1989_National_Discrete_Semiconductor_Products 1989 National Discrete Semiconductor Products

User Manual: 1989_National_Discrete_Semiconductor_Products

Open the PDF directly: View PDF PDF.
Page Count: 744

Download1989_National_Discrete_Semiconductor_Products 1989 National Discrete Semiconductor Products
Open PDF In BrowserView PDF
......

co
Q)
co

~ National

~ Semiconductor

400047

A Corporate Dedication to
Quality and Reliability
National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes.
From raw material through product design, manufacturing and shipping, our quality and reliability is second
to none.
We are proud of our success ... it sets a standard for
others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir fOhlen uns zu Qualitlt und
Zuverllssigkeit verpflichtet

Un Impegno Societario di Quallta e
Affidabilita

National Semiconductor Corporation ist f(jhrend bei der Herstellung von integrierten Schaltungen hoher Qualitiit und
hoher Zuverliissigkeil. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC Ausfiillen zu
verringern und die Lebensdauern von Produkten zu verbessern. Vom Rohmaterial (jber Entwurf und Herstellung bis zur
Auslieferung, die Qualitiit und die Zuverliissigkeit der Produkte von National Semiconductor sind un(jbertroffen.

National Semiconductor Corporation e un'industria al vertice nella costruzione di circuiti integrati di alta qualita ed
affidabilita. National stata il principale promotore per I'abballimento della difettosita dei circuiti integrati e per I'allungamento della vita dei prodolli. Dal materiale grezzo allraverso tulle Ie fasi di progettazione, costruzione e spedizione, la qualita e affidabilita National non e seconda a nessuno.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fOr andere erstrebenswert sind. Auch ihre Anspr(jche steigen stiindig. Sie als unser Kunde klinnen sich auch weiterhin
auf National Semiconductor verlassen.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. II nostro desiderio di perfezione e d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli
di qualita.

e

La Qualite et La Fiabilite:
Une Vocation Commune Chez National
Semiconductor Corporation
National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits integres d'une tres grande
qualite et d'une fiabilitll exceptionelle. National a etllie premier a vouloir faire chuter Ie nombre de circuits integres
defectueux et a augmenter la duree de vie des produits.
Depuis les matieres premieres, en .passant par la conception du produit sa fabrication et son expedition, partout la
qualitll et la fiabilitll chez National sont sans lIquivalents.
Nous sommes fiers de notre succes et Ie standard ainsi
defini devrait devenir I'objectif a alteindre par les autres socilltlls. Et nous continuons a vouloir faire progresser notre
recherche de la perfection; il en resulte que vous, qui Eltes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systemes
d'une tres grande qualite standard.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

DISCRETE
SEMICONDUCTOR
PRODUCTS
DATABOOK
1989 Edition

Selection Guides
and Cross References
Diodes
Bipolar NPN Transistors
Bipolar PNP Transistors
JFET Transistors
Surface Mount Products
Pro-Electron Series
Consumer Series
Power Components
Transistor Datasheets
Process Characteristics
Appendices, Packaging and
Ordering Information
iii

•
•IIIIII
•,.

II

[II

&II
II

III

II

TRADEMARKS
Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.
Abuseable™
AnadigTM
ANS-R-TRANTM
APPSTM
ASPECTTM
Auto-Chem Defiasher™
BCPTM
BI·FETTM
BI-FET IITM
BI-LiNETM
BIPLANTM
BLCTM
BLXTM
Brite-Lite™
BTLTM
CheckTrackTM
CIMTM
CIMBUSTM
CLASICTM
Clock....ChekTM
COMBOTM
COMBO ITM
COMBO IITM
COPSTM microcontrollers
Datachecker®
DENSPAKTM
DIBTM
Digitalker®
DISCERNTM
DISTILLTM
DNR®
DPVMTM
ELSTARTM
E-Z-LINKTM
FACTTM
FAIRCADTM

FairtechTM
FAST®
5-Star Service™
GENIXTM
GNXTM
HAMRTM
HandiScan™
HEX3000TM
HPCTM
13L®
ICMTM
INFOCHEXTM
IntegrallSETM
IntelisplayTM
ISETM
ISE/06TM
ISE/08TM
ISE/16TM
ISE32™
ISOPLANARTM
ISOPLANAR-ZTM
KeyScan™
LMCMOSTM
M2CMOSTM
Macrobus™
Macrocomponent™
MAXI-ROM®

MSTTM
Naked-8™
National®
National Semiconductor®
National Semiconductor
Corp.®
NAX800TM
Nitride PIUS™
Nitride Plus Oxide™
NMLTM
NOBUSTM
NSC800TM
NSCISETM
NSX-16TM
NS-XC-16™
NTERCOMTM
NURAMTM
OXISSTM
p2CMOSTM
PC Master™
Perfect WatchTM
PharmB""ChekTM
PLANTM
PLANARTM
Polycraft™
POSilink™
POSitalker™
Power + Control™
POWERplanar™
QUAD3000™
QUIKLOOKTM
RATTM
RTX16TM
SABRTM
Script....Chek™

Mea~ChekTM

MenuMaster™
Microbus™ data bus
MICRO-DACTM
IJ-talker™
Microtalker™
MICROWIRETM
MICROWIRE/PLUSTM
MOLETM

SCXTM
SERIES/800TM
Series 900TM
Series 3000™
Series 32000®
Shelf....ChekTM
SofChekTM
SPIRETM
STARTM
StarlinkTM
STARPLEXTM
SuperChipTM
SuperScript™
SYS32™
TapePak®
TDSTM
TeleGate™
The National Anthem®
Time....ChekTM
TINATM
TLCTM
Trapezoidal™
TRI-CODETM
TRI-POLYTM
TRI-SAFETM
TRI-STATE®
TURBOTRANSCEIVERTM
VIPTM
VR32TM
WATCHDOGTM
XMOSTM
XPUTM
Z STARTM
883B/RETSTM
883S/RETSTM

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITIEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv

Introduction to the Discrete
Semiconductor Products
Data Book
For many years National Semiconductor has been a major
supplier of discrete semiconductor devices for the wide ranging consumer, automotive, computer and industrial marketplaces. And now ... the acquisition of Fairchild by National
Semiconductor has heralded in a new era for the NSC Discrete Product Line. The combined product lines have greatly
magnified the product depth and have now also made MiIAero versions available.
This databook reflects the discrete products that were previol,lsly sold by Fairchild along with the NSC bi-polar and JFET
transistors. These include:
• Commercial and Mil-Aero versions of small signal diodes
• Commercial and Mil-Aero versions of metal can, small signal bipolar transistors
• The combined Fairchild and NSC lines of general purpose,
switching and power transistors in plastic encapsulated
packages
• Commercial and Mil-Aero versions of monolithic diode arrays
• Quad transistor arrays
• N-Channel, P-Channel and Dual JFET transistors
• Power MOSFETs and ultrafast rectifiers
Many of the above devices are also available in surface
mount packages:
• Leadless glass diodes
• SOT diodes and transistors
• SOIC quad transistor and diode arrays
The selection guides in this databook are designed to provide an easy reference to the many standard parts offered by
NSC. If your needs are not satisfied by any of the devices
listed, please contact your local NSC Sales Office or the factory for lead form options and for other special selections
that are available.

v

r-----------------------------------------------------------------------.~c

-6' iii·
:::::rn
I»CiJ
::1-

~National

~ Semiconductor

CCD

3"'U

!!.a
nD.
C5
UI-

Discrete Product Line
Alphanumeric List of Available Parts

-r-

2. :i"
~CD

~.

Dr

Device

Page

Device

Page

Device

Page

1N3064
1N3064JAN
1N3064JANTX
1N3070
1N3070JAN
1N3070JANTX
1N3595
1N3595JAN
1N3595JANTX
1N3595JANTXV
1N3600
1N3600JAN
1N3600JANTX
1N3600JANTXV
1N4009
1N4146
1N4147
1N4148
1N4148-1JAN
1N4148·1 JANTX
1N4148·1 JANTXV
1N4149
1N4150
1N4150-1JAN
1N4150·1 JANTX
1N4150-1 JANTXV
1N4151
1N4152
1N4153
1N4154
1N4244
1N4244
1N4305
1N4305
1N4306
1N4306JAN
1N4306JANTX
1N4306JANTXV
1N4307
1N4307JAN
1N4307JANTX
1N4307JANTXV
1N4376
1N4376
1N4376JAN
1N4376JANTX
1N4446
1N4446
1N4447
1N4447
1N4448

2·3
2·10
2·10
2-8
2-10
2-10
2-7
2-10
2-10
2-10
2-3
2-10
2-10
2-10
2-3
2-3
2-3
2-3
2-10
2-10
2-10
2-3
2-3
2-10
2-10
2-10
2-3
2-3
2-3
2-3
2-4
2-5
2-4
2-5
2-17
2-10
2-10
2-10
2-17
2-10
2-10
2-10
2-4
2-5
2-10
2-10
2-4
2-5
2-4
2-5
2-4

1N4448
1N4449
1N4449
1N4450
1N4450
1N4454
1N4454
1N4454-1 JAN
1N4454-1 JANTX
1N4454-1 JANTXV
1N456
1N456A
1N457
1N457A
1N457JAN
1N458
1N458A
1N458JAN
1N459
1N459A
1N459JAN
1N461A
1N462A
1N463A
1N482B
1N483B
1N483BJAN
1N483BJANTX
1N484B
1N485B
1N485BJAN
1N485BJANTX
1N486B
1N486BJAN
1N486BJANTX
1N4938
1N5226B
1N5227B
1N5228B
1N5229B
1N5230B
1N5231B
1N5232B
1N5233B
1N5234B
1N5235B
1N5236B
1N5237B
1N5238B
1N5239B
1N5240B

2-5
2-4
2-5
2-4
2-5
2·4
2·5
2-10
2-10
2-10
2-7
2-7
2-7
2-7
2-10
2-7
2-7
2-10
2-7
2-7
2-10
2-9
2-9
2-9
2-7
2-7
2-10
2-10
2-7
2-7
2-10
2-10
2-7
2-10
2-10
2-8
2-16
2-16
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17

1N5241B
1N5242B
1N5243B
1N5244B
1N5245B
1N5246B
1N5247B
1N5248B
1N5249B
1N5250B
1N5251B
1N5252B
1N5253B
1N5254B
1N5255B
1N5256B
1N5257B
1N5282
1N5282
1N5768
1N5770
1N5772
1N5774
1N6099
1N6100
1N6101
1N625
1N625
1N626
1N627
1N628
1N629
1N6496
1N658
1N659
1N659
1N660
1N660
1N661
1N661
1N746A
1N747A
1N748A
1N749A
1N750A
1N751A
1N752A
1N753A
1N754A
1N755A
1N756A

2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-4
2-5
2-12
2-12
2·12
2-12
2-7
2-12
2-12
2-3
2-8
2-8
2-8
2-8
2-8
2-12
2-8
2-9
2-8
2·8
2-9
2-8
2-9
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15

vii

tT
(i"

-:

;-

~

0

s:::::J~
_Ill..

~~
o..!!!

r-----------------------------------------------------------------------------,

~National

~ Semiconductor

rt'~
,!
_c(

Discrete Product Line
Alphanumeric List of Available Parts

f'O

~;;

i5::J

(Continued)

(,)

'C

~

E
~

i
.c

Q.


_cc

Discrete Product Line
Alphanumeric List of Available Parts (Continued)

eo
~1i)

C:.::l
u
.;:

~::J

C

.!CL
Ci

Device

Page

Device

Page

Device

Page

MMBT5133
MMBT5134
MMBT5135
MMBT5136
MMBT5137
MMBT5138
MMBT5139
MMBT5142
MMBT5143
MMBT5172
MMBT5179
MMBT5209
MMBT5210
MMBT5223
MMBT5224
MMBT5226
MMBT5227
MMBT5228
MMBT5400
MMBT5401
MMBT5447
MMBT5551
MMBT5571-2
MMBT5769
MMBT5771
MMBT5771-1
MMBT5772
MMBT5830
MMBT5831
MMBT5833
MMBT5855
MMBT5857
MMBT5910
MMBT5961
MMBT5962
MMBT5965
MMBT6426
MMBT6502
MMBT6514
MMBT6515
MMBT6518
MMBT6520
MMBT6521
MMBT6543
MMBT6560
MMBT6561
MMBT6562
MMBT706
MMBT706A
MMBT918
MMBT930

6-17
6-13
6-21
6-21
6-21
6·32
6-32
6-30
6-30
6·21
6-15
6·17
6·17
6-21
6-13
6·30
6-27
6·26
6·35
6-35
6-34
6-22
6-26
6-13
6·26
6-26
6·14
6-22
6-22
6-22
6-33
6-33
6-26
6-17
6-17
6-22
6·25
6-30
6-23
6-21
6-32
6·21
6·21
6-15
6·24
6-24
6·33
6-13
6-13
6·15
6·16

MMBT930A
MMBTA05
MMBTA06
MMBTA12
MMBTA13
MMBTA14
MMBTA20
MMBTA42
MMBTA43
MMBTA55
MMBTA56
MMBTA70
MMBTA92
MMBTA93
MMBTH10
MMBTH11
MMBTH20
MMBTH24
MMBTH30
MMBTH34
MMBTH81
MMBTL01
MMBTL51
MPAS92
MPF102
MPF103
MPF104
MPF105
MPF106
MPF107
MPF108
MPF109
MPF110
MPF111
MPF112
MPF256
MPF820
MPQ100
MPQ200
MPQ2222
MPQ2907
MPQ3467
MPQ3468
MPQ3724
MPQ3725
MPQ3904
MPQ3906
MPQ6426
MPQ6700
MPQ6700
MPQ6700

6·16
6-24
6c24
6-25
6-25
6·25
6-21
6·24
6-24
6-33
6-33
6·27
6-35
6-35
6-15
6.15
6·14
6-15
6·15
6·15
6·35
6-22
6·35
4·20
5-6
5-10
5-10
5·10
5·6
5-6
5·6
5·10
5·10
5-10
5-10
5-6
5-6
3-18
4-16
3-18
4·11
4·5
4·5
3-7
3·7
3·29
4-14
3-50
4-15
4-16
3-29

MPQA13
MPQA63
MPS2369
MPS2369A
MPS2711
MPS2712
MPS2713
MPS2714
MPS2716
MPS2923
MPS2924
MPS2925
MPS2926
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397
MPS3398
MPS3563
MPS3638
MPS3638A
MPS3639
MPS3640
MPS3644
MPS3645
MPS3646
MPS3693
MPS3694
MPS3702
MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3708
MPS3709
MPS3710
MPS3711
MPS3721
MPS3826
MPS3827
MPS3903
MPS3904
MPS3905
MPS3905
MPS3906
MPS3906
MPS4354
MPS4355

3-50
4-26
3-4
3-4
3-29
3-29
3-4
3-4
3-30
3-18
3-18
3-18
3-19
3-19
3-19
3-19
3-19
3-19
3-19
3-19
3-13
4-11
4-11
4-3
4-3
4-11
4-11
3-5
3-19
3-19
4-11
4-11
3-24
3-24
3-24
3-10
3-10
3·10
3-10
3-11
3·30
3·30
3-30
3·19
3-19
4·15
4-16
4-15
4·16
4-19
4·19

xviii

'?'A National
~ Semiconductor
Discrete Product Line
Alphanumeric List of Available Parts (Continued)
Device

Page

Device

Page

Device

Page

MPS4356
MPS5172
MPS5770
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515
MPS6516
MPS6516
MPS6517
MPS6517
MPS6518
MPS6518
MPS6520
MPS6521
MPS6522
MPS6523
MPS6530
MPS6531
MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6542
MPS6543
MPS6544
MPS6546
MPS6547
MPS6548
MPS6559
MPS6562
MPS6564
MPS6565
MPS6566
MPS6567
MPS6568A
MPS6569
MPS6570
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS6715
MPS6717
MPS6724

4-19
3·19
3·13
3·13
3·13
3-30
3·30
3·30
3-30
4·15
4·16
4-15
4·16
4·15
4·16
3·20
3·20
3·24
4·7
3·25
3·25
3·25
4·11
4·11
4·11
3·12
3·15
3·13
3·14
3·14
3·15
3·14
3-14
3-12
3·14
4-19
3-30
3-30
3-20
3-15
3-14
3-14
3-14
3-11
3-20
3-20
3-20
3-20
3-41
3-41
3-50

MPS6725
MPS6727
MPS6733
MPS6734
MPS6735
MPS706
MPS706A
MPS8098
MPS8099
MPS834
MPS918
MPSA05
MPSA06
MPSA09
MPSA10
MPSA12
MPSA13
MPSA14
MPSA18
MPSA20
MPSA42
MPSA42
MPSA43
MPSA43
MPSA55
MPSA56
MPSA62
MPSA63
MPSA65
MPSA66
MPSA70
MPSA93
MPSH10
MPSHll
MPSH19
MPSH20
MPSH24
MPSH30
MPSH31
MPSH34
MPSH37
MPSL01
MPSL51
MPSWOl
MPSW06
MPSW10
MPSW13
MPSW42
MPSW43
MPSW45
MPSW45A

3·50
4·23
3·45
3·45
3·45
3·4
3·4
3·20
3·20
3·4
3·13
3·35
3·35
3·11
3·20
3·50
3·50
3·50
3·11
3·20
3·45
3·45
3-45
3·46
4·19
4-19
4·26
4·26
4-26
4·26
4-7
4·20
3-12
3·14
3·15
3·15
3·15
3·14
3-14
3-15
3-15
3·25
4·17
3-41
3-43
3·45
3-50
3-45
3·46
3·50
3·50

MPSW63
MPSW92
MRF501
MRF502
MTP10N08
MTP10Nl0
MTP12N18
MTP12N20
MTP20N08
MTP20Nl0
MTP2N18
MTP2N20
MTP2N35
MTP2N40
MTP2N45
MTP2N50
MTP3N35
MTP3N40
MTP4N08
MTP4Nl0
MTP4N45
MTP4N50
MTP5N35
MTP5N40
MTP7N18
MTP7N20
NAll
NA12
NA31
NA32
NBlll
NB121
NDF9406
NDF9407
NDF9408
NDF9409
NDF9410
NF5011
NF5011C
NF5012
NF5101
NF5102
NF5103
NF5301
NF5301·1
NF5301·2
NF5301-3
NPD5584
NPD5585
NPD5586
NPD8301

4·26
4·20
3·12
3·12
9·13
9·13
9·16
9·16
9·15
9·15
9·12
9·12
9·13
9·13
9·14
9·14
9·14
9·14
9·12
9·12
9-18
9·18
9·17
9-17
9·14
9·14
8-4
8·4
8-4
8·4
8·4
8·4
5·16
5·16
5·15
5·16
5·16
5-15
5-15
5·15
5-7
5-7
5-7
5·8
5·8
5-8
5·8
5·15
5·15
5·15
5·13

xix

~

0

c::::i~
_Q.

g.!!

r-------------------------------------------------------------------------____
~National

~ Semiconductor
co!!!
....
Q.!:

"O.c

,!c:C

Discrete,·Product Line
Alphanumeric List of Available Parts (Continued)

~O

~U;

c:::i

()

.;:
~

E
~

c:
ca

.c

CL

:cc

Device

Page

Device

Page

Device

Page

NPD8302
NPD8303
NPD8304
NR421
NR431
NS3903
NS3904
NSD102
NSD103
NSD104
NSD105
NSD106
NSD131
NSD132
NSD133
NSD134
NSD135
NSD151
NSD152
NSD153
NSD154
NSD202
NSD203
NSD204
NSD205
NSD206
NSD3429
NSD3440
NSD36
NSD36A
NSD36B
NSD36C
NSD457
NSD458
NSD459
NSD6178
NSD6179
NSD6180
NSD6181
NSDU01
NSDU01A
NSDU05
NSDU06
NSDU07
NSDU10
NSDU45
NSDU45A
NSDU51
NSDU51A
NSDU52
NSDU55

5-13
5-13
5-13
8-4
8·4
3-31
3·31
3-41
3-41
3-43
3-43
3-43
3·46
3·46
3-46
3-46
3-46
3·50
3·50
3·50
3·50
4-21
4-21
4·24
4·24
4-25
3-39
3-39
3·39
3-39
3-39
3-39
3-46
3-46
3-46
3-43
3-41
4-23
4-23
3-40
3-41
3-42
3-43
3-43
3-46
3-51
3-51
4-21
4-21
4-22
4-23

NSDU56
NSDU57
NSDU95
NSDU95A
NSE181
NSE457
NSE458
NSE459
P1086
P1087
PE4020
PE8550
PF5101
PF5301
PF5301·1
PF5301·2
PF5301·3
PN100
PN100A
PN101
PN200
PN200A
PN201
PN2221
PN2221A
PN22'22
i"N2222A
PN2369
PN2369A
PN2484
PN2906
PN2906A
PN2907
PN2907A
PN3251
PN3251
PN3563
PN3564
PN3565
PN3566
PN3567
PN3568
PN3569
PN3638
PN3638A
PN3639
PN3640
PN3641
PN3642
PN3643
PN3644

4·25
4·25
4·26
4·26
3·42
3·46
3·46
3·47
5·18
5·18
3·11
4·23
5·7
5·8
5·8
5·8
5·8
3·20
3·20
3·21
4·16
4·17
4·17
3·21
3·21
3·21
3·28
3·4
3-4
3-11
4-11
4·12
4·12
4-12
4-15
4-16
3-13
3-13
3-11
3-36
3-36
3-35
3-36
4-12
4-12
4-4
4-4
3·21
3-21
3-21
4·12

PN3645
PN3646
PN3684
PN3685
PN3686
PN3687
PN3691
PN3692
PN3694
PN4091
PN4092
PN4093
PN4117
PN4117A
PN4118
PN4118A
PN4119
PN4119A
PN4120
PN4120A
PN4121
PN4121
PN4122
PN4122
PN4140
PN4141
PN4142
PN4143
PN4220
PN4221
PN4222
PN4223
PN4224
PN4248
PN4249
PN4250
PN4250A
PN4258
PN4258A
PN4274
PN4275
PN4302
PN4303
PN4304
PN4338
PN4339
PN4342
PN4354
PN4355
PN4356
PN4360

4·12
3·5
5·10
5·10
5·10
5·11
3·31
3·31
3·21
5·4
5·4
5·4
5·8
5·8
5·8
5·8
5·8
5·8
5·8
5·8
4·15
4·16
4·15
4·16
3·21
3·22
4·13
4·13
5·11
5·11
5·11
5·6
5·6
4·7
4·7
4·7
4·7
4·4
4·4
3·4
3·5
5·11
5·11
5·11
5·11
5·11
5·19
4·19
4·19
4·19
5·19

xx

~

~National

~ Semiconductor
Discrete Product Line
Alphanumeric List of Available Parts (Continued)
Device

Page

Device

Page

Device

Page

PN4391
PN4392
PN4393
PN4393
PN4416
PN4856
PN4857
PN4858
PN4859
PN4860
PN4861
PN4888
PN4889
PN4916
PN4917
PN5033
PN5102
PN5103
PN5127
PN5128
PN5129
PN5130
PN5131
PN5132
PN5133
PN5134
PN5135
PN5136
PN5137
PN5138
PN5139
PN5140
PN5142
PN5143
PN5163
PN5179
PN5432
PN5433
PN5434
PN5449
PN5816
PN5855

5-4
5-4
5-4
5-7
5-6
5-4
5-4
5-4
5-4
5-4
5-4
4-17
4-17
4-16
4-16
5-19
5-7
5-7
3-22
3-22
3-22
3-14
3-22
3-22
3-11
3-5
3-22
3-22
3-22
4-16
4-16
4-4
4-13
4-13
5-11
3-12
5-4
5-4
5-4
3-25
3-25
4-19

PN5857
PN5910
PN5965
PN918
PN920
PN930
SA1015
SA733
SC1815
SC945
SE5020
SE5021
SE5022
SE5023
SE5024
SE5050
SE5051
SE5052
SND132
SS8050
SS8550
ST3904
ST3906
ST5771-1
ST5771-2
TIS58
TIS59
TIS73
TIS74
TIS75
TIS86
TIS87
TIS90
TIS91
TIS92
TIS92
TIS93
TIS97
TIS98
TIS99
TN1711
TN2102

4-20
4-4
3-25
3-13
3-11
3-11
8-3
8-3
8-4
8-4
3-14
3-14
3-14
3-14
3-14
3-14
3-14
3-14
3-46
8-4
8-4
3-31
4-16
4-4
4-4
5-10
5-11
5-4
5-4
5-4
3-15
3-15
3-22
4-13
4-13
3-22
4-13
3-22
3-22
3-22
3-35
3-35

TN2218A
TN2219
TN2219A
TN2904A
TN2905
TN2905A
TN3019
TN3020
TN3053
TN3440
TN3467
TN3724
TN3725
TN3742
TN4033
TN4036
TN4037
TN4234
TN4235
TN4236
TN4314
U1897
U1898
U1899
U231
U232
U233
U234
U235
U287
U308
U309
U310
U312
U401
U402
U403
U404
U405
U406
U440
U441

3-23
3-23
3-23
4-13
4-13
4-14
3-35
3-36
3-36
3-39
4-5
3-7
3-7
3-47
4-20
4-20
4-20
4-23
4-23
4-24
4-20
5-4
5-4
5-4
5-13
5-13
5-13
5-13
5-13
5-15
5-6
5-6
5-6
5-6
5-13
5-13
5-13
5-13
5-13
5-13
5-15
5-15

xxi

J?'A National

~ Semiconductor
~

j

Reliability and Quality
RELIABILITY VIS·A·VIS QUALITY

• Residual thermo-mechanical defects not detected during
normal room temper~ture testing or high temperature lot
buy-off are removed.

The words "reliability" and "quality" are often used interchangeably, as though they connote identical facets of a
product's merit. However, reliability and quality are different,
and discrete component users must understand the essen.tial difference between the two concepts in order to properly
evaluate the various vendors' programs for product integrity.

• Anomalous high temperature parametric effects that may
have been created during wafer fabrication or in subsequent manufacturing are removed.
• An AQL of 0.05% or better is guaranteed.

The concept of quality gives us information about the population of faulty components among good components, and
generally relates to the number of faulty components that
arrive at user's facility. Looked at in another way, quality
can instead relate to the number of faulty components that
escape detection at the component vendor's faCility.
It is the function of a vendor's Quality Control arm to monitor
the degree of success of that vendor in redUCing the number of faulty components that escape detection. QC does
this by testing the outgoing parts on a sampled basis. The
Acceptable Quality Level (AQL) determines the stringency
of the sampling. As the AQL decreases, it becomes "more
difficult for bad parts to escape detection, thus the quality of
the shipped parts increases.
The concept of reliability, on the other hand, refers to how
well a part that is Initially good will withstand its environment. Reliability is measured by the percentage of parts that
fail in a given peril)~ ui lime.

RELIABILITY THROUGH DESIGN
With increased component density in modern electronic
products has come an increased concern with component
failures in such products. Virtually all equipment manufacturers thoroughly exercise their products before shipment. This
is designed to simulate, as closely as possible, field operating conditions. A high failure rate of discrete components at
this level can dramatically increase manufacturing costs.
The most important factor affecting a component's reliability
is Its construction; I.e., the materials used and the method
by which they are fabricated and assembled.

a

NATIONAL'S ON·GOING RELIABILITY

IMPROVEMENT PROGRAM
Transistor reliability improvement at National Semiconductor Is a continuous program.
Implementation of a program for field reliability improvement
requires knowledge of field ambient and electrical environments and their influence on device performance. National's broad experience in commercial reliability programs has
led to the development of an extensive in-house reliability
monitoring program that permits us to monitor device performance under combinations of the following stresses:

QUALITY IMPROVEMENT
When purchasing a component or a system, it is expected
that each item delivered has been thoroughly tested and will
perform according to data sheet or detailed specifications.
Additional programs can be implemented to improve quality.
To be effective, a program must not only reduce escapes
but must also be tailored specifically to detect and remove
the types of residual defects that are predicted by process
and line monitor control data. The proper analysis and application of this data is a primary objective at National. With
emphasis on "ship-to-stock" programs and the need to
measure quality levels in ppm's, National Semiconductor
has taken a leadership role in .an on-going effort to strive for
"zero defects".
In Discretes, the benefits derived as a result of this increased emphasis includes the following:
• Escapes caused by mishandling are reduced significantly.

• Thermal
• Thermo-Mechanical
• Mechanical
• Voltage
• Humidity
The data generated by these monitors is continually ranked
and analyzed.- to determine appropriate corrective action
necessary for any failure mechanisms noted. Rigorous analysis of SPC data that is routinely generated at critical stages
of the fabrication and manufacturing process is integrated
into the corrective actions loop. This continuous cycle of
testing, analysis, and corrective action assures the continued improvement of transistor field reliability.

xxii

Table of Contents
Section 1 Selection Guides and Cross References
Diode Device Cross Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode Device Selection Guide. . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Military Qualified Discrete Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Speed Transistor Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Transistor Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NPN Transistor GPA Selection Guide ...........................................
PNP Transistor GPA Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JFET Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JFET Cross Reference Guide .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ultra-Fast Recovery Rectifier Cross Reference Guide ..... . . . . . . . . . . . . . . . . . . . . . . . .
Ultra-Fast Recovery Rectifier Selection Guide. . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .
Planar Power Transistor Selection Guide ........................................
Power MOSFET Cross Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power MOSFETs-COOLFETTM Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 2 Diodes
Computer Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Leakage Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Voltage Diodes.... .... .. ... .. .. . . ..... .... . ....... .... . .. . .... . . ... . .. ..
General Purpose Diodes ......................................................
Military Qualified Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Military Qualified Diode Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zener Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matched Pair and Quad Assemblies. . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 3 Bipolar NPN Transistors
Saturated Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .
Low Level Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Amplifiers and Oscillators ..... " .. . ...... ..... .. .. .... ....... ... .. .. . .. .. . .
General Purpose Amplifiers and Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Medium Power Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .
Darlington Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 4 Bipolar PNP Transistors
Saturated Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Level Amplifiers . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . .
General Purpose Amplifiers and Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Medium Power Transistors. •.......•..•......•....•......•.....................
Darlington Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 5 JFET Transistors
N-CHANNEL JFETS
Switches and Choppers .. . • . • • . . . . . • . . . . . • . . . . • . . . • . • . • . . . . . . . . • . . . . . . . . . . . .
RF, VHF, UHF Amplifiers. . • . . . . . . . . . . . • • . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Frequency-Low Noise Amplifiers ......•. " . ... ...•. .... . .. ...... .. . .. . ...
Ultra Low Input Current Amplifiers ......•...........•.........................
General Purpose Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Dual JFETs .....•....•.•.....•...•....••...................
Low Frequency-Low Noise Dual JFETs..... ...•. ....•.... ..... ..•.... .... . ... .
Wide Band-Low Noise Dual JFETs . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . .
Low Leakage-High CMRR-Wide Band Dual JFETs •...•....•....................
Ultra Low Leakage Dual JFETs...............................................

xxiii

1-3
1-19
1-33
1-34
1-35
1-37
1-38
1-39
1-41
1-52
1-53
1-54
1-62
1-65
2-3
2-6
2-7
2-8
2-9
2-10
2-11
2-14
2-16
3-3
3-8
3-12
3-16
3-32
3-48
4-3
4-6
4-8
4-18
4-26

5-3
5-5
5-7
5-8
5-9
5-12
5-14
5-15
5-16
5-17

Table of Contents (Continued)
Section 5 JFET Transistors (Continued)
P-CHANNEL JFETS
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amplifiers ..............•..................................................
Section 6 Surface M.ount Products
SURFACE MOUNT DIODES
General Purpose and Specialty Diodes-Plastic Package ................ , . . . . . . .
Computer Diodes-Leadless Glass Package. .... .... .. .... ... .. .. ... .. .. ... .. .
General Purpose-Leadless Glass Package •.........•........................
Low Leakage Diodes-Leadless Glass Package. ..... ....•. .. ... ...•. .. .. .. ... .
High Voltage Diodes-Leadless Glass Package. ...... .... .. . .. .. .. .. ........ ..
Surface Mount Monolithic Diode Arrays-Plastic Packages ......................
SURFACE MOUNT TRANSISTORS
Saturated Switches-NPN .. .. ... .. .... .. . .... .. .. ...... . . . .. ...... ........ ..
RF Amplifiers and Oscillators-NPN ..........................................
Low Level Amplifiers-NPN..................................................
General Purpose Amplifiers and Switches-NPN ...............................
Medium Power Transistors-NPN ............................................
Darlington Transistors-NPN ................................................
Saturated Switches-PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Level Amplifiers-PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Amplifiers and Switches-PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SURFACE MOUNT JFETS
N-Channel Switches and Choppers .. . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N-Channel Wide Band-Low Noise Dual JFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P-Channel Switches and Choppers ...........................................
Section 7 Pro-Electron Series
Diode Pro-Electron Series. . .... .. ... .... .. . .... .. .. .... .. . .. ... .. ... ...... ....
Bipolar Pro-Electron Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JFET Pro-Electron Series ........ , ............ , ..... . ...... ... .... . .. .... ... .. .
Section 8 Consumer Series
Consumer Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 9 Power Components
NPN Bipolar Power Transistors. . . . . . . • . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PNP Bipolar Power Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ULTRA-FAST RECTIFIERS
Single Rectifier per Package ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dual Rectifiers, Common Cathode . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power MOSFETs/COOLFETsTM-lntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N-Channel Power MOSFETs . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COOLFETsTM '. . . . . . . • . . . . . . • . . . . . . . . . . . . . . • . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 10 Transistor Datasheets
PN1 00/MMBT1 00 NPN General Purpose Amplifier ...............................
PN1 00AlMMBT1 OOA NPN General Purpose Amplifier. . . . . . . . . . • . . . . . . . . . . • . . . . . . .
PN1 01 IMMBT1 01 NPN General Purpose Amplifier ..........•....................
PN200/MMBT200 PNP General Purpose Amplifier .......•.........•........... '"
PN200AlMMBT200A PNP General Purpose Amplifier. . . . . • . . . . . . . . . . . . • . . . . • . . . . •
PN201/MMBT201 PNP General Purpose Amplifier. . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .
2N918/PN918/MMBT918 NPN RFTransistor....................................
2N2222/PN2222/MMBT2222/MPQ2222/2N2222A/PN2222A/MMBT2222A NPN
General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . • . . . . . .

xxiv

5-18
5-19

6-3
6-7
6-9
6-10
6-11
6-12
6-13
6-15
6-16
6-18
6-24
6-25
6-26
6-27
6-28
6-36
6-37
6-38
7-3
7-5
. 7-26
8-3
9-3
9-5
9-7
9-9
9-11
9-12
9-22
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-12

Table of Contents (Continued)
Section 10 Transistor Datasheets (Continued)
2N2369/PN2369/MMBT2369/MPQ2369 NPN Switching Transistor.. .. .. . .. .. .. .. .
2N2907/PN2907/MMBT2907/MPQ2907/2N2907AlPN2907 AlMMBT2907 AI
MPQ2907A PNP General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N3019/TN3019 NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N3467/TN3467/MPQ3467 PNP Switching Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . .
PN3646/MMBT3646 NPN Switching Transistor ..................................
2N3725/TN3725/MPQ3725 NPN Switching Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N3904/MMBT3904/MPQ3904 NPN General Purpose Amplifier .. . . . . . . . . . . . . . . . . .
2N3906/MMBT3906/MPQ3906 PNP General Purpose Amplifier. . . . . . . . . . . . . . . . . . . .
2N4033/TN4033 PNP General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PN4258/MMBT4258 PNP Switching Transistor .............................. ,. .. .
2N4391/2N4392/2N4393/PN4391 IPN4392/PN4393/MMBF4391 I
MMBF4392/MMBF4393 General Purpose N-Channel JFET Transistor. . . . . . . . . . . .
2N4401/MMBT4401 NPN General Purpose Amplifier .............................
2N4403/MMBT4403 PNP General Purpose Amplifier .............................
2N5086/2N5087/MMBT5086/MMBT5087 PNP General Purpose Amplifier. . . . . . . . . .
2N5088/2N5089/MMBT5088/MMBT5089 NPN General Purpose Amplifier. . . . . . . . . .
2N5179/PN5179/MMBT5179 NPN RFTransistor ................................
2N5401/MMBT5401 PNP General Purpose Amplifier .............................
2N5457/2N5458/2N5459/MMBF5457/MMBF5458/MMBF5459 N-Channel JFET
Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N5484/2N5485/2N5486/MMBF5484/MMBF5485/MMBF5486 N-Channel RF JFET
Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N5551/MMBT5551 NPN General Purpose Amplifier.. ... .. .. .. . .. .. . ........ .. . .
2N5771/MMBT5771 PNP Switching Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N6427/MMBT6427/MPQ6427 NPN Darlington Transistor. . . . . . . . . . . . . . . . . . . . . . . .
2N6715/PN6715/MPS6715 NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . .
2N6717/MPS6717 NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N6724/2N6725/MPS6724/MPS6725 NPN Darlington Transistor. '" .. ... ... ... .. .
2N6727/PN6727/MPS6727 PNP General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . .
2N6729/MPS6729 PNP General Purpose Amplifier ....... . . . . . . . . . . . . . . . . . . . . . . . .
2N7052/2N7053 NPN Darlington Transistor .....................................
MPSA06/MPSW06/MMBTA06 NPN General Purpose Amplifier....................
MPSA13/MPSW13/MMBTA13 NPN Darlington Transistor. . . . . . • . . . . . . . . . . . . . . . . . .
MPSA42/MPSW42/MMBTA42 NPN High Voltage Amplifier........................
MPSA56/MPSW56/MMBTA56 PNP General Purpose Amplifier....................
MPSA64/MPSW64/MMBTA64 PNP Darlington Transistor.........................
MPSA92/MPSW92/MMBTA92 PNP High Voltage Amplifier ....•. " .. , .... , ..... , . .
MPSH10/MPSH11/MMBTH10/MMBTH11 NPN RFTransistor.....................
MPSH20/MMBTH20 NPN RFTransistor ..•.....•......•.................•......
MPSH81/MMBTH81 PNP RF Transistor. .. .. .. .. .. .. .. .. . . .. .. .. .. . .. . .. . .. .. . ..
J108/J109/J110 N-Channel JFET Switch.......................................
J309/U3091 J31 0/U31 0/MMBFJ309/MMBFJ31 0 N-Channel JFET Transistor for RF
Amplifiers.. .. .. . .. . ... .. •. .•. .. .. . .... .. .. .•.. . . . . .. .•. . ..•. . .. .. . .. ..•. ..
Section 11 Process Characteristics
DIODE PROCESS CHARACTERISTICS
D1 Family Part Number List. . . . . • • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .
01 Product Family Curve Set. . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . .
02 Family Part Number List .. . . .. .. .. . . .. . . .. .. .. .. . .. . .. .. .. .. .. . .. . .. . .. . . .
02 Product Family Curve Set. . . . . . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . .

xxv

10-14
10-16
10-18
10-20
10-22
10-24
10-26
10-28
10-30
10-32
10-34
10-36
10-38
10-40
10-42
10-44
10-46
10-48
10-50
10-52
10-54
10-56
10-58
10-59
10-60
10-61
10-62
10-63
10-64
10-65
10-66
10-67
10-68
10-69
10-70
10-72
10-73
10-74
10-75

11-5
11-6
11-7
11-8

Table of Contents (Continued)
Section 11 Process Characteristics (Continued)
D3 Family Part Number List ................................................. .
D3 Product Family Curve Set ................................................ .
D4 Family Part Number List ................................................. .
D4 Product Family Curve Set ................................................ .
D6 Family Part Number List ................................................. .
D6 Product Family Curve Set ................................................ .
D13 Family Part Number List ................................................ .
D13 Product Family Curve Set ............................................... .
D14 Family Part Number List ................................................ .
D14 Product Family Curve Set ............................................... .
D15 Family Part Number List ................................................ .
D15 Product Family Curve Set ............................................... .
D18 Family Part Number List ................................................ .
D18 Product Family Curve Set ............................................... .
TRANSISTOR PROCESS CHARACTERISTICS
Process 05 NPN Darlington ................................................. .
Process 06 NPN Darlington ................................................. .
Process 07 NPN Small Signal ............................................... .
Process 10 NPN Small Signal ............................................... .
Process 11 NPN Small Signal ............................................... .
Process 12 NPN Medium Power ............................................. .
Process 13 NPN Medium Power ............................................. .
Process 16 NPN High Voltage ............................................... .
Process 19 NPN General Purpose Amplifier ................................... .
Process 21 NPN High Speed Switch ......................................... .
Process 22 NPN High Speed Switch ......................................... .
Process 23 NPN Small Signal ............................................... .
Process 25 NPN Memory Driver ..................... " ...................... .
Process 34 NPN Planar Power .............................................. .
Process 36 NPN High Voltage Planar Power .................................. .
Process 37 NPN Medium Power ............................................. .
Process 38 NPN Medium Power ............................................. .
Process 39 NPN Medium Power ............................................. .
Process 40 NPN RF Amplifier ......... " .................................... .
Process 42 NPN RF Amplifier ......... " .................................... .
Process 43 NPN VHF/UHF Oscillator .............................. " ........ .
Process 44 NPN AGC-RF Amplifier .......................................... .
Process 47 NPN RF-IF Amplifier ............................................. .
Process 48 NPN High Voltage Amplifier ...................................... .
Process 49 NPN RF Amplifier ............................................... .
Process 61 PNP Darlington ................................................. .
Process 62 PNP Small Signal ............................................... .
Process 63 PNP General Purpose Amplifier ................................... .
Process 65 PNP High Speed Switch ......................................... .
Process 66 PNP Small Signal ............................................... .
Process 67 PNP Medium Power ............................................. .
Process 68 PNP Small Signal ............................................... .
Process 69 PNP Small Signal ............................................... .
Process 70 PNP Memory Driver ............................................. .
Process 74 PNP High Voltage ............................................... .
Process 75 PNP RF Amplifier ............................................... .
xxvi

11-9
11-10
11-11
11-12
11-13
11-14
11-16
11-17
11-18
11-19
11-20
11-21
11-23
11-24
11-25
11-28
11-30
11-33
11-35
11-37
11-41
11-43
11-45
11-49
11-53
11-57
11-61
11-65
11-67
11-70
11-73
11-76
11-79
11-82
11-87
11-91
11-99
11-104
11-107
11-110
11-112
11-115
11-119
11-123
11-126
11-129
11-131
11-133
11-136
11-138

Table of Contents (Continued)
Section 11 Process Characteristics (Continued)
Process 76 PNP High Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 77 PN P Medium Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 78 PNP Medium Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 79 PNP Medium Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
JFET PROCESS CHARACTERISTICS
Process 50 N-Channel JFET .. . .. . .. .. .. .. .. . . . .. .. .. . .. . . . . . .. .. .. .. .. .. . ...
Process 51 N-Channel JFET .. . .. .. .. .. . .. . .. . .. .. . .. . .. .. . .. . .. . .. .. . . .. . . ..
Process 52 N-Channel JFET .. . .. . . . .. .. .. .. . .. .. . . .. .. . .. . .. .. .. .. .. .. .. . ...
Process 53 N-Channel J FET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 55 N-Channel JFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 58 N-Channel JFET . . . .. .. .. .. .. .. .. . .. .. . . .. .. . .. .. . .. .. .. .. .. .. ...
Process 59 N-Channel JFET . . .. .. .. . . .. . .. . . .. . .. . .. .. .. . .. .. .. . .. . .. .. .. ...
Process 83 N-Channel Monolithic Dual J FET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 84 N-Channel Monolithic Dual JFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 88 P-Channel JFET .................................................
Process 89 P-Channel JFET . . .. .. .. .. . .. . .. .. .. .. . .. . . .. . .. .. .. .. .. .. .. .. ...
Process 90 N-Channel JFET . .. . .. . .. .. .. .. . .. .. .. .. .. . .. .. .. . .. .. . . .. .. . . ...
Process 92 N-Channel JFET . . .. .. .. .. . .. . .. .. .. .. . .. . . .. . .. .. .. .. .. .. .. .. ...
Process 93 N-Channel Monolithic Dual JFET .. .. .. .. .. .. . .. . . .. . .. .. .. .. .. .. ...
Process 94 N-Channel Monolithic Dual JFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 95 N-Channel Monolithic Dual JFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 96 N-Channel Monolithic Dual JFET .. .... .. ... . ... . ...... ... ..... .. . ..
Process 98 N-Channel Monolithic Dual JFET . '" .................. " .. .. .. .. ...
BIPOLAR POWER PROCESS CHARACTERISTICS
Process 4P NPN Planar Power .. . .. .. .. .. .. .. . .. .. .. .. . .. . .. .. .. .. .. .. .. .. ...
Process 40 NPN Planar Power .................................... < • • • • • • • • ••
Process 5P PNP Planar Power ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 50 PNP Planar Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
ULTRA·FAST RECTIFIER PROCESS CHARACTERISTICS
Process R4 Ultra Fast Rectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process R5 Ultra Fast Rectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process R6 Ultra Fast Rectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
POWER MOSFET PROCESS CHARACTERISTICS
Process A 1 N-Channel Power MOSFET ....... .. .. . .. .. . .. .. . .. .. .. .. .. .. .. ...
Process A2 N-Channel Power MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process A3 N-Channel Power MOSFET .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 81 N-Channel Power MOSFET .......................................
Process 82 N-Channel Power MOSFET ....... . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . ..
Process 83 N-Channel Power MOSFET ..... .. . .. .. .. .. . .. . .. .. .. .. . .. .. .. .. ..
Process 84 N-Channel Power MOSFET .... .. . .. .. . . .. . .. . .. . .. .. .. .. .. .. .. ...
Process 85 N-Channel Power MOSFET ........ .. .. .. .. . .. . .. .. .. .. . .. .. .. .. ..
Process C1 N-Channel Power MOSFET .... .. . .. .. . .. .. .. . .. . .. .. .. .. .. .. .. . ..
Process C2 N-Channel Power MOSFET .. . .. .. . .. .. .. .. . .. . .. .. .. .. .. . .. .. . ...
Process C3 N-Channel Power MOSFET .... .. . .. .. . .. .. .. . .. . .. .. .. .. .. .. .. . ..
Process E1 N-Channel Power MOSFET .... .. . . .. .. .. .. . .. . .. .. .. .. .. . .. .. . ...
Process E2 N-Channel Power MOSFET . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process E3 N-Channel Power MOSFET .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process E4 N-Channel Power MOSFET .... .. . .. .. . .. .. . .. . .. . .. .. .. .. .. .. . ...
Process F1 N-Channel Power MOSFET . .. .. . .. .. .. . .. . .. . .. . .. .. .. .. . .. .. .. ..
Process F2 N-Channel Power MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Process F3 N-Channel Power MOSFET ............ .. . . .. .. . .. . .. .. .. .. .. . . ...
xxvii

11-140
11-142
11-145
11-148
11-151
11-155
11-159
11-1 61
11-163
11-165
11-167
11-168
11-171
11-174
11-176
11-178
11-181
11-184
11-187
11-189
11-192
11-195
11-198
11-201
11-204
11-207
11-209
11-212
11-215
11-218
11-221
11-224
11-227
11-230
11-233
11-236
11-239
11-242
11-245
11-248
11-252
11-255
11-258
11-261
11-264
11-267
11-270

Table of Contents (Continued)
Section 11 Process Characteristics (Continued)
Process F4 N-Channel Power MOSFET ....................................... 11-273
Section 12 Appendices, Packaging and Ordering Information
Transistor Glossary of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12-3
Diode and Rectifier Glossary of Symbols and Terms..... .... ............•...... ..
12-11
12-14
JFET Glossary of Symbols.... .............. ............ ............... ........
JFET Application Guide ....................................................... ' 12-20
AN-556 Introduction to Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
12-25
AN-557 Optimizing the Ultra-Fast POWERPlanar™ Rectifier Diode for Switching
12-31
Power Supplies ......•...•........•...................... :.. .... .......... .
12-37
AN-558 Introduction to Power MOSFETs and Their Applications. . . . . . . . . . . . . . . . . . . .
12-51
Packaging Options and Ordering Information... .. ......... ........•.. ...... .... ..
Physical Dimensions . • . . . • . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . .
12-56
Bookshelf
Distributors

xxviii

Section 1
Selection Guides and
Cross References

Section 1 Contents
Diode Device Cross Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode Device Selection Guide........................................................
Military Qualified Discrete Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Speed Transistor Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Transistor Selection Guide .......................................................
NPN Transistor GPA Selection Guide ..................................... , .... .. . .. ..
PNP Transistor GPA Selection Guide ........ , .. .... .. .. . .. . .. . ... .. . .. . . . . .. ..... .. ..
JFET Selection Guide. . . . . . . .. . . . . . . . .. .. . .. .. .. . . .. . . ... . .. .. .. ... .. . .. .... .. ..... .
JFET Cross Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ultra-Fast Recovery Rectifier Cross Reference Guide. .. . ... .. . .. . .. .. ..... .. . ... .. .. ...
Ultra-Fast Recovery Rectifier Selection Guide. .. .. .. .. .. .. . .. . .. . .. .. .. ..... ...... .....
Planar Power Transistor Selection Guide ..............................................
Power MOSFET Cross Reference Guide ..............................................
Power MOSFETs-COOLFETTM Selection Guide......................................

1-2

1-3
1-19
1-33
1-34
1-35
1-37
1-38
1-39
1-41
1-52
1-53
1-54
1-62
1-65

~National

~ Semiconductor
Diode Device Cross Reference

Industry
Device

NS
Device

Industry
Device

NS
Device

Industry
Device

NS
Device

lN34A
lN34AS
lN35
lN36
lN38
lN38A
lN388
lN39
lN398
lN398
lN40
1N41
lN42
lN43
lN44
lN45
lN46
lN47
lN48
lN49
lN50
lN51
lN52
lN52A
1N54
lN54A
lN55
lN55A
lN558
lN56
lN56A
lN57
lN57A
lN58
lN58A
lN61
lN62
lN63
lN63A
lN64
lN64A
lN65
lN66
lN66A
lN67
lN67A

lN4454
lN4148
lN4454
lN4148
lN4148
lN3070
lN3070
lN3070
lN3070
lN3070
lN4148
lN4454
lN3070
lN4148
lN3070
lN4454
lN4454
lN3070
lN4454
lN4148
lN4148
1N4454
lN4454
lN4454
1N4148
lN4148
lN3070
lN3070
lN3070
lN4148
lN4148
lN4454
lN4454
lN3070
lN3070
lN3070
lN3070
lN4148
lN4148
1N4148
lN4148
lN4454
lN4454
lN4454
lN4148
lN4148

1N68
lN68A
lN69
lN69A
lN70
lN70A
1N71
lN74
lN75
lN81
lN81
lN84
1N86
lN87
lN87A
lN87S
lN87T
lN88
lN89
lN90
lN95
lN96
lN96A
lN97
lN97A
lN98
lN98A
lN99
lN99A
lNl00
lNl00A
lNl0l
lNl02
lNl03
lNl04
lNl07
lNl08
lNlll
lNl12
lN113
lNl14
lNl15
lNl16
lNl16A
lNl17
lNl17A

lN3070
lN3070
lN4454
lN4454
lN3070
lN4148
FDH900
lN4148
lN3070
lN4305
lN4148
lN4148
1N4148
lN4148
lN4148
1N4148
lN4148
lN3070
lN4454
lN4454
lN4148
lN4447
lN4148
lN4448
lN4447
lN4454
lN4448
lN4148
lN4454
lN4447
lN4448
lN3070
lN3070
lN4448
lN4448
FDH999
lN4448
lN4148
lN4148
lN4454
lN4454
lN4454
lN4454
lN4454
lN4454
lN4454

1Nl18
lNl18A
lNl19
lN120
lN126
lN126A
lN127
lN127A
lN128
lN128A
lN132
1N133
lN134
lN135
lN137A
lN1378
lN138A
lN1388
lN139
lNl40
lN141
lN142
lN143
lNl44
lN145
lN175
lN190
lN191
lN192
1N193
lN194
lN194A
lN195
lN196
lN198
lN198A
lN1988
lN198M
lN251
lN251A
lN252
lN252A
lN265
lN266
lN267
lN268

1N4454
1N4448
lN4148
lN4148
lN4148
lN4148
lN3070
lN3070
lN4148
1N4148
lN4148
lN4148
lN4454
lN4148
lN4838
lN4838
lN4838
lN4838
lN4148
1N4448
lN4148
lN4938
1N4938
lN4454
lN4449
lN3070
FDH999
lN4148
lN4148
lN4149
lN4148
lN4148
lN4148
lN4148
lN4148
lN4148
lN4454
lN4148
lN4148
lN4148
lN4148
lN4148
lN4148
lN4148
lN4148
lN4148

1-3

II

~

U

!

r-----------------------------------------------------------------------------,

~
~

a:

UI

e

(.)
~

u

.~

C
~

""o
is

Diode Device Cross Reference

(Continued))

Industry
Device

NS
Device

Industry
Device

NS
Device

Industry
Device

NS
Device

1N270
1N273
1N276
1N277
1N277M
1N278
1N279
1N281
1N282
1N283
1N287
1N288
1N289
1N290
1N291
1N292
1N294
1N294A
1N295
1N295A
1N295S
1N295X
1N296
1N297
1N297A
1N298
1N298A
1N299
1N300
1N300A
1N301
1N301A
1N301B
1N303
1N303A
1N303B
1N304
1N307
1N309
1N310
1N312
1N313
1N314
1N330
1N331
1N337
1N350
1N351
1N352
1N355
1N373
1N375

FDH444
1N4448
1N4454
1N3070
1N4448
1N4446
1N4448
1N4448
1N4449
FDH444
1N4148
1N4148
1N4148
1N3070
1N3070
1N4448
1N4148
1N4148
1N4148
1N4148
1N4148
1N4148
1N4148
1N4148
1N4148
1N4148
1N4148
1N4305
1N482B
1N482B
1N457
1N457
1N457
1N458
1N484B
1N484B
1N4148
1N4938
1N4148
1N4148
1N4448
1N4148
1N4148
1N456
1N458
2N2221
1N457
1N484B
1N485B
1N4148
1N5227A
1N5230A

1N376
1N377
1N378
1N385
1N386
1N387
1N388
1N389
1N390
1N391
1N392
1N393
1N394
1N417
1N418
1N419
1N431
1N432
1N432A
1N432B
1N433
1N433A
1N433B
1N434
1N434A
1N434B
1N435
1N447
1N448
1N450
1N451
1N452
1N453
1N454
1N456
1N456A
1N457
1N457A
1N457M
1N458
1N458A
1N458M
1N459
1N459A
1N459M
1N460
1N460A
1N460B
1N461
1N461A
1N462
1N462A

1N5233A
1N4148
1N5238A
1N4148
1N4148
1N4148
1N4148
1N4148
1 N4148
1N4148
1N4148
1N3070
1N3070
1N4448
1N4148
FDH444
1N3070
1N4148
1N4446
1N4448
1N3070
1N3070
1N3070
1N3070
1N3070
1N3070
1N4148
1N4449
1N4449
1N4151
1N3070
1N4448
1N3070
FDH444
1N456
1N456A
1N457
1N457A
1N457
1N458
1N458A
1N458
1N459
1N459A
1N459
1N4148
1N4148
1N4448
1 N461A
1N461A
1N462A
1N462A

1N463
1N463A
1N464
1N464A
1N478
1N479
1N480
1N482
1N482A
1N482B
1N482C
1N483
1N483A
1N483B
1N483C
1N484
1N484A
1N484B
1N484C
1N485
1N485A
1N485B
1N485C
1N490
1N497
1N498
1N499
1N500
1N501
1N502
1N520B
1N527
1N541
1N542
1N566
1N567
1N568
1N569
1N571
1N616
1N617
1N618
1N619
1N622
1N625
1N625A
1N625M
1N626
1N626A
1N626M
1N627
1N627A

1N463A
1N463A
1N463A
1N463A
1 N4148
1 N4148
1N4148
1N482B
1N482B
1N482B
1N482B
1N483B
1N483B
1N483B
1N483B
1N484B
1N484B
1N484B
1N484B
1N485B
1N485B
1N485B
1N485B
1N4148
1N4448
1N4448
1N4448
1N4448
1N4448
1N3070
1N457
1N4305
1N4305
1N4305
1N3070
1N3070
1N4305
1N4305
FDH444
1N4148
1N4148
1N4148
1N4148
1N4938
1N625
1N4148
1N625
1N626
1N4148
1N626
1N627
1N3070

1·4

c

Diode Device Cross Reference

O·

(Continued))

Q.

CD

Industry
Device

NS
Device

Industry
Device

NS
Device

Industry
Device

NS
Device

1N628
1N628A
1N629
1N629A
1N631
1N632
1N633
1N634
1N635
1N636
1N658
1N658A
1N659
1N659A
1N660
1N660A
1N661
1N661A
1N664
1N665
1N666
1N667
1N668
1N669
1N695
1N695A
1N696
1N698
1N699
1N703
1N703A
1N704
1N704A
1N705
1N705A
1N706
1N706A
1N707
1N707A
1N708
1N708A
1N709
1N709A
1N710
1N710A
1N711
1N711A
1N712
1N712A
1N713
1N713A
1N714

1N628
1N3070
1N629
1N3070
1N4148
1N4148
1N3070
1N3070
1N3070
1N4448
1N658
1N658
1N659
1N659
1N660
1N660
1N661
1N661
1N5237A
1N5242A
1N52458
1N5248A
1N5251A
1N5245A
1N4148
1N4148
1N4148
1N4305
1N4448
1N5227A
1N5227B
1N5229A
1N5229B
1N5230A
1N5230B
1N5232A
1N52328
1N5236A
1N52368
1N5232A
1N5232B
1N5234A
1N5234B
1N5235A
1N52358
1N5236A
1N52368
1N5237A
1N5237B
1N5239A
1N52398
1N5240A

1N714A
1N715
1N715A
1N716
1N716A
1N717
1N717A
1N718
1N718A
1N719
1N719A
1N720
1N720A
1N721
1N721A
1N722
1N722A
1N723
1N723A
1N724
1N724A
1N725
1N725A
1N726
1N726A
1N746
1N746A
1N747
1N747A
1N748
1N748A
1N749
1N749A
1N750
1N750A
1N751
1N751A
1N752
1N752A
1N753
1N753A
1N754
1N754A
1N755
1N755A
1N756
1N756A
1N757
1N757A
1N758
1N758A
1N759

1N5240B
1N5241A
1N5241B
1N5242A
1N52428
1N5243A
1N5243B
1N5245A
1N5245B
1N5246A
1N52468
1N5248A
1N52488
1N5250A
1N5250B
1N5251A
1N5251B
1N5252A
1N5252B
1N5254A
1N52548
1N5256A
1N5256B
1N5257A
1N5257B
1N746A
1N746A
1N747A
1N747A
1N748A
1N748A
1N749A
1N749A
1N750A
1N750A
1N751A
1N751A
1N752A
1N752A
1N753A
1N753A
1N754A
1N754A
1N755A
1N755A
1N756A
1N756A
1N757A
1N757A
1N758A
1N758A
1N759A

1N759A
1N761
1N762
1N763
1N764
1N765
1N766
1N767
1N768
1N769
1N770
1N771
1N771A
1N772
1N772A
1N773
1N773A
1N774
1N774A
1N775
1N776
1N777
1N778
1N779
1N781
1N781A
1N788
1N789
1N789M
1N790
1N790M
1N791
1N791M
1N792
1N792M
1N793
1N793M
1N794
1N795
1N796
1N797
1N798
1N799
1N800
1N801
1N802
1N803
1N804
1N805
1N806
1N807
1N808

1N759A
1N5230A
1N52328
1N52388
1N5238A
1N5240A
1N5243A
1N5246A
1N5249A
1N5252A
1N4305
1N4448
FDH444
1N4448
FDH444
1N4448
FDH444
1N4448
FDH444
1N4448
1N4448
1N4448
1N4148
1N3070
1N4305
1N4305
1N4448
1N4148
1N4148
1N4148
1N4148
1N4448
1N4448
1N4448
1N4448
1N4148
1N4148
1N4148
1N4448
1N4448
1N3070
1N3070
1N3070
1N3070
1N3070
1N3070
1N3070
1N3070
1N4148
1N4148
1N3070
1N4448

1-5

C

~

~.

o
...
o

g:

:a

!t
CD
(i;

:::J
(')

CD

!8

.;a:

I
o
8

~
CP

'a

o
is

Diode Device Cross Reference (Continued»
Industry
Device

Device

Industry
Device

Device

Industry
Device

Device

lN809
lN8l0
lN8ll
lN8llM
lN812
lN812M
lN813
lN813M
lN814
lN814M
lN815
lN815M
lN817
lN818
lN818A
lN835
lN837
lN837A
lN838
lN839
lN840
lN840M
1N841
lN842
lN843
lN844
lN845
lN890
lN891
lN892
1N893
lN897
1N898
1N899
lN900
lN901
1N902
lN903
1N903A
1N903AM
1N903M
lN904
1N904A
1N904AM
lN904M
lN905
lN905A
1N905AM
lN905M
1N906

lN3070
lN4148
lN4148
lN4148
lN4149
lN4149
lN4148
lN4148
lN4148
lN4148
lN4448
lN4448
lN3070
1N4148
lN4148
lN4305
FDH444
FDH444
lN3070
lN3070
FDH444
lN3070
lN3070
lN3070
lN3070
lN3070
lN3070
lN4447
1N4448
lN4448
lN3070
1 N4148
1N4448
lN3070
1N3070
lN3070
1N3070
1N4148
lN4154
lN4154
1N4154
1N4154
1N4154
1N4154
1N4154
1N4151
lN4154
1N4154
1N4154
lN4149

lN906A
1N906AM
lN906M
1N907
lN907A
1N907AM
1N907M
1N908
lN908A
lN908AM
1N908M
1N909
lN910
lN911
lN914
lN914A
1N914B
lN914M
lN915
lN916
lN916A
lN916B
lN918
lN919
lN920
lN921
lN922
lN923
lN924
lN925
lN926
lN927
lN928
lN930
lN931
lN932
lN933
lN934
lN948
lN949
lN957
1N957A
lN957B
lN958
1N958A
1N958B
lN959
lN959A
lN959B
1N960

1N4447
lN4447
1N4447
lN4149
1N4448
1N4447
1N4149
lN4149
lN4447
1N4447
1 N4149
1N4449
lN4449
lN4449
lN914
1 N914A
1 N914B
lN914
lN914B
lN916
lN916A
lN916B
lN914
lN3070
FDH400
FDH400
FDH400
FDH400
lN483B
lN4148
lN4148
lN4148
lN3070
lN4446
lN3070
lN3070
lN3070
lN3070
lN4448
lN4305
lN957
lN957A
lN857B
1N958
lN958A
lN958B
lN959
lN959A
lN959B
lN960

lN960A
lN960B
lN961
lN961A
lN961B
lN962
lN962A
lN962B
lN963
lN963A
lN963B
1N964
lN964A
lN964B
lN965
lN965A
lN965B
lN966
lN966A
lN966B
lN967
lN967A
lN967B
lN968
lN968A
1N968B
lN969
lN969A
lN969B
lN970
lN970A
lN970B
lN971
lN971A
lN971B
lN972
1N972A
lN972B
lN973
lN973A
lN973B
lN993
lN994
lN995
lN997
lN998
lN999
lNl093
lNl170
lN1374

lN960A
lN960B
lN961
lN961A
lN961B
lN962
lN962A
lN962B
lN963
lN963A
lN963B
lN964
lN964A
lN964B
lN965
lN965A
lN965B
lN966
1N966A
lN966B
lN967
lN967A
lN967B
lN968
lN968A
lN968B
lN969
lN969A
lN969B
lN970
lN970A
lN970B
lN971
lN971A
lN971B
lN972
lN972A
lN972B
lN973
1N973A
lN973B
lN4447
lN4151
lN4305
1 N4148
lN484B
lN914
FDH999
lN4148
lN5229A

NS

NS

1-6

NS

Diode Device Cross Reference

(Continued))

Industry
Device

Device

Industry
Device

Device

Industry
Device

1N1507
1N1507A
1N1508
1N1508A
1N1509
1N1509A
1N1510
1N1510A
1N1511
1N1511A
1N1512
1N1512A
1N1513
1N1513A
1N1514
1N1514A
1N1515
1N1515A
1N1516
1N1518A
1N1517
1N1517A
1N1518
1N1518A
1N1519
1N1519A
1N1520
1N1520A
1N1521A
1N1522
1N1522A
1N1523
1N1523A
1N1524
1N1524A
1N1525
1N1525A
1N1526
1N1526A
1N1527A
1N1528
1N1528A
1N1561
1N1562
1N1744
1N1744A
1N1765A
1N1766
1N1766A
1N1767

1N4730
1N4730A
1N4732
1N4732A
1N4734
1N4734A
1N4736
1N4736A
1N4738
1N4738A
1N4740
1N4740A
1N4742
1N4742A
1N4744
1N4744A
1N4746
1N4646A
1N4748
1N4748A
1N4750
1N4750A
1N4730
1N4730A
1N4732
1N4732A
1N4734
1N4734A
1N4736A
1N4738
1N4738A
1N4740
1N4740A
1N4742
1N4742A
1N4744
1N4744A
1N4746
1N4746A
1N4748A
1N4750
1N4750A
1N4305
1N4305
1N4740
1N4743A
1N4734A
1N4735
1N4735A
1N4736

1N1767A
1N1768
1N1768A
1N1769
1N1769A
1N1770
1N1770A
1N1771
1N1771A
1N1772
1N1772A
1N1773
1N1773A
1N1775
1N1775A
1N1778
1N1778A
1N1777
1N1777A
1N1778
1N1778A
1N1779
1N1779A
1N1780
1N1780A
1N1781
1N1781A
1N1782
1N1782A
1N1783
1N1783A
1N1839
1N1875
1N1876
1N1877
1N1878
1N1879
1N1880
1N1881
1N1882
1N1927
1N1928
1N1929
1N1930
1N1931
1N1932
1N1933
1N1934
1N1935
1N1936

1N4736A
1N4737
1N4737A
1N4738
1N4738A
1N4739
1N4739A
1N4740
1N4740A
1N4741
1N4741A
1N4742
1N4742A
1N4744
1N4744A
1N4745
1N4745A
1N4746
1N4746A
1N4747
1N4747A
1N4748
1N4748A
1N4749
1N4749A
1N4750
1N4750A
1N4751
1N4751A
1N4752
1N4752A
2N2218
1N4738
1N4740
1N4742
1N4744
1N4746
1N4748
1N4750
1N4752
1N5228A
1N5230A
1N5232A
1N5235A
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A

1N1955
1N1956
1N1957
1N1958
1N1959
1N1980
1N1961
1N1962
1N1963
1N1981
1N1982
1N1983
1N1984
1N1985
1N1986
1N1987
1N1988
1N1989
1N1990
1N2032
1N2033
1N2034
1N2035
1N2036
1N2037
1N2038
1N2039
1N2040
1N2146
1N2629
1N3016
1N3016A
1N3016B
1N3017
1N3017A
1N3017B
1N3018
1N3018A
1N3018B
1N3019
1N3019A
1N3019B
1N3020
1N3020A
1N3020B
1N3021
1N3021A
1N3021B
1N3022

NS

NS

1-7

1i~1954

NS

Device
1N5228A
1N5230A
1N5232A
1N5235A
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A
1N5228A
1N5230A
1N5232A
1N5235A
1N5237A
1N5240A
1N5242A
1N5245A
1N5248A
1N5251A
1N4732
1N4734
1N4736
1N4739
1N4740
1N4743
1N4745
1N4747
1N4749
FDH400
1N4305
1N4736
1N4736A
1N4736B
1N4737
1N4737A
1N4737B
1N4738
1N4738
1N4738A
1N4739
1N4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741A
1N4742

II

Diode Device Cross Reference (Continued))
Industry
Device

NS
Device

Industry
Device

NS
Device

Industry
Device

NS
Device

1N3022A
1N30228
1N3023
1N3023A
1N30238
1N3024
1N3024A
1N30248
1N3025
1N3025A
1N30258
1N3026
1N3026A
1N30268
1N3027
1N3027A
1N30278
1N3028
1N3028A
1N30288
1N3029
1N3029A
1N30298
1N3030
1N3030A
1N30308
1N3031
1N3031A
1N30318
1N3032
1N3032A
1N3032B
1N3062
1N3063
1N3064
1N3066
1N3066
1N3067
1N3068
1N3069
1N3070
1N3071
1N3097
1N3110
1N3121
1N3122
1N3123
1N3124
1N3126
1N3144

1N4742
1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A
1N4745
1N4745
1N4745A
1N4746
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
1N4749
1N4749
1N4749A
1N4750
1N4750
1N4750A
1N4751
1N4751
1N4751A
1N4752
1N4752
1N4752A
1N4305
1N4305
1N3064
1N4306
1N4306
1N4148
1N4148
1N4148
1N3070
1N3070
1N4306
1N4306
1N4306
1N4306
1N4306
1N4161
1N4306
1N4306

1N3145
1N3146
1N3147
1N3160
1N3179
1N3180
1N3181
1N3197
1N3203
1N3204
1N3206
1N3215
1N3223
1N3225
1N3257
1N3258
1N3298
1N3298A
1N3465
1N3266
1N3467
1N3468
1N3469
1N3470
1N3471
1N3483
1N3484
1N3485
1N3536
1N3536
1N3660
1N3659
1N3564
1N3667
1N3668
1N3676
1N3578
1N3592
1N3593
1N3594
1N3595
1N3596
1N3597
1N3598
1N3599
1N3800
1N3601
1N3602
1N3803
1N3604

1N4305
1N4154
1N4448
1N4305
1N3070
1N3070
1N5237A
1N4148
1N4305
1N4305
1N4148
1N4152
1N3070
1N4148
1N4449
1N4448
FDH400
FDH400
FDH444
FDH444
1N4446
1N4446
FDH400
FDH400
1N4148
1N4305
1N4305
1N3070
1N3070
1N457
1N3070
FDH444
1N4448
1N4448
1N4449
1N483B
1N484B
1N4305
1N4148
FOH800
1N3595
1N4449
1N3070
1N4152
1N4938
1N3600
1N4149
1N4151
1N4151
1N4151

1N3605
1N3606
1N3607
1N3608
1N3609
1N3625
1N36388
1N3653
1N3654
1N3666
1N3668
1N3675
1N3675A
1N36758
1N3676
1N3676A
1N36768
1N3677
1N3677A
1N36778
1N3678
1N3678A
1N36788
1N3679
1N3679A
1N3679B
1N3680
1N3680A
1N36808
1N3681
1N3681A
1N3681B
1N3682
1N3682A
1N3682B
1N3683
1N3683A
1N3684
1N3684A
1N3684B
1N3686
1N3686A
1N3686B
1N3686
1N3686A
1N3686B
1N3687
1N3687A
1N3687B
1N3688

1N4152
1N4153
1N4151
1N4152
1N4153
1N3070
1N4744A
FDH400
1N4448
1N4305
1N4305
1N4736
1N4736
1N4736A
1N4737
1N4737
1N4737A
1N4738
1N4738
1N4738A
1N4739
1N4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741A
1N4742
1N4742
1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4746
1N4746
1N4746A
1N4746
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
1N4749

1·8

Diode Device Cross Reference (Continued»
Industry

NS
Device

Industry
Device

NS
Device

Industry

Device

Device

NS
Device

lN3688A
lN3689
lN3689A
lN3689B
lN3690
lN3690A
lN3690B
lN3691
1N3691 A
lN3691B
lN3722
lN3731
lN3753
lN3769
lN3773
lN3821
lN3821A
lN3822
lN3722A
lN3823
lN3823A
lN3824
lN3824A
lN3825
lN3825A
lN3826
lN3826A
lN3827
lN3827A
lN3828
lN3828A
lN3929
lN3829A
1N3830
1N3830A
1N3864
1N3866
1N3872
1N3873
1N3944
1N3962
1N3953
1N3964
1N3968
1N3991
1N4008
1N4009
1N4043
1N4088
1N4087

lN4749
lN4750
lN4750
lN4750A
lN4751
lN4751
1N4751 A
lN4752
lN4752
lN4752A
lN4148
lN4153
lN4148
lN4305
lN4305
lN4728
lN4728A
lN4729
lN4729A
lN4730
lN4730A
lN4731
lN4731A
lN4732
lN4732A
lN4733
lN4733A
lN4734
lN4734A
lN4735
lN4735A
lN4736
lN4738A
1N4737
1N4737A
1N468
1N4148
FDH444
FDH444
1N4305
1N3070
1N4148
1N4150
1N4306
1N4305
1N4305
1N4009
1N4154
FDH444
FDH900

lN4088
lN4147
lN4147A
lN4147B
lN4148
lN4149
lN4150
lN4151
lN4152
lN4153
lN4154
lN4158
lN4158A
lN4158B
lN4159
lN4161
lN4161A
lN4161B
lN4162
lN4162A
1N4162B
1N4163
lN4163A
1N4163B
1N4164
lN4164A
1N4164B
lN4165
lN4165A
1N4165B
lN4168
lN4168A
1N4166B
lN4167
1N4167A
1N4167B
1N4168
1N416BA
1N4166B
1N4169
1N4169A
1N4169B
1N4170
1N4170A
1N4170B
1N4171
1N4171A
1N4171B
1N4172
1N4172A

1N4148
lN914
lN4752
lN4752A
lN4148
lN4149
lN4150
lN4151
lN4152
lN4153
lN4154
lN4736
lN4736
lN4736A
lN4737
lN4739
lN4739
lN4739A
lN4740
lN4740
lN4740A
lN4741
1N4741
1N4741 A
lN4742
lN4742
lN4742A
lN4743
lN4743
lN4743A
lN4744
lN4744
lN4744A
1N4745
1N4745
1N4745A
1N4746
1N474B
1N4746A
1N4747
1N4747
1N4747A
1N474B
1N474B
1N474BA
1N4749
1N4749
1N4749A
1N4750
1N4750

1N4172B
1N4173
1N4173A
1N4173B
1N4242
lN4243
1N4244
1N4254
lN4305
lN4306
lN4307
1N4308
lN4309
lN4310
lN4312
lN4313
lN4314
1N4315
lN4316
lN4318
1N4319
1N4322
lN4323
1N4323B
1N4324
lN4324A
1N4324B
1N4325
1N4325A
1N4325B
1N4326
1N4326A
1N4326B
1N4327
lN4327A
1N4327B
1N432B
1N432BA
1N432BB
1N4329
1N4329A
1N4329B
1N4330
1N4330A
1N4330B
1N4331
1N4331A
1N4331B
1N4332
1N4332A

1N4750A
1N4751
1N4751
1N4751 A
FDH900
FDH900
1N4244
1N4305
lN4305
1N4306
lN4307
1N4150
FDH400
FDH400
FDH444
lN4151
1N4150
FDH400
FDH400
FDH444
1N4151
1N4150
lN4736
1N4736A
1N4737
lN4737
1N4737A
1N4738
1N473B
1N4738A
1N4739
lN4739
1N4739A
1N4740
1N4740
1N4740A
1N4741
1N4741
1N4741 A
1N4742
1N4742
1N4742A
1N4743
1N4743
1N4743A
1N4744
1N4744
1N4744A
1N4746
1N4745

1·9

II

Diode Device Cross Reference

(Continued»

Industry
Device

NS
Device

Industry
Device

NS
Device

Industry
Device

NS
Device

1N4332B
1N4333
1N4333A
1N4333B
1N4334
1N4334A
1N4334B
1N4335
1N4335A
1N4335B
1N4336
1N4338A
1N4336B
1N4337
1N4337A
1N4337B
1N4338
1N4338A
1N4338B
lN4339
1N4339A
lN4339B
lN4362
1N4363
1N4373
lN4375
lN4376
lN4389
lN4390
lN4391
1N4392
lN4400
lN4401
lN4402
lN4403
lN4404
lN4405
lN4406
1N4407
1N4408
1N4409
lN4410
lN4411
lN4412
1N4413
lN4414
1N4415
lN4416
lN4424A
lN4442

1N4745A
1N4746
1N4746
1N4746A
1N4747
1N4747
1N4747A
1N4748
1N4748
1N4748A
1N4749
1N4749
1N4749A
1N4750
1N4760
1N4750A
1N4751
1N4751
1N4751A
lN4752
1N4752
1N4752A
lN484B
1N3070
1N4148
1N4153
1N4376
1N4148
FD700
FD700
FD700
1N4736
lN4737
lN4738
lN4739
lN4740
lN4741
lN4742
lN4743
lN4744
lN4745
1N4746
lN4747
lN4748
1N4749
1N4750
lN4751
lN4752
lN4736
FDH999

lN4443
lN4445
lN4446
1N4447
1N4448
1N4449
1N4450
1 N4451
1N4453
1N4454
1N4455
1N4456
1N4457
1N4502
1N4523
1N4531
1N4532
1N4533
lN4534
1N4536
lN4547
lN4548
lN4608
lN4610
1N4628
lN4629
1N4630
lN4631
1N4632
lN4633
lN4634
lN4635
lN4636
1N4637
lN4638
lN4639
lN4640
lN4641
1N4642
lN4643
lN4644
lN4649
lN4650
lN4651
lN4652
lN4653
lN4654
lN4655
lN4656
lN4657

1N4148
1N4151
lN4446
1N4447
1N4448
1N4449
1N4450
1N4151
lN4448
1N4454
1N4305
1N4150
1N4150
1N4305
1N4305
lN4148
FDH600
lN4152
lN4153
1N4154
lN4151
lN4154
FDH400
1N4150
lN4736A
lN4737A
lN4738A
lN4739A
lN4740A
1N4741A
lN4742A
lN4743A
lN4744A
lN4745A
lN4746A
lN4747A
lN4748A
lN4749A
lN4750A
lN4751A
1N4752A
lN4728A
1N4729A
lN4730A
lN4731A
lN4732A
lN4733A
lN4734A
lN4735A
lN4736A

1N4658
lN4659
lN4660
1N4661
1N4662
1N4663
1N4664
lN4665
lN4666
1N4667
1N4668
1N4669
1N4670
1N4671
lN4672
lN4673
1N4726
lN4728A
1N4729
lN4729A
1N4730
lN4730A
lN4731
lN4731A
lN4732
lN4732A
1N4733
lN4733A
lN4734
lN4734A
lN4735
lN4735A
lN4736
lN4736A
lN4737
lN4737A
lN4738
lN4738A
lN4739
lN4739A
lN4740
lN4740A
lN4741
lN4741A
lN4742
lN4742A
lN4743
lN4743A
lN4744
lN4744A

lN4737A
1N4738A
1N4739A
1N4740A
lN4741A
lN4742A
1N4743A
lN4744A
1N4745A
1N4746A
1N4747A
1N4748A
lN4749A
lN4750A
lN4751A
1N4752A
lN4728
1N4728A
lN4729
1N4729A
1N4730
1N4730A
1N4731
lN4731A
1N4732
1N4732A
lN4733
lN4733A
lN4734
lN4734A
lN4735
lN4735A
lN4736
lN4736A
lN4737
lN4737A
lN4738
lN4738A
lN4739
lN4739A
lN4740
lN4740A
1N4741
lN4741A
lN4742
lN4742A
lN4743
lN4743A
lN4744
lN4744A

1-10

Diode Device Cross Reference

(Continued»

Industry
Device

Device

Industry
Device

Device

Industry
Device

Device

1N4745
1N4745A
1N4746
1N4746A
1N4747
1N4747A
1N4748
1N4748A
1N4749
1N4749A
1N4750
1N4750A
1N4751
1N4751A
1N4827
1N4828
1N4829
1N4830
1N4861
1N4862
1N4863
1N4864
1N4888
1N4938
1N4949
1N4950
1N4953
1N5194
1N5195
1N5209
1N5210
1N5219
1N5220
1N5226
1N5226A
1N5226B
1N5227
1N5227A
1N5227B
1N5228
1N5228A
1N5228B
1N5229
1N5229A
1N5229B
1N5230
1N5230A
1N5230B
1 N5231
1N5231A

1N4745
1N4745A
1N4746
1N4746A
1N4747
1N4747A
1N4748
1N4748A
1N4749
1N4749A
1N4750
1N4750A
1N4751
1N4751A
1N4448
FDH444
FDH444
FDH444
1N457
1N457
1N4148
1N4151
FD777
1N3070
FD777
1N4150
FD777
1N483B
1N485B
1N458
1N459
FDH900
FDH900
1N5226
1N5226A
1N5226B
1N5227
1N5227A
1N5227B
1N5228
1N5228A
1N5228B
1N5229
1N5229A
1N5229B
1N5230
1N5230A
1N5230B
1N5231
1 N5231 A

1N5231B
1N5232
1N5232A
1N5232B
1N5233
1N5233B
1N5234
1N5234A
1N5234B
1N5235
1N5235A
1N5235B
1N5236
1N5236A
1N5236B
1N5237
1N5237A
1N5237B
1N5238
1N5238A
1N5238B
1N5239
1N5239A
1N5239B
1N5240
1N5240A
1N5240B
1N5241
1N5241A
1N5241B
1N5242
1N5242A
1N5242B
1N5243
1N5243A
1N5243B
1N5244
1N5244A
1N5244B
1N5245
1N5245A
1N5245B
1N5246
1N5246A
1N5246B
1N5247
1N5247A
1N5247B
1N5248
1N5248A

1N5231B
1N5232
1N5232A
1N5232B
1N5233
1N5233B
1N5234
1N5234A
1N5234B
1N5235
1N5235A
1N5235B
1N5236
1N5236A
1N5236B
1N5237
1N5237A
1N5237B
1N5238
1N5238A
1N5238B
1N5239
1N5239A
1N5239B
1N5240
1N5240A
1N5240B
1N5241
1 N5241 A
1N5241B
1N5242
1N5242A
1N5242B
1N5243
1N5243A
1N5243B
1N5244
1N5244A
1N5244B
1N5245
1N5245A
1N5245B
1N5246
1N5246A
1N5246B
1N5247
1N5247A
1N5247B
1N5248
1N5248A

1N5248B
1N5249
1N5249A
1N5249B
1N5250
1N5250A
1N5250B
1N5251
1N5251A
1N5251B
1N5252
1N5252A
1N5252B
1N5253
1N5253A
1N5253B
1N5254
1N5254A
1N5254B
1N5255
1N5255A
1N5255B
1N5256
1N5256A
1N5256B
1N5257
1N5257A
1N5257B
1N5282
1N5315
1N5316
1N5317
1N5318
1N5319
1N5412
1N5413
1N5414
1N5427
1N5428
1N5249
1N5430
1N5431
1N5432
1N5559
1N5559A
1N5559B
1N5560
1N5561
1N5561A
1N5561B

1N5248B
1N5249
1N5249A
1N5249B
1N5250
1N5250A
1N5250B
1N5251
1N5251 A
1N5251B
1N5252
1N5252A
1N5252B
1N5253
1N5253A
1N5253B
1N5254
1N5254A
1N5254B
1N5255
1N5255A
1N5255B
1N5256
1N5256A
1N5256B
1N5257
1N5257A
1N5257B
1N5282
1N4153
1N4153
1N4150
1N4150
1N4305
1N4305
1N4305
1N4305
1N4148
1N3070
1N485B
FDH400
FDH400
FD777
1N4736
1N4736
1N4736A
1N4737
1N4738
1N4738
1N4738A

NS

NS

1-11

NS

II

!8
.!
CP
a::

o=
2

8

g
CP

'8

o

Diode Device Cross Reference

(Continued))

Industry
Device

NS
Device

Indostry
Device

NS
Device

Industry
Device

NS
Device

lN5562
lN5562A
lN5562B
lN5563
lN5563A
lN5563B
lN5564
lN5564A
lN5564B
1 N5565
lN5565A
lN5565B
lN5566
lN5566A
lN5566B
lN5567
lN5567A
lN5567B
lN5568
lN5568A
lN5568B
lN5569
lN5569A
lN5569B
lN5570
lN5570A
lN5570B
lN5571
lN5571A
lN5571B
lN5572
lN5572A
lN5572B
lN5573
lN5573A
lN5573B
lN5574
1 N5574A
1 N5574B
lN5575
lN5575A
lN5575B
lN5605
lN5606
lN5607
lN5608
lN5609
lN5660A
lN5660B
1 N5711

lN4739
lN4739
lN4739A
lN4740
lN4740
lN4740A
lN4741
lN4741
lN4741A
lN4742
lN4742
lN4742A
lN4743
lN4743
lN4743A
lN4744
lN4744
lN4744A
lN4745
lN4745
lN4745A
lN4746
lN4746
lN4746A
lN4747
lN4747
lN4747A
lN4748
lN4748
lN4748A
lN4749
lN4749
lN4749A
lN4750
lN4750
lN4750A
lN4751
lN4751
lN4751A
lN4752
lN4752
lN4752A
lN457
lN458
lN3070
lN3070
lN3070
lN4737
1 N4737A
lN4446

lN5712
1 N5713
lN5719
lN5720
lN5721
lN5726
lN5767
1 N5768
lN5769
lN5770
lN5771
lN5772
lN5773
lN5774
lN5775
lN5913
lN5913A
lN5914
lN5914A
lN5914B
lN5915
lN5915A
lN5915B
lN5916
lN5916A
1 N5916B
lN5917
lN5917A
lN5917B
lN5918
1 N5918A
lN5918B
lN5919
lN5919A
lN5919B
lN5920
lN5920A
lN5920B
lN5921
lN5921A
1 N5921B
lN5922
lN5922A
lN5922B
lN5923
lN5923A
lN5923B
lN5924
lN5924A
lN5924B

lN4446
lN4446
lN484
lN4448
lN4448
FDH400
lN4448
lN5768
FSA2002M
lN5770
FSA2003M
lN5772
FSA2500M
lN5774
FSA2504M
lN4728
lN4728
lN4729
lN4729
lN4729A
lN4730
lN4730
lN4730A
1 N4731
lN4731
1 N4731A
lN4732
lN4732
lN4732A
lN4733
lN4733
lN4733A
lN4734
lN4734
lN4734A
lN4735
lN4735
lN4735A
lN4736
lN4736
lN4736A
lN4737
lN4737
1 N4737A
lN4738
lN4738
lN4738A
lN4739
lN4739
lN4739A

lN5925
lN5925A
lN5925B
lN5926
lN5926A
lN5926B
lN5927
lN5927A
lN5927B
lN5928
lN5928A
lN5928B
1 N5929
lN5929A
lN5929B
lN5930
lN5930A
lN5930B
lN5931
lN5931A
lN5931B
lN5932
lN5932A
lN5932B
lN5933
lN5933A
lN5933B
lN5934
lN5934A
lN5934B
1 N5935
lN5935A
lN5935B
lN5936
lN5936A
lN5936B
lN5937
1 N5937A
lN5937B
1 N5966
lN5966A
lN5969
lN5969A
lN5989B
lN5990A
lN5990B
lN5991
lN5991A
lN5991B
1 N5992

lN4740
lN4740
lN4740A
lN4741
lN4741
lN4741A
lN4742
lN4742
lN4742A
1 N4743
1 N4743
lN4743A
lN4744
lN4744
1 N4744A
lN4745
lN4745
lN4745A
1 N4746
lN4746
lN4728A
lN4747
lN4747
lN4747A
lN4746
lN4746
lN4746A
lN4749
1 N4749
lN4749A
lN4750
lN4750
lN4750A
lN4751
lN4751
lN4751A
lN4752
lN4752
lN4752A
lN5226
lN5226A
lN5227
lN5227A
lN5227B
lN5226A
lN5226B
1 N5229
lN5229A
lN5229B
lN5230

1·12

.-----------------------------------------------------------------'0
Diode Device Cross Reference

0"

(Continued»

Co
CD

Industry
Device

NS
Device

Industry
Device

NS
Device

1N5992A
1N5992B
lN5993
lN5993A
lN5993B
lN5994
lN5994A
lN5994B
lN5995
lN5995A
lN5995B
lN5996
lN5996A
lN5996B
lN5997
lN5997A
lN5997B
lN5998
1N5998A
1N5998B
lN5998B
1N5999
lN5999A
lN5999B
lN6000
1N6000A
lN6000B
lN6001
lN6001A
lN6001B
lN6002
lN6002A
lN6002B
lN6003
1N6003A
1N6003B
lN6004
1N6004A
lN6004B
1N6005
1N6005A
1N6005B
1N6006
lN6006A
lN6006B
lN6007
lN6007A
lN6007B
lN6008
lN6008A

1N5230A
1N5230B
lN5231
lN5231A
lN5231B
lN5232
lN5232A
lN5232B
lN5234
lN5234A
lN5234B
lN5235
1N5235A
1N5235B
lN5236
lN5236A
1N5236B
lN5237
1N5237A
1N5226B
lN5237B
lN5239
lN5239A
lN5239B
lN5240
lN5240A
lN5240B
lN5241
lN5241A
lN5241B
lN5242
lN5242A
lN5242B
lN5243
1N5243A
1N5243B
1N5245
1N5245A
lN5245B
lN5246
lN5246A
lN5246B
lN5248
lN5248A
lN5248B
1N5250
lN5250A
lN5250B
lN5251
lN5251A

lN6008B
lN6009
lN6009A
lN6009B
lN6010
1N601OA
lN6010B
lN6011
1N6011A
lN6011B
lN6012
lN6012A
lN6012B
lN6099
lN6100
lN6101
lN6496
1844
18920
18921
18922
lS923
AA112
AAl13
AAl14
AAl16
AA129
AA131
AA137
AA138
AA139
AAY10
AAY48
AAZ13
AAZ18
BA127
BA128
BA130
BA136
BA152
BA154
BA165
BA166
BA167
BA192
BA193
BA194
BA197
BA198
BA200

lN5251B
lN5252
lN5252A
lN5252B
lN5254
lN5254A
1N5254B
1N5256
lN5256A
1N5256B
1N5257
lN5257A
lN5257B
lN6099
lN6100
lN6101
lN6496
1844
18920
18921
lS922
lS923
FDH999
BA128
BA130
BA130
BA130
FDH900
BA130
BA130
BA129
BA130
BA130
BA130
BA130
BA128
BA128
BA130
BA128
FDH900
FDH900
FDH900
BA130
BA130
FDH400
FDH400
FDH400
FDH400
FDH400
BA218

1-13

Industry
Device
BA217
BA218
BA316
BA317
BA318
BAS13
BAS19
BAS20
BAS21
BAS36
BA845
BAV17
BAV18
BAV19
BAV20
BAV21
BAV24
BAV50
BAV68
BAV69
BAW10
BAWll
BAW12
BAW16
BAW17
BAW18
BAW24
BAW25
BAW26
BAW33
BAW43
BAW45
BAW46
BAW47
BAW48
BAW49
BAW50
BAW51
BAW52
BAW53
BAW54
BAW55
BAW62
BAW75
BAW76
BAW77
BAX12
BAX13
BAX15
BAX16

NS
Device
BA217
BA218
BA316
BA317
BA318
FDH400
BAS19
BA820
BAS21
FA2320E
BAS45
BAV17
BAV18
BAV19
BAV20
BAV21
BAY74
FSA251OM
BAY72
FDH400
BAY74
BAY72
FDH444
FDH300
FDH300
FDH300
BAY74
FDH600
FDH600
BAY72
BAY73
BAY71
BAY72
BAY72
BAY7l
BAY73
FDH400
BAY72
FDH400
BAY74
BAY74
BAY72
BAW62
BAW75
BAW76
BAY72
BAY74
BAX13
FDH400
BAX16

~

c;"
CD

o

~

VI

:u

~

Cil

:::J
CO)

CD

II

Diode Device Cross Reference

(Continued»

Industry
Device

NS
Device

Industry
Device

NS
Device

Industry
Device

NS
Device

BAX17
BAX20
BAX21
BAX33
BAX34
BAX35
BAX37
BAX38
BAX39
BAX40
BAX41
BAX42
BAX43
BAX44
BAX83
BAX84
BAX85
BAX86A
BAX86B
BAX87
BAX89B
BAX89H
BAX90A
BAX90B
BAX91 A
BAX91B
BAX91C
BAX92
BAX93
BAX94
BAY17
BAY18
BAY19
BAY20
BAY38
BAY41
BAY42
BAY43
BAY60
BAY61
BAY63
BAY68
BAY69
BAY71
BAY72
BAY73
BAY74
BAY80
BAY82
BAY93

BAX17
FDH444
FDH444
FA2310E
FA2310E
FA2310E
FA2320E
FA2320E
FA4310E
FA4310E
FA4310E
FA4320E
FA4320E
FA4320E
BAY72
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY71
BAY72
BAY72
BAY72
FDH400
BAY71
BAY71
BAY71
1N4148
BAY74
BAY74
BAY74
BAY74
BAY74
BAY71
BAY72
BAY73
BAY74
BAY80
BAY82
BAY71

BAY94
BAY95
DA1701
DA1702
DA1703
DA1704
FA2310
FA2311
FA2312
FA2313
FA2320
FA2321
FA2322
FA2323
FA2324
FA2325
FA2330
FA2331
FA2332
FA2333
FA2334
FA2335
FA2360
FA2361
FA3310
FA3311
FA3312
FA3313
FA3320
FA3321
FA3322
FA3323
FA3324
FA3325
FA3330
FA3331
FA3332
FA3333
FA3334
FA3335
FA3360
FA3361
FA431 0
FA4311
FA4312
FA4313
FA4320
FA4321
FA4322
FA4323

BAY71
BAY71
1N4148
1N4148
1N4148
1N4148
FA2310
FA2311
FA2312
FA2313
FA2320
FA2321
FA2322
FA2323
FA2324
FA2325
FA2330
FA2331
FA2332
FA2333
FA2334
FA2335
FA2360
FA2361
FA331 0
FA3311
FA3312
FA3313
FA3320
FA3321
FA3322
FA3323
FA3324
FA3325
FA3330
FA3331
FA3332
FA3333
FA3334
FA3335
FA3360
FA3361
FA431 0
FA4311
FA4312
FA4313
FA4320
FA4321
FA4322
FA4323

FA4324
FA4325
FA4330
FA4331
FA4332
FA4333
FA4334
FA4335
FA4360
FA4361
FD300
FD333
FD400
FD444
FD600
FD666
FD700
FD777
FD1389
FD2389
FD3389
FD6389
FDH300
FDH333
FDH400
FDH444
FDH600
FDH666
FDH900
FDH999
FDH1000
FDN400
FDN444
FDN600
FDN666
FDN700
FDN777
FJT1100
FJT1101
FSA2002M
FSA2003M
FSA2500M
FSA2501M
FSA2501P
FSA2502M
FSA2503M
FSA2503P
FSA2504M
FSA2509M
FSA2509P

FA4324
FA4325
FA4330
FA4331
FA4332
FA4333
FA4334
FA4335
FA4360
FA4361
FDH300
FDH333
FDH400
FDH444
FDH600
FDH666
FD700
FD777
FD1389
FD2389
FD3389
FD6389
FDH300
FDH333
FDH400
FDH444
FDH600
FDH666
FDH900
FDH999
FDH1000
FDH400
FDH444
FDH600
FDH666
FD700
FD777
FJT1100
FJT1101
FSA2002M
FSA2003M
FSA2500M
FSA2501M
FSA2501P
FSA2502M
FSA2503M
FSA2503P
FSA2504M
FSA2509M
FSA2509P

1-14

Diode Device Cross Reference

(Continued»

Industry
Device

NS
Device

Industry
Device

NS
Device

FSA251OM
FSA2510P
FSA2563M
FSA2563P
FSA2564M
FSA2564P
FSA2565M
FSA2565P
FSA2566M
FSA2566P
FSA2619M
FSA2619P
FSA2620M
FSA2620P
FSA2621M
FSA2719M
FSA2719P
FSA2720M
FSA2720P
FSA2721M
FSA2721P
MC1103L
MC1103P
MC1105F
MC1105L
MC1105P
MC1106F
MC1106L

FSA251OM
FSA2510P
FSA2563M
FSA2563P
FSA2564M
FSA2564P
FSA2565M
FSA2565P
FSA2566M
FSA2566P
FSA2619M
FSA2619P
FSA2620M
FSA2620P
FSA2621M
FSA2719M
FSA2719P
FSA2720M
FSA2720P
FSA2721M
FSA2721P
FSA2501M
FSA2501
FSA2502M
FSA2563M
FSA2563
FSA2003M
FSA2564M

MC1106P
MC1107F
MC1107L
MC1107P
MC1103F
TID21A
TID22A
TID23A
TID24A
TID25A
TID26A
TID121
TID122
TID123
TID124
TID125
TID126
TID131
TID132
TID133
TID134
TID135N
TID136N
TID139F
TID139N
TID140F
TID140N

FSA2564
FSA2504M
FSA2503M
FSA2503
FSA2500M
FSA2002M
FSA2002M
FSA2003M
FSA2003M
FSA2500M
FSA2500M
FSA2563M
FSA2563M
FSA2564M
FSA2564M
FSA251OM
FSA251OM
FSA2504M
FSA2504M
FSA2509M
FSA2509M
FSA251OM
FSA251OM
FSA2721M
FSA2720M
FSA2721M
FSA2720M

1-15

~
c::

Diode Device Cross Reference

~

THRUHOLE -

a:

Industry

e=

o

~

~

CD
"CI

o
is

SURFACE MOUNT

Device

NS
LL·34

1N456
1N456A
1N457
1N457A
1N458
1N458A
1N459
1N459A
1N461A
1N462A
1N463A
1N482B
1N483B
1N484B
1N485B
1N625
1N626
1N627
1N628
1N629
1N658
1N659
1N660
1N661
1N914A
1N914B
1N916A
1N916B
1N920
1N921
1N922
1N923
1N3064
1N3070
1N3595
1N3600
1N4009
1N4148
1N4149
1N4150
1N4151
1N4152
1N4153
1N4154
1N4305
1N4446
1N4447
1N4448
1N4449

FDLL456
FDLL456A
FDLL457
FDLL457A
FDLL458
FDLL458A
FDLL459
FDLL459A
FDLL461A
FDLL462A
FDLL463A
FDLL482B
FDLL483B
FDLL484B
FDLL485B
FDLL625
FDLL626
FDLL627
FDLL628
FDLL629
FDLL658
FDLL659
FDLL660
FDLL66.1
FDLL914A
FDLL914B
FDLL916A
FDLL916B
FDLL920
FDLL921
FDLL922
FDLL923
FDLL3064
FDLL3070
FDLL3595
FDLL3600
FDLL4009
FDLL4148
FDLL4149
FDLL4150
FDLL4151
FDLL4152
FDLL4153
FDLL4154
FDLL4305
FDLL4446
FDLL4447
FDLL4448
FDLL4449

Industry

NS
SO Outline

Device
1N4450
1N4454
1N4938
1N5768
1N5770
1N5772
1N5774
1N6099
1N6101
BAS16
BAV70
BAV74
BAV99
BAW56
FAS02501
FAS02503
FAS02509
FAS02510
FAS02563
FAS02564
FAS02565
FAS02566
FAS02618
FAS02619
FAS02620
FAS02718
FAS02719
FAS02720
FAS05768
FAS05770
FAS05772
FAS05774
FAS06101
FDH300
FDH333
FDH400
FDH444
FDH600
FDH666
FDH700
FDH777
FDH900
FDH999
FDH1000
FDLL300
FDLL333
FDLL400
FDLL444
FDLL456
FDLL456A

FDS0914

FDS03070
FDS03595

FDS04148

FDS04448

1·16

NS
LL·34

NS
SO Outline

FDLL4450
FDLL4454
FDLL4938
FAS05768
FAS05770
FAS05772
FAS05774
FDLL6099
FAS06101
BAS16
BAV70
BAV74
BAV99
BAW56
FAS02501
FAS02503
FAS02509
FAS02510
FAS02563
FAS02564
FAS02565
FAS02566
FAS02618
FAS02619
FAS02620
FAS02718
FAS02719
FAS02720
FAS05768
FAS05770
FAS05772
FAS05774
FAS06101
FDLL300
FDLL333
FDLL400
FDLL444
FDLL600
FDLL666
FDLL700
FDLL777
FDLL900
FDLL999
FDLL1000
FDLL300
FDLL333
FDLL400
FDLL444
FDLL456
FDLL456A

Diode Device Cross Reference (Continued»
THRUHOLE Industry
Device
FDLL457
FDLL457A
FDLL458
FDLL458A
FDLL459
FDLL459A
FDLL461A
FDLL462A
FDLL463A
FDLL482B
FDLL483B
FDLL484B
FDLL485B
FDLL600
FDLL625
FDLL626
FDLL627
FDLL628
FDLL629
FDLL658
FDLL659
FDLL660
FDLL661
FDLL666
FDLL700
FDLL777
FDLL900
FDLL914A
FDLL914B
FDLL916A
FDLL916B
FDLL920
FDLL921
FDLL922
FDLL923
FDLL999
FDLL1000
FDLL3064
FDLL3070

SURFACE MOUNT
NS
LL-34

NS

Industry
Device

SO Outline

FDLL457
FDLL457A
FDLL458
FDLL458A
FDLL459
FDLL459A
FDLL461A
FDLL462A
FDLL463A
FDLL482B
FDLL483B
FDLL484B
FDLL485B
FDLL600
FDLL625
FDLL626
FDLL627
FDLL628
FDLL629
FDLL658
FDLL659
FDLL660
FDLL661
FDLL666
FDLL700
FDLL777
FDLL900
FDLL914A
FDLL914B
FDLL916A
FDLL916B
FDLL920
FDLL921
FDLL922
FDLL923
FDLL999
FDLL1000
FDLL3064
FDLL3070

FDLL3595
FDLL3600
FDLL4009
FDLL4148
FDLL4149
FDLL4150
FDLL4151
FDLL4152
FDLL4153
FDLL4154
FDLL4305
FDLL4446
FDLL4447
FDLL4448
FDLL4449
FDLL4450
FDLL4454
FDLL4938
FDLL6099
FDS01201
FDS01202
FDS01203
FDS01204
FDS01205
FDS01401
FDS01402
FDS01403
FDS01404
FDS01405
FDS01501
FDS01502
FDS01503
FDS01504
FDS01505
FDS01701
FDS01702
FDS01703
FDS01704
FDS01705

1-17

NS
LL-34

NS
SOOuUlne

FDLL3595
FDLL3600
FDLL4009
FDLL4148
FDLL4149
FDLL4150
FDLL4151
FDLL4152
FDLL4153
FDLL4154
FDLL4305
FDLL4446
FDLL4447
FDLL4448
FDLL4449
FDLL4450
FDLL4454
FDLL4938
FDLL6099
FDS01201
FDS01202
FDS01203
FDS01204
FDS01205
FDS01401
FDS01402
FDS01403
FDS01404
FDS01405
FDS01501
FDS01502
FDS01503
FDS01504
FDS01505
FDS01701
FDS01702
FDS01703
FDS01704
FDS01705

II

SOT-23 General Purpose and Specialty Diodes
If you need the electrical characteristics for any of the listed industry standards, they are available and guaranteed by fdOr
device families. Each of these families are availa~le in five configurations including: single, series, common cathode and
common anode. Please see the appropriate datiulieet for details.

FDS01200 Family

FDS01500 Family

FDS01500 Family

FDS01700 Family

1N659
1N916
1N916A
1N916B
1N3064
1N3600
1N4009
1N4149
1N4150
1N4151
1N4154
1N4305
1N4446
1N4449
1N4450
1N4455
FDH600
FDH666
MMBD2835
MMBD2836
MMBD2837
MMBD2838
MMBD6050
MMBD6100

1N625
1N626
1N627
1N628
1N629
1N658
1N660
15920
15921
15922
15923
FDH400
FDH444

1N456
1N456A
1N457
1N457A
1N458
1N458A
1N459
1N459A
1N461 A
1N462A
1N463A
1N462B
1N463B
1N464B
1N485B
166099
FDH300
FDH333

1N4244
1N4376
FDH700

1-18

rJNatiOnal
Semiconductor
Diode Selection Guide
Computer Diodes (By Increasing t rr)
Glass Package
Device
No.

trr
ns
Max

VRRM
V

IR

Min

nA
Max

F0700

0.70

30

50

lN4376

0.75

20

lN4244

0.75

BAY82

0.75

F0777

@

VR
V

VF
V
Max

@

IF
mA

C
pF
Max

Package
No.

20

1.1

50

1.0

00·7

100

10

1.1

50

1.0

00·7

20

100

10

1.0

20

0.8

00-7

15

100

12

1.0

20

1.3

00-7

0.75

15

100

8.0

1.0

20

1.3

00·7

lN5282

2.0

80

100

55

1.3

500

2.5

00·35

lN4153

2.0

75

50

50

0.88

20

4.0

00-35

lN4151

2.0

75

50

50

1.0

50

4.0

00-35

lN4305

2.0

75

100

50

0.85

10

2.0

00·35

BAY71

2.0

50

100

35

1.0

20

2.0

00·35

lN4152

2.0

40

50

30

0.88

20

4.0

00·35

lN4154

2.0

35

100

25

1.0

30

4.0

00-35

lN914

4.0

100

25

20

1.0

10

4.0

00·35

lN914A

4.0

100

25

20

1.0

20

4.0

00·35

lN914B

4.0

100

25

20

1.0

100

4.0

00·35

lN916

4.0

100

25

20

1.0

10

2.0

00·35

lN916A

4.0

100

25

20

1.0

20

2.0

00·35

lN916B

4.0

100

25

20

1.0

30

2.0

00·35

lN4148

4.0

100

25

20

1.0

10

4.0

00·35

lN4149

4.0

100

25

20

1.0

10

2.0

00·35

lN4446

4.0

100

25

20

1.0

20

4.0

00-35

lN4447

4.0

100

25

20

1.0

20

4.0

00·35

lN4448

4.0

100

25

20

1.0

100

2.0

00·35

lN4449

4.0

100

25

20

1.0

30

2.0

00·35

lN3600

4.0

75

100

50

1.0

200

2.5

00-35

FOH600

4.0

75

100

50

1.0

200

2.5

00-35

lN3064

4.0

75

100

50

1.0

10

2.0

00·35

lN4150

4.0

75

100

50

1.0

200

2.5

00-35

lN4454

4.0

75

100

50

1.0

10

2.0

00-35

BAX13

4.0

50

200

50

1.0

20

3.0

00-35

1·19

•

Computer Diodes (By Increasing t rr) (Continued)
Glass Package

IR

trr
ns
Max

VRRM
V
Min

nA
Max

BAY74

4.0.

50.

10.0.

35

1.1 .

FDH90.0.

4.0.

45

50.0.

40.

1.1

FDH666

4.0.

40.

10.0.

25

lN4450.

4.0.

40.

50.

30.

lN40.0.9

4.0.

35

10.0.

lN625

4.0.

30.

FDH999

5.0.

FDH10.0.0.

10.0.

DevIce
No.

VF
V

C
pF
Max

Package
No.

30.0.

3.0.

00·35

10.0.

3.0.

00·35

1.0.

10.0.

3.5

00·35

1.0.

'20.0.

4.0.

00·35

25

1.0.

30.

4.0.

00·35

10.0.0.

20.

1.5

4.0.

35

10.0.0.

25

1.0.

10.

5.0.

00·35

75

50.

20.

1.0.

50.0.

5.0.

00·35

C
pF
Max

Package
No.

@

VR
V

@

Max

IF
mA

00·35

Leadless Glass Package
Device
No.

trr
ns
Max

VRRM
V

IR

Min

nA
Max

@

VR
V

VF
V
Max

@

IF
mA

FDLL4153

2.0.

75

50.

50.

0..88

20.

4.0.

LL·34

FDLL4151

2.0.

75

50.

50.

1.0.

50.

4.0.

LL·34

FDLL430.5

2.0.

75

10.0.

50.

0..85

10.

2.0.

LL·34

FDLL4152

2.0.

40.

50.

30.

0..88

20.

4.0.

LL·34

FDLL4154

2.0.

35

10.0.

25

1.0.

30.

4.0.

LL·34

FDLL914

4.0.

10.0.

25

20.

1.0.

10.

4.0.

LL·34

FDLL914A

4.0.

10.0.

25

20.

1.0.

20.

4.0.

LL·34

FDLL914B

4.0.

10.0.

25

20.

1.0.

10.0.

4.0.

LL·34

FDLL916

4.0.

10.0.

25

20.

1.0.

.10.

2.0.

LL·34

FDLL916A

4.0.

10.0.

25

20.

1.0.

20.

2.0.

LL·34

FDLL916B

4.0.

10.0.

25

20.

1.0.

30.

2.0.

LL·34

FDLL4148

4.0.

10.0.

25

20.

1.0.

10.

4.0.

LL·34

FDLL4149

4.0.

10.0.

25

20.

1.0.

10.

2.0.

LL·34

FDLL4446

4.0.

10.0.

25

20.

1.0.

20.

4.0.

LL·34

FDLL4447

4.0.

10.0.

25

20.

1.0.

20.

4.0.

LL·34

FDLL4448

4.0.

10.0.

25

20.

1.0.

10.0.

2.0.

LL·34

FDLL4449

4.0.

10.0.

25

20.

1.0.

30.

2.0.

LL·34

FDLL360.0.

4.0.

75

10.0.

50.

1.0.

20.0.

2.5

LL·34

FDLL60.0.

4.0.

75

10.0.

50.

1.0.

20.0.

2.5

LL·34

FDLL30.64

4.0.

75

10.0.

50.

1.0.

10.

2.0.

LL·34

FDLL4150.

4.0.

75

10.0.

50.

1.0.

20.0.

2.5

LL·34

FDLL4454

4.0.

75

10.0.

50.

1.0.

10.

2.0.

LL·34

FDLL666

4.0.

40.

10.0.

25

1.0.

10.0.

3.5

LL·34

FDLL4450.

4.0.

40.

50.

30.

1.0.

20.0.

4.0.

LL·34

FDLL40.0.9

4.0.

35

10.0.

25

1.0.

30.

4.0.

LL·34

FDLL625

50.

30.

10.0.0.

20.

1.5

4.0.

!

I
I

1·20.

LL·34

I

Low Leakage Diodes (By Decreasing VRRM)
Glass Package

VRRM

IR

V
Min

nA
Max

1N485B

200

1N459

200

Device
No.

VF

VR

IF

C
pF
Max

Package
No.

V

V
Max

25

180

1.0

100

DO·35

25

175

1.0

3.0

DO·35

@

@

mA

1N459A

200

25

175

1.0

100

FDH300

150

1.0

125

1.0

200

6.0

DO·35

1N3595

150

1.0

125

1.0

200

8.0

DO·35

1N6099

150

1.0

125

1.0

200

8.0

DO·35

FDH333

150

3.0

125

1.05

200

6.0

DO·35

1N458A

150

5.0

125

1.0

100

DO·35

1N484B

150

25

130

1.0

100

DO·35

1N458

150

25

125

1.0

7.0

6.0

BAY73

125

5.0

100

1.0

200

8.0

1N483B

80

25

70

1.0

100

1N457

70

25

60

1.0

20

1N457A

70

25

60

1.0

100

DO·35

100

DO·35 "

1N482B

40

25

36

1.0

FJT1100

30

0.001

5.0

1.05

10

1N456A

30

25

25

1.0

100

1N456

30

25

25

1.0

40

DO·35

DO·35
DO·35
DO·35

8.0

1.5

DO·35

DO~7

DO·35
10

DO·35

C
pF
Max

Package
No.

Leadless Glass Package

VRRM

IR

V
Min

nA
Max

FDLL459

200

25

FDLL459A

200

25

175

1.0

100

LL·34

FDLL485B

200

25

180

1.0

100

LL·34

FDLL300

150

1.0

125

1.0

200

6.0

LL·34

FDLL3595

150

1.0

125

1.0

200

8.0

LL·34

FDLL6099

150

1.0

125

1.0

200

8.0

LL·34

FDLL333

150

3.0

125

1.05

200

6.0

FDLL458A

150

5.0

125

1.0

100

FDLL484B

150

25

130

1.0

100

FDLL458

150

25

125

1.0

7.0
100

Device
No.

@

VF

VR
V

V
Max

175

1.0

@

IF
mA
3.0

LL·34

LL·34
LL·34
LL·34

6.0

LL·34

8.0

LL·34

FDLL483B

80

25

70

1.0

FDLL457

70

25

60

1.0

20

FDLL457A

70

25

60

1.0

100

LL·34

FDLL482B

40

25

36

1.0

100

LL·34

FDLL456A

30

25

25

1.0

100

LL·34

FDLL456

30

25

25

1.0

40

1·21

LL·3.4

10

LL·34

II

High Voltage Diodes (By Decreasing VRRM)
Glass Package
Device

No.

VRRM
V
Min.

IR
nA

@

Max

VR
V

VF
V

@

MIx

IF
mA

C
pF
Max

tr,
n.
Max

Package

No.

1N486B

250

50

225

1.0

100

BAV21

250

100

200

1.0

100

50

00-35

1N861

240

10000

200

1.0

6.0

300

00-35

FOH400

200

100

150

1.0

200

2.0

50

00·35

1N3070

200

100

175

1.0

100

5.0

50

00-35

1N4938

200

100

175

1.0

100

5.0

50

00-35

BAV20

200

100

150

1.0

100

50

00-35

1N629

200

1000

175

1.5

4.0

1000

00-35

FOH444

150

50

100

1.1

200

60

00-35

1000

00-35

50

00-35

00-35

2.5

1N628

150

1000

125

1.5

4.0

BAY72

125

100

100

1.0

100

5.0

BAY80,

120

100

120

1.0

150

6.0

BAV19

120

100

100

1.0

100

50

00-35

1N658

120

50

50

1.0

100

300

00-35

1N660

120

5000

100

1.0

6.0

300

00-35

1N627

100

1000

75

1.5

4.0

1000

00-35

1N626

50

1000

35

1.5

4.0

1000

00-35

tr,

Package

00-35

Leadlesa Glass Package
Device

No.

VRRM
V
Min

IR
nA
Max

@

VR
V

VF
V
MIX

@

IF
mA

C
pF
Max

n.
Max

50

LL-34

FOLL486B

250

50

225

1.0

100

FOLL4oo

200

100

150

1.0

200

2.0

FOLL3070

200

100

175

1.0

100

5.0

FOLL629

200

1000

175

1.5

4.0

FOLL444

150

50

100

1.1

200

FOLL628

150

1000

125

1.5

FOLL658

120

50

50

No.
LL-34

50

LL-S4

1000

LL-34

60

LL-34

4.0

1000

LL-34

1.0

100

300

LL-34

2.5

FOLL660

120

5000

100

1.0

6.0

300

LL-34

FOLL627

100

1000

75

1.5

4.0

1000

LL-34

FOLL626

50

1000

35

1.5

4.0

1000

LL-34

1-22

General Purpose Diodes (By Decreasing VRRM)
Glass Package
Device

IR

VRRM
V

VF
V

VR
V

C
pF
Max

IF

trr

n.

Package

Min

nA
Max

lN661

240

10000

200

1.0

6.0

lS923

200

100

200

1.2

200

00·35

lN463A

200

500

175

1.0

100

00·35

lS922

150

100

150

1.2

200

BAX16

150

100

150

1.0

1.0

lN660

120

5000

100

1.0

6.0

lS921

100

100

100

1.2

200

BA128

75

100

50

1.0

50

No.

@

@

mA

Max

Max
300

No.

00·35

00·35
10

120

00·35
00·35
00·35

5.0

lN462A

70

500

60

1.0

100

BAV18

60

100

50

1.0

100

lN659

60

5000

50

1.0

6.0

00·35
00·35
50

DO·35
00·35

lS920

50

100

50

1.2

200

BA218

50

50

25

1.0

10

5.0

1844

50

50

10

1.0

10

4.0

8

00·35

FDH900

45

500

40

1.0

100

3.0

4.0

00·35

FDH999

35

1000

25

1.0

10

5.0

5.0

00·35

lN461A

30

500

25

1.0

100

10

00·35

BA217

30

50

10

1.0

10

5.0

00·35

BA130

30

100

25

1.0

10

2.0

BAV17

25

100

20

1.0

100

00·35
00·35

00·35
50

00·35

Leadless Glass Package
Device

VRRM
V

IR

VF
V

VR
V

IF

C
pF
Max

Package

Min

nA
Max

FDLL661

240

10000

200

1.0

6.0

LL·34

FDLL923

200

100

200

1.2

200

LL·34

FDLL463A

200

500

175

1.0

100

LL·34

FDLL922

150

100

150

1.2

200

LL·34

FDLL921

100

100

100

1.2

200

LL·34

FDLL462A

70

500

60

1.0

100

LL·34

FDLL659

60

5000

50

1.0

6.0

LL·34

FDLL920

50

100

50

1.2

200

LL·34

FDLL461A

30

500

25

1.0

100

No.

@

Max

1·23

@

mA

10

No.

LL·34

Surface Mount Diodes
Plastic Package
Device
No.

Description

trr
ns
Max

VRRM
V
Min

IR
nA
Max

4.0

75

100

@

IF
rnA

C
pF
Max

Configuration

Package
No.

1.1

200

2.0

1

TO·236

VR
V

VF
V
Max

50

@

FDSO 1200 FAMILY
FDS01201

Single

FDS01202

Single

4.0

75

100

50

1.1

200

2.0

2

TO·236

FDS01203

Series

4.0

75

100

50

1.1

200

2.0

3

TO·236

FDS01204

Common Cathode

4.0

75

100 .

50

1.1

200

2.0

4

TO·236

FDS01205

Common Anode

4.0

75

100

50

1.1

200

2.0

5

TO·236

FDSO 1400 FAMILY
FDS01401

Single

50

200

100

175

1.0

100

2.0

1

TO·236

FDS01402

Single

50

200

100

175

1.0

100

2.0

2

TO·236

FDS01403

Series

50

200

100

175

1.0

100

2.0

3

TO·236

FDS01404

Common Cathode

50

200

100

175

1.0

100

2.0

4

TO·236

FDS01405

Common Anode

50

200

100

175

1.0

100

2.0

5

TO·236

FDSO 1500 FAMILY
FDS01501

Single

150

1.0

125

1.0

200

4.0

1

TO·236

FDS01502

Single

150

1.0

125

1.0

200

4.0

2

TO·236

FDS01503

Series

150

1.0

125

1.0

200

4.0

3

TO·236

FDS01504

Common Cathode

150

1.0

125

1.0

200

4.0

4

TO·236

FDS01505

Common Anode

150

1.0

125

1.0

200

4.0

5

TO·236

25

20

1.0

10

4.0

1

TO·236

FSDQ 1700 FAMILY
FDS0914

Single

4.0

100

FDS01701

Single

0.7

30

50

20

1.1

50

1.0

1

TO·236

FDS01702

Single

0.7

30

50

20

1.1

50

1.0

2

TO·236

FDS01703

Series

0.7

30

50

20

1.1

50

1.0

3

TO·236

FDS01704

Common Cathode

0.7

30

50

20

1.1

50

1.0

4

TO·236

FDS01705

Common Anode

0.7

30

50

20

1.1

50

1.0

5

TO·236

FDS03070

Single

50

200

100

175

1.0

lIlO

5.0

1

TO·236

FDS03595

Single

150

1.0

125

1.0

200

8.0

1

TO·236

FDS04148

Single

4.0

100

25

20

1.0

10

4.0

1

TO·236

FDS04448

Single

4.0

100

25

20

1.0

100

2.0

1

TO·236

BAS16

Single

6.0

75

1000

75

1.1

50

2.0

1

TO·236

BAS19

Single

50

100

100

100

1.0

100

5.0

1

TO·236

BAS20

Single

50

150

100

150

1.0

100

5.0

1

T0-236

BAS21

Single

50

200

100

200

1.0

100

5.0

1

TO·236

BAS29

Single

50

90

0.84

50

1

TO·236

BAS31

Series

50

90

0.84

50

3

TO·236

BAS35

Common Anode

50

90

0.84

50

5

T0-236

BAV70

Common Cathode

6.0

70

5000

70

1.1

50

1.5

4

TO·236

BAV74

Common Cathode

4.0

50

100

50

0.84

50

2.0

4

TO·236

BAV99

Series

6.0

70

2500

70

1.1

50

1.5

3

TO·236

BAW56

Common Anode

6.0

70

2500

70

1.1

50

2.5

5

TO·236

!

1·24

i
i

52
o

Surface Mount Diode Configurations

Pin Out Diagram

e
3

1

3

~

1

CIt

3

3

(
2N/C

1 N/C

TL/G/10012-7

TLlG/1oo12-8

4

2

1

TL/G/l0012-9

I

5

n n n
1

2

2

TL/G110012-6

2

1

Configuration

ICL

1

2

TL/G/10012-10

g

G)

c
is:
CIt

2

TL/G/l0012-11

Diode Arrays by VRRM and t"
Device
No.

Package
No.

(mA)

trr (n8)
Max

Configuration

1.0

100

10

CC8

TO-85

1.0

100

10

CA8

TO-85

80

1.0

100

10

M1S

FSA2501M

SO

1.0

100

10

M16S

TO-11S-2

FSA2501P

SO

1.0

100

10

M1SS

TO-11S

FSA2502M

SO

1.0

100

10

M16M

TO-96

FSA2503M

SO

1.0

100

10

2M8

TO-116-2

FSA2503P

SO

1.0

100

10

2M8

TO-116

FSA2504M

60

1.0

100

10

2M8

T0-88

FSA2508P

60

1.3

500

10

2M8

9B

FSA2509M

SO

1.3

500

10

2M8

TO-116-2

FSA2509P

80

1.3

500

10

2M8

TO-118

FSA251OM

60

1.3

500

10

M16S

T0-116-2

VRRM
(Y)

VFM
(V)

FSA2002M

SO

FSA2003M

SO

FSA2500M

@

IF

TO-85

FSA2510P

60

1.3

500

10

M16S

TO-116

FSA25S3M

SO

1.3

500

10

FSA25S3P

SO

1.3

500

10

cess
cess

TO-118

FSA2564M

SO

1.3

500

10

CA8S

TO-11S-2

FSA25S4P

SO

1.3

500

10

CA8S

T0-116

FSA25S5M

60

1.3

500

10

CC13

T0-11S-2

FSA25S5P

60

1.3

500

10

CC13

TO-11S

FSA256SM

60

1.3

500

10

CA13

TO-11S-2

FSA25SSP

SO

1.3

500

10

CA13

TO-116

1N649S

SO

1.5

500

10

2M18

20 Lead Cerpak

1N57S8JAN

SO

1.0

100

20

CC8

TO-85

1N57S8JANTX

SO

1.0

100

20

ces

TO-85

1N57S8JANTXV

SO

1.0

100

20

CC8

TO-85

1N5770JAN

SO

1.0

100

20

CA8

T0-85

1N5770JANTX

SO

1.0

100

20

CA8

T0-85

1N5770JANTXV

SO

1.0

100

20

CA8

TO-85

1-25

T0-116-2

•

~.r-------------------------------------------------------~--------------------~

~

Diode Arrays by VRRM and trr (Continued)
Device

VRRM

Package

IF
(mA)

trr (n8)
Max

Configuration

1..0

1.0.0

2.0

M16N

T0-85

6.0

1..0

1.0.0

2.0

M16N

TO-85

6.0

1..0

1.0.0

2.0

M16N

T0-85

1N5774JAN

6.0

~.C

1.0.0

2.0

2M8

TO-86

1N5774JANTX

6.0

1..0

iCC

2.0

2M8

TO-86

1N5774JANTXV

6.0

1..0

iCC

2.0

2M8

TO-86

1N61CC

75

1..0

iCC

5..0

87

TO-86

1N61CCJAN

75

1..0

iCC

5 ..0

87

TO-86

1N61 CCJANTX

75

1..0

iCC

87

TO-86

1N61CQ,)ANTXV

75

1.0

iCC

5..0
5..0

87

TO-86

1N61C1

75

1..0

iCC

5 ..0

88

68

1N61C1JAN

75

1..0

iCC

88

68

1N61C1JANTX

75

1..0

iCC

88

68

1N61C1JANTXV

75

1..0

iCC

5 ..0
5..0
5..0

88

68

F8A2719M

75

1..0

1.0

6 ..0

88

68

F8A2719P

75

1..0

1.0

6..0

88

98

F8A272CM

75

1..0

1.0

6..0

87

TO-116-2

F8A272CP

·75

1..0

1.0

6 ..0

87

TO-116

F8A2721M

75

1..0

1.0

6..0

87

TO-86

F8A2619M

iCC

1..0

1.0

5..0

68

F8A2619P

iCC

1..0

1.0

F8A2620M

iCC

1..0

1.0

5..0
5..0

88
88
87

TO-116-2

F8A262CP

iCC

1..0

1.0

5..0

87

TO-116

F8A2621M

iCC

1..0

1.0

87

TO-86

F8A2621P

iCC

1..0

1.0

5..0
5..0

87

TO-116

(V)

VFM
(V)

6.0

1N5772JANTX
1N5772JANTXV

No;
,.

1N5772JAN

@

No.

98

Diode Array Configurations
CAS

1filii!!!
10

2

3

4

5

CC8

CA8S

6

7

8

6

5

4

3

IHHHH
10'23456789

9

TL/G/l0012-2

TLlG/l0012-1

9

10

II

12

14
TL/G/l0012-12

6

5

M16M

2M8

CCSS
4 3

5~~~'-1-~-'~~

~ i". A ~ ~ ~ ~ ~ ~

~.4 ~ ~

~ i" .j i" .j i" n

~

IO-~b.~6..,~ 6.. 7_ 8.. 9_

TL/G/l0012-4

9

10

11

12

14
TLlG/l0012-14

1-26

.j .....

.. II.

~~

TL/G/l0012-13

r-------~--------------------------------------------------------,2

o
a.

Diode Array Configurations (Continued)

CD

M16

~

M16S

!i

g"

G')

2
100-<1..................-

c

a:CD

_ _ _--'
TL/G/l0012-3
TL/G/l0012-15

87

S8

fffffff
8

9

10

11

12

13

fffffffi

14

9

TL/G/l0012-5

10

11

CC13

7

654

8

9

10

13

14

15

16

TLlG/l0012-16

CA13

3

11

12

2

12

7

13

14

6

8

5

9

'"

10

3

11

TL/G/l0012-17

2

12

13

14
TLlG/l0012-19

M16N

2M16

TL/G/l0012-18

10

11
TL/G/l0012-20

1·27

•

Military Diode Products in Numerical Order by Part Number
IF

trr (na)

{mAl

Max

Package
No.

1.0
1.0

10
10

4.0
4.0

00·7
00·7

100
100

1.0
1.0

100
100

50
50

00·35
00·35

150
150
150

1.0
1.0
1.0

1.0
1.0
1.0

200
200
200

3000
3000
3000

00·7
00·7
00·7

1N3600JAN
1N3600JANTX
1N3600JANTXV

75
75
75

100
100
100

1.0
1.0
1.0

200
200
200

4.0
4.0
4.0

00·7
00·7
00·7

1N4148·1JAN
1N4148·1 JANTX
1N4148·1 JANTXV

100
100
100

25
25
25

1.0
1.0
1.0

10
10
10

4.0
2.0
4.0

00-35
00·35
00·35

1N4150·1JAN
1N4150·1JANTX
1N4150·1 JANTXV

75
75
75

100
100
100

1.0
1.0
1.0

200
200
200

4.0
4.0
4.0

00-35
00·35
00·35

1N430BJAN
1N430BJANTX
1N430BJANTXV

75
75
75

50
50
50

1.0
1.0
1.0

50
50
50

4.0
4.0
4.0

00·7
00·7
00·7

1N4307JAN
1N4307JANTX
1N4307JANTXV

75
75
75

50
50
50

1.0
1.0
1.0

50
50
50

4.0
4.0
4.0

00·7
00·7
00·7

1N4376JAN
1N437BJANTX

20
20

100
100

1.1
1.1

50
50

0.75
0.75

00·7
00·7

1N4454·1 JAN
1N4454·1 JANTX
1N4454·1 JANTXV

75
75
75

100
100
100

1.0
1.0
1.0

10
10
10

4.0
4.0
4.0

00·35
00·35
00·35

1N4938·1JAN
1N4938·1 JANTX

200
200

100
100

1.0
1.0

100
100

50
50

00·35
00·35

1N457JAN

70

25

1.0

100

00·35

1N458JAN

150

25

1.0

7.0

00·35

1N459JAN

200

25

1.0

3.0

00·35

1N483BJAN
1N483BJANTX

80
80

25
25

1.0
1.0

100
100

00·35
00·35

1N485BJAN
1N485BJANTX

200
200

25
25

1.0
1.0

100
100

00·35
00·35

1N486BJAN
1N486BJANTX

250
250

25
25

1.0
1.0

100
100

00·35
00-35

1N914JAN
1N914JANTX

100
100

25
25

1.0
1.0

10
10

Device
No.

VRRM

IRRM

VFM

(V)

(nA)

(V)

1N3064JAN
1N3064JANTX

75
75

100
100

1N307OJAN
1N3070JANTX

200
200

1N3595JAN
1N3595JANTX
1N3595JANTXV

@

4.0
4.0

00·35
00·35

i

,

1·28

Surface Mount Monolithic Diode Arrays
Plastic Packages

VF
V
Max

VRRM
V
Min

Device
No.

@

IF
mA

b.VF
mV
Max

t"
ns
Max

Configuration

Package
No.

FA502501

60

1.0

100

15

10

M165

14-501C

FA502503

60

1.0

100

15

10

2M8

14-501C

FA502509

60

1.3

500

15

10

2M8

14-501C

FA502510

60

1.3

500

15

10

M165

14-501C

FAS02563

60

1.3

500

15

10

CC85

14-501C

FA502564

60

1.3

500

15

10

CA85

14-501C

FA502619

100

1.0

10

15

5.0

58

16-501C

FA502620

100

1.0

10

15

5.0

57

14-501C

FA502719

75

1.0

10

15

6.0

58

16-501C

FA502720

75

1.0

10

15

6.0

57

14-501C

FA505774

60

1.0

100

20

2M8

14-501C

FA506101

75

1.0

100

5.0

57

14-501C

Surface Mount Monolithic Diode Array Configurations
CA8S
6

5

4

~~ ~ ~ ~
~~ ~
9

CC8S
3

6

. .
~

~

~,. ~
~

, -~ ~~
~

~

10

11

5

12

14

~

-,

20-

~

~

5

10- 10- 16- I&. 10-

~ ~ ~~

,.

~

~~

10

12

11

14

TL/G/l0012-22

2M8

, ,
r~
3- r- - ~) ~) g-

~

~

~

~~ ~ ~ ~ ~

M16S
1

•

3

,. ~ ,.

9

TL/G/l0012-21

4

~

li-

,

1
~

12-

IQ.... ,0-.

, -~ ~ ~ ~~

~ ~ ~ ~ ~ ;..

-~.-

8

2~ "3~ "11~ ~2~ "4~ "5~ g~ ~) ~
0- 10.. IQ.... 10- 10- 10- 10- I~

~,

~

Ii . ~ . ~ ..

~

14

~

A

"7~

.

~ II. ~

~ ~~
TUG/l0012-24

TUG/l0012-23

S7

7

6

5

4

S8
3

2

8

1

9

10

11

12

13

6

5

4

3

2

1

ffffffff

+++++++
8

7

14

9

TL/G/l0012-25

1·29

10

11

12

13

14

15

16

TL/G/l0012-26

Q)

'g

·5

Zener Diodes (By Increasing Vz)

c

Glass Package

o

.2

1j
~Q)

'g

o
i5

Device
No.

Vz
V

Tol."

Zz

±Vz

n

@

Iz
rnA

IR
/LA
Max

@

VR
V

T.C.
%rC
Typ(Max)

Po
mW
TA = 25'C

Package
No.

Nom

%

Max

1N746A

3.3

5.0

28

20

10

1.0

-0.070

500

00-35

1N5226B

3.3

5.0

28

20

25

1.0

(-0.070)

500

00-35

1N4728A

3.3

5.0

10

76

100

1.0

1000

00·41

1N747A

3.6

5.0

24

20

10

1.0

-0.65

500

00-35

1N5227B

3.6

5.0

24

20

15

1.0

(-0.065)

500

00·35

1N4729A

3.6

5.0

10

69

100

1.0

1000

00·41

1N748A

3.9

5.0

23

20

10

1.0

-0.60

500

00·35

1N5228B

3.9

5.0

23

20

10

1.0

(-0.60)

1N4730A

3.9

5.0

9.0

64

50

1.0

1N749A

4.3

5.0

22

20

2.0

1.0

1N5229B

4.3

5.0

22

20

5.0

1.0

1N4731A

4.3

5.0

9.0

58

10

1.0

1N750A

4.7

5.0

19

20

2.0

1.0

±0.043

1N5230B

4.7

5.0

19

20

5.0

2.0

(±0.030)

1N4732A

4.7

5.0

8.0

53

10

1N751A

5.1

5.0

1N5231B

5.1

1N4733A

5.1

1N752A

500

00-35

1000

00-41

(±0.055)

500

00-35

(±0.055)

500

00-35

1000

00-41

500

00·35

500

00·35

1.0

1000

00·41

500

00·35

17

20

1.0

1.0

±0.030

5.0

17

20

5.0

2.0

(±0.030

5.0

7.0

49

10

1.0

5.6

5.0

11

20

1.0

1.0

1N5232B

5.6

5.0

11

20

5.0

3.0

1N4734A

5.6

5.0

5.0

45

10

2.0

1N5233B

6.0

5.0

7.0

20

5.0

3.5

(±0.038)

1N753A

6.2

5.0

7.0

20

0.1

1.0

1N5234B

6.2

5.0

7.0

20

5.0

4.0

2.0

41

10

500

00·35

1000

00·41

+0.028

500

00·35

(±0.038)

500

00·35

1000

00·41

500

00·35

+0.045

500

00·35

(+0.045)

500

00·35

1000

00·41

3.0

1N4735A

6.2

5.0

1N754A

6.8

5.0

5.0

20

0.1

1.0

+0.050

500

00·35

1N957B

6.8

5.0

4.5

18.5

150

5.2

+0.050

500

00·35

1N5235B

6.8

5.0

5.0

20

3.0

5.0

(+0.050)

500

00·35

37

10

4.0

1000

00·41

1N4736A

6.8

5.0

3.5

1N755A

7.5

5.0

6.0

20

0.1

1.0

+0.058

500

00·35'

1N958B

7.5

5.0

5.5

16.5

75

5.7

+0.058

500

00·35

1N5236B

7.5

5.0

6.0

20

3.0

6.0

(+0.058)

500

00-35

1N4737A

7.5

5.0

4.0

34

10

5.0

1000

00·41

1N756A

8.2

5.0

8.0

20

0.1

1.0

+0.062

500

00·35

1N959B

8.2

5.0

6.5

15

50

6.2

+0.062

500

00·35

1N5237B

8.2

5.0

8.0

20

3.0

6.5

(+0.062)

500

00·35

1N4738A

8.2

5.0

4.5

34

10

6.0

1000

00-41

"Tolerance: All zener diodes are also available in ± 1 %, ± 2%, ± 1 0% and ± 20% tolerances.

1-30

~

Zener Diodes (By Increasing Vz)
Glass Package (Continued)
Device
No.

Vz
V
Nom

Tol.·
±Vz

Zz

'Yo

Max

1N5238B

8.7

5.0

1N757A

9.1

1N980B

Iz
mA

IR
p.A
Max

8.0

20

3.0

6.5

5.0

10

20

0.1

9.1

5.0

7.5

14

25

1N5239B

9.1

5.0

10

20

1N4739A

9.1

5.0

5.0

8

1N758A

10

5.0

17

1N981B

10

5.0

T.C.

Typ(Max)

Po
mW
TA = 2S"C

Package
No.

(+0.085)

500

00·35

1.0

+0.068

500

00·35

6.9

+0.088

500

00·35

3.0

7.0

(+0.088)

10

7.0

20

0.1

1.0

8.5

12.5

10

n

@

@

VR
V

'Yorc

500

00·35

1000

00·41

+0.075

500

00·35

7.6

+0.072

500

00·35

(+0.075)

500

00·35

1000

00·41

1N5240B

10

5.0

17

20

3.0

8.0

1N4740A

10

5.0

7.0

25

10

7.6

1N962B

11

5.0

9.5

11.5

5.0

8.4

+0.073

500

00·35

1N5241B

11

5.0

22

20

2.0

8.4

(+0.076)

500

00·35

1N4741A

11

5.0

8.0

23

5.0

8.4

1000

00·41

1N759A

12

5.0

30

20

0.1

1.0

+0.077

500

00·35

1N983B

12

5.0

11.5

10.5

5.0

9.1

+0.078

500

00·35

1N5242B

12

5.0

30

20

1.0

9.1

(+0.077)

500

00·35

1N4742A

12

5.0

9.0

21

5.0

9.1

1000

00·41

1N964B

13

5.0

13

9.5

5.0

9.9

+0.079

500

00·35

1N5243B

13

5.0

13

9.5

0.5

9.9

(+0.079)

500

00·35

1N4743A

13

5.0

10

19

5.0

9.9

1000

00·41

1N5244B

14

5.0

15

9.0

0.1

10

(+0.082)

500

00·35

1N965B

15

5.0

16

8.5

5.0

11.4

+0.082

500

00·35

1N5245B

15

5.0

16

8.5

0.1

11

(+0.082)

1N4744A

15

5.0

14

17

5.0

11.4

1N966B

16

5.0

17

7.8

5.0

12.2

1N5246B

16

5.0

17

7.8

0.1

12

500

00·35

1000

00·41

+0.083

500

00·35

+(0.083)

500

00·35

1000

00·41

1N4745A

16

5.0

16

15.5

5.0

12.2

1N5247B

17

5.0

19

7.4

0.1

13

(+0.084)

500

00·35

1N967B

18

5.0

21

7.0

5.0

13.7

+0.085

500

00·35

1N5248B

18

5.0

21

7.0

0.1

14

(+0.085)

500

00·35

IN4746A

18

5.0

20

14

5.0

13.7

1000

00·41

1N5249B

19

5.0

23

6.6

0.1

14

(+0.086)

500

00·35

1N968B

20

5.0

25

6.2

5.0

15.2

+0.086

500

00·35

1N5250B

20

5.0

25

6.2

0.1

15

(+0.086)

500

00·35

1N4747A

20

5.0

22

12.5

5.0

15.2

1000

00·41

22

5.0

29

5.6

5.0

16.7

+0.087

500

00·35

22

5.0

29

5.6

0.1

17

(+0.087)

500

00-35

1000

DQ·41

1N969B
1N5251B

5.0
16.7
11.5
·Tolerance: All zener diodes are also available in ± 1%, ±2%, ± 10% and ±20% tolerances.
1N4748A

22

5.0

23

1·31

I
Q

E.

i

Zener Diodes (By Increasing Vz)
Glass Package (Continued)
ToI.·

Zz
{}

Nom

±Vz
%

Max

1N970B

24

5.0

33

1N5252B

24

5.0

33

5.2

1N4749A

24

5.0

25

10.5

1N5253B

25

5.0

5

5.0

0.1

19

1N971B

27

5.0

41

4.6

5.0

20.6

1N5254B

27

5.0

41

4.6

0.1

21

(+0.090)

1N4750A

27

5.0

35

9.5

5.0

20.6

1N5255B

28

5.0

44

4.5

0.1

21

1N972B

30

5.0

49

4.2

5.0

22.8

1N5256B

30

5.0

49

4.2

0.1

23

1N4751B

30

5.0

40

8.5

5.0

22.8

1N973B

33

5.0

58

3.8

5.0

25.1

+0.092

1N5257B

33

5.0

58

3.8

0.1

25

(+0.092)

500

00-35

1N4752A

33

5.0

45

7.5

5.0

25.1

1000

00-41

Device
No.

Vz
V

@

Iz

VR
V

T.C.
%rC
Typ(Max)

PD
mW
TA = 25"C

Package
No.

18.2

+0.088

500

00-35

0.1

18

(+0.088)

5.0

18.2

IR

mA

p.A
Max

5.2

5.0

@

500

00-35

1000

00-41

(+0.089)

500

00-35

+0.090

500

00-35

500

00-35

1000

00-41

(+0.091)

500

00-35

+0.091

500

00-35

(+0.091)

500

00-35

1000

00-41

500

00-35

'Tolerance: All zener diodes are also available in ±1%, ±2%, ± 10% and ±20% tolerances.

1-32

~Nattonal

~ Semiconductor
Military Qualified Discrete Selection Guide
National Semiconductors' Discrete Product Group offers a
complete line of Hi-Reliability devices produced in modern
production facilities in Santa Clara, California, South Portland, Maine and Cebu, the Philippines. Although emphasis
is placed on designing and built-in quality and reliability, a
complete reliability screening program has been established. Many products offered in this data book are available
in all of the following Hi-Rei configurations.

Military Qualified Diodes and Transistors
National Semiconductor maintains qualified status for all the
devices listed in Table I. Most devices are available in three
standard quality levels, JAN, JANTX, and JAN TXV, as defined by MIL-STD-19500.
Custom "Level S" Processing
Top of the line custom built and processed devices, requiring baseline documentation, wafer lot acceptance and
traceability, clean room assembly and Level S process controls and screening are available. Consult the factory for
details.

• Hi-Rei Wafers and Die
• Military Qualified Diodes & Transistors
• Source Controlled Devices (SCD)
• Custom "Level S" Processing
HI-Rei Wafers and Die
Refer to the DICE section of this databook for information
on WAFER and DIE available in four standard configurations.

TABLE I. Military Qualified Transistors and Diodes
Qualified Products List
Device No.
2N718A
2N930
2N1813
2N2218A
2N2219A
2N2221A
2N2080
2N2222A
2N2369A
2N2484
2N2904A
2N2905A
2N2906A
2N2907A
2N2920
2N3019S
2N3700
2N8756
2N6758
2N8760
2N6762
2N6768
2N6770
1N457

Qualltled Products List

JAN

TX

TXV

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X

Device No.
1N458
1N459
1N4838
1N4858
1N4868
1N914
1N3084
1N3070
1N3595
1N3600
1N4148-1
1N4150-1
1N4308
1N4307
1N4378
1N4454·1
1N4938·1
1N57BB
1N5770
1N5772
1N5774
1NB100
1NB101

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X

1-33

JAN

TX

TXV

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

Transistor Processes for High Speed Switching

Transistor Processes for High Speed Switching

lS00mA

1000mA

~I

MAXIMUM
COLLECTOR
CURRENT

7S0mA

SATURATED
MODE

SOOmA

P70 HSS
40V PMP

I

P25 HSS
40V MPH

P67 GPA/SW
PNP60V
P12 GPA/SW
MPH BOV
P13 GPA/SW
HPM 35V
P22 HSS
15V MPM

P19 GPA/SW
HPH 40V
P63 GPA/SW
PNP 40V

'OO~I
P21 HSS
200 mA 15 V MPM
P65 HSS
150mA '12V PMP
20n5

P66 GPA/SW P23 GPA/SW
PHP40V
MPH 40V
25n5

30n5

40n5

60n5

200n5

300n5

500n5

MAXIMUt.I TOFF
SEE DATA BOOK FOR CIRCUIT CONDITIONS

TUG/l0013-1

Transistor Processes for Radio Frequency

15mA

I

12mA I

~I

P43 RF"-AMP/OSC
900 MHz

P23 RF"-GPA
400 MHz

P40 RF"-AMP/OSC
1300 MHz
P49 RF"-VHF"
600 MHz

CONTINUOUS 9 rnA
OPERATION
TYPICAL
COLLECTOR
CURRENT
6mA

P47 RF"-IF"
900 MHz
P42 RF"-VHF"/UHF"
1000 MHz

3 rnA

10V

15V

20V

25V

30V

35V

COLLECTOR BREAKDOWN VOLTAGE

aveEo

•

TUG/10013-2

A:»uanbaJ:I O!peH JOI sassa:»OJd JOIS!SUeJ.l

II

RF Selection Guide

Blpolars

40

42

•
•

•

43

44

JFETs

47

49

75

50

90

92

•

•

•

•

•

•

•

•

•

•

•
•
•

•
•
•

•

PREAMPLIFIERS
> 500 MHz
200 MHz-500 MHz
200 MHz-500 MHz with AGe
50 MHz-250 MHz
50 MHz-250 MHz with AGe
20 MHz-120 MHz

•

•
•
•
•

•

•

•
•

•
•
•

•

•

MIXERS
Input> 500 MHz
Input 200 MHz-500 MHz
Input 50 MHz-250 MHz
Input 20 MHz-120 MHz

•
•

.'
"

•

•
•

•

•

LOCOSC

•
•

> 500 MHz Mech. Tuned
> 500 MHz Varactor
200 MHz-500 MHz Mach. Tuned
200 MHz-500 MHz Varactor
50 MHz-250 MHz
20 MHz-120 MHz

•

•
•
•
•
•

•
•
•
•
•

•

•
•

•
•

IF AMPS

•

< 75 MHz
< 15 MHz
< 75 MHz with AGe
< 15 MHz with AGe
< 75 MHz Last Stage
< 15 MHz Last Stage

•

•

•
•
•

•
•

•
•

•
•

•

•
•

•

•
•

SPECIAL USES
200 MHz-500 MHz < 1.0 rnA Bias
50 MHz-250 MHz < 1.0 rnA Bias
200 MHz-500 MHz,S rnA-15 rnA Linear IF
50 MHz-250 MHz, 5 rnA-15 rnA Linear IF
< 120 MHz/15 rnA Wideband RF
VHF Freq. Generator and/or
Multiplier to 75 rnW Levels

•
•
•

•
•

•

•
>-

•

•

1-36

•
•

•

•

•

•
•

NPN GPA Transistor Processes

P37 GPA

200mA

DRIVER
P38 GPA

DRIVER

100mA

DRIVER

SOmA

P12 GPA
P19 GPA/SW

30mA
'CONTINUOUS
OPERATION

"".....

Pll GPA

Pl0 GPA

20mA

TYPICAL

COLLECTOR
CURRENT

P36 HIGH
VOLTAGE

P39 GPA

P13 GPA/SW

P48 HIGH
VOLTAGE

-----------,

lSmA

P23 GPA/SW

10mA
P16 HIGH
VOLTAGE

SmA
SEE NPN-RF
SmA

2mA

P07 LOW
LEVEL/LOW
NOISE AMP

I
I

2SV

40V

4SV

60V

SOV

100V

l20V

220V

300V

COLLECTOR BREAKDOWN VOLTAGE
BVCEO
TL/G/10013-3

sassa~OJd

II

JOIS!SUeJl \fd~ NdN

PNP GPA Transistor Processes

PNP GPA Tranalator Proceaaes

2OO~1

pnGPA
DRIVER

100mA
50 mA

. CONTINUOUS
OPERATION

~I

TYPICAL
COLLECTOR
CURRENT

30 mA

P78 GPA
DRIVER

I

I

P67 GPA

P79 GPA-HIGH
VOLTAGE DRIVER

P63 GPA/SW
P68 GPA
P69 GPA

20mA
15mA
P66 GPA/SW

10mAi
P74 HIGH
VOLTAGE

P68 LOW
LEVEL/LOW
NOISE AMP

SmA

P76 HIGH
VOLTAGE

5mA
P62 LOW
LEVEL/LOW
NOISE AMP

2mA I

-20 V

-40 V

-60V

-SOY

-100V

-120V

-l80V

-250 V

COLLECTOR BREAKDOWN VOLTAGE
BVCEO
TLlG/10013-5

Choose the Proper FET
National Semiconductor utilizes 17 different FET geometries to cover, without compromise, the full spectrum of applications. Detailed data on each process, along with a list
of all part numbers manufactured from each process, is to
be found in Section 9.

To further simplify the selection procedure, the FET Family
Tree is included for quick identification. After narrowing
down the process types, it is suggested that the process
sheets and specific part number characteristics be consulted.

FET FAMILY TREE
N·CHANNEL SINGLES

P.CHANNEL SINGLES

N·CHANNEL OUALS

I

I

GENERAL PURPOSE AMP
PB& - ... 4-17 ..mhol
10.. 1-10 mA
PH - ",,-4 mmh..
loss 0.3-20 mA

GENERAL PURPOSE
Pl3 -lo3pAIiIZOV
'" 0.85 mmho iii 0.2 mA
PI4 - IG 1 pAIiI35V
CMRR 125 dB

GENERAL PURPOSE AMP
PIG - ",3-7 mmh..
ID.. ,-IOmA
P52 - ",U-3_h..
I_U-llmA
PS5 - ",U-5 ...h..
loIS D.5-17 mA

I

I

I

RFIVHFIUHF
P50 - G.. I2dB.4ooMH.
'" 5.1 mJlb..
PlO - G.. l1 dB. 450 M""

.... mmh.,

PlI - G.. II dB iii 450 MHz
",18mmb..

SWlTCHICHOPPER
PlI - "'. &I-ZOO oh...
10IOFFI &0 pA
PlI - ros 460 ohms
10IOFFI 20 pA

ULTRA·LOW INPUT CUR
PII -lpA1!I25V
D!r n5pmh.

I

I

ULTRA-LOW LEAKAGE AMP

WlOE BANI).lOW NOISE

P&O - IOIBIpAIiI2DV
... 3-7 mmh ••
P&3 - IG.. 0.3 pA iii ZOV
II> 0.01-11.3

•

Pl3 - ",6mmh."SmA

PI&

mmh..

C.4.2 pF
- IItolmmhoslil2mA
C.IOpF

I

1
LOW FREQ·LOW NOISE AMP

LOW FREQ·LOW NOISE
PI6 - In BnVlJRi .,0 Hz
IItoI-4mmhos
PIti - 'n 7 nVlv'l!i. 10 Hz
IItoID-22mmh ..

P50 - .. 8nVfv'IIi.,0Hz
C.3 pF
P51 - .. &nVlv'l!iO 10 Hz
",ZOmmh..

1
BWITCHICHOPPER
P50 - 'oa loo-50D oh...
10 10... 5 pA
PII - 'oc 20-100 Dbnu
101O.FI 1& pA
P5B - .... 3-20 .h...
10 10'" 50 pA
P5& - 'ao 2-10 ....
...... IDO IA
TLlG/l0013-6

1-39

JFET Process Comparison Curves
Dual FET Drain
Saturation Current
YS Cutoff Voltage

C 101
10 rT. -H'C

.!

i.

m-

f'~

..
il

10
I

S
§

~

PI5
Pl3A'14

-,-

Ifl

II

!,

0.6

J

0.1

"

~7 ~j'

1

100

1

;

&0

iI

11~~5aE5~~~1.;~

il

,

-1 -2 -3 --4 -5 -I -1 -I -9 -II

DualFET
Transconductance Y8
Cutoff Voltage

~~~-+-+~-r~~

5

~~=l~~~*$~

0.1

J

50

~

:!
!!
i!I

....

10

"2(N)

-PII(PI

..

;-.... ,&OIN)

•=,
c

,

I-

PlD(N)

~:=:I
Pl2(N)

I.i

I

_f- "31NI

10111
501

TA

II: rII: r-

r-~J ~-LI=
f 1/

~

:!

~

WI!

lID

I

101

I so
~
;

~

10

I

Iiii

....
::::::

VOIIO'" -

-== l'1li1111, "llfDI

"UNI."IIOI

-- ... -

a - alllll,c~1ftfItI

o -1

....Nt

" ""r

O·DIltINClMnMl

1

-""~f,£
--"'!.'

.....,
T
.....

0.1

-I -3 -4 -I -6 -7 -8 -I .. 10
GATE·SOURCE CUTOFF VOLTAGE IVI

101
II

-

'!,ri./

~F

0.5

I

1.1
0.01

J'

0.11

I

I

16

10
10
I

~

..

1 II
0.1 1
50 110
.. - TIIANICONOUCTANCI (1._1

r-r.~r::E=EM7.s:a

I 1=tt=~T~A~'Z~I;~CI~'~!.Pli.r vl/iit
I!{ir=
!Ii

§i

OJI

t~~I::t:JP~-ip~.C"~A~NN~EiJL
o I 10 II ZD 21 31 31
Single N-Channel FET
Proce.. Distribution
IDSSysg,.

;

rIm

t=$~;;;i~r.N _-II"C
••CHANNEL
V.. - DRAIN·GATE VOLTAGE (V)

Single P-Channel FET
Proce.. Distribution
IDSSysg,.

!

a

r-~~~~~~.g~

~ I:F=~II~~~~~~

II \I 10 II 30 II
DRAIN-GATE VOL TAOE (VI

i I:
!

108

0.\

VDO

J

ii3 &G ~t.jli~~~1d~
1.1

I

r-p ~j

lDH r-"T""-'--,--,-"",-",--,
600

.!I

o

r-

Pl3IPII4
1'96.

Single FET Gate
Leakage Current
YS DrainoGate Voltage

~~

.!I

~.-2E~=

IiIiii ~!;

-""
P84(CI

1s:I==

-. -2 -3 -4 -I -6 -1 -8 -I -10

a,1

On Aeslstence
YS Cutoff Voltage
~

JII'r'

. ""'PII

I

Pl3

Vo.."" - GATE-SOURCE CUTOFF VOLTAGE (V)

~

I

0.1

.oae

u

-::/.83=

-,.l

0.5
0.1

i

"f5~C

C' CASCaDE

-I -2 -3 -4 -I -8 -7 -I -I -10
Va..", - DATE-IIURCE CUTOFF VOLTAIE (V)

i

,

Dual FET Gate
Leakage Current
YS Drain-Gate Voltage

j

P51(NI

~

0.1 t..-LL.J.....l-->-........L.......I............l-..J
-I -2 -3 --4 -I -6 -1 -I -I -10
V_" - OATE·SOURCE CUTOFF VOLTAGE (VI

SingieFET
Transconductance Y8
Cutoff Voltage
100

I"
~

V....,PI - GATE-SOURCE CUTOFF VOLTAOE (VI

I.!

TA -2H
II

I
D.E

2/.
H--I--f"fl

~I-

~~'E~v.Fm=$=$~
FIr

1.1 'II)PII

a.1I

i t:t::t:tt:t::t:tt:t:lli
D.O'

-

0.1

1.1 I

1 I'

&0 101

I. - TRANSCONDUCTANCE (......1

MonOlithic DUll
FETProce..
III Distribution IDSS YI g,.

I

II

I~

iI ,.i
01
, D.II

j

f--

PI.
I

rtoi

i'!!

'HJ 'J~

J
IU •

D.Ol

0.'

U1

5 .0

II .01

Its - 'lall'COILDUCT.NCI fII..lIo,

TL/G/l0013-7

1-40

~National

JFET Cross Reference Guide

Semiconductor

~

Closest
Equivalent
Replacement

Process
Package

Package
Type

Industry
PIN

T0-5
TO-5
T0-5
TO-5
T0-5

2N5462-5
2N5462-5
2N3329-5
2N3330-5
2N3331-5

8991
8991
8923
8923
8923

T0-92
T0-92
T0-72
T0-72
T0-72

2N3365
2N3368
2N3369
2N3370
2N3376

N
N
N
N

P
P
P
P
P

T0-5
T0-18
T0-18
TO-18
T0-18

2N3332-5
2N5020
2N5020

8923
8911
8911
8911
8911

TO-72
T0-18
T0-18
TO-18
T0-18

2N3378
2N3380
2N3382
2N3384
2N3386

P
P
N
N
N

TO-18
T0-18
TO-18
TO-18
T0-18

2N502O
2N5020
2N4340
2N4338
2N4338

8911
8911
5202
5202
5202

T0-18
T0-18
T0-18
T0-18
T0-18

2N3069
2N3070
2N3071
2N3084
2N3085

N
N
N
N
N

T0-18
T0-18
T0-18
T0-5
TO-18

2N4340-5
2N4340

5202
5202
5202
5202
5202

2N3086
2N3087
2N3088
2N3088A
2N3089

N
N
N
N
N

T0-5
TO-18
T0-5
TO-5
T0-18

2N4340
2N4340
2N4339-5
2N4339-5
2N4339

2N3089A
2N3329
2N3330
2N3331
2N3332

N

TO-18
T0-72
TO-72
TO-72
T0-72

2N4339

Industry
PIN

Polarity

2N2386-5
2N2386A
2N2497
2N2498
2N2499

P
P
P
P
P

2N2500
2N2606
2N2607
2N2608
2N2609
2N2843
2N2844
2N3066
2N3067
2N3068

P
P
P
P

Package

Direct
Replacement

2N2608
2N2609

2N3069
2N3071
2N3071

2N3329
2N3330
2N3331
2N3332

Package

Direct
Replacement

2N3368
2N3369
2N3370

P

TO-18
TO-18
TO-18
T0-18
TO-72

P
P
P
P
P

TO-72
TO-72
TO-72
TO-72
TO-72

2N3436
2N3437
2N3438
2N3453
2N3454

N
N
N
N
N

TO-18
TO-18
TO-18
TO-72
TO-72

TO-18
T0-18
TO-18
T0-18
T0-18

2N3457
2N3458
2N3459
2N3460
2N3578

N
N
N
N

P

TO-72
TO-18
TO-18
TO-18
TO-18

5202
5202
5202
5202
5202

TO-18
T0-18
TO-18
T0-18
TO-18

2N3684
2N3684A
2N3685
2N3685A
2N3686

N
N
N
N
N

TO-72
TO-72
TO-72
TO-72
TO-72

5202
8923
8923
8923
8923

T0-18
T0-72
T0-72
T0-72
T0-72

2N3686A
2N3687
2N3687A
2N3819
2N3820

N
N
N
N

TO-72
TO-72
TO-72
TO-92

Polarity

P

Closest
Equivalent
Replacement

Process
Package

Package
Type

2N3329

5202
5202
5202
5202
8923

TO-18
TO-18
TO-18
TO-18
TO-72

2N3330
2N3331
2N5116
2N5115
2N5114

8923
8923
8811
8811
8811

TO-72
TO-72
TO-72
TO-72
TO-72

2N4222
2N3968
2N5358
2N4119
2N4117

5525
5525
5525
5325
5325

TO-72
TO-72
TO-72
TO-72
TO-72

2N4117

5325
5202
5202
5202
8911

TO-72
TO-18
TO-18
TO-18
TO-18

5225
5225
5225
5225
5225

TO-72
TO-72
TO-72
TO-72
TO-72

5225
5225
5225
5094
8994

TO-72
TO-72
TO-72
TO-92
TO-92

2N4340

2N3458
2N3459
2N3460
2N2608
2N3684
2N3684
2N3685
2N3685
2N3686
2N3686A
2N3687

2N3819
TO-~2 _ clN3820

2N3687

8P!"9 80U8J8J81::1 SSOJ:) .l3:1r

II

JFET Cross Reference Guide

JFET Cross Reference Guide (Continued)
Industry
PIN

~

t

Polarity

Package

Direct
Replacement

Closest
Equivalent
Replacement

2N3821
2N3822
2N3823
2N3824

Direct
Replacement

Package

5352
5325
5325
5325
5525

T0-72
TO-72
T0-72
TO-72
TO-72

2N4220
2N4220A
2N4221
2N4221A
2N4222

5525
5525
5525
5525
5225

TO-72
TO-72
TO-72
TO-72
TO-72

Package
Type

Industry
PIN

Polarity

5525
5525
5505
5525
8994

TO-72
TO-72
TO-72
TO-72
TO-92

2N4118
2N4118A
2N4119
2N4119A
2N4139

N
N
N
N
N

T0-72
TO-72
TO-72
TO-72
TO-18

2N4118
2N4118A
2N4119
2N4119A

TO-92
TO-71
T0-71
TO-71
TO-71

2N4220
2N4220A
2N4221
2N4221A
2N4222

N
N
N
N
N

T0-72
TO-72
T0-72
TO-72
TO-72

Package

Closest
Equivalent
Replacement

Process
Package

Process
Package

Type

2N3821
2N3822
2N3823
2N3824
2N3909

N
N
N
N
P

TO-72
T0-72
TO-72
T0-72
TO-72

2N3909A
2N3921
2N3922
2N3954
2N3955

P
N
N
N
N

T0-72
TO-71
T0-71
TO-71
T0-71

2N3922
2N3954
2N3955

8991
8312
8312
8312
8312

2N3955A
2N3956
2N3957
2N3958
2N3966

N
N
N
N
N

TO-71
TO-71
TO-71
T0-71
TO-72

2N3955A
2N3956
2N3957
2N3958
2N3966

8312
8312
8312
8312
5029

TO-71
TO-71
TO-71
TO-71
TO-72

2N4222A
2N4223
2N4224
2N4302
2N4303

N
N
N
N
N

TO-72
TO-72
TO-72
TO-lOS
TO-lOS

2N4222A
2N4223
2N4224
PN4302-18
PN4303-18

5225
5025
5025
5292
5292

TO-72
TO-72
TO-72
T0-92
TO-92

2N3967
2N3967A
2N3968
2N3968A
2N3969

N
N
N
N
N

T0-72
TO-72
T0-72
TO-72
T0-72

2N3967
2N3967A
2N3968
2N3968A
2N3969

5225
5525
5525
5525
5525

TO-72
TO-72
T0-72
TO-72
T0-72

2N4304
2N4338
2N4339
2N4340
2N4341

N
N
N
N
N

TO-l06
TO-18
TO-18
TO-18
TO-18

PN4304-18
2N4338
2N4339
2N4340
2N4341

5292
5202
5202
5202
5202

TO-92
TO-18
TO-18
TO-18
TO-18

2N3969A
2N3970
2N3971
2N3972
2N3993

N
N
N
N
P

TO-72
TO-18
TO-18
TO-18
T0-72

2N3969A
2N3970
2N3971
2N3972

5525
5102
5102
5102
8811

TO-72
TO-18
TO-18
TO-18
TO-72

2N4342
2N4360
2N4381
2N4382
2N4391

P
P
P
P
N

TO-l06
TO-106
TO-18
TO-18
TO-18

PN4342-18
PN4360-18
2N4318
2N5115
2N4391

8991
8991
8991
8811
5102

T0-92
TO-92
TO-92
TO-18
TO-18

2N3993A
2N3994
2N3994A
2N4084
2N4085

P
P
P
N
N

T0-72
TO-72
T0-72
T0-71
T0-71

2N4084
2N4085

8811
8811
8811
8312
8312

T0-72
TO-72
T0-72
T0-71
TO-71

2N4392
2N4393
2N4416
2N4416A
2N4445

N
N
N
N
N

TO-18
TO-18
TO-72
TO-72
TO-18

2N4392
2N4393
2N4416
2N4416A

5102
5102
5025
5025
5807

TO-18
TO-18
T0-72
T0-72
TO-52

2N4091
2N4092
2N4093
2N4117
2N4117A

5102
5102
5102
5325
5325

TO-18
TO-18
TO-18
TO-72
TO-72

2N4446
2N4447
2N4448
2N4856
2N4856A

N
N
N
N
N

TO-18
TO-18
TO-18
TO-18
TO-18

5807
5807
5807
5102
5102

TO-52
TO-52
TO-52
TO-18
TO-18

2N4091
2N4092
2N4093
2N4117
2N4117A

N
N
N
N
N

TO-18
TO-18
TO-18
T0-72
TO-72

2N3820
2N5462
2N3921

2N5116
2N5116
2N5116
2N5116

2N5363

2N5432
2N5433
2N5432
2N5433
2N4856
2N4856A

JFET Cross Reference Guide
Industry
PIN

Polarity

2N4857
2N4857A
2N4858
2N4858A
2N4859

Package

Direct
Replacement

N
N
N
N
N

TO-18
TO-18
TO-18
TO-18
TO-18

2N4859A
2N4860
2N4860A
2N4861
2N4861A

N
N
N
N
N

TO-18
TO-18
TO-18
TO-18
TO-18

2N4867
2N4868
2N4869
2N4977
2N4978

N
N
N
N
N

TO-72
TO-72
TO-72
TO-18
TO-18

2N4979
2N5018
2N5019
2N5020
2N5021

N
P
P
P
P

TO-18
TO-18
TO-18
TO-18
TO-18

2N5033
2N5045
2N5046
2N5047
2N5078

P
N
N
N
N

2N5103
2N5104
2N5105
2N5114
2N5115
2N5116
2N5158
2N5159
2N5163
2N5196

(Continued)

Closest
Equivalent
Replacement

Process
Package

Package
Type

Industry
PIN

Polarity

2N4857
2N4857A
2N4858
2N4858A
2N4859

5102
5102
5102
5102
5102

TO-18
TO-18
TO-18
TO-18
TO-18

2N5197
2N5198
2N5199
2N5245
2N5246

2N4859A
2N4860
2N4860A
2N4861
2N4861A

5102
5102
5102
5102
5102

TO-18
TO-18
TO-18
TO-18
TO-18

2N4339
2N3459
2N4341
2N5432
2N5433

5202
5202
5702
5807
5807

(,)

2N5434
2N5018
2N5019
2N5020
2N5021

TO-106
TO-71
TO-71
TO-71
TO-72

N
N
N
P
P
P
N
N
N
N

Package
Type

2N5197
2N5198
2N5199
2N5245-18
2N5246-18

8312
8312
8312
9097
9097

TO-18
TO-18
TO-18
TO-92
TO-92

TO-106
TO-92
TO-72
TO-72
TO-72

2N5247-18
2N5248
2N5358
2N5359
2N5360

9097
5094
5525
5525
5525

TO-92
TO-92
TO-72
TO-72
TO-72

N
N
N
N
N

TO-72
TO-72
TO-72
TO-72
TO-72

2N5361
2N5362
2N5363
2N5364
2N5397

5525
5525
5525
5525
9025

TO-72
TO-72
TO-72
TO-72
TO-72

2N5398
2N5432
2N5433
2N5434
2N5452

N
N
N
N
N

TO-72
TO-18
TO-18
TO-18
TO-71

2N5398
2N5432
2N5433
2N5434
2N5452

9025
5807
5807
5807
8312

TO-72
TO-72
TO-72
TO-72
TO-71

TO-92
TO-71
TO-71
TO-71
TO-72

2N5453
2N5454
2N5457
2N5458
2N5459

N
N
N
N
N

TO-71
TO-71
TO-92
TO-92
TO-92

2N5453
2N5454
2N5457
2N5458
2N5459

8312
8312
5592
5592
5592

TO-71
TO-71
TO-92
TO-92
TO-92

5025
5025
5025
8811
8811

TO-72
TO-72
TO-72
TO-18
TO-18

2N5460
2N5461
2N5462
2N5471
2N5472

P
P
P
P
P

TO-92
TO-92
TO-92
TO-72
TO-72

2N5460
2N5461
2N5462

8991
8991
8991
8911
8911

TO-92
TO-92
TO-92
TO-18
TO-18

8811
8807
5807
5072
8312

TO-18
TO-52
TO-52
TO-18
TO-18

2N5473
2N5474
2N5475
2N5476
2N5484

P
P
P
P
N

TO-72
TO-72
TO-72
TO-72
TO-92

8911
8911
8911
8911
5092

TO-18
TO-18
TO-18
TO-18
TO-92

Direct
Replacement

N
N
N
N
N

TO-71
TO-71
TO-71
TO-106
TO-106

2N5247
2N5248
2N5358
2N5359
2N5360

N
N
N
N
N

TO-18
TO-18
TO-18
TO-52
TO-52

2N5361
2N5362
2N5363
2N5364
2N5397

5807
8811
8811
8811
8991

TO-52
TO-18
TO-18
TO-18
TO-92

PN5033-18
2N5045
2N5046
2N5047
2N5078

8991
8312
8312
8312
5025

TO-72
TO-72
TO-72
TO-18
TO-18

2N5103
2N5104
2N5105
2N5114
2N5115

TO-18
TO-18
TO-18
TO-106
TO-71

2N5116

.j,.

2N5433
2N5432
PN5163-18
2N5196

Closest
Equivalent
Replacement

Process
Package

Package

2N5020
2N5020
2N5020
2N5020
2N5020
2N5020
2N5484

9p!n~ 9:>U9J9J9t:1 SSOJO

II

13:fr

JFET Cross Reference Guide
JFET Cross Reference Guide (Continued)

t

Industry
PIN

Polarity

2N5485
2N5486
2N5515
2N5516
2N5517

N
N
N
N
N

Package

Direct
Replacement

T0-92
T0-92
TO-71
TO-71
TO-71

2N5485
2N5486
2N5515
2N5516
2N5517

Closest
Equivalent
Replacement

Process
Package

Package
Type

Industry
PIN

5092
5092
9512
9512
9512

TO-92
TO-92
TO-71
TO-71
TO-71

2N5669
2N5670
2N5717
2N5718
2N5801

N

TO-92
TO-92
TO-92
TO-92
TO-92

N
N
N
N
N

TO-92
TO-78
TO-78
TO-78
TO-78

Polarity
N
N
N
N

Package

Closest
Equivalent
Replacement

Process
Package

Package
Type

5092
5092
5292
5292
9092

TO-92
TO-92
TO-92
TO-92
TO-92

2N5902
2N5903
2N5904
2N5905

9092
8424
8424
8424
8424

TO-92
TO-78
TO-78
TO-78
TO-78

Direct
Replacement
2N5668
2N5670

PN3686
PN4302
J210
J212

2N5518
2N5519
2N5520
2N5521
2N5522

N
N
N
N
N

TO-71
TO-71
TO-71
TO-71
TO-71

2N5518
2N5519
2N5520
2N5521
2N5522

9512
9512
9512
9512
9512

TO-71
TO-71
TO-71
TO-71
TO-71

2N5802
2N5902
2N5903
2N5904
2N5905

2N5523
2N5524
2N5545
2N5546
2N5547

N
N
N
N
N

TO-71
TO-71
TO-71
TO-71
T0-71

2N5523
2N5524
2N5545
2N5546
2N5547

9512
9512
8312
8312
8312

TO-71
TO-71
TO-71
TO-71
TO-71

2N5906
2N5907
2N5908
2N5909
2N5911

N
N
N
N
N

TO-78
TO-78
TO-78
TO-78
TO-78

2N5906
2N5907
2N5908
2N5908
2N5911

8424
8424
8424
8424
9324

TO-78
TO-78
TO-78
TO-78
TO-78

2N5549
2N5555
2N5556
2N5557
2N5558

N
N
N
N
N

TO-72
TO-92
TO-72
T0-72
TO-72

2N5555
2N5556
2N5557
2N5558

9025
5092
5025
5025
5025

TO-72
TO-92
TO-72
TO-72
TO-72

2N5912
2N5949
2N5950
2N5951
2N5952

N
N
N
N
N

TO-78
TO-106
TO-106
TO-106
TO-106

2N5912
2N5949-18
2N5950-18
2N5951-18
2N5952-18

9324
5097
5097
5097
5097

TO-78
TO-92
TO-92
TO-92
TO-92

2N5561
2N5562
2N5563
2N5564
2N5565

N
N
N
N
N

TO-71
TO-71
TO-71
TO-71
TO-71

2N5561
2N5562
2N5563
2N5564
2N5565

9812
9812
9812
9612
9612

TO-71
TO-71
TO-71
TO-71
TO-71

2N5953
2N6483
2N6484
2N6485
2SK11

N
N
N
N
N

TO-106
TO-71
TO-71
TO-71
TO-72

2N5953-18
2N6483
2N6484
2N6485
2N3459

5097
9512
9512
9512
5202

TO-92
TO-71
TO-71
TO-71
TO-18

2N5566
2N5592
2N5593
2N5594
2N5638

N
N
N
N
N

TO-71
TO-72
TO-72
TO-72
TO-92

2N5566

2N5638

9612
5092
5092
5092
5192

TO-71
TO-92
TO-92
TO-92
TO-92

2SK12
2SK13
2SK15
2SK19
2SK30

N
N
N
N
N

TO-72
TO-72
TO-72
TO-106
TO-92

2N4340
2N4340
2N4340
2N5485-18
PN4304

5202
5202
5202
5092
5292

TO-18
TO-18
TO-18
TO-92
TO-92

2N5639
2N5640
2N5653
2N5654
2N5668

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

2N5639
2N5640
2N5653
2N5654
2N5668

5192
5192
5192
5192
5092

TO-92
TO-92
TO-92
TO-92
TO-92

2SK37
2SK48
2SK68
3SK22
3SK23

N
N
N
N
N

8-69
TO-72
TO-92
TO-72
TO-72

2N5484
2N3686
PF5101
2N5078
2N5397

5092
5225
5192
5025
9025

TO-92
TO-72
TO-92
TO-72
TO-72

2N5397

PN5163-18
PN5163-18
PN5163-18

JFET Cross Reference Guide (Continued)

~

en

Industry
PIN

Polarity

3SK28
A5T3821
A5T3822
A5T3823
A5T3824

N
N
N
N
N

TO-72
TO-92
TO-92
TO-92
TO-92

A5T5460
A5T5461
A5T5462
BC264A
BC264B

P
P
P
N
N

BC264C
BC264D
BF244A
BF244B
BF244C

Direct
Replacement

Closest
Equivalent
Replacement

Package
Type

J108-18
J109-18

5292
5892
5892
5892
5892

TO-92
TO-92
TO-92
TO-92
TO-92

TO-106
TO-106
TO-106
TO-106
TO-106

JllO-18
Jlll-18
Jl12-18
Jl13-18
Jl14-18

5892
5192
5192
5192
9092

TO-92
TO-92
TO-92
TO-92
TO-92

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

J174-18
J175-18
J176-18
Jl77-18
J201-18

8894
8894
8894
8894
5292

TO-92
TO-92
TO-92
TO-92
TO-92

E202
E203
E204
E210
E211

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

J202-18
J203-18
PN4220-18

5292
5292
5592
9092
9092

TO-92
TO-92
TO-92
TO-92
TO-92

TO-92
TO-92
TO-92
TO-92
TO-92

E212
E230
E231
E232
E270

N
N
N
N
P

TO-106
TO-106
TO-106
TO-106
TO-106

J212-18
PN3821-18
PN3684-18
J203-18
J270-18

9092
5292
5292
5292
8894

TO-92
TO-92
TO-92
TO-92
TO-92

5097
5097
5025
5025
5025

TO-92
TO-92
TO-72
TO-72
TO-72

E271
E300
E304
E305
E308

P
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

J271-18
J300-18
J304-18
J305-18
J308-18

8894
9092
5092
5092
9292

TO-92
TO-92
TO-92
TO-92
TO-92

5102
5102
5102
5292
5292

TO-18
TO-18
TO-18
TO-92
TO-92

E309
E310
E311
E312
E430

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-71

J309-18
J310-18
J309

9292
9292
9292
9292
9612

TO-92
TO-92
TO-92
TO-92
TO-71

Package
Type

Industry
PIN

5025
5525
5525
5029
5525

TO-72
TO-72
TO-72
TO-72
TO-72

E103
E106
E107
E108
E109

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

J203-18

2N3821
2N3822
2N3823
2N3824

TO-92
TO-92
TO-92
TO-92
TO-92

2N5460
2N5461
2N5462
BC264A
BC264B

8991
8991
8991
5097
5097

TO-92
TO-92
TO-92
TO-92
TO-92

EllO
Elll
El12
El13
El14

N
N
N
N
N

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

BC264C
BC264D
BF244A
BF244B
BF244C

5097
5097
5094
5094
5094

TO-92
TO-92
TO-92
TO-92
TO-92

E174
E175
E176
El77
E201

BF245A
BF245B
BF245C
BF246A
BF246B

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

BF245A
BF245B
BF245C
BF246A
BF246B

5097
5097
5097
5194
5194

TO-92
TO-92
TO-92
TO-92
TO-92

BF246C
BF247A
BF247B
BF247C
BF256A

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

BF246C
BF247A
BF247B
BF247C
BF256A

5194
5197
5197
5197
5097

BF256B
BF256C
BFW10
BFWll
BFW61

N
N
N
N
N

TO-92
TO-92
TO-72
TO-72
TO-72

BF256B
BF256C

BSV78
BSV79
BSV80
E10l
E102

N
N
N
N
N

TO-18
TO-18
TO-18
TO-106
TO-106
-

2N5078

2N4224
2N5558
2N4224

-

2N4856
2N4857
2N4858
J201-18
J202-18

Closest
Equivalent
Replacement

Process
Package

Direct
Replacement

Process
Package

Package

Polarity

Package

J108-18
J108-18

J210-18
J211-18

J310-18
2N5566

i
I

,

I

8P!"9 8:)U8J8J8t;1 SSOJO .l3:1r

II

JFET Cross Reference Guide

JFET Cross Reference Guide (Continued)

8;

Industry
PIN

Polarity

ESM4091
ESM4093
ESM4302
ESM4303
ESM4304

N
N
N
N
N

FT0654A
FT0654B
FT0654C
FT3820
GET5457

N
N
N
P
N

GET5458
GET5459
IMF3954
IMF3954A
IMF3955

N
N
N
N
N

IMF3956
IMF3957
IMF3958
IMF6485
1T101

N
N
N
N

m08
ITE3066
ITE3067
ITE3068
ITE4117

Package

Direct
Replacement

FO-18
F0-18
F0-18
F0-18
FO-18

2N4091
2N4091
PN4302-18
PN4303-18
PN4304-18

Closest
Equivalent
Replacement

2N3824
2N3824
2N4221
TO-18

2N3820-18
2N5457

Process
Package

Package
Type

Industry
PIN

Polarity

5102
5102
5292
5292
5292

TO-18
TO-18
TO-92
TO-92
TO-92

ITE4867
ITE4868
J108
J109
J110

N
N
N
N
N

TO-106
TO-106
TO-92
TO-92
TO-92

5525
5525
5202
8994
5592

TO-72
TO-72
TO-18
T0-92
TO-92

J111
J111A
J112
J112A
J113

N
N
N
N
N

TO-92
TO-92
T0-92
TO-92
T0-92

T0-92
TO-92
TO-71
TO-71
T0-71

J113A
J114
J174
J175
J176

N
N
N
P
P

TO-92
T0-92
TO-92
TO-92
TO-92

Package

Closest
Equivalent
Replacement

Process
Package

Package
Type

5292
5292
5892
5892
5892

T0-92
TO-92
TO-92
TO-92
TO-92

5192
5192
5192
5192
5192

TO-92
TO-92
TO-92
TO-92
TO-92

J114
J174
J175
J176

5192
9092
8894
8894
8894

TO-92
TO-92
TO-92
TO-92
TO-92

Direct
Replacement

PN3686-18
PN3685-18
J108
J109
J110
J111
PN4091
J112
PN4092
J113
PN4093

T0-71
TO-71
T0-71

2N3954
2N3954A
2N3955

5592
5592
8312
8312
8312

P

T0-71
T0-71
T0-71
T0-71
T0-18

2N3956
2N3957
2N3958
2N6485
2N5114

8312
8312
8312
9512
8811

TO-71
TO-71
TO-71
TO-71
T0-18

J177
J201
J202
J203
J210

P
N
N
N
N

T0-92
T0-92
TO-92
TO-92
TO-92

J177
J201
J202
J203
J210

8894
5292
5294
5292
9092

TO-92
TO-92
TO-92
TO-92
TO-92

N
N
N
N
N

T0-106
T0-106
T0-106
TO-106

2N5486
2N4340
2N4338
2N4338

5092
5202
5202
5202
5392

TO-92
TO-18
TO-18
TO-18
TO-92

J211
J212
J230
J231
J232

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

J211
J212

9092
9092
5292
5292
5292

TO-92
TO-92
TO-92
TO-92
TO-92

ITE4118
ITE4119
ITE4338
ITE4339
ITE4340

N
N
N
N
N

T0-106
T0-106
T0-106
TO-106
TO-106

5392
5392
5202
5202
5202

TO-92
TO-92
TO-18
TO-18
TO-18

J270
J271
J300
J304
J305

P
P
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

J270
J271
J300
J304
J305

8894
8894
9092
5092
5092

TO-92
TO-92
TO-92
TO-92
TO-92

ITE4341
ITE4391
ITE4392
ITE4393
ITE4416

N
N
N
N
N

T0-106
T0-106
TO-106
T0-106
T0-106

5202
5192
5192
5192
5092

TO-18
TO-92
TO-92
TO-92
TO-92

J308
J309
J310
J401
J402

N
N
N
N
N

TO-92
T0-92
TO-92
MiniDIP
MiniDIP

J308
J309
J310
J401
J402

9292
9292
9292
9860
9860

TO-92
TO-92
TO-92
MiniDIP
MiniDIP

2N5458
2N5459

PN4117-18
PN4118-18
PN4119-18
2N4338
2N4339
2N4340
2N4391
PN4391-18
PN4392-18
PN4393-18
PN4416-18

J202
J202
J203

JFET Cross Reference Guide (Continued)
Industry
PIN

~
.....

Polarity

Package

Direct
Replacement

Closest
Equivalent
Replacement

Process
Package

Package
Type

Industry
PIN

Polarity

Package

Closest
Equivalent
Replacement

Process
Package

Package
Type

J210-18
J211-18
J212-18

5092
9092
9092
9092
9092

TO-92
TO-92
T0-92
TO-92
TO-92

J300-18
J304-18
J305-18
J308-18
J308-18

9092
5092
5092
9292
9292

TO-92
TO-92
TO-92
TO-92
T0-92

9292
5192
5192
5292
5292

T0-92
TO-92
TO-92
T0-92
T0-92

5292
5292
5092
5192
5192

TO-92
TO-92
TO-92
T0-92
TO-92

Direct
Replacement

J403
J404
J405
J406
J410

N
N
N
N
N

MiniDiP
MiniDIP
MiniDIP
MiniDIP
MiniDIP

J403
J404
J405
J406
J410

9860
9860
9860
9860
8360

MiniDIP
MiniDIP
MiniDIP
MiniDIP
MiniDIP

J5105
K114-18
K210-18
K211-18
K212-18

N
N
N
N
N

J411
J412
J3970
J3971
J3972

N
N
N
N
N

MiniDIP
MiniDIP
TO-92
TO-92
TO-92

J411
J412

8360
8360
5192
5192
5192

MiniDIP
MiniDIP
TO-92
TO-92
T0-92

K300-18
K304-18
K305-18
K308-18
K309-18

N
N
N
N
N

J4091
J4092
J4093
J4220
J4221

N
N
N
N
N

TO-92
TO-92
T0-92
T0-92
T0-92

PN4091
PN4092
PN4093
PN4220
PN4221

5192
5192
5192
5592
5592

T0-92
TO-92
TO-92
TO-92
TO-92

K310-18
KE510
KE511
KE3684
KE3685

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106

J4222
J4223
J4224
J4302
J4303

N
N
N
N
N

T0-92
T0-92
TO-92
T0-92
TO-92

PN4222
PN4223
PN4224
PN4302
PN4303

5592
5092
5092
5292
5292

TO-92
TO-92
TO-92
TO-92
TO-92

KE3686
KE3687
KE3823
KE3970
KE3971

N
N
N
N
N

TO-106
T0-106
TO-106
TO-106
TO-106

J4304
J4338
J4339
J4391
J4392

N
N
N
N
N

TO-92
T0-92
TO-92
T0-92
TO-92

PN4304

PN4391
PN4392

5292
5292
5292
5192
5192

TO-92
TO-92
TO-92
TO-92
TO-92

KE3972
KE4091
KE4092
KE4093
KE4220

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

PN4091-18
PN4092-18
PN4093-18
PN422Q-18

5192
5192
5192
5192
5592

TO-92
T0-92
TO-92
T0-92
TO-92

J4393
J4416
J4856
J4857
J4858

N
N
N
N
N

TO-92
T0-92
T0-92
TO-92
T0-92

PN4393
PN4416
PN4856
PN4857
PN4858

5192
5092
5192
5192
5192

TO-92
TO-92
TO-92
TO-92
TO-92

KE4221
KE4222
KE4223
KE4224
KE4391

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

PN4221-18
PN4222-18
PN4223-18
PN4224-18
PN4391-18

5592
5592
5092
5092
5192

TO-92
T0-92
TO-92
TO-92
T0-92

J4859
J4860
J4861
J5103
J5104

N
N
N
N
N

T0-92
T0-92
T0-92
T0-92
T0-92

PN4859
PN4860
PN4861

5192
5192
5192
5092
5092

TO-92
TO-92
TO-92
TO-92
TO-92

KE4392
KE4393
KE4416
KE4856
KE4857

N
N
N
N
N

TO-106
TO-106
TO-106
TO-106
TO-106

PN4392-18
PN4393-18
PN4416-18
PN4856-18
PN4857-18

5192
5192
5092
5192
5192

TO-92
TO-92
T0-92
TO-92
TO-92

PN4391
PN4392
PN4393

PN3687
PN3686

J305
J305

TO-92

J304
J114

J310-18
J111
J111
PN3684-18
PN3685-18
PN3686-18
PN3687-18
PN4224-18
PN4391-18
PN4392-18
PN4393-18

I

-

ap!ne aoua.laJal::l SSO.l:) 13:1r

II

JFET Cross Reference Guide

JFET Cross Reference Guide (Continued)
Industry
PIN

~

t>

Polarity

Package

Direct
Replacement

Closest
Equivalent
Replacement

PN4858-18
PN4859-18
PN4860-18
PN4861-18

Process
Package

Package
Type

Industry
PIN

5192
5192
5192
5192
5092

T0-92
T0-92
T0-92
T0-92
T0-92

MPF161
MPF256
MPF820
MPF970
MPF971

P
N
N
P
P

T0-92
T0-92
T0-92
T0-92
TO-92

5092
5092
5092
5025
5025

T0-92
T0-92
T0-92
T0-72
T0-72

MPF4391
MPF4392
MPF4393
NDF9401
NDF9402

N
N
N
N
N

TO-92
TO-92
T0-92
TO-78
T0-78

TO-18
TO-18
TO-18
TO-18
TO-18

NDF9403
NDF9404
NDF9405
NDF9406
NDF9407

N
N
N
N
N

TO-78
T0-78
TO-78
T0-71
TO-71

Polarity

Package

Direct
Replacement

Closest
Equivalent
Replacement

Process
Package

Package

Pl086
P1087

8991
9092
9292
8891
8891

TO-92
TO-92
TO-92
TO-92
T0-92

NDF9406
NDF9407

5192
5192
5192
9412
9412

T0-92
T0-92
TO-92
T0-71
TO-71

9412
9412
9412
9412
9412

T0-71
TO-71
T0-71
TO-71
TO-71

2N4224
2N4224

9412
9412
9412
5025
5025

TO-71
TO-71
TO-71
TO-72
TO-72

2N5461

Type

KE4858
KE4859
KE4860
KE4861
KE51 03

N
N
N
N
N

TO-106
TO-l06
TO-l06
TO-l06
TO-l06

KE51 04
KE5105
KK4416-18
MFE2000
MFE2001

N
N
N
N
N

TO-l06
TO-l06
PN4416-18
TO-72
TO-72

J305-18
J304-18

MFE2004
MFE2005
MFE2006
MFE2007
MFE2008

N
N
N
N
N

TO-18
TO-18
TO-18
TO-18
TO-18

2N4093
2N4092
2N4091
2N4857
2N4391

5102
5102
5102
5102
5102

MFE2009
MFE2010
MFE2011
MFE2012
MFE4007

N
N
N
N
P

TO-18
TO-18
TO-18
TO-18
TO-72

2N4856
2N4856
2N5433
2N5433
2N5020

5102
5102
5807
5807
8911

TO-18
TO-18
TO-52
TO-52
TO-18

NDF9408
NDF9409
NDF941 0
NF500
NF501

N
N
N
N
N

T0-71
TO-71
T0-71
T0-72
T0-72

MFE4008
MFE4009
MFE4010
MFE4011
MPF102

P
P
P
P
N

TO-72
TO-72
TO-72
TO-72
TO-92

2N2608
2N3329
2N3330
2N3331
MPF102

8911
8923
8923
8923
5092

TO-18
T0-72
T0-72
T0-72
T0-92

NF506
NF510
NF511
NF520
NF521

N
N
N
N
N

TO-72
TO-18
TO-18
TO-72
TO-72

2N3823
2N4092
2N4092
2N4224
2N4220

5025
5102
5102
5025
5525

TO-72
TO-18
TO-18
TO-72
TO-72

MPF103
MPF104
MPF105
MPF106
MPF107

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

MPF103
MPF104
MPF105
MPF106
MPF107

5592
5092
5592
5092
5092

T0-92
T0-92
T0-92
T0-92
T0-92

NF522
NF523
NF530
NF531
NF532

N
N
N
N
N

TO-72
TO-72
TO-18
TO-18
T0-18

2N4224
2N4220
2N3822
2N3821
2N3822

5025
5525
5525
5525
5525

TO-72
TO-72
TO-72
TO-72
TO-72

MPF108
MPF109
MPF110
MPF111
MPF112

N
N
N
N
N

TO-92
TO-92
TO-92
TO-92
TO-92

MPF108
MPF109
MPF110
MPFlll
MPFl12

5092
5092
5092
5092
5092

T0-92
T0-92
T0-92
T0-92
T0-92

NF533
NF3819
NF4302
NF4303
NF4304

N
N
N
N
N

TO-18
TO-18
TO-18
TO-18
TO-18

2N3821

5525
5094
5292
5292
5292

TO-72
TO-92
TO-92
TO-92
TO-92

J305-18

2N4416
2N4416

I

MPF256
MPF820

PN4391
PN4392
PN4393

NDF9408
NDF9409
NDF9410
NDF9406
NDF9407
NDF9408
NDF9409
NDF9410

2N3819-18
PN4302-18
PN4303-18
PN4304-18

JFET Cross Reference Guide (Continued)

~

ki

Industry
PIN

Polarity

NF4445
NF4446
NF4447
NF4448
NF5101

N
N
N
N
N

TO-18
T0-18
T0-18
T0-18
T0-72

NF51 02
NF51 03
NF5163
NF5457
NF5458

N
N
N
N
N

TO-72
T0-72
T0-18
T0-18
T0-18

NF5459
NF5484
NF5485
NF5486
NF5555

N
N
N
N
N

NF5638
NF5639
NF5640
NF5653
NF5654

Direct
Replacement

Closest
Equivalent
Replacement

Package
Type

PN4221
PN4222
PN4223
PN4224
PN4302

5592
5592
5092
5092
5292

TO-92
TO-92
TO-92
TO-92
TO-92

TO-92
TO-92
TO-92
T0-92
T0-92

PN4303
PN4304
PN4342
PN4360
PN4391

5292
5292
8991
8991
5192

TO-92
TO-92
TO-92
T0-92
T0-92

N
N
N
N
N

T0-92
T0-92
T0-92
T0-92
T0-92

PN4392
PN4393
PN4416
PN4856
PN4857

5192
5192
5092
5192
5192

T0-92
T0-92
T0-92
T0-92
T0-92

PN4858
PN4859
PN4860
PN4861
PN5033

N
N
N
N
N

T0-92
T0-92
T0-92
T0-92
T0-92

PN4858
PN4859
PN4860
PN4861
PN5033

5192
5192
5192
5192
8991

TO-92
TO-92
TO-92
TO-92
TO-92

T0-92
T0-92
T0-92
T0-92
T0-92

PN5163
SU2000
SU2020
SU2021
SU2022

N
N
N
N
N

T0-92
T0-71
T0-71
T0-71
TO-71

PN5163
2N3822
2N5196
2N5196
2N5196

5092
5525
8312
8312
8312

TO-92
TO-72
T0-71
T0-71
T0-71

5192
5192
5292
5292
5292

T0-92
TO-92
TO-92
T0-92
T0-92

SU2023
SU2024
SU2025
SU2026
SU2027

N
N
N
N
N

T0-71
TO-71
T0-71
T0-71
T0-71

2N5196
2N5196
2N5196
2N5196
2N5196

8312
8312
8312
8312
8312

T0-71
T0-71
T0-71
T0-71
T0-71

5292
5192
5192
5192
5292

TO-92
T0-92
T0-92
T0-92
T0-92

SU2028
SU2029
SU2030
SU2033
SU2034

N
N
N
N
N

T0-71
TO-71
T0-71
T0-71
T0-71

2N5196
2N5196
2N4082
2N5561
2N5561

8312
8312
8312
8312
8312

TO-71
T0-71
T0-71
T0-71
T0-71

Direct
Replacement

N
N
N
N
N

TO-92
T0-92
TO-92
T0-92
TO-92

PN4303
PN4304
PN4342
PN4360
PN4391

N
N
N
N
N

T0-92
T0-92
T0-92
T0-92
T0-92

PN4392
PN4393
PN4416
PN4856
PN4857

5192
5192
5192
5192
5192

T0-92
T0-92
T0-92
T0-92
T0-92

PF5101

8891
8891
5192
5192
5192

PF51 02
PF51 03
PN3684
PN3685
PN3686
PN3687
PN4091
PN4092
PN4093
PN4220

Package
Type

Industry
PIN

Polarity

NF5101

5807
5807
5807
5807
5125

TO-52
TO-52
TO-52
TO-52
T0-72

PN4221
PN4222
PN4223
PN4224
PN4302

NF51 02
NF5103
PN5163-18
2N5457-18
2N5458-18

5125
5125
5072
5592
5592

T0-72
T0-72
T0-72
T0-92
T0-92

T0-18
TO-18
T0-18
TO-18
TO-72

2N5459-18
2N5484-18
2N5485-18
2N5486-18
2N5555-18

5592
5092
5092
5092
5092

N
N
N
N
N

TO-18
TO-18
TO-18
TO-18
TO-18

2N5638-18
2N5639-18
2N5640-18
2N5653-18
2N5654-18

P1088E
P1087E
PF510
PF511
PF5101

P
P
P
P
N

TO-106
TO-106
T0-18
TO-18
T0-92

P1086-18
P1087-18

PF5102
PF5103
PF3684
PN3885

PN3688

N
N
N
N
N

T0-92
TO-92
TO-92
TO-92
TO-92

PN3687
PN4091
PN4092
PN4093
PN4220

N
N
N
N
N

TO-92
TO-92
T0-92
TO-92
TO-92

2N5432
2N5433
2N5432
2N4856

PN4392-18
PN4392-18

Closest
Equivalent
Replacement

Process
Package

Package

Process
Package

Package

BP!n!) BOUBJBIBY SSOJ:) 13:1f

II

JFET Cross Reference Guide

JFET Cross Reference Guide (Continued)
Industry
PIN

~

Polarity

Package

Direct
Replacement

Closest
Equivalent
Replacement

Process
Package

Package
Type

Industry
PIN

Polarity

Package

Direct
Replacement

SU2035
SU2076
SU2077
SU2078
SU2079

N
N
N
N
N

T0-71
TO-71
TO-71
T0-71
TO-71

2N5561
2N5561
2N5561
2N3955
2N3956

8312
8312
8312
8312
8312

T0-71
T0-71
T0-71
T0-71
TO-71

TD5905
TD5905A
TD5906
TD5906A
TD5907

N
N
N
N
N

T0-18/8
T0-18/8
T0-18/8
T0-18/8
T0-18/8

SU2080
SU2081
SU2098
SU2098A
SU20988

N

T0-71
T0-71
T0-71
T0-71
T0-71

U404
U404
2N3954
2N3954
2N3954A

9812
9812
8312
8312
8312

TO-71
T0-71
TO-71
T0-71
T0-71

TD5907A
TD5908
TD5908A
TD5909
TD5909A

N
N
N
N
N

T0-18/8
T0-18/8
T0-18/8
T0-18/8
TO-18/8

SU2099
SU2099A
SU2365
SU2365A
SU2366

N
N

8312
8312
9812
9812
9812

TO-71
T0-71
TO-71
TO-71
T0-71

TD591 0
TD5910A
TD5911
TD5911A
TD5912

N

N
N

2N3955A
2N3955A
U401
U401
U402

N
N

N

T0-71
T0-71
T0-71
T0-71
T0-71

TO-18/8
T0-18/8
T0-18/8
T0-18/8
TO-18/8

SU2366A
SU2367
SU2367A
SU2368
SU2368A

N
N
N
N
N

TO-71
T0-71
T0-71
T0-71
TO-71

U402
U403
U403
U404
U404

9812
9812
9812
9812
9812

TO-71
TO-71
TO-71
TO-71
TO-71

TD5912A
TIS25
TIS26
TIS27
TIS34

N
N
N
N
N

TO-18/8
T0-5/6
TO-5/6
TO-5/6

SU2369
SU2369A
SU2652M
SU2653M
SU2654M

N
N
N
N
N

T0-71
T0-71
MiniDIP
MiniDIP
MiniDIP

U405
U405
J401
J401
J401

9812
9812
9860
9860
9860

TO-71
TO-71
MiniDIP
MiniDIP
MiniDIP

TIS41
TIS42
TIS58
TIS59
TIS73

N
N
N
N
N

TO-18
TO-92
TO-92
TO-92
TO-18

SU2655M
SU2656M
TD5452
TD5453
TD5454

N
N
N
N
N

MiniDIP
MiniDIP

9860
9860
8312
8312
8312

MiniDIP
MiniDIP
TO-71
T0-71
TO-71

TIS74
TIS75
TIS88A
TP5114
TP5115

N
N
N
P
P

T0-18
TO-18
TO-18
TO-18
TO-18

TIS74
TIS75

T0-18/8
TO-18/8
T0-18/8

J402
J404
2N5452
2N5453
2N5454

TD5902
TD5902A
TD5903
TD5903A
TD5904
TD5904A

N
N
N
N
N
N

T0-18/8
T0-18/8
T0-18/8
T0-18/8
T0-18/8
T0-18/8

8424
8424
8424
8424
8424
8424

T0-78
TO-78
T0-78
TO-78
TO-78
TO-78

TP5116
U110
U112
U146
U147
U148

P
P
P
P
P
P

T0-18
T0-18
TO-18
T0-18
TO-18
TO-18

2N5116

N
N
N
N

-

2N5902
2N5902
2N5903
2N5903
2N5904
2N5904

N
N

Closest
Equivalent
Replacement

Process
Package

Package
Type

8424
8424
8424
8424
8424

TO-78
TO-78
T0-78
T0-78
T0-78

8424
8424
8424
8424
8424

T0-78
T0-78
T0-78
TO-78
TO-78

8424
8424
9324
9324
9324

TO-78
TO-78
TO-78
TO-78
TO-18

2N5912
U401
U402
U403
2N5486

9324
9812
9812
9812
5092

T0-78
T0-71
TO-71
T0-71
T0-92

2N4859
PN4392

5192
5192
5094
5094
5197

T0-92
T0-92
T0-92
TO-g2
T0-92

5197
5197
5092
8811
8811

. T0-92
T0-92
T0-92
T0-18
T0-18

8811
8911
8911
8911
8911
8911

T0-18
T0-18
T0-18
T0-18
T0-18
T0-18

2N5905
2N5905
2N5906
2N5906
2N5907
2N5907
2N5908
2N5908
2N5909
2N5909
2N591 0
2N591 0
2N5911
2N5911
2N5912

TO-92

TIS58 .
TIS59
TIS73

2N5486
2N5114
2N5115
2N5020
2N4318
2N5020
2N5020
2N2608

JFET Cross Reference Guide (Continued)
Industry
PIN

~

~

Polarity

Closest
Equivalent
Replacement

Process
Package

Package
Type

Industry
PIN

Polarity

TO-72
T0-72
TO-18
TO-18
TO-18

2N3823
2N4416
2N4338
2N4340
2N4341

5025
5025
5202
5202
5202

TO-72
TO-72
TO-18
TO-18
TO-18

Ul837E
U1897
U1897E
U1898
U1898E

N
N
N
N
N

TO-106
TO-l06
TO-106
TO-l06
TO-l06

2N4393
2N4392
2N4391

5102
5102
5102
8312
8312

TO-18
TO-18
TO-18
TO-71
TO-71

U1899
U1899E
U1994
U1994E
U2047

N
N
N
N
N

TO-l06
TO-106
TO-106
TO-106
TO-92

8312
8312
8312
9324
8811

TO-71
TO-71
TO-71
TO-78
TO-18

U2047E
UC155
UC200
UC201
UC220

N
N
N
N
N

8811
8811
8811
9207
9207

TO-18
TO-18
TO-18
TO-52
TO-52

UC241
UC250
UC251
UC400
UC401

9207
9007
9207
9207
5807

TO-52
TO-52
TO-52
TO-52
TO-52

5807
5807
9812
9812
9812
9812
9812
9812
9324
9324

Package

Ul83
Ul84
U197
Ul98
U199

N

U200
U201
U202
U231
U232

N
N

N
N

TO-18
TO-18
TO-18
T0-71
TO-71

U233
U234
U235
U257
U300

N
N
N
N
P

T0-71
TO-71
T0-71
TO-78
TO-18

U301
U304
U305
U308
U309

P
P
P
N

TO-18
TO-18
TO-18
TO-52
TO-52

U310
U312
U316
U317
U320

N
N
N
N

N

N
N
N
N
N

TO-52
TO-18
8-69
8-69
T0-5

U321
U322
U401
U402
U403

N
N
N
N
N

T0-5
TO-5
TO-71
TO-71
TO-71

U404
U405
U406
U440
U441

N
N
N
N
N

TO-71
TO-71
TO-71
TO-71
TO-71

N

Direct
Replacement

U231
U232
U233
U234
U235
U257
2N5114
2N5145
2N5114
2N5116
U308
U309
U310
U312
U309
U310
2N5433
2N5433
2N5432
U401
U402
U403
U404
U405
U406
2N5911
2N5912

-

Closest
Equivalent
Replacement

Process
Package

Package

U1898-18

5092
5192
5192
5192
5192

TO-92
TO-92
TO-92
TO-92
TO-92

U1899-18
PN4416-18
PN4416-18
PN4416

5192
5192
5092
5092
5092

T0-92
TO-92
TO-92
T0-92
TO-92

TO-106
TO-72
TO-72
TO-72
TO-72

PN4416-18
2N4416
2N4393
2N4416
2N4220

5092
5025
5102
5025
5525

TO-92
TO-72
TO-18
TO-72
T0-72

N
N
N
P
P

TO-72
TO-18
TO-18
TO-72
TO-72

2N3822
2N4391
2N4392
2N2609
2N5019

5525
5102
5102
8811
8811

TO-72
TO-18
TO-18
TO-18
TO-18

UC410
UC420
UC588
UC703
UC705

P
P
N
N
N

TO-72
TO-72
TO-lOS
TO-72
TO-72

2N2609
2N3329
PN4416-18
2N3822
2N3824

8811
8923
5092
5525
5525

TO-18
TO-72
TO-92
T0-72
TO-72

TO-52
TO-52
TO-71
TO-71
TO-71

UC707
UC714
UC734
UC734E
UC755

N
N
N
N
N

TO-18
TO-72
TO-72
TO-l06
TO-18

2N4391
2N4416
2N4416
PN4416-18
2N4391

5102
5025
5025
5092
5102

TO-18
TO-72
TO-72
TO-92
TO-18

TO-71
TO-71
TO-71
TO-78
TO-78
-

UC756
UCB05
UCB07
UCB14
UCB51
---

N
P
P
P

TO-18
TO-72
TO-72
TO-72
TO-18_ - - - -

2N4224
2N3331
2N4861
2N3331
2N2608

5025
8923
5102
8923
8911

TO-72
TO-72
TO-18
TO-72
TO-18

-

-p-

Package

Direct
Replacement

2N5486-18
U1897
U1897-18
U1898
U1899

--

8p!n~

Type

80U8J8j8a:1 SSOJO !3:1r

~ r-----------------------------------------------------------------------------~

"CI

':;
CJ
.~

Ii
o

~

~

~Netional

~ semiconductor

Ultra-Fast Recovery Rectifier
Cross Reference Guide
Ultra-Fast Reverse Recovery Rectifiers
Industry
Type

Part
No,

1

BYV32-100
BYV32-150
BYV32-200
BYV32-50

FRP2010CC
FRP2015CC
FRP2020CC
FRP2005CC

FE8C
FE8D
MUR1505
MUR1510

E
.:!::

BYV79-l00
BYV79-l50
BYV79-200
BYV79-50

FRP16l0
FRP16l5
FRP1620
FRP1605

BYW28-l00
BYW29-150
BYW29-200
BYW29-50

FRP8l0
FRP815
FRP820
FRP805

BYW51-l00
BYW5l-l50
BYW51-50
BYW80-l00

FRP16l0CC
FRP1615CC
FRP1605CC
FRP810

BYW80-l50
BYW80-200
BYW80-50
BYW99-100

~

~

:;)

Industry
Type

Part
No.

Industry
Type

Part
No.

FRP8l5
FRP820
FRP1605
FRP1610

UES1502
UES1503
UES1504
UES2401

FRP16l0
FRP16l5
FRP1620
FRP1605CC

MUR1515
MUR1520
MUR1605CT
MUR1610CT

FRP16l5
FRP1620
FRP1605CC
FRP1610CC

UES2402
UES2403
UES2404
UES2601

FRP16l0CC
FRP1615CC
FRP1620CC
FRK3205CC

. MUR16l5CT
MUR1620CT
MUR805
MUR810

FRP1615CC
FRP1620CC
FRP805
FRP8l0

UES2602
UES2603
UES2604
VHE1401

FRK32l0CC
FRK32l5CC
FRK3220CC
FRP1005

MUR8l5
MUR820
RUR810
RUR815

FRP8l5
FRP820
FRP8l0
FRP815

VHE1402
VHE1403
VHE1404
VHE2401

FRP1010
FRP1015
FRP1020
FRP2005CC

FRP8l5
FRP820
FRP805
FRK32l0CC

RUR820
RURD1610
RURD1615
RURD1620

FRP820
FRM32l0CC
FRM32l0CC
FRM3220CC

VHE2402
VHE2403
VHE2404
VHE2601

FRP20l0CC
FRP2015CC
FRP2020CC
FRK3205CC

BYW99-l50
BYW99-50
FE16A
FE16B

FRK3220CC
FRK3205CC
FRP1605
FRP16l0

RURD8l0
RURD815
RURD820
UES1401

FRP1610CC
FRP1615CC
FRP1620CC
FRP805

VHE2602
VHE2603
VHE2604

FRK32l0CC
FRK32l5CC
FRK3220CC

FE16C
FE16D
FE8A
FE8B

FRP1615
FRP1620
FRP805
FRP8l0

UES1402
UES1403
UES1404
UES150l

FRP810
FRP8l5
FRP820
FRP1605

1-52

r--------------------------------------------------------------------------,c

=ip

~National

;:

~ Semiconductor

:JJ

CD

~

Ultra-Fast Recovery Rectifier Selection Guide
TO-3P (40)

TO-220AB (38)

-<:JJ

!.CD'

-...f

TO-220AC (41)

[

o·

=

G')

TLlG/10015-2

TLlG/10015-1

TL/G/10015-3

CD

Single Rectifier Per Package
Part
Number

VRSM
(V)

IF(AVG)

(A)

trr (ns)
(Note 1)

(Note 2)

Package
Style

FRP805
FRP810
FRP815
FRP820

50
100
150
200

8
8
8
8

50
50
50
50

0.95
0.95
0.95
0.95

TO-220AC (41)
TO-220AC (41)
TO-220AC (41)
TO-220AC (41)

FRP840
FRP850
FRP860

400
500
600

8
8
8

75
75
75

1.50
1.50
1.50

TO-220AC (41)
TO-220AC (41)
TO-220AC (41)

FRP1005
FRP1010
FRP1015
FRP1020

50
100
150
200

10
10
10
10

50
50
50
50

0.95
0.95
0.95
0.95

TO-220AC
TO-220AC
TO-220AC
TO-220AC

(41)
(41)
(41)
(41)

FRPl605
FRP1610
FRP1615
FRP1620

50
100
150
200

16
16
16
16

50
50
50
50

0.95
0.95
0.95
0.95

TO-220AC
TO-220AC
TO-220AC
TO-220AC

(41)
(41)
(41)
(41)

VAY)

Dual Rectifiers, Common Cathode
Part
Number

VRSM
(V)

IF\"VG)

A)

trr (ns)
(Note 1)

(Note 2)

FRP1605CC
FRP1610CC
FRP1615CC
FRP1620CC

50
100
150
200

16
16
16
16

50
50
50
50

0.95
0.95
0.95
0.95

TO-220AB
TO-220AB
TO-220AB
TO-220AB

FRPl640CC
FRP1650CC
FRP1660CC

400
500
600

8
8
8

75
75
75

1.50
1.50
1.50

TO-220AB (38)
TO-220AB (38)
TO-220AB (38)

FRP2005CC
FRP2010CC
FRP2015CC
FRP2020CC

50
100
150
200

20
20
20
20

50
50
50
50

0.95
0.95
0.95
0.95

TO-220AB
TO-220AB
TO-220AB
TO-220AB

FRK3205CC
FRK3210CC
FRK3215CC
FRK3220CC

50
100
150
200

32
32
32
32

50
50
50
50

0.95
0.95
0.95
0.95

Note 1: Pulsed Measurement

c
0:

= 300 flo. pulse width.

1-53

VAY)

Package
Style
(38)
(38)
(38)
(38)

(38)
(38)
(38)
(38)

TO-3P(40)
TO-3P(40)
TO-3P(40)
TO-3P(40)

~National

Semiconductor

,~~

EBe

TL/G/10016-4

TO-226 Planar Power Transistor Selection Guide
Part Number
NPN
PNP

Ic

hFE

(A)

VCEO
(V)

Min

2N7053
MPSWOl
MPSW01A
MPSW05
MPSW06

1.5
1.5
1.5
1.5
1

100
30
40
60
80

MPSW10
MPSW13
MPSW14
MPSW42
MPSW43

0.1
0.5
0.5
0.1
0.1

MPSW45
MPSW45A

@

Max VCE ISAT)
(V) @ Ic(mA)

lc(mA)

VCE(V)

10k
55
55
80
80

100
10
10
50
50

5
1
1
1
1

1.5
0.5
0.5
0.4
0.4

250
lA
lA
250
250

300
30
30
300
200

25
5k
10k
25
25

1
10
10
1
1

10
5
5
10
10

0.75
1.5
1.5
0.5
0.5

30
100
100
20
20

MPSW51
MPSW51A
MPSW55

1
1
1.5
1.5
1.5

40
50
30
40
60

25k
25k
55
55
80

200
200
10
10
50

5
5
1
1
1

1.5
1.5
0.7
0.7
0.5

1A
1A
1A
lA
250

MPSW56
MPSW63
MPSW64
MPSW92
MPSW93

1
0.5
0.5
0.1
0.1

80
30
30
300
200

80
5k
10k

50
10
10
10
10

1
5
5
10
10

0.5
1.5
1.5
0.5
0.5

250
100
100
20
20

40
40

Max

150k
150k

Pinout: EBC

'All TO·226AE: 1W, Free Air (TA = 25"C)

1·54

Po
(W)

•

•
•

•

fT

(MHz)

Process
(NPN/PNP)

125
50
50
50
50

06
37
38
38
39

45
125
125
50
50

48
05
05
48
48

100
100
50
50
50

05
05

50
125
125
50
50

77
78
78
79
61
61
76
76

~NatiOnal

Semiconductor

h

,$

C

TL/G/10016-5

TO-237 Planar Power Transistor Selection Guide
Part Number
NPN
PNP

PD
(W)

(MHz)

for

Process
(NPN/PNP)

·

60
60

48176
48/76

50

48

50

48

50

48

20

50

48

1

30

50

48

10

2

20

50

48

30

10

0.75

30

50

48

150
500
150
500
150

10
10
10
10
10

0.4

150

250

19

0.3

150

250

19

150

300

19/63

150
500
150
500

10
10
10
10

0.3
0.4
0.4

150

200

63

0.4

150

200

63

150
100
300
150
500
100
300
100
300

10
1

1.4
0.4

150
300

100
300

12/67

1
1
1
1
1

0.4
0.6
0.2
0.32
0.4

150
500
100
300
300

175

70

30

25

300

25

150
500
150
150
100

10
10
10
10
5

0.5
0.65
0.2
0.2
0.15

150

60

12/67

100
100
150

12
12
67

@

Ic
(A)

VCEO
(V)

Min

0.1
0.1

250
300

50
50

25
25

VCE(V)
20
20

2N6711
92PE487
2N6733
92PU391
2N6712
92PE488
2N6734
92PU392

0.1

160

30

30

10

1

30

0.1

200

40

10

10

2

20

0.1

250

30

30

10

1

30

0.1

250

40

10

10

2

2N6773
92PE489
2N6735
92PU393
2N6719
92PU10

0.1

300

30

30

10

0.1

300

40

10

0.1

300

40

TN2219

0.5

30

TN2218A

0.5

40

TN2905

0.5

40

100
30
40
25
100

TN2904A

0.5

60

TN2905A

0.5

60

1
1

40
45

1

40

92PE869
92PE871

TN2219A

TN3053
2N6737

92PE870
92PE872

TN4037

TN3467
TN3724

1

30

TN3725

1

50

TN4036

1

65

TN4033

1
1
1

80
80
80

TN21 02
TN3019
TN3020

40
40
100
50

hFE
Max

300
120
300
120
300

50
80
40
40
40
60
40
60
40

250
150

40
25
100
40
100

120

120
150
150

300
120
300

Ic(mA)

'All TO-237: 850 mW. Free Air (TA = 25'C)
2.0W. Collector Lead at 25'C
1W-l.2W Mounted Flush in PC Board

Max VCE ISAT)
(V) @ c(mA)

Pinout 92PE
92PU. TN

1-55

150
150
150
ECB
EBC

•

•

·
•

•

25

Q)

"0

'5

CJ

c

o

g
Cii

(/)

o.

o

U;

·US
c

t!

Io.

~

o.
ftI
C
ftI

is:

TO-237 Planar Power Transistor Selection Guide
Part Number
NPN
PNP

2N6714
92PUOI
2N6715
92PUOIA
2N6724
92PU45
2N6705
92PE37A
2N6725
92PU45A
2N6706
92PE37B
2N6716
92PU05
2N6731
92PU100
2N6707
92PE37C
2N6717
92PU06

2N6726
92PU51
2N6727
92PU51A

2N6708
92PE77A

2N6709
92PE77B
2N6728
92PU55
2N6732
92PU200
2N6710
92PE77C
2N6720
92PU56

2N6720
92PU36
2N6721
92PU36A
2N6722
92PU36B
2N6723
92PU36C
Pinout: 92PE
92PU, TN

(Continued)
fT
(MHz)

Process
(NPN/PNP)

1000

50

37/77

0.5

1000

50

37177

1
1.5
0.5

200
1000
500

100

05

50

38178

5
5

1
1.5

200
1000

100

05

500

2

0.5

500

50

38178

"500

1

0.35

250

50

38178

350

2

0.35

350

50

39/79

40

50

2

0.5

500

50

39179

80

20

500

1

0.35

250

50

39179

150

30
30
30
30
30
30
30
30

100
100
100
100
100
100
100
100

10
10
10
10
10
10
10
10

0.5

100

10

36

10

36

10

36

10

36

Ie
(A)

VeEo
(V)

2

30

2

40

1

40

2

45

1

Min

hFE
Max

@

Max VeE (SAT)
(V)
@ le(mA)

le(mA)

VeE(V)

60
55
60
55
25k
4k
40

100
1000
100
1000
200
1000
500

1
1
1
1
5
5
2

0.5

50

25k
4k

200
1000

2

60

40

2

60

20

1

80

100

1

80

1
0.5
0.5
0.5
0.5

200
250
300

300

300
300
300
300

ECS
ESC

'All TO·237: 650 mW, Free Air (TA ~ 25'C)
2.0W, Collector Lead at 25'C
lW-l.2W Mounted Flush in PC Board

1·56

Po

(W)

·

·

•

."

iii

~NatiOnal

:::::II
I»

...

Semiconductor

."

i...

-I

bI
IffI

iil
:::::II

o

!o

...

~

CD
!l0'

:::::II
G)

TL/G/10016-6

c
is:
CD

TO-202 Planar Power Transistor Selection Guide
Part Number
NPN
PNP

Ic
(A)

VCEO
(V)

Min

NSD457
NSE457

0.1
0.1

160
160

NSD458
NSE458
D40N1
D40N2
NSD131
NSD132
NSE869
NSE871

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

D40N3
D40N4
NSD133
NSD134
NSD459
NSE459
NSDU10
D40N5
NSD135

hFE
Max

@

PD'
(W)

fy
(MHz)

Procell
(NPN/PNP)

0.03
0.03

1.75
1.75

50
50

48
48

1
1

0.03
0.03

50
50
50
50

1
1

0.02
0.02

1.75
1.75
1.67
1.67
1.75
1.75
1.8
1.8

48
48
48
48
48
48

60
60

48176
48176

0.02

1.67
1.67
1.75
1.75
1.75
1.75
1.75
1.67
1.75

50
50
50
50
50
50
60
50
50

48
48
48
48
48
48
48
48
48

0.5
0.5
0.5
0.5
0.5
0.5
0.5

1.33
1.33
1.33
1.33
1.33
1.33
1.33

75
75
75
75
75
75
75

05
05
05
05
05
05
05

1
1
1

0.1
0.1
0.1

1.67
1.67
1.67

50
50
50

36
36
36

Max VCE (SAT)
(V) @ Ic(A)

Ic(A)

VCE(V)

25
25

0.03
0.03

10
10

1
1

250
250
250
250
250
250
250
300

25
25
30
80
30
60
50
50

0.03
0.03
0.02
0.02
0.03
0.03
25m
25m

10
10
10
10
10
10
20
20

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

300
300
300
300
300
300
300
375
375

30
80
30
60
25
25
40
20
30

90
180
90
180

0.02
0.02
0.03
0.03
0.03
0.03
0.03
0.02
0.03

10
10
10
10
10
10
10
10
10

1
1
1
1
1.5

0.02
0.02
0.03
0.03
0.02

1

D40C1
D40C2
D40C3
D40C4
040C5
040C7
040C8

0.5
0.5
0.5
0.5
0.5
0.5
0.5

30
30
30
40
40
50
50

10k
40k
90k
10k
40k
10k
40k

60k

0.2
0.2
0.2
0.2
0.2
0.2
0.2

5
5
5
5
5
5
5

1.5
1.5
1.5
1.5
1.5
1.5
1.5

040P1
040P3
040P5

0.5
0.5
0.5

120
180
225

40
40
40

0.08
0.08
0.08

10
10
10

NSE870
NSE872

90
180
90
180

90

60k
60k

040D1
040D2
04003

041D1
041D2

1.5
1.5
1.5

30
30
30

50
120
290

150
300

0.1
0.1
0.1

.2
2
2

0.5
0.5

0.5
0.5

1.67
1.67
1.67

200
200
200

38178

04004
04005
NSD102
NSD103

04104
04105
NSD202
NSD203

1.5
1.5
1.5
1.5

45
45
45
45

50
120
50
120

150
360
150
360

0.1
0.1
0.1
0.1

2
2
5
5

0.5
0.5
0.2
0.2

0.5
0.5
0.1
0.1

1.67
1.67
1.75
1.75

200
200
60
60

38178
38178
38178
38178

'TA

= 2S'C
1·57

38/78
38

TO-202 Planar Power Transistor Selection Guide (Continued)
Part Number
NPN
PNP

Ic
(A)

VCEO
(V)

Min

hFE
Max

Ic(A)

VCE(V)

@

Max VCE (SAT)
(V) @ Ic(A)

PD
(W)

(MHz)

Process
(NPN/PNP)

for

04007
04008
2N6551

04107
04108
2N6554

1.5
1.5
1.5

60
60
60

50
120
80

150
360
250

0.1
0.1
0.05

2
2
1

1
1
0.5

0.5
0.5
0.25

1.67
1.67
2.0

200
200
75

38178
38178
38178

040010
040011
040013
040014

041010
041011
041013
041014

1.5
1.5
1.5
1.5

75
75
75
75

50
120
50
120

150
360
150
360

0.1
0.1
0.1
0.1

2
2
2
2

1
1
1
1

0.5
0.5
0.5
0.5

1.67
1.67
1.67
1.67

200
200
200
200

38178
38178
38178
38178

2N6552
NS0104
NS0105
NS0106
2N6553

2N6555
NS0204
NS0205
NS0206
2N6556

1
1
1
1
1

80
80
80
100
100

80
50
120
50
80

250
150
360
150
250

0.05
0.1
0.1
0.1
0.05

1
5
5
5
1

0.5
0.2
0.2
0.2
0.5

0.25
0.1
0.1
0.1
0.25

1.75
1.75
1.75

75
60
60
60
75

39179
39179
39179
39179
39/79

NS036
NS036A

0.5
0.5

150
200

30
30

300
300

0.1
0.1

10
10

0.5
0.5

0.1
0.1

1.75
1.75

10
10

36
36

NS036B
NS036C

0.5
0.5

250
300

30
30

300
300

0.1
0.1

10
10

0.5
0.5

0.1
0.1

1.75
1.75

10
10

36
36

2
1
1
2
2
2

30
30
30
30
30
30

60
10k
5k
50
10k
10k

0.1
0.1
0.1
0.1
0.2
0.2

1
5
5
2
5
5

0.5
1.5
1.5
1
1.5
1.5

1
0.1
0.1
1
1.5
1.0

1.75
1.75
1.75
1.3
1.67
1.67

50
100
100

37177

75
75

37/77
37/77

2
2
1
1
1
1
1

40
40
40
40
40
40
40

60
50
15k
25k
25k
10k
5k

0.1
0.15
0.2
0.2
0.2
0.1
0.1

1
10
5
5
5
5
5

0.5
0.4
1.5
1.5
1
1.5
1.5

1
0.15
1
1
0.2
1
1

1.75
1.75
1.75
1.75
1.75
1.75
1.75

50
50
100
100
100
100
100

37177
37177

0.2
0.2
0.2

5
5
5

1.5
1.5
1

1.5
1.0
0.2

1.67
1.67
1.75

75
75
100

05/61
05/61
05

0.05
0.1
0.05
0.1
0.05

1
2
1
2
1

0.5
1
0.5
1
0.5

0.25
1
0.25
1
0.25

1.75
1.3
1.75
1.3
1.75

50

38178
38178
39179
38178

50

39/79

NSOUOl
NS0151
NS0153
040El
040Kl
040K3

NSOU51

041El
041Kl
041K3

250k

05
05

37177

NSOU01A
NSOU02
2N6548
2N6549
NSOU45
NS0152
NS0154

NSOU51A
NSOU52

040K2
040K4
NSOU45A

041K2
041K4

1
1
1

50
50
50

10k
10k
25k

NSOU05
040E5
NSOU06
040E7
NSOU07

NSOU55
041E5
NSOU56
041E7
NOSU57

2
2
2
2
2

60
60
80
80
100

80
50
80
50
80

042Cl
042C2
042C3

043Cl
043C2
043C3

3
3
3

30
30
30

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

042C4
D42C5
D42C6

043C4
D43C5
D43C6

3
3
3

45
45
45

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

D42C7
D42C8
D42C9

D43C7
D43C8
D43C9

3
3
3

60
60
60

25
100
40

220
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

2.1
2.1
2.1

50
50
50

4P/5P
4P/5P
4P/5P

D42Cl0
D42C12

D43Cl0
D43C12

3
3

80
80

25
40

120

0.2
0.2

1
1

0.5
0.5

1
1

2.1
2.1

50
50

4P/5P
4P/5P

Pinout: NSOU. NSO. 040. 041
NSE. 042. D43

300

150k
250k

150k

EBC
BCE

1·58

50

05
05
05
05
05

~NatiOnal

Semiconductor
0
(

~
TLlG/10016-7

TO-220 Planar Power Transistor Selection Guide
Part Number
NPN
PNP

Ic
(A)

VCEO
(V)

Min

hFE
Max

@

IdA)

VCE(V)

Max VCE (SAT)
(V) @ Ic(A)

PD'
(W)

(MHz)

Process
(NPN/PNP)

for

D44C1
D44C2
D44C3

D45C1
D45C2
D45C3

3
3
3

30
30
30

25
40
40

120
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

50
50
50

4P/5P
4P/5P
4P/5P

D44C4
D44C5
D44C6

D45C4
D45C5
D45C6

3
3
3

45
45
45

25
40
40

120
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

50
50
50

4P/5P
4P/5P
4P/5P

D44C7
D44C8
D44C9

D45C7
D45C8
D45C9

3
3
3

60
60
60

25
40
40

120
120

0.2
0.2
0.2

1
1
1

0.5
0.5
0.5

1
1
1

30
30
30

50
50
50

4P/5P
4P/5P
4P/5P

D44C10
D44C12

D45C10
D45C12

3
3

80
80

25
40

120

0.2
0.2

1
1

0.5
0.5

1
1

30
30

50
50

4P/5P
4P/5P

D44H1
D44H2

D45H1
D45H2

10
10

30
30

35
60

2
2

1
1

1
1

8
8

50
50

50
50

40/50
40/50

D44H4
D44H5

D45H4
D45H5

10
10

45
45

35
60

2
2

1
1

1
1

8
8

50
50

50
50

40/50
40/50

D44H7
D44H8

D45H7
D45H8

10
10

60
60

35
60

2
2

1
1

1
1

8
8

50
50

50
50

40/50
40/50

D44H10
D44H11

D45H10
D45H11

10
10

80
80

35
60

2
2

1
1

1
1

8
8

50
50

50
50

40/50
40/50

Pinout: BCE
'To = 25'C

1·59

CP

:2
::s
c

Planar Power Process Selection Guide

"

HIGH VOLTAGE
PLANAR

0

:;::;

GEN. PURPOSE
PLANAR
(FAST)

()

CP

400-

en
...

300-

"iii

r---

0

1i)

r---

-

DARLINGTON
PLANAR
(SUPER
HIGH
BETA)

'0

c

200-

i!

...

I-

!9

CP

~
Do

~
I

...

I

ca
C
ca

<18

140120-

36

76

10039
79

ii:

I-38
78

50-

30-

4P

5P
4Q

50

37
77

4H
5H

-

06

05
61

28"

28"

45"

31 "

60"

93"

25"

36"

O.IA

O.IA

lA

2A

SA

lOA

lA

2A

Dissipation (Watts)
Package
TO-92 (Note 1)

0.6

0.6

0.6

0.6

0.7

TO-237 (Notes 1.2)

0.8

0.8

0.8

0.8

2

2

10

12

TO-237 (Note 3)

2

2

2

2

0.8

0.85

TO-202 (Note 3)

8

10

15

10

TO-226 (Notes 1.2)

TO-220 (Note 3)

15
40

Note 1: TA = 25'C
Note 2: Will do 1W-1.2W In PC Board.
Note 3: Tc = 25"C

1-60

I
I 60 I

TL/G/10016-8

~National

~ Semiconductor
Substitution Guide for
Non-Listed Planar Power Part-Types
Industry
Part. No.

Package

NS
PartNo.

Package

Industry
Part. No.

Package

NS
Part No.

Package

2N21 02
2N2218A
2N2219A
2N2905
2N3019

TO-39
TO-39
TO-39
TO-39
TO-39

TN2102
TN2218A
TN2219A
TN2905
TN3019

TO-237
TO-237
TO-237
TO-237
TO-237

MPSU07
MPSU07
MPSU10
MPSU10
MPSU31

Mot 152
Mot 152
Mot 152
Mot 152
Mot 152

NSDU07
92PU07
NSDU10
92PU10
TN2102

TO-202
TO-237
TO-202
TO-237
TO-237

2N3020
2N3053
2N3467
2N3724
2N3725

TO-39
TO-39
TO-39
TO-39
TO-39

TN3020
TN3053
TN3467
TN3724
TN3725

TO-237
TO-237
TO-237
TO·237
TO-237

MPSU45
MPSU45
MPSU45A
MPSU51
MPSU51

Mot 152
Mot 152
Mot 152
Mot 152
Mot 152

NSDU45
NSDU45
NSDU45A
NSDU51
92PU51

TO-202
TO-237
TO-202
TO-202
TO-237

2N4032
2N4033
2N4037
MPSUOl
MPSUOl

TO-39
TO-39
TO-39
Mot 152
Mot 152

TN4032
TN4033
TN4037
NSDUOl
92PUOl

TO-237
TO-237
TO-237
TO-202
TO-237

MPSU51A
MPSU52
MPSU52
MPSU55
MPSU55

Mot 152
Mot 152
Mot 152
Mot 152
Mot 152

NSDU51A
NSPU52
92PU51A
NSDU55
92PU55

TO-202
TO-202
TO-237
TO-202
TO-237

MPSU01A
MPSU01A
MPSU02
MPSU02
MPSU03

Mot 152
Mot 152
Mot 152
Mot 152
Mot 152

NSDU01A
92PU01A
NSDU02
TN2219A
92PU391

TO-202
TO-237
TO-202
TO-237
TO-237

MPSU56
MPSU56
MPSU57
MPSU57

Mot 152
Mot 152
Mot 152
Mot 152

NSDU56
92PU56
NSDU57
92PU57

TO-202
TO-237
TO-202
TO-237

MPSU04
MPSU05
MPSU05
MPSU06
MPSU06

Mot 152
Mot 152
Mot 152
Mot 152
Mot 152

92PU319
NSDU05
92PU05
NSDU06
92PU06

TO-237
TO-202
TO-237
TO-202
TO-237

1-61

'?A National
~ Semiconductor
Power MOSFET Cross Reference
Power MOSFET Cross Reference
Industry

Part No.

NSPart
Number

Industry
Part No.

NSPart
Number

Industry

Part No.

NSPart
Number

2N6755
2N6756
2N6757
2N6758

2N6755
2N6756
2N6757
2N6758

2SK512
2SK552
2SK553
2SK554

IRF452
IRF831
IRF830
IRF841

BUZ63B
BUZ64
BUZ64A
BUZ71

IRF332
IRF352
IRF352
FMP18N05

2N6759
2N6760
2N6761
2N6762

2N6759
2N6760
2N6761
2N6762

2SK555
BUZ10
BUZ10A
BUZ20

IRF840
FMP18N05
FMP18N05
IRF530

BUZ71A
BUZ72
BUZ72A
BUZ73A

FMP18N05
IRF530
IRF532
IRF632

2N6763
2N6764
2N6765
2N6766

2N6763
2N6764
2N6765
2N6766

BUZ21
BUZ21A
BUZ23
BUZ24

IRF540
IRF540
IRF130
IRF150

BUZ74
BUZ74A
BUZ76
BUZ76A

IRF820
IRF822
IRF720
IRF722

2N6767
2N6768
2N6769
2N6770

2N6767
2N6768
2N6769
2N6770

BUZ25
BUZ30
BUZ31
BUZ32

IRF140
IRF632
IRF640
IRF630

084BK2
084BL2
084BM2
084BOl

IRF511
IRF510
IRF611
IRF711

2SK277
2SK278
2SK294
2SK295

IRF333
IRF332
IRF522
IRF522

BUZ32A
BUZ34
BUZ35
BUZ35A

MTP12N20
IRF240
IRF230
IRF230

084B02
084CKl
084CK2
084CL1

IRF710
IRF521
IRF521
IRF520

2SK296
2SK298
2SK299
2SK308

MTP3N35
IRF332
IRF431
IRF243

BUZ36
BUZ40
BUZ41
BUZ41A

IRF252
IRF822
IRF842
IRF830

084CL2
084CMl
084CM2
084CNl

IRF520
IRF621
IRF621
MTP7N18

2SK31 0
2SK311
2SK312
2SK313

IRF710
IRF823
IRF342
IRF441

BUZ42
BUZ42A
BUZ43
BUZ44

IRF832
IRF832
IRF422
IRF442

084CN2
084COl
084C02
084CRl

IRF620
IRF721
IRF720
IRF821

2SK319
2SK320
2SK324
2SK325

IRF720
IRF723
IRF352
IRF453

BUZ44A
BUZ44B
BUZ45
BUZ45B

IRF430
IRF430
IRF452
IRF452

084CR2
0840Kl
0840K2
0840L1

IRF820
IRF531
IRF531
IRF530

2SK338
2SK346
2SK355
2SK357

IRF730
IRF523
IRF241
IRF623

BUZ45C
BUZ46
BUZ46A
BUZ60

IRF453
IRF432
IRF430
IRF730

0840L2
0840Ml
0840M2
0840Nl

IRF530
IRF631
IRF631
MTP12N18

2SK382
2SK383
2SK428
2SK440

IRF822
IRF530
IRF543
IRF630

BUZ60A
BUZ60B
BUZ63
BUZ63A

IRF730
IRF732
IRF330
IRF330

0840N2
084001
084002
0840Rl

IRF630
IRF731
IRF730
IRF831

1-62

,

Power MOSFET Cross Reference
Industry
Part No.

(Continued)

NSPart
Number

Industry
Part No.

D84DR2
D84EKl
D84EK2
D84ELl

IRF830
IRF541
IRF541
MTP4N08

PM10l0M
PM10l0P
PM1203P
PM1204P

IRF132
IRF532
IRF521
IRF633

RFM10N15
RFM12N08
RFM12N10
RFM12N18

IRF243
IRF130
IRF130
IRF242

D84EL2
D84EMl
D84EM2
D84ENl

IRF540
IRF641
IRF641
IRF640

PM1206M
PM1206P
PM1503P
PM1504P

IRF231
IRF631
IRF611
IRF623

RFM12N20
RFM15N05
RFM15N06
RFM15N12

IRF242
IRF143
IRF143
IRF253

D84EN2
D84EQl
D84EQ2
D84ERl

IRF640
IRF741
IRF740
IRF841

PM1506M
PM1506P
PM1510M
PM1510P

IRF233
IRF633
IRF240
IRF643

RFM15N15
RFM18N08
RFM18Nl0
RFM25N05

IRF253
IRF142
IRF142
IRF141

D84ER2
D84MN2
D86DKl
D86DK2

IRF840
IRF610
IRF131
IRF131

PM509P
PM510P
PM512M
PM512P

IRF523
IRF521
IRF131
IRF531

RFM25N06
RFM4N35
RFM4N40
RFM6N45

IRF141
IRF333
IRF332
IRF431

D86DLl
D86DL2
D86DMl
D86DM2

IRF130
IRF130
IRF231
IRF231

PM518M
PM604P
PM605P
PM608P

IRF143
IRF513
IRF523
IRF521

RFM6N50
RFM7N35
RFM7N40
RFM8N18

IRF430
MTM8N35
MTM8N40
IRF232

D86DNl
D86DN2
086001
D86DQ2

IRF230
IRF230
IRF331
IRF330

PM609P
PM610P
PM612M
PM612P

IRF523
IRF521
IRF131
IRF531

RFM8N20
RFP10N12
RFP10N15
RFP12N08

IRF232
IRF643
IRF643
IRF530

D86DRl
D86DR2
D86EKl
D86ELl

IRF431
IRF430
IRF141
IRF140

PM614M
PM614P
PM618M
PM618P

IRF131
IRF531
IRF143
IRF543

RFP12N10
RFP12N18
RFP12N20
RFP15N05

IRF530
IRF642
IRF642
IRF543

D86EMl
D86ENl
D86EQl
D86EQ2

IRF241
IRF240
IRF341
IRF340

PM804P
PM805P
PM808P
PM814M

IRF512
IRF522
IRF520
IRF130

RFP15N06
RFP18N08
RFP18N10
RFP25N05

IRF543
IRF542
IRF542
FMP20N05

D86ERl
D86ER2
D86FQl
D86FQ2

IRF441
IRF440
IRF351
IRF350

PM814P
PM816M
PM816P
PM820M

IRF530
IRF152
MTP20N08
IRF140

RFP25N06
RFP2N08
RFP2N10
RFP2N12

IRF541
IRF512
IRF512
IRF611

D86FRl
D86FR2
IRFZ20
IRFZ22

IRF451
IRF450
FMP18N05
FMP18N05

PM820P
RFK10N45
RFK10N50
RFK12N35

IRF540
IRF453
IRF452
IRF353

RFP2N15
RFP2N18
RFP2N20
RFP4N05

IRF611
IRF612
IRF612
IRF513

MTP5N18
MTP5N20
MTP8N08
MTP8Nl0

IRF520
IRF520
IRF522
IRF522

RFK12N40
RFK25N18
RFK25N20
RFK30N12

IRF352
IRF252
IRF252
IRF251

RFP4N06
RFP4N35
RFP4N40
RFP6N45

IRF513
IRF733
IRF732
IRF841

MTP8N18
MTP8N20
MTP25N05
PM1006P

IRF630
IRF630
FMP20N05
IRF522

RFK30N15
RFK35N08
RFK35Nl0
RFM10N12

IRF251
IRF150
IRF150
IRF243

RFP6N50
RFP7N35
RFP7N40
RFP8N18

IRF840
IRF741
IRF740
IRF630

NSPart
Number

1-63

Industry
Part No.

NSPart
Number

~

e
G»

Power MOSFET Cross Reference
Industry
Part No.

NSPart
Number

RFP8N20
RRF320
RRF321
RRF322

IRF630
IRF320
IRF321
IRF322

~

RRF323
RRF330
RRF331
RRF332

Q.

'&;

IX:

~
o
t:iu..

...
~

::iii!

(Continued)
NSPart
Number

Industry
Part No.

NS Part
Number

RRF723
RRF730
RRF731
RRF732

IRF723
IRF730
IRF731
IRF732

VN1120N5
VN1200A
VN1201A
VN1210N5

IRF612
IRF641
IRF643
IRF520

IRF323
IRF330
IRF331
IRF332

RRF733
RRF820
RRF821
RRF822

IRF733
IRF820
IRF821
IRF822

VN1216N5
VN1220N5
VN2306N1
VN2310N1

IRF620
IRF620
IRF143
IRF142

RRF333
RRF420
RRF421
RRF422

IRF333
IRF420
IRF421
IRF422

RRF823
RRF830
RRF831
RRF832

IRF823
IRF830
IRF831
IRF832

VN2310N5
VN2316N1
VN2316N5
VN2320N1

IRF542
IRF242
IRF642
IRF242

RRF423
RRF430
RRF431
RRF432

IRF423
IRF430
IRF431
IRF432

RRF833
SD1002KD
SD1005CD
SD1005KD

IRF833
IRF430
IRF631
IRF231

VN2320N5
VN2335N1
VN2335N5
VN2340N1

IRF642
IRF341
IRF741
IRF340

RRF433
RRF510
RRF511
RRF512

IRF433
IRF510
IRF511
IRF512

SD1011KD
SD1012KD
SD1014CD
SD1021KD

IRF440
IRF431
IRF622
IRF330

VN2340N5
VN2345N1
VN2345N5
VN2350N1

IRF740
IRF433
IRF843
IRF442

RRF513
RRF520
RRF521
RRF522

IRF513
IRF520
IRF521
IRF522

SD500CD
SD500KD
SD900KD
STM3110

IRF833
IRF433
IRF442
IRF341

VN2350N5
VN3500A
VN3500D
VN3501A

IRF842
IRF331
IRF731
IRF333

RRF523
RRF610
RRF611
RRF612

IRF523
IRF610
IRF611
IRF612

STM3111
STM3112
STM360
STM361

IRF340
IRF453
IRF331
IRF330

VN3501D
VN3502A
VN4000A
VN4000D

IRF733
IRF430
IRF330
IRF730

RRF813
RRF620
RRF621
RRF622

IRF613
IRF620
IRF621
IRF622

STM362
VN0800A
VN0800D
VN0801A

IRF442
IRF130
IRF530
IRF132

VN4001A
VN4001D
VN4501A
VN4501D

IRF332
IRF732
IRF431
IRF831

RRF623
RRF710
RRF711
RRF712

IRF623
IRF710
IRF711
IRF712

VN0801D
VN1000A
VN1000D
VN1001A

IRF532
IRF130
IRF530
IRF132

VN4502A
VN4502D
VN5001A
VN5001D

IRF433
IRF833
IRF430
IRF830

RRF713
RRF720
RRF721
RRF722

IRF713
IRF720
IRF721
IRF722

VN1001D
VN1106N5
VN1110N5
VN1116N5

IRF532
IRF511
IRF510
IRF612

VN5002A
VN5002D
VNLOO1A
VNMOO1A

IRF432
IRF832
IRF331
IRF330

VNNOO2A
VNPOO2A

IRF443
IRF430

Industry
Part No.

1-64

r-----------------------------------------------------------------------------,

~

~...

~National

~ Semiconductor

:s:::

o(J)

"TI

m

-I

Metal TO-204AA/TO-204AE Power MOSFETs

(J)
(II

CD

!l

o·

:::J

G)

c::

c:
(II

TL/G/10018-1

Part
Number

voss
(V)

ROS(on)
(0)

lOR
(A)

Package
Style

Proc.

Part
Number

Voss

IRF450CF
IRF450
2N6770
IRF452
IRF440
IRF442
IRF430
2N6762
IRF432

500

0.320
0.400
Q.400
0.500
0.850
1.100
1.500
1.500
2.000

14.5
13.0
12.0
12.0
8.0
7.0
4.5
4.5
4.0

TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA

F4
F4
F4
F4
E3
E4
C4
C4
C4

IRF250CF
2N6766
IRF250
IRF252
IRF240
IRF242
2N6758
IRF230
IRF232

IRF451
IRF453
2N6769
IRF441
IRF443
IRF431
IRF433
2N6761

450

0.400
0.500
0.500
0.850
1.100
1.500
2.000
2.000

13.0
12.0
11.0
8.0
7.0
4.5
4.0
4.0

TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA

F4
F4
F4
E4
E4
C4
C4
C4

IRF350CF
IRF350
IRF352
2N6768
IRF340
IRF342
IRF330
2N6760
IRF332

400

0.240
0.300
Q.400
0.300
0.550
0.800
1.000
1.000
1.500

16.8
15.0
13.0
14.0
10.0
8.0
5.5
5.5
4.5

TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA

IRF351
IRF353
2N6767
IRF341
IRF343
IRF331
IRF333
2N6759

350

0.300
0.400
0.400
0.550
0.800
1.000
1.500
1.500

15.0
13.0
12.0
10.0
8.0
5.5
4.5
4.5

TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA

ROS(on)
(0)

lOR
(A)

Package
Style

Proc.

200

0.068
0.085
0.085
0.120
0.180
0.220
0.400
0.400
0.500

33.0
30.0
30.0
25.0
18.0
16.0
9.0
9.0
8.0

TO·204AE
TO·204AE
TO·204AE
TO·204AE
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA

F3
F2
F3
F3
E2
E2
C2
C2
C2

IRF251
2N6765
IRF253
IRF241
IRF243
IRF231
IRF233
2N6757

150

0.085
0.120
0.120
0.180
0.220
0.400
0.500
0.600

30.0
25.0
25.0
18.0
16.0
9.0
8.0
8.0

TO·204AE
TO·204AE
TO·204AE
TO·204AA
TO·204AA
TO·204AA
TO·204AA
TO·204AA

F3
F2
F3
E2
E2
C2
C2
C2

F3
F3
F3
F3
E3
E3
C3
C3
C3

IRF150CF
IRF150
2N6764
IRF152
IRF140
IRF142
2N6756
IRF130
IRF132

100

0.044
0.055
0.055
0.080
0.085
0.110
0.180
0.180
0.250

44.0
40.0
38.0
33.0
27.0
24.0
14.0
14.0
12.0

TO·204AE
TO·204AE
TO·204AE
TO·204AE
TO·204AE
TO·204AE
TO·204AA
TO·204AA
TO·204AA

F1
F1
F1
F1
E1
E1
C1
C1
C1

F3
F3
F3
F3
E3
C3
C3
C3

IRF151
2N6763
IRF153
IRF141
IRF143
IRF131
2N6755
IRF133

60

0.055
0.080
0.080
0.085
0.110
0.180
0.250
0.250

40.0
31.0
33.0
27.0
24.0
14.0
12.0
12.0

TO·204AE
TO·204AE
TO·204AE
TO·204AE
TO·204AE
TO·204AA
TO·204AA
TO·204AA

F1
F3
F1
E1
E1
C1
C1
C1

1·65

(V)

~
"g

~

r-----------------------------------------------------------------------------,
Plastic Encapsulated TO-220AB/TO-3P Power MOSFETs
TO·220AB

TO·3P

o

~

TL/G/l0018-2

TL/G/l0018-S

Part
Number

Voss
(V)

ROS(on)

(n)

lOR
(A)

Package
Style

Proc.

Part
Number

Voss
(V)

RoS(on)

(n)

lOR
(A)

Package
Style

Proc.

IRFP450CF
IRFP450
IRF840CF
IRFP440C
IRF840
IRFP440
IRF842
IRF830CF
IRF830
MTP4N50
IRF832
IRF820CF
IRF820
IRF822
MTP2N50

500

0.320
0.400
0.680
0.680
0.850
0.850
1.100
1.200
1.500
1.500
2.000
2.400
3.000
4.000
4.000

15.5
14.0
8.9
10.5
8.0
8.8
7.0
5.0
4.5
4.0
4.0
2.8
2.5
2.0
2.5

TO·3P
TO·3P
TO·220A9
TO·3P
TO·220AB
TO·3P
TO·220AB
TO·220AB
TO·220AB
TO·220AB
TO·220AB
TO·220AB
TO·220AB
TO·220AB
TO·220AB

F4
F4
E4
E3
E4
E3
E4
C4
C4
C4
C4
B5
B5
B5
95

IRFP351CF
IRFP351
IRFP341CF
IRF741
IRFP341
IRF743
IRF731
MTP5N35
IRF733
IRF721
IRF723
MTP3N35
IRF711
IRF713
MTP2N35

350

0.240
0.300
0.440
0.550
0.550
0.800
1.000
1.000
1.500
1.800
2.500
3.300
3.600
5.000
5.000

18.0
16.2
12.0
10.0
11.0
8.0
5.5
5.0
4.5
3.0
2.5
3.0
1.5
1.3
2.0

TO-3P
TO-3P
TO-3P
TO-22DAB
TO-3P
TO-220AB
TO-220AB
TO·220AB
TO-22DAB
TO-220AB
TO-22DAB
TO-220AB
TO-220AB
TO-220AB
TO-220AB

F3
F3
E3
E3
E3
E3
C3
C3
C3
B4
B4
B4
A3
A3
A3

IRFP451CF
IRFP451
IRFP441CF
IRF841
IRFP441
IRF843
MTP4N45
IRF831
IRF833
IRF821
IRF823
MTP2N45

450

0.320
0.400
0.680
0.850
0.850
1.100
1.500
1.500
2.000
3.000
4.000
4.000

15.5
14.0
10.5
8.0
8.8
7.0
4.0
4.5
4.0
2.5
2.0
2.5

TO·3P
TO·3P
TO·3P
TO·220AB
TO·3P
TO·220A9
TO·220AB
TO·220AB
TO·220A9
TO·220AB
TO·220AB
TO·220AB

F4
F4
F4
E4
E4
E4
C4
C4
C4
B5
B5
B5

200

IRFP350CF
IRFP350
IRF740CF
IRFP340CF
IRF740
IRFP340
IRF742
IRF730CF
IRF730
MTP5N40
IRF720CF
IRF732
IRF720
IRF722
MTP3N40
IRF710
IRF712
MTP2N40

400

0.240
0.300
0.440
0.440
0.550
0.550
0.800
0.800
1.000
1.000
1.440
1.500
1.800
2.500
3.300
3.600
5.000
5.000

18.0
16.2
11.0
12.0
10.0
11.0
8.0
6.2
5.5
5.0
3.8
4.5
3.0
2.5
3.0
1.5
1.3
2.0

TO·3P
TO·3P
TO·220AB
TO·3P
TO·220AB
TO·3P
TO·220AB
TO·220AB
TO·220A9
TO·220AB
TO·220A9
TO·220AB
TO·220AB
TO·220AB
TO·220AB
TO·220A9
TO·220AB
TO·22DAB

F3
F3
E3
E3
E3
E3
E3
C3
C3
C3
B4
C3
B4
B4
B4
A3
A3
A3

IRFP250CF
IRFP250
IRF640CF
IRFP240CF
IRF640
IRFP240
IRF642
IRF630CF
MTP12N20
IRF630
IRF632
IRF620CF
MTP7N20
IRF620
IRF622
IRF610
MTP2N20
IRF612

0.068
0.085
0.144
0.144
0.180
0.180
0.220
0.320
0.350
0.400
0.500
0.640
0.700
0.800
1.200
1.500
1.800
2.400

35.9
32.5
20.0
22.0
18.0
19.8
16.0
10.0
12.0
9.0
8.0
5.6
7.0
5.0
4.0
2.5
3.5
2.0

TO-3P
TO-3P
TO-220AB
TO-3P
TO-220AB
TO-3P
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-220AB
TO-22DAB
TO-22DAB
TO·220AB
TO-220AB
TO-22DAB
TO-220AB

F3
F3
E2
E2
E2
E2
E2
C2
C2
C2
C2
B3
B3
B3
93
A2
A2
A2

MTP12N18
MTP7N18
MTP2N18

180

0.350
0.700
1.800

12.0
7.0
3.25

TO-22DAB
TO-22DAB
TO-220AB

C2
B3
A2

IRFP251CF
IRFP251
IRFP241CF
IRF641
IRFP241
IRF643

150

0.068
0.085
0.144
0.180
0.180
0.220

35.9
32.5
22.0
18.0
19.8
16.0

TO-3P
TO·3P
TO-3P
TO-22DAB
TO-3P
TO·220AB

F3
F3
E2
E2
E2
E2

1·66

Plastic Encapsulated TO-220AB/TO-3P

(Continued)

o

~

..

TL/G/l0018-2

TUG/l0018-3

Voss

RDS(On)

IDR

(V)

(0)

(A)

Package
Style

Proc.

IRF631
IRF633
IRF621
IRF623
IRF611
IRF613

150

Q.400
0.500
0.800
1.200
1.500
2.400

9.0
8.0
5.0
4.0
2.5
2.0

TO-220AB
T0-220AB
TO·220AB
T0-220AB
TO·220AB
T0-220AB

C2
C2
B3
B3
A2
A2

IRFP150CF
IRFP150
IRF540CF
IRFP140CF
IRF540
IRFP140
IRF542
IRF530CF

100

0.044
0.055
0.068
0.068
0.085
0.085
0.110
0.144

47.5
43.0
30.0
33.0
27.0
29.5
24.0
16.0

TO·3P
T0-3P
TO·220AB
T0-3P
T0-220AB
TO-3P
TO·220AB
TO·220AB

F1
F1
E1
E1
E1
E1
E1

Part
Number

Part
Number
MTP20N10
IRF530
IRF520CF
IRF532
IRF520
MTP10N10
IRF522
IRF510
IRF512
MTP4N10

C3

Voss
(V)

100

IDR

(0)

(A)

Package
Style

Proc.

0.150
0.180
0.240
0.250
0.300
0.330
0.400
0.600
0.800
0.800

20.0
14.0
9.1
12.0
8.0
10.0
7.0
4.0
3.5
5.0

TO·220AB
TO-220AB
T0-220AB
TO-220AB
TO·220AB
TO-220AB
T0-220AB
TO-220AB
T0-220AB
TO·220AB

C2
C3
B2
C3
B2
C2
B2
A1
A1
A1

MTP20N08
MTP10N08
MTP4N08

80

0.150
0.330
0.800

20.0
10.0
5.0

T0-220AB
TO·220AB
T0-220AB

C1
C2
A1

IRFP151CF
IRFP151
IRFP141CF
IRF541
IRFP141

60

0.044
0.055
0.068
0.085
0.085

47.5
43.0
33.0
27.0
29.5

T0-3P
TO·3P
TO·3P
T0-220AB
TO·3P

F1
F1
E1
E1
E1

0.085
0.100
0.110
0.180
0.250
0.300
0.400
0.600
0.800

20.0
18.0
24.0
14.0
12.0
8.0
7.0
4.0
3.5

TO·220AB
TO·220AB
T0-220AB
TO·220AB
TO·220AB
TO-220AB
T0-220AB
TO-220AB
TO-220AB

B1
B1
E1
C3
C3
B2
B2
A1
A1

0.085
0.100

20.0
18.0

TO-220AB
TO-220AB

B1
B1

FMP18N06
FMP20N06
IRF543
IRF531
IRF533
IRF521
IRF523
IRF511
IRF513
FMP20N05
FMP18N05

1-67

RDS(on)

50

Section 2
Diodes

Section 2 Contents
Computer Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Leakage Diodes ......•........................................................
High Voltage Diodes.... ......... .............. ...... ...... .. .... .... . ... ........ .. .
General Purpose Diodes ........................................•................. ;.
Military Qualified Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Military Qualified Diode Arrays .......................................................
Diode Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zener Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matched Pair and Quad Assemblies ..................................................

2·2

2-3
2-6
2-7
2-8
2-9
2-10
2-11
2-14
2-16

c
o·
Q.

IjNational

CD

;

Semiconductor
Diode Data

Computer Diodes (Glass Package)
Device
No.

Package
No.

VRRM
V

IR

Min

nA
Max

@

VR
V

VF
V
Min

@

Max

IF
rnA

C

pF
Max

trr
na
Max

Teat
Condo

Proc.
No.

1N625

00-35

30

1000

20

1.5

4

1000

(Note 1)

04

1N914

00-35

100

25
5000

20
75

1.0

10

4

(Note 2)

04

1N914A

00-35

100

25
5000

20
75

1.0

20

4

(Note 2)

04

1N914B

00-35

100

25
5000

20
75

0.72
1.0

5
100

4

(Note 2)

D4

1N916

00-35

100

25
5000

20
75

1.0

10

4

(Note 2)

D4

1N916A

00-35

100

25
5000

20
75

1.0

20

4

(Note 2)

04

1N916B

00-35

100

25
5000

20
75

0.73
1.0

5
30

4

(Note 2)

04

1N3064

00-35

75

100

50

0.575
0.650
0.710
1.0

0.250
1.0
2.0
10.0

2

4

(Note 3)

04

1N3600

00-35

75

100

50

0.62
0.74
0.86
0.92
1.0

1.0
10.0
50.0
100.0
200.0

2.5

4

(Note 4)

D4

1N4009

00-35

35

100

25

1.0

30

4

2

(Note 2)

D4

1N4146

00-35

See Data for 1N914A1914B

1N4147

00-35

See Data for 1N914A1914B

1N4148

00-35

See Data for 1N914

1N4149

DO-35

See Data for 1N916
See Data for 1N3600
1.0

50

4

2

(Note 2)

04

0.55
0.59
0.67
0.70
0.81
0.88

0.1
0.25
1.0
2.0
10.0
20.0

4

2

(Note 2)

D4

4

2

(Note 2)

D4

4

2

(Note 2)

D4

0.54
0.66
0.76
0.82
0.87

1N4150

DO-35

1N4151

DO-35

75

50

50

1N4152

00-35

40

50

30

1N4153

00-35

75

50

50

See 1N4152

1N4154

00-35

35

100

25

1.0

0.49
0.53
0.59
0.62
0.70
0.74

2-3

30

Computer Diodes (Glass Package) (Continued)
VRRM
V

IR

VF
V

Max

Test
Condo

Proc.
No.

O.B

0.75

(Note 5)

03

0.250
1.0
2.0
10.0

2

2
4

(Note 2)
(Note 3)

04

0.010
0.1
1.0
10.0
20.0
50.0

1.0

750

(Note 5)

03

C

Test
Condo

Proc.
No.

Package
No.

1N4244

DO-7

20

100
250

10
15

1.0

20

1N4305

00-35

75

100

50

0.575
0.650
0.710
0.B5

1N4376

00-7

20

100

10

0.50
0.61
0.74
O.BB
0.95
1.10

Note 1: IF

~

Note 2: IF

=
=
=
=

Not. 3: IF
Note 4: IF
Nol. 5: IF

Min

nA
Max

@

VR
V

Min

@

Max

0.42
0.52
0.64
0.76
0.B1
0.89

C

trr
ns
Max

Device
No.

IF
mA

pF

30 rnA, VA = 35V, Recovery to 400 kn.
10 rnA, VA = 5V, RL = lOOn, Recovery to 1.0 rnA.
IA = 10 rnA, VR = 1.0V, RL = lOOn.
IR = lOrnA 10 200 mA, RL = lOon.
IR = lOrnA, RL = lOOn, Recovery to 1.0 rnA.

VRRM
V

IR

VF
V

Device
No.

Package
No.

Min

nA
Max

Max

trr
ns
Max

1N4446

DO-35

100

25

20

1.0

20

4.0

4.0

(Note 1)

04

1N4447

00-35

100

25

20

1.0

20

4.0

4,0

(Note 1)

04

1N444B

00-35

100

25

20

1,0

100

2.0

4.0

(Note 1)

04

1N4449

00-35

100

25

20

1.0

30

2,0

4,0

(Note 1)

04

1N4450

00-35

40

50

30

0,54
0.64
0,76
0.92
1,0

0,1
1.0
10
100
200

4.0

4.0

(Note 2)

04

1N4454

00-35

75

100

50

1,0

10

2,0

4.0

(Note 2)

04

1N52B2

00-35

BO

100

55

0.49
0,60
0,725
0,90
1,10
1.30

0,1
1.0
10.0
100.0
300.0
500,0

2,5

2.0

(Note 1)

04

BAX13

00-35

50

25
50
200

10
25
50

0.7
1.0
1,53

2.0
20.0
75,0

3,0

4,0

(Note 3)

D4

BAY71

00-35

50

100

35

0.5B
0.69
0.B8
1.0

0.1
1.0
10.0
20.0

2,0

2,0

(Note 4)

04

BAW75

00-35

35

100

25

1.0

30

2.0

(Note 4)

04

BAW76

00-35

75

100

50

1.0

100

2.0

(Note 4)

04

@

VR
V

Min

@

Max

0.42
0,52
0.64
O,BO

0.45
0,55
0.67
O,BO
0.92
1.05

0.46
0.57
0.69
0,76

2-4

IF
mA

pF

Computer Diodes (Glass Package) (Continued)
VRRM
V

IR

VR
V

VF
V

Max

Test
Condo

Proc.
No.

3.0

4.0

(Note 5)

04

0.010
0.1
1.0
10
20
50

1.3

0.75

(Note 2)

03

0.50
0.61
0.74
0.88
0.95
1.10

0.01
0.1
1.0
10
20
50

1.0

0.70

(Note 2)

03

0.53
0.64
0.79
0.94
1.00
1.35

0.01
0.1
1.0
10
20
50

1.3

0.75

(Note 2)

03

Package
No.

Min

nA
Max

Min

Max

BAY74

00-35

50

100

35

0.54
0.65
0.73
0.78
0.82
0.85

0.65
0.77
0.88
0.93
1.0
1.10

1.0
10.0
50.0
100.0
200.0
300.0

BAY82

00-7

15

100

12

0.41
0.53
0.64
0.77
0.80
0.90

0.53
0.66
0.79
0.94
1.00
1.35

F0700

00-7

30

50

20

0.42
0.52
0.64
0.76
0.81
0.89

F0777

00-7

15

100

8

0.42
0.52
0.64
0.76
0.81
0.89

Note 1: IF = 10 rnA, VR =

av, RL =

@

C

trr
ns
Max

IF

Device
No.

@

rnA

pF

1000, Recovery to 1.0 rnA.

FJI

Nota 2: IF = IR = 10 rnA, RL = 1000.
Nota 3: IF = 10 rnA, IR = 1 rnA, VR =
Nota 4: IF

= 10 mA, IR

=

a rnA, VR

=

av, RL =
av, RL =

1000.
1000, Recovery to 1 rnA.

Nota 5: IF = 10 rnA to 200 rnA, Recovary to 100% of IF.

VRRM
V

IR

VR
V

VF
V

Max

Test
Condo

Proc.
No.

2,5

4.0

(Note 2)

04

1.0
10,0
50.0
100.0

3.5

4.0

(Note 1)

04

1.0

100.0

3.0

4.0

(Note 2)

04

1.0

10.0

5.0

5.0

(Note 2)

04

Package
No.

Min

nA
Max

FOH600

00-35

75

100

50

0,65
0,79
0,86
0.92
1,0

1,0
10
50
100
200

FOH666

00-35

40

100

25

0.65
0,79
0.86
1.0

FOH900

00-35

45

500

40

FOH999

00-35

35

25

Nota 1: IF = IR =

@

1000
10 rnA, RL - 1000, Recovery to 0.1 IR.

Min

Note 2: IF = 10 rnA, IR = 10 mA, RL = 1000, Irr = 1.0 rnA.

2-5

C

trr
ns
Max

IF

Device
No.

@

Max

rnA

pF

Low Leakage Diodes (Glass Package)
Device
No.

Package
No.

VRRM

IR

V

VF

VR

IF

C
pF
Max

Proc
No.

10

D2

Min

nA
Max

1N456

DO-35

30

25

25

1.0

40

1N456A

DO-35

30

25

25

1.0

100

1N457

DO-35

70

25

60

1.0

20

1N457A

DO-35

70

25

60

1.0

100

1N458

DO-35

150

25

125

1.0

7

1N458A

DO-35

150

25

125

1.0

100

1N459

DO-35

200

25

175

1.0

3

1N459A

DO-35

200

25

175

1.0

100

D2

1N482B

DO-35

40

25

36

1.0

100

D2

1N483B

DO-35

80

25

70

1.0

100

D2

1N484B

DO-35

150

25

130

1.0

100

D2

1N485B

DO-35

200

25

180

1.0

100

D2

1N486B

DO-35

250

50

225

1.0

100

1N3595

DO-35

150

1.0

125

See 1N6099

1N6099

DO-35

150

1.0

125

0.52
0.60
0.65
0.75
0.79
0.83

0.68
0.75
0.80
0.88
0.92
1.0

BAY73

DO-35

125

5

100

0.60
0.67
0.69
0.78
0.81
0.85

BA129

DO-35

200

10

180

0.51
0.60
0.69
0.78

FDH300

DO-35

150

1.0

125

FDH333

00-35

150

3.0

125

FJT1100

DO-7

30

0.001
0.010

FJT1101

DO-7

20

0.005
0.015

@

V

@

V

Min

Max

mA

D2
8.0

D2
D2

6.0

D2
D2

6

D2

D2
8.0

D2

1.0
5.0
10.0
50.0
100.0
200.0

8.0

D2

0.68
0.75
0.80
0.88
0.94
1.00

1.0
5.0
10.0
50.0
100.0
200.0

8.0

D2

0.60
0.71
0.83
1.00

0.1
1.0
10
100

6.0

D2

0.68
0.75
0.8
0.88
0.92
1.0

1.0
5.0
10.0
50.0
100.0
200.0

6.0

D2

0.89
0.94
0.97
1.05
1.08
1.15

50
100
150
200
250
300

6.0

D2

5.0
15.0

1.05

50

1.5

D6

5.0
15.0

1.10

50

1.8

D6

2-6

0.80
0.83
0.86
0.87
0.88
0.90

c

8:

High Voltage Diodes (Glass Package)
Device
No.

Package
No.

VRRM
V

IR

Min

nA
Max

VR
V

@

CD

VF
V
Min

@

Max

IF
mA

C

pF
Max

t"
na
Max

Teat
Condo

Proc.
No.

lN625

00-35

30

1000

20

1.5

4.0

1000

(Note 1)

01

lN626

00-35

50

1000

35

1.5

4.0

1000

(Note 1)

01

lN627

00-35

100

1000

75

1.5

4.0

1000

(Note 1)

01

lN628

00·35

150

1000

125

1.5

4.0

1000

(Note 1)

01

lN629

00·35

200

1000

175

1.5

4.0

1000

(Note 1)

01

lN658

00·35

120

50

50

1.0

100

300

(Note 2)

01

lN659

00·35

60

5000

50

1.0

6.0

300

(Note 2)

01

lN660

00·35

120

5000

100

1.0

6

300

(Note 3)

01

lN661

00·35

240

10000

200

1.0

6

300

(Note 3)

01

t"

Test
Condo

Proc.
No.

;

= 30 rnA. VR = 35V. Recovery to 400 kn.
Note 2: VR = 40V, IF = 5.0 rnA, RL = 2.0 kn, CL = 10 pF, Recovery to eo kn.
Nota 3: VR = 35V, IF = 30 rnA, RL = 2.0 kn, CL = 10 pF, Recovery to 400 kn.
Note 1: IF

VRRM
V

IR

VR
V

VF
V

IF

C

Device
No.

Package
No.

Min

nA
Max

Max

na
Max

lN3070

00·35

200

100

175

1.0

100

5.0

50

(Note 1)

01

lN4938

00·35

200

100

175

1.0

100

5.0

50

(Note 1)

01

BAV19

00·35

120

100

100

1.0

100

5.0

50

{Note 2)

01

BAV20

00·35

200

100

150

1.0

100

5.0

50

{Note 2)

01

BAV21

00·35

250

100

200

1.0

100

5.0

50

(Note 2)

01

BAX17

00·35

200

1.2

200

10

120

(Note 2)

01

BAY72

00·35

125

100

0.64
0.78
0.92
1.0

1.0
10.0
50.0
100.0

5.0

50

{Note 3)

01

@

100

Min

0.51
0.63
0.73
0.78

@

Max

mA

pF

BAY80

00·35

150

100

120

1.0

150

6.0

60

{Note 3)

01

FOH400

00·35

200

100

150

1.1

300

2.0

50

{Note 4)

01

FOH444

00·35

150

50

100

1.2

300

2.5

60

(Note 4)

01

Note 1: IF
Note 2: IF
Note 3: IF
Note 4: IF

= IR = 30 rnA, RL = loon.
= 30 rnA, IR = 30 rnA, RL = lOOn, Recovery to IR
= IR = 30 rnA, RL = 75n.
= 30 rnA, RL = lOOn, I" = 3.0 rnA.

= 3 rnA.

2·7

•

General Purpose Diodes (Glass Package)
C

trr

ns
Max

Package
No.

VRRM

IR

V
Min

nA
Max

1N461A

00·35

30

500

1N462A

00·35

70

500

60

1N463A

00·35

200

500

175

1N659

00·35

60

5000

50

1.0

6.0

300

(Note 1)

04

1N660

00·35

120

5000

100

1.0

6.0

300

(Note 1)

01

1N661

00·35

240

10000

200

1.0

6.0

300

(Note 1)

01

1544

00·35

50

50

10

1.0
1.2

10
30

4.0

8

(Note 2)

04

50

1.2

200

6.5

01

100

1.2

200

6.5

01

@

VF

pF

Device
No.

VR

V

V
Min

25

@

Max

1.0

0.65
0.70

IF

mA

Max

Test

Condo

Proc.
No.

100

02

1.0

100

02

1.0

100

02

15920

00·35

50

100

15921

00·35

100

100

15922

00·35

150

100

150

1.2

200

6.5

01

15923

00·35

200

100

200

1.2

200

6.5

01

BA128

00·35

75

100

50

0.40
0.51
0.63
0.73

0.52
0.64
0.79
1.00

0.1
1.0
10
50

5.0

04

BA130

00·35

30

100

25

0.34
0.45
0.56
0.69

0.47
0.58
0.71
1.00

0.01
0.1
1.0
10

2.0

04

BA217

00·35

30

200

30

1.5

50

3.0

4.0

(Note 5)

04

BA218

00·35

50

200

50

1.5

50

3.0

4.0

(Note 5)

04

BA317

00·35

30

0.85

10

2.0

4.0

(Note 4)

04

BA318

00·35

50

0.85

10

2.0

4.0

(Note 4)

04
04

BAV17

00·35

25

100

20

1.0

100

5.0

50

(Note 3)

BAV18

00·35

60

100

50

1.0

100

5.0

50

(Note 3)

04

BAX16

00·35

180

100

150

1.5

200

10

120

(Note 3)

01

FOH900

00·35

45

500

40

1.0

100

3.0

4.0

(Note 4)

04

FOH999

00·35

35

1000

25

1.0

10

5.0

5.0

(Note 4)

04

FOH1000

00·35

75

5000

50

1.0

500

5.0

Note 1: VR = 35V, IF = 30 rnA, RL = 2.0 kO, CL = 10 pF, Recovery to 400 kO.
Not. 2: IF = I, = lOrnA, Recovery to I rnA.
Not. 3: IF = 30 rnA, IR = 30 rnA, RL = 1000.
Not. 4: IF = 10 rnA, IR = 10 rnA, RL - 1000,1" = 1.0 rnA.
Not. 5: I, = lOrnA, IR = 60 rnA; RL - 1000; Recovery to 1 rnA.
Not. 8: IF = 10 rnA; IR = 60 rnA; RL = 1000.

2·8

04

!2
o
a.

Military Qualified Diodes
Device
No.

Package
No.

1N457JAN

DO-35

CD

VRRM

IR

V
Min

nA
Max

70

VR

VF

IF

C

trr

pF

ns
Max

Proc.
No.

V

V
Max

25

60

1.0

20

6.0

D2

@

@

mA

Max

1N458JAN

DO-35

150

25

125

1.0

7.0

6.0

D2

1N459JAN

DO-35

200

25

175

1.0

3.0

6.0

D2

1N483BJAN

DO-35

80

25

70

1.0

100

D2

1N483BJANTX

DO-35

80

25

70

1.0

100

D2

1N485BJAN

DO-35

200

25

180

1.0

100

D2

1N485BJANTX

DO-35

200

25

180

1.0

100

D2

1N486BJAN

DO-35

250

25

225

1.0

100

D2

1N486BJANTX

DO-35

250

25

225

1.0

100

1N914JAN

DO-35

100

25

20

1.0

10

4.0

4.0

D4

1N914JANTX

DO-35

100

25

20

1.0

10

4.0

4.0

D4

1N3064JAN

DO-7

75

100

50

1.0

10

2.0

4.0

D4

1N3064JANTX

DO-7

75

100

50

1.0

10

2.0

4.0

D4

1N3595JAN

DO-7

150

1.0

125

1.0

200

8.0

3000

D2

1N3595JANTX

DO-7

150

1.0

125

1.0

200

8.0

3000

D2

1N3595JANTXV

DO-7

150

1.0

125

1.0

200

8.0

3000

D2

1N3600JAN

DO-7

75

100

50

1.0

200

2.5

4.0

D4

1N3600JANTX

DO-7

75

100

50

1.0

200

2.5

4.0

D4

1N3600JANTXV

DO-7

75

100

50

1.0

200

2.5

4.0

D4

1N4148-1JAN

DO-35

100

25

20

1.0

10

4.0

4.0

D4

D2

1N4148-1 JANTX

DO-35

100

25

20

1.0

10

4.0

4.0

D4

1N4148-1 JANTXV

DO-35

100

25

20

1.0

10

4.0

4.0

D4

1N4150-1JAN

DO-35

75

100

50

1.0

200

2.5

4.0

D4

1N4150-1 JANTX

DO-35

75

100

50

1.0

200

2.5

4.0

D4

1N4150-1 JANTXV

DO-35

75

100

50

1.0

200

2.5

4.0

D4

1N4376JAN

DO-7

20

100

10

1.1

50

1.0

0.75

D3

1N4376JANTX

DO-7

20

100

10

1.1

50

1.0

0.75

D3

1N4454-1 JAN

DO-35

75

100

50

1.0

10

2.0,

4.0

D4

1N4454-1 JANTX

DO-35

75

100

50

1.0

10

2.0

4.0

D4

1N4454-1 JANTXV

00-35

75

100

50

1.0

10

2.0

4.0

04

1N3070JAN

DO-35

200

100

175

1.0

100

5.0

50

01

1N3070JANTX

00-35

200

100

175

1.0

100

5.0

50

01

1N4306JAN

00-7

75

50

50

1.0

50

2.0

4.0

D4

1N4306JANTX

DO-7

75

50

50

1.0

50

2.0

4.0

D4

1N4306JANTXV

00-7

75

50

50

1.0

50

2.0

4.0

D4

1N4307JAN

00-7

75

50

50

1.0

50

2.0

4.0

D4

1N4307JANTX

00-7

75

50

50

1.0

50

2.0

4.0

D4

1N4307JANTXV

00-7

75

50

50

1.0

50

2.0

4.0

D4

2-9

~

II

Military Qualified Diode Arrays (Ceramic Package) (Note 1)
Device
No.

Package
No.

ConfIguratIon

ttr

C

na
Max

trr
na
Max

Max

100

40

20

4.0

1.0

100

40

20

4.0

VRRM
V
MIn

VF
V
Max

60

1.0

60

IF
mA

@

pF

lN576SJAN

TO·S5

1N576SJANTX

TO·S5

cca
cca

1N576SJANTXV

TO·S5

CCS

60

1.0

100

40

20

4.0

lN5770JAN

TO-S5

CAS

60

1.0

100

40

20

S.O

1N5770JANTX

TO-S5

CAS

60

1.0

100

40

20

S.O

1N5770JANTXV

TO-S5

CAS

60

1.0

100

40

20

S.O

lN5772JAN

TO-S5

M16N

60

1.0

100

40

20

S.O

1N5772JANTX

TO-S5

M16N

60

1.0

100

40

20

S.O

1N5772JANTXV

TO-S5

M16N

60

1.0

100

40

20

S.O

lN5774JAN

TO-S6

2MS

60

1.0

100

40

20

S.O

.1N5774JANTX

TO-S6

2MS

60

1.0

100

40

20

S.O

1N5774JANTXV

TO-S6

2MS

60

1.0

100

40

20

S.O

lN6100JAN

TO-S6

87

75

1.0

100

15

5.0

3.0

1N61 OOJANTX

TO-S6

87

75

1.0

100

15

5.0

3.0

lN6100JANTXV

TO-S6

87

75

1.0

100

15

5.0

3.0

lN6101JAN

68

8S

75

1.0

100

15

5.0

3.0

lN6101JANTX

68

8S

75

1.0

100

15

5.0

3.0

1N6101JANTXV

68

8S

75

1.0

100

15

5.0

3.0

Note 1: Refer to Process 15 for product family characteristics.
Nota 2: t" test conditions: I, = 500 mA; R. = 100; V" = I.BV, t,. = 15 ns Max.
Note 3: Capacllance is measured pin·to·pin across each diode and does not necasssrily represent actual diode capacHance since other diode interconnections
can contribute addHional capacitance.

Configurations
CA8

CC8

iiiiiiii1

tfffffffl
2

4

3

5

6

7

8

9

2

10

3

5

4

10

9

8

7

6

TL/G/IOOIS-1

TUG/lOOI9-2

2M8

M16N
1

.,

.,

., .,

1

8

-~,A-~ ,ei, ~,A-., r-,A-. r-,b. ~

0- ,0- ,a- 10- 16- 10- Ie). ,0-

~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

-:
14~ ~

,.

,. ,.

-

roo ~ roo roo ~
4~ ~.5~ ~.9~~ ~O~~
2~ ~.3~~ ~11~ ~2~ ~.~

f0-

20-

8

~ ~ ~ ~ ~ "l ..

~

.

~

~ ~~
roo

TL/G/loolS-S

TL/G/IOOIS-4

S8

S7
7

6

5

4

3

2

8

1

fffffff
8

9

10

11

12

13

7

6

5

4

3

2

1

ffffffff

14

9

TL/G/I OOIS-5

10

11

12

13

14

15

16
TUG/l001S-IS

2-10

Monolithic Diode Arrays (Plastic-Ceramic-Metal Packages)
Device
No.

Package
No.

Configuration

VRRM

VF

V

V

@

IF
mA

tJ.VF
mV

Test
Condo

Proc.
No.

Min

Max

1N5768

TO·85

GG8

60

1.0

100

20

(Note 1)

015

1N5770

TO-85

GA8

60

1.0

100

20

(Note 1)

015

1N5772

TO-85

M16N

60

1.0

100

20

(Note 1)

015

1N5774

TO-86

2M8

60

1.0

100

20

(Note 1)

015

1N6100

TO-86

S8

75

1.0

100

5

(Note 2)

015

1N6101

TO-116-2

S8

75

1.0

100

5

(Note 2)

015

1N6496

20 Lead
Gerpak

2M16

60

1.0
1.2
1.5

200
250
500

10

(NoteS)

015

FSA2002

TO-85

GG8

60

1.0
1.1
1.5

100
200
500

10

(NoteS)

015

FSA200S

TO-85

GA8

60

1.0
1.1
1.5

100
200
500

10

(Note S)

015

FSA2500M

TO-85

M16

60

1.0
1.1
1.5

100
200
500

15

10

(NoteS)

015

FSA2501M

TO-116-2

M16S

60

1.0
1.1
1.5

100
200
500

15

10

(NoteS)

015

FSA2501P

TO-116

M16S

60

15

10

(NoteS)

015

FSA250SM

TO-116-2

2M8

60

1.0
1.1
1.5

100
200
500

15

10

(NoteS)

015

FSA250SP

TO-116

2M8

60

1.0
1.1
1.5

100
200
500

15

10

(Note S)

015

FSA2504M

TO-86

2M8

60

See FSA250SM

15

10

(NoteS)

015

FSA2508P

98

2M8

60

See FSA2509M

15

10

(NoteS)

015

FSA2509M

TO-116-2

2M8

60

1.0
1.1
1.S

100
200
500

15

10

(Note S)

015

FSA2509P

TO-116

2M8

60

1.0
1.1
1.S

100
200
500

15

10

(NoteS)

015

See FSA2500M

2-11

Max

trr
ns
Max

II

Monolithic Diode Arrays (Plastic - Ceramic - Metal Packages)
Device
No.

Package
No.

Configuration

VRRM
V

VF
V

Min

Max

@

IF
mAo

tNF

(Conlinued)

Max

trr
na
Max

Teat
Condo

Proc.
No.

mV

FSA251OM

TO-116·2

M16S

60

See FSA2509

15

10

(Nole3)

015

FSA2510P

TO·116

M16S

60

See FSA2509

15

10

(Nole3)

015

FSA2563M

TO·116·2

CC8S

60

1.0
1.1
1.3

100
200
500

15

10

(Nole3)

015

FSA2563P

TO-116

CC8S

60

1.0
1.1
1.3

100
200
500

15

10

(Nole3)

015

FSA2564M

TO·116-2

CA8S

60

See FSA2563

15

10

(Nole3)

015

FSA2564P

TO-116

CA8S

60

See FSA2563

15

10

(Note 3)

015

FSA2565M

TO-116-2

CC13

60

See FSA2563

15

10

(Note 3)

015

FSA2565P

TO-116

CC13

60

See FSA2563

15

10

(Note 3)

015

FSA2566M

TO-116-2

CA13

60

See FSA2563

15

10

(Note 3)

015

FSA2566P

TO-116

CA13

60

See FSA2563

15

10

(Note 3)

015

!J..VF
mV

Teat
Condo

Proc.
No.

1: IF = 200 mAo IR = 200 mA, RL = 10011, I" = 20 mAo
Note 2: IF = IR = 10 mA, I" = 1.0 mA, RL = 10011.
Note 3: IF = IR = 100 mA, RL = 10011, Recovery to 0.1 IR.

Note

VRRM
V

VF
V

Min

Max

Max

trr
na
Max

FSA2619M

68

S8

100

1.0

10

15

5

(Note 1)

015

FSA2619P

98

S8

100

1.0

10

15

5

(Note 1)

015

FSA2620M

TO-116-2

S7

100

1.0

10

15

5

(Nole1)

015

FSA2620P

TO-116

S7

100

1.0

10

15

5

(Note 1)

015

F5A2621M

TO-86

57

100

1.0

10

15

5

(Note 1)

015

FSA2621M

TO-116

S7

100

1.0

10

15

5

(Note 1)

015

6

(Note 1)

015

Device
No.

Package
No.

Configuration

@

IF
mA

S8

75

1.0

10

15

98

58

75

1.0

10

15

6

(Note 1)

015

TO-116-2

S7

75

1.0

10

15

6

(Note 1)

015

F5A2720P

TO-116

57

75

1.0

10

15

6

(Note 1)

015

F5A2721M

TO-86

57

75

1.0

10

15

6

(Note 1)

015

FSA2719M

68

FSA2719P
FSA2720M

Note

1: IF = IR =

10

mA,I" =

1.0

rnA.

2-12

Configurations
CA8S

S7

HHfH
8

9

10

11

12

13

14

TL/G/l0019-l5

S8

HHHH

TL/G/l0019-7

CC8

HHHHI

9

10

11

12

13

14

15

16

TL/G/l00l9-l6

CC13

10

TL/G/l0019-8

2M8

ImItD

JIDJID

10

11

12

13

14

TLlG/10019-17

CC8S
TL/G/l0019-l0

CA8

fHfHHl

10
TLlG/l0019-ll

TL/G/l0019-l9

M16

M16M

10
TL/G/l0019-l2

TLlG/l0019-2l

M16S

M16N

:
"He
' "

TL/G/l0019-l3

CA13

10

11

12

13

14

TL/G/l0019-l4

2-13

"

TL/G/l0019-20

Zener Diodes (Glass Package)
Device
No.

Package
No.

Vz
V
Nom

Tol.
±Vz
%

Zz
.0.
Max

1N746A

00-35

3.3

5.0

1N747A

00-35

3.6

5.0

1N748A

00-35

3.9

1N749A

00-35

4.3

VR
V

T.C.
%/"C
Typ(Max)

PD
mW
TA = 2SOC

Proc.
No.

10

1.0

-0.070

500

013

10

1.0

-0.065

500

013

20

10

1.0

-0.060

500

013

20

2

1.0

-0.055

500

013

Iz
mA

IR
/LA
Max

28.0

20

24.0

20

5.0

23.0

5.0

22.0

@

@

1N750A

00-35

4.7

5.0

19.0

20

2

1.0

-0.043

500

013

1N751A

00-35

5.1

5.0

17.0

20

1

1.0

-0.030

500

013

1N752A

00-35

5.6

5.0

11

20

1.0

1.0

+0.028

500

013

1N753A

00-35

6.2

5.0

7.0

20

0.1

1.0

+0.045

500

013

1N754A

00-35

6.8

5.0

5.0

20

0.1

1.0

+0.050

500

013

1N755A

00-35

7.5

5.0

6.0

20

0.1

1.0

+0.058

500

013

1N756A

00-35

8.2

5.0

8.0

20

0.1

1.0

+0.062

500

013

1N757A

00-35

9.1

5.0

10

20

0.1

1.0

+0.068

500

013

1N758A

00-35

10

5.0

17

20

0.1

1.0

+0.075

500

013

1N759A

00-35

12

5.0

30

20

0.1

1.0

+0.077

500

013

1N9578

00-35

6.8

5.0

4.5

18.5

150

5.2

+0.050

500

013

1N9588

00-35

7.5

5.0

5.5

16.5

75

5.7

+0.058

500

013

1N9598

00-35

8.2

5.0

6.5

15

50

6.2

+0.062

500

013

1N9608

00-35

9.1

5.0

7.5

14

25

6.9

+0.068

500

013

1N9618

00-35

10

5.0

8.5

12.5

10

7.6

+0.072

500

013

1N9628

00-35

11

5.0

9.5

11.5

5.0

8.4

+0.073

500

013

1N9638

00-35

12

5.0

11.5

10.5

5.0

9.1

+0.076

500

013

1N9648

00-35

13

5.0

13

9.5

5.0

9.9

+0.079

500

013

1N9658

00-35

15

5.0

16

8.5

5.0

11.4

+0.082

500

013

1N9668

00-35

16

5.0

17

7.8

5.0

12.2

+0.083

500

013

1N9678

00-35

18

5.0

21

7.0

5.0

13.7

+0.085

500

013

1N9688

00-35

20

5.0

25

6.2

5.0

15.2

+0.086

500

013

1N969B

DQ..35

22

5.0

29

5.6

5.0

16.7

+0.087

500

013

1N970B

00-35

24

5.0

33

5.2

5.0

18.2

+0.088

500

013

1N971B

00-35

27

5.0

41

4.6

5.0

20.6

+0.090

500

013

1N9728

00-35

30

5.0

49

4.2

5.0

22.8

+0.091

500

013

1N9738

00-35

33

5.0

58

3.8

5.0

25.1

+0.092

500

013

2-14

c

0'
a.

Zener Diodes (Glass Package) (Continued)
Vz

Tol.

Zz

V

±Vz

!l

CD

IR

T.C.

PD
mW
TA = 25'C

Proc.
No.

Device
No.

Package
No.

Nom

%

Max

1N4728A

00·41

3.3

5.0

10

76

100

1.0

1000

014

1N4729A

00·41

3.6

5.0

10

69

100

1.0

1000

014

1N4730A

00·41

3.9

5.0

9

64

50

1.0

1000

014

1N4731A

00·41

4.3

5.0

9

58

10

1.0

1000

014

1N4732A

00·41

4.7

5.0

8

53

10

1.0

1000

014

1N4733A

00·41

5.1

5.0

7

49

10

1.0

1000

014

1N4734A

00·41

5.6

5.0

5

45

10

2.0

1000

014

1N4735A

00·41

6.2

5.0

2

41

10

3.0

1000

014

1N4736A

00·41

6.8

5.0

3.5

37

10

4.0

1000

014

1N4737A

00·41

7.5

5.0

4

34

10

5.0

1000

014

1N4738A

00·41

8.2

5.0

4.5

34

10

6.0

1000

014

1N4739A

00·41

9.1

5.0

5

8

10

7.0

1000

014

1N4740A

00·41

10

5.0

7

25

10

7.6

1000

014

1N4741A

00·41

11

5.0

8

23

5

8.4

1000

014

1N4742A

00·41

12

5.0

9

21

5

9.1

1000

014

@

Iz
mA

/J- A

Max

@

VR
V

%I'C
Typ(Max)

1N4743A

00·41

13

5.0

10

19

5

9.9

1000

014

1N4744A

00·41

15

5.0

14

17

5

11.4

1000

014

1N4745A

00·41

16

5.0

16

15.5

5

12.2

1000

014

1N4746A

00·41

18

5.0

20

14

5

13.7

1000

014

1N4747A

00·41

20

5.0

22

12.5

5

15.2

1000

014

1N4748A

00·41

22

5.0

23

11.5

5

16.7

1000

014

1N4749A

00·41

24

5.0

25

10.5

5

18.2

1000

014

1N4750A

00·41

27

5.0

35

9.5

5

20.6

1000

014

1N4751A

00·41

30

5.0

40

8.5

5

22.8

1000

014

1N4752A

00·41

33

5.0

45

7.5

5

25.1

1000

014

1N5226B

00·35

3.3

5.0

28

20

25

1.0

(-0.070)

500

013

1N5227B

00·35

3.6

5.0

24

20

15

1.0

(-0.065)

500

013

2·15

C

S

•

Zener Diodes (Glass Package)

(Continued)

Device
No.

Package
No.

Vz
V
Nom

Tol.
±VZ
%

VR
V

T.C.
%I"C
Typ(Max)

PD
mW
TA = 25'C

Proc.
No.

Max

1N5228B

00-35

3.9

5.0

1N5229B

00-35

4.3

5.0

10

1.0

(-0.060)

500

013

5

1.0

(±0:055)

500

1N5230B

00-35

4.7

013

20 '

5

2.0

(±0.030)

500

1N5231B

013

00-35

1N5232B

00-35

17

20

5

2.0

(±0.030)

500

013

11

20

5

3.0

(±0.038)

500

1N5233B

013

5.0

7

20

5

3.5

(±0.036)

500

013

6.2

5.0

7

20

5

4.0

(±0.045)

500

013

6.8

5.0

5

20

3

5.0

(+0.050)

500

013

Iz
mA

IR
""A
Max

23

20

22

20

5.0

19

5.1

5.0

5.6

5.0

00-35

6.0

1N5234B

00-35

1N5235B

00-35

Zz

n

@

@

1N5236B

00-35

7.5

5.0

6

20

3

6.0

(+0.058)

500

013

1N5237B

00-35

6.2

5.0

8

20

3

6.5

(+0.062)

500

013

1N5238B

00-35

8.7

5.0

8

20

3

6.5

(+0.065)

500

013

1N5239B

00-35

9.1

5.0

10

20

3

7.0

(+0.068)

500

013

1N5240B

00-35

10.0

5.0

20

3

8.0

(+0.075)

500

013

1.7

1N5241B

00-35

11

5.0

22

20

2

8.4

(+0.076)

500

013

1N5242B

00-35

12

5.0

30

20

1

9.1

(+0.077)

500

013

1N5243B

00-35

13

5.0

13

9.5

0.5

9.9

(+0.079)

500

013

1N5244B

00-35

14

5.0

15

9.0

0.1

11.0

(+0.082)

500

013

1N5245B

00-35

15

5.0

16

6.5

0.1

1,1.4

(+0.082)

500

013

1N5246B

00-35

16

5.0

17

7.8

0.1

12.0

(+0.083)

500

013

1N5247B

00-35

17

5.0

19

7.4

0.1

13.0

(+0.064)

500

013

1N5248B

00-35

16

5.0

21

7.0

0.1

14.0

(+0.085)

500

013

1N5249B

00-35

19

5.0

23

6.6

0.1

14.0

(+0.066)

500

013

1N5250B

00-35

20

5.0

25

6.2

0.1

15.0

(+0.086)

500

013

1N5251B

00-35

22

5.0

29

5.6

0.1

17.0

(+0.067)

500

013

1N5252B

00-35

24

5.0

33

5.2

0.1

18.0

(+0.066)

500

013

1N5253B

00-35

25

5.0

5

5.0

0.1

19.0

(+0.089)

500

013

1N5254B

00-35

27

5.0

41

4.6

0.1

21.0

(+0.090)

500

013

1N5255B

00-35

26

5.0

44

4.5

0.1

21.0

(+0.091)

500

013

1N5256B

00-35

30

5.0

49

4.2

0.1

23.0

(+0.091)

500

013

1N5257B

00-35

33

5.0

58

3.8

0.1

25.0

(+0.092)

500

013

Pair & Quad Assemblies Diodes
Device
No.

Package
No.

VRRM
V
Min

IR
nA
Max

1N4306
1N4307

00-7
00-7

75
75

50
50

@

VR
V
50
50

VF
V

@

Min

Max

0.44
0.56
0.67
0.75

0.55
0.67
0.61
1.00

Note 1: IF = IR = 10 rnA, RL = 1000, Recovery to 1 rnA,
'For test eireuHs, refer to Process Family Characteristics 018.

2-16

IF
mA
0.1
1.0
10.0
50.0

C
pF
Max

trr
na
Max

Teat
Condo

Proc.
No.

2

4

(Note 1)

04"
04·

c

0'

FA Series
Matched Pair and Quad Assemblies Diodes

111
CD

PACKAGE All Devices 00-7

MATCHING CHARACTERISTICS Apply over temperature range of - 55'C to

C

+ 100'C

~

Basic Diode
(SeeSpeclflcation
Below

Forward Current
Matching Range
(Notes 4 & 6)

Pair

Quad

FD1389
FD1389
FD1389
FD1389

10,..A to 1.0 mA
10,..A to 1.0 mA
1.0mAto10mA
1.0 mA to 10 mA

3.0mV
10mV
5.0mV
15mV

FA2310U
FA2311U
FA2312U
FA2313U

FA4310U
FA4311U
FA4312U
FA4313U

FD2389
FD2389
FD2389
FD2389
FD2389
FD2389

10,..A to 1.0 mA
10,..A to 1.0 mA
1.0 mAto 10 mA
1.0mAto10mA
10 mA to 100 mA
10 mAto 100mA

3.0mV
10mV
5.0mV
15mV
10mV
20mV

FA2320U
FA2321U
FA2322U
FA2323U
FA2324U
FA2325U

FA4320U
FA4321U
FA4322U
FA4323U
FA4324U
FA4325U

FD3389
FD3389
FD3389
FD3389
FD3389
FD3389

10,..A to 1.0 mA
1.0 mA to 10 mA
10 mA to 100 mA
10,..A to 1.0 mA
1.0 mA to 10 mA
10 mA to 100 mA

10mV
15mV
20mV
10mV
15mV
20mV

FA2330U
FA2331U
FA2332U
FA2333U
FA3334U
FA2335U

FA4330U
FA4331U
FA4332U
FA4333U
FA4334U
FA4335U

FD6389
FD6389

10 mA to 100 mA
10 mA to 100 mA

10mV
20mV

FA2360U
FA2361U

FA4360U
FA4361U

Reverse Current
Match
(6.IR Maximum)
(Note 3)

(2.0
(2.0
(2.0
(4.0
(4.0
(4.0

Forward Voltage
Match
(6. VF Maximum)

+ 0.064 VR) nA
+ 0.064 VR) nA
+ 0.064 VR) nA
+ 0.128 VR) nA
+ 0.128 VR) nA
+ 0.128VR)nA

Assembly Type Number

BASIC DIODE ELECTRICAL CHARACTERISTICS 25'C Ambient Temperature unless otherwise noted
Symbol

Parameter

Test Conditions

FD1389
Min

VRRM

Breakdown Voltage

1R

Reverse Current

VF

Forward Voltage

C

Capacitance (Note 5)

trr

Reverse Recovery Time

= 5.0,..A
= 100,..A
VR = WIV
VR = WIV, TA = 150'C
IF = 200mA
IF = 100mA
IF = 50mA
IF = 20mA
IF = 10mA
IF = 5.0 mA
IF = 2.0mA
IF = 1.0mA
VR = 0, f = 1 MHz
IF = IR = 10mA
IR
IR

Max

FD2389
Min

Max

FD3389
Min

Max

FD6389
Min

100
200

150

Units

Max
V
V

75

100
100

100
100

1.0
3.0

100
100

nA
,..A

1.000
0.875
0.800
0.725
0.670

1.000
0.925
0.860
0.790
0.740
0.700
0.620
0.610

1.000
0.930
0.880
0.840
0.810
0.770
0.730
0.710

1.000
0.920
0.880
0.790
0.750
0.710
0.670
0.630

V
V
V
V
V
V
V
V

2.0

5.0

6.0

3.0

pF

4.0

ns
Recover to 1.0 mA
50
ns
IF = IR = 30 rnA
Recover to 1.0 mA
4.0
ns
IF = IR = 200 mA
Recover to 20 mA
Note 1: These are Limiting values above which IHe or satisfactory performance may be Impaired.
Note 2: These are steady state Limits. The factory should be consulted on applications involving pulsed or low duty-cycle operation.
Note 3: The Reverse Current Match (AIR) is the difference In reverse current between the diode having the highest IR and that having the lowest IR in a given
assembly. The reverse voltage (VR) In the AIR calculation can be any value up to 125V. For example, the maximum AIR tor an FA2330U at VR of 10 V is (2.0 +
0.064 x 10) nA or 2.64 nA.
Note 4: The Forward Current Matching Ranges between 10 ,..A and 10 mA may be applied enher as a dc current or a pulse current. Above lOrnA, however, the
matching characteristics are guaranteed only for low duty cycle (:5:1%) pulse current. Conditions of test are shown in the characteristic curve and test circuit
section of this book.
Nole 6: For product family characteristics curves for the basic diodes used in the assemblies, refer to the following:
F01389 04, F02389 01, F03389 02 and FD8389 04.

2-17

•

Section 3
Bipolar NPN Transistors

Section 3 Contents
Saturated Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Level Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Amplifiers and Oscillators ........................................................
General Purpose Amplifiers and Switches.. .. . . . . . .. .. . .. . . . . . . . . .. .. .. .. . . . . .. .. . . . ..
Medium Power Transistors ..........................................................
Darlington Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3·2

3.3
3.8
3·12
3·16
3.32
3.48

~National

Saturated Switches

~ Semiconductor
Type
No.

2N2369

2N2369A

also Avail.

VCES*
VCBO
(V)

Case
Style

I TO-18

I

1

ICES'
VCEO I VEBO IICBO VCB
(V)
(V)
(nA) @ (V)

Min

Min

Min

Max

40

15

4.5

I 400

20

hFE

1

(11)

TO-18 1
(11)

40

TO-18 1
(11)

30

15

4.5

I 400'

20

Max

20
40

120

100
10

120
120
120
120

100
30
10
10

120

100
30
10

30
40
40

Versions
2N3011

12

5

400'

20

1

Ic & VCE
(mA) (V)

Min

I 20

JAN/TXIV

@

12
25
30

VCE(SAT)
VBE(SAT)
(V)
&
(V)

IC

(mA)

Cob

I

Max

Min

Max

Ic
(IB = 10)

(pF)
Max

2

0.25

0.7

0.85

10

4

1500

0.2
0.25

0.7

0.85
1.5

10
30

4

0.4
0.35

0.6

1.6

100

0.72

0.4
0.35

0.2
0.25
0.5

0.85
1.5
1.6

10
30
100

@

fT

Ic

(MHz) @ (mA)
Min Max

I I
leoti)

Test

Process

(ns)
Max

Conditions

No.

10

18

(Note 1)

21

1500

10

18

(Note 1)

21

4

1400

20

20

(Note 4)

21

'f I 2N3605

TO-92
(94)

14

500

18

I 30

10

0.25

0.85

10

6

1300

10

45

(Note 2)

21

2N3606

TO-92
(94)

14

500

18

I 30

10

0.25

0.85

10

6

1300

10

60

(Note 2)

21

2N3607

TO-92
(94)

14

500

18

I 30

10

0.25

0.85

10

6

1300

10

70

(Note 2)

21

Co>

2N4274

Same as PN4274

2N4275

Same as PN4275

2N4294
2N4295
2N5030
2N5134

TO-92
(94)

1

TO-92
(94)

1

TO-92
(94)

1

30
40
30

12
15
12

Same as PN5134

21
21
4.5
5

4

I 400
1 100

250

20 I 20
30
20 1 20
40
20

I 30

2

0.25

0.6

0.9

10

5

1400

10

20

(Note 1)

21

120

100
10
100
10

2

0.25

0.6

0.9

10

4

1500

10

15

(Note 1)

21

120

0.25

0.72

0.87

10

4

1400

10

30

(Note 9)

21

10

21

SJOIS!SU8Jl NdN

NPN Transistors

Saturated Switches (Continued)
Type
No.

Style

2N5224

T0-92
(92)

2N5769

2N5772

MPS706
MPS706A

VCES'
VCBO
(V)
Min

Case

T0-92
(92)
TO-92
(92)

I
I

I

TO-92 I
(92)

I T0-92 I

25
40

40

ICES'
VCEO I VEBO IICBO VCB
(V)
(V)
(nA) @ (V)
Min
Min
Max

12
15

15

5

I

500

4.5 I 400

5

I

500

15

I

hFE
Min Max

I

20 I 20
30
40
20

I

c.>

4.5

I

I TO-92 I 40

15

4.5

18

15

18

TO-92 I 40'
(92)

I

I TO-92 I

10

4

1250

10

60 I (Note 11)

21

0.7

0.85
1.5
1.6

10
30
100

4

1500

10

18

I (Note 1)

21

0.75

0.95
1.2
1.7

30
100
300

5

1350

30

28

I (Note 3)

21

10
3

0.6

0.9

10

6

1200

10

75

(Note 1)

21

20

10

0.25
0.4

0.9

10
50

4

350

10

30

(Note 2)

21

0.85

10

4

1500

10

18

(Note 7)

21

4

1500

10

18

(Note 2)

21

500

20

26

400

20

I 20

60

0.7

100
10

2

0.25

120

10
30
100

0.35
0.4

0.2
0.25
0.5

0.85

10

1.3

50

21
21

40

120

40
30
20

400

20

5

500

18 I 30

90

2

-4.5

0.3

15

5

500

18 I 75

225

2

4.5

0.3

0.6

1.3

50

15

4.5

400

20

100
10

2

0.25

0.7

0.85

10

4

1500

10

18

(Note 1)

21

120

0.2
0.2

0.7

0.85
1.15

10
30

4

1500

10

18

(Note 1)

21

0.4
0.35

0.5

1.6

100

1
0.4

0.2
0.25
0.5

0.85
1.15
1.6

10
30
100

4

1400

10

12

(Note 12)

21

(92)
MPS2713

Process
No.

21

I 20

I

0.2
0.28
0.5

Test

I Conditions

(Note 11)

15

15

0.5
0.4

(ns)
Max

75

500

40

120

300
100
30

t(off)

10

5

(92)

0.2
0.25
0.5

I

1200

15

I TO-92 I

0.4
0.35

fT
(MHz) @ Ic
Min Max {mAl

6

25

MPS2369

120

100
30
10

I

10

15 I 20

5

100
10

Cob

(pF)
Max

0.9

0.35

100

IC
{mAl
Ic
(IB= 10)

@

0.9

500

40

VCE(SAn
VBE(SAn
(V)
&
(V)
Max
Min Max

0.6

3

TO-92
(92)

Ic & VCE
{mAl
(V)

10

15

MPS834

MPS2369A

15
25
30

15

(92)

.;,.

15
40

@

(92)
MPS2714

I TO-92 I
(92)

PN2369
PN2369A

I T0-92 I

40'

I

40
15

4.5

30

20

T0-92 I
(92)

I 20
30
40
40

(92)

PN4274

I 20

30'

12

4.5

I

500

20

120

I 18
30
35

120

100
30
10
10
100
30
10

0.7

Saturated Switches (Continued)
Type

case

No.

Style

VCES·I VCEO
VCBO
(V)

I T0-92

ICES·

VEBO
(V)

(V)

Min

Min

I

40·

15

4.5

I

20·

10

3.5

Min
PN4275

I

hFE

ICBO@ VCB
(nA)
(V)

Min

Max

I

SOO

20

I

18
30
35

100

15

I

15
20

(92)
PN5134

I TO-92
(92)

2N3009

2N3013

2N3014

I TO-52 I

I T0-52 I

I T0-18 I

40

40

40

15

15

20

4

5

5

Ic
VCE
Max @(mA) & (V)

500·

300·

300·

20 I 15
25
30

IVCE(SAT)
(V)

Max

Min

for

Ic

I I
t(off)
(ns)
Max

Test
Conditions

Process
No.

(MHz) @ (mA)
Min Max

0.72

0.85
1.15
1.6

10
30
100

4

1400

10

12

(Note 12)

21

120

0.2
0.25
0.5

30
10

0.4
1

0.25

0.7

0.9

10

4

1250

10

18

(Note 12)

21

150

0.18
0.28
0.5

0.75

0.95
1.2
1.7

30
100
300

5

1350

30

25

(Note 3)

22

0.5
0.4

0.75

0.95
1.2
1.7

30
100
300

5

1350

30

25

(Note 3)

22

0.8
0.95
1.2

10
30
100

5

1350

30

25

(Note 4)

22

120

120

300
100
30

0.5
0.4

0.18
0.28
0.5

I 30

120

30
10
100

0.4
0.4
1.0

0.18
0.18
0.35

25
25

Co)

I

1
0.4

20 I 15
25
30

a.

Cob

(pF)

Max

100
30
10

300
100
30

20

IC
(mA)
@
Ic
Max (IB= 10)

VBE(SAT)
&
(V)

2N3646

Same as PN3646

22

MPS3646

Same as PN3646

22

PN3646

I T0-92 I

40·

15

5

60

30

5

500·

20

I

(92)
2N3252

2N3253

I T0-39 I

I T0-39 I

75

40

5

500

500

40

60

I
I

15
20
30

120

300
100
30

1
0.5
0.4

0.2
0.28
0.5
0.3
0.5
1.0
0.35
0.6
1.2

25
30
30

1A
500
150

5

90

20
25
25

750
375
150

5

75

0.95
1.2
1.7

30
100
300

5

1350

30

28

(Note 3)

22

1.0
1.3
1.8

150
500
1A

12 1200

50

70

(Note 7)

25

0.7

1.0
1.3
1.8

150
500
1A

12 I 175

50

70

(Note 7)

25

0.7

0.75

SJOIS!SUeJl NdN

NPN Transistors

Saturated Switches (Continued)
Type

No_
2N3724

2N3724A

ase
Sty/e

VCES*
VCBO
(V)

VCEO
(V)
M-

VEBO
(V)
M-

T0-39

50

30

6

C

T0-39

Min

50

In

30

In

6

ICES'
ICBO @ VCB
(nA)
(V)

Max

1.7 p.A

500

40

40

hFE

Min
30
25
35
40
60
30

Co)

T0-39

80

50

6

1.7 p.A

60

.;,

2N4047

TO-39

80

80

50

50

6

6

500

1.7p.A

60

60

ax

n

ax

(F)
P
M
ax

300
500

12

0.75

1.7

lA

25
30
30

1.5A
lA

0.32

1.1

300
500

0.42

1.2

35

500
300
100
10

5
5
2
1
1
1
1

0.65

1.3

0.75

lA

lA

lA
5
800
2
500
1
300
,1
1001
10
1

0.4
0.52

1.1
1.2

300
500

0.8

1.5

800
lA

0.95

1.7

1.5A
lA
800
500
300
100
10

5
5
2
1
1
1
1

0.4

1.1

300

0.52
0.8

1.2
1.3

500
800

0.9

1.4

lA

lA

5
2
1
1
1
1

0.4

1.1

300

1.2
1.5

500
800

1.7

lA

150

800

150

25

20
25
25
35
40
60
30
15
15
20
30
40
20

150

150

800

150

500
300
100
10

0.42
0.65

0.52
0.8
0.95

1.1

IC
(mAl
(I
Ic)
B= 10

@

0.32

35
40
60
30
T0-39

VCE(SAT) VBE(SAT)
(V) &
(V)
M
MI
M

5
2
1
1
1
1

20

2N3725A

Ic & VCE
{mAl (V)

1A
800
500
300
100
10

40
60
30
2N3725

Max

@

0.9

0.9

0.9

1.2
1.5

Cob

fy
(MH)
Z
MM

f(off)
()
Mns

Test

Process

{mAl

Conditions

No_

300

50

60

(Note 7)

25

300

50

50

(Note 8)

25

60

(Note 7)

50

60

(Note 7)

25

50

50

(Note 8)

25

60

(Note 7)

60

(Note 7)

In

ax

@

Ic

ax

800

12

800

10

300

10

10

250

50

25

Saturated Switches (Continued)
T

e
yp
No.

C
ase
Style

VCES'
V
CBO
M('?

VCEO
(V)
Min

VEBO
(V)
Min

In

ICES'
I
CBO @ VCB
(MnA)
(V)
ax

hFE
@ Ic & VCE
Min Max (rnA) (V)

VCE(SAT) VBE(SAT)
(V) &
(V)
Max
Min Max

TO-237
(91)

80

45

6

1.7 ",A

60

35

500

1

0.52

MPQ3724

TO·116
(39)

50'

36

6

1.7 ",A ,40

30
35
60

150

1A
500
100

5
1
1

MPQ3725

T0-116
(39)

80'

50

6

1.7 ",A

60

25
35
60

150

1A
500
100

5
1
1

TN3724

T0-237
(91)

50

30

6

1.7 ",A

40

30
25
35
40
60
30

1A
800
500
300
100
10

5
2
1
1
1
1

1A
800
500
300
100
10

5
2
1
1
1
1

0.25
0.26
0.4
0.25
0.8
0.9

Col

TN3725

TO-237
(91)

80

50

6

1.7 ",A

60

Cob
(F)
:ax

10

2N6737

..:..

Ic
(rnA)
(IB =.!f.)

@

25
20
35
40
60
30

150

150

0.8

fT
(MH) @ Ic
Min ~ax (rnA)

t(ott)

()
;:x

Test
Conditions

Process
No.

1.1

500

10

300

50

60

(Note 7)

25

0.75

1.7

500

12

300

50

60

(Note 7)

25

0.45

1.2

1A

0.95

1.7

500

10

250

50

60

(Note 7)

25

0.52

1.2

1A

0.25
0.2
0.32
0.42
0.65
0.75

0.76
0.86
1.1
1.2
1.5
1.7

10
100
300
500
800
1A

12

300

50

60

(Note 7)

25

0.76
0.86
1.1
1.2
1.5
1.7

10
100
300
500
800
1A

10

300

50

60

(Note 7)

25

0.9

0.9

TEST CONDITIONS:
Nole 1: Vee ~ 3V,Ie ~ 10 mA,IB' ~ 3 mA,IB2 ~ 1.5 rnA,

Nole 5: Vee ~ 25V, Ie ~ 300 mA,lB' ~ IB2 ~ 30 rnA,

Nole 9: Vee ~ 3V,Ie ~ 10 rnA, IB' ~ IB2 ~ 1 rnA.

Note 2: Vee ~ 3V,Ie ~ 10 mA,IB' ~ 3 mA,IB2 ~ 1 rnA.

Nole 6: Vee ~ 25V, Ie ~ 500 mA,lB' ~ IB2 ~ 50 rnA,

Nole 10: Vee ~ 'O,7V, Ie ~ 'A, IB' ~ IB2 ~ 100 rnA.

Note 3: Vee ~ 10V, Ie ~ 300 mA,lB' ~ IB2 ~ 30 rnA,

Note 7: Vee ~ 30V, Ie ~ 500 rnA, IB' ~ IB2 ~ 50 rnA.

Note 11: Vee ~ 3V, Ie ~ 10 rnA, IB' ~ IB2 ~ 3 rnA.

Note 4: Vee ~ 2V,Ie ~ 30 mA, IB' ~ IB2 ~ 3 rnA.

Note 8: Vee ~ 30V, Ie ~ lA, IB' ~ IB2 ~ 100 rnA,

Note 12: Vee ~ 3V, Ie ~ 10 rnA, IB' ~ IB2 ~ 3,3 rnA,

SJOIS!SueJl

iii

NdN

NPN Transistors

~NatiOnal

Low Level Amplifiers

Semiconductor

Type
No.

2N929

Case
Style

TO·18

VCBO
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

45

45

5

ICBO

(nA) @VCB
Max (V)

10

Min

45

2N929A

TO-18

60

45

6

2

60
40
25

'"Co

2N930
Avail. JAN/TXIV
Versions

TO-18

2N2484

TO-18

2N3117

2N3246

45

45

5

10

45

TO-18

TO-18

60

60

60

60

60

40

6

6

10

10

10

1

45

45

250
200
175
100
30

4

(Note 1)

07

45

0.5

4

8

30

0.5

3

(Note 1)

07

1

10

15

0.05

3

(Note 1)

07

1

4.5

60

0.5

1.5

(Note 2)

07

1

2

(Note 1)

07

5

(Note 1)

Max

(m )

5
5
5

1.0

0.6

1.0

10

8

30

10
500/-,A
10/-,A
1/-,A

5
5
5
5

0.5

0.7

0.9

10

6

10
500/-,A
10/-,A

5
5
5

1.0

0.6

1.0

10

1
500/-,A
100/-,A
10/-,A
1/-,A

5
5
5
5
5

0.35

1
100/-,A
10/-,A
1/-,A

5
5
5
5

0.35

800

10
1
500/-,A
100/-,A
10/-,A
1/-,A

5
5
5
5
5
5

0.5

400

100/-,A

5

1.0

10

660

1

5

1.0

10

120

120

300

500

400
300
250
100

40

0.5

Min

10
500/-,A
10/-,A

Max

600
150
100

Process
No.

Cob
(pF)
Max

350

45

Test
Conditions

~mA)&

VCE
(V)

350
60
40

NF
(dB)
Max

Ic

hFE

400
350
300
200
150

VCE(SAn

(V)
Max

VBE(SAn

I

(V)@~

&

fT

Ic

.(MHz) @ (rnA)
Min Max

07

0.7

0.9

5

5

60

180

11

Same as PN3565

2N3565
2N3707

TO-92
(94)

30

30

6

100

20

100

2N3708

TO-92
(94)

30

30

6

100

20

45

11
11

Low Level Amplifiers

(Continued)

VCBO
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

30

30

TO-92
(94)

30

30

TO-92
(94)

30

2N3858A T0-92

Type
No.

case
Style

2N3709

TO·92
(94)

2N371 0
2N3711

ICBO

c.>

& VCE
(mA)
(V)
Ic

VCE(SAT)
VBE(SAT)
(V) &

Ic

Cob
(pF)
Max

fr

Ic

NF
(dB)
Max

Test
Conditions

Process
No.

Min

Max

100

20

45

165

1

5

1.0

10

11

6

100

20

90

330

1

5

1.0

10

11

30

6

100

20

180

660

1

5

1.0

10

11

60

60

6

500

18

60
45

120

10
1

1
1

4

90

250

2

11

4

90

250

2

11

(94)

cO

hFE

(nA) @VCB
Max
(V)

@

Max

Min

(V)M

@ (mA)

ax

(MHz) @ (mA)
Min Max

2N3859A

TO-92
(94)

60

60

6

500

18

100
75

200

10
1

1
1

2N3877

TO-92
(94)

70

70

4

500

70

20

250

2

4.5

0.5

0.9

10

11

2N3877A T0-92
(94)

85

85

4

500

70

20

250

2

4.5

0.5

0.9

10

11

2N3900A

18

18

5

100

18

250

500

2

4.5

T0-92

12

5

(Note 4)

11

5

(Note 4)

11

(94)

2N3901

TO-92
(94)

18

18

5

100

15

350

700

2

4.5

2N4286

TO-92
(94)

30

25

6

50

25

150
100

600

1
100 p.A

5
5

0.35

0.8

1

6

40

1

2N4287

TO-92
(94)

45

45

7

10

30

150
100

600

1
100,...A

5
5

0.35

0.8

1

6

40

1

2N4409

TO-92
(92)

80

50

5

10

60

60
60

400

10
1

1
1

0.2

0.8

1

12

60

300

10

11

2N441 0

T0-92
(92)

120

80

5

10

100

60
60

400

10
1

1
1

0.2

0.8

1

12

60

300

10

11

2N4966

T0-92
(92)

50

40

6

25

25

40
50

200

0.01
10

5
5

0.4

10

6

40

1

11

2N4967

TO-92
(92)

50

40

6

25

25

100
120

600

0.01
10

5
5

0.4

10

6

40

1

11

2N4968

T0-92
(92)

30

25

6

50

25

40
50

200

O.ot

5
5

0.4

10

6

10

11
5

(Note 1)

11

11
SJo~s!sueJ.1

NdN

NPN Transistors

Low Level Amplifiers (Continued)
Type
No.

Case
Style

VCBO

VCEO

(V)
Min

(V)
Min

2N5088

TO-92
(92)

35

30

50

20

300
350
300

2N5089

TO-92
(92)

30

25

50

15

400
450
400

2N5133
2N5209

Min

ICBO

(nA) @VCB
Max (V)

hFE
Min

TO-92
(92)
TO-92
(92)

2N5232

TO-92
(94)

2N5961

TO-92
(92)

50

VCE(SAn

(V)
Max

VBE(SAn

&

(V)

Min

Ic
@ (mA)

Max

Cob
(pF)
Max

fT

I

.(MHz) @ (m~)
Min Max

NF
(dB)
Max

Test
Conditions

Process
No.

5
5
5

, 0.5

10

4

3

(Note 3)

11

900

10
1
100/LA

5
5
5

0.5

10

4

2

(Note 3)

11

1200

10
1
100 /LA

5
5
5

0.7

10

4

30

0.5

4

(Note 5)

11

300

10
1
100/LA

50

5
5
5

0.7

10

4

30

0.5

3

(Note 4)

11

60

11

50

50

35

150
150
100

50

50

35

250
250
200

600

10
1
100/LA

50

30

50

250

500

2

5

0.125

10

4

2

45

100
120
135

0.01
0.1
1

5
5
5

0.2

10

4

10

5

0.Q1
0.1
1

5
5
5

60

8

150
2N5962

Max

& VCE
(mA)
(V)

@ Ic

Same as PN5133

2N521 0

~

o

VEBO
(V)

TO-92
(92)

45

45

8

2

30

700

450

500
550
600

1400

10

5

0.2

10

4

4

11
100

100

10

10

6

(Notes 7 & 11)

3
3

(Note 10)
(Note 12)

6
4
8
3
3

(Note 7)
(Note 8)
(Note 9)
(Note 10)
(Note 12)

11

5

(Note 2)

11

5

(Note 4)

11

11

2N5232A

TO-92
(94)

50

30

50

250

500

2

5

0.125

10

MPS3707

TO·92
(92)

30

100

20

100

400

100/LA

5

1.0

10

MPS3708

TO·92
(92)

30

100

20

45

660

1

5

1.0

10

11

MPS3709

TO·92
(92)

30

100

20

45

165

1

5

1.0

10

11

MPS3710

TO-92
(92)

30

100

20

90

330

1

5

1.0

10

11

I

Low Level Amplifiers (Continued)

~

VCBO

VCEO

VEBO

(V)
Min

(V)
Min

(V)
Min

Type
No.

Case
Style

MPS3711

TO-92
(92)

MPS6571

TO-92
(92)

25

20

MPSA09

TO-92
(92)

50

50

MPSA18

TO-92
(92)

45

45

PE4020

TO-92
(92)

60

PN930

TO-92
(92)

45

PN2484

TO-92
(92)

ICBO

hFE

VBE(SAT)

VCE(SAT)

& VeE
(V)

Ic

Cob
(pF)
Max

IT

Ic

NF
(dB)
Max

Process
No.

Test
Conditions

Min

Max

(mA)

100

20

180

660

1

5

1.0

10

50

20

250

1000

l00p.A

5

0.5

10

4.5

50

0.5

11

100

25

100

600

100p.A

5

0.9

10

5

600

0.5

11

6.5

50

30

400
500
500

50

3

100

1

1.5

(Note 4)

11

1500

5
5
5
5

0.3

500

0.01
0.1
1
10

60

8

2

45

150
135
120
100

950

10
1
0.1
0.01

5
5
5
5

0.3

50

4

100

10

6
3

(Note 9)
(Note 7)

11

3

(Note 10)

45

5

10

45

600

10
500p.A
10p.A

5
5
5

1.0

10

8

30

0.5

3

(Note 1)

11

10
1
500p.A
100p.A
10p.A
1 p.A

5
5
5
5
5
5

0.35

10

6

3

1

11

30
3

150
100
60

Ie

(nA) @YeB
Max
(V)

60

6

10

45

@

300
600

250
200
175
100
30

500

(V)
Max

&

(V)
@ (mA)
Min Max

0.6

1.0

(MHz) @ (mA)
Min Max

11

800

PN3565

TO-92
(92)

30

25

6

50

25

150

600

1

10

0.35

1

4

40

240

1

11

PN5133

TO-92
(92)

20

18

3

50

15

60

1000

1

5

0.4

1

5

40

240

1

11

TEST CONDITIONS:
Note 1: Ie ~ 10 /LA. VeE ~ 5V. f ~ 10 Hz - 15.7 kHz.
Note 2: Ie ~ 10 /LA, VeE ~ 5V, f ~ 1 kHz.
Note 3: Ie ~ 5 /LA, VeE ~ 5V, f ~ 1 kHz.
Note 4: Ie ~ 100 /LA, VeE ~ 5V. f ~ 10 Hz - 15.7 kHz.

. -

Note 5: Ie

~

10 /LA. VeE

Note 6: Ie

~

100 p.A, VeE

~

5V, f

~

5 kHz.

Note 7: Ie

~

100 p.A, VeE

~

5V, f

~

1 kHz, Rs

~

1 kfi.

Note 8: Ie

~

100 ,.A, VeE

~

5V, f

~

1 kHz, Rs

~

10 kfi.

~

5V. f

~

10 kHz.

Note 9: Ie ~ 100 /LA,
Note 10: Ie ~ 10 /LA,
Note 11: lells ~ 20.
Note 12: Ie ~ 10 /LA,

VeE

~

5V, f

~

1 kHz, Rs

~

100 kfi.

VeE

~

5V, f

~

1 kHz, Rs

~

10 kfi.

VeE

~

5V, f

~

10 Hz - 10 kHz, Rs

~

10 kfi,

-------

----

SJOIS!SueJl

NdN

NPN Transistors

~National

RF Amplifiers and Oscillators

~ Semiconductor
Type
No.

~

I\)

VCES'
VCBO
(V)
Min

Case
Style

VCEO I VEBO IICBO VCB
(~
(~
(nA) @ (V)
Min
Min
Max

I

hFE
Ic
VCE
Min Max @(mA)& (V)

2N2857

I TO-72 I

30

15

2.5

10

15 I 30

150

3

2N3478

I TO-72 I

30

15

2

20

1

I 25

150

2

2N3600

I TO-72 I

30

15

3

10

15 I 20

150

3

2N3932

I TO-72 I

30

20

2.5

10

15

I 40

150

2

2N3933

I T0-72 I

40

30

2.5

10

15 I 60

200

2N4259

I T0-72 I

40

30

2.5

10

15

I 60

2N5179

I T0-72 I

20

12

2.5

20

15

I 25

2N5180

TO-72

30

15

2

500

8

I

VCE(SAn
VBE(SAn @ Ic
(V) &
. (V)
(mA)
Max
Min Max

Cob/Cro
(pF)
Min Max

for
(MHz)
@ IC
Min
Max (mA)

I

NF @ Freq
(dB)
Max (MHz)

Process
No.

1

I 1000

1900

5

4.5

450

40

1

I 750

1600

5

4.5

200

40

1

I 850

1500

5

4.5

200

40

8

0.55 I 750

1600

2

4.5

200

40

2

8

0.55 I 750

1600

2

4

200

40

250

2

8

250

3

20

200

2

8

0.4

1.0

0.55 I 750

1600

2

5

450

40

900

2000

5

4.5

200

40

650

1700

2

40
40

10

8

MRF501

TO-72

25

15

3.5

50

30

250

6

600

5

MRF502

I TO-72 I

35

15

3.5

20

40

170

6

800

5

PN5179

I TO-92

I

20

15

2.5

2

15 I 25

250

I TO-92 I

20

20

3

50

15 I 20

4

10

30

25

3

100

25 I 25

4

10

0.5

30

25

3

100

25

I 60

4

10

0.5

15 I 20

3

0.5

15 I 20

3

0.4

3

0.4

1.0

1.0 I 900

10

2000

40

5

4.5

200

40

0.7 I 500

4

4.5

100

42

I 650

4

42

4

I 0.35 0.65 I 650

4

42

0.87

3

3

I 500

4

6

60

43

1.0

10

3

I 600

4

6

60

43

(92)
MPS6539

(91)
MPS6548

I TO-92 I

0.95

4

0.7

(91)
MPSH10

I TO-92 I
(91)

2N917

T0-72 I

30

15

3

2N918

TO-72

I

30

15

3

2N3563

Same as PN3563

2N3564

Same as PN3564

2N3662

I T0-92 I
(94)

18

12

10

43
43

3

500

15 I 20

8

10

0.8

1.7 I 700

2100

5

6.5

60

43

RF Amplifiers and Oscillators (Continued)
Vces'
Type
No.

Case
Style

2N3663

I T0-92
(94)

2N3825

VCBO

VCEO I VEBO IICBO

V

I

(nA) @ :
Max

h
Min ~ax

I

V

@(m~)& ~~

(V)
Min

(V)

(V)

Min

Min

I

30

12

3

500

15 I 20

8

10

I T0-92 I

30

15

4

100

15 I 20

2

10

I

30

15

3

500

15 I 20

I T0-92 I

30

15

3

500

15 I 20

I VCE(SAT)

VBE(SAT)

(V) &

Max

(V)

Min

Max

I

@(m~)

I

Cob/ero
. (pF)
Min Max

0.8

I

for

I

. (MHz) @
Min Max

(~)

I

NF
F
(dB) @(M:;
Max

1.7 I 700

2100

5

6.5

800

2

5.5

60

I

Proce
No. ss

43

0.25

2

3.5 1200

43

3

0.6

10

3.5 1600

4

6

60

43

3

0.6

10

3.5 1600

4

6

60

43

1.1 I 900

8

6

60

43

4

6

60

43

(94)

2N4292

I T0-92
(94)

2N4293

(94)
Same as PN5130

2N513O

I T0-92 I

43

I

I

1.0

10 I 0.7

0.4

1.0

10

15

4.5

10

15

30

12

3

10

15 I 20

3

20

5

15 I 25

2

10

2.5 1700

30-

20

50

15 I 25

10

10

2.5

MPS6541 I T0-92 I 30(92)

20

4

50

15 I 25

4

10

1.7 I 600

1500

4

43

MPS5770 I TO-92 I
(92)

30

15

4.5

10

15

1800

8

43

PN918

T0-92 I
(92)

30

15

3

10

15 I 20

PN3563

I T0-92 I

30

15

2

50

15 I 20

200

8

10

30

15

4

50

15 I 20

500

15

10

(92)

~

0.4

30

2N5770
MPS918

T0-92

I

50
20

200

8
3

10

1800

600

3

(92)

Same as PN3563

MPS3563

MPS6507 I T0-92 I 30(92)
MPS6511

I T0-92 I

43
10

43
43

(92)

I

50
80

200

8
3

0.4

1.0

10

800

3

0.4

1.0

10

1.7 1600

4

6

60

43

1.7 I 800

1500

8

43

3.5 I 400

1200

15

43

(92)
PN3584

I T0-92 I

0.3

0.97

20

(92)

SJOISISUeJ.1 NdN

NPNTransistors

RF Amplifiers and Oscillators (Continued)
VCES'

VCEO

VEBO

(V)
Min

(V)
Min

(nA)
Max

30

12

1

TQ..72

30

30

2N4135

TQ..72

30

MPS6568A

TO·92

20

MPS6569

TQ..92

Type

Case
Style

VCBO

PN5130

TQ..92
(92)

2N4134

No.

....~

Ml'?
In

ICBO
@ VCB

. hFE

@

Ie & VeE

VCE(SAT)
(V) &

VBE(SAT)
(V)

Min

Cob/Cro
@

Ie

(V)

MIn

Max

(rnA)

(V)

Max

Max

(rnA)

1.0

10

50

10

15

250

8

10

0.6

3

50

10

25

200

4

5

30

3

50

10

25

200

4

5

20

3

50

10

20

200

4

5

0.3

0.96

10

20

20

3

50

10

20

200

4

5

3

0.96

10

0.25
0.25

MPS6570

TQ..92

20

20

3

50

10

20

200

4

5

3

0.96

10

MPSH30

TO-92

20

20

3

50

10

20

200

4

5

0.3

0.96

10

Min

fT

Max

(MHz) @ Ie
Min Max (rnA)

1.7

450

0.5

350

800

4

(pF)

NF
(dB)

Max

Freq

Process

(MHz)

No.

@

8

43
2.5

60

44
44

0.5

425

800

4

5

450

0.65

375

800

4

3.3

200

44

0.5

300

800

4

6

45

44

0.5

300

800

4

6

45

44

0.65

300

800

4

6

45

44
44

MPSH31

TO-92

20

20

3

50

~10

20

200

4

5

0.3

0.96

10

0.65

300

800

4

6

45

SE5020

TQ..72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

375

800

4

3.3

200

44

SE5021

TO·72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

375

800

4

4

200

44

SE5022

TO·72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

300

800

4

SE5023

TQ..72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

300

800

4

6

45

44

SE5024

TQ..72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

300

800

4

6

45

44

SE5050

TO·72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

300

4

4

100

44

SE5051

TO-72

20

20

3

50

10

20

200

4

5

3.0

0.96

10

0.25

0.5

300

4

3

50

10

50

15

25

2

10

SE5052

TQ..72

20

20

MPS6542

TO·92
(96)

30'

20

MPS6543

TO-92
(96)

35

20

3

100

25

25

4

10

0.35

MPS6546

TO·92
(96)

35

25

3

100

25

20

2

10

MPS6547

TO-92
(96)

35

25

3

100

25

20

2

MPSH11

TO·92

30

25

3

100

25

60

4

(9~

3.0

10

44

44

375

4

1.5

700

10

47

10

1

750

4

47

0.35

10

0.45

600

2

47

5

0.35

10

0.35

600

2

47

10

0.5

4

0.9

650

0.05

0.6

4

4

200

44

47

_____~______~________________L __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~_ _ _ _ _ _~_ _ _ _ _ _ _ _ _ _ _ _L __ _ _ _ _ _~_ _ _ __ _ _

RF Amplifiers and Oscillators (Continued)
VCES'

Type
No.

Case

Vcso

Style

(V)
Min

MPSH19

I T0-92 I

VCEO
(V)

Min

I VEBO
VCB I
hFE
Ic VCE I VCE(SAn
"? IICSO
(nA) @ (V) Min Max @(mA)& (V)
(V) &
Min

Max

Max

Ic I Cob/Cro
(pF)

VBE(SAn
(V)
@(mA)

Min

Max

Min

Max

Ic

fT
(MHz)
@
Min Max (mA)

I

NF
(dB)
Max

Freq
(MHz)

@

Process
No.

30

25

3

100

15 I 45

4

10

0.65 I 300

4

47

40

30

4

50

15 I 30

8

10

0.36 I 400

8

47

45

45

4

50

30

I

20

2
15

0.5

20

0.32 I 500

15

47

7

(96)
MPSH24

I TO-92 I
(96)

MPSH34

I TO-92

I

(96)

I

30

30

100

15 I 40

200

4

10

0.5

15

0.45 I 500

4

I

45

45

100

15 I 30

150

12

12

0.5

15

0.45 I 500

12

47

I T0-92 I

30

30

4

100

25 I 25

2

10

0.5

10

0.65 I 350

2

49

60

45

4

500

35

20

30

10

0.5

30

0.65

49

40

5

500

35 I 25

10

5

0.5

10

0.7

49

30

4

50

15 I 25

4

10

10

0.65 I 400

4

49

40

5

500

35 I 25

5

10

10

0.7 I 300

5

49

TIS86

TO-92
(96)

TIS87

T0-92
(96)

MPS6540

15
40

5

200

47

(96)

~

MPS6544

OJ

I T0-92
(96)

MPS6567

I T0-92
(96)

MPSH20 I TO-92
(96)
MPSH37

I TO-92

I

40

0.95
0.5

(96)

SJOIS!SU8J l

iii

NdN

NPN Transistors

~National

General Purpose Amplifiers and Switches

~ Semiconductor
Type
No.

VCBO I VCEO I VEBO IICBO VCB I
hFE
Ic
VCE I VCE(SAn VBE(SAT)
Ic I Cob
(,? (~) (~) (n~) @ (V) Min Max@ (mA) & (V)
(V) &
(V)
@ (mA) (pF)

Case
Style

'"

Max

Max

(ns)
Max

(dB)
Max

Tt

C ::.
on I Ions

Process
No.

Mm

Mm

Mm

Mm

18

5

500

18 I 75

225

2

4.5

2N2714 1 TO-92 1 18
(94)

18

5

500

18 I 75

225

2

4.5

2N2923 1 TO-92 1 25
(94)

25

5

100

25 1 90

180

2

10

10

10

I TO-92 I 25

25

10

10

10

10

10

10

10

10

10
10

12 I 90
0.3

0.6

1.2

300

2

10
10

50

(1 kHz)

5

100

25 1150

300

2

(1 kHz)

(94)

~

Min

I toft I NFl

2N2712 1 TO-92 1 18
(94)

2N2924

Max

fy
I
(MHz) @ (~)
Min Max m

25

100

25 1 235

470

2

2N2925 1 TO-92
(94)

25

2N2926 1 TO-92
(94)

18

2N3390 1 TO-92 I
(94)

25

25

5

100

18

I 400

800

2

4.5

10

2N3391 1 TO-92
(94)

I 25

25

5

100

18

I 250

500

2

4.5

10

2N3392 1 TO-92
(94)

I 25

25

5

100

18 I 150

300

2

4.5

10

10

25

25

5

100

18 I 90

180

2

4.5

10

10

I 25

25

5

100

18 I 55

110

2

4.5

10

10

25

5

100

18 I 150

500

2

4.5

10

10

(1 kHz)

18

5

500

18 1 35

470

2

(1 kHz)

2N3393 1 TO-92 I
(94)
2N3394 1 TO-92
(94)

5

2N3395 1 T0-92 I
(94)

25

5

(Note 5)

10

General Purpose Amplifiers and Switches (Continued)
Case
Style

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

2N3396

T0-92
(94)

25

25

2N3397

TQ.92
(94)

25

2N3398

TQ.92
(94)

2N3414

'off

NF
(dB)
Max

hFE @ Ic .. VCE
Min Max (mA) (V)

5

100

18

90

500

2

4.5

10

10

25

5

100

18

55

500

2

4.5

10

10

25

25

5

100

18

55

800

2

4.5

10

10

TO-92
(94)

25

25

5

100

25

75

225

2

4.5

0.3

0.6

1.3

50

10

2N3415

T0-92
(94)

25

25

5

100

25

180

540

2

4.5

0.3

0.6

1.3

50

10

2N3416

TQ.92
(94)

50

50

5

100

25

75

225

2

4.5

0.3

0.6

1.3

50

10

2N3417

T0-92
(94)

50

50

5

100

25

180

540

2

4.5

0.3

0.6

1.3

50

10

No.

~

....

.

ICBO
(nA) @VCB
Min
(V)

Type

VCE(SAT)
(V)
Max

VBE(SAT)

Ic
(V)Max@ (rnA)
Min

Cob
(pF)
Max

fy
Ic
(MHz) @(rnA)
Min Max

(ne)
Max

Test
Conditione

Process
No.

2N3641

Same as PN3641

10

2N3642

Same as PN3642

10

2N3643

Same as PN3643

10

2N3693

Same as PN3693

10

2N3694

Same as PN3694

10

2N3721

TQ.92
(94)

18

18

5

500

18

60

660

2N3859

TQ.92
(94)

30

30

4

500

18

100

2N3860

TQ.92
(94)

30

30

4

500

18

150

2N4140

Same as PN4140

2N4141

Same as PN4141

2N4424
2N4969

TQ.92
(94)

40

40

2
(1 kHz)

10

12

10

200

2

4.5

4

90

250

2

10

300

2

4.5

4

90

250

2

10
10
10

5

100

25

180

540

2

4.5

0.3

0.6

1.3

50

10
10

Same as PN2221

SJOIS!SU8J.1 NdN

iii

NPN Transistors

General Purpose Amplifiers and Switches (Continued)
Type
No.
2N4970

VCBO I VCEO I VEBO IICBO VCB I h FE
(,? <'? (V) (n~) @ (V) Min Max

Case
Style
TO·92 I
(92)

Min

Min

Min

50

30

5

Min

100
70
50

350

I

IC VCE VCE(SAn VBE(SAn

~mA) & (V)
150
10
150

10
10

(V)
Max
0.4

&

IC I COb I

. (V)
@ (mA)
Mm Max
0.6

1.2

(pF)
Max

150 I

8

IC I toft I NF

fT
.(MHz) @ (mA)
Mm Max

I 200

(ns)
Max

(dB)
Max

ITt I
es
Conditions

20

Process
No.
10

2N5127

Same as PN5127

10

2N5128

Same as PN5128

10

2N5129

Same as PN5129

10

2N5131

Same as PN5131

10

2N5132

Same as PN5132

10

2N5135

Same as PN5135

10

2N5136

Same as PN5136

10

2N5137

Same as PN5137

10

25

25

5

100

25

I 100

500

10

10

0.25

I 20

15

3

100

10

I 35

500

2

10

0.4

25

20

3

100

10 I 50

500

2

10

I 75

45

6

50

60 I 80
100
100
100

2N5172

TO-92 I
(94)

2N5219

TO-92
(94)

2N5223

T0-92 I
(92)

~

10

10

1.0

10

4

I 150

10

10

0.7

1.2

10

4

I 150

10

10

0.2

0.85

10

I 4.5 I 250

20

0.4

1.0

200

0.4

1.3

150

I 8 1200

20

1.6

2.6

300

10

0>

MPQ100

I TO-116
(39)

MPQ2222I TO-116
(39)

MPS2923

I TO-92

I

60

40

5

50

450
350

50 I 75
100
30

0.1
10
100
150
10
150
300

10
10
10

4

(Note 12)

10

10

I 25

25

5

500

25 I 90

180

2

10

12

10

I 25

25

5

500

25 I 150

300

2

10

12

10

I

25

5

500

25

I 235

470

2

10

12

10

(92)
MPS2924 I TO-92
(92)
MPS2925 I TO-92
(92)

25

General Purpose Amplifiers and Switches (Continued)
Type
No.
MPS2926

I case I VCBO , VCEO , VEBO ,ICBO
Style

I TO-92

(V)

hFE
Ic
VCE ,VCE(SAT)
VaE(SAT)
IC' Cob
Min Max@ (mA) " (V)
(V)". (V)
@ (mA)
(pF)
Max
Min Max
Max

500

18

35

100

18

150

25

100

18

25

~

Min

(V)
Min

(V)
Min

(~)

25

25

5

25

25

5

Min

vca'
@

(92)
MPS3392

I TO-92

470
2
10
(1 kHz) (5 Groups)

,fr
.(MHZ)
Min

IC' toft , NF
@(mA) (n8) (dB)
Max
Max Max

I

Test
Conditions

I Process
No.

12

10

300

2

4.5

10

10

I 90

180

2

4.5

10

10

100

18 I 55

110

2

4.5

10

10

25

100

18 I 150

500

2

4.5

10

10

25

100

18 I 90

500

2

4.5

10

10

25

100

18

I 55

500

2

4.5

10

10

25

100

18 I 55

800

2

4.5

10

10

(92)
MPS3393

I TO-92
(92)

MPS3394

I TO-92
(92)

MPS3395

I 10-92
(92)

MPS3396

I TO-92
(92)

~

I

MPS3397

TO-92
(92)

MPS3398

I TO-92
(92)

MPS3693

I 10-92 I

45

45

4

50

35 I 40

160

10

10

10 I 200

10

4

(Note 9)

10

45

45

4

50

35 I 100

400

10

10

10 1200

10

4

(Note 9)

10

60

40

6

4

1200

10

5

(Note 8)

10

4

1200

10

5

(Note 8)

10

(92)
MPS3694

I T0-92 I
(92)

MPS3903

I T0-92 I

20
35
50
30
15

(92)

MPS3904

I 10-92 I

60

40

6

(92)

MPS5172

I T0-92 I

25

25

5

100

0.1
150

0.2

10
50
100

40
70
100
60
10

300

0.1
1
10
50
100

25 I 100

500

10

0.65

0.85

10

1.0

50

0.65

0.85

10

1.0

50

0.3
0.2

0.3
10

0.25

10 I 10

10

(92)

SJOIS!SU8J l NdN

iii

NPN Transistors

General Purpose Amplifiers and Switches (Continued)
Type
No.
MPS6520

Case

Style

VCBO

<'?

Mm

I TO-92

I (~) I (,?
VCEO

VEBO IICBO

Min

Min

25

4

V

(n~) @ (~
50

30

25

4

50

30

(92)
60

45

4

6

MPS8099 I TO-92 I
(92)
MPSA10

80

I TO-92

80

6

0.5

50

4

3

(Note 10)

10

400

2

10

0.4

10

4

100

35 I 100
200

100/LA
10

5
5

0.5

10

12 I 100

500

5

0.5

10

5
5

0.5

10

5

0.5

5
5

0.3

100 I

6

0.3

100 I

500

100

45 1100 300
(4Groups)

100

60 1100
100
75

300

60 \100
100
75

300

100

Process
No.

10
10

45 I 100
200

60

NF
Test
(dB) I Conditions
Max

2
100/LA

100

60

toll

600

30 I 100

(92)

I I

10

45

I TO-92 I

I

(Note 10)

100

(92)

fT

.

~

PN2222

PN3641

20
40
35
25
20

I

TO·92
(92)

I TO-92 I

75

40

6

10

60

30

5

10

50

30

5

50'

I

I TO-92 I

60

45

5

50'

I TO-92 I

60

30

5

50'

(92)
PN3694

I TO-92 I

45

45

4

60

30

5

50

500
150
150
10

Max

(dB)
Max

I

Test
Conditions

I

Process
No.

10

4

1 150

20

1250

20 I 285

(Note 2)

10

1250

20 I 285

(Note 2)

10

0.4

1.3

150 1 8

10
10
10
10

1.6

2.6

500

10

0.3

1.2

150 1 8

10
10
10
10

1.0

2.0

500

10

0.4

1.3

150

10

1.6

2.6

500

10

(ns)
Max

1

0.6

8

250

20

10

1

1

100/LA
500
150

10
10

0.22

150 I 8

I 250

50

10

120

15
40

500
150

10
10

0.22

150 I 8

I 250

50

10

120

10
10

150 I 8

1250

50

10

300

500
150

0.22

100
30 1 100

400

10

6

1200

10

10

1 250

20 I 310

50

(92)
PN3643

300

500
150
150
10
1
100/LA

Max

I I ton I NF

(m~)

15
40

50

(92)
PN3642

120

I 30
50
100
75
50
35

60

100/LA

I 25
20
40
35
25
20

60

120

500
150
150
10

Min

for
(MHz) @
Min Max

50

I

I 20

(92)
PN4140

I TO-92 I
(92)

20
20
40
35
25
20

120

500
150
150
10
100/LA

•

10

0.4

1.3

150 1 8

1.6

2.6

500

(Note 2)

10

1

10
10
10
10

SJOIS!SUeJl NdN

NPN Transistors

General Purpose Amps and Switches (Continued)
Type
No.

Case
Style

PN4141

I TO-92 I

VCBO
(V) I VCEO
(V) I VEBO
(V) IICBO
(nA) @ VCB I . hFE
Min

Min

Min

60

30

5

Min

(V)

30
50
100
75
50
35

(92)

PN5127

I TO-92 I

Min

Max

300

@

Ic

&

COb I
VCE I VCE(SAT)
(V) & VBE(SAT)
(V)
@
Ic I (pF)

(rnA)

(V)

Max

Min

Max

(rnA)

Max

500
150
150
10

10

0.4

1.3

150 I 8

1.6

2.6

500

fT
(MHz)
@ Ic
Min Max (rnA)

I

toft
(ns)
Max

I (dB)
NF
Max

I

T~s.t

I

Conditions

Process
No.

(Note 2)

10

I 250

20 I 310

I 150

2

10

1

100 ",A

10
10
10
10

20

12

3

50

10 I 15

300

2

10

0.3

1.0

10 I 4

15

12

3

50

10

I 35

350

50
10

10
10

0.25

1.1

150 I 10 1200

800

50

10

350

50
10

10
10

0.25

1.1

150 I 10 I 200

800

50

10

(92)
PN5128

I TO-92 I
(92)

PN5129

I TO-92 I

20
15

12

3

50

10

(92)
PN5131

'"
~

I TO-92

I 35
20

1.0

20

15

3

50

10

35

500

10

10

6

100

10

10

20

20

3

50

10

30

400

10

10

2.0

0.9

10

4

200

10

10

30

25

4

300

15

I 50

60'

10
2

10
10

1.0

1.0

100 I 25 I 40

500

30

10

400

150
30

0.25

1.1

150 I 35 I 40

400

50

10

400

150
30

0.25

1.1

150 I 35 I 40

400

50

10

(92)
PN5132

I TO-92
(92)

PN5135

I TO-92 I
(92)

PN5136

I TO-92 I

15
30

20

3

100

20 I 20
20

30

20

3

100

20

(92)
PN5137

I TO-92 I

TIS90

I TO-92 I

I 20
20

(92)
40

40

5

100

20 I 100

300

50

2

0.25

0.6

50

10

40

40

5

100

20 I 100

300

50

2

0.25

0.6

50

10

40

10

40 I 250

700

0.1

5

60

10

40 I 100

300

65

10

40 I 55

300

(94)
TIS92

I TO-92 I
(97)

TIS97

I TO-92

3

(Note 7)

10

(97)
TIS98

I TO-92

5

0.5

100

2

10

10

5

0.5

100

2

10

10

(97)

TIS99

I TO-92
(97)

100

General Purpose Amplifers and Switches (Continued)
Type
No.

Case
Style

TN2218A TO·237
(91)

TN2219

TO·237
(91)

TN2219A TO·237
(91)

VCBO
(V)

VCEO
(V)

VEBO
(V)

ICBO

Min

Min

Min

Min

75

40

6

10

60

75

30

40

5

6

(n~)

10

10

@

VeB
(V)

60

50

60

Col

N
Col

hFE

Min

25
20
40
35
25
20
30
50
100
75
50
35
40
50
100
75
50
35

Max

120

300

300

@

Ic & VCE
(mA)
(V)

VCE(SAT)
VBE(SAT)
Ic
(V)
&
(V)
@ (mA)

Cob
(pF)
Max

fT

Ic

(ns)
Max

285

Max

Min

Max

0.6

1.2

150

8

250

20

8

250

20

8

250

20

500
150
150
10
1
100/LA

10
1
10
10
10
10

0.3

500
150
150
10
1
0.1

10
1
10
10
10
10

0.4

1.3

150

1.6

2.6

500

500
150
150
10
1
0.1

10
1
10
10
10
10

0.3

1.2

150

2.0

500

1.0

0.6

toft

.(MHZ) @ (mA)
Min Max

NF
(dB)
Max

Test
Conditions

Process
No.

(Note 2)

10

10

4

(Note 3)

10

2N3704

TO·92
(94)

50

30

5

100

20

100

300

50

2

0.6

100

12

100

50

13

2N3705

TO·92
(94)

50

30

5

100

20

50

150

50

2

0.8

100

12

100

50

13

2N3706

TO·92
(94)

40

20

5

100

20

30

600

50

2

1.0

100

12

100

50

13

2N3794

TO·92
(94)

40

20

5

500

15

100
100
35

100
10
1

10
10
10

0.4

10

10

100

10

13

600

TO·92
(92)

60

500
150
10
1

2
1
1
1

0.4

0.75 0.95

150

6.5

200

0.75

1.2

500

2N4400

40

6

20
50
40
20

150

600

20

255

(Note 2)

13

SJOIS!SU8Jl NdN

II

NPN Transistors

General Purpose Amplifiers and Switches (Continued)
Type
No.

Case
Style

VCBO
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

2N4401

T0-92
(92)

60

40

6

ICBO

(nA) @VCB
Min
(V)

@ Ic & VCE
Max
(mA)
(V)

hFE

Min

40
100
80
40
20

300

VCE(SAn
VBE(SAn
(V)
&
(V)
@

I

Max

Min

Max

'i
(m )

500
150
10
1
100 !LA

2
1
1
1
1

0.4

0.75 0.95

150

0.75

1.2

500

Cob
(pF)
Max

.(MHZ) @ (mA)
Mm Max

toft
(ns)
Max

6.5

250

255

IT

Ic

20

NF
(dB)

Max

Test
Conditions

Process

(Note 2)

13

No.

2N4944

TO-92
(92)

80

40

5

50

40

40
40

120

150
30

1

0.25

150

60

900

50

13

2N4946

TO-92
(92)

80

40

5

50

40

100
100

300

150
30

1

0.25

150

60

900

50

13

2N4951

T0-92
(94)

60

30

5

50

40

60
40
20

200

150
10
1

10
10
10

0.3

1.3

150

8

250

20

400

(Note 2)

13

2N4952

T0-92
(94)

60

30

5

50

40

100
75
50

300

150
10
1

10
10
10

0.3

1.3

150

8

250

20

400

(Note 2)

13

2N4953

TO-92

60

30

5

50

40

200
150
75

600

150
10
1

10
10
10

0.3

1.3

150

8

250

20

400

(Note 2)

13

0.3

1.3

150

8

250

20

400

(Note 2)

13

'"~

(94)

2N4954

TO-92
(94)

40

30

5

50

30

60
40
20

600

150
10
1

10
10
10

2N5220

TO-92
(92)

15

15

3

100

10

30
25

600

50
10

10
10

0.5

1.1

150

10

100

20

13

2N5225

TO-92
(92)

25

25

4

300

15

30
25

600

50
50

10
10

0.8

1.0

100

20

50

20

13

MPS3704 T0-92
(92)

50

30

5

100

20

100

300

50

2

0.6

100

12

100

50

13

MPS3705 T0-92
(92)

50

30

5

100

20

50

150

50

2

0.8

100

12

50

13

MPS3706 T0-92
(92)

40

20

5

100

20

30

600

50

2

1.0

100

12

50

13

25

4

50

20

100
200

0.1
2

10
10

0.5

50

4

400

MPS6522 TO-92
(92)

100

13
I

General Purpose Amplifiers and Switches (Continued)

I I

Type
No.

Case
Style

MPS6530

I TO·92 I

VCBO

VCEO I VEBO IICBO
~
(V)
(nA)
Mm
Min
Min

~

Min

40

60

50

5

(92)
MPS6531

I TO-92 I

40

60

5

50

(92)
MPS6532

I TO-92 I

@

VCB
(V)

I

h FE
IC
VCE
Min Max @ (rnA) & (V)

I

VCE(SAn VBE(SAn
IC
(V) & . (V) @ (rnA)
Max
Mm Max

I I
Cob
(pF)
Max

for
IC
(MHz) @ (rnA)
Min Max

I I
toff
(ns)
Max

NF I Tes
t
(dB) Conditions
Max

Process
No.

40 I 25
40
30

500
100
10

10

0.5

1.0

100 I 5

13

120

40 I 50
90
60

500
100
10

10

0.3

1.0

100 I 5

13

270

0.5

1.2

100 I 5

13

50

30

5

100

30 I 30

I TO-92 I 50

30

5

100

20 I 100

300

50

2

0.6

40

5

100

25 I 100

200

2

2

0.75

140

6

100

100

50
10

5

250

5

250

50
10

1

5

1
10
50

5

100

(92)
PN5449

100

100

50

13

1.2

500

100

50

13

0.15

1.0

10

5

0.25

1.2

50

5
5

0.15

1.0

10

0.2

1.0

50

5
5

0.15
0.2
0.25

O.B
1

5
5
5

0.15
0.2
0.25

O.B
1.0
1.0

10
50

5

0.15
0.2
0.25

O.B
1.0
1.0

10
50
1.0
50

(92)
PN5B16
2N5550

'f I

I T~92 I

I

50

(92)

T~92

I

160

I

I

(92)

I\)

U1

2N5551

I T~92 I 1BO I 160

6

50

120

I

(92)
2N5B30

I TO-92 I

120

I

100

5

50

100

I T~92 I

BO
SO
160

I

140

5

I 50

(92)
2N5S33

I T~92 I 200 I 1BO

6

I

10

120 I 60
BO
BO

I T~92 I

I

120

6

200 I 1BO

5

140

I 1 p.A.

500

I TO-92 I

50

(92)
2N696

TO-5 I

60

5

I 1 /LA

I 100

300

10

10

(Note B)

16

6

I 100

300

10

S

(NoteS)

16

100

500

10

16

4

I 100

500

10

16

4

I 100

500

10

16

10

16

10
50

10
50

50
50
50

250

10
50

5

40 I 50

300

10

5

0.2
0.2

1.2
1.4

50
50
50

5
10
50

5

5

0.15
0.2
0.25

O.S
1.0
1.0

4

250

30 I 20

60

150

10

1.5

1.3

150 I 20 I 40

160

I

5

(92)
PN5965

6

250

(92)
MPSL01

30
SO
SO

I 60

(92)
2N5S31

20
60
60

160

I

B I 60

16

50

19

SJOlSISU8Jl NdN

iii

NPN Transistors

General Purpose Amplifiers and Switches (Continued)
Type
No.

Case

Style

VCBO I VCEO I VEBO IICBO VCB I
h FE
(V)
(,? (~) (n~) @ (V) Min Max
Min
Min
Min
Min

VCE I VCE(SAT) VBE(SAT)
IC I Cob I
fT
IC
(V) & . (V) @ (rnA) (pF)
.(MHZ) @ (rnA)
Max
Min Max
Max Min Max

(rnA) & (V)

lloff
I NF ITt
IProcess
es
(ns) (dB) Conditions
No.
Max

Max

2N697

TO-51

60

45

5

1 l".A

30 1 40

120

150

10

1.5

1.3

150 1 35 1 50

50

19

2N716

TO-16 1 60

30

5

1 l".A

30 1 40

120

150

10

1.5

1.3150135150

15

19

500
150
10
100".A

10
10
10
10

1.5

1.3

150 1 25 1 60

50

12

(Note 1)

19

500
150
10
100".A
10".A

10
10
10
10
10

1.5

1.3

150 1 25 1 70

50

6

(Note 1)

19

1.3

150 1 35 1 50

50

19

10

10

60

5

19

6

250

20

(Note 2)

19

(Note 2)

19

2N716A I TO-16 1 75

2N956

2N1420
2N1566

TO-16 1 75

1 T()..5 1 60
TO-5

60

7

35

7

10

10

30

5

1 l".A

60

5

l".A

60 1 20
40
35
20
60 1 40
100
75
35
20

120

300

30 1 100

300

150

10

1.5

60

200

5

5

1.0

500
150
150
10
1
100".A

10

0.4

1.3

150

10
10
10
10

1.6

2.6

500

10
1
10
10
10
10

0.3

1.2

150 I 6

1250

20 I 265

10

0.4

1.3

150 1 6

1 250

20

10
10
10
10

1.6

2.6

500

40

(1 kHz)

Co)

~

IC

@

2N2216

TO-5

60

2N2216A 1 TO-5 1 75

2N2219

1 TO-5 1 60

30

40

30

5

6

5

10

10

10

50

20
20
40
35
25
20

60 I 25
20
40
35
25
20
50

120

120

100".A

I 30
50
100
75
50
35

500
150
150
10

300

500
150
150
10
100".A

1

0.6

19

General Purpose Amplifiers and Switches (Continued)
Type
No.

Style

2N2219A

TO·5

Case

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

75

40

6

ICBO
(nA)@VCB
Min
(V)
10

60

also

TO·18

2N2221 A

60

TO-18

75

30

40

5

6

10

10

50

60

;b
....
2N2222

TO·18

2N2222A

60

TO-18

75

30

40

5

6

10

10

50

60

also
Avail
JANITXIV
Versions
2N3299

T0-5

-

40
50
100
75
50
35

Avail.
JAN/TXIV
Versions
2N2221

hFE
@ IC & VCE
Min Max (mA)
(V)

-

60

-

30

5

10'

50

20
20
40
35
25
20
25
40
35
25
20
30
50
100
75
50
35
40
50
100
75
50
35
20
20
40
35
25
20

300

120

120

300

300

120

VCE(SAT) VBE(SAT)
Ic
(V) &
(V) @( A)
Max
Min Max m

Cob
fy
I
(pF)
(MHz) @(~)
Max Min Max

toft

1.2
2

150
500

8

300

20

0.4

1.3

150

8

250

20

1.6

2.6

500

1.2

150

8

250

20

1.0

2.0

500

10
1
10
10
10
10

0.4

1.3

150

8

250

20

1.6

2.6

500

500
150
150
10
1
100 p.A

10
1
10
10
10
10

0.3

1.2

150

8

250

20

285

1

2

500

500
150
150
10
1
100 p.A

10
1
10
10
10
10

0.22

1.1

150

8

250

50

150

0.6

1.5

500

500
150
150
10
1
100 p.A

10
1
10
10
10
10

0.6

500
150
150
10
1
100 p.A

10
1
10
10
10
10

500
150
10
1
100 p.A

10
10
10
10
10

0.3

500
150
150
10
1
100 p.A

0.6

0.6

NF

(ns) (dB)
Max Max

Test
Conditions

Process

(Note 2)

19

No.

19

(Note 2)

285

19

19

4

(Notes2&3)

19

(Note 4)

19

SJOIS!SueJl NdN

II

NPN Transistors
General Purpose Amplifiers and Switches (Continued)
Type
No.

Case
Style

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

2N3300

T0-5

60

30

5

2N3301

2N3302

TO-18

TO-18

60

60

30

30

5

5

ICBO
(nA) @VCB
Min
(V)
10'

10'

10'

50

50

50

(,)

~

(J)

PN2222A

T0-92
(92)

2N915

TO-18

2N916

TO-18

75

40

6

10

60

hFE
@ Ic & VCE
(V)
(mA)
Min Max
50
50
100
75
50
35
20
20
40
35
25
20
50
50
100
75
50
35
40
50
100
75
50
35

300

120

300

300

VCE(SAT) VBE(SAT)
Ic
(V) &
(V) @ (mA)
Max
Min Max

500
150
150
10
1
100 p.A

10
1
10
10
10
10

0.22

1.1

150

0.6

1.5

500

500
150
150
10
1
100 p.A

10
1
10
10
10
10

0.22

1.1

150

0.6

1.5

500

500
150
150
10
1
100 p.A

10
1
10
10
10
10

0.22

1.1

150

0.6

1.5

500

500
150
150
10
1
100 p.A

10
1
10
1
1
1

0.3

1.2

150

1.0

2.0

500

0.6

Cob
(pF)
Max

loll

fT
Ic
,

i\,

T()'18

2N3947

60

40

40

6

I T()'92 I

40

30

5

50

2N4124

I T()'92

I

30

25

5

50

(92)

I T()'116 I

VBE(SAT)
I
• (V)
@ (m'i)

0.6

0.85

10

0.95

50

I 30

100

0.2

0.85

10

60

50
0.95

50

0.9

10

1.0

50

0.9

10

150

300

150

300

20125

50

(92)

&

0.2

60
2N4123

(V)

100
50
10
1
1oo,.,.A

40
100
90

6

I VCE(SAT)

Max

20
50
45
30

CD

(~

Min

100
70
40

I T().18 I 60

V

Max

15
30
50
35
20

(92)

2N3946

(m'i) &

Min

(92)

2N3904

I

@

20160
120

0.3

10
1
100 p.A

0.3

50
10
1
100,.,.A

0.2

0.65

0.6

0.3

I Cob I

for
I I toff I NF
(pF)
(MHz) @ (m'i) (ns) (dB)
Max Min Max
Max Max

I 5 I (Notes 6&7)

23

1300

10

4

1250

10 1375

4

300

10

50

50

0.3

0.95

50

4

1250

No.

23

4

1.0

Process

I 250 I 5 I (Notes6& 7)

1012251

0.3

0.6

I

23

1250

0.2

Test
Conditions

I (Notes 6 &7)

4

50
10
1
100 p.A

I

6

5

(Notes 6 & 7)

23

10

6

(Note 7)

23

5

(Note 7)

23

150

2
50
2

0.3

0.95

50

4

1300

10

360

4

450

60

40

6

5040130
50
75

0.1
1
10

0.2

0.85

10

1250

10

23

I 40

40

5

50

30130
50
70

0.1
1
10

0.25

0.1

10 I 4.5 1200

10

23/66

MPS2711 1 TO·92 1 18
(92)

18

5

1 500

18 1 30

90

2

4.5

4

23

I TO-92 I 18

18

5

I 500

18 I 75

225

2

4.5

4

23

MPQ3904

(39)

I

MP06700 T()'116
(39)

MPS2712

(92)

SJOIS!SUeJJ. NdN

II

NPN Transistors

General Purpose Amplifiers and Switches (Continued)
VEBO
(V)
Min

ICBO

18

18

5

500

18

75

225

2

4.5

3.5

23

500

18

60

2
660
(1 kHz)

10

3.5

23

4

100

30

40

160

10

10

3.5

200

800

10

23

45

4

100

30

100

400

10

10

3.5

200

800

10

23

30

4

50

30

30
50

100
2

10
10

0.5

50

3.5

23

100

60
90

100
2

10
10

0.5

50

3.5

23

180

90
150

100
2

10
10

0.5

50

3.5

23

300

150
250

100
2

10
10

0.5

50

3.5

23

500

10

5

0.5

10

4

23

10

10

10

3.5

MPS2716

TO-92
(92)

MPS3721

TO-92
(92)

MPS3826

TO-92
(92)

60

45

MPS3827

TO-92
(92)

60

MPS6512

TO-92
(92)

40

TO-92
(92)

40

TO-92
(92)

40

TO-92
(92)

40

MPS6514
c.>

""o

VCEO
(V)
Min

Case
Style

MPS6513

MPS6515
MPS6564

TO-92
(92)

MPS6565

TO-92
(92)

NF
(dB)
Max

VCBO
(V)
Min

Type
No.

60

30
25
25

4
4
4

(n~)

@

VCB
(V)

Mm

50
50
50

30
30
30

hFE
@ Ic & VCE
Min Max (mA) (V)

45

5

500

40

25

45

4

100

30

40

160

VCE(SAn
VBE(SAn
Ic
(V) &
(V)
@ (mA)
Max
Min Max

0.4

Cob
(pF)
Max

fT
Ic
.(MHZ) @ (mA)
Mm Max

toft

(ns)
Max

Test
Conditions

Process
No.

23
I

-

--

--

-

I

General Purpose Amplifiers and Switches (Continued)
Type
No.

Case
Style

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

NS3903

TO-18

60

40

5

NS3904

TO-18

60

40

ICBO
(nA) @VCB
Min
(V)

hFE
@ Ic & VCE
Min Max
(rnA)
(V)
15
30
50
35
20

6

VCE(SAT)
VBE(SAT)
Ic
(V)
&
(V)
@ (rnA)
Max
Min Max

1
1
1
1
1

0.2

150

100
50
10
1
100 fLA

0.85

10

0.95

50

30
60
100
70
40

1
1
1
1
1

0.2

300

100
50
10
1
100 fLA

0.85

10

0.3

0.95

50

0.65

0.3

0.65

fy

Ic
(MHz) @(rnA)
Min Max

totl
(ns)
Max

4

250

10

4

300

10

Cob
(pF)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

225

(Note 6)

23

250

(Note 6)

23

PN3691

TO-92
(92)

35

20

4

50

15

40

160

10

1

0.7

0.9

10

3.5

200

500

10

23

PN3692

TO-92
(92)

35

20

4

50

15

100

400

10

1

0.7

0.9

10

3.5

200

500

10

23

ST3904

TO-92
(92)

60

40

6

1
1
1
1
1

0.2

0.85

10

4

300

300

0.1
1
10
50
100

0.95

50

c.J

~

TEST CONDITIONS:
Note 1: Ie ~ 300 ,.A, VeE ~ 10V, f ~ 1 kHz.
Note 2: Ie ~ lS0 rnA, Vee ~ 30V, 181 ~ 182 ~
Note 3: Ie ~ 100 ,.A, VeE ~ 10V, f ~ 1 kHz.
Note 4: Ie ~ 300 rnA, Vee ~ 2SV, 181 ~ 182 ~

40
70
100
60
30

lS rnA.
30 rnA.

Note 5: Ie
Note 6: Ie
Note 7: Ie
Note 8: Ie

~

100 ,.A, VeE

0.65

0.3

~

4.SV, f ~ lS.7 kHz.

~ 10 rnA, Vee ~ 3V,I8 1 ~ 182 ~ 1 rnA.
~

100 ,.A, VeE

~

SV, f

~

lS.7 kHz.

~

2S0 ,.A, VeE

~

SV, f

~

10 Hz - lS.7 kHz.

10

285

8

(Notes 6, 7)

23

Note 9: Ie ~ 3 rnA, VeE ~ 10V, f ~ 1 MHz.
Note 10: Ie ~ 10 ,.A, VeE ~ SV, f ~ lS.7 kHz.
Note 11: le/18 ~ 20.
Note 12: Ie ~ 200 ,.A, VeE ~ SV, f ~ 1 kHz.

--

.. -

- -

SJOIS!SUeJl NdN

iii

NPN Transistors

~National

Medium Power

~ Semiconductor

Type
No.
2N899
2N1613
a/SOAvail.

I

VCER"

case Vcao

Style

(V)

Min

VCEO

(V)

Min

:. II:1 ~ I
V

60

5

2

60 1 40

I 75

35

7

10

60 1 20
40
35
20

JANITXIV
Versions
2N1711

h
V,
Min 'i.ax @ (n!) &

@

T0-391 120
T().5

T().5

75

35

7

10

60

120
120

I 40

c.>

~

I ~ I :!.

ICES·

VEBO

100
75
35
20

300

vCE(SAT)

vBE(SAT)

I I:~ IM::~ I I
fr

Cob

& Min(V)Max@ (n!)

@

I

I r::-

I
toH NF
Test
P
(n!) : : : : ConcIIUons

150

10

5.0

1.3

150 1 20 1 50

50

12

500
150
10
100 p.A

10
10
10
10

1.5

1.3

150 1 25 1 60

50

12

(Note 1)

12

500
150
10
100 p.A
10 p.A

10
10
10
10
10

1.5

1.3

150

25

70

50

8

(Note 1)

12

15

100

60

7

10

75 1100

300

150

10

1.2
5.0

0.9
1.3

50
150

60

50

12

2N1893
T0-391 100
also Avail.
JAN/TXN
Versions

80

7

10

90 1 40
35
20

120

150
10
0.1

10
10
10

1.2

0.9

50 1 15 1 50

50

12

5.0

1.3

150

T0-391 120

65

0.01
0.1
10
150
500

10
10
10
10
10
10

0.5

1.1

150 1 15 1 60

50

12

10
10
10
10
10
10

0.35

1.3

150 1 10 1 50

50

12

2N1890

2N21 02

2N2192

T0-39

T0-391

60

40

7

5

2

10

60

30

I

I

10
20
35
40
25
10
15
75
100
70
35
15

120

1A

300

0.01
0.1
10
150
500
1A

Medium Power (Continued)
Type
No.

Case
Style

2N2192A I TQ.391

2N2193

TQ.391

VCER'I VEBO
Vcao I VCEO
(V)
(V)
(V)
Min
Min
Min

60

80

2N2193A I TQ.39 I 80

40

50

50

5

8

8

ICES'

10

10

10

Co)

~

2N2243

TQ.391 120

2N2243A I TQ.39 I 120

2N3019
also

Avail.
JAN/TXIV
Versions

TQ.391 140

80

80

80

7

7

7

hFE

IcBO@Ves
(nA) (V)
Max

10

10

10

Min

30 I 15
75
100
70
35
15
80 I 15
30
40
30
20
15
60 I 15
30
40
30
20
15
60

60

I

I

15
30
40
30
15
15
30
40
30
15

90 I 50
90
100
50
15

IC
VCE
Max@ (mA) & (V)

I :!x

VBE(SAT)
IC I Cob I
fr
IC
& Min(V)Max@ (mA) : : MI:'H:ax @(mA)

VCE(SAT)

::! ::~ ITt

llott I

NF

es
Conditions

I

Process
No.

0.01
0.1
10
150
500
1A

10
10
10
10
10
10

0.25

1.3

150 I 20 I 50

50

12

0.01
0.1
10
150
500
1A

10
10
10
10
10
10

0.35

1.3

150 I 20 I 50

50

12

0.1
10
150
150
500
1A

10
10
10
1
10
10

0.25

1.3

150 I 20 I 50

50

12

10
10
10

0.35

1.3

150 I 15 I 50

50

12

120

0.1
10
150
150
500

10
10
10
1
10

0.25

1.3

150 I 15 I 50

50

12

120

0.1
10
150
150
500

10
10
10
10
10

0.2

1.1

150 I 12 I 100

50

12

300

0.1
10
150
500
1A

300

120

120

10

SJOISISU8J.1 NdN

NPN Transistors

Medium Power (Continued)
Type
No.
2N3020

2N3053
2N3107

2N3108

Case
Style
TO-39

TO-39
TO-39

TO-39

VCBO
(V)

Min
140

60
100

100

VCER"
VCEO
(V)

Min
80

40
60

60

VEBO
(V)

Min
7

5
7

7

ICES"
ICBO@ VCB
(nA)
(V)

hFE

@

Min

Max

30
40
40
30
15

100
120
120
100

& VCE
(rnA) (V)
Ic

Max
10

250
10

10

90

30
60

60

25
50
35
100
40
20
40
25

VCE(SAT)
(V) &

Max

(V)

Min

Ic
@ (rnA)

Max

0.1
10
150
500
1A

10
10
10
10
10

150
150

2.5
10

1.4

1.7

0.1
150
500

10
10
10

0.25

1.1

300

1.0

2.0

1A

10
10
10

0.25

1.1

150

120

0.1
150
500

1.0

2.0

1A

10
10
10

0.25

1.1

150

300

0.1
150
500

1.0

2.0

1A

10
10
10

0.25

1.1

150

120

0.1
150
500

1.0

2.0

1A

10
10
10

0.5

1.2

150

120

10
150
500

1.2

1.8

500

10
10
10

0.5

1.2

150

300

10
150
500

1.2

1.8

500

1
10
150
500
1A

10
10
10
10
10

0.2

1.1

150

250

0.2

VBE(SAT)

1.1

0.5

150

Cob
(pF)
Max

fT

I

.(MHZ) @ (m~)
Min Max

Ioff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

12

80

50

12

150

15

100

50

12

150

20

70

50

1000

7

(Notes 5 &6)

12

20

60

50

600

7

(Notes 5 &6)

12

25

70

50

1000

7

(Notes5&6)

12

25

60

50

600

7

(Notes5&6)

12

12

60

50

12

12

60

50

12

500

Co)

c.,

.j>.

2N31 09

2N3110

TO-39

TO-39

2N3568
2N3665

2N3666

2N3700

80

80

40

40

7

7

10'

10"

60

60

35
100
40
20
40
25

12

Same as PN3568
TO-39

TO-39

TO-18

120

120

140

80

80

80

10

10

7

50'

50'

10

60

60

90

30
40
25
70
100
50
50
90
100
50
15

300

I

0.5

100

12

200

5

12

500
_. __. _ -

,~

~~

-

--

----

Medium Power (Continued)
Type
No.

Case
Style

VCBO
(V)

2N3701

TO-18

140

2N3945

2N4945

TO-92
(92)

MPSA05

c'.>

70

80

50

Min

7

8

ICES'
ICBO@VCB
(nA)
(V)

hFE

@

Min

Max

40
40
30
30
15

120
120
100
100

Ic & VCE
(rnA) (V)

Max

10

40

90

60

25
40
20

250

Max

VBE(SAT)
Ic
(V)
@ (rnA)

Min

Max

150

Cob
(pF)
Max

f1

I

.(MHz) @ (rn~)
Min Max

150
10
0.1
500
1

10
10
10
10
10

0.2
0.5

1.1

500

10
150
500

10
10
10

0.5

1.2

150

1.8

1.8

500

150
30

1

0.25

150

60

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

12

80

50

12

12

60

50

12

50

12

50

40

40
40

TO-92
(92)

60

4

100

60

50
50

10
100

1
1

0.25

100

100

100

12

MPSA06

TO-92
(92)

80

4

100

80

50
50

10
100

1
1

0.25

100

100

100

12

PN3568

TO-92
(92)

80

60

5

50

40

40
40

30
150

1
1

0.25

150

20

50

12

120

TO-237
(91)

75

10
10
11
10
10

1.5

150
150

25

300

0.01
0.1
10
150
500
0.01
0.1
10
150
500
1A

10
10
10
10
10
10

0.5

1.1

150

15

60

50

12

1
10
150
500
1A

10
10
10
10
10

0.2

1.1

150

12

100

50

12

TN21 02

TN3019

TO-237
(91)

TO-237
(91)

120

140

7

65

80

7

7

10

10

10

60

60

90

----

20
35
75
100
40
10
20
35
40
25
10
50
90
100
50
15

120

VCE(SAT)
(V) &

5

TN1711

80

Min

VEBO
(V)

80

Col

'"

TO-39

Min

VCER'
VCEO
(V)

120

300

---

60

900

600

12

1.3

0.5

500

-----

SJOIS!SUeJl NdN

NPN Transistors

Medium Power (Continued)
Type
No.

case
Style

VCBO
(V)

I

VCER'
VCEO
(V)

Min

Min
80

TN3020 1 TO-237 I 140
(91)

40

TN3053 1 TO-237 1 60
(91)
PN3566

I TO-92

I 40

VEBO
(V)

ICES'
ICBO

Min

(MnA)
ax

7

10

5

250

I T0-92 I

80

I TO-92

l>

'"

80

I

. hFE

@

Min

Max

90 1 30
40
40
30
15

100
120
120
100

30 1 25
50

250

Ic & VCE
(mA) (V)

I

VCE(SAn
(V) &

Max
0.2

VBE(SAn
(V)
@

Min

Ic

Max

(mA)

1.1

150

I I
Cob

(pF)
Max

I 12 I 80

10
150
500
1A

10
10
10
10
10

150
150

2.5
10

1.4

10
10

1.0

100 I 25 I 4

0.5

fT

(MHz) @ Ic
Min Max (mA)

I I
toff

(ns)
Max

NF

(dB)
Max

I

Tes.t
Conditions

I

Process
No.

50

12

50

12

100

30

13

500

1.7

150 I 15 I 100

50

20 1150
80

600

10
2

40

5

50

40 1 40
40

120

150
30

0.25

150 I 20 I 60

600

50

13

40

5

50

40

300

150
30

0.25

150

600

50

13

(92)

c.>

I

5

(92)
PN3569

VCB
(V)

30

(92)
PN3567

@

100
100

20

60

2N3566

Same as PN3566

13

2N3567

Same as PN3567

13

2N3569

Same as PN3568

2N2a57I T0-39
2N2658

I

TO-39

13

I 80

50

8

100

60 1 15
40

I

80

8

100

60

100

2N2890

2N2891

I

I

TO-39

T0-39

I

I

100

100

80

80

5

5

150JLA

150JLA

60125
30
20
60 150
35
80
40

0.5
3.0

1.5
2.5

1A 1 150 1 20
5A

200 I 15

2

34

0.5
3.0

1.5
2.5

1A
5A

20

200

I 15

2

34

120

6

120

5A
1A
2A
1A
100

5
2
2

0.5

1.2

1A

I 70 I 30

200

I 15

3

34

50
100
1A
2A

10

0.5

1.2

1A I 70 I 30

200

I 15

3

34

2
8

0.75

1.3

2A

I 15
40

6

5A
1A

90
300
150

2
2

Medium Power (Continued)
Type

case

No.

Style

2N5148

2N5150

2N5336

2N5338

....~

Vcao
(V)

Min

T0-39

VCER·
VCEO
(V)

Min

VEBO
(V)

Min

80

T0-39

10/LA

100

2N3439

T0-39

2N3440

T0-39

2N6591

T0-202
(55)

150

150

2N6592 T0-202
(55)

200

2N6593 T0-202
(55)

350

10 p.A

7

@

Ic & VCE
(V)

Max (mA)

60

60

80

100

20
30
15
5
60
70
30
15

90

200

120

30
30
20

120

Min Max (m )

70

60

200

34

70

60

200

34

30

500

2200

7

34

30

500

2200

7

34

15

10

10

36

5
5
5
5

0.46

1.2

100

0.85

1.5

200

50
1A

5
5
5
5

0.46

1.2

100

2
2
2

0.7

1.2

2A

1.2

1.8

5A

0.7

1.2

2A

5A

2
2
2

1.2

1.8

5A

0.5

1.3

50

3A

30
30
20

Max

50
1A
2A
3A

2A
600
2A

5A
600
2A

NF
Test
Process
(dB)
Conditions
No.
Max

Cob
(pF)
Max

VCE(SAT) VBE(SAT)
I
(V)&
(V)@~

5.0

fr

Ic

.(MHZ) @ (mA)
Min Max

toff
(ns)
Max

3A

20/LA

360

40

160

20

10

20/LA·

300

40

160

20

10

5

200

100

40
40

250
200

10
100

10
10

0.8

200

36

200

5

200

150

30
40

250
200

10
100

10
10

0.8

200

36

250

250

5

200

200

30
30

250
200

10
100

10
10

0.8

200

36

2N672O T0-237
(91)

175

150

6

1p.A

150

25
30
15
10

10
10
10
10

0.5

100

30

300

50

36

50

50
100
250
500

2N6721

225

200

6

1 ",A

200

25
30
15
10

10
10
10
10

0.5

100

30

300

50

36

50

50
100
250
500

TO-237
(91)

450

hFE

Min

Max

1/LA

80

T0-39

ICBO@ VCB
(nA)
(V)

1p.A

80

T0-39

ICES·

250

10

36

SJo~!sueJJ.

iii

NdN

NPN Transistors

Medium Power (Continued)
Type
No.

VCBO
(V)
Min

Case
Style

I M(~)

VCER'
VCEO

VEBO
(V)
Min

m

I
co

I.

hFE @ Ic & VCE
Min Max (mA) (V)

2N6722

1 TO-237 1 275 1 250
(91)

6

1j.tA

250125
30
15
10

2N6723

1 TO-237 1 325
(91)

300

6

1j.tA

300125
30
15
10

92PU36

~

ICES'
ICBO @ VCB
(MnA)
(V)
ax

92PU36A

1 TO-237 1 175
(91)

I

TO-237
(91)

I

225

92PU368 1 TO-237 1 275
(91)

92PU36C 1 TO-237
(91)

I

325

150

200

250

300

6

6

6

6

1 j.tA

1 j.tA

1 j.tA

1 j.tA

150 1 25
30
15
10
200 1 25
30
15
10
250 1 25
30
15
10
300 1 25
30
15
10

I

VCE(SAn VBE(SAn
(V) &
(V) @ Ic
Max
Min Max (mA)

I I

I I
Cob

(pF)
Max

fT
toff
NF
(MHz) @ Ic
(ns) (dB)
Min Max (mA) Max Max

I

T~~t

Conditions

I

Process
No.

10
10
10
10

0.5

100

30

300

50

36

50

50
100
250
500

10
10
10
10

0.5

100

30

300

50

36

50

50
100
250
500
50
100
250
500

10
10
10
10

0.5

100

36

50
100
250
500

10
10
10
10

0.5

100

36

50
100
250
500

10
10
10
10

0.5

100

36

50
100
250
500

10
10
10
10

0.5

100

36

100 1 15 1 10

80

36

300

300

300

300

D40P1

TO-202
(55)

120

10j.tA

200120
40

2
80

10
10

1.0

D40P3

TO-202
(55)

180

10j.tA

250120
40

2
80

10
10

1.0

1.5

100 I 15 I 10

80

36

D40P5

TO-202
(55)

225

10j.tA

300120
40

2
80

10
10

1.0

1.5

100 1 15 1 10

80

36

Medium Power (Continued)
Type
No.
NSD36

NSD36A

Case
Style
I TO-202
(55)

I TO-202

VCBO
(V)

I

VCER', VEBO
VCEO
(V)
(V)

Min

I

Min

175

150

Min

6

ICES'
ICBO @ VCB
(nA)
(V)

I TO-202

150

I

225

I

200

6

1/LA

200

275

I

250

6

I

NSD36C

I

TO-202
(55)

1/LA

250

325

I

300

6

1 /LA

300

<0

NSD3439

I TO-202

350

20/LA

300

(55)
NSD3440

I TO-202

250

500/LA

200

(55)
TN3440

I TO-237

250

20/LA

250

(91)
2N6714

I TO-237 I

40

30

5

100

40 I 55
60
50

30

5

100

40

(91)
92PU01

I TO-237
(91)

D40D1

TO-202

(55)

100'

45

10

Cob
(F)
MP

ax

fT
(MHz)
M'
M
In

ax

@

Ie

(mA)

I I I
toff
(ns)
M
ax

NF
(dB)
M

ax

T~s.t

Conditions

I

Process
No.

10
10
10
10

0.5

15 I 10

50

36

50
100
250
500

10
10
10
10

0.5

15 I 10

50

36

50
100
250
500

10
10
10
10

0.5

15 I 10

50

36

2
20

10
10

0.5

1.3

50

I 20 I 15

10

36

160

2
20

10
10

0.5

1.3

50

I 20 I 15

10

36

160

2
20

10
10

0.5

1.3

50

15

10

36

160

0.5

100

50

50

37

250

10
100
1A
10
100
1A

0.5

1A I 30 I 100

50

37

100
1A

0.5

300

300

I 55
I 50

I I

50
100
250
500

300

60
50
30

In

Ic

M
(mA)
ax

36

I 30
40

ax

VBE(SAT)
(V)
@

M'

50

I 30
40

M

15 I 10

I 30
40

VCE(SAn
(V) &

0.5

I 25
30
15
10

I

10
10
10
10

I 25
30
15
10

I

Ic & VCE
(V)

(mA)
50
100
250
500

300

I 25
30
15
10

I

@

Max

I 25
30
15
10

(55)

~

. hFE

Min

Max
1/LA

(55)

NSD36B

I

150

1.5

500

500

37

SJOIS!SueJl NdN

II

NPN Transistors

Medium Power (Continued)
Type
No.

'"~

Case
Style

VCBO

(~)

Min

VCER'
VCEO
(V)

VEBO

Min

Min

I

(~)

ICES'
ICBO

VCB

(nA) @ (V)
Max

IMin

hFE

Ic

TO-202
(55)

30

100'

45 I 120
20

04003

TO-202
(55)

30

100'

45 1 290
10

100
1A

040E1

TO-202
(55)

30

100'

40 1 50
10

100
1A

042C1

TO-202
(56)

30

1/LA

30 1 25
10

042C2

TO-202
(56)

30

1 /LA

30 1 40
20

042C3

TO-202
(56)

30

1/LA

40

92PU01A 1 TO-237
(91)
92PU05

04004

1 TO-237
(91)
TO-202

1

60

TO-202
TO-202
TO-202
TO-202
(55)

Max

ICob I
(pF)

Max

fT

Ic

.(MHz) @(rnA)
Min Max

I(ns)
toft I
I Test
(dB) Conditions
NF

Max

Max

Process
No.

500

37

1.5

500

37

1.0

1.3

1A

37

200
1A

0.5

1.3

1A I 30

37

200
1A

0.5

1.3

1A I 30

37

30 1 40
20

200
2A

0.5

1.3

1A I 30

37

1.2

1A

2

2

30

55
60
50

10
100
1A

0.5

40

5

100

50 I 55
60
50

10
100
1A

100
60

100
4

80 1 80
50
20

250

30

50

50

37

0.5

1A I 30 I 100

50

38

50
250
500

0.35

250 I 30 I 50

200

38

45

100'

60 1 50
10

150

100
1A

0.5

1.5

500

38

45

100'

60 1120
10

360

100
1A

0.5

1.5

500

38

45

100'

60 1 50
10

150

100
1A

1.0

1.5

500

38

60

100'

60 1 50
10

150

100
1A

1.0

1.5

500

38

60

100'

75 1120
10

360

100
1A

1.0

1.5

500

38

(55)

04008

0.5

VBE(SAT)
Ic
. (V)
@ (rnA)

MIn

1.5

120

100
1A

100

(55)

04007

360

5

(55)

04006

VCE(SAT)
(V) &

30

(55)

04005

I

Max

04002

NSOU01 1 TO-202
(55)

VCE

Max@ (rnA) & (V)

2
2

Medium Power (Continued)
Type
No.

Case

Style

I

VeER'
VCEO
(V)

Min

T0-202
(55)

60

TO-202
(56)

45

T0-202
(56)

45

T0-202
(56)

45

I T0-237

40

D40E5
D42C4
D42C5

D42C6
MPS6715

VCBO
(V)
Min

I

VEBO
(V)

Min

::! vesl

ICES'
IcBO

@ (V)

100'

70

1 p.A

45

1 p.A

45
45

I 40

120

I 40
20

5

100

50

I 55
60
50

I T0-226

80

80

5

100

60

80
50
20

(99)
MPSW01

I 25
20

1 p.A

I T0-226

40

5

100

50

250

I 55
60

(99)

50
NSD102

I T0-202 I

60

45

5

100

60

NSD103

I TO-202 I

60

45

5

100

60

I TO·202

500 p.A .60

50

(55)

I

NSDU01A T0-202
(55)

I 50

40

5

100

40

150

I 50
120
50
30

(55)

NSD6179

I 40
50
40
25

(55)

I I

30
40
10

I 55
60
50

360

250

fT

Ie

I I I
toff

Mi~MH~ax @(mA) ~:~

I

NF
Test
Process
: : Conditions
No.

1.0

1.3

1A

38

200
1A

0.5

1.3

1A I 30

38

200
1A

0.5

1.3

1A I 30

38

200
2A

0.5

1.3

1A I 30

38

10
100
1A

0.5

1A I 30

50
250
500

0.35

250

10
100
1A

0.5

100
1A

10

(99)

;

I 50
10

TO-226
MPS6717

I

hFE
Ic
VCE VCE(SAn VBE(SAn
Ic
Cob
Min Max@ (mA) & (V)
~~ & Min(V)Max@ (mA) : :
2
2

200

38

1A I 30 I 100

50

38

50

38

50

38

50

10
100
500
1A

5
5
5
5

0.2

0.9

100 I 30 I 60

0.4

1.2

500

10
100
500
1A

5
5
5

0.2

0.9

100 I 30 I 60

0.4

1.2

500

500
500
1A

2

0.5

1.2

500

0.5

1.2

1A I 30 I 50

10
100
1A

38

50

500

5

38

2
2
50

38

SJO~S!SUeJ.l

iii

NdN

NPN Transistors

Medium Power (Continued)
Type
No.

Case
Style

NSOU05

T0-202
(55)

NSE181

TO-202
(56)

2N6553

2N6717

VCBO

(V)
Min
60

I\)

2N6718

2N6731
92PU06

TO-202
(55)

100

TO-237
(91)

80

TO-237
(91)

100

TO-237
(91)

100

92PU07

92PU100

TO-237
(91)

(V)
Min
60

VEBO

(V)
Min
4

60

t.l

.j,.

VCER'
VCEO

100

80

100

80

80

100
80

TO-237
(91)

100

100

TO-237
(91)

100

5

5

5

5

ICES'
ICBO@ VCB
(nA)
(V)

@

Max

I

Cob
(pF)
Max

0.35

250

30

1
1
1.5

0.3

500

10
50
250
500

1
1
1
1

1.0

1A

75

Ic & VCE

(rnA)

(V)

50
250
500

1
1
1

10
500
1A

Max
100

60

80
50
20

100

80

50
30
12

100

100

100

100

80

60

80

80

60
80
60
25

250

250

VCE(SAT)

VBE(SAT)

(V)&
(V)
@ ~
Max
Min Max (m )

0.9

1.5

fT

I

.(MHz) @ (m~)
Min Max

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

50

200

38

50

200

38

250

100

39

1.5A

80
50
20

50
250
500

1
1
1

0.35

250

50

500

200

39

250

80
50
20

50
250
500

1
1
1

0.35

350

50

500

200

39

250

50

500

200

39

100
100

10
350

2
2

0.35

350

300
500
250
50

500
250
50

1
1
1

0.35

250

30

50

200

39

50
250
500

1
1
1

0.35

250

30

50

200

39

10
100
1A

5
5
5

0.35

350

20

50

100

39

100

80

20
50
80

100

80

80
50
20

100

80

20
50
10

4

4
80

hFE

Min

150

040010

TO-202
(55)

75

100'

90

50
10

150

100
1A

2
2

1.0

1.5

500

040011

TO-202
(55)

75

100'

90

120 360
10- - _ . _ - -

100
1A

2
2

1.0

1.5

500

39
39
- - - - - - '-----

-

Medium Power (Continued)
Type
No.

c.>

b.

Case
Style

Vcao
(V)

Min

VCER'
VCEO
(V)

Min

VEBO
(V)

Min

ICES'
ICBO@ Vca
(nA)
(V)

hFE

@

Ic &VCE
(V)

Min

Max {mAl

Max

VCE(SAT) VaE(SAT)
(V) &
(V)
@

Max

Min

Cob
t,.
Ic
(pF)
(MHz) @(mA)
Max Min Max

I

Max

'i
(m )

toft NF
Test
(ns) (dB)
Conditions
Max Max

Process
No.

040013

TO·202
(55)

75

100'

90

50

150

100

2

1.0

1.5

500

39

040014

TO-202
(55)

75

100'

90

120 360

100

2

1.0

1.5

500

39

040E7

TO-202
(55)

80

100'

90

50
10

100
1A

2
2

1.0

1.3

1A

39

MPSW06

T0-226
(99)

80

80

4

100

80

80
50
20

50
250
500

1
1
1

0.35

NS0104

TO-202
(55)

100

80

7

100

100

20
50
10

10
100
1A

5
5
5

0.2

150

TO-202
(55)

100

360

10
100
1A

TO-202
(55)

140

NS0105

NS0106

NS06178 TO-202
(55)

80

100

7

7

75

100

100

500,.,A

100

140

80

10
120
10
20
50
25
30
40
10

250

30

50

200

39

0.9

100

30

60

50

39

0.5

1.2

500

5
5
5

0.2

0.9

100

30

60

50

39

0.5

1.2

500

5
5
5

0.2

0.9

100

30

60

50

39

150

10
100
500

0.5

1.2

500

50

2
2
2

0.5

1.2

500

250

50
500
1A

39

NSOU06

TO-202
(55)

80

80

4

100

80

80
50
20

50
250
500

1
1
1

0.35

250

30

50

200

39

NSOU07

TO-202
(55)

100

100

4

100

100

80
50
20

50
250
500

1
1
1

0.35

250

30

50

200

39

2N6711

TO-237
(90)

160

160

7

50

100

15
15
, 30

1
10
30

10
10
10

10

48

200

40
-

-~

I

-

200

~~--

SJOIS!SU8Jl NdN

iii

NPN Transistors

Medium Power (Continued)
Type
No.

VCBO
(V)
Min

Case
Style

I

V'
CER
VCEO
M('?

VEBO
(V)
Min

10

2N6712 ! TO-237
(90)
2N6713

! TO-237
(90)

I

2N6719 I TO·237
(91)

I

2N6733

I

I TO·237
(91)

2N6734
c.>

i:: I

I

2N6735
92PE487

250

300

300

200

250

300

300

200

TO-237!250
(91)

250

TO-237I 300
(91)

300

I TO·237 I

7

7

7

6
6
6

I'
CES
ICBO @ VCB
(nA)
(V)
Max
50

50

100

100
100
100

I TO-237 I

200, 15
15
30

I T0-237 I

92PU391

I T0-237 I

I I
Cob
(pF)
Max

fT
(MHz) @ Ie
Min Max (rnA)

I I I
toff

(ns)
Max

NF
(dB)
Max

T~S.t

Conditions

I

Process
No.

40

200

10

48

200

10
10
10

200

10

48

200

10
10
10

40

10
30

10
10
10

300

15

48

200

1
10
30

30

40
40
160! 25
40

50

200

10

48

10

10
10

2.0

200

50

200

10

48

200

10

10
10

2.0

40
260 I 25
40

1
10

10
10

50

200

10

48

200

250

200

200

I

15
15
30

I 25

I 25

20

7

50

100 I 15
15
30

1
10
30

10
10
10

1.0

30

3

48

250

250

7

50

100

I

15
15
30

10
10
30

10
10
10

1.0

30

3

48

300

300

7

50

200 I 15
15
30

10
10
10

1.0

30

3

48

10
30
10
30

10
10
10

0.75

40
40

160 I 25
40

10
10

2.0

2.0

20 I 2.5 I 50

10

48

10

200 I 25
40

10
10

2.0

2.0

20 I 2.5 I 50

10

48

10

300

200 I 200

100

6

100

(91)

I

VCE(SAT) VBE(SAT)
(V) &
(V)
@
Ic
Max
Min Max (rnA)

160

(90)

92PU10 I TO-237
(91)

I

10
30

(90)

92PE489

. hFE @ Ic & VCE
Min Max (rnA) (V)

160

(90)
92PE488

I

92PU392 T0-237 I 250 I 250
(91)

6

100

200

I 25

30 I 3.5

48

Medium Power (Continued)
Type
No.

Case

Style

92PU393 I TO-237
(91)
D40N1

D40N2

D40N3

D40N4

~

I

300

, VCER·, VESO
VCEO
(V)
(V)
Min
Min

I

300
250

TO-202
(55)

250

T0-202
(55)

300

T0-202
(55)

300

I

6

ICES"
ICBO@ VCS
(nA)
(V)
Max
100
10 p.A

10 p.A

48

10
10
10

50

20

48

4
20
40

10
10
10

50

20

48

4
20
40

10
10
10

50

20

48

90

4
20
40

10
10
10

50

20

48

180

10

10
10

2.0

200

200

10

10
10

2.0

40
260 I 25
40

200

10

10
10
10
10
10

0.5

0.9

20

10
30

10
10
10

0.4

0.9

20

4

10
30
1
10
30

10
10
10

0.75

10
10
10

0.5

10
30

250

250

300

10 p.A

300

MPSA42
MPSW42

I

I T0-226 I
I T0-92 I

180

200

I

200

6

100

160

I 25

250

I

250

6

100

200

300

I

300

6

100

300

I

300

6

100

200

I 25

I 25
40
40

I T0-92 I

200

I

200

6

100

160

I 25
40
50

I

300

T0-226
(99)
T0-226
(99)

4
20
40

I 30

40

I T0-226 I

I

90

I 20

60
30

(92)
92PU10
MPSW10

10
10

I 30

30
20

(92)
MPSA43

10

I 20

60
30
10 p.A

100

200

I 25
40
40

I

300

I

300

6

100

I

Test
Process
Conditions
No.

10

30
20

(99)
MPSA42

I 25

I

20 I 2.5 I 50

260

(99)
MPS6735

hFE
IC
VCE' VCE(SAT) VSE(SAT)
IC I Cob I
IT
IC 1 10ft I NF
Min Max@ (mA) & (V)
(V) &
. (V) @ (mA) (pF)
(MHz) @(mA) (ns) (dB)
Min Max
Max Min Max
Max Max
Max

40

TO-202
(55)

MPS6733 T0-226
(99)
MPS6734

Vcso
(V)
Min

200

200

I 25
40
40

2.0

2.0

20

50

200

10

48

50

200

10

48

50

200

10

48

3 I 50

10

48

I 50

10

48

30 I 3.5

0.9

20

3 I 50

48

10

48

SJOISISUBJl NdN

NPN Transistors

Medium Power (Continued)

'"

Type
No.

Case
Style

VCBO
(V)
Min

VCER'
VCEO
(V)
Min

VEBO
(V)
Min

MPSA43
MPSW43

TO-226
(99)

200

200

6

100

160

25
40
5

NSD131

TO-202
(55)

250

250

7

100

150

15
15
30

NSD132

T0-202
(55)

250

250

7

100

150

15
30
60

NSD133

TO-202
(55)

300

300

7

100

150

15
15
30

NSD134

TO-202
(55)

300

300

7

100

150

15
30
60

NSD135

TO-202
(55)

375

375

7

100

150

NSD457

TO-202
(55)

160

160

5

50

NSD458

TO-202
(55) •

250

250

5

NSD459

TO-202
(55)

300

300

NSDU10

T0-202
(55)

300

NSE457

TO-202
(55)

~

NSE458

TO·202
-

(~)

-

ICES'
ICBO@VCB
(V)
(nA)
Max

hFE @ Ic & VCE
Min Max (rnA) (V)

VCE(SAn VBE(SAn
I
(V)&
(V)
@ ~
Max
Min Max (m )

Cob
(pF)
Max

f.r
I
.(MHz) @ (m~)
Min Max

NF
(dB)
Max

Test
Conditions

Process
No.

10
10
10

0.4

0.9

20

4

2000

1
10
30

10
10
10

1.0

0.85

20

3

48

90

1
10
30

10
10
10

1.0

0.85

20

3

48

180

1
10
30

10
10
10

1.0

0.85

20

3

48

90

1
10
30

10
10
10

1.0

0.85

20

3

48

180

1
10
30

15
30
30

1
10
30

10
10
10

1.0

0.85

20

3

48

100

25

30

10

1.0

30

48

50

200

25

30

10

1.0

30

48

5

50

250

25

30

10

1.0

30

48

300

8

200

200

25
40
40

1
10
30

15
15
10

1.5

160

160

5

50

100

25

30

10

1.0

30

48

250

250

5

50

200

25

30

10

1.0

30

48

0.8

20

3

50

toff
(ns)
Max

60

10

48

48

-

Medium Power (Continued)
Type
No.

VCBO
(V)
Min

Case
Style

I

VCER*
VCEO
(V)
Min

ICES'
VEBO IICBOCB
V
I
hFE
IC
VCE I VCE(SAT) VBE(SAT) @C
I
~~ (nA) @ (V) Min Max@ (rnA) & (V)
~V) & M. (V~
(rnA)
In
Max
ax
In
ax

I

300

300

5

50

250 I 25

30

10

1.0

I TO·237 I

300

300

7

100

200 I 10
15
20
20

3
10
30
50

10
10
10
20

0.75

1.0

10

1.0

1.2

30

NSE459 I TO-202

Cob I

(pF)
Max

t,.

.(MHz) @
Min Max

I

(m~)

I toff I NF I T t
(ns) (dB) con;:ions
Max Max

Process
No.

48

30

(55)

TN3742

(91)

200

6

30

10

48

TEST CONDITIONS:
Note 1: Ie ~ 50 rnA, Vee ~ 100V, IB' ~ IB2 ~ 5 rnA.

Note 5: Ie ~ 100 /LA, Vee ~ 10V, f ~ 1 kHz.

Note 9: leliB ~ B.

Note 2: Ie ~ 500 /LA, VeE ~ 10V. f ~ 1 kHz.

Note 6: Ie ~ 500 rnA, Vee ~ 30V, IB' ~ IB2 ~ 50 rnA.

Note 10: leliB

Note 3: Ie ~ 500 mA, Vee ~ 30V, IB' ~ IB2 ~ 50 rnA.

Note 7: Ie ~ 2A, Vee ~ 40V, IB' ~ IB2 ~ 200 rnA.

Note 4: Ie ~ 150 rnA, Vee ~ 30V, IB' ~ IB2 ~ 15 rnA.

Note 8: Ie

~

1 rnA, VeE

~

6V, f

~

~

12.5.

60 kHz.

c.:>

~

SJO~S!SUeJl

iii

NdN

NPN Transistors

~NatiOnal

Darlington

Semiconductor

c.>

Type
No.

Case
Style

2N5305

TO-92
(94)

2N5306

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO
(/LA)
Max

(m)

Min

1.4

200

10

5

1.4

200

2

5

1.4

70,000

2

5

20,000
30,000
20,000

200,000
300,000
300,000

10
100
500

30

10,000
20,000
14,000

100,000
200,000
140,000

0.1

30

25,000
15,000
5000

0.1

30

15,000
10,000
3000

Process
No.

60

2

05

10

60

2

05

200

10

60

2

05

1.4

200

10

60

2

05

5
5
5

1.2

50

7

150

10

05

10
100
500

5
5
5

1.2

7

130

10

05

150,000

200
500.
lA

5
5
5

7

1

200

05

150,000

200
500
lA

5
5
5

7

1

200

05

5
5
5

1.0

200

100

200

05

40,000

200
500
lA

5
5
5

1.0

200

100

200

05

40,000

200
500
lA

Max

0.1

25

2000

20,000

2

5

TO-92
(94)

0.1

25

7000

70,000

2

2N5307

TO-92
(94)

0.1

40

2000

20,000

2N5308

TO-92
(94)

0.1

40

7000

2N6426

TO-92
(92)

40

40

12

0.05

30

2N6427

TO-92
(92)

40

40

12

0.05

2N6548

TO-202
(55)

50

40

12

2N6549

TO-202
(55)

50

40

12

2N6724

TO-237
(91)

50

2N6725

TO-237
(91)

50

25,000
15,000
4000

12

12

0.1

40

25,000
15,000
4000

I

(rnA)

Min

&

VCE(SAT)
VBE(SAT)
(V)
&
(V)
Min
Max
Max

IT

Cob
(pF)
Max

hFE

VCB
(V)

@

@

Ic @ VCE
(rnA)
(V)

1.5

1.5

2

@'i

Max

@

Ic

500
50

2

(MHz)

500

Darlington (Continued)

~

Type

case

No.

Style

Ycso

YCEO

YEBO

M

M

M

Min

Min

Min

ICES"
ICBO
(loLA)
Max

@

Vca
(V)

hFE
Max

Min

@

IC
VCE
(mA) @ (V)

VCE(SAT)

M
Max

..

VaE(SAT)
(V)
Min
Max

I

@

C
(mA)

Cob

(pF)
Max

IT
(mA)

Process
No.

100

200

05

100

200

05

(MHz)
Min

Max

@

Ic

92PU45

TO-237
(91)

50

12

0.1

30

4000
15,000
25,000

1A
500
200

5
5
5

92PU45A

TO-237
(91)

60

12

0.1

40

4000
15,000
25,000

1A
500
200

5
5
5

1.0

D40C1

TO-202
(55)

30

0.5"

30

10,000

200

5

1.5

2.0

500

10

05

D4OC2

TO-202
(55)

30

0.5"

30

40,000

200

5

1.5

2.0

500

10

05

D4OC3

TO-202
(55)

30

0.5"

30

90,000

200

5

1.5

2.0

500

10

05

D40C4

TO-202
(55)

40

0.5"

40

10,000

200

5

1.5

2.0

500

10

05

D4OC5

TO-202
(55)

40

0.5·

40

40,000

200·

5

1.5

2.0

500

10

05

D40C7

TO-202
(55)

50

0.5·

50

10,000

200

5

1.5

2.0

500

10

05

D40C8

TO-202
(55)

50

0.5"

50

40,000

200

5

1.5

2.0

500

10

05

D40K1

T0-202
(55)

30

10,000
1000
3000

200
1.5A
1A

5
5
5

10

05

D40K2

TO-202
(55)

50

10,000
1000
3000

200
1.5A
1A

5
5
5

05

D40K3

TO-202
(55)

30

10,000
1000
3000

200
1.5A
1A

5
5
5

05

D40K4

T0-202
(55)

50

10,000
1000
3000

200
1.5A
1A

5
5
5

05

60,000

60,000

60,000

1.5

2.0

1.0
1.5

1A
200

2.0

1A
200

SJOIS!SU'U.1 NdN

iii

NPN Transistors

Darlington

ICES'
ICBO @ VCB
(,..A)
(V)
Max

No.

Case
Style

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

MPQ6426

TO-116

40

30

12

MPQA13

T0-116

30

MPS6724

TO-226
(99)

50

T0-226
(99)

50

MPSA12

TO-92
(92)

20

0.1

15

MPSA13

TO-92
(92)

30

0.1

MPSA14

TO-92
(92)

30

MPSW13

TO-226
(99)

30

MPSW45

TO-226
(99)

50

MPSW45A

TO-226
(99)

60

NSD151

TO-202
(55)

Type

MPS6725

""~

(Continued)

Min

@

Max

Ic
VeE
(mA)@ (V)

VCE(SAn
VBE(SAn
I
(V)
&
(V)
@ c;..
Min
Max
(m)
Max

fT
(MHz)

Cob
(pF)
Max

Min

8

@ Ic

Process

(rnA)

No.

125

20

05

Max

100

30

5000
10,000

10
100

5
5

1.5

100

0.1

30

10,000
5000

100
10

5
5

1.5

100

125

10

05

12

25,000
4000

200
1A

5
5

1.0

200

100

200

05

40,000

25,000
4000

200
1A

5
5

1.0

200

100

200

05

40,000

20,000

10

5

1.0

10

30

10,000
5000

100
10

5
5

1.5

100

125

10

05

0.1

30

20,000
10,000

100
10

5
5

1.5

100

125

10

05

0.1

30

10,000
5000

100
10

5
5

1.5

100

125

10

05

12

0.1

30

4000
15,000
25,000

1A
500
200

5
5
5

1.5

1A

100

200

05

12

0.1

40

4000
15,000
25,000

1A
500
200

5
5
5

1.5

100

200

05

1.0

200

5000
10,000

5
5

1.5

100

8

50

10

05

150,000

10
100

5000
10,000

10
100

5
5

1.5

100

8

50

10

05

25,000

12

30

hFE

12

0.1

40

2.0

1.0

05

200
2.0

1A

TO-202
(55)

12

NSD153

TO-202
(55)

12

20,000
5000

10
100

5
5

1.5

100

8

50

10

05

NSD154

TO-202
(55)

12

20,000
5000

10
100

5
5

1.5

100

8

50

10

05

NSD152

Darlington (Continued)
VEBO
(V)

ICES'

Case
Style-

VCBO

VCEO

(V)
Min

(V)
Min

NSDU45

T0-202
(55)

50

12

NSDU45A

TO-202
(55)

60

12

0.1

2N7051

TO-92
(92)

100

12

100

TO-92

100

Type
No.

2N7052
2N7053

100

100
100
100

Min

12
12

ICBO

(fJ.A)
Max

100
100

@

hFE

VCB

Min

Max

25,000
15,000
4000
10

25,000
15,000
4000

80

20,000
1000

(V)

80
80

@

Ic

@

VCE

VCE(SAT)
(V)
&

VBE(SAT)
(V)

IT

(m)

COb
(pF)
Max

Min

I

(mA)

Process
No.

100

200

05

8

100

200

05

200

10

100

100

06

1.5

100

8

100

100

06

1.5

100

8

100

100

06

@

~

(mA)

(V)

150,000

200
500
1A

5
5
5

1.0

200

8

150,000

200
500
1A

5
5
5

1.0

200

100
1A

5
5

1.4

20,000

10,000
1000

20,000

100
1A

5
5

10,000
1000

20,000

100
1A

5
5

Max

Min

Max

(MHz)
Max

@

Ic

Co)

~

SJO~SISUeJ.1

NdN

Section 4
Bipolar PNP Transistors

Section 4 Contents
Saturated Switches . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • . . . . . .
Low Level Amplifiers. . . . . . . . . . . . . . . • . . • . . . . . . . • . • . . . . . . • . . . • . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Amplifiers and Switches .............................................
Medium Power Transistors .........................•................................
Darlington Transistors. . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4·2

4·3
4·6
4·8
4·18
4·26

IjNational

I

Saturated Switches

Semiconductor

Type
No.

Case
Style

Vcso
(V)
Min

VCEO
(V)
Min

VEao
(V)
Min

2N3304

TO-52

6

6

4

2N3451

TO-52

6

6

4

ICES·
ICBO@VCB
(nA)
(V)
Max
10'

10'

3

3

hFE
@ Ic 8< VCE
Min Max (mA) (V)
20
30
15
20
30

120

120

VCE(SAT)
VBE(SAT)
I
(V) 8<
(V)@~
Max
Min Max (m )

COB
(pF)
Max

".
I
.(MHz) @ (m~)
Min Max

toFF
(nA)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

50
10
1

1
0.3
0.5

0.15
0.16
0.5

0.7
0.8

0.8
1.0
1.5

1
10
50

3.5

500

10

60

(Note 7)

65

50
10

1
0.3

0.16
0.5

0.8

1.0
1.5

10
50

5.5

500

10

60

(Note 7)

65

2N3639

same as PN3639

65

2N3640

same as PN3640

65

2N4208

TO-52

12

12

4.5

10'

6

t
2N4209

TO-52

15

15

4.5

10'

8

30
30
15

50
10
1

1
0.3
0.5

0.13
0.15
0.5

1
10
50

700

10

20

(Note 5)

65

0.8

0.8
0.95
1.5

3

120

40
50
35

50
10
1

1
0.3
0.5

0.15
0.18
0.6

1
10
50

850

10

20

(Note 5)

65

0.8

0.8
0.95
1.5

3

120

2N4258

same as PN4258

65

2N4258A

Same as PN4258A

65

2N5140

65

Same as PN5140

2N5228

T0-92
(92)

5

5

3

100'

4

30
15

2N5771

T0-92
(92)

15

15

4.5

10

8

50
40
35

120

10
50

0.3
1.0

0.4

0.65

1.25

10

10
50
1

0.3
1.0
0.5

0.15
0.18
0.6

0.8

0.8
0.95
1.5

1
10
50

3

300

10

700

10

65
20

(Note 6)

65

Same as PN591 0

65

MPS3639

TO-92
(92)

same as PN3639

65

MPS3640

TO-92
(92)

Same as PN3640

2N591 0

65
-

~--

-

SJo~S!SUeJl

dNd

PNP Transistors

Saturated Switches (Continued)

I I I

ICES'

Type

Case

No.

Style

VCBO
(V)
Min

I TO·92 1

6

PN3639

VCEO
(V)
Min

VEBO
(V)
Min

6

4

ICBO @ VCB
(MnA)
(V)
ax

10'

3

(92)
PN3640
PN4258

1 TO·92 1 12
(92)

12

I TO·92 I

12

I TO·92 I

12

4

10'

6

4.5

10'

6

12

12

4.5

10'

6

I TO·92 I

PN5910

5T5771·1

5T5771·2

50
10

1.0
0.3

0.2
0.6

0.8

1.0
15

10
50

I 3.5

1300

10 1 75

(Note 7)

65

50
10
1

0.15

0.7

0.95

10

3

1700

10 1 20

(Note 6)

65

3
0.8

0.5

1.5

50

1

0.15

0.96

10

3

1700

10

18

(Note 6)

65

3
0.5

0.5

1.5

50

0.2
0.75

1.2

10
50

5

1400

10 I 20

(Note 6)

65

0.75

0.95

10

3

700

20

(Note 6)

65

3

1700

10 I 30

(Note 6)

65

3

1700

10 I 30

(Note 6)

65

1.1

150 I 25 I 175

50 I 185

(Note 4)

70

0.75

1.5

500
(Note 4)

70

2

150 I 25 I 150
500
1A

50 I 165

0.75

1.1
1.5
1.0

150 I 25 I 175

50 I 90

(Note 4)

70

1.2

500

I 30
120

I 30
30
15

120

50
10

20

4.5

10'

10

30
30
15

120

50
10
1

I TO·92 I

15

I 30

150

30
20
10

2N3244

2N3245

2N3467

I TO·39 I 40

1 TO·39 I

50

I TO·39 1 40

40

50

40

5

5

5

50

50

100

8

I 40

150

1

0.3
0.5

0.15
0.5

1.5

50

0.3
0.5

0.15
0.18
0.6

0.8

0.8
0.95
1.5

1
10
50

10

0.3
0.5

0.15
0.18
0.6

0.8

0.8
0.95
1.5

10
50

50

30 I 25
50
60

5

0.3

150

750
500
150

5

90

1A
500
150

0.35
0.6
1.2

30 I 40
40
40

0.5

5
120

0.7

10
1
50

35
30

50 I 20
30
35

No.

120

20

4.5

Process

65

TO·92
(92)

15

I

(Note 7)

10

15

T~S.t

Conditions

10 1 60

40

(92)

NF
(dB)
Max

I 300

1 20

I TO·92 I

tOFF
(ns)
Max

I 3.5

3

(92)

I I I

10
50

50'

8

fT
(MHz)
@
Ic
Min Max (mA)

1.0
1.5

4

10

Max

0.8

5

4.5

COB
(pF)

0.16
0.5

5

15

I I

1.0
0.3

(92)

t

VCE(SAn
(V) & VBE(SAn
(V)
@
Ic
Max
Min Max (mA)

50
10

I 20
30
15

I

120

I 20
30

(92
PN5140

. hFE
@ Ic & VCE
Min Max (mA) (V)

30

(92)
PN4258A

I

500
150

0.3
0.5

0.8

10

Saturated Switches (Continued)
Type
No.

2N3468

2N5022

2N5023

Case
Style

VCBO
(V)
Min

TO-39 I 50

TO-39 I 50

TO-39 I 30

MPQ3467 I TO-116 I 40

~

MPQ3468 I TO-116 I 50

TN3467

1 TO-237 1 40
(91)

I I
VCEO
(V)
Min

VEBO
(V)
Min

50

5

50

30

40

50

40

5

5

5

5

5

ICES·
ICBO@VCB
(nA)
(V)
Max

100

100·

100'

100

100

100

h FE
Min

IC
VCE
Max@ (rnA) & (V)

30 1 20
25
25

75

1
500
150

5
1

30 I 25
25
15

100

1A
500
100

5

20 I 40
40
30

1A
500
100

5

100

30 1 40
40
40

1A
500
150

5

120

30 1 20
25
25

1A
500
150

5

75

120

150
500
1A

30 1 40
40

40

I~

VCE(SAT}

VBE(SAT}
IC
& Min(V)Max@ (rnA)

COB

fy

Conditions

Process
No.

50 I 90

(Note 4)

70

IC
(rnA)

tOFF

NF I Tes
t

1.0

150 I 25 I 150

0.8

1.2

500

1.0
1.4
1.75

100 1 25 1170
500
1A

50 I 90

(Note 4)

70

0.8

0.17
0.35
0.7

1.0
1.4
1.75

100 I 25 I 200
500
1A

50 I 90

(Note 4)

70

0.8

1.0
0.5
0.3

1.6
1.2
1.0

1A 1 25 I 175
500
150

50

(Note 4)

70

0.8

1.2
0.5
0.36

1.6
1.2
1.0

1A 1 25 I 150
500
150

50

(Note 4)

70

0.8

0.3
0.5
1.0

1.0
1.2
1.6

150 1 25 1175
500
1A

50

0.8

0.35
0.6
0.2
0.4

0.8

5

I::~ IMI~MH~ax@ I::! I::~

70

TEST CONDITIONS:
Note 1: Ie
Note 2: Ie
Note 3: Ie
Note 4: Ie

= 30 rnA, Vee = 3V, Ie' = 3 mA, le2 = 1.5 mAo
= 30 mA, Vee = 3V, Ie' = le2 = 1.5 mAo
= 30 mA, Vee = 3V, Ie' = le2 = 3 mAo
= 500 mA, Vee = 30V, Ie' = le2 = 50 rnA.

= 10 rnA, Vee = 3V,Ie' = 182 = 1 rnA.
= 10 mA, Vee = 1.5V,le' = 182 = 1 rnA.
Nole 7: Ie = 10 mA, Vee = 1.5V, Ie' = 182 = 500 p.A.

= 10 rnA, Vee = 2V, Ie' = le2 = 1 mAo
= 50 rnA, Vee = 3V, Ie' = le2 = 5 rnA.
Note 10: Ie = lA, Vee = 30V, Ie' = le2 = 100 rnA.

Note 5: Ie

NOle 8: Ie

Nole 6: Ie

Note 9: Ie

SJOIS!SU8Jl dNd

I

PNP Transistors

~National

Low Level Amplifiers

~ Semiconductor
Type
No.
2N2605

Case
Style

VCBO I VCEO I VEBO IICBO VCB
(,? (~) (,? (nA) @ (V)
Min
Min
Min
Max

I TO-46 I 60

45

6

10

I

h FE
IC
VCE
Min Max @(mA) & (V)

45

600
150
100

2N3550

I T0-18 I

60

45

8

45
300
250
200
125

2N4058

I T0-92 I

5

I

VCE(SAn
(V)

&

VBE(SAn
. (V)

IC I COB I
fT
IC I toFF I NF
@(mA) (pF)
.(MHZ) @(mA) (ns) (dB)
Max Min Max
Max Max

Max

Min

Max

0.5

0.7

0.9

10 I 6

30

0.5

0.7

0.9

5

60

300

10
0.5
0.01

5
5

800

10

5

600

0.1
0.Q1
0.001

5
5
5
5

0.1

5

0.7

10

8

0.5

150

ITt
IProcess
es
Conditions
No.

3

(Note 2)

62

4

(Note 1)

62

5

(Note 3)

62

30

30

6

100

20 I 100

400

30

30

6

100

20

45

660

5

0.7

10

62

30

30

6

100

20 I 90

330

5

0.7

10

62

30

30

6

100

20 I 180

660

5

0.7

10

62

(94)

-f" I 2N4059
0>

2N4061

TO-92
(94)

I TO-92 I
(94)

2N4062

I TO-92 I
(94)

2N4248

Same as PN4248

2N4249

Same as PN4249

2N4250

Same as PN4250

2N4250A

Same as PN4250A

2N4288

I T0-92 I

30

25

62
--""L

6

50

25

(94)
2N4289

I TO-92 I

60

45

(94)

7

10

45

I

75
150
100

600

I 75
150
100

10
1
0.1

5
5
5

0.35

10

5
5
5

0.35

600
0.1

0.8

".,
""

40

62

8
0.8

8 I 40

4

(Note 1)

62

2N4964

Same as MPSA70

62

2N4965

Same as 2N5086

62

Low Level Amplifiers (Continued)
Type
No.

Case

I VCBO I VCEO I VEBO IICBO
~

~)

VCB I

hFE

Min

Mm

Mm

(nA)
Max

2N5086

I T0-92 1 50
(92)

50

5

50

35 I 150
150
150

2N5087

I TO-92 1 50

50

5

50

35 1250
250
250

I

Style

(V)

I TO-92

I

30

(V)

I T0-92

Ic

VCE I VCE(SAT)

Max @(mA) & (V)

10
500

0.1
10

Ic I COB I
(PF)
Max

fr

Ic I toFF I NF

(MHz) @(mA)
Min Max

(ns)
Max

(dB)
Max

I

Test
Conditions

I Process
No.

5
5
5

0.3

10

4

I 40

0.5

3

(Note 4)

62

0.3

10

4

I 40

0.5

2

(Note 4)

62

800

0.1

3

100

10

50
30

700

2
0.1

10
10

0.4

40

4

100

30 I 40

400

5

10

25

4

50

20 1 300
150

600

2
0.1

1

VBE(SAT)

(V) &
(V)
@(mA)
Max
Min Max

30

(92)
MPSA70

Min

5
5
5

(92)
2N5227

@

10 I 5

100

10

62

0.25

10 I 4

125

5

62

10
10

0.5

5

0.1

5

0.25

1.0

(92)
MPS6523

I TO-92
(92)

62

PN4248

TO-92
(92)

40

40

5

10

40

50

PN4249

TO-92
(92)

60

60

5

10

40

100

300

0.1

5

0.25

10

I T0-92 I 40

40

5

10

40 I 250

700

0.1

5

0.25

10 I 6

2

(Note 4)

62

60

5

10

50 I 250

700

0.1

5

0.25

10 I 6

2

(Note 4)

62

".

.:...

62

4

PN4250

10

10
6

62

6

(92)
PN4250A I TO-92
(92)

I

60

TEST CONDITIONS:
Ie

~

10 pA. VeE

~

SV. f

~

10 Hz-1S.7 kHz.

Note 3: Ie

= 100 pA. VCE

Note 2: Ie

~

10 pA. VeE

~

SV. f

~

10 kHz.

Note 4: Ie

~

Note 1:

20 pA. VCE

~

~

SV. f

SV. f

~

~

10 Hz-1S.7 kHz.

10 Hz-1S.7 kHz.

SJOIS!SUeJ~

II

dNd

PNP Transistors

~National

General Purpose Amplifiers and Switches

~ Semiconductor
Type
No.

2N2904

Case
Style

TO-51

VCBO
(V)
Min

60

2N2904A 1 T0-5 1 60

I I I
VCEO
(V)
Min

VEBO
(V)
Min

40

5

60

5

ICBO VCB
ICES'
(nA) @ (V)
Max

20

10

I

hFE
Ic
VCE
Min Max@ (mA) & (V)

50120
40
35
25
20
50

I

2N2905
also
Avail.
JAN/TXIV
Versions

TO-51

60

40

5

20

50 1 30
100

0.1
500
1SO
10
120
0.1
300

75

60

2N2906

40

1 TO·18 1 60

5

10

50

0.1

I 50
100
100
100

300

75
5

20

SO 120
40
35
25
20

500
150
10
1

SO
35

2N2905A 1 T0-5 1 60
also
Avail.
JANITXIV
Versions

500
1SO
10
1

I 40
40
40
40
40

t

120

500
1SO
10
0.1
500

120

1SO
10
1

0.1

I

VCE(SAT) VBE(SAT)
Ic
(V) &
(V)
@ (mA)
Max
Min Max

I I
COB
(pF)
Max

10
10
10
10
10

0.4

1.3

150 1 8

1.6

2.6

500

10
10
10
10
10

0.4

1.3

1SO 1 8

1.6

2.6

500

10
10
10
10
10

0.4

1.3

1SO 1 8

1.6

2.6

500

10
10
10
10
10

0.4

1.3

1SO 1 8

1.6

2.6

500

10
10
10
10
10

0.4

1.3

150 1 8

1.6

2.6

500

".
Ic
(MHz) @ (mA)
Min Max

I I I
toFF
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

I

1 200

50 1 100

(Note 2)

63

1200

so

1 100

(Note 2)

63

1 200

so

1 100

(Note 2)

63

1200

SO 1 100

(Note 2)

63

1 200

SO 1 100

(Note 2)

63

General Purpose Amplifiers and Switches (Continued)
Type
No.
2N2906A

2N2907
also

Case
Style

VCBO
(V)
MIn

I TO-18 I 60

TO-18

I 60

I

VCEO
(V)
Min

I

VEBO
(V)
Min

60

40

5

5

ICES'
ICBO@VCB
(nA)
(V)
Max
10

20

Avail.
JAN/TXIV
Versions

2N2907A
also

1 TO-18 1 60

60

5

10

Avail.

t

JAN/TXIV
Versions

hFE
Ic
VCE
MIn Max@(mA) " (V)

50 I 40
40
40
40
40
50135
100
75
50
35
50 1 50
100
100
100
75

120

300

300

I

VCE(SAT) VBE(SAT)
Ic
( V ) " . (V) @ (mA)
Min Max
Max

I I
COB
(pF)
Max

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150 I

1.6

2.6

500

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150

1.6

2.6

500

500
150
10

10
10
10
10
10

0.4

1.3

150 I

1.6

2.6

500

0.1

fy
Ic
(MHz) @ (mA)
MIn Max

I I I
toFF
(ns)
Max

NF
(dB)
Max

Test
Conditions

I

Process
No.

I 200

50 I 100

(Note 2)

63

I 8 I 200

50 I 100

(Note 2)

63

50 I 100

(Note 2)

63

8

8

I 200

2N3638

Same as PN3638

63

2N3638A

Same as PN3638A

63

2N3644

Same as PN3644

63

2N3645

Same as PN3645

63

2N3702

T0-92 1 40
(94)

25

5

100

20

I 60

300

50

5

0.25

50

I 12 I 100

50

63

2N3703

TO-92 1 50
(94)

30

5

100

20

I 30

150

50

5

0.25

50 I 12 I 100

50

63

2N4142

Same as PN4142

63

2N4143

Same as PN4143

63

2N4290

TO-92
(94)

I 30

20

5

500

20 1 50
40
20

300

100
10
0.1

10
10
10

0.4

1.5

100 I 10 I 100

10

63

2N4291

TO-92 1 40
(94)

30

6

200

30 1100
50
30

300

100
10
0.1

10
10
10

0.4

1.5

100 I 10 I 100

10

63

SJOISISUIUl dNd

II

PNP Transistors

General Purpose Amplifiers and Switches (Continued)
Type
No.
2N4402

2N4403

!o

Case

Style
TO-92
(94)

TO-92
(92)

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

40

40

5

40

40

ICES·
ICBO@ VCB
(nA)
(V)
Max

hFE
@ Ic & VCE
Min Max (rnA) (V)
20
50
50
30

5

20
100
100
60
30

150

300

500
150
10
1

2
2
1
1

500
150
10
1
0.1

2
2
1
1
1

VCE(SAT)
VBE(SAT)
Ic
(V) &
(V)Max@ (rnA)
Max
Min
0.4

0.7

0.75

0.4
0.75

0.75

0.95

150

1.3

500

0.95

150

1.3

500

COB
(pF)
Max

IT

Ic
.(MHZ) @ (rnA)
Min Max

tOFF
(ns)
Max

10

150

20

10

200

20

NF
(dB)
Max

Test
Conditions

Process
No.

255

(Note 4)

63

255

(Note 4)

63

2N4971

Same as PN2906

63

2N4972

Same as PN2907

63

2N5142

Same as PN5142

63

2N5143

Same as PN5143

63

2N5221

TO-92
(92)

15

15

3

100

10

30
30

600

50
10

10
10

0.5

1.1

150

15

100

20

63

2N5226

T0-92
(92)

25

25

4

300

15

30
25

600

50
10

10
10

0.8

1.0

100

20

50

20

63

2N5354

TO-92
(94)

25

25

4

100

25

40

120

50

1

0.25

50

8

63

2N5355

TO-92
(94)

25

25

4

100

25

0.25

50

8

63

100

300

50

1

TO-92
(94)

40

20
40
32

300
50
2

5
1
1

0.25

1.1

50

8

63

120

1.0

2.0

200

TO-92
(94)

40

40
100
80

5
1
1

0.25

1.1

50

8

63

300

300
50
2

1.0

2.0

200

2N5447

TO-92
(97)

40

25

5

60

300

50

8

0.25

2N5817

TO-92
(97)

50

40

5

25
100,

500
2

2
2

0.75

200

2N5365

2N5366

40

40

4

4

100

100

100

40

40

25

1.2

50

12

100

50

63

500

15

100

50

63

I
I
I

General Purpose Amplifiers and Switches (Continued)
Type

case

No.

Style

MP02907

Vcso
,VCE(SAn
(V) , VCEO
(V) , VEBO
(V) ,ICES',
ICBO @ VCS
hFE
@ IC .. VCE
(V)" VSE(SAn
(V) @ Ic , Cos
(F)
Min
Min
Min
(MnA) (V) Min Max (rnA) (V)
Max
Min Max (rnA) :ax
ax

I TO·116 I 60

40

5

MPS3638

I

MPS3638A

I T0-92 I Same as PN3638A

T0-92
(92)

50

50

I

10
150
300

75
100
50

10
10
10

0.4

1.3

150

1.6

2.6

300

,IT
(MH )
Min

I 8 I 200

@

~ax

Ic
(rnA)

, t(OFF) ' (dB)
NF I

::x

I

Test
Process
Max Conditions
No.
63

20

I Same as PN3638

63
63

(92)
MPS3644

I

T0-92
(92)

I Same as PN3644

63

MPS3645

I

T0-92
(92)

I same as PN3645

63

MPS3702

T0-92
(92)

40

25

5

100

20

60

300

50

5

0.25

50

12 I 100

50

63

MPS3703

TO-92
(92)

50

30

5

100

20

30

150

50

5

0.25

50

12 I 100

50

63

40

40

4

50

30

I 25

500
100
10

10
1

0.5

1.0

100 I

6

63

120

500
100
10

10

0.3

1.0

100 I

6

63

270

0.5

1.2

100 I

6

63

0.4

1.3

150 I

8

1.6

2.6

500

!

~

MPS6533

I TO-92 I
(92)

MPS6534

40
30

I T0-92 I

40

40

4

50

30

(92)
MPS6535

I 50
90
60

I TO-92 I

30

30

4

100

20 I 30

60

40

5

20

50

100

(92)
PN2906

T0-92
(92)

I

I 20
40
35
25
20

120

500
150
10
0.1

10
10
10
10
10

I 200

50 I 100

(Note 2)

63

SJOIS!SU8Jl dNd

II

PNPTransistors

General Purpose Amplifiers and Switches (Continued)
Type
No.
PN290SA

case

. Style

I

Vcso
(V)

I T0-92 J

I I
VCEO
(V)

VEao
(V)

Min

MIn

Min

60

60

5

ICES'
Icso@Vea
(nA)
(V)

hFE

Min

I T0-92 J

60

40

5

10

50

20

50

(92)

PN2907A I T0-92
(92)

J

60

60

5

20

50

I

I\)

I T0-92 I

25

25

4

35'

15

PN3836A I T0-92 I 25
(92)

I TO-92 I

45

25

4

25'

15

I TO-92 I
(92)

300

300

I 20
I 20

45

5

35'

30

I 20
100
80
100
80
40

60

60

5

35'

50

300
240

I 20
100
80
100
80
40

300
240

I

VCE(SAT) VElE(SAT)
Ic
(V) &
(V) @ (mA)
Max
Min Max

II
Cos
(pF)

IT

(11Hz)

@

Max MIn Max

Ie

(mA)

I I
toFF
(ns)

Max

NF

I

Test

(dB) Conditions
Max

I

Proc:esa
No
•

J 200

50 J 100

(Note 2)

63

2.6

500

0.4

1.3

150 J 8 1 200

50 J 100

(Note 2)

63

1.6

2.6

500

0.4

1.3

150 J 8

50

100

(Note 2)

63

1.6

2.6

500

0.1

10
10
10
10
10

300
50
10

2
1
10

0.25

1.1

50

2.0

300

300
50
10

2

0.25

1.1

50

10
10

1/0

2.0

300

300
150
50
10
1
0.1

2
10

0.25

1.0

50 J 8

0.4

1.3

150

2.0

300

300
150
50
10
1
0.1

2
10
1
10
10
10

0.25

1.0

50 I 8

0.4

1.3

150

2.0

300

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150 I 8

1.6

500
150
10

10
10
10
10
10

0.1

I 50

100
100
80

(92)

PN3645

30
100
75
60
35

120

20
30

(92)

PN3644

J

40
40
40
40
40

100
100
100
75

!

PN3638

VCE

Max

(92)

PN2907

Ie

Max @ (mA) & (V)

500
150
10

10
10
10

1.0

1.0

1.0

0.8

0.8

0.8

0.8

J 200

J

J

20 I 100

50 J 170

(Note 1)

63

J

10 I 150

50 I 170

(Note 1)

63

I 200

20 I 100

(Note 4)

63

I 200

20 I 100

(Note 4)

63

General Purpose Amplifiers and Switches (Continued)
Type

case

No.

Style

PN4142

PN4143

PNS142

!

'"

TO-92
(92)

TO-92
(92)

VCBO
(V)
Min

Vceo
(V)
Min

VEBO
(V)
Min

60

40

S

60

40

20
20
40
3S
2S
20

S

CoB

fy
Ic
(MHz) @ (mA)
Min Max

toFF
(ns)
Max

8

200

50

8

200

(PF)

Max

NF
(dB)
Max

Test
Conditions

Process

100

(Note 12)

63

SO

100

(Note 12)

63

No.

500
150
1S0
10
1
0.1

10
1
10
10
10
10

0.4

1.3

1S0

1.6

2.6

SOO

500

10
1
10
10
10
10

0.4

1.3

1S0

150
1S0
10
1
0.1

1.6

2.6

SOO

1S
30

300
50

10
1

O.S
0.2

1.S
2.S

SO
300

10

100

SO

200

(Note 1)

63

0.8

1S
30

300
SO

10
1

O.S
0.2

1.S
2.S

SO
300

10

100

SO

200

(Note 1)

63

0.8

30
SO
100
7S
SO
3S

120

300

TO-92
(92)

20

TIS91

TO-92
(94)

40

40

4

100

20

100

300

50

2

0.2S

0.6

1.0

50

63

TIS92

TO-92
(97)

40

40

S

100

20

100

300

50

2

0.2S

0.6

1.0

SO

63

TIS93

TO-92
(97)

40

40

S

100

20

100

300

SO

2

0.2S

SO

63

TN2904A

TO-237
(91)

60

60

S

10

SO

40
40
40
40
40

0.1
1.0
10
1S0
SOO

10
10
10
10
10

0.4
1.6

1.3
2.6

1S0
SOO

8

200

SO

100

(Note 2)

63

500
1S0
10
1
0.1

10
10
10
10
10

0.4

1.3

150

8

200

50

100

(Note 2)

63

1.6

2.6

SOO

TN2905

TO-237
(91)

60

40

4

5

SO'
SO'

20

12

VCE(SAT) VB£(SAT)
I
(V)&
(V)@C
Max
Min Max (rnA)

20

20

4

hFE
@ Ic & VCE
Min Max (rnA) (V)

TO-92
(92)

PNS143

20

ICES'
ICBO@Vea
(nA)
(V)
Max

12

50

30
100
7S
SO
35

120

300

I
!

SJOIS!SU8Jl dNd

PNP Transistors

General Purpose Amplifiers and Switches (Continued)

I I I

ICES'

Type
No.

Case
Style

VCBO
(V)
Min

TN2905A

I TO·237 I

60

VCEO
(V)
Min

VEBO
(V)
Min

60

5

ICBO @ VCB
(MnA)
(V)
ax
10

(91)

2N3905

2N3906

I 40

40

40

5

2N4121

5

30
80
100
80
60

300

500
150
10
0.1

150

100
50
10

10
10
10
10
10

I

VCE(SAn
(V) & VBE(SAn
(V)
@
Ic
Max
Min Max (mA)

I I
COB
(pF)
Max

NF
(dB)
Max

T~S~

Conditions

I 100

I 4.5 I 200

10

I 260 I 5 I (Notes 5,8)

I 4.5 I 250

10 I 300 I

150 I

1.6

2.6

500

0.85

10

0.95

50

0.85

10

0.95

50

0.4

tOFF
(ns)
Max

50

1.3

0.65

I I I

I 200

0.4

0.25

fT
(MHz)
@
Ic
Min Max (mA)

8

(Note 2)

300

100
50
10

0.25
0.4

0.65

4

I (Notes 5,8)

30

TO·92 1 25
(92)

25

Process
No.
63

66

66

0.1
66

Same as PN4122
TO·92 1 30
(92)

I

0.1

Same as PN4121

2N4122

2N4126

I 50

15
30
50
40
30

!....

2N4125

• hFE
@ Ic &VCE
Min Max (mA) (V)

100
100
100
75

TO·92 1 40
(92)

TO·92
(92)

50

I

66

4
4

5020125
50
5020160
120

0.4

0.95

50

I 4.5 I 200

10

5

(Note 8)

66

150

50
2
50
2

0.4

0.95

50

I 4.5 I 250

10

4

(Note 8)

66

360

2N4916

Same as PN4916

2N4917

Same as PN4917

66

2N5138

Same as PN5138

66

2N5139

Same as PN5139

MPQ3906I TO-116 I

60

40

66

66

6

50

30 1 40
60
75

0.1
10

0.25

0.85

10 I 4.5

66

General Purpose Amplifiers and Switches (Continued)
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

MP06700 TO-l16

40

40

5

MPS3905

40

40

5

Type
No.

MPS3906

!UI

MPS6516
MPS6517
MPS651S
PN3251

PN4121

PN4122

Case
Style

T0-92
(92)

TO-92
(92)

40

T0-92
(92)

40

T0-92
(92)

40

T0-92
(92)
TO-92
(92)

40

40
40
40

50

TO-92
(92)

40

TO-92
(92)

40

40

40

40

ICES'
ICBO@VCB
(nA)
(V)
Max
50

30

5

4
4
4

50
50
500

30
30
30

5

25'

30

30

toFF
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.
66(2)
23(2)

0.9

10

4.5

200

10

0.S5

10

4.5

200

10

5

(NoteS)

66

0.95

50

0.S5

10

4.5

250

10

4

(NoteS)

66

30
40
50
30
15

0.1
1
10
50
100

1
1
1
1
1

0.25

0.1
1
10
50
100

1
1
1
1
1

0.25

10
10

0.5

50

4

66

150

300

0.25

COB
IT
Ic
(pF)
(MHz) @ {mAl
Max Min Max

0.1
1
10

0.65

0.4
0.65

0.4

0.95

50

30
50

100

100
2

60
90

100
2

10
10

0.5

50

4

66

lS0

90
150

100
2

10
10

0.5

50

4

66

300

0.1
0.001
10
50

1
1
1
1

0.25

0.9

10

6

300

10

1.2

50

50
10
1
0.1

1
1
1
1

0.13
0.14
0.3

0.75
0.9
1.1

1
10
50

4.5

400

10

50
10
1
0.1

1
1
1
1

0.13

0.75

1

4.5

450

10

0.9
1.1

10
50

80
90
100
30
25'

VCE(SAT) VBE(SAT)
I
(V) &
(V)@~
Max
Min Max (m )

30
50
70

60
SO
100
60
30

5

5

hFE
@ Ic & VCE
Min Max {mAl (V)

15
70
60
40
30
150
150
100

300

200

300

0.6

0.5

0.14
0.3

0.7

0.7

6

(Note 6)

66

150

4

(Notes 11 , 8)

66

150

4

(Notes 11, 8)

66

SJOIS!SU8J l

II

dNd

PNP Transistors

General Purpose Amplifiers and Switches (Continued)
ICES'

v~l~rol~ol~@~
M M M ~ M

Type
No.

Case
Style

PN4916

I TO·92 I

~

~

~

~

30

30

5

25*

(92)

PN4917

I TO·92 I

30

30

5

25*

h FE@C
I
VCE
Min Max (mA) & (V)

15 1 15
70
60
40
15

I 30

(92)

PN5138 1 TO·92
(92)
PN5139

150
150
100

I

30

30

5

50

20

20

20

5

50'

15

(92)

!0>
ST3906

I TO·92

1 40

40

5

(92)

I TO·92

I

800

45

6

50

50

(dB)
Max

Test
Conditions

Process
No.

I

I 400

10 1 150 1 4

1 (Notes 13, 8)

66

50
10
1
0.1

0.13
0.14
0.3

0.75
0.9
1.1

1
10
50

I 4.5 I 450

10 1 150 1 4

1 (Notes 13, 8)

66

0.7
0.75

1.0

10

7 1 30

0.5

5

10 1 200

0.1
50
10
0.1

10

MPQ2001 TO·116 1 60

I NF

1
10
50

300

25 1 100

I

IT
IC
!oFF
,

~

ICES'
ICBO@ VCB
(nA)
(V)
Max

VCBO
(V)
Min

Type
No.

TN4314

65

40

7

7

65

20

250
250

60

60
60

hFE
@ Ic & VCE
Min Max (mA) (V)

20
40
20

300

300

140

VCE(SAT) VBE(SAT)
Ic
(V) &
(V)
@ (mA)
Max
Min Max

COB
(pF)
Max

fT

Ic
(MHz) @ (mA)
Min Max

150
10
500
1A

10
10
10
10

0.4

1.3

15

15

100

0.1
100
500
1A

5
5
5
5

0.15
0.5

0.9

150
500

20

150

500

0.1
150
500

10
10
10

0.65

1.4

150

30

60

50

200

15
50

1
150

10
10

1.4

150

30

60

250

15
50

1
150

10
10

1.4

150

30

250

25
40
25

1
10
30

10
10
10

0.5

0.9

20

25
40
25

1
10
30

10
10
10

0.4

0.9

0.9

150

67

67

50

10

76

20

8

50

10

76

20

6

50

10

76

50

77

50

77

50

77

200

25
40
25

1
10
30

10
10
10

0.5

2N6726

TO-237
(91)

40

30

5

100

40

55
60
50

1
1
1

0.5

1A

50

200

10
100
1A

5

100

50

55
80
50

1
1
1

0.5

1A

50

250

10
100
1A

100

40

50
60
55

1A
100
10

1
1
1

0.5

1A

TO-237
(91)

50

6

250

92PU51

67

67

5

30

50

50

200

40

Process
No.

60

200

50

Test
Conditions

67

TO-92
(99)

TO-237
(91)

NF
(dB)
Max

50

MPSW92

2N6727

toFF
(ns)
Max

30

50

500

Medium Power (Continued)
Type
No.

VCBO
(V)
Min

Case
Style

92PU51A I TO-237
(91)
NS0202

I TO-202

VCEO

I Min
(V)

VEBO ICES'
I (V) IICBO @ VCB
Min
(MnA)
(V)
ax

40

100

50

I.

hFE
@ IC & VCE I
Min Max (rnA) (V)

I 50

I

60

45

5

100

60

I 25

(55)

NS0203

I TO-202

40
50
40

I

60

45

100

5

(55)

NSOU51

I TO-2021 40

30

5

i

100

60 I 30
50
120
50
30

I

04101

TO-202

50

40

5

100

40

I 50
60
55

30

100'

45

I

(55)

04102
04104

TO-202
(55)

30

TO-202

45

100'
100'

45
60

I

04107

TO-202
(55)

45

TO-202

60

100'
100'

60
75

I

04108
041010

TO-202
(55)

60

I TO-202

75

(55)

100'
100'

75
90

NF
(dB)
Max

T~S~

Conditions

I

Process
No.

lA I 30 I 80

50

77

0.9

100 I 30 I 60

50

77

50

77

lA
500
100
10

5
5
5

0.2

5

0.4

1.2

500

lA
500
100
10

5
5
5
5

0.2

0.9

100 I 30 I 60

0.4

1.2

500

lA
100
10

0.7

lA I 30 I 50

50

77

lA
100
10

0.7

lA I 30 I 50

50

77

2
2

0.5

1.5

500

78

2
2

1.5

500

78

300

lA
100

0.5

120
10
50

lA
100

2
2

0.5

1.5

500

78

150

2
2

1.5

500

78

360

lA
100

0.5

120
10
50

lA
100

2
2

1.0

1.5

500

78

150

2
2

1.5

500

78

360

lA
100

1.0

120
10
50

lA
100

2
2

1.0

1.5

500

78

150

I 20
I

tOFF
(ns)
Max

lA
100

I 20

(55)

0.5

I I I

150

10
50

I 20

(55)

04105

360

60
55

1"
NSOU51A TO-2021
(85)

150

I 50

(55)
~

lA
100
10

60
55

VCE(SAn VBE(SAT)
COB
fT
(V) &
(V)
@
Ic I (pF) I (MHz) @ Ic
Max
Min Max (rnA) Max Min Max (rnA)

SJo~s!sueJl

iii

dNd

PNP Transistors

Medium Power (Continued)

.j>.

'"

VCEO
(V)
Min

VEBO
(V)
Min

ICES'

Case
Style

041011

TO-202
(55)

75

041013

TO-202
(55)

75

100'

041014

TO-202
(55)

75

041E1

TO-202
(55)

041E5
041E7

I\)

VCBO
(V)
Min

Type
No.

fT

Ie
.(MHZ) @ (rnA)
Min Max

toFF
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

100'

20
120

1.5

500

78

100

2
2

1.0

360

90

50

150

100

2

1.0

1.5

500

78

100'

90

120

360

100

2

1.0

1.5

500

78

30

100'

40

10
50

1A
100

2
2

1.0

1.3

1A

78

TO-202
(55)

60

100'

70

10
50

1A

2
2

1.0

1.3

1A

78

100

TO-202
(55)

80

1A
100

2
2

1.0

1.3

1A

78

500
150
10

10
10
10

0.4

1.3

150

20

150

500
250
50
10

1
1
1
1

1.0

1A

18

75

0.5

250

500
250
50
10

1
1
1
1

1.0

1A

18

0.8

250

500
250
50
10

1
1
1
1

1.0

1A

18

0.5

250

60

2N6554

60

2N6556

COB
(pF)
Max

hFE
@ Ie &VeE
Min Max (rnA) (V)

NSOU52 TO-202
(55)

2N6555

VCE(SAn VBE(SAn
Ic
(V) &
(V)
@ (rnA)
Max
Min Max

ICBO@ VCB
(nA)
(V)
Max

TO-202
(55)

TO-202
(55)

TO-202
(55)

60

100

40

60

60

100

5

5

5

5

90

100'

90

10
50

100

40

30
50
50

100

100

100

40

60

80

25
60
80
80
25
60
80
60
25
60
80
60

1A

300

300

300

300

20

78

250

100

78

78

250

100

78

75

250

100

78

Medium Power (Continued)
Type
No.
2N6706

Vcao
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

T0-237
(90)

60

45

5

TO-237

80

Case
Style

ICES"
ICBO@ Vca
(nA)
(V)

hFE

Max
100

60

40
40

60

5

100

80

2N671 0

TO-237
(90)

100

T0-92
(99)

50

80

5

100

100

~

40

5

100

50

50

NSD6180 T0-202
(55)

75

NSD6181

50

500

80

500

60

10
40
30

NSDU55

TO-202
(55)

60

60

4

100

60

20
50
80

PE8550

TO-92
(92)

30

25

6

100

20

50
65
65
40

40

7

0.1 rnA

40

40
30
20
10

TN4234

TN4235

TO-237
(91)

40

TO-237
(91)

60

60

7

0.1 rnA

60

40
30
20
10

50

78

1
1

0.5

1.2

1A

30

1A
500
50

2
2
2

0.5

1.2

500

30

50

50

78

250

1A
500
50

2
2
2

0.5

1.2

500

30

50

50

78

250

500
250
50

1
1
1

0.35

250

30

50

200

78

10
100
500
1A

1
1
1
1

0.15

0.9

200

40

100

50

78

0.5

1.2

1A

100
250
500
1A

1
1
1
1

0.6

1.5

1A

100

78

100
250
500
1A

1
1
1
1

0.6

1.5

1A

100

78

150

1A

50

100
1A

150

500

1.0

78

250

200
200
200
200

0.5

50

2
2
2

30
T0-202
(55)

1A

50

50
250
500

10
40

500

1.0

78

250

250

0.5

50

2
2
2

60

1A

50

50
250
500

25
MPS6727

1.0

(pF)

2
2
2

40
40

Max

COB

50
250
500

40

40
25

(90)

toFF NF
fy
Ic
Test
Process
(MHz) @ (rnA) (ns) (dB) Conditions
No.
Min Max (m ) Max Min Max
Max Max

VCE(SAT) VaE(SAT)
I
(V)&
(V)@~

250

25
2N6709

@ Ic & VCE
(V)

Min Max (rnA)

0.5

500
78

-

~-

SJOIS!SU8J.L dNd

PNP Transistors

Medium Power (Continued)
Type
No.

Case
Style

VCBO

TN4236

I TO-237 i

(V)

I I
VCE.O
(V)

VEBO
(V)

Min

Min

Min

80

80

7

ICES·
ICBO @ VCB
(V)
(nA)
Max

10.1 mA

(91)

60

2N6728 1 TO-237 I 60
(91)
2N6729 I TO-237
(91)

I

-

2N6730 I TO-237 I 100
(91)

t-

~

2N6732 I TO-237
(91)

80

80

100

I

100

80

5

5

5

5

100

100

100

100

I

hFE
@ Ic & VCE
Min Max (mA) (V)

80 1 40
30
20
10

150

I

VCE(SAT) VBE(SAT)
I
(V) &
(V) @ C
Max
Min Max (mA)

100
250
500
1A

0.6

1.5

ICOB
I
(pF)
Max

fy
Ic
(MHz) @ (mA)
Min Max

1A I 100

ItOFF
I NF I Test IProcess
(ns) (dB) Conditions
No.
Max

Max

78

40 I 80
50
20

50
250
500

0.35

250

50

50

79

250

60 1 80
50
20

50
250
500

0.35

250

50

50

79

250

80 I 80
50
20

50
250
500

0.35

250

50

50

79

250

0.35

350

50

50

79

80 1100
100

300

10
350

2
2

92PU55I TO-237
(91)

60

100

40 120
50
80

500
250
50

0.35

250 I 30 I 50

200

79

I T0-237

80

100

60 120
50
80

500
250
50

0.35

250 I 30 I 50

200

79

100

100

80 120
50
80

500
250
50

0.35

250 I 30 I 50

200

79

100

100

0.9

100 I 30 I 60

50

79

50

79

92PU56

(91)
92PU57

I T0-237
(91)

NSD2041 T0-202 I 100

80

7

I

(55)

NSD205 I TO-202 I 100
(55)

80

7

100

100

I

10
50
20
10
120
20

150

360

1A
100
10
1A
100
10

5
5
5

0.2
0.5

1.2

500

5
5

0.2

0.9

100 I 30 I 60

5

0.5

t.2

500

Medium Power (Continued)
V
CBO

V
V
CEO
EBO
(V)
(V)
..
Min
Min

ICES'
I
V
CBO @ CB
(nA)
(V)
Max

Type

Case

No.

Style

NSD206

TO-202
(55)

140

NSDU56

TO-202
(55)

80

80

4

100

80

NSDU57

TO-202
(55)

100

100

4

100

100

(V)

Min

100

7

100

140

h
Min
25
50
20

I
V
FE
@
C & CE
Max (mA) (V)

V
CE(SAn
(V) &
Max

500
100
10

5
5
5

20
50
80

500
250
50

1
1
1

0.35

20
50
80

500
250
50

1
1
1

0.35

150

V
BE(SAn
.

(V)

MIn

@

Max

I
C
(mA)

0.2

0.9

100

0.5

1.2

500

c
'"
OB
'I
(pF)

Max

I
(MHz) @
C
.
(mA)
MIn Max

toFF
(ns)

NF
(dB)

Max

Max

Test

Process

Conditions

No.

30

60

50

79

250

30

50

200

79

250

30

50

200

79

TEST CONDITIONS:

.j>.

N
U1

Note 1: Ie ~ 50 rnA, Vee ~ l00V, IB' ~ Ie" ~ 5 rnA.

Note 5: Ie ~ 100 ".A, Vee ~ 10V, f ~ 1 kHz.

Note 2: Ie ~ 500 p.A, VeE ~ 10V, f ~ 1 kHz.

Note 6: Ie ~ 500 mA, Vee ~ 30V, IB' ~ IB2 ~ 50 rnA.

Note 3: Ie ~ 500 rnA, IB' ~ IB2 ~ 50 rnA.

Note 7: le/lB ~ 8.

Note 4: Ie ~ 150 rnA. Vee ~ 30V, IB' ~ IB2 ~ 15 mAo

--------_._-

SJOIS!SU8J l

II

dNd

PNP Transistors

~NatiOnal

Darlington Transistors

Semiconductor

Type
No.

....

Case
Style

VCBO
(V)
Min

VCES'
VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICExt
(",A)
Max

@

VCB
(V)

hFE
Min

@

Max

Ic & VCE
(A)
(V)

VCE(SAT
VBE(SAT)
@
(V) &
(V)
Max
Max
Min

Ic
(A)

COB
(pF)
Max

IT
(MHz)
Min
Max

@

Ic
(A)

Process
No.

D41K1

TO-202
(55)

30'

13

0.5

30

10,000
1000

0.2
1.5

5
5

1.5

2.5

1.5

100

0.02

61

D41K2

TO-202
(55)

50'

13

0.5

50

10,000
1000

0.2
1.5

5
5

1.5

2.5

1.5

100

0.02

61

D41K3

TO·202
(55)

30'

13

0.5

30

10,000
1000

0.2
1.5

5
5

1.5

2.5

1

100

0.02

61

D41K4

TO·202
(55)

50'

13

0.5

50

10,000
1000

0.2
1.5

5
5

1.5

2.5

1

100

0.02

61

MPSA62

TO-92
(92)

20'

0.1

15

20,000

10

5

1.0

10

0.01

61

MPSA63

TO·92
(92)

30'

0.1

30

10,000
5000

100
10

5
5

1.5

100

125

0.01

61

MPSA64

TO-92
(92)

30'

0.1

30

20,000
10,000

100
10

5
5

1.5

100

125

0.01

61

MPSA65

TO·92
(92)

30'

0.1

30

50,000
20,000

0.01
0.1

5
5

1.5

100

0.01

61

MPSA66

TO-92
(92)

30'

0.1

30

75,000
40,000

0.01
0.1

5
5

1.5

100

0.01

61

MPSW63

TO-226
(99)

30'

0.1

30

10,000
5000

100
10

5
5

1.5

100

125

0.01

61

MPQA63

TO·116

30'

0.1

30

10,000
5000

100
10

5
5

1.5

100

125

0.01

61

NSDU95

TO·202
(55)

50

10

25,000
15,000
4000

0.2
0.5
1

5
5
5

1.5

1

50

0.02

61

NSDU95A

TO-202
(55)

60

10

25,000
15,000
4000

0.2
0.5
1

5
5
5

1.5

1

50

0.02

61

~

Section 5
JFET Transistors

Section 5 Contents
N-CHANNEL JFETS
Switches and Choppers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF, VHF, UHF Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Frequency·Low Noise Amplifiers........... ........... ......... ... ... ...... ....
Ultra Low Input Current Amplifiers ..................................................
General Purpose Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Dual JFETs .............................. " ........... ....... ....
Low Frequency-Low Noise Dual JFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Wide Band-Low Noise Dual JFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Leakage·High CMRR·Wide Band Dual JFETs....................................
Ultra Low Leakage Dual JFETs................ . . .. ........................... ......
P-CHANNEL JFETS
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amplifiers .......................................................................

5·2

5·3
5-5
5·7
5·8
5·9
5·12
5·14
5·15
5·16
5·17
5·18
5·19

_National
Semiconductor

N-Channel JFETs

Switches/Choppers
Case
Style

BVGSS
BVGDO
(V)@lo
Min (pA)

(nA)@VDG
Max
(V)

2N3824
2N3966
2N3970
2N3971
2N3972

TO-72
TO-72
TO-18
TO-18
TO-18

50
30
40
40
40

1
1
1
1
1

0.1
1
0.25·
0.25·
0.25·

2N4091
2N4092
2N4093
2N4391
2N4392

TO-18
TO-18
TO-18
TO-18
TO-18

40
40
40
40
40

1
1
1
1
1

2N4393 TO-18
2N4856 TO-18
2N4856A TO-18
2N4857 TO-18
2N4857A TO-18

40
40
40
40
40

2N4858 TO-18
2N4858A TO-18
2N4859 TO-18
2N4859A TO-18
2N4860 TO-18

Vp
IDSS
VGS (V)@VDS ID (mA)@VDS
(V) Min Max (V) (nA) Min Max (V)

Cisa
rds(on)
(O)@ID
(PF)@VDS
Max
(mA) Max (V)

30
20
20
20
20

0.1
0.1
0.25
0.25
0.25

15
10
20
20
20

-8
-7
-12
-12
-12

250
220
30
60
100

0.2·
0.2·
0.2·
0.1
0.1

20
20
20
20
20

0.2
0.2
0.2
0.1
0.1

20
20
20
20
20

-12
-8
-6
-12
-7

30
20
15
20
8
20
50 15020
25 75 20

1
1
1
1
1

0.1
0.25
0.25
0.25
0.25

20
20
20
20
20

0.1
0.25
0.25
0.25
0.25

20
15
15
15
15

-5
-10
-10
-10
-10

40
40
30
30
30

1
1
1
1
1

0.25
0.25
0.25
0.25
0.25

20
20
15
15
15

0.25
0.25
0.25
0.25
0.25

15
15
15
15
15

2N4860A TO-18
2N4861 TO-18
2N4861 A TO-18
2N5432 TO-52
2N5433 TO-52

30
30
30
25
25

1
1
1
1
1

0.25
0.25
0.25
0.2
0.2

15
15
15
15
15

0.25
0.25
0.25
0.2
0.2

2N5434
2N5555
2N5638
2N5639
2N5640

25
25
30
30
30

1
10
10
10
10

0.2
1
1
1
1

15
15
15
15
15

0.2
10
1
1
1

No.

en

c'.>

IGSS

lD(offI
(nA)@VDS
(V)
Max

Type

TO-52
TO-92
TO-92
TO-92
TO-92

·1000

VGS
(V)

Crsa
(PF)@VDS
(V)
Max

ton toft Process Pkg.

VGS (ns) (ns)
(V) Max Max

No.

No.

1
1
1

6
6
25
25
25

15
20
20
20
20

0
0
0
0
0

3
1.5
6
6
6

0
0
0
0
0

-8
-7
-12 20 30
-12
60
-12 80 100

55
50
51
51
51

25
25
02
02
02

30
50
80
30
60

1
1
1
1
1

16
16
16
14
14

20
20
20
20
20

0
0
0
0
0

5
5
5
3.5
3.5

0
0
0
0
0

-20
-20
-20
-12
-7

25
35
60
20
20

40
60
80
35
55

51
51
51
51
51

02
02
02
02
02

0.5 3 20 1 5 30 20
4 10 15 0.5 50
15
4 10 15 0.5 50
15
2 6 15 0.5 20 100 15
2 6 15 0.5 20 100 15

100
25
25
40

1

40

14
18
10
18
10

20
0
0
0
0

0
-10
-10
-10
-10

3.5
8
4
8
3.5

0
0
0
0
0

-5
-10
-10
-10
-10

20
9
9
10
10

80
25
20
50
40

51
51
51
51
51

02
02
02
02
02

-10
-10
-10
-10
-10

0.8 4 15 0.5
0.8 4 15 0.5
4 10 15 0.5
4 10 15 0.5
2 6 15 0.5

8 80 15
8 80 15
50
15
50
15
20 100 15

60
60
25
25
40

18
10
18
10
18

0
0
0
0
0

-10
-10
-10
-10
-10

8
3.5
8
4
8

0
0
0
0
0

-10
-10
-10
-10
-10

20
16
9
8
10

100
80
25
20
50

51
51
51
51
51

02
02
02
02
02

15
15
15
5
5

-10
-10
-10
-10
-10

2 6 15
0.8 4 15
0.8 4 15
4 10 5
3 9 5

20 100 15
8 80 15
8 80 15
150
15
100
15

40

60
60
5
7

10
18
10
30
30

0
0
0
0
0

-10
-10
-10
-10
-10

3.5
8
3.5
15
15

0
0
0
0
0

-10
-10
-10
-10
-10

10
20
16
5
5

40
100
80
36
36

51
51
51
58
58

02
02
02
07
07

5
12
15
15
15

-10 1 4 5
-10
(10)
-12
(12)
-8
(8)
-6
(6)

30
15
50
25
5

10
150
30
60
100

30
5
10
10
10

0
15
0
0
0

-10
0
-12
-12
-12

15
1.2
4
4
4

0
0
0
0
0

-10 5 36
-10 10 25
-12
-8
-6
-

58
50
51
51
51_

07
92
92
92
92

8 15
4 6 10
4 10 20
2 5 20
0.5 3 20
5
2
1
4
2

10
7
5
10
5

0.1
10 2
20
1 50 150 20
1 25 75 20
1 5 30 20

20 1
20 1
20 1
20 1
20 1

0.5
0.5
0.5
3
3
3

15
15
20
20
20

10
10
10
1
1
1

SJO~S!SUeJl13:1r

II

JFET Transistors

N-Channel JFETs

Switches/Choppers (Continued)

U1

J,..

IGSS
"1000
(nA)@Voo
(V)
Max

No.

Case
Style

BVGSS
BVGDO
(V)@IG
Min (p.A)

2N5653
2N5654
Jl05
Jl06
Jl07

TO-92
TO-92
TO-92
TO-92
TO-92

30
25
25
25
25

10
10
1
1
1

1
1
3
3
3

15
15
15
15
15

1
10
3
3
3

Jl08
Jl09
Jl10
Jl11
J112

TO-92
TO-92
TO-92
TO-92
TO-92

25
25
25
35
35

1
1
1
1
1

3
3
3
1
1

15
15
15
15
15

J113
TO-92
J114
TO-92
PN4091 TO-92
PN4092 TO-92 .
PN4093 TO-92

35
25
40
40
40

1
1
1
1
1

1
1
0.2·
0.2·
0.2·

PN4391 T0-92
PN4392 TO-92
PN4393 TO-92
PN4856 T0-92
PN4857 TO-92

40
40
40
40

1
1
1
1
1

0.1
0.1
0.1
0.25
0.25

15
15
20
20
20
20
20
20
20
20

PN4858 T0-92
PN4859 T0-92
PN4860 TO-92
PN4861 TO-92

40
30
30
30

1
1
1
1

0.25
0.25
0.25
0.25

PN5432 TO-92
PN5433 TO-92
PN5434 T0-92
TIS73 TO-92

25
25
25
30

1
1
1
1

TIS74
TIS75
U1897
U1898
U1899

30
30
40
40
40

1
1
1
1
1

Type

TO-92
TO-92
TO-92
TO-92
TO-92

40

Vp
IDSS
VGS (V)@VDS ID (mA)@VDS
Max
(V)
(nA)
Min
Min Max (V)
(V)

Ciss
rds(on)
(n)@ID
(PF)@VDS
Max
(V)
Max
(mA)

15
15
5
5
5

-12
(12)
40
-8
(8)
15
10 4.5 10 5 1000 500
10 2 6 5 1000 200
10 0.5 4.5 5 1000 100

20
20
15
15
15

50
100
3
6
8

1
1
33
17
13

3
3
3
1
1

5
5
5
5
5

-10
-10
-10
-10
-10

3 10 5 1000 80
2 6 5 1000 40
0.5 4 5 1000 10
3 10 5 1000 20
1 5 5 1000 5

15
15
15
15
15

8
12
18
30
50

1
1
0.2
0.2
0.2

5
5
20
20
20

-10
-10
-12
-8
-6

15
15
20
20
20

100
150
30
50

0.1
0.1
0.1
0.25
0.25

20
20
20
15
15

-12
-7
-5
-10
-10

0.5 3 5 1000 2
3 10 5 1000 15
5 10 20 1 30
2 7 20 1 15
8
1 5 20 1
4 10 20 1 50
2 5 20 1 25
5
0.5 3 20 1
4 10 15 0.5 50
2 6 15 0.5 20

15020
75 20
30 20
15
100 15

30

20
15
15
15

0.25
0.25
0.25
0.25

15
15
15
15

-10
-10
-10
-10

0.8 4 15 0.5 8 80 15
15
4 10 15 0.5 50
2 6 15 0.5 20 100 15
0.8 4 15 0.5 8 80 15

0.2
0.2
0.2
2

15
15
15
15

0.2
0.2
0.2
2

5
5
15

-10
-10
-10
-10

2
2
0.2·
0.2·
0.2·

. 15
15
20
20
20

2
2

15
15

lD(off)
(nA)@VDS
(V)
Max

~

VGS (ns) (ns)
(V) Max Max

-12
-12

3.5
3.5

-12 9 15
-8 14 30

ton toff Process Pkg.
No. No.
51
51
59
59
59

92
92
92
92
92

10
10
10
1
1

58
58
58
51
51

92
92
92
92
92

1
1

51
90
51
51
51

92
92
92
92
92

51
51
51
51
51

92
92
92
92
92

10
10

0
0

0
0

20
20
20

0
0
0

5
5
5

20
20
20

0
0
0

40

14
14
14
18
18

20
20
20
0
0

0
0
0
-10
-10

3.5
3.5
3.5
8
8

0
0
0
0
0

-12
-7
-5
-10
-10

25 40
35 60
60 80
20 35
40 80
55 130
9 25
10 50

60
25
40
60

18
18
18
18

0
0
0
0

-10
-10
-10
-10

8
8
8
8

0
0
0
0

-10
-10
-10
-10

20 100
9 25
10 50
20 100

51
51
51
51

92
92
92
92

30
30
30
18

0
0
0
0

-10
-10
-10
-10

15
15
15
8

0
0
0
0

-10
-10
-10
-10

5
5
5
9

36
36
36
25

58
58
58
51

92
92
92
97

18
18
16
16
16

0
0
20
20
20

-10
-10
0
0
0

8
8
5
5
5

0
0
0
0
0

-10
-10
-20
-20
-20

10 50

51
51
51
51
51

97
97
92
92
92

80
60

100
25

3
3
3
4

150
100
30
50

15
15
15
15

5
7
10
25

-10 2 6 15
-10 0.8 4 15
5 10 20
2 7 20
1 5 20

4
4
1
1
1

20 100 15
8 80 15
30
20
20
15
20
8

40
60
30
50
80

10
9
4
10

Crss
(pF)@VDS
(V)
Max

16
16
16

5
5
5
15

4
3
1
4

VGS
(V)

10
10
10

1
1

1

25 40
35 60
60 80

~NatiOnal

N-Channel JFETs

Semiconductor
RF, VHF, UHF Amplifiers

If
en

Type
No.

case
Style

BVGSS
(V)@IG
Min (,.A)

2N3819
2N3823
2N4223
2N4224
2N4416

TO-92
TO-72
TO-72
TO-72
TO-72

25
30
30
30
30

1
1
10
10
1

2
0.5
0.25
0.5
0.1

15
20
20
20
20

2N4416A T0-72
2N5078 TO-72
2N5245 TO-92
2N5246 TO-92
2N5247 T0-92

35
30
30
30
30

1
1
1
1
1

0.1
0.25
1
1
1

20
20
20
20
20

2N5248
2N5397
2N5398
2N5484
2N5485

TO-92
T0-72
T0-72
TO-92
TO·92

30
25
25
25
25

1
1
1
1
1

5
0.1
0.1
1
1

2N5486
2N5468
2N5469
2N5470
2N5949

TO-92
TO-92
TO·92
T0-92
TO·92

25
25
25
25
30

1
10
10
10
1

2N5950
2N5951
2N5952
2N5953
J300

TO-92
TO-92
TO·92
TO-92
TO·92

30
30
30
30
25

J304
J305
J308
J309
J310

TO·92
TO-92
TO-92
TO-92
TO-92

30
30
25
25
25

t

~

IGSS
VP
(V)@VDS 10
(nA)@VoG
(V) Min Max (V) (nA)
Max

IDSS
(mA)@Vos
(V)
Min
Max

ReIY,.1
(mmho) @Freq.
(MHz)
Min

Cras
VGS
(V)

(pF)@Vos
(V)
Max

VGS
(V)

200
200
200
100

200
200
200
400

8
6
6
6
4

15
15
15
15
15

0
0
0
0
0

4
2
2
2
0.8

15
15
15
15
15

0
0
0
0
0

200
400
400
400

100
150
100
100
150

400
200
400
400
400

4
6
4.5
4.5
4.5

15
15
15
15
15

0
0
0
0
0

0.8
2
1
1
1

15
15
15
15
15

0
0
0
0
0

3
5.5
5.0
2.5
3

200
450
450
100
400

200
200
400
75
100

200
450
450
100
400

6
5
5.5
5
5

15
10
10
15
15

0
lOrnA
0
0
0

2
1.2
1.3
1
1

15
10
10
15
15

15
15
15
15
15

3.5
1
1.6
2.5
3.0

400
100
100
100
100

100
50
100
150
75

400
100
100
100
100

5
7
7
7
6

15
15
15
15
15

0
0
0
0
0

1
3
3
3
2

15
13
8
5
30

15
15
15
15
10

3.0
3.0
1.0
1.0
4.5

100
100
100
100
0.001

100
75
75 100
100
75
100
50
200 0.001

6
6
6
6
5.5

15
15
15
15
10

0
0
0
0
5mA

2
2
2
2
1.7

15
8
60
30
60

15
15 .
10
10
10

14.2
t3.0
8
10
8

400

taO 100
t80 100
200 0.001
200 0.001
200 0.001

8
8
8
8
6

15 2
15 0.5
15 0.25
15 0.5
15 1

2
4
3
2
5

20
20
18
20
15

15
15
15
15
15

1.6
3.2
2.7
1.7
4

100
200
200
200

2.5
0.5
1
0.5
1.5

6
8
6
4
8

15 1
15
15 10
15 10
15 10

5
4
5
1.5
8

15
25
15
7
24

15
15
15
15
15

4
4
4
2.5
4

400

20
15
15
20
20

1
1
1
0.3
1

8
6
6
3
4

15 10
10 1
10 1
15 10
15 10

4
10
5
1
4

20
30
40
5
10

15
10
10
15
15

1
2
2
2
1

20
15
15
15
15

2
0.2
1
2
3

6
4
6
8
7

15
14
15
15
15

10
10
10
10
100

8
1
4
8
12

20
5
10
20
18

1
1
1
1
1

1
1 ,
1
1
0.5

15
15
15
15
15

2.5 6 15
2
5 15
1.3 3.5 15
0.8 3 15
1
6 10

100
100
100
100
1

10
7
4
2.5
6

1
1
1
1
1

0.1
0.1
1
1
1

20
20
15
15
15

2
6 15
0.5 3 15
1 6.5 10
1 4.0 10
2 6.5 10

1
1
1
1
1

5
1
12
12
24

0.1
0.1

Re{Yos)
C.SS
(,.mho)@f (pF)@Vos
Max (MHz) Max
(V)

400

400

0.001
0.001
0.001

7.5
7.5
7.5

0
0
0

-10
-10
-10

2.5
2.5
2.5

NF
(dB)@RG = lk Process Pkg.
No.
Freq.
No.
(MHz)
Max

2.5
5

100
200

50
50
50
50
50

94
25
25
25
25

50
50
90
90
90

25
25
97
97
97

4

400

4
3
4

400
200
400

0
lOrnA
0
0
0

3.5
3.2
3
4

450
450
100
400

50
90
90
50
50

94
29
29
92
92

15
15
15
15
15

0
0
0
0
0

4
2.5
2.5
2.5
5

400
100
100
100
100

50
50
50
50
50

92
92
92
92
97

15
15
15
15
10

0
0
0
0
5mA

5
5
5
5

100
100
100
100

50
50
50
50
90

97
97
97
97
92

50
50
92
92
92

92
92
92
92
92

0
0
0

-10
-10
-10

typical value

-

-------_.

SJo~S!SUeJl13:1r

I

JFET Transistors

RF, VHF, UHF Amplifiers (Continued)
Type
No.

case
Style

MPF102 0-92
MPF106 0-92
MPF101 TO-92
MPF10e 0-92
MPF256 0-92
MPF820 TO-92
PN4223 0-92
PN4224 0-92
PN4416 TO-92
U308 TO-52
0-52
U309
U310 TO-52
U312 TO-52

N-Channel JFETs

BVGSS
IDSS
IGSS
VP
(V)@IG
(nA)@Voo (V)@VDS ID
(mA)@VDS
Min (,..A) Max (V) Min Max (V) (nA) Min Max (V)

25
25
25
25
25
25
30
30
30
25
25
25
25

1
1
1
10
10
10
1
1
1
1
1
1
1

2
1
1
1
5
5
0.25
0.5
0.1
0.15
0.15
0.15
0.1

15
20
20
15
15
15
20
20
20
15
15
15
15

0.5
2
0.5
0.5
0.1
0.1
1
1
2.5
1

8
4
6
8
7.5
5.0
8
8
6
6
4
6
6

20
10
20
24
18

15 2
2
15 0.5
4
15 0.5
8
15 10 1.5
15200", 3
15200", 10
15 1
3
15 5
2
15 1
5
10 1
12
10 1
12
10 1
24
10 1
10

18
20
15
60

30
60
30

%;

-_.

-

15
15
15
15
15
15
15
15
15
10
10
10
10

R.(Yos)
ReIYfsl
CI.
(mmho) @Freq. (,..mho)@f (pF)@IDS
(MHz) Max (MHz Max
(V)
Min

1.6
2.5
4
1.6
6
2.7
1.7
4
10
10
10
6

100
0.001
0.001
100
0.001
0.001
200
200
400
0.001
0.001
0.001
0.001

100 200
200

100

200
200
100
150
150
150

200
200
400
100
100
100

VGS
(V)

0
0
0
0

Cr.

(PF)@VDS
Max (V)

VGS
(V)

7
5
5
6.5

15
15
15
15

3
2
1.2
2.5

15
15
15
15

0
0
0
0

6
6
4
5
5
5
3.8

0
2
15
0
2
15
0.8
15
0
0 10mA 2.5
0 10mA 2.5
10 10mA 2.5
10 10mA 1.2

15
15
15
0
0
10
10

0
0
0
10mA
10mA
10mA
10mA

NF
(dB)@RG = 1k Procesll Pkg.
Freq.
No. No.
Max
(MHz)

4
4
3
2.0
4.0
5

400
400
100
100

4

400

100
200

50
50
50
50
90
51
50
50
50
92
.92
92
90

92
92
92
92
92
92
92 !
9:
92
071
07
07
07

IjNatiOnal
Semiconductor

N-Channel JFETs

Low Frequency-Low Noise Amplifiers
Type

case

No.

Style

2N4393
2N5556
2N5557
2N5558

T0-18
T0-72
T0-72
T0-72

NF51 01 TO-72
NF51 02 T0-72
NF51 03 T0-72

UI

~

PF51 01
PF51 02
PF51 03
PN4393

T0-92
TO-92
T0-92
TO-92

Goss
e rss
gls (RelY,s)
IGSS
VGS(olf)
loss
eiss
BVG~
f
(V)
G (nA) Voo
(V)
VDS 10
(mA)
Vos (mmho) Vos
(p.mho) VDS (pF) Vos VGS (pF) VOS
(MHz)
Min (p.A) Max (V) Min Max (V) (nA) Min Max (V) Min Max (V)
Max
(V) Max (V) (V) Max (V)

40
30
30
30
40
40
40
40
40
40
40

1.0
10
10
10

0.1
0.1
0.1
0.1

20
15
15
15

0.5
0.2
0.8
1.5

3.0
4.0
5.0
6.0

20
15
15
15

1.0
1.0
1.0
1.0

5
0.5
2
4

30
2.5
5.0
10

20
15
15
15

112
1.5
1.5
1.5

1
1
1

0.2
0.2
0.2

15
15
15

0.5
0.7
1.2

1.1
1.6
2.7

15
15
15

1.0
1.0
1.0

1
4
10

12
20
40

15
15
15

1
1
1
1

0.2
0.2
0.2
0.1

15
15
15
20

0.5
0.7
1.2
0.5

1.1
1.6
2.7
3.0

15
15
15

1.0
1.0
1.0
1.0

1
4
10
5

12
20
40
30

15
15
15
20

3.5
7.5
7.5
3.5
7.5
7.5
112

20

6.5
6.5
6.5

en
nV/v'Hz@f
(Hz)
Max

Process Pkg.
No.
No.

20
15
15
15

0.001
0.001
0.001
0.001

20
20
20

15
15
15

14
6
6
6

20
15
15
15

0
0
0
0

3.5 5(GS)
3
15
3
15
3
15

18
35
35
35

10
10
10
10

51
50
50

02
25
25
25

15
15
15

0.001
0.001
0.001

25
25
25

15
15
15

112
112
112

15
15
15

0
0
0

14
14
14

3.5
3.5
3.5

1000
1000
1000

51
51
51

25
25
25

15
15
15
20

0.001
0.001
0.001
0.001

25
25
25

15
15
15

112
112
112
14

15
15
15
20

0
0
0
0

14
15
14
15
14
15
3.5 5(GS)

3.5
3.5
3.5
18

1000
1000
1000
10

51
51
51
51

92

15
15
15

50

92 I
92
92 '

I = typical value.

--

---

SJOIS!SUeJl13:1r

iii

JFET Transistors

~NatiOnal

N-Channel JFETs

Semiconductor
Ultra Low Input Current Amplifiers

(J1

a,

Type
No.

Case
Style

2N4117
2N4117A
2N411B
2N4118A
2N4119
2N4119A

TO-72
TO-72
TO-72
TO-72
TO-72
TO-72

NF5301
NF5301-1
NF5301-2
NF5301-3
PF5301

BVGSS
(V)@IG
Min
(",A)

IGSS
(pF)@Voo
(V)
Max

Vp
loss
@ Vos 10
(V)
(",A@Vos)
Min Max (V) (nA) Min Max (V)

GfS
(",mho)@Vos
(V)
Min
Max

40
40
40
40

1
1
1
1
1
1

10
1
10
1
10
1

20
20
20
20
20
20

0.6
0.6
1
1
2
2

1.B
1.B
3
3
6
6

10
10
10
10
10
10

1
1
1
1
1
1

30
30
80
80
200
200

90
90
240
240
600
600

10
10
10
10
10
10

20
70
80
BO
100
100

210
210
250
250
330
330

10
10
10
10
10
10

TO-72
TO-72
TO-72
T0-72
TO-92

30
30
30
30
30

1
1
1
1
1

1
1
1
1
1

15
15
15
15
15

0.6
0.6
1.7
1.0
0.6

3
1.B
3
2.4
3

10
10
10
10
10

1
1
1
1
1

30
30
30
30
30

500
500
500
500
500

10
10
10
10
10

70
70
70
70
70

300
300
300
300
300

PF5301-1
PF5301-2
PF5301-3
PN4117
PN4117A

TO-92
TO-92
TO-92
T0-92
TO-92

30
30
30
40
40

1
1
1
1
1

1
1
1
10
1

15
15
15
20
20

0.6
1.7
1.0
0.6
0.6

1.B
3
3.4
2.B
2.B

10
10
10
10
10

1
1
1
1
1

30
30
30
30
30

500
500
500
90
90

10
10
10
10
10

70
70
70
20
70

PN411B
PN411BA
PN4119
PN4119A
PN4120
PN4120A

TO-92
TO-92
T0-92
TO-92
TO-92
TO-92

40
40
40
40
40
40

1

10
1
10
1
20
5

20
20
20
20
20
20

1
1
2
2
0.6
0.6

3
3
6
6
3
3

10
10
10
10
10
10

1
1
1
1
1
1

BO
80
200
200
30
30

240
240
600
600
300
300

10
10
10
10
10
10

BO
BO
100
100
70
70

40

40

1
1
1
1
1

Goss
(",mho) Vos
(V)
Max

3
3
3
3
3
3

10
10
10
10
10
10

10
10
10
10
10

3
3
3
3
3

10
10
10
10
10

300
300
300
210
210

10
10
10
10
10

3
3

10
10

3
3
3
3
3

10
10
10
10
10

250
250
330
330
300
300

10
10
10
10
10
10

5
5
10
10
20
20

10
10
10
10
10
10

3
3
3
3
3
3

10
10
10
10
10
10

3
3
5
5
10
10

10
10
10
10
10
10

c

Ciss
(pF)@Vos
(V)
Max

VGS
(V)

rss
(pF)@Vos
(V)
Max

0
0
0
0
0
0

1.5
1.5
1.5
1.5
1.5
1.5

10
10
10
10
10
10

0

1.5
1.5
1.5
1.5
1.5

10
10
10
10
10

1.5
1.5
1.5
1.5
1.5

10
10
10
10
10

1.5
1.5
1.5
1.5
1.5
1.5
_.-

10
10
10
10
10
10
-

a
0

a
a
a
0

a

0

a

0
0

a
0

a
0

VGS
(V)
0
0
0
0

a
a
a
0
0

a
0

a
a
a
a
a
a
0
0

a

0
0
--

Process Pkg.
No.
No.
53
53
53
53
53
53

25
25
25
25
25
25

53
53
53
53
53

25
25
25
25
92

53
53
53
53
53

92
92
92
92
92

53
53
53
53
53
53

92
92
92
92
92
92
-_.-

~Nationai

N-Channel JFETs

Semiconductor
General Purpose Amplifiers

'!'
CD

Type
No.

Case
Style

BVGSS
'BVGDO
(V}@IG
Min
(I£A)

IGSS
(nA)@VDG
(V)
Max

2N3369
2N3370
2N3458
2N3459
2N3460

TO-18
TO-18
TO-18
TO-18
TO·18

40
40
50
50
50

1
1
1
1
1

5
5
0.25
0.25
0.25

30
30
30
30
30

2N3684
2N3685
2N3686
2N3687
2N3821

TO-72
TO·72
T0-72
TO-72
TO·72

50
50
50
50
50

1
1
1
1
1

0.1
0.1
0.1
0.1
0.1

30
30
30
30
30

2N3822
2N3967
2N3967A
2N3968
2N3968A

T0-72
TO·72
T0-72
T0-72
T0-72

50
30
30
30
30

1
1
1
1
1

0.1
0.1
0.1
0.1
0.1

30
20
20
20
20

2N3969
2N3969A
2N4220
2N422OA
2N4221

T0-72
TO·72
T0-72
TO·72
TO·72

30
30
30
30
30

1
1
10
10
10

0.1
0.1
0.1
0.1
0.1

2N4221 A
2N4222
2N4222A
2N4338
2N4339

T0-72
TO·72
T0-72
TO·18
TO·18

30
30
30
50
50

10
10
10
1
1

2N4340
2N4341
2N5103
2N51 04

TO·18
TO·18
TO·72
T0-72

50
50
25
25

1
1
10
1

Vp
(V}@Vos
ID
Min Max (V) (nA)

G08a
(I£mho)@Vos
(V)
Max

Gta
(mmho)@VDS
Min Max
(V)

0.5
0.1
3
0.8
0.2

2.5
0.6
15
4
1

30
30
20
20
20

0.6
0.3
2.5
1.5
0.8

2.5
2.5
10
6
4.5

30
30
20
20
20

30
15
35
20
5

30
30
30
30
30

20
20
18
18
18

8
8
0
0
0

0
0
-10
-6
-4

3
3
5
5
5

30
30
30
30
30

0
0
0
0
0

225
155
155

2
5 20 1
1 3.5 20 1
0.6 2 20 1
0.3 1.2 20 1
4 15 0.5

2.5
1
0.4
0.1
0.5

7.5
3
1.2
0.5
2.5

20
20
20
20
15

2
1.5
1
0.5
1.5

3
2.5
2
1.5
4.5

20
20
20
20
15

50
25
10
5
10

20
20
20
20
15

4
4
4
4
6

20
20
20
20
15

0
0
0
0
0

1.2
1.2
1.2
1.2
3

20
20
20
20
15

0
0
0
0
0

6
5
5
3
3

15 0.5
20 1
20 1
20 1
20 1

2
2.5
2.5
1
1

10
10
10
5
5

15
20
20
20
20

3
2.5
2.5
2
2

6.5

15
20
20
20
20

20
35
35
15
15

15
200
200

15
20
20
20
20

0
0
0

"
.,

3
1.3
1.3
1.3
1.3

15
20
20
20
20

0

20"

6
5
5
5
5

20
20
15
15
15

1.7
1.7
4
4
6

20 1
20 1
15 0.1
15 0.1
15 0.1

0.4
0.4
0.5
0.5
2

2
2
3
3
6

20
20
15
15
15

1.3
1.3
1
1
2

4
4
5

20
20
15
15
15

5
5
10
10
20

20tt
20tt
15
15
15

5
5
6
6
6

20
20
15
15
15

tt
tt
0
0
0

1.3
1.3
2
2
2

0.1
0.1
0.1
0.1
0.1

15
15
15
30
30

6
8
8
0.3 1
0.6 1.8

15
15
15
15
15

0.1
0.1
0.1
100
100

2

6

5
5
0.2
0.5

15
15
0.6
1.5

15
15
15
15
15

2
2.5
2.5
0.6
0.8

5
6
6
1.8
2.4

15
15
15
15
15

20
40
40
5
15

15
15
15
15
15

6
6
6
7
7

15
15
15
15
15

0
0
0
0
0

0.1
0.1
0.1
0.1

30
30
15
15

1
2
0.5
0.5

15 100
15 100
15 1
15 1

1.2
3
1
2

3.6
9
8
6

15
15
15
15

1.3
2
2
3.5

3
4
8
7.5

15
15
15
15

30
60
100
100

15
15
15
15

7
7
5
5

15
15
15
15

0
0
0
0

6.5
3.2
7.8
3.4
1.8

2
2

3
6
4
4

20
20
20
20
20

1000
1000
1000
1000
1000

-10 - 1 mA; tiD - 500 I£A; ttlo - 40 I£A; "10 - 100 p.A; DID - 250

20**

Claa
(pF)@Vos
Max
(V)

Cras
(pF)@Vos
(V)
Max

loss
(mA)@Vos
Min Max M

VGS
(V)

VGS
(V)

@Freq
(NVt

JHz

Max

(Hzi

Process Pkg.
No.
No.

20
20
20

52
52
52
52
52

02
02
02
02
02

150
150
150
150
200

100
100
100
100
10

52
52
52
52
55

25
25
25
25
25

-t
t

200
84
160
84
160

10
100
10
100
10

55
55
55
55
55

25
25
25
25
25

20
20
15
15
15

0
0

84
160

100
10

55
55

0
0
0

115

100

55
55

25
25
25
25
25

2
2
2
3
3

15
15
15
15
15

0
0
0
0
0

115

100

115
68
68

100
1000
1000

55
55
55
52
52

25
25
25
02
02

3
3
1
1

15
15
15
15

0
0
0
0

68
68
100
50

1000
1000
10
10

52
55
50
50

02
02
25
25

55

I£A.

--

--

--

S"I°IS!SUe"lll3:1r

iii

JFET Transistors

General Purpose Amplifiers

~

a

N-Channel JFETs

(Continued)

Type
No.

Case
Style

BVGSS
'BVGDO
(V)@ IG
Min
(,..A)

2N5105
2N5358
2N5359
2N5360
2N5361

TO-72
TO-72
TO-72
T0-72
TO-72

25
40
40
40
40

1
1
1
1
1

0.1
0.1
0.1
0.1
0.1

15
20
20
20
20

0.5
0.5
0.8
0.8
1

4
3
4
4
6

15
15
15
15
15

2N5362
2N5363
2N5364
2N5457
2N5458

T0-72
T0-72
T0-72
TO-92
TO-92

40
40
40
25
25

1
1
1
1
1

0.1
0.1
0.1
1
1

20
20
20
15
15

2
2.5
2.5
0.5
1

7
8
8
6
7

15 100
15 100
15 100
15 10
15 10

2N5459
2N5556
2N5557
2N5558
J201

TO-92
TO-72
TO-72
TO-72
T0-92

25
30
30
30
40

1
1
1
1
1

1
0.1
0.1
0.1
0.1

15
15
15
15
20

2
8
0.2 4
0.8 5
1.5 6
0.3 1.5

15
15
15
15
20

10
1
1
1
10

4
0.5
2
4
0.2

16
2.5
5
10
1

15
15
15
15
20

2
1.5
1.5
1.5
0.5

J202
J203
J210
J211
J212

TO-92
TO-92
T0-92
TO-92
T0-92

40
40
25
25
25

1
1
1
1
1

0.1
0.1
0.1
0.1
0.1

20
20
15
15
15

0.8 4 20
2
10 20
1
3 15
2.5 4.5 15
4
6 15

10
10
1
1
1

0.9
4
2
7
15

4.5
20
15
20
40

20
20
15
15
15

1
1.5
4
7
7

MPF103
MPF104
MPF105
MPF109
MPFll0

TO-92
T0-92
TO-92
T0-92
TO-92

25
25
25
25
20

1
1
1
10
10

1
1
1
1
100

15
15
15
15
10

0.2
0.5

6
7
8
8
10

1
1
1
10
1

1
2
4
0.5
0.5

5
9
16
24
20

15
15
15
15
10

1
1.5
2
0.8
0.5

MPFlll
MPFl12
PN3684
PN3685
PN3686

TO-92
T0-92
TO-92
T0-92
TO-92

20
25
50
50
50

10
10
1
1
1

100
100
0.1
0.1
0.1

10
10
30
30
30

0.5 10 10 1000
0.5 10 10 1000
2
5 20 1
1 3.5 20 1
0.6 2 20 1

0.5
1
2.5
1
0.4

20
25
7.5
3
1.2

10
10
20
20
20

0.5
1
2
1.5
1

vp

c rss

IGSS
(nA)@VDG
Max
(V)

(V)@Vos
10
Min Max (V) (nA)

loss
(mA)@VOS
Min Max (V)
5
0.5
0.6
1.5
2.5

15
1
1.6
3.0
5

15
15
15
15
15

5
1
1.2
1.4
1.5

10
3
3.6
4.2
4.5

15
15
15
15
15

100
10
10
20
20

15
15
15
15
15

5
6
6
6
6

15
15
15
15
15

0
0
0
0
0

1
2
2
2
2

15
15
15
15
15

0
0
0
0
0

4
7
9
1
2

8
14
18
5
9

15
15
15
15
15

2
2.5
2.7
2
1.5

5.5
6
6.5
5
5.5

15
15
15
15
15

40
40
60
50
50

15
15
15
15
15

6
6
6
7
7

15
15
15
15
15

0
0
0
0
0

2
2
2
3
3

15
15
15
15
15

0
0
0
0
0

6
6.5
6.5
6.5

15
15
15
15
20

50
20
20
20

15
15
15
15

7
6
6
6

15
15
15
15

0
0
0
0

3
3
3
3

15
15
15
15

0
0
0
0

15
15
15
15
10

1
100
100
100
100

Gis
(mmho)@Vos
(V)
Min
Max

12
12
12
5
5.5
6
6

7.5
3
2.5
2

20
20
15
15
15

Go..
(,..mho)@Vos
(V)
Max

150
200
200

15
15
15

15
15
15
15
10

50
50
50
75

15
15
15
15

10
10
20
20
20

200

10

50
25
10

20
20
20

Cis.
(pF)@Vos
(V)
Max

7
7
7
7

4
4
4

15
15
15
15

20
20
20

VGS
(V)

0
0
0
0

0
0
0

(pF)@Vos
Max
(V)

3
3
3
3

1.2
1.2
1.2

15
15
15
15

20
20
20

VGS
(V)

0
0
0
0

0
0
0

(NVt
Fz @Freq.
M Hz
(Hz)
ax

115
115
115
115

100
100
100
100

115
115
115

100
100
100

35
35
35

10
10
10

115

150
150
150

1000

20
20
20

Process Pkg.
No.
No.
50
55
55
55
55

25
25
25
25
25

55
55
55
55
55

25
25
25
92
92

55
50
50
50
52

92
25
25
25
92

52
52
90
90
90

92
92
92
92
92

55
55
55
55
50

92
92
92
92
92

50
55
52
52
52

92
92
92
92
92

General Purpose Amplifiers
Type
No.

Case
Style

BVGSS
*BVGDO
(V)@IG
(p.A)
Min

PN3687
PN4220
PN4221
PN4222
PN4302
PN4303

TO-92
TO-92
TO-92
TO-92
TO-92
TO-92

50
30
30
30
30
30

1
10
10
10
1
1

0.1
0.1
0.1
0.1
1
1

PN4304
PN4338
PN4339
PN5163
TIS58
TIS59

TO-92
TO-92
TO·92
TO-92
TO-92
TO-92

30
50
50
25
25
25

1
1
1
1
1
1

1
0.1
0.1
10
4
4

N-Channel JFETs

(Continued)

Vp
(V)@VOS
10
Min Max (V) (nA)

loss
(mA)@Vos
Min
Max (V)

G,s

Goss

(mmho)@Vos
Min
Max
(V)

(p.mho)@Vos
(V)
Max

30
15
15
15
10
10

0.3 1.2
4
6
8
4
6

0.1
0.5
2
5
0.5
4

0.5
3
6
15
5
10

20
15
15
15
20
20

0.5
1
2
2.5
1
2

10
30
30
15
15
15

10 20 10
0.3 1 15 100
0.6 1.8 15 100
0.4 8 15 1000
0.5 5 15 20
1
9 15 20

0.5
0.2
0.5
1
2.5
6

15
0.6
1.5
40
8
25

20
15
15
15
15
15

1
0.6
0.8
2
1.3
1.3

IGSS
(nA)@VOG
(V)
Max

20
15
15
15
20
20

1
1
1
1
10
10

1.5
4
5
6

1.8
2.4
9
4

CISS
(pF)@Vos
(V)
Max

VGS
(V)

Crss
(pF)@Vos
(V)
Max

VGS
(V)

(NVt
,/Hz @ Freq.
Hz
(Hz)
Max

20
15
15
15
20
20

5
10
20
40
50
50

20
15
15
15
20
20

4
6
6
6
6
6

20
15
15
15
20
20

0
0
0
0
0
0

1.2
2
2
2
3
3

20
15
15
15
20
20

0
0
0
0
0
0

150

20

100
100

1000
1000

20
15
15
15
15
15

50
5
15
200

20
15
15
15

6
7
7
12
6
6

20
15
15
15
15
15

0
0
0
0
2mA
2mA

3
3
3
3
3
3

20
15
15
15
15
15

0
0
0
0
2mA
2mA

125

1000

50

1000

Process Pkg.
No.
No.

52
55
55
55
52
52

92
92
92
92
92
92

52
52
52
50
50
50

92
92
92
92
94
94

'!:.

SJOIS!SUeJl13::1r

JFET Transistors

~NatiOnal

N-Channel JFETs

Semiconductor
General Purpose Dual JFETs
Operating Conditions for these Characteristics

Type
No.

~

Op.
IVGSI-21 Drift
IG
Vp
G.... CMRR Vgs
Clue,... BV
eR
1D6S ~ Goacl-2 IGl-lG2
IGSS
1D6S
Gis
~
Process Pkg.
Char.
Vos (".vrc) (pA) p.mhos (p.mho) (dB)
(mA) (mmho) (p.mho) (pA@Voo (pF) (PF) (V) (nVfJiii)@f Match Match (".mho) 12S'C
(V)
(V)
No.
No.
(mV)
Style VDG ID
Il.VGS M
%
%
(nA)
Max (V) Max Max Min Max
(Hz)
Max
Min
Min
Max
Min
Max
MInMm
Min
Max
Max
Min
Max
Max
ax
(V) (".A) Max

a-

c-

-3.0 1
-3.0 1

10 1.5 7.5
10 1.5 7.5

35
35

1000
1000

30
30

18
18

6
6

50
50

100
100

1000
1000

83
83

5
5

12
12

2N3921 TO-71 10 700
2N3922 TO·71 10 700

5
5

10
25

250 1500
250 1500

20
20

2N3934 TO-71 10 200
2N3935 TO·71 10 200

5
5

10
25

100 300
100 300

5
5

2N3954A TO-71 20 200

5

5

50

0.5

4

1

4.5 0.5

5

1

3

35

100

30

4

1.2 50

150

100

5

3

10

83

12

2N3954 TO-71
2N3955A T0-71
2N3955 T0-71
2N3956 T0-71
2N3957 T0-71

200
200
200
200
200

5
5
10
15
20

10
15
25
50
75

50
50
50
50
50

0.5
0.5
0.5
0.5
0.5

4
4
4
4
4

1
1
1
1
1

4.5
4.5
4.5
4.5
4.5

0.5
0.5
0.5
0.5
0.5

5
5
5
5
5

1
1
1
1
1

3
3
3
3
3

35
35
35
35
35

100
100
100
100
100

30
30
30
30
30

4
4
4
4
4

1.2
1.2
1.2
1.2
1.2

50
50
50
50
50

150
150
150
150
150

100
100
100
100
100

5
5
5
5
10

3
3
5
5
10

10
10
10
10
10

83
83
83
83
83

12
12
12
12
12

2N3958 TO-71 20 200

25

100

50

0.5

4

1

4.5 0.5

5

1

3

35

100

30

4

1.2 50

150

100

15

15

10

83

2N4082 TO-71 10 200
2N4083 T0-71 10 200

15
15

10
25

100 300
100 300

10
10

2N4084 T0-71 10 700
2N4085 TO-71 10 700

15
15

10
25

250 1500
250 1500

20
20

2N5046
2N5047
2N5196
2N5197

0-71
TO-71
TO-71
T0-71
TO-71

15
15
15
20
20

200
200
200
200
200

5.0
10
15
5
5

67
133
200
5
10

2N5196
2N5199
2N5452
2N5453
2N5454

TO-71
TO-71
TO-71
TO-71
T0-71

20
20
20
20
20

200
200
200
200
200

10
15
5
10
15

2N5545
2N5546
2N5547
2N5561
2N5562
2N5563

TO-71
iTO-71
TO-71
T0-71
TO-71
TO-71

15
15
15
10
10
10

200
200
200
700
700
700

5
10
15
5
10
15

20
20
20
20
20

I\)

2N5045

tiD

~

0.5

83
83

12
12

5
5

20
3
3

3
1
1

83
83
83
83
83

12
12
12
12
12

1000
1000
1000
1000
1000

5
5
5
5
5

3
3
3
3
3

1
1
0.25
0.25
0.25

5
5

83
83
83
83
83

12
12
12
12
12

180
200

10
10

50
50
50

10
10
10

5
10
10
5
5
5

3
5
10
3
3
3

1
2
3
0.3
0.4
0.5

5
5
5
10
10
10

83
83
83
98
98
96

12
12
12
12
12
12

35
35

1000
1000

30
30

18
18

6
6

50
50

100
100

1000
1000

0.5
0.5
0.5
0.7
0.7

8
8
8
7
7

1.5
1.5
1.5
1
1

6
6
6
4
4

25
25
25
50
50

250
250
250

25
25

30
30
30
30
30

8
8
8
6
6

4
4
4
2
2

50
50
50
50
50

200
200
200
20
20

10
10
10
1000
1000

3.8 0.7 4.5 0.7
3.8 0.7 4.5 0.7
4.2 1 4.5 0.5
4.2 1 4.5 0.5
4.2 1 4.5 0.5

7
7
5
5
5

1
1
1
1
1

4
4
3
3
3

50
50
3
3
3

25
25
100
100
100

30
30
30
30
30

6
6
4
4
4

2
2
1.2
1.2
1.2

50
50
50
50
50

20
20
20
20
20

6
6
6

25
25
25

100
100
100
100
100
100

30
30
30
30
30
30

6
6
6
15
15
15

2
2
2
4
4
4

50
50
50
50
50
50

3
3

1
1

4.5
4.5
4.5
4.5
4.5

15 700 1500
15 700 1500

4
4

20
40
5
10
25

15 700 1500
17 700 1500

4
4
1
1
1

0.2
0.2
0.2
0.2
0.2

10
20
40
5
10
25

50
50
50
4
4
4

0.5 4.5 0.5 8 1.5
0.5 4.5 0.5 8 1.5
0.5 4.5 0.5 8 1.5
1 10
0.22.7t 0.8 3
1 10
0.22.7t 0.8 3
1 10
0.22.7t 0.8 3

100 p.A for VGS for 2N55611/2/3 only.

5
5

10 1.5 7.5
10 1.5 7.5

4

12
12
12

See 2N3954-6 as an improved replacement
See 2N3954-6 as an improved replacement

0.5
0.5
0.5
0.2 3.8 0.7
0.2 3.8 0.7

2000 3000
20003000
2000 3000

12
12

See 2N3954-6 as an improved replacement
See 2N3954-6 as an improved replacement

5
5

I

General Purpose Dual JFETs (Continued)

N-Channel JFETs

Operating Conditions for these Characteristics

Op.

Type
No.
J401
J402
J403
J404
J405

~

to)

Case

IVGS1-21 Drift
I
Vp
Go... CMRR VIIS
c...C... BV
IDSS
IGSS
eR
IDSS Gr. GOIC1-2IG1-IG2
Gr.
Ora G_
Process Pkg.
Vas (p.vrc)(p~)
p.mhos (p.mho) (dB)
(V)
(mA) (mmho) (p.mho) (pA@Voo (PF) (pF) (V) (nVfJHi)@f Match Match (p.mho) 125"C
(V)
(mV)
No.
.1VGS Max Min Max Max
No.
Min Min Max Min Max Min Max Min Max Max Max (V) Max Max Min Max
(Hz)
%
%
(nA)
(V) (p.A) Max
Max
Char.

Style Voo ID
10
10
10
10
10

200
200
200
200
200

5
10
10
15
20

10
10
25
25
40

100
100
100
100
100

10001600
10001600
10001600
10001600
1000 1600

2
2
2
2
2

J406
J410
8-Pin
J411
Mini
J412
DIP
NPD8301 8-Pin

10
20
20
20
20

200
200
200
200
200

40
10
25
40
5

80

100
250
250
250
100

10001600
800 1200
800 1200
800 1200
700 1200

2
5
5
5
5

NPD8302 Mini
NPD8303 DIP
NPD8304 8-Pin
MiniDIP

20 200
20 200
20 200

10
15
20

tl0
115
120

100 700 1200
100 700 1200
100 700 1200

U231
U232
U233
U234
U235

T0-71
TO-71
TO-71
TO-71
TO-71

20
20
20
20
20

200
200
200
200
200

5
10
15
20
25

10
25
75
100

50
50
50
50
50

U401
U402
U403
U404
U405
U406

TO-71
TO-71
TO-71
TO-71
TO-71
TO-71

10
10
10
10
10
10

200
200
200
200
200
200

5
10
10
15
20
40

10
10
25
25
40
80

15
15
15
15
15
15

8-Pin
MiniDIP

10
25

80
t5

50

95
95
95
95
90

2.3
2.3
2.3
2.3
2.3

0.5
0.5
0.5
0.5
0.5

2.5
2.5
2.5
2.5
2.5

0.5
0.5
0.5
0.5
0.5

10
10
10
10
10

2
2
2
2
2

7
7
7
7
7

20
20
20
20
20

100
100
100
100
100

30
30
30
30
30

8
8
8
8
8

3
3
3
3
3

0.3
0.3
0.3
0.3

2.3
4
4
4
4

0.5
0.5
0.5
0.5
0.5

2.5
3.5
3.5
3.5
3.5

0.5 10
0.5 6
0.5 6
0.5 6
0.5 6

2
1
1
1
1

7
4
4
4
4

20
20
20
20
20

100
250
250
250
100

30
20
20
20
20

8
4.5
4.5
4.5
4.5

3
1.2
1.2
1.2
1.2

5
5
5

0.3
0.3
0.3

4
4
4

1
1
1

4
4
4

20
20
20

100
100
100

20
20
20

800
600
600
600
600

10
10
10
10
10

0.3
0.3
0.3
0.3
0.3

4
4
4
4
4

10001600
10001600
10001600
10001600
10001600
10001600

2
2
2
2
2
2

70

95
95
95
95
90

2.3
2.3
2.3
2.3
2.3
2.3

0.5 3.5 0.5
0.5 3.5 0.5
0.5 3.5 0.5

6
6
6

50
50
50
50

20
20
20
20
20

10
10
10
10
10

98
98
98
98
98

60
60
60
60
60

50
40
40
40
40

20
50
50
50
50

10
100
100
100
100

98
83
83
83

60
60
60
60
67

4.5 1.2 40
4.5 1.2 40
4.5 1.2 40

50
50
50

100
100
100

83
83
83

67
67
67

83

83
83

12
12
12
12
12

98
98
98
98
98
98

12
12
12
12
12
12

50

See 2N3954 as an improved replacement
See 2N3955 as an improved replacement
See 2N3956 as an improved replacement
See 2N3957 as an improved replacement
See 2N3958 as an improved replacement
0.5
0.5
0.5
0.5
0.5
0.5

2.5
2.5
2.5
2.5
2.5
2.5

0.5
0.5
0.5
0.5
0.5
0.5

10
10
10
10
10
10

2
2
2
2
2
2

7
7
7
7
7
7

20
20
20
20
20
20

25
25
25
25
25
25

83

83
83

30
30
30
30
30
30

8
8
8
8
8
8

3
3
3
3
3
3

50
50
50
50
50
50

20
20
20
20
20
20

10
10
10
10
10
10

!

SJOIS!SUeJ.l.l3:1r

II

JFET Transistors

~NatiOnal

N-Channel JFETs

Semiconductor
Low Frequency-Low Noise Dual JFETs
Operating Conditions for these Characteristics

Type
No.

~
..,.

Op.
I
IVGS1-21 Drift
Vp
Goss
Go.. CMRR Vgs
Ciss Crss BV
loss
GiS
IGSS
Gis
Case Char.
Vos (,. Vrc) (p~) ,.mhos (,.mho) (dB)
(V)
(V)
(mA) (mmho) (,.mho) (pA@VDG (PF) (pF) (V)
Style VOG 10
(mV)
aVGS M Min Max Max
Min Min Max Min Max Min Max Min Max Max Max (V) Max Max Min
ax
Max
(V) (,.A) Max

eR
(nVf,}Hz @f
(Hz)
Max

loss Gis Gosc1-2 IG1-IG2 Process Pkg.
Match Match (,.mho) 125°C
No.
No.
%
%
(nA)

2N5515
2N5516
2N5517
2N5518
2N5519

TO-71
TO-71
TO-71
TO-71
TO-71

20
20
20
20
20

200
200
200
200
200

5
5
10
15
15

5
10
20
40
80

100
100
100
100
100

5001000
5001000
5001000
5001000
5001000

1
1
1
1
1

100
100
90

0.2
0.2
0.2
0.2
0.2

3.8
3.8
3.8
3.8
3.8

0.7
0.7
0.7
0.7
0.7

4
4
4
4
4

0.5
0.5
0.5
0.5
0.5

7.5
7.5
7.5
7.5
7.5

1
1
1
1
1

4
4
4
4
4

10
10
10
10
10

250
250
250
250
250

30
30
30
30
30

25
25
25
25
25

40
40
40
40
40

30
30
30
30
30

10
10
10
10
10

5
5
5
5
10

3
3
5
5
10

0.1
0.1
0.1
0.1
0.1

10
10
10
10
10

95
95
95
95
95

12
12
12
12
12

2N5520
2N5521
2N5522
2N5523
2N5524

TO-71
TO-71
TO-71
TO-71
TO-71

20
20
20
20
20

200
200
200
200
200

5
5
10
15
15

5
10
20
40
80

100
100
100
100
100

5001000
5001000
5001000
5001000
500 1000

1
1
1
1
1

100
100
90

0.2
0.2
0.2
0.2
0.2

3.8
3.8
3.8
3.8
3.8

0.7
0.7
0.7
0.7
0.7

4
4
4
4
4

0.5
0.5
0.5
0.5
0.5

7.5
7.5
7.5
7.5
7.5

1
1
1
1
1

4
4
4
4
4

10
10
10
10
10

250
250
250
250
250

30
30
30
30
30

25 5.0 40
25 5.0 40
25 5.0 40
25 5.0 40
25 5.0 40

15
15
15
15
15

10
10
10
10
10

5
5
5
5
10

3
3
5
5
10

0.1
0.1
0.1
0.1
0.1

10
10
10
10
10

95
95
95
95
95

12
12
12
12
12

2N6483 TO-71 20 200
2N6484 TO-71 20 200
2N6485 TO-71 20 200

5
10
15

5
10
25

100 5001500
100 5001500
100 500 1500

1
1
1

100
100
90

0.2 3.8 0.7
0.2 3.8 0.7
0.2 3.8 0.7

4
4
4

0.5 7.5
0.5 7.5
0.5 7.5

1
1
1

4
4
4

10
10
10

200
200
200

30
30
30

20 3.5 50
20 3.5 50
20 3.5 50

10
10
10

10
10
10

5
5
5

3
3
3

0.1
0.1
0.1

10
10
10

95
95
95

12
12
12

5.0
5.0
5.0
5.0
5.0

~National

N-Channel JFETs

!

Semiconductor
Wide Band-Low Noise Dual JFETs
Operating Conditions for these CharacterIStics

~

U1

Op.
IVGS1-21 Drift I
Vp
Go.. CMRR VIIS
loss G", Goec1-2IG1-IG2
loss
CIssc.... BV
eR
loss
Gts
Go..
Gts
Process Pkg.
Char.
Vos ("vrC)(p~)
(V)
(rnA) (mmho) ("mho) (pA@VDG (pF) (pF) (V) (nVf.Hz)@f Match Match ("mho) 125"C
(V)
"mhos ("mho) (dB)
No.
No.
Style VDG ID
(my)
aVGS M Min Max Max
%
%
(nA)
Min Min Max Min Max Min Mal[ Min Max Max Max (V) Max Max Min Max
(Hz)
Max
ax
(V) (I£A) Max

Type
No.

case

2N5584
2N5585
2N5586
2N5911
2N5912

TO·71
T0-71
T0-71
T0-78
T0-78

15
15
15
10
10

2000
2000
2000
5000
5000

5
10
20
10
15

T0-71
U440
U441
TO-71
NPD5584 B-Pin
NPD5585 MiniNPD5586 DIP

10
10
15
15
15

5000
5000
2000
2000
2000

10
20
5
10
20

NF5011 TO-71
NF5012 TO-71
NF5011C T0-71
TO-78
U287

10
10
10
10

5000
5000
5000
5000

10
20
500
15
40
500
40
40
SOO
100
------

10
25
50
20
40

7500 12,500
7500 12,500
7500 12,500
100 5000 10,000
100 5000 10,000

45
45
45
100
100

500 4500 9000
7500 12,500
7500 12,500
7500 12,500

200
200
45
45
45

5000 10,000
5000 10,000
5000 10,000
500010,000

100
100
100
150

SOO 4500 9000

0.3
0.3

4
4

0.5
0.5
0.5
1
1

3
3
3
5
5

1 8.0
1 8.0
0.5 3
0.5 3
0.5 3
0.3 4
0.3 4
0.3 4

1
1
1
1

5
5
5
5

5
5
5
7
7

30
30
30
40
40

100
100
100
100
100

20
20
20
15
15

12 3 40
12 3 40
12 3 40
5 1.2 25
5 1.2 25

6
6
5
5
5

30
30
30
30
30

500
500
100
100
100

15
15
20
20
20

3.5 0.5 25
3.5 0.5 25
12 3 40
12 3 40
12 3 40

7
7
7
5

40
40
40
40

100
100
100
100

15
15
15
15

5
5
5
5

1.2
1.2
1.2
1.2

25
25
25
25

50
50
50
20
20

10
10
10
10,000
10,000

5
5
5
5
5

5
10
10
5
5

50
50
50

10
10
10

5
5
5

5
10
10

20
20
20
30

10,000
10,000
10,000
10,000

5
5
5
15

5
5
5
15

20
20

20
20
20
20

20
20

20
20
20

98
98
98
83
83

12
12
12
24
24

83
83
98
98
98

12
12
67
67
67

83
83
83
83

12
12
12
24

SJOISISUBJll3:1f

II

JFET Transistors

~NatiOnal

N-Channel JFETs

Semiconductor
Low Leakage-High CMRR-Wide Band Dual JFETs
Operating Conditions for these Characteristics

Type
No.

Op.
IVGSI-21 Drift IG(pF)
Vp
Go.. CMRR
Vgs
Clss Crss BV
eR
GiS
loss
Gis
Goss
IGSS
loss Gjs GOSCI-2 IGl-IG2
Case Char.
Process Pkg.
Vos (,.vrc) @
(V)
(V)
(mA) (mmho) (,.mho) (pA)@VoG (pF) (pF) (V) (nVf,'Hz) @ f Match Match (,.mho) 125"C
,.mhos (,.mho) (dB)
(mV)
No.
No.
Style VOG 10
AVGS VOG
Min Max Max
Min Min Max Min Max Min Max Min Max Max
Max (V) Max Max Min Max
(Hz)
%
%
(nA)
Max
35V
(V) (,.A) Max

NDF9406 TO-71
NDF9407 TO-71
NDF940B TO-71
NDF9409 TO-71
NDF9410 TO-71

~

0>

20
20
20
20
20

200
200
200
200
200

5
5
10
15
25

5
10
10
10
25

5
5
5
5
5

7001BOO

7001800
7001800
7001BOO

7001800

1
1
1
1
1

120
120
110
110
100

0.5
0.5
0.5
0.5
0.5

4
4
4
4
4

0.5
0.5
0.5
0.5
0.5

10
10
10
10
10

50
50
50
50
50

20
20
20
20
20

B.O 0.1
8.0 0.1
8.0 0.1
8.0 0.1
B.O 0.1

50
50
50
50
50

30
30
30
30
30

10
10
10
10
10

5
5
5
5
10

3
3
5
5
10

0.1
0.1
0.1
0.1
0.1

1
1
1
1
1

94
94
94
94
94

12
12
12
12
12

IlNatiOnal
Semiconductor

N-Channel JFETs

Ultra Low Leakage Dual JFETs
Operating Conditions for these Characteristics
Type
No.

Case
Style

Op.
Condo

M

ID
(",A)

VGS1-2
Vos
(mY)
Max

VDG

b,VG5
Drift
(",VrC)
Max

IG
(pA)
Max

Vp
Gis
Go..
Go..
Vgs
ID55
~s
(mmho) (",mho) (V)
(V)
(mA)
(mmho) (",mho)
Min
Max
Max Min Max Min Max Min Max
Max

2N5902
2N5903
2N5904
2N5905

TO·78
TO·78
TO·78
TO·78

10
10
10
10

30
30
30
30

5
5
10
15

5
10
20
40

3
3
3
3

50",
50",
50",
50",

1
1
1
1

4
4
4
4

o.s

2N590S
2N5907
2N5908
2N5909

TO·78
TO-78
TO·78
TO·78

10
10
10
10

30
30
30
30

5
5
10
15

5
10
20
40

1
1
1
1

SO",

1
1
1
1

4
4
4
4

o.s
o.s

50",
50",
50",

O.S
O.S
O.S

O.S

o.s

1G55
(pA@VGS)
Max
M

IG1-I02
CiSS Cras BVG55 @125"C
Process Pkg.
(pF) (pF)
M
(nA)
No.
No.
Max Max
Min
Max

4.5
4.5
4.5
4.5

30",
30",
30",
30",

0.5
0.5
0.5
0.5

70",
70",
70",
70",

0.25
0.25
0.25
0.25

5
5
5
4

5
5
5
5

20
20
20
20

3
3
3
3

1.5
1.5
1.5
1.5

40
40
40
40

2
2
2
2

84
84
84
84

24
24
24
24

4.5
4.5
4.5
4.5

30",
30",
30",
30",

0.5
0.5
0.5
0.5

70",
70",
70",
70",

0.25
0.25
0.25
0.25

5
5
5
5

2
2
2
2

20
20
20
20

3
3
3
3

1.5
1.5
1.5
1.5

40
40
40
40

0.2
0.2
0.2
0.2

84
84
84
84

24
24
24
24

-

'!:.....

SJo~S!SUeJl13.:1r

iii

JFET Transistors

IJNational

P-Channel JFETs

Semiconductor
Switches

Type Case
No. Style

~

(XI

BVGSS
BVGDO
(V)@IG
Min (p.A)

loss
(nA)@VDG
Max
(V)

lD(off)
(nA)@VOS
Max
(V)

Vp
IDSS
::;. (mA)@VOS
VGS (V) @ Vos
(V) Min Max (V) ( ) Min Max (V)

2N5018 TO-18
2N5019 TO-18
2N5114 TO-18
2N5115 TO·18
2N5116 TO-18

30
30
30
30

1
1
1
1
1

2
2
0.5
0.5
0.5

15
15
20
20
20

10
10
0.5
0.5
0.5

-15
-15
-15
-15
-15

12
7
12
7
5

J174
J175
J176
Jl77
P1086
Pl087

30
30
30
30
30
30

1
1
1
1
1
1

1
1
1
1
2
2

20
20
20
20
15
15

1
1
1
1
10
10

-15
-15
-15
-15
-15
-15

10 5 10 -15
10 3 6 -15
10 1 4 -15
10 0.82.25 -15
10 -15
12
5 -15
7

T0-92
TO·92
T0-92
T0-92
TO·92
T0-92

30

5
3
1

10
5
10
6
4

rds

ton toff Process Pkg.

Cras

Ciss

(O)@ID
(PF)@Vos
Max
(mA) Max (V)

VGS
(V)

(PF)@Vos
(V)
Max

VGS (ns) (ns)
(V) Max Max

No.

No.
11
11
11
11
11

25
25
25

-15
-15
-15
-15
-15

0
0
0
0
0

10
10
7
7
7

0
0
0
0
0

12
7
12
7
5

35
90
16
30
42

65
125
21
38
60

88
88
88
88

0.01 20 100 15 85
1
11
0.01 7 60 15 125
0.5
11
0.01 2 25 15 250
0.25 11
0.01 1.5 20 15 300
0.1
11
1 10
20 75
1
45
20 L~5()_~ .... ,-t5
1 ..... 5

0
0
0
0
-15
-15

10
10
10
10
0
0

5.5
5.5
5.5
5.5
10

0
0
0
0
0
0

10
10
10
10
12
7

2
5
5 10
15 15
20 20
35 65
90 125

88
88

-15 1
-15 1
-150.001
-150.001
-150.001

10
20
5
20
30 90 18
16 90 18
5 90 18

75
150
75
100
150

45
45

1
1
1

~O

88

88
88
88

94
94
94
94
92

8~ ~

~NatiOnal

P-Channel JFETs

Semiconductor
Amplifiers
BVGSS

~

IGSS
(nA)@VDG
Max
(V)

Type
No.

Case
Style

2N2608
2N2609
2N3329
2N3330
2N3331
2N3332

TO-18
TO-18
T0-72
T0-72
T0-72
T0-72

30
30
20
20
20
20

1
1
10
10
10
10

10
30
10
10
10
10

30
30
10
10
10
10

2N3820
2N4381
2N502O
2N5021
2N5460
2N5461

TO·92
TO-18
TO·18
TO·18
T0-92
TO·92

20
25
25
25
40
40

10
1
1
1
10
10

20
1
1
1
5
5

TO·92
TO·92
TO·92
TO·92
TO·92
TO·92
I = typical value.

40
30
30
25
20
20

10
1
1
10
10
10

5
0.2
0.2
10
10
10

BVGDO
(v)@10
(,.A)
Min

Vp
(V)@VDS
ID
Min Max (V) (,.A)

loss

Go.

Gfa

(mA)@Vos
Min Max (V)

(mmho)@Vos
Min Max
(V)

-5
-5
-15
-15
-15
-15

1
1
10
10
10
10

0.9
2
1
2
5
1

4.5
10
3
6
15
6

5
5
10
10
10
10

1
2.5
1
1.5
2
1

2
3
4
2.2

1011 mA
10/2mA
10/5mA
1011 mA

10
15
15
15
20
20

8.0 -10
5 -15
1
0.3 1.5 -15
0.5 2.5 -15
0.75 6 -15
1 7.5 -15

10
1
1
1
1
1

0.3
3
0.3
1
1
2

15
12
1.2
3.5
5
9

10
15
15
15
15
15

0.8
2
1
1.5
1
1.5

5
6
3.5
6
4
5

10
15
15
15
15
15

200

20
20
20
15
15
15

1.8 9 -15 1
0.5 2.0 -15 0.001
1.5 4.5 -150.001
5.5 -10 1
0.7 10 -10 1
0.3 2.5 -10 1

4
2
6
4
3
0.3

16
15
50
12
30
3.5

15
15
15
10
10
10

2
6.0
8.0
2
2
1

6
15
18
6
8
5

15
15

1
1

4
4
5
6
8
6

c...

C.

@mho)Vos
(V)
Max

(pF)Vos
(V)
Max

VGS
(V)

(pF)Vos
Max
(V)

10
10
10
10

17
30
20
20
20
20

-5
-5
-10
-10
-10
-10

1
1
1
1
1
1

75
20
20
50
50

10
15
15
15
15
15

32
20
25
25
7
7

-10
-15
-15
-15
-15
-15

0
0
0
0
0
0

16
5
7
7
2
2

-10
-15
-15
-15
-15
-15

50
200
500
75
100
20

15
15
15
10
10
10

7
t20
t20
20
20
25

-15
-15
-15
-10
-10
-10

0
0
0
0
0
0

2
15
15
5
5
7

-15
-15
-15
-10
-10
-10

5
5
20
40

100
20

VGS
(V)

@Freq
(NVj"
(Hz)

,1Hz
Max

Process Pkg.
No.

No.

125
125
125
125
155
65

1000
1000
1000
1000
1000
1000

89
88
89
89
89
89

11
11
23
23
23
23

0
0
0
0
0
0

20
30
30
115
115

1000
1000
1000
100
100

89
89
89
89
89
89

94
11
11
11
92
92

0
0
0
0
0
0

115
110
110
80
190
100

100
1000
1000
100
100
100

89
88
88
89
89
89

92
94
94
92
92
92

(I)

2N5462
J270
J271
PN4342
PN4360
PN5033

-

10
10
10

-~

SJOIS!SU8Jl13.:1r

Section 6
Surface Mount Products

•

Section 6 Contents
SURFACE MOUNT DIODES
General Purpose and Specialty Diodes-Plastic Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Computer Diodes-Leadless Glass Package ................. .'. . . . . . . . . . . . . . . . . . . . . . .
General Purpose-Lead less Glass Package .........................................
Low Leakage Diodes-Leadless Glass Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Voltage Diodes-Leadless-Glass Package ............................... " . . . . . .
Surface Mount Monolithic Diode Arrays-Plastic Packages ............................

6-3
6-7
6-9

6-10
6-11
6-12

SURFACE MOUNT TRANSISTORS
Saturated Switches-NPN........... ..... ....... ..................... ..... ... .....
RF Amplifiers and Oscillators-NPN ................................................
Low Level Amplifiers-NPN . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Amplifiers and Switches-NPN .....................................
Medium Power Transistors-NPN ..................................................
Darlington Transistors-NPN ......................................................
Saturated Switches-PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Level Amplifiers-PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Amplifiers and Switches-PNP .....................................

6-13

6-15
6-16
6-18
6-24
6-25
6-26
6-27
6-28

SURFACE MOUNT JFETS
N-Channel Switches and Choppers . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N-Channel Wide Band-Low Noise Dual JFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P-Channel Switches and Choppers ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6-2

6-36
6-37
6-38

~NatiOnal

Surface Mount Diodes

Semiconductor

General Purpose & Specialty Diodes
PLASTIC PACKAGE
Device

Description

Pkg.
No.

Pin
Out

Bv
(V)
Min

IR
(nA)
Max

@

VR
V

VF
(V)
Max

@

IF
mA

C
pF
Max

t"
ns
Max

Test
Condo

FDSO 1000 FAMILY

m

c"

Proc.
Family
04

BAS16

Single

TO-236

(1)

75

1000

75

0.715
0.855

1.0
10.0

2.0

6.0

(Note 1)

04

BAV70

Common Cathode

TO-236

(4)

70

5000

70

1.1
1.3

50.0
100.0

1.5

6.0

(Note 2)

04

BAV74

Common Cathode

TO-236

(4)

50

100

50

1.0

100

2.0

4.0

(Note 3)

04

BAV99

Series

TO-236

(3)

70

2500

70

See BAS 16

1.5

6.0

(Note 4)

04

BAW56

Common Anode

TO-236

(5)

70

2500

70

See BAS 16

2.5

6.0

(Note 4)

04

FOS0914

Single

TO-236

(1)

100

25

20

1.0

10

4.0

4.0

(Note 5)

04

FOS04148

Single

TO-236

(1)

100

25

20

1.0

10

4.0

4.0

(Note 5)

04

FOS04448

Single

TO-236

(1)

100

25

20

1.0

100

2.0

4.0

(Note 5)

04

FSDO 1200 FAMILY
FOSO 1201

Single

TO-236

(1)

100

25

20

1.0

100

2.0

4.0

04

FOSO 1202

Single

TO-236

(2)

100

25

20

1.0

100

2.0

4.0

04

FOS01203

Series

TO-236

(3)

100

25

20

1.0

100

2.0

4.0

04

FOSO 1204

Common Cathode

TO-236

(4)

100

25

20

1.0

100

2.0

4.0

04

FOS01205

Common Anode

TO-236

(5)

100

25

20

1.0

100

2.0

4.0

04

TEST CONDITIONS:
Note 1: IF

~

IR

~

10 rnA. RL

~

lOon.

Note 2: IF ~ IR ~ 10 rnA, VR ~ S.OV, IR (REC) ~ 1.0 rnA.

Note 3: IF

~

IR

~

10 /LA. RL

~

lOOn. IR (REG)

~

1.0 /LA measured at IR

~

1.0 rnA.

Note 5: IF

~

10 rnA. VR

~

6V, RL

~

lOOn Ree

@

1.0 rnA.

Note 4: IF ~ IR ~ 10 rnA, Iv (REC) ~ 1.0 rnA.

---

se:>!Aea IUnOIN e:>BjJns

I)

Surface Mount Devices

Surface Mount Diodes
General Purpose & Specialty Diodes (Continued)
PLASTIC PACKAGE
Device

Pkg.
No.

Description

Bv
(V)
Min

Pin
Out

IR
(nA)
Max

@

VF
(V)
Max

VR
V

@

C
pF
Max

IF
mA

trr
ns
Max

Test
Condo

Proc.
Family

FDSO 1300 FAMILY
FDS01301

I

Single

06

I

T0-236

I

(1)

I

30

I

Consult Factory

I

1.1

50

I

I

I

I

m
J,..

06
01

FDSO 1400 FAMILY
FOS01401

Single

TO-236

(1)

200

100

175

1.0

200

2.0

50

FOSO 1402

Single

TO-236

(2)

200

100

175

1.0

200

2.0

50

01

(3)

175

1.0

200

2.0

50

01

01

FOSO 1403

Series

TO-236

200

100

FOS01404

Common Cathode

TO-236

(4)

200

100

175

1.0

200

2.0

50

01

FOS01405

Common Anode

TO-236

(5)

200

100

175

1.0

200

2.0

50

01

FOS03070

Single

TO-236

200

100

175

1.0

100

5.0

50

(Note 2)

02
02

FDSO 1500 FAMILY
FOSO 1501

Single

T0-236

(1)

200

1.0

125

1.0

200

4.0

02

FOSO 1502

Single

T0-236

(2)

200

1.0

125

1.0

200

4.0

02

FOSO 1503

Series

TO-236

(3)

200

1.0

125

1.0

200

4.0

02

FOSO 1504

Common Cathode

T0-236

(4)

200

1.0

125

1.0

200

4.0

02

(5)

200

1.0

125

1.0

200

4.0

02

150

1.0

125

1.0
200
See 1N6099

8.0

02

FOSO 1505

Common Anode

TO-236

FOS03595

Single

TO-236

TEST CONDITIONS:
Note 1: IF = IR = 30 rnA, RL = l001l
Note 2: IF = IR = 30 rnA, RL = l001l

Surface Mount Diodes
General Purpose Diodes & Specialty Diodes (Continued)
I

PLASTIC PACKAGE
I

Device

Description

Pkg.
No.

Pin
Out

By
(V)
Min

IR
(nA)
Max

@

VR
V

VF
(V)
Max

@

IF
mA

C
pF
Max

ns
Max

trr

FDSO 1700 FAMILY

C[>

en

I

Test
Condo

Proc.
Family

i

03

FOS01701

Single

TO-236

(1)

30

50

20

1.1

50

1.0

0.7

03

FOS01702

Single

T0-236

(2)

30

50

20

1.1

50

1.0

0.7

03

FDS01703

Series

TO-236

(3)

30

50

20

1.1

50

1.0

0.7

03

FOS01704

Common Cathode

TO-236

(4)

30

50

20

1.1

50

1.0

0.7

03

FOS01705

Common Anode

TO-236

(5)

30

50

20

1.1

50

1.0

0.7

03

TEST CONDITIONS:
Note 1: IF

= IR = 10 rnA, Rl = loon

---------

S8:>!A80 IUnOW 8:>BIJns

I

Surface Mount Devices

General Purpose Diodes & Specialty Diodes (Continued)
The National "FD50" 5eries provides the 50T-23 electrical equivalent of the standard devices listed. Each family is available in 5 configurations.
FDS01200 FAMILY
1N914
1N914A
1N914B
1N916
1N916A
1N916B
1N3064
1N3600
1N4009
1N4148

1N4149
1N4150
1N4151
1N4154
1N4305
1N4446
1N4448
1N4449
1N4450
1N4455

Configuration

'"m

PIN OUT
DIAGRAM
3

I~~I~I
1

FDS01400 FAMILY
FDH600
FDH666

2

1N625
1N626
1N627
1N628
1N629
1N658
1N660
1N3070
15920
15921

FDS01500 FAMILY

15922
15923
FDH400
FDH444

2

1

3

3

1N456
1N456A
1N457
1N457A
1N458
1N458A
1N459
1N459A
1N461A
1N462A

FDS01700 FAMILY

1N463A
1N482B
1N483B
1N484B
1N485B
1N3595
1N6099
FDH300
FDH333

3

4

3

3

1N4244
1N4376
FDH700

5

3

f f nnn
1

2N/C

1 N/C

2

TL/G/l0025-3

TLlG/l0025-2

1

2

TLlG/l0025-4

1

2

2

1

TL/G/l0025-5

TLlG/l0025-6

TLlG/l0025-1
.

'-----

-

------

_._------

_._-

-

-

- _...

-

~NatiOnal

Surface Mount Diodes

Semiconductor

Computer Diodes
LEADLESS GLASS PACKAGE
IR
(nA)
Max

LL-34

75

100

FOLL625

LL-34

30

FOLL666

LL-34

40

FOLL914

LL-34

100

25

20

1.0

10

FOLL914A

LL-34

100

25

20

1.0

20

Package
No.

FOLL600

9'
.....

Bv
(V)
Min

Device
No.

@

VR
V

VF
(V)
Max

@

IF
mA

50

1.0
200
SeeFOH600

1000

20

1.5

100

25

1.0
100
See FOH 666

C
pF
Max

trr
ns
Max

Test
Condo

Proc.
Family

2.5

4.0

(Note 1)

04

3.5

4.0

(Note 1)

4.0

4.0

(Note 2)

04

4.0

4.0

(Note 2)

04

4.0

04

50

04

FOLL914B

LL-34

100

25

20

1.0

100

4.0

4.0

(Note 2)

04

FOLL916

LL-34

100

25

20

1.0

10

2.0

4.0

(Note 2)

04

FOLL916A

LL-34

100

25

20

1.0

20

2.0

4.0

(Note 2)

04

FOLL916B

LL-34

100

25

20

1.0

30

2.0

4.0

(Note 2)

D4

FOLL3064

LL-34

75

100

50

1.0
10
See1N3064

2.0

4.0

(Note 3)

04

FOLL3600

LL-34

75

100

50

1.0
200
SeeIN3600

2.5

4.0

(Note 4)

04

FOLL4009

LL-34

35

100

25

1.0

30

4.0

4.0

(Note 2)

04

FOLL4148

LL-34

100

25

20

1.0

10

4.0

4.0

(Note 2)

04

FOLL4149

LL-34

100

25

20

1.0

10

2.0

4.0

(Note 2)

04

FOLL4150

LL-34

75

100

50

1.0

200

2.5

4.0

(Note 4)

04

TEST CONDITIONS:
Note 1: Recovery 10 0.1 'A; IF
Note 2: IF

~

10 rnA, VA

Note 3: 'F

=
=

IA

Note 4: 'F

IR

=
=

~

~

IA

~

6.0V, RL

lOrnA, RL

=

~

10 rnA, RL

~

loon

lOOn, Recovery to 1.0 rnA

lOOn, Recovery to 1.0 rnA

10 rnA to 200 rnA, RL

=

loon, Recovery

to 0.1 'F

-

--

---------

SeO!Aea IUnOW e08J,Jns

iii

Surface Mount Devices

Computer Diodes (Continued)

Surface Mount Diodes

LEADLESS GLASS PACKAGE

By

C
pF
Max

t ••
ns
Max

Test
Condo

Min

IR
(nA)
Max

LL-34

75

50

50

50

4.0

2.0

(Note 2)

04

LL-34

40

50

30

0.88
20
SeelN4152

4.0

2.0

(Note 2)

04

FOLL4153

LL-34

75

50

50

0.88

20

4.0

2.0

(Note 2)

04

FOLL4154

LL-34

35

100

25

1.0
30
SeelN4152

4.0

2.0

(Note 2)

04

FOLL4305

LL-34

75

100

50

0.85

10

2.0

2.0

(Note 2)

04

VR
V

VF
(V)
Max

IF
mA

C
pF
Max

t ••
ns
Max

Test
Condo

Proc.
Family

Device
No.

Package
No.

FOLL4151
FOLL 4152

M

@

VR
V

VF
(V)
Max

@

1.0

IF
mA

Proc.
Family

TEST CONDITIONS:
Note 1: Recovery to 0.1 IA; IF

~

~

~

IA

~

10 rnA. RL

Note 2: IF

~

10 rnA. VA

Note 3: IF

~

IA

~

lOrnA. RL

Note 4: IF

~

IR

~

10 rnA to 200 rnA. RL

6.0V. RL
~

~

~

lOOn

loon. Recovery to 1.0 rnA

loon. Recovery to 1.0 rnA
~

loon. Recovery to 0.1 IF

LEADLESS GLASS PACKAGE

By
(V)
Min

IR
(nA)
Max

LL-34

100

25

20

1.0

20

4.0

4.0

(Note 1)

04

LL-34

100

25

20

1.0

20

4.0

4.0

(Note 1)

04

FOLL4448

LL-34

100

25

20

1.0

100

2.0

4.0

(Note 1)

04

FOLL4449

LL-34

100

25

20

1.0

30

2.0

4.0

(Note 1)

04

FOLL4450

LL-34

40

50

30

1.0
200
SeelN4450

4.0

4.0

(Note 2)

04

FOLL4454

LL-34

75

100

50

1.0

2.0

4.0

(Note 3)

04

Device
No.

Package
No.

FOLL4446
FOLL4447

@

@

10

I

TEST CONDITIONS:
Note 1: IF

~

10 rnA. VA

Note 2: IF

~

IA

~

10 rnA to 200 rnA. RL

~

Note 3: IF

~

IA

~

lOrnA. RL

6.0V. RL
~

~

loon. Recovery to 1 rnA
~

loon. Recovery to 0.1 IF

lOOn. Recovery to 1.0 rnA

~NatiOnal

Surface Mount Diodes

Semiconductor

General Purpose Diodes
LEADLESS GLASS PACKAGE

(nA)
Max

LL·34

30

500

25

LL·34

70

500

60

LL·34

200

500

175

Package
No.

FOLL461A
FOLL462A
FOLL463A

@

VF

VR
V

C

IF

trr
ns
Max

Test
Condo

Proc.
Family

mA

pF
Max

1.0

100

10.0

1.0

100

02

1.0

6

02

(V)
Max

@

02

FOLL659

LL·34

60

5000

50

1.0

6

02

FOLL 661

LL·34

240

10,000

200

1.0

6

02

FOLL920

LL·34

50

100

50

1.2

200

02

FOLL 921

LL·34

100

100

100

1.2

200

01

FOLL922

LL·34

200

01

FOLL923

LL·34

Ol

to

IR

Bv
(V)
Min

Device
No.

-

_

150

100

150

1.2

200-

100
- - -

200
-

1.0
--

...

--

._-

--

6
-------

01
-

SaO!Aaa IUnOW aOeJ.lns

Surface Mount Devices

~NatiOnal

Surface Mount Diodes

Semiconductor

Low Leakage Diodes (by Descending Bv)
LEADLESS GLASS PACKAGE
Device
No.

FOLL300

Package
No.

LL·34

By

IR

M
Min

(nA)
Max

150

1.0

@

VR
V

VF
(V)
Max

@

IF

C

mA

pF
Max

Proc.
Family

125

1.0

200

6.0

D2

125

1.05

200

6.0

D2

10.0

D2

8.0

D2

6.0

D2

SeelN300
FOLL333

LL·34

150

3.0
SeelN333

~

o

FOLL456

LL-34

30

25

25

1.0

40

FOLL456A

LL-34

30

25

25

1.0

100

FOLL457

LL-34

70

25

60

1.0

20

FOLL457A

LL-34

70

25

60

1.0

100

FOLL458

LL-34

150

25

125

1.0

7

FDLL458A

LL-34

150

5.0

125

1.0

100

02
D2

02

02

FOLL459

LL-34

200

25

175

1.0

3.0

FOLL459A

LL-34

200

25

175

1.0

100

02

FOLL482B

LL-34

40

25

36

1.0

100

D2

FOLL483B

LL-34

80

25

70

1.0

100

02

FOLL484B

LL-34

150

25

130

1.0

100

02

FOLL485B

LL-34

200

25

180

1.0

100

FOLL3595

LL-34

150

1.0

125

1.0

200

8.0

02

FOLL6099

LL-34

150

1.0

125

1.0

200

8.0

02

02

~National

Surface Mount Diodes

Semiconductor

High Voltage Diodes
LEADLESS GLASS PACKAGE

~

IF
mA

C
pF
Max

Max

200

2.0

50

By

IR

No.

(V)
Min

(nA)
Max

FOLl400

LL-34

200

100

FOLL626

LL-34

50

1000

35

1.5

4

FDLL627

LL-34

100

1000

75

1.5

4

FOLL626

LL-34

150

1000

125

1.5

FOLl629

LL-34

200

1000

175

1.5
1.0

Device
No.

Package

FDLL656

LL-34

@

VR
V
150

120

50

50

VF
(V)

Max
1.0

@

trr

Cond.

Proc.
FamUy

(Note 1)

01

1000

(Note 2)

01

1000

(Note 2)

01

4

1000

(Note 2)

01

4

1000

(Note 2)

01

100

300

(Note 3)

01

300

(Note 4)

01

50

(Note 5)

01

FOLL660

LL-34

120

5000

100

1.0

6

FDLl3070

LL-34

200

100

175

1.0

100

5.0

ns

Test

TEST CONDITIONS:
Nola 1: IF = 30 rnA, IR = 30 rnA, RL = loon
Nola 2: IF = 30 rnA, VR = 35V, Recovery to 400 kn
Nola 3; VR = 4fN, IF = 5.0 rnA, RL = 2.0 kn, CL = 10 pF, Recovery 10 80 kn
Nola 4; VR = 35V, IF = 30 rnA, RL = 2.0 kn, ~ = 10 pF, Recovery 10 400 kn

Note 5: IF

= IR = 30 rnA, RL = loon

----

S8:»lAeo lunoN e08IJns

iii

Surface Mount Devices

~NatiOnal

Surface Mount Diodes

Semiconductor

Surface Mount Monolithic Diode Arrays
PLASTIC PACKAGES

~

I\J

l;.VF
mV
Max

trr
ns
Max

Test
Condo

Proc.
Family

200
300
500

15

10

(Note 1)

015

1.0
1.1
1.5

100
200
500

15

10

(Note 1)

015

1.0
1.1
1.3

100
200
500

15

10

(Note 1)

015

15

10

(Note 1)

015

1.0
1.1
1.3

100
200
500

Pkg.
No.

Bv
V
Min

M16

14-S01C

60

1.1
1.2
1.5

FAS02503

2M8

14-S01C

60

FAS02509

2M8

14-S01C

60

FAS02510

M16

14-S01C

60

FAS02563

CCB

14-S01C

60

FAS02564

CA8

14-S01C

60

Device
No.

Config.

FAS02501

VF
(V)

IF
mA

@

Max

15

10

(Note 1)

015

15

10

(Note 1)

015

FAS02565

CC13

16-S01C

60

See FAS02563/64

15

10

(Note 1)

015

FAS02566

CA13

16-S01C

60

See FAS02563/64

15

10

(Note 1)

015

FAS02619

S8

16-S01C

100

1.0

10

15

5.0

(Note 2)

015

FAS02620

S7

14-S01C

100

1.0

10

15

5.0

(Note 2)

015

FAS02719

S8

16-S01C

75

1.0

10

15

6.0

(Note 2)

015

FAS02720

S7

14-S01C

75

1.0

10

15

6.0

(Note 2)

015

TEST CONDITIONS:
Note 1: IF = IA = 10 rnA to 200 rnA, RL =
Nole 2: IF = IA = 10 rnA, IRR = 1.0 rnA

loon, IAA

=

O.lIA

Nole 3: IF
Nole 4: IF

=
=

200 rnA, IA
IR

=

=

200 rnA, RL

10 rnA, IRR

=

=

loon, IRR

1.0 rnA, RL

=

100n

=

20 rnA

~National

Surface Mount Transistors

~ Semiconductor
Saturated Switches-NPN
Type

No.

hFE
@ Ic & VCE
Min Max (mA) (V)

Min

Min

1T0-236 I
(49)

25

15

5

500

15 1 20

MMBT 706A 1 T0-236 I
(49)

25

15

5

500

15 1 20

40

15

4.5 1 400'

20 1 20
40

MMBT 2369

I
c.>

Style

ICES'
ICBO@VCB
(nA)
(V)
Max

(V)
Min

MMBT 706

~

VCES*, VCEO , VEBO
VCBO
(V)
(V)

Case

MMBT 2369A

MMBT 4274

MMBT 4275

I TO-236 I

I

(49)

I

40

15

4.5 1 400'

20 1 40
30
20

1TO-236I
(49)

30'

12

4.5 I 500

20 I 18
30
35

TO-236
(49)

I TO-236 I
I TO-236 I
I TO-236 I
I TO-236 1

IC
(mA)
Cob
Ic (pF)
Max
(IB= 10)

@

,"r

(MHz) @ Ic
Min Max (mA)

I

t(otl}

(ns)
Max

Test

Process

ICOnditions

No.

10

0.6

0.7

0.9

10

6

1200

10 I 75

(Note 2)

21

60

10

0.6

0.7

0.9

10

6

1200

10 1 75

(Note 2)

21

100
10

2

0.25

0.7

0.85

10

4

1500

10 1 18

(Note 1)

21

120

100
30
100

0.351
0.4
1

0.2
0.25
0.5

0.7

0.85

10
30
100

4

1500

10 I 18

(Note 1)

21

0.2
0.25
0.5

0.7

0.85
1.15
1.6

10
30
100

4

1400

10 1 12 1 (Note 12)

21

0.4
1

120

I

120

15

4.5 1 500

20 1 18
30
35

1
0.4

0.2
0.25
0.5

0.72

0.85
1.15
1.6

10
30
100

4

1400

10 1 12 1 (Note 12)

21

120

100
30
10

20'

10

3.5 I 100

15 I 15
20

30
10

0.4
1

0.25

0.7

0.9

10

4

1250

10 1 18 1 (Note 12)

21

150

0.9

10

4

1250

10 1 60 1 (Note 11)

21

0.85
1.5
1.6

10
30
100

4

1500

10 1 18

(Note 1)

21

25

12

40

15

500

15 1 40
15

4.5 I 400

20 I 20
30
40

5

(49)
MMBT 5769

VBE(SAT)
(V)
Min Max

40'

(49)
MMBT 5224

VCE(SAT)
(V)
Max

100
30
10

(49)
MMBT5134

I

(49)

400

120

10
100
100
30
10

0.35

I

1
0.4
0.35 1

0.2
0.25
0.5

0.7

se:»!Aea luno., e:»8pns

I

Surface Mount Devices

Surface Mount Transistors
Saturated Switches-NPN (Continued)
VCES'

Type
No.

Case
Style

VCBO

ICES'
VCEO
(V)

VESO
(V)

hFE

MMBT 2710 I TO-236 I
(49)

40

20

5

30

20 I 40
40

MMBT3013 I TO-236I
(49)

40

40

5

300

20 I 30
25
15

120

30
100
300

MMBT 3014 I TO-236 I
(49)

40

40

5

300

20 I 30
25
25

120

MMBT 3646 I TO-236
(49)

40

15

5

500'

20

30
20
15

MMBT 5772 I TO-236
(49)

40

15

5

500'

20

30
25
15

(V)

~
.j:>.

Min

Max

@ Ic & VCE

Min

In

(nA)
Max

I

M'
In

(V)

M'

ICBO@ VCS

(mA)

(V)

10
50

I

M
ax

IC
(mA)

VSE(SAT)

VCE(SAT)
(V)

(V)

Min

@

Max

Ic

Cob
(pF)

I

fT
(MHz) @
Min Max

(Is= 10) Max

I

I I
t(off)
(ns)
Max

Test
Conditions

Process
No.

(m~)

0.25
0.4

0.9
1.3

10
50

4

1500

10

35

(Note 2)

22

0.4
0.5

0.18
0.28
0.5

0.75 0.95
1.2
1.7

30
100
300

5

1350

30 I 25

(Note 3)

22

30
10
100

0.4
0.4

0.18
0.18
0.35

0.7
0.8
0.75 0.96
1.2

10
30
100

5

1350

30 I 25

(Note 3)

22

120

30
100
300

0.4
0.5

0.2
0.28
0.5

0.75

0.95
1.2
1.7

30
100
300

5

350

30

28

(Note 3)

22

120

30
100
300

0.4
0.5

0.2
0.28
0.5

0.75 0.95

30
100
300

5

350

30

28

(Note 3)

22

TEST CONDITIONS:
Note 1: Vee ~ 3V, Ie ~ 10 rnA, Ie' ~ 3 rnA, IR2 ~ I.S rnA

Note 5: Vee ~ 2SV, Ie ~ 300 rnA, Ie' ~ le2 ~ 30 rnA

Note 9: vee

Note 2: Vee ~ 3V, Ie ~ 10 rnA, Ie' ~ 3 rnA, le2 ~ 1 rnA

Note 6: Vee = 2SV, Ie ~ 500 rnA, Ie' ~ le2 ~ 50 rnA

Note 10: Vee ~ 10V, Ie ~ lA, Ie' = le2 ~ 100 rnA

Note 3: Vee ~ 10V, Ie ~ 300 rnA, Ie' ~ le2 ~ 30 rnA

Note 7: Vee = 30V, Ie ~ SOO rnA,le' ~ le2 ~ 50 rnA

Note 11: Vee ~ 3V,Ie ~ 10 rnA, Ie' ~ le2

Note 4: Vee ~ 2V, Ie ~ 30 rnA, Ie' ~ le2 ~ 3 rnA

Note 8: Vee ~ 30V, Ie ~ 1 rnA, Is' ~ le2 ~ 100 rnA

Note 12: Vee ~ 3V, Ie ~ 10 rnA, Is' ~ le2 ~ 3.3 rnA

~

3V, Ie

~

10 rnA, Ie'

~

le2

~

1 rnA

= 3 rnA

~National

Surface Mount Transistors

~ Semiconductor
RF Amplifiers and Oscillators-NPN
Case

VCBO

Style

~~

I I

MMBT 5179 ! TO·236!
(49)

20

12

I TQ.236!

30

25

3

I 100

25 I 60

4

30

15

3

10

15 I 20

3

30

15

2

50

15 I 20

200

8

10

MMBT 5130 ! TQ.236!
(49)

30

12

50

10 I 15

250

8

10

0.6

1.0

10

1.7 1450

MMBT H30 ! TQ.236!
(49)

20

20

3

50

10 I 20

200

4

5

0.3

0.96

10

0.5 I 300

MMBT 6543 ! T0-236!
(49)

35

20

3

I 100

25

I 20

2

10

0.35

10

750

4

47

MMBT H11 ! T0-236!
(49)

30

25

3

I 100

25 I 60

4

10

0.5

4

0.9 I 650

4

47

I

40

30

4

50

15 I 30

8

10

0.361400

8

47

I T0-236 I

45

45

4

50

30! 15
40

20

2
15

0.321500

15

47

7

15 I 25

4

10

0.651400

4

49

VCES*

Type
No.

MMBT H10

VCEO
(V)

Min

VEBO
VBE(SAT)
(V) ,ICBO
(nA) @Vea , • hFE
@ Ic & VCE ,VCE(SAT)
(V)
(V) @ Ic
Min Max (V) Min Max (mA) (V)
Max
Min Max (mA)

I 2.5 I 20

15 I 25

250

3
10

,COb,
(pF)
Min

10 I

0.4

1.0

0.5

0.95

4

0.4

1.0

10

1

fy
(MHz)

@ Ic

Il(Off)
(n8)

Test

Process

Max

(mA)

650

1700

2

40

4

42

I 0.35 0.65 I 650

Max Conditions

I

Max Min

No.

(49)
MMBT 918

I TQ.236!

60

43

1.7 1600

1500

4

1.7 1600

1500

4

43

8

43

6

(49)
m

in

I MMBT 3563 1 T0-236 I
(49)

MMBT H24 ! T0-236
(49)
MMBT H34

(49)
MMBT H20

I TQ.236!

40

30

4

50

0.5

20

I 0.6

800

4

6

45

44

(49)
MMBT H81

I T0-236
(49)

se:>!Aea IUnOW e:>BJ,Jns

iii

Surface Mount Devices

~National

Surface Mount Transistors

~ Semiconductor
Low Level Amplifiers-NPN
VCSO

Min

Min

Min

Max

(V)

1 TO-236 1 45
(49)

45

5

10

45

MMBT 930A 1 TO-236 1 60
(49)

45

MMBT 930

'!:

ICes @ VCS I
(~ I VCEO
(V) I VESO
(V) I(nA)

Case
Style

Type
No.

MMBT 2484

I

. hFE

Min

150
100

6

2

45 1150
100
60

@

TO-236 1 60
(49)

60

6

10

0>

MMBT3117 1 TO-236 1 60
(49)

60

6

10

45 1 250
200
175
100
30
45 1400
200
175
100
30

I VCE(SAT)

VSE(SAT)

I

(m~)

I Cob I

fT

I

I

NF
(dB)
Max

ITt
con;:ions

Process
No.

(V)

(V)
Max

Min

(V)
@
Max

600

10
0.5
0.01

5

1.0

0.6

1.0

10

8

1 30

0.5

3

(Note 1)

11

5
0.5

0.7

0.9

10

6

1 45

0.05 1 3

(Note 5)

11

0.35

10 1 15

0.05 1 3

(Note 1)

11

0.35

4.5

0.5

(Note 2)

11

300
300

500

0.5
0.01
0.001
10
0.5
0.1
0.01
0.001

1

500

0.5
0.1
0.01
0.001

(pF)
Max

.(MHz) @
Min Max

(m~)

(mA)

600

I

Ic & VCE

Max

5

5
5
5
5
5
5

5
5
5

5
5

1

60

5
5
5

10

0.35

4140240

MMBT 3565 1 TO-236 1 30
(49)

25

6

50

25 1 150

600

MMBT 4409 1 TO-236 I
(49)

50

5

10

60 I 60

400

10

0.2

0.8

12 I 60

300

10

11

MMBT 44101 TO-236 1 120
(49)

80

5

10

100 1 60
60

400

10

0.2

0.8

12 I 60

300

10

11

MMBT 5088 1 TO-236 I
(49)

35

30

50

20 1 300
350
300

1 30

25

50

15 1 400
450
400

MMBT 5089

I TO-236
• (49)

80

10
900

1200

5
5

0.1

5

10

5
5
5

0.1

11

0.5

10

4

3

(Note 3)

11

0.5

10

4

2

(Note 3)

11

Surface Mount Transistors
Low Level Amplifiers-NPN
Type

Case

No.

Style

MMBT 5133

(Continued)

VCBO , VCEO , VEBO ,ICBO
(V)
Min

(V)
Min

(V)
Min

I

20

18

3

I TO-236 I

50

50

I TO-236

VCB'

(nA) @ (V)
Max

hFE

@

Min

Max

50

15 I 60

1000

50

35

Ic lit VCE , VCE(SAT)

M

(rnA)

VBE(SAT)

M

M

Min

Max

I

@

(m~)

Max

,COb,
(pF)
Max

fy
.(MHz) @
Min Max

I ' NF

(m~)

(dB)
Max

Test
Conditions

Process
No.
11

5

0.4

5

0.7

10

4

30

0.5

4

(Note 5)

11

300

10
1
0.1

5

0.7

10

4

I 30

0.5

3

(Note 4)

11

600

10
1
0.1

0.2

10

6

I 100

10

6
3
3

,(Notes7,11)
(Note 10)
(Note 1)

11

0.2

10

6

I 100

10

6
4
8
3
3

(Notes 7,11)
(Note 8)
(Note 9)
(Note 10)
(Note 1)

11

5

(49)
MMBT 5209

(49)
MMBT 5210

150
100

I TO-236 I

50

50

50

(49)

I

MMBT 5961 I TO-236
(49)

~
...,
MMBT 5962

I 150

60

60

8

2

35 1250
250
200
45

I 100

45

45

8

2

(49)

30

5

5

5

0.01
0.1

120
135
150

I T0-236 I

5

700

10

1400

0.01
0.1
1
10

5
5
5
5

I 450
500
550
600

5

5
5
5

TEST CONDITIONS:
Note 1: Ic

~

10 p.A, VCE

~

av, f

~

10 Hz -IS.7 kHz

Note 5: Ic

~

10 p.A, VCE

Note 2: Ic

~

10 p.A, VCE

~

5V, f

~

1 kHz

Note 6: Ic

~

100 pA VCE

~

SV, f

~

5 kHz

Note 3: Ic

~

5 p.A, VCE

Note 7: Ic

~

100 p.A, VCE

~

5V, f

~

1 kHz, As

~

5V, f

~

1 kHz

~

5V, f

~

Note 9: Ic ~ 100 p.A, VCE ~ 5V, f ~ 1 kHz, As ~ 100 kG

10 kHz

Note 10: Ic ~ 10 p.A, VCE ~ 5V, f ~ 1 kHz, As ~ 10 kG
~

1 kG

Note 11: Ic/lB

~

20

Note 8: Ic ~ 100 p.A, VCE ~ 5V, f ~ 1 kHz, As ~ 10 kG

Note 4: Ic ~ 100 p.A, VCE ~ 5V, f ~ 10 Hz - 15.7 kHz

se:»!Aeo ~unow e:»8,Jns

iii

Surface Mount Devices

~National

Surface Mount Transistors

~ Semiconductor
General Purpose Amplifiers and Switches-NPN
Type

VCEO
(V)

I

Min

Min

Min

Max

T0-236
(49)

75

I 45 I

6

50

I TO-236 I

75

45

VEBO
(V)

ICBO Vea
(nA)@ (V)

VCBO
(V)

MMBT100

MMBT 100A

I

case
Style

No.

6

50

hFE

60

60

80
100
100
100

350

I 300

600

TO-236
(49)

~

I

75

45

6

50

60

I 60
75
50

0>

MMBT 2218

I TO-236 I

60

30

6

10

(49)

I

MMBT 2218A TO-236 I
(49)

MMBT 2219

I TO-236 I
(49)

450

100
220

(49)
MMBT 101

@

75

60

40

30

6

5

10

10

50 I 20
20
40
35
25
20

60

Ic & VCE
(V)

Min Max {mAl

I

25
20
40
35
25
20

50 I 30
50
100
75
50
35

375

120

Max

VBE(SAT)
Ic
. (V)
@ {mAl

20

4

(Note 1)

10

10 I 4.5 I 250

20

4

(Note 1)

10

1.3

150 I 8

I 250

20

2.6

500

1.2

150 I

1250

20 I 285

0.4

1.3

150

1.0

2.6

500

200
10

0.4

1.0

200

0.2

0.85

0.4

500
150
150
10
0.1

Process
No.

I 4.5 I 250

1.0

500
150
150
10

I

10

0.85

10

toft NF
Test
(ns) (dB) Conditions
Max Max
(Note 1)

0.2

500
150
150
10

I I I
4

0.4

5

Cob
1,Ic
(pF)
.(MHZ) @ {mAl
Max Min Max
20

10
100
0.1
0.1
10
100

I I

Min Max

0.2

0.1

300

VB(SAT)
(V)

0.1
10
100
150

0.1

120

I

10
10
10
10

1.6

10

0.3

0.85

0.6

10 I 4.5 I 250

8

10

(Note 7)

10

10
10
10
10
10
1
10
10
10
10

I 8 1300

20

·10

Surface Mount Transistors
General Purpose Amplifiers and Switches-NPN (Continued)
Type
No.

case
Style

MMBT2219A TO-236
(49)

MMBT2221

~

<0

TO-236
(49)

VCBO
(V)
Min

VCEO

VEBO

(V)

(V)

Min

Min

75

40

6

60

MMBT2221A TO-236
(49)

75

MMBT2222

60

TO-236
(49)

MMBT2222A T0-236
(49)

75

30

40

30

40

5

6

5

6

lcao
(nA)@Vca
Max (V)
10

10

10

10

10

60

50

60

50

60

hFE @ Ic 8. VCE
Min Max (mA) (V)
40
50
100
75
50
35
20
20
40
35
25
20
25
40
35
25
20
35
50
75
100
30
50

300

120

120

300

35

50
75
100
40
50

-

300

VCE(SAT)

VaE(SAT)

(V)

(V)

Max

500
150
150
10
1
0.1

10
1
10
10
10
10

500
150
150
10
1
0.1

10
1
10
10
10
10

0.4

500
150
10
1
0.1

10
10
10
10
10

0.3

0.1
1
10
150
500
150

10
10
10
10
10
1

0.4

0.1
1
10
150
500
150

10
10
10
10
10
1

0.3

Min

I
@ m~
Max (
)

0.6

1.2

150

2.0

500

1.3

150

2.6

500

1.2

150

2.0

500

1.2

150

2.6

500

1.2

150

2.0

500

1.6
0.6

1.0
0.6

1.6

1.0

0.6

NF
Cob
toff
for
Ic
(pF)
~MHZ) @ (mA) (ns) (dB)
Max Max
Max Min Max
8

300

20

8

250

20

8

300

20

8

250

20

8

300

20

Process
Test
No.
Conditions
(Note 2)

285

10

10

(Note 2)

285

10

10

4

(Note 3)

10

Sa:»!Aaa luno,. a:»8J-1ns

iii

Surface Mount Devices

Surface Mount Transistors
General Purpose Amplifiers and Switches-NPN (Continued)

I I II I
(,? (~) (,? (:~@ (~
ICES'

Type
No.

'"~

Case
Style

V

h

I I
& V

toff

IP

Min

Min

Max

MMBT 2484 I TO-236 I
(49)

60

60

5

10

MMBT 2924 1 TO-236 I
(49)

25

25

5

100

25 1150

300
2
(1 kHz)

10

10

10

MMBT 3392 I TO-236 I
(49)

25

25

5

100

18 I 150

300

2

4.5

10

10

MMBT 3393 1 TO-226 I
(49)

25

25

5

100

18 I 90

180

2

4.5

10

10

MMBT3414 1 TO-226
(49)

25

25

5

100

25 I 75

225

2

4.5

0.3

0.6

1.3

50

10

MMBT3415 1 TO-226
(49)

25

25

5

100

25 I 180

540

2

4.5

0.3

0.6

1.3

50

10

MMBT 3416 1 TO-226 I
(49)

50

50

5

100

25 I 75

225

2

4.5

0.3

0.6

1.3

50

10

MMBT3417 1 TO-226I
(49)

50

50

5

100

25 I 180

540

2

4.5

0.3

0.6

1.3

50

10

MMBT 3566 1 TO-226 I
(49)

40

30

5

50

20 1150
80

600

10
2

10
10

1.0

MMBT 3641 1 TO-226 I
(49)

60

30

5

50'

50 1 15
40

120

500
150

10
10

MMBT 3642 1 TO-226 I
(49)

60

50 1 15
40

120

500
150

MMBT 3643 1 TO-226 I
(49)

60

50 1 20
100

300

500
150

45 1 250
800

45
30

5
5

50'
50'

1
10

5

Max

. (V)
@ (m~)
Min Max

(pF)
.(MHz) @ (m~)
Max Min Max

6

0.35

NF

ITt

MIn

@

fT

II I

VEBO

F~ax (m~) (~~

VBE(SAT)

Cob

VCEO

Min

VCE(SAT)
(V)

II I

VCBO

(ns) (dB) con;:ons
Max Max
3

(Note 13)

r::~ss
10

5

100 I 25 I 40

30

10

0.22

150 I

8

I 250

50

10

10
10

0.22

150 I

8

1250

50

10

10
10

0.22

150 I

8 I 250

50

10

Surface Mount Transistors
General Purpose Amplifiers and Switches-NPN (Continued)
Type
No.

~

Case
Style

VCBO I VCEO I VEBO IICBO VCB I hFE

<'?

(~

Ic I toff I NF

fy

I

Test
(n8) (dB) Conditions
Max Max

Process
No.

10 I 35
20

350

50
10

10
10

0.25

1.1

150 I 10 I 150

800

50

10

300

15 I 50
15

600

10
2

10
10

1.0

1.0

150 I 35 I 40

300

50

10

3

100

20 I 20
20

400

150
30

0.25

1.0

150 I 35 I 40

400

50

10

20

3

100

20 I 20
20

400

150
30

0.25

1.1

150

I 35 I 40

400

50

10

25

25

5

100

25 I 100

500

10

10

0.25

25

20

3

100

10

800

2

10

0.7

40

25

4

50

30 I 250
150

500

2
100

10
10

0.5

5.0 I 3.5

40

25

4

50

30 I 200
100

400

2
0.1

10
10

0.5

50

40

25

4

50

30 I 300
150

600

2
0.1

10
10

0.5

40

4

100

30

400

5

10

0.25

MMBT5128 I TO-236I
(49)

15

12

3

50

MMBT 5135 I TO-236 I
(49)

30

25

4

MMBT 5136 I TO-236I
(49)

30

20

MMBT 5137 I TO-236 I
(49)

30

MMBT 5172 I TO-236 I
(49)

I TO-236

Ic I Cob I

(V)
Max

Min

MMBT 5223

Ic & VCE IVCE(SAn VBE(SAn
(V)

(V)
Min

(nA) @ (V)
Max

Min

@

Max (rnA)

Mm

50

. (V)
@ (rnA)
Min Max

(pF)
(MHz) @ (rnA)
Max Min Max

10

10 I 10
1.2

4

10

150

10

10

(49)

MMBT6515

I TO-236 I
(49)

MMBT 6520

I TO-236 I
(49)

MMBT 6521 I TO-236 I
(49)
MMBT A20

I TO-236

I 40

10

I 3.5

3

(Note 10)

10

3.5

3

(Note 10)

10

10 I

4

I 125

5

10

(49)

SeO!A9(] IUnOW e08jJn

II

s

Surface Mount Devices

Surface Mount Transistors
General Purpose Amplifiers and Switches-NPN
Type
No.

VCBO I VCEO I VEBO IICBO V

Case
Style

(V)

(V)

Min

MMBT 4400 1 TO·236 1 60
(49)
MMBT 4401

I TO-236 I

(V)

(nA) @

Min

Min

Max

40

6

40

60

20
40

6

20
40
80
100
40

(49)

MMBT L01

I TO-236 1

140

I

hFE

@

(~~ Min Max

300

(Continued)

Ic & VCE
(mA) (V)

~ I MMBT 5830
MMBT 5831

TO-236
(49)

I

180

I TO-236 I

160

@

Ic

I Cob I
(pF)
Max

Max

(mA)

0.4
0.75

0.75

10

0.95
1.2

150 1 6.5
500

0.1

0.4

0.75

0.95

150 I 6.5 I 250

0.75

1.2

500

10
150
500

1
2

fT

(MHz) @ Ic
Min Max (mA)

Max

I toff I NF
(ns)
Max

(dB)
Max

I

T~S~

Conditions

I

Process
No.

13
20

13

10

16

5

100

75 I 50

300

10

5

0.2
0.3

1.2
1.4

10
50

8 I 60

160

6

50

120

I 80

250

10
50

5

0.15
0.20

10
50

6

I 100

300

10

16

1.0

0.15
0.2
0.25

0.8
1.0
1.0

4

I 100 500

10

16

10
50
4

I 100

500

10

16

4

I 100 500

10

16

4

I 100 500

10

16

100

5

50

100

I 60
80
80

I

VBE(SAT)
(V)
Min

120

30

TO-236 I 120
(49)

VCE(SAT)
(V)

(49)
MMBT5551

I

140

5

50

(49)
MMBT 58331 TO-236 I 200 I 180
(49)

6

MMBT 59651 TO-236 I 200 I 180
(49)

5

10

100 1 60
80
80
160

50

160

5
10
50

250

10
50

5
5

0.15
0.2
0.25

0.8
1.0
1.0

10
50

250

10
50

5
5
5

0.15
0.2
0.25

0.8
1.0
1.0

10
50

5
250

10
50

0.15
0.2
0.25

0.8
1.0
1.0

10
50

5

I 50
50
50

5
5

500

I 50
50
50

5

5
5

1

Surface Mount Transistors
General Purpose Amplifiers and Switches-NPN (Continued)
VCEO
(V)
Min

VEBO
(V)
Min

TO·236
(49)

45

45

4

50

30

40

160

10

10

6

200

500

10

23

MMBT 3694

TO·236
(49)

45

45

4

50

30

100

400

10

10

6

200

500.

10

23

MMBT 3903

TO·236

60

40

6

1
1
1
1
1

0.2

4

250

10

6

(Note 8)

23

150

0.1
1
10
50
100

1
1
1
1
1

0.2

4

300

10

5

(Note 8)

23

300

0.1
1
10
50
100
50
10
1
0.1

1
1
1
1

0.2

4

250

10

5

(Notes 6,7)

23

0.3

1.0

50

1
1

0.3

0.95

50

4

250

10

6

(Note 7)

23

0.95

50

4

300

10

5

(Note 7)

23

50

3.5

Case
Style

MMBT 3693

ICBO
(nA)@ VCB
Max (V)

. hFE @ Ic & VCE
Min Max (mA) (V)

20

~

~

50
30
15
MMBT3904

TO·236
(49)

60

40

6

40
70
100
60
30

q>
~
MMBT 3946

MMBT 4123
MMBT 4124
MMBT 6514

TO-236
(49)

60

TO-236
(49)

40

TO-236
(49)

30

TO-236
(49)

40

40

30
25
25

6

5
5
4

20
50
45
30
50
50
50

20
20
30

TEST CONDITIONS:
Note 1: Ie = 300 rnA, Vee = 10V,la1 = la2 = 30 rnA
Note 2: Ie = 150 rnA. Vee = 6V. la 1 = la2 = 15 rnA
Nola 3: Ie = 300 rnA, Vee = 15V.la1 = 1a2 = 30 rnA
Nole 4: Ie = 300 rnA. Vee = 30V. la1 = la2 = 30 rnA
Note 5: Ie = 10 rnA. Vee = 3V.la 1 = la2 = 1 rnA
Note 6: Ie = 100 pA. VeE = 5V. f = 100 Hz
Note 7: Ie = 30 pA. VeE = 5V. f = 1 kHz
Note 8: Ie = 100 p.A, VCE = 5V. f = 1 kHz

150

VCE(SAT)
(V)
Max

VBE(SAT)
(V)
@ Ic
Min Max (mA)

0.65

0.3
0.65

0.3

25
50

150

50
2

60
120

50
2

1
1

0.3

360

90
150

100
2

10
10

0.5

300

0.65

= 250 p.A, VeE = 5V, f = 1 kHz
= 10 pA. VCE = 5V. f = 1 kHz
NOle 11: Ie = 50 rnA, Vee = 30V.la1 = la2 = 5 rnA
Nole 12: Ie = 150 rnA. Vee = 30V.la1 = 1a2 = 15 rnA
Note 13: Ie = 50 rnA. Vee = 10V.la1 = la2 = 5 rnA
Note 14: Ie = 500 rnA. Vee = 30V.laLla2 = 50 rnA
Note 15: Ie = 100 pA. VeE = 10V. f = 1 kHz
Note 16: Ie = 200 p.A. VCE = 5V. f = 1 kHz

0.85

10

0.95

50

0.85

10

0.95

50

0.9

10

COb
(pF)
Max

fr

VCBO
(V)
Min

Type
No.

(MHz) @ Ie
Min Max (mA)

Note 17: leila

Note 10: Ie

Note 18: leila

Note 20: Ie
No1e 21: Ie
No1e 22: Ie
Nole 23: Ie

375

NF
(dB)
Max

Tes.t
Conditions

=
=
=
=
=

= 40
= 20
= 5V. f = 10 Hz = 5V. f = 100 Hz
30 pA. VeE = 5V. f = 1 kHz
250 pA. VCE = 5V. f = 10 kHz
1 rnA. VeE = 10V. f = 1 MHz
250 pA. VeE

10 kHz

250 pA. VeE

S~!Aea

iii

Process
No.

23

Note 9: Ie

Note 19: Ie

toft
(ns)
Max

IUnOW e08IJns

Surface Mount Devices

~National

Surface Mount Transistors

~ Semiconductor
Medium Power-NPN
VCER', VEBO
VCBO, VCEO
(V)
(V)
(V)
Min
Min
Min

Type
No.

Case
Style

MMBT 3568

I TO-236 I

80

60

5

(49)
80

MMBT 3700 1 TO-236 1 140
(49)

MMBT A05

7

ICES'
ICBO@ VCB
(nA)
(V)
Max

5040140
40
10

'"
-I>

MMBT A06 1 TO-236
(49)
MMBT 3567

I TO-236 I

90 1 50
90
100
50

I TO-236 I

150

50

12

I 12 I 100 200

5

12

0.5

500

0.25

100

50

100

12

80

80

4

100

80

50
50

100
10

0.25

100

50

100

12

80

40

5

50

40

I 40

120

30
150

0.25

150

I 20 I 60

600

50

13

300

30
150

0.25

150

I 20 I 60

600

50

13

0.5

1.2

500

I 30 I 60

10

38

200

10
100
500

0.5

1.2

350

I 30 I 60

10

38

200

10
100
500

I

I 50

10

48

50

10

48

80

40

5

50

40 1100
100

25

25

5

100

20

I 35
50
60

I TO-236 I

1.1

600

100
10

(49)
MMBT 6561

0.2

150 I 20 I 60

60 I 50
50

40

I TO-236 I

10
10
10
10

,t,

100

(49)
MMBT 6560

300

0.25

30
150
10
150
500

'C,

v

CE(SAn
BE(SAn
Ic
ob
(MHz)
@ Ic
off NF
Test
Process
fT
M(V)
M' (V)M@(mA)(MPF)MinMaX(mA)M(ns)(MdB)lconditionsINo.
ax
In
ax
ax
ax
ax

4

(49)
MMBT 3569

120

Iv

60

I TO-236 I 60
(49)

0'>

hFE @ Ic & VCE
Min Max (rnA) (V)

20

I

20

5

100

20

I 35
50
50

(49)
MMBT A42 1 TO-236
(49)

I 300 I 300

MMBT A43 1 TO-236
(49)

I 200 I 200

8

6

100

100

I 25

0.9

20

10
30

10
10
10

0.5

40
40
160 I 25
40
50

10
10
10

0.4

0.9

20

10
30

200

200

~National

Surface Mount Transistors

Semiconductor

Darlington Transistors-NPN

~
U1

Type

case

No.

Style

MMBT64;!6

TO-236
(49)

ICES'

VCBO

VCEO

VEao

(V)

(V)

(V)

Min

Min

Min

lItA)
Max

(V)

Min

Max

(mA)

(V)

40

40

12

0.05

30

20,000
30,000
20,000

200,000
300,000
300,000

10
100
500

5
5
5

1.2

ICBO@ Vca

@

hFE

Ic & VCE

VCE(SAT)

VaE(SAT)

(V)

Max

1.5

@ (mA)

(V)

Min

Ic

Max

50
2

Cob
(pF)
Max

7

fT
(MHz) @ Ic
Min Max (mA)

150

10

Process
No.

05

500

MMBTA12

T0-236
(49)

20

10

0.1

15

20,000

10

5

1.0

10

05

MMBTA13

TO-236
(49)

30

10

0.1

30

5,000
10,000

10
10

5
5

1.5

100

125

10

05

MMBTA14

TO-236
(49)

30

10

0.1

30

10,000
20,000

10
100

5
5

1.5

100

125

10

05

S9:»!"90 IUnOW 9:»BlJnS

II

Surface Mount Devices

.

~National
~ Semiconductor

Saturated Switches-PNP
VCES' v
v
Type
No.

ICES'

VCBO
(V)
Min

~O

~O ICBO@ VCB

Mi
n

M'
In

(nA)
Max

(V)

V
hFE @ Ic & VCE
Min Max (mA) (V)

MMBT3639

TO-236
(49)

6

6

4

50'

3

30
20

MMBT 3640

TO-236
(49)

12

12

4

50'

6

20
30

TO-236
(49)

12

MMBT 4258

'"~

Case
Style

Surface Mount Transistors

12

4.5

10'

6

30
15
30

120

120
120

MMBT 5228

TO-236
(49)

5

5

3

100'

4

30

MMBT 5771

T0-236
(49)

15

15

4.5

10

8

50
40
35

120

TO-236
(49)

15

30
20
30

150

MMBT5571-2 TO-236
(49)

15

40
30
35

150

MMBT 5910

20

MMBT5771-1

TO-236
(49)

15

15

20

4.5

4.5

4.5
.

10

10

10·

8

8

10

30
30
15

120

C~AT)
M
ax

V

Ic
C
fT
t
@ (mA)
( ~
(MHz) @ Ic
(o~
Test
M
(I
11;;.1:
Min Max (mA) :s Conditions
ax
B=ur
ax
ax

B~AT)

M'
In

10
50

0.3
1

0.16
0.5

10
50

5.5

300

10

60

(Note 7)

65

50
10

1
0.3

0.2
0.6

10
50

5.5

300

10

75

(Note 7)

65

10
1
50

3
0.5
1

0.15

0.75 0.95

10

3

500

10

20

(Note 6)

65

0.5

1.5

50

10

3

0.4

0.65 1.25

10

5

300

10

10
50
1

0.3
1
0.3

0.15
0.18
0.6

0.8
0.95
1.5

1
10
50

3

700

10

20

(Note 6)

65

0.8

10
50
1

0.3
1
0.5

0.15
0.18
0.6

0.8
0.95
1.5

1
10
50

3

700

10

30

(Note 6)

65

0.8

10
50
1

0.3
1
0.5

0.15
0.18
0.6

0.8
0.95
1.5

1
10
50

3

700

10

30

(Note 6)

65

0.8

50
10
1

1
0.3
0.5

0.15

0.75 0.95

10

3

700

10

20

(Note 6)

65

0.5

1.5

50

65

TEST CONDITIONS:
Note 1: Vee ~ 3V, Ie ~ 10 rnA, Ie' ~ 3 rnA, le2 ~ 1.5 mA

Note 5: Vee ~ 25V, Ie ~ 300 mA, Ie' ~ 1a2 ~ 30 rnA

Note 2: Vee ~ 3V, Ie ~ 10 rnA, Ie' ~ 3 rnA, le2 ~ 1 rnA

Note 6: Vee ~ 25V, Ie ~ 600 mA, Ie' ~ 1a2 ~ 50 rnA

Note 3: Vee ~ 10V, Ie ~ 3OO·rnA,le' ~ le2 ~ 30mA

Note7:Vee~ 30V,le ~ 500mA,leLle2 ~ 50 rnA
Note 8: Vee ~ 30V, Ie ~ 1A, Ie' ~ le2 ~ 100 rnA

Note 4: Vee ~ 2V, Ie ~ 30 mA, Ie' ~ le2 ~ 3 mA

Process
No.

Note 9: Vee ~ 3V, Ie ~ 10 mA, Ie' ~ le2 ~ 1 mA
Note 10: Vee ~ 10.7V, Ie ~ 1A, Ie' ~ le2 ~ 100 rnA
Note11:Vee~ 3V,le~ 10rnA,le' ~ le2 ~ 3mA

Note 12: Vee

~ 3V, Ie ~ 10 mA, Ie' ~ le2 ~ 3.3 mA

~NatiOnal

Surface Mount Transistors

Semiconductor

Low Level Amplifiers-PNP
case
Style

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

MMBT4248

TO·236
(49)

40

40

5

10

40

50
50
50

MMBT4249

TO·236
(49)

60

60

5

10

40

100
100
100

MMBT4250

TO-236
(49)

40

40

5

10

40

MMBT4250A

TO-236
(49)

60

60

5

10

MMBT5086

TO·236
(49)

50

50

5

MMBT5087

T0-236
(49)

50

50

MMBT5227

TO-236
(49)

30

30

TO-236
(49)

40

Type
No.

....~

MMBTA70

40

0.1
1
10

5
5
5

0.25

0.9

10

Cob
(pF)
Max
6

300

0.1
1
10

5
5
5

0.25

0.9

10

250
250
250

700

0.1
1.0
10

5
5
5

0.25

0.9

50

250
250
250

700

0.1
1
10

5
5
5

0.25

0.9

10

10

150
150
150

500

0.1
1
10

5
5
5

3

10

10

250
250
250

800

0.1
1
10

3

100

10

30
50
40

4

ICBO
(nA)@ VCB
Max (V)

100

30

@ Ic
hFE
Min Max (mA)

VCE
(V)

VCE(SAT)
(V)
Max

VBE(SAT)
Ic
(V)
@
Min Max (mA)

fy
Ic
(MHz) @(mA)
Min Max

NF
(dB)
Max

Test
Conditions

Process
No.

40

0.5

6

40

0.5

3
3
3

(Noten
(Note 8)
(Note 9)

69

10

6

50

0.5

2
2
2

(Note 7)
(Note 8)
(Note 9)

69

10

6

50

0.5

2
2
2

(Note 7)
(Note 8)
(Note 9)

69

0.3

10

4

40

0.5

3

(Note 4)

69

3

(Note 3)

5
5
5

0.3

10

4

40

0.5

2

(Note 4)

2

(Note 3)

10
10

0.4

10

5

100

10

700

0.1
2

400

5

10

0.25

50

4

1.0

69

69

69
69

TEST CONDITIONS:
~

Note 1: Ie

~

10 p.A. VCE

~

SV. f

~

10 Hz-IS.7 kHz

Note 4: Ie

Note 2: Ie

~

10 p.A. VeE

~

SV. f

~

10 kHz

Nota 5: leIla

Note 3: Ie

~

100 p.A. Vee

~

SV. f

~

Note 6: Ie

10 Hz-IS.7 kHz

-

---

~

20 p.A. VCE
~

~

SV. f

~

10 Hz-IS.7 kHz

20

200 y.A. Vee

-----

--

~

SV. f

~

I kHz

f'A. VeE ~ SV. f ~ 10 Hz-IO kHz
f'A. Vee ~ SV. f ~ I kHz
250 f'A. Vee ~ SV. f ~ I kHz

Note 7: Ie

~

20

Nota 8: Ie

~

20

Note 9: Ie

~

--~~

SeO!AeQ lunOW e08J,Jns

iii

Surface Mount Devices

~Nal1onal

Surface Mount Transistors

~ Semiconductor
General Purpose Amplifiers and Switches-PNP
Type
No.

(~)

(~)

Min

Min

Min

I TO-236 I
(49)

60

40

5

MMBT 2904A I TO-236 I
(49)

60

MMBT2905

60

MMBT 2904

~ I
co

(~)

ICBO
v CBO 'I VCEO 1 VEBO IICES*

Case
Style

TO-236
(49)

MMBT 2905A I TO-236 I
(49)

MMBT 2906

I TO-236

I

60

60

40

40

40

40

5

5

5

5

VCB

(nA) @ (V)
Max

20

10

20

10

20

I

50 I 30
100
75
50
35
50 I 50
100
100
100
75
50

50

50

I

I

I

(49)

MMBT 2906A I TO-236 I
(49)

60

40

5

10

hFE

50

@

Ic & VCE
(V)

Min Max (rnA)

I

30
100
75
50
35
50
100
100
100
75
30
100
75
50
35
50
100
75
50
35

300

300

300

300

300

300

500
150
10
1
0.1
500
150
10
1
0.1

I

VCE(SAT)
(V)

Max

Ic
v BE(SAT)
(V)
@ (rnA)

Min Max

I I

I

(MHz)
@
Ic 1 t off 1 NF
Test
Process
Cob
fT
(pF) Min Max (rnA) (ns) (dB) Conditions
No.
Max
Max Max

0.4

1.3

150 I 8 1200

50

1.6
0.4

2.5
1.3

500
150 I 8 I 200

50 I 100

1.6
0.4

2.6
1.3

500
150

50

1.6
0.4

2.6
1.3

500
150 I 8 1200

500
150
10
1
0.1

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

500
150
10
1
0.1

10
10
10
10
10

1.6

2.6

500

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150 I 8 I 200

1.6

2.6

500

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150 I 8

1.6

2.6

500

8

200

1200

50 I 100

63

(Note 2)

63

(Note 2)

63

63

50

500 I 100

63

(Note 2)

63

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP (Continued)
Type
No.
MMBT2907

:b

Case
Style

VCBO"

VCEO

VEBO

(V)
Min

(V)
Min

(V)
Min

TO-236
(49)

60

40

5

ICES·
hFE

ICBO@ VCB

@

Ic & VCE

VCE(SAT)

(V)
Max

IT
Cob
I
toff NF
(MHz) @ Ic
(ns) (dB)
(V)
@ m~ (pF)
Min Max (mA)
Min Max (
) Max
Max Max
VBE(SAT)

(nA)
Max

(V)

Min Max (mA)

(V)

20

50

30
100
75
50
35

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150

1.6

2.6

500

500
150
10
1
0.1

10
10
10
10
10

0.4

1.3

150

MMBT2907A TO·236
(49)

60

1.6

2.6

500

MMBT3638

TO·236
(49)

25

25

4

35·

15

20
30
20

10
50
300

10
1
2

0.25

1.1

50

2.0

300

MMBT3638A TO·236
(49)

25

25

4

35"

15

100
80
100
20

10
1
50
300

10
10
1
2

0.25

1.1

50

2.0

300

MMBT3644

45

45

5

35·

30

40
80
100
80
100
20

0.1
1
10
50
150
300

10
10
10
1
10
2

0.25

1.0

50

0.4

1.3

150

2.0

300

0.1
1
10
50
150
300

10
10
10
1
1
2

0.25

1.0

50

0.4

1.3

150

2.0

300

<0

MMBT3645

TO·236
(49)

TO·236
(49)

60

40

60

5

5

10

35·

50

300

50

50
100
100
100
75

40
80
100
80
100
20

300

240
300

240
300

1.0

1.0

1.0

1.0

0.8

0.8

0.8

0.8

8

200

50

8

200

50

20

100

50

10

150

35

35

Test
Conditions

Process
No.
63

(Note 2)

63

170

(Notes 1, 18)

63

50

170

(Notes 1, 18)

63

200

20

100

(Notes 4, 18)

63

200

20

100

(Notes 4, 18)

63

100

..
sa~IAaa

iii

IUnO", a~elJns

Surface Mount Devices

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP (Continued)
ICES'
hFE @ Ic & VCE
ICBO@ VCB
(nA)
(V) Min Max (rnA) (V)
Max

fT
(MHz) @ Ic
Min Max (rnA)

toff NF
Test
(ns) (dB)
Conditions
Max Max

VCBO'
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

TO·236
(49)

40

25

5

100

20

60

300

50

5

0.25

50

12

100

50

63

MMBT3703 TO-236
(49)

50

30

5

100

20

30

150

50

5

0.25

50

12

100

50

63

MMBT4402 TO-236
(49)

40

40

5

500
150
10
1

2
2
1
1

0.4

0.95

150

8.5

150

20

255

(Note 4)

63

0.75

1.3

500

MMBT4403

TO-236
(49)

40

500
150
10
1
0.1

2
2
1
1
1

0.4

0.75 0.95

150

8.5

200

20

255

(Note 4)

63

0.75

1.3

500

MMBT 5142 TO-236
(49)

20

15
30

300
50

10
1

0.5
2.0

50
300

10

100

50

200

(Note 1)

63

0.8

1.5
2.5

MMBT5143

TO-236
(49)

20

15
30

300
50

10
1

0.5
2.0

1.5
2.5

50
300

10

100

50

200

(Note 1)

63

0.8

MMBT5226

TO-236
(49)

25

25

4

300

15

30
25

50
10

10
10

0.8

1.0

100

20

50

20

63

MMBT6502

TO-236
(49)

60

40

5

20

50

35
50
75
100
30

0.1
1
10
150
500

10
10
10
10
10

0.4

150

8

200

50

63

1.0

300

Type
No.

Case
Style

MMBT3702

40

20
50
50
30

5

20
100
100
60
30

~
20
20

4
4

50'
50'

12
12

150

300

600

300

VCE(SAT)
(V)
Max

VBE(SAT)

Ic
(V)Max@ (rnA)
Min

0.75

Cob
(pF)
Max

Process
No.

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP (Continued)
Type
No.

Case
Style

MMBT3251

TQ-236
(49)

MMBT3905 TQ-236

Vcso*
(V)

VCEO VEBO
(V)
(V)

Min

Min

Min

50

40

5

40

40

ICES'
hFE @ Ie. VCE Ve~~
Icso@ Vee
(V)
(nA) (V) Min Max (mA) (V)
Max

Max

30
100
80
90

5

;

MMBT3906 TQ-236
(49)

40

40

5

40

MMBT4122 TO·236
(49)

40

- - - - _..

-

-

40

40

5

0.5

1.2

50

1
1
1
1
1

0.25

0.65 0.S5

10

150

0.1
1
10
50
100

0.4

0.95

50

0.65 0.S5

10

30

1
1
1
1
1

0.25

300

0.1
1
10
50
100

0.4

0.95

50

15
70
60
40

50
10
1
0.1

1
1
1
1

0.13
0.14

0.75
0.9

1
10

0.3

1.1

50

50
10
1
0.1

1
1
1
1

0.13

0.75

1

0.9
1.1

10
50

60

5

25'

25'

30

30

10

0.25

80
100

TO·236
(49)

0.9

1
1
1
1

300

60

MMBT 4121

0.6

(V)

50
10
0.1
0.001

30
40
50
30
15

(49)

Min

f,Cob
toff NF
I
(MHz) @ Ie
@ e
(PF) Min Max (mA) (ns) (dB)
Max (mA) Max
Max Max

V~~

200

30
150 300
150
100

0.14
0.3

0.7

0.7

Test

Process

Conditions

No.

6

300

10

6

(Note 6)

66

4.5

200

10

5

(NoteS)

66

4.5

200

10

4

(NoteS)

66

4.5

400

10

4

(Notes S, 11)

66

4.5

200

10

5

(NoteS)

66

150

-~-

SeO!Aea IUnOW e08J,1ns

Surface Mount Devices

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP (Continued)
VCBO'
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

TO-236
(49)

25

25

4

MMBT4126 TO-236
(49)

25

MMBT 4916 TO-236
(49)

30

Type
No.

Case
Style

MMBT 4125

MMBT 4917

TO-236
(49)

25
30

30

30

4
5

5

ICES'
ICBO@ VCB
(nA)
(V)
Max

50
50
25'

25'

20
20
15

15

~

I\)

hFE @ Ic & VCE
Min Max (mA) (V)

VBE(SAT)
I
(V)
@ C
Min Max (mA)

fT
Cob
(MHz) @ Ic
(pF)
Min Max (rnA)
Max

NF
toft
(ns) (dB)
Max Max

Test
Conditions

Process
No.

25
60

50
2

1
1

0.4

0.95

50

4.5

200

10

4

(Note 8)

66

150

60
120

50
2

1
1

0.4

0.95

50

4.5

250

10

4

(Note 8)

66

300

50
10
1
0.1

1
1
1
1

0.13

0.75

1

4.5

400

10

150

4

(Notes 8, 13)

66

0.9
1.1

10
50

50
10
1
0.1

1
1
1
1

0.13

0.75

1

4.5

450

10

150

4

(Notes 8, 1S)

66

10
1
0.1

10
10
10

5

SOO

10

200

(Note 1S)

66

50
10
1
0.1

10
1
10
10

5

300

10

200

(Note 13)

66

0.5

2
0.1

10
10

0.5

0.1
1
10
100
500

10
10
10
10
10

0.15

0.5

15
70
60
40
30
150
150
100

MMBT5138 TO-236
(49)

30

30

5

50'

20

50
50
50

MMBT5139 TO-2S6
(49)

20

20

5

50'

15

15
40
40
SO

MMBT6518 TO-2S6
(49)

40

40

4

50

30

150
90

MMBT4354 TO-2S6
(49)

60

60

5

50

5

25
40
50
40
30

-- "---

VCE(SAT)
(V)
Max

200

SOO

800

SOO

500

0.14
0.3

0.7
0.75

0.14
0.3

0.7
0.75

0.9
1.1

10
50

0.2

0.7

1.0

10

0.5

0.75

1.25

50

0.2

0.7

1.0

10

0.75

1.25

50
50

4

0.9

150

SO

1.1

500

66
100

500

50

400

S

(NotesS, 14)

67

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP (Continued)
Type
No.

VCBO'I VCEO I VEBO

Case
Style

MMBT 4355 1 TO·236
(49)

I

(V)
Min

(V)
Min

(V)
Min

60

60

5

ICES'
ICBO@ VCB
(nA)
Max

(V)

hFE

@

a.

~

I

60

MMBT 5855 I T0-236
(49)

60

MMBT 5857 I TO·236
(49)

80

60

60

80

MMBT 6562 1 T0-236
(49)
MMBT A55

I T0-236 I

60

60

5

5

5

100

100

60

MMBT 200

I TO·236 1

60

80

500

1.0

1.2

lA

500
100
10

0.15

0.9

150 1 30 1100

0.1

10
10
10
10
10

0.5

1.1

500

10
150
500
lA

10
10
10
10

0.4

1.3

150

15

10
150
500
lA

10
10
10
10

0.4

1.3

150

15 1 100

50

67

30

60

10

67

400

50
50
50
15
50
50
50
15

100

60

I 50

250

300

300

200

I 50
50

45

6

50

50

Process
No.

1.1

4

(49)

Test
Conditions

0.5

50
50
35

80

NF

~":~ ::~

150 1 30 1100

20

100

I toft I I

0.9

100

4

(MHz) @ Ic
(mA) : : Min Max (mA)

0.15

50

MMBT A56 1 TO·236 1 80
(49)

~ax@

I 80
100 450
100
100 350

Min

Ic I Cob I

10
10
10
10
10

5

(49)

for
VBE(SAT)

500
100
10
1
0.1

50130
40
50
40
25
40

VCE(SAT)

(V)

5050175
75
100
75
50

I :1x

Min Max (mA)

60

MMBT 4356 I T0-236
(49)

Ie" VCE

500

50 14001

3

1 (Notes8,14)

67

500

50 1 400 1 3

1 (Notes8,14)

67

67

500
100
10

0.5

500

10
100

0.25

100

50

100

67

10
100

0.25

100

50

100

67

0.1
10
100
150

0.2

0.85

1 250

20

0.4

1.0

1
5

10 1 6

4

(Note 8)

68

200

sa:»!Aaa IUnOW a:»8J.1ns

iii

Surface Mount Devices

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP (Continued)
ICES'

VCBO'
(V)

VCEO
(V)

VEBO
(V)

Min

Min

Min

MMBT200A TO-236
(49)

60

45

6

50

MMBT201

TO-236
(49)

100

80

6

50'

MMBT3962

TO-236
(49)

60

MMBT4143

TO-236
(49)

60

Type
No.

.

Case
Style

6
40

ICBO@ VCB
(nA)
(V)

Max

50

300
100
250

600

60

60
75
50

40

30

6

MMBT5447

TO-236
(49)

40

25

5

Ic & VCE
(mA) (V)

Max

10'

50

~

TO-236
(49)

@

Min

6

MMBT4291

hFE

200

30

VCE(SAn
(V)

Max

10
100
0.1

1
1
1

0.2

0.1
10
100

1
1
1

100
90

10
50

5
5

30
60
100
75
60
25

500
150
100
10
1
0.1

10
1
10
10
10
10

375

300

fT
Cob
(MHz) @ Ic
(pF)
Min Max (mA)
) Max

VBE(SAn
I
(V)
@ m'i

Min Max (
0.85

10

6

250

20

0.4

1.0

200

0.2

0.85

10

4.5

100

10

0.4

1.0

100

0.4

0.95

50

6

0.4

1.3

150

8

200

50

toff NF
Test
Process
(ns) (dB)
Conditions
No.
Max Max
68

4

(Note 8)

68

68
100

(Note 12)

68

1.6

2.6

500

100
50
30

300

100
10
0.1

10
10
10

0.4

1.5

100

10

100

10

68

50

300

50

5

0.25

50

12

100

50

68

Surface Mount Transistors
General Purpose Amplifiers and Switches-PNP
Type
No.

Case
Style

VCBO'
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

MMBT3467

(T0·236)
(49)

40

40

5

TO·236
(49)

150

TO·236
(49)

150

MMBT4888
MMBT4889

MMBT5400

't'
cu
01

150
150

6

50
10

100
100

Cob
(pF)
Max

1.0

150

25

175

1.2

500

Process
No.

(Note 4)

70

5
1
1

0.3

10
10

0.5

10

4

30

160

1

400

1
10

10
10
10

0.5

10

4

40

160

1

4
10
3
3
4

(Note 19)
(Note 20)
(Note 21)
(Note 22)
(Note 23)

74

300

0.1
1
10

50
10
1

5
5
5

0.2

1.0

10

6

100

400

10

8

(Note 9)

74

180

0.5

1.0

50

50
60
50

5
5
5

0.2

1.0

10

6

100

300

10

8

(Note 9)

74

240

50
10
1

0.5

1.0

50

250

50

5

0.25
0.3

1.2
1.2

10
50

8

60

10

74

5

0.85

600

5

75

30
40
60
70
80

0.5

0.8

74

MMBTL51

TO·236
(49)

100

100

4

1/LA

50

40

MMBTH81

TO·236
(49)

20

20

3

100

10

60

5

10

0.5

MMBTA92

TO·236
(49)

300

300

5

250

200

25
40
25

1
10
30

10
10
10

0.5

0.9

20

6

50

10

76

MMBTA93

TO·236
(49)

200

200

5

250

160

25
40
25

1
10
30

10
10
10

0.5

0.9

20

8

50

10

76

TEST CONDITIONS:
Note 1: Ie ~ 300 rnA, Vee

~ 10V, 18' ~ 182 ~ 30

Note 2: Ie = 100 rnA, Vee

=

Nole 3:
Note 4:
Nole 5:
Note 6:
Note 7:
Note 8:

rnA, Vee ~ 15V, 18' ~ IB2 ~ 30 rnA
rnA, Vee ~ 30V, 18' ~ 182 ~ 30 rnA
10 rnA, Vee ~ 3V, 18' ~ IB2 ~ 1 rnA
100 f'A, VeE ~ 5V, f ~ 100 Hz
30 f'A, VeE ~ 5V, f ~ 1 kHz
100 f'A, VeE ~ 5V, f ~ 1 kHz

Ie ~ 300
Ie ~
Ie

~

Ie

~

150

Note 9: Ie ~ 250 f'A, VeE ~ 5V, f ~ 1 kHz
Nole 10: Ie ~ 10 f'A, VeE ~ 5V, f ~ 1 kHz
Nole 11: Ie ~ 50 rnA, Vee ~ 30V,IB' ~ 182 ~ 5 rnA
Nole 12: Ie ~ 150 rnA, Vee ~ 30V, 18' ~ 182 ~ 15 rnA
Nole 13: Ie ~ 50 rnA, Vee ~ 10V, 18' ~ 182 ~ 5 rnA
Nole 14: Ie ~ 500 rnA, Vee ~ 30V, 18' ~ 182 ~ 50 rnA
Nole 15: Ie ~ 100 f'A, VeE ~ 10V, f ~ 1 kHz
Note 16: Ie ~ 200 f'A, VeE ~ 5V, f ~ 1 kHz

rnA

5V,IB 1 = 182 = 15 rnA

Ie ~ 300
Ie ~

120

40
40
30

100

90

Test
Conditions

1
500
150

40
40
40

50

NF
toft
(ns) (dB)
Max Max

160

50

100

VBE(SAn
Ic
(V)
@ (mA)
Min Max

TO·236
(49)

5

100

30

fT
(MHz) @ Ic
Min Max (mA)

VCE(SAn
(V)
Max

130

150

5

100

hFE @ Ic & VCE
Min Max (mA) (V)

TO·236
(49)

MMBT5401

120

6

ICES'
Icao@ Vca
(nA)
(V)
Max

(Continued)

Note 17: lelI8 ~ 40
Note 18: leliB ~ 20
Note 19: Ie ~ 250 f'A, VeE ~ 5V, f ~ 10 Hz-l0 kHz
Note 20: Ie ~ 250 f'A, VeE ~ 5V, f ~ 100 Hz
Note 21: Ie ~ 30 f'A, VeE ~ 5V, f ~ 1 kHz
Nole 22: Ie ~ 250 f'A, VeE ~ 5V, f ~ 10 kHz
Nole 23: Ie ~ 1 rnA, VeE ~ 10V, f ~ 1 MHz

Se:»!Aea .unow e:»epns

iii

Surface Mount Devices

~NatiOnal

Surface Mount JFETs

Semiconductor

N-Channel Switches/Choppers
BVGSS
BVGDO
(V)@IG
Min (/LA)

IGSS
'lOGO
(nA)@VOG
(V)
Max

Vp
10(off)
loss
rds(on)
(.!1)@10
(mA)@Vos
(nA)@Vos VGS
M@Vos
10
Max (V) (V) Min Max (V) (nA) Min Max (V) Max (rnA)

MMBF4391 TO-236
(49)

40

1

0.1

20

0.1

20

12

4

10

20

1

50

150 20

30

1

14

20

0

3.5

0

12

20

35

51

MMBF4393 TO-236
(49)

40

1

0.1

20

0.1

20

5

0.5

3

20

1

5

30

20

100

1

14

20

0

3.5

0

5

20

80

51

MMBFJ113 TO-236
(49)

40

1

0.1

20

0.1

20

5

0.5

3

5

1000

5

30

20

100

0.10

10t

0

10

15

0

10

13t

35t

51

MMBF4391 TO-236
(49)

40

1

0.1

20

0.1

20

-12

4

10

20

1

50

150 20

30

14

20

0

3.5

0

-12

20

35

51

MMBF4393 TO-236
(49)

40

1

0.1

20

0.1

20

-5

0.5

3

20

1

5

30

20

100

14

20

0

3.5

0

-5

55

130

51

MMBFJ113 TO-236
(49)

35

1

1

15

1

5

-10 0.5

3

5

1000

2

15

100

10t

0

-10

15

0

-10

13t

35t

51

Type
No.

0>

lu

0>

t

~

typical

Case
Style

1

Ciss
(pF)@Vos
(V)
Max

VGS
M

Crss
(pF)@Vos
Max
M

ton toff Process
VGS (ns) (ns)
No.
(V) Max Max

_NatiOnal
Semiconductor

Surface Mount JFETs

N-Channel Wide Band-Low Noise Dual JFETs
Operating Conditions for These Characteristics
Type
No.

Op.
IVGS1-21 Drift I
Vp
Goss
GOBS CMRR VgS
CIosC,.. BV
loss
eR
IGSS
loss Gis GOSC1-2IG1-IG2
Gts
Gts
Case Char.
Process Pkg.
Vos (",VrC) (p~
",mhos (".mho) (dB)
(V)
(V)
(mA) (mmho) (",mho (pA@Voo (pF) (pF) (V) (nV/\I'Hz)@f Match Match (",mho) 125"C
Style VDG ID
No.
No.
(mV)
,).VGS Max
Min Max Max
Min Min Mu Min Max Min Max Min Max Max Max (V) Min Max Min Max
%
%
(nA)
(Hz)
(V) (".A) Max
Max

MMBF5911 8SOlC 10 5000

10

20

100 5000 10,000

100

0.3

4

1

5

7

MMBF5911 asOIC 10 5000

10

20

100 500010,000

100

0.3

4

1

5

7 _~ -

100

40
---

-

16

.~1~

10,000

5

5

20

20

93

51

5~~ -?~~~

5

5

20

20

93

51

5

1.2 25

20

~

S8~!A8a

IUnOW 8~eJ.lns

Surface Mount Devices

~NatiOnal

P-Channel JFETs

Semiconductor

P-Channel Switches and Choppers
Type
No.

'f'
Co)
CD

Case
Style

BVGSS
BVGOO
(V)@IG
Min (/LA)

IGSS
*IOGO
(nA)@VOG
(V)
Max

Vp
ID(off)
loss
rds(on)
(mA)@Vos
(O)@lo
(V)@VOS
(nA)®Vos VGS
10
Max (V) (V) Min Max (V) (nA) Min Max (V) Max (mA)

Clss
(pF)@Vos
(V)
Max

VGS
(V)

Crss
(pF)@Vos
(V)
Max

ton toff Process
VGS (ns) (ns)
No.
(V) Max Max

MMBFJ174 TO·236
(49)

30

1

1

20

1

15

10

5

10

15

0.1

20

100

15

85

0.1

11

0

10

5.5

0

10

2

5

88

MMBFJ175 TO·236
(49)

30

1

1

20

1

15

10

3

6

15

0.1

7

60

15

125

0.1

11

0

10

5.5

0

10

5

10

88

MMBFJ176 TO·236
(49)

30

1

1

20

1

15

10

1

4

15

0.1

2

25

15

250

0.1

11

0

10

5.5

0

10

15

15

88

MMBFJ177 TO·236
(49)

30

1

1

20

1

15

10

0.5

20

15

300

0.1

11

0

10

5.5

0

10

20

20

88

0.8 2.25 15 0.01

Section 7
Pro-Electron Series

,.

Section 7 Contents
Diode Pro-Electron Series . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .
Bipolar Pro-Electron Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . • . . . . • . . .
JFET Pro-Electron Series. . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7·2

7-3
7-5
7-26

~NatiOnal

Diode Pro Electron Series

Semiconductor
Vrrm

I,rm

Vfm

M
Min

(nA)
Max

(V)
Max

BA128
BA129
BA130
BA217
BA218
BA316
BA317
BA318

75
200
30
30
50
10
30
50

100
50
100
50
50
200
200
200

1.0
1.0
1.0
1.0
1.0
0.85
0.85
0.85

50
100
10
10
10
10
10
10

BAS16
BAS19
BAS20
BAS21
BAS29
BAS31
BAS35

75
100
150
200
90
90
90

1000
100
100
100

1.1
1.0
1.0
1.0
0.84
0.84
0.84

50
100
100
100
50
50
50

6.0
50
50
50

TO·236
TO·236
TO·236
TO·236
TO·236
TO-236
TO·236

BAV17
BAV18
BAV19
BAV20
BAV21
BAV70
BAV74
BAV99

25
60
120
200
250
70
50
70

100
100
100
100
100
5000
100
2500

1.0
1.0
1.0
1.0
1.0
1. I
1.0
1.1

100
100
100
100
100
50
100
50

50
50
50
50
50
6.0
4.0
6.0

00-35
00-35
00·35
00·35
00·35
TO·236
TO·236
TO-236

BAW56
BAW62
BAW75
BAW76

70
75
35
75

2500
25
100
100

1.1
1.0
1.0
1.0

50
100
30
100

6.0
4.0
2.0
2.0

TO-236
00·35
00·35
00·35

BAX13
BAX16

50
180

200
100

1.0
1.5
-----

20
200

4.0
120

00·35
00·35

Part No.

.....
liJ

@

--

If
(mA)

I"
(n8)
Max

4.0
4.0
4.0

Package

00-35
00·35
00·35
00·35
00·35
00·35
00·35
00-35

sa!Jas UOJI~aI3 OJd apO!C

Diode Pro Electron Series

Diode Pro Electron Series (Continued)
Vrrm
(V)

Part No.

BAY19
BAY71
BAY72
BAY73
BAY74
BAY80
BAY82
-

~

--

Irrm

Vfm

Min

(nA)
Max

(V)
Max

120
50
125
125
50
150
15

100
100
100
1.0
100
100
100

1.0
1.0
1.0
1.0
1.1
1.0
1.0

.-

@

If
(mA)

100
20
100
200
300
150
20

trr
(n5)

Package

Max

50
2.0
50
3.0
4.0
50
0.75

00-35
00-35
00-35
00-35
00-35
00-35
00-7

~National

Bipolar Pro Electron Series

~ Semiconductor
Type
No.

Case

Style

~~I~I~
~ M
M
M

Min
BC327

I T0-92 I SO'

ICES'

30'

BC328-16 1 TO-92
(97)

30'

BC328-25 I TO-92
(97)

30'

Max

(V)

5

100'

45 I 40
100

300
100

0.7

600

45 I 40
100

300
100

0.7

400

45 1 40
63

300
100

0.7

160

45 1 40
100

300
100

0.7

250

45 1 40
160

300
100

0.7

400

25 1 40
100

300
100

0.7

600

25 1 40
63

300
100

0.7

160

25 1 40
100

300
100

0.7

250

25 1 40
160

300
100

0.7

400

45

5
5

5
5

100'
100'
100'
100'

(97)

BC328-10 I TO-92
(97)

VBE(SAT)
VBE(ON)'

45

45

30'

(V)

VCE(SAT)
(V) &

Max

BC327-16 1 TO-92 1 50'
(97)

1 T0-92
(97)

(mA)

I

Min

45

BC328

VCE

Max

BC327-10 1 T0-92 1 50'
(97)

50'

IC

(nA)

60

U,

M

@

~

1 T0-92 1 60'
(97)

"" I BC327•25 1TO-92 I

lite

~

(97)
BC327A

HFE

ICBO@ VCB

25
25
25
25

5
5

5
5

100'
100'
100'
100'

1 kHz'

Min

@

Ic

(mA)

Max

Cob
(pF)

Max

I

fr

.(MHZ) @ (m~)
Min Max
I

I I

toft NF I T t
(ns) (dB) con:':ions
Max Max

Process
No.

500
300

67

1.2'

300
SOO

67

1.2'

500
300

67

1.2'

500
300

67

1.2'

500
300

67

1.2'

SOO
300

67

1.2

500
300

67

1.2

500
300

67

1.2

500
300

67

1.2

BC337

I T0-92 I SO·
(97)

45

5

100

20 1100
40

600

100
500

0.7

SOO

12

BC337A

1 TO-92 1 60'
(97)

60

5

100

20 1100
40

400

100
500

0.7

500

12

BC337-16 1 TO-92 I 50'
(97)

45

5

100

20 1100

250

100
500

0.7

500

12

BC337-25 1 T0-92 1 50'
(97)

45

400

100
SOO

0.7

500

12

40

5

100

20 1160
40

S81J8S UOJI:»813 OJd JelodlS

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
Type
No.

VCES'
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO@ VCB
(nA)
(V)
Max

HFE

h'e

IC
VCE
1 kHz' @ (rnA) (V)
Min Max

VCE(SAT)
VBE(SAT!
(V) & VBE(ON) @ Ic
M
(V)
(rnA)
ax
Min Max

Cob
(pF)
Max

fr
Ic
.(MHz) @(rnA)
Min Max

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

BC338

TO-92
(97)

30'

20

5

100

20

100
40

600

100
500

1
1

0.7

500

12

BC338-16

TO-92
(97)

30'

20

5

100

20

100
40

250

100
500

1
1

0.7

500

12

BC338-25

TO-92
(97)

30'

20

5

100

20

100
40

250

100
500

1
1

0.7

500

12

BC368

TO-92
(94)

25"

20

5

10p.A

25

60
85
60

5
500
1A

10
1
1

0.5

1A

37

375

TO-92
(94)

25'

50
85
60

5
500
1A

10
1
1

0.5

1A

77

375

BC546

TO-92
(97)

80

65

6

15

30

110

800

2

5

0.25

10

0.6

100

BC546A

TO-92
(97)

80

65

6

15

30

110

0.01

5

0.25

10

BC546B

TO-92
(97)

80

65

6

15

30

200

BC547

TO-92
(97)

50

45

6

10

20

20

BC369

...,

Case
Style

20

5

10 p.A

25

0,

220

450

BC547A

TO-92
(97)

50

45

6

BC547B

TO-92
(97)

50

45

6

10

20

BC547C

TO-92
(97)

50

45

5

15

30

0.6

100

0.25

10

2

5

0.6

2

5

2

0.55

0.25
0.6
240

500'

2

0.25
0.6
420-

_.

900

-_... _ - _ . -

2

_5_

0.70'
0.77'

0.55
---

0.70'
0.77'

0.55

5

0.70"
0.77'

0.55

5

(Notes 1,11)

11

10

(Notes 1, 11)

11

10

(Notes 1,11)

11

100
0.77"

0.25
0.6
125 260'

-

5
5

0.25
0.6
125 900'

10

2
0.01

10

0.70'

10
100
2

4.5

10

(Notes 1,11)

10

10
100
2

4.5

10

(Notes 1, 11)

10

10
100
2

4.5

10

(Notes 1, 11)

10

10
100
2

4.5

10

(Notes 1, 11)

10

Bipolar Pro Electron Series (Continued)
Type
No.
BC548

Case
Style

VCES'
VCBO
(V)
Min

VCEO
(V)
Min

I TO-92 I

30

20

5

10

20

I

30

20

5

10

20

I TO-92 I

30

20

5

10

20

30

20

5

10

20

30

20

5

10

20

I

30

20

5

10

20

I TO-92 I

30

20

5

10

20

50

45

5

10

45

50

45

5

10

45
240

500*

2

5

80

65

5

15

30 I 75

475

2

5

ICES'
'ICBO @ VCB
(V)
(nA)
(V)
Min
Max

I VEBO

HFE
hfe
@
Ic
1 kHz*
(mA)
Min Max

VCE
(V)

125

900*

2

260*

2

I

".:..

TO-92
(97)

10

(Note 1)

10

I

4.5

10

(Note 1)

10

I 4.5

10

(Note 1)

10

I 4.5

4

(Note 1)

10

I 4.5

4

(Note 1)

10

I 4.5

4

(Note 1)

10

10
100
2

3

(Note 1)

10

10
100
2

3

(Note 1)

10

0.3

10

10

(Note 1)

69

0.65

100

0.55

5

900*

2

900*

2

500*

2

5

0.70*
0.77*

0.55

5

0.70*
0.77*

0.55

5

0.70*
0.77*

0.55

5

0.70*
0.77*

0.25
0.6
240

BC549C

I 4.5

0.55

0.25
0.6
240

BC549B I TO-92
(97)

2

0.70*
0.77*

0.55
0.25

0.70*
0.77*

(97)
450
BC550

I TO-92 I

900*

2

I TO-92 I

900*

2

5

BC556

I TO-92 I

0.55

0.70*
0.77*

0.25
0.6

(97)

0.70*
0.77*

0.25
0.6
240

BC550B

0.55

5

(97)

Process
No.
10

0.25
0.6
450

BC549

500*

Test
Conditions

(Note 1)

0.25
0.6
240

BC548C I TO-92
(97)

I

10

5

(97)

I

I ' toft , NF
(ns) (dB)
Max Max

(m~)

4.5

0.77*

0.25
0.6
125

BC548B

VBE(SAT)
, Cob , f T
VBE(ON)* @ Ic
(pF)
(MHz) @
(V)
(mA) Max Min Max
Min Max

0.25
0.6

(97)
BC548A I TO-92
(97)

, VCE(SAT)
(V) &
Max

0.55

0.70*

10
100
2
10
100
2
10
100
2
10
100
2
10
100
2
10
100
2
10
100
2

(97)

sa!Jas UOJIOal3 OJd Jelod!8

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
VCES'
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

TO-92
(97)

80

65

5

15

30

125

250

BC556B

TO-92
(97)

80

65

5

15

30

220

475

BC557

TO-92
(97)

50

45

5

100

20

BC557A

TO-92
(97)

50

45

5

100

20

BC557B

TO-92
(97)

50

45

5

100

20

BC558

TO-92
(97)

30

25

5

100

20

Type
No.

Case
Style

BC556A

ICES'
ICBO@ VCB
(nA)
(V)
Max

HFE
hie
@ IC
1 kHz'
(rnA)
Min Max

VBE(SAT)
VBE(ON)' @ Ic
(V)
(rnA)
Min Max

VCE
(V)

VCE(SAT)
(V) &
Max

2

5

0.3

10

0.65

100

2

5

0.3

10

0.65

00

30

25

5

100

TO-92
(97)

30

25

5

100

TO-92
(97)

30

25

5

100

TO-92
(97)

25

20

5

100

5

500*

2

0.6

500'

2

5

260'

2

2

0.6

5

900*

2

0.6

5

125

500*

2

5

0.75
0.82'

0.6
0.3
0.65

20

0.75
0.82'

0.3
0.65

20

0.75'
0.82*

0.3
0.65
500'

0.75*
0.82'

0.6

5

0.75'
0.82*

0.6

5

20

450
BC559

2

0.75'
0.82*

0.3
0.65

240
BC558C

260'

20
125

BC558B

0.6

0.3
0.65
75

TO-92
(97)

5

0.3
0.65
240

BC558A

2

0.3
0.65
125

.....

900'

Ic
fT
.(MHZ) @(mA)
Min Max

toff
(ns)
Max

NF

Test
Conditions

Process
No.

10

(Note 1)

69

10

(Note 1)

69

10
100
2

10

(Note 1)

68

10
100
2

10

(Note 1)

68

10
100
2

10

(Note 1)

68

10
100
2

10

(Note 1)

68

10
100
2

10

(Note 1)

68

10
100
2

10

(Note 1)

68

10
100
2

10

(Note 1)

68

10
100
2

4

(Note 1)

68

(dB)
Max

100
0.82'

0.3
0.65
75

Cob
(pF)
Max

0.75
0.82*

0.6

0.75*

Bipolar Pro Electron Series (Continued)
Type
No.

Case
Style

VceS'
VCBO
(V)

Min

VCEO VEBO

M

(V)

Min

Min

ICES'
HFE
ICBO@VCB
hre
Ic
VCE
1 kHz' @(mA) M
(nA) (V)
Max
Min Max

BC559B

T0-92
(97)

25

20

5

100

20

BC559C

T0-92
(97)

25

20

5

100

20

BC560

T0-92
(97)

50

45

5

100

45

BC560B

TO-92
(97)

50

45

5

100

45

BC635

TO-92
(94)

45

45

5

TO-92
(94)

45

TO-92
(94)

60

TO-92
(94)

60

TO-92
(94)

100

TO-92
(94)

100

TO-236
(49)

50'

BC637

BC638

BC639

BC640

BC807

60

60

80

80

45

5

100

30

5

5

100

30

5

5

5

100

100

30

20

0.82'

2

5

0.6

2

5

2

0.6

5

0.75"
0.82'
0.75'
0.82'

0.6
0.3
0.65

240 500'

45

VBE(SA,!
VBE(ON) @ Ic
(V)
(mA)
Min Max

0.3
0.65
125 500'

BC636

Max

a

0.3
0.65
450 900'

cO

(V)

0.3
0.65
240 500"

.....

VCE(SAT)

0.75'
0.82'

4

(Note 1)

68

10
100
2

4

(Note 1)

68

10
100
2

3

(Note 1)

68

10
100
2

3

(Note 1)

68

2

5
0.5

500

38

250

2
2
2

25
40
25

5
150
500

2
2
2

0.5

500

78

250

25
40
25

5
150
500

2
2
2

0.5

500

38

250

25
40
25

5
150
500

2
2
2

0.5

500

78

250

25
40
25

5
150
500

2
2
2

0.5

500

39

250

25
40
25

5
150
500

2
2
2

0.5

500

79

250

100
500

1
1

0.7

500

100
40

600

0.75'

10
100
2

5
150
500

25
40
25

0.6

Cob
to" NF
IT
Ic
Test
Process
(pF)
(MHz) @(mA) (ns) (dB) Conditions
No.
Max Min Max
Max Max

67
-

--

-~---

S81J8S UOJ~0813 OJd J810dlS

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
VEBO

(V)

(V)

Min

Min

(nA)
Max

(V)

(V)
Min

Min

Max

45

5

100

20 1100
40

250

100
500

0.7

500

67

45

5

100

20 1160
40

400

100
500

0.7

500

67

50'

45

5

100

20 I 250
40

600

100
500

0.7

500

67

30'

25

5

100

20 1100
40

600

100
500

0.7

500

67

BC808-16 I TO-236 I 30'

25

5

100

20 1100
40

250

100
500

0.7

500

67

25

5

100

20 1160
40

400

100
500

0.7

500

67

30'

25

5

100

20

250
40

600

100
500

0.7

500

67

TO-236 I 30'

25

5

100

20

100
40

600

100
500

0.7

500

12

25

5

100

20 1100
40

250

100
500

0.7

500

12

25

5

100

20 1160
40

400

100
500

0.7

500

12

25

5

100

20 I 250
40

600

100
500

0.7

500

12

25

5

100

20 1100
40

600

100
500

0.7

500

12

25

5

100

20 1100
40

250

100
500

0.7

500

12

25

5

100

20 1160
40

400

100
500

0.7

500

12

BC807·16I TO-236 I 50'
(49)

BC807-25 I TO-236 I 50'
(49)

BCB07-40

I TO-236 I
(49)

BCB08

TO-236I
(49)
(49)

BCB08-25 I TO-236 I 30'
(49)

2:.

I I

VCEO

Case
Style

ICES'
ICBO @ VCB

I I

,
VCES
VCBO

Type
No.

I BC808-40 ITO-236 I
(49)

o

BC817

(49)

BC817-16I TO-236 I 30'
(49)

BCB17-25 I TO-236 I 30'
(49)

BC817-40 I TO-236 I 30'
(49)

BC818

TO-236 I 30'
(49)

BC818-16I TO-236 I 30'
(49)

BC818-25 I TO-236 I 30'
(49)

HFE
hie
1 kHz'

@

IC

VCE

(mA)

(V)

VCE(SAn

(V) &

Max

VBE(SAn
VBE(ON)'

(V)

Min

Ic
@

(mA)

Max

Cob
(pF)

Max

fT

.(MHz)

Min

Max

Ic
@

(mA)

toll
(ns)
Max

NF

(dB)
Max

Test

I Conditions

Process
No.

Bipolar Pro Electron Series (Continued)
Type
No.

I VE80
case VCES'I
VCBO VCEO
(V)
(V)
Style

BC818-40 I TO·236!

ICES'

VCB

ICBO@
(nA)
(V)
Max

(V)
Min

Min

Min

30'

25

5

100

20! 250
40

80

65

6

15

30 I 110

80

65

6

15

30 I 110

80

65

6

15

30 I 200

50

45

6

15

30 I 110

50

45

6

15

30 I 110

50

45

6

15

30 I 200

30

30

5

15

30 I 110

30

30

5

15

30 I 110

(49)

BC846

TO.236!

lite
HFE

I

V

(m~) ~

1 kHz' @
Min Max

600

100
500

VCE(SAn V
VBE(SAn•

I

B~~N) @(m~)

(V) &
Max
Min

Max

0.7

500

0.25

10

0.01

5

2

5

0.6

100

0,01

5

0.25

10

I Cob I
(pF)
Max

fr

I

(m~)

(MHz) @
Min Max

I toff I NF
(ns)
Max

(dB)
Max

Test
Conditions

I

Process
No.

12
10

(Note 1)

11

10

(Note 1)

11

10

(Note 1)

11

10

(Note 1)

10

10

(Note 1)

10

10

(Note 1)

10

10

(Note 1)

10

10

(Note 1)

10

10

(Note 1)

10

10

(Note 1)

10

(49)

800
BC846·A ! TO·236!
(49)

220
BC846-B ! TO·236!

2

5

0.6

100

0.01

5

0.25

10

2

5

0.6

100

0.01

5

0.25

10

(49)

450
BC847

TO·236I
(49)

~

800
BC847·A I TO·236 I

2

5

0.6

100

0.01

5

0.25

10

(49)

220
BC847·B I TO·236 I

2

5

0.6

100

0.01

5

0.25

10

(49)

450
BC848

T0-236 I

2

5

0.6

100

0,01

5

0.25

10

(49)

800
BC848·A ! T0-236 I

2

5

0.6

100

0.01

5

0.25

10

2

5

6

100

0,01

5

0.25

10

2

5

6

100

0.01

5

0.25

10

2

5

6

100

(49)

220
BC846·B ! TO·236 I

30

30

5

15

30 I 200

(49)

450
BC848·C ! TO·236 I

30

30

5

15

30 I 420

(49)

800

sa!Jas UOJ~:»aI3 OJd Jelod!s

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
Type
No.

Case
Style

VCEO
(V)

VEBO

(V)

Min

Min

(nA)
Max

30

30

5

15

30 1200

30

30

5

15

30 1200

30

30

5

15

30 1420

50

45

5

15

30 1200

50

45

5

15

30 1200

80

65

5

15

30 I 75

80

65

5

15

30 I 125

80

65

5

15

50

45

5

50

45

5

Min
BC849

I TO-236
(49)

I

ICES'
ICBO @ VCB

VCES'
VCBO

(V)

(V)

HFE
h'e
1 kHz'

Min

I TO-236 I

IC

VCE

(rnA)

(V)

Max

800
BC849B

@

VCE(SAT)

Max
0.01

5

2
0.01

VBE(SAT)
VBE(ON)"

M &

(V)

Min

@

Ic

(rnA)

Max

I I
Cob
(pF)

Max

0.25

10

5

6

100

5

0.25

10

fT

.(MHZ)

Min

Max

Ic
@

(rnA)

I I
toff
(ns)
Max

NF
(dB)
Max

Test

Process
No.

4

(Note 1)

10

4

(Note 1)

10

4

(Note 1)

10

3

(Note 1)

10

(Note 1)

10

10

(Note 1)

69

10

(Note 1)

69

10

(Note 1)

69

10

(Note 1)

68

10

(Note 1)

68

I Conditions

(49)
450
BC849C

I TO-236 I

2

5

0.6

100

0.01

5

0.25

10

(49)
800
BC850

I TO·236 I

2

5

0.6

100

0.01

5

0.25

10

(49)
2

5

0.6

100

0.01

5

0.25

10

450

2

5

6

100

475

2

5

0.3

10

0.65

100

250

2

5

0.3

10

0.65

100

30 1220

475

2

5

0.3

10

0.65

100

15

30 I 75

475

2

5

0.3

10

0.65

100

15

30 I 125

250

2

5

0.3

10

0.65

100

800

:;. I

BC850-B

I TO-236 I
(49)

I\)

BC856

I TO-236 I
(49)

BC856-A

I TO-236 I
(49)

BC856-B

I TO-236 I
(49)

BC857

I TO'236 I
(49)

BC857-A

I TO-236 I
(49)

Bipolar Pro Electron Series (Continued)
VCES·
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

TO-236
(49)

50

45

5

15

30

220

475

BC858

TO-236
(49)

30

30

5

15

30

75

800

2

5

BC858-B

TO-236
(49)

30

30

5

15

30

220

475

2

5

BC858-C

TO-236
(49)

30

30

5

15

30

420

800

2

5

BC859

TO-236
(49)

30

30

5

15

30

220

800

2

5

BC859-A

T0-236
(49)

30

30

5

15

30

125

250

2

BC859-B

TO-236
(49)

30

30

5

15

30

220

475

BC859-C

TO-236
(49)

30

30

5

15

30

420

BC860

TO-236
(49)

50

45

5

15

30

TO-236

50

45

5

15

TO-236
(49)

32

32

5

100

TO-236
(49)

32

TO-236
(49)

50

Type
No.

Case
Style

BC857-B

~

""

BC860-B

ICES·
ICBO@ VCB
(nA)
(V)
Max

HFE
h'e
IC
1 kHz· @(mA)
Min Max
2

VCE
(V)
5

VCE(SAT) VBE(SA~
(V) & VBE(ON) @ Ic
M
(V)
(mA)
ax
Min Max

Cob
(pF)
Max

IT
Ic
.(MHZ) @(mA)
Min Max

toft
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

10

(Note 1)

68

10

(Note 1)

68

10

(Note 1)

68

10

(Note 1)

68

0.3

10

0.65

100

0.3

10

0.65

100

0.3

10

0.65

100

0.3

10

0.65

100

0.65

100

4

(Note 1)

68

5

0.65

100

4

(Note 1)

68

2

5

0.65

100

4

(Note 1)

68

800

2

5

0.65

100

4

(Note 1)

68

220

800

2

5

0.3

10

3

(Note 1)

68

0.65

100

30

220

475

2

5

0.3

10

3

(Note 1)

68

0.65

100

32

120

5
5

0.3

10

4

(Note 1)

68

260

0.Q1
2
0.01
2

5
5

0.25

10

4

(Note 1)

68

450

0.01
2

5
5

0.3

10

4

(Note 1)

10

500

(49)
BCF29
BCF30
BCF32

32
45

5
5

100
100

32
20

200
215

S8!Jas UOJI:)813 OJd J810d!B

11

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
Type
No_

Case
Style

BCF33

I TO-236 I

VCES'
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

50

45

5

ICES'
ICBO@ VCB
(nA)
(V)
Max

100

HFE
h fe
@ IC
1 kHz'
(rnA)
Min
Max

20 I 200

I TO-236 I

50

45

5

100

I TO-236 I

40

30

10

100

(49)
BCV27

I TO-236 I

40

30

10

100

(49)
BCV71

I TO-236 I

V
I
VBE(SAT)'
BE(ON)@ C
(V) &
(V)
(rnA)
Max
Min Max

I I

COb
fT
I
C
(pF)
.(MHz) @ (rnA)
Max Mm Max

I I I
toll
(ns)
Max

NF
(dB)
Max

T t
es
Conditions

Process
No.

0.01
2

5
5

0.3

10

4

(Note 1)

10

0.01
2

5
5

0.3

10

4

(Note 1)

10

500
30 I 4,000
10,000
20,000

5

1.0

1.5

100

61

10
100

5

30 I 4,000
10,000
20,000

1.0

1.5

100

05

10
100

20

I

215

(49)
BCV26

VCE(SAT)

450

(49)
BCF70

VCE
(V)

~

5

5
5
5

80

60

5

100

20

110

220

2

5

0.25

10

10

(Note 1)

11

80

60

5

100

20

200

450

2

5

0.25

10

10

(Note 1)

11

32

32

5

100

32 I

120

0.01
2

5
5

0.3

10

10

(Note 1)

68

260

0.01
2

5
5

0.3

10

10

(Note 1)

68

500

0.01
2

5

0.25

10

10

(Note 1)

10

270

0.01
2

5

0.25

10

10

(Note 1)

10

420

0.01
2

5

0.25

10

10

(Note 1)

10

800
50
120

50
2

1

0.35

0.6

0.85

50

6

(Note 1)

10

630

5

50
120

50
2

0.25

0.6

0.85

50

6

(Note 1)

68

630

5
2.0

500 I 12 I 100

10

(Note 1)

10

(49)

~
....

BCV72

I TO-236
(49)

BCW29

I TO-236 I
(49)

BCW30

I T0-236 I

32

32

5

100

32

I

215

(49)
BCW31

I TO-236 I

32

32

5

100

32

I

150

(49)
BCW32

I TO-236 I

32

32

5

100

32 I 200

(49)
BCW33

I TO-236 I

32

32

5

100

32

I

450

(49)
BCW60

I TO-236 I

32'

32

5

20

32

(49)
BCW61

I TO-236 I

32'

32

5

20

32

(49)
BCW65

I TO-236 I
(49)

60

32

5

20'

32

35
75
100
35

220
250

0.1
10
100
500

1

10
1
1

125

10

20

Bipolar Pro Electron Series (Continued)
Type
No.

Case
Style

BCW66

TO-236
(49)

BCW68

VCEO
(V)
Min

VEBO
(V)
Min

75

45

5

75

45

5

ICES'
ICBO@ VCB
(nA)
(V)
Max
20'

20'

45

45

HFE
hie
@ IC
1 kHz'
(mA)
Min Max
35
75
100
35
35
75
100
35

250

250

VCE
(V)

VCE(SAT)
(V) &
Max

VBE(SAT)
VBE(ON)' @ Ic
(V)
(mA)
Min Max

Cob
(pF)
Max

I
fT
.(MHZ) @(m~)
Min Max

toft

(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

0.1
10
100
500

10
1
1
1

2.0

500

12

100

20

10

(Note 1)

10

0.1
10
100
500

10
1
1
1

2.0

500

12

100

20

10

(Note 1)

10

BCW69

TO-236
(49)

50

45

5

100

20

120

260

2

5

0.3

10

10

(Note 1)

68

BCW70

TO-236
(49)

50

45

5

100

20

215

500

2

5

0.3

10

10

(Note 1)

68

BCW71

TO-236
(49)

50

45

5

100

20

110

220

2

5

0.25

10

10

BCW72

TO-236
(49)

50

45

5

100

20

200

450

2

5

0.25

10

10

(Note 1)

68

BCW81

TO-236
(49)

50

45

5

100

20

420

800

2

5

0.25

10

10

(Note 1)

10

BCW89

TO-236
(49)

80

60

5

100

20

120

260

2

5

0.3

10

10

(Note 1)

68

BCX17

TO-236
(49)

50'

45

5

100

20

100
70
40

600

100
300
500

1
1
1

0.62

500

67

BCX18

TO-236
(49)

30'

25

5

100

20

100
70
40

600

100
300
500

1
1
1

0.62

500

67

BCX19

TO-236
(49)

50'

45

5

100

20

100
70
40

600

100
300
500

1
1
1

0.62

1.2

500

12

BCX20

TO-236
(49)

30'

25

5

100

20

100
70
40

600

100
300
500

1
1
1

0.62

1.2

500

12

~

'"

TO·236
(49)

VCES'
VCBO
(V)
Min

68

SEt!JEtS UOJI0EtI3 OJd Jelod!B

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
Type
No_

case

Style

I

VCES·
VCBO

(V)

Min

VCEO

VEBO

ICES'
ICBO@ VCB

(V)

HFE

h'e
@
IC
1 kHz·
(mA)
Min Max

(V)
Min

(V)

(nA)

Min

Max

7

10

32 1120
80

125

310
400

0.01
2
10
100

5
5

32 140
,250
160
60

460
630

0.01
2
10
100

32 1100
380
240
60

630
1000

BCX58-8 1 T0-92
(97)

32

7

10

32 I 20
180
120
45

40

7

10

Max

5

32 1120
80

~

Max

2
10
100

10

40

'"

IltOfflNF
(ns) (dB)

220

7

10

Max

tr

.(MHZ) @ (m~)
Min Max

10 1800 I

32

7

Min

COb I

(pF)
Max

125

1 T0-92
(97)

32

(mA)

(V)

5

BCX58-7

(97)

Max

VBE(SAT)
VBE(ON)* @ Ic

2
10
100

1 T0-92
(97)

I T0-92

(V)

(V) &

630
1000

BCX58

32

BCX58-9

I

VCE(SAT)

VCE

Test
Conditions

Process
No.

I (Notes 3 &4)

10

10 1800

I 6 I (Notes 3 &4)

10

125

10 1800

I 6 I (Notes3&4)

10
10

5
5

125

10

800

6

(Notes 3 &4)

10

0.01
2
10
100

5
5
1

125

10

800

6

(Notes 3 &4)

10

6

BCX58-10 1 TO-92
(97)

32

BCX59

1 TO-92
(97)

45

7

120
80
40

630
1000

2
10
100

5

0.5

1.0

100

125

10 I 800

(Note 5)

10

BCX59-7 1 T0-92
(97)

45

7

120

220

2
10
100

5

0.5

1.0

100

125

10 I 800

(Note 5)

10

BCX59-8 1 TO-92
(97)

45

0.01
2
10
100

5
5

0.5

1.0

100

125

10 I 800

(Note 5)

10

80
40
7

20
180
120
45

310
400

Bipolar Pro Electron Series (Continued)
Type

Case
Style

VCES·
VCBO

VCEO VEBO

ICES·
ICBO@ VCB
(nA) (V)
Max

HFE
hfe
@ Ic
1 kHz·
(mA)
Min Max

(V)

(V)

Min

Min

BCX59-9 1 TO-92
(97)

45

7

BCX59-10 1 TO·92
(97)

45

BCX70G

1TO,-236 1 45
(49)

45

5

20

32 1 120
60

BCX70H

1 TO-236 1 45
(49)

45

5

20

No.

(V)

Min

~ 1 BCX70J

7

VCE

(~~

VCE SAT

(V)

Max

I I

I I

VBE(SAD
Cob
fy
toft
NF
VBE(ON)· @ Ic
(pF)
(MHz) @ Ic
(ns) (dB)
(V)
(mA) Max Min Max (mA) Max Max
Min Max

Test
Conditions

Process
No.

40
250
160
60

0.01
2
10
100

5
5

0.5

1.0

100

125

10 1 800

(Note 5)

10

460
630

100
380
240
60

0.01
2
10
100

5
5

0.5

1.0

100

125

10 1 800

(Note 5)

10

630
1000
220

2
50

5

0.55

0.7

1.05

50 1 4.5 1125

10 1 800 1 6

1 (Notes 17,19)

10

32 1180
70
20

310

2
50
0.01

5

0.55

0.7

1.05

50 1 4.5 1125

10 1 800 1 6

1 (Notes 17, 19)

10

0.55

0.7

1.05

50 1 4.5 1125

10 1 800 1 6

1 (Notes 17, 19)

10

5

45

45

5

20

32 1250
90
40

460

2
50
0.01

5

BCX71 G

1TO-236 1 45
(49)

45

5

20

32 1120
60

220

2
50

5

0.55

0.7

1.05

50 1 4.5 1 125

10 1 800 1 6

1 (Notes 17,19)

68

BCX71 H

1TO-236 1 45
(49)

45

5

20

32 1180
70
20

310

2
50
0.01

5

0.55

0.7

1.05

50 1 4.5 1 125

10 1 800 1 6

1 (Notes 17, 19)

68

5

BCX71J

1 TO-236 1 45
(49)

45

5

20

321250
90
40

460

2
50
0.01

5
1
5

0.55

0.7

1.05

50 1 4.5 1125

10 1 800 1 6

1 (Notes 17,19)

68

BCX78

1 TO-92
(97)

32

5

120 630
80 1000
40

2
10
100

5

0.6

1.0

100 1 4.5 1200

10

6

(Note 1)

68

BCX78-7 1 TO-92
(97)

32

5

120
80
40

2
10
100

5
1

0.6

1.0

100 1 4.5 1200

10

6

(Note 1)

68

-.j

TO-2361
(49)

220

5

SalJas UOJI:»aI3 OJd JelodlS

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
Type
No.

Case
Style

VCES·
VCBO
(V)

Min

BCX78-8

I TO-92

VCEO
(V)

VEBO
(V)

Min

Min

32

5

ICES·
ICBO@ VCB
(nA)
(V)

Max

(97)

BCX78-9

I T0-92

32

5

(97)

BCX78-10

I TO-92

32

5

(97)

BCX79

~

45

T0-92
(97)

5

CD

BCX79-7

I TO-92

HFE
h'e

@

1 kHz·
Min Max

Ic
(mA)

VCE
(V)

IVCE(SAT)
(V) &
Max

VBE(SAT)
VBE(ON)· @ IC
(V)
(mA)

Min

Max

I

Cob
fy
I
(pF)
.(MHz) @ (m~)
Max Min Max

I toft I

NF
(ns) (dB)
Max Max

Test
Conditions

Process

No.

30
180
120
45

0.01
2
10
100

5
5

0.6

1.0

100 I 4.5 I 200

10

6

(Note 1)

68

310
400

40
250
160
60

0.Q1
2
10
100

5
5

0.6

1.0

100 I 4.5 I 200

10

6

(Note 1)

68

460
630

100
380
240
60

0.01
2
10
100

5
5

0.6

1.0

100 I 4.5 1200

10

6

(Note 1)

68

630
1000

0.6

1.0

100 I 4.5 1200

10

6

(Note 1)

68

0.6

1.0

100

I 4.5 1200

10

6

(Note 1)

68

0.6

1.0

100

I 4.5 1200

10

6

(Note 1)

68

0.6

1.0

100 I 4.5 1200

10

6

(Note 1)

68

0.6

1.0

100 I 4.5 1200

10

6

(Note 1)

68

0.7

1.2·

1A

80
40
120

1000
630

10
100
2

1
5
5

45

5

120

220

2

45

5

120
45
30
180

400

10
100
0.Q1
2

160
60
40
250

630

240
60
100
380

1000

(97)
BCX79-8

I TO-92
(97)

BCX79-9

I T0-92

45

5

(97)

BCX79-10

I T0-92

45

5

(97)

BD370A

I TO-237 I
(91)

80

45

100

45

310

460

5
5

630

10
100
0.Q1
2

5
5

400

500
100

2
1

I 25
40

10
100
0.01
2

5
5

I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

78

Bipolar Pro Electron Series (Continued)
VCES'
VCBO
(V)
Min

VCEO
(V)
Min

TO-237
(91)

80

45

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

T0-237
(91)

80

80370C-l0 TO-237
(91)

80

80370C-16 TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

803700-10 TO-237
(91)

80

80371A

80

Type
No.

Case
Style

80370A-l0
80370A-16
80370A-25
803708
803708-10
803708-16

~

803708-25

'"
80370C
80370C-6

803700
803700-6

TO-237
(91)

VEBO
(V)
Min

ICES'
ICBO@ VCB
(nA)
(V)
Max

100

45

100

45

100

60

100

60

100

60

100

60

100

80

100

80

100
100

80
80

100

100

100
100

100
100

100
100

45

45
45
45
60
60
60
60
80
80
80
80
80
80
80
45

HFE
hfe
@ IC
1 kHz'
(mA)
Min Max

VCE
(V)

VCE(SAn VBE(SA~
(V) & VBE(ON) @ Ic
(mA)
M
(V)
ax
Min Max

Cob
(pF)
Max

fT
I
.(MHZ) @(m~)
Min Max

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 & 6)

78

160

25
100

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

78

250

25
160

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 & 6)

78

400

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 & 6)

78

400

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 &6)

78

160

25
100

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 & 6)

78

250

25
160

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

78

400

25
40

500
100

2

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

78

400

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

78

100

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

78

160

25
100

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 &6)

78

250

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 & 6)

38

400

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 &6)

38

100

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 &6)

38

160

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

38

400

1

sa!Jas UOJJ:>aI3 OJd Jelod!8

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
VCES'
VCBO
(V)
Min

VCEO
(V)
Min

TO-237
(91)

80

45

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

TO-237
(91)

80

B0371D-l0 TO-237
(91)

80

TO-237
(90)

80

Type
No.

Case
Style

B0371A-10
B0371A-16
B0371A-25
B0371B
B0371B-10
B0371B-16

"o

'"

B0371B-25
B0371C
B0371C-6
B0371C-l0
B0371C-16
B03710
B0371O-6

BD372A

45
45
60
60
60
60
80
80
80
80
100
100
100
45

VEBO
(V)
Min

ICES'
ICBO@ VCB
(V)
(nA)
Max
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

45
45
45
60
60
60
60
80
80
80
80
100
100
100
45

HFE
hie
@ IC
1 kHz'
(rnA)
Min Max

VCE
(V)

VCE(SAT) VBE(SAl"!
(V) & VBE(ON) @ Ic
M
(V)
(rnA)
ax
Min Max

Cob
fT
I
(pF)
.(MHZ) @(m~)
Max Min Max

toff
(ns)
Max

NF
(dB)
Max

Test
Conditions

Process
No.

25
63

500
100

2
1

0.7

1.2"

1A

30

50

200

420

6

(Notes 5& 6)

38

160

25
100

500
100

2
1

0.7

1.2"

1A

30

50

200

420

6

(Notes5&6)

38

250

25
180

500
100

2
1

0.7

1.2"

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2"

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
63

500
100

2
1

0.7

1.2"

1A

30

50

200

420

6

(Notes 5 &6)

38

160

25
100

500
100

2
1

0.7

1.2"

1A

30

50

200

420

6

(Notes5&6)

38

250

25
160

500
100

2

0.7

1.2"

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2"

lA

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2"

lA

30

50

200

420

6

(Notes5&6)

38

100

25
63

500
100

2
1

0.7

1.2"

lA

30

50

200

420

6

(Notes5&6)

38

160

25
100

500
100

2
1

0.7

1.2"

lA

30

50

200

420

6

(Notes5&6)

38

250

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 &6)

39

400

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 &6)

39

100

25
63

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes 5 & 6)

39

160

25
40

500
100

2
1

0.7

1.2'

lA

30

50

200

420

6

(Notes5&6)

78

400

Bipolar Pro Electron Series (Continued)
ICES·

Type
No.
B0372A-10

VCES·I VCEO I VEBO
VCBO
(V)
(V)

Case

Style

(V)
Min

Min

I T0-237 I 80

45

Min

ICBO@ VCB
(nA) (V)

Max
100

I T0-237 I

80

45

100

I T0-237 I

80

45

100

(90)
B0372B
B0372B-10

T0-237
(90)

I

80

I TO-237 I 80

60

100

60

100

(90)

B0372B-16

I TO-237 I 80

100

60

(90)

....

~

B0372B-25

I TO-237

80

100

60

TO-237

80

80

100

80

100

80

80

80

100

45 I 25
100

500
100

2

0.7

1.2*

1A I 30 I 50

250

45 I 25
160

500
100

2

0.7

1.2"

1A

I 30 I 50

400

2
1

1.2"

1A

400

500
100

0.7

40
60 I 25
63

500
100

2

0.7

1.2"

160

60 I 25
100

500
100

2

0.7

250

500
100

2

400
400

500
100

100

60

60
80
80
80

I

I

80

100

100

100

B03720

I T0-237 I

80

100

100

100

B03720-6

I T0-237 I

80

100

100

B03720-10 T0-237
(90)

I

I

B0373A

I 80

T0-237
(90)

80

100

100

100

45

100

I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

78

1A

I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

78

1.2*

1A

I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

78

0.7

1.2*

1A

2

0.7

1.2*

500
100

2

0.7

500
100

2

160
250

500
100

400

45

(Notes5&6)

78

1A I 30 I 50

200 I 420 I 6

I (Notes 5 & 6)

78

1.2*

1A

200 1420

6

(Notes 5 &6)

78

0.7

1.2*

1A I 30 I 50

200 I 420 I 6

I (Notes 5 & 6)

78

2

0.7

1.2*

1A I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

78

500
100

2

0.7

1.2*

1A I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

79

500
100

2

0.7

1.2*

1A

I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

79

100

500
100

2

0.7

1.2*

1A I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

79

160

500
100

2

0.7

1.2"

1A

I 30 I 50

200

I 420 I 6 I (Notes 5 & 6)

38

400

I 25
I 25

I 25
I 25
40

6

6

I 25

63

200 I 420 I

78

78

25

40

I 420 I 6 I (Notes 5 & 6)

Process
No.

I 420 I 6 I (Notes 5 & 6)

100 I 25

(90)

Max Max

Test
Conditions

200

I 25

40

(90)

(dB)

78

I 25

100

(90)

200

NF
Itonl
(ns)

I (Notes 5 & 6)

I 25

63

(90)

B0372C-16 TO-237

I 30 I 50

1A

40

I

Max
1.2·

(90)

B0372C-10 I T0-237

Min

I ".

I
Cob
(pF)
.(MHZ) @ (m~)
Max Min Max

0.7

40

I TO-237

Max

VBE(SAT)
VBE(ON)* @ Ic
(V)
(rnA)

2

(90)

B0372C-6

I VCE(SAT)
(V) &

500
100

160

I

VCE
(V)

160

(90)

B0372C

@ Ic

1 kHz"
(rnA)
Min Max

63

(90)
B0372A-25

hte

45 I 25

(90)
B0372A-16

HFE

30

30

50

50

200 1420

S8!J8S UOJI0813 OJd JBIOd!S

I

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)

TO-237
(90)

80

45

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-237
(90)

80

TO-92
(98)

40

80373A-10

80373A-25
803738
803738-10
803738-16

'"

VCEO
(V)
Min

Case
Style

80373A-16

.....

VCES'
VCBO
(V)
Min

Type
No.

803738-25

N

80373C
80373C-6
80373C-10
80373C-16
803730
803730-6
803730-10
8F240

VEBO
(V)
Min

100

45

100

45

100

80

100

60

100

60

100

60

100

80

100

80

100
100

80

100

80

100

100
100

100

100
40
---

ICES'
ICBO@ VCB
(nA)
(V)
Max

100
4

100

45
45
45
80
80
60
60
80
80
80
80
100
100
100
20

HFE
hfe
@ IC
1 kHz*
(mA)
Min Max

VCE
(V)

VCE(SAT)
VBE(SAT!
(V) & VBE(ON) @ Ic
M
(V)
(mA)
ax
Min Max

Cob
fT
Ic
(pF)
.(MHz) @(mA)
Max Min Max

NF
toll
(ns) (dB)
Max Max

Test
Conditions

Process
No.

25
63

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes5&6)

38

160

25
100

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

(Notes 5 &6)

38

250

25
160

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
63

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

160

25
100

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes5&6)

38

250

25
160

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes5&6)

38

100

25
63

500
100

2
1

0.7

1.2*

1A

30

50

200

420

6

(Notes 5 &6)

38

160

25
100

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

250

25
40

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

400

25
40

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

100

25
63

500
100

2
1

0.7

1.2'

1A

30

50

200

420

6

(Notes 5 &6)

38

160

1
12

10
7

1

0.34

3.5

(Note 7)

47

65
6

225

0.65 0.74*

1

Bipolar Pro Electron Series (Continued)
Type

Case

No.

Style

VCES*, VCEO , VEBO
VCBO
(V)
(V)
(V)

.....

HFE

h'e

@

IC

1 kHz'
(rnA)
Min Max

VCE

, VCE(SAn
(V) &

(V)

Max

VBE(SAn
VBE(ON)* @ IC
(V)
(rnA)

Cob
(pF)
Max

I

fT
I
(MHz) @ (~)
Min Max m

I toff I I
(ns)
Max

NF
(dB)
Max

Test
C d"t"
on I Ions

Process
No.

(Note 7)

47

Min

Min

BF241 1 TO-92 1 40
(98)

40

4

BF494 1 TO-92
(98)

30

20

5

65

220

10

49

BF495 1 T0-92
(98)

30

20

5

35

250

10

49

BF536 1 TO-236 1 30
(49)

30

4

5020125

10

42

BF840 1 TO-236 1
(49)

40

40

4

100

20 1 65

220

10

47

BF841 1 TO-236 1 40
(49)

40

4

100

20 1 35

125

10

47

30

20

4

50

20

BFS18 1 TO-236 1 30
(49)

30

5

100

20 1 35

125

10

49

BFS19 1 TO-236 1 30
(49)

30

5

100

25 1 65

225

10

49

BSR13 1 T0-236 1
(49)

30

5

3050135
50
75
100
50
30

Min

~

ICES'
ICBO@ VCB
(nA)
(V)

BF936 1 TO-92
(97)

60

BSR14 1 TO-236 1 75
(49)

Max
100

20 1 35

125

6

40

6

10

10
12

25

60 1 35
50
75
100
50
40

Min

Max

0.65

0.74*

3.5

1 0.34

6

10

300

300

0.1
1
10
150
150
500

10
10
10
10

0.1

10
10
10
10
1
10

10
150
150
500

1

7

0.4

1.3

150 1 8

1.6

2.6

500

1.2

150 I

2.0

500

(Note 7)

75

1250

20

19

1300

20

19

10
0.3
1.0

0.6

8

se!Jes UOJI:)eI3 OJd J810d!S

II

Bipolar Pro Electron Series

Bipolar Pro Electron Series (Continued)
Type

case

No.

Style

VCES·I VCEO I VESO
VCBO
(V)
(V)
Min
Min
(V)
Min

BSR15 I T0-236 1 60
(49)

I

B5R16 TO-236
(49)

I

60

40

60

5

5

(nA)

(V)

Max
20

10

lite

50135
50
75
100
30
50

I

40

6

15pA.

.....
B5R18 I T0-236 1 60
(49)

40

6

B5R19 I T0-236 1 160 1 140
(49)

6

BSR20 I T0-236 1 130 1 120
(49)

5

15pA.

100

50120
35
50
30
15

I TO-236 1

120 1 100

300

150

100

5

200

90 1 20

I T0-236 1

110 1 100

6

100

(49)
B5564

I T0-236 1
(49)

120

80

5

100

I 30

Ic
(mA)

Max

COb
(pF)

I

fr

.(MHZ)

@

I
(m~)

Max Min Max

150 1 8

10
150
500

1.6

2.6

500

0.1
1
10
150
500

10
10
10
10
10

0.4

1.3

150 1 8

1.6

2.6

500

0.1

0.2

0.65 0.85

10

10
50
100

0.3

0.95

50

0.1

0.2

0.65 0.85

10

150

10
50
100

250

10
50

180

10
50
4

(49)
BS563

Min

@

1.3

Max

Test

Process

Conditions

No.

1 200

50 1 100

(Note 9)

63

1 200

50 1 100

(Note 9)

63

250

20 1 250

(Note 5)

23

200

20 1 300

(NoteS)

66

0.3

0.95

50

0.15

1.0

10

5

0.25

1.2

50

0.2

1.0

10

0.5

1.0

50

0.7
3.0

4
50

60

4

1.2

5
5

6

1 100

300

10

10

(Note 16)

16

6

1100

400

10

8

(Note 16)

16

(Notes 17, 18)

16

10
25

0.25

0.9

25

50

25

30
90 1 20

10

0.15
0.2

1.2

4
50

60

4

90

I (ns)
toHl (dB)
NF
Max

5
5

I 30
40
40

Max

VaE(SAn
VBE{ON)*
(V)

1

60

100

(V)

(V) "

0.4

I 60
20

BSS38

300

I

VCE(SAn

VCE

10
10
10
10
10

0.1

I 75

50 1 20
35
50
30
15

100

IC

1 kHz· @(mA)
Min Max

100
100
100
50

BSR17 T0-236 1 60
(49)

~

HFE

ICES·
ICBO@Vca

1 1000

74
1 1000

(Note 5)

16

Bipolar Pro Electron Series (Continued)
VCES·

Type
No.

Case

VCBO

Style

(V)
Min

VCEO

(V)
Min

I

HFE
hfe

ICES·

VEBO

(V)
Min

ICBO@ VCB

(nA)
Max

(V)

Ic

@

1 kHz·

VCE

(mA)

I

VCE(SAT)
(V) a

(V)

Max

VBE(SAT)
VBE(ON)* @ Ic

(mA)

(V)

I

Iltotfl

Cob
fr @ C
(pF)
(MHz)
Max Min Max (mA)

(ns)
Max

NF

(dB)
Max

I

Test
Conditions

I

Process
No.

Min

Max

BSS79-B 1 TO-236 1
(49)

60

40

5

10

50

I 40

120

150

10

0.4
1.6

150 1 6
500

1 200

20

19

BSS79-C 1 TO-236 1
(49)

60

40

5

100

50

I 100 300

150

10

0.4
1.6

150 1 6
500

1 200

20

19

BSS80-B 1 TO-236 1 60
(49)

40

5

10

50 I 40

120

150

10

0.4
1.6

150 1 8
500

1 200

20

63

I T0-236 1 60

40

5

100

50

I 100 300

150

10

0.4
1.6

150 1 8
500

1 200

20

63

12

5

100

10

1 25

BSS80-C

(49)

I TO-236 I 20

BSV52

(49)
BSX39

40

TO-236
(49)

.....

14

100

~

12 1 25
40
25

120
25

10
50

200

10
50

Min

Max

0.3
0.25
0.4

0.7

0.85
1.2

10
10
50

0.25

0.7

0.85

10

1.2

5

0.4

400

10 I 18

18

(Note 18)

21

(Note 1)

21

TEST CONDITIONS:
Note 1: Ie

~

200 ,.A, VeE

~

~

SV, f

1 kHz.

Note 3: Ie

~

200 p.A, VeE

~

2V, f

~

1 kHz.

Note 4: Ie ~ 100 rnA, Vee ~ 10V,IB ~ IB2 ~ 10 rnA.
'
Note 5: Ie ~ 10 rnA, Vee ~ 3V, IB' ~ IB2 ~ 1 rnA.
~

5V, f

Note 6: Ie

~

100 ,.A, VeE

Note 7: Ie

~

1

rnA. VCE

~

10V, f

Note 8: Ie

~

1 rnA, VCE

~

5V, f

~
~

~

~

10 p.A, VCE

~

SV, f

~

20.

200 ,.A, VCE

Note 13: le/lB

~

Note 14: le/lB

~

1000.

Note 15: le/lB

~

33.

~

~

SV, f

~

30 Hz to lS kHz.

~

SV, f

~

10 Hz to lS.7 kHz.

40.

250 ,.A, VCE

Note 17: Ie ~ lS rnA, IB' ~ IB2 ~ 1 rnA.

1 kHz.
~

Note 12: Ie

Note 16: Ie

1 kHz.
200 MHz.

Note 18: le/lB

Note 9: Ie ~ 150 rnA, Vee ~ 6V, IB' ~ IB2 ~ 15 rnA.
Note 10: Ie

~

Note 11: le/lB

Note 2: Ie ~ 100 rnA, Vee ~ 2OV.IB' ~ IB2 ~ 5 rnA.

Note 19: leE

~

~

3.3.

200 p.A, VeE

~

SV, f

~

200 Hz.

WB.

S9!J9S UOJI0913 OJd J810d!S

I

JFET Pro Electron Series

~National

JFET Pro Electron Series

~ Semiconductor
Type
No.

~
C1l

I

I

I

I

I

BVGSS
IGSS
Vp
VGS
loss
Re(YFS)
Ciss
BVGOO
lOGO
(V) @ VOS 10
(V) @ VGS 10
(mA) @VOS (mmho) @ f
(pF) @VOS
Style (V) @ IG (nAj®VGo Min Max (V) (nA) Min Max (V) (iLA ) Min Max (V) Min Max (MHz) Typ
(V)
Min (iLA) Max (V)

Case

BF244A 1TO-92 1 30
BF244B TO-92 30
BF244C TO-92 30

5
5
5

2010.5
20 0.5
20 0.5

BF245AI TO-92 I 30
BF245B TO-92 30
BF245C TO-92 30

5
5
5

20
20
20

BF246A I TO-92 I 25
BF246B TO-92 25
BF246C TO-92 25

5
5
5

1010.4 2.2
10 1.6 3.8
10 3.2 7.5

8
8
8

15
15
15

10
10
10

20
20
20

-111.1201-1
-1 1.1 20 -1
-1 1.1 20 -1

20
20
20

-111.1201-1
-1 1.1 20 -1
-1 1.1 20 -1

1.5
1.5
1.5

100
100
100

50
50
50

94
94
94

50
50
50

97
97
97

200130 80 1518
200 60 140 15 8
200 110 250 15 8

0.001111
0.001 11
0.001 11

(Note 1)51 0 1 3 .5
(Note 1)5 0 3.5
(Note1)5 0 3.5

151 0
15 0
15 0

51
51
51

94
94
94

10 11.5 4.0
10 3.0 7.0
10 5.5 12

15
15
15

200130 80 1518
200 60 140 15 8
200 110 250 15 8

0.001111
0.001 11
0.001 11

(Note 1)51 0 13.5
(Note 1)5 0 3.5
(Note 1)5 0 3.5

151 0
15 0
15 0

51
51
51

97
97
97

0.5 7.5
0.5 7.5
0.5 7.5

15
15
15

200 13
200 6
200 11

0.001
0.001
0.001

50
50
50

97
97
97

51
51
51

49
49
49

5
5

15 10 .6 14.5 15
15 0.6 14.5 15
15 0.6 14.5 15

BF256AI TO-92 30
BF256B TO-92 30
BF256C TO-92 30

5
5
5

20
20
20

BSR56 1SOT23 I 40
BSR57 SOT23 40
BSR58 SOT23 40

No.

Max Typ (MHz)

15
15
15

5

I
I

20 14
20 2
20 0.8

10
6
4

15
15
15

6.5 0.001
6.5 0.001
6.5 0.001

I

No.

10 11.5 4.0
10 3.0 7.0
10 5.5 12

BF247BI TO-92 25
BF247C TO-92 25

15 1 3
15 3
15 3

l

15 10 .6 14.5 15
15 0.6 14.5 15
15 0.6 14.5 15

I BF247A I TO-92 J 25

6.5
15
25

(Hz)*

200
200
200

12

6.5 0.00114
6.5 0.001 4
6.5 0.001 4

en *

15
15
15

I 62

1513
15 3
15 3

(V)

2.2
3.8
3.2 7.5

I0.4
1.6

6.5
15
25

yp

(~~

VGS (dB)@RG=1k
f
Process Pkg.

20012
200 6
200 12

0.5

15
15
15

(V)

NF

I I

15
15
15

I0.5
0.5

8
8
8

Ii

Crss
VGS (F)1!!V

7
13
18

50
20 100
8 80

1514.5
15 4.5
15 4.5
15
15
15

I 44
4

0.7
0.7
0.7
5
5
5

20 1-1
20 -1
20 -1
10
10
10

I

0
0
0

7.5
7.5
7.5

800
800
800

Section 8
Consumer Series

•

Section 8 Contents
Consumer Series. . • • • . . . . . . . . . . . . . . . . . • . • . • . . . . • . • • • . . . . • . . • . . • • • • . • . . • . • . • . • . . . . . .

8-2

8·3

~National

Consumer Series

Semiconductor

Type
No.

Q)

case
Style

VCES'
VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

ICES'
ICBO@VCB
(nA)
(V)
Max

HFE

@

Ic" VCE
(mA) (V)

VCE(SAn
(V) ..
Max

VBE(SAn
VBE(ON)'@ Ic
(V)
(mA)
Min Max

IT

Cob
(pF)
Max

(MHz) @ Ic
Min Max (mA)

3.5

150

toff
(ns)
Max

NF
(dB)
Max

Test
Condition

Process
No.

4

(Note 4)

23

Min

Max

CS9011

T0-92
(92)

40

30

5

100

30

39

198

1

5

0.3

0.75

10

CS9012

T0-92
(92)

40

25

5

100

25

64

202

50

1

0.6

1.2

300

68

CS9013

T0-92
(92)

40

25

5

100

25

64

202

50

1

0.6

1.2

300

10

CS9014

T0-92
(92)

50

40

5

50

30

60

600

1

5

0.3

1

10

4.5

100

10

10

(Note 5)

07

CS9015

T0-92
(92)

50

40

5

50

30

60

600

1

5

0.3

1

10

6.0

100

10

10

(Note 5)

62

CS9016

T0-92
(92)

30

20

5

50

20

28

146

1

5

0.3

1

10

1.6

300

1

5

(Note 6)

49

CS9018

T0-92
(92)

30

15

5

50

20

28

146

1

5

0.3

1

10

1.7

400

2

ED1402

T0-92
(92)

35

30

4

10

10

110

810

2

5

ED1502

T0-92
(92)

25

20

4

10

10

36

210

1

10

ED1602

T0-92
(92)

35

30

4

10

10

70

475

2

5

ED1702

T0-92
(92)

30'

25

5

100'

20

40
106

0.5A
100

1
1

0.4

500

37

300

T0-92
(92)

30'

40
106

0.5A
100

1
1

0.4

500

77

300

SA733

T0-92
(94)

60

50

50

100

50

90

600

1

6

0.3

100

6

SA1015

T0-92
(94)

50

50

5

100

40

70
25

400

2
150

6
6

0.3

100

7

c."

ED1802

25

5

100'

20

1

43
10

350

5

10

11
49

10

150

(Note 7)

(Nole7)

69

20

69

10

69

S8!J8S J8WnSUO~

I

Consumer Series

Consumers Series (Continued)

00

~

VCEO
(V)
Min

VEBO
(V)
Min

Min

Max

TO-92
(94)

60

50

5

100

50

90

600

1

6

0.3

100

4

8C1815

TO·92
(94)

60

50

5

100

50

70
25

400

2
150

6
6

0.3

100

4

NA11

TO·92

25

20

5

1p.A

20

30

350

100

3

0.5

1.0

400

4.5

50

100

(Note 2)

10

NA12

·

TO·92

25

20

5

1p.A

20

30

350

100

3

0.5

1.0

400

7

50

100

(Note 2)

68

NA31

TO-92

30

5

1p.A

30

30

350

300

5

0.5

1.2

1.2A.

10

20

300

(Note 2)

37

NA32

·

35

TO-92

35

30

5

1p.A

30

30

350

300

5

0.5

1.2

1.2A

17

20

300

(Note 2)

77

NB111

TO·92

40

35

6

100

35

100

350

15

5

0.4

0.95

20

4

100

15

(Note 3)

11

NB121

TO·92

40

35

6

100

35

100

350

15

5

0.4

0.95

20

6

100

15

(Note 3)

69

NR421

·

TO-92
(96)

35

30

3

100

30

20

240

2

5

0.3

0.95

10

1.3

450

2

(Note 1)

42

NR431

TO·92

,

18

15

3

100

15

20

240

1

5

0.3

0.95

10

1.7

350

1

(Note 1)

43

888050

TO·92
(92)

40

25

6

100

35

45
85
40

5
100
800

1
1
1

0.5

1.2

800

9

100

50

37

300

TO·92
(92)

40

45
85
40

5
100
800

1
1
1

0.5

1.2

800

15

100

50

77

300

Case
Style

8C945

888550

·

·
,

25

ICES'
leBO @VCB
(V)
(nA)
Max

tr

VCES'
VCBO
(V)
Min

Type
No.

tOO

6

35

HFE

*Case styte means available in ESC or ECB pinouts.

TEST CONDITIONS:
Note 1: le/lB ~ 20
Note 2: le/lB ~ 40
Note 3: le/lB "" 50
Note 4: Ie ~ 1 mAo f ~ 1 MHz

Note 5: Ie
Note 6: Ie
Note 7: Ie

~

100

~

1 mAo f

~A.

~

200

~A.

f ~ 5 kHz
~

100 MHz

f ~ 2 kHz

@

Ic& VCE
(mA) (V)

VCE(SAT)
(V) &
Max

VBE(SAT)
VBE(ON)' @ Ic
(mA)
(V)
Min Max

Cob
(pF)
Max

(MHz) @ Ic
Min Max (mA)

150

10

toff
(ns)
Max

NF
(dB)
Max

Test
Condition

Process
No.

20

11

10

11

Consumers Series (Continued)
HFEBins

K

L

M

N

ED1702

106-150'

132-188

170-233

213-300*

ED1802

106-150"

132-188

170-233

213-300"

A

B

D

E
39-60"

54-80

64-91"

78-112

96-135

64-91"

78-112

96-135

118-166

144-202"

CS9016

28-45'

39-60

54-80

72-108

97-146'

CS9018

28-45*

39-60

54-80

72-108

97-146*

C

CS9011
CS9012
CS9013
CS9014

60-150

100-300

200-600

CS9015

60-150

100-300

200-600

F

ED1402

110-165*

150-225

202-318

290-450

410-810"

ED1502

36-55*

48-75

66-100

84-127

105-210*

ED1602

70-105"

90-140*

125-190

170-260

223-475"

H

I

72-108

97-146

132-198

118-166

144-202*

G

CJ)

'"

"Orders must contain at least two adjacent bins.

HFEBins
OR

YE

GR

SA1015

70-140*

120-240

200-400

SC1815

70-140*

120-240

200-400

B

C

0

SS8050

85-160

120-200

160-300*

558550

85-160

120-200

160-300"

I

"Orders must contain atleasltwo adjacent bins.

-

S9!J9S J9WnSUO:)

Consumer Series

Consumers Series (Continued)
HFEBlns

G

H

I

J

X

y

NAll

68-110'

100-160

140-240

200-350'

30-110

100-350

NA12

68-110'

100-160

140-240

200-350'

30-110

100-350

NA3l

68-110

100-160

140-240'

30-110

100-350

NA32

68-110

100-160

140-240'

30-110

100-350

NAlll

100-160

140-240

200-350

100-350

NA121

100-160

140-240

200-350

100-350

R

Q

p

K

SA733

90-180

135-270

200-400

300-600

SC945

90-180

135-270

200-400

300-600

'Orders must contain at least two adjacent bins.

HFEBlns

~

E

F

G

H

R

S

T

NR421

30-50'

45-75

68-110

100-160'

20-50'

45-110

100-240'

NR431

30-50

45-75

68-110

100-160'

20-50'

45-110

100-240'

'Orders must contain at least two adjacent bins.

----

Section 9
Power Components

•

Section 9 Contents
NPN Bipolar Power Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PNP Bipolar Power Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9-3
9-5

ULTRA-FAST RECTIFIERS
Single Rectifier per Package.................... ........ ........ .......... ........ .
Dual Rectifiers, Common Cathode. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . .
Power MOSFETs/COOLFETsTM-lntroduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N·Channel Power MOSFETs...... ............... . .. .............. ................. . .
COOLFETsTM .....................................................................

9·2

9-7
9-9

9-11
9-12
9·22

~National

NPN Bipolar
Power Transistors

~ Semiconductor
case

Type
No.

Style

D42C1

Vcao
(V)

Min

TO-202

VCEO
(V)

VEao
(V)

ICEX·
Icso

Min

Min

(pA)
Max

30

5

10'

@

VCB
(V)

Min

40

25

T0-202
TO·202
TO·202

D42C5

TO·202

I

0.2
2

0.5

20

25

0.2

40

5

10·

55

@

Ic

Process

(A)

No.

3

0.02

4P

100

3

0.02

4P

1.3

100

3

0.02

4P

0.5

1.3

100

3

0.02

4P

0.2

0.5

1.3

100

3

0.02

4P

Max

120

45

5

100

55

40
20

45

5

10·

55

40
20

0.2
2

0.5

1.3

100

3

0.02

4P

60

5

100

75

25

0.2

0.5

1.3

100

3

0.02

4P

0.2
1

0.5

1.3

100

3

0.02

4P

20

60

5

100

70

T0-202

120

T0-202

40

120

60

5

10·

70

40
20

0.2
2

0.5

1.3

100

3

0.02

4P

80

5

100

90

25

0.2

0.5

1.3

100

3

0.02

4P

10

(56)

D42C12

1.3

40

(56)

I

0.5

10'

(56)

D42C10

0.2

Max

10

T0-202

I

100

5

(56)

D42C9

1.3

30

(56)

D42C8

(MHz)

10

TO·202

D42C7

fr

COb
(pF)

0.5

40
20

(56)

D42C6

Ic

0.2

40

45

TO-202

c',.,

VBE(SAT)

Max

10·

(56)
CD

VCE(SAT)

Min

5

(56)

D42C4

& VCE
(A)
(V)
Ic

(V) &
(V)
@ (A)
Max
Min
Max

30

(56)

D42C3

@

10

(56)

D42C2

hFE

TO·202

80

5

10·

90

40

0.2

0.5

1.3

100

3

0.02

4P

30

5

10'

40

25

0.2

0.5

1.3

100

3

0.02

4P

0.2

0.5

1.3

100

3

0.02

4P

0.2
2

0.5

1.3

100

3

0.02

4P

(56)

D44C1

I

TO·220

10

(37)

D44C2

T0-220

30

5

10·

40

30

5

10'

40

(37)

D44C3

TO·220

40
20
40

20

(37)

120

SJO,S!SU8Jl J8MOd J810d!B NdN

I

NPN Bipolar Power Transistors

NPN Bipolar Power Transistors
Type
No.

Case
Style

VCBO
(V)
Min

(Continued)

VCEO
(V)
Min

VEBO
(V)
Min

ICEX'
ICBO
(,..A)
Max

@

VCB
(V)

Min

D44C4

TO·220
(37)

45

5

10'

55

25
10

D44C5

T0-220
(37)

45

5

100

55

40
20

D44C6

TO·220
(37)

45

5

10'

55

D44C7

TO·220
(37)

60

5

100

D44C8

TO·220
(37)

60

5

D44C9

TO·220
(37)

60

D44C10

TO·220
(37)

D44C12

hFE
Ic
VCE
Max @ (A) & (V)

VCE(SAT)
(V) &
Max

VBE(SAT)
@
Ic
(V)
Max
(A)
Min

Cob
(pF)
Max

fT
(MHz)
Min
Max

@

Ic
(A)

Process
No.

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

40
20

0.2
2

1
1

0.5

1.3

1

100

3

0.02

4P

75

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

100

70

40
20

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

5

10'

70

40
20

0.2
2

1
1

0.5

1.3

1

100

3

0.02

4P

80

5

100

90

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

4P

TO·220
(37)

80

5

10'

90

40

0.2

1

0.5

1.3

1

100

3

0.02

4P

D44H1

TO·220
(37)

30

5

10

30

35
20

2
4

1
1

1.0

1.5

8

40

D44H2

TO·220
(37)

30

5

10

30

60

2
4

1
1

1.0

1.5

8

40

40

D44H4

TO·220
(37)

45

5

10

45

35
20

2
4

1
1

1.0

1.5

8

40

D44H5

TO·220
(37)

45

5

10

45

60
40

2
4

1
1

1.0

1.5

8

40

D44H7

TO·220
(37)

60

5

10

60

35
20

2
4

1
1

1.0

1.5

8

40

D44H8

TO·220
(37)

60

5

10

60

60
40

2
4

1
1

1.0

1.5

8

40

D44H10

TO·220
(37)

80

5

10

80

35
20

2
4

1
1

1.0

1.5

8

40

D44H11

TO·220
(37)

80

5

10

80

60
40

2
4

1
1

1.0

1.5

8

40

I

120

120

~Nationai

PNP Bipolar
Power Transistors

Semiconductor

i

Type
No.

Case
Style

VCBO

VCEO

VEBO

(V)

ICES'

(V)

M

VCB

(V)

Min

Min

D43C1

TO-202
(56)

30

5

1,...A

1

10
25

D43C2

TO-202
(56)

30

5

1,...A

30

20
40

TO-202

30

5

1,...A

30

45

5

1,...A

45

5

1,...A

D43C3

Min

@

D43C4

TO-202
TO-202
TO-202
TO-202
T0-202
T0-202
T0-202

Min

C
(A)

Max

@

for
. (MHz)
Min
Max

Ic
@

(A)

Process
No.

5P

1A
200

1
1

0.5

1.3

1A

30

5P

20
40

1A
200

1
1

0.5

1.3

1A

30

5P

45

10
25

1A
200

1
1

0.5

1.3

1A

30

5P

45

20
40

1A
200

1
1

0.5

1.3

1A

30

5P
5P

120

120

45

5

1,...A

45

20
40

2A
200

1
1

0.5

1.3

1A

30

60

5

100

75

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

5P

60

5

100

70

40
20

0.2
1

1
1

0.5

1.3

1

100

3

0.02

5P

60

5

10'

70

40
20

0.2
2

1
1

0.5

1.3

1

100

3

0.02

5P

80

5

100

90

25
10

0.2
1

1
1

0.5

1.3

1

100

3

0.02

5P

(56)

D43C10

Max

(V)

&

30

(56)

D43C9

M

1A

(56)

D43C6

& VCE
(V)

1.3

(56)

D43C7

Ic

(A)

0.5

(56)

D43C6

@

Max

I

1
1

(56)

D43C5

Min

Cob
(pF)
Max

VBE(SAn

1A
200

(56)

'P
UI

hFE

(,...A)
Max

VCE(SAn

(56)

120

D43C12

T0-202

80

5

10'

90

40

0.2

1

0.5

1.3

1

100

3

0.02

5P

D45C1

TO-220
(37)

30

5

10'

40

10
25

1
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

D45C2

T0-220
(37)

30

5

10'

40

20
40

1
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

T0-220
(37)

30

2
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

D45C3

5

,

10'
---

40
-

--

20
40

-----

120

-

-

-

-

SJOIS!SUeJlJaMOd Jelod!s dNd

iii

PNP Bipolar Power Transistors

PNP Bipolar Power Transistors (Continued)
Type
No_

Case
Style

VCBO
(V)
Min

VCEO
(V)
Min

VEBO
(V)
Min

ICES'
(,...A)
Max

@

VCB
(V)

hFE

Min

D45C4

TO-220
(37)

45

5

10'

55

10
25

D45C5

TO-220
(37)

45

5

10'

55

20
40

D45C6

TO-220
(37)

45

5

10'

55

D45C7

TO-220
(37)

60

5

10'

D45C8

TO-220
(37)

60

5

10'

TO-220
(37)

60

Max

@

Ic
VCE
(A) & (V)

VCE(SAT)
(V) &
Max

VBE(SAT)
@
Ic
(V)
Max
(A)
Min

Cob
(pF)
Max

fT
(MHz)
Min
Max

@

Ic
(A)

Process
No_

1
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

1
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

20
40

2
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

70

10
25

1
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

70

20
40

1
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

20
40

2
0.2

1
1

0.5

1.3

1

125

3

0.02

5P

10

1

1

120

120

,

D45C9

co

a,

5

10'

D45Cl0

TO-220

80

5

10'

90

D45C12

TO-220
(37)

80

5

10'

90
40

0.2

1

D45Hl

. TO-220
(37)

30

5

10

30

20
35

4
2

D45H2

TO-220
(37)

30

5

10

30

40
60

D45H4

TO-220
(37)

45

5

10

45

D45H5

TO-220
(37)

45

5

10

D45H7

TO-220
(37)

60

5

D45H8

TO-220
(37)

60

D45Hl0

TO-220
(37)

D45Hll

TO-220
(37)

0.5

1.3

1

125

3

0.02

5P

0.5

1.3

1

125

3

0.02

5P

1
1

1.0

1.5

8

50

4
2

1
1

1.0

1.5

8

50

20
35

4
2

1
1

1.0

1.5

8

50

45

40
60

4
2

1
1

1.0

1.5

8

50

10

60

20
35

4
2

1
1

1.0

1.5

8

50

5

10

60

40
60

4
2

1
1

1.0

1.5

8

50

80

5

10

80

20
35

4
2

1
1

1.0

1.5

8

50

80

5

10

80

40
80

4
2

1
1

1.0

1.5

8

50

I

~Nationai

Single Rectifier per Package

Semiconductor

trr
(ns)
Max

Test
Condo

Proc.
Family

8

35
50

(Note 1)
(Note 2)

R4

8

8

35
50

(Note 1)
(Note 2)

R4

0.95

8

8

35
50

(Note 1)
(Note 2)

R4

200

0.95

8

8

35
50

(Note 1)
(Note 2)

R4

10

400

1.5

8

8

75

(Note 2)

R6

500

10

500

1.5

8

8

75

(Note 2)

R6

TO-220AC
(41)

600

10

600

1.5

8

8

75

(Note 2)

R6

FRP1005

TO-220AC
(41)

50

5

50

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

FRP1010

TO-220AC
(41)

100

5

100

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

FRP1015

TO-220AC
(41)

150

5

150

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

FRP1020

TO-220AC
(41)

200

5

200

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

VR
(V)

VFM
(V)
Max

10

50

0.95

8

100

10

100

0.95

T0-220AC
(41)

150

10

150

FRP820

TO-220AC
(41)

200

10

FRP840

TO-220AC
(41)

400

FRP850

T0-220AC
(41)

FRP860

Device
No.

Case
Style

VRRM
(V) Min

(,...A) Max

FRP805

TO-220AC
(41)

50

FRP810

TO-220AC
(41)

FRP815

(0

~

TEST CONDITIONS:
~

@

@

IF
(A)

IF
Avg.

A

AI,..

Note 1: IF

~

Note 2: IF

~

1.0A 1It/d,
8.0A d,/d,

Note 3: IF

~

10A !It/d,

~

100 AI,..

Nota 4: IF

~

16A !It/d,

~

100 AI,..

~

IRRM

50
100 AI,..

I

!
--

SJ8!J!I08t:1ISe:l-eJlln

II

Ultra-Fast Rectifiers

Single Rectifier per Package (Continued)
IF
(A)

IF
Avg.
A

t"
(ns)
Max

Test
Condo

Proc.
Family

0.95

16

16

35
50

(Note 1)
(Note 4)

R5

100

0.95

16

16

35
50

(Note 1)
(Note 4)

R5

25

150

0.95

16

16

35
50

(Note 1)
(Note 4)

R5

25

200

0.95

16

16

35
50

(Note 1)
(Note 4)

R5

M

VFM
(V)
Max

25

50

100

25

TO-220AC
(41)

150

TO-220AC
(41)

200

Device
No.

Case
Style

VRRM
(V) Min

FRP1605

TO-220AC
(41)

50

FRP1610

TO-220AC
(41)

FRP1615
FRP1620

TEST CONDITIONS:

IRRM @
(p.A) Max

VR

@

AI,..
AI,..
AI,..

Note 1: IF

~

1.0A dr/d,

~

50

Note 2: IF

~

S.OA dr/d,

~

100

Note 3: IF

~

10A dr/d,

~

100 A/,..

Note 4: IF

~

16A dr/d,

~

100

CD

Co

- -

------

--

IjNatiOnal
Semiconductor

'"

'"

Dual Rectifiers, Common Cathode

IF
(A)

IF
Avg.
A

trr
(ns)
Max

Test
Condo

Proc.
Family

0.95

8

16

35
50

(Note 1)
(Note 2)

R4

100

0.95

8

16

35
50

(Note 1)
(Note 2)

R4

10

150

0.95

8

16

35
50

(Note 1)
(Note 2)

R4

200

10

200

0.95

8

16

35
50

(Note 1)
(Note 2)

R4

TO·220AB
(38)

400

10

400

1.5

8

8

75

(Note 2)

R6

FRP1650CC

TO·220AB
(38)

500

10

500

1.5

8

8

75

(Note 2)

R6

FRP1660CC

TO-220AB
(38)

600

10

600

1.5

8

8

75

(Note 2)

R6

FRP2005CC

TO·220AB
(38)

50

5

50

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

FRP2010CC

TO·220AB
(38)

100

5

100

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

FRP2015CC

TO·220AB
(38)

150

5

150

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

FRP2020CC

TO·220AB
(38)

200

5

200

1.0

10

10

35
50

(Note 1)
(Note 3)

R4

VR
(V)

VF
(V)
Max

10

50

100

10

TO·220AB
(38)

150

FRP1620CC

TO-220AB
(38)

FRP1640CC

Device
No.

Case
Style

VRRM
(V) Min

IRRM
(/LA) Max

FRP1605CC

T0-220AB
(38)

50

FRP1610CC

TO·220AB
(38)

FRP1615CC

@

@

TEST CONDITIONS:
Note 1: IF

~

1.0A df/d,

~

Note 2: IF

~

B.OA df/d,

~

Note 3: IF

~

lOA df/d,

~

100 Alp.s

Note 4: IF

~

16A df/d,

~

100 Alp.s

50 AI p.s
100 Alp.s

SJa!l!IOal::llse::J-eJlln

II

Ultra-Fast Rectifiers

Dual Rectifiers, Common Cathode (Continued)

~

IF
Avg.
A

trr
(ns)
Max

Test
Condo

Proc.
Family

0.95

16

32

35
50

(Note 1)
(Note 4)

R5

100

0.95

16

32

35
50

(Note 1)
(Note 4)

R5

25

150

0.95

16

32

35
50

(Note 1)
(Note 4)

R5

25

200

0.95

16

32

35
50

(Note 1)
(Note 4)

R5

VF
(V)
Max

25

50

100

25

TO-247
(40)

150

TO-247
(40)

200

Case
Style

VRRM
(V) Min

IRRM
(/LA) Max

FRK3205CC

TO-247
(40)

50

FRK3210CC

TO-247
(40)

FRK3215CC
FRK3220CC

TEST CONDITIONS:

a

IF
(A)

VR
(V)

Device
No.

Note 1: IF

~

1.0A d,/d,

~

Note 2: IF

~

8.0A d,/d,

~

Note 3: IF

~

lOA d,/d,

~

100 AI,.s

Note 4: IF

~

16A d,/d,

~

100 AI,.s

50 AI,.s
100 AI,.s

@

@

~National

~ Semiconductor
Power MOSFETs/COOLFETsTM
Introduction
COOLFETs are power MOSFETs with a 20% lower (ROS(on) rating than the current industry standard. The 20% reduction in
ROS(on) means a 12% increase in the current rating. Since all other electrical and thermal characteristics remain the same,
COOLFETs can be used as either drop in replacements for standard IRF parts or in new designs.
As drop in replacements COOLFETs offer less power loss, cooler operation, higher efficiency and better reliability because the
major contributor to power dissipation within a MOSFET is 102 ROS(on).
In new designs, the circuit designer can take advantage of the higher current ratings on COOLFETs to design power supplies
with more output power.
This data book contains a selection guide to the COOLFET family and specification sheets for each COOLFET device. Please
note that COOLFETs are differentiated by the addition of a "CF" suffix to the standard nomenclature, e.g. IRF450CF,
IRF840CF. Because all MOSFETs are susceptible to damage from electrostatic discharge, there is a note on ESD handling
precautions for COOLFETs. Package outlines and a listing of sales offices and authorized distributors are also included in
Section 12.

9-11

N-Channel Power MOSFETs

~NatiOnal

N-Channel Power MOSFETs

Semiconductor

Type

No.
IRF510
IRF511
IRF512
IRF513
MTP4N08
MTP4Nl0

~
I\)

IRF610
IRF611
IRF612
IRF613
MTP2N18
MTP2N20
IRF710
IRF711

Case
Style

TO·220
(37)
TO·220
(37)
TO·220
(37)
T0-220
(37)
TO·220
(37)
TO·220
(37)
T0-220
(37)
TO·220
(37)
T0-220
(37)
TO·220
(37)
TO·220
(37)
TO·220
(37)
TO·220
(37)
T0-220
(37)

Og

CISS
(pF)
Min
Max

Coss
(pF)
Min
Max

7.5

200

100

30

Al

2

7.5

200

100

30

Al

0.8

2

7.5

200

100

30

Al

0.25

0.8

2

7.5

200

100

30

Al

4.5

1

0.8

2

7.5

200

100

30

Al

2

4.5

1

0.8

2

7.5

200

100

30

Al

1.5

2

4

0.25

1.5

1

7.5

200

80

25

A2

2.5

1.5

2

4

0.25

1.5

1

7.5

200

80

25

A2

200

2.0

1.25

2

4

0.25

2.4

1

7.5

200

80

25

A2

20

150

2.0

1.25

2

4

0.25

2.4

1

7.5

200

80

25

A2

50

180

3.25

2.25

2

4.5

1

1.8

1

7.5

200

80

25

A2

50

200

3.25

2.25

2

4.5

1

1.8

1

7.5

200

80

25

A2

20

400

1.5

1

2

4

0.25

3.6

0.8

7.5

200

50

15

A3

20

350

1.5

1

2

4

0.25

3.6

0.8

7.5

200

50

15

A3

ID@
= 25"C
(A)

111) @
= 100"C
(A)

ID
(mA)

RDS(on)

4

0.25

0.6

2

2

4

0.25

0.6

2

2

4

0.25

3.5

2

2

4

80

5

3.5

2

50

100

5

3.5

20

200

2.5

20

150

20

PD
(W)
Te = 25"C

VDSS
(V)
Min

20

100

4

2.5

2

20

60

4

2.5

20

100

3.5

20

60

50

Te

Te

VGS(th)
(V)
Min
Max

@

-~

-- I-

ID
(0) @ (A)
Max

(nC)
Max

C...
(pF)
Min
Max

Proc.

No.

N-Channel Power MOSFETs (Continued)
Type
No.
IRF712
IRF713
MTP2N35
MTP2N40
FMP18N05
FMP18N06
FMP20N05
FMP20N06

~

Co)

IRF520
IRF521
IRF522
IRF523
MTP10N08
MTP10N10

Case
Style

Po
(W)
Te = 25"C

Voss
(V)
Min

lo@
Te = 25"C
(A)

l ro @
Te = 100"C
(A)

20

400

1.3

0.9

2

4

0.25

5

20

350

1.3

0.9

2

4

0.25

50

350

2.25

1.4

2

4.5

50

400

2.25

1.4

2

75

50

18

13

75

60

18

75

50

75

TO·220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
T0-220
(37)
T0-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)

Crss
(pF)
Min
Max

Os!

Ciss
(pF)
Min
Max

0.8

7.5

200

50

15

A3

5

0.8

7.5

200

50

15

A3

1

5

1.0

7.5

200

50

15

A3

4.5

1

5

1.0

7.5

200

50

15

A3

2

4

0.25

0.1

10

20

850

400

150

81

13

2

4

0.25

0.1

10

20

850

400

150

81

20

14

2

4

0.25

0.085

10

20

850

400

150

81

60

20

14

2

4

0.25

0.085

20

20

850

400

150

81

40

100

8

5

2

4

0.25

0.3

4

15

600

400

100

82

40

60

8

5

2

4

0.25

0.3

4

15

600

400

100

82

40

100

7

4

2

4

0.25

0.4

4

15

600

400

100

82

40

60

7

4

2

4

0.25

0.4

4

15

600

400

100

82

75

80

10

6.4

2

4.5

1

0.33

5

15

600

400

100

82

75

100

10

6.4

2

4.5

1

0.33

5

15

600

400

100

82

10
VGS(th)
@ (mA)
(V)
Min
Max

10
RDS(on)
(.0.) @ (A)
Max

(nC)
Max

Coss
(pF)
Max
Min

-

-

Proc.
No.

--

S13:1S0W J8MOd 18UU81.1:>-N

I

N-Channel Power MOSFETs

N-Channel Power MOSFETs (Continued)
Type
No.

IRF620

l ro @
= 100"C
(A)

Q9
(nC)
Max

C...
(PF)
Min
Max

Coss
(pF)
Min
Max

15

600

300

80

83

2.5

15

600

300

80

83

1.2

2.5

15

600

300

80

83

0.25

1.2

2.5

15

600

300

80

83

4.5

1

0.7

3.5

15

600

300

80

83

2

4.5

1

0.7

3.5

15

600

300

80

83

2

2

4

0.25

1.8

1.5

15

500

100

40

84

3

2

2

4

0.25

1.8

1.5

15

500

100

40

84

400

2.5

1.5

2

4

0.25

2.5

1.5

15

500

100

40

84

40

350

2.5

1.5

2

4

0.25

2.5

1.5

15

500

100

40

84

75

350

3

2

2

4.5

1

3.3

1.5

15

500

100

40

84

75

400

3

2

2

4.5

1

3.3

1.5

15

500

100

40

84

40

500

2.5

1.5

2

4

0.25

3

1

15

400

100

40

85

40

450

2.5

1.5

2

4

0.25

3

1

15

400

100

40

85

40

500

2.0

1.0

2

4

0.25

4

1

15

400

100

40

85

40

450

2.0

1.0

2

4

0.25

4

1

15

400

100

40

85

75

450

3.0

2.0

2

4.5

1

4

1

15

400

100

40

85

500

3.0

2.0

2

4.5

1

4

1

15

400

100

40

85

ID@
= 25"C
(A)

ID
@ (mA)
(V)
Min
Max

ID
(0) @ (A)
Max

Case
Style

PD
(W)
Te = 25"C

VDSS

TO·220

40

200

5

3

2

4

0.25

0.8

2.5

40

150

5

3

2

4

0.25

0.8

40

200

4

2.5

2

4

0.25

40

150

4

2.5

2

4

75

180

7

4.5

2

75

200

7

4.5

40

400

3

40

350

40

(V)
Min

Te

Te

VGS(th)

RDS(on)

Cras
(pF)
Min
Max

Proc.
No.

(3n

IRF621

TO-220
(3n

IRF622

TO·220
(3n

IRF623

TO·220
(3n

MTP7N18

TO-220
(3n

MTP7N20

TO-220
(3n

IRF720

TO-220
(3n

IRF721

~
....

T0-220
(3n

IRF722

T0-220
(3n

IRF723

T0-220
(3n

MTP3N35
MTP3N4O
IRF820
IRF821

T0-220
(37)
TO·220
(37)
T0-220
(37)
TO·220
(3n

IRF822
IRF823
MTP2N45

TO·220
(37)
TO·220
(37)
TO·220
(3n

MTP2N50

TO·220
(37)

75
-~

N-Channel Power MOSFETs (Continued)
Type
No.
2N6755
2N6756
IRF130
IRF131
IRF132
IRF133
IRF530
IRF531

~

UI

IRF532
IRF533
MTP20N08
MTP20Nl0
2N6757
2N6758
IRF230
IRF231

Case
Style

Te

TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)

Po

Voss

(W)

(V)

Min

lo@
= 2S"C
(A)

Te

Iro @
100"C
(A)

VGS(th)

10

@(mA)

(V)

=

10
(11) @ (A)

ROS(on)

Max

Os.

(nC)
Max

Min

Max

75

60

12

8

2

4

1

0.25

8

75

100

14

9

2

4

1

0.18

9

75

100

14

9

2

4

0.25

0.18

8

30
(Note 1)
30
(Note 1)
30

75

60

14

9

2

4

0.25

0.18

8

75

100

12

8

2

4

0.25

0.25

75

60

12

8

2

4

0.25

75

100

14

9

2

4

75

60

14

9

2

75

100

12

8

75

60

12

100

80

100

=

2S"C

Te

Ciss
(pF)
Min Max

COBS
(pF)
Min Max

Cras
(PF)
Min Max

350

800

150

500

50

150

Cl

350

800

150

500

50

150

Cl

Proc.
No.

800

500

150

Cl

30

800

500

150

Cl

8

30

800

500

150

Cl

0.25

8

30

800

500

150

Cl

0.25

0.18

8

30

800

500

150

Cl

4

0.25

0.18

8

30

800

500

150

Cl

2

4

0.25

0.25

8

30

800

500

150

Cl

8

2

4

0.25

0.25

8

30

800

500

150

C1

20

11.5

2

4.5

1

0.15

10

30

800

500

150

Cl

100

20

11.5

2

4.5

1

0.15

10

30

800

500

150

Cl

75

150

8

5

2

4

1

0.6

5

75

200

9

6

2

4

1

0.4

6

75

200

9

6

2

4

0.25

0.4

5

30
(Note 1)
30
(Note 1)
30

75

150

9

6

2

4

0.25

0.4

5

30

350

800

100

450

40

150

C2

350

800

100

450

40

150

C2

800

450

150

C2

800

450

150

C2

Note 1: Non.JEDEC registered value.

------

S.L3:1S0W J8MOd 18UUBlI:l-N

II

N-Channel Power MOSFETs

N-Channel Power MOSFETs (Continued)
Type
No.

IRF232
IRF233
IRF630

Voss
(V)

lo@

l ro @

Te = 25°C

Te = 100"C

Te = 25"C

Min

(A)

(A)

Min

Max

75

200

8

5

2

4

0.25

0.5

5

30

800

450

150

C2

75

150

8

5

2

4

0.25

0.5

5

30

800

450

150

C2

75

200

9

6

2

4

0.25

0.4

5

30

800

450

150

C2

75

150

9

6

2

4

0.25

0.4

5

30

800

450

150

C2

75

200

8

5

2

4

0.25

0.5

5

30

800

450

150

C2

75

150

8

5

2

4

0.25

0.5

5

30

800

450

150

C2

100

180

12

8.5

2

4.5

1

0.35

6

30

800

450

150

C2

100

200

12

8.5

2

4.5

1

0.35

6

30

800

450

150

C2

75

350

4.5

3

2

4

1

1.5

3.5

75

400

5.5

3.5

2

4

1

1

3

75

400

5.5

3.8

2

4

0.25

1

3

30
(Note 1)
30
(Note 1)
30

75

350

5.5

3.8

2

4

0.25

1

3

75

400

4.5

3.0

2

4

0.25

1.5

75

350

4.5

3.0

2

4

0.25

75

400

5.5

3.8

2

4

75

350

5.5

3.8

2

4

Po
(W)

case
Style

TO-204M
(42)
TO-204M
(42)
T0-220

VGS(th)
(V)

10
@(mA)

10
RoS(on)
(0) @ (A)

Max

Og

Ciss

Cos.

(nC)
Max

(pF)

(pF)

Min

Max

Min

Max

Crss
(pF)

Min

Max

Proc.
No.

(3n

IRF631

T0-220
(3n

IRF632

TO-220
(3n

IRF633

TO-220
(3n

MTP12N18
MTP12N20

~

CI>

2N6759
2N6760
IRF330
IRF331
IRF332
IRF333
IRF730
IRF731

TO-220
(37)
T0-220
(37)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
TO-204M
(42)
T0-220
(37)
TO-220

350

800

50

300

20

80

C3

350

800

50

300

20

80

C3

900

300

80

C3

30

900

300

80

C3

3

30

900

300

80

C3

1.5

3

30

900

300

80

C3

0.25

1

3

30

900

300

80

C3

0.25

1

3

30

900

300

80

C3

I

(3n
Note 1: Non.JEDEC registered value.

I

----

I

N-Channel Power MOSFETs (Continued)
Type
No.
IRF732
IRF733
MTP5N35
MTP5N40
2N6761
2N6762
IRF430
IRF431

~
.....

IRF432
IRF433
IRF830
IRF831
IRF832
IRF833
Note

Case
Style

Po
(W)
Te = 25°C

Voss

(V)
Min

lo@
Te = 25"C
(A)

Iro @
Te = 100"C
(A)

75

400

4.5

3.0

2

4

0.25

1.5

3

75

350

4.5

3.0

2

4

0.25

1.5

75

350

5

3.8

2

4.5

1.0

75

400

5

3.8

2

4.5

75

450

4

2.5

2

75

500

4.5

3

75

500

4.5

75

450

75

TO-220
(37)
TO-220
(37)
T0-220
(37)
TO-220
(37)
T0-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
TO-220
(37)
TO-220
(37)
TO-220
(37)
TO-220
(37)

10
RDS(on)
(0) @ (A)
Max

Qg
(nC)
Max

Ciss
(pF)
Min
Max

Coss
(pF)
Min
Max

30

900

300

80

C3

3

30

900

300

80

C3

1

2.5

30

1200

300

80

C3

1.0

1

2.5

30

1200

300

80

C3

4

1

2

2.5

2

4

1

1.5

3

3.0

2

4

0.25

1.5

2.5

30
(Note 1)
30
(Note 1)
30

4.5

3.0

2

4

0.25

1.5

2.5

500

4

2.7

2

4

0.25

2.0

75

450

4

2.7

2

4

0.25

75

500

4.5

3.0

2

4

75

450

4.5

3.0

2

75

500

4

2.7

75

450

4

2.7

VGS(th)

10

@(mA)
(V)
Min
Max

Crss
(pF)
Min
Max

Proc.
No.

350

800

25

200

15

60

C4

350

800

25

200

15

60

C4

800

200

60

C4

30

800

200

60

C4

2.5

30

800

200

60

C4

2.0

2.5

30

800

200

60

C4

0.25

1.5

2.5

30

800

200

60

C4

4

0.25

1.5

2.5

30

800

200

60

C4

2

4

0.25

2.0

2.5

30

800

200

60

C4

2

4

0.25

2.0

2.5

30

800

200

60

C4

1: Non.JEDEC registered value.

S13:150111 .I9MOd 19UUe~O·N

II

N-Channel Power MOSFETs

N-Channel Power MOSFETs (Continued)
Type
No.

MTP4N45
MTP4N50
IRF140
IRFPl40
IRF141
IRFP141
IRF142
IRFl43

~

CD

IRF540
IRF541
IRF542
IRF543
IRF240
IRFP240
IRF241
IRFP241
IRF242
IRF243

Case
Style
TO-220
(35)
TO-220
(35)
T0-204AA
(42)
TO-3P
(40)
T0-204AA
(42)
TO-3P
(40)
T0-204AA
(42)
T0-204AA
(42)
TO-220
(37)
TO-220
(37)
TO-220
(37)
T0-220
(37)
TO-204AA
(42)
TO-3P
(40)
TO-204AA
(42)
TO-3P
(40)
TO-204AA
(42)
TO-204AA
(42)

Ciss
(PF)
Min
Max

C oss
(PF)
Min
Max

30

1200

300

80

C4

2

30

1200

300

80

C4

0.085

15

60

1600

800

300

El

0.25

0.085

15

60

1600

800

300

El

4

0.25

0.085

15

60

1600

800

300

El

2

4

0.25

0.085

15

60

1600

800

300

El

15

2

4

0.25

0.11

15

60

1600

800

300

El

24

15

2

4

0.25

0.11

15

60

1600

800

300

El

100

27

17

2

4

0.25

0.085

15

60

1600

800

300

El

125

60

27

17

2

4

0.25

0.085

15

60

1600

800

300

El

125

100

24

15

2

4

0.25

0.11

15

60

1600

800

300

El

125

60

24

15

2

4

0.25

0.11

15

60

1600

800

300

El

125

200

18

11

2

4

0.25

0.18

10

60

1600

750

300

E2

150

200

20

13

2

4

0.25

0.18

10

60

1600

750

300

E2

125

150

18

11

2

4

0.25

0.18

10

60

1600

750

300

E2

150

150

20

13

2

4

0.25

0.18

10

60

1600

750

300

E2

125

200

16

10

2

4

0.25

0.22

10

60

1600

750

300

E2

125

150

16

10

2

4

0.25

0.22

10

60

1600

750

300

E2

Min

ID@
Tc = 25"C
(A)

IrD@
Tc = 100"C
(A)

Min

Max

450

4

3.0

2

4.5

1.0

1.5

2

75

500

4

3.0

2

4.5

1.0

1.5

125

100

27

17

2

4

0.25

150

100

29

19

2

4

125

60

27

17

2

150

60

29

19

125

100

24

125

60

125

PD
(W)
Te = 25"C

VDSS
(V)

75

VGS(th)
(V)

ID
@(mA)

ID
(0) @ (A)
Max

RDS(on)

Og
(nC)
Max

Cras
(pF)
Min
Max

Proc.
No.

N-Channel Power MOSFETs (Continued)
Type
No.

Case
Style

IRF640

TO-220
(37)
TO-220
(37)
TO-220
(37)
TO·220
(37)
TO-204AA
(42)
TO-3P
(40)
TO-204AA
(42)
TO-3P
(40)
TO-204AA
(42)
TO-204AA
(42)
TO·220
(37)
TO-220
(37)
TO·220
(37)
TO·220
(37)
TO·204AA
(42)
TO·3P
(40)
TO·204AA
(42)

IRF641
IRF642
IRF643
IRF340
IRFP340
IRF341
IRFP341

~

'"

IRF342
IRF343
IRF740
IRF741
IRF742
IRF743
IRF440
IRFP440
IRF441

Qg
(nC)
Max

Ciss
(pF)
Min
Max

Coss
(pF)
Max
Min

Crss
(pF)
Min
Max

60

1600

750

300

E2

10

60

1600

750

300

E2

0.22

10

60

1600

750

300

E2

0.25

0.22

10

60

1600

750

300

E2

4

0.25

0.55

5

60

1600

450

150

E3

2

4

0.25

0.55

5

60

1600

450

150

E3

6.7

2

4

0.25

0.55

5

60

1600

450

150

E3

12

7.5

2

4

0.25

0.55

5

60

1600

450

150

E3

400

8

5.5

2

4

0.25

0.8

5

60

1600

450

150

E3

125

350

8

5.5

2

4

0.25

0.8

5

60

1600

450

150

E3

125

400

10

6.7

2

4

0.25

0.55

5

60

1600

450

150

E3

125

350

10

6.7

2

4

0.25

0.55

5

60

1600

450

150

E3

125

400

8

5.5

2

4

0.25

0.8

5

60

1600

450

150

E3

125

350

8

5.5

2

4

0.25

0.8

5

60

1600

450

150

E3

125

500

8

5.3

2

4

0.25

0.85

4

60

1600

350

150

E4

150

500

9.5

6.0

2

4

0.25

0.85

4

60

1600

350

150

E4

125

450

8

5.3

2

4

0.25

0.85

4

60

1600

350

150

E4

Po
(W)
Te = 25"C

Voss
(V)
Min

lo@
Te = 25·C
(A)

Iro@
Te = 100·C
(A)

125

200

18

11

2

4

0.25

0.18

10

125

150

18

11

2

4

0.25

0.18

125

200

16

10

2

4

0.25

125

150

16

10

2

4

125

400

10

6.7

2

150

400

12

7.5

125

350

10

150

350

125

10
VGS(th)
@(mA)
(V)
Min
Max

10
ROS(on)
(0) @ (A)
Max

Proc.
No.

S13.:1S0W J9MOd 19uueq:)-N

N-Channel Power MOSFETs

N-Channel Power MOSFETs (Continued)
Crss
(pF)
Min Max

60

1600

350

150

E4

4

60

1600

350

150

E4

1.1

4

60

1600

350

150

E4

0.25

0.85

4

60

1600

350

150

E4

4

0.25

0.85

4

60

1600

350

150

E4

2

4

0.25

1.1

4

60

1600

350

150

E4

4.8

2

4

0.25

1.1

4

60

1600

350

150

E4

31

20

2

4

1

0.08

20

100

38

24

2

4

1

0.055

24

150

100

40

23

2

4

0.25

0.055

20

120
(Note 1)
120
(Note 1)
120

175

100

40

25

2

4

0.25

0.055

20

150

60

40

23

2

4

0.25

0.055

175

60

40

25

2

4

0.25

150

100

33

19

2

4

150

60

33

19

2

150

150

25

16

150

200

30

150

200

175
150

Po
(w)
Te = 25·C

Voss

(V)
Min

lo@
Te = 25·C
(A)

Iro@
Te = 100·C
(A)

IRFP441

TO-3P
(40)
TO-204M
(42)
TO-204M
(42)
TO-220
(37)
TO-220
(37)
TO·220
(37)
T0-220
(37)
TO-204AE
(43)
TO-204AE
(43)
TO-204AE
(43)
TO-3P
(40)
TO-204AE
(43)
TO-3P
(40)
TO-204AE
(43)
TO-204AE
(43)
TO-204AE
(43)
TO-204AE
(43)
TO-204AE
(43)
TO-3P
(40)
TO-204AE
(43)

150

450

9.5

6.0

2

4

0.25

0.85

4

125

500

7

4.8

2

4

0.25

1.1

125

450

7

4.8

2

4

0.25

125

500

8

5.3

2

4

125

450

8

5.3

2

125

500

7

4.8

125

450

7

150

60

150

IRF443
IRF840
IRF841
IRF842
IRF843
2N6763
2N6764
<0

~

Coss
(pF)
Max
Min

Case
Style

IRF442

IRF150
IRFP150
IRF151
IRFP151
IRF152
IRF153
2N6765
2N6766
IRF250
IRFP250
IRF251

Q9
(nC)
Max

Ciss
(pF)
Min
Max

Type
No.

Note 1: Noo-JEDEC registered value.

10
@(mA)
(V)
Min
Max
VGS(th)

10
ROS(on)
(n) @ (A)
Max

Proc.
No.

1000

3000

500

1500

150

500

F1

1000

3000

500

1500

150

500

F1

3000

1500

500

F1

120

3000

1500

500

F1

20

120

3000

1500

500

F1

0.055

20

120

3000

1500

500

F1

0.25

0.08

20

120

3000

1500

500

F1

4

0.25

0.08

20

120

3000

1500

500

F1

2

4

1

0.12

16

19

2

4

1

0.085

19

30

18.5

2

4

0.25

0.085

16

120
(Note 1)
120
(Note 1)
120

200

32

20

2

4

0.25

0.085

16

150

30

18.5

2

4

0.25

0.085

16

1000

3000

450

1200

150

500

F2

1000

3000

450

1200

150

500

F2

3000

1200

500

F2

120

3000

1200

500

F2

120

3000

1200

500

F2

N-Channel Power MOSFETs
Type
No.
IRFP251
IRF252
IRF253
2N6767
2N6768
IRF350
IRFP350
IRF351
IRFP351
U>

~

IRF352
IRF353
2N6769
2N6770
IRF450
IRFP450
IRF451
IRFP451
IRF452
IRF453

Case
Style

Po

Voss

(W)
Te = 25"C

(V)
Min

lo@
Te = 25"C
(A)

Iro @
Te = 100"C
(A)

175

150

32

20

2

4

0.25

0.085

150

200

25

15

2

4

0.25

150

150

25

15

2

4

150

350

12

7.75

2

150

400

14

9

150

400

15

175

400

150

T()'3P
(40)
TO-204AE
(43)
TO-204AE
(43)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
T()'3P
(40)
TO-204AA
(42)
T()'3P
(40)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
TO-204AA
(42)
T()'3P
(40)
T()'204AA
(42)
T()'3P
(40)
TO-204AA
(42)
TO-204AA
(42)

(nC)
Max

09

Cis.
(pF)
Min
Max

Coss
(pF)
Min
Max

Cras
(pF)
Min Max

16

120

3000

1200

500

F2

0.12

16

120

3000

1200

500

F2

0.25

0.12

16

120

3000

1200

500

F2

4

1

0.4

7.75

2

4

1

0.3

9

10

2

4

0.25

0.3

8

120
(Note 1)
120
(Note 1)
120

17

11

2

4

0.25

0.3

8

350

15

10

2

4

0.25

0.3

175

350

17

11

2

4

0.25

150

400

13

8.5

2

4

150

350

13

8.5

2

150

450

11

7

150

500

12

150

500

175

10
@(mA)
(V)
Min Max
VGS(th)

10
RDS(on)
(n) @ (A)
Max

Proc.
No.

1000

3000

200

600

50

200

F3

1000

3000

200

600

50

200

F3

3000

600

200

F3

120

3000

600

200

F3

8

120

3000

600

200

F3

0.3

8

120

3000

600

200

F3

0.25

0.4

8

120

3000

600

200

F3

4

0.25

0.4

8

120

3000

600

200

F3

2

4

1

0.5

7

7.75

2

4

1

0.4

7.75

13

8.5

2

4

0.25

0.4

7

120
(Note 1)
120
(Note 1)
120

500

15

9.5

2

4

0.25

0.4

7

150

450

13

8.5

2

4

0.25

0.4

175

450

15

9.5

2

4

0.25

150

500

12

7.5

2

4

150

450

12

7.5

2

4

1000

3000

200

600

50

200

F4

1000

3000

200

600

50

200

F4

3000

600

200

F4

120

3000

600

200

F4

7

120

3000

600

200

F4

0.4

7

120

3000

600

200

F4

0.25

0.5

7

120

3000

600

200

F4

0.25

0.5

7

120

3000

600

200

F4

Note 1: Non.JEDEC registered value.

S13:1S0W J8MOd 18UU84:)-N

I

N-Channel Power MOSFETs

~NatiOnal

COOLFETsTM

Semiconductor

Type
No.

case
Style

IRF520CF

TO-220
(3l)
TO-220
(3l)
TO-220
(3l)
T0-220
(3l)
T0-220
(3l)
T0-220
(3l)
TO-220
(3l)
TO-200
(3l)
T0-3P
(40)
TO-3P
(40)
TO-220
(3l)

IRF620CF
IRF720CF
IRFS20CF
IRF530CF
IRF630CF
CD

~

IRF730CF
IRFS30CF
IRFP140CF
IRFP141CF
IRF540CF

Po

Voss

lo@

Iro @

VGS(th)

(W)

Te = 25"C

Te = 100"C

(V)

Te = 2SoC

(V)
Min

(A)

(A)

Min

Max

40

100

9.1

5.S

2

4

0.25

0.24

4

15

600

400

100

82

40

200

5.6

3.5

2

4

0.25

0.64

2.5

15

600

300

SO

B3

40

400

3.35

2.15

2

4

0.25

1.44

1.5

15

500

100

40

84

40

500

2.S

1.75

2

4

0.25

2.4

1

15

400

100

40

85

75

100

16

10

2

4

0.25

0.144

S

30

SOO

500

150

C1

75

200

10

S.5

2

4

0.25

0.32

5

30

SOO

450

150

C2

75

400

6.2

3.9

2

4

0.25

O.S

3

30

900

300

SO

C3

75

500

5

3.2

2

4

0.25

1.2

2.5

30

SOO

200

60

C4

150

100

33

21

2

4

0.25

0.068

15

60

1600

SOO

300

E1

150

60

33

21

2

4

0.25

0.068

15

60

1600

SOO

300

E1

125

100

30

19

2

4

0.25

0.06S

15

60

1600

SOO

300

E1

10

@ (mA)

10
(0) @ (A)
Max

RDS(on)

Qg
(nC)
Max

Min

CISS

Coss

(pF)

(pF)

Max

Min

Max

Crss

Proc.

(pF)
Min

Max

No.

~NatiOnal

COOLFETsTM

Semiconductor

Type

No.
IRFP240CF
IRFP241CF

Case
Style

Min

lo@
Tc = 25"C
(A)

I ro @
Tc = 100"C
(A)

Min

Max

150

200

23

14

2

4

0.25

0.144

10

150

150

23

14

2

4

0.25

0.144

125

200

20

13

2

4

0.25

150

400

13

8

2

4

150

350

13

8

2

125

400

11

7

125

500

8.9

150

500

150

Ciss
(pF)
Min
Max

Coss
(pF)
Min
Max

C....
(pF)
Min Max

60

1600

750

300

El

10

60

1600

750

300

El

0.144

10

60

1600

750

300

E2

0.25

0.44

5

60

1600

450

150

E3

4

0.25

0.44

5

60

1600

450

150

E3

2

4

0.25

0.44

5

60

1600

450

150

E3

5.6

2

4

0.25

0.68

4

60

1600

350

150

E4

10.5

6.5

2

4

0.25

0.68

4

60

1600

350

150

E4

450

10.5

6.5

2

4

0.25

0.68

4

60

1600

350

150

E4

150

100

44

28

2

4

0.25

0.044

20

120

3000

1500

500

Fl

175

100

44.5

28

2

4

0.25

0.044

20

120

3000

1500

500

Fl

175

60

44.5

28

2

4

0.25

0.044

20

120

3000

1500

500

Fl

150

200

33

21

2

-4

0.25

0.068

16

120

3000

1200

500

F2

175

200

36

23

2

4

0.25

0.068

16

120

3000

1200

500

F2

175

150

36

23

2

4

0.25

0.068

16

120

3000

1200

500

F2

Po
(W)
Tc = 25°C

Voss

TO·3P
(40)
TO·3P

(V)

VGS(th)
(V)

10
@(mA)

10
RoS(on)
(0) @ (A)
Max

Og
(nC)
Max

Proc.

No.

(40)

IRF640CF
IRFP340CF
IRFP341CF
IRF740CF
CD

~

IRF840CF
IRFP440CF

T0-220
(40)
TO·3P
(40)
T0-3P
(40)
T0-220
(37)
T0-200
(37)
T0-3P
(40)

IRFP441CF
IRF150CF
IRFP150CF
IRFP151CF
IRF250CF
IRFP250CF
IRFP251CF
------

TO·3P
(40)
T0-204AE
(40)
TO·3P
(40)
TO·3P
(40)
TO·204AE
(40)
TO·3P
(40)
TO·3P
~O)

S13:JSOW JaMOd laUUBl.I:>-N

Iii

N·Channel Power MOSFETs

~NatiOnal

COOLFETsTM

Semiconductor

Type
No.

Case
Style

IRF350CF

TO-204AE
(42)
TO-3P
(43)
TO-3P
(43)
TO-204AE
(42)
TO-3P
(43)
TO-3P
(43)

IRFP350CF
IRFP351CF
IRF450CF
IRFP450CF
IRFP451CF
CD

~

Po
(W)
Te = 25"C

Voss
(V)
Min

lo@
Te = 25"C
(A)

Iro @
Te = 1000C
(A)

150

400

16.75

10.6

2

4

0.25

0.24

175

400

19

12

2

4

0.25

175

350

19

12

2

4

150

500

14.5

9.2

2

175

500

16.5

10.5

175

450

16.5

10.5

Og
(nC)
Max

Ciss
(pF)
Min
Max

Coss
(pF)
Min
Max

Crss
(pF)
Min
Max

8

120

3000

600

200

F3

0.24

8

120

3000

600

200

F3

0.25

0.24

8

120

3000

600

200

F3

4

0.25

0.32

7

120

3000

600

200

F4

2

4

0.25

0.32

7

120

3000

600

200

F4

2

4

0.25

0.32

7

120

3000

600

200

F4

10
VGS{th)
@(mA)
(V)
Min
Max

10
RoS{on)
(0) @ (A)
Max

Proc.
No.

Section 10
Transistor Datasheets

Section 10 Contents
PN100/MMBT100 NPN General Purpose Amplifier. ..•.•.........•...•. ........ ... .....
PN1 00A/MMBT1 OOA NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PN 101 IMMBT1 01 NPN General Purpose Amplifier ....... . . • . . . . . . . . . . • . . • . . • . • . . . . . . . .
PN200/MMBT200 PNP General Purpose Amplifier....... ............. ... ....... .......
PN200AlMMBT200A PNP General Purpose Amplifier ......•.•.' • . . . . . . . . • . • . . . • . • . . . . . . .
PN201/MMBT201 PNP General Purpose Amplifier .....................................
2N918/PN918/MMBT918 NPN RFTransistor ..........................................
2N2222/PN2222/MMBT2222/MPQ2222/2N2222A1PN2222A/MMBT2222A NPN General
Purpose Amplifier . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . • . • . • . . . . . . . . . . • . • • • . • . • . • . . .
2N2369/PN2369/MMBT2369/MPQ2369 NPN Switching Transistor...... .. .......... ....
2N2907 IPN2907IMMBT2907IMPQ290712N2907A1PN2907AlMMBT2907A1MPQ2907A
PNP General Purpose Amplifier ... . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N3019/TN3019 NPN General Purpose Amplifier •.....•....•..•...•.....•...•.........
2N3467 ITN3467 IMPQ3467 PNP Switching Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PN3646/MMBT3646 NPN Switching Transistor........ .•..•.•. .......•.. .•.•.•. .......
2N3725/TN3725/MPQ3725 NPN Switching Transistor.. ........ .. ...•.... ....... .......
2N3904/MMBT3904/MPQ3904 NPN General Purpose Amplifier. . . . . . . • . . . . . . . . . . . . . . . . .
2N3906/MMBT3906/MPQ3906 PNP General Purpose Amplifier. . . . . . . . . • . . . •. . . . . . . . . . .
2N4033/TN4033 PNP General Purpose Amplifier. . . . . . • . . . . . . . . . . . • . . • . . . . . . . . . . . . . . . . .
PN4258/MMBT4258 PNP Switching Transistor. . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • •
2N4391 12N4392/2N4393/PN4391 IPN4392/PN4393/MMBF4391 IMMBF4392/MMBF4393
General Purpose N-Channel JFET Transistor ........................................
2N4401/MMBT4401 NPN General Purpose Amplifier ...................................
2N4403/MMBT4403 PNP General Purpose Amplifier... ........ .. .. ..... . ...•.•.•.•.•..
2N5086/2N5087/MMBT5086/MMBT5087 PNP General Purpose Amplifier. . . . . . . . . . . . . . . .
2N5088/2N5089/MMBT5088/MMBT5089 NPN General Purpose Amplifier. . . . . . . . . . . . . . ..
2N5179/PN5179/MMBT5179 NPN RF Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N5401/MMBT5401 PNP General Purpose Amplifier ...................................
2N5457 12N5458/2N5459/MMBF5457IMMBF5458/MMBF5459 N-Channel JFET Transistor
2N5484/2N5485/2N5486/MMBF5484/MMBF5485/MMBF5486 N-Channel RF JFET
Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . .
2N5551/MMBT5551 NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N5771/MMBT5771 PNP Switching Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N6427 IMMBT6427 IMPQ6427 NPN Darlington Transistor. • . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N6715/PN6715/MPS6715 NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N6717/MPS6717 NPN General Purpose Amplifier. . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . .
2N6724/2N6725/MPS6724/MPS6725 NPN Darlington Transistor.. ........ ....... .. .....
2N6727 IPN6727IMPS6727 PNP General Purpose Amplifier. • . . . . . . . . . . . . . . . . . . . . . . . . . . •
2N6729/MPS6729 PNP General Purpose Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2N7052/2N7053 NPN Darlington Transistor ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . .
MPSA06/MPSW06/MMBTA06 NPN General Purpose Amplifier. ........... ........ ......
MPSA13/MPSW13/MMBTA13 NPN Darlington Transistor .........••.. '" . . .... .........
MPSA42/MPSW42/MMBTA42 NPN High Voltage Amplifier........................ ......
MPSA56/MPSW56/MMBTA56 PNP General Purpose Amplifier..... .•... .. .. .. ..... .....
MPSA64/MPSW64/MMBTA64 PNP Darlington Transistor...............................
MPSA92/MPSW92/MMBTA92 PNP High Voltage Amplifier. .. .. .•. •.... .•.•••.•... ..•. ..
MPSH10/MPSH11 IMMBTH10/MMBTH11 NPN RF Transistor.. .•..•.•. .•.•. .. .. .. .••. ..
MPSH20/MMBTH20 NPN RFTransistor ......•...............•.•...•....•••..•......•
10·2

10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-12
10-14
10-16
10-18
10-20
10-22
10-24
10-26
10-28
10-30
10-32
10-34
10-36
10-38
10-40
10-42
10-44
10-46
10-48
10-50
10-52
10-54
10-56
10-58
10-59
10-60
10-61
10-62
10-63
10-64
10-65
10-66
10-67
10-68
10-69
10-70
10-72

Section 10 Contents (Continued)
MPSH81/MMBTH81 PNP RFTransistor...............................................
J108/J109/J110 N-Channel JFET Switch.. ....... ... . .. .. .. . .. ... .. ..... .. . . ..... . ...
J309/U309/J31 0/U310/MMBFJ309/MMBFJ31 0 N-Channel JFET Transistor for RF

Amplifiers.. ... .... .. .. ...... ... .. .. .. ........ ..... .. ... ..... .. ....... .. .. .... ...

10-3

10-73
10-74
10-75

g

....
ti
==
==

~NatiOnal

Semiconductor

8....
z

a.

PN100

MMBT100

.~

!

,~

TO-236
(SOT-23)

TO-92

TL/G110100-5

c
TLlG/l0l00-l

NPN General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25°C unless ~therwise noted

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
BVcao

Ic=10""A

75

V
V

BVCEO

Ic = 1 mA, (Note 1)

45

BVEao

IE = 10 ""A

6

Icao

VCB = 60V

50

nA

ICES

VCE = 40V

50

nA

VEB = 4V

50

nA

lEBO

V

ON CHARACTERISTICS
hFE

Ic = 100 ""A, VCE = 1V

80

hFE

Ic = 10 rnA, VCE = 1V

100

hFE

Ic = 100 rnA, VCE = 1V, (Note 1)

100

hFE

Ic = 150 rnA, VCE = 5V, (Note 1)

100

VCE(sat)

Ic = 10 rnA, IB = 1 rnA

0.2

V

VBECsatl

Ic = 10 rnA, IB = 1 rnA

0.85

V

VCE(sat)

Ic = 200 rnA, la = 20 rnA, (Note 1)

0.4

V

VBECsatl

Ic = 200 rnA, la = 20 rnA, (Note 1)

1.0

V

450

350

SMALL-8IGNAL CHARACTERISTICS
4.5

Cob

Vca = 5V, f = 1 MHz

for
Is

VCE = 20V, Ic = 20 rnA
Ic = 10 rnA, lal = IB2 = 1 rnA

275

toFF

Ic = 150 rnA, lal = IB2 = 15 rnA

225

250

NF

Ic = 100 ""A, VCE = 5V, RG = 2 kO, f = 1 kHz
Note 1: Pulse Test Pulse Width :;; 300 ".s, Duly Cycle s; 2.0%.
Note 2: For characteristics curves. see Process 10.

10-4

pF
MHz
ns
ns

5.0

dB

~Nationai

Semiconductor

PN100A

MMBT100A

~

I
/,

,~

TO-236
(SOT- 23)

TO-92

TLIG110100-5

c
TLIG110100-1

NPN General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
BVceo

Ic=10~A

75

V

BVCEO

Ic = 1 mA, (Note 1)

45

V

BVEeo

IE = 10~A

ICBO

VCB = 60V

ICES
IEeo

V

6
50

nA

VCE = 40V

50

nA

VEe = 4V

50

nA

ON CHARACTERISTICS
hFE

Ic = 100 ~A, VCE = 1V

240

hFE

Ic = 10mA, VCE = 1V

300

hFE

Ic = 100 mA, VCE = 1V, (Note 1)

100

hFE

Ic = 150 mA, VCE = 5V, (Note 1)

100

VCE(sall

Ic = 10 mA, Ie = 1 mA

0.2

V

VeE(saQ

Ic

=
Ic =
Ic =

0.85

V

200 mA, Ie = 20 mA, (Note 1)

0.4

V

200 mA, Ie = 20 mA, (Note 1)

1.0

V

VCE(sat)
VeECsall

10 mA, Ie

=

600

1 mA

SMALL-8IGNAL CHARACTERISTICS

=
=

5V, f = 1 MHz

Cob

Vce

for

VCE

NF

Ic = 100 ~A, VCE = 5V, RG

4.5
250

20V, Ic = 20 mA

=

2 kO, f = 1 kHz

Not. 1: Pulse Test: Pulse Width,; 300 I's, Duty Cycle,; 2.0%.
Note 2: For characteristics curves, see Process 10.

10-5

pF
MHz

1.5

4.0

dB

.,...
c
.,...

Iii
:::iii

~NatiOnal

Semiconductor

:::iii
......

.,...
c
.,...

z

a..

PN101

MMBT101

~

I

TO-236
(SOT-23)

TO-92

TL/G/l0l00-5

E8
C
TL/G/l0l00-l

NPN General Purpose Amplifier
Electrical Characteristics T A = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
100

V

BVCEO

1 mA, (Note 1)

65

V

BVEBO

IE

=
=
=

lOI-'A

Ic

lOI-'A

6

ICBO

VCB

ICES

VCE

lEBO

VEB

= 60V
= 50V
= 4V

BVCBO

Ic

V
50

nA

50

nA

50

nA

ON CHARACTERISTICS
hFE
hFE
hFE
VCE(satl
VBE(sat)
VCE(sat)
VBE(sat)

=
Ic =
Ic =
Ic =
Ic =
Ic =
Ic =
Ic

= 1V
10 mA, VCE = 1V
100 mA, VCE = 5V, (Note 1)
lamA, IB = 1 mA
10 mA, IB = 1 mA
100 mA, IB = 10 mA, (Note 1)
100 mA, IB = 10 mA, (Note 1)

60

100 I-'A, VCE

75

375

50
0.2

V

0.85

V

0.35

V

0.95

V

SMALL-SIGNAL CHARACTERISTICS
Cob

VCB

fT

VCE

NF

Ic

=

=
=

5V, f

=

10V, Ic

4.0

1 MHz

=

100 I-'A, VCE

125

10 mA

=

5V, RG

= 2 kO, f =

Note 1: Pulse Test: Pulse Width" 300 f's, Duty Cycle" 2.0%.
Note 2: For characteristics curves. see Process 11.

10-6

1 kHz

pF
MHz

8.0

dB

~Nattonal

Semiconductor

PN200

MMBT200

.~

I

TO-236
(SOT-23)

TO-92

EB

TL/G/10100-5

C
TL/G/10100-1

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
BVcso

Ic=10",A

60

V

BVCEO

Ic = 1 mA, (Note 1)

45

V

6

V

BVESO

IE = 10J.£A

Icso

Vcs = 50V

50

nA

ICES

VCE = 40V

50

nA

IESO

VES = 4V

50

nA

ON CHARACTERISTICS
hFE

Ic = 100 ",A, VCE = 1V

80

hFE

Ic = 10 rnA, VCE = 1V

100

hFE

Ic = 100 rnA, VCE = 1V, (Note 1)

100

hFE

Ic = 150 rnA, VCE = 5V, (Note 1)

100

VCE(sat)

Ic = 10 rnA, Is = 1 rnA

0.2

V

VSE(sat)

Ic = 10 rnA, Is = 1 rnA

0.85

V

VCE(satt

Ic = 200 rnA, Is = 20 rnA, (Note 1)

0.4

V

VSE(sat)

Ic = 200 rnA, Is = 20 rnA, (Note 1)

1.0

V

450

350

SMALL-SIGNAL CHARACTERISTICS
6.0

pF

Cob

VCS = 5V, I = 1 MHz

IT

VCE = 20V, Ic = 20 rnA

ts

Ic = 10 rnA, lSI = IS2 = 1 mA

275

ns

!oFF

Ic = 150 mA, lSI = IS2 = 15 rnA

225

ns

250

Ic = 100 J.£A, VCE = 5V, RG = 2 kO, 1= 1 kHz
NF
Note 1: Pulse Test: Pulse Width,;; 300 f's, Duty Cycle,;; 2.0%.
Note 2: For characteristics curves, see Process 68.

10-7

MHz

5.0

dB

~NatiOnal

Semiconductor

PN200A

MMBT200A

.~

!

TO-236
(SOT- 23)

TO-92

EB

TL/G/10100-5

C
TL/G/10100-1

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
Ic=10p.A

60

V

BVCEO

Ic = 1 mA, (Note 1)

45

V

BVEBO

IE=10p.A

6

ICBO

VCB = 50V

50

nA

ICES

VCE = 40V

50

nA

lEBO

VEB = 4V

50

nA

BVCBO

V

ON CHARACTERISTICS
hFE

Ic = 100 p.A, VCE ;" IV

240

hFE

Ic = 10 mA, VCE = 1V

300

hFE

Ic = 100 mA, VCE = IV, (Note 1)

100

hFE

Ic = 150 mA, VCE = 5V, (Note 1)

100

VCE(Sat)

Ic = 10 mA, IB = 1 mA

0.2

V

VBE(sat)

Ic = 10mA,IB = 1 mA

0.85

V

VCE(sat)

Ic = 200 mA, IB = 20 mA, (Note 1)

0.4

V

VBE(sat)

Ic = 200 mA, IB = 20 mA, (Note 1)

1.0

V

600

SMALL-SIGNAL CHARACTERISTICS
6.0

Cob

VCB = 5V,f = 1 MHz

fr

VCE = 20V, Ic = 20 mA

NF

Ic = 100 p.A, VCE = 5V, RG = 2 kO, f = 1 kHz

250

Note 1: Pulse Test Pulse Width,;; 300 p.s. Duty Cycle,;; 2.0%.
Note 2: For characteristics curves. see Process 68.

10-8

pF
MHz

1.5

4.0

dB

~NatiOnal

Semiconductor

PN201

MMBT201

~

I

TO- 236
(50T-23)

TO-92

TL/G/l0l00-5

EB

C
TL/G/l0l00-l

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS

BVceo

Ic = 10 p.A

80

V

BVCEO

Ic = 1 mA, (Note 1)

65

V

BVEeo

IE = 10p.A

6

Iceo

Vce = 60V

50

nA

ICES

VCE = 50V

50

nA

VEe = 4V

50

nA

IEeo

V

ON CHARACTERISTICS

Ic = 100 p.A, VCE = 1V

60

hFE

Ic = 10 mA, VCE = 1V

75

hFE

Ic = 100 mA, VCE = 5V, (Note 1)

50

hFE

375

VCE(sat)

Ic = 10 mA, Ie = 1 mA

0.2

VeE{sat)

Ic = 10 mA, Ie = 1 mA

0.85

V
V

VCE(sat)

Ic = 100 mA, Ie = 10 mA, (Note 1)

0.4

V

VeE(sat)

Ic = 100 mA, Ie = 10 mA, (Note 1)

1.0

V

SMALL·SIGNAL CHARACTERISTICS

Cob

Vce = 5V, I = 1 MHz

IT

VCE = 10V, Ic = 10 mA

NF
Note 1:

6.0

Ic = 100 p.A, VCE = 5V, RG = 2 kO, f = 1 kHz
Pulse Test: Pulse Width:;; 300 I-'s, Duty Cycle:;; 2.0%.

pF

MHz

100
8.0

dB

III

Note 2: For characteristics curves, see Process 69.

10·9

~NatiOnal

Semiconductor

2N918

PN918

f-n

MMBT918

~

I

TL/G/l0l00-12

,~

TO-236
(SOT-23)

TO-92

TUG/l0l00-5

C
TLlG/l0l00-l

NPN RF Transistor
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
VCEO(sus)

Collector-Emitter Sustaining Voltage, (Note 2)
(lc = 3.0 mAde, IB = 0)

15

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(lc = 1.0 /LAdc,IE = 0)

30

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 /LAdc,IC = 0)

3.0

Vdc

ICBO

Collector-Cutoff Current
(VCB = 15 Vdc,IE = 0)
(VCB = 15 Vdc, IE = 0, TA = 150°C)

0.010
1.0

/LAde

ON CHARACTERISTICS
hFE

DC Current Gain
(lc = 3.0 mAde, VCE = 1.0 Vdc)

VCE(sat)

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)

0.4

Vdc

VBE(sat)

Base-Emitter Saturation Voltage
(Ic = 10 mAde, IB = 1.0 mAde)

1.0

Vdc

20

SMALL-SIGNAL CHARACTERISTICS

tr

Current-Gain-Bandwidth Product, (Note 1)
(IC = 4.0 mAde, VCE = 10 Vdc, f = 100 MHz)

Cobo

Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 140 kHz)
(VCB = O,IE = 0, f = 140 kHz)

MHz

600
1.7
3.0

pF

Cibo

Input Capacitance
(VEB = 0.5 Vdc,IC = 0, f = 140 kHz)

2.0

pF

NF

Noise Figure
(Ic = 1.0 mAde, VCE = 6.0 Vdc, RG = 4000, f = 60 MHz)

6.0

dB

10-10

NPN RF Transistor (Continued)
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

FUNCTIONAL TEST

Gpe

Amplifier Power Gain
(VCB = 12 Vde, Ic = 6.0 mAde, f = 200 MHz)

15

dB

Po

Power Output
(VCB = 15 Vde, Ic = 8.0 mAde, f = 500 MHz)

30

mW

25

%

Collector Efficiency
(VCB = 15 Vde, Ic = 8.0 mAde, f = 500 MHz)
Note 1: r,. Is defined as the frequency at which 11lt.1 extrapolates to unity.
'Ij

Note 2: Pulse Test: Pulse Width,;; 300 p.s. Duty Cycle,;; 2.0%.
Note 3: For characteristics curves, see Process 43.

10-11

_NatiOnal
Semiconductor
2N2222
2N2222A

PN2222
PN2222A
/,

lj

,4ff

TO-18

I

MMBT2222
MMBT2222A

MPQ2222*

~

,~

TO-92

[8
TL/G/l0l00-9

1C 8 [

TO-236
(501-23)

TO-116
TL/G/l0l00-7

TLlG/l0l00-5

C
TL/G/l0l00-l

NPN General Purpose Amplifier
Electrical Characteristics TA = 25·C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

V(BR)CBO

V(BR)ESO

Collector-Emitter Breakdown Voltage (Note 1)
(Ic = 10 rnA, IB = 0)
Collector-Base Breakdown Voltage
(Ic = 10 ",A, IE = 0)
Emitter Base Breakdown Voltage
(IE = 10 ",A, IC = 0)

2222
2222A

30
40

V

2222
2222A

SO
75

V

2222
2222A

5.0
S.O

V

ICEX

Collector Cutoff Current
(VCE = SOY, VEB(OFF) = 3.0V)

2222A

10

nA

Icso

Collector Cutoff Current
(VCS = 50V, IE = 0)
(VCS = SOY, IE = 0)
(VCB = 50V, IE = 0, TA
(VCB = SOY, IE = 0, TA

2222
2222A
222
2222A

0.01
0.01
10
10

",A

2222A

10

nA

2222A

20

nA

lEBO
ISL

= 150·C)
= 1500C)

Emitter Cutoff Current
(VEB = 3.0V, Ic = 0)
Base Cutoff Current
(VCE = SOV, VEBIOFF)

= 3.0)

ON CHARACTERISTICS
hFE

DC CJjrrent Gain
(Ic = 0.1 rnA, VCE = 10V)
(Ic = 1.0 rnA, VCE = 10V)
(Ic = 10 rnA, VCE = 10V)
(Ic = 10 rnA, VCE = 10V, TA = -55·C)
(Ic = 150 rnA, VCE = 10V){Note 1)
(Ic = 150 rnA, VCE = 1.0V) (Note 1)
(Ic = 500 rnA, VCE = 10V) (Note 1)

Not. 1: Pulse Test: Pulse Width:;; 300 /'-S, Duty Cycle:;; 2.0%.

'16-S01C version also available. Contact factory.

10-12

2222
2222A

35
50
75
35
100
50
30
40

300

NPN General Purpose Amplifier (Continued)
Electrical Characteristics TA = 25°C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

ON CHARACTERISTICS (Continued)
VCE(sat)

Collector-Emitter Saturation Voltage (Note 1)
(lc = 150 rnA, Is = 15 mAl
(Ic

VSE(sat)

2222
2222A
2222
2222A

= 500 rnA, Is = 50 rnA)

Base-Emitter Saturation Voltage (Note 1)
(Ic = 150 rnA, Is = 15 mAl
(Ic = 500 rnA, Is = 50 mAl

0.4
0.3
1.6
1.0

2222
2222A
2222
2222A

0.6
0.6

2222
2222A

250
300

1.3
1.2
2.6
2.0

V

V

SMALL-SIGNAL CHARACTERISTICS
IT

Current Gain-Bandwidth Product (Note 3)
(Ic = 20 rnA, VCE = 20V, 1= 100 MHz)

Cobo

Output Capacitance (Note 3)
(Vcs = 10V,IE = 0, 1= 100 kHz)

Clba

Input Capacitance (Note 3)
(VES = 0.5V,lc = 0, I = 100 kHz)

MHz

8.0

pF

2222
2222A

30
25

pF

rb'Cc

Collector Base Time Constant
(IE = 20 rnA, VCS = 20V, 1= 31.8 MHz)

2222A

150

ps

NF

Noise Figure
(Ic = 100 /LA, VCE = 10V, Rs = 1.0 kO, 1= 1.0 kHz)

2222A

4.0

dB

60

0

Re(hje)

Real Part 01 Common-Emitter
High Frequency Input Impedance
(Ic = 20 rnA, VeE = 20V, I = 300 MHz)

SWITCHING CHARACTERISTICS
tD

Delay Time

tR

Rise Time

(Vcc = 30V, VSE(OFF) = 0.5V,
Ic = 150 mA,ISl = 15 mAl

(Vee = 30V, Ie = 150 mA,
ISl = IS2 = 15mA
Fall Time
Note 1: Pulse Test: Pulse Width < 300 10'8, Duty Cycle :s: 2.0%.
Nota 2: For characteristics curves, see Process 19.
Note 3: iT is defined as the frequency at which Ih,.1 extrapolates to unity.
Note 4: 2N also available in JAN/TXIV series.

ts

Storage Time

tF

10-13

except
MPQ2222
except
MPQ2222

10

ns

25

ns

225

ns

60

ns

~NatiOnal

Semiconductor

2N2369

PN2369

!

b

MMBT2369

MPQ2369

~

,~

TO-92

TO-18

1C B E

TO-236
(SOT-23)

TL/G110100-7
TL/G/10100-5

EB
TUG/10100-9

TO-11S

C
TL/G/10100-1

NPN Switching Transistor
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 2)
(lc = 10 mAde, IB = 0)

15

Vdc

V(BR)CES

Collector-Emitter Breakdown Voltage
(lc = 10 I£Adc, VBE = 0)

40

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 10 I£Adc, IE = 0)

40

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 I£Adc, Ic = 0)

4.5

Vdc

ICBO

Collector Cutoff Current
(VCB = 20 Vdc, IE = 0)
(VCB = 20 Vdc, IE = 0, TA = 125'C)

0.4
30

I£Adc

ON CHARACTERISTICS
hFE

DC Current Gain, (Note 1)
(Ic = 10 mAde, VCE = 1.0 Vdc)
(lc = 10 mAde, VCE = 1.0Vdc, TA
(lc = 100 mAde, VCE = 2.0 Vdc)

=

-55'C)

VCE(S81)

Collector-Emitter Saturation Voltage, (Note 1)
(lc = 10 mAde, IB = 1.0 mAde)

VBE(S81)

Base-Emitter Saturation Voltage, (Note 1)
(Ic = 10 mAde, IB = 1.0 mAde)

40
20
20

0.70

120

0.25

Vdc

0.85

Vdc

4.0

pF

SMALL-SIGNAL CHARACTERISTICS
Cobo
hfe

Output Capacitance
(VCB = 5.0 Vdc, IE

= 0, f = 1.0 MHz)

Small-Signal Current Gain
(Ic = 10 mAde, Vc = 10 Vdc, f

= 100 MHz)

10-14

5.0

N

Z

N
W

NPN Switching Transistor (Continued)

G)

CD
.......

."

Electrical Characteristics TA =
Symbol

I

Z

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Typ

I

Max

I

N
W

Units

ton

CD
.......

i:
i:

SWITCHING CHARACTERISTICS

ts

G)

Storage Time
(lBl = IB2 = Ie = 10 mAdc)(Figure 3)

-Except
MPQ2369

5.0

13·

ns

Turn-On Time
(Vee = 3.0 Vdc, Ie = 10 mAde, IBI = 3.0 mAde)
(Figure 1)

"Except
MPQ2369

8.0

12"

ns

Turn-Off Time
(Vee = 3.0 Vdc, Ie = 10 mAde, IBI = 3.0 mAde,
IB2 = 1.5 mAde) (Figure 2)
Note 1: Pulse Test: Pulse Width,; 300 fIos. Duty Cycle,; 2.0%.
Note 2: For charactertstlcs curves. see Process 2t.
toff

10-15

~

N

~

CD
.......
i:

."

-Except
MPQ2369

10

18-

ns

"!
N

~NatiOnal

Semiconductor

2N2907
2N2907A

if.."

PN2907
PN2907A

I

MMBT2907
MMBT2907A

MPQ2907*

.~

,~

TO-92
Es
TL/G/l0l00-B

IC8 E

TO-236
(SOT-23)

TO-l1S
TL/G/l0l00-7

TL/G/l0l00-5

C
TL/G/l0100-1

PNP General Purpose Amplifier
Electrical Characteristics T A = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 10 mAdc,IB = 0)

2907
2907A

40
60

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 10 p.Adc, IE = 0)

60

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 p.Adc, Ic = 0)

5.0

Vdc

ICEX

Collector Cutoff Current
(VCE = 30 Vdc, VBE = 0.5 Vdc)

ICBO

Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)
(VCB

IB

=

50 Vdc,IE

=

Base Cutoff Current
(VCE = 30 Vdc, VEB

0, TA

=

=

2907
2907A
2907
2907A

150'C)

0.5 Vdc)

'16-S01G version also available. Gonlacl factory.

10-16

50

nAdc

0.020
0.010
20
10

p.Adc

50

nAdc

PNP General Purpose Amplifier (Continued)
Electrical Characteristics TA = 25°C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

ON CHARACTERISTICS
hFE

VCE(sat)

VSE(sat)

DC Current Gain
(IC = 0.1 mAde, VCE

= 10Vde)

2907
2907A
2907
2907A
2907
2907A

(Ic

= 1.0 mAde, VCE = 10 Vde)

(Ic

= 10 mAde, VCE = 10 Vde)

(Ic
(Ic

= 150 mAde, VCE = 10 Vde), (Note 1)
= 500 mAde, VCE = 10 Vde), (Note 1)

2907
2907A

35
75
50
100
75
100
100
30
50

300

Collector-Emitter Saturation Voltage, (Note 1)
(Ic = 150 mAde, Is = 15 mAde)
(Ic = 500 mAde, Is = 50 mAde)

0.4
1.6

Vde

Base-Emitter Saturation Voltage
(lc = 150 mAde, Is = 15 mAde), (Note 1)
(Ic = 500 mAde, Is = 50 mAde)

1.3
2.6

Vde

SMALL-SIGNAL CHARACTERISTICS
fT
Cobo
Clbo

Current Gain-Bandwidth Product
(Ic = 50 mAde, VCE = 20 Vde, f

200

= 100 MHz)

Output Capacitance
(Vcs = 10 Vde, IE

= 0, f = 100 kHz)

Input Capacitance
(VES = 2.0 Vde, Ic

= 0, f = 100 kHz)

MHz
8.0

pF

30

pF

45

ns

SWITCHING CHARACTERISTICS

ton

Turn-On Time

td

Delay Time

10

ns

tr

Rise Time

40

ns

toft

Turn-Off Time

100

ns

ts

Storage Time

80

ns

30

ns

(Vee = 30 Vde, Ic
lSI = 15 mAde)

= 150 mAde,

(Vcc = 6.0 Vde, Ic = 150 mAde,
lSI = IS2 = 15 mAde)

Fall Time
tl
Note 1: Pulse Test: Pulse Width S; 300 I's, Duty Cycle s: 2.0%.
Note 2: For characteristics curves, see Process 63.
Note 3: 2N also available in JAN/TXIV series.

10-17

Except
MPQ2907

Except
MPQ2907

~NatiOnal

Semiconductor

TN3019.

2N3019

$Pro-.

TUG/10100-11

TO-237
EB

e
TL/G/10100-8

NPN General Purpose Amplifier
Electrical Characteristics TA = 25·C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 30 mAde, IB = 0)

80

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ",Ade,IE = 0)

140

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ",Ade,lc = 0)

7.0

Vde

ICBO

Collector Cutoff Current
(VCB = 90 Vde, IE = 0)
(Vce = 90Vde,IE = 0, TA

lEBO

= 150·C)

Emitter Cutoff Current
(VEB = 5.0 Vde, IC = 0)

0.01
10

",Ade

0.010

",Ade

ON CHARACTERISTICS
hFE

VeE(Sal)

VSE(sal)

DC Current Gain
(Ic = 0.1 mAde, VCE = 10Vde)
(Ic = 10 mAde, VCE = 10Vde)
(Ic = 150 mAde, VCE = 10 Vde)
(Ie = 150 mAde, VCE = 10 Vde, Tc
(Ic = 500 mAde, VCE = 10 Vde)
(Ie = 1.0 Ade, VCE = 10 Vde)

= -55·C)

Collector-Emitter Saturation Voltage
(Ic = 150 mAde,lB = 15 mAde)
(Ie = 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(lc = 150 mAde,lB = 15 mAde)

10-18

50
90
100
40
50
15

300

0.2
1.5

Vde

1.1

Vde

N

Z

~
.....
CD

NPN General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

:::t
z

25°C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS

f,-

Current Gain-Bandwidth Product
(Ic = 50 mAde, VCE = 10 Vdc, f = 20 MHz)

Cobo

400

MHz

Output Capacitance
(Vce = 10 Vdc, IE = 0, f = 1.0 MHz)

12

pF

Cibo

Input Capacitance
(VeE = 0.5 Vdc, Ic = 0, f = 1.0 MHz)

60

pF

hIe

Small-Signal Current Gain
(lc = 1.0 mAde, VCE = 5.0 Vdc, f = 1.0 kHz)

rb'Cc

Collector Base Time Constant
(IE = 10 mAde, Vce = 10 Vdc, f = 4.0 MHz)

Noise Figure
(lc = 100 mAde, VCE = 10 Vdc,
Rs = 1.0 kO, f = 1.0 kHz)
Note 1: Pulse Test: Pulse Width :s: 300 ,.s, Duty Cycle :s: 1.0%.
Note 2: For characteristics curves. see Process 12.
Nota 3: 2N also available in JAN/TXIV series.

100

80
2N3019,2N3020

400
400

ps

4

dB

NF

10-19

~
.....
CD

~NatiOnal

Semiconductor

2N3467

TN3467

~_M

MPQ3467

,~

TL/G/10100-11

,&"

te BE

TO-237

TO-116
TLlG/10100-7

Be

TLlG/10100-8

PNP Switching Transistor
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(SR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 10 mAde, Is = 0)

40

Vde

V(SR)CSO

Collector-Base Breakdown Voltage
(Ic = 10 ,..Ade, IE = 0)

40

Vde

V(SR)ESO

Emitter-Base Breakdown Voltage
(IE = 10 ,..Ade, Ic = 0)

5.0

Vde

ISEV

Base Cutoff Current
(VCE = -SO Vde, VSE = S.O Vde)

120

nAde

ICEX

Collector Cutoff Current
(VCE = -SO Vde, VSE = S.O Vde)

100

nAde

Icso

Collector Cutoff Current
(VCS = SO Vde, IE = 0)
(VCS = SO Vde, IE = 0, TA = 10o-C)

0.010
15

,..Ade

ON CHARACTERISTICS
hFE

VCE(sat)

VSE(sat)

DC Current Gain, (Note 1)
(Ic = 150 mAde, VCE = 1.0 Vde)
(Ic = 500 mAde, VCE = 1.0 Vde)
(Ic == 1.0 Ade, VCE = 5.0 Vde)

40
40
40

Collector-Emitter Saturation Voltage, (Note 1)
(lc = 150 mAde, Is = 15 mAde)
(Ic = 500 mAde, Is = 50 mAde)
(Ic = 1.0 Ade, Is = 100 mAde)
Base-Emitter Saturation Voltage, (Note 1)
(Ic = 150 mAde, Is = 15 mAde)
(Ic = 500 mAde, Is = 50 mAde)
(lc = 1.0 Ade, Is = 100 mAde)

0.8

10-20

120

O.S
0.5
1.0

Vde

1.0
1.2
1.6

Vde

PNP Switching Transistor (Continued)
Electrical Characteristics TA = 25°C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

SMALL·SIGNAL CHARACTERISTICS
fT

Current Gain-Bandwidth Product
(Ie = 50 mAde, VeE = 10 Vdc, f

= 100 MHz)

175

MHz

Cobo

Output Capacitance
(VeB = 10 Vdc, IE

= 0, f = 100 kHz)

25

pF

Cibo

Input Capacitance
(VEB = 0.5 Vdc, Ie

= 0, f = 100 kHz)

100

pF

SWITCHING CHARACTERISTICS
t(j

Delay Time

tr

Rise Time

(Ie = 500 rnA, IB1 = 50 rnA,
VBE = 2.0V, Vee = 30V)

ts

Storage Time

Ie

= 500 rnA, IB1 = IB2 = 50 rnA, Vee = 30V)

Fall Time
Note 1: Pulse Test Pulse Width :s; 300 ,,"S. Duly Cycle
Nota 2: For characteristics curves. ses Process 70.
tf

:s; 2.0%.

10·21

10

ns

30

ns

60

ns

30

ns

~NatiOnal

Semiconductor

PN3646

MMBT3646

~

!

TO-236
(SOT-23)

TO-92

EB

TL/G/10100-5

C
TL/G/10100-1

NPN Switching Transistor
Electrical Characteristics TA = 25·C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(eR)CES
VCEO(sus)
V(eR)CeO
V(eR)EeO
ICES

Collector-Emitter Breakdown Voltage
(IC = 100 ""Ade, VeE = 0)
Collector-Emitter Sustaining Voltage, (Note 1)
(IC = 10 mAde, Ie = 0)
Collector-Base Breakdown Voltage
(Ic = 100 ""Ade,IE = 0)
Emitter-Base Breakdown Voltage
(IE = 100 ""Ade,lc = 0)
Collector Cutoff Current
(VCE = 20 Vde, VeE = 0)
(VCE = 20 Vde, VeE = 0, TA = 65·C)

40

Vde

15

Vde

40

Vde

5.0

Vde
0.5
3.0

""Ade

ON CHARACTERISTICS (Note 1)
hFE

VeE(sat)

VeE(sat)

DC Current Gain
(lc = 30 mAde, VCE = 0.4 Vde)
(Ic = 100 mAde, VCE = 0.5 Vde)
(Ic = 300 mA, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
(Ic = 30 mAde, Ie = 3.0 mAde)
(Ic = 100 mAde,le = 10 mAde)
(Ic = 300 mAde, Ie = 30 mAde)
(Ic = 30 mA, Ie = 3.0 mA, TA = 65·C)

30
25
15

Base-Emitter Saturation Voltage
(Ic = 30 mAde, Ie = 3.0 mAde)
(Ic = 100 mAde, Ie = 10 mAde)
(Ic = 300 mAde, Ie = 30 mAde)

0.75

10-22

120

0.2
0.28
0.5
0.3

Vde

0.95
1.2
1.7

Vde

NPN Switching Transistor (Continued)

Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS
IT

Current Gain-Bandwidth Product
(Ie = 30 mAde, VeE = 10 Vdc, 1= 100 MHz)

Cabo

Output Capacitance
(VeB = 5.0 Vdc, IE = 0, I = 1.0 MHz)

Cibo

Input Capacitance
(VBE = 0.5 Vdc, Ie = 0, I = 1.0 MHz)

350

MHz
5.0

·pF
pF

SWITCHING CHARACTERISTICS

tan

Turn-On Time

td

Delay Time

(Vee = 10 Vdc, VBE(Ofl) = 3.0 Vdc, Ie = 300 mAde,
IB1 = 30 mAde) (Figure 1)

tr

Rise Time

tatl

Turn-Off Time

tf

Fall Time

ts

Storage Time
(Vee = 10 Vdc,le = 10 mAdc,IB1 = IB2 = 10 mAdc)(Figure2)

(Vee = 10 Vdc, Ie = 300 mAdc,IB1 = IB2 = 30 mAde)
(Figure 1)

Note 1: Pulse Test: Pulse Width" 300 ,,"s. Duty Cycle" 2.0%.

Note 2: For characteristics curves, see Process 22.

10-23

18

ns

10

ns

15

ns

28

ns

15

ns

18

ns

~NatiOnal

Semiconductor

2N3725

,

TN3725

~-.

MPQ3725

,~
1C B E

TO-237

TL/G/10100-11

TO-11S
TLlG/10100-7

EB
C
TL/G/10100-8

NPN Switching Transistor
Electrical Characteristics TA = 25·C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 10 mAde, IB = 0)

50

Vde

V(BR)CES

Collector-Emitter Breakdown Voltage
(Ic = 10 ""Ade, VBE = 0)

80

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 10 ""Ade, IE = 0)

80

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 ""Ade, Ic = 0)

6.0

Vde

ICBO

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)
(VCB = 60Vde, IE = 0, TA

ICES

= 1000C)

Collector Cutoff Current
(VCE = 80 Vde, VEB = 0)

1.7
120

""Ade

10

""Ade

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(Ic = 10 mAde, VCE = 1.0 Vde)
(Ic = 100 mAde, VCE = 1.0Vde)
(Ic = 100 mAde, VCE = 1.0 Vde, TA =
(Ic = 300 mAde, VCE = 1.0 Vde)
(Ic = 500 mAde, VCE = 1.0 Vde)
(lc = 500 mAde, VCE = 1.0 Vde, TA =
(Ic = 800 mA, VCE = 2.0V)
(lc = 1.0 Ade, VCE = 5.0V)

30
60

-

55·C)

~O

55·C)

40
35
20
20
25

10-24

150

NPN Switching Transistor (Continued)

Electrical Characteristics TA = 25'C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

ON CHARACTERISTICS (Note 1) (Continued)
VeE(sat)

VSE(sat)

Collector-Emitter Saturation Voltage
(Ie = 10 mAde, Is = 1.0 mAde)
(Ie = 100 mAde, Is = 10 mAde)
(Ie = 300 mAde, Is = 30 mAde)
(Ie = 500 mAde, Is = 50 mAl
(Ie = 800 mAde, Is = 80 mAl
(Ie = 1.0 mAde, Is = 100 mA

0.25
0.26
0.40
0.52
0.80
0.95

Vde

Base-Emitter Saturation Voltage
(Ie = 10 mAde, Is = 1.0 mAde)
(Ie = 100 mAde, Is = 10 mAde)
(Ie = 300 mAde, Is = 30 mAde)
(Ie = 500 mAde, Is = 50 mAde)
(Ie = 800 mAde, Is = 80 mAde)
(Ie = 1.0 mAde, Is = 100 mAde)

0.76
0.86
1.1
1.1
1.5
1.7

Vde

SMALL-SIGNAL CHARACTERISTICS

tr

Current Gain-Bandwidth Product
(Ie = 50 mAde, VeE = 10 Vde, f = 100 MHz)

Cobo

Output CapaCitance
(Ves = 10 Vde, IE = 0, f = 1.0 MHz)

10

pF

Cibo

Input Capacitance
(VEB = 0.5 Vde, Ie = 0, f = 1.0 MHz)

55

pF

10

ns

30

ns

300

MHz

SWITCHING CHARACTERISTICS
td

Delay Time

t,

Rise Time

ton

Turn-On Time

(Vee = 30Vde, VSE(off)= = 3.8Vdc,
Ie = 500 mAde, IS1 = 50 mAde)
(Figures 8, 10), except MPQ3725
MPQ3725

ts

Storage Time

tf

Fall Time

toff

Turn-On Time

(Vee = 30 Vde, Ie = 500 mAde,
IS1 = IS2 = 50 mAde)
(Figures 9, 10), except MPQ3725
MPQ3725

Note 1: Pulse Test Pulse Width,;; 300 ,,"s, Duty Cycle,;; 1.0%.
Note 2: For characteristics curves, see Process 25.

10-25

35

ns

40

ns

50

ns

25

ns

60

ns

75

ns

IjNatiOnal
Semiconductor
2N3904

!

MPQ3904*

.~

,~
1C B E

TO-236
(50T-23)

TO-92
EB

MMBT3904

TO-US
TL/G/l0l00-7

TL/G/l0l00-5

C
TL/G/l0l00-l

NPN General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(SR)CEO

COllector-Emitter Breakdown Voltage, (Note 1)
(lc = 10 mAde, Is = 0)

40

Vde

V(SR)CSO

Collector-Base Breakdown Voltage
(Ic = 10 ",Ade, IE = 0)

60

Vde

V(SR)ESO

Emitter-Base Breakdown Voltage
(IE = 10 ",Ade, Ic = 0)

6.0

Vde

ISL

Base Cutoff Current
(VCE = 30 Vde, VES = 3.0 Vde)

50

nAde

ICEX

Collector Cutoff Current
(VCE = 30 Vde, VEB = 3.0 Vde)

50

nAde

ON CHARACTERISTICS
hFE

VCE(sa!)

VSE(sa!)

DC Current Gain, (Note 1)
(Ic = 0.1 mAde, VCE = 1.0 Vde)
(Ic = 1.0 mAde, VCE = 1.0 Vde)
(Ic = 10 mAde, VCE = 1.0 Vde)
(lc = 50 mAde, VCE = 1.0 Vde)
(Ic = 100 mAde, VCE = 1.0 Vde)

40
70
100
60
30

Collector-Emitter Saturation Voltage, (Note 1)
(lc = 10 mAde, Is = 1.0 mAde)
(Ic = 50 mAde, Is = 5.0 mAde)
Base-Emitter Saturation Voltage, (Note 1)
(Ic = 10 mAde, Is = 1.0 mAde)
(Ic = 50 mAde, Is = 5.0 mAde)

0.65

'16·S01C version also available. Contact factory.

10-26

300

0.2
0.3

Vde

0.85
0.95

Vde

NPN General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted (Continued)

I

Parameter

I

Min

I

Max

I

Units

SMALL-8IGNAL CHARACTERISTICS

IT

Current Gain-Bandwidth Product
(Ie = 10 mAde, VeE = 20 Vdc, 1= 100 MHz)

MHz

Cobo

Output Capacitance
(VeB = 5.0 Vdc, IE = 0, I = 1.0 MHz)

4.0

pF

Cibo

Input Capacitance
(VBE = 0.5 Vdc, Ie = 0, I = 1.0 MHz)

B.O

pF

NF

Noise Figure
(Ie = 100 p.Adc, VeE = 5.0 Vdc, As = 1.0 kO,
1= 10 Hz to 15.7 kHz)

5.0

dB

300

2N3904
MMBT3904

SWITCHING CHARACTERISTICS
l(j

Delay Time

tr

AiseTime

ts

Storage Time

tf

Fall Time

(Vcc = 3.0 Vdc, VBE = 0.5 Vdc,
Ie = 10 mAde, IB1 = 1.0 mAde)

2N3904
MMBT3904

35

ns

35

ns

(Vcc = 3.0 Vdc, Ie = 10 mAde,
IB1 = IB2 = 1.0 mAde)

2N3904
MMBT3904

200

ns

50

ns

Note 1: Pulse Test: Pulse Width,; 300 p.s. Duty Cycle,; 2.0%.
Note 2: For characteristics curves, see Process 23.

10·27

IIII Semiconductor
National
2N3906

!

[~

MMBT3906

MPQ3906*

~

,~
1C B E

TO-236
(50T-23)

TO-92

TO-118
TLlG/l0l00-7

TL/G/l0l00~5

c
TL/G/10100-1

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(SR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 1.0 mAde, Is = 0)

40

Vde

V(SR)CSO

Collector-Base Breakdown Voltage
(Ic = 10 1-'-Ade, IE = 0)

40

Vde

V(SR)ESO

Emitter-Base Breakdown Voltage
(IE = 10 1-'-Ade, Ic = 0)

5.0

Vde

ISL

Base Cutoff Current
(VCE = 30 Vde, VSE = 3.0 Vde)

50

nAde

ICEX

Collector Cutoff Current
(VCE = 30 Vde, VSE = 3.0 Vde)

50

nAde

ON CHARACTERISTICS (Note 1)
hFE

VCE(sat)

VSE(sat)

DC Current Gain, (Note 1)
(Ic = 0.1 mAde, VCE = 1.0Vde)
(IC = 1.0 mAde, VCE = 1.0 Vde)
(Ic = 10 mAde, VCE = 1.0 Vde)
(lc = 50 mAde, VCE = 1.0 Vde)
(Ic = 100 mAde, VCE = 1.0 Vde)

60
80
100
60
30

Collector-Emitter Saturation Vollage
(lc = 10 mAde, Is = 1.0 mAde)
(Ic = 50 mAde, Is = 5.0 mAde)
Base-Emitter Saturation Voltage
(Ic = 10 mAde, Is = 1.0 mAde)
(Ic = 50 mAde, Is = 5.0 mAde)

0.65

'IS·SOIC version also available. Contact factory.

10-28

300

0.25
0.4

Vde

0.85
0.95

Vde

PNP General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-8IGNAL CHARACTERISTICS
IT

Current Gain-Bandwidth Product
(Ie = 10 mAde, VeE = 20 Vdc, 1= 100 MHz)

Cobo

Output Capacitance
(Ves = 5.0 Vdc, IE = 0, I = 100 MHz)

4.5

pF

Cibo

Input Capacitance
(VSE = 0.5 Vdc, Ie = 0, 1= 100 kHz)

10.0

pF

NF

Noise Figure
(Ie = 100 J.£Adc, VeE = 5.0 Vdc, Rs = 1.0 kO,
1= 10 Hz to 15.7 kHz)

4.0

dB

ns

250

2N3906
MMBT3906

MHz

SWITCHING CHARACTERISTICS

tel

Delay Time

tr

Rise Time

Is

Storage Time

tf

Fall Time

(Vee = 3.0 Vdc, VSE = 0.5 Vdc,
Ie = 10 mAde, lSI = 1.0 mAde)

2N3906
MMBT3906

35
35

ns

(Vee = 3.0 Vdc, Ie = 10 mAde,
lSI = IS2 = 1.0 mAde)

2N3906
MMBT3906

225

ns

75

ns

Note 1: Pulse Width ,;; 300 "s, Duly Cycle,;; 2.0%.
Note 2: For characteristics curves, see Process 66.

10·29

(II)
(II)
C)

"III'

Z
I-

.....

~NatiOnal

Semiconductor

§
Z
N

2N4033

TN4033

~-H

TO-237

TL/G/10100-11

EB

C
TL/G/10100-8

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 10 rnA)

80

V

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 10 ,...A)

80

V

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 ,...A)

5.0

V

ICBO

Collector-Cutoff Current
(VCB = BOV)
(VCB = BOV, TA = 150°C)

lEBO

Emitter-Cutoff Current
(VEB = 5.0V)

50
50

nA
,...A

10

,...A

ON CHARACTERISTICS (Note 1)
hFE

VCE(sat)

DC Current Gain
(Ic = 100 rnA, VCE = 5.0V, @ -55°C)
(lc = 100 ,...A, VCE = 5.0V)
(Ic = 100 rnA, VCE = 5.0V)
(Ic = 500 rnA, VCE = 5.0V)
(Ic = 1.0A, VCE = 5.0V)
Collector-Emitter Saturation Voltage
(Ic = 150 rnA, IB = 15 rnA)
(Ic = 500 rnA, IB = 50 rnA)

40
75
100
70
25

300

0.15
0.50

V

VBE(sat)

Base-Emitter Saturation Voltage
(Ic = 150 rnA, IB = 15 rnA)

0.9

V

VBE(on)

Base-Emitter On Voltage
(Ic = 500 rnA, VCE = 0.5Y)

1.1

V

10-30

PNP General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL·SIGNAL CHARACTERISTICS
Cobo

Output Capacitance
(VeE = 10V, f = 1.0 MHz)

20

pF

Cibo

Input Capacitance
(VEB = 0.5V, f = 1.0 MHz)

110

pF

hIe

Small Signal Current Gain
(Ie = 50 mA, VeE = 10V, f = 100 MHz)

1.0

4.0

SWITCHING CHARACTERISTICS
ts

Storage Time
(Ie = 500 mA, 181 = 182 = 50 mAl

350

ns

Ion

Turn-On Time
(Ie = 500 rnA, 181 = 50 rnA)

100

ns

tl

Fall Time
(Ie = 500 rnA, 181 = 182 = 50 rnA)

50

ns

Note 1: Pulse Width = 300 "s, Duty Cycle 1.0%.
Note 2: For characteristics curves, see Process 67.

10-31

~NatiOnal

Semiconductor

PN4258

MMBT4258

.~

I

TO-236
(SOT- 23)

TO-92

ES

TL/G/10100-5

C
TL/G/10100-1

PNP Switching Transistor
Electrical Characteristics TA =
Symbol

I

25·C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CES

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 100 ",Adc, VBE = 0)

12

Vdc

VCEO(sus)

Collector-Emitter Sustaining Voltage, (Note 1)
(IC = 3.0 mAde, IB = 0)

12

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(IC = 100 ",Adc,IE = 0)

12

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ",Adc,lc = 0)

4.5

Vdc

ICES

Collector Cutoff Current
(VCE = 6.0 Vdc, VeE = 0)
(VCE = 6.0 Vdc, VeE = 0, TA = 65·C)

0.01
5.0

",Adc

ON CHARACTERISTICS (Note 1)
hFE

VCE(sal)

VeE(sal)

DC Current Gain
(lc = 1.0 mAde, VCE = 0.5 Vde)
(Ic = 10 mAde, Vce = 3.0 Vdc)
(Ic = 50 mAde, Vce = 1.0 Vde)

15
30
30

Collector-Emitter Saturation Voltage
(Ic = 10 mAde, Ie = 1.0 mAde)
(Ic = 50 mAde, Ie = 5.0 mAde) .
Base-Emitter Saturation Voltage
(Ic = 10 mAde, Ie = 1.0 mAde)
(lc = 50 mAde, Ie = 5.0 mAde)

0.75

120

0.15
0.5

Vde

0.95
1.5

Vde

SMALL·SIGNAL CHARACTERISTICS

IT

Current Gain-Bandwidth Product, (Note 2)
(lc = 10 mAde, VCE = 5.0 Vde, 1= 100 MHz)
(Ic = 10 mAde, VCE = 10 Vde, f = 100 MHz)

700

MHz

Clbo

Input CapaCitance
(VeE = 0.5 Vde, Ic = 0, f = 1.0 MHz)

3.5

pF

Ccb

Collector-Base CapaCitance
(Vce = 5.0 Vdc, Ie = 0, f = 1.0 MHz)

3.0

pF

10-32

PNP Switching Transistor (Continued)
Electrical Characteristics TA = 25'C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

SWITCHING CHARACTERISTICS

ton

Turn-On Time

td

Delay Time

15

ns

10

t,

ns

Rise Time

15

ns

toff

Turn-Off Time

20

ns

t.

Storage Time

20

ns

tl

Fall Time

10

ns

20

ns

(Vee = 1.5 Vde, VSE(oll) = OV,
Ie = 10 mAde, IS1 = 1.0 mAde)

(Vee = 1.5 Vde, Ie = 10 mAde,
IS1 = IS2 = 1.0 mAde)

Storage Time
t.
(Ie:::; 10 mAde, IS1 :::; 10 mAde, IS2 :::; 10 mAde)
Note 1: Pulse Test: Pulse Width,; 300 ,,"s, Duty Cycle,; 2.0%.
Note 2: fT is defined as the frequency at which IhFEI extrapolates unity.
Note 3: For characteristics curves, see Process 65.

10-33

~NatiOnal

Semiconductor

2N4391
2N4392
2N4393

PN4391
PN4392
PN4393

MMBF4391
MMBF4392
MMBF4393

.~

!
TO-18

U
TUG/1 01 00-9

.$

TO-236
(SOT-23)

TO-92

TL/G/10100-6

G
TL/G/10100-2

General Purpose N-Channel JFET Transistor
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)GSS

Gate-Source Breakdown Voltage
(lG = 1.0 ""Adc, VOS = 0)

IGSS

Gate Reverse Current
(VGS = 15 Vdc, VOS = 0)
(VGS = 15 Vdc, VOS = 0, TA = 100'C)

1.0
0.2

nAdc
""Adc

Drain-Cutoff Current
(VOS = 15 Vdc, VGS = 12 Vdc)
(VOS = 15 Vdc, VGS = 12Vdc, TA = 100'C)

1.0
0.1

nAdc
""Adc

10(011)

VGS

Gate Source Voltage
(VOS = 15 Vdc, 10 = 10 nAdc)

30

Vdc

4391
4392
4393

4.0
2.0
0.5

10
5.0
3.0

Vdc

4391
4392
4393

60
25
5.0

130
75
30

mAdc

4391
4392
4393

0.4
0.4
0.4

Vdc

4391
4392
4393

30
60
100

n

ON CHARACTERISTICS
loss

VOS(on)

rOS(on)

Zero-Gate-Voltage Drain Current, (Note 1)
(VOS = 15 Vdc, VGS = 0)

Drain-Source On-Voltage
(10 = 12 mAdc, VGS = 0)
(10 = 6.0 mAde, VGS = 0)
(10 = 3.0 mAdc, VGS = 0)
Static Drain-Source On Resistance
(10 = 1.0 mAdc, VGS = 0)

General Purpose N-Channel JFET Transistor (Continued)
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Typ

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS
IYlsl

rOS(on)

Forward Transfer Admittance
(Vos = 15 Vdc, 10 = 60 mAde, f = 1.0 kHz)
(VOS = 15 Vdc, 10 = 25 mAde, f = 1.0 kHz)
(VOS = 15 Vdc, 10 = 5.0 mAde, f = 1.0 kHz)
Drain-Source On Resistance
(VGS = 0,10 = 0, f = 1.0 kHz)

4391
4392
4393

20
17
12

4391
4392
4393

Ciss

Input Capacitance
(VGS = 15 Vdc, VOS = 0, f = 1.0 MHz)

Crss

Reverse Transfer Capacitance
(VGS = 12 Vdc, VOS = 0, f = 1.0 MHz)
(VOS = 15 Vdc, 10 = 10 mAde, f = 1.0 MHz)

mmhos

30
60
100

n

8.0

14

V

2.5
3.2

3.5

pF

SWITCHING CHARACTERISTICS
tr

tl

ton

Rise Time (See Figure 2)
(IO(on) = 12 mAde)
(IO(on) = 6.0 mAde)
(iO(on) = 3.0 mAde)

4391
4392
4393

1.2
2.0
2.5

5.0
5.0
5.0

ns

Fall Time (See Figure 4 )
(VGS(OIl) = 12 Vdc)
(VGS(oll) = 7.0 Vdc)
(VGS(off) = 5.0 Vdc)

4391
4392
4393

7.0
15
29

15
20
35

ns

Turn-On Time (See Figures 1 and 2)
(iO(on) = 12 mAde)
(IO(on) = 6.0 mAde)
(IO(on) = 3.0 mAde)

4391
4392
4393

3.0
4.0
6.5

15
15
15

ns

4391
4392
4393

10
20
37

20
35
55

ns

Turn-Off Time (See Figures 3 and 4)
(VGS(off) = 12Vdc)
(VGS(off) = 7.0 Vdc)
(VGS(off) = 5.0 Vdc)
Note 1: Pulse Width s: 1001'5. Outy Cycle s: 1.0%.
toll

Note 2: For characteristics curves, see Process 51.

10-35

_NatiOnal
Semiconductor

2N4401

MMBT4401

.~

~

Ed,

TO-236
(SOT- 23)

TO-92

TL/G/l0l00-6

Be

TL/G/10100-1

NPN General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS

V(SR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, Is = 0)

40

Vde

V(SR)CSO

Collector-Base Breakdown Voltage
(lc = 0.1 mAde, IE = 0)

60

Vde

V(SR)ESO

Emitter-Base Breakdown Voltage
(IE = 0.1 mAde, Ic = 0)

6.0

Vde

IL

Base Cutoff Current
(VCE = 35 Vde, VES = 0.4 Vde)

0.1

JA-Ade

ICEX

Collector Cutoff Current
(VCE = 35 Vde, VES = 0.4 Vde)

0.1

JA-Ade

ON CHARACTERISTICS (Note 1)

hFE

VCE(sat)

VSE(sat)

DC Current Gain
(Ic = 0.1 mAde, VCE = 1.0 Vde)
(Ic = 1.0 mAde, VCE = 1.0 Vde)
(Ic = 10 Ade, VCE = 1.0 Vde)
(lc = 150 mAde, VCE = 1.0 Vde)
(Ic = 500 mAde, VCE = 2.0 Vde)

20
40
80
100
40

Collector-Emitter Saturation Voltage
(Ic = 150 mAde, Is = 15 mAde)
(Ic = 500 mAde, Is = 50 mAde)
Base-Emitter Saturation Voltage
(lc = 150 mAde, Is = 15 mAde)
(lc = 500 mAde, Is = 50 mAde)

0.75

10-36

300

0.4
0.75

Vde

0.95
1.2

Vde

NPN General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-5IGNAL CHARACTERISTICS

tr

Current Gain-Bandwidth Product
(Ie = 20 mAde, VeE = 10Vdc, f = 100 MHz)

Ccb

Collector-Base Capacitance
(VeB = 5.0 Vdc, IE = 0, f = 100 kHz)

6.5

pF

Ceb

Emitter-Base Capacitance
(VBE = 0.5 Vdc, Ie = 0, f = 100 kHz)

30

pF

hie

Input Impedance
(Ie = 1.0 mAde, VeE = 10Vdc, f = 1.0 kHz)

1.0

15

kO

hre

Voltage Feedback Ratio
(Ie = 1.0 mAde, VeE = 10 Vdc, f = 1.0 kHz)

0.1

B.O

x 10-4

hie

Small-Signal Current Gain
(Ie = 1.0 mAde, VeE = 10 Vdc, f = 1.0 kHz)

40

500

hoe

Output Admittance
(Ie = 1.0 mAde, VeE = 10 Vdc, f = 1.0 kHz)

1.0

30

,""mhos

15

ns

250

MHz

SWITCHING CHARACTERISTICS
td

Delay Time

tr

Rise Time

ts

Storage Time

(Vee = 30 Vdc, VEB = 0.2 Vdc,
Ie = 150 mAde, IBI = 15 mAde)
(Vee = 30 Vdc, Ie = 150 mAde,
IBI = IB2 = 15 mAde)

Fall Time
Nota 1: Pulse Test: Pulse Width,;; 300 p.s, Duly Cycle,;; 2.0%.
Nole 2: For characteristics curves, see Process 13.
tl

10-37

20

ns

225

ns

30

ns

~Nattonal

Semiconductor

2N4403

MMBT4403

~

I

TO-236
(SOT-23)

TO-92

EB

TL/G/l0l00-5

C
TUG/l0l00-l

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(SR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 1.0 mAde, Is = 0)

40

Vde

V(SR)CSO

Collector-Base Breakdown Voltage
(Ic = 0.1 mAde, IE = 0)

40

Vde

V(SR)ESO

Emitter-Base Breakdown Voltage
(IE = 0.1 mAde, Ic = 0)

5.0

Vde

IL

Base Cutoff Current
(VCE = 35 Vde, VSE = 0.4 Vde)

0.1

,..Ade

ICEX

Collector Cutoff Current
(VCE = 35 Vde, VSE = 0.4 Vde)

0.1

,..Ade

ON CHARACTERISTICS
hFE

VCE(sat)

VSE(sat)

DC Current Gain
(Ic = 0.1 mAde, VCE = 1.0 Vde)
(Ic = 1.0 mAde, VCE = 1.0 Vde)
(Ie = 10 mAde, VCE = 1.0 Vde)
(Ic = 150 mAde, VeE = 2.0 Vde), (Note 1)
(lc = 500 mAde, VCE = 2.0 Vde), (Note 1)

30
60
100
100
20

Collector-Emitter Saturation Voltage, (Note 1)
(Ic = 150 mAde, Is = 15 mAde)
(lc = 500 mAde, Is = 50 mAde)
Base-Emitter Saturation Voltage, (Note 1)
(Ic = 150 mAde, Is = 15 mAde)
(Ic = 500 mAde, Is = 50 mAde)

0.75

300

0.4
0.75

Vde

0.95
1.3

Vde

SMALL-SIGNAL CHARACTERISTICS

for

Current Gain-Bandwidth Product
(Ic = 20 mAde, VeE = 10 Vde, f = 100 MHz)

Ccb

Collector-Base Capacitance
(VCS = 10 Vde, IE = 0, f = 140 kHz)

8.5

pF

Cab

Emitter-Base Capacitance
(VES = 0.5 Vde, Ic = 0, f = 140 kHz)

30

pF

10·38

200

MHz

PNP General Purpose Amplifier

(Continued)

Electrical Characteristics T A = 25'C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

SWITCHING CHARACTERISTICS
td

Delay Time

tr

Rise Time

ts

Storage Time

tf

Fall Time

(Vee = 30 Vde, Vee = 2.0 Vde,
Ie = 150 mAde, lSI = 15 mAde)
(Vee = 30 Vde, Ie = 150 mAde,
lSI = IS2 = 15 mAde)

Nole 1: Pulse Test: Pulse Width <: 300 )£S, Duty Cycle <: 2.0%.
Note 2: For characteristics curves, see Process 63.

10·39

15

ns

20

ns

225

ns

30

ns

~NatiOnal

Semiconductor

2N5086
2N5087

MMBT5086
MMBT5087

,~

I

TO-236
(SOT- 23)

TO-92

Ea

TLlG/10100-5

c
TLlG/10100-1

PNP General Purpose Amplifier
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ie = 1.0 mAde, IB = 0)

50

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(lc = 100 /LAde,IE = 0)

50

Vde

ICBO

Collector Cutoff Current
(VCB = 10 Vde,IE = 0)
(VCB = 35 Vde, IE = 0)

lEBO

Emitter Cutoff Current
(VEB = 3.0 Vde, Ic = 0)

10
50

nAde

50

nAde

ON CHARACTERISTICS
hFE

DC Current Gain
(lc = 100 /LAde, VCE = 5.0 Vde)
(Ic = 1.0 mAde, VCE = 5.0 Vde)
(Ic = 10 mAde, VCE = 5.0 Vde), (Note 1)

VCE(sat)

Collector-Emitter Saturation Voltage
(Ie = 10 mAde, IB = 1.0 mAde)

VBE(on)

Base-Emitter On Voltage
(Ic = 1.0 mAde, VCE = 5.0 Vde)

2N50B6
2N50B7
2N50B6
2N50B7
2N50B6
2N50B7

150
250
150
250
150
250

500
BOO

0.3
0.B5

10-40

Vde
Vde

PNP General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS

IT

Current Gain-Bandwidth Product
(Ie = 50 ,....Adc, VCE = 5.0 Vdc, I = 20 MHz)

Ccb

Collector-Base Capacitance
(VCB = 5.0 Vdc, IE = 0, I = 100 kHz)

hIe

Small-Signal Current Gain
(Ie = 1.0 mAde, VCE = 5.0 Vdc, f = 1.0 kHz)

NF

40

MHz
4.0

Noise Figure
(Ie = 20 ,....Adc, VeE = 5.0 Vdc, Rs = 10 kO,
f = 10 Hz to 15.7 kHz)
(Ic = 100 ,....Adc, VCE = 5.0 Vdc, Rs = 3.0 kO,
f = 1.0 kHz)

Note 1: Pulse Test: Pulse Width,;; 300 ,"s, Duty Cycle,;; 2.0%.

Note 2: For characteristics curves, see Process 62.

10-41

2N5086
2N5087
2N5086
2N5087
2N5086
2N5087

150
250

pF

600
900
3.0
2.0
3.0
2.0

dB

~NatiOnal

Semiconductor

2N5088
2N5089

MMBT5088
MMBT5089

~

!

TO-236
(SOT-23)

TO-92

[a

TL/G/10100-5

c
TL/G/10100-1

NPN General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS

V(BR)CEO

V(BR)CBO

ICBO

lEBO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, Ie = 0)
Collector-Base Breakdown Voltage
(lc = 100 ""Adc, IE = 0)
Collector Cutoff Current
(VCB = 20 Vdc, IE = 0)
(VCB = 15 Vdc, IE = 0)
Emitter Cutoff Current
(VEB(off) = 3.0 Vdc, IC
(VEB(off) = 4.5 Vde, IC

2N5088
2N5089

30
25

Vdc

2N5088
2N5089

35
30

Vde

2N5088
2N5089

= 0)
= 0)

50
50

nAdc

50
100

nAdc

ON CHARACTERISTICS

hFE

DC Current Gain
(Ic = 100 ""Adc, VCE

= 5.0 Vdc)

(Ic

= 1.0 mAde, VCE = 5.0 Vde)

(lc

= 10 mAde, VCE = 5.0 Vdc), (Note 1)

2N5088
2N5089
2N5088
2N5089
2N5088
2N5089

300
400
350
450
300
400

900
1200

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 1.0 mAde, IB = 1.0 mAde)

0.5

Vde

VBE(on)

Base-Emitter On Voltage
(Ic = 10 mAde, VCE = 5.0 Vdc)

0.8

Vdc

10-42

I\)

Z

(It

NPN General Purpose Amplifier

o

(Continued)

CO
CO

.......

Electrical Characteristics TA =
Symbol

I

s:::
s:::

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

OJ

Units

IT

Current Gain-Bandwidth Product
(Ie = 500 ",Adc, VeE = 5.0 Vdc, I = 20 MHz)

Ccb

Collector-Base Capacitance
(Ves = 5.0 Vdc, IE = 0, I = 100 kHz)

4.0

pF

Ceb

Emitter-Base Capacitance
(VSE = 0.5 Vdc, Ie = 0, 1= 100 kHz)

10

pF

hie

NF

o

CO
CO

SMALL-SIGNAL CHARACTERISTICS

50

(It

MHz

.......
I\)
Z
(It

o

CO

CO

.......

s:::
s:::
OJ

-t

(It

Small-Signal Current Gain
(Ie = 1.0 mAde, VeE = 5.0 Vdc, I = 1.0 kHz)
Noise Figure
(Ie = 100 ",Adc, VeE = 5.0 Vdc, Rs = 10 kO,
1= 10 Hzto 15.7 kHz)

Note 1: Pulse Test: Pulse Width,; 300 "s. Duty Cycle'; 2.0%.

Note 2: For characteristics curves, see Process 07.

10-43

o

2N5088
2N5089
2N5088
2N5089

350
450

CO

1400
1800
3.0
2.0

CO

dB

_NatiOnal
Semiconductor

2N5179

PN5179

MMBT5179

.~

!
TO-72

TO-236
(SOT- 23)

TO-92
EB

TL/G/l0l00-12

TL/G/l0l00-5

C
TLlG/l0l00-1

NPN RF Transistor
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
VCEO(sus)

COllector-Emitter Sustaining Voltage, (Note 2)
(Ic = 30 mAde, IB = 0)

12

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 0.001 mAde, IE = 0)

20

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 0.Q1 mAde, Ic = 0)

2.5

Vde

ICBO

Collector Cutoff Current
(VCB = 15 Vde, IE = 0)
(VCB = 15 Vde, IE = 0, TA

=

0.02
1.0

150'C)

,...Ade

ON CHARACTERISTICS
hFE

DC Current Gain
(lc = 3.0 mAde, VCE

=

25

1.0 Vde)

250

VCE(sat)

Collector-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)

0.4

Vde

VBE(sat)

Base-Emitter Saturation Voltage
(Ic = 10 mAde, IB = 1.0 mAde)

1.0

Vde

2000

MHz

1.0

pF

SMALL·SIGNAL CHARACTERISTICS

t,.

Current Gain-Bandwidth Product, (Note 1)
(Ic = 5.0 mAde, VCE = 6.0 Vde, f = 100 MHz)

Ccb

Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f = 0.1 to 1.0 MHz)

hie

Small-Signal Current Gain
(Ic = 2.0 mAde, VCE = 6.0 Vde, f

=

rb'Cc

Collector Base Time Constant
(IE = 2.0 mAde, VCB = 6.0 Vde, f

= 31.9 MHz)

NF

Noise Figure
(Ic = 1.5 mAde, VCE

1.0 kHz)

= 6.0 Vde, Rs =

500., f

10-44

= 200 MHz)

900

25

300

3.0

14

ps

4.5

dB

N

Z

....

UI

~

NPN RF Transistor (Continued)

."

Z

....
.....
UI

Electrical Characteristics TA = 25°C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

FUNCTIONAL TEST
Gpe

Common-Emitter Amplifier Power Gain (Figure 1)
(VCE = 6.0 Vde, Ie = 5.0 mAde, f = 200 MHz)

Power Output
(VCB = 10 Vdc, IE = 12 mAde, f ;;, 500 MHz)
Note 1: IT is defined as the frequency at which Ihlel extrapolates to unity.
Note 2: Pulse Test: Pulse Width,; 300 ",s. Duty Cycle'; 2.0%.
Pout

Note 3: For characteristics curves, see Process 40.

10-45

15

dB

20

mW

CD

! !:
!!:

~

....
.....
UI

CD

~NatiOnal

Semiconductor

2N5401

MMBT5401

.~

I

TO-236
(SOT-23)

TO-92

E8

TLlG/10100-5

C
TL/G/10100-1

PNP General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, IB = 0)

150

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ",Ade,IE = 0)

160

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 ",Ade,lc = 0)

5.0

Vde

ICBO

Collector Cutoff Current
(VCB = 120 Vde,IE = 0)
(Vce = 120 Vde, IE = 0, TA

lEBO

= 1000C)

Emitter Cutoff Current
(VEB = 3.0 Vde, Ic = 0)

50
50

nAde
",Ade

50

nAde

ON CHARACTERISTICS (Note 1)
hFE

VCE(sat)

VBE(sal)

DC Current Gain
(Ic = 1.0 mAde, VCE = 5.0 Vde)
(Ic = 10 mAde, VCE = 5.0 Vde)
(lc = 50 mAde, VCE = 5.0 Vde)

50
60
50

Collector-Emitter Saturation Voltage
(lc = 10 mAde,lB = 1.0 mAde)
(Ic = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage
(Ic = 10 mAde,lB = 1.0 mAde)
(IC = 50 mAde, IB = 5.0 mAde)

10-46

240

0.20
0.5

Vde

1.0
1.0

Vde

PNP General Purpose Amplifier (Continued)
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS

IT

Current Gain-Bandwidth Product
(Ie = 10 mAdc, VeE = 10 Vdc, 1= 100 MHz)

cobo
NF

300

MHz

Output Capacitance
(Ves = 10 Vdc, IE = 0, 1= 1.0 MHz)

6.0

pF

Noise Figure
(Ie = 250 /LAdc, VeE = 5.0 Vdc, Rs = 1.0 kO, 1= 10 Hz to 15.7 kHz)

8.0

dB

Note 1: Pulse Test: Pulse Width <: 300 p.s, Duly Cycle <: 2.0%.
Note 2: For characteristics curves, see Process 74.

10-47

100

~Natlonal

~ Semiconductor

2N5457
2N5458
2N5459

MMBF5457
MMBF5458
MMBF5459

D~
TO-236
(501-23)

TL/G/l0l00-6
TL/G/l0l00-2

N-Channel JFET Transistor
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)GSS

Gate-Source Breakdown Voltage
(IG = -10 p.Adc, Vos = 0)

-25

Vdc

Gate Reverse Current
(VGS = -15 Vdc, Vos = 0)
(VGS = -15Vdc, VOS = 0, TA = 1000C)
VGS(off)

Gate Source Cutoff Voltage
(VOS = 15 Vdc, 10 = 10 nAdc)

2N5457
2N5458
2N5459

Gate Source Voltage
(VOS = 15 Vdc, 10 = 100 p.Adc)
(VOS = 15 Vdc, 10 = 200 p.Adc)
(VOS = 15 Vdc, 10 = 400 p.Adc)

-0.5
-1.0
-2.0

-1.0
-200

nAdc

-6.0
-7.0
-8.0

Vdc

-2.5
-3.5
-4.5

2N5457
2N5458
2N5459

Vdc

ON CHARACTERISTICS

loss

Zero-Gate-Voltage Drain Current, (Note 1)
(Vos = 15Vdc, VGS = 0)

2N5457
2N5458
2N5459

10-48

1.0
2.0
4.0

3.0
6.0
9.0

5.0
9.0
16

mAdc

N-Channel JFET Transistor (Continued)
Electrical Characteristics TA = 25°C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS
IYlsl

Forward Transfer Admittance Common Source, (Note 1)
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz)

2N5457
2N5458
2N5459

1000
1500
2000

5000
5500
6000

p.mhos

IYosl

Output Admittance Common Source, (Note 1)
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz)

10

50

p.mhos

Ciss

Input Capacitance
(VOS = 15 Vdc, VGS

4.5

7.0

pF

1.5

3.0

pF

= 0, f = 1.0 MHz)

Crss

Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz)
Note 1: Pulse Width :s: 630 ms. Duty Cycle :s: 10%.
Note 2: For characteristics curves. see Process 55.

III
10·49

IjNational

Semiconductor

2N5484
2N5485
2N5486

MMBF5484
MMBF5485
MMBF5486

~

I

TO-236
(5OT-23)

TO-92

Ds

TLlG/l0l00-6

G
TL/G/l0l00-2

N-Channel JFET Transistors for RF Amplifiers
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)GSS

Gate-Source Breakdown Voltage
(IG = -1.0 /-tAdc, VOS = 0)

IGSS

Gate Reverse Current
(VGS = -20Vdc, VOS
(VGS = -20Vdc, VOS

VGS(olf)

-25

= 0)

-1.0
-0.2

= 0, TA = 100"C)

Gate Source Cutoff Voltage
(VOS = 15 Vdc, 10 = 10 nAdc)

Vdc

nAdc
/-t Adc

2N5484
2N5485
2N5486

-0.3
-1.0
-2.0

-3.0
-4.0
-6.0

Vdc

2N5484
2N5485
2N5486

1.0
4.0
8.0

5.0
10
20

mAdc

2N5484
2N5485
2N5486

3000
3500
4000

6000
7000
8000

/-tmhos

100
1000

/-tmhos

50
60
75

/-tmhos

ON CHARACTERISTICS
loss

Zero-Gate-Voltage Drain Current
(VOS = 15 Vdc, VGS = 0)

SMALL-SIGNAL CHARACTERISTICS
IYlsl

Re(Yisl

IYosl

Forward Transfer Admittance
(VOS = 15 Vdc, VGS = 0, f

= 1.0 kHz)

Input Admittance
(VOS = 15 Vdc, VGS
(VOS = 15 Vdc, VGS

= 0, f = 100 MHz)
= 0, f = 400 MHz)

2N5484
2N5485, 2N5486

Output Admittance
(VOS = 15 Vdc, VGS

= 0, f = 1.0 kHz)

2N5484
2N5485
2N5486
10-50

N-Channel JFET Transistors for RF Amplifiers (Continued)
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted (Continued)

I

Parameter

Min

I Max I

Units

75
100

",mhos

SMALL-SIGNAL CHARACTERISTICS (Continued)

Re(yosl

Re(Yfs)

Output Transconductance
(VOS = 15 Vdc, VGS = 0, f = 100 MHz)
(VOS = 15 Vdc, VGS = 0, f = 400 MHz)

2N5484
2N5485, 2N5486

Forward Transconductance
(Vos = 15 Vdc, VGS = 0, f = 100 MHz)
(VOS = 15 Vdc, VGS = 0, f = 400 MHz)

2N5484
2N5485
2N5486

2500
3000
3500

",mhos

Ciss

Input Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz)

5.0

pF

Crss

Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz)

1.0

pF

Coss

Output Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz)

2.0

pF

2.5
3.0
2.0
4.0

dB

25
30
20

dB

FUNCTIONAL CHARACTERISTICS

NF

Noise Figure
(VOS = 15 Vdc, VGS
(VOS = 15 Vdc, 10 =
(VOS = 15 Vdc, 10 =
(VOS = 15 Vdc, 10 =

= 0, RG = 1.0 MO, f = 1.0 kHz)

1.0 mAde, RG :::: 1.0 kO, f = 100 MHz)
4.0 mAde, RG :::: 1.0 kO, f = 100 MHz)
4.0 mAde, RG :::: 1.0 kO, f = 400 MHz)

Common Source Power Gain
(VOS = 15 Vdc, 10 = 1.0 mAde, f = 100 MHz)
(VOS = 15 Vdc, 10 = 4.0 mAde, f = 100 MHz)
(VOS = 15 Vdc, 10 = 4.0 mAde, f = 400 MHz)
Nota 1: For characteristics curves, see Process 50.

2N5484
2N5485, 2N5486
2N5485, 2N5486

Gps

2N5484
2N5485, 2N5486
2N5485, 2N5486

10-51

16
18
10

~NatiOnal

Semiconductor

2N5551

MMBT5551

~

!

10-236

10-92

Ea

(5OT-23)
TL/G/1 01 00-5

C
TL/G/101OO-1

NPN General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 1.0 mAde,lB = 0)

160

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 /LAde,IE = 0)

180

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 ILAde, Ic = 0)

6.0

Vde

ICBO

Collector Cutoff Current
(VCB = 120 Vde, IE = 0)
(VCB = 120 Vde,IE = 0, TA

lEBO

= 1000C)

Emitter Cutoff Current
(VEB = 4.0 Vde, Ic = 0)

50
50

nAile
/LAde

50

nAde

ON CHARACTERISTICS
hFE

VCE(sat)

VBE(sat)

DC Current Gain
(Ic = 1.0 mAde, VCE = 5.0 Vdc)
(Ic = 10 mAde, VCE = 5.0 Vde)
(Ic = 50 mAde, VCE = 5.0 Vde)

60
80
20

Collector-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)
(Ic = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage
(Ic = 10 mAde,lB = 1.0 mAde)
(Ic = 50 mAde, IB = 5.0 mAde)

10-52

250

0.15
0.25

Vdc

1.0
1.0

Vde

N

NPN General Purpose Amplifier

Z

en
en
en

(Continued)

...

.......

Electrical Characteristics TA =
Symbol

I

iii:
iii:

25'C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

~

...

en
en

SMALL·SIGNAL CHARACTERISTICS

fT

Current Gain-Bandwidth Product
(Ic = 10 mAde, Vce = 10 Vdc, f = 100 MHz)

Cobo

300

MHz

Output Capacitance
(Vce = 10 Vdc, Ie = 0, f = 1.0 MHz)

6.0

pF

Cibo

Input Capacitance
(Vee = 0.5 Vdc,lc = 0, f = 1.0 MHz)

20

pF

hie

Small-Signal Current Gain
(Ic = 1.0 mAde, VCE = 10 Vdc, f = 1.0 kHz)

Noise Figure
(lc = 250 ,..Adc, VCE = 5.0 Vdc, Rs = 1.0 kO,
f= 10 Hz to 15.7 kHz)
Note 1: Pulse Test: Pulse Width = 300 p.s. Duty Cycle = 2.0%.

100

50

200

NF

8.0

dB

Note 2: For characteristics curves, see Process 16.

III
10-53

-~
.....

~Nationai

Semiconductor

:::E
:::E

....

-

......
....
Ln
Z
N

2N5771

MMBT5771

B~

I

E~

10-236
(S01- 23)

TO-92

TL/G/10100-5

c
TL/G/10100-1

PNP Switching Transistor
Electrical Characteristics TA = 25·C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS

V(BR)CEO

Collector-Emitter Breakdown Voltage
(Ic = 3.0 mAdc) (Note 1)

15

Vdc

V(BR)CES

Collector-Emitter Breakdown Voltage
(Ic = 100 p.Adc)

15

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 p.Adc)

15

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 p.Adc)

4.5

Vdc

ICBO

Collector Cutoff Current
(VCB = 8.0 Vdc)

ICES
lEBO

10

nA

Collector Cutoff Current (VCE
(VCE

10
5.0

nA
p.A

Emitter Cutoff Current

1.0

p.A

= 8.0 Vdc)
= 8.0 Vdc, TA = 125·C)
(VEB = 4.5 Vdc)

ON CHARACTERISTICS

hFE

VCE(sal)

VBE(sal)

DC Current Gain (Ic
(Ic
(IC
(Ic

= 1.0 mAdc, VCE = 0.5 Vdc) (Note 1)
= 10 mAde, VCE = 0.3 Vde) (Note 1)
= 50 mAde, VCE = 1.0 Vde) (Note 1)
= 10 mAde, VCE = 0.3 Vde, TA = -55·C)

35
50
40
20

Collector-Emitter Saturation Voltage (Note 1)
(lc = 1.0 mAde, Ie = 0.1 mAde)
(IC = 10 mAde, IB = 1.0 mAde)
(Ic = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage (Note 1)
(Ic = 1.0 mAde, IB = 0.1 mAde)
(lc = 10 mAde, Ie = 1.0 mAde)
(Ic = 50 mAde, IB = 5.0 mAde)

0.75

10-54

120

0.15
0.18
0.6

Vde

0.8
0.95
1.5

Vde

PNP Switching Transistor (Continued)
Electrical Characteristics TA = 25'C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS
Ccb

Collector-Base Capacitance
(VCB = 5.0 Vdc, f = 140 kHz)

3.0

pF

Cab

Emitter-Base Capacitance
(VBE = 0.5 Vdc, f = 140 kHz)

3.5

pF

hie

Small-Signal Current Gain
(Ic = 10 mA, VCE = 10 Vdc, f

=

100 MHz)

8.5

SWITCHING CHARACTERISTICS
ts

Storage Time
(Ie = 10 mAde, IB1 :::: IB2 :::: 10 mAde)

20

ns

ten

Turn-On Time
(Ie = 10 mAde, IB

15

ns

tell

Turn-Off Time
(Ie = 10 mAde, IB1

20

ns

Note 1: Pulse Length

= 1.0 mAde)
=

IB2

=

1.0 mAde)

= 300 f'S, Duly Cycle = 1.0%.

Note 2: For characteristics curves, see Process 65.

10-55

~NatiOnal

Semiconductor

2N6427

!

,~

MMBT6427

MPQ6427*

~

,~

TO-92

TO-11S

1C B E

TO-236
(SOT- 23)

TL/G/10100-7
TL/G/10100-5

c
TL/G/10100-1

NPN Darlington Transistor
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 10 mAde,lB = 0)

40

Vde

V(BR)CBO

Collector-Base Breakdown Voltage
(lc = 100 ,..Ade,IE = 0)

40

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 ,..Ade,lc = 0)

12

Vde

ICEO

Collector Cutoff Current
(VCE = 25 Vde, IB = 0)

1.0

,..Ade

ICBO

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

50

nAde

lEBO

Emitter Cutoff Current
(VEB = 10 Vde,lc = 0)

50

nAde

ON CHARACTERISTICS
hFE

VCE(sat)

VBE(sat)

DC Current Gain, (Note 1)
(Ic = 10 mAde, VCE = 5.0 Vde)
(Ic = 100 mAde, VeE = 5.0 Vde)
(Ic = 500 mAde, VCE = 5.0 Vde)

10,000
20,000
14,000

Collector-Emitter Saturation Voltage
(lc = 50 mAde, IB = 0.5 mAde)
(Ic = 500 mAde, IB = 0.5 mAde)
Base-Emitter Saturation Voltage
(Ic = 500 mAde, IB = 0.5 mAde)

Base-Emitter On Voltage
(Ic = 50 mAde, VCE = 5.0 Vde)
'16·SOle version also available. Contact factory.
VBE(on)

10-56

100,000
200,000
140,000
0.71
0.9

1.2
1.5

Vde

1.52

2.0

Vde

1.24

1.75

Vde

NPN Darlington Transistor (Continued)
Electrical Characteristics TA = 25°C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS
Cobo

Output Capacitance
(VCS = 10 Vdc.IE

= O. f = 1.0 MHz)

Input Capacitance
(VSE = 1.0 Vdc.IC = O. f = 1.0 MHz)
Nol. 1: Pulse Test: Pulse Width = 300 "s. Duty Cycle,; 2.0%.
Nol. 2: For characteristics curves, see Process 05.
Cibo

10·57

5.4

7.0

pF

10

15

pF

~NatiOnal

Semiconductor

2N6715

,~

PN6715

MPS6715

!

~

,~

TO-237

e
TL/G/10100-B

,f·-

TO-92

e
TL/G/10100-1

e

TLlG/10100-4

NPN General Purpose Amplifier
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 10 mAde, IB = 0)

40

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ""Adc, IE = 0)

50

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ""Adc, Ic = 0)

5.0

Vdc

ICBO

Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)

0.1

""Adc

lEBO

Emitter Cutoff Current
(VEe = 5.0 Vdc, Ic = 0)

0.1

""Adc

ON CHARACTERISTICS
hFE

DC Current Gain
(Ic = 100 mAde, VCE = 1.0 Vdc)
(Ic = 1000 mAde, VCE = 1.0 Vdc)

60
50

250

VCE(sat)

Collector-Emitter On Voltage
(Ic = 1000 mAde, Ie = 100 mAde)

0.5

Vdc

VBE(on)

Base-Emitter On Voltage
(lc = 1000 mAde, VCE = 1.0 Vdc)

1.2

Vdc

30

pF

SMALL-SIGNAL CHARACTERISTICS
Ccb

Collector-Base Capacitance
(Vce = 10 Vdc, IE = 0, f = 1.0 MHz)

Small-Signal Current Gain
(Ic = 50 mAde, VCE = 10 Vdc, f = 20 MHz)
Note 1: Pulse Test: Pulse Width S; 300 ",s. Duly Cycle S; 2.0%.
Note 2: For characteristics curves. see Process 38.
hIe

10-58

2.5

25

~NatiOnal

Semiconductor

2N6717

MPS6717

~

,@

TO-237
TO-226AE
Ea

C
TL/G/10100-8

c
TL/G/10100-4

NPN General Purpose Amplifier
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO
V(BR)CeO

Collector-Emitter Breakdown Voltage, (Note 1)
(IC = 1.0 mAde, IB = 0)

MPS6717

Collector-Base Breakdown Voltage
(Ic = 100 ""Ade, IE = 0)

MPS6717

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ""Ade, Ic = 0)

ICBO

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)

lEBO

80

Vde

80

Vde

5.0

Vde

MPS6717

Emitter Cutoff Current
(VEB = 5.0 Vde, Ic = 0)

0.1

""Ade

10

""Ade

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(Ic = 50 mAde, VCE = 1.0 Vde)
(IC = 250 mAde, VCE = 1.0 Vde)

BO
50

250

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 250 mAde, Ie = 10 mAde)

0.5

Vde

VBE(on)

Base-Emitter On Voltage
(IC = 250 mAde, VCE = 1.0 Vde)

1.2

Vde

30

pF

SMALL-SIGNAL CHARACTERISTICS
Ccb

Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)

Smail-Signal Current Gain
(Ic = 200 mAde, VCE = 5.0 Vde, f
Note 1: Pulse Test: Pulse Width,;: 300 p.s, Duly Cycle,;: 2.0%.
Note 2: For characteristics curves, see Process 39.
hIe

= 20 MHz)

10-59

2.5

25

~NatiOnal

Semiconductor

2N6724
2N6725

MPS6724
MPS6725

,1_m
e
TL/G/10100-B

UJ

,~~-Be

'

TLlG/10100-4

NPN Darlington Transistor
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(SR)CES

V(SR)CSO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, Is = 0)
Collector-Base Breakdown Voltage
(Ic = 1.0 I'Ade, IE = 0)

V(SR)ESO

Emitter-Base Breakdown Voltage
(IE = 10 I'Ade,lC = 0)

IcsO

Collector Cutoff Current
(VCS = 30 Vde, IE = 0)
(VCS = 40 Vde, IE = 0)

IESO

2N6724/MPS6724
2N6725/MPS6725

40
50

Vde

2N6724/MPS6724
2N6725/MPS6725

50
60

Vde

12

Vde

2N6724/MPS6724
2N6725/MPS6725

Emitter Cutoff Current
(VES = 10 Vde,lc = 0)

100
100

nAde

100

nAde

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(lc = 200 mAde, VCE = 5.0 Vde)
(Ic = 1000 mAde, VCE = 5.0 Vde)

25,000
4,000

40,000

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 1000 mAde, Is = 2.0 mAde)

1.5

Vde

VSE(on)

Base-Emitter On Voltage
(Ic = 1000 mAde, VCE = 5.0 Vde)

2.0

Vde

1000

MHz

10

pF

SMALL·SIGNAL CHARACTERISTICS

IT

Current-Gain-Bandwidth Product
(Ic = 200 mAde, VCE = 5.0Vde, f = 100 MHz)

Collector-Base Capacitance
(VCS = 10 Vde, IE = 0, f = 1.0 MHz)
Note 1: Pulse Test: Pulse Width ,;: 300 "'s. Duly Cycle,;: 2.0%.
Nole 2: For characteristics curves. see Process 05.

Ccb

10-60

100

N

Z

~NatiOnal

~
......

N
......
......

Semiconductor

."

Z

~
......
N
......
......

i:

2N6727

PN6727

~......

MPS6727

N

......

~

I

,~

TO-237

TO-92

EB

C

TO-226AE

EB

C

TL/G/10100-B

Tl/G/10100-1

C
TL/G/10100-4

PNP General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage
(Ic = 10 mAdc,lB = 0)

40

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ~Adc,IE = 0)

50

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ~Adc,lc = 0)

5.0

Vdc

ICBO

Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)

0.1

~Adc

lEBO

Emitter Cutoff Current
(VEB = 5.0 Vdc, Ic = 0)

0.1

~dc

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(Ic = 100 mAde, VCE = 1.0 Vdc)
(Ic = 1000 mAde, VCE = 1.0 Vdc)

60
50

250

VCE(Sat)

Collector-Emitter Saturation Voltage
(Ic = 1000 mAde, IB = 100 mAde)

0.5

Vdc

VBE(on)

Base-Emitter On Voltage
(Ic = 1000 mAde; VCE = 1.0 Vdc)

1.2

Vdc

30

pF

SMALL-5IGNAL CHARACTERISTICS
Cdb

Collector-Base Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)

hIe

Small-Signal Current Gain
(Ic = 50 mAde, VCE = 10 Vdc, f = 20 MHz)

Note 1: Pulse Test: Pulse Width,;: 300 ,.•• Duty Cycle,;: 2.0%.

Note 2: For characteristics curves, see Process 78.

10-61

2.5

25

~NatiOnal

Semiconductor

2N6729

MPS6729

~
TO-237
TO-226AE

E8

E8

C
TLlG/l0l00-8

C
TL/G/l0l00-4

PNP General Purpose Amplifier
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS

V(SR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 1.0 mAde, Is = 0)

80

Vdc

V(SR)CBO

Collector-Base Breakdown Voltage
(lc = 100 /LAde, IE = 0)

80

Vdc

V(SR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 /LAde, Ic = 0)

5.0

Vdc

lEBO

Emitter Cutoff Current
(VES = 5.0 Vdc, IE = 0)

10

/LAde

Icso

Collector Cutoff Current
(VCS = 60 Vdc, Ic = 0)

0.1

/LAde

ON CHARACTERISTICS (Note 1)

hFE

DC Current Gain
(Ic = 50 mAde, VCE = 1.0 Vdc)
(Ic = 250 mAde, VCE = 1.0 Vdc)

80
50

250

VCE(sat)

Collector-Emitter Saturation Voltage
(lc = 250 mAde, IB = 10 mAde)

0.5

Vdc

VBE(on)

Base-Emitter On Voltage
(Ic = 250 mAde, VCE = 1.0 Vdc)

1.2

Vdc

30

pF

SMALL-SIGNAL CHARACTERISTICS

Cob
hIe
Note

Collector-Base Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Small-Signal Current Gain
(Ic = 200 mAde, VCE = 5.0 Vdc, f
1: Pulse Test: Pulse Width,;; 300 f's, Duty Cycle,;; 2.0%.

= 20 MHz)

Note 2: For characteristics curves, see Process 79.

10-62

2.5

25

~NatiOnal

Semiconductor

2N7052

2N7053

!

r

,~

TO-92

E8

E8

C
TL/G/l0l00-l

TO-"'"

C

TL/G/l0l00-4

NPN Darlington Transistor
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CBO

Collector-Base Breakdown Voltage
(lc = 100 ",Adc)

100

V

V(BR)CEO

Collector-Emitter Breakdown Voltage
(Ic = 1.0 mAde), (Note 1)

100

V

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 mAde)

12

V

ICBO

Collector Cutoff Current
(VCB = 80 Vdc)

100

nA

ICES

Collector Cutoff Current
(VCE = 80 Vdc)

200

nA

lEBO

Emitter Cutoff Current
(VEB = 7.0 Vdc)

100

nA

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain, (Note 1)
(VCE = 5 Vdc, Ic = 100 mAde)
(VCE = 5 Vdc, Ic = 1.0 Adc)

10,000
1,000

20,000

de

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 100 mAde, IB = 0.1 mAde)

1.5

V

VBE(on)

Base-Emitter On Voltage
(VBE = 5 Vdc, Ic = 100 mAde)

2.0

V

8.0

pF

SMALL-SIGNAL CHARACTERISTICS
Ccb

Collector-Base Capacitance
(VCB = 10 Vdc, f = 1.0 MHz)

1,-

Transition Frequency
(VCE = 5.0 Vdc, Ic = 100 mAde)

Note 1: Pulse Test: Pulse Width s; 300 p.s. Duly Cycle
N~te

S;

2.0%.

2: For characteristics curves, see Process 06.

10-63

200

MHz

III

~NatiOnal

Semiconductor

MPSA06

MPSW06

!
TO-92

r

E@
EB

EB
C
TL/G/l0l00-1

MMBTA06

~
TO-236
(SOT- 23)

TO-226AE

TL/G/l0l00-5

C

TUG/l0l00-4

NPN General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS

V(SR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ie = 1.0 mAde, Is = 0)

80

Vde

V(SR)E80

Emitter-Base Breakdown Voltage
(IE = 100 ",Ade, Ic = 0)

4.0

Vde

ICEO

Collector Cutoff Current
(VeE = 60 Vde, 18 = 0)

0.1

",Ade

leso

Collector Cutoff Current
(VCS = 80 Vde, IE = 0)

0.1

",Ade

ON CHARACTERISTICS

hFE

DC Current Gain
(Ie = 10 mAde, VCE = 1.0 Vde)
(Ic = 100 mAde, VeE = 1.0 Vde)

50
50

VCE(sat)

Collector-Emitter Saturation Voltage
(Ie = 100 mAde, 18 = 10 mAde)

0.25

Vde

VSE(on)

Base-Emitter On Voltage
(lc = 100 mAde, VCE = 1.0Vde)

1.2

Vde

SMALL-SIGNAL CHARACTERISTICS

Current-Gain-Bandwidth Product
(IC = 10 mA, VCE = 10V, f = 100 MHz)
Note 1: Pulse Test: Pulse Width,;; 300 p.s. Duly Cycle,;; 2.0%.
Note 2: For characteristics curves, see Process 12.
fT

10-64

100

MHz

~NatiOnal

Semiconductor

MPSA13

MPSW13

/

~

,~

MMBTA13

~

,~~--

TO-92

c
TL/G/10100-1

TO-236
(SOT-23)

TL/G/10100-5

C

TL/G/10100-4

NPN Darlington Transistor

Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(SR)CES

Collector-Emitter Breakdown Voltage
(Ic = 100 ""Adc, Is = 0)

Icso

Collector Cutoff Current
(VCS = 30 Vdc, IE = 0)

100

nAdc

IESO

Emitter Cutoff Current
(VES = 10 Vdc, Ic = 0)

100

nAdc

30

Vdc

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(Ie = 10 mAde, VeE = 5.0 Vdc)
(Ie = 100 mAde, VeE = 5.0 Vdc)

5000
10,000

VCE(sat)

Collector-Emitter Saturation Voltage
(Ie = 100 mAde, Is = 0.1 mAde)

1.5

Vdc

VSE(on)

Base-Emitter On Voltage
(Ie = 100 mAde, VeE = 5.0 Vdc)

2.0

Vdc

SMALL-SIGNAL CHARACTERISTICS

IT

Current-Gain-Bandwidth Product, (Note 2)
(Ie = 10 mAde, VCE = 5.0 Vdc, f = 100 MHz)

125

MHz

Note 1: Pulse Test: Pulse Width :s; 300 ",S, Duty Cycle :s; 2.0%.

fr = Ihf.1 x ft••t.
Note 3: For characteristics curves, see Process 05.
Note 2:

D
10-65

~NatiOnal

Semiconductor

MPSA42

,t

MPSW42

MMBTA42

.~

I~

!
TO-92

Be

TL/G/l0l00-l

E4
EB e

TO-236
(50T-23)

TO-228AE

TLlG/l0l00-5
TL/G/l0l00-4

NPN High Voltage Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Unite

OFF CHARACTERISTICS
V(BR)CEO

COllector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, IB = 0)

300

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ""Adc, IE = 0)

300

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ""Ade, Ic = 0)

6.0

Vdc

ICBO

Collector Cutoff Current
(VCB = 200 Vdc, IE = 0)
(VCB = 160 Vdc, IE = 0)

lEBO

Emitter Cutoff Current
(VEB = 6.0 Vdc, Ic = 0)
(VEB = 4.0 Vdc, Ic = 0)

0.1

""Adc

0.1

""Adc

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(Ic = 1.0 mAdc, VCE = 10 Vde)
(Ic = 10mAdc, VCE = 10Vdc)
(Ic = 30 mAde, VCE = 10 Vdc)

25
40
40

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 20 mAdc, IB = 2.0 mAdc)

0.5

Vdc

VBE(Sat)

Base-Emitter Saturation Voltage
(lc = 20 mAdc, IB = 2.0 mAde)

0.9

Vdc

SMALL-SIGNAL CHARACTERISTICS

for

Current-Gain-Bandwidth Product
(Ic = 10 mAdc, VCE = 20 Vdc, f = 100 MHz)

Collector-Base Capacitance
(VCB = 20 Vde, IE = 0, f = 1.0 MHz)
Note 1: Pulse Test: Pulse Width ,;; 300 /'-S. Duly Cycle';; 2.0%.
Note 2: For characteristics curves. see Process 48.
Ccb

10-66

50

MHz
3.0

pF

~NatiOnal

Semiconductor

MPSA56

MPSW56

!

~

,~

TO-92

EB

C
TLlG/l0l00-l

MMBTA56

.~
TO- 236
(SOT- 23)

TO-226AE

TL/G/l0l00-5

C
TLlG/l0l00-4

PNP General Purpose Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(lc = 1.0 mAde, IB = 0)

80

Vde

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ""Ade, Ic = 0)

4.0

Vde

ICED

Collector Cutoff Current
(VCE = 60 Vde, IB = 0)

0.1

""Ade

ICBO

Collector Cutoff Current
(VCB = 80 Vde, IE = 0)

0.1

""Ade

ON CHARACTERISTICS
hFE

DC Current Gain
(lc = 10 mAde, VCE = 1.0Vde)
(Ic = 100 mAde, VCE = 1.0 Vde)

50
50

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 100 mAde, IB = 10 mAde)

0.25

Vde

VBE(on)

Base-Emitter On Voltage
(Ic = 100 mAde, VCE = 1.0 Vdc)

1.2

Vde

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ic = 100 mAde, VCE = 1.0 Vde, f
Note 1: Pulse Test: Pulse Width s: 300 "s, Duly Cycle s: 2.0%.
Note 2: For characteristics curves, see Process 67.

for

= 100 MHz)

10-67

50

MHz

III

~NatiOnal

Semiconductor

MPSA64

MPSW64

I

~
TO-92

Ee

MMBTA64

,~
TO-236
(50T-23)

TO-226AE

Ee

c
TLlG/l0l00-l

TL/G/l0l00-5

C
TL/G/l0l00-4

PNP Darlington Transistor
Electrical Characteristics TA =
Symbol

I

25'C unless otherwise noted

I

Parameter

I

Min

Max

I

Units

OFF CHARACTERISTICS
V(BR)CES

Collector-Emitter Breakdown Voltage
(Ic = 100 )J.Adc, VBE = 0)

Vdc

30
I

ICBO

Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)

100

nAdc

lEBO

Emitter Cutoff Current
(VBE = 10 Vdc, Ic = 0)

100

nAdc

Collector-Emitter Saturation Voltage
(Ic = 10 mAde, 18 = 0.01 mAde)
(Ic = 100 mAde, 18 = 0.1 mAde)

1.0
1.5

Vde

Base-Emitter On Voltage
(Ic = 10 mAde, VCE = 5.0 Vde)
(Ic = 100 mAde, VCE = 5.0 Vde)

1.4
2.0

Vde

ON CHARACTERISTICS (Note 1)
hFE

VCE(sat)

VBE(on)

DC Current Gain
(lc = 10 mAde, VCE = 5.0 Vdc)
(lc = 100 mAde, VCE = 5.0 Vdc)

10,000
10,000

SMALL-SIGNAL CHARACTERISTICS

IT

Current-Gain-Bandwidth Product
(Ic = 100 mAde, VCE = 5.0 Vde, 1= 100 MHz)

Nole 1: Pulse Test: Pulse Width,,; 300 1'8, Duty Cycle,,; 2.0%.
Note 2: For characteristics curves, see Process 61.

J

10-68

125

MHz

~NatiOnal

Semiconductor

MPSA92

MPSW92

!

~

TO-92

MMBTA92

~
TO-236
(SOT- 23)

TO-226AE

EB

TL/G/l0l00-5

EB

C
TLlG/l0l00-l

C

TL/G/l0l00-4

PNP High Voltage Amplifier
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAdc, IB = 0)

300

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ,..Adc,IE = 0)

300

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 100 ,..Adc,lc = 0)

5.0

Vdc

ICBO

Collector Cutoff Current
(VCB = 200 Vdc, IE = 0)
(VCB = 160 Vdc, IE = 0)

0.25

Emitter Cutoff Current
(VEB = 3.0 Vdc, Ic = 0)

0.1

,..Adc

lEBO

,..Adc

ON CHARACTERISTICS (Note 1)
hFE

DC Current Gain
(Ic = 1.0 mAdc, VCE = 10 Vdc)
(Ic = 10 mAdc, VCE = 10 Vdc)
(Ic = 30 mAdc, VCE = 10 Vdc)

25
40
25

VCE(sa!)

Collector-Emitter Saturation Voltage
(Ic = 20 mAdc, IB = 2.0 mAdc)

0.5

Vdc

VBE(sa!)

Base-Emitter Saturation Voltage
(Ic = 20 mAdc, IB = 2.0 mAdc)

0.9

Vdc

SMALL·SIGNAL CHARACTERISTICS

for

Current-Gain-Bandwidth Product
(Ic = 10 mAdc, VeE = 20 Vdc, f = 100 MHz)

Collector-Base Capacitance
(VCB = 20 Vdc, IE = 0, f = 1.0 MHz)
Note 1: Pulse Test: Pulse Width,,; 300 ,,"s, Duty Cycle,,; 2.0%.
Note 2: For characteristics curves, see Process 76.
Ccb

10·69

50

MHz
6.0

pF

III

~NatiOnal

Semiconductor

MPSH10
MPSH11

MMBTH10
MMBTH11

~

~

TO-236
(SOT- 23)

TO-92

BE

Tl/G/10100-5

C
TL/G/10100-3

NPN RF Transistors
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

Parameter

I

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

COllector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, IB = 0)

25

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 100 ,..Adc,IE = 0)

30

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 ,..Adc,lc = 0)

3.0

Vdc

leBO

Collector Cutoff Current
(VCB = 25 Vdc, IE = 0)

100

nAdc

lEBO

Emitter Cutoff Current
(VEB = 2.0 Vdc, Ic = 0)

100

nAdc

ON CHARACTERISTICS
hFE

DC Current Gain
(lc = 4.0 mAde, VCE

60

= 10 Vdc)

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 4.0 mAde, IB = 0.4 mAde)

0.5

Vdc

VBE(on)

Base-Emitter On Voltage
(Ie = 4.0 mAde, VCE = 10 Vdc)

0.95

Vdc

10-70

NPN RF Transistors (Continued)
Electrical Characteristics TA =
Symbol

I

25°C unless otherwise noted (Continued)

I

Parameter

Min

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS
fT

Current-Gain-Bandwidth Product
(Ie = 4.0 mAde, VeE = 10 Vdc, f = 100 MHz)

Ccb

Collector-Base Capacitance
(VeB = 10 Vdc, IE = 0, f = 1.0 MHz)

Crb

Common-Base Feedback Capacitance
(VeB = 10 Vdc, IE = 0, f = 1.0 MHz)

rb'Cc

650

,

Collector-Base Time Constant
(Ie = 4.0 mAde, VeB = 10 Vdc, f = 31.8 MHz)

Note 1: Pulse Test Pulse Width';; 300 1'-" Duty Cycle

:s:

MPS-H10 (Note 2)
MPS-H11 (Note 3)

0.35
0.6

MHz
0.7

pF

0.65
0.9

pF

9.0

ps

2.0%.

Note 2: For characteristics curves, see Process 42.
Note 3: For characteristics curves, see Process 47.

•
10-71

~NatiOnal

Semiconductor

MPSH20

h

.~d

MMBTH20

.~

!

TO-236
(SOT-23)

TO-92

TLlG/l0l00-5

c

TL/G/l0l00-3

NPN RF Transistor
Electrical Characteristics TA = 25'C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage
(Ic = 1.0 mAde, IB = 0)

30

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(IC = 100 ",Adc, Ie = 0)

40

Vdc

V(BR)eBO

Emitter-Base Breakdown Voltage
(Ie = 10 ",Adc, Ic = 0)

4.0

Vdc

ICBO

Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)

50

nAdc

ON CHARACTERISTICS
hFE

DC Current Gain
(lc = 4.0 mAde, Vce = 10 Vdc)

25

SMALL·SIGNAL CHARACTERISTICS

iT

Current-Gain-Bandwidth Product
(Ic = 4.0 mAde, Vce = 10Vdc, f = 100 MHz)

Ccb

Collector-Base Capacitance
(VCB = 10 Vdc, Ie = 0, f = 1.0 MHz)

0.5

rb'Cc

Collector-Base Time Constant
Ie = 4.0 mAde, VCB = 10 Vdc, f = 31.8 MHz)

10

ps

23

dB

Conversion Gain (213 MHz to 45 MHz)
(IC = 4.0 mAde, Vce = 10 Vdc,
Oscillator Injection = 200 mVdc)
Nol. 1: Pulse Test Pulse Width ,;; 300 ,",S. Duly Cycle,;; 2.0%.
Nole 2: For characteristics curves, see Process 49.

400

18

10-72

620

MHz
0.65

pF

~NatiOnal

Semiconductor

MPSH81

MMBTH81

~

I

TO-236
(50T- 23)

TO-92

Ea

TL/G/10100-5

c
TL/G/10100-1

PNP RF Transistor
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)CEO

Collector-Emitter Breakdown Voltage, (Note 1)
(Ic = 1.0 mAde, IB = 0)

20

Vdc

V(BR)CBO

Collector-Base Breakdown Voltage
(Ic = 10 p.Adc, IE = 0)

20

Vdc

V(BR)EBO

Emitter-Base Breakdown Voltage
(IE = 10 p.Adc, Ic = 0)

3.0

Vdc

ICBO

Collector Cutoff Current
(VCB = 10 Vdc, IE = 0)

100

nAdc

lEBO

Emitter Cutoff Current
(VEB = 2.0 Vdc, Ic = 0)

100

nAdc

ON CHARACTERISTICS
hFE

DC Current Gain
(Ic = 5.0 mAde, VCE

=

60

10 Vdc)

VCE(sat)

Collector-Emitter Saturation Voltage
(Ic = 5.0 mAde, IB = 0.5 mAde)

0.5

Vdc

VBE(on)

Base-Emitter On Voltage
(Ic = 5.0 mAde, VCE = 10 Vdc)

0.9

Vdc

SMALL-SIGNAL CHARACTERISTICS

fr

Current-Gain-Bandwidth Product
(lc = 5.0 mAde, VCE = 10Vdc, f

=

100 MHz)

600

MHz

Ceb

Collector-Base Capacitance
(VCB = 10 Vdc, 'E = 0, f = 1.0 MHz)

0.85

pF

Cee

Collector-Emitter Capacitance
(IB = 0, VCB = 10 Vdc, f = 1.0 MHz)

0.65

pF

Note 1: Pulse Test: Pulse

Width,; 300 ,,"s, Duly Cycle,; 2.0%.

Note 2: For characteristics curves, see Process 75.

10-73

•

o
....-

~

g

~Nationai

Semiconductor

..,........-

..,..-~

J108
J109
J110

,t

!
TO-92

G

TLfGfl0l00-2

N-Channel JFET Switch
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)GSS

Gate-Source Breakdown Voltage
(VOS = 0, IG = -10 /LAdc)

IGSS

Gate Reverse Current
(VGS = -15 Vdc, VOS
(VGS = -15 Vdc, VOS

-25

= 0)
= 0, TA = 1000C)

Gate Source Cutoff Voltage
(VOS = 15 Vdc, 10 = 10 nAdc)

VGS(off)

J108
J109
J110

-3.0
-2.0
-0.5

J108
J109
J110

80
40
10

Vdc

-3.0
-200

nAdc

-10
-6.0
-4.0

Vdc

ON CHARACTERISTICS
Zero-Gate-Voltage Drain Current, (Note 1)
(VOS = 15 Vdc, VGS = 0)

loss

Drain-Source-On-Resistance
(VOS ~ 0.1Vdc, VGS = 0)

rOS(on)

J108
J109
J110

mAdc

8.0
12
18

n

Drain Gate + Source Gate On-Capacitance
(VOS = 0 Vdc, VGS = 0, f = 1.0 MHz)

85

pF

Drain Gate Off-Capacitance
(VOS = 0 Vdc, VGS = -10V, f

= 1.0 MHz)

15

pF

= 1.0 MHz)

15

pF

SMALL-SIGNAL CHARACTERISTICS
Cdg(On)
Csg(on)
Cdg(Off)

+

Source Gate Off-Capacitance
(VOS = 0 Vdc, VGS = -10V, f
Note 1: Pulse Duration 300 "s, Duty Cycle s: 2.0%.
Note 2: For characteristics curves, see Process 58.
Csg(off)

10-74

cCo)

~National

Q

~

c..
~

Semiconductor

CD

.......

iii:
iii:

m

2!

U309
U310

J309
J310

TO-18
TL/G/10100-9

,~

CD
.......

C

....

Co)

Q

~

I

lj

~

MMBFJ309
MMBFJ310

.......
Co.

....

Co)

Q

.......
iii:
iii:

TO-236

m

(50T-23)

TO-92

2!

....

TLlG/10100-6

Co)

G

Q
TLlG/10100-2

N-Channel JFET Transistor for RF Amplifiers
Electrical Characteristics TA = 25°C unless otherwise noted
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

OFF CHARACTERISTICS
V(BR)GSS

Gate-Source Breakdown Voltage
(lG = -1.0 p.Adc, VOS = 0)

IGSS

Gate Reverse Current
(VGS = -15 Vdc, VOS
(VGS = -15Vdc, VOS

VGS(off)

-25

= 0, TA =
= 0, TA =

Vdc

25°C)
125°C)

Gate Source Cutoff Voltage
(VOS = 10 Vdc, 10 = 1.0 nAdc)

-1.0
-1.0

nA
p.A

J309
J310

-1.0
-2.0

-4.0
-6.5

Vdc

J309
J310

12
24

30
60

mA

1.0

Vdc

ON CHARACTERISTICS
loss

VGS(f)

Zero-Gate-Voltage Drain Current, (Note 1)
(VOS = 10 Vdc, VGS = 0)
Gate-Source Forward Voltage
(VOS = 0, IG = 1.0 mAde)

SMALL-SIGNAL CHARACTERISTICS
RelYisl

Common-Source Input Conductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 100 MHz)

RelYosl

Common-Source Output Conductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 100 MHz)

Gpg

Common-Gate Power Gain
(VOS = 10 Vdc, 10 = 10 mAde, f

RelYfsl

=

100 MHz)

Common-Source Forward Transconductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 100 MHz)

10-75

J309
J310

0.7
0.5

mmhos

0.25

mmhos

16

dB

12

mmhos

N-Channel JFET Transistor for RF Amplifiers

(Continued)

Electrical Characteristics TA = 25'C unless otherwise noted (Continued)
Symbol

I

I

Parameter

Min

I

Typ

I

Max

I

Units

SMALL-SIGNAL CHARACTERISTICS (Continued)
RelYigl

Common-Gate Input Conductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 100 MHz)

gls

Common-Gate Forward Transconductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 1.0 kHz)

gos

gig

gog

12

J309
J310

Common-Gate Output Conductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 1.0 kHz)

10,000
8,000

J309
J310

Common-Gate Forward Transconductance, (Note 1)
(VOS = 10 Vdc, 10 = 10 mAde, f = 1.0 kHz)
Common-Gate Output Conductance
(VOS = 10 Vdc, 10 = 10 mAde, f = 1.0 kHz)

mmhos

20,000
18,000

,...mhos

150
200

,...mhos

J309
J310

13,000
12,000

,...mhos

J309
J310

100
150

,...mhos

Cgd

Gate-Drain Capacitance
(VOS = 0, VGS = -10 Vdc, f = 1.0 MHz)

1.8

2.5

pF

Cgs

Gate-Source Capacitance
(VOS = 0, VGS = -10 Vdc, f = 1.0 MHz)

4.3

5.0

pF

FUNCTIONAL CHARACTERISTICS
NF

Noise Figure
(VOS = 10 Vdc, 10 = 10 mAde, f = 450 MHz)

Equivalent Short-Circuit Input Noise Voltge
(VOS = 10 Vdc, 10 = 10 mAde, f = 100 Hz)
Note 1: Pulse Test: Pulse Width ,;; 300 p.s. Outy Cycle,;; 3.0%.

en

Note 2: For characteristics curves, see Process 92.

10-76

1.5

dB

10

nV/.tRZ

Section 11
Process Characteristics

III

Section 11 Contents
DIODE PROCESS CHARACTERISTICS
D1 Family Part Number List ....................................................... .
D1 Product Family Curve Set ...................................................... .
D2 Family Part Number List ....................................................... .
D2 Product Family Curve Set. ...............•......................................
D3 Family Part Number List ....................................................... .
D3 Product Family Curve Set ...................................................... .
D4 Family Part Number List ....................................................... .
D4 Product Family Curve Set •......................................................
D6 Family Part Number List ....................................................... .
D6. Product Family Curve Set ....•............•............•........................
D13 Family Part Number List ...............•.......................................
D13 Product Family Curve Set .................................................... .
D14 Family Part Number List ......•................................................
D14 Product Family Curve Set .•.........•...•................•....................
D15 Family Part Number List ......................•................................
D15 Product Family Curve Set .......•.............................................
D18 Family Part Number List .................................•.....................
D18 Product Family Curve Set .................................................... .
TRANSISTOR PROCESS CHARACTERISTICS
Process 05 NPN Darlington ....................................................... .
Process 06 NPN Darlington ..................... , ................................. .
Process 07 NPN Small Signal ..................................................... .
Process 10 NPN Small Signal ..................................................... .
Process 11 NPN Small Signal ..................................................... .
Process 12 NPN Medium Power .......................................•............
Process 13 NPN Medium Power ..................................•.....•...........
Process 16 NPN High Voltage .............................................•........
Process 19 NPN General Purpose Amplifier ............•......•......................
Process 21 NPN High Speed Switch ...........................•...•..••.•... '" ....
Process 22 NPN High Speed Switch ..•.............................................
Process 23 NPN Small Signal .........•..•......•.....•........•.•..•......•.......
Process 25 NPN Memory Driver ................................................... .
Process 34 NPN Planar Power ....•..........•........•..•...••.•.•.......•........
Process 36 NPN High Voltage Planar Power ........•.•.......................•.....•
Process 37 NPN Medium Power ..........•..•................•.......•....•...•....
Process 38 NPN Medium Power ...........•......•...•..•...•......................
Process 39 NPN Medium Power .......•.....••...•.•.....•.•.....•.•.........••.•..
Process 40 NPN RF Amplifier ..•.......•..•.•....•.•....•.............•......•..•..
Process 42 NPN RF Amplifier ........•..•................•...•....................•
Process 43 NPN VHF/UHF Oscillator ..•..•....•.....•.....•.......•..•......•..•...
Process 44 NPN AGC-RF Amplifier •.......•.•..•.....•.............••........•..•..
Process 47 NPN RF-IF Amplifier ...•...•..•....................•.•.......•.•.•...•..
Process 48 NPN High Voltage Amplifier .•..•......•......•..•...•.........•....•....
Process 49 NPN RF Amplifier ..•.................•.•..•..•.............•...........
Process 61 PNP Darlington •............••.•..•..•....•...•........................
Process 62 PNP Small Signal ..•.....•..•...............................•.•..•...•.
Process 63 PNP General Purpose Amplifier ..•....••........•................•......•
11-2

11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-16
11-17
11-18
11-19
11-20
11-21
11-23
11-24
11-25
11-28
11-30
11-33
11-35
11-37
11-41
11-43
11-45
11-49
11-53
11-57
11-61
11-65
11-67
11-70
11-73
11-76
11-79
11-82
11-87
11-91
11-99
11-104
11-107
11-110
11-112
11-115

Section 11 Contents (Continued)
Process 65 PNP High Speed Switch ............................................... .
Process 66 PNP Small Signal ..................................................... .
Process 67 PNP Medium Power ................................................... .
Process 68 PNP Small Signal ..................................................... .
Process 69 PNP Small Signal ..................................................... .
Process 70 PNP Memory Driver ................................................... .
Process 74 PNP High Voltage ..................................................... .
Process 75 PNP RF Amplifier ..................................................... .
Process 76 PNP High Voltage ..................................................... .
Process 77 PNP Medium Power ................................................... .
Process 78 PNP Medium Power ................................................... .
Process 79 PNP Medium Power ................................................... .

11-119
11-123
11-126
11-129
11-131
11-133
11-136
11-138
11-140
11-142
11-145
11-148

JFET PROCESS CHARACTERISTICS
Process 50 N-Channel JFET ...................................................... .
Process 51 N-Channel JFET ...................................................... .
Process 52 N-Channel JFET ............................. '" ...................... .
Process 53 N-Channel JFET ...................................................... .
Process 55 N-Channel JFET ...................................................... .
Process 58 N-Channel JFET ... '" ................................................ .
Process 59 N-Channel JFET ...................................................... .
Process 83 N-Channel Monolithic Dual JFET ........................................ .
Process 84 N-Channel Monolithic Dual JFET ........................................ .
Process 88 P-Channel JFET ...................................................... .
Process 89 P-Channel JFET ...................................................... .
Process 90 N-Channel JFET ...................................................... .
Process 92 N-Channel JFET ...................................................... .
Process 93 N-Channel Monolithic Dual JFET ........................................ .
Process 94 N-Channel Monolithic Dual JFET ...................... '" ............... .
Process 95 N-Channel Monolithic Dual JFET ........................................ .
Process 96 N-Channel Monolithic Dual JFET ........................................ .
Process 98 N-Channel Monolithic Dual JFET ............................. " ......... .

11-151
11-155
11-159
11-161
11-163
11-165
11-167
11-168
11-171
11-174
11-176
11-178
11-181
11-184
11-187
11-189
11-192
11-195

BIPOLAR POWER PROCESS CHARACTERISTICS
Process 4P NPN Planar Power .................................................... .
Process 4Q NPN Planar Power .................................................... .
Process 5P PNP Planar Power .................................................... .
Process 5Q PNP Planar Power .................................................... .

11-198
11-201
11-204
11-207

ULTRA-FAST RECTIFIER PROCESS CHARACTERISTICS
Process R4 Ultra Fast Rectifier .................................................... . 11-209
Process R5 Ultra Fast Rectifier .................................................... . 11-212
Process R6 Ultra Fast Rectifier .................................................... . 11-215

POWER MOSFET PROCESS CHARACTERISTICS
Process A 1 N-Channel
Process A2 N-Channel
Process A3 N-Channel
Process 81 N-Channel
Process 82 N-Channel
Process 83 N-Channel
Process 84 N-Channel
Process 85 N-Channel
Process C1 N-Channel
Process C2 N-Channel
Process C3 N-Channel

Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET
Power MOSFET

............................................ .
...........................•.................
.•...........................................
........................•....................
............................................ .
............................................ .
............................................ .
............................................ .
............................................ .
.....................•.......................
............................................ .

11-3

11-218
11-221
11-224
11-227
11-230
11-233
11-236
11-239
11-242
11-245
11-248

II

Section 11 Contents (Continued)
Process E1 N·Channel Power MOSFET
Process E2 N·Channel Power MOSFET
Process E3 N·Channel Power MOSFET
Process E4 N·Channel Power MOSFET
Process F1 N·Channel Power MOSFET
Process F2 N·Channel Power MOSFET
Process F3 N·Channel Power MOSFET
Process F4 N·Channel Power MOSFET

......•...••..•..•.•..... ; . • . • . • . . . ... . . • . . . ..
. . • . • . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •.
. . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • • . . • . . . . • ..
..•.•••......•...•....•...•...•..............
... . . . . . . . . . . . . . . . . • . . . . . . . . . • . . . • . . . . . . . . . ..
.•.. . . . . . . . . . . . . . . . . . . . • . . . . . . • • . . . . . . . . . . . ..
... . . . . • . . . . • . . . . • . . • . . . • . . . • . • . . . . . • . . . . . • ..
.... . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . ..

11-4

11·252
11·255
11 "258
11·261
11·264
11·267
11·270
11·273

~National

~ Semiconductor
D1-Family Part Number List

Package
Style

Part
No.

Package
Style

Part

No.

No.

Package
Style

1N628
1N629
1N658
1N660
1N661
1N3070
1N4938
IS920
IS921
IS922
IS923
BAV19
BAV20
BAV21
BAX16
BAY72
BAY80
FDH400
FDH444

DO·35
00·35
00-35
00-35
DO-35
00-35
00-35
DO-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
DO-35
00-35

FDLL628
FDLL629
FDLL658
FDLL660
FDLL661
FDLL920
FDLL921
FDLL922
FDLL923
FDLL3070
FDLL4938

LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34

FDS01401
FDS01402
FDSO 1403
FDS01404
FDS01405
FDS03070

TO-236
TO-236
TO-236
TO-236
TO-236
TO-236

Part

II
11-5

Curve Set Number 01
Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted
DC Forward Current
Forward Voltage

1Il00 V8

1
I

i8

I....
I

Forward Current va
Forward Voltage (Pulse)

1Il00

TA = 25"C

~ = 25"C

,/
ulso W1c11h = 4OO1"::;~==
Duly Cycle = 2lI:

1

100

I

i8

10

I....

1.0
0.1

/

100

/

I

II

10
0.0

Q.2

Q.8

OA

Q.8

1.0

Q.8 0.7

1.2

VF FORWARD VOLTAGE - VOLlS

I

..II!'

.......

.01

..... ~I--

.DD5

I

.001
0

20

40

so

so

I
~

Ii!

0.1

1I

i8

T\'P
1.0

!

Q.5

vR -

125

10

12

REVERSE VOLTAGE - VOLlS

15

'=I.OkHz
lAC O.lIoc

=

"

0.1

~

-r--

~

I

~

I~

_~~r
fN
~-fI
I
0

~N\.fI~

25 50 75 100 125 150 175 200

fA - AllBlEHT TEYP£RAlURE - 'I:

100

~"
Ik

10k

Power Derating Curve
500

I

10

RD - DYNAMIC IMPEDANCE - D

t

500

3.0

MM}~

1.0

.01
1.0

150

_f-~I I

0
9

100

75

_~~ I

100

8

50

2.5

2.D

TA = 25"C

I

400

1.5

Ui

1.0

....

500

2.D

Q.5

100~:

Averege Rectified Current
and Forward Current V8
Ambient Temperature

25'1:
,= =
1.0 MHz

3

I
I

25

TA

0
0

I

TA - AIIBIENT TEMP£RAlURE - 'I:

I

u

1

1.0

capaCitance V8
Reverse Voltage
2.5

0.1

Forward Current V8
Dynamic Impedance

'" '"

10

VR - REVERSE VOLTAGE - VOllS

3.0

1.0

0

.01
100

10

TC - TEMP£RAlURE COEFF1CIENT - mVjOe

VR • IOOV
I

JIJ'

I

1.2 1.3

100

I
I

'l.

1.1

1

I

I
I

1.0

Q.9

Reverse Current va
Ambient Temperature

TA. 25'1:

.os

100

0.01
Q.8

VF FORWARD VOLTAGE - VOllS

Reverse Current V8
Reverse Voltage

0.1

1

I

I....

I

0.01

1

i8

V

DC Forward Current V8
Temperature Coefficient

I~

~

I
I

,e

'\.

400
500

,
'\.

200

"

'\..

100
0
0

"

25 50 75 100 125 150 175 200

TA - AIIBIEHT TEMPERAlURE - 'I:
TL/G/l0033-1

11·6

~National

~ Semiconductor
D2-Family Part Number List

Part

Package
Style

Part

No.

Package
Style

Part

No.

No.

Package
Style

1N456
1N456A
1N457
1N457A
1N458
1N458A
1N459
1N459A
1N461A
1N462A
1N463A
1N482B
1N483B
1N484B
1N485B
1N3595
1N6099
BAY73
BAY129
FDH300
FDH333

DO·35
DO·35
DO·35
DO·35
DO·35
DO·35
DO·35
DO·35
DO·35
DO·35
DO-35
DO-35
DO-35
DO-35
DO-35
DO-35
DO-35
DO-35
DO-35
DO-35
DO-35

FDLL300
FDLL333
FDLL456
FDLL456A
FDLL457
FDLL457A
FDLL458
FDLL458A
FDLL459
FDLL459A
FDLL461A
FDLL462A
FDLL463A
FDLL482B
FDLL483B
FDLL484B
FDLL485B
FDLL3595
FDLL6099

LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL·34
LL-34
LL-34
. LL-34
LL-34
LL-34

FDSO 1501
FDSO 1502
FDSO 1503
FDSO 1504
FDSO 1505
FDS03595

TO-236
TO-236
TO-236
TO-236
TO-236
TO-236

II
11-7

o

.2
1iS

·c

j
8

I2

Do

iis

r---------------------------------------------------------------------------------,
Curve Set Number 02
Typical Electrical Characteristic Curves
2SoC Ambient Temperature unless otherwise noted (Continued)
Forward Voltage vs
Forward Current

Forward Current vs
Temperature Coefficient

1000

'1

Capacitance vs
Reverse Voltage
6

500

'1

100

I

100

I

1
J....
I

1

10

"2

1.0

j

1.0

I

0.1

....

0.10
0.01

CI.2

G.4

0.8

0.8

1.0

10

TA = 250C

o.s
0.1

1

lK

IB

100

B
....
I

I

.J1'0.D2

o.s

75

100

1.0

1.5

2.5

2.Q

~

~

I
I

400
500

I

I

I....

100

,e

o
o

10

I

~~

1.0

TA = 250C
f= 1.0kHz
IAC=0· 1IDC

TYP

0.1

I

25

0

50

75

100

125

0.01
0.1

150

1.0

Ro -

TA - AMBIEHT TEMPERATURE - OC

10

100

lK

ll1K

DYNAMIC IMPEDANCE - 0

Average Rectified Current
and Forward Current vs
Ambient Temperature
500

~

~

"',
_'\:~

~

I..v~

,

VfI,.

"

~

200

..

1

Power Derating Curve

?

~

Dynamic Impedance vs
Forward Current

1.0

125

n
VR - REVERSE VOlTAGE - VOLTS

10

VR - REVERSE VOLTAGE - VOLTS

500

o
o

3.0

100

0.1

50

r- t-

1

VR=l25V

I ;'"
I~
25

......

51(

Q.2

o

\

Reverse Current vs
Ambient Temperature

I

D.01

==

1C -lDIPIlIATURE COEFFICENT - rrN/"C

.,

1.0

1.

4

-

I
U

0.01
o

1.2

Vr - FORWARD VOlTAGE - VOLTS

Reverse Voltage vs
Reverse Current

~~ ~'-

""....... :...~

!

I"

~

100

"

o

o

25 50 75 100 125 150 175 200

l....6

-.......... l.~ \; r-~

25 50 75 100 125 150 175 200
TA - AMBIENT TEMPERATURE - OC

TA - AMBIENT TEMPERATURE· OC

TL/GI10033-2

11·8

r-----------------------------------------------------------------------,c

I

~National

~ Semiconductor

f

D3-Family Part Number List

o

i

iil

;i
Part

Part

No.

Package
Style

No.

Package
Style

1N4244
1N4376
BAY82
F0700
F0777
FOLL700
FOLL777

00·7
00·7
00·7
00·7
00·7
LL·34
LL·34

FOSO 1701
FOS01702
FOS01703
FOS01704
FOS01705

TO·236
TO·236
TO·236
TO·236
TO·236

::::!.

i-

ID
11·9

Curve Set Number 03
Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted
Forward Voltage
vs Forward Current

Forward Current vs
Temperature Coefficient

1000

100

1,

100

I

10

tj

1.0

§

I..,.,

10~--~~~--+---~

~
"

.01 '--_-'-_.1-_..I.-_...J

.01

0.2 0.4 0.6 G.8

o

1.2

1.0

Reverse Voltage vs
Reverse Current
100
TA

I
I,

VV

ioo'

~

/'

Dynamic Impedance vs
Forward Current
1000

VR 120v

10

I
I

1.0

0.

1

./

V
./

, 0.01

.JI'

1,

I

/

/

I
~

..,.,

.JI'

O. 1

o

VR - REVERSE VOLTAGE - VOLTS

100

10

15

2D

25

o

30

Power Dissipation, Average
Rectified Current and Forward
Current vs Ambient Temperature I::;
~

~

25

50

75

100

125

~p/
~~

1.0

0.1

150

~

101<

600
500

f:!WWURED:!:!:~1N~S1l::':LLl.:AI:!:-R'='CH:-:!AII8ER~-!:-'':!25::!:-l''C

~

400

ft+t+t++-l++-t+t-tH'++t-tl

1fl300H+H+H+H+H-tl~H-H

I

200 f+H+++1H++++U'I+++++-H

~

l00~~+H~A+~+H~

~

0 =.u..JU-I....u.J...u..J........J-LJ............

02550TS~m~rn

~~~~~w~~

TA - AMBIENT TEMPERATURE - "C

Tlt.tE - SECONDS

V

lK

10

100

1.0

RD - DYNAM1C lMPEOANCE - D

Transient Thermal
Resistance vs Time

tj

o

'/

10

TA - AMB1ENT TEMPERATURE - "C

VR - REVERSE VOLTAGE - VOLTS

250

100

.01

0.00 1
10

02 0.3 0.4 0.5 G.8 0.7

0.00.1

Reverse Current vs
Ambient Temperature

= 25"C

,

02
0.1

TC - TEMPERATURE COEFFICIENT - mV/"C

Vr - FORWARD VOLTAGE - VOLTS

1

0.5

0.0

o

1..4

o.s

0.4
,0.3

~--+-.;.+--\-+---~

0.1

.10

Capacitance vs
Reverse Voltage

1.0
0.9
'l;.G.8
,03

rn

,

"

Junction Temperature
vs Time (Cooling Curve)

~IMJsu~ED ~ s'nL~ IJ~ ~~ER

150

I ::

1·125~ I I
IUNI~n\E~1

~
'(

TIME CONSTANT - f-

1' ....

I,

50

..:'

0

t""- -r-t-

25

o

W

2D

30

~

50

nME - SECONDS
TL/G110033-3

11·10

~National

~ Semiconductor
D4-Family Part Number List

Part

Package
Style

Part
No.

Package
Style

Part

No.

No.

Package
Style

1N625
1N626
1N627
1N659
1N914
1N914A
1N914B
1N916
1N916A
1N916B
1N3064
1N3600
1N4009
1N4146
1N4147
1N4148
1N4149
1N4150
1N4151
1N4152
1N4153
1N4154
1N4305
1N4446
1N4447
1N4448
1N4449
1N4450
1N4454
1N5282
BA128
BA130
BA217
BA218
BAX13
BAY71
FOH600
FOH666
FOH900
FOH999
FOH1000

00·35
00-35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35
00-35

FOLL600
FOLL625
FOLL626
FOLL627
FOLL659
FOLL666
FOLL900
FOLL914
FOLL914A
FOLL914B
FOLL916
FOLL916A
FOLL916B
FOLL999
FOLL1000
FOLL3064
FOLL3600
FOLL4146
FOLL4147
FOLL4148
FOLL4149
FOLL4150
FOLL4151
FOLL4152
FOLL4153
FOLL4154
FOLL4305
FOLL4446
FOLL4447
FOLL4448
FOLL4449
FOLL4450
FOLL4454

LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34
LL-34

FOS0914
FOSO 1201
FOSO 1202
FOSO 1203
FOSO 1204
FDSO 1205
FOS04148
FOS04448
BAS16
BAV17
BAV18
BAV70
BAV74
BAV99
BAW56
BAW75
BAW76

TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236
TO-236

Pair & Quad

III

1N4306} 00.7'
1N4307

'See Test Circuit 0-18

11-11

Curve Set Number 04
Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted
Forward Voltage va
Forward Current

1000

1

1

100

I

!..

~~

0-01

G.2

0.4

G.6

0-01

o.a

1-0

1.2

!
!

I
!

~

20

7

5

10

15

""

I

I

20

-010

25

VR - REVERSE VOLTAGE - VOLTS

!Q

':iI

3

1=

15

~

!

..........

......

i.--'

,

,~

i300

II

100

I:
I

0-1

lK

10K

Average Rectified Current
and Forward Current vs
Ambient Temperature

~r-ty~J
'f-:"'I':,

!.

100

'\
25 50 75 100 125 150 175 200

10 -

100

300

.~

0

FORWARD CURRENT - REVERSE CURRENT - mA

10

DYNAMIC IMPEDANCE - D

i.D~~~~r
~

'\.

100

0

1-0

Ro -

1

~ 50
~

I'

600

'\

1

300

&t

0.01
75

'\.

i!5350

200

0-1

-""

I\.

~450

~250

100

~

Power Derating Curve
600

2

0
0

1-0

TA - AMBIENT TEMPERATURE - "C

Reverse Recovery Time va
Forward Current (F = IR)
4

Ie

10

I

50

25

I..

./

-

0-1

JI'

16

TA = 25"C
1= 1-0 kHz
lAC= 0_1 IDC

•

1

10

1-0

12

Dynamic Impedance vs
Forward Current

V. = 25V

I

B

4

VR - REVERSE VOLTAGE - VOLTS

100

t

~

10

~

0

Reverae Current vs
Ambient Temperature

TA = 25"C

...... ~

~

1

0
1-0 1.5 2-0 2.5 3-D 3.5

0.0 0.5

100

I

JI'

-

2

TC - TOIPERATURE COEFFICIENT - mV/"C

80

I

\

Reverae Current va
Reverse Voltage

100
80

~

Zs
I
....

.J!-

VF - FORWARD VOLTAGE - VOLTS

1

~:::

0_1

I

3

I

t!

I-t Pl- F

1-0

I

~

-""

'Ii.
-~- I--

10

IE

$'

0-1

100

i8

~~~
I~b

1-0

I

Capacitance va
Reverae Voltage

4

I

$1--

10

Ie

Forward Current va
Temperature Coefficient
600

AVERAGE TEMPERATURE - "C

0
0

~+

r.~ \r-

25 50 75 100 125 150 175 200
IA - AMBIENT TEMPERATURE - "C
TL/G/l0033-4

11-12

~

~National

CD

~ Semiconductor

."

I

06-Family Part Number List

Part

n

Part

No.

Package
Style

No.

Package
Style

FJT1100
FJT1101

DO-7
00-7

FOSO 1300 Family
FOSO 1301

TO-236
TO-236

I
:::::!.

i-

III
11-13

Curve Set Number 06

Typical Electrical Characteristic Curves 25'C Ambient Temperature unless otherwise noted
Reverse Current vs
Reverse Voltage

Forward Voltage vs
Forward Current

Reverse Current
vs Temperature

10

10,000
TA =25 C

1.

~

V

I

I

!4
I

I
!

/

V

o
o

~~

10
I

1

>"

.JI'

1
10

vR -

15

20

25

.... ......:

r=

"'~~

100

I

/'

.JI'

~...
I

FJT1100

~
~

LM741

i

,;>

47 p.F

(MYlAR)

10kA

9.0

~

I
I

FJTlloo

I

~~Oo,l

I~'

8.0

""~~~

7.0

6.0

~

VOUT
5.0

o

5

10

15

20

25

r--

30

35

T • nME - MINUTES
TL/G/10033-9

TLIG/I0033-B

A nearly constant voltage peak follower clrcutt Is available by using a plcoampera diode. A comparison between the use 01 the FJTll 00 and a "low leakage"
FDH333 diode In the clrcuH Is shown in the curves 01 VOUT va Time.

11-115

III

~

'':;

CD

U
1!
as
r:.
o

~National

~ Semiconductor
D13-Family Part Number List

I

a.

CD
"CI

o
C

Part
No.

Package
Style

Part
No.

Package
Style

1N746'
1N747'
1N74S'
1 N749'
1N750'
1N751'
1N752'
1N753'
1N754'
1N755'
1N756'
1 N757'
1N75S'
1N759'
1N957"
1 N95S"
1N959"
1N960"
1N961"
1N962"
1 N963"
1 N964"
1 N965"
1N96S"
1N967"
1 N9SS"
1N969"
1N970"
1N971"
1N972"
1N973"

00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·.35
00·35
00·35
00·35

1N5226"
1N5227"
1N522S"
1N5229"
1N5230"
1N5231"
1N5232"
1N5233"
1 N5234"
1 N5235"
1N523S"
1N5237"
1 N523S"
1N5239"
1N5240"
1N5241"
1N5242"
1N5243"
1N5244"
1N5245"
1N5246"
1N5247"
1 N524S"
1N5249"
1N5250"
1 N5251"
1 N5252"
1 N5253"
1N5254"
1N5255"
1N5256"
1N5257"

00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35
00·35

Note:

'IN746-1N759 Type numbers with suffix "A" = ±5% tolerance nominal Vz.
"IN957-1N973 Type numbers without suffix = ±10% tolerance to nominal Vz.
"I N957 -1 N973 Type numbers and 1N5226-1 N5257 Type numbers with suffix" A" = ± 10% tolerance nominal Vz. With suffix "B" = ± 5% tolerance to nominal
Vz. No suffix = ± 20% tolerance to nominal Vz.

11·16

c

Curve Set Number 013

CD

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted
Temperature Coefficient
vs Zener Current

Dynamic Impedance
vs Zener Current

Power Derating vs
Ambient Temperature
~ 800 ""-"--"--"--"--"--"'-1""""'1
I

SIlO

I-+-+-k-t-t-t-H

ii~: I----I-+-+-+--''k-,,+-+-J

""

I

.S'

I
~

-.12 L..J.JUJ....L.-LJUJ....L.-LJ.J.L...JU-IJ.L.J
.01 .os.l
.5 1
5 10
50100

Iz -

8:
."
a

~

2~tll1~
1~~~-w~~6.~~~~~
1.0 Q.2 0.5 1 2

ZENER CURRENT - IlIA

in

if

I

100 1-+-+-I-+-I-+\--'It---1

~ O~~~~~~~\~
o

5 10 20 50 100

25 50 75 100 125 150 175 200

TA - AMBIENT TEMPERATURE - DC

IZ - ZENER CURRENT - IlIA

TL/G110033-10

Test Circuit
NOISE DENSITY MEASUREMENT CIRCUIT
1N4099-1N4121
1N4620-1 N4627

.---------------------------------.
(-)

BATTERY
POWER
SUPPLY
(LOW NOISE
SOURCE)

i

SHIELDED
TEST
CIRCUIT

(+)

I

....._ . -_ _ _ _--,

R
LOAD
CAPACITOR

.---------- --

~

____________________ 1

AMPLIFIER

FILTER
10=2 KHz
BP 1.3 KHz

=

I

TRUE
RMS
VOLT

METER
TL/G/l0033-11

•
11-17

~National

~ Semiconductor
D14-Family Part Number List

Part

No.

Package
Style

1N4728*
1N4729*
1N4730*
1 N4731 *
1N4732*
1N4733*
1N4734*
1N473S*
1N473S*
1N4737*
1N4738*
1N4739*
1N4740*
1N4742*
1N4743 *
1N4744*
1N474S*
1N474S*
1N4747"
1N4748*
1N4749*
1N47S0*
1N47S1"
1N47S2*

00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00·41
00-41
00-41
00·41
00·41
00·41
00·41
00·41

Nota:
1N4728-1N4752 Type numbers.

= ±5% tolerance to nominal Vz.
= ± 10% tolersnc. to nominal Vz.

With suffix "A"
WHhout suffix

11·18

Curve Set Number 014
Typical Electrical Characteristic Curves 25·C Ambient Temperature unless otherwise noted
Temperature Coefficient
va Zener Current
~

.12

.os

i~
I

i-

ill -.os

..

.34V

,.

500

!

1.0

~

G.6

.......
S'13Y

20
10
4.3V

"

I

B.OV

1

.01

.os.1

Iz -

.5 1

5 10

ZENER CURRENT - mA

50 100

4.3V

I" I'Ii

..I'

-.12

12

I

I

I

f,!

Power Derating va
Ambient Temperature

Dynamic Impedance
va Zener Current
lK

0.1 G.2 0.5 1 2

Iz -

~4V

5 10 20

ZENER CURRENT - mA

50 100

i

~

1\

G.6
0.4

"
~

G.2

I

~

0

o

~

50

~

"

l00I~I501~~

TA - AMBIENT TEMPERATURE - "C

TLlG/10033-12

III
11-19

~National

~ Semiconductor

D1S-Family Part Number List
Monolithic Air-Isolated Diode Arrays
Part

Package
Style

Part

No.

No.

Package
Style

1N5768
1N5770
1N5772
1N5774
1N6100
1N6101
FAS02501
FAS02503
FAS02509
FAS02510
FAS02563
FAS02564
FAS02565
FAS02566
FAS02619
FAS02620
FAS02719
FAS02720
FAS06101

TO·85
TO·85
TO·85
TO·86
TO·86
68
14S0lC
14S0lC
14S0lC
14S0lC
14S0lC
14S0lC
16S0lC
16S0lC
16S0lC
14S0lC
16 SOIC
14S0lC
14S0lC

FSA1410M
FSA1411M
FSA2002M
FSA2003M
FSA2500M
FSA2501M
FSA2501P
FSA2502M
FSA2503M
FSA2503P
FSA2504M
FSA2508P
FSA2509M
FSA2509P
FSA251OM
FSA2510P
FSA2563M
FSA2563P
FSA2564M
FSA2564P
FSA2565M
FSA2565P
FSA2566M
FSA2566P
FSA2619M
FSA2619P
FSA2620M
FSA2620P
FSA2621M
FSA2719M
FSA2719P
FSA2720M
FSA2720P
FSA2721M

TO·96
TO·96
TO·85
TO·85
TO·85
TO·116·2
TO·116
TO·96
TO·116·2
TO·116
TO·86
98
TO·116·2
TO·116
TO·116·2
TO·116
TO·116·2
TO·116
TO·116·2
TO·116
TO·116·2
TO·116
TO·116·2
TO·116
TO·68 (Ceramic DIP)
TO·98 (Plastic DIP)
TO·116·2
TO·116
TO·B6
68
98
TO·116·2
TO·116
TO·B6

11·20

c

O·

Curve Set Number 015

Do

CD

Typical Electrical Characteristic Curves 25°C Ambient Temperature unless otherwise noted
Forward Voltage
vs Forward Current

~

>

Capacitance vs
Reverse Voltage

o4.D

2JI,.......:.---r--r...:....:,.~~---.

Reverse Recover Time
vs Forward Current
20

18~--t-

1

\

I

:::r

!

I

~

io

I»

lA~-+--~--~-+-+~

~ 12~-+--~--~~~~

."

(;

:I.

!.

\. ......

:l'

I

,;
2.11

1.0

10

100

1000

Ir - rORWARO CURRENT - mA

50

20

80

I
E

Reverse Current
vs Reverse Voltage

40

.JI'

1.

I

o
o

E
I

.JI'

.DOl
20

V~S~A~m:b~le~n~t~T~e~m~p~e~r~at~u~re

I

"

r-

50
10

I

/
20

lr - FORWARD CURRENT - mA

Reverse Current

50

10

I

80

VR - REVERSE VOLTAGE - VOLTS

II

~

OL-____
____L - J
10
50 100
500 1000
~~

o

Mi.

-~-50-2.5

80

VR - REVERS[ VOLTAGE - VOLTS

0 2.5 50

~

100125150

TA - AMBIENT TEMPERATURE - "C
TL/G/l0033-13

Test Circuits
To measure reverse current of an individual diode, the following test circuits are used:

Common Anode Diodes

Common Cathode Diodes
SHUNT CURRENT

TO DIODE
UNDER
TEST

TO DIODE
UNDER
TEST

SHUNT CURRENT
TL/G/10033-14

TL/G/l0033-15

•
11-21

Test Circuits (Continued)
Test requirement for VFM and tlr is as shown below: all leads should be as short as possible

Input Current Pulse

=r:

-r~o"
500 rnA
:
-L

10%

:
,,, ,,,

, ,

~

Output Voltage Pulse

4711

:---tr =10ns

TL/G/loo33-17

TL/G/l0033-16

TL/G/lOO33-1B

trr REVERSE RECOVERY TIME TEST CIRCUIT
I, = Ir; Irr = 0.11 r
ANODE
BIAS
SUPPLY

IF

I"

-r

IR

To Oscilloscope
Ir :;, 0.4 ns
ZIN

Pulse Generalor
Ir:;; 5 ns
ZIN

°mA

t,,1

= son

TL/G/l0033-21

TL/G/l0033-19

= 50n

P.W, = l,.s
Duty Cycle = 2%

TL/G/l0033-20

t.IR BRIDGE MATCHING CIRCUIT

t.VF BRIDGE MATCHING CIRCUIT

10 TO 100 Vd.
ADJUSTABLE

TLlG/l0033-23

NOIe 1: VR2 = VRI ± 1%.
Nole 2: IR2 - IRI = AIR (difference in IR between diodes 01 and 02). To
measure diodes 03 & 04, reverse calhode-anode lerminal connections.

TL/G/l0033-22

Note 1: R Varies depending on Ihe current range. For Ihe most oiten used
currenl ranges, R is as follows:
R (ohms)
Currenl Range (amperes)
106
10-51010-4
10-41010-3
105
10-3 to 10-2
1()4
orl0-nlol0-n + 1
10n+ 1

Nole 3: A is a center reading plea ammeler. AIR Indicaled directly on A.

Note 2: V indicates mismtch of assembly.

11·22

~National

~ Semiconductor
D18-Family Part Number List

Part

Package
Style

No.

1N4306
1N4307
FA Series

00·7
00·7

III
11·23

Curve Set Number 018
Test Circuits for 1N430617 and FA Series
AVF DIODE MATCHING CIRCUITS

a.

c.

l R,

1

R2 R=O.OOIR

10 TO 100 Vdc
ADJUSTABLE
OR
10 TO l00v PEAK
(SEE PART C)

0.002R ADJUSTABLE

INPUT VOLTAGE
PULSE CONDITIONS
FOR PULSE V, MATCHED
ASSEIIBLES

R3 R=O.ODIR

FORWARD VOLTAGE
IllBALANCE OBSERVED
ON OSCILLOSCOPE If

1

TL/G/l0033-25
TL/G110033-24

b.

"
I,

Pulse Rise Time (10 to 90% AmpillUde) = 1.0,..s Max.
Pulse Fall Time (90 to 10% Amplilude) = 1.0,..s Max.

I.,
I,

Pulse Width (50% AmplHude)

= 10 ±2.0,..s

Transienl Time

= 1.0,..s Min.
= 1.0 ms

1p

Period

- 10V to 100V Adjustable
11VF Forward Vohage Difference Between Diodes
(Measured Between Transient Times) = As SpecJfled.

V

D

Voltage Input to CirtcuH "A or B"

10 TO 100 Vd.
ADJUSTABLE
OR
10 TO 100 V PEAK

+----1

TL/GI10033-26

Nole 1: R varies depending on the currenl range. For the most often used current ranges. R is as follows:
Current Range (Amperes)
10- 5 1010- 4

R (omhs)
105

10- 4 1010- 3

105

10- 3 1010-2

104

+'

+'

or 10- n 10 10- n
10n
Note 2: The Inpul voltage pulse conditions shown above are employed al National Semiconductor In lestlng. The user may devlale from the specific conditions
above wHh no variation in results providing Ihe following general condHions are mel:
a.!ll!:;: 0.01
tp
b.1., < 10 ms
c. Transienls oocurring during pulse rise and fall times are Ignored In observing I1VF.

AIR DIODE MATCHING CIRCUIT

TL/GI10033-27

Note 1: VR2 = -VR. ±1%.
Note 2: IR2 - IR.

= I1IR (difference In IR between two diodes under lesl).

Note 3: A is a cenler reading plco ammeter.

11·24

~Na110nal

Process 05
NPN Darlington

Semiconductor

11°. 11

DESCRIPTION
Process 05 is a monolithic, double-diffused, silicon epitaxial
Darlington. Complement to Process 61.

~~.
028

APPLICATION
This device was designed for applications requiring extremely high current gain at collector currents to 1A.

~~'-r-

~

B

1/////&
H

~

~*

0.025
10.13&1

lI"~
rtZZZZZl7J
t1

~

~

TO-116: MPQA13
TO-202 EBC: D40C1-B, NSDU45

~t

~
~-"
..1%1

E

PRINCIPAL DEVICE TYPES
TO-92 EBC: MPSA13
TO-92 ECB: 2N5306

T0-226 EBC: MPS6724, MPSW13
TO-236: MMBTA13

~r

T0-237 EBC: 2N6724

~
1.004
10.1021

TLlG/10034-1

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

NF

Ic = 1 mA VCE = 5V,
Rs = 100k,f = 1 kHz

CCB

VCB = 10V, IE = 0, f = 1 MHz

hFE

Ic = 10 mA, VCE = 5V
Ic = 100 mA, VCE = 5V
Ic = 1A, VCE = 5V

Min

Typ

Max

dB

2

4,000
B,OOO
3,000

4

6

40,000

200,000

VCE(SAT)

Ic = 10mA, IB = 10 ""A
Ic = 100 mA, IB = 100 ""A

VBE(ON)

Ic = 10mA, VCE = 5V
Ic = 100 mA, VCE = 5V

1.2
1.3

hIe

IC = 10 mA, VCE = 5.0V,
f = 1 kHz

60,000

BVCES

Ic= 100 ""A

pF

1.0
1.5

V
V

1.4
1.B

V
V

V

40

= 10 ""A

Units

V

12

BVEBO

IE

ICES

VCE = 15V, VBE = 0

100

ICBO

VCB

= 30V, IE =

0

100

nA

lEBO

VEB = 10V, Ic = 0

100

nA

PO(max)
TO-202
TO-226

10
2
1

Tc = 25°C
TA = 25°C
TA = 25°C

11-25

nA

W
W
W

III

an
«:)

I

a.

Process 05
Symbol

Conditions

Min

TO·92
TO·236

TC
TA
TA
Tc

= 25'C
= 25'C
= 25'C
= 25'C

2
850
600
350

8JC
TO·202
TO·237

Tc
TC

= 25'C
= 25'C

12.5
62.5

'C/W
'C/W

8JA
TO·202
TO·226
TO·237
TO·92

TA
TA
TA
TA

= 25'C
= 25'C
= 25'C
= 25'C

62.5
125
147
208

'C/W
'C/W
'C/W
'C/W

TJ(max)

All Plastic Parts

TO·237

,,

I

I
l!I

:I

....r
......,-,

~

T••

1.1

!~-.:

1.2

~

0.8

:!Ii

D.4

1

_\

$

I<

I! ...
ri
1.2

OA

lDO
10
1c-COI.LEC1OR CURRENT (mA)

......

I.

...,..

-40"C

~
~

,
,

1

Ii
II!
I<

11

::I

1

+12&OC

'DOD
'0
'DO
IC - COLLECTOR CURRENT (mA)

III

""

/

i
Iic

I
S
0

.1

,/

2&
1&
110
12&
10
TJ - JUNCTION TEMPERATURE ('C)

i"'"

0.4
0

,

10
10DO
'AD
IC - COLLECTOR CURRENT (mA)

12
'-'MHz
10

•

•

i'..

4

I

J

2
0

0

i"'"

Output Capacitance vs
Reverse Bias Voltage

5
.II

1010

D.I

I

B

~

lID

r.zr.r
--r-r

~

j
10

1.2

I

=V.. -3GY

!

~

IC - COLLECTOR CURRENT (IIA)

0

•""

-40'C

Collector-Base Diode
Reverse Current vs
Temperature

I

""

1.8

i

I

i

V~E 5V

W

~
0

•~

~

I.

,

TC -+12&oC

0

,

....

..

Base-Emitter ON Voltage vs
Collector Current

~ 2.0

TCi;',2rC,

I

10DD

Base -Emitter Saturation
Voltage vs Collector Current
~ -IDDO

I

ti

""

I

-1000

-WC
+21°C

~=
B;:

1\

'C

18[ ,

w,,"

,

Units

W
mW
mW
mW

Coliecto....Emltter Saturation
Voltage vs Collector Current

1.8

~~

L~

20

2.0

~

T.-2S'C

~

0

1<2

~

80~

I

YCE=5V

T -1ace

80

Max

150

DC Pulsed Current Gain vs
Collector Current

lDO

Typ

.1

,

"

10
REVERIE VOLTAGE (V)

10D

TL/GI1 0034-2

11·26

."

Process 05

an
CD

=
Q

U'I

Input Capacitance vs
Reverse Bias Voltage
10

..

,r.I~~,

:e

Small Signal Current Gain
vs Collector Current
f-1ooM"z

~

II

'"£I
~

VeE "OY......

..
.

i,

J

.I

o

I

.1

REVERSE liAS VOLTAGE (VI

.~

o

"

1m.

DC

0.1

,

~

JI

Safe Operating Area TQ-237

10

lID 210

10

~

I. : :

£I

8.0

.......

$

10

7.0

!Ii

~ 5.0

'"

I ..

1.1

0

!! 3.11
i Z.o

,

JI

-

j

110

VeE -eOLLECTOR·EMlnERVOLTAIE (VI

1.1

H

III

100

I

1A

1

=c

t.2

1\

g J!.lHr
......

"I"

IS

" "rml~CTOR

i 1.'

1.0

O.

Thermal Derating Curve

2._

""II" JOTe
I"

IDO

VCE - COllECTOR VOLTAGE (VI

Maximum Power
Dissipation TQ-202 vs
Case Temperature

i

LIMIT DETERMINEO
IY IVCES

0.01

Ie - COLLECTOR CURRENT (mAl

10

10

~8

I

I

,,,.

Co

VcE "'V

III

~

~

£I

i.-

v

Safe Operating Area TO·202

~

I-.

co
;;

,

~,

s...

;

~

••

i

"I"
"
121

1.0

T

~

........

'DA
l' 1.2

a

150

f-- ~

o

21

TC - CASE TEMPERATURE reI

LEAD

1

"\.

'"

"\.I

TAM,':E;f
( 0·1'2)

50

75

TAMIIENT
~O.~I

t......l\.

100

~
121

150

T - TEMI'ERATURE rCI

Thermal Response in TO·202 Package

.-

0.7

=1

0.3
D.I

I;
Ii"

D.5

i~ '.07'.1
in
......
D.OI
,"' 0.03

d

I~

0.:

i~ Iil- II

...."' .•

~ 'JC DC THERMAL RESISTANCE

~ LE~'~'
1.82
1.01
1.01 0.02

TpkoTC'P"" .DJcltl

~

1.15 0.1

OUTV CVCL£O •
0.2

1.5

10

20

50

lUI 200 500 ,.

2k

5k

~

1l1li Ilk

10k lOOk

'I- TIMEt",,1
TLlG110034-3

ID
11·27

~National

Process 06
NPN Darlington

~ Semiconductor
DESCRIPTION

Process 06 is a monolithic, double-diffused, silicon epitaxial
Darlington.

APPLICATION
This device is designed lor applications requiring extremely
high current gain at collector currents up to 1.5A and high
breakdown voltage.
0.037
(0.940)

PRINCIPLE DEVICE TYPES
TO-202 EBC: NSDU45A
TO·226 EBC: 2N7053
TO-237 EBC: 92PU45A
TO·92 EBC: 2N7052
TO-92 ECB: 2N7051

TL/G/l0034-4

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

Min

BVCEO

Ic = 1 mA, IB = 0

100
12

Typ

Max

Units

v
v

BVEBO

IE = 1 mA, Ic = 0

ICBO

VCB = 80V, IE = 0

100

nA

ICES

VCE = 80V, VBE = 0

100

nA

lEBO

VEB = 7V

100

nA

hFE

Ic = 10 mA, VCE = 5V
Ic = 100 mA, VCE = 5V
Ic = 1A, VCE = 5V

1,000
10,000
500

40,000

20,000
200,000

VCE(s)

Ic = 100 mA, IB = 0.1 mA

0.75

1.1

1.3

1.5

v
v

VBEls}

Ic = 100 mA, IB = 0.1 mA

Ccb

VCB = 10V, IE = 0, 1= 1 MHz

3

6

pF

Cib

VEB = 0.5V, 'E = 0, I = 1 MHz

14

20

pF

hIe

IC = 100 mA, VCE = 5V, 1= 20 MHz

8

PO(max)
TO-202
TO-226
TO-237
TO-92
TJ(max)

TC
TA
TA
TC
TA
TA

=
=
=
=
=
=

12
2
1

25°C
25°C
25°C
25°C
25°C
25°C

All Plastic Parts

11-28

W
W

2

W
W

850
700

mW
mW

150

°C

r-----------------------------------------------------------------------------,~

Process 06
Typical Pulse Current
vs Collector Current

Collector-Emitter
Saturation Voltage
vs Collector Current

2.0

-4Jc

_....

250C

,......

250C

Ie =1000
I.

-4OOC

~

I:
i

Base-Emitter
Saturation Voltage
vs Collector Current

2.0

I I
I I
I I

a

1250C

I-"'"

~ = 1000

1

125

o
loomA

lA

lOA

o

0.01

Ie - COUECTOR CURRENT (A)

0.01

0.1

Ie - COLLECTOR CURRENT (AMP5)

Base-Emitter on
Voltage vs Collector
Current

Small Signal Current Gain
vs Collector Current

2.0

0.1
'c - COLLECTOR CURRENT (AMPS)

Junction Capacitance vs
Reverse Bias Voltage

100

100

-4Jc

1.6

250C

-

I
1250C

0.8

10

1= 20 MHz
Va:=5V

CIb

....-r-.

10

Va:=5V

~

Il.4

I
I

~B

o

1

0.01

0.1

100

Ie - COUECTOR CURRENT (A)

Ie - COLLECTOR CURRENT (mA)

Typical Collector-Emitter
Leakage Current vs
Temperature
va:= 8OV F= =
V8E=0 r--

lk
100

Safe Operating Area
TO-226, TO-237

Maximum Power Dissipation
Ambient Temperature

g

2.4

3:

l'5

2.0

I

~

1.6

lOA

~

I
o.olA

60

100

140

TJ-JUNCTION TEMPERATURE (OC)

180

BY BYCEO
lOY
VCE - COUECTOR VOLTAGE (V)

l00v

"

T0-202

"l

I"

TO-226

i

0.8

J

Il.4

I·

I

20

100

VB

~

0.1
-20

10
VR- REVERSE BIAS VOLTAGE (V)

I

10

1

1
0.1

1000

...... ,J,O-237
~ r...... .,..."
T0-92.......

o

o

I"
....... ~ "-

.......

......

20 40 60

80 100120140160

TA - AMBIENT TEMPERATURE (OC)
TL/GI1 0034-5

a
11-29

~National

Process 07
NPN Small Signal

~ Semiconductor

DESCRIPTION
Process 07 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 62.
APPLICATION
This device was designed lor low noise, high gain, general
purpose amplilier applications Irom 1 ",A to 25 rnA collector
current.
PRINCIPAL DEVICE TYPES
TO-18:
2N930
T0-92 EBC: 2N5088, PN2484
TO-236:
MMBT5088

TL/G/10034-61

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Conditions

Symbol

Min

Typ

Max

NF (spot)

IC = 10 ",A, VCE = 5V,
Rs = 10k, 1= 100 KHz

3

10

NF (spot)

IC = 10 ",A, VCE = 5V,
Rs = 10k, 1= 1 kHz

1.5

4

NF (spot)

IC = 10 ",A, VCE = 5V,
Rs = 10k, I = 10 kHz

1.5

4

NF
(wideband)

IC = 10 ",A, VCE = 5V,
Rs = 10k, Pew = 15.7 kHz

1.5

4

hIe

IC = 500 ",A, VCE = 5V,
1= 20 MHz

Cob

Vce = 5V, I = 1 MHz

Cab

VEe

Units
dB
dB
dB
dB

3

= 0.50V, I = 1 MHz
35
50
70
80
100
50

IC = 1 ",A, VCE = 5V
Ic = 10 ",A, VCE = 5V
Ic = 100 ",A, VCE = 5V
Ic = 500 ",A, VCE = 5V
Ic = 1 rnA, VCE = 5V
Ic = 20 rnA, VCE = 5V

6
1.7

3.0

pF

5.5

8.0

pF

360

1000

VCE(SAT)

IC = 1 rnA, Ie = 0.10 rnA
Ic = 10 rnA, Ie = 1 rnA

0.10
0.15

V
V

VeE(SAT)

IC = 1 rnA, Ie = 0.1 rnA
Ic = 10 rnA, Ie = 1 rnA

0.75
0.B5

V
V

11-30

"U

Process 07
Conditions

Min

BVCEO

Symbol

Ic=1mA

60

Typ

Max

Units
V

BVCBO

Ic = 10"A

60

V

BVEBO

IE = 10"A

8

a
en

o
=
.....

V

ICBO

VCB = 45V

100

lEBO

VEB = 6V

100

nA
nA

PO(max)

TO-18
TO-92
TO-236

TA = 25"C
TA = 25'C
Tc = 25'C

mW
mW
mW

600
600
350

SMALL SIGNAL CHARACTERISTICS (f = 1.0 kHz)
Symbol

Conditions

Typ

Units

hie

Input Resistance

Ic = 1.0 mA, VCE = 5.0V

15

kn

hoe

Output Conductance

Ic = 1.0mA, VCE = 5.0V

15

"mho

hre

Voltage Feedback Ratio

Ic = 1.0mA, VCE = 5.0V

425

x10- 6

hte

Small Signal Current Gain

Ic = 1.0 mA, VCE = 5.0V

400

hib

Input Resistance

Ic = 1.0 mA, VCE = 5.0V

27

Parameter

n

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)

.

5
;

I.Z
1.1

0:

1.1 I"

IS

Ii

I

...

....

•

I
VCI -

}.;

:!::o

-..
.- ....
"'" -r-

~

,

!'OIo1"-

II

.....

./

ill

S
..

....

...

=c
!!I u

I!
=

.

1.1

c

IA

1i

~

IA

Ic·'.o'u
T.,zre
11
II
II
H
COLLECTOR VOLTAGE M

....

!3

~

·L ~

Vel- &.DV

Ic ·1.0.A

1.3
1.2
1.1

!:!
I!

0.8

i

0.1

rl II

i

...
lit.

~

1.1

II!

.

~

~

~

r-....

I-;h"',,,
....

=c

~
I!

.. ~11

!l:

I.D

rl

1.1

S
II!

...... ~
1-,.. /..,-

II
1.1
-1•

.Jt

~~

Ii
0

T, - ~UNCTION

•
TEII'ERATURE rei
1l1li

lID

LDI
E
c
1.1 D.Z

D.I 1.0 z.o I.D 10 II IiO 1l1li
Ic - COLLECTOR CURRENT lOlA)

.

Ili
u

TLlG110034-64

DC Current Gain vs
Collector Current
HI

Ta"II'CI'

..•c
I
..
0:

K
I

J

..
.
•.
!:l

Va-IV

ill
I<

HI

.II

.1

I

4GII

~
0

~

;

~

II

ie - COLLECTOR CURRENT IlIA)

•

IA

"

.J.J.

D.I

I

II'C
,. 'c

D.I

I- ,,,-I.IV

""

~

GA
D.I

i

I

1

Base-Emitter ON Voltage vs
Collector Current

>

!

i-

III
III

~

III

T.'Z~·~

:i!

'A·~

V.. 'IV
"IkHz

T~ .1,iJie

u IIID

~

•
•
•

""

101

I<

Ta·H'C

III

, .,"

IDIII

~

HI

.

Small Signal Current Gain
vs Collector Current

•

.01

~

I
10
Ie - COLLECTOR CURRENT I..AI
.1

1111

,:

0

t.I

I.a

,.

I.

Ie- - COLLECTOR CURRENT (_At

TLlGI10034-66

11-31

•

~

C)

r-----------------------------------------------------------------------------,

I

Process 07
Collector Saturation
Voltage vs Collector Current

Q.

o.z5

I!

I

i

I
I

f-~"I

'-'.

0,15

--

1.11.

J

IIII
IIII

T.

-+~rci

..... ....,.

Contours of Constant Gain
Bandwidth Product (IT)

IL

I J
II I I

Ie jill.

"'"

I,..ooio"'"

~
~.+IGII·C

0.1

I:

•-,+~ff

1.0

1.1

5

~

I

1.0

= 0.8
i -

r--

TA.+1.a:~

1.1

...S
>

I

--II

0.21

Base-Emitter Saturation
Voltage vs Collector Current

i"'"

I

1111

11

Ie - COLLECTOR CURRENT InIA)

!
..:

0.1

Input and Output
CapaCitance vs Reverse
Bias Voltage

U

1111
'.0
10
Ie - COLLECTOR CURRENT IIIIA)

i

..
rl

Mal'imu,,", Power
Dissipation vs
Ambient Temperature

F= 1 MHz

5c

c..

....

2.1

a I.'

4.0

Ie

lDO

.

4l1li

8..

IZ.I

,1.1

50

71

I

J

I.
§

I

i"'"..

i

I

'a

110

II
I

tl

Ii
Ii

IDO
Ii

Ii
Ii IIIIIZIIII
IlllllllUi
R, - IOURCI! REIIIITANCE (II)

'\ r-...

10

IDO

Ie - COLLECTOR CURRENT loA)

,.

."i

~

I"III

ZIII

T. -AMBIENTTEMPERATURE ('e)

Contours of Constant
Narrow Band Noise Figure

~

Ii
Zk

II
II

tl

III

../

I'\,.

~

Ii

III

I

'"

II

rl

zoo

."'"

IDO

,.
§

5i

..

I

TO·II

lID

j

III

Contours of Constant
Narrow Band Noise Figure

& IDO

•

~

TO",Z

I

REVEII$E lUll VOLTAGE (V)

Wideband Noise Figure vs
Source Resistance

5DO

30D

VII I J I I
ZO.O

101

..i "

I I I VI I I

A::.
I
I

I

800

;..

I

...,

•

I..

51

\I~O

3.1

1.1
'0
'III
Ie - COLLECTOR CURRENT (mA)

Normalized Collector Cutoff
Current vs Ambient
Temperature

5.0

...

L....Ju.J........J.....I.......WOu...................

1.1

o

f-

:v.; .!
i~~:=OT I-Z,,.

110

I

II

I. .

IDO

Ie - COLlECTOR 'CURRENT loA)
TL/G/l0034-62

Contours of Constant
Narrow Band Noise Figure

Contours of Constant
Narrow Band Noln Figure

Noise Figure va Frequency

10i

II

I

Ic03OD~11t
R,-ilW

~

!

!!

I \\
iii
I

10

100

Ie - COLLECTOR CURRENT (pA)

I DOD

0.1

1.0

Ie - COLLECTOR CURRENT (..A)

10

le-llOpA~iI_

Ro-Iowl II

1.\

'1

le-l.OmA

I

R,olllQ(l

J

,:&.I.omA

·us;q
111

Ye. -LIV

o
I.... II'"' lit"" 10-'

I

10

II'

1- FREQUENCY (11Hz)

TL/GI1 0034-63

11·32

."

~NatiOnal

Process 10
NPN Small Signal

Semiconductor

/

V- V
/

(o'oLr) ~

V

VVVV-

/

Process 10 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 68.

/

1
~~

/

/

/

V// /

)

V""/

B

V

V

'/

V

V

V
/
/

I.

/
/

/

o

DESCRIPTION

..... 0.005,_
(0.127)

V.

I...

0.020
(0.508)

~J

APPLICATION
This device was designed for general purpose amplifier applications at collector currents to 500 rnA.
PRINCIPAL DEVICE TYPES
To-92 EBC: PN100, PN2222
TO-92 ECB: 2N3415
TO-116: MPQ100
TO-236: MMBT100, 100A
16-80IC: MMPQ100

/

.1

0.020
(0.503)

TLlG/10034-65

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

CondHions

Min

Typ

Max

Units

BVCBO

Ic = 10/-LA

75

BVCEO

Ic = 1 rnA

45

V
V

BVEBO

IE=10/-LA

6

V

ICBO

VCB = 60V

50

nA

ICES

VCE = 40V

50

nA

lEBO

VEB = 4V

50

nA

hFE

Ic
Ic
Ic
Ic
Ic

=
=
=
=
=

80
100
100
100
60

100 /-LA, VCE = 1V
10 rnA, VCE = 1V
100 rnA, VCE = 1V
150 rnA, VCE = 5V
300 rnA, VCE = 5V

250

600

VCE(s)

Ic = 10 rnA, IB = 1 rnA

0.2

VBE(s)

Ic = 10 rnA, IB = 1 rnA

0.85

V

VCE(s)

Ic = 200 rnA, IB = 20 rnA

0.4

V

VBE(s)

Ic = 200 rnA, IB = 20 rnA

1.0

V

Cob

VCB = 5V, f = 1 MHz

tr

VCE = 20V, Ic = 20 rnA

ts

3.5
200

4.5

V

pF

300

MHz

Ic = 10 rnA, IBI = IB2 = 1 rnA

275

ns

toFF

Ic = 150 rnA, IBI = IB2 = 15 rnA

225

ns

NF

Ic = 100 /-LA, VCE = 5V, RG = 2 kO, f = 1 kHz

1.5

dB

PO(max)
TO-92
TO-236

TA = 25°C
Tc = 25°C

600
350

11-33

mW
mW

III

....

<:)
II)
II)

Process 10

CP

Q

2
£L
Collector Current vs
Collector-Emitter Voltage
10

~!5.""- 40:'"
....
35.

1

I
~
8

,,1

30.
2S."A
20.

4

.... ....

r- -I-

o

10

20

30

40

~

i

19=1

1=1.0 MHz

-

10

o
o

50

0.1
CIA

0.8

1.6

1.2

0.1

2.0

Collector Saturation Voltage
vs Collector Current

I

I-

1\
~

l-2oh'
it'
IsbwHz

I

I

10

TAI~~50

10

~
0.03

===~=O

IIII

1.01
0.1

100

0.3

TA=25OC

1.0

Ie - COLLECTOR CURREHT (mA)

10

100

0.1
0.1

1000

1.0

Ie-COLLECTOR CURREHT(mA)

Base Saturation Voltage
vs Collector Current
10

HF .If...

TA=I25OC

1
1

1/ 1

0.1

e

(J

100

0.3

;

I.

10

Base Saturation Voltage
vs Collector Current

IC B=10

~

1.0

REVERSE VOLTAGE (V)

1.0
60MH

ob(Ic=O)

1.0

VcrCOLLECTOR-EMITTER VOLTAGE (V)

10

~

-I-o.CIb(Ic=O

II'

Contours of Constant Gain
Bandwidth Product (Fn

~

\9"~
T~lrM

~

VcrCOLLECTOR-EMITTER VOLTAGE (V)

£

--........... ...,..

i""

5.~

o

100

~~
c= ~
~

i""

15:", r+10....-

I

-"

Input and Output Capacitance
vs Reverse Voltage

Collector Current vs
Collector-Emitter Voltage

100

1000

D.C. Current Gain
vs Collector Current

Collector Saturation Voltage
vs Collector Current
0400

1.0

1C/1~=10

10

Ie - COLLECTOR CURRENT (mA)

TA=25OC

T~I~I'~5~T

VCE=5V

320
0.3

!S
0.1

I

E

=

H

~

0.3

0.1
0.1

10

100

0.1

1.0

Ie - COLlECTOR CURREHT (mA)

&CO

!

~
~

~

10

IIII

80

100

00.01

1000

'\. T092
0400

I'..

,

300

25

50

.........

75

2-40

1

210
180

1

*

'-

~

100

""'"

125

eo
60
30

-

10

AMBIENT TEMPERATURE(OC)

1000

"<

Vcc='OV

o

150

100

r-...

r- IB1 =IB2=IC!10

150
120

'-

SOT-23
TO-236

200
100

'Ol'

1'-

10

Switching Times
vs Collector Current

300
270

'\.

500

0.1

Ie - COLL£CTOR CURREHT (mA)

Ie-COLLECTOR CURRENT(mA)

Total Power Dlaslpation
va Ambient Temperature

o
o

=-

160

n:=

0.0 1

1000

"I

II

=2

0.03

1.0

A=25::!

,I.

§!

~A= 5'C

20

V-

........: I--50

100

200

300

Ie = COLLECTOR CURRENT (mA)

TLlG/l0034-7

11-34

."

;;

~NatiOnal

Process 11
NPN Small Signal

Semiconductor

/

1/

V

1/

1/

1/

V

V

ot ~

(0.152)

L~

/

Process 11 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 69.

///V///
~

This device was designed for general purpose amplifier applications at collector currents to 300 mAo

/

V
1/

/

/

/

/

1
~v
~~V

B

L

V
/

/
/

I.

(II

V

APPLICATION

PRINCIPAL DEVICE TYPES
TO-92 EBC: PN10l

0.020
(0.508)

TO-236: MMBT10l

V

1/
/

m

......

DESCRIPTION

0.005

I- (0.127)-+

V.

n

/

V

vJ

/

L

.1

0.020
(0.503)

TLlG/l0034-8

ELECTRICAL CHARACTERISTICS (TA
Symbol

= 25°C)

Conditions

Typ

Max

Cob

VCB

= 10V,f = 1 MHz

Min

3.0

4.0

Units
pF

Cib

VEB

= 0.5V, f = 1 MHz

16

25

pF

NF

Ic = 100 ",A, VCE = 5V
Rs = 2 k!1, f = 1 kHz

2.0

dB

fT

VCE

= 10V,Ic = 20 mA

150

250

MHz

hFE

VCE
VCE
VCE

= 1.0V,lc = 1 mA
= 1.0V, Ic = 100 mA
= 1.0V,lc = 150 mA

40
100
75

200

400

VCE(SAT)

Ic

= 150 mA, IB = 15 mA

0.5

V

VBE(SAT)

Ic

= 150 mA, IB = 15 mA

1.0

V

BVCBO

Ic

= 10 ",A

80

BVCEO

Ic

= 1 mA

65

BVEBO

IE

= 10 ",A

6.0

ICBO

VCB

50

nA

ICES

VCE

= 60V

50

nA

lEBO

VEB

= 4.0V

50

nA

PD(max)
TO-92
TO-236

TA
TC

= 60V

= 25°C
= 25°C

600
350

mW
mW

III
11-35

........
:ICD

Process 11

()

e

a.

Collector Current vs
Collector-Emitter Voltage
10

~!5.~

!

40.

!

lS.

I
;

I

30.
25.
20.~

'-r- -

15:"" 1-10.~

8I

..,

5.""

o

10

20

30

40

o

VC£'"COLLECTOR-EMIIlER VOLTAGE (V)

I~

-

10

1.2

1.6

0.1

2.0

I

I

I

150MHz

I(J

r-20~

I

~

TA~~5O

W

10

0.1

0.03

1000

0.1
0.1

Collector Saturation Voltage
vs Collector Current

~/U=10

TA=25CC
320

0.3
I

~

t =1

0.1

.}

0.3

0.03

1.0

10

100

1000

1110

VCE= Y

"1111 I

=-

110

FE=1

illl

0.01
0.1

'c- COUECTOR CURRENT(mA)

T~I~li5~~
-I

II

Hr =2

1000

A=25~

!of

~

t-~

100

D.C. Current Gain
vs Collector Current
-400

!S

10

1.0

'c - COLLECTOR CURRENT (mA)

1.0

3

0.1
0.1

100

'c- COUECTOR CURRENT(mA)

Base Saturation Voltage
vs Collector Current

- 0

0.3

IIII
10

1.0

'c- COLLECTOR CURRENT(mA)

10

1==::=:tI'

TA=25CC

1.01
0.1

100

HrE'l

TA=125CC

.}

1
1

100

0.3

~

~

10

Base Saturation Voltage
vs Collector Current
10

!S
\

1.0

REVERSE VOLTAGE (V)

Ie IB=10

~

(10=0)

0.1

o.a

OA

1.0

1IOMH I-

-~CIb(I.=O

1.0

Collector Saturation Voltage
vs Collector Current

10

~

.}

~

1=1.0 MHz

VC£'"COLLECTOR-EMITTER VOLTAGE (V)

Contours of Constant Gain
Bandwidth Product (FT)
~

1B=1~

100

50

o

50

-

IB~
. .=1"'"

,.... -"""
-""""'-T"

~"""
r.,

200

Input and Output Capacitance
vs Reverse Voltage

-- -

1

250

I :: "
,l.

I I

o

Collector Current vs
Collector-Emitter Voltage

300

10

1.0

100

1000

10

100

1000

Ie - COLLECTOR CURRENT (mA)

le- COUECTOR CURRENT(mA)

Total Power DIssipation
vs Ambient Temperature

600

"
'"

"

T092

I"

......

" .'\.
"

SOT-23) .........

TO-236

o

o

25

50

75

100

~

125

""

150

AMBIENT TEMP£RATURE (CC)
TUG/l0034-9

11-36

r--------------------------------------------------------------------------,
~National

Process 12
NPN Medium Power

~ Semiconductor

~

IN

DESCRIPTION
Process 12 was a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 67.
APPLICATION
This device was designed for general purpose medium power amplifiers and switches requiring collector currents to
0.5A and collector voltages up to BOV.
PRINCIPAL DEVICE TYPES
TO-39 ESC: 2N3019
TD-92 ESC: MPSA06
TO-116: MPQA06
'1"0-202 ESC: NSDU06
TO-226 ESC: MPSW06
TO-236: MMBTA06
TO-237 ESC: TN3019

TLlG/l0034-10

ELECTRICAL CHARACTERISTICS (TA = 25·C)
Symbol

Conditions

Min

Typ

Max

Units

IC = 150 mA, IS1 = 15 mA
(FlgurB 1)

50

ns

toFF

IC = 150 mA, IS2 = 15 mA
(FlgurB 1)

400

ns

hie

IC = 50 mA, VCE = 10V,
f = 20 MHz

4.0

VCB = 10V,f = 1 MHz

6.5
6.5

VEB = 0.5V, f = 1 MHz
IC
Ic
Ic
Ic

=
=
=
=

30
50
75
30

1 mA, VCE = 10V
10 mA, VCE = 10V
150 mA, VCE = 10V
500 mA, VCE = 10V

175

10

pF

60

pF

350

VCE(SAT)

IC = 100mA,IB = 10mA
Ic = 500 mA, IB = 50 mA

0.2
O.B

V
V

VBE(SAT)

IC = 100mA,IB = 10mA
Ic=500mA,IB=50mA·

0.90
1.20

V
V

BVCEO

IC = 10mA

65

V

BVCBO

IC = 100,...A

100

V

7
leBO

V

VCB = BOV

100

nA

VEB = 6V

100

nA

11-37

III

N

I

a.

Process 12
Symbol

Conditions

Min

Max

Typ

Units

PO(max)

Te = 2S'C
'TA = 2S'C
Te = 2S'C
TA = 2S'C
TA = 2S'C
Te = 2S'C
TA = 2S'C
TA = 2S'C
Te = 2S'C
TA = 2S'C
(Total)
(Each Transistor)

TO·202
TO·39
TO·226
TO·237
TO·92
TO·236
TO·116

DC Current Gain vs
Collector Current
IU

II !I
Jl II

I"

!i

I.

I

.

.1

mW
mW

r.--4t·c

.• ~

I

~

..

1

I

~
1.

i

i•.
I

::

0.2

!

..

1

II

1001

'UI

'e -COLLECTOR CURRENT (AMPSI

lc-catUCT8ll_1IoAI

~

'", X

~0'231'

100

aDD

TO,II Nu--/lU.2111

400

•

lao

j

0

I

I

t480

lIDO

is lOOD

lA· . .·1:

U

,:

lIDO

!

I-

U

.

Maximum Power
DIssipation vs
Ambient Temperature

1,800

VCE-18V

1111

U

~

't...·c
'[ II

•

900
SOO

to

=
:!

Va-21'e

10

I

~

v,;,!'1V

II

II

W
W
W
W
W
W
mW
mW
mW

Baae-EmlHer ON Voltage vs
Collector Current

ra:;.c

I:

10
2
7
1
1
2
8S0
800
3S0

r""- ~ ."('1...

~..,....

lU·Z38
50

110

'00

100

T. - AMBIENTTEMPERATURE ('CI
• One square Inch of copper run
TL/G/IOO34-11

SMALL SIGNAL CHARACTERISTICS (f
Symbol

= 1.0 kHz)

Input Resistance

hoe

Output Conductance
Voltage Feedback Ratio

hIe

Small Signal Current Gain

TYPICAL COMMON EMITTER CHARACTERISTICS (f

.

1

..
!II

10

I'!

3.0

c

;I
~

v•• • ...Y

c

I

T. -II'e

."'

~

X..,.....

~

1.3

II

'.1

0.1

G.3

J

"I 1

'iW'" I
N

5II! 1.0 "'"

"Iii
E
.iii

0

8.0

IJ.mhos

2.1

X10- 4

'"

I.'

II I l'"
3.1

10

:1051

Ie - CDLUCTaR CURREIT CmAI

,

1.1

= '.1

I'!

i"

i

0.7

~

D.I
1.1

•

..

I"-

....
C 1"-1-

_11°C
I

1
II

II

II

'Mt

",. 1.0 IIA

111 '

v~

I'!

1"- ...

,.1.0,'"

U

= 2.i V.. ·I.OV
;I 2.D '·'.OkH.

!II

'"

Ic·'.lmA
TA

~

~

,

1.0

...
~II! ...

100

~

1.1

!II

;I

Units

= 1.0 kHz)

S
10

.JI

Typ
3000

Ie

hre

,.

Conditions

= 1.0 mA, VeE = S.OV
Ie = 1.0 mA, VeE = S.OV
Ie = 1.0 mA, VeE = S.OV
Ie = 1.0 mA, VeE = S.OV

Parameter

hie

II

Y.. - COLUCTOR YOLTASE CVI

31

i

1.1

I...•
!

'!Lb",

1.1

r-r-

....

""~

·IID

'. ""

I~~
~

~

-III

~:,

I

II

I.

110

T. - _,ENT TEMPERATURE C'CI
TL/GI10034-15

11·38

"U

Process 12
Maximum Power
Dissipation vs
Case Temperature

Collector Reverse Current
vs Ambient Temperature
1111

.

I

""

100

il
=
~
0:

I'..TO.38

"

0:

1'\

8,

I'\.

50

1111

150

1/

1.0

1.1 L-1.-.JL.-J-i.....L....L-L.-L........
2ti
&0
1&
110
11&
1&0

100

TC- CASE TEMPERATURE rCI

T. - ANBIENTTE_RATURE

i •

I
i

\
1\ Ve,-I.DV
II

I

o
I.D

II

IIIIlLIII

10

s

.!!!

II

iii
I,

...

II!

II

§

1.0

l-N

.iti~11DIl

~-II

I

I.

....
"::I

4.11

,

~-I.o1In

I.

i

+11

'.2 ~m:$:I~I~IIIII~~
~~~1
A D+2&OC
1111 I 1111 11111
0.1

J

100 I.DOD 10,000
1.0
10
Ie - COLLECTOR CURRENT (mAl

Switching Tlmea va
Collector Current

: ~ N.~~~~ ......
.:\

~~..

-

l!i

I'DDIIA

,

-

DCIICHI

,.-1111:

II

T......

10 lOA

Vel - COLLECTOR EMmER VOLTAGE (V)

1.1

I.D ''''
Ie - COLLECTOR CURRENT (mAl

lit

8.7

!

Q.I

I
,

t . ,·
0.8

11111
11111
11111
TA· ...·e

1

J

If

TA-IIIC
~T.-IOO'C

i
1.1 1.1

1.1

II

101

1.100

I1.1III

Ie - COLLECTOR CURRENT (mAl

I-

I-

I.

......

I
1111

I.W.-I.'.H.

Turn On and Turn Off Tlmea
va Collector Current
1.1 -112 -le/1.

Vcc·.V

-~

I.

!iii

1111

211

I

1.3

180

~

.........ICATED
am CYICLE < II'

.JI

,-tOM"1

Baae Saturation Voltage va
Collector Current

~

1101

IA IalMlnl.
IA

0.1

>

H+f.H-l-HHT

1In~
Veli =1DV

N-+fm
I II II!

u

&0

Collector Saturation
Voltage va Collector Current

0..

110

I~ "J.ri.
-(jI
YL

111111

10

~

i

Safe Operating Area TO-39
with "Wake Field" Type
296-4 Heat Sink

..

•

c... IIDa
I.D

121

II I I
I~_IIJ

........

1.0

4.0

i DArHlH-tttH-ittt-H-HI1HrtH
e
r, ;, ao:

II

1- FREaUEICY (kH.1

I

C... le .. D

40

o

100

Noise Figure vs Collector
Current

it

.......
21

~

1&

II!

~ "'rH~-*~;Hrrtffi-r.~

101

&0

.. ...
iii..
•, ~ R.-,..

I

10

2&

REVERSE 81AS VOLTAGE (VI

Ro -IDIIn

0.1

0.1

Ii
:!!

1.1

~.:~tv-

I

,

II

II

101

Noise Figure vs Frequency

Ii

j

f·1.IMHI

Ie - COLLECTOR CURRENT (mAl

Z4

1.0

T. -ANIIENTTEMPERATURE rCI

:§.

!

~

E
!,
rei

80

"/

ill

~

I

",,:e. -IIV

~

i:I

i,

lID

'-2IMHz

I

18

Collector-Baae and EmitterBaae Capacitance vs
Reverse Blaa Voltage

Small Signal Current Gain
at 20 MHz
II

Vu·4.1V

0:

j

1'\

I.

E

II

i

Emitter Cutoff Current va
Ambient Temperature

I 1110
~8
Il:

a

II

~

I_

I.....

~

1111
Ie - COLLECTOR CURREIT (IOAI

I.

100

I--

a
10

to.

I.

~"

Ie - COLLECTOR CURREIT (..AI

I.

TL/G/10034-12

11-39

III

~
.-

~----------------------------------------------------------------------------,

I

Process 12
Maximum Power
Dissipation TO·202 vs Case
and Ambient Temperature

E
I

10
1.0

i"-

I : : I-+-I~
....

I

" ....
.:-T,=T"'C+_f----l

~ B.I

Ii!

5.0

I

4.0

I\"

I--t--I--t-.......
.-t--I---i
1--t--I-+-'lI_,,+-I

~ 3.•

0.01 L-....I-.1...I...L-....I...---''-'-.l..J.---'
1.0
10
lOG

'~-I

2.0 ,I=---,I;.;._T_",-To-l-+--3I

',..
i

Ii

,f

D

~

25

50

r75

lOG

\..

125

~
150

T - TEMPERATURE C·C)

VCE - COLLECTOR TO EMITTER VOLTAGE CV)

TL/G/l0D34-13

Ie

Rb

RL

150mA

31411

33011

300mA

15711

16711

500mA

9411

10011

-4V

sov

~

C)

~

~ RL

UK

.1 ~i

I

TO SAMPLING SCOPE
~ RISETIME::;:I.On.
INPUT Z '" 100 KIl

R.
'w

&0
w

w

~

PULSE SOURCE
lOY
~
RISETIME::;:Un.
DV - - '
___ FALL TIME::;:IO.O ..
TL/G/l0D34-14

FIGURE 1. toN. toFF Test Circuit

11-40

~NatiOnal

Process 13
NPN Medium Power

Semiconductor
DESCRIPTION

F1
~I~'~~~
ra.u

~~

~~

Process 13 is anon-overlay, double-diffused, silicon epitaxial device.

1

0.0015
(U3a1)

APPLICATION

1

t

This device is designed lor use as medium power ampliliers
and switches requiring collector currents 01 100 /LA to
500 mA.

O.Dll425

(0.10115)

,.tJ t

I
0.00125
(0.03175)

0.020
(0.508)

~ ... -----J
iUaii

TLlG/10034-16

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Symbol

Conditions

Min

Typ

Max

Units

toN

Ic = 150 mA,IBl = 15 mA

35

ns

tOFF

Ic = 150 mA,IB2 = 15 mA

250

ns

hIe

IC = 20 mA, VCE = 20V,
1= 100 MHz

NF(spot)

Ic = 100 /LA, VCE = 10V,
Rs = 1 k!l, I = 1 kHz

2.0

Cob

VCB = 10V, 1= 1 MHz

4.5

Cib

VEB = 0.5V, I = 1 MHz

hFE

VCE
VCE
VCE
VCE

2.0

= 1.0V,lc = 1.0 mA

30
40
50
25

= 1.0V,lc = 10 mA
= 1.0V,lc = 100 mA
= 1.0V, Ic = 500 mA

3.0

150

dB

B.O

pF

35

pF

300

VCE(SAD

Ic = 150mA,IB = 15mA
Ic = 500 mA, IB = 50 mA

0.2
0.5

V
V

VBE(SAT)

Ic = 150mA,IB = 15mA
Ic = 500 mA, IB = 50 mA

1.0
1.2

V
V

BVCBO

Ic = 100/LA

60

V

BVCEO

Ic = 10mA

35

V

BVEBO

Ic = 10/LA

6.0

V

ICBO

VCB = 40V

100

nA

lEBO

VEB = 4V

100

nA

11-41

III

Process 13
DC Current Gain vs
Collector Current

,

JIO

!

~

101

!lIOp

.l

I

1

II~
0

..

•

.":1.1

.00

'0

~;

Ii!

e

iii
f·4

fl--a·c

-VR-I¥.
VI:I-I.V, T._-tIIDe

.DOD

Collector-Base Diode
Reverse Current vs
Temperature
100

h
.........

....1O!5
....
....
.....

B~
'e
j:l

.

32

l!l

24

~
if

2D

.!>

1/

..'"

1

f.-

Va-'v' T._12soe

E
!!
I

1/

J

'.1

25

51

15

III

100

--1111 filII

•

.0
'118
Ie - COLLECTGR tUDEI' I_AI

i.

400

i

200

I'

~

&

.01.

~

'\l
'\

•

D

~

-~

110

200

r...

F·1MHz

I.

l!l

..........

..'" •
....:5...r: •
~
f

.........

4

•

I

J

4
0

III

100

Output Capacitance vs
Reverse Bias Voltage
II

I

.1

TJ - JUNCnON TEMPERATURE ,·CI

10

TA - AMBIENTTEMPERATURE rC)

'·1.MHz

30

" 'l.92- -

I

Va-lev. '._125°e

... "12

I

i..
I

:5

•1

1110

Input Capacitance vs
Reverse Bias Voltage

F:vco'!IV

10

I..

II

Va.-IV. TA- 2S·C
I--va" I~
21-C

\
\

t ',.1

Ie - CGUlCl1UI CUItlElT IlIAI

Maximum Power
Dissipation vs
Ambient Temperature

!

iu

"...

~

-~

12•

e

I

Ii

I; 2"

II

'.0

Base-EmlUer ON Voltage vs
Collector Current

REVERSE BIAS VOLTAGE 'VI

•

Z

•

.1

1

I'

II

REVERSE lIAS VOLTAGE {VI
TUG/l0034-17

Base-Emitter Saturation
Voltage vs Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current
.22

1.1

!s..
10
I.

~~

.1'

..~

I~

.14

I~i!

.I

g~

.I

.10

.;

U

....
.....

10"

~i

"n.

"I

h

.DB

-:¥

.oz

.1

1

10

101

1111

Ie - COLLECTOR CURRENT (mA)

!£
I•• II.

.7
.I

..

.1

I

10

100

1000

Ie - COLLECTOR CURRENT (mA)

TLlG/l0034-18

11-42

r---------------------------------------------------------------------------------,

~National

Process 16
NPN High Voltage

~ Semiconductor

I_

0.020
10.5081

V / / / / / / //
/

/,L/l

v v1"
0.004
10.1021
OIA

I/

1/

V

E

\r,z::::z!)

I\"'~

v

v
~

l!

~

n

m

UI

.....

0)

DESCRIPTION

.. ,

Process 16 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 74.
APPLICATION

V

7:

...

o

This device was designed for general purpose high voltage
amplifiers and gas discharge display driving.
0.020 1
10.6081 ,

t

PRINCIPAL DEVICE TYPES
TO-92 EBC: 2N5551
TO-236: MMBT5551

0.005
10.1271
OIA

TLlG/l0034-19

ELECTRICAL CHARACTERISTICS (TA = 25'C)

Min

Conditions

Symbol
BVCEO

IC = 1.0mA

120

BVCSO

IC = 10 ",A

140

IE = 10 ",A

6

ICSO

Typ

VES = 4.0V
40
50
20

Units

v
v
v

Vcs = 100V

IC = 1.0 mA, VCE = 5.0V
Ic = 10 mA, VCE = 5.0V
Ic = 50 mA, VCE = 5.0V

Max

120

100

nA

100

nA

300

VCE(SAT)

IC
Ic

= 10 mA, Is = 1.0 mA
= 50 mA, Is = 5.0 mA

0.15
0.30

v

VSE(SAT)

IC = 10 mA, Is = 1.0 mA
Ic = 50 mA, Is = 5 mA

0.90
1.2

V
V

fT

IC

= 10 mA, VCE = 10V, f = 100 MHz

VCS
VES
PD(max)
TO-92
TO-236

100

= 10V,f = 1 MHz
= 0.5V, f = 1 MHz

220
3.0

600
350

TA = 25'C
Tc = 25'C

V

MHz
5.0

pF

30

pF
mW
mW

III
11-43

.... r-----------------------------------------------------------------------------,
~

I

Process 16

a.

DC Current Gain vs
Collector Current
3111

...:;
....":::

Base·Emltter ON Voltage vs
Collector Current
1.2

.
.

~

VeE =5.GV

1.0

~

2&1

~

:>

..

201

~

D••

150

i~

0.&

I

:1

100

~

~
1.0

0.1

10

100

l.aoO

~

iII

•

0.1

1.0

Contours of Constant Gain
Bandwidth Product (fT)
1.2

....'=1rAAI--

.
..

...

:>

~

'"

S
J

r-~Ii~'l

I

1.1
••1

~

1.'

~

=
5 ...
i u
~ a.z
i
J •
0.8

~
III
el· ..• ~

f-

,.

10

:i

210

II

I.

III

1.1

10

100

RESISTANCE (kD)

1,001

0.1&

:I

0.1i

i

I

.I

1.1

o
Ie - COLLECTOR CURRENT !.. AI

Input and Output
Capacitance vs Reverse
Bias Voltage

~

f-

2&

/'

Ii:

.e
~

~
§

V
o

101

I.

1.0

J

31

,/

I

;

I.

20

~
15

I'

10

10

Ie - COLLECTOR CURRENT !mAI

50

"
r-

&.0

I

2111

2£.. 10

0.28

.§
I

!,IIID

co
;;

210

~
150

100

0.25

i

S

/

c

"- ~

Collector-Emitter Saturation
Voltage vs Collector Current

.., 0.30

=10V

12

..
i

r-...
.50

~

fRED' 20 MHz
Vel

~

t.1

I

Small Signal Current Gain
vs Collector Current

..il

220

r-

Ie - COLLECTOR CURREIl !mAl

S
..

ZIO

..

,

TO·82

TQ.238

.e

~

L...

1.1

'"
g

'1.

III

I

I

1111

:>

/

r-

Collector-Emitter Breakdown
Voltage with Resistance
Between Emitter-Base

...

r-

3111

I

....~

f-I

- -

Ie - COLLECTOR CURREIl (IlIA!

!...

400

TA - AMBIENT TEMPERATURE rCI

"""Po

~

~ u

1,000

Base·Emitter Saturation
Voltage vs Collector Current
~

:II

~~

100

"\.

500

Ie - COLLECTOR CURRENT !mA)

10

~

10

liD

800

201

~

:>

800

!

;I

0.2

Ie - COLLECTOR CURRENT ("AI

~

I..
i

!..

OA

I

50

VeE -I.GV

~

Maximum Power
Dissipation vs
Ambient Temperature

~

o

'.1

L...

1.0

:iii

10

Ve. - COLLECTOR VOLTAGE IV)

I.

TL/G/l0034-20

11·44

~NatiOnal

Process 19
NPN General Purpose Amplifier

Semiconductor

r
1

//~

APPLICATION

V("
/ ~)~ V
V '~;~

0.0165

V ~

V1

B

V
V

This device was designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA.
PRINCIPAL DEVICE TYPES

0.Ob33
(0.Of38)

TO·5 EBC: 2N2219, 2219A
TO·18 EBC: 2N2222, 2222A
TO·92 EBC: PN2222A, 2N4401

~~-=
/
~ ~ 0.0~33

V

/(
//////

I.

TO·116: MP02222
TO·236: MMBT2222
16·S0IC: MMPQ2222

(o.Of38)

E

I-----

....

U)

DESCRIPTION
Process 19 is a non-overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 63.

0.004
(0.102)

V~//

I

/~
0.0035
(0.0889)

0.015
(0.381)
TL/G/l0034-21

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Typ

Max

toN

Symbol

Ic = 150 mA,IB1 = 15 mA

Conditions

25

35

ns

toFF

Ic = 150 mA,IB2 = 15 mA

200

285

ns

hie

IC = 20 mA, VCE = 20V,
f = 100 MHz

Cob

VCB = 10V,f = 1 MHz

6.0

pF

Cib

VEB = 0.5V, f = 1 MHz

25

pF

NF (spot)

Ic = 100 p,A, VCE = 10V,
Rs=1kO,f=1kHz

hFE

Ic
Ic
Ic
Ic
Ic

=
=
=
=
=

Min

2.0

3.5
4.0

2.0

100 p,A, VCE = 10V
1 mA, VCE = 10V
10 mA, VCE = 10V
150 mA, VCE = 10V
500 mA, VCE = 10V

30
40
50
60
30

Units

180

dB

420

VCE(SAT)

Ic = 100mA,IB = 10mA
Ic = 500 mA, IB = 50 mA

0.50
1.0

V
V

VBE(SAn

Ic = 100mA,IB = 10mA
Ic = 500 mA, IB = 50 mA

1.2
1.5

V
V

BVCEO

Ic = 10mA

35

V

BVCBO

Ic = 100 p,A

60

V

BVEBO

IE=10p,A

6

ICBO

VCB = 40V

100

nA

lEBO

VEB = 4V

100

nA

11-45

V

III

Process 19
SMALL SIGNAL CHARACTERISTICS (f
Symbol

=

1.0 kHz)

Parameter

Conditions

Typ

Units

hie

Input Resistance

Ie

= 10 mA, VeE = 10V

700

n

hoe

Output Conductance

Ie = 10 mA, VeE = 10V

120

,...mhos

hIe

Small Signal Current Gain

Ie

10V

240

hre

Voltage Feedback Ratio

Ie = 10 mA, VeE = 10V

460

=

=

10 mA, VeE

X 10-6

TYPICAL COMMON EMITTER CHARACTERISTICS (f = 1.0 kHz)
1.0

2A
VeE

~

&

a;

~

:>

1.0

0: •

4.0

.Etc

hi/

I!! "

~i

51:!

\. V

.

=5=

~

0:

~:
0:"

1.2

~ ~

0.1

~

0.4

I!!

..
.-c ""

0

10

ZO

3D

50

"/

~

\'
.BO
.71

0

4D

h., -

T.-ZS'C

I--H,H--+.......
~b"l-h.. -

~e

h

0

le. 'OmA -

\

1.1

•

til-

/

~

Z.O

z.a

"'''

~

tI~

1Ji~

-fr_I\\"

TOY

TA -ZS'C

i!:c

10

0

4D

ztI

10

10

IDO

t=l=±:±I'~s~;....;;h·2't-:j
o

TA - AMBIENT TEMPERATURE ('CI

Ie - COLLECTOR CURRENT (mAl

5.0

10

15

ZO

25

30

35

Ve• - COLLECTDR VDLTAGE (VI
TL/G/l0034-24

Base-Emitter ON Voltage vs
Collector Current

_

Collector Reverse Current
vs Ambient Temperature

H'-H-iIIHI-t 1,:'::41',

1-

Vee- sav

~

U~'H~_~I~r-~n'Il~lIlImrllll-r~mn

~!:

u

iii

up

~

~

Hf-H1IIII1;..o~~"""';!!:q:ttt!ltl
l.-HIC
~~c

I

B 20 ~

~

~

p

-1.4i-'

i

; ': ~~~~~:t~~/~

I-

&.0
Z.O

-

E

1.~-4~-+-+-+-r-l-~

l-

~I~~~~~=t~~~~
'f D.z Ii!

e-

• L....J...J..LIJIIL.....J...1J.
0.1
1.1

1I-U.IL...L..1.l.1L.....................................
1.1

m0.1

"-

II

~

1IID

Ie - COLLECTOR CURRENT (..AI

c

ZIO

Emitter Cutoff Current vs
Ambient Temperature

!'OO ~-t-+-+-+-r~;-~

~ ~~~!:~~~~~~

i H
il ZD

It 10 ~-t-'+-+-+""'9-;-+-l

§i!jZ.o1.0 F
~~~~~~!!~
V
Iii 1.0 H-+V-7f-'+++++-t-I
~~ 0.10.2 [;~~~~!!~~f1
V -10V
~

EB

0.1 L-.I....J.-L.....I..-L..L...""':;;"'........J
25
50
71
110
IZI
IH
T. - AMIIENTTEMPERATURE fCI

i

Maximum Power
Dissipation vs
BO~ Ambient Temperature

iii

700

~t~~T~O_.I++-+-+-t~

100

-~.,.N--+-I-I---1---1

i~

,.~

ffi 500 I-T+O...::!9Z'li'~..-l"""I-+-;-~-l
~ ~ ~~~~~+-~

i- zoo

~ 300
I

j

-4..'
1-.p..d---J.3,..pYtH...-J.......j
.......

,"\

~+-+"J..::-i"rt~~r--l
IDO
TO·ZM
........ "\
~
0

10

100

~H ~oo

TA - AMIIENT TEMPERATURE (CI

H-+-+-+-+,;f-+++-I

~I 1=~~=t~~~~~~

-

~'b1-H~~H+

II

L.Jo....J....J.....J.-L-L-L..L.....I-I
25
51
71
1l1li
125
150

T. - AMIIENT TEMPERATURE ('CI

Maximum Power
Dissipation vs
Case Temperature

!§i !ZOD r_:,,::,:;,:,,=rr'r'-T-.,....,
~ 21DI I--Po.,-l--r-+...-J-t-+-I
f .
"

MDO i--+--Ptt
"\-t-t-tr--lr--l
i!iztlDDl--+-1r--~+-++-+-t
ffi
r'\
~ IIjOl H~I':-+~,\:-ITf-:-O.-t5-+--l
IZDD I-+-~-I"od-....-;r-!"f-t--i

ii

i
i

IDD

1-+-+--+TO·I.....
,~~:-'Io~rl---1

I'.
J \'--.J......JH-'--I.J..OD--'-,H'--~ZDD
I 4DD

TC - CASE TEMPERATURE ('C)
TUG/10034-22

11-46

I
'V

Process 19

;g
Emitter Transition and
Output capacitance vs
Reverse Bias Voltage

~

Noise Figure vs Collector
Current

13 ~~~,-~--r;-n--'
VeE = lDV
I I II
11 1=1.0", '---R:=I~~I;-J.

F=1Mltz

It.le=D

II

i

~

14

§

10

~

i~

'\.

ii:

.,..

C..

•.0

2.0 L....II..U.L.-l...-L.lJU-.L.-J..J:1l..I.J
8.1
1.0
II
lDO

1.0 Z.D

"
12

;

J.O

t"

.,
~

I.D

1----l--P+~~:7:W~:-:;I
V R'I=I.Dkn

•

3.0

5.0

10

20

I

0.1

&I lDO 2DO

0.2

0.5

1.0

Z.D

1.1

11

Ie - COllECTOR CURRENT (IIAI

Collector Saturation
a.5 Voltage vs Collector Current

Base Saturation Voltage vs
Collector Current

le' 3DD • A

~;,~ •• ,Dkn
~/-+III I II

As 'IDOn

l;;;;ooo+"'Ft+--+-::::;;;ioo"'F+11-----i
~........-r1--"1

Ie - COLLECTOR CURRENT I..AI

Noise Figure vs Frequency
III

ZD

V

I--++-t+--+--+-~~

1.8 I . -........J....I...J....--'-__"--''-'-'---'

REVERSE liAS VOL TAlE (VI

Z4

'.0

Ie ·101.

Ve• 'IDV

~

1.4

I-t-ttt-+-++tr-r-t-tti

~~~~/rR~·~·T'·~Dk~nff-~~

~ R. =lDO!I+l-H1*-l
t;

1- FREQUENCY IkHzl

Ie - COLLECTOR CURRENT I..AI

Turn On and Turn Off Times
vs Collector Current

Switching Time vs
Collector Current

-~~~~--~~~
1., .. 1.2 • ;!j!~, ttilf-+-++-++IfHI
320

Vee' ZIV tttttt--t-++t1fttH

!

241

~

r-t-I-1II-1d-1tH--+++++ttll

111

-r-~~~~'-TTnTm
1. , • 182 = ~ilttl--+-+++++tti

I

~ ~,~Yt'-H+Ittt-'--"k:++Htifl

II t--

~"I.+tl
IIffit-H",,*tttII
III

320

Vee -25V,ttHtt--+-H-Htitl

!

Z4D

!

III

I-+-t+l'\ttlt-+++t+tttl
I'.
",toll

J'
I!.~

ID

ot~:1~~~j'~'~====~tlW
"

Ie - COLLECTOR CURRENT (mAl

•

10

IDOl

Ie - COLLECTOR CURRENT (mA)

101

lDOD

Ie - COllECTOR CURRENT ImAI
TL/GI1 0034-23

III
11-47

.... r----------------------------------------------------------------------,
~

Process 19

J

lOY

200Q

oJL

Y

lk

-I~2oonsl-

50Q

..n

LJ""I
~

TLlG/10034-68

FIGURE 1. Saturated Tum On Switching Time Teat Circuit
-15Y

6Y

37Q

lk

V
o..JL:

-1~200n.1-

-

lk

50Q

rl-""l
~~

..n

~

TLlG/10034-87

FIGURE 2. Saturated Turn Off Switching Time Teat Circuit

11·48

'V

~NatiOnal

Process 21
NPN High Speed Switch

Semiconductor

I

0.009
(0.229)

o.~
{o,orm

--.---.y

B

L

~~
~I.

0V/ /
V77

fo:o029
(0.0737)

E

(0,or7)

PRINCIPAL DEVICE TYPES
TO-18 EBC: 2N2369, 2N2369A
TO-92 EBC: PN2369

'lV

TO-236: MMBT2369
16-S0IC: MMPQ2369

0:0029

0.014
(0.356)

(0.0737)

N

APPLICATION
This device was designed lor high speed saturated switching at collector currents 0110 mA to 100 mAo

0.0~31

/

/

i....

DESCRIPTION
Process 21 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 65.

/////////
/" ~
/

a

.1
TL/G/l0034-25

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Typ

Max

Units

ts

Symbol

IBI = IB2 = Ic = 10 mA (Figuf91)

7

13

ns

tON

Ic = 10mA,IBl = 3mA(Figuf92)

9

12

ns

tOFF

Ic = 10 mA, IB2 = 1.50 mA (Rgure 2)

12

20

ns

hie

IC = 10 mA, VCE = 10V,
1= 100 MHz

Cob

VCB = 5V, I = 1 MHz

4.0

pF

Cib

VEB = 0.5V, I = 1 MHz

5.0

pF

hFE

Ic
Ic
Ic
Ic
Ic
Ic

Conditions

=
=
=
=
=
=

Min

4.5

6.5
2.0

30
35
30
20
30
30

1 mA, VCE = 1V
10 mAo VCE = 1V
50 mAo VCE = 1V
100 mA, VeE = 1V
10 mA, VCE = 0.35V
30 mA, VCE = 0.4V

70
55

150
150

VCE(SAT)

Ic = 10 mA,lB = 1 mA
Ic = 100 mA,lB = 10 mA

0.2
0.5

V
V

VBE(SAT) .

Ic = 10 mA,lB = 1 mA
Ic = 100 mA,lB = 10 mA

0.85
1.5

V
V

BVCEO

Ic=10mA

12

V

BVCBO

Ic = 10 p.A

30

V

BVEBO

IE = 10 p.A

4.5

V

ICBO

VCB = 20V

100

nA

leBO

VEB = 3V

100

nA

PO(max)
TO-18
TO-92
TO-236

;

600
600
350

TA = 25°C
TA = 25°C
TA = 25°C

11-49

mW
mW
mW

III

....
N

II)
II)

Process 21

Q)
(,)

...
a.
0

Switching Times vs
Collector Current
100

1
tI

20

.

~

Ie =10 IS1

~

10182

II:

1
1\

'-

.

•.0

:::

4.0

. "~

Z.O

t.

2.0
1.0
2.11

5.0 10 20

50 100

-12

C

Ii

-10

1:

-1.0

..
II!

--

!

..I

!iii

ii

I. = 3.0ns

-1.0

~
~

e

50

I

j

....

o

r-'"

-1.0

Z.O

&.11

•.0

10

1/

II:

1:

g
~
~

:.

0

z

~

-2.0

.....

,

.......

IL
L".o

I~

'"

--,,·l.ons
-3.0

-1.0

o

I'

10,,-

_r-

2.0

4.0

1.0

•.0

.
a:
...
:!

-5.0

Yee =3.0

l .. lllo'.~

>

~
~

...~

!
I

~

..:

....0

IJ

-J.O
-2.0
-1.0

5 -10
B....0

.
!

:::Ii

•. 0

1.0

50

5.D

10

10

1

i

tt =2.0ns

VI

5~~-

T',

21

'., - TURN ON BASE CURRENT (mAl

C
.! -Z5
I-

;..

!

...'"

1.0

A
A
16n5

I

15

ZO

Z5

3D

-zo

I

~

Ie = Hili mA_ li.O~

4.0i i<-

~ccl=3'IOVI1
t, = 2.0nl

1.0ns

-15

~2nl

-10
-5

J
o

2.0

4.0

6.0

8.0

10

10

lZ
IBI -

Vee ·3.0Y

~

~z

100

~

500

'"

f=o,

~

.....
i-""

~

i

I

I

0.1
1.0

II
11

1110

Ie -COllECTOR CURRENT (mAl

5110

ZO

25

3D

BOD

600

400

~ JDO
20 .. _ l -

15

TURN ON BASE CURRENT (mAl

Maximum Power
Dissipation vs
Ambient Temperature

..

i

"LJL

-UJJ •. ".

I

50

~.o;.

'1

~

=>
I-

~O .. ~

=>
l-

.

Il.o!.

V

Fall Time vs Turn On and
Turn Off Base Current

1:

I'
-1"'T'

=>

/

V
Z.D

-jC-3.0",/ r4 0j.t;o

.

C

.
....~
'"

V

II

10

-3D

-40

I-

lIe.oM
V

I

J

lIS/

~~.o~.Y

I I I
~'3.0':l

la1 - TURN ON BASE CURRENT (mAl

Rise Time vs Turn On Base
Current and Collector
Current

;..

Ie "'1DUmA
Vee'" 3.0V

~

.!

/

Storage Time vs Turn On
and Turn Off Base Currents

12

'., - TURN ON BASE CURRENT (mAl

I
5.0

10

y

VICCjJr

-&.0

o

10

10

B

-5

Fall Time vs Turn On and
Turn Off Base Current

Delay Time vs Base-Emitter
Off Voltage and Turn On
Base Current

le=10~'J11

-10
I

~ -2.0

1., - TURN ON BASE CURRENT (mAl

w

•.0

~

I".ool--~

o

~ -B.O

4.0

Ie'" 30 mA

Vee" l,GY

-4.0

..~

Z.O

-15

;

e

Ie -30mA
Vee'" l.GV

-12
Ie" 10mA

;

L

~

o

i

1. , _ TURN ON BASE: CURRENT (mAl

Fall Time vs Turn On and
Turn Off Base Current
-5.0

Z

~
~

•.On,

Vv. v.i-"

I

-B.O

I-

I-~o

II

181 - TURN ON BASE CURRENT (mA)

i

.

~

e -2.0

_ -3D

1.... -25

Kolns
. ')

~'4.0.;1

iii

1.0,,1=1-

4.0

o

Vee - SUPPLY VOLTAGE (VI

/1.0 ..V

I
•.0 .. /

-B.O

o

o

o

100

15

II

-4.0

L--t""

-Z.O

-10

=

C.Ons

....0

AVERAGED OVER TEN STAGES

SEE PROPAGATION DelAY CIRCUIT

Storage Time vs Turn On
and Turn Off Base Currents

1

Ie "'lOmA
Vee' J.~V

.... 1- i--" .....

.

TA - AMBIENTTEMPERATURE ('CI

Storage Time vs Turn On
and Turn Off Base Currents

....

1\

t.

Z5

Ie - COLLECTOR CURRENT (mAl

.!

.....-

Ie ~lDmA,IB' '1::3.0 mA, IS2 'l::1.5mA
Vee = l.GY

o
JOO

I"""'"

..... ;;.... ~

--

!i

i

L!:- ........

~

•.0

i.

~

5.0

i

-

10

I'\.

10

!!

12

Vee =3.0V

50

Average Propagation Delay
per Transistor vs Collector
Voltage

Switching Times vs
Ambient Temperature

~
f-

........

ZOO
100

~

TO·92

50
TA

-

,

"-

........ ...'\

To·m

j

TO·II

......

100

~
150

"

200

AM81 ENT TEMPERATURE IOC)

TLlG/10034-26

11-50

'"'CI

(;

Process 21

i

...
~

S

DC Current Gain vs
Collector Current
100
80

i

10

~

5

.

,

~

11~
~~

ZD

~

~

IIJU.-I

40

I

...

I~efi -IV

:5

Base-Emitter On Voltage vs
Collector Current
2D

111111 11

= Ui

..i.

D.4

!

0.2

I

VeE "10V

.
.~..

11111

't'.: -IDII'C

~

t;

~,

i
0.1

0.01

10

100 100

::

5.0

Ie - COLLECTOR CURRENT (mA)

1.0

10

I

1.0

'III
Vcoo

MH~_

=

r-

Ol

100

'\I.

NfM~

D.'

3Oi MH '1

0.1

0.1

I

IOO~

I.' \ ,\

o

-~ III

~U
I II
BIll MHz

2.0

~

g

o 111111

10

~

~fll;2I'C

0.8 c-

i!i

~_I_~Jc

Contours of Constant Gain
Bandwidth Product (fTl

2.0

TAo

1.0 1. ZD

-noc

10 lID

300

Ie - COLLECTOR CURRENT (mA)

Ie - COLLECTOR CURRENT (mAl

TLIG110034-27

Collector Saturation
Voltage vs Collector Current

~

.~

~

5.0

Ie "'01.

~

....
CI

2.0

11.0
:;

0.5

B

,

0.2

j

D.l~1

~

~

0.1

~

100

10

100

Ie - COLLECTOR CURRENT (mA)

iil
,:

Ul

& 10

'e" 0

.....

-+-I-.W.
CobolE "'0

2.0

o
&0 100

-

1-0

1.0

I I
I

1111

0.1

i

n

elba

3.0

~

~

Ill!

o

11'1'-...

~

~

0.3

F ~ 1 MHz

1111

~II
4.0

1.2

~

~

5.0

I' Ie .101a

r -5&'C

,

~T~ - -n:mil

1.5
0,9

!

~~Te'12&'C

Base Saturation Voltage vs
Collector Current

I
..

Te -2&"C

Emitter Transition and
Output Capacitances vs
Reverse Bias Voltage

500

0.1

0.& 1.0

50

5.0 10

REVERSE liAS VOLTAGE IV)

Ie - COLLECTOR CURRENT (mAl

TLIG/l0034-28

.
~
...

LYeE•

Lower Limiting Voltage vs
Source Resistance

Collector Cutoff Current vs
Reverse Bias Voltage

Ie =10mA

T. -ZII'C

PULSE

1\

90

~

i,
.
~

~

1\

10

I'\.
1k

1l1li

R. - SOURCE RESISTANCE (OHMS)

10.

~

io-'

0.1

S,

lV CEO

o

-+-++I100

1.0

Vca· lOY

~.

1/
50

10

8
~

g

/

DO

l
Yo

./

70

Collector Cutoff Current vs
Ambient Temperature

11

Z4

3Z

4IJ

Vea -COLLECTOR TO lASE VOLTAGE (V)

-

8

'.01
2&

10

7&

100

TA - AMBIENTTEMPERATURE I'C)
TLIGll0034-29

11-51

....
N

I

Process 21
+IV·

.1._

Vour
_4V

TL/G/l0034-30

Pulse generator
VIN rise lime < I ns
SoUfCe Impedance - son
pw:!: ;roo ns
DUly cycle

TL/G/l0034-32

To sampling oscillosccpe

inpullmpedance = son
Rise TIme s; 1 no

< 2%

TL/G/l0034-31

FIGURE 1. Charge Storage nme Measurement Circuit

V,.
VOUT

--~--\-----------1~

__1-~--------~---1~
----~----~.--~~H%

TL/GI10034-35

Pulse generator
VIN rise time < 1 ns
SOUfCe impedance - 50n
pw:!: 300 ns
DUly cycle

To sampling oscilloscope

input impedance

= 50n

Rise Time ::s; 1 os

< 2%

TL/GI10034-34

FIGURE 2. toN. toFF Measurement Circuit

11-52

IIII Semiconductor
National
0.015
(0.381)

I'

Process 22
NPN High Speed Switch
DESCRIPTION

'I

t/p
v.:~ ~0
~~
~

Process 22 is an overlay, double-diffused, gold doped, silicon epitaxial device.

1
~
~I

APPLICATION
This device was designed for high speed logic and core
driver applications to 300 mA.
PRINCIPAL DEVICE TYPES
TO-52 EBC: 2N3013

0.015

To-92 EBC: 2N5772, PN3646

TL/G/10034-38

ELECTRICAL CHARACTERISTICS (TA
Symbol

ts
toN
toFF
Cob
Clb
hie
hFE

= 25°C)

Conditions

VCE
VCE
VeE

=

1V, Ie

=

300 mA

= 0.4V, Ic = 30 mA
= 0.5V,Ie = 100 mA

BVEeo

= 30 mA, Ie = 3 mA
= 100 mA,le = 10 mA
= 300 mA, Ie = 30 mA
Ic = 30mA,Ie = 3mA
Ic = 100mA,Ie = 10mA
Ic = 300 mA, Ie = 30 mA
Ic = 1Ol'A
Ic = 10 mA
IE = 1Ol'A

leeo

Vce

=

IEeo

VEe

= 3V

VCE(SAl)

VeE(SAl)

BVceo
BVCEO

Min

= 10 mA,lel = le2 = 10 mA (Figure 1)
Ic = 300 mA, lei = le2 = 30 mA (Figure 2)
Ic = 300 mA, lei = le2 = 30 mA
Vce = 5V,f = 1 MHz
VEe = 0.5V, f = 1 MHz
IC = 30 mA, VCE = 10V,
f = 100 MHz
VCE = 1V,10 mA
VCE = 1V, Ic = 30 mA
VCE = 1V,Ic = 100 mA
Ic

3.5
20
25
20
15
20
20

Ic
Ic
Ic

Typ

Max

Units

12

18

ns

10

18

ns

18

30

ns

3.0

5.0

pF

8.0

pF

7.0

60
45

150
150

0.20
0.30
0.50

V
V
V

0.95
1.2
1.7

V
V
V

35

V

15

V
V

5.0

25V

11-53

100

nA

100

nA

•

'"'"
(I)
(I)

Process 22

8
2

a.

DC Current Gain vs

..
.iii....
....

;:: lao
c
10

V

10

25'C

.....

ill

5

.....

lIi"Cj..

--

40

0

I<

I

:,

1.0

~

i

D.4

~~
Zi'C-

1.2

51

10

lao

zao

10
LO

Ie =0 I

f';;

..

~bO - INPUT CAPACITANCE

1:1 &.0
c

a 4.0

§

5,

2.0

t- ~:.o_ OUTPUT CAPACITANCE
I I
1111
II
60

10

1.0

.~!

iii'

1\

-10

i:,

Ie

I

~'U"'.l

-I.'

1/

-4.0

11/
1/1/

~2.0

o

y

,I

'sv

o

2.1

1.0 "'V

/

/

.,;
4.0

V

V

I~~~
/I
13 .. ~

I,M1Hj
II

1
= -20

I
I
.
,
....

i!

...

I., - TURN ON lASE CURRENT ImAI

25

10

~

!

L
.I I
101

lao
&0
75
T. - AMIIENTTEMrERATURE I'CI

Switching Times vs
Collector Current

l'\

15

."

-

SOD

..

-15

tb-'ii
B.O ..

..II"

~

/'I~~

ty

B.D"'~~

~~?i-"!
/ / ;" .....

-10

.....

-&.0

o

I/

l

~ .....

•

10

Ii
II
I., - TURN ON BASE CURRENT Io_AI
15

~

t::::r-~

~

II JA"

Ie ""'108mA
Vee "'IIV

Ie "'011," 11'82
Vee "'nv

. " \'"
10

~

ZO

Ie - COLLECTOR CURRENTIMAI

Storage Time vs Turn On
and Turn Off Base Currents

~

~

1.0

0.02

Ie - COLLECTOR CURRENT I.AI

-25

~3DmA

Vee =

'"

'"

25

==;

"'1IIt.

REVERSE BIAS VOLTAGE IVI

1
= -8.0

1.2

3D

560 MHz

D.I I.'

Storage Time vs Turn On
and Turn Off Base Currents

~

Vee· JOY

.JI

Contours of Constant Gain
Bandwidth Product (for)

B, D.Z
;

500

:: til

10
10
VeE - COLLECTOR.£MITTER VOLTABE IVI

I:

1.0

~ 1.05

:!

.. z.a

......

I
I

III

0.5

I<
I<

e!l'" s.a

J

III

1
~

.,

II

IIID

10

Collector Reverse Current
vs Ambient Temperature

! '.1

j ....1 0

~

zo

!!Ii

,

F=IMHz

r

i

I

0.4

Ie - COLLECTOR CURRENT I..AI

.

~S
501

~f-

t::- ~
II

i

/

:; D.Ol

Input and Output
Capacitance vs Reverse
Bias Voltage

co

1.1

CI<

D.1

.

~

H'Vi7

'S!

V

Ie - COLLECTOR CURRENT ImAl

Itt

I!
i:!C
....e ..
'::1

TA • ZS"C

~
~

0.1

10

G

t.Z

'1''''

G.I

IiB

o

Ii

I~

r+T.". IWe

Collector Reverse Current
vs Reverse Bias Voltage

Ii

Ie = lOla

ffi
~>
I;;; a.a

w"

~w

I

Collector Saturation
Voltage vs Collector Current

-'"
.'"
~!:i

I-

-

II
II

Ie -101,

:!

LO
101
Ie - COLLECTOR CURRENT ImAI

IIID

10

1.0

Ie - COLLECTOR CURRENT ImAI

s;::
,c

III
Ill. =Zli"c

III

:;

i~
5=
::II

t.6

11111

~

Base Saturation Voltage vs
Collector Current

VCI·','V'

11111

Yel" I.IV

I

c

I<

Base·Emitter On Voltage vs
Collector Current

Collector Current

0

Storage Time vs Turn On
and Turn Off Base Currents
-lao

i
= -10
:Ii

Ie :t.3DOilA
Vee·IIV

I

I<

a

-&a

!1::-40

I

-1~·5.D/

I
IDo.

~

I

o

I
i!,

II

-20

r.,;

~

I

i"

.....

~Ii"?""
,;"

o J
o

20
10
10
110
I., - TURN ON BASE CURRENT I..AI
TL/G/10034-39

11-54

Process 22
Fall Time vs Turn On and
Turn Off Base Currents
-10

-25 Ic~laalllA+i~~-+-+-b1l'l
-20 Vcc -15V
.J'
~
,~~oli~~-t~~~+-r;
B -II
'/ 1.1 .. ' "

1
ii

!

I, . .

1.1

H-+-t-+-+-++++-I

Fall Time vs Turn On and
Turn Off Base Currents

Fall Time vs Tum On and
Turn Off Base Currents

l!i

-10

iI!
i!,

-LD

H,.of"'+++...!~ ... ~~
........

lin,

t::

Hr""'I=-t-t-±;;;;I.-+-"'1"'o;:::::I
~

-100

1

Ic==."·

I

i -aa Vcc'IIV

..I

-II

g

II""

~ ~ -lo~-if/l++-""H

1-+-++-:11'-"/-+1.1;:'~r-f-

/

l!i ....
II!
i!,

V

~

10 ..

1.;':,...

~

~

," ' ,

-10 HIPO!f~.....=-t-+++~

• L-I.-l......L.....1.-..I.-I........L-'.-L.....1

•

u
I.D
u
10
I., - TURN ON lASE CURRENT ("AI

21

40

II

•

I•

la, - TURN ON lASE CURRENT (_AI

I., - TURN ON BASE CURRENT (IIIAI

TLlG/loo34-4O

~ -1.0
UI

Delay Time vs Base-Emitter
Off Voltage and Turn On
Base Current
r:--:::-:"~"""'''7I'"-nrn...,.,.,
Ie ~ 3D flA J..'hs.LJ _ ~ I 11

~ -4.0 Vee • 15V,/-

!I

.. -14..

il:

I

::: -3.0

i:l:

-2.0

:2
':' -1.0

;

I

II~M

j

I
1/

I

/

V /

/

I / /

/ / ,/

Switching Time vs
Ambient Temperature

Rise Time vs Collector and
Turn Off Base Currents
12

'MIT
I.

/

YI
1/4LOU

IIA

I 1/ -1~
'I

t..

.11'1

./,J!.:.J.2.0"./~""£L-5.L..OL.J-L.UIO

0 I.L..OL-

j

VIEIOI" - •. IV, Vee -'IV

1.1 I...--.J..-.J....L..l..LJ..LJ.I.._J......L...U

l'

I., - TURN ON BASE CURRENT (mAl

10
&D
101"
lID
Ic - COLLECTOR CURRENT (mAl

T. - AMBIENT TEMPERATURE ("CI
TL/G/l0034-41

Maximum Power
Dissipation vs
Ambient Temperature

-

~,,-'-.~~-r-.,
~ 700 ~~+-+--r-+-t-4-;

!

I"
~

100
iOD

1-~+--r-+-t-4-;"""';

I-t~
........-+-t--+-+-+-i

2

~ TO·,.
~ ~~TO+'R~~.'~-+-+-+-;

i

200

I ,

j

~~~~~d-++~

H"""';-f-1lon
,\~~-+-l

101 1-t-+-+-t--1I~,\-'\C:-~-i
50

100

I&D

200

TA - AMBIENTTIMPERATURE rei
TL/G/l0034-42

•
11·55

Process 22
V•• ' -3.0V

Vee

=+10V

I

IKO

Pulse widlh ;, 240 n.

1" It = 1.0n.
liN

= 500

+I.IV

..J'L

0.05""

..--~ Tos...plingScope
Rill Tim. < 1.0 nl

0.1 ""

1-

Input Z "t: 1110 KG

TL/G/l0034-43

FIGURE 1, tON. 'oFF Test Circuit

'"

~
......

!z

11111

'111111
11111

II

"

"'e _~'~~
Ic "'IDh,A

"

I

II;

lis -takn
Ie - .IO.A
o L-u..ILWJ
111'W-.J....LIIs~·IG
......
on....o....LlJjIiW
'1
I - FREQUENCY (kHz)

f= 1.0 kHz

o

••

u

D.1

0..

'.0

'00
'0
R, - SOURCE RESISTANCE (Ull

TlIG110034-49

Current Gain

Output Admittance
'10

VeE" .OV
I- 1.1 tH.

!. . .11

.l1li

VcE"',DV
f-I.DlHz
T -noc

I

TA _21°C

w

...

~

iIc=

i

G

'0

~

ii

~=>

i

I

~

D••

11

:s

S

&II1II

'-UtHz

3l1li

.'\.

ZOllO

:::
'"lic

1\

w

I

"

~

'-. ....

I

1.8

,,~

=

318
ZIIO

.IV

TJ" 121 C

~.Vee7

V T"lrC
~.

.110
&I

#/IV

.110

&01

.0

D••

le/ls-'

lells-'·

JII

~

II

'.0

Ie - COLLECTOR CURRENT (mAl

10

Turn On Time

50D

Vee -40V

jllllO

~
~
...!

Charge Data

VeE'" .OY

T.-WC

i

1.1

Ie - COLLECTOR CURRENT (mAl

Ie - COLLECTOR CURRENT (..AI

Voltage Feedback Ratio

.0

.0

1.1

Ie - COLLECTOR CURRENT (IIAI

,

••• 0.'

1.0

'.0

I.

I......
'.8

I

J
'1

!'...

.0

c

./

.

I

'.V

Ve.'"
'-l.OkH.
TA "21°C

~

iii

1---

Input Impedance

2.IV

II

=

&.0

.0

"r

.:s~

tea_Vo.11

1.0

'110

Ie - COLLECTOR CURRENT (mAl

uv

_'\.

Ie - COLLECTOR CURRENT (mAl

••

TL/GI10034-50

Rise Time

Storage Time

500

r-~
!
!ij

.110

1111

'c~.·'O

11~:'2&Jc

1=

.

r--I-

'"
I

~
t;

...

==

~

• .8

.0
Ie - COLLECTOR CURRENT (mAl

.l1li

I

'I;

1111

TJ '" 1HOC

Vec" IOV
leila = 10

'l1li

~
~

~

...
I

1,'-.. -' /I~
.0

1.,,,,182

'.0

'0
Ie - COLLECTOR CURRENT (mAl

T,-Z5'C

'0

'e~. '.0

5.8

&.I

:!

EOT· 25'C

I

IIIIII

.0

.110

.:::

T":':~~'c\l r..

181 .182

T)'2~'C

!

!I!

1=

!!j

Fall Time
liD

5l1li

Vee .. IOV

.00

5.8
• .0

.0

.00

Ie - COLLECTOR CURRENT ImAI

TlIGI10034-5'

11-59

a

~

C\II

r---------------------------------------------------------------------------------,

J

Process 23
TRANSIENT CHARACTERISTICS
.l.OV

a

lOOnS
DUTY CYCLE =211

-O.SV

<1.0 n.

215
"O.IV

1I--

-'- C,<4.0pF
........
I
_.J

TUG/l0034-52

TUG/I0034-53

FIGURE 1. Delay and Rise Time Equivalent Teat Circuit

.l.OV

10<1, <500111
DUTY CYCLE-

----I

215

I, ~ "O.BV

~~
-I.IV

JW.On.

.L C, <4.0 pF
"'T'
I

TUG/l0034-54

_J

TL/G/l0034-55

FIGURE 2. Storage and Fall Time Equivalent Test Circuit

11·60

~NatiOnal

Process 25
NPN Memory Driver

Semiconductor

r
'I
0.027

// //

VVV-

S

~

~

PRINCIPAL DEVICE TYPES
TO-39 ESC: 2NS725
TO-237 ESC: TNS725
TO-116: MPQS725

V
V

V

~'
Y / V?/
0.007 i
(0.178)

en

APPLICATION
This device was designed for high speed core driver applications up to collector current of 1A.

Ut0035
(0.089)

V
V

V

N

DESCRIPTION
Process 25 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 70.

0.007
(0.178)

Vv

I

rTiO.0035
(0.089)

-J

1-------1
0.027
(0.686)

TL/G/l0034-56

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Symbol

Conditions

Min

Typ

Max

Units

toN

Ic = 500 mA, lSI = 50 mA (Figure 1)

12

35

toFF

Ic = 500 mA, IS2 = 50 mA (Figure 1)

50

60

ns
ns

hie

IC = 50 mA, VCE = 10V,
f = 100 MHz

Cob

Vcs = 10V,f = 1 MHz

6

pF

Cib

VES = 0.5V, f = 1 MHz

55

pF

hFE

Ic=
Ic =
Ic =
Ic =
Ic =
Ic =
Ic =
Ic =

10mA,VCE= 1V
100 mA, VCE = 1V
SOOmA, VCE = 1V
500 mA, VCE = 1V
800 mA, VCE = 1V
1A, VCE = 1V
800 mA, VCE = 2V
1A, VCE = 5V

VCE(SAT)

Ic
Ic
Ic
Ic
Ic
Ic

=
=
=
=
=
=

10mA,Is = 1 mA
100mA,Is = 10mA
SOO mA, Is = SO mA
500 mA, Is = 50 mA
600 mA, IS = 80 mA
1A,Is = 100 mA

VSE(SAT)

Ic
Ic
Ic
Ic
Ic
Ic

= 10 mA,ls = 1 mA
= 100 mA, Is = 10mA
= SOO mA, Is = SO mA
= 500 mA, IS = 50 mA
= 800 mA, IS = 80 mA
= 1A,Is = 100mA

2.5

4.25
6

40
45
S5
25
20
15
25
25

90

150

,

11-61

0.20
0.20
0.40
0.50
0.80
1.20

V
V
V
V
V
V

0.70
0.85
1.20
1.20
1.50
1.70

V
V
V
V
V
V

•

Process 25
Symbol

CondItions

BVceo
BVeBO
leBO
leBO

TO-237
TO-116

Tj(max)

...
....
~

....

!l
f

l!I
I

Max

UnIts
V

80

V

6

V
100

nA

100

nA

Tc = 25·C
TA = 25·C
TA = 25·C
TA = 25·C
(Total)
(Each Transistor)

7
1
850

W
W
mW

1
600

W
mW

All Metal Can Parts
All Plastic Parts

200
150

·C
·C

DC Pulsed Current GaIn va
Collector Current
121

~.1.0V

t-

t-

t-

f1Off.. ~

I~

r-

1.

Typ

40

.,

po(max)
T0-39

S
co

MIn

= 10mA
Ie = 1oo!lA
Ie = 10".A
VeB = 40V
VeB = 4V
Ie

BVeeo

~

~

IA

I

0:

40

I

ZI

I.

I. - COLLECTOR CURRENT bAAI

.

I-'T!

~zrc-

i - EtI

~

IA

u

10

111M

OM

=
!:i
-

J
1.0

Base-Emitter ON Voltage vs
Collector Current
1.1

lOll

J

I.Z

-

r-

0.1

1.0

10

I. - COLLECTOR CURRENT (mAl

~
~
•

i
g

rr-

I

i

101

III le·'II.
ill
I~~·c -

OM

1J

i ...

......

0

Base SaturatIon Voltage vs
Collector Current

~ 1.1

J

.... ....

ZI·C .....

""'"

0.4 ~

•

1.8

~

1-" .....

~

~
II1O"C

I
10

loaO

110

I. - COLLECTOR CURRENT (mAl

TL/G/l0034-57

11-62

"'U

Process 25
...

..

Collector Saturation
Voltage vs Collector Current
D.I

i= •.•

I..
;
_

Ie -101.

III J
Il41_~
-H~

u

2i'c~

~Jr-

~

1.2

l-ffir-

B,

j •

1.1

10

llDD

lID

Collector Cutoff Current vs
Ambient Temperature

ito-

ID

I13

1.

Vca -4OV

I-H-t--+--t--t>+++-I

~
~

6. 1. I-H-t~--t--++++-I
e al
~

f--H--t--t--+-+-+-++~

B,

jO.ol ~~~~~~~~~
21
51
15
lID
121
D

Input and Output
Capacitance vs Reverse
Bias

.

..=~.
e
..,

F'"

-11111

III,

1.8

~~

~

~,.'

'ID

Vee '31rt

311 MHz

!

40

o
10

ill 101D

I
I

lID

II
11

"

2D

'in'l

I.

10ft

m

I'

~

11

100

1110

Ie - COLLECTOR CURRENT C..AI

Switching Times vs
Ambient Temperature
lID

~

I-

j

r-- t - t-~

50

r-.. J..
f'\

i

f-- f--

I' I"" liiio.
'01

Turn On and Turn Off Times
vs Collector Current

110

Maximum Power
Dissipation vs
Case Temperature

I

TO-I. ~ .....

ID

20
4D
II
ID
Vc• - COLLECTOR·BASE VOLTAGE CVI

II

II

:=
:i

1

V

Ie - COLLECTOR CURRENT C..AI

I

~

V
io'

o

1

10

Maximum Power
Dissipation vs
Ambient Temperature

"

0

1.11111 If
.)

rrmm

REVERSE IIAI VOLTAGE !VI

1'0 1-0..

j

I\,)

CI'I

V

aD

!\ 1\ 4D011tt:

~

10

10

I\.
1"0 ~To-m'
~

~

=

TA =21DC

.. 0.2
E
~
B
, 0.1

4iD MH.

D.l

1.1

0.3

CD

I., '"liz" Ic/10

H

:.

1.1

•..

:!i

Contours of Constant
Bandwidth Product (fT)

i

-

1.0

~

~

11

F-

Ii';'

D.5

T. - AMIIENT TEMPERATURE C'CI

Ie - COLLECTOR CURRENT (mAl

101

Collector Cutoff Current vs
Reverse Bias Voltage

i

g

~

TOj"

1'\

:i

!

10

~

I-"'"

V

10

~

"

~

I. ,.'"

""""

t"'"

2D

~t:-...

le'iOD .. A
111"111"lc/IO
Vcc· lDV

~
lID

-iO

Te - CADE TE..ERATURE rCI

lDO

IG

110

T.- AMBIENT TEMPERATURE I'CI

• One aquar. Inch of copper run

Switching Times vs
Collector Current

!i

...
~

51

i

lID

...=
i•
..
.....,

i

18

i

21
11

•

lD

'01
Ie - COLLECTOR CURRENT CmAl

.

,

~

:I

..

~

i

J

Rise Time vs Collector and
Turn On Base Currents

1...

.
=

41

I

Delay Time vs Turn On Base
Current and Reverse BaseEmitter Voltage

-=-_....

D L-....e:.L.-...c................

20

3D

4G

50 ID 70 10101ID

I., - TURN ON BADE CURRENT CIOAI

r10
4D

I-'"

1,-3 ..
i ..

~

3D

V
I ..

20

I-""

~

10
50

"""

IS ..

~

;'
Voo-.V

100
2ID 3DD 4IDIGO
Ie - COLLECTOR CURRENT IIIAI
TLlG/l0034-58

11-63

a

Process 25
Storage Time vs Turn On and Turn Off Base Currents

!

i

B 3D I-

g

.
I
~

20

~

10

t- fr

.
~
ill

48n.

./

iit

Ie = IDOniA

.,

BO~

..... ...,-

1' ..... i-""

••

'"

10 .. ~

I'

I

J

1
...

I
1/

40

Storage Time vs Turn On
and Turn Off Base Currents

Vee'" 30V

..::..

ZlIG

V"f'~V

ZI

!If

40

V-

100

/

50

a

I., - TURN ON BASE CURRENT (mAl

or

...

II

Ie = lUOmA
Vee '"' 30Y

~
~

!

~

...."'"

:Ii

48

~,,~

311

10

a

lD

J
150

41 ..

y-

J

I

I

II

100

•

ZOO

I

Ie • ••OmA
Vcc·3IV

100
31ID
101
I., - TURN ON BASE CURRENT (mAl

3fO

V

Ie' BOO IlIA
Vee' 3BY

i I-J".11
V

~

!

.

I
ZO

3D

i

r-~~-r-+~r-+-1-1

I

J

4D

a laD
m
I
j

&I

50

I., - TURN ON BABE CURRENT (mAl

100

•

1&0

I., - TURN-ON lASE CURRENT (mAl

./

-

V

101

D

1& ..

V

/

~

50

V

/

Fall Time vs Tum On and
Turn Off Base Currents

Fall Time vs Tum On and
Turn Off Base Currents

1

~~

_r-

a

I

I

:Ii ..

1/

!...

~
~

~

I

J

I
II

ZlIG

i:l

V

B 210

.Ins

./

10

:.... ~

100

"'Z' .. /I

~
~

J

. I,

-~

50

--

II ..

i
!
..

la, - TURN ON BASE CURRENT (IIIAI

Fall Time vs Turn On and
Turn Off Base Currents
.!

./

;.-::: ~

i

'--

,./

48,/

/

'/

&I

I

V
-

YI

..-10 .. /

D
1.

V

110

V

I

Ie '"'SlOmA

Storage Time VI Turn On
and Turn Off Base Currents
3111

/'

~~

..

ZOD

I., - TURN ON lASE CURRENT (IIIAI
TLtG/1OO34-59

Switching Time Test Circuit
-3.BV

.30V

To sampling scope

1.F

r-o

1KO

Y,N = +9.7
t,andt, s: t ns
PW - 1

"s

VOUT

Ir<1 ns
ZIN" 100 kll

ZIN - 50n
Duly cycle < 2%

V1N1

B20

TL/G/10034-60

FIGURE 1.le = 500 mAs IBI = 50 mAo IB2 = 50 mA

11-64

~National

Process 34
NPN Planar Power

~ Semiconductor
DESCRIPTION

0.087

~~'----r---~~-~-~)---~--------~'I

~

1V
(~:~i~)

v

/ M/ M
/ /M
/ r
/u
/ /

/~

This device is a nonoverlay, double-diffused, silicon epitaxial
planar transistor.

APPLICATION
0.008

V

(0.203)

v

t

This device was designed for general purpose amplifier applications utilizing collector currents to 5A.

PRINCIPAL DEVICE TYPES
TQ-39 EBC: 2N2891

If' I ~ lMMillm ~ ,
B

E

~~////////

I----(~:~~)----I
TL/G/1 0037-1

ELECTRICAL CHARACTERISTICS (TA = 25·C)
Symbol

Conditions

Min

Typ

Max

Units

BVCEO

IC = 10mA

80

BVceo

IC = 100/J-A

100

Iceo

Vce = 60V

100

nA

VEe = 6V

100

nA

8

IC
Ic
Ic
Ic
Ic
Ic
VCE(SAT)

40
40
40
40
20
15

= 1 mA, VCE = 5V
= 10mA, VCE = 5V
= 100 mA, VCE = 5V
= 500 mA, VCE = 5V
= 1A, VCE = 5V
= 5A, VCE = 5V

80

150

IC = 100 mA,le = 10 mA
Ic = 1A,Ie = 100 mA

0.05
0.20

0.10
0.30

V

IC = 100 mA,le = 10 mA
Ic = 1A,Ie = 100mA

0.70
0.90

0.85
1.10

V

= 200 mA, VCE = 10V, f = 20 MHz

hFE

ICE

Cob

Vce = 10V, f = 1 MHz

4.0

5.0
60

VEe = 0.5V, f = 1 MHz

70

pF

500

pF

tON

IC = 1A,Ie1 = 0.1A

90

120

ns

tOFF

IC

= 1A, le2 = 0.1A

200

260

ns

PO(max)

TO-39

t.J(max)

7
1

TC = 25·C
TA = 25·C

W
W

TC = 25·C

25

·C/W

TA = 25·C

175

·C/W

TO-39

200

11-65

·C

D

...
CO)

tn
(I)

Process 34

CP

u

2
a..
Pulsed DC Current Gain vs
Collector Current
120

~

100

IB

80

!I

80

g

.j()

~

,
;.

';;;'''= 5,OV

';;;'= 5.0 V

Ie -

~

8

~

7

iii

6

!!

4
3

~,

0.1

1.0

,

0.6

f

0.4

>

10

~

!

r"\ '10-39
"\
r"\

Ii!

I,

1,,\

"\

0

0.001

;.

25 50 75 100 125 150 175 200

~

0.01

0.1

1.0

800

J

10

TO-39

.....

r-....

50

100

Capacitance vs Reverse
Bias Voltage

Ceo

L

.j()

=

hL

VCE MV
20 I - - PULSE WIOTH
1-DUTY CYCL£

~100

10

f

-50

100

~

100

=300_=111: i i -

50

= 20 MHz

o

150

0.1

1.0

10

1.2

Ie ~I\I~

1.0

Is

0.8

= LOV

0.6

lb"

0.01
1
25
TJ

50

75

100

o

125

10

= JUHCIIOH TEMPERATURE ("C)

50

Collector-Emitter Saturation
Voltage vs Collector Current

~lJV
VCE

I

= 50V

CaBO
-II
IT"'"
II

REVERSE BIAS VOLTAGE (V)

~I

1.0

o

= 1 MHz

,,'Ie =10 mA - -

80

Small Signal Current Gain
vs Collector Current

0.001

I I

f

TA - AMBIENT TEMPERATURE ("C)

j

200

SOD

~

r-'

150

TA - AMBIENT TEMPERATURE ("Cl

""':

.....

.......

r-...

00

COLLECTOR CURRENT (AMPS)

I- Ie =1.0 AMP

Collector-Base Diode
Reverse Current vs
Temperature

Ves

"

800

~ «10

120

Te - CASE TEIIPERATURE ("C)

o.1-1-

1000

Pulsed DC Current Gain vs
Ambient Temperature

I 1:

I'..

2

1800

,200

Ie -

Maximum Power
Dissipation vs
Case Temperature

.1. o

,

i

i-'

COlL£C'IOR CURRENT (AMPS)

"\

..5.

~

o
0.01

~

~ 1200

J

0.001

Maximum Power
Dissipation vs
Ambient Temperature

~ 1«10

...

20

;:;

Base-Emitter ON Voltage vs
Collector Current

II

0.2

:'"

o

100
SOD
Ie - COlLECTOR CURRENT (mA)

0.001

Ie -

0.01
0.1
1.0
10
COLLECTOR CURRENT (AMPS)
TL/G/10037-2

Base-Emitter Saturation
Voltage vs Collector Current
1.6

~~I~I~
la

1.2
1.0
0.8
I

i

:I

I-"

0.6

0.4

0.001

Ie -

0.01

0.1

1.0

0.1

10

COLL£CTOR CURREHT (AMPS)

1.0

10

100

VC[ - (VOLTS)
TL/G/10037-3

11-66

'?A National

Process 36
NPN High Voltage Power

~ Semiconductor

-----II

"""'" 1

(1.143)
r·----I:O"".045~

DESCRIPTION
Process 36 is a non-overlay, double-diffused, silicon epitaxial planar device with a field plate.

APPLICATION
This device is designed for use in horizontal driver, class A
off-line amplifier and off-line switching applications.

PRINCIPAL DEVICE TYPES
TO·202 EBC: D40P1 , 3, 5
NSD36-36C
TO·237 EBC: 2N6720-23, TN3440
TO·39: 2N3440

"
"

'"

~

"""""

TL/G/10037-4

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Symbol
BVCEO
BVCSO
BVESO
ICEO
Icso
IESO
hFE

VCE(SAT)
VSE(SAT)
VSE(ON)
ft
Cob
Cib
PO(max)
TO-202
TO-226
TO-237
TO-39

Conditions

Min

Typ

= 1 rnA (Note 1)
Ics = 100/LA
IES = 10/LA
VCE = 200V
Vcs = 225V
VES = 5V
Ic = 50 rnA, VCE = 10V (Note 1)
Ic = 100 rnA, VCE = 10V (Note 1)
Ic = 250 rnA, VCE = 10V (Note 1)
Ic = 500 rnA, VCE = 10V (Note 1)
Ic = 100 rnA, Is = 10 rnA (Note 1)
Ic = 500 rnA, Is = 100 rnA (Note 1)
Ic = 500 rnA, Is = 100 rnA (Note 1)
Ic = 100 rnA, VCE = 10V (Note 1)
Ic = 50 rnA, VCE = 10V
VCS = 10V,f = 1 MHz
VSE = 0.5V, f = 1 MHz

200

300

v

225

325

V

ICE

Tc
TA
Tc
TA
Tc
TA
Tc
TA

=
=
=
=
=
=
=
=

Max

Units

V

6
10

30

110
120
60
25

25°C
25°C
25°C
25°C
25°C
25°C
25°C
25°C

15
2
2
1
2
850
10
1

/LA
/LA

300

0.5
0.7

v

0.9

1.2

V

0.7

1.0

0.2
0.3

20

0.5
0.1

V
MHz

60
15

pF

125

pF

W
W
W
mW
W

III
11-67

Process 36
Symbol

Conditions

8JC
TO·202
TO·226
TO·237
TO·39

TC
Tc
Tc
Tc

8JA
TO·202
TO·226
TO·237
TO·39

TA
TA
TA
TA

Min

Typ

Max

Units

"25·C
25·C
= 25·C
= 25·C

8.33
62.5
62.5
17.5

·C/W
·C/W
·C/W
·C/W

25·C
25·C
= 25·C
= 25·C

62.5
125
147
175

·C/W
·C/W
·C/W
·C/W

=
=

=
=

TJ(max)

All Plastic Parts
TO·39

·C
·C

150
200

Typical Current Gain
vs Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current
1.0

~ fJr=

~

Base-Emitter ON Voltage vs
Collector Current
1.0
11111

10

0.8

0.4

Te

llJll.-

0.6

-

0.4
I
I

110

Ie -

100

10

1000

Ie -

COLLECTOR CURRENT (mA)

100

lk

i

>

=-4O'C
Te

$

1..0'

J.i.IHtI"""

=25"1:

tI

I

J.l.I!.IIIt"'"
Tc

0.2

o

1.0

=125'C

11111111
11111111
1111
10

I
I

~

flr = 10
100

Ie - COLLECTOR CURREHT (mA)

200

1~

:
20

lk

fo"

Te

=125'C

111111
111111
111111

II
II
II

VC[

= 10V

1111111
100

lk

COLLECTOR CURRENT (mA)

Contours of Constant Gain
Bandwidth Product (ft)
10

~

.wo

--Hi1tTII"

=25'C

JJlII...-T'"

10

Ie -

800
800

11111

Te

0.8

1.0

COLLECTOR CURRENT (mA)

lk

1.0

Te

o

Collector-Base and EmitterBase Capacitance vs
Reverse Bias Voltage

Base-Emitter Saturation
Voltage vs Collector Current

....

=-.w::c

-

~~

Cu.. It = 8

I

1.0

I~MJz
~m ""ij

I

.}

I IllIt"

1.0
10

REVERSE BIAS VOLTAGE (V)

100

MHz

\
20M:'

OK

;;:;: C.b• I~,,~ 0

10
0.1

&0

~

1.0

10

Ie -

100

lk

COLLECTOR CURREHT (mA)
TL/G/l0037-5

11·68

r--------------------------------------------------------------------------,
Process 36
10

Typical Switching Time vs
Collector Current

~ =*10

Vcc=~
III

1.0

0.

g

30

Safe Operating Area TO-202

l.o~.
~.

I

T'NJIIII

"

I... 0.1.~1·"1

20

,

10-2028.33GC

--

0.01

0.01
10

100

Ie -

:\'ma

I--DC

I

~
t.t

1

~

Maxlmumn Power
Dissipation vs Case
Temperature

~

~

1000

50

150

100

Safe Operating Area To-237

LIMIT

DET£RlllN~~

LI..u111w.I~BY'-BY_=CEO::....aJ...U..I.w

'--.I..-'-J..J

10

TC - CASE TEMPERATURE ("1:)

COLLECTOR CURRENT (mA)

i
~

100

1000

VCE - COLLECTOR VOLTAGE (V)

Thermal Derating Curve
2,0

lkltB

g

~

I!O

~

I\..
'\.

IS

1.6
1.4
1.2
1.0
DB
DB

TCOLLECTOR LEAD

I\.. (TO-237) " '\.
I\.. TA (10-202)
'\.
--I-~ r-.. I\..'\.
(10-237)

I -

...,

'" D.4
... D.2

1.0

10

100

o
o

lk

~I\..
~

I
25

50

75

100

125

150

T - TEMPERATURE ("1:)

VCE - COLLECTOR-EMIITER VOLTAGE (V)

TUG/l0037-74

~i
j5~

~i
"'~

~i
• Iii
?;

1.0
0.7
05
0.3
0.2
0.1
0.07
0.05
0.D3
0.D2

Thermal Response In TO-202 Package
D = 0.5

....

0.2

HEATSUNK

I:::;;jjiil

0.1

.....

....

IiiiII

FREE AIR

Q.iis

-L

0.02
0.01

1INFI~ i-'"

....,...

I I
0.01
0.01 0.02

P(pk)

SINGLE PULSE

Tit~

II1I
0.05 0.1

0.2

05

1.0

ILn

2.0

5.0

10

20

50

100 200

500

1k

'JC

!i.

.f"

>

Collector-BaBe CapaCitance
VB Collector-Base Voltage

1.2

h
~ii

~!:i 0.8

0.8

H

is

0.8
0.4

10

lOa

Ie - COLLECTOR CURRENT (mAl

....'t§
ow"'
j~

,9

0.8

,15

0.4

j

OU-U-.L....L.........J....L...L..J....L...L...J..J
30
10
20
o

lk
Ie - COLLECTOR CURRENT (mAl

Vel - CoLLECToR·BASE VoLTAOE (VI

TL/GI1 0037-9

III
11-71

Process 37
Gain Bandwidth Product vs
Collector Current
-

50D

t

401

i
i

j:

i

~E"OV

15

p-

;-

~

16

..

14

i!II

C-C--

~

OI

..
..ill
~..
"

0

I-

12
10

~
TO·2ft

i

j

lk

100

10

1

o

1800.
DC

~

0.1

8

r-....

THIS LIMIT
DETERMINED

1

......

.!i'

BVCEO

0.01
o

2D 40

80 80 100 120 140 160

100

10

1

VeE - CDLLECTDR·EMITTER VOLTAGE IVI

TC - CASE TEMPERATURE rCI

lC - COLLECTDR CURRENT ImAI

1 m•

~

:!

i!!

I'

10

i

1

1

Safe Operating Area TO·202

24
22

i:

-

.. 1l1li

:i

Maximum Power
Dissipation vs
Case Tempersture

TL/G/l0037-10

Thermal Derating Curve

Safe Operating Area T00237
10

.
i
..

~

.

i

l-

I..

8

~8

I

'.1

1

1

~

J:'

2.0
1.8 I-1.1

Nc

ITD·2371

I\.

1.4

I"\" TA
1.2
1.0 2!D.2371'
0.8
1.&
D••

IT~.2021 r-

"'I'\.

r---.:: t--..:'\.

I

0.2

"'

~

TA ITO:iii

o
o

25

60

75

'l1li

~

'IS

'50

T - TEMPERATURE rCI

VCE - COLLECTOR·EMITTERVOLTAGE IVI

TL/GI10037-11

, Thermal Response In TO-202 Package
-ii

.~j-

hl

1-01

!:!!!

!a
U

0,7
D.5
0.3
D.I
D.l
0.07
0.05

• •fHIJ·-_ _-

~~It--~~~~~~W+~~~
::2 ~ :s'::~
.' ~&-:~I:c
P'~UILII-ii
r...:

01 0,D3
""'DL.'

'
:e=:!

0.D2
d...

.. 1li1l""l100.u,o ••',"

~~tmml=++=j::j:ffim+j::jtl#llt:!:i=+++mfl::l:

-

, ...al RESISTANCE
Tpk • TC. Ppk

~UTY CYCLE D' ~

L-I..L....L...L..LJJJ.I1....I...J'-L.J..J.W.I.I...J..L....L...L..LJJWl....I...J'-L.J..J..I.UJ.I...J~~:.....;::......~~~_~~~_...J

B.ol 0,D2

o,BI

a.'

D,I

D.I

'0

20

50

1l1li 100 100 'k

Ik

&II

10k 20k

&Ok

ll111k

.,-TIMElnal
TLiG/l0037-13

11-72

~NatiOnal

Process 38
NPN Medium Power

Semiconductor

14

DESCRIPTION

-I

0.031
(0.187)

Process 38 is a double-diffused, silicon epitaxial planar device. Complement to Process 78.

W.////////~

APPLICATION

/: rmru ~~/:
~

r

0.031
(0.187)

~='~'/
/: 1m 1!JI

0.0049
(0.124)

~==
~
~/////~:0V/
ELECTRICAL CHARACTERISTICS (TA
Symbol

TQ-226 EBC: MPS6715

TL/G/l0037-14

=

25'C)

Conditions

BVEBO

=
Ic =
IE =

ICBO

VCB

lEBO

VEB

hFE

IC
Ic
Ic

Ic

Ic

VBE(SAT)

Ic

fT

Ic

Cob

VCB

Min

Typ

Max

Units

10mA

40

V

100 p,A

65

V

10p,A

5

=
=

=
=
=
=
=
=

VCE(SAT)

PD(max)
TO-202

TO-92 EBC: PN6715

0.0044

e

~

BVCBO

PRINCIPAL DEVICE TYPES
TO-202 EBC: 04001-6, NSOU05

0.0054
(0.137)

B

BVCEO

I

TQ-237 EBC: 2N6715, 92PU05

/j

0.0049

This device was designed for general purpose medium power amplifiers and switching circuits that require collector currents to 1.5A.

4V

1 mA, VCE = 1V
100 mA, VCE = 1V
1A, VCE = 1V
500 mA, IB
500 mA, IB

=
=

100 mA, VCE

=

V

40V

10V, f

=

40
60
20

160

100

nA

100

nA

360

50 mA

0.5

50 mA

1.25

=

10V

125

250
14

1 MHz

V
V
MHz

18

pF

TO-92

Tc
TA
Tc
TA
Tc
TA
TA

=
=
=
=
=
=
=

25'C
25'C
25'C
25'C
25'C
25'C
25'C

8JC
TO-202
TO-237

Tc
Tc

=
=

25'C
25'C

12.5
62.5

'C/W
'C/W

8JA
TO-202
TO-226
TO-237
TO-92

TA
TA
TA
TA

=
=
=
=

25'C
25'C
25'C
25'C

62.5
125
147
208

'C/W
'C/W
'C/W
'C/W

TJ(max)

All Plastic Parts

TO-226
TO-237

10
2
2
1
2
850
600

150

11-73

W
W
W
W
mW
mW

'C

II

Process 38
Typical Pulsed Current Gain
vs Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

1l1li

!
i

100

:i

..

B

!iE

10

I

.;
0.1

10

0.1

IC - COLLECTOR CURRENT (AI

10

I.D

0.1

Ie - COLLECTOR CURRENT (AI

10

IC - COLLECTOR CURRENT (AI

TUG/l0037-15

~

1.2

Vcr - lV! 4o·C!~l
Veo 10V HII"C) Iq
'VCE ~ lOI2S·Cll'
VeE -IV (2!i"C)t-~

"«

~

>
z

O.B

!
I

0.6

?

Collector-Base CapaCitance
vs Collector-Base Voltage

s

40

30

1-++-1-+-+-++-11-++-1-+--1-+-1

.-...

I""'
I-

'"

l'

'"
~
i!i

Base-Emitter Saturation
Voltage vs Collector Current

Base-Emitter ON Voltage
vs Collector Current

i-"!r!'t

f.c(V

0.4

Ve. - IV (1
Ve• -IOV(125"CI

0.1

I

j

111111

~

J

10

0.2

I-H-HflIII!-+t+

100

It

100

r'It

20

18

30

VeB - COLLECTOR·BASE VOLTAGE (V)

Ie - COLLECTOR CURRENT (mAl

Ie - COLLECTOR CURRENT (mAl

TL/G110037-16

Gain Bandwidth Product
vs Collector Current
600

I
if

:;

!

i..

..

300

I

:5

Iii
::!
B

.

I.D

B

~

1/

B

100

'"

§
8

0.1

I

.J!

0

0.01
I

10

101

IC - COLLECTOR CURRENT (mAl

t=
I

It

VCE - COLLECTOR·EMITTER VOLTAGE (V)

\..

=

co

G.I

I
~

I

J:'

10

5

1'10

Sate Operating Area TO-202

Safe Operating Area TO-237
11

VCE -IDV

~
, BY ~Ve~a

II

101

Ve• - COLLECTOR·EMITTERVOLTAGE (V)

TUGI10037-17

11-74

Process 38

I
~

i

Maximum Power
Dissipation vs
Case Temperature

24

Thermal Derating Curve

= 22

i. ~:

2.0
1.1
1.8

i

r- NCITO·2371
I\.

18

i !:
•

!

i,

~I

. ...
I ---

10

TO·202]'o.,.

:

~"'

a_! :::
.. 1.0 TA ITD.23711

I

10 40

80

eo

0.8
, 0.4
~
0.2

......

o

100 120 140 180

TC - CASE TEMPERATURE rCI

"'
'" "'

TA1~

o

2&

&0

~1T0.2021

---

~ ;:::..,.~
~

7&

12&

loa

1&0

T - TEMPERATURE I'CI
TL/G/l0037-1e

Thermal Response In TO-202 Package
;!Ei

0.7
0.5

~:i

0.3 10.
0.1

Iii!

1-1

=~iI

I-

....:u... ~
Ii"
~~

:LE~ r... ~li

1-;;

0.1
0.07
D.Di

'0;

:g .. D.D3

L~'".'''''

"r~

[NI

0.02

-

'JC DC THERMAL RESISTANCE
Tpk-TC·Ppk··JCIU
DUTV CYCLE D- ~

0.01
0.01 0.02

D.Di 0.1

0.2

0.5

10

10

50

lOB 100 &BD lk

Ik

&II

10k 10k

&Ok loak

'I- TIME I",,1

TLlG/l0037-20

III
11·75

~National

Process 39
NPN Medium Power

~ Semiconductor
0.031
(0.7871

I..

iO'

I

DESCRIPTION
Process 39 is a double-diftused, silicon epitaxial planar device. Complement to Process 79.
APPLICATION
This device was designed for general purpose medium power amplifiers and switching circuits that require collector currents to 1A.
PRINCIPAL DEVICE TYPES
To-202 EBC: 04007-14, NSOU06
To-237 EBC: 2N6717, 92PU06
TO-226 EBC: MPS6717
To-92 EBC: PN6717

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Symbol

Conditions

Min

Typ

Max

Units

v
v
v

BVCEO

Ic = 10mA

SO

BVCBO

Ic= 1OO Il-A

100

BVEBO

IE = 10Il-A

5

ICBO

VCB = SOV

100

nA

lEBO

VEB = 4V

100

nA

hFE

Ic = 100 mA, VCE = 1V
Ic = 500mA, VCE = 1V

VCE{SAT)

Ic = 500 mA, IB = 50 mA

O.S

VBE(SAD

Ic = 500 mA, IB = 50 mA

1.3

tr

Ic = 100 mA, VCE = 10V

Cob

VCB = 10V,f = 1 MHz

PD(max)
TO-202
TO-226
TO-237
TO-92
6JC
TO-202
TO-237

Tc
TA
Tc
TA
Tc
TA
TA

=
=
=
=
=
=
=

25'C
25'C
25'C
25'C
25'C
25'C
25'C

50
20

SO

300

150
10

MHz
15

10
2
2
1
2
S50
600

11-76

pF

W

W
W
W
mW
mW

12.5
62.5

Tc = 25'C
Tc = 25'C

v
v

'C/W
'C/W

Process 39
Symbol

Conditions

Min

Typ

Max

Unlta

62.5
125
147
208

·C/W
·C/W
·C/W
·C/W

an"U
ftI

I:

w

CQ

()JA

TO-202
TO·226
TO·237
TO·92

TA
TA
TA
TA

= 25·C

= 25·C
= 25·C
= 25·C

All Plastic Parts

TJ max

·C

150

Typical Pulsed Current Gain
vs Collector Current

Typical Pulsed Current Gain
vs Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current
10

1000

10DO

10

0.1

0.1

0.1
IC - COLLECTOR CURRENT (AI

lD

IC - COLLECTOR CURRENT (A)

IC - COLLECTOR CURRENT (A)

10

TL/G/l0037-22

Base-Emitter ON Voltage
vs Collector Current

.

IE=

Base·Emltter Saturation
Voltage vs Collector Current
1.2 r1rT'1-rmrr-T'TrTT'IIlT'""T'TmTIII
Ie
111111

i; • :~ffl f-'T~ !"zlll·s,,·II,:-J...u.""",

.. s

!~~~
I

o
1

10

100

Ie - COLLECTOR CURRENT (mAl

,.

j

i

.

4D

!:

§

30

g

20

'''1MHz

l:j

c

0.4 l:;.oIo"'I'f'lHtlt-I-H-ltlttt-t+f-HfHI

Ii:
co

D.2 l -

co

t

~

10

i""

U
I

I0'1

Collector-Base Capacitance
vs Collector-Base Voltage

lD
lDD
lk
Ie - COLLECTOR CURRENT (mAl

J

0
D

10

Vel - COLLECTOR·BASE VOLTAGE (VI
TLlG/l0037-23

III
11·77

Process 39
Gain Bandwidth Product vs
Collector Current
100

Safe Operating Area TO-237
10

It;

400

5....

f

lOO

il

S

i

V~E ~ \~~'

r---

illco
co

~

!

.

100

.:

o

!
I

f
;.
s....

1.0

~
B

....

il

8.1

fl

~
B

l>

P'

0.1

I='r~

I

.JI

10

I

liD

I

VeE - COLLECTOR·EMITTER VOL TAGE IVI

Maximum Power
Dissipation vs
Case Temperature

..
co

12

I

•

10

co

a!;
i
i

...

Ii

i

.

•

i •

TO·2121".

I

i
.E

o

o

20 40

BY!,Ve!o
10

100

Ve• - COLLECTOR.EMITTERVOL!AGE IVI

Thermal Derating Curve

Z4
22
20
II
II
14

~

MIT

0.01

lk

Ie - COLLECTOR CURRENT ImAI

Ii

1\

b:=

.

co

.. ZOO

Safe Operating Area TO-202

10

I
I

.....

.E

2.0
1.8
1.B

r- ~'2l1'
~

1.4

I"r{A

1.2
1.0 ~.2l1)
0.8
......
0.8
DA TA ITO.Hr

I

0.2

o

&D 10 100 120 140 lBO

o

25

TC - CASE TEMPERATURE rCI

50

ITO·202) t - -

"

f\.

'"

"

r---.;: ~I\.

15

~

100

125

151

T - TEMPERATURE I'CI
TLlG/l0037-76

Thermal Response in TO-202 Package

;S

0.7
D••

-.,nIii

O.l 10.
0.2

Ii:!
~j

.... 0

'Tii

1.1
0.07
0.0&

¥~ 0.03

0.02
0.01

~

a
r'i'

t:::;

.

-

:LE~~

0.01 0.02

0.05

'" i
:','

o

L~'"''''''
r-~
"JC(~

'JC DC THERMAL RESISTANCE
Tpll-TC+ Ppk

0.1

0.2

0.&

10

20

50

100 ZOO 100 Ii

DUTY CYCLE D • Pz
2k

Ik

10k 20k

10k

lOOk

'1 - TIME (om)

TL/G/l0037-25

11·78

~Nattonal

Process 40
NPN RF Amplifier

Semiconductor

DESCRIPTION
Process 40 is an overlay, double-diffused, silicon epitaxial
device.

0.015

- ~! (0.08101

APPLICATION

~~
~~~% 1

This device was designed lor use in low noise UHFIVHF
ampliliers with collector current in the 100 ,.A to 20 mA
range in common emitter or common base mode 01 operation, and in low Irequency drift, high output UHF oscillators.
PRINCIPAL DEVICE TYPES
TO·72: 2N5179
TO·92: MPS5179
TO·236: MMBT5719

0.015

~~.~
%~%
-

a.a024
(0.08101i-

I
TL/G/10037-26

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

Min

Typ

PG

1= 450 MHz, VCE = 10V, Ic = 2 mA (Figure 1)

12

16

NF

1= 450 MHz, VCE = 10V, Ic = 2 mA,
RG = 500 (Figure 1)

POUT

1 = 500 MHz, VCB = 15V, IE = 10 mA
(TO-92) (Figure 2)

40

65

hIe

1 = 100 MHz, VCE = 10V, Ic = 10 mA

10

15

3.0

Max

Units
dB

5.0

dB
mW

rb'Gc

1 = 79.8 MHz, VCE = 10V, Ic = 5 mA

10

ps

GCB

1 = 1.0 MHz, VCB = 10V, IE = 0 (TO-72)

0.5

0.6

pF

GCE

1= 1.0 MHz, VCE = 10V, IB = 0 (TO-72)

0.2

0.3

pF

GEB

I = 1.0 MHz, VEB = 0.5V, Ic = 0 (TO-72)

0.8

1.5

pF

hFE

VCE = 10V, Ic = 5 mA
VCE = 6V, Ic = 1 mA

90

200

40
30

VCE(SATI

Ic = 10 mA, IB = 5 mA

BVCEO

Ic= 1 mA

20

0.2

V

BVCBO

Ic= 10,.A

30

V

4.0

V

V

BVEBO

IE = 10,.A

ICBO

VCB = 20V

100

nA

lEBO

VEB = 3V

100

nA

11·79

III

Process 40
DC Current Gain
ve Collector Current

Current Gain at 100 MHz
va Collector Current
10

I.

iIii

Base·Emltter ON Voltage
vs Collector Current

Ii

r~iu:'

11

I

I

...........

~

V

i
I

o

TA'lrc

= '.1 1-+Hl-+++H-+++!b~HH

I

o

VeE ·,IV -H1H-H+H-HfH

OJ

I

;

10

Ie - COLLECTOR CURRENT (mAl

1.0

11

HtIH-ioH'Ft-HfH-H+l-i

u

~~~~~~~-H~

J

II

21

Ll

Ll

1.0

10

1l1li

Ie - COLLECTOR CURRENT (loA)

IC - COLLECTOR CURRENT hAl

TLlG/10037-27

!
II

=:

.~

Maximum Power
Dlaalpatlon vs
100 Ambient Temperature

Reveree Transfer
Capacitance vs Reverse
Bias Voltage

71.

r-...

i

aOl

i:
3110

........

I

;; zoo
!...

j

.I

TOC

~

~

;

~

00

&0

100

f-

.5

J

L1

TA - AMBIENT TEMPERATURE rCI

~

.....
.....

I'"
I'

1.8

1.Z

i.

I.' ~

i!

OA

I

i
10.

I
TO:at"--r-.

"1MIIz

........

r--...

l"'- I-....

~

IIII
IIII

.1

2l1li

TO·72

F.... ·,M"'

.3

........

"""1&0

,2

i

r-

"<

III

I

TO.~

I

.......
.1

!

r-.... N°"Z

100

Input Capacitance vs
Reverse Bias Voltage
1.1

o
D.l

&0

REVERSE IIASVOLTA8E (y)

LZ
0.&
1.8
2.0
REVERSE BIAS VOLTAGE (VI
Tl/G/10037-28

i

I

!

Base·Emltter Saturation
Voltage vs Collector Current
I.U

0.1

Collector-Emitter Saturation
Voltage va Collector Current
O.2D

~"0
II

CIC

,.

1.8

Ei

I.--'

!~

~S 0.12I-H+t--I-IH++-I-I
::l"'>

i
g
0.'
i

Ie
Si!
I=i •.08 ~:J=af=!*m:~

8.7

ii

I

~

$. .'0+t--I-iH++-I-I
0.11 t-I;;..I,....,.-I+-I-il-+-I+-I-I

L04 I-H+t--I-IH++-I-I

~

O~~~~~~~~~

••&

Ll

1.0

I. 2D
IC - COLLECTOR CURRENT (..AI .

0.1

1

10 20

IC - COLLECTOR CURRENT ""AI
TLlG/10037-29

11·80

Process 40

OUTPUT
~~~------~-----i~~~~--4(»Hn

INPUT

iOn

C1, C2, C3, C7, C8 = 0.8 pF -10 pF variable ca·
pacitor
C3 • Plastic tubular trimmer capacitor [adjusted and
lixed lor a transistor having a typical value 01 Cob
(0.35 pF)]
C4 • 200 pF button·typa leedthrough capacitor
C5 • 1000 pF leedthrough capacitor

-4:-"'--"')

C6 • 470 pF leadless ceramic disc capac"or

C4

L1, L3 • 1 inch length 01 y. inch diameter copper bar
stock

RZ

L2. Va loop No. 14 AWG enameled wire parallel to
and approximately 1.4 inch Irom L3
R1 • 5 kll potentiometer
R2·1.2kn

TLlG/10037-30

R3·2kll

FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit

50 pF

Note 1: 2 tums No. 16 AWG wire,

% inch 00,

Note 2: 9 turns No. 22 AWG wire,

0/,. inch 00, Va inch long.

1Y.lnch long.

1000 pF

Vee

1

TL/G/10037-31

FIGURE 2. 500 MHz Oscillator Circuit

III
11·81

N

•

J

IjNatiOnal
Semiconductor

-

0.016
(0.381)
0.0024
(D.DB10)

Process 42
NPN RF Amplifier
DESCRIPTION
Process 42 is an overlay, double-diffused, silicon epitaxial
device.

~

APPLICATION

~~~
~ /;

~~8~
-

This device was designed lor use in low noise UHFIVHF
ampliliers with collector current in the 100 p.A to 10 mA
range in common emitter or common base mode 01 operation, and in low Irequency drift, high output UHF oscillators.

PRINCIPAL DEVICE TYPES
TO-92 BEC: MPSH10
TO-236: MMBTH10

0.1116
(0.:!81)

0.0024

iD.iii'Oi I--

TL/G/10037-32

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Conditions

Min

Typ

PG

I = 450 MHz, VCE = 10V, Ic = 2 mA (Figure 1)

10

13

NF

1= 450 MHz, VCE = 10V, Ic = 2 mA,
RG = 500 (Figure 1)

POUT

1= 500 MHz, VCB = 15V, IE = 8 mA
(TO-92) (Figure 3)

30

50

mW

22

27

dB

Symbol

3.0

PG

1= 200 MHz, VCE = 10V, Ic = 2 mA (Figure 2)

NF

1= 200 MHz, VCE = 10V, Ic = 2 mA,
Rs = 1200 (Figure 2)

hie

1= 100 MHz, VCE = 10V, Ic = 5 mA

rb'Cc

1= 79.8 MHz, VCE = 10V,Ic = 5 mA

2.0
6

Max

Units
dB

5.0

3.5

dB

dB

10
10

ps

CCB

1= 1.0 MHz, VCB = 10V, IE = 0 (TO-72)

0.4

0.5

pF

CCE

1= 1.0 MHz, VCE = 10V,IB = 0 (TO-72)

0.2

0.3

pF

CEB

I = 1.0 MHz, VEB = 0.5V, Ic = 0 (TO-72)

0.8

1.5

pF

hFE

VCE = 10V,Ic = 5 mA
VCE = 6V, Ic = 1 mA

90

200

40
30

VCE(SAT)

Ic=10mA,IB=5mA

BVCEO

Ic=1mA

30

0.2

V

BVCBO

Ic = 10 p.A

35

V

BVEBO

IE = 10poA

4

ICBO

VCB = 30V

100

nA

lEBO

VEB = 3V

100

nA

11-82

V

V

I
."

Process 42

t
DC Current Gain vs
Collector Current

Contours of Constant Gain
Bandwidth Product (fT)

.e &I~~m

lao
U..I.I

10

i

i

P r- ~:I:Z:~

10

......

10

Ii!
,

J

i,

II

1.D

1.

D.I

,0

...

ft-HH\-~"~~:~:::!'!~~l

Ii!

,00

1.0

Ie - COLLECTOR CURRENT (mAl

T. -WC

,.

0.7

Ja.'

100

10

OJ

i, u

J

•

1.0

"...~
'"

I

§

B 40

~

tt-t-i-'M-t+Ht-tt-

~

Base-Emitter ON Voltage vs
Collector Current

Maximum Power
Dissipation vs
Ambient Temperature

i .•

I:

"

"- ~0.12
.............

r-

TO·72

,

TO.~

I I"- ...........

1111

r.....

J

I

~~

I

...

t.a

..

0.7

illl

0.5

Ii,

.I

10.

....,..

i"1"~

TO.72 I

•

+:

FIIY"IM

D.I

D.2

1.8

U

50

REVERIE IIAI VOLTAGE (V)

Collecto ....Emltter Saturation
Voltage va Collector Current

I
I

/

'8

...... r-...

A

D.I

III

REVERIE BIAI VOLTASE IVI

~-IO

1.2

!;

II

0.1

r"-r-. j~CI-

100.

I .. r-

i'

""

./
~

OJ

~

......

Base-Emitter Saturation
Voltage va Collector Current
1.0

~

-

......

JI

TA - AMIIENT TEM~ERATURE reI

~

,;>

F~-IMHz

.1
.1

201

1M

"<

100

Input Capacitance vs
Reverse Bias Voltage
1.1

TOCI

I.

Ie - COLLtCTOR CURRENT ImAI

Reverse Transfer
Capacitance vs Reverse
Bias Voltage

I'...

,.

'.1

O.DI

Ie - COLLECTOR CURRENT ImAI

f-

/

I.
I. -10

10-""'

g, 0.1
'"

0.1

a

1.0
10 2D
'C - COLLECTOR CURRENT IIIAI

.1

I.

10

10

Ie - COLLECTOR CURRENT hlAI
TL/G/l0037-3S

III
11-83

Process 42
COMMON BASE Y PARAMETERS VS FREQUENCY
Input Admittance VI
Frequency

III

I
I

v.. " IIY

41

i1-40
'

~

.

,

ID

Reverse Tranlfer
Admittance VI Frequency

Forward Tranlfer
AdmlUance vs Free uency

IIG

Vel ·1OV

.

Ie "IlIA

"

..

","IlIA

..

.J.-'

r--

-III

lID

lot':

to I'll'

.,."
III

I.

I.

-In VlID

f - FREQUENCY IMIII)

f - FREQUENCY (MH.)

c.-

./

~I'

...

I

I
III

~

./

,.

1OV

Ic·11IIA

III

III

f - FREQUENCY IMIII)

Output AdmlUance vs
Frequency
II

liD

VeI-'OY

","lmA

I! ·
,

/

4

->'"

co

J

a

'1

~

III

III

,...

'" FREQUENCY !MHz)

TL/G/I0037-34

COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittance VI
Frequency

I
i

i

I

14
II

f--~

II

~

II

/

1'-'"

V

.• r\r

1~ •

fo""

'II

./

1.2..--.......-,..-.,...,,...,..:,..,..,.,
1.0

Vel! -11V

","IlIA
1l1li

f--l--+-:

..

;

AI./'
,

~

I)

Forward Transfer
AdmlUance va Frequency

II
411

r---l

Vc.- IDV
le· ZIIIA

J..~ r"-I"'-

",/,t.H4+1-H

15

il..

I'

III

Reveree Tranlfer
Admittance va Frequency

V~

ll'-~---!--+--+--lVcl!·1OV
a~

'ID

1'"\

fe,"fi"1
__~~~~~LU
III

III

,.

,- FREQUEICY (MHz)

f - FREQUENCY 111Hz)

r-- ~.

..

....,

III

,.

f - FREQUEllty (MHz)

Output Admittance va
Frequency
VeI-IIV

fe"ZmA

-

ft".

-....,/

V
V
III

.-~
III

,- FREQUENCY IMH.)

11-84

,.
TL/GI1 0037-35

Process 42

OUTPUT

~1>~------~-----t~~~--~~] ~n

IN= (Of---~,,"------4"'----H

CI, C2, C3, C7, C8

= 0.8 pF

-10 pF variable capacilor

C3 - Plastic tubular trimmer capacilor [adJustad and fixed
for a transistor having a typical value of Cob (0.35 pF)l
C4 - 200 pF button-type feedthrough capacitor

o:!:-r---t)

C5 - 1000 pF feedthrough capacilor
CB - 470 pF leadlass caramlc disc capacitor
LI, La - 1 Inch length of % inch diameter copper bar stock

C4

L2 - Y. loop No. 14 AWG enamelad wire parallel to and
approximately % Inch from La

R2

RI - 5 kO potentiometer
R2 -1.2 kO
R3-2kO

FIGURE 1. Neutralized 450 MHz Gain and Noise Figure Circuit
2K

,....-_..J.IIIJ"""---.-o

TL/G/l0037-36

10K

,..._.....iV\/'yo--....

Vec -12V

11000
1000

J.....-..{Q) OUTPUT

I

I

50n

1000

INPUT~
50n

I

LI - 3 turns No.IBwire, y. inch Lx % inch 10 tapped IY.tums from cold
side
L2 - 6 turns No. 14 wire, 1 inch Lx Y. inch 10 tepped 1y. turns from cold
slde

I

880

TI - Pri.1 tum No. 16 wire }eore Is Indiana General PIN F-684-Q3
Sec. 1. tum No. 18 wire
All capacitance in pF, all resistance in 0.
TL/G/l0037-37

FIGURE 2. Neutralized 200 MHz PF and NF Circuit

11-85

D

~

-.:I'

r---------------------------------------------------------------------------------.

ie

Process 42

a..

50 pF

Note 1: 2 turns No. 16 AWG wire,

% inch 00,1'1. inch long.
% inch long.

Note 2: 9 turns No. 22 AWG wire, ,/" inch 00,

1000 pF

-VEE

"~1

1000 pF

Vee

1

FIGURE 3. 500 MHz Oscillator Circuit

11·86

TL/G/l0037-38

IIIiI National
Semiconductor

Process 43
NPN VHF/UHF Oscillator

r-~I

DESCRIPTION
Process 43 is an overlay, double-diffused, silicon epitaxial
device.

~.

APPLICATION
This device was designed for use as RF amplifiers, oscillators and multipliers with collector current in the 1 rnA to
20 rnA range.

(0.3311

,-

~~
~m;
1/

PRINCIPAL DEVICE TYPES
TO-72: 2N918
TO-92 EBC: PN918, PN3563, 2N5770
TO-236: MMBT918

0.015
1IL3811

~,-

TL/G/10037-39

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol
GpE

Conditions

Min

Typ

f = 200 MHz,Ic = 5 rnA, VCE = 10V (Neutralized)

14

18

Max

Units
dB

NF

f = 60 MHz, Ic = 1 rnA, VCE = 10V, Rs = 2000

PO

f = 500 MHz,Ic = 8 rnA, VCE = 15V (Figure 1)
f = 900 MHz,Ic = 8 rnA, VCE = 15V

20
3.0

35
8.0

hte

Ic = 5 rnA, VCE = 10V, f = 100 MHz

6.0

9.0

rb'Cc

f = 79.8 MHz, VCE = 10V, IE = 8 rnA

10

25

ps

CCB

VCB = 10V, IE = 0

1.2

1.7

pF

CEB

VEB = 0.5V, Ic = 0

1.4

2.0

pF

hFE

Ic = 1 rnA, VCE = 1V
Ic = 5 rnA, VCE = 10V
Ic = 30 rnA, VCE = 10V

80

200

VCE(SAT)

3.5

25
40
30

Ic = 10 mA,lB = 1 rnA

6.0

dB
mW

0.25

V

VBE(SAT)

Ic = 10 mA,lB = 1 rnA

BVCEO

Ic=3mA

15

0.9

V

BVCBO

Ic = 10jJoA

30

V

BVEBO

IE = 10jJoA

4

ICBO

VCB = 20V

100

nA

lEBO

VCB = 3V

100

nA

11-87

V

V

•

CO)

"II'

Process 43

.3=
0

a.

.

i

DC Curr.nt Gain vs
ColI.ctor Current
ll1t1

i

VCl -1 V

....
I

Ii

10
II

B

4G

!

0:

M

21

i

I

D
a.al

0.1

laD

lD

".

10

1/

10

-

-

ttt-

0.1 0.2 D.I 1
I 10 20 10 lDO
Ie - COLLECTOR CURRENT (mAl

10

Ie - COLLECTOR CURRENT ImAl

ii
:l lao

.00

Maximum Power
Dissipation vs
Ambl.nt T.mperature

I:

Vee =IOV
10

~.":';'oJ.lc

co 500

I
i

1/

i

1'\

4G0

l'..
r--.. ['..TO.92

301
200

TO.~

-'- 100

.01

a

.D

1.0

TJ

Ie - COLLECTOR CURRENT (mAl

-

rlt:

~,

111111

Collector·Base Diode
Reverse Current vs
Temp.rature

" IL
mrl

I'

LIIllIII.

a

B...·Emltt.r ON Voltag.
vs ColI.ctor Curr.nt

JJ!

~

"

10

J

CI "1.

.~

!

Ie - CDLLECTOR CURRENT (mAl

111111
I 11 21,c

iJ~Il

I I

I

10

40

I

Contours of Constant Gain
Bandwidth Product (fT)

\I

,·.aMH.
Vc.-10V

0:

0:

J

90

0:

0:

Ii

Small Signal Curr.nt Gain
vs Collector Curr.nt

II

2&
10
11
lao
121
JUNCTION TEMPERATURE I'CI

i

.p

0

I J
0

'"

,... r-o.

10
100
110
200
TA - AMBIENT TEMPERATURE I"CI
TUG/l0037-40

ColI.ctor Saturation
Voltage vs Coll.ctor Current

Output CapaCitance vs
R.verse Bias Voltage

Contours of Constant
Nols. Flgur.
IODO

5.f

Ie 'ID'

IE- 0

F'1 MHz

i

4.•

Uu

3.1

J),;
I-

le

li1D'C
26"C

o
0.1

I

I
II
II
a.z

1.1 1.1 2.0 1.1 10

J
za

2.1

1.'
o

10 loa

'e - COLLECTOR CURRENT (IIIAI

Iii

"
•

..

200

III 101

~

1""",

"iii

10

rl

20

I

12

11

REVERSE BIAS VOLTAGE (VI

4 I I 1=

~ 500

;e

21

~

l"-

f::

NOISE FIG. (dll

,·ItIMHz
VeE = IV

1111111 IlllIl

10
0.1

10

101

Ie - COLLECTOR CURRENT (mAl
TL/GI10037-41

11·88

Process 43
COMMON EMITTER Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current·Output
Short Circuit
'·to,1MHI
i.--

2,0

J

~
!

Vel -IIV
1.1

··V
1.2

c

~.

1.1.1--'

:+~.~,I;
t.~
Vel-'!
~.

0

2

•

2

I
..
~
.."

I:j 1.

..

GO

I

~

...

....

21

,

I

2

.

•

&

I

.

10

!

VeE" i.GV

a.1a

;"
0:

zv

~,

I

11

...

.

~ 0..

0

~

J
I:j

VeioolOY

~

Iic

10..
:i

0:

0:

!i

Ii

0.02

t:

,

0

g~..
...

;:
~

.....
2

1

,!

0.11

~

0.20

Ic

0.15

j

• •

Lf-",t'
a

2

f--,+-

•

6

8

10

10

Reverse Transfer
Admittance vs Collector
Current·lnput Short Circuit

1.0

05

.....

i.--

•

VCE=5.CIV- 1---'-

.....

... ....

• • •

Ie - COLLECTIR tURRENT (MAl

"

21

,

0

I

0

2

•

4

I"'.MHZ
I

2,0

10

f·100MHz

'0

1

!

~..
"
~,

10

V~.-:r5.JV

1.6
1.2

r-~

1

1D

!c==

3

~F-'

~

0
0

2

iii

1

~,

VeE "10V

I

-...

7

4

&

&

10

,!

20

50

100

200

Ie - COLLECTOR CURRENT (mAl

I.

suo

f - FREDUENCY (MHz)

Output Admittance vs
Frequency·lnput Short
Circuit
.0

I
...
E
.iii

•

II

le· S.mmA
VeE -lOY

...

&

•

...

/

2

J
10

..

-

.J.f

a

I'I'r

0
2

I.

IDD

200

VeE -lOY

i!c

~,

~

..

lUI

5 1,-S,OmA
4

!;

Vee" S.IIV

0.4

..

2,

-....
1'H.
i'\ •• IT
I"!: IT

Reverse Transfer
Admittance vs Frequency·
Input Short Circuit

..

I:j

VeE" 10V

0,1

'\.

./

oj

~

Iv'r'~V

500

Ic: " 5.0 mA
VCE"'OV

CO

==

:i

o.Ot

>-

J
2

&0

c

0.1

I:j

~ US
0

I==c

i

i\.
\

100
80

•

Output Admittance vs
Collector Current-Input
Short Circuit

...

!
c

I:j

u

-

100 200

Forward Transfer
Admittance vs Frequency·
Output Open Circuit

I

!

-"l=::t=+:=:[- ' - - VeE -IOV
~ VeE "i.OY

0.05

50

20

f - FREQUENCY (MHd

Output Admittance vs
Collector Current·lnput
Short Circuit

i ..,D I'
0

VeE -lOY

Ie - COllECTOR CURRENT (mA)

~

J

V~

Ie - COLLECTOR CURRENT ImAI

VeE" ,GV

10

~

I.

~.

a-f - FREQUENCY (MIla)

~II"'"

D.G2

~

f·1D.1MHr

) u&

i

;

4

A

Ie - COLLECTOR CURRENT lui

,-,o.1MHz

I

-

10

10

!/~ ~E""0V
Yc.· Uy
~

CO

I-

r--

Reverse Transfer
Admittance vs Collector
Current·lnput Short Circuit

~

•

.7

Ie - COLLECTOR CURRENT InIAl

!

,.!

f"'I01MHl'

!. ••
,-

i•
~

lGO

ii

..

~

c

Forward Transfer
Admittance vs Collector
Current·Output Short Circuit

'0

I

~

II

II
c

e"
I
i, •

Vel-lilY

6

4

..

Ic·fi.OmA
VeE -lOY

20

Ie - COllECTOR CURRENT (mAl

Forward Transfer
Admittance vs Collector
Current·Output Short Circuit
f·'G.7MHr
Vc.,,'0V

~

0

11

I

&

J

f-

:!I

a

Ie: - COLLECTOR CURRENT haA)

120

-

•. 1- ~tc'i6V

2

,!

a

2'

'-I00MHI

J,
~
•
! •
i
!!,

u

..'

10

~

a"

i
!!,

Input Admittance vs
Frequency·Output
Short Circuit

Input Admittance vs
Collector Current·Output
Short Circuit

10

20

50

100

200

500 1000

f - FREOUENCY IMIt"

TL/G/10037-43

11-89

a

~

00:1'

,--------------------------------------------------------------------------,

=

Process 43

~

D..

~ ."."'" ~"'

50 pF

INTO 50n

1000 pF

1000 pF

-VEE

"'·1

Vee

1

Note 1: 2 turns No. 16 AWG wire,

% inch 00, 1 V. inch long.

Note 2: 9 turns No. 22 AWG wire,

'11, inch 00, y, inch long.

FIGURE 1.500 MHz Oscillator Circuit

11·90

TL/G/l00S7-42

~NatiOnal

Process 44
NPN AGC-RF Amplifier

Semiconductor

DESCRIPTION

0.015

-

(0,3811

Process 44 is an overlay, double-diffused, silicon device.

~I-10.0610)

APPLICATION
This device was deSigned for use as a low noise VHF amplifier with forward AGC capability.

~kf~
~T~ 1
~~I~
~~~ I

PRINCIPAL DEVICE TYPES
TO·92 BEC: MPS6568, MPSH30

0.016

-

0.0024
(0.061011-

TLlG/10037-44

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

Min

Typ

Max

Units

2.0

3.0

dB

NF

f = 200 MHz, Ic = 2 rnA, VCE = 10V,
Rs = 500 (Figure 1)

PG

f = 200 MHz, Ic = 2 rnA, VCE = 10V,
Rs = 500 (Figure 1)

NF

, = 45 MHz, Ic = 4 rnA, VCE = 10V,
Rs = 500 (Figure 2)

PG

f = 45 MHz, Ic = 4 rnA, VCE = 10V,
Rs = 500 (Figure 2)

23

26

AGC

f = 200 MHz, VAGC at 30 dB Down (Figure 1)
f = 45 MHz, VAGC at 30 dB Down (Figure 2)

3.9
4.0

4.5
5.0

5.2
6.0

V

Ccb

VCB = 10V, IE = 0 (TO-72)
(TO-92)

0.35
0.45

0.50
0.55

pF
pF

hIe

VeE = 10V, IC = 4 rnA, f = 100 MHz

4.0

hFE

IC = 4 rnA, VCE = 5V

30

VCE(SAn

Ic = 10 rnA, IB = 5 rnA

0.5

2.0

V

VBE(SAn

Ic = 10mA,IB = 5mA

0.85

0.95

V

20

24
3.0

dB
5.0

dB
dB

5.5
70

200

BVCEO

Ic = 1 rnA

30

V

BVCBO

Ic=10",A

30

V

BVEBO

IE = 10 ",A

4.0

ICBO

VCB = 20V

100

nA

lEBO

VEB = 3V

100

nA

11·91

V

III

Process 44

!.

Pulsed DC Current Gain vs
Collector Current

Base-Emitter ON Voltage vs
Collector Current

15 '-Ve"",-.T&v"T'TTnrr--.-rTT11'1T11

!

ic .. r-I-+-bI+I"IA-r-"-+-t+1tt'tH

~

I!'

5

4&

B

30

1--++-+*HIt--t-Htttttl

'5

1--++-+*HIt--t-Htttttl

~

I
,

~~~~~--+-r+tHtH

0~J....l...J...J..u..u.L..--'-'L..J.J.J.J.U,I

•

D.1

10

1.0

a ..8 r-~I!~!l~,.....

~

e

J
Ie -

Maximum Power
Dissipation vs
Ambient Temperature

I - fREQUENCY tMllz1

i

i

1.&

J-\+-t-+-+-t-J-+~~

e

1.4

~C~~~;j~:4:tj

O.l

ii,
ZD

4G

10

10

!

=:

Lla F=",","'"'H-+-+-+,-TO+.7",Z~

-

~

1.11 I-J-'-HHH"",.-+-+-+-i

I:

~ "'2 I--I-HH-i-i~-+"""-+~'"

..

~
II

LH L-L-~~~~...J....J....J.-'

II

JI4.0Uf2f1lD
Ve • - COLLECTOR TO EMITTlR VOLTAGE IVI

,

....

8.3&

VeE -18V

I: UO

1++l+-H-+++H'H-,TO.12

ffi US

I++H-+++H+++H~H.I/

o

Ii

!
02.04. . . . . . . .

•

1012

~ ....A

211G

VeE -11V

,e,MH'

I:l
.. 110

l"t-..

....

IS

110

ffi

&G

I..

!\.

.,...

,It.

.......

to..

I

-11.3

oJ

Forward Transfer
Admittance VI Collector
Current-output Short Circuit

~

'-45MHI

i-a.z

b,.

I

VeE -1ZV

E
! -11.1

II

20

) '.1

Iii

'·4&MH.

i

Reverse Transfer
Admittance vs Collector
Current·lnput Short Circuit

b..

-50

u. -1DO

o

2.04.G1.0",'0

~

12

02.04.06.01.01012
Ie - COLLECTOR CURRENT (,.AI

Ie - COLLECTOR CURRENT IIiAI

Ie - COLLECTOR CURRENT llOAl

TL/GI10037-49

Output Admittance vs
Collector Current·lnput
Shon Circuit
Yca'l2V

'-41_1

o

I.

., .

/

OI.84.GUUIIII

°r:· p
lI

~I!
V.I·IV.,....

IIJUU

Ie - CDLLECTDR CURRm lIOAI

I

...

,

I.Z

1

JA"'""

I I

Reverse Transfer
Admittance VI Emitter
Current·lnput Short Circuit

!.

~

oIL

,

~

E±-..

J

.

II :

'I

~.

Input Admittance vs Emitter
Current·Output Short Circuit

• .l1I12

.. -IMITTIRCURRECIT (IIAI

~

I

-

V.I·U .IW

0:

;

...1

...'
!-a.z ~~ ~~c.
I.u HY~I,'~~,...

-1IV_

~-1.4

oJ

z.a ...

•

I.e

I"

10

12

I. -IMmER CURRINT I.AI
TL/G110037-60

Forward Transfer
Admittance VI Emitter
Current·Output Short Circuit

.

I"'"
!.;II[
~

~ Ve~ .'11

•

v~. LI v~ I-

...
Vel· I•V

e.. ...

II

I. - EMITTER CURREIT (IOAI

12

..,

liz

CI -I

VO. -II
0.1

o

VeE

'"V-/~'

~\tl

I ..

IIii

Input Admittance vs
Collector Current·Output
Short Circuit

b..

Vel -.

......,..

.2.04.01.01.01012
I. - EMITTER CURREIT llIAl

I
I

Vel -12V
"ZOOMIIz

1110

I".o~

10
E
II

1.2

'0.4

N"'L

...

,

1.1

I

"-rVel· .

4.0

I
!"' ,.
itc

1"'"

2.0

2,.

Output Admittance vs
Emitter Current·lnput
Short Circuit

c

i,

..•

b"

-10
-100

•

2.0

4.0

a.o ...

"

'"
10

t-..
12

Ie - COLLECTOR CURRENT llIAl
TL/G/l0037-51

11-95

~

J

Process 44
COMMON EMITTER Y PARAMETERS VS FREQUENCY (Continued)
Reverse Transfer
Admittance .vs Collector
Current·lnput Short Circuit

I .

Yc.- 1ZV

'·ZIII ....

0

I'"

c -11.2

-a8
-aa

VCI-1ZV

VeE -1IV

II'

&8

,-_IIHI

i

1

.:.

"'"

...l'"

0

2.'

4.0

I.D

I.D

10

12

Ie - COLLECTOR CURRENT (mA)

,!

-tao

I

2.'

4.0

I.D

I.D

.

...10100"

10'"

-10

I

I

L

I " "\I ...
i " 11 1J

OM

.!

I

Output Admittance vs
Collector Currant·lnput
Short Circuit

'i 210 MHI

c

...

.......4

I

11111

to

:i

i

Forward Transfer
Admittance vs Collector
Currant-output Short Circuit

10

I

+"

I

12

D

Ie - COLLECTOR CURRENT (IIA)

2.8

4.0

...

...

II

12

Ie - COLLECTOR CURRENT (IlIA)
TL/GIl0037-52

Input Admittance vs
Frequency·Output
Short Circuit
3D

I
OM

Ii!

e
Ii

..

25

Reverse Transfer
Admittance vs Frequency.
Output Short Circuit

Ie; =z.a1llA

II! ·ZAmA

ves - ,av

Ves -1OY

~
I

1&

~

10

...r:."

&.D

o
1.8

&.0 10

'10

&8100

1- FREQUENCY (.H.)

I&81 1100

110

I:

20

c

I-

I

Forward Transfer
Admittance vs Frequency·
Input Short Circuit

&.D 10

...

t-

V
JL

'ret-

51110

&DO 11110

i:

II-Z.o1IIA

Ve.- ,av

...

I-

1-1-

l-

t--.....

rI"

1/

I:e
I

,!

I - FREQUENCY (MHz)

lID IODD

&.D 10
,- FREQUENCY (MHz)

TL/GII 0037-53

Output AdmHtance vs
Frequency·lnput
Short C.lrcult
I. -Z.lmA

vi" ·IDY

.
...

~

I.D tl

ID 110

lID 1100

1- FREQUENCY (MHa'

TLIGII 0037-54

11-96

Process 44

t

COMMON BASE Y PARAMETERS VS FREQUENCY
Input Admittance vs
Collector Current-Output
Short Circuit
ID

...i

II

:

40

..

ZD

i
~

.

I

I

1

I· zoo MH.

'" -60

~

I

..

....
!..
11

-2D

I

""'I'-- > ~~

....
1

Z.D

4JI

...

1.1

11

Z.I

I

...

1.1

'\

b••

,

'"

-3DO

1-211II1II.

..
j

:

;

I.Z

U

4.1

8.0

1.0

o
1

..

-

.>-

•

Z.8

~

21

•.."

!\.

I:i

:f

\

I

1.D

0.1
0.2

;;

G.1
D.al

~

11

z.o

~

5

I

I

...

I

&TABLE

....::_~lilaNAL -Y

=::;
I

&TABLE

.I

e.·'1v
I· ZOO MHz

D.ol
D

10

U

4.0

6.0

...

10

10

I. - COLLECTOR CURRENT ImAI

~

I.l I
:;.:::::i

:UNCO'!.DITI . .ALLY

0.12
ID

Ie - COLLECTOR CURRENT IIOAI

1.0

Common Base Configuration
Stability Factor-k vs
Collector Current

,.
1.0

I· ZDDMH.

V

4.D

I. - COLLECTOR CURRENT IIOAI

Vea -IDV

1•

I-""

2.l4Jl1.I'"

10

Maximum Stable Gain vs
Collector Current Common
Base Configuration

~ ZO I'

GA

->

....

po"'"

~ -3&0

.:

I. - COLLECTOR CURRENT ImAl

veo - lOY

"

.t- t-~

-210

1lI -250

"ZDDMHz

t::b ~ f - -

1\

11

! ...
.~
I

I v•• 'IDV

~\

~ -100

Output Admittance vs
Collector Current-Input
Short Circuit

rl

N.

Vea: 11V

.;

I. - COLLECTOR CURRENT IIIIAI

I

Forward Transadmlttance
vs Collector Current-Output
Short Circuit

Reverse Transadmittance vs
Collector Current-Input
Short Circuit

1-150

l-411
~

Vel -10V
I' ZGGMHz

I

I

Z.D

4.1

I.D

I.D

11

Ie - COLLECTOR CURRENT IIIIAI

Maximum Stable Gain vs
Frequency Common Base
Configuration

I

Ve• -lOY

"'

40

~

I

30

•

ZI

~
..

I. 'UIIIA

...

35

.............

25

I

I

1&

lD

lD

ZI

ID

lDB ZOD

lID IODD

1- FREDUENCY IMHzl
TLlG/l0037-55

III
11-97

Process 44

son

OUTPUT

T1 - 3:1 ratio No. 22 BHilar on Microme1ais Toroid, PIN T30-12

Rs

= son, RL = 2.5 k!l

itJw =

B.O MHz

+Vcc -IOV
TL/G/l0037-56

FIGURE 3. 200 MHz Common Base Power Gain,
Noise Figure, Automatic Gain Control Test Circuit

11·98

~Nationai

Process 47
NPN RF-IF Amplifier

Semiconductor
DESCRIPTION

0.015
(0.3811

Process 47 is an overlay, double-diffused, silicon epitaxial
device, with a Faraday shield diffusion.

0.0024

-

-

I

iOJi!iiOi 1---

APPLICATION

~~
~!~~
n
~~ ~

This device was designed for common-emitter low noise
amplifier and mixer applications in the 100 IJ.A to 15 rnA
range to 300 MHz, and low frequency drift common-base
VHF oscillator applications with high output levels for driving
FET mixers.
PRINCIPAL DEVICE TYPES
0.1 5
(0.: !Bl1

To-92 BEC: MPSH11, MPSH24
To-237: MMBTH11

0.0024 I-'(0.0610)

TUG/l0037-57

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Symbol

Conditions

Min

Typ

PG

f = 45 MHz, VCE = 10V, Ic = 4 rnA (Figure 1)

29

33

dB

PG

f = 200 MHz, VCE = 10V, Ic = 2 rnA
Unneutralized (Figure 3)

17

19.5

dB

NF

f = 200 MHz, VCE = 10V, Ic = 2 rnA,
Rs = 500 (Figure 3)

2.0

Max

Units

3.5

dB

15.0

ps

pF

rb'Cc

f = 79.8 MHz, VCB = 10V, IE = 5 rnA

hie

f = 100 MHz, VCE = 15V, Ic = 7 rnA

Cib

VEB = 0.5V, Ic = 0 (TO-92)

2.0

3.0

CCB

VCB = 10V, IE = 0 (TO-92)

0.33

0.40

pF

125

IJ.mho

goe

f = 45 MHz, VCE = 15V, Ic = 7 rnA

roep

f = 10.7 MHz, VCE = 10V, Ic = 2 rnA

6

10

100k
40

0
100

200

hFE

VCE = 15V, Ic = 7 rnA

VCE(SATI

Ic = 20 rnA, IB = 1 rnA

VBE(SAD

Ic = 10mA,IB = 5mA

BVCEO

Ic=1mA

35

V

BVCBO

Ic=101J.A

40

V

4.0

0.3

1.0

V

0.95

V

V

BVEBO

IE = 1OIJ.A

ICBO

VCB = 30V

100

nA

lEBO

VEB = 3V

100

nA

11-99

II

Process 47
DC Current Gain vs
Collector Current

....:c

;..

..
!!!

E

l!l
I

Base·Emltter ON Voltage vs
Collector Current
~

100

VeE'" 1DV

~~

80

60

40

1.1

~

TAl'" 25°C

I

"

1\
\

0.8

!

0.&

1

>
0.1

~

100

100

0.01

'\.

500

0.1

10

1.0

100

i

200

I

100

i
,p

~~

~

'\ ....... to-..
15D

100

Ie - COLLECTOR CURRENT CmAI

Ie - COLLECTOR CURRENT CmAI

,

I\.. TO·"

400

I- -

r'"

0.5

100

10

800

!

!

T... _25°C
0.7

~

I..

I

0.8

f!
I

20

IJ

Maximum Power
Dissipation vs
Ambient Tempereture

21G

T. - AMBIENT TEMPERATURE rCI
TL/G/1 0037-59

~

.
!

16DO

Maximum Power
Dissipation vs
Case Temperature

2.4

" 1200
600
400

i zoo

Ii

"\.

800

- ......

l!!

~

1"-

r-- ~

I
50

100

-

"

150

1.2

106

l!l

io""

....

I

Ii
-"

!

0.1

I
II

10

12

1&

20

25

50

75

100

126

40

.:c

11-+-1-++-.....1-1-111-+1-

30

",.

~

:\l

..•"
..!II

In,
1.0

It-HHt-'p.o

I

~

Ie - COLLECTOR CURRENT CmAI

o

Maximum Stable Gain vs
Collector Current

,...;;;

I

21

•

/

T, - JUNCTION TEMPERATURE rCI

>

41

a

1.0

10

.1

~

I""

II

10

Contours of Constant Gain
Bandwidth Product (fT)

VeE -10V
TA "2&oe

L

Yea" 3DV

~

-J1"

50

10

100

REVERSE BIAI VOLTAGE CV!

I

1

I--

•

200

DC Current Gain vs
Collector Current

ill

l:!

:!

.. .
~

"-TO.92

Tc - CASE TEMPERATURE rCI

l-

.....
.

1J

Collector·Base Diode
Reverse Current vs
Temperature

1
~

!:

TO·12

,p

laoa

_.'·'MHz

r-....

'£

:: 100D

...:c
.~

,C,.

3.0

1400

~

I
!
i

Capacitance vs Reverse
Bias Voltage

1.0

10

Ie - COLLECTOR CURRENT CmAl

I.

20

10

o

Vce:=1&V
FREQUENCY· 45 MHz

o

12

Ie -

16

20

COLLECTOR CURRENT CmAI

TL/GI1 0037-60

11·100

I
'V

Process 47

"..
~

+.

aJIIIZ /IF

lan@-1
INPUT

T1 .0:1 Toroid 4:1 ratio } N 22 .
8 turns Pri. 2 turns Sec.
o.
wire

TL/G/lOO37-58

FIGURE 1.45 MHz Power Gain Circuit
zaGMH.

un

RF'n

""

(0.;....-----1 t---i......- .....----t

(

LO'n

CCO~-----1

..~"fIllll_....-----------1

VCE =15V

Tl • Primary 5 turns No. 34 wire Y.lnch diameter.
Secondary 2 turns No. 34 wire close wound over
a 0100 core (10.7 MHz). When terminated on
secondary side with 501l primary measures 1.5k,
-25 pF.
TL/G/I0037-61

FIGURE 2. 200 MHz Conversion Gain Test Circuit

III
11·101

...

~ r---------------------------------------------------------------~----------------,

J

Process 47
COMMON·EMITTER Y PARAMETERS

I

Ii

Input Admittance vs
Collector Current

.

,-,q

20

Vel -'IV

11

MHz

10

IL

/

i

~

.;

"

ZD

J
i
i

)

o
II

..

12

,!
I

•

i:

I~
I

.}

I

Vee: -lIV

--.,

~

I

Ie .,,,,,,

,·aRr
0

f'~

I

r'"

'1

II

II

1.' D

•

Vel -liV
10-7mA

Vel - COLLECTOR VOLTAGl tvl

Reverse Transfer
Admittance vs Collector
Current
V.. ·"V

-...

'\.

I:

II

.}

I

,.

r-..

..!!:. r-ro-

'10
, - FREflUEllCY tMHl!

Ie -'IlIA
"IIMH,

Ii ;:.

... ...

I.D
'I
'e - CDLLlCTOR CURRENT (IIAI

L~

I

,J

o

1.1

II

Reverse Transfer
Admittance vs Collector
Current
.11

....

FRIOUENCY'II MH,

.11
.11

.ID

I

-10

0

,J

11
II
'I
Ie - COLLECTOR CURRENT (ooA)

•

Reverse Transfer
Admittance vs Frequency
1.1

VCI-lav
le'fllA

1..
~

Il

J

u

C

S
,J

-to.~

A

..

!~
I

I I . I I ,.'1"'11111
V.. - COLLECTQR VOLTAGE (VI

.-I.

.11

i·

~

.....

Vet- liV

JI

I

'IDO

Reverse Transfer
Admittance vs Collector
Voltage

AI

!:

~

I

.....~

i! .'1

-10

I
I

.......

...

Ie - CGLLECTGR CURRENT (IIAI

Forward Transfer
Admittance vs Frequency
'10

U

1.0

""1020

Ie - COLLECTOR CUIIIIINT (IlIA)

I

r-~

I

i:

~

u

Forward Transfer
Admittance vs Collector
Current
f· ZOOMH,

I::

-".

,.g-

l1111D

V" - COLLECTOR VOLTAGE (VI

Ve.- IIV

.}

~
II

10

i

Forward Transfer
Admittance vs Collector
Voltage

I ,.

o

18

"QMH,

I

=

, - FREIDENCY IMH.I

J,..

lID

!

..,. .

I ,..

U

e

f--~

I

I.D

iii

./

i

4.D

..

f- ~.

I

,,!

Forward Transfer
Admittance vs Collector
Current

I,.

tly

',.,mA

II

11

Ie - COLLECTOR CURRENT (OIAI

Input Admittance vs
Frequency
VCI.

I

II

11

i

~

Ie - COLLECTOR CURRENT (mAl

H

I

I'" ~.
I'"

•a

a

le- 7 . .
f-aMlIl

20

I

to

I

11

1,/

1.0

,,!

I

i

r-...

12

Input Admittance vs
Collector Voltage

H

..

f· ZlDMIII

16

i
i

f-"i-"

a

Vce- 11V

1 zo

I

,,!

Input Admittance vs
Collector Current

~

D

.....

10'.

III'•

F - FREIDEIICY tMHt!

TLlG/1 0037-62

11·102

Process 47

I

1II1II

Output Admittance vs
Collector Current
r-1-,--r-.,-,-,-,--r-..... - "

I

Output Admittance vs
Collector Current

I_

&.0

~.

ia
""......

Output Admittance vs
Collector Voltage

VeE _ I"

-+-+-+-+-+-+-1
H9=t"==f=f;;;;f:**~
f· 200 MHz

w

u

c

1.0
0.&

~

0.2 f-booi-"'lH-1-1-1-t-t--t

I ~II!!!!III
S
I

,)

Io.t-

J...-

0.1 '--'--L-.JL......J--'--'--'--'--'-J
•.0
10
2.0
4.0
I
8.0

10

Output Admittance vs
Frequency

12

18

20

24

VeE - COLLECTOR VOLTAGE {VI

Ie - COLLECTOR CURRENT {mAl

Ie - COLLECTOR CURRENT {mAl

'-'-'--'--'-'----'-'--'--'-~~

o

Power Gain and Noise
Figure vs Collector Current
3&

Vee. 120

3G

f =200 M"'-+--+-+-+-+-+-1

Conversion Gain vs
Collector Current

FIO.2

&.0

4.0

1- FREQUENCY (MHzl

10

•. 0

Ie - COLLECTOR CURRENT ImAl

Ie - COLLECTOR CURRENT ImAI
TL/G/l0037-63

Vee

=12V
I

270

1'000
1000

~

L2

I

-

100

1. · IL J

200MHZ~
INPUT

-

R.

~

I

200 MHz OUTPUT
INTO &0 OHMS

RL

...::::...
TUT

~

=_
~

.8-10

(' Ll

P

('

I'DOO
~2.ZK

L1 • Ohmlte Z·235 RFC

•

)
VB.

L2 • 6 turns No. 14 wire, 1 Inched L x
tapped 1y, turns from cold side

'I. inch 10

All capacitance in pF, all resistance in

n.

TL/G/I 0037 -64

FIGURE 3. Unneutralized 200 MHz PG NF Test Circuit

11·103

II

Ij.NatiOnal
Semiconductor

-

~
(0.102)

Process 48
NPN High Voltage Amplifier
DESCRIPTION

I--

1
Ll?
11
~~
W//~V/h t/////////~

~

+

D.IIIM
(0.11121

~ 'r
~

V

I

1 ~~
~

~
fA

'<

•

~ 0,.

~

~

t/.::

~
~
~

~~
~

t/.::

un

(0.711)

(0.104)

Process 48 is anon-overlay, triple-diffused, silicon device
with a field plate. Complement to Process 76.
APPLICATION
This device was designed for application as a video output
to drive color CRT and other high voltage applications.
PRINCIPAL DEVICE TYPES
TO-202 EBC: D40N1-4
TO-237 EBC: 2N6719, 92PU10
T0-226 EBC: MPSW42
TO-92 EBC: MPSA42

~

~///////////~V/.&tij'~
(0.104)

D.an

(0.711)

TL/G/l0037-65

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

BVCEO

Ic=1mA

BVCBO

Ic = 100 ""A

Min

Typ

300

370

Max

V

500

V

7.0

Units

V

BVEBO

IE = 10,..,A

ICES

VCB = 150V

100

nA

lEBO

VEB = 6V

100

nA

hFE

Ic = 1 mA, VCE = 10V
Ic = 10 mA, VCE = 10V
Ic = 100 mA, VCE = 10V

30
40

90
20

200

VCE(SAT)

Ic = 20 mA, IB = 2 mA

0.25

1.0

VBE(SAT)

Ic = 20 mA, IB = 2 mA

0.74

1.0

V

CCB

VCB = 20V (TO-92)

1.9

3.5

pF

Cjb

VEB = 0.5V

70

pF

hie

Ic = 15 mA, VCE = 100V,
Ic = 15 mA, f = 20 MHz

2.5

Tc
TA
Tc
TA
Tc
TA
TA

10
2
2
1
2
850
600

PO(max)
TO-202
TO-226
TO-237
TO-92
9JC
TO-202
TO-237

=
=
=
=
=
=

25°C
25°C
25°C
25°C
25°C
25°C
= 25°C

4.0

W
W
W
W
W
mW
mW
12.5
62.5

Tc = 25°C
Tc = 25°C

11-104

V

°C/W
°C/W

Process 48
Conditions

n

CD

en
en
.co.

CD

ELECTRICAL CHARACTERISTICS (TA = 25'C) (Continued)
Symbol

...'V0

Min

Typ

Max

Units

62.5
125
147
208

'C/W
'C/W
'C/W
'C/W

(JJA

TO-202
TO-226
TO-237
TO-92

TA
TA
TA
TA

= 25'C

= 25'C
= 25'C
= 25'C

All Plastic Parts

TJ(max)

150

DC Current Gain vs
Collector Current

'C

Typical Pulsed Current Gain
vs Collector Current

... I.
1000

Collector-Emitter Saturation
Voltage vs Collector Current

~ff.I~il~1

10

~

5
~

"

"Il0~.
~

10

~

0.1

100

10

..
....
~

CD
C

~

Base-Emitter ON Voltage vs
Collector Current
1.0 r-

11111

f-

>

1-"1

0.8

I
,

!
>=

111111

!=,

1.2

0

1.0

0.1

1.0

Illl
I III

0.1

lDO

10

j

I .•

I..

"

..

1.1

I
i..,
j

100

i ITf-C

I.'

f-

- r-

F

....

101

110

210

~
f-

==
2&0

~
;

10

1/

~, u

1/

j
o

100

v.. - COLLECTOR TO IABE VOLTAGE IVI

: zoo

REVERSE liAS VOLTAGE (VI

1010

10

75

101

125

JUNCTION TEMPERATURE I'CI

I Tc·25'C

~

~

20

J

105.0

8,

i'
101

-

Contours of Constant Gain
Bandwidth Product

,

50

.,...,

10

-

~

[I U
~.I,-O
IIII

1.0

25

.~= lao
!
..

~~~Io

1.0
10

110

TJ

IIII

&0

2.0

o

;

101

'-1 ill

IA·2IDe

Vca" IOV

0.1
10

Collector-Base and EmitterBase Capacitance vs
Reverse Bias Voltage
Tc =2&OC

r-

..\
OJ\

"i2'~'C_

IIII
0.1

1010

i

'I c - COLLECTOR CURRENT lmAl

11111
TA -12&'C

11lJ,.. I-""

~

100

Collector-Base Diode
Reverse Current vs
Temperature

.

.....H1T

U

Collector Cutoff Current vs
Collector Voltage
11111

-lal.

rIO =HOC

Ic - COLLECTOR CURRENT ImAI

i
i

Ic

10

IC - COLLECTOR CURRENT (mAl

Base Saturation Voltage vs
Collector Current

~= a.•
I-

I illlIII ITA';~:~-

0.4

~

..~>.

T~ ~ ~~!!II f-

0•• l -

1

100

lC - COLLECTOR CURRENT (mAl

lC - COLLECTOR CURRENT ImAI

\

\ ~(III
11'1II;
I-'"

V

If JII:_

J

I

I IjIJ
10

20

100

Ic - COLLECTOR CURRENT (mAl

TL/G/l0037-66

11-105

III

..,co r-----------------------------------------------------------------------__________,

1

Process 48

IIi
.
~

..,
I

Safe Operating Area TO-237

1.0

i

::!
G

8a::

Guaranteed Maximum DC
Power Dissipation vs
Collector-Emitter Voltage T0-39

'.1

Ii

~'II~II~II

1 1

I

Tc = 25°C

I

,

I

1\

Te -100"C

I

.~

Te -,,"C

I

o

0.001 ......L..L.JWI.L"-.L...LLWlli-.L..L.wJIlI
10
100
1000
VCE - COLLECTOIUMITTER VOLTAGE (VI

\

1

f:.::: Ie (M~XI - O:2&A

~

0.01 .........L..I..IJ..I1Ii-.........u..ulU......i...JLJ.JJJJlI
1.0
10
100
1000
Ve. - COLLECTOR TO EMITTER VOLTAGE (VI

1\

Te - WC

Te - Zaa"C

Z.
300
VeE - COLLECTOR EMITTER VOLTAGE (VI
I

100

TL/G/l0037-75

Maximum Power
Dissipation
vs Case Temperature

i

~
f

=
!il

10

~

l- i';;;;: ~o.z02

i
i

-,....,

~TO·3a

I

o

a

2Ii

16 lDO 126 150 116 ZOO

TC - CASE TEMPERATURE ('C)

r- ~

TA (TO·2021

1.2

TAITo.3al~

a.a

1.:.""1.

0.6
0.4

J~

'\I: l"'Iooo
6G

1.6

I

I'\.~

-.l

I.'

1,'

iI

(STEELI

TO-3I(KOVARI N\J...'-

2.2
2.0

i,,_

I

I~

I.......

2.4

i

I:

I~

I

J

i

lZ

Maximum Power
DIssipation vs
Ambient Temperature

TCOLLECTOR LEAD
(T0·231)

T~ (T~.Z31\-

~

TA iT;;:;t)

I"" ~I'\.~
~

D

25

,....

50 15 100 125 150 116, ZIO

TA - AMBIENT TEMPERATURE I'C)
TL/G/10037-67

Thermal
;!ii

Ill!
!I!~
--I

...
wI!

0.1
D.6

I-

0.3
D.2

0.:

~
II
';5 o.a&
¥;
~
0.1
0.07

•.03
D.02

t;i

-=

r=:~,;;,
iLE~

0.01
D.Dl D.U

in T0-202 Package

D.IIfi

I-"

D.l

i~

l1li

~I!fl'"''''''
r..:

OdC DC THERMAL RESISTANCE
Tpk"TC+Ppk .9JcIU

INI

D.2

D.5

10

ZD

50

III ZDO

OUTYCVCLE
5111 lk

Zk

6k

O'~

11k ZIk

61k

lDIk

'I - TIME ,1M)

TUG/10037-56

11·106

~NatiOnal

Process 49
NPN RF Amplifier

Semiconductor

DESCRIPTION
Process 49 is an overlay, double-diffused, silicon epitaxial
device.

0.01&

,~~:~
-[(0.1!M21

.n
(0.3111

[I~~~
~. ~
rr

W~

l.~.~

[~~~~

APPLICATION
This device was designed lor general RF amplilier and mixer applications to 250 MHz with collector current in the 1 mA
to 20 mA range.

~

PRINCIPAL DEVICE TYPES
TO·92 BEC: MPSH20
TO·236: MMBTH20

0.0023
(0.5142)

f

8.0033

-

ii.Di3ii I-TL/G/l0037-69

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Conditions

Min

Typ

PG

1= 45 MHz, VCE = 10V, Ic = 10 mA

25

30

dB

fr

VCE = 10V, Ic = 10 mA

400

700

MHz

rb'Cc

1= 79.8 MHz, VCE = 10V, Ic = 8 mA

Symbol

Max

Units

20.0

ps

0.55

0.65

pF

100

250

CCB

1= 1.0 MHz, VCB = 10V, IE = 0

hFE

VCE = 10V, Ic = 10 mA
VCE = 10V, Ic = 4mA

VBE(ON)

VCE = 10V, Ic = 10 mA

0.80

0.90

V

VCE(SAT)

Ic=30mA,lc=3mA

0.15

0.50

V

roep

I = 4.5 MHz, VCE = 10V, Ic = 2 mA

80k

n

BVCEO

Ic=1mA

35

V

BVCBO

Ic=10,...A

45

V

BVEBO

IE = 10,...A

4.0

V

ICBO

VCB = 30V

100

nA

lEBO

VEB = 3.0V

100

nA

40
30

III
11-107

Process 49
DC Current Gain vs
Collector Current

r--....,--r-r--r--,.......,,,,

140

!

Input Admittance vs
Collector Current

II

l. lll!C t---IT•• 7~'C

.J...

S 100
l!I

,

,
I

-I-'
I-'

~

I

TA.2&·~:::

10_

III
I

1 ID 1--+-++lI--+-+-t-H
VeE ',IDV:-+-t--I--+-+-H
10

&D

12

I
..

.11

l - I--

1--11;

~"i

~I

.10

I,

.DB

'",,:

VeE "'2ev

o

1·45MH.
T'115'~ -

I--

o

11\ I-- II

Ih

I- 1--1••

110

,.., ,

II

iiI
~III!,
..•

~.! liD

..
I,
..:

ID

I

40

.,

D

1/
/

o

-<

-II",V

.&

.4

I

100

~('/a.. - -t=~~

I
~,

.

oJ

Vel =20Y
'=45MHz

fA -25°C

.1

o

I.
I;
I!:

.",

-I""
12

Ie - COLLECTOR CURRENT (mA)

..
~

..... ./'

\

1,\

50

0

16

ISO

100

100

F; 1 MHz

-

1.0

1/"
I"-r--.

O.B

C~
c... ,,-

0.3

il

I

0.1

&D

oJ
o

"\I.

0

~

100

I.

.1

...c
...'"~"

Vee -1OV
Ie -4mA

ZoO

TA =2S'C

1.1

/

b•• \ ,

1..2
.I

~

A

o
51

/

Small Signal Current Gain
vs Collector Current
I.D

......

1.0

'"'

"loOM",

CD

;;

::::
c

"''y

1Jl,

~
1- FREQUENCY (MHz(

100

;;! 4.0 ~

/

100

II

REVERSE BIAS VOLTAGE (VI

Output Admittance vs
Frequency

.1

f-

~.921- r- f -

-

o

1.!

,

200

1- FREQUENCY (MH.I

1-I""""

.3

i'

400

5.0

.So
~

~

2A

;'

~

VeE" 10V

20

~.

A

&DO

i

&00

CapaCitance vs Reverse
Bias Voltage

1" ....

II

BOD

Forward Transfer
Admittance vs Frequency

.... j- TA =2rC

Maximum Power
Dissipation vs
Ambient Temperature

TA - AMIIENTTEMI'ERATURE ('CI

10

VCE''''ZOV
''''45MHz

&DO

1 - FREOUENCY (MH.I

r-.

Output Admittance vs
Collector Current

~

,

.......

II

-

.\

.2

100

i
ii

/

V
50

I

I.

I

J

Ie - COLLECTOR CURRENT (mAl

.s

100

~

TA _25°C

120

...

/

10

1- FREOUENCY IMH.I

Ie =4mA

1.0

Forward Transfer
Admittance vs Collector
Current
100

o

Vel! =10V

Ie - COLLECTOR CURRENT (mA)

24D

~

~b.

16

Reverse Transfer
Admittance vs Frequency

1.2

~

I.

Ic

.
i...

/

I,.

le- COLLECTOR CURRENT (mAl

Reverse Transfer
Admittance vs Collector
Current

.2

i..

II

le' 4mA
TA'II'C

,,:

fA .. 2s·e

Ie - COLLECTOR CURRENT (mA)

24

Ii!
Ii,

VeE =!tV
1·4&MH.

4D~~1~~~1--~1~~

!

;

b.'

iIj

VeE -1OV

1

I

T~' ~r~

1.0

32

~\ ....
..,p-

f- T
121

Input Admittance vs
Frequency

~
&DO

VeE -1OV

TA =25"C

1.0

o

I.D

II
II
0.3

10

Ie - COLLECTOR CURRENT (mA)
TL/G/l0037-70

11·108

Process 49
Conversion Gain vs
Collector Current
50
ii
:!!'

40

z

..
.~

~

!::
B

30

Conversion Gain vs
Oscillator Injection Level
40

VeE -10V
Osc INJECTION· 200 mV
lose 250 MHz
f.,,"213MHz
t. F -46MHz

Ic· 4mA

=

20

""'"

.
.
..~

ii
:!!'

-

t... ",Z13MHz
30

co

r-

B

,.... r-

20

Ie - COLLECTOR CURRENT (mAl

V
V

10

o

o

-

'I.F.",4&MHz

~

10

o

VeE -10V

--I-

o

100

200

300

4l1li

V, - OSCILLATION INJECTION (mV)
TLlG/l0037-71

0.002 jlF
50n@-1
INPUT ~
•

T1-Q3T9roid4:1 ratio } No 22wire
8 turns Pr!. 2 turns Sec.
.

TL/G/l0037-72

FIGURE 1.45 MHz Power Gain Circuit
200 MHz
50n
RF'n

(O'~-----I ~-...-~.---t

LOin

(0........- - - - ;

(

245MHzf
50n ~--~----------------------~

--V n --- ----VCE--~
..
V".=15V
TLlG/l0037-73

FIGURE 2. 200 MHz Conversion Gain Test Circuit

III
11·109

....

CD

I

~NatiOnal

Process 61
PNP Darlington

Semiconductor

a.

0.0041
(0.104)

'A

DESCRIPTION

1F1

B

~

/:

~

~
f(
~

Process 61 is a monolithic, double·diffused, silicon epitaxial
Darlington. Complement to Process 05.

APPLICATION

(0.1016)

This device is designed lor applications requiring extremely
high current gain at collector currents to 1A.

PRINCIPAL DEVICE TYPES
TO·202 EBC: D41 K1·4, NSDU95
TO·226 EBC: MPSW63
TO·92EBC: MPSA63
MPOA63
TO·116:
TO·236:
MMBTA63
16-S0IC:
MMPOA63

0.020
(0.508)

~tl

E

(0.155)

E

~
(0.102)

0.022
(0.559)

TL/G/10038-1

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

CondItIons

MIn

Typ

Max

NF

Ic = 1 mA, VCE = 5V, Rs = 100k, 1= 1 kHz

2

CCB

VCB = 10V, IE = 0, 1= 1 MHz

5

8

hFE

Ic = 10 mA, VCE = 5V
Ic = 100 mA, VCE = 5V
Ic = 1A, VCE = 5V

40,000

200,000

VCE(SAT)

10 mA, 0.01 mA
100 mA, 0.1 mA

VBE(ON)

10mA,5V
100mA,5V

5,000
5,000
1,500

1.2
1.25

UnIts
dB
pF

1.0
1.5

V

1.4
2.0

V

50,000

hie

IC = 10 mA, VCE = 5.0V, 1= 1 kHz

BVCES

Ic = 100 I£A

40

V

BVEBO

IE = 1Ol£A

12

V

ICES

VCE = 15V, VBE = 0

100

nA

ICBO

VCB = 15V, IE = 0

100

nA

lEBO

VEB = 10V, IC = 0

100

nA

po(max)
TO·202
TO·226
TO·237
TO·92
TO·236

TC
TA
TC
TA
TC
TA
TA
TC

=
=
=
=
=
=
=
=

25°C
25°C
25°C
25°C
25°C
25°C
25°C
25°C

10
2
2
1
2
850
600
350

11·110

W
W
W
W
W
mW
mW
mW

Process 61
ELECTRICAL CHARACTERISTICS (TA
Symbol

= 25·C) (Continued)

Conditions

Max

Units

= 25·C
= 25·C

12.5
62.5

·C/W
·C/W

=
=
=
=

62.5
125
147
208

·C/W
·C/W
·C/W
·C/W

Tc
Tc

9JA
TO·202
TO·226
TO·237
TO·92

TA
TA
TA
TA

TJ(max)

All Plastic Parts

.

~

TA

= 12S·C

VCE =
5 VOLTS

iB

I

IG

I
I

H 2D
I

1

Ta ,. -4D

l""-

I I
~
10
1l1li
lDOD
Ie - COLLECTOR CURtlENT (mAl

D
1.0

,i,

III
IIII

D.'

2.0

I

IILl

1.1

~o

-=E

,T~ ...

,i

~•

0.4

•

1.0

iii

100

!

10

.
I

1'4
12

.
.

Ii

=

co

I

J

iii

1111

...

2
10
1.1
REVERSE VOII'AGE (VI

lDO

1= lDO MHz
III I I
vfl~~TS
...If ....r-;

4

0

~

I•
I

III I I
10
100
IODD
Ie - CDLLECIOR CURRENT (mAl

1.0

Thermal Derating Curve
2.'

'.1 MHz

(1.1

"

11.1
1.4

I

......

4

J
0
0.1

V. 1pj1. I vtlLTI. r

L.,.oo

Input Capacitance VI
Rever.. Voltage

i'

~251c

Small Signal Current Gain
VI Collector Current

6

:1

.J..

ITL.J...

lDOD
100
I.
Ie - CDLLECIOR CURRENT (mAl

8

75 100 125
0
25
50
TJ - JUNCTION TEMPlRATURE (OCI

12 ~

4

1.0

2

I

0.1

D

i

2.

'.1 MHz

•
0
0.1

!

1/

~

1':
~

I

1

I.
100
lDOD
Ie - COLLECTOR CURRENT (mAl

18,

i.

10

I

~

10l1li

,

D.4

~

lDOD

Output Capacitance VI
Raverae Blal Voltage

i

.... 1'

D.8

~!I= ~4~ po

-

1.21"""

iii

Collector-Ba.. Diode
Reve,.e Current
va Temperature

I!
B

HO

I

= 5 VOLTS
TAI=I~.oC~

Vel

1.6

~

100
lDOD
10
Ie - COLLECIOR CURRENT (mA)

1.0

Base-Emitter ON Voltage
vs Collector Current

2.0

B

......

du ~l~Soc
• IIII I

.

D.'

I

TA;; ....

11

i

i.oo"

E11.2 :fa • 12SO
;

n

III I

I"'""

Base-Emitter Saturation
Voltageva
Collector Currrent

I

E

~ ,010DO

B11.2 r-ITA ~ HOC

TA" 2
40

Collector Emitter
Saturation Voltage
vs Collector Current

I ~ 1.1

\

·C

150

2.0

IG

'iI
co

Typ

25·C
25·C
25·C
25·C

DC Current Gain vs
Collector Current

fOO

....m

Min

9JC
TO·202
TO·237

I

1.0
REVERSE VOLTAGE (VI

10

1.2

I
I

T
1.0 Ito.2371
0.'
.......

I •••
2 0.4
0.2
0

~

TA

- r - (TO.821

•

H

I

Tc
",TO.237)-

"

-

lto.2021

'\.I
-.....;:::~ 1\.

~

50 H 100 125 150
T - TEMPeRATURE (OCI
TL/G/10038-2

11-111

III

~National

~ Semiconductor

Process 62
PNP Small Signal

(U&7I=----1

DESCRIPTION
Process 62 is a non-overlay, double-diffused, silicon epItaxial device. Complement to Process 07.

I

0.018

"
-

0.0135
(0.0.111

APPLICATION
These devices are designed for low level, high gain, low
noise general purpose amplifier applications to 20 mA col·
lector current.

1

~~
t1

PRINCIPAL DEVICE TYPES
TO·18:
TO·S2 EBC:
TO·238:

0.118

~~il

2N3550
2N50B6, PN4250
MMBT50B6

TL/G/l0038-4

ELECTRICAL CHARACTERISTICS (TA = 25·C)
Symbol
NF

Conditions

Min

VCE = 5V,Ic = 10 p.A, Rs = 10 kO,
PBW = 15.70 kHz
VCE = 5V, Ie = 500 p.A, f = 20 MHz

3

Typ

Max

Units

1

3

dB

6
8

pF

3.5

5

pF

270

630

VEB = 0.5V
Cob

VCB = 5V
Ic
Ic
Ic
Ic
Ic
Ic

=
=
=
=
=
=

45
60
75
90
90
75

1 p.A, VCE = 5V
10 p.A, VCE = 5V
100 p.A, VCE = 5V
500 p.A, VCE = 5V
1 mA, VCE = 5V
10mA, VCE = 5V

VCE(SAT)

Ic = 1 mA, IB = 0.1 mA
Ic = 10mA,IB = 1 mA

0.10
0.15

V
V

VBE(SAT)

Ic = 1 mA,lB = 0.1 mA
Ic = 10 mA,lB = 1 mA

0.75
0.90

V
V

BVCEO

Ic=1mA

50

V

BVCBO

Ic = 10p.A

60

V

IE = 10 p.A

8

ICBO

V

VCB = 40V

100

nA

VEB = 6V

100

nA

PO(max)

TO·18
TO·92
TO·236
TJ(max)

TA = 25·C
TA = 25·C
Tc = 25·C

600
600
350

mW
mW
mW

All Metal Can Parts
All Plastic Parts

200
150

·C
·C

11·112

Process 62
DC Current Gain vs
Collector Current

Base-Emitter ON Voltage
vs Collector Current

tID

·UJR.l

. ••
;..
!!
c

1

-IV

2.

iii

i

-f-m
T.· ,00000e

I
i

0.1

'.01

t.I

II

10

soa
401

~

300

Collector Cutoff Current
vs Ambient Temperature

Collector and Base
Saturation Voltage vs
Collector Currrent

-1.8

I

Vel '"-40V

0.01

.

B, o.aa.

.e ...
u

i
~

VCElSATITA",2&"C

15

In

125

o

151

I

1111
Ii

1100

TA • HOC

!

Ii.:' •

!!! ;" !H!1!!1i

100

I

,

10

j
.1

110

10

I.D

......

o

-4.0

1M

.

'"

!~

I.

"'-S.IV

.

1M

~~..;'"

I......

~.,.
~ ~.,.

IJ

Vet '-loY
I-'UH,

u..aWIDTH
Ihlff

1.1

Ie - CDLLECTDR CURRENT e..A)

1.0

"
101

~~

100
0.001

~
~

1.

0.1

Contours of Constant
Narrow Band Noise Figure

}..,I~\

-:.; .. ~

-~ '"
c
Ii;

!!
co

..

~

2k

Ii

~

1\

..

\

~

iii,

"

\
~..

f,

co SIt

J

0.01

0.11

'.l1li1

Ie - COllECTDR CURAENT hilA)

~

~~"

.E

-',l;"

Vel! ·-S.oV
f-IIIHz
~ ".DWlDTH
~~ -15H.

~.,.

125

I,..;::
C'ol

-20

,.;~

Contours of Constant
Narrow Band Noise Figure

-111Hz

~.

1.01

100

f'" 1.O.HI

lit

110
0.001

15

-16

Contours of Constant
Narrow Band Noise Figure

JUNCTION TEMPeRATURE I:el

~ ~.DWIDTH
'I.,'~

~1_

i

'ICE

25

-

-12

.,..~

11111111111
II

o

-I.a

Vn . Vel - REVERSE BIAS VOLTAGE (V)

~,~~~.~.-LII~v~~~!!~~1
TJ

Contours of Constant
Narrow Band Noise Figure

C.!toIE=a-

.... ""~

10

Collector-Base Diode
Current vs Temperature

Ie - COLLECTOR CURRENT '"AI

1M

210

C..ole =0

§
~

"

12

Ie - COLLECTOR CURRENT ImAI

!! !!!!!! ,!!

~ -1.1 0.1

ISO

I~'-'....J..-'--'-...I.....I-'-'

1.0

0.1

AMIIENT TEMPERATURE (DCI

Contours of Constant Gain
Bandwidth Product (for)
,!!

S'

110

f~UMHI

IlL J J
II I I I
50

,

o

16

V"j"j[i\ u;c

-

.......

~~ ~111- -

Ie'" 101.

i-"'!"

TA

~

Input and Output
Capacitance vs Reverse
2. Bias Voltage

I-

jlD,DDII' 25

"

ro.,;;o..., .'\1 .,.....,

'DO
100

III

10

iI1
II
:!i

f-- - -.

70D

Ie - COLLECTOR CURRENT eM)

Ie - COLLECTOR CURREn hnA)

§

10'

o

0.111

e

e

iii In

III

5.0

!
i

.....

111"] III

a

~
!;

Vel· 'IV

f.H!J

T.D!l.J

JOt

II
II,

VCI -

Maximum Power
Dissipation vs
Ambient Temperature

i~~ o;:~v "i
.1 211

'~~~-:,OT"

0.1

Ie - COLLECTOR CUARENT (mAl

1.8

110
I.It

i"

0.1

I.D

II

Ie - COLLECTOR CURRENT I",A)

TLlG/l0038-5

11-113

III

Process 62

~
!

...B
..

Equivalent Input Noise
Voltage and Noise Current
vs Collector Current
10

IIII I

VeE" -I.OV

I-

ill 5.0
~

is

~

"'~

,"I>
~-

2.0
1.0

I-

ill

.
;;!

~I

~

~

'1""

0.2

~

0.1

~

0.02

-

0.01
0.005

.".'.'00~Z

<.. 1III

8", f= 10kHz

~

0.01

..
...,~ ,.g; "
..I3 .IIIl:!.
..",. ..I
B.O

m

ii

Ie - COLLECTOR CURRENT (mA)

Noise Figure vs Frequency
5

VeE - -S.GV
BANDWIDTH'" 15.1 kHz

VeE" SV

6.0

~

2.0

i

3

I
:i

~

!L.tIC-250/AA Rs=Skn
~I"IIIIII

2

IIIHlllI

II

Ie - ,~,~O.A Rt,~, Ikll

1~1~I.m

1

11

Ie - 20,ItuA Rs ~Il
0

0

~

,.

4

..III

Ie ,,'00IJA

C;

ii

"

~ I'\'e· 10.A

4.0

~
0.001 10

1.0

0.1

Wideband Noise Figure vs
Source Resistance

~

0.002

rmz

0.001

~

0.06

~

-.~.

0.6

0.1

~I

1.0k 2.0k

6.Ok

10k

20k

100

50k lOOk

lk

10k

1M

lOOk

• - FREQUENCY (Hz)

R, - SOURCE RESISTANCE (11)

TLlG/1003B-6

SMALL SIGNAL CHARACTERISTICS (I = 1.0 kHz)
Symbol

Parameter

Conditions

Min

Typ

Max

Units

hie

Input Resistance

Ie = 1.0 mA, VeE = -5.0V

2.5

8.0

20

kO

hoe

Output Conductance

Ie = 1.0 mA, VeE = -5.0V

5.0

19

50

",mho

hre

Voltage Feedback Ratio

Ie = 1.0 mA, VeE = -5.0V

10

X1O- 4

hie

Small Signal Current Gain

Ie = 1.0 mA, VeE = -5.0V

100

250

800

TYPICAL COMMON EMITTER CHARACTERISTICS (I = 1.0 kHz)

..~

"

~

=<
w

=
;;!

....
I-

Common Emitter
Characteristics vs
Coliector·Emltter Voltage
1.5

1.1

!::

>=

,.~

0.9

rl

~,.

0.1

9
..

0.5

"i5

I h.. jnd~;:.- i-"'~

1.3

;,..

,.

I

N.
'·l.0kHz
Ie o:l.0mA
TA ·25"C
0

-5.0

-,

I

.;

-

h••

1

1

I

I

-10

-16

;!

"
.l!

I

-25

Ve • - COLLECTOR·EMITIERVOLTAGE (V)

100

"
=
w

~

.

"

y

h,.

h..

l-

.~

rl

h•• ~

10 ".0kHZ

hi.

1.0

I--

......

h••

0.1

/

iii

..IIi5

~

2.0

=<
w
:l

I.B

Ie = 1.0mA

1.6

tE

l-

1.4

.""
3l:l
w

hl~

e;

rl

0.2

0.6

1.0

2.0

5.0

Ie - COLLECTOR CURRENT (mAl

10

1.2
1.0
O.B

~

0.6

II

0.4

~

0.01
0.1

Common Emitter
Characteristics vs
Ambient Temperature

~

VeE -I.DV
TA " 25°C
II

l-

~

-20

Common Emitter
Characteristics vs
Collector Current

..•

..i5

VeE" -I.OV

'iOkHr
I
1 .1

h,·t~ .....

y
/h,,/

"'- ....-:1
h· t

Th,.
I
-110 -40 -20 0 20 40 60 60 100
T. - AMBIENT TEMPERATURE ("C)
TL/G/l0038-7

11-114

~NatiOnal

Process 63
PNP Medium Power

Semiconductor

r"
I
1-

0.019

//
~

r-

DESCRIPTION
Process 63 is a non-overlay, double-diffused, silicon epitaxial device. Complement to Process 19.

0.0035
(0.0889)

ro (fM

APPLICATION
This device was designed lor use as general purpose ampliliers and switches requiring collector currents to 500 rnA.

B

~~

E

~~~~
\.'Q
V

0.003 ,-I--- r-(0.0762)
0.019
(0.483)

PRINCIPAL DEVICE TYPES
TO-SEBC: 2N2905
TO-18 EBC: 2N2907A

0.0032
(0.0813)
--t;

~

0.003
(0.0762)

TO-237 EBC:
TO-92EBC:
TO-116:
TO-236:

TN2905
PN2907A,2N4403
MPQ2907
MMBT2907

16-S0IC:

MMPQ2907

TUG/100S8-8

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol
tON

Typ

Max

Units

Ie = 150 rnA, leI = 15 rnA (Figure 1)

Conditions

30

45

ns

220

290

ns

6

8

pF

20

pF

tOFF

Ie = 150 rnA, le2 = 15 rnA {Figure 2)

Cee

Vee = 10V

CEe

VEe = 0.50V

hIe

Ie = 20 rnA, VCE = 20V, 1= 100 MHz

Min

1.5

NF(spot)

Ie = 100 p.A, VeE = 10V, Rs = 1k, 1= 1 kHz

hFE

Ic
Ie
Ie
Ic

=
=
=
=

1.5
50
50
50
30

1 rnA, VCE = 10V
10 rnA, VeE = 10V
150 rnA, VCE = 10V
500 rnA, VeE = 10V

2.5

150

dB

400

VCE(SAT)

Ie = 150 rnA, Ie = 15 rnA
Ie = 500 rnA, Ie = 50 rnA

0.5
1.2

V
V

VeE(SAT)

Ic
Ic

= 150 rnA, Ie = 15 rnA
= 500 rnA, Ie = 50 rnA

1.3
1.6

V
V

BVCEO

Ic

= 10mA

35

V

BVceo

Ic = 100 p.A

50

V

BVEeo

IE = 10p.A

6

Iceo

Vce

= 35V

100

nA

IEeo

VEe

= 4V

100

nA

V

III
11-115

Process 63
ELECTRICAL CHARACTERISTICS (TA = 25"C) (Continued)
Symbol
PO(max)
TO·5
TO·18
TO·237
TO·116

TO·236
TJ(max)

Conditions

Min

Te = 25"C
TA = 25"C
Te = 25"C
TA = 25"C
Te = 25"C
TA = 25"C
TA = 25"C
(Each Transistor)
(Total Dissipation)
Te = 25"C

3
800
1.7
600
2
850

W
mW
W
mW
W
mW

500
900
350

mW
mW
mW

All Metal Can Parts
All Plastic Parts

200
150

"C
"C

SMALL SIGNAL CHARACTERISTICS (I
Symbol

Input Resistance

hoe
hre

Voltage Feedback Ratio

hie

Small Signal Current Gain

~c

:5:

2.8

~,.

......

......
~
Z
f-II" -""

U I~ l.G r-h,.

ill;:
_c

5~

=!
ii~

1.5

D.Z r-h o•

V

0.1
·1.0

,

/'

.2.0

.....

~

h~'
I
h,.

TA ·2rc
·18

·21

Ie-COLLECTOR CURRENT (mAl

Ol
I-

~~
c _

~ ~

is
5:1

Vel! --11V

.&.a

1.3

'" w
tl,;t

~r--

1.2

I

h"A

3

-4.0

h;:2:K;
h,:~ p
~
"'::::;t.'
....
...... .,
~

'\.

1.0

:!i!~ o.a

I

lIr.lndho.

1.1

Typ

Max

480

2000

Units

n

80

1200

,..mhos

162

1500

X1O- 6

100

~

"

'''''·LD

1.5
1.4

h:~

~

\

o.a
·50

Units

= 1.0 kHz)

TYPICAL COMMON EMITTER CHARACTERISTICS (I

...
/.

Min

Conditions

= 10 mA, VeE = -10V
Ie = 10 mA, VeE = -10V
Ie = 10 rnA, VeE = -10V
Ie = 10 mA, VeE = -10V
Ie

Output Conductance

&.a bl"

Max

= 1.0 kHz)

Parameter

hie

Typ

~

iii,

1.2

~

1.1

c

1.0

I-

l!: o.a
~ o.a

.
I-

1e=·10mA
T. -25'C

·12

·18

Ve• - COLLECTOR VOLTAGE CV)

·21

1r;:"'-lDmA
Vel ·.IOV- ~

1.3

0.7

~~:~f0-

...
~
hOo

:=-~
.;;~
.s: ~
~

L
",

~

0.6
0.5
·40 ·20

0

20

40

80

10 1l1li

T. - AMRIENTTEMPERATURE COC)

TL/G/l00SS·1S

11-116

r-----------------------------------------------------------------------------,
Process 63

~

g
!!
Q)
Co)

DC Pulsed Current Gain
vs Collector Current

...

llli I

Base-Emitter ON Voltage vs
Collector Current
IE I.D

Va- 1DV

I..

1,'!"IR'
JlLL I i\

i

fA .II'C

III
III
U

11

Va"' lOY

D.l

110

1.0

10

Ii!

I

300

TO·92

"

a

Collector Reverse Current
vs Reverse Bias Voltage

I-

TAo

-le·'OI.

f

r-..

/

'-TO..

8i'e

==

r-...'-

TD·1'

I'.

-u

./

'-

~

~

Pulsed Collector Saturation
Voltage vs Collector Current

i--'""

·U-c

~

&0
100
1&0
2DO
TA - AMBIEN, TEMPERATURE f'CI

Ie - COLLECTOR CURRENT (mAl

Maximum Power
Dissipation va
Case Temperature

..."\

TO·238

.GO

}

~

-t-...

,oa

~

1l1li

~~

.00
4110

I

I I II II!

~-CtIU.EC'I1IIICURRlltT(IIA)

!\.To.•

700

~

~

a

800

~

fA·1.-c

D.'

'D.I

Ii§

~ ,GO

r;:r:'~~1
J.;iITlo

~

i '.4

'I • ....·e

•'.1

T,". ,co'l

Maximum Power
Dissipation vs
Ambient Temperature

,i"

,~

lUI

51

'"

10

-0.0.

-10

Te - WI TEIl'EIlATURE reI

-10

-JD

....

-.0

-'.0

-ID -III

Ye. - COLLECTOR TO EMITTER VOLTAGE Ivt

I

-.oa

-'OG

Ie - COLLECTOR CURRENT (MAl

TL/GI1 0038-9

-u

Input and Output
CapaCitances vs Reverse
Bias Voltage

Pulsed Base Saturation
Voltage vs Collector Current
10

III
II
III

le· ,II,

I

we/ r/

-u

u

12

'll

8.0

"I'r

!

!

4.G

1.1 -182 -le/lO

t.G

H+tt-+-i-H+\f-'+1FA1''''''~

IIDMHr

J

-10

Rise Time vs Collector and
Turn On Base Currents
-50

,.

Io.

a
.0

•• a.. l-' " ,

-&.I

':'tt,

~

~

=

r\

r-

Ie - COLLECTOR CURRENT boAI

!i

........

IDa

...

-1.

~

30G

,aD

'11
Ie - COLLECTOR CURRENT ImAI

-1011-Il10

Ie - COLLECTOR CURRENT (mAl

1-21

!

I

t.

-1.

-1.1

-0.1.8.1

REVERSE BIAS VOLTAGE IV)

'\

l~

H-t+H--Hlt\I\-j-11\kHIllflhIllc..w.I

~ll~~'\~\I.~UJlt!j!fJj
F
I,,~r~

I -&2 1III'lMHj ".H, ',',.Hi '","

l\.

'111

18

-La

Turn On and Turn Off Times
vs Collector Current

~

D

~
f5

!

Vee ·11V

r-

-10

IIIC

·'j'l rrTTiPii'iANt

-0.1

-20

:I

i -2.'-1.a Httt+ttft~+"'=t:I.ij,H'IY'I'-Irl'll
g ~1l!E,I\J~l",~.lf.t1!
B

J INl

III

II

r-....

.....

Switching Times vs
Collector Current
lUI

Ie-a

a

-lID
-IGI
Ie - COLLECTOR CURRENT (IIA)

110

~

N c.. -INPUT CAPACITANCE

la

,

I

-..

-as

I

CI.1..e

....
....

Contours of Constant Gain
Bandwidth Product (IT)

'0"

!
I

-l.D

'"

-1.0

VI

V/

30"

~

./

~ i-"l-'
-18

-21

-51

-IDD -ZUI

-SOD

Ie - COLLECTOR CURRENT (mA)

TL/G110038-10

11-117

D

~

UI

r---------------------------------------------------------------------------------,

i

Process 63
-30V

zoan
lK

TL/G/1 0038-11

FIGURE 1. Saturated Turn On Switching Time Test Circuit
+16V

-IV

370

lK

°L..Gv

&on

--!::;zoaNsL
TLlG/10038-12

FIGURE 2. Saturated Turn Off Switching Time Test Circuit

11·118

~NatiOnal

Process 65
PNP High Speed Switch

Semiconductor
0.015
(0.3811

DESCRIPTION
Process 65 is an overlay, double-diffused, gold doped, silicon epitaxial device. Complement to Process 21.

0.0075
r---CO.190si-

APPLICATION

V:;~~~/

~.~

This device was designed for very high speed saturate
switching at collector currents to 50 rnA.

o.L

PRINCIPAL DEVICE TYPES
TD-18EBC: 2N4208
TD-92EBC: PN3640, 2N5771
TO-236:
MMBT3640
TO-116:
MPQ3640
16-S0IC:
MMPQ3640

T
g~
'/

0.015

~J

POI

TL/G/l003B-14

ELECTRICAL CHARACTERISTICS (TA = 25°C)

Typ

Max

Units

toFF

Ic = 10 rnA, la2 = 1 rnA (Figure 1)

18

25

ns

tON

Ic = 10 rnA, lal = 1 rnA (Figure 1)

11

15

ns

ta

Ic = lal = la2 = 10 rnA

15

20

ns

2

Symbol

Conditions

Min

Cob

Vca = 5V

Clb

VEa = 0.5V

hie

VCE = 10V, IC = 10 rnA, f = 100 MHz

6.5

hFE

IC
Ic
Ic
Ic
Ic
Ic

20
30
25
20
20
20

= 1 rnA, VCE = 1V
= 10 rnA, VCE = 1V
= 50 rnA, VCE = 1V
= 100 rnA, VCE = 1V
= 1 rnA, VCE = 0.5V
= 10 rnA, VCE = 0.3V

3

pF

3.5

pF

9
85
75

150

VCE(SAT)

Ic = 1 rnA, la = 0.1 rnA
Ic = 10 rnA, la = 1 rnA
Ic = 50 rnA, la = 5 rnA

0.15
0.20
0.50

V
V
V

VaE(SAT)

Ic = 1 rnA, la = 0.1 rnA
Ic = 10 rnA, la = 1 rnA
Ic = 50 rnA, la = 5 rnA

0.8
0.95
1.5

V
V
V

BVCEO

Ic = 3mA

15

V

BVcao

Ic = 100 p.A

15

V

BVEao

Ic = 10 ",A

4.5

Icao

Vca = 10V

100

nA

IEao

VEa = 3V

100

nA

11-119

V

a

II)

CD
fI)
fI)

Process 65

CP

u

2

a.

DC Current Gain vs
Collector Current
ZGII

..
:i

I..
,

,.

11110 II

110

'10
10
80

1

411

II
I~~"o-i~c

1111111

E

:::

=-to
i

-'DO
.e - COLLECTOR CURRENT ImAI

Collector Saturation
Voltage vs Collector
Current
• olD ••

~j!-1.2

I-

r- ,,,-1HoC

~

rt102~ C

II

Ji -0.0.-0.1

11
.1.8

·10

-110

.e - COLLECTOR CURRENT ImA)

J

I
I

Collector Reverse Current
vs Coliector·Emltter
Voltage
.00

j

I I
J
I I
I I 1/

T.olrc

ID

-

...... t:;.-

~~

-3.0

-I.

-7.0

......

-11

,

Fo'MH.

~

Ic·· ....

C,

c"'···'I-

J
I

I
-2.D

-4.0

....

....

REVERIE ..III VOL TABE IV)

-10

~ -1.0
e, .04..
J -2.1

e III

-0.'

, ID

IDI

i!i

,.

~H.

-1.8

.#fIr/

9.0-3.DV

'"

J

100M •

='+'"

~

-II

.e - COLLECTOR CURRENT I_A)

·111

II

7'

lID

121

1&0

T. - AMIIENT TEIliPERATURE rc)

..

,~ IIIHl/

, iii\.
1\

r-~

Collector Reverse Current
vs Ambient Temperature

= U1 Ii

.JI

I.

\
•

·11t

.e - COLLECTOR CURRENT ImA)

i

if

=
~ -1.

I\,

o

-12

co
: ....0

·10

.1.0

J

I

Contours of Constant
Gain Bandwidth
Product (fT)

'\

.........~~r'"
1

1

Input and Output
Capacitance vs Reverse
Bias Voltage
2.1

'"

B

I

Vel - COLLECTOR-EIII.mRVOLTADE IVI

E

,

~
TA -aloe

VCI· ...av ~

Ie - COLLECTOR CURRENT lona)

-14

~

I.... '.0
g •. 17i'S1t'V

I"""
/I
i":/I

II

;:
;

..

IN,at , 11I42IfI.I

'-1.0

J

.1.1

TAo ...II"C

·1.1

I

·IID

·11

3.1

1.1

i

.1.3

,

.1.1

i:

T~ • .....C

I -0.02

~

T olWC

Base Saturation Voltage
vs Collector Current

1-0··
I -0.7

o

-'D

-0.1

:I ...,

--

~
I

r-

III

-,

-D.'

=- -1.1 Ie ·'01.

III IIlI ..J.ll
IIIr I 11
IIllA'II

-

11111" III

o

Vel -1 '~,III

--

~1'Ii

III""

20

:::

T. -2&'C

T~'~2"C

120

B

Vel -1V

~

'11 ~

~

Base·Emitter ON Voltage
vs Collector Current

~a:

i•
iii;:c

I,

j

..
801

Maximum Power
Dissipation vs
Ambient Temperature

701

,ID

4ID
301
201
'01
0

~

~

TO·l.

- ."',"
TO·1Z

.,...."

TO·US "

~
~

I
10

,ID

"l'..

1&1

IDI

T. - AM.'ENT TEMPERATURE I"C)
TLlG/,0038-15

11·120

Process 65
Switching Times vs
Collector Current
III

VIE401·~

~
2G
10

I. -'.2·' mA
t

]

~

!

~

1~

~

"' ~

2.0

U

U

U

la

I
..

..

21

Ie - COLUCTDR CURMNT e..A)

"cc"-1.6V

1&

V'~IO!

1 5.0

Vcc

!O

&.0

....

;
!..
<;0

"'g;

,

--

2.0

-.:

~

e

,,/'

U

-

I.D

~D

2.0

2D

0.1

C

.a
!.

I I /I

<;0

iii
i!,
~

t.. "20 lIS

""

'.0
2••

i"

lO~ ~r-r-

/

BJI

o

V

r-7 IS:~ VI

~ ... ~
~

I

i--'

Vee· -1.5V
Ie =SOmA

o

2.'

OJ

B.I

8.0

3.D

f--+--+-I::-f+--tl-+-I

;

u

~--J'--+-++'-+--If'i

1.0

17"'--~'--++---1Y-l

J

I.D

r

Vee "-1.5V

II
i"

o

.!

i"

V

o

C

"

....

.... ,.....

0.1

0.1

OJ

0-

~

e
g
....
.
<;0

3.ln.

1
I
I

i!,

'.1

1
!O

.a
.g

1,=611 ••

0.4

<;0

iii
i!,
~

10

0.3

1/

u

i...-

0.1

U

0.1

OJ

1.4

0.&

182 - TURN-OFF lASE CURRENT tllA)

182 - TURN·OFF BASE CURRENT (IIA)

..a~

3.1

co

u

~

Ic=UmA

o
o

o

1 4.D

0-

Vee "-1.5V

l!:Ppoo

1.0

I

U

3.1

4.0

&.D

TURN-Dff BASE CURRENT (mAl

Fall Time vs Turn On and
Turn Off Base Currents

.,

~ 40",

10 .. "

5.1

.i.

~

/

V
~

~

~-&.0';1

0-

1/45 ..

15

/

.... ....

1.0

182 -

V

I

iii!

1/

2.0

D.&

V

r--~'2b ..

3.0

1

Fall Time VB Turn On and
Turn Off Base Currents
I

0.&

Vee '"-I.IV
Ie ·IOmA

~

0.4

3.0 4.15.0

Storage Time vs Turn On
and Turn Off Base Currents
&.0

I VI 'c· ' •Om>
'.Ini/ I I

2.0

1. 1 - TURN ON lASE CURRENT (rnA)

182 - TURIf'()ff BASE CURRENT (mA)

Storage Time vs Turn On
and Turn Off Base Currents
.!
0iii •.0

rei

S.Om

0.3

i!

51

il

'c - COllECTOR CURRENT 'mA'

10

liD

AMIIEIIT TEMPERATURE

-

t,"'2ns f

0.2

~

II

~

;Ii,

1111

&I

0.4

i.

.:::,

-111

0.1

i

Storage Time VB Turn On
and Turn Off Base Currents

~

~ -2";-

0-

-.

'.0

Delay Time vs Turn On Base
Current and ReverBe BaseEmitter Voltage

;;

-&0

j

I,-Z ...

.....

i-"'"

~~

0.&

-H;IJ V

a.s

~

o

0-

-r-r.J

1.0

~

...... 1--'"

TA

--ur I i I

.....

••

10

Rise Time VB Collector and
Turn On Base Currents
10

III

III

...
I.D

Z

Ie "10mA

20

Vee" -1.5V
Ic -101... '01 12

51

Switching TlmeB vs
Ambient Temperature

I
1/

1.0

o

I
II u ../
I
/
......

o
.82 -

I.D

2..

~ ~~
Vee" -1.SV
Ic=llmA
3.D

4.11

&.D

TURN-DFf BASE CURRENT (mA)

TLlG/10038-18

Fall Time vs Turn On and
Turn Off Base Currents
C

10

.!

..a"
!..

4.11

iii
i!,

2.1

0-

••0

iii!

<;0

~

~.' ... :"A

1.0

o

VI

f--r-~~.J/,}
I

V

4.0 ...

1/
'/
'/

I

/

......

3.D:-p
Vee = -1.&V

le· samA

•

2.'

4.11

1.8

1.0

10

' .. - TURN·Off BASE CURRENT InIA'

TLlG/10038-17

11·121

•

U) , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,

CD

I

Process 65

a.

v••

Vee" -1.IV

C~

o

• UK

,.1380

•

~

4~ TO SAMPLING
SCOPE

V

D.l""

1

i1~-·-'V'Y"'Y-tyJ.,
",SK",
Z',wN.Z40ns1
N" SOO
1,'::1.0n.

&10

Z'N ~100 KO
n.

I, <1.0

~

.":'

TL/G/l0038-18
toN

toFF

VBB = Ground

VBB

V,N = -S.8V

V,N = +9.8V

Ie

=

-8.0V

= 10 mA,IB1 = 1.0 mA,IB2 = 1.0 mA
FIGURE 1. toN and tOFF Test CIrcuIt

11-122

~NatiOnal

Process 66
PNP Small Signal

Semiconductor

1__

•

0.0035
10.0889)

t

.----

0.0035
10.0;89)

0.013
(0.330)

"r
1\

--I

"""l-'

8
0.0035

~
(O~ ~

1\
1'\
1\
1'\
1\

1\
1'\
1\

DESCRIPTION
Process 66 is an overlay, double-diffused, silicon epitaxial
device. Complement to Process 23.

I

APPLICATION
This device was designed for general purpose amplifier and
switching applications at collector currents of 10 ",A to
100 rnA.

0.022

PRINCIPAL DEVICE TYPES

(0.559)

TO·92EBC: 2N3906,4126
TO·236:
MMBT3906

1'\
1\

1'\

E

1\

0.0035

~'~.0889.Jt

TO·116:
16·S0IC:

l\

MPQ3906
MMPQ3906

TLIGll0038-19

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Typ

Max

Units

tOFF

Ic = 10 rnA, IS2 = 1 rnA

Conditions

150

300

ns

tON

Ic = 10 rnA, lSI = 1 rnA

30

70

ns

Cob

VCS = 5V

3.0

4.5

pF

15

pF

Min

Cjb

VES = 0.5V

hie

f = 100 MHz, VCE = 20V, Ic = 10 rnA

NF (wideband)

Ic = 100 /AoA, VCE = 5V, Rs = 1 kO

hFE

Ic
Ic
Ic
Ic
Ic

=
=
=
=
=

0.1 rnA, VCE = 1V
1 rnA, VCE = 1V
10 rnA, VCE = 1V
50 rnA, VCE = 1V
100 rnA, VCE = 1V

2.5

4.5
2.0

40
50
50
40
20

150

dB

350

VCE(SAn

Ic = 10 rnA, IS = 1 rnA
Ic = 50 rnA, Is = 5 rnA

0.25
0.40

V
V

VSEISAn

Ic = 10mA,ls = 1 rnA
Ic = 50 rnA, Is = 5 rnA

0.85
0.95

V
V

BVCEO

Ic=1mA

35

V
V

BVCSO

Ic = 10/AoA

45

BVESO

Ic = 10/AoA

5.0

Icso

VCS = 25V

100

nA

IESO

VES = 4V

100

nA

V

III
11-123

CD
CD

Process 66

=
e
a.
CD

u

DC Current Gain vs
Collector Current
200

..
...

V.. -UV

E
~

1.0

11111111
I 1111111

I!

160

:

0.8

ill

120

!

D.'

11
l!

80

;;

I

I

1

Base-Emitter ON Voltage vs
Collector Current
,-....,rmrr-,-,-mr..--.....,.

40

I

1\

~

~~Ip.

~
TA -Zre

L...J...J...LJ.UJUI-.........LWJIL-...................

D.l

I,

lI-

fi

101
I.B
I.
Ie - COLLECTOR CURRENT I..AI

Base-Emitter Saturation
Voltage vs Collector Current

~

I

lcRo-l0
TA .2S'c

I.Z
'.I

= D.I

H

'"

i--'

;::

I:

10

lD1l

10lIl

Ie - COLLECTOR CURRENT ImAI

Collector-Base Diode
Reverse Current vs
Temperature

...

I

I

~ TO·12

I- ~ -~

"

no

rO·238 .....

.. 100

j

TA -

20

~_

"18

~

11

..

~

~

50
150
no
100
AMBIENT TE_RATURE I"C)

Contours of Constant Gain
Bandwidth Product (fT)

~

iii

Lli

14
10

10

1I11III

In

t-- II

hi

I-- I I I I

~
•

'ri

"~

.1~

l~

,..

ill lL

.1

o
.1

180

I•

Ie - COLLECTOR CURRENT ImAl

Common Base Open Circuit
Input and Output CapaCitance
vs Reverse Bias Voltage

Noise Figure vs
Frequency

t-- T. -zrc
T042

r-

'"

10

,j

J

III,L

I

Ie - COLLECTOR CURRENT (mAl

Vca -2DV

I

300

~

KCObD

~

E 100

40D

I\.

8

1.2 1.1

1.

1000

B

~

;

;

If

~

I

!
,j

.DD
.. 701

I

Ie - COLLECTOR CURRENT (mA)

Collector-Emitter Saturation
Voltage vs Collector Current

I

i:

TA -zre

G.2 1--H-1tttIHt-++tlttttf-+t-ffiHfl

10Dll

100

10

0.1

-I.IV

U 1-+++HfHI--++f-

J •

o

'V

Maximum Power
Dissipation vs Ambient
Temperature

C...

1/

j
I

ZI

50

71

100

lZI

T, - JUNCTION TEAI'ERATURE I·CI

•

1.1

1.0
REVERSE BIAS VOLTAGE (VI

l'

1.0

10

1- FREDUENCY liH.1

1"

TL/G/IOO38-21

11·124

i
"a

Process 66

en
en
Noise Figure vs Source
Resistance
12

1111111
111111

10

I

VCE ~

'-UkH.

I~::'~~~

.
!
~.
II!

~

..
I

~

'-1.1

c
co

r-

I

."J.

0.1

1.0

10

R. - SOURCE RESISTANCE (k!'1I

I.

,,'
10

'.1

10

Turn On and Turn Off Times
vs Collector Current

Voltage Feedback Ratio

5DG~~~

-I"'"'

110

1'--0.
_11_
I---+'''Iod+-'''''_I-....-l~

10

I---+--H+--+-H-+I---I

!

i

~
I

,f

I.'
Ie - COLLECTOR CURRENT {.AI

201

E
.. lDO

r0.1

Ie - COLLECTOR CURRENT (mAl

VeE -1OV
'-1.IkHz

500

i

,I.
J

D.l

Current Gain
1I11III

'·I.DkH.

liDO

1.0

i!!
I

D

Vel ·1OV

I

kHz

~

r-

Ie -100

Output Admittance
IDOl

VeE- lDV

~

l-

t

--

Input Impedance
10

i.GV

50

.."~

2D

ID
1.1

1.0

11

1.0

1.1

Ie - COLLECTOR CURRENT (mAl

10

1.0

10

101

Ie - COLLECTOR CURRENT {mAl

Ie - COLLECTOR CURRENT {mAl

Switching Times vs
Collector Current

I. SOl

1. 1 -'12 -Ie'"

.....:-.

:!

i

~

....... .........
......

18

rn-~

~

to f--

II

I.D
I.D

II

lDO

Ie - COLLECTOR CURRENT (mAl
TUGII003B-20

•
11-125

~NatiOnal

Process 67
PNP Medium Power

Semiconductor
0.030

DESCRIPTION

----

I~

0.004 (0.162)

HO.0035
(0.0889)

(0.102)

I

APPLICATION

~

,

",t\)
r,I

{

B

t

E

'J

V (

TO·39EBC: 2N4033

(0.229)

TO·92 EBC: MPSA56

t
/

~
/

/

PRINCIPAL DEVICE TYPES

0.~09

.1

.l

V

This device is designed for general purpose amplifier and
switching applications at currents to 1A and .collector voltages up to 70V.

~

tr(,

0.005
(0.121)

Process 67 is anon-overlay, double-diffused, silicon epitaxial device. Complement to Process 12.

0.030

To-116:

(0.762)

T0-202 EBC: NSDU56

~

MPQA56

TO·226 EBC: MPSW56
TO·236:

MMBT56

TO·237 EBC: TN4033

TLIG/10038-22

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

Min

Typ

Max

Units

toN

Ie = 500 mA, 181 = 50 mA

35

ns

toFF

Ie = 500 mA, 182 = 50 mA

250

ns

Cob

VeB = 10V

Clb

VEB = 0.50V

his

VeE = 10V, Ie = 50 mA, f = 100 MHz

NF(spot)

Ie = 100 p.A, Rs = 1k, VeE = 10V, f = 1 kHz

hFE

Ie
Ie
Ie
Ie
Ie

=
=
=
=
=

11

1

0.10 rnA, VeE = 10V
1.0 mA, VeE = 10V
10 rnA, VeE = 10V
100 rnA, VeE = 10V
500 rnA, VeE = 10V

15

pF

90

pF

2
1

40
45
50
50
35

150

dB

350

VeE(SAT)

Ie = 150mA,IB = 15mA
Ie = 500 rnA, IB = 50 mA

0.2
0.6

V

VBE(SAll

Ie = 150 mA, IB = 15 mA
Ie = 500 mA, IB = 50 mA

1.0
1.2

V

BVeEO

Ie = 10mA

60

V

BVeBO

Ie = 100 p.A

70

V

BVEBO

IE=10p.A

7

leBO

VeB = 50V

100

nA

lEBO

VEB = 5V

100

nA

11-126

V

"

..
Process 67

(')

CD
UJ
UJ
0)

.....

ELECTRICAL CHARACTERISTICS (TA = 25°C) (Continued)
Symbol

."
0

Conditions

Min

Typ

Te = 25°C
TA = 25°C
Te = 25°C
TA = 25°C
TA = 25°C
TA = 25°C
Te = 25°C
TA = 25°C
Te = 25°C
TA = 25°C
(Each Device)
(Total Dissipation)

10
2
2
850
1
600
7
1
350

W
W
W
mW
W
mW
W
W
mW

500
900

mW
mW

Units

Max

PO(max)

TO-202
TO-237
TO-226
TO-92
TO-39
TO-236
TO-116

DC Pulsed Current Gain
va Collector Current

Maximum Power
Dissipation vs
Ambient Temperature

Base·Emltter ON Voltage
vs Collector Current

i

1101 "'-'--T"""T""""--'--'-"""'''''

I I~a I-+-+-H--lr-+-+-f--l

1::
I--k"\.......,-I~I-+-+-+--i
I
..

J.

•

2

Hf-ttttlllH-+tHtfll-+-t+liIIII

~I.~UU~~~WW~~~

'.1

I.'
11
COWC11IR CURRENT IIIIA)

Ie -

100

iil

....... ~TO.z3

HOI-r-~~~+-+++~
BOO I-~+-~~-+-+-f--l

........

TO·12

NO-31l

100 Hl--lpo.,jl'o.:-I""''\l~.~.~-+-I
I 200 I-+-+-H-~~.f~--l

~r-....

j

101

10

liD

200

TA - AMIIENTTEMPERATURE rc)

TL/G/I0038-23

'One square Inch of copper run

Maximum Power
Dissipation vs
case Temperature

Safe Operating Area TO·39
with "Wake Field"
Type 296·4 Heat Sink

i

• """""--'-""'I--rl.....,....-r-..,......,

i

7

==

I

i

I
I

j

~"'.-+-il-+I--t--t-+--t

• I-t-"'k-b-+::-±++-l
r~O-3 (STEEL)
I-+o.......
.-t-""'''':-Jr-;--'-t-+-l

I

4

I-+---i"o"",~.k-+,,-+--+--i

31-+-+-+'~~--+-t-t

TO-3 IKOVAR" :'\.

2
I

a

I-+-+'--t-I-i--"'!ol.......
~~-+--i
H-+-il-+I--t---f""~",-l

10

lao

liD

Te - CASE TEMPERATURE I'C)

200

IA I MAxn.

IIi ~.:r.J;:\"r""'tJ

I
\1200~H~
lSOIlHz

I

~

!

...:~

100

~~ ~~i1B=6mA
B=5mA

,

2!50

!2OO

25.

Input and Output Capacitance
va Reverae Voltage

Collector Current

300 va Collector-Emitter VOI~~~!

Hn;il 'OI-

IIII

1.01
0.1

100

10

100

1000

Ie-COLLECTOR CURRENT(mA)

Collector Saturation Voltage
va Collector Current

TA'~~~

IC 8=10

0.3

!S

!i!

HrC1

I

I'Ii FE""-20
ill
10

II

100

100

1000

DC Current Gain
va Collector Current
<400

1.0

320

0.1
0.1

10

IC- COLLECTOR CURREHT(mA)

Baae Saturation Voltage
va Collector Current
10

IIII

0.1
0.1

1000

g

III

v =

¥

100

1000

t =1 :5~11

Jill

A=25

Ifl

0.1

IIII
160

TA= 250C

~
0.03

80

TA=25OC

IIII

1.01
0.1

Ie - COLLECTOR CURRENT (mA)

10

TA=-

100

1000

Ie - COLLECTOR CURRENT (mA)

10

Ie-COLLECTOR CURREHT(mA)

Total Power DI88ipatlon
va Ambient Temperature
600

"'
......

" I"
...... "
T092

SOT-23 ........

"'

~

o
o

25

50

75

100

~

125

AIIBII:NT TEMPERATURE (OC)

11-132

"

1150
TUG/l0038-29

~Nationai

Process 70
PNP Memory Driver

Semiconductor

I~
1---

V
V

I:::)~

O.DM

ii:iiij - -

0.0035
10.0181)

/

/

/

/

v:;

l\.

(

r

••

I.DO&
10.127)

V

t

8

I)

~

A

PRINCIPAL DEVICE TYPES
TO·39 EBC: 2N3467
TO·237 EBC: TN3467
TOo116:
MPQ3467

0.D3D
iD.2zij 10.782)

E

l-

~

APPLICATION
This device was designed primarily for high speed saturated
switching applications to currents of 1A.

un

(

)...:

DESCRIPTION
Process 70 is a non-overlay, double-diffused, gold doped,
silicon epitaxial device. Complement to Process 25.

J

TLlG/l003B-35

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Conditions

Symbol

toN
toFF
Cob
qb
hFE

VCE(SAT)

VeE(SAT)

BVceo
BVceo
BVEeo
Iceo
IEeo
po(max)
TO·39
TO·237
TO·116

TJ(max)

Min

= 500 rnA, le1 = 50 rnA (Figure 1)
Ic = 500 rnA, le2 = 50 rnA (Figure 2)
Vce = -10V
Vee = -0.5V
Ic = 100 rnA, VCE = -1V
Ic = 500 rnA, VCE = -1V
Ic = 1A, VCE = -1V
Ic = 150 rnA, Ie = 15 rnA
Ic = 500 rnA, Ie = 50 rnA
Ic = 1A, Ie = 100 rnA
Ic = 150 rnA, Ie = SOmA
Ic = 500 rnA, Ie = SOmA
Ie = 1A,le = 100 rnA
Ic = 10mA
Ic = 100 p.A
IE = 10 p.A
Vce = 30V
VEe = 4V
Ic

TyP

Max

Units

20

40

ns

60

90

ns

20

pF

80

pF

15

40
30
15

100

200
120
0.3
0.6
1.0

V
V
V

1.2
1.2
1.7

V
V
V

40

V

50

V

6

V
100

nA

100

nA

Tc = 25°C
TA = 25°C
Tc = 25°C
TA = 25°C
TA = 25°C
(Total Dissipation)
(Each TranSistor)

7
1
2
850

W
W
W
mW

1
600

W
mW

All Metal Can Parts
All Plastic Parts

200
150

°C
°C

11·133

III

....

«:)

:I

Process 70

I

A.

...

DC Pulsed Current Gain vs
Collector Current
110

i..

....
!!
g
.

c

f

I

...
=z: ...
h

TA-,2~C

C

c

VCE -IV
128

..
..

Collector-Emitter Saturetion
Voltage vs Collector Current

...... ....

VCE -IV

I'

Ie
1;-11

1111

""II u
8=
u
'-i§
io.::1
8.1

TA~~C\. ~
~ .....,

o§

o

TiHIii
D

10

tUD

II :
i

'"

eo

Ie - COLLECTOR CURRENT lmAl

BVCER VS RBE, IC = 10 mA

I I

128

u

c.. 1

110

I.,.... -

!

1'\

~.

~-J..C- r---

IUD

\

10

"-

10

IVclo

~,..1

•

.1

7""'100.

1.-•
II

10

II
c

J

ID

10

i~ :

to

IUD

I.

Ilk

II0k

1<-+--i>I'-~=r-"""+-H'i

I.D

I--JI<-++-t-if-+if-H;

1M

RQ

REVERIE 81A1 VOLTAGE IVI

u

I

18

2D

Delay Time vs Tum On Base
Current and Reverse BaseEmitter Voltage

130

F-IMH.
~

IODD

Ie - COLLECTOR CURRENT lIIIAI

Input and Output
Capacitance vs Reverse
Bias Voltage
IUD

188

tl

IODD

IC - COLLECTOR CURRENT ImAI

i

1111

ITr"I• C

c;! 1.4

e""
~=

~

Base-Emitter Saturation
Voltage vs Collector Current

I.t -

-3tI
-ID
-10
-IUD
TURN ON lASE CURRENT (,.AI
TLIGI10038-38

-30V

1e<5n8

PW - 200 n8
Rise Time " 2 ns
Duty Cycle - 2%
+2V

:jf

-30V

2<11 <500".

fa> 1 ".
Duty Cycle = 2%
SCOPE

SCOPE

zoon

lOon

1NS1.

+3V

TLIGll0038-38

FIGURE 1. toN Equivalent Tnt Circuit
TLIGI1 OOS8-39

FIGURE 2. toFF Equivalent Tnt Circuit

11-134

."

Process 70
Storage Time vs Turn On
and Turn Ott Base Currents
&0

:.

g

~.I3G~~ r~{'~~

41

/

!II: 3G

..i!!.

,

j1

IA
IA I

V

20

1/

j

I If

i/

j.o{[

-l;loo~

1/

10

I' Icol."~+

1/

V~=-3IIV

a
•

1 200
8I 110

-211

.11

-311

.... 1.
~

,

V

i"-~olO

V

~.l5"
..

~

I-'"

I-'"

'"

."

W- I-

1',e o 14lllMA

,

Vee· -3OV

o

-II

·1"
-III
.,100
I., - TURN ON IABE CURRENT ImAI

!II

20

i

10

1=
~

5,0

I

z.o
1.D

10,·1.. • .. "0
Vee' -IIY

.........
1"- ......

ZD

•

I I
I

-'-r-

,,-

t-It .. IDD.A

Ie, .. le 2 .. &DIIA

f0-

r. . - ~

Vee' -30V

.... ~+'"

'" ~

I. Ie _ COLLICTORCURRENT ImAI IODO

a

-10

.,II

-31

-50

....

100

~

t, -12 ftI

iO

zo

-50

-500

·1"

Ie - COLLECTOR CURRENT ImAl

1'110 1"11"T--'-~-'-~T""'""""l
! r-r-t--+-+---lr-r--t---1

l.t-Ia- le/1.

vee' -IOV

1480

I t-~t-t-t-++-+---I
: 1000 r-R'TO.J~7"+-++-+---I
I liD l-i---i"~-t-H-+---1
1208

HH--+'~-+-+--+-----I
iI _r-t-t-r~~~rT~O',Hr-~

~

IDD

..... "'"
10 ~
I- H-~
a
loa

..

l..1'e"oamA
1..1 Vcc '-3IIV

Maximum Power
Dissipation vs
Ambient Temperature

~

--....

.!5
!.
.....
..,.

In

Switching Time. v.
Collector Current
10

I~t~=50

,j

100

511

tco,,,

lION'

..... r--

10

TA -AMIIENTTEMPERATURE I"CI

II

'" .....1-"1"
rlPI po'"

.§

~
\~ ,....
---

......

I•• - TURN ON BASE CURRENT ImAI

c

~

-

CI

Rise Time vs Collector
Current and Turn On
Base Current

10

!

....

•

I

Turn On and TUrn Oft Times
vs Collector Current

10

,

j1

loa
'-

.
.
!

Ii

.. I-t---,.r--+-"If''-f-'

i.....

fl

-&0

~ i""~=21~_1--

III

~t-#--b''+--io~=':::--:l

Switching Times vs
Ambient Temperature

V

_oil

1

Fall Time vs Turn On and
Turn Oft Base Currents

100

I

'"

i

.

Fall Time vs Turn On and
Turn Off Base Currents
~oZl"'",'k

I•• - TURN ON BASE CURRENT ImAI

*~ ..
j1

....

~

zoa

I., - TURN ON BASE CURRENT ImAI

~

!.

-;~o""

1/

1
S

Storage Time vs Turn On
and Turn Oft Base Currents
'-'-'I"-r-:lr-'T'"'7"'-,

a

Ie - COLLECTOR CURRENT ImAI

~zoa~~-+~_~~l~~~~

'III

j

-L--'&O-'--,oaJ.-"'~";,"'&O....J,~~ZID

1 0\,.

TA - AMBIENT TEMPERATURE I'CI

• One square InCh of coppar run

Maximum Power
Dissipation vs
Case Temperature

1\

"- ~TO-39
'\.
~

50

100

~

150

TC - CASE TEMPERATURE I'CI

11-135

III

I'\.

zoa
TLlG/l0038-37

IjNalional
Semiconductor

'///

r
I
/

0.022

V

A

~/

B

frM

F:1

/

E

/

~~~~

"////1/
0.003 (0.076)

DESCRIPTION

////

/

/'> ~

Process 74
PNP High Voltage

/

I--

/
/

J

..)

I

Process 74 is a non-overlay, double·diffused, silicon epitaxi·
al device. Complement to Process 16.

0.0035
(0.0889)

1

APPLICATION
This device was designed as a general purpose amplifier
and switch for applications requiring high voltages.

1
L

PRINCIPAL DEVICE TYPES
To-92EBC: 2N5401
To-236:
MMBT5401

0.003
(0.076)

'/

/LZ

~
(0.076)

0.022
(0.559)
TLlG/10038-40

ELECTRICAL CHARACTERISTICS (TA = 25D C)
Conditions

Min

Typ

t,-

Symbol

Ic = 10 mA, VCE = 10V, f = 100 MHz

100

160

Cob

VCB = 10V,f = 1 MHz

hFE

Ic = 1 mA, VCE = 5V
Ic = 10 mA, VCE = 5V
Ic = 50 mA, VCE = 5V

40
50

Max

Units
MHz

6

10

120

250

pF

20

VBE(SAT)

Ic = 50 mA, IB = 5 mA

0.95

V

VCE(SAT)

Ic = 50 mA, IB = 5 mA

0.50

V

BVCEO

Ic=1mA

120

V

BVCBO

Ic=10,...A

140

V

6

V

BVEBO

IE = 10,...A

ICBO

VCB = 100V

100

nA

lEBO

VEB = 4V

100

nA

PO(max)
TO·92
TO·236

TA = 25D C
Tc = 25DC

600
350

11·136

mW
mW

I
."

Process 74

~
DC Current Gain vs
Collector Current
lID

!

Z

~

i"""

lID

~

..

•

a

10
10

I

1

Vcr-IV

I .. -

i ,aG
II

I.D

=
I! ..

VCI-IV

14D

4D
II

•J
I

•

.1

la.

10

I.

I.

10

1111

~Hr~~~~~."~~

,

lID

"

.ID

Collector-Emitter Saturation
Voltage vs Collector Current

.!£
- ,•
I.

.'I!•:. - 10

II
II

-

1-tttt-~rttl-t~It-I-tHH

zau

1111

TA - AMBIENT TE_RATURE rC)

Base-Emitter Saturation
Voltage vs Collector Current

I -rH~rH~~~~~
~

10

Ie -I:IlLLECTOR CURRENT (mAl

~

I

lO·8Z

)..

'l' .

.1

211 H*+~I-++f++-I-+#+--l

i 'II

,

-r-.,

lO·Z38 ....

Collector-Emitter Breakdown
Voltage with Resistance
Between Base-Emitter
Zit

I\.

i"""

.Z

Ie - COLLECTOR CURRENT (mAl

.
S

Maximum Power
Dissipation vs Ambient
Temperature

Base-Emitter ON Voltage vs
Collector Current

~H+~~-+~~-+~
~~~uw~~~~~

.1

I.

1111

.1

RESISTANCE (iIIII

i

I

a

o

1110

10

lZ

II
I-IIMH.
Ve. "11V

In

Input and Output
Capacitance vs Reverse
Bias Voltage

Small Signal Current Gain
vs Collector Current

11

11
Ie - COLLECTOR CURRENT (DlA)

Ie - COLLECTOR CURRENT (mA)

I'

)f'

I III

'-I MH.

I I II

c..1.-0

V

I"ll

I

I I 1'1

j

c..1c-'

..... 10"

~

I

~

.1

101

o
1

11

.

III

o
.1

Ie -I:IlLLECTOR CURRENT (iliA)

.....
10

,.

REVERSE liAS VOLTASE (VI
TL/G/l0038-41

•
11-137

~National

Process 75
PNP RF Amplifier

~ Semiconductor
0.015

DESCRIPTION

~---------:(0.~38~1):~------~~
0.0075
i---lO,I90&i-

Process 75 is an overlay, double-diffused, silicon epitaxial
device. Complement to Process 43.

APPLICATION
This device was designed for radio frequency applications
to collector currents to 20 rnA.

PRINCIPAL DEVICE TYPES
T()-92 EBC: PN5208

TL/G/1oo38-59

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

=
=
=

Min

10V

Typ

Max

Units

1.6

2.0

pF

3.5

pF

Cob

VCB

Clb

VEB

hIe

VCE

hFE

IC = 5 mA, VCE = 5V
Ic = 10mA, VCE = 5V

VCE(SATI

Ic = 10 rnA, IB = 1 rnA

VBE(SAT)

Ic

BVCEO

Ic=3mA

BVCBO
BVEBO
ICBO

VCB

lEBO

VEB

PO(max)
TO-92
TO-236

TA = 25°C
Tc = 25'C

600
350

mW
mW

TJ(max)

All Plastic Parts

150

°C

0.5V
10V, IC

=

10 rnA, f

=

100 MHz

6.5

9.0

30
40

85

180

18

v
v
v

Ic=100""A

18

v

Ic=10""A

4.5

=

0.20

10 rnA, 18 = 1 rnA

=
=

0.95

v

10V

100

nA

3V

100

nA

11-138

"a

Process 75

(;
n

m
.....
CI1

DC Current Gain vs
Collector Current
200

.

180
160

~

140

i

~ Itll~" lJ5,~1

r- itffir-u

100

:111111 II
·I~~II" -i5;,

80

u

",

60

'"

~

">
~
::

.....

T~I\= 25.C

120

..~

~

VeE = lV

~

o

VeE -10

0.6

~

:: -1.0

~ -0.5

5
~

;
I !II

-0.01

5

.::::;0"","

..

~8

IT~A 25°e

;;

II

-1.0

-0.1

>

TA '" l000 e

~

~ -0.7

100

T. " 25'C

~

u

z

22

.......

:!
~

5

\.

1.8

.,

V"J..1
~

20

7f5 Vv~,

2N4201

k::::

I I
-3.0

-5.0

1
-7.0

-11

-9.0

1.0

o

I
-z.O

e

-f--e-

HItt1+--lt-t+t+)'\IturJ
lZ00

-6.0

-8.0

REVERSE BIAS VOLTAGE IV)

-10

~IH'

1\

~

-6.0

8

-4.0 I-Hf-++--+*-Ho+-+-'~-+-I.~

\

J, -2.0

-0.1

J

\ JliOO MH'U

--500
MHz

.

~:~ V"1z

-1.0

-10

Ie - COLLECTOR CURRENT (mAl

-100

25

50

"l_l .OV

75

100

121i

150

T, - AMBIENT TEMPERATUAE I"CI

.§

g

;::

o zoo MHz
·4.0

.!i 0.01

i

-14 Ol.-n-,-",:-TITTT"-"..,"--'

-10

V

.-If./

I/[

;: -8.0
CobolE =0--

C'bolc"D~
1.4

Collector Reverse Current
vs Ambient Temperature

. i--e-

Contours ot Constant
Gain Bandwidth
Product (tT)

~

\

-IDO

-10

J

~ -12

~

-1.0

Ie - CDLLECTDR CURRENT (mAl

60
40

-1.0

..

./

~p. ......

.
,:

VeE - COLLECTOR·EMITTER VOLTAGE (VI

I\.

"
V

VeE'" -6.0V

Input and Output
Capacitance vs Reverse
Bias Voltage
2.&

~

I I I
I I I 1/

o

F = lMHl

TA "-55°C

1../.1--'1"""
TA ·25°C /.-'"

2N4208. 2N4209

Ie - COLLECTOR CURRENT ImAI

l.O

I I I I

I

80

I.
I

;. -0.5
~
-0.1

Collector Reverse Current
vs Collector-Emitter
Voltage

I

-100

-10

-100

Ie'" 10 I.

-1.3

E -0.9

I
-10

-1.5

~- -1.t
E
..

I

-1.0

~

~

1

0.4

~

.~

(- T,'125'C ~
fA" _55°C

~ -8.05

"~ -8.02

i
~

15

~-t

f-

~O.1

ll!

-0.2

a:: -0,1
~

.ll!r 1111
tllJl...1'lIl

..~

Base Saturation Voltage
vs Collector Current

~

!l

Ie - COLLECTOR CURRENT (mAl

Ie -'Ola

;j

i

fA =l5c e

o

-100

Collector Saturation
Voltage vs Collector
Current

.

1111

-,.

0.'

Ie - COLLECTOR CURRENT lmA)

~

Villi II

I

-1

-0.1

1.0

j

IIII ~ II I I'
Illllil II

20

Base-Emitter ON Voltage
vs Collector Current

::
~

ffi

~
i"
x
",.,

.

Maximum Power
Dissipation vs
Ambient Temperature
800

700
..

600
500
400
300

...

I\.
.....
TO·92

l'.

200

lDO

TO·236 ,

r-

>

of

50
TA

-

--

:-.
100

"

150

AMBIENT TEMPERATURE

200

rc)

TL/GI10038-60

a
11-139

~National

Process 76
PNP High Voltage Amplifier

~ Semiconductor

~ ~ ~ ~o.ooo

~
~ ~
/

0.025

(Q.i35l

!/

DESCRIPTION
Process 76 is a non-overlay, planar epitaxial silicon transistor with a field plate. Complement to Process 48.

1(0.1143)

I~ ~ : ';' fHftt'+ift-L!
B

APPLICATION
This device was designed for high voltage driver applications.

W1lUJt ~

L0"'/ ///
0.003~,_i.....­
,- I(0.0940)

PRIMARY DEVICE TYPES
To-226 EBC: MPSW92
To-92 EBC: MPSA92

0.0045
(0.1143)

~------~------~
TUG/l0038-42

ELECTRICAL CHARACTERISTICS (TA = 2S0C)
Symbol

Conditions

Min

Typ

220

300

v

3S0

v
v

Max

Units

BVCEO

IC = 1 mA (Note 1)

BVCES

IC = 0.1 mA

ICES

VCE = 1S0V

200

nA

VES = SV

100

nA

IE = 0.1 mA

6

VCE = 1SV, Ic = 0.1 mA
VCE = 1SV, Ic = 2S mA
VCE = 1SV, Ic = SO mA

70
40

80
SO

200
1.0

VCE(SAn

IC = 10mA,ls = 1 mA

0.3

VSE(SAn

IC = 10 mA, Is = 1 mA

0.8

v
v

100

MHz

8

pF

VCE = 1SV, Ic = 10 mA, f = 20 MHz

SO

VCS = 10V,f = 1 MHz
PO(max)
TO-226
TO-92

TA = 2SoC
TA = 2SoC

TJ(maxl

All Plastic Parts

W

1
600

mW
1S0

11-140

°C

Process 76

i
~

DC Current Gain va
Collector Current

Pulsed Current Gain vs
Collector Current

IDOl

~

co

i.

.,

!

;

100

co

I;!

.t
1.1

10

II

IDO

B
~
...
.t

10

w

1G

Base-Emitter ON Voltage
vs Collector Current
1.4

~

1.4

VCE-nv

w

1.3

is

1.2

:
co

1.1
...

....
M
c 0.7
,11.1

J~:

r--

.

1.3
1.2

.. !:;

1.1

i
Ii

0.1

..

~
~

+Z&OC

ffia
-I:;w
.
c

+1Z1°C

0.7

IC - COLLECTOR CURRENT (mAl

Base-Emitter Saturation
Voltage vs Collector
Current

Junction Capacitance va
Reverse Bias Voltage

~

II

I

10
-10

D.I

~D'C

L

-:ioe

........

101

10

+12&OC

1.4
I

IC - COLLECTOR CURRENT (IlIA)

..
f
t;

~

il

100

VC~

..

..t"

1.1 L....J...u..ww'-L...LLWIIL....J..u.
0.1

101

10

I

10

1111

VR - REVERSE BIAS VOLTAGE (VI

Safe Operating
Area TO-226

1-00..

~

1\
\ 1\
\
\

,

40

!!l

!,

I

IC - COLLECTOR CURRENT (IIAI

VCE -IIV

ID

=

I

-

Gain Bandwidth Product
va Collector Current

1

F-IMH.

i

I

0.1

101

10

IC - COLLECTOR CURRENT ""AI

I
1\1
.. 1.1
c>
'51 OJ TC-

-

~ 1.1 TC- -4D'C

101

10

110

IC - COLLECTOR CURRENT (mAl

~

Collector-Emitter Saturation
Voltage va Collector Current

IDOl

21

o
I

10

100

1111

IC - COLLECTOR CURRENT (mAl

1008

VCE - COLLECTOR VOLTAGE (VI

TL/G/10038-43

a
11-141

IjNatiOnal
Semiconductor

-

a."1
(UII)

1m
I

v::

~
~~
~~E~~
~
I!!I /.
~I

DESCRIPTION
Process 77 is a double-diffused, silicon epitaxial planar device. Complement to Process 37.

-I

W.////////~

%

Process 77
PNP Medium Power

1

I~

L'LLL/k{L// // '/
la.~

I.a.aa41 (0.711)

"i.1ui"

V(0.111)

I:.~
".112)

(1.1241

APPLICATION
This device was designed for geneal purpose medium power amplifier and switching circuits that require collector currents to 2A.
PRINCIPAL DEVICE TYPES
T0-202 EaC: NSDU51
TO-237 EaC: 2N6726, 92PU51
T0-228 EBC: MPS6726
TO-92 EaC: PN6726

TL/G/l0038-44

ELECTRICAL CHARACTERISTICS (TA = 25'C)
Conditions

Symbol

Min

Typ

Max

Units

BVceo

Ic=10mA

25

V

BVCBO

Ic = 100 p.A

35

V

BVeBO

Ie = 10p.A

5

ICBO

VCB = 20V

leBO

Vee = 4V

hFE

Ic = 100A, VCE = 1V
Ic = 1 mA, VCE ,;" 1V

VCE(SAD

Ic = 0.5A, IB = 50 mA

0.5

V

VBE(SAD

Ic = 0.5A, IB = 50 mA

1.3

V

fT

Ic = 100 mA, VCE = 10V

Cob

VCE = 10V,f = 1 MHz

PO(max)
TO-202
TO-226
TO-237
TO-92

Tc
TA
TA
Tc
TA
TA

= 25'C
= 26'C
= 25'C
= 25'C
= 25'C
= 25'C

IJJC
TO-202
TO-237

Tc = 25'C
Tc = 25'C

IJJA
TO-202
TO-226
TO-237
TO-92

TA
TA
TA
TA

TJ(max)

All Plastic Parts

=
=
=
=

50
35

100

V
100

nA

10

100

nA

150

300

200
28

MHz
35

10
2
1
2
850
600

25'C
25'C
25'C
25'C
150
11-142

pF

W
W
W
W
mW
mW
12.5
62.5

'C/W
'C/W

62.5
125
147
208

'C/W
'C/W
'C/W
'C/W
'C

Process 77
DC Pulled Current Oaln
VI Collector Current
1101

1010

DC Pulled Current Oaln
va Collector Current

Ii...
i!

II

I.

I
:::I

Collector-Emitter
Saturation Voltage
VI Collector Current

1.1

Ii

0,1

0,1

II

D,I

\I

IC - COLLECTOR CURRENT (AI

IC - COLLECTOR CURRENT (AI

Ba..-Emltter ON Voltage
VI Collector Current

Ban-Emitter Saturation
Voltage VI Collector
Current

ID

IC - COLLECTOR CURRENT (AI

Collector-Ba.. Capacitance
VI Collector-Bale Voltage

I.
i

41

F-III.

I+++++-t-f+++++-H:-I

i
1,1

~

H-HflillH-HTffIIH-H1tIflI

Ik

100

\I

I

Ie - COLLECTOR CURRENT (IOAI

Ie - COLLECTOR CURREIT (mAl

Gain Bandwidth Product
VI Collector Current
2IG

I zal
i.. ,.1

J

Ik

lID

I.

VCE -IDY

I+~~rrt+-Hrrt+"

I. I+t-++++-I-H+t++t-I

I

,L...I..I.I.WlII-I.J.LI.IIIII....L-l.W1III
10

2.

ID

I.

10

3D

Vea - COLlECTOR,.AU VOLTAGE (VI

Sate Operating
AreaTQ.202

~~

~

/

;'I ID
..

foI-

&0

I

oJ:'

I

I

\8

IUD

Ik

I'

lID

Ve• - COLLECTORoIMITTER VOL JAGE IVI

IC - COLLECTOR CURREIT (mAl

TLlGIlOO38-45

•
11.143

il
I

Process 77

Sa'e Operating Area T0-237

i 24
Ii zz

ID

s

I
it~

,

1.1

Maximum Power
DI88lpatlon V8
ease Temperature

VCE - COLLECTOR-EllmER VOLTAGE (V)

NO.2371

Z8
II

I

;

14

Ii!

I :!

TA (T0-237)

•

12
ID

D.'

I

•

I ......

i

II

J !.

100

10

-

~

i ..

1.1

Ii
Ii!

TIJ.2IZ 1"0..

20 40

I"-

1.4

Ie

i, 4•

11

Thermal Derating Curve
Z.O
1.6

0..

"- t{A ITO·2021 '"'."'-

'D.4 TAlf:eir

~

......

D.2

o

II 8G 100 120 140 lID

I
o

TC -CASE TEMPERATURE rc)

~

"
r---.: ~"-

~

25

ID

71

110

125

150

T - TEIIP£RATURE rCI
TL/G/l0038-46

Thermal Response in TO-202 Package

.i;

....

!j

I:'ii
ill!

1
0.7
1.1

0.3 10.
0.2
0.1

0.07
OJIi
0.13
IJII

•
"'~"I

1.1,
0.01 O.llZ

=-

I

III

;i

...

......

~~'AC DC THERMAL REBI8TAICE

~

r~

~

O.BI 0.1

D.2

'.1

10

20

10

100 21D 8GO Ik

Tp,-TC·Ppko'Jcl1I
DUTY CYCLE

2k

Ik

D'~

10k 20k

10k

lOOk

'I-TIMEI"'"

TL/G/l0038-48

11·144

~NatiOnal

Process 78
PNP Medium Power

Semiconductor

.

-

0.031
(8.717)

W.////////~

~
V
~

rnru

I

E

~'/

~~

~1YI
/.
I
~
V/ / //v////~,V/

v:
~

B

I---0._

DESCRIPTION
Process 78 is a double-diffused, silicon epitaxial planar device. Complement to Process 38.

-T

APPLICATION
This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1.5A.

0.031

PRINCIPAL DEVICE TYPES

(8.787)

To-202 EBC: 04101-6, NSOU55

1_0(0.124)
•0041

TO-237 EBC: 2N6727, 92PU55
TO-226 EBC: MPS6727

t o.

1IIIS4

(8.137)

TO-92 EBC: PN6727

1

I-0._

(8.124)

(8.112)
TL/G/10038-49

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol

Conditions

Min

Typ

Max

Units

BVCEO

Ic = 10mA

40

V

BVCBO

Ic=100,..A

50

V

5

BVEBO

IE = 10,..A

ICBO

VCB = 40V

lEBO

VEB = 4V

hFE

Ic = 1 mA, VeE = 1V
Ic = 100 mA, VCE = 1V
Ic = 500 mA, VCE = 1V

VBE(SAT)

Ic

tT

Ic

=
=

Vce

Cob

500 mA, IB

=

10V

100

nA

300
0.6
1.3

50 mA

=

nA

80

V

MHz

150
20

10V

V

25

pF

-

TO-92

=
=
=
=
=
=

25°C
25°C
25°C
25°C
25°C
25°C

8JC
TO-202
TO-237

Tc
Tc

=
=

25°C
25°C

TO-226
TO-237

=

100 mA, VCE

Tc
TA
TA
Tc
TA
TA

TO-202

150

Ic = 500 mA, IB = 50 mA

VCE(SAT)

PO(max)

40
50
35

V
100

10
2
1
2
850
600

W
W
W
W
mW
mW
12.5
62.5

11-145

°C/W
°C/W

III

Process 78
ELECTRICAL CHARACTERISTICS (TA = 25'C (Continued)
Symbol

Conditions

8JA
TO-202
TO-226
TO-237
TO-92

TA
TA
TA
TA

= 25'C
= 25'C

= 25'C
= 25'C

All Plastic Parts

Units

62.5
125
147
208

'C/W
'C/W
'C/W
'C/W

'C

Pulsed Current Gain
vs Collector Current

Collector-Emitter Saturation
Voltage vs Collector Current

.. '0110~1M

!l 1 0 1 0 _

10

c

t-

ill

Max

150

Pulsed Current Gain
vs Collector Current

..
..~

Typ

Min

E
'" 100

100

..'"
8

~
E

~
£

10

u

:::
...

co

.

10

.

I

I

w

~

~

0.1

0.1

10

IC - COLLECTOR CURRENT (AI

10

0.1

'C - COLLECTOR CURRENT (AI

10

IC - COLLECTOR CURRENT (AI
TL/G/l0038-50

Base-Emitter ON Voltage
vs Collector Current
1.2

~

...

...

1.2

i

:i!

.

,.!:i

S
I=w
_e
i!:
i

0.8

!.

F

ffi~

O.B

'"

I

D.'

VCE =1V (125°C)

,.•

~

0
1

10

100

0.•
0.6
0.4

iii:

IE

Ii
Ico

50

~

.....

i
~

1111111
1111111
111111
10

8
I

100

Ik

j

I-+-P'f.;t;:l-H-+f-t+f-t-H

o L..L..J....I-L...L-J...J...........J-I...J....J....I.....
o
20
3D
10
Vc• - COLLECTOR·BASE VOLTAGE (VI

Safe Operating Area
TO-202
10

iIii

i5

'"
'"co

8'"

!

20
10

Safe Operating Area
TO-237

S
t-

'/

F= 1 MHz

~ ~ Ht1-~1-~1-~4-~~

~

",~~·c

I

40

u

10

VCE =lOY

1.
100

...

IC - COLLECTOR CURRENT (..AI

200

i

1111

Collector-Base CapaCitance
vs Collector-Base Voltage
~

'1111

...,~

o

Ik

Ic - COLLECTOR CURRENT (mAl

2iD

-

0.2

Gain Bandwidth Product
vs Collector Current

iG

IC

iB -10 JilL
r- ~cll~~c

I

0.2

I

i

Base-Emitter Saturation
Voltage vs Collector Current

~

~

,.f-

100,..

.....

~
8

'"

~

0.1

8

1m.
0.1

8

I

.I:.'

I

I

.:

0
1

10

100

IC - COLLECTOR CURRENT (mAl

lk

0.01 L....-'-_ _"";;";""'=!O.LJ..J..UW
1
10
100
VCE - COLLECTOR·EMITTER VOLTAGE (VI

"

DC

0.0 1

=THIS LIMIT DETERMINE~ff
BY BVCEO
10

100

Veo - COLLECTOR·EMITTER VOLTAGE (VI

TL/GI10038-52

11-146

Process 78

f
~

Maximum Power
Dissipation vs
Case Temperature

i

;;
..
..

24
22
20
18
1&
14

II

12
10

~

~

i
!

.
j

Thermal Derating Curve
2.0
I.B

i

.
I.
z

~

I

8

:!

TO·202

I

o

o

r-....

I

(To·ml
~C

i\.

1.4

"'

1.2
1.0 ~'2311
0.8
0.8
0.4 TA (TO:&ir

TA (TO·2021 f---

'\

I .......

~ 0.2

o
20 40

-

1.&

II ID 10D 120 140 lID

......

o

..'\

-......; ~\..

I

~

1
25

50

15

100

125

150

T - TEMPERATURE rc)

TC - CASE TEMPERATURE rC)

TUG/l00S6-51

Thermal Response in TO-202 Package

1m
~i
......

Ii"

.........."

i;i!

0.1
0.5

10" I

0.3
0.2

0.:

0.1

~

0.05

i:i

cz D.D1 ~
.. c
I!!

~i

0.03 lSI
0.02

i~

0.01
0.01 0.02

.....

,-=

Tpk-TC+Ppk ·BJc(t)
DUTY CYCLE 0 • ~

0.05

..

~~
" RESISTANCE
...
'JC OCTHEAMAL

LE."~

0.1

D.2

0.5

l'

2a

50

1111 2UD

5UD lk

2k

5k

11k 21k

5Dk

lOOk

'I- TlloIE (..)
TL/G/l00S6-5S

•
11·147

~National

Process 79
PNP Medium Power

~ Semiconductor
_--______ ~D~.m~----------·1

DESCRIPTION
Process 79 is a double-diffused, silicon epitaxial planar device. Complement to Process 39.

1D.7f/l

APPLICATION
This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.
PRINCIPAL DEVICE TYPES
TO-202 EBC: D4107-14, NSDU56
TO-237 EBC: 2N6729, 92PU56
T00226 EBC: MPS6729
T0092 EBC: PN6729

TLiG/l003S-54

ELECTRICAL CHARACTERISTICS (TA = 25°C)
Symbol
BVCEO
BVCBO
BVEBO
ICBO
lEBO
hFE

VCE(SAT)
VBE(SAn
fT
Cob
po(max)
TO-202

Conditions

= 10mA
= 100,...A
IE = 10,...A
VCB = 60V
VEB = 4V
Ic = 1 rnA, VCE = 1V
Ic = 100 rnA, VCE = 1V
Ie = 500 rnA, VeE = 1V
Ie = 500 rnA, IB = 50 rnA
Ic = 500 rnA, IB = 50 rnA
Ie = 100 rnA, VCE = 10V
VCB = 10V

Typ

Max

Units

Ic

70

V

Ic

80

V

TO-92

Tc
TA
TA
Tc
TA
TA

= 25°C
= 25°C
= 25°C
= 25°C
= 25°C
= 25°C

6Je
TO-202
TO-237

Tc
Te

= 25°C
= 25°C

TO-226
TO-237

Min

V

5
100
100
40
40
20

120

240
0.8
1.4

70

18

10
2
1
2
850
600

V

pF
W
W

W
W
mW
mW
12.5
62.5

11-148

V

MHz

125
14

nA
nA

°C/W
°C/W

."

Process 79
Conditions

ftI

....
=

ELECTRICAL CHARACTERISTICS (TA = 25·C) (Continued)
Symbol

an
CD

Typ

Min

Max

Units

83.3
62.5
125
147
208

·C/W
·C/W
·C/W
·C/W
·C/W

(JJA

TO·126
TO·202
TO·226
TO·237
T0-92

TA
TA
TA
TA
TA

=
=
=
=
=

25·C
25·C
25·C
25·C
25·C

All Plastic Parts

Base-Emitter ON Voltage
vs Collector Current

a

1.2 r-r"'Mrrm~~=:O-:::=mT1TII

...

..
Ie
:a

1.2

::i

O.B

~

0.4

i

~~~~~~~~~~
H=-t+I-ttttt---H-tHlIlt-Htttltft

0.2 ~~!-It+HI-+f+H!I\!I-+ll-tHtHI

I

J

10

100

lk

0.8

J

~ r+~~~~r+~~~~
! ~~~1-rr++~1-H

.....

~rrri~rut
!~i '.4 F~~C
I

o

~
:!

III""
III""

0.2

I

100

10

j

lk

Safe Operating
AreaT00237

20

30

Safe Operating
Area TO-202

V

-10V

i
5

...

~ 200

1\

=

:II
0:

150

1
I

10

Ves - COLLECTOR·BASE VOLTAGE (VI

10

250

S

1+-H+H-=F~"""f4.~i-I

10

Ie - COLLECTOR CURRENT (mAl

Gain Bandwidth Product
vs Collector Current

:
If

20

8

1111111

1

4G I""1"'T""!-rT"T"""T"T"T""I"'F.T'I'TM"H"",

3D

1111111

~",=

.... 0.1

Ie - COLLECTOR CURRENT (mAl

i

ii

II"~!
r- T.'-4O'C

~

O.B =~~r"""'FIfIll!;ooi"'1'mlHl

ii

~ 'l~ilill

0:

..

Collector-Base
CapaCitance vs
Collector-Base Voltage

Base-Emitter
Saturation Voltage
vs Collector Current

l!

I.

·C

150

B
IE

~

110
6D

I

o
1

II

r-

8

r-

.JI

'110

1m.
0.1

--

I

.01

1

lk

10

1

101

10

IGO

VCE - COLLECTOR·EMITTER VOLTAGE (VI

Vet; - COLLECTOR·EMITTER VOLTAGE (VI

Ie - CO LLECTOR CURRENT (mAl

BY '!V~o

0.11

L-...J...~..L.U."""--''''''''.u.""""

TL/G/10038-57

Pulsed Current Gain
vs Collector Current

......
...
..

1Il00

!...
~
~

..
!l
........
E

Pulsed Current Gain
vs Collector Current

..
........

1000

i'll

100

...

B

~

10

10

~
..

...
I

~

0.1

10

8.1

>

~
~

IC - COLLECTOR CURRENT (AI

~

... >

;:jl
Bt=
Ie

~

I

10

1:_2
...
"I ..
...

;;:

100

Collector-Emitter
Saturation Voltage
vs Collector Current

0.1

IC - COLLECTOR CURRENT (AI

10

0.1

10

IC - COLLECTOR CURRENT (AI
TL/G/10038-55

11·149

•

Process 79

I
II

Ii

Maximum Power
Dissipation vs
Case Temperature

24

Thermal Derating Curve

,.

I

•..

i.. ,.

;

II!

I

,.. r-

1.0

22
10

i'.."

,4
'1

,0
TO·III r......

I

J:

0

I

.....

"
I"

~ITO.zaI)

"""-

.....
TAITO:aii'
~

11.4

~ 0.2
I

10 40 10 10 '00 '10 ,40 ,10

Na.z37)

g.l37)

i a.•

"-

i :4

1.1
1.4
1.1
1.0
0••

~~

r---

I\..
~

I

Z&

TC - CASE TEMPERATURE rCI

II
7t 'ID '11
T - TEMPIRATURE I"C)

,10
TL/G/'003B-6B

, Thermal Response In TO-aDa Package

..i!1jS~
Iii"

Ii
,I

0.7
0.1

ID~

0.3
0.2

10.

0.'
0.07
0.01
0.03
0.03

~

~.-

I

I-'

~ ~

L...,

[I~

- I:--~

0.0'
0.01 1.03

0.0&

rl 'jcl~-rl~o'jC

'f-~I"tJ
0.1

0.2

0.1

,0

ZO

&D

,00

zoo

laa'k

'JC DC THERMAL RESISTANCE
Tpk"TC·P,ko'jCIU
OUTY CYCLE D· ~

2k

Ik

10k ZOIc

lOie

'OOk

I, -TIME I..)
TLlG/l003B-5B

11·150

~NatiOnal

Process 50
N-Channel JFET

Semiconductor
0.01&
(0.381) __ 0.0032
(0.0113) . -

,-

~~I

DESCRIPTION
Process 50 is designed primarily for RF amplifier and mixer
applications. It will operate up to 450 MHz with low noise
figure and good power gain. These devices offer outstanding performance at VHF aircraft and communications frequencies. Their malor advantage is low crossmodulatlon
and Intermodulatlon, low noise figure and good power gain.
The device is also a good choice for analog switching where
low capacitance is very important.

t

I~
. J'
~~
~.

I

0.004

ii.faii

0.011

~

TLlG/l0035-1

Gate Is also backside ccntact

Electrical Characteristics (TA = 25'C)
Symbol

Parameter

Conditions

Min

Typ

-25

-40

1.0

10

20

mA

3.0

5.5

7.0

mmhos

Max

Units

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV,IG = -1 p.A

loss

Zero Gate Voltage
Drain Current

VOS = 15V, VGS = OV

gls

Forward Transconductance

VOS = 15V, VGS = OV

gls

Forward Transconductance

VOG = 15V, 10 = 200 p.A

1.1

IGSS

Reverse Gate Leakage

VGS = -20V, VOS = OV

-5.0

-100

pA

rOS(ON)

ON Resistance

VOS = 100 mY, VGS = OV

100

175

500

0

-0.7

-3.5

-6.0

V

mmhos

VGS(OFF)

Pinch Off Voltage

VOS = 15V, 10 = 1 nA

gos

Output Conductance

VOG = 15V, 10 = 1 mA, f = 1 kHz

10

Crss

Feedback Capacitance

VOG = 15V, VGS = OV

0.7

0.9

Ciss

Input Capacitance

VOS = 15V, VGS = OV

3.5

4.0

en

Noise Voltage

VOG = 15V, 10 = 1 mA,f = 100Hz

8.0

NF

Noise Figure

VOG = 15V, 10 = 5 mA,
RG = 1 kO, f = 400 MHz

2.2

Gps

Power Gain

VOG = 15V, 10 = 5 mA, f = 400 MHz

12

V
p.mhos
pF
pF
nV/vHz

4.0

dB
dB

III
11-151

Process 50
This process is available in the following device types. "Denotes preferred parts.
TO-72 (NS Package 29)
TO-92 (NS Package 92)
To-92 (NS Package 94)
2N3823
2N3966
2N4223

"2N5484
"2N5485
*2N5486

2N4224

2N5555

'2N4416
"2N4416A
2N5078
2N5103
2N5104

2N5668
2N5669
2N5670
"J304

2N5105
2N5556

"J305
PN4223
PN4224

2N5557
2N5558

"PN4416
PN5163

2N3819
2N5248
BF244A
BF244B
BF244C
TIS58
TIS59

TO-92 (NS Package 97)
2N5949
2N5950
2N5951
2N5952
2N5953
BF245A
BF245B
BF245C
BF256A
BF256B
BF256C

MPF102
MPF106
MPF107
MPF110
MPF111

TO-236/SOT23 (NS Package 48/49)
MMBFJ304
MMBFJ305
MMBF4416
MMBF5484
MMBF5485
MMBF5486

11-152

Process 50
Channel Resistance vs
Temperature

Transfer Characteristics

zo
C

II

Ii
II!
'"
B

12

.!

J II

VOItoFF' - -4.5V I
TA • -BlOC

'<

.. ....
'"
'".
4.0

TA

"

. ....
..B .. ""'"
."
.

'"~

'\

T. - -55 C

'I),[\.

TA -+U"C

~.);

'" ~~V
-\.0

VQICOI'''I·~

-1.5V

~

-4.0

I

-1.0

-75

Transconductance
Characteristics

-IS

25

75

125

1.1

~

i.I

1a~I-~rr-r=--'::::!:-i

:!~ 4.a""'!."II-'l"o.:l-Y"t

i

u

!

z.o

~~M?~~~~~~~

i

4.0

i!Ii

3.0

!!

2.•

!

0.1

TA -+8S"C

-10.. ;:::::

0.01 §~D"2.8 ...A
10

"

O.2mA

'all :;;;i

TA -+25'C

a

4.0

••0

12

16

20

v.. - DRAIN·GATE VOLTAGE IV)

Common Drain-Source
Characteristics

Output Conductance vs
Drain Current
101

!

H-+++'-i7'iA.....,

'"
~

..i!i~
.
E
.
I-

I

.!i 1.0

.. 1.0 I-I-I-~I-I-I-'k-I-H

l~~

' . ' ~.D mA_
1.·D.2mA"j., 711'

175

u

I-+--NU-+--l'-.J'\~:

TA-·125'C

TA - AMBIENTTEMI'ERATURE I C}

7.0 ~r-r-r"""'"'T"'T'""T""'-"""

i

~_:D"2.0mA
ID"O.lmA

j
.2 0•001

Vos.1a8mV

"ali "'0

10

-3.0

1.0

~

~

VOS - GATE·SOURCE VOLTAGE IV}

I

:
5

rr-

I

~
~

10

.

i-"""-5.o~ 1--'1;::: 1--'1-

:::;.~ !=-8.0V

50

i
B

I--'

100

T,,· +121i°C

-l.D

501

c

+21°C

T... • +12&"C

i!

I
~

I

Leakage Current vs Voltage

lDDO

V,.-15V

10

1.0

~

I

.D
-1.0

-3.G

-3.0

-4.0

-5.8

D.2

V.. - GAU-SGURCE VOLTAGE IV}

1000

;

100

'"
!.

100

i!

51

..
..'"

••• IDII 11 VOl .. till ,Vos •• PULSED
'as I VDS-l00mV,Vos·'
VOSIOF'!' VDS ·,&V, 10
nA

-....

·'.0

1.0

D.l

I:t'~

lDOD

Ii

i

~
oS

>-li;

c

~

..
>

..

~

0.5

ill

."

t.
1.0
-2.0

-10

-5.0

0.1

VOIIO'FI - GATECUTOFF VGLTAGE IV}

1.0

10

i

C.lV~-I~V}
C.IV.. -O}::

u

I

J

i_

I

--

==

I
~

J

0.1

a

-4.1

-I.'

-II

-I'

1111

Noise Figure Frequency

'-O.t-I.OMHz

....

10

LDr-~~~nr--~~Tnn

i

1.0

1.0

, - FREQUENCY Iklll}

Capacitance vs Voltage

.

0.1

10 - DRAIN CURRENT ImA}

10

~

10

I

I

",

lao

!:i

1.0

i

10

Noise Voltage vs
Frequency

L-~'''';'';''

1.0

1.0

10 - DRAIN CURRENT ImA}

.!

./
10
-1.0

D..

10 =:7."~-"':':':mlli=I::;:;

I

.

I

§

lGO

.101

P

D.I

Transconductance vs Drain
Current

Parameter Interactions

a

GA

V,. - DRAIN-SDURCE VOLTAGE IV)

~o": ;.~-:A -ttttl--Hf+Hfttl

4.0

R. -\.0 kn -ttI+t--HH-f-ffHi
TA "aloe

3.0

1-++t+tIttt-+++-ft1ftt1

z.o~-H~~++'H#tt1
1.0

~****m1;;;;~+t:m~

III

o '--.................................................
II

-20

21

10

lao IDa

100 lOaD

f - FREQUENCY IMH.}

V.. - GATE-SOURCE VOLTAOE IV)

TLIG/10035-2

11-153

Process 50
COMMON SOURCE

COMMON GATE
Input Admittance

I

I.
c

10

Vo

I..

ICS)

=.

ii

Ii'
[.,jI~
1.1

i

1-11,.

;;

~i

100

V.. -15V
vos"'O

ICO)

.

10

~

I

I

.I

Input Admittance

V.. -lIV

0.1

.I

IDD

1DD

b..

l"7

;;

V'

1.0

lDB

1000

200

, - FREOUENCV IMH,)

5811

1000

I - FREOUENCV IMHd

Forward Transadmlttance

Forward Traneadmittance
11

10

- ......

f--""

. / -bt.

+k_

V

I--

v.. -nv

Voo -15V

t - - - t-- I-v.. ·o

Vos"O

ICS)

ICO)

0.1

0.1
lDDO

500

2DO

IUD

100

200

, - FREDUENCY (MH,)

!

!.
I

Output Admittance
11

1.0

j

.

f--~IX'DI

./

D.1

i..
JJ G.Dl

U!!i

_

500

200

J

'000

ICGI
0.0'.00

210

Reveree Transadmittance

,.a

VDl-1IiV
V.. -D

it

ICs)

.....

1/

ij;;;

!i
.. I:

11
.:c

-tnIXB.lI

100

210

s

jI

J

0.1

5811

500

1- FREDUENCV IMHd

Reverse Traneadmittance

-y

...

t-Yqs=O

, - FREDUENCV IMHzI

10

V

I-v.. -nv

I

ICSI

/

0.1

~..
J

Vas··
l00

1.0

t---b",IX1D1

1/ ...

Vos -15V

I

1010

, - FREOUENCY IMH'I

Output Admittance
~

500

Vos -15V
V.. "D
ICGI

.IV
0.1

i===-b.o
V
0.01
. 100

1Il10

1- FREOUENCV (MHd

/
2DD

\
IDD

,101

, - FREDUENCV IMHzI

TUGI1 0035-3

11-154

~Nal1onal

Process 51
N-Channel JFET

Semiconductor
0.021
(0.533)

DESCRIPTION

0.0038
(0.0965j--

I--

~~~~
~
~
~

G

D

v-;

Process 51 is designed primarily for electronic switching appUcations such as low ON resistance analog switching. It
features excellent CISS ROS(ON) time constant. The inherent
zero offset voltage and low leakage current make these devices excellent for chopper stabilized amplifiers, sample and
hold circuits, and reset switches. Low leed-through capacitance also allows them to handle video signals to 100 MHz.

S

~ ~J ~

y
0.0038
(0.0985)

+

~~
~$Jj§

0.018
(0.4571

TL/G/10035-4

Gate i. also backside contact

Electrical Characteristics (TA =
Symbol

Parameter

25°C)

Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV, IG = -1 fJ-A

loss

Zero Gate Voltage
Drain Current

VOS = 20V, VGS = OV
Pulse Test

IGSS

Reverse Gate Leakage

VGS = -20V, VOS = OV

rOS(ON)

ON Resistance

VOS = 100 mV, VGS = OV

gfs

Forward Transconductance

VOG = 15V, 10 = 2 mA

VGS(OFF)

Pinch Off Voltage

VOS = 20V, 10 = 1 nA

Min

Typ

-30

-45

5.0

65

170

mA

-15

-200

pA

35

100

0.

8.5

mmhos

-4.5

-9.0

V

20

-0.5

Max

Units
V

10(OFF)

Drain OFF Current

VOS = 20V, VGS = -10V

15

200

pA

Crss

Feedback Capacitance

VOG = 15V, 10 = 5 mA, 1= 1 MHz

3.5

4.0

pF

Ciss

Input Capacitance

VDG = 15V, 10 = 5 mA, f = 1 MHz

10

16

pF

en

Noise Voltage

VOG = 15V, 10 = 1 mA,1 = 100Hz

6.0

ton

Turn-On Time

VOO = 10V, 10 = 6.6 mA

12

20

ns

Ioff

Turn-Off Time

VOO = 10V, 10 = 6.6 mA

40

80

ns

nV/./Hz

III
11-155

.- r---------------------------------------------------------------------------------,
lot)

I

a.

Process 51
This process is available in the following device types. °Denotes preferred parts.
T0-18 (NS Package 02)
TO·92 (NS Package 92)
2N3970
2N3971
2N3972

2N4860
2N4860A
2N4861

*2N5638

'PN4856

°2N5639
*2N5640

'PN4857

°2N4091

2N4861A

2N5653
2N5654

°2N4092
*2N4093
*2N4391
°2N4392
'2N4393*2N4856
2N4856A
*2N4857
2N4857A
*2N4858
2N4858A
*2N4859
2N4859A

'PN4858
'PN4859
°PN4860
*PN4861
U1897
U1898

*J111
'J112
*J113
°PF5101
°PF5102

U1899
MPF820

T0-92 (NS Package 94)
BF246A
BF246B
BF246C

TO·92 (NS Package 97)
BF247A
BF247B
BF247C
TIS73
TIS74
TIS75

'PF5103
'PN4091
'PN4092
°PN4093
'PN4391
'PN4392
'PN4393

Source and drain interchangeable.

T0-236/S0T23 (NS Package 48/49)
MMBFJ111
MMBFJ112
MMBFJ113
MMBF4391
MMBF4392
MMBF4393

11-156

."

(;

Process 51

i

....

UI

Transfer Characteristics

Transfer Characteristics

f

.
I
i
I

i

JtI~~1"-,

I

~.lJ.i~7

D ....

I

~

II

"

I' ~'-f~k-+-II-+--l

I

.R

-3

-2

-I

Ii

V.. - OATE_URCE VOLTAOE IVI

".j...ot'

'.

J

- Ii

I -u!"

III

....'v

WJ

-1.4Y- -I.Iv"

~

r--

1.2

D.I

21

.,"

I

U

!..

,

20

1.0

~;..... 'I-

5
II!

.

VGllOFfl

;:j

TV '-7

III

v,..
·'-ss'c fj
1.0

IV

&.I

20

-I
-2
-&
-I.
VaIIOflFI- GATE CUTOFF VOLTAGE (VI

Transfer Characteristics

i

&0

2D

..

F""1IR::s:;;~F"'i""

10

~~~~~l:

180

100

... -

'

1-

20

!

....!u.-

~

II
&.D

10

"0110'''--1.4''
VGIID""- -3V

c
~

1.1

DA

.
§
.
,
"

;.

1

... o .......

VDG -ny
TA • zs"c
t-IIIHI

]

r..
VGlIO'F)

G.Z

U

0.1

II

1111
I

V

i

Capacitance VI
Voltage
1111

10

"O'rti"'

I

i!;I".~

C IV.. ' .
C.fVos·2D)-

.R

.
I

I. - DRAIN CURRENT (,.AI

r.:""":":=:::::~-!"a!==,""

II

I.

I. - DRAIN CURRENT ImAI

11.D~~I'~~1
j~"I.1il

1" • •1
0.1

III

II

1111

0.1

Leakage Current vs

1

-1.5

Transconductance vs
Drain Current

1Vu/VQlIDfFII- NORMALIZED GATE·

Output Conductance vs
Drain Current

-I

-0.5

TO-IDURCE VOLTAGE IV)

110

~

5

v.. - BATE-IOURCE VOLTAGE IVI

VOl",,'•• IV. II1f,1A
10

I. - DRAIN CURRENT (mAl

I

i
g

lo-U"A

5
-0.1

-3.1

I

j
10

10

1/
-1.0

-1.0

~

I IIII

II

VOl- • PULlED
YOIIOI'''. VOJ· 15V

Normalized Drain
Resistance vs Bias
Voltage

+Z&~C

'01T.

I

•

IDII.1ft • VOl • 15

'Dlel.D ,IA. VOl- 0

v.. - GATE-IDURCE VOLTAGE IVI

~12rCT --uL
TA

~

10

,

2.D

TA -+Izrc

.--

~
oi
za 'I

ID~
I~

1/

180

it

l"

F"~~N-"""ob~F-:

I

Resistance vs Drain
Current
T.-+H·~

III

,

I-

III

J

I'~~~~~~~~

V", -IIIWIHOUReE VOLTAGE IV)

I.

I:!

I

,

-uv 1\

fA

..e.

•..
I

&0

Transfer Characteristics

-uv
......v
r-m'~

'I

~

3D

ITA·ae

IIII'

I

lID

rOI

V.. -IATE-IDURCE VOLTAGE (VI

Common Orain-Source
Characteristics

I' V.-""

..

,

Parameter Interactions

Ii • .11
-.
1.11.
1M
3Z
v.. IV",I- DRAI'·GATE (SOURCEI VOLTAlE (VI

I.t

·tri11l

-l c
o

-4.1

-1.0

I

-11

-I'

-20

Ves - GATE·SOURCE VOLTAGE I.FI
TL/G/100S5-5

11·157

•

....
LC)

I

Process 51

D.

Noise Voltage vs
Frequency

IIItIO

Noise Voltage vs
Current

~Pu=~i!JeEEBIEl!mII

loa~.

~

zo

j

i,

10

.I

Turn.()n
Switching
......._ _

~

..,....~~;;..-.......,

YDD -3.GV

I

!~IOOMIII
.'",

'_

16

1&

i

II

"j

U

1.

::~~:; ~D_I,~~EPENDE.T

TA.2&~J:
I-t-t--''k-t-t-t-t-t-H

f-HH""'i;"""'d-"k:+-+-l

O~~~~~~~~~

0.1

1.0

10

1.1

100

1.0

10

I. - DRAIN CURRENT (mAl

f - FREQUENCV (kHzI

o

-2.0

-4.0

-4.11

-u

-10

Vas ..", - OATE-IOURCE CUTOFF VOLTAGE (VI

Turn-Off Switching
1.. .....,..........,...."........",.,....--.....,

1 ..

I
,

ID

z.o

•.11

1.1

1.0

10

I. - DRAIN CURRENT C"AI

TL/G/lOO35-6

11·158

~NatiOnal

Process 52
N-Channel JFET

Semiconductor

h""~

DESCRIPTION
Process 52 is designed primarily for low level audio and
general purpose applications. These devices provide excellent performance as input stages lor piezoelectric transducers or other high impedance signal sources. Their high output impedance and high voltage breakdown lend them to
high gain audio and video amplifier applications. Source and
drain are interchangeable.

10.432)
0.0038
10.0965)

p"i'/'I'i
,
~

'/

t

~

~J~

~~ ~
~~

0.0038
10.0965)
•

0.011

J'
TLlG/l0035-7

Gate is also backside contact

Electrical Characteristics (TA =
Symbol

Parameter

25°C)
Min

Typ

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV,IG = -1 p.A

-40

-70

loss

Drain Saturation Current

VOS = 20V, VGS = OV

0.2

gls

Forward Transconductance

VOS = 20V, VGS = OV

0.5

g,s

Forward Transconductance

VOS = 20V, 10 = 200 p.A

700

IGSS

Reverse Gate Leakage
Current

VGS = -30V, VOS = OV

-10

-100

pA

n

Conditions

Max

Units

1.5

12

mA

2.5

5.0

mmho

V

p.mho

rOSION)

Drain ON Resistance

VOS = 100 mV, VGS = OV

250

400

2000

VGSIOFFl

Gate Cutoff Voltage

VOS = 15V,I0 = 1 nA

-0.3

1.0

-8.0

gos
CrBs

Output Conductance

VOG = 15V, 10 = 200 p.A

2.0

Feedback Capacitance

VOG = 15V, VGS = OV, f = 1 MHz

1.3

1.8

pF

Clss

Input Capacitance

VOG = 15V, VGS = OV, 1= 1 MHz

5

6

pF

en

Noise Voltage

VOG = 15V,I0 = 200 p.A, 1= 100 Hz

10

This process is available in the following device types. • Denotes preferred parts.
TO·18 (NS Package 02)
TO·72 (NS Package 25)
TO·92 (NS Package 92)
2N3070
°2N3684
°J201
2N3071
°2N3685
°J202
2N3368
°2N3686
°J203
·2N3687
2N3369
PN4338
2N3370
PN4339
2N3458
'PN3684
'PN3685
2N3459
2N3460
'PN3686
·2N4338
'PN3687
*2N4339
Source and drain interchangeable.
°PN4302
·2N4340
'PN4303
'2N4341
'PN4304
11-159

V
p.mho

nV/Mz

a

Process 52
Transfer Characteristics

Transfer Characteristics

1.0

1.8

1 i.O
i

3.0

~ Z.O p.,r-::~A'odri
I

1.0

1.5

Transfer Characteristics

I

'.0

:il
..

1. .
I

3.0

FF""kl-l-~~I-I-H

"",,k-\-Htc-t=-~r-I--I---l

1.0 P.~~I---Pl~

i
.s

D.'

0,1 ~

'i=11

5.0 F""I'....d--

I

2.0 ""'.....-i!lo,-\-I-"".t'I-rlr+--l

i

:;I

1.0

3.0

I

Output Conductance vs
Drain Current

rl

.....
.
~..

!
!

10

1.0

"~
ZOY

lay
I5Y

5.0

I

J

!Ii

'i";~

av
YGB(OFF • 4.3V . /

I

Hv

V
0.1

YOS(OFfI: 1.3av

I

I

1.0
ID - DRAIN CURRENT (mAl

i

-V

D.'

~

h

Iii
II!

!

10

0.1

~

lOSS

lOOk

VOS(OFFI" 1.3iV ~

.,. ~~

,.~

ZIG

ID.D

5.1

I--'

--:trFliT
Jos~ 1~"~

VOS' 0
25

75

125

115

AMBIENT TEMPERATURE I C)

Voltage
10

i

!: :

3.0

10 Ii ZO Z6 30 35 40 45 60

VDG - DRAIN·GATE VOLTAGE (VI

.....

r\

J

Cia (VDI' nv)

'-

"I "I. 1

C,.(VDS·OV)-

Z.O
C... (YDS' BV

1.0
i

2&

TA

J
lOSS

o

2.D

un CUTOff VOLTAGE M

~

I

~

10k

5IG

I.a

Channel Resistance vs
Temperature

75

:

1l
lk

D.Ii

Capacltari~ vs

I

I - FREQUENCV IH.I

u.z

0.1

Leakage Current vs
Voltage

..

I
~

e

)D"hA

10

1.0

~
~

..•

n-'

•

100

:II
:i

:II

;

8Ft • ¥os ..

"IiIllFA,VOI • 11V

D.2

I

D.I ;

Vn .. It PULlED

~

.. 10k~~
.....

;;

~

100

'DU.

!!

~~.3~

1.0

D.'

1Ias'11D"" V

lk

..
l!i
..~

"
u~

I ....

'D " DRAlN CURRENT (mAl

100

1.0

S

VIIlOFh -

'"'"
~
~

110111 ••

6.0

R

10

Z.D

'.0

~

3.0

5.0

D.l
0.01

10

Noise Voltage vs
Frequency

i!!I

Z.O

Transconductance vs Drain
Current

I

5V

a•

3.U

U

VGS - OATE·SOURCE VOLTAGE (V)

VOS - OATE·SOURCE VOLTAGE (V)

llG

Z.O

i~

J"

1.1

2.0

1.0

I_ ::

3.1

VOS' -1.OY

viis' -1.Z5V

Parameter Interactions

D.I
1.0

VGS' -O.lIV

VOS' -1.IV

1D.1

! '.0

i

Ves' -D.iV

~

0.6

Transfer Characteristics

i

i

'f
j 7'

0.8

Vas - ORAIN·SOURCE VOLTAGE (V)

6.0

..

2.0 .....~-Irlr-"l-n

- bVvos' -01iV

1.1

•o

'.6 1.2 1.8 2.4 3.0
VOS - GATE·SOURCE VOLTAGE (V)

U

2.D

••G r-r-r-r-r-r-r-r-r-r--l

~

1.2

~

VGS - GATE·SOURCE VOLTAGE (VI

~E:_

.
..~
I

1.1 PRl~;l-<=F""N:rt-H
0.5

1.4

!!ig;

Pt.-"'-'Plf-t-:::"":::b-rl

!!

E

....

""'" TYP V&~(OFW 1.8V
T~ - Z5 C

VGS- 1/

;; 1.8
.i

4.0

lii
8

Common Drain-Source
Characteristics

2.a

12.0 .....,-,,-,..............--,--r-r...,...,

Cra (VDS' ZOYI

0-2-4-1

-8

-10

YGS - GATE·SOURCE VOLTAOE (VI

TLlGI10035-8

11-160

IjNational
Semiconductor

Process 53
N-Channel JFET

I:''''~

DESCRIPTION
Process 53 is designed primarily lor low current DC and
audio applications. These devices provide excellent perlormance as input stages for sub-picoamp i"strumentation
or any high impedance signal sources.

(0.457)
0.004
(0.102)

.~~
~~
S

~

D

~

~

0.004
(0 ••02)

0.013

iI

TL/G/l0035-9

Gate is also backside contact

Electrical Characteristics (TA = 25'C)
Symbol

Parameter

Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS

= OV,IG = -IIJ-A

loss

Zero Gate Voltage
Drain Current

VOS

= 10V, VGS = OV

gfs

Forward Transconductance

VOS

= 10V, VGS = OV

gfs

Forward Transconductance

VOG

= 15V, 10 = 50 IJ-A

IGSS

Reverse Gate Leakage

VGS

= -20V, VOS = OV

VGS(Off)

Pinch Off Voltage

VOS

= 10V, 10 = 1 nA

Crss

Feedback Capacitance

Min

Typ

-40

-60

0.02

0.25

1.0

80

250

350

Max

Units
V
mA
IJ-mho

120

IJ-mho

-0.3

-10

-2.2

-6.0

V

VOG

0.85

1.0

pF

2.0

2.5

pF

= 10V,I0 = 50 IJ-A
VOG = 10V, 10 = 50 IJ-A, f = 100 Hz

0.9

5.0

IJ-mhos

45

150

nVlvHz

-0.5

Ciss

Input Capacitance

= 15V, VGS = OV, f = 1 MHz
VOS = 15V, VGS = OV, f = 1 MHz

gos

Output Conductance

VOG

en

Noise Voltage

pA

This process is available in the following device types. • Denotes preferred parts.
TO·72 (NS Package 25)
2N4117
·2N4117A
2N4118
°2N4118A
2N4119
°2N4119A
NF5301
NF5301-1
NF5301-2
NF5301·3

TO·92 (NS Package 92)
PN4117
PN4117A
PN4118
PN4118A
PN4119
PN4119A
PN4120
PN4120A
°PF5301
PF5301-1
PF5301-2
PF5301·3

Parameter Interactions
1000

I

J!
iii
i~
§ ..
"I

II
'100

J~

1_1i'

100

50

510
~r;::

'7

100
51
Vos-

,. ..
!il
c:i

"I

&.0

'"
.... 1081

VOS10'FI • V.. "'1DV.lo -1.0nA

V••

-0.1 -1.0

;

•I;l

V,Vas=O

lOS. Vos -100mV. vos-a

10
-0.1

a,
..
I

~

1.0

a

-1.0 -10

'OF" - GATE CUTOFF VOLTAGE IV)
TL/GI10035-10

Source and drain interchangeable

11-161

III

Process 53
Transfer Characteristics

Transfer Characteristics
lit

rr

10

~b

l

10

.

III
I~
ID
1"l1li
40

70

5
'"
"
II:

ico

38
ZD

I

.s

VastO",--lV
T. - -H"C
TA -25"C
T. -125"C

Voo - DRAIN·GATE VOLTAGE (V)

1.6

w

fA

;..

Transfer Characteristics

I
.\

I".. tr": f- f.i;.\ ~

..\ r\

II

~
eo
I

oS

a.1

-

IIio.N"IIIIo..

-1.1

v.. -Iav

J

V_to", • -JAV
T. - -II"C
T.· +2I"C

I

TA • +12,·e

~

-1

-0.2

150

lit

Transfer Characteristics

Transfer Characteristics

~HH-+--j.-+-l--+-+-l
P"'-::-l-:::p..:1-:

~~~~~~-h~

50

.!l
-0.2

-4.8

"'.&

-D.4

-0.8

0.4

-1

101
=+26~C

TTl

V.. --lIV

I=

v.. --D.ZY

I;

~•• LoJ __

-3.0

-4.0

I
I

~

. 3.0

4.0

0.1

&.0

CapaCitance vs
Voltage

Transconductance
vs Drain Current

B.Dl

'i

1
C. (V.. -IOV)

r-I-

c,,(V.. -lIV)

1.0

1.,",

~VGlIO"

e.."
I
I!!

'"

~

-1.0

-12

-1&

v .. - GATE·SOURCE VOLTADE (V)

-10

!..

50
V.. -IDV

0.81

'.1
I. - DRAIN CURRENT (mAl

1.0

&01

CURRENT (PIA)

.r:. Voo- 1av
BW ••.DHI'f'" 10 Hz, 188 Hz

"0.2101 1.0 kHz

zoo

II I

100

~II

50

I

ZD

.1

\= 'iDt~·

11
-4.0

oS

1l1li

I

o

~.

• -I.IV

,

J

OR~IN

Noise Voltage vs
Frequency

~\t"I0'''· -3.8V

~

§•

0.5

500

1.0

0.1

I. -

I.Ok

u

0.1

I

.I

2.1

1,0

~

V.. - ORAIN-sGURCE VOLTAGE (V)

f",0.1 -1.0MHz

!

1.0

-uv

co

v~" "'.4V

V.. - OATE·IOURCE VOLTAaE (V)

10

~

o

VOG

8

v.. =-0.3V
o

10

I

TVP VCSIOFFI • -O.8V

-

U

1.2

Output Conductance
vs Drain Current

Common Drain-Source
Characteristics
TA

U

V.. - GATE·SOURCE VOLTAGE (V)

V.. - DATE·SOURCE VOLTAGE (V)

Transfer Characteristics

-2.0

-1.8

Va. - BATE-sGURCE VOLTAGE IVI

V.. -aATE-80URCE VOLTADE IV)

-1.0

-u

-I

-8.1

V.I - GATE.sOURCE VOLTAGE (VI

ZIG

I

I

-3.0

ZID

I

V. to",- -l.1V
T.--we

-I.D

-u .....

-D.4

~ ~~-r~~~~~~

~ ~ ~ !r- TA "'+laDe
~ TA· "'llioC
~

I"

~Ii!..'-H"C

1"'11
-0.2

i

T. -12I"C

~ Lot" T•• 25"C

10

...

V··~·"-~t

'",

'I'; =lo.A
.~.,..

'fm 1l1-~

10
0.01 0.03 0.1

D.51.D 2.0

~
10

5.

lit

1- FREo.UENCY (kHz)
TLlG/l0035-11

11·162

~National

Process 55
N-Channel JFET

~ Semiconductor

.

.. I

0.018
(0.457)

I

§"
en
en

U1
U1

DESCRIPTION

-i:::::j---

Process 55 is a general purpose low level audio amplifier
and switching transistor. Wafer processing is similar to process 52 but process 55 uses a larger geometry. This results
in higher Yls, loss, and capacitance and lower ROS(ON). It is
useful for audio and video frequency amplifiers and RF amplifiers under 50 MHz. It may also be used for analog switching applications.

/ / / / /V/ / / / //V/ / / /- / . , _ ' ~;O'~;-I
(0.080)

I--;O'O~;_
(0.080)

TL/G/10035-12

Gate is also backside contact

Electrical Characteristics (TA =
Symbol

Parameter

25'C)
Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV, IG = -1 /J-A

loss

Zero Gate Voltage
Drain Current

VOS = 20V, VGS = OV

gfs

Forward Transconductance

VOS = 20V, VGS = OV

gls

Forward Transconductance

VOG = 15V, 10 = 200/J-A

Min

Typ

-40

-70

0.5

5.0

20

4.5

7.0

2.0

Max

Units
V

1200

mA
mmho
/J-mhos

IGSS

Reverse Gate Leakage

VGS = -30V, VOS = OV

-10

-100

pA

rOS(ON)

ON Resistance

VOS = 100 mV, VGS = 0

140

250

600

n

VGS(OFF)

Pinch Off Voltage

VOS = 20V, 10 = 1 nA

-0.5

-2.0

-8.0

V

Crss

Feedback Capacitance

VOG = 15V, VGS = OV, f = 1 MHz

1.5

2.0

pF

Ciss

Input Capacitance

VOS = 15V, VGS = OV, f = 1 MHz

6.0

7.0

gos

Output Conductance

VOG = 15V, 10 = 200/J-A

2

/J-mhos

en

Noise Voltage

VOG = 15V, 10 = 200 /J-A, f = 100 Hz

10

nV/~

pF

This process is available in the following device types. "Denotes preferred parts.
2N3821

2N4221A

"2N5457

TO-236/S0T23
(NS Package 48/49)

2N3822

2N4222

*2N5458

MMBF5457

2N3824

2N4222A

*2N5459

MMBF5458

*2N5358

MPF103

MMBF5459

TO-72 (NS Package 25)

2N3967

TO-92 (NS Package 92)

2N3967A

*2N5359

MPF104

2N3968

*2N5360

MPF105

2N3968A

*2N5361

MPF108

2N3969

*2N5362

MPF109

2N3969A

*2N5363

MPF112

2N4220

*2N5364

PN4220

2N4220A

PN4221

2N4221

PN4222

Source and drain interchangeable.

11-163

•

Process 55
Transfer Characteristics

Common Draln·Source
Characteristics

Transfer Characteristics
20

11

TV' VUIIOFFI
TA=2fio~_

-l.IV

0

r-~.. ~oJ-±:

J.. !-izsJV"

Vos· -G.&V

~~
-2

-1

Vas - DATE·SOURCE VOLTAGE (VI

-2

-3

-4

o

-5

Vos -ORAIN-BOURCE VOLTAGE (V)

V•• - GATE·SOURCE VOLTAGE (V)

Transfer Characteristics

.

Ya.·-IVrrY
.2SY

o
-1

Yen'" -1.15"-

Transfer Characteristics

Parameter Interaction

11

I

I
I
-3

D

Output Conductance vs
Drain Current

Vaa -IiV

ID

I
J

.d:

V

I

V

-4-

~

~

YOMDFF'· -1.8V

Channel Resistance vs
Temperature

1k~~

f-'kHz

I

I

D.I

10

10
TA.

10 - DRAIN CURRENT (mAl

ID - DRAIN CURRENT (mAl

Noise Voltage vs
10D

;

i

I.

I

1k

Leakage Current vs
Voltage

10

~

e

..

.$

"

.:I

III

I

•

I

I

lDO

I.

CapaCitance vs
Voltage

t-

1\

J

C,..(VDI-UV)
1

10

20

3D

40

Voo - ORAIN.flATE VOLTAGE (V)

50

elM (VOl" 1IV)

{LtL

......

I

J

ID

j
10
1
f _ FREQUENCV (kHz)

AMBIENT TEMPERATURE COC)

i

iii

11

-

'''1M"z

Ii

D.l

D.l
-ID

i..
I,

2DV
:IOV
IIV
2GV

I

~

~

VOlklF"1 - DATE CUTOFF VQL TAGE (W

Transconductance vs Drain
Current

10

-2

-1

-6

I ~~~~~'I~ill

15"

1.1

~~

-3

T. -21'C

f=1IIHz

I

-2

Vos -15V

TA -Z5'C

V. 1,,1.-3. 7V

-1

~

'i

Vos - GATE-SOUACE VOLTAGE (V)

V.. -GATE-BOURCE VOLTAGE (V)

:a

I

r-.

./
O~~~~~-A~~

100

"[!!
Il"

'" ..i

.t

I

iI

,11_

I

-1

lD,

... 1.... Vo.· 15V. V".DVA~
'DS .1., • O.S mA, VIIS· OV
VOIIOFF'" VOl" '6Y.l p =1 nA

o

-2

-4

_I

-I

-10

VOl - GATE.sDURCE VGLTAOE (V)

TL/G/l0035-13

11-164

~National

Process 58
N-Channel JFET

~ Semiconductor
~-----------~------------~

DESCRIPTION
Process 58 was developed for analog or digital switching
applications where very low rOS(ON) is mandatory. Switching
times are very fast and rOS(ON) Ciss time constant is low.
The 60. typical ON resistance is very useful in precision
multiplex systems where switch resistance must be held to
an absolute minimum. With rOS increasing only 0.7%I'C,
accuracy is retained over a wide temperature excursion.

TL/G/10035-14

Gate Is also backside contact

Electrical Characteristics (TA = 25'C)
Symbol

Parameter

Conditions

=

=

BVGSS

Gate-Source Breakdown
Voltage

VOS

loSS

Zero Gate Voltage
Drain Current

VOS = 5V, VGS
Pulse Test

OV,IG

-1 p.A

=

OV

IGSS

Reverse Gate Leakage

VGS

=

-15V, VOS

rOS(ON)

ON Resistance

VOS

100 mY, VGS

VGS(OFF)

Pinch Off Voltage

VOS

=
=

5V, 10

=

=

Typ

-25

-30

100

400

1000

mA

OV

Max

Units
V

-50

-500

pA

3.0

6.0

20

0.

-0.5

-5.0

-12

V

OV

=

3 nA

10(OFF}

Drain OFF Current

VOS

=

5V, VGS

0.05

20

nA

Crss

Feedback Capacitance

VOG

=

15V, 10

=

2 mA, f

=

1 MHz

12

25

pF

Ciss

Input Capacitance

VOG

=

15V, 10

=

2 mA, f

=

1 MHz

25

50

9fs

Forward Transconductance

VOG

=

10V, 10

=

2 mA

10

gos

Output Conductance

Voo

=
=

10V, 10

=
15V, 10 =

2 mA

100

p.mhos

6.0

nV/,fHz

en

Noise Voltage

VOG

=

Min

-10V

2 mA, f = 100 Hz

pF
mmhos

This process is available in the following device types. • Denotes preferred parts.
TO·52 (NS Package 07)

TO·92 (NS Package 92)

*2N5432

*J108

°2N5433

°J109

*2N5434

*J110
PN5432
PN5433
PN5434

III
11-165

:g

I2

Process 58

A.

1.

•

II

.!

Ii

..•
ill

Common Draln-Source
Characteristics
vu-av
~ ...

I

ON Resistance vs

~

-lAY .,.

S

..i

41

,$

ZO

ld

.... f-'

fhl/

laB'

i., l'
~

..'"

.....T. - +25°C
DV ... TVP VOI.,,,, • -uv

l. ~. . .

&.a

100

so

I. .

t.Z

11.8

t.8

~

.
i'"

TAo -+Zf'C
TYP

v.,.,,, -....lV

Ii!

1
1

.....IV

II

Ii

....IV

I.

100

zo

1.1

"'

;

~V'"

II "

-

.

t.D

I/-t,v

1.1

lID

101

c.IV.. -UVI

==

l'

1-1r-

!

J

I

=c",IV.. -1I

1.0

....1

.....0

-12

-16

v •• - GATE.sOURCE VOLTAGE IVI

~ 0.11 t:t:::t::f±Jtt.~:±:j
t.D

T.--we ;::
T. -+21°C);;
T. -+IZI·C.'~

~:;

YDQ -lav

..

WI

10

,.I

1.0

-20

ID

j
~

~

3D

e'"

21

j

11

T. -2rc

-10

VOIID'FI - IATE-sDURCE CUTOff VOLTAGE IVI

1 111
.1 1 1 J J
1 IlL J

V.. -1.IV
V....." - -11V

ValIOFF'- -I.5~_

i/"'J...- VOSIO'FI • -I.&~ ...
i'.il C" v•• ""'" - -3.lV
~

I

Ir1~'fl--4.' -u .....0

41

i
....

..........

-2.0

I.

ro1.

Switching Turn-On
Time vs Drain Current

I .'3I~A -I~
1-1-1-

1.& 1.1 Z.I

1- fREQUENCY I.HI)

VDD-1.IiV
VGlIO")· -12V
TA ....21°C

4.1

lii'i~ Ti-

..., a.D3 0.1

Switching Tum-On va
Gate-Source Voltage

a.o

~

=

~ID·,.DrnA

~

.t

VasIO'.1 • -UY

25

JI II

I.D

II

-3.av

ZO

. . -UIII.,-10H•• looH.
-O.Zt.':;,I.OkH.

ID

e 10

V.to"l- -,.IV

II

Noise Voltage vs
Frequency

Ii:

V.ltoFF' •

11

V.. - DRAlN·DATE VOLTAGE (VI

100

e"-

...
2.0

D

1.0

I. - DRAIN CURRENT IIIAI

f· 0.1 -l.BMHI

......... ,J.

V.. -1DV
TA a+ZS·C
1-l.Oklll

1.1

10

Capacitance va Voltage

.... ;;;:

...

Transconductance vs
Drain Current

.. ,..

i

0.1

,V..IVGlIO'FI'- NOR1llALlZED BATE·
TO-lllURCE VOLTAOE IVI

I

1.0
I. - DRAIN CURRENT (mAl

~

OA

1.2

i "~~

: T 1jOI.1'rL

:f:.'!~~':F-~::f=f=t

I

I--~
•

1.

10
I. - DRAIN CURRENT (mAl

0.1

i..oo'

2.0

i

~

~Z.1v

I

1--..:r-i-t+ttH.

I l' ~~~~~II
i5 1.0 t;;~,.~~

J

I;

rmv

tv

1.0

J

i

VQlIO'"

I

V,'''' IV

Output Conductance vs
Drain Current

_V-"~

i., 10~ijiillll~!lIi~1
~
Leakage Current va

'DO
..!H........

'''.- 1

I.D

I

F

10
-10

V.....".IV.l...A

10

1.0
Z.I
J.lI
4.1
U
V.. - ORAI_VRCE VOLTAGE (VI

lOG

I

1: ~D~r~a~ln~c~ur~r~e~nt~~*1

Normalized Drain
Reslatance vs Bias
Voltage

; l'
cI

1-= =

'-flV-

i

a

V.. _ , - GATE CUTOff VOLTAGE (VI

Common Draln-80urce
Characteristics

VOl-IV

-u

-11.1 -1.8

-11.1

Z.I

!i
!

I

V.. - ORAI • .sOURCE VOLTAGE IVI

f
I

r"

1.1

IA

110

f'

...uv
1

I

1000

I. . . v.. - UV. v. - 0 PULSED
Va. -lOG mV. V.. - 0
VallO".... VOl- &.ov.ID• 3.aIA

II

i

10

!!i

Parameter Interactions

100

5.0

ID

t--.

11

ZO

Zi

I. - DRAIN CURRENT ImAI
TL/G/l0035-15

11-166

~National

Process 59
N-Channel JFET

~ Semiconductor
~-----------~------------~

DESCRIPTION
Process 59 is provided lor analog or digital switching applications where very low ROS(ON) is mandatory. The 40 typical ON resistance is very uselul where switch resistance
must be held to an absolute minimum.

Gate is also backside contact

TL/G/10035-60

Electrical Characteristics (TA =
Symbol

lOSS

25°C)

Conditions

Parameter
Gate-Source Breakdown
Voltage

VOS = OV, IG = -1 ",A

Zero Gate Voltage
Drain Current

VOS = 15V, VGS = OV
Pulse Test

Min

Typ

Max

Units

v

25
100

600

1500

mA

Reverse Gate Leakage

VGS = -15V, VOS = OV

1.0

nA

ON Resistance

VOS = 100 mV, VGS = OV

1.5

4.0

10

o

Pinch Off Voltage

VOS = 5V, 10 = 100 nA

0.5

5.0

10

V

Drain OFF Current

VOS = 5V, VGS = -10V

1.0

10

nA

Feedback Capacitance

VOG = 15V, 10 = 2 mA, 1= 1 MHz

25

35

pF

Input Capacitance

VOG = 15V, 10 = 2 mA, 1= 1 MHz

50

80

pF

gls

Forward Transconductance

VOG = 10V, 10 = 2 mA

10

gas

Output Conductance

VOG = 10V, 10 = 2 mA

200

",mho

Noise Voltage

Voo = 15V, 10 = 2mA,1 = 100Hz

6.0

nVlvHz

Ciss

mmho

This process is available in the lollowing device types.
TO-92 (NS Package 92)

III

J105
Jl06
Jl07

11-167

I?A National
~ Semiconductor

Process 83
N-Channel Monolithic Dual JFET
DESCRIPTION
Process 83 is a monolithic dual JFET with a diode isolated
substrate. It is intended for operational amplifier input buffer
applications. Processing results in low input bias current and
virtually unmeasurable offset current. Likewise matching
characteristics are virtually independent of operating current
and voltage, providing deSign flexibility. Most GP 2N types
are sorted from this family.

TL/G/10035-16

Electrical Characteristics (TA =
Symbol

25°C)

Parameter

Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV, IG = -1 ",A

loss

Zero Gate Voltage
Drain Current

Vos = 15V, VGS = OV

gfs

Forward Transconductance

VOS = 15V, VGS = OV

= 15V, 10 = 1 nA
= 0.2 mA

Min

Typ

-50

-70

0.5

2.5

8.0

mA

1.0

2.5

5.0

mmho

-0.5

-2.0

-4.5

v

3.0

50

pA

VGS(OFF)

Pinch Off Voltage

VOS

IG

Gate Current

VOG = 20V, 10

gfs

Forward Transconductance

VOG"" 15V, 10 = 0.2 mA

gos

Output Conductance

VOG"" 15V, 10

1.0

rOS(ON)

ON Resistance

VOS

450

en

Noise Voltage

VOG = 15V, 10 = 0.2 mA, f = 100 Hz

10

= 15V, 10 = 0.2 mA
= 15V, 10 = 0.2 mA
VOG"" 15V, 10 = 0.2 mA
VOG = 15V, 10 = 0.2 mA, f = 1 MHz
VOG = 15V, 10 = 0.2 mA, f = 1 MHz

600

= 0.2 mA
= 100 mY, VGS = OV

Max

v

850

",mhos
5.0

50

nVl.JHz
mV

IVGS1-VGS21

Differential Match

VOG

7.0

25

aVGS1-VGS2

Differential Match Drift

Voo

10

50

CMRR

Common-Mode Rejection

Crs

Feedback CapaCitance

Cis

Input CapaCitance

11-168

80

Units

95

dB

1.0

1.2

pF

3.4

4.0

pF

Process 83
This process is available in the following device types. ·Denotes preferred parts.
TO-71 (NS Package 12)
8-Pln MlnlDIP (NS Package 60)
*2N3954
*2N5196
U231
J410
Pin
60
·2N5197
*2N3954A
U232
J411
1
NC
·2N3955
·2N5198
U233
J412
2
51
·2N5199
*2N3955A
U234
3
D1
*2N3956
2N5452
U235
4
G1
·2N3957
2N5453
5
52
·2N3958
2N5454
D2
6
2N5045
*2N5545
7
G2
2N5046
*2N5546
8
NC
2N5047
*2N5547

8-Pin MinlDIP (NS Package 67)
*NPD8301
*NPD8302
*NPD8303
*NPD8304

Pin

67

1
2
3
4
5
6
7
8

51
D1
NC
G1
82
D2
NC
G2

Note: SO.a to be announced.

Differential Drift
1111

CMRR VB Drain Current
;;; 110

Voo '"1&V

AT· +ZSGC TO +1 Z&'C
• -WC TO +B'C

ill

~..

0

""
..

MEO

-

I.

0.1

1.1

"'H-U.

-

aD

·l~
1111

ID

11111
11111

I

7D

3

&G

I I II
I I II

&MAR .. 281•• .6.VDG

OJI

I. - DRAIN CURRENT (mA)

I III

b,V oo '"10V - 20V

1111

II

TIGHT

1.0
D.D!

.11111

:!!

L III

AVGl1-2

0.1

1.0

I. - ORAl. CURRENT (mAl

TlIG/lOO35-18

TL/G/l0035-19

III
11-169

CO)

co

Process 83

3=
e
a.
Transfer Characteristics

u

i

\. V.. '1I:~• .J.,.I-3,~

u

i

..
II!

TA •

3.0

i..,

u

.JI

1.0

-'I

I~

!r-"

TV' YGiIOfI'I •

.. ·.V

I VGI ..... r-

I -0,

~ nT"-II'C
TA -+H"C

h~
~i- r"1
~

~

•o

~

=
.,!!
~

i.,

a.5

P

~

1.0

VDI-'I. mY

Iu

VOI-O

VOlIO~'1 '"

I--~

I

1.1
-15

-8o!!- .....11::

VOSIOf"FI· -J.GY

t

III

II

2.D

i.

'-r-r-

0,1

a.I
4.1

,

011

r-r!>or--

-1.1

i.O

I-:

U
1.1

o

-25
+25
+15 +125 "'171
T. - AMIIENTTEMPERATURE C'CI

I'~

VCIII_fl··JDV
T.. " KC

Is
IIC

~
,,~

,

~
I\~

I

B

~::::::.tc
~ I\..

t

I.'O.03mA
rio "'UmA

I

10 "I.OIIIA

-

..'",
!II

.t
1,1

100

0,1

IDIO

I,D

IG

1.11

I.

Noise Voltage vs
Current

lOO~.

CapaCitance va
Voltage

V.. ' IIV
• Ta • +Z&"C

.
~

Ii

~,

LOGSE

1

II

MEOF

c.. IV.. 'I6V!=F=

;[
oJ
I-II..I.L.LWII~...LIJWIL.....J....LJ.IIW

0.01

0,1

1.0

10 - DRAIN CURRENT I.. AI

II

lID

10

Differential Offset

101

c

I,D

1.0

1'0.1 -"OMH.

~

10

0,1

I - FREQUENCY IkH.1

I. - DRAIN CURRENT ImAl

I. - DRAIN CURRENT "'A)

TIGH1-

CIIIVQla'IV)

.....

I.' o

C,',2 (VSYCI,2)

I

1.0
-4,0

-,11.0

-12

-II

vo. - GATE-IOURCE VOL TADE IVI

-20

0.01

0.1

1.0

10 - DRAIN CURRENT ImA)

TL/GII 0035-17

11·170

~NatiOnal

Process 84
N-Channel Monolithic Dual JFET

Semiconductor

~ffi
NO!

I~

I

i

100

1k

120

51

100

~.

I

!
I,
iii
ImA

r-

~V.

105

-J-l0V

~

.. 100

I. - DRAIN CURRENT I.A)

10

_~V""D-20V

115

:; 110 ___

I

-<~~&~f~'~U
10

125

=

H:ED

1&

CMRR vs Drain Current
;

I

C... IV.. ' 15V)
12

~

10

.,

IllL

I. - DRAIN CURRENT I.A)

~

v•• - GATE·SOURCE VOLTAGE IV)

38

Ii!:

• -.I'Cto2,i,,~

0.3
O.Z

lDO

V.. '15V

is
;t

.1Y-25 I Ct0125"C

3D

IDO

!C'"
co-

LOD!l
II
i
TIGHT

~:o

u

!!

Differential Drift

MED

"

.."

11

...

.....

i5
.,

:t

1kHz

0.1

u

~""
~

!:

~

I. - DRAIN CURRENT ,"A)

Voo -15V

~!

+e.. (Vas -l!V)

I

Differential Offset

ImA

10

10

1DD kHz

100 ZOO

CapaCitance vs Voltage

100Hz

FREOUENCV 1kHz)

101

:o!s;

38 5G

In - DRAIN CURRENT Wli

..!!Hz
100

,j

1 kHz

10
10

I

'I· i 'jDIij

IIV

~111111

.It
~

.;

.

lav

.

1M ',~~,

lDO 100

-zv

I

IDV
=~
VOSlOPF) =-f

I

J

V.. ·I&V

!...

107G

VaSCOF""'

IV

Noise Voltage vs
Current

1.!JlA

10

5V

I

~:.UV

20 30 10

4G

lk

)

Voo" 1&V

I. - DRAIN CURRENT I.A)

100

,j

101030

Output Conductance vs
Drain Current

.?

I

o

V... - DRAIN GATE VOLTAGE IV)

~

r-

0.2

FT. - ,21 C

DRAIN SOURCE VOLTAGE IV)

-

J'"

V.. -IIV

!

100-"

I

J

1k

~

10

S

-1.4V

TA _125°C 1

10

./
T.-al'C

~

-1.IV

10

NOise Voltage vs
Frequency

ffil

-1.IV

3D
Z8

1.71

1k

is!:

:i

-I V -IV

VOSlOFFI·~

V.. - GATE-SOURCE VOLTAGE IV)

~~

v

TA -1ZS"C

lDO

co

T.· -II'C~ ~ t= 1kHz
TA "ZS"Cf=

500

ill

~
"",

~~.,

TA·'25·C~ 'o

.....

I""\ .......T•• Z·5~.,;:~

~

10

I
!
.

VOBIOFFI,,2V

300

B

-DAV
-O.IV

Ik
lk

Transconductance vs
Drain Current

Transfer Characteristics

'-

.....

-O.IV

~~

o UI 0.1 0.71 1 121 1.1 1.75
v•• - GATE·TO·SOURCE VOLTAGE IV)

310

... -

!
""~

-tI.IV

fA

O~~~-A~--~~~

I
!

I I
Vos"'OV

Yosto", .. 1.IIV

C 4G0

'"

•

!

TA -25'C

Leakage Current vs
Voltage

I

as
90
1&

I~v

CMAR ·20 Llg ~
.lVOS1 <2

10

~O

30 40 50 6G 10 IDO

I. - DRAIN CURRENT ,"A)

TUG/l0035-23

11·172

Process84
Parameter Interactions
I.

-15V, Vas .. av
VOIIO" ' _ VDI· 1iV, ID '" 1 nA

~I.ID• • VDS

/

~

Ik

i>-

I.

lOa

c

10

ill

f'

....

Leakage Current vs
Voltage and Drain Current
TA "11ZI'~=f 101 " 30

...i'l

..$
D.I

~Io"IOI

10 " lOO,.A

A~

P":r

10131"f'=

J1

lD

lOOrA ]

TA ·26°C

I

V..

t

10 =30,.A ==!==I
TA ".I·e

~

ID

i

0.1

D.F' - VOLTAGE GATE-TO.sOURCE (VI

10

20

30

40

III

10 10

VDG - DRAIN GATE VOLTAGE IVI

TL/G/I0035-21

TL/G/l0035-22

•
11-173

'?"A National
~ Semiconductor

I.

I-------(:::~:)

Process 88
P-Channel JFET

-----··'1

DESCRIPTION

. 0.003

Process 88 is designed primarily for electronic switching applications where a P channel device is desirable. Inherent
zero offset voltage, low leakage and low rOS(ON) Ciss time
constant make this device excellent for low level analog
switching, sample and hold circuits and chopper stabilized
amplifiers. This device is the complement to Process 51.

I JO.OI4~

o.~

(0.~14)

TUG/l0035-25

Gate is also backside ccntact

Electrical Characteristics (TA =
Symbol

25°C)

Parameter

Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV, IG = 1 IJ-A

loss

Zero Gate Voltage
Drain Current

VOS = -15V, VGS = OV

Min

Typ

30

40

-5.0

-30

-90

mA

13

17

mmhos

Max

Units
V

gfs

Forward Transconductance

VOS = -15V, VGS = OV

gfs

Forward Transconductance

VOG = -15V, 10 = -2 mA

3.5

IGSS

Gate Leakage

VGS = 20V, VOS = OV

0.05

1.0

nA

rOS(ON)

ON Resistance

VOS = 100 mY, VGS

{1

VGS(OFF)

Pinch Off Voltage

VOS

10(OFF)

Drain OFF Current

Crss

Feedback Capacitance

Ciss

Input Capacitance

gos

Output Conductance

en

Noise Voltage

=
VOS =
VOG =
VOS =
VOG =
VOG =

-15V, 10

=

-15V, VGS

=
=
-15V, 10 =
-15V, 10 =

=

4.0

mmhos

OV

50

80

200

-1 nA

0.5

5.0

10

-0.05

-10

nA

4.0

5.0

pF

14

15

pF

100

300

=

10V

-15V, 10

-2 mA, f

-15V, 10

-2 mA, f

= 1 MHz
= 1 MHz

-2 mA
-2 mA, f

=

100 Hz

20

This process is available in the following device types. * Denotes preferred parts.
TO·18 (NS Package 11)

TO·92 (NS Package 92)

TO·92 (NS Package 94)

2N2609

°p1086

°J174

TO·236/S0T23
(NS Package 48/49)

2N5018

°p1087

*J175

MMBFJ174

2N5019

°J176

MMBFJ175

°2N5114

*J177

MMBFJ176

°2N5115

°J270

MMBFJ177

*2N5116

°J271

Source and drain Interchangeeble.

11-174

V'

IJ-mhos

nV/.JHz

I
."

Process 88

I
Transfer Characteristics

Parameter Interactions

-32 ,......,....--.--,--,.-,-,--.,.........

,aoa

joo

~

~

-20

~

50 ..

roc. VIII = -111D MV.

I

1.1

Z.I

10

U

10

I

+11V +3.iV

+ .IV

-1.0 -Z.O -3.1 ~.O -S.tI
V.. - DRAIII-SDURCE VDLTAGE (VI

Channel Resistance vs
Temperature

Leakage Current vs
Voltage

., 1'"II 501 f- VGIID••1-Z.sV

I k:-t:~-t
!
1-+-"'toi~--I--l"I""'---I-f
!I

.... 1t:::; ... ~

.uv 1-1-:1=

J

II~~<=~-;-r-.-'-'

w

...

II

+1.lv

+llv

-

.4

vG...." -GATE CUTOFF VOLTAGE (VI

Transfer Characteristics

~~ I.oo~i-'"

-u

~ .....8

I

D
VUIOFfI0 VDS • -tIV.ID· -I.IJi.IA

1.0
1.11
I.tI
4.tI
VGI - GATE·SOURCE VOLTAGE (V)

V.·

-12

fi•

IDa ..

"" ..... VOl- -lIV. vas- a'ULSE

I- V.. - ,

i

.... 1"""

TV' VUIOFF •• UV ~

i-I.

IP

~ ~-

J

T. - Zi'C

ail

I. .

-----.....;

Common Oraln-Source
Characteristics

:!

"'
!.

.ji

P

.

4.11

r-V.....F:;!~ ~t;.~
"""I>""
r-VGllOffl "4.IV

Ii

to .....(:i-+'....:~"'.

Vos--IHmV
VOI - .

10
II

I

I

§

i.
1.0

3.0

2.0

lD
-15
-21
+25
H5 +12S +11i
TA - AMBIENT TEMKRATURE ("Cl

4.tI

Vas -GiATE.soURCE VOLTAGE (VI

Noise Voltage vs
Frequency

Transconductance vs
Drain Current

Output Conductance vs
Drain Current

IDa

Ii

~

~,.

co

..

~

50

I

lDO

-'0

1.0
-8.1

-1.0

CapaCitance vs Voltage

I

5.0

1.51.02.0

,.

IDB

f - FREQUENCV 'kHI)

101

rl

i

~

ii

o.D1 8.DJ 0.1

-IDO

Normalized Drain
Resistance vs
Bias Voltage

&D

10

:N.11r

-5.a.A

.,,- I.' Hzlf -10 NI. 100 Hz
=Uf"ji:: I.Oktlz

ID - DRAIN CURRENT I"A)

,-o.l-I.IMIIz

i

-10

fa

Vao· -11V

I
-1.1
-1.'
10 - DRAIN CURREIIT ImAl

~

"

u

C.~.. I. -lSVJ1=

I...

c..IV... -1i~=

V...." ••V,lb.
II

'as.. -

20

roo
1- Yo
VCllIOFFI

18
&.G

I

oJ

I.D

j z.a

IIII

1.0

04.0."121120
Vo. - OATE-SOURCE VOLTAGE IVI

.... ~
o

OJ

D.4

OJ

0..

III

1.0

IV.IV.IO'" - NORMALIZED GATE·
TO-IOURC! VOLTAGE IV)

TL/G/l0035-28

11-175

en

CD

j

r---------------------------------------------------------------------------------,
~National

Process 89
P·Channel JFET

~ Semiconductor
.....______,--_··..::0'='.020~ - - - - - . . . ,.....1
(o.1IG8I
1
r-;0.003 ...

DESCRIPTION
Process 89 is designed primarily for low level amplifier applications. This device is the complement to Process 52. Commonly used in voltage variable resistor applications.

(0.0741

/

///

L/

L

0.1.

(o.~1I6I

L--. O.OO._~

L--.O.llllt_

r-jo.losi-

r--·(O.1051 -

TLlG/l0035-27

Electrical Characteristics (TA =
Symbol

Parameter

25°C)
Conditions

Max

Min

Typ

Units

20

40

-0.3

-4.0

-20

mA

1.0

2.5

4.0

mmhos

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV, IG = 1 ""A

loss

Zero Gate Voltaye
Drain Current

VOS = -15V, VGS = OV

gfs

Forward Transconductance

VOS = -15V, VGS = OV

918

Forward Transconductance

Voo = -15V,10 = -0.2 mA

700

IGSS

Gate Leakage

VGS = 20V, Vos = OV

0.02

1:0

nA

VGS(OFF)

Pinch Off Voltage

VOS= -15V, 10 = -1nA

3.0

9.0

V

Cras

Feedback Capacitance

VOG = -15V, VGS'= OV, f = 1 MHz

2.0

2.5

pF

Cis

Input Capacitance

Vos = -15V,10 = -2 mA, f = 1 MHz

7.0

8.5

pF

rOS(ON)

ON Resistance

VOS = -100 mV, VGS = OV

450

gos

Output Conductance

VOG = -15V,10 = -0.2 mA

5.0

en

Noise Voltage

VOG = -15V,10 = -0.2 mA, f = 100 Hz

30

This process is available in the following device types. °Denotes preferred parts.
TO-18 (NS Package 11)
To-72 (NS Package 23)
TO-92 (NS Package 92)
2N2608

2N3329

2N4381
2N5020
2N5021

2N3330
2N3331
2N3332

*2N5460
*2N5461
°2N5462
PN4342
PN4360
PN5033

Source and drain interchangeable.

11-176

0.5

V

""mhos

{}

15

""mhos
nVl,IRZ

TO-92 (NS Package 94)
2N3820
To-236/SOT23
(NS Package 48/49)
MMBF5460
MMBF5461
MMBF5462

I
"a

Process 89

co

CD

Transfer Characteristics

-1.0

Parameter Interactions

I

I!
!i;~
i~
~:

"0
:i;

10

5.0

YOBIC.. '" TVp10 4.0V

I 3.'

T..... -16~C
T... +2&Oe
TA • +1Z5~C
VOIIO"'" • 1.1V
fA. _55°e
T.. -+2&"C
-+121°C

~C

i

2.0

..,

1.0

i..
c

0
0

'i

1

!.

lOG

2.11

1.0

4.11
U
V.. - GATE.sGURCE VOLTAGE IVI

II

11111

0.1

1

;
~

.
:

~

100

0.5

0.1
5.0

t.O

~

z

.
p

ii

.i.!,

-0.8

..

~

~

~!j

i

1.G

!.

1.1

0.1

~O'OI~i~11

-11.1

o

-1.0 -2.0
-3.0 .....0
-&.0
v.. - ORAIN·SOURCE VOLTAOE IVI

Vas· -.HIIIV
VQI".

1.0

YGlI",FFI·&'O~, l"-~

VGlIO'" =1.DV
YaIIOFFI"'1.IV

1>""'

i,

~ 0.1

-'5

-2.

2i

15

121

11&

TA - AM.IENT TEMPlRATURE I"CI

Transconductance vs
Drain Current

Noise Voltage vs
Frequency
100

~

50

!

.
~

-IDV

=
i,

2Dv

."

i

-1.0

D.8V

5.8

V.. - ORAIN·GATE VOLTAGE IVI

-21IV

hii

~r-

~ u

-6.0Y

1.IV

a.2V

J~F- O.IVt-.U~- 1.2!,=

o

~

-0.11

-IIA

... OAJ= r-r-

Channel Resistance vs
Temperature

lD

,

.1

VOI-OV

10

YlllfOl'fII,-4.1V
1.0

V

-1.2

~

Leakage Current vs
Voltage

-IDV~
1111111

TVPVOIIOfF,,"'.8V

:;;

II!

'-1.01oll.- V.. --I.IIv' ~

&0

1

TA -Z6°C

C -1.8
.!

10

10

Output Conductance vs
Drain Current

S
co
.I

u

:s,

B

I;

'z"
~

VOS!OFFI - GATE CUTOFF VOLTAGE (V)

~

~

0.'

1,':1'"

V.. - GATE·IOURCE VOLTAGE IVI

Transfer Characteristics

1.0

'"

0.5

0.1

...

-2.0

:!

In

i?

1.0

R'7

iii

5.0

c

';'~

i

10

.... I.... VO.·-t5V.Vcs·II.ULSED
'III.Vas-1OOIlV, Vas ~O
VOllO"'I. VIIS· -IIV,I D ~ 1!hJA

Common Drain-Source
Characteristics

-ID

-ll

10 - DRAIN CURRENT ImAI

-1.0

-10

10 - DRAIN CURRENT (mAl

,,~ ID --1.'

10

10 '"

-3.at:!i

5.0
VDG " -1IV
N = Hz' f =10 Hz, 1DD Hz

'.0

"O.2t.'~1.0kHz

1.0
0.01 D.D3 D.'

0.51.02.0

"

.. lao

I - FREOUENCY IkHzl

Capacitance vs Voltage
100
f· 0.1 -1.0MHz

~
~
:!

&0

a

5.0

I,

lD

~~ E=

c,,\V"'-IIVI=

=:E=

c-~ ~DO-OI

<1

1.11

IV.. --l&VI
4.0

8.0

12

IS

III

20

Vas - GATE-SOURCE VOLTAGE (V)

TL/G110035-28

11-177

~NatiOnal

Process 90
N-Channel JFET

Semiconductor
0.016
(0.406)

DESCRIPTION

~~~

Process 90 is designed for VHF/UHF mixer/amplifier and
applications where Process 50 is not adequate. Has sufficient gain and low noise, common gate configuration at
450 MHz, for sensitive receivers. The high transconductance and square law characteristics insures low crossmodulation and intermodulation distortions. Common-gate operation simplifies circuitry. Consider Process 92 for even higher
performance.

0.0038
(0.0965i-

~

~
D

/

S

~

~

~ . ." l
0.J038

0.016
(0.406)

~I.l
~
~
~

TUG/10035-59

Gate is also backside contact

Electrical Characteristics (TA =
Symbol

25'C)
Min

Typ

-20

-30

3

18

40

VOS = 10V, VGS = OV

5.5

8.0

10

Vos = 10V,I0 = 5mA

4.5

5.8

Parameter

Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV,IG = -1 /LA

loss

Zero Gate Voltage
Drain Current

VOS = 10V, VGS = OV

gfs

Forward Transconductance

gfs

Forward Transconductance

IGSS

Reverse Gate Current

VGS = -15V, VOS = OV

rOS(ON)

ON Resistance

VOS = 100 mV, VGS = OV

VGS(OFF)

Pinch Off Voltage

VOS = 10V, 10 = 1 nA

-5.0

Max

V
mA
mmhos
mmhos
-100

pA

n

90
-1.5

Units

-3.5

-6.0

V

gos

Output Conductance

VOG = 10V, 10 = 5 rnA

45

100

/Lmhos

C rs

Feedback Capacitance

VOG = 10V,I0 = 5 rnA

1.0

1.2

pF

Cis

Input Capacitance

VOG = 10V, 10

5mA

4.0

5.0

en

Noise Voltage

VOG

=
= 10V,I0 =

5mA,f

NF

Noise Figure

VOG = 10V, 10 = 5 rnA, f = 450 MHz

Gpc(CG)

Power Gain

VOG = 10V,I0 = 5 rnA, f

=
=

100Hz

450 MHz

This process is available in the following device types. * Denotes preferred parts.
TO-72 (NS Package 29)

TO-92 (NS Package 92)

TO-92 (NS Package 97)

°2N5397

J114

*2N5245

°2N5398

°J210

°2N5246

°J211

*2N5247

°J212
°J300
MPF256

11-178

pF

13

nVlJRZ

3.0

dB

11

dB

I

."

Process 90

an
CD
0
0

CC)
Q

Common Drain-Source
Characteristics

Parameter Interactions
r:...
:-."7I...
-.=Vos-::."7,=OV:-.V;;"os-::.-:.o; PU:; L'OS';";O;"B , ••0

10.

1

i

B

!

1

40

so

f-t-t=+,+-++--+

°_

30

Transconductance vs
Drain Current

I-+-+-+-+-='=

tos. VOl "'00 mY. Vas = 0
VGSIOFFI II VDS -10V,ID '" f.O nA

,.

20

500

,~

100

2.0

3.0

4.0

Je

~

i

~

e~

1.0

..

i:i

.,
=

C
~
I

10

1••

-&.0 -10

-1.0

-D.l

1.0
0.5

..

~

5.0

5.0

.s

so P

5.0

1

1.0

10

E

10

1.0
10 - DRAIN CURRENT (mAl

VOSIOFfl - GATE CUTOFF VOL TAOE (V)

VOl - DRAIN-80URCE VOLTAGE (VI

TL/G/l0035-29

Transfer Characteristics

i

30

10k

Leakage Current vs Voltage

ii

I

.!

1.0.

u

..

z

..~

•

~

~,

~,

10

j

.I

TA :+25"C

.i-

1.0
0

10

5.0

15

20

25

VOG - DRAIN·GATE VOL TAGE (V)

Vos - GATE-SOURCE VOLTAGE (V)

Noise Voltage vs
Frequency

Transfer Characteristics
12

,.

w

!,
~

,

8.0
6.0

."O",·
-55 ~C~
C

""V ... ,0V_ V TA
.....
~

"

T... ;+1Z5C

It<

VGSIOFFI" -2.RV

......

TA "'+125 C

~~~::~~~~

roc;

4.0

'

T,,"+25C

~

2.0

o

o

-1.0

-2.0

-3.0

-4.0

-5.0

Vos - GATE-SOURCE VOLTAGE (V)

Capacitance vs Voltage

Output Conductance vs
Drain Current

10

~
;;
.s
~

~

~
~

i,
.1:

IOOIlIBm
50

i

20 ~~~~++-H-~-H~~
10 ·UmA

lil

C.IVo••

w

1°~1111

5.0

10

=10mA

VDG -'OV
2.0

0.51.02.0

10

f - FREQUENCY (kHrl

=

==

t.O

,

(Vos" lOY)

F==

J

J

BW=6.0HzOf=10Hz,10DHz

1.0 L....~.~O_.2f~.~f..
~'"'f_O~kH~.~~...u-"-'

0.010.03D.!

§

's.oJi

........ C",tvos -01

;!

50100

I~O.I-l.0MH,

0.1

o

-4.0

-1.0

-12

-16

Vos - GATE·SOURCE VOLTAGE (VI

-20

0.5

1.0

5.0

10

10 - DRAIN CURRENT (mAl

TL/G110035-30

III
11·179

Process 90
COMMON SOURCE

I

Input Admittance

10

I

VDO " fOV
10 -IOmA
ICS)

.!

..~
."'"

!:

1.0

b.

J

100

SOD

YDG -lOY
ID" lamA
ICG)

10

!

/

0.1

Input Admittance

i, ====

.

/

J

1011

I.

iA'~

r===

f
!!,
.I

COMMON GATE

1.0

10lI0

SOD
,- FREQUENCY IMHzl

I - FREQUENCY IMHz)

I

Forward Transadmlttance

"i

1

100

11

i

!I.

..

.

. . . . k:.
-~

./

If

Forward Transadmlttance

--=

ID=IOmA
ICS)

~

Voa -lOY

10 -,OmA
ICG)

/'

1.0

1000
TL/GI1 0035-32

VDO =10\1

I"

b.

/'
100

TL/G110035-31

I ..

&00

101

1100

&110

f - FREQUENCV (MH,)

1010

, - FREQUENCY IMHz)

TL/GI1 0035-33

I

I
..

~
J

Output Admittance
10

Voo -lOY
ID-IOmA
ICS)

Output Admittance

I

10
VDG -IOV

lo-IOmA
ICG)

~
~
g

....

./'"

1.11

8

./

/ ' ....

1.0

I;

",

.I

TL/GI10035-34

f--

~

... XID.I)

1

V

0.1

J

100

r - - .... XID.lI

"

Y
100

y

0.1

1000

r

100

&00

1000

t - FREIlUENCY 'MHz)

, - FREQUENCY (MHzl

TUG110035-36

TL/GI1 0035-35

Reverse Transadmlttance

"i

10

1.0

Reverse Transadmlttance

1

Voa" lOY

..~
i
;..
...,

lo=10mA

ICSI

.Y

VDO -lOY
10 =IOmA
ICG)

...

I:

V-....
./

....,1

I.'
=-t,.~ ~L-b,

c.

t
!

&110

D.DI

.., .,
100

10lI0

'\.

II
fiOO

II
10lI0

, - FREQUENCY IMHzl

, - FREQUENCY IMHzl

TL/G/10035-38

TL/G/I0035-37

11·180

IlNational
Semiconductor

-

0.023
(0.514)

DESCRIPTION
Process 92 is designed for VHF/UHF amplifier, oscillator,
and mixer applications. As a common gate amplifier, 16 dB
at 100 MHz and 12 dB at 450 MHz can be realized. Worst
case 750 input impedance provides ideal input match.

0.0031

I--- (0.DlI5)

V
~~
~·ra,

~

Process 92
N-Channel JFET

~

.~

~

i

1

0.015
(B.38!)

O.Otl
(O.DlIS)

TL/G/l0035-39

Gate Is also backside contact

Electrical Characteristics (TA = 25°C)
Symbol

Parameter

Conditions

BVGSS

Gate-Source Breakdown
Voltage

Vos

= OV, IG =

loss

Zero Gate Voltage
Drain Current

Vos

= 10V, VGS = OV, Pulsed

gls

Forward Transconductance

gls

Forward Transconductance

= 10V, VGS = OV, Pulsed
= 10V, 10 = 10 mA
VGS = -15V, Vos = OV
VOS = 100 mV, VGS = OV
VOS = 10V, 10 = 1 nA
Voo = 10V, 10 = 10 mA
Voo = 10V, 10 = 10 mA, f = 1 MHz
VOG = 10V, 10 = 10 mA, f = 1 MHz
VOG = 10V, 10 = 10 mA, f = 100 Hz
VOG = 10V, 10 = 10 mA, f = 450 MHz
VOG = 10V, '0 = 10 mA, f = 450 MHz

IGSS

Reverse Gate Current

rOS(ON)

ON Resistance

VGS(OFF)

Pinch Off Voltage

gos

Output Conductance

Cgd

Feedback Capacitance

Cgs

Input Capacitance

en

Noise Voltage

NF

Noise Figure

GIlIl

Power Gain

-1 ""A

Min

Typ

-20

-30

10

3B

10

Units
V

BO

mA

13

1B

mmhos

19

VOS

VOG

Max

mmhos

-15

-100

pA

35

45

BO

0

-1.5

-4.0

-6.5

V

160

250

""mhos

2.0

2.5

pF

4.1

5.0

pF

6.0

nV/~

3.0

dB

12

dB

This process is available in the following device types. • Denotes preferred parts.
TO-52 (NS Package 07)
TO-236/S0T23 (NS Package 48/49)
TO-92 (NS Package 92)
U30B
J30B
MMBFJ309
·U309
·J309
MMBFJ310
*J310
*U310

•
11-1B1

Process 92
Transfer Characteristics

1
Ii;

40

i;::

3D

~

ZO

I

'"'""~.-'"+==-..,..

~<1=+-+'

c

k:;;o~ft:.--;=

o

-3

...

10

-I

-3

-2

-4

-6

it

1.8

-I

v•• - GATE-IOURCE VOLTAOE IV)

V•• - GATE·SOURCE VOLTAGE IV)

Transfer Characteristics

Transfer Characteristics

26

110

110
I - FREOUENCY (MHz)

lOG

VaG ..'tOV

~

10 -'OIltA

(CG)

i

-1ft

I

11

Ii!

..

;
a L-....L....""':'Io.-..L.:!I"
,.,

5.0

MED

,0

'w

!i,
"

5.0

V.. - GATE-SOURCE VOLTAGE (VI

BW =1.0 H.llf= 10H •• 11II Hz
O.2l.t"t.OkHz

;

,0

Capacitance vs
Voltage

D.' o

10

'ou E'Fl'I-EEEE

I

,..

'0

I. - DRAIN CURRENT (mAl

YOG = 1&V

,lW

ISV

D.'

oJ

0.'
'.01

Noise Voltage vs
Frequency
,10

1/

D.'

;:!

I-

S

, " -1 .•V

OV

~

i ::

TA -+12&'C-

t\1 1

\.

•o

....i

I

·t.bv

~TA =+25"C

IV

'.0

5.0

TA - -SI"C _

~~

I

I. - DRA'N CURRENT (mAl

I ,. ~~~~~~II~~!iI
~

-

V~CO~FI ='
'\.

01020304050

Transconductance vs
Drain Current

TA ., -S5°e
TA -+12S"C

I).:

J

EIG

v •• - DRAIN·GATE VOLTAGE (VI

Transfer Characteristics

I

~,

,og~
TA • +2&"
1.1

j

° Vo• -GATE·SOURCE VOLTAGE (VI
-0.5

B

j

~I

I'i,V

3.IV

Voo-S.GV

i: 1.'

~,

/~'-Irc

~V V

VOSIO, ..,- -

I

;

VasCOFF) =-1.ov
TA = <'21°C
TA =<21°C

f=I.0kH.

~

1::

TA -+12S"C

,0

1

11.•"~I=f=!~~;;.;~
~

TA • _51°C
TA 1II+2rC

~

Output Conductance vs
Drain Current

i'Ok,mn

v!'IO~Fll_2~IV

4.0

1\ \

C
:!§

Leakage Current vs
Voltage

Transfer Characteristics
I I v"'" zav

TIGHT-

5.0

.

-J!!
Se

~

2.0
1.0
0.01 0.03 0.1

D.• I 2.0
10
f - FREQUENCV (kH,1

10 100

I

VDG -lIV
.4T· +2&OC TO +1 ZI"C
, -WC TO <2rC

i

MED

II

1.0
D.al

B.'

0loi.

1.0

I. - DRAIN CURRENT (mAl

.1VDQ .'0-20

II:

110

100

i

I.D

120

I=

i,

TIGHT

L

CMRR vs Drain Current
130

•

,-Lloo~

'.1

I. - DRAIN CURRENT (mAl

I. - DRAIN CURRENT (mAl

Differential Drift
taG

'.0 0.01

10

I.

~I-IOV
~V..
I 1IIIIIIi'"

CMRR • 20 10.

80

0.0'

D.'

,.0

I. - DRAIN CURRENT (mAl
TL/G/lD035-49

11-188

~NatiOnal

Process 95
N-Channel Monolithic Dual JFET

Semiconductor

I~'

--

~~~ ~

~S
~

~
.~

~///////ffi

~

i

CD

CI'I

DESCRIPTION
Process 95 is a monolithic dual JFET with a diode isolated
substrate. It is intended for operational amplifier input buffer
applications. Processing results in low input bias current and
virtually unmeasurable offset current. Low noise voltage and
high CMRR for critical 1/f applications.

(0.965)
0.0038
(0.09651--1

a

0.023
(0.584)

:J

TLlG/10035-50

Electrical Characteristics (TA = 25°C)
Symbol

Parameter

Conditions

BVGSS

Gate-Source Breakdown
Voltage

VOS = OV, IG = -1 ",A

loss

Zero Gate Voltage
Drain Current

VOS = 15V, VGS = OV

gfs

Forward Transconductance

VOS = 15V, VGS = OV

gfs

Forward Transconductance

VOG = 15V,I0 = 0.2 mA

IGSS

Gate Leakage

VGS = -20V, VOS = OV

Min

Typ

Max

Units

-40

-70

0.5

3.0

8.0

mA

1.0

2.5

4.0

mmhos

0.5

0.7

V

mmhos

-5.0

-100

-2.5

-4.0

V

pA

VGS(OFF)

Pinch Off Voltage

VOS = 15V, io = 1 nA

Ciss

Input Capacitance

VOS = 15V, VGS = OV, f = 1 MHz

10

14

pF

en

Noise Voltage

VOS = 15V,Io = 0.2 mA, f = 10 Hz

8.0

30

nVlJRZ

en

Noise Voltage

Vos = 15V, 10 = 0.2 mA, f = 100 Hz

6.0

10

nV/JRZ

gos

Output Conductance

VOG = 15V,I0 = 0.2 mA

0.3

1.0

,.mhos

Crss

Feedback CapaCitance

VOS = 15V, VGS = OV, f = 1 MHz

3.5

5.0

pF

IVGS1- VGS21

Differential Match

VOG = 20V, 10 = 0.2 mA

6.0

25

mV

.6.VGS1-VGS2

Differential Match Drift

VOG = 20V, 10 = 0.2 mA

9.0

60

",vrc

CMRR

Common-Mode Rejection

VOG = 20V, 10 = 0.2 mA

This process is available in the following device types. ·Denotes preferred parts.
TO-71 (NS Package 12)
2N5515
*2N5522
·2N5523
2N5516
*2N5524
2N5517
2N5518
*2N6483
*2N6484
2N5519
*2N5520
*2N6485
·2N5521

11-189

-0.5

86

115

dB

•

Process 95
Transfer Characteristics

u

i

TA D+U"C
TA -.,Z1G C

.i ...
Eu

I

'

,

\'

VGllOf'f'-

1.2

•0

I

i

-uv

TA --II·C
T. ·+21~C
TA ·+ll'~C

.,

IA

.J}

I

TA• -U"'C

U

II!

i

V.'~~I-l~

1.1

Ii

11 ~~-r-r~'-~r-~

V.. -2IY

u

U~~~++~~4

1'c~""iI--t--t

4.0

'0

..sri1

15
ill

a

-1.1

10

u

....

_I iii'

0.'.....

-0.'

VOllO''')

.. s11
II
I
..III IiI..
I

'i

I
-1.0

-u

0.1
-10

2.0

,

'T... ·-55C

t1 TA ••2• C

i I '.0
~

Tr.=:t¥-

I

iii

,

o

R=R-

-0.'

I

5.0

s."

r-,...,.-r-r-r,-~r-~

4.01-'1-"'+-+-+
H'\"I....,q.-+

U

"'.--.='......

t1~~~:l~ij~j
Vas - GATE·SOURCE VOL lA8£ tv)

Leakage Current vs
Voltage

I

i

Output Conductance vs
Drain Current

'0

t·,.Oklb

VDG .. zav

I--

Vc!.~'FI~I~~

-

1.0

01101'1'1'" -2.5V

8

~

D.l

'.1

bfii

GlIO",'"

,m
0.'

'I
II
31
..
II
V.. - DRAIN-OATE VDL TAlE tV)

-2&
II
71
'1&
171
TA - AMI'EIIT TlIoI'ERATURE reI

-uv

::fmll

1

Ll1ll1
II

1.1

,.ID - DRAIN CURRENT (mAl

Noise Voltage vs
Current

Transconductance vs
Drain Current

,.. ""''''''';::::---';----"'I''E'I='I

t.

I-t-H'-H-H-i-ttt-Mt-H

II

~

1:!II
o.s Hf-1jfMHt-A';.!t;.

•. D

Transconductance
Characteristics

'.0

.i

I

:u

2.1

1.1

i

I

I

-1. Y-1.2 -IAV-1 V-1.IV

2.0 .....

i.

e

-uv
-O.IV

1.1

-1.1

'<~

Iiii

-.. v-

~

§

,
-II

,-

2.0

VOLTAGE (VI

UV
-uv

-uv

I
I

V.-I.IIIV
VOl-'

-!.IV

-Uy

iii

MI
VOl" GATE·SOURCE

Channel Resistance
vs Temperature

r-

TA-·2. C
"'·fU'C

I 'A

J

VGI-OV

VOl - DRAIN·SOURCE VOLTAGE (VI·

J

VGlIOFFI .. -UY

-GATE CUTOFF VOL TAlE IV)

, ,

vrn

H
tJt~:'-"':;;~c-~

rl

~

...

YM=H

I.'

ci

...

~a

i

I

o

-U

Transconductance
Characteristics

Ii

VI

I

-u -4.,

-2.0

Va - GAt£-IOQRCE VOLTAGE tV)

~~~~;::~~:;.:.:"'H'

1.0

!~

.J}

D ........-'-'~.......L.....J:_........J...J
-1.1

-I.D

-G.I

lie

I

.J}z.o~~~l

MAI,+

Parameter Interactions
'.0

..

I

~P;:~~'f,.-uvl

3-D

i

Ii

I.D I'rl
~'";

l~bSE

.

11~ED

~Ii

1.0

I. - DRAIN CURRENT (mAl

1.D

ID - DRAIN CURRENT (mA)

i
~

I•

•

I

I

1.0
10

CMRR va Drain Current
118

I=-

l~~IL 10-120~-

100
6

-&.0- D~

Ii

TIGH~

'i::

,II~
D.l

MEJ

.'"
~/;

1111

1.0

LOoSE

:""'-r10

>i!i

TIGHT

!

Voo -,&V
.1T =+26"C TO +'26~C
-ISoC TO +J&"C

70

ii

80

D

10

10

,

D.l

1.0
I. - DRAIN CURRENT (mAl

10

TLIG/10035-55

11·194

~NatiOnal

Process 98
N-Channel JFET

Semiconductor

j-~~

DESCRIPTION

(0.SS9)
0.0038
(0.096S)

~~~~
~Gl ~S1~~

~'~

Process 98 is a high gain, general purpose, monolithic dual
JFET with a diode isolated substrate. It is intended for amplifier input stages requiring high gain, low noise and low
offset drift over temperature. Strict processing controls resuit in low input bias currents and virtually immeasurable
offset currents. Matching characteristics are essentially independent of operating current and voltage.

+

0.0038
(0.09GS)

+

~~
~
~

0.OZ8
(0.711)

~
~[GZ ~
~r~

~ ~~
5Z

DZ

TL/G/l0035-56

Electrical Characteristics (TA = 25°C)
Parameter

Symbol

Conditions

BVGSS

Gate-Source Breakdown
Breakdown Voltage

VOS

= OV,IG =

IGSS

Gate Leakage
Current

VGS

=

VGS(OFFI

Pinch-off Voltage

VOS

loss

Zero Gate Voltage
Drain Current

VOS

= 15V, 10 = 1 nA
= 10V, VGS = OV

gfs

Forward Transconductance

gos

Output Conductance

gfs

Forward Transconductance

gos

Output Conductance

IVGS1-VGS21

Differential
Offset Voltage

Crss

Feedback CapaCitance

Ciss

Input Capacitance

en

Noise Voltage

CMRR

Common-Mode Rejection Ratio

-1 p.A

-30V, VOS

Min

Typ

50

75

= OV

= 10V, VGS = OV
= 10V, VGS = OV
VOG = 15V,Io = 200 p.A
VOG = 15V, 10 = 200 p.A
VOG = 10V, 10 = 200 p.A

Units
V

2.0

100

pA

0.5

1.3

3.0

V

0.5

1.8

10

rnA
mmhos

2.0

VOS

Max

VOS

1.0

4.5

7.0

8.0

20

p.mhos

1.4

1.8

mmhos

1.3

2.0

p.mhos

10

40

mV

VOG

1.7

3.0

pF

VOG

6.0

8.0

pF

8.0

50

nV/.JHz

= 15V,I0 = 200 p.A, f = 1 MHz
= 15V, 10 = 200 p.A, f = 1 MHz
VOS = 15V, 10 = 200 p.A, f = 10 Hz
VOG = 5V - 10V,I0 = 200 p.A

90

108

dB

This process is available in the following device types. 'Denotes preferred parts.
TO·71 (NS Package 12)

a·Pln DIP (NS Package 60)

2N5561

U402

J401
J402

2N5562

U403

2N5563

U404

J403

2N3921

U405

J404

2N3922

U406

J405

U401

J406

11-195

Pin

60

1
2
3
4
5
6
7
8

NC
Sl
01
Gl
S2
02
G2
NC

III

Process 98
Parameter Interactions

~h
T

=.,

10SS- I--

"'-../

/-;;

i

ID-1 nA

..'"
~..
1:l

w

~

~

w

~IO_
_

Z.O

,

100 ~~~~~~~~~
0.1
1.U
0.•'
)D - DRAIN CURRENT ImAI

5.0

VGSIOFF) - GATE CUTOFF VOLTAGE IVI

Transfer Characteristics

V~SlO~~~:~.:~

\

~~ K!

~ C"

o

~~~

o

-0.4

~

,~

-OJ

-1.2

,

vJsIO~~::~~
I
~I_ ~
e
. ~
F!~!! \

I,

"

"-

I

o

-D.5

!

I ,

-1.5

-Z.O

-lUi

-1.0

-US
10 - DRAIN CURRENT lmAl

vJSID:~~: l'fy

..... :\.

~

• -o.z

-0.8

""'

:"

-1.0

-1.4
f.- FREDUENCV IHol

Common Drain Source
Characteristics

I I
I

TA·25'C

'_VIGSj0t-

VOSIOFF) ·1.4V

I- VGSlom " Z.3V
VOS' -D.2V

VGS'

Capacitance vs Gate
Source Voltage
100

°r-

I

VGS" -O.ZV

V'

VGS' -0.4V

VOS" -1.4V

Vos'" -O.IV

VGS' -0.8V
Vas' -1.0V

°

IZ

18

VOS - ORAIN·SOURCE VOL lAGE lVI

ZO

===

Ciu{VOS·O)

VOS' -O.IV

o

Noise Voltage vs
Frequency

Vas -8ATE.sOURCE VOLTAGE IV)

Common Drain Source
Characteristics
I

I

J

"OilI!&::::!

..... ~

i

Vas - OATE.sOURCE VOLTAGE IV)

-'~S~

-0.1

co

'l'\
1I5'C

~

-1.0

-0.2S

~K..JI'C

8

°

IIiII

Transconductance vs Gate
Source Voltage

I

...

..... t'\:

10

Vas - GATE.sOURCE VOLTADE IV)

Transconductance vs Gate
Source Voltage

rJ

) ~~~~~~~~~~II
~

~

I

°°

-1.1

VGS - OATE.sOURCE VOLTAGE IVI

Output Conductance vs
Drain Current

i 1.I~~1~~11

.... 1"-

-rr

0.1

04.1 IZ 18 ZfZ4 ZI 323& 40

I

\

Ie

!i

1.0

VDG - ORAIN·GATE VOLTAGE IVI

V~I~=~:"fy

i

I,

~

10

Transfer Characteristics

I..

K~,

IGSS
TA"ZS'C

~

0.01
1.0

Ff=Ff

",oo~~m

i!

co

0.1

~

0.5

jlk~.

ll11r=-..""""",==

'"~

Ib, lOSS. VOS "ISV
Vas. 0, PULSED
f---'os I> Vos' 100 mV, VGS' 0 I-VGSlOFF). Vos' 15V,
1.1

!

Gate Leakage Current
vsVoltage

Forward Transconductance
vs Drain Current

e

1.0

~"'VOS·-I.OV

o

o

f"""-.,.

Cm IVOS" 01

-

Vas' -O.IV
12

16

VOS - DRAIN SOURCE VOLTAGE IV)

ZO

-2

-4

-I

-8

-10

vGS - GATE·SOURCE VOLTAGE IVI
TL/GI1 0035-57

11-196

Process98

I
CO
00

Differential Offset
100

Differential Drift
100

VOG -10V
TA-noc

=-:s

VoG - 10V
';T· 25°C" 125°C

1'0.. LOOSE

J I

_

10

TIGHT

TiGH~

Ii

0.01

0.1

10 - DRAIN CURRENT (mAl

1.0

1
0.01

I

0.1

'0 - DRAIN CURRENT (mAl

~

110

III

=

100

1.0

I

V' G' 5V-l0V

"
!jl

90

80

TA"'2SoC

I

10

';VoG
CMRR-201.,--

~

60

."
I.

MEo

MEO

1.0

120

~

.o.T· _&5°& to 2S"C

LOOSE

CMRR vs Drain Current

I
0.01

Illm~I-2
1.0

0.1

'0 - DRAIN CURRENT (mAl
TL/G/l0035-58

III
11-197

~National

Process 4P
NPN Planar Power

Semiconductor

,'..

..!:!!!.

(1.112)

-11.2711

r

-,

~

]}

T

8.On

I

~L

l

•
)}
)}

')...

A

-;:.-

DESCRIPTION

~
(lAII)

APPLICATION
This device was designed for power amplifier, regulator and
switching circuits where speed is Important.

!:!!!.
(1.112)

~
TL/G/10038-1

Electrical Characteristics (TA =
Symbol

Process 4P is a double-diffused silicon epitaxial planar de·
vice. Complement to Process SP.

2S·C)

Conditions

Min

BVCEO

Ic = 100 mA (Note 1)

SO

BVCES

Ic=1mA

7S

BVESO

IE=1mA

S

ICES

VCE = SOV

IESO

VES = SV

Typ

MIX

Units

120

V
V

8

V
S
S

hFE

Ic = 20 mA, VCE = 1V

30

hFE

Ic = 300 mA, VCE = 1V

40

hFE

Ic = 4A, VCE = 1V

10

VCE(SATI

IlA
IlA

80

300

Ic = 2A, Is = 0.2A

O.S

O.S

V

VSE(SAT)

Ic = 2A, Is = 0.2A

1

1.1

V

ft

VCE = SV, Ic = O.SA

Cos

VCS = 10V

4S

pF

CIS

VES = 1V

400

pF

Ic = 2A, VCE = 30V
lSI = IS2 = 0.2A

60
750
80

ns
ns
ns

~

tf

}

MHz

50

po(max)
TO·220
TO·202

Tc = 2S·C
Tc = 2S·C

6JC
T0-220
T0-202

Tc = 25·C
Tc = 25·C

3.2
8.33

·C/W
·C/W

6JA
TO·220
TO·202

TA = 2S·C
TA = 25·C

62.5
62.5

·C/W
·C/W

TJ(max)

All Plastic Parts

40
15

1S0

Noll 1: Pulsed measurement = 300 ". pulse width.

11·198

W
W

·C

Process 4P
This process is available in the following device types.

@IC(A)

VCEO (V), Min

Min

Max

TO-202 (NS Package 56)

D42C1
D42C2
D42C3
D42C4
D42C5
D42C6
D42C7
D42C8
D42C9
D42C10
D42C11
D42C12

30
30
30
45
45
45
60
60
80
80
80
80

25
40
40
25
40
40
25
40
40
25
40
40

30
30
30
45
45
45
60
60
60
80
80
80

25
40
40
25
40
40
25
40
40
25
40
40

Typical Pulsed Current Gain
vs Collector Current

0.1

18

~

,DA

~ 0.2

~

,:0

~

i

rl

i

= 1.2

...c§
..

-41 C

~

i--'"

0.1

120
120

Collector-Emitter Saturation
Voltage vs Collector Current

11

0.1

Safe Operating Area
TO-220
lDO

llDO

I::::
.~

~

0.1

10

IC - COLLECTOR CURRENT IAI

g
~

la
10

IC - COLLECTOR CURRENT (AI

120

..

~

I

0

~

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

120

Junction Capacitance vs
Reverse Bias Voltage
1111

1A

I~

120

0.1

VCE" IV
1.1
1.8

+D'c

120

IC - COLLECTOR CURRENT (AI

Base-Emitter ON Voltage vs
Collector Current

~

=
~

120

Typical Pulsed Current Gain
vs Collector Current

IC - COLLECTOR CURRENT (AI

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

120

1 .. !,00,.:=fi

10

i
~

8,

=
==

'.01
11
100
VR - REVERSE BIAS VOLTAGE (VI

"" t"t

D

sa ..

l\'\

0.1

!:I

,,..

1,\,\,\

LIMIT OETERMIN~~
IV BVCEO
10

lDO

VCE - COLLECTOR·TO·EMITTER VOLTAGE IVI
TL/GI1 0036-2

11-199

III

..
a.

I2

Process 4P

a.

i

I!
.
;
•.
.

2A
Z.2

z

Ii!

!

0.8

•c

1.&
1.4
0.2
I

~

!
/P'

Sate Operating Ares
T0-202
100

~

~

1.1
1.8
1.4
1.2

I

Minimum Power
Dissipation vs
Ambient Temperature

"

.~~
...

~O-2Zll.TO.zoz

~

8
I

•

"

10

r

U"

!

i

r-..

I

~"

0.1

I"'"

I

LIMIT OETERMlN~~
BYBVCEO

1:
1.81

10

!

t-\

10,.

DC

20 4G 10 II 100 121 140 110

10

TA - AMBIENT TEMPERATURE C'CI

i

I=f= '''!'00'''~ ,,..

&0
41

"' '"

30

10

o

~.z2D-

....

21

J

100

VCE - COLLECTOR·TO·EMITTER VOLTAGE CV)

Maximum Power
Dissipation vs
Cass Temperature

'".,......
"

TO !II r--.I.

o

-

20 4G 10 II , . 120 141 160
TC - CASE TEMPERATURE C'C)
TLlG/l0036-3

Thermal Response in TO·220 Packsge
1
0.1 0=0.5
0.5
0.3
0.2
0.2
0.1
0.1
0.01 0.05
:iii! 0.05
~i 0.03 0.02
¥~ 0.02 0.01

:;!s

-

I;

;;
.....
.....
i:

0.01

.....I""
0.01

L-..fLrl fJCC~=~t)·'JC

PCpk)

.....

'JC DC THERMAL RESISTANCE

~LJ

I
-

11,

INGLE PULSE

0.02

0.0&

0.1

0.2

10

O.S

ZO

Tpk'TC+PpIo"JCC~
DUTVCYCLED=!!

12

2

so

100

200

500

1k

11 - TIME (ms)

TLlG/l0036-4

11·200

"U

(;

~NatiOnal

Process 4Q
NPN Planar Power

Semiconductor

~

1

0.t30

(Or2)

CD

a

DESCRIPTION

0.090

O.OlB

n

I:

Process 4Q is a double-diffused silicon epitaxial planar device. Complement to Process 5Q.

(2.29)

E

APPLICATION

1
M

This device was designed for power amplifier, regulator and
switching circuits where speed is important.

0.096

(2.44oj

•
hO.O~r'
i8.5Oai

(0.688)

TL/GI10036-6

Electrical Characteristics (TA =
Symbol

25'C)

Conditions

Min

BVCEO

Ic = 100 mA (Note 1)

50

Typ

Max

Units

120

V

BVCES

Ic=1mA

75

BVEao

IE = 1 mA

5

ICES

VCE = 50V

5

",A

IEao

VEa = 5V

5

",A

hFE

Ic = 30 mA, VCE = 1V

30

hFE

Ic = 0.5A, VCE = 1V

40

hFE

Ic = 8A, VCE = 1V

10

VCE(SAT)

Ic = 4A, la = O.4A

0.5

V

VaE{SAn

Ic = 4A, la = O.4A

1.1

V

ft

VCE = 5V, Ic = 0.5A

Coa

Vca = 10V

110

pF

Cia

VEa = 1V

730

pF

Ic = 5A, VCE = 30V
lal = la2 = 0.5A

30
500
60

ns
ns
ns

tr }
ts
tj
PO(max)
TO-220

Tc = 25'C

lIJC
TO-220

Tc = 25'C

lIJA
TO-220

TA = 25'C

TJ(max)
Nol. 1: Pulsed measurement

All Plastic Parts

V
V

8

300

50

MHz

W

60

150

= 300 pos pulse width.

11-201

2.08

'C/W

62.5

'C/W
'C

III

Process 4Q
This process is available in the following device types.
@IC(A)

VCEO (V), Min
Max

Min
T0-220 (NS Package 57)
D44H1
D44H2
D44H4
D44H5
D44H7
D44H8
D44H10
D44H11

30
30

60

45
45

60

60
60

60

35
35
35
35

80
80

60

Typical Pulaed Current Gain
va Collector Current

Typical Pulaed Current Gain
va Collector Current

.1000

.1000

3

lID

!

...II!

1111

lao

Iii
II!

....

co

Ii!

3

10
co

I

II

!

VC

I

100

~
I

10

~
I-

.I

11

'-

!
110

10

aD
40

Collector Saturation Region

E '0

TC·~rc

=;

.e
..•

i...

1.8

IcJJl

'I

=-n

iii!!

~~

-r
10

IA

E

I.Z

i .:

~

§ zoo

I

-4
+zr

D.I

-

I

ii 0.1

III oA

>

0.1

rr'-

11
I
IC - COLLECTOR CURRENT IAI

,

51=*
1t~1I.1

,

1---1"*1+ ...., --'-_~;C:;':::::T'T

i

1-- -

•

10 40 ao 80 'DO 110 'co 180

TC - CASE TEMPERATURE rCI

Maximum Power
Dlaalpatlon va
Ambient Temperature

,

2

:!

:~ f-

! ~:
J
I

-

°
VCE - CoLLECTOR·EMinER vOLTAGE IVI

i z.•
I 1.2

i
!

",

10

100
I
ID
VR - REVERSE liAS VOLTAGE M

100

'\

,

ao
ID

- r- I-TO.zz

Ii

I..

~

Maximum Power
Dlaalpatlon va
Caaa Temperature

Zt

!t 0.1

ft•

r-

+1

'OO~.

I

a•

>
co

!!

lao

II

I"

VCE' zv

Safe Operating Area
T0-220

i

I

Base·Emltter ON Voltage va
Collector Current

hFE - DC CURRENT GAIN

5

0.02

i

!
IllIG

~

1.8

=t
100

0.2
0.1
D...

I
D.I

IC - COLLECTOR CURRENT IAI ,

ill

- III

ft!
Ii~
I.

co

II

•

!i

10
IC - COL LECTOR CURRENT IAI

1.1

IC - COLLECTIIR CURRENT IAI

10

i~

...

100

Collector-Emitter Seturatlon
a:

100
400

co

!'J I.

2
2
2
2
2
2
2
2

!-To.zz

,
~

oA
D.Z

t

I'
lo-

a

,

20 41 II to I. 110 141 I.
TA - AMIIENTTEMPERATURE rCI
TLlGIlOO36-7

11-202

r-----------------------------------------------------------------------------,~

Process 4Q
Thermal Response In TO-220 Package

Ii
m:;

."....i!!;

~~
.....
....
~;

:em

0.7
0.5

0.3
0.2

ib

0-0.5
0.2

~

0.'
0.'

1.07

0.05

0.05
0.03

0.02

0.82

0.01- I-"

t

Plpkl

0.0, .....t"""
0.0,
O.OZ

J1JL

'_~LJ
0.05

Tpt-TC·'pk·'JCII)

~UTY CYCLE 0 - !!

I
2

INGLE PULSE

0.,

0.2

,0

0.5

zo

'JCII)' rlt)·'JC
'JC DC THERMAL RES,SlA NCE

tz

50

,ao

zoo

SOO

'k

I, -TIME I. .)

TL/GI1 0036-6

III
11·203

~NatiOnal

Process 5P
PNP Planar Power

Semiconductor

r

0.010
(1.52)

0.~1"_~1

DESCRIPTION

10.2711)

r

..»
1

B

E

~
+

0.010

Process 5P is a double diffused silicon epitaxial planar device. Complement to Process 4P.

APPLICATION
This device was designed for power amplifier, regulator and
switching circuits where speed is important.

(1.112)

)}

:l
(0.4112)

0.~1

)}

10·271)

1-+-.1-'

0.011
10.271)

TLiG/IOO36-9

Electrical Characteristics (TA =
Symbol

25'C)

Conditions

BVCEO

Ic = 100 mA (Note 1)

Min

Typ

50

Max

Units

120

V
V

BVCES

Ic=1mA

BVEBO

IE = 1 mA

ICES

VCE = 50V

5

IJA

lEBO

VEB = 5V

5

""A

hFE

VCE = 5V, Ic = 20 mA

30

hFE

VCE = 5V, Ic = 0.5A

50

hFE

VCE = 5V, Ic = 5A (Note 1)

10

VCE(SAn

V

8

80

200

Ic = 3A, IB = 0.3A

0.35

1

1.1

VBE(SAn

Ic = 3A, IB = 0.3A

fl

VCE = 5V, Ic = 0.5A

COB

VCB = 10V

CIB

~}

5

V
V

MHz

40
75

pF

VEB = 1V

400

pF

Ic = 2A, VCE = 30V
IBI = IB2 = 0.2A

60
500
50

ns
ns
ns

PO(max)
TO-220
TO-202

Tc = 25'C
Tc = 25'C

8JC
TO-220
TO-202

Tc = 25'C
Tc = 25'C

3.2
8.33

'C/W
'C/W

8JA
TO-220
TO-202

TA = 25'C
TA = 25'C

62.5
62.5

'C/W
'C/W

TJlmax)

All Plastic Parts

W
W

40
15

150

Not. 1: Pulsed measurement - 300 It. pulse width.

11-204

'C

r-----------------------------------------------------------------------------,
Process 5P

~

~
(II

This process is available in the following device types.

~

@lctA)

VCEO (V), Min

Max

Min
TO-202 (NS Package 56)
D43C1
D43C2
D43C3
D43C4
D43C5
D43C6
D43C7
D43C8
D43C9
D43C10
D43C11
D43C12
TO-220 (NS Packa e 57)

30
30
30
45
45
45
60
60
60
80
80
80

25
40
40
25
40
40
25
40
40
25
40
40

D45C1
D45C2
D45C3
D45C4
D45C5
D45C6
D45C7
D45C8
D45C9
D45C10
D45C11
D45C12

30
30
30
45
45
45
60
60
60
80
80
80

25
40
40
25
40
40
25
40
40
25
40
40

Typical Pulsed Current Gain
vs Collector Current

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

120

120
120

120

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

120

120

120

120

Collector-Emitter Saturation
Voltage vs Collector Currant

Typical Pulsed Current Gain
vs Collector Current
lD

1.1

10

1.

0.1

IC - COLLECTOR CURRENT (A)

Base-EmlHer Saturation
Voltage vs Collector Current
Z.4

..
!!
~

...i=,..
~
....

:::5

.
.....=
~..
., ""

1"!'IO"~ 'r

$

ffi~

~."

1.8

lD

II

I .•

1.4
1.1

1
0.8
0.8

~

U.4

-

1.1

F=
f-

lD
DC

n

it ..

\\\
LIMIT DETERMIN~~
BYBVCEO

0.81

lD

1

IC - COLLECTOR CURRENT (A)

lD

IC - COLLECTOR CURRENT (A)

Sate Operating Area
TO-220
lDD

T-zrC

Z.2

G.1

Ic - COLLECTOR CURRENT (A)

18

III

110

VCE - COLLECTOR·TO·EMmER VOLTASE (V).
TL/GI1 0036-1 0

11·205

Process 5P
Safe Operating Area
To-202
110

e--

S

.e..
.

10

:>

w

~
I

i

'''!'DD''~ ,,.
10,.

'-0
_50 ...

!f

D;

II..

I

r-...
~

'.1

1,\,\'
LIMIT DETERMIN~~
IV IVCEO

!I

D.Dl
I

18

ID

..

i

if

I.
40

I

3D

I

II

j

laD

Maximum Power
Dlaalpatlon va
Case Temperature

i

" '"
~..!zo-

20

r--..
TO lIZ"

o
o

VCE - COLLECTOR·TO·EMITTER VOLTAGE (V)

iI

-

!
II

""" " '",.....

2.4
2.2
Z

"

1.8
I.B
U

~

1.2
1

{O..!ZO. TO·ZII

D.a
D.8
DA

"

Ii D.Z

I

0

~

ZO 40 II 10 118 120 141 118
TC - CASE TEMPERATURE

Maximum Power
Dlaalpatlon va
Ambient Temperature

o ZD 40 10 ao 101 IZD 140 110

rc)

TA - AMBIENT TEMPERATURE (OC)

TL/GII003B-II

Thermal Reaponae In TO-220 Package

i~

~=
.........

~5

zww
...

~e

-.

~i?i

0.7
0.5
0.3

D.Z

O· 0.5
O.Z

~

0.1
0.1
0.07
0.05
0.03
0.02
0.01

0.05
0.02

O.O,!,-

1-nn

-

P(pk)

-

......r INGLE PULSE
0.01

0.02

~

I

0.05

0.1

O.Z

10

0.5

'1

ZO

L

I

'JC(') = rIU "JC
'JC DC THERMAL RESISTANCE
Tpk - TC + Ppk "JC(')
OUTV CVCLE 0 =!!

12

.Z50

100

ZOO

500

Ik

t1 - TIME (mil

TL/GII0036-12

11·206

r--------------------------------------------------------------------,~

~National

Process 5Q
PNP Planar Power

~ Semiconductor

I 1--1..

~

DESCRIPTION

D·~1

(221)

0.018
(0.417)

I

Process 5Q Is a double·diffused silicon epitaxial planar de·
vice. Complement to Process 4Q.

I

APPLICATION
This device was designed for power amplifier, regulator and
switching circuits where speed is importsnt.

D._

~T

i1

0._
10._

Tl/G/l0036-14

Electrical Characteristics (TA =
Symbol

25'C)

Conditions

Min

BVCEO

Ic = 100 mA (Note 1)

50

BVCES

Ic=1mA

60

BVEeo

IE = 1 mA

5

ICES

VCE = 50V

IEeo

VEe = 5V

hFE

VCE = 5V, Ic = 20 mA

hFE

VCE = 5V,Ic = 1A (Note 1)

50

hFE

VCE = 5V,Ic = 8A (Note 1)

20

Typ

Max

Units

120

v
V
V

8
5
5

30
100

300

1

VCE(SAT)

IC = 8A,Ie = 0.8A (Note 1)

0.6

VeE/SAn

Ic = 8A, Ie = 0.8A (Note 1)

1.2

ft

VCE = 5V, Ic = 0.5A

Coe

Vee = 10V

170

pF

VEe = 1V

870

pF

40

ns
ns
ns

C(e

~}
PO(max)
TO·220

Tc = 2SOC

/lJC
T0-220

Tc = 25'C

/lJA
TO·220

TA = 25'C

TJ(max)

All Plastic Parts

V

MHz

40

Ic = 5A, VCE = 30V
le1 = le2 = 0.5A

500

60
60

150

Note 1: Pul.ed measurement = 300,.. pulse width.

11-207

V

W
2.08

'C/W

62.5

'C/W
'C

II

·.·Process5Q
.>'"

This process is available in the following device types.

@IC(A)

VCEO (V), Min

Max

Min
To-220 (NS Package 57)
D45H1
D45H2
D45H4
D45H5
D45H7
D45H8
D45H10
D45H11

30

35

30

60

45
45

60

35

60

35

60
80
80

60
35

60

Typical Pulsed Current Gain
vs Collector Current

_ lDDG

.

Typical Pulsed Current Gain
vs Collector Current

C

10

C

...co
illa:
a:

.!!i

100

l:l

~

2

~

110

2

~

10

~,

10

II:

...>,
10

IC - COLLECTOR CURRENT CAl

h
1=
,I

i

::1

IC - COLLECTOR CURRENT CAl

Sate Operating Area
TO·220

~.'0

...... iT,i".21'
~ZI·C
I

D.2

•

i

60

I

30

I

1.Z
1 T,·-4G"C

0.4

Maximum Power
Dissipation vs
Ca. . Temperature

i

r:-=::-...,.""

100

1.1
1.1

i-""

,

-I i

~

10

IC - COLLECTOR CURRENT CAl

"-

60
40

"-

r- r- r-T~....

~

20

J

II

8.1

lDO

10

100

lC - COLLECTOR CURRENT CAl

Base-Emitter Saturation
Voltage vs Collector Current

CE

Collector-Emitter Saturation
Voltage vsCollector Current

.. lDOO

Ii

iI!
a:
l:l

2
2
2
2
2
2
2
2

10

o
o

VCE - COLLECTOR·EMInER VOLTAGE CVI

10 41 II 10 lID 111 140 110

TC - CASE TEMPERATURE rCI
TL/GI10038-15

Thermal Response In To-220 Package

;~

.....
.....
....
~;!

......
~5

0.7
0.5

D= 0.6

0.3
0.2

0.2

~

0.1

;;

0.1
8.D7

~=
';;

8.15

c_

~

1m

~I! 0.02

0.01

0,D5
0.02
0.01

-

t

PCpkl

0.02

0.06

0.1

0.2

10

0.5

··,c
IIC DC THERMAL RESIST ANCE

J

~L
-

....r INGLE PULSE
0.11

TIn. ',cC~" ,C~

r

Tpk=TC·r,k·ljCC'1
DUTY CYCLE D=!!
tz

'"2
20

60

100

200

'l- n MECm.1
TLtG/looS8-18

11-208

~NatiOnal

Process R4
Ultra-Fast Rectifier

Semiconductor
R072

~"'""'<"'""'""'""'""'"~"'"

~

~

~
~
~
:\
~
~
~~~~~~~""'~

L=M9~
(1.50)

,

DESCRIPTION
These dice are designed especially for use in switching
power supplies, inverters and PWM motor controls. These
dice feature low reverse recovery current with soft recovery.

TT
Jl
0.059
(1.50)

0.087
(2.21)

0.087
(2.21)

TL/G/l0039-1

Note 1: Dimension Toleranoss to.OOOS in. (0.013mm).
Note 2: Thickness of all die types is 0.010 in. (250 1').

Electrical Characteristics
Symbol

Parameter

Conditions

Min

= O.SmA

VRRM

Peak Repetitive Reverse Voltage
(Note 1)

IR

IRRM

Maximum Instantaneous Reverse Current
(Note 1)

VR = VRRM
TJ = 12SoC
TJ = 2SoC

VFM

Maximum Instantaneous Forward Voltage

IR(rec)

Maximum Reverse Recovery Current
(Note 2)

tRR

Maximum Reverse Recovery Time

= 8.0A
IF = 8.0A; VR = VRRM
dlF/dt = 100Al",s
IF = 1A; dlF/dt = SOAl",s
IF = 8A; dlF/dt = 100Al",s

Max

200

V

S
10

IF

Units

0.9S

mA
",A
V

2.S

A

3S
SO

ns
ns

Note 1:
Note 2:

Pulse Test: Pulse Width ~ 300 I's. Duty Cycle :s: 2.0%.
See FigUfS 10 for test conditions.
This process is available in the following device types:

TO·220AB (Case 38)
FRP160SCC
FRP200SCC
FRP2010CC
FRP1610CC
FRP201SCC
FRP161SCC
FRP1620CC
FRP2020CC

TO·220AC
FRP80S
FRP810
FRP81S
FRP820

(Case 41)
FRP100S
FRP1010
FRP101S
FRP1020

FRP#

805

810

815

820

1005

1010

1015

1020

Unit

VRRM
(lR = 0.5mA)

50

100

1S0

200

50

100

1S0

200

V

FRP#
VRRM
(lR = O.SmA)

1605CC 1610CC 1615CC 1620CC 2005CC 2010CC 20150CC 2020CC Unit
SO

100

1S0

200
11·209

SO

100

150

200

V

a

~ r-------------------------------------------------------------------~

a::

I

A.

Process R4
Performance Characteristics
30

101
-c
I

is

II<
II<

5
4
3
2

~

TJ

:::>

u

II)

B
~

~

i!O

~

z

=1250Cr250C

101

I

5
4
3
2

77

0

~

~
~
ffi
~
a..

I I

II

100
0.5

1.5

1.0

25

15

5

2.0
AVERAGE CURRENT - A

FORWARD VOLTAGE DROP - V

TL/G/10039-3

TLiG/10039-2

FIGURE 2. Maximum Power Dissipation

FIGURE 1. Maximum Forward Voltage Drop

~

101

Ij

2

't

...is

I

~
13

...

II<

2

ffi

10-1

:::E

i!:
I

g
I

5

5

TJ

3

=1500c

II!
B

100

....-c

104

~
i::5
....

...
I:!
...~

1/

2
10-2
10-1 5100

103

i
0

5 103

.J

J

101
5 101

!l

:::I

II<

5101

I:

!j

5

100

~

150

200

REVERSE VOLTAGE - V

TIME - ms

TL/G/10039-5

TLiG/10039-4

FIGURE 4. Typical Reverse Leakage Current

FIGURE 3. Maximum Transient Thermal Resistance

u
c

103

...
I

'"~
u

~

ffi

101

f-- TJ =1250C ~

II<

5

""" J.,.o

§
...
II)

m
'"

3

~
TJ

II

V
5

90 100 110 120 130 140 150
dlr/dt -

CASE TEMPERATURE - OC
TLiG/10039-6

=25C1C
101

2

Alp..
TLiG/10039-7

FIGURE 5. Power Derating

FIGURE 6. Typical Reverse Recovery Charge

11·210

Process R4
Performance Characteristics (Continued)

.

...
::IE

1=

102
8

~

...'"
en

~

TJ

-

~

III

10'

II

c

5
4
3 TJ

= 125"C

II
TJ = 25"C

E'

100

.!!!'

5
4
3
2

~

2

'"
10'

5

10'

./

= 125"C

V'

2

-c

V

25"C

10·1

8 102

345

102 2 345
dlF/dt - A/pos

10'

dlF/dt - A/pos
TL/G/l0039-8

TL/G/l0039-9

FIGURE 7. Typical Reverse Recovery Time

FIGURE 8. Maximum Reverse Recovery Current

I(A)

2.0
en

1.0

'-'

TJ

~
en
~

0.5

en

0.2

~
0

......

0.3

r-.

=25"C
II

10

20

30

50

100

,,\Ffl ::=~

.v.· ...

T~

IIII '-

0.1

LEM Test Equipment
Oiodemeter Orr Fast Diode
Geneva. Switzerland

1-----" 'F(AV)

I

'"g

103

o

.~-----10%IR(REC)
TIME
QR(REC) ,, ,
I
I

2.5 ------ ----- ---- --- -

200

SOFTNESS FACTOR, S =

dlF/dt - A/pos

'
'

~ ---- - - ---IR(REC)

Via
TUG/l0039-11

TUG/l0039-10

FIGURE 10. Reverse Recovery Test Waveform

FIGURE 9. Typical Reverse Recovery Softness

Probe Testing
Each die is probed and electrically tested to the limits speci·
fied in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guar·
anteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.
These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

III
11-211

an

a:

I

~NatiOnal

Process R5
Ultra-fast Rectifier

Semiconductor
R082

DESCRIPTION

These dice are designed especially for use in switching
power supplies, inverters and PWM motor controls. These
dice feature low reverse recovery current with soft recovery.

TT
\
~~
"'""'""'""'""'""'"~ dl
L="M~
~"'""",>""'""'""'""'"~

~

~

~
~

0.103
(2.62)

0.123
(3.12)

~

•

(2.62)

•

0.123
(3.12)

TLlG/10039-12

Electrical Characteristics
Symbol

Conditions

Parameter

Min

Max

Units

VRRM

Peak Repetitive Reverse Voltage (Note 1)

IR = 0.5mA

IRRM

Maximum Instantaneous Reverse Current
(Note 1)

VR = VRRM
TJ = 125'C
TJ = 25'C

VFM

Maximum Instantaneous Forward Voltage

IF = 16A

IR(rec)

Maximum Reverse Recovery Current
(Note 2)

IF = 16A; VR = VRRM
dlF/dt = 100Alp.s

2.5

A

tRR

Maximum Reverse Recovery Time

IF = lA;dlF/dt = 50Al,...s
IF = 16A; dlF/dt = 100Alp.s

35
50

ns
ns

Not. 1: Pulse Test: Pulse Width = 300 ,.s. Duty Cycle
Note 2: See FigUffJ 10 for teot condHlono.

~

200

V
10
25

mA
p.A
V

O.B

2.0%.

This process is available in the following device types:
TO-247 (Case 40)
FRK3205CC
FRK3210CC
FRK3215CC
FRK3220CC

TO-220AC (Case 41)
FRP1605
FRP1610
FRP1615
FRP1620

FRP#

1605

1610

1615

1620

FRK#

3205CC

3210CC

3215CC

3220CC

Unit

VRM
(lR = 0.5mA)

50

100

150

200

VRM
(lR = 0.5mA)

50

100

150

200

V

11-212

Process R5
Performance Characteristics
40

102
c

....I

is
Do:
Do:

a

III

::>

8

~
Iii
i5

TJ

2

:z

II

"

=1500c

/ 7

101

TJ

0

!;i!

=25"C

III
~
a..
::s
::>

lrJl

I

I
0.4

i

J
0.6

0.8

1.0

1.2

R~SEtO~ER ~OSSE5 INa.UDEO

30

./ V'

~

is

5
2

I- RECTANGULAR CURRENT WAVEfORMS

~

5

1.4

1.6

~ ~ ~V
33"
!'-to ~ ~ i.-"
~ ~ ~ ~ 100"

DUTY CYCLE: 25"

--

20

10

J...IIIIII~ ~

~
o~ ~
5
o

"-

10

15

50"

20

25

AVERAGE CURRENT - A

FORWARD VOLTAGE DROP - V

TL/G/l0039-14

TLlG/l0039-13

FIGURE 2. Maximum Power Dissipation

FIGURE 1. Maximum Forward Voltage Drop

1~r-r-r-r-r-r-r-~

:~T~J~=~15rOOC~~~=E~~t=~
~

....

2

TJ

=125"C

103

100

150

200

REVERSE VOLTAGE - V

nME - ms

T~/G/l0039-16

TL/G/l0039-15

FIGURE 4. Typical Reverse Leakage Current

FIGURE 3. Maximum Transient Thermal Resistance

u
c

103

I

bl
Do:
C

:c
u
>-

§...
Do:

102 f.---- TJ
5

V

=125"C

J.......-'~ ....
TJ

IJoI

~

II

Do:

5

90 100 110 120 130 140 150

./
=25"C

8 102

2

dlr/dt - AI",s

CASE TEMPERATURE - "C
TL/G/loo39-17

TLlG/l0039-18

FIGURE 5. Power Derating

FIGURE 6. Typical Reverse Recovery Charge

•
11·213

~

a::

r-------------------------------------------------------------------------------------,
Process R5

J

Performance Characteristics (Continued)

..
...
I

2

1=

-<

III

c

102
8

.....~

..a
I..
I..
~

en

!
101
101

5

dlF/dt -

./

...

-

t

101

8 102

2

TJ

2

,

= 125"C

./

1(1'

TJ

.... 10-

3
2

10'"1

5

3

7

TLIG/10039-19

TLIG/10009-20

FIGURE 8. Maximum Reverae Recovery Current

I(A)

2.0
1.0

~
~

TJ

!:I

0.5

5!

0.3

~

.......

....

III
1111

LEM Test Equipment
Dlodemete, Qrr Fest Diode
Geneva, Swllze~and

."..,,,,,\Ff9---:::~
-

=25"C

T~

0.2

"\7(

O~----------~--~--~~~~--~
-10% IR(REC) TIME
QR(REC) ,-

'-

I
I

20

30
50
100
dlF/dt - A/J.ls

,

I

0.1
10

102

dlF/dt - A/J.lI

FIGURE 7. Typical Reverae Recovery Time

..

= 25"C

/

5

101

AIJ.l1

.-

"

2.5 - - - - - - - - - - - - - - - - - - -

200

'

'

~ - - - - - - - --IR(REC)

SOFlNE5S FACTOR, S = Via
TL/G/10039-22

TL/G/10039-21

FIGURE 10. Reverse Recovery Teat Waveform

FIGURE 9. Typical Reverse Recovery Softness

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guar·
anteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.
These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

11·214

~NatiOnal

Process R6
Ultra-Fast Rectifier

Semiconductor
R096

DESCRIPTION
These dice are designed especially for use in switching
power supplies, inverters and PWM motor controls. These
dice feature low reverse recovery current with soft recovery.

11
s::
~~""""""""""""~ dl
~""""""""""""~
~
~

~
~

~

0.103
(2.62)

L=""~
•

(2.62)

0.123
(3.12)

•

0.123
(3.12)

TLlG/l0039-23

Electrical Characteristics
Symbol

Parameter

Min

Conditions

Max

Units
V

VRRM

Peak Repetitive Reverse Voltage

IR = 0.5mA

IRRM

Maximum Instantaneous Reverse Current
(Note 1)

VR = VRRM
TJ = 125°C
TJ = 25°C

5
10

mA

VFM

Maximum Instantaneous Forward Voltage (Note 1)

IF= 8A

1.5

V

IR(rec)

Maximum Reverse Recovery Current (Note 2)

IF = 8A; VR = 200V
dlF/dt = 100Al/J-s

5

A

IF = 8A; dlF/dt = 100Al/J-s

75

ns

Maximum Reverse Recovery Time
tRR
Nol.': Pulse width ~ 300 p.s. Duly Cycle'; 2.0%.
Note 2: See Figure 8 for test conditions.

600

/J-A

This process is available in the following device types:
TO-220AB (Case 38)

TO-220AC Case (41)

FRP1640CC
FRP1650CC
FRP1660CC

FRP840
FRP850
FRP860
FRP#

840

850

860

1640CC

1850CC

1660CC

Unit

VRRM
(IR = 0.5mA)

400

500

600

400

500

600

V

III
11-215

Process R6
Performance Characteristics
1~


fil

~
~

i!E

6
5

•-

TJ = 125"C q

3

/,

2

//

101
8
8
5

•

I

3

TJ = 25"C

,

II II

2

II

uP

1.00 1.50 2.00 2.50 3.00
0.75 1.25 1.75 2.25 2.75 3.25
FORWARD VOLTAGE DROP - V
TL/G/100S9-24

FIGURE 1. Maximum Forward Voltage Drop

PULSE WIDTH - }JoB
TLlG/10039-25

FIGURE 2. Maximum Energy Dissipation Per Pulse

1-I

...
15

,.,-

"":::>""
(,)

~...

/

!5~
""

10:
6

TJ = 150"C -

5

•
103
8
6
5

3

I-

....

I I
TJi12r"C
TJ = 10O"C r- -

-~

102
100 200 300 400500 600

TlME-ms

REVERSE VOLTAGE - V
TL/G/10039-26

TL/G/10039-27

FIGURE 3. Maximum Tranalent Thermal Resistance

FIGURE 4. Typical Reverse Leakage Current

102
8

(,)

6

c

...

5

•

I

'"

3

5

TJ = 125"C

3

2

100

101

'"f
2 34568102

2 34588103

4

~

i...

102
8
8
5

IS
~
""

TJ=125'(

103
8
6
5
3
2

~

101

:
•

r-

r"""

•
3
2

.

TJ = 125"C

/
=

•
3
2

101
101

2 34568 102

2 34568103

dIF/dt-A/}Jos

dIF/dt-A/}JoS

TLlG/10039-29

TLlG/100S9-28

FIGURE 5. Typical Reverse Recovery Current

FIGURE 6. Typical Reverse Recovery Charge

11-216

Process R6
Performance Characteristics (Continued)

..

,03

6

...

5

1=

2

c
I

'"

!...
II::

tg

..
~

LEM Test Equipment
Diodemeter Qrr Fast Diode
Geneva, Switzerland

I(A)

8
4

,02

8

6

5
4

o

3
2

'0''0'

",. ,,,,,\A"~ ;::~

t-----,.IF(AV}

3

.~----"O%IR(REC)
T1I1E
QR(REC) "
I

,

I
I

5 - ----- - ------- -- ---

34568,02 2 34568,03

,
'

~ --- - -----IR(REC)

SOFTNESS FACTOR, S = Via

dIF/dt- A/}Js

TL/G/10039-31

FIGURE 8. Reverse Recovery Test Waveform

TL/G/10039-30

FIGURE 7. Typical Reverse Recovery Time

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.
These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

a
11-217

....

cc

ie

a.

IJNatiOnal
Semiconductor

1
f

L

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

0•035 ,
(D.89)

0.028

lD.71J

ProcessA1
N-Channel Power MOSFET

Gate
_0.024

(o.ii)

I~

1

0.d17

-I

This process is available in the following device types:
TO-220 (Case 37)
IRF510
IRF511
IRF512
IRF513
MTP4NOB
MTP4N10

0.098

(2.5Oj

I- 0.026

r

0.028

(Q.65)
Source

lD.71J

L

c-- ..
§
(D.89)

-I

ItW-fl
0.019

-I
0.087

-----J-

(ffij
TLlG/10040-1

Electrical Characteristics Tc = 25'C (unless otherwise noted)
Symbol

Parameter

Test CondItions

Min

= 250 ,...A; VGS = OV

100

Max

Units

Voss

Drain to Source Voltage (Note 1)

10

loss

Zero Gate Voltage Drain

VOS = Rated Voltage
VGS = OV

250

,...A

IGSS

Gate Leakage Current

VOS = ±20V; VOS = OV

100

nA

VGS(TH)

Gate Threshold Voltage

10

ROS(ON)

Static On-Resistance (Note 2)

VGS = 10V; 10 = 2.0A

gFS

Forward Transconductance

VOS = 10V; 10 = 2.0A

Ciss

Input Capacitance

VOS = 25V; VGS = OV
f = 1 MHz

Coss

Output Capacitance

= 250 ,...A; VOS = VGS

2.0

V

4.0

V

0.60

0

1.0

Siemens
200

pF

100

pF

Crss

Reverse Transfer

30

pF

td(on)

Turn-On Delay Time (Note 3)

Voo = 50V; 10 = 2.0A
VGS = 10V; RGEN = 500

20

ns

tr

Rise Time

RGS = 500

25

ns

~(off)

Turn-Off Delay Time

25

ns

tf

Fall Time

20

ns

Q9

Total Gate Charge

7.5

nC

,

VGS = 10V; 10 = B.OA
Voo = 40V

Note 1: TJ = +25"C to +150'C.
Note 2: Pulse Test Pulse Width :s: 80 "s. Outy Cycle :s: 1%.
Note 3: Switching time measurements performed on LEM TR-58 test equipment.

11-21B

r--------------------------------------------------------------------------,~

(3

Process A1
10

c.J

z

:c

4

t

II<

c

1

.so

l1V

--

TJ=25OC

8

...

1.50

1.VGS=e~~

2

1.25

12 c:I

1.00

~i

0.75

8V

Iii II!

0.50

7V
6V

1i'

0.25

zl

~

9V

'-

"

o
o

~

10V

2

6

8

~!1i
1

,./

i.--'

TJ =25OC

---

o
o

10

TJ=l~

VGS = 10V

2

Vos - DRAIN TO SOURCE VOLTAGE - V

3

/

456

10 - DRAIN CURRENT - A

TL/G/l0040-2

TL/G/l0040-3

FIGURE 1. Output Characteristics

FIGURE 2. Static Drain to Source Resistance
vs Drain Current

7

5

II<
II<

4

...z
:::>

TJ = 250C

z

3

co

2

:cII<

~

,'/

c.J

1

/1

VOS=10V

0-

tJvJ-

J

6



/

1

I!J

....... ""-

16

~
'-'

Voo=40V
'o=8A
12 f---TJ = 25°C

~

C1a

iii:::>

~

r--....

m

....J>

Typical Performance Characteristics

Sl
12

Cm

~

25'T

t-TJ=
VGS=OV
f~l MHz

-

8
4

1

~

/

/

I

V

'I

o
o

2

4

6

8

10

Og-TOTAL GATE CHARGE-nC

Vos- DRAIN TO SOURCE VOLTAGE-V

TL/G/l0040-7

TL/G/l0040-6

FIGURE 6. Gate to Source Voltage
va Total Gate Charge

FIGURE 5. Capacitance vs Drain
to Source Voltage

11·219

•

-r-------------------------------------------------------------~



2

i:!
CI

3.2

I~

2.4

~1Il
I
'i'

1.6

~~

(.)

l!!:

I

12<::1

Z

I
~

;$
2.

6

4

0

10

8

0.8

0

2

vos- DRAIN TO SOURCE VOLTAGE-V

4

3

5

10 - DRAIN CURRENT - A

TUG/10040-15

TL/G/10040-16

FIGURE 1. Output Characterlatlcs

FIGURE 2. Static Drain to Source Realstance
va Drain Current

7

6


'"

4

z

3

Z

OCU

'"I
CI

I" ~

TJ= 25

(.)

~

~

tlvJ-

)

2

10=:.!·Q..!!!~

.......

.....

TJ = 12.S"C

I'

~~

~

o

3

.....

.......

~~
4

5

6

7

8

10

9

-50

VGS-GATE TO SOURCE VOLTAGE-V

0

50

100

150

TJ- JUNCTION TEMPERATURE - "C

TL/G/10040-17

TL/G/10040-18

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

FIGURE 3. Transfer Characteristics

2.0

-

:--.

.

~

Voo = 4SV
10=3.0A
- TJ=2.S"C

C
C,...

r--

/

=TJ=
VGSFOV
1MHz

I

~

-fi

o

~ f-'

V

V

1/

~

o

2

4

6

8

10

12

0g-TOTAL GATE CHARGE- nC

Vos - DRAIN TO SOURCE VOLTAGE - V

TLlG/10040-20

TL/G/10040-19

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. CapaCitance vs Drain
to Source Voltage

11·222

ProcessA2
Typical Performance Characteristics (Continued)
10'

--- - 1001'"

MTP2Nla/20

,

~.50
0.25 j..o
0.10

~
~

IP~O. 5
I

SINGLE
iilUii

1+-.

TJ(IIAX) "Tc+ PyXZIJC

TL/G/l0040-22

TL/G/l0040-21

FIGURE 8. Transient Thermal Resistance
vs Time for MTP2N18/2N20

FIGURE 7. Forward Biased Sate Operating
Area tor MTP2N18/2N20

DU~.5b

-c

0.25

I

I

t,

. .rootor.
t~ ~
I- Duty
D=
I- D ...... opply Ie train
of hlOUng pu""

t-TIME-ms

VDS - DRAIN TO SOURCE VOLTAGE - V

ia

rtn..=:::

.-l

~r0.05
100
I

jl-'
SINGLE
PULSE

I

.$'

III
10'
102
103
VDS - DRAIN TO SOURCE VOLTAGE - V

Dn=
.-=

-1- f -

.-l

t,

DuiJ

I+- •

rooter. D=

D CUIWI .ppty to train
of hIoUng pullH
TJ(IIAX)=Tc+PM xZlJC

100

t-TiME-ms
TL/G/l0040-24

TLlG/l0040-23

FIGURE 10. Transient Thermal Resistance
vs Time for IRF610-613

FIGURE 9. Forward Biased Safe Operating
Area for IRF610-613

Typical Electrical Characteristics
PULSE
~~!~r.o!

____ •

OUTPUT. VOUT

RclN

INVERTED

90:1:

INPUT, V,N

50:1:

TL/G/l0040-25

FIGURE 11. Switching Test Circuit
TLlG/l0040-26

FIGURE 12. Switching Waveforms

11·223

•

~NatiOnal

processA3
N-Channel Power MOSFET

Semiconductor
0.035

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

I~I

f

0.028

co.m

Gate

L

1-;0.024
(0.61)

I

1

0.617
(0.43)

-I

...J.

I

This process is available in the following device types:
TO-220 (Case 37)
IRF710
IRF711
IRF712
IRF713
MTP2N35
MTP2N40

0.098

(2.5Oi

_;0.026
(0.65)

f

0.028
(0.71)

L

Source

r-

-j

I'co:m
0.019

'f

---J

1_

0.035
(0.89)

~
0.087

(ffij
TL/G/l0040-27

Electrical Characteristics Tc = 25'C (unless otherwise noted)
Symbol

Parameter

Voss

Drain to Source Voltage (Note 1)

loss

Zero Gate Voltage Drain

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Clss

Input CapaCitance

Test Conditions

Min

= 250 pA; VGS = OV
= Rated Voltage
= OV
VOS = ±20V;Vos = OV
10 = 250 p.A; VOS = VGS
VGS = 10V; 10 = 2.0A
VOS = 10V; 10 = 2.0A
VOS = 25V; VGS = OV
f = 1 MHz

400

10

VOS
VGS

2.0

Max

Units
V

250

p.A

100

nA

4.0

V

3.6
0.5

0
Siemens

200

pF

Coss

Output CapaCitance

50

pF

Crss

Reverse Transfer

15

pF

td(on)

Turn-On Delay Time (Note 3)

10

ns

tr

Rise Time

20

ns

td(off)

Turn-Off Delay Time

10

ns

tj

Fall Time

15

ns

Og

Total Gate Charge

7.5

nC

= 200V; 10 = O.SA
= 10V; RGEN = 500
RGS = 500

Voo
VGS

VGS
Voo

= 10'1; 10 = 2.0A
= 200V

Not. 1: TJ = + 25'C to +150'C.
Note 2: Pulse Test: Pulse Width s: 80 p.S, Duty Cycle s: 1%.
Note 3: Switching time meesurements performed on LEM TR·58 test eqUipment.

11-224

r-----------------------------------------------------------------------------,
ProcessA3
Typical Performance Characteristics

.....
I

...z

2.5 r----,,----,----,-----r-"7'1

9.0

2.0

~

7.5

I2dl

6.0

~~-c

4.5

~

'"'"=>
<.J

1.5

zl

Z

1.0

~!a

:c
.so

-

.--- . /
TJ=~ i--"'"'

3.0
I'"

J

0.5

2

6

4

1.5

o
o

10

8

0.5

Vos-DRAIN TO SOURCE VOLTAGE-V

1.0

1.5

2.0

2.5

TUG/10040-2B

TJ=25y
.. 2.0

Tl/G/10040-29

....

II
/1
J

'"
B

FIGURE 2. Static Drain to SOurce Resistance
vs Drain Current

...~

V

1.6

II<

1.2

z

0.8

.so

0.4
~

o

1.1

~

'"
i5

1.0

i

0.9

~

.........

~

8

~
.........

~

I' .....
.........

z

7

10.=:.1.QE!A_

0.7

0

6

~

Q8

0

~

345

90

:l:

J 'I

I

tlvGSL

1.2

~

TJ = 125"C

~

1.3

!j

VOS= 10V

I

0

9

0

-50

r

VGS - GATE TO SOURCE VOLTAGE - V

T

50

100

150

JUNCTION TEMPERATURE - "C

TL/G/10040-30

TL/G/10040-31

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

103

20

>
I

t"'---.

uP

3.0

10 - DRAIN CURRENT - A

FIGURE 1. Output Characteristics

~

It

TJ=12Sy

Iil~

'"

0
I

VGS= 10V

~

Cbs

~
!j

e...

...~ail

~

S

16

Voo=45V
ID=2.0A
12 I--TJ = 25"C

=>
0
en

8

i

I=TJ =2
VGSF OV
1-1;=1 101Hz

4

I

oJ

100

I

V

o
o

~

2

/

/

V

V

4

6

8

10

12

Qg-TOTAL GATE CHARGE-nC

Vos - DRAIN TO SOURCE VOLTAGE - V

TL/G/1OO40-33

TL/G/10040-32

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. Capacitance vs Drain
to SOurce Voltage

11-225

a

~r-----------------------------------------------------------~

I

a.

ProcessA3
Typical Performance Characteristics (Continued)

l1li_

10'1'Sl'i".,......."..,...=="...,..",...,....~~

...
......z
iii

101

I

:::>

'"z

lrP

~
Q
I

~~

J?>

~a

uri
10'

102

103

103

104

t-TlhtE-ms

Ves-DRAIN TO SOURCE VOLTAGE-V

TL/G/10040-36

TLlG/10040-34

FIGURE 8. Tranalent Thermal Resistance
vs Time for MTP2N35/2N40

FIGURE 7. Forward Biased Safe Operating
Area for MTP2N35/2N40

10'

DU~.S~
0.25

~I0.05

1.lJ1
'"

~
SINGLE
PULSE
III
10"'2

'-, ~
... t~
Duty factor.Da
~

10"2 10-1

C::u' .~~ tral.

TJ(IIAX)~C·PMXz...c

liii i

lrP

10'

102

103

t-TlhtE-ms

Ves - DRAIN TO SOURCE VOLTAGE-V

TL/G/10040-37

TL/G/10040-36

FIGURE 10. Transient Thermal Resistance
YS Time for IRF710-713

FIGURE 9. Forward Biased Safe Operating
Areafor1RF710-713

Typical Electrical Characteristics
td(OFF)

PULSE

GENERATOR
p--------.

OUTPUT, VOUT
INVERTED

,

I

"'
I
I
I

Ros
90%
50%
TLIGI10040-38

FIGURE 11. Switching Test Circuit
TL/G/10040-39

FIGURE 12. Switching Waveforms

11-226

~NatiOnal

Process 81
N-Channel Power MOSFET

Semiconductor

1

0.0<15
(1.13)

r

0.022

I

to.5sl

L

I

DESCRIPTION

I

These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

0.025

'I'

(G.063j

Gat,

I:::::r0.016

(G.4ij

!

This process is available in the following device types;
TO-220 (Case 37)
FMP18NOS
FMP20NOS
FMP18N06
FMP20N06

0.114

(2.89)

r

"1

0.040
(1.01)

Source

0.044

(D2j

lt

o.o23 .,.
(0.59)

J

0.068

(mj

.1-

.,

0.114

(2.89)

TLlG/l0040-40

Electrical Characteristics Tc = 2S'C (unless otherwise noted)
Symbol

Parameter

Test Conditions

Min

Voss

Drain to Source Voltage (Note 1)

SO

loss

Zero Gate Voltage Drain

IGSS

Gate Leakage Current

= 2S0 p.A; VGS = OV
VOS = Rated Voltage
VGS = OV
VOS = ±20V;Vos = OV
10 = 2S0 p.A; VOS = VGS
VGS = 10V; 10 = 10A
VOS = 10V; 10 = 10A
VOS = 2SV; VGS = OV
f = 1 MHz

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Ciss

Input Capacitance

Coss

Output Capacitance

Crss

Reverse Transfer

lel(on)

Turn-On Delay Time

tr

Rise Time

td(otf)

Turn-Off Delay Time

tf

Fall Time

Qg

Total Gate Charge

Note 1: TJ = +25'C to + 150'C.
Nota 2: Puis. Test: Pulse Width s: 80 1'8, Duty Cycle

10

= 40V; 10 = 10A
= 10V; RGEN = 500
RGS = 500

VOO
VGS

VGS = 10V; 10
Voo = 40V

= 25A

2.0

Max

Units

V
2S0

p.A

100

nA

4.0

V

0.08S

n

S

Siemens
850

pF

400

pF

150

pF

50

ns

90

ns

60

ns

75

ns

20

nC

III

s: 1%.

11-227

Process 81
Typical Performance Characteristics
25
VGS

ooC
I

20

.......

r YV
10

0.21

9V
8V

TJ =25yt
SOI-'S
~
/
15 PULSE

z

_IX
IX

i!!:

10

ooC
IX
I

5

0

J

5V
1

2

3

--

0.03
0
0

5

4

~
~

TJ = 25"C

~Iii 0.09

l7lEi
!.:" 0.06

6V

II:..

0

_........

I I

0.15 I-- -TJ=125"C

~S 0.12

7V

I

Q

.S'

VGS= lOY
0.18

zl

TE5T~V

:::>
c..>

~
:::>
51
g~

5

VDS-DRAIN TO SOURCE VOLTAGE-V

10

15

20

25

... ~

30

TL/G/10040-42

TL/G/10040-41

FIGURE 1. Output Characteristics
28

IX
IX

:::>
c..>

z

:c

""
Q

I

.S'

VDS =10V
20
16

JV
r
......:

8

0
3

--

5

1.3

90

1.1

IX

~

1.0

....

0.9

fl
N

o.s

:c

~

TJ = 125"C

8

7

lo=:J..·LmA~

........

~

........

9

~

I........

~

I........

:a!::IE

0.7

z

0

IX
0

6

JDSJVG~

~

i:

~V

4

~

!:i 1.2
g

TJ=25~b

12

4

FIGURE 2. Static Drain to Source Resistance
vs Drain Current

Ij
/I
:;

24

ooC
I

.......z

-so

10

VGS-GATE TO SOURCE VOLTAGE-V

0

100

SO

lSO

TJ- JUNCTION TEMPERATURE - "C

TUG/10040-4S

TL/G/10040-44

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

103

--

I

I

tl
z
~

§
I

c..>

102

~
;:!

~oss

.....

20

....0
tl
IX

~

:::>

!i!
g

,
~
I

101

/

V
./

,

8
4/
0

/

0

102

I

Voo = 40V
16 -IO=20A
TJ = 25"C
12

>

-TJ=25j
VGS=OV
1=1 MHz
101
100

24

>

Ciss

...co.

35

ID - DRAIN CURRENT - A

5

10

15

20

25

30

Og - TOTAL GATE CHARGE - nC

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-46

TL/G/10040-45

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. Capacitance vs Drain
to Source Voltage

11-228

r-------------------------------------------------------------------~~

Process 81
102

__

c

....
I

11 "".

15
II<
u

z

101

~I

0,10

,,'h

JlJ1
...I.,
'-: 1 r-

0,05 ~

TC=25OC

~LE

~tNi~r'i

.E>

-;:~

0.25

~~ I"~

II<

:::>

Ji!t

_

~n;~,,=:~
- ___ •• _
II"'
''bL
~__
1'b..-:)'~"o«"

I....
OJ

Typical Performance Characteristics (Continued)

.... t~
Duly F.-,D.

PULSE

TJ(UAX)oTc+ PyxZg:

10'
t-TiME-ms

VDS - DRAIN TO SOURCE VOLTAGE - V

f--

~.=:'f.~ train

103

102

TL/G/l0040-48

TL/G/l0040-47

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics
VIN

PULSE

~~R}r.o!

____ •

RGEN

OUTPUT, VOUT
INV£RTED

:

INPUT, V,N
TLlG/l0040-49

FIGURE 9. Switching Test Circuit
TL/G/l0040-50

FIGURE 10. Switching Waveforms

III
11·229

IjNational

Process 82
N-Channel Power MOSFET

Semiconductor

r

r-

0.033,0.032
(0.84)
(O,iiJ

0.036

1

I I

(o:ti)

--,
0.025

Gate

L

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

(O:i3j

---1..

This process is available in the following device types:
TO-220 (Case 37)
IRF520
IRF521
IRF522
IRF523
MTP10N08
MTP10N10

0.133

{i.39}

r

I Sou~e I

0.035

(Oli)

L

-,
0.026

lQ.iil
---1..

t""-+"" ~lG.i4l

(O,iiJ

0.019

!2.51l

TUG/l0040-51

Electrical Characteristics To Symbol

26"C (unless otherwise noted)

PIl'llmet.r

Voss

Drain to Source Voltage (Note 1)

loss

Zero Gate Voltage Drain

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Claa

Input Capacitance

T.lt Condition.

Min

= 250 jIA; VGS = OV
= Rated Voltage
= OV
VOS = ±20V; VOS = OV
10 = 250 p.A; VOS = VGS
VGS = 10V; 10 = 4A
VOS = 10V; 10 = 4A
VOS = 25V; VGS = OV
f = 1 MHz

100

10

VOS
VGS

2

MIX

Unit.
V

250

p.A

100

nA

4

V

0.30

n

1.5

Siemens
800

pF

COBB

Output Capacitance

400

pF

Cras

Reverse Transfer

100

pF

leI(on)

Turn-On Delay Time (Note 3)

40

ns

Ir

Rise Time

leI(off)

Turn-Off Delay Time

tf

Fall Time

Qg

Total Gate Charge

Note1:TJ -

= 50V; 10 = 4A
= 10V; RGEN = 50n
RGS = 50n

Voo
VGS

VGS
Voo

= 10V; 10 = 10A
= 50V

+ 25'C to +15O'C.

Note 2: Pulse width IImRed by TJ.
Note 3: Swilchlng lime meesuremants performed on LEM TR·58 lest equipment

11-230

70

ns

100

ns

70

ns

15

nC

Process 82
Typical Performance Characteristics
10

...,
...
0-

Z

'"'"u

I

TJ = 2S"C
8 80/011 PUL
TEST
6

z

:c

'",

4

2

r
o

~Cj
z,

8V

SV

3

2

0.3

Ii)~

0.2

J

0.1

,'"

6V

0.4

~~j!
~!!l

7V

f_

4

TJ;~

VGS =10V

O.S

51

J

0

.!i?'

kV

!i
~

1/""'"

~

0.6

VVG:'::OV -2

TJ =2S"C_ V"

o
o

S

10

8

Ves-DRAIN TO SOURCE VOLTAGE-V
TL/G/10040-52

TL/G/10040-53

FIGURE 1. Output Characteristics

FIGURE 2. Static Drain to Source Resistance
vs Drain Current

III 1.3

14

...,

...
0-

Z

12
10

'"'"u

8

~,

6

~

_Q

/
//

Ves= 10V

TJ = 25"C

"
2

o

3

~
4

5

1/

7

8

9

;:5
~

1.2

~

1.1

l!i151

1.0

~

0.9

i5

P~=125OC
~
I I

6

~

I~

10

J)vJ-

[......

lo.~·~~
~

i" ~

0

-50

VGS - GATE TO SOURCE VOLTAGE - V

......

50

r-...

......

100

150

TJ - JUNCTION TEt.lPERATURE - OC

TL/G/10040-54

TL/G/l0040-55

FIGURE 3. Transfer Characterletlcs

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

105

20

,

>

~

C••

...... t--

Voo= 50V
ID= lOA
12 r---TJ = 250C

~

:il

r0-

C...

/

16

'-'

~OSI

...........

12

10 - DRAIN CURRENT - A

~

/

0

1

-TJ = 25
VGs=OV
f=1 t.lHz

en
~

8

~,

4

~

/

/

,/

/

V

o
o

5

10

15

20

25

au-TOTAL GATE CHARGE-nC

Vos-DRAIN TO SOURCE VOLTAGE-V

TLlG/l0040-57

TL/G/10040-56

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. Capacitance vs Drain
to Source Voltage

III
11·231

Nr---------------------------------------------------------~

m

Ie

a.

Process 82
Typical Performance Characteristics (Continued)
102
PEAK CUR mTLI rnIlN
1 OP£RAlION IN 1HIS
0
REGION MAY BE
IDOl!!
I..IIInIDBY
""":1.0
Ros(on)
0..

rs.

.A

"'I

_'I "

TC=25OC
TJ = 1500c
1 SINGLE PULSE
Iii
100

"'DCi'.

0=0.50

..

is~W

"'-

iii

W.=.=

0.1

-1-

-+It,

·IRFI 0
IIF 121/123"ji

I

17

SINGLE

1iiI

100

llil

101

~p~~

:

Duly F.otor,D= 1 - e-D_applylonln
01 hoaUIIII ,0I0Il

TJ(\IAX)-Tc+PwIltJc

101

102

103

104

t-lIME-ms

Vos-ORAIN TO SOURCE VOLTAGE-V

TLlG/l0040-59

TLlG/l004O-56

FIGURE S. Transient Thermal Resistance
vs Time for IRF120-123 and IRF520-523

FIGURE 7. Forward Biased Safe Operating
Area for IRF120-123 and IRF520-523

101
102_.

0=0.50
0.25
0.10 IAVI

~I?I' I

,1 J

~

ITrl
r-...l

-+I..'!

Duly FaoIor,D=1-

~
D .......pplylonln
01 hoaUIIII ,0I0Il
1
SINGLE PULSE TJ(\IAX).Tc+PWIltJc

101

102

102

t-lIME-ms

Vos - DRAIN TO SOURCE VOLTAGE - V

TL/G/l0040-61

TL/G/l0040-60

FIGURE 10. Transient Thermal Resistance
vs Time for MTP10NOSI10Nl0

FIGURE 9. Forward Biased Safe Operating
Araa for MTP10NOS/l0Nl0

Typical Electrical Characteristics
PULSE
GENERATOR
.---------.

OUTPUT, VOUT
INVERTED

INPUT, VIN

sox

TLlG/l0040-62

FIGURE 11. Switching Test Circuit
TL/G/loo4O-63

FIGURE 12. Switching Waveforms

11·232

~NatiOnal

Process 83
N-Channel Power MOSFET

Semiconductor

I

0.033 (0.84)

1

0•032
(0.81)

I

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

1-

I

t

0.036

(O,9i)

I

L

Gat.

I

0.025

1OT3l

--i.

This process is available in the following device types:
TO-220 (Case 37)
IRF620
0.133
(3.39)

IRF621
IRF622
IRF623
MTP7N18

I

0.035
(D.88)

L

r

I Sou~. 1

t

MTP7N20
0.026
(0.66)

-*1_

0.033 -!-0.032
(0.84)
(OF1i

~

0.099

(IT1j
TL/G/lDD40-64

Electrical Characteristics Tc
Symbol

= 2SOC (unless otherwise noted)

Parameter

Test Conditions

Min

Max

Units

VDSS

Drain to Source Voltage (Note 1)

ID = 2S0 ",A; VGS = OV

IDSS

Zero Gate Voltage Drain

VDS = Rated Voltage
VGS = OV

2S0

",A

IGSS

Gate Leakage Current

VDS = ±20V; VDS = OV

100

nA

VGS(TH)

Gate Threshold Voltage

ID = 2S0 ",A; VDS = VGS

RDS(ON)

Static On-Resistance (Note 2)

VGS = 10V; ID = 2.SA

gFS

Forward Transconductance

VDS = 10V; ID = 2.SA

Ciss

Input Capacitance

VDS = 2SV; VGS = OV
f = 1 MHz

Coss
C,ss
td(on)

Turn-On Delay Time (Note 3)

200

2.0

V

4.0

V

0.8

0.
Siemens

1.3
600

pF

Output Capacitance

300

pF

Reverse Transfer

80

pF

40

ns

VDD = 100V; ID = 2.SA
VGS = 10V; RGEN =

son

tr

Rise Time

td(off)

Turn-Off Delay Time

tf

Fall Time

Qg

Total Gate Charge

RGS =

son

VGS = 10V; ID = 6.0A
VDD = 4SV

Note': TJ = + 25'C 10 +150"C.
Note 2: Pulse width limiled by TJ.
Note 3: Swilching lime measurements performed on LEM TR·58 lesl equipment.
11-233

60

ns

100

ns

60

ns

1S

nC

III

Process 83
Typical Performance Characteristics

i

10

1.2

GS =10vg9V

...

8

......
I

TJ=25"C
80ps
PULSE

Z

'"'"...:::>

8V

JV

.'"

4

I

.£i'

0

Ii

7V

l
r

2

~
TJ= 125"C

12<3 0.8

TEST~

z

::c

i

VGS =10V

1.0

~m
~'"
'i

6V

1

5V

2

TJ=25"C

0.4
0.2

o

o

5

3

-

0.6

2

VDS - DRAIN TO SOURCE VOLTAGE - V

4

6

8

10

12

10 - DRAIN CURRENT - A

TL/G/l0040-6S

TUG/l0040-66

FIGURE 1. Output Characteristics
12

...

......z
...'"'"

10

:::>

8

4

.£i'

2

3

5

1.2
1.1

II!

1.0

~

0.9

~

0.7

z

0

:2
II<
0

6

7

.....

L

JDSlvGS

[".

lo':..!·QE:I~

.....

[".

. o.s

~~
4

~

90

i5

AV

o

1.3

::t:

/'

I

~

!j

TJ =25"C UTJ= 125"C

6

.'"
~

IV
IJ

VDS= 10V

I

FIGURE 2. Static Drain to Source Resistance
YS Drain Current

8

10

9

VGS-GATE TO SOURCE VOLTAGE-V

-so

0

.....

so

I" ~

......

100

ISO

TJ- JUNCTION TEWPERATURE - "C

TL/G/l0040-67

TL/G/l0040-68

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

103

20

>
I

~

......

"
1

1

Voo = 90V
lo=6.0A
12 I--TJ= 25"C

~

11..

I-TJ = 25
vos=OV
f=IWHz

16

~

Ii!

Crss

12

......

~

:::>

~

8

/

I

.}

/

/

1/

10- - '

"V
o
o

4

8

12

16

20

24

Qg - TOTAL GATE CHARGE - nC

VDS - DRAIN TO SOURCE VOLTAGE - V

TL/G/10040-70

TuG/l0040-68

FIGURE 8. Gate to Source Voltage
YS Total Gate Charge

FIGURE 6. Capacitance VI Drain
to Source Voltage

11·234

Process 83
Typical Performance Characteristics (Continued)

102~. .
~~~,II~~~-I,I

<
I

0PERA11ON N 11115
10' REG10II .....y BE
Lt.tIIED BY

!z
!11

'"u

Rn!(...)

I

Iji

:::>

100

I
.J;>

00

10!"

10..

!R !R

!:l ~
S~

Tc=25"C
TJ = 15O"C
SINGLE ~~f-SE

10-1
100

..

10'

102

103

t-nWE-ms

VDS-DRAIN TO SOURCE VOLTAGE-V

TUG/l0040-72

TUG/l0040-71

FIGURE 8. Transient Thermal Resistance
ys Time for IRF220-223 and IRF620-623

FIGURE 7. Forward Biased Safe Operating
Area for IRF220-223 and IRF620-623
102 0PERA11ON N 11115
REG10II .....y BE
I.JIIRmBY

Rn!(""7 PEAK CURRENT LINITA110N
10'

~~10k
lOOps.

10l1li ......

VDS - DRAIN TO SOURCE VOLTAGE - V
TUG/l0040-74

TL/G/l0040-73

FIGURE 10. Transient Thermal Resistance
ys Time for MTP7N18/7N20

FIGURE 9. Forward Biased Safe Operating
Area for MTP7N1817N20

Typical Electrical Characteristics
I,t(ON)....

PULSE
GENERATOR
.---------.

OUTPUT. VOUT
INVERTED

!? ~!
I

INPUT,

V,N

~
l-

V.
---SJ"

!fo"

90"

9:"~

I\...-

........ J..l0"
TUG/l0040-75

!---PULSE WI01H------

FIGURE 11. Switching Test Circuit

TL/G/l0040-76

FIGURE 12. Switching Wayeforms

11-235

a

~NatiOnal

Process 84
N-Channel Power MOSFET

Semiconductor

I

0.053
(D.U)

-r

0.032
(O,iii

1

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

[ -

1

0.036

trni

I

L

Gate

I

t0.025
(O,63j
~

This process is available in the following device types:
TO-220 (Case 37)
IRF720
IRF721
IRF722
IRF723
MTP3N35
MTP3N40

0.133

(3.39j

I

1

0.035

(Q.66)

L

t..

(D.U)

Soume

I

t0.026

(Q.66)

~

-·I.~~(O,iii
0.099

(IT1)
TL/G/l0040-77

Electrical Characteristics Tc = 25'C (unless otherwise noted)
Symbol

Parameter

Voss

Drain to Source Voltage (Note 1)

loss

Zero Gate Voltage Drain

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Ciss

Input Capacitance

Coss
Crss
Id(on)

Turn-On Delay Time (Nole 3)

Test Conditions

Min

= 250 /LA; VGS = OV
= Rated Voltage
= OV
VOS = ±20V; VOS = OV
10 = 250 /LA; VOS = VGS
VGS = 10V; 10 = 1.5A
Vos = 10V; 10 = 1.5A
VOS = 25V; VGS = OV
f = 1 MHz

400

10

VOS
VGS

2.0

Max

Units
V

250

/LA

100

nA

4.0

V

1.8

0.

1.0

Siemens
500

pF

Output CapaCitance

100

pF

Reverse Transfer

40

pF

40

ns

Ir

Rise Time

Id(off)

Turn-Off Delay Time

If

Fall Time

Og

Total Gate Charge

= 200V; 10 = 1.5A
= 10V; RGEN = son
RGS = son

Voo
VGS

VGS
Voo

= 10V; 10 = 4.0A
= 200V

Nol. 1: TJ = +25'C to + 150'C.
Nota 2: Pulse Test: Pulse Width'; BO I's, Duty Cycle'; 1%.
Nol. 3: Switching time measurements performed on LEM TR·5B tesl equipment.

11-238

50

ns

100

ns

50

ns

15

nC

I

r-----------------------------------------------------------------------------,
Process 84

!

Typical Performance Characteristics
5r-~r-~--~---r~~

oC

•

4

""""

3

%

2

...

6

~
::>
51
I'!CI

%

::>

u

:c

4

-c

3

t;>!3

2

~lil

""
•
oS'

J
2

4

6

V

/

"

/

~

o
o

10

8

~

./

TJ=25;'"

.""

Q

TJ = 125"C

VGS= 10V

5

%.~~

0-

2

3

456

'0 - DRAIN CURRENT - A

Vos - DRAIN TO SOURCE VOLTAGE- V
TL/G/l0040-7B

TL/G/l0040-79

FIGURE 1. Output Characteristics

FIGURE 2. Static Drain to Source Reslatance
vs Drain Current

6

...~

1.3

0

1.2

!j

5

oC

•
...%
""""
::>
0-

(,)

Vos= 10V
I

4

OCU

%

:c

""
Q

>

~

...
Q

,

2

If

""j!:
S

;

~

o

4

3

5

o.g

~

TJ = 125"C

""0

678

r-.

D.8

,
"

0.7
0

%

tlvGSL

10=I.OmA

~

!3 1.0

j

•
oS'

"" ,
"

1.1

0

:c

TJ= 25

3

-so

9

VGS-GATE TO SOURCE VOLTAGE-V

0

50

100

150

Tr JUNCTION TENPERATURE- "C

TL/G/l0040-S0

TL/G/l0040-S1

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

103

20

>

/

•

~

.........

g

li!

....
COlI

~

1

r-TJ = 25
VGS=OV

I
~

~

~

16

VDD = 200V
ID=o4·0A
12 f--TJ = 25"C

/

8

/

4

f~'~1z

/

o

/

I-- V

V

o

/

/

4

8

12

16

20

24

Qg-TOTAL GATE CHARGE-nC

Vos - DRAIN TO SOURCE VOLTAGE - V

TLlG/l0040-S3

TLlG/l0040-S2

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. Capacitance vs Drain
to Source Voltage

III
11-237

;r---------------------------------------~

I

Q.

Process 84
Typical Performance Characteristics (Continued)
103

TC=25l1C
TJ = 15O"C

PEAK CURRENT UIIIT.t.TION

I-- b- 1RF 320/322 - SINGLE PULSE
~~ IRF321/323
ITT
00 ~10p.1

,----

1
I

nil

OPERA11ON IN lHlS
REGION MAY BE
LlotrlEO BY RDS(on)

.$J

II-

'"

~

~

I

;~
~~

t-Tlt.tE-ma

VDS-ORAIN TO SOURCE VOLTAGE-V

TL/G/l0040-85

TL/G/l0040-84

FIGURE 8. Transient Thermal Resistance
vs Time tor IRF320-323 and IRF720-723

FIGURE 7. Forward Biased Sate Operating
Area tor IRF320-323 and IRF720-723

102
1 •••

..

101

TC= 25lIC
TJ = 15O"C
SINGLE PULSE
PEAK CURRENT LIMITA \iIlN

uiA!! M

0=0.50
10 . .,

V-

,..,

1\

l"

~~

0.25 t-b

d
ISl

0PERA11ON IN lHlS
REGION MAY BE
1 UMf1[I) Rc5(on)

0.0 l..o'WI'

r

a;

•

~"

kr.j

~I:::II

~
-+It,

,

~t~ ~
0U\y Factor,D.
D.......pply to train

of h.Ung pu,""

~ SINGLE PULSE TJ(MAX)=Tc+PyxZfJC

1111

101

t-Tlt.tE-ml

VDS • DRAIN TO SOURCE VOLTAGE - V

TL/G/l0040-67

TL/G/l0040-86

FIGURE 10. Transient Thermal Resistance
vs Time tor MTP3N35/3N40

FIGURE 9. Forward Biased Sate Operating
Area for MTP3N35/3N40

Typical Electrical Characteristics

PULSE
GENERATOR

OUTPUT, VOUT
INVERTED

,.---------~

RGS
INPUT, VIN
TL/G/l0040-88

FIGURE 11. Switching Test Circuit
TL/G/l0040-69

FIGURE 12. Switching Wavetorms

11·238

~NatiOnal

Process 85
N-Channel Power MOSFET

Semiconductor

r

0.033
(Oi4}

T

O 032

•
(D.iij

1

1

0.036

(OJii

I

L

Get,

I

t0.023

1G:i3l
.-i.

This process is available in the following device types:
TO-204 (Case 42)
TO·220 (Case 37)
IRF420
IRF820
IRF421
IRF821
IRF422
IRF822
IRF823
IRF423
MTP2N45
MTP2N50

O.t33

I I

1

Source

lD.iii

L

m

U'I

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

{ilij

0.035

i

t0.026

lD.iii

.-i.

t . . -~-·.u~(Oi4}

(D.iij

0.099

(r.5lj
TLlGIt 0040-90

Electrical Characteristics Tc = 25'C (unless otherwise noted)
Symbol

Parameter

Teet Conditione

Min

Voss

Drain to Source Voltage (Note 1)
Zero Gate Voltage Drain

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

= 250 jAA; VGS = OV
= Rated Voltage
= OV
Vos = ±20V; Vos = OV
10 = 250 p.A; Vos = VGS
VGS = 10V; 10 = 1A
VOS = 10V; 10 = 1A
VOS = 25V; VGS = OV
f = 1 MHz

500

loss

ROS(ON)

Static On·Resistance (Note 2)

gFS

Forward Transconductance

Ciss

Input Capacitance

Coss

10

Vos
VGS

2.0

Max

Unite
V

250

p.A

100

nA

4.0

V

3.0
1.0

0
Siemens

400

pF

Output CapaCitance

100

pF

Crss

Reverse Transfer

40

pF

id(on)

Turn·On Delay Time (Note 3)

40

ns

tr

Rise Time

50

ns

td(off)

Turn·Off Delay Time

60

ns

tf

Fall Time

60

ns

Qg

Total Gate Charge

15

nC

= 250V; 10 = 1A
= 10V; RGEN = 500
RGS = 500

Voo
VGS

VGS = 10V; 10 = 3.0A
Voo = 200V

Note 1: TJ = +2S'C to + 150'C.
Nole 2: Pulse width IImHed by TJ.
Note 3: Switching time measurements performed on LEM TR·S8 test equipment.

11·239

III

Process 85
Typical Performance Characteristics
5
-c

"

I

...
""""
...
z

I-

Z

B.OV 9.0V

80~

PULSE
TEST

L

:c

2

Q

o IT
o

'i

8

12

16

---

TJ = 25"C

2

1

. 5.5V

o
o

20

2

Vos - DRAIN TO SOURCE VOLTAGE- V

3

~

5

"

10 - DRAIN CURRENT - A

TL/G/10040-91

TL/G/10040-92

FIGURE 1. Output Characteristics
4.0
Vos= 15V

-c

3.2

15

...""""

2.4

~I

1.6

.Jii>

0.6

'h
I

TJ = 25

I

:0

z

FIGURE 2. Static Drain to Source Resistance
vs Drain Current

://

t-....

If

TJ = 125"C

L

JosJVGS

I......

10.=:.!~rnAr-

t-....

r....

~

A'

./

o
3

"

I......

i'.
I......

t1

-so

5

6
789
VGS - GATE TO SOURCE VOLTAGE - V

0

50

100

150

TJ - JUNCTION TEMPERATURE - "C

TL/G/10040-93

TLlG/10040-94

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage
20

..... I"-

Voo=200V
10=3.0A

c..

r-TJ=25"C

c...

FTJ=
VosF OV

V

I "loa

--

.

...-- ..",

"

I'"

6.0V

"

6

~I
~~

6.5V

)

TJ=12~

I.!.

".

Ves= 10V

8

~
12'"

7.0V

'"
'-

""I

.!i'

~

7.5V

",

L

3

:0

10

VGS=l~

1
TJ = 25"C

8

I"'I

~

i----=ii1 MHz

IV

r I---'

"V
o
o

5

10

15

20

25

09 - TOTAL GATE CHARGE - nC

Vos - DRAIN TO SOURCE VOLTAGE - V

TLlG/10040-96

TLlG/10040-95

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. Capacitance vs Drain
to Source Voltage

11·240

Process 85

CD

Typical Performance Characteristics (Continued)

'"

102

<
I

...
0-

z:

'"'"i3

TC = 25"C
PEAK CURRENT UMITATION+TJ= 1500c
I--JLIRF 320/322 - SINGLE PULSE
323
1 1 11
10
00#.'01"1
f--

,k7:"t lt1.11

~ laD

'"

c

I

, Oms

~I

OPERATIOH IN THIS
REGION MAY BE
INnED BY RoSCon)

oS'

"'-J.
.10ms
DC......

D=0.50

~

N-_

~,

~

ITrl=
.==

0.1

'"

ill""
I:l

~~

1;1 SINGLE

",- ...

~~~~

I"" tiri

FIGURE 8. Transient Thermal Resistance
ys Time for IRF320-323 and IRF720-723

FIGURE 7. Forward Biased Safe Operating
Area for IRF320-323 and IRF720-723

I

...'Z
'"'"i3

, --- --

10

~

c

TC=25"C
TJ = '50"C
SINGLE PULSE
PEAK CURRENT LlhllTclr

,oi!!

f--

z:

,aD

I

V

~

D=0.50

'0 ..

i'.. f'

~~

0.25

~$
ul

OPERAllON IN THIS
REGION MAY BE
LIMnED BY RDS(on)

oS'

TJ(\IAX)~Tc+Pu'ztJc

TUG/l0040-98

TL/G/l0040-97

<

-1-

~;.'-:
Duly Factor, 0 =~_
I- D...... apply 10 \rain
of hoa\lng p4IiIo.

t-TiME-ms

Vos - DRAIN TO SOURCE VOLTAGE - V

102

!

0.10

~ ~

r

"

•

~

IIII

w

n:n

~~~

D.ly Faotor,D=~
D curves apply to traIn
ofh..\lngp.loo.

SINGLE PULSE TJ(IIAX)-Tc+Py·ztJc

102

10'

Vos-DRAIN TO SOURCE VOLTAGE-V

t-TIME-ms

102
TL/G/l0040-AO

TL/G/l0040-99

FIGURE 10. Transient Thermal Resistance
ys Time for MTP3N35/3N40

FIGURE 9. Forward Biased Safe Operating
Area for MTP3N35/3N40

Typical Electrical Characteristics

PULSE

GENERATOR
.---------.
RGEN

OUTPUT, VOUT
INVERTED

INPUT, VIN
TL/G/l0040-AI

FIGURE 11. Switching Test Circuit
TL/G/l0040-A2

FIGURE 12. Switching Wayeforms

11·241

III

.-

Co)

I

~NatiOnal

Process C1
N-Channel Power MOSFET

Semiconductor
r O . 0 47

(m}

f

'I'

,,0.029

(O,7ij

-r
0.028

0.038

(D.i8j

---Gal.

L

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

lD.7Ti

....:.J.

This process is available in the following device types:
TO-204 (Case 42)
TO-220 (Case 37)
IRF130
IRF530
IRF131
IRF531
IRF532
IRF132
IRF133
IRF533
MTP20NOS
MTP20N10

0.176

(4:.48j

f

(ii.iij

L

J.

R

0.039

0.030

(D.75j

t

~"~
(mj

(Oiij

0.123

(3.i2j

TLlG/l0040-A3

Electrical Characteristics Tc = 25°C (unless otherwise noted)
Symbol

Parameter

Test Conditions

Voss

Drain to Source Voltage (Note 1)

10 = 250 /LA; VGS = OV

loss

Zero Gate Voltage Drain

VOS = Rated Voltage
VGS = OV

IGSS

Gate Leakage Current

VOS = ±20V; VOS

VGS(TH)

Gate Threshold Voltage

10

ROS(ON)

Static On-Resistance (Note 2)

VGS = 10V; 10 = SA

Min

= OV

= 250 /LA; VOS = VGS

gFS

Forward Transconductance

VOS = 10V; 10 = SA

Clss

Input Capacitance

VOS = 25V; VGS = OV
f = 1 MHz

Coss
Crss
id(on)

Turn-On Delay Time (Note 3)

tr

Rise Time

id(off)

Turn-Off Delay Time

Max

100

2.0

Units
V

250

/LA

100

nA

4.0

V

0.1S

0.

4.0

Siemens
SOO

pF

Ou1put CapaCitance

500.

pF

Reverse Transfer

150

pF

Voo = 25V; 10 = 10A
VGS = 10V; RGEN = 150.

50

ns

RGS = 150.

450

ns

100

ns

200

ns

30

nC

tf

Fall Time

Qg

Total Gate Charge

VGS = 10V; 10 = 1SA
Voo = SOV

Note 1: TJ = +25"C to +150'C.
Note 2: Pulse width limited by TJ.
Note 3: Switching time measurements performed on LEM TR-58 test equipment.

11-242

"U

Process C1

(')

Typical Performance Characteristics
14

VGS=l~

TJ = 25"C

12

...,
...
:z

J.~OV

10

'":::>'"
'"u

),-

8
6

~,

.so

4
2

~

o
o

~

"
-~~

V

12c:1

~~
l=!~

-

0.2

,'"

J

5.0V

0.1

o
o

2.0

...,

14

!Z

12

'"'":::>
'"u

,I
/."

:z

8

c

'",

6

.so

4

:c

1.2

90

1.1

~

1.0

r-...

16

20

L

tlvGS
10= 1.0 rnA

~

~

"'

~

Q.8

"'

~

["0.

0.7

0

:z

0
-50

10

8

6

12

8

D.9

i

1{V
4

g

~

~ ~TJ=-55"C

2

1.3

'"j!:
~
e

TJ = 125"C--, W-;TJ = 25"C

o

r-r-

TJ=-55OC I-- I--

4

::J:

II

2

~

~

'I

10

TJ =25OC

FIGURE 2. Static Drain to Source Resistance
vs Drain Current

,

Vos= 10V

V

TL/G/l0040-A6

TL/G/l0040-A4

FIGURE 1. Output Characteristics

16

VGS-GATE TO SOURCE VOLTAGE-V

0

50

100

150

TJ - JUNCTION TEMPERATURE - "C
TL/G/l0040-A7

TLlG/l0040-A6

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

FIGURE 3. Transfer Characteristics

103

...

"- r--r-.
.....

~J+

-

V

10 - DRAIN CURRENT - A

Vos- DRAIN SOURCE VOLTAGE-V

18

TJ = l0o:s.

~~

\7if1i

I
6.0V
1.5

0.3

~

tv

....

1.0

0.5

i'

VGS= 10~

&l

OV

i...

15

,

>

V

~

C..;-

;!

~
~
:::>

~

10 1--10= 181.
TJ = 25"C

5l

:=
~,

.,

I-TJ =25"C
'VGS=OV
f~1.0~Hz

Vos-DRAIN TO SOURCE VOLTAGE-V

/

Voo = 80V

5

I
oII
o

V

V
10

20

30

40

Og - TOTAL GATE CHARGE - nC

TLlG/l0040-AB

TL/G/l0040-AB

FIGURE 5. Capacitance vs Drain
to Source Voltage

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

D
11-243

-r------------------------------------------

(.)

I

Process C1
Typical Performance Characteristics (Continued)
102

T

I I
~~!~- t...-: be: :

1 IRfI32(I~
10 OPERAllON
II nus AREA
MAYBE LIIRm

'"

10 ... •

:
f': ~ ,.o~ '~
,...,.

~~"II

~:r:

~

0I<;;;;

I-"

1RI'130 132

;1m

--i~RRENT UhtlTED

OPERATION .'(

FIGURE 8. Transient Thermal Resistance
vs Time for IRF130-133 and IRF530-533

FIGURE 7. Forward Biased Safe Operating
Area for IRF130-133 and IRF530-533

~!!~.:~Y..rr;~!!!DS"'=,l

~

I

I
I
I

..E>

--:t:t:tt---------,-,
'"

_JI~pI

'-X-r-P 00 pI
1.0 ...

htTP20NOB 10
1 -----10

troln

TJ(MAX) -Tc. PyxltJc

TL/GI10040-Bl

TL/GI10040-BO

OPERAnoN IN THIS AREA

-+lip 1+-:
... t~ ~ Du\y raotor,O-

t-TIhtE-ms

Vos - DRAIN TO SOURCE VOLTAGE - V

102

.=

:rLn~~~ ~=.:'=t::

1RF131 'p

J

TC=2S"C
T S150"C
stNGLE PULSE

.so

o~1!!e ~

~

II
If
~

~"'~i

'\.1'

TC=25"C
TiI.= 15O"C
s GI.E PULSE
- - i CURRENT UhtlTED
OPERATION ",

~

]\

I II

III

~
... t ...

~

Duty raotor, 0o ...... apply \0 train
of hooting p.1on
TJ(IIAIC)=TC• PyX ltJc

t-TIhtE-ms

Vos - DRAIN TO SOURCE VOLTAGE - V

TLlGI10040-B3

TL/G/l0040-B2

FIGURE 10. Transient Thermal Resistance
vs Time for MTP20N08/20N10

FIGURE 9. Forward Biased Safe Operating
Area for MTP20N08/20N10

Typical Electrical Characteristics
~(OFF)

PULSE
GENERATOR

.---------.

OUTPUT, VOUT
INVERTED

90:1

INPUT, VIN

. _ - - _ _ _ _ _ _ 41

50:1

TLlGI10040-B4

FIGURE 11. Switching Test Circuit
TLlGI10040-B5

FIGURE 12. Switching Waveforms

11·244

IjNatiOnal

Process C2
N-Channel Power MOSFET

Semiconductor

I

,0.0.47

r

~

0 029
'1 (D.74j
•

'I'

-r
0.028

0.038

lD.iil

L

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

Get.

lQ.71i

~

~

This process is available in the following device types:
TO-204 (Case 42)
TO-220 (Case 37)
IRF230
IRF630
IRF231
IRF631
IRF232
IRF632
IRF233
IRF633
MTP12N1B
MTP12N20

0.178

(Uij

f

0.039

lo:iil

L

-.1

R

0.030

(ffij

t

1'--

liT5l
ro.an.
~"~
lilll
0.123

TL/G/10040-B6

Electrical Characteristics Tc = 25°C (unless otherwise noted)
Symbol

Parameter

Test Conditions

Voss

Drain to Source Voltage (Note 1)

10 = 250 ,..A; VGS = OV

loss

Zero Gate Voltage Drain

VOS = Rated Voltage
VGS = OV

IGSS

Gate Leakage Current

VOS = ±20V; VOS = OV

VGS(TH)

Gate Threshold Voltage

10 = 250 ,..A; VOS = VGS

ROS(ON)

Static On-Resistance (Note 2)

VGS = 10V; 10 = 5A

gFS

Forward Transconductance

Vos = 10V; 10 = 5A

Clss

Input Capacitance

VOS = 25V; VGS = OV
f = 1 MHz

Coss
Crss
id(on)

Turn-On Delay Time (Note 3)

tr

Rise Time

id(off)

Turn-Off Delay Time

Min

Max

200

2.0

Units
V

250

/LA

100

nA

4.0

V

0.4

0

3.0

Siemens
800

pF

Output Capacitance

450

pF

Reverse Transfer

150

pF

Voo = 25V; 10 = 6A
VGS = 10V; RGEN = 150

50

ns

RGS = 150

250

ns

100

ns

120

ns

30

nC

tf

Fall Time

Qg

Total Gate Charge

Note 1: TJ = +25'C to +150'C.
Note 2: Pulse width limited by TJ.
Note 3: Switching time measurements performed on

VGS = 10V; 10 = 12A
Voo = 120V

LEM TR-58

test eqUipment.
11-245

III

~

(J

I

a.

r---------------------------------------------------------------------------------,
Process C2
Typical Performance Characteristics
12

0.7

9.0V
8.0V
7.0V
6.0V

c
1

is

~

0.6

12<:1

0.5

~

I~

II!
:::>
c.>

I=!m

~

4

~f!I

2

J

I'"

1

.;

0
0

2

3

5

4

0.4
0.3

~GSi 10V

IJ

1,:!Jc ~ 1060c

T

~

"

i--'"

v-

/

"

0.2 TJ =-55OC
0.1

I1

o
o

4

Vos - DRAIN SOURCE VOLTAGE-V

8

12

16

20

10 - DRAIN CURRENT - A
TL/G/10D40-B7

TLlG/10D40-B8

FIGURE 1. Output Characterlstlea
18

Vos= 10V

16

c

....z
1

iii!

'"i3

IJ

14
10

i

8

oS>

4

1

IA
fJ
Jf
I
'I

12

TJ = 1250C

2

o

1,

3

FIGURE 2. Static Drain to Source Resistance
vs Drain Current
~

"

!i!

I

i'..

~

1.1

;

1.0

\i

D.9

tJVGSL

9

lo,=:..!·~~

......

i'..
I......

;~

~-TJ=-~5OC

~ ~:rJ=25OC
5
7

1.3

!:l 1.2

-so

i'..

......

so

0

i'..

I'"

100

1SO

TJ-JUNCTION TENPERATURE-OC

VGS - GATE TO SOURCE VOLTAGE - V

TL/G/10040-CO

TL/G/10040-B9

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of Gate to
Source Threshold Voltage

>

15

r- 1o=12A I

III

!:i
!i!

'1..

...

-

t-TJ= 250C
'v:=OV

C,..

~

....

&l
12

~

~1
}

1I---'-fll~~Z

10

TJ = 250C
10

!il:::>

COSI

5

I

1.I

/

oV

o

laD

,I

Voo= 160V

1

10

20

30

40

50

Qg-TOTAL GATE CHARGE-nC

Vos - DRAIN TO SOURCE VOLTAGE- V

TLlG/10040-C2

TL/G/10040-C1

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

FIGURE 5. Capacitance vs Drain
to Source Voltage

11-246

"a

Process C2
Typical Performance Characteristics (Continued)
102

.......z
a""""z
I

101

1

.;:~ ~-~-1RF232/233
OPERA11ON
IN lHlS AREA

...-

"

MAY BE UMITED

~I

100

.so

io
N

lIT

I
1RF230

-c

a

BY RDS(an) 1RF230/232~

Te =2soc 1RF231~ f-3I

T~::S1500c
SNGlE PULSE

-i -I g~~:!~1~MITED

10},s
1661s

OA~

1.01~s
I?111.1'18

Q.~~

~~

vifffi

D?tt=
III

~~=
f-'

"'- • .

f- D.i;F::'D=

-=

f-

t- D ...... apply 10 v.I.
of h..Ung pul_

TJ(IIAX)-Tc+P.·Z(th)JC

t-TiME-ms

Vos· DRAIN TO SOURCE VOLTAGE - V

TL/G/l0040-C4

TL/G/l0040-C3

FIGURE 8. Transient Thermal Resistance
vs Time for IRF230-233 and IRF630-633

FIGURE 7. Forward Biased Safe Operating
Area for IRF230-233 and IRF630-633

-c
I

~

~ 1111

""""

::>

1~

u

z

~I

100

~III

.so
10.1
100

IIII

.....JlSl~
....,,'-:
,...., 1Duty Foc\or. D=

~ o~:~:~~~ tra~
TJ(MAX)=Tc+ P.·Z(III)JC

102
t-TiME-ms

Vos - DRAIN TO SOURCE VOLTAGE - V

TLlG/l0040-C6

TLlG/l0040-C5

FIGURE 10. Transient Thermal Resistance
vs Time for MTP12N18/12N20

FIGURE 9. Forward Biased Safe Operating
Area for MTP12N18/12N20

Typical Electrical Characteristics

PULSE

GENERATOR
.---------.

:

OUTPUT. VOUT

INVERTED

RG£N:

I
I

TL/G/l0040-C7

FIGURE 11. Switching Test Circuit
TL/G/l0040-C8

FIGURE 12. Switching Waveforms

11·247

a

3

J

IjNational
Semiconductor
,0.047

[iT9}

f

'I'

'1°.029

(ffiJ

Gal.

...

L

I--

...:...i

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

1-

0.038

(G.9sj

Process C3
N-Channel Power MOSFET

0.028

(O,?1i

I

This process is available in the following device types:
TO-204 (Case 42)
TO-220 (Case 37)
IRF330
IRF730
IRF331
IRF731
IRF332
IRF732
IRF333
IRF733
MTP5N35
MTP5N40

0.176

l4Mi

f

0.039

(G.9sj

L

.-l.

R

0.030

(G.75j

t

1-

(iTs}
~

0 032
,1 (Q.i1i
•
0.123

(IT2j
TUGll0040-C9

Electrical Characteristics To = 25°C (unless otherwise noted)
Symbol

Parameter

Test Conditions

Min

= 250 p.A; VGS = OV

400

Voss

Drain to Source Voltage (Note 1)

10

losS

Zero Gate Voltage Drain

VOS
VGS

= Rated Voltage
= OV
= ±20V; VOS = OV

IGSS

Gate Leakage Current

VOS

VGS(TH)

Gate Threshold Voltage

10

ROS(ON)

Static On-Resistance (Note 2)

VGS

= 10V; 10 = 3A

gFS

Forward Transconductance

VOS

= 10V; 10 = 3A

Ciss

Input Capacitance

VOS = 25V; VGS
f = 1 MHz

= 250 p.A; VOS = VGS

= OV

2.0

Max

Units
V

250

p.A

100

nA

4.0

V

1.0

0

3.0

Siemens
900

pF

COBS

Output capacitance

300

pF

Crss

Reverse Transfer

80

pF

id(on)

Turn-On Delay Time (Note 3)

Voo
VGS

= 175V; 10 = 3A
= 10V; RGEN = 150

30

ns

tr

Rise Time

RGS

= 150

35

ns

td(off)

Turn-Off Delay Time

55

ns

35

ns

30

nC

tf

Fall Time

Qg

Total Gate Charge

VGS
Voo

= 10V; 10 = 7A
= 180V

Note 1: TJ = +25'C to + 150'C.
Note 2: Pulse le9t: Pulse Width :s: 80 ,.s,
Note 3:

Duly Cycle :s: 1%.
Switching lime messuremenls performed on LEM TR-58 test eqUipment.
11-248

r-----------------------------------------------------------------------------,
Process C3

~

(;

i

o
Co)

Typical Performance Characteristics
Figures 4-6 for IRF332/33317321733 only.

7

VGS= 10V

6

,
...z
oC

T)25~

5 80 }&S
PULSE
4 TEST

I-

""""
u

::>

z

~

TJ =125OC- ~I

2 I---I--- TJ-T

TJ-=25~

5

I-

/J

4

Q

6

,

oC

-'L

I-

""""
::>
u
~

FIGURE 2. Stetlc Drain to Source Resistance
vs Drain Current

J

J.OV

~

I

I

J.OV

II

2

1

~.OV

.S'

V/,

Ir

~ TJ=-55OC

234

I
VGs =8.0V

5

6

o
o

7

4.0V

8

12

16

20

Vos- DRAIN TO SOURCE VOLTAGE- V

VGS-GATE TO SOURCE VOLTAGE-V

TL/G/10D40-D3

TL/G/10040-D2

FIGURE 3. Transfer Characteristics

7

VGS= I~V

FIGURE 4. Output Characteristics
8

V

6

j/

5

6

TJ = 1250C ~

4
1,..000

3

K'

TJ~25OC i--"

2

Ves= 10V

7

5

1/

2
1

2

6

'(j

3

~

8

o

10

Vi

lL

4

I-'" I-""

i'"""

o
o

j
I~

TJ=125OC.l VTJ= 250C

..J/

12345678

10 - DRAIN CURRENT - A

VGS - GATE TO SOURCE VOLTAGE - V
TLlG/10D40-D4

TLlG/10040-D5

FIGURE 5. Stetlc Drain to Source On-Resistance
vs Drain Current

FIGURE 6. Transfer Characteristics

III
11·249

o
:I

Process C3

B

l.

Typical Performance Characteristics (Continued)
t!I lJ
O!!

g

i

1000

'"

1.1

1.0

2i!
j:

L

1.2

JoslvGS

.....

10 .::.!.!1.!!!Ar -

,.

"-

~ os

I~

"

'a.

0

I' r--

;600

......

50

I

100

\\

u 200

~

o
o

150

TJ - JUNCTION TEMPERATURE - "C

~.

,

~400

i"'" ......
i'

-50

800

I

VGS=OV
f=I.0MHz
TJ = 25"C

COlI

CI'II
10

20

30

40

50

TL/G/l0040-D7

TL/G/10040-D6

FIGURE 8. Capacitance vs Drain
to Source Voltage

FIGURE 7. Temperature Variation of Gate
to Source Threshold Voltage
14

>
I

10'

12 H:IOI)OA)
f- VOO=180V
10

~

~

§!

'"

8

'"g

6

~I

4

u

II<

5

~

2

L't'
V

a

laD

10-'

Qg - TOTAL GATE CHARGE - nC

Ros

~~
{~

~==
~-

~!:!.
~!!

TC=25"C ...
T :S15O"C
$'INGLE PULSE

I

40

OPERATION
,
IN THIS AREA~
MAY BE UMIi '

BY

oS'

32

~'oo~
~

~

24

:'~ ~~, 1..'IIrMWI lOps

I"- 'l.:or-

IS

II<
II<

I
I
16

~

I

Q

8

~:

-c

/

o
o

60

Vos - DRAIN TO SOURCE VOLTAGE - V

--i g~=1~Mr=0

Vos-DRAIN TO SOURCE VOLTAGE-V
TL/G/10040-08

TL/G/l0040-08

FIGURE 9. Gate to Source Voltage
vs Total Gate Charge

FIGURE 10. Forward Biased
Safe Operating Area

t-TIME-ms

FIGURE 11. Transient Thermal Resistance

11-250

TL/G/10040-EO

Process C3
Typical Electrical Characteristics

PULSE

GENERATOR
.---------.
RclEN

OUTPUT, Vour
INVERTED

INPUT, VIN
TL/G/l0040-El

FIGURE 12. Switching Test Circuit
TL/G/l0040-E2

FIGURE 13. Switching Waveforms

III
11·251

...

UJ

I

III Semiconductor
National
1
t

0•072
(f.84j

'I' 'I

(f.05)

L

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

0.032
. {O,iii

1L:a~

0.041

Process E1
N-Channel Power MOSFET

-

~

This process is available ·in the
TO-204 (Case 42)
IRF140
IRF141
IRF142
IRF143

0.030

(if.'ffl

0.213

(5.4Oj

r

Source

0.056

(U3j

L

following device types:
TO-220 (Case 37)
IRF540CF
IRF540
IRF541
IRF542
IRF543

t0.047

fi:2oj

--1.

t '" -"'-U(iT&)

(mj
0.177

~

TL/G/l0041-1

Electrical Characteristics Tc = 25°C (unless otherwise noted)
Symbol

Parameter

Test Conditions

Min

Voss

Drain to Source Voltage (Note 1)

100

loss

Zero Gate Voltage Drain

= 250 ,...A; VGS = OV
VOS = Rated Voltage
VGS = OV
VOS = ± 20V; VOS = OV
10 = 250 ,...A; VOS = VGS
VGS = 10V; 10 = 15A
VOS = 10V; 10 = 15A
VOS = 25V; VGS = OV
f = 1 MHz

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROSION)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

C;ss

Input Capacitance

Coss

Output Capacitance

10

2.0

Max

Units
V

250

,...A

±100

nA

4.0

V

0.085

0.

6.0

Siemens
1600

pF

800

pF

Crss

Reverse Transfer

300

pF

Id(on)

Tum-On Delay Time

Voo = 45V; 10 = 15A
VGS = 10V; RGEN = 4.70

60

ns

RGS = 4.70.

tr

Rise Time

450

ns

Ic:tloff)

Turn-Off Delay Time

150

ns

tf

Fall Time

200

ns

Og

Total Gate Charge

60

nC

Note 1: TJ

=

VGS = 10V; 10 = 34A
Voo = 35V

+25'C to +150"C.

Nol. 2: Pulse Width limited by TJ.

11-252

"'U

Process E1

.....

TJ=25"C _ ~
BO po PULSE TEST r:Vos"OY

30

I

...exz

25

~

,5

IX

VI

20

B

IA

..E>

5

o

II

o

"

l.-

8.0V

~

TJ ='2SOC

71

A~

,0

I

VGS='OV

I.OY

~

T)25~

f-- f--

.-

8.OY
D.OY

,.0

4.0

3.0

2.0

,0

5.0

30

20

10 - DRAIN CURRENT - A

Vos - DRAIN TO SOURCE VOLTAGE - V

TL/GI10041-3

TLlG110041-2

FIGURE 1. Output Characteristics
20

.....
IX

,2

..E>

04

c

....I

0

""~

I
fI

IX

'/TJ =25OC

:;;i

U

I

~

V

:::J

8

~

;:!
....I

/I

,6

I

15
IX

FIGURE 2. Static Drain to Source
Resistance YS Drain Current

IV

Vos='OV

I

~

~

1//

'"exz

~

o
2

3

4

0

5

,.3

,.,

......

7

" r-... ......

D.9
Q8

r-....

,

0.7
0

-so

9

so

0

'so

,00

Tr JUNCT10N TEMPERATURE - OC
TL/GI10041-5

TL/G/l0041-4

FIGURE 4. Temperature Variation of
Gate to Source Threshold Voltage

FIGURE 3. Transfer Characteristics

,5
~=25OC
05=0V
1=,.0 MHz

r--.

10':..!.·Q.!!IAr-

I'......

U)

VGS-GATE TO SOURCE VOLTAGE-V

..........,;; r-

JosLJ=

,.2

i5

TJ = , 25OCJ.

I

j

Voo=35V
10=341.
T =25OC

7

,0

- './

'1..

-

/

I
I
I

........ cm

I'

o
o

20

40

60

80

,00

09 - TOTAL GATE CHARGE - nC

Vos - DRAIN TO SOURCE VOLTAGE - V

TL/GI10041-7

TLlG110041-6

FIGURE 6. Gate to Source
Voltage YS Total Gate Charge

FIGURE 5. Capacitance YS
Drain to Source Voltage

11·253

2

rn
=
.....

Typical Performance Characteristics
35

a

... r-------------------------------------------------------------------------------------,

W

I

Process E1

()

e

a.

Typical Performance Characteristics (Continued)

1

10
5

0
0.2

Q~ ~ILn

~ ~~

Yc=25"<:

II
VD5 -DRAIN TO SOURCE VOLTAGE-V

......
'-:
M; :••

r, 0 =~

o CUmt apply to traIn
of ....llngpu""'
TJ{MAl!)"Yc+P.·Z(..)!C

t-TIt.lE-ms
TL/G/l0041-9

TL/G/l0041-8

FIGURE 7. Forward Biased Safe Operating Area

FIGURE 8. Transient Thermal Resistance vs Time

Typical Electrical Characteristics

PULSE
GENERATOR

OUll'UT. Vour
INVERTED

p---------.

90"
INPUT. VIN

50"

TL/G/10041-10

FIGURE 9. Switching Test Circuit

TL/G/10041-11

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

11-254

"a

~NatiOnal

Process E2
N-Channel Power MOSFET

Semiconductor

r
r

0.041
(1.05)

L

0.072
(1.84)

'I' I

1-

=+

This process is available in the following device types:
TO-204 (Case 42)
TO-220 (Case 37)
IRF240
IRF640CF
IRF241
IRF640
IRF242
IRF641
IRF243
IRF642
IRF643

0.030

0.213

(5.40)

r

~

L

Source

N

These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

(Wj

0.056

m

DESCRIPTION

0.032
• (0.81)

~~

I

f0.047
(ill}

J
('ili5
t.e-·I.-~~

0.177

rrnl
TL/Cl/l0041-12

Electrical Characteristics To =

25'C (unless otherwise noted)

Parameter

Symbol

Test Conditions

= OV

Voss

Drain to Source Voltage (Note 1)

10 = 250 /A-A; VGS

loss

Zero Gate Voltage Drain

= Rated Voltage
= OV
VOS = ± 20V; VOS = OV
10 = 250 /A-A; VOS = VGS
VGS = 10V; 10 = lOA
VOS = 10V; 10 = lOA
VOS = 25V; VGS = OV
f = 1 MHz

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Ciss

Input Capacitance

Coss

Min

Max

200

VOS
VGS

2.0

Units
V

250

/A-A

±100

nA

4.0

V

0.18

!l

6.0

Siemens
1600

pF

Output Capacitance

750

pF

Crss

Reverse Transfer

300

pF

id(on)

Turn-On Delay Time

60

ns

tr

Rise Time

id(off)

Turn-Off Delay Time

It
Og

Total Gate Charge

= 75V; 10 = lOA
= 10V; RGEN = 4.7n
RGS = 4.7!l

Voo
VGS

Fall Time
VGS
Voo

= 10V; 10 = 22A
= 120V

Note 1: TJ = +25'C to +150'0.
Note 2: Pulse Width IimHed by TJ.

11-255

300

ns

200

ns

150

ns

60

nC

•

~

11.1

I

a.

r--------------------------------------------------------------------------Process E2
Typical Performance Characteristics
24

~~~LSElnsJ

20

.,VI-

VGS=I~ ~

16

8

)1

I

.Ii'

o~
o

L.,... ~

TJ "125OC

-

1.11'1

i.J ~

12

VGS= 10V

9.

T)2~OC

.rN

I-

1
6.11'1

~

&.11'1

o

4

12

16

20

10 - DRAIN CURRENT - ..

Vos - DRAIN TO SOURCE VOLTAGE - V

TLlG/l0041-14

TL/G/l0041-13

FIGURE 2. Static Drain to Souree
Resistance vs Drain Current

FIGURE 1. Output Characteristics
20

...

16

8

V
I.

I

4

II'/TJ "25OC

3

4

I
5

1.0

1.

!'....

r-...

~ 0.9

VI

~

o

ii!

L

JoslvGS
lo=:..!~~

I'.

1

i!:

~

~

i

1.2

'" '"
'"
'"
I~

'TJ .. I25OC

12

CI

.Ii'

~

VI

I

'"i3'"

l!I 1.3
~

IV
1/1

VOS .. l0V

8

9

r-...

-so

10

0

50

100

150

Tr JUNCTION TEMPERATURE - OC

VGS - GATE TO SOURCE VOLTAGE - V
TL/G/l0041-15

TL/G/l0041-16

FIGURE 3. Transfer Characteristics

FIGURE 4. Temperature Variation of
Gate to Source Threshold Voltage
Voo "120V

I

c,;
:-...

....

~=25OC

~

7
V

I

......... C~
TJ =2SOC
VGS"OV
1= 1.0 MHz

I =22A

15

10

.,v
V

~

5

~ ~

I

o 1/

I

o

20

40

60

60

Vos - DRAIN TO SOURCE VOLTAGE - V
TL/G/l0041-18

TL/G/l0041-17

FIGURE 6. Gate to Source
Voltage vs Total Gate Charge

FIGURE 5. Capacitance vs
Drain to Source Voltage

11·256

------------------------------------------------------------------------------,~

Process E2

rn

Typical Performance Characteristics (Continued)
102

5
-<

2
101

I

...z
0-

'"'"
13

~~~:1II~. 1'15'1..

..

UIi~BY

1iJiirJJ~
RF240/2~1

5

z

2

~
c
I

.S'

.. .

i

I

N

'g,
~f)-'

...

IO~""Il!!o,

.......

{b

K

II

o.

"

lfiJ
Tc=25'C
5 TJ=I5O"C
~GL£

PULSE
••• CURRENT LlWI1ED

2
1
OPERAnpN(
10·
lfiJ 2
5 101 2

~O:I~rtrl
~ ~

~~

102

.....
14-:
~t ....

IlulyFaoIor.D.

III

11:
5

0.5

I

j

~-==-

TJ.(I&q)'Tc·P.'Z(~

2
\-TlME-ms

Vos· DRAIN TO SOURCE VOLTAGE· V

TLlG/l0041-20

TL/G/l0041-19

FIGURE 8. Transient Thermal Resistance VB Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics

PULSE

OUTPUT. VOUT
INVERTED

~~Npl}!O! •••••
RGEN

RGS

90:11
50:11

INPUT. VIN

TLlG/l0041-21

FIGURE 9. Switching Test Circuit

TL/G/l0041-22

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However. high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

•
11-257

~NatiOnal

Process E3
N-Channel Power MOSFET

Semiconductor

1

0•072
("f:84}

t

'I' "I

,-

k~

0.041

(i'Fsj

L

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

0.032
(0.81)

~

This process is available in the following device types:
TO-204 (Csse 42)
TO-220 (Case 37)
IRF340
IRF740CF
IRF341
IRF740
IRF342
IRF741
IRF343
IRF742
IRF743

0.030

{[ffl

0.213

(5.40)

r

Sourc.

0.056
(1.43)

L

t0.047
(iTo)

--1

t-~·I.""~(iT6i

(ill)
0.177

(i.4sj
TL/G/l0041-23

-..

Electrical Characteristics Tc = 25'C (unless otherwise noted)
Parameter

Test Conditions

Min

VOSS

Symbol

Drain to Source Voltage (Note 1)

400

loSS

Zero Gate Voltage Drain

= 250 p.A; VGS = OV
VOS = Rated Voltage
VGS = OV
VOS = ± 20V; VOS = OV
10 = 250 p.A; VOS = VGS
VGS = 10V; 10 = 5A
VOS = 10V; 10 = 5A
VOS = 25V; VGS = OV

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Clss

Input Capacitance

10

f
Coss

~

1 MHz

Output Capacitance

Crss

Reverse Transfer

lcI(on)

Turn-On Delay Time

Voo
VGS

RGS = 4.70

= 175V; 10 = 5A
= 10V; RGEN = 4.70

2.0

Max

Units
V

250

p.A

±100

nA

4.0

V

0.55

(1

4.0

Siemens
1600

pF

450

pF

150

pF

35

ns

tr

Rise Time

15

ns

lcI(off)

Turn-Off Delay Time

90

ns

If
Qg

Fall Time

35

ns

60

nC

Total Gate Charge

VGS
Voo

= 10V; 10 =
= 400V

Note 1: TJ = +2S'C 10 + IS0'C.
Not. 2: Pulse Test: Pulse Width" 80 I"s, Outy Cycle" 1 %.

11-258

12A

I

"U

Process E3

Co)

14

1.4

12

....I

10

IX

8

15
IX
::>

,/

Q

~

l/
r-

o
o

~!i!
Q,.

/

'#I

2

3

4

':' IX

0.4

J

'.5V

0.8
0.6

5

~

TJ=12~ I-

1.0

!:l!il
;!~

5.OV

1/"-

.S'

Cj

%1

5.5V

~

4

I

1.2

./

VG$=~

<.>

!

-

VGS= 10V

TJ =25'C

...

T)25"C

-

0.2

o
o

4

VGS - GATE TO SOURCE VOLTAGE - V

12

8

16

20

ID - DRAIN CURRENT - A

TLlG/10041-24

TL/G/10041-25

FIGURE 1. Output Characteristics
20

...
!z
...

h
U

,

16

I

IX
IX

12

<.>

8

I

.S'

2

3

4

5

~

1.0

~

L

tlVGS

........

ID.':..!·~mAr-

r-...

i!:

~

........

D.9

...

o.s

:;l

0.7

Q

"- i""

!:!
::I

I

./Y

0

1.1

::c

TJ = 125<>cA TJ =25"C

o

1.2

0
...J

IX

//

4

1.3

>

/)

Q

~
0

~

I

::>

!

FIGURE 2. Static Drain to Source
Resistance vs Drain Current

V

Vas = 10V

"- i""

IX

0

%

7

8

0

-so

0

50

100

150

Tr JUNCTION TEMPERATURE - "C

VGS - GATE TO SOURCE VOLTAGE - V

TLlG/10041-27

TLlG/10041-26

FIGURE 4. Temperature Variation of
Gate to Source Threshold Voltage

FIGURE 3. Transfer Characteristics

I

...
I

~

Z

....

§

i""

I

<.>

to

;!
...J

...~~

-- -

TJ =25"C
VGS =OV
1 f= 1.0 MHz

~

VDD =400V
12 ID=16A
TJ =25"C
10

I

I

;!

14

>

...

elss -

\.

Q.

I
m

Typical Performance Characteristics

/

8

/~

::>

5!

I-

~

r-- c...

~1

I

~

4

;/
2

o

o

1I
10

20

30

40

50

Og - TOTAL GATE CHARGE - nC

Vas - DRAIN TO SOURCE VOLTAGE - V

TL/G/10041-29

TLlG/10041-28

FIGURE 5. Capacitance vs
Drain to Source Voltage

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

a
11·259

~

W

Ie

a.

r---------------------------------------------------------------------------------,
Process E3
Typical Performance Characteristics (Continued)
1000

500

...
I

I
~
I

200
100

d-~\\~,UP'

-.",,").

,00

~~~

:71'
"

50

N'ol ""
~

20

"

10

.;

Tc=25"C
5 TJ(max) = 15O"C
SINGlE PULSE
1
10

I

II

20

50

I"

-

~;
~~

10.

"'

SS
tlF>
n
Ii

100 200

SOD 1000

1

o.\~ ~:DdL
~ r:..:
~

III I

Vos - DRAIN TO SOURCE VOLTAGE - V

t

Dutr r_,D'~

~'h:"'~~1nI1n

~J.{IIJotJ~c'Py·Z(",~
t-TlIotE-ms
TLlGI10041-31

TLlGI10041-30

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics
\t(OFT)
PULSE

OUTPUT, VOUT
INVERTED

GENERATOR
p---------.

90"

INPUT, V,N

50"

TLlGI10041-32

FIGURE 9. Switching Test Circuit

TLIGI10041-33

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

11-260

~NatiOnal

Process E4
N-Channel Power MOSFET

Semiconductor

1

0•072
(1.84)

t

'I' 'I

0.032
(0.81)

~~

0.041

r;:o5)

L

DESCRIPTION

,-

These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

~

This process is available in the following device types:
TO-204 (Case 42)
TO-220 (Case 37)
IRF440
IRF840CF
IRF441
IRF840
IRF442
IRF841
IRF443
IRF842
IRF843

0.030
(o.n)

0.213

(5.4Oj

f

0.056
(1.43)

L

t0.047

Source

(f.2O)

--.l

t"'-·I.-~(1.6i)

(iT&i

,

0.177

~
TL/G/I 0041-34

Electrical Characteristics Tc = 25°C (unless otherwise noted)
Parameter

Test Conditions

Min

Voss

Symbol

Drain to Source Voltage (Note 1)

500

loss

Zero Gate Voltage Drain

= 250 /-LA; VGS = OV
VOS = Rated Voltage
VGS = OV
VOS = ±20V;Vos = OV
10 = 250 /-LA; VOS = VGS
VGS = 10V; 10 = 4.0A
VOS = 10V; 10 = 4.0A
VOS = 25V; VGS = OV
f = 1 MHz

IGSS

Gate Leakage Current

VGSITHI

Gate Threshold Voltage

ROSCONI

Static On-Resistance (Note 2)

gFS

Forward Transconductance

Cjss

Input Capacitance

Coss

10

2.0

Max

Units
V

250

/-LA

±100

nA

4.0

V

0.85

.0

4.0

Siemens
1600

pF

Output Capacitance

350

pF

Crss

Reverse Transfer

150

pF

leI{on)

Turn-On Delay Time

35

ns

= 220V; 10 = 4A
= 10V; RGEN = 4.7.0
RGS = 4.7.0

Voo
VGS

tr

Rise Time

15

ns

IeICoff)

Turn-Off Delay Time

90

ns

tf

Fall Time

30

ns

09

Total Gate Charge

60

nC

Note 1: TJ

=

+ 25'C

VGS
Voo

= 10V; 10 = 12A
= 400V

to +150"C.

Note 2: Pulse Test: Pulse Width,; 80 I's, Duly Cycle,; 1%.

11-261

III

•W

r-----------------------------------------------------------------------------~

J

.Process E4
Typical Performance Characteristics
10
8

VOS=7.~

/:

/

~~

5.5V

I!i~
~~

/'
I

~'"

J

5.OV

2

4.5V

o

o

2

3

4

5

6

VOS=IOV

/

2.4
1.6

, XI

I- f- ~

1.2

TJ =25OC

i-o-'fo""

0.8

~

....

~

0.4

o

o

7

/

/

TJ=125OC

I'! ~ 2.0

6.0V

./

.9

2.8

I

I
I

TJ=25OC

8

VDG- DRAIN TO SOURCE VOLTAGE- V

12

16

ID - DRAIN CURRENT - A

TL/G/l0041-35

Tl/G/l0041-36

FIGURE 1. Output Characterl8tlcs
20
C
I

I
I

FIGURE 2. Static Drain to Source
Resistance vs Drain Current

III 1.3

VDS=2OV

~

~

16

i

II
I
/I

12

8

I

1.2

JDS1vosL

"

1.1

I""

1.0

J
J= 1250C1/1
I./,; J'TJ =25OC

I

.9

o

2

3

20

I
-"""
4 567

8

ID=:.!·~rnA_

"""

I'..

I"

"-

I""

9

Vos-GATE TO SOURCE VOLTAGE-V
TL/G/l0041-36

TL/G/l0041 -37

FIGURE 4. Temperature Variation of
Gate to Source Threshold Voltage

FIGURE 3. Transfer Characteristics

14

VDD =40O'I
12 ID=I6A
TJ=25OC
10

I
'&
I

I
tJ

...
I

102

c.;
I

I--

....... ~

I--

"'"

103

.
~=25OC
os=OV
f=I.OMHz

2

.....

~

8

;:::::

4

I
I
o

10

20

/

2

I
5

/
/

o

50 IDD

50

VDS - DRAIN TO SOURCE VOLTAGE - V
TUG/l0041-39

TUG/l0041 -40

FIGURE 5. capacitance V8
Drain to Source Voltage

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

11·262

r-----------------------------------------------------------------------------,
Process E4

I

I

'iJl<~~~

~""\ ~~1~L

-<
I

.......z

~

10

i'..~

......

IX
IX

:::>

.......

u

i

1.0

I

.so

II
10

50

ij-

U
"-~~
0:?l,;=

,,4:>
Tc=25"C
T =15O"C
SiNGLE PULSE

0.1

i

m
~

Typical Performance Characteristics (Continued)
100

~

.....

"

IIn
~~
!~

500 1000

100

Vas - DRAIN TO SOURCE VOLTAGE - V

1-TlIAE-ms
TUGI10041-42

TLIGI10041-41

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area Curves

Typical Electrical Characteristics

PULSE

OUTPUT, VOUT
INVERTED

GENERATOR
.---------.
RotN

ROS

90l!

INPUT, VIN

50l!

TLIGI10041-43

FIGURE 9. Switching Test Circuit

TLIGI10041-44

FIGURE 10, Switching Wavetorms

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

III
11-263

,..

u.

I

~National

Process F1
N-Channel Power MOSFET

Semiconductor

D.

1

0 112

•
~

t

'I'

1

o.~

(If..

., 0.03.
(0.87)

Gater

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

,-

1

0.033

This process is available in the following device types:
TO-204 (Case 43)
TO·247 (Case 40)
IRF150CF
IRFP150CF
IRFP150
IRF150
IRF151
IRFP151
IRF152
IRFP152
IRF153
IRFP153

(rnj

0.260

~

f

0.060
(1.53)

L

t

0.J53

Source

0.100
~2.5.)

-+

0.059
(1.51)
0.260

~
~

~

r

TL/G/10041-46

Electrical Characteristics Tc = 25°C (unless otherwise noted)
Symbol

Parameter

Test Conditions

Min

Voss

Drain to Source Voltage (Note 1)

loss

Zero Gate Voltage Drain

= 250 p.A; VGS = OV
Vos = Rated Voltage
VGS = OV
VOS = ±20V; VOS = OV
10 = 250 p.A; VOS = VGS
VGS = 10V; 10 = 20A
VOS = 10V; 10 = 20A
VOS = 25V; VGS = OV
f = 1 MHz

100

IGSS

Gate Leakage Current

VGS(TH)

Gate Threshold Voltage

ROS(ON)

Static On·Resistance (Note 2)

gFS

Forward Transconductance

Ciss

Input Capacitance

10

2.0

Max

Units
V

250

p.A

±100

nA

4.0

V

0.055

0

9.0

Siemens
3000

pF

Coss

Output CapaCitance

1500

pF

Crss

Reverse Transfer

500

pF

leI(on)

Tum-On Delay Time

75

ns

= 48V; 10 = 20A
= 10V; RGEN = 4.70
RGS = 4.70

Voo
VGS

tr

Rise Time

450

ns

leI(off)

Tum-Off Delay Time

300

ns

tf

Fall Time

200

ns

09

Total Gate Charge

120

nC

VGS
Voo

= 10V; 10 = 50A
= 55V

Note 1:TJ = + 25·C 10 + 15O"C.
Note 2: Pulse Test Pulse Wid1h ,; 80 !'-s, Duty Cycle,; 1 %.

11·264

Process F1
20

...

T:r25"C~

8 I'S
PULSE TEST

......

16

'"

1

!
~

7.OV

VOS = 10V

...Iv

1.1.

TJ= 1250C

zl

~ ~0.08

6~OV f -

I

I!l ~D.06
oC~

TJ =25OC

J

TJ =-55OC

~ "'0.04

5.0V

o.s

().4

0.12

12 Cl D•10 - f- -

1J ~
,.11'

o
o

I

VGS= 10V

~

I

V

8
4

~.OV

rg,
IMV

12

1

..E'

0.14

~'j ~
......

1.2

1.6

0.02

o

o

2.0

I
4

VDS - DRAIN SOURCE VOLTAGE - V

8 12 16 20

:u

1,..0-

28 32 36 40

ID - DRAIN CURRENT - A
TL/G/10041-46

TLlG/10041-47

FIGURE 1. Output Characteristics
40

...

VDS= 10V

'"

:u

~

16

..E'

8

1.1

:il

TJ =25OC

il!
0

~ ~TJ=-55OC

2

3

4

z

"- I"

1.0

-50

...u
1

z

-

~

§

2

103 'I"-

Cbs

u

50

100

150

15

>

TJ =25OC
VGS=OV
f=I.0tolHz

Voo=55V
10=50A
TJ =25OC

1

~
;!

...

r--

0

>
I:j

V

10

0


102
100

0

TLlG/10041-49

r-...

2

.......

FIGURE 4. Temperature Variation of
Gate to Source Threshold Voltage

r--... .......C~
r--....

5

1

i'.

TrJUNCllON TEtoIPERATURE-OC

TL/G/10041-4B

"a.

"- .......

0

5

FIGURE 3. Transfer Characteristics

5

vGS

0.7

VGS - GATE TO SOURCE VOLTAGE - V

104

1L

10.':..!~L

~
!d o.s

//1

o

JDS

r-... ........

0.9

rl

Vs

1.2

9
0

'"

II

TJ =125OC

1.3

g

:z:
~
j:

A

1

...

'"~

III
IT

32

>-

8'"

FIGURE 2. Static Drain to Source
Resistance vs Drain Current

/I

1

15

I
."

Typical Performance Characteristics

40

80

120

160

Qg - TOTAL GATE CHARGE - nC

VDS - DRAIN TO SOURCE VOLTAGE - V
TL/G/10041-SO

TLlG/10041-51

FIGURE 5. Capacitance vs
Drain to Source Voltage

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

III
11·265

~

u..

I

a.

,-------------------------------------------------------------------------------------,
Process F1
Typical Performance Characteristics (Continued)
102
S
-c

......z
I

II!'!O~'~I~
";;,5ij1S3- ~

-- ~;1~;~

OP£RA~,",),.

'0 ..

2 lHISARfAr,W;BE

I

B

101

~I

5

z

Ji'

2

~BYI

an)

II

~

1\

" 1\

~~~

~1lLE PULSE
---CURRENT WIllED

~1i!H\

i'S'IRF''5

3
50 '52

t-TlhtE-ml

Vas - DRAIN TO SOURCE VOLTAGE - V

TLIGll0041-53

TLIGll0041-52

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics

PULSE

OUTPUT. VOUT
INVERTED

GENERATOR
.---------.

INPUT, VIN

TLIGll0041-54

FIGURE 9. Switching Test Circuit

TLlGll0041-55

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits speci·
fied in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guar·
anteed In die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

11·266

IJNatiOnal

Process F2
N-Channel Power MOSFET

Semiconductor

,0.112

l2.29i

f

'I' 'I (D.87)

1

0.044

~

DESCRIPTION
These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

0.034

Gag

r

,-

1

0.033

This process is available in the following device types:
TO-204 (Case 43)
TO-247 (Case 40)
IRF250CF
IRFP250CF
IRF250
IRFP250
IRF251
IRFP251
IRF252
IRFP252
IRF253
IRFP253

1D.i4l
0.280

~

f

0.060

(iT3i

L

Source

t

0.100
(2.54)

0.J53



r..C...
~

100

150

15
Voo= 100Y
lo=22A
TJ =25"C

I

'"
CI

f=1.0MHz

~

I'

FIGURE 4. Temperatura Variation of
Gate to SOurce Threshold Voltage

I Tvos=ov
J=2S"C
f"1--

50

I'.

TLlG/10041-60

TL/G/10041-59

FIGURE 3. Transfer Characteristics

I"..

0

I......

TJ-JUNCTION TEMPERATURE-"C

Vos-GATE TO SOURCE VOLTAGE-V

104

ID::..!'~~

I' r-..

1.0

769

5

~

I:

~TJ=-55"C
J.u ~T~~

5 f--TJ=125"C

o

1.2

i!:
~

r

10

1.3

!:i
~

~

J
J

20

!li

~
g

t--

10

'"u:::0
""

I--

.L

&l

~

p

~
I

I I"-

~

5

V

1

oV
o

VDS - DRAIN TO SOURCE VOLTAGE - V

IV
-,-V

40

60

120

160

Og - TOTAL GATE CHARGE - nC

TL/G/10041-61

FIGURE 5. Capacitance vs
Drain to SOurce Voltage

TLlG/10041-62

FIGURE 6. Gate to Source
Voltage vs Total Gate Charge

11·268

r--------------------------------------------------------------------------,
Process F2

5
2

'0'

102!' __

1R!2~

I II

2

10",
100

OPERA1IOH IN
5 THIS AREA IlAY BE
L1wnm BYRllS(on)

I II
lof!
=25'C
5 I~:S
1500c

...
1'\

1.0 ..

I'-

T--

I
I

5 10' 2

5 102 2

r-

0=0.5
0.2
0.\

[~~'" -.IIlTI
t, '- :

~

I~- 1=
NGLE PULSE
~=~D r-~ ~t-

10-1
lof! 2

I
."
N

Typical Performance Characteristics (Continued)
102

~

~~ 0; :.;;',D4

., d±tt
II

IIII

~c:..'";..,~~ t.u.
TJ.(...~.Tc·P.·Z(l!t)!C

5 103
t-TIl~E-m.

Vos-DRAIN TO SOURCE VOLTACE-V

TL/G/l0041-64

TL/GI10041-63

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics
VIN

PULSE

OUTPUT, VOUT

GENERATOR
.---------.
RG[N

INVERTED

RGS
INPUT,V'N

TL/G/loo41-65

FIGURE 9. Switching Test Circuit

TL/G/l0041-66

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

III
11-269

~National

Process F3
N-Channel Power MOSFET

~ Semiconductor
I - 0.112
I
(2.29j

-_.t._. .t

DESCRIPTION

O•034

(Q.87)-

These dice are n-channel, enhancement mode, power
MOSFETs designed especially for high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

,-r;~==~==~~~~'~j
Gat.

[I

0.044
~

1-

0.033

This process is available in the following device types:

lD.iil
0.260
(6.59)

TO-204 (Case 42)

TO-247 (Case 40)

IRF350CF

IRFP350CF

IRF350

IRFP350

IRF351

IRFP351

IRF352

IRFP352

IRF353

IRFP353

TLlG/l0041-67

Electrical Characteristics Tc =
Symbol

25°C (unless otherwise noted)

Test Conditions

Parameter

Voss

Drain to Source Voltage (Note 1)

10 = 250 p,A; VGS = OV

lOSS

Zero Gate Voltage Drain

VOS = Rated Voltage
VGS = OV

IGSS

Gate Leakage Current

VOS

VGS(TH)

Gate Threshold Voltage

10 = 250 p,A; VOS = VGS

ROS(ON)

Static On-Resistance (Note 2)

VGS = 10V; '0 = SA

=

± 20V; VOS

'0

Min

= OV

gFS

Forward Transconductance

VOS = 10V;

Clss

Input Capacitance

VOS = 25V; VGS = OV
f = 1 MHz

Coss

= SA

Max

400

2.0

Units
V

250

p,A

±100

nA

4.0

V

0.3

0.
Siemens

S.O
3000

pF

Output CapaCitance

600

pF

Crss

Reverse Transfer

200

pF

leI(on)

Turn-On Delay Time

Voo = 1S0V; 10 = SA
VGS = 10V; RGEN = 4.70.

35

ns

RGS = 4.70.

tr

Rise Time

65

ns

leI(off)

Turn-Off Delay Time

150

ns

tf

Fall Time

75

ns

Qg

Total Gate Charge

120

nC

VGS = 10V; '0
Voo = 400V

Notel:TJ = + 25'Cto +150'0.
Note 2: Pulse Test: Pulse Width" 80 ,,"s, Duty Cycle" 1%.

11-270

= 16A

r--------------------------------------------------------------------------,~

Process F3

;!J

Typical Performance Characteristics
30

.

Vos~7.y

16

L

1

.......

/'

Z

'"
8'"

12

I

8

.S>

4

Iec;l

I

TJ =25'C

6.0\

"

/

234

~~

0.3

~'"

0.2

5,ov

i'

5

II

0.5

5.5V

1

~.5V

o
o

II

VGS=IOV
0.6

T)25~
1

TJ=-SS"C

o.1
o

II

o

7

"""

TJ~ ~ ~

~i 0.4 :-

./

1

0.7

zl

/

8

4

Vos - DRAIN TO SOURCE VOLTAGE - V

12

16

20

10 - DRAIN CURRENT - A
TL/G/10041-69

TLlG/10041-68

FIGURE 1. Output Characteristics
20

..

I

FIGURE 2. Static Drain to Source
Resistance vs Drain Current
~

Vos= IOV

i

I

16
12

I

8

.S>

4

Ii

1.

fA

1

TJ=125~ ~

.h?

o
o

3

2

4

1.2

J=-55"C

5

......

7

.......

I"-

.......

~

..c;..

Cl

~
TJ =25"C
vGS=OV
f=1.0MHz

,
I.......

o

100

50

150

FIGURE 4. Temperature Variation of
Gate to Source Threehold Voltage
14
Voo=4OOV
12 1o=16A
TJ=25"C
10

-

I

"'"

,

TLlGI10041-71

TL/G/10041-70

....

I'" ......

Tr JUNCTION TEMPERATURE - "C

FIGURE 3. Transfer Characteristics

!1.

lo.':..!·~~

0.9

VGS - GATE TO SOURCE VOLTAGE - V

I

Joslvl-

I~

rtl

J=25"C

1.3

i 11~

I

1

I

I'

8

~
~

,/

6

1

~

I

.. I
2 I
~

o
o

20

40

60

so

100

Qg-TOTAL GATE CHANGE-nC

Vos - ORAIN TO SOURCE VOLTAGE - V

TLlG/10041-73

TLlG/10041-72

FIGURE 5. Capacitance vs
Drain to Source Voltage

FIGURE 6. Gate to Source
Voltage vs Total Gate Charge

III
11·271

Process F3
Typical Performance Characteristics (Continued)
102

II

5
2

R!3~.

1

IRrar2( \3
1

-

10

OPERATION 1M

5 lH1S MFA IoIAY BE
LIIRD BY Ros(an
2

1IP
I

5

.9

rY~~
~

=0.

~:
rr-

1

'fit'
~'.~~

~~ ~4

IIII I
~;;~

SINGLE PULSE

1

2 ---:i't~UM'f

10'"

-

1'1(...

II

uJl 2

5 101 2

... t ...

:..~~r.
5 102 2

r10-2

5 103

VDS - DRAIN TO SOURCE VOLTAGE - V

1

10'"

1111

DutrFaoIor,D

IIII

~~"'-rc'''''Z(\hl/C

DCUMl.~traln

1rP
t-TIIIE-mi
TLlG/10041-75

TLlG/10041-74

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics

PULSE

OUTPUT, VOUT
INVERTED

GENERATOR
.---------.

INPUT, VIN

TLlG/10041-76

FIGURE 9. Switching Test Circuit

TLlG/10041-77

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits speci·
fied in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guar·
anteed in die form because of the power diSSipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

11·272

~NatiOnal

Process F4
N-Channel Power MOSFET

Semiconductor

,0.112

(2.2sj

t

DESCRIPTION

" 0.034

'I'

([87j
1-

1r1

0.044

0f.

These dice are n-channel, enhancement mode, power
MOSFETs designed especially lor high power, high speed
applications, such as power supplies, AC and DC motor
control and high energy pulse circuits.

Gat.

0.033

This process is available in the lollowing device types:

(rn}

TO-204 (Case 42)
0.260
(6.59)

f

0.060
(1.53)

L

0.100
(2.5ij

---+

0.059
(1.51)
0.260

IRFP450CF

IRF450

IRFP450

IRF451
IRF452

IRFP451
IRFP452

IRF453

IRFP453

0.~3

nr

Source

t

TO-247 (Case 40)

IRF450CF

r

~

16.59i

TL/G/l0041-78

Electrical Characteristics Tc =
Symbol

25°C (unless otherwise noted)

Parameter

Test Conditions

Voss

Drain to Source Voltage (Note 1)

10 = 250 ""A; VGS = OV

loss

Zero Gate Voltage Drain

VOS = Rated Voltage
VGS = OV

IGSS

Gate Leakage Current

VOS = ±20V; VOS = OV

VGS[TH)

Gate Threshold Voltage

10 = 250 ""A; VOS = VGS

ROS(ON)

Static On-Resistance (Note 2)

VGS = 10V; 10 = 7.0A

gFS

Forward Transconductance

VOS = 10V; 10 = 7.0A

Ciss

Input Capacitance

VDS = 25V; VGS = OV
1= 1 MHz

Coss
Crss
td(on)

Turn-On Delay Time

tr

Rise Time

Id(off)
tf

Og

Total Gate Charge

Notel:TJ

=

Min

Max

2.0

Units
V

500
250

""A

±100

nA

4.0

V

0.4

0.

S.O

Siemens
3000

pF

Output Capacitance

SOO

pF

Reverse Transfer

200

pF

Voo = 210V; 10 = 7.0A
VGS = 10V; RGEN = 4.70

35

ns

RGS = 4.70.

50

ns

Turn-Off Delay Time

150

ns

Fall Time

70

ns

120

nC

VGS = 10V; 10 = 1SA
Voo = 400V

III

+ 25'Cto +150'C.

Note 2: Pulse Test: Pulse Width,; 20 !,s.

Duty Cycle,; 1%.

11-273

Process F4
Typical Performance Characteristics
14
12

...
1

I
~

10

I~

6

)

4

1

,

0.8

TJ"25'C ,j
VCS.~
eo JII' PULSE TEST
IV.......
7V UN

'r

o
o

r-

0.7

12 CI

TJ =125OC

0.6

zl

t!...

~

5.5V

~~

~

r

.Ii'

-

~

-

VGS= 10V

~
~

f'"

i

MV

F

4.5Y

0.5

I

0.3

-

f- -

o

"

0,2

'"

TJL5~OC

O. 1

7

234

TJ =25OC

0.4

Ves - DRAIN TO SOURCE VOLTAGE - V

12

16

20

ID - DRAIN CURRENT - A

TL/G/10041-79

TLlG/10041-80

FIGURE 1. Output Characteristics
20

...

FIGURE 2. Static Drain to Source
Resistance vs Drain Current
~

Ves= 10V

16

~

~

1

!

12

I

.Ii'

"

/J.

1

1.0

~

0.9

I:

'rfII

J=25OC
TJ = 125"\:--,1

VI

=-~"W'j

o
o

3

5

"

I'....

1.1

~

i5

8

1,3

T=25OC
\fGS=OV
f= 1.0MHz

~

-

!:i

...IE~

~

so

o

100

Voo=4OOV
12 ID=16A
TJ =25OC
10

1

/

.....
ISO

14

>

I

~

["'0.

TL/G/10041-82

Ct;- I--

I'--.

i'" .....

FIGURE 4. Temperature Variation of
Gate to Source Threshold Voltage

I

I--

i'..

Tr JUNCTION TEMPERATURE - OC

TLlG/10041-81

Coo

.....

-so

7

FIGURE 3. Transfer Characteristics

.....

tlvGS

ID~'~r-

""

VGS - GATE TO SOURCE VOLTAGE - V

.....

L

!:i 1.2

1/

8

:>

V

fil
12

~1

4

~

I

./

V

I

2

o

V

I

o

20

40

60

80

100

Qg - TOTAL GATE CHANGE - nC

Ves-DRAIN TO SOURCE VOLTAGE-V
TL/G/10041-83

TL/G/10041-84

FIGURE 5. CapaCitance vs
Drain to Source Voltage

FIGURE 6. Gate to Source Voltage
vs Total Gate Charge

11-274

,--------------------------------------------------------------------------,
Process F4

I II
....

2

I

101

I

1RF4p2. 453

..

OPfRATION IN

5 THIS AREA !lAY BE
LlWITID BYRDS(GII)

2

uP

I II

5

~c~rscO"C
SINGLE PULSE

2 - - -CURRENT UMITID
10-1
100 2

OPERA11ONT

5 101 2

.

I
."

Typical Performance Characteristics (Continued)

IR~~ 451

~

.Do

II
10 1'1

0=0.

t--

:!ii'T'"

...

'

1001'1

-:0

~':.~~
~

I-

~
r;'>
""~

1

~~f~
:!s~~~

I-

5 102 2

5 103

10-2

""
1()""1

Vos-DRAIN TO SOURCE VOLTAGE-V

I

I
100

rtr1
.. 14-:

4

~

... t~
Duly Fletor. D

~C=~ia: Vo'.

TJ(IIAX) "Tc·'y'Z(1h),IC
102

t-TIIiE-ml
TL/G/10041-88

TL/G/10041-85

FIGURE 8. Transient Thermal Resistance vs Time

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics

PULSE

OUTPUT, VOUT
INVERTED

GENERATOR
.---------"

90%

INPUT, Y'N

50%

TL/G/10041-87

FIGURE 9. Switching Test Circuit

TL/G/10D41-8B

FIGURE 10. Switching Waveforms

Probe Testing
Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high
current parameters and thermal characteristics specified in
the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of
unmounted die and current handling limits of probe tips.

These parameters are:
Thermal Resistance
Forward Voltage Drop at Rated Current
Reverse Recovery Characteristics at Rated Current
Surge Current

II
11-275

Section 12
Appendices, Packaging and
Ordering Information

D

Section 12 Contents
Transistor Glossary of Symbols ......................................................
Diode and Rectifier Glossary of Symbols and Terms. .. .. . .. ..... ... ... .... ..... ..... ...
JFET Glossary of Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
JFET Application Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AN-556 Introduction to Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AN-55? Optimizing the Ultra-Fast POWERPlanar™ Rectifier Diode for Switching Power
Supplies ........................................................................
AN-558 Introduction to Power MOSFETs and Their Applications. . . . . . . . . . . . . . . . . . . . . . . . . .
Packaging Options and Ordering Information... . .. .. .. .. . .. . ....... .. ..... ..... ..... ...
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Bookshelf
Distributors

12-2

12-3
12-11
12-14
12-20
12-25
12-31
12-37
12-51
12-56

II?'A National
~ Semiconductor
Transistor Glossary of Symbols

:=r

DC PARAMETERS
BVCBO

BVCEO

BVCER

Collector-Base Breakdown Voltage with
Emitter Open-Circuited
The breakdown voltage of the collector-base
junction, measured at a specified current, with
the emitter open-circuited.
Collector-Emitter Breakdown Voltage with
the Base Open-Circuited
The collector-emitter breakdown voltage,
measured at a specified collector current, with
the base open-circuited.

BVCEO. BVCER. BVCES

Collector-Emitter Breakdown Voltage with
Resistance between Emitter and Base
The collector-emitter breakdown voltage
measured at a specified current with a specified
resistance R connected between the base and
the emitter.

RV cEo

•

~

TL/XX/0125-2

BVCEX

o~

0:
" ••

BVCES

~,- $1"
TL/XX/0125-1

Collector-Emitter Breakdown Voltage with
Base Shorted to Emitter
The collector-emitter breakdown, measured at a
specified current, with the base shorted to the
emitter.

TUXX/0125-3

Collector-Emitter Breakdown Voltage at a
Specified Condition
The collector-emitter breakdown voltage
measured at a specified current with the baseemitter junction forward or reverse biased by a
specified voltage or current.

BVCEX

Emitter-Base Breakdown Voltage with
Collector Open-Clrculted
The emitter-base breakdown voltage, measured
at a specified current, with the collector opencircuited.

BVEBO

TLlXX/0125-4

TLlXX/0125-5

12-3

DC PARAMETERS (Continued)
hFE

Common-Emitter DC Current Gain
The ratio of DC collector current to DC base
current measured at a specified collector-emitter
voltage and a specified collector current.

hFE - BETA

,-,~
I.

-----".

~-=-_

~

Ie

TL/XX/0125-6

{J

a

{J+ 1

1- a

a~--{J~--

I.

5

'$' 0
ICBO

Inverse Collector-Base Current
The collector-base current with the junction
reverse biased by a specified voltage, with the
emitter open-circuited.

lEBO

LVCEO,
LVCER,
LVCES,
LVCEX, or
VCEO(sust)
VCER (sust)
VCES (sust)
VCEX (sust)

~Ie

·1·

-

Vel

TL/XX/0125-7

lcoo

~ ..

::L

+
;ru ;kvn
TL/XX/0125-8

'CEO ~ (J3

ICEX,
ICES

I

Inverse Collector-Emitter Current at a
Specified Condition
The collector-emitter current measured at a
specified collector-emitter voltage with the base
forward or reverse biased by a specified voltage
or current, or with the base shorted to the
emitter.

+

1) 'CBO

~Icu

*

v..

leu

IQ>

Inverse Emitter-Base Current
The emitter-base current with the junction
reverse biased by a specified voltage with the
collector open-circuited.

iT

T

TL/XX/0125-9

IEoo

··r

Pulsed Limiting Breakdown Voltages
These are similar to the corresponding, above
defined, BV parameters but are measured at a
specified high current point where collectoremitter voltage is lowest. The duration of the
pulse and its duty cycle must be specified. The
letter L indicates LIMITING Value and is
measured outside the negative resistance zone
of the reverse characteristic.

v~.

L

TL/XX/0125-10

LVCEO. LVCER. LVCES. LVCEX

~eEO
I

'·1

VeE
TL/XX/0125-11

,,~
0

lV CEO

R

~

TLiXX/0125-12

0

..~ ,!

LS

TLiXX/0125-13

12-4

~~w,

-I

iiJ

DC PARAMETERS (Continued)
VBE(ON)

::J
(II

Unsaturated Base-Emitter Voltage
The base-emitter voltage measured in the
common-emitter connection at a specified
collector to emitter voltage and specified
collector current.

i

o...

VSE(ON)

e J ~'
-I ---------t V+NI

-

C)

I
-

VeE

 > Resistance
Equivalent to the real part of hie at some
specified very high frequency.

'b'MEASUREMENT

-iiI
I
_ _ r,
II
_ - -.. - _I

\-JWI
I

I

W3

R
~3

>

~2

W2

-jl
TLIXXI0125-30

rb'Cc

Collector Base Time Constant
This parameter is a device figure of merit and is
measured in a specified test circuit.

r 'c - COLLECTOR BASE TIME CONSTANT
b cSPECIFV -Ie. VCE. FREQUENCV

12-8

>

(1)1

I

SMALL SIGNAL PARAMETERS (Continued)

let} toN
t,

ts

toFF

tf

Common-Emltter Switching Parameters
In the following. drive circuit conditions and
collector Circuit conditions must be specified.
The transition times of the input must be
negligible compared to the measured times.
DelayTime
The time interval during turn-on from the point
when the input pulse at the base reaches 10%
of its full amplitude to the point when the
collector pulse changes from 0% to 10% of its
maximum amplitude.
Rise Time
The time interval during turn-on in which the
collector pulse changes from 10% to 90% of its
maximum amplitude.
Storage Time
The time interval during turn-off from the point
when the turn-off pulse at the base changes
from 100% to 90% of its full amplitude to the
time when the collector current has changed
from 100% to 90% of its maximum amplitude.
Fall Time
The time interval during turn-off in which the
collector pulse decreases from 90% to 10% of
its maximum amplitude.

SWITCHING PARAMETERS

-182

TL/XX/OI25-31

TON - Id + I,
TOFF - Is + If

911%

T

111%

I

I
I
I

I

,

I

,

I

,......

Vee

10%

I
I :
I I
I
I I

",--1

i4"",

90%
0

'\
I
I
,
I
:

lou.

I
I

J--'"

i

,

I
I
I I,
I

I

I
I
I

I

I

~ ~

I

!--ta-.., ,

..

T

TLlXX/OI25-32

Y Parameters

Y PARAMETERS

'.l~

~.

~t.
TLlXX/OI25-33

Y PARAMETERS ARE DEFINED BY
il - Yll al
i2 - Y21 81

+
+

Y12 8 2
Y22 82

OR IN COMMON EMITTER NOTATION
11

=

Yie 81

12 - Yf. 81

Common-Emitter Forward Transfer
Admittance
The common-emitter forward transfer
admittance with output AC shorted. This is a
complex quantity (gla + ibta)·

+
+

Yre 82

Yoe 82

5

~ i'

TL/XX/OI25-34

12-9

II

Yfe=-B...

Vbe Vee

CI!I

0

SMALL SIGNAL PARAMETERS (Continued)
Yie

YPARAMETERS-COMMON EMITTER

Common-Emitter Input Admittance
The common-emitter input admittance with
output AC shorted. This is a complex quantity
(9ie + jbie)·

5I

~e v~:

Vie

=..!IL(
Vb. Vee = 0
I
I

TUXX/OI25-35

Yoe

Common-Emitter Output Admittance
The common-emitter output admittance with
input AC shorted. This is a complex quantity (90e
+ jboe)·

Ie

en

Yo. =...!£...I
=0
vee Vbe

TL/XXlOI25-36

Y,e

Common-Emitter Reverse Transfer
Admittance
The common-emitter reverse transfer
admittance with input AC shorted. This is a
complex quantity (9,e + jb,e)'

.fj T'·

Yro=~1
Ve• Vb. = 0

TL/XX/OI25-37

LARGE SIGNAL PARAMETERS
11

Po

Collector Efficiency
This parameter applies to oscillators and class C
amplifiers, predominantly. It is defined as the
ratio of RF Power Out/DC Power In.

'1/ - COLLECTOR EFFICIENCY

Po(RF)
PIN(DC)

vi
Ic x VCE

'1/=--=---

Power Out
This parameter applies to oscillators. The units
are Watts and a test circuit must be specified.

I I
OSC

~I

POWER
METER

TL/XX/OI25-38

I

SPECIFY - Ic VCE UNDER QUIESCENT CONDITIONS
- fo. RLOAD
THERMAL PARAMETERS
RTH

8JC
8JA

Internal Junctlon-to-Case Thermal
Resistance
The rated Increase of Junction temperature with
respect to the case temperature per unit of
dissipated power. It is called Thermal
Resistance with infinite heat sink.
Junctlon-to-Case Thermal Rating
Junctlon-ta-Amblent Thermal Rating

12-10

I

G)C

O'Cr

~National

ID.

I» CD
.. I»

~ Semiconductor

-ej

oD.

-::1:1
(nCD

Diode and Rectifier
Glossary of Symbols and Terms

-en
39;
C" _.

_..

OCD

o

I»
j

D.

IRM Reverse Recovery Current: The peak value of reverse current which flows immediately aiter switching applied voltage from the forward to the reverse direction. IRM
is the same as Ir, generally used for rectifiers.

3

o

IRX Reverse Current: IRX is the symbol used to denote
the reverse current of a single diode in an array at a time
when all other diodes in the array are passing forward current. It is a measure of cross-talk between diodes.
Iz Zener Current: The reverse current which flows in a
zener diode at a point beyond the knee in the reverse characteristic. See Figure 2.

Cc Case Capacitance: This is that part of a diode's total
capacitance which is attributable to the diode package.
to SerIes Resonant Frequency: The frequency of oscillation of the tuned circuit formed by the capacitance and inherent series inductance of the diode.
IF Continuous Forward Current (Rating): The maximum
direct current that can be safely passed through a diode in
the forward direction.
IF Forward Current: The direct current passing through a
diode In the forward direction.

IZsurge MaxImum Zener Surge Current: The maximum
value of the peak point of a single cycle of current that can
safely be passed through a zener diode in the reverse direction. This is not a continuous rating.
IZM Maximum Zener Current: The maximum value of direct current that can safely be passed through a zener diode
in the reverse direction.
Ls SerIes Inductance: Series inductance that is inherent
in the construction of a diode, normally measured between
two specified points on the diode leads.

It Forward Current: The forward current paSSing through
a diode operated under switching conditions. See Figure 3.
It Peak RepetItIve Forward Current: The maximum value of the peak point of a current that can safely be passed
through a diode In the forward direction. This is a continuous
(i.e. repetitive) rating.
It

..

(jj

BV Breakdown Voltage: Figure 1 shows the reverse
characteristic of a typical silicon diode. Breakdown voltage
is generally the reverse voltage at a point beyond the
"knee" of the reverse characteristic. In Figure 1, the breakdown voltage is specified at a reverse current of IR2'
C CapacItance: Diode capacitance is measured at a
specified reverse voltage using an AC signal of specified
frequency. When capacitance is measured at VR = 0, this
is sometimes denoted by the symbol Co.

ND NoIse Density: A measurement of the noise generated within a zener diode, both due to zener breakdown and
internal resistance. Noise density, measured in microvolts
rms per square root cycle, can be used to calculate rms
noise over any frequency range.
NF NoIse FIgure: This is a ratio used to measure the
noise generated within a diode. The ratio used is total output noise compared to that part of output noise due to input
noise This ratio, when multiplied by 10 log10, is known as
noise figure and is measured in decibels (dB).
FIgure of Merit: Generally used as a measure of the
"quality" of varactor diodes, Q, the figure of merit, is defined
as the ratio of energy stored to energy dissipated.
Stored Charge: The charge stored in a diode when
passing current in the forward direction. Stored charge is
usually measured by switching the diode off and measuring
the area of the I versus t curve from switchoff to equilibrium.
See Figure 3.
RD Dynamic Resistance: Small signal resistance of a diode operating in the reverse direction determined by the
small Signal or AC values of reverse current and reverse
voltage. This parameter is of particular importance in varactor diodes.

•

Peak Forward Surge Current: The maximum valsingle cycle of current that can
safely be passed through a diode in the forward direction.
This is not a continuous rating.

u~ the peak point of a

IFSM Peak Forward Surge Current: This rating is the
same as I'(surge) but is more generally applied to rectifiers.
10 Average RectIfIed Current: The average value of the
forward current passing through a diode; as a rating, the
maximum value of such current that can safely be passed.

a

as

IR Reverse Current: The leakage current which flows in
the reverse direction through a diode when a reverse voltage is applied to the diode. Referring to Figure 1, IR is usually measured at a specified reverse voltage at a point below
the "knee" on the reverse characteristic.
Ir Reverse Current: The peak value of reverse curent
which occurs immediately aiter switch-off. The value of Ir is
limited by the circuit, which determines that rate at which
stored charge can be dissipated. See Figure 3.
Irr Reverse Current: The steady value of reverse current
at equilibrium aiter switch-off. See Figure 3.
IRAV Average Reverse Current: The average reverse
current which flows when AC voltage is applied across a
diode.

rdlff Differential Resistance: Small signal resistance of a
diode operating in the forward direction determined by the
small Signal or AC values of forward current and forward
voltage.
RE RectificatIon Efficiency: The ratio of DC load voltage
to peak RF input voltage to a detector.

12-11

•

~

0

~E
t)CD
CDt-

a:: "0

r-------------------------------------------------------------------------------------,
Diode and Rectifier
Glossary of Symbols and Terms (Continued)

"O~
~as

Reverse Characteristic

Zener Diode Reverse Characteristic

as..!!

CDO

"O.c

oE

i5~

IR2

'0

1------------------

~

I
a

~ ZENER CURRENT

LOII!!!I

I

I

!

o-l--~~;:::::::::

~

.!.

~ VRr--'
I

>
TLIXXlOI22-4

FIGURE 4
TL/XX/OI22-3

FIGURES
RS Series Resistance: Small Signal resistance of a diode
operating in the forward direction determined by the small
Signal or AC values of forward current and forward voltage.
Same as rdill.
TC Temperature CoeffiCient: A coefficient which determines the variation of various parameters (e.g. Capacitance,
Zener voltage, forward voltage) with temperature. A subscript is often used to denote the parameter to which the
temperature coefficient refers.
tfr Forward Recovery Time: The time interval between
the pOint at which a diode is turned on and the point at
which the forward voltage comes to within 10% of its equilibrium level. See Figu/'8 4.
trr Reverse Recovery Time: The time interval between
the point at which a diode is turned off and the pOint at
which the reverse current comes to within 10% of its equilibrium level. See Figure 3.
Vp Forward Voltage: The voltage applied across a diode
in the forward direction (anode more positive than cathode).

VPAV Average Forward Voltage: The average value of
forward voltage when current is being passed through a diode in the forward direction.
Vfr Forward Recovery Voltage: The peak value of forward voltage reached immediately after switch-on. The value of Vir is limited by the circuit in which the diode is operating.
VPX Forward Voltage: VFX is the symbol used to denote
the forward voltage of a single diode in an arrey at a time
when the condition of the other diodes in the array is defined. It can be used as a measure of cross-talk between
diodes.
VPK Peak Forward Voltage: The peak value of forward
voltage reached immediately after switch-on. Same as Vir.
VR DC Blocking Voltage Rating: The continuous reverse
voltage at which a rectifier can be safely operated without
going beyond the "knee" in the reverse characteristic
(Flgu/'8 1).

12-12

Diode and Rectifier
Glossary of Symbols and Terms (Continued)
VR Reverse Voltage: The voltage applied across a diode
in the reverse direction (anode more negative than cathode).
VRRM Peak Repetitive Reveree Voltage: The maximum
value of the peak point of a reverse voltage that can be
safely applied to a diode. This is a continuous (i.e. repetitive)
rating and includes all repetitive transient voltages.
VRrma rma Reverae Voltage: The maximum rms value of
a reverse voltage that can be safely applied to a diode.
VRWM Working Peak Reverse Voltage: The maximum
value of the peak point of a reverse voltage that can be
safely applied to a diode. This is not a continuous rating and
does not include transient voltages.
Vz Zener Voltage: The reverse voltage across a zener
diode at a point where zener current is flowing. See
Figure 2.

WIV Working Inverae Voltage: The maximum reverse
voltage at which a diode can be operated below the "knee"
on the reverse characteristic. See Figuf8 1.
Zz Zener Impedance: The small signal impedance of a
zener diode operating in the zener region, determined by
the small signal or AC values of zener current and zener
voltage.
ZZK Zener Knee Impedance: Zener impedance measured at a defined point on the "knee" of the zener characteristic (See FigUf(2).
AIR Revsrse Current Match: The difference in reverse
current between any two diodes measured under the same
condition for each.
AVF Forward Voltage Match: The difference in forward
voltage between any two diodes measured under the same
conditions for each.

12-13

~

o

.Q

~

'0

r-----------------------------------------------------------------------------,
~National

~ Semiconductor

~

I
a

..,~

JFET Glossary of Symbols

DC Parameters
BVOGO(V)
or BVGOO

Drain-Gate Breakdown Voltage with
Source Open Circuited
The breakdown voltage of the drain-gate
junction, measured at a specified current
with the source open-circuit.

BVSGO(V)
or BVGSO

Source-Gate Breakdown Voltage with
Drain Open-Clrculted
The breakdown voltage of the sourcegate junction, measured at a specified
current, with the drain open-circuited.

BVGSsM
or BV, V(BR)GSS

Source-Gate Breakdown Voltage with
Drain-Source Shorted
The breakdown voltage of the sourcegate and drain-gate junctions, measured
at a specified current with the drainsource shorted.

looO(pA)
orlGOO

Drain-Gate Leakage Current, Source
Open-Circuited
The leakage current of the drain-gate
junction, measured at a specified voltage,
with the source open-circuited.

IO(II-A)
or IO(ON)

Drain ON Current
The drain current, measured at a specified
drain-source voltage and gate-source
voltage.
Drain Cutoff Current
The drain cutoff current, measured at a
specified drain-source voltage and gatesource voltage.

lOSS (mA)

Drain Saturation Current
The drain current, measured at a specified
drain-source voltage with the source
shorted to the gate (VGS = 0)

12-14

10

VGS

lOSS

~

o
+
~VDS
TLlXX/0126-6

r-------------------------------------------------------------------------------~

~

DC Parameters (Continued)
IG(pA)
orIG(ON)

'on
G)

Gate Leakage Current with Drain
Current Flowing
The gate leakage current, measured at a
specified drain current and drain-gate
voltage.

I

VOG

9.

!i
TLlXX/0126-7

Gate-Source Reverse Leakage Current
with Drain-Source Shorted
The gate-source reverse leakage current
measured at a specified gate-source
voltage.

iii

IGSS

VGS

TLlXX/0126-8

ISGO(nA)
orlGSO

Source-Gate, Reverse Leakage Curent
with Drain Open-Circuited
The leakage current of the source-gate
junction, measured at a specified voltage,
with the drain open-circuited.

~

~VSG
TLlXX/0126-9

DS(n) or rds,
RDS, rDS(ON)

Drain-Source ON Resistance
The drain-source ON resistance,
measured at a specified gate-source
voltage and drain current.

VDS(ON) (mV)

Drain-Source ON Voltage
The drain-source ON voltage, measured
at a specified gate-source voltage and
drain current.

VGS(V)
orVGS(ON), VG

TL/XX/0126-10

--

Operating Gate-Source Voltage
The gate-source voltage, measured at a
specified drain current and drain-source
voltage.

10

VIIS

TLlXX/0126-11

Forward Gate-Source Voltage
The forward gate-source voltage,
measured at specified current.

TLlXX/0126-12

VGS(OFF)(V)
orVp

--

Gate-Source Cutoff (Pinch-Off) Voltage
The gate-source cutoff voltage, measured
at a specified drain current and drainsource voltage.

10

VOS
VGS
TL/XX/0126-13

12-15

3

go

Small Signal Parametera
Ctss(pF)
or Cis, Cgse

Common-Source Input Capacitance
The common-source input capacitance
measured between the gate and source
with the drain A-C shorted to the source
at specified drain-source and gate-source
voltages.

+
Vos

TLlXX/0126-14

Coss(pF)
or Cos, Cdss

Common-Source Output Capacitance
The common-source output capacitance,
measured between the drain and source
with the source A-C shorted to the gate
at specified drain-source and gate-source
voltages.

Common-Source Reverse Transfer
Capacitance
The common-source reverse transfer
capacitance, measured between the drain
and gate at specified drain-source and
gate source voltages.

en (nVl.JHz
oren, Vn, En

Equivalent Input Noise Voltage
The equivalent input noise voltage per unit
bandwidth, measured with the input A-C
shorted to the source at a specified
operating condition.

glg(mV) (mO)
orYlg

Common-Gate Forward
Transconductance
The common-gate forward
transconductance with the output A-C
shorted. This is a complex quantity (gIg
iblg)'

TL/XX/0126-17

gls(mV)(mO)
org m, YIs,
RelYIsl

gise (,...V) (,...0)
orVis

ill
I

vGS ' "

+

Common-Source Forward
Transconductance
The common source forward
transconductance with the output A-C
shorted. This is a complex quantity (gls +
ibIS>'
Common-Source Input Conductance
The common-source input conductance
with the output A-C shorted. This is a
complex quantity (gis + ibis).

12-16

G

/

10
TL/XX/0126-1 B

YI =10g VGS VOS =0

10
YIs=-

I

VGS VOS = 0

-~I
IS - VGS VOS =

y.

TL/XX/0126-19

0

Small Signal Parameters (Continued)
goss (I-'V)(I-'m
or Yos

Common-Source Output Conductance
The common source output conductance
with the input A-C shorted. This is a
complex quantity (gas + ibos)'

10
Yos=-

I

I

G~
S

VOS VGS = 0

Gpg(dB)

Common-Gate Power Gain
The common-gate power gain is the ratio
, of output power to input power.

Gps(dB)

Common-Source Power Gain
The common-source power gain is the
ratio of output power to input power.

in (pAl v'Ri)

Equivalent Input Noise Current
The equivalent input noise current
measured with the input open-circuited
under specified operating conditions.

Gp = 10 log10

I~~I

TL/XX/0126-21

NF(dB)

Spot Noise Figure
Noise figure = 10 IOg10 F were F is noise
factor which is the ratio of the total output
noise power to the output noise power of
the source. Measured at specified
operating conditions and source
resistance.

F = Total Output Noise Power
Source Output Noise Power

Common-Source Switching Parameters
In the following, drive circuit conditions and drain circuit
conditions must be specified. The transition times of the input
must be neglible compared to the measured times.
leI(ns)

Turn-On Delay Time
The time interval during turn-on from the
pOint when the input pulse at the gate
reaches 10% of its full amplitude to the
point when the drain pulse changes from
0% to 10% of its maximum amplitude.

tr(ns)

Rise Time
The time interval during turn-on in which
the drain current pulse changes from 10%
to 90% of its maximum amplitude.

leI(ns)

TL/XX/0126-22

I

O(ON) =

Voo - VOS(ON)
RL

Turn-Off Delay Time
The time interval during turn-off from the
point when the turn-off pulse at the gate
changes from 100% to 90% of its full
amplitude to the time when the drain
current has changed from 100% to 90%
of its maximum amplitude.
Fall Time
The time interval during turn-off in which
the drain current pulse decreases from
90% to 10% of its maximum amplitude.
TlIXX/0126-23

12-17

Dual FET Parameters
BVG1,G2M
or BVGl-2

Gate to Gate Breakdown Voltage
The breakdown voltage of the gate to
gate junctions, measured at a specified
current.

81

~

o!Ul!lo
SUB

OOiJ...rao

,

~BV81.81

0.ol

81

,

llG

~
TL/XX/01211-24

CMRR(dB)
orCMR

Common-Mode Rejection Ratio
The common-mode rejection ratio is the
ratio of the change in differential gate
voltage with a change in the drain to gate
Voltage.
aVOG
CMRR = 2010g10 aVos

glsl-2(%)
or gfs11 g182

Common-SOurce Forward
Trensconductance Ratio (Match)
The transconductance ratio = glsl/Qjs2
x 100% measured at specified drain-gate
voltage and drain current.

gossl-2(JA.V)
orgosl-2

Common-Source Output Conductance
(Match)
Output conductance match = Igos1-gos21
measured at specified drain-gate voltage
and drain current.

10581-2(%) or
1081-2,
IOSSl/10882

Drain Saturation Current Ratio (Match)
The drain saturation current ratio =
IOSSl/10882 X 100% measured at
specified drain-source voltages.

IGl-2(pA)

Differential Gate Leakage Current
Differential gate leakage current = IIG1IG21 measured at specified drain-gate
voltage and drain current.

IG1,G2(pA)

Gate to Gate Rever.. Leakage Current
The gate to gate reverse leakage
measured at a specified voltage
monolithic dual with diode isolation
shown.

*

~

t"" ~

~
$~ID AVOS ID~$

*

*
TL/XX/01211-25

001

o!1f" L!!.o

•~
~

BUBO-

<>oiL SZO
01

~~

VGI.GZ

ri.
,: :- VGI.BZ
~

TL/XX/01211-211

12-18

I

Dual FET Parameters (Continued)
VGS1-2(mV)
or Il.VGS. Vos.
IVGS1- VGS21

Differential Gate-Source Voltage
The differential gate-source voltage. measured at a
specified drain-gate voltage and drain current.

Il.VGS1_2(/A-V/OC)
or Il.IVGS1-VGS21/Il.T
Il.Vos/ll.T

Differential Gate-Source Voltage Drift
The differential gate-sorce voltage drift is the
change in the differential gate-source voltage with a
change in device temperature at a specified
operating condition.
Il.VOS = !(VGS1- VGS2)I T 1 - (VGS1- VGS2)I T2!
Il.T
T1-T2

12-19

~National

.

~ Semiconductor
Choose the Proper FET
National Semiconductor utilizes 17 different FET geometries to cover, without compromise, the full spectrum of applications. Detailed data on each process, along with a list
of all part numbers manufactured from each process, Is to
be found in Section 11.

To further simplify the selection procedure, the FET Family
Tree is included for quick identification. After narrowing
down the process types, it is suggested that the process
sheets and specific part number characteristics be consulted.

FEr FAMILY TREE
N-CHANNEL SINGLES

P-CHANNEL SINGLES

N-CHANNEL DUALS

1

I

I

GENERAL PURPOSE AMP
PSO - 9113-7 mmhos
IDSS 1-20mA
PS2 - 911 0.5-3 mmhos
IDSS 0.1-1 0 mA
PSS - 911 0.8-5 mmhos
loss 0.5-17 mA

I
RF/VHF/UHF
PSO - Gp• 12dB0400 MHz
9115.5 mmhos
P90 - Gpt 11 dB0450MHz
9118mmhos
P92 - Gpg 12dB.4S0MHz
911 19 mmhos

GENERAL PURPOSE AMP
P88 - 9114-17 mmhos
losS 5-90 mA
P89 - 911 1-4 mmhos
'DSS 0.3-20 mA

I
SWITCH/CHOPPER
P88 - ros 5O-200~
'D(OFF} 50 pA
P89 - ros 4S0~
IIl(OFF)20pA

GENERAL PURPOSE
P83 - ' 100 MHz I-...:.P_+---t-+---t---i-t--l---4--l---+-+P,-+';"'P+P,-+-II-+-P-I-General Purpose Amplifier
P
P
P
P
Low Noise Amp (10 Hz (en> I--'S'--+--"-S_t-+-_ _4--'S'---l-S=-t-":'S-l--'-P_4--l-_ _+-+,-+-II--+-P-I-P,-+';"'P-I-P'Low Noise Amp > 50 MHz
P
S
P P P
P
High Frequency Mixer

P

P

Dual Diff Pair
AGC Amplifier

P

P

P

P

P P

P

P
P

S

P

P

P

Electrometer Preamp

P
P
P

Microvolt Amplifier
Low Leakage Diode

P

S
P

Diff/Angle Ended Inp. Stag. t---+---t--+---t---+--t--i-_P-t-P+---4--l--+-i-P-+_P-l--+_P+PActive Filter
P
S
P
S
Oscillator
Voltage Variable Resistor
Hybrid Chips

P
P
P

P
P

P

P
P

Analog/Digital Switch
Multiplexing

S
S
P

P
P
P
S

P

Choppers

S

P

P

P P
S S
P P

P

P

P
P
P
P

P

P

P

P
P

S S
P

Nixie Drivers
Reed Relay Replacement

P

P

Sub pA Dual Diff Pair
Sample-Hold

P

P

S

P

P
P

Buffer Interface to CMOS
Matched Switch
HF > 400 MHz Prime
Current Limiter
Current Source

P
P

S S

S
P
P

P

P

S

P

P- Prime Choice

S- Secondary (AHernate) Choice

12-22

S

P

P P

FET Application Guide (Continued)
Advantages of Using Fleld·Effect Transistors (Continued)
Application

Advantages

Final Assembly Where Used

DC Amplifiers

High Zin
Low Drift Duals
Low Noise

Transducers, Military Guidance
Systems, Control Systems, Temp
Indicators, Multimeters

Low Frequency
Amplifiers

Small Coupling Capacitors
Low Noise, Distortion
High Input Impedance

Sound Detection, Microphones,
Inductive Transducers, Hearing Aids,
High Impedance Transducers

Operational
Amplifiers

Summing Point Essentially
Zero. Low Device Noise.
Less Loading of Transducers

Control Systems, Potted Op Amps,
Test Equipment, Medical Electronics

Medium and High
Frequency
Amplifiers

Low Cross Modulation
Low Device Noise

FM Tuners, Communication Received
Scope Inputs, Most Instrumentation
Equipment, High Impedance Inputs

Mixer-100 MHz
and Up

Low Mixing Noise
Low Cross Modulation

FM Tuners, Communication Receivers

Oscillators

Low Drift

Transmitters, Receivers, Organ

Logic Gates

Virtually Infinite Fan in
Simplified Circuitry
Zero Storage Time
Symmetrical

Guidance Controls, Computer Market
Mini Military Teaching Aids, Traffic
Control, Telemetry

Choppers

Zero Offset
Low Leakage Currents
Simplified Circuitry
Eliminates Input Transformers

Op Amp Modules Guidance Controls
Instrumentation Equipment

AD Converters
Multiplex Switching
(Arrays) and Sample Hold

Improved Isolation of Input
and Output. Zero Offset.
Symmetrical. Low Resistance
Simplified Circuitry

Control System, DVM's and Any Read·
out EqUipment, Medical ElectroniCS

Relay Contact
Replacement

Solid State Reliability
Zero Offset, High Isolation
Symmetrical
No Inductive Spring
No Contact Bounce
High Repetition Rate

Test Equipment, Airborne Equipment
Instrumentation Market

Voltage Variable
Resistor

Symmetrical
Solid State Reliability
Functions as Variable Resistor.
Low Noise. High Isolation
Improved Resolution

Organ, Tone Controls, Control Circuits to
Input Operational Amplifiers

Current Limiters
Sources

Two Lead Simplicity
Wide Selection Range
Low Voltage Operation

Hybrid Circuits, Amplifiers, Power Supply
Protection, Timing Circuits, Voltage
Regulators

12·23

•

Important Parameters by Application
Listed In Approxmlate Order of Importance
Low
Frequency
Amplifier

Source
Follower

Electrometer
Amplifier

Low
Drift
Amplifier

Low
Noise
Amplifier

High
Frequency
Amplifier

Oscillator

Yfs

Yfs

IG

loz

an

Ra(yfs)

yfs

lOSS

IG

yfs

yfs@ loz

IG

Ra(yfs)

loSS

in
yfs
loSS
VGS(off)

NF

Crss

Crss
Re(yos)
losS
VGS(off)

Ciss
VGS(off)
BVGSS

VGS(Off)
Ciss
Crss
en
BVGSS

Crss
Clss
loSS
VGS(off)
BVGSS

10Z
an
90S

VGS@ 10Z
IG
BVGSS

12-24

Differential
Amplifier

Analog
and
Digital
Switch

/VGS1 - VGS2/
A/VGS1 - VG~2/
AT

ROS(on)

/IG1 -IG2/
IG
yfs
yfs1/yfs2

Clss
Crss
VGS(off)
BVGSS

/YoS1 - Yos2/
CMRR
VGS(off)

,

10(0ff)
I
I

National Semiconductor
Application Note 557
Ralph E. Locher

Introduction to Power
Supplies
INTRODUCTION
Virtually every piece of electronic equipment, e.g., computers and their peripherals, calculators, TV and hi-fi equipment, and instruments, is powered from a DC power source,
be it a battery or a DC power supply. Most of this equipment
requires not only DC voltage but voltage that is also well
filtered and regulated. Since power supplies are so widely
used in electronic equipment, these devices now comprise
a worldwide segment of the electronics market in excess of
$5 billion annually.
There are three types of electronic power conversion devices in use today which are classified as follows according to
their input and output voltages: 1) the AC/DC power supply;
2) DCIDC converter; 3) the DCIAC inverter. Each has its
own area of use but this paper will only deal with the first
two, which are the most commonly used.
A power supply converting AC line voltage to DC power
must perform the following functions at high efficiency and
at low cost:
1. Rectification: Convert the incoming AC line voltage to DC
voltage.
2. Voltage transformation: Supply the correct DC voltage
level(s).
3. Filtering: Smooth the ripple of the rectified voltage.
4. Regulation: Control the output voltage level to a constant
value irrespective of line, load and temperature changes.

5. Isolation: Separate electrically the output from the input
voltage source.
6. Protection: Prevent damaging voltage surges from reaching the output; provide back-up power or shut down during a brown-out.
An ideal power supply would be characterized by supplying
a smooth and constant output voltage regardless of variations in line voltage, load current or ambient temperature at
100% conversion efficiency. Figure 1 compares a real power supply to this ideal one and further illustrates some power
supply terms.
LINEAR POWER SUPPLIES
Figure 2 illustrates two common linear power supply circuits
in current use. Both circuits employ full-wave rectification to
reduce ripple voltage to capaCitor Cl. The bridge rectifier
circuit has a Simple transformer but current must flow
through two diodes. The center-tapped configuration is preferred for low output voltages since there is just one doide
voltage drop. For 5V and 12V outputs, Schottky barrier diodes are commonly used since they have lower voltage
drops than equivalently rated ultra-fast types, which further
increases power conversion efficiency. However, each diode must withstand twice the reverse voltage that a diode
sees in a full-wave bridge for the same input voltage.

l

LOAD REGULATION

PEAK-TO-PEAK
RIPPLE VOLTAGE

!!'!..
Vo

o

TIME
TL/G/l0061-1

FIGURE. 1. Idealized Power Supply

AC]

LINEAR
REGULATOR

IN

Cl

LINEAR
REGULATOR

DC
OUT

Cl

C2

DC
OUT

C2

TL/G/l0061-2

a. Center Tap Transformer Input
TL/G/l0061-5

b. Full-Wave Bridge Input
FIGURE 2. Linear Voltage Regulator

12-25

The linear voltage regulator behaves as a variable resist·
anee between the input and the output as it provides the
.precise output voltage. One of the limitations to the efficien·
cy of this circuit is due to the fact that the linear device must
drop the difference in voltage between the input and output.
Consequently the power dissipated by the linear device is
(Vi - Vol x 10 , While these supplies have many desirable
characteristics, such as simplicity, low output ripple, excel·
lent line and load regulation, fast response time to load or
line changes and low EMI, they suffer from low efficiency
and occupy large volumes. Switching power supplies are
becoming popular because they offer better solutions to
these problems.

Buck Regulator
As we shall see, there are many different switching voltage
regulator designs. The first one to be considered because of
its simplicity is the buck regulator (Figure 4), also known as
a step·down regulator since the output voltage as given by
equation (A) is less than the input voltage. A typical application is to reduce the standard military bus voltage of 28V to
5V to power TTL logic.
At time teO) in Figure 4, the controller, having sensed that the
output voltage Vo is too low, turns on the pass transistor to
build up current in L, which also starts to recharge capaCitor
C. At a predetermined level of Vo, the controller switches off
the pass transistor a, which forces the current to free wheel
around the path consisting of L, C, and the ultra-fast rectifier
D. This effectively transfers the energy stored in the inductor L to the capacitor. Inductor and capacitor sizes are inversely proportional to switching frequency, which accounts
for the increasing power density of switching power supplies. Power MOSFETs are rapidly replacing bi-polar transistors as the pass transistor because of their high frequency
capability. Since the pass transistor must not only carry load
current but reverse recovery current of diode 0, an ultra-fast
recovery diode is mandatory.

SWITCHING POWER SUPPLIES
Pulse Width Modulation
In the early 60's, switching regulators started to be designed
for the military, who would pay a premium for light weight
and efficiency. One way to control average power to a load
is to control average voltage applied to it. This can be done
by opening and closing a switch in rapid fashion as being
done in Figure 3.
The average voltage seen by the load resistor R is equal to:
Vo(avg) = (t(on)/T) X Vi
(A)
Reducing t(on) reduces Vo(avg)' This method of control is
referred to as pulse width modulation (PWM).

Vo('VII) - - -

TLlG/10061-3

FIGURE 3. Example of Pulse Width Modulation

TLlG/10061-4

FIGURE 4. Buck Regulator Circuit with Voltage and Current Waveforms

TIME

FIGURE 5. Boost Regulator and Associated IIV Waveforms
12-26

TL/G/10061-6

Boost Regulator

output voltage can be higher or lower than the input voltage,
depending upon the ratio of on-time to off-time of the pass
transistor.

A second type of regulator shown in Figure 5 is capable of
boosting the input voltage. Applications for this circuit would
be to increase 5V battery sources to 15V for CMOS circuits
or even to 150V for electro-luminescent displays.
The concept of this circuit is still the same as the previous,
namely to transfer the energy stored in the inductor into the
capacitor. The inductor current can ramp up quickly when
the transistor switch is closed at time t(O) since the full input
voltage is applied to it. The transistor is turned off at time t(l)
which forces the inductor current to charge up the capacitor
through the ultra-fast diode D. Since the energy stored in
the inductor is equal to L x I x Yz, the PWM IC can increase
Vo by increasing its own on-time to increase the peak inductor current before switching. The transfer function is:
Vo = VIN (T/(T - t(on)))

TLIG110061-7

FIGURE 6. Inverting Regulator and IIV Waveforms
Flyback Converter

(8)

The three previous regulators are suitable for low voltage
control when no electrical isolation is required. However in
off-line switchers operating from 11 OV 1220V mains, electrical isolation is an absolute must. This is achieved by using a
transformer in place of the inductor. The flyback converter
shown in Figure 7 is commonly used in power supplies up
through 150W, which is sufficient for most personal computers, many test instruments, video terminals and the like.

Inverting Regulator
Figure 6 shows a switching circuit which produces an output
voltage with the opposite polarity of the input voltage. This
circuit works in the same fashion as the boost converter but
has achieved the voltage inversion by exchanging positions
of the transistor and inductor. The circuit is also known as a
buck-boost regulator since the absolute magnitude of the
VI

Id

G
~2 0

Vo
C

Iq

Vq

TLlG110061-8

FIGURE 7. Flyback Converter

AC IN

BALUN fiLTER
TLIG110061-9

FIGURE 8. Complete Flyback Switching Supply

12-27

Since the transformer operates at high frequency, its size is
much smaller than a 50 Hz/60 Hz transformer shown in
Figure 2. Within certain frequency limits, transformer size is
inversely proportional to frequency.
Inspection of the switching waveforms in Figure 7 shows
that the circuit behaves very similarly to the boost regulator.
The transformer should be regarded as an inductor with two
windings, one for storing energy in the transformer core and
the other for dumping the core energy into the output capacitor. Current Increases in the primary of the transformer
during the on-time of the transistor (l(O) - t(l» but note that
no secondary current flows because the secondary voltage
reverse biases diode O. When the transistor turns off, the
transformer voltage polarities reverse because its magnetic
field wants to maintain current flow. Secondary current can
now flow through the diode to charge up the output capacitor. The output voltage is given by the basic PWM equation
times the transformer turns ration (N21N1):
Vo = VIN X (l(on)/(T - t(on» X (N2/N1)
(C)
Voltage control is achieved by contrOlling the transistor ontime to control the peak primary current.
The flyback converter is well suited for multiple output and
high voltage power supplies since the transformer inductance replaces the filter inductor(s). The major disadvantages which limit its use to lower wattage supplies are:
1. The output ripple voltage is high because of half-wave
charging of the output capacitor.
2. The transistor must block 2 X VIN during turn-off.
S. The transformer is driven in only on direction, which necessitates a larger core, i.e., more expensive, in a flyback
design than for an equivalent design using a forward or
push-pull design.
Off-Une Switching Supply
Based on the flyback regulator circuit, a complete off-line
switching supply is shown in Figure 8. The supply Is called
"off-line" because the OC voltage to the switch is developed right from the AC line.
The circuit also shows the feedback loop completed from
the output back to the switching transistor. This feedback
loop must have Isolation in order for the DC output to be
isolated from the AC line. This is normally accomplished by
a small transformer or opto-coupler.

D1

N2

Switching power supplies designed for international usage
must have selectable AC input voltage ranges of 115V and
2S0V. Figure 9 shows how this is accomplished, for many
switching power supplies.

115/230V

320V

AC INPUT

DC OUTPUT

TLlG/10061-10

FIGURE 9. Selector Switch for 115V/230V Inputs
Forward Converter
Although the forward converter is not as well-known as the
flyback converter, it is becoming increasingly popular for
power supplies in the 100W-500W range. Figure 10 shows
the basic circuit of the forward converter. When the transistor is switched on, current rises linearly in the primary and
secondary current also flows through diode 01 into the inductor and capaCitor. When the transistor switch is opened,
inductor current continues to free-wheel through the capacitor and diode 02. This converter will have less ripple since
the capaCitor is being continuously charged, an advantage
of particular interest in high current supplies.
The relationship between input and output for this circuit
configuration is:
Vo = VIN X (N2/N1) X (t(on)/n
(0)
Note that the transformer shown in the above figure has
been' wound with a third winding and series diode OS. The
purpose of this winding is to transfer the magnetizing energy
in the core back to the OC supply so it does not have to be
dissipated in the transistor switch or some other voltage
suppressor. The turns ratio NS/N1 limits the peak voltage
seen by the transistor and is normally chosen equal to 1 so
that the forward converter can run at 50% duty cycle. Under
this condition, the transistor must block 2 X VIN during turnoff.

L

02

C

TIME

FIGURE 10. Forward Converter

12-28

TLlG/10061-11

SYMMETRICAL CONVERTERS
Push-Pull Converter
The circuit for this best-known and widely used converter is
shown in Figure 11.
Transistors 01 and 02 are alternately switched on for time
period t(on). This subjects the transformer core to an alternating voltage polarity to maximize its usefulness. The
transfer function still follows the basic PWM formula but
there is the added factor 2 because both transistors alternately conduct for a portion of the switching cycle.
Vo = 2 X VIN X (N2/N1) X (t(on)/n
(E)
The presence of a dead time period t(d) is required to avoid
having both transistors conduct at the same time, which
would be the same as turning the transistors on into a short
circuit. The output ripple frequency is twice the operating
frequency which reduces the size of the LC filter components. Note the anti-parallel diodes connected across each
transistor switch. They perlorm the same function as diode
03 in the forward converter, namely to return the magnetization energy to the input voltage whenever a tranSistor
turns off.
Compared to the following symmetrical converters, this circuit has the advantage that the transistor switches share a
common signal return line. Its chief disadvantages are that
the transformer center-tap connection complicates the
transformer design and the primary windings must be tightly
coupled in order to avoid voltage spikes when each transistor is turning off.

Half-Bridge Converter
This converter (Figure 12) operates in much the same fashion as the previous push·pull circuit.
The input capaCitors C1 and C2 split the input voltage
equally so that when either transistor turns on, the transformer primary sees Vin/2. Consequently note no factor of
"2" in the following transfer equation:
Vo = VIN X (N2/N1) x (t(on)/T)
(F)
Since the two transistors are connected in series, they never see more than the input voltage VIN plus the inevitable
switching transient Voltages. The necessity of a dead time is
even more obvious here since the simultaneous conduction
of both transistors results in a dead short across the input
supply. Anti-parallel ultra-fast diodes return the magnetization energy as in the push-pull circuit but alternately to capaCitors C1 and C2. This circuit has the slight inconvenience
of requiring an isolated base drive to 01, but since most
practical base drive circuits use a transformer for isolation,
this shortcoming is hardly worth noting.
Full-Bridge Converter
Because of its complexity and expense, the full-bridge con·
verter circuit of Figure 13 is reserved for high power con·
verters. Ideally, all voltages are shared equally between two
transistors so that the maximum voltage rating of the device
can approach VIN.

fITl
2

.

1:
-

-

nME
TUG/10061-12

FIGURE 11. Push-Pull Converter
+Vl--.....- - - - - - ,

Cl

+V.

HI

N2
N2

-

C2

TL/G/10061-13

FIGURE 12. Half-Bridge Converter Circuit
12·29

+V.--.------,

J
....----~"" 1I-,,+-.-rTTT",-+-+V.

J
TL/G/10061-14

FIGURE 13. Full-Bridge Converter Circuit
Switching ve Linear Power Suppllee
Switching power supplies are becoming popular due to high
efficiency and high power density. Table I compares some
of the salient features of both linear and switching power
supplies. Line and load regulation are usually better with
linear supplies, sometimes by as much as an order of magnitude, but switching power supplies frequently use linear
post-regulators to improve output regulation.

DC-DC CONVERTERS
DC-DC converters are widely used to transform and distribute DC power in systems and instruments. DC power is usually available to a system in the form of a system power
supply or battery. This power may be in the form of 5V, 28V,
48V or other DC voltages. All of the previously discussed
circuits are applicable to this type of duty. Since voltages
are low, isolation is not usually required.

TABLE I. Linear ve Switching Power Supplies
Specification

Linear

Switcher

Line Regulation

0.02%-0.05%

0.05%-0.1%

Load Regulation

0.02%-0.1%

0.1%-1.0%

0.5 mV-2 mV RMS

25 mV-100 mVp_p

±10%

±20%

Output Ripple
Input Voltage Range
Efficiency

40%-55%

60%-80%

0.5 W/cu. in.

2W-5W/cu. in.

,Transient Recovery

50 ""s

300""s

Hold-Up Time

2ms

30ms

Power Density

12-30

National Semiconductor
Application Note 557
Ralph E. Locher

Optimizing the Ultra-Fast
POWERplanar™ Rectifier
Diode for Switching Power
Supplies
INTRODUCTION

A key device in all high voltage AC-OC power supplies is the
ultrafast, reverse recovery rectifier diode. These diodes (01
and 02 in Figure 1) not only play a major role in power
supply efficiency but also can be major contributors to circuit electromagnetic interference (EMI) and even cause
transistor failure if they are not selected correctly. One
would assume that by now, this rectifier diode should approximate the behavior of an ideal switch, i.e., zero on-state
voltage, no reverse leakage current and instanteous turnon. At first glance, the design of this single pn-junction device would appear to be quite straight forward but a review
of the device equations reveals that many compromises
must be made to optimize its performance. An understanding of these tradeoffs will allow the circuit designer to select
the most appropriate rectifier diode.

Iy

01 _
YD

•

C

TL/G/l0062-1

FIGURE

Consider how the non-ideal behavior of rectifier 02 affects
the circuit performance of the buck regulator in Rgure 1a.
The solid lines in Figure 2a depict the switching behavior of
the transistor switch and rectifier in comparison to the waveforms (dashed lines) that represent an ideal rectifier. There
are four differences between the two cases:
1. The most significant difference is that the peak collector
current of the transistor switch (IT in Figure 2a ) at the end
of turn-on (time t2) has been increased by the magnitude
of the peak reverse recovery current of the rectifier
(IR(REC»). Correspondingly, the peak power dissipation
within the transistor has increased from PT to PT as
shown in Figure 2c.
2. The maximum transistor voltage VT at turn-off (I.!-ts in
Figure 2a) has been increased by the dynamic voltage
drop of the rectifier during turn-on. Since buck regulators
generally run at low voltages, this Increase has a minimal
effect. However, it is more significant in the forward converter circuit of Figure 1b and in bridge circuits operating
from high bus voltages where the voltage margins cannot
be as generous.
3. Since the rectifier is not ideal, its power dissipation consists of the following components:
a. Conduction loss (VF x IF) during the on-time.

la_ Buck Regulator to Step-Down

b. Turn-off loss during time t2-t3 and turn-on loss during
time t5-tS (Figure 2d).

Input Voltage VIN

c. Reverse blocking loss (VR x IR) during period t3-t5.
4. The rectifier regains its reverse blocking capability at time
t2. A "snappy" rectifier that quickly turns off IR(REC) will
contribute much more EMI than a "soft", fast recovery
rectifier.
A better transistor switch will intensify rather than improve
the shortcomings of the fast recovery rectifier, so it is necessary to consider more fully the conduction and switching
behavior of the rectifier diode.

C

TL/G/l0062-2

FIGURE lb_ Forward Converter

12-31

~

an

r----------------------------------------------------------------------,

~
cc

------kl..1

DIod.

CONDUCTION LOSSES
DC conduction or on-state losses occur whenever the rectifier is conducting forward current and consists simply of
the integration of IF x VF during the on-time. Literature has
dealt extensively with the computation of VF for many different rectifier structures (Reference 1). The National
Semiconductor POWERplanar™ line of fast recovery diodes are planar paSSivated, P + N - N + epitaxial type, for
which a cross-sectional view can be found in Figure 4. It can
be shown that VF is inversely proportional to minority carrier
lifetime and directly proportional to epitaxial thickness (Wi in
Figure 4).

- - - - Practical Dlod,

Figure 5 plots theoretical curves of normalized VF vs minority carrier lifetimes for rectifiers with 250V and 500V avalanche voltage breakdown. Since trr is approximately equal
to minority carrier lifetime, it is apparent that high current
pn-junction rectifiers are limited to 20 ns-50 ns reverse recovery times because VF dramatically increases for minority
carrier lifetimes less than these. It is also apparent that the
VF curves have a broad minima around 10 ns-30 ns so that
another reason to select this value of minority carrier lifetime is that VF becomes independent of small changes in
minority carrier lifetime due to manufacturing tolerances.
It is immediately obvious that the key to maximizing current
through the rectifier is to minimize VF. However at 200 kHz,
reverse recovery losses will quadruple to 4W, so that increasing attention must be paid to this parameter as operating frequency is raised.

TLlG/10062-3

FIGURE 2. Transistor and Rectifier Voltage
and Current Waveforms for the Buck
Regulator In Figure 1a
a) Transistor and Rectifier Voltage Waveforms
b) Transistor and Rectifier Currant Waveforms
c) Transistor Power Dissipation
d) Rectifier Power Dissipation
-CURRENT

POWER LOSSES IN THE ULTRA-FAST
RECTIFIER DIODE
Consider the idealized rectifier current and voltage wave·
forms in Figure 3 for a 50 kHz buck regulator. Power dissipation within the rectifier for a 50% duty factor is:

----- VOLTAGE
TL/G/10062-4

FIGURE 3. Representative Current and Voltage
Waveforms for the Rectifier In the Buck
Regulator Found in FIgure 1a

P = P(conduction) + P(blocking) + P(reverse recovery)
1
P = t'FIF + VRIR) + VRMIR(REC)tbf
Typical values for a 200V, 8A rectifier are:
f = 50 kHz
VF = 0.9V
IF = 8A
IR(REC) = 2.0A
P=

IR = 1 mA
te = 25 ns (assuming tb = trr/2)
VR = 50V
VRM = 200V

~[(8A) (0.9V) + (50V) (1

mAll

+ (200V) (2A) (25 ns) (50 kHz)
P

= 3.6W + 0.025W + 0.5W = 4.125W

12-32

r--------------------------------------------------------------------.~

EOR

CHANNEL
STOP

ANODE

FIELD PLATE

m .............

I

Z

&,
(II
......

A~METALLIZATION

I

(!!IS,O;PASSIVATlON \ . - - - - - - P + - - - - - , . - - - I )

1
--l_
I\ ("''"j''''''')

N- EPITAXIAL S,

WI

\

"" 250}£

--------r--------I

~

N+ SUBSTRATE

I

CATHODE

TLlG/10062·5

FIGURE 4. Cross-Sectional View of a POWERplanar™
P + N - N + • Fast Recovery Rectifier

E

2.5

1\

~

1\

1

250V

1\

500V

>

...

2.0

~

1.5

I

!

.....
§!

B
N
;j!
:::&

:!Ii
z

AVALANCHE
VOLTAGE

1
1

-

\

~

\

'- f'..... I"

1.0

REVERSE RECOVERY LOSSES
All pn-junction rectifiers, operating in the forward direction,
store charge in the form of excess minority carriers. The
amount of stored charge is proportional to the magnitude of
the forward current. The process by which a rectifier diode
is brought out of conduction and returned to its block state
is called commutation. Figure 1 shows an expanded view of
current commutation, also called reverse recovery. Starting
at time to. the rectifier is switched from its forward conducting state at a specified current ramp rate (-dIF/d,). The
current ramp rate will be determined by the external circuit
(ElL) or the turn-on time of a transistor switch. During the
time t,-t2, the store charge within the rectifier is able to
supply more current than the circuit requires, so that the
rectifier behaves like a short circuit. Stored charge is depleted both by the reverse recovery current and recombination
within the rectifier. Eventually the stored charge dwindles to
the point that a depletion region around the junction starts
to grow, allowing the rectifier to regain its reverse blocking
voltage capability (t2). From a circuit·design standpOint, the
most important parameters are the peak reverse recovery
current and "S", the softness factor. A "snappy" rectifier
will produce a large amplitude voltage transient and contribute significantly to electro-magnetic interference. Figure 8
illustrates the actual reverse recovery of two rectifier diodes.
The peak voltage of the snappy rectifier is 175V compared
to 142V peak for the FRP820, the higher voltage resulting
from both the higher IR(REC) and the fact that the reverse
recovery current decays to zero in a shorter time.

.........

TJ =25OC
0.5 CURRENT DENSITY: 250 A cm2
100

10'

102

MINORrrY CARRIER LlrETlME - ns
TLlG/10062·6

FIGURE 5. Normalized VF for 250V and 500V Rated
Rectifiers as a Function of Minority
Carrier Lifetime
REVERSE BLOCKING LOSSES
Planar passivation techniques have reduced surface leakage currents (IR) to a negligible amount so that the principle
reverse leakage current is recombination current in the
space charge region. Some of the many methods to control
minority carrier lifetimes are electron or neutron irradiation
and gold or platinum diffusion, each with its own advantages
and disadvantages. For 200V, ultrafast recovery rectifiers,
gold diffusion still represents the best compromise between
speed, VF, IR and "soft" recovery.
A drawback to gold diffusion is its relatively high reverse
leakage current. It should be pointed out that the reliability
of the gold-diffused product is the same as other rectifiers
(all other factors being equal), since this leakage current is a
bulk and not a surface phenomenon. Figure 6 illustrates the
dependency of recombination current on junction temperature and minority carrier lifetime, which is inversely proportional to the amount of gold in the depletion region. Experi·
mental leakage test results have been plotted in Figure 6 for
the National Semiconductor 8A and 16A series of rectifiers
(FRP820 and FRP1620 respectively) at 100'C, 125'C and
150'C. These points indicate that the low current injection
level lifetime ranges from 20 ns-30 ns and is relatively independent of TJ. Since reliability design guidelines specify that
the rectifiers be operated at one-half their voltage rating and
25'C-50'C below their maximum junction temperature, the
expected leakage currents in well designed power supplies
will run less than 1 mAo

104
N

E

;=~li~~'iOV

% "
103

'"'"

=>
u

102

...

~~

/~
.....
":::,

Q

N

;j!

~-

"

10'

:::&

'"0z

+1

~~1

I

liS

..

..

••

I--~

.....

_=rRPB20
100
rRPI620

.=

100

10'

102

MINORITY CARRIER LlrETlME - ns
TL/G/10062·7

FIGURE 6. Regeneration Current for Gold-Doped,
P + N - N + Rectifier Diodes

12-33

IFI

fmv\

I\DSW562

.... ... .... ....

'''1 ~1' ....

~

IL

\

"

J

nME

S=Vta

.... ....

..... ~ .... .... .... .... .... ....

CSW2

V=-68.OV

50V~

10ns- f-- V2R 1.8-'
T= 16.0ns

1

TLlG/l0062-9

The relative snappiness of a rectifier may be defined quantitatively by dividing the reverse recovery time trr into two
subperiods, ta and tb, as shown in Figure 7. The softness
factor "5" is simply the ratio tb/ta. A rectifier with a low
value 5 factor will be more likely to produce dangerous voltage transients, but it will also dissipate less reverse recovery energy than a high S factor rectifier. A reasonable compromise between these two conflicting constraints would be
to design a rectifier with S = 1 (ta = lb). The S factors of
the FRPS20 rectifier and the competitive device in Figure 8
are 0.55 and 0.31 respectively.
Only recently has it become possible to model the ramp
recovery in p-i-n rectifiers (References 2, 3) and the following equations have proved useful in predicting reverse recovery parameters.

Test Conditione:
TI = 25'C

1= 0.5 A/DIV
T = 10 no/DIV

IF = SA

dlF/dt

= 100 AI,.S

ft

50V

DSW31

50V

200ns
TPOS2

.... .... J\-. .... .... .... .... .... .... ....

\

~

]

-.1

1~
. ... ....

Wi~TIDa
trr=--s-

CSWI

I

~

.....

.......

~

~

~

J V

~

. ·v ...... t:':'...... .... .... ....
5ov-t- 20
V=-102.0V

7-

f-- V2R 2.8-'
T=-16.0ns

TL/G/l0062-10

Wi
S = 4v'DaT

Teet Conditions:
Tj = 25'C
IF

F
IR(REC) = ( -dI ) T ( 1 + Wi)
"'-= -1
dt
S~DaT

I = 50 VAlDIV
T = 10 no/DIV

= BA
= 100 AI,.o

dlF/dt

FIGURE 8. Comparison of Reverse Recovery
of the FRP820 Series Rectifier
to a Snappy Rectifier

(~:)

where:
T

j

1\

TL/G/l0062-B

FIGURE 7. Expanded View of Current
Commutation In a Rectifier Diode

QR(REC) = 0.5 T2

-\- ' / ~
~ II

"

1\
- - - 10" ia(REC)

lOOns
TPOS2

REVERSE RECOVERY CHARACTERIZATION

= minority carrier lifetime

Wi = epitaxial thickness
Da = ambipolar diffusion constant
The blocking voltage rating of the rectifier primarily determines Wi; but for a given Wi, note that a short minority lifetime not only decreases IR(REC) but happily increases S.
These two key parameters are plotted as a function of minority carrier liletime in Figure 9 for dlF/dt = 100 AI p.s and
TJ = 25°C. As has been noted before, the minority carrier
liletime had been targetted for 20 ns-30 ns to minimize VF
and this choice has resulted in a typical value of S = 0.65
and IR(REC) = 1.5A.

Figures 10-13 plot QR(REC); IR(REC), trr and S versus dlF/dt
for the FRP1600 series of rectifiers and typical use conditions of IF = 16A and VR = 200V and for two different
junction temperatures of 25°C and 125°C. Theory not only
predicts, but it has also been experimentally verified, that
these parameters are relatively independent of IF so only
one value of the latter suffices. Any three of the four Figures
10- 13 completely specifies the reverse recovery behavior
of the rectifier. Since Sand Trr vary the least over the plotting dlF/dt range, it is convenient to formulate reverse recovery energy loss P in microwatts in terms of the circuit
parameters VR and dlF/dt:

P

=

V (dIF)f
R

dt

2S

(Strr
1+S

)2 10-3 (p.

W)

where:
VR
= peak reverse voltage
dlF/dt = ramp rate (A/p.s)
f
= operating frequency (kHz)

12·34

.-----------------------------------------------------------,~

z
&!

10

T = 2S"C I I ..1_
dtr/dt= 100A}oIs

r\

"'~,,~
.--

~
~

S.

c

...

r

I

II

....o,p

..

I

• FRP1620

r-- t-

&I

~

....

~)

I

102

-

::Ii

TJ = 14S"C

1=

v· FRP820

1.0

....

C1I

.

/

f5

8...

FRP820
•• FRPlfi20

I"iooI.
TJ =2S"C -

...'"
III
II<

~

~

V
O.1
lrfJ

~

'"

"

MINORITY CARRIER UFETlME - ns

dlr/dt=A/JoIS
TL/G/10062-11

TL/G/10062-14

FIGURE 9. Theoretical Plots of IR(REC) and
S vs Minority Carrier Lifetime

FIGURE 12. Reverse Recovery Time of the
FRM/FRP1600 Series Rectifier Diodes

1.0

TJ~12S~

-<
I

ii3

1'0.

"
" i'

~

,-

K

(II'

TJ = 2S"C

~ ~'"

!

0.5
0.4
0.3

V

TJ.J= 2S"C

~Ll~SOC

0.2

1

O.1
10

20

dlr/dt=A/JoIS

50

100

200

TL/G/10062-12

FIGURE 10. Reverse Recovery Current for
the FRM/FRP1620 Series Rectifiers

103

...
I

dlF/dt = 100 AlJLS TJ = 125°C
f = 75 kHz

~
15

'"
eJ

1:;

'"

TL/G/10062-15

FIGURE 13. Softness Factor S for the
FRM/FRP1600 Series Rectifier Diodes
Example: Calculate the reverse recovery power loss for the
FRP1620 rectifier running at:
IF = 16A
VR = 100V

u
c

!...

500

dlr/dt-A/}oIs

V"

102 I----TJ=12S~

........ ~

From Figures 12 and 13 trr = 56 ns and S = 0.29. Substituting these values in the above equation:

L

= (100V) (100 AlJLs)(75 kHz) [(0.29)(56 nS)]2 10 - 3 W

P

~Jn2S"C -

II
102
dlr/dt= 100A/}oIs
TLlG/10062-13

FIGURE 11. Reverae Recovery Charge for
the FRM/FRP1600 Series Rectifier Diodes

(2)(0.29)

1

+ 0.29

,..

P = O.205W
There are may ways to shape the reverse recovery voltage
spike. The most simple and still most popular is the RC
snubber circuit connected across the primary of the transformer in Figure 1b. This serves the dual purpose of suppressing voltage ringing and EMI due to the switching action
of both the transistor and rectifier. William McMurray has
shown how to design an RC snubber to minimize voltage
transients and/or dV/dt ramps just due to the diode reverse
recovery current (Reference 4) and also how to de-

12·35

sign snubbers to minimize transistor power dissipation (Reference 5). But to date, because the RC snubber plays a
major role in reducing EMI, its design tends to be empirical
rather than theoretical.

CONCLUSION
This application note has pOinted out the major considerations in designing an ultrafast reverse recovery rectifier and
shown that the control of minority carrier lifetime is the key
in arriving at an optimum device. Because the diode contributes to EM I, its reverse recovery behavior must be carefully
controlled and characterized in order to guarantee similar
performance from lot to lot.

REFERENCES
1. S. K. Ghandhi, Semiconductor Power Devices, (NYC),
John Wiley and Sons, p. 110ft.
2. F. Berz, "Ramp Recovery in p-i-n Diodes", Solid-State
Electronics, Vol. 23, pp. 783-792.
3. C. M. Hu, private Communication
4. W. McMurray, "Optimum Snubbers for Power Semiconductors", IEEE Trans. on Industry Applications, Vol.
1A-8, No.5, Sept.lOct. 1972, pp. 593-600.
5. W. McMurray, "Selection of Snubbers and Clamps to Optimize the Design of Transistor Switching Converters",
PESC 1979 Conference Record, pp. 62-74.

12-36

National Semiconductor
Application Note 558
Ralph Locher

Introduction to Power
MOSFETs
and Their Applications
INTRODUCTION
The high voltage power MOSFETs that are available today
are N-channel, enhancement-mode, double diffused, MetalOxide-Silicon, Field Effect Transistors. They perform the
same function as NPN, bipolar junction transistors except
the former are voltage controlled in contrast to the current
controlled bi-polar devices. Today MOSFETs owe their
ever-increasing popularity to their high input impedance and
to the fact that being a majority carrier device, they do not
suffer from minority carrier storage time effects, thermal runaway, or second breakdown.

MOSFET OPERATION
An understanding of the operation of MOSFETs can best be
gleaned by first considering the later MOSFET shown in

Figure 1.

With no electrical bias applied to the gate G, no current can
flow in either direction underneath the gate because there
will always be a blocking PN junction. When the gate is
forward biased with respect to the source S, as shown in
Figure 2, the free hole carriers in the p-epitaxial layer are
repelled away from the gate area creating a channel, which
allows electrons to flow from the source to the drain. Note
that since the holes have been repelled from the gate channel, the electrons are the "majority carriers" by default. This
mode of operation is called "enhancement" but it is easier
to think of enhancement mode of operation as the device
being "normally off", i.e., the switch blocks current until it
receives a signal to turn on. The opposite is depletion mode,
which is a normally "on" device.

BODY

METAL (AU

G
SOURCE

GATE

DRAIN
SILICON DIOXIDE

(5102)

TLlG/10063-1

FIGURE 1_ Lateral N-Channel MOSFET Cross-Sectlon

If)
12-37

The advantages of the lateral MOSFET are:

The major disadvantages are:

1. Low gate signal power requirement. No gate current can
flow into the gate after the small gate oxide capacitance
has been charged.

1. High resistance channels. In normal operation, the
source is electrically connected to the substrate. With no
gate bias, the depletion region extends out from the N +
drain in a pseudo-hemispherical shape. The channel
length L cannot be made shorter than the minimum depletion width required to support the rated voltage of the
device.

2. Fast switching speeds because electrons can start to
flow from drain to source as soon as the channel opens.
The channel depth is proportional to the gate volage and
pinches closed as soon as the gate voltage is removed,
so there is no storage time effect as occurs in bipolar
transistors.

2. Channel resistance may be decreased by creating wider
channels but this is costly since it uses up valuable silicon
real estate. It also slows down the switching speed of the
device by increasing its gate capaCitance.
Enter vertical MOSFETsl
The high voltage MOSFET structure (also known as DMOS)
is shown in Figure 3.

VD

RL

r------IIIt-----'lJVv----,

.
(7------------INVERTED
ZONE
P BODY SUBSlRATE
TL/G/l0063-2

FIGURE 2. Lateral MOSFET Transistor Biased for Forward Current Conduction

"ETAL~TION

CHANNEL
STOP

~~~ ~~&sILICATE

DRAIN

GLASS

TL/G/l0063-3

FIGURE 3. Vertical DMOS CrossoSeetlonal View

12-38

r--------------------------------------------------------------------,~

Z

The current path is created by inverting the p-Iayer underneath the gate by the identical method in the lateral FETs.
Source current flows underneath this gate area and then
vertically through the drain, spreading out as it flows down.
A typical MOSFET consists of many thousands of N +
sources conducting in parallel. This vertical geometry
makes possible lower on-state resistances (ROS(on») for the
same blocking voltage and faster switching than the lateral
FET.

&.

UI

co

There are many vertical construction designs possible, e.g.,
V-groove and U-groove, and many source geometries, e.g.,
squares, triangles, hexagons, etc. All commercially available
power MOSFETs with blocking voltages greater than 300V
are manufactured similarly to Figure 3. The many considerations that determine the source geometry are ROS(on), input
capacitance, switching times and transconductance.

TL/G/l0063-41

a, MOSFET Transistor Construction
Showing Location of the
Parasitic NPN Transistor

PARASITIC DIODE
Early versions of MOSFETs were very susceptible to voltage breakdown due to voltage transients and also had a
tendency to turn on under high rates of rise of drain-tosource voltage (dVldt), both resulting in catastrophic failures. The dV / dt turn-on was due to the inherent parasitic
NPN transistor incorporated within the MOSFET, shown
schematically in Figure 48. Current flow needed to charge
up junction capacitance COG acts like base current to turn
on the parasitic NPN.
The parasitic NPN action is suppressed by shorting the N+
source to the P + body using the source metallization. This
now creates an inherent PN diode in anti-parallel to the
MOSFET transistor (see Figure 4b). Because of its extensive junction area, the current ratings and thermal resistance of this diode are the same as the power MOSFET.
This parasitic diode does exhibit a very long reverse recovery time and large reverse recovery current due to the long
minority carrier lifetimes in the N-drain layer, which precludes the use of this diode except for very low frequency
applications, e.g., motor control circuit shown in Figure 5.
However in high frequency applications, the parasitic diode
must be paralleled externally by an ultra-fast rectifier to ensure that the parasitic diode does not turn on. Allowing it to
turn on will substantially increase the device power dissipation due to the reverse recovery losses within the diode and
also leads to higher voltage transients due to the larger reverse recovery current.

TLlG/l0063-42

b. Parastlc Diode
S

PARASITIC
DIODE

D

CONTROLLING THE MOSFET
A major advantage of the power MOSFET is its very fast
switching speeds. The drain current is strictly proportional to
gate voltage so that the theoretically perfect device could
switch in 50 ps-200 ps, the time it takes the carriers to flow
from source to drain. Since the MOSFET is a majority carrier
device, a second reason why it can outperform the bipolar
junction transistor is that its turn-off is not delayed by minority carrier storage time in the base. A MOSFET begins to
turn off as soon as its gate voltage drops down to its threshold voltage.

TLlG/l0063-43

c. Circuit Symbol
FIGURE 4

L
L
TL/G/l0063-4

FIGURE 5. Full-Wave Motor Control Circuit

12-39

B

SWITCHING BEHAVIOR
Figure 6 Illustrates a simplified model for the parasitic capacitances of a power MOSFET and switching voltage
waveforms with a resistive load.
There are several different phenomena occurring during
turn-on. Referring to the same figure:
Time interval t1 < t < t2:
The initial turn-on delay time 1c!(on) is due to the length of
time it takes VGS to rise exponentially to the threshold voltage VGS(lh)' From Figure 6. the time constant can be seen
to be Rs x CGS. Typical turn-on delay times for the National
Semiconductor IRF330 are:
td(on) = Rs X CGS x In (1 - VGS(lh)/VpKl
For an assumed gate signal generator impedance of Rs of
500 and CGS of 600 pF. td comes to 11 ns. Note that since
the signal source impedance appears in the 1c! equation. it Is
very important to pay attention to the test conditions used in
measuring switching times.
Physically one can only measure input capacitance Ciss.
which consists of CGS in parallel with COG. Even though
CGS > > COG. the latter capacitance undergoes a much
larger voltage excursion so its effect on switching time cannot be neglected.
Plots of Ciss. Crss and Coss for the National Semiconductor
IRF330 are shown in Figure 7 below. The charging and discharging of COG is analogous to the "Miller" effect that was
first discovered with electron tubes and dominates the next
switching interval.
Time interval t2 < t < t3:
Since VGS has now achieved the threshold value. the
MOSFET begins to draw increasing load current and VOS
decreases. COG must not only discharge but its capacitance
value also increases since it Is inversely proportional to
VOG. namely:
(2)
COG = COG(O)/(VOG)n
Unless the gate driver can quickly supply the current required to discharge COG. voltage fall will be slowed with the
attendant increase in turn-on time.
Time interval ta < t < 4:
The MOSFET is now on so the gate voltage can rise to the
overdrive level.
Turn-off interval 4 < t < It;:
Turn-off occurs in reverse order. VGS must drop back close
to the threshold value before Ros(on) will start to increase.
As VOS starts to rise. the Miller effect due to Coo re-occurs
and impedes the rise of VOS as COG recharges to Vee.
Specific gate drive circuits for different applications are discussed and illustrated below.

TLlG/10063-5

a. MOSFET Capacitance Model for Power MOSFET

VGS
VOS(th)

TL/G/10063-6

b. Switching Waveforms for Resistive Load
FIGURE 6
1000
800

v =OV
f=Gf.OMHz
TJ = 25"<:-

I' r--.....

Cin

\
1\\
200
\ COOl
CIIS
o
o 10 20

30

40

r--

50

60

Vos-DRAIN TO SOURCE VOLTAGE-V
TL/G/10063-7

FIGURE 7. Typical CapaCitances of the NatlonallRF330

12-40

r--------------------------------------------------------------------,~

Z
&,

MOSFET CHARACTERIZATION
The output characteristics (10 vs VOS) of the National Semiconductor IRF330 are illustrated in Figures 8 and 9.

g:

10

The two distinct regions of operation in Figure 8 have been
labeled "linear" and "saturated". To understand the difference, recall that the actual current path in a MOSFET is
horizontal through the channel created under the gate oxide
and then vertical through the drain. In the linear region of
operation, the voltage across the MOSFET channel is not
sufficient for the carriers to reach their maximum drift velocity or their maximum current denSity. The static ROS(on), defined simply as Vosllos, is a constant.

-c

Vos-l0V

8

,!.

...
z

II<
II<

1/

6

a

~

I

4

VI

I

.S>

As VOS is increased, the carriers reach their maximum drift
velocity and the current amplitude cannot increase. Since
the device is behaving like a current generator, it is said to
have high output impedance. This is the so-called "saturation" region. One should also note that in comparing
MOSFET operation to a bipolar transistor, the linear and
saturated regions of the bipolar are just the opposite to the
MOSFET. The equal spaCing between the output 10 curves
for constant steps in VGS indicates that the transfer characteristic in Figure 9 will be linear in the saturated region.

~

)V

2

TJ = 125"C

o

o

/J

TJ =25"C

~/
234567
VGS-GATE TO SOURCE VOLTAGE-V
TL/G/l0063-9

FIGURE 9. Transfer Characteristics
POWER MOSFET THERMAL MODEL
Like all other power semiconductor devices, MOSFETs operate at elevated junction temperatures. It is important to
observe their thermal limitations in order to achieve acceptable performance and reliability. Specification sheets contain information on maximum junction temperature (TJ(max»,
safe areas of operation, current ratings and electrical characteristics as a function of TJ where appropriate. However,
since it is still not possible to cover all contingencies, it is
still important that the designer perform some junction calculations to ensure that the device operate within its specifications.

IMPORTANCE OF THRESHOLD VOLTAGE
Threshold voltage VGS(th) is the minimum gate voltage that
initiates drain current flow. VGS(th) can be easily measured
on a Tektronix 576 curve tracer by connecting the gate to
the drain and recording the required drain voltage for a
specified drain current, typically 250 /JoA or 1 mAo (VGS(th) in
Figure 9 is 3.5V. While a high value of VGS(th), can apparently lengthen turn-on delay time, a low value for power
MOSFET is undesirable for the following reasons:

Figure 10 shows an elementary, stead-state, thermal model
for any power semiconductor and the electrical analogue.
The heat generated at the junction flows through the silicon
pellet to the case or tab and then to the heat sink. The
junction temperature rise above the surrounding environment is directly proportional to this heat flow and the junction-to-ambient thermal resistance. The following equation
defines the steady state thermal resistance R(th)JC between
any two pOints x and y:

1. VGS(th) has a negative temperature coefficient
-7mVrC.
2. The high gate impedance of a MOSFET makes it susceptible to spurious turn-on due to gate noise.
3. One of the more common modes of failure is gate-oxide
voltage punch-through. Low VGS(th) requires thinner oxides, which lowers the gate oxide voltage rating.

R(th)JC = (Ty - T,J/P

7

10
6

rJ8QJ's
=·25
If'

5

PULSE TES

4

3
2

o
o

,

jV~

V.

II

~

7V1

I

1 2 3 4

Ty

= average temperature at point x rC)
= average temperature at point y rC)

P

= average heat flow in watts.

Tx

V s=[6V

5~SV

Note that for thermal resistance to be meaningful, two temperature reference pOints must be specified. Units for
R(th)JC are ·C/W.
The thermal model show symbolically the locations for the
reference pOints of junction temperature, case temperature,
sink temperature and ambient temperature. These temperature reference define the following thermal references:

SJ TU ATEt
SV
4.SV

I,V

'-

(3)

where:

5 6 7 8 9 10

R(th)JC: Junction-to-Case thermal resistance.

Vos-DRAIN TO SOURCE VOLTAGE-V

R(th)CS: Case-to-Sink thermal resistance.
TL/G/l0063-8

R(th)SA: Sink-to-Ambient thermal resistance.

FIGURE 8. Output Characteristics

Since the thermal resistances are in series:
R(th)JA = R(th)JC

12-41

+ R(th)CS + R(th)SA'

(4)

r

JUNCTION
SILICONCHI~

~

I

SOLDER

TJ -

CASE

I

\

THERMAL GREASE

R(th)JC
TC-

\

\

HEAT SINK

AMBIENT

R(th)CS

T5 R(th)SA

TL/G/10063-10

FIGURE 10. MOSFET Steady State Thermal Resistance Model
The design and manufacture of the device determines
R(th)JC so that while R(th)JC will vary somewhat from device
to device. it is the sole responsibility of the manufacturer to
guarantee a maximum value for R(th)JC' Both the user and
manufacturer must cooperate in keeping R(th)CS to an acceptable maximum and finally the user has sole responsibility for the external heat sinking.

and Cs. This simplification assumes current is evenly distributed across the silicon chip and that the only significant
power losses occur in the junction. When a step pulse of
heating power P is Introduced at the junction. Figura 128
shows that T J will rise at an exponential rate to some steady
state value dependent upon the response of the thermal
network. When the power input Is terminated at time t2. TJ
will decrease along the curve indicated by T cool in Figure
128 back to Its Initial value. Transient thermal resistance at
time t is thus defined as:

By inspection of Figure 10. one can write an expression for
TJ:
TJ = TA + Px [R(th)JC + R(th)CS + R(th)SAl
(5)
While this appears to be a very Simple formula. the major
problem in using it is due to the fact that the power dissipated by the MOSFET depends upon TJ. Consequently one
must use either an iterative or graphical solution to find the
maximum R(lh)SA to ensure stability. But an explanation of
transient thermal resistance is in order to handle the case of
pulsed applications.

ATJc(t)
Z
(th)JC=-p-

(6)

The transient thermal resistance curve approaches the
steady state vaule at long times and the slope of the curve
for short times is inversely proportional to CJ. In order that
this curve can be used with confidence. it must represent
the highest values of Z(th)JC for each time interval that can
be expected from the manufacturing distribution of prod-

Use of steady state thermal resistance is not satisfactory for
finding peak junction temperatures for pulsed applications.
Plugging in the peak power value results in overestimating
the actual junction temperature while using the average
power value underestimates the peak junction temperature
value at the end of the power pulse. The reason for the
discrepancy lies in the thermal capacity of the semiconductor and its housing. i.e.• its ability to store heat and to cool
down before the next pulse.
The modified thermal model for the MOSFET is shown in
Figura 11. The normally distributed thermal capacitances
have been lumped into single capacitors labeled CJ. Ce.

ucts.
While predicting TJ in response to a series of power pulses
becomes very complex. superposition of power pulses offers a rigorous numerical method of using the transient thermal resistance curve to secure a solution. Superposition
tests the response of a network to any input function by
replacing the input with an equivalent series of superimposed positive and negative step functions. Each step function must start from zero and continue to the time for which
TJ is to be computed. For example. Figure 13 illustrates a
typical train of heating pulses.

12-42

»z
•
HEAT
INPUT

U"I
U"I

1

POI P2

(WATTS)

to

t,

t2

t,

01)

t6

t7

TL/G/10063-14

~----~--~~---4----~--~

a. Heat Input

TL/G/10063-11

FIGURE 11. Transient Thermal Resistance Model

+Pt+POII--;;r==~===

O--~~~~~~--~--T-~r-~-­

-P

~
TL/G/10063-15

b. Equivalent Heat Input by
Superposition of Power Pulses

TI~E

rudE

TL/G/10063-16

TL/G/10063-12

c. Junction Temperature Response
to Individual Power Pulses of b

a. Junction Temperature Response to a
Step Pulse of Heating Power

TL/G/10063-17

,.....

d. Actual TJ
FIGURE 13. Use of Superposition to Determine Peak T J

lit
TLlG/10063-13

b. Transient Thermal Resistance Curve
for National Semiconductor IRF330 MOSFET
FIGURE 12

12-43

TJ at time t is given by:
TJ(t) = TJ(O)

+

.!
i

~

Pi

SAFE AREA OF OPERATION
The power MOSFET is not subject to forward or reverse
bias second breakdown, which can easily occur in bipolar
junction transistors. Second breakdown is a potentially catastrophic condition in bi-polar transistors caused by thermal
hot spots in the silicon as the transistor turns on or off.
However in the MOSFET, the carriers travel through the
device much as if it were a bulk semiconductor, which exhibits a positive temperature coefficient of 0.6%rC. If current attempts to self-constrict to a localized area, the increasing temperature of the spot will raise the spot resistance due to the positive temperature coefficient of the bulk
silicon. The ensuing higher voltage drop will tend to redistribute the current away from the hot spot. Figure 15 delineates the safe areas of operation of the National Semiconductor IRF330 device.

(7)

0

[Z(th)JC (tn - til - Z(th)JC (tn - ti + 1)1
The usual use condition is to compute the peak junction
temperature at thermal equilibrium for a train of equal amplitude power pulses as shown in Figure 14.
To further simplify this calculation, the bracketed expression
in equation (G) has been plotted for all National Semiconductor power MOSFETs, as exemplified by the plot of
Z(th)JC in Figure 14b. From this curve, one can readily calculate TJ if one knows PM, Z(th)JC and TC using the expression:
TJ = Tc + PM X Z(th)JC
(8)
Example: Compute the maximum junction temperature for a
train of 25W, 200 ,...S wide heating pulses repeated every
2 ms. Assume a case temperature of 95·C.
Duty factor = 0.1

Note that the safe area boundaries are only thermally limited and exhibit no derating for second breakdown. This
shows that while the MOSFET transistor is very rugged, it
may still be destroyed thermally by forcing it to dissipate too
much power.

From Figure 14b: Z(th)JC = 0.55·C/W
Substituting into Equation (H):
TJ(Max) = 95

+ 25 x

100

0.55 = 108.75·C

~I.~~V.
r-. ~~ i==!: lOps

~t
10

P

'-J00

~£';:t-

k'

_t_

t=O

1.0

TIME

-tp-

.,...,.......
~=25"C
......
J=15O"C
SINGLE PULSE

O.1
10

TL/G/l0063-1B

a. Train of Power Pulses

"

II
50

100

......

r"-

e
lUI

;Hj

I~I
J:I.

iiU

500 1000

VDS-DRAIN TO SOURCE VOLTAGE-V
TL/G/l0063-20

FIGURE 15. Safe Area of Operation of the
National Semiconductor IRF330 MOSFET Transistor

~

~

~

J,,; ....

~
~.;s

...

,,~

::: .5
I~ .'.1

ON-RESISTANCE RDS(on)
The on-resistance of a power MOSFET is a very important
parameter because it determines how much current the device can carry for low to medium frequency (less than
200 kHz) applications. After being turned on, the on-state
voltage of the MOSFET faUs to a low value and its ROS(en)
is defined simply as its on-state voltage divided by on-state
current. When conducting current as a switch, the conduction losses Pc are:

r-

-Ut:J

V'~~
lJ'

tp
Duty Factor, D=T
D .u..... apply to train
of heetlng pul....
TJ(IWC)=TC-Py Z(th)JC

Pc = 120(RMS) x ROS(en)
(9)
To minimize ROS(en), the applied gate signal should be large
enough to maintain operation in the linear or ohmic region
as shown in Figure 8. AU National Semiconductor MOSFETs
will conduct their rated current for VGS = 10V, which is also
the value used to generate the curves of ROS(en) vs 10 and
TJ that are shown in Figure 1Bfor the National Semiconductor IRF330. Since ROS(on) increases with TJ, Figure 1Bplots
this parameter as a function of current for room ambient and
elevated temperatures.

101
t-TiME-ms
TL/G/l0063-19

b. Normalized Z(th)JC for National Semiconductor
IRF330 for Power Pulses Typified In FIgure 148
FIGURE 14

12·44

200 kHz or more will affect the power diSSipation since
switching losses are a significant part of the total power
dissipation.

·'

Compare to a bi-polar junction transistor, the switching losses in a MOSFET can be made much smaller but these losses must still be taken into consideration. Examples of several typical loads along with the idealized switching waveforms and expressions for power dissipation are given in
Figures 11to 19.

YGS= lOY
.",..

~J= 125"C

"""

-

'""" ~"C

Their power losses can be calculated from the general expression:
PD =

G

tID(t). VDS(t)dt) • fs

(11)

where: fs = Switching frequency.

2

4

6

8

10

For the idealized waveforms shown in the figures, the integration can be approximated by the calculating areas of triangles:

ID-DRAIN CURRENT-A
TL/G/10063-21

Resistive load:

FIGURE 16. ROS(on) of the
National Semiconductor IRF330

P - V2 DD [t(on) + t(of!)
DR
6

Note that as the drain current rises, RDS(On) increases once
ID exceeds the rated current value. Because the MOSFET is
a majority carrier device, the component of RDS(on) due to
the bulk resistance of the N - silicon in the drain region
increases with temperature as well. While this must be taken into account to avoid thermal runaway, it does facilitate
parallel operation of MOSFETs. Any inbalance between
MOSFETs does not result in current hogging because the
device with the most current will heat up and the ensuing
higher on-voltage will divert some current to the other devices in parallel.

Inductive load:
PD = VCl 1m t(of!)fs

+ Pc

2
where:
Pc = conduction loss during period T.
Capacitive load:
P = ( CV2 00

o

2

+ V2 00ROS(on) T) f
R2

s

Gate losses and blocking losses can usually be neglected.
Using these equations, the circuit designer is able to estimate the required heat sink. A final heat run in a controlled
temperature environment is necessary to ensure thermal
stability.

TRANSCONDUCTANCE
Since MOSFETs are voltage controlled, it has become necessary to resurrect the term transconductance gis, commonly used in the past with electron tubes. Referring to Figure 8, gfs equals the c:,ange in drain current divided by the
change in gate voltage for a constant drain voltage. Mathematically:
.
dID(A)
gfs (Siemens) = dVGS(V)

+ RDS(on) .T].fs

(10)

Transconductance varies with operating conditions, starting
at 0 for VGS < VGS(th) and peaking at a finite value when
the device is fully saturated. It is very small in the ohmic
region because the device cannot conduct any more current. Typically gfs is specified at half the rated current and
for VDS = 20V. Transconductance is useful in designing
linear amplifiers and does not have any significance in
switching power supplies.

ID=VDofR
,,.---------,
,,
,,, .
,,
,
,

GATE DRIVE CIRCUITS FOR POWER MOSFETs
The drive circuit for a power MOSFET will affect its switching behavior and its power dissipation. Consequently the
type of drive circuitry depends upon the application. If onstate power losses due to RDS(on), will predominate, there is
little point in designing a costly drive circuit. This power dissipation is relatively independent of gate drive as long as
the gate-source voltage exceeds the threshold voltage by
several volts and an elaborate drive circuit to decrease
switching times will only create additional EMI and voltage
ringing. In contrast, the drive circuit for a device switching at

,,
,,
,
I--t---l

t.i(off)

t--TL/G/10063-23

FIGURE 17. Resistive Load Switching Waveforms

12-45

Since a MOSFET is essentially voltage controlled, the only
gate current required is that necessary to charge the input
capaCitance Ciss. In contrast to a 10A bipolar transistor,
which may require a base current of 2A to ensure saturation,
a power MOSFET can be driven directly by CMOS or opencollector TIL logic circuit similar to that In Figure 20.

Vou

II

, ", "

,
,,

Turn-on speed depends upon the selection of resistor R"
whose minimum value will be determined by the current
sinking rating of the ,1C. It is essential that an open collector
TTL buffer be used since the voltage applied to the gate
must exceed the MOSFET threshold voltage of 5V. CMOS
devices can be used to drive the power device directly since
they are capable of operating off 15V supplies.
Interlace ICs, originally intended for other applications, can
also be used to drive power MOSFETs, as shown below in
Figure 21.
Most frequently switching power supply applications employ
a pulse width modulator IC with an NPN transistor output
stage. This output transistor is ON when the MOSFET
should be ON, hence the type of drive used with open-collector TTL devices cannot be used. Figures 22 and 23 give
examples of typical drive circuits used with PWM ICs.

-- .. -----TL/G/l0063-24

FIGURE 18. Clamped Inductive
Load Switching Wavetorms

.f1.
1.0kA

---.

TL/G/l0063-21

I
I

FIGURE 20. Open Collector TIL Drive Circuit

:

voo!R
._-------,

\

\

TUG/l0063-25

FIGURE 19. Capacitive Load Switching Waveforms

12-46

j"

lOOn.

+5V

z~•

en
en
CD

J~

+12V

22n.

1 kD.

lkD.

J.&A9665

J,£A9643
TLlG/100S3-27

FIGURE 21. Interface ICs Used to
Drive Power MOSFETs

PWM

Ie

22A

220D.

TL/G/10083-2B

FIGURE 22. Circuit for PWM IC Driving MOSFET.
The PNP Transistor Speeds Up Turn-Off

1 k.0.00&: _
(0.113±0.127)

TVP

O2oo±0.810
(5.080i02&4) -

0.016~:m

~

J

1- L

--,-r(U81~:=)J _ _ ,0.100>0.018

I

o.l06~:m

t,2.887 -8.381
+11.254)-

0.100>0.818
(Z.&48±0254)

L

(z.Mo>o.ZM)

TLIGll0336-38

12-69

If

.E
:;::I

:::I

o

TO-220 (37,38)
TO-5 Lead Form for Flush Mount

J67Z Option

f

~

O.oSO±O.1III2
IU10±0.osul
'.110±I.OO&
14.512iO.1211

SEATIIfG

PLANE

t--+--.- 0.151±O.OO2

0.250±I.Ol1
13.83S±O.151) 18.350±1.264)
DIA

TAPERED I·

~
11.&38±8.264)

2SlDES

1.132.0.:11

18.l13iO.121)

1

TYP

UOOiD.Ol.

iUiiti:iiii
.!:!!:!:!!!.

(0.3'1~=)

0.105'::'~~:

12."1~:)

12.640'8.264)

~

~MlN

.!!:!!!. MIN

(6.010)

(2.&40)

TLlG/l0336-39

TO-226 (95, 99)

1
M
r-"'~~'
~~M~~==~==
0.115-0.18/1
14445 4 699)

~

0.015
(0.311)

r

0.150-0.180 1
(3.ll0-4.512)--L--

O.~

2· NOM 2 PLea

Pin

T(85)

T(98)

1
2
3

B
C
E

C
B
E

11.820)
NOM
SEATING PLANE

~.""nr,rtl

0.085
'" 11.851)
NOM

0.500
(12.70)

-uO D~

M...L--i"

II

0.015 -0.019

-II+- (0.381-0.482)
BEfORE
LEAD FINISH

l

I
-.I

0.015-0.018
(0.311-0.408)
BEFORE
LEAD FINISH

(:::) RNOM

TL/G/l0336-40

12-70

I

TO-226 (95, 99)
TO-5 Lead Form

CD

-5 Option

H

o

a:

0.17S-0.115
(U4S-U99)

~.

UJ

T

0.300
(7.620)
NOM

(-'I

0.025
(0.535)

'-'

t

(::5:) NOM

II

MIN

0.015-0.019 TYP

...j 1+ (D.311-0.482)

0.on-O.l0S
(2.413 2.&67) R

TL/GI 10336-41

TO-226 (95, 99)
TO-18 Lead Form
-18 Option

H
f

0.300
(7.820)

0.175-0.185
(U4S-U99)

(,_)
_

NOM

0.475
(12.07) NOM

(::5~) NOM

t

-..11.-

(~:::) 8 NOM

0.01S-0.019
(0.381-0. •)

0.135-0.145
(3.429-3.683)

TL/G/10336-42

12·71

TO-226 (95, 99)
0.100" Spacing Lead Form
J61Z Option

H

!

0.175-0.185
(4.445-4.699)

(-"
'-'

0.300
(7.620)
NOM

t

1. . _. .
(0.381-0.406)

0.135-0.145
(3.429 3.683)

0.190-0.210
(4.628-5.334) + I - - - - . j
TL/G/l0336-43

TO-237 (90, 91)
0.020 R
(0.508)
TV'
NOM

0.850
(1.270)

t

0.818

~~~3)
II

foAi7i ---II-TV'

(:~:) R

PI"

T(90)

T(91)

1
2
3

B
C
E

C
B
E

0.01&5-0.0145 --II-(0.394-0.388)
TVP

0.0&&-0.04&

NOM

0.05&-0.04&
(1.387-1.143)

TL/G/l0336-44

12·72

TO-237 (90, 91)
0.100" Spacing Lead Form

J61Z0ption

0.180
(2.1MI)

NOM

i

0.aI4-l.Ol'

(a.I.-o.4III]

--l

TYP

t

a.04I-o.•

~

TO-237 (90, 91)
TO-18 Lead Form

TL/G/l0336-45

-18 Option

a.a25
(O.IIS)

MIN

L.L-....o+--=;~=---"T

--11--

0.014-0.016
(0.151-0.461)

1

0.37S
(1.121)
NOM

0.180
(2.&40)
DlA

PC

TL/G/l0336-45

II
12-73

TO-237 (90, 91)
TO-5 Lead Form

- 05 Option
0.175 - 0.185
(4.445-4.699)

1

0.300
(7.620)
NOM

Ir--....y

*
~~ 0.01& - 0.018

0.7& NOM
(i:i2ij

TVP

(0.811-0.412)
0.016-0.10& R
(2.413-2.887)

TL/G/l0338-47

TO-247/DO-3P (44)
(Rectifier Package)

-.

0118 0133
(2.Bl7 -3.378)

027&
(8.188)

L0.2IB-0.283
(8.807-7.1BI)

f

1-

~

R(44)

1
2
3

A
Cut
C

.i

<;/

TI

0.178 -0.218
(4.121-&.488)
To.8u-0.874
(21.79 - 22.20

1

1

3

+

0.10
(1.270)
TVP

0.079-0.094
(2.006-2.3IT)
0.040 -0.055
(1.016 -1.39)
7

V

0.824 -0.138
(18.88-18.1&)

BSC

Pin

0.18&-0.1 ••
(4.191-4.775)
0.740-0.•' o
(18.80-20.57)

II~

i

I...

0.016-0.031
(0.406-0.787)
0.086-0.102
2.1 94-2.560)

u~

Pin I-Anode
Pin 3- Cethode

TVP

12·74

TL/G/l0336-48

TO-247/TO-3P (40)
0.275
(6.985)

L

0.118-0.133
(2.997 -3.378)

I-- 0.624-0.636

I

(15.85-18.15)

l

--II

F

0.180-0.209
(4.828-5.308)
0.070 -0.089
(1.778-2.260)

I
CD

Pin FET(40) R(40)
2

G
0

3

S

1

See
Part
Nmbr.

o

a:

!'

...,.-----;, UB8 -0.874

(21.79-22.20)
4
CASE

0.196-0.188
(4.111-4.771)
0.740-0.810
(18.80-20.&7)

0.078-0.094
(2.001-2.387)
0.040 -0.06&
(1.016-1.397)

0.118 -0.133

(2.997 -3.378)

*

0.016-0.031
(0.401-0.787)

0.081-0.102
(2.184-2.&80)

TL/G/10338-49

Molded Dual-In-Llne Package (39)
(Diode Arrays)
t-~-- D.77D _ _ _"I

UII
(2.337)

DIA NOM

O.UD-UtD

D.D30

~:'~IT
MAX

0.13D:l:0.008

I._

(~

(1.111)

Jq
;: : : :, IJ
I
I
-

+0.025 •
0.325_ 0.015

D.D76:1:0.015
(1.106:1:0.311)

0.06)
( 1255+
• -0.381
TL/G/10336-50

IfI
12-75

Molded Mini-DIP (60, 67)
0.378-0.400
1-------<5.-1-113.629-10.16)

0.092
12.337)
OIA
NOM

~~~.
0.250:0.005
16.350:0.127)

Pin

(60)

(67)

1
2
3
4
5
6

NC

51
01

'=F.i=;;;;;=;;;;;;;=;;;;=IJ
0.030
10.762)
MAX

0.300-0.320
17.820-8.128)

..

0.325+0.0Z5

I

•.

~

(8.255 ~~:m)

e

NC

NC
Gl
52
02

NC
G2

0.065
11.651)

~
0.12
13.175)
lOlA

7

51
01
Gl
52
02
G2

r-

0.009-0.015
10 Zza.O 381)
0:046:0.015

.

11.143:0.381)
0.100:0.010
IZ.54:0.003)

Jb

I
-II--,

0.IZ5
13175)
0.018:0.003 MIN
10.457:0.078)

10~~8)

TL/G/l0336-51

a-sole (S1)
0.030 DIA
0.004 DEEP
(0.782)
x (0.102)

Pin T(SI) D(SI)

1
2
3
4
5
6
7

e
0.038-0.044
(0.965-1.118)
0.193±0.004 ~
(4.902±0.102)
-

0'" j

(1.270)
TYP

(~:~!~)

0.015
(0.381) DIA TYP

X45' REF

0.010 DIA TYP
0.254)

l ~ l 0..

rJ ~ ;:;!~0.D24

0'
(0.508-0.610)

(0.406) (0.203)
TYP
TYP

51
01

See
Part

NC

Num-

Gl
S2
02

ber

NC
G2

1
+

0.004 -0.008
(0.102 -0.203)
TL/G/l0338-52

12-76

I

14·S01C (S2)
(Diode Arrays)

CD

~s'

0.030 OIA
0.004
(0.762)
x (0.102) DEEP

::

0.015
(0.381) OIA TYP

0.340
(8.636)

0.025
(0.635)

0.010 OIA TYP
0.254)

IJ J[J[J[J[J[JD
0.050
(1.270)
TVP

~-~~~

.-

+

0'-8'TYP
0.020-0.024
(0.50B -0.610)

(0.406)
TVP

0.004 -O.OOB
(0.102-0.203)
TL/G/l0336-53

16·S01C (S3)

~

__

0.385-0.394 ~
(9.779 10.01)
__

~ B...~t:Ldjj...~t;j ~

0.009-0.020
(0.229-0.50B) x45
0.007-0.010
(0.178-0.254)

0.013-0.020
(0.330-0.508)

~

J.

~_ _-\:t-----:-::::-...I.,-:

~j~1

....

0.050
(1.270)
8SC

'1--

0'~~;15_0.050

0.053-0.089
---t(1.346t753)

\ ' (0.381-1.270)

0.003-0.010
(0.076-0.254)
TLlG/l0336-54

LL·34 (03)
0.063-0.067
(1.600 1.702)
0.016-0.022
(0.406-0.559)

fr=

0.130-0.14611
(3.302 -3.708)

0.098-0.102
1(2.488-2591)1

o- B

TL/G/l0336-55

12-77

TO-236AA (48) (SOT-23)
0.011-0. 018
(0.381-0.4&7)

1 I-

Pin T(48) 0(48)

0.083 - 0.098
(2.108-2.469)

1

1
2
3

Ii-+,;1 - - - - - +

......~~......---r

C
B
E

See
Part
Nmbr

0.047 -0.011
(1.194-1.397)

~r--li--I"""~

(O : : : :~:)J~i" ~t- _- ~~3_1(~: ~ 7~:' ~ ~ 0~
__

(1.779-2.032)

~

0.033-0.047

~ ;·r·~'~::'
0.004-0.010
1
(0.102-0.254) - . \

0.018-0.024
(0.457-0.610)

Note 1: Meets ali JEDEC dimensional requirements for TO·236AA.

TLlG/l0336-56

NOI. 2: Controlling dimension: millimeters.

TO-236AB (49) (SOT-23)
0.015-0.018
(0.381-0.4&7)

1 I-

0.083 - 0.098
(2.108 - 2.489)

1

Pin T(48) D(48)

Ii-+,'1-----+
;

,............+---,---r

1

C

See

2

B

3

E

Part
Nmbr

0.047 -0.055
(1.194-1.397)

~r--li--I"""~

: : : :.J~" ~I-

___. .'..31-li;;~

0.110-0.120
(2.794-3.048)

r L~

01

e

0.030 -0.041
(0.762 1.041)

.+

Note 1: Meets all JEDEC dimensional requirements for TO·236AB.

0.001-0.004
(0.025-0.102)

I
-.\

0.003-0.005

~.127)

-,

0.018-0.024
(0.457 -0.610)

Note 2: ContrOlling dimension: millimeters.

TL/G/l0336-57

HIGH(48)

4

0.004-0.010
(0.102 -0.254)

STANDARD (49)

,

0.001-0.004
(0.025 -0.102)
TL/G/l0336-58

NOTE: FOOTPRINT IS THE SAME FOR STANDARD AND HIGH PROFILE PACKAGES.

12·78

16·Lead Ceramic (27)
(Diode Arrays)

tAA

0.755-0.785 ~
(19.18 -19.94)

9~lo~1

14

~~EI::::::: r::' . .
12
13
0.045 -0.065
(1.143-1.651)

15

16

0.200
(5.080)

MAX

_~::r;;::::;:::=;:::;=::;::;==;=r=::::;:::r=::;::;==;=r=:;::I
PLANE

'I.,++--T"

0.100-0.165
(2.540-4.191)
0.090-:.110
2.286 -2.794)

I

---..J

11~

I

(0.361-1.143~--!l
0.015-0.045

I

0.375

1-- (9.525)--.1
0.016-0.020
(0.406-0.508)

NOM

TLiG/10336-59

1i-Lead Plastic (03)
(I)iode Arrays)
0.020-0.025

0.006-0.012

~':::=:::~ ""F.~r'

,::EI: : ::: : !~~~~
,L ·
(0.669-1.143)

9

10

11
12
13j14l15
0.045 -0.065
(1.143-1.651)

0.200
(5.oBO)

0.040 -0.050
(1.016-1.270)

16

I
-l

0.025
(0.635)
NOM

0.290-0.3110
(7.366-7.620)

MAX

SEATING --.1---'t1r"
PLANE

TL/G/10336-60

12·79

II

16·Lead Flat Pack (4L)
(Diode Arrays)
0.050
(1.270)
TYP

"Tj

~t

0.015 -0.019

83)

0.250-0.350
(6.350-8.890)
TYP

0.371-0.409

19:.f~~(9'423_10'39)

1--'1-1'-_ _

I

-.j

0.250-0.350
(6.350-8.890)
TYP

------L.-

J.

+

t===I"""----II--==t:--,r---r
0.004-0.006
(0.102-0.152)

0.247 -0.283
~ (6.274-7.188)
~

t ..

0.024
(0.610)
TYP

'L 0.060-0.075
11.524-1.905)
TL/G/10336-61

12-80

~National

D Semiconductor
Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical
literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and
section contents for each book.
Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this
bookshelf.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. MIS 23·200
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052·8090
For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation,
please call (408) 749·7378.

ALS/AS LOGIC DATABOOK-1987
Introduction to Bipolar Logic. Advanced Low Power Schottky. Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELL5-1987
SSIIMSI Functions. Peripheral Functions. LSIIVLSI Functions. Design Guidelines. Packaging

CMOS LOGIC DATABOOK-1988
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes • MM54HC/MM74HC
MM54HCTIMM74HCT. C04XXX. MM54CXXX/MM74CXXX. Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK-Rev. 1-1988
LAN IEEE 802.3 • High Speed SerialllBM Data Communications. ISDN Components. UARTs
Modems. Transmission Line Drivers/Recelvers

DRAM MANAGEMENT HANDBOOK-1988
Dynamic Memory Control. Error Detection and Correction. Microprocessor Applications for the
DP8408A109A117/18/19/28/29. Microprocessor Applications for the DP8420Al21A122A

F100K DATABOOK-1989
Family Overview. F1 OOK Datasheets • 11 C Datasheets • 10K and 100K Memory Datasheets
Design Guide. Circuit Basics. Logic Design. Transmission Line Concepts. System Considerations
Power Distribution and Thermal Considerations. Testing Techniques. Quality Assurance and Reliability

FACTTM ADVANCED CMOS LOGIC DATABOOK
Reprint of Fairchild 1987 Databook
Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations • 54AC/74ACXXX • 54ACT174ACTXXX

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK-1988
Circuit Characteristics. Ratings, Specifications and Waveforms. Design Considerations. 54F 174FXXX

GRAPHICS DATABOOK-1988
Advanced Graphics Chipset. Application Notes.

INTERFACE DATABOOK-1988
Transmission Line Drivers/Receivers. Bus Transceivers. Peripheral Power Drivers. Display Drivers
Memory Support. Microprocessor Support. Level Translators and Buffers. Frequency Synthesis. HI·Rel Interface

LINEAR APPLICATIONS HANDBOOK-1986
The purpose of this handbook is to provide a fully indexed and cross·referenced collection of linear Integrated circuit
applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LINEAR 1 DATABOOK-1988
Voltage Regulators • Operational Amplifiers. Buffers. Voltage Comparators. Instrumentation Amplifiers. Surface Mount

LINEAR 2 DATABOOK-1988
Active Filters. Analog Switches/Multiplexers. Analog·to·Digital • Digital·ta-Analog • Sample and Hold
Sensors. Voltage References. Surface Mount

LINEAR 3 DATABOOK-1988
Audio Circuits • Radio Circuits. Video Circuits. Motion Control. Special Functions. Surface Mount

LS/S/TTL DATABOOK-1987
Introduction to Bipolar Logic. Low Power Schottky. Schottky. TIL • Low Power

MASS STORAGE HANDBOOK-1988
Winchester Disk Preamplifiers. Winchester Disk Servo Control • Winchester Disk Pulse Detectors
Winchester Disk Data Separators/Synchronizers and ENDECs. Winchester Disk Data Controller
SCSI Bus Interface Circuits. Floppy Disk Controllers

MEMORY DATABOOK-1988
PROMs, EPROMs, EEPROMs • Flash EPROMs and EEPROMs • TTL I/O SRAMs
ECL I/O SRAMs • ECL I/O Memory Modules

MICROCONTROLLER DATABOOK-1988
COP400 Family. COP800 Family. COPS Applications. HPC Family. HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals. Display/Terminal Management Processor (TMP)
Microcontroller Development Tools

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1989
Product Line Overview. Datasheets • Designing with PLDs • PLD Design Methodology. PLD Design Development Tools
Fabrication of Programmable Logic • Application Examples

SERIES 32000 MICROPROCESSORS DATABOOK-1988
Series 32000 Overview. Central Processing Units • Slave Processors • Peripherals. Board Level Products
Development Systems and Tools. Software Support. Application Notes. NSC800 Family

RELIABILITY HANDBOOK-1986
Reliability and the Die. Internal Construction. Finished Package. MIL·STD-883·. MIL·M-38510
The Specification Development Process. Reliability and the Hybrid Device. VLSINHSIC Devices
Radiation Environment. Electrostatic Discharge. Discrete Device. Standardization
Quality Assurance and Reliability Engineering. Reliability and Documentation. Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor. The Total Military/Aerospace Standardization Program
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL·M-38510 Cless B Products
Radiation Hardened Technology. Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages. Glossary of Terms. Key Government Agencies. ANI Numbers and Acronyms
Bibliography. MIL·M-38510 and DESC Drawing Cross Listing

TELECOMMUNICATIONS-1987
Line Card Components. Integrated Services Digital Network Components • Modems
Analog Telephone Components. Application Notes

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS
ALABAMA
Huntsville
Arrow Electronics
(205) 837·6955
Bell Industries
(205) 837·1074
Hamilton! Avnet
(205) 837·7210
Pioneer
(205) 837·9300

Sunnyvale
Arrow Electronics
(408) 745·6600

ARIZONA
Phoenix
Arrow Electronics
(602) 437·0750

Bell Industries

Tempe

Anthem Electronics

(602) 966·6600
Bell Industries

(602) 966·7800
Hamilton!Avnet
(602) 961·6400
CALIFORNIA
Agora Hills
Zeus Components

(818) 889·3838
Anaheim
Time Electronics
(714) 934·0911
Zeus Components
(714) 921·9000
Chatsworth
Anthem Electronics
(818) 700·1000
Arrow Electronics
(818) 701·7500
Hamilton Electro Sales
(818) 700·6500
Time Electronics
(818) 998·7200
Costa Mesa
Avnet Electronics
(714) 754·6050
Hamilton Electro Sales
(714) 641·4159
Garden Grove
Bell Industries
(714) 895·7801
Gardena
Bell Industries
(213) 515·1800
Hamilton Electro Sales
(213) 217·6751
Irvine
Anthem Electronics
(714) 768·4444
Ontario
Hamilton! Avnet
(714) 989·4602
Rocklin
Bell Industries
(916) 969·3100
Roseville
Bell Industries
(916) 969·3100
Sacramento
Anthem Electronics
(916) 922·6800
Hamilton! Avnet
(916) 925·2216
San Diego
Anthem Electronics
(619) 453·9005
Arrow Electronics
(619) 565·4800
Hamilton! Avnet
(619) 571·7510
Time Electronics
(619) 586·1331
San Jose
Anthem Electronics
(408) 295·4200
Zeus Components
(408) 998·5121

Bell Industries

(408) 734·8570
Hamiltonl Avnet
(408) 743·3355
Time Electronics
(408) 734·9888
Thousand Oaks
(805) 499·6821
Torrance
Time Electronics
(213) 320·0880
Tustin

Arrow Electronics
(714) 838·5422

Yorba Linda
Zeus Components
(714) 921·9000
COLORADO
Englewood
Anthem Electronics
(303) 790·4500
Arrow Electronics
(303) 790·4444

Hamilton! Avnet
(303) 799·9998
Wheatridge
Bell Industries
(303) 424·1985
CONNECTICUT
Cheshire
Time Electronics

(203) 271·3200
Danbury
Hamilton! Avnet
(203) 797·2800
Meridan
Anthem Electronics
(203) 237·2282

Norwalk
Pioneer Northeast
(203) 853·1515

Wallingford
Arrow Electronics
(203) 265·7741

FLORIDA
Altamonte Springs
Arrow/Kierulff Electronics
(305) 682·6923
Pioneer
(305) 834·9090
Deerfield Beach
Arrow Electronics
(305) 429·8200
Bell Industries
(305) 421-1997
Pioneer
(305) 428·8877
Fort Lauderdale
Hamilton!Avnet
(305) 971·2900
Lake Mary
Arrow Electronics
(407) 323·0252
Largo
Bell Industries
(813) 541·4434
Orlando
Chip Supply
(305) 298·7100
Oviedo
Zeus Components
(407) 365·3000
Palm Bay
Arrow Electronics
(305) 725·1480
51. Petersburg
Hamilton! Avnet
(813) 576·3930

Winter Park
Hamilton!Avnet
(407) 628·3888
GEORGIA
Norcross
Arrow Electronics
(404) 449·8252
Bell Industries
(404) 662·0923
Hamilton! Avnst
(404) 447·7500

Pioneer
(404) 448·1711
ILLINOIS
Bensenville
Hamilton! Avnst
(312) 860·7780

Elk Grove Village
Anthem Electronics
(312) 640·6066

Bell Industries
(312) 640·1910
Itasca
Arrow Electronics

(312) 250·0500
Urbana

Bell Industries
(217) 328·1077
INDIANA
Carmel

Hamilton! Avnet
(317) 844·9333
Fort Wayne

Bell Industries
(219) 423·3422
Indianapolis
Advent Electronics Inc.
(317) 872·4910
Arrow Electronics
(317) 243·9353

Bell Industries
(317) 634·8202
Pioneer
(317) 849·7300

IOWA
Cedar Rapids
Advent Electronics
(319) 363·0221
Arrow Electronics
(319) 395·7230
Bell Industries
(319) 395·0730
Hamilton! Avnet
(319) 362-4757
KANSAS
Lenexa
Arrow Electronics
(913) 541·9542
Overland Park
Hamilton! Avnet
(913) 888·8900
MARYLAND
Columbia
Anthem Electronics
(301) 995·6640
Arrow Electronics
(301) 995·0003
Hamilton! Avnet
(301) 995·3500
LionexCorp.
(301) 964·0040
Time Electronics
(301) 964·3090
Zeus Components
(301)997·1118
Gaithersburg
Pioneer
(301) 921·0660

MASSACHUSETTS
Lexington
Pioneer Northeast
(617) 861·9200
Zeus Components
(617) 863·8800
Norwood
Gerber Electronics
(617) 769·6000
Peabody
Hamilton/Avnet
(617) 531·7430
Sertech Laboratories
(617) 532·5105
Time ElectroniCS
(617) 532·6200
Wilmington
Anthem Electronics
(617) 657·5170

Arrow Electronics
(617) 935·5134
Lionex Corporation
(617) 657·5170
MICHIGAN
Ann Arbor

Arrow Electronics
(313) 971·8220

Bell Industries
(313) 971·9093
Grand Rapids
Arrow Electronics
(616) 243·0912

Hamilton!Avnet
(616) 243-8805
Pioneer Standard
(616) 698·1800
livonia

Hamilton!Avnet
(313) 522·4700
Pioneer
(313) 525·1800
Wyoming

R. M. Michigan, Inc.
(616) 531·9300
MINNESOTA
Eden Prairie
Anthem Electronics
(612) 944·5454
Pioneer~Twin Cities
(612) 944·3355
Edina
Arrow Electronics
(612) 830·1800
Minnetonka
Hamilton!Avnet
(612) 932·0600
MISSOURI
Earth City
Hamilton!Avnet
(314) 344·1200
51. Louis
Arrow Electronics
(314) 567·6888
Time Electronics
(314) 391·6444
NEW HAMPSHIRE
Hudson
Bell Industries
(603) 882·1133
Manchester
Arrow Electronics
(603) 668·6968
Hamilton!Avnet
(603) 624·9400

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)
NEW JERSEY
Cherry Hill
Hamilton!Avnet
(609) 424·0100
Fairfield
Hamilton! Avnet
(201) 575·3390
Lionex Corporation
(201) 227·7960
Marlton
Arrow Electronics
(609) 596·8000
Parsippany
Arrow Electronics
(201) 538·0900
Pine Brook
Nu Horizons Electronics
(201) 882-8300

Pioneer
(201) 575·3510
NEW MEXICO
Albuquerque
Alliance Electronics Inc.
(505) 292·3360
Arrow Electronics
(505) 243·4566
Bell Industries
(505) 292·2700
Hamilton! Avnet
(505) 765·1500
NEW YORK
Amityville
Nu Horizons Electronics
(516) 226·6000
Binghamton
Pioneer
(607) 722·9300
Buffalo
Summit Distributors
(716) 887·2800
Fairport
Pioneer Northeast
(716) 381·7070
Hauppauge
Anthem Electronics
(516) 273-1660
Arrow Electronics
(516) 231·1000
Hamilton! Avnet
(516) 434·7413
Uonex Corporation
(516) 273·1660
Time Electronics
(516) 273·0100
Port Chester
Zeus Components
(919) 937·7400
Rochester
Arrow Electronics
(716) 427·0300
Hamilton! Avnet
(716) 475·9130
Summit Electronics
(716) 334·8100
Ronkonkoma
Zeus Components
(516) 737·4500
Syracuse
Hamilton! Avnet
(315) 437·2641
Time Electronics
(315) 432·0355
Westbury
Hamilton! Avnet
(516) 997-6868
NORTH CAROLINA
Charlotte
Pioneer
(704) 527·8188

Durham
Pioneer Technology
(919) 544-5400
Raleigh
Arrow Electronics
(919) 876-3132
Hamiltonl Avnet
(919) 878·0810
Winston-Salem
Arrow Electronics
(919) 725·8711
OHIO
Centerville
Arrow Electronics
(513) 435·5563
Cleveland
Pioneer
(216) 587-3600
Dayton
Bell Industries

(513) 435·8660
Bell Industries
(513) 434·8231
Hamilton! Avnet
(513) 439·6700
Pioneer
(513) 236·9900
Zeus Components
(914) 937·7400
Highland Heights
CAM!Ohio Electronics
(216) 461·4700
Solon
Arrow Electronics
(216) 248·3990
Hamilton! Avnet
(216) 831·3500
Westerville
Hamilton! Avnet
(614) 882·7004
OKLAHOMA
Tulsa
Arrow Electronics
(918) 252·7537
Hamiltonl Avnet
(918) 252·7297
Quality Components
(918) 664-8812
Radio Inc.
(918) 587·9123
OREGON
Beaverton
Almac-Stroum Electronics
(503) 629·8090
Anthem Electronics
(503) 643·1114
Arrow Electronics
(503) 645·6456
Lake Oswego
Bell Industries
(503)241·4115
Hamilton!Avnet
(503) 635·7850
PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443·5150
UonexCorp.
(215) 443·5150
Pioneer
(215) 674·4000
King of Prussia
Time Electronics
(215) 337-0900
Monroeville
Arrow Electronics
(412) 856·7000

Pittsburgh
Hamilton! Avnet
(412) 281·4150
Pioneer
(412) 782·2300
CAM!RPC Ind. Elec.
(412) 782·3770
TEXAS
Addison
Quality Components
(214) 733·4300
Austin
Arrow Electronics
(512) 835·4180
Hamilton! Avnet
(512) 837·8911
Pioneer
(512) 835·4000
Quality Components
(512) 835·0220
Minco Technology Labs
(512) 834·2022
Carrollton
Arrow Electronics
(214) 380·6464
Dallas

Pioneer
(214) 386·7300
Houston
Arrow Electronics
(713) 530·4700
Pioneer
(713) 988·5555
Irving
Hamiltonl Avnet
(214) 550·7755
Richardson
Anthem Electronics
(214) 238-0237
Zeus Components
(214) 783-7010
Stafford
Hamilton/Avnet
(713) 240·7733
Sugarland
Quality Components
(713) 240·2255
UTAH
Midvale
Bell Industries
(801) 972·6969
Salt Lake City
Anthem Electronics
(801) 973·8555
Arrow Electronics
(801) 973·6913
Bell Industries
(801) 972·6969
Hamilton! Avnet
(801) 972·4300
WASHINGTON
Bellevue
Almac-Stroum Electronics
(206) 643·9992
Hamilton! Avnet
(206) 453·5844
Kent
Arrow Electronics
(206) 575·4420
Redmond
Anlhem Electronics
(206) 881·0850
Hamilton! Avnet
(206) 867·0148

WISCONSIN
Brookfield
Arrow Electronics
(414) 792·0150
Mequon
Taylor Electric
(414) 241·4321
Waukesha
Bell Industries
(414) 547·8879
Hamilton/ Avnet
(414) 784·4516
CANAOA
WESTERN PROVINCES
Burnaby
Hamilton/ Avnet
(604) 437·6667
Samad Electronics
(604) 438·2515
Calgary
Hamilton! Avnet
(403) 250·9380
Semad Electronics
(403) 252·5664
Zentronics
(403) 272·1021
Edmonton
Zentronics
(403) 468·9306
Richmond
Zentronics
(604) 273·5575
Saskatoon
Zentronics
(306) 955·2207
Winnipeg
Zentronics
(204) 694·1957
EASTERN PROVINCES
Brampton
Zentronics
(416) 451·9600
Mississauga
Hamilton! Avnet
(416) 677·7432
Nepean
Hamilton/Avnet
(613) 226·1700
Zentronics
(613) 226·8840
Ottawa
Semad Electronics
(613) 727·8325
Pointe Claire
Semad Electronics
(514) 694·0860
SI. Laurent
Hamilton! Avnet
(514) 335·1000
Zentronics
(514) 737·9700
Waterloo
Zentronics
(800) 387·2329
Willowdale
ElectroSound Inc.
(416) 494·1666

~ National
~ Semiconductor



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:15 19:36:06-08:00
Modify Date                     : 2017:06:15 20:03:16-07:00
Metadata Date                   : 2017:06:15 20:03:16-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:c549bbff-2e6f-3d4d-8a73-fd499586520e
Instance ID                     : uuid:2ff023f7-c1df-2e41-aabd-e54a68269b3a
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 744
EXIF Metadata provided by EXIF.tools

Navigation menu