl
•
•
•
23
(6)
FI1 ?,,'
>-~
Cl
•
~
Q
~
r
'"
(14)
1)
.t- -I
~
3)_
OE
P~n
2-108
4:
numbers shown are for JT and NT packages.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
TlBPAL2DLB-3DM, TIBPAL2DR4-3DM, TIBPAL2DR6-3DM, TIBPAL2DRB-3DM
TIBPAL2DLB-25C, TIBPAL2DR4-25C, TIBPAL2DR6-25C, TIBPAL2DRB-25C
LOW-POWER HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
e suffix .............................. DoC to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
-25C
-30M
PARAMETER
UNIT
MIN
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.75
5
5.25
V
5.5
2
5.5
V
VCC
Supply voltage
VIH
High-level input voltage
VIL
Low-level input voltage
O.S
O.S
IOH
High-level output current
-2
-3.2
mA
IOL
Low-level output current
Clock frequency
12
24
mA
33
MHz
fclock
2
0
25
I High
tw
Pulse duration. clock
tsu
Setup time, input or feedback before CLKt
th
Hold time. input or feedback after CLKt
TA
Operating free-air temperature
I Low
-55
125
0
V
15
ns
fI
...
U)
CD
CD
.c
en
15
ns
25
ns
0
ns
...
°c
C
0
75
CO
CO
fclock. two tsu. and th do not apply for TIBPAL20LS·.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-109
TIBPAL20LB·30M. TIBPAL20R4·30M. TIBPAL20R6·30M. TIBPAL20RB·30M
LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
electrical characteristics over recommended free-air operating temperature range
PARAMETER
Vee = 4.5 V,
Vee - 4.5 V,
Vee = 4.5 V,
VIK
VOH
VOL
10ZH
10Zl
II
C
!
S»
(/)
:::r
CD
!(II
-30M
TEST CONOITIONS
0, 0 outputs
1/0 ports
0,0 outputs
1/0 ports
II = -lBmA
IOH = -2 mAo
IOl = 12mA
MIN
TVpT
2.4
-O.B
3.3
0.25
= 2.7 V
Vee
= 5.5 V,
Vo
Vee
= 5.5 V,
Vo = 0.4 V
MAX
-1.5
0.5
20
100
-20
-0.25
0.1
UNIT
V
V
V
I'A
I'A
mA
mA
II
Vee = 5.5 V,
VI = 5.5 V
IIH~
Vee = 5.5 V,
VI = 2.7 V
20
j4A
III ~
Vee = 5.5 V,
VI = 0.4 V
-0.2
mA
10S§
Vee = 5.5 V,
Vee = 5.5 V,
Outputs open,
Vo = 0
VI - 0,
DE at VIH
-130
mA
lee
-30
-70
75
mA
tAli typical values are at Vee = 5 V, TA = 25°e.
~ For 1/0 ports, the parameters·IIH and III include the off-state output current.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not excaed 1 second.
switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
f max '
!I!d
tDd
FROM
TO
with feedback
without feedback
1,1/0
elKt
MIN
0,1/0
0
ten
DE
0
DEt
1,1/0
1,1/0
0
0,1/025
0,1/0
tsu +tpd
n,
el = 50 pF,
R2 = 750
n,
Sea Figure 1
~e l K to 0)' fmax
(without feedback) =
h' h 1
I
tw Ig +tw ow
f max doe. not apply for TIBPAl20lB'
::D
o
C
c:
(')
-I
"'0
::D
m
m
~
=
PRODUCT PREVIEW inforlllotli••lnlOr••
In iii. far.lIi .. or l1li111 p.... of .....
......rIIIi. data .1III1IIIior ~... aro doIIl.
2-11 0
::"Jt:::.=;"":'"wit'\".~=:""
UNIT
MHz
ns.
ns
ns
no
ns
ns
"'0
<
-
MAX
30
Rl= 390
tAli typicai values a're at Vee = 5 V, TA = 25°e.
'fmax (with feedback) =
TVpT
25
tdls
ten
tdis
-30M
TEST CONDITIONS
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS. TEXAS 7528&
TlBPAL20LB·25C, TIBPAL20R4·25C, TlBPAL20R6·25C, TIBPAL20RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS
electrical characteristics over recommended free·air operating temperature range
PARAMETER
TEST CONDITIONS
VIK
Vce
VOH
Vee
VOL
Vee
0, Q outputs
10ZH
I/O ports
0, Q outputs
10Zl
I/O ports
= 4.75
= 4.75
= 4.75
II
V,
10H
V,
10l
-18mA
= -3.2 mA
= 24 mA
Vee
=
5.25 V,
Vo
= 2.7
Vee
=
5.25 V,
Vo
= 0.4 V
=
=
=
=
5.25 V,
VI
5.25 V,
VI
II
Vee
IIH*
Vee
III *
Vee
10S§
Vee
5.25 V,
Vee - 5.25 V,
Outputs open,
ICC
=
V,
MIN
5.25 V,
2.4
-25C
Typt
MAX
-0.8
-1.5
3.3
0.5
20
100
-20
-0.25
= 5.5 V
= 2.7 V
VI = 0.4 V
Vo = 0
0.1
-30
VI - 0,
OE at VIH
V
V
0.3
V
UNIT
V
~A
~
mA
mA
20
~A
-0.2
mA
-70
-130
mA
75
105
mA
...
fI)
t All typical values are at Vee = 5 V, TA = 25°C.
* For I/O ports, the parameters IIH and III include the off-state output current.
§ Not more than one output should be shorted at a time. and duration of the short-circuit should not exceed 1 second.
CD
CD
J:
switching characteristics over recommended operating free·air temperature range (unless otherwise
noted)
PARAMETER
FROM
f max '
with feedback
without feedback
tpd
I, I/O
tpd
TEST CONDITIONS
TO
MIN
·25C
TYpt
MAX
UNIT
25
33
40
3
25
ns
2
14
10
15
ns
2
8
15
ns
elKf
Rl
ten
OE
Q
el
tdis
trEf
Q
2
8
15
ns
ten
tdis
I, I/O
0,1/0
15
I, I/O
0, I/O
3
3
25
25
ns
tAli typical values are at Vee
'fmax (with feedback) =
tsu
=
+
5 V, TA
= 390 Il,
200 Il,
R2
50 pF,
See Figure 1
15
...
CQ
CQ
C
MHz
50
0, I/O
Q
=
=
en
ns
= 25°C.
1
, f max (without feedback)
tpd (elK to QI
=
tw high
1
+
tw low
f max does not apply for TIBPAl20lB'
PRODUCTION DATA do.umanls ••ntoi. infarmation
currant 8. of publication data. Products conform to
specificatiDns par t•• tarms of Taxas Instruments
:'~~~:~~.ir::I-::li =::i~n :'=ID~S not
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-111
TIBPAL20LB·30M, TIBPAL20R4·30M, TIBPAL20R6·30M, TIBPAL20RB·30M
T1BPAL20LB·25C, TIBPAL20R4·25C, TIBPAL20R6·25C, TIBPAL20RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
preload procedure for registered outputs (see Note 21
The output registers of the TIBPAL20R' can be preloaded to any desired state during device testing. This
permits any state to be tested without having to step through the entire state-machine sequence. Each
register is preloaded individually by following the steps given below.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.
preload waveforms (see Notes 2 and 31
-1! ~''"~
Ec
~+~ i\-_n:~
PIN13 _ _ _
k-td-.l
....C»C»
: !
PIN 1
I+-tw~
n---:-T----1
---+---TI---'
en
::r
1
1
I
I
1
I
1
I
-1M
(1)
(1)
....UI
REGISTERED 1/0 _ _ _
I
VIH
VIL
8'-0-UT-P-U-T-::~
INPUT
NOTES: 2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin nunibers must be changed
. accordingly.
3. td = tsu = tw = 100 ns to ;000 ns.
VIHH = 10.25 V to 10.75 V.
2-112
TEXAS
,If
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS '75265
TlBPAL20LB·30M. TIBPAL20R4·30M. TIBPAL20R6·30M. TIBPAL20R8·30M
TlBPAL20L8·25C. TlBPAL20R4·25C. TIBPAL20R6·25C. TlBPAL20R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACpM PAL@ CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers. .
.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
PARAMETER MEASUREMENT INFORMATION
sv
Sl
b
Rl
FROM OUTPUT_....._ ...~t-_ TEST
UNDER TEST
POINT
...
fI)
R2
Q)
Q)
.c
en
...caca
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
TIMING
INPUT
./.
3.S V
/,l.SV
_ _ _..J. : - - - - - - - - O . 3 V
PULSE
~ 0.3 v
INPUT
DATA
LOW·LEVEL
PULSE
r---""",
..
I 1.5 V
-"
~
tPLH 1IN·PHASE,
OUTPUT
I
~tPHL
l:t--
-j
/1 S v I
.
"
I
I
tPHL ~
OUT -OF.pHASE
OUTPUT
\
);..,.~ \
C"
1.5 v
•
VOH
VOL
__ VOL
VOLTAGE. WAVEFORMS
PROPAGATION DELAY TIMES
OUTPUT
CONTROL
v
VOH
TI,C'".I
1.5 v
(See Note 01
NOTES:
v
I4----+t-tpLH
'
tw~
3.5V
1.5
_ _ _ _ 0.3 V
VOLTAGE WAVEFORMS
PULSE DURATIONS
---3.5
\1.5V
I ...
· - - - - 0.3
.L,1.5V
tw ~
~
v
VOL TAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT
1.5V~0.3 v
---../: 1.5V
.....--
14- 'su ..,.- 'h ~
'
-'----3SV
' 1 .SV
1 1.SV
·
C
~---3.5V
HIGH.LEVEL
~
1.5 V
(Iow-Iavel
3.5V
1.5 V
_:_ - - - - - - -
0.3 V
tpZL ~..-..... ..-- 'PLZ
I I
I'
I I
, :
~3.3 V
WAVEFORM 1 ~ 1.5 V
:~5 V
. Sl CLOSED
; ~-=-------=-;='~ VOL
(See Note BI
'PZH ~
....: jf-'PHZ
enabling 1
i
WAVEFORM 2
Sl OPEN
ISee Note BI
1
1.5 V
\:::-=-{.:::=
0.5 V
VOH
"0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE·STATE OUTPUTS
A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR .:s; 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
FIGURE 1
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-113
E
2-114
TIBPAL20L 10-25M, TlBPAL20X4-25M, TIBPAL20X8-25M, TIBPAL20X10-25M
TIBPAL20L 10-20C, TIBPAL20X4-20C, TIBPAL20X8-20C, TIBPAL20X10-20C
HIGH-PERFORMANCE EXCLUSIVE-OR IMPACT 1M PAP CIRCUITS
02920, OCTOBER 19aS-REVISED DECEMBER 19a7
•
High Performance ... 35 MHz Min
•
Preload Capability on Output Registers
Simplifies Testing
TIBPAL20L 10'
M SUFFIX, . , JT PACKAGE
C SUFFIX, . , JT OR NT PACKAGE
(TOP VIEW)
•
Power-Up Cleer on Registered Devices
•
Package Options Include Both Plastic and
Ceremic Chip Carriers in Addition to Plastic
and Ceramic DIPs
DEVICE
I INPUTS
3·STATE
REGISTERED
I/O
o OUTPUTS
Q OUTPUTS
PORTS
'PAL20L10
12
2
0
8
'PAL20X4
10
0
4 (3-5tate buffers)
6
'PAL20X8
10
0
8 13-5tate buffers)
2
'PAL20X1O
10
0
10 (3-state buffers)
0
Vcc
o
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
o
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices,
These IMPACT'" circuits combine the latest
Advanced Low-Power Schottky t technology
with proven titanium-tungsten fuses to provide
reliable. high-performance substitutes for
conventional
TTL
logic.
Their
easy
programmability allows for quick design of
custom functions and typically results in a more
compact circuit board, In addition, chip carriers
are available for further reduction in board space.
All of the registered outputs are set to a low level
during power-up, In addition, extra circuitry has
been provided to allow loading of each register
asynchronously to either a high or low state. This
feature simplifies testing because the registers
can be set to an initial state prior to executing
the test sequence.
fI
TIBPAL20L 10'
M SUFFIX ... FK PACKAGE
C SUFFIX .. , FN PACKAGE
(TOP VIEW)
description
u
°
u
___ uz>o::o
4
I
I
I
NC
I
I
I
3 2
1 28 2726
~5
~6
25
24
]7
23
]8
22
]9
21
~10
20
19
]11
1/0
1/0
1/0
NC
1/0
1/0
1/0
12131415161718
ou
zz
(!)
NC-No internal connection
Pin assignments in operating mode
The PAL20' M series is characterized for operation over the full military temperature range of - 55 DC to
125 DC, The PAL20' C series is characterized for operation from 0 DC to 75 DC.
IMPACT is a trademark of Texas Instruments Incorporated,
PAL is a registered trademark of Monolithic Memories Inc.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.
PRODUCTION DATA documents contain information
currant as of publication date. Products conform to
specifications per the terms of Texas Instruments
:~~:~:~~i~ai~:r~1i ~~:~:~ti:f :'Io::;:::t:~~s not
Copyright © 1984, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-115
TlBPAL20X4·25M, TlBPAL20X8·25M, TIBPAL20X10·25M
TIBPAL20X4·20C, TlBPAL20X8·20C, TlBPAL20X10·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS
TIBPAL20X4'
M SUFFIX . .. FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
TIBPAL20X4'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE
(TOP VIEW)
OUTCLK
':5
U
VCC
I/O
110
110
U
f-
::JU uoo
__ oZ>::o::o
4
Q
I
Q
3
2
1 28 2726
5
25
24
Q
I
Q
23
n
NC
110
110
21
20
19
110
GN D <-<.:-=-....;;::.>-'
DE
12131415161718
--
~ ~Io
gg
C)
TIBPAL20XS'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOP VIEW)
TIBPAL20XB'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE
(TOP VIEW)
OUTCLK
'"U
...J
VCC
110
f::l U
U
Q
UO
__ oz>::oO
Q
4
3
2
1 28 2726
Q
25
Q
I
GND '-1..:.:'---"",",
Q
Q
23
Q
Q
n
NC
Q
21
Q
Q
20
Q
110
19
Q
DE
12131415161718
TIBPAL20X10'
M SUFFIX . .. JT PACKAGE
TIBPAL20X 1 0'
M SUFFIX . .. FK PACKAGE
C SUFFIX ... FN PACKAGE
ITOPVIEW)
C SUFFIX . .. JT OR NT PACKAGE
(TOP VIEW)
OUTCLK
'"
VCC
...J
U
f-
Q
::J U
Q
U
U
oz>OO
Q
4
Q
I
I
I
Q
Q
Q
3
2
1 28 2726
25
24
Q
6
7
23
Q
5
Q
Q
Q
GND
........'---'"'"'-'
DE
12131415161718
--
NC-No internal connection
~ ~Io 0 0
C)
Pin assignments in operating mode
2-116
Q
24
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
Q
22
NC
21
Q
20
19
Q
Q
TIBPAL20L 1O·25M, TIBPAL20X4·25M
TIBPAL20L 1O·20C, TIBPAL20X4·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS
functional block diagrams (positive logic)
'PAL20Ll0
EN:>1
"VP---- 0
0
20XC>
12
110
20
1/0
110
I/O
8
fII
....
1/0
110
II)
G)
G)
110
.c
en
110
....asas
8
C
'PAL20X4
.J EN
DE
1.
OUTCLK
[,
~
Cl
1=0
=1
4OX40P-
2o'Xi>
~ rv
~
P-
4
+
~
~ rv
-
Q
------------.....
~
10
"V
10
Q
Q
Q
----....
EN :>1
"V
110
~
--+-
~
~
...;.-
-a-
-+-t---aL..----+-
110
"
110
110
1/0
110
6
4
"V denotes fused inputs
TEXAS .."
INSTRUMENTS
POST OFFICE BOX,655012 • DALLAS, TEXAS 75266
2·117
TIBPAL20XB-25M, TIBPAL20X10-25M
TIBPAL20X8-20C, TlBPAL20X10-20C
HIGH~PERFORMANCE EXCLUSIVE-OR IMPACTTMPAL® CIRCUITS
functional block diagrams (positive logic)
'PAL20X8
~---------------------
&
4OX40
r--t---t.-+-Q
r---r--;-'-::~Q
10
20XI>
20
rv
r---~----t_~-Q
r---t---;-'-::I--Q
r---r---;'~I--Q
10
20
r---~----t_~-Q
t--t--"i--+-Q
r---r--;~I--Q
t--t--"i--+- Q
"'-.J denotes fused inputs
2-118
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
TIBPAL20L 1O·25M
TIBPAL20L 1O·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS
logic diagram (positive logic)
I~
(1)
PRODUCT
LINES
INPUT LINES
__________________
________________
~A~
0 .. • 4'"
8···12'"
16"· 20'·' 24 •• ' 28."
~\
32··.36··39
?
. r")-.L
j
v
(23)
o
....
~
...
8
>-t1
11
(3) ..
(22)
I/O
...
A
v
16
",-;J.
v
19
(21)
1/0
'"
24
~ r......
27
.L
Q)
Q)
(20)
v
1/0
(5)
32
~19)
35
(6) ..
'"
~
.c
en
....a:sa:s
C
1/0
A
4!1
~18)
'"
43
171
PI
....
II)
(4) ..
.
1/0
48
...... .y
.1..
51
(8)
.
(17)
1/0
A
-
56
~L(16)
'"
59
(9)
64
-.... .1
67
(10) ..
(15)
1/0
1/0
....."'1
""
72
...... .1
-v
75
111 )
...
....
0'"
A
(14)
o
(13)
4 · · ' 8·"12···16···20··· 24·"28· "32"'36·'39
Pin numbers shown are for JT and NT packages.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·119
TlBPAL20X4-25M
TlBPAL20X4-20C
HIGH-PERFORMANCE EXCLUSIVE-OR IMPACTTMPAL@ CIRCUITS
logic diagram (positive logic)
~__________~_________
____________________~
INPUTA~
LINES
/
0-··
4-· -
8- - - 12· - - 16-'-·20 •• ,24-··28- •• 32· _. 36· ·39 \
OUTCLK ( 1-'{:l
)
~
PRODU CT
LINES
~l
3
~
. . . .1.....
;;.
11
~,
...
....
16
. . . ......1
;:::;:
19
(4) ...
c
Q)
....
r+
Q)
::r
CD
CD
~
...
r+
en
1
,
(21)
=SD
--- ~I~
27
(5)
(22)
I/O
I/O
....
24
en
I/O
.....
8
E
(23)
(20)
Q
A
32
~~
.-
tr:
.........
35
(6)
1.:1
(19)
I .....
Q
Cl
A
40
tKJD ~ ~
.........
43
(7) ...
48
H~
~ ~ IV
1.::1
51
(8) ...
Q
Cl
'....
(17)
Q
Cl
...
56
:,....... ..1
59
(9)
~
--""-t..
64
:t
67
(10)
.
J
~r
(15)
I/O
I/O
"
72
...:
75
. . . . .1
.:J
(11) ...
.......
...
0'"
4 ...
8··· 12".16· •• 20' •• 24 ••• 28 . . . 32 ••• 36' .39
Pin numbers shown are, for JT and NT packages.
2-120
(16)
TEXAS . "
INSTRUMENlS
I POST OFFICE BOX 655012· DALLAS, TEXAS 75265
(14)
~
I/O
TlBPAL20X8·25M
TIBPAL20X8·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT'MPAL® CIRCUITS
logic diagram (positive logic)
~____________________
~A~
____________________~
INPUT
LINES
/ 0 •••
4".8'"
12 .. ·16 . . ·20'''24 . . ·28 . . • 32"'36"39'
OUTCLK ( 1 )
?
PRODU CT
LINES
f~ J
:i
E4>t
(23)
I/O
...
8
~¢ el
~~
....
...
(22)
-
11
(3) ...
16
£D
... ~
19
....
(4) ...
...
24
27
(21)
~
a
CI)
CI)
';1
'~
~
';l
(19)
>-;:1
(18)
(20)
.....
el
a
.- ... tl]
35
(6) ...
...
40
iF
~
171 ...
...
48
51
(8) ...
el
el
...
:
...
C
a
a
(17)
a
(16)
a
el
...
56
£D~
59
....
(9)
r
64
67
(10)
...
'- tJ]
rr::t.
,........
:~
tJ]
43
oJ:
en
CO
CO
....
32
PI
...
II)
.==9D
tJ]
.....
(5)
el
>-;:1
a
.
...
72
~~
...
"",..L
;J
75
(11) ...
...
o •••
4'"
8'" 12' •• 16' •• 20' ., 24' •• 28.' • 32'"
Pin numbers shown are for JT and NT packages.
el
itt
.....
~(15) a
.....
(14)
I/O
~
36' '39
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·121
TIBPAL20X 1O·25M
TIBPAL20X10·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT™PAL® CIRCUITS
logic diagram (positive logic)
INPUT LINES
~
I
________________
0 •••
4...
~A~
________________
~
8 ••• 12••• 16 ••• 20 ••• 24••• 28 ••• 32··· 36··39 \
-'----f)
OUTCLK (1)
~ ~-a
.- '"
'";l
0
PRODU CT
LINES
3
'-'-
E4>t
8
~~
-.-
11
(3) ....
IE
~
.
....
....
R;D
27
..
~
-~
......,
32
.
36
.
(6)
....
.~
'......, ....
40
43
(7)...:
....
51
....
'"
....
56
;::;:
-~
:=:::
-
69
..
(9)
.
~2!l. Q
~
'";J
~
'";J
~
'";:1
67
(10) ...
(20)
V
Q
v
(19)
Q
Cl
(18)
Q
V
Cl
i.J
(17)
V
Q
Cl
~
Cl
~
- ~
64
~
";J
(15)
V
Q
Q
Cl
..
'"
~~~
72
.
,1.....
75
.!:!1l
........
0-··· 4'"
8'"
12"
• 16 ••• 20 ••• 24' •• 28"
• 32'"
36·' 39
Pin numbers shown are for JT and NT packages.
2-122
Q
Cl
,~
,~
48
(8)
(22)
~
Cl
24
(S)
~
fb,.
19
(4) ...
Q
Cl
Eo
~
16
(23)'
Cl
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
Cl
~
Q
TlBPAL20L 10·25M, TlBPAL20X4·25M, TIBPAL20X8·25M, TIBPAL20X10·25M
TIBPAL20L 10·20C, TIBPAL20X4·20C, TIBPAL20X8·20C, TIBPAL20X10·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTtMPAL@ CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
e suffix .............................. ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
PARAMETER
MIN
4.5
2
Vee
VIH
VIL
10H
10L
Supply voltage
High-level input voltage
Low-level input voltage
High-level output current
Low~level output current
fclock
elock frequency
tw
Pulse duration, clock, see Note 2
th
TA
MIN
4.75
2
0.8
-2
12
25
0
15
20
25
I High
I
Low
Setup time, input or feedback bafore OUTeLKt
Hold time, input or feedback after OUTeLKt
Operating free-air temperature
t su
-25M
NOM MAX
5.5
5
5.5
0
-55
125
-20C
NOM MAX
5.25
5
5.5
0.8
-3.2
24
0
10
14
20
35
0
0
75
UNIT
V
V
V
mA
mA
MHz
ns
ns
ns
ns
°e
NOTE 2: The high and low clock pulse durations cannot both be at the minimum values specified. Their sum must be equal to or greater
than the minimum clock period. which is the reciprocal of the maximum recommended clock frequency.
electrical characteristics over recommended free-air operating temperature range
PARAMETER
Vee = MIN,
Vee - MIN,
Vee - MIN,
VIK
VOH
VOL
10ZH
10ZL
Outputs
1/0 ports
Outputs
1/0 ports
Vee
= MAX,
Vee
= MAX,
= MAX,
= MAX,
= MAX,
= 5 V,
= MAX,
Vee
Vee
Vee
II
IIH
IlL
10S§
Ice
TEST CONDITIONSt
Vee
'20X4, '20X8, '20Xl0
'20Ll0
Vee
II
-25M
MIN
TYP*
2.4
3.2
0.25
= -18 mA
10H - MAX
10L - MAX
Vo
= 2.7 V
= 0.4 V
= 5.5 V
VI = 2.7 V
VI = 0.4 V
Vo = 0
VI = 0
Vo
VI
-20C
MAX
-1.2
MIN
TYP*
2.4
3.3
0.35
0.4
20
100
-20
-250
0.1
20
-0.25
-130
-30
120
120
180
165
-30
120
120
MAX
-1.2
UNIT
V
V
V
0.5
20
100
-20
-250
0.1
mA
20
-0.25
~
mA
-130
mA
180
165
mA
~A
~
t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
*AII typical values are Vee = 5 V, TA = 25°e.
\
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
TEXAS ."
INSTRUMENlS
POST OFFICE BOX 855012 • DALLAS. TEXAS 75265
2-123
TlBPAL20L 10·25M, TIBPAL20X4·25M, TIBPAL20XB·25M, TIBPAL20X10·25M
TIBPAL20L 10·20C, TIBPAL20X4·20C, TlBPAL20XB·20C, TIBPAL20X10·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS
switching characteristics over recommended operating free·air temperature range (unless otherwise
noted)
PARAMETER
FROM
TO
TEST CONDITIONS
f max
ted
ted
ten
tdio
ten
tdis
1,1/0
0,1/0
MIN
25
-25M
TYpt MAX
MIN
-20C
TYpt
MAX
35
UNIT
25
20
12
10
20
15
MHz
no
no
OUTCLKt
Q
Rl = 200 0,
12
10
O'E
'1iET
Q
R2 = 3900,
7
20
7
15
no
Q
CL=50pF
7
7
1,1/0
1,1/0
0,1/0
0,1/0
20
25
25
15
20
20
ns
ns
ns
15
15
15
15
tAli typical values ar. at VCC = 5 V, TA = 25·C .
. . programming information
_
C
m
r+
m
en
:::T
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995-5762.
CD
CD
r+
en
2-124
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DAllAS, TEXAS 75265
TIBPAL20L 1O·25M, TIBPAL20X4·25M, TIBPAL20XB·25M, TIBPAL20X10·25M
TIBPAL20L 1D·2DC, TIBPAL2DX4·20C, TIBPAL2DXB·20C, TIBPAL2DX1D·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT™PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V
SI
b
Rl
FROM OUTPUT_+_. ._ . - _ TEST
UNDER TEST
POINT
CL
(Saa Nota A)
R2
'---4
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
TIMING
INPUT
DATA
INPUT
/.
3.5V
A
l .5V
_ _ _..J. : - - - - - - - - 0 . 3 V
... tsu~th'"
:
+---3.5V
1.5V
1.5V
0.3 V
~
HIGH.LEVEL
~ - --3.5 V
PULSE
----./rl.5V
1.5V~
:.....- tw - . . :
0.3 V
LOW·LEVEL
PULSE
:.
tw~
~
I.5V
.L
, l •5 V
\:;:;;;--3.5 V
--':
tPLH~
IN.pHASE
OUTPUT
1
I
I·
0.3
~tPHL
,'"
1.5V
,
I
tpHL ~
OUT-DF.pHASE
OUTPUT
i1
\
V
i-;:~
VOH
~
VOL
I4----*-tPLH
1
1.5 V
FI
1.5 V VOH
~. ______-J.
VOL
(Sea Nota D)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
CD
CD
3.5V
.r:.
en
0.3V
...caca
VOLTAGE WAVEFORMS
PULSE DURAT)ONS
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT
1.5V
--- -
...en
OUTPUT
CONTROL
(low·la.al
1.5 V
,
tpZL ~:e-
anabling)
WAVEFORM 1
SICLOSED
(SaaNoteB)
o
~
3.5V
1.5 V
~ ________ 0.3V
11'""tPLZ
I: .. 0.3=3.3V
~
I
1.5 vi'
V
VOL
WAVEFORM 2
S10PEN
(Sae Nota B)
':
::--~.==
I
tPZH~
1
1.5V
...:
~tPHZ T
~-:..{.::=
0.3V
VOH
"0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR s 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch 51 is closed.
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DAllAS. TEXAS 75265
2-125
TIBPAL20L 10·25M, TIBPAL20X4·25M, TIBPAL20X8·25M, TIBPAL20X10·25M
TIBPAL20L 10·20C, TIBPAL20X4·20C, TIBPAL20X8·20C, TIBPAL20X10·20C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACTTMPAL® CIRCUITS
preload procedures
preload procedure for registered outputs
With Vee at 5 volts, raise Pin 13 (OE) to VIHH to disable the outputs and clear the
registers (output goes low). Since the outputs are low, only high levels need be preloaded.
Raise the selected output to be preloaded high to VIHH.
Lower Pin 13 to VIH.
Remove the voltages applied to the outputs. (At least a 1OO-ns wait is required between step 3
and step 4)
Lower Pin 13 to VIL to verify preload.
Step 1
Step 2
Step 3
Step 4
Step 5
i------i----- --------- VIHH
I
(PRELOAD PIN 13)
11
OE
...c
I
1
1100 ns
~N
i
SELECTED
OUTPUT
TO PRELOAD
D)
(I)
::r
CD
CD
...en
Q
1 100 ns
~ ~
V
1
D)
I
100 nS I
I
1
:1
Il
;..----I.~-!~T
~
XXXXXXXXX\ _
----::
VIL
VOL
VERIFY
PRELOAD WAVEFORMS
security fuse programming
PIN 10
I
.---Jill
" ' ___ u",.
tw3----+~
•
0 V
SECURITY FUSE PROGRAMMING WAVEFORMS
NOTE: Pin numbers shown apply only for the DIP package. If a chip carrier socket adaptor is not used, pin numbers must be changed
accordingly.
2-126
, TEXAS"
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS. TEXAS 75265
TlBPAL20L 1O·30C, TIBPAL20X4·30C, TIBPAL20X8·30C, TIBPAL20X10·30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT""PAL® CIRCUITS
02920. DECEMBER 19B7
•
Functionally Equivalent to MMI PAL® Series
24XA
•
Preload Capability on Output Registers
Simplifies Testing
Vcc
•
Power· Up Clear on Registered Devices
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs
I
3-STATE
INPUTS
o OUTPUTS
REGISTERED
Q
OUTPUTS
1/0
1/0
1/0
110
1/0
1/0
110
110
PORTS
1/0
'PAL20L10
12
2
'PAL20X4
10
0
'PAL20X8
10
0
8 (3-state buffers)
2
'PAL20Xl0
10
0
10 f3-state buffers)
0
0
(TOP VIEWI
o
•
DEVICE
TIBPAL20L 10'
C SUFFIX ..• JT OR NT PACKAGE
o
8
4 (3-state buffers)
II
GN
6
TIBPAL20L 10'
C SUFFIX ... FN PACKAGE
(TOP VIEWI
description
U
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices.
These IMPACrM circuits combine the latest
Advanced Low-Power Schottkyt technology
with proven titanium-tungsten fuses to provide
reliable, high-performance substitutes for
conventional
TTL
logic.
Their
easy
programmability allows for quick design of
custom functions and typically results in a more
compact circuit board. In addition, chip carriers
are available for further reduction in board space.
U
U
0
_Z>O:::o
4 3
NC
2
1 282726
5
25
6
24
7
23
8
22
9
21
10
20
11
19
1/0
1/0
1/0
NC
1/0
1/0
1/0
12131415161718
All of the registered outputs are set to a low level
during power-up. In addition, extra circuitry has
been provided to allow loading of each register
asynchronously to either a high or low state. This
feature simplifies testing because the registers
can be set to an initial state prior to executing
the test sequence.
NC-No internal connection
Pin assignments in operating mode
The TIBPAL20' C suffix devices are characterized for operation from ooC to 75°C.
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.
PRODUCTION DATA d••umonts contain informati.n
.umnt al 01 publication dOlo. Products ••nform to
spacificati.ls per the terms of Telal Instruments
:.=.~~ar::I~i ~=::i:; :.r::::::~. not
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
Copyright
© 1987, Texas Instruments Incorporated
2-127
TIBPAL20X4·30C, TIBPAL20X8·30C, TIBPAL20X10·30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL@ CIRCUITS
TIBPAL20X4'
C SUFFIX ... JT OR NT PACKAGE
TIBPAL20X4'
C SUFFIX •. : FN PACKAGE
ITOPVIEW)
ITOPVIEW)
OUTCLK
:J
VCC
1=
110
110
110
u
U UO 0
__ ::>
02>::::::::::
4 3 2 1 282726
25
Q
Q
Q
I
NC
Q
110
110
110
GND '-<.;;:.-...:.::J...
II
7
8
23
22
21
20
19
DE
cm
TIBPAL20XS'
C SUFFIX .•. JT OR NT PACKAGE
TIBPAL20XS'
C SUFFIX ... FN PACKAGE
Cit
ITOP VIEW)
ITOPVIEW)
(I)
OUTCLK
::r
110
12131415161718
VCC
110
CD
CD
Q
U)
Q
Q
P+
5
Q
I
Q
6
7
I.
NC
Q
Q
Q
8
9
I
110
20
10
11
I
DE
4 3 2 1 282726
25
24
23
22
21
19
12131415161718
TIBPAL20X10'
C SUFFIX •.. JT OR NT PACKAGE
TIBPAL20X10'
C SUFFIX •.. FN PACKAGE
ITOP VIEW)
ITOPVIEW)
OUTCLK
:J
VCC
1=
::>U
Q
U
U
~~oz>OO
Q
Q
Q
Q
Q
Q
Q
4 3 2 1 282726
25
24
23
22
21
Q
20
Q
GND
--..;;=--....:.::....
19
DE
12131415161718
NC-No' internal connection
Pin aSSignments in operating mode
2·128
Q
Q
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
TIBPAL20L 10·30C, TIBPAL20X4·30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20L'O'
&
EN;>1
'ilP---- 0
0----0
20XI>
12
I/O
20
P-<~4-+-1/0
1:>-<>d-4-+- 1/0
P-<~"'-I/O
I:>-<>d-"'-
I/O ,
...
U)
CD
CD
.c
D-,
~
~
o
'il
h
1D
I/O
'il
I-;-
I/O
~
~
'\
~
....:;.-
"'\
~
~
I----+-
I/O
I/O
I/O
""-
I/O
6
4
'"\..t denotes fused inputs
,
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2·129
TlBPAL20XB·3DC. TIBPAL2DX1D·3DC
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20XB'
OE------------~--------~;---,
OUTCLK.----------..,-....---i>
Q
Q
Q
•..
t---t----L-.JL- a
Q
C
I»
I»
(I)
Q
..
:::r
\--~fH,--I-
CD
CD
I/O
l : > - t i - - - - + - 1/0
(I)
TIBPAL20X10'
OE-----------------------da.~_,
OUTCLK--------------i>
t--t--1---+-
Q
t---r--1--...:t...-Q
t---t---1---=l--Q
t---t---"1---=l-- Q
t---r--1--+--Q
t---r--;---=l-- Q
t--t--"1--=+-':"'Q
Q
Q
"'" denotes fused inputs
2·130
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlBPAL20L 10-30C
HIGH-PERFORMANCE EXCLUSIVE-OR IMPACT'MPAl® CIRCUITS
logic diagram (positive logic)
I~
I (11
PRODU CT
LINES
INPUT
__________________
0 ---
LINES
________________
~A~
4 -- -
8··- 12·_· 16 _ •• 20'"
24'"
28'·' 32'"
~\
36 .. 39
~
,>..L...
3
o
..,
E4>t
~
8
~(221
11
(31 ...
v
...
16
I
~
19
(41 ...
24
. . . . ....L
27
(51
(231
...
A
32
(201
...
-
40
(191
I
....... ,.L
...
~
43
(71 ..
~
48
(181
.. J
~I ....
EI
...
en
Q)
Q)
110
J:
en
ca
ca
...
110
C
110
I
~171
51
110
J
....... ,1.
35
(61 ...
110
110
~
56
..J.
..,VJ
59
(91
(161
110
~
64
....... r.I.
...
67
(10) ...
.....
...
(151
I
110
72
r
75
(111 ...
(141
.....
...
o •••
4··· 8'"
12··· 16·· ·20· •• 24·· • 28· •• 32'"
36' '39
-
o
(13)
Pin numbers shown are for JT and NT packages.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012· DALLAS, TEXAS 75265
2-131
TIBPAL20X4·30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT'MPAl@CIRCUITS
logic diagram (positive logic)
~____________________
~A~
____________________~
INPUT
LINES
I
OUTCLK (1)
PROOU CT
LINES
0 ...
4 ...
8 ' " 12 ••• 16 •••
.....
2~"
• 24 . . . 28 •• , 32 ••• 36 . . 39 \
v
?
3
J!4>t
')-rl.
v
....
(23)
........ to!..
(22)
I/O
8
~
....
11
(3) ,.;.
11
-;..
16
;;;">-r!
19
(4) ...
c
C\)
:~
- ....
24
en
:r-
27
(5) ..
r+
32
CD
CD
...
til
fJ][fL(20)
10
v
Q
Cl
~
~
- .... ~
Rv
(19)
iF
~
-
R
(18)
~
35
(6)
I/O
.....
v
r+
C\)
(21)
I/O
...
40
43
(7) ...
...
10
10
;=::
51
(8) ...
v
Q
Cl
fJ]
~fJ]
48
Q
Cl
10
ttl,.,. (17)
v
Q
Cl
v
56
~~
59
(9)
-
64
~~I
67
(10) ..
...
(15)
I/O
I/O
~
~
72
""'to!..
v
75
.!!1!t...
....
0','
4.·.
8·.,12 . . . 16 .. ·20 . . ·24 . . ·28 .. • 32 . . . 36' ·39
Pin numbers shown are for JT and NT packages.
2·132
(16)
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS ?5265
~
(14)
~
I/O
TIBPAL20XB·30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT"'PAL® CIRCUITS
logic diagram (positive logic)
~
I
INPUT LINES
________________
________________
0 ...
~A~
4...
8 .. ' 12 . . . 16· . . 20· . . 24'"
28 . . • 32'"
~
36"39 \
OUTCLK I1 I ...
v
PRODU CT
LINES
?
:i
>-r!
~
1231
[
~
- ~~
8
':,
11
1221
liD
Q
I ......
....
131
r
'"
.Eo
... ~
16
10
19
141 ...
I;l
(211
v
Q
C1
-r
'"
II
..
U)
Q)
Q)
~
..
.-~ 1.:1
::t...
~
Ir:l
~~
.- ... ~ .......
~
'- ~
;~
-- ... ~
=
5D~
...
24
.=S;D
27
(51 ...
-;...
10
1.:1
I ....
1201
Q
C1
10
35
0
as
as
,
32
.c
(191
v
C
Q
C1
161
40
1181
10
43
Q
C1
171 ...
...
'"
48
10
51
181 ...
';J.
1171
";:l
1161
>;::t
1151
v
Q
C1
...
56
10
59
191 ...
v
Q
C1
r
64
10
67
1101 ...
'_
...
72
....
_S~
75
1111 ..
....
.
0'"
4'"
8'"
12·.·16'"
20'"
24'"
28."
32'"
36"39
-
;V
Q
C1
1141
1/0
~
Pin numbers shown are for JT and NT packages.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·133
TIBPAL20X10·30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPACT'" PAL® CIRCUITS
logic diagram (positive logic)
~____________________~A_____________________~
INPUT LINES
_......
10
... 4 ...
8.·. 12- . . 16·· • 20· . . 24.. • 28 .. - 32.. • 36-·39 \
OUTCLK (11
0
~~'~'
19t>
- ...
-
PAODU CT
LINES
10
3
.ill.t:>t
.-
(221
'";J.
(211
~
";l
(201
t1!
~ flJ
.ED flJ
~
,V
(191
I.:J.
(181
!t:l
v
(171
Ii:L
(161
~
L. .....
, 11
(31 ...
...
f:l;
1O
1O
19
C1
...
:~
24
-
27
(51
....
~
-
32
-
35
(61 ...
,'"
40
43
...
48
1O
1O
Q
~
1O
Q
IV
Q
e1
Q
e1
...
56
;~
-- ~
59
....
(91
...
~
1O
V
-
,
1O
67
(101
Q
e1
~
~
'- .... ~
64
Q
e1
....
"RD tJ; 1.1 ""
72
_
10
_
75
(111 ..
....
0-- - 4' - - 8 - - - 12- - - 16- - - 20- - - 24- - - 28- - - 32- - - 36- - 39
Pin numbers shown are for JT and NT packages.
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TeXAS 75265
v
e1
...~
r
2·134
v
Q
e1
1O
51
(81 ...
v-----
e1
~
....
(71 ...
"V""- Q
C1
£D t1!
16
(41
Q
~
'tl.
8
E
V
C1
~
Q
TIBPAL20L 10-30C, TIBPAL20X4-30C, TIBPAL20X8-30C, TIBPAL20X10-30C
HIGH-PERFORMANCE EXCLUSIVE-OR IMPACT""PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ...................................' . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: e suffix ............................. " ooe to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except ·for programming pins during a programming cycle.
recommended operating conditions
-30C
PARAMETER
MIN
NOM
4.75
5
MAX
5.25
UNIT
Vee
Supply voltage
VIH
!:'iigh-Ievel input voltage
VIL
Low-level input voltage
IOH
High-level output current
-3.2
mA
IOL
Low-level output current
24
mA
fclock
elock frequency
22.2
MHz
tw
Pulse duration, clock, see Note 2
tsu
th
TA
Hold time, input or feedback after OUTeLKi
0
Operating free-air temperature
0
2
5.5
0.8
0
I High
15
I Low
25
Setup time, input or feedback before OUTeLKi
V
II
..
..
V
V
II)
G)
G)
ns
30
.c
en
ca
ca
ns
ns
75
°e
NOTE 2: The high and low clock pulse durations cannot both be at the minimum values specified. Their sum must be equal to or greater
C
than the minimum clock period, which is the reciprocal of the maximum recommended clock frequency.
electrical characteristics over recommended free-air operating temperature range
PARAMETER
TEST CONDITIONSt
VIK
Vee = MIN,
II = -18 mA
VOH
VOL
Vee = MIN.
Vee - MIN.
10H = MAX
IOL - MAX
Vee = MAX.
Vo = 2.7 V
Outputs
IOZH
1/0 ports
.Outputs
-30C
MIN
TYP*
MAX
-1.2
2.4
3.3
UNIT
V
V
0.35
0.5
20
100
-20
V
pA
pA
Vee = MAX,
Vo = 0.4 V
II
Vee = MAX.
VI = 5.5 V
0.1
mA
IIH
IlL
Vee = MAX.
Vee = MAX,
VI = 2.7V
VI ='0.4 V
20
-0.25
pA
mA
-130
mA
10ZL
1/0 ports
10S§
lee
t For
I '20X4, '20X8, '20X10
I '20L10
Vee = 5 V,
Vo = 0
Vee = MAX.
VI = 0
-250
-30
120
180
120
165
mA
conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
*All typical values are Vee = 5 V. TA = 25 e . ·
o
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-135
TIBPAL20L 10-30C, TIBPAL20X4-30C, TIBPAl20XB-30C, TIBPAL20X10-30C
HIGH-PERFORMANCE EXCLUSIVE-OR IMPACrPAL® CIRCUITS
-switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
FROM
TO
fmax*
With Feedback
TEST CONDITIONS
MIN
-30C
Typt
MAX
23
10
30
15
ns
ns
UNIT
22.2
MHz
1,1/0
0,1/0
OUTCLKt
Q
R1
= 200 Il,
DE
OEt
Q
R2
= 390 Il,
11
20
ns
tdis
Q
CL
= 50 pF
ten
1,1/0
~is
I, I/O
0,1/0
0,1/0
10
19
15
20
30
30
ns
ns
ns
tDd
tDd
ten
t All typical values are at VCC = 5 V, T A = 25°C.
_
..
C
:t: f max (with feedback)
=
1
tsu + tpdlCLK to Q)
• f max without feedback can be calculated as f max (without feedback)
=
.
1
twhogh + twlow
programming information
!
I»
C/)
=
ur
:::r'
2-136
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers,
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request, Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
TlBPAL20L 10-30C, TlBPAL20X4-30C, TIBPAL20XB-30C, TIBPAL20X10-30C
HIGH-PERFORMANCE EXCLUSIVE-OR IMPAC~PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V
51
b
Rl
FROM OUTPUT_. ._ ....~t-_ TEST
UNOER TEST
POINT
CL
(Sao Nota A)
R2
1--_--.
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
./.
3.5 V
l .5V
- - -.....-:- - - - - - --0.3 V
,.. tsu ..,.- th ....
'
:----3.5V
DATA
1.5V
1.5V
INPUT
0.3 V
TIMING
INPUT
A
~
_t
~
LOW-LEVEL
PULSE
~1.5V
\1.5~--3.5V
I
I
tPLH~
IN-PHASE
OUTPUT
tpHL
1
I
1.5V
~
OUT.QF-PHASE
OUTPUT
(Soe Nota D)
\
0.3 V
~tPHL
"
i
~-;:~ VOH
I
~
I.
VOL
I4---*-tPLH
1
'C'"..I VOH
T l .5V
1•5V
\'._ _ _...J.
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tw - :
-·1.5V
i.r-
fI)
l)
CD
.c
3.5V
~---0.3V
(I)
ca
ca
VOLTAGE WAVEFORMS
PULSE DURATIONS
VOL TAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT - 1 1 . 5 V
II
..
HIGH-LEVEL ~---3.5 V
1 1.5V
1.5V
I
_
PULSE
I
w
I
O.3V
OUTPUT
CONTROL
~
1.5 V
(low-Ievol
enabling)
I.
tPZL'-""
I
I
51 CLOSED
(Sao Nota B)
WAVEFORM 2
51 OPEN
(5.. Nota B)
-i--------
O.3V
..... II-tPLZ
II
I :
WAVEFORM1~
C
3.5V
. 1.5 V
i1 I1~5V
=3.3 V
1.5V
I \..!:!!..--IJ..:--=-----=-;,;,:,
tpZH ~
...:
~tPHZ
~------::.i-==
1.5 V
.
VOL
VOH
0.5 V
.. 0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR :;; 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DAllAS. TEXAS 15265
2-137
TIBPAL20L 1O·30C, TIBPAL20X4·30C, TIBPAL20X8·30C, TIBPAL20Xl0,30C
HIGH·PERFORMANCE EXCLUSIVE·OR IMPAC"f'MPAL® CIRCUITS
preload procedures
preload procedure for registered outputs
Step 1
Step 2
Step 3
Step 4
Step 5
With Vee at 5 volts. raise Pin 13 (OE) to VIHH to disable the outputs and clear the
registers (output goes low). Since the outputs are low. only high levels need be preloaded.
Raise the selected output to be preloaded high to VIHH.
Lower Pin 13 to VIH.
Remove the voltages applied to the outputs. (At least a 1OO-ns wait is required between step 3
and step 4)
Lower Pin 13 to VIL to verify preload.
i------~.-
I
(PRELOAD PIN 13)
I
I
1100 ns
MIN
I--+j
I
- - - - - -- - - - - - -
lOa nS I
1 100 ns
H
~
I
MIN
MIN
VIHH
I
II
Vr----4\T-r;----::
I
SELECTED
OUTPUT
TO PRELOAD
i
Q
XXXXXXXXX\ .
I
VIL
I~
~
VOL
VERIFY
PRELOAD WAVEFORMS
security fuse programming
PIN 10
I
~4
\-----""
t w 3 - - - -... ·
OV
SECURITY FUSE PROGRAMMING WAVEFORMS
NOTE: Pin numbers shown apply only for the DIP package. If a chip carrier socket adaptor is not used, pin numbers must be changed
,
accordingly.
2-138
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL20SPB·30M, TIBPAL20SPB·20C
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS WITH PRODUCT·TERM SHARING
03088. DECEMBER 1987
•
True Product·Term Sharing Option
•
High·Performance Operation:
TlBPAL20Sps·20C tpd ... 20 ns
TIBPAL20Sps·30M tpd ... 30 ns
TIBPAL20SP8
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
ITOPVIEW)
Vee
•
Choice of Output Polarity
•
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs
•
Depandable Texas Instruments Quality and
Raliability
I
o
I/O
I/O
I/O
I/O
1/0
1/0
o
II
II)
TIBPAL20SPS
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
description
These programmable array logic devices feature
high-speed product-term sharing. They combine
the Advanced Low-Power Schottky technology
with proven titanium-tungsten fuses. These
devices will provide reliable, high-performance
substitutes for conventional TTL logic. Their
easy programmability allows for quick design of
custom functions and typically result in a more
compact circuit board. In addition, chip carriers
are available for further reduction in board space.
Product-term sharing allows a choice of one Or
two outputs for any product term. The 56
product terms are grouped in multiples of 14 per
output pair, not counting the 8 enable terms (1
per output). Any number of product terms (from
o to 16) can be associated with one output. In
addition, a product term may be common to two
outputs. In addition to the product term sharing,
these devices feature a polarity option for each
output.
~
Q)
.c
(TOPVIEWI
CI)
U
....CISCIS
u
___ u
z>_o
5
4 3 2 1 282726
25
6
7
24
23
8
22
9
10
20
C
21
11
19
12131415161718
--cu--o
zz
(!)
NC - No internal connection
Pin assignments in operating mode
;:
w
The TIBPAL20SP8-30M is characterized for
operation over the full military temperature range
of - 55°C to 125°C. The TIBPAL20SP8-20C is
characterized for operation from O°C to 75°C.
:>w
a::
Q.
t-
(.)
::;)
C
oa::
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a ragistered trademark of Monolithic Memories Inc.
PRODUCT PREVIEW dac.m.....ontoln Infannatlon
an prod.... I. tile IIrmall.. or dlllgR ~hl" of
do..la, ....t. Cha,o.toristic dltl a.~ atha,
:::::::0ri;t~::I:::II.;,T=~==
pradaell wlthalt ooti...
Q.
Copyright @ 1987, Texas Instruments Incorporated
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-139
TIBPAL20SPB·30M, TIBPAL20SPB·20C
HIGH·PERfORMANCE IMPACf'MPAL® CIRCUITS WITH PRODUCT·TERM SHARING
logic diagram (positive logic)
,'1)
INPUT LINES
A
I
,
0
12)
\
4
8
12
16
20
24
28
32
38
PRODUC;
LINES
(3)
~
0
1
···
14)
.~
en
::r
...
CD
CD
·
··
~l
""
. I
18
L(20)
15
··
·
CD
15)
v
··
·
(6)
1
;.f
1
o
c
c:
o-t
19)
~
m
S
m
1
··
·
I/O
-
47
~J
···
55
.
63
1
(16),
10
115)
v
114)
113)
Ill)
-
~
2-140
(171
v
··
·
110)
I/O
39
56
"tI
118)
v
48
"tI
I/O
I
40
~
I/O
31
··
·
(81
(19)
v
32
17)
'fO
23
24
U)
o
7
8
Ec
122)
v
·TEXAS ."
INSTRUMENTS
POST OFfiCE BOX 655012 • DALLAS. TEXAS 75285'
o
TlBPAL20SPB·30M, TIBPAL20SPB·20C
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS WITH PRODUCT·TERM SHARING
functional block diagram (positive logic)
&
EN
40 • 64
'V
'Q
0
2Q
0
;",
'V
EN
II)
'V
[>
'4
20
'V
'V
EN
en
3Q
'V
110
...
CCI
CCI
C
;",
4Q
110
5Q
110
6Q
110
7Q
110
8Q
110
;",
EN
'V
CD
CD
.c
;",
EN
II
...
;",
'V
EN
;",
EN
'V
;",
'V
EN
~
W
:>W
a:
Q.
I-
0
::J
C
0
a:
Q.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 •
DALL~S.
TEXAS 75265
2-141
TIBPAL20SP8·30M, TIBPAl20SP8·20C
HIGH·PERFORMA,.CE IMPACr"PAL@ CIRCUITS WITH PRODUCT·TERM SHARING
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: -30M suffix ....................... -55°e to 125°e
-20e suffix .......................... , ooe to 75°e
Storage temperature range ......................................... - 65 °e to 1 50 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating condtions
•
C
....
I»
I»
en
MIN
4.5
2
Supply voltage
High-level input voltage
low-level input voltage
High-level output current
Low~level output current
Operating free-air temperature
Vee
VIH
Vil
IOH
IOl
TA
-30M
NOM MAX
5
5.5
0.8
-2
12
125
-55
MIN
4.75
2
-20C
NOM MAX
5
5.25
0.8
-3.2
24
75
0
UNIT
V
V
V
mA
mA
·e
electrical characteristics over recommended operating free·air temperature range
::::r
-30M
TYPJ MAX
-0.8 -1.5
3.2
0.3
0.5
-20C
TYP* MAX
-0.8 -1.5
3.2
0.3
0.5
CD
CD
PARAMETER
(I)
VIK
VOH
VOL
Vee = MIN,
Vee = MIN,
Vee = MIN,
IOH - MAX
IOl = MAX
IOZH§
Vee = MAX,
Vo = 2.7V
100
100
p.A
IOZl§
Vee = MAX,
Vo = 0.4 V
-100
-100
~A
mA
....
"'0
oo
MIN
II = -18 mA
2.4
MIN
2.4
V
V
V
II
Vee = MAX,
VI = 5.5 V
0.2
0.2
Vee = MAX,
VI = 2.7 V
25
25
p.A
III §
Vee = MAX,
VI = 0.4 V
-0.08 -0.25
-0.08 -0.25
mA
lOS'
Vee = MAX,
Vo = 0
Outputs open,
ei
Vee =MAX,
VI = 0
f = 1 MHz,
eo
f = 1 MHz,
-30
-70
-130
140
180
-30
-70
-130
mA
140
180
.mA
VI = 2 V
5
5
pF
Vo = 2 V
6
6
pF
tFor conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.
~AII typical values are at Vee = 5 V. TA = 25·e.
§I/o leakage is the worst case of IOZl and III or 10ZH and IIH. respectively.
'Not more than one output should be shorted at at time and duration of the short-circuit should not exceed one second.
c:
n-I
"'0
:u
m
<
-
~
2-142
UNIT
IIH§
lee
:u
TEST CONDInONst
TEXAS'"
INSTRUMENlS
POST OFFICE
aox 655012 • DALLAS. TEXAS ~6285
TIBPAL20SPB·30M, TIBPAL20SPB·20C
HIGH·PERFORMANCE IMPACTTMPAl® CIRCUITS WITH PRODUCT·TERM SHARING
switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
lpd
len
ldis
FROM
TO
I,
0,
I/O
I/O
I,
0,
I/O
I/O
I,
0,
I/O
I/O
TEST
CONDITIONS
-20C
-30M
MIN
MAX
30
15
20
no
16
30
16
20
ns
,,,
30
16
20
ns
MAX
15
Rl = 200 [l,
R2 = 390 [l,
See Figure 1
MIN
UNIT
TVP
TYP
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications. algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 997-5762.
PI
~
Q)
Q)
.t:
U)
...co
CO
C
~
w
:>w
a::
a..
tO
:>
C
oa::
a..
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-143
TIBPAL20SPB·30M, TIBPAL20SPB·20C
,HIGH·PERFORMANCE IMPACf'MPAL@ CIRCUITS WITH PRODUCT·TERM SHARING
PARAMETER MEASUREMENT INFORMATION
SV
Sl
L
Rl
FROM OUTPUT _ . ._ ...._ ..._
UNDER TEST
R2
CL
(See Note A)
•
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
cC»
\.1~ -;
INPUT J , l . S V
r+
C»
en
:::T
CD
CD
TEST
POINT
tpd
IN-PHASE
OUTPUT
r+
I'"
,
:
tpd ,..
en
~I,
!l.SV
I·
I..
- - - 3.S V
0.3 V
~I tpd
OUTPUT
CONTROL
(low-level
enabling)
~3.SV
1.SV
ten~
:,+--VOH
I~
I
VOL
I
I"
OUT-OF-PHASE
OUTPUT
(See Note D)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
~I
tpd
I:r.::
VOH
/ll.SV
--VOL
,
14-
, I'
WAVEFORM 1
Sl CLOSED
(See Note B)
WAVEFORM 2
S10PEN
(See Note B)
1.SV
_1 ______ 03 V
,
--r\:
1.S V
~
.
14-- tdis
I',
II ~VOL
I ~-==~-=
ten-+l!+-
-+I
l4- tdis
l.
I _____
=3.3 V
+O.S V
VOL
-t.-= VOH
~
LVOH-~'S
I
1.S V
.
V
=OV
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is SO pF for tpd and ten, S pF for 'dis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. AII.input pulses have the following characteristics: PRR s 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
0, When measuring propagation delay times of 3-state outputs, switch 51 is closed.
FIGURE 1
"'0
::1:1
o
C
c:
n-I
"'0
::1:1
m
:S
m'
~
2-144
TEXAS "",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL22V10M TIBPAL22V1 DAM
TIBPAL22V1 DC, TIBPAL22V10AC
HIGH-PERFORMANCE IMPACT""PROGRAMMABLE ARRAY LOGIC
02943, OCTOBER 1
•
Second Generation PAL Architecture
•
Choice of Operating Speeds
TIBPAL22V10AC ... 25 ns Max
TIBPAL22V10AM ... 30 ns Max
TIBPAL22V10C ... 35 ns Max
TIBPAL22V10M ... 40 ns Max
DECEMBER 1987
M SUFFIX ... JT PACKAGE
C SUFFIX ... NT PACKAGE
(TOP VIEW)
ClK/I
•
Increased Logic Power - Up to 22 Inputs
and 10 Outputs
•
Increased Product Terms - Average of 12
per Output
•
Variable Product Term Distribution Allows
More Complex Functions to be Implemented
•
Each Output is User Programmable for
Registered or Combinatorial Operation,
Polarity, and Output Eneble Control
VCC
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
II
....
M SUFFIX ... FK PACKAGE
C SUFFIX .•. FN PACKAGE
•
TTL-Level Preload for Improved Testability
•
Extra Terms Provide Logical Synchronous
Set and Asynchronous Reset Capability
•
Fast Programming, High Programming Yield,
and Unsurpassed Reliability Ensured Using
Ti-W Fuses
en
(TOP VIEWI
CD
CD
.c
en
4321282726
5
25
6
24
23
•
AC end DC Testing Done at the Factory
Utilizing Special Designed-In Test Features
8
9
22
•
Dependable Texas Instruments Quality and
Reliability
10
20
21
11
19
....COCO
1/0/0
1/0/0
1/010
NC
110/0
1/0/0
1/0/0
C
1213 14 15 16 17 18
•
•
Package Options Include Plastic and
Ceramic Dual-In-Line Packages and Chip
Carriers
--ou-oo
zz
Cl
-gg
NC - No internal connection
Pin assignments in Qperating mode
Functionally Equivalent to AMD
AMPAL22V10 and AMPAL22V10A
description
The TIBPAL22V10 and TIPPAL22V10A are programmable array logic devices featuring high speed and
functional equivalency when compared to presently available devices. They are implemented with the
familiar sum-of-products (AND-OR) logic structure featuring the new concept "Programmable Output Logic
Macrocell". These IMPACr" circuits combine the latest Advanced Low-Power Schottky technology with
proven titanium-tungsten fuses to provide reliable high-performance substitutes for conventional TTL logic.
These devices contain up to 22 inputs and 10 outputs. They incorporate the unique capability of defining
and programming the architecture of each output on an individual basis. Outputs may be registered or
nonregistered and inverting or noninverting as shown in the output logic macrocell diagram. The ten potential
outputs are enabled through the use of individual product terms.
IMPACT is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA do.umen,. .ontain informelion
CURIRt as of publication data. Products conform to
spacifications per th. terms of TUls Instruments
standard warranty. Production pro ....lng dolS nOI'
necessarily include tasting of all parameters.
Copyright @ 1986, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-145
TIBPAL22V10M TlBPAL22V1 DAM
TIBPAL22V1 ~C, TIBPAL22V10AC
HIGH·PERFORMANCE IMPACTTII PROGRAMMABLE ARRAY LOGIC
Further advantages can be seen in the introduction of variable product term distribution. This technique
allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output.
This variable allocation of terms allows far more complex functions to be implemented than in previously
available devices.
Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term.
These functions are common to all registers. When the synchronous set product term is a logic 1, the
output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous
reset product term is a logic 1, the output registers are loaded with a logic O. The output logic level after
set or reset depends on the polarity selected during programming. Output registers can be preloaded to
any desired state during testing. Preloading permits full logical verification during product testing.
•
With features such as programmable output logic macrocells and variable product term distribution, the
TIBPAL22V10 and TIBPAL22V10A offer quick design and development of custom LSI functions with
complexities of 500 to 800 equivalent gates. Since each of the ten output pins may be individually configured
as inputs on either a temporary or permanent basis, functions requiring up to 21 inputs and a single output
or down to 1 2 inputs and 10 outputs are possible.
A power-up clear function is supplied that forces all registered outputs to a predetermined state after power
is applied to the device. Registered outputs selected as active-low power-up with their outputs high.
Registered outputs selected as active-high power-up with their outputs low.
A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns.
Once blown, the verification circuitry is disabled and all other fuses will appear to be open.
The M suffix devices are characterized for operation over the full military temperature range of. - 55°C
to 125°C. The C suffix devices are characterized for operation from OOC to 75°C.
2-146
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
TlBPAL22V10M TIBPAL22V1 DAM
TlBPAL22V1 ~C. TIBPAL22V10AC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
logic diagram (positive logic)
(11
INPUT LINES
0
4
8
12
16
20
24
28
32
36
40
ASYNCHRONOUS RESET
(TO ALL REGISTERS)
AR
O.
i
r1r
+CELL
7
-t>t::=
O.
··
0
(21
9
~J
:H=
CELL
:s:
0
·
(3)
Wl=l
0
i=l
3>13
P
··
(51
·
p-
15
(61
a
a
·
11
~
¥
::I
:S=l..
:l=!"l
-d-'
a
9
o.
··
a
7
(10)
SP
CO
CO
+I
(19)
C
CELL
(18)
CELL
(17)
CELL
(16)
L.......-
o.
·
.s:::
C/)
'---
:s:
(81
(91
CI)
+I
G)
G)
c.,-.--,-.
O.
13
1201
fI
'---
o.
a
O.
CelL
CELL
15
(71
(21)
'-----
0'
0
·
CELL
'---
o.
(41
=J
=J
=_1
=J
=J
=J
=J
1221
'---
o.
11
(23)
W>
=!l=T
-<>-
CELL
M>GJ
:§:f
il1)
(15)
(14)
CELL
SYNCHRONOUS SET
(TQ ALL REGISTERS)
03)
TEXAS -IJ}
INSTRUMENTS
POST OFFICE BOX 655012· DALLAS, TEXAS 75265
2·147
TlBPAL22V1 DM TIBPAL22V1 DAM
TIBPAL22V1 DC, TIBPAL22V10AC
HIGH·PERFORMANCE IMPACT™PROGRAMMABLE ARRAY LOGIC
functional block diagram (positive logic)
r-£>
r
C1
J1S
SET
RESET
&
44x132
8
~
;,,1
OUTPUT
~ > lOGIC
~ MACROCEll
h
[>
~
.- EN
~ I/O/Q
~
I- EN
~
~
I- EN
,........,.
~
EN
h
~
EN
h
~
EN
h
~
EN
~
h
~
EN
~
~
I- EN
~
~
I- EN
f--; f--- I/O/Q
10
--,:;ClK/1
II...
h
~ rv
~>--
h
h
~
->
~
12
~
->
~
14
1-1-->
V-
16
1-1-->
c
Q)
V-
~
16
~ rv
~
Q)
1~
fA
:r-
...en
V-
14
'---
CD
CD
I-t--I>
~
---..
---..
~I--I>
~
12
~~
10
~-
---..
~
8
'-_
,........,.
r
I>
I>
I>-
~
~
~
-4\
10
10
'"'-' denotes fused inputs
2-148
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
r-r-r--
10
I/O/Q
I/O/Q
-------
r--
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
TIBPAl22V10M TlBPAL22V1 DAM
TIBPAl22V1 ~C, TlBPAL22V10AC
HIGH·PERFORMANCE IMPACT"" PROGRAMMABLE ARRAY LOGIC
output logic macrocell diagram
r-------- -,
OUTPUT LOGIC MACROCELL
I ~--------~--~3
I
AR
R
MUX
2
1-0
>--+_---t1D
r--!..---~C1
88
I
I
b---4~---I0
1} G-0
18
L..-_
_' "
O
3
II
...
FROM CLOCK BUFFER
MUX
en
81
I
AR _ asynchronous reset
~-~hr=s~
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS. TEXAS 15265
I
I
I
I
J
CD
CD
.c:
en
...caca
C
2·149
TIBPAl22V10M TlBPAL22V1 DAM
TlBPAl22V1 ~C. TIBPAL22V10AC
HIGH·PERFORMANCE IMPACT7M.PROGRAMMABLE
A~RAY
LOGIC
51 - 0
51 - 0
SO - 0
So - 1
REGISTER FEEDBACK, REGISTERED. ACTIVE-LOW OUTPUT
REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT
E
51 -.1
SO - 1
51 - 1
SO - 0
1/0 FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT
I/O FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT
MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
FUSE SELECT
51
0
0
1
1
SO
0
1
0
1
FEEDBACK AND OUTPUT CONFIGURATION
Regis.ter feedback Registered
Active low
Register feedback Registered
Ac1ive high
110 feedback
110 feedback
Combinational Active low
Combinational Active high
o = unblown fuse,
1 = blown fuse
51 and SO are select-func1ion fuses as shown in the output logic
macrocell diagram.
FIGURE 1. RESULTANT MACROCELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING
absolute maximum ratings over operatinlJ free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ..................... , . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) _ . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
e suffix .............................. ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle or during a pre-load cycle.
2-150
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75266
TIBPAL22V10M, TIBPAL22V1 DC
HIGH-PERFORMANCE IMPACT"" PROGRAMMABLE ARRAY LOGIC
recommended operating conditions
TIBPAL22Vl0M
VCC
Supply voltage
VIH
High-level input voltage
Vil
Low-level inpl;It voltage
TIBPAL22Vl0C
MIN
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.75
5
5.25
5.5
2
2
UNIT
V
5.5
V
0.8
0.8
V
IOH
High-level output current
-2
-3.2
IOl
Low-level output current
12
16
mA
fclock
Clock frequency t
16.5
18
MHz
tw
Pulse duration
Clock high or low
30
25
Asynchronous Reset high or low
40
35
Input
35
30
Feedback
35
30
Synchronous Set
35
30
Asynchronous Reset low (inactive)
40
35
tsu
Setup time before clockt
th
Hold time, input, set, or feedback after clockt
TA
Operating free-air temperature
0
mA
ns
ns
0
-55
125
II
...
ns
0
75
°c
U)
electrical characteristics over recommended operating free-air temperature range
PARAMETER
VCC - MIN.
11-
VCC - MIN.
10H - MAX
Val
VCC - MIN,
10ZH
VCC = MAX,
IOl - MAX
Va = 2.7 V
Vce = MAX,
Va = 0.4 V
I
I
Any output
Any 1/0
MIN
TIBPAL22V10C
TYP§
MAX
MIN
-1.2
18 mA
VIK
VOH
10Zl
TlBPAL22Vl0M
TYP§
MAX
TEST CONDITIONS*
Q)
Q)
2.4
3.5
0.25
-1.2
2.4
0.5
V
0.5
V
0.1
0.35
0.1
mA
-100
-100
-250
-250
VCC - MAX,
VI - 5.5 V
VI - 2.7 V
1
1
mA
VCC - MAX,
25
25
III
VCC - MAX,
VI - 0.4 V
-0.25
-0.25
MA
mA
lOS'
VCC = MAX,
Va = 0.5 V
-90
mA
ICC
VCC - MAX,
VI - GND,
180
mA
-90
120
-30
180
120
Q
MA
II
-30
...
V
3.5
IIH
Outputs open
.r::.
en
ca
ca
UNIT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER
FROM
fmax t
With feedback
TEST CONDITIONS
TO
Cl = 50 pF
TIBPAl22V10M
TYP§
MAX
MIN
16.5
TIBPAL22V10C
TYP§ MAX
UNIT
18
MHz
MIN
tpd
1,1/0
1/0
Rl = 300 0 for C suffix,
15
40
15
35
ns
tpd
1,1/0 (reset)
Rl = 390 0 for M suffix,
15
45
15
40
ns
tpd
Clock
a
a
R2 = 390 0 for C suffix,
10
25
10
25
ns
ten
1,1/0
1/0,
R2 = 750 0 for M suffix,
15
40
15
35
ns
tdis
1,1/0
1/0,
See Figure 2
15
40
15
35
ns
t f max and fclock (with feedback)
fclock (without feedback) =
a
a
tsu
.
+ tp~
(ClK to a)' fmax and fclock without feedback can be calculated as f max and
1
tw high + tw low
:t: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ All typical values are at Vce = 5 V, T A = 25°C.
, Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set
0.5 V to avoid test problems caused by test equipment ground degradation.
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
Vo
at
2-151
TIBPAL22V1 DAM, TlBPAL22V10AC
HIGH·PERFORMANCE IMPACT"' PROGRAMMABLE ARRAY LOGIC
recommended operating conditions
TIBPAL22Vl0AM
Ea
c
Vee
Supply voltage
VIH
High-level input voltage
VIL
Low~level
10H
Hj'gh-Ievel output current
MAX
MIN
NOM
MAX
4.5
5
5.5
4.75
5
5.25
V
5.5
2
5.5
V
input voltage
0.8
0.8
-2
-3.2
V
rnA
10L
Low-level output current
12
16
rnA
fclock
elock frequency t
22
28.5
MHz
tw
Pulse duration
tsu
Setup time before clock1
elock high or low
20
15
Asynchronous Reset high or low
30
25
Input
25
20
Feedback
Synchronous Set
25
20
25
20
Asynchronous Reset low (inactive)
30
25
th
Hold time, input, set, or feedback after clockt
TA
Operating free-air temperature
0
ns
ns
ns
0
-55
125
0
75
·e
electrical characteristics over recommended operating free-air temperature range
en
...en
UNIT
NOM
2
Q)
::T
CD
CD
TIBPAL22Vl0AC
MIN
PARAMETER
VIK
Vee - MIN,
II -
VOH
Vee - MIN,
10H - MAX
VOL
Vee - MIN,
10L - MAX
Vee - MAX,
Vo - 2.7 V
10ZH
10ZL
TIBPAL22Vl0AM
TYP§
MAX
TEST CONDITIONS*
I Any output
I Any 1/0
Vee
~
MAX,
Vo
MIN
-1.2
-18 mA
~
TIBPAL22Vl0AC
TYP§
MAX
MIN
2.4
2.4
3.5
0.25
0.4 V
0.5
UNIT
-1.2
V
0.5
V
rnA
3.5
0.35
V
0.1
0.1
-100
-100
-250
-250
1
1
~A
Vee - MAX,
VI - 5.5 V
VI - 2.7 V
25
25
~A
Vee - MAX,
VI - 0.4 V
-0.25
-0.25
rnA
10S§
Vee ~ MAX,
Vo
-90
rnA
lee
Vee - MAX,
VI - GND,
180
rnA
II
Vee - MAX,
IIH
IlL
~
0.5 V
-90
-30
120
Outputs open
-30
180
120
rnA
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER
FROM
f max t
With feedback
TEST CONDITIONS
TO
TIBPAL22Vl0AM
TYP§
MAX
MIN
TIBPAL22Vl0AC
TYP§
MAX
MIN
UNIT
eL
~
50 pF
tpd
1,1/0
I/O
R1
~
300 [l for e suffix,
15
30
15
25
ns
tpd
Q
R1
~
390 [l for M suffix,
15
35
15
30
ns
tpd
I, 1/0 Iresetl
elock
Q
R2
~390 [l
for e suffix,
10
20
10
15
ns
ten
1,1/0
Q
R2
~
750 [l for M suffix,
15
30
15
25
ns
tdis
1,1/0
Q
See Figure 2
15
30
15
25
ns
t f max and fclock (with feedback)
fclock Iwithout feedback I
~
= tsu + tp~
22
28.5
MHz
(elK to aI' f max and fclock without feedback can be calculated as f max and
.
1
tw high + tw low
:t: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ All typical values are at Vec ~ 5 V, TA ~ 25 ·e.
~ Not more than one output should be shorted at a time and the duration of the short circuit should not exceed. one second. Set
0.5 V to avoid test problems caused by test equipment ground degradation.
2-152
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012· DALLAS, TEXAS 75265
Vo
at
TIBPAL22V10M TIBPAL22V1 DAM
TIBPAL22V1 DC, 'TIBPAL22V1 OAC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
preload procedure for registered outputs (see Note 2)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 volts and pin 1 at VIL. raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1. clocking in preload data.
Remove output voltage. then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.
preload waveforms (see Notes 2 and 3)
PIN 13
~-
/
~
PIN 1
1
1
!
:
1
1
REGISTERED 1/0
I4- t d-+j
j4- t su-+j
i+-td--+i
==>------\
*-tw-+l
I
:
1
1
~ -VIH
INPUT
I
-VIL
NOTES:
- VIHH
VIL
...
1___ 1_____ vlH
I 1- --:
1
-
I'
I
1
1
-
U)
CD
CD
VIL
.c
tn
ca
ca
C
1
I
...
Vr----VOH
\
OUTPUT
VOL
2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.
3. td ~ tsu ~ tw ~ 100 ns to 1000 ns. VIHH ~ 10.25 V to 10.75 V.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, 'TEXAS 75265
2-153
TIBPAL22V10M TIBPAL22V1 DAM
TIBPALZ2"1 bc, TlBPAL22V10AC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
power·up reset
Following power-up, all registers are reset to zero. The output level depends on the polarity selected during
programming. This feature provides extra flexibility to the system designer and is especially valuable in
simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC's
rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable
input and feedback setup times are met.
power-up reset waveforms
I1r
~-----------------------------------5V
4
VCC __________
J
tpd t
1600 ns typo 1000 ns MAX)
1.
4.'_ _ _ _
r--------~ I
ACTIVE-HIGH
REGISTERED OUTPUT
c
....
C»
C»
",
/
/
ACTIVE-LOW
REGISTERED OUTPUT
STATE UNKNOWN
Vo
.
f 5 -; -
-
-
-
--
I
JlI
STATE UN~NOWN
VO~
VOH
)11.5 V
: -
o
::r
-
-
*
-
-
-
-
VOL
)+- t su --+I
CD
CD
....
\'.5V
CLOCK
en
FVIH
. . . ----.l1-
-------------'--~-r:
--VIL
14---- tw-----+t
tThis is the power~up reset time and applies to registered outputs only. The values shown are from characterization data.
t. This is the setup time for input or feedback.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
2-154
TEXAS
~
INSTRUMENTS
POST OFFle!=, BOX 655012 • DALLAS, TEXAS 75265
TIBPAL22V10M TlBPAL22V1 DAM
TIBPAL22V1 ~C, TIBPAL22V10AC
HIGH·PERFORMANCE IMPACT"' PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION
5V
S1
L
R1
FROM OUTPUT
UNDER TEST -
.....-
TEST
POINT
...........R2
CL
(See Note A)
II
...
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
TIMING
INPUT
L.
HIGH-LEVEL
PULSE
F,1.5V
- - _.......U - -
-
1 5 V
15 V
~
.
.
L
.!
0.3 V
---3.5V
3.5V
- - - 0.3 V
,
DATA
~-:;;:;;3.5 V
INPUT ~ 1.5V
.~
0.3V
LOW-LEVEL
PULSE
.
3.5
IN·PHASE
OUTPUT
tpd
.1
I
:
!1.5V
1
14
.1
14
0.3V
~I
tpd
OUTPUT
CONTROL
lIow-levei
enabling)
:+--VOH
,I~
I
VOL
14
.1 tpd
OUT·Of·PHASE
OUTPUT
(See Note D)
VOLTAGE WAVEfORMS
PROPAGATION DELAY TIMES
3 .5V
...
CO
CO
C
VOLTAGE WAVEfORMS
PULSE DURATIONS
I·
14
1
- - --0.3V
\1-:;; -; --- V
1
I
1 5 V
15 V
~
.
.
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
tpd
CD
CD
.c
en
~-tw---..
I+-th-"
)4-tsu-+j
I
INPUT J , 1 . 5 V
II)
lr.:"":'1
VOH
,,1.5 V
--VOL
WAVEFORM
S1 CLOSED
(See Note 8)
~3.5V
1.5V
,
ten -+I
I+-
1.5V
)
-,- - -
-.r
- -·0.3 V
I+-- tdis
I'
I
~3.3V
1~VOL+0.5V
I
A
VOL
ten-.l
--+I ~~s_Ti_ V
!
i
-= = -=
WAVEFORM2~--"S1 OPEN
(See Note B)
1.5 V
OH
L-VOH·-O.5 V
~0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform· 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with Internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR :5 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is open.
FIGURE 2
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265
2-155
2-156
TEXAS ,.,
INSlRUMENlS
POST OFFICE BOX 656012 • DALLAS, TEXAS 75285
TIBPAL22VP10-25M
TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
02943, FEBRUARY 1987-REVISED DECEMBER 1987
•
M SUFFIX ... JT PACKAGE
C SUFFIX ... NT PACKAGE
Functionally Equivalent to the
TIBPAL22V10/10A. with Additional
Feedback Paths in the Output Logic
Macrocell
(TOP VIEWI
ClK/1
•
Choice of Operating Speeds:
TIBPAL22VP10-20C . , . 20 ns Max
TIBPAL22VP10-25M , .. 25 ns Max
•
Variable Product Term Distribution Allows
More Complex Functions to be Implemented
•
Polarity of Each Output is Programmable
•
TTL-bvel Preload for Improved Testability
•
Extra Terms Provide Logical Synchronous
Set and Asynchronous Reset Capability
•
•
•
•
VCC
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
I
GND
Fast Programming. High Programming Yield.
and Unsurpassed Reliability Ensured Using
Ti-W Fuses
II
...
"""';'''--'':'J-O
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
fI)
(TOP VIEWI
-
AC and DC Testing Done at the Factory
Utilizing Special Designed-In Test Features
G)
G)
ua a
.c
~ U UQ (3
__ uz>;:,;:,
4
Dependable Texas Instruments Quality and
Reliability
Package Options Include Plastic and
Ceramic Dual-In-Line Packages and Chip
Carriers
3
CJ)
...asas
2 1 28 27 26
5
25
6
24
1/0/0
1/0/0
Q
23
NC
description
8
22
9
21
10
20
19
11
The TIBPAL22VP10 is equivalent to the
TIBPAL22V10A but offers additional flexibility
in the output structure. The improved output
macrocell uses the registered outputs as inputs
when in a high-impedance condition. This
provides two additional output configurations for
a total of six possible macrocell configurations
all of which are shown in Figure 1.
12 13 14 15 16 17 18
--cu-aa
22
(!)
-gg
NC-No internal connection
Pin assignments in operating mode
The device contains up to twenty-two inputs and ten outputs, It defines and programs the architecture
of each output on an individual basis. Outputs may be registered or nonregistered and inverting or
noninverting, In addition, the data may be fed back into the array from either the register or the I/O port,
The ten potential outputs are enabled through the use of individual product terms.
Further advantages can be seen in the introduction of variable product term distribution, This technique
allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output.
This variable allocation of terms allows far more complex functions to be implemented than in previously
available devices.
IMPACT is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA d••umo.ts •• ntain information
curr••t 81 of pllblication date. Products canfarm to
spooifioatio.s par tho Iorms of T.... Instrumonts
~==,r:-i~:,~li =:~ti~n :I~O:=~I:"~ nat
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
Copyright @ 1987, Texas Instruments Incorporated
2-157
TIBPAL22VP10-25M
TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term.
These functions are common to all registers. When the synchronous set product term is a logic 1, the
output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous
reset product term is a logic 1, the output registers are loaded with a logic O. The output logic level after
set or reset depends on the polarity selected during programming. Output registers can be preloaded to
any desired state during testing. Preloading permits full logical verification during product testing.
With features such as programmable output logic macrocells and variable product terms, the TIBPAL22VP1 0
offers quick design and development of custom LSI functions with complexities of 500 to 800 equivalent
gates. Since each of the ten output pins may be individually configured as inputs on either a temporary
or permanent basis, functions requiring up to 21 inputs and a single output or down to 12 inputs and 10
outputs are possible.
E
A power-up clear function is supplied that forces all registered outputs to a predetermined state after power
is applied to the device. Registered outputs selected as active-low power-up with their outputs high.
Registered outputs selected as active-high power-up with their outputs low.
A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns.
Once blown, the verification circuitry is disabled and all other fuses will appear to be open.
The TIBPAL22VP1 0-25M i.s characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL22VP10-20C is characterized for operation from O°C to 75°C.
2-158
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
T1BPAL22VP10·25M
TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACT'M PROGRAMMABLE ARRAY LOGIC
functional block diagram (positive logic)
r--1>
r C1
SET
RESET
8<
32.44
B
11S
~
",1
C>
OUTPUT
>--- P- lOGIC
---.
r-
MACROCEll
h
r-
~ 1/0/0
EN
10
---.
~
ClK/1
.....
~ '"
~
---.
h
h
~
~
1~
-
'"
h
I-"""-
h
h
.........
~
-
>
~
-
>
~
>
---.
>- EN
>-r---- >
---.
>- EN
V-
---.
>- EN
>-c-- P-
V-
---.
>- EN
r-H r-H r--
-t;: P-
---.
>- EN
H f++- 1/0/.0
rr-
r
V-
>-r---- P-
h
~
>
~
B
......... 1/0/0
-
16
10
~
~
16
12
......... 1/010
P-
14
14
~
~
~
12
h
h
h
h
EN
""""
EN
""""
EN
""""
~
EN
""""
H
~
---r--
I/O/ofl
110/0
1/0/0
...en
Q)
Q)
.c
tn
1/010
...
110/0
C
CO
CO
1/0/0
10
10
'V
10
denotes fused inputs
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-159
TIBPAL22VP10·25M
TlBPAL22VP10·20C
HIGH·PERFORMANCE IMPACfTMPROGRAMMABLE ARRAY LOGIC
logic diagram (positive logic)
I.
111
0
AR
•
8
12
INPUT LINES
20
2.
28
32
3.
40
ASYNCHRONOUS RESET
(TO All REGISTERS)
0.
i
:Rc
:Rc
C}1
0'
··
0
121
~rr
ru:>
CELL
:g3
9
~J
0
13)
·
"
=h-
~
I»
I»
gp
14)
::T
13
0
...en
~J
CELL
(20)
~
0.
(I)
(I)
(21)
L--
0
...
en
CELL
~
0.
C
(22)
L--
0.
E
(23)
CELL
:B=i
7
-i>t:=
··
r,.
15
~IT
CELL
(19)
)5)
~
0.
0
·
16)
P-
15
0'
17)
13
w
l=l
0
18)
"
-<>
9
·
7
s.>
:B=l
:8=l
:R:
:B=i
SP
(111
2-160
~~
PEl)
FbtcP
CELL
(15)
--L-
0'
0
(10)
(17)
L--
0
·
CELL
CELL
:§::f
0'
19)
~h
'----
0. _
·
(18)
L--
,
0
··
~lI
CELL
(14)
CELL
SYNCHRONOUS SET
\TO ALL REGISTERS)
(13)
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlBPAL22VP10·25M
TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
output logic macrocell diagram
-,
OUTPUT LOGIC MACROCELL
r--:-:M~U~X-"
~--------~--~3
AR
R
1-0
I
I
2
)---1-....--110
.---':""'---1> C1
88
b-~~----i0
1} G-0
18
O
3
FROM CLOCK BUFFER
MUX
o
....Q)
II)
1 / 2 / 3 t - - - - / - - - -......._--+----'
1}G.!!..
o
3
51
II
AR --aSynChrOnous reset
55 - _
synchronous
L-.
_ set-...-
Q)
I
I
I
.c
en
....asas
C
I
J
t This fuse is unique to the Texas Instruments TIBPAL22VP1 O. It allows feedback from the 110 port using registered outputs as shown
in the macrocell fusing logic function table.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75266
2·161
TIBPAL22VP10·25M
TlBPAL22VP10·20C
,
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
S2 - 0
S1 - 0
so - 0
REGISTER FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUT
S2 - 0
S1 - 0
SO - 1
REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT
c
....
D)
D)
fA
:::r
S2 - 1
S1 - 0
S2 - 1
S1 - 0
SO - 0
CD
!en
1/0 FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUTt
SO -
1/0 FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUTt
S2 - X
S1 - 1
SO - 1
S2 - X
S1 - 1
SO - 0
1/0 FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT
1
1/0 FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT
tThese configurations are unique to the TIBPAL22VP10 and provide added flexibility when comparing it to the TIBPAL22Vl0 or
TIBPAL22Vl0A.
FIGU~E 1. ~ESULTANT MACRO CELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING
2·162
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPAL22VP10·25M
TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
PROGRAM-FUSE SELECT
52
51
0
0
0
0
1
1
SO
FEEDBACK AND OUTPUT CONFIGURATION
0
1
Register feedback Registered
Active low
Register feedback Registered
Active high
0
0
1/0 feedback
1
0
1/0 feedback
X
0
1
I/O feedback
Active low
Registered
Active high
Combinational Active low
X
1
1
I/O feedback
Combinational Active high
Registered
o = unblown fuse,
1 = blown fuse, X = unblown or blown fuse
S2, S 1, and SO are select-function fuses as shown in the output logic macrocell
diagram.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: TlBPAL22VP10-25M ................. - 55 °e to 125 °e
TIBPAL22VP10-20e ..................... ooe to 75°e
Storage temperature range ......................................... -65°e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle or during a pre-load cycle.
VIH
High·level input voltage
Vil
Low-level input voltage
10H
High-level output current
4.5
Low~level
Clock frequency t
tw
Pulse duration
tsu
th
TA
2
Setup time before clockt
=
tsu
+ tpd
NOM
MAX
4.75
5
5.25
V
5.5
2
5.5
V
0.8
-3.2
en
..
V
mA
12
16
mA
25
37
MHz
20
10
Reset high
30
20
Input
25
15
Feedback
25
15
Preset
25
15
30
0
-55
20
Operating free-air temperature
.c
UNIT
MIN
5.5
Clock high or low
Reset low (inactive)
Hold time, input, preset, or feedback after clockf
t fclock (with feedback)
5
TIBPAL22VP10-20C
0.8
-2
output current
10l
fclock
CD
CD
C
TIBPAL22VP10-25M
MIN NOM MAX
Supply voltage
en
CO
CO
recommended operating conditions
VCC
I..
125
0
0
ns
ns
75
ns
·C
1
, fclock without feedback can be calculated as
(ClK to Q)
fclock (without feedbackl = :-=.,.--1.,.....,_;-tw high + tw low
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-163
TIBPAL22VP10·25M
TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACpM PROGRAMMABLE ARRAY LOGIC
electrical characteristics over recommended operating free·air temperature range
PARAMETER
VIK
Vee - MIN,
11--lamA
VOH
Vee - MIN,
10H - MAX
Val
Vee
10ZH
Vee
= MIN,
= MAX,
Va
= MAX
= 2.7 V
Vee
=
Va
= 0.4 V
II
Vee
IIH
Vee
III
Vee
= MAX,
= MAX,
= MAX,
= MAX,
= MAX,
10Zl
...C
I»
I»
TIBPAL22VP10-25M
TEST CONDITIONSt
I Any output
I Any 1/0
10S§
Vee
ICC
Vee
MAX,
10l
= 5.5 V
VI = 2.7 V
VI = 0.4 V
Va = 0.5 V
VI = GND,
MIN
TYP*
MAX
TIBPAL22VP10-20C
MIN
TYP*
-1.2
2.4
3.5
2.4
0.25
0.5
3.5
0.35
0.1
UNIT
V
V
0.5
-100
0.1
-100
-250
-250
1
1
VI
V
mA
~A
mA
25
25
~A
-0.25
-0.25
mA
-90
mA
210
mA
-30
Outputs open
MAX
-1.2
-90
140
-30
220
140
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise notedl ~
PARAMETER
en
f max '
tod
:r-
...
CD
CD
(I)
FROM
TEST CONDITIONS
TO
el
= 50 pF,
= 300 !l for
= 390 !l for
= 390 !l for
= 750 !l for
1,1/0
1/0
R1
t~
I, 1/0 Ireset)
Q
Rl
tpd
Clock
Q
R2
ten
1.1/0
1,1/0
Q
R2
Q
See Figure 2
tdis
TIBPAl22VP10-25M
MIN
TYP*
25
50
MAX
TIBPAl22VP10-20C
MIN
TYP*
37
50
MAX
UNIT
MHz
e suffix,
12
25
12
20
ns
M suffix,
12
25
12
20
ns
e suffix,
a
15
a
12
ns
M suffix,
12
25
12
20
ns
12
25
12
20
ns
t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
*AII typical values are at Vee = 5 V, TA = 25°C.
§ Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set Va at
0.5 V to avoid test problems caused by test equipment ground degradation.
, f max Iwith feedback) = .
1
, f max without feedback can be calculated as
tsu + tpd lelK to Q)
f max Iwithout feedback)
2-164
= tw
1
high
+
tw low'
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlBPAL22VP10-25M
TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
preload procedure for registered outputs (see Note 2)
The output registers of the TIBPAL22VPl 0 can be preloaded to any desired state during device testing.
This permits any state to be tested without having to step through the entire state-machine sequence.
Each register is preloaded individually by following the steps given below.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 volts and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.
preload waveforms (see Notes 2 and 3)
PIN 13
~
I4- t su-+f
I
*"-tw--+l
i !
I
I
-
I
~
II...
- - :::H
I
I
I
I
I
~-VIH
REGISTERED 1/0 ~
INPUT
I
-VIL
NOTES:
-
i i __!___ :nu_::
*-td--+l
PIN 1
~
I4- t d--+/
o
CD
CD
.c
en
ca
ca
...
Vr----VOH
\
o
OUTPUT
VOL
2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.
3. td = tsu = tw
=
100 ns to 1000 ns. VIHH
=
10.25 V to 10.75 V.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-165
TIBPAL22VP10·25M
TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
power·up reset
Following power-up, all registers of the TIBPAL22VP10 are reset to zero. The output level depends on
the polarity selected during programming. This feature provides extra flexibility to the system designer
and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it
is important that the VCC's rise be monotonic. Following power-up reset, a low-to-high clock transition
must not occur until all applicable input end feedback setup times are met.
power·up reset waveforms
~--------------------------------5V
.J;tf
4
VCC __....................
~----tpdt
141
..
(800 ns typ, 1000 ns MAXI
REGISTE:~~I~~~~~~
/
.
STATE UNKNOWN
~
I
~~5 -; -
-
-
- - - VOH
--.....--..........~...............--.....------..........-~~------.....--~.-VOL
I
CLOCK
tThls is the
power~up
reset time and appiies to registered outputs only. The values shown are from characterization data.
*This is the setup time for input or feedback.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely availeble software and
inexpensive device programmers.
When the additional fuses are not being used, the TIBPAL22VP10 can be programmed using the
TIBPAL22V10/10A programming algorithm. The fuse configuration data can either be from a JEDEC file
(format per JEDEC Standard No.3-A) or a TIBPAL22V10/10A master.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information' on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized Tldistributor, or by calling Texas Instruments at (214) 995-5762.
2-166
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TEXAS 76266
TlBPAL22VP10·25M
TIBPAL22VP10·20C
HIGH·PERfORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION
5V
Sl
t.
Rl
FROM OUTPUT _ ..._ ..._ ...._
UNDER TEST
CL
(See Note A)
TEST
POINT
R2
II
...
LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
TIMING
INPUT
--/.
T,1.5
V
- - _.....U - - -
- - -
0.3
V
1 5 V
15 V
~
.
.
---3.5V
3.5 V
HIGH-LEVEL
PULSE
I..--tw--J
I+-th-+t
I4- t su-+(
I
DATA
~~-;;::3.5V
INPUT..../' 1.5V
..~
0.3 V
I
LOW-LEVEL
PULSE
\.1~;- -
.LI1.5 V
--"
I·
tpd -Io414f---.~1
14
- - 3.5 V
tpd
II /1~-. . . I.:----.'t:;5~
L
IN·PHASE
OUTPUT
tpd
OUT-Of-PHASE
OUTPUT
(See Note D)
I
14.'
,I
14
1.5V
.
VOLTAGE WAVEfORMS
PROPAGATION DELAY TIMES
1
~I
I
til
3.5V
...
IV
- - --0.3V
OUTPUT
CONTROL
now-level
enabling)
IV
C
~3.5V
1.5 V
I
VOH
VOL
tpd
~VOH
1.5V
.
- - VOL
1.5 V
I
I
ten ~
1.5 V
--;'I--J
I
.c
VOLTAGE WAVEfORMS
PULSE DURATIONS
0.3 V
.1
Q)
Q)
0.3 V
1 5 V
15 V
~
.
.
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT
U)
I+-
!
-1- - - - _. 0.3
-+I 14-- tdis
II
.
V
~3.3V
WAVEFORM l - - - - - r \ l 1 . 5 V
II~vOL+0.5V
Sl CLOSED
1 ~-==~= V
(S •• Note 8)
ten-+! j+:+-tdis Tit
OL
WAVEfORM 2
S10PEN
(See Note B)
Y,
1.5 V
--.I
•
~-
.= VOH
·L-VOH-0.5 V
~
aV
VOLTAGE WAVEfORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR '" 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
.
D. When measuring propagation delay times of 3·state outputs, switch S1 is closed.
FIGURE 2
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 7526,5
2-167
c
....
S»
S»
o::sCI)
CI)
....
(I)
2-168
TlBPALR19LBM, TIBPALR19R4M, TIBPALR19R6M, TIBPALR19RBM
TIBPALR19LBC, TIBPALR19R4C, TIBPALR19R6C, TIBPALR19RBC
HIGH-PERFORMANCE LATCHED-INPUT PAL® CIRCUITS
02709, DECEMBER 1982-REVISED DECEMBER 1987
•
High-Performance Operation , , . 30 MHz
•
Preload Capability on Output Registers
•
DIP Options Include Both 300-mil Plastic
and 600-mil Ceramic
•
Dependable Texas Instruments Quality and
Reliability
DEVICE
110 INPUTS
I INPUTS
o OUTPUTS
3-STATE
REGISTERED
QOUTPUTS
'PAlR19l8
'PAlR19R4
'PAlR19R6
'PAlR19R8
11
11
11
11
2
0
0
0
2
0
0
0
0
4 13-state buffers)
6 13-state buffers)
8 13-state'buffers)
description
These programmable array logic devices feature
high speed and functionality similar to the
TIBPAl16la, 16R4, 16R6, 16Ra series, but
with the added advantage of D-type input
registers. If any input register is not desired, it
can be converted to an input buffer by simply
programming the architectural fuse.
110 PORTS
6
4
2
0
TlBPAlR19lS'
M SUFFIX ... JW PACKAGE
C SUFFIX ' .. JW OR NT PACKAGE
(TOP VIEW)
Combining Advanced low-Power Schottky t
technology, with proven titanium-tungsten
fuses, these devices will provide reliable high
performance substitutes over conventional TTL
logic. Their easy programmability allows for
quick design of custom functions and typically
result in a more compact circuit board. In
addition, chip' carriers are available for further
reduction in board space.
fI)
0
110
110
110
110
110
110
0
INClK
Q)
Q)
.s::.
o
..
as
as
C
TIBPALR19lS'
M SUFFIX ••• FK PACKAGE
C SUFFIX .•. FN PACKAGE
Extra circuitry has been provided to allow loading
of each register asynchronously to either a high
or low state. This feature simplifies testing
because the registers can be set to an initial state
prior to executing the test sequence.
(TOP VIEW)
4321282726
25
An M suffix designates full-temperature circuits
that are characterized for operation over the full
military temperature range of - 55°C to 125°C.
A C suffix designates commercial-temperature
circuits that are characterized for operation from
OOC to 70°C.
..
Vcc
110
110
110
110
110
110
110
110
110
liD
liD
GND
24
1/0
1/0
23
22
21
liD
liD
20
10
19
11
12131415161718
INPUT REGISTER FUNCTION TABLE
INPUT
INClK
0
OUTPUT OF
INPUT REGISTER
1
1
H
H
l
l
X
l
Qo
NC - No internal connection
Pin assignments in operating mode
t Integrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3,463,975.
PAL is a registered trademark of Monolilthic Memories Inc.
PRODUCTION DATA documants .onlain info.matlon
......t as of publication data. Products .onform 10
.ccificltions par the tarml of Taul Instrumants
:'::'~:=i~·t::I-::.ra =~::i:r :.r::::~~~~ not
Copyright © 1985, Texas Instruments Incorporated
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-169
TIBPALR19R4M. TIBPALR19R6M. TIBPALR19R8'M
TIBPALR19R4C. TIBPALR19R6C. TIBPALR19R8C
HIGH·PERFORMANCE REGISTER~D·INPUT PAL@ CIRCUITS
TIBPALR19R4'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
TIBPALR19R4'
M SUFFIX, •• JW PACKAGE'
C SUFFIX .•. JW OR NT PACKAGE
(TOPVIEWl
OUTCLK
(TOP VIEW)
VCC
liD
liD
110
110
110
110
Q
Q
110
110
Q
110
110
INCLK
OE
GND
c
D)
en
:::T
OUTCLK
110
110.
110
110
CD
CD
r+
en
NC
Q
Q
110
C SUFFIX •.. FN PACKAGE
(TOP VIEW)
VCC
110
110
Q
4 3 2 1 282726
Q
110 5
110 6
110 7
NC
110
110 10
Q
Q
110
INCLK
lID
OE
11
12131415161718
TIBPALR19RS'
M SUFFIX ... JW PACKAGE
C SUFFIX ..• JW OR NT PACKAGE
TIBPALR19RS'
M SUFFIX ... FK PACKAGE
C SUFFIX .•. FN PACKAGE
(TOP VIEW)
(TOPVIEWI
OUTCLK
110
110
:s
VCC
110
Q
~
u
gg5~~~o
Q
4321282726
Q
25
24
Q
Q
110
110
110
110
GND """''--....;.:;;.....
Q
22
21
20
19
Q
Q
10
INCLK
OE
12131415161718
gg~~I~dd
t!l
:!!:
Pin assignments in operating mode
NC-No internal connection
2-170
Q
TIBPALR19R6'
Q
GND
Q
M SUFFIX .•• FK PACKAGE
Q
110
110
110
110
12131415161718
TlBPALR19R6'
M SUFFIX ... JW PACKAGE
C SUFFIX ... JW OR NT PACKAGE
(TOP "(lEW)
D)
r+
25
24
23
22
21
20
19
110 5
110 6
110 7
NC 8
110 ~9
110 ~10
110 ~11
Q
TEXAS . . ,
INSTRUMENTs
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIBPALR19L8M, TIBPALR19R4M
TIBPALR19L8C, TIBPALR19R4C
HIGH·PERFORMANCE REGISTERED·INPUT PAl@CIRCUITS
functional block diagrams (positive logic)
'PALR19L8
EN >1
&
"iJD----O
t>----o
b-4~"'-1/0
b-4.........-1/0
b-4.........-I/O
b-4.........-I/O
PI
....-I/O
~.r....-I/O
~.r
6
'PALR19R4
OE-----------------------------q
OUTCLK------------------II>
&
Q
Q
INCLK-_cP
Q
Q
11
I/O
1/0
1/0
1/0
4
4
TEXAS •
INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS, TEXAS 75265
2-171
TIBPALR19R6M. TlBPALR19R8M
TIBPALR19R6C, TIBPALR19R8C
HIGH·PERFORMANCE REGISTERED·INPUT PAL @ CIRCUITS
functional block diagrams (positive logic)
'PALR19R6
Q
Q
Q
Q
Q
E...
I
Q
C
I»
I»
1/0
1/0
tn
:T
CD
CD
...
U)
'PALR19R8
OE
OUTCLK
Q
INCLK
Q
Q
Q
11
Q
Q
Q
':'
Q
8
2-172
TEXAS
-II
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TEXAS 75265
TIBPALR19LBM, TIBPALR19L8C
HIGH·PERFORMANCE REGISTERED·INPUT PAL@CIRCUITS
logic diagram (positive logic)
1(11
.
INPUT LINES
i
I/O 1&
~.
..,
4
8
12
16
20
,
24
28
32
J
(231
'C2
20
'C2
20
I/O
MO
M
M'
2432
2433
~
36
~
PRODUCT
LINES
···
·
..,
~ ····
····
···
·
···
·
···
·
···
·
···
·
0
1
(221
l
(211
0
7
I/O
@L
'C2
20
8
M'
v
2434
11
tr
ttJ
I/O,1&
'02
20
MO
M'
15
!!!L
'C2
20
MO
M'
~
,C2
20
MO
M'
31
32
ill.
fJ
fJ
'02
20
MD
(181
~ vl
(171
v
I/O,!!l
40
2438
'C2
20
MO
48
2439
JJ
,C2
20
MD
56
f
2440
~
.c
en
...caca
I/O
C
I/O
I/O
1
(161
1
(151
I/O
55
M'
I/O,~
I/O
47
M'
I/O,~
CD
CD
39
M'
~
(191
l
2437
I/O
(201
v
~
~ 2436
I/O ~
l
23
24
II
...
U)
16
~ 2435
I/O
I/O
q
63
..,
'02
20
v
o
M'
I/O,\!!l
t1
'02
20
MD
M'
_ 2442
.A(1
~.
Pin numbers shown are for JW and NT packages.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·173
TIBPALR19R4M, T1BPALR19R4C
HIGH·PERFORMANCE REGISTERED·INPUT PAL@ CIRCUITS
logic diagram (positive logic)
OUTCLK (1)
.
INPUT LINES
)
110
!&
fttF"
4
12
8
16
,
24
20
28
32
0<2
,e2
20
C
~
PRODUCT
LINES
0
···
·
···
J
(22)
1/0
tr ·
~
f1fJ ····
P- ~~20)
Q
~
Q
,e2
20
ffi.
MO
M,
~ 2434
8
l
v
15
110 ~
....
110
CD
CD
110
2432
7
110
....
en
=r
I»
I»
(23)
M.
M,
2433
IE
J
'02
20
M'
~
36
J
(21)
1/0
,e2
20
M.
M'
16
~ 2435
e,
~ ···
23
~
'02
20
M'
M'
~ 2436
(II
24
/-
•
110 ~
1tJ ····
,e2
20
MO
32
M'
~
p-I:hlj ~
1lJ
Ir' ···
·
39
ill.
~)
p-
~ 2437
110
~
e,
31
40
M'
I ~ 2438
Q
Q
e,
rtJ ····
47
110
!!L
j--
,e2
M.20
M'
~ 2439
48
if ····
fU
IJ
l
>=1
55
110
!.!!L
,e2
20
M'
M'
56
'H
).
~ 2440
>=1
63
110
110
{~
(ill
,e2
20
I
(15)
I
1/0
1/0
M'
M'
2441
,e2
20
M'
M'
IIII
I
~ 2442
",,{14
LqE)
Pin numbers shown are for JW and NT packages.
2·174
J
(16)
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
TIBPALR19R6M. TIBPALR19R6C
HIGH·PERFORMANCE REGISTERED·INPUT PAL@ CIRCUITS
logic diagram (positive logic)
OUTCLK~(1~)~====================================================~
I
INPUT LINES
110
rn
~'~2'0 ti:~4:j:j::t=18~:t=1~2:j:j:=1~6~=""2O~;f:2~4li1=2~8li1=3:\:2li1;::3:\:6~\=:;j~
-PRODUCT
2433
~
(23)1/0
~
~
M
2432
~
LINES
···
·
l ;
rtfJ ·
o
I/O@LtfJ
M'
2434
liD!!!.
~~~)Q
:
15
~:2
16
MO
M,
•
2435
:
P-Fl1~)Q
1/0lllr1tJ~
~f ::
M'
•
2436
:
~~~)Q
I/D!!!.~-i :
fNj!i: .
tfji2 .
M'
2437
t>- ~
•
~
:
39
IIOJ!!.
40
M'
2438
P- ~ ~)
•
:
M,
'e
2439
Q
Q
I
47
I/O!!!
II
48
•
:
I/DQ!!.ffJ2~2 ::
iJi2 ·
MO
M'
2440
I/D~
•
•
•
63
M'
2441
1/0\!!l~f'
_2442
Ml
LZ_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _+-<...!"'""'--::'O
4 3 2 I 282726
110
110
110
NC
110
I/O
110
5
6
7
8
9
10
25
24
23
22
21
20
19
II
12 1314151617 18
INPUT LATCH FUNCTION TABLE
0
L
H
LATCH OUTPUT
L
L
H
X
00
INLE
OOOU-I WO
~::::~z
L
H
~
NC - No internal connection
Pin assignments in operating mode
tlntegrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3.463,975.
PAL is a trademark of Monolithic Memories Inc.
PRDDUCTIO. DATA dooumanta oontain infnrmation
ourrant II of publioation date. Praduota oonform to
spacificationl par the tarms of TaxIS Instrumants
:.:~:~~r,·I:I-:.ri =:~:r :'~D=::~:~ not
Copyright © 1985, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-181
TIBPALT19R4M, TIBPALT19R6M, TIBPALT19RBM
TIBPALT19R4C, TlBPALT19R6C, TIBPALT19RBC
HIGH·PERFORMANCE LATCHED·INPUT PAL® CIRCUITS
TIBPALT19R4'
M SUFFIX •.• JW PACKAGE
C SUFFIX ••• JW OR NT PACKAGE
TIBPALT19R4'
M SUFFIX ..• FK PACKAGE
C SUFFIX ..• FN PACKAGE
(TOP VIEW)
(TOP VIEW)
OUTCLK
110
~
VCC
110
1/0
1/0
Q
Q
Q
Q
1/0
110
110
110
110
110
110
110
U
I-
4321282726
iiiiCE
•
5
6
7
8
25
10
20
24
23
22
21
11
DE
GNO
U
gg5!l1~gg
19
12 1314 15161718
TIBPALT19RS'
TIBPALT19RS:
M SUFFIX .•. JW PACKAGE
M SUFFIX ••. FK PACKAGE
C SUFFIX ••• JW OR NT PACKAGE
(TOP VIEW)
C SUFFIX ..• FN PACKAGE
OUTCLK
(TOP VIEW)
~
VCC
110
110
U
I-
Q
110
110
110
7
4
Q
Q
Q
110
110
110
NC
Q
liD
Q
110
110
INLE
GND ......:.:=--...;.:;.....
U
cc::)u UCO
::::::::0 z >::::::::
3 2
1 282726
7
25
24
23
8
22
21
110
110
OE
10
11
12 13 14 1516 17 18
TIBPALT19RB'
M SUFFIX ... JW PACKAGE
C SUFFIX ••• JW OR NT PACKAGE
TIBPALT19RS'
M SUFFIX .•• FK PACKAGE
C SUFFIX ••• FN PACKAGE
(TOP VIEW)
(TOPVIEWl
OUTCLK
liD
~
VCC
110
~
Q
110
110
4 '3 2 1282726
Q
Q
1/05
110 ]6
. 110 ]7
NC ]8
110 ~9
110 ~10
110 ]11
Q
Q
110
110
110
GND """:':=--....:.::JI-'
U
gg5!l1~go
o
Q
Q
DE
250
24 Q
23 Q
22 NC
21~ 0
20[ Q
19[ Q
12 131415161718
c
C C
UIWI W0
::::::::~ZO~
Pin assignments in operating mode
2-182
NC-No internal connection
TEXAS •
INSTRUMENTS
POST OFFICE BOX 6E15012 • DALLAS, ·TEXAS 76265
TIBPALT19L8M. TIBPALT19R4M
TIBPALT19L8C. TIBPALT19R4C
HIGH·PERFORMANCE LATCHED·INPUT PAL® CIRCUITS
functional block diagrams (positive logic)
'PALT19LB
EN .. I
&
'V~---o
t>----o
t>-_....._I/O
b-;-<
(
I
VIL
secruity fuse programming (see Note 4)
Vee
~
I
PIN1 _ _ _ _
II:'ll&
~tw3-e1
0V
..7h--------- -----:----- :6
~'--t_h_. .
:
vV
I
I+-tw3...1
I.-th~ J----\.
-"1/
PIN 13 _ _ _ _ _ _ _ _ _ _ _
1_ _
:
j.th.j- ----16V
I
0V
\i
NOTE 4: Pin numbers shown are for JW and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-191
•
c
a
I»
en
::r
CD
CD
....
en
2-192
TIBPLS506M. TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
03090. DECEMBER 1987
•
50-MHz Clock Rate
•
Power-On Reset of All Registers
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
(TOPVIEWI
•
16-Bit Internal State Registers
ClK
VCC
•
a-Bit Output Registers
•
Outputs Programmable for Registered or
Combinational Operation
•
Ideal for Waveform and State Machine
Applications
10
11
12
13
14
15
00
01
02
03
GND
16
17
18
19
110
111
112/0E
07
06
05
04
description
The TIBPLS506 is a TTL field-programmable
state machine of the Mealy type. This state
machine (logic sequencer) contains 97 product
terms (AND terms) and 24 pairs of sum terms
(OR terms). The product and sum terms are used
to control the 16-bit internal state registers and
the a-bit output registers.
~ u tl
::Qoz>!!!!:::
The outputs of the internal state registers
(PO-P15) are fed back and combined with the 13
inputs (10-112) to form the AND array. In
addition, two sum terms are complemented and
fed back to the AND array, which allows any
product terms to be summed, complemented,
and used as inputs to the AND array.
The eight output cells can be individually
programmed for registered or combinational
operation. Nonregistered operation is selected by
blowing the output multiplexer fuse. Each
combinational output must also have all fuses
blown from the reset term. Registered output
operation is selected by leaving the output
multiplexer fuse intact.
II
M SUFFIX ... FK PACKAGE
C SUFFIX ... FK OR FN PACKAGE
(TOP VIEWI
432 1 282726
5
6
7
8
9
10
11
25
24
23
22
21
20
19
18
19
110
NC
111
112/0E
12131415161718
NMCO'lt..,«l
aazzaaa
w
a:
~
l-
e)
::::l
C
oa:
~
PRODUCT PREVIEW docum..ts contoin Information
on products in the formetivo Dr dHign ~h.se of
development. Chareet.. istic deto .n~ other
srr:~t d:i:.... I::I~r
products without notic•.
:'.!':.4::
T.c:.:Jl:::7::
Copyright @ 1987. Texas Instruments Incorporated
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265
2-193
TlBPLS506M, TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
. logic diagram (positive logic)
0..
0
-'
IL
~
~
11
~
0..
::::;
IL
'"':I:"
C.)
«
w
W
:::l
:IE
~I ....
~
CJ
•
c
Iii
!I»
en
::T
CD
!en
I
I
"o
::D
C
c:
•...
(")
-t
"::Dm
S
m
:e
NOTES: A. All AND gate inputs with a blown link assume the logic-1 state
B. All OR gate inputs with a blown link assume the logic-O state.
2·194
TEXAS
~
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlBPLS506M, TlBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
logic diagram (continued)
~
II
II
II
PI
U)
+or
CD
CD
~
tn
ca
+or
ca
Q
~
w
:>w
a:
a.
I(.)
::l
C
oa:
a.
TEXAS
..If
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·195
TIBPLS506M. TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
S-R FUNCTION TABLE (sea Note 1)
ClK POLARITY FUSE
ClK
INTACT
t
t
t
t
INTACT
INTACT
INTACT
•
•••
BLOWN
BLOWN
BLOWN
BLOWN
S
l
R
STATE REGISTER
L
L
H
H
L
H
H
QO
L
H
INDETERMINATE
L
L
00
L
H
H
L
L
H
H
H
INDETERMINATE
NOTE 1: The S-R registers clear at power-up. 00 is the state of the
S-R registers before the active clock edge.
functional block diagram (positive logic)
CLK----------~~~
>-------------------~
16
2
",1
97x50
8xMUX
8
.,
G1
10-111
8
""C
112/0E
8
:a
o
c
o
c
I"\,.,
-I
denotes fused inputs
""C
:a
m
S
m
:e
2-196
T~.
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS, TEXAS 75265
'il
8
QO-07
TIBPLS506M, TlBPLS506C
13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to disabled output (see Note 2) ................................... 5.5 V
Operating free-air temperature range: TIBPLS506M. . . . . . . . . . . . . . . . . . . . . . . .. 55°e to 125°e
TIBPLS506e . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 2: These ratings apply except when programming pins during a programming cycle.
recommended operating conditions
TIBPlS506M
VCC
Supply voltage
VIH
High-level input voltage
Vil
Low-level input voltage
IOH
High-level output current
10l
Low-level output current
tw
tsu
TIBPlS506C
MIN
NOM
MAX
MIN
NOM
MAX
4.5
2
5
5.5
5.5
4.75
2
5
5.25
5.5
0.8
-2
0.8
24
rnA
Setup time before elK t input or
Without C-a"ay
With e-a"ay
Input or feedback
TA
Operating free-air temperature
...
tI)
Q)
Q)
ns
feedback to S-R inputs
Hold time after ClK
V
rnA
Clock low
th
V
V
-3.2
Clock high
Pulse duration
UNIT
.c
en
ns
...caca
ns
at S-R inputs
-55
125
75
0
C
·e
tThe active edge of elK is determined by the programmed state of ClK polarity fuse.
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
VIK
VCC
VOH
Vee
Val
II
Vee
= MIN,
= MIN,
= MIN,
= MAX,
IH
Vce
Vee - MAX,
III
Vee
lOS
10ZH
Vee
Vce
10Zl
Vce
Vee
lec
TIBPlS506M
TYP§
MAX
TEST CONDITIONS*
= MAX,
= MAX,
= MAX,
= MAX,
= MAX,
II
=
MIN
2.4
3.2
0.25
2.4
0.4
3
0.37
25
20
-0.25
VI - 2.7 V
= 0.4 V
Va = 2.25 V
Va = 2.7 V
Va = 0.4 V
VI = 4.5 V,
-1.2
-1.2
-18mA
= MAX
10l = MAX
VI = 5.5 V
10H
TIBPlS508C
TYP§ MAX
MIN
VI
-15
Outputs open
-65
20
-15
=5
V, TA
=
25·C.
0.5
V
25
~A
20
~A
rnA
20
~A
-20
~
140
tFor conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions.
§AII typical values are at Vee
V
V
-0.25
-65
-20
140
UNIT
rnA
rnA
~
w
:>w
a:
Q.
I(J
::>
Q
oa:
Q.
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 65501·2 • DAllAS, TEXAS 75265
2-197
TIBPLS506M, TIBPLS506C
13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC·SEQUENCER
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted). (see Note 3)
FROM
(lNPUTI
TO
(OUTPUTI
Without C-arrey
With C-Array
'PARAMETER
fmax*
ClK§
ClK
I
~.
~r
tpd
ten
!dis
Q (nonregisteredl
Q (registered
Q (nonregistered)
. TIBPLS606M
MIN TVP
MAX
60
40
TEST CONDITIONS
nBPLS606C
MIN TVPt MAX
20
Rl = 500 Il.
Cl=50pF
60
40
UNIT
MHz
20
9
9
ns
15
15
6
6
ns
ns
Q
6
6
Q
t All typical values are at VCC = 5 V. TA = 25 ·C.
*fmax is independent of the internal programmed configuration and the number of product terms used:
§The active edge of ClK is determined by the programmed state of the ClK polarity fuse.
NOTE 3: Load circuits and voltage waveforms are shown in Section 1.
diagnostics
C
A diagnostic mode is provided with these devices that allows the user to inspect the contents of the state
registers. The step-by-step procedures required to use the diagnostics follow.
....C»C»
tn
1. Disable all outputs by taking pin 17 (DE) high (see Note 4).
CD
CD
2. Take pin 8 (00) double high to enable the diagnostics test sequence.
~
....
3. Apply appropriate levels of voltage to pins 11 (03). 13 (04). and 14 (05) to select the desired
state register (see Table 1).
(I)
The voitage'level monitored on pin 9 will indicate the state of the selected state register.
NOTE 4: If pin 17 is being used as an input to the array. then pin 7 (16) must be taken double high before pin 17 is taken high.
diagnostics waveforms
15 _ _ _ _ _. . J / , . - - - - - - - - - - - - - - - - - - - - - - VIHH
(PIN 7)
.
I
--J"i
OE
(PIN 171 _ _ _ _
;--------------...;...--------VIH
...... 100n.~ ,..-_ _ _,",\ _ _ _ _ _ _ _ _ _ ----VIHH
."
:%I
o
C
c:
(')
(PIN0:'
I
.,.,i/;,r"T/....
v,..,.v,"Z.,.,'/;,r"TZ",WI/I
j
J//j/(p;/
m
S
m
.-_-_-_-_-_-_-_-_-_-_-_..
~:~
\e-100 ns-+t
03.04.05
(PINS 11. 13. 141
_Jt.r--------------
Vi/1///JlllillliIJJliJ//j/llj///N-- - - - - - - - - -- I
-t
."
:%I
\
VOL
~100 n8--+1
.
~~ WIJ/ill/II//I//11//II//////J///////II//li//J/~m'l;,m'(;,m7hmr;;m'i;,mYhm'ihmYhmYh"T7Z ~OH
(PIN
,
Ol
~
2-198
VOHH
-VOH
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75286
TlBPLS506M, TlBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER
TABLE 1. ADDRESSING STATE REGISTERS
DURING DIAGNOSTICS
REGISTER BINARY ADDRESS
BURIED REGISTER
PIN 11
PIN 13
PIN 14
L
L
L
Cl
L
L
L
L
H
HH
CO
L
L
H
H
H
HH
HH
HH
L
L
L
L
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
HH
HH
HH
SELECTED
L
P15
P14
H
HH
Pl
L
P2
H
HH
P3
L
P5
H
HH
P6
PO
~
P4
P7
L
PS
H
HH
P9
Pl0
L
Pll
H
HH
1"13
..
CD
CD
..c
..
P12
t/)
CO
CO
Q
PROGRAMMING INFORMATION
Texas Instruments programmable logic devices can be programmed using widely available software and
reasonably priced device programmers.
Complete programming specifications, algorithms, and the latest information on firmware, software, and
hardware updates are available upon request. Information on programmers that are capable of programming
Texas Instruments programmable logic is also available, upon request, from the nearest TI sales office,
local authorized Texas Instruments distributor, or by calling Texas Instruments at (214) 997·5762.
~
w
:>w
a:
0..
I-
(J
::>
o
o
a:
0..
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2·199
I
I
E
C
I»
r+
I»
t/)
::T
CD
CD
r+
(Ij
2-200
TlBPSG507M, TIBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
MAY 1987-REVISED DECEMBER 1987
•
50 MHz Clock Rate
•
Ideal for Waveform and State Machine
Applications
•
6-Bit Internal Binary Counter
•
B-Bit Internal State Register
M SUFFIX .•.• JT PACKAGE
C SUFFIX ...• JT OR NT PACKAGE
(TOPVIEWI
ClK
•
Programmable Clock Polarity
•
Outputs Programmable for Registered or
Combinatorial Operation
•
6-Bit Counter Simplifies Logic Equation
Development in State Machine Designs
•
Dependable Texas Instruments Quality and
Reliability
VCC
16
17
18
19
110
111
112/0E
07
06
05
04
10
11
12
13
14
15
00
01
02
03
GND
description
The TIBPSG507 is a 13 x 80 x 8 Programmable
Sequenc~ Generator (PSG) that offers the
system designer unprecedented flexibility in a
high-performance field-programmable logic
device. Applications such as waveform
generators, state machines, dividers, timers, and
simple logic reduction are all possible with a PSG.
By utilizing the built-in binary counter, the PSG
is capable of generating complex timing
controllers. The binary counter also simplifies
logic equation development in state machine and
waveform generator applications.
The PSG507 contains 80 product (AND) terms,
a 6-bit binary counter with control logic, eight
SIR state holding registers, and eight outputs.
The eight outputs can be individually
programmed for either registered or
combinatorial operation. The clock input is fuse
programmable for either positive- or negativeedge operation.
-
M SUFFIX . . . . FK PACKAGE
C SUFFIX . . . • FK OR FN PACKAGE
(TOPVlEWI
:.l
. ..
CD
CD
U
::Qd~~';!.~
4
3
.c
en
...
2 1 282726
CIS
CIS
25
12
13
5
6
NC
8
22
9
10
21
24
Q
23
01
11
12 13 14 15 16 17 18
NMCUVIDIC
00 z z'O 0 0
C!l
NC - No internal connection
The 6-bit binary counter is controlled by a synchronous-clear and a count/hold function. Each control function
has a nonregistered and registered option. When either SCLRO or SClR1 is taken high, the counter resets
to zero on the next active clock edge. When either CNT/HLDO or CNT/HLD1 is taken high, the
counter is held at the present count and is not allowed to advance on the active clock edge. The SCLR
function overrides the CNT/HLD feature when both lines are simultaneously high.
Clock. polarity is programmable through the clock polarity fuse. Leaving this fuse intact selects positiveedge triggering. Negative-edge triggering is selected by blowing this fuse. Pin 17 functions as an input
and/or an output enable. When the output enable fuse is intact, all outputs are always enabled allowing
pin 17 to be used strictly as an input. Blowing the output enable fuse lets pin 17 function as an output
enable and an input. In this mode, the outputs are enabled when pin 17 is low and are in a high-impedance
state when pin 17 is high.
~
W
~
a:
Q.
t-
(.)
::l
C
oa:
Q.
PRODUCT PREVIEW do.uments .ontaln Information
on products in the formatlv. or design ~ba.. of
devllopmlnt. Cherl.taristi. data an~ other
::.-::::.at::=srr::t dt",l::a~::I~r T::,=::,:::
products without noll...
Copyright C) 1987, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • CALLAS. TEXAS 75265
2-201
I
!
TlBPSG507M. TlBPSG507C
13 x 80 x 8 PROGRAMMABLE
SE~UENCE
GENERATOR
dellcription (continued)
The eight outputs can be individually programmed for combinational operation by blowing the output
multiplexer fuse. Each combinational output must also have all fuses blown from its associated reset term.
When the output mUltiplexer fuse is left intact, registered operation is selected.
The M suffix devices are characterized for operation over the full military temperature range of - 55
to 125
The C suffix devices are characterized for operation from 0
to 75
ac.
ac
6-BlT COUNTER CONTROL FUNC"RON TA!,LE
CNT/HLD1
CNT/HLDO
L
X
X
X
H
L
X
X
H
X
SCLR1
L
(888
SCLRO
X
H
L
L
ac.
Note 1)
OPERATION
L
H
counter active
X
L
L
synchronous clear
synchronous dear
hold counter
hold counter
NOTE 1: The 6-Bit counter and the SIR control registers are clear upon power-up.
Devices with the fuses intact will power~up in the counter~active mode.
When all fuses are blown on a product line (AND), its output will be high.
When all fuses are blown on a-sum line (OR), its outputs will be low. All
product and sum terms are low on devices with fuses intact.
c
C»
...
C»
t/)
SIR FUNCTION TABLE (sBe Nota 2)
::r
CD
CLK POLARITY FUSE
!fI)
\'
ClK
t
S
R
INTACT
L
L
00
INTACT
t
L
H
L
H
L
H
L
H
L
INTACT
t
H
INTACT
t
BLOWN
t
.H
L
BLOWN
t
BLOWN
t
t
BLOWN
L
'H
H
STATE REGISTER
H
INDETt
00
L
H
. tNDETt
t Output state is indeterminate
NOTE 2: SIR registers are clear upon power up. 00 is the state of the SIR regisier
before the active clock edge .
."
::D
o
C
c:
(')
....
."
::D
m
S
m
~
2-202
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
ac
TIBPSG507M. TIBPSG507C
13 x 80 X 8 PROGRAMMABLE SE~UENCE GENERATOR
functional block diagram
,-
ClK
.,V
':'
8
6
STATE REGISTERS
~C1
'" 1
80x38
2
a.
~
axC> ~
~
*
'V
'V
..;....
~
8xC>
-.!,....
p!,--
~
10·111
112/(jE
12
1
--:--:13xC>
+
ol¥-
-
81NARY COUNTER
CTR a
1-0
G2
1S
2
54x80
'V
'V
2x
1-0
J
IR
1CT-0
C1/2.3+
G3
1CT-0
~C1
~ 'V
)
8
1S
8
IR
OUTPUT CEll
8
1
~NC1
EN
8x
1-0
8
1S
8
]
-
I"U
CO·C5
8x
1-0
8
'V
'V
~
IR
'-
MUX
"V~
8
,.
r
G1
Qo=
f
denotes fused inputs
w
==
:>w
a:
a..
I(.)
::J
C
oa:
a..
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • OALLAS, TEXAS 75265
2·203
TIBPSG507M, TIBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
logic diagram (positive logic)
'"r
"" ,,
""05" , ,
""
'"
"" ""
'"
16
" ,
:~~
112/0E
f/
I)
If;G;l
•
F=-
~
R
)Il
-"'~
c
C)
;;.
r+
C)
~
;;.
en
:::r
~
:::
CD
CD
-'""'
;;.
r+
tn
~
~DO
ro-~
:;;'::
...
~
"
"'-
P2
,
I~ I-f.'
- ~"
I::::
-X>
...r:.. ~
.~
r.=
"
"
~~
-'""-:F~
~~
,~
Hi'
~QO
"'-'
~~~"
"C
~uur=~02
o
~~~Q3
(")
k?~~o,
:xJ
C
C
I::::~~OS
-I
"C
:xJ
m
-<
m
~
2-204
'Ruur=~"
~mrrllllill
R~~"
-nT
~
TEXAS
INSTRUMENTS
POST OFFICE BOX 655012 '. DALLAS, TEXAS 75265
TIBPSG507M. TIBPSG507C
13 )( 80 )( 8 PROGRAMMABLE SEQUENCE GENERATOR
absolute maximum ratings
Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage, VI (see Note 3) ................................................ 5.5 V
Voltage applied to a disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free:air temperature range: TIBPGS507M. . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
TIBPGS507e. . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 3: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
M SUFFIX
PARAMETER
Supply voltage
VCC
V,H
High-level input voltage
V,L
Low-level input voltage
IOH
High-level output current
IOl
Low-level output current
tw
4.5
2.
before ClK
active transition
C SUFFIX
NOM
MAX
5
5.5
MIN
4.75
5.5
2
0.8
-2
12
th
after ClK
active transition
Clock low
Input or feedback
to SIR inputs
MAX
5.25
to SClRa
Input or feedback
~
V
5.5
V
0.8
-3.2
24
V
mA
mA
Q)
Q)
15
ns
25
ns
25
ns
.c
en
ca
ca
C
a
at SIR inputs
Input or feedback
ns
a
at SCLO
Input or feedback
Operating free-air temperature
UNIT
~
Input or feedback
a
atCN'l'/HlDa
TA
5
ns
to eN'!'IHOLDa
Input or feedback
Hold timet
NOM
Clock high
Pulse duration
Setup timet
tsu
MIN
-55
125
0
75
·C
t'nterna' setup and hold times, tsu feedback to SClR1, feedback to eN'!'/HlD1: th feedback at SClR1 and feedback at eN'!'/HlD1. are
guaranteed by f max specifications. The active transition of ClK is determined by the programmed state of the ClK polarity fuse.
~
w
:>w
a:
Q.
lt)
:J
Q
oa:
Q.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
2-205
TIBPSG507M, TIBPSG507C
13 x80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted 1
PARAMETER
VIK
VOH
VOL
IL
IIH
III
lOS
!OZH
IOZl
TEST CONDITIONS
VCC
VCC
VCC
Vee
Vcc
VCC
VCC
Vee
Vee
=
=
=
=
=
=
=
=
MIN,
MIN,
MIN,
MAX,
MAX,
MAX,
MAX,
MAX,
MAX,
MIN
II = -18mA
10H = MAX
10l = MAX
VI = 6.5 V
VI = 2.7 V
VI - 0.4 V
Vo = 2.25 V
VO. = 2.7 V
Vo = 0.4 V
VI - 4.5 V,
OutoutsoDen
2.4
M SUFFIX
TYpT
3.2
0.25
MAX
-1.2
MIN
2.4
0.4
25
20
-0.25
-55
20
-20
-15
C SUFFIX
TypT
3
0.37
-15
MAX
-1.2
0.5
26
20
-0.25
-55
20
-20
UNIT
V
V
V
,.A
,.A
rnA
rnA
,.A
,.A
Eow. . . . . . . . . . . . . ..-.. . . . . . . . . . . . . _ . . ._ ,. . . . . .,....
ICC
o
VCC = MAX
(unless otherwise notedl (see Note 41
I»
;-
-rnA
140
140
PARAMETER
en
::r'
CD
fmax *
!
(I)
tpd
ten
tdis
FROM
TEST
CONDITIONS
TO
5-Blt counter
5-Bit counter with SClR1 or BlT/HlD1
5-Bit counter with SClRO or BlT/HlDO
SIR registers
CLK§
Q (non-registered) 1
ClK§
Q (registered)
Q non-reaisteredl
I
OE~
Q
OEt
Q
MIN
M SUFFIX
TYpt
MAX
Rl = 500 0,
CL=50pF
MIN
CSUFFIX
Typt
MAX
50
35
50
UNIT
MHz
20
12
18
12
12
ns
ns
ns
ns
ns
NOTE 4: load circuits and voltage waveforms are shown in Section 1 of the TTL Data Book, Volume 4.
tAli typical values are at VCC = 5 V, TA = 25°C.
*fmax is independent of the number of product terms used.
§The active edge of CLK is determined by the programmed stete of the ClK polarity fuse.
'tpd ClK to Q (nonregistered) is the same for data clocked from the counter or state registers.
PRINCIPLES OF OPERATION
;g
PSG DESIGN THEORY
c:
n
Most s.tate machine and waveform generator designs can be simplified with the PSG by referencing all or part
of each sequence to a binary count. The internal state registers can then be used to keep track of which binary
count sequence is in operation, to store input data and keep track of internally generated status bits, or as output
registers when connected to a nonregistered output cell. State registers can also be used to expand the binary
counter when a larger counter is needed.
oC
-I
"'0
::D
m
<
m
Through the use of the binary counter, the number of product lines and state registers required for a design
is usually reduced. In addition, the deSigner does not have to be concerned about generating wait states where
the outputs are unaffected because these can be timed from the binary counter. For detailed information and
examples using this design concept, see the "DESIGNER'S GUIDE TO THE PSG507" applications report (literature
number SPDA003).
:e
2-206
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS, TEXAS 752.65
TIBPSG507M. TIBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
PRINCIPLES OF OPERATION
PROGRAMMING INFORMATION
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on firmware, software, and
hardware updates are available upon request. Information on persons capable of programming Texas Instruments
Programmable Logic is also available upon request from the nearest TI sales office or local authorized TI distributor;
information may also be obtained by calling or writing Texas Instruments at (214) 997-5762, Texas Instruments,
Post Office Box 655803, Dallas, Texas 75265.
TYPICAL APPLICATION
RFC
DYNAMIC RAM
REFRESH
TIMER
DYNAMIC
MEMORY
CONTROLLER
SN74ALS6301
REFREQ
REFREQ
MEMORY
TIMING
CONTROLLER
TIBPSG507
OSC
CLOCK
GENERATOR
RFC
-
QO·QS
CLK
VCC
~ RESET
iN
WAIT
R/iN
A22
ALE
AS
RAS
CAS
L
-
MSEL
MCI
2
r
Fo~
-
MSEL
HSA ~
*
*
r--
SN74ALS6310 ~
-
-
RASI
CASI
MICROPROCESSOR
7
LE
-
ADDRESS
MCI
OE
CS
-
~
-----+
r
-~
-~
RASO
CASO
iN
~
-~
-~
-~
-~
~
-~
RASI
DATA
TEXAS . "
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
...caca
J
AO·AS
RAS2
BANK2
1 MEG x 32 BITS
TMS4Cl027
CAS2
iN
I
AO·AS
~
w
BANK3
1 MEG x 32 BITS
TMS4Cl027
:>w
a::
a..
iN
I-
l'
::J
detailed information, please see the "SYSTEMS SOLUTION FOR STATIC COLUME DECODE" Application Report.
INSTRUMENTS
f/)
BANKI
lMEG x 32 BITS
TMS4Cl027
CAS3
~
CD
CD
.c
CASI
RAS3
SELO.l
~...
C
I
AO·AS
--~ iN
,
MEMORY BANK SIGNALS
AO·AB
BANKO
1 MEG x 32 BITS
TMS4Cl 027
o
C
oa::
a..
2-207
TIBPSG501M. TlBPSG501C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
diagnostics
A diagnostics mode is provided with these devices that allows the user to inspect-the contents of the state
registers. The following are the step-by-step procedures required for the diagnostics.
1. Disable all outputs by taking OE (pin 17) high. (Note: If pin 17 is being used as an input to the array, then
pin 15 or pin 7 must be taken to double high first before pin 17 is taken high.)
2. Take 00 (pin 8) double high to enable the piagnostics test sequence.
3. Apply appropriate levels of voltage to pins 11, 13 and 14 to selectthe desired state register, (see Table 1)
4. The voltage level monitored on pin 9 will indicate the state of the selected state register.
diagnostics waveforms
5 _________J/~--------------------------------------------VIHH
(PIN 71
.
DE _ _ _ _ _'l~--------------------------------------~------VIH
(PIN, 17)
I
14--100 ns---+t
_ _ _ _ _ _ _ _ _ _ VIHH
{~N~~JS~S~~S:IS~lWCI'J,~,:,~,:tsxfl'~----~\
-
-
-
-
-
-
-
-
-
- VIH
VIL
14-100 ns--.lI _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ VOHH
~M~
(PINS 11. 13. 14)
S S S s s s s .s s s s s s s , ,
v
~
S 5 ..
I
OH
VOL
I
1+--100 ns--+(
Q1
(PIN 9)
S S S S
I
S Ss s s s s s s s s s s s s s s s s s s • s s s s s s SS ,
TABLE 1. ADDRESSING STATE REGISTERS DURING DIAGNOSTICS
REGISTER BINARY ADDRESS
PIN 11
PIN 13
PIN 14
""0
:0
o
C
c:
o
-t
""0
:0
m
S
m
~
2-208
BURRIED REGISTER SELECTED
L
L
L
L
L
H
L
L
HH
CNT/HLDO
L
H
H
L
H
HH
CNT/HlD1
SCLRO
SCLR1
PO
P1
l
l
H
L
HH
l
P2
L
HH
P3
L
HH
H
HH
H
L
L
P4
P5
H
H
L
l
H
HH
P6
P7
H
H
L
CO
H
H
H
H
H
HH
C1
H
HH
L
H
HH
H
C3
C4
H
HH
HH
C5
C2
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
,
VOH
VOL
TlB82S 1OSBM, TIB82S 1OSBC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
02897, SEPTEMBER 1985-REVISED DECEMBER 1987
•
50· MHz Clock Rate
•
Power-On Preset of All Flip-Flops
•
6-Bit Internal State Register with 8-Bit
Output Register
M SUFFIX, , . JD PACKAGE
C SUFFIX ... JD OR N PACKAGE
(TOP VIEW)
•
Power Dissipation ... 600 mW Typical
•
Programmable Asynchronous Preset or
Output Control
•
Functionally Equivalent to. but Faster than
82S105At
description
The TIB82S 1OSB is a TTL field-programmable
state machine of the Mealy type, This state
machine (logic sequencer) contains 48 product
terms (AND terms) and 14 pairs of sum terms
(OR terms), The product and sum terms are used
to control the 6-bit internal state register and the
8-bit output register.
elK
Vee
17
16
15
14
13
12
11
10
Q7
Q6
Q5
Q4
GND
18
19
110
111
112
113
114
115
PRE/OE
QO
Q1
Q2
Q3
PI
....
en
Q)
Q)
M SUFFIX ... FK PACKAGE
C SUFFIX ... FK OR FN PACKAGE
(TOP VIEW)
The outputs of the internal state register
(PO- PSI are fed back and combined with the 16
inputs (l0-11S) to form the AND array. In
addition a single sum term is complemented and
fed back to the AND array. which allows any of
the product terms to be summed.
complemented, and used as an input to the AND
array.
The state and output registers are positive-edgetriggered SIR flip-flops. These registers are
unconditionally preset high on power-up. Pin 19
can be used to preset both registers or. by
blowing the proper fuse, be converted to an
output control function.
>l
.c
(/)
....asas
U
~5ec::d~~~
4
3
2
Q
1 282726
5
25
6
24
7
23
8
22
9
21
10
20
11
110
111
112
113
114
115
PRE/OE
12 1314 15161718
The TIB82S1 OSBM is characterized for operation
over the full military temperature range of
-SsoC to 12SoC. The T1B82S10SBC is
characterized for operation from OOC to 7S DC.
t Power-up preset and asynchronous preset functions are not
identical to 8251 05A. See Recommended Operating Conditions.
PRODucnOI DATA ..... m.nts co.taln infarmdia.
.umot II of publication dets. Praducls .onfarm to
opeoillcatlo.. per.lb. tarms of T•••• Instrum.nts
:'=~~r:"f::I~li =~:i:r :.\o:::::~. not
Copyright @ 1985. Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DAL.LAS. TEXAS 75265
2-209
TIB82S105BM, TIB82S105BC
16 x 48 x 8 FIELD,PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
functional block diagram (positive logic)
PRE/OE
-----4If--f-"'"
~--~----~----------,
EN
S
CLK-------------------------------------+-~~
.. 1
48 X 29
&
8
8
8
16xI>
10_115 __.."...1:.::6-:....,-I
E
48
cm
6xI>
tn
I>
'V
....~
6
6
1R
'V
~
CD
CD
....til
6
'V denotes fused inputs.
timing diagram
vee
PRE
OPTIONAL
M
10-11&
---J
I
I
I~-----T--------I4--tsu --.!
rh
i
--~I------------~------~I I ~----I
~I-+I~-------
-K _________
~.
I
elK
r-----1
--~I~----------~I
~
I
!ot=tsu
.
I
I
I
I
INTERNAL
STATE
REG
PO-P5
V
I
___-JA\~I~,~I--~--~~
I
=iII
~~
-_-_-_-_-_-_-_
-11r-v~--~!r-------:I:~tT-~::f_
I
I
I
. I
I
I
QO-Q7---V---~~-----~!~------~·
iJ-----\\..----J
~
2-210
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
QO-Q7
TIB82S 185BM, TIB82S 185BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
logic diagram (positive logic)
10 191
181
11
12 171
161
" 151
14
141
15
131
17 121
,.
18
19
110
111
112
)J.
I
1271
(19)
12.,
,25,
(24)
•
(23)
PIIE/1Ir
E
(221
11.
114 1211
115 1201
.,
PO
''32
PO
'5
~I
~.o
rt,~~l
~
~
tt,~1
~P2
~~1t
~P3
~
N
~
~
~
H>~
'S;~e
H;~~
~
H;~1
=
,
'fr
1(171
H;~~L
H>~
<;S"
,.
H>~
~
~
~
a
~
~
47· • • • • • •
....... . ........ ....... . ........
• •••••• 0
H>~
H>~
~11~
~
r+.~~
.!!!..:.
'\l
H>.J!r.-
,181
00
01
I
,
'(161
1 115 ,
01
I
1 113)
04
1
1(121
05
I
'1'1'
1
1(101
111
o.
07
elK
INPUT LINES
NOTES:
1. All AND gate inputs with a blown link float to a logic 1.
2. All OR gate inputs with a blown link float to a logic O.
TEXAS
.Jf
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75266
2·211
TlB82S105BM, TlB82S105BC
16 x 48 x 8 FIELD~PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
absolute maximum ratings over operating free-air temperature range (unless otherwise hoted)
Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 5.5 V
Voltage applied to a disabled output (see Note 3) . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: TIB82S 105BM . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
TIB82S105Be .......................... ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 3: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
M SUFFIX
PARAMETER
...C
I»
I»
VCC
Supply voltage
VIH
Vil
High-level input voltage
low-level input voltage
IOH
High-level output current
Low-level output current
IOl
fclock
Clock frequency t
::::r
CD
CD
...
NOM
MAX
MIN
NOM
MAX
4.5
2
5
5.5
5.5
0.8
-2
12
4.75
2
5
5.25
5.5
0.8
-3.2
24
0
40
0
50
0
25
0
30
1 thru 48 product terms
C/)
without C-array*
Pulse duration
tsu
Setup time before ClKi.
1 thru 48 product terms
tsu
th
Setup time. Preset low (inactive) before ClKi§
Hold time, input after ClKi
TA
Operating free-air temperature
CI)
UNIT
V
V
V
mA
mA
MHz
1 thru 48 product terms
with C-array
Clock high or low
tw
C SUFFIX
MIN
12
18
20
35
10
15
15
30
10
0
-55
8
0
0
Preset
Without C-array
With C-array
125
ns
ns
ns
ns
75
°c
tThe maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input,
the maximum clock frequency must be calculated.
* The C-array is the single sum term that is complemented and fed back to the AND array.
§ After Preset goes inactive. normal clocking resumes on the first low-ta-high clock transition.
2-212
TEXAS
..If
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIB82S 105BM, TIB82S 105BC
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEOUENCER
WITH 3-STATE OUTPUTS OR PRESET
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
M SUFFIX
TEST eONDITIONst
MIN
VIK
VOH
Vee - MIN,
II - -18 rnA
Vee = MIN,
Val
II
IOH = MAX
IOl = MAX
IIH
Vee = MIN,
Vee - MAX,
Vee - MAX,
III
Vee - MAX,
VI - 0.4 V
IO§
IOZH
Vee = MAX,
Vee - MAX,
Va = 2.25 V
Vo - 2.7 V
IOZl
Vee - MAX,
Vo = 0.4 V
lee
Vee = MAX,
PRE/OE input at GND,
VI = 4.5 V,
Outputs open
e SUFFIX
MAX
TYP*
MIN
TYP*
MAX
-1.2
2.4
3.2
2.4
0.25
0.4
VI - 5.5 V
VI - 2.7 V
25
20
-0.25
-112
-30
-1.2
3
0.37
0.5
V
25
pA
pA
rnA
-112
rnA
20
-20
pA
180
rnA
-30
180
V
V
20
-0.25
20
-20
120
UNIT
120
pA
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
1
f
rnax
FROM
TO
I Without e·array
I With e-array
elKt
Q
tpd
PREt
Q
tpd
Veet
Q
ten
tdis
OEl
OEt
Q
tpd
TEST CONDITIONS
M SUFFIX
MIN
TYP*
40
25
70
45
8
Rl = 500O,
el=50pF
Q
e SUFFIX
MAX
0
20
25
10
10
5
25
15
12
MIN
TYP*
50
30
70
45
8
MAX
~....
CD
CD
UNIT
.s::.
C/)
...
MHz
ns
12
15
20
0
10
10
5
20
10
ns
ns
CO
CO
C
ns
ns
t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
* All typical values are at Vee = 5 V, T A = 25 De.
§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS.
1f max is independent of the internal programmed configuration and the number of product terms used.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-213
TIB82S 105BM, TIB82S105BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
diagnostics
A diagnostics mode is provided with these devices that allows the user to inspect the contents of the
state register. When 10 (pin 9) is held at 10 V, the state register bits PO-P5 will appear at the 00-05
outputs and 06-07 will be high. The contents of the output register will remain unchanged.
diagnostics waveforms
-y,.....------------------...;....-----_-
VIH
11-115-11\
---------------------------Vli.
I
I
r------""\-- - - - *
/1
1\
I
I
11
~--------------~II
l, ,
l0-A,
1 :\~Ih-+l
I
!
eLK
INTERNAL
I
14-- tsu
_____
STATE REGISTER
PO-P5 -
PS
-
-
-
-
I
~.
,-X
~
:
-
I
~
00-05----0-n---+:-"-"*.
I
I
I
------r-------'--VIH
I I
I
'
I
r
VIL
I
tw--l+j
I
----+10V
~~V
,.~------------- VIH
I ,
I '--------VIL
-
-t- -
-:S- -
-
-
/4---tp d
-
-1- - - - - -
----+:
On+1
--t -
X
I
-
-
/4--tPd
NS
l
-
-
-
-VOH
-
VOL
EVOH
VOL
I+-tpd-+l
OPTIONAL
~
PS
=
Present stete. NS
----------------------------0 V
=
Next state
TEXAS ."
2·214
INSTRUMENTS
~ST OFFICE BOX
665012 • DALLAS. TEXAS 75265
TIB82S 105BM, TIB82S 105BC
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
test array
A test array that consists of product lines 48 and 49 has been added to these devices to allow testing
prior to programming. The test array is factory programmed as shown below. Testing is accomplished
by connecting 00-07 to 18-115, PRE/OE to GND, and applying the proper input signals as shown in the
timing diagram. Product lines 48 and 4~ MUST be deleted during user programming to avoid interference
with the programmed logic function.
TEST ARRAY PROGRAM
OPTION PRE/OE
AND
PRODUCT
LINE
C
48
49
C 1 1 1 1 1 1
54 32 1o
X -
- X
lH
OR
INPUT
PRESENT STATE
NEXT STATE
OUT
(In)
(PS)
(NS)
(an)
514J3J2J 11° 51413121110 7161514l312J11°
918L716L5J4J3J2~110
H H H H H H HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH LILILILILIL LILILILILILILIL
L L L L L L LILILILILILIL ILILIL LILILILILIL HIHIHIHIHIH HIHIHIHIHIHIHIH
test array waveforms
~-------------------------------------------------5V
VCC~
___ _
I+-tw~
I
I
I
I
:
CLK
--------------oV
nL________________----iIL
---'----------!I:-
I4--tsu~th-..l
1
1
I
I
I4-tpd~
~ tpd
tpd~
~~II_--_--_-_-::~
1
1
STATE
VIL
1
I
00-Q7 ______--'/or:------------~\J
I
INTERNAL
VIH
I! .I-----------------+l----~'-"=
.
::~
:
10-17
I
1
\J
RE~S~:: _ _ _ _.I1
I
/r_-_-_-_~~:
TEST ARRAY DELETED
OPTION PRE/~
AND
PRODUCT
LINE
C
C 1 1 1 1 1 1
5
48
49
x=
- -
H
INPUT
PRESENT STATE
NEXT STATE
OUT
(In)
(PS)
(NS)
(an)
4 3 2 1 0 91817161514J3J2111° 51 4 1313(110 514131 2J 1 10 716151413121110
H H H H Ii HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH -1-1-1-1-1- -1-1-1-1-1-1-1-
X L L L L L L LILILILILILILILILIL LILILILILIL
Fuse intact, -
IH
OR
I-I
01 JJ
-1-[
-[I
J J:1
= Fuse blown
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-215
TlB82S105BM. TlB82S105BC
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
TIB82S105B. 82S105A COMPARISON
The Texas Instruments T1682S 1056 is a 16 x 48 x 8 Field-Programmable Logic Sequencer that is functionally
equivalent to the Signetics 82S1 05A. However, the TI682S1 056 is designed for a maximum speed of 50 MHz
with the preset function being made conventional. As a result the TI682S1058 differs from the 82S105A in
speed and in the preset recovery function.
The TI882S 1058 is a high-speed version of the original 82S 105A. The TI882S 1058 features increased switching
speeds with no increase in power. The maximum operating ,frequency is increased from 20 MHz to 50 MHz
and does not decrease as more product terms are connected to each sum (OR) line. -For instance, if all 48 product
tems were connected to a sum line on the original 82S105A, the f max would be about 15 MHz. The f max
for the TIB82S1058 remains at 50 MHz regardless of the programmed configuration. In addition, the preset
recovery sequence was changed to a conventional recovery sequence, providing quicker clock recovery times.
This is explained in the following paragraph.
E
The TI882S1058 and the 82S105A are equipped with power-up preset and asynchronous preset functions.
The power-up preset causes the registers to go high during power-up. The asynchronous preset inhibits clocking
and causes the registers to go high whenever the preset pin is taken high. Afte,r a power-up preset occurs,
the minimum setup time from power-up to the first clock pulse must be metin order to assure that clocking
is not inhibited. In a similar manner after an asynchronous preset, the preset input must return low (inactive)
for a given time, tsu, before clocking.
The Signetics 82S 105A was designed in such a way that after both power-up preset and asynchronous preset
it requires that a high-to-Iow clock transition occur before a clocking transition (Iow-to-high) will be recognized.
This is shown in Figure 1. The Texas Instruments TIB82S 105B does not require a high-to-Iow clock transition
before clocking can be resumed, it only requires that the preset be inactive 8 ns (preset inactive-state setup
time) before the clock riSing edge. See Figure 2.
The TIB82S105B, with an f max of 50 MHz, is ideal for systems in which the state machine must run several
times faster than the system clock. It is recommended that the TIB82S 105B be used in new designs. However,
"the TIB82S1058 is used to replace the 82S 105A. then the customer must understand that clocking will begin
with the first clock rising edge after preset.
TABLE 3. SPEED DIFFERENCES
PARAMETER
'fmax
tpd, elK to a
2-216
82S105A
SIGNETICS
TIB82S105B
TIONlY
20 MHz
50 MHz
20 ns
15 ns
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS. TEXAS 75265
TIB82S105BM, TIB82S105BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
Vee
--"l
I
I4--t su -+I
PRE
I
I
I
I
elK
REGISTERS
. I
r I~--+----------I
I
I
--~--~I--------~i
____c
I
___XJJ
I
:J
I
FIGURE 1. 82S105A PRESET RECOVERY OPERATION
vee
-.I!
I
I
I
I
PRE
EJ...
~tsu
I
11
I
I
I
U)
I
CI)
CI)
I
I
I
elK
REGISTERS
J
I
I
I
I
I
I
\
X
XJ/
~
I
I
\
X
FIGURE 2. TIB82S1058 PRESET RECOVERY OPERATION
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DAlt.AS, TeXAS 75265
x::
tn
ca
ca
....
C
2-217
c
Q)
r+
Q)
en
::r
CD
CD
r+
In
2-218
TlB82S167BM, TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEDUENCER
WITH 3·STATE OUTPUTS OR PRESET
02896, JANUARY 1985-REVISED DECEMBER 19B7
•
Programmable Asynchronous Preset or
Output Control
•
Power·On Preset of All Flip-Flops
•
8-Bit Internal State Register with 4-Bit
Output Register
•
Power Dissipation . . . 600 mW Typical
•
Functionally Equivalent to, t but Faster than
82S167A
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
(TOP VIEW)
ClK
VCC
16
15
14
13
12
11
10
00
01
02
PO
GND
03
description
The TIB82S167B is a TTL fieldcprogrammable
state machine of the Mealy type. This state
machine (logic sequencer) contains 48 product
terms (AND terms) and 12 pairs of sum terms
(OR terms). The product and sum terms are used
to control the 8-bit internal state register and the
4-bit output register.
The outputs of the internal state register (PO-P7)
are fed back and combined with the 14 inputs
(10-113) to form the AND array. In addition the
first two bits of the internal state register (PO-P1)
are brought off-chip to allow the output register
to be extended to 6 bits if desired. A single sum
term is complemented and fed back to the AND
array, which allows any of the product terms to
be summed, complemented, and used as inputs
to the AND array.
The state and output registers are positive-edgetriggered SIR flip-flops. These registers are
unconditionally preset high on power-up. PRE/OE
can be used as PRE to preset both registers or,
by blowing the proper fuse, be converted to an
output control function, OE.
17
18
19
110
111
112
113
PRE/OE
Pl
M SUFFIX ... FK PACKAGE
C SUFFIX ... FK OR FN PACKAGE
...
II)
(TOP VIEW)
~
CD
CD
u
.c
!2!Qd~~!::!!1
4
13
12
NC
3 2
(I)
...
1 282726
ta
ta
25
24
7
23
8
9
22
21
10
20
C
19
11
12 131415161718
NC-No internal connection
The TIB82S167BM is characterized for operation
over the full military temperature range of
- 55°C to 125°C. The TIB82S 167BC is
characterized for operation from O°C to 75°C.
t Power
up preset and asynchronous preset functions
are not identical to 82S167A.
PRODUCTIOI DATA d••umanll contain i.'.rmati••
currant a. of publioation data. Products .onform to
spa.ilioati••• per the term. Ta... Instrumanll
:'=~i~;':~':.7.;
0'
==:i:;:'l"=~~~.
nD!
Copyright @ '985, Texas Instruments Incorporated
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS, TEXAS 75265
2-219
TIB82S167BM. TIB82S167BC
14x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
functional block diagram (positive logic)
PRE/~
r-u
~
-
LEN
-:f"'
----../
...--- 8
CLK
"1 C1
~1
&
45X 48
14Xt>
10-113
14
Ec
2Xt>
~
~
+-
P-
!m
6Xt>
(I)
~
~
:::r'
...
CD
CD
r
(I)
f-!.-
t>
~
4
48X 25
4
'V
'V
2
2
'V
'V
~
QO-03
2X
18 1 - 1 ",
1R
PO,P1
'V
'V
6X
18 1 _ 1
6
6
1R
l
6
2
'V denotes
2-220
2
~'
'V
'V
r
4X
18 1=1", 4
1R
fused inputs
TEXAS •
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS. TEXAS 75266
fo-
TlB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
timing diagram
Vee
~
PRE
I
I
I
~
--~I------~
OPTIONAL
OE
10-113
rh
I
--~I~----------~------~I
I
I
I
--+-<
I
elK
~~-ts-u~~------
,~------
Xl:
~--------~----J~~t~su-~~~-----
I
I
I
I
I
~~!~~NR~~ --.J/~---T.---------L"'--------;II---';-..I.!------P2-P7
00-03, PO-P1
I
;
I
I
I
I
I
IJ~,\r---~!~--~yl-------II
'__---..J
•
. TEXAS
.
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-221
TIB82S167BM, TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
LOGIC DIAGRAM
10 '81
171
12 '81
..,. '"
13
'41
(OP11ONI
131
IS
17 '231
1221
I.
""1
121
I
1161
II.
II' ,191
112
113
PRE/(j'E
1211
1201
•
1181
E
1171
.,.,
PO
.3
P4
.0
PO
.7
C
C
,S
~
.,..,
~
~
~
~
--'"'
..fht:
~
'\t
.~
~;~l:
~2~t:
'R S
m;;;;;
~
~
I
~
c:t"gj....
;r.::;
~I
r;T'"1
~
or.;
~
•
~
•
47
NOTES:
. 2-222
'"
40 3.
'M
32 31
...
24 23
...
18111
...
8
7
1. All AND gate inputs with a blown link float to the high level.
2. All OR gate inputs with a blown link float to the low level .
. TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
...
~;!1.-
•
(151 P
I
I 1141
I 1131
PO
Q3
I
11111
Q2
I
I ,101
I
I
191
111
Q,
GO
CLK
TlB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . .. 5.5 V
Operating free-air temperature range: TIB82S 167BM . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
TIB82S167Be .......................... ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 °e
NOTE 3: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
M SUFFIX
PARAMETER
VCC
VIH
Supply voltage
Vil
low-level input voltage
IOH
High-level output current
IOl
Low-level output current
High-level input voltage
NOM
MAX
MIN
NOM
MAX
4.5
2
5
5.5
5.5
0.8
2
12
4.75
2
5
5.25
5.5
0.8
-3.2
24
0
40
0
50
0
25
0
30
1 thru 48 product terms
fclock
tw
tsu
tsu
th
TA
Clock frequency t
Pulse duration
without C-array*
1 thru 48 product terms
with C-array
Clock high or low
Setup time before ClK t,
Preset
Without C-array
1 thru 48 product terms
With C-array
Setup time. Preset low (inactive) before ClKt§
Hold time, input after ClKt
Operating free-air temperature
C SUFFIX
MIN
UNIT
V
V
V
mA
mA
MHz
12
18
20
35
10
15
15
30
10
0
-55
8
0
0
125
ns
ns
ns
ns
75
°c
t The maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input,
the maximum clock frequency must be calculated.
* The C-array is the single sum term that is complemented and fed back to the AND array.
§ After Preset goes inactive. normal clocking resumes on the first low-to-high clock transition.
TEXAS . •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-223
TlB82S167BM, TlB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
VIK
VOH
VOL
II
IIH
III
IO§
IOZH
IOZl
C
m
MIN
TYP*
2.4
3.2
0.25
IOH - MAX
IOl - MAX
VI - 5.5 V
VI - 2.7 V
VI - 0.4 V
Vee - MAX,
Vee - MAX,
Vee - MAX,
Vee = MAX,
Vee - MAX,
Vee - MAX,
Vee - MAX,
PRE/OE input at GND,
Vo = 2.25 V
Vo - 2.7 V
Vo - 0.4 V
VI - 4.5 V,
PARAMETER
(I)
, I Without e-array
:r
CD
CD
~
o
'max .
FROM·
TO
90
dod....., ""_
TEST CONDITIONS.
2.4
3
0.37
MAX
-1.2
0.5
25
20
-0.25
-30
-112
90
160
UNIT
V
V
V
p.A
p.A
mA
20
20
mA
p.A
p.A
160
mA
and ope...... , ..... tempe............
M SUFFIX
MIN
40
I With e-array
TYP*
20
20
~
m
MIN
0.4
25
20
-0.25
-112
Outputs open
OW", . . . . . . . . . .
(unless otherwise noted)
-30
C SUFFIX
MAX
-1.2
II - -18 mA
Vee - MIN,
Vee -.MIN,
Vee - MIN,
E . . . _. . .""""""
lee
M SUFAX
TEST CONDITIONSt
25
e SUFFIX
TYP*
70
45
MAX
10
8
0
MIN
50
30
UNIT
TYP*
70
45
MAX
20
25
10
10
8
0
15
20
10
ns
ns
ns
MHz
tpd
tpd
tpd
elK,
PREt
Q
Veet
Q
ten
OE!
Q
10
25
10
20
ns
1dis
OEt
Q
5
15
5
10
ns
Q
Rl = 500 n,
el = 50 pF
t For conditions shown as MIN or MAX. use the appropriate value specified under recommended operating conditions.
tAli typical values are at Vee = 5 V, TA = 25°e.
§ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS.
,. f max is independent of the internal programmed configuration and the number of product terms used.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762 ..
2·224
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 866012 • DALLAS. TEXAS 76265
TIB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
diagnostics
A diagnostics mode is provided with these devices that allows the user to inspect the contents of the
state register. When 10 (pin 9) is held at 10 V, the state register bits P2-P7 will appear at the 00-03 and
PO-Pl outputs. The contents of the registers, 00-03, and PO-Pl remain unchanged.
diagnostics waveforms
-y..----------------------------vIH
11·113 - - ' "
1 ~--------------------------Vll
,I
=*
1
10
-
I
1
I
r------"'----------+10V
+
---------J11
v
..(. I
--------'1
1
~th~ 1
:,\-------
1
I
ClK ----i:i---~l
1
INTERNAL
I '
-
I1 '
1
PS
--
-I -
-+ - - - - -
I
:
tw----i+j
I
I
QO-Q3,PO.Pl----Q-n---+:-""""'*
I
I
PI
....
fI)
CI)
CI)
.c
'"....
Il
T- -:S- - -1 - - - - - -
.,"
VIH
Vil
:IH
r---------
"1- X
t4--tsu
____ _
STATE REGISTER
P2-P7- -
*~V
,
I c-, ' - - - - - - - I \
CO
CO
,
k--tpd-----+:
Qn+l
--I -
X
,
-
-
-
-
I4--tpd~
NS
-
E
-VOH
-
o
VOL
VOH
VOL
I4-tpd-.l
OPTIONAL
~
-----------------------------0 V
PS = P,esent State
NS = Next State
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
2-225
TIB82S167BM, TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE· LOGIC SEOUENCER
WITH :i·STATE OUTPUTS OR PRESET
test array
A test array that consists of product lines 48 and 49 has been added to these devices to allow testing
prior to programming. The test array is factory programmed as shown below. Testing is accomplished
by connecting 00-03 to 110-113, PRE/DE to GND, and applying the proper input signals as shown in the
timing diagram. Product lines 48 and 49 must be deleted during user programming to ~void interference
with the programmed logic function.
test array program
IH
OPTION PRE/OE
AND
PRODUCT
•
~
INPUT
PRESENT STATE
NEXT STATE
OUTPUT
Unl
(PSI
(NSI
(ani
C C 1 1 1 1 1 1
LINE
OR
5 4 3 2 1 0 9L81716L514J3J211Jo 51413121110 51413121110 716151413121110
x - H H H H H H H]HIHIHIHIHIHIHIHIH HIH IHJH IH IH Ll LI LI LILIL LILILILILILJLJL
48
49
-
L L L L L L LJLJLJLJLILILILILJL LJLILILILIL HIHIHIHIHIH HIHIHIHIHIHIHIH
X
test array waveforms
r .....--..............................................................................................................~5V
At
VCC~
(I)
::r
CD
CD
___ _
-
....
-
(I)
-
H,I.________
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-0
v
ILVIH
ClK
_ .........:....................................."""1
I+- tsu
......
/';'1-
-----':
VIL
_-+:. . . . . . .r=-=:::
/1i--.....
..
tpd~
!
-VOH
l- -I
_...Ilr~. . _
. . ._-_-~~:
~
-VOL
I
\J. .
REG:!~:~ ....._ _-JI
.
1...................................
.....- - - -...,
I
INTERNAL
I
I
~tpd
I+tpd+j
00-03
-+r- th~
!
1
10-19 ..........0+1..............._
STATE
-
I _ _ _ _.........._ _.....
test array deleted
IH
OPTION PRE/OE
AND
PRODUCT
LINE
48
49
X
2-226
C C 1 1 1 1 1 1
OR
INPUT
PRESENT STATE
NEXT STATE
OUTPUT
lin)
(PS)
(NS)
(an)
5 4 3 2 1 0 91817 6 51413121110 5 41312 110 5 4 312 1 0 7 6 5 4 13 21110
-1- - - - - - - 1- -1-1-1- - - - - - - 1- -1-1-
- - H H H H H H HIHIH H HI_HIHIHIHIH H HIHIH HIH - - X L L L L L L LJLIL L LILILILJLIL L LILIL LJL - -
= Fuse intact,
-
= Fuse blown
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TIB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
TIB82S167B. 82S167A COMPARISON
The Texas Instruments TIB82S167B is a 14 x 48 x 6 Field-Programmable Logic Sequencer that is functionally
equivalent to the Signetics 82S167A. However, the TIB82S167B is designed for a maximum speed of 50 MHz
with the preset function being made conventional. As a result the TIB82S167B differs from the 82S167A in
speed and in the preset recovery function.
The TIB82S 167B is a high-speed version of the original 82S 167A. The TIB82S 167B features increased switching
speeds with no increase in power. The maximum operating frequency is increased from 20 MHz to 50 MHz
and does not decrease as more product terms are connected to each sum (OR) line. For instance, if all 48 product
tems were connected to a sum line on the original 82S167A, the f max would be about 15 MHz. The f max
for the TIB82S167B remains at 50 MHz regardless of the programmed configuration. In addition, the preset
recovery sequence was changed to a conventional recovery sequence, providing quicker clock recovery times.
This is explained in the following paragraphs.
The TIB82S167B and the 82S167A are equipped with power-up preset and asynchronous preset functions.
The power-up preset causes the registers to go high during power-up. The asynchronous preset inhibits clocking
and causes the registers to go high whenever the preset pin is taken high. After a power-up preset occurs,
the minimum setup time from power-up to the first clock pulse must be met in order to assure that clocking
is not inhibited. In a similar manner after an asynchronous preset, the preset input must return low (inactive)
for a given time, tsu, before clocking.
The Signetics 82S 167A was designed in such a way that after both power-up preset and asynchronous preset
it requires that a high-to-Iow clock transition occur before a clocking transition (low-to-high) will be recognized.
This is shown in Figure 1. The Texas Instruments TIB82S 167B does not require a high-to-Iow clock transition
before clocking can be resumed, it only requires that the preset be inactive 8 ns (preset inactive-state setup
time) before the clock rising edge. See Figure 2.
CO
...
CO
C
The TlB82S167B, with an f max of 50 MHz, is ideal for systems in which the state machine must run several
times faster than the system clock. It is recommended that the TlB82S167B be used in new designs. However,
if the n88251678 is used to replace the 825167A, then the customer must understand that clockIng wHI begin
with the first clock rising edge after preset.
TABLE 3. SPEED DIFFERENCES
PARAMETER
f max
tpd, eLK to Q
SIGNETICS
82S167A
TlB82S167B
TIONLY
20 MHz
50 MHz
20 ns
15 ns
TEXAS ",
INSIRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-227
TIB82S167BM. TIB82S167BC
14 x 48x 6 FIELD·PROGRAMMABLE LOGIC SEGUENCER
WITH 3·STATE OUTPUTS OR PRESET
Vee
PRE
-I':
I
I+-tsu --+/
jt--tsu-+j
I
I
I
I
r-1
---+I------rl-------------i,
I
elK
I
REGISTERS
:J
I
I
I
:
_____u
I
I
FIGURE 1. 82S167A PRESET RECOVERY OPERATION
Vee
.-I!
I
I
I
PRE
om
elK
tn
:r
REGISTERS
CD
CD
r+
o
2-228
I
I
r-1
:
, ~~-----------------
,
r+
m
.....r-tsu
J
,'------'x'-__XJI
\'-_....IX"_____C
FIGURE 2. TIB82S167B PRESET RECOVERY OPERATION
TEXAS . .
INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS, TEXAS 75285
TlCHAL 16L8·35C. TlCHAL 16R4·35C. TICHAL 16R6·35C. TICHAL 16R8·35C
HIGH·SPEED HAL® CIRCUITS
02972. MARCH 1
•
Mask·Programmed Version of 20-Pin PAL®
Family
•
Virtually Zero Standby Power
•
35-ns Maximum Propagation. Delay
TICHAL l6L8
C SUFFIX ... DW OR N PACKAGE
ITOPVIEW)
Vee
•
HC. HCT. and TTL Compatible
•
Choice of 20-Pin DIP. 20-Pin SO (Small
Outline) or 20-Pin PLCC Packages
•
Low-Power Replacement for 20-Pin •A'
PAL® Devices
•
Dependable Texas Instruments Quality and
Reliability
DEVICE
l-STATE
INPUTS
Q
'HAL16L8
'HALI6R4
'HALI6R6
'HALI6R8
10
8
8
8
OUTPUTS
2
0
0
0
I
GND
REGISTERED
1/0
OUTPUTS
PORTS
0
6
4 (l-statel
4
6 (l-statel
2
0
8 (J-statel
0
liD
liD
liD
liD
liD
liD
0
TICHAL16L8
C SUFFIX ... FN PACKAGE
ITOP VIEW)
U
u
_>0
3
2
1 20 19
18
description
These high-speed CMOS Hard Array Logic
(HAL®) circuits are mask-programmed versions
of the 20-pin PAL® devices. They provide
reliable, high-speed, low-power substitutes for
conventional TTL and HCT logic. They are also
compatible with HC logic over VCC range of 4.5
volts to 5.5 volts.
5
17
6
16
7
15
8'
14
9 1011 12 13
This family of CMOS HAL® circuits provide the flexibility of using integrated circuits with virtually zero
standby power and lower operating power than those currently achieved by bipolar PALs. Prototyping can
be done using standard PAL® devices before converting to CMOS HAL® circuits for production.
The TICHAL 16' circuits have internal electrostatic discharge (ESD) protection circuits and have been
classified with a 2000-volt ESD rating tested under MIL-STD-883B, Method 3015.1. However, care should
be exercised in handling these devices as exposure to ESD may result in a degradation of the device
parametric performance.
The C suffix designates commercial-temperature circuits that are characterized for operation from OoC
to 75°C.
PAL and HAL are registered trademarks of Monolithic Memories Inc.
PRODUCTION DATA docl..lnll ••nlli. info,ma'io.
••,nnt IS of publicetlo. dill. Products confonn '0
_lIcali... pa, the tar... of T.... Inat'.....11
='=il;"r.::::ri =::r :YI":::':~:'~
not
Copyright @ 1987, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-229
TICHAL 16R4-35C. TlCHAl16R6·35C. TICHAl16R8·35C
HIGH·SPEED CMOS HAL® CIRCUITS
TICHAL16R4
C SUFFIX, , , OW OR N PACKAGE
TICHAL16R4
C SUFFIX, , , FN PACKAGE
(TOPVIEWI
ITOP VIEWI
eLK
tl 0
__ :1
u>::;;
Vee
I/O
1/0
2 1 2019
3
Q
4
18
110
Q
5
17
16
Q
Q
7
15
Q
I/O
8
14
Q
Q
1/0
E
C
AI
.....
AI
9 10111213
OE
GND
Q
-
~I~
gg
CI
TlCHAL16R6
C SUFFIX, , , OW OR N PACKAGE
TICHAL16R6
C SUFFIX, , "FN PACKAGE
(TOPVIEWI
ITOPVIEW)
eLK
tl 0
__ :1
u>::;;
Vee
I/O
en
:T
3
Q
...en
CD
CD
Q
18
17
Q
16
Q
Q
6
7
15
Q
Q
8
14
Q
Q
Q
110
Q
9 1011 1213
OE
GND
2 1 2019
4
5
-
~I~
gd
CI
TICHAL16R8
C SUFFIX, , , OW OR N PACKAGE
TICHAL16R8
C SUFFIX, , , FN PACKAGE
(TOP VIEWI
(TOPVIEWI
eLK
tl
__ :1
u>d
Vee
Q
3 2 1 20 19
Q
Q
18
Q
17
Q
16
15
Q
Q
14
Q
GND
2-230
9 10111213
OE
'TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
TlCHAl16l8·35C, TIC HAL 16R4·35C
HIGH·SPEED CMOS HAL® CIRCUITS
functional block diagrams (positive logic)
TlCHAL16L8
EN ,,1
&
'\lb-----O
32 X 64
P-----O
P-.-.......-I/O
b-4H--+",-1/0
b-4H--+"'- 1/0
-
P-4H-.......-1/0
IO-~....+--I/O
U)
;
P-4H-....+--1/0
CD
.c
en
6
CIS
CIS
~
TlCHAL16R4
C
OE
AEN2
CLK
.,
,,1
&
32
C1
x 64 -!,..
I-Q
-!,..
8
..J..!I..-
4
~
~
-
r----.
r----.
r----.
-!,..
c>
~
-
-:z....
-:z....
Q
2'\1
10
EN
,,1
'\I
-
,
Q
Q
1/0
1/0
..2,..
1/0
..2,..
1/0
4
4
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-231
I
!
!
TICHAL 16R6·35C, TICHAL 16R8·35C
HIGH·SPEED CMOS HAL® CIRCUITS
functional block diagrams (positive logic)
TICHAl16R6
CiE
~(N2
ClK
'" C1
32
"x
64
>1
..!.,..
2'\7
10
...!!..,..
~
--::::-I> -1!,..
----.
----.
...!!..,..
E
':.,.
o
....
Q)
p.!!,...
fI)
Q
Q
(1)
(1)
r+
EN
r----.
,,1
'\7
~
::r
....
1
1
2
6
fI)
Q
---..,
...!!..,..
r4
Q)
Q
---..,
~
-
Q
Q
..!.,..
,!.-
-
I/O
1/0
TICHAl16R8
OE------------------------dEr~__,
ClK
----------------P
r;;-..,....-~I_-Q
.----r----1-~-Q
t--;--""""1--':f-Q
r----t----1-~-Q
r----t----1-~-Q
.----t----1-~-Q
.----t----1-~-Q
.----r----1-~-Q
2-232
TEXAS
..If
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
TIC HAL 16L8·35C
HIGH·SPEED CMOS HAL® CIRCUITS
logic diagram (positive logic)
I
(1)
.
INPUT LINES
PRODUCT ,
LINES
0
0
4
8
12
16
20
24
28
31
r'
··
·
·
I~
··
··
··•
·
··
··
r-V-J
r-
7
8
I
f--"'"
1
v
(19)
0
(18) 1/0
t--
(3) 15
1'>L
r-V-J
16
f---
o
...
CIS
24
f---
V
J
CIS
(16)1/0
C
f---
(5) 31
X
32
••
•
I
CD
CD
.c
1(4)~
I
...
II)
(17)1/0
·
·
···•
·•
··
··•
••
1
-
v
(6) 39
X
40
(15)1/0
~
>---'
1
(14)1/0
V
I--
47
1(7) .:>L
I--
48
I--
1
v
(13)1/0
55
I (8) X
56
I
f--
1
0
(12)
v
(11)
(9) 63
X
I
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-233
TICHAL 16R4·35C
HIGH·SPEED CMOS HAL® CIRCUITS
logic diagram (positive logic)
CLK.i!lt>
.
INPUT LINES
PRODUCT ,
LINES
0
0
4
8
12
16
20
24
28
31
·••••
·
V
~
"'8
•••
•
I
,
1
7
I (21"
(191 110
1
.--
·
··••
·
··••
·
·••
·
(181 1/0
v
J
(31 15
16
~
.--/A
f..-
>f..-
~
l.:J.
(151Q
-v""'
~~Q
R
(14)Q
1?'""
I---'D)--
I----'
C1
(6) 39
I---'
40
•••
•
I
··
_
••
•
•
1
-'
··
··•
·•
(13) 110
V
J
-
55
~
56
1
~
I---
v
9) 63
I (
::>L
2·234
C1
(7 47
I
"'48
IJ!)
Q
(161Q
f----I
32
I
'"..."J
C1
(51 31
I
Q~Q
C1
(41 23
I
'"
24
~"
TEXAS . "
INSTRUMENTS
POST OFFICE BOX
65501~
• DALLAS, TEXAS 75265
.....
(12) 1/0
J
~)OE
TlCHAL 16R6·35C
HIGH·SPEED CMOS HAL® CIRCUITS
logic diagram (positive logic)
CLK~-------------------------INPUT LINES
PRODUCT ,
LINES
0
0
4
8
12
16
20
24
28
··
·
'8
·••
··
31
~
~
1(2),,~
>----c
-
'
~>-
(19) 1/0
I
tJ;:CW'' .
I..
Cl
(3) 15
I~
J
16
•••
•
•
>---,>-
·
f----'
24
>---,
••
•
•
tJ;
i.:l
tJ;
tJ;
i.J
(17) Q
CD
CD
"
.c
..
Cl
(4) 23
I~
U)
as
as
>----.
·
:>-
C
(16) Q
"
Cl
(5) 31
I
32
••
··•
..·•
··
·••
·•
~P>---
(6) 39
I
U)
~
~15)Q
Cl
'-'
40
1(7)
p--
47
Cl
f-----1
48
I (8)
tJ;
~14)Q
~~hl -v
:J
(13) Q
Cl
55
,.....
56
•
·•••
·
~
L/
~
(12) 1/0
~L4'I-
(9) 63
I~-
OE
TEXAS ~
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-235
TICHAL16R8·35C
HIGH·SPEED CMOS HAL@ CIRCUITS
logic diagram (positive logic)
ClK (1)
.L!Lf>
P
.
I
INPUT LINES
Rl~~E~CT '0
4
8
12
16
20
24
28
··•
·
0
31
f----'
f---;
f-t>-
··
·
··••
·
··•••
·
f-p~
16
~
'"";:l
(18)
t1
tl
'"";:l
(17)
R
(16)
r---.
~D>---'
x
f---'
f----'p-
v
A
-
32
••
••
·
f----'
f----'
)-
v
Q
fbJ;
'"";:l
(15)
v
Q
C1
(6) 39
~
40
··..••
~
)~
48
••
••
••
55
f----'
-)-
~
'"";:l
(13)
v
56
')-~ ';)v ""
- ,.....
C1
(9 63
I
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
Q
C1
-
.-••
·••
~
R(14}
Q
v
C1
).----,
(7)~
2-236
Q
C1
(5) 31
I~.
Q
C1
(4) 23
24
v
C1
f----'
(3) 15
I (8)
Q
C1
Elrl:'8
•
fbJ; ? ""
~)
Q
TlCHAL 16L8·35C. TIC HAL 16R4·35C. TICHAL 16R6·35C. TlCHAL 16R8·35C
HIGH·SPEED CMOS HAL@ CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage range, VCC ........................................... -0.5 V to 7 V
Input voltage range, VI ........................................ -0.5 V to VCC+0.5 V
Input clamp current, 11K (VI < 0 or VI > Vcc) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
Output clamp current, 10K (Vo < 0 or Vo > Vcc) ............................. ±20 mA
Continuous output current, 10 (VO = 0 to Vcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±35 mA
Continuous current through VCC pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 mA
Continuous current through GND pin ................................... , . . .. - 200 mA
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds .............. :'. . . . . .. 260 0 C
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooC to 75 °C
Storage temperature range ......................................... - 65 °C to 150 0 C
recommended operating conditions
C-SUFFIX
MIN
4.5
2
VCC
Supply voltage
VIH
High·level input voltage
VIL
Low·level input voltage
tw
Pulse duration
tsu
th
Setup time, input or feedback before CLKt
TA
Operating free-air temperature range
NOM
MAX
5.5
Clock high
Clock low
Hold time, input or feedback after CLKt
20
20
30
0
0
V
V
0.8
I
I
UNIT
V
ns
ns
ns
75
·C
II
...
U)
CD
CD
.c
CI)
...
CG
CG
Q
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS. TEXAS 75265
2-237
TICHAL 16L8·35C, TlCHAL 16R4-35C, TICHAL 16R6·35C, TICHAL 16R8·35C
HIGH·SPEED CMOS HAL® CIRCUITS
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
IIH
III
High-level output voltage
lOW-level output voltage
Off-state output current with
high-level voltage applied
Off-state output current with
low-level voltage applied
High-level input current
low-level input current
lee
Standby supply current
lec
Operating supply current
VOH
VOL
10ZH
10Zl
c
I
= 4.5 V,
= 4.5 V,
10H
10l
Vee = 6.5 V,
Vee
= 5.5 V.
= 6.5 V.
= 5.6 V.
Vo
= -6 mA
= 24 mA
C-SUFFIX
TYP . MAX
=0
VI = Vee
VI - 0
VI = o or Vee.
Vee = 5.5 V•
Other inputs at 0 'or Vee
TA = 26·e.
TA = 25·e.
MIN
3.76
Vo = Vee
Vee
Vee
Vee" 5.5 V.
10 = 0
Vee = 5.5 V.
f." 1 MHz.
Input capacitance
Output capacitance
ei
eo
~
..
Vee
Vee
..1lee* ehange In supply currant
!
:
TEST CONDITIONS
VI = o or Vee.
10 = 0
VI = 0.6 V or 2.4 V.
0.4
V
V·
10
p.A
-10
~A
1
-1
p.A
p.A
100
p.A
2
1.4
f = 1 MHz
f = 1 MHz
UNIT
mA/MHz
3
mA
10
10
pF
pF
-
switching characteristics over recommended renges of supply voltage and operating free-air temperature
(unless otherwise noted)
en
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
with feedback
without feedback
o or I/O
fmax§
tpd
tpd
I. I/O. or feedback
elKt
0
DE.
DEt
0
tdis
ten
ldis
I or I/O
lor I/O
Oorl/O
o or I/O
ten
TEST CONDITIONS
R1 = 200
R2= 390
MIN
18
25
n.
n.
eL=50pF
0
C-SUFFIX
TYP
MAX
MHz
18
10
36
25
ns
ns
12
25
ns
12
14
16
25
36
36
ns
ns·
ns
t All typical values are Vee = 5 V. TA = 25 ·e.
*This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 or Vee.
§fmax (with feedback) =
2-238
tsu
1
elK
+ tpd (
to
0); fmax (without feedback) =
(h' h)
tw.g
1
()
+ tw low
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 855012 • OAUAS. TEXAS 75265
UNIT
TICHAL 16L8·35C. TICHAL 16R4·35C. TIC HAL 16R6·35C. TICHAL 16R8·35C
HIGH·SPEED .CMOS HAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
Vcc
Sl
~
Rl
FROM OUTPUT _
UNDER TEST
...._~___- ........ TEST
POINT
R2
CL
(See Note Al
PI
...
NOTES: A. CL = includes probe and jig capacitance.
B. When measuring propagation times of 3-state outputs, 51 is closed.
U)
FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS
CI)
CI)
INPUT~1.5V
\:~~-- - - - - - 3 v
tpd - tpLH or tpHL
I
IN-PHASE
OUTPUT
OUT ·OF-PHASE
OUTPUT
I'
OV
r+--tPLH--+I
I+--tPHL----"!
I
I
:
I
Y,.5V
\~;V--VOH
I
I
I+--tPHL---+t
k---tPLH----"!
-
I
I
' - _ _ _ _ _ _ _ _ _ _ _J
tJ)
...
(CI
(CI
I
l
.c::
Q
VOL
VOH
1.5 V
- - - - VOL
VOLTAGE WAVEFORMS
NOTES:
A. When measuring propagation times of 3-state outputs, S 1 is closed.
B. All input pulses are supplied by generators having the following characteristics: PRR
.s:
1 MHz, Zo :::: 50 fl, tr == 6 ns.
FIGURE 2. PROPAGATION DELAY TIMES. OUTPUT RISE AND FALL TIMES
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-239
TlCHAL 16LB·35C, TIC HAL 16R4·35C, TICHAL 16R6·35C, TlCHAL 16RB·35C
HIGH·SPEEDCMOS HAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
\"----3V
f.5V
CLK
'-,---ov
~I.~-------th'------___·~I
.d:'"'~--------~~N'--J+--tsu --'!
DATA
INPUT
I
1.5 V
0.3 V
I
2.7 V
2.7 V
I
I
I
I
I
I
~~~
I
.
---3 V
1.5 V
0.3 V
ov
~q~
VOLTAGE WAVEFORMS
E
NOTE:
Phase relationship between waveforms was chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR s 1 MHz, Zo = tr = 6 ns, tf = 6 ns.
FIGURE 3, SETUP AND HOLD TIMES. AND INPUT RISE AND FALL TIMES
~:
DE },,1_.5_V_ _ _ _ _ _ _ _ _ _J (
14-- tPLZ--.!
!4---tPZL ~
OUTPUT
WAVEFORM 1
Sl CLOSED
(See Note B)
I
I
!
_ _ _ _ _ _ _ _ : :V
I
\1.5V
:,
I
Y-f~'~V
~VCC
_ _ VOL
I+---- tPZH---.I
f
OUTPUT
:
WAV.EFORM 2
S1 OPEN
1.5 V
(See Note B) _ _ _ _ _ _ _....J.
:
I.
I
...i - - - -
"t-"
!'-,·t:-O.5 V
I
VOH
"'----- =0 V
14-- tPHZ---+l
tan - tpZL
0'
tpZH
VOLTAGE WAVEFORMS
NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR s 1 MHz, Zo = 50 II, tr = 6 ns, tf = 6 ns.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditi~ns such that the output is high except when disabled by the output control.
FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
2-240
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
TICHAL 16L8·35C, TlCHAL 16R4·35C, TICHAL 16R6·35C, TICHAL 16R8·35C
HIGH·SPEED CMOS HAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
X5~ - ---::
HI~~-~:~EL ____.,!'.5 V
~14~----tw------~~~
1OI14~----tw------""'1
I
LOW-LEVEL
PULSE
I
\.5V
3 V
'-5~ ____ OV
VOLTAGE WAVEFORMS
NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR :::; 1 MHz, Zo = 50 0, tr = 6 ns.
B. For clock inputs, f max is measured with input duty cycle = 50%,
FIGURE 5. PULSE DURATIONS
...
U)
CD
CD
.c
tn
...caca
C
.
TEXAS'"
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS. TEXAS 75265
2-241
E
2-242
TlCPAl16l8·55C, TlCPAl16R4·55C
TlCPAl16R6·55C, TICPAl16R8·55C
STANDARD CMOS PAl@ CIRCUITS
03062, NOVEMBER, 1987
TICPAL l6LS'
C SUFFIX ••• JL OR N PACKAGE
ITOPVIEWI
•
Standard 20-Pin PAL Family
•
Virtually Zero Standby Power
•
Propagation Delay ... 55 ns Max
•
TTL- and HC-Compatlble Inputs and Outputs
•
Preload Capability to Aid Testing
•
Fully Tested ,for High Programming Yield
Before Packaging
•
Greater than 2000-V Input Protection for
Electrostatic Discharge
•
Devices In the' JL' Package Can Be Erased
and Reprogrammed More Than Once
Vee
o
110
1/0
110
110
110
110
o
I
GND ......_ _....
TlCPAl16R4'
C SUFFIX ... JL OR N PACKAGE
ITOPVIEWI
elK
DEVICE
INPUTS
PALt6L8
to
PAL16R4
PALt6R6
B
B
PAL16RB
B
3-STATE
REGISTERED
I/O
o OUTPUTS QOUTPUTS PORTS
2
00
0
0
413-state)
6 (3-statel
B 13-statel
I
Vee
I
1/0
110
U)
iCD
.c
en
Q
6
4
Q
Q
2
0
Q
110
110
......___ OE
as
as
~
description
Q
TICPAL16R6'
C SUFFIX •.. JL OR N PACKAGE
These PAL devices ptovide reliable, highperformance substitutes for conventional TTL
and HCT logic. They are also compatible with HC
logic over the Vec range of 4.75 V to 5.25 V.
Their easy programmability allows for quick
design of "custom" functions and typically
result in a more compact circuit board. Static
power dissipation for these devices is negligible.
ITOPVIEWI
elK
Vee
1/0
Q
Q
Q
Q
Q
The output registers of these devices are Ootype
flip-flops that store data on the low-to-high
transition of the clock input. The registered
outputs may be disabled by taking OE high,
whereas the nonregistered outputs may be
disabled through the use of individual product
terms. Unused inputs must always be connected
to an appropriate logic level, preferably either
VCC or ground.
Q
110
OE
TICPAL16RS'
C SUFFIX ... JL OR N PACKAGE
(TOPVIEWI
elK
Vec
Q
Q
Q
Q
Q
Q
Q
I
Q
GND ......_ _rOE
The dotted circles represent windows found only on the JL package.
PAL" is a registered trademark of Monolithic Memories Inc.
PRODucnOI OATA d..om.." .ontain inmmotian
cu"",t II of po..looti•• dote. Pradocts coof.,m to
_Iflooti... par the to,... of TUII lnotro..
m.d.rd w."alltY. P,oductl•• " ....1•• d... oot
on"
n.....rily
io~odl
tastln. of III plllmotan.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DAUAS, TeXAS 75265
Copyright @ 1987. Texas Instruments Incorporated
2-243
TICPAl16l8-55C, TICPAl16R4-55C
TICPAl16R6-55C, TlCPAl16R8-55C
STANDARD CMOS PAl®CIRCUITS
description (continued)
The programming cell consists of a floating-gate device like those used in EPROMs. All terms are initially
connected. The unwanted terms are programmed out to provide the desired function. The output of a
given AND gate is low if both the true and complement cells of a term are connected, and high if all related
cells are programmed. Programming can be done manually but is usually achieved through the use of
commercially available programming equipment.
This TICPAl 16' series has internal electrostatic discharge (ESD) protection circuits and has been classified
with a 2000-V ESD rating tested under Mll-STD-883B, Method 3015.1. However, care should be exercised
in handling these devices, as exposure to ESD may result in a degradation of the device parametric
performance.
The floating gate programmable cells allow these PAls to be fully programmed and tested before assembly
to assure high field programming yield and functionality. They are then erased by ultraviolet light before
packaging.
All devices in this series contain a security feature. Once the security cell is programmed, additional
programming and verification cannot be performed. This prevents easy duplication of a design.
...c
C»
C»
The TICPAL16'C series is characterized for operation from OOC to 75°C.
erasure
tn
::::r
...
CD
CD
(I)
2-244
The TICPAl16' (Jl package) series can be erased after programming by exposure to ultraviolet light that
has a wavelength of 253.7 nm (2537 A). The recommended minimum exposure dose (UV intensity x
exposure time) is fifteen w.s.cm - 2. The lamp should be located about 2.5 cm (1 inch) above the chip
during erasure. It should be noted that normal ambient light contains the correct wavelength for erasure .
Therefore, when using the nCPAl 16' series (Jl package). the window should be covered with an opaque
label.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALlAS. TEXAS 76265
TICPAl16lB·55C, TlCPAl16R4·55C
STANDARD CMOS PAl@ CIRCUITS
functional block diagrams (positive logic)
TlCPAl16lS'
EN 201
8<
32 X 64
"illo----o
10----0
p...~~~1/0
b--.+.........-I/O
b-~~~I/O
...us
Io-H-~~I/O
CD
CD
.c
fn
6
...caca
TICPAl16R4'
Q
J EN2
OE
, C1
ClK
8<
32 x 64
201
-.!!,..
2"il
10
Q
-.!!,..
8
~
4
~
----
---..,
Q
~
"'"'1>
~
---..,
~
-
Q
-
Q
---..,
EN
201
--2.,..
"il
-
--2.,..
"
110
110
-
1/0
-
1/0
--2.,..
--2.,..
4
4
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS. TEXAS 75265
2·245
·TICPAl 16R6·55C, TlCPAl16R8·55C
STANDARD CMOS PAl® CIRCUITS
functional block diagrams (positive logic)
TICPAl16R6
OE
-tN2
ClK
L,
&
32 X 64
C1
,,1
~
10
E
c
C»
....C»
·0
:sCD
!en
~
I>
~
,...!.,&
~
~
~
r----.
r----.
r----.
r----.
r----.
rJ!+
rJ!+
r-!+
~
~
~
Q
r-Q
~
~
2'V
EN
",
'V
G+
r+
Q
Q
Q
Q
110
110
2
6
T1CPAl16R8
OE----~------------------dEr~__,
ClK -------------~~
r;;-.,...-~I_-Q
r---r-""--"':f--Q
r----t----1-~-Q
r----t----1-~-Q
t--T---1-+--
Q
r----t----1-~-Q
r----t----1-~-Q
8
2·246
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 866012 • DALLAS. TEXAS 75285
II"rftL lULU· .... "
STANDARD CMOS PAL® CIRCUITS
logic diagram (positive logic)
1(1 )
INPUT LINES
P RODUCT •
LINES
0
0
·.···
'8
···
···
··
·
··•
·
··
:-
(2),,-~_
4
12
8
16
20
24
28
-
31
~:l
r-
(19)
v
o
-
k
r- f--"
1
(18)
v
110
-
(3) 15
.A
16
r-
-
~
~
-
:--'
1
I•
CI
(17)
110
G
G
~
~
(4) 23
U
24
•
c:
x
(5)
(1
r-
r- V
r-
~
32
r- -..,.
J
(16)
1
(15)
1
(14)
(1
v
110
110
)----,
(6) 39
X
40
i)..
110
-
(7) -;:
··
·
··
·
~48
~p-J
55
(8)"
--
56
~J
--
--
r - I--"
-
+-=:kI
r-
63
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
(13)
-1
(12)
v
110
o
(11 )
2-247
TICPAL 16R4·55C
STANDAilD CMOS PAL@> CIRCUITS
logic diagram (positive logic)
ClK~.
,
.
INPUT LINES
PRODUCT ,
LINES
0
0
··•
·
4
8
12
16
20
24
28
31
J
.
I~
'8
••
••
••
J
>--
V
;>l
16
••
••
•
r---<
·
I---c
>-
.~
·
>
-
>--
I
'"
32
·•••
~pt-;.-
Ir-
40
1(7)
.bJi
:>~
··
··•
·•
)----
47
(16) 0
I.:lv
(15)0
r.:J.v
(14)0
~
Cl
J<
48
J
>---'
~
55
I (8) ;>l
(13) 1/0
~J
1
~
56
••
•••
h
1-/
·
}--
63
I~.
2-248
fb1
r.:J
Cl
(6) 39
1
••
•
•
Q
Cl
. (5) 31
••
.bJi f3 ""
Cl
(4) 23
1'-'-"
24
•••
••
(18) 1/0
1
(3) 15
I
(19) 110
~ 1
v
(12) 1/0
1
~)OE
TEXAS ."
INSTRUMENTS
POST OFFICE
aox 65~12
, CALLAS. TEXAS 15285
TlCPAl16R6·SSC
STANDARD CMOS PAl@ CIRCUITS
logic diagram (positive logic)
CLK~~--------------------------- _______
----------,
INPUT LINES
PRODUCT,~--------------------~------------------~
LINES
0
4
8
0--+-+++-++++-
I
·•
··
··
·
12
---
16
20
24
28
-f-- -
31
I---
J
~
I
I
f--
(31 15
>f-fol-'3
~
~
(181 Q
i
til
...caca
.c
C
--s-- -1-t,;]
56
••
··
j
V
~==t<}----
(91 63
I~_-
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
(121 1/0
I /1-(111~OE
2-249
I
I
i
!
!
TICPAL16RS·55C
STANDARD CMOS pAL® CIRCUITS
logic diagram (positive logic)
ClK~~--------------~----~--~--____
INPUT LINES
PRODUCT ,
0
LINES
0
4
8
12
16
20
0
0
0
0
0
0
IEl .....
24
28
~
.-
Z--
C1
~
}---J ....
I-
0
0
0
0
0
0
1~
1FI-~
(3) 15
'-'
I
16
'--
0
0
~
~
~
I;:L
I--
•
--D-
o
0
0
I
tJ;? "".
~
'8
E
31
'--
(4) 23
.;>L
I--
24
0
0
0
0
0
0
C1
-- ~
....
·•
··
··•
·
···
·
··
·
~
1-
t>
1-
40
-~
F-
-
C1
>---
48--
'=>fbJ;
--
.
55
v
(13) 0
VI
...r-'
I- ~~ >~ ';! "".
~
~
C1
63
2-250
>-;:L
C1
I--
56
I~
~
~14)0
(15) 0
}-
1(7) 47
J!)
~
':lv
C1
(6) 39
I
:;::l..,I1.~)
0
....
C1
~
. 32
I
(17) 0
I?'"
C1
I--D-
31
I (5)x
(18)0
I ~
I
I
I
I
TEXAS ."
INSTRUMENlS
POST OFFI,CE BOX 655012 • DALLAS, TEXAS 75265
~)OE
TICPAL 16LB·55C, TICPAL 16R4·55C
TICPAL 16R6·55C, TICPAL 16RB·55C
StANDARD CMOS PAL® CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise notedl
Supply voltage range, Vec ........................................... :....0.5 V to 7 V
Input voltage range, V, ........................................ -0.5 V to VCC +0.5 V
Input clamp current, 11K (V, -!:. 0 or V, > VCCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
Output clamp current, 10K (VO < 0 or Vo > VCCl ............................. ± 20 mA
Continuous output current, 10 (VO = 0 to Vecl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 35 mA
Continuous current through Vec pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 mA
Continuous current through GND pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 200 mA
Operating free-air temperature range ...................................... OOC to 75°C
Storage temperature range ......................................... - 65 °e to 150°C
Lead temperature 1,6 mm (1/16 inchl from case for 60 seconds (JL packagel ........... 300 0 e
Lead temperature 1,6 mm (1/16 inchl from case for 10 seconds (N packagel ............ 260 0 e
recommended operating conditions
C-SUFFIX
MIN
4.75
VCC Supply voltage
VIH High-level input voltage
Vil low-level input voltage
NOM
MAX
5.25
V
V
0.8
V
2
I Clock high
tw
Pulse duration
tsu
th
TA
Setup time, input or feedback before ClK I
I
Clock low
Hold time, input or feedback after ClK I
Operating free-air temperature range
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 .. DALLAS. TEXAS 75265
20
20
40
0
0
UNIT
75
...
U)
Q)
Q)
ns
.c
ns
ns
·C
...caca
tJ)
C
TICPAl16l8·55C, TlCPAl16R4-55C
TlCPAl16R6·55C, TICPAl16R8·55C
STANDARD CMOS PAL@) CIRCUITS
electrical characteristics over recommended operating free·air temperature range (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
10H = 3.2 rnA Ilor TTL)
10H = -4 mA 110' CMOS)
10l = 24 mA 110' TTL)
10l = 4 mA 110' CMOS)
Vo = 2.4 V
Vo = 0.4 V
10ZH
10Zl
IIH
III
leelstandbvl
leelope,ating)
I
Vee = 4.75 V,
Vee = 4.75 V,
Vee - 4.75 V,
vee = 4.75 V,
Vee = 5.25 V,
Vee = 6.26 V,
Vee = 5.25 V,
Vee - 5.25 V,
Vee = 5.25 V,
Vee = 5.25 V,
I = 1 MHz to 25 MHz
* 4l ee
VI - 0.5 Vo, 2.4 V,
Vee 5.25 V,
Othe, inputs at 0 V 0' Vee
VOH
VOL
= Vee
= 0
= 00' Vee,
= Oto Vee,
10 = 0
10 = 0,
Tvpt
MAX
UNIT
V
V
10
-10
10
-10
100
p.A
p.A
p.A
p.A
p.A
mA
MHz
3
mA
2
1.4
1- 1 MHz
TA = 25°C,
el
VI
VI
VI
VI
MIN
4
3.86
0.5
0.4
pi
6
C
r»
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
;- (unless otherwise noted) R1 - 200 (}, R2 - 390 (},. CL - 50 pf
tn
PARAMETER
::T
CD
!
FROM
(INPUT)
elKt
TO
IOUTPUT)
. with leedback
wlo leedback
00,1/0
a
m.
a
15
25
ns
a
ao, I/O
ao, I/O
15
35
35
25
55
55
ns
ns
ns
Imax§
tad
tod
tan
ldis
tan
ldis
I, I/O;
0' leedback
~t
10,1/0
10,1/0
MIN
TYpt
MAX
35
15
55
22
ns
ns
16
25
MHz
tAli typical values are at Vee = 5 V, TA = 25°C.
*This Is the inc,ease in supply cu,rent 10' each input that is at one 01 the specilied TTL voltage levels ,athe, than 0 0' Vee.
§Imaxlwith leedback) =
2-252
2-
1
; Imaxlwithout leedback) =
tsu + tpd lelK to aJ
.
tsu
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 855012 • DALlAS. TEXAS 75286
UNIT
TICPAl16lB·55C, TlCPAl16R4·55C
TlCPAl16R6·55C, TICPAl16RB·55C
STANDARD CMOS PAl® CIRCUITS
preload procedure for registered outputs
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. All of the registers may
be preloaded simultaneously by following the steps below.
Step 1.
With Vee at 5 V and Pin 11 at VIH. raise Pin 1 to VIHH.
Step 2.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Step 3.
Lower Pin 1 to VIL. then remove the output voltage. Preload can be verified by lowering Pin 11
to VIL and observing the voltage level at the output pins.
preload waveforms
\'-------v II
...
""~
---.I
PINS
2·9
td
w
I+-
,
, ,
~
'L
!
I
'I
"
-, :-'--------------I - - - ,,
~td~
,
I
-------tpreload _ 11'0 _ _ _ _...:
,
I
I
,
Q)
Q)
.s:.
fn
...asas
VIH
VIL
C
~tdr-l
,
l :. .
PIN 11
U)
\..-----VIL
I
I
I
~
,
,
- : - - VIH
I
VIL
---+j td j4-
IVIH-',.---------------}-C
'I
I , VOH
REGISTERED 1/0
----J~VIL-'-
~
VOL
preload parameters, TA - 25°C
PARAMETERt
VIHH
IIHH
Av/At
td
Preload voltage on pin 1
Preload input current at pin 1
Voltage ramping (VIHH)
Setup and hold times
MIN
12.5
NOM
13
MAX
13.5
UNIT
V
3.2
4
4.8
mA
VI,..
50
2
,..
tOther test parameters and conditions are shown in recommended operating conditions and electrical characteristics tables.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75285
2-253
TlCPAlI6L8·55C, TlCPAlI6R4·SSC
TlCPAlI6R6·SSC, TlCPAl16R8·SSC
STANDARD CMOS PAl® CIRCUITS
•
PARAMETER MEASUREMENT INFORMATION
Vee
.~
S1
R1
fROM OUTPUT -~-~_---41>-- TEST
UNDER TEST
POINT
R2
NOTES: A. Cl =- includes probe and jig capacitance.
•
S. When measuring propagation times of 3~state outputs, S1 is closed.
FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS
C
CD
at
INPUT
en
::T
CD
!en
L
--Ii,I
'.5V
\.,'; : : - - - - - - - 3 V
tpd - tpLH or tpHL
(+--tPLH-+/
I
IN-PHASE
OUTPUT
:
I
0 V
I+--tPHL~
,.-----~I-----d --- -
Y,.5V
I '
I,
VOH
\1.5V
VOL
I+--tPLH~
I+--tPHL--+f
OUT-Of-PHASE
OUTPUT
.1\
,
,
\1.5V
•
I'r---
VOH
1.5V
----VOL
VOLTAGE WAVEfORMS
NOTES:
A. When measuring propagation times of 3-state outputs, 51 is closed.
B. All input pulses are supplied by generators having the following characteristics: PRR :S 1 MHz, Zo = 50 0, tr = 6 ns.
FIGURE 2. PROPAGATION DELAY TIMES, OUTPUT RISE AND FALL TIMES
2-254
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS. TEXAS 75266
TlCPAl16L8·55C, TICPAl16R4·55C
TlCPAl16R6·55C, TlCPAl16R8·55C
STANDARD CMOS PAl® CIRCUITS
PARAMETER MEASUREMENT INFORMA nON
f.5V
ClK
!w
a:
0..
t-
O
:::»
Q
o
g:
EPIC is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCT PREVIEW do.umlats ...tai. inform.llon
on products In tho formlli•• or dosigl ,bul a'
d•••lopm.nt. Cblra.leriolic dltl .n~ olh.r
=~:~::srrg':t d:I::,:::I~rT:.::~~::~::
products without noti...
Copyright @ 1987. Texas Instruments Incorporated
TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-257
TlePAl18V8-30M, TICPAl18V8-25C
ADVANCED EPICTM CMOS GENERIC PAL®
description (continued)
architecture
The 'PAL 18V8 architecture is a generic version of the 20-pin family of PAls. This generic flexibility is
achieved by the implementation of each output function with an Output logic Macrocell (OlM). The OlM
contains architectural options configured through programming. These options include the user selection
of combinatorial or registered outputs with a choice of active-high or active-low logic.
The 'PAL 18V8 has 74 product terms in the AND array, 64 of which are OR-function product terms, 8
product terms that are used as bidirectional output controls, and 1 product term each as asynchronous
reset and synchronous set control, respectively. Each of the 8 outputs has 8 product terms per OR functiori
and a dedicated product term for the bidirectional control of that output. The bidirectional control allows
for individual outputs to be forced into the high-impedance state for bidirectional operations or for dedicated
input usage.
Cit
The circuit design is enhanced by the addition of synchronous set and asynchronous reset product terms.
These two functions are common to all the OlMs. When the synchronous set product term is a logic 1,
the output registers are loaded with a logic 1 on the next low-to-hi,gh clock transition. When the
asynchronous reset product term is a logic 1, the output registers are loaded with a logic 0 independently
of the clock. The output logic level after set or reset depends on the polarity selected during programming.
An asynchronous reset always overrides synchronous set .
CI)
CI)
. A clock function is routed to all the OlMs. It is used with the registered macrocell options. The clock function
shares a pin with an array input. The sharing provides an additional input pin when registered options are
not exercised.
o
Q)
en
:::r
....en
The registers in the' 18V8 have been designed to reset after power-up. During power-up, all registers will
reset to the O-state following a transition of any input or any I/O. The output voltage level for any output
will depend on the polarity selected for that output. This feature is especially valuable in Simplifying state
machine initialization.
All output registers can be preloaded to any desired state during testing. Preloading permits full logical
verification during device testing.
The TICPAl 18V8 has internal electrostatic discharge (ESD) protection circuits and has been classified with
a 2000-V ESD rating tested under Mll-STD-883B, Method 3015.1. However, care should be exercised
in handling these devices, as exposure to ESD may result in a degradation of the device parametric
performance.
The floating gate programmable cells allow these PAls to be fully programmed and tested before assembly
to assure high field programming yield and functionality. They are then erased by ultraviolet light before
packaging.
"'0
:D
The M-suffix devices are characterized for operation over the full military temperature range of - 55°C
to 125°C. The C-suffix devices are characterized for operation from OOC to 75°C.
o
C
c:
design security
(')
-4
."
:D
m
<
m
The 'PAL 18V8 contains a programmable design security bit. Programming this bit will disable the read
verify and programming circuitry, protecting the design from being copied. The security bit is usually
programmed after the design is finalized and released to production. A secured device will verify as if every
location in the device is programmed. Because programming is accomplished by storing an invisible charge
instead of opening a metal link, the '18V8 cannot be copied by visual inspection. Once a secured device
is fully erased, it can be reprogrammed to any desired configuration.
:e
2-258
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlCPAl18V8·30M, TICPAl18V8·25C
ADVANCED EPICTM CMOS GENERIC PAL®
functional block diagram (positive logic)
~
C,
.
SET
'S
R
RESET
36x74
8
..,
,......,
-
n
~ ......
ClKII ...0 ....
r
8
I>
r
I>
."
OUTPUT
LOGIC
MACROCELL ~
r
EN
h
V-
EN
8
r
V-
h
V-
EN
8
V-
h
V-
EN
,......,
r
EN
h
1/0/0
1/0/0
1/0/0
II
U)
h
~
~
~ ......
-
8
h
V-
r
,......,
r
EN
8
r
,......,
r
EN
8
h
V-
EN
,......,
,......,
r
~
1/0/0
en
CI)
CI)
.r::
8
h
1/010
as
as
~
1/010
Q
1/0/0
1/0/0
8
8
8
__ denotes fused inputs
~
W
:;
w
a..
a:
le.,)
;:)
o
oa:
a..
TEXAS . "
INSIRUMENlS
POST OFFICE BOX 656012 • DALLAS. TeXAS 75286
2-259
TICPAl18V8·30M, TlCPAl18V8·25C
. ADVANCED EPICTM CMOS GENERIC PAL®
logic diagram (positive logic)
cu1'7
~ ~tT
....
en
::r
/4128
CD
CD
~ ~tT
U)
(51 311
~ ~tT
44
.
~
",53
""C
::a
54
o
~
C
c:
n
-I
(II"
.
""C
m
m
(11
Tr
~tT
1/0/0
Tr
~tT
~~tT
71
:r,-
=E
2-260
1/0/0
1/0/0
Tr
::a
<
-
1/0/0
Tr
311
181
1/0/0
Tr
27
....
1/0/0
1T
,.
C
I»
I»
'=tT
1/0/0
(111
TEXAS ."
INSlRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
1/0/0
TICPAl1 BVB-30M, TlCPAl1 BVB-25C
ADVANCED EPICTM CMOS GENERIC PAl@
output logic macrocell (OlM) description
A great amount of architectural flexibility is provided by the user-configurable macrocell output options.
The macrocell consists of a Ootype flip-flop and two select multiplexers. The Ootype flip-flop operates like
a standard TTL Ootype flip-flop. The input data is latched on the low-to-high transition of the clock input.
The Q and Q outputs are made available to the output select multiplexer. The asynchronous reset and
synchronous set controls are available in all flip-flops.
The select multiplexers are controlled by programmable bits. The combination of these programmable bits
will determine which macrocell functions are implemented. It is this user control of the architectural structure
that provides the generic flexibility of this device.
output logic macrocell diagram
r----------,
OUTPUT LOGIC MACROCELL
,
MUX
I
AR
R
1-0
>---+-~--~1D
Q~--------_i
r-...:.....----~I>Cl
55
:
Q
0
1S
1 \ G0
O
FROM CLOCK BUFFER
MUX
3
I
II
...
en
CD
CD
'I
..c
I
I
I
I
...caca
en
C
I
I
G1
,
I
I
I
AR _ asynchronous reset
E -::hrc:::se_t_
__-1
~
w
5>
w
a:
0.
I-
o
:::::>
Q
oa:
0.
TEXAS
~
INSfRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
2-261
TICPAL 18V8·30M, TICPAL 18V8·25C
ADVANCED EPIC"" CMOS GENERIC PAL®
output logic macrocell options
MACROCEU FEEDBACK AND OUTPUT FUNCTION TABLE
CELL SELECT
SI
SO
0
0
1
1
0
1
0
1
FEEDBACK AND OUTPUT CONFIGURATION
,Register feedback Registered
Active low
Register feedback Registered
Active high
I/O feedback
I/O feedback
Combinational Active low
Combinational Active 'high
o=
erased cell, 1 = programmed cell
51 and SO are select-function cells as shown in the output logic
macrocell diagram,
SI - 0
SO - 0
SI - 0
SO - 1
REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT
REGISTER FEE,DBACK, REGISTERED, ACTIVE·HIGH OUTPUT
SI - 1
SO - 0
."
:::a
SI - 1
SO - 1
I/O FEEDBACK, COMBINATIONAL, ACTIVE-LOW OUTPUT
1/0 FEEDBACK. COMBINATIONAL. ACTIVE·HIGH OUTPUT
o
C
c:
(")
-I
."
:::a
S
~
2-262
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DAlLAS. TEXAS 75265
TICPAl18V8-30M, TlCPAl18V8-25C
ADVANCED EPIC™ CMOS GENERIC PAL®
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 V to 7 V
Input voltage, VI (see Note 1) ................................... -0.5 V to Vee+0.5 V
Input diode current, 11K (VI < 0 or VI > Vee). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
Output diode current, 10K (Vo < 0 or Vo > Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
eontinuous output current, 10 (VO = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±40 mA
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 300 0 e
Operating free-air temperature range: M suffix. . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
e suffix .............................. ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except during programming and preload cy'cles.
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions
-25C
-30M
Vee
Supply voltage
VIH
High-level input voltage
VIL
Low·level input voltage
IOH
High·level output current
IOL
Low-level output current
fclk
Clock frequency
Pulse dlJration
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.75
5
5.25
V
VCC+O.5
0.8
2
VCC+O.5
0.8
V
2
Driving TTL
-2
-3.2
Driving CNiOS
-2
-4
Driving TTL
12
24
2
4
Driving CMOS
V
mA
mA
MHz
CLK high
tw
UNIT
MIN
10
8
eLK low
11
9
Asynchronous reset
30
25
Input or feedback
25
20
Reset inactive state
30
25
0
0
tsu
Setup time
th
Hold time
TA
Operating free-air temperature
Input or feedback
-55
125
0
ns
ns
ns
75
ns
De
:=w
5>
w
a:
Q.
....
. CJ
::::>
c
oa:
Q.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-263
TlCPAl18V8·30M, TICPAl18V8·25C
ADVANCED EPIC™ CMOS GENERIC PAL@
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
VOH
VOL
-30M
TEST CONDITIONSt
PARAMETER
MIN
VCC = MIN,
10H = MAX
TTL
VCC = MIN,
10H = MAX
VCC - MIN,
Vec = MIN,
10L - MAX
CMOS
TTL
TYP*
-25C
MAX
4
4
3.B6
3.86
TYP*
MAX
V
0.5
0.4
V
V
10
-10
~A
10ZH
Vce = MAX,
10ZL
,IIH
Vce = MAX,
Vee = MAX,
Vo = 0.5 V
VI = 5.25 V
IlL
Vce = MAX,
VI - 0.5 V
10§
Vce = MAX,
Vo = 0.5 V
Ice
Vce = MAX,
Outputs open 1
VI =
lee
f
Vec = MAX,
f;" 1 MHz
Vi = 0 to 3 V,
Vcc - MAX,
One input at 0.5 V or 2.4 V,
Pin 1
4
4
Alec#
Other inputs at 0 V or Vec
Pin 2
VI = 2 V,
Clock Pin
f = 1 MHz,
All I/O Pins
TA = 25°C
Other inputs
Others
2
2
o
I»
r+
I»
en
:r
(1)
ei
(1)
r+
fI)
-30
-130
o or Vee,
-30
~
-130
mA
100
~
2
15
12
15
12
15
15
10
10
~A
10
-10
100
2
UNIT
V
0.5
0.4
eMOS
10L = MAX
Vo = 2.7 V
MIN
~
mAlMHz
mAl
Input
pF
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER
fmaxl
"'0
o
o
c:
TO
(OUTPUT)
W /0 feedback
With feedback
tcd
1,1/0
eLKt
tcd
Reset
Q
ten
1,1/0
I,Q,I/O
tdis
1,1/0
I,Q,I/O
tod
:a
FROM
(IN pun
0,1/0
Q
TEST CONDITIONS
-30M
MIN
TYP*
e suffix:
50
Rl = 200 Il, R2 = 390 Il,
35
15
-25C
MAX
MIN
TYP*
50
MAX
MHz
35
12
15
12
Rl = 390 Il, R2 = 750 Il,
20
10
ns
eL=50pF
eL = 5 pF, See Figure 4
15
15
ns
15
15
ns
CL=50pF
M suffix:
30
UNIT
25
ns
ns
tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
All typical values are at Vec = 5 V, TA = 25°C.
*
§ This
parameter approximates lOS' The condition
Vo "'"
0.6 V takes tester noise into account.
1Disabled
'.
outputs tied to GND or Vee.
#This is the increase in supply curr~nt for each input that is at one of the specified TTL voltage levels rather than at 0 V or Vee.
Itmax(with feedback) =
tsu
1
e
+ tpd( LK to Q)
; fmaxlwithout feedback) =
(. I
tw hIgh
1
(")
-I
"'0
:a
-m~
:e
2-264
TEXAs
(I
+ tw low
~
INSTRUMENTS
.PoST OFFICE BOX 655012 • DALLAS, TEXAS 15265
TlCPAl18V8·3DM, TICPAl18V8·25C .
ADVANCED EPICTM CMOS GENERIC PAL®
preload procedure for registered outputs
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is pre loaded
individually by following the steps given below. The output level depends on the polarity selected during
programming.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 volts and Pin 1 at VIL, raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1, clocking in preload data.
Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing the voltage
lellel at the output pin.
preload waveforms (see Note 2)
~----:::H
PINll~
f4- tsu -+t
*I
*-td --+I
1
1
PIN 1
i : I I : :
1
1
REGISTERED I/O
!4-td-+l
I
tw--+l
I
I
1 __ 1___ 1_____ VIH
==>-----\
1
I
INPUT
•
U)
CD
CD
.c
t.n
VIL
1
1
~I -vIH
V,.---- VOH
/
\
-VIL
II...
...
CO
CO
C
OUTPUT
VOL
NOTE 2: t,j = tsu = tw = 100 ns to 1000 ns.
VIHH = 10.25 V to 10.75 V.
~
w
:>w
a::
a..
...
CJ
:::l
o
o
a::
a..
TEXAS . "
INSI:RUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76285
2-265
TICPAL 18V8·30M, TICPAL18V8·25C
ADVANCED EPle™ CMOS GENERIC PAL®
power·up reset
Following power-up, all registers are reset to zero. The output level depends on the polarity selected during
programming. This feature provides extra flexibility to the system designer and is especially valuable in
simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC!s
rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable
input and feedback setup times are met.
power-up reset waveforms
JII
~----------~----------------------5V
4
V CC ___________
J
141+-____ tpd t
.,
(600 ns typ, 1000 ns MAX)
I
ACTIVE·HIGH
REGISTERED OUTPUT
/
STATE UNKNOWN
1
I
1.5 V
/
r-
VOH
------------~-----------------------------~~------£------VOL
I
ACTIVE·LOW
REGISTERED OUTPUT
/
STATE UNKNOWN
11.5V
-----------~-----------------------~I
I+--"" tsu t ---+t
\1.5V
CLOCK
FVIH
--------------------~------_f+'''----------J1- - - VIL
I4-----tw~
tThis is the power·up reset time and applies to registered outputs only. The values shown are from characterization data.
tThis is the setup time for input or feedback.
-
programming information
Texas Instruments Programmable Logic Devices can be programmed using widelY available software and
inexpensive device programmers.
Complete programming specifications, -algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Insruments at (214) 997-5762.
2-266
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 15265
TICPAl10VO·30M, TlCPAl1 OVO·25C
ADVANCED EPICTM CMOS GENERIC PAL®
PARAMETER MEASUREMENT INFORMATION
Vcc
~
S1
ISee Note A)
R1
FROM OUTPUT
UNDER TEST -
TEST
...- -...- - - - POINT
R2
CL
ISee Note B)
fI
NOTES: A. When measuring propagation times of 3-state outputs, S1 is closed.
B. Cl ~ includes probe and jig capacitance.
FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS
ISee Notes A
~~~U:'~1.5
V
tpd _ tpLH or tPHL
I
-
-
-
-
-
-
-
en
....CI:ICI:I
3 V
0 V
I ,-_ _ _ _ _--+I___""""'\.J - - - -
II
Y,.5V
I '
I+--tPHL~
OUT·OF·PHASE
OUTPUT
Q)
.c
I+--tpHL~
J+--tPLH--+t
:
~
II)
I
I
IN-PHASE
OUTPUT
\ :- :
....Q)
C
VOH
\15 V
.....- - V O L
I+-tPlH~
II,----
I
\15 V
,
~5~
VOH
__ VOL
VOLTAGE WAVEFORMS
NOTES: A. When measuring propagation times of 3-state outputs. S1 is closed.
B. All input pulses are supplied by generators having the following characteristics: PRR ,;; 1 MHz, Zo
= 50 11, tr =
FIGURE 2, PROPAGATION DELAY TIMES, OUTPUT RISE AND FALL TIMES
3 ns.
~
w
:>w
a:
0.
I(.)
::J
C
oa:
0.
TEXAS . "
INSTRUMENTS
POST OFFICE
sox 655012
• DALLAS, TEXAS 75265
2-267
TlCPAl18V8-30M, TICPAl18V8-25C
ADVANCED EPICTM CMOS GENERIC PAL®
PARAMETER MEASUREMENT INFORMATION
f·5V
ClK
(See Notes A and B)
\----3V
14-- tsu--.l
aa
0
a
'.5V
0.3 V
v.~1
2.7
I
I
-----------------------~
I
r-----
I
I
INPUT~I 2.7 V
DATA
(S NtA)
\"'.- - - 0 V
1~4~-------th--~----~~~1
_ _ _ _ _ _ _ _ _ _ _ _J
~~~
3
V
'.5V
~0.;.=.3:..V:...._ _ 0 V
~-~
VOLTAGE WAVEFORMS
FIGURE 3. SETUP AND HOLD TiMES. AND INPUT RISE AND FALL TIMES
--V
C
X
---------..J
DATA INPUT
(See Note A) - A , . 5 V
...
I»
I»
I ......
en
OUTPUT
WAVEFORM 1
SI CLOSED
(See Note C)
...
(1)
(II
---+1----'"'\
I
I
~
1-£1
.
I _.r-
I
I
".5 V
~
I
I
I+-- tPZH--+I
OUTPUT
WAVEFORM 2
S, OPEN _ _ _ _ _ _ _ _J
(See Note C)
.
OV
I+-- tpLZ--+I
I+--- tPZl--+!
:r
(1)
3V
+,.5V
L
t - - -- VOL
I
I
I
J..
lr------t-----~"I
':i '.5 V
2/3 VCC
0.5 V
1
I
I
---
VOH
~0.5 V
..-____
=0 V
I+-- tPHZ---+!
ten - tpZl or tpZH
tdis - tPlZ or tpHZ
VOLTAGE WAVEFORMS
FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
HI~~-~~~El
."
=
o
LOW-LEVEL
PULSE
c:
o
~
~
tw------~~~
14
tw
-
-
-
: :
~I
I
\.5V
-
'-5~
3 V
_ _ _ _ OV
VOLTAGE WAVEFORMS
."
:sm
:e
\~5 ~
5V
----'"'\ I
c
=
m
..Jt.
____
FIGURE 5. PULSE DURATIONS
NOTES: A. All input pulses are supplied by generators having the followng characteristics: PRR :s " MHz. Zo = 50 II. tr = 3 ns.
B. For clock inputs. f max is measured with input duty cycle = 50%.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
2-268
TEXAS . "
INSTRUMENlS.
POST OFFICE BOX 665012 • DAUAS, TEXAS 76266
TlCPAl18V8·30M, TlCPAl18V8·25C
ADVANCED EPIC" CMOS GENERIC PAL@
special design features
True CMOS Outputs: Each' 18V8 output is designed with a P-channel pull-up transistor and an N-channel
pull-down transistor, a true CMOS output with rail-to-rail output switching. This provides direct interface
to CMOS logic, memory, or ASIC devices without the need for a pull-up resistor. The CMOS output has
24-mA drive capability, which makes the '18V8 an ideal substitute for bipolar PAls. The electrical
characteristics of this device show the output under both CMOS and TTL conditions.
Simultaneous Switching: High-performance CMOS devices often have output glitches on nonswitched
outputs when a large number of outputs are switched simultaneously. This glitch is commonly referred
to as "ground bounce" and is most noticeable on outputs held at VOL (low-level output voltage). Ground
bounce is caused by the voltage drop across the inductance in the package lead when current is switched
(dv ex I x di/dt).
One solution is to restrict the number of outputs that can switch simultaneously. Another solution is to
change the device pinout such that the ground is located on a low-inductance package pin. TI opted for
a third option in order to maintain pinout compatibility and eliminate functional constraints. This option
controls the output transistor turn-on characteristics and puts a limit on the instantaneous current available
to the load, much like the lOS resistor in a TTL circuit.
Wake-Up Features: The' 18V8 employs input signal transition detection techniques to power-up the device
from the standby-power mode. The transition detector monitors all inputs, 1I0s, and feedback paths.
Whenever a transition is sensed, the detector activates the power-up mode. The device will remain in the
power-up mode until the detector senses that the inputs and outputs have been static for about 40 ns;
thereafter, the device returns to the standby mode.
Electronic Signature Word: The' 18V8 has a 72-bit word available for the user to store device information,
such as 10 codes, revision numbers, or inventory control. The signature cannot be programmed or altered
once the device is secured.
I...
U)
Q)
Q)
.c
fJ)
...caca
C
Power Dissipation: Power dissipation of the' 18V8 is defined by three contributing factors, and the total
power disSipation is the sum of all three.
Standby Power: The product of VCC and the standby ICC. The standby current is the reverse current
through the diodes that are reversed biased. This current is very small, and for circuits that remain
in static condition for a long time, this low amount of current can become a major performance
advantage.
Dynamic Power: The product of VCC and the dynamic current. This current flows through the device
only when the transistors are switching from one logic level to the other. The total dynamic current
for the '18V8 is dependent upon the users' configuration of the PAL and the operating frequency.
Output loading can be a source of additional power dissipation.
Interface Power: The product of ~ICC (operating) and VCC. The total interface power is dependent
on the number of inputs at the TTL VOH level. The interface power can be eliminated by the addition
of a pull-up resistor.
Even though power dissipation is a function of the user's device configuration and the operating
frequency, the' 18V8 is a lower-powered solution than either the quarter-powered or half-powered
bipolar devices. The virtually zero standby power feature makes the '1 8V8 the device of choice for
low duty cycle and battery-powered applications.
~
w
5>
w
IX
0-
J-
(.,)
:,)
C
o
IX
0-
TEXAS ~
INSTRl}MENTS
POST OFFICE BOX 665012 • OAUAS, TeXAS 75265
2-269
TlCPAl18V8·30M, TlCPAl18V8·25C
ADVANCED EPIC™ CMOS GENERIC PAL®
special design features (continued)
Programming and Eraseability: Programming of the '1aVa is achieved through floating-gate avalanche
injection techniques. The charge trapped on the floating gate remains after power has been removed,
allowing for the nonvolatility of the programmed data. The charge can be removed by exposure to light
with wavelengths of less than 400 nm (4000 AI. The recommended erasure wavelength is 253.7 nm
(2537 A), with erasure time of 20 to 30 minutes, using a light source with a power rating of 12000 pW/cm
placed within 2.5 em (1 inch) from the device.
E
The '1aVa is designed for programming endurance of 1000 write/erase cycles with a data retention of
ten years. A few precautions will guarantee maximum data retention. Continuous exposure to high-intensity
UV light can cause permanent damage. The maximum exposure intensity is 7000 W.s/cm (The equivalent
of leaving the unit in a UV eraser for a· week). The window on the device should be covered by an opaque
label, as the fluorescent light in a room can erase a unit in three years or, in the case of a direct sunlight,
erasure can be complete in one week.
...mmC
(I)
::r
CD
CD
...
U)
."
::l:J
o
o
o
-I
c:
."
::l:J
m
<
m
~
2-270
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 866012 • DAlLAS. TEXAS·76265
TICPAL22V10M, TICPAL22V10C
EPIC'" CMOS PROGRAMMABLE ARRAY LOGIC
03089. DECEM8ER 1987
JL PACKAGE
(TOP VIEW)
•
24-Pin Advanced CMOS PAL
•
Virtually Zero Standby Power
•
Propagation Delay Time ... 20 ns Typ
•
Variable Product Term Distribution Allows
More Complex Functions to be Implemented
•
Each Output is User-Programmable for
Registered or Combinatorial Operation,
Polarity, and Output Enable Control
•
Extra Terms Provide logical Synchronous
Set and Asynchronous Reset Capability
•
Preload Capability on All Registered Outputs
Allow for Improved Device Testing
•
Power-Up Clear on Registered Outputs
•
UV Light Erasable Cell Technology Allows
for:
Reconfigurable logiC
Reprogrammable Cells
Full Factory Testing for
Guaranteed 100% Yields
eLK/)
Vee
1/0/0
1/0/0
1/0/0
1/0/0
1/010
1/0/0
110/0
1/0/0
1/0/0
1/0/0
GND
...
(I)
I
.c
en
•
Programmable Design Security Bit Prevents
Copying of logic Stored in Device
•
Package Options Include Plastic and
Ceramic Dual-In-Line Packages and Chip
Carriers
...asas
C
description
This PAL device features high-speed performance, increased and variable product terms, flexible outputs,
and virtually zero standby power. It combines Tl's EPIC" (Enhanced Processed Implanted CMOS) process
with ultraviolet-light-erasable EPROM technology. Each output has an OlM (Output logic Macrocell)
configuration allowing for user definition of the output type. This PAL provides reliable, low-power
substitutes for numerous high-performance TTL PAls with gate complexities between 300 and 800 gates.
The 'PAl22V10 has 12 dedicated inputs and ten user-definable outputs. Individual outputs can be
programmed as registered or combinational and inverting or noninverting as shown in the Output logic
Macrocell (OlM) diagram. These ten outputs are enabled through the use of individual product terms.
The variable product-term distribution on this device removes rigid limitation to a maximum of eight product
terms per output. This technique allocates from 8 to 16 logical product terms to each output for an average
of 12 product terms per output. The variable allocation of product terms allows for far more complex
functions to be implemented in this device than in previously available devices.
With features such as the programmable OlMs and the variable product-term distribution, the
TICPAl22V10-25 offers quick design and development of custom lSI functions. Since each of the ten
output pins may be individually configured as inputs on either a temporary or permanent basis, functions
requiring up to 21 inputs and a single output or down to 12 inputs and 10 outputs can be implemented
with this device.
p"ducts without notl...
t-
(.)
::l
o
oa:
Copyright @.1987. Texas Instruments Incorporated
PRODUCT PREVIEW documlnts contain information
:::c::tsria;:.ct;:i::.::I~rT;'::'=:ur:~::
~
a:
Q.
Q.
EPIC is a trademark of Texas Instruments Incorporated.
DR products in the formative or _asign ~h8se of
development. Characteristic data anll other
3:
w
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-271
TICPAL22V10M. TICPAL22V1 DC
EPICTMCMOS PROGRAMMABLE ARRAY LOGIC
description (continued)
Design complexity is enhanced by the addition of synchronous set and asynchronous reset product terms.
These functions are common to all registers. When the synchronous set product term is a logic 1. the
output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous
reset product term is a logic 1. the output registers are loaded with a logic 0 independently of the clock.
The output logic level after set or reset will depend on the polarity selected during programming.
Output registers of this device can be preloaded to any desired state during testing. thus allowing for full
logical verification during product testing.
The TICPAL22V10 has internal electrostatic discharge (ESD) protection circuits and has been classified
with a 2000-V ESD rating tested under MIL-STD-883B. Method 3015.1. However. care should be exercised
in handling these devices. as exposure to ESD may result in a degradation of the device parametric
performance.
E
The floating gate programmable cells allow these PALs to be fully programmed and tested before assembly
to assure high field programming yield imd functionality. They are then erased by ultraviolet light before
packaging.
cC»
The TICPAL22V1 0-25 has a power-up clear function. which forces all registered outputs to a predetermined
state after power is applied to the device. Registered outputs selected as active low will power up with
their outputs high while registered outputs selected as active high power up with their outputs low.
r+
C»
en
The M-suffix devices are characterized for operation over the full military temperature range of - 55°C
to 125°C. The C-suffix devices are characterized for operation from OOC to 75°C.
:T
CD
CD
Cit
design security
The 'PAL22V10 contains a programmable design security bit. Programming this bit will disable the read
verify and programming circuitry protecting the design from being copied. The security bit is usually
programmed after the design is finalized and released to production. A secured device will verify as if every
location in the device is programmed. Because programming is accomplished by storing an invisible charge
instead of opening a metal link. the' 22V 10 cannot be copied by visual inspection. Once a secured device
is fully erased. it can be reprogrammed to any desired configuration .
."
:xJ
o
C
c:
n
-t
."
:xJ
m
S
~
2-272
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265
TICPAL22Vl0M, TICPAL22Vl DC
EPIClMCMOS PROGRAMMABLE ARRAY LOGIC
functional block diagram (positive logic)
r--I>
C1
-'1S
SET
RESET
&
44x132
8
.,
IR
>:1
OUTPUT
> LOGIC
r- MACROCELL
h
10
Er-
-~
-----'V
r----.
h
V-
12
>- t--p.
V-
14
~
16
~
+
~
1~
------
>-r-->
~
CLK/I
C>
~
'---
'V
--------.
---..
r----.
h
16
- p.
r-
-
p.
r
>-r-- >
r
14
>-1-- P.
V-
12
~I--
r
10
~-
r
8
P.
>
'-- >
h
r
r-
~I1010
EN
,,- EN
~ f++-I1010
,,- EN
~ f++-I 1010
------
-..r--
-----h
V-
EN
V- EN
-----------
------
~ ......11010
!1
~ ...... 11010
.c
CD
CD
r- EN
r-
1/0/0
EN
~ _I1010
h
V-
EN
~ f++-I
h
V-
EN
~ f-++-I 1010
h
V- EN
1010
'"j!
CO
C
f--; f++- 1/0/0
10
10
10
'V denotes fused inputs
~
w
:>w
a:
Q.
t;
:;:)
C
oa:
Q.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-273
TICPAL22V10M, TICPAL22V1 DC
EPICTMCMOS PROGRAMMABLE ARRAY LOGIC
logic diagram (positive logic)
11\
INPUT LINES
0
4
8
'2
'6
20
24
28
32
36
40
AR
D.
i
~
0
12\
·
E
131
·
"
=B::h--
=H=
=t
14\
13
::1
O.0
:::r
CD
CD
til
is\
·
17\
d.0
"'0
·
::lJ
o
181
"
C
C
D.0
-I
9
·
n
d.0
·
::lJ
m
-<
m
f>-
7
CEll
~~.
CEll
(20)
119)
!lS)
J
f- ~J
CELL
(17)
'--
:8=
=H=
IY
~
~J
CELL
(161
'--
:8=
ft:f
:s:t
:sor
(lO)
SP
("1
~
2-274
~J
'--
191
"'0
(21)
~
·
,.
13
CEll
CEll
,.
D.0
~1
~J
o.0
16\
1221
~
·
r+
CELL
(231
~
}f
CJ)
~Cr
(TO All REGISTERS)
L---
=H=
o.0
c
C»
r+
C»
h
9
O.0
co
~CELL
7
ASYNCHRONOUS RESET
~rr
CELL
rn
TEXAS .",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
{151
(141
CEll
SYNCHRONOUS SET
no ALL REGISTERS)
1131
TlCPAL22V10M. TlCPAL22V10C
EPIC™CMOS PROGRAMMABLE ARRAY LOGIC
/
output logic macrocell (OlM) description
A great amount of architectural flexibility is provided by the user-configurable macrocell output options.
The macrocell consists of a D-type flip-flop and two select multiplexers. The D-type flip-flop operates like
a standard TTL D-type flip-flop. The input data is latched on the low-to-high transition of the clock input.
The Q and Q outputs are made available to the output select multiplexer. The asynchronous reset and
synchronous set controls are available in all flip-flops.
The select multiplexers are controlled by programmable bits. The combination of these programmable bits
will determine which macrocell functions are implemented. It is this user control of the architectural structure
that provides the generic flexibility of this device.
output logic macrocell diagram
OUTPUT lOGIC MACROCEll
...
MUX
U)
r--------------4.-----~3
2
R 1-0
AR
Q)
Q)
.c:
fn
10
...
C1
I
FROM CLOCK BUFFER
ss
I
I
MUX
C
.,
G1
II
CO
CO
1}
03
GO
15
AR _ .synchronous reset
S5 - synchronous set
L______
I
I
I
I
J
~
w
:>w
a:
c.
l-
t.)
:::>
c
oa:
c.
TEXAS ."
INSTRUMENTS
POST OFFice BOX 655012 • DALLAS. TeXAS 76265
2-275
TICPAL22V10M, TICPAL22V10C
EPIC"'CMOS PROGRAMMABLE ARRAY LOGIC
output logic macroc.1I optio"s
MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
CELL
SELECT
51
0
0
1
1
FEEDBACK AND OUTPUT CONFIGURATION
SO
0
1
0
1
Register feedback
Registered
Register feedback
Registered
Active low
Active high
I/O feedback
Combinational
Active low
I/O feedback
Combinational
Active high
o = erased cell
1 = programmed cell
51 and SO are select-function cells as shown in the output logic macracell
diagram.
II
...c
CI)
CI)
en
::T
...
CD
CD
51 - 0
SO - 0
(I)
51 - 0
SO - 1
REGISTER FEEOBACK, REGISTERED, ACTIVE-LOW OUTPUT
REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT
51 - 1
51 - 1
SO - 1
SO - 0
""D
::lD
o
1/0 FEEDBACK, COMBINATIONAL, ACTIVE-LOW OUTPUT
1/0 FEEDBACK, COMBINATIONAL, ACTIVE-HIGH OUTPUT
C
c:
n
-I
""D
::lD
m
S
m
~
2-276
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
T1CPAL22V1DM, T1CPAL22V1 DC
EPIC™CMOS PROGRAMMABLE ARRAY LOGIC
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) t
Supply voltage range, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.5 to Vee + 0.5 V
Input diode current, 11K (VI < 0 or VI > Vee). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
Output diode current, 10K (Va < 0 or Va > Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
Continuous output current, 10 (Va = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ±40 mA
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: FN or N package ......... 260°C
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: FH or J package .......... 300°C
Operating free-air temperature range: M suffix .......................... - 55°C to 125°C
e suffix .............................. OOC to 75°C
Storage temperature range ......................................... - 65°C to 150°C
Note 1: This rating applies except during programming and preload cycles.
t Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under" recommended
operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions
M SUFFIX
Supply voltage
VCC
VIH
High-level input voltage
Vil
low-level input voltage
IOH
High-level output current
IOl
Low-level output current
fclock
Clock frequency
NOM
MAX
4.5
2
5
5.5
Driving TIL
en
C SUFFIX
MIN
VCC+O.5
0.8
-2
MIN
4.75
2
NOM
MAX
5
5.25
VCC+O.5
0.8
-3.2
Driving CMOS
-2
-4
Driving TTL
12
16
2
4
Driving CMOS
UNIT
V
V
V
mA
0
0
MHz
8
ns
Pulse duration
ClK low
11
9
ns
25
n.
Setup time
30
26
tsu
20
25
n.
th
Hold time
Operating free-air temperature
Asynchronous reset
Input or feedback
Reset inactive state
Input or feedback
TA
0
-55
0
125
0
75
(I)
...
IV
IV
Q
10
30
CD
CD
.c
mA
ClK high
tw
EI...
ns
DC
3:
w
5>
w
a:
a..
I(.)
:::;)
C
oa:
a..
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-277
TlCPAL22V10M, TICPAL22V1 DC
EPICTMCMOS PROGRAMMABLE ARRAY LOGIC
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
VOH
= MIN,
= MIN,
10H
10H
Vee
MAX,
Vo
10ZL
Vo
IIH
Vee = MAX,
Vee - MAX,
IlL
Vee
V"
10§
=
=
=
Vee
MAX,
Vee
MAX,
Outputs open'
MAX for TTL
MAX for eMOS
=0
alee#
Vee - MAX,
One input at 0.5 V or 2.4 V,
Vi
CD
CD
=
TA
4
3.86
TYP~
MAX
25 0 e
-30
I
I
UNIT
V
V
0.5
0.5
V
0.4
0.4
10
-10
V
-130
-30
~
~
-130
mA
100
~A
2
2
~A
10
-10
100
~
mA/MHz
Pin 1
4
4
Others
2
2
mA
12
12
I All inputs
10
10
1 All 1/0 pins
15
15
1 MHz,
=
4
3.86
to 3 V,
I
f
MIN
= 2.7 V
= 0.5 V
= 0.5 V
Vo = 0.5 V
VI = 0 or Vee,
MAX,
lee
f
ei
C SUFFIX
MAX
TYP*
VI - 5.25 V
Vee = MAX,
f = 1 MHz
t/)
MIN
10L - MAX for TTL
10L =; MAX for eMOS
10ZH
=
=
=
Other inputs at 0 V or Vee
elock pin
VI = 2 V,
::r
....en
Vee
-Vee - MIN,
Vee = MIN,
C
....m
m
Vee
VOL
lee
M SUFFIX
TEST CONDITIONSt
pF
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
.
PARAMETER
fmaxll
FROM
(INPUT)
TO
TEST CONDITIONS
10UTPUT)
Without feedback
e suffix:
With feedback
tod
1,1/0
0,1/0
tod
tod
eLKt
RESET
0
0
len
tdis
1,1/0
1,1/0
1,0,1/0
1,0,1/0
M SUFFIX
MIN
Rl
!
= 20011,
= 50 pF
R2
= 39011,
eL
M suffix:
Rl
eL
CL
= 39011, R2 = 75011,
= 50 pF
= 5 pF, See Figure 4
TYP~
CSUFFIX
MAX
MIN
MAX
UNIT
45
TYP*
45
30
30
20
20
ns
15
25
15
25
ns
20
20
ns
20
20
ns
MHz
ns
tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
= 5 V, TA = 25°e.
§This parameter approximates lOS- The condition Va
tAli typical values are at Vee
-a
:D
o
C
c:
n
= 0.5
V takes tester noise into account.
'Oisabled outputs are tied to GNO or Vee.
'This is the increase. in supply current for each input that is at one of the specified TTL voltage levels rather than at 0
hmaxlwith feedback) = _ _1
_ _ (eLK to 0); fmaxlwithout feedback) = _ _
. _1_ __
tw1htl + tw(iow)
tsu + tpd
-I
-a
:D
m
S
m
:e
2-278
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, texAS 75265
V or Vce.
TICPAL22V10M, TlCPAL22V1 DC
EPIC"'CMOS PROGRAMMABLE ARRAY LOGIC
preload procedure for registered outputs
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below. The output level depends on the polarity selected during
programming.
Step
Step
Step
Step
1.
2.
3.
4.
With Vee at 5 volts and pin 1 at VIL, raise pin 8 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 8 to VIL. Preload can be verified by observing the voltage
level at the output pin.
preload waveforms (see Note 2)
PIN 8
~-
/
---f
I4-tsu~
I+-td--+l
CLK/I
I
I
I
VIL
I
I
I
~
~ -VIH
REGISTERED I/O ~
INPUT
I
-VIL
= tsu = tw =
- VIHH
i l l i !- --IUU-:::
I
I
NOTE 2: td
-
I'
)4-td-+l
I+-tw---'
-
100 ns to 1000 ns. VIHH
=
I
I
V,.---VOH
\
EI...
en
Q)
Q)
.c
fI)
...
CO
CO
C
OUTPUT
VOL
10.25 V to 10.75 V.
W
==
:;
w
a:
Q.
....
o
:::>
o
oa:
Q.
TEXAS . "
INSTRUMENTS
POST OffiCE BOX 655012 • DALLAS, TEXAS 75265
2-279
TlCPAl22V10M, TlCPAL22V1 DC
EPIClMCMOS PROGRAMMABLE ARRAY LOGIC
power-up reset
.Following power-up, all registers are reset to zero. The output level depends on the polarity selected during
programming. This feature provides extra flexibility to the system designer and is especially valuable in
simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC's
rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable
input and feedback setup times are met.
power-up reset waveforms
4
VCC __________
J
;;r
~-----------------------------------5V
1414~---tpdt
(600 ns typo '000 ns MAX)
ACTIVE-HIGH
REGISTERED OUTPUT
...C
I»
I»
ACTIVE-lOW
REGISTERED OUTPUT
/
STATE UNKNOWN
I
STATE UNKNOWN
~
~
~
1~~: ---T::~
!
!f,.5 V
_ _ _~ ____""" ____________________-.J :
rJ)
-
-
-
-
-
\
_~
VOH
-
VOL
J+-t.u*~
:::r
CD
!(I)
ClK/1
_____________________________~'.5V
.
CVIH
1:,.5V
- --
~----------J~
Vil
I+---tw~
tThis is the power-up reset time and applies to registered outputs only. The values shown are from characterization data.
*This is the setup time for input or feedback.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available softwl!re and
inexpensive device programmers.
Complete programming specification, algorithms, and the lastest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
-
"'D
:a
o
c
c:
(')
-I
"'D
:a
m
-:e
<
m
2-280
TEXAS .."
INSTRUMENTS
PO$T OFFICE BOX 655012 • DALLAS, T-EXAS 76265
TICPAL22V10M, TICPAL22V1 DC
EPIC™CMOS PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION
Vee
S,
~
ISee Nota A)
FROM OUTPUT _ _ _
R1
_ _>-- TEST
~~
UNDER TEST
POINT
R2
NOTES: A. When measuring propagation times of 3-state outputs, 51 is closed.
B. CL = includes probe and jig capacitance.
...en
FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS
INPUT
ISea Notas A and B)
-..IiL'5V
\~5:-tpd - tPLH or tpHL
I
(4--tpLH~
IN-PHASE
OUTPUT
,
:,
'
Y,.5V
-----3V
OV
...
, •
I+--tpHL~
II
I
,~.:V--VOH
,
-
til
ctI
ctI
C
VOL
k--tPLH~
!+-tPHL---+r
OUT-Of-PHASE
OUTPUT
CI)
CI)
.c
\,.5 V
I'
'-----------~
VOH
'.5 V
-
-
- - VOL
VOLTAGE WAVEFORMS
NOTES: A. When measuring propagation times of 3-state outputs, S1 is closed.
B. All input pulses are supplied by generators having the following characteristics: PRR '" 1 MHz, Zo
= 50 I), tr = 3 ns.
FIGURE 2. PROPAGATION DELAY TIMES. OUTPUT RISE AND FALL TIMES
3=
w
5>
w
a::
a.
I-
(.)
::)
C
oa::
a.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 6550~ 2 • DALLAS. TeXAS 75265
2-281
TICPAL22V10M. TICPAL22V10C
EPIClMCMOS PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION
f·
ClK
(See Not..s A and BI
____________- J
5V
~14~--------th--------~~~,
~tsu---+l
DATA~I
':5 V
INPUT
(See Note Al
0.3 V
I
2'7V~:
2.7V
---------------""i
I
~~~
I
,..---------3 V
'.5 V
I
,.,;;,0;,;;.3,.;V;.....___
°
V
~q~
VOLTAGE WAVEFORMS
,.------------
FIGURE 3. SETUP AND HOLD TIMES. AND INPUT RISE AND FALL TIMES
I~~~~
(See Note Al
==x
X,
1.5 V
I _ _ _ _ _ _ _ _ _ _ _ _ _ _.J.
I
I
I
I
I
\1.5V
I
I
I
OUTPUT
J_rO.
°V
~2/3 VCC
II/::
:
I.
I+-- tPZH---..I
•
~3 V
I+-- tpLZ----+I
I+-- tpZL ---+i
OUTPUT
WAVEFORM 1
S1 CLOSED
(Se•. Note CI
1.5 V
I
,..-------1"-----,
I
5V
'"" -
-
..t..
...J -
-
- - VOL
KLo.5 ~
WAV~10~:E~ _____________",·5 V
-
- VOH
I
(See Note C I '
~O V
~tpHZ--+I
ten - tpZl or tpZH
'dis
= 'PLZ
or tpHZ
VOLTAGE WAVEFORMS
FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
.~
HI~~~:~EL
(")
-I
\-5 ~ ----::
5 V
1144------'w ----~~
o
o
c:
-Jt.
______
~14r_----tw------~~1
-----'\ I
LOW-LEVEL
PULSE
I
f..5~
\.5V
."
VOLTAGE WAVEFORMS
m
FIGURE 5. PULSE DURATIONS
:D
<
in
==
3 V
____
NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR
B. For clock inputs, f max is measured with input duty cycle = 50%
s
ov
1 MHz, Zo = 50 0, t, = 3 ns.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TICPAL22V10M, TICPAL22V10C
EPICTMCMOS PROGRAMMABLE ARRAY LOGIC
special design features
True CMOS Outputs: Each '22V10 output is designed with a P-channel pull-up transistor and an N-channel
pull-down transistor, a true CMOS output with rail-to-rail output switching. This provides direct interface
to CMOS logic, memory, or ASIC devices without the need for a pull-up resistor. The CMOS output has
16-mA drive capability, which makes the '22V10 an ideal substitute for bipolar PALs. The electrical
characteristics of this device show the output under both CMOS and TTL conditions.
Simultaneous Switching: High-performance CMOS devices often have output glitches on nons witched
outputs when a large number of outputs are switched simultaneously. This glitch is commonly referred
to as "ground bounce" and is most noticeable on outputs held at VOL (low-level output voltage). Ground
bounce is caused by the voltage drop across the inductance in the package lead when current is switched
(dv ex I X di/dt).
One solution is to restri.ct the number of outputs that can switch simultaneously. Another solution is to
change the device pinout such that the ground is located on a low-inductance package pin. TI opted for
a third option in order to maintain pinout compatibility and eliminate functional constraints. This option
controls the output transistor turn-on characteristics and puts a limit on the instantaneous current available
to the load, much like the lOS resistor in a TTL circuit.
Wake-Up Features: The '22V1 0 employs input signal transition detection techniques to power-up the device
from the standby-power mode. The transition detector monitors all inputs, II0s, and feedback paths.
Whenever a transition is sensed, the detector activates the power-up mode. The device will remain in the
power-up mode until the detector senses that the inputs and outputs have been static for about 40 ns;
thereafter, the device returns to the standby mode.
Power Dissipation: Power dissipation of the '22V1 0 is defined by three contributing factors, and the total
power dissipation is the sum of all three.
...en=
.c
en
...caca
o
Standby Power: The product of VCC and the standby ICC. The standby current is the reverse current
through the diodes that are reversed biased. This current is very small, and for circuits that remain
in static condition for a long time, this low amount of current can become a major performance
advantage.
'
Dynamic Power: The product of VCC and the dynamic current. This dynamic current flows through
the device only when the transistors are switching from one logic level to the other. The total dynamic
current for the '22V10 is dependent upon the users' configuration of the PAL and the operating
frequency. Output loading can be a source of additional power dissipation.
Interface Power: The product of ICC (operating) and VCC. The. total interface power is dependent
on the number of inputs at the TTL VOH level. The interface power can be eliminated by the addition
of a pull-up resistor.
Even though power dissipation is a function of the user's device configuration, and the operating
frequency, the '22V1 0 is a lower powered solution than either the quarter-powered or half-powered
bipolar devices. The virtually zero standby power feature makes the '22V10 the device of choice
for low-duty-cycle and battery-powered applications.
~
w
:>w
a:
Programming and Eraseabllity
Programming of the '22V1 0 is achieved through floating-gate avalanche injection techniques. The charge
trapped on the floating gate remains after power has been removed, allowing for the nonvolatility of the
programmed data. The charge can be removed by exposure to light with wavelengths of less than 400 nm
(4000 A). The recommended erasure wavelengthJs 253.7 nm (2537 A), with erasure time of 20 to 30
minutes, using a light source with a power rating of 12000 p.W/cm placed within 2.5 cm (1 inch) of the
device.
a.
~
(J
::J
Q
oa:
a.
TEXAS . "
INSTRUMENTS
POST OFfiCE BOX 655012 " DALLAS, TEXAS 75265
2-283
TlCPAL22V10M, TICPAl22V1 DC
EPICTMCMOS PROGRAMMABLE ARRAY LOGIC
Programming and Eraseability {continued)
The '22V10 is designed for programming endurance of 1000 write/erase cycles with a data retention of
ten years. A few precautions will guarantee maximum data retention. Continuous exposure to high-intensity
UV light can cause permanent damage. The maximum exposure intensity is 7000 W.s/cm (The equivalent
. of leaving the unit in a UV eraser for a week). The window on the device should be covered by an opaque
label, as the flourescent light in a room can erase a unit in three years or, in the case of a direct sunlight,
erasure can be complete in one week .
•
""0
::J:J
o
C
c:
(')
-I
~
m
<
-m
~
2-284
TEXAS
+
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TEXAS 76285
TlEPAl1 OH 16PB·3C
HIGH·PERFORMANCE ExeL ™PAL® CIRCUIT
03084, DECEMBER 1987
JTPACKAGE
ITOPVIEWI
•
ECl 10KH PAL
•
High-Performance Operation
Propagation Delay , , . 3 ns Max
•
Replacement for Conventional ECl logic
•
24-Pin, 300-Mil Package
•
Reliable Titanium-Tungsten Fuses
Vee
I
I/O
I/O
o
Veeo
o
o
Veeo
o
description
I/O
I/O
This ECl PAL device combines the ExCl'"
(Double Polysilicon Self-Aligned) process with
the proven titanium-tungsten fuses to provide
reliable, high-performance substitutes for
conventional ECl logic, Its easy programmability
allows for quick design of "custom" functions
and typically results in a more compact board,
In addition, chip carriers are available for further
reduction in board space,
The TIEPAl1 OH 16P8-3 is provided with output
polarity fuses, Each output remains active-high
when the fuse is intact and is active-low when
the fuse is blown,
The TIEPAl 10H16P8-3 has 12 dedicated inputs,
four standard outputs, and four I/O ports, It
should be noted that with emitter-coupled
outputs, a high level overrides a low level,
Therefore, in order to use an I/O port as an input,
the related output must be forced to a low level
either through satisfying preprogrammed
equations or permanently by programming,
II....
FK PACKAGE
(TOPVIEWI
en
u
___ uz>u __
4
I/O
o
Veeo
Ne
o
I/O
3
CD
CD
.c
2 1 28 27 26
5
25
I/O
6
24
0
7
23
8
22
Veeo
Ne
9
21
0
10
20
I/O
11
en
....'"
'"
C
19
12 13 14 15 16 17 18
wu - - -
~z
NC - No internal connection
The TlEPAl1 OH 16P8-3 is equipped with a
security fuse, Once the security fuse is blown,
additional programming and verification cannot
be performed, This prevents easy duplication of
a design,
This device is characterized for operation from OOC to 75°C; this temperature range is designated by a
"C" suffix in the part number (TiEPAl10H16P8-3CJT),
~
w
:>w
a:
Q.
t-
O
::>
C
oa:
ExCL is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
PROOUCT PREVIEW documlllll.Dntoi. i.lormodD.
o. pradaell I. tho for ••Ii.1 or dl.i.. ~ha.. of
dl.olop ....t. Chlr••tarl,tI. data .Ii other
::'l::'rr.':t
d:i::.:::"';rT=~,==
pnducll
witIoout .oti..,
a..
TEXAS ,.,
INSTRUMENTS
POST OFFICE BOX 1555012 • DALLAS, TEXAS 75265
Copyright © 1987, Texas Instruments Incorporated
2-285
TlEPAl10H16PB·3C
HIGH·PERFORMANCE ExCLTMPAL® CIRCUIT
functional block diagram (positive logic)
8
&
32 X 64
l!:
8
-1
-
"v
~
"v
~
"v
8
12
4.
16Xt>
16
16
8
"v
~
8
"v
~
8
~
11
...c
C»
C»
"v
8
~
"v
~
"v
8
4
en
::r
CD
!o
"'0
::I:J
o
C
c:
(")
-t
"'0
::I:J.
m
S
m
:e
2-286
'"
'"
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 866012 • DAUAS. TEXAS 75286
Vee
o
o
o
o
110
I/O
110
I/O
TIE PAL 1OH 16P8·3C
HIGH·PERFORMANCE ExCLTM PAL® CIRCUIT
logic diagram (positive logic)
[28](241
VCC
INPUT LINES
/\
10 ••• 4 ••• 8 ••• 12 ••• 16 ••• 20 ••• 24 ••• 28 •••'
[2](11
~
[27](231
,
v!>"-
[3](21
...
[26](221
~
PRODUCT
LINES
0
•
•
•
7
f>?ol
[25](211
I/O
I
[4](31
II
8
110
•
•
•
15
[5](41
r
I
....en
Q)
Q)
.......
.s:.
en
....caca
16
•
•
•
23
o
4
[6](51
?p
[24](201
~
0
0
24
•
•
•
31
~
~
I--'
32
t>p
•
••
39
[21](181
o
40
o
•
•
•
47
~
[9](71
48
•
•
•
55
gppr
[20](171
I
~
56
110
••
•
63
[10](81
r
I
[11](91
[12](101
....
[17](141
f------fA
"" ....
NOTE: Pin numbers in
r 1 are for the
0..
[18](151
[13](111
FK package; pin numbers in ( ) are for JT package.
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
~
:>w
a:
[19](161
::
::
I/O
[16](131
t-
(.)
::l
C
o
a:
a..
2·287
TIEPAl1 OH 16P8-3C
HIGH-PERFORMANCE ExCL™PAL® CIRCUIT,
absolute maximum ratings over operating frea-air temperature range (unless otherwise noted)
(see Note 1)
Supply voltage, VEE (see Note 2) ....................................... 0 V to -6.5 V
Input voltage, VI (see Note 3) .................................. . . . . . . . . .. 0 V to VEE
Output current .......................................... '. . . . . . . . . . . . . .. - 50 mA
Operating free-air temperature ran~e: C suffix .................... : ......... OOC to 75°C
Storage temperature range ......................................... - 65 OCto 150°C
NOTES:
1. These ratings apply except for programming pins during a programming cycle.
2. All voltage values are with respect to Vee and Veeo. i.e .• these pins are all assumed to be at 0 volts.
3. VI should never be' more negative than VEE.
recommended operating conditions (see Note 4)
•
VEE
Supply voltage
TA
= ooe
= 25°C
= 75°C
= ooe
c
....
VIH
High-level input voltage
TA
TA
TA
en
:::r
VIL
Low-level input voltage
TA - 25°C
TA = 75°C
TA
Operating free-air temperature
D)
D)
CD
!
(I)
MIN
-4.94
-1.17
-1.13
-1.07
-1.95
-1.95
-1.95
C-SUFFIX
NOM
MAX
-5.2 -5.46
-0.84
-0.81
-0.735
-1.48
-1.48
-1.45
0
75
UNIT
V
V
V
°e
NOTE 4: The algebraic convention. in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum. Is used in this data sheet for logic voltage levels only. For other quantities. e.g .• supply voltages and currents.
the normal. magnitude convention is used.
electrical characteristics over recommended supply voltage range at specified free-air temperature
,
(see Notes 4 and 5)
PARAMETER
TEST CONDITIONS
ooe
VOH
VI
= VIHmin or VILmax
25°C
75°C
ooe
VOL
VI
= VIHmin or VILmax
25°C
75°C
ooe
"'tJ
.::JJ
IIH
VI
= VIHmax
25°C
75°C
ooe
c
c:
n
IlL
VI
= VILmin
25°C
75°C
ooe to 75°C
o
-I
"'tJ
::JJ
-~
lEE
All Inputs open
C-SUFFIX
TVP
MIN
MAX
-1.02
-0.84
-0.98 -0.895 -0.81
-0.92
-0.735
-1.95
-1.63
-1.95
-1.63
-1.95 -1.79 -1.60
220
220
220
0.5
0.5
0.3
UNIT
V
V
p.A
~A
-220
mA
NOTES: 4. The algebraic convention. in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum, Is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents.
the normal magnitude convention is used.
5. Each 10KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feetl per minute
Is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V.
.
~
2-288
TEXAS •
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlEPAl1 OH 16P8·3C
HIGH·PERFORMANCE ExeLTM PAL@ CIRCUIT
switching characteristics over recommended ranges of supply voltage and operating frae-air temperature
(see Note 5)
PARAMETER
FROM
(lNPUTI
TO
(OUTPUTI
tpd
I, 1/0, or feedback
0,1/0
C-SUFFIX
TEST CONDITIONS
MIN
See Figures 1 and 2
tr
tf
TYP
MAX
UNIT
1
3
ns
0.7
1.5
ns
0.7
1.5
ns
NOTE 5: Each 10KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 maters (500 leetl per minute
is maintained. Outputs are terminated through a 50~ohm resistor to - 2 V.
PROGRAMMING INFORMATION
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
PI
...
U)
CD
CD
.c
o
...
CO
CO
PARAMETER MEASURI=MENT INFORMATION
Q
INPUT- - 1 ' " 5 - 0 - % - - - \ ; ; - - -
1
I
1
,'50% I
•
tPLH~
IN·PHASE
OUTPUT
tpHL
I
VIL
~tPHL
VOH
II i-;;;.;;
~
VOL
-J..-.--..c
OUT '()F.pHASE
OUTPUT
VIH
I4---*-tpLH
1
\ 50%
•
OUTPUT
WAVEFORM
F'
50% VOH
__ VOL
801f
I
20%
I
I
I 1
t,......c
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
I+-
"t"
"---VOH
(80%1
I
1
I
(20%1
I
V
OL
I 1
~
I4-tf
VOLTAGE WAVEFORMS
RISE TIME AND FALL TIME
FIGURE 1. VOLTAGE WAVEFORMS
;:
w
5>
w
a::
Q.
t;
::;)
C
oa::
a.
TEXAS . "
INSfRUMENlS
POST OFFICE BOX 855012 • DALLAS. TeXAS 16265
2-289
I
TIEPAL 1OH16P8·3C
HIGH·PERFORMANCEExCLTM PAL® CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V
25 "F
r
0.1 "F
q
iNPUT
OUTPUT
UNDER ~-4---~~~~~
TEST
....... UNDER
t-t-~----t-+---
TEST
c
!C»
~
CD
....
CD
VIH max
or
+ 2V{
VIL min
+ 2V
}
ALL
OTHER
INPUTS
ALL
{
OTHER
OUTPUTS
~.
VEE
0.1 "F
q
-3.20 V ± 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = BOO mV poP. PRR :s; 1 MHz. tw = 500 ns.
t,=tf=lns.
B. RT is • 50-0 terminator internal to the oscilloscope.
C. CL :$ 3 pF. includes fixture and stray clipacitance.
D.Coax has 50-0 impedance and the coax to oscilloscope channel A and to channel B must be of equal lengths.
E. All unused outputs are loaded with 50-0 ± 1% resistors to ground.
F. All. unused inputs should be connected to either high or low levels consistent with the logic function required.
G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (114 inch).
FIGURE 2. LOAD CIRCUIT
2-290
TEXAS ,.,
INSTRUMENTS
POST OFFICE BOX 656012 • DALLAS, TEXAS 75265
TIE PAL 1OH 16PB·6C
HIGH·PERFORMANCE IMPACTTMECL PAL~ CIRCUIT
02111
•
ECl 10KH PAL
•
High-Performance Operation
Propagation Delay ... 6 ns Max
•
Replacement for Conventional ECl logic
•
24-Pin, 300-Mil Package
•
Reliable Titanium-Tungsten Fuses
MAY 1987-REVISEO OECEMBER 1987
TIEPAL10H16P8-6 .•• JT PACKAGE
(TOP VIEW)
Vee
I
I
I/O
I
I/O
0
0
Veea
Veeo
0
0
description
1/0
This IMPACT'" ECl PAL device uses proven
titanium-tungsten fuses to provide reliable, highperformance substitutes for conventional ECl
logic. Its easy programmability allows for quick
design of "custom" functions and typically
results in a more compact board. In addition, chip
carriers are available for further reduction in
board space.
I
TIEPAL10H16P8-6 ... FK PACKAGE
(TOP VIEW)
u
___ uz>u __
The TIEPAl1 OH 16P8-6 is provided with output
polarity fuses. Each output remains active-high
when the fuse is intact and is active-low when
the fuse is blown.
4
The TlEPAl 10H16P8-6has 12 dedicated inputs,
four standard outputs, and four 110 ports. It
should be noted that with emitter-coupled
outputs, a high level overrides a low level.
Therefore, in order to use an 1/0 port as an input,
the related output must be forced to a low level
either through satisfying preprogrammed
equations or permanently by programming.
The TIEPAL10H16P8-6 is equipped with a
security fuse. Once the security fuse is blown,
additional programming and verification cannot
be performed. This prevents easy duplication of
a design.
1/0
3
2
1 28 27 26
5
25
6
-24
7
23
8
22
9
21
10
11
20
19
121314 15 1617 18
wu---
~z
NC - No internal connection
This device is characterized for operation from OOC to 75°C; this temperature range is designated by a
"C" suffix in the part number (TIEPAL10H16P8-6CJT).
IMPACT is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCTION DATA d...m.........1. information
currant .1 af publication doll. Products .0.lorm II
sp..if_o.. per thlllrml af Tun Instrum....
:.=~i~·i~1:.'li =::':1' lJl·::::~ nat
Copyright @ 1987, Taxaslnstruments Incorporated
TEXAS . "
INSTRl)MENlS
POST OFFICE BOX 655012 • DALI.AS, TEXAS 75265
2-291
TlEPAl1 OH 16PB·6C
HIGH·PERFORMANCE IMPACTTMECL PAL® CIRCUIT
functional block diagram (positive logic)
8
&
-1
~,
32 X 64
8
-
'V
~
'V
~
'V
8
12
4,
16X!>
16
16
'V
8
'V
8
..- h
~
h.
8
~
11
c
am
8
r+
rn
TEXAS
~
IN STRUM ENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
o
1/0
1/0
'V
1/0
vee
rn
:r
o
1/0
~
4
o
..- 'V
8
CD
CD
2·292
'V
o
TlEPAl1DH16PB·6C
HIGH·PERFORMANCE IMPACT'MECL PAL® CIRCUIT
logic diagram (positive logic)
[281124}
Vcc
INPUT LINES
/\
10 ... 4 ... 8 ... 12 ... 16 ... 20 ... 24'''28 .. ''
[2111}
....1 - -
v
[3112}
PRODUCT
LINES
0>-
0
A
[271123}
::
[261122}
=l
•
•
•
7
>PI
[251121}
1/0
T
[4][3}
I...
8
[5114}
I/O
•
r~
I
•
•
15
CI)
CI)
CI)
.s::
t/)
16
•
??D
•
•
23
[241120}
5::
...
CO
CO
0
0
24
o
•
•
•
31
~
[6115}
32
•
•
•
39
>P
40
o
[211118}
o
•
•
•
47
[9](7}
48
•
•
•
55
§P?Dr
,.
A
[201117}
1/0
I
56
I/O
[lOllS}
r
I
[11119}
[121110}
[131111}
•
•
•
63
....
A
[19](16}
..;
[171114}
:::
[181115}
...
...
I-------.~
f---J't
[161113}
NOTE: Pin numbers in [ 1 are for the FK package; pin numbers in ( ) are for JT package.
TEXAS
~
INSfRUMENlS
POST OFFICE BOX 655012. DALLAS, TEXAS 75265
2-293
TlEPAl1 OH 16P8-6C
HIGH-PERFORMANCE IMPACT™ECL PAL@, CIRCUIT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
(see Note 1)
Supply voltage, VEE (see Note 2) ....................................... 0 V to -6.5 V
Input voltage, VI (see Notes 2 and 3) ..................................... ;. 0 V to VEE
Output current ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 mA
Operating free-air temperature range: e suffix .............................. ODe to 75 De
Storage temperature range ......................................... - 65 De to 150 De
NOTES: 1. These ratings apply except for programming pins during a programming cycle.
2. All voltage valuas are with respect to VCC and VCCO, i.e., these pins are all assumed to be at 0 volts.
3. VI should never be more negative than VEE.
recommended operating conditions (see Note 4)
IIo
VEE
VIH
Supply voltage
TA = OoC
TA = 25°C
High-level input voltage
I»
~
I»
TA '" 75°C
TA '" ooC
TA = 25°C
TA = 75°C
(I)
VIL
Low-level Input voltage
i
TA
Operating free-air temperature
!
(n
MIN
-4.94
-1.170
-1.130
-1.070
-1.960
-1.960
-1.950
0
C-SUFFIX
NOM
M~
-5.2 -5.4/3
UNIT
V
-0.8~0
-0.8to
-0.736
-1.4811
-1.48(>
-1.450\
76
v
V
°C
NOTE 4: The algebraic convention, in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents,
the normal magnitude convention Is used.
electrical characteristics over recommended supply voltage range at specified free-air temperature,
Vee - Veeo - 0 (see Notes 4 and 5)
PARAMETER
TeST CONDITIONS
TA
VOH
VI = VIHmln or VILmax
25°C
76°C
ooC
VOL
VI = VIHmin or VILmax
25°C
75°C
ooC
IIH
VI'" VIHmax
25°C
75°C
OOC
IlL
VI = VILmin
lEE
All inputs .opan
25°C
75°C
O'C to 76°C
OOC
MIN
-1.020
-0.980
-0.920
-1.950
-1.950
-1.950
C-SUFFIX
TVP
MAX
-0.840
-0.810
-0.735
-1.630
-1.630
-1.600
220
220
220
0.5
0.5
0.3
UNIT
V
V
pA.
pA.
-240
mA
NOTES: 4: The algabralC convantlon, In which the more negative limit i. designated a. minimum and the la•• negative limit is deSignated
as maximum, Is used in this data sheet for logiC voltage levels only. For other quantities, e.g" supply voltages and currents,
the normal magnitude convantion Is used.
5. Each 10KH PAL'" . has been designed to meet these specificetions after thermal equilibrium has been established. The circuit
Is In a te.t socket or mounted on a printed circuit board and transverse air flow greeter than 150 meters (500 feet) per minute
is maintained. Outputs are termlnatad through a 50-ohm resistor to - 2 V.
2-294
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 7526!i
TlEPAL 1OH16P8·6C
HIGH·PERFORMANCE IMPACT'MECL PAL® CIRCUIT
switching characteristics over recommended ranges of supply voltage and operating free..:air temperature
(see Notes 4 and 5)
PARAMETER
FROM
(INPUT!
TO
(OUTPUTI
tpd
I. I/O. or feedback
Q
TEST CONDITIONS
See Figures 1 and 2
tr
tf
MIN
C-SUFFIX
TYP 'MAX
4
1
1
2
0.7
0.7
UNIT
6
ns
2.2
ns
ns
2.2
NOTES: 4. The elgebraic convention. in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum, is usec::t in this data sheet for logic voltage levels only. For other quantities. e.g., supply voltages and currents,
the normal magnitude convention is used.
5. Each 10KH PAL~ has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test sock.et or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through 8 50-ohm resistor to - 2 V.
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive programmers.
PI
Complete programming specifications. algorithms. and ,the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5762.
PARAMETER MEASUREMENT INFORMATION
.L, 50%
INPUT
--ft
\..50;-- I
~tPHL
VIH
VIL
tPLHJ....I - - i , . - - + I - _ : t - - VOH
1
/50% I
)I. 50%
I
.
I
~
I
I
VOL
tpHL~
~tpLH
'.1':"::1 VOH
1
OUT -OF-PHASE
50%
\ 50%
OUTPUT
•
- VOL
IN-PHASE
OUTPUT
OUTPUT
WAVEFORM
801f
20%
i
T
I
I
I 1
t r ........
I+--
~---VOH
(80%1
I
1
I ,
120%1
V
OL
I 1
-.I
l+-tf
VOLTAGE WAVEFORMS
RISE TIME AND FALL TIME
VOLTAGE WAVEFORMS
PROPAGAT'ION DELAY TIMES
FIGURE 1. VOLTAGE WAVEFORMS
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-295
TlEPAL 10H16P8·6C
HIGH·PERFORMANCE IMPACTTMECL PAL® CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V
251'F
r
0.1 "F
q
INPUT
UNDER
TEST
OUTPUT
UNDER
TEST
II
C
v~_ .. v{
I»
~
I»
or
VIL min + 2 V
tn
:r
CD
CD
~
A~
}
ALL
OTHER
INPUTS
en
OTHER {
OUTPUTS
VEE
r
':'
25 "F
0.1 "F
q
-3.20 V ± 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude =; 800 mV poP, PRR s 1 MHz, tw = 500 ns,
tr : tf = , ns.
B. RT is a 50-0 terminator internal to the oscilloscope.
C. CL s 3 pF, include. fixture and .tray capacitance.
D. Coax has 50-0 impedance and the coax to oscilloscope channel A and to channel B must be of.equallengths.
E. All unused outputs are loaded with 50-0 ± 1% resistors to ground.
F. All unused inputs should be connected to either high or low levels consistent with the logic function required.
G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inchl.
FIGURE 2. LOAD CIRCUIT
2-296
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
TlEPAl10016PB·3C
HIGH·PERFORMANCE ExCL mpAL® CIRCUIT
03083, DECEMBER 1987
JTPACKAGE
(TOP VIEW)
•
ECl 100K PAL
•
High-Performance Operation
Propagation Delay ... 3 ns Max
•
lEE ... -220 mA Max
•
Replacement for 100K ECl logic
•
24-Pin, 300-Mil Package
•
Reliable Titanium-Tungsten Fuses
Vee
I
I
1/0
1/0
o
o
Veeo
Veeo
o
o
1/0
1/0
description
This ECl PAL device combines the ExCl'"
(Double Polysilicon Self-Aligned) process with
the proven titanium-tungsten fuses to provide
reliable, high-performance substitutes for
conventional ECl logic, Its easy programmability
allows for quick design of "custom" functions
with increased logic density. In addition, chip
carriers are available for further reduction in
board space,
tn
'CD
CD
u
___ uz>u __
4
The TIEPAl1 0016P8-3 is provided with output
polarity fuses. Each output remains active-high
when the fuse is intact and is active-low when
the fuse is blown.
The TIEPAl 10016P8-3 has 12 dedicated inputs,
four standard outputs, and four 110 ports. It
should be noted that with emitter-coupled
outputs, a high level overrides a low level.
Therefore, in order to use an 110 port as an input,
the related output must be forced to a low level
either through satisfying preprogrammed
equations or permanently by programming.
II...
FK PACKAGE
(TOPVIEWJ
3
.c
2 1 282726
5
6
25
24
7
23 Veeo
8
22
Ne
9
0
10
21
20
1/0
11
19
I
til
...
I/O
CIS
CIS
0
C
12 13 14 15 16 17 18
wu - - .!j!z
NC-No internal connection
The TIEPAl1 0016P8-3 is equipped with a security fuse. Once the security fuse is blown, additional
programming and verification cannot be performed. This prevents easy duplication of a design.
This device is characterized for operation from OOC to 85°C; this temperature range is designated by a
"C" suffix in the part number (TIEPAL10016P8-3CJT).
~
w
5>
w
a:
0-
tU
:::J
C
oa:
ExCL is a trademark of Texas Instruments Incorporated.
0-
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCT PREVIEW doc.........ntal. i.formatlo.
DR prad.... In the fonnalivl or dasig. ~~I" a'
dlvllopml.t. Charlotlrl,tl. dati In~ other
:=~cstl~:"Jg':t ~~::I=::I~rT:.~::~a:.,:;.:
products wit.out noti...
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
Copyright @ 1987. Texas Instruments Incorporated
2-297
TIEPAL10016P8·3C
HIGH·PERFORMANCE ExCLTMPAL® CIRCUIT
functional block diagram (positive logic)
8
&
32
i<
64
'"
-
-1
'V
8
I-- 'V
8
I-- 'V
12
4,
16X!>
16
16
8
'V
I-- 1"'8
'V
I-- II'\.,
8
•
o
....
I»
I»
I-- 'V
8
I-- 'V
8
I-- 'V
4
tn
:sCD
!
(II
2-298
TEXAS'"
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
Vee
o
o
o
o
1/0
I/O
1/0
1/0
TlEPAl10016P8·3C
HIGH·PERFORMANCE ExeL'" PAL~ CIRCUIT
logic diagram (positive logicl
[28)(24)
Vcc
INPUT LINES
A
'0 ••• 4 ... 81 ••• 12' ••• 181 ...,20 ••• 24·••• 128,...'
[2)(1)
[27)(23}
~
......~
[3)(2}
PRODUCT
LINES
[28)(22}
0
~I
••
•
7
I/O
1/0
J
[4)(3)
[5)(4}
[25)(21}
PI
8
•
la,w
a:
Q.
t-
(..)
::::)
C
oa:
Q.
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS. TeXAS 75265
2-301
TlEPAl10016P8·3C
HIGH·PERFORMANCE ExCL™ PAL® CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V
r
25 "F
0.1 "F
q
-2.50 V ± 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = 800 mV P·P. PRR':s 1 MHz. tw = 600 ns.
t r =tf=lns.
8. RT is a 60·11 terminator internal to the oscilloscope.
C. CL :S 3 pF. includes fixture and stray capacitance.
D. Coax has 50·11 impedance and the coax to oscilloscope channel A and to channel 8 must be of equal lengths.
E. All unused outputs are loaded with 50·11 ± 1% resistors to ground.
F. All unused inputs should be connected to either high or low levels consistent with the logic function required.
G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch).
"1:J
FIGURE 2. LOAD CIRCUIT
:IJ
o
C
c:
n
""'!!
"1:J
:IJ
m
<
iii
~
2·302
TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 76285
TlEPAl10016P8·6C
HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT
03082. DECEMBER 1987
JT PACKAGE
•
ECl 100K PAL
•
High·Performance Operation
Propagation Delay ... 6 ns Max
•
lEE ... -240 mA Max
•
Replacement for 100K ECl logic
•
24-Pin. 300-Mil Package
•
Reliable Titanium-Tungsten Fuses
(TOP VIEW)
Vee
I
110
110
o
o
Veeo
Veeo
o
o
110
1/0
description
This IMPACT'" ECl PAL device uses proven
titanium-tungsten fuses to provide reliable. highperformance substitutes for conventional ECl
logic. Its easy programmability allows for quick
design of "custom" functions and typically
results in a more compact board. Additionally.
chip carriers are available for further reduction
in board space.
(TOPVIEWI
U)
u
___ uz>u __
4
The TIEPAl1 0016P8-6 is provided with output
polarity fuses. Each output remains active-high
when the fuse is intact and is active-low when
the fuse is blown.
The TIEPAl1 0016P8-6 has 12 dedicated inputs.
four standard outputs. and four I/O ports. it
should be noted that with emitter-coupled
outputs. a high level overrides a low level.
Therefore. to use an I/O port as an input. the
related output must be forced to a low level
either by satisfying pre programmed equations or
by permanent programming.
fI
...
FK PACKAGE
3
2
CD
CD
.r:.
1 28 27 26
en
25
6
24
7
23
8
22
9
21
10
20
11
...caca
o
19
12 13 14 15 16 17 18
wu - - -
~z
NC-No internal connection
The TIEPAl1 0016P8-6 is equipped with a
security fuse. Once the security fuse is blown.
additional programming and verification cannot
be performed. This prevents easy duplication of
a design.
~
w
This device is characterized for operation from
OOC to 85°C.
:>w
a:
D..
I-
o
:J
C
oa:
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCT PREVIEW da.umants .ontain inlarma!io.
a. praduell I. tha 'armati.. ar dllig. ~ha.. af
d8V~lopm.nt.
Characteristic data anil athar
~=~':::Ir~~t ~rar.:l~rT3i::'=::~:::
products without nltice.
D..
Copyright © 1987. Texas Instruments Incorporated
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
2-303
TlEPAl10016P8·6C
HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT
functional block diagra~ (positive logic)
8
&
32 X 64
'"
-1
r--
rv
~
'V
8
8
--
~
12
4.
16X!>
16
16
8
'V
.'\.
8
'V
--
I'\.
8
E
8
8
4
."
::ZJ
o
C
c:
o
""'"
."
::ZJ
m
<
-
~
2·304
'V
TEXAS ."
INSIRUMENlS
POST OFFICE BOX 655012 • DAlLAS, TEXAS 7&266
rv
rv
..- 'V
Vee
o
o
o
o
I/O
110
110
110
TlEPAl10016P8·6C
HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT
logic diagram (positive logic)
[28)(24)
VCC
INPUT LINES
1\
10 ... 4 ... 8 ... 12 ... 16 ... 20 ... 24 ... 28 ...'
[2)(1)
[27)(23)
-t>t=
...
[3)(2)
PROOUCT
LINES
[26)(22)
"
0
•
•
125)(21)
•
7
14)(3)
A
1/0
J
I
II...
8
•
•
•
15
15)(4)
1/0
I
I
CI)
Q)
Q)
...
.c
16
CJ)
WP
•
•
•
23
124)(20)
0
C
24
o
•
•
•
C1tf
16)(51
...
«I
.«1
31
32
~
•
•
•
39
[21](18)
o
40
o
•
•
•
47
19](7)
48
•
•
55
•
120)(17)
-:j
I
110](8)
1/0
->w
"
•
•
•
63
las<
I
a:
c..
A
[12)(10)
119](16)
118](15)
111)(9)
113)(11 )
:::.
.A
...
I------I.A
~
NOTE: Pin numbers in ( ) are for the FK package; pin numbers in ( ) are for JT package.
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
~
W
I
56
1/0
117)(14)
116)(13)
tO
::l
Q
o
a:
c..
2·305
TlEPAl1 00 16PB-6C
HIGH~PERFORMANCE
IMPACpM ECl PAL® CIRCUIT
absolute maximum ratings over operating free-air temperature range lunless otherwise noted)
Isee Note 1)
Supply voltage, VEE (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. 0 V to - 6.5 V
Input voltage, VI (see Note 3) ............................................ 0 V to VEE
Output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 rnA
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 85°C
Storage temperature range ......................................... - 65°C to 1 50°C
NOTES: 1. Thes. ratings apply except for programming pins during a programming cycle.
2. All voltage values are with respect to VCC and VCCO, i.e., these pins are all assumed to be at 0 volts.
3. VI should never be more negative than VEE.
recommended operating conditions Isee Note 4)
VEE
MIN
-4.2
Supply voltage
VEE
VIH
High-level input voltage
VEE
C
VIL
en
::T
TA
Low-level input voltage
VEE
VEE
MAX
UNIT
-4·8.
-0.88
V
-0.88
V
=
=
=
-4.2 V
-4.6 V
-1.15
-1.165
-4.8 V
-4.2 V
-1.165
-0.88
-1.81
=
=
-4.5 V
-4,8 V
-1.81
-1.475
-1.475
-1.81
-1.49
0
85
VEE
VEE -
....t»t»
NOM
-4.5
Operating free-air temperature
V
°c
~ electrical characteristics over recommended supply voltage range at OOC to 85 °C Isee Notes 4 and 5)
....
U)
PARAMETER
VOH
TEST CONDITIONS
VEE
-4.2 V
VI .= VIHmin or VILmax
-4.6 V
-4.8 V
VI
VOL
=
VIHmin or VILmax
VI
IIH
IlL
=
MAX
-0.87
UNIT
-0.88
-0.88
V
-1.045
-4.2 V
-1.81
-1.595
-4.5 V
-1.81 ·-1.700
-1.61
-4.8 V
-1.81
-1.61
VIHmax
VI = VILmin
All inputs open
lEE
MIN
TYP
-1.03
-1.035 -0.955
V
220
~A
-240
pA
mA
0.5
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
Isee Note 5)
""0
PARAMETER
FROM
(INPUT)
TO
IOUTPUT)
o
too
I, 1/0, or feedback
0, I/O
c:
o
tf
:D
tr
C
-f
""0
:D
m
TEST CONDITIONS
MIN
TYP
MAX
2
4
0.7
1
6
1.5
ns
See Figures 1 and 2
0.7
1
1.5
ns
UNIT
ns
NOTES: 4. The algebraic convention, in which the rnore negative limit is designated as minimum and the less negative limit is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents,
the normal magnitude convention is used.
5. Each 100KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on 8 printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated t~rough a 50-ohm resistor to - 2 V.
S
m
~
2-306
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
TlEPAl1 00 16P8·6C
HIGH·PERFORMANCE IMPACTTM ECl PAL® CIRCUIT
PROGRAMMING INFORMATION
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
reasonably priced device programmers.
Complete programming specifications. algorithms and the latest information on firmware. software. and
hardware updates are available upon request. Information on programmers that are capable of programming
Texas Instruments programmable logic is also available. upon request. from the nearest TI sales office.
local authorized Texas Instruments distributor. or by calling Texas Instruments at (2141 997-5762.
PARAMETER MEASUREMENT INFORMATION
~,"5-0-%---,;-.; -
INPUT
~
~
tPLH 1_
IN-PHASE
I
OUTPUT
I
tpHL
VIH
~tPHL
VIL
I.t--VOH
-j
/50% I
I
I
•
+--...
OUT -OF-PHASE
OUTPUT
-
I
~ 50%
'\::.:.
VOL
I4--*-tpLH
\ 1 50%
F'
50%
_
OUTPUT
WAVEFORM
801:
I
20%
I
vOH
VOL
I
I I
t, ......
I+-
(80%)
I
II (20%) VOL
"1\:----VOH
I
I I
-+I
I+-tf
VOLTAGE WAVEFORMS
RISE TIME AND FALL TIME
VOLTAGE WAVEFORM$
PROPAGATION DELAY TIMES
FIGURE 1. VOLTAGE WAVEFORMS
II...
rn
Q)
Q)
.c
U)
...asas
C
3:
w
~
a::
a.
tO
:::)
Q
oa::
a.
TEXAS ."
INSlRUMENTS
POST OFFICE BOX 86&012 • DALLAS, TEXAS 75265
2-307
TIEPAl10018P8·6C
HIGH·PERFORMANCE IMPACTTM ECl PAl® CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V :I: 0.01 V
0.1 "F
q
INPUT
UNDER
TEST
II
C
v~_., "{
CD
CD
1+
en
or
::::r
VIL min
CD
CD
1+
U)
+2V
OUTPUT
UNDER
TEST
} ~{
ALL
OTHER
INPUTS
OTHER
OUTPUTS
VEE
r
-=
25 "F
0.1 "F
q
-2.50 V :I: 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = 800 mV poP, PRR :s 1 MHz, tw = 500 ns,
t r =tf=lns.
B. RT is a 50-0 teminator internal to the oscilloscopa.
C. CL :S 3 pF, includes fixture and stray capacitencea.
D. Coax has 50-0 impedance and the coax to oscilloscopa channel A and to channel B must be of equal lengths.
E. All unused outputs are loaded with 50-0 :I: 1 % resistors to ground.
F. All unused input should be connected to either high or low levels consistent with the logic function required.
G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch).
"'0
::0
FIGURE 2. LOAD CIRCUIT
o
C
c:
n
-I
"'0
::0
m
-<
~
2-308
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 15286
TIFPLA839M, TIFPLA839C
TIFPLA840M, TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS
JUNE 1984- REVISED DECEMBER
•
Input-to-Output Propagation Delay ...
10 ns Typical
•
24-Pin, 300-mil Slim Line Packages
•
Power Dissipation ... 650 mW Typical
•
Programmable Output Polarity
LOGIC FUNCTION
I{I) = PO + Pl ... P31 lor polarity link intact
III) = PO' Pi' ...
lor polarity link open
where PO through P31 are product terms
·m
TIFPLA839M. TIFPLA840M .•. JT PACKAGE
TIFPLA839C. TIFPLA840C .•• JT OR NT PACKAGE
(TOPVIEWI
description
OEl
The 'FPLA839 (3-state outputs) and the 'FPLA840
(open-collector outputs) are TTL field-programmable
logic arrays containing 32 product terms (AND terms)
and six sum terms (OR terms). Each of the sum-ofproducts output functions can be programmed either
high true or low true. The true condition of each output
function is activated by the programmed logical
minterms of 14 input variables. The outputs are
controlled by two chip-enable pins to allow output
inhibit and expansion of terms.
These devices provide high-speed data-path logic
replacement where several conventional SSI functions
can be designed into a single package.
The 'FPLA839M and 'FPLA840M are characterized for
operation over the full military temperature range of
- 55·e to 125 ·e. The 'FPLA83ge and 'FPLA840e
are characterized for operation from o·e to 70 ·e.
Vee
I
I
I
I
0
0
0
0
0
0
II
:l
CD
CD
.c
0E2
GND
en
ca
i
TlFPLA839M. TIFPLA840M ... FH OR FK PACKAGE
TIFPLA839C, TIFPLA840C .•. FN PACKAGE
C
(TOPVIEWI
~
u
__ I~~~-4 3 2 1 282726
25
24
23
22
21
20
19
12131415161718
5
6
7
8
9
10
11
Pin assignments in operating mode (pin 1 is less positive than VIHHI
Copyright @ 1984, Texas Instruments Incorporated
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 866012 • DALLAS, TEXAS 76286
2-309
TlFPLA839M. TIFPLA839C
TlFPLA840M. TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS
.functional block diagram (positive logic)
0E1---
o
&
28X32
o
o
32
14
o
II
o
o
C
m
m
~
~
o
-denotes fused inputs.
::r
tFPLA839 has 31tate ('V) outputs; FPLA840 has open.... nector (0) outputs.
CD
aen
absolute maximum ratings
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Off-state output voltage (see Note 1) ......................................... " 5.5 V
Operating free-air temperature range: 'FPLA839M, 'FPLA840M . . . . . . . . . . . . .. - 55 °e to 125°C
'FPLA839C, 'FPLA840e .................. ooe to 70 0 e
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.
2·310
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 855012 .. DALLAS. TEXAS 75265
TIFPLA839M, TlFPLA839C
TIFPLA840M, TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS
LOGIC DIAGRAM
(81
"::lL
0
1
(71
...x
2
3
(61
4
5
(51 ')(.
6
7
(41 ')(.
8
9
(3)
10
11
(21 ....
...x
12
13
(23)')(.
14
15
(22) ....
16
17
L/I:
(21) A
18
19
(20) "
20
21
(19)
22
23
-----vI:
---L)l
(18)
II
24
25
;>t
(17)
26
27
lJlJl
Dp
D¥
~
D¥
o¥
D¥
~
o
~o
~ o
,J!!!. o
~
o
33
I'M(TIU')'I""""MO'I
~ U') 'I"""
00
U') ....
co-.:t
_~2mcncnQ)C:O
OEl
OE2
LnIl"""r...Mcnlt) ........
C;;~~;:::ro(g«iC;
MClLnIl"""I'MO)U')
1l\f51t~~r;;::l~
~ .... '" en LIl ~ .... '"
..... MOlDMOlDM
NNNII""''1''''"'-
1
1093
~o
)
~
(1 )
(13)
.
TEXAS
~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2-311
TIFPLA839M, TlFPlA839C
TlFPlA840M, TIFPlA840C
14 x 32 x 6FIElD·PROGRAMMABlE lOGIC ARRAYS
recommended operating conditions
M SUFFIX
Supply voltage, Vee
MIN
NOM
4.5
5
High-level input voltage, VIH
C SUFFIX
MAX
5.5
2
Low-level input voltage, VIL
I 'FPLA840
I 'FPLA839
High-level output voltage, VOH
High-level output current, IOH
Low-level output current, IOL
MIN
NOM
MAX
4.75
2
5
5.25
0.8
5.5
5.5
-3.2
-2
-55
125
.V
V
0.8
12
Operating free-air temperature, TA
UNIT
0
,
V
V
24
rnA
rnA
70
°e
electrical characteristics over recommended operating free-air temperature range (unless otherwise' noted)
E
C
....m
m
CJ)
:r
(1)
M SUFFIX
TEST CONDITIONS t
PARAMETER
MIN
Vee = MIN,
II = -18 rnA
'FPLA840
Vee =,MIN,
VOH = 5.5 V
0.1
VOH 'FPLA839
Vee - MIN,
IOH - MAX
VOL
II
Vee - MIN,
IIH
Vee = MAX,
Vee - MAX,
IOL - MAX
VI - 5.5 V
VI = 2.7 V
VI - 0.4 V
VIK
IOH
Vee - MAX,
IlL
2.4
3.2
0.25
MIN
TVP*
MAX
-1.5
0.1
2.4
0.5
3
0.37
IO§
Vee = MAX,
Vo = 2.25 V
IOZH
Vee - MAX,
Vo - 2.7 V
(I)
IOZL
Vee - MAX,
Vo - 0.4 V
lee
Vee - MAX,
Oe inputs at VIH
VI = 0 V,
-30
V
rnA
V
V
0.1
0.1
rnA
20
20
0.5
rnA
-112
rnA
20
-20
~
180
rnA
-112
-30
20
-20
130
UNIT
0.5
0.5
(1)
....
C SUFFIX
MAX
-1.5
TVP*
190
130
~A
~A
"FPLA839 switching characteristics
PARAMETER
tpd
ten
tdis
FROM
Input
TO
TEST CONDITIONS
M SUFFIX
TVP; MAX
RL = 500 to GND,
Output
Output
Pin 13
MIN
C SUFFIX
TVP; MAX
10
25
10
20
RL 1 - 500 to 7 V,
10
25
10
20
RL = 500 to GND,
eL = 50 pF to GND
8
20
8
15
CL = 50 pF to GND
Pin 1
or
MIN
UNIT
ns
ns
'FPLA840 switching characteristics
PARAMETER
tpd
FROM
Input
TO
TEST CONDITIONS
Output
o
ten
tdis
Pin 1
or
Output
Pin 13
MIN
M SUFFIX
TVP;
MAX
MIN
C SUFFIX
TVP; MAX
RL - 500 to Vee..
eL = 50 pF to GND
10
30
10
25
RL1 - 500 to 7 V,
10
25
10
20
8
15
RL = 500 to GND,
eL = 50 pF to GND
Vee""
5 V, TA
20 '
= 25°C.
§The output conditions have been chosen to produce a current that closely approximates one half
2-312
ns
ns
8
tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
iAII typical values are at
UNIT
?f the true
TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
short-circuit current, lOS'
TIFPLA839M, TIFPLA839C
TIFPLA840M, TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997·5762.
...
II)
Q)
Q)
.s::.
en
...
CO
CO
C
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
2·313
•
2-314
Application Reports
I
3-1
Contents
Designing with TI Field-Programmable Logic ........................
Hard Array Logic (HAL®) ......................................
A Designer's Guide to the TIBPSG507 ............................
System Solutions for Static Column Decode ........................
3-2
Page
3-3
3-25
3-31,
3-81
Designing with
Texas Instruments
Field-Programmable Logic
Robert K. Breuninger and Loren E. Schiele
Contributors
Bob Gruebel, Renee Tanaka, Jim Ptasinski
I
."
TEXAS
INSTRUMENTS
3-3
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.
TI warrants performance of its semiconductor products, including SNJ
and SMJ devices, to current specifications in accordance with TI's
standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems such testing necessary to support this
warranty. Unless mandated by government requirements, specific
testing of all parameters of each device is not necessarily performed.
In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or ariSing from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.
Copyright © 1984, Texas Instruments Incorporated
3-4
Contents
Title
Page
INTRODUCTION ............................................................................ .
3-7
FIELD-PROGRAMMABLE LOGIC ADVANTAGES ............................................... .
3-7
PAL
'0
"2n'
....m
0'
~
::a
CD
..
'0
0
....
tI)
3-6
11
12
13
14
15
16
17
18
19
20
21
Title
Basic Symbology ........................................... : .... '. . . . . . . . . . . . . . . . . . . . . . .
Basic Symbology Example ............................... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROM Architecture ....................................................................
PAL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FPLA Architecture . .. . . . . . . .. . .. . .. . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . .. . . . . . . .. . . . .
TmPLA16L8 Logic Diagram........ ......................... ...........................
TmPALI6R8 Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polarity Selection . '. . . . .. . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . .. . .. . .. .. .
Input Register Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Latch Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAL Process Flow Diagram....... ......... ..... .......... ..............................
Counter Implementation with Standard Logic..................... ..........................
TmPALI6R4 Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
Karnaugh Map for CLKOUT ................ :...........................................
Karnaugh Map for CLKOUT .............................................................
Karnaugh Maps ....................................................................... :
Programmed TmPALI6R4 .................................. '............................
Pin ID and Logic Equations................................................. ............
Fuse Map ................................................. '. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Source File for ABEL .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABEL Output Documentation................................................ ............
Page
3-7
3-7
.3-8
3-8
3-9
3-10
3-11
3-12
3-12
3-13
3-13
3-14
3-15
3-16
3-16
3-17
3-18
3-19
3-20
3-22
3-23
List of Tables
Table
1
2
3
4
Title
Clock Selection ............................................................. " . . . .. . . . . . .
Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Truth Table ........................... ,..... ................ ........... .................
Truth Table. . . . . . . . . .. . . . . . . . . . .. .. . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . .. . .
Page
3-13
3-14
3-16
3-17
INTRODUCTION
The purpose of this application report is to provide the
first time user of field-programmable logic with a basic
understanding of this new and powerful technology. The
term «Field-Programmable Logic" refers to any device
supplied with an uncommitted logic array, which the user
programs to his own specific function. The most common,
and widely known field-programmable logic family is the
PROM, or Programmable Read-Only Memory. Relatively
new entries into this expanding family of devices are the
PAL® and FPLA. This report will primarily concentrate
on the PAL family of programmable logic.
FIELD-PROGRAMMABLE LOGIC ADVANTAGES
Field-programmable logic offers many advantages to
the system designer who presently is using several
standard catalog SSI and MSI functions. Listed below are
just a few of the benefits which are achievable when using
programmable logic.
1. Package Count Reduction: typically, 3 to 6
MSIISSI functions can be replaced with one
PAL or FPLA.
2. PC Board Area Reduced: Fewer devices
consume less PC board space. This results in
lower PC board cost.
3. Circuit Flexibility: Programmability allows for
minor circuit changes without changing PC
boards.
4. Improved Reliability: With fewer PC
interconnects, overall system reliability
increases.
5. Shorter Design Cycle: When. compared with
standard-cell or gate-array approaches,
custom functions can be implemented much
more quickly.
The PAL and FPLA, will fill the gap between
standard logic and large scale integration. The versati'lity
of these devices provide a very powerful tool for the·
system designer.
An X represents an intact fuse. This makes that input,
part of the product term. No X represents a blown fuse.
This means that input will not be part of the product term
(in Figure 1, input B is not part of the product term). A
dot at the intersection of any line represents a hard wire
connection.
INPUT TERMS
ABC
PRODUCT
LINE
~
TIT L...I
OUTPUT
F = A'C
Figure 1. Basic Symbology
In Figure 2, we will extend the symbology to develop
a simple 2-input programmable AND array feeding an OR
gate. Notice that buffers have been· added to the inputs,
which provide both true and complement outputs to the
product lines. The intersection of the input terms form a
4 x 3 programmable AND array. From the above
symbology, we can see that the output of the OR gate is
programmed to the following equation, AB+AB. Note
that the bottom AND gate has an X marked inside the
gate symbol. This means that all fuses are left intact, which
results in that product line not having any effect on the
sum term. In other words, the output of the AND gate will
be a logic O. When all the fuses are bluwn un a product line,
the output uf the AND gate will always be a lugic I. This has
the effect uf lucking up the uutput uf the OR gate to. a lugic
level I.
U)
't
oQ.
G)
a:
c
o
",p
CIS
"~
Q.
Q.
-
Q
Cl
~
f-V
•
tl? ""
tl
!.::L
(lBI Q
v
~
tr:l
(171
Q
v
~
r.J
(161
"";:l
(151 Q
Cl
(3} 15
.;>\.
16
••
I-----.
II-/-
•
•
·
-
(4} 23
Cl
.A
24
·•••
•
/-
v
Q
Cl
(5} 31
32
••
•
D-
••
•
I-
Cl
(6} 39
40
•
••
•
··
tl
v
f-D-
II)
...0
~
"";:l
~
~ (131 Q
(141
v
Q
~
4B
••
••
••
..
0
v
Cl
(B} 55
56
·•••
·
..
Q)
"
---,
/-
Q.
a::
c
Cl
(71 47
I...
p-~8''''
ca
"~
C.
Q.
oCt
Q
Cl
(B1 63
.
4-!-1 OE
Figure 7. TIBPALl6R8 Logic Diagram
3-11
I
function. Listed below are some of the manufacturers of
this programming equipment.'
Citel
Storey Systems
DATA 1/0
Structured'Design
Digelec
Sunrise Electronics
Kontron
Valley Data Science
Wavetec
Varix
Stag Micro Systems
ENABLE
FIgure 8. Polarity Selection
Figure 10 shows an example of this type of input. If the
fuse is left intact, data enters while the control input is
high. When the control input is low, the data that was
. present when the control input went low will be saved. If
the fuse is blown, the latch becomes permanently
transparent, and is equivalent to a normal input buffer.
PROGRAMMING
Notice in Figure 7, that the product and inplit lines
are numbered. This allows any specific fuse to be located
anywhere in the fuse matrix. When the device is in the
programming mode (as defined in the device data sheet),
the individual product and input lines can be selected. The
fuse .at the intersection of these lines, can then be blown
(programmed) with the defined programming pulse.
Fortunately, the user seldom has to get involved with these
actual details of programming, because there exist several
commercially available programmers which handle this
At Texas Instruments, we have coordinated with
DATA 1/0 using their Model 19 for device
characterization. Currently, DATA 1/0, Sunrise, and
Structured Design have been certified by Texas
Instruments. Other programmers are now in the
certification process. For a current list of certified
programmers, please contact your local TI sales
representative.
It should now be obvious to the reader, that the
actual blowing of the fuses is not a problem. Instead, the
real question is what fuses need to be blown to generate a
particular function. Fortunately, this problem has also
been greatly simplified by recent advances in computer
software.
DATA I/O has developed a software package called
ABEL"'. Also available is CUPL", from Assisted
Technology. Both have been designed to be compatible
with several different types of programmers. Both of these
software packages greatly extend the capabilities of the
original PALASM'· program, and both can be run on
most professional computers.
Before proceeding to a design example, it would be
instructive to look at the simplified process flow of a PAL
(Figure 11). .This should help give the reader a better
understanding of the basic steps necessary to generate a
working device.
DESIGN EXAMPLE
The easiest way to demonstrate the unique
capabilities of the PAL is through a .design example. It is
REGISTER FUSE INTACT
D·TYPE REGISTER
FUNCTION TABLE
Q
CLOCK
D
0
t
H
H
L
t
L
L
H
L
X
00 li.,
00· THE STATE OF 0 BEFORE CLOCK t
Figure 9. Input Register Selection
ABEL ~ is a trademark of DATA 1/0.
CUPL ,. Is a trademark of Assisted Technology, Inc,
PALASM" is a trademark of Monolithic Memories Inc ..
3-12
LATCH FUSE INTACT
TRANSPARENT LATCH
FUNCTION TABLE
OC2
lC2
20
MO (INTACT)
Ml (BLOWN)
ENABLE
0
0
fi
H
L
L
H
H
H
H
L
L
X
00
QO
00 = THE
LEVEL OF Q BEFORE ENABLE.
Figure 10. Input Latch Selection
Table 1. Clock Selection
SELl
o
o
SELO
o
1
o
1
OUTPUT
CLKA
ClKB
CLKC
ClKD
As can be seen, three MSI functions are required. The
'LS162 is used to generate the 4-bit counter while the clock
selection is handled by the 'LS253. The 'LS688 is an 8-bit
comparator which is used for selecting either the binary or
decade count. In this example, only five of the eight
comparator inputs are used. Four are used for comparing
the counter outputs, while the other is used for the BD
input. The comparator is hard-wired to go low whenever
the BD input is low and the counter output is "9". The
P =Q output is then fed back to the synchronous clear
input on the 'LS162. This will reset the counter to zero
whenever this condition occurs.
It is desired to generate a 4-bit binary counter which
is fed by one of four clocks. There are two lines available
for selecting the clocks, SELl and SELO. Table 1 shows the
required input for the selection of the clocks. In addition,
it is desired that the counter be able to switch from binary
to decade count. This feature is controlled by an input
called BD. When BD is high, the counter should count in
binary. When low, the counter should count in decade.
Figure 12 shows how this example could be
implemented if standard data book functions were used.
o
G)
Figure 11. PAL Process Flow Diagram
EXAMPLE REQUIREMENTS
fI)
~
Q.
PAL IMPLEMENTATION
hoped that through this el\ample the reader will gain the
basic understanding needed when applying the PAL in his
own application. In some cases, this goal may only be to
reduce existing logic, but the overall approach will be the
same.
I
As stated before, the problem in programming a
PAL is not in blowing the fuses, but rather what fuses need
to be blown to generate a particular function. Fortunately,
this problem has been grl)atly simplified by computer
software, but before we examine these techniques, it is
beneficial to explore the methods used in generating the
logic equations. This will help develop an understanding,
and appreciation for these advanced software packages.
From digital logic theory, we know that most any
type of logic can be implemented in either AND-ORINVERT or AND-NOR form. This is the basic concept
used in the PAL and FPLA. This allows classical
techniques, such as Karnaugh Mapsl to be used in
generating specific logic functions. As with the separate
component example above, it is easier to break it into
separate functions. The first one that we will look at is the
clock selector, but remember that the overall goal will be
to reduce this design example into one PAL.
a::
c
o
.~
as
.2
Q.
Q.
'C
'E..
c:;'
S»
...O·
j
:XI
CD
'C
0
~
en
3-14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SElO ClKA ClKB ClKC ClKO ClKOUT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
SEll
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
SElO ClKA ClKB ClKC ClKO ClKOUT
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
·0
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
1
1
1
0
0
elK (1)
~
p
.
INPUT lINES
Rl~,!>~er. 0
4
8
12
16
20
24
28
31
0
·••••
>->--
•
J...
(19)
1/0
1
(2)~!~b-
8
••
••
••
~
J
(18)
1/0
~
(3) 15
1
16
·••••
~
>--P"
•
ihJ,; i? ""
a
e1
(4) 23
x.
>--
24
·
·
•
••
•
I--
~
r.:J.v
(16)
a
~
~
(15)
a
~~tbl
~
r-
I--
:>-
e1
(5) 31
':>[
32
I--
••
••
·
·•••
I--
::>-
...
e1
(6) 39
40
fI)
1::
0
)--
••
-
(7)~47
I
I
Q.
(14)
~
Q)
Q
a:
C
0
C1
',j:
48
•
••
•
·
j
·
·•••
·
(8) 55
66
r-
I-'
J
ca
(13)
I
1
,~
1/0
Q.
Q.
-
·
>-
01
A
ii,
32
••
••
rr
02
40
••
••
•
·
48
"::1-oo
·
~
Q2
(131
NC
1
(81 56
~
••
~
••
••
(91~
1
v
Figure 17. Programmed TlBPAL16R4
3-18
(14
v
....56
BO
rJv
1
••
•
••
ClR
(151
C1
m 47
CD
tJ;
>tJ;
rJ...
C1
39
:ZJ
~
16 1Q1
t:r1.J
v
)--
·
ClK D
In
C1
(51 31
ClKB
::s
tJ;S
DO
••
••
•
"'2.5"
NC
C1
(41 23
CLKA -'-'
24
l> ClKC (61
(181
v
ClKOUT
1
··••
....m
0"
1
(31 15
16
I
I
(191
(121
1'-4-"
BOOUT
It is now probably obvious to the reader, that
inserting the logic equations into the logic diagram is a
tedious operation. Fortunately, a computer program
called PALASM will perform this task automatically. All
that is required is telling the program which device has
been selected, and defining the input and output pins with
their appropriate logic equations (Figure 18). The program
will then generate a fuse map (Figure 19) for the device
selected. Notice that the fuse map looks very similar to the
block diagram (Figure 17) which we have just completed
by hand. In addition, this information can now be down
loaded into the selected device programmer.
DEVICE TYPE 16R4
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
LIST NAMES =
NUMBER
1
NUMBER
2
NU~IBER
3
NUMBER = 4
NUMBER
5
NUMBER
6
NUMBER
7
NIJr1SER = €<
NU~IBER
9
NUMBER = 10
NU~lBER
NUMBER
NUMBER
NUMBER
NU~lBER
11
12
13
14
IS
16
Nur1BER
NUMBER
NUI1BER
17
l.B
Nl.I~lBER
= 19
NUMBER
20
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
NAME
NAME
NAME
NAME
NAME
NAr1E
NAME
NAr1E
CLK
= SELO
SEll
= CLKA
CLKB
= CLKC
CLKD
'CLR
BD
GND
NAME
NAME
IOE
NAME
BDOUT
NAME = NC
Q3
NAME
Q2
NAME
Q1
NAME
QO
NAME
NAI1E
NC
NAME
CLKOUT
NAME
VCC
NA~IE
EXPRESSIONS AND DESCRIPTION =
EXPRESSIONC I] =
ICLKOUT=/SEL1*/SELO*/CLKA +/SELl*SEI.O*/CL.KIl +SELl*/SELO*/CLKC +SELl*SELO*/CLKD
EXPRESSIONC 2] =
IQO=/CLR +QO
I
II)
~
o
c.
EXPRESSIONC 3] =
IQI=/CLR +/Q1*/QO +Q1*QO
Q)
a:
c
o
~
EXPRESSIONI 4] =
IQ2=/CLR +/Q2*/QI +Q2*QI*QO +/Q2*/QO
CIS
.~
Q.
EXPRESSIONI 3] =
IQ3=/CI.R +/Q3*/Q2 +/Q3*/QI
+/(~3*/Q(I
+Q3*Q2*Q1*QO
c.
c:(
EXPRESSIONI 6J =
IBDOUT~/BD*Q3*/Q2*/QI*QO
Figure 18. Pin ID and Logic Equations
3-19
0000 0000 0011 1111 1111 2222 2222 2233
0123 4567 8901 2343 6789 0123 4:;6'7 8901
ICLKOUT
-x-- -x-- -X--
x--- -x--
-x--
-x--
x---
XXXX
XXXX
xxx X
XXXX
XXX X
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
xxx X
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
--XXXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
-X--
X--- x---X-XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX xxx x xxx x XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXX X
XXXX
XXXX
XXXX
XXX X
o -
I
2
3
4
5
6
7
'-
ISEL1*/SELO*/CLKA+
ISELI*SELO*/CLKB+
SEL1*/SELO*/CLKC+
SEL1*SELO*/CLKD
8 9 10 11 -
12
13
14
15
-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
16
17
18
19
20
21
22
23
- ICLR+
- QO
-
XXXX
XXXX
XXXX
XXXX
XXXX
24
23
26
27
28
29
30
31
- ICLR+
- IQI*/QO+
- m*QO
-
XXXX
XXXX
XXXX
XXX X
32
33
34
33
36
37
38
39
-
IQO
-X-XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX,
XXXX
XXXX
XXXX
XXXX
IQI
---x
I
-,
..
l>
"0
'2.
n
&»
0'
::s
::a
CD
'"g
0
:::I.
0
XXXX
XXXX
XXXX
XXXX
XXXX
/Q2
XXXX
XXXX
XXXX
XXXX
XXXX
--XXXXX
XXX X
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
--X---x
XXXX
XXXX
XXXX
XXXX
-X----x
--XXXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
'XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
-X--
XXXX
XXXX
XXXX
XXXX
---X ---X
--X- --X-~-X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
ICLR+
/Q2*/Q1+
Q2*Ql*QO+
/Q2*/QO
1&3
-X-40
---X ---X
41
42
---X
---X
---X
43
--X- --x- --X- --X44
XXXX xxxx XXXX XXXX XXXX XXXX XXXX XXXX 45
XXXX XXXX XXXX XXXX XXX X XXXX XXXX XXXX 46
XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX 47
- ICLR+
- IQ3*/Q2+
/Q3*/&I+
- IQ3*IQO+
- Q3*Q2*QI*&0
XXXX XXXX XXXX
XXXX XXXX XXXX
xxxx xxxx XXXX
XXXX XXXX XXXX
XXXX XXXX XXXX
XXXX XXXX XXXX
XXXX XXXX XXXX
XXXX XXX X XXXX
-
--..:X
XXXX
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX XXXX XXXX XXXX 48
XXXX XXXX XXXX XXX X 49
XXXX 50
XXXX XXXX XXXX XXXX 51
XXXX XXXX XXXX XXXX 52
XXXX XXX X XXXX Xxx X 53
XXXX XXXX XXXX XXXX 54
XXXX XXXX XXXX XXXX 55
xxxx xxxx xxxx
'0
-
-
-
IBDOLIT
XXXX
XXXX
XXXX
XXXX
XXXX
XXX X
XXXX
XXX X
XXXX
XXXX
XXXX
XXXX
--XXXX X
XXXX
XXXX
XXX X
XXXX
XXXX
---X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
---X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
--XXXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
-x-XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
Figure 19. Fuse Map
3-20
56
57
58
59
60
61
62
63
- /BD*Q3*/Q2*/QI *QO
-
ADVANCED SOFTWARE
PALASM, while extremely useful in generating the
fuse map, does little to help formulate the logic equations.
This is what the new software packages such as ABEL and
CUPL address. They not only generate the fuse map, but
they also help in developing the logic equations. In most
cases, they can generate the logic equations from simply
providing the program with either a truth table or state
diagram. In addition, they can test the logic equations
against a set of test vectors. This helps ensure the designer
gets the desired function.
These are only a few of the features available on
these new advanced software packages. We recommend
that the reader contact tbe specific manufacturers
themselves to obtain the latest information available. For
your convenience, at the end of this application note we
have included the addresses and phone numbers for many
of these programming and software companies.
As an example, we will approach our previous
design utilizing DATA I/O's ABEL packlige. The purpose
here is not to teach the reader how to· use ABEL, but
rather to give them a basic overview of this powerful
software package. Figure 20 shows the source file required
by ABEL. Note that the 4-bit counter has been described
with a state diagram table. When the ABEL program is
complied, the logic equations will be generated from this.
The equations for CLK OUT and BD OUT have been
given in their final form to demonstrate how ABEL would
handle these. Also notice that test vectors are included for
,checking the logic equations. This is especially important
when only the logic equations has been given.
Figure 21 shows some of the output documentation
generated by the program. Notice that the equations
generated for the counter, match the the ones generated
by the Karnaugh maps. A pinout for the device has also
been generated and displayed. The fuse map for the
device has not been shown, but looks very similar to the
one in Figure 19. As with the PALASM program, this
information can be down loaded into the device
programmer.
PERFORMANCE
Up to this point, nothing has been said about the
performance of these devices. The Standard High Speed
PAL (indicated by an ';.\" after the device number) offered
by TI has a maximum propagation of 25 ns from input to
output, and 35 MHz fmax . Also available is a new, higher
speed family of devices called TIBPALs. These devices are
functionally equivalent with the current family and offer a
maximum pro\Jagation delay of 15 ns from input to output.
They are also rated at 50 MHz fmax . The higher speeds on
these devices make them compalible with most high-speed
logic families. This allows them to be designed into more
critical speed path applications.
3-21
mod~ile BO .. COUNT Tlan "-r2'
"4-bit
titl~
Iel
pin
bin~ry/d~cade
count~r
d\!'vi r:e "Pl bR4";
~ssi~nm@nts
a~d
cQnstant do .. larations
CLK_.rN>SEL(),SEL1~CLKA
1~·2.3.4=
CLKB.CU
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
0 THEN
SO
SO
SO
SO
SO
SO
SO
SO
50
SO
SO
SO
SO
SO
SO
SO
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
ELSE
Sl;
S2;
$3;
S4,
55;
S6;
S7,
58,
S9;
510:
511,
S12,
S13;
SI4,
SIS;
SO;
.... clock selector""
te-st_vectors
([CLKA, CLKB, CLKe, CLKD, SELl, SELO] -:> CLK_OUn
L
X
X
X
L,
r
L J -:>
L,
X
r H
X
X
L,
L ] ->
H;
X
X
X
r
L
L,
H ] ->
L;
[ X
H
X
L,
H J -:>
H.
L· ] ->
[ X
X
L
X
H,
L,
[ X
H
H,
X
X
H,
L J -:>
[
X
X
L
H,
H J -:>
L;
[
X
X
H
H,
H ] -:>
H;
te-st_vect"ors
, rCLK •. IN,
r CK,
[
CK,
(
CK,
[
CK~
[
CK,
CK,
CK,
CK,
CK,
CK,
CK,
CK,
CK,
CK,
CK,
CO<,
CK,
r
[
r
X,
.. nd BD_COUNT
"counter""
OE, CLR, BD_IN)
X J
L
L,
L
X J
H.
L
H,
X
L
H,
X
H,
L
L
H,
H,
L
H,
L
X
L
H,
L
H,
L
L
H,
X
H,
X
L
H,
X
L
L
H,
X
L
H,
X
L
H,
H
L
H,
X
H
X,
X
-> roUTPUT, BD_OUTl)
->
->
-~
-:>
->
-:>
-:>
->
-:>
-:>
->
-:>
->
-:>
->
->
->
->
SO,
SI,
S2,
53,
S'I,
55,
S6,
S7,
58,
S9,
SIO,
Sl1,
512,
S13.,
S14,
S15,
SO,
Z
H
H
H
H
]
]
]
H ]
H ]
H']
H ]
H ]
L ]
H ]
H ]
H ]
H ]
H J
H ]
H ]
H J
Figure 20. Source File for ABEL
3-22
]
Page
ABEL(tm) Version
1.00 - Document Generator
4-bit binary/dec~de counter
Equ~tions
Module SO_COUNT
~or
D(?vice Iel
Reduced Equations:
eLK_OUT = '«SELl & SELO & 'CLKD
41 (SELl & !SELO 8< 'eLKe
• C!SELI & SELO & !CLKB
41 !5ELl 8< 'SELO & 'CLKA)))),
~ Q2 & Ql & 00
41 ('038< '02
03 := !«Q3
•
.,
#
(!03 ~
C!Q3 &:
~Qt
'00.
'CI_RI»)),
02 := '«028< 01 8< QO # ('028< '01 # ('028< !OO 41 !CLR»»,
01 .- '«01 & 00 41 ('01
QO
t=
I(CQO •
8<
'00
#
!CLR))),
!CLR»;
Page 2
ABELCtm) Version
1.00 - Document Generator
4-bit binary/decade counter
Chip diagram for Module SO_COUNT
I
Devic(? let
U)
P16R4
CLK_IN
SElO
SEL1
CLKA
ClKB
CLKC
ClKD
ClR
BD IN
GND
end
o~
~
VCC
ClK OUT
00
01
02
03
BD_OUT
OE
o
0eD
a::
C
o
'';:;
ca
,~
Q.
0c(
module BD_COUNT
Figure 21. ABEL Output Documentation
3-23
ADDRESSES FOR PROGRAMMING AND SOFtWARE MANUFACTURERS.
HARDWARE MANUFACTURERS
E
Citel
3060 Raymond St.
Santa Clara, CA 95050
(408) 727-6562
Structured Design
1700 Wyatt Dr., Suite 7
Santa Clara, CA 95054
(408) 988-0725
DATA I/O
10525 Willows Rd.
Redmond, WA 98052
(206) 881-6444
Sunrise Electronics
524 S. Vermont Avenue
Glendora, CA 91740
(213) 914-1926
DIGITAL MEDIA
3178 Gibralter Ave.
Costa Mesa, CA 92626
(714) 751-1373
Valley Data Sciences
2426 Charleston Rd.
Mountain View, CA 94043
(415) 968-2900
Kontron Electronics
630 Price Avenue
Redwood City, CA 94063
(415) 361-1012
Varix
1210 Campbell Rd.
Richardson, TX 75081
(214) 437-0777
Stag Micro Systems
528-5 Weddell Drive
Sunnyvale, CA 94086
(408) 745-1991
WaveteclDigelec
586 Weddel Dr., Suite 1
Sunnyvale, CA 94089
(408) 745-0722
Storey Systems
3201 N~ Hwy 67, Suite H
Mesquite, Tx 75150
(214) 270-4135
SOFTWARE MANUFACTURERS
Assisted Technologies (CUPL)
2381 Zanker Road, Suite 150
Santa Clara, CA 95050
(408) 942-8787
DATA 110 (ABEL)
10525 Willows Rd.
Redmond, WA 98052
(206) 881-6444
*Texas Instruments does not endorse or warrant the suppliers
.
referenced.
Reference
1. H. "froy Nagle, Jr., B.D. Carroll, and David Irwin, An Introduction
to Computer Logic. New Jersey: Prentice-Hall, Inc., 1975.
3-24
Hard Array Logic (HAL®)
tn
1::
o
Co
r!
c
o
i
.2
-aCo
«
."
TEXAS
INSlRUMENTS
3-25
IMPORTANT NOTICE
Texas Instruments (Til .reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
such testing necesSary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.
In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination; machine, or process in
which such semiconductor devices might be or are used.
I
,
3-26
Copyright @ 1985, 'texas Instrumenta Incorporated
INTRODUCTION
The purpose of this document is to provide the design and
component engineer with a better understanding of Hard
Array Logic (HALI!». [It details both the advantages and
disadvantages of HAL and Programmable Array Logic
(PALI!» designs as a means of aiding the design and
component engineer in deciding whether to go to a HAL
device or to remain with the (PAL) product.] More
importantly, this document also defines the procedures to
be used by the customer when ordering HALs from Texas
Instruments.
PRODUCT DESCRIPTION
Programmable Array Logic (PAL) technology
constitutes one of the fastest growing areas in the
semiconductor industry today. This growth exists because
PALs offer circuit flexibility and package count reduction,
an advantage which design and component engineers find
over stan
Pin 1:
Pin 15:
Pin'2:
Pin 16:
Pin 3:
Pin 17:
Pin 4:
Pin 18:
Pin 5:
Pin 19:
Pin 6:
Pin 20:
Pin 7:
Pin 21:
·Pin 8:
Pin 22:
Pin 9:
Pin 23:
Pin 10:
Pin 24:
Pin 11:
Pin 25:
Pin 12:
Pin 26:
Pin 13:
Pin 27:
Pin 14:
Pin 28:
Programming Equations:
"C
'2.
..
C;'
I»
0'
~
l:I
~
"C
o
~
rn
3-30
A Designer's Guide to the
TIBPSG507
Robert K. Breuninger and Loren E. Schiele
with Contributions by
Joshua K. Peprah
E
..
TEXAS
INSTRUMENTS
3-31
IMPORTANT NOTICE
Texas Instruments (Til reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
deviCe is not necessarily performed.
In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intl!lIectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.
Copyright © 1987, Texas Instruments Incorporated
3-32
Contents
Title
INTRODUCTION .............................................................................
Page
3-37
FUNCTIONAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-37
THEORY OF OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 1: Waveform Generator.............. .................... ..... ... .... ................. .
Example 2: Refresh Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 3: Dynamic Memory Timing Controller......... ................ ....................... .
3-37
3-39
3-42
3-45
DESIGNER NOTES...........................................................................
Obtaining Maximum Counter Performance. ..... .. ..... ....... ... ......... ..... ............ ......
Expanding the 6-Bit Counter ..................................................................
Software Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-51
3-51
3-51
3-51
Appendixes
A
B
C
ABEL Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CUPL Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
'PSG507 Fuse Numbers.....................................................................
3-57
3-67
3-79
I
tn
t::
o
~
G)
a:
c
o
'';::
ca
,~
Q.
~
"
"
P3
..
P5
P.
J=~
~~ ~ao
;:: R>
~~~al
=~~a2
~~a3
~~-Q4
~~r141
~~~Q.
~r".,
;:::.'-'-1>
Figure 1. PSG507 Architecture
3-38
for nonregistered operation. This permits the outputs to be
directly fed from the counter, AND/OR array, or state
registers. Example I highlights this feature.
In short, the outputs of a PSG can be controlled by any
or all of the following conditions:
to the master clock (PSG CLK) of the PSG. As shown in
the timing diagram, at count II (10112) the sequence is
repeated. By using the SCLRO function, a logic equation can
be defined to reset the counter at count II. This concept is
demonstrated in Figure 3.
With the binary counter programmed to clear at 11,
it is a simple matter to decode the outputs from the binary
count. With the REF CLK equal to the inverse of binary
count zero (CO), REF CLK can be directly generated from
the binary counter. A product term is required to connect
CO to the output cell. The output register is bypassed by
blowing the output multiplexer fuse. Figure 4 shows how
CO can be connected.
SYS CLK and PCLK are decoded from the present state
of the binary counter through the SIR outputs. Since the SIR
register holds its present state until changed, product terms
have to be used only during output transitions. For example,
when the binary counter reaches one, a product term is used
to reset the SYS CLK on the next clock transition. Below is a
summary of the product terms required to control SYS CLK
and PCLK. Note that the output transitions are set up in the
previous clock cycle. Also note that only one product term
is used regardless of how many output terms switch. This
is demonstrated at count 5 and count 11. Figure 4 also shows
how SYS CLK and PCLK are connected.
• Present state of the inputs
• Present state of the binary counter
• Present state of the state holding registers
The key to understanding state machine design when
using a PSG is to realize that different states can be assigned
for each sequence. In other words, the assigned state
determines which sequence is in operation. The length of
each sequence is controlled by the SCLR function. Once the
count sequence has been programmed to the desired length,
each output can be easily decoded from the present state of
the binary counter. The user will soon discover that complex
state machines are easily developed when using this
technique. This technique is demonstrated in Example 3;
Example 1: Waveform Generator
The first example demonstrates a design for a simple
clock generator used for driving a microprocessor operating
at 5 MHz (required duty cycle of33.5% high, 66.5% low).
In addition to the 5 MHz system clock (SYS CLK), a
reference clock (REF CLK) operating at 15 MHz (50% duty
cycle) and a peripheral clock (PCLK) operating at 2.5 MHz
(50% duty cycle) are required for other timing controllers
and peripherals throughout the system. Both clocks must be
in close phase with the SYS CLK to guarantee synchronous
operation within the system.
The above example demonstrates one of the many uses
of the binary counter in the PSG. State registers are not used
in this particular application, only the binary counter and
three outputs. A 30 MHz clock, typically generated from
a crystal, is used for driving the binary counter of the PSG.
The three generated clock signals are decoded from the
binary count. The unused inputs and outputs are still available
for other sequential or combinational applications.
Figure 2 shows the timing diagram for the above
application. For reference, a decimal count has been assigned
o
2
4
3
5
CNT
CNT
CNT
CNT
1:
5:
7:
11:
Reset SYS CLK
Set SYS CLK, reset PCLK
Reset SYS CLK
Set SYS CLK, set PCLK
This simple application demonstrates the basic concept
of building a waveform generator using the PSG. This
concept will be expanded further in Example 3 when a
memory timing controller is developed. The basic rules for
building a waveform generator are summarized below.
13
• Program the counter to reset to zero after the
desired count length is reached.
• Generate the logic equations to control the
outputs from the present state of the binary
counter.
6
7
8
9
10
11
t!o
Q.
CD
a:
C
o
';
,S:!
Q.
o
~
PSG CLK
115 MHz)
REF CLK
. . ._________. . .r
SYS CLK
'-_______________
PCLK
15 MHz)
~G2.5
MHz)
2. Clock Generator Timing Requirements
(Example 1 - Waveform Generator)
Figur~
3-39
£:'"COUNT 11
{'
fi
'II~
j~~
l\JlJIoo
155\
III
III
I:O~
SCLRO
:=: f+.:
~CiiiT/HLDO
':::'
~
;:: f+.:
~
~
;:: f+.:
~
::::: f+.:
~
I
~
;::: H::
~
{Rfe~~
~~
~~~
..
~~
~~~
~~
~
Figure 3. SCLR at COUNT 11
(Example 1 - Waveform Generator)
3-40
,
~eOUNT6
COUNT
eOUNT'\
COUNT 1'~
\
\
r
,;;=r- ~OUNT
1
11
*l
Ci;l
/l1,
/ifli1iiiJ
1
'
~
1Fs
r.~.r
t/)
e lK
I:ii.
Q.
~
~r-pelK
_ovo elK
~r~~
~-
~~-
~
Figure 4. Waveform Generator
(Example 1)
t:
o
CI)
IX:
C
o
'';:
«:I
,~
C.
Q.
• CNTIHLDC
;::,
~
K
:':.='
.~
K
K
==
.::: ~~
~
;;:::
:::
;:::
~
,:;::;;:::~
~~
I;::'~~
~~
~~
.~~~
fI)
~
o
c.
Q)
a:
..
c
-o
CO
-~
Q.
c.
«
!~~~
I~~~
~Figure 6. Expanding to 7-Bit Binary Counter
(Example 2 - Refresh Timer)
3-43
RESET~FC\
PSG elK
/CO~TC7'
63
~
RESET
RFC
+":-\
I
rr;:E5
co
C1
C2
C3
co
I'-
~
" CNTfHLOC
I:::
~~
~
'-'
~
I
==
'-'
•
~
R;
:;;:::
R;
--".
:=
- =-=
,:::~
~~~RFR
~~
~~
I'-~~
~~~
--".~~
ut~~
Figure 7. Refresh Timer
(Example 2)
3-44
Example 3: Dynamic Memory Timing Controller
accessing and refreshing the dynamic memory. The memory
timing controller must also be capable of arbitrating between
refresh and access cycles. In other words, if a refresh request
(REFREQ) occurs while the timing controller is performing
an access cycle, the controller must finish the access cycle
before granting the refresh request. Likewise, if an access
cycle is requested during a refresh cycle, the controller must
hold the processor while completing the refresh cycle. After
the refresh cycle has been completed, the access cycle can
be performed.
The third and last example will demonstrate a state
machine design using the PSG507. Figure 8 shows the circuit
requirement for a memory timing controller used for
interfacing an Intel 8086 to an 'ALS2967 dynamic memory
controller. Note that the clock generator and refresh timer,
developed in Examples I and 2, can be used in this circuit.
The dynami~mory timing controller generates the
control signals (RAS, CAS, MSEL, etc.) needed for
DYNAMIC RAM
DYNAMIC
MEMORY
CONTROllER
REFRESH
~
2967
RFC
REFREO
RESET<
i-
I-MEMORY
TIMING
CONTROllER
PSG507
CLOCK
~R
"ii2ii4'"
{
OSC
RESET
l - i- ~
I--<
SYS
ClK
I---<
r--
L..t
00-08
RFC
'-
ii-
II-
REF
ClK
256K DYNAMIC RAMS
TMS4256 (161
liASo
~ CASO
W
'-~
'1'7'"
I-\--t
I-t--t
BANKl
AO·A8
256K DYNAMIC RAMS
TMS4256 (161
RASl
CASl
~ W
L..--
'---
..
AO-A8
r
IiEFRm
REF
ClK
~
~
BANKO
RESET
RESET
8086
<
liAS ~ RASi
CAS ~ CASI
~
ROY
ROY
M/iO
MIlO
iiDl-WR
I--+-
r
MSEl ~ MSEl
MCl
I------t
MCl
~
MCO
II-
,-w..,
r-.I
f--t
f--t
I
BANK2
AO-A8
RAS2
AO-A17
lE
-r"
ROW (AD-A81
COL (A9-A 171
AlB
SELD
A19
SEL1
~
o
~ W
,-w..,
II
o
CAS2
c.
CD
a:
I
ALE
ALE
256K DYNAMIC RAMS
TMS4256 (161
BANK3
AO-AB
256K DYNAMIC RAMS
TMS4256 (161
RAS3
c
o
'';:;
CO
,S:!
CAS3
Q.
~ W
c.
00-15
00-015
"5"0
D)
r+
o·:::s
ox
:L
o
A
iiD
I
AO·A17
I
AO·A17
I
I
AO-A17
I
:AO-A17
I
WR
( DATA FROM MEMORY
~
I
AO-A17
I
WRITE DATA
I
~~~~~~~~~~~~*~~~~~~~~~~~
9
:zJ
AO·A17
.
~Lox
~
I
\
1
1
I
8
9
10
11
12
13
14
15
16
17
18
19
'0
0
ose
.g
MC1
0
~
1
____________..,_ - - - - T - - - - .., -1- _____ __,,.___________________________
ROY
tn
\
,
t
-
,
RFC
MSEl __________
~
______________________________
~
*IF ROY - H. RETURN STO
Figure 11. Refresh/Access Grant Cycle
3-48
RE F elK
.(
~
[
~
~
ALE
Mlill
PO
+i
F
I
::
,.c::::r
I
F
seLRon
'::-...:t;
• CNTIHLDO
~
'="='
!:: o--l>
~
PO
"
~ .2
I~
~
K
;::: .,
?=
..
~
'"*
P5
"',-
..
~~r
"'~
I!::~.r
-
!::~.r
11111111
1111111
!::~~~
•
~~MSEL
I
en
~
&.
II)
a:
c
o
'';:;
ca
,S:!
i5.
Q.
c:r:
'='FJi'
~~ro
~~~
':'~~
Figure 12. Counter Control Logic
(Example 3 - Dynamic Memory Timing Controller)
3-49
RfF elK
.~
~
!!!..£!!!1
RESE!T
r=-
-.!!!2L
ALE
M/Rl
REFREQ
IPO
*lj
-
,til
rp
co
C1
C2
C3
C.
C.
~QJ
CNrIHLDO
~
=
;::, t±
~
PO
Pl
r---t.:
=
~
~
~
;:::
~
~
~
~~~~
:----MCl
~-RFC
;::,tY.:
~
~-=
;::,.t:±
~
~~-MSEL
~~~=
~~~~
~~rFigure 13. Memory Timing Controller
(Example 3)
.
3-50
DESIGNER NOTES
Obtaining Maximum Counter Performance
As with any programmable logic device, there are
usually several different methods for implementing anyone
application. In some cases, device performance is affected.
On the PSG, maximum counter frequency is affected by how
the designer controls the 6-bit counter.
For example, in the waveform generator example
shown at the beginning of this application note, the counter
was reset to zero after reaching count II by using the
nonregistered SCLRO function. By using the registered
SCLRI function, a higher operating frequency is obtainable.
This method requires an additional "AND" term as
shown in Figure 14, but does' provide maximum
performance. Note that during the 10th clock cycle the set
input on the SCLRI register is high. On the next active clock
edge, the counter advances to II and the SCLRI register
is set high. This causes the counter to be reset on the next
active clock edge. At the same time, the SCLRI register is
reset low to allow the counter to advance past zero.
In effect, the setup time requirement for SCLR I is
performed in the previous clock cycle. When using the
SCLRO method, the setup time must be added to the fmax
equation. This results in a lower fmax . The same tradeoffs
apply with the CNT/HLD function. The PSG507 data sheet
specifies fmax for both methods.
Expanding the 6-Bit Counter
In Example 2, the six bit counter had to be expanded
to 7 bits. This was accomplished by adding one of the state
registers to the most significant bit of the counter. It should
be noted that the synchronous clear and count hold functions
must be controlled through the set and reset inputs of the
added bits. The designer must be aware of certain limitations
when trying to perform this function. Figure 15 shows three
additional bits being added to the 6-bit counter. Note that
every bit added requires two additional "AND" terms.
A problem can arise on certain counts when trying to
generate a synchronous clear before reaching the full binary
count (all outputs high). The designer must ensure that both
Sand R are not high simultaneously. For example, let's say
we want the 9-bit counter to return to zero at count 383
(1011111112). At count 383, the SIR register used for C7
is being told to set. Therefore, any reset command would
result in both Sand R being high simultaneously.
This problem, only seen on a few data words, can be
solved by using another state register to control the counter
reset. This method is similar to that used above to obtain
maximum operating frequency. Figure 16 shows the 9-bit
counter returning to zero after count 383. Notice that at
count 382 the extra SIR register is being told to reset on the
next active clock edge. At count 383 the six product lines
controlling C6, C7, and C8 are disabled by the feedback from
the extra register, in particular the S input on C7. At
count 383, the 9-bit counter will return to zero and the extra
register is set high.
An extra register may also be needed to achieve the
countlhold function when using an expanded counter. During
certain counts the added bits will change state, even though
the 6-bit counter is programmed to hold. For example, let's
say we want the 9-bit counter to hold at count 383. Even
though the 6-bit counter can be held at 111111, C6 and C7
will advance on the next active clock edge. In order to hold
C6 and C7 where they are, an extra register is used to disable
the product lines responsible for the transition from count
383 to 384. Since the counter is on hold, the extra hold
register can only be reset from an input pin or a state
register(s) transition (not on the next count). In this example,
an input pin is used to reset the extra register and the
CNT/HOLD register. When the CONTINUE input is taken
low, the counter will continue to advance. The system must
guarantee that the continue input will not be low during count
382 to avoid the indeterminant set = H, reset = H state.
Figure 17 shows this 9-bit counter.
It is also important to note that when using extra
registers a reset input may be necessary to set the extra
registers high after powerup, since all SIR registers powerup clear. This requirement would not be necessary if the
phase of the extra register was reversed. This is easily
accomplished by using the iriverted feedback from the extra
register. However, it is good state machine design practice
to include a reset input that forces all SIR registers to a known
state.
I
U)
Software Support
The PSG507 is supported by two software packages;
CUPL, which was created by and is supported by Assisted
Technologies, a division of Personal CAD Systems
Incorporated, and ABEL, which was created by and is
supported by FutureNet, a division of Data I/O Corporation.
Each of these software packages can be used to reduce
equations and to generate a fuse map necessary to program
the PSG507. Appendices A and B show the ABEL and CUPL
files for Examples 1, 2, and 3. In addition, a PSG507
template is shown for each software package. These
templates provide software information that will make it
easier for the designer to create the source files.
Test vectors are included with the ABEL and CUPL
source files so software simulation can be performed on the
computer. If the proper instruction is provided, the software
will attach the test vectors to the end of the fuse map. This
allows programming equipment to run a functional test on
each device immediately after programming.
1::
o
Q.
G)
a:
c
o
',j:
ca
.~
Q.
Q.
."'-J
II
~.
'-' H;'
f--P'
"'-J
:::: ~
•
"'-J
>=I>
'-' ~
~~~
o.:p:
I--
'-'~~
'-'~~
~I-~I-~~~
Figure 14. Registered SCLR Example
(Designer Notes)
3-52
r~~~~~~1
cg.?~i'~ ,255-
~------------------------
N-!27
63
___
rJ
::.,..
C6
II~
--
I
SCLRO
I
;::; i---i>
- CNT/HLDO
I
-~
~
;::;
I;::;
~
I
ljJ; ::
Ef.l
C8
==='
~
;::;
FtJ
~
j~~
I;::;~~
I
I
~~
fL:~~
~~~
EI
en
1::
o
Q.
Q)
a:
s::
o
'';:;
CtI
.~
C.
Q.
<
f~~~
I
1
I
;::;~~-
Figure 15. Expanding to 9-Bit Counter
3-53
COUNT
COUN:::il·
COUNT 382- r 511'
COUNT 383-
Ir~~~~;' 127
255
rCOUNTo:;;;.T .3
f""~
C6
->"j
;:E5;l
CO
C1
C2
C3
C4
~
- CNrIHlDO
r:..~
:= C6
~
;::~
0'
C8
""!!!=
>-P.:
=[}
n
E
-P.:
~
'.~ ~--
~~
~--
~~~
ut=~
~
.~ut=-
~~~
Figure 16. Resetting after Count 383
(Expanding the 6-Bit Counter)
3-54
COUNT 255-
COUNT
CONT1N~~~T 382-
511l
-COUNT 255
rCOUNT 127
rCOUNT 127
rCOUNT 63
f
~
_C§
~
Ig!
!<"R"-
.~
t-+..
-~I~l_D9
.~
.~
~
Hi:
~
~
Hi:
~
~
::: Hi:
C7
~~
==
::::
~
;;;=
~
I
~
~Ir~r-
en
1::
::::~r~r-
a:
c
o
'.j:i
=i=
!:::'
~r~~~r~~r-
o
c.
CD
CO
,~
Q.
c.
[OUT~UTS, STATE ])
-> [
-> [
-> [
-];
];
];
'count xx
·count xx
·count xx
I
3-59
Module PSG EXI
title 'ABEL EXAMPLE '1 (WavefoDn Generator) for the
PSGS07 DESIGNERS GUIDE, Texas Instruments, August 26, 1987'
PSGI device 'F507';
• Input pin assignments
PSG_CLK pin 1;
• Output
REF CLK
SYS-CLK
PCLK
pin and node assignments
pin
8;
pin
9;
SYS CLK r node 48;
peLK r node 49;
pin 10;
• REF_CLK is combinational
• Internal counter bits & control - node declarations
CO
node 55;
Cl
node 56;
node 58,;
C2
node 57;
C3
SCLRO node 25;
• Intermediate declarations for simplification
COUNT
[C3,C2,Ci,CO];
H,L,clk a 1, 0, .C.;
equations
REF CLK
SYS-CLK
SYS-CLK r
PCLK PCLK r
SCLRO
I
l>
"'0
"2.
..
5'
I»
0'
~
:a
CD
"'0
o
;::.
en
3-60
•
•
•
•
•
=
:=
••
••
:=
-
!CO;
(COUNT==5) # (COUNT==11);
(COUNT==1) • (COUNT==7);
(COUNT-ll);
(COUNT=5);
(COUNT==l1);
•
•
•
•
•
High on cnt 5 and 11
Low on cnt 1 and 7
High on cnt 11
Low on cnt 5
·COllnter cleared after cnt 11
The PSG507 has powerup clear of counter· and registers. Six clocks
are required after powerup for this design to initialize. This
design could be initialized after one clock by setting SYS CLK and
PCLK high at COUNTO. i.e. SYS CLK .= COUNTO • COUNTS. COuNT11; and
PCLK :-COUNTO I COUNT11;
-
test vectors
([PSG CLK
[ clk
[ clk
[ clk
[ elk
[ elk
[ clk
I elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
I elk
I elk
I elk
[ elk
[ elk
I elk
[ elk
[ elk
I elk
COUNT)
0
1
)
)
2
3
)
4
5
6
7
8
9
10
11
0
1
2
3
4
5
6
7
8
9
10
11
0
]
]
)
]
]
]
)
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
[REF_CLK, SYS CLK, PCLK) )
);
[
L
L
L
[
);
H
L
L
];
L
L
L
I
];
H
L
L
I
];
L
L
L
I
];
H
H
L
I
[
L );
L
H
[
];
H
L
L
[
];
L
L
L
H
L
L ];
I
L ];
L
L
I
[
H
H
H ];
[
L
H
H ];
[
H
L
H );
L
L
H ];
I
[
H
L
H ];
[
L
L
H ];
];
H
H
L
I
[
H
L ];
L
];
L
H
L
I
[
);
L
L
L
];
[
H
L
L
];
L
L
L
I
H
H
H ];
I
L
H ];
H
I
end PSG_EX1
I...
(I)
...0
c.
Q)
a:
c
0
.~
CO
.~
C.
c.
c::(
3-61
Module PSG EX2
title 'ABEL EXAMPLE '2 (Refresh Timer) for the
PSG507 DESIGNERS GUIDE, Texas Instruments, August 26, 1987'
PSG2 device 'F507';
" Input
PSG CLK
RESET
RFC
pin assignments
pin 1;
pin 2;
pin 3;
• Output pin' and node assignments
REFREQ pin
8; REFREQ_r node 47;
" Internal counter bits & control - node declarations
CO node 55; Cl node 56; C2 node 57;
C3 node 58; C4 node 59; C5node 60;
SCLRO node 25;
" Buried register
C6 node 31; C6_r node 39; " 7th counter bit
" Intermediate declarations for simplffication
COUNT
= [C6,C5,C4,C3,C2,Cl,CO); ,
H,L,clk,X = 1, 0, .C., :X.;
13
equations
REFREQ
:= RFC • RESET;
REFREQ r .~ (COUNT--76) & !RESET;
C6
:= (COUNT==63) « !RESET;
C6 r
.= (COUNT==76) & IRESET t RESET;
SCLRO
- (COUNT-76) & !RESET t RESET;
clear
@REPEAT 76
@REPEAT 20
3-62
•
•
•
"
"
([PSG_CLK,RESET,RFC)
[ clk
X)
H
[ clk
L )
L
[ clk
L )
L
[ clk
L )
L
[ clk
H )
L
[ clk
L )
L
[ clk
X)
H
set input
reset input
set input
reset input
synchronous nonregistered
-> REFREQ )
H
->
->
H
->
L
L
->
H
->
H
->
H
->
"CNTO
'CNTl-76
'CNTO
'CNTl-20
"CNT21
"CNT22
'CNTO
Module PSG EX3
title 'ABEL EXAMPLE '3 (Dynamic Memory Timing Controller)
"for the PSG507 DESIGNERS GUIDE, Texas Instruments, August 26, 1987'
PSG3 device 'F507';
• Input pin assignments
OSC
pin 1;
RESET
pin
2;
3;
ALE
pin
MIO
pin
4;
REFREQ
pin
5;
• Output
ROY
MCl
RFC
RAS
MSEL
CAS
•
•
•
•
•
pin and node assignments
8; ROY r
pin
node 47;
pin
9; MC1-r
node 48;
pin 10; RFC-r
node 49;
pin 11; RAS-r
node 50;
pin 13; MSEL r
node 51;
pin 14; CAS):
node 52;
• Internal counter
node 55;
CO
C3
node 58;
SCLRO
node 25;
CNTHOLDl node 29;
PO
node 31;
Pl
node 32;
BROY
node 33;
OSCILLATOR
RESET - INITIALIZES WHEN HIGH
ADDRESS LATCH ENABLE
MEMORY I/O
REFRESH REQUEST
• READY
•
•
•
•
•
MODE CONTROL
REFRESH COMPLETE
ROW ADDRESS STROBE
MULTIPLEXER SELECT
COLUMN ADDRESS STROBE
bits & control, and state reg - node declarations
C1 node 56; C2 noae 57;
C4 node 59;
,
CNTHOLD1_r
PO r
Pl-r
BRDY r
node
node
node
node
·
30;
COUNT/HOLD CONTROL REGISTER
39; • BURIED STATE REGISTER
40; • BURIED STATE REGISTER
41; • BURIED READY SIGNAL
• Set notation is used to represent control, buried state, and output
" registers. This is done to simplify the equations. The following
• sets are in the form; register name = [set input, reset inputJ. Note
" that the ouput register pin name specifies the set input.
ROY
[ROY, ROY rJ;
MC1- [MC1, MC1-rJ;
RFC= [RFC, RFC- rJ ;
RAS= [RAS, RAS-rJ;
MSEL
[MSEL, MSEL rJ;
CAS = [CAS, CAS rT;
BROY
= [BROY, BRDY_rJ;
" Intermediate declarations for simplification.
" The sets 'high' and 'low' are used to set or reset the SiR
"registers. Example: Mel := high & RESET; will cause pin 9
" to go high on the next clock edge if input pin 2 is high.
high
= [1, OJ;
low
= [0,
lJ;
COUNT
[C4,C3,C2,Cl,COJ;
STATE
- [Pl,POJ;
• STATE REGISTER SET DEFINED
H,L,clk,X = 1, 0, .C., .X.;
@page
I
U)
1::
8Q)
a::
c
o
'~
as
,9
Q.
Q.
[RDY,MCl,RFC,RAS,MSEL,CAS,STATE ])
0 -];
[clk, H
X
X
X
X
-> [ H , H , L , H , L , H
[clk, L
L
H
H
0
-> [H H L
H, L
H
0
];
H,HrL,H,L ,H, 1
];
[clk, L , H , H, H
0
->
H , H , L , L , L
11, 1
];
[clk, L , X , X, X
0
->
];
[clk, L , X , X, X
1
-> H , H , L, L , H , H, 1
[clk, L , X , X, X
2
-> 11 , H , L , L , H , L, 1 ];
@CONST cnt
3; @REPEAT 6
[clk, L , X , X, X
, cnt
-> H , H , L , L , l l , L , 1
];
@CONST cnt
cnt + 1;)
[clk, L , X , X, X
9
-> H , H , L , H , L ,11
0
];
[clk, L , L , L
H
0
->
H , H , L , H
L , H
0
];
test vectors ' REFRESH WITH ACCESS FOT,LOWING'
([OSC, RESET,ALE,MIO,REFREQ,COUNT] .. > [RDY,MCl,RFC,RAS,MSEI" CIIS, STATE])
[clk, H
X
X
X
X
-> [ H , H , L , H , J~ , ll, 0 -];
[clk, L , X , X
L
0
-> [ H , H , L , H , L , ! l I 2
];
[clk, L , L , L, X
0
->
H , L , L , H , L , H,
2
];
[clk, L , L , L, X
1
-> [ H , L , H , I, , L , H, 2
];
[clk, L , L , L, X
2
-> [ H , L , H , L , L , H, 2
1;
];
[clk, L , L , L, X
3
->
H, H , H , L , I, , H,
2
];
[elk, L
H
H
X
4
->
L I H
H
L
L , H
2
];
[clk, L , X , X, X
5
->
L, H , L , L ,J~ , H,
2
];
[clk, L , X , X, X
6
-> L, H , L , II L
H,
2
[clk, L
X
X
X
7
->
L
H
I,
H
L
H
2
1;
] ;
[elk, L , X , X, X
8
->
IJ 1 H ! L , H , 1 r H, 2
];
[clk, L , X , X, X
9
->
L, H
L, H ,L , ll, 2
];
[clk, L , X , X, X
10
-> L
H, L , L , I,
H
2
];
[clk, L 1 X , X, X
, 11
->
H, H , L , L , H
H f
2
];
[clk, L , X , X 1 X
12
->
H, H , L , L ,H , J~
2
@CONST cnt =13; @REPEAT 6 {
];
cnt
H
H
L
2
[clk, L , X ,X
X
->
L r H
@CONST cnt
cnt + 1;)
H, H, L H
, 19
L
[clk, L , X , X, X
->
I'
H. ,
o ];
r
test vectors ' REFRESH WITHOUT ACCESS FOLLOWING'
([OSC,RESET,ALE,MIO,REFREQ,COUNT] -> [RDY,MCl,RFC,RAS,MSEL,CAS,STATE_l)
[clk, H
X
X
X
X
-> [ H , H , L , H , L ,Ii, 0
];
[clk, L , X , X,
L
0
-> [ H , H , I, , II ,I"
H
2
];
[clk, L , L , L 1 X
0
-> [ H , L ,I, H, L , H, 2
];
[clk, L
L
L
X
1
-> [H I,
H, 1. ,L
II
2
1;
[clk, I,
L
L
X
2
-> [H L H, I, ,L , H , 2
1;
[clk, L
L
L
X
3
-> [H
H
H
J.
I,
l!,
2
J;
[clk, L , L , H, X
4
-> [ H , H , Ii , ], r L , Hr·?
l;
[clk, L , H , L, X
5
-> [ H , H , J~ r L ,L , H, 2 ];
[elk, L , H , L r X
6
-> [H
H
I"
H
L
H
2
J;
[clk, L , H , L r X
7
_.> [H
H, j, , H , L
H
2
J
[elk, L , H , L, X'
8
-> [H H, I,
H, T" " l:J.,
:2
[elk, L , H
L, X
9
-> [ H , H , I, , H , I. , H r 0
en
~
oQ.
G)
a::
c::
o
',j:i
ca
,sa
Q.
Q.
c:r:
@page
3-65
test vectors ' RESET DURING REFRESH '
([OSC,RESET,ALE,MIO,REFREQ,COUNT] ->
X ] ->
[clk, H ,X,'X, X
[clk, L , X , X , L
0 ] ->
[clk, L , L , L , X
0 ] ->
[clk, L , L , L , X
1 ] ->
2 ] ->
[clk, L , L , L , X
3 ] ->
[clk, H , X , X , X
end PSG EX3
I
3-66
[RDY,MC1,RFC,RAS,MSEL,CAS,STATE_])
[ H, H, L , H, L , H
];
0
[ H , H , L , H , L , H ,
];
2
[ H , L , L , H , L , H ,
2
];
[ H , L , H , L , L , H ,
2
1;
[ H , L , H , L , L , H
];
2
[ H , H , L , H , L , H ,
];
0
Appendix B. CUPLTN Source and Simulation Files
1****************************************************************************1
1* CUPL (tm) TEMPLATE FOR THE TI PSG507
*1
1*
1*
1*
1*
1*
1*
1*
*1
*1
*1
*1
*1
*1
6-BIT COUNTER: The 6-bit counter is accessed through use of the PINNODE *1
This file provides the PSG507 designer quick access to the information
needed to write a CUPL source file. By copying this file and deleting
this box from the new file a fill-in-the-blanks template will be left
for use in creating a source file.
/*
/*
/*
/*
/*
1*
/*
/*
statement. The pinnode statement is used to assign
variables to the internal node numbers. i.e. pinnode
[33 •. 38) ~ [CO .. C5).CNT. These variables can then
be used in. the same manner as input pins.Using the
field statement, i.e. field COUNTER ~ [CO .• C5).CNT;
allows an equation like QO = COUNTER'd'3 f COUNTER'd'7;
This equation causes the nonregistered output QO to be
high only during counts 3 and 7.
1*
1* COUNTER CONTROLS:
1*
/*
1*
/*
/*
/*
/* STATE
/*
/*
REGISTERS:
Clear and hold functions SCLRO, SCLRl, CNTHOLDO,
and CNTHOLDl are specified using the PINNODE
statement. Any valid variable can be used as a node
n~e, i.e. pinnode [39 .. 42) = [CLRO,CLRl,HLDO,HLDl);
These variables can then be used in the same manner
as an output pin.
Buried registers are assigned using the NODE statement, i.e. node [PO •. P7);. The actual registers
used are chosen by software in the order specified.
1*
1* OUTPUT STRUCTURE: Each output can be defined as either registered or
/*
/*
1*
/*
/*
/*
/*
nonregistered. The structure assignment is automatic
and is determined by usage. QO.s = COUNTER'd'77;
causes the QO output to remain registered while
QO = 90UNTER'd'77; causes the QO output to be nonregistered. When using nonregistered outputs CUPL
will automatically program the associated reset fuse
for each product term used as required in the PSG507
data sheet.
*/
*/
*/
*/
*/
*/
*1
*1
*1
*/
*1
*/
*/
*/
*/
*1
*/
*1
*/
*1
*/
*1
13
*/
*/
*/
*/
*1
*1
*i
/*
/*
*/
1***************************************************** ***********************/
U)
~
()
CL
CD
a:
c:
()
'4:
CO
,2
Q.
CL
P3
~
P,
~
::: ~
P<
;:::
~
P6
~
P7
I::::
en
1::
i-~~'l"
I;:::
II
~tl"
-L
,;::~!J!o>-02
~
2"6'
,-~~Q3
1"-
II
o
Co
Q)
a:
c
o
'';:;
ca
,sa
Q.
Co
«
~rtl1"
I':-~
~
~t""
i'!.
~~~Q'
~
~~
.
,"
~rl161
--j>
~~
MOO
.M
000
~~
;g
;n~
;;N
~~
MOO
~;::
~
l"69
3-79
Il
3-80
System Solutions for
Static Column Decode
Robert K. Breuninger, Loren Schiele,
and Joshua K. Peprah
rn
t::
oQ.
CD
a::
c
o
~
as
.5:!
Q.
Q.
c:a:
•
TEXAS
INSTRUMENTS
3-81
IMPORTANT NOTICE
Texas Instruments (Til reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.
I
In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.
Copyright © 1987, Texas Instruments Incorporated
3-82
Contents
Title
INTRODUCTION .............................................................................
STATIC COLUMN DECODE...................................................................
TYPICAL MEMORY CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIMING CONTROLLER DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NORMAL ACCESS SEQUENCE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HIGH-SPEED ACCESS SEQUENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EXTENDED ACCESS SEQUENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NORMAL/EXTENDED REFRESH SEQUENCES ............................................ . . . . . .
SOFTWARE SUPPORT ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SUMMARY ..................................................................................
Page
3-85
3-85
3-87
3-87
3-89
3-89
3-90
3-90
3-94
3-94
Appendixes
A
B
ABEL'" Files .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CUPL'" Files....... .. ..... ... .. ..... ........... .. ............ ... ................ .... ......
3-95
3-101
ABEL is a trademark of DATA 110
CUPL is a trademark of Persooal CAD Systems, Inc.
fI)
1::
o
Q.
CD
a:
C
o
'';:;
ca
,~
Q.
Q.
c:s:
3-83
List of IDustrations
Figure
Title
Page
1
2
3
4
5
6
7
8
9
Static Column Decode Mode Read Cycle Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68020/6301 Static Column Memory Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ALS6310 Static ColumnlPage Mode Access Detector ........................................
Timing Controller Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Normal Access Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-Speed Access Cycle ...............................................................
Extended Access Cycle .................................................................
Normal Refresh!Access Grant Cycle ......................................................
Extended Refresh Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-85
3-86
3-87
3-88
3-89
3-90
3-91
3-92
3-93
3-84
INTRODUCTION
The new 32-bit microprocessors are capable of addressing
4G bytes of physical memory and typically feature clock
frequencies greater than 16 Mhz. However, clock speed
alone does not guarantee increased system performance; if
the processor must wait for data, then memory bandwidth
will be the limiting factor.
This situation exists between today' s microprocessors
and the access times of affordable DRAMs. One solution to
optimizing system performance is to mix and match memory,
using lower cost dynamic RAM in conjunction with fast,
more expensive static RAM caches. However, this approach
is only attractive to high end systems where cost and board
space is a less significant factor.
Another approach to improving system performance
is to utilize the new accessing modes available on certain
I meg DRAMs, such as static column decode. This method
does not improve system performance as much as caches,
but it does involve less hardware, resulting in lower system
cost. This approach can also be used in systems already using
caches, further improving system performance.
This application note describes the theory of using static
column decode and also describes how it might be
implemented in a typical system. In addition, it highlights
three new products from Texas Instruments. The
SN74ALS6300 "Selectable Refresh Timer", the
SN74ALS631O "Static Column Access Detector", and the
TIBPSG507 "Programmable Sequence Generator".
STATIC COLUMN DECODE
The TMS4C1027 is a 1,048,576-bit x 1 dynamic
RAM featuring static column decode. Static column decode
allows high-speed read and write operations by reducing the
number of required signal setup, hold, and transition timings.
This is achieved by first strobing the row and column
addresses in the normal manner by taking RAS and CAS low.
If RAS and CAS are kept low, new data can be accessed
by simply changing the column addresses, assuming the new
address is in the same row. If the new address is not in the
same row, then a normal access cycle must be performed.
Figure I is a timing diagram taken from the
TMS4CI027 datasheet showing static column decode mode
read cycle timing.
If the assumption is made that the majority of memory
references tend to be sequential, which is a similar
assumption made when using caches, then it is logical to
assume that a large percentage of memory accesses will be
within the same row. The trick is how to implement a timing
controller which will take full advantage of the static column
mode of operation.
~
I+-tw(RH)
1~4f-------------tw(RL)P------------".1 1 1
II I
},A.·
II '--
1
~i
RAS
!\
I "'.
I
1I
I I
--------------------------1
~ t+-tt
I
.1
14
:I ~
td(RLCL)rd
/I+!-';---
I
I
,
I
I I4--th(RLCA)~
~ t4- t h(RA)
tsu(RA)--.I
I
I
I
tJ., 1 I
1
~
VIL
I
~
oQ.
VIH
VIL
t+-thIRHCA)
I I I
l+--tc(rd)SC~
I+-tsuICAR)~ I I
I
i'_ _..........I,....._ _ _.l..S..1
AO·A9
VIH
CD
a:
C
o
'';::;
a3
.~
Q.
Q.
I
~td(RLCA)
••
II
j4-tsu(RLrd)
I I
1
I I
II
!ldd"
~
•
C»
V'C.
REFRESH
TIMER
SO-S3
RefREO
CLK
1
~'
f----t
f----t
f----t
SYSCLK
osc
CLK
~
IOtllil
....
DSACK
Rt'li
Rt'li
AS
AS
STATIC CDLUMN
DETECT
SN74ALS6310
_P-CLK
·
r-I •
Al0-A1S
\
I-t HSA
ROW
Al0-A1S
COLUMN
AO-AS
A20
A2l
..
RASO
CASO
CASO
'Ii
I I I I
~
MCl
7
AS
MCO
RASl
-I--
RASl
a
CASl -~
CASl
~
lH':
BANK 1
1 MEG X 32 BITS
(321 TMS4Cl027
'Ii
I I I I
7
··
AO
-I--
RAS2
CAS2
I- >--
CAS2
~
BANK 2
1 MEG X 32 BITS
(321 TMS4Cl027
AS
RAS2
BO
I
·••
~
r-
\
BANKO
1MEG X 32 BITS
1321 TMS4Cl027
'Ii
~
Bl
1
---.:...
AO
AO
r
·
•
•
AS-
RASO -----,-
MSEL
AS
r---t
I
AO
- - - l iiASi
L.....--
SYS RSf
lotlll(A2Z
••
OSf--
\
.----
iiFC
~
DYNAMIC RAM
00
RST
r---t
SYS CLK
(OSCt2)
LE
TIMING
CONTROLLER
TIBPSG507
~
REFRESH
RATE
SELECT
DRAM
CONTROLLER
74ALS6301
'Ii
I I I T
...-
...:l.
AO
A.O
•
--, :9
A1S
SELO
RAS3
RAS3
SEll
CAS3
CAS3
BANK 3
1 MEG X 32 BITS
1321 TMS4Cl 027
W
00_. e031
Figure 2. 68020 Static Column Memory Controller
QO •• ea31
'J
TYPICAL MEMORY CONTROLLER
Figure 2 shows a block diagram of a memory system
utilizing static column decode. The ALS63 10 is a new circuit
offered by Texas Instruments which detects if the present
row being accessed is the same as last row accessed. This
is the fundamental requirement for implementing static
column decode. Note that the row addresses from the 68020
are used as the most significant bits (AIO-AI9) and the
column addresses are used as the least significant bits
(AO-A9). Figure 3 shows a block diagram of the ALS63 10.
In circuit operation, when address strobe (AS) from
the 68020 is taken low, the present row (AIO-AI9) and bank
address (BO, Bl) is clocked into the first register of the
ALS631O. The previous bank and row address, stored in the
first register, is clocked into the second register at the same
time. The two addresses are then compared to see if they
are equal. If they are equal, the high speed access output
(HSA) will be logically low. If not, HSA will be high.
The function of the PSG507 is to generate the required
memory timing control signals (RAS, CAS, etc.) for the
ALS6301 dynamic memory controller. The ALS6301 is
responsible for multiplexing row and column addresses into
DRAM. The ALS6391 is also capable of driving 4 banks
of 1M-byte memory.
Supporting the PSG507 is the ALS6300 refresh timer.
This device is responsible for generating a refresh request
signal (REFREQ) every 15.5 p.s. The input select lines are
hardwired to match the microprocessor clock frequency. The
refresh complete input (RFC), resets the REFREQ signal
after the timing controller completes the refresh cycle.
TIMING CONTROLLER DETAILS
Figure 4 shows a typical flow chart for implementing
static column decode. As stated before, the PSG507 is
responsible for implementing the flow chart shown in
Figure 4. A breakdown of this flow chart reveals 9 states
(STO-ST8), associated with 5 different sequences. States STO,
STl, ST3, and ST4 are holding and transition states, leading
into the various sequences. The five possible sequences are
listed below.
ST2 Normal Access Sequence
ST5 Extended Access Sequence
ST6 High-Speed Access Sequence
ST7 Normal Refresh Sequence
ST8 Extended Refresh Sequence
Notice that the HSA signal from the ALS63 10 decides
if the timing controller will execute ST5, the Extended Access
Sequence, or ST6, the High-Speed Access Sequence. A brief
description of each sequence follows.
CLKEN----~----------------------------_,
CLK--e-~---------------------------,
PRESENT ADDRESS
REGISTER
fI)
t::
o
Q.
CD
a:
C
o
10
AO-A9
4X
4X
(BANK]
(BANK]
BO-B3
P-Q
HSA
P-Q
HSA
..
ca
()
=a
Q.
ct
Figure 3. ALS6310 Static Column Page Mode Access Detector
3-87
NO
Figure 4. Timing Controller Flowchart
3-88
NORMAL ACCESS SEQUENCE
HIGH-SPEED ACCESS SEQUENCE
The normal access sequence is shown in Fi~ 5. This
sequence begins by executing a normal RAS/CAS cycle.
Notice that a wait state of one clock cycle is needed to
guarantee that data is valid for the 68020. This is the problem
mentioned in the introduction; if all access cycles had to be
performed in this manner, then the processor would face a
wait state every access cycle. As will be shown later, this
wait state can be eliminated if the next address is from the
same row.
Notice also, at the end of this sequence, the RAS and
CAS output signals are left active low. Here we are making
the assumption that the next access cycle will be a high-speed
access. We will not know if this assumption is true until the
next address is presented by the 68020. At that time, the
ALS6310 wilt' signal the timing controller if it can execute
a high-speed access.
For a high-speed access sequence to be executed, two
conditions must be met. The RAS and CAS inputs must
already be low, and secondly, the static column access
detector must be indicating the present row is the same as
the last row (HSA = L). The bank addresses must also be
unchanged as detected by the ALS631 O.
Figure 6 shows the timing diagram for the high-speed
access sequence. Notice that no wait states are required. If
the assumption is made that the majority of memory
references are sequential, then this sequence will be the one
typically used., In other words, this sequence is similar to
accessing data from a static RAM, or just like taking data
from cache.
ST2
CNT1
S2
r-~~~L-
ST2
CNT2
SW
ST2
CNT3
ST2
CNT4
S3
SW
ST2
CNT5
S4
____________________
ADX SSSSSSSSSSSx
R/W \SSSss\\s\SlC - - - - -
ST3
CNTO
S5
~
__
~-------'L
ISSSSS,S,'
VALID PROCESSOR ADDRESS
- - - VALID R/W SIGNAL
"')(sss SSS \SS
I
I
I
I
II)
~--------------------------1-----------------------------+'----------------------I
t::
I
o
MSEL--------------------~----~----~----------t!----------------- Q.
CD
a:
I
I
CASI
--------------------------~------------~--------------+:----------------------- C
o
+=
as
I
MADR S"SSSSSSS"""X
ROW ADDRESS
x
I
I
I
QO~Q31
I
COLUMN ADDRESS
I
I
.~
I
_ ____________________________________~'--~I.::====:.~I~TA~(C~I~::~W[~~ffiC:::::::::::
:
(
VALID READ DATA
_TA (CAI--.l
DSACK-----------------------------------------,____________________
Q.
Q.
!l dd v
IN
cD
•
~
STO
CNTO
ST7
CNT1
ST7
CNTO
ST7
CNT2
ST7
CNT3
ST7
CNT4
ST7
CNT5
ST7
CNT6
ST7
CNT7
ST7
CNT8
ST7
CNT9
ST7
CNT10
ST7
CNT11
ST7
CNT12
ST7
CNT13
ST7
CNT14
ST3
CNTO
OSC
SO:
SYS ClK
S1
S2
SW
SW
SW
SW
i
r-
AS--1
REFREO ~:1-i-
________________________________-1-------1--------------------------------------------t---------
-
I
RFC
'I
I
AGREO---------,________________________________________~I~r_----------------------------------------!--------ADX \ \
55 \ \\X
x::s:s
VALID PROCESSOR ADDRESS
liSA \\\\ \\ \\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\\\\\\\\\\\\\\S\\\\\\\
DON'T CARE
\\\\\\\\\ \\\\\\\\\\\\\\\ \\\\\\\\ \\\\\\\
I
R/W \s\\\SSSJC - - - - - - - - - - - - - - - - - VALiD RiWDinA - - - - - - - -
- - - - - - - - - - - L - ~
I
MC1------------1-____________________________r-------------------------------~
RASI----------------~__________________~------------------L_
MADR
ROW REFRESH ADDRESS
________________
ROW ADDRESS
~-------
COL ADDRESS
I
MSEl
I
I
ht-----------f
I
CASI'
00-031
---------------------------------~-------------------------------------------------------It=~~~~)
I+-TA (C) .....
H~ADDAIA
r-C-----r-
DSACK
W
Figure 8. Normal Refresh!Access Grant Cycle
ST3
CNTO
STB
CNTO
STB
CNT1
STB
CNT2
STB
CNT3
ST1
CNTO
ST1
CNT1
ST1
CNT2
ST1
CNT3
ST1
CNT4
ST7
CNT5
ST7
CNT6
STO
CNTO
STO
CNTO
OSC
SYS CLK
---..J
]-
AS------~------------------------------------------------------~-------------
REFREQ
RFC------------------------------------------------------------iL__________~~--~--------------AGREQ------------------------------------------------------------------------------------------~------------------ADX
\SSSSSS\\SS \\S S\ S\SSSS\\S\\ S\SS\ SSS\
DON'T CARE
S\\\S\ S\SS\\\\\SSS\\SS'0\TI)\\\\\\\\\\
HSA
\\\SSSSSS\\S\\SSS\\SS\\SS \\S\\SSSSSS
DON'T CARE
SSS\\SS\\SSSSSS\\\\SS\\\SS\S\\\\SSS'\ '0
R/W
S\ S\\ \ \\ \\\ \\\\ S\\ \\ \ \ \ \\\ \ \\\ \ \ \\ \\
DON'T CARE
\
\\\S S \\S \S \ S\\ \\\ \\ \, 'TISTI,\\\\\ \\ \\ \
1
MC'
~--------------------~
MADR
\\\\\\\\\\\SS\SS\S\\\\S\\\S\\\S\\\\\\\\\\\X
ROW REFRESH ADDRESS
X\ 'US\\\\\\\
MSEL------------------------1-__________________________________________________________________________
CASI ________________________
~
QO-Q31 \\\ \\ \ \ \ \\ \ \ \ \\ \ \, \\'\ \, \ '\'}~----------------------------------------...
DSACK---------------------------------------------------------------------------------------------------------
W----------------------------------------------w
cO
w
Figure 9. Extended Refresh Cycle
Application Reports
1:1
SOFTWARE SUPPORT
SUMMARY
The PSG507 is supported by two software packages.
CUPL which was created by and is supported by Assisted
Technologies, a division of Personal CAD Systems Inc. and
ABEL which was created by and is supported by FutureNet
a division of Data 1/0 Corp. BOth of these software packages
have been used to reduce eqUations and to generate the
fusemap necessary to program the PSG507. Appendices A
and B show the ABEL1M and CUPLno source files for the
described static column memory timing controller are
attached to assist the designer in progra:mming the PSG507.
Since only 54 % (43 out of 80) of the PG507' s product
terms were used in this design, it will be easy to modify or
add to the sequences used to meet specific system
requirements. For detailed information ondesigning with the
PSG507 see "A Designer's Guide to the PSG507"
application report.
Static column decode offers the system designer a
method for improving system performance in applications
where the microprocessor can outperform conventional
DRAM access times. By utilizing the ALS6310 "Static
Column Access Detector" , the ALS6300 "Refresh Timer" ,
and the TIBPSG507 "Programmable Sequence Generator"
a high performance memory timing controller can be easily
developed to take full advantage of static column decode.
11
3-94
APPENDIX A
IlOdule S(DECODE
title ' ABEL EXAMPLE FOR TIlE S'lATIC COLUIti DECODER
JOSH PEPRAH, TEXAS mS'lRUM!'.IITS, OCT 29, 1987'
DECODE device ' r507' ;
• Input pin assi9Jlll8llts
pin 1;
RESET
pin 2;
122
pin 3;
RII
pin 4;
REI'REQ
pin 5;
AS
pin 6;
HBA
pin 7;
SYSCLK
pin 17 ;
ose
•
•
•
•
•
•
•
•
• Output pin and node assiCJIIIRents
RfC
pin 8; RfC r
WI
pin 9; WI r
MSEL
pin 10; MSEL-r
CASI
pin 11; CASfr
1«:1
pin 13; 1«:1
II
pin 14; II rDSACK
pin 15; DSACKJ
r
node
node
node
node
node
47;
48;
49;
50;
51;
node 53;
OSCILLATOR
SYSm! RESET - IIBEN LOll
IO/MtHlRY - MEMORY ACCESS
READ I IIRlTE EHABLE
REfRESH REQUEST
ADDR STROBE - ACCESS REO
HIGH SPEFD ACCESS
SYSm! CLOCK - (Ose/2)
• REfRESH COMPLETE
• ROW ADDRESS STROBE
• .m.TIPLEXER SELECT
• COLUIIH ADDRESS STROBE
• DE CONTROL
node 52; • IIRITE
• DATA STROBE ACIINOIILEDGE
• Internal counter bits , control, and state reg - node declarations
CO,C1,C2,C3,C4,C5 node 55,56,57,58,59,60;
SCLRO
node 25;
Ctl'.l'IIOLDO node 28;
OOHOLDI node 29; OOHOLDI_r node 30; 11 COUN'l/HOLD CONTROL REGIS'lER
• Buried state registers - node declarations
node
node
PI
node
P2
node
P3
AGREQ node
PO
•
"
•
•
31;
32;
33;
34;
35;
PO r
node
Pl-r
node
P(r
node
P3 r
node
AGREQ_r node 43;
39;
40;
41;
42;
" STATE REGIS'lER
• STATE REGISTER
• STATE REGISTER
• STm: REGISTER
• ACCESS GRAHT REQUEST STATIlS REGISTER
Set notation i8 used to represent control, buried state, and output
registers. This is done to simplify the equations. The following
sets are in the fOIII; register DaIl8 • [set input, reset input). Rote
that the ouput register pin l\8IIe specifies the set input.
RfC
WI
MSELCASI11:1 I DSACK
AGREQ:
'•
=
•
•
•
•
=
I
~
oQ.
Q)
a:
c
o
as
'';:;
,9
Q.
Q.
c:t
[RfC, RfC r);
[WI, WI r);
[MSEL, MSEL- r) ;
[CASI, CASI-r);
[11:1, 1«:1 rT;
[I, I r);[DSACK, DSACK r);
• [AGREQ, AGREQ:r);
3-95
•
•
•
•
Int8l1l8diate declarations fot simplification.
The sets 'high' and ' low' are used to set or reset the SiR
registers. Ewlple: WI := high' RESET; lIill cause pin 9
to go high on the next clock edge if input pin 6 is high.
..
•
..
=
high
1011
COM'
S'lAft
H,L,cll,X
[1, 0];
[0, I];
[C3,C2,Cl,CO];
[P3,P2,P1,PO];
n
STm: REGISmt SET DEFINED
- 1, 0, .C., .X.;
equations
enable RI'C .. 1; "outputs always enabled, pin 17 is only an input·
" Initialization when RESET is 1011
[WI, CASI, RI'C, W, AGREQ, DSACK,II:1, SCLRO] := IRESET;
[1ISEL_r,PO_r,PIJ,P2_r,P3J]
:= !RESET;
n
Counter controls defined
= I RESET
# (STATE -2)
f (STATE-==4)
f (STATE-""5)
t (STADC=6)
t (STATE-==7)
t (S'lATE-==7)
t (STATE:-8)
SCLRO
•
ctmIOLD1
.=
, (COIJNTI=5)
, (COUN'l==O) & A22
, (COIJNT-10)
, (COON'l-4)
, (COIJN'l-6) , (A22
, (COIlN'l=oo14)
t AGREQ)
, (COON'1=3);
!RESET
t
f
f
f
t
f
t
(STATE =2)
(STATE-"'4)
(STATE-=5)
(STATE- =6)
(STATE- -7)
(STATE- ==7)
(STAT(-8)
,
,
,
,
,
(COON'l'-5)
(COUHT-o) , A22
(COONT==10)
(COUHT==4)
(COON'1=6) , (A22 f AGREQ)
, (COIlHT-14)
, (COUHT-3);
CHTHOLDl r :- (STATE -0) , lREFREQ , RESET
1 (SUTt: =1) , !A22 , RESET
t (STATE- ••3) , !REFREQ , RESET
f (STAT(==3) & REFREQ & AS & SYSCLK & RESET;
• Execution of access and refresh sequences
state diagram SUft
State 0:
case
!RESET
REFREQ & (lAS t ISYSCLK)
REFREQ' AS' SYSCLK , RESET
!REFREQ' RESET
endcase;
3-96
"Hm
" STm:
: 0;
: 0;
: 1;
: 7;
" NORMAL ACCESS CYCLE
State 1:
" NEXT
" STATE
: 2;
case
(COUNT-O) & !A22
(COUNT-O) , A22
endcase;
: 0;
State 2:
RASI :- (COUNT-O) & low & RESET;
& high;
CASI- :- (COUNT-2) & low & RESET;
DSACK- :" (COUNT-2) & low & RESET;
11 - :" (COUNT-3) & low 'RESET;
If := (C0UNT-5) 'high;
DSACK := (C01JNT-5) 'high;
if (coiiNT-5) then 3 else 2;
MSEL- :- (COUNT-I)
"BOLDING STATE
State 3:
" NEXT
case
(!AS
" STATE
t
!SYSCLK) , REFREQ , RESET
REFREQ' AS' SYSCLK & RESET
!REFREQ , RESET
endcase;
State 4:
,,
CASI :" (COllN'r-O)
high &
RASI- :- (COONT-O)
high'
MSEL- := (COUNT-O)
low
RASI- :" (COUNT-I) & high'
DSAcK := (COUNT-1)
low &
MSEL :- (COONT-l)
low
high ,
CAS( :- (COtlNT-I)
,
,
: 3;
: 4;
: 8;
A22;
A22;
A22;
KSA;
!RSA;
KSA;
BSA;
I
U)
t:
o
" NEXT
case
(COUNT==O)
(COUNT-O)
(COUNT-I)
(COUNT-I)
endcase;
" STATE
& A22 & RESET
& 1A22 & RESET
& BSA & RESET
: 0;
: 4;
: 5;
, !BSA ,RESET
: 6;
Co
Q)
a:
c
o
as
'';:;
,~
Q.
Co
~
"EXTENDED ACCESS CYCLE
state 5:
RASI := (COUNT-5) ,low' RESET;
MSEL- := (COUNT-6) 'high' RESET;
CAS( := (COUNT-7) ,low' RESET;
DSACK :" (COUNT==7) 'low' RESET;
11:- (COUHT-8) 'low & RESET;
11- := (COUNT==10) , high;
DSACK :- (COUNT-IO) , high;
inCOUHT-IO) , RESET then 3 else 5;
3-97
"HIGH SPEED ACCESS
State 6:
II := (COUH'l==2) & lOll & RESET;
11- := (C00HT==4) & high;
DSACK := iCo0HT==4) & high;
inCOONT-4) then 3 elae 6;
"HOHL REl'RESH CYCLE
State 7:
AGREQ :- AS
'loll & RESE!;
:- (COmr.r-O) 'loll & RESE!;
:= (COUNT""1) & lOll 'RESET;
:= (COUN'J'-3) 'loll 'RESET;
:- (C01lHT=-5) 'high;
:" (COUN'J'==5) 'high;
Me( := (C01JHT=a6) 'high;
RASI :'" (COOHT==9) & lOll 'RESET;
MSEL- :- (C01JHT=alO) , high i RESET;
CASI- :- (COOHT==ll) 'loll & RESET;
DSACIC := (COIlN'l'-=ll) 'loll 'RESET;
11:= (C01lHT==12) & lOll 'RESET;
11- := (C01lHT==14) , high;
DSACK :- (COUH'l-=14) , high;
if (c01lHT==6) " (122 t AGREQ) then 0 elae 7;
if (COUN'J'....14) then 3 elae 7;
11:1RASIRrCRFCRASI-
"Em:HDED REFRESH CYCLE
State 8:
RASI :- (cotJm'---l) 'high;
MSEL- :- (C01lHT==1) 'loll;
CASI- := (COUN'J'-1) & high;
if (Cotnrz-3) then 7 else -8;
I
l>
"0
"2.
teat_VIlctora ' KOHL ACCESS CYCLE'
...0'~'
([OSC, RESET,122,RII,REFREQ,AS,HSA, SYSCLK,COUN'J')
(clk,
L , X ,X, X
, X,
(clk,
H , X ,X, H
, L,
(clk,
H , X , X, H
, H,
(clk,
H , L ,X, X
, X,
(elk,
H , X ,X, X
, X,
(clk,
H ,X, x, X
, X,
, X,
(clk,
H ,X, X, X
(clk,
H ,X, X, X
, X,
(clk,
H , X , X, X
, x,
, X,
(clk,
H , X , X, X
::::s
:::a
CD
"0
o
~
(I)
-) (RrC,RASI,MSEL,CASI,MC1,II,DBACK,STATE II
X, X, X ) -) ( H, H, L, 8 ,-H ,H,
X, X, 0 ) -) ( H, H, L, 8, H ,8,
X, H, 0 ) -) ( H, H, L, H, 8 ,H,
X, X, 0 ) -) ( H, H, L, H, H ,H,
X, X, 0 I -> ( H, L, L, 8, 8 ,H,
X, X, 1 I -> ( H, L, 8, 8, H , H,
X, X, 2 I -> ( 8, L, H, L, H ,8,
X, X, 3 I -> ( H, L, H, L, 8 ,L,
X, X, 4 I -> ( H ,L, H, L, 8 ,L,
X, X, 5 I -> ( 8, L, H, L, H ,H,
H
H
H
H
H
8
L
L
L
H
,
,
,
,
,
,
,
,
,
,
0
0
1
2
2'
2
2
2
2
3
teat VIlctora 'HOWING S'lATE 4 IIITH EX'l'EHDID ACCESS REQUES'l'
([OsC,RESET,122,RII,RErREQ,AS,HSA,SYSCLK,COUNTI -> (RrC,RASI,MSEL,CASI,MC1,II,DSACK,STATE ))
(clk,
8 ,H, X, 8
, H, X, H, 0 I -> ( 8, L, B, L ,-8 ,H, H , 4
(clk,
'8 , L ,X, X
, X, X, X, 0 I -> ( B, L, H, L, H ,8, H , 4
(clk,
R , X ,X, X
, X, R, X, 1 I -) ( H, H, L, H, R ,H, R , 5
3-98
I;
I;
I;
I;
I;
];
];
];
I;
I;
test vectors 'EXTENDED ACCESS'
( [OSC, RESET, A22, RII, REFREQ, AS, lSA, SYSCLK, COUNT]
, X,
[elk,
I , X, X, X
, X,
[elk,
I , X, X, X
, X,
[elk,
I , X, X, X
, X,
[elk,
H , X, X, X
, X,
[elk,
H , X, X, X
, X,
[elk,
H , X, X, X
, X,
[elk,
H , X, X, X
[ellt,
, X,
H , X, X, X
[elk,
, X,
H , X, X, X
-) [RFC, RASI, MSEL, CASI, Mel, II, DSACK, STATEJ )
X, X , 2 ] -) [ H , I, L , H , I ,H,
X, X , 3 I -) [ I , H, L , H , H ,H,
X, X , 4 I -) [ I , H, L, I , H ,H,
X, X , 5 ] -) [ I , L, L, I , H ,H,
X, X
6 ] -> [ I , L , I, I , B ,H,
X, X , 7 ] -) [ B , L, H , L , H ,H,
X, X , 8 ] -) [ B , L , B , L , 8 ,L,
X, X , 9 ] -) [ H , L, B , L , H ,L,
X, X , 10 I -) [ 8 , L , B, L , B ,H,
,
I
I
H
H
H
L
L
L
H
test vectors ' HOLDING STm 4 tilTH HIGH SPEED ACCESS REQUEST'
([OSC,RESET,A22,RII,REFREQ,AS, HSA, SYSCLK,COUNT] -) [RFC,RASI,MSEL,CASI,MC1, II,DSACK, STATEJ)
[elk,
, 8, X , H , 0 I -) [ H , L , H , L , I,H, H
8 , H , X, H
, X,'X , X
[elk,
0 I -) [ H , L , H , L , I ,H, H
H , L , X, X
, X, L, X , 1 I -) [ H , L, H , L , B ,H, L
[ellt,
H , L , X, X
,
test vectors ' HIGH SPEED ACCESS'
([OSC,RESET,A22,RII,REFREQ,AS, HSA, SYSCLK,COUNT]
[elk,
H , X, X, X
, X,
[elk,
H , X, X, X
, X,
, X,
[ellt,
8 , X, X, X
-) [RFC,RASI,MSEL,CASI,MC1, II, DSACK, STATEJ)
X, X
2 I -) [ H , L, H , L , H ,L, L
X, X
3 ] -) [ H , L, H , L , 8 ,L, L
X, X , 4 ] -) [ H , L, H , L , H ,H, B
,
,
test vectors ' NOH-MEMORY ACCESS FOLLOlIED BY REFRESH REQUEST'
([OSC,RESE7,A22, RII, REFREQ,AS,HSA,SYSCLK,COOHT] -) [RFC,RASI,MSEL,CASI,Mel, II,DSACK, STATEJ)
, H, X, H , 0 ] -) [ 8 , L, 8, L, H ,8,
[elk,
H , H , X, H
, X, X, X , 0 ] -) [ H , H , L, H , 8 ,H,
[ellt,
H , H , X, X
, L, X, X
[ellt,
0 ] -) [ H , H, L , H , H ,B,
H , X, X, H
, X, X, L
[ellt,
H , X, X, H
0 ] -) [ B , H, L , H , H ,B,
(ellt,
0 ] -) [ B , H, L , H , H ,H,
, X, X, X
B , X, X, L
,
,
,
test vectors ' NORMAL REFRESH CYCLE'
([OSC, RESET,A22, RII,REFREQ,AS,HSA, SYSCLK,COUNT]
(elk,
H , X, X, X
, L,
[elk,
, L,
H , X, X, X
[elk,
, L,
H , X, X, X
, L,
(elk,
H , X, X, X
[elk,
H , X, X, X
, L,
, L,
[elk,
H , X, X, H
[ellt,
, L,
H , X, X, X
-) [RFC,RASI,MSEL,CASI,MC1, II,DSACK, STATEJ)
X, X , 0 ] -) [ H , 8 , L, 8 , L ,H,
X, X , 1 ] -) [ B , L , L, H , L ,8,
X, X , 2 ] -) [ B , L , L, H , L ,H,
X, X
3 ] -) [ L , L , L , H , L ,H,
X, X , 4 ] -) [ L , L , L, H , L ,1,
X, X
5 I -) [ B , H, L, H , L ,H,
X, X , 6 ] -) [ B , H , L, B, B ,H,
,
H
H
H
H
H
8
8
8
H
H
H
H
,
,
,
,
,
,
,
,
,
5
5
5
5
5
]1
II
II
II
5
3
]1
]1
]1
]1
]1
,
,
,
4
4
6
II
II
II
,
,
6
6
3
II
,
,
4
0
0
0
]1
]1
]1
]1
]1
,
,
,
,
,
,
,
,
,
,
5
5
7
7
7
7
7
7
7
0
]1
]1
]1
]1
]1
]1
]1
]1
]1
I...
...0en
C.
CD
a:
C
0
'.;I
CIS
,~
C.
c.
(RFC, RASI,MSEL, CASI,l«:l, II, DSACI(, S'lATE
(elk,
(elk,
(elk,
8 , X , X, 8
H , X , X, 8
H , X , X, L
, X, X,
, L, X,
, X, X,
((OsC,RESET, 122, RII, REFREQ,AS, BSA, SYSCLK, CO\IH'r] -) (RFC,RASI,MSEL,CASI,lI:l, II,DSACK, STATE
I
(elk,
(elk,
end SCDECODE
3-100
B
B
8
8
,
,
,
,
X,
X,
X,
X,
X,
X,
X,
X,
X
X
X
X
,
,
,
,
X,
X,
X,
X,
X,
X,
X,
X,
B
B
B
B
B
8
8
8
8
B
H
8
L
L
L
B
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
11
L, 0 ] -> ( 8, L, B, L ,-8 ,8, 8
X, 0 ] -> ( 8, L, 8, L, 8 ,8, H
X, 0 ] -) ( 8, L, 8, L, 8 ,8, 8
test vectors ' EXmNDID REFRESB CYCLE'
(elk,
(elk,
11
B ,B;
L ,B,
L ,8,
L ,B,
L ,B,
L ,8,
L ,8,
8 ,8,
8 ,B,
8 ,H,
B ,H,
B ,8,
B ,8,
8 ,L,
8 ,L,
B ,8,
X, 0
X, 1
X, 2
X, 3
]
]
]
]
->
->
->
->
( 8,
( 8,
( B,
( 8,
L,
8,
B,
8,
8,
L,
L,
L,
11
L ,-8 ,8,
8, B ,B,
8, 8 ,8,
8, R ,B,
8
R
8
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
3
,
,
,
,
,
,
,
];
];
];
];
];
];
];
];
];
];
];
];
];
];
];
];
3
3
8
];
];
];
8
];
];
];
];
8
8
7
APPENDIXB
NAME
PARTNO
DATE
REV
DESIGNER
COMPANY
ASSmLY
LOCATION
,I
,I,I
,I,I
SCDECODE;
TIO004;
05,07,87 ;
01 ;
Breun i nger ,Peprah;
Texas I nstrullents;
None;
Dallas;
/ , . flf' ,.11 flf •• If . . If I " ' I I ' II Iff I. I •• Ilf ••• If If II ••••
I'
I'
"
"
'f' ••••••• , ••• , , .. 1 •• , . , . , ' . . ' . .
Static Colulln Decode
This Is an eXaliple of how the PSG507 can be used to generate the
required mellory tilling control signals (RAS. CAS. "SEL etc) for static
colulln decode IlIPlellentation using the ALS6301. ALS6310 and the AlS630
AlS6300. I n a system env Ironment.
/ , . Ilflf Iff.f ••• , . , •••••• If
f. Iff. Ilf III •••••• ,,"
"
Allowable Target Device Types:
'"
Inputs
I., Iliff. fll'
.f.
I,I,1,
I,I,i,
I,I,
"
I,
"
Iff. ".1 •• ,,1,,1.1 "11'/
TEXAS INTSRUMENTS PSG507
,1.".,.'. If ".' ••••••• ",,1 'flfl" f"f".I.flf. , ••••••••••••• 'fll •• ,'.' •••• I., •• II •••• ,/
pin
pin
pin
pin
pin
pin
pin
pin 18
'"
pin
pin
pin
pin
pin
pin
pin
Outputs
8
9
10
11
13
14
15
"'
"'
OSC
RESET
AZZ
RW
REFREQ
AS
HSA
SYSClK
" Oscillator
" Systell Reset - when lOll
" IO!!" - Me.ory access
Read, Write Enable
Refresh Request
Addr Strobe - access request
" High Speed Access
System Clock - (OSCJ2)
,I,I
,I
,I
I,I,
"
"I,
"
"
"
I
US
't
0
c.
CD
RFC
RASI
NSEl
CASI
NC1
W
DSACK
'" Node Declarations " '
pinnode [33 •• 38] = [CO .. 5]
pinnode 39
= SClRO
pinnode 41
= CNTHOlDO
pinnode 42
= CNTHOlDI
node
[P3 .. 0]
node
AGREQ
" Refresh COIIplete
" ROil Address Strobe
Multiplexer Select
Colulln Address Strobe
Node Control
" IIrlte
" Data Strobe Acknowledge
,I,I
,I
,I
Sui It-in 6-Bit counter
I' Counter Cc I ear- non regi stered
" Counter Hold
" Counter Hold
I' Buried State
Access Grant
,I
- non registered
- registered
Registers
Request
I,"
I,I,""
"
I,I,
I,
I,""
a:
C
0
'';;
CIS
.g
Q.
C.
c:(
3-101
, .. Declarations and lnterlaediate Variable Definition '"
field COUNT
= [C5 •• 0]
field STATE
= [P3 •• 0]
$deflne STO
'b'OOOO
$deflne STl
'b'OOOI
$define ST2
'b'OOIO
$define 513
'b'OOII
$define 514
'b'OIOO
$define ST5
'b'OIOI
$define ST6
'b'OliO
$define ST1
'b'OIII
Sdefine ST8
'b'IOOO
" BUILT-IN COUNTER CONTROL EQUATIONS '/
SCLRO
= !RESET
, ST2 & COUNT:'d'5
• ST4 & COUNT:'d'O
I ST5 & COUNT:'d'IO
, ST6 & COUNT: 'd' 4
I ST1 & COUNT: 'd'6 & (Al2 & AGREQ)
• ST1 & COUNT: 'd' 14
f ST8 & COUNT:'d'3;
CNTHOLDl.s
I
CNTHOLOl.r
= !RESET
• ST2 & COUNT:. 'd'S
,514 , COUNT:'d'O
t ST5 & COUNT: 'd' 10
, ST6 & COUNT: 'd' 4
I ST1 , COUNT:'d'6 , (A22 & AGREQI
• ST7 , COUNT: 'd'14
, ST8 & COUNT:'d'3;
= STO
• STl
I ST3
• ST3
& !REFREQ & RESET
"
"
"
""/' Set count hold while clearing
"
'/
" the counters accordingly.
"
"
"/'
"
"
"
""/'
"
"
Reset
Reset
Reset
Reset
count
count
count
count
hold
hold
hold
hold
on
on
on
on
Iff
3-102
"
"
"
"
""/'
"
"
/'
"
& !A22 & RESET
& !REFREQ & RESET
& REFREQ & AS
& SYSCLK & RESET;
"
" Clear counter when RESET is low
" and during transitions at the end
" the Indicated states and counts.
State Hach i ne Equat ions .. ,
sequence STATE (
present STO:
iflREFREQ & liAS ,!SYSCLK))
if(REFREQ & AS & SYSCLK & RESETI
i fI ! REFREQ & RESET)
default
next
next
next
next
present STl:
iffCOUNT:'d'O & !A22)
IfICOUNT:'d'O & A22)
default
next ST2;
next STO;
next STl;
present ST2:
" NORm ACCESS CYCLE "
if(COUNT:'d'OI & RESET
ifICOUNT:'d'I)
iffCOUNT:'d'21 & RESET
ifICOUNT:'d'31 & RESET
if(COUNT:'d'S)
default
next
next
next
next
next
next
STO;
STl;
ST1;
STO;
ST2 out
ST2 out
ST2 out
ST2 out
ST3 out
ST2;
!RASI;
HS[L;
[!CASI.IDSACK];
IW;
[W.DSACK)i
transition
transition
transition
transition
to
to
to
to
ST1
ST2
ST8
514
"
"
'/
"
present S13:
/" HOLDING STATE
"/
ifl!AS t ISYSCLK) & RHREQ & RESET
if(REFREQ & AS & SYSCLK & RESET)
if I !REFREQ & RESET)
default
next
next
next
next
S13;
SU;
ST8;
S13;
present 514:
if(COUNT:'d'O)
if(COUNT:'d'O)
if(COUNT: 'd'l)
If(COUNT:'d'l)
default
next
next
next
next
next
STO out [RASl,!NSEL,CASl];
514;
ST5 out [RASl,!NSEL,CASl];
ST6 out I DSACK;
S14;
& AZZ & RESET
& !AZZ & RESET
& HSA & RESET
& IHSA & RESET
present STS:
/" EXTENDED ACCESS CYCLE "/
if(COUNT:'d'S) & RESET
if(COUNT:'d'6) & RESET
if(COUNT:'d'71 & RESET
if(COUNT:'d'8) & RESET
if(COUNT:'d'IO) & RESET
default
next
. next
next
next
next
next
present ST6:
/" HIGH SPEED ACCESS
"/
If(COUNT: 'd'Z) & RESET
If(COUNT: 'd' 4)
default
APPEND
APPEND
APPEND
APPEND
APPEND
RAS!.s
V.S
MCI_.s
PO_.r
P3_.r
= !RESET;
= I RESET;
= !RESET;
= IRESET;
APPEND
APPEND
APPEND
APPEND
I RAS I;
NSEL;
[lCASI,!DSACK];
IV;
[V,DSACK];
next ST6 out !V;
next ST3 out [V,DSACK];
next ST6;
present 517:
/" NORm REFRESH CYCLE '/
if AS
if(COUNT:'d'O) & RESET
if(COUNT:'d'l) & RESET
if(COUNT: 'd'3) & RESET
if(COUNT:'d'S)
IfICOUNT: 'd'6) & (AZZ , AGREQ)
IfICOUNT:'d'6) & IAZZ & !AGREQ
if(COUNT: 'd'9) & RESET
if(COUNT: 'd'IO) & RESET
if(COUNT: 'd'll) & RESET
if(COUNT:'d'IZ) & RESET
if(COUNT: 'd'14)
default
present ST8:
/" EXTENDED REFRESH CYCLE
If(COUNT:'d'l)
If(COUNT:'d'3)
default
ST5 out
ST5 out
ST5 out
ST5 out
513 out
ST5;
next
next
. next
next
next
next
next
next
next
next
next
next
next
S17 out
517 out
517 out
S17 out
S17 out
STO out
517 out
517 out
517 out
ST7 out
517 out
S13 out
S17;
!AGREQ;
!NC U
!RAS!;
!RFC;
[RfC,RASl];
NC U
NC U
!RASI;
NSEL;
[lCASI,!DSACK];
!V;
[V ,DSACK];
I
t!o
Q.
G)
a:
c
o
;:;
CO
.sa
Q.
Q.
"0
"2(=)'
...0'
I»
j
::D
CD
....
"0
o
en
3-108
Mechanical Data
4-1
Contents
Page
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3
Sockets . , . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . 4-25
4·2
MECHANICAL DATA
OW plastic "small outline" packages
Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated
within a plastic compound. The compound will withstand soldering temperature with no deformation, and
circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads
require no additional cleaning or processing when used in soldered assembly.
OW PLASTIC PACKAGE
(20-pin package used for illustration)
2,65 (0.1041
~r
70NOM
9,0 (0.3541
4 PLACES
2'35~J~
~,I
0,10 (0.004)
0,185 10.031)
,
I"
II
-.j
0,510.021 X
45"LC-~---'
rl::r-
~1~70NOM
r
~
0.490(0.019'
tt-- 0,350 (0.014)
40:t40
-) I
jl
'PLACES
0,230 (0.0091
'
~jf-I
P
.
1,27 (0.0501
0,40 (0.016)
1t--ti-',27 10.0501 TP (See Note AI
~
DIM
A MIN
A MAX
16
20
24
2St
10.16
12,70
15,29
17,68
(0.400)
(0.500)
(0.602)
(0.69S)
10,36
12,90
15.49
17,88
(0.408)
(0.508)
(0.S10)
(0.704)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
tThe 28-pin
NOTES: A.
B.
C.
D.
package drawing is presently classified as Advance Information.
Leads are within 0,25 (0.010) radius of true position at maximum material dimension.
Body dimensions do not include mold flash or protrusion.
Mold flash or protrusion shall not exceed 0,15 (0.006),
Lead tips to be planar within ±0,051 (0.002) exclusive of solder.
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
as
as
~
o
4-3
MECHAIIICAL DATA
DWplastic "small
outline~'
packages
Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated
wit/1in a plastic compQund. The compound will withstand soldering temperature with no deformation, and
circuit performance characteris~ics will remain stable when operated in high-humidity conditions. \..eads
require no additional, cleaning or processing when used in soldered assembly.
24-PIN
ow
PACKAGE
15'5(O'6101~
15,310.6021
-----
13
0 •• (0.021
I:~:::~::I
=-:-1. . 1
LI:z---
k.lJ. . JJlib,
x ...
-r-
~
o· •••
0,78510.031)
0,585
IO.~231
NOM
\ . •7·PLACES
~
. 1.27 {O.05OI
0,230 (O.OO!II
Q.4D"iii.Oiii
All LINEAR DIMENSIONS ARE IN MllliMETER$ AND PARENTHETICAllY IN INCHES
IIs:
NOTES: A.
B.
C.
D.
Body dimensions do not include mold flash or protrusion.
Mold flash or protrusion shall not exceed' b, 15· (0.006).
Leads are within 0,25 (0.010) radius of true positiofl at maximum material dimension.
lead tips to be planar within ±0.051 (0.002) exclusive of solder.
CD
n
:r
t»
:J
n-
t»
4-4
TEXAS ."
INSTRUMENTS
POST OFFICE SOX'665012 • DALLAS; TEXAS 76265
MECHANICAL DATA
FK ceramic chip carrier packages
Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid
and braze seal. The packages are intended for surface mounting on solder lands on 1,27 (O.050-inchl
centers. terminals require no additional cleaning or processing when used in soldered assembly.
FK package terminal assignments conform to JEDEC Standards 1 and 2.
FK CERAMIC CHIP CARRIER PACKAGES
(2B-terminal package shown)
-:3
Io--r
r'i :~'-_ _ ~
ili1J
CERAMIC CHIP CARRIERS
JEOEC
OUTLINE
DESIGNATION'
NO.OF
TERMINALS
MSOO4CB
20
MS004CC
28
A
B
MIN
MAX
MIN
MAX
8,69
(0.342)
11,23
(0.442)
9,09
(0.358)
11,63
(0.458)
7,80
(0.307)
10,31
(0.406)
9,09
(0.358)
11,63
(0.458)
*AII dimensions and notes for the specified JEDEC outline applv.
~ORNER
A
0.71 (0.028)
0,56 (0.022)
~~
I
"1
1,63 (0.064)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 16266
4-5
MECHANICAL DATA
I
FN plastic chip carrier package
Each of these chip carrier packages consists of a circllit mounted on a lead frame and encapsulated within
an electrically non conductive plastic compound. The com'pound withstands soldering temperatures with
no deformation, and circuit performance characteristics remain stable when the devices are operated in
high-humidity conditions. The packages are intended for surface mounting on solder lands on 1,27 (0.050)
centers. Leads require no additional cleaning or processing when used in soldered assembly.
FN PLASTIC CHIP CARRIER
(28-termlnal peckage used for iII!'stratlonl
r
4.50 10.1771
4.24 (0. 1671
Ii' .
122 (00481
1.07 (0.0421 X45'
V
[ 5
•
1.35 (0.0531 X 45'
1.19(0.0471
0
3
2
1
28
27
26
1
I. r-+ ~:~~o~~if~LI
----rJ
Il
L...1/O.69 (0.0271 R
25
[ 6
2'
[ 7
23
22
ll::
21
20
-- - -
I'
12
1.
13
14
15
16
17
18
I
.r~1' 0.25
(0.0101
3 PLACES
.B
~"___________ A_(s_e_e_N_ot_e_A_I__~..
1
NO. OF
TERMINALS
20
28
44
II:s:
68
64
MAX
MIN
R MAX
MIN
MAX
1~,O3
B.B9
9.04
7,87
8,38
10.3961
(0.3561
11.58
10.3101
(0.4561
(0.4101
10.3301
10.92
(0.4301
16.00
10.6301
10.9851
10.4951
17.65
10.6951
25.27
10.9951
(0.3501
'1,43
(0.4601
16.51
10.6501
24.13
10.9501
30.10
30,35
29,21
(1.1851
11.1951
11.1501
!
C
MAX
9,78
25,02
(See Note BI
SEATING PLANE
(See Note CI
10.3851
12.32
10.4851
17.40
(0.6851
12,57
~:',::~~::U'"
'--~..;::::;~
8
A
MIN
.'
'd
16.66
10.6561
24.33
10.9661
29.41
11.1581
10,41
15.49
(0.6101
23.11
(0.9101
23,62
10.9301
27,69
28,70
11.0901
(1.1301
0,81 (0.032)~
0,66 (0.0261
~T
1.52 (0.0601 MIN
I-.i.
I ~ (0.0251 MIN
0,51 (0.020I-oj I ~
0,36 (0.0141
I
LEAD DETAIL
CD
(')
::T
I»
~
ri'
!!.
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Centerline of center pin each side is within 0,10 (0.004) of package centerline as determined by dimension B.
B. Location of each pin is within 0,' 27 (0.005) of true position with respect to center pin on each side.
C. T~e lead contact points are planar within 0,10 (0.0041.
c
!I»
4-6
TEXAS ...,
INSlRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 76266
MECHANICAL DATA
J ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is'intended for insertiQn in mounting-hole rows
on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("'bright-dipped") leads require no additional
cleaning or processing when used in soldered assembly.
14-PIN J CERAMIC
1.--19.9410.785) ~
I19.18 (0 755)
i:::::::
I@@@@@cv®
0.63(0.025)RNOM
7.87 (0 310)
I
11-_ _'it-.;;7",.11;;-:(",0.;;;;8",,~ (0.290)
-1 J:j
,ffi
L~
__
0 0 0 0 0@0
6.22 (0.245)
1.27
0.51 10.020) MINl
10.050) NOM
\-SEATINGPLANE
14PLACES~10.3610.014)
020 (0 0081
14 PLC:CES
lw ~
8-
5.0~~:00)
3.30 (0.130)
MIN
11
I-' 1.78 (0.070) MAX 14 PLACES
----
H
II
_u~u
J-.{ J-1
W s~~t!~JT
Hu 1( I'" j.0.6~41~~~~)E~IN
U...JL
--, r-
058 (0023)
0;38 (0:015) 14 PLACES
2.54 10.100)
1,78 (0.070)
4 PLACES
PIN SPACING 2.54 (0.100) T.P.
(See Note AI
Falls Within JEDEC TO-116 and EIA MO-OO 1AA Dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0.25 (0.010) of its true longitudinal position.
..
as
as
C
cau
'2
as
.c
u
CD
:!
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
4-7
MECHANICAL DATA
J ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional
cleaning or processing when used in soldered assembly.
l6·PIN J CERAMIC
ktbtfw-,~.
'!.
'!.
7,1fl10.310)
7,37 10.290)
7,1110.280) •
6,22 10.245)
l. JI \~n",~'
16 PLACES
I\-- 0.3610.014)
,....I.
0,20 10.008)
16 PLACES
-1 r
CD@@0®@0®
5,oato.200)
1.7810.070) MAX 16 PLACES
~ AA~ ADO
SE~i~":T
R,
j::.~~~ l~1 ~I U~~rt 1jli--O'~i~~~~k~'N
3,3OM\~ 130)
0,305 10.012) MIN
4 PLACES
~
PIN SPACING 2.5410.100) T.P.
lSee Note A)
g:~: 19:9~~!
-I ~ 16 PLACES
~:~ :~:~~: 4 PLACES
• For memories of 64 bits and up, a few MSIILSI products in Series 54174 and Series 54S/74S that are
derived from memory circuit bars, and complex HCMOS parts. this maximum is 7,62 (0.3001. All other
dimensions apply without modification.
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN )NCHES
IIs:
NOTE A: Each pin centerline is located within 0,25 (0.0101 of its true longit,udinal position.
CD
()
:::r'
&»
:::I
(;'
!.
...C
&»
&»
4-8
TEXAS . "
INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS, TEXAS 75265
MECHANICAL DATA
J ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional
cleaning or processing when used in soldered assembly.
18·PIN J CERAMIC
7,87 (0.310)
7,37 (0.290)
7.62 10.300)
6,22 (0.245)
-1 t
000000000
l!tt
~~5: S:t;~~G 3'30A::~~OO-)
MAX 18 PLACES
-1,27 (0.060) NOM
GLASS
II'~;;;;;;~~~;;;;;;~---,SEALANT
--
18 PLACES
-,..-_ _ _ _ _ _ U
..IlL.. 0,356 (0.014)
~\
0.203(0.008)
f
18 PLACES
-H
I~t!--+tl--~:=~~.g~~)
MIN
0,58 (0.023)
0.38 10,015)
18 PLACES
PIN SPACING 2,54 (0.100)
(See Note AI
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY )N INCHES
NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
a
!ca
C
TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
4-9
MECHANICAL DATA
J ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional
cleaninll or processing when used in soldered assembly.
20-PIN J CERAMIC
g
'l
'l
~:~~:~:~~~:
7,62 (0.300)
6,22 (0.245)
1
1.78 (0.070) MAX 20 PLACES
1,27 (0.050) NOM
r:;;t~~;;:;:;;:;;;;;:;;~~
~
105"
..
_s:t;~~G -~--.-----.,-
"Sir
MIN
20 PLACES
, . -_ _' - -_ _
\\
0,36 (0.014)
.-.I~0,20 (0.008)
GLASS
SEALANT
lioe-H---+t-+ft- ~:~~~g~~) MIN
•
0,58 (0.023)
0,38 (0.015)
20 PLACES
I
20 PLACES
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
c
;
4-10
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS. tEXAS 76285
~
"~~~V~
MECHANICAL DATA
JT ceramic dual-In-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 7,62 (0.300) centers. Once the pins are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("bright-diped") pins require no additional
cleaning or processing when used in soldered assembly.
24-PIN JT CERAMIC
! - - - - 3 2 . 5 1 (1.2801 MAX
-----.I
,6'~;~"'~~'C:::::::::::I
@@@@@®®®®®®®
7,'2'0,3001
',22'0245)
1
0000®®0®®®@@
0,38 (0015)
1.27 (0.050) NOM
MIN
1,78 (0.070)
~
~24PLAces
GLASS
SEALANT
5,08(0.200)
MAX
SEA TlNG---.:-I----,rl-1
PLANE
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
I..
ca
ca
C
"i
u
'2
ca
..c
u
CD
:IE
TEXAS
~
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265
4-11
MECHANICAL DATA
J ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 15,24 (0.600) centers. Once the pins are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("bright-diped") pins require no additional
cleaning or processing when used in soldered assembly.
24-PIN JW CERAMIC
~---------~~~:~:~~:----------~
®@@@@@@@@@@@
0,63 (0.025) R
NOM
1.7Slt .•7.)
0,51 (O.020)
I I
I '
~::~ :~:~~: ~ 1-1~
I
24 PLACES
PIN SPACING 2,54 (0.100) T.P.
{5ee Note A)
Falls within JEDEC MD-015AA dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
II
3:
CD
()
:::r
I»
~
(;'
!.
...C
I»
I»
4-12
TEXAS . "
INSIRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 752,?5
MECHANICAL DATA
JD ceramic side-brade dual-in-line packages
This is a hermetically sealed ceramic package with a metal cap and side-brazed tin-plated leads.
JD CERAMIC-SIDE-BRAZE
Io---b
_
. _
-_BMAX==~II
_
.
~~~~nD[Jt
bJl
OR NUMBERI
C0------------------~
It
It
---L
t
.
1-ffimvvmtW1llt
~
~A___oI
II
SEATING
PLANE
0.38100151
-0011<- 0.20 CO.0081
0.7610.0~01:!
0.51CO.020IMIN
_
~::
,
1.7B 10,0701
1_ _ I
~
1.9141~i.~~~sMAX
-01
1--1
--..j
1--2.5410.1001 NOM
PIN SPACING
(See Note AI
j
3.18
16
18
20
22
2.4
-0.25 (-0.010)
7.62
(0.300)
7.62
(0.300)
7.62
(0.300)
10.16
(0.400)
7.62
(0.3001
B (MAX)
20.57
(0.810)
23.11
(0.9101
25.65
(1.010)
27.94
(1.1001
30.86
(1.215)
C (NOM)
7.37
(0.290)
7.37
(0.290)
7.37
(0.290)
9.91
(0.390)
7.37
(0.290)
~N)
24
28
40
48
52
64
-0.25 (-0.010)
15.24
(0.600)
15.24
(0.600)
15.24
(0.600)
15.24
(0.600)
15.24
(0.600)
22.86
(0.900)
8IMAX)
31.8
(1.250)
36.8
(1.450)
52.1
(2.050)
62.2
(2.450)
67.3
(2.650)
82.6
(3.250)
C (NOM)
15.0
(0.590)
15.0
(0.5901
15.0
(0.590)
15.0
(0.590)
15.0
(0.5901
22.6
DIM
A + 0.51 (+ 0.020)
10.~251 MIN
0.5310.0211
0.3810.0151
~NI
DIM
A +0.51 1+0.020)
5.0810.2001
MAX
•
(0.8901
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A: Each pin centerline is located within 0,25 (0,0101 of its true longitudinal position.
II...
as
as
o
"ii
u
'2
as
.c
u
CD
:E
TEXAS
~
INSTRUMENlS
POST OFFICE BOX 656012 • DALLAS, TeXAS 76285
4-13
MECHANICAL DATA
JK ceramic dual-In-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 10,16 (0.400) centers. Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional
cleaning or processing when used in soldered assembly;
24-PlN JK CERAMIC
24 E::ES
\\
~~36
(0.014)
~~ 0.20 (0.008)
r-lJ L
T
24 PLACES
0,305 10.0121 MIN
Ir
------II~--'-'---1f+-_O.68 (0.0231
PIN SPACING
I
----II----
°2!8pt~g~:)
2,54 to.100) T.P.
tSee Note AI
4 PLACES
2.03 (0.080)
MAX
4 PLACES
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A:
Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
IIs:
CD
(')
:::T
I»
:::s
c:r
!.
C
....
I»
I»
4-14
TEXAS ."
INSfRUMENlS
POST OFFICE BOX 855012 • DALLAS. TEXAS 75265
MECHANICAL DATA
JL ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap with a window, and
a lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mountinghole rows on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is
provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require
no additional cleaning or processing when used in soldered assembly.
20-PIN JL CERAMIC
I-
24,7610.975)
23.62 (0.930)
------11
-"~'-{~~~2:J
0000®0000@
0,58 (O,023)
0,38 (0.0151
20 PLACES
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE A:
Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
...co
CO
C
TEXAS . "
INSlRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
4-15
MECHANICAL DATA
N plastic dual-in-Iine package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
nonconductive plastic compound. The compound will withstand soldering temperature with no deformation,
and circuit performance characteristics will remain stable when operated in high-humidity conditions. The
package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are
compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.
Leads require no additional cleaning or processing when used in soldered assembly.
14-PIN N PLASTIC
Ii. 7.62. 0.25
14----+lt-(0.30h 0.0101
6,35:!:. 0,25
(0.250.0.0101
(See Notes B and C)
Falls Within JEDECTO-116 and EIA MO-001AA Dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true )ongitudinal position.
R. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating
plane.
...C
I»
I»
4-'16
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS, TeXAS 75265
MECHANICAL DATA
N plastic dual-in-line package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
nonconductive plastic compound. The compound will withstand soldering temperature with no deformation,
and circuit performance characteristics will remain stable when operated in high-humidity conditions. The
package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are
compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.
Leads require no additional cleaning or processing when used in soldered assembly.
16-PIN N PLASTIC
7.62:!: 0.25
(0.3001; 0.010)
6,35 i 0,25
(0.250 ± 0.010)
2.0 (0.0801 NOM
0,84 iO.033) MIN
(See Notes 8 and Cl
Parts may be supplied In accordance
with the alternate side view at the
option of TI plants located in Europe.
In this case, the overall length of the
package is 22.1 (0.870) max.
ALTERNATE SIDE
view
--1
(O.~70J
f 0'51~~~201~1
-*-t-"",,78
MAX 16 PLACES
5.08 (0.2001 MAX
L
,....
L~
4 PLACES
0,84 (0.033) MIN
16 PLACES
---ll-- 0.533 (0.0211
0,381 (0.015)
16 PLACES
(See Notes Band C}
PIN SPACING 2.54 (0.1001 T.P.
(See Note Al
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES:
A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.0201 above seating
plane.
TEXAS .."
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
...asas
C
4-17
MECHANICAL DATA
N plastic dual-in-line package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
non conductive plastic compound. The compound will withstand soldering temperature with no deformation,
and circuit performance chllracteristics will remain stable when operated in high-humidity conditions. The
package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are
compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.
Leads require no additional cleaning or processing when used in soldered assembly.
18-PlN N PLASTIC
7,62 t 0,25
(0.300 ; 0.0101
i----H--8,99 (0.275) MAX
_i
--I r-,,78
2,03 (0.080) NOM
L
0.25 (0.010) NOM
OOI
-SEATING PLANE 5.08 (O·'t MAX
_
~\
~
0,279 ± 0,076
(0011 ±0003)
18 PLACES
(See Notel B and C)
(0 070) MAX 18 PLACES
'O.51(00'OI~1
MIN
-*--J,
3,17 (0 125) MIN
-
L
~
~
.; PL.ACES
0.89(00351 MIN
18 PLACES
--l ~O.467tO,076
(0018 ± 0003)
1,91 (0 075)
023 (0 009)
r--
18 PLACES
(See Notes B and C)
PIN SPACING 2,64 (PlOD) T P
(See Note Al
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder· dipped leads.
C. When solder·dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0.51 10.0201 above seating
plane •
•
3iC
CD
n
::::r
m
=
5'
I!.
C
m
Dr
4-18
TEXAS ",
INSTRUMENTS
POST OFFICE SOX 866012 • DAUAS. TeXAS 75265
MECHANICAL DATA
N plastic dual-in-line package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
nonconductive plastic compound. The compound will withstand soldering temperature with no deformation,
and circuit performance characteristics will remain stable when operated in high-humidity conditions. The
package is intended for insertion in mounting-hole rows on 7,62 (0.300) centers. Once the leads are
compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.
Leads require no additional cleaning or processing when used in soldered assembly.
20-PIN N PLASTIC
Ii.
Ii.
8
'O';~::':~0I
7,1' (02BO)
6,61(0260)
--1
I
•
2,0 10 080) NOM
0,25 (0 010) NOM
-tlj
24.77 '0.9'5'
23,22(0.914)
jt-l,78 (0.070) MAX 20 PLACES
•
I
i~1
t
5,08 (0.200) MAX-*--SEATING PLANE
:.5~~N020)
~~~::l~:~~~:
20 PLACES
(SleNotes Band C)
3.9"0.1551
317 (0 125)
•
.
1,68 (0.066)
0,22 (0.009)
J.-
1.-.1..
I
0.8' '0.033) MIN
16 PLACES
--ojj.--0.53310.021'
j'
'I
PIN SPACING 2.54 (0.100) T.P.
{See Note Al
0,381 (0.015)
20 PLACES
(See Notes B and C)
4 PLACES
J~ ~
L
r-1,02 (0.040)
4 PLACES
VIEWA
Parts may be supplied in accordance
with the alternate stde view at the
option of TI. European-manufactured
parts may have pin 1 as shown in
view A. Alternate·side-view parts
manufactured outside of the USA
may have a maximum package length
of 26.7 (1.0501.
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES:
A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating
plane.
II
....
ca
ca
o
"i
·cuca
.c
u
CD
:E
TEXAS .."
INSTRUMENTS
POST OFFICE BOX 856012 • DALLAS. TEXAS 75285
4-19
MECHANICAL DATA
N plastic dual-in-line package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
nonconductive plastic compound. The compound will withstand soldering temperature with no deformation.
and circuit performance characteristics will remain stable when operated in high-humidity conditions. The
package is intended.for insertion in mounting-hole rows on 15.24 (0.600) centers. Once the leads are
compressed and inserted. sufficient tension is provided to secure the package in the board during soldering.
'
Leads require no additional cleaning or processing when used in soldered assembly.
28-PIN N PLASTIC
10------36.611.440) M A X - - - - - - - . f
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
II
NOTES: A. Each pin centerline is located within 0.25 (0.010) of its true longitudinal position.
B. This dimension does not apply for solderwdipped leads.
C. When solder-dipped leads are specified. dipped area of the leaa extends from the lead tip to at least 0.51 10.020) above seating
plane.
3:
CD
()
:::T
I»
:::s
5'
e.
C
I»
~
I»
4-20
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265
MECHANICAL DATA
N plastic dual-in-line packages (continued)
24-PlN NT PLASTIC
1<-_ _ _ _ _ _ 31'8 (1.250) _ _ _ _ _ _--01
28,6 (1.125)
· · .'~::~" .~i~::.==i:VVVVVVVVVI
)<----->1-1--7,1 (0.280) MAX
0,38 (0.015)
00000000 \::..J
f9\ @@ ®
----I ~ 1--2,0 (0.080) NOM
F f M I N-01 10--- 1,78 (0.070) 24 PLACES
~ ~rr
1~1----1~,l-4~(0-.0-4~5)------------------~
~i
- :-To,25 (0.010) NOM 5,08(0.200)
MAX
/,
105°
U"'---- 90"
24PLACES
-SEATING PLANE·
~
1
]-
.11..--- 0 ,36(0.014)
If
0,25 (0.010)
24 PLACES
(See Note B)
.
T
_
I
4,06(0.160)
317 (0 125)
'
216 (0085)
0:71 (0:028)
4 PLACES
- ~
I
~
--I ~ 1,14 (0.045) MIN
24 PLACES
--11--- 0 ,533(0.021)
PIN SPACING 2,54 (0.100) T.P.
(See Note A)
0,381 (0.015)
24 PLACES
(See Note B)
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES:
A. Each pin cen'terline is located within 0,2510,010) of its true longitudinal position.
B. For solder-dipped leads, this' dimension applies from the lead tip to the standoff.
....CISCIS
Q
TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265
4-21
MECHANICAL DATA
NW plastic dual-in-Iine package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
nonconductive plastic compound. The compound will withstand soldering temperature with no deformation,
and circuit performance characteristics will remain stable when operated in high-humidity conditions. The
package is intended for insertion in mounting-hole rows on 15,24 (0.600) centers. Once the leads are
compressed and inserted, sufficient tension is provided to secure the package in the board during soldering.
Leads require no additiomil cleaning or processing when used in soldered assembly.
NOTE: For all except 24~pin packages, the letter N is used by itself since only the 24-pin package is available in more than one row-spacing.
For the 24'pin package, the 7,62 (0.300) versio!' is designated NT; the 15,24 (0.600) version is designated NW. If no second
letter or row-spacing is specified, the package is assumed to have 15,24 (0.600) row-spacing.
24-PIN NW PLASTIC
1 - - - - - - 32,8
_.. .
~u~::~:::::::::]
\;.[:::~:;:~:~\;.
CD0@0®®0®®@@@
2,0 (0.0801 NOM
H
L...£.0.25 (0.010) NOM
-[I
~
~
---I
I02~1 ~~~~:3)
ISsa Notes Bend CI
1,,78 (0.0701 MAX 24 PLACES
L-~---,5,08 10200) MAX
-SEATINGPLANE-r0,5' 10.020) MIN
24 PLACES
90 0,28 t 0,08
11,290) M A X - - - - - - - I
@l@@@@@@@@@@)@
J
I I
JL
L J , '
0,467:t 0,076
(0.018:t. 0.003)
0,83 (0.033) MIN
-~~
J---1
317 (0 125) MIN
24 PLACES 2.42 (0 0951 MAX
. 24
P~ACES
4 PLACES
24 PLACES
PIN SPACING 2,54 (0.100) T. P.
(5 •• Notes B and cj
(See Note A)
All LINEAR DIMENSIONS ARE IN MIlliMETERS AND PARENTHETICAllY IN INCHES
IIs:
NOTES: A. Each pin centerline is located within 0,25 (0.0101 of its true longitudinal position.
B. This dimension does not apply for solder·dipped leads.
C. When solder·dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating
plane.
CD
n
::r
m
:::J
C:;"
!.
c
m
....
m
4-22
TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265
MECHANICAL DATA
N plastic dual-in-line package
This dual-in-line package consists of a circuit mounted on a lead frame and encapsulated within an electrically
nonconductive plastic compound. The compound will withstand soldering temperature with no deformation.
and circuit performance characteristics will remain stable when operated in high-humidity conditions. The
package is intended for insertion in mounting-hole rows on 15.24 (0.600) centers. Once the leads are
compressed and inserted. sufficient tension is provided to secure the package in the board during soldering.
Leads require no additional cleaning or processing when used in soldered assembly.
40-PIN N PLASTIC
I'
53.1 [2.0901 MAX
'I
,,::~:~·~~t::::::::::::::::::[1o
-
@@@@@@@@
1.3/2.0
(0.05/0.081 T Y r 2
0.10/0,121
'
3.6/4.6
10.14/0.181
I
2.54
10.100) TVP NONCUMULATIVE
n n nw
~ ~
~~033
2.6713.61
~
10.02U DIA
10.106/0.1501
PRODUCTION DATA documents contain iolarmeti••
• urrelll II of publiml•• d.tto. Prod_ ••nf.rm to
spaciIiCltio•• por the tto"". of Te,," Instr....nts
=~i~·;':.~1.; ~'=::':r 111"::;:=:''' not
~
I
~~
18~
18
BODY MATERIAL
G - Glass Filled Epoxy
P - PBT Polyester
TI Socket
f""{!)~@-@-@':"o-@-@:-.-:-@-@~@-:@-@~o
B
Number of Pins
024 to 324
Grid
Body - PBT polyester UL 94 V-O
On request, G 10/FR4 or Mylar film
Outer sleeve - Machined Brass (QQ-B-626)
Inner contact - Beryllium copper (QQ-C-530) heat treated
Plating: (specified by part number)
I
Contact Loading Pattern
1.35
10.0&3) DIA
A
B
±0.010
(0.9501 24,13
(1.050) 26,67
(1.1501 29.21
(1.250) 31.75
(1.350) 34.29
(1.450) 36.83
(1.550) 39.37
(1.650) 41.91
(1.750) 44,45
(1.850) 46,99
±0.005 t
(0.800) 20.32
(0.900) 22,86
(1.0001 25,40
(1.100) 27.94
(1.200) 30,48
(1.300) 33.02
(1.400) 35,56
(1.500) 38.10
(1.600) 40,64
(1.700) 43.18
I
as
;
o
tNoncumulative
Dimensions in parentheses are inches
Consult factory for detailed information
TEXAS •
INSTRUMENTS
34 Forest Street. Attleboro, Massachusetts 02703
4-29
IC SOCKETS
SOJ BURN-IN/TEST
PERFORMANCE SPECIFICATIONS
Mechanical
Accommodates IC leads per specific IC device
Recommended PCB thickness range: 0.062 in to 0.092 in
Recommended PCB hole size range: 0.032 in to 0.042 in
Durability: 10,000 cycles; 20 mil max contact resistance
'
change
Insertion force: 1.3 oz per position max
Withdrawal force:· S.S grams per position min
Electrical
Contact rating: 1.0 A per contact
Contact resistance: 20 mil max initial
Insulation resistance: 1000 Mil per MIL-STD 202,
Method 302, Condition B
Dielectric withstanding voltage: 700 V ac rms per
MIL-STD 202, Method 301
Environmental
Thermal shock: 100 cycles, -25°C to +IS0oC, 1 hour
Temperature soak: IS00C for 1000 hours, SO mil max
change
Operating temperature: - 65°C to + ISO °C
PART NUMBER SYSTEM
CSJT
xxx
xx
xx
X
T
Body Material
MATERIALS
Body - PES glass, filled UL 94 V-O
Contact - copper alloy
Plating - overall gold plate min 4 /Lin over min 70 /Lin nickel
plating
Blank = G.F. PES
A = PPS R4-03
B = G.F. PEl
Body Variation
02 = Standard 1 forward!
backward insertion
03 = Special/orientation pin
04 = Special/high standoff
05 = Special/24-pin
06 '= Standard 2 forward
insertion. BECU
Contact Finish
37 = Overall gold plate 41'in
38 = Overall gold plate 30 I'in
57 = Selective gold plate 4 I'in
58 = Selective gold plate 30 I'in
Number of Contacts
3.00
10,1181
-....::::.. 2.53
4------20.310.8001-1- - - - _ " 10.0991
IIs:
02 VERSION SHOWN
~----,
TI SOJ series
SIZES: 20 pin
Z6 pin
20-PIN (02 VERSION) FOOTPRINT SHOWN
--r -@--------@--@--rtf
0,80
I
CD
::r
I»
::J
I
I
(0.1001
-t~'tl'
@-i----*@-1-@111"';:
I '
: , : !
C:i"
!.
I
I
I
! 5!
5!
I"!'
'1'1''':;
" I
...C
I»
I»
2,54
IM10.0321
ttt+t---- ---t+~t®l
~
I,
(')
5,08
I
-@---'
;'--tll---@-ll-Gl
,~.--~
I 54~ ,~
110.2001
1.27 '
Dimensions in parentheses are inches
Contact fa~torv for detailed information
4-30
PRODUCTIOI DATA doc....nts cont.in infor..dion
••rrant I. of pu.llcotion dot•. Protl.......iorll ta
.p..llinti••• par t .. tannl of T.... Instr...ents
otond.rd w.rrenty. Prod.ction pj'G....lng dot. oot
..._rily incl.do ltIIing of III porl..lttro.
10.0501
TEXAS
~
INSTRUMENTS
34 Forest Street. Attleboro, Massachusetts 02703
I
2
(01001
.
2.64
\ (0.1001
NO. 1 PIN
IC SOCKETS
DUAL·IN·LlNE
PERFORMANCE SPECIFICAnONS
C7X SERIES -
SCREW MACHINE
Mechanical
Accommodates IC leads 0.011 ± 0.003 in by
0.018 ± 0.003
Recommended PCB thickness range: 0.062 in to 0.092 in
Recommended PCB hole size range: 0.032 in to 0.042 in
Recommended hole grid 'pattern: 0.100 in ± 0.003 in each
direction
Vibration: 15 G, 10-2000 Hz per MIL-STD 1344A,
Method 2005.1 Test Condition III.
Shock: 100 G, sawtooth waveform, 2 shocks each direction
per MIL-STD 202, Method 213, Test Condition I
Durability: '5 cycles, 10 mil max contact resistance change
per MIL-STD 1344, Method 2016
Insertion force (C7X and C86): 16 oz (454 g) per pin max
Withdrawal force: (40 g) per pin min
Electrical
C7X SERIES - SCREW MACHINE
PART NUMBER SYSTEM
C7X
Contact rating: 1 A per contact
Contact resistance: 20 mil max initial
Insulation resistance: 1000 Mil at 500 V dc per
MIL-STD 1344, Method 3003
Dielectric withstanding voltage: 1000 V ac rms per
MIL-STD 1344, Method 3001.1
Capacitance: 1 pF max per MIL-STD 202, Method 305
(X)
1I
XX -
X
X
I
Environmental
Operating temperature: - 55·C to 125 ·C, gold; - 40·C
to 100 ·C, tin
Corrosive atmosphere: 10 mil max contact resistance
change when exposed to 22% ammonium sulfide for
4 hours
Gas tight: 10 mil max contact resistance change when
exposed to nitric acid vapor for 1 hour
Temperature soak: 10 mil max contact resistance change
when exposed to 105·C temperature for 48 hours
Materials (C7X and CB6)
PRECISION
MACHINED'
SLEEVE
PRECISION
FOUR-FINGERED
CONTACT
Body - PBT polyester UL 94 v-o
C7X Contacts - Outer sleeve: brass
Clip: BECU
Contact finish - clip 30 jLin gold over 50 jLin nickel or
50
jLin
tin/lead
over 50 jLin nickel
Specified by
Part Number - sleeve 1b "in gold over 50 jLin nickel
or 50 jLin tin/lead over 50 jLin nickel
C86 Contacts - Phosphor bronze base metal
C86 Contact-finish - Tin plate 200 jLin over copper flash
~;~e~;t"t:' ~.:10
Plating ISleeve/Clop)
Gold/Gold
5 - Tin/Gold
o-
Number of
Positions
S -
Variations
Solder Ta.l: 9
Pin length 0.125 Typ
Single-in-line package (where applicable I
Screw Machine Socket
1 - wire wrap
2 - solder tail
CB6 SERIES - STAMPED AND FORMED
II
...
ca
ca
C
CB6 SERIES
PART NUMBER SYSTEM
l
c
l86 lXX-
L
Variation
01 - Standard product
Number of positions
Tin Dual Beam Face Wipe
'ii
Co)
'2
ca
.c
Co)
CD
:E
TI Socket Series
PRODUCTIOI DATA documonts •••llil inf.rmotlon
curnnt II af publicltiDn date. Preducts canfarm to
speclficatians per the tarms of TIXI. Instruments
:':~::i;·{::I:ri ~=::i:; :.r::;:~~~~ nat
TEXAS
~
INSTRUMENTS
34 Forest Street. Attleboro, Massachusetts 02703
4·31
IC SOCKETS
DUAL·IN·LlNE
C7X SERIES
DUAL·IN·L1NE
C7X AND C86 SERIES
~~F=~~----~/9
1.35
0.53
...U
....
(0.021) DIA
(0.053)
3.61/4.57
,
(0.142)110.180)
...:.j1-{~~:5) DIA
C86 SERIES
,
4.25
(0.169)
.
DIPS
'"
0
0
0
0
g :Ii<=
J
6
8
14
16
18
20
22
24
t24
.Ii
Q
0
..
it
~
=
:Ii
"
~
0
'"
Q
E
is
..
on
.
0
0
a :Ii<=
~
i.
7.62
5.08 10.16 7.62 t24
10.300) 10.200) 10.400) 10.300)
10.16 7.62 10.16 7.62
28
10.400) 10.300) (0.400) 10.300}
17.78 15.24 10.16 7.62
32
10.700} 10.600} 10.400) (0.300)
20.32 17.78 10;16 7.62
34
10.800) 10.700) (0.400) 10.300)
22.86 20.32 10.16 7.62
40
(0.900) 10.800) (0.400) 10.300}
25.40 22.86 10.16 7.62
11.000) 10.900) 10.400) 10.300} 48
27.94 25.40 12.76 10.16
50
11.10Q) 11.000) 10.500) 10.400)
30.48 27.94 17.78 15.24
11.200) 11.100) (0.700) 10.600) 64
0
..
it
*
,
0.38 TVP
0
:i
"
C!
0
it
Q
E
E
is
is
~
30,48 27.94 12.76 10.16
11.200) 11.100) 10.500) 10.400}
35.56 33.02 17.78 15.24
11.400) 11.300) 10.700) (0.600)
40.64 38.10 17.78 15.24
11.600) 11.500) 10.700) 10.600}
45.72 '43.18 17.78 15.24
11.800) 11.7"00) 10.700) 10.600)
50.80 48.26 17.78 15.24
12.000) 11.900) 10.700) 10.600)
58.42 17.78 15.24
I~~~) 12.300) 10.700) 10.600)
63.50 60.96 25.40 7.62
12.500) (2.400) (1.000) (0.900)
78.74 25.40 22.86
1~~2~) 13.100) 11.000) 10.900}
.5
Q
30,48 27.94 10.16 7.62
11.200) 11.100} 10.400) 10.300)
t Nonstandard sizes
Not all sizes available in each series
Dimensions apply to all series
C
I»
&t
Dimensions in" parentheses are inches
Contact factory for detailed Information
4 ..32
PRODUCTION DATA d......nts ••nIIln inf.rmlti.n
.urrelt • •f p.bli..ti.n dlto. Producta ••nf.rm t.
lpacHic.ti... p.r th. tonal of T.... IlIIIrumonts
sta .... rd w.rranty. Pr.ducti.n ~rDCnsing do. nit
.......rIl' Inctudo tuI{ng of .11 per.met....
TEXAS
~
INsTRUMENTS
34 Forest Street. Attleboro, Massachusetts 02703
IC SOCKETS
BURN·IN/TEST DIP
1
PERFORMANCE SPECIFICATIONS
PART NUMBER SYSTEM
Mechanical
C
X
37
XX
-
Accommodates IC leads 0.011 in by 0.018 in
Recommended PCB thickness range: 0.062 in to 0.092 in
Recommended PCB hold size range: 0.032 in to 0.042 in
Durability: 10K cycles - CM Series, 5K cycles - CP/CQ
22
Number of positions'
Overall gold plate
Operating temperature: - 65°C to 170°C - CP/CM Series,
- 65°C to 150°C - CQ Series
Humidity: 10 mil max contact resistance
Temperature Soak: 10 rnO max contact resistance change
MATERIALS
A
±0.01
Length
Number of
Positions
BURN-IN/TEST DIP SOCKETS
I,
P - High density mounting
M - Shrink 0.070 centers
C037 SERIES
tFor additional plating options consult the factory
~
Series Features
Q- Auto unload able
TI Socket Series
Body - PPS (polyphenylen sulfide) UL 94 V-O
Contacts - Higher performance copper nickel alloy
Plating: t 4 "in of gold min over 100 "in of nickel min
2.54
A-0.l00 centers
8-0.070 centers
Copper nickel alloy
Soldertail
Environmental
IO.100)~
Pin to pin
PPS high temperature
body material
Electrical
Contact rating: 1 A per contact
Contact resistance: 20 mil max initial
Insulation resistance: 1000 M{J at 500 V dc
Dielectric withstanding voltage: 1000 V ac rms
Capacitance: 1 pF max per MIL-STD 202, Method 305
-.-'.c
L
LS
3.30}2
10.'
3011...
,?-"
2 54
~~1O:1001
SOLDER TAil
0
C
B
±0.02
±O.01
Width
±0.01
Contact
14
16
18
20
20,32
22,35
24,89
27,43
(0.8001
(0.8801 12,70
15,24
7,62
(0.9801 (0.5001 (0.6001 (0.300)
(1.080)
24
28
40
42
32,51
37,59
52,83
55,37
(1,280)
(1.480) 19,05 22,86
15,24
(2.080) (0.750) (0.900) (0.600)
(2.180)
~
C037 SERIES
CP37 SERIES
CP37 SERIES
Number of
Positions
1
CM37 SERIES
•. 50
TI,
(0.460)
(0.700)
(0.800)
(0.900)
(1.000)
7,62
(0.300)
12,70
(0.500)
24
28
40
30,48 (1.2001
35,56 (1.400)
50.80 (2.000)
15,24
(0.600)
20,32
(0.800)
A
±O.016
Length
B
C
±0.O2
±0.016
Width
28
27,18 (1.070)
10,67
(0.420)
17,20
(0.677)
40
42
54
37,85 (1.490)
39,62 (1.560)
50,29 (1.980)
16,51
(0.650)
23,11
(0.910)
10.4721
3.48
64
59,18 (2.3301
20,32
(0.800)
26,92
(1.060)
020 1
Number of
Positions
B
nll~"99
~~.l
O.53......!1.-
11,68
17,78
20,32
22.86
25,40
CM37 SERIES
--.l
(0.021,
C
max
Width
8
14
16
18
20
I ~O.5'
10.2561
B
±0.02
A
max
Length
1 78-J \..IO.i)701
(0.137)
0,50
10.0201
I
as
.....
as
o
Dimensions in parentheses are inches
Contact factory for detailed information
PRODUCTION DATA do•• monts .ontain information
current 8. of publicatiDn dat•• Products conform to
specifications par the terms of T8XI. Instruments
::~'!:~i~ai~:1~7i ~:\:~i:r lI~D::;:~~~~ not
TEXAS ~
INSfRUMENTS
34 Forest Street. Attleboro, Massachusetts 02703
4-33
IC SOCKETS
QUAD·IN·LlNE/SHRINK PACK
PERFORMANCE SPECIFICATIONS
Insertion force: 16 oz (454 g) per pin max
Withdrawal force: 1.5 oz (42 g) per pin min
Operating temperature: - 40 °C to 100 °C, tinllead
Accommodates IC leads 0.011 ± 0.0003 in by
0.018 ± 0.003 in
Contact rating: 1 A per contact
MATERIALS
Body - PBT polyester UL 94 v-o
C4S & CxW Contacts - Copper alloy
Contact finish - Reflow tin plating, 40 "in min
DUAL BEAM
EDGE GRIP
CONTACT
PART NUMBER SYSTEM FOR CxW SERIES
lli
C
X
W
XX -
11
QUAD-IN-L1NE (CxW SERIES)
l
Number of contacts (42, 52, 64)
Staggered leads
5 6 -
I"
A---~
64 contacts
42, 52 contacts
TI Socket Series
QUAD-IN-L1NE (CxW SERIES)
A
Max
Length
41,90
(1.651
Product
Number
C5W64-11
B
C
Row to Row
Max
Row to Row
22,90
(0.950)
19,05
(0.750)
C6W42-11
27,90
(1.10)
22,90
(0.900)
17,80
(0.700)
C6W52-11
34,30
(1.35)
22,90
(0.900)
17,80
(0.700)
Dimensions in parentheses are inches
Contact factory for detailed information
1,79
(0.050)
C4S SERIES
PART NUMBER SYSTEMt FOR C4S SERIES
1
II
c
4
1S
t~::ber
of contacts
28,40,42,52,54,64
Shrink Pack
(0.070 in pin-to-pin contact spacing)
s:
(')
B
Row to Row
C
Max
Width
28
25,02
(0.985)
10,16
(0.400)
13,00
(0.512)
40
35,69
(1.405)
15,24
(0.600)
17,98
(0.708)
64
57,07
(2.247)
19,05
(0.750)
21,62
(0.851)
Dimensions in parentheses are inches
SHRINK PACK DIP (C4S SERIES)
Reflow tin plating
CD
A
Max
Length
Positions
TI Socket Series
t Also available in screw machine contacts
::r
I»
C4S SERIES
j
C:;'
!.
C
....
I»
I»
4-34
PRODUCTION DATA documents contain information
current 8S of publication date. Products conform to
specifications par the terms of TexIs Instruments
:~~~~:~~i~ai~:1~1i ~!::i:~ti:r ~~o::;:~~:~~s not
,If
TEXAS
INSTRUMENTS
34 Forest Street. Attleboro, Massachusetts 02703
IC SOCKETS
BURN·IN/TEST
PERFORMANCE SPECIFICATIONS
QUAD FLAT PACK (CFPM SERIES)
Mechanical
Accommodates IC leads per specific IC device
Recommended PCB thickness range: 0.062 in to 0.092 in
Recommended PCB hole size range: 0.032 in to 0.042 in
Durability: 5000 cycles, 10 mil max contact resistance
change per MIL-STD 1344, Method 2016
Electrical
Contact rating: 1 A per contact
Contact resistance: 20 mil max initial
Insulation resistance: 1 Mil at 500 V dc per
MIL-STD 1344, Method 3003.1
Dielectric withstanding voltage: 700 V ac rms per
MIL-STD 1344, Method 3001.1
Capacitance: 1 pF max per MIL-STD 202, Method 305
Environmental
1'"L:~:'
PART NUMBER SYSTEM
Operating temperature: -65°C to 170°C
Humidity: 10 mil max contact resistance change when
tested per MIL-STD 202, Method 103B
Temperature soak: 10 mil max contact resistance change
when exposed to 105°C temperature for 48 hours
MATERIALS
Body - CFP Series - PES (polyether sulfone) glass filled
UL 94 V-O
Temperature: -65°C to 170°C
Contact - Beryllium copper
Plating: t Overall gold plate min 41'in over min 70 I'in nickel
plating
01X
Lvariation.
A - 1.0 mm ~
B - 0.8 mm ~
contact spacing
lXX
M - Quad pack
TI socket
Plating
37 - overall gold plate
Style PF - Flat pack
PIN GRID ARRAY (CZFW SERIES)
t For additional plating option consult the factory.
Dimensional drawings available from factory.
SMALL OUTLINE FLAT PACK (CFPH/K SERIES)
PART NUMBER SYSTEM
c
11
XX X
XXX
XX
01
Lplating
37 - overall gold plate
Number of positions
Configuration
PART NUMBER SYSTEM
c xx
L
x
LXXX Lplati::
.
.
....'"
W-llxllx2
o'"
Style ZF - Zero force
37 - overall gold plate
TI Series socket
Number of positions
AVAILABlE SIZES
Configuration
H - 14, 16, 18,20 Positions
K - 24, 28 Positions
Style FP - Flat pack
TI Series socket
CFPH Series 14, 16, 18, 20
CFPK Series 24, 28
Small Outline
Flat Pack
CFPM Series 64, 80
Quad Flat Pack
CZFW Series 11 x 11 x 2
Pin Grid Array
Contact factory for detailed information
PRODUCTION DATA do•• monts .ontsin inlarmalion
carnnt .1 of publication date. Praducts conform to
specifications per the terms of Taxas Instruments
::~=~~;I[::1~7i ~:\::i:r :.r::::::':~~1 not
TEXAS . "
INSTRUMENlS
34 Forest Street. Attleboro, Massachusetts 02703
4-35
For more Information contact your
local distributor or contact TI directly:
Texas Instruments Incorporated
CSD Marketing, MS 14·1
Attleboro, MA 02703
(617)
699·5242/~269
Field Sales Offices
UNITED STATES
INTERNATIONAL
California
Australia
Irvine 91714
17891 Cartwright Road
Phone: (714) 660·8111
Texas Instruments Australia, Ltd.
P.O. Box 63
Ellzabetl1, South Australia 5112
Phone: 61.·8·255·2066
San Diego 92123
4333 View Ridge Ave., Suite B
Phone (619) 278·9600/9603
Torrence 90502
9505 Hamilton St.
Bldg. A, Suite One
Phone: (213) 217·7000
Georgia
Norcross 30092
5515 Spaulding Drive
Phone: (404) 662·7861/7931
Massachusetts
Attleboro 02703
34 Forest Street, MS 10·6/MS 14·3
Phone: (617) 699·5206/127815213
North Carolina
Charlotte 28210
8 Woodlawn Gree~
Suite 100
Phone: (704) 527·0930
Texas.
Dallas 75265
7800 Banner Drive; MS 3936
Phone: (214) 995·7550/7547/7548
Texas Instruments provides customer
assistance in varied technical areas. Since
Ti does not possess full access to data
concerning all of the uses and applications
of customers' products, responsibility is
assumed by TI neither for customer
product design nor for any Infringement of
patents or rights of others, which may
result from TI aSSistance.
C
r»
...
I»,
4-36
England
Texas Instruments, Ltd.
Belfordia House
Prebend.Stsreet
Bedford MK41 7PA
Phone: (0234) 63211, Ext. 1
France
Texas Instruments, Ltd ..
Metallurgical Materials Division
8·10 Avenue Morane Saulnier
78140 Vellzy·Viliacoublay, Paris
Phone: 333. 946. 9712
Hong Kong
Texas Instruments Asia, Ltd.
Asia Pacific Division
8th Floor, World Shipping Centre
Harbor City 7, Canton ~oad
Kowloon, Hong Kong
Phone: 852·3-722·1223
Italy
Texas Instruments Italla SPA
Viale Europa, 40
1·20093 Cologno Monzese
Milano
Phone: 011·39·2·25.300.1
Japan
Texas Instruments Japan, Ltd.
305 Tanagasnira
Oyama·Cho
Suntoh·Gun, Shizuoka·Ken
Japan 410·13
Phone: (81) 550·81211
Mexico
Texas Instruments de Mexico, SA
Av. Reforma No. 450·10 Piso
Col. Juarez
Delegacion: Cuauhtemoc
Mexico City, D.F.
Mexico 06600
Phone: 52·5·514·3583
Singapore
Texas Instruments Asia
#02·08, 12 Lorong Bakar Batu
Kolam Ayer Industrial Estate
Singapore 1334
Republic of Singapore
Phone: 65·747·2255
Taiwan
Texas Instruments Supply Co.
Taiwan Branch
Bank Tower
Room 903., 205 Tun Hwa N. Road
Taipei, Taiwan
Phone: 866·2·713·9311
West Germany
Texas Instruments Deutschland GMBH
Metallurgical Materials Div.
Rosenkavallerplatz 15
0·8000 Muenchen 81
Phone: 011-49·89·915081
TI Sales Offices TI Distributors
ALABAMA: Huntsville (205) 837·7530.
ARIZONA: Phoenix (602) 995·1007;
Tucson (602) 624-3276.
TI AUTHORIZED DISTRIBUTORS
Arrow/Klerulff Electronics Group
Arrow,Canada (Canada)
Future Electronics (Canada)
GRS Electronics Co., Inc.
Hall-Mark Electronics
Marshall Industries
Newark Electronics
Schweber Electronics
Time Electronics
Wyle Laboratories
Zeus Components
- OBSOLETE PRODUCT ONLYRochester Electronics, Inc.
Newburyport, Massachusetts
(617) 462-9332
CALIFORNIA: Irvine (714) 660-1200;
Sacramento (916) 929-0197;
~:~t~l~ra~II(~lgk?~:£~gb;
Torrance (213) 217·7000;
Woodland Hilla (81a) 704-7759.
COLORADO: Aurora (303) 368-8000.
CONNECTICUT: Wallingford (203) 269-0074.
FLORIDA: Altamonte Springs (305) 260-2116;
Ft. Lauderdale (305) 973-8502;
Tampa (813) 286-0420.
GEORGIA: Norcross (404) 662·7900.
ILLINOIS: Arlington Heights (312) 640·3000.
INDIANA: Carmel (317) 573-6400;
Ft. Wayne (219) 424·5174.
IOWA: Cedar Rapids (319) 395-9550.
KANSAS: Overland Park (913) 451·4511MARYLAND: Baltimore (301) 944-8600.
MASSACHUSETTS: Waltham (617) 895·9100.
~:;~J~~~ld:(~'rJ)~~7~4~~ (313) 553-1500;
MINNESOTA: Eden Prairie (612) 828-9300.
MISSOURI: St. Louis (314) 569·7600.
NEW JERSEY: Iselin (201) 750,1050.
NEW MEXICO: Albuquerque (505) 345-2555.
~~I~~~~~) ~~~ilJg~~rJs~!~~) (j~~i9;:~_~770;
Poughkeepsie (914) 473·2900.
NORTH CAROLINA: Charlo"e (704) 527-0930;
Raleigh (919) 876·2725.
OHIO: Beachwood (216) 464-6100;
Dayton (513) 258-3877,
ARIZONA: Arrow/Kierulff (602) 437-0750;
Hall-Mark (602) 437-1200; Marshall (602) 496-0290;
Schwaber (602) 997-4874; Wyle (602) 866-2888.
CALIFORNIA: Los Angeles/Orange County:
Arrow/Kierultf (818) 701.7500, (714) 838-5422;
Hall·Mark (818) 716-7300. (714) 669·4100,
13) 217·8400; Marshall (818) 407-0101, (818) 459-5500,
1141458-5395; Schweber (818) 999-4702;
14 663·0200, ~13l320.8090; Wyle ~213~ 322-9953,
~
~~:;a:~~g~oHall!~a~k6r9~~r~k~~:0ci;'4
921·9000;
Marshall (916) 635·9700; Schweber (916) 929·9732;
Wyle (916) 638-5282;
San Diego: Arrow/Kierulff (619) 565·4800;
~~~~~~r (~19J) ~~~_1~~~; ~;~h(JI, ~1~~~~116;OO;
OREGON: Beaverton (503) 643-6758.
PENNSYLVANIA: Blue Bell (215) 825·9500.
PUERTO RICO: Halo Rey (809) 753-8700.
TENNESSEE: Johnson City (615) 461·2192,
TEXAS: Austin ~512) 250-6769;
~:~~~ro~~315;2f::i~~~~~hardson
ALABAMA: Arrow/Kierultf (205) 837·6955;
Halt-Mark (205) 837-8700; Marshal! (205) 881-9235;
Schweber (205) 895·0480.
(214) 680-5082;
UTAH: Murray (801) 266-8972.
VIRGINIA: Fairfax (703) 849-1400,
WASHINGTON: Redmond (206) 881-30aO.
WISCONSIN: Brookfield (414) 782-2899.
~~~~~~ ~~r.~~ia~~t(l~~)(~1~.~fg1 ~ 970;
St. Laurent, Quebec (514) 336·1860,
TI Regional
Technology Centers
CALIFORNIA: Irvine (714) 660-8140;
Santa Cla,a (408) 748·2220;
Torrance (213) 217·7019.
COLORADO: AUrora (303) 368-8000.
GEORGIA: Norcross (404) 662·7945.
ILLINOIS Arlington Heights (313) 640·2909.
MASSACHUSETTS: WaHham (617) 895·9196.
TEXAS: Richardson (214) 680-5066.
CANADA: Nepean, Ontario (613) 726-1970,
San Francisco Bay Area: Arrow/Kierultf (408) 745-6600,
Hall-Mark (408) 432·0900; Marsha!! (408) 942-4600;
Schwaber (408) 432-7171; Wyle (408) 727-2500;
Zeus (408) 998-5121,
COLORADO: Arrow/Kierutff (303) 790-4444;
Hall-Mark (303) 790-1662; Marshall (303) 451·8383;
Schweber (303) 799-0258; Wyle (303) 457-9953.
CONNETICUT: Arrow/Kierulff (203) 265·7741;
Hall·Mark (203) 269-0100; Marshall (203) 265·3822;
Schweber (203) 748-7080.
FLORIDA: Ft. Lauderdale:
~~~~~:e[3uO~)(~~~:;:o~~~~~~~~(j~5l3~if_%~ i~280;
Orlando: Arrow/Kierulff (305) 725-1480, (305) 682·6923;
Hall·Mark (305) 855-4020; Marshall (305) 767-8595;
Schweber (305) 331.7555; Zeus (305) 365-3000;
Tampa: Hall-Mark (813) 530·4543;
Marshall (813) 576· 1399.
~;I~~;~~4t;)~~:~~ ~~:lh~iI9i:~:)2~23_5750;
Schweber (404) 449-9170,
ILLINOIS: Arrow/Kierulff (312) 250·0500;
Halt-Mark (312) 860-3800; Marshall (312) 490-0155;
Newark (312) 784·5100; Schweber (312) 364·3750.
INDIANA: Indianapolis: Arrow/Kierulff (317) 243-9353;
Hall-Mark (317) 872·8875; Marshall (317) 297-0483.
IOWA: Arrow/Kierulff (319) 395·7230;
Schweber (319) 373·1417.
KANSAS: Kansas City: Arrow/Kierulff (913) 541-9542;
Hall·Mark (913) 888·4747; Marshall (913) 492-3121;
Schweber (913) 492-2922,
MARYLAND: Arrow/Kierulff (301) 995-6002;
Hall·Mark (301) 988-9800; Marshall (301) 840·9450;
Schweber (301) 840-5900; Zeus (301) 997·1118.
•
TEXAS
INSTRUMENTS
MASSACHUSETTS Arrow/Kierulff (617) 935-5134;
~~~:!~~r (r~th ~615~5~~, ~:;~~~~*~ci~~~8.0810;
Time (617) 532-6200; Zeus (6t7) 863-8800.
MICHIGAN: Detroit: Arrow/Kierulff (313) 971-8220;
Marshall (313) 525-5850; Newark (313) 967-0600;
Schweber (313) 525·8100;
Grand Rapids: A(row/Kierulff (616) 243-0912,
MINNESOTA: Arrow/Kierulff (612) 830-1800;
Halt-Mark (612) 941·2600; Marshall (612) 559-2211;
Schweber (612) 941·5280.
MISSOURI: 51. Louis: Arrow/KierulH (314) 567·6888;
Hall-Mark (314) 291-5350; Marshal! (314) 291-4650;
Schweber (314) 739·0526.
NEW HAMPSHIRE: Arrow/Kierulff (603) 668·6968;
Schweber (603) 625-2250.
NEW JERSEY: Arrow/Kierulff (201) 538·0900,
(609) 596-8000; GRS ElectroniCS (609) 964-8560;
Han·Mark (201) 575-4415, (609) 235-1900;
Marshall (201) 882-0320, (609) 234-9100;
Schweber (201) 227-7880.
NEW MEXICO: Arrow/Kierulff (505) 243-4586.
~:;:iK?e~~~ ~~6r J~~a_~g~o; Hall-Mark (516) 737.0600;
Marshall (516) 273·2424; Schweber (516) 334-7555;
Zeus (914) 937·7400;
Rochester: Arrow/Kierulff (716) 427-0300;
Hall-Mark (716) 244·9290; Marshall (716) 235·7620;
Schweber (716) 424·2222;
Syracuse: Marshall (607) 798-16ft.
NORTH CAROLINA: Arrow/Kierulff (919) 876-3132,
(919) 725·8711; Hall·Mark (919) 872-0712;
Marshall (919) 878-9882; Schweber (919) 876-0000.
OHIO: Cleveland: Arrow/Kierulff (216) 248-3990;
Hall-Mark (216) 349-4632; Marshall (216) 248·1788;
Schweber (216) 464·2970;
Columbus: Arrow/Klerulff (614) 436-0928;
Hall-Mark (614) 888-3313;
Dayton: Arrow/Kierulff (513) 435-5563;
Marshall (513) 898-4480; Schweber (513) 439·1800.
OKLAHOMA: ArrowlKlerulff (918) 252·7537;
Schweber (918) 622-8003,
~:~~~~~O~)~~~~~ ~~!) (~;)s:g:6000.
PENNSYLVANIA: Arrow/Klerulff (412) 856·7000,
~2dh5~:;:;(:~~i ~~~~eg,t~~i~) ~~~J8~~~·7037;
TEXAS: Austin: Arrow/Kierulff (512~ 835-4180;
Hall-Mark (512) 258-8848; Marshall 512) 837·1991;
Schweber (512) 339-0088; Wy!e (51 ) 834-9957;
Dallas: Arrow/Kierulff (214~38Q.64t34;
~~~~~:r (~1,~) ~5631~~~°d; ~;~h(~J, %':11.~~iOO;
Zeus (214) 783-7010;
Houston: Arrow/Klerulff (713) 530·4700;
Han·Mark (713) 781-6100; Marshal! (713) 895-9200;
Schweber (713) 784-3600; Wyte (713) 879-9953.
UTAH: Arrow/Kierulff (801) 973-6913;
Hall-Mark (801) 912.1008; Marshall (801) 485-1551;
Wyle (801) 974-9953.
WASHINGTON: Arrow/Klerulfl (206) 575-4420;
Marshall (206) 747·9100; Wyle (206) 453-8300.
WISCONSIN: Arrow/Kierulff (414) 792·0150;
Hall-Mark (414) 797·7844; Marshall (414) 797-8400;
Schweber (414) 784-9020.
CANADA: Calgary: Future (403) 235-5325;
Edmonton: Future (403) 438·2858;
Montreal: Arrow Canada (514) 735·5511;
Future (514) 694-7710;
CHawa: Arrow Canada (613) 226·6903;
Future (613) 820·8313;
Quebec City: Arrow Canada (418) 687-4231;
Toronto: Arrow Canada (416) 672·7769;
Future (416) 638·4771;
Vancouver: Future (604) 294-1166;
Winnipeg: Future (204) 339-0554.
Customer
Response Center
TOLL FREE: (800) 232·3200
OUTStDE USA: (214) 995-6611
(6:00 a.m, - 5:00 p.m. CSl)
BU
TI Worldwide
Sales Offices
ALABAMA: Huntsville: 500 Wynn Drive, Suite 514,
Huntsville, AL 35805, (205) 837·7530.
~~rw!~~~g~~~~~~1'1~~~I(~'~'::4~:4~~W York Dr.,
g~~:g~:!:: ~~o 1~~~~~(4~~i'7~t~~ Office Park,
PUERTO RICO: Halo Rey: Mercantil Plaza Bldg.,
Suite 505, Hato Rey, PR 00919, (809) 753·8700.
TEXAS: Austin: P.O. Box 2909, Austin, TX 78769,
WI~~a~~~~kR~~:O~80n: 1001 E. Campbell Rd.,
~~i~~ 6:7~~~~g~~~~:7ngg, ~~fJr~::~:~y·,
GERMAN~JF~ut::~I:~C ~~:~~~~~~~~:~rrsasse "
1
Kurfuerstendamm
n
"
06196+8070; Hamburgerstrasse 11, 0·2000 Hamburg
76,040+220'1154, Klrchhorsterstrasse 2, 0·3000
~~;~v~~rf1id~~~ 2=~~~~alf1~~¥gg~; 11,
~~~~~~i~~:M9, °R=t~:~u,ra. ~5:&t~~~~~1;
ARIZONA: Phoenix: 8825 N. 23rd, Ave., Phoenix,
San Antonio: 1000 Central Parkway South,
San Antonia, TX 78232, (512) 496·1779.
261 +35044.
CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvin.,
UTAH: Mumy: 5201 South Green SE, Suite 200,
Murray, UT 84107, (801) 266·8972.
Texas Instruments Asia Ltd., 8th Floor, World
Shipping Ctr., Harbour City, 7 Canton Rd., Kowloon,
Hong Kong, 3 + 722-1223.
AZ 85021,1602)995·1007.
CA 92714, (714) 660-8187; Sacramento: 1900 Point
West Way, Suite 171, Sacramento, CA 95815,
n
Torrance,
DbT~n~~I~\e;:2~~~t•. '
~Vo~~~.~~gg~~~xc~~~~ CA
(213) 217-7010;
Woodland Hills: 21220 Erwin St., Woodlan"d Hills,
CA 91367, 1618) 704-7759.
COLORADO: Aurora: 1400 S. Potomac Ave.,
Suite 101, Aurora. CO 80012, (303)368-8000.
~~~~~T~!~ ~n.J~~'r~:rct~:rk~~~~~~~~U~~ri8J
CT 06492, 1203) 269-0074.
FLORIDA: Ft. Lauderdale: 2765 N,W. 6200 St.,
Ft. Lauderdale, FL 33309, (305) 973-8502;
Maitland: 2601 Maitland Center Parkway,
Maitland, FL 32751, (305) 660-4600;
~:::g: ~1~:09~1~1n3rI7g.~2b~uite
VIRG'INIA: Fairfax: 2750 Prosperity, Fairfax, VA
22031, (703) 849-1400.
WASHINGTON: Redmond: 5010 148th NE, Bldg B,
Suite 107, Redmond, WA 98052, (206) 881·3080.
:J~~:O~I::o~~'~i,'~i ~~: ~~~)~8~.~~:b.
CANADA: Nepean: 301 Moodie Drive, Mallorn
Center, Nepean, Ontario, Canada, K2H9C4,
Wi~~~~~9J~i r~m~~~~~~:.sg~:~e St. E.,
1:.1:J ¥~~'~~n:;a~~~~ts~i~:u~!'n~~r~~~e~~ebec,
Canada H4S1R7, (514) 335·8392.
101,
GA 30092, 1404)662·7900
ARGENTINA: Texas Instruments Argentina
S.A.I.C.F,: Esmeralda 130, 15th Floor, 1035 Buenos
Aires, Argentina, 1 + 394·3008.
~r~"~g~~~: ~~~~tt:,~LH:A~~:(g~~) ~40~~~Rquln,
AUSTRALIA (II NEW ZEALAND): Texas Instruments
Australia Ltd.: 6-10 Talavera Rd., North R{de
GEORGIA: Norcross: 5515 Spalding Drive, Norcross,
I~D:8~:': (~~9)W:l~H~~ Inwood Or., Ft. Wayne,
Indianapolis: 2346 S. Lynhurst, ~ulte J·400,
Indianapolis, IN 46241, (311) 24&-8555.
IOWA: Cadar Rapid,: 373 Collins Rd. NE, Suite 200,
Cedar Rapids, IA 52402, (319) 395-9550.
MARYLAND: Baltimore: 1 Rutherford Pl.,
7133 Rutherford Rd., Baltimore, MO 21207,
1301) 944-8600.
MASSACHUSETTS: Waltham: 504 Totten Pond Rd.,
Waltham, MA 02154, (617) 895-9100.
~S~d;~l ~2~~ 5~u~~~,a~~~ :t~S~~~~ ~~~:
Melbourne, Victoria, Australia 3004, 3 + 267·4677;
~11 ~~~~~hWay, 'Elizabeth, South Australia 5112,
AUSTRIA: Texas Instruments Ges.m.b.H.:
Industrlestrabe BI16, A·2345 BrunnlGebirge,
2236·846210.
:~~J~Mde~~~:~ ~~:~~rr::~~o~R~:i8~u~ ~u~~,
HONG KONG I + PEOPLES REPUBLIC OF
CHINA~
IRELAND: Texas Instruments (Ireland) Limited:
~r:~~71~d., Stillorgan, County Dublin, Eire,
ITALY: Texas Instruments Semiconduttori ltaUa Spa:
Viale Delle Scienze, 1,02015 Clttaducale (Rletl),
Italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma),
Monterotondo Scalo (Rome), Italy, 6+9003241; Viale
~~rgf:54~~r~i~~~~~~~f3,ZO'~~~~~~flaIY,
11 774545; Via J. Barozzl 6, 40100 Bologna, Italy, 51
355861.
JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama
~~~y~~d.pap:';1~b~I~~2sr:~; t~~~::;'a~~n~tgt,u,
Nissho Iwal Bldg., 30 Imabashi 3· Chome,
Higashl-ku, Osaka, Japan 541, 06-2Q4-1881; Nagoya
Branch, 7F oainl Toyota West Bldg., 10-27, Melekl
4-Chome, Nakamura·ku Nagoya, Japan
450, 52-583-8691.
KOREA: Texas Instruments Supply Co.: 3rd Floor,
~~mg~~\~~o~~~~a:~~.~bfangnam-kU,
MEXICO: Texas Instruments de Mexico S.A.: Mexico
g~?:: ~~f~~m5~~~0'a~ - 10th Floor, Mexico,
MIDDLE EAST: Texas Instruments: No. 13, 1st Floor
~:~~~aB~~~ra?~;~::l~~ ~~~: ~7~'+~~~:F'
NETHERLANDS: Texas Instruments Holland B.V.,
;U?d,g~~t~~:a~~u~~::m~~~rr. CB Amsterdam,
1130 Brussels, Belgium, 21720.80.00.
~~::::~~J.e~~~ol~~t~~,:~~ (~)o~O':'S:
PB106,
BRAZIL: Texas Instruments Electronicos do Brasil
~=~~~:~ ~~I~t:~~~I,I~~~l{~~sJg. Mile Rd.,
§:apa~~g, ~a;:ite~~5~~U. Andar Plnheiros, 05424
PHILIPPINES: Texas Instruments Asia Ltd.: 14th
MINNESOTA: Edan Pralrla: 11000 W. 78th St.,
Eden Prairie, MN 55344 (812) 828-9300.
DENMARK: Texas Instruments AIS, Mairelundvej
46E, oK·2730 Herlev, Denmark, 2 • 91 7400.
PORTUGAL: Texas Instruments E~uipamento
~i\~~R:.~::.~:,~IW3-s:80~ard Pkwy'., Kansas
St. Loull: 11816 ~orman Drive, SI. Louis,
FINLAND: Texas Instruments Finland OY:
Teoilisuuskatu 190 00511 Helsinki 51, Finland, (90)
701-3133.
NEW JER'SEY: 1••lln: 485E U.S. Route 1 South,
Parkway Towers, Iselin, NJ 08830 (201) 75().1050
FRANCE: Texas Instruments France: Headquarters
and Prod. Plant, BP OS, 06270 Villeneuve-Lou bet,
(93)20"()1..t)1: Paris Office, BP 67 8-10 Avenue
Morane-8aulnler, 78141 Vellzy-Villacoublay,
n Sales Office, L'Oree o'Ecully,
MO 63148, 1314)569·7600.
NEW MEXICO: Albuquerque: 2820-0 Broadbent Pkwy
NE, Albuquerque, NM 87107, (505) 345·2555.
~~~~il~~e~~:!~i~~~hi~~~rn:~~~ ~~~~~~,
m~i~~~~~~ (:~~~:15a~~ia~~:70n~:~~~~~~al,
2·Q4.8.1003.
SINGAPORE 1+ INDIA, INDONESIA, MALAYSIA,
THAILAND): Texas Instruments Asia Ltd.: 12 Lorang
Bakar Batu , Unit 01..()2, Kolam Ayer Industrial Estate,
Republic of Singapore, 747·2255.
r~~~: J:rd~~~s~~.~~~~~rSfe~'1~4:a:. ,c1.~~~e
SWEDEN: Texas Instruments International Trade
~ci:~~~~~ ~~:J~~~f~~:~J~:'x 39103,
5100
Le Peripole-2, Chemin du Plgeonn er de la ep ere,
31100 Toulouse, (61) 44·18-19; Marseille Sales Office,
~~:1~7~~38~s-146 Rue Paradis, 13006 Marseille,
10054
SWITZERLAND: Texas Instruments, Inc., Reldstrasse
6, CH·8953 oietikon (Zuerich) Switzerland,
1·7402220.
TAIWAN: Texas Instruments
SuPPI~
Co.: Room 903,
~rw~~~ ~::':'I~cd~/6~~:~2K~a~~1.::i. TaipeI,
UNITED KINGDOM: Texas Instruments Limited:
Manton Lane, Bedford, MK41 7PA, England,0234
OHIO: B.achwood: 23408 Commerce Park Rd.,
Beachwood, OH 44122, (216) 464-6100;
g~".i3~~(~f~)~:J.d3'lt: 124 Linden Ave., Dayton,
OREGON: B.averton: 6700 SW 105th St., Suite 110,
Beaverton, OR 97005, (503) 643-6758.
~
TEXAS
INSTRUMENTS
tI=~~~, J;.v.e~Rtt~,::s:gl~~~I~?~O~~.~~2~orth,
8M
>
•
.Jj}
TEXAS
INSTRUMENTS
Printed in U.S.A .
288 - 100
SDZD001C
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:26 11:35:01-08:00 Modify Date : 2017:07:26 12:44:31-07:00 Metadata Date : 2017:07:26 12:44:31-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:f1af7c3e-ec35-8e41-9457-e46c347f3d82 Instance ID : uuid:5b46a5e4-16d4-7d46-ae48-5deafd96c2cf Page Layout : SinglePage Page Mode : UseNone Page Count : 482EXIF Metadata provided by EXIF.tools