1989_OKI_Vacuum_Flourescent_Driver_Data_Book 1989 OKI Vacuum Flourescent Driver Data Book
User Manual: 1989_OKI_Vacuum_Flourescent_Driver_Data_Book
Open the PDF directly: View PDF .
Page Count: 328
Download | |
Open PDF In Browser | View PDF |
DATA BOOK OKI VACUUM FLUORESCENT DRIVER FIRST EDITION ISSUE DATE: OCT. , 1989 VACUUM FLUORESCENT DRIVER DATA BOOK 1989/1990 VACUUM FLUORESCENT DISPLAY TUBE DRIVER LINE-UP AND TYPICAL CHARACTERISTICS PACKAGING RELIABILITY INFORMATION -DATA SHEETS CONTENTS 1. 2. VACUUM FLUORESCENT DISPLAY TUBE DRIVER· LINE-UP AND TYPICAL CHARACTERISTICS . . . . • . . . . . . . . . . . . . . . . . .. . 3 PACKAGING • 18 PIN PLASTIC DIP ............................................ 10 • 28 PIN PLASTIC DIP ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 • 40 PIN PLASTIC DIP .. . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 • 30 PIN PLASTIC SDIP . . .. . .. ... . .. .. . . . .. .. .. .. .. .. ... .. . .. . . .. . 11 • 42 PIN PLASTIC SDIP . .. . .. .. .. . . .. . . . . .. .. . . .. ... .. .. .. . ... . .. . 12 • 64 PIN PLASTIC SDIP ........................................... 12 • 44 PIN PLASTIC QFP ............................................ 13 • 56 PIN PLASTIC QFP ............ '....... . ........................ 15 • 60 PIN PLASTIC QFP ............................................ 17 • 64 PIN PLASTIC QFP ............................................ 18 • 32 PIN PLASTIC SOP ............................................ 20 • 60 PIN PLASTIC SOP ............................................ 22 • 44 PIN PLASTIC QFJ (PLCC) ...................................... 23 3. RELIABILITY INFORMATION 4. DATA SHEETS • DRIVER· MSL912 8-Bit Parallel-in Parallel-out .. . . . . . . . . . . . .. 39 MSL915 8-Bit Parallel-in Parallel-out ... . . . . . . . . . . .. 42 MSL917 8-Bit Parallel-in Parallel-out . . . . . . . . . . . . . .. 45 MSL918 8-Bit Parallel-in Parallel-out ............. " MSCl163 40-Bit Anode Driver ....................•.. 51 MSC7751 40-Bit Anode-Driver ....................... 61 MSC7701 40-Bit Grid Driver ......................... 72 MSC1150/1171/1173 10-Bitl20-Bitl32-BitAnode/Grid Driver 48 ...... 83 MSC1164 20-Bit Anode/Grid Driver .................. MSC1165 20-Bit Anode/Grid Driver .................. 100 MSC1162 40-Bit Anode/Grid Driver .................. 110 MSC1172 40-Bit Anode/Grid Driver .................. 120 MSC1149-XX Dot Driver MSC1187-XX Dot Driver with Dimming Function MSM5267B-15 Dot Driver ............................... 165 MSM5328 Dot Driver ............................... 172 MSC1178/1179 7-Segment Driver ......................... 179 MSC1190 7-Segment Driver ......................... 192 90 ............................ ,. .. 133 ... . . . . .. 146 o CONTROLLER MSC7110-Xxn112-XX 12-Segment, 16 Digit/16-Segment, 12-Digit .207 MSC1937-01 16-Segment, 16-:Digit (Alphanumeric) ...... 224 MSC1951-01 16-Segment, 16-Digit (Bargraph and Numeric) 235 MSC7125-XX 5 x 7 Dot Matrix, 8-Digit ................... 249 MSC7128-XX 5 x 7 Dot Matrix, 16-Digit ......... ~ ........ 262 o LEVEL METER " MSC1124 2-channeI12-Dot Level Meter IC (Static) ..... 283 MSC1146B 2-channel 15-D~,~ Level Meter IC (Dynamic) .. 294 ONE CHIP MICROCONTROLLER MSC6458 4-Bit 1-chip Microcontroller ............... 307 VACUUM FLUORESCENT DISPLAY TUBE DRIVER LINE-UP AND TYPICAL CHARACTERISTICS VACUUM FLUORESCENT DISPLAY TUBE DRIVER LINE-UP AND TYPICAL CHARACTERISTICS ' 8 bit PARALLEL-IN PARALLEL-OUT H ri' DRIVER H H J- ANODE/GRID DRIVER DOT DRIVER MSL915 I-- MSL917 "'-- MSL918 MSC7751 40 bit J- MSC7701 r-~ 10 bit I---- MSCl150 ~ 20 bit 1-- MSCl164 - MSCl165 I H I-- rc ANODE DRIVER : GRID DRIVER MSL912 40 bit MSCl163 - MSCl171 32 bit J-~ MSCl173 40 bit TI I I * * * * * MSCl162 MSCll72 I MSCl149-XX - MSCl187-XX -I MSM52678-15 -L Y H CONTROLLER t- 7-SEGMENT DRIVER rl H 12-SEGMENT 16-SEGMENT I I MSCl178 H MSCl179 - MSCl190 16DIGIT ~ MSC7110-XX MSC1937-01 MSC1951-01 Y LEVEL METER ;16 DIGIT ; H MSM5328 5x 7 DOT MATRIX I I ONE CHIP MICROCONTROLLER 8DIGIT r---I r---I 16 DIGIT !- MSC7128-XX STATIC I- MSC1124 12 DIGIT LDYNAMIC J--I MSC7112-XX MSC7125-XX MSCl1468 MSC6458· .1 * Under development 3 • DRIVER J:o, OUTPUT CURRENT TYPE NUMBER OF OUTPUT OUTPUT VOLTAGE SINK SOURCE MSL912RS - 8 +30V - -40mA MSL91SRS - 8 -60V - MSL917RS - 8 -80V MSL918RS - 8 +30V MSC1149-XX RS/GS - DEVICE NAME Large Small 8 25 +18V SHIFT RESISTER LATCH EMITTER FOLLOWER + PULL DOWN - - 8 Drivers -40mA EMITTER FOLLOWER + PULL DOWN - - 8 Drivers - -90mA EMITTER FOLLOWER - - 8 Drivers - -40mA EMITTER FOLLOWER - - 8 Drivers PUSH PULL 34 33 large O.SmA Small O.SmA Large -2mA Small -a.8mA OUTPUT CIRCUIT REMARKS Auto Load Circuit MSC11S0RS DATAISCAN 10 +60V 2mA -2SmA PUSH PULL 10 10 MSC1162GS DATAISCAN 40 +6SV 2mA -40mA PUSH PULL 40 40 Bi-<:> ;:! ~ Index Mark CI: o.soryp Se 11 tin ~.l~tO.l0 :J) 0.30tO.l0 0.1 Pill n e SSOP60-P-700-L 20. OOtO. 30 bu lool 0 lfi ] IndexMa~ d~ 22 11~0±0.10 ~ PLASTIC SOP SSOP60-P-700-V1 K 20 • OOiO. 30 kJi) @ ft ] 0:!~5iO. 10 0.30iO.l0 0 ',= . '. 'I\':::-::'" Index Mark / Q; 0.60TYP Jl ~ ! Seatin 0.1 ~ O~I ?~~ C>~ N_ n c • A Quality Testong ill ~ Shipment Delivery < n .. Storage Control ~ ~ackaging 1 CD 3 Service I .. ·1 .1 ~ I ReliabIlity Englneerong I Failure Report Analysis. Service I 1 auality Asaurance & Quality Control Sill" Activities I .... IJ Transportation II Control i ~ i r J ~ (I) I r .. . ~ r--- r- r--- Iloa""" '"' ' ' ' ' ' '1 InformatIon AnalySIS Quality Evaluatoon oFaolure AnalYSIS 0 Quality Management and Educatron I. Quality Control Program + ReliabIlIty Program V I Quality Assurance - -- -- - - - - ---------- • Acceptance Inspection Electrical Test Regular Check of Measuring EQuipment Production Process Wafer Process & Assembly • Production Process Ouality Control Lot Control EQuipment Conditions In-Process Inspection 4 Thermal Screening Seal Test I • • • • Group A Test Group B Test Group C Test Early Removal of Defective Devices Figure 2 Manufacturing Process Devices which pass these lot guarantee inspections are stored in a warehouse awaiting shipment to customers. Standards are also set up for handling, storage and transportation during this period, thereby ensuring quality prior to delivery. Figure 2 shows the manufacturing flow of the completed device. 5) At Oki, all devices are subjected to thorough quality checks. If, by chance, a failure does occur after delivery to the customer, defective devices are processed and the problem rectified immediately to minimize the inconvenience to the customer in accordance with the following flowchart. Request for technical improvement r - Re~~i-;~ -I results of I investigation ,~___ & improvement ...a C (l) --E ~.~ ~ ::Jco I Report on results of investigation C'.c c. a:(l)~E __ _ I L _ ~ ~!:r~v.:~e~t Request for manufacturing improvement Figure 3 Failure report process 29 • • • Service Failure Analysis Customer Information Analysis ~ t Target QualitY QualitY Assurance & Quality Control • • ,. Quality and Reliability Information QualitY Evaluation Defective Analysis ReliabilitY Engineering Quality Management and Education • • • Operation Standard Technical Standard Quality Standard Design Review Prototype Review 3. EXAMPLE OF RELIABILITY TEST RESULTS We have' outlined the quality assurance system and the underlying concepts employed by Oki. Now, we will give a few examples of the reliability tests performed during the developmental and production prototype stages. All reliability tests performed by Oki conform to the following standards. MIL-STD-883B, JIS C 7022, EIAJ-IC-121 Since these reliability tests must determine performance under actual working conditions in a short period of time, they are performed under severe test conditions. For example, the 125°C high temperature continuous operation test performed for 1000 hours is equivalent to testing device life from 2 to 300 years of use at Ta = 40°C. By repeating these accelerated reliability tests, device quality Is checked and defects analyzed. The resulting Information is extremely useful in rlmproving the manufacturing processes. Some of the more common defects in LSI elements and their analysis are described on next page. 30 Design Quality LIFE TEST RESULTS * MSC1162GS-V1K ;${ MSL915RS MSM5267B-XXGS-VK MSC7110SS 8-BIT PARALLEL-IN PARALLEL-OUT DOT DRIVER 12-SEGMENT, 16-DIGIT Part Name Function Test Item High Temperature Bias Test Temperature Humidity Bias Test Test Condition Sample Te~tt-fours Size (pc,) or Cycle, MSL915RS .............. Note 1 MSM5267B-XXGS-XX .... Note 2 MSC7110SS ............. Note 3 MSC1162GS-VIK Note 4 ........ 88 Test Hours or Cycle, 2000 (H) 0 88 2000 (H) Failures Sample Testtlours Size(pcs) or Cycles Failures MSL915RS .............. Note 1 MSM5267B-XXGS-XX .... Note 2 MSC7110SS ............. Note 3 MSCl162GS-VIK Note 4 ........ 100 Temperature Cycling Test - 65°C ~ RT ~ 150°C (30 min) (5 min) (30 min) 100 Ta = 121°C RH= 100% 2 atm 50 • Note 1 (MSL915RS) VI-GND 7V, V-GND 22 2000 (H) 1000 (H) 500 (Cy) 200 (H) 2000 88 0 100 0 22 0 100 0 50 2000 (H) (H) 1000 (H) 500 (Cy) 200 (H) 0 100 0 22 0 100 0 50 • Note 3 (MS(7110SS) VDD-VSS = 5.sV, VDD-VEE = 4sV • Note 2 (MSM5267B-XXGS-VK) VDD-GND = 18V =60V 0 Te-stHours or Cycles 0 88 2000 (H) 0 100 1000 (H) 0 22 500 (Cy) 0 100 200 (H) 0 50 Failures i 85°C85% 72H STORAGE 125°C 16H BAKE REFLOW SOLDERING PACKAGE SURFACE TEMP LIFE TEST 2000 (H) 0 2s0·C REFLOW TEMP PROFILE 2000 (H) 1000 (H) 500 (Cy) 200 (H) 0 0 0 0 • Note 4(MSCl162GS-V1K) VCC-GND = 5.sV, VHV-GND = 6sV WTHE PRE DISPOSITION OF EACH SAMPLE ~ Sample Size (pc,) Referr~ Standard MIL-STD-883C Method 1005 - Ta = 85°C PH=85% Bias Condition Ta= 150°C = Sample Size (PC,) Ta = 125°C Bias Condition High Temperature Storage Pressure Cooker Test Failures 40-BIT ANODE/GRID DRIVER _-....--240°C 200·C ls0·C 100·C '--...L--L..-=-1_L-.L.....L-L-.l---lL-l.-...L._ _ (sec) 30 60 90 - MIL-STD-883C Method 1008 MIL-STD-883C Method 1010 - W IV ENVIRONMENTAL TEST RESULTS Part Name MSL91SRS MSMS267B- MSC7110SS MSCl162GS-V1K 12-SEGMENT, 16-DIGIT 40-BIT ANODE/GRID DRIVER XXGS-VK Function Test Item Test Condition Soldering Heat Test Thermal Environmental Test Sample Size (pes) DOT DRIVER Sample Size Failures (pes) Failures Sample Size (pes) Sample Size Failures (pes) Failures Method 2003 Temperature Cycling Test I l Lead Intgrity Referred Standard MIL-STD-883C 260·C 10 sec I t Thermal Shock Test Other Test 8-BIT PARALLEL-IN PARALLEL-OUT Tensile Bending Solderability -6S·C=: RT= lS0·C (30 min) (5 min) (30 min) (20 cycles) 22 0 22 0 22 0 22 0 Method 1010 100·C=0·C (5 min) (Smin) 10 cycles MIL-STD-BB3C Method 1911 18P/42P Dip SOOg 10sec 44P/60P Flat 100g 10 sec 18P/42P Dip 250g 90· 3 times 44P/60P Flat SOg 90· 2 times 230'C 5 sec MIL-STD-883C 11 0 11 0 11 0 11 0 22 0 22 0 22 0 22 0 MIL-STD-883C Method 2004 MIL-STD-8B3C Method 2003 4. SEMICONDUCTOR MEMORY FAILURES The life-span characteristics of semiconductor elements in general (not only semiconductor Ie devices) is described by the curve shown in the diagram below. Although semiconductor memory failures are similar to those of ordinary integrated circuits, the degree of integration (miniaturization), manufacturing complexity and other circuit element factors influence their incidence. al conditions) in the development stage to reduce this type of failure. In addition to checking endurance against surge currents, special protective circuits are incorporated in the input and output sections. ~ AI ~' Alurr::nun: , vVire Input section ~!<11'",qt7R-+ , __ " t t Poly Si Destruction position Semiconductor Element Failure Rate Curve ~ ;; 0:: CIJ 2'OJ u.. Initial SHIPPING failure ~ Wear·out Random _ _ _........=failure failure \ \ m>1 I \ \ \ \ I General electronic devices , ~ ___ m<1. ~:1__ I J_--,. ;," '---v---" Debugging by burn·in screening I -+ / Time Semiconductor elements 1) Surge Destruction This is destruction of the input/output stage circuits by external surge currents or static electricity. The accompanying photograph shows a point of contact between aluminum and polysilicon that has been dissolved by a surge current. A hole has formed in the substrate silicon, leading to a short circuit. This kind of failure is traceable in about 30% of defective devices returned to the manufacturer. Despite miniaturization of semiconductor memory co'mponent elements (which means the elements themselves are less resistant), these failures usually occur during assembly and other handling operations. At Oki, all devices are subjected to static electricity intensity tests (under simulated operation- Ex.:mplo of surge destruction 2) Oxide Film Insulation Destruction (Pin Holes) Unlike surge destruction, this kind of failure is caused by manufacturing defects. Local weakened sections are ruptured when subjected to external electrical stress. Although this problem is accentuated by the miniaturization of circuit elements, it can be resolved by maintaining an ultra-clean manufacturing environment and through 100% burn-in screening. 3) Surface Deterioration due to Ionic Impurities Under some temperature and electric field conditions, charged ionic impurities moving within the oxide film previously resulted in occasional deterioration of silicon surfaces. This problem has been eliminated by new surface stabilization techniques. 4) Photolithographic Defects Integrated circuits are formed by repeated photographic etching processes. Dust and scratches on the mask (which corresponds to a photographic negative) can cause catastrophic defects. At present, component elements have been reduced in size to the order of 10 cm through miniaturization. However, the size of dust and scratches stays the same. At Oki, a high degree of automation, minimizing human intervention in the process, and unparalleled cleanliness, solves this problem. Photolithographic Defect 33 5) Aluminum Corrosion Aluminum corrosion is due to electrolytic reactions caused by the presence of water and minute impurities. When aluminum dissolves, lines break. This problem is unique to the plastic capsules now used widely to reduce costs. Oki has carefully studied the possible cause and effect relationship between structure and manufacturing conditions on the one hand, and the generation of aluminum corrosion on the other. Refinements incorporated in Oki LSls permit superior endurance to even the most severe high , humidity conditions. 6) Alpha·Particle Soft Failure This problem occurs when devices are highly miniaturized, such as in 1 megabit RAMs. The inversion of memory cell data by alpha-particle generated by radio-active elements like uranium and thorium (present in minute quantities, measured in ppb) in the ceramic package material causes defects. Since failure is only temporary and normal operation restored quickly, this is referred to as a "soft" failure. At Oki we have eliminated the problem by coating the chip surface of 1 megabit RAMs with a resin which effectively screens out these alpha-particles. 7) Degradation in Performance Characteristics Due to Hot Electrons With increased 'miniaturization of circuit elements, internal electric field strength in the channels increases since the applied voltage remains the same at 5V. As a result, electrons flowing in the channels, as shown in the accompanying diagram, tend to enter into the oxide film near the drain, leading to degradation of performance. Although previous low-temperature operation tests have indicated an increase of this failure; we have confirmed by our low-temperature acceleration tests, including checks on te'st element groups, that no such problem exists in Oki LSls. Drain +VG G~ ~ VD , : Source P Package ceramic Hot electrons Substrate silicon Characteristic deterioration caused by hot electrons --:-~-:-:-:7"""7~""':"':'"'lf---:---:--c~~~ Sil icon oxide _p~:.;;.;...:...:..:...,~:..:;,t.::;.;..."::':"":'~I'-"-"":"",:,,,,-,- film /-t-t_ " Q-partlcle Ionization along the Q·particle path 34 Substrate silicon With further prog'ress in the miniaturization of circuit components, failures related to pin hole oxide film destruction and photolithography have increased. To eliminate these defects during manufacturing, Oki has been continually improving its production processes based on reliability tests and information gained from the field. And we subject all devices to high-temperature burnin screening for 48 to 96 hours to ensure even greater reliability. Driver I OKI semiconductor MSL912 a-BIT PARALLEL-IN PARALLEL-OUT GENERAL DESCRIPTION The MSL912 is a high voltage vacuum fluorescent display tube driver, which uses positive voltage and contains eight circuits. Each output contains a pull-down resistor, which allows the driver to directly drive the vacuum fluorescent display tube. Input may be driven directly by the TTL or CMOS. PIN CONFIGURATION (Top View) 18 Lead Plastic DIP IN, OUT, OUT2 OUT 3 OUT 4 OUTs OUT 6 OUT 7 OUTs V+ CIRCUIT CONFIGURATION (1 of 8 units) ,,..---------I I I I I I I I I I I I ~ 70Kn ~ I I I I I I I 31Kn IN V+ OUT 1.4Kn 1S0Kn GND 39 ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Symbol Parameter Limits Unit -0.3-35 V - 0.5-10 V - 0.3-35 V +0.6--45 mA Supply voltage V+ Input voltage VI ,Output voltage Vo Output current 10 =25°C Ta =25°C Ta =25°C Ta =25°C, only one Tstg - -55- + 150 °C Symbol Condition Limits Unit Supplyvo!tage Y+ 15-30 V Input voltage VI - 0-7 V + 0.5- -40 mA +0.5- - 5 mA + 0.5x8- -40 mA -30-+75 DC Storage temperature • Condition Ta circuit ON Recommended Operating Conditions Parameter Only one circuit ON'" Output current 10 Per circuit when all circuits are ON'" Total output current'" '" • Duty: - Top Operating temperature 50% max. DC Characteristics (Ta = - 30- + 75°C, TYP: Ta = 25°C) Condition Parameter Unit V + (V) VI(V) IO(mA) MIN TYP MAX - 2.5 - - V 1.0 V 20 80 JlA 0.09 0.22 mA 0.29 0.7 mA High input toltage VIH 30 Low input voltage VIL 30 - Low input current IlL 30 1.0 IIH1 30 2.5 IIH2 30 7 High output voltage VOH 30 2.5 -40 27 28.5 - V Low output voltage VOL 30 1.0 0 - 1.0 3.0 V ICCOFF 30 All INPUTS 0 - 0.04. 0.4 mA 2.5 0 - 12 17 mA All INPUTS Vo= 27V 60 150 270 KQ High input current Supply current Pull-down resistor 40 Specification Symbol ICCON 30 RpD 30 1.0 All INPUTS 0 - APPLICATION NOTE OV +25V I I V+ Vee (Voo) TIL or CMOS Vacuum IN MSL912RS OUT'I---~-<""')--:l~ GND GND (Vss) J I . - -_ _ _ _ _ _ _ _ _---J b fluorescent display tube OUT = _ 5- + 25V -5V +5V +30V I' I' V+ VeC Vacuum fluorescent display tube OUT=O- +30V OV (Note) When noise level on input or output signal is high, use a clamping diode. Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 41 OKI semiconductor MSL915 8-BIT PARALLEL-IN PARALLEL-OUT GENERAL DESCRIPTION The MSL915 is a high voltage vacuum fluorescent display tube driver, which uses negative voltage and contains eight circuits. Each output contains a pull-down resistor, which allows the driver to directly drive the vacuum fluorescent display tube. Input may be driven di rectly by the TIL or CMOS. PIN CONFIGURATION (Top View) 18 Lead Plastic DIP INl OUT l OUT 2 OUT 3 OUT4 OUTs OUTs OUT 7 GND CIRCUIT CONFIGURATION (1 of 8 units) .-----~--~----~----~-oGND I I I I IN I I 17KQ ~ I I I I I I 14KQ ~~~----~--OOUT lAKQ 1S0KQ ~------------------------~----~~v- 42 ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Symbol' Parameter Condition Limits Unit V- Ta=25°C GND + 0.3-GND - 65 V Input voltage VI Ta=25°C GND + 0.5-GND -10 V Output voltage Vo Ta = 25°C GND + 0.3-V - - 0.5 V Output current 10 Ta = 25°C, only one circuit ON + 0.9- -45 mA Tstg - - 55- + 150 °C Symbol Condition Limits Unit V- - GND - 20-GND - 60 V GND-GND-7 V Only one circuit ON* + O.S- -40 mA Per circuit when all circuits are ON* + O.S- - 5 mA +O.SxS- ~40 mA - 30- + 75 °C Supply voltage Storage temperature • Recommended Operating Conditions Parameter Supply voltage Input voltage VI Output current 10 Total output current· Operating temperature • • Duty: - Top' 50% max. DC Characteristics (Ta = - 30",:, + 75°C, TYP: Ta = 25°C) Condition Parameter Specification Symbol Unit V-(V) VI(V) IO(mA) MIN TYP MAX - - - - - 1.S V - V -70 -280 }lA - 0.23 -1.2 mA - 0.58 - 2.6 mA - 1.5 -3 V High input voltage VIH -60 Low input voltage VIL - 60 High input current IIH -60 -1.5 IIL1 -60 -4 IIL2 -60 -7 High output voltage VOH -60 -4 -40 Low output voltage VOL -60 - 1.5 0 - 55 - 59 - V ICC OFF -60 All INPUTS 0 - 0.7 1.3 mA 6 12 mA 60 150 270 KQ Low input current Supply current ICCON Pull-down resistor RpD -60 -60 - 1.5 All INPUTS -4 0 All INPUTS Vo= -3V 0 -4 - 43 APPLICATION NOTE +5V cr I J Vee (voo) GND TIL or CMOS IN MSL915RS OUT GND(Vss) V- OV -SSV Vacuum I---~<-)-~~ . ~ fluorescent display tube OUT = + 5- - 5SV ov 9 T I Vee (VOO) GND TIL or CMOS GND (Vss) v- 1 -SV V&uum IN MSL91SRS OUT I---«-)-~Oo-j "---- fluorescent display tube OUT=O--60V -60V (Note) When noise level on input or output signal is high, use a clamping diode. Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 44 OKI semiconductor MSL917 8-BIT PARALLEL-IN PARALLEL-OUT GENERAL DESCRIPTION The MSL917 is a high voltage vacuum fluorescent display tube driver, which uses negative voltage and contains eight circuits. Each output does not contain a pull-down resistor, hence it should be connected to an external resistor (about 150KQ). Input may be driven directly by the TIL or CMOS. The vacuum fluorescent display tube driver may also be used as a high voltage·and current driver. PIN CONFIGURATION (Top View) 18 Lead Plastic DIP OUT, OUT2 OUT 3 OUTs OUT 6 OUT 7 GND CIRCUIT CONFIGURATION (1 of 8 units) IN GND I I I I I I o---~I--~--~~----; I I I I I 12KQ ~ I I ~ I I I I I I 1KQ I I I I I I I I I I OUT L--------------------------------r"')OV45 ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Symbol Condition Limits Unit Supply voltage V- Ta=25°C GND + 0.3-GND - 85 V Input voltage VI Ta=25°C GND + 0.5-GND - 10 V Output voltage Vo Ta=25°C GND + 0.3-GND - 85 V Output current 10 Ta = 25°C, only one circuit ON 0- - 100 mA Tstg - Parameter Storage temperature o ~ °C 150 Recommended Operating Conditions Symbol Condition Limits Unit Supply voltage V- GND - 20-GND - 80 V Input voltage VI - Parameter Output current 10 Operating temperature * • - 55- GND-GND-7 V Only one circuit ON* 0--90 mA Per circuit when all circuits are ON* 0- -11 mA Total output current 0--90 mA -30- + 75 °C - Top Duty: 50% max. DC Characteristics (Ta = - 30- + 75°C, TYP: Ta = 25°C) Condition Parameter Unit V-{V) V,{V) 10(mA) RL(Q) MIN TYP MAX - - - - 1.5 -4 - High input voltage V'H -80 - Low input voltage VIL -80 - High input current IIH -80 -/1.5 Low input current 11L1 -80 -4 IIL2 -80 -7 - VOH -80 -4 -90 - 0 *1 150K -75 -79 - - *1 150 - 0.7 1.3 mA - *1 150K - 8 14 mA High output voltage Low output voltage VOL -80 ICCOFF -80 ICCON -80 -1.5 All INPUTS -1.5 Supply current * 1 RL connection method 46 Specification Symbol All INPUTS -4 - - - V V -70 -280 llA -0.23 - 1.2 -2.6 mA -0.58 -2.0 -3.0 V mA V RL CONNECTION METHOD GND f ..... ~ ..., ..... ..., ..., ~ I, 0, I I I I I I I I I I I I I I I I I I I ,- 1-1l - I -i - I Is Os I b V- APPLICATION NOTE+5V 9 I I Vee (Voo) TIL or CMOS GND GND (V 55) b IN MsL917Rs OUT V- Vacuum ~ • ~ b ,OV fluorescent R display tube OUT= + 5- -75V -75V OV cr r I Vee (Voo) TIL or CMOS GND (Vss) 1 -SV GND IN MSL917RS OUT V- Vacuum ~ fluorescent >RL~ display tube L b OUT=O--80V -80V (Note) When noise level on input or output signal is high, use a clamping diode. Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under ilny pJtcnt rights of OKI. 47 OKI semiconductor MSL918 8-BIT PARALLEL-IN PARALLEL-OUT GENERAL DESCRIPTION The MSL918 is a high voltage vacuum fluorescent display tube driver, which uses positive voltage and contains eight circuits. Each output does not contain a pull-down resistor, hence it should be connected to an external resistor (about 150 KQ). Input may be driven directly by the TIL or CMOS. The vacuum fluorescent display tube driver may also be used as a high voltage and current driver. PIN CONFIGURATION (Top View) 18 Lead Plastic DIP CIRCUIT CONFIGURATION , (1 of 8 units) r----------+------+-----+-------+-1---n V+ I I I I I I I I I I I I I ....L. ~\ ¢. I I I I :. 31KO IN 1.4KO OUT 18KO GND 48 I I I I I I I I I I ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Parameter Symbol Condition Limits Unit Supply voltage V+ Ta=25°C -0.3- +35 V Input voltage VI Ta=25°C -0.5- + 10 V V Output voltage Vo Ta=25°C -0.3-V+ Output current 10 Ta = 25°C, only one circuit ON -45 rnA Tstg - - 55- + 150 °C Symbol Condition Limits Unit V+ - +15-+30 V Storage temperature o Recommended Operating Conditions Parameter Supply voltage Input voltage Output current 10 Operating temperature * • 0-+7 V Only one circuit ON* 0--40 mA Per circuit when all circuits are ON* 0- -11 mA Total output current* 0--90 rnA - 30- + 75 °C VI Duty: - Top 50% max. DC Characteristics (Ta = - 30- + 75°C, TYP: Ta = 25°C) Condition Parameter Specification Unit Symbol V+(V) VI(V) 10(mA) RL(Q) MIN TYP MAX - 2.5 - V - - - 1.0 V -80 pA 0.15 mA 0.5 mA - V 3.0 V 0.4 mA 14 mA High input voltage VIH +30 Low input voltage VIL +30 - Low input current IlL +30 1.0 High input current IIHl + 30 2.5 - IIH2 +30 7 - High output voltage VOH +30 2.5 Low output voltage VOL +30 1.0 Icc OFF +30 All INPUTS ICCON +30 1.0 -40 - 27 0 *1 150K - - *1 150 - - - *1 150K - 9.5 Supply current All INPUTS * 1 RL connection method 2.5 -20 Rl CONNECTION METHOD V+ f ..... ..... ..... ..... ..... ..... ..... ..... I, 01 I I I I I I I I I I I I I I I I I I - r-- r- ~ I I IS Os 1 1 .0 GND APPLICATION NOTE OV +2SV I I VeC 25°C 145 0c/w 2 Operating Temperature 'Top Thv::;i50V -40- +85 °C - Storage Temperature Tstg - - 55- + 150 °C - Input Voltage NOTES: 860 [Derate 6.9 mW/C above 25°C] 1) Maximum Supply Voltage for GND 2) Derate 6.9 mW/Ck above 25°C Refer to the following formula. Tj 56 =P x Rj - a + Ta (P: Max current consumption) • Recommended Operating Conditions Parameter Symbol Condition Min. Max. Unit Logic Supply Voltage Vee Applicable to logic supply voltage terminal 4.5 5.5 V Driver Supply Voltage Vhv Applicable to driver supply voltage terminal 10 65 V High Level Input Voltage Vih Applicable to all input terminals Vee=4.5V 3.6 V Vee= 5.5V 4.4 Vii Applicable to all output terminals Vee= 4.5V - 0.9 V low level Input Voltage Driver High level Output Current lohvh Driver low level Output Current lohvl ClK Frequency V V ee =5.5V - 1.1 V Applicable to all driver output terminal - -2 rnA Applicable to all driver output terminal - 2 rnA f See timing chart - 4 MHz twclk See timing chart 75 - ns Data in Setup Time tds See timing chart 50 - ns Data in Hold Time tdh See timing chart 50 - ns twls See timing chart 80 - ns ClK - LS Delay Time tdcl See timing chart 50 - ns LS - ClK Delay Time tdle See timing chart 0 - ns LS - CHG Delay Time tdleg See timing chart 0 - ps LS- Cl Delay Time tdld See timing chart 0 - ps twehg See timing chart 2 - ps twd See timing chart 2 - ps Top - -40 +85 °c ClK Pulse width lS Pulse Width CHG Pulse Width I Cl PUlse width Operating Temperature 57 • DC Characteristics Parameter Logic Standby Current Vcc=5V± 10%, Vhv= 10V-65V, Ta= -40°Cto + 85°C Symbol Icc 1 Condition No Load Vee= 5.5V Icc 2 Driyer Standby Current IhV1 No Load Vee = 5.5V 'hV 2 High Level Input Voltage Vih Min. Typ. Max. Unit - 4.3 6.65 All Input: High, All Driver Output: High, Ta = 25°C - 0.5 1.0 All Driver Output: Low - - '1 pA All Driver Output: High, Ta = 25°C - 2.45 3.8 mA Vee=4.5V 3.15 - Vee= 5.SV 3.85 V Vee = 4.SV - - 1.35 V - 1.65 V - ±1 pA All Input: Low rnA V Low Level Input Voltage Vii Input Leakage Current 'in Ta= 25°( - Input Capacitance Cin Ta= 25°C - 15 - pF Vee=4.SV 4.2 - Vee = 5.5V 5.2 - 'v Vee = 4.5V - High Level Data Output Voltage Vodh 1 Vee=5.5V 10= - 20pA Low Level Data Output Voltage Vodl1 10 = 20pA High Level Data Output Voltage Vodh2 10= -0.1mA Low Level Data Output Voltage Vodl2 Driver High Level Output Voltage Vohvh Vee= 5.5V 10=0.1mA - Vee=4.5V 3.5 Vee =5.5V 4.5 Vee=4.5V Vee= 5.5V 'ohv= - 2mA - - V 0.2 V 0.2 V - V - V 1.1 V 1.1 V - - V - 3.0 V - - Vhv-3 - , Driver Low Level Output Voltage 58 Vohvl 'ohv=2mA o AC Characteristics Vcc=5V, Vhv=65V, Ta=25°e Item Symbol Remarks Min. Typ. Max. Unit - 100 150 nS elK - Dout Delay Time tpd See timing chart and test circuit DelayTime low - High tdlh See timing chart and test circuit - 0.3 1 }lS Transit Time low - High ttlh See timing chart and test circuit 2 5 }lS DelayTime High - low tdhl See timing chart and test circuit 0.3 1 }lS Transit Time High - Low tthl See timing chart and test circuit - 2 5 }lS o Timing Chart TEST CIRCUIT 20pF Vee Vhv 30KO 65V s.OV DOUT 30pF Information furnished ·by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 60 OKI semiconductor MSC7 751 (Underdevelopment) 40-Bit ANODE DRIVER GENERAL DESCRIPTION The MSC7751 is a monolithic IC using the high withstand voltage driver process for hybridizing CMOS and DMOS transistors on one chip. The logic portion such as the input stage, shift register and latch is formed b,y CMOS, and the output driver requiring a high withstand voltage is formed by DMOS transistors. Since the pin assigment allows single side pattern formation on the printed circuit board, the display unit can be reduced. The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis. FEATURES o Logic supply voltage +5V o VF driver supply voltage -200V o Driver output current (Iohvh) (Iohvl) - 2 mA (All driver output high) +2mA o Clock frequency o Built-in 40-bit latch o Built-in 40-bit bidirectional shift register o 60 Pi n FLAT Package 5.5 MHz 61 BLOCK DIAGRAM Vee 51150 LS VHV VHV (1-20) (21-40) CL FIB CLOCK HV01 RESET HV02 .... t: 25°C 145 °CJW -40- +85 °C - 55- + 150 °C Power Dissipation Pd Attenuation Rate Rj-a Operating temperature Top Storage temperature Tstg Ta~ VHV~ 130V --- 2 Notes: 1. The maximum voltage which can be applied to the GND terminal. 2. Thermal resistance ofthe package (between junction and atmosphere). The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C. Tj = p'x Rj - a + Ta (P: Maximum power consumption of IC) 67 • Recommended Operating Conditions Parameter Symbol Conditions MIN MAX Unit Logic supply voltage Vee Applicable to logic power terminal 4.5 5.5 V Driver supply voltage VHV Applicable to driver power terminal 10 200 V High level input voltage VIH Applicable to all Vee=4.5V 3.6 - V input terminals Vee = 5.5V 4.4 - Applicable to all Vee=4.5V - 0.9 input terminals Vee= 5.5V - 1.1 Low level input voltage VIL V Driver high level output current IOHVH Applicable to all driver output terminals - -2 mA Driver low level output current IOHVL Applicable to all driver output terminals - 2 mA f0 See Timing chart - 5.5 MHz twclkl See Timing chart 70 nS Data setup time tds See Timing chart 20 - Data hold time tdh See Timing chart 45 - nS LS pulse width twls See Timing chart 80 nS CLK-LS delay time tdcl See Timing chart 45 LS-CL delay time tdlcl See Timing chart 0 - CL pulse width t wcl See Timing chart 2 - 115 Operating temperature range Top See Timing chart -40 +85 °C Clock frequency Clock pulse width nS nS nS • DC Characteristics Parameter Logic supply current Symbol ICCl Conditions MIN TYP MAX Unit No load All inputs : Low - - 50 Vce" 5.5V All inputs : High - - 200 - - 50 }lA 2.5 4.0 mA 1.35 V ICC2 All driver outputs : High llA Driver supply IHVl No load All driver outputs : Low current IHV2 Vcc =5.5V All driver outputs : High High level input VIH Vcc =4.5V Applicable to all input 3.15 Vcc =5.5V terminals 3.85 Vcc =4.5V Applicable to all input - - Vcc =5.5V terminals - - 1.65 V - - ±1 }lA voltage Low level input VIL voltage Input leak current IILEEK Ta =25°C Input terminals except CL terminal High level input IIH current Input capacity High level data CIN . VODH 20 50 100 25 60 200 Ta = 25°C - 15 Vcc=4.5V 3.5 - Vcc=5.5V 4.5 - - - VODL 0.9 10= ~O.lmA output voltage High level driver Low level driver Vcc =4.5V Vcc=5.5V 1.1 VOHVH IOHv= -2mA 195 - - VOHVL IOHv=2mA - - 5 output voltae output voltae Applicable to 10= -O.lmA output voltage Low level data a: terminal Vcc =5.5 Vcc=4.5V V V }lA pF V V V V 69 • AC Characteristics Parameter Symb.ol Conditios MIN TYP MAX Unit Note ClK-DOUT delay time tpd See Timing Chart and Test Circuit - 100 150 nS 4 Delay time : l~H tdlh See Timing Chart and Test Circuit - 0.3 1 lIS 5,6 Transit time: l~H ttlh See Timing Chart and Test Circuit - 2 5. lIs 5 Delay time : H~l tdhl See Timing Chart and Test Circuit - 0.3 1 lIs 5,6 Transit time: H~l tthl See Timing Chart and Test Circuit - 2 5 lIs 5 Note 4: Note 5 : Note 6 : • Applicable to data output terminal. Applicable to driver output terminal. tdlh and Tdhl are delay times from CL signal. Timing Chart 11f0 CLOCK DIN DOUT lS Cl HWO{1, 2, 39, 40) HVO(OTHERS) ttlh 70 TEST CIRCUIT 20pF Vee Vhv HVOl 100KQ HV02 200V I-----<:l~~ S.OV 30pF Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 71 OKI semiconductor M 5C7701 (Underdevelopment) 40-BIT GRID DRIVER GENERAL ,DESCRIPTION The MSCn01 is a monolithic IC using the high withstand voltage driver process for hybridizing CMOS and DMOS transistors on one chip. The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by DMOS transistors. Since the pin assigment allows single side pattern formation on the printed circuit board, the display unit size can be reduced. The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis. FEATURES • Logic supply voltage +sV • VF driver supply voltage + 130V • VF driver output current (Iohvh) - 40 mA (1 driver output high) (Iohvl) + 2 mA • Clock frequency • Built-in 40-Bit latch • Built-in 40-Bit bidirectional shift register GI 60 Pin FLAT Package 72 5.5 MHz BLOCK DIAGRAM Vee VHV VHV (1-20) (21-40) 51/50 L5 Q1 1, L, ·Q2 12 L2 FIB CLOCK HVO 1 RESET ~ w f- HV02 ~ l!) w ~ fu... :c VI :c U Z g 6w Cil 0 ...J ~ .... 0 o:::t ~ £5 iii ..... Cil 6 o:::t Q40 140 HV040 L.:40 D40 SO/51 GND 73 PIN CONFDIGURATION (Top View) 60 Lead Plastic Flat Package HVO 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 37 38 39 40 74 0 HVO 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4 3 2 NC VHV NC GND NC L5 NC Vee NC NC CL NC CLOCK NC RESET 50/51 51/50 NC VHV FIB. PIN DESCRIPTION Pin No. 1 Symbol HVO Name 1 Description Driver output 1. Each terminal is a high withstand voltage driver output terminal to drive the grid of the VF display tube, which corresponds to each bit of the shift register. 2. Each terminal can be directly connected to the grid termi nal of the VF display tube. 20 411 60 HVO 40 22 39 VHV Driver supply voltage 1. This is a power terminal of the high withstand voltage driver to drive the VF display tuve. 28 Vee Logic supply voltage 2. This is a power terminal of the logic portion. 36 CL Clear input 1. This is an input terminal containing a pull-down resistor. 2. The terminal is generally kept High. The driver output, High or Low, is driven by the output of the corresponding latch circuit. 3. When the terminal is Low, the driver outputs are fixed to, "Low" regardless of the output of the latch circuit. 26 LS Latch strobe input 1. When the terminal is High, the latch circuit is slewed, and the output of the shift register is read into the latch circuit. 2. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low. 34 CLOCK Clock input 1. This is a clock terminal of the shift register. -The data of the shift register is shifted at the falling edge of a clock pulse. 32 RESET Reset input 1. When the terminal is Low, all the data of the shift register is Low. Generally and when not in use, connect the terminal to the Vee terminal. 38 FIB Shift direction control input 1. When the terminal is Low, data is shifted from 1 to 40, and Pin 31 is a serial in terminal and Pin 30 is a serial out terminal. 2. When the terminal is High, data is shifted from 40 to 1, and Pin 30 is a serial in terminal and ~in 31 is a serial out terminal. 31 51/50 Serial input/serial output 1. When the FIB terminal is Low, this terminal is a serial data input terminal. 2. When the FIB terminal is High, this terminal is a serial data output terminal. 30 50/51 Serial output/serial input 1. When the FIB terminal is Low, this terminal is a serial data Q.utput t~rminal. 2. When the FIB terminal is High, this terminal is a serial data input terminal. 24 GND GND 1. This is a grounding (GND) terminal. 75 SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS Input terminal GND GND Input -output terminal ---1 GND 5f150 SO/51 GND 76 GND SCHEMATIC ,DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT VHV VHV HVO -~ GND GND FUNCTION TABLE Q40 SO/51 L L L L L L L L X H Q'n Q2n Q38n Q39n Q39n L L Q'n Q2n Q38n Q39n Q39n H Q2n Q2n Q3n Q4n Q40n H H H Q2n Q2n Q3n Q4n Q40n L L CL L5 Qn HVOn L X X L H H H H H H L L H L X NC CLK F/B 51/50 Ql Q2 Q3 L X L X L L L X H L L L H L H H H H ---- Q39 RESET L L L L L: X: Low Level, Don't Ca~e, H : High Level NC : No Change 77 -6- ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Symbol Conditios Limits Unit Note Logic supply voltage Vee Applicable to logic power terminal - 0.3-6.5 V 1 Driver supply voltage VHV Applicable to driver power terminal Vee- 15O V 1 Input voltage VIN Applicable to all input teminals - 0.3-Vee + 0.3 V 1 Data ouptput voltage Vod Applicable to data output terminal - 0.3-Vee + 0.3 V 1 Driver output voltage Vohv Applicable to all driver terminals - 0.3-Vee + 0.3 V 1 25°C 860 mW Ta>25°C 145 0c/w -40- + 85 °C - 55- + 150 °C. Parameter Power E>issipation Pd Attenuation Rate Rj-a Operating temperature Top Storage temperature Tstg Ta~ VHV~ 130V --- Notes: 1. The maximum voltage which can be applied to the GND terminal. 2. Thermal r~sistance of the package (between junction and atmosphere). The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C. Tj = P x Rj - a + Ta (P : Maximum power consumption of IC) 78 2 • Recommended Operating Conditions Parameter Symbol Conditions MIN MAX Unit Logic supply voltage Vee Applicable to logic power terminal 4.5 5.5 V Driver supply voltage VHV Applicable to logic power terminal 10 130 V High level input voltage Applicable to all Vee= 4.5V 3.6 VIH - input terminals Vee= 5.5V 4.4 - Applicable to all Vee=4.5V - 0.9 input terminals Vee = 5.5V - 1.1 - -40 mA 2 mA 5.5 MHz Low level input voltage VIL Driver high level output current IOHVH 1 driver output Other driver outputs Driver low level output current IOHVL Applicable to all driver output terminals : High : Low V V f0 See timing chart. - twclkl See timing chart. 70 Data setup time tds See timing chart. 20 Data hold time tdh See timing chart. 45 LS pulse width twl s See timing chart. 80 - CLK-LS delay time tdcl See timing chart. 45 - nS LS-CL delay time tdlcl See timing chart. 0 nS CL pulse width t wcl See timing chart. 2 - Top See timing chart. -40 Clock frequency Clock pulse width Operating temperature +85 nS nS nS nS lIS °C 79 • DC Characteristics Parameter Logic supply current Symbol ICC1 Conditions No load All inputs vee = S.SV All inputs : High : High 1 driver output Other driver outputs: Low ICC2 IHV1 Noload All driver outputs : Low current IHV2 vee = S.SV 1 driver output, High level input VIH Driver supply voltage Low level input VIL voltage Input leak current High level input IILEEK IIH current Input capacitance High level data CIN VODH Low level data VODL Low level driver - - 50 Unit pA - - 200 - - 50 llA 1.1 1.5 mA - Applicable to all input 3.15 - vee = S.SV 3.85 1.35 V V vee = 4.SV Applicable to all input - - Vee= S.SV terminals - - 1.65 V Input term inals except CL - - ±1 llA 20 50 100 Vee= S.SV 25 60 200 Ta =2S0C - 15 vee= 4.SV 3.5 - vee=s.sv 4.5 - - 0.9 Ta = 25°C Vee=4.SV 10= -O.1mA 10= -O.1mA terminal Applicable to Vee=4.SV vee= s.sv a: terminal 1.1 V llA pF V V VOHVH 10Hv= -40mA 106 - - V VOHVL IOHV=2mA - - 4 V output voltae output voltae MAX terminals output voltage High level driver : High TYP vee = 4.SV output voltage 80 : Low MIN o AC Characteristics v'rr= 5V Parameter Symbol CLK-DOUT delay time tpd V f.lv= a= MIN TYP MAX Unit Note See timing chart and test chart. - 100 150 nS 4 Conditios Delay time : L~H tdlh See timing chart and test chart. - 0.3 1 }ls 5,6 Transit time: L~H ttlh See timing chart and test chart. - 2 5 }lS 5 Delay time : H~L tdhl See timing chart and test chart. - 0.3 1 }ls 5,6 Transit time: H~L tthl See Timing chart and test chart. - 3 6 }ls 5 Note 4: Note 5: Note 6: o Applicable to data output terminal. Applicable to driver output termin~ tdlh and Tdhl are delay times from CL signal. Timing Chart l/f0 DIH DOUT LS CL HVO( 1, 2, 39, 40) HVO(OTHERS) 81 TEST CIRCUIT 20pF Vhv Vee HVOl 3.2KQ HV02 I 130V I I, I I I I I I I S.OV I HV040 50/51 ~ -J u VI -J co IU: I~ or Id 0 2 l!1 51/50 J Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 82 OKI semiconductor MSC1150/ MSC1171 / MSC1173 (Underdevelopment) 10-bit/20-bit/32-bit ANODE/GRID DRIVER GENERAL DESCRIPTION The MSC1150/MSC1171/MSC1173 are vacuum fluorescent display tube. ICs which consist of shift registers, latches and VF driver outputs. FEATURES o 60-V output Voltage Swing Capability • 2S-mA output Source Current Capability • Latches on all Driver outputs • POWER-aN-RESET circuit built in BLOCK DIAGRAM 01 ON vee BLANKING N bit LATCH LATCH ENABLE DATA IN D 11' IN' N bit SIR CLOCK D R SERIAL OUT 83 PIN CONFIGURATION MSC1150RS DUAL-IN-LiNE PACKAGE (TOP VIEW) Q8 Q7~ Q6~ r;-o-;a Q9 2 171= Ql0 3 4 5 6 LATCH ENA8LE(STROBE); 7 Q5~ 8 16= 15 14 13 .12; 111= CLOCK GND~ Voo ~ Q4L-~ SERIAL DATA OUT Vee DATAIN BLANKING Ql Q2 Q3 MSC1171RS DUAL-IN-LiNE PACKAGE (TOP VIEW) Vee SERIAL OUT Q20 Q19 Q18 Q17 Q16 Q1S Q14 Q13 Q12 Qll BLANKING GND ~ ~ 1 U ~2 28 27 26 25 24 23 ~3 4 ~ 5 ~6 ~7 F8 9 10 F 22F 21 20 19 F 18 F 171= 16 15 ... ~ 11 F 12 ~13 14 Voo DATA IN Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Ql0 LATCH ENABLE CLOCK MSC1173RS DUAL-IN-LiNE PACKAGE (TOP VIEW) 1 Vee SERIAL OUT 2 3 Q32 4 Q31 Q30 5 6 Q29 Q28 7 Q27 8 Q26 9 10 Q25 Q24 Fll Q23 F 12 Q22 F13 Q21 14 Q20 15 16 Q19 Q18 ~ 17 Q17 ~ 18 BLANKING ~ 19 20 GND 84 u 40 39 38 37 36 35 34 1= 33 32 1= 31 1= 30 29 28 27 26 25 24 23 22 21 Voo DATA IN Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Ql0 Qll Q12 Q13 Q14 Q15 Q16 LATCH ENABLE CLOCK .' ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Parameter Symbol Limits Unit Logic Supply Voltage Vdd - 0.3 -- 6.5 V Driver Supply Voltage Vee - 0.3 -- 65 V Input Voltage Vin - 0.3 -- Vdd + 0.3 V 10 30 mA 1300 (Ta = 25°C) mW 1200 (Ta = 25°C) mW 1000 (Ta = 25°C) mW Maximum Output Current Package Power Dissipation MSCl173RS MSCl171RS Pd MSCl150RS Operating Temperature Top -40 -- 85 °C Storage Temperature Tstg - 55 -- 150 °C 85 DC Characteristics • Ta = - 40°C to + 85°C, Vdd = 4.5V to 5.5V, Vee = 1OV to 60V unless otherwise specified. Parameter Symbol Conditions Min Max Unit Logic Supply Voltage Vdd 4.5 5.5 V . Driver Supply Voltage Vee 10 60 V Logie Supply Current Idd MSCl150 MSCl171 1 2 mA mA MSCl173 3 mA MSCl150 4 mA MSCl171 6 7 mA MSCl150 MSCl171 3 4 mA mA MSCl173 6 mA All Outputs Low 0.1 mA - V All Outputs High All Outputs Low MSC1173 Driver Supply Current lee mA All Outpts High (No Load) High Level Input Voltage Vih 0.7Vdd Low Level Input Voltage Vii - 0.8 V High Level Input Current lih Vih =Vdd - 1 pA Low Level Input Current Iii Vii = Gnd - -1 pA High Level Output Voltage (Q Outputs) Vohl lohl = - 25mA Low Level Output Voltage (Q Outputs) Voll V - 3 V 1011 = 200pA - 1.5 V - V 0.8 V Voh2 loh2 = - 20pA Low Level Output Voltage Vol2 101 =20pA 86 - 1011=lmA High Level Output Voltage (Serial Out) (Serial Out) Vee- 3.5 Vdd - 0.5 - o AC Characteristics Ta = - 40°C to + 85°C, Vdd = 4.5V to 5.5V, Vcc = 1OV to 60V unless othervise specified. Parameter Symbol Conditions Min Max Unit Clock Frequency f {CLOck} See Figure 1 - 1 MHz Pulse Duration, Clock High tw {CKH} See Figure 1 250 - nS Pulse Duration, Clock Low tw {CKL} See Figure 1 250 - nS tsu See Figure 1 100 - nS th See Figure 1 100 - nS td CL = 15pF, See Figure 1 - 600 nS Setup Time, Data Before Rising " Clock Edge Hold Time, Data After Rising . Clock Edge Delay Time, Clock to Serial Out Delay Time, Colck Rising Edge to tCKH-LEH See Figure 2 200 - nS tw {LEH} See Figure 2 250 - nS - 1.5 11S 1 11S Latch Enable High Pulse Duration, Latch Enable High Delay Time, High-to-Low Level Q tDHL from LATCH ENABLE from BLANKING Output See Figure 2&3, CL= SOPF Delay Time, Low-to-High Level Q tDLH Output form LATCH ENABLE - 1.5 from BLANKING - 1 11S 11S - 3 11S - 2 11S See Figure 2&3, CL= 50PF TRANSITION TIME, tTHL High-to-Low level Q Output TRANSITION TIME, Low-to-High level Q Output CL= 50PF See Figure 3 tTLH CL= 50PF See Figure 3 87 • Timing Chart CLOCK DATA IN ): 1 -------------------------5-0o/c~.~~------------- SERIAL OUT FIGURE 1. SERIAL DATA TIMING C~OCK ~ LAST PULSER 1 1 1 tCKH-LEH \------tW(LEH) 1 II.... 25°C 158 0c/w 2 Operating Temperature Top Thv:;a 50V -40- +85 °C - Storage Temperature Tstg - - 55- + 150 °C .:.. Item Input Voltage NOTES: 1) Maximum Supply Voltage for GND 2) Derate 6.9 mW/Ck above 25°C \ . 790 [Derate 6.3 mW/C above 25°C] Refer to the foil owi ng form u I a. Tj = P x Rj - a + Ta (P: Max current consumption) 95 \ • Recommended Operating Conditions Item Symbol Condition Min. Max. Unit Logic Supply Voltage Vee Applicable to logic supply voltage terminal 4.5 5.5 V Driver Supply Voltage Vhv Applicable to driver supply voltage terminal 10 65 V High Level Input Voltage Vih Applicable to all input terminals Vee=4.5V 3.6 Vee= 5.5V 4.4 V Vii Applicable to all output terminals Vee=4.5V - 0.9 V Vee =5.5V - 1.1 V 1 Output is High at a time - -40 mA All driver output are High at a time - -2 mA Applicable to all driver output terminal - 2 mA Low Level Input Voltage Driver High level Output Current lohvh 1 Driver High level Output Current lohvh 2 Driver low level Output Current lohvl ClK Frequency fcp See timing chart - 4 MHz twcJk See timing chart 75 - ns Data in Setup Time tds See timing chart 50 - ns Data in Hold Time tdh See timing chart SO - ns twls See timing chart 80 - ns ClK - LS Del ay Time tdcJ See timing chart 50 - ns LS - ClK Delay Time tdlc See timing chart 0 - ns LS - CHG Delay Time tdlcg See timing chart 0 - }Is LS- Cl Delay Time tdld See timing chart 0 - }IS twehg See timing chart 2 - }Is twd See timing chart 2 - }Is Top - -40 +85 DC ClK Pulse width LS Pulse Width CHG Pulse Width CL PUlse width Operating Temperature 96 o Vee = 5V ± 10%, Vhv = 1OV-65V, Ta = - 40°C to + 85°C DC Characteristics Item Logic Standby Current Symbol Icc 1 Condition Icc2 Driver Standby Current IhV1 No Load Vee = 5.5V IhV2 High Level Input Voltage Vih Low Level Input Voltage Vii Input Leakage Current lin Input Capacitance Cin High Level Data Output Voltage Low Level Data Output Voltage High Level Data Output Voltage Low Level Data Output Voltage Vodh 1 V odl1 V odh2 -Vodl2 10= - 20llA 10= 20llA 10= -O.lmA 10=O.lmA Typ. Max. Unit - 2.3 3.4 All Input: High, All Driver Output: High, Ta = 25°C - 0.5 ·1.0 All Driver Output: Low - - 1 }lA All Driver Output: High, Ta = 25°C - 1.3 2.0 mA Vee=4.5V 3.15 - Vee = 5.5V 3.85 Vee=4.5V - - V ee =5.5V All Input: No Load Vee = 5.5V Min. Low rnA - V V - 1.35 V - - 1.65 V Ta = 25°C - - ±1 }lA Ta = 25°C - 15 - pF Vee = 4.5V 4.2 - 5.2 Vee =4.SV 0.2 V Vee = S.SV - - - V Vee = 5.5V - 0.2 V Vee = 4.SV 3.5 - V Vee=5.SV 4.5 - V Vee = 4.SV - - 1.1 V 1.1 V Vee =S.5V V Driver High Level Output Voltage Vohvh lohv= -40mA Vhv-4 - - V Driver Low Level Output Voltage Vohvl lohv=2mA - - 3.0 V 97 • . AC Characteristics Vcc = 5V, Vhv = 65V, Ta = 25°C Item Symbol Remarks Min. Typ. Max. Unit ClK - Dout DelayTime tpd See timing chart and test circuit - 100 150 nS Delay Time· low - High tdlh See timing chart and test circuit 0.3 1 pS Transit Time Low - High ttlh See timing chart and test circuit - 2 5 pS Delay Time low - High tdhl See timing chart and test circuit - 0.3 1 pS Transit Time High - low tthl See timing chart and test circuit - 2 5 pS • Timing Chart 98 TEST CIRCUIT IlYO t--C)-+--,\M..--.., 1.5KO 65V 5.0 V WV--. flVO I--<>-"'.......... DIN :l u r.n ....I Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 99 OKI semiconductor· MSC1165 20-BIT ANODE/GRID DRIVER GENERAL DESCRIPTION The MSCl165 is a monolithic IC using the Bi-CMOS process,for hybridizing CMOS and bipolar transistors on one chip. The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by bipolar transistors. FEATURES • Logic supply voltage +5V • V(driver supply voltage +65V • VF driver output current (lohvhl) (lohvh2) (lohvl) • Clock frequency • Built-in 20-bit latch • Built-in 20-bit shift register • 28 Pin DIP Package 100 - 40 mA (1 driver output high) - 2 mA (All driver output_high) +2mA 4MHz BLOCK DIAGRAM HVO 1 HV02 0:: w l- I 19 w I- :c 05 In 0:: Iu.. In ..... iii U ~ ..... 2> N 2> N HV020 R-20 20 20 GND • 101 PIN CONFIGURATION (Top View) 28 lead Plastic DIP HV017 HV018 HV016 HV019 HV01S HV020 HV014 Vee HV013 Cl HV012 lS HV011 CHG HV010 ,HV09 102 DIN ClK HV08 GND HV07 Vhv HV06 HV01 HVOS HV02 HV04 HV03 PIN DESCRIPTION Pin No. Symbol 17 HVO 01 1 28 HVO HVO 26 HVO 20 18 Name Description Driver output 1. Each terminal is a driver output terminal, which corresponds to each bit of the shift register. Vhv Driver supply voltage 1. This is a power terminal of the driver circuit. 19 GND Driver GND LOgic portion GND 1. This is a grounding terminal of the driver circuit, and the logic portion. 24 CL Clear input 1. This is an input terminal containing a pull-up resistor. 2. The terminal is generally kept High. The driver output, High of Low, iS,driven by the output of the corresponding latch circuit. 3. When the terminal is Low, the driver outputs are fixed to "Low" regardless of the output of the latch circuit. 23 LS Latch strobe input 1. This is an input terminal without a pull-up or pull-down registor. 2. When the terminal is High, the latch circuit is slewed, and the output of the shift register is that of the latch circuit. 3. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low. 21 DIN Data input 1. This is an input terminal of the shift register to input the display data in synchronization wiht a clock pulse. (Positive logic) 25 Vee Logic supply voltage 1. This is a power terminal of the logic portion (other than the driver circuit). 20 CLK Clock input 1. This is an input terminal without a pull-up or pull-down resistor 2. The data of the shift register is shifted at the rising edge of a clock pulse. 22 CHG Test input 1. This is an input terminal containing a pull-down resistor. 2. The terminal is generally kept Low. When the CL terminal is High, the driver output, High or Low, is driven by theoutput of the corresponding latch circuit. _ 3. The terminal is Low and the CL terminal is High, the driver output can be fixed to High regardless of the output of the latch circuit. 17 18 I 103 SCHEMATIC DIAGRAM OF LOGIC PORTION INPUT TERMINAL CIRCUIT Vee INPUT GND SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT Vhv HVO GND 104 FUNCTION TABLE ClK R-1 R-2 R-3 R-4 H H R1 n R2n R3n R19 n l L R1n R2n R3 n R19 n DIN -' -' Cl CHG lS R.X HVO.X L X X X l H H X X H H L H H H H L H L l H l L X NC .................... R-20 l: Low level, H: High, Level, X: Don't Care, NC: No Change ELECTRICAL CHARACTERISTICS o Absolute Maximum Ratings Parameter Symbol Condition Limits Unit Note Logic portion ·supplYvoltage Vee Applicable to logic power terminal - 0.3-6.5 V 1 Driver supply voltage Vhv Applicable to driver power terminal Vee- 7O V 1.2 Input voltage Yin Applicable to all the input terminals 0.3-Vcc + 0.3 V 1 Driver drive frequency fdrv Duty less than 50% a-so kHz Power Dissipation Pd Ta:i 25°C 1020 mW Attenuation Rate Rj -a Ta>2SoC 122 °(Jw Operating temperature Top Vhv;;aSOV - 40- + 85 DC Storage temperature Tstg - - 55- + 150 °c Note 1: The maximum voltage which can be applied t the GND terminal. Note 2: Thermal resistance of the package (between junction and atmosphere) 2 The junction temperature (Tj) expressed by the equation indicated below should not exceed lS0°e. Tj = P x Rj - a + Ta (P: Maximum power consumption of Ie) 105 • Recommended Operating Conditions Parameter· Symbol Condition MIN MAX Unit Vee Applicable to logic power terminal 4.5 5.5 V Vhv Applicable to driver power terminal 10 65 V High level input voltage Applicable to all input terminals Vcc=4.SV 3.6 - V VIH Vcc = S.SV 4.4 - V low level input I voltage Applicable to all input terminals Vcc=4.5V - 0.9 V VIL Vcc=5.5V - 1.1 V Driver high level output current IOHVH 1 - -40 mA Driver high level output current IOHVH All driver output: High 2 - -2 mA Driver low level output current IOHVL 2 mA Clock frequency fel See Timing Chart - 4 MHz twclk See Timing Chart 75 - nS logic supply voltage Driver supply voltage Clock pulse width 1 driver output: High Other drive outputs: low Applicable to all driver output terminals Data setup time tds Se~ Timing Chart 50 Data hold time tdh See Timing Chart 50 LS pulse width twls See Timing Chart 80 ClK-LS delay time tdcl See Timing Chart lS-CLK delay time tdlc lS-CHG delay time - nS nS nS 50 - See Timing Chart 0 - nS tdlcg See Timing Chart 0 - lIS LS-CL delay time tdlcl See Timing Chart 0 CHG pulse width twchg See Timing Chart 2 - TI pulse width twcl See Timing Chart 2 - lIS Operating temperature range Top +85 °C 106 - -40 nS lIS lIS • DC Characteristics Vee = 5V ± 10%, Vhv = 10V-65V, Ra = - 40°C-SSoC Parameter Symbol Condition Iccl Logic supply current Icc2 Ihv2 Driver supply current Ihv2 High input voltage No load Vee= 5.5V No load Vee= 5.SV All inputs:High All driver outputs: High Ta = 25°C All driver outputs: Low All driver oututs: High Ta = 25°C Vih Low input voltage Vii Input leak current Input capacity D All inputs:Low VOH Ta = 25°C VOL Ta = 25°C High driver output voltage Vohvh lohv= -40mA Low driver output voltage Vohvl lohv=2mA MIN TYP MAX - 2.3 3.4 '- 0.5 1.0 - - 50 llA 1.3 2.0 rnA - - Vee=4.5V 3.15 Vee=4.5V 3.85 Vee=4.5V - Vee= 4.5V - Unit rnA V 1.35 V 1.65 - - ±1 11A 15 - pF Vhv-4 - - V - - 3.0 V AC Characteristics Parameter , Symbol Condition Vee = 5V, Vhv = 6SV, Ta = 25°C TYP MAX MIN Unit Delay time L - H tdlt) See Timing Chart and Test circuit. - 0.3 1 11S Transit time L- H ttlh See Timing Chart and Test circuit. - 2 5 llS Delay time H - L tdhl See Timing Chart and Test circuit. - 0.3 1 llS Transit time H - L Uhl See Timing Chart and Test circuit. - 2 5 llS 107 ..... o CO • Timing Chart CLOCK~~T3J4 r td~~1 ~ DIN S =9----------55------' - ______ 1 , 5> twd LS 5 5 CHG ~d I. ·1 twch CL HVO (1,2,19,20) 9 ~~ twcl .-- ~ twcl 55 . 5 -----'" HVO (OTHERS) 5 ttlh ttlh tthl tthl ,, ,, o Test Circuit 20 pF Vee Vhv HVO 01 1.SKQ HVO 02 6SV S.OV HVO 20 DIN ~ ...J u l!) V\ ...J :L U Id 0 z l!) Jl Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 109 OKI semiconductor MSC11.62 40-81T ANODE/GRID DRIVER GENERAL DESCRIPTION The MSC1162 is a monolithic IC using the Bi-CMOS process for hybridizing CMOS and bipolar transistors on the same chip. The logic portion such as the input stage, shift register and latch is formed by CMOS and the output driver requiring a high withstand voltage is formed by bipoalr transistors. Since the pin asignment allows single side pattern formation on the printed circuit board, the display unit size can be reduced. The bidirectional shift register facilitates the pattern design when the deivces are arranged symmetrically with the display as the center axis. FEATURES Designed as a VFD grid driver for emitter-follower force output with 40-bit active pull down by built-in 40-bit bidirectional shift register and latch. • • • Logic Supply Voltage : Vcc Driver Supply Voltage: Vhv Driver Output Current: lohvh: +5V • Built-in 40-Bit latch +65V • Built-in 40-Bit bidirectional shift register -40mA • Clock frequency: 4 MHz lohvl : 2mA 110 • 60pinFLATPackage -BLOCK DIAGRAM ClK DIN HV02 t J: Vl -J <{ Z o [5 w 0::: e I I I en +-' iii 6 ' 25 DC 145 DC/W 2 Operating Temperature Top Thv;S 50V -40- +85 °C - Storage Temperature Tstg - - 55- + 150 DC - NOTES: 1) 2) 860 [Derate 6.9 mW/C above 2SDC] Maximum Supply Voltage for GND Derate 6.9 mW/Ck above 25°C Refer to the following formula" Tj = P x Rj - a + Ta (P: Max current consumption) 115 • Recommended Operating Conditions parameter Symbol Condition Min. Max. Unit Logic Supply Voltage Vee Applicable to logic supply voltage terminal 4.5 5.5 V Driver Supply Voltage Vhv Applicable to driver supply voltage terminal 10 65 V High Level Input Voltage Vih Applicable to all input terminals Vee = 4.5V 3.6 - Vee = 5.5V 4.4 - V Applicable to all output terminals Vee=4.5V - 0.9 V 1.1 V 1 Output is High at a time - -40 rnA Applicable to all driver output terminal - 2 rnA Low Level Input Voltage Vii Driver High level Output Current lohvh Driver Low level Output Current lohvl ClK Frequency . CLK Pulse width V ec =5.5V fcp See timing chart - 4 MHz twclk See timing chart 75 - ns See timing chart 50 - ns Data in Setup Time tds Data in Hold Time tdh See timing chart 50 - ns twls See timing chart 80 - ns CLK - LS Delay Time tdcl See timing chart 50 - ns LS - ClK Delay Time tdlc See timing chart 0 - ns . LS - CHG Delay Time tdlcg See timing chart 0 - lIS LS- Cl Delay Time tdld See timing chart 0 - lIS twchg See timing chart 2 - ' lIS twc; See timing chart 2 - lIS Top - -40 +85 ,oc LS Pulse Width CHG Pulse Width Cl PUlse width Operating Temperature 116 I o Vee = SV ± 10%, Vhv = 10V-6SV, Ta = - 40°C to + 85°C DC Characteristics Parameter Logie Standby Current Symbol Icc 1 IhV 1 Max. - 4.3 6.65 0.5 1.0 All Driver Output: Low - - 1 pA All Driver Output: High, Ta = 25°C - 2.45 3.8 rnA - V - V Low All Input: High,AII Driver Output: High, Ta = 25°C No Load Vee= S.SV IhV2 High Level Input Voltage Typ. All Input: No Load Vee= S.SV lee2 Driver Standby Current Min. Condition Vih Unit rnA Vee = 4.SV 3.15 - Vee= S.SV 3.85 - Vee=4.SV - - 1.35 V Vee = S.SV - - 1.65 V Low Level Input Voltage ViI Input Leakage Current lin Ta = 25°C - - ±1 pA Inp!Jt Capacitance Cin Ta = 25°C - 15 - pF V High Level Data Output Voltage Vodh 1 10= -20pA Low Level Data Output Voltage Vodl1 lo=20pA High Level Data Output Voltage Vodh 1 10= -0.1rnA Low Level Data Output Voltage Vodl2 10=0.1mA Driver High Level Output Voltage Vohvh Driver Low Level Output Voltage Vohvl Vee=4.SV 4.2 - Vee= 5.5V 5.2 - - Vee=4.5V - - 0.2 V - 0.2 V Vee=S.SV - - lohv= -40rnA Vhv-4 - - lohv=2rnA - - 3.0 Vee=4.SV 3.5 Vee= S.SV 4.5 Vee= 4.SV - Vee=S.SV - V V - V 1.1 V 1.1 V '-" V V 117 • AC Characteristics Vee = 5V, Vhv= 65V, Ta = 25°e " Item • Symbol Remarks Min. Typ. Max. Unit elK - Dout DeiayTime tpd See timing chart and test circuit - 100 150 nS Delay Time low - High 'tcIlh See timing chart and test circuit - 0.3 1 pS Transit Time low - High ttlh See timing chart and test circuit 2 5 pS Delay Time low - High 'tcIhl See timing chart and test circuit - 0.3· 1 pS Transit Time High - low tthl See timing chart and test circuit - 2 5 }is Timing Chart 118 TEST CIRCUIT Vee 65V Vhv HV011--o-......~IIr-......., I.5.KO 5.0V HV040r-~o-~~v-......~ DOUT 30 pF Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 119 OKI semiconductor MSC1172 40-BIT ANODE / GRID DRIVER GENERAL DESCRIPTION The MSC1172 is a monolithic IC using Bi-CMOS process for hybridizing CMOS and bipolar transistors on one chip. The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by bipolar transistors. Since the pin assigment allows single side pattern formation on the printed circuit board, the display unit size can be reduced. The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis. FEATURES • Logic supply voltage (Ved +5V • Driver supply voltage (Vhv) +70V • Driver output current (lohvh2) - 40 rnA (1 driver output.high) - 2 rnA (All driver output_high) (lohvl) +2mA (lohvh,) 4MHz • Clock frequency • Built-in 40-Bit latch • Built-in 40-Bit bidirectional shift register • 60 Pin FLAT Package 120 BLOCK DIAGRAM R-1 HV02 0:: w R-2 2 2 t- Il' lE w 0:: t- ~ :::c :::c ut:) ,II' ...J <{ Z a i= uw ..... iii 0 0:: ' 25°C 145 0c/w VHV~ -40- +85 °C - 55- + 150 °c Ta~ 25°C 70V - 2 - Note 1: Maximum Supply Voltage for GND. Note 2: Delete 6.9 mwrC above 25°C. Refer to the following formul~. Tj = P x Rj - a + Ta (P! Maximum power consumption) 127 • 'Recommended Operating Conditions Symbol Condition MIN MAX Unit Logic supply voltage Vee Applicable to logic power terminal 4.5 5.5 V Driver supply voltage VHV Applicable to driver power terminal 10 70 V High level input voltage VIH Applicable to all input terminals vee = 4.SV 3.6 4.4 - VIL Applicable to all input terminals vee = 4.SV - 0.9 -40 Applicable to all driver output terminals - 2 mA f" See timing chart - 4 MHz twclk See timing chart 75 ns Data setup time tds See timing chart 50 - Data hold time tdh See timing chart 50 - ns LS pulse width twls See timing chart 80 - ns CLK-LS delay time tdcl See timing chart SO ns LS-CLK delay time tdle See timing chart 0 LS-CHG delay time tdlcg See timing chart 0 - LS-CL delay time tdlcl See timing chart 0 2 2 Parameter Low level input voltage Driver high level output current Driver low level output current Clock frequency Clock pulse width 128 vee = S.SV 1 output High VOHVH1 Applicable to all VOHVH2 driver output terminals All outpts High VOHVL twehg See timing chart CL pulse width tw£!. See timing chart Operating temperature top CHG pulse width Vee= S.SV ,-40 1.1 -2 V V mA ns ns lIS - lIs +85 °C lIS lIs • DC Characteristics Vcc=5V±10%, Parameter logic supply current Driver supply current Sy'mbol VHv=10-70V, Conditions Ta= -40°C-+85°C MIN ICCl t - - - - i No load leC2 Vee = 5.5V All inputs: Low Inputs: Hlgn All driver outputs: High Ta =2Soe 0.5 1.0 IHVl t----iNo load IHV2 Vec = 5.5V All driver outputs: Low - 1.0 llA 2.31 4.22 mA Vee=4.5V High level input voltage Vee=4.5V Low level input voltage 3.98 7.08 All All driver outputs: High Ta =2Soe All input terminals Vee= 5.5V 3.85 All input terminals IIHl t----iVIN = Vec IIH2 IlL 1 low level input current t----iVIN = GND IIL2 Input capacitance - el, RiL" terminals All input terminals - V - 1.35 V - 1.65 V Input terminals except the eHG terminal CHG terminal lS, DIN, ClK, CHG terminals llA V 3.15 Vee= 5.5V High level input current TYP MAX Unit 1.0 llA 10 80 -80 -10 LO . 15 llA pF High level data output voltage VODH VCC=4.5V 3.5 10 = - 0.1 mA I------'----+---t---+---i V Vee=5.5V 4.5 low level data output voltage VODL 10 = O.lmA High level driver output voltage low level driver output voltage Vee=4.5V 0.9 Vee = 5.5V 1.1 VOHVH 10HV = - 40mA VOHVL 10HV = 2mA V V - 3.0 V 129 • AC Characteristics Parameter Symbol Conditions MIN I TYP MAX Unit Note CLK-DqUT delay time tpd See timing chart and test circuit. - 100 150 ns 4 Delay time: L-H tdlh See timing chart and test circuit. - 0.3 1.0 lls 5.6 Transit ti me: L-H ttlh See timing chart and test circuit. - 2.0 5.0 lls 5 Delay time: H-L tdhl See timing chart and test circuit. - 0.3 1.0 lls 5.6 Transit time: H-L tthl See timing chart and test circuit. - 2.0 5.0 lls 5 Note 4: Applicable to data output terminal. Note 5: Applicable to driver output terminal. Note 6: Tdlh and Tdhlare delay times from the CL signal. 130 o Timing Chart 1If" CLOCK DIN ----'1\.-tWcCJI' .tr--------- I. DOUT LS »)~ 'I 7) 'If: ---~). .CHG a HVO (1,2,39,40) HVO (OTHERS) .... w 7) 7) • 14 .u'~9 . " . I trllh 1,,.--------.. c: ~---------~ II ttlh ~ twCl :I Il~}; It~~~~~~~~ \ ttlh I tt hi .II~ tdlh 90% 10% 0% 10% --------, .r-------- tt hi II tt Ih \ \ TEST CIRCUIT Vee 70V Vhv S.OV Dour 30pF Information furnished by OKI is believed to be accurate and reliable .. However, no responsibility is assumed by OKI for its use; nor for any· infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights qf OKI. 132 OKI semiconductor MSC1149-XX DOT DRIVER GENERAL DESCRIPTION The MSC1149-XX is a vacuum fluorescent display tube driver Ie, which consists of a 34-bit shift register, a 33-bit latch circuit (the 33 bits of the latch circuit correspond to bit 1 to bit 33 of the shift register), and a matrix circuit for latch output and VF driver output. FEATURES • Power supply voltage: BV to 18V • Input: TTL level • One-to-one correspondence established between latch output and V~ driver output by matrix cord • POWER ON RESET circuit built in • Latch operation and shift register RESET performed sequentially by LOAD ENABLE signal Self load mode generated by connection of LOAD ENABLE terminal and DATA OUT terminal • Number of bits increased by cascade connection • VF tube lighting test simplified by all VF outputs on H level via TEST terminal. • 33-bit VF output: - 2 rnA for 8 bits, - 0.8 rnA for 25 bits Terminal connections 133 PIN CONFDIGURATION MSCl149-XXGS-VK (Top View) 44 Lead Plastic Flat Package . N 0 0 0 ~ n C 5 ~ -i n - ;00; Z 0 c :;l c < 0 ....... -i 0 OUTPUT') .. 3'1 30 29 7 28 (NC) (NC) OUTPUT8 9 10 11 12 25 0 24 12 0 ~ <;; .: v; S C;; :::j z!) 23 . ex; ;;; ~ ~ MSCl149-XXRS (Top View) 40 Lead Plastic DIP VDD Bi:ANi< DATA IN GND CLOCK LOAD ENA8LE OUTPUT 1 DATA OUT OUTPUT 2 OUTPUT 33 OUTPUT 3 OUTPUT 32 OUTPUT 4 OUTPUT 31 OUTPUT 5 OUTPUT 30 OUTPUT 6 OUTPUT 29 OUTPUT 7 OUTPUT 28 OUTPUT 8 OUTPUT 27 OUTPUT 9 OUTPUT 26 OUTPUT 10 OUTPUT 25 OUTPUT 11 OUTPUT 24 OUTPUT 12 OUTPUT 23 OUTPUT 13 OUTPUT 22 OUT~UT 14 OUTPUT 21 OUTPUT 15 OUTPUT 20 OUTPUT 16 OUTPUT 17 134 OUTPUT 19 21 OUTPUT 18 PIN DESCRIPTION (1) DATA IN This is a serial data input terminal of the.34-stage shift register. (2) CLOCK This is a clock input terminal of the shift register to shift an input signal at its leading edge (Low to High). (3) LOAD ENABLE This is an input terminal to transfer the data of the shift register to the data latch circuit to hold it. After the data is held, the terminal initializes the data of the shift register. These functions are executed at the leading edge of an input signal. (4) BLANK This is an input terminal to turn all the OUTPUT terminals OFF (Low), which contains a pull-up resistor .. (5) OUTPUT1 to OUTPUT33 These are output terminals for the VF tube driver. Each terminal outputs data which is transferred from the corresponding bit of the shift register and held in the data latch circuit. (6) DATA OUT This is a data output terminal of the shift register to output data on the last stage of the 34-stage shift register. (7) TEST This is a terminal to turn all the OUTPUT terminals ON (High), which contains a pull-up resistor. The terminal is used for the VF tube lighting test. (8) Voo This is a terminal to supply positive potential. (9) GND This is a grounding terminal. 135 BLOCK DIAGRAM VDD VF DRIVER OUTPUT DRIVER 33 x 33 MATRIX L._._._._ LOAD ENABLE DATA IN 33+ 1bit SIR CLOCK I l._. _._. _ ._. _. _._ ._. _. _ ._._. _. _._ ._. _. _. _._. _. _. _. _. _._._ ._. _._._ ._. GND ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Parameter I) Condition Limits Unit - 0.3-2.0 V V,N =25°C Ta =25°C - 0.3-Voo + 0.3 V Tstg - - 65-150 °C Power supply voltage Voo Input voltage Storage temperature range Ta Operating Conditions Parameter 136 Symbol Symbol Range Unit Power supply voltage Voo 8-18 V Operating temperature range Top -40- +85 °C • DC Characteristics V oo =8-18V Parameter Symbol High input voltage VIH Low input voltage VIL Ta= -40-+85°C Condition MIN TYP MAX Unit - 3.8 - 6 V -0.3 - 0.8 V Hi,gh output voltage VOHl Voo = 9.5V, IOHl = - 2mA OUTP.UT14-21 Voo -0.8 - - V High output voltage V OH2 Voo =9.5V, IOH2 = - 0.8mA OUTPUTl-13,22-33 Voo -0.8 - - V VOLl Voo = 9.5V OUTPUTl-33 IOL = 5OO11A Low output voltage - - 2 V IOL= 2OO11A - - 1 V IOL= 211A - - 0.3 V IOH3 = - 2OO11A 4 - 6 V No load 4.5 - 6 V IOL = 2OO11A - - 0.8 pA -'/ -'/ High output voltage VOH3 Voo=9.5V DATA OUT -'/ Voo=9.5V DATA OUT Low output voltage VOL 2 High input current IIHl CLOCK, DATA IN LOAD VIH = 5.5V -5 - 5 llA High input current IIH2 BLANK Ta = 25°C -20 - 5 llA Low input current IILl CLOCK, DATA IN LOAD VIL= OV -5 - 5 llA Low input current IIL2 BLANK Ta = 25°C VIL=OV -12S - -'10 }lA High input current IIH3 TEST Ta = 25°C VIH = 5.5V -100 - 5 llA Low input current IIL3 TEST Ta= 25°C VIL=OV -400 - -20 llA Operating current 100 No load 15 rnA VIH = 5.5V - 10 137 • AC Characteristics Voo=8-18V Parameter Clock frequency Clock pulse width Data set up Data hold time Load pulse width Symbol Condition MIN fc - - Pwc HIGH pulse Ta= -40- + 85°C MAX Unit - 250 kHz 1.3 - '- }lS TYP" ts - 1 - tH - 200 - - PWL - 1.3 - - }lS tOOB CL = 100PF BLANK - - 7 }lS tooL CL = 100PF LOAD - - 8 }lS - 5 }lS Output delay time CL= 100PF 20%-80% ofVoo }lS nS Slew rate tR LOAD ENABLE-7CLOCK setup time tsc .- 2 .- - }lS CLOCK-7LOAD ENABLE setup time tSL - 0 - - nS • Timing ClJart CLOCK DATA IN LOAD ENABLE BLANK tOOL""*-~ OUTPUT 138 -+J.--I-of-tOOB FUNCTIONAL DESCRIPTION • Shift Register Output Designation First data bit read-in is stored in shift register #1, the last data bit read-in is stored in shift register #33. When the shift registers are full, a high voltage level applied to the load enable input will transfer the data from the shift register to the data latch, and then to the output through the 33 x 33 matrix. This matrix determines shift register output designation. the device is mask programmable for the 33 x 33 matrix, thus providing the capability of changing the shift register output designation. The device has 34 shift registers and 33 data latches as shown in the functional block diagram. ' • Self-Load Mode In this mode data out (pin 4) is connected to load enable (pin 7), and the data word is constructed with 34 bits (including the one self-load bit set to logic 1). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers through the 33 x 33 matrix. Before the next clock pulse, the registers are zeroed. FROM MICROPROCESSOR ¢ DATA 2 CLOCK 3 BLANK ----140 LOAD ENABLE 38 DATA OUT 37 39 139 • Non-Self-Load Mode In this mode, the data out and the load enable pins are not connected, and the load enable. input is controlled by an external source. There are two types of operation in this mode. 1. The data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the load enable pin before the rise of the clock pulse following the 34th clock pulse. 2. The data word consists of 33 bits without the self-load bit. To transfer the data, a high voltage level is applied to the load enable pin before the rise of the 34th clock pulse. FROM MICROPROCESSOR c) DATA CLOCK BLANK LOAD ·ENABLE 2 3 40 38 37 39 140 Data load timing example 1. LOAD ENABLE singal externally supplied 1) Bit 1 to Bit 33 used CLOCK DATA IN n--------l . L~:~BLE OUTPUT / n-------l SIR RESET (Internal) - - - - - - - - - - - - - - - - - - - - - - ' Notes: 1. The data of DATAO is negligible. 2. When the LOAD ENABLE signal is held in the High level state as shown by the dotted line, the shift register is held in the RESET state as shown by the dotted line. 2) Bit n to Bit 33 used (1 R .¢D~~ T~ ~ . . _ .LeI> . T eI> LatfSD - ' Q ' ~ MOS L~.L L 0 --B.E. r\T L 'NMOS .LeI> T ~VDD - eI> 0 LV L .L ,L 165 PIN CONFIGURATION MSM 5267B-15 PIN DESCRIPTION PIN# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 166 Pin Name Vdd Data Clock Output 1 Output 2 Out put3 Output 4 Output 5 Output 6 Output 7 Output 8 Output 9 Output 10 Output 11 Comments Input Positive supply voltage Terminal Input Data Acquisition Terminal Input Clock Terminal Output Shift Register 32 Output Shift Register 21 Output Shift Register 22 Output Shift Register 23 Output Shift Register 30 Output Shift Register 13 Output Shift Register 14 Output Shift Register 15 Output Shift Register 1 Output Shift Register 33 Output Shift Register 5 PIN DESCRIPTION PIN# Pin Name 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Output 12 Output 13 Out put 14 Output 15 Output 16 Output 17 Output 18 Output 19 Output 20 Output 21 Output 22 Output 23 Output 24 Out put 25 Output 26 Output27 Output 28 Output 29 Output 30 Output 31 Output 32 Output 33 Data Out Load Enable 39 40 Vss Blank Comments Output Shift Register 6 Output Shift Register 7 Output Shift Register 28 Output Shift Register 27 Output Shift Register 31 Output Shift Register 18 Output Shift Register 2 Output Shift Register 10 Output Shift Register 26 Output Shift Register 29 Output Shift Register 3 Output Shift Register 8 Output Shift Register 9 Output Shift Register 4 Output Shift Register 11 Output Shift Register 16 Output Shift Register 17 Output Shift Register 12 Output Shift Register 19 Output Shift Register 24 Output Shift Register 25 Output Shift Register 20 Output Data Shift Register Input for Loading Word into Data Latch from Data Shift Register Ground Potential Terminal Input for Turning Output Drivers Off ELECTRICAL CHARACTERISTICS' II Absolute Maximum Ratings Ta Parameter = 25°(, Unless otherwise specified Symbol Condition Min Max Unit Supply Vo.ltage Voo - -0.3 20 V Input Voltage VI -0.3 VDD + 0.3 V Operating Temp Ta -40 85 °C Storage Temp Tst - -65 150 °C 167 • AC Characteristics Ta = - 40°C to + 85°C, Voo =8V to 18V Unless otherwise specified Characteristics Condition MIN Either positive or negative 2.5 Symbol Clock Frequency Fe Clock Pulse Width Pwc = = = Slew Rate Outputs; (1-33) tR Data Setup Time ts 1 Data Hold Time tH 200 CL 1OOpFt 20% t080% or 80%t020% of Voo V DO 8V or V DO 18V OUTput Delayfrom Blank tOOB OUTput Delay from Load Power on Reset Slew Rate tOOL PRSR Load Pulse Width PWL CL CL MAX Units 160 KHz 5· ps ps = =100pFVoo =8V =1OOpFVDD =8V 0.001 ps ns 7 ps 8 ps 10 V Ips 1.6 ps o Timing Chart ... 1(t------fc----~)'~1 ~pwc CLOCK 3.SV - DATA IN . ~t 3.SV O.8V - . LOAD ENABLE . 3~SV - O.8V - BLANK 3.SV - OUTPUT 3.SV O.8V - 168 ~ ~th h O.8V- T " - _ _ _ _ _ _-J ts . . . ------------------- o DC Characteristics Ta = - 40 to 85°C Unless otherwise specified Characteristic High Level Input Voltage Low Level Input Voltage High Input Current (PIN 2, 3, 38) Low Input Current (PIN 2,3,38) High Input Current (PIN 40) Low Input Current (PIN 40) SYM Conditions MIN MAX Unit V\H Voo=8to 18V 3.5 Voo+0.3 V V\L Voo= 8to 18V -0.3 0.8 V I\Hl Voo=8to 18V. V\=Voo· 1 pA I\L 1 Voo=8to 18V, V\=Vss -1 pA I\H2 Voo=8to 18V, V\=3.SV -5 - 125 pA I\L2 Voo=8to 18V, V\=VSS -5 -125 pA 10 mA 7 mA Voo = 8to 16V, All Outputs open Ta = - 40°C, 25°C Supply Current 100 Voo=8to 16V,AII Ouputs open Ta = 85°C Low Current Output Drivers (ON) (PIN4 - 16,25 - 36) Low Current Output Drivers .(ON) (PIN 17 - 24) High Current OutPut Drivers (ON)(PIN 17 - 24) Output Drivers (OFF) (PIN 4-36) High Voltage Data out (PIN37) Low Voltage Dataout (PIN37) Vo Hl Vo H2 Voo = 9.5V, IOH = -1.5mA Voo=9.SV,loH = -6mA Ta= 25°C - 40°C VDD-0.3 Ta = 8SoC VDD-O.S VDD -0.3 Ta= 25°C - 40°C Ta = 85°C VOH2 Voo = 9.sV, IOH = -30mA Ta = 2SoC - 40°C Ta = 85°C VOL V V VDD-0.5 VDD-2.0 V VDD-2.5 Vss + 0.2 Nss+s Voo = 9.sV, IOL = lpAI SOOpA VOHO Voo = 9.SV, IOHO = - SOOpA VOLD IOLD= lpA , VDD-S V V Vss + 0.4 V FUNCTIONAL DESCRIPTION • Data Input The data pattern (33 bits) supplied to the device through this inpu.t controls the output driver state (On or Off). 1. A high level turns the output driver on. 2. A low level turns the output driver off. 169 • Clock Input A Positive transition of the clock loads and shifts the data. This input also has a Schmitt trigger which provides 0.3 volts of hysteresis. • Blanking Input A low-level voltage at this pin turns the output drivers off; an internal pull up is provided on this pin. • Load Enable A high-level at this input tra~sfers the data from the shift register to the data latch, and sets ~he shift register to zero. First data bit read-in is stored in shift register #1, the last data bit read-in is stored in shift register #33. When the shift registers are full, a high Voltage level applied to the load enable input will transfer the data from the shift register to the data latch, and then to the output through the 33 x 33matrix. This matrix determines shift register out put designation. ~he device is mask programmable for the 33 x 33 matrix, thus providing the capability of changing the shift register output designation. The device has 34 shift registers and 33 data latches as shown in the functional block diagram. There are two modes of operation: • Self-Load Mode In this mode Data Out (pin 37) is connected to Load Enable (pin 38), and the data word is constructed with 33 bits (including the oneself-load bit set to logic 1 ). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers through the 33 x 33matrix. Before the next clock pulse, the registers are zeroed. FROM MICROPROCESSOR cJ ~~~~!o LOAD ENABLE DATA OUT Vdd 38 37 39 • Non-Self-Load Mode In this mode~ the Data Out and the Load Enable pins are not connected, and the Load Enable input is controlled by an external source. There are two types of operation in this mode. 1. the data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the Load Enable pin before the rise of the clock pulse following the 34th clock pulse. 2. The data word consists of 33bits without the self-load bit. To transfer the data, an high . voltage level is applied to the Load Enable pin before ~he rise of the 34th clock pulse. 170 FROM MICROPROCESSOR Vdd 2 3 40 38 37 39 DATA OUT When the display driver is used in a cascade configuration, a filler bit must be inserted between each group of 33 data bits. The filler bit must be logic 1 when used with the selfloading mode and a logic 0 when used in the non-self-loading mode. V?d DATA 2 1 37 CLOCK 3 BLANK 40 LOAD r--- 38 39 -L. - DATA OUT ~ V1 d DATA 2 1 37 CLOCK 3 BLANK 40 ~ 38 39 DATA OUT ~ -L. - When the cascaded devices are used in self-load mode. the Data Out pin of the last device must be connected to the load enable pin of all devices as shown in the above figure. When two display drivers are cascaded, sufficient on-chip time delays allow the system to operate within the speCification of the device and work in a system. Up to 10 driver inputs may be connected to the Data Out pin (pin 37) of the last device. Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise underarfy patent rights of OKI. 171 OKI semiconductor MSM5328 DOT DRIVER GENERAL DESCRIPTION The MSM5328RS is a CMOS multi-digit display driver and consists of a 34-bit shift register, a 33-bit latch, and a 33-bit VF tube driver. FEATURES o Complete static operation to ensure stability against noise • o 3 or 4-signalline connection with microcomputers. Direct,drive of VF tubes (8 outputs of high-current drive, 25 outputs of low-current drive) • Capability of self-load mode. • Low power consumption. • Single power supply and operating voltage range of 8V to 18V BLOCK DIAGRAM o o Q~A II> OUT R . O~JT1 ~ ~T2 ----,-- _ _ _ _;..-_. O~UT3 : ~ OUTPUT32 ----t---- OUTPUT33 BLANK tvoo I ~..LL ~MOS ~ o LV ,- ~ 172 0 'L 'NMOS ..LL L PIN ·CONFIGURATION 1 2 3 4 5 6· 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MSM· 5328 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 PIN DESCRIPTION PIN# Pin Name 1 2 3 4 5 6 7 8 Vdd 9 10 11 12 13 14 Data Clock Output 1 Output 2 Out put3 Output 4 Output 5 Output 6 Output 7 Output 8 Output 9 Output 10 Output 11 Comments Input Positive supply voltage Terminal Input Data Acquisition Terminal Input Clock Terminal Output Shift Register 32 Output Shift Register 21 Output Shift Register 22 Output Shift Register 23 Output Shift Register 30 Output Shift Register 13 Output Shift Register 14 Output Shift Register 15 Output Shift Register 1 Output Shift Register 33 Output Shift Register 5 173 PIN DESCRIPTION PIN# Pin Name 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Output 12 Output 13 Out put 14 Output 15 Output 16 Output 17 Output 18 Output 19 Output 20 Output 21 Output 22 Output 23 Output 24 Out put 25 Output 26 Output 27 Output 28 Output 29 Output 30 Output31 Output 32 Output 33 Data Out Load Enable 39' 40 Vss Blank Comments Output Shift Register 6 Output Shift Register 7 Output Shift Register 28 Output Shift Register 27 Output Shift Register 31 Output Shift Register 18 Output Shift Register 2 Output Shift Register 10 Output Shift Register 26 Output Shift Register 29 Output Shift Register 3 Output Shift Register 8 Output Shift Register 9 Output Shift Register 4 Output Shift Register 11 Output Shift Register 16 Output Shift Register 17 Output Shift Register 12 Output Shift Register 19 Output Shift Register 24 Output Shift Register 25 Output Shift Register,20 Output Data Shift Register Input for Loading Word into Data Latch from Data Shift Register Ground Potential Terminal Input for Turning Output Drivers Off ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Ta Parameter Symbol Condition Min Max Unit Supply Voltage Voo -0.3 20 V Ir:put Voltage VI - , Operating Temp Storage Temp 174 = 25°(, Unless otherwise specified Ta Tst -0.3 VDD+0.3 ' V -40 85 °C - 65 150 °C • AC Characteristics Ta = - 40°C to + 85°C, VDD =8V to 18V Unless otherwise specified Characteristics Clock Frequency Condition MIN Either positive or negative 2.5 Symbol Fe Clock Pulse Width Pwc tR Slew Rate Outputs; ("·33) CL = 100pFt = 20%t080% or 80%t020% of Voo Voo = 8V or Voo 18V MAX Units 160 KHz 5 lIs lIs = Data Setup Time Data Hold Time 1 ts tH OUTput Delay from Blank tOOB OUTput Delay from Load Power on Reset Slew Rate tOOL PRSR Load Pulse Width PWL lIs 200 = = = ns 7 CL 1OOpFVoo 8V CL 100p FV oo=8V 0.001 1.6 8 10 lIs lIs V / lIs lIs • Timing Chart ..... E------fc------l~1 CLOCK BLANK 3.SV - OUTPUT 3.SV O.BV - 175 • DC Characteristics Ta = - 40 to 85°C Unless otherwise specified Characteristic High Level Input Voltage Low Level Input Voltage High Input'Current (PIN 2, 3, 38) Low Input Current (PIN 2,3,38) High Input Current (PIN 40) Low Input Current (PIN 40) Conditions SYM MIN MAX Unit' VIH Voo= 8to l8V 3.5 Voo+ 0.3 V VIL Voo=8to l8V -0.3 0.8 V IIHl Voo=8to 18V. VI=V OO 1 lIA IlL 1 Voo = 8 to l8V,VI = Vss - 1 lIA IIH2 Voo=8to l8V, VI=3.5V -5 -125 lIA IIL2 Voo= 8to18V, VI = VSS -5 -125 lIA 10 rnA 7 rnA Voo = 8 to l6V, All Outputs open Ta = - 40°C, 25°C Supply Current 100 Voo = 8 to 16V, All Ouputs open Ta = 85°C Low Current Output Drivers (ON) (P/N4 - 16,25 - 36) High Current OutPut Drivers (On) (PIN 17 - 24) Output Drivers (OFF) (PIN 4-36) High Voltage Data out (P/N37) Low Voltage Dataout (P/N37) VOHl Vo H2 VOL VOD = 9.sV, IOH = - 0.8mA VOD = 9.sV, IOH = - 3.SmA Ta = 25°C - 40°C Vo o - 0.3 Ta = 85°C Voo-.O.s Voo - 0.3 V Ta = 2SoC - 40°C V Ta = 8SoC Voo - 0.5 Vss + 0.2 Nss+S Voo = 9.sV, IOL = 1pA 1S00lIA VOHO Voo = 9.sV, IOHO = - sOOlIA VOLD IOLD = llIA ... V V Voo-S Vss + 0.4 V FUNCTIONAL DESCRIPTION • Data Input The data pattern (33 bits) supplied to the device through this input controls the output driver state (On or Off). 1. A high level turns the output driver on. 2. A low level turns the output driver off . • Clock Input A Positive transition of the clock loads and shifts the which prc;>vides 0.3 volts of hysteresis. 176 dat~. This input also has a Schmitt trigger o Blanking Input A low-level voltage at this pin turns the output drivers off; an internal pull up is provided on this pin. o Load Enable A high-level at this input transfers the data from the shift register to the data latch, and sets the shift register to zero. Fi rst data bit read-in is stored in shift register # 1, the last data bit read-i n is stored in shift register #33. When, the shih registers are full a high Voltage level applied to the load enable input will transfer the data from the shift register to the data latch. The device has 34 shift registers and 33 data latches as shown in the functional block diagram. There are two modes of operation: o Self-Load Mode In this mode Data Out (pin 37) is connected to Load Enable (pin 38), and the data word is constructed with 33 bits (including the one self-load bit set to logic 1 ). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers. Before the next clock pulse, the registers are zeroed. FROM MICROPROCESSOR Vdd cJ~~~~t 38 37 DATA OUT 39 o Non-Self-Load Mode In this mode, the Data Out and the Load Enable pins are not connected, and the Load Enable input is controlled by an external source. There are two types of operation in this mode. 1. the data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the Load Enable pin before the rise of the clock pulse following the 34th clock pulse. 2. The data word consists of 33bits without the self-load bit. To transfer the data, an high voltage level is applied to the Load Enable pin before the rise of the 34th clock pulse. 177 FROM MICROPROCESSOR Vdd rA,,~~T~; ~BLANK , LOAD 40 38 ENABLE 37 39 When the display driver is used in a cascade configuration, a filler bit must be inserted between each group of 33 data bits. The filler bit must be logic 1 when used with the selfloading mode and a logic 0 when used in the non-self-loading mode. ~yd DATA 2 1 37 CLOCK 3 BLANK 40 ~ 38 39 -l- - DATA OUT ~ V1 d DATA 2 1 37 CLOCK 3 BLANK 40 ~ 38 39 DATA OUT ~ -l- - When the cascaded devices are used in self-load mode. the Data Out pin of the last device must be connected to the load enable pin of all devices as shown in the above figure. When two display drivers are cascaded, sufficient on-chip time delays allow the system to operate within the specification of the device and work in a system. Up to 10 driver inputs may be connected to the Data Out pin (pin 37) of the last device. Information furnished by OKI is believed to be accurate and reliable'. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 178 OKI semiconductor MSC1178/ MSC1179 7-SEGMENT DRIVER GENERAL DESCRIPTION The MSC1178/79 is a BiCMOS structure static display driver to directly drive a vacuum fluorescent (VF) display tube .. The'driver has a structure of a 56-pin flat package, which consists of a 35 bits shift register, latch circuit, 7 segment decoder, VF high voltage driver, LED dot driver, dimming OSC circuit, and dimming control circuit. The driver i's suited to a driver for frequency or clock display of an automobile digital tuning' system. FEATURES • 56-pin flat package (small) • 2 supply voltages Interface, logic portion, LED driver: ..vF display driver:· V DD Vee = + 4.5 to + 5.5 V =+ 9 V to + 18 V • VF tube driven by positive voltage (VDD = + 18 V MAX) • VF tube directly connected: • Dimming oscillation circuit built in (capacitor and resistor externally connected) o Dif!1m!ng control circuit'built in, with duty (100%, 1/8, or 1/16) selectorinput terminal (L1GHTSW). Use the most significant bit (MSB) to select 1/8 or 1/16. L: 1/8, H: 1/16 • With PWM IN input terminal to allow the PWM to PWM generation circuit • 3-digit 7 segment output, 13-flag output (10 = - 1 mA TYP) • 9-LED dot display (10 =20 mA MAX) • Easy control by microprocessor and easy signal line connection (connected by three signal lines, DATA IN, CLOCK, and LOAD) • 7 display patterns selected by device {The MSC1178GS-K and the MSC1179GS-K differ in the 7 display patterns from each other.} MSC1178GS-K I-I I No pull down resistor required (CMOS push pull output) contin~ously control dimming, with external MSC1179GS-K -I 1 179 00 o OJ r o n ~ o l> G) DATA IN 0.- CLOCK r-I > ---.fL 0.- LOAD ,,- ~ I Shift Register (35 bits) ~ I ~MSB LSB~ 1 ~I Latch (35 bits) (Level latch by LOAD signal) - '" '7 SL :'0> - '" :'00 17Decoder Segment 1~ 7Segment Decoder - I p...J ~ OJ ~ 7Decoder Segment I I· # -I Output Gate ~ l~ Dim. Control 1-f=£ -.0 DATA OUT .~s~[ Tvss f-o ~o f-o ~ LlEGHTSW :PWMOUT PWMIN O·E PWM Vee - (+5V) Vss (OV) II (NPN Open LED Driver Drain) (9 pins) 1 VF Driver (Voo : 18V MAX) (34 pins) 1 1 ~ I 0.- f - . Voo (+9-18V) l> S. PIN CONFIGURATION (Top View) 56 Lead Plastic Flat Package 01 g1 f1 0 010 e1 d1 a1 c1 b1 09 g2 e2 f2 d2 a2 c2 b2 08 g3 e3 f3 d3 a3 c3 b3 07 02 06 I- ::> o o -l 0 -l .~ o Note: Pin 21 with a * mark is connected to Vss, and cannot be connected to another pin. Pin 21 cannot be used independently ~s Vss but can be used as Vss reinforcing line. 181 ELECTRICAL CHARACTERISTICS • Absolute maximum ratings Parameter Symbol Supply voltage Voo Supply voltage Vee Input voltage Maximum output current VI IOLD Conditions DATA IN, CLOCK, LOAD LIGHT SW, PWMIN., O·E, OSC Limits Unit -0.3- + 19 V -0.3- + 6.5 V - 0.3-Vee + 0.3 V 25 rnA LD1-LD9 Allowable package loss Po 300 mW Storage temperature Tstg - 55- + 150 °C o Recommended operating range . Parameter Symbol Conditions MIN TYP .MAX Unit Supply voltage Voo 9 12 18 V Supply voltage Vee 4.5 5 5.5' V Input voltage VIH DATA IN, CLOCK, LOAD LIGHT SW, PWM IN, O·E 0. 7Vce Vee V Input voltage VIL DATA IN, CLOCK, LOAD LIGHT SW, PWM IN, O·E 0 0. 2V ee V Output current IOLD LD1-LD9 20 rnA Operating temperature Top +8~ °C 182 10 -40 e DC characteristics (Unless otherwise specified, Parameter Symbol Vcc=sV, Voo= 12V, Condition Ta= -40to + 85°C) MIN TYP MAX Unit 9 12 18 V Vee 4.5 5 5.5 V VIH DATA IN, CLOCK, LOAD 0. 7V ee Vee V VIL LIGHT SW, PWM 'IN, O'E 0 0. 2V ee V Input leak IIl.l DATA IN, CLOCK, LOAD Vee= s.sV/ PWMIN, O'E, VI = Vee or OV ±1 pA High level input leak current IIH L1GHTSW VI = VCC = S.SV 1 llA Low level input current IIL2 -200 llA Supply voltage Voo Supply voltage High level input voltae Low level input voltage -20 -68 VOHl DATA OUT, PWM OUT, 10 = - 4011A 4.3 4.9 V High level output voltage VO'H2 a1-g3, D1-D13, 10 = -lmA 11.4 11.8 V Low level output voltage VOLl DATA OUT, PWM OUT, 10 = 40pA 0.1 0.4 V VOL2 a1-g3, D1-D13, 10 = 100pA 0.2 0.7 V Low level output voltage V0l3 LD1-LD9,10=20mA 0.2 1 V High level output leak current ITH LD1-LD9, Vo=Voo= 18V 10 llA PWM IN = O'E = Vee, 0.1 mA High level output voltage Low level output ~oltage 1001 VI = OV, VCC = S.OV I-I a 1-g3-)1: I character Dl to D13 all high level output, other input terminals at OV or Vcc, output at no load Voo line_ supply current 1002 O'E = OV, Other input terminals at OV or Vee, output at no load 0.1 mA lecl osC=OV Other input 0.1 mA LIGHT SW = Vee terminals at ICC2 Vee line supply current ICC3 R=51kQC .. O.04711F OVorV ee. output at no CR oscillaton. load LlGHTSW=OW 0.3 1 OSC '" OV. PWM IN = Vee O'E '" Vcc .LOl-9:0N(Low). Other input terminals at OVor Vee. output at no load 9 20 mA 183 • AC characteristics Conditions Symbol Parameter MIN TYP MAX Unit 1 MHz fCLK CLOCK Minimum clock pulse width twc - CLOCK 400 nS 400 nS Maximum clock frequency Minimum load pulse width tWL LOAD Clock input rise and breaking time tfe tre CLOCK DATA IN~ CLOCK setup time tsc 200 nS DATA IN hold time tHOLO 100 nS DATA OUT propagation delay time tpo CLOCK~ CLOCK~ 1 700 lIS nS DATA OUT hold time tOH 150 nS CLOCK~ tSL 500 nS LOAD setup time CR oscillation frequency C =0.04711F, R= 51kn fosc 1 2 '>~k.l-O.5Vcc O. 2V ee 4 • Timing Chart twc twc CLOCK "\ ~ E ) ( 21Z"" I\. tsc ~ ~ >< DATA IN -+- tHOLO '" :K O.7Vcc O.2Vcc ( ( tpo tOH ) '" oO.O.7V cc ~ ~ O. 2V cc DATA OUT -+- CLOCK tSL 184 ~ )B() tWL o.~vcc . 'LOAD I~ tIC ----:---. o. 2V ee ------ -+-1 . t; kHz MAJOR SECTIONS EQUIVALENT CIRCUIT Output Gate & LED Driver IOL PWM -E-- LDI S { LD9 Display Data Vo VOL =1VMAX =20mA Output Gate & VF Driver Vo o (+9-18V) PWM - Display Data IOL { Level conversion { Vo =(Voo - IOH = -1mAatV OD = 12V Vo =O.7V MAX O.6V) MIN 19 l = 0.1 rnA at Voo = 12V Dim control circuit VCd+5V) LlGHTSW PWMOUT ( 128Hz (TYP) duty OSC 2.048kHz 4bit Binary Counter (TYP) 185 DATA DESCRIPTION (Table a) No. Symbol Function Oimming control Output terminal 1 OIM(MSB) 2 013 3 012 ------ 4 011 011 5 010 010 6 09 09 7 08 8 07 07 06 Oescription "0" : 1/8duty, "1" 1116duty 013 012 Flag{VF) 08 9 06 10 OS OS 11 04 04 12 03 03 13 02 02 "0": OFF VF driver "1": ON 01 14 01 15 L09 Flag{LEO) L09 16 17 18 19 01-8 01-4' 01-2 01-1 7 segment d coder{ 1st digit) al-gl 20 21 22 23 02-8 02-4 02-2 02-1 7 segment decoder(2nd digit) a2-g2 24 25 26 27 03-8 03-4 03-2 03-1 7 segment decoder(3rd digit) a3-g3 28 L08 L08 29 L07 L07 30 L06 31 LOS 32 L04 L04 33 L03 L03 34 L02 L02 35 L01(LSB) LOl LEO driver 7 See Table b. Flag{LEO) L06 LOS VF driver LEO driver "0": OFF"1" :ON Note: "No." indicates the output number of the shift register. The first bit for data transfer is NO.1. 186 7 SEGMENT DECODER DISPLAY PATTERN (Table b) Input data Output Display pattern 8 4 2 1 a b c d e f 9 0 0 0 0 0 1 1 1 1 1 1 0 I I I I 1 0 0 0 1 0 1 1 0 0 0 0 I I 2 0 0 1 0 1 1 0 1 1 0 1 3 0 0 1 1 1 1 1 1 0 0 1 4 0 1 0 0 0 1 1 0 0 1 1 II -I 5 O· 1 0 1 1 0 1 1 0 1 1 I -I 6 0 1 1 0 1 0 1 1 1 1 1 I I-I' Remarks - _I -I -I -I - - 7' 0 1 1 1 1 1 1 0 0 1 0 II I 8 1 0 0 0 1 1 1 1 1 1 1 I I' I-I 9 1 0 0 1 1 1 1 1 0 1 1 U A 1 0 1 0 1 1 1 0 1 1 1 B 1 0 1 1 0 0 1 1 1 1 1 C 1 1 0 0 0 0 0 1 1 0 1 D 1 1 0 1 0 1 1 1 1 0 1 I-I E 1 1 1 0 1 0 0 1 1 1 1 I I F 1 1 1 1 0 0 0 0 0 0 0 MSC1179GS-K:" I I" - -I I I - I I I I-I -I - I - - Blank 187 FUNCTIONAL DESCRIPTION • DATA IN, CLOCK, LOAD: Data set input terminals (MSB) DATA IN CLOCK LOAD Display contents (LSB) "l" "0" ----~ ----------------Jr'"-- _ _ _ _ _ _ _ _ _ _ ------- _ _ _ _ _ _ _ _ _ _ _ _XOata set display Fig. a Data set timing chart example (PWM = 1, O·E = 1) \ DATA IN is a data input terminal, Which is read into the internal shift register at the leading edge of the clock input terminal CLOCK. LOAD is a load input terminal, which loads data of the shift register, data of 35 bits at a time, into the latch circuit. The timing chart above shows that, when a pulse is input to the LOAD terminal after the data of 35 bits is input, the display data is ch~nged to a new one. o DATA OUT: Data output terminal DATA OUT is a terminal for cascade connection, the output of ~hich is connected to the DATA IN terminal on the next stage. MSC1178GS-K IMSC1179GS-K DATA IN CLOCK ~---i DATA IN DATA CLOCK OUT· LOAD MSC1178GS-K IMSC1179GS-K 1--_--1 DATA IN CLOCK LOAD "--------' LOAD Fig. 'b Cascade connecton 188 • OSC: Oscillation terminal OSC is a capacitor (C) and resistor (R) connection terminal of the oscillation circuit for d~ming control. The oscillation frequency depends on the values of the external capacitor (C) and resistor (R). MSC 1178GS-K IMSC1179GS-K R t-----~OSC (Vss) Fig. c External.circuit The value for R should not be less than 30 kil. The oscillation frequency fose is expressed by the following equation: fose = _k_ C' R (k; 5) • When no oscillation circuit is used (i.e the PWM OUT terminal is not used), connect the OSC terminal to Vss. o LIGHT SW : Light switch input terminal LIGHT SW is an input terminal with a pull-up resistor, which controls the PWM OUT output waveform.(See Table c. ) o PWM OUT: PWM output terminal PWM OUT is a dimming PWM output terminal. When this terminal is connected to the PWM IN input terminal, the display duty ratio can be changed to 1/1, 1/8, or 1/16. Table c is a function table. (Table c) Display duty ratio LIGHT SW input MSB of data Open or "H" - 1/1 "L" 0 1/8 ilL" 1 1/16 II "H ilL" [ - Vee level ; Vss level don't care ; 1 The frequency of a PWM OUT output signal is foscl16. 189 • PWM IN: PWM input terminal PWM IN is C1dimming PWM input terminal. If the input is made High when the O·E is High, the display is turned ON. If the input is made Low, th~ display is turned OFF. Accondingly, when a signal at 100 to several 1OOs Hz (the duty ratio is variable) is input to the PWM IN terminal, the display brightness can be continuously controlled. When the PWM OUT output is connected to the PWM IN terminal, the display duty ratio, as mentioned above, can be changed to one of the three values. Vee level Vss level Display I~I )I t, )I I~I( ON (lIt, = 100 to several laOs Hz) OFF Fig. d PWM IN input waveform • O·E: Display output enable input terminal When the input is High, the display state is normal. When the input is Low, all displays are turned OFF. If the O·E is kept low until the data of the latch circuit is determined when power is turned ON, unnecessary displays can be eliminated. Two O·E and PWN IN input signals are ANDed in the Ie to a PWM signal. The display is ON (normal) when PWM =" 1" or OFF when PWM = "0". l> -a -a C n l> ~ +12V § ~ ~ ;:;- S' ~ ~ III ~~ ~ 3 ~03~~ "0 3 50 S':I: S o.C~O"" ID :l Vee - "0 ° ;;;. m an-g n 01-013 CPU 'g.~~a~ MSC 1178GS-K c:~~o:o. o ,,' c: ::::.: z o-f Vee ~a:ao:J ::!.' z I" o· ~f:;~~~ ~ ID -""0 :l o *1 0- ~o~"<; 0 .... . , _ 0 L09 VF display .... ° . . . '" :-~.~~~ '" ID ., ., c: 0" III ID ., 3 *4 ~'§:~~ Q. t:' 0" 48 OSC 44 O'E ID 0"0"<; 0. 47 ~. ::-~o :::I:r-O" "0 ::; ..... ID ::::,0.° 111 GNO £ ~ ~§ g' ~ f:; ~ ° .....Il! *31 c (MSC 1179GS-K) LD7 LlGHTSW PWM OUT LD) IN Vss OATAOUTI LED *216 II> ;; ~ g ~. ~s:~~ 3 ~ ~ !!: III III III :o'''<;~ ~ Note: ::l *4 -- 1.0 R=51Idl.C"O.047\lF(exam·ple) * 1 The voltage for the LED may be supplied from + 12 V (Voo). *2 When the DATA OUT terminal is connected to the DATA IN terminal on the next stage. the system is made expandable. (See Fig. b. ) *3 Ifthe dimming control switch is turned ON. the VF display output duty ratio is changed from 111 to 118 or 1116 (depending on the MSB of data). (See Tables a and c. ) OKI semiconductor MSC1190 7-SEGMENT DRIVER GENERAL DESCRIPTION The MSC1190GS is a Bi-CMOS structure static display driver to directly drive a vacuum fluor~scent (VF) display tube. The driver has a structure of a 56-pin flat packa~e, which consists of a 35-bit shift register, latch circuit, 7 segmemt decoder, VF' high voltage driver, LED dot driver, and dimming control circuit. The driver is suited to a driver for frequency or clock display of an automobile digital tuning system. FEATURES • 56-pin flat package • 2 supply voltages ( +' side) Interface, logic portion, LED driver: VF display driver: Vee = + 4.5 to + 5.5 V Voo = + 9 to + 18V • VF tube driven by positive voltage (Voo = + 18V MAX) • VF tube directly connected without a pull-down resistor (CMOS push pull output) • Dil"Dming oscillation circuit built in (capacitor and resistor externally connected) • Dimming control circuit built in, with duty (1/1, 1/8, or 1/16) selector input terminal (LiGHTSW). Use the most significant bit (MSB) to select 1/8 or 1/16. • With PWM IN inputterminal to allow the PWM to continuously control dimming, witl~ external PWM generation circuit (the LED driver is not affected by PWM IN input) • VF driver: I (10 3-digit 7 segment output, 13 flag outputs = - 1 mATYP) 9 dot outputs (10 =25mAMAX) • LED driver: • Easily interface,d with microprocessor (by three inputs of DATA IN, CLOCK, and LOAD) 192 t:C r- " o n A o ~ G') DATA IN CLOCK JL > I LSB , LOAD / -:z- ...... ... '" !> ... _ ....... ....... ....... ...... D I JL .::. ..:J _ ~ D QI .... ~ LA ~ ..., _ Cl ..... ' " ,. w 1 . .. - .... . .. - .... . .. I 17Decoder Segment 1/7 Segment //7 Segment 1 Decoder Decoder I 1 Out Put Gate ~ Vss ---- -~F1:--.r!- +1, .... .... .... .... I LED Driver 1 (NPN Open Drain) (9 pins) 1 OutpufG'ate I I I ~o, ~ ~ I I TT I I 1 VF Driver (VDD : tBV MAX) (34 pins) I 0- '-- C C fee .C 'c J 6_ 6N 6W '6.6 0"0 G . w 6 ~ \D W ~ ~ ~ ( ,( C ~e;_c.e. ,c I ( e. ~'e ( C, C C C ( C • II ..... ern _-...,. -Q."_~ .... ( 'C ( ( ( ( ( ~I~;~:!:~ ~~ o - 9 · ~·~·~· · · fC ~ ~Dim. ~~ Control (OV) o DATA OUT I +1·_z- MSB' Latch (3Sbits) (Level latch by LOAD signal) l ~ Vee (+ SV) . .... ::a I Shift Registor (35 bits) c« « C 0 0 0010 0 0 0 N ..... "":Q'IO a _.CA.tA(; C ( =;: :.-: 000 TVss' lIEGHTSW ~ PWM OUT f-o' PWMIN - O'E Voo (+ 9-1BV) ~ ~ PIN CONFDIGURATION, (Top View) 56 Lea~ Plastic Flat Package 01 gl fl al N 0 0 0 u ~ ~ > VI -> u Vl 0 .- ~ ~ ~ ~ 0 l!:} ~ ~ a.. :J a. w 6 0 010 el dl cl bl 09 g2 . f2 e2 a2 c2 b2 08 g3 e3 f3 d3 a3 c3 b3 07 02 06 d2 Note-; Pin 21 with a * mark is connected to Vss, and cannot be connected to another pin. Pin 21 cannot be used independently as Vss but can be used as a Vss reinforcing line. 194 ELECTRICAL CHARACTERISTICS • Absolute maximum ratings Parameter Condition Limits Unit Supply voltage Voo -0.3 ..... + 19 V Supply voltage Vee - 0.3 ..... + 6.5 V - 0.3 ..... Vee + 0.3 V Input voltage Maximum output current Allowab,le package loss Storage temperature • Symbol VI IOLD DATA IN, CLOCK, LOAP LIGHT SW, PWMIN, O·E, OSC LD1 ..... LD9 Po Tstg 30 mA 300 mW O( - 55 ..... + 150 Recommended Operating Conditions Parameter Symbol Condition MIN TYP MAX Unit Supply voltage Voo 9 12 18 V Supply voltage Vee 4.5 5 5.5 ·V Input voltage VIH DATA IN, CLOCK, LOAD LIGHT SW, PWMIN, O·E 0. 7V ee Vee V Input voltage VIL DATA IN, CLOCK, LOAD LIGHT SW, PWMIN, O·E 0 0. 2V ee V Output current IOLD LD1 ..... LD9 25 mA Operating temperature Top +85 °C 15 -40 195 • DC characteristics (Unless otherwise specified, Parameter Symbol Supply voltage Vee=5V, Voo= 12V, Condition Ta= -40to + 85°C) MIN TYP MAX Unit Voo 9 12 18 V Supply voltage Vce 4.5 5 5.5 V High level input voltae VIH DATA IN, CLOCK, LOAD 0. 7V ee Vce V Low level input voltage Vil LIGHT SW, PWM IN, O·E 0 0. 2V ee V Input leak IILl DATA IN, CLOCK, LOAD Vee=5.5V PWM IN, O·E, VI = Vee orOV ±1 llA High level input leak current IIH LlGHTSW IVI = VCC = 5.5V 1 llA Low level input current IIl2 -200 llA VI = OV, VCC = 5:0V -20 -68 4.3 4.9 V 11.4 11.8 V High level output voltage VO Hl DATA OUT, PWM OUT, 10 = - 4011A High level output voltage VOH2 al-g3, Dl-013, 10 = - lmA Low level output voltage V OLl DATAOUT,PWM OUT, 10 = 40 11A 0.1 0.4 V Low level output voltage VOl2 al-g3, 01-013, 10= lOO11A 0.2 0.7 V Low level output voltage V Ol3 LD 1-LD9, 10 = 25mA 0.25 0.8 V High level output leak current ITH L01-LD9, Vo=Voo= 18V 10 llA PWM IN = O'E = Vee, 0.1 mA 1001 . I-I a l-g3~1: I character D1 to 013"all high level output, other input terminals at 0 V or Vee, output at no load Voo line supply current . 1002 O'E = OV, Other input terminals at 0 V or Vee, output at no load " 0.1 mA leel ose .. ov 0.1 mA LIGHT SW .. vee ICC2 Vec line supply current ICO 196 Other input terminals at R.. SlkOC .. O.04711F OVorvec, output at no CR oscillaton, load lIGHTSW=OW 0.3 1 OSC=OV,PWMIN .. Vee O·E =VeC,l01-9:0N(low), Other input terminals at 0 Vor Vee, output at no load 9 20 mA o AC characteristics Vee = 5V Parameter ± 10%, Ta = - 40- + 85°C, CL = 10PF Symbol Conditions Maximum clock frequency feLK CLOCK Minimum clock pulse width twe CLOCK , 400 nS Minimum load pulse width tWL LOAD 400 nS Clock input rise and breaking time tfc trc CLOCK DATA IN~ CLOCK setup time CLOCK~ CLOCK~ DATA IN'hold time DATA OUT propagatiotl delay time MIN TYP MAX Unit 1 MHz 1 l1S tsc 200 nS tHOLO 100 nS I 700 tpo nS DATA OUT hold time tOH 150 nS CLOCK~ tSL 500 nS LOAD setup time CR Oscillating frequency C = O.04711F, R= 51kQ fosc 1 4 2 kHz TIMING CHART .. CLOCK ~ twe »- ~ 7~ twc IE ~ ."", 2 f" .>rt-0.svcc I~ ~ tsc ~ ~ DATA IN f" ~ O'2V~cy O.7Vcc tiC tHOLO OlE ~ IE tpo tOH O. 7Vcc O. 2V cc ~I t,c ~ X IE )0 )0 o. 7V cc ~ ~ o, 2V cc DATA OUT ~ ~ o. 7Vcc CLOCK 1~..~-t_SL-~~i?4" tWL )0 o.svcc LOAD - - - - - - - - - -. .2Vc c ' -'--------'197 MAJOR SECTIONS EQUIVALENT CIRCUIT Output Gate & LED Driver OE IOL ~ LDI I o LD9 Display Data Vo =O.8vMAX VOL = 2SmA Output Gate & VF Driver VD D (+ 9-18V) PWM Display Data Vo =(Vo o -O.6V)MIN IOL = -lmAatVoo= 12V Level conversion Vo =O.7VMAX IOL=O.lmAatVoo= 12V Dim control circuit Ved +SV) .~ MSB 80kQTYP ~ ~ LIGHTSW PWMOUT ( 128Hz (TYP) duty OSC 2.048kHz (TYP) 198 4bit Binary Counter DATA DESCRIPTION (Table a) No. Symbol Function 1 DIM(MSB) Dimming control 2 D13 DB Output terminal Description "0" : 1I8duty, "1" 1/16duty 3 D12 D12 4 Dll Dll S Dl0 Dl0 6 D9 7 D8 8 D7 D7 9 D6 D6 10 DS DS 11 D4 D4 D3 "0": OFF D9 Flag(VF) D8 12 D3 13 D2 D2 14 D1 Dl 1S LD9 Flag(LED) LD9 16 17 18 19 Dl-8 D1-4 Dl-2 D1-1 7 segment decoder(lst digit) al-g1 20 21 22 23 D2-8 D2-4 D2-2 D2-1 7 segment decoder(2nd digit) a2-g2 24 25 26 27 D3-8 D3-4 D3-2 D3-1 .7 segment decoder(3rd digit) a3-g3 28 LD8 LDS 29 LD7 LD7 30 LD6 31 LDS 32 LD4 33 LD3 LD3 34 LD2 LD2 3S LD1(LSB) LDl VF driver "1": ON , LED driver See Table b. Flag(LED) LD6 LDS lD4 VF driver I LED driver "0": OFF "1": ON Note: "No." indicates the output number of the shift register. The first bit for data transfer is NO.1. 199 7 SEGMENT DECODER DISPLAY PATTERN (Table b) Output Input data 8 4 2 1 a b c d e f 9 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 2 0 0 1 0 1 1 0 1 1 o. 1 3 0 0 1 1 1 1 1 1 0 0 1 4 0 1 0 0 0 1 1 0 0 1 1 II -I 5 0 1 0 1 1 0 1 1 0 1 1 I -I 6 0 1 1 0 1 0 1 1 1 1 1 n I 7 200 0 1 1 1 1 1 1 0 0 1 0 Display pattern - I I I I - 1 1 _I I -I -I -- I - II 1 I I I-I -U I I I -I I 8 1 0 0 0 1 1 1 1 1 1 1 9 1 0 0 1 1 1 1 1 0 1- 1 A 1 0 1 0 1 1 1 0 1 1 1 B 1 0 1 1 0 0 1 1 1 1 1 C 1 1 0 0 1 0 0 1 1 1 0 I D 1 1 0 1 0 1 1 1 1 0 1 I-I E 1 1 1 0 1 0 0 1 1 1 1 F 1 1 1 1 0 0 0 0 0 0 0 . 1 I-I -I 1 I I- Blank FUNCTIONAL DESCRIPTION o DATA IN, CLOCK, LOAD: Data set input terminals (MSB) DATA IN = "1" "0" (LSB) CLOCK -------------"1'1....-- LOAD Display contents _ _ _ _ _ _ _ _ _ _ ------- _ _ _ _ _ _ _ _ _-.JXData set display Fig. a Data set timing chart example (PWM =1, O·E =1) DATA IN is a data input terminal, which is read into the ofthe clock input terminal CLOCK. int~rnal shift register at the leading edge LOAD is a load input terminal, which loads data of the shift register, data of 35 bits at a time, into the latch circuit. The timing chart above shows that, when a pulse is input to the LOAD terminal after the data of 3S bits is input, the display data is changed to a new one. • DATA OUT: Data o~tput terminal DATA OUT is a terminal for cascade connection, the output of which is connected to the DATA IN terminal on the next stage. \ MSCl190 GS DATA IN ~---; DATA IN DATA CLOCK OUT LOAD MSCl190 GS I---~--l DATA IN CLOCK LOAD L -_ _ _ _- - - ' CLOCK LOAD Fig. b Cascade connecton 201 o OSc: Oscillation terminal OSC is a capacitor (C) and resistor (R) connection terminal ofthe oscillation circuit for dimming control. The oscillation frequency depends on the values of the external capacitor (C) and resistor (R). MSC 1190GS R ._--'-----1 OSC (Vss) Fig. c External circuit The value for Rshould not be less than 30,kQ. The oscillation frequency fosc is expressed by the following equaton: fosc = c.k R (k ~ 5) When no oscillation circuit is used (i.e the PWM OUT terminal is not used); connect the OSC terminal to Vss. o LIGHT SW : Light switch input terminal LIGHT SW is an input terminal with a pull-up resistor, which controls the'PWM OUT output waveform.(See Table c. ) o PWM OUT: PWM output terminal PWM OUT is a dimming PWM output terminal. When this terminal is connected to the PWM IN input terminal, the display duty ratio can be changed to 1/1, 1/8, or 1/16. Table c is a function table. (Table c) LIGHT SW input MSB of data Display duty ratio Open or "H" . - 1/1 "L" 0 1/8 "L" 1 1/16 "H" '. Vcc level "L" ; Vss level [ don't care 1 The frequency of a PWM OUT output signal is fosel16. 202 o PWM IN: .' PWM input terminal PWM IN is a dimming PWM input terminal. If the input is made High when the O·E is High, the VF display is turned ON. If the input is made Low, the display is turned OFF. Accondingly, when a signal at 100 to several 1OOs Hz (the duty ratio is variable) is input to the PWM IN terminal, the display brightness can be continuously controlled. When the PWM OUT output is connected to the PWM IN terminal, the display duty ratio, as mentioned above, can be changed to one of the three values. Vee level ( 1~I Vss level (lIt, = 100 to severall00s Hz) VF Display ON OFF Fig. d PWM IN \nput waveform • Q·E: Display output enable input terminal When the input is High, the display state is normal. When the input is Low, all displays are turned OFF, IF the O'E is kept Low until the data of the latch circuit is determined when power is turned ON, unnecessary displays can be eliminated. Two O·E and PWN IN input signals are ANDed in the Ie to a PWM signal. The VF display is ON (normal) when PWM =" 1" or OFF when PWM = "0". The LED display is turned ON or OFF by O'E input but not affected by PWM IN input. 203 IV » ""C o ~ ""C r n » ::! +12V ____________________~--------------------~ o *1 2 +5V §a?:~5" ~ s..~.::EO' ..., ~:J It) ..., ~ a-~ ~ ~ ~ 33,-' ::!: ~~~~g ~ S;; ~ ~ ..,. tl) ...... "0 :l ~ •• ~1:l 0 ~. CPU MSC 1190GS ~~.~~~ ~:;; ~~. ~ ~~. ~ ~ tl):J" Q.. 0:: Q.. ~ 0" tl) O"o, D'~'C Voo( + SV) VSS (OV) VEE (- 20-40) 0 r 0:1: I ~ DOWN ~ ~ L 4 D'C'R ~OUNTER t ~ r DUTY cym 1>T r COUNTER DIGIT TME COUTER BLANK ~UTY W I (0) (11) 012 LED DRV ~ 1LEDI 00-4 L ~ L-R LOAD ....... ~ I -I n x- x12 r ~ ~ -a. -a. 1 1~ ,:::J ~ SEG P (b 1s) D1 I 01 » » Ci') SEG A (boJ I PLA0R DECODER LATCH "0 _J LEOS xS X 3! z n o Z -n MSC7112-xxSS (Top View) 42 Lead Plastic Shrink DIP MSC7110-xxSS (Top View) 42 Lead Plastic Shrink DIP Ci) C :::0 » OSCI ~ LOAD OSCI LOAD OSCO DATA IN OS CO DATA IN P.O.R SCLK P.O.R SCLK VOO SEGA VOO SEGA 01 SEG B 01 SEG B 02 SEG C 02 SEG C 03 SEG 0 03 SEG 0 04 SEG E 04 SEG E OS SEG F OS SEG F 06 SEGG 06 SEGG 07 SEG H 07 SEG H 08 SEG I 08 SEG I 09 SEG J 09 SEG J 010 SEG K 010 SEG K 011 SEG L 011 SEG L 012 LED 1 012 SEGM 013 LE02 LEOl SEG N 014 LE03 LE02 SEGO 01S LE04 VEE ~ LED 3 SEG P 016 LE04 VEE LEOS VSS LED 5 VSS ::! '0 z N ~ ""C N 2 n o 2 :!2 Mse7110-xxGS (Top View) 44 Lead Plastic Flat Package Gl C MSC7112-xxGS (Top View) 44 Lead Plastic Flat Package -- o· ~~CTlCI)" ::0 » ::j w .... \oLn' 0 u ~ 0 ~ a. \.? w U 0 6 VI I ~ :1 \.? I~ UJ VI ~ ~ 0 0 > ~ ...J ~ U 0 VI 0 -> ~ 0 ...J .... ~t:: a. .... 0 ::J o , 'C1I o 0 .... > .- E o '- ::J va. ~e VI -> > o " C DATA IN b) Data Word LSB/MSB Timing END OF DATA WORD~ LSB 14~~----- ~MIN 40US 230 ------I ~ E----------- MIN I..... NEXT DATA WORD 120 US --------~ FUNCTIONAL DESCRIPTION . The MSB value of 8-bit serial data determines whether the input data into MSC1937-01 is control ,data or display data . ., CONTROL DATA . The control data can be input by setting MSB to "1". In addition, a command type and associated data with the command is determined by the bit 6 to bit O. Command Function MSB bit 7 bit6 bit 5 bit4 bit3 bit2 bit 1 LSB bitO Buffer Pointer Control Specifies the RAM address. 1 0 1 0 23 22 2' 20 Digit Counter Control Sets the number of display digits. 1 1 0 0 23 22 2' 20 Duty Cycle Control Sets the duty value. 1 1 1 24 23 22 2' 20 TEST MODE Sets the test mode. 1 0 0 20 X X X X X: Don't care a) Buffer Pointer Control This command changes the display contents only at an arbitrary digit. (The RAM write address is set.) Adecimal equivallent value of bits 0 - 4 should be set (desired digit number - 2). (Example) When specifying AD4, the set value is 2 (0010). Specified digit Set value of bits Ot04 Specified digit Set value of bits 0 t04 ADl 15 (1111) AD9 7 (0111) AD2 0 (OOOO) AD10 8 (1000) AD3 (0001) AD11 9 (1001) AD4 2 (0010) AD12 10 (1010) ADS 3 (0011) AD13 11 (1011 ) AD6 4 (0100) AD14 12 (1100) AD7 5 (0101) AD15 13 (1101 ) AD8 6 (0110) AD16 14 (1110) 231 b) Digit Counter Control This command sets the number of display digits. Set the desired number of digits in bits 0 to 4. Number of display digits Set value of bits 0 to 4 Set value of bit Ot04 Number of displaydigits (0001) 9 9 (1001) 2 2 (0010) 10 10 (1010) 3 3 (0011) 11 11 (1011) 4 4 (0100) 12 12 (1100) 5 5 (0101) 13 13 (1101) 6 6 (0110) 14 14 (1110) 7 7 (0111) 15 15 (1111 ) 8 8 (1000) 16 o (0000) c) Duty Cycle Control This command sets the duty cycle of the driver output. This command allows the brightness to be adjusted by 1/32 step. As shown in Figure 1, the blank type between digits or between the segments is specified by 1 bit time on the hardware. Therefore, the set value ranges from Oto 31. I i~'-r--------- 1 DISPLAY CYCLE - - - - - - - - . GND AD1 AD2 AD3 , AD4 ADS AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 SGX l :31 BIT TIMES 512 BIT TIMES v~ n ~~1_B_IT_.T_IM_E_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~~~---------- • :: ,i ~'_,~: n ___ ________________________________n ~---------------------------------------~ ~rI~ -r~------~rI~--------------~-------------------~~ -+-r--------~rI~-------------------------~~ __________ ~rt~ ________________________________ -r~----------~rI~-------------------------------+-r--------------~rI~--------------------------- ~~--------------------~rt~-------------------------------------------------------JrI~------------------------------___________________________ -r __________________________ -+-r ~~--------------------------~rI~------------------------__ ______________________________ _________________ ____________________ -+~---------------------------------~r!L---------------__ _____________________________________ __________ GND -: ,- 31 BIT TIMES ·V -t1f!--_____ _______________________ ________ ~r!L_ ~ ~rI~ -+-r-------------------------------~rI~ ~ ~rt~ ~rI~ i-I!- 1 BIT TIME ~rILF!~ Note: At the time of Duty Cycle Figure 1 Output timing 232 ~------ ~~ =31 d) TEST MODE This mode is not a user function, but is used for outgoing inspection. • DISPLAY DATA = By setting MSB '0', the display data can be entered. The address of PLA is specified by bit 6 to bit 0 following MSB. Table-1 provides the PLA code table. ()() 0_1I 01 ~- 02 I-03 1- J I I -1-1 08 I I 1- -I - 09 - I I -- 11 I - - 08 1_ J I 18 \1 1\ I \ 28 20 30 I-- _0 C DATA IN b) Data Word LSB/MSB Timing END OF DATA WORD~ LSB I~----";"-- ~MIN 40US ~ ...-------------- NEXT DATA WORD MIN 120US --------~I 241 FUNCTIONAL DESCRIPTION The MSB value of 8-bit serial data determines whether the input data into MSC19S1-01 is control data or display data. • CONTROL DATA The control data can be input by setting MSB to" 1". In addition, a command type is determined by the bit 6to bit~ following MSB. Command Function MSB bit 7 bit6 bitS bit4 bit3 bit 2 bit 1 LSB bitO I Buffer Pointer Control Specifies the RAM address. 1 0 1 0 23 22 2' 20 Digit Counter Control Sets the number of display digits. 1 1 0 0 23 22 2' 20 Duty Cycle Control Sets the duty value. 1 1 1 24 23 22 2' 20 TES'r MODE Sets the test mode. 1 0 0 20 X X X X X: Don't care a) Buffer Pointer Control This command changes the Qisplay contents only at an arbitrary digit. (The RAM write address is set.) To input data into bits 0 to 4, set (desired digit - 2). (Example) When specifying AD4, the set value is 2 (0010). Specified digit 242 Set value of bits Ot04 Specified digit Set value of bits 0 to 4 AD1 15 (1111) AD9 7 (0111 ) AD2 0 (0000) AD10 8 (1000) AD3 (0001) AD11 9 (1001) AD4 2 (0010) AD12 10 (1010) ADS 3 (0011 ) AD13 11 (1011) , AD6 4 (0100) AD14 12 (1100) . AD7 S (0101) AD15 13 (1101) AD8 6 (0110) AD16 14 (1110) b) Digit Counter Control This command sets the number of display digits. Set the desired number of digits in bits 0 to 4. Numberof display digits Set value of bitsOto4 Number of display digits Set value of bitO to 4 (0001) 9 9 (1001) 2 2 (0010) 10 10 (1010) 3 3 (0011) . 11 11 (1011) 4 4 (0100) 12 12 (1100) 5 5 (0101) 13 13 (1101) 6 6 (0110) 14 14 (1110) 7 7 (0111) 15 15 (1111) 8 8 (1000) 16 o (0000) c) Duty Cycle Control This command sets the duty cycle of the driver output. This command allows the brightness to be adjusted by 1/32 step. As shown in Figure 1, the blank type between digits or between the segments is specified by 1 bit ti me on the hardware. Therefore, the set val ue ranges from 0 to 31. GND AD1 AD2 AD3 AD4 ADS AD6 AD7 ADS AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 -v I : I - 1 DISPLAY CYCLE . 512 BIT TIMES :31 BIT TIMES --[3-r::; I GND SGX l' J\ n 1 BIT TIME n n n n n n rL'L- n n n n n n n n n n n :- 31 BIT TIMES I n -v --hf! 1-11- 1 BIT TIME Note: At the time of Duty Cycle . Figure 1 n....n =31 Output timing 243 d) TEST MODE This mode is not a .user function, but is used for outgoing inspection . • DISPLAY DATA By setting MSB= '0', the display data can be entered. The address of PLA is specified by bit 6 to bit 0 following MSB. Table-1 provides the PLA code table. 244 Input Code Segment Driver Output Patterns (1 = On) Function 7 6 5 4 3 2 1 0 0 0 0 0 0 o o o o o o o o o o o XO'OOO X 0 0 o 0 X 0 0 o 0 X 0 0 0 0 X 0 0 0 1 X 0 0 0 1 X 0 0 0 1 X 0 0 0 1 X 0 0 1 0 X 0 0 1 0 X 0 0 1 0 X 0 0 1 0 X 0 0 1 1 X 0 0 1 1 X 0 0 1 1 X 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 1 0 X 1 0 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 oX 1 X 1 oX 1 X 1 X 1 ·0 X 1 0 0 0 0 0 o o o o o o o o o o o o X X X' X X X X X X X X X X X X X o o o o o o o o o o oX oX oX oX oX oX oX oX oX oX oX oX oX oX oX oX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 SegmentAOn Segment B On Segment COn Segment DOn Segment EOn Segment F On Segment G On Segment H On Segment I On Segment) On Segment K On Segment LOn Segment M On SegmentN On SegmentO On SegmentPOn 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 SegmentAOn Segment A & B On Segment A·C On Segment A·D On Segment A·E On Segment A·F On Segment A·G On Segment A·H On SegmentA·IOn Segment A·) On Segment A·K On Segment A·L On Segment A·M On Segment A·N On Segment A·O On Segment A·P On 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Number 0 Number 1 Number 2 Number 3 Number4 Number 5 Number 6' Number7 NumberB Number9 Letter P Letter L Comma Blank Decimal Blank 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 NumberO Number 1 Number 2 Number 3 Number4 'Number 5 Number6 Number 7 NumberS Number9 Letter A Letter B Letter C Letter D Letter E Letter F 0 0 0 0 0 0 o o 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 o0 o0 o0 o0 o0 o0 o0 o0 o 1 o1 0 1 0 1 1 0 1 0 1 1 o o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o SGA 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 o o 1 1 o 0 1 1 0 0 1 1 0 0 1 1 o o o o o o o SGS SGC SGD SGE SGF SGG SGH SGI SGJ SGK SGl SGM SGN SGO SGP PNT TAIL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 '1 1 1 1 1 1 1 J 1 1 1 1 1 1 1 1 " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table-l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I' I" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I' PLA Code Table ,245 08 00 I 01 09 10 11 18 -I - 02 03 04 05 06 07 I I I - OA OB OC 00 OE OF I 12 13 I 19 1A -I -- I 1B 14 I I I 1C 15 I I I I' 10 16 I I I I 1E 17 I- I I I --- 1F - ,-- I I I I I -, I -I- I I- I I-i I I -1 I I I I- I I I -- I- I I- I I 1 I I 28 I I 29 - 21 - 22 I I-- 23 =1 24 I I -I 25 26 - I- - -- I - , -I I I -I I 30 2C -1 I I - 32 33 I- I I 2F ,• 34 • 35 . SGF I~ -I I I I 3C -I 3D II I 3E - I- - 36 37 -- I SGC SGD Table-2 3A 3B SGB SGE - 39 -I SGG , I 38 - 20 2E I I I 31 I, 2B I I- I -- 27 I 2A - I I I I SGA 16-SEGMENT BARGRAPH 246 I- I - 20 -- -- SGP SGO SGN SGM SGl SGK SGJ SGI SGH SGG SGF SGE SGO SGC SGB SGA ,-- 1 PNT TAil 7-SEGMENT ALPHANUMERIC PLA Code (At the time of 7-segment displ~y) I 3F l--I I I ,-- I -I - '-I 1 I I I- I - - I I I I- I I I I - I 00 01 02 03 04 05 06 07 08 09 OA 011 OC 00 OE OF 7·SEGMENT CHAnACTEns . SeE FIGURe 2 SGP SGO SGN SGM SGl SGK SGJ SGI SGIf SGG SGF SFE SGO SGC SGB SGA _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ IlAnGnAPli CODES 10 11 12 13 14 15 16 17 16 19 1/\ III 1.C 10 IE IF 7·SEGMENT CHAnACTEns SEE FIGUnE 2 SGP SGO _ SGN _ SGM_ SGl _ SGK _ SGJ _ SGI _ SGli_ SGG _ SGF _ SGe _ SGO _ SGC _ SGB _ SGA _ BAnGnAPH CODES I/o 20 SGP _ SGO_ SGN _ SGM_ SGl _ SGK _ SGJ _ SGI _ SGH _ SGG _ SGF _ SGE _ SGO _ SGC _ SGB _ SGA _ 21 22 23 24 25 26 27 28 29 2/\ 211 2C 20 2E 2F 7·SEGMENT CHARACTEns 10 •• PNT and TAil bOlh ,.1 ••• PNT only ,u SPECIAL IlAnGnAPIf CODES 30 31 \0 32 33 34 3.'4 35 36 37 56 7 SGP _ SGO _ SGN_ SGM_ SGl ~ SGK _ SGJ _ SGI _ SGH_ SGG _ SGF _ SGe _ SGO _ SGC _ SGB _ SGA --'- 36 39 J/\ 3B 8 9 A 3C 30 3E CD E 3F FI 7·SEGMENT CHARACTEnS SPECIAL BAnGnAPH CODES Table-3 PLA Code (At the time of bar display) 247 * To set the comma and point, the display data at the display digit is input, then 2C and 2E data are input. (Note) Only when 2C and 2E data are entered, the write address in the RAM is not automatically incremented .. For other data, the address specified by the Buffer Pointer Control command is automatically incremented by one each time the display dadta is input. APPLICATION CIRCUIT O'--------~------------~--------------------~ +5V 10pf DATA Voo CLOCKA HOST SYSTEM MSC1937·01 ~--~-----~----------~ GND ADX SGX POR Rc - VoisP Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which ·may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 248 OKI semiconductor MSC712S-XX 5 x 7 DOT MATRIX, 8-DIGIT GENERAL DESCRIPTION The MSC7125-XX is a BiCMOS dot matrix display controller for vacuum fluorescent display tube .. The MSC7125-XX drives displays with up to 8 grids with 35 anodes (dots) plus 5 annunciators. The controller receives the serial data (command and display data) consisted of 2 bytes (16 bits) on the high to low transition of the clock. The serial data entered ·into 16-bit shift register via DATA IN terminal is automatically latched after.2 bytes data input is completed. Commands control the on/off duty, starting char~cter position, number of characters to display. An internal PLA-type character generator provides character decoding and dot pattern generation for 128 types of characters. FEATURES • Operating temperature • Logic supply voltage (Voo) + SV • Display voltage + 50V max • Driver output current ± 10% -31 rnA (GRID 1,8) -16 mA (GRID 2-7) -4.5 rnA (SEG 36-40) -0.3 mA (SEG 1-35) 203KHz max • Data transfer speed • Built-in oscillation circuit' • Built-in Power-on-reset circuit with external C • Serial data input for 2 bytes (16 bits) control and display data • Command functions on/off duty cycle (1024 steps) starting character position (1 to 8) number of characters (1 to 8) • Built-in PLA-type character generator • 60 pin flat package 128 types of characters (user programmable) 249 N U1 0:1 o . r- on f·--·_·_·_·'_·_·_·_·_·_·_·_··-·_·_·_·_·_·_·_·_·_·_·_·-.-._.-.-.-.-._._.-._._.-.-.-.-._._.-._._.-._._._._._.-.-._.-._._._.-._._._., RAM cr----r--'\ LATCH PLA LATCH ~~~ "C i : SEGl SEG2 l SEG34 CS SEG3S SEG36 SEG40 OSCO~ DECODER DIGIT DRV GRIDl GRID2 TEsn TEST2 VDD R rr CE DIGIT COUNT G! DUTY AND BLANK GENERATOR I L..._._._._._._ A B ADDRESS COMP GND ;i iT A=B "..._._._._._._._._. _._._._._._._._.- ._._._._._._._._._._._._._._._._._._._._._._.~ BLANK DUTY AND BLANK GRID3 GRI04 GRIDS GRID6 GRID7 GRIDB l> ~ :0 l> S PIN CONFIGURATION 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 47 30 48 29 49 28 27 50 51 TOP VIEW 26 52 60 PIN FLAT PACKAGE 25 53 24 54 23 55 22 56 21 57 20 58 19 59 18 60 17 O. 2 3 4· 5 6 7 8 9 10 11 12 13 14 15 16 1 VOISP 16 SEG34 31 SEG18 46 2 SEG31 17 GRID4 32 SEG17 47 SEG4 SEG9 3 GRID6 18 GRID3 33 SEG16 48 SEG10 4 GRIDS 19 SEG35 34 SEG15 49 SEG36 5 SEG26 20 SEG40 35 SEG14 50 SEG37 6 SEG32 21 SEG25 36 SEG13 51 POR 7 SEG39 22 CRID2 37 SEG12 52 Voo 8 SEG33 23 GND 38 SEG11 53 OSC1 OSCO 9 SEG38 24 SEG24 39 SEG1 54 10 SEG27 25 GRID1 40 SEG2 55 GND 11 GRID8 26 SEG23 41 SEG5 56 TEST1 12 SEG28 27 SEG22 42 SEG6 57 DATA IN 13 GRID7 28 SEG21 43 SEG7 58 SCLK 14 SEG29 29 SEG20 44 SEG8 59 CS 15 SEG30 30 SEG19 45 SEG3 60 TEST2 251 PIN DESCRIPTION 252 PIN# PIN NAME DESCRIPTION PIN# PIN NAME DESCRIPTION 1 VDISP DISPLAY VOLTAGE 31 SEG18 ANODE18 DRIVER OUTPUT 2 SEG31 ANODE31 DRIVER OUTPUT 32 SEG17 ANODE17 DRIVER OUTPUT 3 GRID6 GRID6 DRIVER OUTPUT 33 SEG16 ANODE16 DRIVER OUTPUT 4 GRIDS GRIDS DRIVER OUTPUT 34 SEG15 ANODE15 DRIVER OUTPUT 5 SEG26 ANODE26 DRIVER OUTPUT 35 SEG14 ANODE14 DRIVER OUTPUT 6 SEG32 ANODE32 DRIVER OUTPUT 36 SEG13 ANODE13 DRIVER OUTPUT 7 SEG39 ANODE39 DRIVER OUTPUT 37 SEG12 ANODE12 DRIVER OUTPUT 8 SEG33 ANODE33 DRIVER OUTPUT 38 SEG11 ANODE11 DRIVER OUTPUT 9 SEG38 ANODE38 DElVER OUTPUT 39 SEG1 ANODE1 DRIVER OUTPUT 10 SEG27 ANODE27 DRIVER OUTPUT 40 SEG2 ANODE2 DRIVER OUTPUT 11 GRID8 GRID8 DElVER OUTPUT 41 SEG5 ANODES DRIVER OUTPUT 12 SEG28 ANODE28 DRIVER OUTPUT 42 SEG6 ANODE6 DRIVER OUTPUT 13 GRID7 GRID7 DRIVER OUTPUT 43 SEG7 ANODE7 DRIVER OUTPUT 14 SEG29 ANODE29 DRIVER OUTPUT 44 SEG8 ANODE8 DRIVER OUTPUT 15 SEG30 ANODE28 DRIVER OUTPUT 4S SEG3 ANODI;3 DRIVER OUTPUT 16 SEG34 ANODE34 DRIVER OUTPUT 46 SEG4 ANODE4 DRIVER OUTPUT 16 GRID4 GRID4 DRIVER OUTPUT 47 SEG9 ANODE9 DRIVER OUTPUT 18 GRID3 GRID3 DRIVER OUTPUT 48 SEG10 ANODE10 DRIVER OUTPUT 19 SEG35 ANODE3S DRIVER OUTPUT 49 SEG36 ANODE36 DRIVER OUTPUT 20 SEG40 ANODE40 DRIVER OUTPUT 50 SEG37 ANODE37 DRIVER OUTPUT 21 SEG25 ANODE2S DRIVER OUTPUT 51 POR POWER-ON-RESET INPUT 22 GRID2 GRID2 DRIVER OUTPUT 52 VDD LOGIC VOLTAGE 23 GND POWER & SIGNAL REFERENCE 53 OSC1 RC OSCILLATION 24 SEG24 ANODE24 DRIVER OUTPUT 54 OSCO RC OSCILLATION 25 GRID1 GRID1 DRIVER OUTPUT 5S GND POWER & SIGNAL REFERENCE 26 SEG23 ANODE23 DRIVER OUTPUT 56 TEST1 TEST SIGNAL INPUT 27 SEG22 ANODE22 DRIVER OUTPUT 57 DATA IN SERIAL DATA INPUT 28 SEG21 ANODE21 DRIVER OUTPUT 58 SCLK SHIFT CLOCK INPUT 29 SEG20 ANODE20 DRIVER'OUTPUT S9 CS CHIP SELECT INPUT 30 SEG19 ANODE19 DRIVER OUTPUT 60 TEST2 TEST SIGNAL INPUT ELECTRICAL CHARACTERISTICS (I Absolute Maximum Ratings Parameter • Symbol Rating Unit Power supply voltage Voo - 0.3-6.5 V Disp~ay voltage VOISP -0.3-52 V Input voltage VIN - 0.3-Voo + 0.3 V Operating temperature range Top -40-85 °C Storage temperature range Tstg - 65-150 °C Operating Condition Parameter Symbol Condition MIN TYPE MAX Unit Power supply voltage Voo 4.5 5.5 V Display voltage VOISP Voo+2 50 V High level input voltage VIH 3.6 VOD V Low level input voltage VIL 0 0.8 V 500 KHz 4 MHz Clock Frequency OSC Frequency fc fosc 75pf, 4.7KQ 1 2 253 • DC Characteristics sv Ta = - 40- + 85°C, Voo = ± 10% unless otherwise noted. All voltages are referenced to GND. . Parameter Symbol Condition MIN MAX Unit 3.6 - V 4.2 - V High level input voltage (All inputs except OSCO) VIHl High level input voltage (OSCO) VIH2 Low level input voltage (All input except OSCO) VILl - 0.8 V Low level input voltage (OSCO) VIL2 - 0.5 V High level input c,!!:!eDl(SCLK, DATA IN, C5, POR) IIHl VIHl =V oo -5 5 }lA High level input current (TEST1; TEST2) IIH2 VIH2=VOO 250 900 pA High level input current (OSCO) IIH3 VIH3 = Voo -10 10 pA Low level input current (SCLK, DATA IN, C5, TEST1, TE5T2) IILl VILl =OV -5 5 pA Low level input current (POR) IIL2 VIL2= OV -27 - 110 }lA Low level input current (OS CO) IIL3 V 1L3 = OV -10 10 llA . High level output voltage (SEG1-35) VO Hl IOHl = - 0.3mA- V ol sp-2.0 - V High leve} output voltage (SEG36-40) VOH2 IO·H2 = - 4.SmA Vo lsp-2.0 - V· High level output voltage (GRID1, GRID8) VOH3 IOH3= -31mA VOls~-2.7 - V High level output voltage (GRID2-7) VO H4 IOH4= -16mA VOlsp-2.7 - V Low level output voltage (SEG1-40, GRID1-8) VOLl lOll = 10UA - 254 Logic supply current 100 Display supply current IOlsP , . 1 V . fosc = 2.0MHz, No. load 15 mA No load 10 mA o AC Characteristics = Ta = - 40- + 85°C, Voo sv ± 10% unless otherwise noted. All voltages are referenced to GND. Parameter SCLK cycle time SCLI( clock pulse width MIN MAX Unit teyese - 2 lIS twse 1 - lIS Symbol Condition tos 0.5 Data hold time tOH 0.5 CS set-up time tess 1 CS hold time tesH OSC frequency fosc Data set-up time R=4.7KQ,. C =7spf lIS lIS . lIS 1 - 1 4 MHz lIS o Timing Chart 255 • Data Word LSB/MSB Timing SCLK • DATA INPUT OFF TIME tOOFF 32pSEC min. DATA INPUT CYCLE toCYC 64pSEC min. Power-on-Reset Timing VOO tpORON tp R FF paR DATA VALID DATA OPTION 1 paR signal is generated by RC circuit. paR ON TIME tpORON paR OFF TIME tpOROFF * External 1pF Cap. 250mSEC type 50pSEC min. Built-in 1OOKO pull-up resistor. OPTION 2 paR signal is generated by peripheral circuit or host computer. . 256 paR ON TIME tpORON 50pSEC min. paR OFF TIME tpOROFF 50pSEC ";lin. FUNCTIONAL DESCRIPTION The data input of MSC 7125-XX consists of 2 byte (16 bits) serial data but the 3 bits (bit 15, 14, 13) from MSB are taken as null data. This is because a number of data bis required for MSC 712S-XX is 13 bits but 2 bytes construction is used for easy interface with CPU. When the 16-bit data input has been completed, MSC 7125-XX generates the load signal automatically and begins execution. The value of bit 12 of 16-bit serial data determines whether the input data is control data or display data. • Control Data When bit 12 is "1", input data is recognized as control data. A type of command and the associated data with the command are extracted from bit 11-0; TABLE-1 Control data table 16-Bit Serial Input Wor~s MSB 15 14 13 12 11 10 9 8 7 6 5 .4 3 2 1 X X 1 0 0 X X X X X X X 22 2' X Function LSB 0 2° LOAD BUFFER POINTER (Position of character to be changed) X X X 1 0 1 X X X X X X X 22 2' 2° LOAD DIGIT COUNTER (Number of characters to be displayed) X X' X 1 1 0 29 28 27 26 25 24 23 22 2' 2° LOAD DUTY CYCLE (On/off and dimming control) X X X 1 1 1 X X X X X X X X X X ENTER TEST MODE (Not a userfunction) Note: a) X means this bit is "don't care" bit. Load buffer pointer This command is used to modify individual characters by setting buffer pointer to any digit position. (RAM write address is set) A decimal equivalent value of bits 0-2 sho"uld be (the desired digit number-2). (Example) In case of GRID 4, the setting value is 2 (010). TABLE -2 Buffer Pointer Value (lower 3 bits) C;haracter Controlled By b) Load buffer pointer codes 7 0 1 2 3 4 5 6 GRID 1 GRID2 GRID3 GRID4 GRIDS GRID6 GRID7 GRID8 Load digit counter This command sets the number of display digits. 257 Set the desired digit number in bits 0-2. . TABLE-3 Digit counter control codes Digit Counter Value (lower 3 bits) 0 1 2 3 4 5 6 7 Number of Digits 8 1 2 3 4 5 6 7 c) Load duty cycle This command sets the duty cycle of driver output. With this command, 1024 step adjustments of brightness can be done. As shown in Fig.-1, the.blank time between the GRIDS is 32 bit times, and between the segments, 20 bit times on the hardware, hence the setting range is 0 - 992. ~---------- GRID1 1 DISPLAY CYCLE 8192 bit times 32 bit times min GRID2 - f - - - + - ' GRID3 -+_-_i_----J GRID4 -+_-_i_---------' GRID5~+---i-----------------~ GRID6-+----+-------------------------~ GRID7-+----+--------------------------------~ GRID8--+--~-----------------------~-------~ J 1004 bittimes NOTES: 1. TIMING SHOWN IS FOR 8 CHARACTERS WITH DUTY CYCLE OF 992 2. THE DUTY CYCLE CODE CAN MODIFY THE DIGIT ON-TIME FROM OTO 992 BIT TIMES. 3. 1 BIT TIME = Tosc (= 1/fosc) = 0.5pS typical Fig-1 258 Display timing chart d) Enter test mode This mode is used for outgoing inspection and is not a user function. o Display Data Display data can be input by setting bit 12 bits 11 - 7 and PLA address from bits 6 - = "0". 5 bits annunciator data are extracted from o. Table 4 Display data 16-Bit Serial Input Words MSB 15 14 X X 13 12 11 10 9 8 7 6 5 4 3 2 1 X O. 2" 2'0 29 28 27 26 25 24 23 22 2' LSB 0 Function LOAD DISPLAY DATA 20 (Annunciator 5 bits and pia 7 bits) PLA Code is User Programmable. The relation between the dots of vacuum fluorescent display tube and Segment output of MSC 7125-XX is as shown in Fig-2. G[J []J ~ ~ ~ G;J ~ G;J. G;] ~ SEG1 SEG2 SEG3 SEG6 SEG7 SEG8 ~ ~ ~ ~ ~ ~ ~ ~ G;J ~ SEG11 SEG12 SEG16 SEG17 . SEG21 SEG22 SEG26 SEG27 SEG31 SEG32 Fig-2 ~ ~ ~ ~ ~ SEG13 SEG18 SEG23 SEG28 SEG33 . SEG4 SEG5 SEG9 SEG10 ~ ~ ~ ~ ~ ~ SEG14 SEG19 SEG24 SEG15 SEG20 Q;J SEG25 ~ G;J ~ SEG29 SEG30 SEG34 SEG35 Dot-Segment output assignment 259 • Power-On-Reset (POR) The Power -On-Reset initializes the internal circuits when power is applied. The following condition is established after Power-an-Reset. a. The segment drivers are in the" L" state. b. The grid drivers are in the c. ~'L" state. The duty cycle is set to "0". d. The digit counter is set to "8". e. The buffer pointer points to the character controlled by GRID1. 260 APPLICATION NOTE a) Application circuit ,~ _~l ""ANODE VF DISPLAY ANODE (ANNUNCIATOR) ~GRID K- R1 ~ ii:' ZD( =Ek) I .OOJOOII 7/[ ~1 ~ ~ Ef .1 I I Voo -.!.3i ~_-:-"1 Z~ + +5V MCU -r- Voo GRIDl-8 VOISP SEG36-40 r - - ~ DATA IN ~ SCLK MSC712S-XX SEGl-35 G~D GND (5 POR OSC1 OSCO "1 z:- I R J -LC I T 7tl b) Data set up flow I I POWER 'ON I DIGIT COUNTER SET I I DUTY CYCLE SET (DIMMING) I BUFFER POINTER SET I DISPLAY DATA SET I I I I T INITIALIZATION ROUTINE I ~ I I Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which mJY result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 261 OKI semiconductor MSC7128-XX .5 x ~ DOT MATRIX, 16-DIGIT GENERAL DESCRIPTION The MSC7128-XX is a general purpose display controllers for vacuum. fluorescent display tube. The Msci128-XX drives displays with up to 35 anodes (dots) and up to 16 grids (characters) plus a cursor. The controller accepts command and qisplay data input words on a clocked serial input line. Commands control the on/off duty cycle, starting character position, number of characters to display and display modes (PLA mode and Lamp Test mode). An internal PLA-type character generator provides character decoding and dot pattern generation for the full 128 characters. No external drive circuit is required for displays that operate on 30mA of drive current up to 45 volts. A 35x128-bit PLA (ROM) code is programmable. FEATURES • • • Logic supply voltage (VD D) + 5V VF driver supply voltage (VEE) - 55V Driver output current VF grid driver (source) VF anode driver (source) -2mA VF cursor driver (source) -10mA -30mA • Direct drive capability for vacuum fluorescent display • Built-in oscillation circuit • Built-in power-on-reset circuit with external C • Serial host interface (data in, clock, chip select) • Serial data input for 8-bit control and display data words • Command functions On/off duty cycle Starting character position • 1 to 16 Choice of 2-display ~odes PLA mode, and Lamp Test mode Built-in 35x128-bit PLA-type character generator Character font 5x7 Numberofcharacters : Programmable PLA code • 262 1 to 16 Number of characters 64 Pin shrink DIP package 128 OJ i·-"fl·~·-·-·-·-·-·-·-·-· VOO r- on ._._._._._._._._ .. _._._ . ._._._._._._._._._._._0_._._._._._._._"- A SEG DRIVER o-L- C :; Gl ::0 » ~ COMI COM2 COM14 COMIS TEST STEP TEST COUNT r-r .COM16 h I Vss --r--o = , n; BLANK I I DUTY AND BLANK i i , ! ! '-. '"enw i i i !I i i RESET i _._._._._._ . .i VEE PIN CONFIGURATION (Top View) 64 Lead Shrink Duallnline Package ·OSCO CS OSCI DA TEST COUNT CP TEST STEP 4 1 RESET VSS VDD1 VEE VDDi COM 1 SEG 1 COM 2 SEG 2 COM 3 SEG 3 COM 4 SEG 4 COM 5 SEG 5 COM 6 SEG 6 COM 7 SEG 7 COM 8 SEG 8 COM 9 SEG 9 COM 10 SEG 10 COM· 11 SEG 11 COM 12 SEG 12 COM 13 SEG 13 COM 14 SEG 14 COM 15 COM 16 SEG 16 SEG 36 SEG 35 SEG 17 1 SEG 18 SEG SEG 19 SEG 33 SEG 20 SEG 32 SEG 21 SEG 31 SEG 22 SEG 30 SEG 23 SEG SEG 24 SEG 28 SEG 27 264 SEG 26 PIN DESCRIPTION Pin Name Pin No. Input, Output Connected to Function V001 - Vss: Inner logic supply voltage VOO1 60 VOO2 59 Vss 5 VEe 6 DA 63 Input M i crocom puter Serial data input from LSS (positive logic) CP 63 Input M i crocom puter Shift clock input. Data is shifW at the leading edge of the CPo es 64 Input M icrocom puter Chip select input. When the pin is High, the serial data transfer is inhibited. Power source V002 - VE"E: VF tube driving circuit supply voltage CR oscillation, "external CR pin. fosc =. 250KHz at C = 109pF and R=47K OSCI 2 Input OS CO 1 Output RESET 61 Input COM 1 7 Output S S VF tube grid electrode COM16 22 SEG 1 58 Output s S VF tube anode electrode SEG35 24 VF tube 5x7-dot anode electrode driving output. This pin can be connected directly to the VF tube. No pull-down resistor is required. IOH>-2mA SEG 36 23 Output VF tube anode electrode VF tube cursor anode electrode driving output. This pin can be connected directly to the VF tube. No pull-down resistor is required. IOH>-10mA TEST STEP 4 Input Test mode setting input {normally open) TEST COUNT 4 Input Test clock input (normally open) Reset input (pull-up resistor built in). When the pin is Low, the internal logic is reset, and the outputs of SSG 1 to SBG36 and COM1 to COM16 are Low. VF tube grid electrode driving output. This pin can be connected directly to the VF tube. No pull-down resistor is required. IOH >-30mA 265 ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Parameter Symbol Power supply voltage (1) Condition Rating Unit Voo- Vss - 0.3- +6.5 V Power s~pply voltage (2) Voo - VEE 0- +65 V Input voltage VIH - Vss - 0.3-Voo + 0.3 V -1.0 W '- 55- + 150 °C Power dissip~tion Pd Storage temperature Tstg . Output current • Ta;::;; 25°C 101 COM1- COM16 -40mA mA 102 SEG1 - SEG35 -40mA mA 103 SEG 36 -40mA mA Recommended Operating Condition Symbol Parameter Power supply voltage (1 ) Power supply voltage (2) High level input voltage low level input voltage CP Frequency MAX Unit Voo - Vss 4.5 5.5 V Voo - VEE 10 60 V MIN TYPE 0. 7V oo V 1H - Vss ' V . V1L - Vss ~ fcp OSC Frequency fosc Operating temperature Top 266 Condition 100pF, 47KQ 170 -20 220 0. 3V OD V 500 KHz 270 KHz + 75 °C o DC Characteristics o VOO-VSS=SV±10%, Voo-VEe=60V,Ta= -20-+7S C Parameter Condition Symbol High level input voltage VIH Low level input voltage VIL MIN MAX 0. 7V oo Unit V 0. 3V oo V IIH, DA, CP, CS RESET, POR Voo = 5.SV VIN = SV -5 5 pA IIH2 .. TEST STEP TEST COUNT Voo = S.SV VIN = SV 0.25 1 mA 11L1 DA, CP, CS POR TEST STEP Voo = 5.SV TEST COUNT V IH = O.SV -5 5 'llA - 25 - 100 pA High level input current Low level input current IIL2 RESET Voo = S.SV VIH = O.SV VOH' OSCO IOH = - 500pA Voo- 0.6 V VOH2 COMl-16 IOH = - 30mA Voo-4 V VOH3 SEGl-3S IOH = - 2rT1A Voo- 3 V VOH4 SEG36 IOH= -10mA Voo-4 V High level output voltage Vss + 0.6 V IOL= 100pA VeE + 3 V 1m = 100pA VeE + 3 V VEE + 3 V VOL1 OSCO VOL2 COMl-16 VOL3 SEGl-3S VOL4 SEG36 Im= 100pA 1m = 500pA Low level output voltage Iss, All SEGs on, 16-digit display, duty cycle 15/16, no load 15 mA 1552 All S.EG s Low, all COMs High 1.5 mA lEE' All SEG son, 16-digit display, duty cycle 15/16, no load 1.0 mA .IEE2 All ~EGs Low, all COMs High 15 mA Supply current 267 '. AC Characteristics VOO- vss Parameter Symbol =5V ± 10%, Ta =- 20;'" + 75°C Condition Unit 2 pS pS 32T* - 170 270 KHz tcp - CP pulse width t WCF 1 Data set-up time tos 0.5 Data hold time tOH 0.5 CS set-up time tess OSC frequency " 1 tCSH fosc = R 47KQ, C =100pF *T Data Timing Chart CS CP DA 268 MAX CP cycle time CS hold time • MIN = 1/fosc pS pS pS S • Data Word LSB/MSB Timing r\:Xi DAiA WORD CP DATA INPUT OFF TIME tDOFF II 32T min T = l/fosc Reset Timing VDD ~~ t_R_:S_E_i_O_~ ~ __ __ t~R~:S~;~-~O~:._- ~ _____ __ r----. RESET D~,;"A V~L:D V -l- I DA OPTION 1 A capacitor is connected between the RESET pin and RESET ON TIME RESET OFF TIME External capacitor: Vss. 2S0mSEC type tR~SETOFF SOpSEC min. 1F Built-in 100Kr.! pull-up resistor. OPTION 2 A RESET si,gnal is externally input. RESET ON TIME RESET OFF TIME tRESET ON SOpSEC min. SOpSEC min. 269 FUNCTIONAL DE,SCRIPTION • Data Transfer Method And Command Write Method A display control command or data is written by the 8·bit serial transfer method. The figure below shows the write timing chart. When the CS pin is Low, data can be transferred. Data 8 bits in length is input to the DA pin sequentially starting with the LSB. (LSB first) , Data is shifted at the rising edge of a shift clock pulse which is input to the CP pin as shown in the figure below. When data 8 bits in length is entered, an inner LOAD signal is automatically generated, and data is written into the registers and RAM. Accordingly, there is no need to input an external LOAD signal. If t~e CS pin is changed from Low to High, the serial transfer is inhibited, and data, which is entered after the CS pin is changed from High to Low, is recognized in units of 8 bits. CS ~~______________________________________ DA LSB 270 MSB LSB MSB o Command Type First byte No. Second byte Command b7' b6 bS b4 b3 b2 b1 bO b7 b6 bS b4 b3 b2 b1 bO X X X X X3 X2 X, Xo 0 Address Set 1 0 0 0 X X X X 1 Character Code Set 1 0 0 1 X, X X X 2 Display Duty Set 1 0 1 0 X X X X X X X X DC3 DC2 DC, DCo 3 Number of Display Digits Set 1 0 1 1 X X X X X X X X DG3 DG2 DG, DGo 4 Lamp Test 1 1 0 0 X X X X X X X X CU CH6 CHs CH4 CH3 CH2 CH, CHo X X X LT *1 When character codes are to be continuously transferred, addresses are automatically incremented (internally). Accordingly, neither the Address Set command nor the first byte of the Character Code Set command are required to set the second and following character codes. *2 X: Don't care 271 • Address Set Command When the code pf a display character is to be set, this command is used to specify the display location (digit number) of the character. The relation between the digit number X and common outputs COM 1 to COM 16 is as follows: X COM input, 0 COM1 1 COM2 15 COM16 Command format LSB 0 0 0 X X 1st byte X X LSB X X X X X3 X, X2 I XO , _------- --------, .... \ I V I Digit number X (0 to 15) 272 I, 2nd byte • Character Code Set Command This command is used t,o specify the character to be displayed in t~e digit place specified by the Address Set command. Bits 0 to 6 of the second byte are used to specify the character code, H and bit 7 is used to specify "Yes or "NoH of cursor display. Command format LSB o o x x x x 1st byte LSB CU 1 CH6H 1 CHs ..... 1 CH4 1 CH3 ----------------- ..... , / 1 CH2 1 CH, 1 CHo 'I 2nd byte ------.-----------' \' 7-bit character code Select one of 128 codes 0: Without cursor (SEG36 OFF) 1: With cursor (SEG36 ON) An automatic address increment function is built in. to write multidigit di'splay character codes, just issue the Address Set command. To transfer the second and following digit display character codes, the first byte (operation code) of the Character Code command is not required. Just input the second byte. When this command is executed, 8-bit data after the second byte, which is provided before the CS pin is turned High, is all treated as display character data. Transfer examples of the Address Set command and the Character Set command CS DATA Address Set command Character Set command 273 The display for COM3 and the following is changed. Example 1: LSB 0 0 0 X X X X ' } Specify ttie digit numberX (COM3) LSB X X X 0 O· X 0 0 01 X X X 0 =2 I LSB X LSB I CU CH6 CHs CH4 CH3 CH2 CH, CHo CU CH6 CHs CH4 CH3 CH2 CH, CHo Write the character code to be displayed on COM4 CU CH6 CHs . CH 4 CH3 CH2 CH, CHo Write the character code to be displayed onCOMS X 274 '} . Write the first character code =1S (COM16) is followed by X =0 (COM1) o Number of Display Digits Set command This command is used to set the digit count register and the number of display digits. The number of digits to be set ranges from 1 to 16. Command format lSB x o x x x lSB x x x DGzl DG, DGo- ,---------- \1 ---------I Number of digits DG (0 to 15) The relation between the value for DG to be set and COM under display control is as follows: DG COM displayed DG COM displayed 0 COM,- COM'6 8 COM, - CaMs 1 COM, 9 COM, - COM9 2 COM, - COM2. 10 COM, - COMlO 3 COM, - COM3 11 COM,-COM" 4 COM, - COM 4 12 COM,- COM,z 5 COM, - CaMs 13 COM, - COM13 6 COM,- COM6 14 COM,- COM'4 7 COM, --COM7 15 COM, - COM'5 275 • Display Duty Set command Assuming the original oscillation cycle as T, the time allocated to 1-digit display i~ 64 T. The actual display time may be specified as 0 to 60 T in increments of 4T. Assuming the number of display digits as n and the parameter provided by the Display Duty Set command as DC, the resultant display duty cycle ratio is as follows: 4 (DC) (DC) 64n 16n Command format LSB o o x. x x x x I x x x LSB DC3 DC2 DCo DC, ,__________ I _ _________ 1 \I I DC value (0 ~o 15) • Lamp Test command This command is used to set the All-Segment D,isplay mode. If this occurs, the 36 segments for each digit to be displayed are put into the ON state. The number of display digits and the display duty cycle depend on the contents of the digit count register and of the duty register. The contents of the internal RAM are not affected by this command. When the command is released, the original display appears once again. Command format LSB o o x x x x x x x x x LSB x x Normal mode Lamp test mode 276 c Gi =i :j t, = 64x 16 = 1024T I . COM1 COM2 S I (""vee n ~t2 ~T~t3 ~rlL_ 2: ~ VEE , ______ __________________________________________________ rIL-__________ _____________________________________________________ ____________ ________________________________________________ ________________ ________________________________________________ ______________ _____________________________ ___ n ~, ::I: l> ~Il~ COM3 ~ - ~rl~ COM4· ~ ~rl~ COMS ~Il~ COM6 ________________ COM7 COMB COM9 COM10 COM11 ~n~ n n n ------------------------------------~ ______________________________ t3 =Blanktiming 1 ~rl T=~ fosc =24S KHz n n COM13 ------------------------------------~------~ COM14 -----------------------------------------~ n t1 = 4.096ms t2=240J1S . rl t3 =16 ps COM1S n=1to36 SEGn , N· "" ;:;: =Frame count t2 = Display timing. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- - I 51 ~" t1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-..I COM16 I a. ___________________________ _ _ _ _ _ _ _ _ _......:;.._ _ _ _ _ _ _---I COM12 0\ ~ n~ ______ ~ ___________________________________________________ ~V~~ . a. iii" "'C Q.J '< POWER ON RESET OPERATION Operations when the RESET pin is Low are as follows: a. All segment driver outputs are Low. b. All grid driver outputs are Low. c. The number ofdisplay digits is set to 16. d. The display duty cycle is set to O. TEST STEP AND TEST COUNT These pins are used for inspection before shipment, and should not be used by the user. When an Ie is mounted, leave them open or connect to Vss. If they are connected to other pins, a malfunction may be caused .. ' 278 , RELATION BETWEEN SEGMENT OUTPUT AND VF TUBE DOTS G;] ~ ~ G;J ~~ ~~ ~ GlJJ ~~ ~~ SEGl SEG2 SEG6 SEG7 SEG11 SEG12 SEG16 SEG17 SEG21 SEG22 SEG26 SEG27 SEG31 SEG32 ~ ~ G;J G;J @J ~ ~ ~ QJJ ~§ ~ ~ §J ~ ~~~ ~ ~ G;J SEG3 SEG4 SEGS SEG8 SEG9 SEG10 SEG13 SEG14 SEG1S SEG18 SEG19 SEG20 SEG23 SEG24 SEG25 SEG28 SEG29 SEG30 SEG33 SEG34 SEG35 Cursor SEG36 279 APPLICATION NOTE Heater transformer VF DISPLAY s- A E N G o M D E E N T GRID (DIGIT) Voo SEG1-SEG36 o pU o t r P t U t +5V + GND DA COM1-COM16 t' MSC7128-XX CP CS v TEST SETP Rl 60V + ZD Information furnished by OKI is believed to be accurate and reliable; However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted 'by implication or otherwise under any patent rights of OKI. 280 Level Meter OKI semiconductor MSC1124 2-CHANNEL 12-DOT LEVEL METER IC (STATIC) GENERAL DESCRIPTION The MSC1124 is a static FLT driving audio 2-channellevel meter, which can be used for high fidelity VTRs and audio equipment. FEATURES o Direct in put of audio (analogue) signals o Log compression circuit built in (-20 dB to 8 dB, 12 dots) o High withstand voltage output, output voltage 35 V, supply voltage 36.5 V o Peak hold function built in, automatic and manual reset • Power ON reset circuit built in o 2-power-source (GND shared) system • 40-pin plastic DIP, 44-pin V plastic QFP 283 N ~ BLOCK DIAGRAM VOOHu. VOOo-. R12 'V l12 R11 l11 R2 L2 R1 GNDH~GNDH GND~ L1 Peak hold reset (About 1 second. OSC: 10KHz) PIN CONFIGURATION MSCl124 (Top View) 40 Lead Plastic DIP POR OSC TEST M.MODE A.MODE RS NC . R4 R3 R2 R1 R7 GND RB GNDH R9 L12 R10 L11 R11 L10 R12 L9 L7 LB (This specification may be changed without notice.) 285 PIN CONFIGURATION MSCl124 (Top View) 44 Lead Plastic Flat Package 0 TEST OSC POR L12 L11 L10 V REF L9 L8 Voo GND GND L6 L7 LS NC L4 R12 L3 L2 @ L1 R6 RS R11 R10 R4 R3 R2 R1 VooH R7 R8 R9 NOTE: (This specification may be changed without notice.) 286 ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Parameter Conditions Rated value Unit Terminal Supply voltage 1 Voo Ta =25°C -0.2 .... 7.0 V Voo, VREF ~upply volt~e 2 Between V and VEE) VOOH Ta =25°C - 0.2 .... 40 V VOOH Vl1 Ta =25°C - 0.2 .... VDD + 0.2 V Except Rin and Lin II Ta =25°C VI =- 1.0V 10max mA = -10max mA = 3max mA Input voltage Input reverse current Output current 101 Ta 25°C, source current Output current 102 Ta 25°C, sink current Input voltage VI2 Ta =25°C - 0.7 .... VDD + 0.2 Allowable loss Po Ta =25°C 650 Storage temperature • Symbol Tstg - - 50 .... 125 V All input pi ns R1 .... R12 L1 .... L12 Rin, Lin mW °C , Operating Condition Parameter Conditions Supply voltage 1 Voo - 4.5 .... 5.5 V Voo Supply voltage 2 VOOH - 8 .... 37 V VOOH Top - -10 .... 70 °C Operating temperature Rated value Uni.t . Terminal Symbol 287 • DC Characteristics (VOO = 5.0V ± 0.5V, Parameter Input bias current Symbol IILl Conditions VIN=OV Ta = - 10-70°C) MIN TYP MAX Unit - - ±1 }.LA Terminal Rin, lin VI - High level input voltage VIHl - Low level input voltage VIL - High level input current IIH VI=VOO Low level input current IIL2 VI=OV Input voltage High level output voltage VOH - - 350 - - V - - Voox 20% V - - ±1 pA -100 }.LA Voo x80% -25 10= -0.2mA VOOH = 36.5V 35 -50 - rnVrms - V \ A. MODE M.MODE P.O. R TEST Rl-R12 L1-L12 Low level output voltage VOLl 10=Q·lmA VOOH = 36.5V - - 2 V Low level output voltage VOL2 10=OmA VOOH =40V - - 100 mV Rl-R12 Ll-L12 Oscillation frequency f(osc) R= 10KQ C= 0.02pF 6 14 KHz OSC \ 10 FLR - f(osc) x 1/32 . Peak hold reset timing pJ - f(osc) x 1/8192 POR release voltage VIH2 - Supply current 1 100H Supply current 2 100 Supply current 3 100H OFF UR sampling frequency 288 VOOH " 36.5V No load. all ~OTs ON V ooH =36.5V No load. all OOTsOFF VOOH = 36.5V No load. all DOTs OFF 4.0 - - - - 15 rnA VOOH - - 15 mA VOO - - 2.2 mA VOOH V POR, Voo FUNCTIONAL DESCRIPTION • paR • asc This is a C (capacitor) and R (resistor) oscillation connection terminal to specify the RlL sampling switching frequency and the peak hold reset timing. Example: R= 10Kn, C = 0.0211F, fosc = 10KHz The paR terminal with a capacitor conne~ted is used for power on reset. The reset release threshold voltage is 4.OV max. The built-in pull.up resistor is about 100 Kn. Select the capacitor value according to the supply voltage at its leading edge. - R C = 2.211F~4. 711F I • M,MODE When this terminal is made Low, the manual peak hold reset mode is set, and the peak hold state is reset. For that purpose, the A. MODE terminal should be kept open. When only the AUTO mode is to be used, connect the terminal to the Voo terminal. "H" _ _ _ _ _ _-, ilL" --------------OL-J I I I I I I I I -..~ ...4:E----- Reset pulse width: 1OIlS min. • A. MODE If this terminal is made Low when M.MODE is selected, the system enters the AUTO mode reset state. The AUTO mode reset timing is fosc x 1/8192. When only the AUTO mode is to be used, keep the terminal Low. When power is turned on, the AUTO mode is automatically set. "H" _ _ _ _ _ _.., "L" --------------OL-J -..~ ....4:E-----1011S min. • Rin, Lin These are an analogue input terminal to input an audio level signal. Max. 350mVrms 289 • Rout, Lout These are a capacitor (C) and resistor (R) connection terminal to hold the analogue input peak. Example: R= 10Kn,C= 10}lF C +-L --r- I R I • RltoR12,L1toL12 These are a FLT dot output terminal • VOOH This is a power terminal !or Rl to R12 and L1 to L12. • GNDH This is aGND terminal for Rl to R12 and L1 to L12. • Voo This is an analogue or logic system supply voltage terminal. • GND This is an analogue or logic system grounding terminal. • TEST This isa measurement input terminal, which is generally to be connected to the VDD terminal. • VREF This is a comparator reference power terminal, which is generally to be connected to the VDD terminal 290 R/L THRESHOLD VOLTAGE TABLE (Vref=5V± 1%, Ta=25°C, f= 1 KHz) , Symbol Conditions MIN TYP MAX Unit Threshold voltage 1 Cl The output should be offset. AJD - - 2,0 - dB Threshold voltage 2 C2 -17 -15 -13 dB Threshold voltage 3 C3 -11.5 -10 -B.5 dB Threshold voltage 4 C4 -B.O -7 -6.0 dB Threshold voltage 5 C5 -6.0 -5 -4.0 dB Threshold voltage 6 C6 -4.0 -3 -2.0 dB Threshold voltage 7 C7 -1.5 -1 -0.5 dB Threshold voltage B CB Threshold voltage 9 C9 +0.5 +1 + 1.5 dB Threshold voltage 1'0 Cl0 +2.0 +3 +4.0 dB Threshold voltage 11 Cll +4.0 +5 +6.0 dB Threshold voltage 12 C12 +6.5 +B +9.5 dB Parameter The output CBlevel should be 0 dB. - - 0 Terminal dB When the input is set to - 30 dB, all DOTs are off. AC INPUT LEVEL VS DC INPUT LEVEL. . Threshold voltage Display [dB] 1 2 3 -20 -15 -10 AC input level [mV rms] 11 20 36 DC input level [mV]* 14 26 47 12 4 5 6 7 8 9 10 11 -7 -5 -3 -1 0 +1 +3 +5 +8 51 64 81 102 114 128 161 203 286 67 84 106 133 149 167 211 265 374 *The values in the table are TYP values. 291 INPUT/OUTPUT CIRCUIT· • Rin, Lin • R1-R12, l1-l12 16K 100n 10Kn • OSC • Lout, Rout • M. MODE A. MODE,POR, TEST soon 292 APPLICATION NOTE VOO Note: The base of the PC board should be grounded (atone pOint). The signal line should be kept away from noise on VooHside. VOOH (High voltage) ~othe segment ,'-_ _ _ _...J/ To the segment on the left on the left II To the segment on the right Rl 10K R2, R4 R3, R5 VR1, VR2 R6, R7 lOOK 10K 500 10K Cl C2 C3, C4 C5, C6 C7 2.211F-4.7JlF : ,: : : 0.022JlF 1011F 2.21lF 4.711F Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI. 293 OKI semiconductor MSC1146B' 2-CHANNEL 1S-DOT LEVEL METER Ie (DYNAMIC) GENERAL DESCRIPTION The OKI MSC 1146B Bar graph Display Level Meter is a Bi-CMOS LSI general purpose display Level Meter designed to interface with vacuum fluorescent type display. FEATURES • Direct input of audio signals (AC signals) • DCinput • Peak hold function provided • Decibel display by anti-log compression ( + lOB to -:- 40dB) • Power ON reset circuit built in • FLT direct driving by high withstand voltage process (Pull~down resistor built in) • Grid driver output duty simply changed by C and R • 28-pin lead plastic DIP, 30-pin shrink plastic DIP 294 BLOCK DIAGRAM vref~ V REF vcc~ GND~ URsample pulse UR latch circuit OSC H H Peak 0 15 0 14 H;9h hold vol~age circuit dnver circuit O2 timing 01 L-GRID R-GRID DUTY LATCH signal P.H.R power ON reset L-GRID "" \D VI R-GRID VEE PIN CONFIGURATION 30PIN Shrink DIP 0 3 28 4 27 • 26 6 25 7 24 8 23 22 21 20 19 18 17 16 15 1 VCC 1,1 NC 21 06 2 Rin 12 VEE 22 07 3 Rout 13 L-Grid 23 08 4 GND 14 R-Grid 24 09 5 Lin 15 01 25-- 010 6 Lout 16 02 26 011 7 Vref 17 03 27 012 8 PHR 18 04 28 013 9 OSC 19 05 29 014 10 DUTY 20 NC 30 015 (This specification may be changed without notice.) 296 ELECTRICAL CHARACTERISTICS • Absolute Maximum Ratings Parameter Conditions Rated value Unit Terminal . Vee Ta = 25°C - 0.2-7.0 V VCC ~upplY volta&e 2 Between V and VEE) VEE Ta = 25°C VCC + 0.2- - 38 V VEE Input voltage Vl1 Ta = 25°C - 0.2-VDD + 0.2 V Ta = 25°C, VI= -1.0V 10MAX rnA Supply voltage 1 Input reverse current II - Except Rin and Lin Output current 101 Ta = 25°C, source current -10MAX rnA 01- 0 15 Output clJrrent 102 Ta = 25°C, source current - 50 rnA L-Grid, R-Grid Input voltage VI2 Ta = 25°C - 3.0,-VDD + 0.2 Allowable loss P02 Ta = 70°C 480 Storage temperature • Symbol - 50- + 125 Tstg V Rin, Lin rnW °C Operating Condition Parameter Symbol Supply voltage Vee Supply voltage VEE Operating temperature Top Conditions Between Vee and VE Rated value Unit Terminal 4.5-5.5 V VCC -8--37 - V VEE -10- :+-70 °C 297 • DC Characteristics VCC= 5.0 ± 0.5V 'Ta = -:' 10-70°C, Specifications Parameter Symbol Conditions Unit MIN TYP Terminal MAX . Input bias current IlL Input voltage VI Vin=OV ± 1.0 pA' 3.5 VP.P Rin, Lin VCC x80% High level input voltage VIHl Low level input voltage VILl VCC x20% V High level input current IIH1 ±1 pA Low level·input current IILl -100 pA V PHR -20 High level output voltage VOHl 10=-O.2mA VEE =-36.0V. vee = 5V Low level output voltage VOLl 10 = OmA. VEE = -36.5V (Between vee and VEE) Pull-down resistor Ro High level output voltage VOH2 Oscillation frequency Vee = 5V, VEE =-36.5V ~=-20mA. fosc UR sampling frequency f. UR Peak hold reset timing PJ EE =-36.5V. Vee = 5V (Between Vee and VEE) R= 10KQ, C = 0.022pF -50 3.5 10 V 200 mV 500 KQ 2.5 6 V 10 14 01- 0 15 R-Grid L-Grid R-Grid L-Grid KHz OSC V VCC ,V VREF fosc x 1/32 \ fosc x 1/8192 POR release voltage VIH2· 4.0 Voltage VREF VREF Vee=5V, VEE =-36.5V Supply current IEEl Vee = SV,VEE = -36.5V DUTY 1112 No load, all DOTs ON 5 mA VEE Supply current IEE2 Vee = 5V,VEE = -36.5V DUTY No load, all DOTs OFF 1112 5 mA VEE Supply c~rrent lee vec :=5V.V EE =-36.5V' No load, all DOTs OFF 10 mA Vee -8 -5 Note: Voltage VEE is a voltage between the Vee and VEE terminals. 298 ,200 01- 0 15 -2 FUNCTIONAL DESCRIPTION VCC: This is an analogue or logic system voltage input terminal. Rin, Lin: These are audio input terminals to directly input an alternating current via a capacitor coupling. Max. 3.SV P.P Rout, Lout: These terminals rectify an audio alternating current with a capacitor and resistor connected. OSC: This is a C (capacitor )and R(resistor) oscillation connection terminal to specify the UR sampling and UR-Grid switching frequency and the peak hold reset timing. R= 10kn C= 0.02211F fosc;: 10kHz R o R Standard: R= 10Kn, C= l011F Vref: This is an amplifier built-in voltage output terminal. Connect a capacitor of about l011F between the GND and Vrefterminals. P.H.R: This is a peak hold reset terminal. When the terminal is Low, the reset state is fixed. (Peak hold function inhibition state: The peak hold function is performed for an input of - 10 dB or higher.) 299 DUTY: This terminal with a capacitor (C) and a resistor (R) connected is used to adjust the URGrid duty ratio and to change the FLT brightness.. When the terminal is fixed Low, the duty ratio is about 1/4. ____________________,~1~0:s_c~_x~_~1_/~1:~:I~--~I~~ ___________________~ . fosc x 1/32 ~------------------------------------):~ ~ 1 About 3.2 ms (1 cycle) at f osc = 10KH z , 'I Wt can be adjusted by C and R. The maximum duty ratio is 1/4. Vee R Example: R= 10KQ, C = 0.04611F, Pulse width 270115 (Duty ratio: About 1112) = Pulse width calculation method Wt =0.587 x C x R(5) When the v~lue for R is non 0 K, the constant may be slightly changed. Note: The resistance should not be less than 8K. VEE: This is a FLT driving supply voltage terminal. The power supply system is as follows: + + SV 36.SV UR-Grid: This is a FLT grid driving output terminal. The timing waveform isshownin the illustration for the DUTY terminal. The grid can be directly driven. 300 01 to 015: 'These terminals are FLTsegment terminal with a rull-ddwn resistor built-in to directly drive the segment. Note: Precautions for operation Power ON and OFF sequence Power connection diagram 2. 1. a o o b Power source a Power source b When turning power on, turn the power source b on prior to or simultaneously with the power source a. When turning power off, turn the power source a on prior to or simultaneously with the power source b. The time difference between a and b should be within 5 seconds as following time chart. For 5 seconds, a current of 80 to l20mA (Vee =SV) flows through the power sourcea. This is a normal phenomenon. When the power source b is turned on, the system enters the normal state. Power source a 5 seconds ~ :~ ~: ~ 5 seconds Power source b 301 THRESHOLD VOLTAGE TABLE VCC=5V± 1%, Ta=25°C Specifications Parameter Terminal Conditions Unit MIN TYP MAX Threshold voltage 1 01 9 10 13 dB Threshold voltage 2 02 6 8 9 dB Threshold voltage.3 03 . 4 5 . 6 dB 4 dB Threshold voltage 4 04 1.5 3 Threshold voltage 5 05 0.5 1 1.5 dB Threshold voltage 6 06 - 0 - dB Threshold voltage 7 07 -1.5 -1 -0.5 dB Threshold voltage 8 Os -4 -3 -2 dB Threshold voltage 9 09 -6 ,-5 -4 dB Threshold voltage 10 010 -8.5 -7 -6 dB Threshold voltage 11 011 -13 -10 -8.5 dB Threshold voltage 12 012 -18 -15 -13 dB Threshold voltage 13 The input should be adjusted to 0 dB. 013 -25 - 20 -18 dB Threshold voltage 14 014 -35 -30 - 25 dB Threshold voltage 15 015 -45 -40 - 35 dB OFF SET should be set to - 40 dB. When the input is set to - 60 dB, all DOTs are off. The peak hold function is effective for an input of - 10 dB (011) or higher. AC INPUT LEVEL VS DC INPUT LEVEL Threshold voltage Display [dB] 4 3 2 5 7 6 8 9 10 10 8 5 3 1 0 -1 -3 -5 -7 782 622 440 349 278 247 221 175 139 110 1,107 879 622 494 393 350 312 248 197 156 11 12 13 14 15 Display [dB] -10 -15 -20 - 3C -40 ACinput level [mV rms] 78.5 44.0 24.7 7.85 2.47 111 62.2 35.0 11.1 3.50 AC input level [mV rms] DC input level [mV]* Threshold voltage DC input level [mV]* 302 1 * Input from the Lout or Rout terminal.. The values in the table are TYPvalues. INPUT CIRCUIT oRin, Lin 2kn o-'VV'v o OSC ~2kn~ 2 kn 2kn 'VV'v·-----.-H OUTPUT CIRCUIT o L-Grid,'R-Grid lOon loon 15kn o Lout, Rout 303 APPLICATION NOTE ...c u.. CII ::l. E en CII 11'1 ID U u.. c: ~ ::l. ID ~ 0 ~ ci 11'1 0::: U c: N N LI'I u.. ~ ~ + ::l. 0 ~ ci u) M I ~ 0::: v U 0::: > c: 0 0 LI'I M 0::: c: ~ 0 u.. ::l. ~ 0 u.. ::l. ~ ~ N 0::: N U N .... 0 c: u.. ~ ~ N "0 "0 ~ U .,J ~ :; ~ .~ en 0 Rj C ro 0::: o .~ en 0 " Rj C ro -I Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights.of OKI. 304 ::l. N One Chip Microcontroller ===================:::==============================================================:J OKIi sernraficondlUlcQcr MSC6458 OKI 4-BIT 1-CHIP MICROCONTROLLER GENERAL DESCRI~TION The MSC6458 is a high-speed, 4-bit 1-chip microcontroller with built-in FLT drivers/controllers developed to support relatively large control systems. FEATURES • ROM: 8000 x 8 bits • RAM: 512 x 4 bits • Ports: I/O 24 ports (8 having 10L = 20 rnA) Input 9 (2 also serving as interrupt inputs), • FLT drivers (Withstand 12 (IOH = 20mA) voltage 40V): 12 (IOH = 6mA) • LED direct dnve available • Interrupts: 7 lines (2 external, 5 internal) • Built-in counters: 12 bits, timebase counter 16 bits, programmable counter 8 bits, high-speed programmable timer/event counter • • • • • Serial I/O: Built-in 8-bit SIO register Oscillation circuit: Crystal or ceramic oscillation Number of instructions: 147 Cycle time: 930 ns ( 4.3MHz) Operating ranges: 4.5 to 5.5V ( 4.3MHz) Voltage: 3.0 to 6.0V (1 MHz) Temperature: -40 to +85°C • Power dissipation (typical) (display off): 9mA (5V, 4.3MHz) 2mA (3V. 1MHz) o Power down: STOP instruction • Package: 64-pin shrink DIP/54- pin FLAT BLOCK DIAGRAM TO Tl TIl SEGO SEG 1 I I I I SEG 11 -VDD -GND 210 3210 3210 3210 3210 307 LOGIC SYMBOL PIN CONFIGURATION (TOP VIEW) 64 PIN PLASTIC "':~o SHRINK DIP .-Cl: ~WG t.l; •• O~ :Jr :JOJ t'Wl."::I: RESET TEST 5V "no.,II ·"I ""0'"111 X OV .... ~~,~ FLTPow., .. -err: ::~ '·X -1]£ ]PO RT 6 "'JI: I O,g'IOUIO~1 ..,:m: "':E "'1': ""-l..!."'[ PORlI [ lorFlT PORT1[ PORTe [ _JI: I PORT2[ :rn X :v: M~ M~ M~ $1M YUf ~M" :If; tlGt :n::tfG'O :n: MO" l': ... :e: ::n: '''MO'' "OMG'J X 'I Mil'. Jr fIU"'~ )iJ"OU" ;no .~ .. :K'IOU" ~1I: ::Jlj •• OU" .-oIL ''':>I: lIl..,ou" "':n; :~;:j I ] Segmenl Ouloul lorFLT n·oo ;g:'Mac ~_I -:n: .;~ ~!L 'IOU" JaJ"o.,', X'Oo..'Q X~ J!:~ ~::; ::"'l_____~::. PIN DESCRIPTION Input! Output Function When reset POO' P01/SCK P02/S0 P03/S1 Input! Output 1/0 port _ 1/0 port (also used as serial clock input SCK) 1/0 port (also used as serial data output SO) 1/0 port (also serial data input SI) "1" P10/CIN P11/TMO P12/TCK P13 Input! Output 1/0 port (also used as count input CIN) 1/0 port (also used as timer output TMO) 1/0 port (also used timer clock input TCK) 1/0 port Terminal P20/lNTO P22/1NT1 Input Port with Latch (falling~e sensitive) also used as interrupt input INTO Input Port with Latch ('0' level sensitive) also used as interrupt input INn - P30 -P33 Input! Output 1/0 port "1 " P60 -P63 Input! Output 1/0 port "0" P40 -P43 P50 -P53 Output! Input 1/0 port (lOL =20mA MAX) "0" P70 -P72 P80 -P83 Input Input port with pull down register Pull down register of P70 - P72 can be removed by instruction SEGO - SEG11 Output FLT segment driver (dynamic) "0" T11/SEG12 -T8/SEG15 Output FLT segment driver (dynamic)/Timing output, "0" "0" T710UT7 -TOIOUTO Output FLT segment driver (static)/Timing output OSCO OSC1 Input! Output Crystal conneGtion terminal for system clock oscillation - System reset input - Test pin (Open) - RESET 308 Input "1 " Input TEST Output VFLT Input Power supply for FLT driving - VDD GND Input System Power Supply - FUNCTIONAL DESCRIPTION 1. ROM The ROM, organized in 8 bits, has a maximum capacity of 8000 bytes. 2. RAM The RAM is organized in 4 bits per word, with a capacity of 512 words. It is separated into two banks each 256 words long. Bank selection is accomplished via internal ports. The RAM location in the banks is addressed by the Hand L registers or by the second byte of each instruction. 3. Ports (24 I/O, 7 input) The 24 pseudo-bidirectional I/O ports effect or control the exchange of data with external sources. The ports are specified by the L register or by codes contained in instructions. Ports 4 and 5 may draw 10L up to 20mA. The seven input ports have built-in pulldown resistors. Up to 84 keys can be scanned by assembling them in key matrices with the timing outputs of th'e FLT drivers' (with 12 segments x 12 timings on display; also during automatic display). 4. Interrupt Input Pins (2 terminals) The INTO/P20 and INT1/P22 pins are interrupt input pins. External interrupt request flags of INTO/P20 pin and INT1/P22 pin can be set by using interrup,t input pins: , INTO/P20 pin ... positive edge or negative edge input. INT1 /P22 pin ... "0" level input. These flags are automatically reset when the appropriate external interrupts occur. These pins are available for use as input ports when not used as interrupt input pins. 5. FL T Drivers/Controllers (Automatic Display) The FL T drivers have a withstand voltage of 40V in the positive direction from the GND level. They comprise 12 ports that can draw 20mA as 10H (Timing outputs) and 12 ports that can draw 6mA as such (Segment outputs). A choice of four display modes is supported as listed below. A display RAM area is allocated as part of the RAM space. Data is automatically displayed when transferred to the display RAM. (Two different display frequencies are selectable.) Static output data can be displayed by controlling the FL T drivers by programming. Display modes (@4.1 94304 MHz) (1) 12 Segments x 12 Timings 1/12 duty (85.3/341.3 Hz) (2) 16 Segments x 8 Timings 1/8 duty (128/512 Hz) (3) 16 Segments x 4 Timings +4 output" 1/4 duty (256/1 024Hz) (4),16 Segments+8 output" Program controlled "output: static outputs 6. Stack (STACK) and Stack Pointer (SP) The PC is saved In the stack when an interrupt occurs or a CAL instruction is execl\ted. It is recovered by the execution of an RT instruction. One fourth' of the RAM space (128 words maximum, 32 levels) is available as a stack area. A 4-word RAM area is used for "one" level in the stack. The stack pointer is an 8-bit up-down counter (the MSB and 2 bits from LSB being fixed at '1') indicating the next stack address to use. It enables the RAM space to be used as a pushdown stack. Data can also be transferr~d between stack pointer and the H/L registers. 7. Interrupts Seven interrupt lines are provided for eight sources and eight levels of interrupts as follows, (two external inputs): (1) Display interrupt Update to timing signals (positive edge) (2) External interrupt1 Negative edge on the INTO/P20 pin (3) External interrupt2 Positive edge on the INTO/P20 pin _. (4) External interrupt3 '0' input onthe INT1 /P22 pin (5) Timebase interrupt 12-Bit timebase counter overflow (6) Timer interrupt 16-Bit timer and timer register matched signal (7) Counter interrupt 8-Bit counter and counter register matched signal (8) Serial/O interrupt 8-Bit shift register shift end signal 8. 12-Bit Timebase Counter The timebase counter is made up of a 12-bit binary counter. It generates an interrupt request every time it overflows as a result of dividing the OSCO input 212. 9. 16·Bit Programmable Timer/Event Counter Comprising a 16-bit register, a 16-bit binary counter, a comparator circiut, and a control circuit, the programmable timer generates an interrupt request when the register and counter values are matched. 10. 8·Bit High·Speed Programmable Timmer/Event Counter The high-speed programmable timer/event counter comprises an 8-bit register, an 8-bit binary counter, a comparator circuit, and a control circuit. Starting and stopping the counter can be controlled by instructions. It generates an interrupt request when the register and counter values are matched. 309 11. a-Bit Serial 1/0 Serial 1/0 consists of an 8-bit shift register, a 3-bit shift counter, and a control circuit. It is used for serial data input and output. Serial data input and output takes place synchronize~ with a· shift clock. which is selectable between internal and external clocks. The shift counter automatically terminates a data transfer on counting' eight shift clock pulses and generates an interrupt request. 12. Registers (Ace, H, L, F) The accumulator (Acc) is a 4-bit register used to perform data transfers or calculations wLth the RAM, other registers, ports and so on. The Hand L registers are each a 4~bit register. They transfer data to and from Acc and SP (slack pointer) and address the RAM: The L register is also used to specify ports to use. The' F register is made up of four independent flip-flops. It can be used as a program "flag" or general-purpose register because each of Ihese flip-flops permits set/reset testing and transferring A-bit parallel data to and from Acc by Instructions. 13. Timing Control (Te) A 'a· input on the RESET pin for a certain period initializes Internal circuitry and ports. As the input side of clock pulses, the oseo pin accepts clock pulses from an external source. Clock pulses may also be .obtained by configuring an oscillation circuit wi.th a crystal oscillator or ceramic resonator connected to oseo and OSC 1 .. 310 Load Instructions, etc. Mnemonic LAI n Code 8ytes Cycles 90-9F 1 1 Description , A +-n LLI n 80-8F 1 1 L+-n LHI n 3E·7n 2 2 H +- n LHLI nn 15· nn 2 2 HL +- nn LMI nn 14· rin 2 2 M (w)'+- nn LAL 21 1 1 A+-L LLA 2D 1 1 L+-A LAH 22 1 1 A+-H LHA 2E 1 1 H+-A LAM 38 1 1 A+-M LMA 2F 1 1 M +-A LAM + 24 1 1 A+- M, L +- L+1, Skip if L = "0" LAM- 25 1 1 A+- M, L +- L-1, Skip if L = "F" LMA+ 26 1 1 M +- A, L +- L+1, Skip if L = "0" LMA- 27 1 1 M +-: A, L +- L-1, Skip if L = "F" LAMM n2 39-38 1 1 A +- M, H +- H ¥ n2 LAMD mm 10 ·mm 2 2 A+-Md LMAD mm 11·mm 2 2 Md +-A X 28 1 1 A-M· X+ 3C 1 1 A- M, L +- L + 1, Skip if L = "0" X- 2C 1 1 A- M, L +-L-1, Skip if L = "F" M, H +- H ¥ n2 XM' n2 29-28 1 1 A_ LMT mm 19· mm 2 4 M (w) +- T (Md (w), A) LAF 3E·54 2 2 A+-F LFA 3E·5C 2 2 F+-A LHLS 3E·53 2 2 HL +- SP lSHL 3E·58 2 2 'SP-HL IP 20 1 1 A+-P OP 23 1 1 P+-A IPD p 3D· pD 2 2 A+-Pp OPD p 3D· pC 2 2 Pp +-A . 18 1 3 P4, P5 +- T (M (w), A) OPT 311 Interrupt Control Instructions Mne{'l0nic· 312 Description Code Bytes Cycles MEl. 3E·60 2 2 MEIF _"1" MOl 3E·61 2 2 MEIF_"O" EIXD 2 2 EIXDF -"1" EIXU 3D· E8 3D· E9 2 EIXL 3D· EA 2 2 EIXUF -"1" EIXLF _"1" EIOP 3D· EB 2 2 EITB 30·08 2 2 EIDPF -"1" EITBF _"1" EITM .30·09 2 2 EITMF-"1" EICT 3D·OA 2 2 EICTF -"1" EISR 3D· DB DIXD 3D· E4 2 2 2 2 • EIXDF -"0" DIXU 3D· E5 2 2 EIXUF-"O" DIXL 3D· E6 2 2 EIXLF -"0" DIOP 3D· E1 2 2 DITB .30·04 2 2 EIDPF-"O" EITBF_"O" DITM 30·05 2 2 EITMF-"O" DICT 30·06 2 2 EICTF-"O" DISR. 30·07 2 2 EISRF-"O'" TIXO 3D· EO 2 2 Skip if EIXDF TIXU 3D· E1 2 2 Skip if EIXUF TIXL 3D· E2 2 2 TIDP 3D· E3· 2 2 TITB 3D· DO 2. 2 TITM 30·01 2 2 TICT 30·02 2 TISR 30·03 2 2 TOXD 30·20 2 2 TOXU 30·21 2 2 TOXL 30·22 2 2 TOOP 30·23 2 TOTB 3D· CO 2 2 2· TOTM 3D· C1 2 2 TOCT 3D· C2 2 2 TOSR 3D· C3 2 2 ROXD 30·24 ROXU 30·25 2 2 2 IROXDF - '~O" IROXUF-"O" 2 2 2 EISRF -"1" = "1" = "1" Skip if EIXLF = "1" Skip if EIDPF = "1" Skip if EITBF = "1" Skip if EITMF = "1" Skip if EICTF = "1" Skip if EISRF = "1" Skip if IROXDF = "1" Skip if IROXUF = "1" Skip if IROXLF = "1" Skip if,IRODPF = "1" Skip if IROTBF = "1" Skip if IROTMF = "1" Skip if IROCTF = "1" Skip if IROSRF = "1" ROXL 30·26 2 2 IROXLF-"O" ROOP 30·27 2 2 IRODPF-"O" ROTB 3D· C4 2 2 IROTBF-"O" ROTM 3D· C5 2 2 IROTMF-"O" ROCT 3D· C6 2 2 IROCTF-"O" ROSR 3D· C7 2 2 IROSRF -"0" Increment/Decrement Instructions Mnemonic Code Bytes Cycles INA 30 1 1 A _A+1, Skip if A INL 31 1 1 L _ L+1, Skip if L = "0" INH 32 1 1 H_ H+1, Skip if H = "0" Description = "0" INM 33 1 1 M _ M+1, Skip if M = "0" DCA 34 1 1 A -A-1, Skip if A DCL 35 1 1 DCH 36 1 1 DCM 37 1 1 = "F" L _ L-1, Skip if L = "F" H _H-1, Skip if H = "F" M _ M-1, Skip if M = "F" Md _ Md+1, Skip if Md = "0" Md _ Md-1, Skip if Md = "F" INMD mm 12· mm 2 2 DCMD mm 13· mm 2 2 Code Bytes Cycles 54-57 1 1 Skip if A (n2) Bit Handling Instructions, etc. Mnemonic TAB n2 Descrip~ion RAB n2 64-67 1 1 A.(n2) -"0" SAB n2 74-77 1 1 A (n2) - "1" TPB n2 50-53 1 1 Skip if P (n2) = "1" = "1" RPB n2 60-63 1 1 P(n2) -"0" SPB n2 70-73 1 1 P (n2) - "1'! TMB n2 58-5B 1 1 Skip if M (n2) RMB n2 68-6B 1 1 M (n2) -"0" 5MB n2 78-7B 1 1 M(n2)-"1" TFB n2 5C-5F 1 1 Skip if F (n2) RFB n2 6C-6F 1 1 F (n2) - "0" SFB n2 7C-7F 1 1 F (n2) - "1" TPBD p,n2, 3D" pO-3 2 2 Skip if Pp (n2) RPBD p,n2 3D· p4-7 2 2 Pp (n2) -"0" SPBD p,n2 3D· p8-B 2 2 Pp (n2) - "1" TC 09 1 1 Skip if C RC 08 1 1 C_"O" SC 07 1 1 C_"1" = "1" = "1" = "1" = "1" 313 Arithmetic Instructions Mnemonic Code Bytes Cycles Description ADCS 01 1 1 C, A ~ C+A+M, Skip if C ADS 02 1 1 A ~ A+M, Skip if Cy ADC 03 1 1 C, A+-C+A+M 3E·4n 2 2 A+- A+n, Skip if Cy DM 06 1 1 A +-A+6 DAS OA 1 1 A+-A+10 AIS n = "1" = "1" = "1" AND 00 1 1 A+-A/\M OR 05 1 1 A+-AVM EOR 04 1 1 A+-A¥M CMA OB 1 1 A+-A CIA OC 1 1 A+- A+1 RAL OE 1 1 CC +- 3 +- 2 +- 1 +- 0:) ,--A _____ RAR OF 1 1 ~C-+ 3-+2-+1-0) ,--A~ 16 1 1 Skip if A =M CAl n 3E· On 2 2 Skip if A =n CMI n 3E·1n 2 2 SkipifM =n CLI n 3E·2n 2 2 Skip if L =n CPI p,n 17· pn 2 2 Skip if Pp Code Bytes Cycles CO-FF 1 1 PC +-a6 1A 1 2 PC +- (PC·+- A) +1 JM 1B 1 2 PC +- (M (w), A) JP a12 40 4F OO-FF 2 2 PC +- a12 CAL a12 AO AF OO-FF 2 4 ST +- PC+2, PC +- a12, SP +- SP-4 CZP a Ba 1 4 ST +- PC+1, PC +- ?a, SP +- SP-4 LJP a13 3F 3F 00-1F 00 FF 3 4 PC +- a13 LCAL a13 3F 3F 80-9F 00 FF 3 4 ST +- PC+3, PC +- a13, SP +- SP-4 RT 1E 1 4 PC +- ST, SP +- SP+4 RTS 1F 1 4 PC +- ST,SP +- SP+4, then Skip CAM =n Branch Instructions, etc. Mnemonic JCP a6 JA 314 Description Counter Control Instructions, etc. Mnemonic LCTM I Code Bytes Cycles 3E·51 2 2· Description CTR +-M (w) LMCT 3E·59 2 2 M (w) +-CT ECT 3D· BB 2 2 CTF +- "1" (Counter Start) DCT 3D· B7 2 2 CTF "0" (Counter Stop) TCT 3D· B3 2 2 Skip if CTF = "1" LTMM 3E·50 2 3 TMR +-M (2w) LMTM 3E·58 2 3 M (2w) +-TM LSRM 3E·52 2 2 SR +- M (w), SC +- "0" LMSR 3E·5A 2 2 M (w) +-SR ESR 3D· BA 2 2 SRF +- .i1" (Shift Register Start) DSR . 3D· B6 2 2 SRF +-"0" (Shift Register Stop) TSR 3D· B2 2 2 Skip if SRF = "1" Code Bytes Cycles <- SC: Shift Counter CPU Control Instructions, etc. Mnemonic Description PUSH 1C 1 3 ST ~ C, A, H, L. SP +- SP-4 POP 10 1 3 C, A, H, L +- ST, SP +- SP+4 HALT 3D· B8 2 2 Halt CPU STOP 3D· B9 2 2 Stop CPU NOP 00 1 1 No Operation 315 explanations of Instruction Symbols A H L F M : Accumulator (4-bit) : H register (4-bit) : L register (4-bit) :.F register (4-bit) : RAM word addressed by the Hand L registers Md : RAM word addressed by second byte of an instruction code M(w) : Two RAM words addressed by the Hand L register/H3-0 and L3-1 (a-bit) Md(w) : Two RAM words addressed by second byte of an instruction code (a-bit) M(2w) : Four RAM words addressed by the Hand L register/H3-0 and L3-2 (16-bit) : Four RAM words (16-bit) allocated as a stack area ST : Stack pointer (a-bit) SP PC : Program counter P : Port specified by the L register (4-bit) : Port specified by 4 high-order bits of second byte of an instruction code (4-bit) Pp : a-Bit counter/register . CTA : a-Bit programmable counter CT : Programmable counter start flag CTF : 16-Bit timer/register TMA : 16-Bit programmable timer TM : a-Bit shift register SA , : Shift register start flag SRF (X, Y) : ROM addre'ss data specified by al14 as X and a3-0 as Y (12-bit) T(X, Y) : ROM table data specified by a 11-4 as X and a3-o as Y (a-bit) : Immediate data (4-bit) n nn : Immediate data (a-bit) n2 : Two low-order bits of an instruction code (n2) : Bit specified by the two low-order bits of an instruction code a : ROM address data· ax : ROM address data (X-bit) : RAM address data (a-bit) . mm : Carry flag C Cy : Flag indicating a carry in a calculation result 316 ELECTRIC CHARACTERISTICS • Absolute Maximum Ratings Parameter Symbol Supply Voltage VOO Indicated Supply Voltage VFLT Input Voltage Input Voltage Conditions' Limits Ta = 25°C VI Ta = 25°C Vo V VOO - 45 V -0.3 - VOO V Input/output -0.3 - VOO V Indicated output -0.3 - VFLT V 10 mA 40 mA ' SEGO - SEG1 Per pin "H" Output Current (Indicated Output) "L" Output Current (P4, P5) Power Dissipation Storage Temperature Unit -0.3 -7 TO - T11' * 30 mA Output terminal SEGO - SEG11 total TO - Tl1 72 72 fnA Per terminal 20 mA P4 total 40 mA OUTO - OUT7 10H 10L Po mA P5 total 40 mA Per package SOO mW Per input/output terminal 50 mW - -55 - +150 °c Tstg * When timing output is used as static output • Operating Conditions Parameter Symbol Conditions Limits Unit f (osc) ~ 4.3MHz 4.5 - 5.5 V f (osc) ~ lMHz 3-S V 10 -40 V Supply Voltage VOO Indicated Supply Voltage VFLT - Memory Retension Voltage VOOH Topr Oscill,ation off 2-S V - -40 - +85 °c MOS Load 15 - Operating Temperature (Fan Out (Input/Output Port) N TTL Load 1 • DC Characteristics Parameter (V DO = 5V ±10%, Ta = -40 - +85°C) Terminal applied Symbol Conditions Min. Typ. - 2.4 - 3.8 - 3.4 0 - - 0 10 = -15~A 10= -SmA TO - Tl1 10 = -20mA VFLT-3.5 PO, Pl, P3,PS 10 = .1.SmA P4, P5 10 = 10mA - *1 "H" Input Voltage OS CO, RESET VIH P7, P8 ilL" Input Voltage *2 P7,P8 VIL *3 "H" Output Voltage "L" Output Voltage SEGO - SEGll OSCl VOH VOL 10 = 15~A SEGO - SEGll 10 = lmA TO - T11 10 = lmA OSCO "H" Input Current P2, RESET P7(P73=0), P8 P7(P73=1 ) IIH VI = VOO Max. Unit VOO V VOO V VOO V 0.8 V - 1.S V 4.2 - - V VFLT-2.5 - - V 0.4 V - V 0.8 V 0.4 V l.S V 1.4 V 15 ~A 1 ~A SO ~A 1 ~A 317 Parameter Terminal applied Symbol OSCO P2, RESET "L" Input Current Min. Typ. Max. Unit - -15 J.lA -30 J.lA -1 -0.1 - - J.lA mA -1.2 mA Conditions VI IlL = OV P7,P8 PO, Pl, P3, "H" Output Current P4,P5,P6 Current Consumption VO = 2.4V IOH IDD - - No load f (osc) = 4.3MHz - 12 20 mA No load - 1 100 J.lA - 0.5 10 J.lA - 2 100 J.lA VO = O.4V ,Current Consump'tion (When stop mode condition) IDDS No load VDD = 2V Ta = 25°C Current Consumption (FLT driver section) IFLT No load All F LT driver, "L" level * 1. Applied to PO, Pl, P2, P3, P4, P5, P6 *2. Applied to PO, Pl, P2, P3, P4, P5, P6, OSCO, RESET1 *3. Applied to PO, Pl, P3, P4, P5, P6, OSCl • AC Characteristics (VDD = 5V ±10%, Ta = 40 - +85°C) Parameter Clock (O.S.C 0) Pulse Width Symbol' Conditions Min. Typ. Max. Unit t
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2013:01:07 16:35:21-08:00 Modify Date : 2013:01:07 18:16:39-08:00 Metadata Date : 2013:01:07 18:16:39-08:00 Producer : Adobe Acrobat 9.52 Paper Capture Plug-in Format : application/pdf Document ID : uuid:a7007a01-8b6c-4c07-a5c8-b9218b096b30 Instance ID : uuid:ebfef58f-7ad9-43b3-9c9e-c7beef398153 Page Layout : SinglePage Page Mode : UseNone Page Count : 328EXIF Metadata provided by EXIF.tools